text
stringlengths
0
1.96k
"This is not a sound mechanism to achieve an as-faithful-as-possible (limited by the expressiveness of the encoder-decoder architectures) approximation to the training data" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"A Weibull distribution is used to model the same data, again, in a different way." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"I.e., there are two different probabilistic models modeling the same data in inconsistent ways and one or the other is used depending on the part of the system" "['non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"As an example, q(z) could be arbitrarily multimodal as far as the encoder is concerned, but the Weibull seems to force one mode per class." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"But regardless of this, both models are inconsistent .)" "['non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'non', 'non']" "paper quality"
"Similarly, the proposed rejection sampling scheme of OCDVAE is not consistent with the theory of VAEs and it's a post-hoc tweak that is not theoretically expected to provide a pdf of data with lower KL divergence to the true data pdf" "['non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"This paper proposes studying adversarial examples from the perspective of Bayes-optimal classifiers." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"In the other case, the Bayes-optimal classifier is robust, but neural networks fail to learn the robust decision boundary." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"This demonstrates that even when the Bayes-optimal classifier is robust, we may need to explicitly regularize/incentivize neural networks to learn the correct decision boundary." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"The contribution of the two datasets (the symmetric and asymetric CelebA) is, in my opinion, an extremely important contribution in studying adversarial robustness and on their own these datasets warrant further study" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality"
"I outline these below." "['non', 'non', 'non', 'non', 'non']" "paper quality"
"Prior work: the paper seems to ignore a plethora of prior work around studying adversarial robustness and understanding its roots" "['non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"While not in conflict with this work, it does closely relate and discuss many of the same issues discussed in this work, so relating them would be fruitful" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"Interestingly, they also construct a dataset where they Bayes-optimal classifier is robust and neural networks *do* learn a robust classifier (adversarial squares sans label noise)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"Excessive Invariance causes Adversarial Vulnerability (pseudo-url): Jacobsen et al offers an explanation for adversarial examples based on the fact that NNs are not sensitive to many task-relevant changes in inputs, which seems to tie in nicely to the discussion in this paper, as under the presented setup the Bayes-optimal classifier will certainly exploit (and be somewhat sensitive) to such changes." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"And it seems to have very relevant connections to your work." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"In general this list is not comprehensive either: there are many relevant connections to the robustness-accuracy tradeoff (pseudo-url, pseudo-url), and other works." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"Discussion/interpretation of the results: - Sufficient vs necessary: While the experimental design and results are both of very high quality , I am slightly confused about the interpretation of the results" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"In particular, (b) indicates that it may be *necessary* to design regularization methods that steer NNs towards the correct decision boundaryit says nothing about whether these regularization methods will be *sufficient* , which the paper seems to suggest, e.g. in the abstract ""our results suggest that adversarial vulnerability is not an unavoidable consequence of machine learning in high dimensions, and may often be a result of suboptimal training methods used in current practice.""" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"In fact, if real-world datasets end up being like the asymmetric dataset, then the results of this paper would actually indicate the *opposite* of the above statement" "['non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"I believe a more measured conclusion (perhaps that we *need* more regularization methods, but even then we may not be able to get perfect robustness and accuracy) would better fit the strong results presented in the paper" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"The RBF SVM, for small enough bandwidth can express any function and is convex, so no argument needs to be made about its ability to find the Bayes-optimal classifier." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"This concern does not make the contribution of the symmetric dataset less valuable , but a discussion of such caveats would help further elucidate the similarities and differences of this setup from real datasets" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"It is unclear if what is lacking from the NN is explicit regularization, or just more data." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"In particular, with such low-variance directions, at standard dataset sizes the distributions generated here are most likely statistically indistinguishable from their robust/non-robust counterparts (you can see hints of this in the fact that the CNN gets ." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"While completely alleviating this concern may once again be quite difficult/impossible , it could be significantly alleviated by generating training samples dynamically (at every iteration) instead of generating a dataset in one shot and training on it" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"It would be very interesting to see whether these results differ at all from the one-shot approach here." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"Overall, this paper is a very promising step in studying adversarial robustness , but concerns about discussion of prior work, discussion of experimental setup, and conclusions drawn, currently bar me from recommending acceptance" "['non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"I would be more than happy to significantly improve my score if these concerns can be addressed in the revision and corresponding rebuttal." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"The paper introduces CATER: a synthetically generated dataset for video understanding tasks." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"The dataset is an extension of CLEVR using simple motions of primitive 3D objects to produce videos of primitive actions (e.g. pick and place a cube), compositional actions (e.g. ""cone is rotated during the sliding of the sphere""), and finally a 3D object localization tasks (i.e. where is the ""snitch"" object at the end of the video)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"The construction of the dataset focuses on demonstrating that compositional action classification and long-term temporal reasoning for action understanding and localization in videos are largely unsolved problems, and that frame aggregation-based methods on real video data in prior work datasets, have found relative success not because the tasks are easy but because of dataset bias issues." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"A variety of models from recent work are evaluated on the three proposed tasks, demonstrating the validity of the above motivation for the construction of the dataset." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"The primitive action classification task is ""solved"" by nearly all methods and only serves for debugging purposes." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"The compositional action classification task is harder and shows that incorporating LSTMs for temporal reasoning leads to non-trivial performance improvements over frame averaging." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"I am positive with respect to acceptance of this paper" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"It is a well-argued, thoughtful dataset contribution that sets up a reasonable video understanding dataset" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality"
"I have a few minor comments / questions / editing notes that would be good to address: - The random baseline isn't described in the main text , it would be good to briefly mention it (this will also help to clarify why the value is particularly high for tasks 1 and 2) - The grid resolution ablation results presented in the supplement are actually quite important -- they demonstrate that with a small increase in granularity of the grid the traditional tracking methods begin to be the best performers." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"This paper proposes A*MCTS, which combines A* and MCTS with policy and value networks to prioritize the next state to be explored." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"It further establishes the sample complexity to determine optimal actions." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"Pros: This paper presents the first study of tree search for optimal actions in the presence of pretrained value and policy networks" "['non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality"
"Experimental results show that the proposed algorithm outperform the MCTS algorithms" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality"
"Cons: However, there are several issues that should be addressed including the presentation of the paper : The algorithm seeks to combine A* search with MCTS (combined with policy and value networks), and is shown to outperform the baseline MCTS method." "['non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"However, it does not clearly explain the key insights of why it could perform better" "['non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"These discussions are critical to understand the merit of the proposed algorithms." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
"In addition, more experimental analysis should also be presented to support why such a combination is the key contribution to the performance gain" "['non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"The complexity bound in Theorem 1 is hard to understand" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"It does not give the explicit relations of the sample complexity with respect to different quantities in the algorithms" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"The authors need to give more discussion and explanation about it" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
"This is also the case for Theorems 2-4." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"