metadata
dataset_info:
features:
- name: image
dtype: image
- name: lang_goal
dtype: string
- name: trajectory_2d
sequence:
sequence:
dtype: int64
- name: trajectory_3d
sequence:
sequence:
dtype: float64
- name: camera_params
dtype: string
- name: horizon
dtype: int64
splits:
- name: train
num_bytes: 73661768939
num_examples: 230245
- name: validation
num_bytes: 17336565257
num_examples: 51895
download_size: 90998334196
dataset_size: 90998334196
configs:
- config_name: default
data_files:
- split: train
path: train_00000.parquet
- split: train
path: train_00001.parquet
- split: train
path: train_00002.parquet
- split: train
path: train_00003.parquet
- split: train
path: train_00004.parquet
- split: train
path: train_00005.parquet
- split: train
path: train_00006.parquet
- split: train
path: train_00007.parquet
- split: train
path: train_00008.parquet
- split: train
path: train_00009.parquet
- split: train
path: train_00010.parquet
- split: train
path: train_00011.parquet
- split: train
path: train_00012.parquet
- split: train
path: train_00013.parquet
- split: train
path: train_00014.parquet
- split: train
path: train_00015.parquet
- split: train
path: train_00016.parquet
- split: train
path: train_00017.parquet
- split: train
path: train_00018.parquet
- split: train
path: train_00019.parquet
- split: train
path: train_00020.parquet
- split: train
path: train_00021.parquet
- split: train
path: train_00022.parquet
- split: train
path: train_00023.parquet
- split: validation
path: validation_00000.parquet
- split: validation
path: validation_00001.parquet
- split: validation
path: validation_00002.parquet
- split: validation
path: validation_00003.parquet
- split: validation
path: validation_00004.parquet
- split: validation
path: validation_00005.parquet
license: cc-by-4.0
task_categories:
- image-to-text
- robotics
language:
- en
CODa Navigation Dataset
This dataset contains navigation trajectory data for robotic navigation tasks. Each example includes an RGB image, a language goal describing the desired navigation target, and 2D/3D trajectories showing the path to the goal.
Dataset Structure
- image: RGB image from the robot's viewpoint
- lang_goal: Natural language instruction describing the navigation goal
- trajectory_2d: 2D trajectory coordinates (pixel space)
- trajectory_3d: 3D trajectory coordinates (world space)
- camera_params: Camera parameters including intrinsics and extrinsics
- horizon: Number of steps in the trajectory
Dataset Statistics
- Total examples: 282140
- Training examples: 230245
- Validation examples: 51895
- Total size: 84.75 GB
- Number of files: 30