text
stringlengths 0
1.96k
|
---|
"Error measures presented in Table 1 needs to help readers to identify the benefit of the proposed neural network" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The authors should validate their selection of two step approach (NN + filter) compared to an end-to-end FCN (with an additional loss like TV) for the despeckling network" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"4- The authors conclude that the despeckling NN is crucial to obtain realistic images, however, the results presented in Figures 8 and 9 do not provide enough information to support this conclusion" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"For example, it is not clear what are the non-desirable artifacts, where are the eliminated nuclei and why the network has a harder time to learn" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"For instance, Figure 9 needs to use the same images presented in Figure 8 to provide enough support for the need of despeckling network" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"In addition, images representing eliminated nuclei using noisy RCM images should be presented with their counterpart using despeckling network" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"This could potentially add a bias to the results presented here." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"This paper proposes to use a CNN architecture to reconstruct MR Fingerprinting parametric maps." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The authors test their algorithm on a dataset of 95 subjects for neuromuscular disease." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Moreover, they have done some ablation studies to show the importance of the receptive field and temporal frames for MRF reconstruction." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"I believe the experiments are thorough and well designed to back the claims of the paper" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The utilized network architecture can be better explained with an emphasis on specific design choices" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"How does the temporal and spatial blocks work" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"They seem to work in different dimensions of the signals." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Even though the authors explain the details in the text I believe an additional illustration in each block (maybe in Appendix) might be helpful to reproduce the method in the paper for further research" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"4- How does the specifics of the network architecture influence the performance" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Why do the authors reuse the input of a temporal block to its output and how does this influence the performance" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Does the order of concatenation influence the results" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"6- The quantitative results are yielded using multiple segmentation masks due to MR physics related concerns" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Are the results on Table 1 heavily dependent on use of these masks" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"7- What is the number of parameters required for each method in Table 1?" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non']" "paper quality"
|
"Please elaborate on this." "['non', 'non', 'non', 'non', 'non']" "paper quality"
|
"8-The lack of scalability and the requirement of computational time is highlighted in the introduction and abstract." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"I believe the computational time can be added for each method in Table 1." "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non']" "paper quality"
|
"b- Please explain (a.u.)" "['non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"c- Quantitative results can be mentioned in the abstract ." "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non']" "paper quality"
|
"The decoder network is made possible by a newly proposed architecture that is based on inception-like transpose convolutional blocks." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Methods, materials and validation are of a sufficient quality" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"There are certain original aspects in this work (latent en-/decoding, inception-based decoder network, latent space interpolation, generalization to previously unseen shapes etc.), but the work may not be as original as authors suggest, since they may not be aware of a very similar work (see Cons), where some of the discussed concepts have already been proposed and explored" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Authors explicitly that the work is not intended for segmentation, but many previous shape modeling works (including SSMs) were used as regularization in segmentation" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Authors could comment on how their model could be incorporated into (e.g. deep) segmentation approaches, because I do not see an immediate way to do that without requiring the (precise) image-based localization of mandible landmarks in a test volume." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"I would recommend weakening or at least toning down certain ""marketing"" claims like ""3 times finer than the highest resolution ever investigated in the domain of voxel-based shape generation"", or ""the finest resolution ever achieved among voxel-based models in computer graphics""." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"First, it is not fully clear where this number 3 comes from , and second, the quality of the work speaks for itself" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Further, there is always the chance that authors are not aware of every piece of related literature (in all of computer graphics), as it might be the case here." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Authors claim to introduce many concepts for the first time , such as the ""first demonstration that a deep generative architecture can generate high fidelity complex human anatomies in a [...] voxel space [from low-dimensional latents]""." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"However, I am aware of at least one work where such concepts have been proposed and explored already" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"CNN-based shape modeling and latent space discovery and was realized for heart ventricle shapes with an auto-encoder, and integrated into Anatomically Constrained Neural Networks (ACNNs) [1]." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Their voxel resolution is only sligthly smaller than in this work (120x120x40), with a similar latent dimensionality (64D, here: 3*29=87)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Smooth shape interpolation by traversal of the latent space was also demonstrated, and some of their latents also corresponded to reasonable variations in anatomical shape, without being ""restricted"" to statistical modes of variation as discussed here." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Compared to the proposed work, where latents represent clinically relevant mandible landmarks, an auto-encoder approach as in ACNN is more general: relevant landmarks as in the mandible cannot be identified for arbitrary anatomies , and a separate training of decoder and decoder as proposed here crucially depends on a semantically meaningful latent space with a supervised mapping to the dense representation (e.g. hand-labeled landmarks vs. voxel labelmaps)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Authors suggest that their solution ""is not constrained by statistical modes of variation"", as e.g. by PCA-based SSM methods." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"While I agree that the linear latent space assumption of PCA is too simplistic and the global effect of PCA latents on the whole shape often undesirable, the ordering of latents according to ""percent of variance explained"" is actually desirable in terms of interpretability" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"1] Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, et al. Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Transfer learning and dealing with small datasets is an important area of research - The paper proposes a novel method, enabling pretraining on several different tasks instead of only one dataset (e.g. ImageNet) like done most of the times - Results show clear performance increase on small datasets - Proper experiment setup and validation - Clearly written and comprehensible - Code is openly available - Little comparison to other state-of-the-art methods for transfer learning" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Only compared to IMM which is very similar to the proposed T-IMM" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Comparison to (unsupervised) domain adaptation methods would also have been interesting (e.g. gradient reversal (Ganin et al. 2014, Kamnitsas et al. 2016))." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Minor: - Testing for statistical significance is only shown in the appendix" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"It shows that for ""100%"" T-IMM actually is not significantly better than most of the other initialization strategies" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"This should also be shown in table 2" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The way table 2 is presented at the moment it seems like T-IMM is better than all methods also for ""100%""" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.