prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# pylint: disable-msg=E1101,E1103 # pylint: disable-msg=W0212,W0703,W0231,W0622 from cStringIO import StringIO import sys from numpy import NaN import numpy as np from pandas.core.common import (_pickle_array, _unpickle_array) from pandas.core.frame import DataFrame, _try_sort, _extract_index from pandas.core.index import Index, NULL_INDEX from pandas.core.series import Series import pandas.core.common as common import pandas.core.datetools as datetools import pandas.lib.tseries as tseries #------------------------------------------------------------------------------- # DataMatrix class class DataMatrix(DataFrame): """ Matrix version of DataFrame, optimized for cross-section operations, numerical computation, and other operations that do not require the frame to change size. Parameters ---------- data : numpy ndarray or dict of sequence-like objects Dict can contain Series, arrays, or list-like objects Constructor can understand various kinds of inputs index : Index or array-like Index to use for resulting frame (optional if provided dict of Series) columns : Index or array-like Required if data is ndarray dtype : dtype, default None (infer) Data type to force Notes ----- Transposing is much faster in this regime, as is calling getXS, so please take note of this. """ objects = None def __init__(self, data=None, index=None, columns=None, dtype=None, objects=None): if isinstance(data, dict) and len(data) > 0: (index, columns, values, objects) = self._initDict(data, index, columns, objects, dtype) elif isinstance(data, (np.ndarray, list)): (index, columns, values) = self._initMatrix(data, index, columns, dtype) if objects is not None: if isinstance(objects, DataMatrix): if not objects.index.equals(index): objects = objects.reindex(index) else: objects = DataMatrix(objects, index=index) elif isinstance(data, DataFrame): if not isinstance(data, DataMatrix): data = data.toDataMatrix() values = data.values index = data.index columns = data.columns objects = data.objects elif data is None or len(data) == 0: # this is a touch convoluted... if objects is not None: if isinstance(objects, DataMatrix): if index is not None and objects.index is not index: objects = objects.reindex(index) else: objects = DataMatrix(objects, index=index) index = objects.index if index is None: N = 0 index = NULL_INDEX else: N = len(index) if columns is None: K = 0 columns = NULL_INDEX else: K = len(columns) values = np.empty((N, K), dtype=dtype) values[:] = NaN else: raise Exception('DataMatrix constructor not properly called!') self.values = values self.index = index self.columns = columns self.objects = objects def _initDict(self, data, index, columns, objects, dtype): """ Segregate Series based on type and coerce into matrices. Needs to handle a lot of exceptional cases. Somehow this got outrageously complicated """ # pre-filter out columns if we passed it if columns is not None: colset = set(columns) data = dict((k, v) for k, v in data.iteritems() if k in colset) index = _extract_index(data, index) objectDict = {} if objects is not None and isinstance(objects, dict): objectDict.update(objects) valueDict = {} for k, v in data.iteritems(): if isinstance(v, Series): if v.index is not index: # Forces alignment. No need to copy data since we # are putting it into an ndarray later v = v.reindex(index) else: if isinstance(v, dict): v = [v.get(i, NaN) for i in index] else: assert(len(v) == len(index)) try: v = Series(v, dtype=dtype, index=index) except Exception: v = Series(v, index=index) if issubclass(v.dtype.type, (np.bool_, float, int)): valueDict[k] = v else: objectDict[k] = v if columns is None: columns = Index(_try_sort(valueDict)) objectColumns = Index(_try_sort(objectDict)) else: objectColumns = Index([c for c in columns if c in objectDict]) columns = Index([c for c in columns if c not in objectDict]) if len(valueDict) == 0: dtype = np.object_ valueDict = objectDict columns = objectColumns else: dtypes = set(v.dtype for v in valueDict.values()) if len(dtypes) > 1: dtype = np.float_ else: dtype = list(dtypes)[0] if len(objectDict) > 0: new_objects = DataMatrix(objectDict, dtype=np.object_, index=index, columns=objectColumns) if isinstance(objects, DataMatrix): objects = objects.join(new_objects, how='left') else: objects = new_objects values = np.empty((len(index), len(columns)), dtype=dtype) for i, col in enumerate(columns): if col in valueDict: values[:, i] = valueDict[col] else: values[:, i] = np.NaN return index, columns, values, objects def _initMatrix(self, values, index, columns, dtype): if not isinstance(values, np.ndarray): arr = np.array(values) if issubclass(arr.dtype.type, basestring): arr = np.array(values, dtype=object, copy=True) values = arr if values.ndim == 1: N = values.shape[0] if N == 0: values = values.reshape((values.shape[0], 0)) else: values = values.reshape((values.shape[0], 1)) if dtype is not None: try: values = values.astype(dtype) except Exception: pass N, K = values.shape if index is None: if N == 0: index = NULL_INDEX else: index = np.arange(N) if columns is None: if K == 0: columns = NULL_INDEX else: columns = np.arange(K) return index, columns, values @property def _constructor(self): return DataMatrix # Because of DataFrame property values = None def __array__(self): return self.values def __array_wrap__(self, result): return DataMatrix(result, index=self.index, columns=self.columns) #------------------------------------------------------------------------------- # DataMatrix-specific implementation of private API def _join_on(self, other, on): if len(other.index) == 0: return self if on not in self: raise Exception('%s column not contained in this frame!' % on) fillVec, mask = tseries.getMergeVec(self[on], other.index.indexMap) tmpMatrix = other.values.take(fillVec, axis=0) tmpMatrix[-mask] = NaN seriesDict = dict((col, tmpMatrix[:, j]) for j, col in enumerate(other.columns)) if getattr(other, 'objects'): objects = other.objects tmpMat = objects.values.take(fillVec, axis=0) tmpMat[-mask] = NaN objDict = dict((col, tmpMat[:, j]) for j, col in enumerate(objects.columns)) seriesDict.update(objDict) filledFrame = DataFrame(data=seriesDict, index=self.index) return self.join(filledFrame, how='left') def _reindex_index(self, index, method): if index is self.index: return self.copy() if not isinstance(index, Index): index = Index(index) if len(self.index) == 0: return DataMatrix(index=index, columns=self.columns) indexer, mask = common.get_indexer(self.index, index, method) mat = self.values.take(indexer, axis=0) notmask = -mask if len(index) > 0: if notmask.any(): if issubclass(mat.dtype.type, np.int_): mat = mat.astype(float) elif issubclass(mat.dtype.type, np.bool_): mat = mat.astype(float) common.null_out_axis(mat, notmask, 0) if self.objects is not None and len(self.objects.columns) > 0: newObjects = self.objects.reindex(index) else: newObjects = None return DataMatrix(mat, index=index, columns=self.columns, objects=newObjects) def _reindex_columns(self, columns): if len(columns) == 0: return DataMatrix(index=self.index) if not isinstance(columns, Index): columns = Index(columns) if self.objects is not None: object_columns = columns.intersection(self.objects.columns) columns = columns - object_columns objects = self.objects._reindex_columns(object_columns) else: objects = None if len(columns) > 0 and len(self.columns) == 0: return DataMatrix(index=self.index, columns=columns, objects=objects) indexer, mask = common.get_indexer(self.columns, columns, None) mat = self.values.take(indexer, axis=1) notmask = -mask if len(mask) > 0: if notmask.any(): if issubclass(mat.dtype.type, np.int_): mat = mat.astype(float) elif issubclass(mat.dtype.type, np.bool_): mat = mat.astype(float) common.null_out_axis(mat, notmask, 1) return DataMatrix(mat, index=self.index, columns=columns, objects=objects) def _rename_columns_inplace(self, mapper): self.columns = [mapper(x) for x in self.columns] if self.objects is not None: self.objects._rename_columns_inplace(mapper) def _combineFrame(self, other, func): """ Methodology, briefly - Really concerned here about speed, space - Get new index - Reindex to new index - Determine newColumns and commonColumns - Add common columns over all (new) indices - Fill to new set of columns Could probably deal with some Cython action in here at some point """ need_reindex = False if self.index.equals(other.index): newIndex = self.index else: newIndex = self.index.union(other.index) need_reindex = True if not self and not other: return DataMatrix(index=newIndex) elif not self: return other * NaN elif not other: return self * NaN if self.columns.equals(other.columns): newColumns = self.columns else: newColumns = self.columns.union(other.columns) need_reindex = True or need_reindex if need_reindex: myReindex = self.reindex(index=newIndex, columns=newColumns) hisReindex = other.reindex(index=newIndex, columns=newColumns) else: myReindex = self hisReindex = other myValues = myReindex.values hisValues = hisReindex.values return DataMatrix(func(myValues, hisValues), index=newIndex, columns=newColumns) def _combineSeries(self, other, func): newIndex = self.index newCols = self.columns if len(self) == 0: # Ambiguous case return DataMatrix(index=self.index, columns=self.columns, objects=self.objects) if self.index._allDates and other.index._allDates: # Operate row-wise if self.index.equals(other.index): newIndex = self.index other_vals = other.values values = self.values else: newIndex = self.index + other.index if other.index.equals(newIndex): other_vals = other.values else: other_vals = other.reindex(newIndex).values if self.index.equals(newIndex): values = self.values else: values = self.reindex(newIndex).values resultMatrix = func(values.T, other_vals).T else: if len(other) == 0: return self * NaN newCols = self.columns.union(other.index) # Operate column-wise this = self.reindex(columns=newCols) other = other.reindex(newCols).values resultMatrix = func(this.values, other) # TODO: deal with objects return DataMatrix(resultMatrix, index=newIndex, columns=newCols) def _combineFunc(self, other, func): """ Combine DataMatrix objects with other Series- or DataFrame-like objects This is the core method used for the overloaded arithmetic methods Result hierarchy ---------------- DataMatrix + DataFrame --> DataMatrix DataMatrix + DataMatrix --> DataMatrix DataMatrix + Series --> DataMatrix DataMatrix + constant --> DataMatrix The reason for 'upcasting' the result is that if addition succeed, we can assume that the input DataFrame was homogeneous. """ newIndex = self.index if isinstance(other, DataFrame): return self._combineFrame(other, func) elif isinstance(other, Series): return self._combineSeries(other, func) else: if not self: return self # Constant of some kind newCols = self.columns resultMatrix = func(self.values, other) # TODO: deal with objects return DataMatrix(resultMatrix, index=newIndex, columns=newCols) #------------------------------------------------------------------------------- # Properties for index and columns _columns = None def _get_columns(self): return self._columns def _set_columns(self, cols): if len(cols) != self.values.shape[1]: raise Exception('Columns length %d did not match values %d!' % (len(cols), self.values.shape[1])) if not isinstance(cols, Index): cols = Index(cols) self._columns = cols columns = property(fget=_get_columns, fset=_set_columns) def _set_index(self, index): if len(index) > 0: if len(index) != self.values.shape[0]: raise Exception('Index length %d did not match values %d!' % (len(index), self.values.shape[0])) if not isinstance(index, Index): index = Index(index) self._index = index if self.objects is not None: self.objects._index = index def _get_index(self): return self._index index = property(fget=_get_index, fset=_set_index) #------------------------------------------------------------------------------- # "Magic methods" def __getstate__(self): if self.objects is not None: objects = self.objects._matrix_state(pickle_index=False) else: objects = None state = self._matrix_state() return (state, objects) def _matrix_state(self, pickle_index=True): columns = _pickle_array(self.columns) if pickle_index: index = _pickle_array(self.index) else: index = None return self.values, index, columns def __setstate__(self, state): (vals, idx, cols), object_state = state self.values = vals self.index = _unpickle_array(idx) self.columns = _unpickle_array(cols) if object_state: ovals, _, ocols = object_state self.objects = DataMatrix(ovals, index=self.index, columns=_unpickle_array(ocols)) else: self.objects = None def __nonzero__(self): N, K = self.values.shape if N == 0 or K == 0: if self.objects is None: return False else: return self.objects.__nonzero__() else: return True def __neg__(self): mycopy = self.copy() mycopy.values = -mycopy.values return mycopy def __repr__(self): """Return a string representation for a particular DataMatrix""" buffer = StringIO() if len(self.cols()) == 0: buffer.write('Empty DataMatrix\nIndex: %s' % repr(self.index)) elif 0 < len(self.index) < 500 and self.values.shape[1] < 10: self.toString(buffer=buffer) else: print >> buffer, str(self.__class__) self.info(buffer=buffer) return buffer.getvalue() def __getitem__(self, item): """ Retrieve column, slice, or subset from DataMatrix. Possible inputs --------------- single value : retrieve a column as a Series slice : reindex to indices specified by slice boolean vector : like slice but more general, reindex to indices where the input vector is True Examples -------- column = dm['A'] dmSlice = dm[:20] # First 20 rows dmSelect = dm[dm.count(axis=1) > 10] Notes ----- This is a magic method. Do NOT call explicity. """ if isinstance(item, slice): indexRange = self.index[item] return self.reindex(indexRange) elif isinstance(item, np.ndarray): if len(item) != len(self.index): raise Exception('Item wrong length %d instead of %d!' % (len(item), len(self.index))) newIndex = self.index[item] return self.reindex(newIndex) else: if self.objects is not None and item in self.objects: return self.objects[item] else: return self._getSeries(item) _dataTypes = [np.float_, np.bool_, np.int_] def __setitem__(self, key, value): """ Add series to DataMatrix in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataMatrix's index or an error will be thrown. Series/TimeSeries will be conformed to the DataMatrix's index to ensure homogeneity. """ if hasattr(value, '__iter__'): if isinstance(value, Series): if value.index.equals(self.index): # no need to copy value = value.values else: value = value.reindex(self.index).values else: assert(len(value) == len(self.index)) if not isinstance(value, np.ndarray): value = np.array(value) if value.dtype.type == np.str_: value = np.array(value, dtype=object) else: value = np.repeat(value, len(self.index)) if self.values.dtype == np.object_: self._insert_object_dtype(key, value) else: self._insert_float_dtype(key, value) def _insert_float_dtype(self, key, value): isObject = value.dtype not in self._dataTypes if key in self.columns: loc = self.columns.indexMap[key] self.values[:, loc] = value elif isObject: if self.objects is None: self.objects = DataMatrix({key : value}, index=self.index) else: self.objects[key] = value elif len(self.columns) == 0: self.values = value.reshape((len(value), 1)).astype(np.float) self.columns = Index([key]) else: try: loc = self.columns.searchsorted(key) except TypeError: loc = len(self.columns) if loc == self.values.shape[1]: newValues = np.c_[self.values, value] newColumns = Index(np.concatenate((self.columns, [key]))) elif loc == 0: newValues = np.c_[value, self.values] newColumns = Index(np.concatenate(([key], self.columns))) else: newValues = np.c_[self.values[:, :loc], value, self.values[:, loc:]] toConcat = (self.columns[:loc], [key], self.columns[loc:]) newColumns = Index(np.concatenate(toConcat)) self.values = newValues self.columns = newColumns def _insert_object_dtype(self, key, value): if key in self.columns: loc = self.columns.indexMap[key] self.values[:, loc] = value elif len(self.columns) == 0: self.values = value.reshape((len(value), 1)).copy() self.columns = Index([key]) else: try: loc = self.columns.searchsorted(key) except TypeError: loc = len(self.columns) if loc == self.values.shape[1]: newValues = np.c_[self.values, value] newColumns = Index(np.concatenate((self.columns, [key]))) elif loc == 0: newValues = np.c_[value, self.values] newColumns = Index(np.concatenate(([key], self.columns))) else: newValues = np.c_[self.values[:, :loc], value, self.values[:, loc:]] toConcat = (self.columns[:loc], [key], self.columns[loc:]) newColumns = Index(np.concatenate(toConcat)) self.values = newValues self.columns = newColumns def __delitem__(self, key): """ Delete column from DataMatrix """ if key in self.columns: loc = self.columns.indexMap[key] if loc == self.values.shape[1] - 1: newValues = self.values[:, :loc] newColumns = self.columns[:loc] else: newValues = np.c_[self.values[:, :loc], self.values[:, loc+1:]] newColumns = Index(np.concatenate((self.columns[:loc], self.columns[loc+1:]))) self.values = newValues self.columns = newColumns else: if self.objects is not None and key in self.objects: del self.objects[key] else: raise KeyError('%s' % key) def __iter__(self): """Iterate over columns of the frame.""" return iter(self.columns) def __contains__(self, key): """True if DataMatrix has this column""" hasCol = key in self.columns if hasCol: return True else: if self.objects is not None and key in self.objects: return True return False def iteritems(self): return self._series.iteritems() #------------------------------------------------------------------------------- # Helper methods # For DataFrame compatibility def _getSeries(self, item=None, loc=None): if loc is None: try: loc = self.columns.indexMap[item] except KeyError: raise Exception('%s not here!' % item) return Series(self.values[:, loc], index=self.index) def _getSeriesDict(self): series = {} for i, col in enumerate(self.columns): series[col] = self._getSeries(loc=i) if self.objects is not None: for i, col in enumerate(self.objects.columns): series[col] = self.objects._getSeries(loc=i) return series _series = property(_getSeriesDict) #------------------------------------------------------------------------------- # Outputting def toString(self, buffer=sys.stdout, columns=None, colSpace=15, nanRep='NaN', formatters=None, float_format=None): """ Output a string version of this DataMatrix """ _pf = common._pfixed formatters = formatters or {} if columns is None: columns = self.columns values = self.values if self.objects: columns = list(columns) + list(self.objects.columns) values = np.column_stack((values.astype(object), self.objects.values)) else: columns = [c for c in columns if c in self] values = self.asMatrix(columns) ident = lambda x: x idxSpace = max([len(str(idx)) for idx in self.index]) + 4 if len(self.cols()) == 0: buffer.write('DataMatrix is empty!\n') buffer.write(repr(self.index)) else: buffer.write(_pf('', idxSpace)) for h in columns: buffer.write(_pf(h, colSpace)) buffer.write('\n') for i, idx in enumerate(self.index): buffer.write(_pf(idx, idxSpace)) for j, col in enumerate(columns): formatter = formatters.get(col, ident) buffer.write(_pf(formatter(values[i, j]), colSpace, float_format=float_format, nanRep=nanRep)) buffer.write('\n') def info(self, buffer=sys.stdout): """ Concise summary of a DataMatrix, used in __repr__ when very large. """ print >> buffer, 'Index: %s entries' % len(self.index), if len(self.index) > 0: print >> buffer, ', %s to %s' % (self.index[0], self.index[-1]) else: print >> buffer, '' if len(self.columns) == 0: print >> buffer, 'DataMatrix is empty!' print >> buffer, repr(self.index) return print >> buffer, 'Data columns:' space = max([len(str(k)) for k in self.cols()]) + 4 counts = self.count() cols = self.cols() assert(len(cols) == len(counts)) columns = [] for col, count in counts.iteritems(): columns.append('%s%d non-null values' % (
common._pfixed(col, space)
pandas.core.common._pfixed
import unittest from pydre import project from pydre import core from pydre import filters from pydre import metrics import os import glob import contextlib import io from tests.sample_pydre import project as samplePD from tests.sample_pydre import core as c import pandas import numpy as np from datetime import timedelta import logging import sys class WritableObject: def __init__(self): self.content = [] def write(self, string): self.content.append(string) # Test cases of following functions are not included: # Reason: unmaintained # in common.py: # tbiReaction() # tailgatingTime() & tailgatingPercentage() # ecoCar() # gazeNHTSA() # # Reason: incomplete # in common.py: # findFirstTimeOutside() # brakeJerk() class TestPydre(unittest.TestCase): ac_diff = 0.000001 # the acceptable difference between expected & actual results when testing scipy functions def setUp(self): # self.whatever to access them in the rest of the script, runs before other scripts self.projectlist = ["honda.json"] self.datalist = ["Speedbump_Sub_8_Drive_1.dat", "ColTest_Sub_10_Drive_1.dat"] self.zero = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] funcName = ' [ ' + self._testMethodName + ' ] ' # the name of test function that will be executed right after this setUp() print(' ') print (funcName.center(80,'#')) print(' ') def tearDown(self): print(' ') print('[ END ]'.center(80, '#')) print(' ') # ----- Helper Methods ----- def projectfileselect(self, index: int): projectfile = self.projectlist[index] fullpath = os.path.join("tests/test_projectfiles/", projectfile) return fullpath def datafileselect(self, index: int): datafile = self.datalist[index] fullpath = glob.glob(os.path.join(os.getcwd(), "tests/test_datfiles/", datafile)) return fullpath def secs_to_timedelta(self, secs): return timedelta(weeks=0, days=0, hours=0, minutes=0, seconds=secs) def compare_cols(self, result_df, expected_df, cols): result = True for names in cols: result = result and result_df[names].equals(expected_df[names]) if not result: print(names) print(result_df[names]) print("===") print(expected_df[names]) return False return result # convert a drivedata object to a str def dd_to_str(self, drivedata: core.DriveData): output = "" output += str(drivedata.PartID) output += str(drivedata.DriveID) output += str(drivedata.roi) output += str(drivedata.data) output += str(drivedata.sourcefilename) return output # ----- Test Cases ----- def test_datafile_exist(self): datafiles = self.datafileselect(0) self.assertFalse(0 == len(datafiles)) for f in datafiles: self.assertTrue(os.path.isfile(f)) def test_reftest(self): desiredproj = self.projectfileselect(0) p = project.Project(desiredproj) results = p.run(self.datafileselect(0)) results.Subject.astype('int64') sample_p = samplePD.Project(desiredproj) expected_results = (sample_p.run(self.datafileselect(0))) self.assertTrue(self.compare_cols(results, expected_results, ['ROI', 'getTaskNum'])) def test_columnMatchException_excode(self): f = io.StringIO() with self.assertRaises(SystemExit) as cm: desiredproj = self.projectfileselect(0) p = project.Project(desiredproj) result = p.run(self.datafileselect(1)) self.assertEqual(cm.exception.code, 1) def test_columnMatchException_massage(self): d3 = {'DatTime': [0.017, 0.034, 0.05, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184]} df = pandas.DataFrame(data=d3) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") handler = logging.FileHandler(filename='tests\\temp.log') filters.logger.addHandler(handler) with self.assertRaises(core.ColumnsMatchError): result = filters.smoothGazeData(data_object) expected_console_output = "Can't find needed columns {'FILTERED_GAZE_OBJ_NAME'} in data file ['test_file3.csv'] | function: smoothGazeData" temp_log = open('tests\\temp.log') msg_list = temp_log.readlines() msg = ' '.join(msg_list) filters.logger.removeHandler(handler) #self.assertIn(expected_console_output, msg) #Isolate this test case No more sliceByTime Function in pydre.core def test_core_sliceByTime_1(self): d = {'col1': [1, 2, 3, 4, 5, 6], 'col2': [7, 8, 9, 10, 11, 12]} df = pandas.DataFrame(data=d) result = (c.sliceByTime(1, 3, "col1", df).to_string()).lstrip() expected_result = "col1 col2\n0 1 7\n1 2 8\n2 3 9" self.assertEqual(result, expected_result) #Isolate this test case No more sliceByTime Function in pydre.core def test_core_sliceByTime_2(self): d = {'col1': [1, 1.1, 3, 4, 5, 6], 'col2': [7, 8, 9, 10, 11, 12]} df = pandas.DataFrame(data=d) result = (c.sliceByTime(1, 2, "col1", df).to_string()).lstrip() expected_result = "col1 col2\n0 1.0 7\n1 1.1 8" self.assertEqual(result, expected_result) def test_core_mergeBySpace(self): d1 = {'SimTime': [1, 2], 'XPos': [1, 3], 'YPos': [4, 3]} df1 = pandas.DataFrame(data=d1) d2 = {'SimTime': [3, 4], 'XPos': [10, 12], 'YPos': [15, 16]} df2 = pandas.DataFrame(data=d2) data_object1 = core.DriveData.initV2(PartID=0,DriveID=1, data=df1, sourcefilename="test_file.csv") data_object2 = core.DriveData.initV2(PartID=0, DriveID=2, data=df2, sourcefilename="test_file.csv") param = [] param.append(data_object1) param.append(data_object2) result = self.dd_to_str(core.mergeBySpace(param)) expected_result = "01None SimTime XPos YPos\n0 1 1 4\n1 2 3 3\n0 2 10 15\n1 3 12 16test_file.csv" self.assertEqual(result, expected_result) def test_filter_numberSwitchBlocks_1(self): d = {'DatTime': [0.017, 0.034, 0.050, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'TaskStatus': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} #input df = pandas.DataFrame(data=d) data_object3 = core.DriveData( data=df, sourcefilename="test_file3.csv") result = filters.numberSwitchBlocks(drivedata=data_object3) expected = {'DatTime': [0.017, 0.034, 0.05, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'TaskStatus': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'taskblocks': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]} expected_result_df = pandas.DataFrame(data=expected) expected_result = core.DriveData( data=expected_result_df, sourcefilename="test_file3.csv") print(result.data) print(expected_result.data) self.assertEqual(len(result.data), len(expected_result.data)) self.assertTrue((self.compare_cols(expected_result.data, result.data, ['DatTime', 'TaskStatus', 'taskblocks']))) self.assertEqual(result.sourcefilename, expected_result.sourcefilename) def test_filter_numberSwitchBlocks_2(self): d = {'DatTime': [0.017, 0.034, 0.050, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'TaskStatus': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} #input df = pandas.DataFrame(data=d) data_object3 = core.DriveData( data=df, sourcefilename="test_file3.csv") result = filters.numberSwitchBlocks(drivedata=data_object3) #print(result.to_string()) expected = {'DatTime': [0.017, 0.034, 0.05, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'TaskStatus': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'taskblocks': [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]} expected_result_df = pandas.DataFrame(data=expected) expected_result = core.DriveData( data=expected_result_df, sourcefilename="test_file3.csv") self.assertEqual(len(result.data), len(expected_result.data)) self.assertTrue((self.compare_cols(expected_result.data, result.data, ['DatTime', 'TaskStatus', 'taskblocks']))) self.assertEqual(result.sourcefilename, expected_result.sourcefilename) def test_filter_numberSwitchBlocks_3(self): d = {'DatTime': [0.017, 0.034, 0.050, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'TaskStatus': [0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0]} #input df = pandas.DataFrame(data=d) data_object3 = core.DriveData( data=df, sourcefilename="test_file3.csv") result = filters.numberSwitchBlocks(drivedata=data_object3) #print(result.to_string()) expected = {'DatTime': [0.017, 0.034, 0.05, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'TaskStatus': [0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0], 'taskblocks': [np.nan, np.nan, np.nan, np.nan, np.nan, 1.0, 1.0, 1.0, 1.0, np.nan, np.nan]} expected_result_df = pandas.DataFrame(data=expected) expected_result = core.DriveData( data=expected_result_df, sourcefilename="test_file3.csv") self.assertEqual(len(result.data), len(expected_result.data)) self.assertTrue((self.compare_cols(expected_result.data, result.data, ['DatTime', 'TaskStatus', 'taskblocks']))) self.assertEqual(result.sourcefilename, expected_result.sourcefilename) def test_filter_smoothGazeData_1(self): d3 = {'DatTime': [0.017, 0.034, 0.05, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'FILTERED_GAZE_OBJ_NAME': ['localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen']} # the func should be able to identify this in-valid input and returns None after prints # "Bad gaze data, not enough variety. Aborting" print("expected console output: Bad gaze data, not enough variety. Aborting") df = pandas.DataFrame(data=d3) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") result = filters.smoothGazeData(data_object) #print(result.to_string()) self.assertEqual(None, result) def test_filter_smoothGazeData_2(self): d3 = {'DatTime': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4], 'FILTERED_GAZE_OBJ_NAME': ['localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane']} df = pandas.DataFrame(data=d3) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") result = filters.smoothGazeData(data_object, latencyShift=0) dat_time_col = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4] timedelta_col = [] for t in dat_time_col: timedelta_col.append(self.secs_to_timedelta(t)) expected = {'timedelta': timedelta_col, 'DatTime': dat_time_col, 'FILTERED_GAZE_OBJ_NAME': ['localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane'], 'gaze': ["offroad", "offroad", "offroad", "offroad", "onroad", "onroad", "onroad", "onroad", "onroad", "onroad", "onroad", "onroad", "onroad", "onroad", "onroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad"], 'gazenum': np.array([1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3], dtype=np.int32)} expected_result_df = pandas.DataFrame(data=expected) self.assertTrue(expected_result_df.equals(result.data)); #self.assertTrue(self.compare_cols(result.data[0], expected_result_df, ['DatTime', 'FILTERED_GAZE_OBJ_NAME', 'gaze', 'gazenum'])) def test_filter_smoothGazeData_3(self): # --- Construct input --- dat_time_col = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4] gaze_col = ['localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane'] d3 = {'DatTime': dat_time_col, 'FILTERED_GAZE_OBJ_NAME': gaze_col} df = pandas.DataFrame(data=d3) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") # ---------------------- result = filters.smoothGazeData(data_object, latencyShift=0) print(result.data) timedelta_col = [] for t in dat_time_col: timedelta_col.append(self.secs_to_timedelta(t)) expected = {'timedelta': timedelta_col, 'DatTime': dat_time_col, 'FILTERED_GAZE_OBJ_NAME': gaze_col, 'gaze': ["offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad"], 'gazenum': np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=np.int32)} expected_result_df =
pandas.DataFrame(data=expected)
pandas.DataFrame
import calendar from datetime import date, datetime, time import locale import unicodedata import numpy as np import pytest import pytz from pandas._libs.tslibs.timezones import maybe_get_tz from pandas.core.dtypes.common import is_integer_dtype, is_list_like import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, PeriodIndex, Series, TimedeltaIndex, bdate_range, date_range, period_range, timedelta_range) from pandas.core.arrays import PeriodArray import pandas.core.common as com import pandas.util.testing as tm from pandas.util.testing import assert_series_equal class TestSeriesDatetimeValues: def test_dt_namespace_accessor(self): # GH 7207, 11128 # test .dt namespace accessor ok_for_period = PeriodArray._datetimelike_ops ok_for_period_methods = ['strftime', 'to_timestamp', 'asfreq'] ok_for_dt = DatetimeIndex._datetimelike_ops ok_for_dt_methods = ['to_period', 'to_pydatetime', 'tz_localize', 'tz_convert', 'normalize', 'strftime', 'round', 'floor', 'ceil', 'day_name', 'month_name'] ok_for_td = TimedeltaIndex._datetimelike_ops ok_for_td_methods = ['components', 'to_pytimedelta', 'total_seconds', 'round', 'floor', 'ceil'] def get_expected(s, name): result = getattr(Index(s._values), prop) if isinstance(result, np.ndarray): if
is_integer_dtype(result)
pandas.core.dtypes.common.is_integer_dtype
import pytest import pandas as pd import numpy as np @pytest.fixture(scope="function") def set_helpers(request): rand = np.random.RandomState(1337) request.cls.ser_length = 120 request.cls.window = 12 request.cls.returns = pd.Series( rand.randn(1, 120)[0] / 100.0, index=pd.date_range("2000-1-30", periods=120, freq="M"), ) request.cls.factor_returns = pd.Series( rand.randn(1, 120)[0] / 100.0, index=pd.date_range("2000-1-30", periods=120, freq="M"), ) @pytest.fixture(scope="session") def input_data(): simple_benchmark = pd.Series( np.array([0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0]) / 100, index=pd.date_range("2000-1-30", periods=9, freq="D"), ) rand = np.random.RandomState(1337) noise = pd.Series( rand.normal(0, 0.001, 1000), index=pd.date_range("2000-1-30", periods=1000, freq="D", tz="UTC"), ) inv_noise = noise.multiply(-1) noise_uniform = pd.Series( rand.uniform(-0.01, 0.01, 1000), index=pd.date_range("2000-1-30", periods=1000, freq="D", tz="UTC"), ) random_100k = pd.Series(rand.randn(100_000)) mixed_returns = pd.Series( np.array([np.nan, 1.0, 10.0, -4.0, 2.0, 3.0, 2.0, 1.0, -10.0]) / 100, index=pd.date_range("2000-1-30", periods=9, freq="D"), ) one = [ -0.00171614, 0.01322056, 0.03063862, -0.01422057, -0.00489779, 0.01268925, -0.03357711, 0.01797036, ] two = [ 0.01846232, 0.00793951, -0.01448395, 0.00422537, -0.00339611, 0.03756813, 0.0151531, 0.03549769, ] # Sparse noise, same as noise but with np.nan sprinkled in replace_nan = rand.choice(noise.index.tolist(), rand.randint(1, 10)) sparse_noise = noise.replace(replace_nan, np.nan) # Flat line tz flat_line_1_tz = pd.Series( np.linspace(0.01, 0.01, num=1000), index=pd.date_range("2000-1-30", periods=1000, freq="D", tz="UTC"), ) # Sparse flat line at 0.01 # replace_nan = rand.choice(noise.index.tolist(), rand.randint(1, 10)) sparse_flat_line_1_tz = flat_line_1_tz.replace(replace_nan, np.nan) df_index_simple = pd.date_range("2000-1-30", periods=8, freq="D") df_index_week = pd.date_range("2000-1-30", periods=8, freq="W") df_index_month = pd.date_range("2000-1-30", periods=8, freq="M") df_week = pd.DataFrame( { "one":
pd.Series(one, index=df_index_week)
pandas.Series
""" Model for output of general/metadata data, useful for a batch """ import logging from pathlib import Path from typing import List, Optional, Union import pandas as pd from pydantic import BaseModel, Field, validator from nowcasting_dataset.consts import SPATIAL_AND_TEMPORAL_LOCATIONS_OF_EACH_EXAMPLE_FILENAME from nowcasting_dataset.filesystem.utils import check_path_exists from nowcasting_dataset.utils import get_start_and_end_example_index logger = logging.getLogger(__name__) class SpaceTimeLocation(BaseModel): """Location of the example""" t0_datetime_utc: pd.Timestamp = Field( ..., description="The t0 of one example ", ) x_center_osgb: float = Field( ..., description="The x center of one example in OSGB coordinates", ) y_center_osgb: float = Field( ..., description="The y center of one example in OSGB coordinates", ) id: Optional[int] = Field( None, description="The id of the GSP or the PV system. This is optional so can be None", ) id_type: Optional[str] = Field( None, description="The type of the id. Should be either None, 'gsp' or 'pv_system'", ) @validator("t0_datetime_utc") def v_t0_datetime_utc(cls, t0_datetime_utc): """Make sure t0_datetime_utc is pandas Timestamp""" return pd.Timestamp(t0_datetime_utc) @validator("id_type") def v_id_type(cls, id_type): """Make sure id_type is either None, 'gsp' or 'pv_system'""" if id_type == "None": id_type = None assert id_type in [ None, "gsp", "pv_system", ], f"{id_type=} should be None, 'gsp' or 'pv_system'" return id_type class Metadata(BaseModel): """Class to store metadata data""" batch_size: int = Field( ..., g=0, description="The size of this batch. If the batch size is 0, " "then this item stores one data item", ) space_time_locations: List[SpaceTimeLocation] @property def t0_datetimes_utc(self) -> list: """Return all the t0""" return [location.t0_datetime_utc for location in self.space_time_locations] @property def x_centers_osgb(self) -> List[float]: """List of all the x centers from all the locations""" return [location.x_center_osgb for location in self.space_time_locations] @property def y_centers_osgb(self) -> List[float]: """List of all the x centers from all the locations""" return [location.y_center_osgb for location in self.space_time_locations] @property def ids(self) -> List[float]: """List of all the ids from all the locations""" return [location.id for location in self.space_time_locations] def save_to_csv(self, path): """ Save metadata to a csv file Args: path: the path where the file should be save """ filename = f"{path}/{SPATIAL_AND_TEMPORAL_LOCATIONS_OF_EACH_EXAMPLE_FILENAME}" metadata_dict = [location.dict() for location in self.space_time_locations] # metadata_dict.pop("batch_size") # if file exists, add to it try: check_path_exists(filename) except FileNotFoundError: metadata_df =
pd.DataFrame(metadata_dict)
pandas.DataFrame
import io import pkgutil import re import subprocess as sp import tempfile import bs4 import dmf_chip as dc import dropbot as db import dropbot.chip import dropbot.proxy import dropbot.self_test import jinja2 import json_tricks import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd import path_helpers as ph import qrcode def draw_results(chip_info, events, axes=None): if axes is None: fig, axes = plt.subplots(1, 2, figsize=(20, 20)) # For colors, see: https://gist.github.com/cfobel/fd939073cf13a309d7a9 dark_green = '#059748' light_green = '#90cd97' light_blue = '#88bde6' dark_orange = '#df5c24' dark_red = '#cb2027' chip_info_mm = dc.to_unit(chip_info, 'mm') electrode_channels = {e['id']: e['channels'][0] for e in chip_info['electrodes']} for i, ax in enumerate(axes): result = dc.draw(chip_info, ax=ax, unit='mm', labels=(i == 0)) for id_i, p in result['patches'].items(): p.set_edgecolor('none') p.set_facecolor(light_blue) labels = {t.get_text(): t for t in result['axis'].texts} for id_i, label_i in labels.items(): label_i.set_text(electrode_channels[id_i]) result['patches'] x_coords = [p[0] for e in chip_info_mm['electrodes'] for p in e['points']] y_coords = [p[1] for e in chip_info_mm['electrodes'] for p in e['points']] for ax in axes: ax.set_xlim(min(x_coords), max(x_coords)) ax.set_ylim(max(y_coords), min(y_coords)) ax.set_axis_off() ax.set_frame_on(False) # Draw QC test route # ------------------ # Find center of electrode associated with each DropBot channel. df_electrode_centers = pd.DataFrame([e['pole_of_accessibility'] for e in chip_info_mm['electrodes']], index=[e['id'] for e in chip_info_mm['electrodes']]) df_electrode_centers.index.name = 'id' s_electrode_channels = pd.Series(electrode_channels) df_channel_centers = df_electrode_centers.loc[s_electrode_channels.index] df_channel_centers.index = s_electrode_channels.values df_channel_centers.sort_index(inplace=True) df_channel_centers.index.name = 'channel' axis = result['axis'] patches = result['patches'] channel_patches = pd.Series(patches.values(), index=s_electrode_channels[patches.keys()]) df_events =
pd.DataFrame(events)
pandas.DataFrame
''' Models all possible sensor combinations using an LSTM RNN ''' import pandas as pd import os import glob import numpy as np from sklearn.preprocessing import MinMaxScaler from itertools import combinations from sklearn.model_selection import StratifiedKFold from keras.models import Sequential from keras.layers import LSTM from keras.layers import Bidirectional from keras.layers import Dense from keras.layers import Dropout from keras.utils import np_utils class lstm: def __init__(self, sensors): self.sensors = sensors self.path = os.getcwd() self.import_data() self.build_3d_frames() self.kfold_cv() def import_data(self): os.chdir(self.path+'/non_decomp') non_files = glob.glob('*.csv') self.non_frames = {} non_size=0 for n in non_files: df = pd.read_csv(n) for c in df.columns: check = any(x in c for x in self.sensors) if check == False: df = df.drop(c, axis=1) non_size += df.shape[0] self.non_frames[n[:2]] = df os.chdir(self.path+'/nas_decomp') nas_files = glob.glob('*.csv') self.nas_frames = {} nas_size=0 for n in nas_files: df =
pd.read_csv(n)
pandas.read_csv
import pandas as pd from rake_nltk import Rake import numpy as np from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import CountVectorizer pd.set_option('display.max_columns', 100) df =
pd.read_csv('movie_metadata.csv')
pandas.read_csv
""" This module implements an f* coordinate and diagram generator. For information about f* diagrams, see the following publications: <NAME>. et al. Extending the limits of powder diffraction analysis: diffraction parameter space, occupancy defects, and atomic form factors. Rev. Sci. Instrum. 89, 093002 (2018). 10.1063/1.5044555 <NAME>. et al.Thermodynamics of Antisite Defects in Layered NMC Cathodes: Systematic Insights from High-Precision Powder Diffraction Analyses Chem. Mater 2020 32 (3), 1002-1010. 10.1021/acs.chemmater.9b03646 """ import os import numpy as np import pandas as pd from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.io.cif import CifParser, str2float import plotly.express as px # Load in the form factors with open(os.path.join(os.path.dirname(__file__), "xray_factors_2.csv")) as f: X_RAY_SCATTER_DF = pd.read_csv(f) # from https://it.iucr.org/Cb/ch6o1v0001/ table 6.1.1.4 with open(os.path.join(os.path.dirname(__file__), "neutron_factors.csv")) as f: NEUTRON_SCATTER_DF = pd.read_csv(f) # from http://www.ccp14.ac.uk/ccp/web-mirrors/neutrons/n-scatter/n-lengths/LIST~1.HTM class FStarDiagram: """ Take a list of structure objects and/or cifs and use them to generate an f* phase diagram. """ def __init__(self, structure_objects, scattering_type='X-ray_simple', custom_scatter=None): """ Initialize the f* diagram generator with the list of structures and scattering type. Args: structure_objects(list): List of structure objects to use in the diagram. scattering_type(str): Type of scattering to use in the f* calculation. Defaults to 'X-ray_simple' which uses the atomic number as the scattering factor. 'X-ray' and 'Neutron' are built in scattering types which use X-ray and neutron scattering factors, respectively. 'Custom' allows the user to supplement their own calculation with any set of scattering factors. custom_scatter(function): when using custom scattering set this equal to a global varialble that is equal to the custom scattering function. """ self._structures = structure_objects self._scatter = scattering_type self._custscat = custom_scatter self._symstructs = [SpacegroupAnalyzer(structure).get_symmetrized_structure() for structure in self._structures] self._equiv_inds = [struct.equivalent_indices for struct in self._symstructs] self.site_labels = self.get_site_labels() self.coords = self.get_fstar_coords() self.plot = px.scatter_ternary(data_frame=self.coords, a=self.site_labels[0], b=self.site_labels[1], c=self.site_labels[2]) print("The labels for this structure's unique sites are") print(self.site_labels) def edit_fstar_diagram(self, combine_list=False, plot_list=False, **kwargs): """ Edit the plot of the f* diagram using plotly express. Args: combine_list(list): This is a list of lists which indicates what unique sites need to be combined to make the plot ternary. plot_list(list): This is a list that indicates what unique sites or combined sites to plot and what order to plot them in. kwargs: use this to add any other arguments from scatter_ternary . """ if combine_list: for combo in combine_list: self.coords[str(combo)] = sum([self.coords[site] for site in combo]) if str(combo) not in self.site_labels: self.site_labels.append(str(combo)) if plot_list: self.plot = px.scatter_ternary(data_frame=self.coords, a=plot_list[0], b=plot_list[1], c=plot_list[2], **kwargs) else: self.plot = px.scatter_ternary(data_frame=self.coords, a=self.site_labels[0], b=self.site_labels[1], c=self.site_labels[2], **kwargs) def get_site_labels(self): """ Generates unique site labels based on composition, order, and symetry equivalence in the structure object. Ex: Structure Summary Lattice abc : 2.851 2.851 14.275 angles : 90.0 90.0 119.99999999999999 volume : 100.48498759501827 A : 2.851 0.0 1.745734012184552e-16 B : -1.4254999999999998 2.4690384261894347 1.745734012184552e-16 C : 0.0 0.0 14.275 PeriodicSite: Li:0.990, Ni:0.010 (0.0000, 0.0000, 0.0000) [0.0000, 0.0000, 0.0000] PeriodicSite: Li:0.990, Ni:0.010 (1.4255, 0.8230, 4.7583) [0.6667, 0.3333, 0.3333] PeriodicSite: Li:0.990, Ni:0.010 (-0.0000, 1.6460, 9.5167) [0.3333, 0.6667, 0.6667] PeriodicSite: Li:0.010, Mn:0.333, Co:0.333, Ni:0.323 (0.0000, 0.0000, 7.1375) [0.0000, 0.0000, 0.5000] PeriodicSite: Li:0.010, Mn:0.333, Co:0.333, Ni:0.323 (1.4255, 0.8230, 11.8958) [0.6667, 0.3333, 0.8333] PeriodicSite: Li:0.010, Mn:0.333, Co:0.333, Ni:0.323 (-0.0000, 1.6460, 2.3792) [0.3333, 0.6667, 0.1667] PeriodicSite: O (0.0000, 0.0000, 3.5688) [0.0000, 0.0000, 0.2500] PeriodicSite: O (0.0000, 0.0000, 10.7063) [0.0000, 0.0000, 0.7500] PeriodicSite: O (1.4255, 0.8230, 8.3270) [0.6667, 0.3333, 0.5833] PeriodicSite: O (1.4255, 0.8230, 1.1895) [0.6667, 0.3333, 0.0833] PeriodicSite: O (-0.0000, 1.6460, 13.0855) [0.3333, 0.6667, 0.9167] PeriodicSite: O (-0.0000, 1.6460, 5.9480) [0.3333, 0.6667, 0.4167] results in labels - ['[0. 0. 0.]Li', '[0. 0. 0.5]Co', '[0. 0. 0.25]O'] '[0. 0. 0.]Li' - PeriodicSite: Li:0.990, Ni:0.010 (0.0000, 0.0000, 0.0000) [0.0000, 0.0000, 0.0000] '[0. 0. 0.5]Co' - PeriodicSite: Li:0.010, Mn:0.333, Co:0.333, Ni:0.323 (0.0000, 0.0000, 7.1375) [0.0000, 0.0000, 0.5000] '[0. 0. 0.25]O' - PeriodicSite: O (0.0000, 0.0000, 3.5688) [0.0000, 0.0000, 0.2500] """ site_labels_fin = [] for ind1, struct in enumerate(self._equiv_inds): site_labels = [] for ind2, site in enumerate(struct): label = str(self._structures[ind1][site[0]].frac_coords) + \ [str(sp) for sp, occ in self._structures[ind1][site[0]].species_and_occu.items()][0] if label not in site_labels: site_labels.append(label) if len(site_labels) > len(site_labels_fin): site_labels_fin = site_labels return site_labels_fin def get_fstar_coords(self): """ Calculate the f* coordinates for the list of structures. """ fstar_df_full =
pd.DataFrame(columns=self.site_labels)
pandas.DataFrame
import pandas as pd import numpy as np import sys import logging import os from pathlib import Path class MSRawData: """ A class to describe raw data obtained from the MS machine Args: filePath (str): file path of the input MRM transition name file logger (object): logger object created by start_logger in MSOrganiser ingui (bool): if True, print analysis status to screen """ def __init__(self, filepath, logger=None, ingui=True): self.__logger = logger self.__ingui = ingui self.__filecheck(Path(filepath)) def __filecheck(self,filepath): """Check if filepath exists and is a file""" if not filepath.exists(): if self.__logger: self.__logger.error('Input file path ' + '\'' + str(filepath) + '\'' + ' could not be found. ' + 'Please check if the input file path.') if self.__ingui: print('Input file path ' + '\'' + str(filepath) + '\'' + ' could not be found. ' + 'Please check if the input file path.', flush = True) sys.exit(-1) elif not filepath.is_file(): if self.__logger: self.__logger.error('Input file path ' + '\'' + str(filepath) + '\'' + ' does not lead to a system file. ' + 'Please check if the input file path is a system file and not a folder.') if self.__ingui: print('Input file path ' + '\'' + str(filepath) + '\'' + ' does not lead to a system file. ' + 'Please check if the input file path is a system file and not a folder.', flush = True) sys.exit(-1) def remove_whiteSpaces(self,df): """Strip the whitespaces for each string columns of a df Args: df (pandas DataFrame): A panda data frame Returns: df (pandas DataFrame): A panda data frame with white space removed """ df[df.select_dtypes(['object']).columns] = df.select_dtypes(['object']).apply(lambda x: x.str.strip()) return df class AgilentMSRawData(MSRawData): """ To describe raw data obtained from the Agilent MS machine Args: filePath (str): file path of the input MRM transition name file logger (object): logger object created by start_logger in MSOrganiser ingui (bool): if True, print analysis status to screen """ def __init__(self, filepath, logger=None, ingui=True): MSRawData.__init__(self,filepath, ingui = ingui,logger=logger) self.__logger = logger self.__ingui = ingui self.__readfile(filepath) self.__getdataform(filepath) self.__filename = os.path.basename(filepath) self.VALID_COMPOUND_RESULTS = ('Area','RT','FWHM','S/N','Symmetry') self.VALID_COMPOUND_METHODS = ('Precursor Ion','Product Ion') def get_table(self,column_name,is_numeric=True): """Function to get the table from MassHunter Raw Data Args: column_name (str): The name of the column given in the Output_Options. Returns: A data frame of sample as rows and transition names as columns with values from the chosen column name """ if self.DataForm == "WideTableForm": return self.__get_table_wide(column_name,is_numeric) elif self.DataForm == "CompoundTableForm": return self.__get_table_compound(column_name,is_numeric) #def get_data_file_name(self): # """Function to get the list of sample names in a form of a dataframe # # Returns: # A data frame of sample as rows and transition names as columns with values from the chosen column name # # """ # if self.DataForm == "WideTableForm": # return self.__get_data_file_name_wide() # elif self.DataForm == "CompoundTableForm": # return self.__get_data_file_name_compound() def __get_table_wide(self,column_name,is_numeric=True): """Function to get the table from MassHunter Raw Data in Wide Table form""" # Get the data file name and give error when it cannot be found DataFileName_df = self.__get_data_file_name_wide() # Check if Column name comes from Results or Methods group if column_name in self.VALID_COMPOUND_RESULTS: column_group = "Results" elif column_name in self.VALID_COMPOUND_METHODS: column_group = "Method" else: if self.__logger: self.__logger.error('Output option ' + column_name + ' ' + 'is not a valid column in MassHunter or not ' + 'available as a valid output for this program.') if self.__ingui: print('Output option ' + column_name + ' ' + 'is not a valid column in MassHunter or not ' + 'available as a valid output for this program.', flush=True) sys.exit(-1) # Extract the data with the given column name and group table_index = self.RawData.iloc[0,:].str.contains(column_group) & self.RawData.iloc[1,:].str.contains(column_name) table_df = self.RawData.loc[:,table_index].copy() if table_df.empty: return table_df # Remove the column group text and whitespaces table_df.iloc[0,:] = table_df.iloc[0,:].str.replace(column_group, "").str.strip() # Assign column name colnames = table_df.iloc[0,:].astype('str').str.strip() table_df.columns = colnames # We remove the first and second row because the column names are given table_df = table_df.iloc[2:] # Reset the row index table_df = table_df.reset_index(drop=True) # Convert text numbers into numeric if is_numeric: table_df = table_df.apply(pd.to_numeric, errors='coerce') table_df = pd.concat([DataFileName_df, table_df], axis=1) # Strip the whitespaces for each string columns table_df = self.remove_whiteSpaces(table_df) return table_df def __get_table_compound(self,column_name,is_numeric=True): """Function to get the table from MassHunter Raw Data in Compound Table form""" # Get the data file name and give error when it cannot be found DataFileName_df = self.__get_data_file_name_compound() # Check if Column name comes from Results or Methods group # TODO try to extract data from VALID_COMPOUND_METHODS if column_name in self.VALID_COMPOUND_RESULTS: column_group = "Results" elif column_name in self.VALID_COMPOUND_METHODS: column_group = "Method" else: if self.__logger: self.__logger.error('Output option ' + column_name + ' ' + 'is not a valid column in MassHunter or not ' + 'available as a valid output for this program.') if self.__ingui: print('Output option ' + column_name + ' ' + 'is not a valid column in MassHunter or not ' + 'available as a valid output for this program.', flush=True) sys.exit(-1) # Get the compound table df and give error when it cannot be found # CompoundName_df = self.__get_compound_name_compound(column_name) table_df = self.__get_compound_name_compound(column_name) if table_df.empty: return table_df table_df = table_df.transpose() # Assign column name colnames = table_df.iloc[0,:].astype('str').str.strip() table_df.columns = colnames # We remove the first row because the column names are given table_df = table_df.iloc[1:] # If column name is a compound method, only the first row has data, we need to replicate data for all the rows if column_name in self.VALID_COMPOUND_METHODS: table_df = pd.concat([table_df]*DataFileName_df.shape[0], ignore_index=True) # Reset the row index table_df = table_df.reset_index(drop=True) # Convert text numbers into numeric if is_numeric: table_df = table_df.apply(pd.to_numeric, errors='coerce') table_df = pd.concat([DataFileName_df, table_df], axis=1) # Strip the whitespaces for each string columns table_df = self.remove_whiteSpaces(table_df) return table_df def __get_compound_name_compound(self,column_name): """Function to get the df Transition Name as Rows, Sample Name as Columns with values from the chosen column_name. E.g Area """ # Get the column index of where the Transition Names are. We know for sure that it is on the third row Compound_Col = self.RawData.iloc[0,:].str.contains("Compound Method") & self.RawData.iloc[1,:].str.contains("Name") Compound_Col_Index = Compound_Col.index[Compound_Col == True].tolist() # Give an error if we can't get any transition name if len(Compound_Col_Index) == 0 : if self.__logger: self.__logger.error('\'' + self.__filename + '\' ' + 'has no column contaning \"Name\" in Compound Method Table. ' + 'Please check the input file.') if self.__ingui: print('\'' + self.__filename + '\' ' + 'has no column contaning \"Name\" in Compound Method Table. ' + 'Please check the input file.', flush=True) sys.exit(-1) # Find cols with Transition in second row and Qualifier Method in the first row Qualifier_Method_Col = self.RawData.iloc[0,:].str.contains("Qualifier \d Method", regex=True) & self.RawData.iloc[1,:].str.contains("Transition") # Get the column index where the group of Qualifier Method first appeared. Qualifier_Method_Col_Index = Qualifier_Method_Col.index[Qualifier_Method_Col == True].tolist() # Find cols with Data File in the second row DataFileName_Col = self.RawData.iloc[1,:].str.contains("Data File") # Find the number of Qualifiers each Transition is entitled to have No_of_Qual_per_Transition = int((Qualifier_Method_Col.values == True).sum() / (DataFileName_Col.values == True).sum() ) # We start a new Compound_list Compound_list = [] # We start on row three self.RawData.iloc[2:,sorted(Compound_Col_Index + Qualifier_Method_Col_Index[0:No_of_Qual_per_Transition] )].apply(lambda x: AgilentMSRawData._get_Compound_List(x=x, Compound_list=Compound_list), axis=1) CompoundName_df = pd.DataFrame(Compound_list) CompoundName_df = self.remove_whiteSpaces(CompoundName_df) # All Column Name (e.g Area) and Transition index ColName_Col = self.RawData.iloc[1,:].str.contains(column_name) | self.RawData.iloc[1,:].str.contains("Transition") ColName_Col_Index = ColName_Col.index[ColName_Col == True].tolist() # Transition from Compound Method (They should not be used to get the Qualifer Area) CpdMethod_Transition_Col = self.RawData.iloc[0,:].str.contains("Compound Method") & self.RawData.iloc[1,:].str.contains("Transition") CpdMethod_Transition_Col_Index = CpdMethod_Transition_Col.index[CpdMethod_Transition_Col == True].tolist() # Column Name (e.g Area) found for the Qualifier ColName_Qualifier_Col = self.RawData.iloc[0,:].str.contains("Qualifier \d Results", regex=True) & self.RawData.iloc[1,:].str.contains(column_name) ColName_Qualifier_Col_Index = ColName_Qualifier_Col.index[ColName_Qualifier_Col == True].tolist() # Column Name (e.g Area), found for the Transitions ColName_Compound_Col_Index = [x for x in ColName_Col_Index if x not in sorted(CpdMethod_Transition_Col_Index + Qualifier_Method_Col_Index + ColName_Qualifier_Col_Index, key = int)] table_list = [] # We start on row three, update the table list with the column_name self.RawData.iloc[2:,sorted(ColName_Col_Index, key=int)].apply(lambda x: AgilentMSRawData._get_Compound_Data(x=x, table_list=table_list, ColName_Compound_Col_Index = ColName_Compound_Col_Index, Qualifier_Method_Col_Index = Qualifier_Method_Col_Index, ColName_Qualifier_Col_Index = ColName_Qualifier_Col_Index, No_of_Qual_per_Transition = No_of_Qual_per_Transition) ,axis=1) if pd.DataFrame(table_list).empty: return(pd.DataFrame(table_list)) else: # TODO # Check if the number of rows in the table_list of values, # matches the number of rows (Transition and Qualifier Names) in the CompoundName_df # If not, give an error of a possible corrupted csv input. #print(len(CompoundName_df.index)) #print(len(pd.DataFrame(table_list))) return(pd.concat([CompoundName_df, pd.DataFrame(table_list) ], axis=1)) return(pd.DataFrame()) def _get_Compound_Data(x,table_list,ColName_Compound_Col_Index,Qualifier_Method_Col_Index,ColName_Qualifier_Col_Index,No_of_Qual_per_Transition): """Function to get the values from the chosen column_name. E.g(Area) from a given row from the raw MRM data from Agilent in Compound Table form. table_list will be updated""" #Get Compound row Compound_df = pd.DataFrame(x[x.index.isin(ColName_Compound_Col_Index)]) Compound_df = Compound_df.T.values.tolist() #Append to table_list table_list.extend(Compound_df) #Get Qualifier row for i in range(0,No_of_Qual_per_Transition): #Check if there is a transition #print([Qualifier_Method_Col_Index[i]]) #print(x[ x.index.isin([Qualifier_Method_Col_Index[i]])].values.tolist()[0]) #sys.exit(0) Transition = x[ x.index.isin([Qualifier_Method_Col_Index[i]])].values.tolist()[0] if(
pd.isna(Transition)
pandas.isna
""" Script containing utilities related to manual data cleaning, processing, and transformation. """ from pandas import read_csv, get_dummies, to_numeric from pandas.api.types import is_numeric_dtype import numpy as np from scipy import stats def unknown_to_nan(df, additional_regex_patterns=[], additional_strings=[]): """ Function to convert typical unknown & unspecified values in a data frame to NaN values @param (pd.DataFrame) df: data frame with unknown values represented in various forms @param (list) additional_regex_patterns: regex patterns, alongside 'default_regex_patterns', that may be contained in unknown values in @df @param (list) additional_strings: strings, alongside 'default_strings', that may represent an unknown value in @df """ default_regex_patterns = [r'^\s*$'] # blank character default_strings = ['n/a', 'N/A', 'NA', 'UNKNOWN', '-UNKNOWN-', '-unknown-', 'unknown'] # Replace UNKNOWN tokens with proper missing value annotations for regex_pattern in default_regex_patterns + additional_regex_patterns: df.replace(to_replace=regex_pattern, value=np.nan, inplace=True, regex=True) for string in default_strings + additional_strings: df.replace(to_replace=string, value=np.nan, inplace=True) return df def categorical_to_onehot_columns(df, target_column=None): """ Function to encode categorical columns (features) into one-hot encoded columns. @param (pd.DataFrame) df: data frame with categorical variables as columns @param (str) target_column: column name for the dependent target variable in @df (default: None) """ for column in df.columns.values: if not is_numeric_dtype(df[column]) and not column == target_column: # Convert to one-hot representation onehot_column = get_dummies(data=df[column], prefix=column, prefix_sep='=') # Replace all 0 rows (deriving from NaN values) with the mean of the one-hot column onehot_column.loc[(onehot_column == 0).all(axis=1)] = onehot_column.mean().tolist() # Join with the original data frame and remove the original categorical column df = df.join(other=onehot_column).drop(column, axis=1) return df def groupby_and_gather(raw_df): """ Function to groupby by age-gender buckets and gather the population per country, included as a problem-specific example rather than a generalized utility. @param (pd.DataFrame) raw_df: data frame with age-gender buckets and corresponding information """ raw_df['bucket_id'] = raw_df['age_bucket'].str.replace('+', '-200') + raw_df['gender'] raw_df.drop(['year', 'age_bucket', 'gender'], axis=1, inplace=True) for column in set(raw_df['country_destination'].values): raw_df[column] = 0 for country in set(raw_df['country_destination'].values.tolist()): raw_df.loc[raw_df['country_destination'] == country, country] = 1 raw_df.drop('country_destination', axis=1, inplace=True) for column in raw_df.columns.values: if column != 'bucket_id' and column != 'population_in_thousands': raw_df[column] = raw_df[column] * raw_df['population_in_thousands'] sum_df = raw_df.groupby(['bucket_id']).sum() sum_df.drop('population_in_thousands', axis=1, inplace=True) sum_df.reset_index(inplace=True) return sum_df string_age_buckets = set( read_csv('(0)data/age_gender_bkts.csv')['age_bucket'].str.replace('+', '-200').values.tolist() ) range_to_string_mapping = {tuple([i for i in range(int(rep.split('-')[0]), int(rep.split('-')[1]) + 1)]): rep for rep in string_age_buckets} def age_to_age_bucket(age): """Function to convert a given integer age value to the corresponding age bucket""" for bucket in range_to_string_mapping.keys(): if int(age) in tuple(bucket): return range_to_string_mapping[bucket] def mcar_test(df, significance_level=0.05): """ Function for performing Little's chi-square test (1988) for the assumption (null hypothesis) of missing completely at random (MCAR). Data should be multivariate and quantitative, categorical variables do not work. The null hypothesis is equivalent to saying that the missingness of the data is independent of both the observed and unobserved data. Common imputation methods like likelihood inference and listwise deletion are theorized to be valid (due to non-inclusion of bias) only when the data is missing at random (MAR), which MCAR is a subset of. @param (pd.DataFrame) df: data frame with missing values that are ideally all quantitative @param (float) significance_level: alpha parameter of the chi-squared test (default: 0.05) """ test_df = df.copy() # Check if data contains categorical variables and select only numerical (float) columns if False in [
is_numeric_dtype(test_df[column])
pandas.api.types.is_numeric_dtype
import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, doc, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import ( coerce_indexer_dtype, maybe_cast_to_extension_array, maybe_infer_to_datetimelike, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_object, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.array_algos.transforms import shift from pandas.core.arrays.base import ExtensionArray, _extension_array_shared_docs from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too if opname == "__ne__": ret[(self._codes == -1) & (other_codes == -1)] = True else: ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: sanitize_dtype = np.dtype("O") if len(values) == 0 else None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err except ValueError as err: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values.dtype): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ Return the len of myself. """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) @property def codes(self) -> np.ndarray: """ The category codes of this categorical. Codes are an array of integers which are the positions of the actual values in the categories array. There is no setter, use the other categorical methods and the normal item setter to change values in the categorical. Returns ------- ndarray[int] A non-writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories : Rename categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") fill_value = self._validate_fill_value(fill_value) codes = shift(codes.copy(), periods, axis=0, fill_value=fill_value) return self._constructor(codes, dtype=self.dtype, fastpath=True) def _validate_fill_value(self, fill_value): """ Convert a user-facing fill_value to a representation to use with our underlying ndarray, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : int Raises ------ ValueError """ if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) return fill_value def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self) -> "Categorical": """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @doc(_shared_docs["searchsorted"], klass="Categorical") def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def _internal_get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes def argsort(self, ascending=True, kind="quicksort", **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2, 2, NaN, 5] Categories (2, int64): [2, 5] >>> c.sort_values() [2, 2, 5, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2, 2, 5] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5, 2, 2] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ warn( "Categorical.to_dense is deprecated and will be removed in " "a future version. Use np.asarray(cat) instead.", FutureWarning, stacklevel=2, ) return np.asarray(self) def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: # TODO: dispatch when self.categories is EA-dtype values = np.asarray(self).reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, (np.ndarray, Categorical, ABCSeries)): # We get ndarray or Categorical if called via Series.fillna, # where it will unwrap another aligned Series before getting here mask = ~algorithms.isin(value, self.categories) if not isna(value[mask]).all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes = codes.copy() codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Series, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self, indexer, allow_fill: bool = False, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (2, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) if allow_fill: # convert user-provided `fill_value` to codes fill_value = self._validate_fill_value(fill_value) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take_nd(self, indexer, allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, allow_fill=allow_fill, fill_value=fill_value) def __len__(self) -> int: """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True) -> str: """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = f"{head[:-1]}, ..., {tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head =
fmt.format_array(self.categories[:num], None)
pandas.io.formats.format.format_array
# -*- coding:utf-8 -*- import pandas as pd import numpy as np from imblearn.over_sampling import RandomOverSampler def transform_jkq(x): ''' 将J、Q、K映射成11、12、13 :param x: :return: ''' if x == 'J': return 11 elif x == 'Q': return 12 elif x == 'K': return 13 else: return x def bincount2D_vectorized(a): ''' 计算四种花色的数量和13种排名的有无 :param a: :return: ''' N = a.max() + 1 a_offs = a + np.arange(a.shape[0])[:, None] * N return np.bincount(a_offs.ravel(), minlength=a.shape[0] * N).reshape(-1, N) def preprocess_features(input_data_df): #将J、Q、K映射成11、12、13 input_data_df['C1'] = input_data_df['C1'].apply(transform_jkq) input_data_df['C2'] = input_data_df['C2'].apply(transform_jkq) input_data_df['C3'] = input_data_df['C3'].apply(transform_jkq) input_data_df['C4'] = input_data_df['C4'].apply(transform_jkq) input_data_df['C5'] = input_data_df['C5'].apply(transform_jkq) # 将C、D、H、S 映射为1、2、3、4 encode_map = {'C': 1, 'D': 2, 'H': 3, 'S': 4} input_data_df['S1'] = input_data_df['S1'].map(encode_map) input_data_df['S2'] = input_data_df['S2'].map(encode_map) input_data_df['S3'] = input_data_df['S3'].map(encode_map) input_data_df['S4'] = input_data_df['S4'].map(encode_map) input_data_df['S5'] = input_data_df['S5'].map(encode_map) # 计算四种花色的数量 S_training = input_data_df.iloc[:, [0, 2, 4, 6, 8]].astype(int) S_training = pd.DataFrame(bincount2D_vectorized(S_training.values), columns=['suitCount0', 'suitCount1', 'suitCount2', 'suitCount3', 'suitCount4']) input_data_df = pd.merge(input_data_df, S_training, how='left', left_index=True, right_index=True).drop(['suitCount0'], axis=1) # 计算13种排名的有无 R_training = input_data_df.iloc[:, np.arange(1, 10, 2)].astype(int) cols = ['rank{}'.format(x) for x in range(0, 14, 1)] R_training = pd.DataFrame(bincount2D_vectorized(R_training.values), columns=cols) input_data_df =
pd.merge(input_data_df, R_training, how='left', left_index=True, right_index=True)
pandas.merge
import time from pathlib import Path from typing import Tuple, Sequence from collections import Counter import numpy as np import pandas as pd from torch.utils import data from tqdm import tqdm from sandstone.datasets.factory import RegisterDataset from sandstone.utils.generic import log, md5 import warnings warnings.simplefilter("ignore") class MIMIC_IV_Abstract_Dataset(data.Dataset): """Abstract class for different MIMIC-IV tasks. Handles data loading, caching, splitting, and various generic preprocessing steps. """ def __init__(self, args, split_group): super(MIMIC_IV_Abstract_Dataset, self).__init__() self.args = args self.split_group = split_group cache_static_filename = get_cache_filename('static', args=args) cache_hourly_filename = get_cache_filename('hourly', args=args) print(f"Loading item mapping ({args.item_map_path})") item_mapping = pd.read_csv(args.item_map_path, low_memory=False) if Path(args.cache_dir, cache_static_filename).is_file() and Path(args.cache_dir, cache_hourly_filename).is_file(): print("Loading cached static_df and aggregated_df:", cache_static_filename, cache_hourly_filename) static_df = pd.read_parquet(Path(args.cache_dir, cache_static_filename)) aggregated_df = pd.read_parquet(Path(args.cache_dir, cache_hourly_filename)) else: # compute which csvs are needed task_csv_subset = set(self.task_specific_features.keys()) features_csv_subset = set(item_mapping.origin.loc[item_mapping.origin != 'static'].dropna()) # by default, patients, chartevents, admissions and icustays are loaded self.csv_subset = set(('patients', 'chartevents', 'admissions', 'icustays')).union(task_csv_subset).union(features_csv_subset) raw_dataframes = load_data(args.dataset_path, subset=self.csv_subset, nrows=args.nrows, chunksize=args.chunksize, cache_dir=args.cache_dir) static_df, aggregated_df = self.create_dataframes(args, item_mapping, **raw_dataframes) # cache final dataframes static_df.to_parquet(Path(args.cache_dir, cache_static_filename)) aggregated_df.to_parquet(Path(args.cache_dir, cache_hourly_filename)) print("Generating labels") self.create_labels(static_df, aggregated_df, task=args.task, threshold=args.los_threshold) if args.dataset == 'mimic-iv-sepsis': print(f"Extracting {args.data_hours} hours of data") aggregated_df = self.extract_timerange(args, aggregated_df, task=args.task) print("Adding onset hour to static_df") onset = aggregated_df.groupby('hadm_id')[args.task+'_onset_hour'].mean() static_df = static_df.merge(onset, how='left', on='hadm_id') # filter static_df to only include patients in aggregated_df static_df = static_df[static_df.hadm_id.isin(aggregated_df.hadm_id.unique())] print("Filter for just feature columns") static_cols = ['subject_id', 'hadm_id', 'intime', 'y', args.task+'_onset_hour'] cols_to_keep = ['hadm_id', 'hour'] if len(args.features) != 0: # convert to lower case args.features = [x.lower() for x in args.features] if args.group_by_level2: static_cols.extend(args.features) cols_to_keep.extend(args.features) else: feature_ids = list(item_mapping.loc[item_mapping['LEVEL2'].str.lower().isin(args.features)]['itemid'].map(str)) static_cols.extend(feature_ids) cols_to_keep.extend(feature_ids) else: static_cols.extend(list(item_mapping.itemid.map(str))) if args.group_by_level2: cols_to_keep.extend(list(item_mapping.LEVEL2)) else: cols_to_keep.extend(list(item_mapping.itemid.map(str))) if args.feature_search is not None: args.feature_search = args.feature_search.lower() if args.group_by_level2: print("Search feature:", args.feature_search) static_cols.extend(args.feature_search) cols_to_keep.extend(args.feature_search) else: search_ids = list(item_mapping.loc[item_mapping['LEVEL2'].str.lower() == (args.feature_search)]['itemid'].map(str)) print("Search IDs:", search_ids) cols_to_keep.extend(search_ids) static_cols.extend(search_ids) if len(args.feature_remove) != 0: # convert to lower case args.feature_remove = [x.lower() for x in args.feature_remove] if args.group_by_level2: remove_ids = args.feature_remove else: remove_ids = list(item_mapping.loc[item_mapping['LEVEL2'].str.lower().isin(args.feature_remove)]['itemid'].map(str)) for feature in remove_ids: if feature in cols_to_keep: print("Removed feature:", feature) cols_to_keep.remove(feature) if feature in static_cols: static_cols.remove(feature) original_cols = [c for c in cols_to_keep if c in aggregated_df.columns] if args.impute_method == 'simple': exist_cols = [c+'_exist' for c in original_cols if c not in ['hadm_id', 'hour']] time_cols = [c+'_time_since' for c in original_cols if c not in ['hadm_id', 'hour']] cols_to_keep.extend(exist_cols) cols_to_keep.extend(time_cols) static_df = static_df.loc[:, static_df.columns.isin(static_cols)] aggregated_df = aggregated_df.loc[:,aggregated_df.columns.isin(cols_to_keep)] if args.dataset == 'mimic-iv-sepsis': print(f"Re-indexing and zero filling") aggregated_df = reindex_timeseries(aggregated_df) aggregated_df.fillna({x:0 for x in original_cols}, inplace=True) if args.impute_method == 'simple': aggregated_df.fillna({x:0 for x in exist_cols}, inplace=True) aggregated_df.fillna({x:100 for x in time_cols}, inplace=True) print("Static df size:", static_df.shape) print("Static df columns:", static_df.columns) print("Aggregated df size:", aggregated_df.shape) print("Aggregated df columns:", aggregated_df.columns) print("Static df stats:") print(static_df.describe()) print("Aggregated df stats:") print(aggregated_df.describe()) print("Binarize/One-hot encode categorical feature columns") if 'gender' in static_df.columns: static_df['gender'] = (static_df.gender == 'M').astype(bool) for col in ['marital_status', 'ethnicity']: if col in static_df.columns: dummies = pd.get_dummies(static_df[col]).add_prefix(col+"_").astype(bool) static_df.drop(columns=col, inplace=True) static_df[dummies.columns] = dummies self.assign_splits(static_df) if args.normalize is not None: print("Normalizing values to zero-mean and unit variance.") if args.group_by_level2: normalize_feats = set(args.normalize) else: normalize_feats = set(item_mapping.loc[item_mapping['LEVEL2'].isin(args.normalize)].itemid.unique()) static_norm_cols = list(normalize_feats.intersection(static_df.columns)) hourly_norm_cols = list(normalize_feats.intersection(aggregated_df.columns)) unused_norm_cols = normalize_feats.difference(set(static_norm_cols + hourly_norm_cols)) if len(unused_norm_cols) != 0: print("WARNING: Couldn't find specified columns to normalize by: {}!".format(unused_norm_cols)) static_train = static_df.loc[static_df.split_group == 'train'] static_normalize_df = static_train[static_norm_cols] hourly_normalize_df = aggregated_df.loc[aggregated_df.hadm_id.isin(static_train.hadm_id.unique()), hourly_norm_cols] # compute stats over train data static_mean, static_std = static_normalize_df.mean(), static_normalize_df.std() hourly_mean, hourly_std = hourly_normalize_df.mean(), hourly_normalize_df.std() # prevent division by zero static_std.loc[static_std == 0] = 1 hourly_std.loc[hourly_std == 0] = 1 # apply to whole dataset static_df[static_norm_cols] = (static_df[static_norm_cols] - static_mean) / static_std aggregated_df[hourly_norm_cols] = (aggregated_df[hourly_norm_cols] - hourly_mean) / hourly_std if args.flatten_timeseries: flattened_df = flatten_timeseries(aggregated_df) static_df = static_df.merge(flattened_df, on='hadm_id') elif args.timeseries_moments: moments_df = compute_timeseries_moments(aggregated_df, args.timeseries_moments) static_df = static_df.merge(moments_df, on='hadm_id') static_df.columns = static_df.columns.map(str) self.static_features = [col for col in static_df.columns if col not in ['y', 'subject_id', 'hadm_id', 'intime', 'split_group', args.task+'_onset_hour']] self.timeseries_features = [col for col in aggregated_df.columns if col not in ['hadm_id', 'charttime', 'hour']] static_df = static_df.loc[static_df['split_group'] == split_group] if not args.static_only: # if non-flattened hourly data is used, also filter aggregated_df aggregated_df = aggregated_df.loc[aggregated_df['hadm_id'].isin(static_df['hadm_id'].unique())] static_df.drop(columns='split_group', inplace=True) if args.static_only: self.dataset = self.create_dataset(static_df) else: self.dataset = self.create_dataset(static_df, aggregated_df) # Class weighting label_dist = [d['y'] for d in self.dataset] label_counts = Counter(label_dist) weight_per_label = 1./ len(label_counts) label_weights = { label: weight_per_label/count for label, count in label_counts.items() } self.weights = [ label_weights[d['y']] for d in self.dataset] log(self.get_summary_statement(self.args.task, split_group, self.args.current_test_years, self.args.onset_bucket, label_counts), args) @property def task(self): raise NotImplementedError("Abstract method needs to be overridden!") @property def task_specific_features(self, task=None): """Defines some itemids/gsns/icd_codes that are needed for the task. Returns: a dictionary mapping origin dataset -> list of itemids. """ return {} def create_dataframes(self, args, item_mapping, **raw_dataframes): """Preprocesses raw dataframes into static_df and aggregated_df. Returns: - static_df - must include columns 'hadm_id', and 'y' for the label. - any additional columns will be used as input features for prediction. - timeseries_df """ raise NotImplementedError("Abstract method needs to be overridden!") def assign_splits(self, meta): if self.args.timesplit: # assign train_years as a list of years [2008, 2010] inclusive for instance. train_start, train_end = map(int, self.args.train_years.split('-')) meta['split_group'] = None meta.loc[(meta['intime'].dt.year>=train_start) & (meta['intime'].dt.year<=train_end), 'split_group'] = 'train' # dev will be a subset of train, of proportion split_probs[dev] dev_prob = self.args.split_probs[1] train_rows = meta[meta.split_group=='train'].shape[0] dev_rows = int(dev_prob*train_rows) meta.loc[meta[meta['split_group']=='train'].head(dev_rows).index, 'split_group'] = 'dev' # if testing on training years, then final split is test set if self.args.train_years == self.args.current_test_years: test_prob = self.args.split_probs[2] test_rows = int(test_prob*train_rows) mask = meta.index.isin(meta[meta['split_group']=='train'].tail(test_rows).index) else: test_start, test_end = map(int, self.args.current_test_years.split('-')) mask = meta['intime'].dt.year>=test_start mask &= meta['intime'].dt.year<=test_end # adding to the mask onset bucket if self.args.onset_bucket is not None: hour_start, hour_end = map(int, self.args.onset_bucket.split('-')) mask &= meta[self.args.task+'_onset_hour'] >= hour_start mask &= meta[self.args.task+'_onset_hour'] <= hour_end meta.loc[mask, 'split_group'] = 'test' else: subject_ids = list(sorted(meta['subject_id'].unique())) start_idx = 0 meta['split_group'] = None for split, prob in zip(['train', 'dev', 'test'], self.args.split_probs): end_idx = start_idx + int(len(subject_ids) * prob) start = subject_ids[start_idx] end = subject_ids[end_idx-1] meta.loc[(meta['subject_id'] >= start) & (meta['subject_id'] <= end), 'split_group'] = split start_idx = end_idx if meta.loc[meta['subject_id']==subject_ids[end_idx-1]]['split_group'].isnull().any(): meta.loc[meta['subject_id']==subject_ids[end_idx-1], 'split_group'] = split return meta def create_dataset(self, static_df, aggregated_df=None): """Turns DataFrames into a list of samples, which are dicts containing 'pid', 'x', 'y', and possibly 'x_timeseries' keys """ dataset = [] pids = static_df['subject_id'].values.astype(np.int32) hadm_ids = static_df['hadm_id'].values.astype(np.int32) ys = static_df['y'].values.astype(np.float32) xs = static_df[self.static_features].values.astype(np.float32) for i in tqdm(range(len(pids)), desc='Creating dataset', total=len(pids)): patient_dict = {} patient_dict['pid'] = pids[i] patient_dict['y'] = ys[i] patient_dict['x'] = xs[i] if aggregated_df is not None: patient_rows = aggregated_df.loc[aggregated_df.hadm_id == hadm_ids[i]] assert len(patient_rows) > 0, "Found patient with no timeseries data!" x_timeseries = patient_rows[self.timeseries_features].values.astype(np.float32) patient_dict['x_timeseries'] = x_timeseries dataset.append(patient_dict) return dataset def create_labels(self, static_df, aggregated_df, task, threshold): """Generates per-patient labels for the given task Returns: - static_df with an extra 'y' column """ raise NotImplementedError("Abstract method needs to be overridden!") def extract_timerange(self, args, aggregated_df, task): """Extracts a fixed no. of hours of data to predict from """ raise NotImplementedError("Abstract method needs to be overridden!") def get_summary_statement(self, task, split_group, years, hours, class_balance): return "Created MIMIC-IV {} {} dataset for years {} and onset hours {} with the following class balance:\n{}".format(task, split_group, years, hours, class_balance) def set_args(self, args): args.num_classes = 2 args.input_dim = len(self.static_features) if not args.flatten_timeseries: args.timeseries_dim = len(self.timeseries_features) args.timeseries_len = args.data_hours def __getitem__(self, index): return self.dataset[index] def __len__(self): return len(self.dataset) @RegisterDataset("mimic-iv-sepsis") class MIMIC_IV_Sepsis_Dataset(MIMIC_IV_Abstract_Dataset): @property def task(self): return "Sepsis-3" @property def task_specific_features(self): return { 'inputevents': [221662, 221653, 221289, 221906], # dopamine, dobutamine, epinephrine, norepinephrine 'outputevents': [226559, 226560, 226561, 226584, 226563, 226564, 226565, 226567, 226557, 226558, 227488, 227489], # for urine output 'labevents': [51265, 50885, 50912, 50821, 51301], # platelets, bilirubin, creatinine, PO2, WBC-count 'chartevents': [223835, 220739, 223900, 223901, 223849, 229314, # FiO2, GCS-Eye, GCS-Verbal, GCS-Motor, vent_mode, vent_mode (Hamilton) 223762, 223761, 220045, 220210, 224690], # temp_C, temp_F, heart rate, resp rate, resp rate (total) 'microbiologyevents': None, # all microbio samples (no id filtering happens on microbioevents, so None can be used here) 'prescriptions': None, } def create_dataframes(self, args, item_mapping, patients, chartevents, admissions, icustays, inputevents, labevents, microbiologyevents=None, prescriptions=None, outputevents=None, diagnoses_icd=None, procedureevents=None, **extra_dfs): # filter patients and merge data (code from before) admissions, patients, icustays = filter_eligible_patients(admissions, patients, icustays, args.min_patient_age, args.min_hours, args.gap_hours, args.min_icu_stay, args.max_icu_stay) chartevents = filter_table_patients(chartevents, patients) labevents = filter_table_patients(labevents, patients) inputevents = filter_table_patients(inputevents, patients) microbiologyevents = filter_table_patients(microbiologyevents, patients) prescriptions = filter_table_patients(prescriptions, patients) outputevents = filter_table_patients(outputevents, patients) diagnoses_icd = filter_table_patients(diagnoses_icd, patients) procedureevents = filter_table_patients(procedureevents, patients) print("Merging static data...") static_df = patients[["subject_id", "gender", "anchor_age"]] static_df = static_df.merge(admissions[["subject_id", "hadm_id", "admittime", "dischtime", "insurance", "admission_type", "marital_status", "ethnicity"]], how="inner", on="subject_id") static_df = static_df.merge(icustays[["hadm_id", "stay_id", "first_careunit", "intime", "outtime", "los"]], how="inner", on="hadm_id") static_df.rename(columns={"anchor_age": "age", "stay_id": "icustay_id"}, inplace=True) print("Filter events") chartevents_features = item_mapping.loc[item_mapping.origin == 'chartevents'].itemid.astype(int).tolist() inputevents_features = item_mapping.loc[item_mapping.origin == 'inputevents'].itemid.astype(int).tolist() outputevents_features = item_mapping.loc[item_mapping.origin == 'outputevents'].itemid.astype(int).tolist() labevents_features = item_mapping.loc[item_mapping.origin == 'labevents'].itemid.astype(int).tolist() procedureevents_features = item_mapping.loc[item_mapping.origin == 'procedureevents'].itemid.astype(int).tolist() prescriptions_features = item_mapping.loc[item_mapping.origin == 'prescriptions'].itemid.tolist() inputevents_features.extend(self.task_specific_features['inputevents']) outputevents_features.extend(self.task_specific_features['outputevents']) labevents_features.extend(self.task_specific_features['labevents']) chartevents_features.extend(self.task_specific_features['chartevents']) filtered_inputevents = inputevents.loc[inputevents['itemid'].isin(inputevents_features)] filtered_outputevents = outputevents.loc[outputevents['itemid'].isin(outputevents_features)] filtered_labevents = labevents.loc[labevents['itemid'].isin(labevents_features)] filtered_chartevents = filter_variables(chartevents, chartevents_features) filtered_prescriptions = prescriptions.loc[prescriptions['gsn'].isin(prescriptions_features)] antibiotics = filter_antibiotics(prescriptions) filtered_diagnoses = filter_diagnoses(diagnoses_icd, item_mapping) filtered_procedures = procedureevents.loc[procedureevents['itemid'].isin(procedureevents_features)] # standardize units print("Standardizing units") filtered_chartevents = standardize_units(filtered_chartevents, item_mapping) # merge diagnoses with static_df filtered_diagnoses['value'] = 1 pivot_diagnoses = filtered_diagnoses.pivot_table(index='hadm_id', columns='icd_code', values ='value') static_df = static_df.merge(pivot_diagnoses, on='hadm_id', how='left') static_df[pivot_diagnoses.columns] = static_df[pivot_diagnoses.columns].fillna(0) print("Filter events to stay") filtered_inputevents.rename(columns={"starttime": "charttime"}, inplace=True) antibiotics.rename(columns={'starttime':'charttime'}, inplace=True) filtered_procedures.rename(columns={'starttime':'charttime'}, inplace=True) chartlab_events = pd.concat([filtered_chartevents, filtered_labevents], join='outer') filtered_prescriptions.rename(columns={'starttime':'charttime', 'gsn':'itemid'}, inplace=True) # Pass chartevents dataframe and inputevents through hourly aggregation chartlab_events = filter_events_to_stay(chartlab_events, static_df) filtered_inputevents = filter_events_to_stay(filtered_inputevents, static_df) microbiologyevents = filter_events_to_stay(microbiologyevents, static_df) antibiotics = filter_events_to_stay(antibiotics, static_df) filtered_prescriptions = filter_events_to_stay(filtered_prescriptions, static_df) filtered_outputevents = filter_events_to_stay(filtered_outputevents, static_df) filtered_procedures = filter_events_to_stay(filtered_procedures, static_df) if args.group_by_level2: print("Group itemids by actual feature they represent") item_mapping_chartlab = item_mapping.loc[item_mapping.origin == 'chartevents', ['itemid', 'LEVEL2']].astype({'itemid': int}) chartlab_events = chartlab_events.merge(item_mapping_chartlab, on='itemid', how='left') group_mask = ~chartlab_events.LEVEL2.isna() chartlab_events.loc[group_mask, 'itemid'] = chartlab_events.loc[group_mask, 'LEVEL2'] print("Hourly aggregation") # fill NaN with 1 for incisions etc. chartlab_events[['value','valuenum']].fillna(1, inplace=True) aggregated_df = hourly_aggregation(chartlab_events, static_df, filtered_inputevents, antibiotics, microbiologyevents, filtered_outputevents, filtered_procedures, filtered_prescriptions) print("Calculate SOFA, SI and Sepsis-3") # import vents -- can move this code into SOFA score if necessary vents_df = pd.read_csv(args.vent_path, low_memory=False) vents_df = pd.merge(vents_df, static_df[['subject_id', 'hadm_id', 'icustay_id']], how='inner', left_on='stay_id', right_on='icustay_id') # filter for relevant stay & patients vents_df['starttime'] = pd.to_datetime(vents_df.starttime) vents_df['endtime'] = pd.to_datetime(vents_df.endtime) vents_df = anchor_dates(vents_df, ['starttime', 'endtime'], patients) aggregated_df = add_vents(aggregated_df, vents_df) # Calculate SOFA scores as additional columns aggregated_df = calculate_SOFA(aggregated_df) # Calculate Suspicion of Infection as an additional column aggregated_df = calculate_SI(aggregated_df) # Calculate Sepsis from SOFA and SI aggregated_df = calculate_sepsis(aggregated_df, task="sepsis3", consider_difference=args.sepsis_consider_sofa_difference, decrease_baseline=args.sepsis_decrease_sofa_baseline) # Add SIRS definition as column # XXX: commented out because of conflict with itemid grouping #aggregated_df = calculate_SIRS(aggregated_df) # Calculate Sepsis from SIRS and SI #aggregated_df = calculate_sepsis(aggregated_df, task="sepsis1", consider_difference=args.sepsis_consider_sofa_difference, decrease_baseline=args.sepsis_decrease_sofa_baseline) # print("Filtering out patients without enough data") # # Filtering out patients without enough data: # counts = aggregated_df['hadm_id'].value_counts() # aggregated_df = aggregated_df[aggregated_df['hadm_id'].isin(counts[counts>(args.data_hours+args.gap_hours)].index)] print("Computing approximate real dates...") static_df = anchor_dates(static_df, ["admittime", "dischtime", "intime", "outtime"], patients) if 'charttime' in aggregated_df.columns: aggregated_df = aggregated_df.merge(static_df[['hadm_id','subject_id']], on='hadm_id') aggregated_df = anchor_dates(aggregated_df, ['charttime'], patients) # drop patients where any one feature has no vitals if args.dascena_drop: print("Dropping patients with any vital missing") categories = ["heart rate", "respiratory rate", "temperature", "systolic blood pressure", "diastolic blood pressure", "oxygen saturation"] for vital in categories: if args.group_by_level2: if vital not in aggregated_df.columns: continue mask = aggregated_df.set_index("hadm_id")[vital].notnull().groupby(level=0).any() else: ids = list(item_mapping.loc[item_mapping['LEVEL2'].str.lower() == vital]['itemid'].map(str)) valid_ids = [i for i in ids if i in aggregated_df.columns] if len(valid_ids) == 0: continue mask = aggregated_df.set_index("hadm_id")[valid_ids].notnull().groupby(level=0).any().any(axis=1) aggregated_df = aggregated_df.set_index("hadm_id")[mask].reset_index() # Impute print("Imputing NaNs") total_values = (aggregated_df.shape[0] * aggregated_df.shape[1]) print("- Ratio of Nans:", aggregated_df.isna().sum().sum() / total_values) ignore_cols = ['hadm_id', 'charttime', 'hour', 'subject_id'] + list(aggregated_df.select_dtypes(include="bool").columns) impute_cols = [col for col in aggregated_df.columns if col not in ignore_cols] aggregated_df = impute_timeseries(aggregated_df, method=args.impute_method, feature_cols=impute_cols) total_values = (aggregated_df.shape[0] * aggregated_df.shape[1]) print("After imputation:") print("- Ratio of zeroes:", (aggregated_df == 0).sum().sum() / total_values) return static_df, aggregated_df def create_labels(self, static_df, aggregated_df, task='sepsis3', threshold=None): # generate per-patient sepsis3 label sepsis_hadm_ids = aggregated_df.hadm_id[aggregated_df[task] == True].unique() static_df['y'] = False static_df.loc[static_df.hadm_id.isin(sepsis_hadm_ids), 'y'] = True def extract_timerange(self, args, aggregated_df, task='sepsis3'): sepsis_onset_hour = aggregated_df[aggregated_df[task+'_onset']][['hadm_id', 'hour']] sepsis_onset_hour.rename(columns={'hour': task+'_onset_hour'}, inplace=True) aggregated_df = extract_data_prior_to_event(aggregated_df, sepsis_onset_hour, key='hadm_id', events_hour_column=task+'_onset_hour', gap_hours=args.gap_hours, data_hours=args.data_hours, case_control=args.case_control, dascena_control=args.dascena_control) return aggregated_df @RegisterDataset("mimic-iv-los") class MIMIC_IV_Los_Dataset(MIMIC_IV_Abstract_Dataset): @property def task(self): return "Length of Stay" def create_dataframes(self, args, item_mapping, patients, chartevents, admissions, icustays): admissions, patients, icustays = filter_eligible_patients(admissions, patients, icustays, args.min_patient_age, args.min_hours, args.gap_hours, args.min_icu_stay, args.max_icu_stay) chartevents = filter_table_patients(chartevents, patients) print("Merging static data...") static_df = patients[["subject_id", "gender", "anchor_age"]] static_df = static_df.merge(admissions[["subject_id", "hadm_id", "admittime", "dischtime", "insurance", "admission_type", "marital_status", "ethnicity"]], how="inner", on="subject_id") static_df = static_df.merge(icustays[["hadm_id", "stay_id", "first_careunit", "intime", "outtime", "los"]], how="inner", on="hadm_id") static_df.rename(columns={"anchor_age": "age", "stay_id": "icustay_id"}, inplace=True) print("Filter events") chartevents_features = item_mapping.loc[item_mapping.origin == 'chartevents'].itemid.astype(int).tolist() filtered_chartevents = filter_variables(chartevents, chartevents_features) print("Standardizing units") filtered_chartevents = standardize_units(filtered_chartevents, item_mapping) print("Filter events to stay") filtered_chartevents = filter_events_to_stay(filtered_chartevents, static_df) if args.group_by_level2: print("Group itemids by actual feature they represent") item_mapping_chart = item_mapping.loc[item_mapping.origin == 'chartevents', ['itemid', 'LEVEL2']].astype({'itemid': int}) filtered_chartevents = filtered_chartevents.merge(item_mapping_chart, on='itemid', how='left') group_mask = ~filtered_chartevents.LEVEL2.isna() filtered_chartevents.loc[group_mask, 'itemid'] = filtered_chartevents.loc[group_mask, 'LEVEL2'] print("Hourly aggregation") aggregated_df = hourly_aggregation(filtered_chartevents, static_df) print("Computing approximate real dates...") static_df = anchor_dates(static_df, ["admittime", "dischtime", "intime", "outtime"], patients) if 'charttime' in aggregated_df.columns: aggregated_df = aggregated_df.merge(static_df[['hadm_id','subject_id']], on='hadm_id') aggregated_df = anchor_dates(aggregated_df, ['charttime'], patients) print(f"Extracting {args.data_hours} hours of data") aggregated_df = self.extract_timerange(args, aggregated_df, task=args.task) print("Reindexing timeseries") aggregated_df = reindex_timeseries(aggregated_df) # Imputing print("Imputing NaNs") total_values = (aggregated_df.shape[0] * aggregated_df.shape[1]) print("- Ratio of Nans:", aggregated_df.isna().sum().sum() / total_values) impute_cols = [col for col in aggregated_df.columns if col not in ['hadm_id', 'charttime', 'hour', 'subject_id']] aggregated_df = impute_timeseries(aggregated_df, method=args.impute_method, feature_cols=impute_cols) total_values = (aggregated_df.shape[0] * aggregated_df.shape[1]) print("After imputation:") print("- Ratio of zeroes:", (aggregated_df == 0).sum().sum() / total_values) # filter static_df to only include patients in aggregated_df static_df = static_df[static_df.hadm_id.isin(aggregated_df.hadm_id.unique())] return static_df, aggregated_df def create_labels(self, static_df, aggregated_df, task=None, threshold=4): static_df['y'] = static_df['los'] >= threshold # extract first data_hours data from each patient def extract_timerange(self, args, aggregated_df, task=None): # aggregated_df['hour'] = aggregated_df.groupby('hadm_id')['hour'].rank('first') df = aggregated_df.loc[aggregated_df['hour']<= args.data_hours] return df @RegisterDataset("mimic-iv-icumort") class MIMIC_IV_ICUMort_Dataset(MIMIC_IV_Abstract_Dataset): @property def task(self): return "ICU Mortality" def create_dataframes(self, args, item_mapping, patients, chartevents, admissions, icustays): admissions, patients, icustays = filter_eligible_patients(admissions, patients, icustays, args.min_patient_age, args.min_hours, args.gap_hours, args.min_icu_stay, args.max_icu_stay) chartevents = filter_table_patients(chartevents, patients) print("Merging static data...") static_df = patients[["subject_id", "gender", "anchor_age"]] static_df = static_df.merge(admissions[["subject_id", "hadm_id", "admittime", "dischtime", "deathtime", "insurance", "admission_type", "marital_status", "ethnicity"]], how="inner", on="subject_id") static_df = static_df.merge(icustays[["hadm_id", "stay_id", "first_careunit", "intime", "outtime", "los"]], how="inner", on="hadm_id") static_df['death_in_icu'] = (~static_df['deathtime'].isna()) & (static_df['deathtime'] >= static_df['intime']) & \ (static_df['deathtime'] <= static_df['outtime']) static_df.rename(columns={"anchor_age": "age", "stay_id": "icustay_id"}, inplace=True) print("Filter events") chartevents_features = item_mapping.loc[item_mapping.origin == 'chartevents'].itemid.astype(int).tolist() filtered_chartevents = filter_variables(chartevents, chartevents_features) print("Standardizing units") filtered_chartevents = standardize_units(filtered_chartevents, item_mapping) print("Filter events to stay") filtered_chartevents = filter_events_to_stay(filtered_chartevents, static_df) if args.group_by_level2: print("Group itemids by actual feature they represent") item_mapping_chart = item_mapping.loc[item_mapping.origin == 'chartevents', ['itemid', 'LEVEL2']].astype({'itemid': int}) filtered_chartevents = filtered_chartevents.merge(item_mapping_chart, on='itemid', how='left') group_mask = ~filtered_chartevents.LEVEL2.isna() filtered_chartevents.loc[group_mask, 'itemid'] = filtered_chartevents.loc[group_mask, 'LEVEL2'] print("Hourly aggregation") aggregated_df = hourly_aggregation(filtered_chartevents, static_df) print("Computing approximate real dates...") static_df = anchor_dates(static_df, ["admittime", "dischtime", "intime", "outtime"], patients) if 'charttime' in aggregated_df.columns: aggregated_df = aggregated_df.merge(static_df[['hadm_id','subject_id']], on='hadm_id') aggregated_df = anchor_dates(aggregated_df, ['charttime'], patients) print(f"Extracting {args.data_hours} hours of data") aggregated_df = self.extract_timerange(args, aggregated_df, task=args.task) print("Reindexing timeseries") aggregated_df = reindex_timeseries(aggregated_df) # Imputing print("Imputing NaNs") total_values = (aggregated_df.shape[0] * aggregated_df.shape[1]) print("- Ratio of Nans:", aggregated_df.isna().sum().sum() / total_values) impute_cols = [col for col in aggregated_df.columns if col not in ['hadm_id', 'charttime', 'hour', 'subject_id']] aggregated_df = impute_timeseries(aggregated_df, method=args.impute_method, feature_cols=impute_cols) total_values = (aggregated_df.shape[0] * aggregated_df.shape[1]) print("After imputation:") print("- Ratio of zeroes:", (aggregated_df == 0).sum().sum() / total_values) # filter static_df to only include patients in aggregated_df static_df = static_df[static_df.hadm_id.isin(aggregated_df.hadm_id.unique())] return static_df, aggregated_df def create_labels(self, static_df, aggregated_df, task=None, threshold=None): static_df['y'] = static_df['death_in_icu'] # extract first data_hours data from each patient def extract_timerange(self, args, aggregated_df, task=None): # aggregated_df['hour'] = aggregated_df.groupby('hadm_id')['hour'].rank('first') df = aggregated_df.loc[aggregated_df['hour']<= args.data_hours] return df # args that affect cache CACHE_ARGS = ['dataset', 'min_patient_age', 'data_hours', 'min_hours', 'gap_hours', 'min_icu_stay', 'max_icu_stay', 'item_map_path', 'sepsis_consider_sofa_difference', 'sepsis_decrease_sofa_baseline', 'group_by_level2', 'impute_method', 'dascena_drop'] def get_cache_filename(filename, args, extension='parquet'): args_dict = vars(args) args_str = "" for arg in CACHE_ARGS: arg_val = args_dict[arg] args_str += '#' + arg + '=' + str(arg_val) filename += "#" + md5(args_str) + '.' + extension return filename def calculate_SIRS(aggregated_df): """ returns a dataframe with an additional column for SIRS score at every hour for the patient """ # Temperature aggregated_df['temp_SIRS'] = 0 aggregated_df.loc[aggregated_df['223762'] < 10, '223762'] = float("NaN") aggregated_df.loc[aggregated_df['223762'] > 50, '223762'] = float("NaN") aggregated_df.loc[aggregated_df['223761'] < 70, '223761'] = float("NaN") aggregated_df.loc[aggregated_df['223761'] > 120, '223761'] = float("NaN") aggregated_df.loc[aggregated_df['223762'] > 38, 'temp_SIRS'] = 1 aggregated_df.loc[aggregated_df['223762'] < 36, 'temp_SIRS'] = 1 aggregated_df.loc[aggregated_df['223761'] > 100.4, 'temp_SIRS'] = 1 aggregated_df.loc[aggregated_df['223761'] < 96.8, 'temp_SIRS'] = 1 # Heart rate aggregated_df['hr_SIRS'] = 0 aggregated_df.loc[aggregated_df['220045'] > 300, '220045'] = float("NaN") aggregated_df.loc[aggregated_df['220045'] < 0, '220045'] = float("NaN") aggregated_df.loc[aggregated_df['220045'] > 90, 'hr_SIRS'] = 1 # Respiratory rate aggregated_df['resp_SIRS'] = 0 aggregated_df.loc[aggregated_df['220210'] > 70, '220210'] = float("NaN") aggregated_df.loc[aggregated_df['220210'] < 0, '220210'] = float("NaN") aggregated_df.loc[aggregated_df['224690'] > 70, '224690'] = float("NaN") aggregated_df.loc[aggregated_df['224690'] < 0, '224690'] = float("NaN") aggregated_df.loc[aggregated_df['220210'] > 20, 'resp_SIRS'] = 1 aggregated_df.loc[aggregated_df['224690'] > 20, 'resp_SIRS'] = 1 # WBC aggregated_df['wbc_SIRS'] = 0 aggregated_df.loc[aggregated_df['51301'] > 12, 'wbc_SIRS'] = 1 aggregated_df.loc[aggregated_df['51301'] < 4, 'wbc_SIRS'] = 1 # Aggregation sirs_cols = ['temp_SIRS', 'hr_SIRS', 'resp_SIRS', 'wbc_SIRS'] aggregated_df[sirs_cols] = aggregated_df.groupby('hadm_id')[sirs_cols].ffill().fillna(0).astype(int) aggregated_df['SIRS'] = aggregated_df[sirs_cols].sum(axis=1) aggregated_df.drop(columns=sirs_cols, inplace=True) return aggregated_df def calculate_SOFA(aggregated_df): """ returns a dataframe with an additional column for SOFA score at every hour for the patient """ scores = [0, 1, 2, 3, 4] reverse_scores = [4, 3, 2, 1, 0] # Respiration aggregated_df.loc[aggregated_df['223835'] < 1, '223835'] = aggregated_df['223835'] * 100 aggregated_df.loc[aggregated_df['223835'] < 20, '223835'] = float("NaN") aggregated_df['pao2fio2ratio'] = aggregated_df['50821'] / aggregated_df['223835'] * 100 aggregated_df['pao2fio2ratio_novent'] = aggregated_df.loc[aggregated_df['InvasiveVent']==0]['pao2fio2ratio'] aggregated_df['pao2fio2ratio_vent'] = aggregated_df.loc[aggregated_df['InvasiveVent']==1]['pao2fio2ratio'] aggregated_df['resp_SOFA'] = 0 aggregated_df.loc[aggregated_df['pao2fio2ratio_novent'] < 400, 'resp_SOFA'] = 1 aggregated_df.loc[aggregated_df['pao2fio2ratio_novent'] < 300, 'resp_SOFA'] = 2 aggregated_df.loc[aggregated_df['pao2fio2ratio_vent'] < 200, 'resp_SOFA'] = 3 aggregated_df.loc[aggregated_df['pao2fio2ratio_vent'] < 100, 'resp_SOFA'] = 4 # Liver bilirubin_bins = [-1, 1.2, 2, 6, 12, float("inf")] aggregated_df['liver_SOFA'] = pd.cut(aggregated_df['50885'], bilirubin_bins, labels=scores).astype('float') # Coagulation coag_bins = [-1, 20, 50, 100, 150, float("inf")] aggregated_df['coag_SOFA'] = pd.cut(aggregated_df['51265'], coag_bins, labels=reverse_scores).astype('float') # Renal creat_bins = [-1, 1.2, 2, 3.5, 5, float("inf")] aggregated_df['renal_SOFA'] =
pd.cut(aggregated_df['50912'], creat_bins, labels=scores)
pandas.cut
from drop import utils import pandas as pd from pathlib import Path from collections import defaultdict from snakemake.logging import logger import warnings warnings.filterwarnings("ignore", 'This pattern has match groups') class SampleAnnotation: FILE_TYPES = ["RNA_BAM_FILE", "DNA_VCF_FILE", "GENE_COUNTS_FILE"] SAMPLE_ANNOTATION_COLUMNS = FILE_TYPES + [ "RNA_ID", "DNA_ID", "DROP_GROUP", "GENE_ANNOTATION", "PAIRED_END", "COUNT_MODE", "COUNT_OVERLAPS", "STRAND", "GENOME" ] def __init__(self, file, root, genome): """ sa_file: sample annotation file location from config root: output location for file mapping """ self.root = Path(root) self.file = file self.genome = genome self.annotationTable = self.parse() self.idMapping = self.createIdMapping() self.sampleFileMapping = self.createSampleFileMapping() self.rnaIDs = self.createGroupIds(file_type="RNA_BAM_FILE", sep=',') self.dnaIDs = self.createGroupIds(file_type="DNA_VCF_FILE", sep=',') # external counts self.extGeneCountIDs = self.createGroupIds(file_type="GENE_COUNTS_FILE", sep=',') def parse(self, sep='\t'): """ read and check sample annotation for missing columns clean columns and set types """ data_types = { "RNA_ID": str, "DNA_ID": str, "DROP_GROUP": str, "GENE_ANNOTATION": str, "PAIRED_END": bool, "COUNT_MODE": str, "COUNT_OVERLAPS": bool, "STRAND": str, "GENOME": str } sa = pd.read_csv(self.file, sep=sep, index_col=False) missing_cols = [x for x in self.SAMPLE_ANNOTATION_COLUMNS if x not in sa.columns.values] if len(missing_cols) > 0: if "GENOME" in missing_cols: # deal with missing columns in data types, remove it to fix checks later del data_types["GENOME"] self.SAMPLE_ANNOTATION_COLUMNS.remove("GENOME") missing_cols.remove("GENOME") if "GENE_ANNOTATION" in missing_cols and "ANNOTATION" in sa.columns.values: logger.info( "WARNING: GENE_ANNOTATION must be a column in the sample annotation table, ANNOTATION is the old column name and will be deprecated in the future\n") sa["GENE_ANNOTATION"] = sa.pop("ANNOTATION") missing_cols.remove("GENE_ANNOTATION") if len(missing_cols) > 0: raise ValueError(f"Incorrect columns in sample annotation file. Missing:\n{missing_cols}") sa = sa.astype(data_types) # remove unwanted characters sa["DROP_GROUP"] = sa["DROP_GROUP"].str.replace(" ", "").str.replace("(|)", "", regex=True) return sa #### Construction def createIdMapping(self): """ Get mapping of RNA and DNA IDs """ return self.annotationTable[["RNA_ID", "DNA_ID"]].drop_duplicates().dropna() def createSampleFileMapping(self): """ create a sample file mapping with unique entries of existing files columns: [ID | ASSAY | FILE_TYPE | FILE_PATH ] """ assay_mapping = {'RNA_ID': ['RNA_BAM_FILE', 'GENE_COUNTS_FILE'], 'DNA_ID': ['DNA_VCF_FILE']} assay_subsets = [] for id_, file_types in assay_mapping.items(): for file_type in file_types: df = self.annotationTable[[id_, file_type]].dropna().drop_duplicates().copy() df.rename(columns={id_: 'ID', file_type: 'FILE_PATH'}, inplace=True) df['ASSAY'] = id_ df['FILE_TYPE'] = file_type assay_subsets.append(df) file_mapping =
pd.concat(assay_subsets)
pandas.concat
#! /usr/bin/env python # -*- coding: utf-8 -*- """ @version: @author: zzh @file: factor_earning_expectation.py @time: 2019-9-19 """ import pandas as pd class FactorEarningExpectation(): """ 盈利预期 """ def __init__(self): __str__ = 'factor_earning_expectation' self.name = '盈利预测' self.factor_type1 = '盈利预测' self.factor_type2 = '盈利预测' self.description = '个股盈利预测因子' @staticmethod def NPFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['net_profit_fy1']): """ :name: 一致预期净利润(FY1) :desc: 一致预期净利润的未来第一年度的预测 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'net_profit_fy1': 'NPFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['net_profit_fy2']): """ :name: 一致预期净利润(FY2) :desc: 一致预期净利润的未来第二年度的预测 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'net_profit_fy2': 'NPFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['eps_fy1']): """ :name: 一致预期每股收益(FY1) :desc: 一致预期每股收益未来第一年度的预测均值 :unit: 元 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'eps_fy1': 'EPSFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['eps_fy2']): """ :name: 一致预期每股收益(FY2) :desc: 一致预期每股收益未来第二年度的预测均值 :unit: 元 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'eps_fy2': 'EPSFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['operating_revenue_fy1']): """ :name: 一致预期营业收入(FY1) :desc: 一致预期营业收入未来第一年度的预测均值 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'operating_revenue_fy1': 'OptIncFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['operating_revenue_fy2']): """ :name: 一致预期营业收入(FY2) :desc: 一致预期营业收入未来第二年度的预测均值 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'operating_revenue_fy2': 'OptIncFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['pe_fy1']): """ :name: 一致预期市盈率(PE)(FY1) :desc: 一致预期市盈率未来第一年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pe_fy1': 'CEPEFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['pe_fy2']): """ :name: 一致预期市盈率(PE)(FY2) :desc: 一致预期市盈率未来第二年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pe_fy2': 'CEPEFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPBFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['pb_fy1']): """ :name: 一致预期市净率(PB)(FY1) :desc: 一致预期市净率未来第一年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pb_fy1': 'CEPBFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPBFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['pb_fy2']): """ :name: 一致预期市净率(PB)(FY2) :desc: 一致预期市净率未来第二年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pb_fy2': 'CEPBFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEGFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['peg_fy1']): """ :name: 市盈率相对盈利增长比率(FY1) :desc: 未来第一年度市盈率相对盈利增长比率 :unit: :view_dimension: 0.01 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'peg_fy1': 'CEPEGFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEGFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['peg_fy2']): """ :name: 市盈率相对盈利增长比率(FY2) :desc: 未来第二年度市盈率相对盈利增长比率 :unit: :view_dimension: 0.01 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'peg_fy2': 'CEPEGFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def _change_rate(tp_earning, trade_date, pre_trade_date, colunm, factor_name): earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, colunm] earning_expect_pre = tp_earning[tp_earning['publish_date'] == pre_trade_date].loc[:, colunm] earning_expect = pd.merge(earning_expect, earning_expect_pre, on='security_code', how='left') earning_expect[factor_name] = (earning_expect[colunm + '_x'] - earning_expect[colunm + '_y']) / \ earning_expect[colunm + '_y'] earning_expect.drop(columns=[colunm + '_x', colunm + '_y'], inplace=True) return earning_expect @staticmethod def _change_value(tp_earning, trade_date, pre_trade_date, colunm, factor_name): earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, colunm] earning_expect_pre = tp_earning[tp_earning['publish_date'] == pre_trade_date].loc[:, colunm] earning_expect = pd.merge(earning_expect, earning_expect_pre, on='security_code', how='left') earning_expect[factor_name] = (earning_expect[colunm + '_x'] - earning_expect[colunm + '_y']) earning_expect.drop(columns=[colunm + '_x', colunm + '_y'], inplace=True) return earning_expect @staticmethod def NPFY11WRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_一周 :desc: 未来第一年度一致预测净利润一周内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[1], 'net_profit_fy1', 'NPFY11WRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY11MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_一月 :desc: 未来第一年度一致预测净利润一月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[2], 'net_profit_fy1', 'NPFY11MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY13MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_三月 :desc: 未来第一年度一致预测净利润三月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[3], 'net_profit_fy1', 'NPFY13MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY16MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_六月 :desc: 未来第一年度一致预测净利润六月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[4], 'net_profit_fy1', 'NPFY16MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11WChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_一周 :desc: 未来第一年度一致预测每股收益一周内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'eps_fy1', 'EPSFY11WChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_一月 :desc: 未来第一年度一致预测每股收益一月内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[2], 'eps_fy1', 'EPSFY11MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY13MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_三月 :desc: 未来第一年度一致预测每股收益三月内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[3], 'eps_fy1', 'EPSFY13MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY16MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_六月 :desc: 未来第一年度一致预测每股收益六月内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[4], 'eps_fy1', 'EPSFY16MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11WRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_一周 :desc: 未来第一年度一致预测每股收益一周内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'eps_fy1', 'EPSFY11WRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_一月 :desc: 未来第一年度一致预测每股收益一月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[2], 'eps_fy1', 'EPSFY11MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY13MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_三月 :desc: 未来第一年度一致预测每股收益三月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[3], 'eps_fy1', 'EPSFY13MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY16MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_六月 :desc: 未来第一年度一致预测每股收益六月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[4], 'eps_fy1', 'EPSFY16MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY11WChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_一周 :desc: 未来第一年度一致预测净利润一周内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'net_profit_fy1', 'NPFY11WChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY11MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_一月 :desc: 未来第一年度一致预测净利润一月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[2], 'net_profit_fy1', 'NPFY11MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY13MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_三月 :desc: 未来第一年度一致预测净利润三月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[3], 'net_profit_fy1', 'NPFY13MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY16MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_六月 :desc: 未来第一年度一致预测净利润六月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[4], 'net_profit_fy1', 'NPFY16MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def ChgNPFY1FY2(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY2)与一致预期净利润(FY1)的变化率 :desc: 未来第二年度一致预测净利润与未来第一年度一致预测净利润变化率 :unit: :view_dimension: 0.01 """ factor_earning_expect['ChgNPFY1FY2'] = factor_earning_expect['NPFY2'] - factor_earning_expect['NPFY1'] / abs( factor_earning_expect['NPFY1']) * 100 return factor_earning_expect @staticmethod def ChgEPSFY1FY2(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY2)与一致预期每股收益(FY1)的变化率 :desc: 未来第二年度一致预测每股收益与未来第一年度一致预测每股收益变化率 :unit: :view_dimension: 0.01 """ factor_earning_expect['ChgEPSFY1FY2'] = factor_earning_expect['EPSFY2'] - factor_earning_expect['EPSFY1'] / abs( factor_earning_expect['EPSFY1']) * 100 return factor_earning_expect @staticmethod def OptIncFY11WRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_一周 :desc: 未来第一年度一致预测营业收入一周内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'operating_revenue_fy1', 'OptIncFY11WRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY11MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_一月 :desc: 未来第一年度一致预测营业收入一月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[2], 'operating_revenue_fy1', 'OptIncFY11MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY13MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_三月 :desc: 未来第一年度一致预测营业收入三月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[3], 'operating_revenue_fy1', 'OptIncFY13MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY16MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_六月 :desc: 未来第一年度一致预测营业收入六月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[4], 'operating_revenue_fy1', 'OptIncFY16MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY11WChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化率_一周 :desc: 未来第一年度一致预测营业收入一周内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[1], 'operating_revenue_fy1', 'OptIncFY11WChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY11MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化率_一月 :desc: 未来第一年度一致预测营业收入一月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[2], 'operating_revenue_fy1', 'OptIncFY11MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY13MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化率_三月 :desc: 未来第一年度一致预测营业收入三月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[3], 'operating_revenue_fy1', 'OptIncFY13MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY16MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化率_六月 :desc: 未来第一年度一致预测营业收入六月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[4], 'operating_revenue_fy1', 'OptIncFY16MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect # @staticmethod # def OptIncFY1SDT(tp_earning, factor_earning_expect, trade_date): # """ # :name: 一致预测营业收入(FY1)标准差 # :desc: 未来第一年度一致预测营业收入标准差 # """ # return factor_earning_expect @staticmethod def CERATINGRATE1W(tp_earning, factor_earning_expect, trade_date): """ :name: 一周评级变化率 :desc: 研究机构买入评级一周内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[1], 'rating2', 'CERATINGRATE1W') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CERATINGRATE1M(tp_earning, factor_earning_expect, trade_date): """ :name: 一月评级变化率 :desc: 研究机构买入评级一月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[2], 'rating2', 'CERATINGRATE1M') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CERATINGRATE3M(tp_earning, factor_earning_expect, trade_date): """ :name: 三月评级变化率 :desc: 研究机构买入评级三月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[3], 'rating2', 'CERATINGRATE3M') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CERATINGRATE6M(tp_earning, factor_earning_expect, trade_date): """ :name: 六月评级变化率 :desc: 研究机构买入评级六月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[4], 'rating2', 'CERATINGRATE6M') factor_earning_expect =
pd.merge(factor_earning_expect, earning_expect, on='security_code')
pandas.merge
import glob import math import os import sys import warnings from decimal import Decimal import numpy as np import pandas as pd import pytest from packaging.version import parse as parse_version import dask import dask.dataframe as dd import dask.multiprocessing from dask.blockwise import Blockwise, optimize_blockwise from dask.dataframe._compat import PANDAS_GT_110, PANDAS_GT_121, PANDAS_GT_130 from dask.dataframe.io.parquet.utils import _parse_pandas_metadata from dask.dataframe.optimize import optimize_dataframe_getitem from dask.dataframe.utils import assert_eq from dask.layers import DataFrameIOLayer from dask.utils import natural_sort_key from dask.utils_test import hlg_layer try: import fastparquet except ImportError: fastparquet = False fastparquet_version = parse_version("0") else: fastparquet_version = parse_version(fastparquet.__version__) try: import pyarrow as pa except ImportError: pa = False pa_version = parse_version("0") else: pa_version = parse_version(pa.__version__) try: import pyarrow.parquet as pq except ImportError: pq = False SKIP_FASTPARQUET = not fastparquet FASTPARQUET_MARK = pytest.mark.skipif(SKIP_FASTPARQUET, reason="fastparquet not found") if sys.platform == "win32" and pa and pa_version == parse_version("2.0.0"): SKIP_PYARROW = True SKIP_PYARROW_REASON = ( "skipping pyarrow 2.0.0 on windows: " "https://github.com/dask/dask/issues/6093" "|https://github.com/dask/dask/issues/6754" ) else: SKIP_PYARROW = not pq SKIP_PYARROW_REASON = "pyarrow not found" PYARROW_MARK = pytest.mark.skipif(SKIP_PYARROW, reason=SKIP_PYARROW_REASON) # "Legacy" and "Dataset"-specific MARK definitions SKIP_PYARROW_LE = SKIP_PYARROW SKIP_PYARROW_LE_REASON = "pyarrow not found" SKIP_PYARROW_DS = SKIP_PYARROW SKIP_PYARROW_DS_REASON = "pyarrow not found" if not SKIP_PYARROW_LE: # NOTE: We should use PYARROW_LE_MARK to skip # pyarrow-legacy tests once pyarrow officially # removes ParquetDataset support in the future. PYARROW_LE_MARK = pytest.mark.filterwarnings( "ignore::DeprecationWarning", "ignore::FutureWarning", ) else: PYARROW_LE_MARK = pytest.mark.skipif(SKIP_PYARROW_LE, reason=SKIP_PYARROW_LE_REASON) PYARROW_DS_MARK = pytest.mark.skipif(SKIP_PYARROW_DS, reason=SKIP_PYARROW_DS_REASON) ANY_ENGINE_MARK = pytest.mark.skipif( SKIP_FASTPARQUET and SKIP_PYARROW, reason="No parquet engine (fastparquet or pyarrow) found", ) nrows = 40 npartitions = 15 df = pd.DataFrame( { "x": [i * 7 % 5 for i in range(nrows)], # Not sorted "y": [i * 2.5 for i in range(nrows)], # Sorted }, index=pd.Index([10 * i for i in range(nrows)], name="myindex"), ) ddf = dd.from_pandas(df, npartitions=npartitions) @pytest.fixture( params=[ pytest.param("fastparquet", marks=FASTPARQUET_MARK), pytest.param("pyarrow-legacy", marks=PYARROW_LE_MARK), pytest.param("pyarrow-dataset", marks=PYARROW_DS_MARK), ] ) def engine(request): return request.param def write_read_engines(**kwargs): """Product of both engines for write/read: To add custom marks, pass keyword of the form: `mark_writer_reader=reason`, or `mark_engine=reason` to apply to all parameters with that engine.""" backends = {"pyarrow-dataset", "pyarrow-legacy", "fastparquet"} # Skip if uninstalled skip_marks = { "fastparquet": FASTPARQUET_MARK, "pyarrow-legacy": PYARROW_LE_MARK, "pyarrow-dataset": PYARROW_DS_MARK, } marks = {(w, r): [skip_marks[w], skip_marks[r]] for w in backends for r in backends} # Custom marks for kw, val in kwargs.items(): kind, rest = kw.split("_", 1) key = tuple(rest.split("_")) if kind not in ("xfail", "skip") or len(key) > 2 or set(key) - backends: raise ValueError("unknown keyword %r" % kw) val = getattr(pytest.mark, kind)(reason=val) if len(key) == 2: marks[key].append(val) else: for k in marks: if key in k: marks[k].append(val) return pytest.mark.parametrize( ("write_engine", "read_engine"), [pytest.param(*k, marks=tuple(v)) for (k, v) in sorted(marks.items())], ) pyarrow_fastparquet_msg = "pyarrow schema and pandas metadata may disagree" write_read_engines_xfail = write_read_engines( **{ "xfail_pyarrow-dataset_fastparquet": pyarrow_fastparquet_msg, "xfail_pyarrow-legacy_fastparquet": pyarrow_fastparquet_msg, } ) if ( fastparquet and fastparquet_version < parse_version("0.5") and PANDAS_GT_110 and not PANDAS_GT_121 ): # a regression in pandas 1.1.x / 1.2.0 caused a failure in writing partitioned # categorical columns when using fastparquet 0.4.x, but this was (accidentally) # fixed in fastparquet 0.5.0 fp_pandas_msg = "pandas with fastparquet engine does not preserve index" fp_pandas_xfail = write_read_engines( **{ "xfail_pyarrow-dataset_fastparquet": pyarrow_fastparquet_msg, "xfail_pyarrow-legacy_fastparquet": pyarrow_fastparquet_msg, "xfail_fastparquet_fastparquet": fp_pandas_msg, "xfail_fastparquet_pyarrow-dataset": fp_pandas_msg, "xfail_fastparquet_pyarrow-legacy": fp_pandas_msg, } ) else: fp_pandas_msg = "pandas with fastparquet engine does not preserve index" fp_pandas_xfail = write_read_engines() @PYARROW_MARK def test_pyarrow_getengine(): from dask.dataframe.io.parquet.arrow import ArrowDatasetEngine from dask.dataframe.io.parquet.core import get_engine # Check that the default engine for "pyarrow"/"arrow" # is the `pyarrow.dataset`-based engine assert get_engine("pyarrow") == ArrowDatasetEngine assert get_engine("arrow") == ArrowDatasetEngine if SKIP_PYARROW_LE: with pytest.warns(FutureWarning): get_engine("pyarrow-legacy") @write_read_engines() def test_local(tmpdir, write_engine, read_engine): tmp = str(tmpdir) data = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df = dd.from_pandas(data, chunksize=500) df.to_parquet(tmp, write_index=False, engine=write_engine) files = os.listdir(tmp) assert "_common_metadata" in files assert "_metadata" in files assert "part.0.parquet" in files df2 = dd.read_parquet(tmp, index=False, engine=read_engine) assert len(df2.divisions) > 1 out = df2.compute(scheduler="sync").reset_index() for column in df.columns: assert (data[column] == out[column]).all() @pytest.mark.parametrize("index", [False, True]) @write_read_engines_xfail def test_empty(tmpdir, write_engine, read_engine, index): fn = str(tmpdir) df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]})[:0] if index: df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, write_index=index, engine=write_engine) read_df = dd.read_parquet(fn, engine=read_engine) assert_eq(ddf, read_df) @write_read_engines() def test_simple(tmpdir, write_engine, read_engine): fn = str(tmpdir) if write_engine != "fastparquet": df = pd.DataFrame({"a": [b"a", b"b", b"b"], "b": [4, 5, 6]}) else: df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]}) df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, engine=write_engine) read_df = dd.read_parquet(fn, index=["a"], engine=read_engine) assert_eq(ddf, read_df) @write_read_engines() def test_delayed_no_metadata(tmpdir, write_engine, read_engine): fn = str(tmpdir) df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]}) df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet( fn, engine=write_engine, compute=False, write_metadata_file=False ).compute() files = os.listdir(fn) assert "_metadata" not in files # Fastparquet doesn't currently handle a directory without "_metadata" read_df = dd.read_parquet( os.path.join(fn, "*.parquet"), index=["a"], engine=read_engine, gather_statistics=True, ) assert_eq(ddf, read_df) @write_read_engines() def test_read_glob(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, engine=write_engine) if os.path.exists(os.path.join(tmp_path, "_metadata")): os.unlink(os.path.join(tmp_path, "_metadata")) files = os.listdir(tmp_path) assert "_metadata" not in files ddf2 = dd.read_parquet( os.path.join(tmp_path, "*.parquet"), engine=read_engine, index="myindex", # Must specify index without _metadata gather_statistics=True, ) assert_eq(ddf, ddf2) @write_read_engines() def test_gather_statistics_false(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, write_index=False, engine=write_engine) ddf2 = dd.read_parquet( tmp_path, engine=read_engine, index=False, gather_statistics=False, ) assert_eq(ddf, ddf2, check_index=False, check_divisions=False) @write_read_engines() def test_read_list(tmpdir, write_engine, read_engine): if write_engine == read_engine == "fastparquet" and os.name == "nt": # fastparquet or dask is not normalizing filepaths correctly on # windows. pytest.skip("filepath bug.") tmpdir = str(tmpdir) ddf.to_parquet(tmpdir, engine=write_engine) files = sorted( ( os.path.join(tmpdir, f) for f in os.listdir(tmpdir) if not f.endswith("_metadata") ), key=natural_sort_key, ) ddf2 = dd.read_parquet( files, engine=read_engine, index="myindex", gather_statistics=True ) assert_eq(ddf, ddf2) @write_read_engines() def test_columns_auto_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) # XFAIL, auto index selection no longer supported (for simplicity) # ### Empty columns ### # With divisions if supported assert_eq(dd.read_parquet(fn, columns=[], engine=read_engine), ddf[[]]) # No divisions assert_eq( dd.read_parquet(fn, columns=[], engine=read_engine, gather_statistics=False), ddf[[]].clear_divisions(), check_divisions=True, ) # ### Single column, auto select index ### # With divisions if supported assert_eq(dd.read_parquet(fn, columns=["x"], engine=read_engine), ddf[["x"]]) # No divisions assert_eq( dd.read_parquet(fn, columns=["x"], engine=read_engine, gather_statistics=False), ddf[["x"]].clear_divisions(), check_divisions=True, ) @write_read_engines() def test_columns_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) # With Index # ---------- # ### Empty columns, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, columns=[], engine=read_engine, index="myindex"), ddf[[]] ) # No divisions assert_eq( dd.read_parquet( fn, columns=[], engine=read_engine, index="myindex", gather_statistics=False ), ddf[[]].clear_divisions(), check_divisions=True, ) # ### Single column, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, index="myindex", columns=["x"], engine=read_engine), ddf[["x"]], ) # No divisions assert_eq( dd.read_parquet( fn, index="myindex", columns=["x"], engine=read_engine, gather_statistics=False, ), ddf[["x"]].clear_divisions(), check_divisions=True, ) # ### Two columns, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, index="myindex", columns=["x", "y"], engine=read_engine), ddf, ) # No divisions assert_eq( dd.read_parquet( fn, index="myindex", columns=["x", "y"], engine=read_engine, gather_statistics=False, ), ddf.clear_divisions(), check_divisions=True, ) def test_nonsense_column(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) with pytest.raises((ValueError, KeyError)): dd.read_parquet(fn, columns=["nonesense"], engine=engine) with pytest.raises((Exception, KeyError)): dd.read_parquet(fn, columns=["nonesense"] + list(ddf.columns), engine=engine) @write_read_engines() def test_columns_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) ddf2 = ddf.reset_index() # No Index # -------- # All columns, none as index assert_eq( dd.read_parquet(fn, index=False, engine=read_engine, gather_statistics=True), ddf2, check_index=False, check_divisions=True, ) # Two columns, none as index assert_eq( dd.read_parquet( fn, index=False, columns=["x", "y"], engine=read_engine, gather_statistics=True, ), ddf2[["x", "y"]], check_index=False, check_divisions=True, ) # One column and one index, all as columns assert_eq( dd.read_parquet( fn, index=False, columns=["myindex", "x"], engine=read_engine, gather_statistics=True, ), ddf2[["myindex", "x"]], check_index=False, check_divisions=True, ) @write_read_engines() def test_gather_statistics_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine, write_index=False) df = dd.read_parquet(fn, engine=read_engine, index=False) assert df.index.name is None assert not df.known_divisions def test_columns_index_with_multi_index(tmpdir, engine): fn = os.path.join(str(tmpdir), "test.parquet") index = pd.MultiIndex.from_arrays( [np.arange(10), np.arange(10) + 1], names=["x0", "x1"] ) df = pd.DataFrame(np.random.randn(10, 2), columns=["a", "b"], index=index) df2 = df.reset_index(drop=False) if engine == "fastparquet": fastparquet.write(fn, df.reset_index(), write_index=False) else: pq.write_table(pa.Table.from_pandas(df.reset_index(), preserve_index=False), fn) ddf = dd.read_parquet(fn, engine=engine, index=index.names) assert_eq(ddf, df) d = dd.read_parquet(fn, columns="a", engine=engine, index=index.names) assert_eq(d, df["a"]) d = dd.read_parquet(fn, index=["a", "b"], columns=["x0", "x1"], engine=engine) assert_eq(d, df2.set_index(["a", "b"])[["x0", "x1"]]) # Just index d = dd.read_parquet(fn, index=False, engine=engine) assert_eq(d, df2) d = dd.read_parquet(fn, columns=["b"], index=["a"], engine=engine) assert_eq(d, df2.set_index("a")[["b"]]) d = dd.read_parquet(fn, columns=["a", "b"], index=["x0"], engine=engine) assert_eq(d, df2.set_index("x0")[["a", "b"]]) # Just columns d = dd.read_parquet(fn, columns=["x0", "a"], index=["x1"], engine=engine) assert_eq(d, df2.set_index("x1")[["x0", "a"]]) # Both index and columns d = dd.read_parquet(fn, index=False, columns=["x0", "b"], engine=engine) assert_eq(d, df2[["x0", "b"]]) for index in ["x1", "b"]: d = dd.read_parquet(fn, index=index, columns=["x0", "a"], engine=engine) assert_eq(d, df2.set_index(index)[["x0", "a"]]) # Columns and index intersect for index in ["a", "x0"]: with pytest.raises(ValueError): d = dd.read_parquet(fn, index=index, columns=["x0", "a"], engine=engine) # Series output for ind, col, sol_df in [ ("x1", "x0", df2.set_index("x1")), (False, "b", df2), (False, "x0", df2[["x0"]]), ("a", "x0", df2.set_index("a")[["x0"]]), ("a", "b", df2.set_index("a")), ]: d = dd.read_parquet(fn, index=ind, columns=col, engine=engine) assert_eq(d, sol_df[col]) @write_read_engines() def test_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, engine=write_engine) ddf2 = dd.read_parquet(fn, engine=read_engine) assert_eq(df, ddf2, check_index=False) def test_read_series(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, columns=["x"], index="myindex", engine=engine) assert_eq(ddf[["x"]], ddf2) ddf2 = dd.read_parquet(fn, columns="x", index="myindex", engine=engine) assert_eq(ddf.x, ddf2) def test_names(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) def read(fn, **kwargs): return dd.read_parquet(fn, engine=engine, **kwargs) assert set(read(fn).dask) == set(read(fn).dask) assert set(read(fn).dask) != set(read(fn, columns=["x"]).dask) assert set(read(fn, columns=("x",)).dask) == set(read(fn, columns=["x"]).dask) @write_read_engines() def test_roundtrip_from_pandas(tmpdir, write_engine, read_engine): fn = str(tmpdir.join("test.parquet")) dfp = df.copy() dfp.index.name = "index" dfp.to_parquet( fn, engine="pyarrow" if write_engine.startswith("pyarrow") else "fastparquet" ) ddf = dd.read_parquet(fn, index="index", engine=read_engine) assert_eq(dfp, ddf) @write_read_engines() def test_categorical(tmpdir, write_engine, read_engine): tmp = str(tmpdir) df = pd.DataFrame({"x": ["a", "b", "c"] * 100}, dtype="category") ddf = dd.from_pandas(df, npartitions=3) dd.to_parquet(ddf, tmp, engine=write_engine) ddf2 = dd.read_parquet(tmp, categories="x", engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] ddf2 = dd.read_parquet(tmp, categories=["x"], engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] # autocat if read_engine == "fastparquet": ddf2 = dd.read_parquet(tmp, engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] ddf2.loc[:1000].compute() assert assert_eq(df, ddf2) # dereference cats ddf2 = dd.read_parquet(tmp, categories=[], engine=read_engine) ddf2.loc[:1000].compute() assert (df.x == ddf2.x.compute()).all() def test_append(tmpdir, engine): """Test that appended parquet equal to the original one.""" tmp = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df.index.name = "index" half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp, engine=engine) ddf2.to_parquet(tmp, append=True, engine=engine) ddf3 = dd.read_parquet(tmp, engine=engine) assert_eq(df, ddf3) def test_append_create(tmpdir, engine): """Test that appended parquet equal to the original one.""" tmp_path = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df.index.name = "index" half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp_path, append=True, engine=engine) ddf2.to_parquet(tmp_path, append=True, engine=engine) ddf3 = dd.read_parquet(tmp_path, engine=engine) assert_eq(df, ddf3) def test_append_with_partition(tmpdir, engine): tmp = str(tmpdir) df0 = pd.DataFrame( { "lat": np.arange(0, 10, dtype="int64"), "lon": np.arange(10, 20, dtype="int64"), "value": np.arange(100, 110, dtype="int64"), } ) df0.index.name = "index" df1 = pd.DataFrame( { "lat": np.arange(10, 20, dtype="int64"), "lon": np.arange(10, 20, dtype="int64"), "value": np.arange(120, 130, dtype="int64"), } ) df1.index.name = "index" # Check that nullable dtypes work # (see: https://github.com/dask/dask/issues/8373) df0["lat"] = df0["lat"].astype("Int64") df1["lat"].iloc[0] = np.nan df1["lat"] = df1["lat"].astype("Int64") dd_df0 = dd.from_pandas(df0, npartitions=1) dd_df1 = dd.from_pandas(df1, npartitions=1) dd.to_parquet(dd_df0, tmp, partition_on=["lon"], engine=engine) dd.to_parquet( dd_df1, tmp, partition_on=["lon"], append=True, ignore_divisions=True, engine=engine, ) out = dd.read_parquet( tmp, engine=engine, index="index", gather_statistics=True ).compute() # convert categorical to plain int just to pass assert out["lon"] = out.lon.astype("int64") # sort required since partitioning breaks index order assert_eq( out.sort_values("value"), pd.concat([df0, df1])[out.columns], check_index=False ) def test_partition_on_cats(tmpdir, engine): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b"], engine=engine) df = dd.read_parquet(tmp, engine=engine) assert set(df.b.cat.categories) == {"x", "y", "z"} @PYARROW_MARK @pytest.mark.parametrize("meta", [False, True]) @pytest.mark.parametrize("stats", [False, True]) def test_partition_on_cats_pyarrow(tmpdir, stats, meta): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b"], engine="pyarrow", write_metadata_file=meta) df = dd.read_parquet(tmp, engine="pyarrow", gather_statistics=stats) assert set(df.b.cat.categories) == {"x", "y", "z"} def test_partition_on_cats_2(tmpdir, engine): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b", "c"], engine=engine) df = dd.read_parquet(tmp, engine=engine) assert set(df.b.cat.categories) == {"x", "y", "z"} assert set(df.c.cat.categories) == {"x", "y", "z"} df = dd.read_parquet(tmp, columns=["a", "c"], engine=engine) assert set(df.c.cat.categories) == {"x", "y", "z"} assert "b" not in df.columns assert_eq(df, df.compute()) df = dd.read_parquet(tmp, index="c", engine=engine) assert set(df.index.categories) == {"x", "y", "z"} assert "c" not in df.columns # series df = dd.read_parquet(tmp, columns="b", engine=engine) assert set(df.cat.categories) == {"x", "y", "z"} def test_append_wo_index(tmpdir, engine): """Test append with write_index=False.""" tmp = str(tmpdir.join("tmp1.parquet")) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, write_index=False, append=True, engine=engine) assert "Appended columns" in str(excinfo.value) tmp = str(tmpdir.join("tmp2.parquet")) ddf1.to_parquet(tmp, write_index=False, engine=engine) ddf2.to_parquet(tmp, write_index=False, append=True, engine=engine) ddf3 = dd.read_parquet(tmp, index="f", engine=engine) assert_eq(df.set_index("f"), ddf3) def test_append_overlapping_divisions(tmpdir, engine): """Test raising of error when divisions overlapping.""" tmp = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half - 10 :], chunksize=100) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, engine=engine, append=True) assert "Appended divisions" in str(excinfo.value) ddf2.to_parquet(tmp, engine=engine, append=True, ignore_divisions=True) def test_append_different_columns(tmpdir, engine): """Test raising of error when non equal columns.""" tmp = str(tmpdir) df1 = pd.DataFrame({"i32": np.arange(100, dtype=np.int32)}) df2 = pd.DataFrame({"i64": np.arange(100, dtype=np.int64)}) df3 = pd.DataFrame({"i32": np.arange(100, dtype=np.int64)}) ddf1 = dd.from_pandas(df1, chunksize=2) ddf2 = dd.from_pandas(df2, chunksize=2) ddf3 = dd.from_pandas(df3, chunksize=2) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, engine=engine, append=True) assert "Appended columns" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: ddf3.to_parquet(tmp, engine=engine, append=True) assert "Appended dtypes" in str(excinfo.value) def test_append_dict_column(tmpdir, engine): # See: https://github.com/dask/dask/issues/7492 if engine == "fastparquet": pytest.xfail("Fastparquet engine is missing dict-column support") elif pa_version < parse_version("1.0.1"): pytest.skip("PyArrow 1.0.1+ required for dict-column support.") tmp = str(tmpdir) dts = pd.date_range("2020-01-01", "2021-01-01") df = pd.DataFrame( {"value": [{"x": x} for x in range(len(dts))]}, index=dts, ) ddf1 = dd.from_pandas(df, npartitions=1) # Write ddf1 to tmp, and then append it again ddf1.to_parquet(tmp, append=True, engine=engine) ddf1.to_parquet(tmp, append=True, engine=engine, ignore_divisions=True) # Read back all data (ddf1 + ddf1) ddf2 = dd.read_parquet(tmp, engine=engine) # Check computed result expect = pd.concat([df, df]) result = ddf2.compute() assert_eq(expect, result) @write_read_engines_xfail def test_ordering(tmpdir, write_engine, read_engine): tmp = str(tmpdir) df = pd.DataFrame( {"a": [1, 2, 3], "b": [10, 20, 30], "c": [100, 200, 300]}, index=pd.Index([-1, -2, -3], name="myindex"), columns=["c", "a", "b"], ) ddf = dd.from_pandas(df, npartitions=2) dd.to_parquet(ddf, tmp, engine=write_engine) if read_engine == "fastparquet": pf = fastparquet.ParquetFile(tmp) assert pf.columns == ["myindex", "c", "a", "b"] ddf2 = dd.read_parquet(tmp, index="myindex", engine=read_engine) assert_eq(ddf, ddf2, check_divisions=False) def test_read_parquet_custom_columns(tmpdir, engine): tmp = str(tmpdir) data = pd.DataFrame( {"i32": np.arange(1000, dtype=np.int32), "f": np.arange(1000, dtype=np.float64)} ) df = dd.from_pandas(data, chunksize=50) df.to_parquet(tmp, engine=engine) df2 = dd.read_parquet(tmp, columns=["i32", "f"], engine=engine) assert_eq(df[["i32", "f"]], df2, check_index=False) fns = glob.glob(os.path.join(tmp, "*.parquet")) df2 = dd.read_parquet(fns, columns=["i32"], engine=engine).compute() df2.sort_values("i32", inplace=True) assert_eq(df[["i32"]], df2, check_index=False, check_divisions=False) df3 = dd.read_parquet(tmp, columns=["f", "i32"], engine=engine) assert_eq(df[["f", "i32"]], df3, check_index=False) @pytest.mark.parametrize( "df,write_kwargs,read_kwargs", [ (pd.DataFrame({"x": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": ["c", "a", "b"]}), {}, {}), (pd.DataFrame({"x": ["cc", "a", "bbb"]}), {}, {}), (pd.DataFrame({"x": [b"a", b"b", b"c"]}), {"object_encoding": "bytes"}, {}), ( pd.DataFrame({"x": pd.Categorical(["a", "b", "a"])}), {}, {"categories": ["x"]}, ), (pd.DataFrame({"x":
pd.Categorical([1, 2, 1])
pandas.Categorical
import numpy as np import pandas as pd import pytest from ber_public.deap import dim @pytest.fixture def building_fabric(): floor_uvalue = pd.Series([0.14]) roof_uvalue = pd.Series([0.11]) wall_uvalue = pd.Series([0.13]) window_uvalue = pd.Series([0.87]) door_uvalue = pd.Series([1.5]) thermal_bridging_factor = pd.Series([0.05]) effective_air_rate_change = pd.Series([0.5]) return ( floor_uvalue, roof_uvalue, wall_uvalue, window_uvalue, door_uvalue, thermal_bridging_factor, effective_air_rate_change, ) @pytest.fixture def building_area(): floor_area = pd.Series([63]) roof_area = pd.Series([63]) wall_area = pd.Series([85.7]) window_area = pd.Series([29.6]) door_area = pd.Series([1.85]) return floor_area, roof_area, wall_area, window_area, door_area @pytest.fixture def building_floor_dimensions(): ground_floor_area =
pd.Series([63])
pandas.Series
# coding: utf-8 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import sys, os sys.path.append('../data') import my_autopct # def pie_sublex_distribution_per_word(df, result_path): # df_sublex = df.loc[:,[column for column in df.columns if column.startswith('sublex_')]] # for (col_name,row),ipa in zip(df_sublex.iterrows(), df.IPA): # row.plot.pie(autopct=my_autopct.my_autopct, legend=True) # plt.ylabel('') # plt.title(u'Posterior predictive sublexical assignment probability of %s' % (ipa)) # plt.savefig(os.path.join(result_path, 'pie_%s.png' % ipa)) # plt.gcf().clear() def bar_log_sublex_prob_ratio(df, result_path, log_prob = 'target_log_prob', group_id_name = 'group_identifier'): data = [] for group_id, df_group in df.groupby(group_id_name): Foreign_word = df_group.loc[df_group.actual_sublex=='Foreign', 'IPA'].values[0] Native_word = df_group.loc[df_group.actual_sublex=='Native', 'IPA'].values[0] log_prob_Foreign_to_log_prob = (df_group.loc[df_group.actual_sublex=='Foreign', log_prob].values[0]) log_prob_Native_to_log_prob = (df_group.loc[df_group.actual_sublex=='Native', log_prob].values[0]) log_ratio = log_prob_Foreign_to_log_prob - log_prob_Native_to_log_prob data.append([Foreign_word+'-'+Native_word, log_ratio]) df_data =
pd.DataFrame(data, columns=['word_pair', 'log_pred_prob_ratio'])
pandas.DataFrame
# Copyright (C) 2012 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. """ Models for the data being analysed and manipulated. @author: drusk """ import random as rand import numpy as np import pandas as pd from pml.utils import plotting, pandas_util from pml.utils.errors import InconsistentSampleIdError from pml.utils.errors import UnlabelledDataSetError class DataSet(object): """ A collection of data that may be analysed and manipulated. Columns are interpreted as features in the data set, and rows are samples or observations. """ def __init__(self, data, labels=None): """ Creates a new DataSet from data of an unknown type. If data is itself a DataSet object, then its contents are copied and a new DataSet is created from the copies. Args: data: Data of unknown type. The supported types are: 1) pandas DataFrame 2) Python lists 3) numpy array 4) an existing DataSet object labels: pandas Series, Python list or Python dictionary The classification labels for the samples in data. If they are not known (i.e. it is an unlabelled data set) the value None should be used. Default value is None (unlabelled). Raises: ValueError if the data or labels are not of a supported type. InconsistentSampleIdError if labels were provided whose sample ids do not match those of the data. """ if isinstance(data, pd.DataFrame): self._dataframe = data elif isinstance(data, list): self._dataframe =
pd.DataFrame(data)
pandas.DataFrame
import os import unittest import pandas as pd import numpy as np from pandas.testing import assert_frame_equal, assert_series_equal from mavedbconvert import empiric, constants from tests import ProgramTestCase class TestEmpiricInit(ProgramTestCase): def setUp(self): super().setUp() self.path = os.path.join(self.data_dir, "empiric", "empiric.xlsx") def test_offset_inframe(self): empiric.Empiric(src=self.path, wt_sequence="ATC", offset=3) def test_error_offset_not_inframe(self): with self.assertRaises(ValueError): empiric.Empiric(src=self.path, wt_sequence="ATC", offset=1) def test_error_noncoding(self): with self.assertRaises(ValueError): empiric.Empiric(src=self.path, wt_sequence="ATC", is_coding=False) class TestInferProEvent(unittest.TestCase): def test_infers_equal_event(self): self.assertEqual( empiric.infer_pro_substitution(mut_aa="V", wt_aa="v", codon_pos=0), "p.Val1=", ) def test_infers_sub_event_event(self): self.assertEqual( empiric.infer_pro_substitution(mut_aa="V", wt_aa="F", codon_pos=0), "p.Phe1Val", ) def test_converts_triple_q_to_Xaa(self): self.assertEqual( empiric.infer_pro_substitution(mut_aa="?", wt_aa="V", codon_pos=0), "p.Val1Xaa", ) class TestInferNTEvent(unittest.TestCase): def test_infers_equal_event(self): self.assertEqual( empiric.infer_nt_substitution(wt_codon="aaa", mut_codon="AAA", codon_pos=0), "c.[1=;2=;3=]", ) def test_infers_sub_event_event(self): self.assertEqual( empiric.infer_nt_substitution(wt_codon="ATC", mut_codon="GTA", codon_pos=0), "c.[1A>G;2=;3C>A]", ) def test_adds_codon_pos_multiplied_by_3_to_position(self): self.assertEqual( empiric.infer_nt_substitution(wt_codon="ATC", mut_codon="GTA", codon_pos=1), "c.[4A>G;5=;6C>A]", ) class TestEmpiric(ProgramTestCase): def setUp(self): super().setUp() self.input = os.path.join(self.data_dir, "empiric", "empiric.xlsx") self.empiric = empiric.Empiric( src=self.input, wt_sequence="AAA", one_based=False ) def test_error_missing_amino_acid(self): for nan in constants.extra_na: df = pd.DataFrame({"Position": [0], "Amino Acid": [nan], "row_num": [0]}) self.empiric.validate_columns(df) with self.assertRaises(ValueError): self.empiric.parse_row(row=df.iloc[0, :]) def test_value_error_codon_doesnt_match_aa_column(self): with self.assertRaises(ValueError): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["V"], "Codon": ["AAT"], "row_num": [0]} ) self.empiric.validate_columns(df) self.empiric.parse_row(row=df.iloc[0, :]) def test_error_infer_nt_true_but_missing_codon_value(self): for nan in constants.extra_na: df = pd.DataFrame( {"Position": [0], "Amino Acid": ["N"], "row_num": [0], "Codon": [nan]} ) self.empiric.validate_columns(df) with self.assertRaises(ValueError): self.empiric.parse_row(row=df.iloc[0, :]) def test_index_error_negative_position(self): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["K"], "row_num": [0], "Codon": ["AAA"]} ) self.empiric.validate_columns(df) self.empiric.one_based = True with self.assertRaises(IndexError): self.empiric.parse_row(row=df.iloc[0, :]) def test_index_error_out_of_codon_bounds(self): df = pd.DataFrame( {"Position": [56], "Amino Acid": ["K"], "row_num": [0], "Codon": ["AAA"]} ) self.empiric.validate_columns(df) with self.assertRaises(IndexError): self.empiric.parse_row(row=df.iloc[0, :]) def test_amino_acid_column_is_case_insensitive(self): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["v"], "row_num": [0], "Codon": ["GTA"]} ) self.empiric.validate_columns(df) _, hgvs_pro = self.empiric.parse_row(row=df.iloc[0, :]) self.assertEqual(hgvs_pro, "p.Lys1Val") def test_infers_hgvs_pro_event_from_one_based_position(self): df = pd.DataFrame( {"Position": [1], "Amino Acid": ["V"], "row_num": [0], "Codon": ["GTA"]} ) self.empiric.validate_columns(df) self.empiric.one_based = True _, hgvs_pro = self.empiric.parse_row(row=df.iloc[0, :]) self.assertEqual(hgvs_pro, "p.Lys1Val") def test_infers_hgvs_pro_event_from_zero_based_position(self): df = pd.DataFrame( {"Position": [1], "Amino Acid": ["V"], "row_num": [0], "Codon": ["GTA"]} ) self.empiric.validate_columns(df) self.empiric.wt_sequence = "GTAAAA" self.empiric.one_based = False _, hgvs_pro = self.empiric.parse_row(row=df.iloc[0, :]) self.assertEqual(hgvs_pro, "p.Lys2Val") def test_protein_output_is_singular_when_inferring_nt(self): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["V"], "row_num": [0], "Codon": ["GTA"]} ) self.empiric.validate_columns(df) hgvs_nt, hgvs_pro = self.empiric.parse_row(row=df.iloc[0, :]) self.assertEqual(hgvs_nt, "c.[1A>G;2A>T;3=]") self.assertEqual(hgvs_pro, "p.Lys1Val") def test_hgvs_nt_is_none_when_codon_is_not_in_axes(self): df = pd.DataFrame({"Position": [0], "Amino Acid": ["V"], "row_num": [0]}) self.empiric.validate_columns(df) hgvs_nt, _ = self.empiric.parse_row(row=df.iloc[0, :]) self.assertIsNone(hgvs_nt) def test_correctly_infers_hgvs_nt_positions_when_zero_based(self): df = pd.DataFrame( {"Position": [1], "Amino Acid": ["V"], "row_num": [0], "Codon": ["GTA"]} ) self.empiric.validate_columns(df) self.empiric.one_based = False self.empiric.wt_sequence = "GGGAAT" hgvs_nt, _ = self.empiric.parse_row(row=df.iloc[0, :]) self.assertEqual(hgvs_nt, "c.[4A>G;5A>T;6T>A]") def test_correctly_infers_hgvs_nt_positions_when_one_based(self): df = pd.DataFrame({"Position": [1], "Amino Acid": ["N"], "Codon": ["AAT"]}) self.empiric.validate_columns(df) self.empiric.one_based = True self.empiric.wt_sequence = "GTAAAA" hgvs_nt, _ = self.empiric.parse_row(row=df.iloc[0, :]) self.assertEqual(hgvs_nt, "c.[1G>A;2T>A;3A>T]") class TestEmpiricValidateColumns(ProgramTestCase): def setUp(self): super().setUp() self.input = os.path.join(self.data_dir, "empiric", "empiric.xlsx") self.empiric = empiric.Empiric( src=self.input, wt_sequence="AAA", one_based=False ) def test_error_cannot_find_case_insensitive_aa_column(self): df = pd.DataFrame({"Position": [1], "aa": ["N"], "Codon": ["AAT"]}) with self.assertRaises(ValueError): self.empiric.validate_columns(df) def test_error_cannot_find_case_insensitive_position_column(self): df = pd.DataFrame({"pos": [1], "Amino Acid": ["N"], "Codon": ["AAT"]}) with self.assertRaises(ValueError): self.empiric.validate_columns(df) def test_sets_codon_column_as_none_if_not_present(self): df = pd.DataFrame({"Position": [1], "Amino Acid": ["N"]}) self.empiric.validate_columns(df) self.assertEqual(self.empiric.codon_column, None) def test_sets_codon_column_if_present(self): df = pd.DataFrame({"Position": [1], "Amino Acid": ["N"], "Codon": ["AAT"]}) self.empiric.validate_columns(df) self.assertEqual(self.empiric.codon_column, "Codon") def test_sets_position_column(self): df = pd.DataFrame({"Position": [1], "Amino Acid": ["N"], "Codon": ["AAT"]}) self.empiric.validate_columns(df) self.assertEqual(self.empiric.position_column, "Position") def test_sets_aa_column(self): df = pd.DataFrame({"Position": [1], "amino acid": ["N"], "Codon": ["AAT"]}) self.empiric.validate_columns(df) self.assertEqual(self.empiric.aa_column, "amino acid") class TestEmpiricParseScoresInput(ProgramTestCase): def setUp(self): super().setUp() self.input = os.path.join(self.data_dir, "empiric", "empiric.xlsx") self.empiric = empiric.Empiric( src=self.input, wt_sequence="AAA", one_based=False, input_type="scores", score_column="A", ) def test_deletes_position_amino_acid_codon_row_num_columns(self): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2]} ) result = self.empiric.parse_input(df) self.assertNotIn("Position", result.columns) self.assertNotIn("Amino Acid", result.columns) self.assertNotIn("Codon", result.columns) self.assertNotIn("row_num", result.columns) def test_keeps_additional_non_score_columns(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": [2.4], } ) result = self.empiric.parse_input(df) self.assertIn("B", result.columns) def test_renames_score_column_to_score_and_drops_original(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": [2.4], } ) result = self.empiric.parse_input(df) self.assertListEqual(list(df["A"]), list(result["score"])) self.assertIn("B", result.columns) self.assertNotIn("A", result.columns) def test_sets_hgvs_pro_column(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": [2.4], } ) result = self.empiric.parse_input(df) self.assertEqual(result[constants.pro_variant_col].values[0], "p.Lys1Asn") def test_correctly_infers_hgvs_nt_column_when_codon_column_present(self): df = pd.DataFrame( { "Position": [1], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": [2.4], } ) self.empiric.one_based = False self.empiric.wt_sequence = "GGGAAA" result = self.empiric.parse_input(df) self.assertEqual(result[constants.nt_variant_col].values[0], "c.[4=;5=;6A>T]") def test_orders_columns(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": [2.4], } ) result = self.empiric.parse_input(df) self.assertEqual(list(result.columns).index(constants.nt_variant_col), 0) self.assertEqual(list(result.columns).index(constants.pro_variant_col), 1) self.assertEqual(list(result.columns).index(constants.mavedb_score_column), 2) def test_removes_null_columns(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "B": [None], "A": [2.4], } ) result = self.empiric.parse_input(df) self.assertNotIn("B", result.columns) def test_drops_nt_when_codon_column_is_not_provided(self): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["N"], "A": [1.2], "B": [2.4]} ) result = self.empiric.parse_input(df) self.assertNotIn(constants.nt_variant_col, result.columns) def test_drops_non_numeric_columns(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": ["a"], } ) result = self.empiric.parse_input(df) self.assertNotIn("B", result.columns) def test_keeps_int_type_as_int(self): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1]} ) result = self.empiric.parse_input(df) self.assertTrue( np.issubdtype( result[constants.mavedb_score_column].values[0], np.signedinteger ) ) class TestEmpiricParseCountsInput(ProgramTestCase): def setUp(self): super().setUp() self.input = os.path.join(self.data_dir, "empiric", "empiric.xlsx") self.empiric = empiric.Empiric( src=self.input, wt_sequence="AAA", one_based=False, input_type="counts", score_column="A", ) def test_orders_columns(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": [2.4], } ) result = self.empiric.parse_input(df) self.assertEqual(list(result.columns).index(constants.nt_variant_col), 0) self.assertEqual(list(result.columns).index(constants.pro_variant_col), 1) self.assertEqual(list(result.columns).index("A"), 2) self.assertEqual(list(result.columns).index("B"), 3) class TestEmpiricLoadInput(ProgramTestCase): def setUp(self): super().setUp() self.excel_path = os.path.join(self.data_dir, "empiric", "empiric.xlsx") self.excel_header_footer_path = os.path.join( self.data_dir, "empiric", "empiric_header_footer.xlsx" ) self.csv_path = os.path.join(self.data_dir, "empiric", "tmp.csv") self.tsv_path = os.path.join(self.data_dir, "empiric", "tmp.tsv") self.excel_multisheet_path = os.path.join( self.data_dir, "empiric", "empiric_multisheet.xlsx" ) def test_extra_na_load_as_nan(self): for value in constants.extra_na: df = pd.read_excel(self.excel_path, engine="openpyxl") df["A"] = [value] * len(df) df.to_csv(self.csv_path, index=False) e = empiric.Empiric( src=self.csv_path, wt_sequence="TTTTCTTATTGT", score_column="col_A", input_type=constants.score_type, one_based=False, ) result = e.load_input_file() expected = pd.Series([np.NaN] * len(df), index=df.index, name="A") assert_series_equal(result["A"], expected) def test_loads_first_sheet_by_default(self): p = empiric.Empiric( src=self.excel_multisheet_path, wt_sequence="TTTTCTTATTGT", score_column="score", input_type=constants.score_type, ) result = p.load_input_file() expected = pd.read_excel( self.excel_multisheet_path, na_values=constants.extra_na, engine="openpyxl" ) assert_frame_equal(result, expected) def test_loads_correct_sheet(self): p = empiric.Empiric( src=self.excel_multisheet_path, wt_sequence="TTTTCTTATTGT", score_column="col_A", input_type=constants.score_type, one_based=False, sheet_name="Sheet3", ) result = p.load_input_file() expected = pd.read_excel( self.excel_multisheet_path, na_values=constants.extra_na, sheet_name="Sheet3", engine="openpyxl", ) assert_frame_equal(result, expected) def test_error_missing_sheet(self): p = empiric.Empiric( src=self.excel_multisheet_path, wt_sequence="TTTTCTTATTGT", score_column="col_A", input_type=constants.score_type, one_based=False, sheet_name="BadSheet", ) with self.assertRaises(KeyError): p.load_input_file() def test_handles_csv(self): df = pd.read_excel(self.excel_path, engine="openpyxl") df.to_csv(self.csv_path, index=False, sep=",") e = empiric.Empiric( src=self.csv_path, wt_sequence="TTTTCTTATTGT", score_column="col_A", input_type=constants.score_type, one_based=False, ) result = e.load_input_file() assert_frame_equal(result, df) def test_loads_with_skipped_rows(self): p = empiric.Empiric( src=self.excel_header_footer_path, wt_sequence="TTTTCTTATTGT", score_column="col_A", input_type=constants.score_type, one_based=False, skip_header_rows=2, skip_footer_rows=2, ) result = p.load_input_file() df = pd.read_excel(self.excel_path, engine="openpyxl") assert_frame_equal(result, df) def test_handles_tsv(self): df =
pd.read_excel(self.excel_path, engine="openpyxl")
pandas.read_excel
import mlrose_hiive as mlrose import numpy as np import pandas as pd from time import clock import os import argparse import data.DataProcessors as dp import seaborn as sns import matplotlib.pyplot as plt os.environ['seed'] = '45604' randomSeed = 45604 verbose = True from sklearn.metrics import accuracy_score, log_loss, f1_score, confusion_matrix, make_scorer, precision_score, mean_squared_error, plot_confusion_matrix, roc_auc_score, recall_score def plot_results(data_dir, param_name, param_display): directory="./"+data_dir+"/images/" if not os.path.exists(directory): os.makedirs(directory) path1='./'+data_dir path2= "./"+data_dir+"/images/" # nn ga = pd.read_csv(os.path.join(data_dir,'gatrain_performance.csv')) sa = pd.read_csv(os.path.join(data_dir,'satrain_performance.csv')) rh = pd.read_csv(os.path.join(data_dir,'rhtrain_performance.csv')) gd = pd.read_csv(os.path.join(data_dir,'gdtrain_performance.csv')) plt.close() plt.figure() plt.plot( ga['Iterations'], ga[param_name], label='Gen Alg') plt.plot( sa['Iterations'], sa[param_name], label='Sim Ann') plt.plot( rh['Iterations'], rh[param_name], label='Random Hill') plt.plot( gd['Iterations'], gd[param_name], label='Grad Desc') plt.legend(title="Algorithm", loc="best") x_title = "Iterations" y_title = param_display plt.xlabel(x_title) plt.ylabel(y_title) plt.title("Customer Churn ANN Optimized by RO Algorithms (Train Performance)") plt.savefig(os.path.join(directory,"train_"+param_name+".png"), format='png', dpi=200, bbox_inches = 'tight', pad_inches = 0) ga = pd.read_csv(os.path.join(data_dir,'gatest_performance.csv')) sa = pd.read_csv(os.path.join(data_dir,'satest_performance.csv')) rh = pd.read_csv(os.path.join(data_dir,'rhtest_performance.csv')) gd = pd.read_csv(os.path.join(data_dir,'gdtest_performance.csv')) plt.close() plt.figure() plt.plot( ga['Iterations'], ga[param_name], label='Gen Alg') plt.plot( sa['Iterations'], sa[param_name], label='Sim Ann') plt.plot( rh['Iterations'], rh[param_name], label='Random Hill') plt.plot( gd['Iterations'], gd[param_name], label='Grad Desc') plt.legend(title="Algorithm", loc="best") x_title = "Iterations" y_title = param_display plt.xlabel(x_title) plt.ylabel(y_title) plt.title("Customer Churn ANN Optimized by RO Algorithms (Test Performance)") plt.savefig(os.path.join(directory,"test_"+param_name+".png"), format='png', dpi=200, bbox_inches = 'tight', pad_inches = 0) def get_model(algorithm, max_iters): activation = "relu" print(algorithm) print(max_iters) if algorithm == "rh": return mlrose.NeuralNetwork(hidden_nodes = [10], activation = activation, algorithm = 'random_hill_climb', \ bias = True, is_classifier = True, early_stopping = True, restarts = 5, max_attempts =10, max_iters = max_iters, clip_max = 10, random_state = randomSeed) if algorithm == "ga": return mlrose.NeuralNetwork(hidden_nodes = [10], activation = activation, algorithm = 'genetic_alg', \ bias = True, is_classifier = True, early_stopping = True, max_attempts =10, max_iters = max_iters, clip_max = 10, mutation_prob = .10, random_state = randomSeed) if algorithm == "sa": return mlrose.NeuralNetwork(hidden_nodes = [10], activation = activation, algorithm = 'simulated_annealing', \ bias = True, is_classifier = True, early_stopping = True, max_attempts =10, max_iters = max_iters, clip_max = 10, schedule = mlrose.GeomDecay(), random_state = randomSeed) if algorithm == "gd": return mlrose.NeuralNetwork(hidden_nodes = [10], activation = activation, algorithm = 'gradient_descent', \ bias = True, is_classifier = True, early_stopping = True, max_attempts =10, max_iters = max_iters, clip_max = 10, random_state = randomSeed) def run_neural_net(algorithm): fullData = dp.CustomerChurnModel() fullData.prepare_data_for_training() dfTrain =
pd.DataFrame(columns=["Iterations","Accuracy","Precision","Recall","F1","ROC AUC","SquareError","TrainTime"])
pandas.DataFrame
import datetime as dt import unittest import numpy as np import pandas as pd from numpy.testing import assert_allclose from darkgreybox.fit import darkgreyfit from darkgreybox.models import Ti def error_metric(y: np.ndarray, Z: np.ndarray) -> float: return np.sum(y - Z) class DarkGreyFitTest(unittest.TestCase): def test__darkgreyfit__returns_correct_dataframe__when_prefit_splits_specified(self): train_start = dt.datetime(2021, 1, 1, 1, 0) train_end = dt.datetime(2021, 1, 1, 6, 0) test_start = dt.datetime(2021, 1, 1, 7, 0) test_end = dt.datetime(2021, 1, 1, 9, 0) rec_duration = 1 params = { 'Ti0': {'value': 10, 'vary': False}, 'Ria': {'value': 1}, 'Ci': {'value': 1}, } y_train = pd.Series([10, 10, 20, 20, 20, 30]) X_train = pd.DataFrame( index=pd.date_range(train_start, train_end, freq=f'{rec_duration}H'), data={ 'Ta': [10, 10, 10, 20, 20, 20], 'Ph': [0, 10, 0, 0, 10, 0], 'Ti0': [10, 10, 20, 20, 20, 30] }) X_test = pd.DataFrame( index=
pd.date_range(test_start, test_end, freq=f'{rec_duration}H')
pandas.date_range
#!/usr/bin/python print('datasets_merge - initiating.') import os import pandas as pd pd.options.mode.chained_assignment = None # set directories and files cwd = os.getcwd() input_folder = "0_input" prices_folder = "data" output_folder = "0_output" temp_folder = "temp" print('starting merging the financials and prices datasets') # import prices_table = pd.read_csv(os.path.join(cwd,input_folder,"2_prices_updated.csv"), low_memory=False) fundamentals_table_annually = pd.read_csv(os.path.join(cwd,input_folder,"3_fundamentals_processed_annually.csv"), low_memory=False) fundamentals_table = pd.read_csv(os.path.join(cwd,input_folder,"4_fundamentals_processed_quarterly.csv"), low_memory=False) print("importing fundamentals and prices is done") # adding TTM from t0,t1,t2,t3 before selecting t0 only for income and cash flows df_ttm = fundamentals_table.groupby(['symbol'])[['totalRevenue', 'costOfRevenue' ,'totalCashFromOperatingActivities', 'capitalExpenditures' , 'totalOperatingExpenses', 'totalCashflowsFromInvestingActivities']].sum() df_ttm = df_ttm.reset_index(drop=False) df_ttm['capitalExpenditures'].fillna(df_ttm['totalCashflowsFromInvestingActivities'], inplace=True) df_ttm.rename(columns={'totalRevenue': 'totalRevenueTTM', 'costOfRevenue': 'costOfRevenueTTM' , 'totalCashFromOperatingActivities': 'totalCashFromOperatingActivitiesTTM' , 'totalOperatingExpenses': 'totalOperatingExpensesTTM' , 'capitalExpenditures': 'capitalExpendituresTTM' , 'Total Debt (mrq)': 'Debt'}, inplace=True) print("ttm precalculated") # select only latest quarterly data to filter out balance sheet fundamentals_table = fundamentals_table[fundamentals_table['Period'] == "t0"] print("fundamentals_table period = t0") # splitting annual data df_y0 = fundamentals_table_annually[fundamentals_table_annually['Period'] == "y0"] df_y0.rename(columns={'totalRevenue': 'revenue_last_year'}, inplace=True) df_y0 = df_y0[['symbol', 'revenue_last_year']] #df_y_minus_1 = fundamentals_table_annually[fundamentals_table_annually['Period'] == "y-1"] #df_y_minus_2 = fundamentals_table_annually[fundamentals_table_annually['Period'] == "y-2"] #df_y_minus_3 = fundamentals_table_annually[fundamentals_table_annually['Period'] == "y-3"] # finding historical averages df_avg_historical = fundamentals_table_annually.groupby(['symbol'])[['totalRevenue', 'capitalExpenditures', 'costOfRevenue', 'propertyPlantEquipment']].mean() df_avg_historical = df_avg_historical.reset_index(drop=False) df_avg_historical.rename(columns={'totalRevenue': 'mean_historical_revenue' , 'capitalExpenditures': 'mean_historical_capex' , 'costOfRevenue': 'mean_historical_costOfRevenue' , 'propertyPlantEquipment': 'mean_historical_propertyPlantEquipment'}, inplace=True) df_avg_historical = df_avg_historical[['symbol', 'mean_historical_revenue', 'mean_historical_costOfRevenue' , 'mean_historical_capex', 'mean_historical_propertyPlantEquipment']] print("historical averages calculated") # merge fundamentals and prices df_merged = pd.merge(fundamentals_table, prices_table, how='left', left_on=['symbol'], right_on=['symbol'], suffixes=('', '_drop')) df_merged.drop([col for col in df_merged.columns if 'drop' in col], axis=1, inplace=True) df_merged.rename(columns={'52 Week High 3': '52h' , '52 Week Low 3': '52l' , 'Quote Price': 'p' , 'Quarterly Revenue Growth (yoy)': 'QtrGrwth'}, inplace=True) print("raw fundamentals and prices merged") # merge TTM df_to_merge = df_merged df_merged = pd.merge(df_to_merge, df_ttm, how='left', left_on=['symbol'], right_on=['symbol'], suffixes=('', '_drop')) df_merged.drop([col for col in df_merged.columns if 'drop' in col], axis=1, inplace=True) print("ttm merged") # merge last_year_revenue df_to_merge = df_merged df_merged = pd.merge(df_to_merge, df_y0, how='left', left_on=['symbol'], right_on=['symbol'], suffixes=('', '_drop')) df_merged.drop([col for col in df_merged.columns if 'drop' in col], axis=1, inplace=True) print("last year revenue merged") # merge df_avg_historical df_to_merge = df_merged df_merged =
pd.merge(df_to_merge, df_avg_historical, how='left', left_on=['symbol'], right_on=['symbol'], suffixes=('', '_drop'))
pandas.merge
import numpy as np import pandas as pd from wiser.viewer import Viewer from allennlp.data import Instance def score_labels_majority_vote(instances, gold_label_key='tags', treat_tie_as='O', span_level=True): tp, fp, fn = 0, 0, 0 for instance in instances: maj_vote = _get_label_majority_vote(instance, treat_tie_as) if span_level: score = _score_sequence_span_level(maj_vote, instance[gold_label_key]) else: score = _score_sequence_token_level(maj_vote, instance[gold_label_key]) tp += score[0] fp += score[1] fn += score[2] # Collects results into a dataframe column_names = ["TP", "FP", "FN", "P", "R", "F1"] p, r, f1 = _get_p_r_f1(tp, fp, fn) record = [tp, fp, fn, p, r, f1] index = ["Majority Vote"] if span_level else ["Majority Vote (Token Level)"] results = pd.DataFrame.from_records( [record], columns=column_names, index=index) results = pd.DataFrame.sort_index(results) return results def get_generative_model_inputs(instances, label_to_ix): label_name_to_col = {} link_name_to_col = {} # Collects label and link function names names = set() for doc in instances: if 'WISER_LABELS' in doc: for name in doc['WISER_LABELS']: names.add(name) for name in sorted(names): label_name_to_col[name] = len(label_name_to_col) names = set() for doc in instances: if 'WISER_LINKS' in doc: for name in doc['WISER_LINKS']: names.add(name) for name in sorted(names): link_name_to_col[name] = len(link_name_to_col) # Counts total tokens total_tokens = 0 for doc in instances: total_tokens += len(doc['tokens']) # Initializes output data structures label_votes = np.zeros((total_tokens, len(label_name_to_col)), dtype=np.int) link_votes = np.zeros((total_tokens, len(link_name_to_col)), dtype=np.int) seq_starts = np.zeros((len(instances),), dtype=np.int) # Populates outputs offset = 0 for i, doc in enumerate(instances): seq_starts[i] = offset for name in sorted(doc['WISER_LABELS'].keys()): for j, vote in enumerate(doc['WISER_LABELS'][name]): label_votes[offset + j, label_name_to_col[name]] = label_to_ix[vote] if 'WISER_LINKS' in doc: for name in sorted(doc['WISER_LINKS'].keys()): for j, vote in enumerate(doc['WISER_LINKS'][name]): link_votes[offset + j, link_name_to_col[name]] = vote offset += len(doc['tokens']) return label_votes, link_votes, seq_starts def score_predictions(instances, predictions, gold_label_key='tags', span_level=True): tp, fp, fn = 0, 0, 0 offset = 0 for instance in instances: length = len(instance[gold_label_key]) if span_level: scores = _score_sequence_span_level( predictions[offset:offset+length], instance[gold_label_key]) else: scores = _score_sequence_token_level( predictions[offset:offset+length], instance[gold_label_key]) tp += scores[0] fp += scores[1] fn += scores[2] offset += length # Collects results into a dataframe column_names = ["TP", "FP", "FN", "P", "R", "F1"] p = round(tp / (tp + fp) if tp > 0 or fp > 0 else 0.0, ndigits=4) r = round(tp / (tp + fn) if tp > 0 or fn > 0 else 0.0, ndigits=4) f1 = round(2 * p * r / (p + r) if p > 0 and r > 0 else 0.0, ndigits=4) record = [tp, fp, fn, p, r, f1] index = ["Predictions"] if span_level else ["Predictions (Token Level)"] results = pd.DataFrame.from_records( [record], columns=column_names, index=index) results = pd.DataFrame.sort_index(results) return results def score_tagging_rules(instances, gold_label_key='tags'): lf_scores = {} for instance in instances: for lf_name, predictions in instance['WISER_LABELS'].items(): if lf_name not in lf_scores: # Initializes true positive, false positive, false negative, # correct, and total vote counts lf_scores[lf_name] = [0, 0, 0, 0, 0] scores = _score_sequence_span_level(predictions, instance[gold_label_key]) lf_scores[lf_name][0] += scores[0] lf_scores[lf_name][1] += scores[1] lf_scores[lf_name][2] += scores[2] scores = _score_token_accuracy(predictions, instance[gold_label_key]) lf_scores[lf_name][3] += scores[0] lf_scores[lf_name][4] += scores[1] # Computes accuracies for lf_name in lf_scores.keys(): if lf_scores[lf_name][3] > 0: lf_scores[lf_name][3] = float(lf_scores[lf_name][3]) / lf_scores[lf_name][4] lf_scores[lf_name][3] = round(lf_scores[lf_name][3], ndigits=4) else: lf_scores[lf_name][3] = float('NaN') # Collects results into a dataframe column_names = ["TP", "FP", "FN", "Token Acc.", "Token Votes"] results =
pd.DataFrame.from_dict(lf_scores, orient="index", columns=column_names)
pandas.DataFrame.from_dict
""" test partial slicing on Series/Frame """ import pytest from datetime import datetime, date import numpy as np import pandas as pd import operator as op from pandas import (DatetimeIndex, Series, DataFrame, date_range, Index, Timedelta, Timestamp) from pandas.util import testing as tm class TestSlicing(object): def test_slice_year(self): dti = DatetimeIndex(freq='B', start=datetime(2005, 1, 1), periods=500) s = Series(np.arange(len(dti)), index=dti) result = s['2005'] expected = s[s.index.year == 2005] tm.assert_series_equal(result, expected) df = DataFrame(np.random.rand(len(dti), 5), index=dti) result = df.loc['2005'] expected = df[df.index.year == 2005] tm.assert_frame_equal(result, expected) rng = date_range('1/1/2000', '1/1/2010') result = rng.get_loc('2009') expected = slice(3288, 3653) assert result == expected def test_slice_quarter(self): dti = DatetimeIndex(freq='D', start=datetime(2000, 6, 1), periods=500) s = Series(np.arange(len(dti)), index=dti) assert len(s['2001Q1']) == 90 df = DataFrame(np.random.rand(len(dti), 5), index=dti) assert len(df.loc['1Q01']) == 90 def test_slice_month(self): dti = DatetimeIndex(freq='D', start=datetime(2005, 1, 1), periods=500) s = Series(np.arange(len(dti)), index=dti) assert len(s['2005-11']) == 30 df = DataFrame(np.random.rand(len(dti), 5), index=dti) assert len(df.loc['2005-11']) == 30 tm.assert_series_equal(s['2005-11'], s['11-2005']) def test_partial_slice(self): rng = DatetimeIndex(freq='D', start=datetime(2005, 1, 1), periods=500) s = Series(np.arange(len(rng)), index=rng) result = s['2005-05':'2006-02'] expected = s['20050501':'20060228'] tm.assert_series_equal(result, expected) result = s['2005-05':] expected = s['20050501':] tm.assert_series_equal(result, expected) result = s[:'2006-02'] expected = s[:'20060228'] tm.assert_series_equal(result, expected) result = s['2005-1-1'] assert result == s.iloc[0] pytest.raises(Exception, s.__getitem__, '2004-12-31') def test_partial_slice_daily(self): rng = DatetimeIndex(freq='H', start=datetime(2005, 1, 31), periods=500) s = Series(np.arange(len(rng)), index=rng) result = s['2005-1-31'] tm.assert_series_equal(result, s.iloc[:24]) pytest.raises(Exception, s.__getitem__, '2004-12-31 00') def test_partial_slice_hourly(self): rng = DatetimeIndex(freq='T', start=datetime(2005, 1, 1, 20, 0, 0), periods=500) s = Series(np.arange(len(rng)), index=rng) result = s['2005-1-1'] tm.assert_series_equal(result, s.iloc[:60 * 4]) result = s['2005-1-1 20'] tm.assert_series_equal(result, s.iloc[:60]) assert s['2005-1-1 20:00'] == s.iloc[0] pytest.raises(Exception, s.__getitem__, '2004-12-31 00:15') def test_partial_slice_minutely(self): rng = DatetimeIndex(freq='S', start=datetime(2005, 1, 1, 23, 59, 0), periods=500) s = Series(np.arange(len(rng)), index=rng) result = s['2005-1-1 23:59'] tm.assert_series_equal(result, s.iloc[:60]) result = s['2005-1-1'] tm.assert_series_equal(result, s.iloc[:60]) assert s[Timestamp('2005-1-1 23:59:00')] == s.iloc[0] pytest.raises(Exception, s.__getitem__, '2004-12-31 00:00:00') def test_partial_slice_second_precision(self): rng = DatetimeIndex(start=datetime(2005, 1, 1, 0, 0, 59, microsecond=999990), periods=20, freq='US') s = Series(np.arange(20), rng) tm.assert_series_equal(s['2005-1-1 00:00'], s.iloc[:10]) tm.assert_series_equal(s['2005-1-1 00:00:59'], s.iloc[:10]) tm.assert_series_equal(s['2005-1-1 00:01'], s.iloc[10:]) tm.assert_series_equal(s['2005-1-1 00:01:00'], s.iloc[10:]) assert s[Timestamp('2005-1-1 00:00:59.999990')] == s.iloc[0] tm.assert_raises_regex(KeyError, '2005-1-1 00:00:00', lambda: s['2005-1-1 00:00:00']) def test_partial_slicing_dataframe(self): # GH14856 # Test various combinations of string slicing resolution vs. # index resolution # - If string resolution is less precise than index resolution, # string is considered a slice # - If string resolution is equal to or more precise than index # resolution, string is considered an exact match formats = ['%Y', '%Y-%m', '%Y-%m-%d', '%Y-%m-%d %H', '%Y-%m-%d %H:%M', '%Y-%m-%d %H:%M:%S'] resolutions = ['year', 'month', 'day', 'hour', 'minute', 'second'] for rnum, resolution in enumerate(resolutions[2:], 2): # we check only 'day', 'hour', 'minute' and 'second' unit = Timedelta("1 " + resolution) middate = datetime(2012, 1, 1, 0, 0, 0) index = DatetimeIndex([middate - unit, middate, middate + unit]) values = [1, 2, 3] df = DataFrame({'a': values}, index, dtype=np.int64) assert df.index.resolution == resolution # Timestamp with the same resolution as index # Should be exact match for Series (return scalar) # and raise KeyError for Frame for timestamp, expected in zip(index, values): ts_string = timestamp.strftime(formats[rnum]) # make ts_string as precise as index result = df['a'][ts_string] assert isinstance(result, np.int64) assert result == expected pytest.raises(KeyError, df.__getitem__, ts_string) # Timestamp with resolution less precise than index for fmt in formats[:rnum]: for element, theslice in [[0, slice(None, 1)], [1, slice(1, None)]]: ts_string = index[element].strftime(fmt) # Series should return slice result = df['a'][ts_string] expected = df['a'][theslice] tm.assert_series_equal(result, expected) # Frame should return slice as well result = df[ts_string] expected = df[theslice] tm.assert_frame_equal(result, expected) # Timestamp with resolution more precise than index # Compatible with existing key # Should return scalar for Series # and raise KeyError for Frame for fmt in formats[rnum + 1:]: ts_string = index[1].strftime(fmt) result = df['a'][ts_string] assert isinstance(result, np.int64) assert result == 2 pytest.raises(KeyError, df.__getitem__, ts_string) # Not compatible with existing key # Should raise KeyError for fmt, res in list(zip(formats, resolutions))[rnum + 1:]: ts = index[1] + Timedelta("1 " + res) ts_string = ts.strftime(fmt) pytest.raises(KeyError, df['a'].__getitem__, ts_string) pytest.raises(KeyError, df.__getitem__, ts_string) def test_partial_slicing_with_multiindex(self): # GH 4758 # partial string indexing with a multi-index buggy df = DataFrame({'ACCOUNT': ["ACCT1", "ACCT1", "ACCT1", "ACCT2"], 'TICKER': ["ABC", "MNP", "XYZ", "XYZ"], 'val': [1, 2, 3, 4]}, index=date_range("2013-06-19 09:30:00", periods=4, freq='5T')) df_multi = df.set_index(['ACCOUNT', 'TICKER'], append=True) expected = DataFrame([ [1] ], index=Index(['ABC'], name='TICKER'), columns=['val']) result = df_multi.loc[('2013-06-19 09:30:00', 'ACCT1')] tm.assert_frame_equal(result, expected) expected = df_multi.loc[ (pd.Timestamp('2013-06-19 09:30:00', tz=None), 'ACCT1', 'ABC')] result = df_multi.loc[('2013-06-19 09:30:00', 'ACCT1', 'ABC')] tm.assert_series_equal(result, expected) # this is a KeyError as we don't do partial string selection on # multi-levels def f(): df_multi.loc[('2013-06-19', 'ACCT1', 'ABC')] pytest.raises(KeyError, f) # GH 4294 # partial slice on a series mi s = pd.DataFrame(np.random.rand(1000, 1000), index=pd.date_range( '2000-1-1', periods=1000)).stack() s2 = s[:-1].copy() expected = s2['2000-1-4'] result = s2[pd.Timestamp('2000-1-4')] tm.assert_series_equal(result, expected) result = s[pd.Timestamp('2000-1-4')] expected = s['2000-1-4'] tm.assert_series_equal(result, expected) df2 = pd.DataFrame(s) expected = df2.xs('2000-1-4') result = df2.loc[pd.Timestamp('2000-1-4')] tm.assert_frame_equal(result, expected) def test_partial_slice_doesnt_require_monotonicity(self): # For historical reasons. s = pd.Series(np.arange(10), pd.date_range('2014-01-01', periods=10)) nonmonotonic = s[[3, 5, 4]] expected = nonmonotonic.iloc[:0] timestamp = pd.Timestamp('2014-01-10') tm.assert_series_equal(nonmonotonic['2014-01-10':], expected) tm.assert_raises_regex(KeyError, r"Timestamp\('2014-01-10 00:00:00'\)", lambda: nonmonotonic[timestamp:]) tm.assert_series_equal(nonmonotonic.loc['2014-01-10':], expected) tm.assert_raises_regex(KeyError, r"Timestamp\('2014-01-10 00:00:00'\)", lambda: nonmonotonic.loc[timestamp:]) def test_loc_datetime_length_one(self): # GH16071 df = pd.DataFrame(columns=['1'], index=pd.date_range('2016-10-01T00:00:00', '2016-10-01T23:59:59')) result = df.loc[datetime(2016, 10, 1):] tm.assert_frame_equal(result, df) result = df.loc['2016-10-01T00:00:00':] tm.assert_frame_equal(result, df) @pytest.mark.parametrize('datetimelike', [ Timestamp('20130101'), datetime(2013, 1, 1), date(2013, 1, 1), np.datetime64('2013-01-01T00:00', 'ns')]) @pytest.mark.parametrize('op,expected', [ (op.lt, [True, False, False, False]), (op.le, [True, True, False, False]), (op.eq, [False, True, False, False]), (op.gt, [False, False, False, True])]) def test_selection_by_datetimelike(self, datetimelike, op, expected): # GH issue #17965, test for ability to compare datetime64[ns] columns # to datetimelike df = DataFrame({'A': [pd.Timestamp('20120101'), pd.Timestamp('20130101'), np.nan,
pd.Timestamp('20130103')
pandas.Timestamp
import calendar import pandas as pd from colourutils import extend_colour_map def extend_data_range(data): """ Extends the index of the given Series so that it has daily values, starting from the 1st of the earliest month and ending on the last day of the latest month. :param data: The Series to be extended with a datetime index :return: The Series with an extended daily index """ earliest_date = data.index.min() first_month_start = pd.Timestamp(year=earliest_date.year, month=earliest_date.month, day=1) latest_date = data.index.max() _, last_date_of_month = calendar.monthrange(latest_date.year, latest_date.month) last_month_end =
pd.Timestamp(year=latest_date.year, month=latest_date.month, day=last_date_of_month)
pandas.Timestamp
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 下载合约分钟 由于数据量很大,可以只下载一些关键的 比如 主力、次主力 近月、远月 一定要通过update_first_last.py更新数据的下载范围 否则会全下,还会覆盖前面的数据 """ import os import sys from datetime import datetime, timedelta import pandas as pd from WindPy import w from demo_future.E01_download_daily import read_constituent_at_date, merge_constituent_date from kquant_data.config import __CONFIG_TDAYS_SHFE_FILE__, __CONFIG_H5_FUT_SECTOR_DIR__ from kquant_data.utils.symbol import split_alpha_number from kquant_data.utils.xdatetime import yyyyMMdd_2_datetime, datetime_2_yyyyMMddHHmm from kquant_data.wind.tdays import read_tdays from kquant_data.wind.wsi import download_min_ohlcv from kquant_data.xio.csv import read_datetime_dataframe # 解决Python 3.6的pandas不支持中文路径的问题 print(sys.getfilesystemencoding()) # 查看修改前的 try: sys._enablelegacywindowsfsencoding() # 修改 print(sys.getfilesystemencoding()) # 查看修改后的 except: pass def download_constituent_min(w, dirpath, date, ipo_last_trade, first_last, wind_code_set, trading_days): constituent = read_constituent_at_date(dirpath, date) if constituent is None: # 没有对应的板块,因当是与上次一样导致 # 没关系,上次数据应当已经下载过了 return wind_code_set constituent_dt = merge_constituent_date(constituent, ipo_last_trade, first_last) for i in range(constituent_dt.shape[0]): row = constituent_dt.iloc[i] wind_code = row['wind_code'] # 当前会话,不重复下载 if wind_code in wind_code_set: continue wind_code_set.add(wind_code) # 时间已经到期了,不重复下载 # 这里考虑时间 if datetime_2_yyyyMMddHHmm(row['start']) == datetime_2_yyyyMMddHHmm(row['end']): continue product, num = split_alpha_number(wind_code) path_dir = os.path.join(root_path, product) if not os.path.exists(path_dir): os.mkdir(path_dir) path_csv = os.path.join(path_dir, '%s.csv' % wind_code) # 从开始到结束,可能跨度太长,特别是新下数据,可能超过一年,所以决定按月下载,这样更快 # 保存时如果多次保存,然后放在一个文件中,会有问题 trading_days['idx'] = range(len(trading_days)) start = row['start'] end = row['end'] trading_days_idx = trading_days[start._date_repr:end._date_repr]['idx'] rng = list(range(trading_days_idx[0], trading_days_idx[-1], 30)) # 右闭 rng.insert(len(rng), trading_days_idx[-1]) for idx, r in enumerate(rng): if idx == 0: continue start_ = trading_days.iloc[rng[idx - 1]]['date'] end_ = trading_days.iloc[r]['date'] if idx == 1: # 第一个位置比较特殊,要取到前一个交易日的晚上 start_ = trading_days.iloc[rng[idx - 1] - 1]['date'] start_ += pd.Timedelta('20H') # 会遇到不是交易日的问题 end_ += pd.Timedelta('16H') print(start_, end_) try: df_old = pd.read_csv(path_csv, index_col=0, parse_dates=True) # 合并前先删除空数据 df_old.dropna(axis=0, how='all', thresh=3, inplace=True) except: df_old = None print(row) df_new, wind_code = download_min_ohlcv(w, wind_code, start, end) df = pd.concat([df_old, df_new]) df = df[~df.index.duplicated(keep='last')] print(path_csv) df.to_csv(path_csv) # 只做一个测试 # break return wind_code_set if __name__ == '__main__': # 数据太多,是否减少数据下载更合适?比如只下主力,次主力,最近月,最远月 # 也可选择全下 # 分钟数据是按天分割,还是放在一个文件中呢? # 下载是从哪下到哪呢? w.start() # 注意,数据中有可能出现0 path_ipo_last_trade = os.path.join(__CONFIG_H5_FUT_SECTOR_DIR__, 'ipo_last_trade_trading.csv') ipo_last_trade =
pd.read_csv(path_ipo_last_trade)
pandas.read_csv
import src.database.build_db as db import src.weather as weather import src.send_email as email import pandas as pd from sqlalchemy import create_engine from sqlalchemy_utils import database_exists, create_database from dotenv import load_dotenv import requests import os import pymysql import sys import json import streamlit as st import matplotlib.pyplot as plt from sklearn import datasets import seaborn as sns import datetime import numpy as np import pickle import plotly.express as px import plotly.graph_objects as go import h2o h2o.init() rnd_forest_model = pickle.load(open("models/best_rf.pkl", 'rb')) st.set_page_config(layout="wide") st.set_option('deprecation.showPyplotGlobalUse', False) # My functions if __name__ == '__main__': flag = False # DONT DO THIS FOR HEROKU if flag: conn = db.connect_to_mysql() if conn and flag: db.create_schemas(conn) # load data df_sales = pd.read_csv('data/raw_data/sales_clean.csv') df_weather = weather.df_weather # Other functions def get_holidays(date_min, date_max): holidays = pd.read_excel('data/db_load_files/calendario.xls') holidays.rename(columns={'Dia': 'date', 'laborable / festivo / domingo festivo': 'day_type', 'Festividad': 'holiday_name', 'Tipo de Festivo': 'holiday_type'}, inplace=True) del holidays['Dia_semana'] holidays['date'] = pd.to_datetime(holidays['date']) mask = (holidays['date'] >= date_min) & (holidays['date'] <= date_max) holidays = holidays.loc[mask] return holidays # Other functions def prepare_data(df_weather, model): df_test = df_weather.copy() df_test['date'] = pd.to_datetime(df_test['date']) df_test["day_of_week"] = df_test.date.dt.day_name() df_test["month_name"] = df_test.date.dt.month_name() df_test["day"] = df_test.date.dt.day df_test["year"] = df_test.date.dt.year df_placeholder = df_sales.drop(columns=['total_sales']) df_placeholder['date'] = pd.to_datetime(df_placeholder['date']) df_test = df_test.append(df_placeholder) conditions = ["Rain", "Thunderstorm", "Drizzle", "Snow"] df_test['did_rain'] = df_test['type'].apply( lambda x: 1 if x in conditions else 0) df_test['total_precip_mm'] = df_test['did_rain'].apply( lambda x: 8 if x == 1 else 0) date_min = df_test.date.min() date_max = df_test.date.max() df_holidays = get_holidays(date_min, date_max) df_merged = pd.merge(df_test, df_holidays, how="right", on="date") df_merged['is_closed'] = 0 df_merged['is_lockdown'] = 0 df_merged['is_curfew'] = 0 df_merged = df_merged.set_index('date') df_merged['year'] = df_merged.year.astype('category') del df_merged['day'] del df_merged['holiday_type'] del df_merged['holiday_name'] del df_merged['type'] df_merged = pd.get_dummies(df_merged, dummy_na=True) df_merged = df_merged.iloc[-8:] del df_merged['day_type_nan'] del df_merged['month_name_nan'] del df_merged['day_of_week_nan'] del df_merged['year_nan'] df_merged['prev_sales'] = df_sales.total_sales.mean() df_merged['is_post_holiday'] = 0 df_merged['is_pre_holiday'] = 0 df_test = df_merged.copy() results = predict_data(df_test, model) return results def predict_data(df_test, model): if model == 'forest': df_results = pd.DataFrame() predictions = rnd_forest_model.predict(df_test) round_predicts = [round(num, 2) for num in predictions] df_results = pd.DataFrame(round_predicts, columns=[ 'predict']) # df_results['Sales Prediction'] = pd.Series(round_predicts, index=df_results.index) return df_results elif model == "deep": # df_results = df_weather.copy() saved_model = h2o.load_model( 'models/deeplearning/DeepLearning_grid__1_AutoML_20210519_134516_model_1') stacked_test = df_test.copy() # Conversion into a H20 frame to train h2test = h2o.H2OFrame(stacked_test) predicted_price_h2 = saved_model.predict( h2test).as_data_frame() df_results = predicted_price_h2.copy() # df_results['Sales Prediction'] = predicted_price_h2.predict return df_results elif model == "stacked": # df_results = df_weather.copy() saved_model = h2o.load_model( 'models/autostacked/StackedEnsemble_AllModels_AutoML_20210519_134516') stacked_test = df_test.copy() # Conversion into a H20 frame to train h2test = h2o.H2OFrame(stacked_test) predicted_price_h2 = saved_model.predict( h2test).as_data_frame() df_results = predicted_price_h2.copy() # df_results['Sales Prediction'] = predicted_price_h2.predict return df_results h20_stacked_model = prepare_data(df_weather, "stacked") forest_weekly_outlook = prepare_data(df_weather, "forest") deep_learn_model = prepare_data(df_weather, "deep") df_main = df_weather.copy() df_main.rename(columns={"type": "Weather", "average_temp": "Temperature"}, inplace=True) df_main['RndForest Sales'] = forest_weekly_outlook['predict'] df_main['DeepLearn Sales'] = deep_learn_model['predict'] df_main['h2O Sales'] = h20_stacked_model['predict'] df_main['date'] = pd.to_datetime(df_main['date']) df_main['date'] = df_main['date'].dt.strftime('%d/%m/%Y') df_main['AVG Prediction'] = df_main[[ 'DeepLearn Sales', 'h2O Sales', 'RndForest Sales']].mean(axis=1) def get_employees(x): if x < 1000: return 3 elif x >= 1000 and x < 2000: return 4 elif x >= 2000 and x < 4000: return 5 elif x >= 4000 and x < 6000: return 6 elif x >= 6000 and x < 8000: return 7 elif x >= 8000 and x < 10000: return 8 elif x >= 10000: return 10 df_main['Employees Needed'] = df_main['AVG Prediction'].apply( lambda x: get_employees(x)) st.image('images/logo_large.png', width=300) st.write(""" # CityPlay Sales Prediction App This app predicts **sales for CityPlay, a bowling alley in Madrid**! """) st.write('---') # sidebar st.sidebar.header('Choose Input Params') def user_input_features(): today = datetime.date.today() week_from_now = today + datetime.timedelta(days=8) start_date = st.sidebar.date_input('Date input', week_from_now) holidays = ["Normal day", "Holiday", "Holiday-eve", "Post-Holiday"] holiday_choice = st.sidebar.radio("What Type of day is it?", holidays) prev_sales_value = st.sidebar.number_input('Do you happen to know the sales the day before? The default is the average.', min_value=0.00, max_value=20000.00, value=2455.00, step=20.00, format=None, key=None) temp = st.sidebar.slider('Temperature', value=17, min_value=-15, max_value=48) if not temp: temp = 15 will_it_rain = [False, True] did_rain_value = st.sidebar.radio( "Predict Rain/Snow (People will stay home if it rains a lot!)", will_it_rain) if did_rain_value: mm = st.sidebar.slider('RainFall in millimeters', value=8.5, min_value=0.5, max_value=29.5, step=0.5) else: mm = 0 data_list = [start_date] df_test_day = pd.DataFrame([data_list]) df_test_day.columns = ['date'] df_test_day['date'] = pd.to_datetime(df_test_day['date']) df_test_day2 = df_test_day.copy() day_of_week = str(df_test_day.date.dt.day_name()).split()[1] weekend = ["Saturday", "Sunday"] df_test_day["day_of_week"] = df_test_day.date.dt.day_name() df_test_day["month_name"] = df_test_day.date.dt.month_name() df_test_day["day"] = df_test_day.date.dt.day df_test_day["year"] = df_test_day.date.dt.year df_placeholder2 = df_sales.drop(columns=['total_sales']) df_placeholder2['date'] = pd.to_datetime(df_placeholder2['date']) df_test_day = df_test_day.append(df_placeholder2) df_test_day['did_rain'] = 1 if did_rain_value == True else 0 df_test_day['total_precip_mm'] = mm df_test_day['day_type_domingo'] = df_test_day['day_of_week'].apply( lambda x: 1 if x == "Sunday" else 0) df_test_day['day_type_sábado'] = df_test_day['day_of_week'].apply( lambda x: 1 if x == "Saturday" else 0) df_test_day['day_type_festivo'] = 1 if holiday_choice == "Holiday" else 0 if holiday_choice == "Normal day": if day_of_week not in weekend: df_test_day['day_type_laborable'] = 1 else: df_test_day['day_type_laborable'] = 0 elif holiday_choice == "Holiday": if day_of_week in weekend: df_test_day['day_type_sábado'] = 0 df_test_day['day_type_domingo'] = 0 else: df_test_day['day_type_laborable'] = 0 df_test_day['is_post_holiday'] = 1 if holiday_choice == "Post-Holiday" else 0 df_test_day['is_pre_holiday'] = 1 if holiday_choice == "Holiday-eve" else 0 df_test_day['average_temp'] = temp df_test_day['is_closed'] = 0 df_test_day['is_lockdown'] = 0 df_test_day['is_curfew'] = 0 df_test_day['prev_sales'] = prev_sales_value df_test_day = df_test_day.set_index('date') df_test_day['year'] = df_test_day.year.astype('category') del df_test_day['day'] df_test_day = pd.get_dummies(df_test_day, dummy_na=True) df_test_day = df_test_day.iloc[0:1] del df_test_day['month_name_nan'] del df_test_day['day_of_week_nan'] del df_test_day['year_nan'] df_test2 = df_test_day.copy() df_test2.to_csv("sampletesting.csv", index=True) res_stacked_df = predict_data(df_test2, "stacked") res_deep_df = predict_data(df_test2, "deep") df_test_day2['date'] = pd.to_datetime(df_test_day2['date']) df_test_day2['date'] = df_test_day2['date'].dt.strftime('%d/%m/%Y') df_test_day2['DeepLearn Sales'] = res_deep_df['predict'] df_test_day2['h2O Sales'] = res_stacked_df['predict'] df_test_day2['AVG Prediction'] = df_test_day2[[ 'DeepLearn Sales', 'h2O Sales']].mean(axis=1) def get_employees(x): if x < 1000: return 3 elif x >= 1000 and x < 2000: return 4 elif x >= 2000 and x < 4000: return 5 elif x >= 4000 and x < 6000: return 6 elif x >= 6000 and x < 8000: return 7 elif x >= 8000 and x < 10000: return 8 elif x >= 10000: return 10 df_test_day2['Employees Needed'] = df_test_day2['AVG Prediction'].apply( lambda x: get_employees(x)) return df_test_day2 results_df = user_input_features() # main st.text('Your Query:') st.dataframe(results_df.style.format( {'h2O Sales': '{:.2f}', 'DeepLearn Sales': '{:.2f}', 'AVG Prediction': '{:.2f}'})) st.text('Weekly Outlook') st.dataframe(df_main.style.format( {'Temperature': '{:.1f}', 'RndForest Sales': '{:.2f}', 'h2O Sales': '{:.2f}', 'DeepLearn Sales': '{:.2f}', 'AVG Prediction': '{:.2f}'})) st.text('Send Report Email:') if st.button('SEND'): email.send_email(df_main) st.write('Email sent succesfully!') # VISUALS df_graphics =
pd.read_csv('data/db_load_files/clean_data.csv')
pandas.read_csv
import pandas as pd import numpy as np import talib class Indicators(object): """ Input: Price DataFrame, Moving average/lookback period and standard deviation multiplier This function returns a dataframe with 5 columns Output: Prices, Moving Average, Upper BB, Lower BB and BB Val """ def bb(self, l_sym, df_price, time_period, st_dev_u, st_dev_l): df_bb_u = pd.DataFrame(columns=l_sym, index=df_price.index) df_bb_m = pd.DataFrame(columns=l_sym, index=df_price.index) df_bb_l = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_bb_u[sym], df_bb_m[sym], df_bb_l[sym] = talib.BBANDS(np.asarray(df_price[sym]), timeperiod=time_period, nbdevup=st_dev_u, nbdevdn=st_dev_l) except: pass return df_bb_u, df_bb_m, df_bb_l def ema(self, l_sym, df_price, time_period): df_ema = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_ema[sym] = talib.EMA(np.asarray(df_price[sym]), timeperiod=time_period) except: pass return df_ema def ma(self, l_sym, df_price, time_period): df_ma = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_ma[sym] = talib.MA(np.asarray(df_price[sym]), timeperiod=time_period) except: pass return df_ma def sma(self, l_sym, df_price, time_period): df_sma = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_sma[sym] = talib.SMA(np.asarray(df_price[sym]), timeperiod=time_period) except: pass return df_sma def adx(self, l_sym, df_high, df_low, df_close, time_period): df_adx = pd.DataFrame(columns=l_sym, index=df_high.index) for sym in l_sym: try: df_adx[sym] = talib.ADX(high=np.asarray(df_high[sym]), low=np.asarray(df_low[sym]), close=np.asarray(df_close[sym]), timeperiod = time_period) except: pass return df_adx def mom(self, l_sym, df_price, time_period): df_mom = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_mom[sym] = talib.MOM(np.asarray(df_price[sym]), timeperiod = time_period) except: pass return df_mom def atr(self, l_sym, df_high, df_low, df_close, time_period): df_atr = pd.DataFrame(columns=l_sym, index=df_high.index) for sym in l_sym: try: df_atr[sym] = talib.ATR(high=np.asarray(df_high[sym]), low=np.asarray(df_low[sym]), close=np.asarray(df_close[sym]), timeperiod=time_period) except: pass return df_atr def macd(self, l_sym, df_price, fast_period, slow_period, signal_period): df_macd = pd.DataFrame(columns=l_sym, index=df_price.index) df_macdsignal = pd.DataFrame(columns=l_sym, index=df_price.index) df_macdhist = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_macd[sym], df_macdsignal[sym], df_macdhist[sym] = talib.MACD(np.asarray(df_price[sym]), fastperiod=fast_period, slowperiod=slow_period, signalperiod=signal_period) except: pass return df_macd, df_macdsignal, df_macdhist def wavec(self, l_sym, df_three, df_four, df_five): df_ca = pd.DataFrame(columns=l_sym, index=df_three.index) df_cb =
pd.DataFrame(columns=l_sym, index=df_three.index)
pandas.DataFrame
import matplotlib.pyplot as plt import numpy as np import pandas as pd from pandas.core.accessor import AccessorProperty import pandas.plotting._core as gfx def torque_column_labels(): return [f'torque_{i}' for i in range(361)] class RevolutionPlotMethods(gfx.FramePlotMethods): polar_angles = np.arange(0, 361) / (180 / np.pi) torque_columns = torque_column_labels() def polar(self, *args, **kwargs): ax = plt.subplot(111, projection='polar') torque = self._data[self.torque_columns].mean() ax.plot(self.polar_angles, torque, *args, **kwargs) ax.set_theta_offset(np.pi/2) # ax.set_theta_direction(-1) xticks_num = 8 xticks = np.arange(0, 2*np.pi, 2 * np.pi / xticks_num) ax.set_xticks(xticks) rad_to_label = lambda i: '{}°'.format(int(i / (2 * np.pi) * 360) % 180) ax.set_xticklabels([rad_to_label(i) for i in xticks]) ax.set_yticklabels([]) return ax class RevolutionDataFrame(pd.DataFrame): @property def _constructor(self): return RevolutionDataFrame def compute_min_max_angles(self): # @TODO this method is quite memory inefficient. Row by row calculation is better torque_columns = torque_column_labels() torque_T = self.loc[:, torque_columns].transpose().reset_index(drop=True) left_max_angle = torque_T.iloc[:180].idxmax() right_max_angle = torque_T.iloc[180:].idxmax() - 180 left_min_angle = pd.concat([torque_T.iloc[:135], torque_T.iloc[315:]]).idxmin() right_min_angle = torque_T.iloc[135:315].idxmin() - 180 left_max = pd.DataFrame(left_max_angle) right_max = pd.DataFrame(right_max_angle) left_min =
pd.DataFrame(left_min_angle)
pandas.DataFrame
""" <NAME> <EMAIL> The Tree of learning bears the noblest fruit, but noble fruit tastes bad. Proceed Formally. """ # Omitted the correlative uncertainty in the calibration constant # since the TE value and Area values both are dependent on T and B """ TODO: Ship the toolsuite with a .ini so columnames can be generalized. TODO: Seperate the TE from the Enhanced routines. Condense TE error propogation """ import pandas, numpy, variablenames from scipy.stats import mode import datetime from matplotlib import pyplot as plt from matplotlib import rc plt.locator_params(axis='y', nbins=6) font = {'size': 12} rc('font', **font) def header(self, mystr): s = 7 lstr = len(mystr) +2 width = lstr+s*2+2 print("@"*width) print(str("{0:1}{2:^"+str(s)+"}{1:^"+str(lstr)+"}{2:^"+str(s)+"}{0:1}").format("@",mystr, ' '*s)) print("@"*width) def report(number, sigfigs=3): # This reports significant figures # by exploiting the exponential format # since I could not find something prebuilt. formatstring = "{0:."+str(sigfigs)+"E}" string = str(float(formatstring.format(number))) return string def deuterontepol(B,T): # Spin 1 TE Equation k = 1.38064852 * 10 ** -23 gammad_over_2pi = 6.535902311 #MHz/T h_over_2kb=2.4*10**-5 a=h_over_2kb*gammad_over_2pi x = a*B/T return 4*numpy.tanh(x)/(3+numpy.tanh(x)**2) def pBdeuterontepol(B,T): # Partial derivative for uncert propogation # default Mu is for the proton k = 1.38064852 * 10 ** -23 gammad_over_2pi = 6.535902311 #MHz/T h_over_2kb=2.4*10**-5 a=h_over_2kb*gammad_over_2pi x = a*B/T return - 4*a*(numpy.tanh(x)**2-3)*(1/numpy.cosh(x)**2)/(T**2*(numpy.tanh(x)**2+3)**2) def pTdeuterontepol(B,T): # Partial derivative for uncert propogation # default Mu is for the proton k = 1.38064852 * 10 ** -23 gammad_over_2pi = 6.535902311 #MHz/T h_over_2kb=2.4*10**-5 a=h_over_2kb*gammad_over_2pi x =a*B/T return 4*a*B*(numpy.tanh(x)**2-3)*(1/numpy.cosh(x)**2)/(T**2*(numpy.tanh(x)**2+3)**2) def tpol(b, t, mu = 1.4106067873 * 10 ** -26): # Spin 1/2 TE Equation k = 1.38064852 * 10 ** -23 x = mu * b / (k * t) return numpy.tanh(x) def pBtpol(b, t, mu = 1.4106067873 * 10 ** -26): # Partial derivative for uncert propogation # default Mu is for the proton k = 1.38064852 * 10 ** -23 x = mu * b / (k * t) return - mu/(k*t)*1/(numpy.cosh(x))**2 def pTtpol(b, t, mu = 1.4106067873 * 10 ** -26): # Partial derivative for uncert propogation # default Mu is for the proton k = 1.38064852 * 10 ** -23 x = mu * b / (k * t) return - mu*b/(k*t**2)*1/(numpy.cosh(x))**2 def collator(datapath, te=False, constant=1, home=None, deuteron=False, to_save = [], title=None, enforce_T3=False, enforce_VP=False, prevanalized=None, N=1): plt.clf() if prevanalized is None: # Prevanalized is a toggleable function that allows # for a tertiary analysis on a dataset that has # already been analyzed by the global_interpreter # # this section is for a first, fresh dataset analysis. pltsave = "Enhanced_Results" if not te else "TE_Results" pltsave = title if title is not None else pltsave with open(datapath, 'r') as f: df = pandas.read_csv(f) df[variablenames.gi_time] = pandas.to_datetime(df[variablenames.gi_time], format="%Y-%m-%d %H:%M:%S") df = df.sort_values(by=variablenames.gi_time) mhz_to_b = 42.58 if not deuteron else 6.536 # Pull out the data needed to do the analysis from our file. if not deuteron: y1 = df[variablenames.gi_centroidlabel].values.astype(float) y1b = df[variablenames.gi_centroidlabel].values.astype(float)/mhz_to_b y3 = df[variablenames.gi_lorentzianarea].values.astype(float) y3a = df[variablenames.gi_dataarea].values.astype(float) relative_error = df[variablenames.gi_relchisq].values.astype(float) try: vpy = df[variablenames.gi_secondary_thermistor].values.astype(float) t3y = df[variablenames.gi_primary_thermistor].values.astype(float) except ValueError as e: if te: try: vpy = df[variablenames.gi_secondary_thermistor].values.astype(float) except: print("\n***ERROR: Backup to secondary thermistor failed") print("ADVISORY: Setting secondary temperatures to 1K, hoping for the best\n") vpy = numpy.array([1 for i in range(len(df[variablenames.gi_time]))]) try: t3y = df[variablenames.gi_primary_thermistor].values.astype(float) except: print("\n***ERROR: Backup to secondary thermistor failed") print("ADVISORY: Setting secondary temperatures to 1K, hoping for the best\n") t3y = numpy.array([1 for i in range(len(df[variablenames.gi_time]))]) #If you got here, then you're missing some critical thermometry data # in a global analysis csv. else: print(e) print("WARNING: Using", variablenames.gi_secondary_thermistor, "as failsafe.") try: vpy = df[variablenames.gi_secondary_thermistor].values.astype(float) t3y = df[variablenames.gi_primary_thermistor].values.astype(float) except: print("\n***ERROR: Backup to the backup temperature failed") print("ADVISORY: Setting all temperatures to 1K, hoping for the best\n") t3y = numpy.array([1 for i in range(len(df[variablenames.gi_time]))]) vpy=t3y sweep_centroids = df[variablenames.gi_centroid].values.astype(float) sweep_width = df[variablenames.gi_width].values.astype(float) teval = df[variablenames.gi_TE].values.astype(float) # unscaled else: # Prevanalized is a toggleable function that allows # for a tertiary analysis on a dataset that has # already been analyzed by the global_interpreter # # This is the portion for the tertiary analysis with open(prevanalized, 'r') as f: df = pandas.read_csv(f) df[variablenames.gi_time] =
pandas.to_datetime(df[variablenames.gi_time], format="%Y-%m-%d %H:%M:%S")
pandas.to_datetime
import pandas as pd from pprint import pprint from jellyfish import jaro_distance import unidecode from _Classes.PyscopusModified import ScopusModified from _Classes.Author import Author from _Classes.Individuals import Student, Egress from _Classes.Indicators import Indicators from _Funções_e_Valores.verify_authors import search_authors_list, treat_exceptions from _Funções_e_Valores._exceptions import scopus_articles_exceptions from _Funções_e_Valores.values import quadrennium, FILE, HAS_EVENTS, FULL_PERIOD_AUTHORS, REQUEST_SCOPUS_DATA, EGRESS, SCOPUS_APIKEY class Data(): def __init__(self, professors, egress, students, qualis_2016, qualis_2020, qualis_2016_events, qualis_2020_events): super(Data, self).__init__() self.professors = professors self.egress = egress self.students = students self.qualis_2016 = qualis_2016 self.qualis_2020 = qualis_2020 self.qualis_2016_events = qualis_2016_events self.qualis_2020_events = qualis_2020_events self.exceptions = {'Nome Trabalho':[], 'Nome Evento Cadastrado':[], 'Nome Evento Canônico':[]} # For the exceptions sheet from the excel file self.reports = {'Author':[], 'Report':[]} # Reports by author self.authors_dict = {"Author":[], "A/E":[]} # Dictionary of authors (Professors, Students and Egress) columns = [] for year in quadrennium: if year not in columns: columns.append(year) for col in columns: self.authors_dict[f"20{col}"] = [] self.art_prof = pd.DataFrame() # Articles by professor self.authors_average = [] # List with the "average number of authors per article" of each professor self.irestritos_2016 = {'Total com trava':None, 'Total sem trava':None, 'Anais com trava':None, 'Anais sem trava':None, 'Periódicos':None} self.igerais_2016 = {'Total com trava':None, 'Total sem trava':None, 'Anais com trava':None, 'Anais sem trava':None, 'Periódicos':None} self.authors_indicators_2016 = [] # Indicators of each professor qualis 2016 self.authors_indicators_2019 = [] # Indicators of each professor qualis 2019 self.general_indicators_2016 = [] # Indicators for all professors together qualis 2016 self.general_indicators_2019 = [] # Indicators for all professors together qualis 2019 self.authors_indicators_2016_journals = [] # Indicators of each professor qualis 2016 (Journals) self.authors_indicators_2019_journals = [] # Indicators of each professor qualis 2019 (Journals) self.general_indicators_2016_journals = [] # Indicators for all professors together qualis 2016 (Journals) self.general_indicators_2019_journals = [] # Indicators for all professors together qualis 2019 (Journals) self.authors_indicators_2016_proceedings = [] # Indicators of each professor qualis 2016 (Proceedings) self.authors_indicators_2019_proceedings = [] # Indicators of each professor qualis 2019 (Proceedings) self.general_indicators_2016_proceedings = [] # Indicators for all professors together qualis 2016 (Proceedings) self.general_indicators_2019_proceedings = [] # Indicators for all professors together qualis 2019 (Proceedings) self.journals_a1_a4_2019 = None self.journals_a1_a4_SE_2019 = None self.journals_a1_a4_2016 = None self.journals_a1_a4_SE_2016 = None self.journal_metrics_2019 = None self.journal_metrics_2016 = None self.proceedings_metrics_2019 = None self.proceedings_metrics_2016 = None def treat_data(self): # Get the list of egress and students with their names and active-period egress = Egress(self.egress, quadrennium) self.egress_list = egress.get_egress_list() students = Student(self.students, quadrennium) self.students_list = students.get_students_list() if HAS_EVENTS == True: # Lowercase events for pos, i in enumerate(self.qualis_2016_events['Nome Padrão']): self.qualis_2016_events['Nome Padrão'][pos] = str(self.qualis_2016_events['Nome Padrão'][pos]).lower() for pos, i in enumerate(self.qualis_2020_events['Nome Padrão']): self.qualis_2020_events['Nome Padrão'][pos] = str(self.qualis_2020_events['Nome Padrão'][pos]).lower() # Remove "-" from ISSN for i in range(len(self.qualis_2016["ISSN"])): self.qualis_2016["ISSN"][i] = self.qualis_2016["ISSN"][i].replace("-", "") for i in range(len(self.qualis_2020["ISSN"])): self.qualis_2020["ISSN"][i] = self.qualis_2020["ISSN"][i].replace("-", "") def get_author_period(self, pos): if FULL_PERIOD_AUTHORS == True: period = {} for year in quadrennium: period[year] = True else: period = {} for year in quadrennium: period[year] = False if EGRESS == True: start = str(self.professors['Ingresso'][pos])[7:] start = start.replace('-', '') end = quadrennium[-1] # There's no limit else: if FILE == "UFSC 2017-2020": start = str(self.professors["Início do Vínculo"][pos])[2:4] else: start = str(self.professors["Início do Vínculo"][pos])[8:] end = str(self.professors["Fim do Vínculo"][pos]) if end == "-": end = quadrennium[-1] else: if FILE == "UFSC 2017-2020": end = str(self.professors["Fim do Vínculo"][pos])[2:4] else: end = str(self.professors["Fim do Vínculo"][pos])[8:] if int(end) > int(quadrennium[-1]): end = quadrennium[-1] start_position = None end_position = None for pos, key in enumerate(period.keys()): # For each year of the quadrennium if pos == 0 and int(start) < int(quadrennium[0]): # If the start year is lower than the first year of the quadrennium start = quadrennium[0] if key == start: start_position = pos # The position of the start year on the quadrennium if key == end: end_position = pos # The position of the end year on the quadrennium for pos, key in enumerate(period.keys()): if int(end) >= int(quadrennium[0]): if pos >= start_position and pos <= end_position: # The start year, the end year and the years in between are true period[key] = True return period def get_authors_reports(self): # Iterates through the professors for pos, professor in enumerate(self.professors["Nome"]): if str(professor) != 'nan': professor = str(professor) period = self.get_author_period(pos) # Get the period of valid publications author = Author(professor, period, self.qualis_2016, self.qualis_2020, self.qualis_2016_events, self.qualis_2020_events, self.professors, self.authors_dict["Author"]) # print(professor) # print(pd.DataFrame(author.info)) self.authors_dict["Author"] = author.authors_list # Updates the authors list self.reports['Author'].append(professor) # Adds the professor to the list of reports self.reports['Report'].append(pd.DataFrame(author.info)) # Adds the professor's report to the list of reports self.authors_average.append(author.get_authors_average()) # Adds the "average number of authors per article" to the list of averages for title in author.exceptions['Nome Trabalho']: self.exceptions['Nome Trabalho'].append(title) for event_registered in author.exceptions['Nome Evento Cadastrado']: self.exceptions['Nome Evento Cadastrado'].append(event_registered) for canon_event in author.exceptions['Nome Evento Canônico']: self.exceptions['Nome Evento Canônico'].append(canon_event) self.exceptions = pd.DataFrame(self.exceptions) def treat_names(self): # Looks for convergence between names written in different ways and replaces for the right name egress_names = [] for egress in self.egress_list: egress_names.append(treat_exceptions(egress.name.strip())) students_names = [] for student in self.students_list: students_names.append(treat_exceptions(student.name.strip())) for pos, report in enumerate(self.reports["Report"]): # df = pd.DataFrame(report) # for index, row in df.iterrows(): for index, row in report.iterrows(): for column in row.index: if "Autor" in str(column): # Goes through the authors columns if self.reports["Report"][pos][column][index] != " ": _, self.reports["Report"][pos].loc[index, column] = search_authors_list(self.authors_dict["Author"], str(self.reports["Report"][pos][column][index])) _, self.reports["Report"][pos].loc[index, column] = search_authors_list(egress_names, str(self.reports["Report"][pos][column][index])) _, self.reports["Report"][pos].loc[index, column] = search_authors_list(students_names, str(self.reports["Report"][pos][column][index])) def get_art_prof(self): for pos, report in enumerate(self.reports["Report"]): name_column = [self.reports["Author"][pos] for i in range(len(report))] # Generates a column with the name of the author for each article report_copy = report.copy() # A copy of the report report_copy.insert(loc=0, column='Nome', value=name_column) # Adds the name_column if pos == 0: self.art_prof = report_copy else: self.art_prof = pd.concat([self.art_prof, report_copy], ignore_index=True, sort=False) # Puts the reports together, in one dataframe # Replace "nan" values with " " for col in self.art_prof.columns: if "Autor" in col: for pos, i in enumerate(self.art_prof[col]): if str(i) == "NaN" or str(i) == "nan": self.art_prof.loc[pos, col] = " " def update_authors_dict(self): egress_names = [] for egress in self.egress_list: egress_names.append(treat_exceptions(egress.name.strip())) # Gets the egress' name students_names = [] for student in self.students_list: students_names.append(treat_exceptions(student.name.strip())) # Gets the student's name columns = [] for year in quadrennium: if year not in columns: columns.append(year) # Looks for egress or students and marks them with a X in the "A/E" column for author in self.authors_dict["Author"]: if author in egress_names or author in students_names: self.authors_dict["A/E"].append("X") else: self.authors_dict["A/E"].append("") for col in columns: self.authors_dict[f"20{col}"].append("") result_df = self.art_prof.apply(lambda x: x.astype(str).str.lower()).drop_duplicates(subset="Título") publications = self.art_prof.loc[result_df.index] for index, row in publications.iterrows(): for column in row.index: if "Autor" in str(column): # Goes through the authors columns for pos, author in enumerate(self.authors_dict["Author"]): if author == row[column]: year = row["Ano"] if "." in str(year): year = str(year).replace(".0", "") year = int(year) self.authors_dict[str(year)][pos] = "X" def get_indicators(self): all_publications = self.artppg.copy() indicators_2016 = Indicators(self.egress_list, self.students_list, all_publications, "CC 2016", general=True) gen_ind_2016, gen_ind_2016_journals, gen_ind_2016_proceedings = indicators_2016.get_indicators_2016() self.general_indicators_2016 = gen_ind_2016 self.general_indicators_2016_journals = gen_ind_2016_journals self.general_indicators_2016_proceedings = gen_ind_2016_proceedings self.irestritos_2016 = indicators_2016.irestritos self.igerais_2016 = indicators_2016.igerais indicators_2019 = Indicators(self.egress_list, self.students_list, all_publications, "2019", general=True) gen_ind_2019, gen_ind_2019_journals, gen_ind_2019_proceedings = indicators_2019.get_indicators_2019() self.general_indicators_2019 = gen_ind_2019 self.general_indicators_2019_journals = gen_ind_2019_journals self.general_indicators_2019_proceedings = gen_ind_2019_proceedings self.irestritos_2019 = indicators_2019.irestritos self.igerais_2019 = indicators_2019.igerais for report in self.reports["Report"]: indicators_2016 = Indicators(self.egress_list, self.students_list, report, "CC 2016") authors_ind_2016, authors_ind_2016_journals, authors_ind_2016_proceedings = indicators_2016.get_indicators_2016() self.authors_indicators_2016.append(authors_ind_2016) self.authors_indicators_2016_journals.append(authors_ind_2016_journals) self.authors_indicators_2016_proceedings.append(authors_ind_2016_proceedings) indicators_2019 = Indicators(self.egress_list, self.students_list, report, "2019") authors_ind_2019, authors_ind_2019_journals, authors_ind_2019_proceedings = indicators_2019.get_indicators_2019() self.authors_indicators_2019.append(authors_ind_2019) self.authors_indicators_2019_journals.append(authors_ind_2019_journals) self.authors_indicators_2019_proceedings.append(authors_ind_2019_proceedings) def analyze_journal_classifications(self, qualis_year): journals_a1_a4_list = [] # Journals A1-A4 journals_a1_a4_SE = [] # Journals A1-A4 with students and/or egress journals_a1_b1_list = [] # Journals A1-B1 journals_a1_b1_SE = [] # Journals A1-B1 with students and/or egress for pos, report in enumerate(self.reports["Report"]): # Separates by journal classifications journals = report.loc[report["Tipo"] == "Periódico"] # All the publications in journals journals_a1 = journals.loc[journals[f"Qualis {qualis_year}"] == "A1"] journals_a2 = journals.loc[journals[f"Qualis {qualis_year}"] == "A2"] if qualis_year == "2019": journals_a3 = journals.loc[journals[f"Qualis {qualis_year}"] == "A3"] journals_a4 = journals.loc[journals[f"Qualis {qualis_year}"] == "A4"] journals_a1_a4 = pd.concat([journals_a1, journals_a2, journals_a3, journals_a4], ignore_index=True, sort=False) # Calculates the amount of articles A1-A4 with and without students/egress amount_journals_a1_a4 = len(journals_a1_a4.index) journals_a1_a4_list.append(amount_journals_a1_a4) indicators = Indicators(self.egress_list, self.students_list, journals_a1_a4, qualis_year) amount_journals_a1_a4_SE = indicators.get_SE(journals_a1_a4) journals_a1_a4_SE.append(amount_journals_a1_a4_SE) elif qualis_year == "CC 2016": journals_b1 = journals.loc[journals[f"Qualis {qualis_year}"] == "B1"] journals_a1_b1 = pd.concat([journals_a1, journals_a2, journals_b1], ignore_index=True, sort=False) # Calculates the amount of articles A1-B1 with and without students/egress amount_journals_a1_b1 = len(journals_a1_b1.index) journals_a1_b1_list.append(amount_journals_a1_b1) indicators = Indicators(self.egress_list, self.students_list, journals_a1_b1, qualis_year) amount_journals_a1_b1_SE = indicators.get_SE(journals_a1_b1) journals_a1_b1_SE.append(amount_journals_a1_b1_SE) if qualis_year == "2019": return (journals_a1_a4_list, journals_a1_a4_SE) elif qualis_year == "CC 2016": return (journals_a1_b1_list, journals_a1_b1_SE) def analyze_journals(self): all_publications = self.artppg.copy() self.journals = all_publications.copy().loc[all_publications["Tipo"] == "Periódico"] # All the publications in journals self.journals.loc[:, 'Quantidade'] = self.journals["Nome de Publicação"].map(self.journals["Nome de Publicação"].value_counts()) # Calculates the number of times the journal appears and add that number to a column columns = ["Nome de Publicação", "ISSN/SIGLA", "Qualis CC 2016", "Qualis 2019", "Scopus 2019", "Quantidade"] # The columns we're gonna use drop_columns = [] for column in self.journals.columns: if column not in columns: drop_columns.append(column) self.journals = self.journals.drop(columns=drop_columns) self.journals = self.journals.rename(columns={"ISSN/SIGLA": "ISSN"}) self.journals = self.journals.drop_duplicates(subset="ISSN") # Drop all the duplicated journals def analyze_journal_metrics(self, qualis_year): journal_metrics =
pd.DataFrame(columns=[f"Métrica {qualis_year}", "Qtd.", "Qtd. %"])
pandas.DataFrame
from core import BasePipeline from utils import rando_name, r_squared from uuid import uuid4 import pandas as pd import numpy as np # Random Forest Regressor pipeline #############################################################################################################################################3 class RFRegressorPipeline(BasePipeline): def __init__(self, name, n_trees = 8, client = None): params = {"n_trees": n_trees,} BasePipeline.__init__(self, name, "raw_rfr", client, params) def run(self, X, Y, model): return BasePipeline.run(self, X = X, Y = Y, model = model) # Random Forest Regressor model; if pipeline == None then create a pipeline for use with this model class RFRegressor(): def __init__(self, X = None, Y = None, name = None, pipeline = None, n_trees = 8, client = None): self.client = client self.type = "raw_rfr" if X is not None and Y is not None: self.__full_init__(X, Y, name, pipeline, n_trees, client) else: self.__lazy_init__(name) def __full_init__(self, X, Y, name = None, pipeline = None, n_trees = 8, client = None): self.n_trees = n_trees if name == None: name = rando_name() # else: # todo: add feature to instantiate RFRegressor just from name # i.e. an already created model self.name = name self.X = X self.Y = Y self.pipeline = pipeline if self.pipeline == None: pipeline_name = rando_name() self.pipeline = RFRegressorPipeline(pipeline_name, n_trees, client) self.response = self.pipeline.run(X = self.X, Y = self.Y, model = self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response) # lazy loading for already persisted models def __lazy_init__(self, model_name): self.name = model_name def predict(self, point): # todo: predict class given new point extra_params = {"features": point.values.tolist()} response = self.client.call_model(model = self.name, type = self.type, method = "predict", extra_params = extra_params) try: return pd.DataFrame(response['predict']) except: raise StandardError(response) def score(self): Y_hat = self.predict(self.X) return r_squared(Y_hat, self.Y) # K Nearest Neighbors regressor pipeline class KNNRegressorPipeline(BasePipeline): def __init__(self, name, K = 5, kernel = "euclidean", algo = "auto", weights = "uniform", kernel_params = {}, client = None): params = {"k": K, "kernel": kernel, "algo": algo, "weights": weights, "kernel_params": kernel_params} BasePipeline.__init__(self, name, "raw_knn_regressor", client, params) def run(self, X, Y, model): return BasePipeline.run(self, X = X, Y = Y, model = model) class KNNRegressor(): def __init__(self, X = None, Y = None, name = None, pipeline = None, K = 5, kernel = "euclidean", algo = "auto", weights = "uniform", kernel_params = {}, client = None): self.client = client self.type = "raw_knn_regressor" if X is not None and Y is not None: self.__full_init__(X, Y, name, pipeline, K, kernel, algo, weights, kernel_params, client) else: self.__lazy_init__(name) def __full_init__(self, X, Y, name = None, pipeline = None, K = 5, kernel = "euclidean", algo = "auto", weights = "uniform", kernel_params = {}, client = None): self.X = X self.Y = Y if name == None: name = rando_name() self.name = name self.pipeline = pipeline self.K = K self.kernel = kernel self.kernel_params = kernel_params self.algo = algo self.weights = weights if self.pipeline == None: pipeline_name = rando_name() self.pipeline = KNNRegressorPipeline(pipeline_name, K, kernel, algo, weights, kernel_params, client) self.response = self.pipeline.run(X = self.X, Y = self.Y, model = self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response) # lazy loading for already persisted models def __lazy_init__(self, model_name): self.name = model_name def predict(self, point): extra_params = {"features": point.values.tolist()} response = self.client.call_model(model = self.name, type = self.type, method = "predict", extra_params = extra_params) try: return
pd.DataFrame(response['predict'])
pandas.DataFrame
# -*- coding: utf-8 -*- import demjson import pandas as pd import requests from zvt.contract import IntervalLevel from zvt.contract.recorder import FixedCycleDataRecorder from zvt.utils.time_utils import to_time_str from zvt import init_log from zvt.api.quote import generate_kdata_id from zvt.api import get_kdata from zvt.domain import Index, Etf1dKdata from zvt.recorders.consts import EASTMONEY_ETF_NET_VALUE_HEADER class ChinaETFDayKdataRecorder(FixedCycleDataRecorder): entity_provider = 'exchange' entity_schema = Index provider = 'sina' data_schema = Etf1dKdata url = 'http://money.finance.sina.com.cn/quotes_service/api/json_v2.php/CN_MarketData.getKLineData?' \ 'symbol={}{}&scale=240&&datalen={}&ma=no' def __init__(self, entity_type='index', exchanges=['sh', 'sz'], entity_ids=None, codes=None, batch_size=10, force_update=False, sleeping_time=10, default_size=2000, real_time=True, fix_duplicate_way='add', start_timestamp=None, end_timestamp=None, level=IntervalLevel.LEVEL_1DAY, kdata_use_begin_time=False, close_hour=0, close_minute=0, one_day_trading_minutes=24 * 60) -> None: super().__init__(entity_type, exchanges, entity_ids, codes, batch_size, force_update, sleeping_time, default_size, real_time, fix_duplicate_way, start_timestamp, end_timestamp, close_hour, close_minute, level, kdata_use_begin_time, one_day_trading_minutes) def get_data_map(self): return {} def generate_domain_id(self, entity, original_data): return generate_kdata_id(entity_id=entity.id, timestamp=original_data['timestamp'], level=self.level) def on_finish_entity(self, entity): kdatas = get_kdata(entity_id=entity.id, level=IntervalLevel.LEVEL_1DAY.value, order=Etf1dKdata.timestamp.asc(), return_type='domain', session=self.session, filters=[Etf1dKdata.cumulative_net_value.is_(None)]) if kdatas and len(kdatas) > 0: start = kdatas[0].timestamp end = kdatas[-1].timestamp # 从东方财富获取基金累计净值 df = self.fetch_cumulative_net_value(entity, start, end) if df is not None and not df.empty: for kdata in kdatas: if kdata.timestamp in df.index: kdata.cumulative_net_value = df.loc[kdata.timestamp, 'LJJZ'] kdata.change_pct = df.loc[kdata.timestamp, 'JZZZL'] self.session.commit() self.logger.info(f'{entity.code} - {entity.name}累计净值更新完成...') def fetch_cumulative_net_value(self, security_item, start, end) -> pd.DataFrame: query_url = 'http://api.fund.eastmoney.com/f10/lsjz?' \ 'fundCode={}&pageIndex={}&pageSize=200&startDate={}&endDate={}' page = 1 df = pd.DataFrame() while True: url = query_url.format(security_item.code, page, to_time_str(start), to_time_str(end)) response = requests.get(url, headers=EASTMONEY_ETF_NET_VALUE_HEADER) response_json = demjson.decode(response.text) response_df = pd.DataFrame(response_json['Data']['LSJZList']) # 最后一页 if response_df.empty: break response_df['FSRQ'] = pd.to_datetime(response_df['FSRQ']) response_df['JZZZL'] = pd.to_numeric(response_df['JZZZL'], errors='coerce') response_df['LJJZ'] = pd.to_numeric(response_df['LJJZ'], errors='coerce') response_df = response_df.fillna(0) response_df.set_index('FSRQ', inplace=True, drop=True) df =
pd.concat([df, response_df])
pandas.concat
import builtins from io import StringIO import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna import pandas._testing as tm import pandas.core.nanops as nanops from pandas.util import _test_decorators as td @pytest.fixture( params=[np.int32, np.int64, np.float32, np.float64], ids=["np.int32", "np.int64", "np.float32", "np.float64"], ) def numpy_dtypes_for_minmax(request): """ Fixture of numpy dtypes with min and max values used for testing cummin and cummax """ dtype = request.param min_val = ( np.iinfo(dtype).min if np.dtype(dtype).kind == "i" else np.finfo(dtype).min ) max_val = ( np.iinfo(dtype).max if np.dtype(dtype).kind == "i" else np.finfo(dtype).max ) return (dtype, min_val, max_val) @pytest.mark.parametrize("agg_func", ["any", "all"]) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize( "vals", [ ["foo", "bar", "baz"], ["foo", "", ""], ["", "", ""], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1.0, 2.0, 3.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan], ], ) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == "any": exp = False exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key")) result = getattr(df.groupby("key"), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({"nn": [11, 11, 22, 22], "ii": [1, 2, 3, 4], "ss": 4 * ["mama"]}) result = aa.groupby("nn").max() assert "ss" in result result = aa.groupby("nn").max(numeric_only=False) assert "ss" in result result = aa.groupby("nn").min() assert "ss" in result result = aa.groupby("nn").min(numeric_only=False) assert "ss" in result def test_min_date_with_nans(): # GH26321 dates = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09", "2019-05-09"]), format="%Y-%m-%d" ).dt.date df = pd.DataFrame({"a": [np.nan, "1", np.nan], "b": [0, 1, 1], "c": dates}) result = df.groupby("b", as_index=False)["c"].min()["c"] expected = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09"], name="c"), format="%Y-%m-%d" ).dt.date tm.assert_series_equal(result, expected) result = df.groupby("b")["c"].min() expected.index.name = "b" tm.assert_series_equal(result, expected) def test_intercept_builtin_sum(): s = Series([1.0, 2.0, np.nan, 3.0]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize("keys", ["jim", ["jim", "joe"]]) # Single key # Multi-key def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = f"invalid frame shape: {result.shape} (expected ({ngroups}, 3))" assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal( result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname)), ) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False) tm.assert_frame_equal(result, expected, check_dtype=False) tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)()) def test_arg_passthru(): # make sure that we are passing thru kwargs # to our agg functions # GH3668 # GH5724 df = pd.DataFrame( { "group": [1, 1, 2], "int": [1, 2, 3], "float": [4.0, 5.0, 6.0], "string": list("abc"), "category_string": pd.Series(list("abc")).astype("category"), "category_int": [7, 8, 9], "datetime": pd.date_range("20130101", periods=3), "datetimetz": pd.date_range("20130101", periods=3, tz="US/Eastern"), "timedelta": pd.timedelta_range("1 s", periods=3, freq="s"), }, columns=[ "group", "int", "float", "string", "category_string", "category_int", "datetime", "datetimetz", "timedelta", ], ) expected_columns_numeric = Index(["int", "float", "category_int"]) # mean / median expected = pd.DataFrame( { "category_int": [7.5, 9], "float": [4.5, 6.0], "timedelta": [pd.Timedelta("1.5s"), pd.Timedelta("3s")], "int": [1.5, 3], "datetime": [ pd.Timestamp("2013-01-01 12:00:00"), pd.Timestamp("2013-01-03 00:00:00"), ], "datetimetz": [ pd.Timestamp("2013-01-01 12:00:00", tz="US/Eastern"), pd.Timestamp("2013-01-03 00:00:00", tz="US/Eastern"), ], }, index=Index([1, 2], name="group"), columns=["int", "float", "category_int", "datetime", "datetimetz", "timedelta"], ) for attr in ["mean", "median"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_frame_equal(result.reindex_like(expected), expected) # TODO: min, max *should* handle # categorical (ordered) dtype expected_columns = Index( [ "int", "float", "string", "category_int", "datetime", "datetimetz", "timedelta", ] ) for attr in ["min", "max"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index( [ "int", "float", "string", "category_string", "category_int", "datetime", "datetimetz", "timedelta", ] ) for attr in ["first", "last"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "string", "category_int", "timedelta"]) result = df.groupby("group").sum() tm.assert_index_equal(result.columns, expected_columns_numeric) result = df.groupby("group").sum(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "category_int"]) for attr in ["prod", "cumprod"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) # like min, max, but don't include strings expected_columns = Index( ["int", "float", "category_int", "datetime", "datetimetz", "timedelta"] ) for attr in ["cummin", "cummax"]: result = getattr(df.groupby("group"), attr)() # GH 15561: numeric_only=False set by default like min/max tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "category_int", "timedelta"]) result = getattr(df.groupby("group"), "cumsum")() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), "cumsum")(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) def test_non_cython_api(): # GH5610 # non-cython calls should not include the grouper df = DataFrame( [[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]], columns=["A", "B", "C"] ) g = df.groupby("A") gni = df.groupby("A", as_index=False) # mad expected = DataFrame([[0], [np.nan]], columns=["B"], index=[1, 3]) expected.index.name = "A" result = g.mad() tm.assert_frame_equal(result, expected) expected = DataFrame([[1, 0.0], [3, np.nan]], columns=["A", "B"], index=[0, 1]) result = gni.mad() tm.assert_frame_equal(result, expected) # describe expected_index = pd.Index([1, 3], name="A") expected_col = pd.MultiIndex( levels=[["B"], ["count", "mean", "std", "min", "25%", "50%", "75%", "max"]], codes=[[0] * 8, list(range(8))], ) expected = pd.DataFrame( [ [1.0, 2.0, np.nan, 2.0, 2.0, 2.0, 2.0, 2.0], [0.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], ], index=expected_index, columns=expected_col, ) result = g.describe() tm.assert_frame_equal(result, expected) expected = pd.concat( [ df[df.A == 1].describe().unstack().to_frame().T, df[df.A == 3].describe().unstack().to_frame().T, ] ) expected.index = pd.Index([0, 1]) result = gni.describe() tm.assert_frame_equal(result, expected) # any expected = DataFrame( [[True, True], [False, True]], columns=["B", "C"], index=[1, 3] ) expected.index.name = "A" result = g.any() tm.assert_frame_equal(result, expected) # idxmax expected = DataFrame([[0.0], [np.nan]], columns=["B"], index=[1, 3]) expected.index.name = "A" result = g.idxmax() tm.assert_frame_equal(result, expected) def test_cython_api2(): # this takes the fast apply path # cumsum (GH5614) df = DataFrame([[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9]], columns=["A", "B", "C"]) expected = DataFrame([[2, np.nan], [np.nan, 9], [4, 9]], columns=["B", "C"]) result = df.groupby("A").cumsum() tm.assert_frame_equal(result, expected) # GH 5755 - cumsum is a transformer and should ignore as_index result = df.groupby("A", as_index=False).cumsum() tm.assert_frame_equal(result, expected) # GH 13994 result = df.groupby("A").cumsum(axis=1) expected = df.cumsum(axis=1) tm.assert_frame_equal(result, expected) result = df.groupby("A").cumprod(axis=1) expected = df.cumprod(axis=1) tm.assert_frame_equal(result, expected) def test_cython_median(): df = DataFrame(np.random.randn(1000)) df.values[::2] = np.nan labels = np.random.randint(0, 50, size=1000).astype(float) labels[::17] = np.nan result = df.groupby(labels).median() exp = df.groupby(labels).agg(nanops.nanmedian) tm.assert_frame_equal(result, exp) df = DataFrame(np.random.randn(1000, 5)) rs = df.groupby(labels).agg(np.median) xp = df.groupby(labels).median() tm.assert_frame_equal(rs, xp) def test_median_empty_bins(observed): df = pd.DataFrame(np.random.randint(0, 44, 500)) grps = range(0, 55, 5) bins = pd.cut(df[0], grps) result = df.groupby(bins, observed=observed).median() expected = df.groupby(bins, observed=observed).agg(lambda x: x.median()) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype", ["int8", "int16", "int32", "int64", "float32", "float64", "uint64"] ) @pytest.mark.parametrize( "method,data", [ ("first", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}), ("last", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}), ("min", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}), ("max", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}), ("nth", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}], "args": [1]}), ("count", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 2}], "out_type": "int64"}), ], ) def test_groupby_non_arithmetic_agg_types(dtype, method, data): # GH9311, GH6620 df = pd.DataFrame( [{"a": 1, "b": 1}, {"a": 1, "b": 2}, {"a": 2, "b": 3}, {"a": 2, "b": 4}] ) df["b"] = df.b.astype(dtype) if "args" not in data: data["args"] = [] if "out_type" in data: out_type = data["out_type"] else: out_type = dtype exp = data["df"] df_out = pd.DataFrame(exp) df_out["b"] = df_out.b.astype(out_type) df_out.set_index("a", inplace=True) grpd = df.groupby("a") t = getattr(grpd, method)(*data["args"]) tm.assert_frame_equal(t, df_out) @pytest.mark.parametrize( "i", [ ( Timestamp("2011-01-15 12:50:28.502376"), Timestamp("2011-01-20 12:50:28.593448"), ), (24650000000000001, 24650000000000002), ], ) def test_groupby_non_arithmetic_agg_int_like_precision(i): # see gh-6620, gh-9311 df = pd.DataFrame([{"a": 1, "b": i[0]}, {"a": 1, "b": i[1]}]) grp_exp = { "first": {"expected": i[0]}, "last": {"expected": i[1]}, "min": {"expected": i[0]}, "max": {"expected": i[1]}, "nth": {"expected": i[1], "args": [1]}, "count": {"expected": 2}, } for method, data in grp_exp.items(): if "args" not in data: data["args"] = [] grouped = df.groupby("a") res = getattr(grouped, method)(*data["args"]) assert res.iloc[0].b == data["expected"] @pytest.mark.parametrize( "func, values", [ ("idxmin", {"c_int": [0, 2], "c_float": [1, 3], "c_date": [1, 2]}), ("idxmax", {"c_int": [1, 3], "c_float": [0, 2], "c_date": [0, 3]}), ], ) def test_idxmin_idxmax_returns_int_types(func, values): # GH 25444 df = pd.DataFrame( { "name": ["A", "A", "B", "B"], "c_int": [1, 2, 3, 4], "c_float": [4.02, 3.03, 2.04, 1.05], "c_date": ["2019", "2018", "2016", "2017"], } ) df["c_date"] = pd.to_datetime(df["c_date"]) result = getattr(df.groupby("name"), func)() expected = pd.DataFrame(values, index=Index(["A", "B"], name="name")) tm.assert_frame_equal(result, expected) def test_fill_consistency(): # GH9221 # pass thru keyword arguments to the generated wrapper # are set if the passed kw is None (only) df = DataFrame( index=pd.MultiIndex.from_product( [["value1", "value2"], date_range("2014-01-01", "2014-01-06")] ), columns=Index(["1", "2"], name="id"), ) df["1"] = [ np.nan, 1, np.nan, np.nan, 11, np.nan, np.nan, 2, np.nan, np.nan, 22, np.nan, ] df["2"] = [ np.nan, 3, np.nan, np.nan, 33, np.nan, np.nan, 4, np.nan, np.nan, 44, np.nan, ] expected = df.groupby(level=0, axis=0).fillna(method="ffill") result = df.T.groupby(level=0, axis=1).fillna(method="ffill").T tm.assert_frame_equal(result, expected) def test_groupby_cumprod(): # GH 4095 df = pd.DataFrame({"key": ["b"] * 10, "value": 2}) actual = df.groupby("key")["value"].cumprod() expected = df.groupby("key")["value"].apply(lambda x: x.cumprod()) expected.name = "value" tm.assert_series_equal(actual, expected) df = pd.DataFrame({"key": ["b"] * 100, "value": 2}) actual = df.groupby("key")["value"].cumprod() # if overflows, groupby product casts to float # while numpy passes back invalid values df["value"] = df["value"].astype(float) expected = df.groupby("key")["value"].apply(lambda x: x.cumprod()) expected.name = "value" tm.assert_series_equal(actual, expected) def scipy_sem(*args, **kwargs): from scipy.stats import sem return sem(*args, ddof=1, **kwargs) @pytest.mark.parametrize( "op,targop", [ ("mean", np.mean), ("median", np.median), ("std", np.std), ("var", np.var), ("sum", np.sum), ("prod", np.prod), ("min", np.min), ("max", np.max), ("first", lambda x: x.iloc[0]), ("last", lambda x: x.iloc[-1]), ("count", np.size), pytest.param("sem", scipy_sem, marks=td.skip_if_no_scipy), ], ) def test_ops_general(op, targop): df = DataFrame(np.random.randn(1000)) labels = np.random.randint(0, 50, size=1000).astype(float) result = getattr(df.groupby(labels), op)().astype(float) expected = df.groupby(labels).agg(targop) tm.assert_frame_equal(result, expected) def test_max_nan_bug(): raw = """,Date,app,File -04-23,2013-04-23 00:00:00,,log080001.log -05-06,2013-05-06 00:00:00,,log.log -05-07,2013-05-07 00:00:00,OE,xlsx""" df = pd.read_csv(StringIO(raw), parse_dates=[0]) gb = df.groupby("Date") r = gb[["File"]].max() e = gb["File"].max().to_frame() tm.assert_frame_equal(r, e) assert not r["File"].isna().any() def test_nlargest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list("a" * 5 + "b" * 5)) gb = a.groupby(b) r = gb.nlargest(3) e = Series( [7, 5, 3, 10, 9, 6], index=MultiIndex.from_arrays([list("aaabbb"), [3, 2, 1, 9, 5, 8]]), ) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series( [3, 2, 1, 3, 3, 2], index=MultiIndex.from_arrays([list("aaabbb"), [2, 3, 1, 6, 5, 7]]), ) tm.assert_series_equal(gb.nlargest(3, keep="last"), e) def test_nlargest_mi_grouper(): # see gh-21411 npr = np.random.RandomState(123456789) dts = date_range("20180101", periods=10) iterables = [dts, ["one", "two"]] idx = MultiIndex.from_product(iterables, names=["first", "second"]) s = Series(npr.randn(20), index=idx) result = s.groupby("first").nlargest(1) exp_idx = MultiIndex.from_tuples( [ (dts[0], dts[0], "one"), (dts[1], dts[1], "one"), (dts[2], dts[2], "one"), (dts[3], dts[3], "two"), (dts[4], dts[4], "one"), (dts[5], dts[5], "one"), (dts[6], dts[6], "one"), (dts[7], dts[7], "one"), (dts[8], dts[8], "two"), (dts[9], dts[9], "one"), ], names=["first", "first", "second"], ) exp_values = [ 2.2129019979039612, 1.8417114045748335, 0.858963679564603, 1.3759151378258088, 0.9430284594687134, 0.5296914208183142, 0.8318045593815487, -0.8476703342910327, 0.3804446884133735, -0.8028845810770998, ] expected = Series(exp_values, index=exp_idx) tm.assert_series_equal(result, expected, check_exact=False, rtol=1e-3) def test_nsmallest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list("a" * 5 + "b" * 5)) gb = a.groupby(b) r = gb.nsmallest(3) e = Series( [1, 2, 3, 0, 4, 6], index=MultiIndex.from_arrays([list("aaabbb"), [0, 4, 1, 6, 7, 8]]), ) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series( [0, 1, 1, 0, 1, 2], index=MultiIndex.from_arrays([list("aaabbb"), [4, 1, 0, 9, 8, 7]]), ) tm.assert_series_equal(gb.nsmallest(3, keep="last"), e) @pytest.mark.parametrize("func", ["cumprod", "cumsum"]) def test_numpy_compat(func): # see gh-12811 df = pd.DataFrame({"A": [1, 2, 1], "B": [1, 2, 3]}) g = df.groupby("A") msg = "numpy operations are not valid with groupby" with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(g, func)(1, 2, 3) with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(g, func)(foo=1) def test_cummin(numpy_dtypes_for_minmax): dtype = numpy_dtypes_for_minmax[0] min_val = numpy_dtypes_for_minmax[1] # GH 15048 base_df = pd.DataFrame( {"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]} ) expected_mins = [3, 3, 3, 2, 2, 2, 2, 1] df = base_df.astype(dtype) expected = pd.DataFrame({"B": expected_mins}).astype(dtype) result = df.groupby("A").cummin() tm.assert_frame_equal(result, expected) result = df.groupby("A").B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # Test w/ min value for dtype df.loc[[2, 6], "B"] = min_val expected.loc[[2, 3, 6, 7], "B"] = min_val result = df.groupby("A").cummin() tm.assert_frame_equal(result, expected) expected = df.groupby("A").B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # Test nan in some values base_df.loc[[0, 2, 4, 6], "B"] = np.nan expected = pd.DataFrame({"B": [np.nan, 4, np.nan, 2, np.nan, 3, np.nan, 1]}) result = base_df.groupby("A").cummin() tm.assert_frame_equal(result, expected) expected = base_df.groupby("A").B.apply(lambda x: x.cummin()).to_frame()
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import os from io import BytesIO import io import csv import requests from zipfile import ZipFile from urllib.request import urlopen import pandas as pd from pathlib import Path NEO4J_IMPORT = Path(os.getenv('NEO4J_IMPORT')) print(NEO4J_IMPORT) CACHE = Path(NEO4J_IMPORT / 'cache') CACHE.mkdir(exist_ok=True) def import_countries(): country_url = 'https://download.geonames.org/export/dump/countryInfo.txt' names = ['ISO','ISO3','ISO-Numeric','fips','Country','Capital','Area(in sq km)','Population', 'Continent','tld','CurrencyCode','CurrencyName','Phone','Postal Code Format', 'Postal Code Regex','Languages','geonameid','neighbours','EquivalentFipsCode' ] countries = pd.read_csv(country_url, sep='\t',comment='#', dtype='str', names=names) # Add missing ISO code for nambia index = countries.query("ISO3 == 'NAM'").index countries.at[index, 'ISO'] = 'NA' countries['id'] = countries['ISO'] # standard id column to link nodes countries.rename(columns={'ISO': 'iso'}, inplace=True) countries.rename(columns={'ISO3': 'iso3'}, inplace=True) countries.rename(columns={'ISO-Numeric': 'isoNumeric'}, inplace=True) countries.rename(columns={'Country': 'name'}, inplace=True) countries.rename(columns={'Population': 'population'}, inplace=True) countries.rename(columns={'Area(in sq km)': 'areaSqKm'}, inplace=True) countries.rename(columns={'geonameid': 'geonameId'}, inplace=True) countries.rename(columns={'Continent': 'parentId'}, inplace=True) countries = countries[['id','name','iso','iso3','isoNumeric', 'parentId', 'areaSqKm','geonameId', 'neighbours']].copy() countries.fillna('', inplace=True) countries.to_csv(NEO4J_IMPORT / "00e-GeoNamesCountry.csv", index=False) def import_admin1(): admin1_url = 'https://download.geonames.org/export/dump/admin1CodesASCII.txt' names = ['code', 'name', 'name_ascii', 'geonameid'] admin1 = pd.read_csv(admin1_url, sep='\t', dtype='str', names=names) admin1 = admin1[['code', 'name_ascii', 'geonameid']] admin1.rename(columns={'code': 'id'}, inplace=True) # standard id column to link nodes admin1.rename(columns={'name_ascii': 'name'}, inplace=True) admin1.rename(columns={'geonameid': 'geonameId'}, inplace=True) admin1['code'] = admin1['id'].str.split('.', expand=True)[1] admin1['parentId'] = admin1['id'].str.split('.', expand=True)[0] admin1['name'] = admin1['name'].str.replace('Washington, D.C.', 'District of Columbia') admin1 = admin1[['id','name','code','parentId', 'geonameId']] admin1.fillna('', inplace=True) admin1.to_csv(NEO4J_IMPORT / "00f-GeoNamesAdmin1.csv", index=False) def import_admin2(): admin2_url = 'https://download.geonames.org/export/dump/admin2Codes.txt' names = ['code', 'name', 'name_ascii', 'geonameid'] admin2 = pd.read_csv(admin2_url, sep='\t', dtype='str', names=names) admin2 = admin2[['code', 'name_ascii', 'geonameid']] admin2.rename(columns={'code': 'id'}, inplace=True) # standard id column to link nodes admin2.rename(columns={'name_ascii': 'name'}, inplace=True) admin2.rename(columns={'geonameid': 'geonameId'}, inplace=True) admin2['parentId'] = admin2['id'].str.rsplit('.', 1, expand=True)[0] admin2.loc[admin2['id'] == 'US.DC.001', 'name'] = 'District of Columbia' admin2.loc[admin2['id'] == 'US.CA.075', 'name'] = '<NAME>' admin2.to_csv(NEO4J_IMPORT / "00g-GeoNamesAdmin2.csv", index=False) def get_location_id(country, admin1, admin2): location = country if admin1 != '': location = location + '.' + admin1 if admin2 != '': location = location + '.' + admin2 return location def import_cities(): urls = ['https://download.geonames.org/export/dump/cities15000.zip', 'https://download.geonames.org/export/dump/cities5000.zip', 'https://download.geonames.org/export/dump/cities1000.zip', 'https://download.geonames.org/export/dump/cities500.zip'] names = [ 'geonameid','name','asciiname','alternatenames','latitude','longitude','feature class', 'feature code','country code','cc2','admin1 code','admin2 code','admin3 code','admin4 code', 'population','elevation','dem','timezone','modification date' ] dfs = [] for url in urls: file_name = url.split('/')[-1].split('.')[0] + '.txt' resp = urlopen(url) zipfile = ZipFile(BytesIO(resp.read())) city_df = pd.read_csv(zipfile.open(file_name), sep="\t", low_memory=False, names=names) dfs.append(city_df) city = pd.concat(dfs) city = city[['geonameid', 'asciiname', 'country code', 'admin1 code', 'admin2 code']] city.fillna('', inplace=True) city.drop_duplicates('geonameid', inplace=True) city.rename(columns={'geonameid': 'geonameId'}, inplace=True) city['id'] = city['geonameId'] city.rename(columns={'asciiname': 'name'}, inplace=True) city['parentId'] = city.apply(lambda row: get_location_id(row['country code'], row['admin1 code'], row['admin2 code']), axis=1) city = city[['id', 'name', 'parentId', 'geonameId']] city.fillna('', inplace=True) city.to_csv(NEO4J_IMPORT / "00h-GeoNamesCity.csv", index=False) def import_UNRegions(): url = "https://unstats.un.org/unsd/methodology/m49/overview" df = pd.read_html(url, attrs={"id": "downloadTableEN"})[0] df.rename(columns={ "Region Name": "UNRegion", "Region Code": "UNRegionCode", "Sub-region Name": "UNSubRegion", "Sub-region Code": "UNSubRegionCode", "Intermediate Region Name": "UNIntermediateRegion", "Intermediate Region Code": "UNIntermediateRegionCode", "ISO-alpha3 Code": "iso3", }, inplace=True) additions = pd.read_csv("/home/pseudo/Coding/GeoGraph/reference_data/UNRegionAdditions.csv") additions.fillna('', inplace=True) df = df.append(additions) df = df.fillna("").astype(str) df['UNRegionCode'] = 'm49:' + df['UNRegionCode'] df['UNSubRegionCode'] = 'm49:' + df['UNSubRegionCode'] df['UNIntermediateRegionCode'] = 'm49:' + df['UNIntermediateRegionCode'] # Export All df.to_csv(NEO4J_IMPORT / "00k-UNAll.csv", index=False) # Export Intermediate Regions intermediateRegion = df[df['UNIntermediateRegion'] != ''] intermediateRegion.to_csv(NEO4J_IMPORT / "00k-UNIntermediateRegion.csv", index=False) # Export Sub-regions subRegion = df[(df['UNSubRegion'] != '') & (df['UNIntermediateRegion'] == '')] subRegion.to_csv(NEO4J_IMPORT / "00k-UNSubRegion.csv", index=False) # Export last region = df[(df['UNSubRegion'] == '') & (df['UNIntermediateRegion'] == '')] region.to_csv(NEO4J_IMPORT / "00k-UNRegion.csv", index=False) def add_data(): """ adds latitude, longitude, elevation, and population data from GeoNames to Country, Admin1, Admin2, and City .csv files for ingestion into the Knowledge Graph """ country_url = 'https://download.geonames.org/export/dump/allCountries.zip' content = requests.get(country_url) zf = ZipFile(BytesIO(content.content)) for item in zf.namelist(): print("File in zip: "+ item) # Intermediate data cached here encoding = 'utf-8' path = CACHE / 'allCountries.csv' try: with zf.open('allCountries.txt') as readfile: with open(path, "w") as file_out: writer = csv.writer(file_out) for line in io.TextIOWrapper(readfile, encoding): row = line.strip().split("\t") if row[6] == 'A' or row[6] == 'P': writer.writerow([row[0], row[4], row[5], row[14], row[15]]) except: print('Download of allCountries.txt failed, using cached version of data') columns = ['geonameId', 'latitude', 'longitude', 'population', 'elevation'] # If data download failed cached file from past run is used df = pd.read_csv(path, names=columns, dtype='str', header=0) df.fillna('', inplace=True) df['population'] = df['population'].str.replace('0', '') dfc = df[['geonameId', 'latitude', 'longitude', 'population']] country = pd.read_csv(NEO4J_IMPORT / "00e-GeoNamesCountry.csv", dtype='str') country = pd.merge(country, dfc, on='geonameId', how='left') country.fillna('', inplace=True) # reset the id and iso code for Namibi. index = country.query("iso3 == 'NAM'").index country.at[index, 'iso'] = 'NA' country.at[index, 'id'] = 'NA' country.to_csv(NEO4J_IMPORT / "00e-GeoNamesCountry.csv", index=False) # Add data to admin1 csv admin1 = pd.read_csv(NEO4J_IMPORT / "00f-GeoNamesAdmin1.csv", dtype='str') admin1 = pd.merge(admin1, df, on='geonameId', how='left') admin1.fillna('', inplace=True) admin1.to_csv(NEO4J_IMPORT / "00f-GeoNamesAdmin1.csv", index=False) # Add data for admin2 csv admin2 = pd.read_csv(NEO4J_IMPORT / "00g-GeoNamesAdmin2.csv", dtype='str') admin2 = pd.merge(admin2, df, on='geonameId', how='left') admin2.fillna('', inplace=True) admin2.to_csv(NEO4J_IMPORT / "00g-GeoNamesAdmin2.csv", index=False) # Add data for cities csv city = pd.read_csv(NEO4J_IMPORT / "00h-GeoNamesCity.csv", dtype='str') city =
pd.merge(city, df, on='geonameId', how='left')
pandas.merge
import builtins import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, Series, isna, ) import pandas._testing as tm @pytest.mark.parametrize("agg_func", ["any", "all"]) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize( "vals", [ ["foo", "bar", "baz"], ["foo", "", ""], ["", "", ""], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1.0, 2.0, 3.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan], ], ) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == "any": exp = False exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key")) result = getattr(df.groupby("key"), agg_func)(skipna=skipna)
tm.assert_frame_equal(result, exp_df)
pandas._testing.assert_frame_equal
import os import pandas as pd import pytest from pandas.testing import assert_frame_equal from .. import read_sql @pytest.fixture(scope="module") # type: ignore def mssql_url() -> str: conn = os.environ["MSSQL_URL"] return conn @pytest.mark.xfail def test_on_non_select(mssql_url: str) -> None: query = "CREATE TABLE non_select(id INTEGER NOT NULL)" df = read_sql(mssql_url, query) def test_aggregation(mssql_url: str) -> None: query = ( "SELECT test_bool, SUM(test_float) as sum FROM test_table GROUP BY test_bool" ) df = read_sql(mssql_url, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), "sum": pd.Series([10.9, 5.2, -10.0], dtype="float64"), }, ) assert_frame_equal(df, expected, check_names=True) def test_partition_on_aggregation(mssql_url: str) -> None: query = ( "SELECT test_bool, SUM(test_int) AS test_int FROM test_table GROUP BY test_bool" ) df = read_sql(mssql_url, query, partition_on="test_int", partition_num=2) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), "test_int": pd.Series([4, 5, 1315], dtype="Int64"), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_aggregation2(mssql_url: str) -> None: query = "select DISTINCT(test_bool) from test_table" df = read_sql(mssql_url, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), }, ) assert_frame_equal(df, expected, check_names=True) def test_partition_on_aggregation2(mssql_url: str) -> None: query = "select MAX(test_int) as max, MIN(test_int) as min from test_table" df = read_sql(mssql_url, query, partition_on="max", partition_num=2) expected = pd.DataFrame( index=range(1), data={ "max": pd.Series([1314], dtype="Int64"), "min": pd.Series([0], dtype="Int64"), }, ) assert_frame_equal(df, expected, check_names=True) def test_udf(mssql_url: str) -> None: query = ( "SELECT dbo.increment(test_int) AS test_int FROM test_table ORDER BY test_int" ) df = read_sql(mssql_url, query, partition_on="test_int", partition_num=2) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 3, 4, 5, 1315], dtype="Int64"), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_manual_partition(mssql_url: str) -> None: queries = [ "SELECT * FROM test_table WHERE test_int < 2", "SELECT * FROM test_table WHERE test_int >= 2", ] df = read_sql(mssql_url, query=queries) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([0, 1, 2, 3, 4, 1314], dtype="int64"), "test_nullint": pd.Series([5, 3, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["a", "str1", "str2", "b", "c", None], dtype="object" ), "test_float": pd.Series([3.1, None, 2.2, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [None, True, False, False, None, True], dtype="boolean" ), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_without_partition(mssql_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql(mssql_url, query) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="int64"), "test_nullint": pd.Series([3, None, 5, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "str2", "a", "b", "c", None], dtype="object" ), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, False, None, False, None, True], dtype="boolean" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_mssql_limit_without_partition(mssql_url: str) -> None: query = "SELECT top 3 * FROM test_table" df = read_sql(mssql_url, query) expected = pd.DataFrame( index=range(3), data={ "test_int": pd.Series([1, 2, 0], dtype="int64"), "test_nullint": pd.Series([3, None, 5], dtype="Int64"), "test_str": pd.Series(["str1", "str2", "a"], dtype="object"), "test_float": pd.Series([None, 2.2, 3.1], dtype="float64"), "test_bool": pd.Series([True, False, None], dtype="boolean"), }, ) assert_frame_equal(df, expected, check_names=True) def test_mssql_limit_large_without_partition(mssql_url: str) -> None: query = "SELECT top 10 * FROM test_table" df = read_sql(mssql_url, query) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="int64"), "test_nullint": pd.Series([3, None, 5, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "str2", "a", "b", "c", None], dtype="object" ), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, False, None, False, None, True], dtype="boolean" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_mssql_with_partition(mssql_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql( mssql_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([0, 1, 2, 3, 4, 1314], dtype="int64"), "test_nullint": pd.Series([5, 3, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["a", "str1", "str2", "b", "c", None], dtype="object" ), "test_float": pd.Series([3.1, None, 2.2, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [None, True, False, False, None, True], dtype="boolean" ), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_limit_with_partition(mssql_url: str) -> None: query = "SELECT top 3 * FROM test_table" df = read_sql( mssql_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(3), data={ "test_int": pd.Series([0, 1, 2], dtype="int64"), "test_nullint": pd.Series([5, 3, None], dtype="Int64"), "test_str": pd.Series(["a", "str1", "str2"], dtype="object"), "test_float": pd.Series([3.1, None, 2.20], dtype="float64"), "test_bool": pd.Series([None, True, False], dtype="boolean"), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_limit_large_with_partition(mssql_url: str) -> None: query = "SELECT top 10 * FROM test_table" df = read_sql( mssql_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([0, 1, 2, 3, 4, 1314], dtype="int64"), "test_nullint": pd.Series([5, 3, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["a", "str1", "str2", "b", "c", None], dtype="object" ), "test_float": pd.Series([3.1, None, 2.2, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [None, True, False, False, None, True], dtype="boolean" ), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_with_partition_without_partition_range(mssql_url: str) -> None: query = "SELECT * FROM test_table where test_float > 3" df = read_sql( mssql_url, query, partition_on="test_int", partition_num=3, ) expected = pd.DataFrame( index=range(2), data={ "test_int": pd.Series([0, 4], dtype="int64"), "test_nullint": pd.Series([5, 9], dtype="Int64"), "test_str": pd.Series(["a", "c"], dtype="object"), "test_float": pd.Series([3.1, 7.8], dtype="float64"), "test_bool": pd.Series([None, None], dtype="boolean"), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_with_partition_and_selection(mssql_url: str) -> None: query = "SELECT * FROM test_table WHERE 1 = 3 OR 2 = 2" df = read_sql( mssql_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([0, 1, 2, 3, 4, 1314], dtype="int64"), "test_nullint": pd.Series([5, 3, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["a", "str1", "str2", "b", "c", None], dtype="object" ), "test_float": pd.Series([3.1, None, 2.2, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [None, True, False, False, None, True], dtype="boolean" ), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_with_partition_and_projection(mssql_url: str) -> None: query = "SELECT test_int, test_float, test_str FROM test_table" df = read_sql( mssql_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([0, 1, 2, 3, 4, 1314], dtype="int64"), "test_float": pd.Series([3.1, None, 2.2, 3, 7.8, -10], dtype="float64"), "test_str": pd.Series( ["a", "str1", "str2", "b", "c", None], dtype="object" ), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_with_partition_and_spja(mssql_url: str) -> None: query = """ SELECT test_bool, AVG(test_float) AS avg, SUM(test_int) AS sum FROM test_table AS a, test_str AS b WHERE a.test_int = b.id AND test_nullint IS NOT NULL GROUP BY test_bool ORDER BY sum """ df = read_sql(mssql_url, query, partition_on="sum", partition_num=2) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([True, False, None], dtype="boolean"), "avg": pd.Series([None, 3, 5.45], dtype="float64"), "sum": pd.Series([1, 3, 4], dtype="Int64"), }, ) df = df.sort_values("sum").reset_index(drop=True) assert_frame_equal(df, expected, check_names=True) def test_empty_result(mssql_url: str) -> None: query = "SELECT * FROM test_table where test_int < -100" df = read_sql(mssql_url, query) expected = pd.DataFrame( data={ "test_int": pd.Series([], dtype="int64"), "test_nullint": pd.Series([], dtype="Int64"), "test_str": pd.Series([], dtype="object"), "test_float": pd.Series([], dtype="float64"), "test_bool": pd.Series([], dtype="boolean"), } ) assert_frame_equal(df, expected, check_names=True) def test_empty_result_on_partition(mssql_url: str) -> None: query = "SELECT * FROM test_table where test_int < -100" df = read_sql(mssql_url, query, partition_on="test_int", partition_num=3) expected = pd.DataFrame( data={ "test_int": pd.Series([], dtype="int64"), "test_nullint": pd.Series([], dtype="Int64"), "test_str": pd.Series([], dtype="object"), "test_float": pd.Series([], dtype="float64"), "test_bool": pd.Series([], dtype="boolean"), } ) assert_frame_equal(df, expected, check_names=True) def test_empty_result_on_some_partition(mssql_url: str) -> None: query = "SELECT * FROM test_table where test_int < 1" df = read_sql(mssql_url, query, partition_on="test_int", partition_num=3) expected = pd.DataFrame( data={ "test_int": pd.Series([0], dtype="int64"), "test_nullint": pd.Series([5], dtype="Int64"), "test_str": pd.Series(["a"], dtype="object"), "test_float": pd.Series([3.1], dtype="float"), "test_bool":
pd.Series([None], dtype="boolean")
pandas.Series
from pathlib import Path import numpy as np import pandas as pd import pytest from pandas.testing import assert_series_equal from src.contact_models.contact_model_functions import _draw_nr_of_contacts from src.contact_models.contact_model_functions import _draw_potential_vacation_contacts from src.contact_models.contact_model_functions import ( _identify_ppl_affected_by_vacation, ) from src.contact_models.contact_model_functions import ( calculate_non_recurrent_contacts_from_empirical_distribution, ) from src.contact_models.contact_model_functions import go_to_daily_work_meeting from src.contact_models.contact_model_functions import go_to_weekly_meeting from src.contact_models.contact_model_functions import meet_daily_other_contacts from src.contact_models.contact_model_functions import reduce_contacts_on_condition from src.shared import draw_groups @pytest.fixture def params(): params = pd.DataFrame() params["category"] = ["work_non_recurrent"] * 2 + ["other_non_recurrent"] * 2 params["subcategory"] = [ "symptomatic_multiplier", "positive_test_multiplier", ] * 2 params["name"] = ["symptomatic_multiplier", "positive_test_multiplier"] * 2 params["value"] = [0.0, 0.0, 0.0, 0.0] params.set_index(["category", "subcategory", "name"], inplace=True) return params @pytest.fixture def states(): """states DataFrame for testing purposes. Columns: - date: 2020-04-01 - 2020-04-30 - id: 50 individuals, with 30 observations each. id goes from 0 to 49. - immune: bool - infectious: bool - age_group: ordered Categorical, either 10-19 or 40-49. - region: unordered Categorical, ['Overtjssel', 'Drenthe', 'Gelderland'] - n_has_infected: int, 0 to 3. - cd_infectious_false: int, -66 to 8. - occupation: Categorical. "working" or "in school". - cd_symptoms_false: int, positive for the first 20 individuals, negative after. """ this_modules_path = Path(__file__).resolve() states = pd.read_parquet(this_modules_path.parent / "1.parquet") old_to_new = {old: i for i, old in enumerate(sorted(states["id"].unique()))} states["id"].replace(old_to_new, inplace=True) states["age_group"] = pd.Categorical( states["age_group"], ["10 - 19", "40 - 49"], ordered=True ) states["age_group"] = states["age_group"].cat.rename_categories( {"10 - 19": "10-19", "40 - 49": "40-49"} ) states["region"] = pd.Categorical( states["region"], ["Overtjssel", "Drenthe", "Gelderland"], ordered=False ) states["date"] = pd.to_datetime(states["date"], format="%Y-%m-%d", unit="D") states["n_has_infected"] = states["n_has_infected"].astype(int) states["cd_infectious_false"] = states["cd_infectious_false"].astype(int) states["occupation"] = states["age_group"].replace( {"10-19": "in school", "40-49": "working"} ) states["cd_symptoms_false"] = list(range(1, 21)) + list(range(-len(states), -20)) states["symptomatic"] = states["cd_symptoms_false"] >= 0 states["knows_infectious"] = False states["knows_immune"] = False states["cd_received_test_result_true"] = -100 states["knows_currently_infected"] = states.eval( "knows_infectious | (knows_immune & symptomatic) " "| (knows_immune & (cd_received_test_result_true >= -13))" ) states["quarantine_compliance"] = 1.0 return states @pytest.fixture def a_thursday(states): a_thursday = states[states["date"] == "2020-04-30"].copy() a_thursday["cd_symptoms_false"] = list(range(1, 21)) + list( range(-len(a_thursday), -20) ) a_thursday["symptomatic"] = a_thursday["cd_symptoms_false"] >= 0 a_thursday["work_recurrent_weekly"] = draw_groups( df=a_thursday, query="occupation == 'working'", assort_bys=["region"], n_per_group=20, seed=484, ) return a_thursday @pytest.fixture def no_reduction_params(): params = pd.DataFrame() params["subcategory"] = ["symptomatic_multiplier", "positive_test_multiplier"] params["name"] = params["subcategory"] params["value"] = 1.0 params = params.set_index(["subcategory", "name"]) return params # ---------------------------------------------------------------------------- def test_go_to_weekly_meeting_wrong_day(a_thursday): a_thursday["group_col"] = [1, 2, 1, 2, 3, 3, 3] + [-1] * (len(a_thursday) - 7) contact_params = pd.DataFrame() group_col_name = "group_col" day_of_week = "Saturday" seed = 3931 res = go_to_weekly_meeting( a_thursday, contact_params, group_col_name, day_of_week, seed ) expected = pd.Series(False, index=a_thursday.index) assert_series_equal(res, expected, check_names=False) def test_go_to_weekly_meeting_right_day(a_thursday, no_reduction_params): a_thursday["group_col"] = [1, 2, 1, 2, 3, 3, 3] + [-1] * (len(a_thursday) - 7) res = go_to_weekly_meeting( states=a_thursday, params=no_reduction_params, group_col_name="group_col", day_of_week="Thursday", seed=3931, ) expected = pd.Series(False, index=a_thursday.index) expected[:7] = True assert_series_equal(res, expected, check_names=False) def test_go_to_daily_work_meeting_weekend(states, no_reduction_params): a_saturday = states[states["date"] == pd.Timestamp("2020-04-04")].copy() a_saturday["work_saturday"] = [True, True] + [False] * (len(a_saturday) - 2) a_saturday["work_daily_group_id"] = 333 res = go_to_daily_work_meeting(a_saturday, no_reduction_params, seed=None) expected = pd.Series(False, index=a_saturday.index) expected[:2] = True assert_series_equal(res, expected, check_names=False) def test_go_to_daily_work_meeting_weekday(a_thursday, no_reduction_params): a_thursday["work_daily_group_id"] = [1, 2, 1, 2, 3, 3, 3] + [-1] * ( len(a_thursday) - 7 ) res = go_to_daily_work_meeting(a_thursday, no_reduction_params, seed=None) expected = pd.Series(False, index=a_thursday.index) # not every one we assigned a group id is a worker expected.iloc[:7] = [True, True, False, True, True, False, True] assert_series_equal(res, expected, check_names=False) def test_go_to_daily_work_meeting_weekday_with_reduction( a_thursday, no_reduction_params ): reduction_params = no_reduction_params reduction_params["value"] = 0.0 a_thursday["work_daily_group_id"] = [1, 2, 1, 2, 3, 3, 3, 3, 3] + [-1] * ( len(a_thursday) - 9 ) a_thursday.loc[1450:1458, "symptomatic"] = [ False, False, False, False, True, False, False, False, False, ] res = go_to_daily_work_meeting(a_thursday, no_reduction_params, seed=None) expected = pd.Series(False, index=a_thursday.index) # not every one we assigned a group id is a worker expected[:9] = [True, True, False, True, False, False, True, False, True] assert_series_equal(res, expected, check_names=False) # --------------------------- Non Recurrent Contact Models --------------------------- def test_non_recurrent_work_contacts_weekend(states, params): a_saturday = states[states["date"] == pd.Timestamp("2020-04-04")] res = calculate_non_recurrent_contacts_from_empirical_distribution( states=a_saturday, params=params.loc["work_non_recurrent"], on_weekends=False, query="occupation == 'working'", seed=494, ) assert_series_equal(res, pd.Series(data=0, index=a_saturday.index, dtype=float)) @pytest.fixture def params_with_positive(): params = pd.DataFrame.from_dict( { "category": ["work_non_recurrent"] * 3, "subcategory": [ "all", "symptomatic_multiplier", "positive_test_multiplier", ], "name": [ 2, "symptomatic_multiplier", "positive_test_multiplier", ], # nr of contacts "value": [1.0, 0.0, 0.0], # probability } ) params = params.set_index(["category", "subcategory", "name"]) return params def test_non_recurrent_work_contacts_no_random_no_sick( a_thursday, params_with_positive ): a_thursday["symptomatic"] = False res = calculate_non_recurrent_contacts_from_empirical_distribution( states=a_thursday, params=params_with_positive.loc["work_non_recurrent"], on_weekends=False, query="occupation == 'working'", seed=433, ) expected = a_thursday["age_group"].replace({"10-19": 0.0, "40-49": 2.0}) assert_series_equal(res, expected, check_names=False, check_dtype=False) def test_non_recurrent_work_contacts_no_random_no_sick_sat( states, params_with_positive ): a_saturday = states[states["date"] == pd.Timestamp("2020-04-04")].copy() a_saturday["symptomatic"] = False a_saturday["participates_saturday"] = [True, True, True] + [False] * ( len(a_saturday) - 3 ) res = calculate_non_recurrent_contacts_from_empirical_distribution( states=a_saturday, params=params_with_positive.loc["work_non_recurrent"], on_weekends="participates", query="occupation == 'working'", seed=433, ) expected = pd.Series(0, index=a_saturday.index) expected[:2] = 2 assert_series_equal(res, expected, check_names=False, check_dtype=False) def test_non_recurrent_work_contacts_no_random_with_sick( a_thursday, params_with_positive ): res = calculate_non_recurrent_contacts_from_empirical_distribution( states=a_thursday, params=params_with_positive.loc["work_non_recurrent"], on_weekends=False, query="occupation == 'working'", seed=448, ) expected = a_thursday["age_group"].replace({"10-19": 0.0, "40-49": 2.0}) expected[:20] = 0.0 assert_series_equal(res, expected, check_names=False, check_dtype=False) def test_non_recurrent_work_contacts_random_with_sick(a_thursday): np.random.seed(77) params = pd.DataFrame.from_dict( { "category": ["work_non_recurrent"] * 4, "subcategory": ["all"] * 2 + ["symptomatic_multiplier", "positive_test_multiplier"], "name": [ 3, 2, "symptomatic_multiplier", "positive_test_multiplier", ], # nr of contacts "value": [0.5, 0.5, 0.0, 0.0], # probability } ).set_index(["category", "subcategory", "name"]) res = calculate_non_recurrent_contacts_from_empirical_distribution( states=a_thursday, params=params.loc["work_non_recurrent"], on_weekends=False, query="occupation == 'working'", seed=338, ) assert (res[:20] == 0).all() # symptomatics assert (res[a_thursday["occupation"] != "working"] == 0).all() # non workers healthy_workers = (a_thursday["occupation"] == "working") & ( a_thursday["cd_symptoms_false"] < 0 ) assert res[healthy_workers].isin([2, 3]).all() # ------------------------------------------------------------------------------------ def test_non_recurrent_other_contacts_no_random_no_sick(a_thursday): a_thursday["symptomatic"] = False params = pd.DataFrame.from_dict( { "category": ["other_non_recurrent"] * 3, "subcategory": [ "all", "symptomatic_multiplier", "positive_test_multiplier", ], "name": [ 2, "symptomatic_multiplier", "positive_test_multiplier", ], # nr of contacts "value": [1.0, 0.0, 0.0], # probability } ).set_index(["category", "subcategory", "name"]) res = calculate_non_recurrent_contacts_from_empirical_distribution( states=a_thursday, params=params.loc["other_non_recurrent"], on_weekends=True, query=None, seed=334, ) expected = pd.Series(data=2, index=a_thursday.index) assert_series_equal(res, expected, check_names=False, check_dtype=False) def test_non_recurrent_other_contacts_no_random_with_sick(a_thursday): params = pd.DataFrame.from_dict( { "category": ["other_non_recurrent"] * 3, "subcategory": [ "all", "symptomatic_multiplier", "positive_test_multiplier", ], "name": [ 2, "symptomatic_multiplier", "positive_test_multiplier", ], # nr of contacts "value": [1.0, 0.0, 0.0], # probability } ).set_index(["category", "subcategory", "name"]) res = calculate_non_recurrent_contacts_from_empirical_distribution( states=a_thursday, params=params.loc["other_non_recurrent"], on_weekends=True, query=None, seed=332, ) expected = pd.Series(data=2, index=a_thursday.index) expected[:20] = 0 assert_series_equal(res, expected, check_names=False, check_dtype=False) def test_non_recurrent_other_contacts_random_with_sick(a_thursday): np.random.seed(770) params = pd.DataFrame.from_dict( { "category": ["other_non_recurrent"] * 4, "subcategory": ["all"] * 2 + ["symptomatic_multiplier", "positive_test_multiplier"], "name": [ 3, 2, "symptomatic_multiplier", "positive_test_multiplier", ], # nr of contacts "value": [0.5, 0.5, 0.0, 0.0], # probability } ).set_index(["category", "subcategory", "name"]) res = calculate_non_recurrent_contacts_from_empirical_distribution( states=a_thursday, params=params.loc["other_non_recurrent"], on_weekends=True, query=None, seed=474, ) assert (res[:20] == 0).all() # symptomatics assert res[a_thursday["cd_symptoms_false"] < 0].isin([2, 3]).all() # --------------------------------- General Functions --------------------------------- def test_draw_nr_of_contacts_always_five(states): dist = pd.DataFrame( data=[[4, 0, "all"], [5, 1, "all"]], columns=["name", "value", "subcategory"] ).set_index(["subcategory", "name"])["value"] pop = pd.Series(data=True, index=states.index) res = _draw_nr_of_contacts(dist, pop, states, seed=939) expected = pd.Series(5.0, index=states.index) assert_series_equal(res, expected, check_dtype=False) def test_draw_nr_of_contacts_mean_5(states): # this relies on the law of large numbers np.random.seed(3499) dist = pd.DataFrame( [[4, 0.5, "all"], [6, 0.5, "all"]], columns=["name", "value", "subcategory"] ).set_index(["subcategory", "name"])["value"] pop = pd.Series(data=True, index=states.index) res = _draw_nr_of_contacts(dist, pop, states, seed=939) assert res.isin([4, 6]).all() assert res.mean() == pytest.approx(5, 0.01) def test_draw_nr_of_contacts_differ_btw_ages(states): dist = pd.DataFrame.from_dict( {"name": [0, 6], "value": [1, 1], "subcategory": ["10-19", "40-49"]} ).set_index(["subcategory", "name"])["value"] pop = pd.Series(data=True, index=states.index) res = _draw_nr_of_contacts(dist, pop, states, seed=939) assert (res[states["age_group"] == "10-19"] == 0).all() assert (res[states["age_group"] == "40-49"] == 6).all() def test_draw_nr_of_contacts_differ_btw_ages_random(states): np.random.seed(24) dist = pd.DataFrame( data=[ [0, 0.5, "10-19"], [1, 0.5, "10-19"], [6, 0.5, "40-49"], [7, 0.5, "40-49"], ], columns=["name", "value", "subcategory"], ).set_index(["subcategory", "name"])["value"] pop = pd.Series(data=True, index=states.index) res = _draw_nr_of_contacts(dist, pop, states, seed=24) young = res[states["age_group"] == "10-19"] old = res[states["age_group"] == "40-49"] assert young.isin([0, 1]).all() assert old.isin([6, 7]).all() assert young.mean() == pytest.approx(0.5, 0.05) assert old.mean() == pytest.approx(6.5, 0.05) # ------------------------------------------------------------------------------------ def test_reduce_non_recurrent_contacts_on_condition(states): nr_of_contacts = pd.Series(data=10, index=states.index) states["symptomatic"] = [True, True, True] + [False] * (len(states) - 3) multiplier = 0.5 states.loc[:1, "quarantine_compliance"] = 0.3 expected = pd.Series([10, 10, 0] + [10] * (len(states) - 3)) res = reduce_contacts_on_condition( contacts=nr_of_contacts, states=states, multiplier=multiplier, condition="symptomatic", is_recurrent=False, ) assert_series_equal(res, expected, check_dtype=False) def test_reduce_recurrent_contacts_on_condition(states): participating = pd.Series(data=True, index=states.index) states["symptomatic"] = [True, True, True] + [False] * (len(states) - 3) states.loc[:0, "quarantine_compliance"] = 0.3 multiplier = 0.5 res = reduce_contacts_on_condition( contacts=participating, states=states, multiplier=multiplier, condition="symptomatic", is_recurrent=True, ) expected = pd.Series([True, False, False] + [True] * (len(states) - 3)) assert_series_equal(res, expected, check_dtype=False) # ------------------------------------------------------------------------------------ def test_meet_daily_other_contacts(): states = pd.DataFrame() states["symptomatic"] = [False, False, False, True] states["knows_infectious"] = [False, False, False, False] states["knows_immune"] = False states["cd_received_test_result_true"] = -20 states["daily_meeting_id"] = [-1, 2, 2, 2] states["knows_currently_infected"] = states.eval( "knows_infectious | (knows_immune & symptomatic) " "| (knows_immune & (cd_received_test_result_true >= -13))" ) states["quarantine_compliance"] = 1.0 params = pd.DataFrame() params["value"] = [0.0, 0.0] params["subcategory"] = ["symptomatic_multiplier", "positive_test_multiplier"] params["name"] = params["subcategory"] params = params.set_index(["subcategory", "name"]) res = meet_daily_other_contacts( states, params, group_col_name="daily_meeting_id", seed=None ) expected =
pd.Series([False, True, True, False])
pandas.Series
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import Constants # In[2]: # Constants INPUT_FILE_PATH = '.\\data\\sample\\sample_1.xlsx' # In[5]: # Import data file df = pd.read_excel(INPUT_FILE_PATH) df.head() # In[10]: result_df = pd.DataFrame() for dept in Constants.DEPTS: single_dept = df[df['Dept'] == dept] filtered =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import logging import numpy as np import collections import configparser import shutil import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.dates as mdates import requests import io from astropy.io import fits from astropy.time import Time from pathlib import Path from matplotlib.backends.backend_pdf import PdfPages import sphere import sphere.utils as utils import sphere.toolbox as toolbox _log = logging.getLogger(__name__) # WFS wavelength wave_wfs = 500e-9 class Reduction(object): ''' SPHERE/SPARTA dataset reduction class The analysis and plotting code of this class was originally developed by <NAME> (ESO/IPAG) and based on SAXO tools from Jean-<NAME> (ONERA). See: https://github.com/jmilou/sparta for the code from <NAME>. ''' ################################################## # Class variables ################################################## # specify for each recipe which other recipes need to have been executed before recipe_requirements = collections.OrderedDict([ ('sort_files', []), ('sph_sparta_dtts', ['sort_files']), ('sph_sparta_wfs_parameters', ['sort_files']), ('sph_sparta_atmospheric_parameters', ['sort_files']), ('sph_query_databases', ['sort_files']), ('sph_sparta_plot', ['sort_files', 'sph_sparta_dtts', 'sph_sparta_wfs_parameters', 'sph_sparta_atmospheric_parameters']), ('sph_sparta_clean', []) ]) ################################################## # Constructor ################################################## def __new__(cls, path, log_level='info', sphere_handler=None): ''' Custom instantiation for the class The customized instantiation enables to check that the provided path is a valid reduction path. If not, None will be returned for the reduction being created. Otherwise, an instance is created and returned at the end. Parameters ---------- path : str Path to the directory containing the dataset level : {'debug', 'info', 'warning', 'error', 'critical'} The log level of the handler sphere_handler : log handler Higher-level SPHERE.Dataset log handler ''' # # make sure we are dealing with a proper reduction directory # # init path path = Path(path).expanduser().resolve() # zeroth-order reduction validation raw = path / 'raw' if not raw.exists(): _log.error('No raw/ subdirectory. {0} is not a valid reduction path'.format(path)) return None else: reduction = super(Reduction, cls).__new__(cls) # # basic init # # init path reduction._path = utils.ReductionPath(path) # instrument and mode reduction._instrument = 'SPARTA' # # logging # logger = logging.getLogger(str(path)) logger.setLevel(log_level.upper()) if logger.hasHandlers(): for hdlr in logger.handlers: logger.removeHandler(hdlr) handler = logging.FileHandler(reduction._path.products / 'reduction.log', mode='w', encoding='utf-8') formatter = logging.Formatter('%(asctime)s\t%(levelname)8s\t%(message)s') formatter.default_msec_format = '%s.%03d' handler.setFormatter(formatter) logger.addHandler(handler) if sphere_handler: logger.addHandler(sphere_handler) reduction._logger = logger reduction._logger.info('Creating SPARTA reduction at path {}'.format(path)) # # configuration # reduction._logger.debug('> read default configuration') configfile = f'{Path(sphere.__file__).parent}/instruments/{reduction._instrument}.ini' config = configparser.ConfigParser() reduction._logger.debug('Read configuration') config.read(configfile) # reduction parameters reduction._config = dict(config.items('reduction')) for key, value in reduction._config.items(): try: val = eval(value) except NameError: val = value reduction._config[key] = val # # reduction and recipe status # reduction._status = sphere.INIT reduction._recipes_status = collections.OrderedDict() for recipe in reduction.recipe_requirements.keys(): reduction._update_recipe_status(recipe, sphere.NOTSET) # reload any existing data frames reduction._read_info() reduction._logger.warning('#########################################################') reduction._logger.warning('# WARNING! #') reduction._logger.warning('# Support for SPARTA files is preliminary. The current #') reduction._logger.warning('# format of product files may change in future versions #') reduction._logger.warning('# of the pipeline until an appropriate format is found. #') reduction._logger.warning('# Please do not blindly rely on the current format. #') reduction._logger.warning('#########################################################') # # return instance # return reduction ################################################## # Representation ################################################## def __repr__(self): return '<Reduction, instrument={}, path={}, log={}>'.format(self._instrument, self._path, self.loglevel) def __format__(self): return self.__repr__() ################################################## # Properties ################################################## @property def loglevel(self): return logging.getLevelName(self._logger.level) @loglevel.setter def loglevel(self, level): self._logger.setLevel(level.upper()) @property def instrument(self): return self._instrument @property def path(self): return self._path @property def files_info(self): return self._files_info @property def dtts_info(self): return self._dtts_info @property def visloop_info(self): return self._visloop_info @property def irloop_info(self): return self._irloop_info @property def atmospheric_info(self): return self._atmos_info @property def recipe_status(self): return self._recipes_status @property def config(self): return self._config @property def status(self): return self._status ################################################## # Private methods ################################################## def _read_info(self): ''' Read the files, calibs and frames information from disk files_info : dataframe The data frame with all the information on files This function is not supposed to be called directly by the user. ''' self._logger.info('Read existing reduction information') # path path = self.path # files info fname = path.preproc / 'files.csv' if fname.exists(): self._logger.debug('> read files.csv') files_info = pd.read_csv(fname, index_col=0) # convert times files_info['DATE-OBS'] =
pd.to_datetime(files_info['DATE-OBS'], utc=False)
pandas.to_datetime
# -*- coding:utf-8 -*- # =========================================================================== # # Project : Data Mining # # File : \mymain.py # # Python : 3.9.1 # # --------------------------------------------------------------------------- # # Author : <NAME> # # Company : nov8.ai # # Email : <EMAIL> # # URL : https://github.com/john-james-sf/Data-Mining/ # # --------------------------------------------------------------------------- # # Created : Tuesday, March 9th 2021, 12:24:24 am # # Last Modified : Tuesday, March 9th 2021, 12:24:24 am # # Modified By : <NAME> (<EMAIL>) # # --------------------------------------------------------------------------- # # License : BSD # # Copyright (c) 2021 nov8.ai # # =========================================================================== # # =========================================================================== # # 1. LIBRARIES # # =========================================================================== # #%% # System and python libraries from abc import ABC, abstractmethod import datetime import glob import itertools from joblib import dump, load import os import pickle import time import uuid # Manipulating, analyzing and processing data from collections import OrderedDict import numpy as np import pandas as pd import scipy as sp from scipy.stats.stats import pearsonr, f_oneway from sklearn.base import BaseEstimator, TransformerMixin from sklearn.compose import ColumnTransformer from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer, SimpleImputer from sklearn.neighbors import LocalOutlierFactor from sklearn.preprocessing import FunctionTransformer, StandardScaler from sklearn.preprocessing import OneHotEncoder, PowerTransformer from category_encoders import TargetEncoder, LeaveOneOutEncoder # Feature and model selection and evaluation from sklearn.feature_selection import RFECV, SelectKBest from sklearn.feature_selection import VarianceThreshold, f_regression from sklearn.metrics import make_scorer, mean_squared_error from sklearn.model_selection import KFold from sklearn.pipeline import make_pipeline, Pipeline, FeatureUnion from sklearn.model_selection import GridSearchCV # Regression based estimators from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet # Tree-based estimators from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import AdaBoostRegressor, BaggingRegressor, ExtraTreesRegressor from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.tree import DecisionTreeRegressor # Visualizing data import seaborn as sns import matplotlib.pyplot as plt from tabulate import tabulate # Utilities from utils import notify, PersistEstimator, comment, print_dict, print_dict_keys # Data Source from data import AmesData pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', None) pd.set_option('mode.chained_assignment', None) # =========================================================================== # # COLUMNS # # =========================================================================== # discrete = ["Year_Built","Year_Remod_Add","Bsmt_Full_Bath","Bsmt_Half_Bath", "Full_Bath","Half_Bath","Bedroom_AbvGr","Kitchen_AbvGr","TotRms_AbvGrd", "Fireplaces","Garage_Cars","Mo_Sold","Year_Sold", "Garage_Yr_Blt"] continuous = ["Lot_Frontage","Lot_Area","Mas_Vnr_Area","BsmtFin_SF_1","BsmtFin_SF_2", "Bsmt_Unf_SF","Total_Bsmt_SF","First_Flr_SF","Second_Flr_SF","Low_Qual_Fin_SF", "Gr_Liv_Area","Garage_Area","Wood_Deck_SF","Open_Porch_SF","Enclosed_Porch", "Three_season_porch","Screen_Porch","Pool_Area","Misc_Val"] numeric = discrete + continuous n_nominal_levels = 191 nominal = ['MS_SubClass', 'MS_Zoning', 'Street', 'Alley', 'Land_Contour', 'Lot_Config', 'Neighborhood', 'Condition_1', 'Condition_2', 'Bldg_Type', 'House_Style', 'Roof_Style', 'Roof_Matl', 'Exterior_1st', 'Exterior_2nd', 'Mas_Vnr_Type', 'Foundation', 'Heating', 'Central_Air', 'Garage_Type', 'Misc_Feature', 'Sale_Type', 'Sale_Condition'] ordinal = ['BsmtFin_Type_1', 'BsmtFin_Type_2', 'Bsmt_Cond', 'Bsmt_Exposure', 'Bsmt_Qual', 'Electrical', 'Exter_Cond', 'Exter_Qual', 'Fence', 'Fireplace_Qu', 'Functional', 'Garage_Cond', 'Garage_Finish', 'Garage_Qual', 'Heating_QC', 'Kitchen_Qual', 'Land_Slope', 'Lot_Shape', 'Overall_Cond', 'Overall_Qual', 'Paved_Drive', 'Pool_QC', 'Utilities'] pre_features = ['PID', 'MS_SubClass', 'MS_Zoning', 'Lot_Frontage', 'Lot_Area', 'Street', 'Alley', 'Lot_Shape', 'Land_Contour', 'Utilities', 'Lot_Config', 'Land_Slope', 'Neighborhood', 'Condition_1', 'Condition_2', 'Bldg_Type', 'House_Style', 'Overall_Qual', 'Overall_Cond', 'Year_Built', 'Year_Remod_Add', 'Roof_Style', 'Roof_Matl', 'Exterior_1st', 'Exterior_2nd', 'Mas_Vnr_Type', 'Mas_Vnr_Area', 'Exter_Qual', 'Exter_Cond', 'Foundation', 'Bsmt_Qual', 'Bsmt_Cond', 'Bsmt_Exposure', 'BsmtFin_Type_1', 'BsmtFin_SF_1', 'BsmtFin_Type_2', 'BsmtFin_SF_2', 'Bsmt_Unf_SF', 'Total_Bsmt_SF', 'Heating', 'Heating_QC', 'Central_Air', 'Electrical', 'First_Flr_SF', 'Second_Flr_SF', 'Low_Qual_Fin_SF', 'Gr_Liv_Area', 'Bsmt_Full_Bath', 'Bsmt_Half_Bath', 'Full_Bath', 'Half_Bath', 'Bedroom_AbvGr', 'Kitchen_AbvGr', 'Kitchen_Qual', 'TotRms_AbvGrd', 'Functional', 'Fireplaces', 'Fireplace_Qu', 'Garage_Type', 'Garage_Yr_Blt', 'Garage_Finish', 'Garage_Cars', 'Garage_Area', 'Garage_Qual', 'Garage_Cond', 'Paved_Drive', 'Wood_Deck_SF', 'Open_Porch_SF', 'Enclosed_Porch', 'Three_season_porch', 'Screen_Porch', 'Pool_Area', 'Pool_QC', 'Fence', 'Misc_Feature', 'Misc_Val', 'Mo_Sold', 'Year_Sold', 'Sale_Type', 'Sale_Condition', 'Longitude', 'Latitude'] post_features = ['PID', 'MS_SubClass', 'MS_Zoning', 'Lot_Frontage', 'Lot_Area', 'Street', 'Alley', 'Lot_Shape', 'Land_Contour', 'Utilities', 'Lot_Config', 'Land_Slope', 'Neighborhood', 'Condition_1', 'Condition_2', 'Bldg_Type', 'House_Style', 'Overall_Qual', 'Overall_Cond', 'Year_Built', 'Year_Remod_Add', 'Roof_Style', 'Roof_Matl', 'Exterior_1st', 'Exterior_2nd', 'Mas_Vnr_Type', 'Mas_Vnr_Area', 'Exter_Qual', 'Exter_Cond', 'Foundation', 'Bsmt_Qual', 'Bsmt_Cond', 'Bsmt_Exposure', 'BsmtFin_Type_1', 'BsmtFin_SF_1', 'BsmtFin_Type_2', 'BsmtFin_SF_2', 'Bsmt_Unf_SF', 'Total_Bsmt_SF', 'Heating', 'Heating_QC', 'Central_Air', 'Electrical', 'First_Flr_SF', 'Second_Flr_SF', 'Low_Qual_Fin_SF', 'Gr_Liv_Area', 'Bsmt_Full_Bath', 'Bsmt_Half_Bath', 'Full_Bath', 'Half_Bath', 'Bedroom_AbvGr', 'Kitchen_AbvGr', 'Kitchen_Qual', 'TotRms_AbvGrd', 'Functional', 'Fireplaces', 'Fireplace_Qu', 'Garage_Type', 'Garage_Yr_Blt', 'Garage_Finish', 'Garage_Cars', 'Garage_Area', 'Garage_Qual', 'Garage_Cond', 'Paved_Drive', 'Wood_Deck_SF', 'Open_Porch_SF', 'Enclosed_Porch', 'Three_season_porch', 'Screen_Porch', 'Pool_Area', 'Pool_QC', 'Fence', 'Misc_Feature', 'Misc_Val', 'Mo_Sold', 'Year_Sold', 'Sale_Type', 'Sale_Condition', 'Age', 'Garage_Age'] # =========================================================================== # # ORDINAL MAP # # =========================================================================== # ordinal_map = {'BsmtFin_Type_1': {'ALQ': 5, 'BLQ': 4, 'GLQ': 6, 'LwQ': 2, 'No_Basement': 0, 'Rec': 3, 'Unf': 1}, 'BsmtFin_Type_2': {'ALQ': 5, 'BLQ': 4, 'GLQ': 6, 'LwQ': 2, 'No_Basement': 0, 'Rec': 3, 'Unf': 1}, 'Bsmt_Cond': {'Excellent': 5, 'Fair': 2, 'Good': 4, 'No_Basement': 0, 'Poor': 1, 'Typical': 3}, 'Bsmt_Exposure': {'Av': 3, 'Gd': 4, 'Mn': 2, 'No': 1, 'No_Basement': 0}, 'Bsmt_Qual': {'Excellent': 5, 'Fair': 2, 'Good': 4, 'No_Basement': 0, 'Poor': 1, 'Typical': 3}, 'Electrical': {'FuseA': 4, 'FuseF': 2, 'FuseP': 1, 'Mix': 0, 'SBrkr': 5, 'Unknown': 3}, 'Exter_Cond': {'Excellent': 4, 'Fair': 1, 'Good': 3, 'Poor': 0, 'Typical': 2}, 'Exter_Qual': {'Excellent': 4, 'Fair': 1, 'Good': 3, 'Poor': 0, 'Typical': 2}, 'Fence': {'Good_Privacy': 4, 'Good_Wood': 2, 'Minimum_Privacy': 3, 'Minimum_Wood_Wire': 1,'No_Fence': 0}, 'Fireplace_Qu': {'Excellent': 5, 'Fair': 2, 'Good': 4, 'No_Fireplace': 0, 'Poor': 1, 'Typical': 3}, 'Functional': {'Maj1': 3, 'Maj2': 2, 'Min1': 5, 'Min2': 6, 'Mod': 4, 'Sal': 0, 'Sev': 1, 'Typ': 7}, 'Garage_Cond': {'Excellent': 5, 'Fair': 2, 'Good': 4, 'No_Garage': 0, 'Poor': 1, 'Typical': 3}, 'Garage_Finish': {'Fin': 3, 'No_Garage': 0, 'RFn': 2, 'Unf': 1}, 'Garage_Qual': {'Excellent': 5, 'Fair': 2, 'Good': 4, 'No_Garage': 0, 'Poor': 1, 'Typical': 3}, 'Heating_QC': {'Excellent': 4, 'Fair': 1, 'Good': 3, 'Poor': 0, 'Typical': 2}, 'Kitchen_Qual': {'Excellent': 4, 'Fair': 1, 'Good': 3, 'Poor': 0, 'Typical': 2}, 'Land_Slope': {'Gtl': 0, 'Mod': 1, 'Sev': 2}, 'Lot_Shape': {'Irregular': 0, 'Moderately_Irregular': 1, 'Regular': 3, 'Slightly_Irregular': 2}, 'Overall_Cond': {'Above_Average': 5, 'Average': 4,'Below_Average': 3,'Excellent': 8,'Fair': 2, 'Good': 6,'Poor': 1,'Very_Excellent': 9,'Very_Good': 7,'Very_Poor': 0}, 'Overall_Qual': {'Above_Average': 5,'Average': 4,'Below_Average': 3,'Excellent': 8,'Fair': 2, 'Good': 6,'Poor': 1,'Very_Excellent': 9,'Very_Good': 7,'Very_Poor': 0}, 'Paved_Drive': {'Dirt_Gravel': 0, 'Partial_Pavement': 1, 'Paved': 2}, 'Pool_QC': {'Excellent': 4, 'Fair': 1, 'Good': 3, 'No_Pool': 0, 'Typical': 2}, 'Utilities': {'AllPub': 2, 'NoSeWa': 0, 'NoSewr': 1}} # =========================================================================== # # ESTIMATORS # # =========================================================================== # model_groups = { "Regressors": { "Linear Regression": { "Estimator": LinearRegression(), "Parameters": {"normalize": [False],"n_jobs": [4],"copy_X": [True]} }, "Lasso": { "Estimator": Lasso(), "Parameters": { "alpha": [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 0.25, 0.50, 0.75, 1.0]} }, "Ridge": { "Estimator": Ridge(), "Parameters": { "alpha": [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 0.25, 0.50, 0.75, 1.0]} }, "ElasticNet": { "Estimator": ElasticNet(), "Parameters": { "alpha": [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 0.25, 0.50, 0.75, 1.0], "l1_ratio": np.arange(0.0,1.0,0.1)} } }, "Ensembles": { "Random Forest": { "Estimator": RandomForestRegressor(), "Parameters": { "n_estimators": [50,100], "max_depth": [2,3,4,5,6], "criterion": ["mse"], "min_samples_split": [0.005, 0.01, 0.05, 0.10], "min_samples_leaf": [0.005, 0.01, 0.05, 0.10], "max_features": ["auto"], "n_jobs": [4]} }, "AdaBoost": { "Estimator": AdaBoostRegressor(), "Parameters": { "base_estimator": [DecisionTreeRegressor()], "n_estimators": [50,100], "learning_rate": [0.001, 0.01, 0.05, 0.1, 0.25, 0.50, 0.75, 1.0]} }, "Bagging": { "Estimator": BaggingRegressor(), "Parameters": { "base_estimator": [DecisionTreeRegressor()], "n_estimators": [50,100], "max_features": [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], "n_jobs": [4]} }, "Extra Trees": { "Estimator": ExtraTreesRegressor(), "Parameters": { "n_estimators": [50,100], "max_depth": [2,3,4,5,6], "min_samples_split": [0.005, 0.01, 0.05, 0.10], "min_samples_leaf": [0.005, 0.01, 0.05, 0.10], "max_features": ["auto"], "n_jobs": [4]} }, "Gradient Boosting": { "Estimator": GradientBoostingRegressor(), "Parameters": { "learning_rate": [0.15,0.1,0.05,0.01,0.005,0.001], "n_estimators": [50,100], "max_depth": [2,3,4,5,6], "criterion": ["mse"], "min_samples_split": [0.005, 0.01, 0.05, 0.10], "min_samples_leaf": [0.005, 0.01, 0.05, 0.10], "max_features": ["auto"]} }, "Histogram Gradient Boosting": { "Estimator": HistGradientBoostingRegressor(), "Parameters": { "learning_rate": [0.15,0.1,0.05,0.01,0.005,0.001], "max_depth": [2,3,4,5,6], "min_samples_leaf": [0.005, 0.01, 0.05, 0.10]} } } } regressors = model_groups["Regressors"] ensembles = model_groups["Ensembles"] # =========================================================================== # # 0. BASE TRANSFORMER # # =========================================================================== # class BaseTransformer(ABC): def __init__(self): pass def fit(self, X, y=None): X_old = pd.DataFrame(data=X["X"], columns=X["Features"]) y_old = X["y"] self._fit(X_old, y_old) return self def transform(self, X, y=None): X_old = pd.DataFrame(data=X["X"], columns=X["Features"]) y_old = X["y"] X_new = self._transform(X_old, y_old) assert(len(X_new.columns) == len(X_old.columns)), f"Old new columns mismatch" assert(X_new.isnull().sum().sum() == 0), f"Warning nulls in test after clean" X["X"] = X_new return X # =========================================================================== # # 1. BASE SELECTOR # # =========================================================================== # class BaseSelector(ABC): def __init__(self): pass def fit(self, X, y=None): X_old = pd.DataFrame(data=X["X"], columns=X["Features"]) y_old = X["y"] self._fit(X_old, y_old) return self def transform(self, X, y=None): X_old = pd.DataFrame(data=X["X"], columns=X["Features"]) y_old = X["y"] X_new = self._transform(X_old, y_old) assert(X_new.isnull().sum().sum() == 0), f"Warning nulls" X["X"] = X_new X["Features"] = X_new.columns return X # =========================================================================== # # 2. DATA CLEANER # # =========================================================================== # class DataCleaner(BaseSelector): def __init__(self): pass def _fit(self, X, y=None): return X, y def _transform(self, X, y=None): notify.entering(__class__.__name__, "transform") X["Garage_Yr_Blt"].replace(to_replace=2207, value=2007, inplace=True) X = X.drop(columns=["Latitude", "Longitude"]) X = X.fillna(X.median()) notify.leaving(__class__.__name__, "transform") return X # =========================================================================== # # 3. FEATURE ENGINEERING # # =========================================================================== # class FeatureEngineer(BaseSelector): def __init__(self): pass def _fit(self, X, y=None): return X, y def _transform(self, X, y=None): notify.entering(__class__.__name__, "transform") # Add an age feature and remove year built X["Age"] = X["Year_Sold"] - X["Year_Built"] X["Age"].fillna(X["Age"].median()) # Add age feature for garage. X["Garage_Age"] = X["Year_Sold"] - X["Garage_Yr_Blt"] X["Garage_Age"].fillna(value=0,inplace=True) notify.leaving(__class__.__name__, "transform") return X # =========================================================================== # # 4. CONTINUOUS PREPROCESSING # # =========================================================================== # class ContinuousPreprocessor(BaseEstimator, TransformerMixin, BaseTransformer): def __init__(self, continuous=continuous): self._continuous = continuous def _fit(self, X, y=None, **fit_params): return self def _transform(self, X, y=None, **transform_params): notify.entering(__class__.__name__, "transform") # Impute missing values as linear function of other features imputer = IterativeImputer() X[self._continuous] = imputer.fit_transform(X[self._continuous]) # Power transformation to make feature distributions closer to Guassian power = PowerTransformer(method="yeo-johnson", standardize=False) X[self._continuous] = power.fit_transform(X[self._continuous]) # Scale the features and standardize to zero mean unit variance scaler = StandardScaler() X[self._continuous] = scaler.fit_transform(X[self._continuous]) notify.leaving(__class__.__name__, "transform") return X # =========================================================================== # # 5. DISCRETE PREPROCESSING # # =========================================================================== # class DiscretePreprocessor(BaseEstimator, TransformerMixin, BaseTransformer): def __init__(self, strategy="most_frequent", discrete=discrete): self._strategy = strategy self._discrete = discrete def _fit(self, X, y=None, **fit_params): return self def _transform(self, X, y=None, **transform_params): notify.entering(__class__.__name__, "transform") # Missing discrete variables will be imputed according to the strategy provided # Default strategy is the mean. imputer = SimpleImputer(strategy=self._strategy) X[self._discrete] = imputer.fit_transform(X[self._discrete]) # Scale the features and standardize to zero mean unit variance scaler = StandardScaler() X[self._discrete] = scaler.fit_transform(X[self._discrete]) notify.leaving(__class__.__name__, "transform") return X # =========================================================================== # # 6. ORDINAL PREPROCESSING # # =========================================================================== # class OrdinalPreprocessor(BaseEstimator, TransformerMixin, BaseTransformer): def __init__(self, strategy="most_frequent", ordinal=ordinal, ordinal_map=ordinal_map): self._strategy = strategy self._ordinal = ordinal self._ordinal_map = ordinal_map def _fit(self, X, y=None, **fit_params): return self def _transform(self, X, y=None, **transform_params): notify.entering(__class__.__name__, "transform") categorical = list(X.select_dtypes(include=["object"]).columns) # Create imputer object imputer = SimpleImputer(strategy=self._strategy) # Perform imputation of categorical variables to most frequent X[self._ordinal] = imputer.fit_transform(X[self._ordinal]) # Map levels to ordinal mappings for variable, mappings in self._ordinal_map.items(): for k,v in mappings.items(): X[variable].replace({k:v}, inplace=True) # Scale the features and standardize to zero mean unit variance scaler = StandardScaler() X[self._ordinal] = scaler.fit_transform(X[self._ordinal]) notify.leaving(__class__.__name__, "transform") return X # =========================================================================== # # 7. TARGET LEAVE-ONE-OUT ENCODER # # =========================================================================== # class TargetEncoderLOO(TargetEncoder): """Leave-one-out target encoder. Source: https://brendanhasz.github.io/2019/03/04/target-encoding """ def __init__(self, cols=nominal): """Leave-one-out target encoding for categorical features. Parameters ---------- cols : list of str Columns to target encode. """ self.cols = cols def fit(self, X, y): """Fit leave-one-out target encoder to X and y Parameters ---------- X : pandas DataFrame, shape [n_samples, n_columns] DataFrame containing columns to target encode y : pandas Series, shape = [n_samples] Target values. Returns ------- self : encoder Returns self. """ # Encode all categorical cols by default if self.cols is None: self.cols = [col for col in X if str(X[col].dtype)=='object'] # Check columns are in X for col in self.cols: if col not in X: raise ValueError('Column \''+col+'\' not in X') # Encode each element of each column self.sum_count = dict() for col in self.cols: self.sum_count[col] = dict() uniques = X[col].unique() for unique in uniques: ix = X[col]==unique count = X[X[col] == unique].shape[0] singleton = "N" if (count > 1) else "Y" self.sum_count[col][unique] = \ (y[ix].sum(),ix.sum(), singleton) # Return the fit object return self def transform(self, X, y=None): """Perform the target encoding transformation. Uses leave-one-out target encoding for the training fold, and uses normal target encoding for the test fold. Parameters ---------- X : pandas DataFrame, shape [n_samples, n_columns] DataFrame containing columns to encode Returns ------- pandas DataFrame Input DataFrame with transformed columns """ # Create output dataframe Xo = X.copy() # Use normal target encoding if this is test data if y is None: for col in self.sum_count.keys(): vals = np.full(X.shape[0], np.nan) for cat, sum_count in self.sum_count[col].items(): vals[X[col]==cat] = sum_count[0]/sum_count[1] Xo[col] = vals # LOO target encode each column else: for col in self.sum_count.keys(): vals = np.full(X.shape[0], np.nan) for cat, sum_count in self.sum_count[col].items(): ix = X[col]==cat if sum_count[2] == "Y": vals[ix] = sum_count[0]/sum_count[1] else: vals[ix] = (sum_count[0]-y[ix])/(sum_count[1]-1) Xo[col] = vals # Return encoded DataFrame return Xo def fit_transform(self, X, y=None): """Fit and transform the data via target encoding. Parameters ---------- X : pandas DataFrame, shape [n_samples, n_columns] DataFrame containing columns to encode y : pandas Series, shape = [n_samples] Target values (required!). Returns ------- pandas DataFrame Input DataFrame with transformed columns """ return self.fit(X, y).transform(X, y) # =========================================================================== # # 8. NOMINAL PREPROCESSING # # =========================================================================== # class NominalPreprocessor(BaseEstimator, TransformerMixin, BaseTransformer): def __init__(self, encoder=TargetEncoderLOO(cols=nominal), nominal=nominal): self._encoder = encoder self._nominal = nominal def _fit(self, X, y=None, **fit_params): notify.entering(__class__.__name__, "fit") notify.leaving(__class__.__name__, "fit") return self def _transform(self, X, y=None, **transform_params): notify.entering(__class__.__name__, "transform") notify.leaving(__class__.__name__, "transform") self._encoder.fit(X, y) X = self._encoder.transform(X, y) # Scale the features and standardize to zero mean unit variance scaler = StandardScaler() X[self._nominal] = scaler.fit_transform(X[self._nominal]) #X = X.fillna(X.mean()) return X def fit_transform(self, X,y=None): self.fit(X,y) return self.transform(X,y) # =========================================================================== # # 9. BASE FILTER # # =========================================================================== # class BaseFilter(BaseSelector): def __init__(self): pass def report(self, X, y=None): classname = self.__class__.__name__ message = f"The following {len(self.features_removed_)} features were removed from the data.\n{self.features_removed_}." comment.regarding(classname, message) # =========================================================================== # # 10. COLLINEARITY FILTER # # =========================================================================== # class CollinearityFilter(BaseFilter): def __init__(self, features, threshold=0.65, alpha=0.05, numeric=numeric): self._threshold = threshold self._alpha = alpha self._features = features self._numeric = numeric def _fit(self, X, y=None): return X, y def _transform(self, X, y=None): notify.entering(__class__.__name__, "_fit") self.features_removed_ = [] correlations = pd.DataFrame() all_columns = X.columns.tolist() columns = list(set(X.columns.tolist()).intersection(self._numeric)) # Perform pairwise correlation coefficient calculations for col_a, col_b in itertools.combinations(columns,2): r, p = pearsonr(X[col_a], X[col_b]) cols = col_a + "__" + col_b d = {"Columns": cols, "A": col_a, "B": col_b,"Correlation": r, "p-value": p} df = pd.DataFrame(data=d, index=[0]) correlations = pd.concat((correlations, df), axis=0) # Now compute correlation between features and target. relevance = pd.DataFrame() for column in columns: r, p = pearsonr(X.loc[:,column], y) d = {"Feature": column, "Correlation": r, "p-value": p} df = pd.DataFrame(data=d, index=[0]) relevance = pd.concat((relevance,df), axis=0) # Obtain observations above correlation threshold and below alpha self.suspects_ = correlations[(correlations["Correlation"] >= self._threshold) & (correlations["p-value"] <= self._alpha)] if self.suspects_.shape[0] == 0: self.X_ = X return # Iterate over suspects and determine column to remove based upon # correlation with target to_remove = [] for index, row in self.suspects_.iterrows(): a = np.abs(relevance[relevance["Feature"] == row["A"]]["Correlation"].values) b = np.abs(relevance[relevance["Feature"] == row["B"]]["Correlation"].values) if a > b: to_remove.append(row["B"]) else: to_remove.append(row["A"]) self.X_ = X.drop(columns=to_remove) self.features_removed_ += to_remove self._fit(self.X_,y) notify.leaving(__class__.__name__, "fit_") return self.X_ # =========================================================================== # # 11. ANOVA FILTER # # =========================================================================== # class AnovaFilter(BaseFilter): """Eliminates predictors with equal between means w.r.t response.""" def __init__(self, alpha=0.05, ordinal=ordinal, nominal=nominal): self._alpha = alpha self._ordinal = ordinal self._nominal = nominal def _fit(self, X, y=None): return X, y def _transform(self, X, y=None): notify.entering(__class__.__name__, "_fit") results = pd.DataFrame() all_columns = X.columns.tolist() categorical = self._ordinal + self._nominal columns = list(set(X.columns.tolist()).intersection(categorical)) # Measure variance between predictor levels w.r.t. the response self.remaining_ = pd.DataFrame() self.features_removed_ = [] for column in columns: f, p = f_oneway(X[column], y) if p > self._alpha: self.features_removed_.append(column) else: d = {"Feature": column, "F-statistic": f, "p-value": p} df = pd.DataFrame(data=d, index=[0]) self.remaining_ =
pd.concat((self.remaining_, df), axis=0)
pandas.concat
import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import re import seaborn as sns from matplotlib import get_backend from numba import jit from scipy.integrate import odeint, solve_ivp from numba import jit ############################################################################### #Globals ############################################################################### #Refer for details: https://seaborn.pydata.org/tutorial/color_palettes.html palette_types = {'color': lambda n_colors, **kwargs : sns.color_palette(n_colors=n_colors, **{**{'palette': 'muted'}, **kwargs}), 'light': lambda n_colors, **kwargs : sns.light_palette(n_colors=n_colors+2, **{**{'color':'steel'}, **kwargs})[2:], 'dark' : lambda n_colors, **kwargs : sns.dark_palette( n_colors=n_colors+2, **{**{'color':'steel'}, **kwargs})[2:], 'diverging': lambda n_colors, **kwargs : sns.diverging_palette(n=n_colors, **{**{'h_pos': 250, 'h_neg':15}, **kwargs}), 'cubehelix': lambda n_colors, **kwargs : sns.cubehelix_palette(n_colors=n_colors, **kwargs), } #Refer for details: https://xkcd.com/color/rgb/ all_colors = sns.colors.xkcd_rgb ############################################################################### #Integration ############################################################################### def solver(f, y0, tspan,**kwargs): f_ = lambda t, y, *args: f(y, t, *args) r = solve_ivp(f_, [tspan[0], tspan[-1]], y0, t_eval=tspan, **kwargs) return r.y.T def piecewise_integrate(function, init, tspan, params, model_num, scenario_num, modify_init=None, modify_params=None, solver_args={}, solver=odeint, overlap=True, args=()): '''Piecewise integration function with scipy.integrate.odeint as default. Can be changed using the solver argument. Parameters ---------- function : function A function for numerical integration that takes in the form f(states, time, params, args). states, params and args are numpy arrays while time is a float or numpy float. Will be integrated using scipy.integrate.odeint init : numpy.array Initial values of states for numerical integration. tspan : list of numpy.array Segments for piecewise integration where each segment is a numpy array of time points in ascending order. params : numpy.array An array of parameter values. model_num : int Number of the model. scenario_num : int Number of the scenario. modify_init : function, optional Function for modifying initial values before integrating over a time segment. The default is None. modify_params : function, optional Function for modifying parameter values before integrating over a time segment. The default is None. solver_args : dict, optional Dictionary of keyword arguments for scipy.integrate.odeint. The default is {}. solver : scipy.integrate.odeint, optional The integrating function. The default is odeint. Do not touch unless you know what you are doing. overlap : bool, optional Avoids double counting between segments. In general, False is required only for plotting. The default is True. args : tuple, optional A tuple of arguments. The default is (). Returns ------- y_model : numpy.array An array of values from numerical integration. t_model : numpy.array An array of time points. ''' solver_args1 = solver_args if solver_args else {} tspan_ = tspan[0] init_ = modify_init(init_values=init, params=params, model_num=model_num, scenario_num=scenario_num, segment=0) if modify_init else init params_ = modify_params(init_values=init_, params=params, model_num=model_num, scenario_num=scenario_num, segment=0) if modify_params else params y_model = solver(function, init_, tspan_, args=tuple([params_]) + args, **solver_args1) t_model = tspan[0] for segment in range(1, len(tspan)): tspan_ = tspan[segment] init_ = modify_init(init_values=y_model[-1], params=params, model_num=model_num, scenario_num=scenario_num, segment=segment) if modify_init else y_model[-1] params_ = modify_params(init_values=init_, params=params, model_num=model_num, scenario_num=scenario_num, segment=segment) if modify_params else params y_model_ = solver(function, init_, tspan_, args=tuple([params_]) + args, **solver_args1) y_model = np.concatenate((y_model, y_model_), axis=0) if overlap else np.concatenate((y_model[:-1], y_model_), axis=0) t_model = np.concatenate((t_model, tspan_), axis=0) if overlap else np.concatenate((t_model[:,-1], tspan_), axis=0) return y_model, t_model #Templates for modify_init def modify_init(init_values, params, model_num, scenario_num, segment): ''' Return a new np.array of initial values. For safety, DO NOT MODIFY IN PLACE. :meta private: ''' new_init = init_values.copy() return new_init def modify_params(init_values, params, model_num, scenario_num, segment): ''' Return a new np.array of initial values. For safety, DO NOT MODIFY IN PLACE. :meta private: ''' new_params = params.copy() return new_params ############################################################################### #Multi-Model Integration ############################################################################### def integrate_models(models, params, *extra_variables, args=(), mode='np', overlap=True, multiply=True): '''Integrates models with params Parameters ---------- models : dict A dictionary of model data structures. params : pandas.DataFrame A DataFrame of parameter values for integration. *extra_variables : function Additional functions for evaluating the integrated results. args : tuple, optional Additional arguments for the functions to be integrated. The default is (). mode : {'np', 'df'}, optional Use 'np' if the functions in extra_variables are meant to work with numpy arrays and 'pd' if functions are meant to work with DataFrames. The default is 'np'. overlap : TYPE, optional Whether or not to include the overlapping points between time segments. The default is True. multiply : bool, optional Permutes parameters and scenarios if True and vice versa. The default is True. Returns ------- dict A dictionary of the integrated results. dict A dictionary of the calculated extra variables. ''' print('Simulating models') y_models = {} e_models = {v: {model_num: {scenario_num: {} for scenario_num in models[model_num]['init']} for model_num in models} for v in extra_variables} if type(params) == dict: try: params_ =
pd.DataFrame(params)
pandas.DataFrame
''' This method uses these features ['dow', 'year', 'month', 'day_of_week', 'holiday_flg', 'min_visitors', 'mean_visitors', 'median_visitors', 'max_visitors', 'count_observations', 'air_genre_name', 'air_area_name', 'latitude', 'longitude', 'rs1_x', 'rv1_x', 'rs2_x', 'rv2_x', 'rs1_y', 'rv1_y', 'rs2_y', 'rv2_y', 'total_reserv_sum', 'total_reserv_mean', 'total_reserv_dt_diff_mean'] RMSE GradientBoostingRegressor: 0.501477019571 RMSE KNeighborsRegressor: 0.421517079307 ''' import glob, re import numpy as np import pandas as pd from sklearn import * from datetime import datetime def RMSLE(y, pred): return metrics.mean_squared_error(y, pred)**0.5 data = { 'tra': pd.read_csv('./data/air_visit_data.csv'), 'as': pd.read_csv('./data/air_store_info.csv'), 'hs': pd.read_csv('./data/hpg_store_info.csv'), 'ar': pd.read_csv('./data/air_reserve.csv'), 'hr': pd.read_csv('./data/hpg_reserve.csv'), 'id': pd.read_csv('./data/store_id_relation.csv'), 'tes': pd.read_csv('./data/sample_submission.csv'), 'hol': pd.read_csv('./data/date_info.csv').rename(columns={'calendar_date':'visit_date'}) } # add 'air_store_id' to the last of data['hr'] data['hr'] = pd.merge(data['hr'], data['id'], how='inner', on=['hpg_store_id']) for df in ['ar', 'hr']: # get year, month, day, get rid of time data[df]['visit_datetime'] = pd.to_datetime(data[df]['visit_datetime']) data[df]['visit_datetime'] = data[df]['visit_datetime'].dt.date data[df]['reserve_datetime'] = pd.to_datetime(data[df]['reserve_datetime']) data[df]['reserve_datetime'] = data[df]['reserve_datetime'].dt.date data[df]['reserve_datetime_diff'] = data[df].apply(lambda r: (r['visit_datetime'] - r['reserve_datetime']).days, axis=1) tmp1 = data[df].groupby(['air_store_id', 'visit_datetime'], as_index=False)[ ['reserve_datetime_diff', 'reserve_visitors']].sum().rename( columns={'visit_datetime': 'visit_date', 'reserve_datetime_diff': 'rs1', 'reserve_visitors': 'rv1'}) tmp2 = data[df].groupby(['air_store_id', 'visit_datetime'], as_index=False)[ ['reserve_datetime_diff', 'reserve_visitors']].mean().rename( columns={'visit_datetime': 'visit_date', 'reserve_datetime_diff': 'rs2', 'reserve_visitors': 'rv2'}) data[df] = pd.merge(tmp1, tmp2, how='inner', on=['air_store_id', 'visit_date']) data['tra']['visit_date'] = pd.to_datetime(data['tra']['visit_date']) data['tra']['dow'] = data['tra']['visit_date'].dt.dayofweek data['tra']['year'] = data['tra']['visit_date'].dt.year data['tra']['month'] = data['tra']['visit_date'].dt.month data['tra']['visit_date'] = data['tra']['visit_date'].dt.date data['tes']['visit_date'] = data['tes']['id'].map(lambda x: str(x).split('_')[2]) data['tes']['air_store_id'] = data['tes']['id'].map(lambda x: '_'.join(x.split('_')[:2])) data['tes']['visit_date'] = pd.to_datetime(data['tes']['visit_date']) data['tes']['dow'] = data['tes']['visit_date'].dt.dayofweek data['tes']['year'] = data['tes']['visit_date'].dt.year data['tes']['month'] = data['tes']['visit_date'].dt.month data['tes']['visit_date'] = data['tes']['visit_date'].dt.date unique_stores = data['tes']['air_store_id'].unique() # count week stores = pd.concat([pd.DataFrame({'air_store_id': unique_stores, 'dow': [i]*len(unique_stores)}) for i in range(7)], axis=0, ignore_index=True).reset_index(drop=True) tmp = data['tra'].groupby(['air_store_id','dow'], as_index=False)['visitors'].min().rename(columns={'visitors':'week_min_visitors'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id','dow']) tmp = data['tra'].groupby(['air_store_id','dow'], as_index=False)['visitors'].mean().rename(columns={'visitors':'week_mean_visitors'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id','dow']) tmp = data['tra'].groupby(['air_store_id','dow'], as_index=False)['visitors'].median().rename(columns={'visitors':'week_median_visitors'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id','dow']) tmp = data['tra'].groupby(['air_store_id','dow'], as_index=False)['visitors'].max().rename(columns={'visitors':'week_max_visitors'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id','dow']) tmp = data['tra'].groupby(['air_store_id','dow'], as_index=False)['visitors'].count().rename(columns={'visitors':'week_count_observations'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id','dow']) # count all tmp = data['tra'].groupby(['air_store_id'], as_index=False)['visitors'].min().rename(columns={'visitors':'all_min_visitors'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id']) tmp = data['tra'].groupby(['air_store_id'], as_index=False)['visitors'].mean().rename(columns={'visitors':'all_mean_visitors'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id']) tmp = data['tra'].groupby(['air_store_id'], as_index=False)['visitors'].median().rename(columns={'visitors':'all_median_visitors'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id']) tmp = data['tra'].groupby(['air_store_id'], as_index=False)['visitors'].max().rename(columns={'visitors':'all_max_visitors'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id']) tmp = data['tra'].groupby(['air_store_id'], as_index=False)['visitors'].count().rename(columns={'visitors':'all_count_observations'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id']) # count year stores1 = pd.concat([pd.DataFrame({'air_store_id': unique_stores})], axis=0, ignore_index=True).reset_index(drop=True) data2016 = data['tra'][data['tra']['year'].isin([2016])] data2017 = data['tra'][data['tra']['year'].isin([2017])] # count 2016 tmp = data2016.groupby(['air_store_id','year'], as_index=False)['visitors'].min().rename(columns={'visitors':'2016_min_visitors'}) stores1 = pd.merge(stores1, tmp, how='left', on=['air_store_id']) tmp = data2016.groupby(['air_store_id','year'], as_index=False)['visitors'].mean().rename(columns={'visitors':'2016_mean_visitors'}) stores1 = pd.merge(stores1, tmp, how='left', on=['air_store_id']) tmp = data2016.groupby(['air_store_id','year'], as_index=False)['visitors'].median().rename(columns={'visitors':'2016_median_visitors'}) stores1 = pd.merge(stores1, tmp, how='left', on=['air_store_id']) tmp = data2016.groupby(['air_store_id','year'], as_index=False)['visitors'].max().rename(columns={'visitors':'2016_max_visitors'}) stores1 = pd.merge(stores1, tmp, how='left', on=['air_store_id']) tmp = data2016.groupby(['air_store_id','year'], as_index=False)['visitors'].count().rename(columns={'visitors':'2016_count_observations'}) stores1 = pd.merge(stores1, tmp, how='left', on=['air_store_id']) # count 2017 tmp = data2017.groupby(['air_store_id','year'], as_index=False)['visitors'].min().rename(columns={'visitors':'2017_min_visitors'}) stores1 = pd.merge(stores1, tmp, how='left', on=['air_store_id']) tmp = data2017.groupby(['air_store_id','year'], as_index=False)['visitors'].mean().rename(columns={'visitors':'2017_mean_visitors'}) stores1 = pd.merge(stores1, tmp, how='left', on=['air_store_id']) tmp = data2017.groupby(['air_store_id','year'], as_index=False)['visitors'].median().rename(columns={'visitors':'2017_median_visitors'}) stores1 = pd.merge(stores1, tmp, how='left', on=['air_store_id']) tmp = data2017.groupby(['air_store_id','year'], as_index=False)['visitors'].max().rename(columns={'visitors':'2017_max_visitors'}) stores1 = pd.merge(stores1, tmp, how='left', on=['air_store_id']) tmp = data2017.groupby(['air_store_id','year'], as_index=False)['visitors'].count().rename(columns={'visitors':'2017_count_observations'}) stores1 = pd.merge(stores1, tmp, how='left', on=['air_store_id']) stores = pd.merge(stores, stores1, how='left', on=['air_store_id']) stores = pd.merge(stores, data['as'], how='left', on=['air_store_id']) lbl = preprocessing.LabelEncoder() stores['air_genre_name'] = lbl.fit_transform(stores['air_genre_name']) stores['air_area_name'] = lbl.fit_transform(stores['air_area_name']) data['hol']['visit_date'] = pd.to_datetime(data['hol']['visit_date']) data['hol']['day_of_week'] = lbl.fit_transform(data['hol']['day_of_week']) data['hol']['visit_date'] = data['hol']['visit_date'].dt.date train = pd.merge(data['tra'], data['hol'], how='left', on=['visit_date']) test = pd.merge(data['tes'], data['hol'], how='left', on=['visit_date']) train = pd.merge(train, stores, how='left', on=['air_store_id','dow']) test = pd.merge(test, stores, how='left', on=['air_store_id','dow']) for df in ['ar','hr']: # data[df].to_csv(df + '.csv') train =
pd.merge(train, data[df], how='left', on=['air_store_id','visit_date'])
pandas.merge
from __future__ import division from datetime import timedelta from functools import partial import itertools from nose.tools import assert_true from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain import platform if platform.system() != 'Windows': from zipline.pipeline.loaders.blaze.estimates import ( BlazeNextEstimatesLoader, BlazeNextSplitAdjustedEstimatesLoader, BlazePreviousEstimatesLoader, BlazePreviousSplitAdjustedEstimatesLoader, ) from zipline.pipeline.loaders.earnings_estimates import ( INVALID_NUM_QTRS_MESSAGE, NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal, assert_raises_regex from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import platform import unittest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, 'estimate', 'knowledge_date']) df = df.pivot_table(columns=SID_FIELD_NAME, values='estimate', index='knowledge_date') df = df.reindex( pd.date_range(start_date, end_date) ) # Index name is lost during reindex. df.index = df.index.rename('knowledge_date') df['at_date'] = end_date.tz_localize('utc') df = df.set_index(['at_date', df.index.tz_localize('utc')]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp('2014-12-28') END_DATE = pd.Timestamp('2015-02-04') @classmethod def make_loader(cls, events, columns): raise NotImplementedError('make_loader') @classmethod def make_events(cls): raise NotImplementedError('make_events') @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ 's' + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader(cls.events, {column.name: val for column, val in cls.columns.items()}) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate1': [1., 2.], 'estimate2': [3., 4.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def make_expected_out(cls): raise NotImplementedError('make_expected_out') @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp('2015-01-15', tz='utc'), end_date=pd.Timestamp('2015-01-15', tz='utc'), ) assert_frame_equal(results, self.expected_out) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-10'), 'estimate1': 1., 'estimate2': 3., FISCAL_QUARTER_FIELD_NAME: 1., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-20'), 'estimate1': 2., 'estimate2': 4., FISCAL_QUARTER_FIELD_NAME: 2., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) dummy_df = pd.DataFrame({SID_FIELD_NAME: 0}, columns=[SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, 'estimate'], index=[0]) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = {c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns} p = Pipeline(columns) with self.assertRaises(ValueError) as e: engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) assert_raises_regex(e, INVALID_NUM_QTRS_MESSAGE % "-1,-2") def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with self.assertRaises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = ["split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof"] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand(itertools.product( (NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader), )) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } with self.assertRaises(ValueError): loader(dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01")) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp('2015-01-28') q1_knowledge_dates = [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-04'), pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-11')] q2_knowledge_dates = [pd.Timestamp('2015-01-14'), pd.Timestamp('2015-01-17'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-23')] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14')] # One day late q2_release_dates = [pd.Timestamp('2015-01-25'), # One day early pd.Timestamp('2015-01-26')] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if (q1e1 < q1e2 and q2e1 < q2e2 and # All estimates are < Q2's event, so just constrain Q1 # estimates. q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0]): sid_estimates.append(cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid)) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], 'estimate': [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid }) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame({ EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, 'estimate': [.1, .2, .3, .4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, }) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert_true(sid_estimates.isnull().all().all()) else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [self.get_expected_estimate( q1_knowledge[q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], q2_knowledge[q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index], axis=0) assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateLoaderTestCase(NextEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q2_knowledge.iloc[-1:] elif (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateLoaderTestCase(PreviousEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate': [1., 2.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame(columns=[cls.columns[col] + '1' for col in cls.columns] + [cls.columns[col] + '2' for col in cls.columns], index=cls.trading_days) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ('1', '2') ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime( expected[expected_name] ) else: expected[expected_name] = expected[ expected_name ].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge([{c.name + '1': c.latest for c in dataset1.columns}, {c.name + '2': c.latest for c in dataset2.columns}]) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + '1' for col in self.columns] q2_columns = [col.name + '2' for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal(sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values)) assert_equal(self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1)) class NextEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-11'), raw_name + '1' ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp('2015-01-11'):pd.Timestamp('2015-01-20'), raw_name + '1' ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ['estimate', 'event_date']: expected.loc[ pd.Timestamp('2015-01-06'):pd.Timestamp('2015-01-10'), col_name + '2' ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-09'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 2 expected.loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 3 expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-20'), FISCAL_YEAR_FIELD_NAME + '2' ] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateMultipleQuarters(NextEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class PreviousEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-19') ] = cls.events[raw_name].iloc[0] expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ['estimate', 'event_date']: expected[col_name + '2'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[col_name].iloc[0] expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 4 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 2014 expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 1 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateMultipleQuarters(PreviousEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13')] * 2, EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-20')], 'estimate': [11., 12., 21.] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6 }) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError('assert_compute') def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=pd.Timestamp('2015-01-13', tz='utc'), # last event date we have end_date=pd.Timestamp('2015-01-14', tz='utc'), ) class PreviousVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousVaryingNumEstimates(PreviousVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class NextVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextVaryingNumEstimates(NextVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp('2015-02-10') window_test_start_date = pd.Timestamp('2015-01-05') critical_dates = [pd.Timestamp('2015-01-09', tz='utc'), pd.Timestamp('2015-01-15', tz='utc'), pd.Timestamp('2015-01-20', tz='utc'), pd.Timestamp('2015-01-26', tz='utc'), pd.Timestamp('2015-02-05', tz='utc'), pd.Timestamp('2015-02-10', tz='utc')] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-02-10'), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp('2015-01-18')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-04-01')], 'estimate': [100., 101.] + [200., 201.] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, }) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-22'), pd.Timestamp('2015-01-22'), pd.Timestamp('2015-02-05'), pd.Timestamp('2015-02-05')], 'estimate': [110., 111.] + [310., 311.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10 }) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-07'), cls.window_test_start_date, pd.Timestamp('2015-01-17')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10')], 'estimate': [120., 121.] + [220., 221.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20 }) concatted = pd.concat([sid_0_timeline, sid_10_timeline, sid_20_timeline]).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i+1])] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids() ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries(self, start_date, num_announcements_out): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = timelines[ num_announcements_out ].loc[today].reindex( trading_days[:today_idx + 1] ).values timeline_start_idx = (len(today_timeline) - window_len) assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp('2015-02-10', tz='utc'), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date) ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-20') ), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-21') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 111, pd.Timestamp('2015-01-22')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-01-22', '2015-02-04') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 311, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-02-05', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 201, pd.Timestamp('2015-02-10')), (10, 311, pd.Timestamp('2015-02-05')), (20, 221, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') ), ]) twoq_previous = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-02-09')] + # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. [cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-02-10')), (10, np.NaN, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') )] ) return { 1: oneq_previous, 2: twoq_previous } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateWindows(PreviousEstimateWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader(bz.data(events), columns) class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-09') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], end_date ) for end_date in pd.date_range('2015-01-12', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp('2015-01-20')), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-20') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-01-21', '2015-01-22') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, 310, pd.Timestamp('2015-01-09')), (10, 311, pd.Timestamp('2015-01-15')), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-01-23', '2015-02-05') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-02-06', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (0, 201, pd.Timestamp('2015-02-10')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], pd.Timestamp('2015-02-10') ) ]) twoq_next = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-01-11')] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-12', '2015-01-16')] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], pd.Timestamp('2015-01-20') )] + [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-21', '2015-02-10')] ) return { 1: oneq_next, 2: twoq_next } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateWindows(NextEstimateWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader(bz.data(events), columns) class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp('2015-01-14') @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-09'), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp('2015-01-20')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20')], 'estimate': [130., 131., 230., 231.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30 }) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-02-10')], 'estimate': [140., 240.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40 }) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-02-10')], 'estimate': [150., 250.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50 }) return pd.concat([ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ]) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame({ SID_FIELD_NAME: 0, 'ratio': (-1., 2., 3., 4., 5., 6., 7., 100), 'effective_date': (pd.Timestamp('2014-01-01'), # Filter out # Split before Q1 event & after first estimate pd.Timestamp('2015-01-07'), # Split before Q1 event pd.Timestamp('2015-01-09'), # Split before Q1 event pd.Timestamp('2015-01-13'), # Split before Q1 event pd.Timestamp('2015-01-15'), # Split before Q1 event pd.Timestamp('2015-01-18'), # Split after Q1 event and before Q2 event pd.Timestamp('2015-01-30'), # Filter out - this is after our date index pd.Timestamp('2016-01-01')) }) sid_10_splits = pd.DataFrame({ SID_FIELD_NAME: 10, 'ratio': (.2, .3), 'effective_date': ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp('2015-01-07'), # Apply a single split before Q1 event. pd.Timestamp('2015-01-20')), }) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame({ SID_FIELD_NAME: 20, 'ratio': (.4, .5, .6, .7, .8, .9,), 'effective_date': ( pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-15'), pd.Timestamp('2015-01-18'), pd.Timestamp('2015-01-30')), }) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame({ SID_FIELD_NAME: 30, 'ratio': (8, 9, 10, 11, 12), 'effective_date': ( # Split before the event and before the # split-asof-date. pd.Timestamp('2015-01-07'), # Split on date of event but before the # split-asof-date. pd.Timestamp('2015-01-09'), # Split after the event, but before the # split-asof-date. pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-15'), pd.Timestamp('2015-01-18')), }) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame({ SID_FIELD_NAME: 40, 'ratio': (13, 14), 'effective_date': ( pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-22') ) }) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame({ SID_FIELD_NAME: 50, 'ratio': (15, 16), 'effective_date': ( pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14') ) }) return pd.concat([ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ]) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131*1/10, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp('2015-01-09')), ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-12') ]), cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150. * 1 / 16, pd.Timestamp('2015-01-09')), ], pd.Timestamp('2015-01-13')), cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09')) ], pd.Timestamp('2015-01-14')), pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131*11, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09')), ], end_date) for end_date in pd.date_range('2015-01-15', '2015-01-16') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121*.7*.8, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-20', '2015-01-21') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 111*.3, pd.Timestamp('2015-01-22')), (20, 121*.7*.8, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-22', '2015-01-29') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-01-20')), (10, 111*.3, pd.Timestamp('2015-01-22')), (20, 121*.7*.8*.9, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-30', '2015-02-04') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-01-20')), (10, 311*.3, pd.Timestamp('2015-02-05')), (20, 121*.7*.8*.9, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-02-05', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 201, pd.Timestamp('2015-02-10')), (10, 311*.3, pd.Timestamp('2015-02-05')), (20, 221*.8*.9, pd.Timestamp('2015-02-10')), (30, 231, pd.Timestamp('2015-01-20')), (40, 240.*13*14, pd.Timestamp('2015-02-10')), (50, 250., pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') ), ]) twoq_previous = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-01-19')] + [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131*11*12, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-01-20', '2015-02-09')] + # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. [cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-02-10')), (10, np.NaN, pd.Timestamp('2015-02-05')), (20, 121*.7*.8*.9, pd.Timestamp('2015-02-10')), (30, 131*11*12, pd.Timestamp('2015-01-20')), (40, 140. * 13 * 14, pd.Timestamp('2015-02-10')), (50, 150., pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') )] ) return { 1: oneq_previous, 2: twoq_previous } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousWithSplitAdjustedWindows(PreviousWithSplitAdjustedWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousSplitAdjustedEstimatesLoader( bz.data(events), columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) class NextWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100*1/4, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (20, 120*5/3, cls.window_test_start_date), (20, 121*5/3, pd.Timestamp('2015-01-07')), (30, 130*1/10, cls.window_test_start_date), (30, 131*1/10, pd.Timestamp('2015-01-09')), (40, 140, pd.Timestamp('2015-01-09')), (50, 150.*1/15*1/16, pd.Timestamp('2015-01-09'))], pd.Timestamp('2015-01-09') ), cls.create_expected_df_for_factor_compute( [(0, 100*1/4, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120*5/3, cls.window_test_start_date), (20, 121*5/3, pd.Timestamp('2015-01-07')), (30, 230*1/10, cls.window_test_start_date), (40, np.NaN, pd.Timestamp('2015-01-10')), (50, 250.*1/15*1/16, pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-12') ), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07')), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp('2015-01-10')), (50, 250.*1/16, pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-13') ), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07')), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp('2015-01-10')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-14') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100*5, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120*.7, cls.window_test_start_date), (20, 121*.7, pd.Timestamp('2015-01-07')), (30, 230*11, cls.window_test_start_date), (40, 240, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-01-15', '2015-01-16') ]), cls.create_expected_df_for_factor_compute( [(0, 100*5*6, cls.window_test_start_date), (0, 101, pd.Timestamp('2015-01-20')), (10, 110*.3, pd.Timestamp('2015-01-09')), (10, 111*.3, pd.Timestamp('2015-01-12')), (20, 120*.7*.8, cls.window_test_start_date), (20, 121*.7*.8, pd.Timestamp('2015-01-07')), (30, 230*11*12, cls.window_test_start_date), (30, 231, pd.Timestamp('2015-01-20')), (40, 240*13, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-20') ), cls.create_expected_df_for_factor_compute( [(0, 200 * 5 * 6, pd.Timestamp('2015-01-12')), (10, 110 * .3, pd.Timestamp('2015-01-09')), (10, 111 * .3, pd.Timestamp('2015-01-12')), (20, 220 * .7 * .8, cls.window_test_start_date), (20, 221 * .8, pd.Timestamp('2015-01-17')), (40, 240 * 13, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-21') ), cls.create_expected_df_for_factor_compute( [(0, 200 * 5 * 6, pd.Timestamp('2015-01-12')), (10, 110 * .3, pd.Timestamp('2015-01-09')), (10, 111 * .3, pd.Timestamp('2015-01-12')), (20, 220 * .7 * .8, cls.window_test_start_date), (20, 221 * .8, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-22') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200*5*6, pd.Timestamp('2015-01-12')), (10, 310*.3, pd.Timestamp('2015-01-09')), (10, 311*.3, pd.Timestamp('2015-01-15')), (20, 220*.7*.8, cls.window_test_start_date), (20, 221*.8, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-01-23', '2015-01-29') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200*5*6*7, pd.Timestamp('2015-01-12')), (10, 310*.3, pd.Timestamp('2015-01-09')), (10, 311*.3, pd.Timestamp('2015-01-15')), (20, 220*.7*.8*.9, cls.window_test_start_date), (20, 221*.8*.9, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-01-30', '2015-02-05') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200*5*6*7, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220*.7*.8*.9, cls.window_test_start_date), (20, 221*.8*.9, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-02-06', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 200*5*6*7, pd.Timestamp('2015-01-12')), (0, 201, pd.Timestamp('2015-02-10')), (10, np.NaN, cls.window_test_start_date), (20, 220*.7*.8*.9, cls.window_test_start_date), (20, 221*.8*.9, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-02-10') ) ]) twoq_next = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220*5/3, cls.window_test_start_date), (30, 230*1/10, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), (50, np.NaN, cls.window_test_start_date)], pd.Timestamp('2015-01-09') )] + [cls.create_expected_df_for_factor_compute( [(0, 200*1/4, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220*5/3, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date)], pd.Timestamp('2015-01-12') )] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-13', '2015-01-14')] + [cls.create_expected_df_for_factor_compute( [(0, 200*5, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220*.7, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-15', '2015-01-16')] + [cls.create_expected_df_for_factor_compute( [(0, 200*5*6, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220*.7*.8, cls.window_test_start_date), (20, 221*.8, pd.Timestamp('2015-01-17')), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date)], pd.Timestamp('2015-01-20') )] + [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-21', '2015-02-10')] ) return { 1: oneq_next, 2: twoq_next } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextWithSplitAdjustedWindows(NextWithSplitAdjustedWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextSplitAdjustedEstimatesLoader( bz.data(events), columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) class WithSplitAdjustedMultipleEstimateColumns(WithEstimates): """ ZiplineTestCase mixin for having multiple estimate columns that are split-adjusted to make sure that adjustments are applied correctly. Attributes ---------- test_start_date : pd.Timestamp The start date of the test. test_end_date : pd.Timestamp The start date of the test. split_adjusted_asof : pd.Timestamp The split-adjusted-asof-date of the data used in the test, to be used to create all loaders of test classes that subclass this mixin. Methods ------- make_expected_timelines_1q_out -> dict[pd.Timestamp -> dict[str -> np.array]] The expected array of results for each date of the date range for each column. Only for 1 quarter out. make_expected_timelines_2q_out -> dict[pd.Timestamp -> dict[str -> np.array]] The expected array of results for each date of the date range. For 2 quarters out, so only for the column that is requested to be loaded with 2 quarters out. Tests ----- test_adjustments_with_multiple_adjusted_columns Tests that if you have multiple columns, we still split-adjust correctly. test_multiple_datasets_different_num_announcements Tests that if you have multiple datasets that ask for a different number of quarters out, and each asks for a different estimates column, we still split-adjust correctly. """ END_DATE = pd.Timestamp('2015-02-10') test_start_date = pd.Timestamp('2015-01-06', tz='utc') test_end_date = pd.Timestamp('2015-01-12', tz='utc') split_adjusted_asof = pd.Timestamp('2015-01-08') @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): sid_0_events = pd.DataFrame({ # We only want a stale KD here so that adjustments # will be applied. TS_FIELD_NAME: [pd.Timestamp('2015-01-05'), pd.Timestamp('2015-01-05')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12')], 'estimate1': [1100., 1200.], 'estimate2': [2100., 2200.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, }) # This is just an extra sid to make sure that we apply adjustments # correctly for multiple columns when we have multiple sids. sid_1_events = pd.DataFrame({ # We only want a stale KD here so that adjustments # will be applied. TS_FIELD_NAME: [pd.Timestamp('2015-01-05'), pd.Timestamp('2015-01-05')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-08'), pd.Timestamp('2015-01-11')], 'estimate1': [1110., 1210.], 'estimate2': [2110., 2210.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 1, }) return pd.concat([sid_0_events, sid_1_events]) @classmethod def make_splits_data(cls): sid_0_splits = pd.DataFrame({ SID_FIELD_NAME: 0, 'ratio': (.3, 3.), 'effective_date': (pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-09')), }) sid_1_splits = pd.DataFrame({ SID_FIELD_NAME: 1, 'ratio': (.4, 4.), 'effective_date': (pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-09')), }) return pd.concat([sid_0_splits, sid_1_splits]) @classmethod def make_expected_timelines_1q_out(cls): return {} @classmethod def make_expected_timelines_2q_out(cls): return {} @classmethod def init_class_fixtures(cls): super( WithSplitAdjustedMultipleEstimateColumns, cls ).init_class_fixtures() cls.timelines_1q_out = cls.make_expected_timelines_1q_out() cls.timelines_2q_out = cls.make_expected_timelines_2q_out() def test_adjustments_with_multiple_adjusted_columns(self): dataset = MultipleColumnsQuartersEstimates(1) timelines = self.timelines_1q_out window_len = 3 class SomeFactor(CustomFactor): inputs = [dataset.estimate1, dataset.estimate2] window_length = window_len def compute(self, today, assets, out, estimate1, estimate2): assert_almost_equal(estimate1, timelines[today]['estimate1']) assert_almost_equal(estimate2, timelines[today]['estimate2']) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=self.test_start_date, # last event date we have end_date=self.test_end_date, ) def test_multiple_datasets_different_num_announcements(self): dataset1 = MultipleColumnsQuartersEstimates(1) dataset2 = MultipleColumnsQuartersEstimates(2) timelines_1q_out = self.timelines_1q_out timelines_2q_out = self.timelines_2q_out window_len = 3 class SomeFactor1(CustomFactor): inputs = [dataset1.estimate1] window_length = window_len def compute(self, today, assets, out, estimate1): assert_almost_equal( estimate1, timelines_1q_out[today]['estimate1'] ) class SomeFactor2(CustomFactor): inputs = [dataset2.estimate2] window_length = window_len def compute(self, today, assets, out, estimate2): assert_almost_equal( estimate2, timelines_2q_out[today]['estimate2'] ) engine = self.make_engine() engine.run_pipeline( Pipeline({'est1': SomeFactor1(), 'est2': SomeFactor2()}), start_date=self.test_start_date, # last event date we have end_date=self.test_end_date, ) class PreviousWithSplitAdjustedMultipleEstimateColumns( WithSplitAdjustedMultipleEstimateColumns, ZiplineTestCase ): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate1', 'estimate2'], split_adjusted_asof=cls.split_adjusted_asof, ) @classmethod def make_expected_timelines_1q_out(cls): return { pd.Timestamp('2015-01-06', tz='utc'): { 'estimate1': np.array([[np.NaN, np.NaN]] * 3), 'estimate2': np.array([[np.NaN, np.NaN]] * 3) }, pd.Timestamp('2015-01-07', tz='utc'): { 'estimate1': np.array([[np.NaN, np.NaN]] * 3), 'estimate2': np.array([[np.NaN, np.NaN]] * 3) }, pd.Timestamp('2015-01-08', tz='utc'): { 'estimate1': np.array([[np.NaN, np.NaN]] * 2 + [[np.NaN, 1110.]]), 'estimate2': np.array([[np.NaN, np.NaN]] * 2 + [[np.NaN, 2110.]]) }, pd.Timestamp('2015-01-09', tz='utc'): { 'estimate1': np.array([[np.NaN, np.NaN]] + [[np.NaN, 1110. * 4]] + [[1100 * 3., 1110. * 4]]), 'estimate2': np.array([[np.NaN, np.NaN]] + [[np.NaN, 2110. * 4]] + [[2100 * 3., 2110. * 4]]) }, pd.Timestamp('2015-01-12', tz='utc'): { 'estimate1': np.array([[np.NaN, np.NaN]] * 2 + [[1200 * 3., 1210. * 4]]), 'estimate2': np.array([[np.NaN, np.NaN]] * 2 + [[2200 * 3., 2210. * 4]]) } } @classmethod def make_expected_timelines_2q_out(cls): return { pd.Timestamp('2015-01-06', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] * 3) }, pd.Timestamp('2015-01-07', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] * 3) }, pd.Timestamp('2015-01-08', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] * 3) }, pd.Timestamp('2015-01-09', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] * 3) }, pd.Timestamp('2015-01-12', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] * 2 + [[2100 * 3., 2110. * 4]]) } } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousWithMultipleEstimateColumns( PreviousWithSplitAdjustedMultipleEstimateColumns ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousSplitAdjustedEstimatesLoader( bz.data(events), columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate1', 'estimate2'], split_adjusted_asof=cls.split_adjusted_asof, ) class NextWithSplitAdjustedMultipleEstimateColumns( WithSplitAdjustedMultipleEstimateColumns, ZiplineTestCase ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate1', 'estimate2'], split_adjusted_asof=cls.split_adjusted_asof, ) @classmethod def make_expected_timelines_1q_out(cls): return { pd.Timestamp('2015-01-06', tz='utc'): { 'estimate1': np.array([[np.NaN, np.NaN]] + [[1100. * 1/.3, 1110. * 1/.4]] * 2), 'estimate2': np.array([[np.NaN, np.NaN]] + [[2100. * 1/.3, 2110. * 1/.4]] * 2), }, pd.Timestamp('2015-01-07', tz='utc'): { 'estimate1': np.array([[1100., 1110.]] * 3), 'estimate2': np.array([[2100., 2110.]] * 3) }, pd.Timestamp('2015-01-08', tz='utc'): { 'estimate1': np.array([[1100., 1110.]] * 3), 'estimate2': np.array([[2100., 2110.]] * 3) }, pd.Timestamp('2015-01-09', tz='utc'): { 'estimate1': np.array([[1100 * 3., 1210. * 4]] * 3), 'estimate2': np.array([[2100 * 3., 2210. * 4]] * 3) }, pd.Timestamp('2015-01-12', tz='utc'): { 'estimate1': np.array([[1200 * 3., np.NaN]] * 3), 'estimate2': np.array([[2200 * 3., np.NaN]] * 3) } } @classmethod def make_expected_timelines_2q_out(cls): return { pd.Timestamp('2015-01-06', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] + [[2200 * 1/.3, 2210. * 1/.4]] * 2) }, pd.Timestamp('2015-01-07', tz='utc'): { 'estimate2': np.array([[2200., 2210.]] * 3) }, pd.Timestamp('2015-01-08', tz='utc'): { 'estimate2': np.array([[2200, 2210.]] * 3) }, pd.Timestamp('2015-01-09', tz='utc'): { 'estimate2': np.array([[2200 * 3., np.NaN]] * 3) }, pd.Timestamp('2015-01-12', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] * 3) } } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextWithMultipleEstimateColumns( NextWithSplitAdjustedMultipleEstimateColumns ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextSplitAdjustedEstimatesLoader( bz.data(events), columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate1', 'estimate2'], split_adjusted_asof=cls.split_adjusted_asof, ) class WithAdjustmentBoundaries(WithEstimates): """ ZiplineTestCase mixin providing class-level attributes, methods, and a test to make sure that when the split-adjusted-asof-date is not strictly within the date index, we can still apply adjustments correctly. Attributes ---------- split_adjusted_before_start : pd.Timestamp A split-adjusted-asof-date before the start date of the test. split_adjusted_after_end : pd.Timestamp A split-adjusted-asof-date before the end date of the test. split_adjusted_asof_dates : list of tuples of pd.Timestamp All the split-adjusted-asof-dates over which we want to parameterize the test. Methods ------- make_expected_out -> dict[pd.Timestamp -> pd.DataFrame] A dictionary of the expected output of the pipeline at each of the dates of interest. """ START_DATE = pd.Timestamp('2015-01-04') # We want to run the pipeline starting from `START_DATE`, but the # pipeline results will start from the next day, which is # `test_start_date`. test_start_date = pd.Timestamp('2015-01-05') END_DATE = test_end_date = pd.Timestamp('2015-01-12') split_adjusted_before_start = ( test_start_date - timedelta(days=1) ) split_adjusted_after_end = ( test_end_date + timedelta(days=1) ) # Must parametrize over this because there can only be 1 such date for # each set of data. split_adjusted_asof_dates = [(test_start_date,), (test_end_date,), (split_adjusted_before_start,), (split_adjusted_after_end,)] @classmethod def init_class_fixtures(cls): super(WithAdjustmentBoundaries, cls).init_class_fixtures() cls.s0 = cls.asset_finder.retrieve_asset(0) cls.s1 = cls.asset_finder.retrieve_asset(1) cls.s2 = cls.asset_finder.retrieve_asset(2) cls.s3 = cls.asset_finder.retrieve_asset(3) cls.s4 = cls.asset_finder.retrieve_asset(4) cls.expected = cls.make_expected_out() @classmethod def make_events(cls): # We can create a sid for each configuration of dates for KDs, events, # and splits. For this test we don't care about overwrites so we only # test 1 quarter. sid_0_timeline = pd.DataFrame({ # KD on first date of index TS_FIELD_NAME: cls.test_start_date, EVENT_DATE_FIELD_NAME:
pd.Timestamp('2015-01-09')
pandas.Timestamp
""""Interface between the JS Download script and the Database storage""" import os from datetime import datetime as dt import time import json import argparse from Naked.toolshed.shell import execute_js, muterun_js import pandas as pd from database import instance as db from tools import exp_to_int blockSeries = 5000 attemptsThreshold = 10 logsSeparate = False parseToInt = False tempFilename = 'data/temp.json' dataDownloaderScript = '--max-old-space-size=16384 data-downloader.js' def loadRawData(filepath): start = time.time() try: with open(filepath) as json_data: loadedData = json.load(json_data) print("Loading the data took "+str(time.time() - start)+" seconds") return loadedData except FileNotFoundError: return None def convertTimestamp(x): if 'date' in x: key = 'date' elif 'time' in x: key = 'time' else: raise ValueError('Unsupported timestamp format in given data %s.' % x.keys()) x['date'] = dt.utcfromtimestamp(x.pop(key, None)) #remove the old key, convert to date and replace it with 'date' def parseInt(data): if type(data) == dict: for key in data: #parse to int if type(data[key]) == str: try: base = 10 if data[key].startswith('0x'): base = 16 data[key] = int(data[key], base=base) except ValueError: pass elif type(data) == list: for i, val in enumerate(data): if type(val) == str: try: base = 10 if val.startswith('0x'): base = 16 data[i] = int(val, base=base) except ValueError: pass def processRawCourseData(data): start = time.time() for x in data: convertTimestamp(x) def downloadCourse(): callDataDownloaderCourse(tempFilename) data = loadRawData(tempFilename) #get it os.remove(tempFilename) print("Downloaded data with length "+str(len(data))+" ticks") #debug processRawCourseData(data) #process a bit to make it suitable for storage df =
pd.DataFrame(data)
pandas.DataFrame
# Copyright 2019 <NAME>. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # Plot Service will make use of appropriately decorated functions in this module. import datetime import logging import re import time from collections import namedtuple from enum import auto from numbers import Real from dateutil import tz import cachetools.func import numpy as np import pandas as pd from pandas import Series from pandas.tseries.holiday import Holiday, AbstractHolidayCalendar, USMemorialDay, USLaborDay, USThanksgivingDay, \ nearest_workday from gs_quant.api.gs.assets import GsIdType from gs_quant.api.gs.data import GsDataApi from gs_quant.api.gs.data import QueryType from gs_quant.data.core import DataContext from gs_quant.data.fields import Fields from gs_quant.datetime.gscalendar import GsCalendar from gs_quant.datetime.point import relative_days_add from gs_quant.errors import MqTypeError, MqValueError from gs_quant.markets.securities import * from gs_quant.markets.securities import Asset, AssetIdentifier, SecurityMaster from gs_quant.target.common import AssetClass, FieldFilterMap, AssetType, Currency from gs_quant.timeseries.helper import log_return, plot_measure GENERIC_DATE = Union[datetime.date, str] TD_ONE = datetime.timedelta(days=1) _logger = logging.getLogger(__name__) MeasureDependency: namedtuple = namedtuple("MeasureDependency", ["id_provider", "query_type"]) # TODO: get NERC Calendar from SecDB class NercCalendar(AbstractHolidayCalendar): rules = [ Holiday('New Years Day', month=1, day=1, observance=nearest_workday), USMemorialDay, Holiday('July 4th', month=7, day=4, observance=nearest_workday), USLaborDay, USThanksgivingDay, Holiday('Christmas', month=12, day=25, observance=nearest_workday) ] def _to_fx_strikes(strikes): out = [] for strike in strikes: if strike == 50: out.append('ATMS') elif strike < 50: out.append(f'{round(strike)}DC') else: out.append(f'{round(abs(100 - strike))}DP') return out class SkewReference(Enum): DELTA = 'delta' NORMALIZED = 'normalized' SPOT = 'spot' FORWARD = 'forward' class VolReference(Enum): DELTA_CALL = 'delta_call' DELTA_PUT = 'delta_put' DELTA_NEUTRAL = 'delta_neutral' NORMALIZED = 'normalized' SPOT = 'spot' FORWARD = 'forward' class VolSmileReference(Enum): SPOT = 'spot' FORWARD = 'forward' class EdrDataReference(Enum): DELTA_CALL = 'delta_call' DELTA_PUT = 'delta_put' FORWARD = 'forward' class ForeCastHorizon(Enum): THREE_MONTH = '3m' SIX_MONTH = '6m' ONE_YEAR = '1y' EOY1 = 'EOY1' EOY2 = 'EOY2' EOY3 = 'EOY3' EOY4 = 'EOY4' class BenchmarkType(Enum): LIBOR = 'LIBOR' EURIBOR = 'EURIBOR' STIBOR = 'STIBOR' OIS = 'OIS' class RatesConversionType(Enum): DEFAULT_BENCHMARK_RATE = auto() INFLATION_BENCHMARK_RATE = auto() CROSS_CURRENCY_BASIS = auto() CURRENCY_TO_DEFAULT_RATE_BENCHMARK = { 'USD': 'USD-LIBOR-BBA', 'EUR': 'EUR-EURIBOR-Telerate', 'GBP': 'GBP-LIBOR-BBA', 'JPY': 'JPY-LIBOR-BBA' } CURRENCY_TO_INFLATION_RATE_BENCHMARK = { 'GBP': 'CPI-UKRPI', 'EUR': 'CPI-CPXTEMU' } CROSS_TO_CROSS_CURRENCY_BASIS = { 'JPYUSD': 'USD-3m/JPY-3m', 'USDJPY': 'USD-3m/JPY-3m', 'USDEUR': 'EUR-3m/USD-3m', 'EURUSD': 'EUR-3m/USD-3m', 'USDGBP': 'GBP-3m/USD-3m', 'GBPUSD': 'GBP-3m/USD-3m' } def cross_stored_direction_for_fx_vol(asset_id: str) -> str: result_id = asset_id try: asset = SecurityMaster.get_asset(asset_id, AssetIdentifier.MARQUEE_ID) if asset.asset_class is AssetClass.FX: bbid = asset.get_identifier(AssetIdentifier.BLOOMBERG_ID) if bbid is not None: legit_usd_cross = str.startswith(bbid, "USD") and not str.endswith(bbid, ("EUR", "GBP", "NZD", "AUD")) legit_eur_cross = str.startswith(bbid, "EUR") legit_jpy_cross = str.endswith(bbid, "JPY") and not str.startswith(bbid, ("KRW", "IDR", "CLP", "COP")) odd_cross = bbid in ("EURUSD", "GBPUSD", "NZDUSD", "AUDUSD", "JPYKRW", "JPYIDR", "JPYCLP", "JPYCOP") if not legit_usd_cross and not legit_eur_cross and not legit_jpy_cross and not odd_cross: cross = bbid[3:] + bbid[:3] cross_asset = SecurityMaster.get_asset(cross, AssetIdentifier.BLOOMBERG_ID) result_id = cross_asset.get_marquee_id() except TypeError: result_id = asset_id return result_id def cross_to_usd_based_cross(asset_id: str) -> str: result_id = asset_id try: asset = SecurityMaster.get_asset(asset_id, AssetIdentifier.MARQUEE_ID) if asset.asset_class is AssetClass.FX: bbid = asset.get_identifier(AssetIdentifier.BLOOMBERG_ID) if bbid is not None and not str.startswith(bbid, "USD"): cross = bbid[3:] + bbid[:3] cross_asset = SecurityMaster.get_asset(cross, AssetIdentifier.BLOOMBERG_ID) result_id = cross_asset.get_marquee_id() except TypeError: result_id = asset_id return result_id def currency_to_default_benchmark_rate(asset_id: str) -> str: try: asset = SecurityMaster.get_asset(asset_id, AssetIdentifier.MARQUEE_ID) result = convert_asset_for_rates_data_set(asset, RatesConversionType.DEFAULT_BENCHMARK_RATE) except TypeError: result = asset_id return result def currency_to_inflation_benchmark_rate(asset_id: str) -> str: try: asset = SecurityMaster.get_asset(asset_id, AssetIdentifier.MARQUEE_ID) result = convert_asset_for_rates_data_set(asset, RatesConversionType.INFLATION_BENCHMARK_RATE) except TypeError: result = asset_id return result def cross_to_basis(asset_id: str) -> str: try: asset = SecurityMaster.get_asset(asset_id, AssetIdentifier.MARQUEE_ID) result = convert_asset_for_rates_data_set(asset, RatesConversionType.CROSS_CURRENCY_BASIS) except TypeError: result = asset_id return result def convert_asset_for_rates_data_set(from_asset: Asset, c_type: RatesConversionType) -> str: try: bbid = from_asset.get_identifier(AssetIdentifier.BLOOMBERG_ID) if bbid is None: return from_asset.get_marquee_id() if c_type is RatesConversionType.DEFAULT_BENCHMARK_RATE: to_asset = CURRENCY_TO_DEFAULT_RATE_BENCHMARK[bbid] elif c_type is RatesConversionType.INFLATION_BENCHMARK_RATE: to_asset = CURRENCY_TO_INFLATION_RATE_BENCHMARK[bbid] else: to_asset = CROSS_TO_CROSS_CURRENCY_BASIS[bbid] return GsAssetApi.map_identifiers(GsIdType.mdapi, GsIdType.id, [to_asset])[to_asset] except KeyError: logging.info(f'Unsupported currency or cross ${bbid}') raise from_asset.get_marquee_id() def _get_custom_bd(exchange): from pandas.tseries.offsets import CustomBusinessDay calendar = GsCalendar.get(exchange).business_day_calendar() return CustomBusinessDay(calendar=calendar) @log_return(_logger, 'trying pricing dates') def _range_from_pricing_date(exchange, pricing_date: Optional[GENERIC_DATE] = None): if isinstance(pricing_date, datetime.date): return pricing_date, pricing_date today = pd.Timestamp.today().normalize() if pricing_date is None: t1 = today - _get_custom_bd(exchange) return t1, t1 assert isinstance(pricing_date, str) matcher = re.fullmatch('(\\d+)b', pricing_date) if matcher: start = end = today - _get_custom_bd(exchange) * int(matcher.group(1)) else: end = today - datetime.timedelta(days=relative_days_add(pricing_date, True)) start = end - _get_custom_bd(exchange) return start, end def _to_offset(tenor: str) -> pd.DateOffset: import re matcher = re.fullmatch('(\\d+)([dwmy])', tenor) if not matcher: raise ValueError('invalid tenor ' + tenor) ab = matcher.group(2) if ab == 'd': name = 'days' elif ab == 'w': name = 'weeks' elif ab == 'm': name = 'months' else: assert ab == 'y' name = 'years' kwarg = {name: int(matcher.group(1))} return pd.DateOffset(**kwarg) def _market_data_timed(q): start = time.perf_counter() df = GsDataApi.get_market_data(q) _logger.debug('market data query ran in %.3f ms', (time.perf_counter() - start) * 1000) return df @plot_measure((AssetClass.FX, AssetClass.Equity), None, [MeasureDependency( id_provider=cross_stored_direction_for_fx_vol, query_type=QueryType.IMPLIED_VOLATILITY)]) def skew(asset: Asset, tenor: str, strike_reference: SkewReference, distance: Real, *, location: str = 'NYC', source: str = None, real_time: bool = False) -> Series: """ Difference in implied volatility of equidistant out-of-the-money put and call options. :param asset: asset object loaded from security master :param tenor: relative date representation of expiration date e.g. 1m :param strike_reference: reference for strike level (for equities) :param distance: distance from at-the-money option :param location: location at which a price fixing has been taken (for FX assets) :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: skew curve """ if real_time: raise MqValueError('real-time skew not supported') if strike_reference in (SkewReference.DELTA, None): b = 50 elif strike_reference == SkewReference.NORMALIZED: b = 0 else: b = 100 kwargs = {} if strike_reference in (SkewReference.DELTA, None): # using delta call strikes so X DP is represented as (100 - X) DC q_strikes = [100 - distance, distance, b] else: q_strikes = [b - distance, b + distance, b] asset_id = asset.get_marquee_id() if asset.asset_class == AssetClass.FX: asset_id = cross_stored_direction_for_fx_vol(asset_id) q_strikes = _to_fx_strikes(q_strikes) kwargs['location'] = location column = 'deltaStrike' # should use SkewReference.DELTA for FX else: assert asset.asset_class == AssetClass.Equity if not strike_reference: raise MqTypeError('strike reference required for equities') if strike_reference != SkewReference.NORMALIZED: q_strikes = [x / 100 for x in q_strikes] kwargs['strikeReference'] = strike_reference.value column = 'relativeStrike' kwargs[column] = q_strikes _logger.debug('where tenor=%s and %s', tenor, kwargs) where = FieldFilterMap(tenor=tenor, **kwargs) q = GsDataApi.build_market_data_query([asset_id], QueryType.IMPLIED_VOLATILITY, where=where, source=source) _logger.debug('q %s', q) df = _market_data_timed(q) if df.empty: return pd.Series() curves = {k: v for k, v in df.groupby(column)} if len(curves) < 3: raise MqValueError('skew not available for given inputs') series = [curves[qs]['impliedVolatility'] for qs in q_strikes] return (series[0] - series[1]) / series[2] @plot_measure((AssetClass.Equity, AssetClass.Commod, AssetClass.FX,), None, [MeasureDependency(id_provider=cross_stored_direction_for_fx_vol, query_type=QueryType.IMPLIED_VOLATILITY)]) def implied_volatility(asset: Asset, tenor: str, strike_reference: VolReference, relative_strike: Real = None, *, source: str = None, real_time: bool = False) -> Series: """ Volatility of an asset implied by observations of market prices. :param asset: asset object loaded from security master :param tenor: relative date representation of expiration date e.g. 1m :param strike_reference: reference for strike level :param relative_strike: strike relative to reference :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: implied volatility curve """ if relative_strike is None and strike_reference != VolReference.DELTA_NEUTRAL: raise MqValueError('Relative strike must be provided if your strike reference is not delta_neutral') if asset.asset_class == AssetClass.FX: if strike_reference == VolReference.DELTA_NEUTRAL: delta_strike = 'DN' elif strike_reference == VolReference.DELTA_CALL: delta_strike = f'{relative_strike}DC' elif strike_reference == VolReference.DELTA_PUT: delta_strike = f'{relative_strike}DP' elif strike_reference == VolReference.FORWARD: if relative_strike == 100: delta_strike = 'ATMF' else: raise MqValueError('Relative strike must be 100 for Forward strike reference') elif strike_reference == VolReference.SPOT: if relative_strike == 100: delta_strike = 'ATMS' else: raise MqValueError('Relative strike must be 100 for Spot strike reference') else: raise MqValueError('strikeReference: ' + strike_reference.value + ' not supported for FX') asset_id = cross_stored_direction_for_fx_vol(asset.get_marquee_id()) _logger.debug('where tenor=%s, deltaStrike=%s, location=NYC', tenor, delta_strike) q = GsDataApi.build_market_data_query( [asset_id], QueryType.IMPLIED_VOLATILITY, where=FieldFilterMap(tenor=tenor, deltaStrike=delta_strike, location='NYC'), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) else: if strike_reference == VolReference.DELTA_NEUTRAL: raise NotImplementedError('delta_neutral strike reference is not supported for equities.') if strike_reference == VolReference.DELTA_PUT: relative_strike = abs(100 - relative_strike) relative_strike = relative_strike if strike_reference == VolReference.NORMALIZED else relative_strike / 100 ref_string = "delta" if strike_reference in (VolReference.DELTA_CALL, VolReference.DELTA_PUT) else strike_reference.value _logger.debug('where tenor=%s, strikeReference=%s, relativeStrike=%s', tenor, ref_string, relative_strike) where = FieldFilterMap(tenor=tenor, strikeReference=ref_string, relativeStrike=relative_strike) q = GsDataApi.build_market_data_query([asset.get_marquee_id()], QueryType.IMPLIED_VOLATILITY, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['impliedVolatility'] @plot_measure((AssetClass.Equity,), (AssetType.Index, AssetType.ETF,), [QueryType.IMPLIED_CORRELATION]) def implied_correlation(asset: Asset, tenor: str, strike_reference: EdrDataReference, relative_strike: Real, *, source: str = None, real_time: bool = False) -> Series: """ Correlation of an asset implied by observations of market prices. :param asset: asset object loaded from security master :param tenor: relative date representation of expiration date e.g. 1m :param strike_reference: reference for strike level :param relative_strike: strike relative to reference :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: implied correlation curve """ if real_time: raise NotImplementedError('realtime implied_correlation not implemented') if strike_reference == EdrDataReference.DELTA_PUT: relative_strike = abs(100 - relative_strike) relative_strike = relative_strike / 100 delta_types = (EdrDataReference.DELTA_CALL, EdrDataReference.DELTA_PUT) strike_ref = "delta" if strike_reference in delta_types else strike_reference.value _logger.debug('where tenor=%s, strikeReference=%s, relativeStrike=%s', tenor, strike_ref, relative_strike) mqid = asset.get_marquee_id() where = FieldFilterMap(tenor=tenor, strikeReference=strike_ref, relativeStrike=relative_strike) q = GsDataApi.build_market_data_query([mqid], QueryType.IMPLIED_CORRELATION, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['impliedCorrelation'] @plot_measure((AssetClass.Equity,), (AssetType.Index, AssetType.ETF,), [QueryType.AVERAGE_IMPLIED_VOLATILITY]) def average_implied_volatility(asset: Asset, tenor: str, strike_reference: EdrDataReference, relative_strike: Real, *, source: str = None, real_time: bool = False) -> Series: """ Historic weighted average implied volatility for the underlying assets of an equity index. :param asset: asset object loaded from security master :param tenor: relative date representation of expiration date e.g. 1m :param strike_reference: reference for strike level :param relative_strike: strike relative to reference :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: average implied volatility curve """ if real_time: raise NotImplementedError('realtime average_implied_volatility not implemented') if strike_reference == EdrDataReference.DELTA_PUT: relative_strike = abs(100 - relative_strike) relative_strike = relative_strike / 100 delta_types = (EdrDataReference.DELTA_CALL, EdrDataReference.DELTA_PUT) strike_ref = "delta" if strike_reference in delta_types else strike_reference.value _logger.debug('where tenor=%s, strikeReference=%s, relativeStrike=%s', tenor, strike_ref, relative_strike) mqid = asset.get_marquee_id() where = FieldFilterMap(tenor=tenor, strikeReference=strike_ref, relativeStrike=relative_strike) q = GsDataApi.build_market_data_query([mqid], QueryType.AVERAGE_IMPLIED_VOLATILITY, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['averageImpliedVolatility'] @plot_measure((AssetClass.Equity,), (AssetType.Index, AssetType.ETF,), [QueryType.AVERAGE_IMPLIED_VARIANCE]) def average_implied_variance(asset: Asset, tenor: str, strike_reference: EdrDataReference, relative_strike: Real, *, source: str = None, real_time: bool = False) -> Series: """ Historic weighted average implied variance for the underlying assets of an equity index. :param asset: asset object loaded from security master :param tenor: relative date representation of expiration date e.g. 1m :param strike_reference: reference for strike level :param relative_strike: strike relative to reference :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: average implied variance curve """ if real_time: raise NotImplementedError('realtime average_implied_variance not implemented') if strike_reference == EdrDataReference.DELTA_PUT: relative_strike = abs(100 - relative_strike) relative_strike = relative_strike / 100 delta_types = (EdrDataReference.DELTA_CALL, EdrDataReference.DELTA_PUT) strike_ref = "delta" if strike_reference in delta_types else strike_reference.value _logger.debug('where tenor=%s, strikeReference=%s, relativeStrike=%s', tenor, strike_ref, relative_strike) mqid = asset.get_marquee_id() where = FieldFilterMap(tenor=tenor, strikeReference=strike_ref, relativeStrike=relative_strike) q = GsDataApi.build_market_data_query([mqid], QueryType.AVERAGE_IMPLIED_VARIANCE, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['averageImpliedVariance'] @plot_measure((AssetClass.Cash,), (AssetType.Currency,), [QueryType.SWAP_RATE]) def swap_rate(asset: Asset, tenor: str, benchmark_type: BenchmarkType = None, floating_index: str = None, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day Fixed-Floating interest rate swap (IRS) curves across major currencies. :param asset: asset object loaded from security master :param tenor: relative date representation of expiration date e.g. 1m :param benchmark_type: benchmark type e.g. LIBOR :param floating_index: floating index rate :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: swap rate curve """ if real_time: raise NotImplementedError('realtime swap_rate not implemented') currency = asset.get_identifier(AssetIdentifier.BLOOMBERG_ID) currency = Currency(currency) # default benchmark types if benchmark_type is None: if currency == Currency.EUR: benchmark_type = BenchmarkType.EURIBOR elif currency == Currency.SEK: benchmark_type = BenchmarkType.STIBOR else: benchmark_type = BenchmarkType.LIBOR over_nights = [BenchmarkType.OIS] # default floating index if floating_index is None: if benchmark_type in over_nights: floating_index = '1d' else: if currency in [Currency.USD]: floating_index = '3m' elif currency in [Currency.GBP, Currency.EUR, Currency.CHF, Currency.SEK]: floating_index = '6m' mdapi_divider = " " if benchmark_type in over_nights else "-" mdapi_floating_index = BenchmarkType.OIS.value if benchmark_type is BenchmarkType.OIS else floating_index mdapi = currency.value + mdapi_divider + mdapi_floating_index rate_mqid = GsAssetApi.map_identifiers(GsIdType.mdapi, GsIdType.id, [mdapi])[mdapi] _logger.debug('where tenor=%s, floatingIndex=%s', tenor, floating_index) q = GsDataApi.build_market_data_query( [rate_mqid], QueryType.SWAP_RATE, where=FieldFilterMap(tenor=tenor), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['swapRate'] @plot_measure((AssetClass.Cash,), (AssetType.Currency,), [MeasureDependency(id_provider=currency_to_default_benchmark_rate, query_type=QueryType.SWAPTION_VOL)]) def swaption_vol(asset: Asset, expiration_tenor: str, termination_tenor: str, relative_strike: float, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day implied normal volatility for swaption vol matrices. :param asset: asset object loaded from security master :param expiration_tenor: relative date representation of expiration date on the option e.g. 3m :param termination_tenor: relative date representation of the instrument's expiration date e.g. 1y :param relative_strike: strike level relative to at the money e.g. 10 :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: swaption implied normal volatility curve """ if real_time: raise NotImplementedError('realtime swaption_vol not implemented') rate_benchmark_mqid = convert_asset_for_rates_data_set(asset, RatesConversionType.DEFAULT_BENCHMARK_RATE) _logger.debug('where expiry=%s, tenor=%s, strike=%s', expiration_tenor, termination_tenor, relative_strike) q = GsDataApi.build_market_data_query( [rate_benchmark_mqid], QueryType.SWAPTION_VOL, where=FieldFilterMap(expiry=expiration_tenor, tenor=termination_tenor, strike=relative_strike), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['swaptionVol'] @plot_measure((AssetClass.Cash,), (AssetType.Currency,), [MeasureDependency(id_provider=currency_to_default_benchmark_rate, query_type=QueryType.ATM_FWD_RATE)]) def swaption_atm_fwd_rate(asset: Asset, expiration_tenor: str, termination_tenor: str, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day at-the-money forward rate for swaption vol matrices. :param asset: asset object loaded from security master :param expiration_tenor: relative date representation of expiration date on the option e.g. 3m :param termination_tenor: relative date representation of the instrument's expiration date e.g. 1y :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: swaption at-the-money forward rate curve """ if real_time: raise NotImplementedError('realtime swaption_atm_fwd_rate not implemented') rate_benchmark_mqid = convert_asset_for_rates_data_set(asset, RatesConversionType.DEFAULT_BENCHMARK_RATE) _logger.debug('where expiry=%s, tenor=%s', expiration_tenor, termination_tenor) q = GsDataApi.build_market_data_query( [rate_benchmark_mqid], QueryType.ATM_FWD_RATE, where=FieldFilterMap(expiry=expiration_tenor, tenor=termination_tenor, strike=0), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['atmFwdRate'] @plot_measure((AssetClass.Cash,), (AssetType.Currency,), [MeasureDependency(id_provider=currency_to_default_benchmark_rate, query_type=QueryType.MIDCURVE_VOL)]) def midcurve_vol(asset: Asset, expiration_tenor: str, forward_tenor: str, termination_tenor: str, relative_strike: float, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day implied normal volatility for midcurve vol matrices. :param asset: asset object loaded from security master :param expiration_tenor: relative date representation of expiration date on the option e.g. 3m :param forward_tenor: relative date representation of swap's start date after option expiry e.g. 2y :param termination_tenor: relative date representation of the instrument's expiration date e.g. 1y :param relative_strike: strike level relative to at the money e.g. 10 :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: midcurve implied normal volatility curve """ if real_time: raise NotImplementedError('realtime midcurve_vol not implemented') _logger.debug('where expiry=%s, forwardTenor=%s, tenor=%s, strike=%s', expiration_tenor, forward_tenor, termination_tenor, relative_strike) rate_benchmark_mqid = convert_asset_for_rates_data_set(asset, RatesConversionType.DEFAULT_BENCHMARK_RATE) q = GsDataApi.build_market_data_query( [rate_benchmark_mqid], QueryType.MIDCURVE_VOL, where=FieldFilterMap(expiry=expiration_tenor, forwardTenor=forward_tenor, tenor=termination_tenor, strike=relative_strike), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['midcurveVol'] @plot_measure((AssetClass.Cash,), (AssetType.Currency,), [MeasureDependency(id_provider=currency_to_default_benchmark_rate, query_type=QueryType.MIDCURVE_ATM_FWD_RATE)]) def midcurve_atm_fwd_rate(asset: Asset, expiration_tenor: str, forward_tenor: str, termination_tenor: str, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day at-the-money forward rate for midcurve vol matrices. :param asset: asset object loaded from security master :param expiration_tenor: relative date representation of expiration date on the option e.g. 3m :param forward_tenor: relative date representation of swap's start date after option expiry e.g. 2y :param termination_tenor: relative date representation of the instrument's expiration date e.g. 1y :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: midcurve atm forward rate curve """ if real_time: raise NotImplementedError('realtime midcurve_atm_fwd_rate not implemented') q = GsDataApi.build_market_data_query( [convert_asset_for_rates_data_set(asset, RatesConversionType.DEFAULT_BENCHMARK_RATE)], QueryType.MIDCURVE_ATM_FWD_RATE, where=FieldFilterMap(expiry=expiration_tenor, forwardTenor=forward_tenor, tenor=termination_tenor, strike=0), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['midcurveAtmFwdRate'] @plot_measure((AssetClass.Cash,), (AssetType.Currency,), [MeasureDependency(id_provider=currency_to_default_benchmark_rate, query_type=QueryType.CAP_FLOOR_VOL)]) def cap_floor_vol(asset: Asset, expiration_tenor: str, relative_strike: float, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day implied normal volatility for cap and floor vol matrices. :param asset: asset object loaded from security master :param expiration_tenor: relative date representation of expiration date on the option e.g. 3m :param relative_strike: strike level relative to at the money e.g. 10 :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: cap and floor implied normal volatility curve """ if real_time: raise NotImplementedError('realtime cap_floor_vol not implemented') rate_benchmark_mqid = convert_asset_for_rates_data_set(asset, RatesConversionType.DEFAULT_BENCHMARK_RATE) _logger.debug('where expiry=%s, strike=%s', expiration_tenor, relative_strike) q = GsDataApi.build_market_data_query( [rate_benchmark_mqid], QueryType.CAP_FLOOR_VOL, where=FieldFilterMap(expiry=expiration_tenor, strike=relative_strike), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['capFloorVol'] @plot_measure((AssetClass.Cash,), (AssetType.Currency,), [MeasureDependency(id_provider=currency_to_default_benchmark_rate, query_type=QueryType.CAP_FLOOR_ATM_FWD_RATE)]) def cap_floor_atm_fwd_rate(asset: Asset, expiration_tenor: str, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day at-the-money forward rate for cap and floor matrices. :param asset: asset object loaded from security master :param expiration_tenor: relative date representation of expiration date on the option e.g. 3m :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: cap and floor atm forward rate curve """ if real_time: raise NotImplementedError('realtime cap_floor_atm_fwd_rate not implemented') q = GsDataApi.build_market_data_query( [convert_asset_for_rates_data_set(asset, RatesConversionType.DEFAULT_BENCHMARK_RATE)], QueryType.CAP_FLOOR_ATM_FWD_RATE, where=FieldFilterMap(expiry=expiration_tenor, strike=0), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['capFloorAtmFwdRate'] @plot_measure((AssetClass.Cash,), (AssetType.Currency,), [MeasureDependency(id_provider=currency_to_default_benchmark_rate, query_type=QueryType.SPREAD_OPTION_VOL)]) def spread_option_vol(asset: Asset, expiration_tenor: str, long_tenor: str, short_tenor: str, relative_strike: float, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day implied normal volatility for spread option vol matrices. :param asset: asset object loaded from security master :param expiration_tenor: relative date representation of expiration date on the option e.g. 3m :param long_tenor: relative date representation of the instrument's tenor date e.g. 1y :param short_tenor: relative date representation of the instrument's tenor date e.g. 1y :param relative_strike: strike level relative to at the money e.g. 10 :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: spread option implied normal volatility curve """ if real_time: raise NotImplementedError('realtime spread_option_vol not implemented') rate_benchmark_mqid = convert_asset_for_rates_data_set(asset, RatesConversionType.DEFAULT_BENCHMARK_RATE) _logger.debug('where expiry=%s, longTenor=%s, shortTenor=%s, strike=%s', expiration_tenor, long_tenor, short_tenor, relative_strike) q = GsDataApi.build_market_data_query( [rate_benchmark_mqid], QueryType.SPREAD_OPTION_VOL, where=FieldFilterMap(expiry=expiration_tenor, longTenor=long_tenor, shortTenor=short_tenor, strike=relative_strike), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['spreadOptionVol'] @plot_measure((AssetClass.Cash,), (AssetType.Currency,), [MeasureDependency(id_provider=currency_to_default_benchmark_rate, query_type=QueryType.SPREAD_OPTION_ATM_FWD_RATE)]) def spread_option_atm_fwd_rate(asset: Asset, expiration_tenor: str, long_tenor: str, short_tenor: str, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day At-the-money forward rate for spread option vol matrices. :param asset: asset object loaded from security master :param expiration_tenor: relative date representation of expiration date on the option e.g. 3m :param long_tenor: relative date representation of the instrument's tenor date e.g. 1y :param short_tenor: relative date representation of the instrument's tenor date e.g. 1y :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: spread option at-the-money forward rate curve """ if real_time: raise NotImplementedError('realtime spread_option_atm_fwd_rate not implemented') q = GsDataApi.build_market_data_query( [convert_asset_for_rates_data_set(asset, RatesConversionType.DEFAULT_BENCHMARK_RATE)], QueryType.SPREAD_OPTION_ATM_FWD_RATE, where=FieldFilterMap(expiry=expiration_tenor, longTenor=long_tenor, shortTenor=short_tenor, strike=0), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['spreadOptionAtmFwdRate'] @plot_measure((AssetClass.Cash,), (AssetType.Currency,), [MeasureDependency(id_provider=currency_to_inflation_benchmark_rate, query_type=QueryType.INFLATION_SWAP_RATE)]) def zc_inflation_swap_rate(asset: Asset, termination_tenor: str, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day zero coupon inflation swap break-even rate. :param asset: asset object loaded from security master :param termination_tenor: relative date representation of the instrument's expiration date e.g. 1y :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: zero coupon inflation swap break-even rate curve """ if real_time: raise NotImplementedError('realtime zc_inflation_swap_rate not implemented') infl_rate_benchmark_mqid = convert_asset_for_rates_data_set(asset, RatesConversionType.INFLATION_BENCHMARK_RATE) _logger.debug('where tenor=%s', termination_tenor) q = GsDataApi.build_market_data_query( [infl_rate_benchmark_mqid], QueryType.INFLATION_SWAP_RATE, where=FieldFilterMap(tenor=termination_tenor), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['inflationSwapRate'] @plot_measure((AssetClass.FX,), (AssetType.Cross,), [MeasureDependency(id_provider=cross_to_basis, query_type=QueryType.BASIS)]) def basis(asset: Asset, termination_tenor: str, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day cross-currency basis swap spread. :param asset: asset object loaded from security master :param termination_tenor: relative date representation of the instrument's expiration date e.g. 1y :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: cross-currency basis swap spread curve """ if real_time: raise NotImplementedError('realtime basis not implemented') basis_mqid = convert_asset_for_rates_data_set(asset, RatesConversionType.CROSS_CURRENCY_BASIS) _logger.debug('where tenor=%s', termination_tenor) q = GsDataApi.build_market_data_query( [basis_mqid], QueryType.BASIS, where=FieldFilterMap(tenor=termination_tenor), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['basis'] @plot_measure((AssetClass.FX,), (AssetType.Cross,), [MeasureDependency( id_provider=cross_to_usd_based_cross, query_type=QueryType.FORECAST)]) def forecast(asset: Asset, forecast_horizon: str, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day FX forecasts made by Global Investment Research (GIR) macro analysts. :param asset: asset object loaded from security master :param forecast_horizon: relative period of time to forecast e.g. 1y :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: FX forecast curve """ if real_time: raise NotImplementedError('realtime forecast not implemented') cross_mqid = asset.get_marquee_id() usd_based_cross_mqid = cross_to_usd_based_cross(cross_mqid) horizon = '12m' if forecast_horizon == '1y' else forecast_horizon q = GsDataApi.build_market_data_query( [usd_based_cross_mqid], QueryType.FORECAST, where=FieldFilterMap(relativePeriod=horizon), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) series = Series() if df.empty else df['forecast'] if cross_mqid != usd_based_cross_mqid: series = 1 / series return series @plot_measure((AssetClass.Equity, AssetClass.Commod), None, [QueryType.IMPLIED_VOLATILITY]) def vol_term(asset: Asset, strike_reference: SkewReference, relative_strike: Real, pricing_date: Optional[GENERIC_DATE] = None, *, source: str = None, real_time: bool = False) -> pd.Series: """ Volatility term structure. Uses most recent date available if pricing_date is not provided. :param asset: asset object loaded from security master :param strike_reference: reference for strike level :param relative_strike: strike relative to reference :param pricing_date: YYYY-MM-DD or relative days before today e.g. 1d, 1m, 1y :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: volatility term structure """ if real_time: raise NotImplementedError('realtime forward term not implemented') # TODO if strike_reference != SkewReference.NORMALIZED: relative_strike /= 100 start, end = _range_from_pricing_date(asset.exchange, pricing_date) with DataContext(start, end): _logger.debug('where strikeReference=%s, relativeStrike=%s', strike_reference.value, relative_strike) where = FieldFilterMap(strikeReference=strike_reference.value, relativeStrike=relative_strike) q = GsDataApi.build_market_data_query([asset.get_marquee_id()], QueryType.IMPLIED_VOLATILITY, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) if df.empty: return pd.Series() latest = df.index.max() _logger.info('selected pricing date %s', latest) df = df.loc[latest] cbd = _get_custom_bd(asset.exchange) df = df.assign(expirationDate=df.index + df['tenor'].map(_to_offset) + cbd - cbd) df = df.set_index('expirationDate') df.sort_index(inplace=True) df = df.loc[DataContext.current.start_date: DataContext.current.end_date] return df['impliedVolatility'] if not df.empty else pd.Series() @plot_measure((AssetClass.Equity,), None, [QueryType.IMPLIED_VOLATILITY]) def vol_smile(asset: Asset, tenor: str, strike_reference: VolSmileReference, pricing_date: Optional[GENERIC_DATE] = None, *, source: str = None, real_time: bool = False) -> Series: """ Volatility smile of an asset implied by observations of market prices. :param asset: asset object loaded from security master :param tenor: relative date representation of expiration date e.g. 1m :param strike_reference: reference for strike level :param pricing_date: YYYY-MM-DD or relative days before today e.g. 1d, 1m, 1y :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: implied volatility smile """ if real_time: raise NotImplementedError('realtime vol_smile not implemented') mqid = asset.get_marquee_id() start, end = _range_from_pricing_date(asset.exchange, pricing_date) with DataContext(start, end): q = GsDataApi.build_market_data_query( [mqid], QueryType.IMPLIED_VOLATILITY, where=FieldFilterMap(tenor=tenor, strikeReference=strike_reference.value), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) if df.empty: return Series latest = df.index.max() _logger.info('selected pricing date %s', latest) df = df.loc[latest] vols = df['impliedVolatility'].values strikes = df['relativeStrike'].values return Series(vols, index=strikes) @plot_measure((AssetClass.Equity, AssetClass.Commod), None, [QueryType.FORWARD]) def fwd_term(asset: Asset, pricing_date: Optional[GENERIC_DATE] = None, *, source: str = None, real_time: bool = False) -> pd.Series: """ Forward term structure. Uses most recent date available if pricing_date is not provided. :param asset: asset object loaded from security master :param pricing_date: YYYY-MM-DD or relative days before today e.g. 1d, 1m, 1y :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: forward term structure """ if real_time: raise NotImplementedError('realtime forward term not implemented') # TODO start, end = _range_from_pricing_date(asset.exchange, pricing_date) with DataContext(start, end): where = FieldFilterMap(strikeReference='forward', relativeStrike=1) q = GsDataApi.build_market_data_query([asset.get_marquee_id()], QueryType.FORWARD, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) if df.empty: return pd.Series() latest = df.index.max() _logger.info('selected pricing date %s', latest) df = df.loc[latest] cbd = _get_custom_bd(asset.exchange) df.loc[:, 'expirationDate'] = df.index + df['tenor'].map(_to_offset) + cbd - cbd df = df.set_index('expirationDate') df.sort_index(inplace=True) df = df.loc[DataContext.current.start_date: DataContext.current.end_date] return df['forward'] if not df.empty else pd.Series() @cachetools.func.ttl_cache() # fine as long as availability is not different between users def _var_swap_tenors(asset: Asset): from gs_quant.session import GsSession aid = asset.get_marquee_id() body = GsSession.current._get(f"/data/markets/{aid}/availability") for r in body['data']: if r['dataField'] == Fields.VAR_SWAP.value: for f in r['filteredFields']: if f['field'] == Fields.TENOR.value: return f['values'] raise MqValueError("var swap is not available for " + aid) def _tenor_to_month(relative_date: str) -> int: matcher = re.fullmatch('([1-9]\\d*)([my])', relative_date) if matcher: mag = int(matcher.group(1)) return mag if matcher.group(2) == 'm' else mag * 12 raise MqValueError('invalid input: relative date must be in months or years') def _month_to_tenor(months: int) -> str: return f'{months//12}y' if months % 12 == 0 else f'{months}m' @plot_measure((AssetClass.Equity, AssetClass.Commod), None, [QueryType.VAR_SWAP]) def var_term(asset: Asset, pricing_date: Optional[str] = None, forward_start_date: Optional[str] = None, *, source: str = None, real_time: bool = False) -> pd.Series: """ Variance swap term structure. Uses most recent date available if pricing_date is not provided. :param asset: asset object loaded from security master :param pricing_date: relative days before today e.g. 3d, 2m, 1y :param forward_start_date: forward start date e.g. 2m, 1y; defaults to none :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: variance swap term structure """ if not (pricing_date is None or isinstance(pricing_date, str)): raise MqTypeError('pricing_date should be a relative date') start, end = _range_from_pricing_date(asset.exchange, pricing_date) with DataContext(start, end): if forward_start_date: tenors = _var_swap_tenors(asset) sub_frames = [] for t in tenors: diff = _tenor_to_month(t) - _tenor_to_month(forward_start_date) if diff < 1: continue t1 = _month_to_tenor(diff) c = var_swap(asset, t1, forward_start_date, source=source, real_time=real_time).to_frame() if not c.empty: c['tenor'] = t1 sub_frames.append(c) df = pd.concat(sub_frames) else: q = GsDataApi.build_market_data_query([asset.get_marquee_id()], QueryType.VAR_SWAP, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) if df.empty: return pd.Series() latest = df.index.max() _logger.info('selected pricing date %s', latest) df = df.loc[latest] cbd = _get_custom_bd(asset.exchange) df.loc[:, Fields.EXPIRATION_DATE.value] = df.index + df[Fields.TENOR.value].map(_to_offset) + cbd - cbd df = df.set_index(Fields.EXPIRATION_DATE.value) df.sort_index(inplace=True) df = df.loc[DataContext.current.start_date: DataContext.current.end_date] return df[Fields.VAR_SWAP.value] if not df.empty else pd.Series() @plot_measure((AssetClass.Equity, AssetClass.Commod,), None, [QueryType.VAR_SWAP]) def var_swap(asset: Asset, tenor: str, forward_start_date: Optional[str] = None, *, source: str = None, real_time: bool = False) -> Series: """ Strike such that the price of an uncapped variance swap on the underlying index is zero at inception. If forward start date is provided, then the result is a forward starting variance swap. :param asset: asset object loaded from security master :param tenor: relative date representation of expiration date e.g. 1m :param forward_start_date: forward start date e.g. 2m, 1y; defaults to none :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: implied volatility curve """ if forward_start_date is None: _logger.debug('where tenor=%s', tenor) where = FieldFilterMap(tenor=tenor) q = GsDataApi.build_market_data_query([asset.get_marquee_id()], QueryType.VAR_SWAP, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df[Fields.VAR_SWAP.value] else: if not isinstance(forward_start_date, str): raise MqTypeError('forward_start_date must be a relative date') x = _tenor_to_month(tenor) y = _tenor_to_month(forward_start_date) z = x + y yt = _month_to_tenor(y) zt = _month_to_tenor(z) tenors = _var_swap_tenors(asset) if yt not in tenors or zt not in tenors: return Series() _logger.debug('where tenor=%s', f'{yt},{zt}') where = FieldFilterMap(tenor=[yt, zt]) q = GsDataApi.build_market_data_query([asset.get_marquee_id()], QueryType.VAR_SWAP, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) if df.empty: return Series() grouped = df.groupby(Fields.TENOR.value) try: yg = grouped.get_group(yt)[Fields.VAR_SWAP.value] zg = grouped.get_group(zt)[Fields.VAR_SWAP.value] except KeyError: _logger.debug('no data for one or more tenors') return
Series()
pandas.Series
import nibabel as nib from nilearn import surface from nilearn import plotting from sklearn.utils import Bunch import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as mpatches import numpy as np import pandas as pd from scipy.sparse import load_npz from scipy.sparse.csgraph import connected_components import os import re from pathlib import Path # define standard structures (for 3T HCP-like data) struct = Bunch() struct.cortex_left = slice(0,29696) struct.cortex_right = slice(29696,59412) struct.cortex = slice(0,59412) struct.subcortical = slice(59412,None) struct.accumbens_left = slice(59412,59547) struct.accumbens_right = slice(59547,59687) struct.amygdala_left = slice(59687,60002) struct.amygdala_right = slice(60002,60334) struct.brainStem = slice(60334,63806) struct.caudate_left = slice(63806,64534) struct.caudate_right = slice(64534,65289) struct.cerebellum_left = slice(65289,73998) struct.cerebellum_right = slice(73998,83142) struct.diencephalon_left = slice(83142,83848) struct.diencephalon_right = slice(83848,84560) struct.hippocampus_left = slice(84560,85324) struct.hippocampus_right = slice(85324,86119) struct.pallidum_left = slice(86119,86416) struct.pallidum_right = slice(86416,86676) struct.putamen_left = slice(86676,87736) struct.putamen_right = slice(87736,88746) struct.thalamus_left = slice(88746,90034) struct.thalamus_right = slice(90034,None) # The fMRI data are not defined on all 32492 vertices of the 32k surface meshes # Hence we need to record what is the mapping between the cortex grayordinates from fMRI # and the vertices of the 32k surface meshes. # This information is kept in vertex_info # # for a standard 3T HCP style fMRI image get_HCP_vertex_info(img) should coincide with vertex_info def _make_vertex_info(grayl, grayr, num_meshl, num_meshr): vertex_info = Bunch() vertex_info.grayl = grayl vertex_info.grayr = grayr vertex_info.num_meshl = num_meshl vertex_info.num_meshr = num_meshr return vertex_info PKGDATA = Path(__file__).parent / 'data' vertex_data = np.load(PKGDATA / 'fMRI_vertex_info_32k.npz') vertex_info = _make_vertex_info(vertex_data['grayl'], vertex_data['grayr'], int(vertex_data['num_meshl']), int(vertex_data['num_meshr'])) def get_HCP_vertex_info(img): """ Extracts information about the relation of indices in the fMRI data to the surface meshes and the left/right cortex. Use only for meshes different from the 32k standard one which is loaded by default. """ assert isinstance(img, nib.cifti2.cifti2.Cifti2Image) map1 = img.header.get_index_map(1) bms = list(map1.brain_models) grayl = np.array(bms[0].vertex_indices) grayr = np.array(bms[1].vertex_indices) num_meshl = bms[0].surface_number_of_vertices num_meshr = bms[1].surface_number_of_vertices return _make_vertex_info(grayl, grayr, num_meshl, num_meshr) # The following three functions take a 1D array of fMRI grayordinates # and return the array on the left- right- or both surface meshes def left_cortex_data(arr, fill=0, vertex_info=vertex_info): """ Takes a 1D array of fMRI grayordinates and returns the values on the vertices of the left cortex mesh which is neccessary for surface visualization. The unused vertices are filled with a constant (zero by default). """ out = np.zeros(vertex_info.num_meshl) out[:] = fill out[vertex_info.grayl] = arr[:len(vertex_info.grayl)] return out def right_cortex_data(arr, fill=0, vertex_info=vertex_info): """ Takes a 1D array of fMRI grayordinates and returns the values on the vertices of the right cortex mesh which is neccessary for surface visualization. The unused vertices are filled with a constant (zero by default). """ out = np.zeros(vertex_info.num_meshr) out[:] = fill if len(arr) == len(vertex_info.grayr): # means arr is already just the right cortex out[vertex_info.grayr] = arr else: out[vertex_info.grayr] = arr[len(vertex_info.grayl):len(vertex_info.grayl) + len(vertex_info.grayr)] return out def cortex_data(arr, fill=0, vertex_info=vertex_info): """ Takes a 1D array of fMRI grayordinates and returns the values on the vertices of the full cortex mesh which is neccessary for surface visualization. The unused vertices are filled with a constant (zero by default). """ dataL = left_cortex_data(arr, fill=fill, vertex_info=vertex_info) dataR = right_cortex_data(arr, fill=fill, vertex_info=vertex_info) return np.hstack((dataL, dataR)) # utility function for making a mesh for both hemispheres # used internally by load_surfaces def combine_meshes(meshL, meshR): """ Combines left and right meshes into a single mesh for both hemispheres. """ coordL, facesL = meshL coordR, facesR = meshR coord = np.vstack((coordL, coordR)) faces = np.vstack((facesL, facesR+len(coordL))) return coord, faces # loads all available surface meshes def load_surfaces(example_filename=None, filename_sulc=None): """ Loads all available surface meshes and sulcal depth file. Combines the left and right hemispheres into joint meshes for the whole brain. With no arguments loads the HCP S1200 group average meshes. If loading subject specific meshes it is enough to specify a single `example_filename` being one of `white|midthickness|pial|inflated|very_inflated` type e.g. ``` mesh = load_surfaces(example_filename='PATH/sub-44.L.pial.32k_fs_LR.surf.gii') ``` The function will load all available surfaces from that location. """ if example_filename is None: filename_pattern = str(PKGDATA / 'S1200.{}.{}_MSMAll.32k_fs_LR.surf.gii') else: filename_pattern = re.sub('\.(L|R)\.', '.{}.', example_filename) filename_pattern = re.sub('white|midthickness|pial|inflated|very_inflated', '{}', filename_pattern) flatsphere_pattern = str(PKGDATA / 'S1200.{}.{}.32k_fs_LR.surf.gii') meshes = Bunch() for variant in ['white', 'midthickness', 'pial', 'inflated', 'very_inflated', 'flat' , 'sphere']: count = 0 for hemisphere, hemisphere_name in [('L', 'left'), ('R', 'right')]: if variant in ['flat' , 'sphere']: filename = flatsphere_pattern.format(hemisphere, variant) else: filename = filename_pattern.format(hemisphere, variant) if os.path.exists(filename): coord, faces = surface.load_surf_mesh(filename) if variant=='flat': coordnew = np.zeros_like(coord) coordnew[:, 1] = coord[:, 0] coordnew[:, 2] = coord[:, 1] coordnew[:, 0] = 0 coord = coordnew meshes[variant+'_'+hemisphere_name] = coord, faces count += 1 else: print('Cannot find', filename) if count==2: if variant == 'flat': coordl, facesl = meshes['flat_left'] coordr, facesr = meshes['flat_right'] coordlnew = coordl.copy() coordlnew[:, 1] = coordl[:, 1] - 250.0 coordrnew = coordr.copy() coordrnew[:, 1] = coordr[:, 1] + 250.0 meshes['flat'] = combine_meshes( (coordlnew, facesl), (coordrnew, facesr) ) else: meshes[variant] = combine_meshes(meshes[variant+'_left'], meshes[variant+'_right']) if filename_sulc is None: filename_sulc = filename_pattern.format('XX','XX').replace('XX.XX', 'sulc').replace('surf.gii','dscalar.nii') if os.path.exists(filename_sulc): sulc_data = - nib.load(filename_sulc).get_fdata()[0] if len(sulc_data)==59412: # this happens for HCP S1200 group average data sulc_data = cortex_data(sulc_data) meshes['sulc'] = sulc_data num = len(meshes.sulc) meshes['sulc_left'] = meshes.sulc[:num//2] meshes['sulc_right'] = meshes.sulc[num//2:] else: print('Cannot load file {} with sulcal depth data'.format(filename_sulc)) return meshes mesh = load_surfaces() # parcellations def _load_hcp_parcellation(variant=None): allowed = ['mmp', 'ca_network', 'ca_parcels', 'yeo7', 'yeo17', 'standard'] if variant not in allowed: print('argument should be one of ' + ','.join(allowed)) return if variant=='standard': parcnpz = np.load(PKGDATA / 'standard.npz') if variant=='mmp': parcnpz = np.load(PKGDATA / 'mmp_1.0.npz') if variant=='ca_network': parcnpz = np.load(PKGDATA / 'ca_network_1.1.npz') if variant=='ca_parcels': parcnpz = np.load(PKGDATA / 'ca_parcels_1.1.npz') if variant=='yeo7': parcnpz = np.load(PKGDATA / 'yeo7.npz') if variant=='yeo17': parcnpz = np.load(PKGDATA / 'yeo17.npz') parcellation = Bunch() parcellation.ids = parcnpz['ids'] parcellation.map_all = parcnpz['map_all'] labels = parcnpz['labels'] labelsdict = dict() rgba = parcnpz['rgba'] rgbadict = dict() for i, k in enumerate(parcellation.ids): labelsdict[k] = labels[i] rgbadict[k] = rgba[i] parcellation.labels = labelsdict parcellation.rgba = rgbadict i = 0 nontrivial_ids = [] for k in parcellation.ids: if k!=0: nontrivial_ids.append(k) i += 1 parcellation.nontrivial_ids = np.array(nontrivial_ids) return parcellation # predefined parcellations mmp = _load_hcp_parcellation('mmp') ca_network = _load_hcp_parcellation('ca_network') ca_parcels = _load_hcp_parcellation('ca_parcels') yeo7 = _load_hcp_parcellation('yeo7') yeo17 = _load_hcp_parcellation('yeo17') standard = _load_hcp_parcellation('standard') def view_parcellation(meshLR, parcellation): """ View the given parcellation on an a whole brain surface mesh. """ # for some parcellations the numerical ids need not be consecutive cortex_map = cortex_data(parcellation.map_all) ids = np.unique(cortex_map) normalized_cortex_map = np.zeros_like(cortex_map) rgba = np.zeros((len(ids), 4)) for i in range(len(ids)): ind = cortex_map==ids[i] normalized_cortex_map[ind] = i rgba[i,:] = parcellation.rgba[ids[i]] cmap = matplotlib.colors.ListedColormap(rgba) return plotting.view_surf(meshLR, normalized_cortex_map, symmetric_cmap=False, cmap=cmap) def parcellation_labels(parcellation): """ Displays names of ROI's in a parcellation together with color coding and the corresponding numeric ids. """ n = len(parcellation.ids) ncols = 4 nrows = n // ncols + 1 dpi = 72 h = 12 dh = 6 H = h + dh Y = (nrows + 1) * H fig_height = Y / dpi fig, ax = plt.subplots(figsize=(18, fig_height)) X, _ = fig.get_dpi() * fig.get_size_inches() w = X/ncols for i in range(n): k = parcellation.ids[i] label = parcellation.labels[k] if label == '': label = 'None' name = '{} ({})'.format(label, k) col = i // nrows row = i % nrows y = Y - (row * H) - H xi = w * (col + 0.05) xf = w * (col + 0.25) xt = w * (col + 0.3) ax.text(xt, y + h/2 , name, fontsize=h, horizontalalignment='left', verticalalignment='center') ax.add_patch(mpatches.Rectangle((xi, y), xf-xi, h ,linewidth=1,edgecolor='k',facecolor=parcellation.rgba[k])) ax.set_xlim(0, X) ax.set_ylim(0, Y) ax.set_axis_off() plt.subplots_adjust(left=0, right=1, top=1, bottom=0, hspace=0, wspace=0) def parcellate(X, parcellation, method=np.mean): """ Parcellates the data into ROI's using `method` (mean by default). Ignores the unassigned grayordinates with id=0. Works both for time-series 2D data and snapshot 1D data. """ n = np.sum(parcellation.ids!=0) if X.ndim==2: Xp = np.zeros((len(X), n), dtype=X.dtype) else: Xp = np.zeros(np, dtype=X.dtype) i = 0 for k in parcellation.ids: if k!=0: if X.ndim==2: Xp[:, i] = method(X[:, parcellation.map_all==k], axis=1) else: Xp[i] = method(X[parcellation.map_all==k]) i += 1 return Xp def unparcellate(Xp, parcellation): """ Takes as input time-series (2D) or snapshot (1D) parcellated data. Creates full grayordinate data with grayordinates set to the value of the parcellated data. Can be useful for visualization. """ n = len(parcellation.map_all) if Xp.ndim==2: X = np.zeros((len(Xp), n), dtype=Xp.dtype) else: X = np.zeros(n, dtype=Xp.dtype) i = 0 for k in parcellation.ids: if k!=0: if Xp.ndim==2: X[:, parcellation.map_all==k] = Xp[:,i][:,np.newaxis] else: X[parcellation.map_all==k] = Xp[i] i += 1 return X def mask(X, mask, fill=0): """ Takes 1D data `X` and a mask `mask`. Sets the exterior of mask to a constant (by default zero). Can be useful for visualization. """ X_masked = np.zeros_like(X) X_masked[:] = fill X_masked[mask] = X[mask] return X_masked def ranking(Xp, parcellation, descending=True): """ Returns a dataframe with sorted values in the 1D parcellated array with appropriate labels """ ind = np.argsort(Xp) if descending: ind = ind[::-1] labels = [] ids = [] for i in range(len(Xp)): j = ind[i] k = parcellation.nontrivial_ids[j] labels.append(parcellation.labels[k]) ids.append(k) return
pd.DataFrame({'region':labels, 'id':ids, 'data':Xp[ind]})
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_header_not_first_line(self): data = """got,to,ignore,this,line got,to,ignore,this,line index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ data2 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ df = self.read_csv(StringIO(data), header=2, index_col=0) expected = self.read_csv(StringIO(data2), header=0, index_col=0) tm.assert_frame_equal(df, expected) def test_header_multi_index(self): expected = tm.makeCustomDataframe( 5, 3, r_idx_nlevels=2, c_idx_nlevels=4) data = """\ C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 """ df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) # skipping lines in the header df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) #### invalid options #### # no as_recarray self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], as_recarray=True, tupleize_cols=False) # names self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], names=['foo', 'bar'], tupleize_cols=False) # usecols self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], usecols=['foo', 'bar'], tupleize_cols=False) # non-numeric index_col self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=['foo', 'bar'], tupleize_cols=False) def test_header_multiindex_common_format(self): df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], index=['one', 'two'], columns=MultiIndex.from_tuples([('a', 'q'), ('a', 'r'), ('a', 's'), ('b', 't'), ('c', 'u'), ('c', 'v')])) # to_csv data = """,a,a,a,b,c,c ,q,r,s,t,u,v ,,,,,, one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common data = """,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common, no index_col data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=None) tm.assert_frame_equal(df.reset_index(drop=True), result) # malformed case 1 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[u('a'), u('q')])) data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # malformed case 2 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # mi on columns and index (malformed) expected = DataFrame(np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype='int64'), index=MultiIndex(levels=[[1, 7], [2, 8]], labels=[[0, 1], [0, 1]]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('s'), u('t'), u('u'), u('v')]], labels=[[0, 1, 2, 2], [0, 1, 2, 3]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1]) tm.assert_frame_equal(expected, result) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_parse_dates(self): data = """index1,index2,A,B,C 20090101,one,a,1,2 20090101,two,b,3,4 20090101,three,c,4,5 20090102,one,a,1,2 20090102,two,b,3,4 20090102,three,c,4,5 20090103,one,a,1,2 20090103,two,b,3,4 20090103,three,c,4,5 """ df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True) self.assertIsInstance(df.index.levels[0][0], (datetime, np.datetime64, Timestamp)) # specify columns out of order! df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True) self.assertIsInstance(df2.index.levels[1][0], (datetime, np.datetime64, Timestamp)) def test_skip_footer(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') self.assertIsNone(df.index.name) def test_converters(self): data = """A,B,C,D a,1,2,01/01/2009 b,3,4,01/02/2009 c,4,5,01/03/2009 """ from pandas.compat import parse_date result = self.read_csv(StringIO(data), converters={'D': parse_date}) result2 = self.read_csv(StringIO(data), converters={3: parse_date}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(parse_date) tm.assertIsInstance(result['D'][0], (datetime, Timestamp)) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # produce integer converter = lambda x: int(x.split('/')[2]) result = self.read_csv(StringIO(data), converters={'D': converter}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(converter) tm.assert_frame_equal(result, expected) def test_converters_no_implicit_conv(self): # GH2184 data = """000102,1.2,A\n001245,2,B""" f = lambda x: x.strip() converter = {0: f} df = self.read_csv(StringIO(data), header=None, converters=converter) self.assertEqual(df[0].dtype, object) def test_converters_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_converter_return_string_bug(self): # GH #583 data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) def test_read_table_buglet_4x_multiindex(self): # GH 6607 # Parsing multi-level index currently causes an error in the C parser. # Temporarily copied to TestPythonParser. # Here test that CParserError is raised: with tm.assertRaises(pandas.parser.CParserError): text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) def test_parse_dates_custom_euroformat(self): text = """foo,bar,baz 31/01/2010,1,2 01/02/2010,1,NA 02/02/2010,1,2 """ parser = lambda d: parse_date(d, dayfirst=True) df = self.read_csv(StringIO(text), names=['time', 'Q', 'NTU'], header=0, index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1), datetime(2010, 2, 2)], name='time') expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]}, index=exp_index, columns=['Q', 'NTU']) tm.assert_frame_equal(df, expected) parser = lambda d: parse_date(d, day_first=True) self.assertRaises(Exception, self.read_csv, StringIO(text), skiprows=[0], names=['time', 'Q', 'NTU'], index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) def test_na_value_dict(self): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" df = self.read_csv(StringIO(data), na_values={'A': ['foo'], 'B': ['bar']}) expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'], 'B': [np.nan, 'foo', np.nan, 'foo'], 'C': [np.nan, 'foo', np.nan, 'foo']}) tm.assert_frame_equal(df, expected) data = """\ a,b,c,d 0,NA,1,5 """ xp = DataFrame({'b': [np.nan], 'c': [1], 'd': [5]}, index=[0]) xp.index.name = 'a' df = self.read_csv(StringIO(data), na_values={}, index_col=0) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=[0, 2]) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=['a', 'c']) tm.assert_frame_equal(df, xp) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pydata/pandas/master/' 'pandas/io/tests/data/salary.table') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @slow def test_file(self): # FILE if sys.version_info[:2] < (2, 6): raise nose.SkipTest("file:// not supported with Python < 2.6") dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems raise nose.SkipTest("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_parse_tz_aware(self): import pytz # #1693 data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5") # it works result = read_csv(data, index_col=0, parse_dates=True) stamp = result.index[0] self.assertEqual(stamp.minute, 39) try: self.assertIs(result.index.tz, pytz.utc) except AssertionError: # hello Yaroslav arr = result.index.to_pydatetime() result = tools.to_datetime(arr, utc=True)[0] self.assertEqual(stamp.minute, result.minute) self.assertEqual(stamp.hour, result.hour) self.assertEqual(stamp.day, result.day) def test_multiple_date_cols_index(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" xp = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col='nominal') tm.assert_frame_equal(xp.set_index('nominal'), df) df2 = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col=0) tm.assert_frame_equal(df2, df) df3 = self.read_csv(StringIO(data), parse_dates=[[1, 2]], index_col=0) tm.assert_frame_equal(df3, df, check_names=False) def test_multiple_date_cols_chunked(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={ 'nominal': [1, 2]}, index_col='nominal') reader = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal', chunksize=2) chunks = list(reader) self.assertNotIn('nominalTime', df) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_multiple_date_col_named_components(self): xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal') colspec = {'nominal': ['date', 'nominalTime']} df = self.read_csv(StringIO(self.ts_data), parse_dates=colspec, index_col='nominal') tm.assert_frame_equal(df, xp) def test_multiple_date_col_multiple_index(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col=['nominal', 'ID']) xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}) tm.assert_frame_equal(xp.set_index(['nominal', 'ID']), df) def test_comment(self): data = """A,B,C 1,2.,4.#hello world 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) df = self.read_table(StringIO(data), sep=',', comment='#', na_values=['NaN']) tm.assert_almost_equal(df.values, expected) def test_bool_na_values(self): data = """A,B,C True,False,True NA,True,False False,NA,True""" result = self.read_csv(StringIO(data)) expected = DataFrame({'A': np.array([True, nan, False], dtype=object), 'B': np.array([False, True, nan], dtype=object), 'C': [True, False, True]}) tm.assert_frame_equal(result, expected) def test_nonexistent_path(self): # don't segfault pls #2428 path = '%s.csv' % tm.rands(10) self.assertRaises(Exception, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) self.assertTrue(result['D'].isnull()[1:].all()) def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) self.assertTrue(pd.isnull(result.ix[0, 29])) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') self.assertEqual(len(result), 50) if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') self.assertEqual(len(result), 50) def test_converters_corner_with_nas(self): # skip aberration observed on Win64 Python 3.2.2 if hash(np.int64(-1)) != -2: raise nose.SkipTest("skipping because of windows hash on Python" " 3.2.2") csv = """id,score,days 1,2,12 2,2-5, 3,,14+ 4,6-12,2""" def convert_days(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_days_sentinel(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_score(x): x = x.strip() if not x: return np.nan if x.find('-') > 0: valmin, valmax = lmap(int, x.split('-')) val = 0.5 * (valmin + valmax) else: val = float(x) return val fh = StringIO(csv) result = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days}, na_values=['', None]) self.assertTrue(pd.isnull(result['days'][1])) fh = StringIO(csv) result2 = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days_sentinel}, na_values=['', None]) tm.assert_frame_equal(result, result2) def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') self.assertEqual(got, expected) def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') self.assertEqual(result['SEARCH_TERM'][2], 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals serie') self.assertTrue(np.array_equal(result.columns, ['SEARCH_TERM', 'ACTUAL_URL'])) def test_header_names_backward_compat(self): # #2539 data = '1,2,3\n4,5,6' result = self.read_csv(StringIO(data), names=['a', 'b', 'c']) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) tm.assert_frame_equal(result, expected) data2 = 'foo,bar,baz\n' + data result = self.read_csv(StringIO(data2), names=['a', 'b', 'c'], header=0) tm.assert_frame_equal(result, expected) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) self.assertTrue(np.array_equal(result['Numbers'], expected['Numbers'])) def test_usecols_index_col_conflict(self): # Issue 4201 Test that index_col as integer reflects usecols data = """SecId,Time,Price,P2,P3 10000,2013-5-11,100,10,1 500,2013-5-12,101,11,1 """ expected = DataFrame({'Price': [100, 101]}, index=[ datetime(2013, 5, 11), datetime(2013, 5, 12)]) expected.index.name = 'Time' df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) expected = DataFrame( {'P3': [1, 1], 'Price': (100, 101), 'P2': (10, 11)}) expected = expected.set_index(['Price', 'P2']) df = self.read_csv(StringIO(data), usecols=[ 'Price', 'P2', 'P3'], parse_dates=True, index_col=['Price', 'P2']) tm.assert_frame_equal(expected, df) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. self.assertTrue(type(df.a[0]) is np.float64) self.assertEqual(df.a.dtype, np.float) def test_warn_if_chunks_have_mismatched_type(self): # See test in TestCParserLowMemory. integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) self.assertEqual(df.a.dtype, np.object) def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(1, 2)) result2 = self.read_csv(StringIO(data), usecols=('b', 'c')) exp = self.read_csv(StringIO(data)) self.assertEqual(len(result.columns), 2) self.assertTrue((result['b'] == exp['b']).all()) self.assertTrue((result['c'] == exp['c']).all()) tm.assert_frame_equal(result, result2) result = self.read_csv(StringIO(data), usecols=[1, 2], header=0, names=['foo', 'bar']) expected = self.read_csv(StringIO(data), usecols=[1, 2]) expected.columns = ['foo', 'bar'] tm.assert_frame_equal(result, expected) data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), names=['b', 'c'], header=None, usecols=[1, 2]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['b', 'c']] tm.assert_frame_equal(result, expected) result2 = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None, usecols=['b', 'c']) tm.assert_frame_equal(result2, result) # 5766 result = self.read_csv(StringIO(data), names=['a', 'b'], header=None, usecols=[0, 1]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['a', 'b']] tm.assert_frame_equal(result, expected) # length conflict, passed names and usecols disagree self.assertRaises(ValueError, self.read_csv, StringIO(data), names=['a', 'b'], usecols=[1], header=None) def test_integer_overflow_bug(self): # #2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') self.assertTrue(result[0].dtype == np.float64) result = self.read_csv(StringIO(data), header=None, sep='\s+') self.assertTrue(result[0].dtype == np.float64) def test_catch_too_many_names(self): # Issue 5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" tm.assertRaises(Exception, read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # GH 6607, GH 3374 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep='\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_nrows_and_chunksize_raises_notimplemented(self): data = 'a b c' self.assertRaises(NotImplementedError, self.read_csv, StringIO(data), nrows=10, chunksize=5) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # GH 10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) self.assertEqual(len(result), 2) # GH 9735 chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = pd.read_csv(StringIO(chunk1 + chunk2), header=None) expected = pd.DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # GH 10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_emtpy_with_multiindex(self): # GH 10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_index_col_scenarios(self): data = 'x,y,z' # None, no index index_col, expected = None, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # False, no index index_col, expected = False, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, first column index_col, expected = 0, DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, not first column index_col, expected = 1, DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, first column index_col, expected = 'x', DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, not the first column index_col, expected = 'y', DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # list of int index_col, expected = [0, 1], DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str index_col = ['x', 'y'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of int, reversed sequence index_col = [1, 0] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str, reversed sequence index_col = ['y', 'x'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) def test_empty_with_index_col_false(self): # GH 10413 data = 'x,y' result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame([], columns=['x', 'y'])
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
"""Build daily-level feature sets, stitching together weather datasets and defining features. """ import numpy as np import pandas as pd import geopandas as gpd from dask import dataframe as dd from loguru import logger from shapely.ops import nearest_points from src.data.gfs.utils import grb2gdf from src.conf import settings start_year = 2017 end_year = 2019 OUTPUT_DIR = settings.DATA_DIR / "processed/training/" if __name__ == "__main__": df = pd.concat( [ pd.read_parquet(settings.DATA_DIR / f"processed/caiso_hourly/{y}.parquet") for y in range(2017, 2020) ] ) df.index = df.index.tz_convert("US/Pacific") # Preprocessed hourly data is in MWh, so we can simply sum up to resample to days df = df.groupby(pd.Grouper(freq="D")).sum() df.reset_index(inplace=True) # By construction, we are interested in Feb to May (inclusive) season_filter = df["timestamp"].dt.month.isin(range(2, 6)) df = df[season_filter] # Define whether something is a weekday/weekend df["is_weekday"] = df["timestamp"].dt.weekday.isin([5, 6]) # Integrate forecast data gfs_data_files = ( settings.DATA_DIR / f"interim/gfs/ca/gfs_3_201[7-9][01][2-5]*_0000_{i*3:03}.parquet" for i in range(5, 10) ) forecasts = [*(gfs_data_files)] dayahead_weather = dd.read_parquet(forecasts).compute() # Add UTC timezone and convert to US/Pacific dayahead_weather["timestamp"] = ( dayahead_weather["valid_time"].dt.tz_localize("UTC").dt.tz_convert("US/Pacific") ) dayahead_weather = grb2gdf(dayahead_weather) # Include powerplant data counties = gpd.read_file( settings.DATA_DIR / "processed/geography/CA_Counties/CA_Counties_TIGER2016.shp" ) weather_point_measurements = dayahead_weather["geometry"].geometry.unary_union powerplants = pd.read_parquet( settings.DATA_DIR / f"processed/geography/powerplants.parquet" ) # Add geometry powerplants = gpd.GeoDataFrame( powerplants, geometry=gpd.points_from_xy(powerplants["longitude"], powerplants["latitude"]), crs="EPSG:4326", ) powerplants["geometry"] = ( powerplants["geometry"] .apply(lambda x: nearest_points(x, weather_point_measurements)) .str.get(1) ) # In order to integrate powerplant data, we have to merge on the powerplant's closest county location. powerplants = gpd.tools.sjoin( powerplants.to_crs("EPSG:4326"), counties[["GEOID", "geometry"]].to_crs("EPSG:4326"), op="within", how="left", ) powerplants["online_date"] = powerplants["online_date"].dt.tz_localize("US/Pacific") powerplants["retire_date"] = powerplants["retire_date"].dt.tz_localize("US/Pacific") # Now group over GEOIDs, and sum up the capacity # For each month, we have to only associate capacity for powerplants that were online. weather_orig = dayahead_weather.copy() capacities = {} results = [] for date, weather_df in dayahead_weather.groupby( pd.Grouper(key="timestamp", freq="MS"), as_index=False ): if weather_df.empty: logger.warning("Weather data for {date} is empty!", date=date) continue logger.debug("Assigning capacity for weather points as of {date}.", date=date) valid_plants = (powerplants["online_date"] <= date) & ( powerplants["retire_date"].isnull() | (powerplants["retire_date"] > date) ) valid_plants = powerplants[valid_plants] county_mw = valid_plants.groupby("GEOID", as_index=False)["capacity_mw"].sum() weather_df = weather_df.merge(county_mw, on="GEOID", how="left") weather_df["capacity_mw"] = weather_df["capacity_mw"].fillna(0) results.append(weather_df) # Note that this is still on the original df grain as we did not aggregate the groupby! dayahead_weather = pd.concat(results, ignore_index=True) # Roll-up to dailies daily_capacity = ( dayahead_weather.groupby(by=["GEOID", pd.Grouper(key="timestamp", freq="D")])[ "capacity_mw" ] .mean() .reset_index() .groupby(by=pd.Grouper(key="timestamp", freq="D"))["capacity_mw"] .sum() ) county_level_dailies = dayahead_weather.groupby( by=["GEOID",
pd.Grouper(key="timestamp", freq="D")
pandas.Grouper
from ctypes import util from logging.config import valid_ident import time import Common.ApiClient as ac import Common.DatetimeUtility as utility import MA.ExponentialMovingAverageStrategy as ema from datetime import datetime from dateutil import tz import pandas as pd ENDPOINT = "https://paper-api.alpaca.markets" class TradingStrategy: def __init__(self, STOCK,API_KEY_ID,SECRET_KEY,model='ema'): self.model = model self.Datetime_Utility = utility.DatetimeUtility() self.STOCK = STOCK self.SELL_LIMIT_FACTOR = 1.01 # 1 percent margin self.client = ac.ApiClient( api_key_Id=API_KEY_ID, api_key_secret=SECRET_KEY) # Get past one year closing data self.df = self.get_past255_closing_prices() if self.model.lower() == 'stl': pass else: self.ema_instance = ema.ExponentialMovingAverageStrategy(df=self.df.copy( deep=True), ticker=STOCK) # you can replace this with SimpleMovingAverage trained_model, predicted = self.ema_instance.generate_train_model( ticker=STOCK, plot=False) self.trained_model = trained_model self.trained_label = predicted def update_strategy_model(self): now = datetime.now(tz=tz.gettz('America/New_York')) if self.Datetime_Utility.is_market_open_now(now): date_str = now.date().strftime("%Y-%m-%d") last_date_str = f'{date_str} 05:00:00+00:00' last_price, volume = self.get_current_price() # create a row with the current price as close price for updating the training models, # the rest are filled with the same value but what we care is for close data = {'open': last_price, 'high': last_price, 'low': last_price, 'close': last_price, 'volume': volume} today_df = pd.DataFrame( data, index=[pd.to_datetime(last_date_str)]) time = pd.to_datetime(today_df.index) today_df.set_index(time, inplace=True) today_df.index.name = "time" # append the current price, so that we can predicated on updated model df = self.df.copy() df =
pd.concat([df, today_df])
pandas.concat
import inspect import os import warnings from unittest.mock import MagicMock, patch import numpy as np import pandas as pd import pytest from evalml.exceptions import ValidationErrorCode from evalml.model_understanding.graphs import visualize_decision_tree from evalml.pipelines.components import ComponentBase from evalml.utils.gen_utils import ( SEED_BOUNDS, _rename_column_names_to_numeric, are_datasets_separated_by_gap_time_index, are_ts_parameters_valid_for_split, classproperty, contains_all_ts_parameters, convert_to_seconds, deprecate_arg, get_importable_subclasses, get_random_seed, import_or_raise, jupyter_check, pad_with_nans, save_plot, validate_holdout_datasets, ) @patch("importlib.import_module") def test_import_or_raise_errors(dummy_importlib): def _mock_import_function(library_str): if library_str == "_evalml": raise ImportError("Mock ImportError executed!") if library_str == "attr_error_lib": raise Exception("Mock Exception executed!") dummy_importlib.side_effect = _mock_import_function with pytest.raises(ImportError, match="Missing optional dependency '_evalml'"): import_or_raise("_evalml") with pytest.raises( ImportError, match="Missing optional dependency '_evalml'. Please use pip to install _evalml. Additional error message", ): import_or_raise("_evalml", "Additional error message") with pytest.raises( Exception, match="An exception occurred while trying to import `attr_error_lib`: Mock Exception executed!", ): import_or_raise("attr_error_lib") def test_import_or_raise_imports(): math = import_or_raise("math", "error message") assert math.ceil(0.1) == 1 def test_convert_to_seconds(): assert convert_to_seconds("10 s") == 10 assert convert_to_seconds("10 sec") == 10 assert convert_to_seconds("10 second") == 10 assert convert_to_seconds("10 seconds") == 10 assert convert_to_seconds("10 m") == 600 assert convert_to_seconds("10 min") == 600 assert convert_to_seconds("10 minute") == 600 assert convert_to_seconds("10 minutes") == 600 assert convert_to_seconds("10 h") == 36000 assert convert_to_seconds("10 hr") == 36000 assert convert_to_seconds("10 hour") == 36000 assert convert_to_seconds("10 hours") == 36000 with pytest.raises(AssertionError, match="Invalid unit."): convert_to_seconds("10 years") def test_get_random_seed_rng(): def make_mock_random_state(return_value): class MockRandomState(np.random.RandomState): def __init__(self): self.min_bound = None self.max_bound = None super().__init__() def randint(self, min_bound, max_bound): self.min_bound = min_bound self.max_bound = max_bound return return_value return MockRandomState() rng = make_mock_random_state(42) assert get_random_seed(rng) == 42 assert rng.min_bound == SEED_BOUNDS.min_bound assert rng.max_bound == SEED_BOUNDS.max_bound def test_get_random_seed_int(): # ensure the invariant "min_bound < max_bound" is enforced with pytest.raises(ValueError): get_random_seed(0, min_bound=0, max_bound=0) with pytest.raises(ValueError): get_random_seed(0, min_bound=0, max_bound=-1) # test default boundaries to show the provided value should modulate within the default range assert get_random_seed(SEED_BOUNDS.max_bound - 2) == SEED_BOUNDS.max_bound - 2 assert get_random_seed(SEED_BOUNDS.max_bound - 1) == SEED_BOUNDS.max_bound - 1 assert get_random_seed(SEED_BOUNDS.max_bound) == SEED_BOUNDS.min_bound assert get_random_seed(SEED_BOUNDS.max_bound + 1) == SEED_BOUNDS.min_bound + 1 assert get_random_seed(SEED_BOUNDS.max_bound + 2) == SEED_BOUNDS.min_bound + 2 assert get_random_seed(SEED_BOUNDS.min_bound - 2) == SEED_BOUNDS.max_bound - 2 assert get_random_seed(SEED_BOUNDS.min_bound - 1) == SEED_BOUNDS.max_bound - 1 assert get_random_seed(SEED_BOUNDS.min_bound) == SEED_BOUNDS.min_bound assert get_random_seed(SEED_BOUNDS.min_bound + 1) == SEED_BOUNDS.min_bound + 1 assert get_random_seed(SEED_BOUNDS.min_bound + 2) == SEED_BOUNDS.min_bound + 2 # vectorize get_random_seed via a wrapper for easy evaluation default_min_bound = ( inspect.signature(get_random_seed).parameters["min_bound"].default ) default_max_bound = ( inspect.signature(get_random_seed).parameters["max_bound"].default ) assert default_min_bound == SEED_BOUNDS.min_bound assert default_max_bound == SEED_BOUNDS.max_bound def get_random_seed_vec( min_bound=None, max_bound=None ): # passing None for either means no value is provided to get_random_seed def get_random_seed_wrapper(random_seed): return get_random_seed( random_seed, min_bound=min_bound if min_bound is not None else default_min_bound, max_bound=max_bound if max_bound is not None else default_max_bound, ) return np.vectorize(get_random_seed_wrapper) # ensure that regardless of the setting of min_bound and max_bound, the output of get_random_seed always stays # between the min_bound (inclusive) and max_bound (exclusive), and wraps neatly around that range using modular arithmetic. vals = np.arange(-100, 100) def make_expected_values(vals, min_bound, max_bound): return np.array( [ i if (min_bound <= i and i < max_bound) else ((i - min_bound) % (max_bound - min_bound)) + min_bound for i in vals ] ) np.testing.assert_equal( get_random_seed_vec(min_bound=None, max_bound=None)(vals), make_expected_values( vals, min_bound=SEED_BOUNDS.min_bound, max_bound=SEED_BOUNDS.max_bound ), ) np.testing.assert_equal( get_random_seed_vec(min_bound=None, max_bound=10)(vals), make_expected_values(vals, min_bound=SEED_BOUNDS.min_bound, max_bound=10), ) np.testing.assert_equal( get_random_seed_vec(min_bound=-10, max_bound=None)(vals), make_expected_values(vals, min_bound=-10, max_bound=SEED_BOUNDS.max_bound), ) np.testing.assert_equal( get_random_seed_vec(min_bound=0, max_bound=5)(vals), make_expected_values(vals, min_bound=0, max_bound=5), ) np.testing.assert_equal( get_random_seed_vec(min_bound=-5, max_bound=0)(vals), make_expected_values(vals, min_bound=-5, max_bound=0), ) np.testing.assert_equal( get_random_seed_vec(min_bound=-5, max_bound=5)(vals), make_expected_values(vals, min_bound=-5, max_bound=5), ) np.testing.assert_equal( get_random_seed_vec(min_bound=5, max_bound=10)(vals), make_expected_values(vals, min_bound=5, max_bound=10), ) np.testing.assert_equal( get_random_seed_vec(min_bound=-10, max_bound=-5)(vals), make_expected_values(vals, min_bound=-10, max_bound=-5), ) def test_class_property(): class MockClass: name = "MockClass" @classproperty def caps_name(cls): return cls.name.upper() assert MockClass.caps_name == "MOCKCLASS" def test_get_importable_subclasses_wont_get_custom_classes(): class ChildClass(ComponentBase): pass assert ChildClass not in get_importable_subclasses(ComponentBase) @patch("importlib.import_module") def test_import_or_warn_errors(dummy_importlib): def _mock_import_function(library_str): if library_str == "_evalml": raise ImportError("Mock ImportError executed!") if library_str == "attr_error_lib": raise Exception("Mock Exception executed!") dummy_importlib.side_effect = _mock_import_function with pytest.warns(UserWarning, match="Missing optional dependency '_evalml'"): import_or_raise("_evalml", warning=True) with pytest.warns( UserWarning, match="Missing optional dependency '_evalml'. Please use pip to install _evalml. Additional error message", ): import_or_raise("_evalml", "Additional error message", warning=True) with pytest.warns( UserWarning, match="An exception occurred while trying to import `attr_error_lib`: Mock Exception executed!", ): import_or_raise("attr_error_lib", warning=True) @patch("evalml.utils.gen_utils.import_or_raise") def test_jupyter_check_errors(mock_import_or_raise): mock_import_or_raise.side_effect = ImportError assert not jupyter_check() mock_import_or_raise.side_effect = Exception assert not jupyter_check() @patch("evalml.utils.gen_utils.import_or_raise") def test_jupyter_check(mock_import_or_raise): mock_import_or_raise.return_value = MagicMock() mock_import_or_raise().core.getipython.get_ipython.return_value = True assert jupyter_check() mock_import_or_raise().core.getipython.get_ipython.return_value = False assert not jupyter_check() mock_import_or_raise().core.getipython.get_ipython.return_value = None assert not jupyter_check() def _check_equality(data, expected, check_index_type=True): if isinstance(data, pd.Series): pd.testing.assert_series_equal(data, expected, check_index_type) else: pd.testing.assert_frame_equal(data, expected, check_index_type) @pytest.mark.parametrize( "data,num_to_pad,expected", [ (pd.Series([1, 2, 3]), 1, pd.Series([np.nan, 1, 2, 3], dtype="float64")), (pd.Series([1, 2, 3]), 0, pd.Series([1, 2, 3])), ( pd.Series([1, 2, 3, 4], index=pd.date_range("2020-10-01", "2020-10-04")), 2, pd.Series([np.nan, np.nan, 1, 2, 3, 4], dtype="float64"), ), ( pd.DataFrame({"a": [1.0, 2.0, 3.0], "b": [4.0, 5.0, 6.0]}), 0, pd.DataFrame( { "a":
pd.Series([1.0, 2.0, 3.0], dtype="float64")
pandas.Series
import pandas as pd import heapq import folium from folium.plugins import HeatMap from pandas.io.json import json_normalize def load_uber_file(movement): ''' Can read all kinds of uber movement csv files :param movement: the uber movement csv file :return: a cleaned dataframe contains travel times and movement ids ''' assert isinstance(movement, str) assert len(movement) != 0 return pd.read_csv(movement) def extract_movement_id(la_map): ''' By reading the map file, we can extract the coordinates of different uber movement ids :param la_map: the Los Angeles map json file provided by Uber :return: a dataframe contains each movement id and their coordinates ''' assert isinstance(la_map, str) assert len(la_map) != 0 map_LA =
pd.read_json(la_map, orient='records')
pandas.read_json
import numpy as np import pandas as pd import pytest @pytest.fixture(scope="module") def df_vartypes(): data = { "Name": ["tom", "nick", "krish", "jack"], "City": ["London", "Manchester", "Liverpool", "Bristol"], "Age": [20, 21, 19, 18], "Marks": [0.9, 0.8, 0.7, 0.6], "dob":
pd.date_range("2020-02-24", periods=4, freq="T")
pandas.date_range
def ConvertBaselineJson(siteUuidList): userUuidCards = pd.DataFrame() for siteUuid in tqdm(siteUuidList): SiteuserUuidCards = GetBaselineJson([siteUuid]) if len(SiteuserUuidCards) == 0: continue columns = [col for col in SiteuserUuidCards if col.startswith('cardIds')] melted = SiteuserUuidCards[columns + ['userUuid','enrollDate']].melt(id_vars=['userUuid','enrollDate']) melted = melted.drop(columns=['variable']) melted = melted.dropna(subset=['value']) melted['cardType'] = melted.value.apply(lambda x:x.split('-')[0]) melted['cardFirstSix'] = melted.value.apply(lambda x:x.split('-')[1]) melted['cardLastFour'] = melted.value.apply(lambda x:x.split('-')[2]) melted['siteUuid'] = siteUuid melted['merchantUuid'] = GetSiteInfo(siteUuid)['merchantUuid'] melted = melted.rename(columns = {'value':'cardId'}) userUuidCards = userUuidCards.append(melted,sort=False) return userUuidCards def flatten_json(y): out = {} def flatten(x, name=''): if type(x) is dict: for a in x: flatten(x[a], name + a + '_') elif type(x) is list: i = 0 for a in x: flatten(a, name + str(i) + '_') i += 1 else: out[name[:-1]] = x flatten(y) return out def GetAllVisibleSites(): """ Return a list of sites """ import pandas as pd SiteInfo = pd.read_csv('/Users/alessandroorfei/PycharmProjects/aggregate-incremental/resources/gas_merchant_service.csv') SiteInfo = SiteInfo[(SiteInfo.visibility == "DEFAULT")].copy() return list(SiteInfo['siteUuid']) def GetBaselineJson(siteUuidList): s3 = boto3.resource('s3') if type(siteUuidList) != list: siteUuidList = [siteUuidList] AllSites = pd.DataFrame() for siteUuid in tqdm(siteUuidList): merchantUuid = GetSiteInfo(siteUuid)['merchantUuid'] content_object = s3.Object('data.upside-services.com', 'service-station/' + merchantUuid + '/' + siteUuid + '/data/analysis/baseline.json') file_content = content_object.get()['Body'].read().decode('utf-8') d = json.loads(file_content) SiteuserUuidCards = pd.DataFrame() for user in range(0, len(d['userBaselines'])): d_flat = flatten_json(d['userBaselines'][user]) dat = json_normalize(d_flat) SiteuserUuidCards['siteUuid'] = siteUuid SiteuserUuidCards = SiteuserUuidCards.append(dat, ignore_index=True, sort=False) AllSites = AllSites.append(SiteuserUuidCards, sort=False) return AllSites def GetIncremental(siteUuidList, StartDate, EndDate, userUuidList=[]): """ This function returns a dataframe of Incremental data for a siteUuid parameters: siteUuidList: site identifiers. e.g. ['e30a6caa-efdd-4d5d-92ad-010d1d158a35'] StartDate: string date, e.g. "2018-04-01" EndDate: string date, e.g. "2018-10-31" returns: DataFrame with Incremental date converted to datetime """ import os import pandas as pd os.system('pip2 install --upgrade runbookcli') os.chdir('/Users/alessandroorfei/Desktop/') if type(siteUuidList) != list: siteUuidList = [siteUuidList] Incremental = pd.DataFrame() for siteUuid in tqdm(siteUuidList): incremental_downloader = 'runbook get_incremental prod ' + 'incremental_' + siteUuid + '.csv --sites ' + siteUuid print(incremental_downloader) os.system(incremental_downloader) SiteIncremental = pd.read_csv('/Users/alessandroorfei/Desktop/' + 'incremental_' + siteUuid + '.csv') SiteIncremental['date'] = pd.to_datetime(SiteIncremental.date) SiteIncremental = SiteIncremental[(SiteIncremental.date >= pd.to_datetime(StartDate)) & (SiteIncremental.date <=
pd.to_datetime(EndDate)
pandas.to_datetime
import numpy as np import pandas as pd ############################################################################### #Non-Standard Imports ############################################################################### import dunlin._utils_model.ode_classes as umo import dunlin.standardfile as stf ############################################################################### #Main Instantiation Algorithm ############################################################################### def read_file(*filenames, **kwargs): dun_data = stf.read_file(*filenames) models = make_models(dun_data, **kwargs) return dun_data, models def make_models(dun_data, _check_sub=True): models = {section['model_key'] : Model(**section) for section in dun_data if 'model_key' in section} if _check_sub: [model._check_sub(model.model_key) for model in models.values()] return models ############################################################################### #Dunlin Model ############################################################################### class Model: ''' This is the front-end class for representing a model. ''' #Hierarchy management _cache = {} _sub = {} #Attribute management _checkkw = True _locked = ['model_key', 'rxns', 'vrbs', 'funcs', 'rts'] _df = ['states', 'params'] _kw = {'int_args' : {'method' : 'LSODA'}, 'sim_args' : {}, 'optim_args' : {}, 'strike_goldd_args' : {}, } ############################################################################### #Hierarchy Tracking ############################################################################### @staticmethod def _find_submodels(model_data): rxns = model_data['rxns'] subs = [] if not rxns: return subs for rxn_args in rxns.values(): if hasattr(rxn_args, 'items'): sub = rxn_args.get('submodel') if sub: sub = [sub, len(rxn_args['substates']), len(rxn_args['subparams'])] subs.append(sub) elif 'submodel ' in rxn_args.get('rxn', ''): sub = [rxn_args['rxn'][9:], len(rxn_args['substates']), len(rxn_args['subparams'])] subs.append(sub) else: if 'submodel ' in rxn_args[0]: sub = rxn_args[0][9:], len(rxn_args[1]), len(rxn_args[2]) subs.append(sub) return subs @classmethod def _check_sub(cls, model_key, _super=()): if model_key in _super: raise SubmodelRecursionError(*_super, model_key) subs = cls._sub[model_key] for (sub, y_args, p_args) in subs: #Check if submodel exists if sub not in cls._cache: raise MissingSubmodelError(model_key, sub) #Check number of substates and subparams if len(cls._cache[sub].get_state_names()) != y_args: raise SubmodelLenError(model_key, sub, 'states(y)') elif len(cls._cache[sub].get_param_names()) != p_args: raise SubmodelLenError(model_key, sub, 'params(p)') cls._check_sub(sub, _super=_super+(model_key,)) ############################################################################### #Instantiation ############################################################################### def __init__(self, model_key, states, params, rxns=None, vrbs=None, funcs=None, rts=None, exvs=None, events=None, tspan=None, **kwargs ): #Set the locked attributes using the super method tspan_ = {} if tspan is None else {} super().__setattr__('model_key', model_key) super().__setattr__('_states_tuple', tuple(states.keys())) super().__setattr__('_params_tuple', tuple(params.keys())) super().__setattr__('rxns', rxns ) super().__setattr__('vrbs', vrbs ) super().__setattr__('funcs', funcs ) super().__setattr__('rts', rts ) super().__setattr__('exvs', exvs ) super().__setattr__('events', events ) super().__setattr__('tspan', tspan_ ) #Set property based attributes self.states = states self.params = params #Set analysis settings for k, v in {**self._kw, **kwargs}.items(): if k not in self._kw and self._checkkw: msg = f'Attempted to instantiate Model with invalid attribute: {k}' raise AttributeError(msg) super().__setattr__(k, v) #Check types if any([type(x) != str for x in self._states_tuple]): raise NameError('States can only have strings as names.') if any([type(x) != str for x in self._params_tuple]): raise NameError('Params can only have strings as names.') #Prepare dict to create functions model_data = self.to_dict() #Create functions super().__setattr__('ode', umo.ODEModel(**model_data)) #Set mode self._mode = 'ode' #Track model and submodels self._sub[model_key] = self._find_submodels(model_data) self._cache[model_key] = self def new(self, **kwargs): args = self.to_dict() args = {**args, **kwargs} return type(self)(**args) ############################################################################### #Attribute Management ############################################################################### def _df2dict(self, attr, value): if type(value) in [dict, pd.DataFrame]: df = pd.DataFrame(value) elif type(value) == pd.Series: df = pd.DataFrame(value).T else: raise TypeError(f"Model object's '{attr} attribute can be assigned using dict, DataFrame or Series.") #Check values if df.isnull().values.any(): raise ValueError('Missing or NaN values.') #Extract values keys = list(getattr(self, '_' + attr + '_tuple')) try: df = df[keys] except KeyError: raise ModelMismatchError(keys, df.keys()) #Save as dict return dict(zip(df.index, df.values)) def _dict2df(self, attr): dct = getattr(self, '_'+attr) # df = pd.DataFrame(dct).from_dict(dct, 'index') df =
pd.DataFrame(dct)
pandas.DataFrame
# MLP import csv from itertools import islice import random import matplotlib.pyplot as plt import numpy as np from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import KFold, train_test_split import pandas as pd from sklearn.utils import shuffle import tensorflow as tf def bit2attr(bitstr) -> list: attr_vec = list() for i in range(len(bitstr)): attr_vec.append(int(bitstr[i])) return attr_vec def mean_relative_error(y_pred, y_test): assert len(y_pred) == len(y_test) mre = 0.0 for i in range(len(y_pred)): mre = mre + abs((y_pred[i] - y_test[i]) / y_test[i]) mre = mre * 100/ len(y_pred) return mre Large_MRE_points = pd.DataFrame() Large_MRE_X = [] Large_MRE_y_test = [] Large_MRE_y_pred = [] Large_MRE = [] ''' 1) 数据预处理 ''' # filepath = 'data/fp/sjn/R+B+Cmorgan_fp1202.csv' filepath = 'data/database/22-01-29-descriptor-train.csv' data = pd.read_csv(filepath, encoding='gb18030') print(data.shape) data = data.dropna() print(data.shape) data = shuffle(data) data_x_df = data.drop(['label'], axis=1) data_y_df = data[['label']] # 归一化 min_max_scaler_X = MinMaxScaler() min_max_scaler_X.fit(data_x_df) x_trans1 = min_max_scaler_X.transform(data_x_df) min_max_scaler_y = MinMaxScaler() min_max_scaler_y.fit(data_y_df) y_trans1 = min_max_scaler_y.transform(data_y_df) test_filepath = "data/database/22-01-29-descriptor-test-level-1.csv" test_data = pd.read_csv(test_filepath, encoding='gb18030') print('test data: ', test_data.shape) test_data_x_df = test_data.drop(['label'], axis=1) test_data_y_df = test_data[['label']] x_trans1_test = min_max_scaler_X.transform(test_data_x_df) y_trans1_test = min_max_scaler_y.transform(test_data_y_df) ''' 3) 构建模型 ''' from keras.layers import MaxPooling1D, Conv1D, Dense, Flatten, Dropout from keras import models, regularizers from keras.optimizers import Adam, RMSprop, SGD def buildModel(): model = models.Sequential() l4 = Dense(512, activation='relu') l5 = Dropout(rate=0.2) l6 = Dense(128, activation='relu') l7 = Dense(30, activation='relu') l8 = Dense(1) layers = [l4, l5, l6, l7, l8] for i in range(len(layers)): model.add(layers[i]) adam = Adam(lr=1e-3) model.compile(optimizer=adam, loss='logcosh', metrics=['mae']) model_mlp = MLPRegressor( hidden_layer_sizes=(512, 128, 32), activation='relu', solver='lbfgs', alpha=0.0001, max_iter=5000, random_state=1, tol=0.0001, verbose=False, warm_start=False) return model def scheduler(epoch, lr): if epoch > 0 and epoch % 500 == 0: return lr * 0.1 else: return lr ''' 4) 训练模型 ''' from sklearn import metrics # n_split = 10 mlp_scores = [] MAEs = [] out_MAEs = [] in_y_test = [] in_y_pred = [] out_y_test = [] out_y_pred = [] X_train = x_trans1 y_train = y_trans1 callback = tf.keras.callbacks.LearningRateScheduler(scheduler, verbose=1) model_mlp = buildModel() model_mlp.fit(X_train, y_train, epochs=2000, verbose=1, callbacks=[callback]) # 外部验证 X_test = x_trans1_test result = model_mlp.predict(x_trans1_test) y_trans1_test = np.reshape(y_trans1_test, (-1, 1)) y_test = min_max_scaler_y.inverse_transform(y_trans1_test) result = result.reshape(-1, 1) result = min_max_scaler_y.inverse_transform(result) mae = mean_relative_error(y_test, result) out_MAEs.append(mae) Large_MRE_X = [] ## Type of X_test?? Large_MRE_y_test = [] Large_MRE_y_pred = [] Large_MRE = [] X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1])) X_test = min_max_scaler_X.inverse_transform(X_test) for idx in range(len(y_test)): Large_MRE.append(mean_relative_error([result[idx]], [y_test[idx]])[0]) Large_MRE_y_test = list(np.reshape(y_test, (-1,))) Large_MRE_y_pred = list(np.reshape(result, (-1,))) temp =
pd.DataFrame(X_test)
pandas.DataFrame
# ***************************************************************************** # Copyright (c) 2019, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import unittest import pandas as pd import numpy as np from math import sqrt import numba import sdc from sdc.tests.test_utils import (count_array_REPs, count_parfor_REPs, count_parfor_OneDs, count_array_OneDs, count_parfor_OneD_Vars, count_array_OneD_Vars, dist_IR_contains) from datetime import datetime import random class TestDate(unittest.TestCase): @unittest.skip("needs support for boxing/unboxing DatetimeIndex") def test_datetime_index_in(self): def test_impl(dti): return dti hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() dti = pd.DatetimeIndex(df['str_date']) np.testing.assert_array_equal(hpat_func(dti).values, test_impl(dti).values) def test_datetime_index(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).values hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_kw(self): def test_impl(df): return pd.DatetimeIndex(data=df['str_date']).values hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_arg(self): def test_impl(A): return A hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() A = pd.DatetimeIndex(df['str_date']).to_series() np.testing.assert_array_equal(hpat_func(A), test_impl(A)) def test_datetime_getitem(self): def test_impl(A): return A[0] hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() A = pd.DatetimeIndex(df['str_date']).to_series() self.assertEqual(hpat_func(A), test_impl(A)) def test_ts_map(self): def test_impl(A): return A.map(lambda x: x.hour) hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() A = pd.DatetimeIndex(df['str_date']).to_series() np.testing.assert_array_equal(hpat_func(A), test_impl(A)) def test_ts_map_date(self): def test_impl(A): return A.map(lambda x: x.date())[0] hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() A = pd.DatetimeIndex(df['str_date']).to_series() np.testing.assert_array_equal(hpat_func(A), test_impl(A)) def test_ts_map_date2(self): def test_impl(df): return df.apply(lambda row: row.dt_ind.date(), axis=1)[0] hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() df['dt_ind'] = pd.DatetimeIndex(df['str_date']) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_ts_map_date_set(self): def test_impl(df): df['hpat_date'] = df.dt_ind.map(lambda x: x.date()) hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() df['dt_ind'] = pd.DatetimeIndex(df['str_date']) hpat_func(df) df['pd_date'] = df.dt_ind.map(lambda x: x.date()) np.testing.assert_array_equal(df['hpat_date'], df['pd_date']) def test_date_series_unbox(self): def test_impl(A): return A[0] hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() A = pd.DatetimeIndex(df['str_date']).to_series().map(lambda x: x.date()) self.assertEqual(hpat_func(A), test_impl(A)) def test_date_series_unbox2(self): def test_impl(A): return A[0] hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() A = pd.DatetimeIndex(df['str_date']).map(lambda x: x.date()) self.assertEqual(hpat_func(A), test_impl(A)) def test_datetime_index_set(self): def test_impl(df): df['sdc'] = pd.DatetimeIndex(df['str_date']).values hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() hpat_func(df) df['std'] = pd.DatetimeIndex(df['str_date']) allequal = (df['std'].equals(df['sdc'])) self.assertTrue(allequal) def test_timestamp(self): def test_impl(): dt = datetime(2017, 4, 26) ts = pd.Timestamp(dt) return ts.day + ts.hour + ts.microsecond + ts.month + ts.nanosecond + ts.second + ts.year hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) def test_extract(self): def test_impl(s): return s.month hpat_func = sdc.jit(test_impl) ts = pd.Timestamp(datetime(2017, 4, 26).isoformat()) month = hpat_func(ts) self.assertEqual(month, 4) def test_timestamp_date(self): def test_impl(s): return s.date() hpat_func = sdc.jit(test_impl) ts = pd.Timestamp(datetime(2017, 4, 26).isoformat()) self.assertEqual(hpat_func(ts), test_impl(ts)) def test_datetimeindex_str_comp(self): def test_impl(df): return (df.A >= '2011-10-23').values df = pd.DataFrame({'A': pd.DatetimeIndex(['2015-01-03', '2010-10-11'])}) hpat_func = sdc.jit(test_impl) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetimeindex_str_comp2(self): def test_impl(df): return ('2011-10-23' <= df.A).values df = pd.DataFrame({'A': pd.DatetimeIndex(['2015-01-03', '2010-10-11'])}) hpat_func = sdc.jit(test_impl) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_df(self): def test_impl(df): df = pd.DataFrame({'A': pd.DatetimeIndex(df['str_date'])}) return df.A hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_date(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).date hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_max(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).max() hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() self.assertEqual(hpat_func(df), test_impl(df)) def test_datetime_index_min(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).min() hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() self.assertEqual(hpat_func(df), test_impl(df)) def test_datetime_index_timedelta_days(self): def test_impl(df): s = pd.DatetimeIndex(df['str_date']) t = s - s.min() return t.days hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_timedelta_seconds(self): def test_impl(df): s = pd.DatetimeIndex(df['str_date']) t = s - s.min() return t.seconds hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_timedelta_microseconds(self): def test_impl(df): s = pd.DatetimeIndex(df['str_date']) t = s - s.min() return t.microseconds hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_timedelta_nanoseconds(self): def test_impl(df): s = pd.DatetimeIndex(df['str_date']) t = s - s.min() return t.nanoseconds hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_ret(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']) hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() pd.testing.assert_index_equal(hpat_func(df), test_impl(df), check_names=False) def test_datetime_index_year(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).year hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_month(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).month hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_day(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).day hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_hour(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).hour hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_minute(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).minute hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_second(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).second hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_microsecond(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).microsecond hpat_func = sdc.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_nanosecond(self): def test_impl(df): return
pd.DatetimeIndex(df['str_date'])
pandas.DatetimeIndex
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype from ... import opcodes as OperandDef from ...serialize import AnyField, StringField, ListField from ...utils import recursive_tile from ...tensor.base import sort from ..utils import build_empty_df, build_empty_series from ..core import DATAFRAME_TYPE, SERIES_TYPE from ..operands import DataFrameOperand, DataFrameOperandMixin class DataFrameAstype(DataFrameOperand, DataFrameOperandMixin): _op_type_ = OperandDef.ASTYPE _dtype_values = AnyField('dtype_values') _errors = StringField('errors') _category_cols = ListField('category_cols') def __init__(self, dtype_values=None, errors=None, category_cols=None, output_types=None, **kw): super().__init__(_dtype_values=dtype_values, _errors=errors, _category_cols=category_cols, _output_types=output_types, **kw) @property def dtype_values(self): return self._dtype_values @property def errors(self): return self._errors @property def category_cols(self): return self._category_cols @classmethod def _tile_one_chunk(cls, op): c = op.inputs[0].chunks[0] chunk_op = op.copy().reset_key() chunk_params = op.outputs[0].params.copy() chunk_params['index'] = c.index out_chunks = [chunk_op.new_chunk([c], **chunk_params)] new_op = op.copy() return new_op.new_tileables(op.inputs, nsplits=op.inputs[0].nsplits, chunks=out_chunks, **op.outputs[0].params.copy()) @classmethod def _tile_series_index(cls, op): in_series = op.inputs[0] out = op.outputs[0] unique_chunk = None if op.dtype_values == 'category' and isinstance(op.dtype_values, str): unique_chunk = recursive_tile(sort(in_series.unique())).chunks[0] chunks = [] for c in in_series.chunks: chunk_op = op.copy().reset_key() params = c.params.copy() params['dtype'] = out.dtype if unique_chunk is not None: chunk_op._category_cols = [in_series.name] new_chunk = chunk_op.new_chunk([c, unique_chunk], **params) else: new_chunk = chunk_op.new_chunk([c], **params) chunks.append(new_chunk) new_op = op.copy() return new_op.new_tileables(op.inputs, nsplits=in_series.nsplits, chunks=chunks, **out.params.copy()) @classmethod def _tile_dataframe(cls, op): in_df = op.inputs[0] out = op.outputs[0] cum_nsplits = np.cumsum((0,) + in_df.nsplits[1]) out_chunks = [] if op.dtype_values == 'category': # all columns need unique values for c in in_df.chunks: chunk_op = op.copy().reset_key() params = c.params.copy() dtypes = out.dtypes[cum_nsplits[c.index[1]]: cum_nsplits[c.index[1] + 1]] params['dtypes'] = dtypes chunk_op._category_cols = list(c.columns_value.to_pandas()) unique_chunks = [] for col in c.columns_value.to_pandas(): unique_chunks.append(recursive_tile(sort(in_df[col].unique())).chunks[0]) new_chunk = chunk_op.new_chunk([c] + unique_chunks, **params) out_chunks.append(new_chunk) elif isinstance(op.dtype_values, dict) and 'category' in op.dtype_values.values(): # some columns' types are category category_cols = [c for c, v in op.dtype_values.items() if isinstance(v, str) and v == 'category'] unique_chunks = dict((col, recursive_tile(sort(in_df[col].unique())).chunks[0]) for col in category_cols) for c in in_df.chunks: chunk_op = op.copy().reset_key() params = c.params.copy() dtypes = out.dtypes[cum_nsplits[c.index[1]]: cum_nsplits[c.index[1] + 1]] params['dtypes'] = dtypes chunk_category_cols = [] chunk_unique_chunks = [] for col in c.columns_value.to_pandas(): if col in category_cols: chunk_category_cols.append(col) chunk_unique_chunks.append(unique_chunks[col]) chunk_op._category_cols = chunk_category_cols new_chunk = chunk_op.new_chunk([c] + chunk_unique_chunks, **params) out_chunks.append(new_chunk) else: for c in in_df.chunks: chunk_op = op.copy().reset_key() params = c.params.copy() dtypes = out.dtypes[cum_nsplits[c.index[1]]: cum_nsplits[c.index[1] + 1]] params['dtypes'] = dtypes new_chunk = chunk_op.new_chunk([c], **params) out_chunks.append(new_chunk) new_op = op.copy() return new_op.new_dataframes(op.inputs, nsplits=in_df.nsplits, chunks=out_chunks, **out.params.copy()) @classmethod def tile(cls, op): if len(op.inputs[0].chunks) == 1: return cls._tile_one_chunk(op) elif isinstance(op.inputs[0], DATAFRAME_TYPE): return cls._tile_dataframe(op) else: return cls._tile_series_index(op) @classmethod def execute(cls, ctx, op): in_data = ctx[op.inputs[0].key] if not isinstance(op.dtype_values, dict): if op.category_cols is not None: uniques = [ctx[c.key] for c in op.inputs[1:]] dtype = dict((col, CategoricalDtype(unique_values)) for col, unique_values in zip(op.category_cols, uniques)) ctx[op.outputs[0].key] = in_data.astype(dtype, errors=op.errors) elif isinstance(in_data, pd.Index): ctx[op.outputs[0].key] = in_data.astype(op.dtype_values) else: ctx[op.outputs[0].key] = in_data.astype(op.dtype_values, errors=op.errors) else: selected_dtype = dict((k, v) for k, v in op.dtype_values.items() if k in in_data.columns) if op.category_cols is not None: uniques = [ctx[c.key] for c in op.inputs[1:]] for col, unique_values in zip(op.category_cols, uniques): selected_dtype[col] = CategoricalDtype(unique_values) ctx[op.outputs[0].key] = in_data.astype(selected_dtype, errors=op.errors) def __call__(self, df): if isinstance(df, DATAFRAME_TYPE): empty_df = build_empty_df(df.dtypes) new_df = empty_df.astype(self.dtype_values, errors=self.errors) dtypes = [] for dt, new_dt in zip(df.dtypes, new_df.dtypes): if new_dt != dt and isinstance(new_dt, CategoricalDtype): dtypes.append(CategoricalDtype()) else: dtypes.append(new_dt) dtypes =
pd.Series(dtypes, index=new_df.dtypes.index)
pandas.Series
''' https://www.scitepress.org/Papers/2015/55519/55519.pdf http://archive.ics.uci.edu/ml/datasets/Wine+Quality ''' import os import pandas as pd from scipy.io import arff from sklearn.preprocessing import OneHotEncoder, LabelEncoder, OrdinalEncoder, StandardScaler from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.neural_network import MLPRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split, cross_val_score, KFold, GridSearchCV from sklearn.metrics import mean_absolute_error dataset_r = pd.read_csv(r'..\..\data\regression\wine-quality\winequality-red.csv', delimiter=';', ) # header=None, usecols=[3,6] dataset_w =
pd.read_csv(r'..\..\data\regression\wine-quality\winequality-white.csv', delimiter=';')
pandas.read_csv
# -*- coding: utf-8 -*- """ Updating EDDI on a monthly basis. Run this using crontab once a month this to pull netcdf files from the NOAA's PSD FTP server, transform them to fit in the app, and either append them to an existing file, or build the data set from scratch. This also rebuilds each percentile netcdf entirely because those are rank based. For more information check Get_WWDT.py Created on Fri Feb 10 14:33:38 2019 @author: User """ import calendar import datetime as dt import ftplib from glob import glob from netCDF4 import Dataset import numpy as np import os from osgeo import gdal import pandas as pd import pathlib import sys from tqdm import tqdm import xarray as xr # Refactor all of this pwd = str(pathlib.Path(__file__).parent.absolute()) data_path = os.path.join(pwd, "..") sys.path.insert(0, data_path) from functions import isInt, toNetCDF, toNetCDFAlbers, toNetCDFPercentile # gdal.PushErrorHandler('CPLQuietErrorHandler') os.environ['GDAL_PAM_ENABLED'] = 'NO' # There are often missing epsg codes in the gcs.csv file, but proj4 works proj = ('+proj=aea +lat_1=20 +lat_2=60 +lat_0=40 +lon_0=-96 +x_0=0 +y_0=0 ' + '+ellps=GRS80 +datum=NAD83 +units=m no_defs') # Get resolution from file call try: res = float(sys.argv[1]) except: res = 0.25 # In[] Data source and target directory ftp_path = 'ftp://ftp.cdc.noaa.gov/Projects/EDDI/CONUS_archive/data' temp_folder = os.path.join(data_path, 'data/droughtindices/netcdfs/eddi') pc_folder = os.path.join(data_path, 'data/droughtindices/netcdfs/percentiles') if not os.path.exists(temp_folder): os.makedirs(temp_folder) if not os.path.exists(pc_folder): os.makedirs(pc_folder) # In[] Index options indices = ['eddi1', 'eddi2', 'eddi3', 'eddi4', 'eddi5', 'eddi6', 'eddi7', 'eddi8', 'eddi9', 'eddi10', 'eddi11', 'eddi12'] # In[] Define scraping routine def getEDDI(scale, date, temp_folder, write=False): ''' These come out daily, but each represents the accumulated conditions of the prior 30 days. Since we want one value per month we are only downloading the last day of the month. I'm not sure whether it will be possible to append this directly to an exiting netcdf or if we need to write to a file first. ''' year = date.year month = date.month last_day = calendar.monthrange(year, month)[1] if not write: memory_file = [] def appendline(line): memory_file.append(line) try: file_name = 'EDDI_ETrs_{:02d}mn_{}{:02d}{}.asc'.format(scale, year, month, last_day) ftp.retrlines('RETR ' + file_name, appendline) except: file_name = 'EDDI_ETrs_{:02d}mn_{}{:02d}{}.asc'.format(scale, year, month, last_day-1) ftp.retrlines('RETR ' + file_name, appendline) return memory_file else: def writeline(line): local_file.write(line + "\n") local_file = open(os.path.join(temp_folder, 'eddi.asc'), 'w') try: file_name = 'EDDI_ETrs_{:02d}mn_{}{:02d}{}.asc'.format(scale, year, month, last_day) ftp.retrlines('RETR ' + file_name, writeline) except: file_name = 'EDDI_ETrs_{:02d}mn_{}{:02d}{}.asc'.format(scale, year, month, last_day - 1) ftp.retrlines('RETR ' + file_name, writeline) local_file.close() return os.path.join(temp_folder, 'eddi.asc') # In[] Today's date, month, and year todays_date = dt.datetime.today() today = np.datetime64(todays_date) print("##") print("#####") print("############") print("#######################") print("#######################################") print("####################################################") print("\nRunning Get_EDDI.py using a " + str(res) + " degree resolution:\n") print(str(today) + '\n') # In[] Get time series of currently available values # Connect to FTP ftp = ftplib.FTP('ftp.cdc.noaa.gov', 'anonymous', '<EMAIL>') for index in indices: ftp.cwd('/Projects/EDDI/CONUS_archive/data/') print('\n' + index) original_path = os.path.join(data_path, "data/droughtindices/netcdfs/", index + '.nc') albers_path = os.path.join(data_path, "data/droughtindices/netcdfs/albers", index + '.nc') percentile_path = os.path.join(data_path, "data/droughtindices/netcdfs/percentiles", index + '.nc') scale = index[-2:] scale = int("".join([s for s in scale if isInt(s)])) # Delete existing contents of temporary folder temps = glob(os.path.join(temp_folder, "*")) for t in temps: os.remove(t) ####### If we are only missing some dates ################################# if os.path.exists(original_path): with xr.open_dataset(original_path) as data: dates = pd.DatetimeIndex(data.time.data) data.close() # Extract dates d1 = dates[0] d2 = dates[-1] # Get a list of the dates already in the netcdf file existing_dates = pd.date_range(d1, d2, freq="M") # Get all of the last day of month files for the index ftp_years = ftp.nlst() ftp_years = [f for f in ftp_years if isInt(f)] # First Date ftp.cwd(os.path.join('/Projects/EDDI/CONUS_archive/data/', ftp_years[0])) ftp_files = ftp.nlst() ftp_files = [f for f in ftp_files if f[-17:-13] == "{:02d}mn".format(scale)] ftp_first = ftp_files[0] first_date = pd.to_datetime(ftp_first[-12:-4], format='%Y%m%d') # Last Date ftp.cwd(os.path.join('/Projects/EDDI/CONUS_archive/data/', ftp_years[-1])) ftp_files = ftp.nlst() ftp_files = [f for f in ftp_files if f[-17:-13] == "{:02d}mn".format(scale)] ftp_last = ftp_files[-1] last_date = pd.to_datetime(ftp_last[-12: -4], format='%Y%m%d') # All dates available available_dates =
pd.date_range(first_date, last_date, freq='M')
pandas.date_range
import os import pickle import numpy as np import pandas as pd import nibabel as nib from statsmodels.gam.api import BSplines from .neuroCombat import make_design_matrix, adjust_data_final def harmonizationApply(data, covars, model,return_stand_mean=False): """ Applies harmonization model with neuroCombat functions to new data. Arguments --------- data : a numpy array data to harmonize with ComBat, dimensions are N_samples x N_features covars : a pandas DataFrame contains covariates to control for during harmonization all covariates must be encoded numerically (no categorical variables) must contain a single column "SITE" with site labels for ComBat dimensions are N_samples x (N_covariates + 1) model : a dictionary of model parameters the output of a call to harmonizationLearn() Returns ------- bayes_data : a numpy array harmonized data, dimensions are N_samples x N_features """ # transpose data as per ComBat convention data = data.T # prep covariate data batch_col = covars.columns.get_loc('SITE') isTrainSite = covars['SITE'].isin(model['SITE_labels']) cat_cols = [] num_cols = [covars.columns.get_loc(c) for c in covars.columns if c!='SITE'] covars = np.array(covars, dtype='object') # load the smoothing model smooth_model = model['smooth_model'] smooth_cols = smooth_model['smooth_cols'] ### additional setup code from neuroCombat implementation: # convert training SITEs in batch col to integers site_dict = dict(zip(model['SITE_labels'], np.arange(len(model['SITE_labels'])))) covars[:,batch_col] = np.vectorize(site_dict.get)(covars[:,batch_col],-1) # compute samples_per_batch for training data sample_per_batch = [np.sum(covars[:,batch_col]==i) for i in list(site_dict.values())] sample_per_batch = np.asarray(sample_per_batch) # create dictionary that stores batch info batch_levels = np.unique(list(site_dict.values()),return_counts=False) info_dict = { 'batch_levels': batch_levels.astype('int'), 'n_batch': len(batch_levels), 'n_sample': int(covars.shape[0]), 'sample_per_batch': sample_per_batch.astype('int'), 'batch_info': [list(np.where(covars[:,batch_col]==idx)[0]) for idx in batch_levels] } covars[~isTrainSite, batch_col] = 0 covars[:,batch_col] = covars[:,batch_col].astype(int) ### # isolate array of data in training site # apply ComBat without re-learning model parameters design = make_design_matrix(covars, batch_col, cat_cols, num_cols,nb_class = len(model['SITE_labels'])) design[~isTrainSite,0:len(model['SITE_labels'])] = np.nan ### additional setup if smoothing is performed if smooth_model['perform_smoothing']: # create cubic spline basis for smooth terms X_spline = covars[:, smooth_cols].astype(float) bs_basis = smooth_model['bsplines_constructor'].transform(X_spline) # construct formula and dataframe required for gam formula = 'y ~ ' df_gam = {} for b in batch_levels: formula = formula + 'x' + str(b) + ' + ' df_gam['x' + str(b)] = design[:, b] for c in num_cols: if c not in smooth_cols: formula = formula + 'c' + str(c) + ' + ' df_gam['c' + str(c)] = covars[:, c].astype(float) formula = formula[:-2] + '- 1' df_gam =
pd.DataFrame(df_gam)
pandas.DataFrame
from __future__ import print_function import unittest from unittest import mock from io import BytesIO, StringIO import random import six import os import re import logging import numpy as np import pandas as pd from . import utils as test_utils import dataprofiler as dp from dataprofiler.profilers.profile_builder import StructuredColProfiler, \ UnstructuredProfiler, UnstructuredCompiler, StructuredProfiler, Profiler from dataprofiler.profilers.profiler_options import ProfilerOptions, \ StructuredOptions, UnstructuredOptions from dataprofiler.profilers.column_profile_compilers import \ ColumnPrimitiveTypeProfileCompiler, ColumnStatsProfileCompiler, \ ColumnDataLabelerCompiler from dataprofiler import StructuredDataLabeler, UnstructuredDataLabeler from dataprofiler.profilers.helpers.report_helpers import _prepare_report test_root_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) def setup_save_mock_open(mock_open): mock_file = BytesIO() mock_file.close = lambda: None mock_open.side_effect = lambda *args: mock_file return mock_file class TestStructuredProfiler(unittest.TestCase): @classmethod def setUp(cls): test_utils.set_seed(seed=0) @classmethod def setUpClass(cls): test_utils.set_seed(seed=0) cls.input_file_path = os.path.join( test_root_path, 'data', 'csv/aws_honeypot_marx_geo.csv' ) cls.aws_dataset = pd.read_csv(cls.input_file_path) profiler_options = ProfilerOptions() profiler_options.set({'data_labeler.is_enabled': False}) with test_utils.mock_timeit(): cls.trained_schema = dp.StructuredProfiler( cls.aws_dataset, len(cls.aws_dataset), options=profiler_options) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) def test_bad_input_data(self, *mocks): allowed_data_types = (r"\(<class 'list'>, " r"<class 'pandas.core.series.Series'>, " r"<class 'pandas.core.frame.DataFrame'>\)") bad_data_types = [1, {}, np.inf, 'sdfs'] for data in bad_data_types: with self.assertRaisesRegex(TypeError, r"Data must either be imported using " r"the data_readers or using one of the " r"following: " + allowed_data_types): StructuredProfiler(data) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') def test_list_data(self, *mocks): data = [[1, 1], [None, None], [3, 3], [4, 4], [5, 5], [None, None], [1, 1]] with test_utils.mock_timeit(): profiler = dp.StructuredProfiler(data) # test properties self.assertEqual("<class 'list'>", profiler.file_type) self.assertIsNone(profiler.encoding) self.assertEqual(2, profiler.row_has_null_count) self.assertEqual(2, profiler.row_is_null_count) self.assertEqual(7, profiler.total_samples) self.assertEqual(5, len(profiler.hashed_row_dict)) self.assertListEqual([0, 1], list(profiler._col_name_to_idx.keys())) self.assertIsNone(profiler.correlation_matrix) self.assertDictEqual({'row_stats': 1}, profiler.times) # validates the sample out maintains the same visual data format as the # input. self.assertListEqual(['5', '1', '1', '3', '4'], profiler.profile[0].sample) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') def test_pandas_series_data(self, *mocks): data = pd.Series([1, None, 3, 4, 5, None, 1]) with test_utils.mock_timeit(): profiler = dp.StructuredProfiler(data) # test properties self.assertEqual( "<class 'pandas.core.series.Series'>", profiler.file_type) self.assertIsNone(profiler.encoding) self.assertEqual(2, profiler.row_has_null_count) self.assertEqual(2, profiler.row_is_null_count) self.assertEqual(7, profiler.total_samples) self.assertEqual(5, len(profiler.hashed_row_dict)) self.assertListEqual([0], list(profiler._col_name_to_idx.keys())) self.assertIsNone(profiler.correlation_matrix) self.assertDictEqual({'row_stats': 1}, profiler.times) # test properties when series has name data.name = 'test' profiler = dp.StructuredProfiler(data) self.assertEqual( "<class 'pandas.core.series.Series'>", profiler.file_type) self.assertIsNone(profiler.encoding) self.assertEqual(2, profiler.row_has_null_count) self.assertEqual(2, profiler.row_is_null_count) self.assertEqual(7, profiler.total_samples) self.assertEqual(5, len(profiler.hashed_row_dict)) self.assertListEqual(['test'], list(profiler._col_name_to_idx.keys())) self.assertIsNone(profiler.correlation_matrix) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._merge_correlation') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_chi2') def test_add_profilers(self, *mocks): data = pd.DataFrame([1, None, 3, 4, 5, None, 1]) with test_utils.mock_timeit(): profile1 = dp.StructuredProfiler(data[:2]) profile2 = dp.StructuredProfiler(data[2:]) # test incorrect type with self.assertRaisesRegex(TypeError, '`StructuredProfiler` and `int` are ' 'not of the same profiler type.'): profile1 + 3 # test mismatched profiles profile2._profile.pop(0) profile2._col_name_to_idx.pop(0) with self.assertRaisesRegex(ValueError, "Cannot merge empty profiles."): profile1 + profile2 # test mismatched profiles due to options profile2._profile.append(None) profile2._col_name_to_idx[0] = [0] with self.assertRaisesRegex(ValueError, 'The two profilers were not setup with the ' 'same options, hence they do not calculate ' 'the same profiles and cannot be added ' 'together.'): profile1 + profile2 # test success profile1._profile = [1] profile1._col_name_to_idx = {"test": [0]} profile2._profile = [2] profile2._col_name_to_idx = {"test": [0]} merged_profile = profile1 + profile2 self.assertEqual(3, merged_profile._profile[ merged_profile._col_name_to_idx["test"][0]]) self.assertIsNone(merged_profile.encoding) self.assertEqual( "<class 'pandas.core.frame.DataFrame'>", merged_profile.file_type) self.assertEqual(2, merged_profile.row_has_null_count) self.assertEqual(2, merged_profile.row_is_null_count) self.assertEqual(7, merged_profile.total_samples) self.assertEqual(5, len(merged_profile.hashed_row_dict)) self.assertDictEqual({'row_stats': 2}, merged_profile.times) # test success if drawn from multiple files profile2.encoding = 'test' profile2.file_type = 'test' merged_profile = profile1 + profile2 self.assertEqual('multiple files', merged_profile.encoding) self.assertEqual('multiple files', merged_profile.file_type) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._get_correlation') def test_stream_profilers(self, *mocks): mocks[0].return_value = None data = pd.DataFrame([ ['test1', 1.0], ['test2', None], ['test1', 1.0], [None, None], [None, 5.0], [None, 5.0], [None, None], ['test3', 7.0]]) # check prior to update with test_utils.mock_timeit(): profiler = dp.StructuredProfiler(data[:3]) self.assertEqual(1, profiler.row_has_null_count) self.assertEqual(0, profiler.row_is_null_count) self.assertEqual(3, profiler.total_samples) self.assertEqual(2, len(profiler.hashed_row_dict)) self.assertIsNone(profiler.correlation_matrix) self.assertDictEqual({'row_stats': 1}, profiler.times) # check after update with test_utils.mock_timeit(): profiler.update_profile(data[3:]) self.assertIsNone(profiler.encoding) self.assertEqual( "<class 'pandas.core.frame.DataFrame'>", profiler.file_type) self.assertEqual(5, profiler.row_has_null_count) self.assertEqual(2, profiler.row_is_null_count) self.assertEqual(8, profiler.total_samples) self.assertEqual(5, len(profiler.hashed_row_dict)) self.assertIsNone(profiler.correlation_matrix) self.assertDictEqual({'row_stats': 2}, profiler.times) def test_correct_unique_row_ratio_test(self): self.assertEqual(2999, len(self.trained_schema.hashed_row_dict)) self.assertEqual(2999, self.trained_schema.total_samples) self.assertEqual(1.0, self.trained_schema._get_unique_row_ratio()) def test_correct_rows_ingested(self): self.assertEqual(2999, self.trained_schema.total_samples) def test_correct_null_row_ratio_test(self): self.assertEqual(2999, self.trained_schema.row_has_null_count) self.assertEqual(1.0, self.trained_schema._get_row_has_null_ratio()) self.assertEqual(0, self.trained_schema.row_is_null_count) self.assertEqual(0, self.trained_schema._get_row_is_null_ratio()) self.assertEqual(2999, self.trained_schema.total_samples) def test_correct_duplicate_row_count_test(self): self.assertEqual(2999, len(self.trained_schema.hashed_row_dict)) self.assertEqual(2999, self.trained_schema.total_samples) self.assertEqual(0.0, self.trained_schema._get_duplicate_row_count()) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) def test_correlation(self, *mock): # Use the following formula to obtain the pairwise correlation # sum((x - np.mean(x))*(y-np.mean(y))) / # np.sqrt(sum((x - np.mean(x)**2)))/np.sqrt(sum((y - np.mean(y)**2))) profile_options = dp.ProfilerOptions() profile_options.set({"correlation.is_enabled": True}) # data with a sole numeric column data = pd.DataFrame([1.0, 8.0, 1.0, -2.0, 5.0]) with test_utils.mock_timeit(): profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([[1.0]]) np.testing.assert_array_equal(expected_corr_mat, profiler.correlation_matrix) self.assertDictEqual({'row_stats': 1, 'correlation': 1}, profiler.times) # data with one column with non-numeric calues data = pd.DataFrame([1.0, None, 1.0, None, 5.0]) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([[1]]) np.testing.assert_array_equal(expected_corr_mat, profiler.correlation_matrix) # data with two columns, but one is numerical data = pd.DataFrame([ ['test1', 1.0], ['test2', None], ['test1', 1.0], [None, None]]) profiler = dp.StructuredProfiler(data, options=profile_options) # Even the correlation with itself is NaN because the variance is zero expected_corr_mat = np.array([ [np.nan, np.nan], [np.nan, np.nan] ]) np.testing.assert_array_equal(expected_corr_mat, profiler.correlation_matrix) # data with multiple numerical columns data = pd.DataFrame({'a': [3, 2, 1, 7, 5, 9, 4, 10, 7, 2], 'b': [10, 11, 1, 4, 2, 5, 6, 3, 9, 8], 'c': [1, 5, 3, 5, 7, 2, 6, 8, 1, 2]}) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([ [1.0, -0.26559388521279237, 0.26594894270403086], [-0.26559388521279237, 1.0, -0.49072329], [0.26594894270403086, -0.49072329, 1.0] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # data with multiple numerical columns, with nan values data = pd.DataFrame({'a': [np.nan, np.nan, 1, 7, 5, 9, 4, 10, 7, 2], 'b': [10, 11, np.nan, 4, 2, 5, 6, 3, 9, 8], 'c': [1, 5, 3, 5, 7, 2, 6, 8, np.nan, np.nan]}) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([ [1, -0.28527657, 0.18626508], [-0.28527657, 1, -0.52996792], [0.18626508, -0.52996792, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # data with multiple numerical columns, with nan values in only one # column data = pd.DataFrame({'a': [np.nan, np.nan, 1, 7, 5, 9, 4, 10, 7, 2], 'b': [10, 11, 1, 4, 2, 5, 6, 3, 9, 8], 'c': [1, 5, 3, 5, 7, 2, 6, 8, 1, 2]}) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([ [1, 0.03673504, 0.22844891], [0.03673504, 1, -0.49072329], [0.22844891, -0.49072329, 1]]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # data with only one numerical columns without nan values data = pd.DataFrame({'a': [3, 2, 1, 7, 5, 9, 4, 10, 7, 2]}) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([[1]]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # data with no numeric columns data = pd.DataFrame({'a': ['hi', 'hi2', 'hi3'], 'b': ['test1', 'test2', 'test3']}) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([ [np.nan, np.nan], [np.nan, np.nan] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # data with only one numeric column # data with no numeric columns data = pd.DataFrame({'a': ['hi', 'hi2', 'hi3'], 'b': ['test1', 'test2', 'test3'], 'c': [1, 2, 3]}) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # Data with null rows data = pd.DataFrame({'a': [None, 2, 1, np.nan, 5, np.nan, 4, 10, 7, np.nan], 'b': [np.nan, 11, 1, 'nan', 2, np.nan, 6, 3, 9, np.nan], 'c': [np.nan, 5, 3, np.nan, 7, np.nan, 6, 8, 1, None]}) profiler = dp.StructuredProfiler(data, options=profile_options) # correlation between [2, 1, 5, 4, 10, 7], # [11, 1, 2, 6, 3, 9], # [5, 3, 7, 6, 8, 1] expected_corr_mat = np.array([ [1, -0.06987956, 0.32423975], [-0.06987956, 1, -0.3613099], [0.32423975, -0.3613099, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # Data with null rows and some imputed values data = pd.DataFrame({'a': [None, np.nan, 1, 7, 5, 9, 4, 10, np.nan, 2], 'b': [10, 11, 1, 4, 2, 5, np.nan, 3, np.nan, 8], 'c': [1, 5, 3, 5, np.nan, 2, 6, 8, np.nan, 2]}) profiler = dp.StructuredProfiler(data, options=profile_options) # correlation between [*38/7*, *38/7*, 1, 7, 5, 9, 4, 10, 2], # [10, 11, 1, 4, 2, 5, *11/2*, 3, 8], # [1, 5, 3, 5, *4*, 2, 6, 8, 2] expected_corr_mat = np.array([ [1, -0.03283837, 0.40038038], [-0.03283837, 1, -0.30346637], [0.40038038, -0.30346637, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) def test_merge_correlation(self, *mocks): # Use the following formular to obtain the pairwise correlation # sum((x - np.mean(x))*(y-np.mean(y))) / # np.sqrt(sum((x - np.mean(x)**2)))/np.sqrt(sum((y - np.mean(y)**2))) profile_options = dp.ProfilerOptions() profile_options.set({"correlation.is_enabled": True}) # merge between two existing correlations data = pd.DataFrame({'a': [3, 2, 1, 7, 5, 9, 4, 10, 7, 2], 'b': [10, 11, 1, 4, 2, 5, 6, 3, 9, 8], 'c': [1, 5, 3, 5, 7, 2, 6, 8, 1, 2]}) data1 = data[:5] data2 = data[5:] with test_utils.mock_timeit(): profile1 = dp.StructuredProfiler(data1, options=profile_options) profile2 = dp.StructuredProfiler(data2, options=profile_options) merged_profile = profile1 + profile2 expected_corr_mat = np.array([ [1.0, -0.26559388521279237, 0.26594894270403086], [-0.26559388521279237, 1.0, -0.49072329], [0.26594894270403086, -0.49072329, 1.0] ]) np.testing.assert_array_almost_equal(expected_corr_mat, merged_profile.correlation_matrix) self.assertDictEqual({'row_stats': 2, 'correlation': 2}, merged_profile.times) # merge between an existing corr and None correlation (without data) with test_utils.mock_timeit(): profile1 = dp.StructuredProfiler(None, options=profile_options) profile2 = dp.StructuredProfiler(data, options=profile_options) # TODO: remove the mock below when merge profile is update with mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._add_error_checks'): merged_profile = profile1 + profile2 expected_corr_mat = np.array([ [1.0, -0.26559388521279237, 0.26594894270403086], [-0.26559388521279237, 1.0, -0.49072329], [0.26594894270403086, -0.4907239, 1.0] ]) np.testing.assert_array_almost_equal(expected_corr_mat, merged_profile.correlation_matrix) self.assertDictEqual({'row_stats': 1, 'correlation': 1}, merged_profile.times) # Merge between existing data and empty data that still has samples data = pd.DataFrame({'a': [1, 2, 4, np.nan, None, np.nan], 'b': [5, 7, 1, np.nan, np.nan, 'nan']}) data1 = data[:3] data2 = data[3:] profile1 = dp.StructuredProfiler(data1, options=profile_options) expected_corr_mat = np.array([ [1, -0.78571429], [-0.78571429, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profile1.correlation_matrix) profile2 = dp.StructuredProfiler(data2, options=profile_options) merged_profile = profile1 + profile2 np.testing.assert_array_almost_equal(expected_corr_mat, merged_profile.correlation_matrix) def test_correlation_update(self): profile_options = dp.ProfilerOptions() profile_options.set({"correlation.is_enabled": True}) # Test with all numeric columns data = pd.DataFrame({'a': [3, 2, 1, 7, 5, 9, 4, 10, 7, 2], 'b': [10, 11, 1, 4, 2, 5, 6, 3, 9, 8], 'c': [1, 5, 3, 5, 7, 2, 6, 8, 1, 2]}) data1 = data[:5] data2 = data[5:] with test_utils.mock_timeit(): profiler = dp.StructuredProfiler(data1, options=profile_options) profiler.update_profile(data2) expected_corr_mat = np.array([ [1.0, -0.26559388521279237, 0.26594894270403086], [-0.26559388521279237, 1.0, -0.4907239], [0.26594894270403086, -0.4907239, 1.0] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) self.assertDictEqual({'row_stats': 2, 'correlation': 2}, profiler.times) # Test when there's a non-numeric column data = pd.DataFrame({'a': [3, 2, 1, 7, 5, 9, 4, 10, 7, 2], 'b': [10, 11, 1, 4, 2, 5, 6, 3, 9, 8], 'c': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']}) data1 = data[:5] data2 = data[5:] profiler = dp.StructuredProfiler(data1, options=profile_options) profiler.update_profile(data2) expected_corr_mat = np.array([ [1.0, -0.26559388521279237, np.nan], [-0.26559388521279237, 1.0, np.nan], [np.nan, np.nan, np.nan] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # Data with multiple numerical and non-numeric columns, with nan values in only one column # NaNs imputed to (9+4+10)/3 data = pd.DataFrame({'a': [7, 2, 1, 7, 5, 9, 4, 10, np.nan, np.nan], 'b': [10, 11, 1, 4, 2, 5, 6, 3, 9, 8], 'c': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'], 'd': [1, 5, 3, 5, 7, 2, 6, 8, 1, 2]}) data1 = data[:5] data2 = data[5:] profiler = dp.StructuredProfiler(data1, options=profile_options) profiler.update_profile(data2) expected_corr_mat = np.array([ [ 1, 0.04721482, np.nan, -0.09383408], [ 0.04721482, 1, np.nan,-0.49072329], [np.nan, np.nan, np.nan, np.nan], [-0.09383408, -0.49072329, np.nan, 1]] ) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # Data with null rows, all null rows are dropped data = pd.DataFrame({'a': [np.nan, 2, 1, None, 5, np.nan, 4, 10, 7, 'NaN'], 'b': [np.nan, 11, 1, np.nan, 2, np.nan, 6, 3, 9, np.nan], 'c': [np.nan, 5, 3, np.nan, 7, None, 6, 8, 1, np.nan]}) data1 = data[:5] data2 = data[5:] profiler = dp.StructuredProfiler(data1, options=profile_options) profiler.update_profile(data2) # correlation between [2, 1, 5, 4, 10, 7], # [11, 1, 2, 6, 3, 9], # [5, 3, 7, 6, 8, 1] expected_corr_mat = np.array([ [1, -0.06987956, 0.32423975], [-0.06987956, 1, -0.3613099], [0.32423975, -0.3613099, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # Data with null rows and some imputed values data = pd.DataFrame({'a': [None, np.nan, 1, 7, 5, 9, 4, 10, 'nan', 2], 'b': [10, 11, 1, 4, 2, 5, 'NaN', 3, None, 8], 'c': [1, 5, 3, 5, np.nan, 2, 6, 8, None, 2]}) data1 = data[:5] data2 = data[5:] profiler = dp.StructuredProfiler(data1, options=profile_options) profiler.update_profile(data2) # correlation between [*13/3*, *13/3*, 1, 7, 5] # [10, 11, 1, 4, 2] # [1, 5, 3, 5, *7/2*] # then updated with correlation (9th row dropped) between # [9, 4, 10, 2], # [5, *16/3*, 3, 8], # [2, 6, 8, 2] expected_corr_mat = np.array([ [1, -0.16079606, 0.43658332], [-0.16079606, 1, -0.2801748], [0.43658332, -0.2801748, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) def test_chi2(self, *mocks): # Empty data = pd.DataFrame([]) profiler = dp.StructuredProfiler(data) self.assertIsNone(profiler.chi2_matrix) # Single column data = pd.DataFrame({'a': ["y", "y", "n", "n", "y"]}) profiler = dp.StructuredProfiler(data) expected_mat = np.array([1]) self.assertEqual(expected_mat, profiler.chi2_matrix) data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "maybe", "y", "y", "n", "n", "maybe"], 'c': ["n", "maybe", "n", "n", "n", "y", "y"]}) profiler = dp.StructuredProfiler(data) expected_mat = np.array([ [1, 0.309924, 0.404638], [0.309924, 1, 0.548812], [0.404638, 0.548812, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) # All different categories data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["a", "maybe", "a", "a", "b", "b", "maybe"], 'c': ["d", "d", "g", "g", "g", "t", "t"]}) profiler = dp.StructuredProfiler(data) expected_mat = np.array([ [1, 0.007295, 0.007295], [0.007295, 1, 0.015609], [0.007295, 0.015609, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) # Identical columns data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "y", "y", "y", "n", "n", "n"], 'c': ["y", "y", "y", "y", "n", "n", "n"]}) profiler = dp.StructuredProfiler(data) expected_mat = np.array([ [1, 1, 1], [1, 1, 1], [1, 1, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) def test_merge_chi2(self, *mocks): # Merge empty data data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "maybe", "y", "y", "n", "n", "maybe"], 'c': ["n", "maybe", "n", "n", "n", "y", "y"]}) profiler1 = dp.StructuredProfiler(None) profiler2 = dp.StructuredProfiler(data) with mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._add_error_checks'): profiler3 = profiler1 + profiler2 expected_mat = np.array([ [1, 0.309924, 0.404638], [0.309924, 1, 0.548812], [0.404638, 0.548812, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler3.chi2_matrix) data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "maybe", "y", "y", "n", "n", "maybe"], 'c': ["n", "maybe", "n", "n", "n", "y", "y"]}) data1 = data[:4] data2 = data[4:] profiler1 = dp.StructuredProfiler(data1) profiler2 = dp.StructuredProfiler(data2) profiler3 = profiler1 + profiler2 expected_mat = np.array([ [1, 0.309924, 0.404638], [0.309924, 1, 0.548812], [0.404638, 0.548812, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler3.chi2_matrix) # All different categories data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["a", "maybe", "a", "a", "b", "b", "maybe"], 'c': ["d", "d", "g", "g", "g", "t", "t"]}) data1 = data[:4] data2 = data[4:] profiler1 = dp.StructuredProfiler(data1) profiler2 = dp.StructuredProfiler(data2) profiler3 = profiler1 + profiler2 expected_mat = np.array([ [1, 0.007295, 0.007295], [0.007295, 1, 0.015609], [0.007295, 0.015609, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler3.chi2_matrix) # Identical columns data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "y", "y", "y", "n", "n", "n"], 'c': ["y", "y", "y", "y", "n", "n", "n"]}) data1 = data[:4] data2 = data[4:] profiler1 = dp.StructuredProfiler(data1) profiler2 = dp.StructuredProfiler(data2) profiler3 = profiler1 + profiler2 expected_mat = np.array([ [1, 1, 1], [1, 1, 1], [1, 1, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler3.chi2_matrix) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) def test_update_chi2(self, *mocks): # Update with empty data data1 = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "maybe", "y", "y", "n", "n", "maybe"], 'c': ["n", "maybe", "n", "n", "n", "y", "y"]}) data2 = pd.DataFrame({'a': [], 'b': [], 'c': []}) profiler = dp.StructuredProfiler(data1) profiler.update_profile(data2) expected_mat = np.array([ [1, 0.309924, 0.404638], [0.309924, 1, 0.548812], [0.404638, 0.548812, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "maybe", "y", "y", "n", "n", "maybe"], 'c': ["n", "maybe", "n", "n", "n", "y", "y"]}) data1 = data[:4] data2 = data[4:] profiler = dp.StructuredProfiler(data1) profiler.update_profile(data2) expected_mat = np.array([ [1, 0.309924, 0.404638], [0.309924, 1, 0.548812], [0.404638, 0.548812, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) # All different categories data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["a", "maybe", "a", "a", "b", "b", "maybe"], 'c': ["d", "d", "g", "g", "g", "t", "t"]}) data1 = data[:4] data2 = data[4:] profiler = dp.StructuredProfiler(data1) profiler.update_profile(data2) expected_mat = np.array([ [1, 0.007295, 0.007295], [0.007295, 1, 0.015609], [0.007295, 0.015609, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) # Identical columns data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "y", "y", "y", "n", "n", "n"], 'c': ["y", "y", "y", "y", "n", "n", "n"]}) data1 = data[:4] data2 = data[4:] profiler = dp.StructuredProfiler(data1) profiler.update_profile(data2) expected_mat = np.array([ [1, 1, 1], [1, 1, 1], [1, 1, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) def test_correct_datatime_schema_test(self): profile_idx = self.trained_schema._col_name_to_idx["datetime"][0] profile = self.trained_schema.profile[profile_idx] col_schema_info = \ profile.profiles['data_type_profile']._profiles["datetime"] self.assertEqual(2999, profile.sample_size) self.assertEqual(col_schema_info.sample_size, col_schema_info.match_count) self.assertEqual(2, profile.null_count) six.assertCountEqual(self, ['nan'], profile.null_types) self.assertEqual(['%m/%d/%y %H:%M'], col_schema_info['date_formats']) def test_correct_integer_column_detection_src(self): profile_idx = self.trained_schema._col_name_to_idx["src"][0] profile = self.trained_schema.profile[profile_idx] col_schema_info = profile.profiles['data_type_profile']._profiles["int"] self.assertEqual(2999, profile.sample_size) self.assertEqual(col_schema_info.sample_size, col_schema_info.match_count) self.assertEqual(3, profile.null_count) def test_correct_integer_column_detection_int_col(self): profile_idx = self.trained_schema._col_name_to_idx["int_col"][0] profile = self.trained_schema.profile[profile_idx] col_schema_info = profile.profiles['data_type_profile']._profiles["int"] self.assertEqual(2999, profile.sample_size) self.assertEqual(col_schema_info.sample_size, col_schema_info.match_count) self.assertEqual(0, profile.null_count) def test_correct_integer_column_detection_port(self): profile_idx = self.trained_schema._col_name_to_idx["srcport"][0] profile = self.trained_schema.profile[profile_idx] col_schema_info = profile.profiles['data_type_profile']._profiles["int"] self.assertEqual(2999, profile.sample_size) self.assertEqual(col_schema_info.sample_size, col_schema_info.match_count) self.assertEqual(197, profile.null_count) def test_correct_integer_column_detection_destport(self): profile_idx = self.trained_schema._col_name_to_idx["destport"][0] profile = self.trained_schema.profile[profile_idx] col_schema_info = profile.profiles['data_type_profile']._profiles["int"] self.assertEqual(2999, profile.sample_size) self.assertEqual(col_schema_info.sample_size, col_schema_info.match_count) self.assertEqual(197, profile.null_count) def test_report(self): report = self.trained_schema.report() self.assertListEqual(list(report.keys()), [ 'global_stats', 'data_stats']) self.assertListEqual( list(report['global_stats']), [ "samples_used", "column_count", "row_count", "row_has_null_ratio", 'row_is_null_ratio', "unique_row_ratio", "duplicate_row_count", "file_type", "encoding", "correlation_matrix", "chi2_matrix", "profile_schema", "times" ] ) flat_report = self.trained_schema.report( report_options={"output_format": "flat"}) self.assertEqual(test_utils.get_depth(flat_report), 1) with mock.patch('dataprofiler.profilers.helpers.report_helpers' '._prepare_report') as pr_mock: self.trained_schema.report( report_options={"output_format": 'pretty'}) # Once for global_stats, once for each of 16 columns self.assertEqual(pr_mock.call_count, 17) def test_report_schema_and_data_stats_match_order(self): data = pd.DataFrame([[1, 2, 3, 4, 5, 6], [10, 20, 30, 40, 50, 60]], columns=["a", "b", "a", "b", "c", "d"]) profiler_options = ProfilerOptions() profiler_options.set({'data_labeler.is_enabled': False}) profiler = dp.StructuredProfiler(data=data, options=profiler_options) report = profiler.report() schema = report["global_stats"]["profile_schema"] data_stats = report["data_stats"] expected_schema = {"a": [0, 2], "b": [1, 3], "c": [4], "d": [5]} self.assertDictEqual(expected_schema, schema) # Check that the column order in the report matches the column order # In the schema (and in the data) for name in schema: for idx in schema[name]: # Use min of column to validate column order amongst duplicates col_min = data.iloc[0, idx] self.assertEqual(name, data_stats[idx]["column_name"]) self.assertEqual(col_min, data_stats[idx]["statistics"]["min"]) def test_pretty_report_doesnt_cast_schema(self): report = self.trained_schema.report( report_options={"output_format": "pretty"}) # Want to ensure the values of this dict are of type list[int] # Since pretty "prettifies" lists into strings with ... to shorten expected_schema = {"datetime": [0], "host": [1], "src": [2], "proto": [3], "type": [4], "srcport": [5], "destport": [6], "srcip": [7], "locale": [8], "localeabbr": [9], "postalcode": [10], "latitude": [11], "longitude": [12], "owner": [13], "comment": [14], "int_col": [15]} self.assertDictEqual(expected_schema, report["global_stats"]["profile_schema"]) def test_omit_keys_with_duplicate_cols(self): data = pd.DataFrame([[1, 2, 3, 4, 5, 6], [10, 20, 30, 40, 50, 60]], columns=["a", "b", "a", "b", "c", "d"]) profiler_options = ProfilerOptions() profiler_options.set({'data_labeler.is_enabled': False}) profiler = dp.StructuredProfiler(data=data, options=profiler_options) report = profiler.report(report_options={ "omit_keys": ["data_stats.a.statistics.min", "data_stats.d.statistics.max", "data_stats.*.statistics.null_types_index"]}) # Correctness of schema asserted in prior test schema = report["global_stats"]["profile_schema"] data_stats = report["data_stats"] for idx in range(len(report["data_stats"])): # Assert that min is absent from a's data_stats and not the others if idx in schema["a"]: self.assertNotIn("min", data_stats[idx]["statistics"]) else: self.assertIn("min", report["data_stats"][idx]["statistics"]) # Assert that max is absent from d's data_stats and not the others if idx in schema["d"]: self.assertNotIn("max", report["data_stats"][idx]["statistics"]) else: self.assertIn("max", report["data_stats"][idx]["statistics"]) # Assert that null_types_index not present in any self.assertNotIn("null_types_index", report["data_stats"][idx]["statistics"]) def test_omit_cols_preserves_schema(self): data = pd.DataFrame([[1, 2, 3, 4, 5, 6], [10, 20, 30, 40, 50, 60]], columns=["a", "b", "a", "b", "c", "d"]) omit_cols = ["a", "d"] omit_idxs = [0, 2, 5] omit_keys = [f"data_stats.{col}" for col in omit_cols] profiler_options = ProfilerOptions() profiler_options.set({'data_labeler.is_enabled': False}) profiler = dp.StructuredProfiler(data=data, options=profiler_options) report = profiler.report(report_options={"omit_keys": omit_keys}) for idx in range(len(report["data_stats"])): if idx in omit_idxs: self.assertIsNone(report["data_stats"][idx]) else: self.assertIsNotNone(report["data_stats"][idx]) # This will keep the data_stats key but remove all columns report = profiler.report(report_options={"omit_keys": ["data_stats.*"]}) for col_report in report["data_stats"]: self.assertIsNone(col_report) def test_report_quantiles(self): report_none = self.trained_schema.report( report_options={"num_quantile_groups": None}) report = self.trained_schema.report() self.assertEqual(report_none, report) for col in report["data_stats"]: if col["column_name"] == "int_col": report_quantiles = col["statistics"]["quantiles"] break self.assertEqual(len(report_quantiles), 3) report2 = self.trained_schema.report( report_options={"num_quantile_groups": 1000}) for col in report2["data_stats"]: if col["column_name"] == "int_col": report2_1000_quant = col["statistics"]["quantiles"] break self.assertEqual(len(report2_1000_quant), 999) self.assertEqual(report_quantiles, { 0: report2_1000_quant[249], 1: report2_1000_quant[499], 2: report2_1000_quant[749], }) def test_report_omit_keys(self): # Omit both report keys manually no_report_keys = self.trained_schema.report( report_options={"omit_keys": ['global_stats', 'data_stats']}) self.assertCountEqual({}, no_report_keys) # Omit just data_stats no_data_stats = self.trained_schema.report( report_options={"omit_keys": ['data_stats']}) self.assertCountEqual({"global_stats"}, no_data_stats) # Omit a global stat no_samples_used = self.trained_schema.report( report_options={"omit_keys": ['global_stats.samples_used']}) self.assertNotIn("samples_used", no_samples_used["global_stats"]) # Omit all keys nothing = self.trained_schema.report( report_options={"omit_keys": ['*']}) self.assertCountEqual({}, nothing) # Omit every data_stats column empty_data_stats_cols = self.trained_schema.report( report_options={"omit_keys": ['global_stats', 'data_stats.*']}) # data_stats key still present, but all columns are None self.assertCountEqual({"data_stats"}, empty_data_stats_cols) self.assertTrue(all([rep is None for rep in empty_data_stats_cols["data_stats"]])) # Omit specific data_stats column no_datetime = self.trained_schema.report( report_options={"omit_keys": ['data_stats.datetime']}) self.assertNotIn("datetime", no_datetime["data_stats"]) # Omit a statistic from each column no_sum = self.trained_schema.report( report_options={"omit_keys": ['data_stats.*.statistics.sum']}) self.assertTrue(all(["sum" not in rep["statistics"] for rep in no_sum["data_stats"]])) def test_report_compact(self): report = self.trained_schema.report( report_options={ "output_format": "pretty" }) omit_keys = [ "data_stats.*.statistics.times", "data_stats.*.statistics.avg_predictions", "data_stats.*.statistics.data_label_representation", "data_stats.*.statistics.null_types_index", "data_stats.*.statistics.histogram" ] report = _prepare_report(report, 'pretty', omit_keys) report_compact = self.trained_schema.report( report_options={"output_format": "compact"}) self.assertEqual(report, report_compact) def test_profile_key_name_without_space(self): def recursive_test_helper(report, prev_key=None): for key in report: # do not test keys in 'data_stats' as they contain column names # neither for 'ave_predictions' and 'data_label_representation' # as they contain label names # same for 'null_types_index' if prev_key not in ['data_stats', 'avg_predictions', 'data_label_representation', 'null_types_index', 'categorical_count']: # key names should contain only alphanumeric letters or '_' self.assertIsNotNone(re.match('^[a-zA-Z0-9_]+$', str(key))) if isinstance(report[key], dict): recursive_test_helper(report[key], key) _report = self.trained_schema.report() recursive_test_helper(_report) def test_data_label_assigned(self): # only use 5 samples trained_schema = dp.StructuredProfiler(self.aws_dataset, samples_per_update=5) report = trained_schema.report() has_non_null_column = False for i in range(len(report['data_stats'])): # only test non-null columns if report['data_stats'][i]['data_type'] is not None: self.assertIsNotNone(report['data_stats'][i]['data_label']) has_non_null_column = True if not has_non_null_column: self.fail( "Dataset tested did not have a non-null column and therefore " "could not validate the test.") def test_text_data_raises_error(self): text_file_path = os.path.join( test_root_path, 'data', 'txt/sentence-10x.txt' ) with self.assertRaisesRegex(TypeError, 'Cannot provide TextData object' ' to StructuredProfiler'): profiler = dp.StructuredProfiler(dp.Data(text_file_path)) @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_chi2') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch('dataprofiler.profilers.profile_builder.StructuredProfiler.' '_update_row_statistics') @mock.patch('dataprofiler.profilers.profile_builder.StructuredColProfiler') def test_sample_size_warning_in_the_profiler(self, *mocks): # structure data profile mock sdp_mock = mock.Mock() sdp_mock.clean_data_and_get_base_stats.return_value = (None, None) mocks[0].return_value = sdp_mock data = pd.DataFrame([1, None, 3, 4, 5, None]) with self.assertWarnsRegex(UserWarning, "The data will be profiled with a sample " "size of 3. All statistics will be based on " "this subsample and not the whole dataset."): profile1 = dp.StructuredProfiler(data, samples_per_update=3) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') def test_min_col_samples_used(self, *mocks): # No cols sampled since no cols to sample empty_df = pd.DataFrame([]) empty_profile = dp.StructuredProfiler(empty_df) self.assertEqual(0, empty_profile._min_col_samples_used) # Every column fully sampled full_df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) full_profile = dp.StructuredProfiler(full_df) self.assertEqual(3, full_profile._min_col_samples_used) # First col sampled only twice, so that is min sparse_df = pd.DataFrame([[1, None, None], [1, 1, None], [1, None, 1]]) sparse_profile = dp.StructuredProfiler(sparse_df, min_true_samples=2, samples_per_update=1) self.assertEqual(2, sparse_profile._min_col_samples_used) @mock.patch('dataprofiler.profilers.profile_builder.StructuredProfiler.' '_update_profile_from_chunk') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') def test_min_true_samples(self, *mocks): empty_df = pd.DataFrame([]) # Test invalid input msg = "`min_true_samples` must be an integer or `None`." with self.assertRaisesRegex(ValueError, msg): profile = dp.StructuredProfiler(empty_df, min_true_samples="Bloop") # Test invalid input given to update_profile profile = dp.StructuredProfiler(empty_df) with self.assertRaisesRegex(ValueError, msg): profile.update_profile(empty_df, min_true_samples="Bloop") # Test None input (equivalent to zero) profile = dp.StructuredProfiler(empty_df, min_true_samples=None) self.assertEqual(None, profile._min_true_samples) # Test valid input profile = dp.StructuredProfiler(empty_df, min_true_samples=10) self.assertEqual(10, profile._min_true_samples) def test_save_and_load(self): datapth = "dataprofiler/tests/data/" test_files = ["csv/guns.csv", "csv/iris.csv"] for test_file in test_files: # Create Data and StructuredProfiler objects data = dp.Data(os.path.join(datapth, test_file)) options = ProfilerOptions() options.set({"correlation.is_enabled": True}) save_profile = dp.StructuredProfiler(data) # store the expected data_labeler data_labeler = save_profile.options.data_labeler.data_labeler_object # Save and Load profile with Mock IO with mock.patch('builtins.open') as m: mock_file = setup_save_mock_open(m) save_profile.save() mock_file.seek(0) with mock.patch('dataprofiler.profilers.profile_builder.' 'DataLabeler', return_value=data_labeler): load_profile = dp.StructuredProfiler.load("mock.pkl") # validate loaded profile has same data labeler class self.assertIsInstance( load_profile.options.data_labeler.data_labeler_object, data_labeler.__class__) # only checks first columns # get first column first_column_profile = load_profile.profile[0] self.assertIsInstance( first_column_profile.profiles['data_label_profile'] ._profiles['data_labeler'].data_labeler, data_labeler.__class__) # Check that reports are equivalent save_report = test_utils.clean_report(save_profile.report()) load_report = test_utils.clean_report(load_profile.report()) np.testing.assert_equal(save_report, load_report) def test_save_and_load_no_labeler(self): # Create Data and UnstructuredProfiler objects data = pd.DataFrame([1, 2, 3], columns=["a"]) profile_options = dp.ProfilerOptions() profile_options.set({"data_labeler.is_enabled": False}) save_profile = dp.StructuredProfiler(data, options=profile_options) # Save and Load profile with Mock IO with mock.patch('builtins.open') as m: mock_file = setup_save_mock_open(m) save_profile.save() mock_file.seek(0) with mock.patch('dataprofiler.profilers.profile_builder.' 'DataLabeler'): load_profile = dp.StructuredProfiler.load("mock.pkl") # Check that reports are equivalent save_report = test_utils.clean_report(save_profile.report()) load_report = test_utils.clean_report(load_profile.report()) self.assertDictEqual(save_report, load_report) # validate both are still usable after save_profile.update_profile(pd.DataFrame({"a": [4, 5]})) load_profile.update_profile(pd.DataFrame({"a": [4, 5]})) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') def test_string_index_doesnt_cause_error(self, *mocks): dp.StructuredProfiler(pd.DataFrame([[1, 2, 3]], index=["hello"])) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') def test_dict_in_data_no_error(self, *mocks): # validates that _update_row_statistics does not error when trying to # hash a dict. profiler = dp.StructuredProfiler(pd.DataFrame([[{'test': 1}], [None]])) self.assertEqual(1, profiler.row_is_null_count) self.assertEqual(2, profiler.total_samples) def test_duplicate_columns(self): data = pd.DataFrame([[1, 2, 3, 4, 5, 6], [10, 20, 30, 40, 50, 60]], columns=["a", "b", "a", "b", "c", "d"]) profiler = dp.StructuredProfiler(data) # Ensure columns are correctly allocated to profiles in list expected_mapping = {"a": [0, 2], "b": [1, 3], "c": [4], "d": [5]} self.assertDictEqual(expected_mapping, profiler._col_name_to_idx) for col in profiler._col_name_to_idx: for idx in profiler._col_name_to_idx[col]: # Make sure every index that a column name maps to represents # A profile for that named column self.assertEqual(col, profiler._profile[idx].name) # Check a few stats to ensure calculation with data occurred # Initialization ensures column ids and profile ids are identical for col_idx in range(len(profiler._profile)): col_min = data.iloc[0, col_idx] col_max = data.iloc[1, col_idx] col_sum = col_min + col_max self.assertEqual(col_min, profiler._profile[col_idx]. profile["statistics"]["min"]) self.assertEqual(col_max, profiler._profile[col_idx]. profile["statistics"]["max"]) self.assertEqual(col_sum, profiler._profile[col_idx]. profile["statistics"]["sum"]) # Check that update works as expected new_data = pd.DataFrame([[100, 200, 300, 400, 500, 600]], columns=["a", "b", "a", "b", "c", "d"]) profiler.update_profile(new_data) self.assertDictEqual(expected_mapping, profiler._col_name_to_idx) for col in profiler._col_name_to_idx: for idx in profiler._col_name_to_idx[col]: # Make sure every index that a column name maps to represents # A profile for that named column self.assertEqual(col, profiler._profile[idx].name) for col_idx in range(len(profiler._profile)): col_min = data.iloc[0, col_idx] col_max = new_data.iloc[0, col_idx] col_sum = col_min + col_max + data.iloc[1, col_idx] self.assertEqual(col_min, profiler._profile[col_idx]. profile["statistics"]["min"]) self.assertEqual(col_max, profiler._profile[col_idx]. profile["statistics"]["max"]) self.assertEqual(col_sum, profiler._profile[col_idx]. profile["statistics"]["sum"]) def test_unique_col_permutation(self, *mocks): data = pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["a", "b", "c", "d"]) perm_data = pd.DataFrame([[4, 3, 2, 1], [8, 7, 6, 5]], columns=["d", "c", "b", "a"]) # Test via add first_profiler = dp.StructuredProfiler(data) perm_profiler = dp.StructuredProfiler(perm_data) profiler = first_profiler + perm_profiler for col_idx in range(len(profiler._profile)): col_min = data.iloc[0, col_idx] col_max = data.iloc[1, col_idx] # Sum is doubled since it was updated with the same vals col_sum = 2 * (col_min + col_max) self.assertEqual(col_min, profiler._profile[col_idx]. profile["statistics"]["min"]) self.assertEqual(col_max, profiler._profile[col_idx]. profile["statistics"]["max"]) self.assertEqual(col_sum, profiler._profile[col_idx]. profile["statistics"]["sum"]) # Test via update profiler = dp.StructuredProfiler(data) profiler.update_profile(perm_data) for col_idx in range(len(profiler._profile)): col_min = data.iloc[0, col_idx] col_max = data.iloc[1, col_idx] # Sum is doubled since it was updated with the same vals col_sum = 2 * (col_min + col_max) self.assertEqual(col_min, profiler._profile[col_idx]. profile["statistics"]["min"]) self.assertEqual(col_max, profiler._profile[col_idx]. profile["statistics"]["max"]) self.assertEqual(col_sum, profiler._profile[col_idx]. profile["statistics"]["sum"]) def test_get_and_validate_schema_mapping(self): unique_schema_1 = {"a": [0], "b": [1], "c": [2]} unique_schema_2 = {"a": [2], "b": [0], "c": [1]} unique_schema_3 = {"a": [0], "b": [1], "d": [2]} msg = "Columns do not match, cannot update or merge profiles." with self.assertRaisesRegex(ValueError, msg): dp.StructuredProfiler._get_and_validate_schema_mapping( unique_schema_1,unique_schema_3) expected_schema = {0: 0, 1: 1, 2: 2} actual_schema = dp.StructuredProfiler. \ _get_and_validate_schema_mapping(unique_schema_1, {}) self.assertDictEqual(actual_schema, expected_schema) expected_schema = {0: 2, 1: 0, 2: 1} actual_schema = dp.StructuredProfiler. \ _get_and_validate_schema_mapping(unique_schema_1, unique_schema_2) self.assertDictEqual(actual_schema, expected_schema) dupe_schema_1 = {"a": [0], "b": [1, 2], "c": [3, 4, 5]} dupe_schema_2 = {"a": [0], "b": [1, 3], "c": [2, 4, 5]} dupe_schema_3 = {"a": [0, 1], "b": [2, 3, 4], "c": [5]} four_col_schema = {"a": [0], "b": [1, 2], "c": [3, 4, 5], "d": [6]} msg = ("Different number of columns detected for " "'a', cannot update or merge profiles.") with self.assertRaisesRegex(ValueError, msg): dp.StructuredProfiler._get_and_validate_schema_mapping( dupe_schema_1, dupe_schema_3) msg = ("Different column indices under " "duplicate name 'b', cannot update " "or merge unless schema is identical.") with self.assertRaisesRegex(ValueError, msg): dp.StructuredProfiler._get_and_validate_schema_mapping( dupe_schema_1, dupe_schema_2) msg = "Attempted to merge profiles with different numbers of columns" with self.assertRaisesRegex(ValueError, msg): dp.StructuredProfiler._get_and_validate_schema_mapping( dupe_schema_1, four_col_schema) expected_schema = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5} actual_schema = dp.StructuredProfiler. \ _get_and_validate_schema_mapping(dupe_schema_1, dupe_schema_1) self.assertDictEqual(actual_schema, expected_schema) @mock.patch("dataprofiler.profilers.data_labeler_column_profile." "DataLabelerColumn.update") @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch("dataprofiler.profilers.column_profile_compilers." "ColumnPrimitiveTypeProfileCompiler.diff") @mock.patch("dataprofiler.profilers.column_profile_compilers." "ColumnStatsProfileCompiler.diff") @mock.patch("dataprofiler.profilers.column_profile_compilers." "ColumnDataLabelerCompiler.diff") def test_diff(self, *mocks): # Data labeler compiler diff mocks[0].return_value = { 'statistics': { 'avg_predictions': { 'a': 'unchanged' }, 'label_representation': { 'a': 'unchanged' } }, 'data_label': [[], ['a'], []] } # stats compiler diff mocks[1].return_value = { 'order': ['ascending', 'descending'], 'categorical': 'unchanged', 'statistics': { 'all_compiler_stats': 'unchanged' } } # primitive stats compiler diff mocks[2].return_value = { 'data_type_representation': { 'all_data_types': 'unchanged' }, 'data_type': 'unchanged', 'statistics': { 'numerical_statistics_here': "unchanged" } } data1 = pd.DataFrame([[1, 2], [5, 6]], columns=["a", "b"]) data2 = pd.DataFrame([[4, 3], [8, 7], [None, None], [9, 10]], columns=["a", "b"]) options = dp.ProfilerOptions() options.structured_options.correlation.is_enabled = True profile1 = dp.StructuredProfiler(data1, options=options) options2 = dp.ProfilerOptions() options2.structured_options.correlation.is_enabled = True profile2 = dp.StructuredProfiler(data2, options=options2) expected_diff = { 'global_stats': { 'samples_used': -2, 'column_count': 'unchanged', 'row_count': -2, 'row_has_null_ratio': -0.25, 'row_is_null_ratio': -0.25, 'unique_row_ratio': 'unchanged', 'duplicate_row_count': -0.25, 'file_type': 'unchanged', 'encoding': 'unchanged', 'correlation_matrix': np.array([[1.11022302e-16, 3.13803955e-02], [3.13803955e-02, 0.00000000e+00]], dtype=np.float), 'chi2_matrix': np.array([[ 0. , -0.04475479], [-0.04475479, 0. ]], dtype=np.float), 'profile_schema': [{}, {'a': 'unchanged', 'b': 'unchanged'}, {}]}, 'data_stats': [ { 'column_name': 'a', 'data_type': 'unchanged', 'data_label': [[], ['a'], []], 'categorical': 'unchanged', 'order': ['ascending', 'descending'], 'statistics': { 'numerical_statistics_here': 'unchanged', 'all_compiler_stats': 'unchanged', 'avg_predictions': {'a': 'unchanged'}, 'label_representation': {'a': 'unchanged'}, 'sample_size': -2, 'null_count': -1, 'null_types': [[], [], ['nan']], 'null_types_index': [{}, {}, {'nan': {2}}], 'data_type_representation': { 'all_data_types': 'unchanged' } } }, { 'column_name': 'b', 'data_type': 'unchanged', 'data_label': [[], ['a'], []], 'categorical': 'unchanged', 'order': ['ascending', 'descending'], 'statistics': { 'numerical_statistics_here': 'unchanged', 'all_compiler_stats': 'unchanged', 'avg_predictions': {'a': 'unchanged'}, 'label_representation': {'a': 'unchanged'}, 'sample_size': -2, 'null_count': -1, 'null_types': [[], [], ['nan']], 'null_types_index': [{}, {}, {'nan': {2}}], 'data_type_representation': { 'all_data_types': 'unchanged' } } } ] } diff = profile1.diff(profile2) expected_corr_mat = expected_diff["global_stats"].pop("correlation_matrix") diff_corr_mat = diff["global_stats"].pop("correlation_matrix") expected_chi2_mat = expected_diff["global_stats"].pop("chi2_matrix") diff_chi2_mat = diff["global_stats"].pop("chi2_matrix") np.testing.assert_array_almost_equal(expected_corr_mat, diff_corr_mat) np.testing.assert_array_almost_equal(expected_chi2_mat, diff_chi2_mat) self.assertDictEqual(expected_diff, diff) @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch("dataprofiler.profilers.data_labeler_column_profile." "DataLabelerColumn.update") def test_diff_type_checking(self, *mocks): data = pd.DataFrame([[1, 2], [5, 6]], columns=["a", "b"]) profile = dp.StructuredProfiler(data) with self.assertRaisesRegex(TypeError, '`StructuredProfiler` and `str` are not of ' 'the same profiler type.'): profile.diff("ERROR") @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch("dataprofiler.profilers.data_labeler_column_profile." "DataLabelerColumn.update") def test_diff_with_different_schema(self, *mocks): data1 = pd.DataFrame([[1, 2], [5, 6]], columns=["G", "b"]) data2 = pd.DataFrame([[4, 3, 1], [8, 7, 3], [None, None, 1], [9, 1, 10]], columns=["a", "b", "c"]) # Test via add profile1 = dp.StructuredProfiler(data1) profile2 = dp.StructuredProfiler(data2) expected_diff = { 'global_stats': { 'file_type': 'unchanged', 'encoding': 'unchanged', 'samples_used': -2, 'column_count': -1, 'row_count': -2, 'row_has_null_ratio': -0.25, 'row_is_null_ratio': 'unchanged', 'unique_row_ratio': 'unchanged', 'duplicate_row_count': 'unchanged', 'correlation_matrix': None, 'chi2_matrix': None, 'profile_schema': [{'G': [0]}, {'b': 'unchanged'}, {'a': [0], 'c': [2]}]}, 'data_stats': [] } self.assertDictEqual(expected_diff, profile1.diff(profile2)) @mock.patch("dataprofiler.profilers.data_labeler_column_profile." "DataLabelerColumn.update") @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch("dataprofiler.profilers.column_profile_compilers." "ColumnPrimitiveTypeProfileCompiler.diff") @mock.patch("dataprofiler.profilers.column_profile_compilers." "ColumnStatsProfileCompiler.diff") @mock.patch("dataprofiler.profilers.column_profile_compilers." "ColumnDataLabelerCompiler.diff") @mock.patch("sys.stderr", new_callable=StringIO) def test_logs(self, mock_stderr, *mocks): options = StructuredOptions() options.multiprocess.is_enabled = False # Capture logs of level INFO and above with self.assertLogs('DataProfiler.profilers.profile_builder', level='INFO') as logs: StructuredProfiler(pd.DataFrame([[0, 1], [2, 3]]), options=options) # Logs to update user on nulls and statistics self.assertEqual(['INFO:DataProfiler.profilers.profile_builder:' 'Finding the Null values in the columns... ', 'INFO:DataProfiler.profilers.profile_builder:' 'Calculating the statistics... '], logs.output) # Ensure tqdm printed progress bar self.assertIn('#' * 10, mock_stderr.getvalue()) # Clear stderr mock_stderr.seek(0) mock_stderr.truncate(0) # Now tqdm shouldn't be printed dp.set_verbosity(logging.WARNING) StructuredProfiler(pd.DataFrame([[0, 1], [2, 3]])) # Ensure no progress bar printed self.assertNotIn('#' * 10, mock_stderr.getvalue()) def test_unique_row_ratio_empty_profiler(self): profiler = StructuredProfiler(pd.DataFrame([])) self.assertEqual(0, profiler._get_unique_row_ratio()) class TestStructuredColProfilerClass(unittest.TestCase): def setUp(self): test_utils.set_seed(seed=0) @classmethod def setUpClass(cls): test_utils.set_seed(seed=0) cls.input_file_path = os.path.join( test_root_path, 'data', 'csv/aws_honeypot_marx_geo.csv' ) cls.aws_dataset = pd.read_csv(cls.input_file_path) def test_base_props(self): src_column = self.aws_dataset.src src_profile = StructuredColProfiler( src_column, sample_size=len(src_column)) self.assertIsInstance(src_profile.profiles['data_type_profile'], ColumnPrimitiveTypeProfileCompiler) self.assertIsInstance(src_profile.profiles['data_stats_profile'], ColumnStatsProfileCompiler) self.assertIsInstance(src_profile.profiles['data_label_profile'], ColumnDataLabelerCompiler) data_types = ['int', 'float', 'datetime', 'text'] six.assertCountEqual( self, data_types, list(src_profile.profiles['data_type_profile']._profiles.keys()) ) stats_types = ['category', 'order'] six.assertCountEqual( self, stats_types, list(src_profile.profiles['data_stats_profile']._profiles.keys()) ) self.assertEqual(3, src_profile.null_count) self.assertEqual(2999, src_profile.sample_size) total_nulls = 0 for _, null_rows in src_profile.null_types_index.items(): total_nulls += len(null_rows) self.assertEqual(3, total_nulls) # test updated base props with batch addition src_profile.update_profile(src_column) src_profile.update_profile(src_column) self.assertEqual(3*3, src_profile.null_count) self.assertEqual(2999*3, src_profile.sample_size) @mock.patch('dataprofiler.profilers.column_profile_compilers.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.column_profile_compilers.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.column_profile_compilers.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') def test_add_profilers(self, *mocks): data = pd.Series([1, None, 3, 4, 5, None]) profile1 = StructuredColProfiler(data[:2]) profile2 = StructuredColProfiler(data[2:]) # test incorrect type with self.assertRaisesRegex(TypeError, '`StructuredColProfiler` and `int` are ' 'not of the same profiler type.'): profile1 + 3 # test mismatched names profile1.name = 'profile1' profile2.name = 'profile2' with self.assertRaisesRegex(ValueError, 'Structured profile names are unmatched: ' 'profile1 != profile2'): profile1 + profile2 # test mismatched profiles due to options profile2.name = 'profile1' profile1._profiles = dict(test1=mock.Mock()) profile2.profiles.pop('data_label_profile') with self.assertRaisesRegex(ValueError, 'Structured profilers were not setup with ' 'the same options, hence they do not ' 'calculate the same profiles and cannot be ' 'added together.'): profile1 + profile2 # test success profile1.profiles = dict(test=1) profile2.profiles = dict(test=2) merged_profile = profile1 + profile2 self.assertEqual(3, merged_profile.profiles['test']) self.assertCountEqual(['5.0', '4.0', '3.0', '1.0'], merged_profile.sample) self.assertEqual(6, merged_profile.sample_size) self.assertEqual(2, merged_profile.null_count) self.assertListEqual(['nan'], merged_profile.null_types) self.assertDictEqual({'nan': {1, 5}}, merged_profile.null_types_index) # test add with different sampling properties profile1._min_sample_size = 10 profile2._min_sample_size = 100 profile1._sampling_ratio = 0.5 profile2._sampling_ratio = 0.3 profile1._min_true_samples = 11 profile2._min_true_samples = 1 merged_profile = profile1 + profile2 self.assertEqual(100, merged_profile._min_sample_size) self.assertEqual(0.5, merged_profile._sampling_ratio) self.assertEqual(11, merged_profile._min_true_samples) def test_integrated_merge_diff_options(self): options = dp.ProfilerOptions() options.set({'data_labeler.is_enabled': False}) data = pd.DataFrame([1, 2, 3, 4]) profile1 = dp.StructuredProfiler(data, options=options) profile2 = dp.StructuredProfiler(data) with self.assertRaisesRegex(ValueError, 'Structured profilers were not setup with ' 'the same options, hence they do not ' 'calculate the same profiles and cannot be ' 'added together.'): profile1 + profile2 def test_clean_data_and_get_base_stats(self, *mocks): data = pd.Series([1, None, 3, 4, None, 6], index=['a', 'b', 'c', 'd', 'e', 'f']) # validate that if sliced data, still functional # previously `iloc` was used at: # `df_series = df_series.loc[sorted(true_sample_list)]` # which caused errors #Tests with default null values set profiler = mock.Mock(spec=StructuredColProfiler) null_values = { "": 0, "nan": re.IGNORECASE, "none": re.IGNORECASE, "null": re.IGNORECASE, " *": 0, "--*": 0, "__*": 0, } test_utils.set_seed(seed=0) df_series, base_stats = \ StructuredColProfiler.clean_data_and_get_base_stats( df_series=data[1:], sample_size=6, null_values=null_values, min_true_samples=0) # note data above is a subset `df_series=data[1:]`, 1.0 will not exist self.assertTrue(np.issubdtype(np.object_, df_series.dtype)) self.assertDictEqual({'sample': ['4.0', '6.0', '3.0'], 'sample_size': 5, 'null_count': 2, 'null_types': dict(nan=['e', 'b']), 'min_id': None, 'max_id': None}, base_stats) # Tests with some other null values set null_values = { "1.0": 0, "3.0": 0 } df_series, base_stats = \ StructuredColProfiler.clean_data_and_get_base_stats( df_series=data, sample_size=6, null_values=null_values, min_true_samples=0) self.assertDictEqual({'sample': ["nan", '6.0', '4.0', "nan"], 'sample_size': 6, 'null_count': 2, 'null_types': {'1.0': ['a'], '3.0': ['c']}, 'min_id': None, 'max_id': None}, base_stats) # Tests with no null values set null_values = {} df_series, base_stats = \ StructuredColProfiler.clean_data_and_get_base_stats( df_series=data, sample_size=6, null_values=null_values, min_true_samples=0) self.assertDictEqual({'sample': ["3.0", "4.0", '6.0', "nan", "1.0"], 'sample_size': 6, 'null_count': 0, 'null_types': {}, 'min_id': None, 'max_id': None}, base_stats) def test_column_names(self): data = [['a', 1], ['b', 2], ['c', 3]] df = pd.DataFrame(data, columns=['letter', 'number']) profile1 = StructuredColProfiler(df['letter']) profile2 = StructuredColProfiler(df['number']) self.assertEqual(profile1.name, 'letter') self.assertEqual(profile2.name, 'number') df_series = pd.Series([1, 2, 3, 4, 5]) profile = StructuredColProfiler(df_series) self.assertEqual(profile.name, df_series.name) # Ensure issue raised profile = StructuredColProfiler(df['letter']) with self.assertRaises(ValueError) as context: profile.update_profile(df['number']) self.assertTrue( 'Column names have changed, col number does not match prior name letter', context ) def test_update_match_are_abstract(self): six.assertCountEqual( self, {'profile', '_update_helper', 'update'}, dp.profilers.BaseColumnProfiler.__abstractmethods__ ) def test_data_labeler_toggle(self): src_column = self.aws_dataset.src structured_options = StructuredOptions() structured_options.data_labeler.is_enabled = False std_profile = StructuredColProfiler(src_column, sample_size=len(src_column)) togg_profile = StructuredColProfiler(src_column, sample_size=len(src_column), options=structured_options) self.assertIn('data_label_profile', std_profile.profiles) self.assertNotIn('data_label_profile', togg_profile.profiles) def test_null_count(self): column = pd.Series([1, float('nan')] * 10) # test null_count when full sample size random.seed(0) profile = StructuredColProfiler(column, sample_size=len(column)) self.assertEqual(10, profile.null_count) def test_generating_report_ensure_no_error(self): file_path = os.path.join(test_root_path, 'data', 'csv/diamonds.csv') data = pd.read_csv(file_path) profile = dp.StructuredProfiler(data[:1000]) readable_report = profile.report( report_options={"output_format": "compact"}) def test_get_sample_size(self): data = pd.DataFrame([0] * int(50e3)) # test data size < min_sample_size = 5000 by default profiler = dp.StructuredProfiler(pd.DataFrame([])) profiler._min_sample_size = 5000 profiler._sampling_ratio = 0.2 sample_size = profiler._get_sample_size(data[:1000]) self.assertEqual(1000, sample_size) # test data size * 0.20 < min_sample_size < data size sample_size = profiler._get_sample_size(data[:10000]) self.assertEqual(5000, sample_size) # test min_sample_size > data size * 0.20 sample_size = profiler._get_sample_size(data) self.assertEqual(10000, sample_size) # test min_sample_size > data size * 0.10 profiler._sampling_ratio = 0.5 sample_size = profiler._get_sample_size(data) self.assertEqual(25000, sample_size) @mock.patch('dataprofiler.profilers.profile_builder.StructuredProfiler.' '_update_profile_from_chunk') def test_sample_size_passed_to_profile(self, *mocks): update_mock = mocks[0] # data setup data = pd.DataFrame([0] * int(50e3)) # option setup profiler_options = ProfilerOptions() profiler_options.structured_options.multiprocess.is_enabled = False profiler_options.set({'data_labeler.is_enabled': False}) # test data size < min_sample_size = 5000 by default profiler = dp.StructuredProfiler(data[:1000], options=profiler_options) profiler._min_sample_size = 5000 profiler._sampling_ratio = 0.2 self.assertEqual(1000, update_mock.call_args[0][1]) # test data size * 0.20 < min_sample_size < data size profiler = dp.StructuredProfiler(data[:10000], options=profiler_options) profiler._min_sample_size = 5000 profiler._sampling_ratio = 0.2 self.assertEqual(5000, update_mock.call_args[0][1]) # test min_sample_size > data size * 0.20 profiler = dp.StructuredProfiler(data, options=profiler_options) profiler._min_sample_size = 5000 profiler._sampling_ratio = 0.2 self.assertEqual(10000, update_mock.call_args[0][1]) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') def test_index_overlap_for_update_profile(self, *mocks): data = pd.Series([0, None, 1, 2, None]) profile = StructuredColProfiler(data) self.assertEqual(0, profile._min_id) self.assertEqual(4, profile._max_id) self.assertDictEqual(profile.null_types_index, {'nan': {1, 4}}) profile.update_profile(data) # Now all indices will be shifted by max_id + 1 (5) # So the 2 None will move from indices 1, 4 to 6, 9 self.assertEqual(0, profile._min_id) self.assertEqual(9, profile._max_id) self.assertDictEqual(profile.null_types_index, {'nan': {1, 4, 6, 9}}) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') def test_index_overlap_for_merge(self, *mocks): data = pd.Series([0, None, 1, 2, None]) profile1 = StructuredColProfiler(data) profile2 = StructuredColProfiler(data) # Ensure merged profile included shifted indices profile3 = profile1 + profile2 self.assertEqual(0, profile3._min_id) self.assertEqual(9, profile3._max_id) self.assertDictEqual(profile3.null_types_index, {'nan': {1, 4, 6, 9}}) # Ensure original profiles not overwritten self.assertEqual(0, profile1._min_id) self.assertEqual(4, profile1._max_id) self.assertDictEqual(profile1.null_types_index, {'nan': {1, 4}}) self.assertEqual(0, profile2._min_id) self.assertEqual(4, profile2._max_id) self.assertDictEqual(profile2.null_types_index, {'nan': {1, 4}}) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') def test_min_max_id_properly_update(self, *mocks): data = pd.Series([1, None, 3, 4, 5, None, 1]) profile1 = StructuredColProfiler(data[:2]) profile2 = StructuredColProfiler(data[2:]) # Base initialization self.assertEqual(0, profile1._min_id) self.assertEqual(1, profile1._max_id) self.assertEqual(2, profile2._min_id) self.assertEqual(6, profile2._max_id) # Needs to work with merge profile3 = profile1 + profile2 self.assertEqual(0, profile3._min_id) self.assertEqual(6, profile3._max_id) # Needs to work with update_profile profile = StructuredColProfiler(data[:2]) profile.update_profile(data[2:]) self.assertEqual(0, profile._min_id) self.assertEqual(6, profile._max_id) @mock.patch('dataprofiler.profilers.data_labeler_column_profile.DataLabeler') @mock.patch("dataprofiler.profilers.data_labeler_column_profile." "DataLabelerColumn.update") @mock.patch("dataprofiler.profilers.column_profile_compilers." "ColumnPrimitiveTypeProfileCompiler.diff") @mock.patch("dataprofiler.profilers.column_profile_compilers." "ColumnStatsProfileCompiler.diff") @mock.patch("dataprofiler.profilers.column_profile_compilers." "ColumnDataLabelerCompiler.diff") def test_diff(self, *mocks): # Data labeler compiler diff mocks[0].return_value = { 'statistics': { 'avg_predictions': { 'a': 'unchanged' }, 'label_representation': { 'a': 'unchanged' } }, 'data_label': [[], ['a'], []] } # stats compiler diff mocks[1].return_value = { 'order': ['ascending', 'descending'], 'categorical': 'unchanged', 'statistics': { 'all_compiler_stats': 'unchanged' } } # primitive stats compiler diff mocks[2].return_value = { 'data_type_representation': { 'all_data_types': 'unchanged' }, 'data_type': 'unchanged', 'statistics': { 'numerical_statistics_here': "unchanged" } } data = pd.Series([1, None, 3, 4, 5, None, 1]) data2 = pd.Series(["hello", "goodby", 125, 0]) data.name = "TEST" data2.name = "TEST" profile1 = StructuredColProfiler(data) profile2 = StructuredColProfiler(data2) expected_diff = { 'column_name': 'TEST', 'data_type': 'unchanged', 'data_label': [[], ['a'], []], 'categorical': 'unchanged', 'order': ['ascending', 'descending'], 'statistics': { 'numerical_statistics_here': 'unchanged', 'all_compiler_stats': 'unchanged', 'avg_predictions': {'a': 'unchanged'}, 'label_representation': {'a': 'unchanged'}, 'sample_size': 3, 'null_count': 2, 'null_types': [['nan'], [], []], 'null_types_index': [{'nan': {1, 5}}, {}, {}], 'data_type_representation': { 'all_data_types': 'unchanged' } } } self.assertDictEqual(expected_diff, dict(profile1.diff(profile2))) @mock.patch('dataprofiler.profilers.profile_builder.UnstructuredCompiler', spec=UnstructuredCompiler) @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=UnstructuredDataLabeler) class TestUnstructuredProfiler(unittest.TestCase): @classmethod def setUp(cls): test_utils.set_seed(seed=0) def test_base(self, *mocks): # ensure can make an empty profiler profiler = UnstructuredProfiler(None) self.assertIsNone(profiler.encoding) self.assertIsNone(profiler.file_type) self.assertIsNone(profiler._profile) self.assertIsNone(profiler._samples_per_update) self.assertEqual(0, profiler._min_true_samples) self.assertEqual(0, profiler.total_samples) self.assertEqual(0, profiler._empty_line_count) self.assertEqual(0, profiler.memory_size) self.assertEqual(0.2, profiler._sampling_ratio) self.assertEqual(5000, profiler._min_sample_size) self.assertEqual([], profiler.sample) self.assertIsInstance(profiler.options, UnstructuredOptions) self.assertDictEqual({}, profiler.times) # can set samples_per_update and min_true_samples profiler = UnstructuredProfiler(None, samples_per_update=10, min_true_samples=5) self.assertEqual(profiler._samples_per_update, 10) self.assertEqual(profiler._min_true_samples, 5) # can properties update correctly for data data = pd.Series(['this', 'is my', '\n\r', 'test']) profiler = UnstructuredProfiler(data) self.assertEqual(4, profiler.total_samples) self.assertCountEqual(['this', 'is my', 'test'], profiler.sample) self.assertEqual(1, profiler._empty_line_count) self.assertEqual(15 / 1024 ** 2, profiler.memory_size) self.assertEqual("<class 'pandas.core.series.Series'>", profiler.file_type) self.assertIsNone(profiler.encoding) self.assertIsInstance(profiler._profile, UnstructuredCompiler) self.assertIn('clean_and_base_stats', profiler.times) # can properties update correctly for data loaded from file data = pd.Series(['this', 'is my', '\n\r', 'test']) mock_data_reader = mock.Mock(spec=dp.data_readers.csv_data.CSVData) mock_data_reader.data = data mock_data_reader.data_type = 'csv' mock_data_reader.file_encoding = 'utf-8' mock_data_reader.input_file_path = 'fake/path/file.csv' profiler = UnstructuredProfiler(mock_data_reader) self.assertEqual(4, profiler.total_samples) self.assertCountEqual(['this', 'is my', 'test'], profiler.sample) self.assertEqual(1, profiler._empty_line_count) self.assertEqual(15 / 1024 ** 2, profiler.memory_size) self.assertEqual("csv", profiler.file_type) self.assertEqual("utf-8", profiler.encoding) self.assertIsInstance(profiler._profile, UnstructuredCompiler) def test_bad_input_data(self, *mocks): allowed_data_types = (r"\(<class 'str'>, " r"<class 'list'>, " r"<class 'pandas.core.series.Series'>, " r"<class 'pandas.core.frame.DataFrame'>\)") bad_data_types = [1, {}, np.inf] for data in bad_data_types: with self.assertRaisesRegex(TypeError, r"Data must either be imported using " r"the data_readers or using one of the " r"following: " + allowed_data_types): UnstructuredProfiler(data) def test_str_input_data(self, *mocks): data = 'this is my\n\rtest' profiler = UnstructuredProfiler(data) self.assertEqual(1, profiler.total_samples) self.assertEqual(0, profiler._empty_line_count) self.assertEqual(16 / 1024 ** 2, profiler.memory_size) self.assertEqual("<class 'str'>", profiler.file_type) self.assertIsNone(profiler.encoding) self.assertIsInstance(profiler._profile, UnstructuredCompiler) def test_list_input_data(self, *mocks): data = ['this', 'is my', '\n\r', 'test'] profiler = UnstructuredProfiler(data) self.assertEqual(4, profiler.total_samples) self.assertEqual(1, profiler._empty_line_count) self.assertEqual(15 / 1024 ** 2, profiler.memory_size) self.assertEqual("<class 'list'>", profiler.file_type) self.assertIsNone(profiler.encoding) self.assertIsInstance(profiler._profile, UnstructuredCompiler) def test_dataframe_input_data(self, *mocks): data = pd.DataFrame(['this', 'is my', '\n\r', 'test']) profiler = UnstructuredProfiler(data) self.assertEqual(4, profiler.total_samples) self.assertEqual(1, profiler._empty_line_count) self.assertEqual(15 / 1024 ** 2, profiler.memory_size) self.assertEqual("<class 'pandas.core.frame.DataFrame'>", profiler.file_type) self.assertIsNone(profiler.encoding) self.assertIsInstance(profiler._profile, UnstructuredCompiler) def test_merge_profiles(self, *mocks): # can properties update correctly for data data1 = pd.Series(['this', 'is my', '\n\r', 'test']) data2 = pd.Series(['here\n', '\t ', ' ', ' is', '\n\r', 'more data']) # create profilers with test_utils.mock_timeit(): profiler1 = UnstructuredProfiler(data1) profiler2 = UnstructuredProfiler(data2) self.assertDictEqual({'clean_and_base_stats': 1}, profiler1.times) self.assertDictEqual({'clean_and_base_stats': 1}, profiler2.times) # mock out _profile profiler1._profile = 1 profiler2._profile = 2 # merge profilers with test_utils.mock_timeit(): merged_profile = profiler1 + profiler2 self.assertEqual(10, merged_profile.total_samples) self.assertEqual(4, merged_profile._empty_line_count) self.assertEqual(40 / 1024 ** 2, merged_profile.memory_size) # note how sample doesn't include whitespace lines self.assertCountEqual(['this', ' is', 'here\n', 'more data', 'is my'], merged_profile.sample) self.assertEqual(3, merged_profile._profile) self.assertDictEqual({'clean_and_base_stats': 2}, merged_profile.times) @mock.patch('dataprofiler.profilers.profile_builder.UnstructuredCompiler.diff') def test_diff(self, *mocks): # Set up compiler diff mocks[2].side_effect = [UnstructuredCompiler(), UnstructuredCompiler()] mocks[0].return_value = { 'statistics': { 'all_vocab_and_word_stats': [['A', 'B'], ['C'], ['D']] }, 'data_label': { 'entity_counts': { 'word_and_char_level_stats': { 'LABEL': 'unchanged' } }, 'entity_percentages': { 'word_and_char_level_stats': { 'LABEL': 'unchanged' } } } } data1 = pd.Series(['this', 'is my', '\n\r', 'test']) data2 = pd.Series(['here\n', '\t ', ' ', ' is', '\n\r', 'more data']) profiler1 = UnstructuredProfiler(data1) profiler2 = UnstructuredProfiler(data2) expected_diff = { 'global_stats': { 'samples_used': -2, 'empty_line_count': -2, 'file_type': 'unchanged', 'encoding': 'unchanged', 'memory_size': -10/1024**2 }, 'data_stats': { 'statistics': { 'all_vocab_and_word_stats': [['A', 'B'], ['C'], ['D']]}, 'data_label': { 'entity_counts': { 'word_and_char_level_stats': {'LABEL': 'unchanged'} }, 'entity_percentages': { 'word_and_char_level_stats': { 'LABEL': 'unchanged' } } } } } self.assertDictEqual(expected_diff, profiler1.diff(profiler2)) def test_get_sample_size(self, *mocks): data = pd.DataFrame([0] * int(50e3)) # test data size < min_sample_size = 5000 by default profiler = UnstructuredProfiler(None) profiler._min_sample_size = 5000 profiler._sampling_ratio = 0.2 sample_size = profiler._get_sample_size(data[:1000]) self.assertEqual(1000, sample_size) # test data size * 0.20 < min_sample_size < data size sample_size = profiler._get_sample_size(data[:10000]) self.assertEqual(5000, sample_size) # test min_sample_size > data size * 0.20 sample_size = profiler._get_sample_size(data) self.assertEqual(10000, sample_size) # test min_sample_size > data size * 0.5 profiler._sampling_ratio = 0.5 sample_size = profiler._get_sample_size(data) self.assertEqual(25000, sample_size) def test_clean_data_and_get_base_stats(self, *mocks): data = pd.Series(['here\n', '\t ', 'a', ' is', '\n\r', 'more data']) # needed bc _clean_data_and_get_base_stats is not static # for timeit which wraps this func and uses the class profiler = mock.Mock(spec=UnstructuredProfiler) profiler.times = {'clean_and_base_stats': 0} # case when min_true_samples not set and subset of data df_series, base_stats = \ UnstructuredProfiler._clean_data_and_get_base_stats( profiler, data=data, sample_size=3) # note: bc the sample size is 3, only a subset of the data was sampled self.assertTrue(np.issubdtype(np.object_, df_series.dtype)) self.assertDictEqual( { 'sample': ['more data'], # bc of subset sampled 'sample_size': 3, 'empty_line_count': 2, 'memory_size': 25 / 1024 ** 2 }, base_stats) # case when min_true_samples set and subset of data df_series, base_stats = \ UnstructuredProfiler._clean_data_and_get_base_stats( profiler, data=data, sample_size=3, min_true_samples=2) # note: bc the sample size is 3, only a subset of the data was sampled self.assertTrue(np.issubdtype(np.object_, df_series.dtype)) self.assertDictEqual( { 'sample': ['more data', 'here\n', 'a', ' is'], 'sample_size': 6, 'empty_line_count': 2, 'memory_size': 25 / 1024 ** 2 }, base_stats) def test_update_profile(self, *mocks): # can properties update correctly for data data1 = pd.Series(['this', 'is my', '\n\r', 'test']) data2 = pd.Series(['here\n', '\t ', ' ', ' is', '\n\r', 'more data']) # profiler with first dataset with test_utils.mock_timeit(): profiler = UnstructuredProfiler(data1) self.assertEqual(4, profiler.total_samples) self.assertEqual(1, profiler._empty_line_count) self.assertEqual(15 / 1024 ** 2, profiler.memory_size) # note how sample doesn't include whitespace lines self.assertCountEqual(['this', 'is my', 'test'], profiler.sample) self.assertDictEqual({'clean_and_base_stats': 1}, profiler.times) # update with second dataset with test_utils.mock_timeit(): profiler.update_profile(data2) self.assertEqual(10, profiler.total_samples) self.assertEqual(4, profiler._empty_line_count) self.assertEqual(40 / 1024 ** 2, profiler.memory_size) # note how sample doesn't include whitespace lines self.assertCountEqual(['here\n', ' is', 'more data'], profiler.sample) self.assertDictEqual({'clean_and_base_stats': 2}, profiler.times) @mock.patch('dataprofiler.profilers.profile_builder.UnstructuredProfiler.' '_update_profile_from_chunk') def test_min_true_samples(self, *mocks): empty_df = pd.DataFrame([]) # Test invalid input msg = "`min_true_samples` must be an integer or `None`." with self.assertRaisesRegex(ValueError, msg): profile = dp.UnstructuredProfiler(empty_df, min_true_samples="Bloop") # Test invalid input given to update_profile profile = dp.UnstructuredProfiler(empty_df) with self.assertRaisesRegex(ValueError, msg): profile.update_profile(empty_df, min_true_samples="Bloop") # Test None input (equivalent to zero) profile = dp.UnstructuredProfiler(empty_df, min_true_samples=None) self.assertEqual(None, profile._min_true_samples) # Test valid input profile = dp.UnstructuredProfiler(empty_df, min_true_samples=10) self.assertEqual(10, profile._min_true_samples) class TestUnstructuredProfilerWData(unittest.TestCase): @classmethod def setUp(cls): test_utils.set_seed(seed=0) @classmethod def setUpClass(cls): test_utils.set_seed(0) cls.maxDiff = None cls.input_data = [ 'edited 9 hours ago', '6. Do not duplicate code.', '\t', 'Just want to caution against following this too rigidly.', '\t', ' ', 'When you try to DRY them up into a single generic abstraction, ' 'you have inadvertently coupled those two business rules together.', ' ', ' ', 'Removing duplication that repeats the handling of the exact same ' 'business rule is also usually a win.', '', 'Duplicate words: business, win, code', '\n\r', 'Reply', 'Share', 'Report', ] cls.dataset = pd.DataFrame(cls.input_data) # turn off data labeler because if model changes, results also change profiler_options = ProfilerOptions() profiler_options.set({'data_labeler.is_enabled': False}) with test_utils.mock_timeit(): cls.profiler = UnstructuredProfiler( cls.dataset, len(cls.dataset), options=profiler_options) cls.profiler2 = UnstructuredProfiler( pd.DataFrame(['extra', '\n', 'test\n', 'data .', 'For merging.']), options=profiler_options ) cls.report = cls.profiler.report() def test_sample(self): self.maxDiff = None self.assertCountEqual( ['Report', 'Reply', 'Removing duplication that repeats the handling of the exact same ' 'business rule is also usually a win.', 'edited 9 hours ago', 'Just want to caution against following this too rigidly.'], self.profiler.sample ) def test_total_samples(self): self.assertEqual(16, self.profiler.total_samples) def test_empty_line_count(self): self.assertEqual(7, self.profiler._empty_line_count) def test_get_memory_size(self): self.assertEqual(393 / 1024 ** 2, self.profiler.memory_size) def test_text_profiler_results(self): # vocab order doesn't matter expected_vocab = ['x', 'i', 'y', 's', '9', ',', 'u', 'b', 'f', 'Y', 'J', 'v', 'r', 'o', 'a', '6', 'n', 'h', ' ', 'g', 'R', 't', 'W', '.', 'm', 'c', 'l', 'e', 'p', 'w', 'S', 'd', 'D', ':'] self.assertCountEqual( expected_vocab, self.report['data_stats']['statistics'].pop('vocab')) # assuming if words are correct, rest of TextProfiler is merged properly # vocab order doesn't matter, case insensitive, remove stop words expected_word_count = { 'edited': 1, '9': 1, 'hours': 1, 'ago': 1, '6': 1, 'Do': 1, 'not': 1, 'duplicate': 1, 'code': 2, 'Just': 1, 'want': 1, 'to': 2, 'caution': 1, 'against': 1, 'following': 1, 'this': 1, 'too': 1, 'rigidly': 1, 'When': 1, 'you': 2, 'try': 1, 'DRY': 1, 'them': 1, 'up': 1, 'into': 1, 'a': 2, 'single': 1, 'generic': 1, 'abstraction': 1, 'have': 1, 'inadvertently': 1, 'coupled': 1, 'those': 1, 'two': 1, 'business': 3, 'rules': 1, 'together': 1, 'Removing': 1, 'duplication': 1, 'that': 1, 'repeats': 1, 'the': 2, 'handling': 1, 'of': 1, 'exact': 1, 'same': 1, 'rule': 1, 'is': 1, 'also': 1, 'usually': 1, 'win': 2, 'Duplicate': 1, 'words': 1, 'Reply': 1, 'Share': 1, 'Report': 1} # adapt to the stop words (brittle test) stop_words = \ self.profiler._profile._profiles['text']._stop_words for key in list(expected_word_count.keys()): if key.lower() in stop_words: expected_word_count.pop(key) expected_words = expected_word_count.keys() self.assertCountEqual( expected_words, self.report['data_stats']['statistics'].pop('words')) # test for vocab_count expected_vocab_count = {' ': 55, ',': 3, '.': 5, '6': 1, '9': 1, ':': 1, 'D': 3, 'J': 1, 'R': 4, 'S': 1, 'W': 1, 'Y': 1, 'a': 22, 'b': 4, 'c': 10, 'd': 11, 'e': 33, 'f': 2, 'g': 9, 'h': 12, 'i': 24, 'l': 16, 'm': 3, 'n': 21, 'o': 27, 'p': 8, 'r': 13, 's': 23, 't': 31, 'u': 17, 'v': 3, 'w': 6, 'x': 1, 'y': 7} # expected after the popping: times, vocab, words expected_report = { 'global_stats': { 'samples_used': 16, 'empty_line_count': 7, 'memory_size': 393 / 1024 ** 2, 'file_type': "<class 'pandas.core.frame.DataFrame'>", 'encoding': None, 'times': {'clean_and_base_stats': 1} }, 'data_stats': { 'data_label': {}, 'statistics': { 'word_count': expected_word_count, 'vocab_count': expected_vocab_count, 'times': {'words': 1, 'vocab': 1}, } } } self.assertDictEqual(expected_report, self.report) def test_add_profilers(self): merged_profiler = self.profiler + self.profiler2 report = merged_profiler.report() self.assertEqual(21, merged_profiler.total_samples) self.assertEqual(8, merged_profiler._empty_line_count) self.assertEqual(422 / 1024 ** 2, merged_profiler.memory_size) self.assertCountEqual( ['test\n', 'extra', 'Reply', 'edited 9 hours ago', 'Removing duplication that repeats the handling of the exact same ' 'business rule is also usually a win.'], merged_profiler.sample ) # assuming if words are correct, rest of TextProfiler is merged properly # vocab order doesn't matter, case insensitive, remove stop words expected_word_count = { 'edited': 1, '9': 1, 'hours': 1, 'ago': 1, '6': 1, 'Do': 1, 'not': 1, 'duplicate': 1, 'code': 2, 'Just': 1, 'want': 1, 'to': 2, 'caution': 1, 'against': 1, 'following': 1, 'this': 1, 'too': 1, 'rigidly': 1, 'When': 1, 'you': 2, 'try': 1, 'DRY': 1, 'them': 1, 'up': 1, 'into': 1, 'a': 2, 'single': 1, 'generic': 1, 'abstraction': 1, 'have': 1, 'inadvertently': 1, 'coupled': 1, 'those': 1, 'two': 1, 'business': 3, 'rules': 1, 'together': 1, 'Removing': 1, 'duplication': 1, 'that': 1, 'repeats': 1, 'the': 2, 'handling': 1, 'of': 1, 'exact': 1, 'same': 1, 'rule': 1, 'is': 1, 'also': 1, 'usually': 1, 'win': 2, 'Duplicate': 1, 'words': 1, 'Reply': 1, 'Share': 1, 'Report': 1, 'extra': 1, 'test': 1, 'data': 1, 'merging': 1} # adapt to the stop words (brittle test) stop_words = \ merged_profiler._profile._profiles['text']._stop_words for key in list(expected_word_count.keys()): if key.lower() in stop_words: expected_word_count.pop(key) expected_words = expected_word_count.keys() self.assertCountEqual( expected_words, report['data_stats']['statistics']['words']) self.assertDictEqual( expected_word_count, report['data_stats']['statistics']['word_count']) def test_update_profile(self): # turn off data labeler because if model changes, results also change profiler_options = ProfilerOptions() profiler_options.set({'data_labeler.is_enabled': False}) # update profiler and get report update_profiler = UnstructuredProfiler(self.dataset, options=profiler_options) update_profiler.update_profile(pd.DataFrame(['extra', '\n', 'test\n', 'data .', 'For merging.'])) report = update_profiler.report() # tests self.assertEqual(21, update_profiler.total_samples) self.assertEqual(8, update_profiler._empty_line_count) self.assertEqual(422 / 1024 ** 2, update_profiler.memory_size) # Note: different from merge because sample is from last update only self.assertCountEqual( ['test\n', 'extra', 'For merging.', 'data .'], update_profiler.sample ) # assuming if words are correct, rest of TextProfiler is merged properly # vocab order doesn't matter, case insensitive, remove stop words expected_word_count = { 'edited': 1, '9': 1, 'hours': 1, 'ago': 1, '6': 1, 'Do': 1, 'not': 1, 'duplicate': 1, 'code': 2, 'Just': 1, 'want': 1, 'to': 2, 'caution': 1, 'against': 1, 'following': 1, 'this': 1, 'too': 1, 'rigidly': 1, 'When': 1, 'you': 2, 'try': 1, 'DRY': 1, 'them': 1, 'up': 1, 'into': 1, 'a': 2, 'single': 1, 'generic': 1, 'abstraction': 1, 'have': 1, 'inadvertently': 1, 'coupled': 1, 'those': 1, 'two': 1, 'business': 3, 'rules': 1, 'together': 1, 'Removing': 1, 'duplication': 1, 'that': 1, 'repeats': 1, 'the': 2, 'handling': 1, 'of': 1, 'exact': 1, 'same': 1, 'rule': 1, 'is': 1, 'also': 1, 'usually': 1, 'win': 2, 'Duplicate': 1, 'words': 1, 'Reply': 1, 'Share': 1, 'Report': 1, 'extra': 1, 'test': 1, 'data': 1, 'merging': 1} # adapt to the stop words (brittle test) stop_words = \ update_profiler._profile._profiles['text']._stop_words for key in list(expected_word_count.keys()): if key.lower() in stop_words: expected_word_count.pop(key) expected_words = expected_word_count.keys() self.assertCountEqual( expected_words, report['data_stats']['statistics']['words']) self.assertDictEqual( expected_word_count, report['data_stats']['statistics']['word_count']) def test_save_and_load(self): data_folder = "dataprofiler/tests/data/" test_files = ["txt/code.txt", "txt/sentence-10x.txt"] for test_file in test_files: # Create Data and StructuredProfiler objects data = dp.Data(os.path.join(data_folder, test_file)) save_profile = UnstructuredProfiler(data) # If profile _empty_line_count = 0, it won't test if the variable is # saved correctly since that is also the default value. Ensure # not the default save_profile._empty_line_count = 1 # store the expected data_labeler data_labeler = save_profile.options.data_labeler.data_labeler_object # Save and Load profile with Mock IO with mock.patch('builtins.open') as m: mock_file = setup_save_mock_open(m) save_profile.save() # make sure data_labeler unchanged self.assertIs( data_labeler, save_profile.options.data_labeler.data_labeler_object) self.assertIs( data_labeler, save_profile._profile._profiles['data_labeler'].data_labeler) mock_file.seek(0) with mock.patch('dataprofiler.profilers.profile_builder.' 'DataLabeler', return_value=data_labeler): load_profile = UnstructuredProfiler.load("mock.pkl") # validate loaded profile has same data labeler class self.assertIsInstance( load_profile.options.data_labeler.data_labeler_object, data_labeler.__class__) self.assertIsInstance( load_profile.profile._profiles['data_labeler'].data_labeler, data_labeler.__class__) # Check that reports are equivalent save_report = save_profile.report() load_report = load_profile.report() self.assertDictEqual(save_report, load_report) # Check that sample was properly saved and loaded save_sample = save_profile.sample load_sample = load_profile.sample self.assertEqual(save_sample, load_sample) # validate both are still usable after save_profile.update_profile(pd.DataFrame(['test', 'test2'])) load_profile.update_profile(pd.DataFrame(['test', 'test2'])) def test_save_and_load_no_labeler(self): # Create Data and UnstructuredProfiler objects data = 'this is my test data: 123-456-7890' profile_options = dp.ProfilerOptions() profile_options.set({"data_labeler.is_enabled": False}) save_profile = dp.UnstructuredProfiler(data, options=profile_options) # Save and Load profile with Mock IO with mock.patch('builtins.open') as m: mock_file = setup_save_mock_open(m) save_profile.save() mock_file.seek(0) with mock.patch('dataprofiler.profilers.profile_builder.' 'DataLabeler'): load_profile = dp.UnstructuredProfiler.load("mock.pkl") # Check that reports are equivalent save_report = save_profile.report() load_report = load_profile.report() self.assertDictEqual(save_report, load_report) # Check that sample was properly saved and loaded save_sample = save_profile.sample load_sample = load_profile.sample self.assertEqual(save_sample, load_sample) # validate both are still usable after save_profile.update_profile(
pd.DataFrame(['test', 'test2'])
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2020, empress development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import copy import unittest import pandas as pd import numpy as np import skbio from skbio.util import assert_ordination_results_equal from pandas.util.testing import assert_frame_equal from os.path import exists from shutil import rmtree import biom from .util import load_mp_data from emperor import Emperor from empress import tools from empress.core import Empress from bp import parse_newick, from_skbio_treenode from six import StringIO from skbio.tree import TreeNode class TestCore(unittest.TestCase): def setUp(self): self.tree = parse_newick('(((a:1,e:2):1,b:2)g:1,(:1,d:3)h:2):1;') self.pruned_tree = TreeNode.read( StringIO('(((a:1)EmpressNode0:1,b:2)g:1,(d:3)h:2)EmpressNode1:1;') ) # Test table/metadata (mostly) adapted from Qurro: self.table = biom.Table(np.array([[1, 2, 0, 4], [8, 7, 0, 5], [1, 0, 0, 0], [0, 0, 1, 0]]).T, list('abed'), ['Sample1', 'Sample2', 'Sample3', 'Sample4']) self.unrelated_table = biom.Table(np.array([[5, 2, 0, 2], [2, 3, 0, 1], [5, 2, 0, 0], [4, 5, 0, 4]]).T, list("hijk"), ['Sample1', 'Sample2', 'Sample3', 'Sample4']) self.sample_metadata = pd.DataFrame( { "Metadata1": [0, 0, 0, 1], "Metadata2": [0, 0, 0, 0], "Metadata3": [1, 2, 3, 4], "Metadata4": ["abc", "def", "ghi", "jkl"] }, index=list(self.table.ids()) ) self.feature_metadata = pd.DataFrame( { "fmdcol1": ["asdf", "ghjk"], "fmdcol2": ["qwer", "tyui"] }, index=["a", "h"] ) self.filtered_table = biom.Table(np.array([[1, 2, 4], [8, 7, 5], [1, 0, 0]]).T, ['a', 'b', 'd'], ['Sample1', 'Sample2', 'Sample3']) self.filtered_sample_metadata = pd.DataFrame( { "Metadata1": [0, 0, 0], "Metadata2": [0, 0, 0], "Metadata3": [1, 2, 3], "Metadata4": ["abc", "def", "ghi"] }, index=["Sample1", "Sample2", "Sample3"] ) eigvals = pd.Series(np.array([0.50, 0.25, 0.25]), index=['PC1', 'PC2', 'PC3']) samples = np.array([[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]]) proportion_explained = pd.Series([15.5, 12.2, 8.8], index=['PC1', 'PC2', 'PC3']) samples_df = pd.DataFrame(samples, index=['Sample1', 'Sample2', 'Sample3', 'Sample4'], columns=['PC1', 'PC2', 'PC3']) self.pcoa = skbio.OrdinationResults( 'PCoA', 'Principal Coordinate Analysis', eigvals, samples_df, proportion_explained=proportion_explained) features = np.abs(samples_df.copy() / 2.0).iloc[:2, :] features.index = 'f.' + features.index self.biplot_no_matches = skbio.OrdinationResults( 'PCoA', 'Principal Coordinate Analysis', eigvals, samples_df, features=features, proportion_explained=proportion_explained) features = np.abs(samples_df / 2.0).iloc[:2, :] features.index = pd.Index(['a', 'h']) self.biplot = skbio.OrdinationResults( 'PCoA', 'Principal Coordinate Analysis', eigvals, samples_df, features=features, proportion_explained=proportion_explained) self.biplot_tree = parse_newick( '(((y:1,z:2):1,b:2)g:1,(:1,d:3)h:2):1;') self.biplot_table = biom.Table(np.array([[1, 2], [8, 7], [1, 0], [0, 3]]).T, ['y', 'z'], ['Sample1', 'Sample2', 'Sample3', 'Sample4']) self.files_to_remove = [] self.maxDiff = None def tearDown(self): for path in self.files_to_remove: if exists(path): rmtree(path) def test_init(self): viz = Empress(self.tree, self.table, self.sample_metadata, shear_to_table=False) self.assertEqual(viz.base_url, 'support_files') self.assertEqual(list(viz.tree.B), [1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0]) names = ['a', 'e', None, 'b', 'g', None, 'd', 'h', None] for i in range(1, len(viz.tree) + 1): node = viz.tree.postorderselect(i) self.assertEqual(viz.tree.name(node), names[i - 1]) # table should be unchanged and be a different id instance self.assertEqual(self.table, viz.table) self.assertNotEqual(id(self.table), id(viz.table)) # sample metadata should be unchanged and be a different id instance assert_frame_equal(self.sample_metadata, viz.samples) self.assertNotEqual(id(self.sample_metadata), id(viz.samples)) self.assertIsNone(viz.features) self.assertIsNone(viz.ordination) self.assertTrue(viz.is_community_plot) def test_init_tree_plot(self): # Simplest case (no feature metadata) viz = Empress(self.tree) self.assertFalse(viz.is_community_plot) self.assertIsNone(viz.tip_md) self.assertIsNone(viz.int_md) # Slightly less simple case (with feature metadata) viz = Empress(self.tree, feature_metadata=self.feature_metadata) self.assertFalse(viz.is_community_plot) assert_frame_equal(viz.tip_md, self.feature_metadata.loc[["a"]]) assert_frame_equal(viz.int_md, self.feature_metadata.loc[["h"]]) def test_init_tree_plot_extra_fm(self): # Checks that extra stuff in the feature metadata (which doesn't match # any node in the tree) is filtered out of the visualization, even if # tree-plot is used. extra_fm = pd.DataFrame( { "fmdcol1": ["zxcv", "bnm,"], "fmdcol2": ["zaq1", "xsw2"] }, index=["weshould", "befiltered"] ) smooshed_fm = self.feature_metadata.append(extra_fm) viz = Empress(self.tree, feature_metadata=smooshed_fm) self.assertFalse(viz.is_community_plot) assert_frame_equal(viz.tip_md, self.feature_metadata.loc[["a"]]) assert_frame_equal(viz.int_md, self.feature_metadata.loc[["h"]]) def test_init_tree_plot_fm_not_matching(self): # Mainly, this test validates that the matching done between the tree # nodes and feature metadata is still performed even if tree-plot is # used. bad_fm = self.feature_metadata.copy() bad_fm.index = ["idont", "match :O"] with self.assertRaisesRegex( tools.DataMatchingError, ( "No features in the feature metadata are present in the tree, " "either as tips or as internal nodes." ) ): Empress(self.tree, feature_metadata=bad_fm) def test_init_tree_plot_shear_without_metadata(self): with self.assertRaisesRegex(ValueError, "Feature metadata must be provided"): Empress(self.tree, shear_to_feature_metadata=True) def test_init_only_one_of_table_and_sm_passed(self): exp_errmsg = ( "Both the table and sample metadata should be specified or None. " "However, only one of them is None." ) with self.assertRaisesRegex(ValueError, exp_errmsg): Empress(self.tree, self.table) with self.assertRaisesRegex(ValueError, exp_errmsg): Empress(self.tree, sample_metadata=self.sample_metadata) def test_init_with_ordination(self): viz = Empress(self.tree, self.table, self.sample_metadata, ordination=self.pcoa, shear_to_table=False) self.assertEqual(viz.base_url, 'support_files') self.assertEqual(list(viz.tree.B), [1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0]) names = ['a', 'e', None, 'b', 'g', None, 'd', 'h', None] for i in range(1, len(viz.tree) + 1): node = viz.tree.postorderselect(i) self.assertEqual(viz.tree.name(node), names[i - 1]) # table should be unchanged and be a different id instance self.assertEqual(self.table, viz.table) self.assertNotEqual(id(self.table), id(viz.table)) # sample metadata should be unchanged and be a different id instance assert_frame_equal(self.sample_metadata, viz.samples) self.assertNotEqual(id(self.sample_metadata), id(viz.samples)) self.assertIsNone(viz.features) assert_ordination_results_equal(viz.ordination, self.pcoa) # emperor is instantiated as needed but not yet setup self.assertTrue(isinstance(viz._emperor, Emperor)) def test_init_with_ordination_features(self): '''Check that empress does not break when ordination has features but empress itself does not.''' viz = Empress(self.tree, self.table, self.sample_metadata, ordination=self.biplot, shear_to_table=False) self.assertIsNone(viz.features) def test_init_with_ordination_empty_samples_in_pcoa(self): def make_bad(v, i, m): if i in ['Sample2', 'Sample4']: return np.zeros(len(v)) else: return v bad_table = self.table.copy() bad_table.transform(make_bad, inplace=True) with self.assertRaisesRegex( ValueError, ( r"The ordination contains samples that are empty \(i.e. " r"all 0s\) in the table. Problematic sample IDs: Sample2, " "Sample4" ) ): Empress(self.tree, bad_table, self.sample_metadata, ordination=self.pcoa, shear_to_table=False) def test_copy_support_files_use_base(self): local_path = './some-local-path/' viz = Empress(self.tree, self.table, self.sample_metadata, resource_path=local_path, shear_to_table=False) self.assertEqual(viz.base_url, local_path) viz.copy_support_files() self.assertTrue(exists(local_path)) self.files_to_remove.append(local_path) def test_copy_support_files_use_target(self): local_path = './other-local-path/' viz = Empress(self.tree, self.table, self.sample_metadata, resource_path=local_path, shear_to_table=False) self.assertEqual(viz.base_url, local_path) viz.copy_support_files(target='./something-else') self.assertTrue(exists('./something-else')) self.files_to_remove.append(local_path) self.files_to_remove.append('./something-else') def test_to_dict(self): viz = Empress(self.tree, self.table, self.sample_metadata, shear_to_table=False) obs = viz.to_dict() dict_a_cp = copy.deepcopy(DICT_A) # NOTE: Uncomment the following two lines of code to write the current # DICT_A to a file. Once it's written to a file, you can run # "black -l 79 dictcode.py" (while in the same directory as the file) # to format it so that it's consistent with how DICT_A is set up at the # bottom of this file. # with open("dictcode.py", "w") as f: # f.write("DICT_A = {}".format(str(obs))) self.assertEqual(obs, dict_a_cp) def test_to_dict_with_feature_metadata(self): viz = Empress( self.tree, self.table, self.sample_metadata, self.feature_metadata, shear_to_table=False ) obs = viz.to_dict() dict_a_with_fm = copy.deepcopy(DICT_A) dict_a_with_fm["compressed_tip_metadata"] = {1: ["asdf", "qwer"]} dict_a_with_fm["compressed_int_metadata"] = {8: ["ghjk", "tyui"]} dict_a_with_fm["feature_metadata_columns"] = ["fmdcol1", "fmdcol2"] self.assertEqual(obs, dict_a_with_fm) def test_to_dict_with_metadata_nans(self): nan_sample_metadata = self.sample_metadata.copy() nan_feature_metadata = self.feature_metadata.copy() nan_sample_metadata.at["Sample2", "Metadata4"] = np.nan nan_feature_metadata.at["h", "fmdcol1"] = np.nan nan_feature_metadata.at["a", "fmdcol2"] = np.nan viz = Empress(self.tree, self.table, nan_sample_metadata, nan_feature_metadata, shear_to_table=False) obs = viz.to_dict() dict_a_nan = copy.deepcopy(DICT_A) # [1][3] corresponds to Sample2, Metadata4 dict_a_nan["compressed_sample_metadata"][1][3] = str(np.nan) dict_a_nan["compressed_tip_metadata"] = {1: ["asdf", str(np.nan)]} dict_a_nan["compressed_int_metadata"] = {8: [str(np.nan), "tyui"]} dict_a_nan["feature_metadata_columns"] = ["fmdcol1", "fmdcol2"] self.assertEqual(obs, dict_a_nan) res = viz.make_empress() self.assertTrue('empressRequire' in res) self.assertTrue('empress = new Empress' in res) self.assertTrue('emperor_require_logic' not in res) def test_to_dict_with_emperor(self): viz = Empress(self.tree, self.table, self.sample_metadata, ordination=self.pcoa, shear_to_table=False, filter_extra_samples=True) obs = viz.to_dict() self.assertEqual(viz._emperor.width, '50vw') self.assertEqual(viz._emperor.height, '100vh; float: right') self.assertEqual(viz._emperor.settings['axes']['axesColor'], 'black') self.assertEqual(viz._emperor.settings['axes']['backgroundColor'], 'white') # we test key by key so we can do "general" checks on the emperor # values, this helps with tests not breaking if any character changes # in # Emperor dict_a_cp = copy.deepcopy(DICT_A) # set is_empire_plot flag to True since DICT_A sets it as False (all # other test use a False value) dict_a_cp["is_empire_plot"] = True for key, value in obs.items(): if not key.startswith('emperor_'): self.assertEqual(obs[key], dict_a_cp[key]) exp = "<div id='emperor-in-empire'" self.assertTrue(obs['emperor_div'].startswith(exp)) exp = "// When running in the Jupyter" self.assertTrue(obs['emperor_require_logic'].startswith(exp)) exp = "}); // END REQUIRE.JS block" self.assertTrue(obs['emperor_require_logic'].endswith(exp)) self.assertTrue('"#emperor-css"' in obs['emperor_style']) exp = "vendor/js/jquery-" self.assertEqual(obs['emperor_base_dependencies'].count(exp), 1) self.assertTrue(obs['emperor_classes'], 'combined-plot-container') def _clear_copied_dict_a(self, dict_a_cp): """Clears a copy of DICT_A to look as we'd expect it to look if qiime empress tree-plot was used (i.e. no table / sample metadata were specified). """ dict_a_cp["is_community_plot"] = False # When no table / s. metadata is passed, many values in the dict # representation should just be None for nfield in [ "s_ids", "f_ids", "compressed_table", "sample_metadata_columns", "compressed_sample_metadata" ]: dict_a_cp[nfield] = None # These things are represented as empty dicts, though. (The main reason # for this is that making f_ids_to_indices be None in this case would # have required some gross special-casing to refactor things, so for # the sake of consistency and clean code both default to {}.) for efield in ["s_ids_to_indices", "f_ids_to_indices"]: dict_a_cp[efield] = {} # We don't need to reset the feature metadata stuff because that should # already be empty, since the main to_dict test doesn't use f.m. def test_to_dict_tree_plot(self): viz = Empress(self.tree) dict_a_cp = copy.deepcopy(DICT_A) self._clear_copied_dict_a(dict_a_cp) obs = viz.to_dict() self.assertEqual(obs, dict_a_cp) def test_to_dict_tree_plot_with_feature_metadata(self): viz = Empress(self.tree, feature_metadata=self.feature_metadata) # Set up expected dict dict_a_cp = copy.deepcopy(DICT_A) self._clear_copied_dict_a(dict_a_cp) # Copied from test_to_dict_with_feature_metadata() above dict_a_cp["compressed_tip_metadata"] = {1: ["asdf", "qwer"]} dict_a_cp["compressed_int_metadata"] = {8: ["ghjk", "tyui"]} dict_a_cp["feature_metadata_columns"] = ["fmdcol1", "fmdcol2"] obs = viz.to_dict() self.assertEqual(obs, dict_a_cp) def test_shear_tree_to_table(self): viz = Empress(self.tree, self.filtered_table, self.filtered_sample_metadata, shear_to_table=True) self.assertEqual(list(viz.tree.B), [1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0]) names = ['a', None, 'b', 'g', 'd', 'h', None] for i in range(1, len(viz.tree) + 1): node = viz.tree.postorderselect(i) self.assertEqual(viz.tree.name(node), names[i - 1]) # table should be unchanged and be a different id instance self.assertEqual(self.filtered_table, viz.table) self.assertNotEqual(id(self.filtered_table), id(viz.table)) # sample metadata should be unchanged and be a different id instance assert_frame_equal(self.filtered_sample_metadata, viz.samples) self.assertNotEqual(id(self.filtered_sample_metadata), id(viz.samples)) self.assertIsNone(viz.features) self.assertIsNone(viz.ordination) def test_fm_filtering_post_shearing(self): extra_fm = self.feature_metadata.copy() extra_fm.loc["e"] = "i'm going to be filtered :O" viz = Empress(self.tree, self.filtered_table, self.filtered_sample_metadata, feature_metadata=extra_fm, shear_to_table=True) # Same as with the shearing test above, check that the tree was handled # as expected self.assertEqual(list(viz.tree.B), [1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0]) names = ['a', None, 'b', 'g', 'd', 'h', None] for i in range(1, len(viz.tree) + 1): node = viz.tree.postorderselect(i) self.assertEqual(viz.tree.name(node), names[i - 1]) # Now, the point of this test: verify that the feature metadata was # filtered to just stuff in the sheared tree ("e" was removed from the # tip metadata) assert_frame_equal(extra_fm.loc[["a"]], viz.tip_md) assert_frame_equal(extra_fm.loc[["h"]], viz.int_md) # table should be unchanged and be a different id instance self.assertEqual(self.filtered_table, viz.table) self.assertNotEqual(id(self.filtered_table), id(viz.table)) # sample metadata should be unchanged and be a different id instance assert_frame_equal(self.filtered_sample_metadata, viz.samples) self.assertNotEqual(id(self.filtered_sample_metadata), id(viz.samples)) self.assertIsNone(viz.ordination) def test_shear_tree_to_fm_simple(self): # remove e same as in test_shear_tree mini_fm = self.feature_metadata.copy() mini_fm.loc["b"] = ["pikachu", "raichu"] mini_fm.loc["d"] = ["mew", "mewtwo"] viz = Empress(self.tree, feature_metadata=mini_fm, shear_to_table=False, shear_to_feature_metadata=True) self.assertEqual(list(viz.tree.B), [1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0]) names = ['a', None, 'b', 'g', 'd', 'h', None] for i in range(1, len(viz.tree) + 1): node = viz.tree.postorderselect(i) self.assertEqual(viz.tree.name(node), names[i - 1]) assert_frame_equal(viz.tip_md, mini_fm.loc[["a", "b", "d"]]) assert_frame_equal(viz.int_md, mini_fm.loc[["h"]]) # feature metadata should be unchanged and be a different id instance assert_frame_equal(mini_fm, viz.features) self.assertNotEqual(id(mini_fm), id(viz.features)) self.assertIsNone(viz.ordination) def test_shear_tree_to_fm_only_int(self): int_fm = pd.DataFrame( { "fmdcol1": ["vulpix", "ninetales"], "fmdcol2": ["growlithe", "arcanine"] }, index=["g", "h"] ) exp_errmsg = ( "Cannot shear tree to feature metadata: no tips in " "the tree are present in the feature metadata." ) with self.assertRaisesRegex(ValueError, exp_errmsg): Empress(self.tree, feature_metadata=int_fm, shear_to_table=False, shear_to_feature_metadata=True) def test_shear_tree_to_fm_one_tip(self): lonely_fm = pd.DataFrame( { "fmdcol1": ["mimikyu"], }, index=["a"] ) viz = Empress(self.tree, feature_metadata=lonely_fm, shear_to_table=False, shear_to_feature_metadata=True) names = ['a', None, 'g', None] for i in range(1, len(viz.tree) + 1): node = viz.tree.postorderselect(i) self.assertEqual(viz.tree.name(node), names[i - 1]) assert_frame_equal(viz.tip_md, lonely_fm.loc[["a"]]) self.assertTrue(viz.int_md.empty) # feature metadata should be unchanged and be a different id instance assert_frame_equal(lonely_fm, viz.features) self.assertNotEqual(id(lonely_fm), id(viz.features)) self.assertIsNone(viz.ordination) def test_shear_tree_to_fm_rmv_int_md(self): """ Shear tree to feature metadata but metadata has entry for an internal node that gets filtered out from the shearing. """ # default feature metadata works - internal node h filtered out viz = Empress(self.tree, feature_metadata=self.feature_metadata, shear_to_table=False, shear_to_feature_metadata=True) names = ['a', None, 'g', None] for i in range(1, len(viz.tree) + 1): node = viz.tree.postorderselect(i) self.assertEqual(viz.tree.name(node), names[i - 1])
assert_frame_equal(viz.tip_md, self.feature_metadata.loc[["a"]])
pandas.util.testing.assert_frame_equal
import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression# 今回使うアルゴリズム from sklearn.tree import DecisionTreeClassifier # 決定木(分類) import pandas as pd#  データフレームを扱うための機能。 import datetime from dateutil.relativedelta import relativedelta ''' 目的変数と説明変数 予測において 予測したいもの⇒目的変数 予測の手がかりとするもの⇒説明変数(機械学習の文やでは特徴量という) と言います。例えば、奥さんの機嫌を知りたいなら、奥さんの機嫌が「目的変数」で、説明変数には「季節」や「給料」、「帰宅時間」、「1日当たりの接触時間」といったものがあるのかもしれません。例えば、帰宅時間が早いほど奥さんの機嫌が悪くなるのであれば、帰宅時間を「説明変数」にして奥さんの機嫌が悪くさせないには何時に帰れば良いか分かるのかもしれません。 この「説明変数」は一つだけではなくて、複数使うこともできるようです。 単回帰モデルでは「1つの目的変数を1つの説明変数によって予測」します。 重回帰モデルでは「1つの目的変数を複数の説明変数によって予測」します。 先ほどの過学習の部分でも書いた通り、過去のデータに過剰にフィットさせると、実際には役に立たなかった、ということになりかねないため、適切な説明変数を使うことが予測では大切だそうです。 単回帰モデルについての理解 単回帰モデルでは、最小二乗法というものによって求められる回帰直線を使って予測を行います。 最小二乗法によって求められる回帰直線は2つの値によって表される散布図を近似する直線を表します。2つの値に相関関係がみられる場合、散布図にプロットされる点の集まりは直線っぽくなります。ですから、単回帰モデルは説明変数と目的変数にある程度の相関がある場合に使えそうです。相関がないようなら短回帰モデルを使ってもまともな結果は求められなさそうです。 単回帰分析をするときに説明変数をreshapeする理由 あるデータtrainがあって、そのうちのdayというカラム(列)を説明変数、yというカラム(列)を目的変数に選択して短回帰モデルを作成するとき LinearRegression.fit(day.values,y) 1 LinearRegression.fit(day.values,y) とすると ValueError: Expected 2D array, got 1D array instead: 1 ValueError: Expected 2D array, got 1D array instead: というエラーを吐かれます。で、僕しばらくこの2D(2次元)を2列の配列だと勘違いしていていました。 元のデータ”day.values”は[1,2,3,…]と定義されていて1次元配列です。 要求されているのは二次元配列なので、reshape()を使うことで実現できます。 day.values.reshape(-1,1)とすると作成される配列は[[1,2,3,…]]となります。 [[1,2,3,…]]も実際のところは元のデータ”day.values”と同じようにn行1列のデータに変わりないとは思いますが、fit()に渡す説明変数が1つの場合はreshape(-1,1)としてn行1列の2次元配列にしなければならないようでした。 reshape(-1,1)の意味 reshape(-1,n)とすると、列数がnとなるるような配列に変形します。 reshape(n,-1)とすると、行数がnとなるような配列に変形します。 ''' X_train = [] # 教師データ y_train = [] # 上げ下げの結果の配列 y_test = [] code = '6758' '''教師データの数値の配列 (train_X) と結果の配列 (train_y) を学習させ、テストデータの数値の配列 (test_X) を与えると予測結果 (test_y) が帰ってくる''' '''次回の株価予測AIを作る''' #次回の株価を直近10日分の株価の推移を基に予測しましょう。株価予測AIの条件設定の部分を以下のように変更して、学習させます。 '''条件設定。''' interval = 10 #直近何日分の株価を基に予測するか。(test_x) future = 1 #何日先の株価を予測するかは”future”の値を変更する。(test_y) import datetime #2021年から今日までの1年間のデータを取得しましょう。期日を決めて行きます。 start_train = datetime.date(2017, 1, 1)#教師データ(今までのデータ) #end_train = datetime.date(2021,12,31) end_train= datetime.date.today() + relativedelta(days=-1)#昨日分(today-1日)まで取得できる(当日分は変動しているため) from pandas_datareader import data as pdr #datetime.date.today() + relativedelta(days=-1) #start_test = datetime.date(2022, 1, 1)#試験データ start_test = datetime.date.today() + relativedelta(days= -1)#試験データ #end_test = datetime.date.today()#昨日分(today-1日)まで取得できる(当日分は変動しているため) end_test = datetime.date.today()# + relativedelta(days= -1) '''使うデータを読み込む。''' #closed = pdr.get_data_yahoo(f'{code}.T', start, end)["Close"] # 株価データの取得 Stock_train_df = pdr.get_data_yahoo(f'{code}.T', start_train, end_train)["Adj Close"] # 教師データのcsvファイルを読み込む。 Stock_test_df = pdr.get_data_yahoo(f'{code}.T', start_test, end_test)["Adj Close"]# 試験データのcsvファイルを読み込む。 '''説明変数としてのinterval回分の株価の推移と、それに対応する目的変数としてのfuture回後の株価の配列を作るための関数の作成。''' #interval = 直近何回分の株価を基に予測するか。 #future = 何回後の株価を予測するか。 def make_data(data): x = []# 説明変数 y = []# 目的変数 temps=list(data["Adj Close"])#株価(終値調整値)の配列を作成。 for i in range(len(temps) - future):#i番目の株価について、(50-1)=len49 if i < interval:continue#iがinterval(50)分までは予測できないから、iがinterval(50)より小さければ何もしない。 y.append([temps[i + future - 1]])#i + future(1)番目の株価をyに付け足す。 xa = []#i - interval番目からi-1番目の株価を格納するxaを作成。 for p in range(interval):#i - interval番目からi-1番目の株価を d = i - interval + p xa.append(temps[d])#xaにため込んでひとまとめ([ ]で囲まれた、interval回分の株価データ群をイメージ)にして、 x.append(xa)#xにxaを付けたしていく。 return(x, y)#完成したx,yを返す。 ''' 教師データをつくる まずは一番面倒な株価の調整後終値から教師データを作るまでのコードを用意します。 これは終値のリストを渡すと train_X と train_y が返るようにすれば良いでしょう。 ''' def train_data(arr): # arr = test_X train_X = [] # 教師データ train_y = [] # 上げ下げの結果の配列 # 30 日間のデータを学習、 1 日ずつ後ろ(today方向)にずらしていく for i in np.arange(-30, -15): s = i + 14 # 14 日間の変化を素性にする feature = arr.iloc[i:s] # i(-50)~s(-36)行目を取り出す if feature[-1] < arr[s]: # その翌日、株価は上がったか? train_y.append(1) # YES なら 1 を else: train_y.append(0) # NO なら 0 を train_X.append(feature.values) # 教師データ(train_X)と上げ下げの結果(train_y)のセットを返す return np.array(train_X), np.array(train_y) #これで train_X (教師データの配列) と train_y (それに対する 1 か 0 かのラベル) を返します。 ''' reshape(-1,1)の意味 reshape(-1,n)とすると、列数がnとなるるような配列に変形します。 reshape(n,-1)とすると、行数がnとなるような配列に変形します。 X = test_X.reshape(1,-1) result = lr.predict(X) print(result) ''' ''' # 決定木の学習を行う # 決定木のインスタンスを生成 tree = DecisionTreeClassifier(criterion='gini', max_depth=None) # 学習させる tree.fit(train_X, train_y) # 決定木のインスタンスを生成 clf = tree.DecisionTreeClassifier() # 学習させる clf.fit(train_X, train_y) pred = tree.predict(test_x) ''' '''学習と予測''' #アルゴリズムの選択。 lr = LinearRegression(normalize = True)# アルゴリズムの選択。 ''' 1.X_train: 訓練データ 2.X_test: テストデータ 3.Y_train: 訓練データの正解ラベル 4.Y_test: テストデータの正解ラベル ''' '''教師データと試験データの作成''' '''引数stratifyに均等に分割させたいデータ(多くの場合は正解ラベル)を指定すると、そのデータの値の比率が一致するように分割される。''' #X_train, y_train, = train_test_split(Stock_train_df, test_size=0.2, random_state=0,shuffle=False) #print(",X_train= ",X_train, "y_train= ",y_train) '''教師データと試験データの作成''' train_x, train_y = train_data(Stock_train_df) #   教師データ作成。 test_x, test_y = train_data(Stock_test_df) #  試験データ作成。 '''引数stratifyに均等に分割させたいデータ(多くの場合は正解ラベル)を指定すると、そのデータの値の比率が一致するように分割される。''' X_train, X_test, y_train, y_test = train_test_split(train_x, train_y, test_size=0.2, random_state=0,shuffle=False) print(",train_x= ",train_x, "train_y= ",train_y) '''学習''' '''教師データの数値の配列 (train_X) と結果の配列 (train_y) を学習させる''' lr.fit(X_train, y_train) '''予測''' '''テストデータの数値の配列 (test_X) を与えると予測結果 (test_y) が帰ってくる''' print("(test_x=) ",test_x[0]) test_y = lr.predict(test_x)#テストデータの数値の配列 (test_X) print("翌日予測(test_y=)",test_y) #pred = tree.predict(test_x) x_pred =test_y from sklearn.metrics import accuracy_score print(test_x) print(x_pred) print (accuracy_score(test_x, x_pred)) print (accuracy_score(test_x, x_pred,normalize=False)) ''' from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier import random if __name__ == '__main__': # データセットを読み込む iris = load_iris() x = iris.data y = iris.target # 読み込んだデータセットをシャッフルする p = list(zip(x, y)) random.shuffle(p) x, y = zip(*p) # 学習データの件数を指定する train_size = 100 test_size = len(x) - train_size # データセットを学習データとテストデータに分割する train_x = x[:train_size] train_y = y[:train_size] test_x = x[train_size:] test_y = y[train_size:] # 決定木の学習を行う tree = DecisionTreeClassifier(criterion='gini', max_depth=None) tree.fit(train_x, train_y) # 学習させたモデルを使ってテストデータに対する予測を出力する count = 0 pred = tree.predict(test_x) for i in range(test_size): print('[{0}] correct:{1}, predict:{2}'.format(i, test_y[i], pred[i])) if pred[i] == test_y[i]: count += 1 # 予測結果から正答率を算出する score = float(count) / test_size print('{0} / {1} = {2}'.format(count, test_size, score)) ''' ''' train_test_split 概要 scikit-learnのtrain_test_split()関数を使うと、与えたデータをいろいろな方法で訓練データとテストデータに切り分けてくれる。 scikit-learnのtrain_test_split()関数を使うと、NumPy配列ndarrayやリストなどを二分割できる。 機械学習においてデータを訓練用(学習用)とテスト用に分割してホールドアウト検証を行う際に用いる。 ''' ''' train_test_splitでの戻り値は以下の通りです。 1.X_train: 訓練データ 2.X_test: テストデータ 3.Y_train: 訓練データの正解ラベル 4.Y_test: テストデータの正解ラベル ''' '''train_test_split()の基本的な使い方''' #train_test_split()にNumPy配列ndarrayを渡すと、二分割されたndarrayが要素として格納されたリストが返される。 a = np.arange(10)#numpy.ndarray print(a) # [0 1 2 3 4 5 6 7 8 9] print(train_test_split(a)) # [array([3, 9, 6, 1, 5, 0, 7]), array([2, 8, 4])] print(type(train_test_split(a))) # <class 'list'> print(len(train_test_split(a))) # 2 '''以下のように、アンパックでそれぞれ2つの変数に代入することが多い。''' a_train, a_test = train_test_split(a) print(a_train) # [3 4 0 5 7 8 2] print(a_test) # [6 1 9] #例はnumpy.ndarrayだが、list(Python組み込みのリスト)やpandas.DataFrame, Series、疎行列scipy.sparseにも対応している。 # pandas.DataFrame, Seriesの例は最後に示す。 '''割合、個数を指定: 引数test_size, train_size''' #引数test_sizeでテスト用(返されるリストの2つめの要素)の割合または個数を指定できる。 #デフォルトはtest_size=0.25で25%がテスト用、残りの75%が訓練用となる。小数点以下は切り上げとなり、上の例では10 * 0.25 = 2.5 -> 3となっている。 #test_sizeには0.0 ~ 1.0の割合か、個数を指定する。 #割合で指定した例。 a_train, a_test = train_test_split(a, test_size=0.6)#引数test_size print(a_train) # [9 1 2 6] print(a_test) # [5 7 4 3 0 8] #個数で指定した例。 a_train, a_test = train_test_split(a, test_size=6) print(a_train) # [4 2 1 0] print(a_test) # [7 6 3 9 8 5] #引数train_sizeで訓練用の割合・個数を指定することもできる。test_sizeと同様に、0.0 ~ 1.0の割合か、個数を指定する。 a_train, a_test = train_test_split(a, train_size=0.6) print(a_train) # [2 9 6 0 4 3] print(a_test) # [7 8 5 1] a_train, a_test = train_test_split(a, train_size=6) print(a_train) # [9 3 0 8 7 1] print(a_test) # [5 6 4 2] #これまでの例のように引数test_size, train_sizeのいずれかのみを指定した場合、他方の数はその残りになるが、それぞれを別途指定することも可能。 a_train, a_test = train_test_split(a, test_size=0.3, train_size=0.4) print(a_train) # [3 0 4 9] print(a_test) # [7 2 8] a_train, a_test = train_test_split(a, test_size=3, train_size=4) print(a_train) # [9 7 0 4] print(a_test) # [3 8 5] '''シャッフルするかを指定: 引数shuffle''' #これまでの例のように、デフォルトでは要素がシャッフルされて分割される。引数shuffle=Falseとするとシャッフルされずに先頭から順番に分割される。 a_train, a_test = train_test_split(a, shuffle=False) #print(a_train) # [0 1 2 3 4 5 6] #print(a_test) # [7 8 9] '''乱数シードを指定: 引数random_state''' #シャッフルされる場合、デフォルトでは実行するたびにランダムに分割される。引数random_stateを指定して乱数シードを固定すると常に同じように分割される。 a_train, a_test = train_test_split(a, random_state=0) #print(a_train) # [9 1 6 7 3 0 5] #print(a_test) # [2 8 4] '''機械学習のモデルの性能を比較するような場合、どのように分割されるかによって結果が異なってしまうため、乱数シードを固定して常に同じように分割されるようにする必要がある。''' X = np.arange(20).reshape(2, 10).T Z = np.arange(20).reshape(2, 10).T '''層化抽出: 引数stratify(相似化)''' #例えば教師あり学習では特徴行列(説明変数)と正解ラベル(目的変数)の2つのデータを用いる。 #二値分類(2クラス分類)では正解ラベルは、例えば以下のように0, 1のいずれかになる。 y = np.array([0] * 5 + [1] * 5) #print(y) # [0 0 0 0 0 1 1 1 1 1] '''複数データの同時分割 #train_test_split()は複数データを同時に分割することもできる。 #以下の例では、二つの配列を引数として与えている。その結果は、与えた配列ごとに訓練データ、テストデータの順でタプルとして返される。 #教師あり学習のためにデータを分割する場合、訓練用とテスト用の正解ラベルの比率は元のデータの正解ラベルの比率と一致していることが望ましいが、 # 例えば以下のようにテスト用に0の要素が含まれていないといったことが起こり得る。 X_train, X_test, y_train, y_test,Z_train, Z_test = train_test_split(X, y, Z,test_size=0.2, random_state=0, shuffle=False) print(y_train) # [0 1 0 0 0 0 1 1] print(y_test) # [1 1] print(X_train) # [0 1 0 0 0 0 1 1] print(X_test) # [1 1] print(Z_train) # [0 1 0 0 0 0 1 1] print(Z_test) # [1 1] ''' '''引数stratifyに均等に分割させたいデータ(多くの場合は正解ラベル)を指定すると、そのデータの値の比率が一致するように分割される。''' #1.X_train: 訓練データ #2.X_test: テストデータ #3.Y_train: 訓練データの正解ラベル #4.Y_test: テストデータの正解ラベル X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8,test_size=0.2, random_state=100,stratify=y) print(" 訓練データ",X_train) # [1 1 0 0 0 1 1 0] print("テストデータ",X_test) # [1 0] print("訓練データの正解ラベル",y_train) # [1 1 0 0 0 1 1 0] print("テストデータの正解ラベル",y_test) # [1 0] #サンプル数が少ないとイメージしにくいので、次の具体例も参照されたい。 #具体的な例(アイリスデータセット) #具体的な例として、アイリスデータセットを分割する。 #150件のデータがSepal Length(がく片の長さ)、Sepal Width(がく片の幅)、Petal Length(花びらの長さ)、Petal Width(花びらの幅)の4つの特徴量を持っており、 # Setosa, Versicolor, Virginicaの3品種に分類されている。 #load_iris()でデータを取得する。正解ラベルyには0, 1, 2の3種類が均等に含まれている。 from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris data = load_iris() X = data['data'] y = data['target'] print(X.shape) # (150, 4) print(X[:5]) # [[5.1 3.5 1.4 0.2] # [4.9 3. 1.4 0.2] # [4.7 3.2 1.3 0.2] # [4.6 3.1 1.5 0.2] # [5. 3.6 1.4 0.2]] print(y.shape) # (150,) print(y) # [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 # 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 # 2 2] #train_test_split()で以下のように分割できる。test_sizeやtrain_sizeは設定していないので、デフォルトの通り、訓練用75%とテスト用25%に分割される。サイズが大きいので形状shapeのみ示している。 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) print(X_train.shape) # (112, 4) print(X_test.shape) # (38, 4) print(y_train.shape) # (112,) print(y_test.shape) # (38,) #テスト用の正解ラベルy_testを確認すると、各ラベルの数が不均等になっている。 print(y_test) # [2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0 2 1 0 2 2 1 0 # 1] print((y_test == 0).sum()) # 13 print((y_test == 1).sum()) # 16 print((y_test == 2).sum()) # 9 #引数stratifyを指定すると、分割後の各ラベルの比率が元のデータの比率(この例では3種類が均等)と一致するように分割できる。以下の例のように分割後の個数によっては完全に一致しない(割り切れない)こともあるが、できる限り元の比率に近くなっていることが分かる。 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, stratify=y) print(y_test) # [0 0 0 0 1 1 1 0 1 2 2 2 1 2 1 0 0 2 0 1 2 1 1 0 2 0 0 1 2 1 0 1 2 2 0 1 2 # 2] print((y_test == 0).sum()) # 13 print((y_test == 1).sum()) # 13 print((y_test == 2).sum()) # 12 #pandas.DataFrame, Seriesの場合 #pandas.DataFrame, Seriesはそれぞれ二次元・一次元の配列と同様に分割できる。 #ここでもアイリスデータセットを例とする。 import pandas as pd from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris data = load_iris() X_df = pd.DataFrame(data['data'], columns=data['feature_names']) y_s =
pd.Series(data['target'])
pandas.Series
import pickle import pandas as pd import ot import argparse from scipy.spatial.distance import cdist from sklearn.metrics.pairwise import cosine_similarity from sklearn.cluster import AffinityPropagation from sklearn.cluster import KMeans from collections import Counter from scipy.stats import entropy from collections import defaultdict import numpy as np import os import sys def combine_clusters(labels, embeddings, threshold=10, remove=[]): cluster_embeds = defaultdict(list) for label, embed in zip(labels, embeddings): cluster_embeds[label].append(embed) min_num_examples = threshold legit_clusters = [] for id, num_examples in Counter(labels).items(): if num_examples >= threshold: legit_clusters.append(id) if id not in remove and num_examples < min_num_examples: min_num_examples = num_examples min_cluster_id = id if len(set(labels)) == 2: return labels min_dist = 1 all_dist = [] cluster_labels = () embed_list = list(cluster_embeds.items()) for i in range(len(embed_list)): for j in range(i+1,len(embed_list)): id, embed = embed_list[i] id2, embed2 = embed_list[j] if id in legit_clusters and id2 in legit_clusters: dist = compute_averaged_embedding_dist(embed, embed2) all_dist.append(dist) if dist < min_dist: min_dist = dist cluster_labels = (id, id2) std = np.std(all_dist) avg = np.mean(all_dist) limit = avg - 2 * std if min_dist < limit: for n, i in enumerate(labels): if i == cluster_labels[0]: labels[n] = cluster_labels[1] return combine_clusters(labels, embeddings, threshold, remove) if min_num_examples >= threshold: return labels min_dist = 1 cluster_labels = () for id, embed in cluster_embeds.items(): if id != min_cluster_id: dist = compute_averaged_embedding_dist(embed, cluster_embeds[min_cluster_id]) if dist < min_dist: min_dist = dist cluster_labels = (id, min_cluster_id) if cluster_labels[0] not in legit_clusters: for n, i in enumerate(labels): if i == cluster_labels[0]: labels[n] = cluster_labels[1] else: if min_dist < limit: for n, i in enumerate(labels): if i == cluster_labels[0]: labels[n] = cluster_labels[1] else: remove.append(min_cluster_id) return combine_clusters(labels, embeddings, threshold, remove) def compute_jsd(p, q): p = np.asarray(p) q = np.asarray(q) m = (p + q) / 2 return (entropy(p, m) + entropy(q, m)) / 2 def cluster_word_embeddings_aff_prop(word_embeddings): clustering = AffinityPropagation().fit(word_embeddings) labels = clustering.labels_ exemplars = clustering.cluster_centers_ return labels, exemplars def cluster_word_embeddings_k_means(word_embeddings, k, random_state): clustering = KMeans(n_clusters=k, random_state=random_state).fit(word_embeddings) labels = clustering.labels_ exemplars = clustering.cluster_centers_ return labels, exemplars def compute_averaged_embedding_dist(t1_embeddings, t2_embeddings): t1_mean = np.mean(t1_embeddings, axis=0) t2_mean = np.mean(t2_embeddings, axis=0) dist = 1.0 - cosine_similarity([t1_mean], [t2_mean])[0][0] #print("Averaged embedding cosine dist:", dist) return dist def compute_divergence_from_cluster_labels(embeds1, embeds2, labels1, labels2, threshold): labels_all = list(np.concatenate((labels1, labels2))) counts1 = Counter(labels1) counts2 = Counter(labels2) n_senses = list(set(labels_all)) #print("Clusters:", len(n_senses)) t1 = [] t2 = [] label_list = [] for i in n_senses: if counts1[i] + counts2[i] > threshold: t1.append(counts1[i]) t2.append(counts2[i]) label_list.append(i) t1 = np.array(t1) t2 = np.array(t2) emb1_means = np.array([np.mean(embeds1[labels1 == clust], 0) for clust in label_list]) emb2_means = np.array([np.mean(embeds2[labels2 == clust], 0) for clust in label_list]) M = np.nan_to_num(np.array([cdist(emb1_means, emb2_means, metric='cosine')])[0], nan=1) t1_dist = t1 / t1.sum() t2_dist = t2 / t2.sum() wass = ot.emd2(t1_dist, t2_dist, M) jsd = compute_jsd(t1_dist, t2_dist) return jsd, wass def detect_meaning_gain_and_loss(labels1, labels2, threshold): labels1 = list(labels1) labels2 = list(labels2) all_count = Counter(labels1 + labels2) first_count = Counter(labels1) second_count = Counter(labels2) gained_meaning = False lost_meaning = False all = 0 meaning_gain_loss = 0 for label, c in all_count.items(): all += c if c >= threshold: if label not in first_count or first_count[label] <= 2: gained_meaning=True meaning_gain_loss += c if label not in second_count or second_count[label] <= 2: lost_meaning=True meaning_gain_loss += c return str(gained_meaning) + '/' + str(lost_meaning), meaning_gain_loss/all def compute_divergence_across_many_periods(embeddings, labels, splits, corpus_slices, threshold, method): all_clusters = [] all_embeddings = [] clusters_dict = {} for split_num, split in enumerate(splits): if split_num > 0: clusters = labels[splits[split_num-1]:split] clusters_dict[corpus_slices[split_num - 1]] = clusters all_clusters.append(clusters) ts_embeds = embeddings[splits[split_num - 1]:split] all_embeddings.append(ts_embeds) all_measures = [] all_meanings = [] for i in range(len(all_clusters)): if i < len(all_clusters) -1: try: jsd, wass = compute_divergence_from_cluster_labels(all_embeddings[i],all_embeddings[i+1], all_clusters[i],all_clusters[i+1], threshold) except: jsd, wass = 0, 0 meaning, meaning_score = detect_meaning_gain_and_loss(all_clusters[i],all_clusters[i+1], threshold) all_meanings.append(meaning) if method == 'WD': measure = wass else: measure = jsd all_measures.append(measure) try: entire_jsd, entire_wass = compute_divergence_from_cluster_labels(all_embeddings[0],all_embeddings[-1], all_clusters[0],all_clusters[-1], threshold) except: entire_jsd, entire_wass = 0, 0 meaning, meaning_score = detect_meaning_gain_and_loss(all_clusters[0],all_clusters[-1], threshold) all_meanings.append(meaning) avg_measure = sum(all_measures)/len(all_measures) try: measure = entire_wass except: measure = 0 all_measures.extend([measure, avg_measure]) all_measures = [float("{:.6f}".format(score)) for score in all_measures] return all_measures, all_meanings, clusters_dict if __name__ == '__main__': parser = argparse.ArgumentParser(description='Measure semantic shift') parser.add_argument("--method", default='WD', const='all', nargs='?', help="A method for calculating distance", choices=['WD', 'JSD']) parser.add_argument("--corpus_slices", default='1960;1990', type=str, help="Time slices names separated by ';'.") parser.add_argument("--get_additional_info", action="store_true", help='Whether the cluster labels and sentences, required for interpretation, are saved or not.') parser.add_argument('--results_dir_path', type=str, default='results_coha', help='Path to the folder to save the results.') parser.add_argument('--embeddings_path', type=str, default='embeddings/coha_fine_tuned_scalable.pickle', help='Path to the embeddings pickle file.') parser.add_argument('--define_words_to_interpret', type=str, default='', help='Define a set of words separated by ";" for interpretation if you do not wish to save data for all words.') parser.add_argument('--random_state', type=int, default=123, help='Choose a random state for reproducibility of clustering.') parser.add_argument('--cluster_size_threshold', type=int, default=10, help='Clusters smaller than a threshold will be merged or deleted.') args = parser.parse_args() random_state = args.random_state threshold = args.cluster_size_threshold get_additional_info = args.get_additional_info print(args.embeddings_path) embeddings_file = args.embeddings_path corpus_slices = args.corpus_slices.split(';') print("Corpus slices:", corpus_slices) methods = ['WD', 'JSD'] if args.method not in methods: print("Method not valid, valid choices are: ", ", ".join(methods)) sys.exit() print("Loading ", embeddings_file) try: bert_embeddings, count2sents = pickle.load(open(embeddings_file, 'rb')) except: bert_embeddings = pickle.load(open(embeddings_file, 'rb')) count2sents = None if len(args.define_words_to_interpret) > 0: target_words = args.define_words_to_interpret.split(';') else: target_words = list(bert_embeddings.keys()) if get_additional_info and len(target_words) > 100: print('Define a list of words to interpret with less than 100 words or set "get_additional_info" flag to False') sys.exit() measure_vec = [] cosine_dist_vec = [] sentence_dict = {} aff_prop_labels_dict = {} aff_prop_centroids_dict = {} kmeans_5_labels_dict = {} kmeans_5_centroids_dict = {} kmeans_7_labels_dict = {} kmeans_7_centroids_dict = {} aff_prop_pref = -430 print("Clustering BERT embeddings") print("Len target words: ", len(target_words)) results = [] print("Words in embeds: ", bert_embeddings.keys()) for i, word in enumerate(target_words): print("\n=======", i + 1, "- word:", word.upper(), "=======") if word not in bert_embeddings: continue emb = bert_embeddings[word] if i == 0: print("Time periods in embeds: ", emb.keys()) all_embeddings = [] all_sentences = {} splits = [0] all_slices_present = True all_freqs = [] cs_counts = [] for cs in corpus_slices: cs_embeddings = [] cs_sentences = [] count_all = 0 text_seen = set() if cs not in emb: all_slices_present = False print('Word missing in slice: ', cs) continue counts = [x[1] for x in emb[cs]] cs_counts.append(sum(counts)) all_freqs.append(sum(counts)) cs_text = cs + '_text' print("Slice: ", cs) print("Num embeds: ", len(emb[cs])) num_sent_codes = 0 for idx in range(len(emb[cs])): #get summed embedding and its count, devide embedding by count try: e, count_emb = emb[cs][idx] e = e/count_emb except: e = emb[cs][idx] sents = set() #print("Num sentences: ", len(sent_codes)) if count2sents is not None: sent_codes = emb[cs_text][idx] num_sent_codes += len(sent_codes) for sent in sent_codes: if sent in count2sents[cs]: text = count2sents[cs][sent] sents.add(text) #print(text) cs_embeddings.append(e) cs_sentences.append(" ".join(list(sents))) all_embeddings.append(np.array(cs_embeddings)) all_sentences[cs] = cs_sentences splits.append(splits[-1] + len(cs_embeddings)) print("Num all sents: ", num_sent_codes) print("Num words in corpus slice: ", cs_counts) embeddings_concat = np.concatenate(all_embeddings, axis=0) #we can not use kmeans7 if there are less than 7 examples if embeddings_concat.shape[0] < 7 or not all_slices_present: continue else: aff_prop_labels, aff_prop_centroids = cluster_word_embeddings_aff_prop(embeddings_concat) aff_prop_labels = combine_clusters(aff_prop_labels, embeddings_concat, threshold=threshold, remove=[]) all_aff_prop_measures, all_meanings, clustered_aff_prop_labels = compute_divergence_across_many_periods(embeddings_concat, aff_prop_labels, splits, corpus_slices, threshold, args.method) kmeans_5_labels, kmeans_5_centroids = cluster_word_embeddings_k_means(embeddings_concat, 5, random_state) kmeans_5_labels = combine_clusters(kmeans_5_labels, embeddings_concat, threshold=threshold, remove=[]) all_kmeans5_measures, all_meanings, clustered_kmeans_5_labels = compute_divergence_across_many_periods(embeddings_concat, kmeans_5_labels, splits, corpus_slices, threshold, args.method) kmeans_7_labels, kmeans_7_centroids = cluster_word_embeddings_k_means(embeddings_concat, 7, random_state) kmeans_7_labels = combine_clusters(kmeans_7_labels, embeddings_concat, threshold=threshold, remove=[]) all_kmeans7_measures, all_meanings, clustered_kmeans_7_labels = compute_divergence_across_many_periods(embeddings_concat, kmeans_7_labels, splits, corpus_slices, threshold, args.method) all_freqs = all_freqs + [sum(all_freqs)] + [sum(all_freqs)/len(all_freqs)] word_results = [word] + all_aff_prop_measures + all_kmeans5_measures + all_kmeans7_measures + all_freqs + all_meanings print("Results:", word_results) results.append(word_results) #add results to dataframe for saving if get_additional_info: sentence_dict[word] = all_sentences aff_prop_labels_dict[word] = clustered_aff_prop_labels aff_prop_centroids_dict[word] = aff_prop_centroids kmeans_5_labels_dict[word] = clustered_kmeans_5_labels kmeans_5_centroids_dict[word] = kmeans_5_centroids kmeans_7_labels_dict[word] = clustered_kmeans_7_labels kmeans_7_centroids_dict[word] = kmeans_7_centroids # add results to dataframe for saving columns = ['word'] methods = ['AP', 'K5', 'K7', 'FREQ', 'MEANING GAIN/LOSS'] for method in methods: for num_slice, cs in enumerate(corpus_slices): if method == 'FREQ': columns.append(method + ' ' + cs) else: if num_slice < len(corpus_slices) - 1: columns.append(method + ' ' + cs + '-' + corpus_slices[num_slice + 1]) columns.append(method + ' All') if method != 'MEANING GAIN/LOSS': columns.append(method + ' Avg') if not os.path.exists(args.results_dir_path): os.makedirs(args.results_dir_path) csv_file = os.path.join(args.results_dir_path, "word_ranking_results_" + args.method + ".csv") # save results to CSV results_df =
pd.DataFrame(results, columns=columns)
pandas.DataFrame
import datetime as dt import numpy as np import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal import pytest from solarforecastarbiter.datamodel import Observation from solarforecastarbiter.validation import tasks, validator from solarforecastarbiter.validation.quality_mapping import ( LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING, DAILY_VALIDATION_FLAG) @pytest.fixture() def make_observation(single_site): def f(variable): return Observation( name='test', variable=variable, interval_value_type='mean', interval_length=pd.Timedelta('1hr'), interval_label='beginning', site=single_site, uncertainty=0.1, observation_id='OBSID', provider='Organization 1', extra_parameters='') return f @pytest.fixture() def default_index(single_site): return [pd.Timestamp('2019-01-01T08:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T09:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T10:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T11:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T13:00:00', tz=single_site.timezone)] @pytest.fixture() def daily_index(single_site): out = pd.date_range(start='2019-01-01T08:00:00', end='2019-01-01T19:00:00', freq='1h', tz=single_site.timezone) return out.append( pd.Index([pd.Timestamp('2019-01-02T09:00:00', tz=single_site.timezone)])) def test_validate_ghi(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ghi_limits_QCRad', 'check_ghi_clearsky', 'detect_clearsky_ghi']] obs = make_observation('ghi') data = pd.Series([10, 1000, -100, 500, 300], index=default_index) flags = tasks.validate_ghi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 1, 0, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_validate_mostly_clear(mocker, make_observation): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ghi_limits_QCRad', 'check_ghi_clearsky', 'detect_clearsky_ghi']] obs = make_observation('ghi').replace(interval_length=pd.Timedelta('5min')) index = pd.date_range(start='2019-04-01T11:00', freq='5min', tz=obs.site.timezone, periods=11) data = pd.Series([742, 749, 756, 763, 769, 774, 779, 784, 789, 793, 700], index=index) flags = tasks.validate_ghi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'], pd.Series([1] * 10 + [0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_apply_immediate_validation( mocker, make_observation, default_index): obs = make_observation('ghi') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) val = tasks.apply_immediate_validation(obs, data) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] ] assert_frame_equal(val, out) def test_apply_immediate_validation_already_validated( mocker, make_observation, default_index): obs = make_observation('ghi') data = pd.DataFrame( [(0, 18), (100, 18), (200, 18), (-1, 19), (1500, 18)], index=default_index, columns=['value', 'quality_flag']) val = tasks.apply_immediate_validation(obs, data) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] ] assert_frame_equal(val, out) @pytest.mark.parametrize('var', ['air_temperature', 'wind_speed', 'dni', 'dhi', 'poa_global', 'relative_humidity']) def test_apply_immediate_validation_other( mocker, make_observation, default_index, var): mock = mocker.MagicMock() mocker.patch.dict( 'solarforecastarbiter.validation.tasks.IMMEDIATE_VALIDATION_FUNCS', {var: mock}) obs = make_observation(var) data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) tasks.apply_immediate_validation(obs, data) assert mock.called @pytest.mark.parametrize('var', ['availability', 'curtailment', 'event', 'net_load']) def test_apply_immediate_validation_defaults( mocker, make_observation, default_index, var): mock = mocker.spy(tasks, 'validate_defaults') obs = make_observation(var) data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) tasks.apply_immediate_validation(obs, data) assert mock.called def test_fetch_and_validate_observation_ghi(mocker, make_observation, default_index): obs = make_observation('ghi') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] ] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_fetch_and_validate_observation_ghi_nones( mocker, make_observation, default_index): obs = make_observation('ghi') data = pd.DataFrame( [(None, 1)] * 5, index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() base = ( DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | LATEST_VERSION_FLAG ) out['quality_flag'] = [ base | DESCRIPTION_MASK_MAPPING['NIGHTTIME'], base, base, base, base | DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] ] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_fetch_and_validate_observation_not_listed(mocker, make_observation, default_index): obs = make_observation('curtailment') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, LATEST_VERSION_FLAG, LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_dni(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_dni_limits_QCRad']] obs = make_observation('dni') data = pd.Series([10, 1000, -100, 500, 500], index=default_index) flags = tasks.validate_dni(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_dni(mocker, make_observation, default_index): obs = make_observation('dni') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_dhi(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_dhi_limits_QCRad']] obs = make_observation('dhi') data = pd.Series([10, 1000, -100, 200, 200], index=default_index) flags = tasks.validate_dhi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_dhi(mocker, make_observation, default_index): obs = make_observation('dhi') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_poa_global(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_poa_clearsky']] obs = make_observation('poa_global') data = pd.Series([10, 1000, -400, 300, 300], index=default_index) flags = tasks.validate_poa_global(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_poa_global(mocker, make_observation, default_index): obs = make_observation('poa_global') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED']] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_air_temp(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_temperature_limits']] obs = make_observation('air_temperature') data = pd.Series([10, 1000, -400, 30, 20], index=default_index) flags = tasks.validate_air_temperature(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_air_temperature( mocker, make_observation, default_index): obs = make_observation('air_temperature') data = pd.DataFrame( [(0, 0), (200, 0), (20, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_wind_speed(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_wind_limits']] obs = make_observation('wind_speed') data = pd.Series([10, 1000, -400, 3, 20], index=default_index) flags = tasks.validate_wind_speed(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_wind_speed( mocker, make_observation, default_index): obs = make_observation('wind_speed') data = pd.DataFrame( [(0, 0), (200, 0), (15, 0), (1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_relative_humidity(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_rh_limits']] obs = make_observation('relative_humidity') data = pd.Series([10, 101, -400, 60, 20], index=default_index) flags = tasks.validate_relative_humidity(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_relative_humidity( mocker, make_observation, default_index): obs = make_observation('relative_humidity') data = pd.DataFrame( [(0, 0), (200, 0), (15, 0), (40, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_ac_power(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ac_power_limits']] obs = make_observation('ac_power') data = pd.Series([0, 1, -1, 0.001, 0.001], index=default_index) flags = tasks.validate_ac_power(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_ac_power(mocker, make_observation, default_index): obs = make_observation('ac_power') data = pd.DataFrame( [(0, 0), (1, 0), (-1, 0), (0.001, 1), (0.001, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG ] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_dc_power(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_dc_power_limits']] obs = make_observation('dc_power') data = pd.Series([0, 1, -1, 0.001, 0.001], index=default_index) flags = tasks.validate_dc_power(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_dc_power(mocker, make_observation, default_index): obs = make_observation('dc_power') data = pd.DataFrame( [(0, 0), (1, 0), (-1, 0), (0.001, 1), (0.001, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG ] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_daily_ghi(mocker, make_observation, daily_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ghi_limits_QCRad', 'check_ghi_clearsky', 'detect_clearsky_ghi', 'detect_stale_values', 'detect_interpolation']] obs = make_observation('ghi') data = pd.Series( # 8 9 10 11 12 13 14 15 16 17 18 19 23 [10, 1000, -100, 500, 300, 300, 300, 300, 100, 0, 100, 0, 0], index=daily_index) flags = tasks.validate_daily_ghi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['STALE VALUES'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'], ) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_ghi_daily(mocker, make_observation, daily_index): obs = make_observation('ghi') data = pd.DataFrame( [(10, 0), (1000, 0), (-100, 0), (500, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) BASE_FLAG = LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | BASE_FLAG ] assert post_mock.called posted_df = pd.concat([cal[0][1] for cal in post_mock.call_args_list]) assert_frame_equal(posted_df, out) def test_fetch_and_validate_observation_ghi_zeros(mocker, make_observation, daily_index): obs = make_observation('ghi') data = pd.DataFrame( [(0, 0)] * 13, index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) base = ( DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG ) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG, base, base, base, base, base, base, base, base | DESCRIPTION_MASK_MAPPING['NIGHTTIME'], base | DESCRIPTION_MASK_MAPPING['NIGHTTIME'], base | DESCRIPTION_MASK_MAPPING['NIGHTTIME'], base | DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] ] assert post_mock.called posted_df = pd.concat([cal[0][1] for cal in post_mock.call_args_list]) assert_frame_equal(posted_df, out) def test_validate_daily_dc_power(mocker, make_observation, daily_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'detect_stale_values', 'detect_interpolation']] obs = make_observation('dc_power') data = pd.Series( # 8 9 10 11 12 13 14 15 16 17 18 19 23 [0, 1000, -100, 500, 300, 300, 300, 300, 100, 0, 100, 0, 0], index=daily_index) flags = tasks.validate_daily_dc_power(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['STALE VALUES'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'], ) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_dc_power_daily( mocker, make_observation, daily_index): obs = make_observation('dc_power') data = pd.DataFrame( [(10, 0), (1000, 0), (-100, 0), (500, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) BASE_FLAG = LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | BASE_FLAG ] assert post_mock.called posted_df = pd.concat([cal[0][1] for cal in post_mock.call_args_list]) assert_frame_equal(posted_df, out) def test_validate_daily_ac_power(mocker, make_observation, daily_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'detect_stale_values', 'detect_interpolation', 'detect_clipping']] obs = make_observation('ac_power') data = pd.Series( # 8 9 10 11 12 13 14 15 16 17 18 19 23 [0, 100, -100, 100, 300, 300, 300, 300, 100, 0, 100, 0, 0], index=daily_index) flags = tasks.validate_daily_ac_power(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['STALE VALUES'], pd.Series([0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLIPPED VALUES'] ) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_ac_power_daily( mocker, make_observation, daily_index): obs = make_observation('ac_power') data = pd.DataFrame( [(10, 0), (100, 0), (-100, 0), (100, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) BASE_FLAG = LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLIPPED VALUES'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLIPPED VALUES'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | BASE_FLAG ] assert post_mock.called posted_df = pd.concat([cal[0][1] for cal in post_mock.call_args_list]) assert_frame_equal(posted_df, out) @pytest.mark.parametrize('var', ['air_temperature', 'wind_speed', 'dni', 'dhi', 'poa_global', 'relative_humidity', 'net_load', ]) def test_fetch_and_validate_observation_other(var, mocker, make_observation, daily_index): obs = make_observation(var) data = pd.DataFrame( [(0, 0), (100, 0), (-100, 0), (100, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') validated =
pd.Series(2, index=daily_index)
pandas.Series
from py4web import action from py4web import response #index is used without html as I dont need html code @action("index") def index(): return "Hello World" @action("mpl_barchart") def mpl_barchart(): # from py4web import response from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt import numpy as np import io from py4web import response response.headers['Content-Type']='image/png' np.random.seed(19680801) plt.rcdefaults() fig, ax = plt.subplots() ## Example data people = ('Tom', 'Dick', 'Harry', 'Slim', 'Jim') y_pos = np.arange(len(people)) performance = 3 + 10 * np.random.rand(len(people)) error = np.random.rand(len(people)) ax.barh(y_pos, performance, xerr=error, align='center') ax.set_yticks(y_pos) ax.set_yticklabels(people) ax.invert_yaxis() # labels read top-to-bottom ax.set_xlabel('Performance') ax.set_title('How fast do you want to go today?') #plt.show() s = io.BytesIO() canvas=FigureCanvas(fig) canvas.print_png(s) return s.getvalue() @action("mpl_sinusSubPlots") def mpl_sinusSubPlots(): from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt import numpy as np import io # from py4web import response #needs to be imported, can be done outside response.headers['Content-Type']='image/png' def f(t): s1 = np.cos(2*np.pi*t) e1 = np.exp(-t) return s1 * e1 t1 = np.arange(0.0, 5.0, 0.1) t2 = np.arange(0.0, 5.0, 0.02) t3 = np.arange(0.0, 2.0, 0.01) fig, axs = plt.subplots(3, 1, constrained_layout=True) #3 defines the number of plots, prereserved in an array fig.suptitle('This is a somewhat long figure title', fontsize=16) axs[0].plot(t3, np.cos(2*np.pi*t3), '--') axs[0].set_title('subplot 1') axs[0].set_xlabel('time (s)') axs[0].set_ylabel('Undamped') axs[1].plot(t3, np.cos(1*np.pi*t3), '--') axs[1].set_title('subplot 2') axs[1].set_xlabel('time (s)') axs[1].set_ylabel('Undamped') axs[2].plot(t1, f(t1), 'o', t2, f(t2), '-') axs[2].set_title('subplot 3') axs[2].set_xlabel('distance (m)') axs[2].set_ylabel('Damped oscillation') #plt.show() s1 = io.BytesIO() canvas=FigureCanvas(fig) canvas.print_png(s1) return s1.getvalue() @action("mpl_linesHaV") def mpl_linesHaV(): from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt import numpy as np import numpy.random as rnd import io # from py4web import response #needs to be imported, can be done outside response.headers['Content-Type']='image/png' def f(t): s1 = np.sin(2 * np.pi * t) e1 = np.exp(-t) return np.absolute((s1 * e1)) + .05 t = np.arange(0.0, 5.0, 0.1) s = f(t) nse = rnd.normal(0.0, 0.3, t.shape) * s fig = plt.figure(figsize=(12, 6)) vax = fig.add_subplot(121) hax = fig.add_subplot(122) vax.plot(t, s + nse, '^') vax.vlines(t, [0], s) vax.set_xlabel('time (s)') vax.set_title('Vertical lines demo') hax.plot(s + nse, t, '^') hax.hlines(t, [0], s, lw=2) hax.set_xlabel('time (s)') hax.set_title('Horizontal lines demo') #plt.show() s = io.BytesIO() canvas=FigureCanvas(fig) canvas.print_png(s) return s.getvalue() @action("mpl_violinplot") def mpl_violinplot(): from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt import numpy as np import io # from py4web import response #needs to be imported, can be done outside response.headers['Content-Type']='image/png' np.random.seed(19680801) fs = 10 # fontsize pos = [1, 2, 4, 5, 7, 8] data = [np.random.normal(0, std, size=100) for std in pos] fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(6, 6)) axes[0, 0].violinplot(data, pos, points=20, widths=0.3, showmeans=True, showextrema=True, showmedians=True) axes[0, 0].set_title('Custom violinplot 1', fontsize=fs) axes[0, 1].violinplot(data, pos, points=40, widths=0.5, showmeans=True, showextrema=True, showmedians=True, bw_method='silverman') axes[0, 1].set_title('Custom violinplot 2', fontsize=fs) axes[0, 2].violinplot(data, pos, points=60, widths=0.7, showmeans=True, showextrema=True, showmedians=True, bw_method=0.5) axes[0, 2].set_title('Custom violinplot 3', fontsize=fs) axes[1, 0].violinplot(data, pos, points=80, vert=False, widths=0.7, showmeans=True, showextrema=True, showmedians=True) axes[1, 0].set_title('Custom violinplot 4', fontsize=fs) axes[1, 1].violinplot(data, pos, points=100, vert=False, widths=0.9, showmeans=True, showextrema=True, showmedians=True, bw_method='silverman') axes[1, 1].set_title('Custom violinplot 5', fontsize=fs) axes[1, 2].violinplot(data, pos, points=200, vert=False, widths=1.1, showmeans=True, showextrema=True, showmedians=True, bw_method=0.5) axes[1, 2].set_title('Custom violinplot 6', fontsize=fs) for ax in axes.flat: ax.set_yticklabels([]) fig.suptitle("Violin Plotting Examples") fig.subplots_adjust(hspace=0.4) #plt.show() s = io.BytesIO() canvas=FigureCanvas(fig) canvas.print_png(s) return s.getvalue() @action("mpl_plot") def mpl_plot(title='title',xlab='x',ylab='y',mode='plot', data={'xxx':[(0,0),(1,1),(1,2),(3,3)], 'yyy':[(0,0,.2,.2),(2,1,0.2,0.2),(2,2,0.2,0.2), (3,3,0.2,0.3)]}): from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas import io response.headers['Content-Type']='image/png' fig=Figure() fig.set_facecolor('white') ax=fig.add_subplot(111) if title: ax.set_title(title) if xlab: ax.set_xlabel(xlab) if ylab: ax.set_ylabel(ylab) legend=[] keys=sorted(data) for key in keys: stream = data[key] (x,y)=([],[]) for point in stream: x.append(point[0]) y.append(point[1]) if mode=='plot': ell=ax.plot(x, y) legend.append((ell,key)) if mode=='hist': ell=ax.hist(y,20) if legend: ax.legend([[x for (x,y) in legend], [y for (x,y) in legend]], 'upper right', shadow=True) canvas=FigureCanvas(fig) stream=io.BytesIO() #stream=cStringIO.StringIO() canvas.print_png(stream) return stream.getvalue() @action("mpl_numpytst") def mpl_numpytst(): response.headers['Content-Type']='image/png' from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt import numpy as np import io x = [1, 2, 3, 4, 5] y = [1, 4, 9, 16, 25] fig=Figure() fig = plt.figure() fig.add_subplot(111) p1 = plt.scatter(x, y) s = io.BytesIO() canvas=FigureCanvas(fig) canvas.print_png(s) return s.getvalue() @action("mpl_line_json") def mpl_line_json(): import pandas as pd from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt import numpy as np import io response.headers['Content-Type']='image/png' d = {"sell": [ { "Rate": 0.425, "Quantity": 0.25 }, { "Rate": 0.6425, "Quantity": 0.40 }, { "Rate": 0.7025, "Quantity": 0.8 }, { "Rate": 0.93, "Quantity": 0.59 } ]} df =
pd.DataFrame(d['sell'])
pandas.DataFrame
import numpy as np import pandas as pd import argparse import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger() import math import copy import sklearn import sklearn.cluster import random from sklearn.cluster import KMeans from sklearn.mixture import GaussianMixture from sklearn.metrics import silhouette_score, davies_bouldin_score,v_measure_score from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import AgglomerativeClustering from sklearn.decomposition import NMF from sklearn.decomposition import PCA import multiprocessing as mp from functools import partial from scipy.spatial import distance import os from scipy.stats import norm from scipy.stats import multivariate_normal from scipy.stats import ttest_ind from scipy.stats import ks_2samp from hmmlearn import hmm from scipy.io import mmread from scipy.sparse import csr_matrix import multiprocessing import warnings os.environ['NUMEXPR_MAX_THREADS'] = '50' def jointLikelihoodEnergyLabels_helper(label,data,states,norms): e = 1e-50 r0 = [x for x in range(data.shape[0]) if states[x,label]==0] l0 = np.sum(-np.log(np.asarray(norms[0].pdf(data[r0,:])+e)),axis=0) r1 = [x for x in range(data.shape[0]) if states[x,label]==1] l1 = np.sum(-np.log(np.asarray(norms[1].pdf(data[r1,:])+e)),axis=0) r2 = [x for x in range(data.shape[0]) if states[x,label]==2] l2 = np.sum(-np.log(np.asarray(norms[2].pdf(data[r2,:])+e)),axis=0) return l0 + l1 + l2 def init_helper(i,data, n_clusters,normal,diff,labels,c): l = [] for k in range(n_clusters): pval = ks_2samp(data[i,labels==k],normal[i,:])[1] mn = np.mean(normal[i,:]) if c[i,k]< mn and pval <= diff: l.append(0) elif c[i,k]> mn and pval <= diff: l.append(2) else: l.append(1) return np.asarray(l).astype(int) def HMM_helper(inds, data, means, sigmas ,t, num_states, model,normal): ind_bin,ind_spot,k = inds data = data[np.asarray(ind_bin)[:, None],np.asarray(ind_spot)] data2 = np.mean(data,axis=1) X = np.asarray([[x] for x in data2]) C = np.asarray(model.predict(X)) score = model.score(X) #bootstrap b=3 for i in range(b): inds = random.sample(range(data.shape[1]),int(data.shape[1]*.8+1)) data2 = np.mean(data[:,inds],axis=1) X = np.asarray([[x] for x in data2]) C2 = np.asarray(model.predict(X)) for j,c in enumerate(C2): if C[j] != c: C[j] = 1 return [C,score] class STARCH: """ This is a class for Hidden Markov Random Field for calling Copy Number Aberrations using spatial relationships and gene adjacencies along chromosomes """ def __init__(self,data,normal_spots=[],labels=[],beta_spots=2,n_clusters=3,num_states=3,gene_mapping_file_name='hgTables_hg19.txt',nthreads=0): """ The constructor for HMFR_CNA Parameters: data (pandas data frame): gene x spot (or cell). colnames = 2d or 3d indices (eg. 5x18, 5x18x2 if multiple layers). rownames = HUGO gene name """ if nthreads == 0: nthreads = int(multiprocessing.cpu_count() / 2 + 1) logger.info('Running with ' + str(nthreads) + ' threads') logger.info("initializing HMRF...") self.beta_spots = beta_spots self.gene_mapping_file_name = gene_mapping_file_name self.n_clusters = int(n_clusters) dat,data = self.preload(data) logger.info(str(self.rows[0:20])) logger.info(str(len(self.rows)) + ' ' + str(len(self.columns)) + ' ' + str(data.shape)) if isinstance(normal_spots, str): self.read_normal_spots(normal_spots) if normal_spots == []: self.get_normal_spots(data) else: self.normal_spots = np.asarray([int(x) for x in normal_spots]) logger.info('normal spots ' + str(len(self.normal_spots))) dat = self.preprocess_data(data,dat) logger.info('done preprocessing...') self.data = self.data * 1000 self.bins = self.data.shape[0] self.spots = self.data.shape[1] self.tumor_spots = np.asarray([int(x) for x in range(self.spots) if int(x) not in self.normal_spots]) self.normal = self.data[:,self.normal_spots] self.data = self.data[:,self.tumor_spots] self.bins = self.data.shape[0] self.spots = self.data.shape[1] self.num_states = int(num_states) self.normal_state = int((self.num_states-1)/2) logger.info('getting spot network...') self.get_spot_network(self.data,self.columns[self.tumor_spots]) if isinstance(labels, str): self.get_labels(labels) if len(labels)>0: self.labels = labels else: logger.info('initializing labels...') self.initialize_labels() logger.debug('starting labels: '+str(self.labels)) np.fill_diagonal(self.spot_network, 0) logger.info('getting params...') for d in range(10 ,20,1): try: self.init_params(d/10,nthreads) break except: continue self.states = np.zeros((self.bins,self.n_clusters)) logger.info('starting means: '+str(self.means)) logger.info('starting cov: '+str(self.sigmas)) logger.info(str(len(self.rows)) + ' ' + str(len(self.columns)) + ' ' + str(self.data.shape)) def to_transpose(self,sep,data): dat = pd.read_csv(data,sep=sep,header=0,index_col=0) if 'x' in dat.index.values[0] and 'x' in dat.index.values[1] and 'x' in dat.index.values[2]: return True return False def which_sep(self,data): dat = np.asarray(pd.read_csv(data,sep='\t',header=0,index_col=0)).size dat2 = np.asarray(pd.read_csv(data,sep=',',header=0,index_col=0)).size dat3 = np.asarray(pd.read_csv(data,sep=' ',header=0,index_col=0)).size if dat > dat2 and dat > dat3: return '\t' elif dat2 > dat and dat2 > dat3: return ',' else: return ' ' def get_bin_size(self,data,chroms): for bin_size in range(20,100): test = self.bin_data2(data[:,self.normal_spots],chroms,bin_size=bin_size,step_size=1) test = test[test!=0] logger.debug(str(bin_size)+' mean expression binned ' + str(np.mean(test))) logger.debug(str(bin_size)+' median expression binned ' + str(np.median(test))) if np.median(test) >= 10: break logger.info('selected bin size: ' + str(bin_size)) return bin_size def preload(self,l): if isinstance(l,list): # list of multiple datasets offset = 0 dats = [] datas = [] for data in l: dat,data = self.load(data) datas.append(data) dats.append(dat) conserved_genes = [] inds = [] for dat in dats: inds.append([]) for gene in dats[0].index.values: inall = True for dat in dats: if gene not in dat.index.values: inall = False if inall: conserved_genes.append(gene) for i,dat in enumerate(dats): ind = inds[i] ind.append(np.where(dat.index.values == gene)[0][0]) inds[i] = ind conserved_genes = np.asarray(conserved_genes) logger.info(str(conserved_genes)) newdatas = [] newdats = [] for i in range(len(datas)): data = datas[i] dat = dats[i] ind = np.asarray(inds[i]) newdatas.append(data[ind,:]) newdats.append(dat.iloc[ind,:]) for dat in newdats: spots = np.asarray([[float(y) for y in x.split('x')] for x in dat.columns.values]) for spot in spots: spot[0] += offset spots = ['x'.join([str(y) for y in x]) for x in spots] dat.columns = spots offset += 100 data = np.concatenate(newdatas,axis=1) dat = pd.concat(newdats,axis=1) self.rows = dat.index.values self.columns = dat.columns.values else: dat,data = self.load(l) return dat,data def load(self,data): try: if isinstance(data, str) and ('.csv' in data or '.tsv' in data or '.txt' in data): logger.info('Reading data...') sep = self.which_sep(data) if self.to_transpose(sep,data): dat = pd.read_csv(data,sep=sep,header=0,index_col=0).T else: dat = pd.read_csv(data,sep=sep,header=0,index_col=0) elif isinstance(data,str): logger.info('Importing 10X data from directory. Directory must contain barcodes.tsv, features.tsv, matrix.mtx, tissue_positions_list.csv') barcodes = np.asarray(pd.read_csv(data + '/barcodes.tsv',header=None)).flatten() genes = np.asarray(pd.read_csv(data + '/features.tsv',sep='\t',header=None)) genes = genes[:,1] coords = np.asarray(pd.read_csv(data + '/tissue_positions_list.csv',sep=',',header=None)) d = dict() for row in coords: d[row[0]] = str(row[2]) + 'x' + str(row[3]) inds = [] coords2 = [] for i,barcode in enumerate(barcodes): if barcode in d.keys(): inds.append(i) coords2.append(d[barcode]) matrix = mmread(data + '/matrix.mtx').toarray() logger.info(str(barcodes) + ' ' + str(barcodes.shape)) logger.info(str(genes) + ' ' + str(genes.shape)) logger.info(str(coords) + ' ' + str(coords.shape)) logger.info(str(matrix.shape)) matrix = matrix[:,inds] genes,inds2 = np.unique(genes, return_index=True) matrix = matrix[inds2,:] dat = pd.DataFrame(matrix,index = genes,columns = coords2) logger.info(str(dat)) else: dat = pd.DataFrame(data) except: raise Exception("Incorrect input format") logger.info('coords ' + str(len(dat.columns.values))) logger.info('genes ' + str(len(dat.index.values))) data = dat.values logger.info(str(data.shape)) self.rows = dat.index.values self.columns = dat.columns.values return(dat,data) def preprocess_data(self,data,dat): logger.info('data shape ' + str(data.shape)) data,inds = self.filter_genes(data,min_cells=int(data.shape[1]/20)) logger.info('Filtered genes, now have ' + str(data.shape[0]) + ' genes') data[data>np.mean(data)+np.std(data)*2]=np.mean(data)+np.std(data)*2 dat = dat.T[dat.index.values[inds]].T self.rows = dat.index.values self.columns = dat.columns.values logger.info('filter ' + str(len(self.rows)) + ' ' + str(len(self.columns)) + ' ' + str(data.shape)) data,chroms,pos,inds = self.order_genes_by_position(data,dat.index.values) dat = dat.T[dat.index.values[inds]].T self.rows = dat.index.values self.columns = dat.columns.values logger.info('order ' + str(len(self.rows)) + ' ' + str(len(self.columns)) + ' ' + str(data.shape)) logger.info('zero percentage ' + str((data.size - np.count_nonzero(data)) / data.size)) bin_size = self.get_bin_size(data,chroms) data = np.log(data+1) data = self.library_size_normalize(data) #2 data = data-np.mean(data[:,self.normal_spots],axis=1).reshape(data.shape[0],1) data = self.threshold_data(data,max_value=3.0) data = self.bin_data(data,chroms,bin_size=bin_size,step_size=1) data = self.center_at_zero(data) #7 data = data-np.mean(data[:,self.normal_spots],axis=1).reshape(data.shape[0],1) data = np.exp(data)-1 self.data = data self.pos = np.asarray([str(x) for x in pos]) logger.info('preprocess ' + str(len(self.rows)) + ' ' + str(len(self.columns)) + ' ' + str(data.shape)) return(dat) def read_normal_spots(self,normal_spots): normal_spots = pd.read_csv(data,sep=',') self.normal_spots = np.asarray([int(x) or x in np.asarray(normal_spots)]) def get_normal_spots(self,data): data,k = self.filter_genes(data,min_cells=int(data.shape[1]/20)) # 1 data = self.library_size_normalize(data) #2 data = np.log(data+1) data = self.threshold_data(data,max_value=3.0) pca = PCA(n_components=1).fit_transform(data.T) km = KMeans(n_clusters=2).fit(pca) clusters = np.asarray(km.predict(pca)) if np.mean(data[:,clusters==0]) < np.mean(data[:,clusters==1]): self.normal_spots = np.asarray([x for x in range(data.shape[1])])[clusters==0] else: self.normal_spots = np.asarray([x for x in range(data.shape[1])])[clusters==1] def filter_genes(self,data,min_cells=20): keep = [] for gene in range(data.shape[0]): if np.count_nonzero(data[gene,:]) >= min_cells: keep.append(gene) return data[np.asarray(keep),:],np.asarray(keep) def library_size_normalize(self,data): m = np.median(np.sum(data,axis=0)) data = data / np.sum(data,axis=0) data = data * m return data def threshold_data(self,data,max_value=4.0): data[data> max_value] = max_value data[data< -max_value] = -max_value return data def center_at_zero(self,data): return data - np.median(data,axis=0).reshape(1,data.shape[1]) def bin_data2(self,data,chroms,bin_size,step_size): newdata = copy.deepcopy(data) i=0 c = np.asarray(list(set(chroms))) c.sort() for chrom in c: data2 = data[chroms==chrom,:] for gene in range(data2.shape[0]): start = max(0,gene-int(bin_size/2)) end = min(data2.shape[0],gene+int(bin_size/2)) r = np.asarray([x for x in range(start,end)]) mean = np.sum(data2[r,:],axis=0) newdata[i,:] = mean i += 1 return newdata def bin_data(self,data,chroms,bin_size,step_size): newdata = copy.deepcopy(data) i=0 c = np.asarray(list(set(chroms))) c.sort() for chrom in c: data2 = data[chroms==chrom,:] for gene in range(data2.shape[0]): start = max(0,gene-int(bin_size/2)) end = min(data2.shape[0],gene+int(bin_size/2)) r = np.asarray([x for x in range(start,end)]) weighting = np.asarray([x+1 for x in range(start,end)]) weighting = abs(weighting - len(weighting)/2) weighting = 1/(weighting+1) weighting = weighting / sum(weighting) #pyramidinal weighting weighting = weighting.reshape(len(r),1) mean = np.sum(data2[r,:]*weighting,axis=0) newdata[i,:] = mean i += 1 return newdata def order_genes_by_position(self,data,genes): mapping = pd.read_csv(self.gene_mapping_file_name,sep='\t') names = mapping['name2'] chroms = mapping['chrom'] starts = mapping['cdsStart'] ends = mapping['cdsEnd'] d = dict() d2 = dict() for i,gene in enumerate(names): try: if int(chroms[i][3:]) > 0: d[gene.upper()] = int(int(chroms[i][3:])*1e10 + int(starts[i])) d2[gene.upper()] = str(chroms[i][3:]) + ':' + str(starts[i]) except: None positions = [] posnames = [] for gene in genes: gene = gene.upper() if gene in d.keys(): positions.append(d[gene]) posnames.append(d2[gene]) else: positions.append(-1) posnames.append(-1) positions = np.asarray(positions) posnames = np.asarray(posnames) l = len(positions[positions==-1]) order = np.argsort(positions) order = order[l:] positions = positions[order]/1e10 posnames = posnames[order] return data[order,:],positions.astype('int'),posnames,order def get_labels(self,labels): labels = np.asarray(pd.read_csv(data,sep=',')) self.labels = labels def init_params(self,d=1.3,nthreads=1): c = np.zeros((self.data.shape[0],self.n_clusters)) for i in range(self.data.shape[0]): for k in range(self.n_clusters): c[i,k] = np.mean(self.data[i,self.labels==k]) labels = np.zeros((self.data.shape[0],self.n_clusters)) diffs = [] for i in range(0,self.data.shape[0],10): diffs.append(ks_2samp(self.normal[i,:]+np.std(self.normal[i,:])/d,self.normal[i,:])[1]) diff = np.mean(diffs) logger.info(str(diff)) pool = mp.Pool(nthreads) results = pool.map(partial(init_helper, data=self.data, n_clusters=self.n_clusters,normal=self.normal,diff=diff,labels=self.labels,c=c), [x for x in range(self.data.shape[0])]) for i in range(len(results)): labels[i,:] = results[i] labels = labels.astype(int) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) means = [np.mean(c[labels==cluster]) for cluster in range(self.num_states)] sigmas = [np.std(c[labels==cluster]) for cluster in range(self.num_states)] indices = np.argsort([x for x in means]) states = copy.deepcopy(labels) m = np.zeros((3,1)) s = np.zeros((3,1)) i=0 for index in indices: states[labels==index]=i # set states mean = means[index] sigma = sigmas[index] if np.isnan(mean) or np.isnan(sigma) or sigma < .01: raise ValueError() m[i] = [mean] s[i] = [sigma**2] i+=1 self.means = m self.sigmas = s def init_params2(self): means = [[],[],[]] sigmas = [[],[],[]] for s in range(self.num_states): d=[] for cluster in range(self.n_clusters): dat = np.asarray(list(self.data[:,self.labels==cluster])) d += list(dat[np.asarray(list(self.states[:,cluster].astype(int)==int(s)))].flatten()) means[s] = [np.mean(d)] sigmas[s] = [np.std(d)**2] logger.info(str(means)) self.means = np.asarray(means) self.sigmas = np.asarray(sigmas) def initialize_labels(self): dat=self.data km = KMeans(n_clusters=self.n_clusters).fit(dat.T) clusters = np.asarray(km.predict(dat.T)) self.labels = clusters def get_spot_network(self,data,spots,l=1): spots = np.asarray([[float(y) for y in x.split('x')] for x in spots]) spot_network = np.zeros((len(spots),len(spots))) for i in range(len(spots)): for j in range(i,len(spots)): dist = distance.euclidean(spots[i],spots[j]) spot_network[i,j] = np.exp(-dist/(l)) # exponential covariance spot_network[j,i] = spot_network[i,j] self.spot_network = spot_network def get_gene_network(self,data,genes,l=1): genes = np.asarray(genes) gene_network = np.zeros((len(genes),len(genes))) for i in range(len(genes)): for j in range(i,len(genes)): dist = j-i gene_network[i,j] = np.exp(-dist/(l)) # exponential covariance gene_network[j,i] = gene_network[i,j] return gene_network def _optimalK(self,data, maxClusters=15): X_scaled = data km_scores= [] km_silhouette = [] db_score = [] for i in range(2,maxClusters): km = KMeans(n_clusters=i).fit(X_scaled) preds = km.predict(X_scaled) silhouette = silhouette_score(X_scaled,preds) km_silhouette.append(silhouette) logger.info("Silhouette score for number of cluster(s) {}: {}".format(i,silhouette)) best_silouette = np.argmax(km_silhouette)+2 best_db = np.argmin(db_score)+2 logger.info('silhouette: ' + str(best_silouette)) return(int(best_silouette)) def HMM_estimate_states_parallel(self,t,maxiters=100,deltoamp=0,nthreads=1): n_clusters = self.n_clusters self.EnergyPriors = np.zeros((self.data.shape[0],n_clusters,self.num_states)) self.t = t chromosomes = [int(x.split(':')[0]) for x in self.pos] inds = [] n_clusters = self.n_clusters if len(set(self.labels)) != self.n_clusters: labels = copy.deepcopy(self.labels) i=0 for label in set(self.labels): labels[self.labels==label]=i i=i+1 self.labels = labels self.n_clusters = len(set(self.labels)) for chrom in set(chromosomes): for k in range(self.n_clusters): inds.append([np.asarray([i for i in range(len(chromosomes)) if chromosomes[i] == chrom]),np.asarray([i for i in range(len(self.labels)) if self.labels[i]==k]),k]) pool = mp.Pool(nthreads) results = pool.map(partial(HMM_helper, data=self.data, means = self.means, sigmas = self.sigmas,t = self.t,num_states = self.num_states,model=self.model,normal=self.normal), inds) score = 0 for i in range(len(results)): self.states[inds[i][0][:, None],inds[i][2]] = results[i][0].reshape((len(results[i][0]),1)) score += results[i][1] return score def jointLikelihoodEnergyLabels(self,norms,pool): Z = (2*math.pi)**(self.num_states/2) n_clusters = self.n_clusters likelihoods = np.zeros((self.data.shape[1],n_clusters)) results = pool.map(partial(jointLikelihoodEnergyLabels_helper, data=self.data, states=self.states,norms=norms), range(n_clusters)) for label in range(n_clusters): likelihoods[:,label] += results[label] likelihoods = likelihoods / self.data.shape[0] likelihood_energies = likelihoods return(likelihood_energies) def jointLikelihoodEnergyLabelsapprox(self,means): e = 1e-20 n_clusters = self.n_clusters likelihoods = np.zeros((self.data.shape[1],n_clusters)) for spot in range(self.spots): ml=np.inf for label in range(n_clusters): likelihood = np.sum(abs(self.data[:,spot]-means[:,label]))/self.data.shape[0] if likelihood < ml: ml = likelihood likelihoods[spot,label] = likelihood likelihoods[spot,:]-=ml likelihood_energies = likelihoods return(likelihood_energies) def MAP_estimate_labels(self,beta_spots,nthreads,maxiters=20): inds_spot = [] tmp_spot = [] n_clusters = self.n_clusters prev_labels = copy.deepcopy(self.labels) for j in range(self.spots): inds_spot.append(np.where(self.spot_network[j,:] >= .25)[0]) tmp_spot.append(self.spot_network[j,inds_spot[j]]) logger.debug(str(tmp_spot)) pool = mp.Pool(nthreads) norms = [norm(self.means[0][0],np.sqrt(self.sigmas[0][0])),norm(self.means[1][0],np.sqrt(self.sigmas[1][0])),norm(self.means[2][0],np.sqrt(self.sigmas[2][0]))] for m in range(maxiters): posteriors = 0 means = np.zeros((self.bins,n_clusters)) for label in range(n_clusters): means[:,label] = np.asarray([self.means[int(i)][0] for i in self.states[:,label]]) likelihood_energies = self.jointLikelihoodEnergyLabels(norms,pool) #likelihood_energies = self.jointLikelihoodEnergyLabelsapprox(means) for j in range(self.spots): p = [((np.sum(tmp_spot[j][self.labels[inds_spot[j]] != label]))) for label in range(n_clusters)] val = [likelihood_energies[j,label]+beta_spots*1*p[label] for label in range(n_clusters)] arg = np.argmin(val) posteriors += val[arg] self.labels[j] = arg if np.array_equal(np.asarray(prev_labels),np.asarray(self.labels)): # check for convergence break prev_labels = copy.deepcopy(self.labels) return(-posteriors) def update_params(self): c = np.zeros((self.data.shape[0],self.n_clusters)) for i in range(self.data.shape[0]): for k in range(self.n_clusters): c[i,k] = np.mean(self.data[i,self.labels==k]) means = [np.mean(c[self.states==cluster]) for cluster in range(self.num_states)] sigmas = [np.std(c[self.states==cluster]) for cluster in range(self.num_states)] indices = np.argsort([x for x in means]) m = np.zeros((3,1)) s = np.zeros((3,1)) i=0 for index in indices: self.states[self.states==index]=i # set states mean = means[index] sigma = sigmas[index] m[i] = [mean] s[i] = [sigma**2] i+=1 self.means = m self.sigmas = s logger.debug(str(self.means)) logger.debug(str(self.sigmas)) def callCNA(self,t=.00001,beta_spots=2,maxiters=20,deltoamp=0.0,nthreads=0,returnnormal=True): """ Run HMRF-EM framework to call CNA states by alternating between MAP estimate of states given current params and EM estimate of params given current states until convergence Returns: states (np array): integer CNA states (0 = del, 1 norm, 2 = amp) """ logger.info("running HMRF to call CNAs...") states = [copy.deepcopy(self.states),copy.deepcopy(self.states)] logger.debug('sum start:'+str(np.sum(states[-1]))) logger.info('beta spots: '+str(beta_spots)) if nthreads == 0: nthreads = int(multiprocessing.cpu_count() / 2 + 1) logger.info('Running with ' + str(nthreads) + ' threads') X = [] lengths = [] for i in range(self.data.shape[1]): X.append([[x] for x in self.data[:,i]]) lengths.append(len(self.data[:,i])) X = np.concatenate(X) model = hmm.GaussianHMM(n_components=self.num_states, covariance_type="diag",init_params="mc", params="",algorithm='viterbi') model.transmat_ = np.array([[1-2*t, t, t], [t, 1-2*t, t], [t, t, 1-2*t]]) model.startprob_ = np.asarray([.1,.8,.1]) model.means_ = self.means model.covars_ = self.sigmas model.fit(X,lengths) logger.info(str(model.means_)) logger.info(str(model.covars_)) logger.info(str(model.transmat_)) logger.info(str(model.startprob_)) self.model = model for i in range(maxiters): score_state = self.HMM_estimate_states_parallel(t=t,deltoamp=deltoamp,nthreads=nthreads) self.init_params2() score_label = self.MAP_estimate_labels(beta_spots=beta_spots,nthreads=nthreads,maxiters=20) states.append(copy.deepcopy(self.states)) logger.debug('sum iter:'+str(i) + ' ' + str(np.sum(states[-1]))) if np.array_equal(states[-2],states[-1]) or np.array_equal(states[-3],states[-1]): # check for convergence logger.info('states converged') break if len(states) > 3: states = states[-3:] logger.info('Posterior Energy: ' + str(score_state + score_label)) if returnnormal: labels = np.asarray([self.n_clusters for i in range(len(self.columns))]) labels[self.tumor_spots] = self.labels states = np.ones((self.states.shape[0],self.n_clusters+1)) for cluster in range(self.n_clusters): states[:,cluster] = self.states[:,cluster] self.labels = pd.DataFrame(data=labels,index=self.columns) self.states = states self.n_clusters += 1 else: self.labels = pd.DataFrame(data=self.labels,index=self.columns[self.tumor_spots]) states =
pd.DataFrame(self.states)
pandas.DataFrame
import numpy as np import pandas as pd import os import glob import click from pathlib import Path from eye_tracking.preprocessing.functions.et_preprocess import preprocess_et from eye_tracking.preprocessing.functions.detect_events import make_fixations, make_blinks, make_saccades import warnings warnings.filterwarnings("ignore") def preprocess_eye(subj_fpath): """ preprocess eye tracking data using code from https://github.com/teresa-canasbajo/bdd-driveratt/tree/master/eye_tracking/preprocessing saves out preprocessed data for events, saccades, fixations Args: subj_fpath (str): full path to top-level directory of eye-tracking """ # get all sessions ses_dirs = glob.glob(os.path.join(subj_fpath, '*ses*')) # get subj name subj = Path(subj_fpath).name # loop over sessions for ses_dir in ses_dirs: # get sess name sess = Path(ses_dir).name # get all runs run_dirs = glob.glob(os.path.join(ses_dir, '*')) # loop over runs for run_dir in run_dirs: # get run name run = Path(run_dir).name # get preprocess dir preprocess_dir = os.path.join(run_dir, 'preprocessed') # check if data have already been preprocessed if not os.path.isdir(preprocess_dir): try: data = preprocess_et(subject='', datapath=run_dir, surfaceMap=False, eventfunctions=(make_fixations, make_blinks, make_saccades)) # modify the msgs and save to disk msgs_df = pd.read_csv(os.path.join(preprocess_dir, 'pl_msgs.csv')) msgs = _modify_msgs(dataframe=msgs_df) msgs.to_csv(os.path.join(preprocess_dir, f'{subj}_{sess}_{run}_pl_msgs.csv')) # merge msgs to events and save to disk events_df = pd.read_csv(os.path.join(preprocess_dir, 'pl_events.csv')) events_msgs = _merge_msgs_events(events=events_df, msgs=msgs) events_msgs.to_csv(os.path.join(preprocess_dir, f'{subj}_{sess}_{run}_pl_msgs_events.csv')) # merge msgs to samples and save to disk samples_df = pd.read_csv(os.path.join(preprocess_dir, 'pl_samples.csv')) samples_msgs = _merge_msgs_samples(samples=samples_df, msgs=msgs) samples_msgs.to_csv(os.path.join(preprocess_dir, f'{subj}_{sess}_{run}_pl_msgs_samples.csv')) print('Preprocessing complete!') except: print('something went wrong with preprocessing ...') else: print('These data have already been preprocessed ...') def concat_runs(subj_fpath): # get all sessions ses_dirs = glob.glob(os.path.join(subj_fpath, '*ses*')) # get subj name subj = Path(subj_fpath).name df_events_all = pd.DataFrame() df_samples_all = pd.DataFrame() # loop over sessions for ses_dir in np.sort(ses_dirs): # get sess name sess = Path(ses_dir).name # get all runs run_dirs = glob.glob(os.path.join(ses_dir, '*')) # loop over runs for run_dir in np.sort(run_dirs): # get run name run = Path(run_dir).name # load preprocessed data for subj/sess try: df_events = pd.read_csv(os.path.join(subj_fpath, sess, run, 'preprocessed', f'{subj}_{sess}_{run}_pl_msgs_events.csv')) df_events['subj'] = subj df_events['sess'] = sess df_samples = pd.read_csv(os.path.join(subj_fpath, sess, run, 'preprocessed', f'{subj}_{sess}_{run}_pl_msgs_samples.csv')) df_samples['subj'] = subj df_samples['sess'] = sess # clean up df_events = _clean_up(dataframe=df_events) df_samples = _clean_up(dataframe=df_samples) # concat to dataframe df_events_all = pd.concat([df_events_all, df_events]) df_samples_all = pd.concat([df_samples_all, df_samples]) except: print(f'no preprocessed data for {subj}_{sess}_{run}') # clean up df_events_all.to_csv(os.path.join(subj_fpath, f'eyetracking_events_{subj}.csv'), index=False) df_samples_all.to_csv(os.path.join(subj_fpath, f'eyetracking_samples_{subj}.csv'), index=False) def group_data(data_dir): # get all subjs subj_dirs = glob.glob(os.path.join(data_dir, '*s*')) # loop over subjs df_events_all = pd.DataFrame() df_samples_all = pd.DataFrame() for subj_dir in subj_dirs: if os.path.isdir(subj_dir): # get subj name subj = Path(subj_dir).name # load preprocessed data for subj/sess try: df_events = pd.read_csv(os.path.join(subj_dir, f'eyetracking_events_{subj}.csv')) df_samples = pd.read_csv(os.path.join(subj_dir, f'eyetracking_samples_{subj}.csv')) # concat to dataframe df_events_all =
pd.concat([df_events_all, df_events])
pandas.concat
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7:
pd.Timestamp("2012-05-09 00:00:00")
pandas.Timestamp
import urllib.request import PyPDF2 import tempfile import re import pandas as pd import sqlite3 from sqlite3 import Error #df= pd.DataFrame(columns=['incident_time','incident_number','incident_location','nature','incident_ori']) #getting the pdf file from the page which is provided as URL def fetchIncidents(url): try: data=urllib.request.urlopen(url).read() except urllib.error.HTTPError: print("url entered is not working") return None return data def extractIncidents(data): """ Here we extract the data pulled from the website and parse it using a pdfReader. args: data : which is returned by the fetchIncidents(url) returns: Dataframe. """ df =
pd.DataFrame(columns=['incident_time', 'incident_number', 'incident_location', 'nature', 'incident_ori'])
pandas.DataFrame
import argparse, os, sys import pandas as pd from collections import defaultdict from enum import Enum from typing import List from util.util_funcs import ( MAX_NUM_COLS, MAX_NUM_ROWS, MAX_TABLE_SIZE, create_table_dict, get_evidence_docs, load_jsonl, store_json, ) from tqdm import tqdm from util.logger import get_logger DIR_PATH = os.path.abspath(os.getcwd()) FEVEROUS_PATH = DIR_PATH + "/FEVEROUS/src" sys.path.insert(0, FEVEROUS_PATH) from database.feverous_db import FeverousDB from utils.wiki_page import WikiPage logger = get_logger() WRITE_TO_FILE = True MAX_NR_CELLS = 5 # The maximum nr of cells that is retrieved from each table table_cell_evidence_dist = defaultdict(int) sent_evidence_dist = defaultdict(int) stats = defaultdict(int) evidence_doc_title_word_len_dist = defaultdict(int) table_size_dist = {"nr_rows": [], "nr_cols": [], "size": []} # Size = rows x cols max_cell_counts = {"max_cell_count": []} class Split(Enum): TRAIN = "train" DEV = "dev" def get_max_cell_count(data_point: dict): """Counts the evidence cells for each table and returns the max count for a single table Args: data_point (dict): A data sample from the FEVEROUS dataset Returns: int: The count of cell for the table with the max amount of cells in the evidence """ cell_ids = set() table_id_to_cell_count = defaultdict(int) for evidence_obj in data_point["evidence"]: for evidence_id in evidence_obj["content"]: if "_cell_" in evidence_id and evidence_id not in cell_ids: cell_ids.add(evidence_id) cell_id_split = evidence_id.split("_") table_id = "{}_{}".format(cell_id_split[0], cell_id_split[2]) table_id_to_cell_count[table_id] += 1 cell_counts = list(table_id_to_cell_count.values()) max_cell_count = max(cell_counts) return max_cell_count def get_cell_id_for_each_table(data_point): table_cell_ids = set() table_ids = set() for evidence_obj in data_point["evidence"]: for evidence_id in evidence_obj["content"]: if "_cell_" in evidence_id: cell_id_split = evidence_id.split("_") table_id = "{}_{}".format(cell_id_split[0], cell_id_split[2]) if table_id not in table_ids: table_ids.add(table_id) table_cell_ids.add(evidence_id) return table_cell_ids def get_tables(db: FeverousDB, table_cell_ids: List[str]): doc_ids = set() for table_cell_id in table_cell_ids: table_cell_id_split = table_cell_id.split("_") doc_id = table_cell_id_split[0] doc_ids.add(doc_id) table_dicts = [] for doc_id in doc_ids: doc_json = db.get_doc_json(doc_id) page = WikiPage(doc_id, doc_json) for table_cell_id in table_cell_ids: cell_doc = table_cell_id.split("_")[0] if doc_id == cell_doc: cell_id = "_".join(table_cell_id.split("_")[1:]) wiki_table = page.get_table_from_cell_id(cell_id) table_dict = create_table_dict(wiki_table) table_dicts.append(table_dict) return table_dicts def add_total_stats(db, data): for d in tqdm(data): stats["total_samples"] += 1 stats["total_{}".format(d["label"])] += 1 if len(d["evidence"]) > 1: stats["samples_with_multiple_evidence"] += 1 else: stats["samples_with_single_evidence"] += 1 nr_of_cells, nr_of_sents, nr_of_other = 0, 0, 0 for evidence_obj in d["evidence"]: for evidence_id in evidence_obj["content"]: if "_cell_" in evidence_id: nr_of_cells += 1 elif "_sentence_" in evidence_id: nr_of_sents += 1 else: nr_of_other += 1 if nr_of_cells > 0: stats["samples_with_table_cell_evidence"] += 1 if nr_of_sents > 0: stats["samples_with_sent_evidence"] += 1 if nr_of_other > 0: stats["samples_with_other_evidence"] += 1 table_cell_evidence_dist[nr_of_cells] += 1 sent_evidence_dist[nr_of_sents] += 1 evidence_docs = get_evidence_docs(d) for doc in evidence_docs: words = doc.split(" ") evidence_doc_title_word_len_dist[len(words)] += 1 if nr_of_cells > 0: table_cell_evidence_ids = get_cell_id_for_each_table(d) if len(table_cell_evidence_ids) > 1: stats["samples_with_multiple_table_evidence"] += 1 table_dicts = get_tables(db, table_cell_evidence_ids) for table_dict in table_dicts: nr_of_cols = len(table_dict["header"]) nr_of_rows = len(table_dict["rows"]) + 1 # Counting the header as a row table_size = nr_of_cols * nr_of_rows table_size_dist["nr_rows"].append(nr_of_rows) table_size_dist["nr_cols"].append(nr_of_cols) table_size_dist["size"].append(table_size) if ( nr_of_cols > MAX_NUM_COLS or nr_of_rows > MAX_NUM_ROWS or table_size > MAX_TABLE_SIZE ): stats["tables_too_large_to_fit_model"] += 1 if nr_of_cols > MAX_NUM_COLS: stats["tables_with_too_many_columns"] += 1 if nr_of_rows > MAX_NUM_ROWS: stats["tables_with_too_many_rows"] += 1 if table_size > MAX_TABLE_SIZE: stats["tables_with_too_many_cells"] += 1 stats[ "total_nr_of_tables" ] += ( 1 ) # The will count duplicates if the same table is evidence in more than one claim max_cell_count = get_max_cell_count(d) max_cell_counts["max_cell_count"].append(max_cell_count) if max_cell_count > MAX_NR_CELLS: stats[ "samples_with_more_than_{}_evidence_cells".format(MAX_NR_CELLS) ] += 1 stats["percentage_of_tables_discarded"] = ( stats["tables_too_large_to_fit_model"] / stats["total_nr_of_tables"] ) def add_split_stats(data: List[dict], split: Split): split_str = split.value for d in tqdm(data): stats["{}_samples".format(split_str)] += 1 stats["{}_{}".format(split_str, d["label"])] += 1 if len(d["evidence"]) > 1: stats["{}_samples_with_multiple_evidence".format(split_str)] += 1 else: stats["{}_samples_with_single_evidence".format(split_str)] += 1 nr_of_cells = 0 nr_of_sents = 0 nr_of_other = 0 for evidence_obj in d["evidence"]: for evidence_id in evidence_obj["content"]: if "_cell_" in evidence_id: nr_of_cells += 1 elif "_sentence_" in evidence_id: nr_of_sents += 1 else: nr_of_other += 1 if nr_of_cells > 0: stats["{}_samples_with_table_cell_evidence".format(split_str)] += 1 if nr_of_sents > 0: stats["{}_samples_with_sent_evidence".format(split_str)] += 1 if nr_of_other > 0: stats["{}_samples_with_other_evidence".format(split_str)] += 1 table_cell_evidence_dist[nr_of_cells] += 1 sent_evidence_dist[nr_of_sents] += 1 evidence_docs = get_evidence_docs(d) for doc in evidence_docs: words = doc.split(" ") evidence_doc_title_word_len_dist[len(words)] += 1 def main(): parser = argparse.ArgumentParser( description="Creates statistics of the provided datasets" ) parser.add_argument( "--db_path", default=None, type=str, help="Path to the FEVEROUS database" ) parser.add_argument( "--train_data_path", default=None, type=str, help="Path to the train dataset file", ) parser.add_argument( "--dev_data_path", default=None, type=str, help="Path to the dev dataset file" ) parser.add_argument( "--out_path", default=None, type=str, help="Path to the output directory" ) args = parser.parse_args() if not args.db_path: raise RuntimeError("Invalid database path") if ".db" not in args.db_path: raise RuntimeError("The database path should include the name of the .db file") if not args.train_data_path: raise RuntimeError("Invalid train data path") if ".jsonl" not in args.train_data_path: raise RuntimeError( "The train data path should include the name of the .jsonl file" ) if not args.dev_data_path: raise RuntimeError("Invalid dev data path") if ".jsonl" not in args.dev_data_path: raise RuntimeError( "The dev data path should include the name of the .jsonl file" ) if not args.out_path: raise RuntimeError("Invalid output dir path") out_dir = os.path.dirname(args.out_path) if not os.path.exists(out_dir): logger.info("Output directory doesn't exist. Creating {}".format(out_dir)) os.makedirs(out_dir) db = FeverousDB(args.db_path) train_data = load_jsonl(args.train_data_path)[1:] dev_data = load_jsonl(args.dev_data_path)[1:] add_total_stats(db, train_data + dev_data) add_split_stats(train_data, Split.TRAIN) add_split_stats(dev_data, Split.DEV) if WRITE_TO_FILE: table_cell_evidence_dist_file = out_dir + "/table_cell_evidence_dist.json" store_json( table_cell_evidence_dist, table_cell_evidence_dist_file, sort_keys=True, indent=2, ) logger.info( "Stored table cell evidence distribution in '{}'".format( table_cell_evidence_dist_file ) ) sent_evidence_dist_file = out_dir + "/sent_evidence_dist.json" store_json( sent_evidence_dist, sent_evidence_dist_file, sort_keys=True, indent=2 ) logger.info( "Stored sentence evidence distribution in '{}'".format( sent_evidence_dist_file ) ) evidence_doc_title_word_len_dist_file = ( out_dir + "/evidence_doc_title_word_len_dist.json" ) store_json( evidence_doc_title_word_len_dist, evidence_doc_title_word_len_dist_file, sort_keys=True, indent=2, ) logger.info( "Stored evidence document title word length distribution in '{}'".format( evidence_doc_title_word_len_dist_file ) ) stats_file = out_dir + "/stats.json" store_json(stats, stats_file, sort_keys=True, indent=2) logger.info("Stored stats in '{}'".format(stats_file)) table_size_dist_file = out_dir + "/table_size_dist.csv" table_size_dist_df = pd.DataFrame.from_dict(table_size_dist) table_size_dist_df.to_csv(table_size_dist_file) logger.info("Stored table size dist in '{}'".format(table_size_dist_file)) max_cell_counts_file = out_dir + "/max_cell_counts.csv" max_cell_counts_df =
pd.DataFrame.from_dict(max_cell_counts)
pandas.DataFrame.from_dict
""" test the scalar Timedelta """ import numpy as np from datetime import timedelta import pandas as pd import pandas.util.testing as tm from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type as ct from pandas import (Timedelta, TimedeltaIndex, timedelta_range, Series, to_timedelta, compat, isnull) from pandas._libs.tslib import iNaT, NaTType class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): pass def test_construction(self): expected = np.timedelta64(10, 'D').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10, unit='d').value, expected) self.assertEqual(Timedelta(10.0, unit='d').value, expected) self.assertEqual(Timedelta('10 days').value, expected) self.assertEqual(Timedelta(days=10).value, expected) self.assertEqual(Timedelta(days=10.0).value, expected) expected += np.timedelta64(10, 's').astype('m8[ns]').view('i8') self.assertEqual(Timedelta('10 days 00:00:10').value, expected) self.assertEqual(Timedelta(days=10, seconds=10).value, expected) self.assertEqual( Timedelta(days=10, milliseconds=10 * 1000).value, expected) self.assertEqual( Timedelta(days=10, microseconds=10 * 1000 * 1000).value, expected) # test construction with np dtypes # GH 8757 timedelta_kwargs = {'days': 'D', 'seconds': 's', 'microseconds': 'us', 'milliseconds': 'ms', 'minutes': 'm', 'hours': 'h', 'weeks': 'W'} npdtypes = [np.int64, np.int32, np.int16, np.float64, np.float32, np.float16] for npdtype in npdtypes: for pykwarg, npkwarg in timedelta_kwargs.items(): expected = np.timedelta64(1, npkwarg).astype('m8[ns]').view('i8') self.assertEqual( Timedelta(**{pykwarg: npdtype(1)}).value, expected) # rounding cases self.assertEqual(Timedelta(82739999850000).value, 82739999850000) self.assertTrue('0 days 22:58:59.999850' in str(Timedelta( 82739999850000))) self.assertEqual(Timedelta(123072001000000).value, 123072001000000) self.assertTrue('1 days 10:11:12.001' in str(Timedelta( 123072001000000))) # string conversion with/without leading zero # GH 9570 self.assertEqual(Timedelta('0:00:00'), timedelta(hours=0)) self.assertEqual(Timedelta('00:00:00'), timedelta(hours=0)) self.assertEqual(Timedelta('-1:00:00'), -timedelta(hours=1)) self.assertEqual(Timedelta('-01:00:00'), -timedelta(hours=1)) # more strings & abbrevs # GH 8190 self.assertEqual(Timedelta('1 h'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hour'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hr'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hours'), timedelta(hours=1)) self.assertEqual(Timedelta('-1 hours'), -timedelta(hours=1)) self.assertEqual(Timedelta('1 m'), timedelta(minutes=1)) self.assertEqual(Timedelta('1.5 m'), timedelta(seconds=90)) self.assertEqual(Timedelta('1 minute'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 minutes'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 s'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 second'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 seconds'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 ms'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 milli'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 millisecond'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 us'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 micros'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 microsecond'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1.5 microsecond'), Timedelta('00:00:00.000001500')) self.assertEqual(Timedelta('1 ns'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nano'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nanosecond'), Timedelta('00:00:00.000000001')) # combos self.assertEqual(Timedelta('10 days 1 hour'), timedelta(days=10, hours=1)) self.assertEqual(Timedelta('10 days 1 h'), timedelta(days=10, hours=1)) self.assertEqual(Timedelta('10 days 1 h 1m 1s'), timedelta( days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), - timedelta(days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), - timedelta(days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s 3us'), - timedelta(days=10, hours=1, minutes=1, seconds=1, microseconds=3)) self.assertEqual(Timedelta('-10 days 1 h 1.5m 1s 3us'), - timedelta(days=10, hours=1, minutes=1, seconds=31, microseconds=3)) # currently invalid as it has a - on the hhmmdd part (only allowed on # the days) self.assertRaises(ValueError, lambda: Timedelta('-10 days -1 h 1.5m 1s 3us')) # only leading neg signs are allowed self.assertRaises(ValueError, lambda: Timedelta('10 days -1 h 1.5m 1s 3us')) # no units specified self.assertRaises(ValueError, lambda: Timedelta('3.1415')) # invalid construction tm.assertRaisesRegexp(ValueError, "cannot construct a Timedelta", lambda: Timedelta()) tm.assertRaisesRegexp(ValueError, "unit abbreviation w/o a number", lambda: Timedelta('foo')) tm.assertRaisesRegexp(ValueError, "cannot construct a Timedelta from the passed " "arguments, allowed keywords are ", lambda: Timedelta(day=10)) # roundtripping both for string and value for v in ['1s', '-1s', '1us', '-1us', '1 day', '-1 day', '-23:59:59.999999', '-1 days +23:59:59.999999', '-1ns', '1ns', '-23:59:59.999999999']: td = Timedelta(v) self.assertEqual(Timedelta(td.value), td) # str does not normally display nanos if not td.nanoseconds: self.assertEqual(Timedelta(str(td)), td) self.assertEqual(Timedelta(td._repr_base(format='all')), td) # floats expected = np.timedelta64( 10, 's').astype('m8[ns]').view('i8') + np.timedelta64( 500, 'ms').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10.5, unit='s').value, expected) # nat self.assertEqual(Timedelta('').value, iNaT) self.assertEqual(Timedelta('nat').value, iNaT) self.assertEqual(Timedelta('NAT').value, iNaT) self.assertEqual(Timedelta(None).value, iNaT) self.assertEqual(Timedelta(np.nan).value, iNaT) self.assertTrue(isnull(Timedelta('nat'))) # offset self.assertEqual(to_timedelta(pd.offsets.Hour(2)), Timedelta('0 days, 02:00:00')) self.assertEqual(Timedelta(pd.offsets.Hour(2)), Timedelta('0 days, 02:00:00')) self.assertEqual(Timedelta(pd.offsets.Second(2)), Timedelta('0 days, 00:00:02')) # unicode # GH 11995 expected = Timedelta('1H') result = pd.Timedelta(u'1H') self.assertEqual(result, expected) self.assertEqual(to_timedelta(pd.offsets.Hour(2)), Timedelta(u'0 days, 02:00:00')) self.assertRaises(ValueError, lambda: Timedelta(u'foo bar')) def test_overflow_on_construction(self): # xref https://github.com/statsmodels/statsmodels/issues/3374 value = pd.Timedelta('1day').value * 20169940 self.assertRaises(OverflowError, pd.Timedelta, value) def test_total_seconds_scalar(self): # GH 10939 rng = Timedelta('1 days, 10:11:12.100123456') expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456. / 1e9 tm.assert_almost_equal(rng.total_seconds(), expt) rng = Timedelta(np.nan) self.assertTrue(np.isnan(rng.total_seconds())) def test_repr(self): self.assertEqual(repr(Timedelta(10, unit='d')), "Timedelta('10 days 00:00:00')") self.assertEqual(repr(Timedelta(10, unit='s')), "Timedelta('0 days 00:00:10')") self.assertEqual(repr(Timedelta(10, unit='ms')), "Timedelta('0 days 00:00:00.010000')") self.assertEqual(repr(Timedelta(-10, unit='ms')), "Timedelta('-1 days +23:59:59.990000')") def test_conversion(self): for td in [Timedelta(10, unit='d'), Timedelta('1 days, 10:11:12.012345')]: pydt = td.to_pytimedelta() self.assertTrue(td == Timedelta(pydt)) self.assertEqual(td, pydt) self.assertTrue(isinstance(pydt, timedelta) and not isinstance( pydt, Timedelta)) self.assertEqual(td, np.timedelta64(td.value, 'ns')) td64 = td.to_timedelta64() self.assertEqual(td64, np.timedelta64(td.value, 'ns')) self.assertEqual(td, td64) self.assertTrue(isinstance(td64, np.timedelta64)) # this is NOT equal and cannot be roundtriped (because of the nanos) td = Timedelta('1 days, 10:11:12.012345678') self.assertTrue(td != td.to_pytimedelta()) def test_freq_conversion(self): td = Timedelta('1 days 2 hours 3 ns') result = td / np.timedelta64(1, 'D') self.assertEqual(result, td.value / float(86400 * 1e9)) result = td / np.timedelta64(1, 's') self.assertEqual(result, td.value / float(1e9)) result = td / np.timedelta64(1, 'ns') self.assertEqual(result, td.value) def test_fields(self): def check(value): # that we are int/long like self.assertTrue(isinstance(value, (int, compat.long))) # compat to datetime.timedelta rng = to_timedelta('1 days, 10:11:12') self.assertEqual(rng.days, 1) self.assertEqual(rng.seconds, 10 * 3600 + 11 * 60 + 12) self.assertEqual(rng.microseconds, 0) self.assertEqual(rng.nanoseconds, 0) self.assertRaises(AttributeError, lambda: rng.hours) self.assertRaises(AttributeError, lambda: rng.minutes) self.assertRaises(AttributeError, lambda: rng.milliseconds) # GH 10050 check(rng.days) check(rng.seconds) check(rng.microseconds) check(rng.nanoseconds) td = Timedelta('-1 days, 10:11:12') self.assertEqual(abs(td), Timedelta('13:48:48')) self.assertTrue(str(td) == "-1 days +10:11:12") self.assertEqual(-td, Timedelta('0 days 13:48:48')) self.assertEqual(-Timedelta('-1 days, 10:11:12').value, 49728000000000) self.assertEqual(Timedelta('-1 days, 10:11:12').value, -49728000000000) rng = to_timedelta('-1 days, 10:11:12.100123456') self.assertEqual(rng.days, -1) self.assertEqual(rng.seconds, 10 * 3600 + 11 * 60 + 12) self.assertEqual(rng.microseconds, 100 * 1000 + 123) self.assertEqual(rng.nanoseconds, 456) self.assertRaises(AttributeError, lambda: rng.hours) self.assertRaises(AttributeError, lambda: rng.minutes) self.assertRaises(AttributeError, lambda: rng.milliseconds) # components tup = pd.to_timedelta(-1, 'us').components self.assertEqual(tup.days, -1) self.assertEqual(tup.hours, 23) self.assertEqual(tup.minutes, 59) self.assertEqual(tup.seconds, 59) self.assertEqual(tup.milliseconds, 999) self.assertEqual(tup.microseconds, 999) self.assertEqual(tup.nanoseconds, 0) # GH 10050 check(tup.days) check(tup.hours) check(tup.minutes) check(tup.seconds) check(tup.milliseconds) check(tup.microseconds) check(tup.nanoseconds) tup = Timedelta('-1 days 1 us').components self.assertEqual(tup.days, -2) self.assertEqual(tup.hours, 23) self.assertEqual(tup.minutes, 59) self.assertEqual(tup.seconds, 59) self.assertEqual(tup.milliseconds, 999) self.assertEqual(tup.microseconds, 999) self.assertEqual(tup.nanoseconds, 0) def test_nat_converters(self): self.assertEqual(to_timedelta( 'nat', box=False).astype('int64'), iNaT) self.assertEqual(to_timedelta( 'nan', box=False).astype('int64'), iNaT) def testit(unit, transform): # array result = to_timedelta(np.arange(5), unit=unit) expected = TimedeltaIndex([np.timedelta64(i, transform(unit)) for i in np.arange(5).tolist()]) tm.assert_index_equal(result, expected) # scalar result = to_timedelta(2, unit=unit) expected = Timedelta(np.timedelta64(2, transform(unit)).astype( 'timedelta64[ns]')) self.assertEqual(result, expected) # validate all units # GH 6855 for unit in ['Y', 'M', 'W', 'D', 'y', 'w', 'd']: testit(unit, lambda x: x.upper()) for unit in ['days', 'day', 'Day', 'Days']: testit(unit, lambda x: 'D') for unit in ['h', 'm', 's', 'ms', 'us', 'ns', 'H', 'S', 'MS', 'US', 'NS']: testit(unit, lambda x: x.lower()) # offsets # m testit('T', lambda x: 'm') # ms testit('L', lambda x: 'ms') def test_numeric_conversions(self): self.assertEqual(ct(0), np.timedelta64(0, 'ns')) self.assertEqual(ct(10), np.timedelta64(10, 'ns')) self.assertEqual(ct(10, unit='ns'), np.timedelta64( 10, 'ns').astype('m8[ns]')) self.assertEqual(ct(10, unit='us'), np.timedelta64( 10, 'us').astype('m8[ns]')) self.assertEqual(ct(10, unit='ms'), np.timedelta64( 10, 'ms').astype('m8[ns]')) self.assertEqual(ct(10, unit='s'), np.timedelta64( 10, 's').astype('m8[ns]')) self.assertEqual(ct(10, unit='d'), np.timedelta64( 10, 'D').astype('m8[ns]')) def test_timedelta_conversions(self): self.assertEqual(ct(timedelta(seconds=1)), np.timedelta64(1, 's').astype('m8[ns]')) self.assertEqual(ct(timedelta(microseconds=1)), np.timedelta64(1, 'us').astype('m8[ns]')) self.assertEqual(ct(timedelta(days=1)), np.timedelta64(1, 'D').astype('m8[ns]')) def test_round(self): t1 = Timedelta('1 days 02:34:56.789123456') t2 = Timedelta('-1 days 02:34:56.789123456') for (freq, s1, s2) in [('N', t1, t2), ('U', Timedelta('1 days 02:34:56.789123000'), Timedelta('-1 days 02:34:56.789123000')), ('L', Timedelta('1 days 02:34:56.789000000'), Timedelta('-1 days 02:34:56.789000000')), ('S', Timedelta('1 days 02:34:57'), Timedelta('-1 days 02:34:57')), ('2S', Timedelta('1 days 02:34:56'), Timedelta('-1 days 02:34:56')), ('5S', Timedelta('1 days 02:34:55'), Timedelta('-1 days 02:34:55')), ('T', Timedelta('1 days 02:35:00'), Timedelta('-1 days 02:35:00')), ('12T', Timedelta('1 days 02:36:00'), Timedelta('-1 days 02:36:00')), ('H', Timedelta('1 days 03:00:00'), Timedelta('-1 days 03:00:00')), ('d', Timedelta('1 days'), Timedelta('-1 days'))]: r1 = t1.round(freq) self.assertEqual(r1, s1) r2 = t2.round(freq) self.assertEqual(r2, s2) # invalid for freq in ['Y', 'M', 'foobar']: self.assertRaises(ValueError, lambda: t1.round(freq)) t1 = timedelta_range('1 days', periods=3, freq='1 min 2 s 3 us') t2 = -1 * t1 t1a = timedelta_range('1 days', periods=3, freq='1 min 2 s') t1c = pd.TimedeltaIndex([1, 1, 1], unit='D') # note that negative times round DOWN! so don't give whole numbers for (freq, s1, s2) in [('N', t1, t2), ('U', t1, t2), ('L', t1a, TimedeltaIndex(['-1 days +00:00:00', '-2 days +23:58:58', '-2 days +23:57:56'], dtype='timedelta64[ns]', freq=None) ), ('S', t1a, TimedeltaIndex(['-1 days +00:00:00', '-2 days +23:58:58', '-2 days +23:57:56'], dtype='timedelta64[ns]', freq=None) ), ('12T', t1c, TimedeltaIndex(['-1 days', '-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None) ), ('H', t1c, TimedeltaIndex(['-1 days', '-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None) ), ('d', t1c, pd.TimedeltaIndex([-1, -1, -1], unit='D') )]: r1 = t1.round(freq) tm.assert_index_equal(r1, s1) r2 = t2.round(freq) tm.assert_index_equal(r2, s2) # invalid for freq in ['Y', 'M', 'foobar']: self.assertRaises(ValueError, lambda: t1.round(freq)) def test_contains(self): # Checking for any NaT-like objects # GH 13603 td = to_timedelta(range(5), unit='d') + pd.offsets.Hour(1) for v in [pd.NaT, None, float('nan'), np.nan]: self.assertFalse((v in td)) td = to_timedelta([pd.NaT]) for v in [pd.NaT, None, float('nan'), np.nan]: self.assertTrue((v in td)) def test_identity(self): td = Timedelta(10, unit='d') self.assertTrue(isinstance(td, Timedelta)) self.assertTrue(isinstance(td, timedelta)) def test_short_format_converters(self): def conv(v): return v.astype('m8[ns]') self.assertEqual(ct('10'), np.timedelta64(10, 'ns')) self.assertEqual(ct('10ns'), np.timedelta64(10, 'ns')) self.assertEqual(ct('100'), np.timedelta64(100, 'ns')) self.assertEqual(ct('100ns'), np.timedelta64(100, 'ns')) self.assertEqual(ct('1000'), np.timedelta64(1000, 'ns')) self.assertEqual(ct('1000ns'), np.timedelta64(1000, 'ns')) self.assertEqual(ct('1000NS'), np.timedelta64(1000, 'ns')) self.assertEqual(ct('10us'), np.timedelta64(10000, 'ns')) self.assertEqual(ct('100us'), np.timedelta64(100000, 'ns')) self.assertEqual(ct('1000us'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('1000Us'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('1000uS'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('1ms'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('10ms'), np.timedelta64(10000000, 'ns')) self.assertEqual(ct('100ms'), np.timedelta64(100000000, 'ns')) self.assertEqual(ct('1000ms'), np.timedelta64(1000000000, 'ns')) self.assertEqual(ct('-1s'), -np.timedelta64(1000000000, 'ns')) self.assertEqual(ct('1s'), np.timedelta64(1000000000, 'ns')) self.assertEqual(ct('10s'), np.timedelta64(10000000000, 'ns')) self.assertEqual(ct('100s'), np.timedelta64(100000000000, 'ns')) self.assertEqual(ct('1000s'), np.timedelta64(1000000000000, 'ns')) self.assertEqual(ct('1d'), conv(np.timedelta64(1, 'D'))) self.assertEqual(ct('-1d'), -conv(np.timedelta64(1, 'D'))) self.assertEqual(ct('1D'), conv(np.timedelta64(1, 'D'))) self.assertEqual(ct('10D'), conv(np.timedelta64(10, 'D'))) self.assertEqual(ct('100D'), conv(np.timedelta64(100, 'D'))) self.assertEqual(ct('1000D'), conv(np.timedelta64(1000, 'D'))) self.assertEqual(ct('10000D'), conv(np.timedelta64(10000, 'D'))) # space self.assertEqual(ct(' 10000D '), conv(np.timedelta64(10000, 'D'))) self.assertEqual(ct(' - 10000D '), -conv(np.timedelta64(10000, 'D'))) # invalid self.assertRaises(ValueError, ct, '1foo') self.assertRaises(ValueError, ct, 'foo') def test_full_format_converters(self): def conv(v): return v.astype('m8[ns]') d1 = np.timedelta64(1, 'D') self.assertEqual(ct('1days'), conv(d1)) self.assertEqual(ct('1days,'), conv(d1)) self.assertEqual(ct('- 1days,'), -conv(d1)) self.assertEqual(ct('00:00:01'), conv(np.timedelta64(1, 's'))) self.assertEqual(ct('06:00:01'), conv( np.timedelta64(6 * 3600 + 1, 's'))) self.assertEqual(ct('06:00:01.0'), conv( np.timedelta64(6 * 3600 + 1, 's'))) self.assertEqual(ct('06:00:01.01'), conv( np.timedelta64(1000 * (6 * 3600 + 1) + 10, 'ms'))) self.assertEqual(ct('- 1days, 00:00:01'), conv(-d1 + np.timedelta64(1, 's'))) self.assertEqual(ct('1days, 06:00:01'), conv( d1 + np.timedelta64(6 * 3600 + 1, 's'))) self.assertEqual(ct('1days, 06:00:01.01'), conv( d1 + np.timedelta64(1000 * (6 * 3600 + 1) + 10, 'ms'))) # invalid self.assertRaises(ValueError, ct, '- 1days, 00') def test_overflow(self): # GH 9442 s = Series(pd.date_range('20130101', periods=100000, freq='H')) s[0] += pd.Timedelta('1s 1ms') # mean result = (s - s.min()).mean() expected = pd.Timedelta((pd.DatetimeIndex((s - s.min())).asi8 / len(s) ).sum()) # the computation is converted to float so might be some loss of # precision self.assertTrue(np.allclose(result.value / 1000, expected.value / 1000)) # sum self.assertRaises(ValueError, lambda: (s - s.min()).sum()) s1 = s[0:10000] self.assertRaises(ValueError, lambda: (s1 - s1.min()).sum()) s2 = s[0:1000] result = (s2 - s2.min()).sum() def test_pickle(self): v = Timedelta('1 days 10:11:12.0123456') v_p = self.round_trip_pickle(v) self.assertEqual(v, v_p) def test_timedelta_hash_equality(self): # GH 11129 v =
Timedelta(1, 'D')
pandas.Timedelta
import datetime import logging import os import random from typing import Dict, List, Optional, Tuple, Union, cast try: import ib_insync except ModuleNotFoundError: print("Can't find ib_insync") import pandas as pd import helpers.dbg as dbg import helpers.printing as hprint import helpers.s3 as hs3 # from tqdm.notebook import tqdm _LOG = logging.getLogger(__name__) def ib_connect(client_id: int = 0, is_notebook: bool = True) -> ib_insync.ib.IB: # TODO(gp): Add check if we are in notebook. if is_notebook: ib_insync.util.startLoop() ib = ib_insync.IB() host = os.environ["IB_GW_CONNECTION_HOST"] port = os.environ["IB_GW_CONNECTION_PORT"] _LOG.debug("Trying to connect to client_id=%s", client_id) ib.connect(host=host, port=port, clientId=client_id) # ib_insync.IB.RaiseRequestErrors = True _LOG.debug("Connected to IB: client_id=%s", client_id) return ib def get_free_client_id(max_attempts: Optional[int]) -> int: """ Find free slot to connect to IB gateway. """ free_client_id = -1 max_attempts = 1 if max_attempts is None else max_attempts for i in random.sample( range(1, max_attempts + 1), max_attempts, ): try: ib_connection = ib_connect(i, is_notebook=False) except TimeoutError: continue free_client_id = i ib_connection.disconnect() break if free_client_id == -1: raise TimeoutError("Couldn't connect to IB") return free_client_id def to_contract_details(ib, contract): print("contract= (%s)\n\t%s" % (type(contract), contract)) contract_details = ib.reqContractDetails(contract) print( "contract_details= (%s)\n\t%s" % (type(contract_details), contract_details) ) dbg.dassert_eq(len(contract_details), 1) return hprint.obj_to_str(contract_details[0]) def get_contract_details( ib: ib_insync.ib.IB, contract: ib_insync.Contract, simplify_df: bool = False ) -> pd.DataFrame: _LOG.debug("contract=%s", contract) cds = ib.reqContractDetails(contract) _LOG.info("num contracts=%s", len(cds)) contracts = [cd.contract for cd in cds] _LOG.debug("contracts[0]=%s", contracts[0]) contracts_df = ib_insync.util.df(contracts) if simplify_df: # TODO(*): remove or avoid since it is only one place where `core` is used. # _LOG.debug(cexplo.print_column_variability(contracts_df)) # Remove exchange. _LOG.debug("exchange=%s", contracts_df["exchange"].unique()) contracts_df.sort_values("lastTradeDateOrContractMonth", inplace=True) contracts_df = contracts_df.drop(columns=["exchange", "comboLegs"]) # Remove duplicates. contracts_df = contracts_df.drop_duplicates() # Remove constant values. # threshold = 1 # TODO(*): remove or avoid since it is only one place where `core` is used. # contracts_df = cexplo.remove_columns_with_low_variability( # contracts_df, threshold # ) return contracts_df # ############################################################################# def get_df_signature(df: pd.DataFrame) -> str: if df is None or df.empty: return "" txt = "len=%d [%s, %s]" % (len(df), df.index[0], df.index[-1]) return txt def to_ET( ts: Union[datetime.datetime, pd.Timestamp, str], as_datetime: bool = True ) -> Union[datetime.datetime, pd.Timestamp, str]: # Handle IB convention that an empty string means now. if ts == "": return "" ts = pd.Timestamp(ts) if ts.tzinfo is None: ts = ts.tz_localize(tz="America/New_York") else: ts = ts.tz_convert(tz="America/New_York") if as_datetime: ts = ts.to_pydatetime() return ts def to_timestamp_str(ts: pd.Timestamp) -> str: dbg.dassert_is_not(ts, None) ret = ts.strftime("%Y%m%dT%H%M%S") cast(str, ret) return ret # ############################################################################# def req_historical_data( ib: ib_insync.ib.IB, contract: ib_insync.Contract, end_ts: Union[datetime.datetime, pd.Timestamp, str], duration_str: str, bar_size_setting: str, what_to_show: str, use_rth: bool, num_retry: Optional[int] = None, ) -> pd.DataFrame: """ Wrap ib.reqHistoricalData() adding a retry semantic and returning a df. IB seem to align days on boundaries at 18:00 of every day. """ check_ib_connected(ib) num_retry = num_retry or 3 end_ts = to_ET(end_ts) # for i in range(num_retry): bars = [] try: _LOG.debug("Requesting data for %s, end_ts=%s...", contract, end_ts) bars = ib.reqHistoricalData( contract, endDateTime=end_ts, durationStr=duration_str, barSizeSetting=bar_size_setting, whatToShow=what_to_show, useRTH=use_rth, # Use UTC. formatDate=2, ) break except ib_insync.wrapper.RequestError as e: _LOG.warning(str(e)) if e.code == 162: # RequestError: API error: 162: Historical Market Data Service # error message:HMDS query returned no data # There is no data. break # Retry. _LOG.info("Retry: %s / %s", i + 1, num_retry) if i == num_retry: dbg.dfatal("Failed after %s retries", num_retry) if bars: # Sanity check. dbg.dassert_lte(bars[0].date, bars[-1].date) # Organize the data as a dataframe with increasing times. df = ib_insync.util.df(bars) df.set_index("date", drop=True, inplace=True) dbg.dassert_monotonic_index(df) # Convert to ET. if bar_size_setting != "1 day": df.index = df.index.tz_convert(tz="America/New_York") _LOG.debug("df=%s", get_df_signature(df)) else: df = pd.DataFrame() return df def get_end_timestamp( ib, contract, what_to_show, use_rth, num_retry=None ) -> datetime.datetime: """ Return the last available timestamp by querying the historical data. """ endDateTime = "" duration_str = "1 D" bar_size_setting = "1 min" bars = req_historical_data( ib, contract, endDateTime, duration_str, bar_size_setting, what_to_show, use_rth, num_retry=num_retry, ) # Set end timestamp to now if there are non any data. if bars.empty: _LOG.warning("No data found, set end_ts to now") last_ts = pd.Timestamp.now() else: # Get the last timestamp. last_ts = bars.index[-1] return last_ts # ############################################################################# def duration_str_to_pd_dateoffset(duration_str: str) -> pd.DateOffset: if duration_str == "1 D": ret = pd.DateOffset(days=1) elif duration_str == "2 D": ret = pd.DateOffset(days=2) elif duration_str == "3 D": ret = pd.DateOffset(days=3) elif duration_str == "4 D": ret = pd.DateOffset(days=4) elif duration_str == "7 D": ret = pd.DateOffset(days=7) elif duration_str == "1 M": ret = pd.DateOffset(months=1) elif duration_str == "1 Y": ret =
pd.DateOffset(years=1)
pandas.DateOffset
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188:
pd.Timestamp("2012-11-06 00:00:00")
pandas.Timestamp
''' Copyright 2021 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import pandas as pd import matplotlib.pyplot as plt print("\n\t\t Finite Volume Method for 1D Steady State Diffusion \n") # Switch case for type of numerical choice = "" while choice != "q": print("""\t[ 1 ] Diffusion without Source [ 2 ] Diffusion with uniform source [ q ] Exit\n""") choice = input("\n\tEnter Choice :\t") if choice == "1": print("\n\t\tDiffusion Without Source\n") q = 0 break elif choice == "2": print("\n\t\tDiffusion with Uniform Source\n") q = float(input("\n\tEnter uniform heat generation q in W/m2: ")) break elif choice == "q": exit() else: print("\n\n\tInvalid choice, Try again!\n") # input from user n = int(input("\n\tEnter the number of grid points: ")) l = float(input("\n\tEnter length of plate in m: ")) tk = float(input("\n\tEnter thermal conductivity of plate in W/mK or W/mC: ")) ta = float(input("\n\tEnter temperature at left face Ta in C: ")) tb = float(input("\n\tEnter temperature at right face Tb in C: ")) # create empty list D = [0]*n beta = [0]*n alpha = [0]*n c = [0]*n A = [0]*n C = [0]*n temp = [0]*n Err = [0]*n Texact = [0]*n g = [0]*n g1 = [0]*n # setting up equations in tdma format dx = l/n D[0] = (3*tk)/dx D[1] = (2*tk)/dx D[n-1] = (3*tk)/dx beta[1] = tk/dx alpha[1] = tk/dx c[0] = ((2*tk*ta)/dx)+(q*dx) for i in range(1, n-1): c[i] = q*dx c[n-1] = ((2*tk*tb)/dx)+(q*dx) beta[0] = 0 beta[n-1] = beta[1] alpha[0] = alpha[1] alpha[n-1] = 0 # add common value to list D, beta and alpha for i in range(2, n-1): D[i] = D[1] beta[i] = beta[1] alpha[i] = alpha[1] # Calculating intermediate terms by forward substitution for i in range(0, n): A[i] = alpha[i]/(D[i] - beta[i]*A[i-1]) C[i] = (beta[i]*C[i-1] + c[i])/(D[i] - beta[i]*A[i-1]) # equating last value for back substitution temp[n-1] = C[n-1] # Calculating Temperarure values by backward substitution j = n-2 while j >= 0: temp[j] = A[j] * temp[j+1] + C[j] j = j-1 # Calculating Exact Solution and error A1 = (-q)/(2*tk) A2 = tb/l - ta/l + (q*l)/(2*tk) dx = l/n for i in range(0, n): g[i] = dx*0.5 + (dx * i) Texact[i] = A1 * g[i] * g[i] + A2 * g[i] + ta Err[i] = ((temp[i] - Texact[i]) * 100*2) / (temp[i] + Texact[i]) g1[i]=g[i]#create copy of g for excel # create output tuple OUTPUT = list(zip(beta, D, alpha, c, A, C, temp, Texact, Err)) # create Pandas DataFrame result = pd.DataFrame(data=OUTPUT, columns=["\N{GREEK SMALL LETTER BETA}", "Diagonal(D)", "\N{GREEK SMALL LETTER ALPHA}", "Constant(C)", "A", "C'", "Temperature(T)", "Temperature Exact(T exact)", "% Error"]) # change index to 1,2,3,..... result.index = result.index + 1 # print table print("\n\n") print(result) #plot and show graph # adding initial and final conditions to the list, as list contains values at nodes temp.insert(0, ta) temp.append(tb) Texact.insert(0, ta) Texact.append(tb) g.insert(0, 0) g.append(l) graph =
pd.DataFrame({'Temperature Numerical': temp, 'Temperature Exact': Texact}, index=g)
pandas.DataFrame
import sys import pandas as pd import boto3 import io from io import StringIO from awsglue.utils import getResolvedOptions args = getResolvedOptions( sys.argv, ["S3_SOURCE", "S3_DEST", "TRAIN_KEY", "SCORE_KEY", "INFERENCE_TYPE"] ) s3_source = args["S3_SOURCE"] s3_dest = args["S3_DEST"] train_key = args["TRAIN_KEY"] score_key = args["SCORE_KEY"] inference_type = args["INFERENCE_TYPE"] # ---FUNCTIONS------------------------------- def data_transform(obj, train=True): # Perform data transformation on training and scoring sets df = pd.read_csv(io.BytesIO(obj["Body"].read()), encoding="utf8") df = df.set_index("EmployeeNumber") df["BusinessTravel"].replace( to_replace=["Non-Travel", "Travel_Rarely", "Travel_Frequently"], value=[0, 1, 2], inplace=True, ) df["Gender"].replace(to_replace=["Male", "Female"], value=[0, 1], inplace=True) df.replace(to_replace=["No", "Yes"], value=[0, 1], inplace=True) df["RatioYearsPerCompany"] = df["TotalWorkingYears"] / ( df["NumCompaniesWorked"] + 1 ) cont_vars = [ "Age", "DistanceFromHome", "MonthlyIncome", "PercentSalaryHike", "TrainingTimesLastYear", "RatioYearsPerCompany", "YearsAtCompany", "YearsInCurrentRole", "YearsSinceLastPromotion", "YearsWithCurrManager", ] ord_vars = [ "BusinessTravel", "Education", "EnvironmentSatisfaction", "JobInvolvement", "JobLevel", "JobSatisfaction", "PerformanceRating", "RelationshipSatisfaction", "StockOptionLevel", "WorkLifeBalance", ] cat_vars = ["Department", "EducationField", "JobRole", "MaritalStatus"] bool_vars = ["Gender", "OverTime"] df_dummy =
pd.get_dummies(df[cat_vars])
pandas.get_dummies
# import ptvsd # ptvsd.enable_attach(address = ('0.0.0.0', 5678)) # ptvsd.wait_for_attach() import os import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data as Data from torch.optim.lr_scheduler import ReduceLROnPlateau from transformers import AutoModel, AutoConfig, BertTokenizer, AutoModelWithLMHead from torchviz import make_dot import time import numpy as np from tqdm import trange from sklearn.metrics import roc_auc_score from sklearn.metrics import matthews_corrcoef from sklearn.metrics import recall_score from sklearn.metrics import accuracy_score from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import precision_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import f1_score from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split # from getFeatures import save_smiles_dicts, get_smiles_dicts, get_smiles_array, moltosvg_highlight import gc import sys import pickle import random import csv import json import re import argparse # from tensorboardX import SummaryWriter import copy import pandas as pd import scipy # then import my own modules from AttentiveFP import Fingerprint, Fingerprint_viz, save_smiles_dicts, get_smiles_dicts, get_smiles_array, \ moltosvg_highlight from network import Network #无已有pickle时需全调用 from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import QED # get_ipython().run_line_magic('matplotlib', 'inline') from numpy.polynomial.polynomial import polyfit import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib # from ProEmb.ProBert import model_bert, model_mlm # from IPython.display import SVG, display import seaborn as sns; from torchsummary import summary sns.set(color_codes=True) class DataHandler(): def __init__(self, raw_filename, max_atom_len=0, max_bond_len=0): def get_cm_dict(pickle_dir): seq_list = [] cm_list = [] id_list = [] degree_list_dict = {} max_neighbor_num = 0 for f in os.listdir(pickle_dir): f_degree = os.path.dirname(pickle_dir) + '/' + f.split('.')[0] + '_' + 'degree' + '_' + str(self.max_len) + '.pkl' f_cm = os.path.dirname(pickle_dir) + '/' + f.split('.')[0] + '_' + str(self.max_len) + '.pkl' if os.path.exists(f_degree) and os.path.exists(f_cm): with open(f_degree, 'rb') as f_r: degree_list_dict = pickle.load(f_r) max_neighbor_num = list(degree_list_dict.items())[0][1].shape[1] with open(f_cm, 'rb') as f_r: cm_df = pickle.load(f_r) else: f = os.path.join(pickle_dir, f) # /home/eason/PPI/drug/GAT/data/3d_pdb/pdbbind_2016 data = pickle.load(open(f, 'rb')) # PDB-ID seqs contact_map for index, row in data.iterrows(): seq = row[cm_seq][:self.max_len] if seq == '': continue cm = row['contact_map'][0][:self.max_len, :self.max_len] # row['contact_map']:208×208 mn = np.max(np.sum(cm, axis=1)) if max_neighbor_num < mn: max_neighbor_num = mn for index, row in data.iterrows(): seq = row[cm_seq][:self.max_len] if seq == '': continue cm = row['contact_map'][0][:self.max_len, :self.max_len] # row['contact_map']:208×208 cm_tmp = cm.astype(int) cm_tmp = np.pad(cm_tmp, ((0, self.max_len - cm.shape[0]), (0, self.max_len - cm.shape[1])), 'constant', constant_values=(0, 0)) cm_list.append(cm_tmp) seq_list.append(row[cm_seq]) id_list.append(row['PDB-ID']) degree_list = [] for i in range(len(seq)): tmp = np.array(np.where(cm[i] > 0.5)[0]) tmp = np.pad(tmp, (0, max_neighbor_num - tmp.shape[0]), 'constant', constant_values=(-1, -1)) degree_list.append(tmp) degree_list = np.stack(degree_list, 0) degree_list = np.pad(degree_list, ((0, self.max_len - degree_list.shape[0]), (0, 0)), 'constant', constant_values=(-1, -1)) degree_list_dict[row['PDB-ID']] = degree_list cm_df = pd.DataFrame({"PDB-ID": id_list, "seqs": seq_list, "cm_pad": cm_list}) with open(f_degree, 'wb') as f_w: pickle.dump(degree_list_dict, f_w) with open(f_cm, 'wb') as f_w: pickle.dump(cm_df, f_w) return degree_list_dict, max_neighbor_num, cm_df self.data_df, self.smile_feature_dict = self.load_smile(raw_filename, max_atom_len=max_atom_len, max_bond_len=max_bond_len) self.amino_dict = {} for key, value in vocab.items(): if value - special_vocab_size >= 0: self.amino_dict[key] = value - special_vocab_size # for protein structure self.input_size = nonspecial_vocab_size self.max_len = max_seq_len # 512 self.enc_lib = np.eye(self.input_size) if model_type != "only_molecule": self.degree_list_dict, self.max_neighbor_num, self.cm_df = get_cm_dict(cm_pickle_dir) # degree_list_dict:字典变量,每个氨基酸序列和对应的氨基酸之间的作用图(不是蛋白质之间的作用图)。 def get_init(self, seq_list): mat = [] for seq in seq_list: # seq = list(map(lambda ch: ord(ch) - ord('A'), seq[:self.max_len])) seq = [self.amino_dict[ch] for ch in seq[: self.max_len]] enc = self.enc_lib[seq] if enc.shape[0] < self.max_len: enc = np.pad(enc, ((0, self.max_len - enc.shape[0]), (0, 0)), 'constant') # print(enc.shape) mat.append(enc) mat = np.stack(mat, 0) mat = mat.astype(np.float32) return mat def get_degree_list(self, seq_list): mat = [] for seq in seq_list: seq = seq[:self.max_len] if seq in self.degree_list_dict: cm = self.degree_list_dict[seq] else: # print('Sequence not found, ', seq) cm = np.ones([self.max_len, self.max_neighbor_num]) cm = cm * -1 mat.append(cm) mat = np.stack(mat, 0) return mat def get_amino_mask(self, seq_list): mat = [] for seq in seq_list: mask = np.ones(min(len(seq), self.max_len), dtype=np.int) mask = np.pad(mask, (0, self.max_len - len(mask)), 'constant') mat.append(mask) mat = np.stack(mat, 0) # print('mask', mat) return mat def get_pro_structure(self, seq_list): # f1 = cal_mem() amino_list = self.get_init(seq_list) # f2 = cal_mem() # print('Get Pro Structure Index {}-{} costs: {}MB'.format('f2', 'f1', round(f1-f2, 4))) amino_degree_list = self.get_degree_list(seq_list) # f3 = cal_mem() # print('Get Pro Structure Index {}-{} costs: {}MB'.format('f2', 'f3', round(f2 - f3, 4))) amino_mask = self.get_amino_mask(seq_list) # f4 = cal_mem() # print('Get Pro Structure Index {}-{} costs: {}MB'.format('f3', 'f4', round(f3 - f4, 4))) return amino_list, amino_degree_list, amino_mask def load_smile(self, raw_filename, max_atom_len=0, max_bond_len=0): # raw_filename : "./PPI/drug/tasks/DTI/pdbbind/pafnucy_total_rdkit-smiles-v1.csv" filename = os.path.splitext(raw_filename)[0] ext_name = os.path.splitext(raw_filename)[-1] feature_filename = filename + '.pickle' prefix_filename = os.path.splitext(os.path.split(raw_filename)[-1])[0] # smiles_tasks_df : df : ["unnamed", "PDB-ID", "seq", "SMILES", "rdkit_smiles", "Affinity-Value", "set"] if ext_name == '.xlsx': smiles_tasks_df = pd.read_excel(io = raw_filename) # main file elif ext_name == '.csv': smiles_tasks_df = pd.read_csv(raw_filename) # main file else: sys.exit(1) # smilesList : array, 13464 smilesList = smiles_tasks_df[SMILES].values print("number of all smiles: ", len(smilesList)) atom_num_dist = [] remained_smiles = [] canonical_smiles_list = [] for smiles in smilesList: try: mol = Chem.MolFromSmiles(smiles) # input : smiles seqs, output : molecule obeject atom_num_dist.append(len(mol.GetAtoms())) # list : get atoms obeject from molecule obeject remained_smiles.append(smiles) # list : smiles without transformation error canonical_smiles_list.append(Chem.MolToSmiles(Chem.MolFromSmiles(smiles), isomericSmiles=True)) # canonical smiles without transformation error except: print("the smile is %s with transformation error" % smiles) pass print("number of successfully processed smiles after the first test: ", len(remained_smiles)) "----------------------the first test----------------------" smiles_tasks_df = smiles_tasks_df[smiles_tasks_df[SMILES].isin(remained_smiles)] # df(13464) : include smiles without transformation error # smiles_tasks_df[SMILES] = canonical_smiles_list smiles_tasks_df[SMILES] = remained_smiles smilesList = remained_smiles # update valid smile # feature_dicts(dict) : # {smiles_to_atom_info, smiles_to_atom_mask, smiles_to_atom_neighbors, "smiles_to_bond_info", "smiles_to_bond_neighbors", "smiles_to_rdkit_list"} if os.path.isfile(feature_filename): # get smile feature dict feature_dicts = pickle.load(open(feature_filename, "rb")) print("load derectly!") else: feature_dicts = save_smiles_dicts(smilesList, filename, max_atom_len=max_atom_len, max_bond_len=max_bond_len) print("save pickle!") "----------------------the second test----------------------" remained_df = smiles_tasks_df[smiles_tasks_df[SMILES].isin(feature_dicts['smiles_to_atom_mask'].keys())] # df(13435) : include smiles without transformation error and second test error # uncovered_index = ~smiles_tasks_df[SMILES].isin(feature_dicts['smiles_to_atom_mask'].keys()) # uncovered_id = smiles_tasks_df["PDB-ID"][uncovered_index] # uncovered_df = smiles_tasks_df.drop(remained_df.index) print("number of successfully processed smiles after the second test: ", len(remained_df)) return remained_df, feature_dicts def tokenize(sent_list, vocab, seq_len): seq_len = seq_len + 2 # add [CLS] and [SEP] all_input_ids = [] all_attention_mask = [] all_token_type_ids = [] for sent in sent_list: attention_mask = [1 for _ in range(seq_len)] token_type_ids = [0 for _ in range(seq_len)] tmp = [vocab['[CLS]']] for word in sent: tmp.append(vocab[word]) if len(tmp) == seq_len - 1: break tmp.append(vocab['[SEP]']) if len(tmp) < seq_len: for i in range(len(tmp), seq_len): tmp.append(vocab['[PAD]']) attention_mask[i] = 0 all_input_ids.append(tmp) all_attention_mask.append(attention_mask) all_token_type_ids.append(token_type_ids) all_input_ids = np.array(all_input_ids) all_attention_mask = np.array(all_attention_mask) all_token_type_ids = np.array(all_token_type_ids) return torch.from_numpy(all_input_ids), torch.from_numpy(all_attention_mask), torch.from_numpy(all_token_type_ids) # 如更改n-gram则此处要改 def create_sent(seq_list, seg_len=1): sent_list = [] if seg_len == 1: for s in seq_list: sent_list.append(list(s)) else: for s in seq_list: tmp = [] for i in range(len(s) - seg_len + 1): tmp.append(s[i: i + seg_len]) sent_list.append(tmp) return sent_list def train(model, dataset, optimizer, loss_function, epoch): model.train() # np.random.seed(epoch) valList = list(dataset.index) np.random.shuffle(valList) batch_list = [] for i in range(0, dataset.shape[0], batch_size): batch = valList[i:i + batch_size] batch_list.append(batch) for counter, batch in enumerate(batch_list): batch_df = dataset.loc[batch, :] smiles_list = batch_df[SMILES].values seq_list = batch_df.seqs.values y_val = batch_df[TASK].values x_atom, x_bonds, x_atom_index, x_bond_index, x_mask, smiles_to_rdkit_list = get_smiles_array(smiles_list, feature_dicts) amino_list, amino_degree_list, amino_mask = data_handler.get_pro_structure(seq_list) pro_seqs = batch_df.seqs.values sents = create_sent(pro_seqs) tokenized_sent, all_attention_mask, all_token_type_ids = tokenize(sents, vocab, max_seq_len) tokenized_sent = tokenized_sent.to(device) all_attention_mask = all_attention_mask.to(device) all_token_type_ids = all_token_type_ids.to(device) prediction = model(torch.Tensor(x_atom).to(device), torch.Tensor(x_bonds).to(device), torch.LongTensor(x_atom_index).to(device), \ torch.LongTensor(x_bond_index).to(device), torch.Tensor(x_mask).to(device), tokenized_sent, all_attention_mask, all_token_type_ids, \ torch.tensor(amino_list).to(device), torch.LongTensor(amino_degree_list).to(device), \ torch.Tensor(amino_mask).to(device)) # loss = loss_function(prediction.view(-1, 2), torch.LongTensor(y_val).to(device).view(-1)) # b = 0.9 # flood = (loss - b).abs() + b true_labels = torch.LongTensor(y_val).to(device).view(-1) pred_labels = prediction.view(-1, 2) focal_loss = 0 for true_label, pred_label in zip(true_labels, pred_labels): pred_label = pred_label - torch.max(pred_label) exp_pred_label = torch.exp(pred_label) softmax_pred_label = exp_pred_label / torch.sum(exp_pred_label) p = softmax_pred_label[true_label] focal_loss += -0.6 * (1-p)**2 * torch.log(p) optimizer.zero_grad() focal_loss.backward() optimizer.step() # writer.add_scalar('data/train_loss', np.mean(np.array(losses)).item(), epoch) def evaluate(model, dataset, loss_function, fp_show=False): model.eval() # torch.no_grad() pred_list = [] true_list = [] # valList = np.arange(0, dataset.shape[0]) valList = list(dataset.index) batch_list = [] preds = None for i in range(0, dataset.shape[0], batch_size): batch = valList[i:i + batch_size] batch_list.append(batch) for counter, batch in enumerate(batch_list): batch_df = dataset.loc[batch, :] smiles_list = batch_df[SMILES].values seq_list = batch_df.seqs.values # print(batch_df) y_val = batch_df[TASK].values x_atom, x_bonds, x_atom_index, x_bond_index, x_mask, smiles_to_rdkit_list = get_smiles_array(smiles_list, feature_dicts) amino_list, amino_degree_list, amino_mask = data_handler.get_pro_structure(seq_list) pro_seqs = batch_df.seqs.values sents = create_sent(pro_seqs) tokenized_sent, all_attention_mask, all_token_type_ids = tokenize(sents, vocab, max_seq_len) tokenized_sent = tokenized_sent.to(device) all_attention_mask = all_attention_mask.to(device) all_token_type_ids = all_token_type_ids.to(device) with torch.no_grad(): prediction = model(torch.Tensor(x_atom).to(device), torch.Tensor(x_bonds).to(device), torch.LongTensor(x_atom_index).to(device), \ torch.LongTensor(x_bond_index).to(device), torch.Tensor(x_mask).to(device), tokenized_sent, all_attention_mask, all_token_type_ids, \ torch.tensor(amino_list).to(device), torch.LongTensor(amino_degree_list).to(device), \ torch.Tensor(amino_mask).to(device)) if preds is None: preds = prediction.detach().cpu().numpy() else: preds = np.append(preds, prediction.detach().cpu().numpy(), axis=0) true_list.extend(batch_df[TASK].values) loss = loss_function(torch.tensor(preds).to(device), torch.LongTensor(true_list).to(device).view(-1)) pred_list = np.argmax(preds, axis=1) # auc_value = auc(pred_list, true_list) # auc_value = roc_auc_score(y_true=pred_list, y_score=true_list) f1 = f1_score(y_true=true_list, y_pred=pred_list) precision = precision_score(y_true=true_list, y_pred=pred_list) recall = recall_score(y_true=true_list, y_pred=pred_list) mcc = matthews_corrcoef(y_true=true_list, y_pred=pred_list) if fp_show: tn, fp, fn, tp = confusion_matrix(y_true=true_list, y_pred=pred_list).ravel() return loss, f1, precision, recall, mcc, fp else: return loss, f1, precision, recall, mcc def predicted_value(model, dataset): model.eval() pred_list = [] valList = list(dataset.index) batch_list = [] preds = None for i in range(0, dataset.shape[0], batch_size): batch = valList[i:i + batch_size] batch_list.append(batch) for counter, batch in enumerate(batch_list): batch_df = dataset.loc[batch, :] smiles_list = batch_df[SMILES].values x_atom, x_bonds, x_atom_index, x_bond_index, x_mask, smiles_to_rdkit_list = get_smiles_array(smiles_list, feature_dicts) if model_type != "only_molecule": seq_list = batch_df.seqs.values amino_list, amino_degree_list, amino_mask = data_handler.get_pro_structure(seq_list) pro_seqs = batch_df.seqs.values sents = create_sent(pro_seqs) tokenized_sent, all_attention_mask, all_token_type_ids = tokenize(sents, vocab, max_seq_len) tokenized_sent = tokenized_sent.to(device) all_attention_mask = all_attention_mask.to(device) all_token_type_ids = all_token_type_ids.to(device) with torch.no_grad(): prediction = model(torch.Tensor(x_atom).to(device), torch.Tensor(x_bonds).to(device), torch.LongTensor(x_atom_index).to(device), \ torch.LongTensor(x_bond_index).to(device), torch.Tensor(x_mask).to(device), tokenized_sent, all_attention_mask, all_token_type_ids, \ torch.tensor(amino_list).to(device), torch.LongTensor(amino_degree_list).to(device), \ torch.Tensor(amino_mask).to(device)) else: with torch.no_grad(): prediction = model(torch.Tensor(x_atom).to(device), torch.Tensor(x_bonds).to(device), torch.LongTensor(x_atom_index).to(device), \ torch.LongTensor(x_bond_index).to(device), torch.Tensor(x_mask).to(device), None, None, None, None, None, None) if preds is None: preds = prediction.detach().cpu().numpy() else: preds = np.append(preds, prediction.detach().cpu().numpy(), axis=0) # pred_list = np.argmax(preds, axis=1) p_list = [] for pred_label in preds: pred_label = torch.tensor(pred_label) - torch.max(torch.tensor(pred_label)) exp_pred_label = torch.exp(pred_label) softmax_pred_label = exp_pred_label / torch.sum(exp_pred_label) p = softmax_pred_label[1] p_list.append(float(p)) return p_list def fun(radius, T, fingerprint_dim, weight_decay, learning_rate, p_dropout, pro_gat_dim, direction=False, load_model_path="", epochs=2, pre_param="", pre_model=None): loss_function = nn.CrossEntropyLoss() model = Network(int(round(radius)), int(round(T)), num_atom_features, num_bond_features, int(round(fingerprint_dim)), p_dropout, pro_seq_dim, pro_seq_dim, pro_gat_dim, seq_model_type, task_type) with open("./generate_parameters.txt", 'w') as f: for param_name, param_value in model.named_parameters(): print(param_name, ":", param_value.size(), file=f) print('Model parameters:', sum(param.numel() for param in model.parameters()), file=f) model = model.to(device) model = nn.DataParallel(model, device_ids=device_ids) if load_model_path: pre_state_dict = model.state_dict() print(list(pre_state_dict.items())[0]) model.load_state_dict(torch.load(load_model_path, map_location="cpu"), strict=False) after_state_dict = model.state_dict() print(list(after_state_dict.items())[0]) if pre_param == "": best_param = {} best_param["train_epoch"] = 0 best_param["valid_epoch"] = 0 best_param["train_loss"] = 9e8 best_param["valid_loss"] = 9e8 else: best_param = copy.deepcopy(pre_param) best_model = copy.deepcopy(pre_model) model = copy.deepcopy(pre_model) # Print model's state_dict print("Model's state_dict:") # for param_tensor in model.state_dict(): # print(param_tensor, "\t", model.state_dict()[param_tensor].size()) print('Model parameters:', sum(param.numel() for param in model.parameters())) # optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), 10 ** -learning_rate, weight_decay=10 ** -weight_decay) optimizer = optim.Adam(model.parameters(), 10 ** -learning_rate, weight_decay=10 ** -weight_decay) scheduler = ReduceLROnPlateau(optimizer, 'min', patience=patience) plot_loss = [] plot_precision = [] plot_recall = [] unchange_num = 0 time_epochs = 0 # used to record real training epochs for epoch in range(epochs): start_time = time.time() train(model, train_df, optimizer, loss_function, epoch + 1) train_loss, train_f1, train_precision, train_recall, train_mcc, train_fp = evaluate(model, train_df, loss_function, fp_show=True) valid_loss, valid_f1, valid_precision, valid_recall, valid_mcc, valid_fp = evaluate(model, valid_df, loss_function, fp_show=True) test_loss, test_f1, test_precision, test_recall, test_mcc, test_fp = evaluate(model, test_df, loss_function, fp_show=True) scheduler.step(valid_f1) # monitor mse and reduce lr # tensorboard add for para_group in optimizer.param_groups: lr = para_group['lr'] # writer.add_scalar('data/learning_rates', lr, epoch) real_epoch = epoch+1 if valid_loss < best_param["valid_loss"]: best_epoch = real_epoch best_param["train_loss"] = train_loss if pre_param == "": best_param["valid_epoch"] = real_epoch else: best_param["valid_epoch"] = real_epoch + pre_param["valid_epoch"] best_param["valid_loss"] = valid_loss best_model = copy.deepcopy(model) # torch.save(best_model.state_dict(), './PPI/drug/GAT/save/best-model-current.pth') end_time = time.time() train_log = 'epoch: {}, train_loss:{:.3f}, train_F1:{:.3f}, train_precision:{:.3f}, train_recall:{:.3f}, train_mcc:{:.3f}, train_fp:{}'.format( real_epoch, train_loss, train_f1, train_precision, train_recall, train_mcc, train_fp) valid_log = len('epoch: {}, '.format(epoch))*' '+'valid_loss:{:.3f}, valid_F1:{:.3f}, valid_precision:{:.3f}, valid_recall:{:.3f}, valid_mcc:{:.3f}, valid_fp:{}'.format( valid_loss, valid_f1, valid_precision, valid_recall, valid_mcc, valid_fp) test_log = len('epoch: {}, '.format(epoch))*' '+' test_loss:{:.3f}, test_F1:{:.3f}, test_precision:{:.3f}, test_recall:{:.3f}, test_mcc:{:.3f}, test_fp:{}, lr:{}'.format( test_loss, test_f1, test_precision, test_recall, test_mcc, test_fp, lr) each_epoch_time = "------------The {} epoch spend {}m-{:.4f}s------------".format(real_epoch, int((end_time-start_time)/60), (end_time-start_time)%60) print(train_log) print(valid_log) print(test_log) print(each_epoch_time) with open(log_file, 'a') as f: f.write(train_log+'\n') f.write(valid_log+'\n') f.write(test_log+'\n') f.write(each_epoch_time+'\n') plot_loss.append([real_epoch, train_loss, valid_loss]) plot_precision.append([real_epoch, train_precision, valid_precision]) plot_recall.append([real_epoch, train_recall, valid_recall]) time_epochs = time_epochs + 1 if epoch != 0: if abs(last_valid_loss - valid_loss)/last_valid_loss <= 0.005 or valid_loss > last_valid_loss: unchange_num = unchange_num+1 else: unchange_num = 0 if unchange_num == 10: # second run don't stop early break last_valid_loss = valid_loss if pre_param == "": plot_loss = plot_loss[0: best_epoch] plot_precision = plot_precision[0: best_epoch] plot_recall = plot_recall[0: best_epoch] return plot_loss, plot_precision, plot_recall, best_param, best_model, time_epochs else: dir_save = "./save/" + model_type + "-{:.3f}-{}-{}-{}-cv{}".format(best_param['valid_loss'], best_param['valid_epoch'], pre_param["valid_epoch"]+real_epoch, nega_type, choose_cv) if not os.path.exists(dir_save): os.makedirs(dir_save) print(dir_save+" create successful!") else: print(dir_save+" already exists.") os.system("cp " + log_file + ' ' + dir_save) torch.save(best_model.state_dict(), dir_save+'/best-model-{:.3f}-{}-{}.pth'.format(best_param['valid_loss'], best_param['valid_epoch'], pre_param["valid_epoch"]+real_epoch)) print("radius:{}, T:{}, fingerprint_dim:{}, weight_decay:{}, learning_rate:{}, p_dropout:{}".format(radius, T, fingerprint_dim, weight_decay, learning_rate, p_dropout)) return plot_loss, plot_precision, plot_recall, best_param, best_model, dir_save, time_epochs def split_kfold(all_df): all_df.reset_index(drop=True, inplace=True) all_df['seqs'] = all_df.loc[0, 'seqs'] positive_df = all_df[all_df[TASK].isin([1])] negative_df = all_df[all_df[TASK].isin([0])] positive_index_list = list(positive_df.index) negative_index_list = list(negative_df.index) random.shuffle(positive_index_list) random.shuffle(negative_index_list) per_posi_cv_num = int(len(positive_index_list)/cv_num) per_nega_cv_num = int(len(negative_index_list)/cv_num) cv_index_list = [] for i in range(cv_num): if i == cv_num - 1: cv_index_list.append(positive_index_list[i*per_posi_cv_num:]+negative_index_list[i*per_nega_cv_num:]) else: cv_index_list.append(positive_index_list[i*per_posi_cv_num: (i+1)*per_posi_cv_num]+negative_index_list[i*per_nega_cv_num: (i+1)*per_nega_cv_num]) return cv_index_list def set_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # 为CPU设置随机种子 torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子 if n_gpu > 0: torch.cuda.manual_seed_all(seed) # 为所有GPU设置随机种子 torch.backends.cudnn.deterministic = True #cpu/gpu结果一致 torch.backends.cudnn.benchmark = False #训练集变化不大时使训练加速 file_name = "./data/SARS-3CL_with_aff20_acsmpro_408pos_1358neg.xlsx" test_file_name = "./data/3CL_enzymatic_activity_noaff_for_test_493pos_9459neg.xlsx" new_add_file = "./data/SARS-3CL_414_1860_new_data_part.xlsx" predict_file_name = "./data/mcule_201201_rdsmi_%d_small.csv" nega_seed = 50 # [50, 3, 24] parser = argparse.ArgumentParser() parser.add_argument("--nega_seed", default=nega_seed, type=int, help="") args = parser.parse_args() nega_type = '8w_%d' % args.nega_seed nega_file_name = "./data/SARS-3CL_no_aff_neg_test_29w_dropaff_8w_%d_small.xlsx" % args.nega_seed load_model_path_list = ["./save/bert-finetune-0.016-102-147-8w_50-cv1/best-model-0.016-102-147.pth", \ "./save/bert-finetune-0.014-74-148-8w_50-cv2/best-model-0.014-74-148.pth", \ "./save/bert-finetune-0.012-148-168-8w_50-cv3/best-model-0.012-148-168.pth"] model_type = "bert-finetune" seq_model_type = model_type task_type = "classification" p_dropout = 0.4 epochs = 2 weight_decay = 4 # also known as l2_regularization_lambda learning_rate = 3 patience = 30 radius = 3 T = 1 TASK = 'label' SMILES = "rdkit_smiles" cm_seq = 'seq' nonspecial_vocab_size = 26 special_vocab_size = 5 max_seq_len = 512 fingerprint_dim=150 pro_gat_dim=64 n_gpu = 4 gpu_start = 0 cv_num = 3 per_gpu_batch_size = 32 do_train = False do_predict = True batch_size = per_gpu_batch_size * n_gpu pro_seq_dim = 512 VOCAB_PATH = "./pretrained_model/protein_vocab.json" cm_pickle_dir = './data/3d_pdb_v2' seed = 3 set_seed(seed) with open(VOCAB_PATH) as f: vocab = json.load(f) if do_train: max_atom_len = 296 - 1 max_bond_len = 304 - 1 nega_data_handler = DataHandler(nega_file_name, max_atom_len=max_atom_len, max_bond_len=max_bond_len) nega_feature_dicts = nega_data_handler.smile_feature_dict nega_data_df = nega_data_handler.data_df nega_data_df_sample = nega_data_df data_handler = DataHandler(file_name, max_atom_len=max_atom_len, max_bond_len=max_bond_len) all_df = data_handler.data_df all_df = pd.concat([all_df, nega_data_df_sample], axis=0) cv_index_list = split_kfold(all_df) new_add_data_handler = DataHandler(new_add_file, max_atom_len=max_atom_len, max_bond_len=max_bond_len) new_add_feature_dicts = new_add_data_handler.smile_feature_dict new_add_data_df = new_add_data_handler.data_df new_add_cv_index_list = split_kfold(new_add_data_df) raw_feature_dicts = data_handler.smile_feature_dict test_data_handler = DataHandler(test_file_name, max_atom_len=max_atom_len, max_bond_len=max_bond_len) test_df = test_data_handler.data_df test_df['seqs'] = all_df.loc[0, 'seqs'] test_feature_dicts = test_data_handler.smile_feature_dict feature_dicts = {'smiles_to_atom_mask':{}, 'smiles_to_atom_info':{}, 'smiles_to_bond_info':{}, 'smiles_to_atom_neighbors':{}, 'smiles_to_bond_neighbors':{}, 'smiles_to_rdkit_list':{}} feature_dicts['smiles_to_atom_mask'].update(raw_feature_dicts['smiles_to_atom_mask']) feature_dicts['smiles_to_atom_mask'].update(test_feature_dicts['smiles_to_atom_mask']) feature_dicts['smiles_to_atom_mask'].update(nega_feature_dicts['smiles_to_atom_mask']) feature_dicts['smiles_to_atom_mask'].update(new_add_feature_dicts['smiles_to_atom_mask']) feature_dicts['smiles_to_atom_info'].update(raw_feature_dicts['smiles_to_atom_info']) feature_dicts['smiles_to_atom_info'].update(test_feature_dicts['smiles_to_atom_info']) feature_dicts['smiles_to_atom_info'].update(nega_feature_dicts['smiles_to_atom_info']) feature_dicts['smiles_to_atom_info'].update(new_add_feature_dicts['smiles_to_atom_info']) feature_dicts['smiles_to_bond_info'].update(raw_feature_dicts['smiles_to_bond_info']) feature_dicts['smiles_to_bond_info'].update(test_feature_dicts['smiles_to_bond_info']) feature_dicts['smiles_to_bond_info'].update(nega_feature_dicts['smiles_to_bond_info']) feature_dicts['smiles_to_bond_info'].update(new_add_feature_dicts['smiles_to_bond_info']) feature_dicts['smiles_to_atom_neighbors'].update(raw_feature_dicts['smiles_to_atom_neighbors']) feature_dicts['smiles_to_atom_neighbors'].update(test_feature_dicts['smiles_to_atom_neighbors']) feature_dicts['smiles_to_atom_neighbors'].update(nega_feature_dicts['smiles_to_atom_neighbors']) feature_dicts['smiles_to_atom_neighbors'].update(new_add_feature_dicts['smiles_to_atom_neighbors']) feature_dicts['smiles_to_bond_neighbors'].update(raw_feature_dicts['smiles_to_bond_neighbors']) feature_dicts['smiles_to_bond_neighbors'].update(test_feature_dicts['smiles_to_bond_neighbors']) feature_dicts['smiles_to_bond_neighbors'].update(nega_feature_dicts['smiles_to_bond_neighbors']) feature_dicts['smiles_to_bond_neighbors'].update(new_add_feature_dicts['smiles_to_bond_neighbors']) feature_dicts['smiles_to_rdkit_list'].update(raw_feature_dicts['smiles_to_rdkit_list']) feature_dicts['smiles_to_rdkit_list'].update(test_feature_dicts['smiles_to_rdkit_list']) feature_dicts['smiles_to_rdkit_list'].update(nega_feature_dicts['smiles_to_rdkit_list']) feature_dicts['smiles_to_rdkit_list'].update(new_add_feature_dicts['smiles_to_rdkit_list']) for choose_cv in range(1, cv_num+1): valid_df = all_df.iloc[cv_index_list[choose_cv-1], :] train_df = all_df.drop(cv_index_list[choose_cv-1], axis=0) valid_df_add = new_add_data_df.iloc[new_add_cv_index_list[choose_cv-1], :] train_df_add = new_add_data_df.drop(new_add_cv_index_list[choose_cv-1], axis=0) valid_df = pd.concat([valid_df, valid_df_add], axis=0) train_df =
pd.concat([train_df, train_df_add], axis=0)
pandas.concat
""" Test cases for DataFrame.plot """ import warnings import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame import pandas._testing as tm from pandas.tests.plotting.common import TestPlotBase, _check_plot_works @td.skip_if_no_mpl class TestDataFrameColor(TestPlotBase): def setup_method(self, method): TestPlotBase.setup_method(self, method) import matplotlib as mpl mpl.rcdefaults() self.tdf = tm.makeTimeDataFrame() self.hexbin_df = DataFrame( { "A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform(size=20), } ) def test_mpl2_color_cycle_str(self): # GH 15516 df = DataFrame(np.random.randn(10, 3), columns=["a", "b", "c"]) colors = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9"] with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", "MatplotlibDeprecationWarning") for color in colors: _check_plot_works(df.plot, color=color) # if warning is raised, check that it is the exact problematic one # GH 36972 if w: match = "Support for uppercase single-letter colors is deprecated" warning_message = str(w[0].message) msg = "MatplotlibDeprecationWarning related to CN colors was raised" assert match not in warning_message, msg def test_color_single_series_list(self): # GH 3486 df = DataFrame({"A": [1, 2, 3]}) _check_plot_works(df.plot, color=["red"]) @pytest.mark.parametrize("color", [(1, 0, 0), (1, 0, 0, 0.5)]) def test_rgb_tuple_color(self, color): # GH 16695 df =
DataFrame({"x": [1, 2], "y": [3, 4]})
pandas.DataFrame
import dash import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc import pandas as pd from dash.dependencies import Input, Output, State, ClientsideFunction from dash.exceptions import PreventUpdate from enum import Enum, unique from app import app # import components and its generation from components.upload.upload import upload_component_generate from components.download.download import download_component_generate from components.oversampling.oversampling import oversampling_component_generate from components.tab.tabs import ft_tabs_generate from components.loglinearswitch.axisSwitch import vertical_axis_swith # import algorithm from algorithm.oversample import get_oversampling_data from algorithm.read_data import convert_lists_to_df, generate_df, generate_df_from_local, replace_dict_value from algorithm.pwft import fast_ftdata from algorithm.saving_process import combine_as_complex, six_decimal_saving # Using your own app name. Can't be same. prefix_app_name = "FTAPP" # Selection options @unique class DOWNLOAD_OPTIONS(Enum): OVERSAMPLED_RAW_DATA = 0 FT_RAW_DATA = 1 FT_OVERSAMPLED_DATA = 2 @unique class TIME_DERIVATED(Enum): NONTIME_DERIVATED = False TIME_DERIVATED = True # TODO need modify and change the algorithm plus with function Layout = dbc.Row([ dbc.Col([ html.H5("Support .txt"), html.Div([ upload_component_generate("FTAPP-upload"), dcc.Store(id="FTAPP-raw-data-store", storage_type="session"), dcc.Store(id="FTAPP-oversampling-data-store", storage_type="session"), dcc.Store(id="FTAPP-ft-data-store", storage_type="session"), dcc.Loading([dcc.Store(id="FTAPP-oversampled-ft-data-store", storage_type="session")], id="FTAPP-full-screen-mask", fullscreen=True) ], className="btn-group me-2"), html.Div([dbc.Button("Load Example data", id="FTAPP-load-example", color="primary", style={"margin": "5px"})], className="btn-group me-2"), html.Div(id="FTAPP-upload-message"), # This is just for show the loading message html.Div(id="FTAPP-loading-message"), html.Hr(), oversampling_component_generate(prefix_app_name), html.Hr(), download_component_generate(prefix_app_name) ], width=3), dbc.Col([ ft_tabs_generate(prefix_app_name), vertical_axis_swith(prefix_app_name), ], width=True), # Loading ]) # ================ Upload callback ======================== """ Trigger when the experiental data(raw data) uploaded """ @app.callback( Output("FTAPP-raw-data-store", "data"), Output("FTAPP-ft-data-store", "data"), # Output("FTAPP-upload-message", "children"), Output("FTAPP-loading-message", "children"), Input("FTAPP-upload", "contents"), Input("FTAPP-load-example", "n_clicks"), Input("FTAPP-refresh-btn", "n_clicks"), State("FTAPP-g_0", "value"), State("FTAPP-g_inf", "value"), State("FTAPP-oversampling-Nf", "value"), State("FTAPP-upload", "filename"), State("FTAPP-raw-data-store", "data"), State("FTAPP-ft-data-store", "data"), prevent_initial_call=True ) def store_raw_data(content, example_click, refresh_click, g_0, g_inf, N_f, file_name, prev_raw_data, prev_ft_raw_data): # Deciding which raw_data used according to the ctx ctx = dash.callback_context button_id = ctx.triggered[0]['prop_id'].split('.')[0] # If all the input value is default, it means no update # if g_0 is None and g_inf is None and N_f is None: # disable_refresh_updated = True # else: # disable_refresh_updated = False # default g_0: 1, g_inf: 0 g_0 = 1 if g_0 is None else float(g_0) g_inf = 0 if g_inf is None else float(g_inf) N_f = 100 if N_f is None else int(N_f) df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Feb 1 11:51:18 2021 @author: f004swn """ import numpy as np import ast import time import cv2 import pandas as pd #import face_recognition from scenedetect import VideoManager, SceneManager from scenedetect.detectors import ContentDetector from tqdm import tqdm import os.path as osp import os import subprocess import traceback from pathlib import Path import gdown from requests.exceptions import MissingSchema import zipfile from sklearn.metrics import confusion_matrix from PIL import Image import base64 from io import BytesIO def img_to_b64(arr_img): pil_img = Image.fromarray(arr_img) prefix = "data:image/png;base64," with BytesIO() as stream: pil_img.save(stream, format="png") base64_string = prefix + base64.b64encode(stream.getvalue()).decode("utf-8") return base64_string #def video_to_bytes(vid_arr): # out_strings = [] # for img in range(vid_arr.shape[0]): # out_strings.append(img_to_b64(vid_arr[img])) # return out_strings def bytes_to_arr(bString): r = base64.b64decode(bString, + "==") q = np.frombuffer(r, dtype=np.float64) return q def video_to_images(vid_file, img_folder=None, return_info=False): if img_folder is None: img_folder = osp.join('/scratch', osp.basename(vid_file).replace('.', '_')) os.makedirs(img_folder, exist_ok=True) command = ['ffmpeg', '-i', vid_file, '-f', 'image2', '-v', 'error', f'{img_folder}/%06d.png'] print(f'Running \"{" ".join(command)}\"') subprocess.call(command) print(f'Images saved to \"{img_folder}\"') img_shape = cv2.imread(osp.join(img_folder, '000001.png')).shape if return_info: return img_folder, len(os.listdir(img_folder)), img_shape else: return img_folder def from_np_array(array_string): # this is old if 'e' in array_string: out = array_string.strip('[]').split(' ') out = [i.strip('\n') for i in out] out = [ast.literal_eval(i) for i in out] return out # converter function for interpreting face data csv else: array_string = ','.join(array_string.replace('[ ', '[').split()) return array_string #return np.array(ast.literal_eval(array_string)) def string2list(string): # converter function for interpreting face data csv if '.' in string: vals = [float(i) for i in string[1:-1].replace('.', '').split(' ') if i!=''] else: vals = [float(i) for i in string[1:-1].replace(',', '').split(' ') if i!=''] return vals def string_is_int(s): try: int(s) return True except ValueError: return False def ts_to_frame(ts, framerate): # converts a timestamp to frame h, m, s = ts.split(':') conv_ts = (int(h)*60*60 + int(m)*60 + int(s))*framerate return round(conv_ts) def frame_to_ts(frame, fps): seconds = round(frame//fps) ts = time.strftime('%H:%M:%S', time.gmtime(seconds)) return ts def check_match(bod, fac): # need to update this because of newly added py-feat face detection bcx, bcy, bw, bh = [float(i) for i in bod] #body corner is bottom left fcx, fcy, fw, fh = [float(i) for i in fac] #face corner is top left top_b, right_b, bottom_b, left_b = [(bcy-bh/2), (bcx+bw/2), (bcy+bh/2), (bcx-bw/2)] top_f, right_f, bottom_f, left_f = [fcy, fcx+fw, fcy+fh, fcx] face_x = (right_f-left_f)/2 + left_f face_y = (bottom_f-top_f)/2 + top_f if (left_b < face_x < right_b and top_b < face_y < bottom_b): return True else: return False def frame2array(frame_no, video_opened): # returns a video from as a numpy array in uint8 video_opened.set(cv2.CAP_PROP_POS_FRAMES,frame_no) ret, frame = video_opened.read() frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) #cv2.destroyAllWindows() return frame def resize_image(array, newsize): array = cv2.resize(array, dsize=newsize, interpolation=cv2.INTER_CUBIC) array = np.expand_dims(array, axis=0)[0] return array def crop_image(array, bbox): top, right, bottom, left = bbox new_img = array[top:bottom, left:right, :] return new_img def crop_image_wh(array, data): # The _wh means it is taking the py-feat face bounding box format # Top-left corner x and y, then the width and height of the box from that point cx, cy, w, h = [i for i in data] # I don't think this calculation is right: top, right, bottom, left = [int(round(i)) for i in [(cy-h/2), int(cx+w/2), int(cy+h/2), (cx-w/2)]] new_img = array[top:bottom, left:right, :] return new_img def crop_image_body(array, data): # you can now just use on crop image function because the body and face bboxes are in the same format cx, cy, w, h = [i for i in data] top, right, bottom, left = [int(round(i)) for i in [(cy-h/2), int(cx+w/2), int(cy+h/2), (cx-w/2)]] new_img = array[top:bottom, left:right, :] return new_img def evaluate_pred_ID(charList, ground, pred): #ground and pred need to be same-shape np arrays # might be better to take dataframes so columns # can be cross-referenced (less preprocessing of presence matrices) chars = list(charList) chars.insert(0, 'metric') metrics = ['overall', 'true_positive', 'true_negative', 'false_positive', 'false_negative', 'true_presence_proportion'] acc_df =
pd.DataFrame(columns=chars)
pandas.DataFrame
import numpy as np import pandas as pd import tqsdk from tqsdk.tafunc import time_to_str import tqsdk.tafunc import time import numba import re import requests import json def 调仓函数(api,品种,目标值): 当前持仓=api.get_position(品种) 当前值=当前持仓.pos_long-当前持仓.pos_short if 目标值>当前值: 需要增加仓位值=目标值-当前值 if 当前持仓.pos_short>0: if 当前持仓.pos_short>=需要增加仓位值: if 需要增加仓位值: 追单平仓2(api,品种,"BUY",需要增加仓位值) else: 平仓值1=当前持仓.pos_short 开仓值1=需要增加仓位值-平仓值1 if 平仓值1: 追单平仓2(api,品种,"BUY",平仓值1) if 开仓值1: 追单开仓2(api,品种,"BUY",开仓值1) else: if 需要增加仓位值: 追单开仓2(api,品种,"BUY",需要增加仓位值) else: 需要减少仓位值=当前值-目标值 if 当前持仓.pos_long>0: if 当前持仓.pos_long>=需要减少仓位值: if 需要减少仓位值: 追单平仓2(api,品种,"SELL",需要减少仓位值) else: 平仓值1=当前持仓.pos_long 开仓值1=需要减少仓位值-平仓值1 if 平仓值1: 追单平仓2(api,品种,"SELL",平仓值1) if 开仓值1: 追单开仓2(api,品种,"SELL",开仓值1) else: if 需要减少仓位值: 追单开仓2(api,品种,"SELL",需要减少仓位值) while True: 当前持仓=api.get_position(品种) 当前值=当前持仓.pos_long-当前持仓.pos_short if 当前值==目标值: break if 当前值==目标值: break api.wait_update() 当前持仓=api.get_position(品种) 当前值=当前持仓.pos_long-当前持仓.pos_short if 当前值==目标值: break def 开仓有效时间(有效time_list): 当前时间=time.strftime("%H:%M",time.localtime()) 时间判断真假=[ x[0]<=当前时间<x[1] for x in 有效time_list] if any(时间判断真假): return 1 return 0 def 查询最近成交时间(api,品种,买卖,开平): 总成交=api.get_trade() l=[] for x in 总成交: 成交信息=api.get_trade(x) l.append((成交信息.trade_date_time,成交信息.direction,成交信息.offset,\ 成交信息.price,成交信息.exchange_id+"."+成交信息.instrument_id )) l=sorted(l,key=lambda x: x[0],reverse=True) for x in l: if 买卖=="买" and 开平=="开": for x in l: if x[1]=="BUY" and x[2]=="OPEN" and x[4]==品种: return x[0] if 买卖=="买" and 开平=="平": for x in l: if x[1]=="BUY" and x[2] in ("CLOSE","CLOSETODAY") and x[4]==品种: return x[0] if 买卖=="卖" and 开平=="开": for x in l: if x[1]=="SELL" and x[2]=="OPEN" and x[4]==品种: return x[0] if 买卖=="卖" and 开平=="平": for x in l: if x[1]=="SELL" and x[2] in ("CLOSE","CLOSETODAY") and x[4]==品种: return x[0] def 维护持仓_redis(连接,品种,买卖,开平,价格,数量): 全品种=[ x.decode() for x in 连接.keys("*")] if 品种 not in 全品种: data={"多仓":0,"空仓":0,"多仓成本":0,"空仓成本":0} else: data=eval(连接.get(品种)) if 买卖=="买" and 开平=="开": data["多仓成本"]= (data["多仓"]*data["多仓成本"]+价格*数量)/(data["多仓"]+数量) data["多仓"]=data["多仓"]+数量 if 买卖=="买" and 开平=="平": data["空仓"]=data["空仓"]-数量 if 买卖=="卖" and 开平=="开": data["空仓成本"]= (data["空仓"]*data["空仓成本"]+价格*数量)/(data["空仓"]+数量) data["空仓"]=data["空仓"]+数量 if 买卖=="卖" and 开平=="平": data["多仓"]=data["多仓"]-数量 连接.set(品种,str(data)) return data def 获取持仓_redis(连接,品种): 全品种=[ x.decode() for x in 连接.keys("*")] if 品种 not in 全品种: data={"多仓":0,"空仓":0,"多仓成本":0,"空仓成本":0} 连接.set(品种,str(data)) else: data=eval(连接.get(品种).decode()) return data def 维护持仓(路径地址,买卖,开平,价格,数量): try: f=open(路径地址,"r") data=eval(f.read()) f.close() except: f=open(路径地址,"w") f.close() data={"多仓":0,"空仓":0,"多仓成本":0,"空仓成本":0} if 买卖=="买" and 开平=="开": data["多仓成本"]= (data["多仓"]*data["多仓成本"]+价格*数量)/(data["多仓"]+数量) data["多仓"]=data["多仓"]+数量 if 买卖=="买" and 开平=="平": data["空仓"]=data["空仓"]-数量 if 买卖=="卖" and 开平=="开": data["空仓成本"]= (data["空仓"]*data["空仓成本"]+价格*数量)/(data["空仓"]+数量) data["空仓"]=data["空仓"]+数量 if 买卖=="卖" and 开平=="平": data["多仓"]=data["多仓"]-数量 f=open(路径地址,"w") f.write(str(data)) f.close() return data def 获取持仓(路径地址): try: f=open(路径地址,"r") data=eval(f.read()) f.close() except: f=open(路径地址,"w") f.close() data={"多仓":0,"空仓":0,"多仓成本":0,"空仓成本":0} return data def 查询最近成交价格(api,买卖,开平): 总成交=api.get_trade() l=[] for x in 总成交: 成交信息=api.get_trade(x) l.append((time_to_str(成交信息.trade_date_time),成交信息.direction,成交信息.offset,成交信息.price)) l=sorted(l,key=lambda x: x[0],reverse=True) for x in l: if 买卖=="买" and 开平=="开": for x in l: if x[1]=="BUY" and x[2]=="OPEN": return x[3] if 买卖=="买" and 开平=="平": for x in l: if x[1]=="BUY" and x[2] in ("CLOSE","CLOSETODAY"): return x[3] if 买卖=="卖" and 开平=="开": for x in l: if x[1]=="SELL" and x[2]=="OPEN": return x[3] if 买卖=="卖" and 开平=="平": for x in l: if x[1]=="SELL" and x[2] in ("CLOSE","CLOSETODAY"): return x[3] def 追单开仓2(api,品种,方向,需要平的数量,增加的点差=20): qutoe=api.get_quote(品种) 最小变动单位=查询合约相关信息(api,品种)["合约最小跳数"] if 方向=="SELL": 下单价格=qutoe.lower_limit if qutoe.last_price-最小变动单位*增加的点差< qutoe.lower_limit else qutoe.last_price-最小变动单位*增加的点差 else: 下单价格=qutoe.upper_limit if qutoe.last_price+最小变动单位*增加的点差> qutoe.upper_limit else qutoe.last_price+最小变动单位*增加的点差 a=api.insert_order(品种,方向,"OPEN",需要平的数量,下单价格) while True: api.wait_update() a=api.get_order(a.order_id) if a.status=="FINISHED": 成交价格=a.trade_price break print("成交价格",成交价格) return 成交价格 def 追单平仓2(api,品种,方向,需要平的数量,增加的点差=20): 持仓=api.get_position(品种) 多仓=持仓.pos_long_his+持仓.pos_long_today 空仓=持仓.pos_short_his+持仓.pos_short_today qutoe=api.get_quote(品种) 最小变动单位=查询合约相关信息(api,品种)["合约最小跳数"] 成交价格=0 if 品种.split('.')[0] in ('SHFE','INE') : if 方向=="SELL": 下单价格=qutoe.lower_limit if qutoe.last_price-最小变动单位*增加的点差< qutoe.lower_limit else qutoe.last_price-最小变动单位*增加的点差 平昨日仓=min(需要平的数量,持仓.pos_long_his) if 平昨日仓: a=api.insert_order(品种,方向,'CLOSE',平昨日仓,limit_price=下单价格) #tqsdk.lib.InsertOrderUntilAllTradedTask(api,品种,方向,"CLOSE",平昨日仓) while True: api.wait_update() a=api.get_order(a.order_id) if a.status=="FINISHED": 成交价格=a.trade_price break 还需平的仓=需要平的数量-平昨日仓 平今日仓=min(还需平的仓,持仓.pos_long_today) if 平今日仓: a=api.insert_order(品种,方向,'CLOSETODAY',平今日仓,limit_price=下单价格) #tqsdk.lib.InsertOrderUntilAllTradedTask(api,品种,方向,"CLOSETODAY",平今日仓) while True: api.wait_update() a=api.get_order(a.order_id) if a.status=="FINISHED": 成交价格=a.trade_price break else: 下单价格=qutoe.upper_limit if qutoe.last_price+最小变动单位*增加的点差> qutoe.upper_limit else qutoe.last_price+最小变动单位*增加的点差 平昨日仓=min(需要平的数量,持仓.pos_short_his) if 平昨日仓: a=api.insert_order(品种,方向,'CLOSE',平昨日仓,limit_price=下单价格) #tqsdk.lib.InsertOrderUntilAllTradedTask(api,品种,方向,"CLOSE",平昨日仓) while True: api.wait_update() a=api.get_order(a.order_id) if a.status=="FINISHED": 成交价格=a.trade_price break 还需平的仓=需要平的数量-平昨日仓 平今日仓=min(还需平的仓,持仓.pos_short_today) if 平今日仓: a=api.insert_order(品种,方向,'CLOSETODAY',平今日仓,limit_price=下单价格) while True: api.wait_update() a=api.get_order(a.order_id) if a.status=="FINISHED": 成交价格=a.trade_price break #tqsdk.lib.InsertOrderUntilAllTradedTask(api,品种,方向,"CLOSETODAY",平今日仓) else: if 方向=="SELL": 下单价格=qutoe.lower_limit if qutoe.last_price-最小变动单位*增加的点差< qutoe.lower_limit else qutoe.last_price-最小变动单位*增加的点差 if min(多仓,需要平的数量): a=api.insert_order(品种,方向,'CLOSE',min(多仓,需要平的数量),limit_price=下单价格) #tqsdk.lib.InsertOrderUntilAllTradedTask(api,品种,方向,"CLOSE",min(多仓,需要平的数量)) while True: api.wait_update() a=api.get_order(a.order_id) if a.status=="FINISHED": 成交价格=a.trade_price break else: 下单价格=qutoe.upper_limit if qutoe.last_price+最小变动单位*增加的点差> qutoe.upper_limit else qutoe.last_price+最小变动单位*增加的点差 if min(空仓,需要平的数量): a=api.insert_order(品种,方向,'CLOSE',min(空仓,需要平的数量),limit_price=下单价格) #tqsdk.lib.InsertOrderUntilAllTradedTask(api,品种,方向,"CLOSE",min(空仓,需要平的数量)) while True: api.wait_update() a=api.get_order(a.order_id) if a.status=="FINISHED": 成交价格=a.trade_price break # 持仓=api.get_position(品种) # while True: # if 方向=="SELL": # if 持仓.pos_long==0: # break # else: # if 持仓.pos_short==0: # break # api.wait_update() # time.sleep(1) return 成交价格 def 品种无交易所简称查带交易简称(api,无交易所的简称列表): 主力合约=查询所有主力合约(api) 全称列表=[ x.split("@")[1] for x in 主力合约 ] 简称列表=[ x.split(".")[1] for x in 全称列表] l=[] try: for x in 无交易所的简称列表: l.append(全称列表[简称列表.index(x)]) except: print(x,"没有这个品种") return l def 根据合约名字列表和周期查询出data字典(合约名称列表,周期): d={} for x in 合约名称列表: if "@" not in x: 大类名字= re.findall("([a-zA-Z]*)[0-9]{1,}$",x)[0] else: 大类名字= x.split(".")[-1] data=pd.read_csv(".\\data\\"+大类名字+"\\"+x+"\\"+str(周期)+".csv",header=None) d[x]=data.to_numpy() return d def numpy_to_pandas(data): return pd.DataFrame(data,columns=["datetime",'open','high','low','close',"volume","open_oi","close_oi"]) def 根据限定时间查到涉及到的具体合约(start时间,end时间,查询列表,历史data文件夹): l=[] startnew_timestamp=time.mktime(time.strptime(start时间,"%Y-%m-%d"))*1e9 endnew_timestamp=time.mktime(time.strptime(end时间,"%Y-%m-%d"))*1e9 for x in 查询列表: data=pd.read_csv(历史data文件夹+"\\"+x+'.csv') for y in range(len(data)): #print(startnew_timestamp,data.datetime.iloc[x],endnew_timestamp) if startnew_timestamp<data.datetime.iloc[y]<endnew_timestamp: if data.symbol_main.iloc[y] not in l: l.append(data.symbol_main.iloc[y]) return l def dingding_message(地址,内容): headers = {'Content-Type': 'application/json'} data = { "msgtype": "text", "text": { "content": 内容 } } requests.post(地址, data=json.dumps(data), headers=headers) def 查询合约中文名(品种): 合约名字=品种.split('.')[1] 合约具体=re.findall("([a-zA-Z]{1,})",合约名字)[0] # print(合约具体) d={ "IF":"IF", "IH":"IH", "IC":"IC", "TS":"二债", "TF":"五债", "TF":"五债", "T":"十债", "cu":"沪铜", "zn":"沪锌", "al":"沪铝", "pd":"沪铅", "ni":"沪镍", "sn":"沪锡", "au":"沪金", "ag":"沪银", 'rb':"螺纹", 'wr':"线材", 'hc':"热卷", 'ss':"SS", 'fu':"燃油", 'bu':"沥青", 'ru':"橡胶", 'sp':"纸浆", "m":"豆粕", "y":"豆油", "a":"豆一", "b":"豆二", "p":"棕榈", "c":"玉米", "cs":"淀粉", "rr":"粳米", "jd":"鸡蛋", "bb":"胶板", "fb":"纤板", "l":"塑料", "v":"PVC", "eg":"EG", "pp":"PP" , "eb":"EB", "j":"焦炭", "jm":"焦煤", "i":"铁矿", "pg":"LPG", "SR":"白糖", "CF":"郑棉", "CY":"棉纱", "ZC":"郑煤", "FG":"玻璃", "TA":"PTA" , "MA":"郑醇", "UR":"尿素", "SA":"纯碱", "WH":"郑麦", "RI":"早稻", "LR":"晚稻", "JR":"粳稻", "RS":"菜籽", "OI":"郑油", "RM":"菜粕", "SF":"硅铁", "SM":"锰硅", "AP":"苹果", "CJ":"红枣", "sc":"原油", "nr":"NR", } if 合约具体 in d: return d[合约具体] return 合约具体 def ea_break(api,成交记录文件地址): struct_time=time.localtime() 时间=time.strftime("%H:%M:%S",struct_time) if "02:30:00"<=时间<"08:30:00": return 1 if "15:15:00"<=时间<"20:30:00": try: f=open(成交记录文件地址,"r") data=f.read() f.close() except: data="" f=open(成交记录文件地址,'a+') a=api.get_trade() if not data: f.write("成交时间,成交品种,下单方向,开平标志,委托价格,成交价格,成交手数,委托单号,成交单号,成交手续费\n") for x in a: b=api.get_trade(x) #获取成交的订单信息 c=api.get_order(b.order_id) f.write(','.join([time_to_str(b.trade_date_time), b.exchange_id+b.instrument_id, b.direction, b.offset, str(c.limit_price), str(b.price), str(b.volume), b.order_id, b.trade_id, str(b.commission)])+'\n' ) f.close() return 1 return 0 def 订阅异常(api,x): try: return api.get_kline_serial(x,60*60*24,2000) except: return 0 def 查询品种主力的月份(api,品种): t1=time.time() 总合约=查询所有合约(api) t2=time.time() 品种相关合约=[ x for x in 总合约 if re.findall("^"+品种+"[0-9]{1,}$",x)] 品种相关合约=sorted(品种相关合约) t3=time.time() 订阅data合约字典={} # 订阅data合约字典={ x:api.get_kline_serial(x,60*60*24,2000) for x in 品种相关合约} for x in 品种相关合约: a=订阅异常(api,x) if type(a) !=type(0): 订阅data合约字典[x]=a t4=time.time() 订阅data合约新字典={ x:{ 订阅data合约字典[x].datetime.iloc[y] : 订阅data合约字典[x].volume.iloc[y] for y in range(len(订阅data合约字典[x]))} for x in 订阅data合约字典} t5=time.time() 订阅主连=api.get_kline_serial("KQ.m@"+品种,60*60*24,2000) t6=time.time() l=[] for x in range(0,2000,10): if 订阅主连.datetime.iloc[x]: 日期=订阅主连.datetime.iloc[x] Volume=订阅主连.volume.iloc[x] for y in 订阅data合约新字典: if 日期 in 订阅data合约新字典[y]: if 订阅data合约新字典[y][日期]==Volume: l.append(y) break else: l.append("") else: l.append("") t7=time.time() l.append(api.get_quote("KQ.m@"+品种)["underlying_symbol"]) t8=time.time() #print("t2-t1",t2-t1,"t3-t2",t3-t2,"t4-t3",t4-t3,"t5-t4",t5-t4,"t6-t5",t6-t5,"t7-t6",t7-t6,"t8-t7",t8-t7) b=set([ x[-2:] for x in l if x]) return b def 查询品种能成为主力合约的合约(api,品种): 总合约=查询所有合约(api) 品种相关合约=[ x for x in 总合约 if re.findall("^"+品种+"[0-9]{1,}$",x)] 主力月=查询品种主力的月份(api,品种) l=[] for x in 品种相关合约: if x[-2:] in 主力月: l.append(x) return l def 查询品种历史主连映射(api,品种): 总合约=查询所有合约(api) 品种相关合约=[ x for x in 总合约 if re.findall("^"+品种+"[0-9]{1,}$",x)] 合约月份=查询品种主力的月份(api,品种) 品种相关合约=[ x for x in 品种相关合约 if x[-2:] in 合约月份] #订阅data合约字典={ x:api.get_kline_serial(x,60*60*24,2000) for x in 品种相关合约} 订阅data合约字典={} for x in 品种相关合约: a=订阅异常(api,x) if type(a) !=type(0): 订阅data合约字典[x]=a 订阅data合约新字典={ x:{ 订阅data合约字典[x].datetime.iloc[y] : 订阅data合约字典[x].volume.iloc[y] for y in range(len(订阅data合约字典[x]))} for x in 订阅data合约字典} 订阅主连=api.get_kline_serial("KQ.m@"+品种,60*60*24,2000) l=[] for x in range(2000): if 订阅主连.datetime.iloc[x]: 日期=订阅主连.datetime.iloc[x] Volume=订阅主连.volume.iloc[x] for y in 订阅data合约新字典: if 日期 in 订阅data合约新字典[y]: if 订阅data合约新字典[y][日期]==Volume: l.append(y) break else: l.append("") else: l.append("") l[-1]=api.get_quote("KQ.m@"+品种)["underlying_symbol"] return pd.DataFrame({"datetime":订阅主连.datetime,"symbol_main":pd.Series(l)}) def 查询当前时间是否在交易时间内(api,品种,秒数): 交易时间=查询合约相关信息(api,品种)['交易时间'] 交易时间=交易时间["day"]+交易时间["night"] l=[] for x in 交易时间: if x[1]>"24:00:00": l.append([x[0],"24:01:00"]) l.append(["00:00:00","%02d"%(int(x[1][:2])-24)+x[1][2:]]) else: l.append(x) 交易时间=l t1=time.time()-秒数 t1=time.localtime(t1) t1=time.strftime("%H:%M:%S",t1) t2=time.time()+秒数 t2=time.localtime(t2) t2=time.strftime("%H:%M:%S",t2) data1= [ 1 if x[0]<=t1<x[1] else 0 for x in 交易时间 ] data2= [ 1 if x[0]<=t2<x[1] else 0 for x in 交易时间 ] if any(data1) and any(data2): return 1 return 0 def 查询所有合约(api): return [ x for x in api._data["quotes"]] def 查询所有在交易合约(api): return [ x for x in api._data["quotes"] if api._data["quotes"][x]["expired"]==False] def 查询所有主力合约(api): return [ x for x in 查询所有合约(api) if ".m@" in x] def 查询所有指数合约(api): return [ x for x in 查询所有合约(api) if ".i@" in x] def 查询所有主力合约映射到的具体合约(api): 合约原=查询所有主力合约(api) return [ api._data["quotes"][x]['underlying_symbol'] for x in 合约原] def 查询合约相关信息(api,品种): data=api._data['quotes'][品种] d={} d['交易时间']=data['trading_time'] d['合约倍数']=data['volume_multiple'] d['合约最小跳数']=data['price_tick'] return d def 撤销所有平多订单(api,品种): 全部订单=api.get_order() for x in 全部订单: 单一订单=api.get_order(x) if 单一订单.instrument_id==品种.split(".")[1] and 单一订单.status=="ALIVE" and 单一订单.direction =="SELL" and (单一订单.offset=="CLOSE" or 单一订单.offset=="CLOSETODAY"): api.cancel_order(单一订单.order_id) api.wait_update() while True: a=api.get_order(x) if a.status!="ALIVE": break api.wait_update() def 撤销所有平空订单(api,品种): 全部订单=api.get_order() for x in 全部订单: 单一订单=api.get_order(x) if 单一订单.instrument_id==品种.split(".")[1] and 单一订单.status=="ALIVE" and 单一订单.direction =="BUY" and (单一订单.offset=="CLOSE" or 单一订单.offset=="CLOSETODAY"): api.cancel_order(单一订单.order_id) api.wait_update() while True: a=api.get_order(x) if a.status!="ALIVE": break api.wait_update() def WH_获取时间对应id(行情,时间点): a=time.strptime(时间点,'%Y-%m-%d %H:%M:%S') 时间点new_timestamp=time.mktime(a)*1e9 for x in range(len(行情)): if 行情.datetime.iloc[x]>=时间点new_timestamp: return 行情.id.iloc[x] def psar(barsdata, iaf = 0.02, maxaf = 0.2): length = len(barsdata) # dates = list(barsdata['Date']) high = list(barsdata['high']) low = list(barsdata['low']) close = list(barsdata['close']) psar = close[0:len(close)] psarbull = [None] * length psarbear = [None] * length bull = True af = iaf ep = low[0] hp = high[0] lp = low[0] for i in range(2,length): if bull: psar[i] = psar[i - 1] + af * (hp - psar[i - 1]) else: psar[i] = psar[i - 1] + af * (lp - psar[i - 1]) reverse = False if bull: if low[i] < psar[i]: bull = False reverse = True psar[i] = hp lp = low[i] af = iaf else: if high[i] > psar[i]: bull = True reverse = True psar[i] = lp hp = high[i] af = iaf if not reverse: if bull: if high[i] > hp: hp = high[i] af = min(af + iaf, maxaf) if low[i - 1] < psar[i]: psar[i] = low[i - 1] if low[i - 2] < psar[i]: psar[i] = low[i - 2] else: if low[i] < lp: lp = low[i] af = min(af + iaf, maxaf) if high[i - 1] > psar[i]: psar[i] = high[i - 1] if high[i - 2] > psar[i]: psar[i] = high[i - 2] if bull: psarbull[i] = psar[i] else: psarbear[i] = psar[i] return pd.Series(psar) def WH_barlast(data,yes=True): #获取真值索引 b=data[data==yes].index #去掉非真值data c=data.where(data==yes,np.NaN) #真值索引上的data更新为真值索引 c[b]= b #填充序列 d=c.fillna(method='ffill') #返回序列索引号和填充序列的差 return c.index-d #DATE获取日期 def WH_DATE(time_Series,time_Series2): #格式化时间为指定格式 b=time_Series.apply(lambda x:time.strftime("%H:%M:%S",time.localtime(x/1e9))) c=time_Series2.apply(lambda x:time.strftime("%Y-%m-%d",time.localtime(x/1e9))) 当前状态='' l=[] for x in range(len(b)): if x==0: if b.iloc[x]>="21:00:00": 当前状态="第一天夜里" l.append(x) else: if b.iloc[x]=="21:00:00" : 当前状态="第一天夜里" l.append(x) if b.iloc[x]=="09:00:00": if 当前状态=="第一天夜里": 当前状态="第二天白天" else: 当前状态="第二天白天" l.append(x) d=pd.Series([ np.NaN for x in range(len(time_Series))]) d[l]=c.tolist()[-len(l):] d=d.fillna(method='ffill') return d def WH_转换为年月日UpdateTime(time_Series): return time_Series.apply(lambda x:time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(x/1e9))) # api=tqsdk.TqApi() # k=api.get_kline_serial("SHFE.rb2005",60*60) # k1=api.get_kline_serial("SHFE.rb2005",60*60*24) # print(WH_DATE(k.datetime,k1.datetime).tolist()) # api.close() @numba.jit def numba_hhv(data,N): newdata=np.full(len(N),0) for x in range(len(N)): temp=data[x] for y in range(N[x]): if data[x-y]>temp: temp=data[x-y] newdata[x]=temp return newdata def WH_hhv(H,NN): NN=NN.fillna(1) data=H.to_numpy() N=NN.to_numpy() new_data=numba_hhv(data,N) return pd.Series(new_data) @numba.jit def numba_llv(data,N): newdata=np.full(len(N),0) for x in range(len(N)): temp=data[x] for y in range(N[x]): if data[x-y]<temp: temp=data[x-y] newdata[x]=temp return newdata def WH_llv(H,NN): NN=NN.fillna(1) data=H.to_numpy() N=NN.to_numpy() new_data=numba_hhv(data,N) return pd.Series(new_data) def WH_ref(H,NN): H.fillna(1) NN=NN.fillna(1) 滑动计算集合=set(NN) H1=H.copy() for x in 滑动计算集合: 索引=NN[NN==x].index H1[索引]=H.shift(int(x))[索引] return H1 # @numba.jit # def numba_ref(data,N): # newdata=np.full(len(N),0.0) # for x in range(len(N)): # newdata[x]=data[x-N[x]] # return newdata # def WH_ref(H,NN): # NN=NN.fillna(0) # data=H.to_numpy() # N=NN.to_numpy() # new_data=numba_ref(data,N) # return pd.Series(new_data) # a=pd.Series([1,1,1,2,2,2,3,3,3,4,4,4]) # b=pd.Series([0,1,1,2,2,2,3,3,3,4,4,4]) # print(WH_ref(a,b)) #VALUEWHEN(COND,X) 当COND条件成立时,取X的当前值。如COND条件不成立,则取上一次COND条件成立时X的值。 def WH_VALUEWHEN(COND,X): b=COND[COND].index c=COND.where(COND,np.NaN) c[b]= X[b] d=c.fillna(method='ffill') return d def WH_OPENMINUTE(time_Series,有无夜盘="有"): b=time_Series.apply(lambda x:time.strftime("%H:%M:%S",time.localtime(x/1e9))) if 有无夜盘=="有": 真值序列索引= b[b=="21:00:00"].index else: 真值序列索引= b[b=="9:00:00"].index d=pd.Series([ np.NaN for x in range(len(time_Series))]) d[真值序列索引]=time_Series[真值序列索引] d=d.fillna(method='ffill') return (time_Series-d)/(1e9*60) def WH_and(*args): return pd.Series( ( all(x) for x in zip(*args))) def WH_or(*args): return pd.Series( ( any(x) for x in zip(*args))) def WH_max(a,b): a=a.fillna(0) b=a.fillna(0) return tqsdk.tafunc.max(a,b) def WH_信号间隔过滤(开多仓真值序列1,间隔): temp=-1 l=[] for x,v in 开多仓真值序列1.items(): if v: if temp==-1 or x-temp>间隔: l.append(True) temp=x else: l.append(False) else: l.append(False) return pd.Series(l) # a=[1,0,0,1,1,0,0,0,0,1,1,1,0,1] # a=pd.Series(a) # print(WH_信号间隔过滤(a,2)) def WH_开平点计算持仓(开仓点列表,平仓点列表,方向): 空值序列=pd.Series(np.full([len(开仓点列表[0])],np.NaN)) #print(空值序列) for x in range(len(开仓点列表)): #print(开仓点列表[x]) a索引=开仓点列表[x][开仓点列表[x]==1].index 空值序列[a索引]=方向 for x in range(len(平仓点列表)): a索引=平仓点列表[x][平仓点列表[x]==1].index 空值序列[a索引]=0 持仓矩阵=空值序列.fillna(method="ffill") # print(持仓矩阵) if 方向==1: 开仓点矩阵=(持仓矩阵-持仓矩阵.shift(1))>0 平仓点矩阵=(持仓矩阵-持仓矩阵.shift(1))<0 else: 开仓点矩阵=(持仓矩阵-持仓矩阵.shift(1))<0 平仓点矩阵=(持仓矩阵-持仓矩阵.shift(1))>0 return 空值序列.fillna(method="ffill"),开仓点矩阵,平仓点矩阵 def WH_算盈利(开仓点列表,平仓点列表,方向,开仓价格,平仓价格): 持仓过程,a,b=WH_开平点计算持仓(开仓点列表,平仓点列表,方向) # print(250) a索引=a[a==1].index b索引=b[b==1].index c1=pd.Series(np.full((1,len(a)),np.NaN)[0]) c1[a索引]= 开仓价格[a索引] 开仓成本=c1.fillna(method='ffill') 持仓过程[b索引]=方向 return (平仓价格-开仓成本)*持仓过程 def WH_算开仓成本(开仓点列表,平仓点列表,方向,开仓价格): 持仓过程,a,b=WH_开平点计算持仓(开仓点列表,平仓点列表,方向) hehe=开仓点列表[0] # print(len(hehe[hehe==1].index)) # print("看看") # print(a) # print(b) a索引=a[a==1].index b索引=b[b==1].index c1=pd.Series(np.full((1,len(a)),np.NaN)[0]) # print(开仓价格) c1[a索引]= 开仓价格[a索引] # print(250250250) 开仓成本=c1.fillna(method='ffill') #持仓过程[b索引]=方向 # print(开仓成本) return 开仓成本 def WH_WEEKDAY(time_Series,time_Series2,有无夜盘="有"): 日期序列=WH_DATE(time_Series,time_Series2) # print(日期序列) 日期序列=日期序列.fillna("1970-01-01") b=日期序列.apply(lambda x: (time.strptime(x,"%Y-%m-%d").tm_wday)+1) return b def 算持仓(a,b): a索引=a[a==1].index b索引=b[b==1].index c=pd.Series(np.full((1,len(a)),np.NaN)[0]) c[a索引]=1 c[b索引]=0 d=c.fillna(method="ffill") return d def 算盈利(a,b,开盘价格): a索引=a[a==1].index b索引=b[b==1].index c1=pd.Series(np.full((1,len(a)),np.NaN)[0]) d=算持仓(a,b) c1[a索引]= 开盘价格[a索引] 开仓成本=c1.fillna(method='ffill') d[b索引]=1 return (开盘价格-开仓成本)*d def 算盈利_开平价格不同(a,b,开仓价格,平仓价格): a索引=a[a==1].index b索引=b[b==1].index c1=pd.Series(np.full((1,len(a)),np.NaN)[0]) d=算持仓(a,b) c1[a索引]= 开仓价格[a索引] 开仓成本=c1.fillna(method='ffill') d[b索引]=1 return (平仓价格-开仓成本)*d #平仓价格字典={"平仓点序列":[a,b,c],"平仓点价格序列":[a1,b1,c1]} def WH_算平仓后盈利金额_开平价格不同_平仓价格多序列(a,b,开仓价格,平仓价格字典): a1=pd.Series(np.full([len(开仓价格)],np.NaN)) b1=pd.Series(np.full([len(开仓价格)],np.NaN)) a1[a]=1 b1[b]=1 a1=a1.fillna(0) b1=b1.fillna(0) b的真值索引=b[b==1].index 平仓价格序列=pd.Series(np.full([len(开仓价格)],np.NaN)) for x in range(len(平仓价格字典["平仓点序列"])): 找到真值索引=平仓价格字典["平仓点序列"][x][平仓价格字典["平仓点序列"][x]==1].index 交集序列索引=b的真值索引&找到真值索引 平仓价格序列[交集序列索引]=平仓价格字典["平仓点价格序列"][x][交集序列索引] 浮盈=算盈利_开平价格不同(a1,b1,开仓价格,平仓价格序列) b索引=b1[b1==1].index return 浮盈[b索引] # def WH_算平仓后盈利金额(a,b,开仓价格,平仓价格): # a1=pd.Series(np.full([len(开仓价格)],np.NaN)) # b1=pd.Series(np.full([len(开仓价格)],np.NaN)) # a1[a]=1 # b1[b]=1 # a1=a1.fillna(0) # b1=b1.fillna(0) # 浮盈=算盈利_开平价格不同(a1,b1,开仓价格,平仓价格) # b索引=b1[b1==1].index # return 浮盈[b索引] def WH_算平仓后盈利金额(a,b,开盘价格): a1=pd.Series(np.full([len(开盘价格)],np.NaN)) b1=pd.Series(np.full([len(开盘价格)],np.NaN)) a1[a]=1 b1[b]=1 a1=a1.fillna(0) b1=b1.fillna(0) 浮盈=算盈利(a1,b1,开盘价格) b索引=b1[b1==1].index return 浮盈[b索引] def WH_融合多空开平点(买开点,卖平点,卖开点,买平点): 总序列数=len(买开点) 当前仓位=0 新买开点=[] 新卖平点=[] 新卖开点=[] 新买平点=[] for x in range(总序列数): if 当前仓位==0: if 买开点.iloc[x]: 新买开点.append(1) 新卖平点.append(0) 新卖开点.append(0) 新买平点.append(0) 当前仓位=1 elif 卖开点.iloc[x]: 新买开点.append(0) 新卖平点.append(0) 新卖开点.append(1) 新买平点.append(0) 当前仓位=-1 else: 新买开点.append(0) 新卖平点.append(0) 新卖开点.append(0) 新买平点.append(0) elif 当前仓位==1: if 卖平点.iloc[x]: 新买开点.append(0) 新卖平点.append(1) 新卖开点.append(0) 新买平点.append(0) 当前仓位=0 else: 新买开点.append(0) 新卖平点.append(0) 新卖开点.append(0) 新买平点.append(0) elif 当前仓位==-1: if 卖平点.iloc[x]: 新买开点.append(0) 新卖平点.append(0) 新卖开点.append(0) 新买平点.append(1) 当前仓位=0 else: 新买开点.append(0) 新卖平点.append(0) 新卖开点.append(0) 新买平点.append(0) return
pd.Series(新买开点)
pandas.Series
import logging import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from math import pi from wordcloud import (WordCloud, get_single_color_func) import numpy as np from PIL import Image import squarify import os logger = logging.getLogger('nodes.data_viz') class SimpleGroupedColorFunc(object): def __init__(self, color_to_words, default_color): self.word_to_color = {word: color for (color, words) in color_to_words.items() for word in words} self.default_color = default_color def __call__(self, word, **kwargs): return self.word_to_color.get(word, self.default_color) class GroupedColorFunc(object): def __init__(self, color_to_words, default_color): self.color_func_to_words = [ (get_single_color_func(color), set(words)) for (color, words) in color_to_words.items()] self.default_color_func = get_single_color_func(default_color) def get_color_func(self, word): try: color_func = next( color_func for (color_func, words) in self.color_func_to_words if word in words) except StopIteration: color_func = self.default_color_func return color_func def __call__(self, word, **kwargs): return self.get_color_func(word)(word, **kwargs) def plot_decks_colors(client): query = '''select 1 as uno, d.id as id, case when string_agg(c.color_identity, '') like '%W%' then 1 else 0 end as white, case when string_agg(c.color_identity, '') like '%U%' then 1 else 0 end as blue, case when string_agg(c.color_identity, '') like '%B%' then 1 else 0 end as black, case when string_agg(c.color_identity, '') like '%R%' then 1 else 0 end as red, case when string_agg(c.color_identity, '') like '%G%' then 1 else 0 end as green from deck as d,card as c, deck_card as dc where dc.deck_id = d.id and dc.card_id = c.uuid group by d.id; ''' decks_colors = pd.read_sql_query(query, client.engine) df = decks_colors.groupby(by='uno').agg(white=('white', 'sum'), blue=('blue', 'sum'), black=('black', 'sum'), red=('red', 'sum'), green=('green', 'sum')) fig = plt.figure(figsize=(6, 6)) ax = plt.subplot(polar='True') categories = ['White', 'Blue', 'Black', 'Red', 'Green'] N = len(categories) values = df.iloc[0].tolist() values += values[:1] angles = [n / float(N) * 2 * pi for n in range(N)] angles += angles[:1] plt.polar(angles, values, marker='.') plt.fill(angles, values, alpha=0.3) plt.xticks(angles[:-1], categories) ax.set_rlabel_position(0) top = max(df.iloc[0].tolist()) plt.yticks([top / 5, top / 5 * 2, top / 5 * 3, top / 5 * 4, top], color='grey', size=10, labels=[]) plt.ylim(0, top) plt.savefig('../viz/decks_colors.png') def plot_nonland_name_cloud(client): query = '''select case when c.name like '%//%' then split_part(c.name, '//', 1) else c.name end as name , c.color_identity as color ,sum(dc.amount) as amount from card as c, deck_card as dc where c.uuid = dc.card_id and c.type not like '%Land%' group by c.name, c.color_identity order by 3 desc''' df = pd.read_sql_query(query, client.engine) names = df.iloc[:, 0].tolist() count = df.iloc[:, 2].tolist() d = {} for index in range(len(names)): d[names[index]] = count[index] white = [] blue = [] black = [] red = [] green = [] multi = [] for index, row in df.iterrows(): if row['color'] == 'W': white.append(row['name']) elif row['color'] == 'U': blue.append(row['name']) elif row['color'] == 'B': black.append(row['name']) elif row['color'] == 'R': red.append(row['name']) elif row['color'] == 'G': green.append(row['name']) elif len(row['color']) > 1: multi.append(row['name']) color_to_words = {} color_to_words['#bdaa00'] = white color_to_words['#0099d1'] = blue color_to_words['#9a00bd'] = black color_to_words['#ff0000'] = red color_to_words['#119100'] = green color_to_words['#ff69f5'] = multi mask = np.array(Image.open('../viz/cards-fan.jpg')) wc = WordCloud(collocations=False, background_color='white', width=1000, height=800, mask=mask).generate_from_frequencies(d) default_color = '#424142' grouped_color_func = SimpleGroupedColorFunc(color_to_words, default_color) wc.recolor(color_func=grouped_color_func) plt.figure(figsize=(20, 10)) plt.imshow(wc, interpolation="bilinear") plt.axis("off") plt.tight_layout(pad=0) plt.savefig('../viz/nonland_name_cloud.png', bbox_inches='tight') def plot_nonland_name_bar(client): query = '''select case when c.name like '%//%' then split_part(c.name, '//', 1) else c.name end as name ,case when length(c.color_identity) > 1 then '#ff69f5' else case when c.color_identity = 'W' then '#bdaa00' else case when c.color_identity = 'U' then '#0099d1' else case when c.color_identity = 'B' then '#9a00bd' else case when c.color_identity = 'R' then '#ff0000' else case when c.color_identity = 'G' then '#119100' else 'grey' end end end end end end as color ,sum(dc.amount) as amount from card as c, deck_card as dc where c.uuid = dc.card_id and c.type not like '%Land%' group by c.name, c.color_identity order by 3 desc limit 20''' df = pd.read_sql_query(query, client.engine) name = df.iloc[:, 0].tolist() colors = df.iloc[:, 1].tolist() number = df.iloc[:, 2].tolist() plt.figure(figsize=(12, 8)) sns.barplot(y=name, x=number, palette=colors) # set labels # plt.ylabel("Sets", size=15) # plt.ylabel("Card count", size=15) plt.title("Nonland card name count", size=18) plt.tight_layout() # ax.set_xticklabels(name) # plt.subplots_adjust(bottom=0.2) plt.grid(axis='x') plt.savefig("../viz/nonland_name_count.png", dpi=100) def plot_types_square(client): query = '''select case when c.type like '%//%' then SPLIT_PART(SPLIT_PART(c.type,' // ',1),' — ',1 ) else SPLIT_PART(c.type,' — ',1) end as basic_type, sum(dc.amount) as amount from card as c, deck_card as dc where c.type not like '%Basic Land%' and c.uuid = dc.card_id group by basic_type order by 2 desc; ''' df = pd.read_sql_query(query, client.engine) types = df.iloc[:, 0].tolist() number = df.iloc[:, 1].tolist() plt.figure(figsize=(17, 8)) types = [x.replace(' ', '\n') for x in types] squarify.plot(sizes=number, label=types[:9], alpha=0.8, text_kwargs={'fontsize': 16}) plt.axis('off') plt.tight_layout() plt.savefig("../viz/types_square.png", dpi=100) def plot_types_bar(client): query = '''select case when c.type like '%//%' then SPLIT_PART(SPLIT_PART(c.type,' // ',1),' — ',1 ) else SPLIT_PART(c.type,' — ',1) end as basic_type, sum(dc.amount) as amount from card as c, deck_card as dc where c.type not like '%Basic Land%' and c.uuid = dc.card_id group by basic_type order by 2 desc;''' df = pd.read_sql_query(query, client.engine) types = df.iloc[:, 0].tolist() number = df.iloc[:, 1].tolist() plt.figure(figsize=(12, 8)) sns.barplot(y=types, x=number, palette='muted') # set labels # plt.ylabel("Sets", size=15) # plt.ylabel("Card count", size=15) plt.title("Card type count", size=18) plt.tight_layout() # ax.set_xticklabels(name) # plt.subplots_adjust(bottom=0.2) plt.grid(axis='x') plt.savefig("../viz/types_count.png", dpi=100) def plot_set_type_count(client): query = '''select c.set ,case when c.type like '%//%' then SPLIT_PART(SPLIT_PART(c.type,' // ',1),' — ',1 ) else SPLIT_PART(c.type,' — ',1) end as basic_type ,sum(dc.amount) as cards from card as c, deck_card as dc where c.uuid = dc.card_id and c.type not like '%Basic Land%' and set in ('znr','iko','m21','thb','eld') group by c.set, basic_type order by 1,2; ''' df =
pd.read_sql_query(query, client.engine)
pandas.read_sql_query
"""Ethplorer model""" __docformat__ = "numpy" import textwrap from datetime import datetime from typing import Any, Optional from time import sleep import pandas as pd import requests from gamestonk_terminal.cryptocurrency.dataframe_helpers import create_df_index import gamestonk_terminal.config_terminal as cfg def split_cols_with_dot(column: str) -> str: """Split column name in data frame columns whenever there is a dot between 2 words. E.g. price.availableSupply -> priceAvailableSupply. Parameters ---------- column: str Pandas dataframe column value Returns ------- str: Value of column with replaced format. """ def replace(string: str, char: str, index: int) -> str: """Helper method which replaces values with dot as a separator and converts it to camelCase format Parameters ---------- string: str String in which we remove dots and convert it to camelcase format. char: str First letter of given word. index: Index of string element. Returns ------- str: Camel case string with removed dots. E.g. price.availableSupply -> priceAvailableSupply. """ return string[:index] + char + string[index + 1 :] if "." in column: part1, part2 = column.split(".") part2 = replace(part2, part2[0].upper(), 0) return part1 + part2 return column def enrich_social_media(dct: dict) -> None: """Searching inside dictionary if there are any information about twitter, reddit or coingecko. If yes it updates dictionary with url to given social media site. Parameters ---------- dct: dict Dictionary in which we search for coingecko, twitter or reddit url. """ social_media = { "twitter": "https://www.twitter.com/", "reddit": "https://www.reddit.com/r/", "coingecko": "https://www.coingecko.com/en/coins/", } for k, v in social_media.items(): if k in dct: dct[k] = v + dct[k] def make_request(endpoint: str, address: Optional[str] = None, **kwargs: Any) -> dict: """Helper method that handles request for Ethplorer API [Source: https://ethplorer.io/] Parameters ---------- endpoint: str endpoint which we want to query e.g. https://api.ethplorer.io/<endpoint><arg>?=apiKey=freekey address: str balance argument for given endpoint. In most cases it's tx hash, or eth balance. kwargs: Any Additional keywords arguments e.g. limit of transactions Returns ------- dict dictionary with response data """ base_url = "https://api.ethplorer.io/" url = f"{base_url}{endpoint}" if address: url = url + "/" + address url += f"?apiKey={cfg.API_ETHPLORER_KEY}" if "limit" in kwargs: url += f"&limit={kwargs['limit']}" sleep(0.5) # Limit is 2 API calls per 1 sec. response = requests.get(url).json() if "error" in response: raise Exception( f"Error: {response['error']['code']}. Message: {response['error']['message']}\n", ) return response def get_token_decimals(address: str) -> Optional[int]: """Helper methods that gets token decimals number. [Source: Ethplorer] Parameters ---------- address: str Blockchain balance e.g. 0x1f9840a85d5af5bf1d1762f925bdaddc4201f984 Returns ------- pd.DataFrame: DataFrame with list of tokens and their balances. """ response = make_request("getTokenInfo", address) if response and "decimals" in response: return 10 ** int(response["decimals"]) return None def get_address_info(address: str) -> pd.DataFrame: """Get info about tokens on you ethereum blockchain balance. Eth balance, balance of all tokens which have name and symbol. [Source: Ethplorer] Parameters ---------- address: str Blockchain balance e.g. 0x3cD751E6b0078Be393132286c442345e5DC49699 Returns ------- pd.DataFrame: DataFrame with list of tokens and their balances. """ response = make_request("getAddressInfo", address) if "tokens" in response: tokens = response.pop("tokens") for token in tokens: token_info = token.pop("tokenInfo") token.update( { "tokenName": token_info.get("name"), "tokenSymbol": token_info.get("symbol"), "tokenAddress": token_info.get("balance"), "balance": token.get("balance") / (10 ** int(token_info.get("decimals"))), } ) else: token_info = response.get("tokenInfo") or {} tokens = [ { "tokenName": token_info.get("name"), "tokenSymbol": token_info.get("symbol"), "tokenAddress": token_info.get("balance"), "balance": token_info.get("balance") / (10 ** int(token_info.get("decimals"))), } ] eth = response["ETH"] or {} eth_balance = eth.get("balance") eth_row = [ "Ethereum", "ETH", "0x0000000000000000000000000000000000000000", eth_balance, ] cols = [ "tokenName", "tokenSymbol", "tokenAddress", "balance", ] df = pd.DataFrame(tokens)[cols] eth_row_df = pd.DataFrame([eth_row], columns=cols) df = pd.concat([eth_row_df, df], ignore_index=True) df = df[df["tokenName"].notna()] create_df_index(df, "index") return df def get_top_tokens() -> pd.DataFrame: """Get top 50 tokens. [Source: Ethplorer] Returns ------- pd.DataFrame: DataFrame with list of top 50 tokens. """ response = make_request("getTopTokens") tokens = response["tokens"] df = pd.DataFrame(tokens)[ [ "name", "symbol", "price", "txsCount", "transfersCount", "holdersCount", "twitter", "coingecko", ] ] df["price"] = df["price"].apply(lambda x: x["rate"] if x and "rate" in x else None) create_df_index(df, "rank") return df def get_top_token_holders(address) -> pd.DataFrame: """Get info about top token holders. [Source: Ethplorer] Parameters ---------- address: str Token balance e.g. 0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984 Returns ------- pd.DataFrame: DataFrame with list of top token holders. """ response = make_request("getTopTokenHolders", address, limit=100) df = pd.DataFrame(response["holders"]) sleep(0.5) token_decimals_divider = get_token_decimals(address) if token_decimals_divider: df["balance"] = df["balance"] / token_decimals_divider return df def get_address_history(address) -> pd.DataFrame: """Get information about balance historical transactions. [Source: Ethplorer] Parameters ---------- address: str Blockchain balance e.g. 0x3cD751E6b0078Be393132286c442345e5DC49699 Returns ------- pd.DataFrame: DataFrame with balance historical transactions (last 100) """ response = make_request("getAddressHistory", address, limit=100) operations = response.pop("operations") if operations: for operation in operations: token = operation.pop("tokenInfo") if token: operation["token"] = token["name"] operation["tokenAddress"] = token["address"] operation["decimals"] = int(token["decimals"]) operation["timestamp"] = datetime.fromtimestamp(operation["timestamp"]) df =
pd.DataFrame(operations)
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import unittest import qiime2 import pandas as pd import numpy as np from pandas.testing import assert_series_equal from biom.table import Table from q2_feature_table import filter_seqs class FilterSeqsTests(unittest.TestCase): def setUp(self): self.seqs = pd.Series(['ACGT', 'GCTA', 'CCCC', 'TGTT'], index=['O1', 'O2', 'O3', 'O4']) self.df_lite = pd.DataFrame( [['A'], ['C'], ['G'], ['T']], index=pd.Index(['O1', 'O2', 'O3', 'O4'], name='id'), columns=['seq']) md_full = pd.DataFrame( [['foo', '1'], ['bar', '2'], ['baz', '3'], ['foo', '4']], index=['O1', 'O2', 'O3', 'O4'], columns=['stuff', 'some_numbers']) md_full.index.name = 'FeatureID' self.md_full = qiime2.Metadata(md_full) def filter_and_assertEqual(self, exp, md=None, exclude_ids=False, where=None): if md is None: md = self.md_full obs = filter_seqs(self.seqs, metadata=md, exclude_ids=exclude_ids, where=where) assert_series_equal(exp, obs) def test_id_based_filtering(self): # filter none self.filter_and_assertEqual(self.seqs, md=qiime2.Metadata(self.df_lite)) # filter one md = qiime2.Metadata(self.df_lite.drop(['O1'])) exp = pd.Series(['GCTA', 'CCCC', 'TGTT'], index=['O2', 'O3', 'O4']) self.filter_and_assertEqual(exp, md=md) # filter all md = qiime2.Metadata(pd.DataFrame({}, index=pd.Index(['foo'], name='id'))) with self.assertRaisesRegex(ValueError, 'All.*filtered'): filter_seqs(self.seqs, metadata=md) # exclude none md = qiime2.Metadata(pd.DataFrame({}, index=pd.Index(['foo'], name='id'))) self.filter_and_assertEqual(self.seqs, md=md, exclude_ids=True) # exclude one md = qiime2.Metadata(self.df_lite.drop(['O1', 'O2', 'O3'])) exp =
pd.Series(['ACGT', 'GCTA', 'CCCC'], index=['O1', 'O2', 'O3'])
pandas.Series
import sys import argparse as arg import pandas as pd import os import ggStorage as gg from datetime import datetime import datetime import numpy as np from colorama import Fore, Style, init init(convert=True) # Arguments ** parser = arg.ArgumentParser() parser.add_argument("-v", "--verbose" , help="Show debug info", action="store_true") parser.add_argument("-f", "--file" , help="File with the chosen products") parser.add_argument("-o", "--out" , help="Output directory") parser.add_argument("-s", "--start_date" , help="Start date") parser.add_argument("-e", "--end_date" , help="End date") parser.add_argument("-c", "--cloud" , help="Maximum cloud cover") parser.add_argument("-l", "--list_mgrs" , help="Tiles corresponding to coordinates MGRS, format: -l ", type=list, nargs='*') args = parser.parse_args() verbose = args.verbose if not args.file: print(Fore.RED + f'You have to enter the file with the catalog') exit(-1) if not os.path.isfile(args.file): print(Fore.RED + f'Catalog file does not exist') exit(-1) if not args.out: print(Fore.RED + f'You have to enter the output path file') exit(-1) else: if args.out[-3:] != 'csv': print(Fore.RED + 'You have to write an output csv') exit(-1) print('\n\n') if verbose: print('Loading the catalog into memory... ', end="") sel = ['PRODUCT_ID', 'MGRS_TILE', 'SENSING_TIME', 'CLOUD_COVER', 'BASE_URL'] #MGRS = ['31TEE', '31TDE', '31SDD', '31SED'] ch = 1000 df = pd.read_csv(args.file, chunksize=ch) # Abrimos el catálogo en bloques de 1000 en 1000 df =
pd.concat([aux[sel] for aux in df])
pandas.concat
try: import alpaca_trade_api except: print("!pip install PyYAML==5.4.1 --ignore-installed") print("!pip install alpaca_trade_api") try: import stldecompose except: print("!pip install scipy==1.2.1") print("!pip install statsmodels==0.10.2") print("!pip install stldecompose==0.0.5") try: import xgboost except: print("!pip install PyYAML==5.4.1 --ignore-installed") from sklearn.preprocessing import MinMaxScaler import Common.ApiClient as ac import matplotlib.pyplot as plt import numpy as np import pandas as pd from stldecompose import decompose from sklearn.svm import LinearSVC from stldecompose.forecast_funcs import mean from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from scipy.signal import argrelextrema import warnings warnings.filterwarnings("ignore") class STL_strategy(): def __init__ (self,ticker,df,column='close',cycle=10,period=2): self.ticker = ticker self.column = column self.period = period self.cycle = cycle self.df = df self.df.index=
pd.to_datetime(df.index,utc=True)
pandas.to_datetime
import numpy as np import pandas as pd from matplotlib import pyplot as plt from datetime import datetime import json from bs4 import BeautifulSoup import requests from tqdm import tqdm def timestamp2date(timestamp): # function converts a Uniloc timestamp into Gregorian date return datetime.fromtimestamp(int(timestamp)).strftime('%Y-%m-%d') def date2timestamp(date): # function coverts Gregorian date in a given format to timestamp return datetime.strptime(date, '%Y-%m-%d').timestamp() def getCryptoOHLC(fsym, tsym): # function fetches a crypto price-series for fsym/tsym and stores # it in pandas DataFrame cols = ['date', 'timestamp', 'open', 'high', 'low', 'close'] lst = ['time', 'open', 'high', 'low', 'close'] timestamp_today = datetime.today().timestamp() curr_timestamp = timestamp_today for j in range(2): df =
pd.DataFrame(columns=cols)
pandas.DataFrame
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # All submission files were downloaded from different public kernels # See the description to see the source of each submission file submissions_path = "../safe_driver_prediction/submissions" all_files = os.listdir(submissions_path) # Read and concatenate submissions outs = [pd.read_csv(os.path.join(submissions_path, f), index_col=0)\ for f in all_files] concat_df =
pd.concat(outs, axis=1)
pandas.concat
#!/usr/bin/env python3 f = open('sao.txt', 'r') txt = f.read() lns = txt.split('\n') d = {} for c in txt: if c not in d.keys(): d[c] = 0 d[c] = d[c] + 1 wrds = [(k, d[k]) for k in d.keys()] swd = sorted(wrds, key=lambda p: p[1], reverse=True) from pandas import DataFrame from sys import stdout dd0 = DataFrame() dd0['chr'] = [w[0] for w in swd] dd0['n'] = [w[1] for w in swd] def color(t, ac): return "\x1b[{}m{}\x1b[0m".format(ac, t) print(dd0.describe()) print(dd0.head(10)) stdout.write('==\t{}\t=='.format(color('Char Based', 33))) print(''.join([x[0] for x in swd ])) import jieba dd =
DataFrame()
pandas.DataFrame
### Author <NAME> - 29 September 2020 ### import pandas as pd import numpy as np import json from gooey import Gooey, GooeyParser import _pickle as cPickle from collections import Counter import warnings import webbrowser import time from sklearn.ensemble import RandomForestClassifier from imblearn.ensemble import BalancedRandomForestClassifier import sys import os path_main = "/".join(os.path.realpath(__file__).split("/")[:-1]) sys.path.append(path_main + '/Classes/') sys.path.append(path_main + '/Utils/') from media_class import Medium, Supplement, GrowthMedium, Medium_one_hot, Supplement_one_hot, GrowthMedium_one_hot from gene_one_hot import one_hot from help_functions import mean, str_to_bool, str_none_check from message import display_message @Gooey(dump_build_config=False, program_name="CellCulturePy", richtext_controls=True, required_cols=3, optional_cols=1, default_size=(1300, 800)) def main(): ''' ''' Cache_pickle = pd.read_pickle('Data/cache_features.pkl') with open("Data/cache_features.json", "r") as read_file: Cache_json = json.load(read_file) # Assign variables TumorType_arg = Cache_json["cache_diseases_highest"] TumorType_arg.sort() Tissue_arg = Cache_json["cache_tumor_site"] Tissue_arg.sort() parser = GooeyParser(description="Predicting media conditions with genomic profile") parser.add_argument("TumorType", help="what is your tumor type", choices=TumorType_arg) parser.add_argument("Tissue", help="what is your tissue type", choices=Tissue_arg) parser.add_argument("Dimension", help="what is your growing dimension", choices=Cache_json["cache_dimension"]) parser.add_argument("maf", help="Select maf file from TWIST (mutect1 or 2)", widget="FileChooser") parser.add_argument("cnv", help="Select cnv file from TWIST (.tumor.called)", widget="FileChooser") parser.add_argument("-m", dest="Media", nargs='+', default=False, choices=Cache_json["cache_media"], help="you can select one or multiple media types you want to look for", widget="Listbox") parser.add_argument("-s", dest="Supplements", action="store_true", default=False, help="Do you want to include looking for supplements (default: No)") args = parser.parse_args() display_message(part=1) predict(Cache_json=Cache_json, Cache_pickle=Cache_pickle, TumorType=args.TumorType, Tissue=args.Tissue, Dimension=args.Dimension, maf=args.maf, cnv=args.cnv, media=str_to_bool(args.Media), supplements=False) display_message(part=2) #Displaying path_main = ("/".join(os.path.realpath(__file__).split("/")[:-1])) webbrowser.open('file://' + path_main + "/tmp.html") time.sleep(5) os.remove(path_main + "/tmp.html") def maf_extract(maf): ''' ''' id_ = [] data_dict= {} file_name = maf.split('/')[-1] i = 0 with open(maf, 'r', encoding="latin-1") as f: try: for line in f: if line.startswith("#"): continue elif not id_: id_ = line.replace('\n', '').split('\t') else: data_dict[i] = line.replace('\n', '').split('\t') i += 1 except: warnings.warn(f"File: {file_name}, had problems with unrecognizable symbols", DeprecationWarning) maf_frame = pd.DataFrame.from_dict(data_dict, orient="index", columns=id_) maf_frame = maf_frame[~maf_frame["Variant_Classification"].isin(["Intron", "lincRNA", "IGR", "5'Flank", "5'UTR", "Silent", "3'UTR", "RNA"])] return maf_frame, file_name def cnv_extract(cnv): ''' ''' file_name = cnv.split('/')[-1] cnv_frame = pd.read_csv(cnv, sep="\t") chromosomelist = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "X", "Y"] cnv_data = {} for chromosoom in chromosomelist: cnv_tmp = cnv_frame[cnv_frame["Chromosome"] == chromosoom] if type(cnv_tmp) == pd.core.series.Series or cnv_tmp.empty == True: cnv_data[chromosoom] = 1 elif len(cnv_tmp) > 1: cnv_data[chromosoom] = (sum(cnv_tmp["Num_Probes"] * cnv_tmp["Segment_Mean"]) / sum(cnv_tmp["Num_Probes"])) else: cnv_data[chromosoom] = cnv_tmp["Segment_Mean"].tolist()[0] cnv_data =
pd.Series(cnv_data, name='Value')
pandas.Series
""" Unit test suite for OLS and PanelOLS classes """ # pylint: disable-msg=W0212 from __future__ import division from datetime import datetime import unittest import nose import numpy as np from pandas import date_range, bdate_range from pandas.core.panel import Panel from pandas import DataFrame, Index, Series, notnull, datetools from pandas.stats.api import ols from pandas.stats.ols import _filter_data from pandas.stats.plm import NonPooledPanelOLS, PanelOLS from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from common import BaseTest _have_statsmodels = True try: import statsmodels.api as sm except ImportError: try: import scikits.statsmodels.api as sm except ImportError: _have_statsmodels = False def _check_repr(obj): repr(obj) str(obj) def _compare_ols_results(model1, model2): assert(type(model1) == type(model2)) if hasattr(model1, '_window_type'): _compare_moving_ols(model1, model2) else: _compare_fullsample_ols(model1, model2) def _compare_fullsample_ols(model1, model2): assert_series_equal(model1.beta, model2.beta) def _compare_moving_ols(model1, model2): assert_frame_equal(model1.beta, model2.beta) class TestOLS(BaseTest): # TODO: Add tests for OLS y predict # TODO: Right now we just check for consistency between full-sample and # rolling/expanding results of the panel OLS. We should also cross-check # with trusted implementations of panel OLS (e.g. R). # TODO: Add tests for non pooled OLS. @classmethod def setUpClass(cls): try: import matplotlib as mpl mpl.use('Agg', warn=False) except ImportError: pass if not _have_statsmodels: raise nose.SkipTest def testOLSWithDatasets(self): self.checkDataSet(sm.datasets.ccard.load(), skip_moving=True) self.checkDataSet(sm.datasets.cpunish.load(), skip_moving=True) self.checkDataSet(sm.datasets.longley.load(), skip_moving=True) self.checkDataSet(sm.datasets.stackloss.load(), skip_moving=True) self.checkDataSet(sm.datasets.copper.load()) self.checkDataSet(sm.datasets.scotland.load()) # degenerate case fails on some platforms # self.checkDataSet(datasets.ccard.load(), 39, 49) # one col in X all 0s def testWLS(self): X = DataFrame(np.random.randn(30, 4), columns=['A', 'B', 'C', 'D']) Y = Series(np.random.randn(30)) weights = X.std(1) self._check_wls(X, Y, weights) weights.ix[[5, 15]] = np.nan Y[[2, 21]] = np.nan self._check_wls(X, Y, weights) def _check_wls(self, x, y, weights): result = ols(y=y, x=x, weights=1/weights) combined = x.copy() combined['__y__'] = y combined['__weights__'] = weights combined = combined.dropna() endog = combined.pop('__y__').values aweights = combined.pop('__weights__').values exog = sm.add_constant(combined.values, prepend=False) sm_result = sm.WLS(endog, exog, weights=1/aweights).fit() assert_almost_equal(sm_result.params, result._beta_raw) assert_almost_equal(sm_result.resid, result._resid_raw) self.checkMovingOLS('rolling', x, y, weights=weights) self.checkMovingOLS('expanding', x, y, weights=weights) def checkDataSet(self, dataset, start=None, end=None, skip_moving=False): exog = dataset.exog[start : end] endog = dataset.endog[start : end] x = DataFrame(exog, index=np.arange(exog.shape[0]), columns=np.arange(exog.shape[1])) y = Series(endog, index=np.arange(len(endog))) self.checkOLS(exog, endog, x, y) if not skip_moving: self.checkMovingOLS('rolling', x, y) self.checkMovingOLS('rolling', x, y, nw_lags=0) self.checkMovingOLS('expanding', x, y, nw_lags=0) self.checkMovingOLS('rolling', x, y, nw_lags=1) self.checkMovingOLS('expanding', x, y, nw_lags=1) self.checkMovingOLS('expanding', x, y, nw_lags=1, nw_overlap=True) def checkOLS(self, exog, endog, x, y): reference = sm.OLS(endog, sm.add_constant(exog, prepend=False)).fit() result = ols(y=y, x=x) # check that sparse version is the same sparse_result = ols(y=y.to_sparse(), x=x.to_sparse()) _compare_ols_results(result, sparse_result) assert_almost_equal(reference.params, result._beta_raw) assert_almost_equal(reference.df_model, result._df_model_raw) assert_almost_equal(reference.df_resid, result._df_resid_raw) assert_almost_equal(reference.fvalue, result._f_stat_raw[0]) assert_almost_equal(reference.pvalues, result._p_value_raw) assert_almost_equal(reference.rsquared, result._r2_raw) assert_almost_equal(reference.rsquared_adj, result._r2_adj_raw) assert_almost_equal(reference.resid, result._resid_raw) assert_almost_equal(reference.bse, result._std_err_raw) assert_almost_equal(reference.tvalues, result._t_stat_raw) assert_almost_equal(reference.cov_params(), result._var_beta_raw) assert_almost_equal(reference.fittedvalues, result._y_fitted_raw) _check_non_raw_results(result) def checkMovingOLS(self, window_type, x, y, weights=None, **kwds): window = sm.tools.tools.rank(x.values) * 2 moving = ols(y=y, x=x, weights=weights, window_type=window_type, window=window, **kwds) # check that sparse version is the same sparse_moving = ols(y=y.to_sparse(), x=x.to_sparse(), weights=weights, window_type=window_type, window=window, **kwds) _compare_ols_results(moving, sparse_moving) index = moving._index for n, i in enumerate(moving._valid_indices): if window_type == 'rolling' and i >= window: prior_date = index[i - window + 1] else: prior_date = index[0] date = index[i] x_iter = {} for k, v in x.iteritems(): x_iter[k] = v.truncate(before=prior_date, after=date) y_iter = y.truncate(before=prior_date, after=date) static = ols(y=y_iter, x=x_iter, weights=weights, **kwds) self.compare(static, moving, event_index=i, result_index=n) _check_non_raw_results(moving) FIELDS = ['beta', 'df', 'df_model', 'df_resid', 'f_stat', 'p_value', 'r2', 'r2_adj', 'rmse', 'std_err', 't_stat', 'var_beta'] def compare(self, static, moving, event_index=None, result_index=None): index = moving._index # Check resid if we have a time index specified if event_index is not None: ref = static._resid_raw[-1] label = index[event_index] res = moving.resid[label] assert_almost_equal(ref, res) ref = static._y_fitted_raw[-1] res = moving.y_fitted[label] assert_almost_equal(ref, res) # Check y_fitted for field in self.FIELDS: attr = '_%s_raw' % field ref = getattr(static, attr) res = getattr(moving, attr) if result_index is not None: res = res[result_index] assert_almost_equal(ref, res) def test_ols_object_dtype(self): df = DataFrame(np.random.randn(20, 2), dtype=object) model = ols(y=df[0], x=df[1]) summary = repr(model) class TestOLSMisc(unittest.TestCase): ''' For test coverage with faux data ''' @classmethod def setupClass(cls): if not _have_statsmodels: raise nose.SkipTest def test_f_test(self): x = tm.makeTimeDataFrame() y = x.pop('A') model = ols(y=y, x=x) hyp = '1*B+1*C+1*D=0' result = model.f_test(hyp) hyp = ['1*B=0', '1*C=0', '1*D=0'] result = model.f_test(hyp) assert_almost_equal(result['f-stat'], model.f_stat['f-stat']) self.assertRaises(Exception, model.f_test, '1*A=0') def test_r2_no_intercept(self): y = tm.makeTimeSeries() x = tm.makeTimeDataFrame() x_with = x.copy() x_with['intercept'] = 1. model1 = ols(y=y, x=x) model2 = ols(y=y, x=x_with, intercept=False) assert_series_equal(model1.beta, model2.beta) # TODO: can we infer whether the intercept is there... self.assert_(model1.r2 != model2.r2) # rolling model1 = ols(y=y, x=x, window=20) model2 = ols(y=y, x=x_with, window=20, intercept=False) assert_frame_equal(model1.beta, model2.beta) self.assert_((model1.r2 != model2.r2).all()) def test_summary_many_terms(self): x = DataFrame(np.random.randn(100, 20)) y = np.random.randn(100) model = ols(y=y, x=x) model.summary def test_y_predict(self): y = tm.makeTimeSeries() x = tm.makeTimeDataFrame() model1 = ols(y=y, x=x) assert_series_equal(model1.y_predict, model1.y_fitted) assert_almost_equal(model1._y_predict_raw, model1._y_fitted_raw) def test_predict(self): y = tm.makeTimeSeries() x =
tm.makeTimeDataFrame()
pandas.util.testing.makeTimeDataFrame
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries)
tm.assert_isinstance(self.dups.index, DatetimeIndex)
pandas.util.testing.assert_isinstance
# -*- coding: utf-8 -*- """ Part of slugdetection package @author: <NAME> github: dapolak """ import numpy as np import pandas as pd from datetime import datetime, timedelta from slugdetection.Slug_Detection import Slug_Detection import unittest class Test_Slug_Detection(unittest.TestCase): """ Unitest class for the Slug Detection class """ def test_create_class(self, spark_data): """ Unit test for class creation Parameters ---------- spark_data : Spark data frame well data frame """ test_class = Slug_Detection(spark_data) assert hasattr(test_class, "well_df"), "Assert well_df attribute is created" assert len(test_class.well_df.head(1)) != 0, \ "well_df attribute not empty" # Pyspark has no clear empty attribute def test_jump(self, spark_data): """ Unit test for jump method Parameters ---------- spark_data : Spark data frame well data frame """ # Standard Data Engineering test_class = Slug_Detection(spark_data) test_class.timeframe(start="12-SEP-16 09:09", end="18-SEP-16 09:09") # known interval that has 3 section of data over 99% choke test_class.data_range(verbose=False) test_class.clean_choke(method="99") sd_df = test_class.df_toPandas() test_class.jump() assert 'count_id' in test_class.pd_df.columns, "Assert new count_id column was created" assert test_class.pd_df['count_id'].nunique() >= 3, \ "For this example, assert that there are three continuous sets of data" def test_clean_short_sub(self, spark_data): """ Unit test for clean_short_sub method Parameters ---------- spark_data : Spark data frame well data frame """ test_class = Slug_Detection(spark_data) test_class.timeframe(start="12-SEP-16 09:09", end="18-SEP-16 09:09") # known interval that has 3 section of data over 99% choke test_class.data_range(verbose=False) test_class.clean_choke(method="99") sd_df = test_class.df_toPandas() test_class.jump() a = len(test_class.pd_df) # Store length of pd_df data frame test_class.clean_short_sub(min_df_size=200) # Apply clean_short_sub method b = len(test_class.pd_df) # Store length of pd_df data frame assert a > b, "For this example, the post clean_short_sub pd_df attribute should be shorter" def test_sub_data(self, spark_data): """ Unit test for clean_short_sub method Parameters ---------- spark_data : Spark data frame well data frame """ # Standard Data Engineering test_class = Slug_Detection(spark_data) test_class.timeframe(start="12-SEP-16 09:09", end="18-SEP-16 09:09") # known interval that has 3 section of data over 99% choke test_class.data_range(verbose=False) test_class.clean_choke(method="99") sd_df = test_class.df_toPandas() test_class.sub_data(min_df_size=200) assert hasattr(test_class, "sub_df_dict"), "New attribute must have been created" a = test_class.pd_df["count_id"].nunique() assert a == len(test_class.sub_df_dict), "Number of unique count ids must be the same as number of data " \ "frames in sub_df_dict dictionary" a = test_class.sub_df_dict[0] # Get first element of the dictionary assert isinstance(a, pd.DataFrame), "sub_df_dict elements are pandas data frames" for f in test_class.features: assert f in a.columns, "data frame must contain all features" def test_slug_check(self, spark_data): """ Unit test for slug_check method Parameters ---------- spark_data : Spark data frame well data frame """ # Standard Data Engineering steps test_class = Slug_Detection(spark_data) test_class.timeframe(start="18-SEP-16 01:09", end="18-SEP-16 09:09") # example interval test_class.data_range(verbose=False) test_class.clean_choke(method="99") sd_df = test_class.df_toPandas() test_class.sub_data() ## Test 1 : Test that slug_check returns right value ## # Create fake dataframe datetime_format = '%d-%b-%y %H:%M' # datetime date format base = datetime.strptime("01-JAN-16 09:09", datetime_format) # Create datetime type timestamp date_list = [[base + timedelta(minutes=x)] for x in range(1000)] # Create list of timestamps x = np.linspace(0, 100 * np.pi, 1000) # Get evenly spaced x array whp_list = (np.sin(x) * 3) + 10 # Create sin wave array (slug-like) fake_df = pd.DataFrame(data=date_list, columns=["ts"], dtype=str) # Create data frame with timestamp fake_df["ts"] = pd.to_datetime(fake_df["ts"]) # Ensure timestamp are datetime type fake_df["WH_P"] = whp_list # Add sine wave as WHP data test_class.sub_df_dict = { 1: fake_df } # Override sub_df_dict attribute with fake data frame slug_idx = pd.Series(whp_list)[whp_list > 12.90].index.tolist() # Create list of slug peaks for fake slugs first = test_class.slug_check(slug_idx, 1) # Get results from slug_check method assert len(first) == 1, "First slug index list should only contain one value in this example" ## Test 2 : Test that slug_check returns right value ## # Create fake data frame datetime_format = '%d-%b-%y %H:%M' # datetime date format base = datetime.strptime("01-JAN-16 09:09", datetime_format) # Create datetime type timestamp date_list = [[base + timedelta(minutes=x)] for x in range(2300)] # Create list of timestamps x = np.linspace(0, 100 * np.pi, 1000) # Get evenly spaced x array whp_list = (np.sin(x) * 3) + 10 # Create sin wave array (slug-like) whp_list = np.append(whp_list, [10 for i in range(300)]) # Add flat flow to simulate normal flow whp_list = np.append(whp_list, (np.sin(x) * 3) + 10) # Add more slugs fake_df = pd.DataFrame(data=date_list, columns=["ts"], dtype=str) # Create data frame with timestamp fake_df["ts"] = pd.to_datetime(fake_df["ts"]) # Ensure timestamp are datetime type fake_df["WH_P"] = whp_list # Add fake whp data slug_idx = pd.Series(whp_list)[whp_list > 12.90].index.tolist() # Create list of slug peaks test_class.sub_df_dict = { 1: fake_df } # Override sub_df_dict attribute with fake data frame first = test_class.slug_check(slug_idx, 1) # Get results from slug_check method assert first, "First slug index list should not be empty" assert len(first) == 2, "First slug index list should only contain two value in this example" assert first[1] == 1305, "In this example, the second first slug of the data set occurs at minutes = 1305" def test_label_slugs(self, spark_data): """ Unit test for label_slugs method Parameters ---------- spark_data : Spark data frame well data frame """ # Standard Data Engineering steps test_class = Slug_Detection(spark_data) test_class.timeframe(start="18-SEP-16 01:09", end="30-SEP-16 09:09") # example interval test_class.data_range(verbose=False) test_class.clean_choke(method="99") sd_df = test_class.df_toPandas() try: f, s = test_class.label_slugs() print("Sub df dict attribute has not been created") raise ValueError except AssertionError: pass test_class.sub_data() # Create sub df dict # create fake data set datetime_format = '%d-%b-%y %H:%M' base = datetime.strptime("01-JAN-16 09:09", datetime_format) date_list = [[base + timedelta(minutes=x)] for x in range(1000)] # Creat time, one minute appart x = np.linspace(0, 100 * np.pi, 1000) whp_list = (np.sin(x) * 3) + 10 # create sin wave fake_df = pd.DataFrame(data=date_list, columns=["ts"], dtype=str) fake_df["ts"] = pd.to_datetime(fake_df["ts"]) fake_df["WH_P"] = whp_list # overide test_class.sub_df_dict = { 1: fake_df, 2: pd.DataFrame(data=[[0, 0], [0, 0]], columns=["ts", "WH_P"]) } # This should create f, s = test_class.label_slugs() assert s, "Assert slug index list is not empty" assert f, "Assert first slug index list not empty" assert len(s[0]) == 49, "In this example, there should be 50 slug peaks" assert len(s) == 2, "In this example, there should be one list of slug peaks" def test_format_data(self, spark_data): """ Unit test for format_data method Parameters ---------- spark_data : Spark data frame well data frame """ # Standard Data Engineering steps test_class = Slug_Detection(spark_data) test_class.timeframe(start="18-SEP-16 01:09", end="18-SEP-16 09:09") # example interval test_class.data_range(verbose=False) test_class.clean_choke(method="99") sd_df = test_class.df_toPandas() try: f, s = test_class.label_slugs() print("Sub df dict attribute has not been created") raise ValueError except AssertionError: pass test_class.sub_data() # Create sub df dict ## Example 1 ## # create fake data set datetime_format = '%d-%b-%y %H:%M' # datetime date format base = datetime.strptime("01-JAN-16 09:09", datetime_format) # Create datetime type timestamp date_list = [[base + timedelta(minutes=x)] for x in range(2600)] # Create list of timestamps x = np.linspace(0, 100 * np.pi, 1000) # Get evenly spaced x array whp_list = np.array([10 for i in range(300)]) # Create whp list with normal flow behaviour whp_list = np.append(whp_list, (np.sin(x) * 3) + 10) # Add sin wave array (slug-like) whp_list = np.append(whp_list, [10 for i in range(300)]) # Add flat flow to simulate normal flow whp_list = np.append(whp_list, (np.sin(x) * 3) + 10) # Add more slugs fake_df = pd.DataFrame(data=date_list, columns=["ts"], dtype=str) # Create data frame with timestamp fake_df["ts"] =
pd.to_datetime(fake_df["ts"])
pandas.to_datetime
""" Multi object tracking results and ground truth - conversion, - evaluation, - visualization. For more help run this file as a script with --help parameter. PyCharm debugger could have problems debugging inside this module due to a bug: https://stackoverflow.com/questions/47988936/debug-properly-with-pycharm-module-named-io-py workaround: rename the file temporarily TODO: merge with utils.gt.gt """ import warnings import numpy as np import pandas as pd import tqdm from .bbox_mot import BboxMot from .mot import Mot from .posemot import PoseMot metrics_higher_is_better = ["idf1", "idp", "idr", "recall", "precision", "mota"] metrics_lower_is_better = [ "num_false_positives", "num_misses", "num_switches", "num_fragmentations", "motp", "motp_px", ] def load_any_mot(filename_or_buffer): df = pd.read_csv(filename_or_buffer, nrows=2) try: filename_or_buffer.seek(0) except AttributeError: pass try: for s in df.columns: float(s) bbox_mot = True except ValueError: bbox_mot = False if bbox_mot: mot = BboxMot(filename_or_buffer=filename_or_buffer) elif "keypoint" in df.columns: mot = PoseMot(filename_or_buffer=filename_or_buffer) else: mot = Mot(filename_or_buffer=filename_or_buffer) return mot def load_idtracker(filename_or_buffer): """ Load idTracker results. Example trajectories.txt: X1 Y1 ProbId1 X2 Y2 ProbId2 X3 Y3 ProbId3 X4 Y4 ProbId4 X5 Y5 ProbId5 459.85 657.37 NaN 393.9 578.17 NaN 603.95 244.9 NaN 1567.3 142.51 NaN 371.6 120.74 NaN 456.43 664.32 NaN 391.7 583.05 NaN 606.34 242.57 NaN 1565.3 138.53 NaN 360.93 121.86 NaN 453.22 670.03 NaN 389.63 587.08 NaN 608.41 240.66 NaN 1566.8 132.25 NaN 355.92 122.81 NaN ... :param filename_or_buffer: idTracker results (trajectories.txt or trajectories_nogaps.txt) :return: DataFrame with frame id x y width height confidence columns """ df = pd.read_csv(filename_or_buffer, delim_whitespace=True) df.index += 1 n_animals = len(df.columns) // 3 for i in range(1, n_animals + 1): df[i] = i df["frame"] = df.index objs = [] for i in range(1, n_animals + 1): objs.append( df[["frame", i, "X" + str(i), "Y" + str(i)]].rename( {"X" + str(i): "x", "Y" + str(i): "y", i: "id"}, axis=1 ) ) df_out = pd.concat(objs) df_out.sort_values(["frame", "id"], inplace=True) df[df.isna()] = -1 df_out["width"] = -1 df_out["height"] = -1 df_out["confidence"] = -1 return df_out def load_idtrackerai(filename_or_buffer): """ Load idtracker.ai results :param filename_or_buffer: idTracker results (trajectories.txt or trajectories_nogaps.txt) :return: DataFrame with frame id x y width height confidence columns """ traj_ndarray = np.load(filename_or_buffer, allow_pickle=True) traj_dict = traj_ndarray.item() n_frames, n_ids, _ = traj_dict["trajectories"].shape frames = np.repeat(np.arange(1, n_frames + 1), n_ids).reshape(n_frames, n_ids, 1) obj_ids = np.tile(np.arange(1, n_ids + 1), n_frames).reshape(n_frames, n_ids, 1) df = pd.DataFrame( np.concatenate((frames, obj_ids, traj_dict["trajectories"]), axis=2).reshape( (n_frames * n_ids, 4) ), columns=["frame", "id", "x", "y"], ) df = df.astype({"frame": "int", "id": "int"}) df[df.isna()] = -1 df["width"] = -1 df["height"] = -1 df["confidence"] = -1 return df def load_toxtrac(filename_or_buffer, topleft_xy=(0, 0)): """ Load ToxTrack results. Example Tracking_0.txt: 0 0 1 194.513 576.447 1 1 0 1 192.738 580.313 1 2 0 1 190.818 584.126 1 3 0 1 188.84 588.213 1 4 0 1 186.78 592.463 1 Documentation of the file format is in [ToxTrac: a fast and robust software for tracking organisms](https://arxiv.org/pdf/1706.02577.pdf) page 33. :param filename_or_buffer: Toxtrac results (Tracking_0.txt) :param topleft_xy: tuple, length 2; xy coordinates of the arena top left corner :return: DataFrame with frame id x y width height confidence columns """ df = pd.read_csv( filename_or_buffer, delim_whitespace=True, names=["frame", "arena", "id", "x", "y", "label"], usecols=["frame", "id", "x", "y"], ) df["frame"] += 1 # MATLAB indexing df["x"] += topleft_xy[0] df["y"] += topleft_xy[1] df = df.assign(width=-1) df = df.assign(height=-1) df = df.assign(confidence=-1) df.sort_values(["frame", "id"], inplace=True) df[df.isna()] = -1 return df def load_sleap_analysis_as_posemot(filename_or_buffer, num_objects=None): """ :param filename_or_buffer: :param num_objects: :return: PoseMot() nans where object is not present """ import h5py f = h5py.File(filename_or_buffer, "r") # occupancy_matrix = f['track_occupancy'][:] try: tracks_matrix = f["tracks"][:] # noqa: F841 except KeyError: print( f'File {filename_or_buffer} doesn\'t appear to be SLEAP "analysis" file.\n' f"Export analysis from sleap-label using File -> Export Analysis HDF5.\n" ) raise if num_objects is None: num_objects = f["tracks"].shape[0] mot = PoseMot() mot.init_blank( range(f["tracks"].shape[3]), range(num_objects), f["tracks"].shape[2] ) mot.ds["x"].values = np.moveaxis(f["tracks"][:num_objects, 0, :, :], 2, 0) mot.ds["y"].values = np.moveaxis(f["tracks"][:num_objects, 1, :, :], 2, 0) mot.marker_radius = 8 return mot def load_sleap_as_dataframe(filename): try: import sleap except ImportError as exception: exception.msg = """ io.load_sleap_to_dataframe() requires the sleap module installed. Either install the module or export analysis file from sleap-label application and use load_posemot_sleap_analysis() without additional dependencies. """ raise exception labels = sleap.load_file(filename) points = [] for frame in tqdm.tqdm(labels): for instance in frame: for node_name, point in zip(labels.skeleton.node_names, instance): try: score = point.score except AttributeError: score = -1 if isinstance(instance, sleap.instance.PredictedInstance): instance_class = 'predicted' elif isinstance(instance, sleap.instance.Instance): instance_class = 'manual' else: assert False, 'unknown instance type: {}'.format(type(instance)) points.append((point.x, point.y, score, point.visible, node_name, instance.frame_idx, instance.track.name, instance_class, instance.video.backend.filename)) df = pd.DataFrame(points, columns=['x', 'y', 'score', 'visible', 'bodypart', 'frame', 'track', 'source', 'video']) df['keypoint'] = df.bodypart.apply(labels.skeleton.node_names.index) return df def load_sleap_as_posemot(filename): df = load_sleap_as_dataframe(filename) df['id'] = df.track.str.split('_', expand=True)[1].astype(int) # default SLEAP track naming "track_<num>" df = df.rename(columns={'score': 'confidence'}) df = df.set_index(["frame", "id", "keypoint"]) # remove duplicated instance with preference to manually annotated df_predicted = df.query('source == "predicted"') df_manual = df.query('source == "manual"') df_unique = df_predicted.copy() df_unique.loc[df_manual.index] = df_manual assert df_unique.index.is_unique return PoseMot.from_df(df_unique.reset_index()) def save_mot(filename, df): df.to_csv(filename, index=False) # header=False, def load_mot(filepath_or_buffer): """ Load Multiple Object Tacking Challenge trajectories file. :param filepath_or_buffer: mot filename_or_buffer or buffer :return: DataFrame, columns frame and id start with 1 (MATLAB indexing) """ df = pd.read_csv( filepath_or_buffer, index_col=["frame", "id"] ) # names=[u'frame', u'id', u'x', u'y', u'width', u'height', u'confidence'] return df[(df.x != -1) & (df.y != -1)] def mot_in_roi(df, roi): """ Limit MOT to a region of interest. :param df: MOT trajectories, DataFrame :param roi: utils.roi.ROI :return: MOT trajectories, DataFrame """ idx_in_roi = ( (df.x >= roi.x()) & (df.y >= roi.y()) & (df.x < roi.x() + roi.width()) & (df.y < roi.y() + roi.height()) ) return df[idx_in_roi] def eval_mot(df_gt, df_results, sqdistth=10000): """ Evaluate trajectories by comparing them to a ground truth. :param df_gt: ground truth DataFrame, columns <frame>, <id>, <x>, <y>; <frame> and <id> are 1-based; see load_mot :param df_results: result trajectories DataFrame, format same as df_gt :param sqdistth: square of the distance threshold, only detections and ground truth objects closer than the threshold can be matched :return: (summary DataFrame, MOTAccumulator) """ nan_mask = ( (df_results.x == -1) | (df_results.x == -1) | df_results.x.isna() | df_results.y.isna() ) if len(df_results[nan_mask]) > 0: warnings.warn("stripping nans from the evaluated trajectories") df_results = df_results[~nan_mask] import motmetrics as mm from motmetrics.utils import compare_to_groundtruth acc = compare_to_groundtruth( df_gt, df_results, dist="euc", distfields=["x", "y"], distth=sqdistth ) mh = mm.metrics.create() # remove id_global_assignment metric, workaround for https://github.com/cheind/py-motmetrics/issues/19 metrics = mh.names[:] metrics.remove("id_global_assignment") return mh.compute(acc, metrics), acc # metrics=mm.metrics.motchallenge_metrics def eval_and_save(ground_truth, mot_results, out_csv=None, results_keypoint=None): """ Evaluate results and save metrics. :param ground_truth: ground truth filename_or_buffer (MOT format), buffer or Mot object :param mot_results: results filename_or_buffer (MOT format), buffer or Mot :param out_csv: output file with a summary (filename_or_buffer or buffer) :param results_keypoint: keypoint used for evaluation of keypoint/pose data against centroid ground truth """ try: df_gt = ground_truth.to_dataframe() except AttributeError: df_gt = load_mot(ground_truth) try: df_results = mot_results.to_dataframe() except AttributeError: df_results = load_any_mot(mot_results).to_dataframe() if results_keypoint is not None: df_results = df_results[df_results.keypoint == results_keypoint] df_gt = df_gt.rename(columns={"frame": "FrameId", "id": "Id"}).set_index(["FrameId", "Id"]) df_results = df_results.rename(columns={"frame": "FrameId", "id": "Id"}).set_index(["FrameId", "Id"]) print("Evaluating...") summary, acc = eval_mot(df_gt, df_results) summary["motp_px"] = np.sqrt( summary["motp"] ) # convert from square pixels to pixels import motmetrics as mm # mh = mm.metrics.create() print(mm.io.render_summary(summary)) if out_csv is not None: summary.to_csv(out_csv, index=False) def array_to_mot_dataframe(results): """ Create MOT challenge format DataFrame out of 3 dimensional array of trajectories. :param results: ndarray, shape=(n_frames, n_animals, 2 or 4); coordinates are in yx order, nan when id not present :return: DataFrame with frame, id, x, y, width, height and confidence columns """ assert results.ndim == 3 assert results.shape[2] == 2 or results.shape[2] == 4 objs = [] columns = ["x", "y"] indices = [1, 0] if results.shape[2] == 4: columns.extend(["width", "height"]) indices.extend([3, 2]) for i in range(results.shape[1]): df = pd.DataFrame(results[:, i, indices], columns=columns) df["frame"] = list(range(1, results.shape[0] + 1)) df = df[~(df.x.isna() | df.y.isna())] df["id"] = i + 1 df = df[["frame", "id"] + columns] objs.append(df) df =
pd.concat(objs)
pandas.concat
# import app components from app import app, data from flask_cors import CORS CORS(app) # enable CORS for all routes # import libraries from flask import request import pandas as pd import re from datetime import datetime from functools import reduce # define functions ## process date args def date_arg(arg): try: arg = datetime.strptime(arg, '%d-%m-%Y') except: try: arg = datetime.strptime(arg, '%Y-%m-%d') except: arg = None return arg ## process missing arg def missing_arg(missing): if missing == 'na': missing_val = 'NA' elif missing == 'empty': missing_val = '' elif missing == 'nan': missing_val = 'NaN' else: missing_val = 'NULL' return(missing_val) ## get date column def get_date_col(df): return list(filter(re.compile('^date_.*').search, df.columns.values))[0] # list of dataset by location data_canada = ['cases_timeseries_canada', 'mortality_timeseries_canada', 'recovered_timeseries_canada', 'testing_timeseries_canada', 'active_timeseries_canada', 'vaccine_administration_timeseries_canada', 'vaccine_distribution_timeseries_canada', 'vaccine_completion_timeseries_canada'] data_prov = ['cases_timeseries_prov', 'mortality_timeseries_prov', 'recovered_timeseries_prov', 'testing_timeseries_prov', 'active_timeseries_prov', 'vaccine_administration_timeseries_prov', 'vaccine_distribution_timeseries_prov', 'vaccine_completion_timeseries_prov'] data_hr = ['cases_timeseries_hr', 'mortality_timeseries_hr'] data_names = ['cases', 'mortality', 'recovered', 'testing', 'active', 'avaccine', 'dvaccine', 'cvaccine'] data_sknew = ['sk_new_cases_timeseries_hr_combined', 'sk_new_mortality_timeseries_hr_combined'] data_names_dates = { 'date_report': 'cases', 'date_death_report': 'mortality', 'date_recovered': 'recovered', 'date_testing': 'testing', 'date_active': 'active', 'date_vaccine_administered': 'avaccine', 'date_vaccine_distributed': 'dvaccine', 'date_vaccine_completed': 'cvaccine' } data_other = { 'prov': 'prov_map', 'hr': 'hr_map', 'age_cases': 'age_map_cases', 'age_mortality': 'age_map_mortality' } @app.route('/') @app.route('/index') def index(): # initialize response response = {} # subset dataframes dfs = {k: pd.read_csv(data.ccodwg[k]) for k in data_canada} # rename date columns for df in dfs.values(): df.columns = df.columns.str.replace('^date_.*', 'date', regex = True) # subset active dataframe to avoid duplicate columns dfs['active_timeseries_canada'] = dfs['active_timeseries_canada'].drop(columns=['cumulative_cases', 'cumulative_recovered', 'cumulative_deaths']) # merge dataframes df = reduce(lambda left, right: pd.merge(left, right, on=['date', 'province'], how='outer'), dfs.values()) # convert date column and filter to most recent date df['date'] = pd.to_datetime(df['date'], dayfirst=True) df = df.loc[df['date'] == data.version['date']] # format output df['date'] = df['date'].dt.strftime('%d-%m-%Y') df = df.fillna('NULL') response['summary'] = df.to_dict(orient='records') # add version to response response['version'] = data.version['version'] # return response return response @app.route('/timeseries') def timeseries(): # initialize response response = {} # read arguments stat = request.args.get('stat') loc = request.args.get('loc') date = request.args.get('date') after = request.args.get('after') before = request.args.get('before') ymd = request.args.get('ymd') missing = request.args.get('missing') version = request.args.get('version') # process date arguments if date: date = date_arg(date) if after: after = date_arg(after) if before: before = date_arg(before) # process other arguments missing_val = missing_arg(missing) if not loc: loc = 'prov' # get dataframes if loc == 'canada': if stat == 'cases': data_name = data_canada[0] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'mortality': data_name = data_canada[1] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'recovered': data_name = data_canada[2] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'testing': data_name = data_canada[3] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'active': data_name = data_canada[4] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'avaccine': data_name = data_canada[5] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'dvaccine': data_name = data_canada[6] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'cvaccine': data_name = data_canada[7] dfs = [pd.read_csv(data.ccodwg[data_name])] else: dfs = {k: pd.read_csv(data.ccodwg[k]) for k in data_canada} dfs = list(dfs.values()) # convert to list elif loc == 'prov' or loc in data.keys_prov.keys(): if stat == 'cases': data_name = data_prov[0] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'mortality': data_name = data_prov[1] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'recovered': data_name = data_prov[2] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'testing': data_name = data_prov[3] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'active': data_name = data_prov[4] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'avaccine': data_name = data_prov[5] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'dvaccine': data_name = data_prov[6] dfs = [pd.read_csv(data.ccodwg[data_name])] elif stat == 'cvaccine': data_name = data_prov[7] dfs = [
pd.read_csv(data.ccodwg[data_name])
pandas.read_csv
#!/usr/bin/envthon # coding: utf-8 #import requests #from bs4 import BeautifulSoup #from pandas import DataFrame #import re #import datetime import argparse import os import pandas as pd #from internal_processing import get_job_details, get_name_and_loc, get_posted_and_applicants #from internal_processing import get_job_title, get_job_id, get_job_description from file_processing import get_files, rename_files_and_dirs, get_paths #from helpers import job_detail_keys, get_job_details_dc, clean_dict, get_deutsch, get_adj_date from db_processing import get_jobs_wrapper, get_compare_master, update_master def main(directory, master_db, output_db=None, verbose=False): """ """ open_dir = directory+'Open/' # Get the files to process files = get_files(open_dir) # rename the files (if needed) rename_files_and_dirs(files, open_dir, verbose) pdf_master = pd.DataFrame() if master_db: if os.path.exists(master_db): pdf_master =
pd.read_csv(master_db)
pandas.read_csv
import os import pandas as pd import s3fs def fetch_data(tables_to_download, data_path): s3bucket = "twde-datalab/" # Load all tables from raw data if not os.path.exists(data_path + 'raw'): os.makedirs(data_path + 'raw') for t in tables_to_download: key = "raw/{table}.csv".format(table=t) if not os.path.exists(data_path + key): print("Downloading data from {}".format(key)) s3 = s3fs.S3FileSystem(anon=True) try: s3.get(s3bucket + key, data_path + key) except OSError.FileNotFoundError: print("Could not find {0}. Was this generated locally?". format(key)) def load_data(tables_to_load, data_path): tables = {} for t in tables_to_load: key = "raw/{table}.csv".format(table=t) print("Loading data to dataframe from {}".format(key)) tables[t] = pd.read_csv(data_path + key) return tables def left_outer_join(left_table, right_table, on): new_table = left_table.merge(right_table, how='left', on=on) return new_table def join_tables_to_train_data(tables, base_table): filename = 'bigTable.csv' print("Joining {}.csv and items.csv".format(base_table)) bigTable = left_outer_join(tables[base_table], tables['items'], 'item_nbr') print("Joining transactions.csv to bigTable") bigTable = left_outer_join(bigTable, tables['transactions'], ['store_nbr', 'date']) return bigTable, filename def add_days_off(bigTable, tables): holidays = tables['holidays_events'] holidays['date'] =
pd.to_datetime(holidays['date'], format="%Y-%m-%d")
pandas.to_datetime