index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
37,948
justdays.day
__gt__
null
def __gt__(self, other) -> bool: return str(self) > str(other)
(self, other) -> bool
37,949
justdays.day
__hash__
null
def __hash__(self): return hash(self.str)
(self)
37,950
justdays.day
__init__
Day can be intialized with:
def __init__(self, *args): """Day can be intialized with:""" if len(args) == 3: """Three arguments: year, month, day""" dt = datetime(*args) elif len(args) == 2: # year, week """Two arguments: year, week. Day with be the Monday of that week""" dt = datetime.strptime(f"{args[0]} {args[1]} 1", "%Y %W %w") elif len(args) == 0: """No arguments: today""" dt = datetime.today() elif isinstance(args[0], str): """One argument: string in format YYYY-MM-DD""" y, m, d = args[0].split("-") dt = datetime(int(y), int(m), int(d)) elif isinstance(args[0], (date, datetime)): """One argument: datetime or date""" dt = args[0] else: raise f"Invalid type passed to Day class: {args[0]} with type {type(args[0])}" self.str = dt.strftime(DATE_FORMAT) self.d, self.m, self.y = dt.day, dt.month, dt.year
(self, *args)
37,951
justdays.day
__le__
null
def __le__(self, other) -> bool: return str(self) <= str(other)
(self, other) -> bool
37,952
justdays.day
__lt__
null
def __lt__(self, other) -> bool: return str(self) < str(other)
(self, other) -> bool
37,953
justdays.day
__radd__
null
def __radd__(self, other): if type(other) == int: return self.plus_days(other) elif type(other) == str: return other + str(self) else: raise TypeError(f"Cannot add Day to {type(other)}")
(self, other)
37,954
justdays.day
__repr__
null
def __repr__(self) -> str: return f"Day({self.str})"
(self) -> str
37,955
justdays.day
__str__
null
def __str__(self) -> str: return self.str
(self) -> str
37,956
justdays.day
__sub__
Days can be substracted from each other Or you can subtstract a number to go back as many days
def __sub__(self, other) -> int | Day: """ Days can be substracted from each other Or you can subtstract a number to go back as many days """ if type(other) == Day: return (self.as_datetime() - other.as_datetime()).days elif type(other) == int: return self.plus_days(-other) else: raise TypeError(f"Cannot substract {type(other)} from Day")
(self, other) -> int | justdays.day.Day
37,957
justdays.day
as_date
null
def as_date(self) -> date: return date(self.y, self.m, self.d)
(self) -> datetime.date
37,958
justdays.day
as_datetime
null
def as_datetime(self) -> datetime: return datetime(self.y, self.m, self.d)
(self) -> datetime.datetime
37,959
justdays.day
as_unix_timestamp
Returns the unix timestamp of the day
def as_unix_timestamp(self) -> int: """Returns the unix timestamp of the day""" return int(self.as_datetime().timestamp())
(self) -> int
37,960
justdays.day
day_of_week
Return day of the week, where Monday == 0 ... Sunday == 6.
def day_of_week(self) -> int: """Return day of the week, where Monday == 0 ... Sunday == 6.""" return self.as_datetime().weekday()
(self) -> int
37,961
justdays.day
day_of_year
Day of the year is a number between 1 and 365/366, January 1st is day 1
def day_of_year(self) -> int: """Day of the year is a number between 1 and 365/366, January 1st is day 1""" return self.as_datetime().timetuple().tm_yday
(self) -> int
37,962
justdays.day
fraction_of_the_year_past
Returns a fraction of how much of the year is past including the current day
def fraction_of_the_year_past(self) -> float: """Returns a fraction of how much of the year is past including the current day""" is_leap_year = self.y % 4 == 0 and (self.y % 100 != 0 or self.y % 400 == 0) return self.day_of_year() / (366 if is_leap_year else 365)
(self) -> float
37,963
justdays.day
is_weekday
Returns True if day is a weekday (Monday to Friday)
def is_weekday(self) -> bool: """Returns True if day is a weekday (Monday to Friday)""" return self.as_datetime().weekday() < 5
(self) -> bool
37,964
justdays.day
is_weekend
Returns True of day is a Saturday or Sunday.
def is_weekend(self) -> bool: """Returns True of day is a Saturday or Sunday.""" return self.as_datetime().weekday() >= 5
(self) -> bool
37,965
justdays.day
last_day_of_month
Returns the last day of the month
def last_day_of_month(self) -> Day: """Returns the last day of the month""" return Day(self.y, self.m, calendar.monthrange(self.y, self.m)[1])
(self) -> justdays.day.Day
37,966
justdays.day
last_monday
Returns the last day that was a Monday or the day itself if it is a Monday
def last_monday(self) -> Day: """Returns the last day that was a Monday or the day itself if it is a Monday""" return self.plus_days(-self.as_datetime().weekday())
(self) -> justdays.day.Day
37,967
justdays.day
next
Returns the next day
def next(self) -> Day: """Returns the next day""" return self.plus_days(1)
(self) -> justdays.day.Day
37,968
justdays.day
next_weekday
Returns the first day in the future that is on a weekday
def next_weekday(self) -> Day: """Returns the first day in the future that is on a weekday""" day = self.plus_days(1) while day.day_of_week() >= 5: day = day.plus_days(1) return day
(self) -> justdays.day.Day
37,969
justdays.day
plus_days
Returns a new Day object increment days further in the future
def plus_days(self, increment) -> Day: """Returns a new Day object increment days further in the future""" return Day(self.as_datetime() + timedelta(days=increment))
(self, increment) -> justdays.day.Day
37,970
justdays.day
plus_months
Returns a new Day object increment months further in the future
def plus_months(self, increment) -> Day: """Returns a new Day object increment months further in the future""" return Day( self.as_datetime() + relativedelta(months=increment) ) # relativedelta
(self, increment) -> justdays.day.Day
37,971
justdays.day
plus_weeks
Returns a new Day object increment weeks further in the future
def plus_weeks(self, increment) -> Day: """Returns a new Day object increment weeks further in the future""" return Day(self.as_datetime() + relativedelta(weeks=increment)) # relativedelta
(self, increment) -> justdays.day.Day
37,972
justdays.day
prev
Return the previous day
def prev(self) -> Day: """Return the previous day""" return self.plus_days(-1)
(self) -> justdays.day.Day
37,973
justdays.day
previous_weekday
Returns the first day in the future that is on a weekday
def previous_weekday(self) -> Day: """Returns the first day in the future that is on a weekday""" day = self.plus_days(-1) while day.day_of_week() >= 5: day = day.plus_days(-1) return day
(self) -> justdays.day.Day
37,974
justdays.day
strftime
Works just like the strftime from datetime
def strftime(self, date_format: str) -> str: """Works just like the strftime from datetime""" return self.as_datetime().strftime(date_format)
(self, date_format: str) -> str
37,975
justdays.day
week_number
Return the week number of the year.
def week_number(self) -> int: """Return the week number of the year.""" if sys.version_info[1] >= 9: return self.as_datetime().isocalendar().week return self.as_datetime().isocalendar()[1]
(self) -> int
37,976
justdays.period
Period
Bundles a startdate and optionally an end date to form a date range
class Period: """Bundles a startdate and optionally an end date to form a date range""" def __init__(self, fromday, untilday=None): """Period is initalized with a startdate and optionally an end date Start date can be a Day object or a string in the format 'YYYY-MM-DD'""" if not isinstance(fromday, Day): fromday = Day(fromday) self.fromday = fromday if untilday and not isinstance(untilday, Day): untilday = Day(untilday) self.untilday = untilday self.current = fromday.prev() # Initialize iterator @classmethod def from_week(cls, year, weekno): """Returns a Period object for the week of the year""" fromday = Day(year, weekno) untilday = fromday.plus_weeks(1) return cls(fromday, untilday) @classmethod def from_month(cls, year, month): """Returns a Period object for the month of the year""" fromday = Day(year, month, 1) untilday = fromday.plus_months(1) return cls(fromday, untilday) def __str__(self) -> str: return f'{self.fromday} --> {self.untilday if self.untilday else ""}' def __repr__(self) -> str: return f"Period({str(self)})" def __hash__(self): return hash(str(self)) def __iter__(self) -> Period: return self def __next__(self) -> Day: self.current = self.current.next() if self.current >= self.untilday: self.current = self.fromday.prev() raise StopIteration return self.current def __contains__(self, other: Day | Period) -> bool: if type(other) == Day: return self.fromday <= other < self.untilday elif type(other) == Period: if not self.untilday: return self.fromday <= other.fromday if not other.untilday: return False return self.fromday <= other.fromday < self.untilday and self.fromday <= other.untilday < self.untilday raise TypeError(f"Invalid type passed to Period.__contains__: {type(other)}") def __len__(self) -> int: return self.untilday - self.fromday def __eq__(self, other) -> bool: return self.fromday == other.fromday and self.untilday == other.untilday
(fromday, untilday=None)
37,977
justdays.period
__contains__
null
def __contains__(self, other: Day | Period) -> bool: if type(other) == Day: return self.fromday <= other < self.untilday elif type(other) == Period: if not self.untilday: return self.fromday <= other.fromday if not other.untilday: return False return self.fromday <= other.fromday < self.untilday and self.fromday <= other.untilday < self.untilday raise TypeError(f"Invalid type passed to Period.__contains__: {type(other)}")
(self, other: justdays.day.Day | justdays.period.Period) -> bool
37,978
justdays.period
__eq__
null
def __eq__(self, other) -> bool: return self.fromday == other.fromday and self.untilday == other.untilday
(self, other) -> bool
37,979
justdays.period
__hash__
null
def __hash__(self): return hash(str(self))
(self)
37,980
justdays.period
__init__
Period is initalized with a startdate and optionally an end date Start date can be a Day object or a string in the format 'YYYY-MM-DD'
def __init__(self, fromday, untilday=None): """Period is initalized with a startdate and optionally an end date Start date can be a Day object or a string in the format 'YYYY-MM-DD'""" if not isinstance(fromday, Day): fromday = Day(fromday) self.fromday = fromday if untilday and not isinstance(untilday, Day): untilday = Day(untilday) self.untilday = untilday self.current = fromday.prev() # Initialize iterator
(self, fromday, untilday=None)
37,981
justdays.period
__iter__
null
def __iter__(self) -> Period: return self
(self) -> justdays.period.Period
37,982
justdays.period
__len__
null
def __len__(self) -> int: return self.untilday - self.fromday
(self) -> int
37,983
justdays.period
__next__
null
def __next__(self) -> Day: self.current = self.current.next() if self.current >= self.untilday: self.current = self.fromday.prev() raise StopIteration return self.current
(self) -> justdays.day.Day
37,984
justdays.period
__repr__
null
def __repr__(self) -> str: return f"Period({str(self)})"
(self) -> str
37,985
justdays.period
__str__
null
def __str__(self) -> str: return f'{self.fromday} --> {self.untilday if self.untilday else ""}'
(self) -> str
37,988
pulp.apis.choco_api
CHOCO_CMD
The CHOCO_CMD solver
class CHOCO_CMD(LpSolver_CMD): """The CHOCO_CMD solver""" name = "CHOCO_CMD" def __init__( self, path=None, keepFiles=False, mip=True, msg=True, options=None, timeLimit=None, ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param list options: list of additional options to pass to solver :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary """ LpSolver_CMD.__init__( self, mip=mip, msg=msg, timeLimit=timeLimit, options=options, path=path, keepFiles=keepFiles, ) def defaultPath(self): return self.executableExtension("choco-parsers-with-dependencies.jar") def available(self): """True if the solver is available""" java_path = self.executableExtension("java") return self.executable(self.path) and self.executable(java_path) def actualSolve(self, lp): """Solve a well formulated lp problem""" java_path = self.executableExtension("java") if not self.executable(java_path): raise PulpSolverError( "PuLP: java needs to be installed and accesible in order to use CHOCO_CMD" ) if not os.path.exists(self.path): raise PulpSolverError("PuLP: cannot execute " + self.path) tmpMps, tmpLp, tmpSol = self.create_tmp_files(lp.name, "mps", "lp", "sol") # just to report duplicated variables: lp.checkDuplicateVars() lp.writeMPS(tmpMps, mpsSense=lp.sense) try: os.remove(tmpSol) except: pass cmd = java_path + ' -cp "' + self.path + '" org.chocosolver.parser.mps.ChocoMPS' if self.timeLimit is not None: cmd += f" -tl {self.timeLimit}" * 1000 cmd += " " + " ".join([f"{key} {value}" for key, value in self.options]) cmd += f" {tmpMps}" if lp.sense == constants.LpMaximize: cmd += " -max" if lp.isMIP(): if not self.mip: warnings.warn("CHOCO_CMD cannot solve the relaxation of a problem") # we always get the output to a file. # if not, we cannot read it afterwards # (we thus ignore the self.msg parameter) pipe = open(tmpSol, "w") return_code = subprocess.call(cmd, stdout=pipe, stderr=pipe, shell=True) if return_code != 0: raise PulpSolverError("PuLP: Error while trying to execute " + self.path) if not os.path.exists(tmpSol): status = constants.LpStatusNotSolved status_sol = constants.LpSolutionNoSolutionFound values = None else: status, values, status_sol = self.readsol(tmpSol) self.delete_tmp_files(tmpMps, tmpLp, tmpSol) lp.assignStatus(status, status_sol) if status not in [constants.LpStatusInfeasible, constants.LpStatusNotSolved]: lp.assignVarsVals(values) return status @staticmethod def readsol(filename): """Read a Choco solution file""" # TODO: figure out the unbounded status in choco solver chocoStatus = { "OPTIMUM FOUND": constants.LpStatusOptimal, "SATISFIABLE": constants.LpStatusOptimal, "UNSATISFIABLE": constants.LpStatusInfeasible, "UNKNOWN": constants.LpStatusNotSolved, } chocoSolStatus = { "OPTIMUM FOUND": constants.LpSolutionOptimal, "SATISFIABLE": constants.LpSolutionIntegerFeasible, "UNSATISFIABLE": constants.LpSolutionInfeasible, "UNKNOWN": constants.LpSolutionNoSolutionFound, } status = constants.LpStatusNotSolved sol_status = constants.LpSolutionNoSolutionFound values = {} with open(filename) as f: content = f.readlines() content = [l.strip() for l in content if l[:2] not in ["o ", "c "]] if not len(content): return status, values, sol_status if content[0][:2] == "s ": status_str = content[0][2:] status = chocoStatus[status_str] sol_status = chocoSolStatus[status_str] for line in content[1:]: name, value = line.split() values[name] = float(value) return status, values, sol_status
(path=None, keepFiles=False, mip=True, msg=True, options=None, timeLimit=None)
37,989
pulp.apis.choco_api
__init__
:param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param list options: list of additional options to pass to solver :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary
def __init__( self, path=None, keepFiles=False, mip=True, msg=True, options=None, timeLimit=None, ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param list options: list of additional options to pass to solver :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary """ LpSolver_CMD.__init__( self, mip=mip, msg=msg, timeLimit=timeLimit, options=options, path=path, keepFiles=keepFiles, )
(self, path=None, keepFiles=False, mip=True, msg=True, options=None, timeLimit=None)
37,990
pulp.apis.core
actualResolve
uses existing problem information and solves the problem If it is not implemented in the solver just solve again
def actualResolve(self, lp, **kwargs): """ uses existing problem information and solves the problem If it is not implemented in the solver just solve again """ self.actualSolve(lp, **kwargs)
(self, lp, **kwargs)
37,991
pulp.apis.choco_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp): """Solve a well formulated lp problem""" java_path = self.executableExtension("java") if not self.executable(java_path): raise PulpSolverError( "PuLP: java needs to be installed and accesible in order to use CHOCO_CMD" ) if not os.path.exists(self.path): raise PulpSolverError("PuLP: cannot execute " + self.path) tmpMps, tmpLp, tmpSol = self.create_tmp_files(lp.name, "mps", "lp", "sol") # just to report duplicated variables: lp.checkDuplicateVars() lp.writeMPS(tmpMps, mpsSense=lp.sense) try: os.remove(tmpSol) except: pass cmd = java_path + ' -cp "' + self.path + '" org.chocosolver.parser.mps.ChocoMPS' if self.timeLimit is not None: cmd += f" -tl {self.timeLimit}" * 1000 cmd += " " + " ".join([f"{key} {value}" for key, value in self.options]) cmd += f" {tmpMps}" if lp.sense == constants.LpMaximize: cmd += " -max" if lp.isMIP(): if not self.mip: warnings.warn("CHOCO_CMD cannot solve the relaxation of a problem") # we always get the output to a file. # if not, we cannot read it afterwards # (we thus ignore the self.msg parameter) pipe = open(tmpSol, "w") return_code = subprocess.call(cmd, stdout=pipe, stderr=pipe, shell=True) if return_code != 0: raise PulpSolverError("PuLP: Error while trying to execute " + self.path) if not os.path.exists(tmpSol): status = constants.LpStatusNotSolved status_sol = constants.LpSolutionNoSolutionFound values = None else: status, values, status_sol = self.readsol(tmpSol) self.delete_tmp_files(tmpMps, tmpLp, tmpSol) lp.assignStatus(status, status_sol) if status not in [constants.LpStatusInfeasible, constants.LpStatusNotSolved]: lp.assignVarsVals(values) return status
(self, lp)
37,992
pulp.apis.choco_api
available
True if the solver is available
def available(self): """True if the solver is available""" java_path = self.executableExtension("java") return self.executable(self.path) and self.executable(java_path)
(self)
37,993
pulp.apis.core
copy
Make a copy of self
def copy(self): """Make a copy of self""" aCopy = LpSolver.copy(self) aCopy.path = self.path aCopy.keepFiles = self.keepFiles aCopy.tmpDir = self.tmpDir return aCopy
(self)
37,994
pulp.apis.core
create_tmp_files
null
def create_tmp_files(self, name, *args): if self.keepFiles: prefix = name else: prefix = os.path.join(self.tmpDir, uuid4().hex) return (f"{prefix}-pulp.{n}" for n in args)
(self, name, *args)
37,995
pulp.apis.choco_api
defaultPath
null
def defaultPath(self): return self.executableExtension("choco-parsers-with-dependencies.jar")
(self)
37,996
pulp.apis.core
delete_tmp_files
null
def delete_tmp_files(self, *args): if self.keepFiles: return for file in args: self.silent_remove(file)
(self, *args)
37,997
pulp.apis.core
executable
Checks that the solver command is executable, And returns the actual path to it.
@staticmethod def executable(command): """Checks that the solver command is executable, And returns the actual path to it.""" return shutil.which(command)
(command)
37,998
pulp.apis.core
executableExtension
null
@staticmethod def executableExtension(name): if os.name != "nt": return name else: return name + ".exe"
(name)
37,999
pulp.apis.core
getCplexStyleArrays
returns the arrays suitable to pass to a cdll Cplex or other solvers that are similar Copyright (c) Stuart Mitchell 2007
def getCplexStyleArrays( self, lp, senseDict=None, LpVarCategories=None, LpObjSenses=None, infBound=1e20 ): """returns the arrays suitable to pass to a cdll Cplex or other solvers that are similar Copyright (c) Stuart Mitchell 2007 """ if senseDict is None: senseDict = { const.LpConstraintEQ: "E", const.LpConstraintLE: "L", const.LpConstraintGE: "G", } if LpVarCategories is None: LpVarCategories = {const.LpContinuous: "C", const.LpInteger: "I"} if LpObjSenses is None: LpObjSenses = {const.LpMaximize: -1, const.LpMinimize: 1} import ctypes rangeCount = 0 variables = list(lp.variables()) numVars = len(variables) # associate each variable with a ordinal self.v2n = {variables[i]: i for i in range(numVars)} self.vname2n = {variables[i].name: i for i in range(numVars)} self.n2v = {i: variables[i] for i in range(numVars)} # objective values objSense = LpObjSenses[lp.sense] NumVarDoubleArray = ctypes.c_double * numVars objectCoeffs = NumVarDoubleArray() # print "Get objective Values" for v, val in lp.objective.items(): objectCoeffs[self.v2n[v]] = val # values for variables objectConst = ctypes.c_double(0.0) NumVarStrArray = ctypes.c_char_p * numVars colNames = NumVarStrArray() lowerBounds = NumVarDoubleArray() upperBounds = NumVarDoubleArray() initValues = NumVarDoubleArray() for v in lp.variables(): colNames[self.v2n[v]] = to_string(v.name) initValues[self.v2n[v]] = 0.0 if v.lowBound != None: lowerBounds[self.v2n[v]] = v.lowBound else: lowerBounds[self.v2n[v]] = -infBound if v.upBound != None: upperBounds[self.v2n[v]] = v.upBound else: upperBounds[self.v2n[v]] = infBound # values for constraints numRows = len(lp.constraints) NumRowDoubleArray = ctypes.c_double * numRows NumRowStrArray = ctypes.c_char_p * numRows NumRowCharArray = ctypes.c_char * numRows rhsValues = NumRowDoubleArray() rangeValues = NumRowDoubleArray() rowNames = NumRowStrArray() rowType = NumRowCharArray() self.c2n = {} self.n2c = {} i = 0 for c in lp.constraints: rhsValues[i] = -lp.constraints[c].constant # for ranged constraints a<= constraint >=b rangeValues[i] = 0.0 rowNames[i] = to_string(c) rowType[i] = to_string(senseDict[lp.constraints[c].sense]) self.c2n[c] = i self.n2c[i] = c i = i + 1 # return the coefficient matrix as a series of vectors coeffs = lp.coefficients() sparseMatrix = sparse.Matrix(list(range(numRows)), list(range(numVars))) for var, row, coeff in coeffs: sparseMatrix.add(self.c2n[row], self.vname2n[var], coeff) ( numels, mystartsBase, mylenBase, myindBase, myelemBase, ) = sparseMatrix.col_based_arrays() elemBase = ctypesArrayFill(myelemBase, ctypes.c_double) indBase = ctypesArrayFill(myindBase, ctypes.c_int) startsBase = ctypesArrayFill(mystartsBase, ctypes.c_int) lenBase = ctypesArrayFill(mylenBase, ctypes.c_int) # MIP Variables NumVarCharArray = ctypes.c_char * numVars columnType = NumVarCharArray() if lp.isMIP(): for v in lp.variables(): columnType[self.v2n[v]] = to_string(LpVarCategories[v.cat]) self.addedVars = numVars self.addedRows = numRows return ( numVars, numRows, numels, rangeCount, objSense, objectCoeffs, objectConst, rhsValues, rangeValues, rowType, startsBase, lenBase, indBase, elemBase, lowerBounds, upperBounds, initValues, colNames, rowNames, columnType, self.n2v, self.n2c, )
(self, lp, senseDict=None, LpVarCategories=None, LpObjSenses=None, infBound=1e+20)
38,000
pulp.apis.choco_api
readsol
Read a Choco solution file
@staticmethod def readsol(filename): """Read a Choco solution file""" # TODO: figure out the unbounded status in choco solver chocoStatus = { "OPTIMUM FOUND": constants.LpStatusOptimal, "SATISFIABLE": constants.LpStatusOptimal, "UNSATISFIABLE": constants.LpStatusInfeasible, "UNKNOWN": constants.LpStatusNotSolved, } chocoSolStatus = { "OPTIMUM FOUND": constants.LpSolutionOptimal, "SATISFIABLE": constants.LpSolutionIntegerFeasible, "UNSATISFIABLE": constants.LpSolutionInfeasible, "UNKNOWN": constants.LpSolutionNoSolutionFound, } status = constants.LpStatusNotSolved sol_status = constants.LpSolutionNoSolutionFound values = {} with open(filename) as f: content = f.readlines() content = [l.strip() for l in content if l[:2] not in ["o ", "c "]] if not len(content): return status, values, sol_status if content[0][:2] == "s ": status_str = content[0][2:] status = chocoStatus[status_str] sol_status = chocoSolStatus[status_str] for line in content[1:]: name, value = line.split() values[name] = float(value) return status, values, sol_status
(filename)
38,001
pulp.apis.core
setTmpDir
Set the tmpDir attribute to a reasonnable location for a temporary directory
def setTmpDir(self): """Set the tmpDir attribute to a reasonnable location for a temporary directory""" if os.name != "nt": # On unix use /tmp by default self.tmpDir = os.environ.get("TMPDIR", "/tmp") self.tmpDir = os.environ.get("TMP", self.tmpDir) else: # On Windows use the current directory self.tmpDir = os.environ.get("TMPDIR", "") self.tmpDir = os.environ.get("TMP", self.tmpDir) self.tmpDir = os.environ.get("TEMP", self.tmpDir) if not os.path.isdir(self.tmpDir): self.tmpDir = "" elif not os.access(self.tmpDir, os.F_OK + os.W_OK): self.tmpDir = ""
(self)
38,002
pulp.apis.core
silent_remove
null
def silent_remove(self, file: Union[str, bytes, os.PathLike]) -> None: try: os.remove(file) except FileNotFoundError: pass
(self, file: Union[str, bytes, os.PathLike]) -> NoneType
38,003
pulp.apis.core
solve
Solve the problem lp
def solve(self, lp): """Solve the problem lp""" # Always go through the solve method of LpProblem return lp.solve(self)
(self, lp)
38,004
pulp.apis.core
toDict
null
def toDict(self): data = dict(solver=self.name) for k in ["mip", "msg", "keepFiles"]: try: data[k] = getattr(self, k) except AttributeError: pass for k in ["timeLimit", "options"]: # with these ones, we only export if it has some content: try: value = getattr(self, k) if value: data[k] = value except AttributeError: pass data.update(self.optionsDict) return data
(self)
38,005
pulp.apis.core
toJson
null
def toJson(self, filename, *args, **kwargs): with open(filename, "w") as f: json.dump(self.toDict(), f, *args, **kwargs)
(self, filename, *args, **kwargs)
38,008
pulp.apis.coin_api
COIN_CMD
The COIN CLP/CBC LP solver now only uses cbc
class COIN_CMD(LpSolver_CMD): """The COIN CLP/CBC LP solver now only uses cbc """ name = "COIN_CMD" def defaultPath(self): return self.executableExtension(cbc_path) def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, gapAbs=None, presolve=None, cuts=None, strong=None, options=None, warmStart=False, keepFiles=False, path=None, threads=None, logPath=None, timeMode="elapsed", maxNodes=None, ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int threads: sets the maximum number of threads :param list options: list of additional options to pass to solver :param bool warmStart: if True, the solver will use the current value of variables as a start :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary :param str logPath: path to the log file :param bool presolve: if True, adds presolve on :param bool cuts: if True, adds gomory on knapsack on probing on :param bool strong: if True, adds strong :param str timeMode: "elapsed": count wall-time to timeLimit; "cpu": count cpu-time :param int maxNodes: max number of nodes during branching. Stops the solving when reached. """ LpSolver_CMD.__init__( self, gapRel=gapRel, mip=mip, msg=msg, timeLimit=timeLimit, presolve=presolve, cuts=cuts, strong=strong, options=options, warmStart=warmStart, path=path, keepFiles=keepFiles, threads=threads, gapAbs=gapAbs, logPath=logPath, timeMode=timeMode, maxNodes=maxNodes, ) def copy(self): """Make a copy of self""" aCopy = LpSolver_CMD.copy(self) aCopy.optionsDict = self.optionsDict return aCopy def actualSolve(self, lp, **kwargs): """Solve a well formulated lp problem""" return self.solve_CBC(lp, **kwargs) def available(self): """True if the solver is available""" return self.executable(self.path) def solve_CBC(self, lp, use_mps=True): """Solve a MIP problem using CBC""" if not self.executable(self.path): raise PulpSolverError( f"Pulp: cannot execute {self.path} cwd: {os.getcwd()}" ) tmpLp, tmpMps, tmpSol, tmpMst = self.create_tmp_files( lp.name, "lp", "mps", "sol", "mst" ) if use_mps: vs, variablesNames, constraintsNames, objectiveName = lp.writeMPS( tmpMps, rename=1 ) cmds = " " + tmpMps + " " if lp.sense == constants.LpMaximize: cmds += "-max " else: vs = lp.writeLP(tmpLp) # In the Lp we do not create new variable or constraint names: variablesNames = {v.name: v.name for v in vs} constraintsNames = {c: c for c in lp.constraints} cmds = " " + tmpLp + " " if self.optionsDict.get("warmStart", False): self.writesol(tmpMst, lp, vs, variablesNames, constraintsNames) cmds += f"-mips {tmpMst} " if self.timeLimit is not None: cmds += f"-sec {self.timeLimit} " options = self.options + self.getOptions() for option in options: cmds += "-" + option + " " if self.mip: cmds += "-branch " else: cmds += "-initialSolve " cmds += "-printingOptions all " cmds += "-solution " + tmpSol + " " if self.msg: pipe = None else: pipe = open(os.devnull, "w") logPath = self.optionsDict.get("logPath") if logPath: if self.msg: warnings.warn( "`logPath` argument replaces `msg=1`. The output will be redirected to the log file." ) pipe = open(self.optionsDict["logPath"], "w") log.debug(self.path + cmds) args = [] args.append(self.path) args.extend(cmds[1:].split()) if not self.msg and operating_system == "win": # Prevent flashing windows if used from a GUI application startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW cbc = subprocess.Popen( args, stdout=pipe, stderr=pipe, stdin=devnull, startupinfo=startupinfo ) else: cbc = subprocess.Popen(args, stdout=pipe, stderr=pipe, stdin=devnull) if cbc.wait() != 0: if pipe: pipe.close() raise PulpSolverError( "Pulp: Error while trying to execute, use msg=True for more details" + self.path ) if pipe: pipe.close() if not os.path.exists(tmpSol): raise PulpSolverError("Pulp: Error while executing " + self.path) ( status, values, reducedCosts, shadowPrices, slacks, sol_status, ) = self.readsol_MPS(tmpSol, lp, vs, variablesNames, constraintsNames) lp.assignVarsVals(values) lp.assignVarsDj(reducedCosts) lp.assignConsPi(shadowPrices) lp.assignConsSlack(slacks, activity=True) lp.assignStatus(status, sol_status) self.delete_tmp_files(tmpMps, tmpLp, tmpSol, tmpMst) return status def getOptions(self): params_eq = dict( gapRel="ratio {}", gapAbs="allow {}", threads="threads {}", presolve="presolve on", strong="strong {}", cuts="gomory on knapsack on probing on", timeMode="timeMode {}", maxNodes="maxNodes {}", ) return [ v.format(self.optionsDict[k]) for k, v in params_eq.items() if self.optionsDict.get(k) is not None ] def readsol_MPS( self, filename, lp, vs, variablesNames, constraintsNames, objectiveName=None ): """ Read a CBC solution file generated from an mps or lp file (possible different names) """ values = {v.name: 0 for v in vs} reverseVn = {v: k for k, v in variablesNames.items()} reverseCn = {v: k for k, v in constraintsNames.items()} reducedCosts = {} shadowPrices = {} slacks = {} status, sol_status = self.get_status(filename) with open(filename) as f: for l in f: if len(l) <= 2: break l = l.split() # incase the solution is infeasible if l[0] == "**": l = l[1:] vn = l[1] val = l[2] dj = l[3] if vn in reverseVn: values[reverseVn[vn]] = float(val) reducedCosts[reverseVn[vn]] = float(dj) if vn in reverseCn: slacks[reverseCn[vn]] = float(val) shadowPrices[reverseCn[vn]] = float(dj) return status, values, reducedCosts, shadowPrices, slacks, sol_status def writesol(self, filename, lp, vs, variablesNames, constraintsNames): """ Writes a CBC solution file generated from an mps / lp file (possible different names) returns True on success """ values = {v.name: v.value() if v.value() is not None else 0 for v in vs} value_lines = [] value_lines += [ (i, v, values[k], 0) for i, (k, v) in enumerate(variablesNames.items()) ] lines = ["Stopped on time - objective value 0\n"] lines += ["{:>7} {} {:>15} {:>23}\n".format(*tup) for tup in value_lines] with open(filename, "w") as f: f.writelines(lines) return True def readsol_LP(self, filename, lp, vs): """ Read a CBC solution file generated from an lp (good names) returns status, values, reducedCosts, shadowPrices, slacks, sol_status """ variablesNames = {v.name: v.name for v in vs} constraintsNames = {c: c for c in lp.constraints} return self.readsol_MPS(filename, lp, vs, variablesNames, constraintsNames) def get_status(self, filename): cbcStatus = { "Optimal": constants.LpStatusOptimal, "Infeasible": constants.LpStatusInfeasible, "Integer": constants.LpStatusInfeasible, "Unbounded": constants.LpStatusUnbounded, "Stopped": constants.LpStatusNotSolved, } cbcSolStatus = { "Optimal": constants.LpSolutionOptimal, "Infeasible": constants.LpSolutionInfeasible, "Unbounded": constants.LpSolutionUnbounded, "Stopped": constants.LpSolutionNoSolutionFound, } with open(filename) as f: statusstrs = f.readline().split() status = cbcStatus.get(statusstrs[0], constants.LpStatusUndefined) sol_status = cbcSolStatus.get( statusstrs[0], constants.LpSolutionNoSolutionFound ) # here we could use some regex expression. # Not sure what's more desirable if status == constants.LpStatusNotSolved and len(statusstrs) >= 5: if statusstrs[4] == "objective": status = constants.LpStatusOptimal sol_status = constants.LpSolutionIntegerFeasible return status, sol_status
(mip=True, msg=True, timeLimit=None, gapRel=None, gapAbs=None, presolve=None, cuts=None, strong=None, options=None, warmStart=False, keepFiles=False, path=None, threads=None, logPath=None, timeMode='elapsed', maxNodes=None)
38,009
pulp.apis.coin_api
__init__
:param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int threads: sets the maximum number of threads :param list options: list of additional options to pass to solver :param bool warmStart: if True, the solver will use the current value of variables as a start :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary :param str logPath: path to the log file :param bool presolve: if True, adds presolve on :param bool cuts: if True, adds gomory on knapsack on probing on :param bool strong: if True, adds strong :param str timeMode: "elapsed": count wall-time to timeLimit; "cpu": count cpu-time :param int maxNodes: max number of nodes during branching. Stops the solving when reached.
def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, gapAbs=None, presolve=None, cuts=None, strong=None, options=None, warmStart=False, keepFiles=False, path=None, threads=None, logPath=None, timeMode="elapsed", maxNodes=None, ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int threads: sets the maximum number of threads :param list options: list of additional options to pass to solver :param bool warmStart: if True, the solver will use the current value of variables as a start :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary :param str logPath: path to the log file :param bool presolve: if True, adds presolve on :param bool cuts: if True, adds gomory on knapsack on probing on :param bool strong: if True, adds strong :param str timeMode: "elapsed": count wall-time to timeLimit; "cpu": count cpu-time :param int maxNodes: max number of nodes during branching. Stops the solving when reached. """ LpSolver_CMD.__init__( self, gapRel=gapRel, mip=mip, msg=msg, timeLimit=timeLimit, presolve=presolve, cuts=cuts, strong=strong, options=options, warmStart=warmStart, path=path, keepFiles=keepFiles, threads=threads, gapAbs=gapAbs, logPath=logPath, timeMode=timeMode, maxNodes=maxNodes, )
(self, mip=True, msg=True, timeLimit=None, gapRel=None, gapAbs=None, presolve=None, cuts=None, strong=None, options=None, warmStart=False, keepFiles=False, path=None, threads=None, logPath=None, timeMode='elapsed', maxNodes=None)
38,011
pulp.apis.coin_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp, **kwargs): """Solve a well formulated lp problem""" return self.solve_CBC(lp, **kwargs)
(self, lp, **kwargs)
38,012
pulp.apis.coin_api
available
True if the solver is available
def available(self): """True if the solver is available""" return self.executable(self.path)
(self)
38,013
pulp.apis.coin_api
copy
Make a copy of self
def copy(self): """Make a copy of self""" aCopy = LpSolver_CMD.copy(self) aCopy.optionsDict = self.optionsDict return aCopy
(self)
38,015
pulp.apis.coin_api
defaultPath
null
def defaultPath(self): return self.executableExtension(cbc_path)
(self)
38,020
pulp.apis.coin_api
getOptions
null
def getOptions(self): params_eq = dict( gapRel="ratio {}", gapAbs="allow {}", threads="threads {}", presolve="presolve on", strong="strong {}", cuts="gomory on knapsack on probing on", timeMode="timeMode {}", maxNodes="maxNodes {}", ) return [ v.format(self.optionsDict[k]) for k, v in params_eq.items() if self.optionsDict.get(k) is not None ]
(self)
38,021
pulp.apis.coin_api
get_status
null
def get_status(self, filename): cbcStatus = { "Optimal": constants.LpStatusOptimal, "Infeasible": constants.LpStatusInfeasible, "Integer": constants.LpStatusInfeasible, "Unbounded": constants.LpStatusUnbounded, "Stopped": constants.LpStatusNotSolved, } cbcSolStatus = { "Optimal": constants.LpSolutionOptimal, "Infeasible": constants.LpSolutionInfeasible, "Unbounded": constants.LpSolutionUnbounded, "Stopped": constants.LpSolutionNoSolutionFound, } with open(filename) as f: statusstrs = f.readline().split() status = cbcStatus.get(statusstrs[0], constants.LpStatusUndefined) sol_status = cbcSolStatus.get( statusstrs[0], constants.LpSolutionNoSolutionFound ) # here we could use some regex expression. # Not sure what's more desirable if status == constants.LpStatusNotSolved and len(statusstrs) >= 5: if statusstrs[4] == "objective": status = constants.LpStatusOptimal sol_status = constants.LpSolutionIntegerFeasible return status, sol_status
(self, filename)
38,022
pulp.apis.coin_api
readsol_LP
Read a CBC solution file generated from an lp (good names) returns status, values, reducedCosts, shadowPrices, slacks, sol_status
def readsol_LP(self, filename, lp, vs): """ Read a CBC solution file generated from an lp (good names) returns status, values, reducedCosts, shadowPrices, slacks, sol_status """ variablesNames = {v.name: v.name for v in vs} constraintsNames = {c: c for c in lp.constraints} return self.readsol_MPS(filename, lp, vs, variablesNames, constraintsNames)
(self, filename, lp, vs)
38,023
pulp.apis.coin_api
readsol_MPS
Read a CBC solution file generated from an mps or lp file (possible different names)
def readsol_MPS( self, filename, lp, vs, variablesNames, constraintsNames, objectiveName=None ): """ Read a CBC solution file generated from an mps or lp file (possible different names) """ values = {v.name: 0 for v in vs} reverseVn = {v: k for k, v in variablesNames.items()} reverseCn = {v: k for k, v in constraintsNames.items()} reducedCosts = {} shadowPrices = {} slacks = {} status, sol_status = self.get_status(filename) with open(filename) as f: for l in f: if len(l) <= 2: break l = l.split() # incase the solution is infeasible if l[0] == "**": l = l[1:] vn = l[1] val = l[2] dj = l[3] if vn in reverseVn: values[reverseVn[vn]] = float(val) reducedCosts[reverseVn[vn]] = float(dj) if vn in reverseCn: slacks[reverseCn[vn]] = float(val) shadowPrices[reverseCn[vn]] = float(dj) return status, values, reducedCosts, shadowPrices, slacks, sol_status
(self, filename, lp, vs, variablesNames, constraintsNames, objectiveName=None)
38,027
pulp.apis.coin_api
solve_CBC
Solve a MIP problem using CBC
def solve_CBC(self, lp, use_mps=True): """Solve a MIP problem using CBC""" if not self.executable(self.path): raise PulpSolverError( f"Pulp: cannot execute {self.path} cwd: {os.getcwd()}" ) tmpLp, tmpMps, tmpSol, tmpMst = self.create_tmp_files( lp.name, "lp", "mps", "sol", "mst" ) if use_mps: vs, variablesNames, constraintsNames, objectiveName = lp.writeMPS( tmpMps, rename=1 ) cmds = " " + tmpMps + " " if lp.sense == constants.LpMaximize: cmds += "-max " else: vs = lp.writeLP(tmpLp) # In the Lp we do not create new variable or constraint names: variablesNames = {v.name: v.name for v in vs} constraintsNames = {c: c for c in lp.constraints} cmds = " " + tmpLp + " " if self.optionsDict.get("warmStart", False): self.writesol(tmpMst, lp, vs, variablesNames, constraintsNames) cmds += f"-mips {tmpMst} " if self.timeLimit is not None: cmds += f"-sec {self.timeLimit} " options = self.options + self.getOptions() for option in options: cmds += "-" + option + " " if self.mip: cmds += "-branch " else: cmds += "-initialSolve " cmds += "-printingOptions all " cmds += "-solution " + tmpSol + " " if self.msg: pipe = None else: pipe = open(os.devnull, "w") logPath = self.optionsDict.get("logPath") if logPath: if self.msg: warnings.warn( "`logPath` argument replaces `msg=1`. The output will be redirected to the log file." ) pipe = open(self.optionsDict["logPath"], "w") log.debug(self.path + cmds) args = [] args.append(self.path) args.extend(cmds[1:].split()) if not self.msg and operating_system == "win": # Prevent flashing windows if used from a GUI application startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW cbc = subprocess.Popen( args, stdout=pipe, stderr=pipe, stdin=devnull, startupinfo=startupinfo ) else: cbc = subprocess.Popen(args, stdout=pipe, stderr=pipe, stdin=devnull) if cbc.wait() != 0: if pipe: pipe.close() raise PulpSolverError( "Pulp: Error while trying to execute, use msg=True for more details" + self.path ) if pipe: pipe.close() if not os.path.exists(tmpSol): raise PulpSolverError("Pulp: Error while executing " + self.path) ( status, values, reducedCosts, shadowPrices, slacks, sol_status, ) = self.readsol_MPS(tmpSol, lp, vs, variablesNames, constraintsNames) lp.assignVarsVals(values) lp.assignVarsDj(reducedCosts) lp.assignConsPi(shadowPrices) lp.assignConsSlack(slacks, activity=True) lp.assignStatus(status, sol_status) self.delete_tmp_files(tmpMps, tmpLp, tmpSol, tmpMst) return status
(self, lp, use_mps=True)
38,032
pulp.apis.coin_api
writesol
Writes a CBC solution file generated from an mps / lp file (possible different names) returns True on success
def writesol(self, filename, lp, vs, variablesNames, constraintsNames): """ Writes a CBC solution file generated from an mps / lp file (possible different names) returns True on success """ values = {v.name: v.value() if v.value() is not None else 0 for v in vs} value_lines = [] value_lines += [ (i, v, values[k], 0) for i, (k, v) in enumerate(variablesNames.items()) ] lines = ["Stopped on time - objective value 0\n"] lines += ["{:>7} {} {:>15} {:>23}\n".format(*tup) for tup in value_lines] with open(filename, "w") as f: f.writelines(lines) return True
(self, filename, lp, vs, variablesNames, constraintsNames)
38,033
pulp.apis.coin_api
COINMP_DLL
The COIN_MP LP MIP solver (via a DLL or linux so) :param timeLimit: The number of seconds before forcing the solver to exit :param epgap: The fractional mip tolerance
class COINMP_DLL(LpSolver): """ The COIN_MP LP MIP solver (via a DLL or linux so) :param timeLimit: The number of seconds before forcing the solver to exit :param epgap: The fractional mip tolerance """ name = "COINMP_DLL" try: lib = COINMP_DLL_load_dll(coinMP_path) except (ImportError, OSError): @classmethod def available(cls): """True if the solver is available""" return False def actualSolve(self, lp): """Solve a well formulated lp problem""" raise PulpSolverError("COINMP_DLL: Not Available") else: COIN_INT_LOGLEVEL = 7 COIN_REAL_MAXSECONDS = 16 COIN_REAL_MIPMAXSEC = 19 COIN_REAL_MIPFRACGAP = 34 lib.CoinGetInfinity.restype = ctypes.c_double lib.CoinGetVersionStr.restype = ctypes.c_char_p lib.CoinGetSolutionText.restype = ctypes.c_char_p lib.CoinGetObjectValue.restype = ctypes.c_double lib.CoinGetMipBestBound.restype = ctypes.c_double def __init__( self, cuts=1, presolve=1, dual=1, crash=0, scale=1, rounding=1, integerPresolve=1, strong=5, *args, **kwargs, ): LpSolver.__init__(self, *args, **kwargs) self.fracGap = None gapRel = self.optionsDict.get("gapRel") if gapRel is not None: self.fracGap = float(gapRel) if self.timeLimit is not None: self.timeLimit = float(self.timeLimit) # Todo: these options are not yet implemented self.cuts = cuts self.presolve = presolve self.dual = dual self.crash = crash self.scale = scale self.rounding = rounding self.integerPresolve = integerPresolve self.strong = strong def copy(self): """Make a copy of self""" aCopy = LpSolver.copy(self) aCopy.cuts = self.cuts aCopy.presolve = self.presolve aCopy.dual = self.dual aCopy.crash = self.crash aCopy.scale = self.scale aCopy.rounding = self.rounding aCopy.integerPresolve = self.integerPresolve aCopy.strong = self.strong return aCopy @classmethod def available(cls): """True if the solver is available""" return True def getSolverVersion(self): """ returns a solver version string example: >>> COINMP_DLL().getSolverVersion() # doctest: +ELLIPSIS '...' """ return self.lib.CoinGetVersionStr() def actualSolve(self, lp): """Solve a well formulated lp problem""" # TODO alter so that msg parameter is handled correctly self.debug = 0 # initialise solver self.lib.CoinInitSolver("") # create problem self.hProb = hProb = self.lib.CoinCreateProblem(lp.name) # set problem options self.lib.CoinSetIntOption( hProb, self.COIN_INT_LOGLEVEL, ctypes.c_int(self.msg) ) if self.timeLimit: if self.mip: self.lib.CoinSetRealOption( hProb, self.COIN_REAL_MIPMAXSEC, ctypes.c_double(self.timeLimit) ) else: self.lib.CoinSetRealOption( hProb, self.COIN_REAL_MAXSECONDS, ctypes.c_double(self.timeLimit), ) if self.fracGap: # Hopefully this is the bound gap tolerance self.lib.CoinSetRealOption( hProb, self.COIN_REAL_MIPFRACGAP, ctypes.c_double(self.fracGap) ) # CoinGetInfinity is needed for varibles with no bounds coinDblMax = self.lib.CoinGetInfinity() if self.debug: print("Before getCoinMPArrays") ( numVars, numRows, numels, rangeCount, objectSense, objectCoeffs, objectConst, rhsValues, rangeValues, rowType, startsBase, lenBase, indBase, elemBase, lowerBounds, upperBounds, initValues, colNames, rowNames, columnType, n2v, n2c, ) = self.getCplexStyleArrays(lp) self.lib.CoinLoadProblem( hProb, numVars, numRows, numels, rangeCount, objectSense, objectConst, objectCoeffs, lowerBounds, upperBounds, rowType, rhsValues, rangeValues, startsBase, lenBase, indBase, elemBase, colNames, rowNames, "Objective", ) if lp.isMIP() and self.mip: self.lib.CoinLoadInteger(hProb, columnType) if self.msg == 0: self.lib.CoinRegisterMsgLogCallback( hProb, ctypes.c_char_p(""), ctypes.POINTER(ctypes.c_int)() ) self.coinTime = -clock() self.lib.CoinOptimizeProblem(hProb, 0) self.coinTime += clock() # TODO: check Integer Feasible status CoinLpStatus = { 0: constants.LpStatusOptimal, 1: constants.LpStatusInfeasible, 2: constants.LpStatusInfeasible, 3: constants.LpStatusNotSolved, 4: constants.LpStatusNotSolved, 5: constants.LpStatusNotSolved, -1: constants.LpStatusUndefined, } solutionStatus = self.lib.CoinGetSolutionStatus(hProb) solutionText = self.lib.CoinGetSolutionText(hProb) objectValue = self.lib.CoinGetObjectValue(hProb) # get the solution values NumVarDoubleArray = ctypes.c_double * numVars NumRowsDoubleArray = ctypes.c_double * numRows cActivity = NumVarDoubleArray() cReducedCost = NumVarDoubleArray() cSlackValues = NumRowsDoubleArray() cShadowPrices = NumRowsDoubleArray() self.lib.CoinGetSolutionValues( hProb, ctypes.byref(cActivity), ctypes.byref(cReducedCost), ctypes.byref(cSlackValues), ctypes.byref(cShadowPrices), ) variablevalues = {} variabledjvalues = {} constraintpivalues = {} constraintslackvalues = {} if lp.isMIP() and self.mip: lp.bestBound = self.lib.CoinGetMipBestBound(hProb) for i in range(numVars): variablevalues[self.n2v[i].name] = cActivity[i] variabledjvalues[self.n2v[i].name] = cReducedCost[i] lp.assignVarsVals(variablevalues) lp.assignVarsDj(variabledjvalues) # put pi and slack variables against the constraints for i in range(numRows): constraintpivalues[self.n2c[i]] = cShadowPrices[i] constraintslackvalues[self.n2c[i]] = cSlackValues[i] lp.assignConsPi(constraintpivalues) lp.assignConsSlack(constraintslackvalues) self.lib.CoinFreeSolver() status = CoinLpStatus[self.lib.CoinGetSolutionStatus(hProb)] lp.assignStatus(status) return status
(mip=True, msg=True, options=None, timeLimit=None, *args, **kwargs)
38,034
pulp.apis.core
__init__
:param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param list options: :param float timeLimit: maximum time for solver (in seconds) :param args: :param kwargs: optional named options to pass to each solver, e.g. gapRel=0.1, gapAbs=10, logPath="",
def __init__( self, mip=True, msg=True, options=None, timeLimit=None, *args, **kwargs ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param list options: :param float timeLimit: maximum time for solver (in seconds) :param args: :param kwargs: optional named options to pass to each solver, e.g. gapRel=0.1, gapAbs=10, logPath="", """ if options is None: options = [] self.mip = mip self.msg = msg self.options = options self.timeLimit = timeLimit # here we will store all other relevant information including: # gapRel, gapAbs, maxMemory, maxNodes, threads, logPath, timeMode self.optionsDict = {k: v for k, v in kwargs.items() if v is not None}
(self, mip=True, msg=True, options=None, timeLimit=None, *args, **kwargs)
38,036
pulp.apis.coin_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp): """Solve a well formulated lp problem""" raise PulpSolverError("COINMP_DLL: Not Available")
(self, lp)
38,037
pulp.apis.core
copy
Make a copy of self
def copy(self): """Make a copy of self""" aCopy = self.__class__() aCopy.mip = self.mip aCopy.msg = self.msg aCopy.options = self.options return aCopy
(self)
38,044
pulp.apis.coin_api
COINMP_DLL_load_dll
function that loads the DLL useful for debugging installation problems
def COINMP_DLL_load_dll(path): """ function that loads the DLL useful for debugging installation problems """ if os.name == "nt": lib = ctypes.windll.LoadLibrary(str(path[-1])) else: # linux hack to get working mode = ctypes.RTLD_GLOBAL for libpath in path[:-1]: # RTLD_LAZY = 0x00001 ctypes.CDLL(libpath, mode=mode) lib = ctypes.CDLL(path[-1], mode=mode) return lib
(path)
38,070
pulp.apis.copt_api
COPT
The COPT Optimizer via its python interface The COPT variables are available (after a solve) in var.solverVar Constraints in constraint.solverConstraint and the Model is in prob.solverModel
class COPT(LpSolver): """ The COPT Optimizer via its python interface The COPT variables are available (after a solve) in var.solverVar Constraints in constraint.solverConstraint and the Model is in prob.solverModel """ name = "COPT" try: global coptpy import coptpy except: def available(self): """True if the solver is available""" return False def actualSolve(self, lp, callback=None): """Solve a well formulated lp problem""" raise PulpSolverError("COPT: Not available") else: def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, warmStart=False, logPath=None, **solverParams, ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param bool warmStart: if True, the solver will use the current value of variables as a start :param str logPath: path to the log file """ LpSolver.__init__( self, mip=mip, msg=msg, timeLimit=timeLimit, gapRel=gapRel, logPath=logPath, warmStart=warmStart, ) self.coptenv = coptpy.Envr() self.coptmdl = self.coptenv.createModel() if not self.msg: self.coptmdl.setParam("Logging", 0) for key, value in solverParams.items(): self.coptmdl.setParam(key, value) def findSolutionValues(self, lp): model = lp.solverModel solutionStatus = model.status CoptLpStatus = { coptpy.COPT.UNSTARTED: LpStatusNotSolved, coptpy.COPT.OPTIMAL: LpStatusOptimal, coptpy.COPT.INFEASIBLE: LpStatusInfeasible, coptpy.COPT.UNBOUNDED: LpStatusUnbounded, coptpy.COPT.INF_OR_UNB: LpStatusInfeasible, coptpy.COPT.NUMERICAL: LpStatusNotSolved, coptpy.COPT.NODELIMIT: LpStatusNotSolved, coptpy.COPT.TIMEOUT: LpStatusNotSolved, coptpy.COPT.UNFINISHED: LpStatusNotSolved, coptpy.COPT.INTERRUPTED: LpStatusNotSolved, } if self.msg: print("COPT status=", solutionStatus) lp.resolveOK = True for var in lp._variables: var.isModified = False status = CoptLpStatus.get(solutionStatus, LpStatusUndefined) lp.assignStatus(status) if status != LpStatusOptimal: return status values = model.getInfo("Value", model.getVars()) for var, value in zip(lp._variables, values): var.varValue = value if not model.ismip: # NOTE: slacks in COPT are activities of rows slacks = model.getInfo("Slack", model.getConstrs()) for constr, value in zip(lp.constraints.values(), slacks): constr.slack = value redcosts = model.getInfo("RedCost", model.getVars()) for var, value in zip(lp._variables, redcosts): var.dj = value duals = model.getInfo("Dual", model.getConstrs()) for constr, value in zip(lp.constraints.values(), duals): constr.pi = value return status def available(self): """True if the solver is available""" return True def callSolver(self, lp, callback=None): """Solves the problem with COPT""" self.solveTime = -clock() if callback is not None: lp.solverModel.setCallback( callback, coptpy.COPT.CBCONTEXT_MIPRELAX | coptpy.COPT.CBCONTEXT_MIPSOL, ) lp.solverModel.solve() self.solveTime += clock() def buildSolverModel(self, lp): """ Takes the pulp lp model and translates it into a COPT model """ lp.solverModel = self.coptmdl if lp.sense == LpMaximize: lp.solverModel.objsense = coptpy.COPT.MAXIMIZE if self.timeLimit: lp.solverModel.setParam("TimeLimit", self.timeLimit) gapRel = self.optionsDict.get("gapRel") logPath = self.optionsDict.get("logPath") if gapRel: lp.solverModel.setParam("RelGap", gapRel) if logPath: lp.solverModel.setLogFile(logPath) for var in lp.variables(): lowBound = var.lowBound if lowBound is None: lowBound = -coptpy.COPT.INFINITY upBound = var.upBound if upBound is None: upBound = coptpy.COPT.INFINITY obj = lp.objective.get(var, 0.0) varType = coptpy.COPT.CONTINUOUS if var.cat == LpInteger and self.mip: varType = coptpy.COPT.INTEGER var.solverVar = lp.solverModel.addVar( lowBound, upBound, vtype=varType, obj=obj, name=var.name ) if self.optionsDict.get("warmStart", False): for var in lp._variables: if var.varValue is not None: self.coptmdl.setMipStart(var.solverVar, var.varValue) self.coptmdl.loadMipStart() for name, constraint in lp.constraints.items(): expr = coptpy.LinExpr( [v.solverVar for v in constraint.keys()], list(constraint.values()) ) if constraint.sense == LpConstraintLE: relation = coptpy.COPT.LESS_EQUAL elif constraint.sense == LpConstraintGE: relation = coptpy.COPT.GREATER_EQUAL elif constraint.sense == LpConstraintEQ: relation = coptpy.COPT.EQUAL else: raise PulpSolverError("Detected an invalid constraint type") constraint.solverConstraint = lp.solverModel.addConstr( expr, relation, -constraint.constant, name ) def actualSolve(self, lp, callback=None): """ Solve a well formulated lp problem creates a COPT model, variables and constraints and attaches them to the lp model which it then solves """ self.buildSolverModel(lp) self.callSolver(lp, callback=callback) solutionStatus = self.findSolutionValues(lp) for var in lp._variables: var.modified = False for constraint in lp.constraints.values(): constraint.modified = False return solutionStatus def actualResolve(self, lp, callback=None): """ Solve a well formulated lp problem uses the old solver and modifies the rhs of the modified constraints """ for constraint in lp.constraints.values(): if constraint.modified: if constraint.sense == LpConstraintLE: constraint.solverConstraint.ub = -constraint.constant elif constraint.sense == LpConstraintGE: constraint.solverConstraint.lb = -constraint.constant else: constraint.solverConstraint.lb = -constraint.constant constraint.solverConstraint.ub = -constraint.constant self.callSolver(lp, callback=callback) solutionStatus = self.findSolutionValues(lp) for var in lp._variables: var.modified = False for constraint in lp.constraints.values(): constraint.modified = False return solutionStatus
(mip=True, msg=True, options=None, timeLimit=None, *args, **kwargs)
38,073
pulp.apis.copt_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp, callback=None): """Solve a well formulated lp problem""" raise PulpSolverError("COPT: Not available")
(self, lp, callback=None)
38,074
pulp.apis.copt_api
available
True if the solver is available
def available(self): """True if the solver is available""" return False
(self)
38,082
pulp.apis.copt_api
COPT_CMD
The COPT command-line solver
class COPT_CMD(LpSolver_CMD): """ The COPT command-line solver """ name = "COPT_CMD" def __init__( self, path=None, keepFiles=0, mip=True, msg=True, mip_start=False, warmStart=False, logfile=None, **params, ): """ Initialize command-line solver """ LpSolver_CMD.__init__(self, path, keepFiles, mip, msg, []) self.mipstart = warmStart self.logfile = logfile self.solverparams = params def defaultPath(self): """ The default path of 'copt_cmd' """ return self.executableExtension("copt_cmd") def available(self): """ True if 'copt_cmd' is available """ return self.executable(self.path) def actualSolve(self, lp): """ Solve a well formulated LP problem This function borrowed implementation of CPLEX_CMD.actualSolve and GUROBI_CMD.actualSolve, with some modifications. """ if not self.available(): raise PulpSolverError("COPT_PULP: Failed to execute '{}'".format(self.path)) if not self.keepFiles: uuid = uuid4().hex tmpLp = os.path.join(self.tmpDir, "{}-pulp.lp".format(uuid)) tmpSol = os.path.join(self.tmpDir, "{}-pulp.sol".format(uuid)) tmpMst = os.path.join(self.tmpDir, "{}-pulp.mst".format(uuid)) else: # Replace space with underscore to make filepath better tmpName = lp.name tmpName = tmpName.replace(" ", "_") tmpLp = tmpName + "-pulp.lp" tmpSol = tmpName + "-pulp.sol" tmpMst = tmpName + "-pulp.mst" lpvars = lp.writeLP(tmpLp, writeSOS=1) # Generate solving commands solvecmds = self.path solvecmds += " -c " solvecmds += '"read ' + tmpLp + ";" if lp.isMIP() and self.mipstart: self.writemst(tmpMst, lpvars) solvecmds += "read " + tmpMst + ";" if self.logfile is not None: solvecmds += "set logfile {};".format(self.logfile) if self.solverparams is not None: for parname, parval in self.solverparams.items(): solvecmds += "set {0} {1};".format(parname, parval) if lp.isMIP() and not self.mip: solvecmds += "optimizelp;" else: solvecmds += "optimize;" solvecmds += "write " + tmpSol + ";" solvecmds += 'exit"' try: os.remove(tmpSol) except: pass if self.msg: msgpipe = None else: msgpipe = open(os.devnull, "w") rc = subprocess.call(solvecmds, shell=True, stdout=msgpipe, stderr=msgpipe) if msgpipe is not None: msgpipe.close() # Get and analyze result if rc != 0: raise PulpSolverError("COPT_PULP: Failed to execute '{}'".format(self.path)) if not os.path.exists(tmpSol): status = LpStatusNotSolved else: status, values = self.readsol(tmpSol) if not self.keepFiles: for oldfile in [tmpLp, tmpSol, tmpMst]: try: os.remove(oldfile) except: pass if status == LpStatusOptimal: lp.assignVarsVals(values) # lp.assignStatus(status) lp.status = status return status def readsol(self, filename): """ Read COPT solution file """ with open(filename) as solfile: try: next(solfile) except StopIteration: warnings.warn("COPT_PULP: No solution was returned") return LpStatusNotSolved, {} # TODO: No information about status, assumed to be optimal status = LpStatusOptimal values = {} for line in solfile: if line[0] != "#": varname, varval = line.split() values[varname] = float(varval) return status, values def writemst(self, filename, lpvars): """ Write COPT MIP start file """ mstvals = [(v.name, v.value()) for v in lpvars if v.value() is not None] mstline = [] for varname, varval in mstvals: mstline.append("{0} {1}".format(varname, varval)) with open(filename, "w") as mstfile: mstfile.write("\n".join(mstline)) return True
(path=None, keepFiles=0, mip=True, msg=True, mip_start=False, warmStart=False, logfile=None, **params)
38,083
pulp.apis.copt_api
__init__
Initialize command-line solver
def __init__( self, path=None, keepFiles=0, mip=True, msg=True, mip_start=False, warmStart=False, logfile=None, **params, ): """ Initialize command-line solver """ LpSolver_CMD.__init__(self, path, keepFiles, mip, msg, []) self.mipstart = warmStart self.logfile = logfile self.solverparams = params
(self, path=None, keepFiles=0, mip=True, msg=True, mip_start=False, warmStart=False, logfile=None, **params)
38,085
pulp.apis.copt_api
actualSolve
Solve a well formulated LP problem This function borrowed implementation of CPLEX_CMD.actualSolve and GUROBI_CMD.actualSolve, with some modifications.
def actualSolve(self, lp): """ Solve a well formulated LP problem This function borrowed implementation of CPLEX_CMD.actualSolve and GUROBI_CMD.actualSolve, with some modifications. """ if not self.available(): raise PulpSolverError("COPT_PULP: Failed to execute '{}'".format(self.path)) if not self.keepFiles: uuid = uuid4().hex tmpLp = os.path.join(self.tmpDir, "{}-pulp.lp".format(uuid)) tmpSol = os.path.join(self.tmpDir, "{}-pulp.sol".format(uuid)) tmpMst = os.path.join(self.tmpDir, "{}-pulp.mst".format(uuid)) else: # Replace space with underscore to make filepath better tmpName = lp.name tmpName = tmpName.replace(" ", "_") tmpLp = tmpName + "-pulp.lp" tmpSol = tmpName + "-pulp.sol" tmpMst = tmpName + "-pulp.mst" lpvars = lp.writeLP(tmpLp, writeSOS=1) # Generate solving commands solvecmds = self.path solvecmds += " -c " solvecmds += '"read ' + tmpLp + ";" if lp.isMIP() and self.mipstart: self.writemst(tmpMst, lpvars) solvecmds += "read " + tmpMst + ";" if self.logfile is not None: solvecmds += "set logfile {};".format(self.logfile) if self.solverparams is not None: for parname, parval in self.solverparams.items(): solvecmds += "set {0} {1};".format(parname, parval) if lp.isMIP() and not self.mip: solvecmds += "optimizelp;" else: solvecmds += "optimize;" solvecmds += "write " + tmpSol + ";" solvecmds += 'exit"' try: os.remove(tmpSol) except: pass if self.msg: msgpipe = None else: msgpipe = open(os.devnull, "w") rc = subprocess.call(solvecmds, shell=True, stdout=msgpipe, stderr=msgpipe) if msgpipe is not None: msgpipe.close() # Get and analyze result if rc != 0: raise PulpSolverError("COPT_PULP: Failed to execute '{}'".format(self.path)) if not os.path.exists(tmpSol): status = LpStatusNotSolved else: status, values = self.readsol(tmpSol) if not self.keepFiles: for oldfile in [tmpLp, tmpSol, tmpMst]: try: os.remove(oldfile) except: pass if status == LpStatusOptimal: lp.assignVarsVals(values) # lp.assignStatus(status) lp.status = status return status
(self, lp)
38,086
pulp.apis.copt_api
available
True if 'copt_cmd' is available
def available(self): """ True if 'copt_cmd' is available """ return self.executable(self.path)
(self)
38,089
pulp.apis.copt_api
defaultPath
The default path of 'copt_cmd'
def defaultPath(self): """ The default path of 'copt_cmd' """ return self.executableExtension("copt_cmd")
(self)
38,094
pulp.apis.copt_api
readsol
Read COPT solution file
def readsol(self, filename): """ Read COPT solution file """ with open(filename) as solfile: try: next(solfile) except StopIteration: warnings.warn("COPT_PULP: No solution was returned") return LpStatusNotSolved, {} # TODO: No information about status, assumed to be optimal status = LpStatusOptimal values = {} for line in solfile: if line[0] != "#": varname, varval = line.split() values[varname] = float(varval) return status, values
(self, filename)
38,102
pulp.apis.copt_api
writemst
Write COPT MIP start file
def writemst(self, filename, lpvars): """ Write COPT MIP start file """ mstvals = [(v.name, v.value()) for v in lpvars if v.value() is not None] mstline = [] for varname, varval in mstvals: mstline.append("{0} {1}".format(varname, varval)) with open(filename, "w") as mstfile: mstfile.write("\n".join(mstline)) return True
(self, filename, lpvars)
38,103
pulp.apis.copt_api
COPT_DLL
The COPT dynamic library solver
class COPT_DLL(LpSolver): """ The COPT dynamic library solver """ name = "COPT_DLL" try: coptlib = COPT_DLL_loadlib() except Exception as e: err = e """The COPT dynamic library solver (DLL). Something went wrong!!!!""" def available(self): """True if the solver is available""" return False def actualSolve(self, lp): """Solve a well formulated lp problem""" raise PulpSolverError(f"COPT_DLL: Not Available:\n{self.err}") else: # COPT API name map CreateEnv = coptlib.COPT_CreateEnv DeleteEnv = coptlib.COPT_DeleteEnv CreateProb = coptlib.COPT_CreateProb DeleteProb = coptlib.COPT_DeleteProb LoadProb = coptlib.COPT_LoadProb AddCols = coptlib.COPT_AddCols WriteMps = coptlib.COPT_WriteMps WriteLp = coptlib.COPT_WriteLp WriteBin = coptlib.COPT_WriteBin WriteSol = coptlib.COPT_WriteSol WriteBasis = coptlib.COPT_WriteBasis WriteMst = coptlib.COPT_WriteMst WriteParam = coptlib.COPT_WriteParam AddMipStart = coptlib.COPT_AddMipStart SolveLp = coptlib.COPT_SolveLp Solve = coptlib.COPT_Solve GetSolution = coptlib.COPT_GetSolution GetLpSolution = coptlib.COPT_GetLpSolution GetIntParam = coptlib.COPT_GetIntParam SetIntParam = coptlib.COPT_SetIntParam GetDblParam = coptlib.COPT_GetDblParam SetDblParam = coptlib.COPT_SetDblParam GetIntAttr = coptlib.COPT_GetIntAttr GetDblAttr = coptlib.COPT_GetDblAttr SearchParamAttr = coptlib.COPT_SearchParamAttr SetLogFile = coptlib.COPT_SetLogFile def __init__( self, mip=True, msg=True, mip_start=False, warmStart=False, logfile=None, **params, ): """ Initialize COPT solver """ LpSolver.__init__(self, mip, msg) # Initialize COPT environment and problem self.coptenv = None self.coptprob = None # Use MIP start information self.mipstart = warmStart # Create COPT environment and problem self.create() # Set log file if logfile is not None: rc = self.SetLogFile(self.coptprob, coptstr(logfile)) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to set log file") # Set parameters to problem if not self.msg: self.setParam("Logging", 0) for parname, parval in params.items(): self.setParam(parname, parval) def available(self): """ True if dynamic library is available """ return True def actualSolve(self, lp): """ Solve a well formulated LP/MIP problem This function borrowed implementation of CPLEX_DLL.actualSolve, with some modifications. """ # Extract problem data and load it into COPT ( ncol, nrow, nnonz, objsen, objconst, colcost, colbeg, colcnt, colind, colval, coltype, collb, colub, rowsense, rowrhs, colname, rowname, ) = self.extract(lp) rc = self.LoadProb( self.coptprob, ncol, nrow, objsen, objconst, colcost, colbeg, colcnt, colind, colval, coltype, collb, colub, rowsense, rowrhs, None, colname, rowname, ) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to load problem") if lp.isMIP() and self.mip: # Load MIP start information if self.mipstart: mstdict = { self.v2n[v]: v.value() for v in lp.variables() if v.value() is not None } if mstdict: mstkeys = ctypesArrayFill(list(mstdict.keys()), ctypes.c_int) mstvals = ctypesArrayFill( list(mstdict.values()), ctypes.c_double ) rc = self.AddMipStart( self.coptprob, len(mstkeys), mstkeys, mstvals ) if rc != 0: raise PulpSolverError( "COPT_PULP: Failed to add MIP start information" ) # Solve the problem rc = self.Solve(self.coptprob) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to solve the MIP problem") elif lp.isMIP() and not self.mip: # Solve MIP as LP rc = self.SolveLp(self.coptprob) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to solve MIP as LP") else: # Solve the LP problem rc = self.SolveLp(self.coptprob) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to solve the LP problem") # Get problem status and solution status = self.getsolution(lp, ncol, nrow) # Reset attributes for var in lp.variables(): var.modified = False return status def extract(self, lp): """ Extract data from PuLP lp structure This function borrowed implementation of LpSolver.getCplexStyleArrays, with some modifications. """ cols = list(lp.variables()) ncol = len(cols) nrow = len(lp.constraints) collb = (ctypes.c_double * ncol)() colub = (ctypes.c_double * ncol)() colcost = (ctypes.c_double * ncol)() coltype = (ctypes.c_char * ncol)() colname = (ctypes.c_char_p * ncol)() rowrhs = (ctypes.c_double * nrow)() rowsense = (ctypes.c_char * nrow)() rowname = (ctypes.c_char_p * nrow)() spmat = sparse.Matrix(list(range(nrow)), list(range(ncol))) # Objective sense and constant offset objsen = coptobjsen[lp.sense] objconst = ctypes.c_double(0.0) # Associate each variable with a ordinal self.v2n = dict(((cols[i], i) for i in range(ncol))) self.vname2n = dict(((cols[i].name, i) for i in range(ncol))) self.n2v = dict((i, cols[i]) for i in range(ncol)) self.c2n = {} self.n2c = {} self.addedVars = ncol self.addedRows = nrow # Extract objective cost for col, val in lp.objective.items(): colcost[self.v2n[col]] = val # Extract variable types, names and lower/upper bounds for col in lp.variables(): colname[self.v2n[col]] = coptstr(col.name) if col.lowBound is not None: collb[self.v2n[col]] = col.lowBound else: collb[self.v2n[col]] = -1e30 if col.upBound is not None: colub[self.v2n[col]] = col.upBound else: colub[self.v2n[col]] = 1e30 # Extract column types if lp.isMIP(): for var in lp.variables(): coltype[self.v2n[var]] = coptctype[var.cat] else: coltype = None # Extract constraint rhs, senses and names idx = 0 for row in lp.constraints: rowrhs[idx] = -lp.constraints[row].constant rowsense[idx] = coptrsense[lp.constraints[row].sense] rowname[idx] = coptstr(row) self.c2n[row] = idx self.n2c[idx] = row idx += 1 # Extract coefficient matrix and generate CSC-format matrix for col, row, coeff in lp.coefficients(): spmat.add(self.c2n[row], self.vname2n[col], coeff) nnonz, _colbeg, _colcnt, _colind, _colval = spmat.col_based_arrays() colbeg = ctypesArrayFill(_colbeg, ctypes.c_int) colcnt = ctypesArrayFill(_colcnt, ctypes.c_int) colind = ctypesArrayFill(_colind, ctypes.c_int) colval = ctypesArrayFill(_colval, ctypes.c_double) return ( ncol, nrow, nnonz, objsen, objconst, colcost, colbeg, colcnt, colind, colval, coltype, collb, colub, rowsense, rowrhs, colname, rowname, ) def create(self): """ Create COPT environment and problem This function borrowed implementation of CPLEX_DLL.grabLicense, with some modifications. """ # In case recreate COPT environment and problem self.delete() self.coptenv = ctypes.c_void_p() self.coptprob = ctypes.c_void_p() # Create COPT environment rc = self.CreateEnv(byref(self.coptenv)) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to create environment") # Create COPT problem rc = self.CreateProb(self.coptenv, byref(self.coptprob)) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to create problem") def __del__(self): """ Destructor of COPT_DLL class """ self.delete() def delete(self): """ Release COPT problem and environment This function borrowed implementation of CPLEX_DLL.releaseLicense, with some modifications. """ # Valid environment and problem exist if self.coptenv is not None and self.coptprob is not None: # Delete problem rc = self.DeleteProb(byref(self.coptprob)) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to delete problem") # Delete environment rc = self.DeleteEnv(byref(self.coptenv)) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to delete environment") # Reset to None self.coptenv = None self.coptprob = None def getsolution(self, lp, ncols, nrows): """Get problem solution This function borrowed implementation of CPLEX_DLL.findSolutionValues, with some modifications. """ status = ctypes.c_int() x = (ctypes.c_double * ncols)() dj = (ctypes.c_double * ncols)() pi = (ctypes.c_double * nrows)() slack = (ctypes.c_double * nrows)() var_x = {} var_dj = {} con_pi = {} con_slack = {} if lp.isMIP() and self.mip: hasmipsol = ctypes.c_int() # Get MIP problem satus rc = self.GetIntAttr(self.coptprob, coptstr("MipStatus"), byref(status)) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to get MIP status") # Has MIP solution rc = self.GetIntAttr( self.coptprob, coptstr("HasMipSol"), byref(hasmipsol) ) if rc != 0: raise PulpSolverError( "COPT_PULP: Failed to check if MIP solution exists" ) # Optimal/Feasible MIP solution if status.value == 1 or hasmipsol.value == 1: rc = self.GetSolution(self.coptprob, byref(x)) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to get MIP solution") for i in range(ncols): var_x[self.n2v[i].name] = x[i] # Assign MIP solution to variables lp.assignVarsVals(var_x) else: # Get LP problem status rc = self.GetIntAttr(self.coptprob, coptstr("LpStatus"), byref(status)) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to get LP status") # Optimal LP solution if status.value == 1: rc = self.GetLpSolution( self.coptprob, byref(x), byref(slack), byref(pi), byref(dj) ) if rc != 0: raise PulpSolverError("COPT_PULP: Failed to get LP solution") for i in range(ncols): var_x[self.n2v[i].name] = x[i] var_dj[self.n2v[i].name] = dj[i] # NOTE: slacks in COPT are activities of rows for i in range(nrows): con_pi[self.n2c[i]] = pi[i] con_slack[self.n2c[i]] = slack[i] # Assign LP solution to variables and constraints lp.assignVarsVals(var_x) lp.assignVarsDj(var_dj) lp.assignConsPi(con_pi) lp.assignConsSlack(con_slack) # Reset attributes lp.resolveOK = True for var in lp.variables(): var.isModified = False lp.status = coptlpstat.get(status.value, LpStatusUndefined) return lp.status def write(self, filename): """ Write problem, basis, parameter or solution to file """ file_path = coptstr(filename) file_name, file_ext = os.path.splitext(file_path) if not file_ext: raise PulpSolverError("COPT_PULP: Failed to determine output file type") elif file_ext == coptstr(".mps"): rc = self.WriteMps(self.coptprob, file_path) elif file_ext == coptstr(".lp"): rc = self.WriteLp(self.coptprob, file_path) elif file_ext == coptstr(".bin"): rc = self.WriteBin(self.coptprob, file_path) elif file_ext == coptstr(".sol"): rc = self.WriteSol(self.coptprob, file_path) elif file_ext == coptstr(".bas"): rc = self.WriteBasis(self.coptprob, file_path) elif file_ext == coptstr(".mst"): rc = self.WriteMst(self.coptprob, file_path) elif file_ext == coptstr(".par"): rc = self.WriteParam(self.coptprob, file_path) else: raise PulpSolverError("COPT_PULP: Unsupported file type") if rc != 0: raise PulpSolverError( "COPT_PULP: Failed to write file '{}'".format(filename) ) def setParam(self, name, val): """ Set parameter to COPT problem """ par_type = ctypes.c_int() par_name = coptstr(name) rc = self.SearchParamAttr(self.coptprob, par_name, byref(par_type)) if rc != 0: raise PulpSolverError( "COPT_PULP: Failed to check type for '{}'".format(par_name) ) if par_type.value == 0: rc = self.SetDblParam(self.coptprob, par_name, ctypes.c_double(val)) if rc != 0: raise PulpSolverError( "COPT_PULP: Failed to set double parameter '{}'".format( par_name ) ) elif par_type.value == 1: rc = self.SetIntParam(self.coptprob, par_name, ctypes.c_int(val)) if rc != 0: raise PulpSolverError( "COPT_PULP: Failed to set integer parameter '{}'".format( par_name ) ) else: raise PulpSolverError( "COPT_PULP: Invalid parameter '{}'".format(par_name) ) def getParam(self, name): """ Get current value of parameter """ par_dblval = ctypes.c_double() par_intval = ctypes.c_int() par_type = ctypes.c_int() par_name = coptstr(name) rc = self.SearchParamAttr(self.coptprob, par_name, byref(par_type)) if rc != 0: raise PulpSolverError( "COPT_PULP: Failed to check type for '{}'".format(par_name) ) if par_type.value == 0: rc = self.GetDblParam(self.coptprob, par_name, byref(par_dblval)) if rc != 0: raise PulpSolverError( "COPT_PULP: Failed to get double parameter '{}'".format( par_name ) ) else: retval = par_dblval.value elif par_type.value == 1: rc = self.GetIntParam(self.coptprob, par_name, byref(par_intval)) if rc != 0: raise PulpSolverError( "COPT_PULP: Failed to get integer parameter '{}'".format( par_name ) ) else: retval = par_intval.value else: raise PulpSolverError( "COPT_PULP: Invalid parameter '{}'".format(par_name) ) return retval def getAttr(self, name): """ Get attribute of the problem """ attr_dblval = ctypes.c_double() attr_intval = ctypes.c_int() attr_type = ctypes.c_int() attr_name = coptstr(name) # Check attribute type by name rc = self.SearchParamAttr(self.coptprob, attr_name, byref(attr_type)) if rc != 0: raise PulpSolverError( "COPT_PULP: Failed to check type for '{}'".format(attr_name) ) if attr_type.value == 2: rc = self.GetDblAttr(self.coptprob, attr_name, byref(attr_dblval)) if rc != 0: raise PulpSolverError( "COPT_PULP: Failed to get double attribute '{}'".format( attr_name ) ) else: retval = attr_dblval.value elif attr_type.value == 3: rc = self.GetIntAttr(self.coptprob, attr_name, byref(attr_intval)) if rc != 0: raise PulpSolverError( "COPT_PULP: Failed to get integer attribute '{}'".format( attr_name ) ) else: retval = attr_intval.value else: raise PulpSolverError( "COPT_PULP: Invalid attribute '{}'".format(attr_name) ) return retval
(mip=True, msg=True, options=None, timeLimit=None, *args, **kwargs)
38,106
pulp.apis.copt_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp): """Solve a well formulated lp problem""" raise PulpSolverError(f"COPT_DLL: Not Available:\n{self.err}")
(self, lp)
38,115
pulp.apis.copt_api
COPT_DLL_loadlib
Load COPT shared library in all supported platforms
def COPT_DLL_loadlib(): """ Load COPT shared library in all supported platforms """ from glob import glob libfile = None libpath = None libhome = os.getenv("COPT_HOME") if sys.platform == "win32": libfile = glob(os.path.join(libhome, "bin", "copt.dll")) elif sys.platform == "linux": libfile = glob(os.path.join(libhome, "lib", "libcopt.so")) elif sys.platform == "darwin": libfile = glob(os.path.join(libhome, "lib", "libcopt.dylib")) else: raise PulpSolverError("COPT_PULP: Unsupported operating system") # Find desired library in given search path if libfile: libpath = libfile[0] if libpath is None: raise PulpSolverError( "COPT_PULP: Failed to locate solver library, " "please refer to COPT manual for installation guide" ) else: if sys.platform == "win32": coptlib = ctypes.windll.LoadLibrary(libpath) else: coptlib = ctypes.cdll.LoadLibrary(libpath) return coptlib
()
38,116
pulp.apis.cplex_api
CPLEX_CMD
The CPLEX LP solver
class CPLEX_CMD(LpSolver_CMD): """The CPLEX LP solver""" name = "CPLEX_CMD" def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, gapAbs=None, options=None, warmStart=False, keepFiles=False, path=None, threads=None, logPath=None, maxMemory=None, maxNodes=None, ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int threads: sets the maximum number of threads :param list options: list of additional options to pass to solver :param bool warmStart: if True, the solver will use the current value of variables as a start :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary :param str logPath: path to the log file :param float maxMemory: max memory to use during the solving. Stops the solving when reached. :param int maxNodes: max number of nodes during branching. Stops the solving when reached. """ LpSolver_CMD.__init__( self, gapRel=gapRel, mip=mip, msg=msg, timeLimit=timeLimit, options=options, maxMemory=maxMemory, maxNodes=maxNodes, warmStart=warmStart, path=path, keepFiles=keepFiles, threads=threads, gapAbs=gapAbs, logPath=logPath, ) def defaultPath(self): return self.executableExtension("cplex") def available(self): """True if the solver is available""" return self.executable(self.path) def actualSolve(self, lp): """Solve a well formulated lp problem""" if not self.executable(self.path): raise PulpSolverError("PuLP: cannot execute " + self.path) tmpLp, tmpSol, tmpMst = self.create_tmp_files(lp.name, "lp", "sol", "mst") vs = lp.writeLP(tmpLp, writeSOS=1) try: os.remove(tmpSol) except: pass if not self.msg: cplex = subprocess.Popen( self.path, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) else: cplex = subprocess.Popen(self.path, stdin=subprocess.PIPE) cplex_cmds = "read " + tmpLp + "\n" if self.optionsDict.get("warmStart", False): self.writesol(filename=tmpMst, vs=vs) cplex_cmds += "read " + tmpMst + "\n" cplex_cmds += "set advance 1\n" if self.timeLimit is not None: cplex_cmds += "set timelimit " + str(self.timeLimit) + "\n" options = self.options + self.getOptions() for option in options: cplex_cmds += option + "\n" if lp.isMIP(): if self.mip: cplex_cmds += "mipopt\n" cplex_cmds += "change problem fixed\n" else: cplex_cmds += "change problem lp\n" cplex_cmds += "optimize\n" cplex_cmds += "write " + tmpSol + "\n" cplex_cmds += "quit\n" cplex_cmds = cplex_cmds.encode("UTF-8") cplex.communicate(cplex_cmds) if cplex.returncode != 0: raise PulpSolverError("PuLP: Error while trying to execute " + self.path) if not os.path.exists(tmpSol): status = constants.LpStatusInfeasible values = reducedCosts = shadowPrices = slacks = solStatus = None else: ( status, values, reducedCosts, shadowPrices, slacks, solStatus, ) = self.readsol(tmpSol) self.delete_tmp_files(tmpLp, tmpMst, tmpSol) if self.optionsDict.get("logPath") != "cplex.log": self.delete_tmp_files("cplex.log") if status != constants.LpStatusInfeasible: lp.assignVarsVals(values) lp.assignVarsDj(reducedCosts) lp.assignConsPi(shadowPrices) lp.assignConsSlack(slacks) lp.assignStatus(status, solStatus) return status def getOptions(self): # CPLEX parameters: https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.6.0/ilog.odms.cplex.help/CPLEX/GettingStarted/topics/tutorials/InteractiveOptimizer/settingParams.html # CPLEX status: https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.10.0/ilog.odms.cplex.help/refcallablelibrary/macros/Solution_status_codes.html params_eq = dict( logPath="set logFile {}", gapRel="set mip tolerances mipgap {}", gapAbs="set mip tolerances absmipgap {}", maxMemory="set mip limits treememory {}", threads="set threads {}", maxNodes="set mip limits nodes {}", ) return [ v.format(self.optionsDict[k]) for k, v in params_eq.items() if k in self.optionsDict and self.optionsDict[k] is not None ] def readsol(self, filename): """Read a CPLEX solution file""" # CPLEX solution codes: http://www-eio.upc.es/lceio/manuals/cplex-11/html/overviewcplex/statuscodes.html try: import xml.etree.ElementTree as et except ImportError: import elementtree.ElementTree as et solutionXML = et.parse(filename).getroot() solutionheader = solutionXML.find("header") statusString = solutionheader.get("solutionStatusString") statusValue = solutionheader.get("solutionStatusValue") cplexStatus = { "1": constants.LpStatusOptimal, # optimal "101": constants.LpStatusOptimal, # mip optimal "102": constants.LpStatusOptimal, # mip optimal tolerance "104": constants.LpStatusOptimal, # max solution limit "105": constants.LpStatusOptimal, # node limit feasible "107": constants.LpStatusOptimal, # time lim feasible "109": constants.LpStatusOptimal, # fail but feasible "113": constants.LpStatusOptimal, # abort feasible } if statusValue not in cplexStatus: raise PulpSolverError( "Unknown status returned by CPLEX: \ncode: '{}', string: '{}'".format( statusValue, statusString ) ) status = cplexStatus[statusValue] # we check for integer feasible status to differentiate from optimal in solution status cplexSolStatus = { "104": constants.LpSolutionIntegerFeasible, # max solution limit "105": constants.LpSolutionIntegerFeasible, # node limit feasible "107": constants.LpSolutionIntegerFeasible, # time lim feasible "109": constants.LpSolutionIntegerFeasible, # fail but feasible "111": constants.LpSolutionIntegerFeasible, # memory limit feasible "113": constants.LpSolutionIntegerFeasible, # abort feasible } solStatus = cplexSolStatus.get(statusValue) shadowPrices = {} slacks = {} constraints = solutionXML.find("linearConstraints") for constraint in constraints: name = constraint.get("name") slack = constraint.get("slack") shadowPrice = constraint.get("dual") try: # See issue #508 shadowPrices[name] = float(shadowPrice) except TypeError: shadowPrices[name] = None slacks[name] = float(slack) values = {} reducedCosts = {} for variable in solutionXML.find("variables"): name = variable.get("name") value = variable.get("value") values[name] = float(value) reducedCost = variable.get("reducedCost") try: # See issue #508 reducedCosts[name] = float(reducedCost) except TypeError: reducedCosts[name] = None return status, values, reducedCosts, shadowPrices, slacks, solStatus def writesol(self, filename, vs): """Writes a CPLEX solution file""" try: import xml.etree.ElementTree as et except ImportError: import elementtree.ElementTree as et root = et.Element("CPLEXSolution", version="1.2") attrib_head = dict() attrib_quality = dict() et.SubElement(root, "header", attrib=attrib_head) et.SubElement(root, "header", attrib=attrib_quality) variables = et.SubElement(root, "variables") values = [(v.name, v.value()) for v in vs if v.value() is not None] for index, (name, value) in enumerate(values): attrib_vars = dict(name=name, value=str(value), index=str(index)) et.SubElement(variables, "variable", attrib=attrib_vars) mst = et.ElementTree(root) mst.write(filename, encoding="utf-8", xml_declaration=True) return True
(mip=True, msg=True, timeLimit=None, gapRel=None, gapAbs=None, options=None, warmStart=False, keepFiles=False, path=None, threads=None, logPath=None, maxMemory=None, maxNodes=None)
38,117
pulp.apis.cplex_api
__init__
:param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int threads: sets the maximum number of threads :param list options: list of additional options to pass to solver :param bool warmStart: if True, the solver will use the current value of variables as a start :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary :param str logPath: path to the log file :param float maxMemory: max memory to use during the solving. Stops the solving when reached. :param int maxNodes: max number of nodes during branching. Stops the solving when reached.
def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, gapAbs=None, options=None, warmStart=False, keepFiles=False, path=None, threads=None, logPath=None, maxMemory=None, maxNodes=None, ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int threads: sets the maximum number of threads :param list options: list of additional options to pass to solver :param bool warmStart: if True, the solver will use the current value of variables as a start :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary :param str logPath: path to the log file :param float maxMemory: max memory to use during the solving. Stops the solving when reached. :param int maxNodes: max number of nodes during branching. Stops the solving when reached. """ LpSolver_CMD.__init__( self, gapRel=gapRel, mip=mip, msg=msg, timeLimit=timeLimit, options=options, maxMemory=maxMemory, maxNodes=maxNodes, warmStart=warmStart, path=path, keepFiles=keepFiles, threads=threads, gapAbs=gapAbs, logPath=logPath, )
(self, mip=True, msg=True, timeLimit=None, gapRel=None, gapAbs=None, options=None, warmStart=False, keepFiles=False, path=None, threads=None, logPath=None, maxMemory=None, maxNodes=None)
38,119
pulp.apis.cplex_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp): """Solve a well formulated lp problem""" if not self.executable(self.path): raise PulpSolverError("PuLP: cannot execute " + self.path) tmpLp, tmpSol, tmpMst = self.create_tmp_files(lp.name, "lp", "sol", "mst") vs = lp.writeLP(tmpLp, writeSOS=1) try: os.remove(tmpSol) except: pass if not self.msg: cplex = subprocess.Popen( self.path, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) else: cplex = subprocess.Popen(self.path, stdin=subprocess.PIPE) cplex_cmds = "read " + tmpLp + "\n" if self.optionsDict.get("warmStart", False): self.writesol(filename=tmpMst, vs=vs) cplex_cmds += "read " + tmpMst + "\n" cplex_cmds += "set advance 1\n" if self.timeLimit is not None: cplex_cmds += "set timelimit " + str(self.timeLimit) + "\n" options = self.options + self.getOptions() for option in options: cplex_cmds += option + "\n" if lp.isMIP(): if self.mip: cplex_cmds += "mipopt\n" cplex_cmds += "change problem fixed\n" else: cplex_cmds += "change problem lp\n" cplex_cmds += "optimize\n" cplex_cmds += "write " + tmpSol + "\n" cplex_cmds += "quit\n" cplex_cmds = cplex_cmds.encode("UTF-8") cplex.communicate(cplex_cmds) if cplex.returncode != 0: raise PulpSolverError("PuLP: Error while trying to execute " + self.path) if not os.path.exists(tmpSol): status = constants.LpStatusInfeasible values = reducedCosts = shadowPrices = slacks = solStatus = None else: ( status, values, reducedCosts, shadowPrices, slacks, solStatus, ) = self.readsol(tmpSol) self.delete_tmp_files(tmpLp, tmpMst, tmpSol) if self.optionsDict.get("logPath") != "cplex.log": self.delete_tmp_files("cplex.log") if status != constants.LpStatusInfeasible: lp.assignVarsVals(values) lp.assignVarsDj(reducedCosts) lp.assignConsPi(shadowPrices) lp.assignConsSlack(slacks) lp.assignStatus(status, solStatus) return status
(self, lp)
38,123
pulp.apis.cplex_api
defaultPath
null
def defaultPath(self): return self.executableExtension("cplex")
(self)
38,128
pulp.apis.cplex_api
getOptions
null
def getOptions(self): # CPLEX parameters: https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.6.0/ilog.odms.cplex.help/CPLEX/GettingStarted/topics/tutorials/InteractiveOptimizer/settingParams.html # CPLEX status: https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.10.0/ilog.odms.cplex.help/refcallablelibrary/macros/Solution_status_codes.html params_eq = dict( logPath="set logFile {}", gapRel="set mip tolerances mipgap {}", gapAbs="set mip tolerances absmipgap {}", maxMemory="set mip limits treememory {}", threads="set threads {}", maxNodes="set mip limits nodes {}", ) return [ v.format(self.optionsDict[k]) for k, v in params_eq.items() if k in self.optionsDict and self.optionsDict[k] is not None ]
(self)
38,129
pulp.apis.cplex_api
readsol
Read a CPLEX solution file
def readsol(self, filename): """Read a CPLEX solution file""" # CPLEX solution codes: http://www-eio.upc.es/lceio/manuals/cplex-11/html/overviewcplex/statuscodes.html try: import xml.etree.ElementTree as et except ImportError: import elementtree.ElementTree as et solutionXML = et.parse(filename).getroot() solutionheader = solutionXML.find("header") statusString = solutionheader.get("solutionStatusString") statusValue = solutionheader.get("solutionStatusValue") cplexStatus = { "1": constants.LpStatusOptimal, # optimal "101": constants.LpStatusOptimal, # mip optimal "102": constants.LpStatusOptimal, # mip optimal tolerance "104": constants.LpStatusOptimal, # max solution limit "105": constants.LpStatusOptimal, # node limit feasible "107": constants.LpStatusOptimal, # time lim feasible "109": constants.LpStatusOptimal, # fail but feasible "113": constants.LpStatusOptimal, # abort feasible } if statusValue not in cplexStatus: raise PulpSolverError( "Unknown status returned by CPLEX: \ncode: '{}', string: '{}'".format( statusValue, statusString ) ) status = cplexStatus[statusValue] # we check for integer feasible status to differentiate from optimal in solution status cplexSolStatus = { "104": constants.LpSolutionIntegerFeasible, # max solution limit "105": constants.LpSolutionIntegerFeasible, # node limit feasible "107": constants.LpSolutionIntegerFeasible, # time lim feasible "109": constants.LpSolutionIntegerFeasible, # fail but feasible "111": constants.LpSolutionIntegerFeasible, # memory limit feasible "113": constants.LpSolutionIntegerFeasible, # abort feasible } solStatus = cplexSolStatus.get(statusValue) shadowPrices = {} slacks = {} constraints = solutionXML.find("linearConstraints") for constraint in constraints: name = constraint.get("name") slack = constraint.get("slack") shadowPrice = constraint.get("dual") try: # See issue #508 shadowPrices[name] = float(shadowPrice) except TypeError: shadowPrices[name] = None slacks[name] = float(slack) values = {} reducedCosts = {} for variable in solutionXML.find("variables"): name = variable.get("name") value = variable.get("value") values[name] = float(value) reducedCost = variable.get("reducedCost") try: # See issue #508 reducedCosts[name] = float(reducedCost) except TypeError: reducedCosts[name] = None return status, values, reducedCosts, shadowPrices, slacks, solStatus
(self, filename)
38,137
pulp.apis.cplex_api
writesol
Writes a CPLEX solution file
def writesol(self, filename, vs): """Writes a CPLEX solution file""" try: import xml.etree.ElementTree as et except ImportError: import elementtree.ElementTree as et root = et.Element("CPLEXSolution", version="1.2") attrib_head = dict() attrib_quality = dict() et.SubElement(root, "header", attrib=attrib_head) et.SubElement(root, "header", attrib=attrib_quality) variables = et.SubElement(root, "variables") values = [(v.name, v.value()) for v in vs if v.value() is not None] for index, (name, value) in enumerate(values): attrib_vars = dict(name=name, value=str(value), index=str(index)) et.SubElement(variables, "variable", attrib=attrib_vars) mst = et.ElementTree(root) mst.write(filename, encoding="utf-8", xml_declaration=True) return True
(self, filename, vs)
38,160
pulp.apis.cplex_api
CPLEX_PY
The CPLEX LP/MIP solver (via a Python Binding) This solver wraps the python api of cplex. It has been tested against cplex 12.3. For api functions that have not been wrapped in this solver please use the base cplex classes
class CPLEX_PY(LpSolver): """ The CPLEX LP/MIP solver (via a Python Binding) This solver wraps the python api of cplex. It has been tested against cplex 12.3. For api functions that have not been wrapped in this solver please use the base cplex classes """ name = "CPLEX_PY" try: global cplex import cplex except Exception as e: err = e """The CPLEX LP/MIP solver from python. Something went wrong!!!!""" def available(self): """True if the solver is available""" return False def actualSolve(self, lp): """Solve a well formulated lp problem""" raise PulpSolverError(f"CPLEX_PY: Not Available:\n{self.err}") else: def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, warmStart=False, logPath=None, threads=None, ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param bool warmStart: if True, the solver will use the current value of variables as a start :param str logPath: path to the log file :param int threads: number of threads to be used by CPLEX to solve a problem (default None uses all available) """ LpSolver.__init__( self, gapRel=gapRel, mip=mip, msg=msg, timeLimit=timeLimit, warmStart=warmStart, logPath=logPath, threads=threads, ) def available(self): """True if the solver is available""" return True def actualSolve(self, lp, callback=None): """ Solve a well formulated lp problem creates a cplex model, variables and constraints and attaches them to the lp model which it then solves """ self.buildSolverModel(lp) # set the initial solution log.debug("Solve the Model using cplex") self.callSolver(lp) # get the solution information solutionStatus = self.findSolutionValues(lp) for var in lp._variables: var.modified = False for constraint in lp.constraints.values(): constraint.modified = False return solutionStatus def buildSolverModel(self, lp): """ Takes the pulp lp model and translates it into a cplex model """ model_variables = lp.variables() self.n2v = {var.name: var for var in model_variables} if len(self.n2v) != len(model_variables): raise PulpSolverError( "Variables must have unique names for cplex solver" ) log.debug("create the cplex model") self.solverModel = lp.solverModel = cplex.Cplex() log.debug("set the name of the problem") if not self.mip: self.solverModel.set_problem_name(lp.name) log.debug("set the sense of the problem") if lp.sense == constants.LpMaximize: lp.solverModel.objective.set_sense( lp.solverModel.objective.sense.maximize ) obj = [float(lp.objective.get(var, 0.0)) for var in model_variables] def cplex_var_lb(var): if var.lowBound is not None: return float(var.lowBound) else: return -cplex.infinity lb = [cplex_var_lb(var) for var in model_variables] def cplex_var_ub(var): if var.upBound is not None: return float(var.upBound) else: return cplex.infinity ub = [cplex_var_ub(var) for var in model_variables] colnames = [var.name for var in model_variables] def cplex_var_types(var): if var.cat == constants.LpInteger: return "I" else: return "C" ctype = [cplex_var_types(var) for var in model_variables] ctype = "".join(ctype) lp.solverModel.variables.add( obj=obj, lb=lb, ub=ub, types=ctype, names=colnames ) rows = [] senses = [] rhs = [] rownames = [] for name, constraint in lp.constraints.items(): # build the expression expr = [(var.name, float(coeff)) for var, coeff in constraint.items()] if not expr: # if the constraint is empty rows.append(([], [])) else: rows.append(list(zip(*expr))) if constraint.sense == constants.LpConstraintLE: senses.append("L") elif constraint.sense == constants.LpConstraintGE: senses.append("G") elif constraint.sense == constants.LpConstraintEQ: senses.append("E") else: raise PulpSolverError("Detected an invalid constraint type") rownames.append(name) rhs.append(float(-constraint.constant)) lp.solverModel.linear_constraints.add( lin_expr=rows, senses=senses, rhs=rhs, names=rownames ) log.debug("set the type of the problem") if not self.mip: self.solverModel.set_problem_type(cplex.Cplex.problem_type.LP) log.debug("set the logging") if not self.msg: self.setlogfile(None) logPath = self.optionsDict.get("logPath") if logPath is not None: if self.msg: warnings.warn( "`logPath` argument replaces `msg=1`. The output will be redirected to the log file." ) self.setlogfile(open(logPath, "w")) gapRel = self.optionsDict.get("gapRel") if gapRel is not None: self.changeEpgap(gapRel) if self.timeLimit is not None: self.setTimeLimit(self.timeLimit) self.setThreads(self.optionsDict.get("threads", None)) if self.optionsDict.get("warmStart", False): # We assume "auto" for the effort_level effort = self.solverModel.MIP_starts.effort_level.auto start = [ (k, v.value()) for k, v in self.n2v.items() if v.value() is not None ] if not start: warnings.warn("No variable with value found: mipStart aborted") return ind, val = zip(*start) self.solverModel.MIP_starts.add( cplex.SparsePair(ind=ind, val=val), effort, "1" ) def setlogfile(self, fileobj): """ sets the logfile for cplex output """ self.solverModel.set_error_stream(fileobj) self.solverModel.set_log_stream(fileobj) self.solverModel.set_warning_stream(fileobj) self.solverModel.set_results_stream(fileobj) def setThreads(self, threads=None): """ Change cplex thread count used (None is default which uses all available resources) """ self.solverModel.parameters.threads.set(threads or 0) def changeEpgap(self, epgap=10**-4): """ Change cplex solver integer bound gap tolerence """ self.solverModel.parameters.mip.tolerances.mipgap.set(epgap) def setTimeLimit(self, timeLimit=0.0): """ Make cplex limit the time it takes --added CBM 8/28/09 """ self.solverModel.parameters.timelimit.set(timeLimit) def callSolver(self, isMIP): """Solves the problem with cplex""" # solve the problem self.solveTime = -clock() self.solverModel.solve() self.solveTime += clock() def findSolutionValues(self, lp): CplexLpStatus = { lp.solverModel.solution.status.MIP_optimal: constants.LpStatusOptimal, lp.solverModel.solution.status.optimal: constants.LpStatusOptimal, lp.solverModel.solution.status.optimal_tolerance: constants.LpStatusOptimal, lp.solverModel.solution.status.infeasible: constants.LpStatusInfeasible, lp.solverModel.solution.status.infeasible_or_unbounded: constants.LpStatusInfeasible, lp.solverModel.solution.status.MIP_infeasible: constants.LpStatusInfeasible, lp.solverModel.solution.status.MIP_infeasible_or_unbounded: constants.LpStatusInfeasible, lp.solverModel.solution.status.unbounded: constants.LpStatusUnbounded, lp.solverModel.solution.status.MIP_unbounded: constants.LpStatusUnbounded, lp.solverModel.solution.status.abort_dual_obj_limit: constants.LpStatusNotSolved, lp.solverModel.solution.status.abort_iteration_limit: constants.LpStatusNotSolved, lp.solverModel.solution.status.abort_obj_limit: constants.LpStatusNotSolved, lp.solverModel.solution.status.abort_relaxed: constants.LpStatusNotSolved, lp.solverModel.solution.status.abort_time_limit: constants.LpStatusNotSolved, lp.solverModel.solution.status.abort_user: constants.LpStatusNotSolved, lp.solverModel.solution.status.MIP_abort_feasible: constants.LpStatusOptimal, lp.solverModel.solution.status.MIP_time_limit_feasible: constants.LpStatusOptimal, lp.solverModel.solution.status.MIP_time_limit_infeasible: constants.LpStatusInfeasible, } lp.cplex_status = lp.solverModel.solution.get_status() status = CplexLpStatus.get(lp.cplex_status, constants.LpStatusUndefined) CplexSolStatus = { lp.solverModel.solution.status.MIP_time_limit_feasible: constants.LpSolutionIntegerFeasible, lp.solverModel.solution.status.MIP_abort_feasible: constants.LpSolutionIntegerFeasible, lp.solverModel.solution.status.MIP_feasible: constants.LpSolutionIntegerFeasible, } # TODO: I did not find the following status: CPXMIP_NODE_LIM_FEAS, CPXMIP_MEM_LIM_FEAS sol_status = CplexSolStatus.get(lp.cplex_status) lp.assignStatus(status, sol_status) var_names = [var.name for var in lp._variables] con_names = [con for con in lp.constraints] try: objectiveValue = lp.solverModel.solution.get_objective_value() variablevalues = dict( zip(var_names, lp.solverModel.solution.get_values(var_names)) ) lp.assignVarsVals(variablevalues) constraintslackvalues = dict( zip(con_names, lp.solverModel.solution.get_linear_slacks(con_names)) ) lp.assignConsSlack(constraintslackvalues) if lp.solverModel.get_problem_type() == cplex.Cplex.problem_type.LP: variabledjvalues = dict( zip( var_names, lp.solverModel.solution.get_reduced_costs(var_names), ) ) lp.assignVarsDj(variabledjvalues) constraintpivalues = dict( zip( con_names, lp.solverModel.solution.get_dual_values(con_names), ) ) lp.assignConsPi(constraintpivalues) except cplex.exceptions.CplexSolverError: # raises this error when there is no solution pass # put pi and slack variables against the constraints # TODO: clear up the name of self.n2c if self.msg: print("Cplex status=", lp.cplex_status) lp.resolveOK = True for var in lp._variables: var.isModified = False return status def actualResolve(self, lp, **kwargs): """ looks at which variables have been modified and changes them """ raise NotImplementedError("Resolves in CPLEX_PY not yet implemented")
(mip=True, msg=True, options=None, timeLimit=None, *args, **kwargs)
38,163
pulp.apis.cplex_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp): """Solve a well formulated lp problem""" raise PulpSolverError(f"CPLEX_PY: Not Available:\n{self.err}")
(self, lp)
38,201
pulp.apis.scip_api
FSCIP_CMD
The multi-threaded FiberSCIP version of the SCIP optimization solver
class FSCIP_CMD(LpSolver_CMD): """The multi-threaded FiberSCIP version of the SCIP optimization solver""" name = "FSCIP_CMD" def __init__( self, path=None, mip=True, keepFiles=False, msg=True, options=None, timeLimit=None, gapRel=None, gapAbs=None, maxNodes=None, threads=None, logPath=None, ): """ :param bool msg: if False, no log is shown :param bool mip: if False, assume LP even if integer variables :param list options: list of additional options to pass to solver :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int maxNodes: max number of nodes during branching. Stops the solving when reached. :param int threads: sets the maximum number of threads :param str logPath: path to the log file """ LpSolver_CMD.__init__( self, mip=mip, msg=msg, options=options, path=path, keepFiles=keepFiles, timeLimit=timeLimit, gapRel=gapRel, gapAbs=gapAbs, maxNodes=maxNodes, threads=threads, logPath=logPath, ) FSCIP_STATUSES = { "No Solution": constants.LpStatusNotSolved, "Final Solution": constants.LpStatusOptimal, } NO_SOLUTION_STATUSES = { constants.LpStatusInfeasible, constants.LpStatusUnbounded, constants.LpStatusNotSolved, } def defaultPath(self): return self.executableExtension(fscip_path) def available(self): """True if the solver is available""" return self.executable(self.path) def actualSolve(self, lp): """Solve a well formulated lp problem""" if not self.executable(self.path): raise PulpSolverError("PuLP: cannot execute " + self.path) tmpLp, tmpSol, tmpOptions, tmpParams = self.create_tmp_files( lp.name, "lp", "sol", "set", "prm" ) lp.writeLP(tmpLp) file_options: List[str] = [] if self.timeLimit is not None: file_options.append(f"limits/time={self.timeLimit}") if "gapRel" in self.optionsDict: file_options.append(f"limits/gap={self.optionsDict['gapRel']}") if "gapAbs" in self.optionsDict: file_options.append(f"limits/absgap={self.optionsDict['gapAbs']}") if "maxNodes" in self.optionsDict: file_options.append(f"limits/nodes={self.optionsDict['maxNodes']}") if not self.mip: warnings.warn(f"{self.name} does not allow a problem to be relaxed") file_parameters: List[str] = [] # disable presolving in the LoadCoordinator to make sure a solution file is always written file_parameters.append("NoPreprocessingInLC = TRUE") command: List[str] = [] command.append(self.path) command.append(tmpParams) command.append(tmpLp) command.extend(["-s", tmpOptions]) command.extend(["-fsol", tmpSol]) if not self.msg: command.append("-q") if "logPath" in self.optionsDict: command.extend(["-l", self.optionsDict["logPath"]]) if "threads" in self.optionsDict: command.extend(["-sth", f"{self.optionsDict['threads']}"]) options = iter(self.options) for option in options: # identify cli options by a leading dash (-) and treat other options as file options if option.startswith("-"): # assumption: all cli options require an argument which is provided as a separate parameter argument = next(options) command.extend([option, argument]) else: # assumption: all file options contain a slash (/) is_file_options = "/" in option # assumption: all file options and parameters require an argument which is provided after the equal sign (=) if "=" not in option: argument = next(options) option += f"={argument}" if is_file_options: file_options.append(option) else: file_parameters.append(option) # wipe the solution file since FSCIP does not overwrite it if no solution was found which causes parsing errors self.silent_remove(tmpSol) with open(tmpOptions, "w") as options_file: options_file.write("\n".join(file_options)) with open(tmpParams, "w") as parameters_file: parameters_file.write("\n".join(file_parameters)) subprocess.check_call( command, stdout=sys.stdout if self.msg else subprocess.DEVNULL, stderr=sys.stderr if self.msg else subprocess.DEVNULL, ) if not os.path.exists(tmpSol): raise PulpSolverError("PuLP: Error while executing " + self.path) status, values = self.readsol(tmpSol) # Make sure to add back in any 0-valued variables SCIP leaves out. finalVals = {} for v in lp.variables(): finalVals[v.name] = values.get(v.name, 0.0) lp.assignVarsVals(finalVals) lp.assignStatus(status) self.delete_tmp_files(tmpLp, tmpSol, tmpOptions, tmpParams) return status @staticmethod def parse_status(string: str) -> Optional[int]: for fscip_status, pulp_status in FSCIP_CMD.FSCIP_STATUSES.items(): if fscip_status in string: return pulp_status return None @staticmethod def parse_objective(string: str) -> Optional[float]: fields = string.split(":") if len(fields) != 2: return None label, objective = fields if label != "objective value": return None objective = objective.strip() try: objective = float(objective) except ValueError: return None return objective @staticmethod def parse_variable(string: str) -> Optional[Tuple[str, float]]: fields = string.split() if len(fields) < 2: return None name, value = fields[:2] try: value = float(value) except ValueError: return None return name, value @staticmethod def readsol(filename): """Read a FSCIP solution file""" with open(filename) as file: # First line must contain a solution status status_line = file.readline() status = FSCIP_CMD.parse_status(status_line) if status is None: raise PulpSolverError(f"Can't get FSCIP solver status: {status_line!r}") if status in FSCIP_CMD.NO_SOLUTION_STATUSES: return status, {} # Look for an objective value. If we can't find one, stop. objective_line = file.readline() objective = FSCIP_CMD.parse_objective(objective_line) if objective is None: raise PulpSolverError( f"Can't get FSCIP solver objective: {objective_line!r}" ) # Parse the variable values. variables: Dict[str, float] = {} for variable_line in file: variable = FSCIP_CMD.parse_variable(variable_line) if variable is None: raise PulpSolverError( f"Can't read FSCIP solver output: {variable_line!r}" ) name, value = variable variables[name] = value return status, variables
(path=None, mip=True, keepFiles=False, msg=True, options=None, timeLimit=None, gapRel=None, gapAbs=None, maxNodes=None, threads=None, logPath=None)
38,202
pulp.apis.scip_api
__init__
:param bool msg: if False, no log is shown :param bool mip: if False, assume LP even if integer variables :param list options: list of additional options to pass to solver :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int maxNodes: max number of nodes during branching. Stops the solving when reached. :param int threads: sets the maximum number of threads :param str logPath: path to the log file
def __init__( self, path=None, mip=True, keepFiles=False, msg=True, options=None, timeLimit=None, gapRel=None, gapAbs=None, maxNodes=None, threads=None, logPath=None, ): """ :param bool msg: if False, no log is shown :param bool mip: if False, assume LP even if integer variables :param list options: list of additional options to pass to solver :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int maxNodes: max number of nodes during branching. Stops the solving when reached. :param int threads: sets the maximum number of threads :param str logPath: path to the log file """ LpSolver_CMD.__init__( self, mip=mip, msg=msg, options=options, path=path, keepFiles=keepFiles, timeLimit=timeLimit, gapRel=gapRel, gapAbs=gapAbs, maxNodes=maxNodes, threads=threads, logPath=logPath, )
(self, path=None, mip=True, keepFiles=False, msg=True, options=None, timeLimit=None, gapRel=None, gapAbs=None, maxNodes=None, threads=None, logPath=None)
38,204
pulp.apis.scip_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp): """Solve a well formulated lp problem""" if not self.executable(self.path): raise PulpSolverError("PuLP: cannot execute " + self.path) tmpLp, tmpSol, tmpOptions, tmpParams = self.create_tmp_files( lp.name, "lp", "sol", "set", "prm" ) lp.writeLP(tmpLp) file_options: List[str] = [] if self.timeLimit is not None: file_options.append(f"limits/time={self.timeLimit}") if "gapRel" in self.optionsDict: file_options.append(f"limits/gap={self.optionsDict['gapRel']}") if "gapAbs" in self.optionsDict: file_options.append(f"limits/absgap={self.optionsDict['gapAbs']}") if "maxNodes" in self.optionsDict: file_options.append(f"limits/nodes={self.optionsDict['maxNodes']}") if not self.mip: warnings.warn(f"{self.name} does not allow a problem to be relaxed") file_parameters: List[str] = [] # disable presolving in the LoadCoordinator to make sure a solution file is always written file_parameters.append("NoPreprocessingInLC = TRUE") command: List[str] = [] command.append(self.path) command.append(tmpParams) command.append(tmpLp) command.extend(["-s", tmpOptions]) command.extend(["-fsol", tmpSol]) if not self.msg: command.append("-q") if "logPath" in self.optionsDict: command.extend(["-l", self.optionsDict["logPath"]]) if "threads" in self.optionsDict: command.extend(["-sth", f"{self.optionsDict['threads']}"]) options = iter(self.options) for option in options: # identify cli options by a leading dash (-) and treat other options as file options if option.startswith("-"): # assumption: all cli options require an argument which is provided as a separate parameter argument = next(options) command.extend([option, argument]) else: # assumption: all file options contain a slash (/) is_file_options = "/" in option # assumption: all file options and parameters require an argument which is provided after the equal sign (=) if "=" not in option: argument = next(options) option += f"={argument}" if is_file_options: file_options.append(option) else: file_parameters.append(option) # wipe the solution file since FSCIP does not overwrite it if no solution was found which causes parsing errors self.silent_remove(tmpSol) with open(tmpOptions, "w") as options_file: options_file.write("\n".join(file_options)) with open(tmpParams, "w") as parameters_file: parameters_file.write("\n".join(file_parameters)) subprocess.check_call( command, stdout=sys.stdout if self.msg else subprocess.DEVNULL, stderr=sys.stderr if self.msg else subprocess.DEVNULL, ) if not os.path.exists(tmpSol): raise PulpSolverError("PuLP: Error while executing " + self.path) status, values = self.readsol(tmpSol) # Make sure to add back in any 0-valued variables SCIP leaves out. finalVals = {} for v in lp.variables(): finalVals[v.name] = values.get(v.name, 0.0) lp.assignVarsVals(finalVals) lp.assignStatus(status) self.delete_tmp_files(tmpLp, tmpSol, tmpOptions, tmpParams) return status
(self, lp)
38,208
pulp.apis.scip_api
defaultPath
null
def defaultPath(self): return self.executableExtension(fscip_path)
(self)
38,213
pulp.apis.scip_api
parse_objective
null
@staticmethod def parse_objective(string: str) -> Optional[float]: fields = string.split(":") if len(fields) != 2: return None label, objective = fields if label != "objective value": return None objective = objective.strip() try: objective = float(objective) except ValueError: return None return objective
(string: str) -> Optional[float]