text
stringlengths 0
1.96k
|
---|
"The result is fairly obvious , but the conditions for validity have interesting consequences for the training algorithm, as it relates the approximation error to the norm of the gradient of the ELBO loss" "['con', 'con', 'con', 'con', 'con', 'non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality"
|
"I have a minor issue with the discussion (in the last paragraph of sec. 3.2) stating that the theoretical statement of the proposed objective relies on a much weaker assumption than the nonparametric assumption made in the theoretical justification of GANs" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"While I agree with the statement as such , the GAN development makes a stronger statement about the nature of the learning trajectory" "['non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"Specifically, it states that the generator is minimizing a Jenson-Shannon divergence which has a fixed point at the true data density." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Clarity: I found the paper to be very well written with a clear exposition of the material and sound development of the technical details" "['non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality"
|
"Relevance and Significance: This paper is highly relevant to the ICLR community and -- to the extent that one believes that training and inference in MRFs is important -- also significant" "['non', 'non', 'non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality"
|
"In most modeling situations, one would simply impose the directed graphical model directly and skip the formalization in terms of an MRF." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"I would appreciate a more forceful motivation of the relevance of MRFs rather than just stating it as a important model with applications" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"Experiments: The authors show the empirical advantages offered by the proposed method over the existing literature" "['non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality"
|
"I was surprised not to see how this model performs on the binarized MNIST dataset, and would like to see that result as well as CIFAR likelihood" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"MNIST, in particular, is a well studied dataset that many readers will be able to easily interpret." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Its absence seems like a serious omission" "['con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"What is meant by ""RBM loss"" in Fig. 2(d), I do not see this defined" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"I am somewhat alarmed at the use of 100 updates of the joint model q(v,h) (K1 = 100) for every update of the other parameters" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"The comparison to PCD-1 in Fig. 3 seems a bit unfair in that the learning curve ends at 8000 iterations, while PCD-1 continues to improve NLL" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"Perhaps PCD-1 results in performance that is far better than AdVIL" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"I would also like to see a comparison to CD-k, which often outperforms PCD-k" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"While I understand the stance taken by the authors that these methods leverage the tractability of the conditional distributions, these strategies are sufficiently general to be considered widely applicable and a true competitor for AdVIL" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"With respect to Deep Boltzmann Machine (DBM), I would prefer to see quantitative comparisons against published results" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"Is that the case?" "['non', 'non', 'non', 'non', 'non']" "paper quality"
|
"More detail for this application of AdVIL would be nice" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"Given the comparison to PCD in the RBM setting, I am somewhat surprised that AdVIL is so competitive with VCD in the case of the DBM ." "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non']" "paper quality"
|
"To solve this problem, the authors first applied distant supervision technique to harvest hard-negative training examples and then transform the original task to a multi-task learning problem by splitting the original labels to positive, hard-negative, and easy-negative examples." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The authors consider using 3 different objective functions: L1, the original cross entropy loss; L2, capturing the shared features in positive and hard-negative examples as regularizer of L1 by introducing a new label z; L3, a three-class classification objective using softmax." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"This authors evaluted their approach on two tasks: Text Classification and Sequence Labeling." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Strenghts: + the paper proposes a reasonable way to try to improve accuracy by identifying hard-negative examples + the paper is well written , but it would benefit from another round of proofreading for grammar and clarity Weaknesses: - performance of the proposed method highly depends on labels of hard-negative examples" "['non', 'non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"The paper lacks insight about a principled way to label such examples, the costs associated with such labeling, and impacts of the labeling quality on accuracy" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"The experiments are not making a convincing case that similar improvements could be obtained on a larger class of problems" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"The objective function L3 is not well justified" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"It would be important to see if the proposed method is also beneficial with the state of the art neural networks on the two applications" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"Table 3 (text classification result) does not list baselines" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"While this paper has some interesting experiments" "['non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality"
|
"I am quite confused about what exactly the author are claiming is the core contribution of their work" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"To me the proposed approach does not seem particularly novel and the idea that hierarchy can be useful for multi-task learning is also not new" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"The two improvements in section 3.2 seem quite low level and are only applicable to this particular approach to hierarchical RL" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"Additionally, it is very much not clear why someone, for example, would select the approach of this paper in comparison to popular paradigms like Option-Critic and Feudal Networks" "['non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"Why reward decomposition at the lower levels is a problem instead of a feature isn't totally clear, but this criticism does not apply to Option-Critic models" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"For Option-Critic models the authors claim that ""Rather than the additional inductive bias of temporal abstraction, we focus on the investigation of composition as type of hierarchy in the context of single and multitask learning while demonstrating the strength of hierarchical composition to lie in domains with strong variation in the objectives such as in multitask domains.""" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"First of all, I should point out that [1] looked at applying Option-Critic in a many task setting and found both that there was an advantage to hierarchy and an advantage to added depth of hierarchy." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Additionally, it is well known that Option-Critic approaches (when unregularized) tend to learn options that terminate every step [2]." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"So, if you generically apply Option-Critic, it would in fact be possible to disentangle the inductive bias of hierarchy from the inductive bias of temporal abstraction by using options that always terminate." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"In comparison to past frameworks, the approach of this paper seems less theoretically motivated" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"It certainly does not seem justified to me to just assume this framework and disregard past successful approaches even as a comparison" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"While the experiments show the value of hierarchy , they do not show the value of this particular method of creating hierarchy" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"If this is the case, I feel like the empirical results are not novel enough to create value for the community and too tied to a particular approach to hierarchy which does not align with much of the past work on HRL" "['non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality"
|
"2] ""When Waiting is not an Option: Learning Options with a Deliberation Cost"" Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Instead of learning the conditional intensity for the point process, as is usually the case, the authors instead propose an elegant method based on Normalizing Flows to directly learn the probability distribution of the next time step" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality"
|
"To further increase the expressive power of the normalizing flow, they propose using a VAE to learn the underlying input to the ""Flow Module""." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"They show by means of extensive experiments on real as well as synthetic data that their approach is able to attain and often surpass state of the art predictive models which rely on parametric modelling of the intensity function" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality"
|
"The writers have put their contributions in context well and the presentation of the paper itself is very clear" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality"
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.