index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
38,766
pulp.pulp
value
null
def value(self): return self.varValue
(self)
38,767
pulp.pulp
valueOrDefault
null
def valueOrDefault(self): if self.varValue != None: return self.varValue elif self.lowBound != None: if self.upBound != None: if 0 >= self.lowBound and 0 <= self.upBound: return 0 else: if self.lowBound >= 0: return self.lowBound else: return self.upBound else: if 0 >= self.lowBound: return 0 else: return self.lowBound elif self.upBound != None: if 0 <= self.upBound: return 0 else: return self.upBound else: return 0
(self)
38,768
pulp.apis.mipcl_api
MIPCL_CMD
The MIPCL_CMD solver
class MIPCL_CMD(LpSolver_CMD): """The MIPCL_CMD solver""" name = "MIPCL_CMD" def __init__( self, path=None, keepFiles=False, mip=True, msg=True, options=None, timeLimit=None, ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param list options: list of additional options to pass to solver :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary """ LpSolver_CMD.__init__( self, mip=mip, msg=msg, timeLimit=timeLimit, options=options, path=path, keepFiles=keepFiles, ) def defaultPath(self): return self.executableExtension("mps_mipcl") def available(self): """True if the solver is available""" return self.executable(self.path) def actualSolve(self, lp): """Solve a well formulated lp problem""" if not self.executable(self.path): raise PulpSolverError("PuLP: cannot execute " + self.path) tmpMps, tmpSol = self.create_tmp_files(lp.name, "mps", "sol") if lp.sense == constants.LpMaximize: # we swap the objectives # because it does not handle maximization. warnings.warn( "MIPCL_CMD does not allow maximization, " "we will minimize the inverse of the objective function." ) lp += -lp.objective lp.checkDuplicateVars() lp.checkLengthVars(52) lp.writeMPS(tmpMps, mpsSense=lp.sense) # just to report duplicated variables: try: os.remove(tmpSol) except: pass cmd = self.path cmd += f" {tmpMps}" cmd += f" -solfile {tmpSol}" if self.timeLimit is not None: cmd += f" -time {self.timeLimit}" for option in self.options: cmd += " " + option if lp.isMIP(): if not self.mip: warnings.warn("MIPCL_CMD cannot solve the relaxation of a problem") if self.msg: pipe = None else: pipe = open(os.devnull, "w") return_code = subprocess.call(cmd.split(), stdout=pipe, stderr=pipe) # We need to undo the objective swap before finishing if lp.sense == constants.LpMaximize: lp += -lp.objective if return_code != 0: raise PulpSolverError("PuLP: Error while trying to execute " + self.path) if not os.path.exists(tmpSol): status = constants.LpStatusNotSolved status_sol = constants.LpSolutionNoSolutionFound values = None else: status, values, status_sol = self.readsol(tmpSol) self.delete_tmp_files(tmpMps, tmpSol) lp.assignStatus(status, status_sol) if status not in [constants.LpStatusInfeasible, constants.LpStatusNotSolved]: lp.assignVarsVals(values) return status @staticmethod def readsol(filename): """Read a MIPCL solution file""" with open(filename) as f: content = f.readlines() content = [l.strip() for l in content] values = {} if not len(content): return ( constants.LpStatusNotSolved, values, constants.LpSolutionNoSolutionFound, ) first_line = content[0] if first_line == "=infeas=": return constants.LpStatusInfeasible, values, constants.LpSolutionInfeasible objective, value = first_line.split() # this is a workaround. # Not sure if it always returns this limit when unbounded. if abs(float(value)) >= 9.999999995e10: return constants.LpStatusUnbounded, values, constants.LpSolutionUnbounded for line in content[1:]: name, value = line.split() values[name] = float(value) # I'm not sure how this solver announces the optimality # of a solution so we assume it is integer feasible return constants.LpStatusOptimal, values, constants.LpSolutionIntegerFeasible
(path=None, keepFiles=False, mip=True, msg=True, options=None, timeLimit=None)
38,771
pulp.apis.mipcl_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp): """Solve a well formulated lp problem""" if not self.executable(self.path): raise PulpSolverError("PuLP: cannot execute " + self.path) tmpMps, tmpSol = self.create_tmp_files(lp.name, "mps", "sol") if lp.sense == constants.LpMaximize: # we swap the objectives # because it does not handle maximization. warnings.warn( "MIPCL_CMD does not allow maximization, " "we will minimize the inverse of the objective function." ) lp += -lp.objective lp.checkDuplicateVars() lp.checkLengthVars(52) lp.writeMPS(tmpMps, mpsSense=lp.sense) # just to report duplicated variables: try: os.remove(tmpSol) except: pass cmd = self.path cmd += f" {tmpMps}" cmd += f" -solfile {tmpSol}" if self.timeLimit is not None: cmd += f" -time {self.timeLimit}" for option in self.options: cmd += " " + option if lp.isMIP(): if not self.mip: warnings.warn("MIPCL_CMD cannot solve the relaxation of a problem") if self.msg: pipe = None else: pipe = open(os.devnull, "w") return_code = subprocess.call(cmd.split(), stdout=pipe, stderr=pipe) # We need to undo the objective swap before finishing if lp.sense == constants.LpMaximize: lp += -lp.objective if return_code != 0: raise PulpSolverError("PuLP: Error while trying to execute " + self.path) if not os.path.exists(tmpSol): status = constants.LpStatusNotSolved status_sol = constants.LpSolutionNoSolutionFound values = None else: status, values, status_sol = self.readsol(tmpSol) self.delete_tmp_files(tmpMps, tmpSol) lp.assignStatus(status, status_sol) if status not in [constants.LpStatusInfeasible, constants.LpStatusNotSolved]: lp.assignVarsVals(values) return status
(self, lp)
38,775
pulp.apis.mipcl_api
defaultPath
null
def defaultPath(self): return self.executableExtension("mps_mipcl")
(self)
38,780
pulp.apis.mipcl_api
readsol
Read a MIPCL solution file
@staticmethod def readsol(filename): """Read a MIPCL solution file""" with open(filename) as f: content = f.readlines() content = [l.strip() for l in content] values = {} if not len(content): return ( constants.LpStatusNotSolved, values, constants.LpSolutionNoSolutionFound, ) first_line = content[0] if first_line == "=infeas=": return constants.LpStatusInfeasible, values, constants.LpSolutionInfeasible objective, value = first_line.split() # this is a workaround. # Not sure if it always returns this limit when unbounded. if abs(float(value)) >= 9.999999995e10: return constants.LpStatusUnbounded, values, constants.LpSolutionUnbounded for line in content[1:]: name, value = line.split() values[name] = float(value) # I'm not sure how this solver announces the optimality # of a solution so we assume it is integer feasible return constants.LpStatusOptimal, values, constants.LpSolutionIntegerFeasible
(filename)
38,788
pulp.apis.mosek_api
MOSEK
Mosek lp and mip solver (via Mosek Optimizer API).
class MOSEK(LpSolver): """Mosek lp and mip solver (via Mosek Optimizer API).""" name = "MOSEK" try: global mosek import mosek env = mosek.Env() except ImportError: def available(self): """True if Mosek is available.""" return False def actualSolve(self, lp, callback=None): """Solves a well-formulated lp problem.""" raise PulpSolverError("MOSEK : Not Available") else: def __init__( self, mip=True, msg=True, timeLimit: Optional[float] = None, options: Optional[dict] = None, task_file_name="", sol_type=mosek.soltype.bas, ): """Initializes the Mosek solver. Keyword arguments: @param mip: If False, then solve MIP as LP. @param msg: Enable Mosek log output. @param float timeLimit: maximum time for solver (in seconds) @param options: Accepts a dictionary of Mosek solver parameters. Ignore to use default parameter values. Eg: options = {mosek.dparam.mio_max_time:30} sets the maximum time spent by the Mixed Integer optimizer to 30 seconds. Equivalently, one could also write: options = {"MSK_DPAR_MIO_MAX_TIME":30} which uses the generic parameter name as used within the solver, instead of using an object from the Mosek Optimizer API (Python), as before. @param task_file_name: Writes a Mosek task file of the given name. By default, no task file will be written. Eg: task_file_name = "eg1.opf". @param sol_type: Mosek supports three types of solutions: mosek.soltype.bas (Basic solution, default), mosek.soltype.itr (Interior-point solution) and mosek.soltype.itg (Integer solution). For a full list of Mosek parameters (for the Mosek Optimizer API) and supported task file formats, please see https://docs.mosek.com/9.1/pythonapi/parameters.html#doc-all-parameter-list. """ self.mip = mip self.msg = msg self.timeLimit = timeLimit self.task_file_name = task_file_name self.solution_type = sol_type if options is None: options = {} self.options = options if self.timeLimit is not None: timeLimit_keys = {"MSK_DPAR_MIO_MAX_TIME", mosek.dparam.mio_max_time} if not timeLimit_keys.isdisjoint(self.options.keys()): raise ValueError( "timeLimit parameter has been provided trough `timeLimit` and `options`." ) self.options["MSK_DPAR_MIO_MAX_TIME"] = self.timeLimit def available(self): """True if Mosek is available.""" return True def setOutStream(self, text): """Sets the log-output stream.""" sys.stdout.write(text) sys.stdout.flush() def buildSolverModel(self, lp, inf=1e20): """Translate the problem into a Mosek task object.""" self.cons = lp.constraints self.numcons = len(self.cons) self.cons_dict = {} i = 0 for c in self.cons: self.cons_dict[c] = i i = i + 1 self.vars = list(lp.variables()) self.numvars = len(self.vars) self.var_dict = {} # Checking for repeated names lp.checkDuplicateVars() self.task = MOSEK.env.Task() self.task.appendcons(self.numcons) self.task.appendvars(self.numvars) if self.msg: self.task.set_Stream(mosek.streamtype.log, self.setOutStream) # Adding variables for i in range(self.numvars): vname = self.vars[i].name self.var_dict[vname] = i self.task.putvarname(i, vname) # Variable type (Default: Continuous) if self.mip & (self.vars[i].cat == constants.LpInteger): self.task.putvartype(i, mosek.variabletype.type_int) self.solution_type = mosek.soltype.itg # Variable bounds vbkey = mosek.boundkey.fr vup = inf vlow = -inf if self.vars[i].lowBound != None: vlow = self.vars[i].lowBound if self.vars[i].upBound != None: vup = self.vars[i].upBound vbkey = mosek.boundkey.ra else: vbkey = mosek.boundkey.lo elif self.vars[i].upBound != None: vup = self.vars[i].upBound vbkey = mosek.boundkey.up self.task.putvarbound(i, vbkey, vlow, vup) # Objective coefficient for the current variable. self.task.putcj(i, lp.objective.get(self.vars[i], 0.0)) # Coefficient matrix self.A_rows, self.A_cols, self.A_vals = zip( *[ [self.cons_dict[row], self.var_dict[col], coeff] for col, row, coeff in lp.coefficients() ] ) self.task.putaijlist(self.A_rows, self.A_cols, self.A_vals) # Constraints self.constraint_data_list = [] for c in self.cons: cname = self.cons[c].name if cname != None: self.task.putconname(self.cons_dict[c], cname) else: self.task.putconname(self.cons_dict[c], c) csense = self.cons[c].sense cconst = -self.cons[c].constant clow = -inf cup = inf # Constraint bounds if csense == constants.LpConstraintEQ: cbkey = mosek.boundkey.fx clow = cconst cup = cconst elif csense == constants.LpConstraintGE: cbkey = mosek.boundkey.lo clow = cconst elif csense == constants.LpConstraintLE: cbkey = mosek.boundkey.up cup = cconst else: raise PulpSolverError("Invalid constraint type.") self.constraint_data_list.append([self.cons_dict[c], cbkey, clow, cup]) self.cons_id_list, self.cbkey_list, self.clow_list, self.cup_list = zip( *self.constraint_data_list ) self.task.putconboundlist( self.cons_id_list, self.cbkey_list, self.clow_list, self.cup_list ) # Objective sense if lp.sense == constants.LpMaximize: self.task.putobjsense(mosek.objsense.maximize) else: self.task.putobjsense(mosek.objsense.minimize) def findSolutionValues(self, lp): """ Read the solution values and status from the Mosek task object. Note: Since the status map from mosek.solsta to LpStatus is not exact, it is recommended that one enables the log output and then refer to Mosek documentation for a better understanding of the solution (especially in the case of mip problems). """ self.solsta = self.task.getsolsta(self.solution_type) self.solution_status_dict = { mosek.solsta.optimal: constants.LpStatusOptimal, mosek.solsta.prim_infeas_cer: constants.LpStatusInfeasible, mosek.solsta.dual_infeas_cer: constants.LpStatusUnbounded, mosek.solsta.unknown: constants.LpStatusUndefined, mosek.solsta.integer_optimal: constants.LpStatusOptimal, mosek.solsta.prim_illposed_cer: constants.LpStatusNotSolved, mosek.solsta.dual_illposed_cer: constants.LpStatusNotSolved, mosek.solsta.prim_feas: constants.LpStatusNotSolved, mosek.solsta.dual_feas: constants.LpStatusNotSolved, mosek.solsta.prim_and_dual_feas: constants.LpStatusNotSolved, } # Variable values. try: self.xx = [0.0] * self.numvars self.task.getxx(self.solution_type, self.xx) for var in lp.variables(): var.varValue = self.xx[self.var_dict[var.name]] except mosek.Error: pass # Constraint slack variables. try: self.xc = [0.0] * self.numcons self.task.getxc(self.solution_type, self.xc) for con in lp.constraints: lp.constraints[con].slack = -( self.cons[con].constant + self.xc[self.cons_dict[con]] ) except mosek.Error: pass # Reduced costs. if self.solution_type != mosek.soltype.itg: try: self.x_rc = [0.0] * self.numvars self.task.getreducedcosts( self.solution_type, 0, self.numvars, self.x_rc ) for var in lp.variables(): var.dj = self.x_rc[self.var_dict[var.name]] except mosek.Error: pass # Constraint Pi variables. try: self.y = [0.0] * self.numcons self.task.gety(self.solution_type, self.y) for con in lp.constraints: lp.constraints[con].pi = self.y[self.cons_dict[con]] except mosek.Error: pass def putparam(self, par, val): """ Pass the values of valid parameters to Mosek. """ if isinstance(par, mosek.dparam): self.task.putdouparam(par, val) elif isinstance(par, mosek.iparam): self.task.putintparam(par, val) elif isinstance(par, mosek.sparam): self.task.putstrparam(par, val) elif isinstance(par, str): if par.startswith("MSK_DPAR_"): self.task.putnadouparam(par, val) elif par.startswith("MSK_IPAR_"): self.task.putnaintparam(par, val) elif par.startswith("MSK_SPAR_"): self.task.putnastrparam(par, val) else: raise PulpSolverError( "Invalid MOSEK parameter: '{}'. Check MOSEK documentation for a list of valid parameters.".format( par ) ) def actualSolve(self, lp): """ Solve a well-formulated lp problem. """ self.buildSolverModel(lp) # Set solver parameters for msk_par in self.options: self.putparam(msk_par, self.options[msk_par]) # Task file if self.task_file_name: self.task.writedata(self.task_file_name) # Optimize self.task.optimize() # Mosek solver log (default: standard output stream) if self.msg: self.task.solutionsummary(mosek.streamtype.msg) self.findSolutionValues(lp) lp.assignStatus(self.solution_status_dict[self.solsta]) for var in lp.variables(): var.modified = False for con in lp.constraints.values(): con.modified = False return lp.status def actualResolve(self, lp, inf=1e20, **kwargs): """ Modify constraints and re-solve an lp. The Mosek task object created in the first solve is used. """ for c in self.cons: if self.cons[c].modified: csense = self.cons[c].sense cconst = -self.cons[c].constant clow = -inf cup = inf # Constraint bounds if csense == constants.LpConstraintEQ: cbkey = mosek.boundkey.fx clow = cconst cup = cconst elif csense == constants.LpConstraintGE: cbkey = mosek.boundkey.lo clow = cconst elif csense == constants.LpConstraintLE: cbkey = mosek.boundkey.up cup = cconst else: raise PulpSolverError("Invalid constraint type.") self.task.putconbound(self.cons_dict[c], cbkey, clow, cup) # Re-solve self.task.optimize() self.findSolutionValues(lp) lp.assignStatus(self.solution_status_dict[self.solsta]) for var in lp.variables(): var.modified = False for con in lp.constraints.values(): con.modified = False return lp.status
(mip=True, msg=True, options=None, timeLimit=None, *args, **kwargs)
38,791
pulp.apis.mosek_api
actualSolve
Solves a well-formulated lp problem.
def actualSolve(self, lp, callback=None): """Solves a well-formulated lp problem.""" raise PulpSolverError("MOSEK : Not Available")
(self, lp, callback=None)
38,792
pulp.apis.mosek_api
available
True if Mosek is available.
def available(self): """True if Mosek is available.""" return False
(self)
38,801
pulp.apis.coin_api
PULP_CBC_CMD
This solver uses a precompiled version of cbc provided with the package
class PULP_CBC_CMD(COIN_CMD): """ This solver uses a precompiled version of cbc provided with the package """ name = "PULP_CBC_CMD" pulp_cbc_path = pulp_cbc_path try: if os.name != "nt": if not os.access(pulp_cbc_path, os.X_OK): import stat os.chmod(pulp_cbc_path, stat.S_IXUSR + stat.S_IXOTH) except: # probably due to incorrect permissions def available(self): """True if the solver is available""" return False def actualSolve(self, lp, callback=None): """Solve a well formulated lp problem""" raise PulpSolverError( "PULP_CBC_CMD: Not Available (check permissions on %s)" % self.pulp_cbc_path ) else: def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, gapAbs=None, presolve=None, cuts=None, strong=None, options=None, warmStart=False, keepFiles=False, path=None, threads=None, logPath=None, timeMode="elapsed", ): if path is not None: raise PulpSolverError("Use COIN_CMD if you want to set a path") # check that the file is executable COIN_CMD.__init__( self, path=self.pulp_cbc_path, mip=mip, msg=msg, timeLimit=timeLimit, gapRel=gapRel, gapAbs=gapAbs, presolve=presolve, cuts=cuts, strong=strong, options=options, warmStart=warmStart, keepFiles=keepFiles, threads=threads, logPath=logPath, timeMode=timeMode, )
(mip=True, msg=True, timeLimit=None, gapRel=None, gapAbs=None, presolve=None, cuts=None, strong=None, options=None, warmStart=False, keepFiles=False, path=None, threads=None, logPath=None, timeMode='elapsed')
38,802
pulp.apis.coin_api
__init__
null
def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, gapAbs=None, presolve=None, cuts=None, strong=None, options=None, warmStart=False, keepFiles=False, path=None, threads=None, logPath=None, timeMode="elapsed", ): if path is not None: raise PulpSolverError("Use COIN_CMD if you want to set a path") # check that the file is executable COIN_CMD.__init__( self, path=self.pulp_cbc_path, mip=mip, msg=msg, timeLimit=timeLimit, gapRel=gapRel, gapAbs=gapAbs, presolve=presolve, cuts=cuts, strong=strong, options=options, warmStart=warmStart, keepFiles=keepFiles, threads=threads, logPath=logPath, timeMode=timeMode, )
(self, mip=True, msg=True, timeLimit=None, gapRel=None, gapAbs=None, presolve=None, cuts=None, strong=None, options=None, warmStart=False, keepFiles=False, path=None, threads=None, logPath=None, timeMode='elapsed')
38,826
pulp.apis.glpk_api
PYGLPK
The glpk LP/MIP solver (via its python interface) Copyright Christophe-Marie Duquesne 2012 The glpk variables are available (after a solve) in var.solverVar The glpk constraints are available in constraint.solverConstraint The Model is in prob.solverModel
class PYGLPK(LpSolver): """ The glpk LP/MIP solver (via its python interface) Copyright Christophe-Marie Duquesne 2012 The glpk variables are available (after a solve) in var.solverVar The glpk constraints are available in constraint.solverConstraint The Model is in prob.solverModel """ name = "PYGLPK" try: # import the model into the global scope global glpk import glpk.glpkpi as glpk except: def available(self): """True if the solver is available""" return False def actualSolve(self, lp, callback=None): """Solve a well formulated lp problem""" raise PulpSolverError("GLPK: Not Available") else: def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, **solverParams ): """ Initializes the glpk solver. @param mip: if False the solver will solve a MIP as an LP @param msg: displays information from the solver to stdout @param timeLimit: not handled @param gapRel: not handled @param solverParams: not handled """ LpSolver.__init__(self, mip, msg) if not self.msg: glpk.glp_term_out(glpk.GLP_OFF) def findSolutionValues(self, lp): prob = lp.solverModel if self.mip and self.hasMIPConstraints(lp.solverModel): solutionStatus = glpk.glp_mip_status(prob) else: solutionStatus = glpk.glp_get_status(prob) glpkLpStatus = { glpk.GLP_OPT: constants.LpStatusOptimal, glpk.GLP_UNDEF: constants.LpStatusUndefined, glpk.GLP_FEAS: constants.LpStatusOptimal, glpk.GLP_INFEAS: constants.LpStatusInfeasible, glpk.GLP_NOFEAS: constants.LpStatusInfeasible, glpk.GLP_UNBND: constants.LpStatusUnbounded, } # populate pulp solution values for var in lp.variables(): if self.mip and self.hasMIPConstraints(lp.solverModel): var.varValue = glpk.glp_mip_col_val(prob, var.glpk_index) else: var.varValue = glpk.glp_get_col_prim(prob, var.glpk_index) var.dj = glpk.glp_get_col_dual(prob, var.glpk_index) # put pi and slack variables against the constraints for constr in lp.constraints.values(): if self.mip and self.hasMIPConstraints(lp.solverModel): row_val = glpk.glp_mip_row_val(prob, constr.glpk_index) else: row_val = glpk.glp_get_row_prim(prob, constr.glpk_index) constr.slack = -constr.constant - row_val constr.pi = glpk.glp_get_row_dual(prob, constr.glpk_index) lp.resolveOK = True for var in lp.variables(): var.isModified = False status = glpkLpStatus.get(solutionStatus, constants.LpStatusUndefined) lp.assignStatus(status) return status def available(self): """True if the solver is available""" return True def hasMIPConstraints(self, solverModel): return ( glpk.glp_get_num_int(solverModel) > 0 or glpk.glp_get_num_bin(solverModel) > 0 ) def callSolver(self, lp, callback=None): """Solves the problem with glpk""" self.solveTime = -clock() glpk.glp_adv_basis(lp.solverModel, 0) glpk.glp_simplex(lp.solverModel, None) if self.mip and self.hasMIPConstraints(lp.solverModel): status = glpk.glp_get_status(lp.solverModel) if status in (glpk.GLP_OPT, glpk.GLP_UNDEF, glpk.GLP_FEAS): glpk.glp_intopt(lp.solverModel, None) self.solveTime += clock() def buildSolverModel(self, lp): """ Takes the pulp lp model and translates it into a glpk model """ log.debug("create the glpk model") prob = glpk.glp_create_prob() glpk.glp_set_prob_name(prob, lp.name) log.debug("set the sense of the problem") if lp.sense == constants.LpMaximize: glpk.glp_set_obj_dir(prob, glpk.GLP_MAX) log.debug("add the constraints to the problem") glpk.glp_add_rows(prob, len(list(lp.constraints.keys()))) for i, v in enumerate(lp.constraints.items(), start=1): name, constraint = v glpk.glp_set_row_name(prob, i, name) if constraint.sense == constants.LpConstraintLE: glpk.glp_set_row_bnds( prob, i, glpk.GLP_UP, 0.0, -constraint.constant ) elif constraint.sense == constants.LpConstraintGE: glpk.glp_set_row_bnds( prob, i, glpk.GLP_LO, -constraint.constant, 0.0 ) elif constraint.sense == constants.LpConstraintEQ: glpk.glp_set_row_bnds( prob, i, glpk.GLP_FX, -constraint.constant, -constraint.constant ) else: raise PulpSolverError("Detected an invalid constraint type") constraint.glpk_index = i log.debug("add the variables to the problem") glpk.glp_add_cols(prob, len(lp.variables())) for j, var in enumerate(lp.variables(), start=1): glpk.glp_set_col_name(prob, j, var.name) lb = 0.0 ub = 0.0 t = glpk.GLP_FR if not var.lowBound is None: lb = var.lowBound t = glpk.GLP_LO if not var.upBound is None: ub = var.upBound t = glpk.GLP_UP if not var.upBound is None and not var.lowBound is None: if ub == lb: t = glpk.GLP_FX else: t = glpk.GLP_DB glpk.glp_set_col_bnds(prob, j, t, lb, ub) if var.cat == constants.LpInteger: glpk.glp_set_col_kind(prob, j, glpk.GLP_IV) assert glpk.glp_get_col_kind(prob, j) == glpk.GLP_IV var.glpk_index = j log.debug("set the objective function") for var in lp.variables(): value = lp.objective.get(var) if value: glpk.glp_set_obj_coef(prob, var.glpk_index, value) log.debug("set the problem matrix") for constraint in lp.constraints.values(): l = len(list(constraint.items())) ind = glpk.intArray(l + 1) val = glpk.doubleArray(l + 1) for j, v in enumerate(constraint.items(), start=1): var, value = v ind[j] = var.glpk_index val[j] = value glpk.glp_set_mat_row(prob, constraint.glpk_index, l, ind, val) lp.solverModel = prob # glpk.glp_write_lp(prob, None, "glpk.lp") def actualSolve(self, lp, callback=None): """ Solve a well formulated lp problem creates a glpk model, variables and constraints and attaches them to the lp model which it then solves """ self.buildSolverModel(lp) # set the initial solution log.debug("Solve the Model using glpk") self.callSolver(lp, callback=callback) # get the solution information solutionStatus = self.findSolutionValues(lp) for var in lp.variables(): var.modified = False for constraint in lp.constraints.values(): constraint.modified = False return solutionStatus def actualResolve(self, lp, callback=None): """ Solve a well formulated lp problem uses the old solver and modifies the rhs of the modified constraints """ prob = lp.solverModel log.debug("Resolve the Model using glpk") for constraint in lp.constraints.values(): i = constraint.glpk_index if constraint.modified: if constraint.sense == constants.LpConstraintLE: glpk.glp_set_row_bnds( prob, i, glpk.GLP_UP, 0.0, -constraint.constant ) elif constraint.sense == constants.LpConstraintGE: glpk.glp_set_row_bnds( prob, i, glpk.GLP_LO, -constraint.constant, 0.0 ) elif constraint.sense == constants.LpConstraintEQ: glpk.glp_set_row_bnds( prob, i, glpk.GLP_FX, -constraint.constant, -constraint.constant, ) else: raise PulpSolverError("Detected an invalid constraint type") self.callSolver(lp, callback=callback) # get the solution information solutionStatus = self.findSolutionValues(lp) for var in lp.variables(): var.modified = False for constraint in lp.constraints.values(): constraint.modified = False return solutionStatus
(mip=True, msg=True, options=None, timeLimit=None, *args, **kwargs)
38,829
pulp.apis.glpk_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp, callback=None): """Solve a well formulated lp problem""" raise PulpSolverError("GLPK: Not Available")
(self, lp, callback=None)
38,885
pulp.constants
PulpError
Pulp Exception Class
class PulpError(Exception): """ Pulp Exception Class """ pass
null
38,886
pulp.apis.core
PulpSolverError
Pulp Solver-related exceptions
class PulpSolverError(const.PulpError): """ Pulp Solver-related exceptions """ pass
null
38,887
pulp.apis.scip_api
SCIP_CMD
The SCIP optimization solver
class SCIP_CMD(LpSolver_CMD): """The SCIP optimization solver""" name = "SCIP_CMD" def __init__( self, path=None, mip=True, keepFiles=False, msg=True, options=None, timeLimit=None, gapRel=None, gapAbs=None, maxNodes=None, logPath=None, threads=None, ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param list options: list of additional options to pass to solver :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int maxNodes: max number of nodes during branching. Stops the solving when reached. :param int threads: sets the maximum number of threads :param str logPath: path to the log file """ LpSolver_CMD.__init__( self, mip=mip, msg=msg, options=options, path=path, keepFiles=keepFiles, timeLimit=timeLimit, gapRel=gapRel, gapAbs=gapAbs, maxNodes=maxNodes, threads=threads, logPath=logPath, ) SCIP_STATUSES = { "unknown": constants.LpStatusUndefined, "user interrupt": constants.LpStatusNotSolved, "node limit reached": constants.LpStatusNotSolved, "total node limit reached": constants.LpStatusNotSolved, "stall node limit reached": constants.LpStatusNotSolved, "time limit reached": constants.LpStatusNotSolved, "memory limit reached": constants.LpStatusNotSolved, "gap limit reached": constants.LpStatusOptimal, "solution limit reached": constants.LpStatusNotSolved, "solution improvement limit reached": constants.LpStatusNotSolved, "restart limit reached": constants.LpStatusNotSolved, "optimal solution found": constants.LpStatusOptimal, "infeasible": constants.LpStatusInfeasible, "unbounded": constants.LpStatusUnbounded, "infeasible or unbounded": constants.LpStatusNotSolved, } NO_SOLUTION_STATUSES = { constants.LpStatusInfeasible, constants.LpStatusUnbounded, constants.LpStatusNotSolved, } def defaultPath(self): return self.executableExtension(scip_path) def available(self): """True if the solver is available""" return self.executable(self.path) def actualSolve(self, lp): """Solve a well formulated lp problem""" if not self.executable(self.path): raise PulpSolverError("PuLP: cannot execute " + self.path) tmpLp, tmpSol, tmpOptions = self.create_tmp_files(lp.name, "lp", "sol", "set") lp.writeLP(tmpLp) file_options: List[str] = [] if self.timeLimit is not None: file_options.append(f"limits/time={self.timeLimit}") if "gapRel" in self.optionsDict: file_options.append(f"limits/gap={self.optionsDict['gapRel']}") if "gapAbs" in self.optionsDict: file_options.append(f"limits/absgap={self.optionsDict['gapAbs']}") if "maxNodes" in self.optionsDict: file_options.append(f"limits/nodes={self.optionsDict['maxNodes']}") if "threads" in self.optionsDict and int(self.optionsDict["threads"]) > 1: warnings.warn( "SCIP can only run with a single thread - use FSCIP_CMD for a parallel version of SCIP" ) if not self.mip: warnings.warn(f"{self.name} does not allow a problem to be relaxed") command: List[str] = [] command.append(self.path) command.extend(["-s", tmpOptions]) if not self.msg: command.append("-q") if "logPath" in self.optionsDict: command.extend(["-l", self.optionsDict["logPath"]]) options = iter(self.options) for option in options: # identify cli options by a leading dash (-) and treat other options as file options if option.startswith("-"): # assumption: all cli options require an argument which is provided as a separate parameter argument = next(options) command.extend([option, argument]) else: # assumption: all file options require an argument which is provided after the equal sign (=) if "=" not in option: argument = next(options) option += f"={argument}" file_options.append(option) # append scip commands after parsing self.options to allow the user to specify additional -c arguments command.extend(["-c", f'read "{tmpLp}"']) command.extend(["-c", "optimize"]) command.extend(["-c", f'write solution "{tmpSol}"']) command.extend(["-c", "quit"]) with open(tmpOptions, "w") as options_file: options_file.write("\n".join(file_options)) subprocess.check_call(command, stdout=sys.stdout, stderr=sys.stderr) if not os.path.exists(tmpSol): raise PulpSolverError("PuLP: Error while executing " + self.path) status, values = self.readsol(tmpSol) # Make sure to add back in any 0-valued variables SCIP leaves out. finalVals = {} for v in lp.variables(): finalVals[v.name] = values.get(v.name, 0.0) lp.assignVarsVals(finalVals) lp.assignStatus(status) self.delete_tmp_files(tmpLp, tmpSol, tmpOptions) return status @staticmethod def readsol(filename): """Read a SCIP solution file""" with open(filename) as f: # First line must contain 'solution status: <something>' try: line = f.readline() comps = line.split(": ") assert comps[0] == "solution status" assert len(comps) == 2 except Exception: raise PulpSolverError(f"Can't get SCIP solver status: {line!r}") status = SCIP_CMD.SCIP_STATUSES.get( comps[1].strip(), constants.LpStatusUndefined ) values = {} if status in SCIP_CMD.NO_SOLUTION_STATUSES: return status, values # Look for an objective value. If we can't find one, stop. try: line = f.readline() comps = line.split(": ") assert comps[0] == "objective value" assert len(comps) == 2 float(comps[1].strip()) except Exception: raise PulpSolverError(f"Can't get SCIP solver objective: {line!r}") # Parse the variable values. for line in f: try: comps = line.split() values[comps[0]] = float(comps[1]) except: raise PulpSolverError(f"Can't read SCIP solver output: {line!r}") return status, values
(path=None, mip=True, keepFiles=False, msg=True, options=None, timeLimit=None, gapRel=None, gapAbs=None, maxNodes=None, logPath=None, threads=None)
38,888
pulp.apis.scip_api
__init__
:param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param list options: list of additional options to pass to solver :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int maxNodes: max number of nodes during branching. Stops the solving when reached. :param int threads: sets the maximum number of threads :param str logPath: path to the log file
def __init__( self, path=None, mip=True, keepFiles=False, msg=True, options=None, timeLimit=None, gapRel=None, gapAbs=None, maxNodes=None, logPath=None, threads=None, ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param list options: list of additional options to pass to solver :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving :param str path: path to the solver binary :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int maxNodes: max number of nodes during branching. Stops the solving when reached. :param int threads: sets the maximum number of threads :param str logPath: path to the log file """ LpSolver_CMD.__init__( self, mip=mip, msg=msg, options=options, path=path, keepFiles=keepFiles, timeLimit=timeLimit, gapRel=gapRel, gapAbs=gapAbs, maxNodes=maxNodes, threads=threads, logPath=logPath, )
(self, path=None, mip=True, keepFiles=False, msg=True, options=None, timeLimit=None, gapRel=None, gapAbs=None, maxNodes=None, logPath=None, threads=None)
38,890
pulp.apis.scip_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp): """Solve a well formulated lp problem""" if not self.executable(self.path): raise PulpSolverError("PuLP: cannot execute " + self.path) tmpLp, tmpSol, tmpOptions = self.create_tmp_files(lp.name, "lp", "sol", "set") lp.writeLP(tmpLp) file_options: List[str] = [] if self.timeLimit is not None: file_options.append(f"limits/time={self.timeLimit}") if "gapRel" in self.optionsDict: file_options.append(f"limits/gap={self.optionsDict['gapRel']}") if "gapAbs" in self.optionsDict: file_options.append(f"limits/absgap={self.optionsDict['gapAbs']}") if "maxNodes" in self.optionsDict: file_options.append(f"limits/nodes={self.optionsDict['maxNodes']}") if "threads" in self.optionsDict and int(self.optionsDict["threads"]) > 1: warnings.warn( "SCIP can only run with a single thread - use FSCIP_CMD for a parallel version of SCIP" ) if not self.mip: warnings.warn(f"{self.name} does not allow a problem to be relaxed") command: List[str] = [] command.append(self.path) command.extend(["-s", tmpOptions]) if not self.msg: command.append("-q") if "logPath" in self.optionsDict: command.extend(["-l", self.optionsDict["logPath"]]) options = iter(self.options) for option in options: # identify cli options by a leading dash (-) and treat other options as file options if option.startswith("-"): # assumption: all cli options require an argument which is provided as a separate parameter argument = next(options) command.extend([option, argument]) else: # assumption: all file options require an argument which is provided after the equal sign (=) if "=" not in option: argument = next(options) option += f"={argument}" file_options.append(option) # append scip commands after parsing self.options to allow the user to specify additional -c arguments command.extend(["-c", f'read "{tmpLp}"']) command.extend(["-c", "optimize"]) command.extend(["-c", f'write solution "{tmpSol}"']) command.extend(["-c", "quit"]) with open(tmpOptions, "w") as options_file: options_file.write("\n".join(file_options)) subprocess.check_call(command, stdout=sys.stdout, stderr=sys.stderr) if not os.path.exists(tmpSol): raise PulpSolverError("PuLP: Error while executing " + self.path) status, values = self.readsol(tmpSol) # Make sure to add back in any 0-valued variables SCIP leaves out. finalVals = {} for v in lp.variables(): finalVals[v.name] = values.get(v.name, 0.0) lp.assignVarsVals(finalVals) lp.assignStatus(status) self.delete_tmp_files(tmpLp, tmpSol, tmpOptions) return status
(self, lp)
38,894
pulp.apis.scip_api
defaultPath
null
def defaultPath(self): return self.executableExtension(scip_path)
(self)
38,899
pulp.apis.scip_api
readsol
Read a SCIP solution file
@staticmethod def readsol(filename): """Read a SCIP solution file""" with open(filename) as f: # First line must contain 'solution status: <something>' try: line = f.readline() comps = line.split(": ") assert comps[0] == "solution status" assert len(comps) == 2 except Exception: raise PulpSolverError(f"Can't get SCIP solver status: {line!r}") status = SCIP_CMD.SCIP_STATUSES.get( comps[1].strip(), constants.LpStatusUndefined ) values = {} if status in SCIP_CMD.NO_SOLUTION_STATUSES: return status, values # Look for an objective value. If we can't find one, stop. try: line = f.readline() comps = line.split(": ") assert comps[0] == "objective value" assert len(comps) == 2 float(comps[1].strip()) except Exception: raise PulpSolverError(f"Can't get SCIP solver objective: {line!r}") # Parse the variable values. for line in f: try: comps = line.split() values[comps[0]] = float(comps[1]) except: raise PulpSolverError(f"Can't read SCIP solver output: {line!r}") return status, values
(filename)
38,927
pulp.apis.scip_api
SCIP_PY
The SCIP Optimization Suite (via its python interface) The SCIP internals are available after calling solve as: - each variable in variable.solverVar - each constraint in constraint.solverConstraint - the model in problem.solverModel
class SCIP_PY(LpSolver): """ The SCIP Optimization Suite (via its python interface) The SCIP internals are available after calling solve as: - each variable in variable.solverVar - each constraint in constraint.solverConstraint - the model in problem.solverModel """ name = "SCIP_PY" try: global scip import pyscipopt as scip except ImportError: def available(self): """True if the solver is available""" return False def actualSolve(self, lp): """Solve a well formulated lp problem""" raise PulpSolverError(f"The {self.name} solver is not available") else: def __init__( self, mip=True, msg=True, options=None, timeLimit=None, gapRel=None, gapAbs=None, maxNodes=None, logPath=None, threads=None, warmStart=False, ): """ :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param list options: list of additional options to pass to solver :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param float gapAbs: absolute gap tolerance for the solver to stop :param int maxNodes: max number of nodes during branching. Stops the solving when reached. :param str logPath: path to the log file :param int threads: sets the maximum number of threads :param bool warmStart: if True, the solver will use the current value of variables as a start """ super().__init__( mip=mip, msg=msg, options=options, timeLimit=timeLimit, gapRel=gapRel, gapAbs=gapAbs, maxNodes=maxNodes, logPath=logPath, threads=threads, warmStart=warmStart, ) def findSolutionValues(self, lp): lp.resolveOK = True solutionStatus = lp.solverModel.getStatus() scip_to_pulp_status = { "optimal": constants.LpStatusOptimal, "unbounded": constants.LpStatusUnbounded, "infeasible": constants.LpStatusInfeasible, "inforunbd": constants.LpStatusNotSolved, "timelimit": constants.LpStatusNotSolved, "userinterrupt": constants.LpStatusNotSolved, "nodelimit": constants.LpStatusNotSolved, "totalnodelimit": constants.LpStatusNotSolved, "stallnodelimit": constants.LpStatusNotSolved, "gaplimit": constants.LpStatusNotSolved, "memlimit": constants.LpStatusNotSolved, "sollimit": constants.LpStatusNotSolved, "bestsollimit": constants.LpStatusNotSolved, "restartlimit": constants.LpStatusNotSolved, "unknown": constants.LpStatusUndefined, } possible_solution_found_statuses = ( "optimal", "timelimit", "userinterrupt", "nodelimit", "totalnodelimit", "stallnodelimit", "gaplimit", "memlimit", ) status = scip_to_pulp_status[solutionStatus] if solutionStatus in possible_solution_found_statuses: try: # Feasible solution found solution = lp.solverModel.getBestSol() for variable in lp._variables: variable.varValue = solution[variable.solverVar] for constraint in lp.constraints.values(): constraint.slack = lp.solverModel.getSlack( constraint.solverConstraint, solution ) if status == constants.LpStatusOptimal: lp.assignStatus(status, constants.LpSolutionOptimal) else: status = constants.LpStatusOptimal lp.assignStatus(status, constants.LpSolutionIntegerFeasible) except: # No solution found lp.assignStatus(status, constants.LpSolutionNoSolutionFound) else: lp.assignStatus(status) # TODO: check if problem is an LP i.e. does not have integer variables # if : # for variable in lp._variables: # variable.dj = lp.solverModel.getVarRedcost(variable.solverVar) # for constraint in lp.constraints.values(): # constraint.pi = lp.solverModel.getDualSolVal(constraint.solverConstraint) return status def available(self): """True if the solver is available""" # if pyscipopt can be installed (and therefore imported) it has access to scip return True def callSolver(self, lp): """Solves the problem with scip""" lp.solverModel.optimize() def buildSolverModel(self, lp): """ Takes the pulp lp model and translates it into a scip model """ ################################################## # create model ################################################## lp.solverModel = scip.Model(lp.name) if lp.sense == constants.LpMaximize: lp.solverModel.setMaximize() else: lp.solverModel.setMinimize() ################################################## # add options ################################################## if not self.msg: lp.solverModel.hideOutput() if self.timeLimit is not None: lp.solverModel.setParam("limits/time", self.timeLimit) if "gapRel" in self.optionsDict: lp.solverModel.setParam("limits/gap", self.optionsDict["gapRel"]) if "gapAbs" in self.optionsDict: lp.solverModel.setParam("limits/absgap", self.optionsDict["gapAbs"]) if "maxNodes" in self.optionsDict: lp.solverModel.setParam("limits/nodes", self.optionsDict["maxNodes"]) if "logPath" in self.optionsDict: lp.solverModel.setLogfile(self.optionsDict["logPath"]) if "threads" in self.optionsDict and int(self.optionsDict["threads"]) > 1: warnings.warn( f"The solver {self.name} can only run with a single thread" ) if not self.mip: warnings.warn(f"{self.name} does not allow a problem to be relaxed") options = iter(self.options) for option in options: # assumption: all file options require an argument which is provided after the equal sign (=) if "=" in option: name, value = option.split("=", maxsplit=2) else: name, value = option, next(options) lp.solverModel.setParam(name, value) ################################################## # add variables ################################################## category_to_vtype = { constants.LpBinary: "B", constants.LpContinuous: "C", constants.LpInteger: "I", } for var in lp.variables(): var.solverVar = lp.solverModel.addVar( name=var.name, vtype=category_to_vtype[var.cat], lb=var.lowBound, # a lower bound of None represents -infinity ub=var.upBound, # an upper bound of None represents +infinity obj=lp.objective.get(var, 0.0), ) ################################################## # add constraints ################################################## sense_to_operator = { constants.LpConstraintLE: operator.le, constants.LpConstraintGE: operator.ge, constants.LpConstraintEQ: operator.eq, } for name, constraint in lp.constraints.items(): constraint.solverConstraint = lp.solverModel.addCons( cons=sense_to_operator[constraint.sense]( scip.quicksum( coefficient * variable.solverVar for variable, coefficient in constraint.items() ), -constraint.constant, ), name=name, ) ################################################## # add warm start ################################################## if self.optionsDict.get("warmStart", False): s = lp.solverModel.createPartialSol() for var in lp.variables(): if var.varValue is not None: # Warm start variables having an initial value lp.solverModel.setSolVal(s, var.solverVar, var.varValue) lp.solverModel.addSol(s) def actualSolve(self, lp): """ Solve a well formulated lp problem creates a scip model, variables and constraints and attaches them to the lp model which it then solves """ self.buildSolverModel(lp) self.callSolver(lp) solutionStatus = self.findSolutionValues(lp) for variable in lp._variables: variable.modified = False for constraint in lp.constraints.values(): constraint.modified = False return solutionStatus def actualResolve(self, lp): """ Solve a well formulated lp problem uses the old solver and modifies the rhs of the modified constraints """ # TODO: add ability to resolve pysciptopt models # - http://listserv.zib.de/pipermail/scip/2020-May/003977.html # - https://scipopt.org/doc-8.0.0/html/REOPT.php raise PulpSolverError( f"The {self.name} solver does not implement resolving" )
(mip=True, msg=True, options=None, timeLimit=None, *args, **kwargs)
38,930
pulp.apis.scip_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp): """Solve a well formulated lp problem""" raise PulpSolverError(f"The {self.name} solver is not available")
(self, lp)
38,939
pulp.apis.xpress_api
XPRESS
The XPRESS LP solver that uses the XPRESS command line tool in a subprocess
class XPRESS(LpSolver_CMD): """The XPRESS LP solver that uses the XPRESS command line tool in a subprocess""" name = "XPRESS" def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, options=None, keepFiles=False, path=None, heurFreq=None, heurStra=None, coverCuts=None, preSolve=None, warmStart=False, ): """ Initializes the Xpress solver. :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param heurFreq: the frequency at which heuristics are used in the tree search :param heurStra: heuristic strategy :param coverCuts: the number of rounds of lifted cover inequalities at the top node :param preSolve: whether presolving should be performed before the main algorithm :param options: Adding more options, e.g. options = ["NODESELECTION=1", "HEURDEPTH=5"] More about Xpress options and control parameters please see https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/HTML/chapter7.html :param bool warmStart: if True, then use current variable values as start """ LpSolver_CMD.__init__( self, gapRel=gapRel, mip=mip, msg=msg, timeLimit=timeLimit, options=options, path=path, keepFiles=keepFiles, heurFreq=heurFreq, heurStra=heurStra, coverCuts=coverCuts, preSolve=preSolve, warmStart=warmStart, ) def defaultPath(self): return self.executableExtension("optimizer") def available(self): """True if the solver is available""" return self.executable(self.path) def actualSolve(self, lp): """Solve a well formulated lp problem""" if not self.executable(self.path): raise PulpSolverError("PuLP: cannot execute " + self.path) tmpLp, tmpSol, tmpCmd, tmpAttr, tmpStart = self.create_tmp_files( lp.name, "lp", "prt", "cmd", "attr", "slx" ) variables = lp.writeLP(tmpLp, writeSOS=1, mip=self.mip) if self.optionsDict.get("warmStart", False): start = [(v.name, v.value()) for v in variables if v.value() is not None] self.writeslxsol(tmpStart, start) # Explicitly capture some attributes so that we can easily get # information about the solution. attrNames = [] if _ismip(lp) and self.mip: attrNames.extend(["mipobjval", "bestbound", "mipstatus"]) statusmap = { 0: constants.LpStatusUndefined, # XPRS_MIP_NOT_LOADED 1: constants.LpStatusUndefined, # XPRS_MIP_LP_NOT_OPTIMAL 2: constants.LpStatusUndefined, # XPRS_MIP_LP_OPTIMAL 3: constants.LpStatusUndefined, # XPRS_MIP_NO_SOL_FOUND 4: constants.LpStatusUndefined, # XPRS_MIP_SOLUTION 5: constants.LpStatusInfeasible, # XPRS_MIP_INFEAS 6: constants.LpStatusOptimal, # XPRS_MIP_OPTIMAL 7: constants.LpStatusUndefined, # XPRS_MIP_UNBOUNDED } statuskey = "mipstatus" else: attrNames.extend(["lpobjval", "lpstatus"]) statusmap = { 0: constants.LpStatusNotSolved, # XPRS_LP_UNSTARTED 1: constants.LpStatusOptimal, # XPRS_LP_OPTIMAL 2: constants.LpStatusInfeasible, # XPRS_LP_INFEAS 3: constants.LpStatusUndefined, # XPRS_LP_CUTOFF 4: constants.LpStatusUndefined, # XPRS_LP_UNFINISHED 5: constants.LpStatusUnbounded, # XPRS_LP_UNBOUNDED 6: constants.LpStatusUndefined, # XPRS_LP_CUTOFF_IN_DUAL 7: constants.LpStatusNotSolved, # XPRS_LP_UNSOLVED 8: constants.LpStatusUndefined, # XPRS_LP_NONCONVEX } statuskey = "lpstatus" with open(tmpCmd, "w") as cmd: if not self.msg: cmd.write("OUTPUTLOG=0\n") # The readprob command must be in lower case for correct filename handling cmd.write("readprob " + self.quote_path(tmpLp) + "\n") if self.timeLimit is not None: cmd.write("MAXTIME=%d\n" % self.timeLimit) targetGap = self.optionsDict.get("gapRel") if targetGap is not None: cmd.write(f"MIPRELSTOP={targetGap:f}\n") heurFreq = self.optionsDict.get("heurFreq") if heurFreq is not None: cmd.write("HEURFREQ=%d\n" % heurFreq) heurStra = self.optionsDict.get("heurStra") if heurStra is not None: cmd.write("HEURSTRATEGY=%d\n" % heurStra) coverCuts = self.optionsDict.get("coverCuts") if coverCuts is not None: cmd.write("COVERCUTS=%d\n" % coverCuts) preSolve = self.optionsDict.get("preSolve") if preSolve is not None: cmd.write("PRESOLVE=%d\n" % preSolve) if self.optionsDict.get("warmStart", False): cmd.write("readslxsol " + self.quote_path(tmpStart) + "\n") for option in self.options: cmd.write(option + "\n") if _ismip(lp) and self.mip: cmd.write("mipoptimize\n") else: cmd.write("lpoptimize\n") # The writeprtsol command must be in lower case for correct filename handling cmd.write("writeprtsol " + self.quote_path(tmpSol) + "\n") cmd.write( f"set fh [open {self.quote_path(tmpAttr)} w]; list\n" ) # `list` to suppress output for attr in attrNames: cmd.write(f'puts $fh "{attr}=${attr}"\n') cmd.write("close $fh\n") cmd.write("QUIT\n") with open(tmpCmd) as cmd: consume = False subout = None suberr = None if not self.msg: # Xpress writes a banner before we can disable output. So # we have to explicitly consume the banner. if sys.hexversion >= 0x03030000: subout = subprocess.DEVNULL suberr = subprocess.DEVNULL else: # We could also use open(os.devnull, 'w') but then we # would be responsible for closing the file. subout = subprocess.PIPE suberr = subprocess.STDOUT consume = True xpress = subprocess.Popen( [self.path, lp.name], shell=True, stdin=cmd, stdout=subout, stderr=suberr, universal_newlines=True, ) if consume: # Special case in which messages are disabled and we have # to consume any output for _ in xpress.stdout: pass if xpress.wait() != 0: raise PulpSolverError("PuLP: Error while executing " + self.path) values, redcost, slacks, duals, attrs = self.readsol(tmpSol, tmpAttr) self.delete_tmp_files(tmpLp, tmpSol, tmpCmd, tmpAttr) status = statusmap.get(attrs.get(statuskey, -1), constants.LpStatusUndefined) lp.assignVarsVals(values) lp.assignVarsDj(redcost) lp.assignConsSlack(slacks) lp.assignConsPi(duals) lp.assignStatus(status) return status @staticmethod def readsol(filename, attrfile): """Read an XPRESS solution file""" values = {} redcost = {} slacks = {} duals = {} with open(filename) as f: for lineno, _line in enumerate(f): # The first 6 lines are status information if lineno < 6: continue elif lineno == 6: # Line with status information _line = _line.split() rows = int(_line[2]) cols = int(_line[5]) elif lineno < 10: # Empty line, "Solution Statistics", objective direction pass elif lineno == 10: # Solution status pass else: # There is some more stuff and then follows the "Rows" and # "Columns" section. That other stuff does not match the # format of the rows/columns lines, so we can keep the # parser simple line = _line.split() if len(line) > 1: if line[0] == "C": # A column # (C, Number, Name, At, Value, Input Cost, Reduced Cost) name = line[2] values[name] = float(line[4]) redcost[name] = float(line[6]) elif len(line[0]) == 1 and line[0] in "LGRE": # A row # ([LGRE], Number, Name, At, Value, Slack, Dual, RHS) name = line[2] slacks[name] = float(line[5]) duals[name] = float(line[6]) # Read the attributes that we wrote explicitly attrs = dict() with open(attrfile) as f: for line in f: fields = line.strip().split("=") if len(fields) == 2 and fields[0].lower() == fields[0]: value = fields[1].strip() try: value = int(fields[1].strip()) except ValueError: try: value = float(fields[1].strip()) except ValueError: pass attrs[fields[0].strip()] = value return values, redcost, slacks, duals, attrs def writeslxsol(self, name, *values): """ Write a solution file in SLX format. The function can write multiple solutions to the same file, each solution must be passed as a list of (name,value) pairs. Solutions are written in the order specified and are given names "solutionN" where N is the index of the solution in the list. :param string name: file name :param list values: list of lists of (name,value) pairs """ with open(name, "w") as slx: for i, sol in enumerate(values): slx.write("NAME solution%d\n" % i) for name, value in sol: slx.write(f" C {name} {value:.16f}\n") slx.write("ENDATA\n") @staticmethod def quote_path(path): r""" Quotes a path for the Xpress optimizer console, by wrapping it in double quotes and escaping the following characters, which would otherwise be interpreted by the Tcl shell: \ $ " [ """ return '"' + re.sub(r'([\\$"[])', r"\\\1", path) + '"'
(mip=True, msg=True, timeLimit=None, gapRel=None, options=None, keepFiles=False, path=None, heurFreq=None, heurStra=None, coverCuts=None, preSolve=None, warmStart=False)
38,940
pulp.apis.xpress_api
__init__
Initializes the Xpress solver. :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param heurFreq: the frequency at which heuristics are used in the tree search :param heurStra: heuristic strategy :param coverCuts: the number of rounds of lifted cover inequalities at the top node :param preSolve: whether presolving should be performed before the main algorithm :param options: Adding more options, e.g. options = ["NODESELECTION=1", "HEURDEPTH=5"] More about Xpress options and control parameters please see https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/HTML/chapter7.html :param bool warmStart: if True, then use current variable values as start
def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, options=None, keepFiles=False, path=None, heurFreq=None, heurStra=None, coverCuts=None, preSolve=None, warmStart=False, ): """ Initializes the Xpress solver. :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param heurFreq: the frequency at which heuristics are used in the tree search :param heurStra: heuristic strategy :param coverCuts: the number of rounds of lifted cover inequalities at the top node :param preSolve: whether presolving should be performed before the main algorithm :param options: Adding more options, e.g. options = ["NODESELECTION=1", "HEURDEPTH=5"] More about Xpress options and control parameters please see https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/HTML/chapter7.html :param bool warmStart: if True, then use current variable values as start """ LpSolver_CMD.__init__( self, gapRel=gapRel, mip=mip, msg=msg, timeLimit=timeLimit, options=options, path=path, keepFiles=keepFiles, heurFreq=heurFreq, heurStra=heurStra, coverCuts=coverCuts, preSolve=preSolve, warmStart=warmStart, )
(self, mip=True, msg=True, timeLimit=None, gapRel=None, options=None, keepFiles=False, path=None, heurFreq=None, heurStra=None, coverCuts=None, preSolve=None, warmStart=False)
38,942
pulp.apis.xpress_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp): """Solve a well formulated lp problem""" if not self.executable(self.path): raise PulpSolverError("PuLP: cannot execute " + self.path) tmpLp, tmpSol, tmpCmd, tmpAttr, tmpStart = self.create_tmp_files( lp.name, "lp", "prt", "cmd", "attr", "slx" ) variables = lp.writeLP(tmpLp, writeSOS=1, mip=self.mip) if self.optionsDict.get("warmStart", False): start = [(v.name, v.value()) for v in variables if v.value() is not None] self.writeslxsol(tmpStart, start) # Explicitly capture some attributes so that we can easily get # information about the solution. attrNames = [] if _ismip(lp) and self.mip: attrNames.extend(["mipobjval", "bestbound", "mipstatus"]) statusmap = { 0: constants.LpStatusUndefined, # XPRS_MIP_NOT_LOADED 1: constants.LpStatusUndefined, # XPRS_MIP_LP_NOT_OPTIMAL 2: constants.LpStatusUndefined, # XPRS_MIP_LP_OPTIMAL 3: constants.LpStatusUndefined, # XPRS_MIP_NO_SOL_FOUND 4: constants.LpStatusUndefined, # XPRS_MIP_SOLUTION 5: constants.LpStatusInfeasible, # XPRS_MIP_INFEAS 6: constants.LpStatusOptimal, # XPRS_MIP_OPTIMAL 7: constants.LpStatusUndefined, # XPRS_MIP_UNBOUNDED } statuskey = "mipstatus" else: attrNames.extend(["lpobjval", "lpstatus"]) statusmap = { 0: constants.LpStatusNotSolved, # XPRS_LP_UNSTARTED 1: constants.LpStatusOptimal, # XPRS_LP_OPTIMAL 2: constants.LpStatusInfeasible, # XPRS_LP_INFEAS 3: constants.LpStatusUndefined, # XPRS_LP_CUTOFF 4: constants.LpStatusUndefined, # XPRS_LP_UNFINISHED 5: constants.LpStatusUnbounded, # XPRS_LP_UNBOUNDED 6: constants.LpStatusUndefined, # XPRS_LP_CUTOFF_IN_DUAL 7: constants.LpStatusNotSolved, # XPRS_LP_UNSOLVED 8: constants.LpStatusUndefined, # XPRS_LP_NONCONVEX } statuskey = "lpstatus" with open(tmpCmd, "w") as cmd: if not self.msg: cmd.write("OUTPUTLOG=0\n") # The readprob command must be in lower case for correct filename handling cmd.write("readprob " + self.quote_path(tmpLp) + "\n") if self.timeLimit is not None: cmd.write("MAXTIME=%d\n" % self.timeLimit) targetGap = self.optionsDict.get("gapRel") if targetGap is not None: cmd.write(f"MIPRELSTOP={targetGap:f}\n") heurFreq = self.optionsDict.get("heurFreq") if heurFreq is not None: cmd.write("HEURFREQ=%d\n" % heurFreq) heurStra = self.optionsDict.get("heurStra") if heurStra is not None: cmd.write("HEURSTRATEGY=%d\n" % heurStra) coverCuts = self.optionsDict.get("coverCuts") if coverCuts is not None: cmd.write("COVERCUTS=%d\n" % coverCuts) preSolve = self.optionsDict.get("preSolve") if preSolve is not None: cmd.write("PRESOLVE=%d\n" % preSolve) if self.optionsDict.get("warmStart", False): cmd.write("readslxsol " + self.quote_path(tmpStart) + "\n") for option in self.options: cmd.write(option + "\n") if _ismip(lp) and self.mip: cmd.write("mipoptimize\n") else: cmd.write("lpoptimize\n") # The writeprtsol command must be in lower case for correct filename handling cmd.write("writeprtsol " + self.quote_path(tmpSol) + "\n") cmd.write( f"set fh [open {self.quote_path(tmpAttr)} w]; list\n" ) # `list` to suppress output for attr in attrNames: cmd.write(f'puts $fh "{attr}=${attr}"\n') cmd.write("close $fh\n") cmd.write("QUIT\n") with open(tmpCmd) as cmd: consume = False subout = None suberr = None if not self.msg: # Xpress writes a banner before we can disable output. So # we have to explicitly consume the banner. if sys.hexversion >= 0x03030000: subout = subprocess.DEVNULL suberr = subprocess.DEVNULL else: # We could also use open(os.devnull, 'w') but then we # would be responsible for closing the file. subout = subprocess.PIPE suberr = subprocess.STDOUT consume = True xpress = subprocess.Popen( [self.path, lp.name], shell=True, stdin=cmd, stdout=subout, stderr=suberr, universal_newlines=True, ) if consume: # Special case in which messages are disabled and we have # to consume any output for _ in xpress.stdout: pass if xpress.wait() != 0: raise PulpSolverError("PuLP: Error while executing " + self.path) values, redcost, slacks, duals, attrs = self.readsol(tmpSol, tmpAttr) self.delete_tmp_files(tmpLp, tmpSol, tmpCmd, tmpAttr) status = statusmap.get(attrs.get(statuskey, -1), constants.LpStatusUndefined) lp.assignVarsVals(values) lp.assignVarsDj(redcost) lp.assignConsSlack(slacks) lp.assignConsPi(duals) lp.assignStatus(status) return status
(self, lp)
38,946
pulp.apis.xpress_api
defaultPath
null
def defaultPath(self): return self.executableExtension("optimizer")
(self)
38,951
pulp.apis.xpress_api
quote_path
Quotes a path for the Xpress optimizer console, by wrapping it in double quotes and escaping the following characters, which would otherwise be interpreted by the Tcl shell: \ $ " [
@staticmethod def quote_path(path): r""" Quotes a path for the Xpress optimizer console, by wrapping it in double quotes and escaping the following characters, which would otherwise be interpreted by the Tcl shell: \ $ " [ """ return '"' + re.sub(r'([\\$"[])', r"\\\1", path) + '"'
(path)
38,952
pulp.apis.xpress_api
readsol
Read an XPRESS solution file
@staticmethod def readsol(filename, attrfile): """Read an XPRESS solution file""" values = {} redcost = {} slacks = {} duals = {} with open(filename) as f: for lineno, _line in enumerate(f): # The first 6 lines are status information if lineno < 6: continue elif lineno == 6: # Line with status information _line = _line.split() rows = int(_line[2]) cols = int(_line[5]) elif lineno < 10: # Empty line, "Solution Statistics", objective direction pass elif lineno == 10: # Solution status pass else: # There is some more stuff and then follows the "Rows" and # "Columns" section. That other stuff does not match the # format of the rows/columns lines, so we can keep the # parser simple line = _line.split() if len(line) > 1: if line[0] == "C": # A column # (C, Number, Name, At, Value, Input Cost, Reduced Cost) name = line[2] values[name] = float(line[4]) redcost[name] = float(line[6]) elif len(line[0]) == 1 and line[0] in "LGRE": # A row # ([LGRE], Number, Name, At, Value, Slack, Dual, RHS) name = line[2] slacks[name] = float(line[5]) duals[name] = float(line[6]) # Read the attributes that we wrote explicitly attrs = dict() with open(attrfile) as f: for line in f: fields = line.strip().split("=") if len(fields) == 2 and fields[0].lower() == fields[0]: value = fields[1].strip() try: value = int(fields[1].strip()) except ValueError: try: value = float(fields[1].strip()) except ValueError: pass attrs[fields[0].strip()] = value return values, redcost, slacks, duals, attrs
(filename, attrfile)
38,960
pulp.apis.xpress_api
writeslxsol
Write a solution file in SLX format. The function can write multiple solutions to the same file, each solution must be passed as a list of (name,value) pairs. Solutions are written in the order specified and are given names "solutionN" where N is the index of the solution in the list. :param string name: file name :param list values: list of lists of (name,value) pairs
def writeslxsol(self, name, *values): """ Write a solution file in SLX format. The function can write multiple solutions to the same file, each solution must be passed as a list of (name,value) pairs. Solutions are written in the order specified and are given names "solutionN" where N is the index of the solution in the list. :param string name: file name :param list values: list of lists of (name,value) pairs """ with open(name, "w") as slx: for i, sol in enumerate(values): slx.write("NAME solution%d\n" % i) for name, value in sol: slx.write(f" C {name} {value:.16f}\n") slx.write("ENDATA\n")
(self, name, *values)
38,983
pulp.apis.xpress_api
XPRESS_PY
The XPRESS LP solver that uses XPRESS Python API
class XPRESS_PY(LpSolver): """The XPRESS LP solver that uses XPRESS Python API""" name = "XPRESS_PY" def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, heurFreq=None, heurStra=None, coverCuts=None, preSolve=None, warmStart=None, export=None, options=None, ): """ Initializes the Xpress solver. :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param heurFreq: the frequency at which heuristics are used in the tree search :param heurStra: heuristic strategy :param coverCuts: the number of rounds of lifted cover inequalities at the top node :param preSolve: whether presolving should be performed before the main algorithm :param bool warmStart: if set then use current variable values as warm start :param string export: if set then the model will be exported to this file before solving :param options: Adding more options. This is a list the elements of which are either (name,value) pairs or strings "name=value". More about Xpress options and control parameters please see https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/HTML/chapter7.html """ if timeLimit is not None: # The Xpress time limit has this interpretation: # timelimit <0: Stop after -timelimit, no matter what # timelimit >0: Stop after timelimit only if a feasible solution # exists. We overwrite this meaning here since it is # somewhat counterintuitive when compared to other # solvers. You can always pass a positive timlimit # via `options` to get that behavior. timeLimit = -abs(timeLimit) LpSolver.__init__( self, gapRel=gapRel, mip=mip, msg=msg, timeLimit=timeLimit, options=options, heurFreq=heurFreq, heurStra=heurStra, coverCuts=coverCuts, preSolve=preSolve, warmStart=warmStart, ) self._available = None self._export = export def available(self): """True if the solver is available""" if self._available is None: try: global xpress import xpress # Always disable the global output. We only want output if # we install callbacks explicitly xpress.setOutputEnabled(False) self._available = True except: self._available = False return self._available def callSolver(self, lp, prepare=None): """Perform the actual solve from actualSolve() or actualResolve(). :param prepare: a function that is called with `lp` as argument and allows final tweaks to `lp.solverModel` before the low level solve is started. """ try: model = lp.solverModel # Mark all variables and constraints as unmodified so that # actualResolve will do the correct thing. for v in lp.variables(): v.modified = False for c in lp.constraints.values(): c.modified = False if self._export is not None: if self._export.lower().endswith(".lp"): model.write(self._export, "l") else: model.write(self._export) if prepare is not None: prepare(lp) if _ismip(lp) and not self.mip: # Solve only the LP relaxation model.lpoptimize() else: # In all other cases, solve() does the correct thing model.solve() except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err: raise PulpSolverError(str(err)) def findSolutionValues(self, lp): try: model = lp.solverModel # Collect results if _ismip(lp) and self.mip: # Solved as MIP x, slacks, duals, djs = [], [], None, None try: model.getmipsol(x, slacks) except: x, slacks = None, None statusmap = { 0: constants.LpStatusUndefined, # XPRS_MIP_NOT_LOADED 1: constants.LpStatusUndefined, # XPRS_MIP_LP_NOT_OPTIMAL 2: constants.LpStatusUndefined, # XPRS_MIP_LP_OPTIMAL 3: constants.LpStatusUndefined, # XPRS_MIP_NO_SOL_FOUND 4: constants.LpStatusUndefined, # XPRS_MIP_SOLUTION 5: constants.LpStatusInfeasible, # XPRS_MIP_INFEAS 6: constants.LpStatusOptimal, # XPRS_MIP_OPTIMAL 7: constants.LpStatusUndefined, # XPRS_MIP_UNBOUNDED } statuskey = "mipstatus" else: # Solved as continuous x, slacks, duals, djs = [], [], [], [] try: model.getlpsol(x, slacks, duals, djs) except: # No solution available x, slacks, duals, djs = None, None, None, None statusmap = { 0: constants.LpStatusNotSolved, # XPRS_LP_UNSTARTED 1: constants.LpStatusOptimal, # XPRS_LP_OPTIMAL 2: constants.LpStatusInfeasible, # XPRS_LP_INFEAS 3: constants.LpStatusUndefined, # XPRS_LP_CUTOFF 4: constants.LpStatusUndefined, # XPRS_LP_UNFINISHED 5: constants.LpStatusUnbounded, # XPRS_LP_UNBOUNDED 6: constants.LpStatusUndefined, # XPRS_LP_CUTOFF_IN_DUAL 7: constants.LpStatusNotSolved, # XPRS_LP_UNSOLVED 8: constants.LpStatusUndefined, # XPRS_LP_NONCONVEX } statuskey = "lpstatus" if x is not None: lp.assignVarsVals({v.name: x[v._xprs[0]] for v in lp.variables()}) if djs is not None: lp.assignVarsDj({v.name: djs[v._xprs[0]] for v in lp.variables()}) if duals is not None: lp.assignConsPi( {c.name: duals[c._xprs[0]] for c in lp.constraints.values()} ) if slacks is not None: lp.assignConsSlack( {c.name: slacks[c._xprs[0]] for c in lp.constraints.values()} ) status = statusmap.get( model.getAttrib(statuskey), constants.LpStatusUndefined ) lp.assignStatus(status) return status except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err: raise PulpSolverError(str(err)) def actualSolve(self, lp, prepare=None): """Solve a well formulated lp problem""" if not self.available(): # Import again to get a more verbose error message message = "XPRESS Python API not available" try: import xpress except ImportError as err: message = str(err) raise PulpSolverError(message) self.buildSolverModel(lp) self.callSolver(lp, prepare) return self.findSolutionValues(lp) def buildSolverModel(self, lp): """ Takes the pulp lp model and translates it into an xpress model """ self._extract(lp) try: # Apply controls, warmstart etc. We do this here rather than in # callSolver() so that the caller has a chance to overwrite things # either using the `prepare` argument to callSolver() or by # explicitly calling # self.buildSolverModel() # self.callSolver() # self.findSolutionValues() # This also avoids setting warmstart information passed to the # constructor from actualResolve(), which would almost certainly # be unintended. model = lp.solverModel # Apply controls that were passed to the constructor for key, name in [ ("gapRel", "MIPRELSTOP"), ("timeLimit", "MAXTIME"), ("heurFreq", "HEURFREQ"), ("heurStra", "HEURSTRATEGY"), ("coverCuts", "COVERCUTS"), ("preSolve", "PRESOLVE"), ]: value = self.optionsDict.get(key, None) if value is not None: model.setControl(name, value) # Apply any other controls. These overwrite controls that were # passed explicitly into the constructor. for option in self.options: if isinstance(option, tuple): name = optione[0] value = option[1] else: fields = option.split("=", 1) if len(fields) != 2: raise PulpSolverError("Invalid option " + str(option)) name = fields[0].strip() value = fields[1].strip() try: model.setControl(name, int(value)) continue except ValueError: pass try: model.setControl(name, float(value)) continue except ValueError: pass model.setControl(name, value) # Setup warmstart information if self.optionsDict.get("warmStart", False): solval = list() colind = list() for v in sorted(lp.variables(), key=lambda x: x._xprs[0]): if v.value() is not None: solval.append(v.value()) colind.append(v._xprs[0]) if _ismip(lp) and self.mip: # If we have a value for every variable then use # loadmipsol(), which requires a dense solution. Otherwise # use addmipsol() which allows sparse vectors. if len(solval) == model.attributes.cols: model.loadmipsol(solval) else: model.addmipsol(solval, colind, "warmstart") else: model.loadlpsol(solval, None, None, None) # Setup message callback if output is requested if self.msg: def message(prob, data, msg, msgtype): if msgtype > 0: print(msg) model.addcbmessage(message) except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err: raise PulpSolverError(str(err)) def actualResolve(self, lp, prepare=None): """Resolve a problem that was previously solved by actualSolve().""" try: rhsind = list() rhsval = list() for name in sorted(lp.constraints): con = lp.constraints[name] if not con.modified: continue if not hasattr(con, "_xprs"): # Adding constraints is not implemented at the moment raise PulpSolverError("Cannot add new constraints") # At the moment only RHS can change in pulp.py rhsind.append(con._xprs[0]) rhsval.append(-con.constant) if len(rhsind) > 0: lp.solverModel.chgrhs(rhsind, rhsval) bndind = list() bndtype = list() bndval = list() for v in lp.variables(): if not v.modified: continue if not hasattr(v, "_xprs"): # Adding variables is not implemented at the moment raise PulpSolverError("Cannot add new variables") # At the moment only bounds can change in pulp.py bndind.append(v._xprs[0]) bndtype.append("L") bndval.append(-xpress.infinity if v.lowBound is None else v.lowBound) bndind.append(v._xprs[0]) bndtype.append("G") bndval.append(xpress.infinity if v.upBound is None else v.upBound) if len(bndtype) > 0: lp.solverModel.chgbounds(bndind, bndtype, bndval) self.callSolver(lp, prepare) return self.findSolutionValues(lp) except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err: raise PulpSolverError(str(err)) @staticmethod def _reset(lp): """Reset any XPRESS specific information in lp.""" if hasattr(lp, "solverModel"): delattr(lp, "solverModel") for v in lp.variables(): if hasattr(v, "_xprs"): delattr(v, "_xprs") for c in lp.constraints.values(): if hasattr(c, "_xprs"): delattr(c, "_xprs") def _extract(self, lp): """Extract a given model to an XPRESS Python API instance. The function stores XPRESS specific information in the `solverModel` property of `lp` and each variable and constraint. These information can be removed by calling `_reset`. """ self._reset(lp) try: model = xpress.problem() if lp.sense == constants.LpMaximize: model.chgobjsense(xpress.maximize) # Create variables. We first collect the info for all variables # and then create all of them in one shot. This is supposed to # be faster in case we have to create a lot of variables. obj = list() lb = list() ub = list() ctype = list() names = list() for v in lp.variables(): lb.append(-xpress.infinity if v.lowBound is None else v.lowBound) ub.append(xpress.infinity if v.upBound is None else v.upBound) obj.append(lp.objective.get(v, 0.0)) if v.cat == constants.LpInteger: ctype.append("I") elif v.cat == constants.LpBinary: ctype.append("B") else: ctype.append("C") names.append(v.name) model.addcols(obj, [0] * (len(obj) + 1), [], [], lb, ub, names, ctype) for j, (v, x) in enumerate(zip(lp.variables(), model.getVariable())): v._xprs = (j, x) # Generate constraints. Sort by name to get deterministic # ordering of constraints. # Constraints are generated in blocks of 100 constraints to speed # up things a bit but still keep memory usage small. cons = list() for i, name in enumerate(sorted(lp.constraints)): con = lp.constraints[name] # Sort the variables by index to get deterministic # ordering of variables in the row. lhs = xpress.Sum( a * x._xprs[1] for x, a in sorted(con.items(), key=lambda x: x[0]._xprs[0]) ) rhs = -con.constant if con.sense == constants.LpConstraintLE: c = xpress.constraint(body=lhs, sense=xpress.leq, rhs=rhs) elif con.sense == constants.LpConstraintGE: c = xpress.constraint(body=lhs, sense=xpress.geq, rhs=rhs) elif con.sense == constants.LpConstraintEQ: c = xpress.constraint(body=lhs, sense=xpress.eq, rhs=rhs) else: raise PulpSolverError( "Unsupprted constraint type " + str(con.sense) ) cons.append((i, c, con)) if len(cons) > 100: model.addConstraint([c for _, c, _ in cons]) for i, c, con in cons: con._xprs = (i, c) cons = list() if len(cons) > 0: model.addConstraint([c for _, c, _ in cons]) for i, c, con in cons: con._xprs = (i, c) # SOS constraints def addsos(m, sosdict, sostype): """Extract sos constraints from PuLP.""" soslist = [] # Sort by name to get deterministic ordering. Note that # names may be plain integers, that is why we use str(name) # to pass them to the SOS constructor. for name in sorted(sosdict): indices = [] weights = [] for v, val in sosdict[name].items(): indices.append(v._xprs[0]) weights.append(val) soslist.append(xpress.sos(indices, weights, sostype, str(name))) if len(soslist): m.addSOS(soslist) addsos(model, lp.sos1, 1) addsos(model, lp.sos2, 2) lp.solverModel = model except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err: # Undo everything self._reset(lp) raise PulpSolverError(str(err)) def getAttribute(self, lp, which): """Get an arbitrary attribute for the model that was previously solved using actualSolve().""" return lp.solverModel.getAttrib(which)
(mip=True, msg=True, timeLimit=None, gapRel=None, heurFreq=None, heurStra=None, coverCuts=None, preSolve=None, warmStart=None, export=None, options=None)
38,984
pulp.apis.xpress_api
__init__
Initializes the Xpress solver. :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param heurFreq: the frequency at which heuristics are used in the tree search :param heurStra: heuristic strategy :param coverCuts: the number of rounds of lifted cover inequalities at the top node :param preSolve: whether presolving should be performed before the main algorithm :param bool warmStart: if set then use current variable values as warm start :param string export: if set then the model will be exported to this file before solving :param options: Adding more options. This is a list the elements of which are either (name,value) pairs or strings "name=value". More about Xpress options and control parameters please see https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/HTML/chapter7.html
def __init__( self, mip=True, msg=True, timeLimit=None, gapRel=None, heurFreq=None, heurStra=None, coverCuts=None, preSolve=None, warmStart=None, export=None, options=None, ): """ Initializes the Xpress solver. :param bool mip: if False, assume LP even if integer variables :param bool msg: if False, no log is shown :param float timeLimit: maximum time for solver (in seconds) :param float gapRel: relative gap tolerance for the solver to stop (in fraction) :param heurFreq: the frequency at which heuristics are used in the tree search :param heurStra: heuristic strategy :param coverCuts: the number of rounds of lifted cover inequalities at the top node :param preSolve: whether presolving should be performed before the main algorithm :param bool warmStart: if set then use current variable values as warm start :param string export: if set then the model will be exported to this file before solving :param options: Adding more options. This is a list the elements of which are either (name,value) pairs or strings "name=value". More about Xpress options and control parameters please see https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/HTML/chapter7.html """ if timeLimit is not None: # The Xpress time limit has this interpretation: # timelimit <0: Stop after -timelimit, no matter what # timelimit >0: Stop after timelimit only if a feasible solution # exists. We overwrite this meaning here since it is # somewhat counterintuitive when compared to other # solvers. You can always pass a positive timlimit # via `options` to get that behavior. timeLimit = -abs(timeLimit) LpSolver.__init__( self, gapRel=gapRel, mip=mip, msg=msg, timeLimit=timeLimit, options=options, heurFreq=heurFreq, heurStra=heurStra, coverCuts=coverCuts, preSolve=preSolve, warmStart=warmStart, ) self._available = None self._export = export
(self, mip=True, msg=True, timeLimit=None, gapRel=None, heurFreq=None, heurStra=None, coverCuts=None, preSolve=None, warmStart=None, export=None, options=None)
38,985
pulp.apis.xpress_api
_extract
Extract a given model to an XPRESS Python API instance. The function stores XPRESS specific information in the `solverModel` property of `lp` and each variable and constraint. These information can be removed by calling `_reset`.
def _extract(self, lp): """Extract a given model to an XPRESS Python API instance. The function stores XPRESS specific information in the `solverModel` property of `lp` and each variable and constraint. These information can be removed by calling `_reset`. """ self._reset(lp) try: model = xpress.problem() if lp.sense == constants.LpMaximize: model.chgobjsense(xpress.maximize) # Create variables. We first collect the info for all variables # and then create all of them in one shot. This is supposed to # be faster in case we have to create a lot of variables. obj = list() lb = list() ub = list() ctype = list() names = list() for v in lp.variables(): lb.append(-xpress.infinity if v.lowBound is None else v.lowBound) ub.append(xpress.infinity if v.upBound is None else v.upBound) obj.append(lp.objective.get(v, 0.0)) if v.cat == constants.LpInteger: ctype.append("I") elif v.cat == constants.LpBinary: ctype.append("B") else: ctype.append("C") names.append(v.name) model.addcols(obj, [0] * (len(obj) + 1), [], [], lb, ub, names, ctype) for j, (v, x) in enumerate(zip(lp.variables(), model.getVariable())): v._xprs = (j, x) # Generate constraints. Sort by name to get deterministic # ordering of constraints. # Constraints are generated in blocks of 100 constraints to speed # up things a bit but still keep memory usage small. cons = list() for i, name in enumerate(sorted(lp.constraints)): con = lp.constraints[name] # Sort the variables by index to get deterministic # ordering of variables in the row. lhs = xpress.Sum( a * x._xprs[1] for x, a in sorted(con.items(), key=lambda x: x[0]._xprs[0]) ) rhs = -con.constant if con.sense == constants.LpConstraintLE: c = xpress.constraint(body=lhs, sense=xpress.leq, rhs=rhs) elif con.sense == constants.LpConstraintGE: c = xpress.constraint(body=lhs, sense=xpress.geq, rhs=rhs) elif con.sense == constants.LpConstraintEQ: c = xpress.constraint(body=lhs, sense=xpress.eq, rhs=rhs) else: raise PulpSolverError( "Unsupprted constraint type " + str(con.sense) ) cons.append((i, c, con)) if len(cons) > 100: model.addConstraint([c for _, c, _ in cons]) for i, c, con in cons: con._xprs = (i, c) cons = list() if len(cons) > 0: model.addConstraint([c for _, c, _ in cons]) for i, c, con in cons: con._xprs = (i, c) # SOS constraints def addsos(m, sosdict, sostype): """Extract sos constraints from PuLP.""" soslist = [] # Sort by name to get deterministic ordering. Note that # names may be plain integers, that is why we use str(name) # to pass them to the SOS constructor. for name in sorted(sosdict): indices = [] weights = [] for v, val in sosdict[name].items(): indices.append(v._xprs[0]) weights.append(val) soslist.append(xpress.sos(indices, weights, sostype, str(name))) if len(soslist): m.addSOS(soslist) addsos(model, lp.sos1, 1) addsos(model, lp.sos2, 2) lp.solverModel = model except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err: # Undo everything self._reset(lp) raise PulpSolverError(str(err))
(self, lp)
38,986
pulp.apis.xpress_api
_reset
Reset any XPRESS specific information in lp.
@staticmethod def _reset(lp): """Reset any XPRESS specific information in lp.""" if hasattr(lp, "solverModel"): delattr(lp, "solverModel") for v in lp.variables(): if hasattr(v, "_xprs"): delattr(v, "_xprs") for c in lp.constraints.values(): if hasattr(c, "_xprs"): delattr(c, "_xprs")
(lp)
38,987
pulp.apis.xpress_api
actualResolve
Resolve a problem that was previously solved by actualSolve().
def actualResolve(self, lp, prepare=None): """Resolve a problem that was previously solved by actualSolve().""" try: rhsind = list() rhsval = list() for name in sorted(lp.constraints): con = lp.constraints[name] if not con.modified: continue if not hasattr(con, "_xprs"): # Adding constraints is not implemented at the moment raise PulpSolverError("Cannot add new constraints") # At the moment only RHS can change in pulp.py rhsind.append(con._xprs[0]) rhsval.append(-con.constant) if len(rhsind) > 0: lp.solverModel.chgrhs(rhsind, rhsval) bndind = list() bndtype = list() bndval = list() for v in lp.variables(): if not v.modified: continue if not hasattr(v, "_xprs"): # Adding variables is not implemented at the moment raise PulpSolverError("Cannot add new variables") # At the moment only bounds can change in pulp.py bndind.append(v._xprs[0]) bndtype.append("L") bndval.append(-xpress.infinity if v.lowBound is None else v.lowBound) bndind.append(v._xprs[0]) bndtype.append("G") bndval.append(xpress.infinity if v.upBound is None else v.upBound) if len(bndtype) > 0: lp.solverModel.chgbounds(bndind, bndtype, bndval) self.callSolver(lp, prepare) return self.findSolutionValues(lp) except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err: raise PulpSolverError(str(err))
(self, lp, prepare=None)
38,988
pulp.apis.xpress_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp, prepare=None): """Solve a well formulated lp problem""" if not self.available(): # Import again to get a more verbose error message message = "XPRESS Python API not available" try: import xpress except ImportError as err: message = str(err) raise PulpSolverError(message) self.buildSolverModel(lp) self.callSolver(lp, prepare) return self.findSolutionValues(lp)
(self, lp, prepare=None)
38,989
pulp.apis.xpress_api
available
True if the solver is available
def available(self): """True if the solver is available""" if self._available is None: try: global xpress import xpress # Always disable the global output. We only want output if # we install callbacks explicitly xpress.setOutputEnabled(False) self._available = True except: self._available = False return self._available
(self)
38,990
pulp.apis.xpress_api
buildSolverModel
Takes the pulp lp model and translates it into an xpress model
def buildSolverModel(self, lp): """ Takes the pulp lp model and translates it into an xpress model """ self._extract(lp) try: # Apply controls, warmstart etc. We do this here rather than in # callSolver() so that the caller has a chance to overwrite things # either using the `prepare` argument to callSolver() or by # explicitly calling # self.buildSolverModel() # self.callSolver() # self.findSolutionValues() # This also avoids setting warmstart information passed to the # constructor from actualResolve(), which would almost certainly # be unintended. model = lp.solverModel # Apply controls that were passed to the constructor for key, name in [ ("gapRel", "MIPRELSTOP"), ("timeLimit", "MAXTIME"), ("heurFreq", "HEURFREQ"), ("heurStra", "HEURSTRATEGY"), ("coverCuts", "COVERCUTS"), ("preSolve", "PRESOLVE"), ]: value = self.optionsDict.get(key, None) if value is not None: model.setControl(name, value) # Apply any other controls. These overwrite controls that were # passed explicitly into the constructor. for option in self.options: if isinstance(option, tuple): name = optione[0] value = option[1] else: fields = option.split("=", 1) if len(fields) != 2: raise PulpSolverError("Invalid option " + str(option)) name = fields[0].strip() value = fields[1].strip() try: model.setControl(name, int(value)) continue except ValueError: pass try: model.setControl(name, float(value)) continue except ValueError: pass model.setControl(name, value) # Setup warmstart information if self.optionsDict.get("warmStart", False): solval = list() colind = list() for v in sorted(lp.variables(), key=lambda x: x._xprs[0]): if v.value() is not None: solval.append(v.value()) colind.append(v._xprs[0]) if _ismip(lp) and self.mip: # If we have a value for every variable then use # loadmipsol(), which requires a dense solution. Otherwise # use addmipsol() which allows sparse vectors. if len(solval) == model.attributes.cols: model.loadmipsol(solval) else: model.addmipsol(solval, colind, "warmstart") else: model.loadlpsol(solval, None, None, None) # Setup message callback if output is requested if self.msg: def message(prob, data, msg, msgtype): if msgtype > 0: print(msg) model.addcbmessage(message) except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err: raise PulpSolverError(str(err))
(self, lp)
38,991
pulp.apis.xpress_api
callSolver
Perform the actual solve from actualSolve() or actualResolve(). :param prepare: a function that is called with `lp` as argument and allows final tweaks to `lp.solverModel` before the low level solve is started.
def callSolver(self, lp, prepare=None): """Perform the actual solve from actualSolve() or actualResolve(). :param prepare: a function that is called with `lp` as argument and allows final tweaks to `lp.solverModel` before the low level solve is started. """ try: model = lp.solverModel # Mark all variables and constraints as unmodified so that # actualResolve will do the correct thing. for v in lp.variables(): v.modified = False for c in lp.constraints.values(): c.modified = False if self._export is not None: if self._export.lower().endswith(".lp"): model.write(self._export, "l") else: model.write(self._export) if prepare is not None: prepare(lp) if _ismip(lp) and not self.mip: # Solve only the LP relaxation model.lpoptimize() else: # In all other cases, solve() does the correct thing model.solve() except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err: raise PulpSolverError(str(err))
(self, lp, prepare=None)
38,993
pulp.apis.xpress_api
findSolutionValues
null
def findSolutionValues(self, lp): try: model = lp.solverModel # Collect results if _ismip(lp) and self.mip: # Solved as MIP x, slacks, duals, djs = [], [], None, None try: model.getmipsol(x, slacks) except: x, slacks = None, None statusmap = { 0: constants.LpStatusUndefined, # XPRS_MIP_NOT_LOADED 1: constants.LpStatusUndefined, # XPRS_MIP_LP_NOT_OPTIMAL 2: constants.LpStatusUndefined, # XPRS_MIP_LP_OPTIMAL 3: constants.LpStatusUndefined, # XPRS_MIP_NO_SOL_FOUND 4: constants.LpStatusUndefined, # XPRS_MIP_SOLUTION 5: constants.LpStatusInfeasible, # XPRS_MIP_INFEAS 6: constants.LpStatusOptimal, # XPRS_MIP_OPTIMAL 7: constants.LpStatusUndefined, # XPRS_MIP_UNBOUNDED } statuskey = "mipstatus" else: # Solved as continuous x, slacks, duals, djs = [], [], [], [] try: model.getlpsol(x, slacks, duals, djs) except: # No solution available x, slacks, duals, djs = None, None, None, None statusmap = { 0: constants.LpStatusNotSolved, # XPRS_LP_UNSTARTED 1: constants.LpStatusOptimal, # XPRS_LP_OPTIMAL 2: constants.LpStatusInfeasible, # XPRS_LP_INFEAS 3: constants.LpStatusUndefined, # XPRS_LP_CUTOFF 4: constants.LpStatusUndefined, # XPRS_LP_UNFINISHED 5: constants.LpStatusUnbounded, # XPRS_LP_UNBOUNDED 6: constants.LpStatusUndefined, # XPRS_LP_CUTOFF_IN_DUAL 7: constants.LpStatusNotSolved, # XPRS_LP_UNSOLVED 8: constants.LpStatusUndefined, # XPRS_LP_NONCONVEX } statuskey = "lpstatus" if x is not None: lp.assignVarsVals({v.name: x[v._xprs[0]] for v in lp.variables()}) if djs is not None: lp.assignVarsDj({v.name: djs[v._xprs[0]] for v in lp.variables()}) if duals is not None: lp.assignConsPi( {c.name: duals[c._xprs[0]] for c in lp.constraints.values()} ) if slacks is not None: lp.assignConsSlack( {c.name: slacks[c._xprs[0]] for c in lp.constraints.values()} ) status = statusmap.get( model.getAttrib(statuskey), constants.LpStatusUndefined ) lp.assignStatus(status) return status except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err: raise PulpSolverError(str(err))
(self, lp)
38,994
pulp.apis.xpress_api
getAttribute
Get an arbitrary attribute for the model that was previously solved using actualSolve().
def getAttribute(self, lp, which): """Get an arbitrary attribute for the model that was previously solved using actualSolve().""" return lp.solverModel.getAttrib(which)
(self, lp, which)
39,001
pulp.apis.coin_api
YAPOSIB
COIN OSI (via its python interface) Copyright Christophe-Marie Duquesne 2012 The yaposib variables are available (after a solve) in var.solverVar The yaposib constraints are available in constraint.solverConstraint The Model is in prob.solverModel
class YAPOSIB(LpSolver): """ COIN OSI (via its python interface) Copyright Christophe-Marie Duquesne 2012 The yaposib variables are available (after a solve) in var.solverVar The yaposib constraints are available in constraint.solverConstraint The Model is in prob.solverModel """ name = "YAPOSIB" try: # import the model into the global scope global yaposib import yaposib except ImportError: def available(self): """True if the solver is available""" return False def actualSolve(self, lp, callback=None): """Solve a well formulated lp problem""" raise PulpSolverError("YAPOSIB: Not Available") else: def __init__( self, mip=True, msg=True, timeLimit=None, epgap=None, solverName=None, **solverParams, ): """ Initializes the yaposib solver. @param mip: if False the solver will solve a MIP as an LP @param msg: displays information from the solver to stdout @param timeLimit: not supported @param epgap: not supported @param solverParams: not supported """ LpSolver.__init__(self, mip, msg) if solverName: self.solverName = solverName else: self.solverName = yaposib.available_solvers()[0] def findSolutionValues(self, lp): model = lp.solverModel solutionStatus = model.status yaposibLpStatus = { "optimal": constants.LpStatusOptimal, "undefined": constants.LpStatusUndefined, "abandoned": constants.LpStatusInfeasible, "infeasible": constants.LpStatusInfeasible, "limitreached": constants.LpStatusInfeasible, } # populate pulp solution values for var in lp.variables(): var.varValue = var.solverVar.solution var.dj = var.solverVar.reducedcost # put pi and slack variables against the constraints for constr in lp.constraints.values(): constr.pi = constr.solverConstraint.dual constr.slack = -constr.constant - constr.solverConstraint.activity if self.msg: print("yaposib status=", solutionStatus) lp.resolveOK = True for var in lp.variables(): var.isModified = False status = yaposibLpStatus.get(solutionStatus, constants.LpStatusUndefined) lp.assignStatus(status) return status def available(self): """True if the solver is available""" return True def callSolver(self, lp, callback=None): """Solves the problem with yaposib""" savestdout = None if self.msg == 0: # close stdout to get rid of messages tempfile = open(mktemp(), "w") savestdout = os.dup(1) os.close(1) if os.dup(tempfile.fileno()) != 1: raise PulpSolverError("couldn't redirect stdout - dup() error") self.solveTime = -clock() lp.solverModel.solve(self.mip) self.solveTime += clock() if self.msg == 0: # reopen stdout os.close(1) os.dup(savestdout) os.close(savestdout) def buildSolverModel(self, lp): """ Takes the pulp lp model and translates it into a yaposib model """ log.debug("create the yaposib model") lp.solverModel = yaposib.Problem(self.solverName) prob = lp.solverModel prob.name = lp.name log.debug("set the sense of the problem") if lp.sense == constants.LpMaximize: prob.obj.maximize = True log.debug("add the variables to the problem") for var in lp.variables(): col = prob.cols.add(yaposib.vec([])) col.name = var.name if not var.lowBound is None: col.lowerbound = var.lowBound if not var.upBound is None: col.upperbound = var.upBound if var.cat == constants.LpInteger: col.integer = True prob.obj[col.index] = lp.objective.get(var, 0.0) var.solverVar = col log.debug("add the Constraints to the problem") for name, constraint in lp.constraints.items(): row = prob.rows.add( yaposib.vec( [ (var.solverVar.index, value) for var, value in constraint.items() ] ) ) if constraint.sense == constants.LpConstraintLE: row.upperbound = -constraint.constant elif constraint.sense == constants.LpConstraintGE: row.lowerbound = -constraint.constant elif constraint.sense == constants.LpConstraintEQ: row.upperbound = -constraint.constant row.lowerbound = -constraint.constant else: raise PulpSolverError("Detected an invalid constraint type") row.name = name constraint.solverConstraint = row def actualSolve(self, lp, callback=None): """ Solve a well formulated lp problem creates a yaposib model, variables and constraints and attaches them to the lp model which it then solves """ self.buildSolverModel(lp) # set the initial solution log.debug("Solve the model using yaposib") self.callSolver(lp, callback=callback) # get the solution information solutionStatus = self.findSolutionValues(lp) for var in lp.variables(): var.modified = False for constraint in lp.constraints.values(): constraint.modified = False return solutionStatus def actualResolve(self, lp, callback=None): """ Solve a well formulated lp problem uses the old solver and modifies the rhs of the modified constraints """ log.debug("Resolve the model using yaposib") for constraint in lp.constraints.values(): row = constraint.solverConstraint if constraint.modified: if constraint.sense == constants.LpConstraintLE: row.upperbound = -constraint.constant elif constraint.sense == constants.LpConstraintGE: row.lowerbound = -constraint.constant elif constraint.sense == constants.LpConstraintEQ: row.upperbound = -constraint.constant row.lowerbound = -constraint.constant else: raise PulpSolverError("Detected an invalid constraint type") self.callSolver(lp, callback=callback) # get the solution information solutionStatus = self.findSolutionValues(lp) for var in lp.variables(): var.modified = False for constraint in lp.constraints.values(): constraint.modified = False return solutionStatus
(mip=True, msg=True, options=None, timeLimit=None, *args, **kwargs)
39,004
pulp.apis.coin_api
actualSolve
Solve a well formulated lp problem
def actualSolve(self, lp, callback=None): """Solve a well formulated lp problem""" raise PulpSolverError("YAPOSIB: Not Available")
(self, lp, callback=None)
39,013
pulp.utilities
allcombinations
returns all combinations of orgset with up to k items :param orgset: the list to be iterated :param k: the maxcardinality of the subsets :return: an iterator of the subsets example: >>> c = allcombinations([1,2,3,4],2) >>> for s in c: ... print(s) (1,) (2,) (3,) (4,) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)
def allcombinations(orgset, k): """ returns all combinations of orgset with up to k items :param orgset: the list to be iterated :param k: the maxcardinality of the subsets :return: an iterator of the subsets example: >>> c = allcombinations([1,2,3,4],2) >>> for s in c: ... print(s) (1,) (2,) (3,) (4,) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4) """ return itertools.chain(*[combination(orgset, i) for i in range(1, k + 1)])
(orgset, k)
39,014
pulp.utilities
allpermutations
returns all permutations of orgset with up to k items :param orgset: the list to be iterated :param k: the maxcardinality of the subsets :return: an iterator of the subsets example: >>> c = allpermutations([1,2,3,4],2) >>> for s in c: ... print(s) (1,) (2,) (3,) (4,) (1, 2) (1, 3) (1, 4) (2, 1) (2, 3) (2, 4) (3, 1) (3, 2) (3, 4) (4, 1) (4, 2) (4, 3)
def allpermutations(orgset, k): """ returns all permutations of orgset with up to k items :param orgset: the list to be iterated :param k: the maxcardinality of the subsets :return: an iterator of the subsets example: >>> c = allpermutations([1,2,3,4],2) >>> for s in c: ... print(s) (1,) (2,) (3,) (4,) (1, 2) (1, 3) (1, 4) (2, 1) (2, 3) (2, 4) (3, 1) (3, 2) (3, 4) (4, 1) (4, 2) (4, 3) """ return itertools.chain(*[permutation(orgset, i) for i in range(1, k + 1)])
(orgset, k)
39,019
itertools
combinations
Return successive r-length combinations of elements in the iterable. combinations(range(4), 3) --> (0,1,2), (0,1,3), (0,2,3), (1,2,3)
from itertools import combinations
(iterable, r)
39,020
pulp.apis
configSolvers
Configure the path the the solvers on the command line Designed to configure the file locations of the solvers from the command line after installation
def configSolvers(): """ Configure the path the the solvers on the command line Designed to configure the file locations of the solvers from the command line after installation """ configlist = [ (cplex_dll_path, "cplexpath", "CPLEX: "), (coinMP_path, "coinmppath", "CoinMP dll (windows only): "), ] print( "Please type the full path including filename and extension \n" + "for each solver available" ) configdict = {} for default, key, msg in configlist: value = input(msg + "[" + str(default) + "]") if value: configdict[key] = value setConfigInformation(**configdict)
()
39,025
pulp.apis.copt_api
<lambda>
null
coptstr = lambda x: bytes(x, "utf-8")
(x)
39,029
pulp.apis.core
ctypesArrayFill
Creates a c array with ctypes from a python list type is the type of the c array
def ctypesArrayFill(myList, type=ctypes.c_double): """ Creates a c array with ctypes from a python list type is the type of the c array """ ctype = type * len(myList) cList = ctype() for i, elem in enumerate(myList): cList[i] = elem return cList
(myList, type=<class 'ctypes.c_double'>)
39,030
pulp.apis
getSolver
Instantiates a solver from its name :param str solver: solver name to create :param args: additional arguments to the solver :param kwargs: additional keyword arguments to the solver :return: solver of type :py:class:`LpSolver`
def getSolver(solver, *args, **kwargs): """ Instantiates a solver from its name :param str solver: solver name to create :param args: additional arguments to the solver :param kwargs: additional keyword arguments to the solver :return: solver of type :py:class:`LpSolver` """ mapping = {k.name: k for k in _all_solvers} try: return mapping[solver](*args, **kwargs) except KeyError: raise PulpSolverError( "The solver {} does not exist in PuLP.\nPossible options are: \n{}".format( solver, mapping.keys() ) )
(solver, *args, **kwargs)
39,031
pulp.apis
getSolverFromDict
Instantiates a solver from a dictionary with its data :param dict data: a dictionary with, at least an "solver" key with the name of the solver to create :return: a solver of type :py:class:`LpSolver` :raises PulpSolverError: if the dictionary does not have the "solver" key :rtype: LpSolver
def getSolverFromDict(data): """ Instantiates a solver from a dictionary with its data :param dict data: a dictionary with, at least an "solver" key with the name of the solver to create :return: a solver of type :py:class:`LpSolver` :raises PulpSolverError: if the dictionary does not have the "solver" key :rtype: LpSolver """ solver = data.pop("solver", None) if solver is None: raise PulpSolverError("The json file has no solver attribute.") return getSolver(solver, **data)
(data)
39,032
pulp.apis
getSolverFromJson
Instantiates a solver from a json file with its data :param str filename: name of the json file to read :return: a solver of type :py:class:`LpSolver` :rtype: LpSolver
def getSolverFromJson(filename): """ Instantiates a solver from a json file with its data :param str filename: name of the json file to read :return: a solver of type :py:class:`LpSolver` :rtype: LpSolver """ with open(filename) as f: data = json.load(f) return getSolverFromDict(data)
(filename)
39,036
pulp.apis.core
initialize
reads the configuration file to initialise the module
def initialize(filename, operating_system="linux", arch="64"): """reads the configuration file to initialise the module""" here = os.path.dirname(filename) config = Parser({"here": here, "os": operating_system, "arch": arch}) config.read(filename) try: cplex_dll_path = config.get("locations", "CplexPath") except configparser.Error: cplex_dll_path = "libcplex110.so" try: try: ilm_cplex_license = ( config.get("licenses", "ilm_cplex_license") .decode("string-escape") .replace('"', "") ) except AttributeError: ilm_cplex_license = config.get("licenses", "ilm_cplex_license").replace( '"', "" ) except configparser.Error: ilm_cplex_license = "" try: ilm_cplex_license_signature = config.getint( "licenses", "ilm_cplex_license_signature" ) except configparser.Error: ilm_cplex_license_signature = 0 try: coinMP_path = config.get("locations", "CoinMPPath").split(", ") except configparser.Error: coinMP_path = ["libCoinMP.so"] try: gurobi_path = config.get("locations", "GurobiPath") except configparser.Error: gurobi_path = "/opt/gurobi201/linux32/lib/python2.5" try: cbc_path = config.get("locations", "CbcPath") except configparser.Error: cbc_path = "cbc" try: glpk_path = config.get("locations", "GlpkPath") except configparser.Error: glpk_path = "glpsol" try: pulp_cbc_path = config.get("locations", "PulpCbcPath") except configparser.Error: pulp_cbc_path = "cbc" try: scip_path = config.get("locations", "ScipPath") except configparser.Error: scip_path = "scip" try: fscip_path = config.get("locations", "FscipPath") except configparser.Error: fscip_path = "fscip" for i, path in enumerate(coinMP_path): if not os.path.dirname(path): # if no pathname is supplied assume the file is in the same directory coinMP_path[i] = os.path.join(os.path.dirname(config_filename), path) return ( cplex_dll_path, ilm_cplex_license, ilm_cplex_license_signature, coinMP_path, gurobi_path, cbc_path, glpk_path, pulp_cbc_path, scip_path, fscip_path, )
(filename, operating_system='linux', arch='64')
39,037
pulp.utilities
isNumber
Returns true if x is an int or a float
def isNumber(x): """Returns true if x is an int or a float""" return isinstance(x, (int, float))
(x)
39,038
pulp.constants
isiterable
null
def isiterable(obj): try: obj = iter(obj) except: return False else: return True
(obj)
39,041
pulp.apis
listSolvers
List the names of all the existing solvers in PuLP :param bool onlyAvailable: if True, only show the available solvers :return: list of solver names :rtype: list
def listSolvers(onlyAvailable=False): """ List the names of all the existing solvers in PuLP :param bool onlyAvailable: if True, only show the available solvers :return: list of solver names :rtype: list """ result = [] for s in _all_solvers: solver = s() if (not onlyAvailable) or solver.available(): result.append(solver.name) del solver return result
(onlyAvailable=False)
39,043
pulp.pulp
lpDot
Calculate the dot product of two lists of linear expressions
def lpDot(v1, v2): """Calculate the dot product of two lists of linear expressions""" if not const.isiterable(v1) and not const.isiterable(v2): return v1 * v2 elif not const.isiterable(v1): return lpDot([v1] * len(v2), v2) elif not const.isiterable(v2): return lpDot(v1, [v2] * len(v1)) else: return lpSum([lpDot(e1, e2) for e1, e2 in zip(v1, v2)])
(v1, v2)
39,044
pulp.pulp
lpSum
Calculate the sum of a list of linear expressions :param vector: A list of linear expressions
def lpSum(vector): """ Calculate the sum of a list of linear expressions :param vector: A list of linear expressions """ return LpAffineExpression().addInPlace(vector)
(vector)
39,045
pulp.utilities
makeDict
makes a list into a dictionary with the headings given in headings headers is a list of header lists array is a list with the data
def makeDict(headers, array, default=None): """ makes a list into a dictionary with the headings given in headings headers is a list of header lists array is a list with the data """ result, defdict = __makeDict(headers, array, default) return result
(headers, array, default=None)
39,047
tempfile
mktemp
User-callable function to return a unique temporary file name. The file is not created. Arguments are similar to mkstemp, except that the 'text' argument is not accepted, and suffix=None, prefix=None and bytes file names are not supported. THIS FUNCTION IS UNSAFE AND SHOULD NOT BE USED. The file name may refer to a file that did not exist at some point, but by the time you get around to creating it, someone else may have beaten you to the punch.
def mktemp(suffix="", prefix=template, dir=None): """User-callable function to return a unique temporary file name. The file is not created. Arguments are similar to mkstemp, except that the 'text' argument is not accepted, and suffix=None, prefix=None and bytes file names are not supported. THIS FUNCTION IS UNSAFE AND SHOULD NOT BE USED. The file name may refer to a file that did not exist at some point, but by the time you get around to creating it, someone else may have beaten you to the punch. """ ## from warnings import warn as _warn ## _warn("mktemp is a potential security risk to your program", ## RuntimeWarning, stacklevel=2) if dir is None: dir = gettempdir() names = _get_candidate_names() for seq in range(TMP_MAX): name = next(names) file = _os.path.join(dir, prefix + name + suffix) if not _exists(file): return file raise FileExistsError(_errno.EEXIST, "No usable temporary filename found")
(suffix='', prefix='tmp', dir=None)
39,053
itertools
permutations
Return successive r-length permutations of elements in the iterable. permutations(range(3), 2) --> (0,1), (0,2), (1,0), (1,2), (2,0), (2,1)
from itertools import permutations
(iterable, r=None)
39,056
pulp.tests.run_tests
pulpTestAll
null
def pulpTestAll(test_docs=False): runner = unittest.TextTestRunner() suite_all = get_test_suite(test_docs) # we run all tests at the same time ret = runner.run(suite_all) if not ret.wasSuccessful(): raise pulp.PulpError("Tests Failed")
(test_docs=False)
39,058
pulp.utilities
read_table
Reads in data from a simple table and forces it to be a particular type This is a helper function that allows data to be easily constained in a simple script ::return: a dictionary of with the keys being a tuple of the strings in the first row and colum of the table ::param data: the multiline string containing the table data ::param coerce_type: the type that the table data is converted to ::param transpose: reverses the data if needed Example: >>> table_data = ''' ... L1 L2 L3 L4 L5 L6 ... C1 6736 42658 70414 45170 184679 111569 ... C2 217266 227190 249640 203029 153531 117487 ... C3 35936 28768 126316 2498 130317 74034 ... C4 73446 52077 108368 75011 49827 62850 ... C5 174664 177461 151589 153300 59916 135162 ... C6 186302 189099 147026 164938 149836 286307 ... ''' >>> table = read_table(table_data, int) >>> table[("C1","L1")] 6736 >>> table[("C6","L5")] 149836
def read_table(data, coerce_type, transpose=False): """ Reads in data from a simple table and forces it to be a particular type This is a helper function that allows data to be easily constained in a simple script ::return: a dictionary of with the keys being a tuple of the strings in the first row and colum of the table ::param data: the multiline string containing the table data ::param coerce_type: the type that the table data is converted to ::param transpose: reverses the data if needed Example: >>> table_data = ''' ... L1 L2 L3 L4 L5 L6 ... C1 6736 42658 70414 45170 184679 111569 ... C2 217266 227190 249640 203029 153531 117487 ... C3 35936 28768 126316 2498 130317 74034 ... C4 73446 52077 108368 75011 49827 62850 ... C5 174664 177461 151589 153300 59916 135162 ... C6 186302 189099 147026 164938 149836 286307 ... ''' >>> table = read_table(table_data, int) >>> table[("C1","L1")] 6736 >>> table[("C6","L5")] 149836 """ lines = data.splitlines() headings = lines[1].split() result = {} for row in lines[2:]: items = row.split() for i, item in enumerate(items[1:]): if transpose: key = (headings[i], items[0]) else: key = (items[0], headings[i]) result[key] = coerce_type(item) return result
(data, coerce_type, transpose=False)
39,059
pulp.utilities
resource_clock
null
def resource_clock(): import resource return resource.getrusage(resource.RUSAGE_CHILDREN).ru_utime
()
39,061
pulp.apis
setConfigInformation
set the data in the configuration file at the moment will only edit things in [locations] the keyword value pairs come from the keywords dictionary
def setConfigInformation(**keywords): """ set the data in the configuration file at the moment will only edit things in [locations] the keyword value pairs come from the keywords dictionary """ # TODO: extend if we ever add another section in the config file # read the old configuration config = Parser() config.read(config_filename) # set the new keys for key, val in keywords.items(): config.set("locations", key, val) # write the new configuration fp = open(config_filename, "w") config.write(fp) fp.close()
(**keywords)
39,064
pulp.utilities
splitDict
Split a dictionary with lists as the data, into smaller dictionaries :param data: A dictionary with lists as the values :return: A tuple of dictionaries each containing the data separately, with the same dictionary keys
def splitDict(data): """ Split a dictionary with lists as the data, into smaller dictionaries :param data: A dictionary with lists as the values :return: A tuple of dictionaries each containing the data separately, with the same dictionary keys """ # find the maximum number of items in the dictionary maxitems = max([len(values) for values in data.values()]) output = [dict() for _ in range(maxitems)] for key, values in data.items(): for i, val in enumerate(values): output[i][key] = val return tuple(output)
(data)
39,068
pulp.apis.core
<lambda>
null
to_string = lambda _obj: str(_obj).encode()
(_obj)
39,071
pulp.utilities
value
Returns the value of the variable/expression x, or x if it is a number
def value(x): """Returns the value of the variable/expression x, or x if it is a number""" if isNumber(x): return x else: return x.value()
(x)
39,072
pulp.utilities
valueOrDefault
Returns the value of the variable/expression x, or x if it is a number Variable without value (None) are affected a possible value (within their bounds).
def valueOrDefault(x): """Returns the value of the variable/expression x, or x if it is a number Variable without value (None) are affected a possible value (within their bounds).""" if isNumber(x): return x else: return x.valueOrDefault()
(x)
39,075
htmldocx.h2d
HtmlToDocx
null
class HtmlToDocx(HTMLParser): def __init__(self): super().__init__() self.options = { 'fix-html': True, 'images': True, 'tables': True, 'styles': True, } self.table_row_selectors = [ 'table > tr', 'table > thead > tr', 'table > tbody > tr', 'table > tfoot > tr' ] self.table_style = DEFAULT_TABLE_STYLE def set_initial_attrs(self, document=None): self.tags = { 'span': [], 'list': [], } if document: self.doc = document else: self.doc = Document() self.bs = self.options['fix-html'] # whether or not to clean with BeautifulSoup self.document = self.doc self.include_tables = True #TODO add this option back in? self.include_images = self.options['images'] self.include_styles = self.options['styles'] self.paragraph = None self.skip = False self.skip_tag = None self.instances_to_skip = 0 def copy_settings_from(self, other): """Copy settings from another instance of HtmlToDocx""" self.table_style = other.table_style def get_cell_html(self, soup): # Returns string of td element with opening and closing <td> tags removed # Cannot use find_all as it only finds element tags and does not find text which # is not inside an element return ' '.join([str(i) for i in soup.contents]) def add_styles_to_paragraph(self, style): if 'text-align' in style: align = style['text-align'] if align == 'center': self.paragraph.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.CENTER elif align == 'right': self.paragraph.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.RIGHT elif align == 'justify': self.paragraph.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.JUSTIFY if 'margin-left' in style: margin = style['margin-left'] units = re.sub(r'[0-9]+', '', margin) margin = int(float(re.sub(r'[a-z]+', '', margin))) if units == 'px': self.paragraph.paragraph_format.left_indent = Inches(min(margin // 10 * INDENT, MAX_INDENT)) # TODO handle non px units def add_styles_to_run(self, style): if 'color' in style: if 'rgb' in style['color']: color = re.sub(r'[a-z()]+', '', style['color']) colors = [int(x) for x in color.split(',')] elif '#' in style['color']: color = style['color'].lstrip('#') colors = tuple(int(color[i:i+2], 16) for i in (0, 2, 4)) else: colors = [0, 0, 0] # TODO map colors to named colors (and extended colors...) # For now set color to black to prevent crashing self.run.font.color.rgb = RGBColor(*colors) if 'background-color' in style: if 'rgb' in style['background-color']: color = color = re.sub(r'[a-z()]+', '', style['background-color']) colors = [int(x) for x in color.split(',')] elif '#' in style['background-color']: color = style['background-color'].lstrip('#') colors = tuple(int(color[i:i+2], 16) for i in (0, 2, 4)) else: colors = [0, 0, 0] # TODO map colors to named colors (and extended colors...) # For now set color to black to prevent crashing self.run.font.highlight_color = WD_COLOR.GRAY_25 #TODO: map colors def parse_dict_string(self, string, separator=';'): new_string = string.replace(" ", '').split(separator) string_dict = dict([x.split(':') for x in new_string if ':' in x]) return string_dict def handle_li(self): # check list stack to determine style and depth list_depth = len(self.tags['list']) if list_depth: list_type = self.tags['list'][-1] else: list_type = 'ul' # assign unordered if no tag if list_type == 'ol': list_style = styles['LIST_NUMBER'] else: list_style = styles['LIST_BULLET'] self.paragraph = self.doc.add_paragraph(style=list_style) self.paragraph.paragraph_format.left_indent = Inches(min(list_depth * LIST_INDENT, MAX_INDENT)) self.paragraph.paragraph_format.line_spacing = 1 def add_image_to_cell(self, cell, image): # python-docx doesn't have method yet for adding images to table cells. For now we use this paragraph = cell.add_paragraph() run = paragraph.add_run() run.add_picture(image) def handle_img(self, current_attrs): if not self.include_images: self.skip = True self.skip_tag = 'img' return src = current_attrs['src'] # fetch image src_is_url = is_url(src) if src_is_url: try: image = fetch_image(src) except urllib.error.URLError: image = None else: image = src # add image to doc if image: try: if isinstance(self.doc, docx.document.Document): self.doc.add_picture(image) else: self.add_image_to_cell(self.doc, image) except FileNotFoundError: image = None if not image: if src_is_url: self.doc.add_paragraph("<image: %s>" % src) else: # avoid exposing filepaths in document self.doc.add_paragraph("<image: %s>" % get_filename_from_url(src)) # add styles? def handle_table(self): """ To handle nested tables, we will parse tables manually as follows: Get table soup Create docx table Iterate over soup and fill docx table with new instances of this parser Tell HTMLParser to ignore any tags until the corresponding closing table tag """ table_soup = self.tables[self.table_no] rows, cols = self.get_table_dimensions(table_soup) self.table = self.doc.add_table(rows, cols) if self.table_style: try: self.table.style = self.table_style except KeyError as e: raise ValueError(f"Unable to apply style {self.table_style}.") from e rows = self.get_table_rows(table_soup) cell_row = 0 for row in rows: cols = self.get_table_columns(row) cell_col = 0 for col in cols: cell_html = self.get_cell_html(col) if col.name == 'th': cell_html = "<b>%s</b>" % cell_html docx_cell = self.table.cell(cell_row, cell_col) child_parser = HtmlToDocx() child_parser.copy_settings_from(self) child_parser.add_html_to_cell(cell_html, docx_cell) cell_col += 1 cell_row += 1 # skip all tags until corresponding closing tag self.instances_to_skip = len(table_soup.find_all('table')) self.skip_tag = 'table' self.skip = True self.table = None def handle_link(self, href, text): # Link requires a relationship is_external = href.startswith('http') rel_id = self.paragraph.part.relate_to( href, docx.opc.constants.RELATIONSHIP_TYPE.HYPERLINK, is_external=True # don't support anchor links for this library yet ) # Create the w:hyperlink tag and add needed values hyperlink = docx.oxml.shared.OxmlElement('w:hyperlink') hyperlink.set(docx.oxml.shared.qn('r:id'), rel_id) # Create sub-run subrun = self.paragraph.add_run() rPr = docx.oxml.shared.OxmlElement('w:rPr') # add default color c = docx.oxml.shared.OxmlElement('w:color') c.set(docx.oxml.shared.qn('w:val'), "0000EE") rPr.append(c) # add underline u = docx.oxml.shared.OxmlElement('w:u') u.set(docx.oxml.shared.qn('w:val'), 'single') rPr.append(u) subrun._r.append(rPr) subrun._r.text = text # Add subrun to hyperlink hyperlink.append(subrun._r) # Add hyperlink to run self.paragraph._p.append(hyperlink) def handle_starttag(self, tag, attrs): if self.skip: return if tag == 'head': self.skip = True self.skip_tag = tag self.instances_to_skip = 0 return elif tag == 'body': return current_attrs = dict(attrs) if tag == 'span': self.tags['span'].append(current_attrs) return elif tag == 'ol' or tag == 'ul': self.tags['list'].append(tag) return # don't apply styles for now elif tag == 'br': self.run.add_break() return self.tags[tag] = current_attrs if tag in ['p', 'pre']: self.paragraph = self.doc.add_paragraph() elif tag == 'li': self.handle_li() elif tag == "hr": # This implementation was taken from: # https://github.com/python-openxml/python-docx/issues/105#issuecomment-62806373 self.paragraph = self.doc.add_paragraph() pPr = self.paragraph._p.get_or_add_pPr() pBdr = OxmlElement('w:pBdr') pPr.insert_element_before(pBdr, 'w:shd', 'w:tabs', 'w:suppressAutoHyphens', 'w:kinsoku', 'w:wordWrap', 'w:overflowPunct', 'w:topLinePunct', 'w:autoSpaceDE', 'w:autoSpaceDN', 'w:bidi', 'w:adjustRightInd', 'w:snapToGrid', 'w:spacing', 'w:ind', 'w:contextualSpacing', 'w:mirrorIndents', 'w:suppressOverlap', 'w:jc', 'w:textDirection', 'w:textAlignment', 'w:textboxTightWrap', 'w:outlineLvl', 'w:divId', 'w:cnfStyle', 'w:rPr', 'w:sectPr', 'w:pPrChange' ) bottom = OxmlElement('w:bottom') bottom.set(qn('w:val'), 'single') bottom.set(qn('w:sz'), '6') bottom.set(qn('w:space'), '1') bottom.set(qn('w:color'), 'auto') pBdr.append(bottom) elif re.match('h[1-9]', tag): if isinstance(self.doc, docx.document.Document): h_size = int(tag[1]) self.paragraph = self.doc.add_heading(level=min(h_size, 9)) else: self.paragraph = self.doc.add_paragraph() elif tag == 'img': self.handle_img(current_attrs) return elif tag == 'table': self.handle_table() return # set new run reference point in case of leading line breaks if tag in ['p', 'li', 'pre']: self.run = self.paragraph.add_run() # add style if not self.include_styles: return if 'style' in current_attrs and self.paragraph: style = self.parse_dict_string(current_attrs['style']) self.add_styles_to_paragraph(style) def handle_endtag(self, tag): if self.skip: if not tag == self.skip_tag: return if self.instances_to_skip > 0: self.instances_to_skip -= 1 return self.skip = False self.skip_tag = None self.paragraph = None if tag == 'span': if self.tags['span']: self.tags['span'].pop() return elif tag == 'ol' or tag == 'ul': remove_last_occurence(self.tags['list'], tag) return elif tag == 'table': self.table_no += 1 self.table = None self.doc = self.document self.paragraph = None if tag in self.tags: self.tags.pop(tag) # maybe set relevant reference to None? def handle_data(self, data): if self.skip: return # Only remove white space if we're not in a pre block. if 'pre' not in self.tags: # remove leading and trailing whitespace in all instances data = remove_whitespace(data, True, True) if not self.paragraph: self.paragraph = self.doc.add_paragraph() # There can only be one nested link in a valid html document # You cannot have interactive content in an A tag, this includes links # https://html.spec.whatwg.org/#interactive-content link = self.tags.get('a') if link: self.handle_link(link['href'], data) else: # If there's a link, dont put the data directly in the run self.run = self.paragraph.add_run(data) spans = self.tags['span'] for span in spans: if 'style' in span: style = self.parse_dict_string(span['style']) self.add_styles_to_run(style) # add font style and name for tag in self.tags: if tag in font_styles: font_style = font_styles[tag] setattr(self.run.font, font_style, True) if tag in font_names: font_name = font_names[tag] self.run.font.name = font_name def ignore_nested_tables(self, tables_soup): """ Returns array containing only the highest level tables Operates on the assumption that bs4 returns child elements immediately after the parent element in `find_all`. If this changes in the future, this method will need to be updated :return: """ new_tables = [] nest = 0 for table in tables_soup: if nest: nest -= 1 continue new_tables.append(table) nest = len(table.find_all('table')) return new_tables def get_table_rows(self, table_soup): # If there's a header, body, footer or direct child tr tags, add row dimensions from there return table_soup.select(', '.join(self.table_row_selectors), recursive=False) def get_table_columns(self, row): # Get all columns for the specified row tag. return row.find_all(['th', 'td'], recursive=False) if row else [] def get_table_dimensions(self, table_soup): # Get rows for the table rows = self.get_table_rows(table_soup) # Table is either empty or has non-direct children between table and tr tags # Thus the row dimensions and column dimensions are assumed to be 0 cols = self.get_table_columns(rows[0]) if rows else [] return len(rows), len(cols) def get_tables(self): if not hasattr(self, 'soup'): self.include_tables = False return # find other way to do it, or require this dependency? self.tables = self.ignore_nested_tables(self.soup.find_all('table')) self.table_no = 0 def run_process(self, html): if self.bs and BeautifulSoup: self.soup = BeautifulSoup(html, 'html.parser') html = str(self.soup) if self.include_tables: self.get_tables() self.feed(html) def add_html_to_document(self, html, document): if not isinstance(html, str): raise ValueError('First argument needs to be a %s' % str) elif not isinstance(document, docx.document.Document) and not isinstance(document, docx.table._Cell): raise ValueError('Second argument needs to be a %s' % docx.document.Document) self.set_initial_attrs(document) self.run_process(html) def add_html_to_cell(self, html, cell): if not isinstance(cell, docx.table._Cell): raise ValueError('Second argument needs to be a %s' % docx.table._Cell) unwanted_paragraph = cell.paragraphs[0] delete_paragraph(unwanted_paragraph) self.set_initial_attrs(cell) self.run_process(html) # cells must end with a paragraph or will get message about corrupt file # https://stackoverflow.com/a/29287121 if not self.doc.paragraphs: self.doc.add_paragraph('') def parse_html_file(self, filename_html, filename_docx=None): with open(filename_html, 'r') as infile: html = infile.read() self.set_initial_attrs() self.run_process(html) if not filename_docx: path, filename = os.path.split(filename_html) filename_docx = '%s/new_docx_file_%s' % (path, filename) self.doc.save('%s.docx' % filename_docx) def parse_html_string(self, html): self.set_initial_attrs() self.run_process(html) return self.doc
()
39,076
htmldocx.h2d
__init__
null
def __init__(self): super().__init__() self.options = { 'fix-html': True, 'images': True, 'tables': True, 'styles': True, } self.table_row_selectors = [ 'table > tr', 'table > thead > tr', 'table > tbody > tr', 'table > tfoot > tr' ] self.table_style = DEFAULT_TABLE_STYLE
(self)
39,083
htmldocx.h2d
add_html_to_cell
null
def add_html_to_cell(self, html, cell): if not isinstance(cell, docx.table._Cell): raise ValueError('Second argument needs to be a %s' % docx.table._Cell) unwanted_paragraph = cell.paragraphs[0] delete_paragraph(unwanted_paragraph) self.set_initial_attrs(cell) self.run_process(html) # cells must end with a paragraph or will get message about corrupt file # https://stackoverflow.com/a/29287121 if not self.doc.paragraphs: self.doc.add_paragraph('')
(self, html, cell)
39,084
htmldocx.h2d
add_html_to_document
null
def add_html_to_document(self, html, document): if not isinstance(html, str): raise ValueError('First argument needs to be a %s' % str) elif not isinstance(document, docx.document.Document) and not isinstance(document, docx.table._Cell): raise ValueError('Second argument needs to be a %s' % docx.document.Document) self.set_initial_attrs(document) self.run_process(html)
(self, html, document)
39,085
htmldocx.h2d
add_image_to_cell
null
def add_image_to_cell(self, cell, image): # python-docx doesn't have method yet for adding images to table cells. For now we use this paragraph = cell.add_paragraph() run = paragraph.add_run() run.add_picture(image)
(self, cell, image)
39,086
htmldocx.h2d
add_styles_to_paragraph
null
def add_styles_to_paragraph(self, style): if 'text-align' in style: align = style['text-align'] if align == 'center': self.paragraph.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.CENTER elif align == 'right': self.paragraph.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.RIGHT elif align == 'justify': self.paragraph.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.JUSTIFY if 'margin-left' in style: margin = style['margin-left'] units = re.sub(r'[0-9]+', '', margin) margin = int(float(re.sub(r'[a-z]+', '', margin))) if units == 'px': self.paragraph.paragraph_format.left_indent = Inches(min(margin // 10 * INDENT, MAX_INDENT)) # TODO handle non px units
(self, style)
39,087
htmldocx.h2d
add_styles_to_run
null
def add_styles_to_run(self, style): if 'color' in style: if 'rgb' in style['color']: color = re.sub(r'[a-z()]+', '', style['color']) colors = [int(x) for x in color.split(',')] elif '#' in style['color']: color = style['color'].lstrip('#') colors = tuple(int(color[i:i+2], 16) for i in (0, 2, 4)) else: colors = [0, 0, 0] # TODO map colors to named colors (and extended colors...) # For now set color to black to prevent crashing self.run.font.color.rgb = RGBColor(*colors) if 'background-color' in style: if 'rgb' in style['background-color']: color = color = re.sub(r'[a-z()]+', '', style['background-color']) colors = [int(x) for x in color.split(',')] elif '#' in style['background-color']: color = style['background-color'].lstrip('#') colors = tuple(int(color[i:i+2], 16) for i in (0, 2, 4)) else: colors = [0, 0, 0] # TODO map colors to named colors (and extended colors...) # For now set color to black to prevent crashing self.run.font.highlight_color = WD_COLOR.GRAY_25 #TODO: map colors
(self, style)
39,091
htmldocx.h2d
copy_settings_from
Copy settings from another instance of HtmlToDocx
def copy_settings_from(self, other): """Copy settings from another instance of HtmlToDocx""" self.table_style = other.table_style
(self, other)
39,093
htmldocx.h2d
get_cell_html
null
def get_cell_html(self, soup): # Returns string of td element with opening and closing <td> tags removed # Cannot use find_all as it only finds element tags and does not find text which # is not inside an element return ' '.join([str(i) for i in soup.contents])
(self, soup)
39,095
htmldocx.h2d
get_table_columns
null
def get_table_columns(self, row): # Get all columns for the specified row tag. return row.find_all(['th', 'td'], recursive=False) if row else []
(self, row)
39,096
htmldocx.h2d
get_table_dimensions
null
def get_table_dimensions(self, table_soup): # Get rows for the table rows = self.get_table_rows(table_soup) # Table is either empty or has non-direct children between table and tr tags # Thus the row dimensions and column dimensions are assumed to be 0 cols = self.get_table_columns(rows[0]) if rows else [] return len(rows), len(cols)
(self, table_soup)
39,097
htmldocx.h2d
get_table_rows
null
def get_table_rows(self, table_soup): # If there's a header, body, footer or direct child tr tags, add row dimensions from there return table_soup.select(', '.join(self.table_row_selectors), recursive=False)
(self, table_soup)
39,098
htmldocx.h2d
get_tables
null
def get_tables(self): if not hasattr(self, 'soup'): self.include_tables = False return # find other way to do it, or require this dependency? self.tables = self.ignore_nested_tables(self.soup.find_all('table')) self.table_no = 0
(self)
39,103
htmldocx.h2d
handle_data
null
def handle_data(self, data): if self.skip: return # Only remove white space if we're not in a pre block. if 'pre' not in self.tags: # remove leading and trailing whitespace in all instances data = remove_whitespace(data, True, True) if not self.paragraph: self.paragraph = self.doc.add_paragraph() # There can only be one nested link in a valid html document # You cannot have interactive content in an A tag, this includes links # https://html.spec.whatwg.org/#interactive-content link = self.tags.get('a') if link: self.handle_link(link['href'], data) else: # If there's a link, dont put the data directly in the run self.run = self.paragraph.add_run(data) spans = self.tags['span'] for span in spans: if 'style' in span: style = self.parse_dict_string(span['style']) self.add_styles_to_run(style) # add font style and name for tag in self.tags: if tag in font_styles: font_style = font_styles[tag] setattr(self.run.font, font_style, True) if tag in font_names: font_name = font_names[tag] self.run.font.name = font_name
(self, data)
39,105
htmldocx.h2d
handle_endtag
null
def handle_endtag(self, tag): if self.skip: if not tag == self.skip_tag: return if self.instances_to_skip > 0: self.instances_to_skip -= 1 return self.skip = False self.skip_tag = None self.paragraph = None if tag == 'span': if self.tags['span']: self.tags['span'].pop() return elif tag == 'ol' or tag == 'ul': remove_last_occurence(self.tags['list'], tag) return elif tag == 'table': self.table_no += 1 self.table = None self.doc = self.document self.paragraph = None if tag in self.tags: self.tags.pop(tag) # maybe set relevant reference to None?
(self, tag)
39,107
htmldocx.h2d
handle_img
null
def handle_img(self, current_attrs): if not self.include_images: self.skip = True self.skip_tag = 'img' return src = current_attrs['src'] # fetch image src_is_url = is_url(src) if src_is_url: try: image = fetch_image(src) except urllib.error.URLError: image = None else: image = src # add image to doc if image: try: if isinstance(self.doc, docx.document.Document): self.doc.add_picture(image) else: self.add_image_to_cell(self.doc, image) except FileNotFoundError: image = None if not image: if src_is_url: self.doc.add_paragraph("<image: %s>" % src) else: # avoid exposing filepaths in document self.doc.add_paragraph("<image: %s>" % get_filename_from_url(src)) # add styles?
(self, current_attrs)
39,108
htmldocx.h2d
handle_li
null
def handle_li(self): # check list stack to determine style and depth list_depth = len(self.tags['list']) if list_depth: list_type = self.tags['list'][-1] else: list_type = 'ul' # assign unordered if no tag if list_type == 'ol': list_style = styles['LIST_NUMBER'] else: list_style = styles['LIST_BULLET'] self.paragraph = self.doc.add_paragraph(style=list_style) self.paragraph.paragraph_format.left_indent = Inches(min(list_depth * LIST_INDENT, MAX_INDENT)) self.paragraph.paragraph_format.line_spacing = 1
(self)
39,109
htmldocx.h2d
handle_link
null
def handle_link(self, href, text): # Link requires a relationship is_external = href.startswith('http') rel_id = self.paragraph.part.relate_to( href, docx.opc.constants.RELATIONSHIP_TYPE.HYPERLINK, is_external=True # don't support anchor links for this library yet ) # Create the w:hyperlink tag and add needed values hyperlink = docx.oxml.shared.OxmlElement('w:hyperlink') hyperlink.set(docx.oxml.shared.qn('r:id'), rel_id) # Create sub-run subrun = self.paragraph.add_run() rPr = docx.oxml.shared.OxmlElement('w:rPr') # add default color c = docx.oxml.shared.OxmlElement('w:color') c.set(docx.oxml.shared.qn('w:val'), "0000EE") rPr.append(c) # add underline u = docx.oxml.shared.OxmlElement('w:u') u.set(docx.oxml.shared.qn('w:val'), 'single') rPr.append(u) subrun._r.append(rPr) subrun._r.text = text # Add subrun to hyperlink hyperlink.append(subrun._r) # Add hyperlink to run self.paragraph._p.append(hyperlink)
(self, href, text)
39,112
htmldocx.h2d
handle_starttag
null
def handle_starttag(self, tag, attrs): if self.skip: return if tag == 'head': self.skip = True self.skip_tag = tag self.instances_to_skip = 0 return elif tag == 'body': return current_attrs = dict(attrs) if tag == 'span': self.tags['span'].append(current_attrs) return elif tag == 'ol' or tag == 'ul': self.tags['list'].append(tag) return # don't apply styles for now elif tag == 'br': self.run.add_break() return self.tags[tag] = current_attrs if tag in ['p', 'pre']: self.paragraph = self.doc.add_paragraph() elif tag == 'li': self.handle_li() elif tag == "hr": # This implementation was taken from: # https://github.com/python-openxml/python-docx/issues/105#issuecomment-62806373 self.paragraph = self.doc.add_paragraph() pPr = self.paragraph._p.get_or_add_pPr() pBdr = OxmlElement('w:pBdr') pPr.insert_element_before(pBdr, 'w:shd', 'w:tabs', 'w:suppressAutoHyphens', 'w:kinsoku', 'w:wordWrap', 'w:overflowPunct', 'w:topLinePunct', 'w:autoSpaceDE', 'w:autoSpaceDN', 'w:bidi', 'w:adjustRightInd', 'w:snapToGrid', 'w:spacing', 'w:ind', 'w:contextualSpacing', 'w:mirrorIndents', 'w:suppressOverlap', 'w:jc', 'w:textDirection', 'w:textAlignment', 'w:textboxTightWrap', 'w:outlineLvl', 'w:divId', 'w:cnfStyle', 'w:rPr', 'w:sectPr', 'w:pPrChange' ) bottom = OxmlElement('w:bottom') bottom.set(qn('w:val'), 'single') bottom.set(qn('w:sz'), '6') bottom.set(qn('w:space'), '1') bottom.set(qn('w:color'), 'auto') pBdr.append(bottom) elif re.match('h[1-9]', tag): if isinstance(self.doc, docx.document.Document): h_size = int(tag[1]) self.paragraph = self.doc.add_heading(level=min(h_size, 9)) else: self.paragraph = self.doc.add_paragraph() elif tag == 'img': self.handle_img(current_attrs) return elif tag == 'table': self.handle_table() return # set new run reference point in case of leading line breaks if tag in ['p', 'li', 'pre']: self.run = self.paragraph.add_run() # add style if not self.include_styles: return if 'style' in current_attrs and self.paragraph: style = self.parse_dict_string(current_attrs['style']) self.add_styles_to_paragraph(style)
(self, tag, attrs)
39,113
htmldocx.h2d
handle_table
To handle nested tables, we will parse tables manually as follows: Get table soup Create docx table Iterate over soup and fill docx table with new instances of this parser Tell HTMLParser to ignore any tags until the corresponding closing table tag
def handle_table(self): """ To handle nested tables, we will parse tables manually as follows: Get table soup Create docx table Iterate over soup and fill docx table with new instances of this parser Tell HTMLParser to ignore any tags until the corresponding closing table tag """ table_soup = self.tables[self.table_no] rows, cols = self.get_table_dimensions(table_soup) self.table = self.doc.add_table(rows, cols) if self.table_style: try: self.table.style = self.table_style except KeyError as e: raise ValueError(f"Unable to apply style {self.table_style}.") from e rows = self.get_table_rows(table_soup) cell_row = 0 for row in rows: cols = self.get_table_columns(row) cell_col = 0 for col in cols: cell_html = self.get_cell_html(col) if col.name == 'th': cell_html = "<b>%s</b>" % cell_html docx_cell = self.table.cell(cell_row, cell_col) child_parser = HtmlToDocx() child_parser.copy_settings_from(self) child_parser.add_html_to_cell(cell_html, docx_cell) cell_col += 1 cell_row += 1 # skip all tags until corresponding closing tag self.instances_to_skip = len(table_soup.find_all('table')) self.skip_tag = 'table' self.skip = True self.table = None
(self)
39,114
htmldocx.h2d
ignore_nested_tables
Returns array containing only the highest level tables Operates on the assumption that bs4 returns child elements immediately after the parent element in `find_all`. If this changes in the future, this method will need to be updated :return:
def ignore_nested_tables(self, tables_soup): """ Returns array containing only the highest level tables Operates on the assumption that bs4 returns child elements immediately after the parent element in `find_all`. If this changes in the future, this method will need to be updated :return: """ new_tables = [] nest = 0 for table in tables_soup: if nest: nest -= 1 continue new_tables.append(table) nest = len(table.find_all('table')) return new_tables
(self, tables_soup)
39,118
htmldocx.h2d
parse_dict_string
null
def parse_dict_string(self, string, separator=';'): new_string = string.replace(" ", '').split(separator) string_dict = dict([x.split(':') for x in new_string if ':' in x]) return string_dict
(self, string, separator=';')
39,121
htmldocx.h2d
parse_html_file
null
def parse_html_file(self, filename_html, filename_docx=None): with open(filename_html, 'r') as infile: html = infile.read() self.set_initial_attrs() self.run_process(html) if not filename_docx: path, filename = os.path.split(filename_html) filename_docx = '%s/new_docx_file_%s' % (path, filename) self.doc.save('%s.docx' % filename_docx)
(self, filename_html, filename_docx=None)
39,122
htmldocx.h2d
parse_html_string
null
def parse_html_string(self, html): self.set_initial_attrs() self.run_process(html) return self.doc
(self, html)
39,127
htmldocx.h2d
run_process
null
def run_process(self, html): if self.bs and BeautifulSoup: self.soup = BeautifulSoup(html, 'html.parser') html = str(self.soup) if self.include_tables: self.get_tables() self.feed(html)
(self, html)
39,129
htmldocx.h2d
set_initial_attrs
null
def set_initial_attrs(self, document=None): self.tags = { 'span': [], 'list': [], } if document: self.doc = document else: self.doc = Document() self.bs = self.options['fix-html'] # whether or not to clean with BeautifulSoup self.document = self.doc self.include_tables = True #TODO add this option back in? self.include_images = self.options['images'] self.include_styles = self.options['styles'] self.paragraph = None self.skip = False self.skip_tag = None self.instances_to_skip = 0
(self, document=None)
39,134
click_plugins.core
with_plugins
A decorator to register external CLI commands to an instance of `click.Group()`. Parameters ---------- plugins : iter An iterable producing one `pkg_resources.EntryPoint()` per iteration. attrs : **kwargs, optional Additional keyword arguments for instantiating `click.Group()`. Returns ------- click.Group()
def with_plugins(plugins): """ A decorator to register external CLI commands to an instance of `click.Group()`. Parameters ---------- plugins : iter An iterable producing one `pkg_resources.EntryPoint()` per iteration. attrs : **kwargs, optional Additional keyword arguments for instantiating `click.Group()`. Returns ------- click.Group() """ def decorator(group): if not isinstance(group, click.Group): raise TypeError("Plugins can only be attached to an instance of click.Group()") for entry_point in plugins or (): try: group.add_command(entry_point.load()) except Exception: # Catch this so a busted plugin doesn't take down the CLI. # Handled by registering a dummy command that does nothing # other than explain the error. group.add_command(BrokenCommand(entry_point.name)) return group return decorator
(plugins)
39,135
astunparse.printer
Printer
null
class Printer(ast.NodeVisitor): def __init__(self, file=sys.stdout, indent=" "): self.indentation = 0 self.indent_with = indent self.f = file # overridden to make the API obvious def visit(self, node): super(Printer, self).visit(node) def write(self, text): self.f.write(six.text_type(text)) def generic_visit(self, node): if isinstance(node, list): nodestart = "[" nodeend = "]" children = [("", child) for child in node] else: nodestart = type(node).__name__ + "(" nodeend = ")" children = [(name + "=", value) for name, value in ast.iter_fields(node)] if len(children) > 1: self.indentation += 1 self.write(nodestart) for i, pair in enumerate(children): attr, child = pair if len(children) > 1: self.write("\n" + self.indent_with * self.indentation) if isinstance(child, (ast.AST, list)): self.write(attr) self.visit(child) else: self.write(attr + repr(child)) if i != len(children) - 1: self.write(",") self.write(nodeend) if len(children) > 1: self.indentation -= 1
(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, indent=' ')
39,136
astunparse.printer
__init__
null
def __init__(self, file=sys.stdout, indent=" "): self.indentation = 0 self.indent_with = indent self.f = file
(self, file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, indent=' ')
39,137
astunparse.printer
generic_visit
null
def generic_visit(self, node): if isinstance(node, list): nodestart = "[" nodeend = "]" children = [("", child) for child in node] else: nodestart = type(node).__name__ + "(" nodeend = ")" children = [(name + "=", value) for name, value in ast.iter_fields(node)] if len(children) > 1: self.indentation += 1 self.write(nodestart) for i, pair in enumerate(children): attr, child = pair if len(children) > 1: self.write("\n" + self.indent_with * self.indentation) if isinstance(child, (ast.AST, list)): self.write(attr) self.visit(child) else: self.write(attr + repr(child)) if i != len(children) - 1: self.write(",") self.write(nodeend) if len(children) > 1: self.indentation -= 1
(self, node)
39,138
astunparse.printer
visit
null
def visit(self, node): super(Printer, self).visit(node)
(self, node)
39,139
ast
visit_Constant
null
def visit_Constant(self, node): value = node.value type_name = _const_node_type_names.get(type(value)) if type_name is None: for cls, name in _const_node_type_names.items(): if isinstance(value, cls): type_name = name break if type_name is not None: method = 'visit_' + type_name try: visitor = getattr(self, method) except AttributeError: pass else: import warnings warnings.warn(f"{method} is deprecated; add visit_Constant", DeprecationWarning, 2) return visitor(node) return self.generic_visit(node)
(self, node)