index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
39,246
segno
__init__
Initializes the QR Code object. :param code: An object with a ``matrix``, ``version``, ``error``, ``mask`` and ``segments`` attribute.
def __init__(self, code): """\ Initializes the QR Code object. :param code: An object with a ``matrix``, ``version``, ``error``, ``mask`` and ``segments`` attribute. """ matrix = code.matrix self.matrix = matrix """Returns the matrix. :rtype: tuple of :py:class:`bytearray` instances. """ self.mask = code.mask """Returns the data mask pattern reference :rtype: int """ self._matrix_size = len(matrix[0]), len(matrix) self._version = code.version self._error = code.error self._mode = code.segments[0].mode if len(code.segments) == 1 else None
(self, code)
39,247
segno
matrix_iter
Returns an iterator over the matrix which includes the border. The border is returned as sequence of light modules. Dark modules are reported as ``0x1``, light modules have the value ``0x0``. The following example converts the QR code matrix into a list of lists which use boolean values for the modules (True = dark module, False = light module):: >>> import segno >>> qrcode = segno.make('The Beatles') >>> width, height = qrcode.symbol_size(scale=2) >>> res = [] >>> # Scaling factor 2, default border >>> for row in qrcode.matrix_iter(scale=2): >>> res.append([col == 0x1 for col in row]) >>> width == len(res[0]) True >>> height == len(res) True If `verbose` is ``True``, the iterator returns integer constants which indicate the type of the module, i.e. ``segno.consts.TYPE_FINDER_PATTERN_DARK``, ``segno.consts.TYPE_FINDER_PATTERN_LIGHT``, ``segno.consts.TYPE_QUIET_ZONE`` etc. To check if the returned module type is dark or light, use:: if mt >> 8: print('dark module') if not mt >> 8: print('light module') :param int scale: The scaling factor (default: ``1``). :param int border: The size of border / quiet zone or ``None`` to indicate the default border. :param bool verbose: Indicates if the type of the module should be returned instead of ``0x1`` and ``0x0`` values. See :py:mod:`segno.consts` for the return values. This feature is currently in EXPERIMENTAL state. :raises: :py:exc:`ValueError` if the scaling factor or the border is invalid (i.e. negative).
def matrix_iter(self, scale=1, border=None, verbose=False): """\ Returns an iterator over the matrix which includes the border. The border is returned as sequence of light modules. Dark modules are reported as ``0x1``, light modules have the value ``0x0``. The following example converts the QR code matrix into a list of lists which use boolean values for the modules (True = dark module, False = light module):: >>> import segno >>> qrcode = segno.make('The Beatles') >>> width, height = qrcode.symbol_size(scale=2) >>> res = [] >>> # Scaling factor 2, default border >>> for row in qrcode.matrix_iter(scale=2): >>> res.append([col == 0x1 for col in row]) >>> width == len(res[0]) True >>> height == len(res) True If `verbose` is ``True``, the iterator returns integer constants which indicate the type of the module, i.e. ``segno.consts.TYPE_FINDER_PATTERN_DARK``, ``segno.consts.TYPE_FINDER_PATTERN_LIGHT``, ``segno.consts.TYPE_QUIET_ZONE`` etc. To check if the returned module type is dark or light, use:: if mt >> 8: print('dark module') if not mt >> 8: print('light module') :param int scale: The scaling factor (default: ``1``). :param int border: The size of border / quiet zone or ``None`` to indicate the default border. :param bool verbose: Indicates if the type of the module should be returned instead of ``0x1`` and ``0x0`` values. See :py:mod:`segno.consts` for the return values. This feature is currently in EXPERIMENTAL state. :raises: :py:exc:`ValueError` if the scaling factor or the border is invalid (i.e. negative). """ iterfn = utils.matrix_iter_verbose if verbose else utils.matrix_iter return iterfn(self.matrix, self._matrix_size, scale, border)
(self, scale=1, border=None, verbose=False)
39,248
segno
png_data_uri
Converts the QR code into a PNG data URI. Uses the same keyword parameters as the usual PNG serializer, see :py:func:`save` and the available `PNG parameters <#png>`_ :rtype: str
def png_data_uri(self, **kw): """\ Converts the QR code into a PNG data URI. Uses the same keyword parameters as the usual PNG serializer, see :py:func:`save` and the available `PNG parameters <#png>`_ :rtype: str """ return writers.as_png_data_uri(self.matrix, self._matrix_size, **kw)
(self, **kw)
39,249
segno
save
Serializes the QR code in one of the supported formats. The serialization format depends on the filename extension. .. _common_keywords: **Common keywords** ========== ============================================================== Name Description ========== ============================================================== scale Integer or float indicating the size of a single module. Default: 1. The interpretation of the scaling factor depends on the serializer. For pixel-based output (like :ref:`PNG <png>`) the scaling factor is interpreted as pixel-size (1 = 1 pixel). :ref:`EPS <eps>` interprets ``1`` as 1 point (1/72 inch) per module. Some serializers (like :ref:`SVG <svg>`) accept float values. If the serializer does not accept float values, the value will be converted to an integer value (note: int(1.6) == 1). border Integer indicating the size of the quiet zone. If set to ``None`` (default), the recommended border size will be used (``4`` for QR codes, ``2`` for a Micro QR codes). A value of ``0`` indicates that border should be omitted. dark A string or tuple representing a color value for the dark modules. The default value is "black". The color can be provided as ``(R, G, B)`` tuple, as web color name (like "red") or in hexadecimal format (``#RGB`` or ``#RRGGBB``). Some serializers (i.e. :ref:`SVG <svg>` and :ref:`PNG <png>`) accept an alpha transparency value like ``#RRGGBBAA``. light A string or tuple representing a color for the light modules. See `dark` for valid values. The default value depends on the serializer. :ref:`SVG <svg>` uses no color (``None``) for light modules by default, other serializers, like :ref:`PNG <png>`, use "white" as default light color. ========== ============================================================== .. _module_colors: **Module Colors** =============== ======================================================= Name Description =============== ======================================================= finder_dark Color of the dark modules of the finder patterns Default: undefined, use value of "dark" finder_light Color of the light modules of the finder patterns Default: undefined, use value of "light" data_dark Color of the dark data modules Default: undefined, use value of "dark" data_light Color of the light data modules. Default: undefined, use value of "light". version_dark Color of the dark modules of the version information. Default: undefined, use value of "dark". version_light Color of the light modules of the version information, Default: undefined, use value of "light". format_dark Color of the dark modules of the format information. Default: undefined, use value of "dark". format_light Color of the light modules of the format information. Default: undefined, use value of "light". alignment_dark Color of the dark modules of the alignment patterns. Default: undefined, use value of "dark". alignment_light Color of the light modules of the alignment patterns. Default: undefined, use value of "light". timing_dark Color of the dark modules of the timing patterns. Default: undefined, use value of "dark". timing_light Color of the light modules of the timing patterns. Default: undefined, use value of "light". separator Color of the separator. Default: undefined, use value of "light". dark_module Color of the dark module (a single dark module which occurs in all QR Codes but not in Micro QR Codes. Default: undefined, use value of "dark". quiet_zone Color of the quiet zone / border. Default: undefined, use value of "light". =============== ======================================================= .. _svg: **Scalable Vector Graphics (SVG)** All :ref:`common keywords <common_keywords>` and :ref:`module colors <module_colors>` are supported. ================ ============================================================== Name Description ================ ============================================================== out Filename or :py:class:`io.BytesIO` kind "svg" or "svgz" (to create a gzip compressed SVG) scale integer or float dark Default: "#000" (black) ``None`` is a valid value. If set to ``None``, the resulting path won't have a "stroke" attribute. The "stroke" attribute may be defined via CSS (external). If an alpha channel is defined, the output depends of the used SVG version. For SVG versions >= 2.0, the "stroke" attribute will have a value like "rgba(R, G, B, A)", otherwise the path gets another attribute "stroke-opacity" to emulate the alpha channel. To minimize the document size, the SVG serializer uses automatically the shortest color representation: If a value like "#000000" is provided, the resulting document will have a color value of "#000". If the color is "#FF0000", the resulting color is not "#F00", but the web color name "red". light Default value ``None``. If this parameter is set to another value, the resulting image will have another path which is used to define the color of the light modules. If an alpha channel is used, the resulting path may have a "fill-opacity" attribute (for SVG version < 2.0) or the "fill" attribute has a "rgba(R, G, B, A)" value. xmldecl Boolean value (default: ``True``) indicating whether the document should have an XML declaration header. Set to ``False`` to omit the header. svgns Boolean value (default: ``True``) indicating whether the document should have an explicit SVG namespace declaration. Set to ``False`` to omit the namespace declaration. The latter might be useful if the document should be embedded into a HTML 5 document where the SVG namespace is implicitly defined. title String (default: ``None``) Optional title of the generated SVG document. desc String (default: ``None``) Optional description of the generated SVG document. svgid A string indicating the ID of the SVG document (if set to ``None`` (default), the SVG element won't have an ID). svgclass Default: "segno". The CSS class of the SVG document (if set to ``None``, the SVG element won't have a class). lineclass Default: "qrline". The CSS class of the path element (which draws the dark modules (if set to ``None``, the path won't have a class). omitsize Indicates if width and height attributes should be omitted (default: ``False``). If these attributes are omitted, a ``viewBox`` attribute will be added to the document. unit Default: ``None`` Indicates the unit for width / height and other coordinates. By default, the unit is unspecified and all values are in the user space. Valid values: em, ex, px, pt, pc, cm, mm, in, and percentages (any string is accepted, this parameter is not validated by the serializer) encoding Encoding of the XML document. "utf-8" by default. svgversion SVG version (default: ``None``). If specified (a float), the resulting document has an explicit "version" attribute. If set to ``None``, the document won't have a "version" attribute. This parameter is not validated. compresslevel Default: 9. This parameter is only valid, if a compressed SVG document should be created (file extension "svgz"). 1 is fastest and produces the least compression, 9 is slowest and produces the most. 0 is no compression. draw_transparent Indicates if transparent SVG paths should be added to the graphic (default: ``False``) nl Indicates if the document should have a trailing newline (default: ``True``) ================ ============================================================== .. _png: **Portable Network Graphics (PNG)** This writes either a grayscale (maybe with transparency) PNG (color type 0) or a palette-based (maybe with transparency) image (color type 3). If the dark / light values are ``None``, white or black, the serializer chooses the more compact grayscale mode, in all other cases a palette-based image is written. All :ref:`common keywords <common_keywords>` and :ref:`module colors <module_colors>` are supported. =============== ============================================================== Name Description =============== ============================================================== out Filename or :py:class:`io.BytesIO` kind "png" scale integer dark Default: "#000" (black) ``None`` is a valid value iff light is not ``None``. If set to ``None``, the dark modules become transparent. light Default value "#fff" (white) See keyword "dark" for further details. compresslevel Default: 9. Integer indicating the compression level for the ``IDAT`` (data) chunk. 1 is fastest and produces the least compression, 9 is slowest and produces the most. 0 is no compression. dpi Default: ``None``. Specifies the DPI value for the image. By default, the DPI value is unspecified. Please note that the DPI value is converted into meters (maybe with rounding errors) since PNG does not support the unit "dots per inch". =============== ============================================================== .. _eps: **Encapsulated PostScript (EPS)** All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.StringIO` kind "eps" scale integer or float dark Default: "#000" (black) light Default value: ``None`` (transparent light modules) ============= ============================================================== .. _pdf: **Portable Document Format (PDF)** All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.BytesIO` kind "pdf" scale integer or float dark Default: "#000" (black) light Default value: ``None`` (transparent light modules) compresslevel Default: 9. Integer indicating the compression level. 1 is fastest and produces the least compression, 9 is slowest and produces the most. 0 is no compression. ============= ============================================================== .. _txt: **Text (TXT)** Aside of "scale", all :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.StringIO` kind "txt" dark Default: "1" light Default: "0" ============= ============================================================== .. _ansi: **ANSI escape code** Supports the "border" keyword, only! ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.StringIO` kind "ans" ============= ============================================================== .. _pbm: **Portable Bitmap (PBM)** All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.BytesIO` kind "pbm" scale integer plain Default: False. Boolean to switch between the P4 and P1 format. If set to ``True``, the (outdated) P1 serialization format is used. ============= ============================================================== .. _pam: **Portable Arbitrary Map (PAM)** All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.BytesIO` kind "pam" scale integer dark Default: "#000" (black). light Default value "#fff" (white). Use ``None`` for transparent light modules. ============= ============================================================== .. _ppm: **Portable Pixmap (PPM)** All :ref:`common keywords <common_keywords>` and :ref:`module colors <module_colors>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.BytesIO` kind "ppm" scale integer dark Default: "#000" (black). light Default value "#fff" (white). ============= ============================================================== .. _latex: **LaTeX / PGF/TikZ** To use the output of this serializer, the ``PGF/TikZ`` (and optionally ``hyperref``) package is required in the LaTeX environment. The serializer itself does not depend on any external packages. All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.StringIO` kind "tex" scale integer or float dark LaTeX color name (default: "black"). The color is written "at it is", please ensure that the color is a standard color or it has been defined in the enclosing LaTeX document. url Default: ``None``. Optional URL where the QR code should point to. Requires the ``hyperref`` package in the LaTeX environment. ============= ============================================================== .. _xbm: **X BitMap (XBM)** All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.StringIO` kind "xbm" scale integer name Name of the variable (default: "img") ============= ============================================================== .. _xpm: **X PixMap (XPM)** All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.StringIO` kind "xpm" scale integer dark Default: "#000" (black). ``None`` indicates transparent dark modules. light Default value "#fff" (white) ``None`` indicates transparent light modules. name Name of the variable (default: "img") ============= ============================================================== :param out: A filename or a writable file-like object with a ``name`` attribute. Use the :paramref:`kind <segno.QRCode.save.kind>` parameter if `out` is a :py:class:`io.BytesIO` or :py:class:`io.StringIO` stream which don't have a ``name`` attribute. :param str kind: Default ``None``. If the desired output format cannot be determined from the :paramref:`out <segno.QRCode.save.out>` parameter, this parameter can be used to indicate the serialization format (i.e. "svg" to enforce SVG output). The value is case insensitive. :param kw: Any of the supported keywords by the specific serializer.
def save(self, out, kind=None, **kw): """\ Serializes the QR code in one of the supported formats. The serialization format depends on the filename extension. .. _common_keywords: **Common keywords** ========== ============================================================== Name Description ========== ============================================================== scale Integer or float indicating the size of a single module. Default: 1. The interpretation of the scaling factor depends on the serializer. For pixel-based output (like :ref:`PNG <png>`) the scaling factor is interpreted as pixel-size (1 = 1 pixel). :ref:`EPS <eps>` interprets ``1`` as 1 point (1/72 inch) per module. Some serializers (like :ref:`SVG <svg>`) accept float values. If the serializer does not accept float values, the value will be converted to an integer value (note: int(1.6) == 1). border Integer indicating the size of the quiet zone. If set to ``None`` (default), the recommended border size will be used (``4`` for QR codes, ``2`` for a Micro QR codes). A value of ``0`` indicates that border should be omitted. dark A string or tuple representing a color value for the dark modules. The default value is "black". The color can be provided as ``(R, G, B)`` tuple, as web color name (like "red") or in hexadecimal format (``#RGB`` or ``#RRGGBB``). Some serializers (i.e. :ref:`SVG <svg>` and :ref:`PNG <png>`) accept an alpha transparency value like ``#RRGGBBAA``. light A string or tuple representing a color for the light modules. See `dark` for valid values. The default value depends on the serializer. :ref:`SVG <svg>` uses no color (``None``) for light modules by default, other serializers, like :ref:`PNG <png>`, use "white" as default light color. ========== ============================================================== .. _module_colors: **Module Colors** =============== ======================================================= Name Description =============== ======================================================= finder_dark Color of the dark modules of the finder patterns Default: undefined, use value of "dark" finder_light Color of the light modules of the finder patterns Default: undefined, use value of "light" data_dark Color of the dark data modules Default: undefined, use value of "dark" data_light Color of the light data modules. Default: undefined, use value of "light". version_dark Color of the dark modules of the version information. Default: undefined, use value of "dark". version_light Color of the light modules of the version information, Default: undefined, use value of "light". format_dark Color of the dark modules of the format information. Default: undefined, use value of "dark". format_light Color of the light modules of the format information. Default: undefined, use value of "light". alignment_dark Color of the dark modules of the alignment patterns. Default: undefined, use value of "dark". alignment_light Color of the light modules of the alignment patterns. Default: undefined, use value of "light". timing_dark Color of the dark modules of the timing patterns. Default: undefined, use value of "dark". timing_light Color of the light modules of the timing patterns. Default: undefined, use value of "light". separator Color of the separator. Default: undefined, use value of "light". dark_module Color of the dark module (a single dark module which occurs in all QR Codes but not in Micro QR Codes. Default: undefined, use value of "dark". quiet_zone Color of the quiet zone / border. Default: undefined, use value of "light". =============== ======================================================= .. _svg: **Scalable Vector Graphics (SVG)** All :ref:`common keywords <common_keywords>` and :ref:`module colors <module_colors>` are supported. ================ ============================================================== Name Description ================ ============================================================== out Filename or :py:class:`io.BytesIO` kind "svg" or "svgz" (to create a gzip compressed SVG) scale integer or float dark Default: "#000" (black) ``None`` is a valid value. If set to ``None``, the resulting path won't have a "stroke" attribute. The "stroke" attribute may be defined via CSS (external). If an alpha channel is defined, the output depends of the used SVG version. For SVG versions >= 2.0, the "stroke" attribute will have a value like "rgba(R, G, B, A)", otherwise the path gets another attribute "stroke-opacity" to emulate the alpha channel. To minimize the document size, the SVG serializer uses automatically the shortest color representation: If a value like "#000000" is provided, the resulting document will have a color value of "#000". If the color is "#FF0000", the resulting color is not "#F00", but the web color name "red". light Default value ``None``. If this parameter is set to another value, the resulting image will have another path which is used to define the color of the light modules. If an alpha channel is used, the resulting path may have a "fill-opacity" attribute (for SVG version < 2.0) or the "fill" attribute has a "rgba(R, G, B, A)" value. xmldecl Boolean value (default: ``True``) indicating whether the document should have an XML declaration header. Set to ``False`` to omit the header. svgns Boolean value (default: ``True``) indicating whether the document should have an explicit SVG namespace declaration. Set to ``False`` to omit the namespace declaration. The latter might be useful if the document should be embedded into a HTML 5 document where the SVG namespace is implicitly defined. title String (default: ``None``) Optional title of the generated SVG document. desc String (default: ``None``) Optional description of the generated SVG document. svgid A string indicating the ID of the SVG document (if set to ``None`` (default), the SVG element won't have an ID). svgclass Default: "segno". The CSS class of the SVG document (if set to ``None``, the SVG element won't have a class). lineclass Default: "qrline". The CSS class of the path element (which draws the dark modules (if set to ``None``, the path won't have a class). omitsize Indicates if width and height attributes should be omitted (default: ``False``). If these attributes are omitted, a ``viewBox`` attribute will be added to the document. unit Default: ``None`` Indicates the unit for width / height and other coordinates. By default, the unit is unspecified and all values are in the user space. Valid values: em, ex, px, pt, pc, cm, mm, in, and percentages (any string is accepted, this parameter is not validated by the serializer) encoding Encoding of the XML document. "utf-8" by default. svgversion SVG version (default: ``None``). If specified (a float), the resulting document has an explicit "version" attribute. If set to ``None``, the document won't have a "version" attribute. This parameter is not validated. compresslevel Default: 9. This parameter is only valid, if a compressed SVG document should be created (file extension "svgz"). 1 is fastest and produces the least compression, 9 is slowest and produces the most. 0 is no compression. draw_transparent Indicates if transparent SVG paths should be added to the graphic (default: ``False``) nl Indicates if the document should have a trailing newline (default: ``True``) ================ ============================================================== .. _png: **Portable Network Graphics (PNG)** This writes either a grayscale (maybe with transparency) PNG (color type 0) or a palette-based (maybe with transparency) image (color type 3). If the dark / light values are ``None``, white or black, the serializer chooses the more compact grayscale mode, in all other cases a palette-based image is written. All :ref:`common keywords <common_keywords>` and :ref:`module colors <module_colors>` are supported. =============== ============================================================== Name Description =============== ============================================================== out Filename or :py:class:`io.BytesIO` kind "png" scale integer dark Default: "#000" (black) ``None`` is a valid value iff light is not ``None``. If set to ``None``, the dark modules become transparent. light Default value "#fff" (white) See keyword "dark" for further details. compresslevel Default: 9. Integer indicating the compression level for the ``IDAT`` (data) chunk. 1 is fastest and produces the least compression, 9 is slowest and produces the most. 0 is no compression. dpi Default: ``None``. Specifies the DPI value for the image. By default, the DPI value is unspecified. Please note that the DPI value is converted into meters (maybe with rounding errors) since PNG does not support the unit "dots per inch". =============== ============================================================== .. _eps: **Encapsulated PostScript (EPS)** All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.StringIO` kind "eps" scale integer or float dark Default: "#000" (black) light Default value: ``None`` (transparent light modules) ============= ============================================================== .. _pdf: **Portable Document Format (PDF)** All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.BytesIO` kind "pdf" scale integer or float dark Default: "#000" (black) light Default value: ``None`` (transparent light modules) compresslevel Default: 9. Integer indicating the compression level. 1 is fastest and produces the least compression, 9 is slowest and produces the most. 0 is no compression. ============= ============================================================== .. _txt: **Text (TXT)** Aside of "scale", all :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.StringIO` kind "txt" dark Default: "1" light Default: "0" ============= ============================================================== .. _ansi: **ANSI escape code** Supports the "border" keyword, only! ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.StringIO` kind "ans" ============= ============================================================== .. _pbm: **Portable Bitmap (PBM)** All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.BytesIO` kind "pbm" scale integer plain Default: False. Boolean to switch between the P4 and P1 format. If set to ``True``, the (outdated) P1 serialization format is used. ============= ============================================================== .. _pam: **Portable Arbitrary Map (PAM)** All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.BytesIO` kind "pam" scale integer dark Default: "#000" (black). light Default value "#fff" (white). Use ``None`` for transparent light modules. ============= ============================================================== .. _ppm: **Portable Pixmap (PPM)** All :ref:`common keywords <common_keywords>` and :ref:`module colors <module_colors>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.BytesIO` kind "ppm" scale integer dark Default: "#000" (black). light Default value "#fff" (white). ============= ============================================================== .. _latex: **LaTeX / PGF/TikZ** To use the output of this serializer, the ``PGF/TikZ`` (and optionally ``hyperref``) package is required in the LaTeX environment. The serializer itself does not depend on any external packages. All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.StringIO` kind "tex" scale integer or float dark LaTeX color name (default: "black"). The color is written "at it is", please ensure that the color is a standard color or it has been defined in the enclosing LaTeX document. url Default: ``None``. Optional URL where the QR code should point to. Requires the ``hyperref`` package in the LaTeX environment. ============= ============================================================== .. _xbm: **X BitMap (XBM)** All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.StringIO` kind "xbm" scale integer name Name of the variable (default: "img") ============= ============================================================== .. _xpm: **X PixMap (XPM)** All :ref:`common keywords <common_keywords>` are supported. ============= ============================================================== Name Description ============= ============================================================== out Filename or :py:class:`io.StringIO` kind "xpm" scale integer dark Default: "#000" (black). ``None`` indicates transparent dark modules. light Default value "#fff" (white) ``None`` indicates transparent light modules. name Name of the variable (default: "img") ============= ============================================================== :param out: A filename or a writable file-like object with a ``name`` attribute. Use the :paramref:`kind <segno.QRCode.save.kind>` parameter if `out` is a :py:class:`io.BytesIO` or :py:class:`io.StringIO` stream which don't have a ``name`` attribute. :param str kind: Default ``None``. If the desired output format cannot be determined from the :paramref:`out <segno.QRCode.save.out>` parameter, this parameter can be used to indicate the serialization format (i.e. "svg" to enforce SVG output). The value is case insensitive. :param kw: Any of the supported keywords by the specific serializer. """ writers.save(self.matrix, self._matrix_size, out, kind, **kw)
(self, out, kind=None, **kw)
39,250
segno
show
Displays this QR code. This method is mainly intended for debugging purposes. This method saves the QR code as an image (by default with a scaling factor of 10) to a temporary file and opens it with the standard PNG viewer application or within the standard webbrowser. The temporary file is deleted afterwards (unless :paramref:`delete_after <segno.QRCode.show.delete_after>` is set to ``None``). If this method does not show any result, try to increase the :paramref:`delete_after <segno.QRCode.show.delete_after>` value or set it to ``None`` :param delete_after: Time in seconds to wait till the temporary file is deleted. :type delete_after: int or None :param int scale: Integer indicating the size of a single module. :param border: Integer indicating the size of the quiet zone. If set to ``None`` (default), the recommended border size will be used. :type border: int or None :param dark: The color of the dark modules (default: black). :param light: The color of the light modules (default: white).
def show(self, delete_after=20, scale=10, border=None, dark='#000', light='#fff'): # pragma: no cover """\ Displays this QR code. This method is mainly intended for debugging purposes. This method saves the QR code as an image (by default with a scaling factor of 10) to a temporary file and opens it with the standard PNG viewer application or within the standard webbrowser. The temporary file is deleted afterwards (unless :paramref:`delete_after <segno.QRCode.show.delete_after>` is set to ``None``). If this method does not show any result, try to increase the :paramref:`delete_after <segno.QRCode.show.delete_after>` value or set it to ``None`` :param delete_after: Time in seconds to wait till the temporary file is deleted. :type delete_after: int or None :param int scale: Integer indicating the size of a single module. :param border: Integer indicating the size of the quiet zone. If set to ``None`` (default), the recommended border size will be used. :type border: int or None :param dark: The color of the dark modules (default: black). :param light: The color of the light modules (default: white). """ import os import time import tempfile import webbrowser import threading from urllib.parse import urljoin from urllib.request import pathname2url def delete_file(name): time.sleep(delete_after) try: os.unlink(name) except OSError: pass f = tempfile.NamedTemporaryFile('wb', suffix='.png', delete=False) try: self.save(f, scale=scale, dark=dark, light=light, border=border) except: # noqa: E722 f.close() os.unlink(f.name) raise f.close() webbrowser.open_new_tab(urljoin('file:', pathname2url(f.name))) if delete_after is not None: t = threading.Thread(target=delete_file, args=(f.name,)) t.start()
(self, delete_after=20, scale=10, border=None, dark='#000', light='#fff')
39,251
segno
svg_data_uri
Converts the QR code into an SVG data URI. The XML declaration is omitted by default (set :paramref:`xmldecl <segno.QRCode.svg_data_uri.xmldecl>` to ``True`` to enable it), further the newline is omitted by default (set ``nl`` to ``True`` to enable it). Aside from the missing `out` parameter, the different `xmldecl` and `nl` default values, and the additional parameters :paramref:`encode_minimal <segno.QRCode.svg_data_uri.encode_minimal>` and :paramref:`omit_charset <segno.QRCode.svg_data_uri.omit_charset>`, this method uses the same parameters as the usual SVG serializer, see :py:func:`save` and the available `SVG parameters <#svg>`_ .. note:: In order to embed a SVG image in HTML without generating a file, the :py:func:`svg_inline` method could serve better results, as it usually produces a smaller output. :param bool xmldecl: Indicates if the XML declaration should be serialized (default: ``False``) :param bool encode_minimal: Indicates if the resulting data URI should use minimal percent encoding (disabled by default). :param bool omit_charset: Indicates if the ``;charset=...`` should be omitted (disabled by default) :param bool nl: Indicates if the document should have a trailing newline (default: ``False``) :rtype: str
def svg_data_uri(self, xmldecl=False, encode_minimal=False, omit_charset=False, nl=False, **kw): """\ Converts the QR code into an SVG data URI. The XML declaration is omitted by default (set :paramref:`xmldecl <segno.QRCode.svg_data_uri.xmldecl>` to ``True`` to enable it), further the newline is omitted by default (set ``nl`` to ``True`` to enable it). Aside from the missing `out` parameter, the different `xmldecl` and `nl` default values, and the additional parameters :paramref:`encode_minimal <segno.QRCode.svg_data_uri.encode_minimal>` and :paramref:`omit_charset <segno.QRCode.svg_data_uri.omit_charset>`, this method uses the same parameters as the usual SVG serializer, see :py:func:`save` and the available `SVG parameters <#svg>`_ .. note:: In order to embed a SVG image in HTML without generating a file, the :py:func:`svg_inline` method could serve better results, as it usually produces a smaller output. :param bool xmldecl: Indicates if the XML declaration should be serialized (default: ``False``) :param bool encode_minimal: Indicates if the resulting data URI should use minimal percent encoding (disabled by default). :param bool omit_charset: Indicates if the ``;charset=...`` should be omitted (disabled by default) :param bool nl: Indicates if the document should have a trailing newline (default: ``False``) :rtype: str """ return writers.as_svg_data_uri(self.matrix, self._matrix_size, xmldecl=xmldecl, nl=nl, encode_minimal=encode_minimal, omit_charset=omit_charset, **kw)
(self, xmldecl=False, encode_minimal=False, omit_charset=False, nl=False, **kw)
39,252
segno
svg_inline
Returns an SVG representation which is embeddable into HTML5 contexts. Due to the fact that HTML5 directly supports SVG, various elements of an SVG document can or should be suppressed (i.e. the XML declaration and the SVG namespace). This method returns a string that can be used in an HTML context. This method uses the same parameters as the usual SVG serializer, see :py:func:`save` and the available `SVG parameters <#svg>`_ (the ``out`` and ``kind`` parameters are not supported). The returned string can be used directly in `Jinja <https://jinja.palletsprojects.com/>`_ and `Django <https://www.djangoproject.com/>`_ templates, provided the ``safe`` filter is used which marks a string as not requiring further HTML escaping prior to output. :: <div>{{ qr.svg_inline(dark='#228b22', scale=3) | safe }}</div> :rtype: str
def svg_inline(self, **kw): """\ Returns an SVG representation which is embeddable into HTML5 contexts. Due to the fact that HTML5 directly supports SVG, various elements of an SVG document can or should be suppressed (i.e. the XML declaration and the SVG namespace). This method returns a string that can be used in an HTML context. This method uses the same parameters as the usual SVG serializer, see :py:func:`save` and the available `SVG parameters <#svg>`_ (the ``out`` and ``kind`` parameters are not supported). The returned string can be used directly in `Jinja <https://jinja.palletsprojects.com/>`_ and `Django <https://www.djangoproject.com/>`_ templates, provided the ``safe`` filter is used which marks a string as not requiring further HTML escaping prior to output. :: <div>{{ qr.svg_inline(dark='#228b22', scale=3) | safe }}</div> :rtype: str """ buff = io.BytesIO() self.save(buff, kind='svg', xmldecl=False, svgns=False, nl=False, **kw) return buff.getvalue().decode(kw.get('encoding', 'utf-8'))
(self, **kw)
39,253
segno
symbol_size
Returns the symbol size (width x height) with the provided border and scaling factor. :param scale: Indicates the size of a single module (default: 1). The size of a module depends on the used output format; i.e. in a PNG context, a scaling factor of 2 indicates that a module has a size of 2 x 2 pixel. Some outputs (i.e. SVG) accept floating point values. :type scale: int or float :param int border: The border size or ``None`` to specify the default quiet zone (4 for QR Codes, 2 for Micro QR Codes). :rtype: tuple (width, height)
def symbol_size(self, scale=1, border=None): """\ Returns the symbol size (width x height) with the provided border and scaling factor. :param scale: Indicates the size of a single module (default: 1). The size of a module depends on the used output format; i.e. in a PNG context, a scaling factor of 2 indicates that a module has a size of 2 x 2 pixel. Some outputs (i.e. SVG) accept floating point values. :type scale: int or float :param int border: The border size or ``None`` to specify the default quiet zone (4 for QR Codes, 2 for Micro QR Codes). :rtype: tuple (width, height) """ return utils.get_symbol_size(self._matrix_size, scale=scale, border=border)
(self, scale=1, border=None)
39,254
segno
terminal
Serializes the matrix as ANSI escape code or Unicode Block Elements (if ``compact`` is ``True``). Under Windows, no ANSI escape sequence is generated but the Windows API is used *unless* :paramref:`out <segno.QRCode.terminal.out>` is a writable object or using WinAPI fails or if ``compact`` is ``True``. :param out: Filename or a file-like object supporting to write text. If ``None`` (default), the matrix is written to :py:class:`sys.stdout`. :param int border: Integer indicating the size of the quiet zone. If set to ``None`` (default), the recommended border size will be used (``4`` for QR Codes, ``2`` for Micro QR Codes). :param bool compact: Indicates if a more compact QR code should be shown (default: ``False``).
def terminal(self, out=None, border=None, compact=False): """\ Serializes the matrix as ANSI escape code or Unicode Block Elements (if ``compact`` is ``True``). Under Windows, no ANSI escape sequence is generated but the Windows API is used *unless* :paramref:`out <segno.QRCode.terminal.out>` is a writable object or using WinAPI fails or if ``compact`` is ``True``. :param out: Filename or a file-like object supporting to write text. If ``None`` (default), the matrix is written to :py:class:`sys.stdout`. :param int border: Integer indicating the size of the quiet zone. If set to ``None`` (default), the recommended border size will be used (``4`` for QR Codes, ``2`` for Micro QR Codes). :param bool compact: Indicates if a more compact QR code should be shown (default: ``False``). """ if compact: writers.write_terminal_compact(self.matrix, self._matrix_size, out or sys.stdout, border) elif out is None and sys.platform == 'win32': # pragma: no cover # Windows < 10 does not support ANSI escape sequences, try to # call the a Windows specific terminal output which uses the # Windows API. try: writers.write_terminal_win(self.matrix, self._matrix_size, border) except OSError: # Use the standard output even if it may print garbage writers.write_terminal(self.matrix, self._matrix_size, sys.stdout, border) else: writers.write_terminal(self.matrix, self._matrix_size, out or sys.stdout, border)
(self, out=None, border=None, compact=False)
39,255
segno
QRCodeSequence
Represents a sequence of 1 .. n (max. n = 16) :py:class:`QRCode` instances. Iff this sequence contains only one item, it behaves like :py:class:`QRCode`.
class QRCodeSequence(tuple): """\ Represents a sequence of 1 .. n (max. n = 16) :py:class:`QRCode` instances. Iff this sequence contains only one item, it behaves like :py:class:`QRCode`. """ __slots__ = () def __new__(cls, qrcodes): return super(QRCodeSequence, cls).__new__(cls, qrcodes) def terminal(self, out=None, border=None, compact=False): """\ Serializes the sequence of QR codes as ANSI escape code. See :py:meth:`QRCode.terminal()` for details. """ for qrcode in self: qrcode.terminal(out=out, border=border, compact=compact) def save(self, out, kind=None, **kw): """\ Saves the sequence of QR codes to `out`. If `out` is a filename, this method modifies the filename and adds ``<Number of QR codes>-<Current QR code>`` to it. ``structured-append.svg`` becomes (if the sequence contains two QR codes): ``structured-append-02-01.svg`` and ``structured-append-02-02.svg`` Please note that using a file or file-like object may result into an invalid serialization format since all QR codes are written to the same output. See :py:meth:`QRCode.save()` for a detailed enumeration of options. """ filename = lambda o, n: o # noqa: E731 m = len(self) if m > 1 and isinstance(out, str): dot_idx = out.rfind('.') if dot_idx > -1: out = out[:dot_idx] + '-{0:02d}-{1:02d}' + out[dot_idx:] filename = lambda o, n: o.format(m, n) # noqa: E731 for n, qrcode in enumerate(self, start=1): qrcode.save(filename(out, n), kind=kind, **kw) def __getattr__(self, item): """\ Behaves like :py:class:`QRCode` iff this sequence contains a single item. """ if len(self) == 1: return getattr(self[0], item) raise AttributeError("{0} object has no attribute '{1}'" .format(self.__class__, item))
(qrcodes)
39,256
segno
__getattr__
Behaves like :py:class:`QRCode` iff this sequence contains a single item.
def __getattr__(self, item): """\ Behaves like :py:class:`QRCode` iff this sequence contains a single item. """ if len(self) == 1: return getattr(self[0], item) raise AttributeError("{0} object has no attribute '{1}'" .format(self.__class__, item))
(self, item)
39,257
segno
__new__
null
def __new__(cls, qrcodes): return super(QRCodeSequence, cls).__new__(cls, qrcodes)
(cls, qrcodes)
39,258
segno
save
Saves the sequence of QR codes to `out`. If `out` is a filename, this method modifies the filename and adds ``<Number of QR codes>-<Current QR code>`` to it. ``structured-append.svg`` becomes (if the sequence contains two QR codes): ``structured-append-02-01.svg`` and ``structured-append-02-02.svg`` Please note that using a file or file-like object may result into an invalid serialization format since all QR codes are written to the same output. See :py:meth:`QRCode.save()` for a detailed enumeration of options.
def save(self, out, kind=None, **kw): """\ Saves the sequence of QR codes to `out`. If `out` is a filename, this method modifies the filename and adds ``<Number of QR codes>-<Current QR code>`` to it. ``structured-append.svg`` becomes (if the sequence contains two QR codes): ``structured-append-02-01.svg`` and ``structured-append-02-02.svg`` Please note that using a file or file-like object may result into an invalid serialization format since all QR codes are written to the same output. See :py:meth:`QRCode.save()` for a detailed enumeration of options. """ filename = lambda o, n: o # noqa: E731 m = len(self) if m > 1 and isinstance(out, str): dot_idx = out.rfind('.') if dot_idx > -1: out = out[:dot_idx] + '-{0:02d}-{1:02d}' + out[dot_idx:] filename = lambda o, n: o.format(m, n) # noqa: E731 for n, qrcode in enumerate(self, start=1): qrcode.save(filename(out, n), kind=kind, **kw)
(self, out, kind=None, **kw)
39,259
segno
terminal
Serializes the sequence of QR codes as ANSI escape code. See :py:meth:`QRCode.terminal()` for details.
def terminal(self, out=None, border=None, compact=False): """\ Serializes the sequence of QR codes as ANSI escape code. See :py:meth:`QRCode.terminal()` for details. """ for qrcode in self: qrcode.terminal(out=out, border=border, compact=compact)
(self, out=None, border=None, compact=False)
39,263
segno
make
Creates a (Micro) QR Code. This is main entry point to create QR Codes and Micro QR Codes. Aside from `content`, all parameters are optional and an optimal (minimal) (Micro) QR code with a maximal error correction level is generated. :param content: The data to encode. Either a Unicode string, an integer or bytes. If bytes are provided, the `encoding` parameter should be used to specify the used encoding. :type content: str, int, bytes :param error: Error correction level. If ``None`` (default), error correction level ``L`` is used (note: Micro QR Code version M1 does not support any error correction. If an explicit error correction level is used, a M1 QR code won't be generated). Valid values: ``None`` (allowing generation of M1 codes or use error correction level "L" or better see :paramref:`boost_error <segno.make.boost_error>`), "L", "M", "Q", "H" (error correction level "H" isn't available for Micro QR Codes). ===================================== =========================== Error correction level Error correction capability ===================================== =========================== L (Segno's default unless version M1) recovers 7% of data M recovers 15% of data Q recovers 25% of data H (not available for Micro QR Codes) recovers 30% of data ===================================== =========================== Higher error levels may require larger QR codes (see also :paramref:`version <segno.make.version>` parameter). The `error` parameter is case insensitive. See also the :paramref:`boost_error <segno.make.boost_error>` parameter. :type error: str or None :param version: QR Code version. If the value is ``None`` (default), the minimal version which fits for the input data will be used. Valid values: "M1", "M2", "M3", "M4" (for Micro QR codes) or an integer between 1 and 40 (for QR codes). The `version` parameter is case insensitive. :type version: int, str or None :param mode: "numeric", "alphanumeric", "byte", "kanji" or "hanzi". If the value is ``None`` (default) the appropriate mode will automatically be determined. If `version` refers to a Micro QR code, this function may raise a :py:exc:`ValueError` if the provided `mode` is not supported. The `mode` parameter is case insensitive. ============ ======================= Mode (Micro) QR Code Version ============ ======================= numeric 1 - 40, M1, M2, M3, M4 alphanumeric 1 - 40, M2, M3, M4 byte 1 - 40, M3, M4 kanji 1 - 40, M3, M4 hanzi 1 - 40 ============ ======================= .. note:: The Hanzi mode may not be supported by all QR code readers since it is not part of ISO/IEC 18004:2015(E). For this reason, this mode must be specified explicitly by the user:: import segno qrcode = segno.make('书读百遍其义自现', mode='hanzi') :type mode: str or None :param mask: Data mask. If the value is ``None`` (default), the appropriate data mask is chosen automatically. If the `mask` parameter is provided, this function may raise a :py:exc:`ValueError` if the mask is invalid. :type mask: int or None :param encoding: Indicates the encoding in mode "byte". By default (`encoding` is ``None``) the implementation tries to use the standard conform ISO/IEC 8859-1 encoding and if it does not fit, it will use UTF-8. Note that no ECI mode indicator is inserted by default (see :paramref:`eci <segno.make.eci>`). The `encoding` parameter is case insensitive. :type encoding: str or None :param bool eci: Indicates if binary data which does not use the default encoding (ISO/IEC 8859-1) should enforce the ECI mode. Since a lot of QR code readers do not support the ECI mode, this feature is disabled by default and the data is encoded in the provided `encoding` using the usual "byte" mode. Set `eci` to ``True`` if an ECI header should be inserted into the QR Code. Note that the implementation may not know the ECI designator for the provided `encoding` and may raise an exception if the ECI designator cannot be found. The ECI mode is not supported by Micro QR Codes. :param micro: If :paramref:`version <segno.make.version>` is ``None`` (default) this parameter can be used to allow the creation of a Micro QR code. If set to ``False``, a QR code is generated. If set to ``None`` (default) a Micro QR code may be generated if applicable. If set to ``True`` the algorithm generates a Micro QR Code or raises an exception if the `mode` is not compatible or the `content` is too large for Micro QR codes. :type micro: bool or None :param bool boost_error: Indicates if the error correction level may be increased if it does not affect the version (default: ``True``). If set to ``True``, the :paramref:`error <segno.make.error>` parameter is interpreted as minimum error level. If set to ``False``, the resulting (Micro) QR code uses the provided `error` level (or the default error correction level, if error is ``None``) :raises: :py:exc:`ValueError` or :py:exc:`DataOverflowError`: In case the data does not fit into a (Micro) QR Code or it does not fit into the provided :paramref:`version`. :rtype: QRCode
def make(content, error=None, version=None, mode=None, mask=None, encoding=None, eci=False, micro=None, boost_error=True): """\ Creates a (Micro) QR Code. This is main entry point to create QR Codes and Micro QR Codes. Aside from `content`, all parameters are optional and an optimal (minimal) (Micro) QR code with a maximal error correction level is generated. :param content: The data to encode. Either a Unicode string, an integer or bytes. If bytes are provided, the `encoding` parameter should be used to specify the used encoding. :type content: str, int, bytes :param error: Error correction level. If ``None`` (default), error correction level ``L`` is used (note: Micro QR Code version M1 does not support any error correction. If an explicit error correction level is used, a M1 QR code won't be generated). Valid values: ``None`` (allowing generation of M1 codes or use error correction level "L" or better see :paramref:`boost_error <segno.make.boost_error>`), "L", "M", "Q", "H" (error correction level "H" isn't available for Micro QR Codes). ===================================== =========================== Error correction level Error correction capability ===================================== =========================== L (Segno's default unless version M1) recovers 7% of data M recovers 15% of data Q recovers 25% of data H (not available for Micro QR Codes) recovers 30% of data ===================================== =========================== Higher error levels may require larger QR codes (see also :paramref:`version <segno.make.version>` parameter). The `error` parameter is case insensitive. See also the :paramref:`boost_error <segno.make.boost_error>` parameter. :type error: str or None :param version: QR Code version. If the value is ``None`` (default), the minimal version which fits for the input data will be used. Valid values: "M1", "M2", "M3", "M4" (for Micro QR codes) or an integer between 1 and 40 (for QR codes). The `version` parameter is case insensitive. :type version: int, str or None :param mode: "numeric", "alphanumeric", "byte", "kanji" or "hanzi". If the value is ``None`` (default) the appropriate mode will automatically be determined. If `version` refers to a Micro QR code, this function may raise a :py:exc:`ValueError` if the provided `mode` is not supported. The `mode` parameter is case insensitive. ============ ======================= Mode (Micro) QR Code Version ============ ======================= numeric 1 - 40, M1, M2, M3, M4 alphanumeric 1 - 40, M2, M3, M4 byte 1 - 40, M3, M4 kanji 1 - 40, M3, M4 hanzi 1 - 40 ============ ======================= .. note:: The Hanzi mode may not be supported by all QR code readers since it is not part of ISO/IEC 18004:2015(E). For this reason, this mode must be specified explicitly by the user:: import segno qrcode = segno.make('书读百遍其义自现', mode='hanzi') :type mode: str or None :param mask: Data mask. If the value is ``None`` (default), the appropriate data mask is chosen automatically. If the `mask` parameter is provided, this function may raise a :py:exc:`ValueError` if the mask is invalid. :type mask: int or None :param encoding: Indicates the encoding in mode "byte". By default (`encoding` is ``None``) the implementation tries to use the standard conform ISO/IEC 8859-1 encoding and if it does not fit, it will use UTF-8. Note that no ECI mode indicator is inserted by default (see :paramref:`eci <segno.make.eci>`). The `encoding` parameter is case insensitive. :type encoding: str or None :param bool eci: Indicates if binary data which does not use the default encoding (ISO/IEC 8859-1) should enforce the ECI mode. Since a lot of QR code readers do not support the ECI mode, this feature is disabled by default and the data is encoded in the provided `encoding` using the usual "byte" mode. Set `eci` to ``True`` if an ECI header should be inserted into the QR Code. Note that the implementation may not know the ECI designator for the provided `encoding` and may raise an exception if the ECI designator cannot be found. The ECI mode is not supported by Micro QR Codes. :param micro: If :paramref:`version <segno.make.version>` is ``None`` (default) this parameter can be used to allow the creation of a Micro QR code. If set to ``False``, a QR code is generated. If set to ``None`` (default) a Micro QR code may be generated if applicable. If set to ``True`` the algorithm generates a Micro QR Code or raises an exception if the `mode` is not compatible or the `content` is too large for Micro QR codes. :type micro: bool or None :param bool boost_error: Indicates if the error correction level may be increased if it does not affect the version (default: ``True``). If set to ``True``, the :paramref:`error <segno.make.error>` parameter is interpreted as minimum error level. If set to ``False``, the resulting (Micro) QR code uses the provided `error` level (or the default error correction level, if error is ``None``) :raises: :py:exc:`ValueError` or :py:exc:`DataOverflowError`: In case the data does not fit into a (Micro) QR Code or it does not fit into the provided :paramref:`version`. :rtype: QRCode """ return QRCode(encoder.encode(content, error, version, mode, mask, encoding, eci, micro, boost_error=boost_error))
(content, error=None, version=None, mode=None, mask=None, encoding=None, eci=False, micro=None, boost_error=True)
39,264
segno
make_micro
Creates a Micro QR code. See :py:func:`make` for a description of the parameters. Note: Error correction level "H" isn't available for Micro QR codes. If used, this function raises a :py:class:`segno.ErrorLevelError`. :rtype: QRCode
def make_micro(content, error=None, version=None, mode=None, mask=None, encoding=None, boost_error=True): """\ Creates a Micro QR code. See :py:func:`make` for a description of the parameters. Note: Error correction level "H" isn't available for Micro QR codes. If used, this function raises a :py:class:`segno.ErrorLevelError`. :rtype: QRCode """ return make(content, error=error, version=version, mode=mode, mask=mask, encoding=encoding, micro=True, boost_error=boost_error)
(content, error=None, version=None, mode=None, mask=None, encoding=None, boost_error=True)
39,265
segno
make_qr
Creates a QR code (never a Micro QR code). See :py:func:`make` for a description of the parameters. :rtype: QRCode
def make_qr(content, error=None, version=None, mode=None, mask=None, encoding=None, eci=False, boost_error=True): """\ Creates a QR code (never a Micro QR code). See :py:func:`make` for a description of the parameters. :rtype: QRCode """ return make(content, error=error, version=version, mode=mode, mask=mask, encoding=encoding, eci=eci, micro=False, boost_error=boost_error)
(content, error=None, version=None, mode=None, mask=None, encoding=None, eci=False, boost_error=True)
39,266
segno
make_sequence
Creates a sequence of QR codes using the Structured Append mode. If the content fits into one QR code and neither ``version`` nor ``symbol_count`` is provided, this function may return a sequence with one QR Code which does not use the Structured Append mode. Otherwise a sequence of 2 .. n (max. n = 16) QR codes is returned which use the Structured Append mode. The Structured Append mode allows to split the content over a number (max. 16) QR Codes. The Structured Append mode isn't available for Micro QR Codes, therefor the returned sequence contains QR codes, only. Since this function returns an iterable object, it may be used as follows: .. code-block:: python for i, qrcode in enumerate(segno.make_sequence(data, symbol_count=2)): qrcode.save('seq-%d.svg' % i, scale=10, color='darkblue') The number of QR codes is determined by the `version` or `symbol_count` parameter. See :py:func:`make` for a description of the other parameters. :param int symbol_count: Number of symbols. :rtype: QRCodeSequence
def make_sequence(content, error=None, version=None, mode=None, mask=None, encoding=None, boost_error=True, symbol_count=None): """\ Creates a sequence of QR codes using the Structured Append mode. If the content fits into one QR code and neither ``version`` nor ``symbol_count`` is provided, this function may return a sequence with one QR Code which does not use the Structured Append mode. Otherwise a sequence of 2 .. n (max. n = 16) QR codes is returned which use the Structured Append mode. The Structured Append mode allows to split the content over a number (max. 16) QR Codes. The Structured Append mode isn't available for Micro QR Codes, therefor the returned sequence contains QR codes, only. Since this function returns an iterable object, it may be used as follows: .. code-block:: python for i, qrcode in enumerate(segno.make_sequence(data, symbol_count=2)): qrcode.save('seq-%d.svg' % i, scale=10, color='darkblue') The number of QR codes is determined by the `version` or `symbol_count` parameter. See :py:func:`make` for a description of the other parameters. :param int symbol_count: Number of symbols. :rtype: QRCodeSequence """ return QRCodeSequence(map(QRCode, encoder.encode_sequence(content, error=error, version=version, mode=mode, mask=mask, encoding=encoding, boost_error=boost_error, symbol_count=symbol_count)))
(content, error=None, version=None, mode=None, mask=None, encoding=None, boost_error=True, symbol_count=None)
39,270
sparkypandy._column
Columny
null
class Columny(Column): # type: ignore def __init__(self, jc: JavaObject, df_sparky: DataFrame): super().__init__(jc=jc) self.df_sparky = df_sparky @property def _name(self) -> str: return cast(str, self._jc.toString()) @classmethod def from_spark(cls, col: Column, df_sparky: DataFramy) -> Columny: # noinspection PyProtectedMember return cls(jc=col._jc, df_sparky=df_sparky) def to_pandas(self) -> pd.Series: # noinspection PyTypeChecker df: pd.DataFrame = self.df_sparky.select(self._name).toPandas() return df[self._name] # def mean(self) -> float: # r = df_spark.select(F.mean("a").alias("result")).collect()[0].result
(jc: 'JavaObject', df_sparky: 'DataFrame')
39,271
pyspark.sql.column
_
binary operator
def _bin_op( name: str, doc: str = "binary operator", ) -> Callable[ ["Column", Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"]], "Column" ]: """Create a method for given binary operator""" def _( self: "Column", other: Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"], ) -> "Column": jc = other._jc if isinstance(other, Column) else other njc = getattr(self._jc, name)(jc) return Column(njc) _.__doc__ = doc return _
(self: 'Column', other: Union[ForwardRef('Column'), ForwardRef('LiteralType'), ForwardRef('DecimalLiteral'), ForwardRef('DateTimeLiteral')]) -> 'Column'
39,273
pyspark.sql.column
__nonzero__
null
def __nonzero__(self) -> None: raise PySparkValueError( error_class="CANNOT_CONVERT_COLUMN_INTO_BOOL", message_parameters={}, )
(self) -> NoneType
39,274
pyspark.sql.column
__contains__
null
def __contains__(self, item: Any) -> None: raise PySparkValueError( error_class="CANNOT_APPLY_IN_FOR_COLUMN", message_parameters={}, )
(self, item: Any) -> NoneType
39,276
pyspark.sql.column
__eq__
binary function
def __eq__( # type: ignore[override] self, other: Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"], ) -> "Column": """binary function""" return _bin_op("equalTo")(self, other)
(self, other: Union[ForwardRef('Column'), ForwardRef('LiteralType'), ForwardRef('DecimalLiteral'), ForwardRef('DateTimeLiteral')]) -> 'Column'
39,278
pyspark.sql.column
__getattr__
An expression that gets an item at position ``ordinal`` out of a list, or gets an item by key out of a dict. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- item a literal value. Returns ------- :class:`Column` Column representing the item got by key out of a dict. Examples -------- >>> df = spark.createDataFrame([('abcedfg', {"key": "value"})], ["l", "d"]) >>> df.select(df.d.key).show() +------+ |d[key]| +------+ | value| +------+
def __getattr__(self, item: Any) -> "Column": """ An expression that gets an item at position ``ordinal`` out of a list, or gets an item by key out of a dict. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- item a literal value. Returns ------- :class:`Column` Column representing the item got by key out of a dict. Examples -------- >>> df = spark.createDataFrame([('abcedfg', {"key": "value"})], ["l", "d"]) >>> df.select(df.d.key).show() +------+ |d[key]| +------+ | value| +------+ """ if item.startswith("__"): raise PySparkAttributeError( error_class="CANNOT_ACCESS_TO_DUNDER", message_parameters={}, ) return self[item]
(self, item: Any) -> pyspark.sql.column.Column
39,279
pyspark.sql.column
__getitem__
An expression that gets an item at position ``ordinal`` out of a list, or gets an item by key out of a dict. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- k a literal value, or a slice object without step. Returns ------- :class:`Column` Column representing the item got by key out of a dict, or substrings sliced by the given slice object. Examples -------- >>> df = spark.createDataFrame([('abcedfg', {"key": "value"})], ["l", "d"]) >>> df.select(df.l[slice(1, 3)], df.d['key']).show() +------------------+------+ |substring(l, 1, 3)|d[key]| +------------------+------+ | abc| value| +------------------+------+
def __getitem__(self, k: Any) -> "Column": """ An expression that gets an item at position ``ordinal`` out of a list, or gets an item by key out of a dict. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- k a literal value, or a slice object without step. Returns ------- :class:`Column` Column representing the item got by key out of a dict, or substrings sliced by the given slice object. Examples -------- >>> df = spark.createDataFrame([('abcedfg', {"key": "value"})], ["l", "d"]) >>> df.select(df.l[slice(1, 3)], df.d['key']).show() +------------------+------+ |substring(l, 1, 3)|d[key]| +------------------+------+ | abc| value| +------------------+------+ """ if isinstance(k, slice): if k.step is not None: raise PySparkValueError( error_class="SLICE_WITH_STEP", message_parameters={}, ) return self.substr(k.start, k.stop) else: return _bin_op("apply")(self, k)
(self, k: Any) -> pyspark.sql.column.Column
39,281
sparkypandy._column
__init__
null
def __init__(self, jc: JavaObject, df_sparky: DataFrame): super().__init__(jc=jc) self.df_sparky = df_sparky
(self, jc: py4j.java_gateway.JavaObject, df_sparky: pyspark.sql.dataframe.DataFrame)
39,282
pyspark.sql.column
_
def _func_op(name: str, doc: str = "") -> Callable[["Column"], "Column"]: def _(self: "Column") -> "Column": sc = get_active_spark_context() jc = getattr(cast(JVMView, sc._jvm).functions, name)(self._jc) return Column(jc) _.__doc__ = doc return _
(self: pyspark.sql.column.Column) -> pyspark.sql.column.Column
39,283
pyspark.sql.column
__iter__
null
def __iter__(self) -> None: raise PySparkTypeError( error_class="NOT_ITERABLE", message_parameters={"objectName": "Column"} )
(self) -> NoneType
39,288
pyspark.sql.column
__ne__
binary function
def __ne__( # type: ignore[override] self, other: Any, ) -> "Column": """binary function""" return _bin_op("notEqual")(self, other)
(self, other: Any) -> pyspark.sql.column.Column
39,292
pyspark.sql.column
_
binary function
def _bin_func_op( name: str, reverse: bool = False, doc: str = "binary function", ) -> Callable[["Column", Union["Column", "LiteralType", "DecimalLiteral"]], "Column"]: def _(self: "Column", other: Union["Column", "LiteralType", "DecimalLiteral"]) -> "Column": sc = get_active_spark_context() fn = getattr(cast(JVMView, sc._jvm).functions, name) jc = other._jc if isinstance(other, Column) else _create_column_from_literal(other) njc = fn(self._jc, jc) if not reverse else fn(jc, self._jc) return Column(njc) _.__doc__ = doc return _
(self: 'Column', other: Union[ForwardRef('Column'), ForwardRef('LiteralType'), ForwardRef('DecimalLiteral')]) -> 'Column'
39,295
pyspark.sql.column
_
binary operator
def _reverse_op( name: str, doc: str = "binary operator", ) -> Callable[["Column", Union["LiteralType", "DecimalLiteral"]], "Column"]: """Create a method for binary operator (this object is on right side)""" def _(self: "Column", other: Union["LiteralType", "DecimalLiteral"]) -> "Column": jother = _create_column_from_literal(other) jc = getattr(jother, name)(self._jc) return Column(jc) _.__doc__ = doc return _
(self: 'Column', other: Union[ForwardRef('LiteralType'), ForwardRef('DecimalLiteral')]) -> 'Column'
39,296
pyspark.sql.column
__repr__
null
def __repr__(self) -> str: return "Column<'%s'>" % self._jc.toString()
(self) -> str
39,305
pyspark.sql.column
alias
Returns this column aliased with a new name or names (in the case of expressions that return more than one column, such as explode). .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- alias : str desired column names (collects all positional arguments passed) Other Parameters ---------------- metadata: dict a dict of information to be stored in ``metadata`` attribute of the corresponding :class:`StructField <pyspark.sql.types.StructField>` (optional, keyword only argument) .. versionchanged:: 2.2.0 Added optional ``metadata`` argument. Returns ------- :class:`Column` Column representing whether each element of Column is aliased with new name or names. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.age.alias("age2")).collect() [Row(age2=2), Row(age2=5)] >>> df.select(df.age.alias("age3", metadata={'max': 99})).schema['age3'].metadata['max'] 99
def alias(self, *alias: str, **kwargs: Any) -> "Column": """ Returns this column aliased with a new name or names (in the case of expressions that return more than one column, such as explode). .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- alias : str desired column names (collects all positional arguments passed) Other Parameters ---------------- metadata: dict a dict of information to be stored in ``metadata`` attribute of the corresponding :class:`StructField <pyspark.sql.types.StructField>` (optional, keyword only argument) .. versionchanged:: 2.2.0 Added optional ``metadata`` argument. Returns ------- :class:`Column` Column representing whether each element of Column is aliased with new name or names. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.age.alias("age2")).collect() [Row(age2=2), Row(age2=5)] >>> df.select(df.age.alias("age3", metadata={'max': 99})).schema['age3'].metadata['max'] 99 """ metadata = kwargs.pop("metadata", None) assert not kwargs, "Unexpected kwargs where passed: %s" % kwargs sc = get_active_spark_context() if len(alias) == 1: if metadata: assert sc._jvm is not None jmeta = sc._jvm.org.apache.spark.sql.types.Metadata.fromJson(json.dumps(metadata)) return Column(getattr(self._jc, "as")(alias[0], jmeta)) else: return Column(getattr(self._jc, "as")(alias[0])) else: if metadata: raise PySparkValueError( error_class="ONLY_ALLOWED_FOR_SINGLE_COLUMN", message_parameters={"arg_name": "metadata"}, ) return Column(getattr(self._jc, "as")(_to_seq(sc, list(alias))))
(self, *alias: str, **kwargs: Any) -> pyspark.sql.column.Column
39,306
pyspark.sql.column
_
Returns a sort expression based on the ascending order of the column. .. versionchanged:: 3.4.0 Supports Spark Connect. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([('Tom', 80), ('Alice', None)], ["name", "height"]) >>> df.select(df.name).orderBy(df.name.asc()).collect() [Row(name='Alice'), Row(name='Tom')]
def _unary_op( name: str, doc: str = "unary operator", ) -> Callable[["Column"], "Column"]: """Create a method for given unary operator""" def _(self: "Column") -> "Column": jc = getattr(self._jc, name)() return Column(jc) _.__doc__ = doc return _
(self: pyspark.sql.column.Column) -> pyspark.sql.column.Column
39,307
pyspark.sql.column
_
Returns a sort expression based on ascending order of the column, and null values return before non-null values. .. versionadded:: 2.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([('Tom', 80), (None, 60), ('Alice', None)], ["name", "height"]) >>> df.select(df.name).orderBy(df.name.asc_nulls_first()).collect() [Row(name=None), Row(name='Alice'), Row(name='Tom')]
def _unary_op( name: str, doc: str = "unary operator", ) -> Callable[["Column"], "Column"]: """Create a method for given unary operator""" def _(self: "Column") -> "Column": jc = getattr(self._jc, name)() return Column(jc) _.__doc__ = doc return _
(self: pyspark.sql.column.Column) -> pyspark.sql.column.Column
39,308
pyspark.sql.column
_
Returns a sort expression based on ascending order of the column, and null values appear after non-null values. .. versionadded:: 2.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([('Tom', 80), (None, 60), ('Alice', None)], ["name", "height"]) >>> df.select(df.name).orderBy(df.name.asc_nulls_last()).collect() [Row(name='Alice'), Row(name='Tom'), Row(name=None)]
def _unary_op( name: str, doc: str = "unary operator", ) -> Callable[["Column"], "Column"]: """Create a method for given unary operator""" def _(self: "Column") -> "Column": jc = getattr(self._jc, name)() return Column(jc) _.__doc__ = doc return _
(self: pyspark.sql.column.Column) -> pyspark.sql.column.Column
39,309
pyspark.sql.column
cast
:func:`astype` is an alias for :func:`cast`. .. versionadded:: 1.4
def cast(self, dataType: Union[DataType, str]) -> "Column": """ Casts the column into type ``dataType``. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- dataType : :class:`DataType` or str a DataType or Python string literal with a DDL-formatted string to use when parsing the column to the same type. Returns ------- :class:`Column` Column representing whether each element of Column is cast into new type. Examples -------- >>> from pyspark.sql.types import StringType >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.age.cast("string").alias('ages')).collect() [Row(ages='2'), Row(ages='5')] >>> df.select(df.age.cast(StringType()).alias('ages')).collect() [Row(ages='2'), Row(ages='5')] """ if isinstance(dataType, str): jc = self._jc.cast(dataType) elif isinstance(dataType, DataType): from pyspark.sql import SparkSession spark = SparkSession._getActiveSessionOrCreate() jdt = spark._jsparkSession.parseDataType(dataType.json()) jc = self._jc.cast(jdt) else: raise PySparkTypeError( error_class="NOT_DATATYPE_OR_STR", message_parameters={"arg_name": "dataType", "arg_type": type(dataType).__name__}, ) return Column(jc)
(self, dataType)
39,310
pyspark.sql.column
between
True if the current column is between the lower bound and upper bound, inclusive. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- lowerBound : :class:`Column`, int, float, string, bool, datetime, date or Decimal a boolean expression that boundary start, inclusive. upperBound : :class:`Column`, int, float, string, bool, datetime, date or Decimal a boolean expression that boundary end, inclusive. Returns ------- :class:`Column` Column of booleans showing whether each element of Column is between left and right (inclusive). Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.name, df.age.between(2, 4)).show() +-----+---------------------------+ | name|((age >= 2) AND (age <= 4))| +-----+---------------------------+ |Alice| true| | Bob| false| +-----+---------------------------+
def between( self, lowerBound: Union["Column", "LiteralType", "DateTimeLiteral", "DecimalLiteral"], upperBound: Union["Column", "LiteralType", "DateTimeLiteral", "DecimalLiteral"], ) -> "Column": """ True if the current column is between the lower bound and upper bound, inclusive. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- lowerBound : :class:`Column`, int, float, string, bool, datetime, date or Decimal a boolean expression that boundary start, inclusive. upperBound : :class:`Column`, int, float, string, bool, datetime, date or Decimal a boolean expression that boundary end, inclusive. Returns ------- :class:`Column` Column of booleans showing whether each element of Column is between left and right (inclusive). Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.name, df.age.between(2, 4)).show() +-----+---------------------------+ | name|((age >= 2) AND (age <= 4))| +-----+---------------------------+ |Alice| true| | Bob| false| +-----+---------------------------+ """ return (self >= lowerBound) & (self <= upperBound)
(self, lowerBound: Union[ForwardRef('Column'), ForwardRef('LiteralType'), ForwardRef('DateTimeLiteral'), ForwardRef('DecimalLiteral')], upperBound: Union[ForwardRef('Column'), ForwardRef('LiteralType'), ForwardRef('DateTimeLiteral'), ForwardRef('DecimalLiteral')]) -> 'Column'
39,311
pyspark.sql.column
_
Compute bitwise AND of this expression with another expression. .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other a value or :class:`Column` to calculate bitwise and(&) with this :class:`Column`. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(a=170, b=75)]) >>> df.select(df.a.bitwiseAND(df.b)).collect() [Row((a & b)=10)]
def _bin_op( name: str, doc: str = "binary operator", ) -> Callable[ ["Column", Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"]], "Column" ]: """Create a method for given binary operator""" def _( self: "Column", other: Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"], ) -> "Column": jc = other._jc if isinstance(other, Column) else other njc = getattr(self._jc, name)(jc) return Column(njc) _.__doc__ = doc return _
(self: 'Column', other: Union[ForwardRef('Column'), ForwardRef('LiteralType'), ForwardRef('DecimalLiteral'), ForwardRef('DateTimeLiteral')]) -> 'Column'
39,312
pyspark.sql.column
_
Compute bitwise OR of this expression with another expression. .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other a value or :class:`Column` to calculate bitwise or(|) with this :class:`Column`. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(a=170, b=75)]) >>> df.select(df.a.bitwiseOR(df.b)).collect() [Row((a | b)=235)]
def _bin_op( name: str, doc: str = "binary operator", ) -> Callable[ ["Column", Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"]], "Column" ]: """Create a method for given binary operator""" def _( self: "Column", other: Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"], ) -> "Column": jc = other._jc if isinstance(other, Column) else other njc = getattr(self._jc, name)(jc) return Column(njc) _.__doc__ = doc return _
(self: 'Column', other: Union[ForwardRef('Column'), ForwardRef('LiteralType'), ForwardRef('DecimalLiteral'), ForwardRef('DateTimeLiteral')]) -> 'Column'
39,313
pyspark.sql.column
_
Compute bitwise XOR of this expression with another expression. .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other a value or :class:`Column` to calculate bitwise xor(^) with this :class:`Column`. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(a=170, b=75)]) >>> df.select(df.a.bitwiseXOR(df.b)).collect() [Row((a ^ b)=225)]
def _bin_op( name: str, doc: str = "binary operator", ) -> Callable[ ["Column", Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"]], "Column" ]: """Create a method for given binary operator""" def _( self: "Column", other: Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"], ) -> "Column": jc = other._jc if isinstance(other, Column) else other njc = getattr(self._jc, name)(jc) return Column(njc) _.__doc__ = doc return _
(self: 'Column', other: Union[ForwardRef('Column'), ForwardRef('LiteralType'), ForwardRef('DecimalLiteral'), ForwardRef('DateTimeLiteral')]) -> 'Column'
39,314
pyspark.sql.column
cast
Casts the column into type ``dataType``. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- dataType : :class:`DataType` or str a DataType or Python string literal with a DDL-formatted string to use when parsing the column to the same type. Returns ------- :class:`Column` Column representing whether each element of Column is cast into new type. Examples -------- >>> from pyspark.sql.types import StringType >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.age.cast("string").alias('ages')).collect() [Row(ages='2'), Row(ages='5')] >>> df.select(df.age.cast(StringType()).alias('ages')).collect() [Row(ages='2'), Row(ages='5')]
def cast(self, dataType: Union[DataType, str]) -> "Column": """ Casts the column into type ``dataType``. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- dataType : :class:`DataType` or str a DataType or Python string literal with a DDL-formatted string to use when parsing the column to the same type. Returns ------- :class:`Column` Column representing whether each element of Column is cast into new type. Examples -------- >>> from pyspark.sql.types import StringType >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.age.cast("string").alias('ages')).collect() [Row(ages='2'), Row(ages='5')] >>> df.select(df.age.cast(StringType()).alias('ages')).collect() [Row(ages='2'), Row(ages='5')] """ if isinstance(dataType, str): jc = self._jc.cast(dataType) elif isinstance(dataType, DataType): from pyspark.sql import SparkSession spark = SparkSession._getActiveSessionOrCreate() jdt = spark._jsparkSession.parseDataType(dataType.json()) jc = self._jc.cast(jdt) else: raise PySparkTypeError( error_class="NOT_DATATYPE_OR_STR", message_parameters={"arg_name": "dataType", "arg_type": type(dataType).__name__}, ) return Column(jc)
(self, dataType: Union[pyspark.sql.types.DataType, str]) -> pyspark.sql.column.Column
39,315
pyspark.sql.column
_
Contains the other element. Returns a boolean :class:`Column` based on a string match. .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other string in line. A value as a literal or a :class:`Column`. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.filter(df.name.contains('o')).collect() [Row(age=5, name='Bob')]
def _bin_op( name: str, doc: str = "binary operator", ) -> Callable[ ["Column", Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"]], "Column" ]: """Create a method for given binary operator""" def _( self: "Column", other: Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"], ) -> "Column": jc = other._jc if isinstance(other, Column) else other njc = getattr(self._jc, name)(jc) return Column(njc) _.__doc__ = doc return _
(self: 'Column', other: Union[ForwardRef('Column'), ForwardRef('LiteralType'), ForwardRef('DecimalLiteral'), ForwardRef('DateTimeLiteral')]) -> 'Column'
39,316
pyspark.sql.column
_
Returns a sort expression based on the descending order of the column. .. versionadded:: 2.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([('Tom', 80), ('Alice', None)], ["name", "height"]) >>> df.select(df.name).orderBy(df.name.desc()).collect() [Row(name='Tom'), Row(name='Alice')]
def _unary_op( name: str, doc: str = "unary operator", ) -> Callable[["Column"], "Column"]: """Create a method for given unary operator""" def _(self: "Column") -> "Column": jc = getattr(self._jc, name)() return Column(jc) _.__doc__ = doc return _
(self: pyspark.sql.column.Column) -> pyspark.sql.column.Column
39,317
pyspark.sql.column
_
Returns a sort expression based on the descending order of the column, and null values appear before non-null values. .. versionadded:: 2.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([('Tom', 80), (None, 60), ('Alice', None)], ["name", "height"]) >>> df.select(df.name).orderBy(df.name.desc_nulls_first()).collect() [Row(name=None), Row(name='Tom'), Row(name='Alice')]
def _unary_op( name: str, doc: str = "unary operator", ) -> Callable[["Column"], "Column"]: """Create a method for given unary operator""" def _(self: "Column") -> "Column": jc = getattr(self._jc, name)() return Column(jc) _.__doc__ = doc return _
(self: pyspark.sql.column.Column) -> pyspark.sql.column.Column
39,318
pyspark.sql.column
_
Returns a sort expression based on the descending order of the column, and null values appear after non-null values. .. versionadded:: 2.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([('Tom', 80), (None, 60), ('Alice', None)], ["name", "height"]) >>> df.select(df.name).orderBy(df.name.desc_nulls_last()).collect() [Row(name='Tom'), Row(name='Alice'), Row(name=None)]
def _unary_op( name: str, doc: str = "unary operator", ) -> Callable[["Column"], "Column"]: """Create a method for given unary operator""" def _(self: "Column") -> "Column": jc = getattr(self._jc, name)() return Column(jc) _.__doc__ = doc return _
(self: pyspark.sql.column.Column) -> pyspark.sql.column.Column
39,319
pyspark.sql.column
dropFields
An expression that drops fields in :class:`StructType` by name. This is a no-op if the schema doesn't contain field name(s). .. versionadded:: 3.1.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- fieldNames : str Desired field names (collects all positional arguments passed) The result will drop at a location if any field matches in the Column. Returns ------- :class:`Column` Column representing whether each element of Column with field dropped by fieldName. Examples -------- >>> from pyspark.sql import Row >>> from pyspark.sql.functions import col, lit >>> df = spark.createDataFrame([ ... Row(a=Row(b=1, c=2, d=3, e=Row(f=4, g=5, h=6)))]) >>> df.withColumn('a', df['a'].dropFields('b')).show() +-----------------+ | a| +-----------------+ |{2, 3, {4, 5, 6}}| +-----------------+ >>> df.withColumn('a', df['a'].dropFields('b', 'c')).show() +--------------+ | a| +--------------+ |{3, {4, 5, 6}}| +--------------+ This method supports dropping multiple nested fields directly e.g. >>> df.withColumn("a", col("a").dropFields("e.g", "e.h")).show() +--------------+ | a| +--------------+ |{1, 2, 3, {4}}| +--------------+ However, if you are going to add/replace multiple nested fields, it is preferred to extract out the nested struct before adding/replacing multiple fields e.g. >>> df.select(col("a").withField( ... "e", col("a.e").dropFields("g", "h")).alias("a") ... ).show() +--------------+ | a| +--------------+ |{1, 2, 3, {4}}| +--------------+
def dropFields(self, *fieldNames: str) -> "Column": """ An expression that drops fields in :class:`StructType` by name. This is a no-op if the schema doesn't contain field name(s). .. versionadded:: 3.1.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- fieldNames : str Desired field names (collects all positional arguments passed) The result will drop at a location if any field matches in the Column. Returns ------- :class:`Column` Column representing whether each element of Column with field dropped by fieldName. Examples -------- >>> from pyspark.sql import Row >>> from pyspark.sql.functions import col, lit >>> df = spark.createDataFrame([ ... Row(a=Row(b=1, c=2, d=3, e=Row(f=4, g=5, h=6)))]) >>> df.withColumn('a', df['a'].dropFields('b')).show() +-----------------+ | a| +-----------------+ |{2, 3, {4, 5, 6}}| +-----------------+ >>> df.withColumn('a', df['a'].dropFields('b', 'c')).show() +--------------+ | a| +--------------+ |{3, {4, 5, 6}}| +--------------+ This method supports dropping multiple nested fields directly e.g. >>> df.withColumn("a", col("a").dropFields("e.g", "e.h")).show() +--------------+ | a| +--------------+ |{1, 2, 3, {4}}| +--------------+ However, if you are going to add/replace multiple nested fields, it is preferred to extract out the nested struct before adding/replacing multiple fields e.g. >>> df.select(col("a").withField( ... "e", col("a.e").dropFields("g", "h")).alias("a") ... ).show() +--------------+ | a| +--------------+ |{1, 2, 3, {4}}| +--------------+ """ sc = get_active_spark_context() jc = self._jc.dropFields(_to_seq(sc, fieldNames)) return Column(jc)
(self, *fieldNames: str) -> pyspark.sql.column.Column
39,320
pyspark.sql.column
_
String ends with. Returns a boolean :class:`Column` based on a string match. .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other : :class:`Column` or str string at end of line (do not use a regex `$`) Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.filter(df.name.endswith('ice')).collect() [Row(age=2, name='Alice')] >>> df.filter(df.name.endswith('ice$')).collect() []
def _bin_op( name: str, doc: str = "binary operator", ) -> Callable[ ["Column", Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"]], "Column" ]: """Create a method for given binary operator""" def _( self: "Column", other: Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"], ) -> "Column": jc = other._jc if isinstance(other, Column) else other njc = getattr(self._jc, name)(jc) return Column(njc) _.__doc__ = doc return _
(self: 'Column', other: Union[ForwardRef('Column'), ForwardRef('LiteralType'), ForwardRef('DecimalLiteral'), ForwardRef('DateTimeLiteral')]) -> 'Column'
39,321
pyspark.sql.column
_
Equality test that is safe for null values. .. versionadded:: 2.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other a value or :class:`Column` Examples -------- >>> from pyspark.sql import Row >>> df1 = spark.createDataFrame([ ... Row(id=1, value='foo'), ... Row(id=2, value=None) ... ]) >>> df1.select( ... df1['value'] == 'foo', ... df1['value'].eqNullSafe('foo'), ... df1['value'].eqNullSafe(None) ... ).show() +-------------+---------------+----------------+ |(value = foo)|(value <=> foo)|(value <=> NULL)| +-------------+---------------+----------------+ | true| true| false| | NULL| false| true| +-------------+---------------+----------------+ >>> df2 = spark.createDataFrame([ ... Row(value = 'bar'), ... Row(value = None) ... ]) >>> df1.join(df2, df1["value"] == df2["value"]).count() 0 >>> df1.join(df2, df1["value"].eqNullSafe(df2["value"])).count() 1 >>> df2 = spark.createDataFrame([ ... Row(id=1, value=float('NaN')), ... Row(id=2, value=42.0), ... Row(id=3, value=None) ... ]) >>> df2.select( ... df2['value'].eqNullSafe(None), ... df2['value'].eqNullSafe(float('NaN')), ... df2['value'].eqNullSafe(42.0) ... ).show() +----------------+---------------+----------------+ |(value <=> NULL)|(value <=> NaN)|(value <=> 42.0)| +----------------+---------------+----------------+ | false| true| false| | false| false| true| | true| false| false| +----------------+---------------+----------------+ Notes ----- Unlike Pandas, PySpark doesn't consider NaN values to be NULL. See the `NaN Semantics <https://spark.apache.org/docs/latest/sql-ref-datatypes.html#nan-semantics>`_ for details.
def _bin_op( name: str, doc: str = "binary operator", ) -> Callable[ ["Column", Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"]], "Column" ]: """Create a method for given binary operator""" def _( self: "Column", other: Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"], ) -> "Column": jc = other._jc if isinstance(other, Column) else other njc = getattr(self._jc, name)(jc) return Column(njc) _.__doc__ = doc return _
(self: 'Column', other: Union[ForwardRef('Column'), ForwardRef('LiteralType'), ForwardRef('DecimalLiteral'), ForwardRef('DateTimeLiteral')]) -> 'Column'
39,322
pyspark.sql.column
getField
An expression that gets a field by name in a :class:`StructType`. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- name a literal value, or a :class:`Column` expression. The result will only be true at a location if the field matches in the Column. .. deprecated:: 3.0.0 :class:`Column` as a parameter is deprecated. Returns ------- :class:`Column` Column representing whether each element of Column got by name. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(r=Row(a=1, b="b"))]) >>> df.select(df.r.getField("b")).show() +---+ |r.b| +---+ | b| +---+ >>> df.select(df.r.a).show() +---+ |r.a| +---+ | 1| +---+
def getField(self, name: Any) -> "Column": """ An expression that gets a field by name in a :class:`StructType`. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- name a literal value, or a :class:`Column` expression. The result will only be true at a location if the field matches in the Column. .. deprecated:: 3.0.0 :class:`Column` as a parameter is deprecated. Returns ------- :class:`Column` Column representing whether each element of Column got by name. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(r=Row(a=1, b="b"))]) >>> df.select(df.r.getField("b")).show() +---+ |r.b| +---+ | b| +---+ >>> df.select(df.r.a).show() +---+ |r.a| +---+ | 1| +---+ """ if isinstance(name, Column): warnings.warn( "A column as 'name' in getField is deprecated as of Spark 3.0, and will not " "be supported in the future release. Use `column[name]` or `column.name` syntax " "instead.", FutureWarning, ) return self[name]
(self, name: Any) -> pyspark.sql.column.Column
39,323
pyspark.sql.column
getItem
An expression that gets an item at position ``ordinal`` out of a list, or gets an item by key out of a dict. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- key a literal value, or a :class:`Column` expression. The result will only be true at a location if the item matches in the column. .. deprecated:: 3.0.0 :class:`Column` as a parameter is deprecated. Returns ------- :class:`Column` Column representing the item(s) got at position out of a list or by key out of a dict. Examples -------- >>> df = spark.createDataFrame([([1, 2], {"key": "value"})], ["l", "d"]) >>> df.select(df.l.getItem(0), df.d.getItem("key")).show() +----+------+ |l[0]|d[key]| +----+------+ | 1| value| +----+------+
def getItem(self, key: Any) -> "Column": """ An expression that gets an item at position ``ordinal`` out of a list, or gets an item by key out of a dict. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- key a literal value, or a :class:`Column` expression. The result will only be true at a location if the item matches in the column. .. deprecated:: 3.0.0 :class:`Column` as a parameter is deprecated. Returns ------- :class:`Column` Column representing the item(s) got at position out of a list or by key out of a dict. Examples -------- >>> df = spark.createDataFrame([([1, 2], {"key": "value"})], ["l", "d"]) >>> df.select(df.l.getItem(0), df.d.getItem("key")).show() +----+------+ |l[0]|d[key]| +----+------+ | 1| value| +----+------+ """ if isinstance(key, Column): warnings.warn( "A column as 'key' in getItem is deprecated as of Spark 3.0, and will not " "be supported in the future release. Use `column[key]` or `column.key` syntax " "instead.", FutureWarning, ) return self[key]
(self, key: Any) -> pyspark.sql.column.Column
39,324
pyspark.sql.column
ilike
SQL ILIKE expression (case insensitive LIKE). Returns a boolean :class:`Column` based on a case insensitive match. .. versionadded:: 3.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other : str a SQL LIKE pattern See Also -------- pyspark.sql.Column.rlike Returns ------- :class:`Column` Column of booleans showing whether each element in the Column is matched by SQL LIKE pattern. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.filter(df.name.ilike('%Ice')).collect() [Row(age=2, name='Alice')]
def ilike(self: "Column", other: str) -> "Column": """ SQL ILIKE expression (case insensitive LIKE). Returns a boolean :class:`Column` based on a case insensitive match. .. versionadded:: 3.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other : str a SQL LIKE pattern See Also -------- pyspark.sql.Column.rlike Returns ------- :class:`Column` Column of booleans showing whether each element in the Column is matched by SQL LIKE pattern. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.filter(df.name.ilike('%Ice')).collect() [Row(age=2, name='Alice')] """ njc = getattr(self._jc, "ilike")(other) return Column(njc)
(self: pyspark.sql.column.Column, other: str) -> pyspark.sql.column.Column
39,325
pyspark.sql.column
_
True if the current expression is NOT null. .. versionchanged:: 3.4.0 Supports Spark Connect. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(name='Tom', height=80), Row(name='Alice', height=None)]) >>> df.filter(df.height.isNotNull()).collect() [Row(name='Tom', height=80)]
def _unary_op( name: str, doc: str = "unary operator", ) -> Callable[["Column"], "Column"]: """Create a method for given unary operator""" def _(self: "Column") -> "Column": jc = getattr(self._jc, name)() return Column(jc) _.__doc__ = doc return _
(self: pyspark.sql.column.Column) -> pyspark.sql.column.Column
39,326
pyspark.sql.column
_
True if the current expression is null. .. versionchanged:: 3.4.0 Supports Spark Connect. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(name='Tom', height=80), Row(name='Alice', height=None)]) >>> df.filter(df.height.isNull()).collect() [Row(name='Alice', height=None)]
def _unary_op( name: str, doc: str = "unary operator", ) -> Callable[["Column"], "Column"]: """Create a method for given unary operator""" def _(self: "Column") -> "Column": jc = getattr(self._jc, name)() return Column(jc) _.__doc__ = doc return _
(self: pyspark.sql.column.Column) -> pyspark.sql.column.Column
39,327
pyspark.sql.column
isin
A boolean expression that is evaluated to true if the value of this expression is contained by the evaluated values of the arguments. .. versionadded:: 1.5.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- cols The result will only be true at a location if any value matches in the Column. Returns ------- :class:`Column` Column of booleans showing whether each element in the Column is contained in cols. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df[df.name.isin("Bob", "Mike")].collect() [Row(age=5, name='Bob')] >>> df[df.age.isin([1, 2, 3])].collect() [Row(age=2, name='Alice')]
def isin(self, *cols: Any) -> "Column": """ A boolean expression that is evaluated to true if the value of this expression is contained by the evaluated values of the arguments. .. versionadded:: 1.5.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- cols The result will only be true at a location if any value matches in the Column. Returns ------- :class:`Column` Column of booleans showing whether each element in the Column is contained in cols. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df[df.name.isin("Bob", "Mike")].collect() [Row(age=5, name='Bob')] >>> df[df.age.isin([1, 2, 3])].collect() [Row(age=2, name='Alice')] """ if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cast(Tuple, cols[0]) cols = cast( Tuple, [c._jc if isinstance(c, Column) else _create_column_from_literal(c) for c in cols], ) sc = get_active_spark_context() jc = getattr(self._jc, "isin")(_to_seq(sc, cols)) return Column(jc)
(self, *cols: Any) -> pyspark.sql.column.Column
39,328
pyspark.sql.column
like
SQL like expression. Returns a boolean :class:`Column` based on a SQL LIKE match. .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other : str a SQL LIKE pattern See Also -------- pyspark.sql.Column.rlike Returns ------- :class:`Column` Column of booleans showing whether each element in the Column is matched by SQL LIKE pattern. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.filter(df.name.like('Al%')).collect() [Row(age=2, name='Alice')]
def like(self: "Column", other: str) -> "Column": """ SQL like expression. Returns a boolean :class:`Column` based on a SQL LIKE match. .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other : str a SQL LIKE pattern See Also -------- pyspark.sql.Column.rlike Returns ------- :class:`Column` Column of booleans showing whether each element in the Column is matched by SQL LIKE pattern. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.filter(df.name.like('Al%')).collect() [Row(age=2, name='Alice')] """ njc = getattr(self._jc, "like")(other) return Column(njc)
(self: pyspark.sql.column.Column, other: str) -> pyspark.sql.column.Column
39,329
pyspark.sql.column
alias
:func:`name` is an alias for :func:`alias`. .. versionadded:: 2.0
def alias(self, *alias: str, **kwargs: Any) -> "Column": """ Returns this column aliased with a new name or names (in the case of expressions that return more than one column, such as explode). .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- alias : str desired column names (collects all positional arguments passed) Other Parameters ---------------- metadata: dict a dict of information to be stored in ``metadata`` attribute of the corresponding :class:`StructField <pyspark.sql.types.StructField>` (optional, keyword only argument) .. versionchanged:: 2.2.0 Added optional ``metadata`` argument. Returns ------- :class:`Column` Column representing whether each element of Column is aliased with new name or names. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.age.alias("age2")).collect() [Row(age2=2), Row(age2=5)] >>> df.select(df.age.alias("age3", metadata={'max': 99})).schema['age3'].metadata['max'] 99 """ metadata = kwargs.pop("metadata", None) assert not kwargs, "Unexpected kwargs where passed: %s" % kwargs sc = get_active_spark_context() if len(alias) == 1: if metadata: assert sc._jvm is not None jmeta = sc._jvm.org.apache.spark.sql.types.Metadata.fromJson(json.dumps(metadata)) return Column(getattr(self._jc, "as")(alias[0], jmeta)) else: return Column(getattr(self._jc, "as")(alias[0])) else: if metadata: raise PySparkValueError( error_class="ONLY_ALLOWED_FOR_SINGLE_COLUMN", message_parameters={"arg_name": "metadata"}, ) return Column(getattr(self._jc, "as")(_to_seq(sc, list(alias))))
(self, *alias, **kwargs)
39,330
pyspark.sql.column
otherwise
Evaluates a list of conditions and returns one of multiple possible result expressions. If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- value a literal value, or a :class:`Column` expression. Returns ------- :class:`Column` Column representing whether each element of Column is unmatched conditions. Examples -------- >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.name, sf.when(df.age > 3, 1).otherwise(0)).show() +-----+-------------------------------------+ | name|CASE WHEN (age > 3) THEN 1 ELSE 0 END| +-----+-------------------------------------+ |Alice| 0| | Bob| 1| +-----+-------------------------------------+ See Also -------- pyspark.sql.functions.when
def otherwise(self, value: Any) -> "Column": """ Evaluates a list of conditions and returns one of multiple possible result expressions. If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- value a literal value, or a :class:`Column` expression. Returns ------- :class:`Column` Column representing whether each element of Column is unmatched conditions. Examples -------- >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.name, sf.when(df.age > 3, 1).otherwise(0)).show() +-----+-------------------------------------+ | name|CASE WHEN (age > 3) THEN 1 ELSE 0 END| +-----+-------------------------------------+ |Alice| 0| | Bob| 1| +-----+-------------------------------------+ See Also -------- pyspark.sql.functions.when """ v = value._jc if isinstance(value, Column) else value jc = self._jc.otherwise(v) return Column(jc)
(self, value: Any) -> pyspark.sql.column.Column
39,331
pyspark.sql.column
over
Define a windowing column. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- window : :class:`WindowSpec` Returns ------- :class:`Column` Examples -------- >>> from pyspark.sql import Window >>> window = ( ... Window.partitionBy("name") ... .orderBy("age") ... .rowsBetween(Window.unboundedPreceding, Window.currentRow) ... ) >>> from pyspark.sql.functions import rank, min, desc >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.withColumn( ... "rank", rank().over(window) ... ).withColumn( ... "min", min('age').over(window) ... ).sort(desc("age")).show() +---+-----+----+---+ |age| name|rank|min| +---+-----+----+---+ | 5| Bob| 1| 5| | 2|Alice| 1| 2| +---+-----+----+---+
def over(self, window: "WindowSpec") -> "Column": """ Define a windowing column. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- window : :class:`WindowSpec` Returns ------- :class:`Column` Examples -------- >>> from pyspark.sql import Window >>> window = ( ... Window.partitionBy("name") ... .orderBy("age") ... .rowsBetween(Window.unboundedPreceding, Window.currentRow) ... ) >>> from pyspark.sql.functions import rank, min, desc >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.withColumn( ... "rank", rank().over(window) ... ).withColumn( ... "min", min('age').over(window) ... ).sort(desc("age")).show() +---+-----+----+---+ |age| name|rank|min| +---+-----+----+---+ | 5| Bob| 1| 5| | 2|Alice| 1| 2| +---+-----+----+---+ """ from pyspark.sql.window import WindowSpec if not isinstance(window, WindowSpec): raise PySparkTypeError( error_class="NOT_WINDOWSPEC", message_parameters={"arg_name": "window", "arg_type": type(window).__name__}, ) jc = self._jc.over(window._jspec) return Column(jc)
(self, window: 'WindowSpec') -> 'Column'
39,332
pyspark.sql.column
rlike
SQL RLIKE expression (LIKE with Regex). Returns a boolean :class:`Column` based on a regex match. .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other : str an extended regex expression Returns ------- :class:`Column` Column of booleans showing whether each element in the Column is matched by extended regex expression. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.filter(df.name.rlike('ice$')).collect() [Row(age=2, name='Alice')]
def rlike(self: "Column", other: str) -> "Column": """ SQL RLIKE expression (LIKE with Regex). Returns a boolean :class:`Column` based on a regex match. .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other : str an extended regex expression Returns ------- :class:`Column` Column of booleans showing whether each element in the Column is matched by extended regex expression. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.filter(df.name.rlike('ice$')).collect() [Row(age=2, name='Alice')] """ njc = getattr(self._jc, "rlike")(other) return Column(njc)
(self: pyspark.sql.column.Column, other: str) -> pyspark.sql.column.Column
39,333
pyspark.sql.column
_
String starts with. Returns a boolean :class:`Column` based on a string match. .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other : :class:`Column` or str string at start of line (do not use a regex `^`) Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.filter(df.name.startswith('Al')).collect() [Row(age=2, name='Alice')] >>> df.filter(df.name.startswith('^Al')).collect() []
def _bin_op( name: str, doc: str = "binary operator", ) -> Callable[ ["Column", Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"]], "Column" ]: """Create a method for given binary operator""" def _( self: "Column", other: Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"], ) -> "Column": jc = other._jc if isinstance(other, Column) else other njc = getattr(self._jc, name)(jc) return Column(njc) _.__doc__ = doc return _
(self: 'Column', other: Union[ForwardRef('Column'), ForwardRef('LiteralType'), ForwardRef('DecimalLiteral'), ForwardRef('DateTimeLiteral')]) -> 'Column'
39,334
pyspark.sql.column
substr
Return a :class:`Column` which is a substring of the column. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- startPos : :class:`Column` or int start position length : :class:`Column` or int length of the substring Returns ------- :class:`Column` Column representing whether each element of Column is substr of origin Column. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.name.substr(1, 3).alias("col")).collect() [Row(col='Ali'), Row(col='Bob')]
def substr(self, startPos: Union[int, "Column"], length: Union[int, "Column"]) -> "Column": """ Return a :class:`Column` which is a substring of the column. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- startPos : :class:`Column` or int start position length : :class:`Column` or int length of the substring Returns ------- :class:`Column` Column representing whether each element of Column is substr of origin Column. Examples -------- >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.name.substr(1, 3).alias("col")).collect() [Row(col='Ali'), Row(col='Bob')] """ if type(startPos) != type(length): raise PySparkTypeError( error_class="NOT_SAME_TYPE", message_parameters={ "arg_name1": "startPos", "arg_name2": "length", "arg_type1": type(startPos).__name__, "arg_type2": type(length).__name__, }, ) if isinstance(startPos, int): jc = self._jc.substr(startPos, length) elif isinstance(startPos, Column): jc = self._jc.substr(startPos._jc, cast("Column", length)._jc) else: raise PySparkTypeError( error_class="NOT_COLUMN_OR_INT", message_parameters={"arg_name": "startPos", "arg_type": type(startPos).__name__}, ) return Column(jc)
(self, startPos: Union[int, pyspark.sql.column.Column], length: Union[int, pyspark.sql.column.Column]) -> pyspark.sql.column.Column
39,335
sparkypandy._column
to_pandas
null
def to_pandas(self) -> pd.Series: # noinspection PyTypeChecker df: pd.DataFrame = self.df_sparky.select(self._name).toPandas() return df[self._name]
(self) -> pandas.core.series.Series
39,336
pyspark.sql.column
when
Evaluates a list of conditions and returns one of multiple possible result expressions. If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- condition : :class:`Column` a boolean :class:`Column` expression. value a literal value, or a :class:`Column` expression. Returns ------- :class:`Column` Column representing whether each element of Column is in conditions. Examples -------- >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.name, sf.when(df.age > 4, 1).when(df.age < 3, -1).otherwise(0)).show() +-----+------------------------------------------------------------+ | name|CASE WHEN (age > 4) THEN 1 WHEN (age < 3) THEN -1 ELSE 0 END| +-----+------------------------------------------------------------+ |Alice| -1| | Bob| 1| +-----+------------------------------------------------------------+ See Also -------- pyspark.sql.functions.when
def when(self, condition: "Column", value: Any) -> "Column": """ Evaluates a list of conditions and returns one of multiple possible result expressions. If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- condition : :class:`Column` a boolean :class:`Column` expression. value a literal value, or a :class:`Column` expression. Returns ------- :class:`Column` Column representing whether each element of Column is in conditions. Examples -------- >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame( ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df.select(df.name, sf.when(df.age > 4, 1).when(df.age < 3, -1).otherwise(0)).show() +-----+------------------------------------------------------------+ | name|CASE WHEN (age > 4) THEN 1 WHEN (age < 3) THEN -1 ELSE 0 END| +-----+------------------------------------------------------------+ |Alice| -1| | Bob| 1| +-----+------------------------------------------------------------+ See Also -------- pyspark.sql.functions.when """ if not isinstance(condition, Column): raise PySparkTypeError( error_class="NOT_COLUMN", message_parameters={"arg_name": "condition", "arg_type": type(condition).__name__}, ) v = value._jc if isinstance(value, Column) else value jc = self._jc.when(condition._jc, v) return Column(jc)
(self, condition: pyspark.sql.column.Column, value: Any) -> pyspark.sql.column.Column
39,337
pyspark.sql.column
withField
An expression that adds/replaces a field in :class:`StructType` by name. .. versionadded:: 3.1.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- fieldName : str a literal value. The result will only be true at a location if any field matches in the Column. col : :class:`Column` A :class:`Column` expression for the column with `fieldName`. Returns ------- :class:`Column` Column representing whether each element of Column which field was added/replaced by fieldName. Examples -------- >>> from pyspark.sql import Row >>> from pyspark.sql.functions import lit >>> df = spark.createDataFrame([Row(a=Row(b=1, c=2))]) >>> df.withColumn('a', df['a'].withField('b', lit(3))).select('a.b').show() +---+ | b| +---+ | 3| +---+ >>> df.withColumn('a', df['a'].withField('d', lit(4))).select('a.d').show() +---+ | d| +---+ | 4| +---+
def withField(self, fieldName: str, col: "Column") -> "Column": """ An expression that adds/replaces a field in :class:`StructType` by name. .. versionadded:: 3.1.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- fieldName : str a literal value. The result will only be true at a location if any field matches in the Column. col : :class:`Column` A :class:`Column` expression for the column with `fieldName`. Returns ------- :class:`Column` Column representing whether each element of Column which field was added/replaced by fieldName. Examples -------- >>> from pyspark.sql import Row >>> from pyspark.sql.functions import lit >>> df = spark.createDataFrame([Row(a=Row(b=1, c=2))]) >>> df.withColumn('a', df['a'].withField('b', lit(3))).select('a.b').show() +---+ | b| +---+ | 3| +---+ >>> df.withColumn('a', df['a'].withField('d', lit(4))).select('a.d').show() +---+ | d| +---+ | 4| +---+ """ if not isinstance(fieldName, str): raise PySparkTypeError( error_class="NOT_STR", message_parameters={"arg_name": "fieldName", "arg_type": type(fieldName).__name__}, ) if not isinstance(col, Column): raise PySparkTypeError( error_class="NOT_COLUMN", message_parameters={"arg_name": "col", "arg_type": type(col).__name__}, ) return Column(self._jc.withField(fieldName, col._jc))
(self, fieldName: str, col: pyspark.sql.column.Column) -> pyspark.sql.column.Column
39,338
sparkypandy._dataframe
DataFramy
null
class DataFramy(DataFrame): # type: ignore @classmethod def from_spark(cls, df_spark: DataFrame) -> DataFramy: # noinspection PyProtectedMember return cls(jdf=df_spark._jdf, sql_ctx=df_spark.sql_ctx) @classmethod def from_pandas(cls, spark_session: SparkSession, df_pandas: pd.DataFrame) -> DataFramy: df_spark = spark_session.createDataFrame(df_pandas) return cls.from_spark(df_spark) def to_pandas(self) -> pd.DataFrame: """PEP8-compliant alias to toPandas()""" # noinspection PyTypeChecker return super().toPandas() def __getitem__(self, item: str) -> Columny: if not isinstance(item, str): raise TypeError(f"Expected a string key, not {item}") col = super().__getitem__(item=item) return Columny.from_spark(col=col, df_sparky=self)
(jdf: py4j.java_gateway.JavaObject, sql_ctx: Union[ForwardRef('SQLContext'), ForwardRef('SparkSession')])
39,339
pyspark.sql.dataframe
__dir__
Examples -------- >>> from pyspark.sql.functions import lit Create a dataframe with a column named 'id'. >>> df = spark.range(3) >>> [attr for attr in dir(df) if attr[0] == 'i'][:7] # Includes column id ['id', 'inputFiles', 'intersect', 'intersectAll', 'isEmpty', 'isLocal', 'isStreaming'] Add a column named 'i_like_pancakes'. >>> df = df.withColumn('i_like_pancakes', lit(1)) >>> [attr for attr in dir(df) if attr[0] == 'i'][:7] # Includes columns i_like_pancakes, id ['i_like_pancakes', 'id', 'inputFiles', 'intersect', 'intersectAll', 'isEmpty', 'isLocal'] Try to add an existed column 'inputFiles'. >>> df = df.withColumn('inputFiles', lit(2)) >>> [attr for attr in dir(df) if attr[0] == 'i'][:7] # Doesn't duplicate inputFiles ['i_like_pancakes', 'id', 'inputFiles', 'intersect', 'intersectAll', 'isEmpty', 'isLocal'] Try to add a column named 'id2'. >>> df = df.withColumn('id2', lit(3)) >>> [attr for attr in dir(df) if attr[0] == 'i'][:7] # result includes id2 and sorted ['i_like_pancakes', 'id', 'id2', 'inputFiles', 'intersect', 'intersectAll', 'isEmpty'] Don't include columns that are not valid python identifiers. >>> df = df.withColumn('1', lit(4)) >>> df = df.withColumn('name 1', lit(5)) >>> [attr for attr in dir(df) if attr[0] == 'i'][:7] # Doesn't include 1 or name 1 ['i_like_pancakes', 'id', 'id2', 'inputFiles', 'intersect', 'intersectAll', 'isEmpty']
def __dir__(self) -> List[str]: """ Examples -------- >>> from pyspark.sql.functions import lit Create a dataframe with a column named 'id'. >>> df = spark.range(3) >>> [attr for attr in dir(df) if attr[0] == 'i'][:7] # Includes column id ['id', 'inputFiles', 'intersect', 'intersectAll', 'isEmpty', 'isLocal', 'isStreaming'] Add a column named 'i_like_pancakes'. >>> df = df.withColumn('i_like_pancakes', lit(1)) >>> [attr for attr in dir(df) if attr[0] == 'i'][:7] # Includes columns i_like_pancakes, id ['i_like_pancakes', 'id', 'inputFiles', 'intersect', 'intersectAll', 'isEmpty', 'isLocal'] Try to add an existed column 'inputFiles'. >>> df = df.withColumn('inputFiles', lit(2)) >>> [attr for attr in dir(df) if attr[0] == 'i'][:7] # Doesn't duplicate inputFiles ['i_like_pancakes', 'id', 'inputFiles', 'intersect', 'intersectAll', 'isEmpty', 'isLocal'] Try to add a column named 'id2'. >>> df = df.withColumn('id2', lit(3)) >>> [attr for attr in dir(df) if attr[0] == 'i'][:7] # result includes id2 and sorted ['i_like_pancakes', 'id', 'id2', 'inputFiles', 'intersect', 'intersectAll', 'isEmpty'] Don't include columns that are not valid python identifiers. >>> df = df.withColumn('1', lit(4)) >>> df = df.withColumn('name 1', lit(5)) >>> [attr for attr in dir(df) if attr[0] == 'i'][:7] # Doesn't include 1 or name 1 ['i_like_pancakes', 'id', 'id2', 'inputFiles', 'intersect', 'intersectAll', 'isEmpty'] """ attrs = set(super().__dir__()) attrs.update(filter(lambda s: s.isidentifier(), self.columns)) return sorted(attrs)
(self) -> List[str]
39,340
pyspark.sql.dataframe
__getattr__
Returns the :class:`Column` denoted by ``name``. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- name : str Column name to return as :class:`Column`. Returns ------- :class:`Column` Requested column. Examples -------- >>> df = spark.createDataFrame([ ... (2, "Alice"), (5, "Bob")], schema=["age", "name"]) Retrieve a column instance. >>> df.select(df.age).show() +---+ |age| +---+ | 2| | 5| +---+
def __getattr__(self, name: str) -> Column: """Returns the :class:`Column` denoted by ``name``. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- name : str Column name to return as :class:`Column`. Returns ------- :class:`Column` Requested column. Examples -------- >>> df = spark.createDataFrame([ ... (2, "Alice"), (5, "Bob")], schema=["age", "name"]) Retrieve a column instance. >>> df.select(df.age).show() +---+ |age| +---+ | 2| | 5| +---+ """ if name not in self.columns: raise AttributeError( "'%s' object has no attribute '%s'" % (self.__class__.__name__, name) ) jc = self._jdf.apply(name) return Column(jc)
(self, name: str) -> pyspark.sql.column.Column
39,341
sparkypandy._dataframe
__getitem__
null
def __getitem__(self, item: str) -> Columny: if not isinstance(item, str): raise TypeError(f"Expected a string key, not {item}") col = super().__getitem__(item=item) return Columny.from_spark(col=col, df_sparky=self)
(self, item: str) -> sparkypandy._column.Columny
39,342
pyspark.sql.dataframe
__init__
null
def __init__( self, jdf: JavaObject, sql_ctx: Union["SQLContext", "SparkSession"], ): from pyspark.sql.context import SQLContext self._sql_ctx: Optional["SQLContext"] = None if isinstance(sql_ctx, SQLContext): assert not os.environ.get("SPARK_TESTING") # Sanity check for our internal usage. assert isinstance(sql_ctx, SQLContext) # We should remove this if-else branch in the future release, and rename # sql_ctx to session in the constructor. This is an internal code path but # was kept with a warning because it's used intensively by third-party libraries. warnings.warn("DataFrame constructor is internal. Do not directly use it.") self._sql_ctx = sql_ctx session = sql_ctx.sparkSession else: session = sql_ctx self._session: "SparkSession" = session self._sc: SparkContext = sql_ctx._sc self._jdf: JavaObject = jdf self.is_cached = False # initialized lazily self._schema: Optional[StructType] = None self._lazy_rdd: Optional[RDD[Row]] = None # Check whether _repr_html is supported or not, we use it to avoid calling _jdf twice # by __repr__ and _repr_html_ while eager evaluation opens. self._support_repr_html = False
(self, jdf: py4j.java_gateway.JavaObject, sql_ctx: Union[ForwardRef('SQLContext'), ForwardRef('SparkSession')])
39,343
pyspark.sql.dataframe
__repr__
null
def __repr__(self) -> str: if not self._support_repr_html and self.sparkSession._jconf.isReplEagerEvalEnabled(): vertical = False return self._jdf.showString( self.sparkSession._jconf.replEagerEvalMaxNumRows(), self.sparkSession._jconf.replEagerEvalTruncate(), vertical, ) else: return "DataFrame[%s]" % (", ".join("%s: %s" % c for c in self.dtypes))
(self) -> str
39,344
pyspark.sql.pandas.conversion
_collect_as_arrow
Returns all records as a list of ArrowRecordBatches, pyarrow must be installed and available on driver and worker Python environments. This is an experimental feature. :param split_batches: split batches such that each column is in its own allocation, so that the selfDestruct optimization is effective; default False. .. note:: Experimental.
def _collect_as_arrow(self, split_batches: bool = False) -> List["pa.RecordBatch"]: """ Returns all records as a list of ArrowRecordBatches, pyarrow must be installed and available on driver and worker Python environments. This is an experimental feature. :param split_batches: split batches such that each column is in its own allocation, so that the selfDestruct optimization is effective; default False. .. note:: Experimental. """ from pyspark.sql.dataframe import DataFrame assert isinstance(self, DataFrame) with SCCallSiteSync(self._sc): ( port, auth_secret, jsocket_auth_server, ) = self._jdf.collectAsArrowToPython() # Collect list of un-ordered batches where last element is a list of correct order indices try: batch_stream = _load_from_socket((port, auth_secret), ArrowCollectSerializer()) if split_batches: # When spark.sql.execution.arrow.pyspark.selfDestruct.enabled, ensure # each column in each record batch is contained in its own allocation. # Otherwise, selfDestruct does nothing; it frees each column as its # converted, but each column will actually be a list of slices of record # batches, and so no memory is actually freed until all columns are # converted. import pyarrow as pa results = [] for batch_or_indices in batch_stream: if isinstance(batch_or_indices, pa.RecordBatch): batch_or_indices = pa.RecordBatch.from_arrays( [ # This call actually reallocates the array pa.concat_arrays([array]) for array in batch_or_indices ], schema=batch_or_indices.schema, ) results.append(batch_or_indices) else: results = list(batch_stream) finally: with unwrap_spark_exception(): # Join serving thread and raise any exceptions from collectAsArrowToPython jsocket_auth_server.getResult() # Separate RecordBatches from batch order indices in results batches = results[:-1] batch_order = results[-1] # Re-order the batch list using the correct order return [batches[i] for i in batch_order]
(self, split_batches: bool = False) -> List[ForwardRef('pa.RecordBatch')]
39,345
pyspark.sql.dataframe
_ipython_key_completions_
Returns the names of columns in this :class:`DataFrame`. Examples -------- >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df._ipython_key_completions_() ['age', 'name'] Would return illegal identifiers. >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], ["age 1", "name?1"]) >>> df._ipython_key_completions_() ['age 1', 'name?1']
def _ipython_key_completions_(self) -> List[str]: """Returns the names of columns in this :class:`DataFrame`. Examples -------- >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], ["age", "name"]) >>> df._ipython_key_completions_() ['age', 'name'] Would return illegal identifiers. >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], ["age 1", "name?1"]) >>> df._ipython_key_completions_() ['age 1', 'name?1'] """ return self.columns
(self) -> List[str]
39,346
pyspark.sql.dataframe
_jcols
Return a JVM Seq of Columns from a list of Column or column names If `cols` has only one list in it, cols[0] will be used as the list.
def _jcols(self, *cols: "ColumnOrName") -> JavaObject: """Return a JVM Seq of Columns from a list of Column or column names If `cols` has only one list in it, cols[0] will be used as the list. """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] return self._jseq(cols, _to_java_column)
(self, *cols: 'ColumnOrName') -> py4j.java_gateway.JavaObject
39,347
pyspark.sql.dataframe
_jmap
Return a JVM Scala Map from a dict
def _jmap(self, jm: Dict) -> JavaObject: """Return a JVM Scala Map from a dict""" return _to_scala_map(self.sparkSession._sc, jm)
(self, jm: Dict) -> py4j.java_gateway.JavaObject
39,348
pyspark.sql.dataframe
_joinAsOf
Perform an as-of join. This is similar to a left-join except that we match on the nearest key rather than equal keys. Parameters ---------- other : :class:`DataFrame` Right side of the join leftAsOfColumn : str or :class:`Column` a string for the as-of join column name, or a Column rightAsOfColumn : str or :class:`Column` a string for the as-of join column name, or a Column on : str, list or :class:`Column`, optional a string for the join column name, a list of column names, a join expression (Column), or a list of Columns. If `on` is a string or a list of strings indicating the name of the join column(s), the column(s) must exist on both sides, and this performs an equi-join. how : str, optional default ``inner``. Must be one of: ``inner`` and ``left``. tolerance : :class:`Column`, optional an asof tolerance within this range; must be compatible with the merge index. allowExactMatches : bool, optional default ``True``. direction : str, optional default ``backward``. Must be one of: ``backward``, ``forward``, and ``nearest``. Examples -------- The following performs an as-of join between ``left`` and ``right``. >>> left = spark.createDataFrame([(1, "a"), (5, "b"), (10, "c")], ["a", "left_val"]) >>> right = spark.createDataFrame([(1, 1), (2, 2), (3, 3), (6, 6), (7, 7)], ... ["a", "right_val"]) >>> left._joinAsOf( ... right, leftAsOfColumn="a", rightAsOfColumn="a" ... ).select(left.a, 'left_val', 'right_val').sort("a").collect() [Row(a=1, left_val='a', right_val=1), Row(a=5, left_val='b', right_val=3), Row(a=10, left_val='c', right_val=7)] >>> from pyspark.sql import functions as sf >>> left._joinAsOf( ... right, leftAsOfColumn="a", rightAsOfColumn="a", tolerance=sf.lit(1) ... ).select(left.a, 'left_val', 'right_val').sort("a").collect() [Row(a=1, left_val='a', right_val=1)] >>> left._joinAsOf( ... right, leftAsOfColumn="a", rightAsOfColumn="a", how="left", tolerance=sf.lit(1) ... ).select(left.a, 'left_val', 'right_val').sort("a").collect() [Row(a=1, left_val='a', right_val=1), Row(a=5, left_val='b', right_val=None), Row(a=10, left_val='c', right_val=None)] >>> left._joinAsOf( ... right, leftAsOfColumn="a", rightAsOfColumn="a", allowExactMatches=False ... ).select(left.a, 'left_val', 'right_val').sort("a").collect() [Row(a=5, left_val='b', right_val=3), Row(a=10, left_val='c', right_val=7)] >>> left._joinAsOf( ... right, leftAsOfColumn="a", rightAsOfColumn="a", direction="forward" ... ).select(left.a, 'left_val', 'right_val').sort("a").collect() [Row(a=1, left_val='a', right_val=1), Row(a=5, left_val='b', right_val=6)]
def _joinAsOf( self, other: "DataFrame", leftAsOfColumn: Union[str, Column], rightAsOfColumn: Union[str, Column], on: Optional[Union[str, List[str], Column, List[Column]]] = None, how: Optional[str] = None, *, tolerance: Optional[Column] = None, allowExactMatches: bool = True, direction: str = "backward", ) -> "DataFrame": """ Perform an as-of join. This is similar to a left-join except that we match on the nearest key rather than equal keys. Parameters ---------- other : :class:`DataFrame` Right side of the join leftAsOfColumn : str or :class:`Column` a string for the as-of join column name, or a Column rightAsOfColumn : str or :class:`Column` a string for the as-of join column name, or a Column on : str, list or :class:`Column`, optional a string for the join column name, a list of column names, a join expression (Column), or a list of Columns. If `on` is a string or a list of strings indicating the name of the join column(s), the column(s) must exist on both sides, and this performs an equi-join. how : str, optional default ``inner``. Must be one of: ``inner`` and ``left``. tolerance : :class:`Column`, optional an asof tolerance within this range; must be compatible with the merge index. allowExactMatches : bool, optional default ``True``. direction : str, optional default ``backward``. Must be one of: ``backward``, ``forward``, and ``nearest``. Examples -------- The following performs an as-of join between ``left`` and ``right``. >>> left = spark.createDataFrame([(1, "a"), (5, "b"), (10, "c")], ["a", "left_val"]) >>> right = spark.createDataFrame([(1, 1), (2, 2), (3, 3), (6, 6), (7, 7)], ... ["a", "right_val"]) >>> left._joinAsOf( ... right, leftAsOfColumn="a", rightAsOfColumn="a" ... ).select(left.a, 'left_val', 'right_val').sort("a").collect() [Row(a=1, left_val='a', right_val=1), Row(a=5, left_val='b', right_val=3), Row(a=10, left_val='c', right_val=7)] >>> from pyspark.sql import functions as sf >>> left._joinAsOf( ... right, leftAsOfColumn="a", rightAsOfColumn="a", tolerance=sf.lit(1) ... ).select(left.a, 'left_val', 'right_val').sort("a").collect() [Row(a=1, left_val='a', right_val=1)] >>> left._joinAsOf( ... right, leftAsOfColumn="a", rightAsOfColumn="a", how="left", tolerance=sf.lit(1) ... ).select(left.a, 'left_val', 'right_val').sort("a").collect() [Row(a=1, left_val='a', right_val=1), Row(a=5, left_val='b', right_val=None), Row(a=10, left_val='c', right_val=None)] >>> left._joinAsOf( ... right, leftAsOfColumn="a", rightAsOfColumn="a", allowExactMatches=False ... ).select(left.a, 'left_val', 'right_val').sort("a").collect() [Row(a=5, left_val='b', right_val=3), Row(a=10, left_val='c', right_val=7)] >>> left._joinAsOf( ... right, leftAsOfColumn="a", rightAsOfColumn="a", direction="forward" ... ).select(left.a, 'left_val', 'right_val').sort("a").collect() [Row(a=1, left_val='a', right_val=1), Row(a=5, left_val='b', right_val=6)] """ if isinstance(leftAsOfColumn, str): leftAsOfColumn = self[leftAsOfColumn] left_as_of_jcol = leftAsOfColumn._jc if isinstance(rightAsOfColumn, str): rightAsOfColumn = other[rightAsOfColumn] right_as_of_jcol = rightAsOfColumn._jc if on is not None and not isinstance(on, list): on = [on] # type: ignore[assignment] if on is not None: if isinstance(on[0], str): on = self._jseq(cast(List[str], on)) else: assert isinstance(on[0], Column), "on should be Column or list of Column" on = reduce(lambda x, y: x.__and__(y), cast(List[Column], on)) on = on._jc if how is None: how = "inner" assert isinstance(how, str), "how should be a string" if tolerance is not None: assert isinstance(tolerance, Column), "tolerance should be Column" tolerance = tolerance._jc jdf = self._jdf.joinAsOf( other._jdf, left_as_of_jcol, right_as_of_jcol, on, how, tolerance, allowExactMatches, direction, ) return DataFrame(jdf, self.sparkSession)
(self, other: pyspark.sql.dataframe.DataFrame, leftAsOfColumn: Union[str, pyspark.sql.column.Column], rightAsOfColumn: Union[str, pyspark.sql.column.Column], on: Union[str, List[str], pyspark.sql.column.Column, List[pyspark.sql.column.Column], NoneType] = None, how: Optional[str] = None, *, tolerance: Optional[pyspark.sql.column.Column] = None, allowExactMatches: bool = True, direction: str = 'backward') -> pyspark.sql.dataframe.DataFrame
39,349
pyspark.sql.dataframe
_jseq
Return a JVM Seq of Columns from a list of Column or names
def _jseq( self, cols: Sequence, converter: Optional[Callable[..., Union["PrimitiveType", JavaObject]]] = None, ) -> JavaObject: """Return a JVM Seq of Columns from a list of Column or names""" return _to_seq(self.sparkSession._sc, cols, converter)
(self, cols: Sequence, converter: Optional[Callable[..., Union[ForwardRef('PrimitiveType'), py4j.java_gateway.JavaObject]]] = None) -> py4j.java_gateway.JavaObject
39,350
pyspark.sql.dataframe
_repr_html_
Returns a :class:`DataFrame` with html code when you enabled eager evaluation by 'spark.sql.repl.eagerEval.enabled', this only called by REPL you are using support eager evaluation with HTML.
def _repr_html_(self) -> Optional[str]: """Returns a :class:`DataFrame` with html code when you enabled eager evaluation by 'spark.sql.repl.eagerEval.enabled', this only called by REPL you are using support eager evaluation with HTML. """ if not self._support_repr_html: self._support_repr_html = True if self.sparkSession._jconf.isReplEagerEvalEnabled(): return self._jdf.htmlString( self.sparkSession._jconf.replEagerEvalMaxNumRows(), self.sparkSession._jconf.replEagerEvalTruncate(), ) else: return None
(self) -> Optional[str]
39,351
pyspark.sql.dataframe
_show_string
null
def _show_string( self, n: int = 20, truncate: Union[bool, int] = True, vertical: bool = False ) -> str: if not isinstance(n, int) or isinstance(n, bool): raise PySparkTypeError( error_class="NOT_INT", message_parameters={"arg_name": "n", "arg_type": type(n).__name__}, ) if not isinstance(vertical, bool): raise PySparkTypeError( error_class="NOT_BOOL", message_parameters={"arg_name": "vertical", "arg_type": type(vertical).__name__}, ) if isinstance(truncate, bool) and truncate: return self._jdf.showString(n, 20, vertical) else: try: int_truncate = int(truncate) except ValueError: raise PySparkTypeError( error_class="NOT_BOOL", message_parameters={ "arg_name": "truncate", "arg_type": type(truncate).__name__, }, ) return self._jdf.showString(n, int_truncate, vertical)
(self, n: int = 20, truncate: Union[bool, int] = True, vertical: bool = False) -> str
39,352
pyspark.sql.dataframe
_sort_cols
Return a JVM Seq of Columns that describes the sort order
def _sort_cols( self, cols: Sequence[Union[str, Column, List[Union[str, Column]]]], kwargs: Dict[str, Any] ) -> JavaObject: """Return a JVM Seq of Columns that describes the sort order""" if not cols: raise PySparkValueError( error_class="CANNOT_BE_EMPTY", message_parameters={"item": "column"}, ) if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jcols = [_to_java_column(cast("ColumnOrName", c)) for c in cols] ascending = kwargs.get("ascending", True) if isinstance(ascending, (bool, int)): if not ascending: jcols = [jc.desc() for jc in jcols] elif isinstance(ascending, list): jcols = [jc if asc else jc.desc() for asc, jc in zip(ascending, jcols)] else: raise PySparkTypeError( error_class="NOT_BOOL_OR_LIST", message_parameters={"arg_name": "ascending", "arg_type": type(ascending).__name__}, ) return self._jseq(jcols)
(self, cols: Sequence[Union[str, pyspark.sql.column.Column, List[Union[str, pyspark.sql.column.Column]]]], kwargs: Dict[str, Any]) -> py4j.java_gateway.JavaObject
39,353
pyspark.sql.dataframe
agg
Aggregate on the entire :class:`DataFrame` without groups (shorthand for ``df.groupBy().agg()``). .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- exprs : :class:`Column` or dict of key and value strings Columns or expressions to aggregate DataFrame by. Returns ------- :class:`DataFrame` Aggregated DataFrame. Examples -------- >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.agg({"age": "max"}).show() +--------+ |max(age)| +--------+ | 5| +--------+ >>> df.agg(sf.min(df.age)).show() +--------+ |min(age)| +--------+ | 2| +--------+
def agg(self, *exprs: Union[Column, Dict[str, str]]) -> "DataFrame": """Aggregate on the entire :class:`DataFrame` without groups (shorthand for ``df.groupBy().agg()``). .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- exprs : :class:`Column` or dict of key and value strings Columns or expressions to aggregate DataFrame by. Returns ------- :class:`DataFrame` Aggregated DataFrame. Examples -------- >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.agg({"age": "max"}).show() +--------+ |max(age)| +--------+ | 5| +--------+ >>> df.agg(sf.min(df.age)).show() +--------+ |min(age)| +--------+ | 2| +--------+ """ return self.groupBy().agg(*exprs) # type: ignore[arg-type]
(self, *exprs: Union[pyspark.sql.column.Column, Dict[str, str]]) -> pyspark.sql.dataframe.DataFrame
39,354
pyspark.sql.dataframe
alias
Returns a new :class:`DataFrame` with an alias set. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- alias : str an alias name to be set for the :class:`DataFrame`. Returns ------- :class:`DataFrame` Aliased DataFrame. Examples -------- >>> from pyspark.sql.functions import col, desc >>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) >>> df_as1 = df.alias("df_as1") >>> df_as2 = df.alias("df_as2") >>> joined_df = df_as1.join(df_as2, col("df_as1.name") == col("df_as2.name"), 'inner') >>> joined_df.select( ... "df_as1.name", "df_as2.name", "df_as2.age").sort(desc("df_as1.name")).show() +-----+-----+---+ | name| name|age| +-----+-----+---+ | Tom| Tom| 14| | Bob| Bob| 16| |Alice|Alice| 23| +-----+-----+---+
def alias(self, alias: str) -> "DataFrame": """Returns a new :class:`DataFrame` with an alias set. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- alias : str an alias name to be set for the :class:`DataFrame`. Returns ------- :class:`DataFrame` Aliased DataFrame. Examples -------- >>> from pyspark.sql.functions import col, desc >>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) >>> df_as1 = df.alias("df_as1") >>> df_as2 = df.alias("df_as2") >>> joined_df = df_as1.join(df_as2, col("df_as1.name") == col("df_as2.name"), 'inner') >>> joined_df.select( ... "df_as1.name", "df_as2.name", "df_as2.age").sort(desc("df_as1.name")).show() +-----+-----+---+ | name| name|age| +-----+-----+---+ | Tom| Tom| 14| | Bob| Bob| 16| |Alice|Alice| 23| +-----+-----+---+ """ assert isinstance(alias, str), "alias should be a string" return DataFrame(getattr(self._jdf, "as")(alias), self.sparkSession)
(self, alias: str) -> pyspark.sql.dataframe.DataFrame
39,355
pyspark.sql.dataframe
approxQuantile
Calculates the approximate quantiles of numerical columns of a :class:`DataFrame`. The result of this algorithm has the following deterministic bound: If the :class:`DataFrame` has N elements and if we request the quantile at probability `p` up to error `err`, then the algorithm will return a sample `x` from the :class:`DataFrame` so that the *exact* rank of `x` is close to (p * N). More precisely, floor((p - err) * N) <= rank(x) <= ceil((p + err) * N). This method implements a variation of the Greenwald-Khanna algorithm (with some speed optimizations). The algorithm was first present in [[https://doi.org/10.1145/375663.375670 Space-efficient Online Computation of Quantile Summaries]] by Greenwald and Khanna. .. versionadded:: 2.0.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- col: str, tuple or list Can be a single column name, or a list of names for multiple columns. .. versionchanged:: 2.2.0 Added support for multiple columns. probabilities : list or tuple a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum. relativeError : float The relative target precision to achieve (>= 0). If set to zero, the exact quantiles are computed, which could be very expensive. Note that values greater than 1 are accepted but gives the same result as 1. Returns ------- list the approximate quantiles at the given probabilities. * If the input `col` is a string, the output is a list of floats. * If the input `col` is a list or tuple of strings, the output is also a list, but each element in it is a list of floats, i.e., the output is a list of list of floats. Notes ----- Null values will be ignored in numerical columns before calculation. For columns only containing null values, an empty list is returned.
def approxQuantile( self, col: Union[str, List[str], Tuple[str]], probabilities: Union[List[float], Tuple[float]], relativeError: float, ) -> Union[List[float], List[List[float]]]: """ Calculates the approximate quantiles of numerical columns of a :class:`DataFrame`. The result of this algorithm has the following deterministic bound: If the :class:`DataFrame` has N elements and if we request the quantile at probability `p` up to error `err`, then the algorithm will return a sample `x` from the :class:`DataFrame` so that the *exact* rank of `x` is close to (p * N). More precisely, floor((p - err) * N) <= rank(x) <= ceil((p + err) * N). This method implements a variation of the Greenwald-Khanna algorithm (with some speed optimizations). The algorithm was first present in [[https://doi.org/10.1145/375663.375670 Space-efficient Online Computation of Quantile Summaries]] by Greenwald and Khanna. .. versionadded:: 2.0.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- col: str, tuple or list Can be a single column name, or a list of names for multiple columns. .. versionchanged:: 2.2.0 Added support for multiple columns. probabilities : list or tuple a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum. relativeError : float The relative target precision to achieve (>= 0). If set to zero, the exact quantiles are computed, which could be very expensive. Note that values greater than 1 are accepted but gives the same result as 1. Returns ------- list the approximate quantiles at the given probabilities. * If the input `col` is a string, the output is a list of floats. * If the input `col` is a list or tuple of strings, the output is also a list, but each element in it is a list of floats, i.e., the output is a list of list of floats. Notes ----- Null values will be ignored in numerical columns before calculation. For columns only containing null values, an empty list is returned. """ if not isinstance(col, (str, list, tuple)): raise PySparkTypeError( error_class="NOT_LIST_OR_STR_OR_TUPLE", message_parameters={"arg_name": "col", "arg_type": type(col).__name__}, ) isStr = isinstance(col, str) if isinstance(col, tuple): col = list(col) elif isStr: col = [cast(str, col)] for c in col: if not isinstance(c, str): raise PySparkTypeError( error_class="DISALLOWED_TYPE_FOR_CONTAINER", message_parameters={ "arg_name": "col", "arg_type": type(col).__name__, "allowed_types": "str", "return_type": type(c).__name__, }, ) col = _to_list(self._sc, cast(List["ColumnOrName"], col)) if not isinstance(probabilities, (list, tuple)): raise PySparkTypeError( error_class="NOT_LIST_OR_TUPLE", message_parameters={ "arg_name": "probabilities", "arg_type": type(probabilities).__name__, }, ) if isinstance(probabilities, tuple): probabilities = list(probabilities) for p in probabilities: if not isinstance(p, (float, int)) or p < 0 or p > 1: raise PySparkTypeError( error_class="NOT_LIST_OF_FLOAT_OR_INT", message_parameters={ "arg_name": "probabilities", "arg_type": type(p).__name__, }, ) probabilities = _to_list(self._sc, cast(List["ColumnOrName"], probabilities)) if not isinstance(relativeError, (float, int)): raise PySparkTypeError( error_class="NOT_FLOAT_OR_INT", message_parameters={ "arg_name": "relativeError", "arg_type": type(relativeError).__name__, }, ) if relativeError < 0: raise PySparkValueError( error_class="NEGATIVE_VALUE", message_parameters={ "arg_name": "relativeError", "arg_value": str(relativeError), }, ) relativeError = float(relativeError) jaq = self._jdf.stat().approxQuantile(col, probabilities, relativeError) jaq_list = [list(j) for j in jaq] return jaq_list[0] if isStr else jaq_list
(self, col: Union[str, List[str], Tuple[str]], probabilities: Union[List[float], Tuple[float]], relativeError: float) -> Union[List[float], List[List[float]]]
39,356
pyspark.sql.dataframe
cache
Persists the :class:`DataFrame` with the default storage level (`MEMORY_AND_DISK_DESER`). .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Notes ----- The default storage level has changed to `MEMORY_AND_DISK_DESER` to match Scala in 3.0. Returns ------- :class:`DataFrame` Cached DataFrame. Examples -------- >>> df = spark.range(1) >>> df.cache() DataFrame[id: bigint] >>> df.explain() == Physical Plan == AdaptiveSparkPlan isFinalPlan=false +- InMemoryTableScan ...
def cache(self) -> "DataFrame": """Persists the :class:`DataFrame` with the default storage level (`MEMORY_AND_DISK_DESER`). .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Notes ----- The default storage level has changed to `MEMORY_AND_DISK_DESER` to match Scala in 3.0. Returns ------- :class:`DataFrame` Cached DataFrame. Examples -------- >>> df = spark.range(1) >>> df.cache() DataFrame[id: bigint] >>> df.explain() == Physical Plan == AdaptiveSparkPlan isFinalPlan=false +- InMemoryTableScan ... """ self.is_cached = True self._jdf.cache() return self
(self) -> pyspark.sql.dataframe.DataFrame
39,357
pyspark.sql.dataframe
checkpoint
Returns a checkpointed version of this :class:`DataFrame`. Checkpointing can be used to truncate the logical plan of this :class:`DataFrame`, which is especially useful in iterative algorithms where the plan may grow exponentially. It will be saved to files inside the checkpoint directory set with :meth:`SparkContext.setCheckpointDir`. .. versionadded:: 2.1.0 Parameters ---------- eager : bool, optional, default True Whether to checkpoint this :class:`DataFrame` immediately. Returns ------- :class:`DataFrame` Checkpointed DataFrame. Notes ----- This API is experimental. Examples -------- >>> import tempfile >>> df = spark.createDataFrame([ ... (14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) >>> with tempfile.TemporaryDirectory() as d: ... spark.sparkContext.setCheckpointDir("/tmp/bb") ... df.checkpoint(False) DataFrame[age: bigint, name: string]
def checkpoint(self, eager: bool = True) -> "DataFrame": """Returns a checkpointed version of this :class:`DataFrame`. Checkpointing can be used to truncate the logical plan of this :class:`DataFrame`, which is especially useful in iterative algorithms where the plan may grow exponentially. It will be saved to files inside the checkpoint directory set with :meth:`SparkContext.setCheckpointDir`. .. versionadded:: 2.1.0 Parameters ---------- eager : bool, optional, default True Whether to checkpoint this :class:`DataFrame` immediately. Returns ------- :class:`DataFrame` Checkpointed DataFrame. Notes ----- This API is experimental. Examples -------- >>> import tempfile >>> df = spark.createDataFrame([ ... (14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) >>> with tempfile.TemporaryDirectory() as d: ... spark.sparkContext.setCheckpointDir("/tmp/bb") ... df.checkpoint(False) DataFrame[age: bigint, name: string] """ jdf = self._jdf.checkpoint(eager) return DataFrame(jdf, self.sparkSession)
(self, eager: bool = True) -> pyspark.sql.dataframe.DataFrame
39,358
pyspark.sql.dataframe
coalesce
Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions. Similar to coalesce defined on an :class:`RDD`, this operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions. If a larger number of partitions is requested, it will stay at the current number of partitions. However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, this may result in your computation taking place on fewer nodes than you like (e.g. one node in the case of numPartitions = 1). To avoid this, you can call repartition(). This will add a shuffle step, but means the current upstream partitions will be executed in parallel (per whatever the current partitioning is). .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- numPartitions : int specify the target number of partitions Returns ------- :class:`DataFrame` Examples -------- >>> df = spark.range(10) >>> df.coalesce(1).rdd.getNumPartitions() 1
def coalesce(self, numPartitions: int) -> "DataFrame": """ Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions. Similar to coalesce defined on an :class:`RDD`, this operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions. If a larger number of partitions is requested, it will stay at the current number of partitions. However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, this may result in your computation taking place on fewer nodes than you like (e.g. one node in the case of numPartitions = 1). To avoid this, you can call repartition(). This will add a shuffle step, but means the current upstream partitions will be executed in parallel (per whatever the current partitioning is). .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- numPartitions : int specify the target number of partitions Returns ------- :class:`DataFrame` Examples -------- >>> df = spark.range(10) >>> df.coalesce(1).rdd.getNumPartitions() 1 """ return DataFrame(self._jdf.coalesce(numPartitions), self.sparkSession)
(self, numPartitions: int) -> pyspark.sql.dataframe.DataFrame
39,359
pyspark.sql.dataframe
colRegex
Selects column based on the column name specified as a regex and returns it as :class:`Column`. .. versionadded:: 2.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- colName : str string, column name specified as a regex. Returns ------- :class:`Column` Examples -------- >>> df = spark.createDataFrame([("a", 1), ("b", 2), ("c", 3)], ["Col1", "Col2"]) >>> df.select(df.colRegex("`(Col1)?+.+`")).show() +----+ |Col2| +----+ | 1| | 2| | 3| +----+
def colRegex(self, colName: str) -> Column: """ Selects column based on the column name specified as a regex and returns it as :class:`Column`. .. versionadded:: 2.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- colName : str string, column name specified as a regex. Returns ------- :class:`Column` Examples -------- >>> df = spark.createDataFrame([("a", 1), ("b", 2), ("c", 3)], ["Col1", "Col2"]) >>> df.select(df.colRegex("`(Col1)?+.+`")).show() +----+ |Col2| +----+ | 1| | 2| | 3| +----+ """ if not isinstance(colName, str): raise PySparkTypeError( error_class="NOT_STR", message_parameters={"arg_name": "colName", "arg_type": type(colName).__name__}, ) jc = self._jdf.colRegex(colName) return Column(jc)
(self, colName: str) -> pyspark.sql.column.Column
39,360
pyspark.sql.dataframe
collect
Returns all the records as a list of :class:`Row`. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Returns ------- list List of rows. Examples -------- >>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) >>> df.collect() [Row(age=14, name='Tom'), Row(age=23, name='Alice'), Row(age=16, name='Bob')]
def collect(self) -> List[Row]: """Returns all the records as a list of :class:`Row`. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Returns ------- list List of rows. Examples -------- >>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) >>> df.collect() [Row(age=14, name='Tom'), Row(age=23, name='Alice'), Row(age=16, name='Bob')] """ with SCCallSiteSync(self._sc): sock_info = self._jdf.collectToPython() return list(_load_from_socket(sock_info, BatchedSerializer(CPickleSerializer())))
(self) -> List[pyspark.sql.types.Row]
39,361
pyspark.sql.dataframe
corr
Calculates the correlation of two columns of a :class:`DataFrame` as a double value. Currently only supports the Pearson Correlation Coefficient. :func:`DataFrame.corr` and :func:`DataFrameStatFunctions.corr` are aliases of each other. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- col1 : str The name of the first column col2 : str The name of the second column method : str, optional The correlation method. Currently only supports "pearson" Returns ------- float Pearson Correlation Coefficient of two columns. Examples -------- >>> df = spark.createDataFrame([(1, 12), (10, 1), (19, 8)], ["c1", "c2"]) >>> df.corr("c1", "c2") -0.3592106040535498 >>> df = spark.createDataFrame([(11, 12), (10, 11), (9, 10)], ["small", "bigger"]) >>> df.corr("small", "bigger") 1.0
def corr(self, col1: str, col2: str, method: Optional[str] = None) -> float: """ Calculates the correlation of two columns of a :class:`DataFrame` as a double value. Currently only supports the Pearson Correlation Coefficient. :func:`DataFrame.corr` and :func:`DataFrameStatFunctions.corr` are aliases of each other. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- col1 : str The name of the first column col2 : str The name of the second column method : str, optional The correlation method. Currently only supports "pearson" Returns ------- float Pearson Correlation Coefficient of two columns. Examples -------- >>> df = spark.createDataFrame([(1, 12), (10, 1), (19, 8)], ["c1", "c2"]) >>> df.corr("c1", "c2") -0.3592106040535498 >>> df = spark.createDataFrame([(11, 12), (10, 11), (9, 10)], ["small", "bigger"]) >>> df.corr("small", "bigger") 1.0 """ if not isinstance(col1, str): raise PySparkTypeError( error_class="NOT_STR", message_parameters={"arg_name": "col1", "arg_type": type(col1).__name__}, ) if not isinstance(col2, str): raise PySparkTypeError( error_class="NOT_STR", message_parameters={"arg_name": "col2", "arg_type": type(col2).__name__}, ) if not method: method = "pearson" if not method == "pearson": raise PySparkValueError( error_class="VALUE_NOT_PEARSON", message_parameters={"arg_name": "method", "arg_value": method}, ) return self._jdf.stat().corr(col1, col2, method)
(self, col1: str, col2: str, method: Optional[str] = None) -> float
39,362
pyspark.sql.dataframe
count
Returns the number of rows in this :class:`DataFrame`. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Returns ------- int Number of rows. Examples -------- >>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) Return the number of rows in the :class:`DataFrame`. >>> df.count() 3
def count(self) -> int: """Returns the number of rows in this :class:`DataFrame`. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Returns ------- int Number of rows. Examples -------- >>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) Return the number of rows in the :class:`DataFrame`. >>> df.count() 3 """ return int(self._jdf.count())
(self) -> int
39,363
pyspark.sql.dataframe
cov
Calculate the sample covariance for the given columns, specified by their names, as a double value. :func:`DataFrame.cov` and :func:`DataFrameStatFunctions.cov` are aliases. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- col1 : str The name of the first column col2 : str The name of the second column Returns ------- float Covariance of two columns. Examples -------- >>> df = spark.createDataFrame([(1, 12), (10, 1), (19, 8)], ["c1", "c2"]) >>> df.cov("c1", "c2") -18.0 >>> df = spark.createDataFrame([(11, 12), (10, 11), (9, 10)], ["small", "bigger"]) >>> df.cov("small", "bigger") 1.0
def cov(self, col1: str, col2: str) -> float: """ Calculate the sample covariance for the given columns, specified by their names, as a double value. :func:`DataFrame.cov` and :func:`DataFrameStatFunctions.cov` are aliases. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- col1 : str The name of the first column col2 : str The name of the second column Returns ------- float Covariance of two columns. Examples -------- >>> df = spark.createDataFrame([(1, 12), (10, 1), (19, 8)], ["c1", "c2"]) >>> df.cov("c1", "c2") -18.0 >>> df = spark.createDataFrame([(11, 12), (10, 11), (9, 10)], ["small", "bigger"]) >>> df.cov("small", "bigger") 1.0 """ if not isinstance(col1, str): raise PySparkTypeError( error_class="NOT_STR", message_parameters={"arg_name": "col1", "arg_type": type(col1).__name__}, ) if not isinstance(col2, str): raise PySparkTypeError( error_class="NOT_STR", message_parameters={"arg_name": "col2", "arg_type": type(col2).__name__}, ) return self._jdf.stat().cov(col1, col2)
(self, col1: str, col2: str) -> float
39,364
pyspark.sql.dataframe
createGlobalTempView
Creates a global temporary view with this :class:`DataFrame`. The lifetime of this temporary view is tied to this Spark application. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. .. versionadded:: 2.1.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- name : str Name of the view. Examples -------- Create a global temporary view. >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.createGlobalTempView("people") >>> df2 = spark.sql("SELECT * FROM global_temp.people") >>> sorted(df.collect()) == sorted(df2.collect()) True Throws an exception if the global temporary view already exists. >>> df.createGlobalTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: "Temporary table 'people' already exists;" >>> spark.catalog.dropGlobalTempView("people") True
def createGlobalTempView(self, name: str) -> None: """Creates a global temporary view with this :class:`DataFrame`. The lifetime of this temporary view is tied to this Spark application. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. .. versionadded:: 2.1.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- name : str Name of the view. Examples -------- Create a global temporary view. >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.createGlobalTempView("people") >>> df2 = spark.sql("SELECT * FROM global_temp.people") >>> sorted(df.collect()) == sorted(df2.collect()) True Throws an exception if the global temporary view already exists. >>> df.createGlobalTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: "Temporary table 'people' already exists;" >>> spark.catalog.dropGlobalTempView("people") True """ self._jdf.createGlobalTempView(name)
(self, name: str) -> NoneType
39,365
pyspark.sql.dataframe
createOrReplaceGlobalTempView
Creates or replaces a global temporary view using the given name. The lifetime of this temporary view is tied to this Spark application. .. versionadded:: 2.2.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- name : str Name of the view. Examples -------- Create a global temporary view. >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.createOrReplaceGlobalTempView("people") Replace the global temporary view. >>> df2 = df.filter(df.age > 3) >>> df2.createOrReplaceGlobalTempView("people") >>> df3 = spark.sql("SELECT * FROM global_temp.people") >>> sorted(df3.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropGlobalTempView("people") True
def createOrReplaceGlobalTempView(self, name: str) -> None: """Creates or replaces a global temporary view using the given name. The lifetime of this temporary view is tied to this Spark application. .. versionadded:: 2.2.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- name : str Name of the view. Examples -------- Create a global temporary view. >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.createOrReplaceGlobalTempView("people") Replace the global temporary view. >>> df2 = df.filter(df.age > 3) >>> df2.createOrReplaceGlobalTempView("people") >>> df3 = spark.sql("SELECT * FROM global_temp.people") >>> sorted(df3.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropGlobalTempView("people") True """ self._jdf.createOrReplaceGlobalTempView(name)
(self, name: str) -> NoneType
39,366
pyspark.sql.dataframe
createOrReplaceTempView
Creates or replaces a local temporary view with this :class:`DataFrame`. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. .. versionadded:: 2.0.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- name : str Name of the view. Examples -------- Create a local temporary view named 'people'. >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.createOrReplaceTempView("people") Replace the local temporary view. >>> df2 = df.filter(df.age > 3) >>> df2.createOrReplaceTempView("people") >>> df3 = spark.sql("SELECT * FROM people") >>> sorted(df3.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropTempView("people") True
def createOrReplaceTempView(self, name: str) -> None: """Creates or replaces a local temporary view with this :class:`DataFrame`. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. .. versionadded:: 2.0.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- name : str Name of the view. Examples -------- Create a local temporary view named 'people'. >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.createOrReplaceTempView("people") Replace the local temporary view. >>> df2 = df.filter(df.age > 3) >>> df2.createOrReplaceTempView("people") >>> df3 = spark.sql("SELECT * FROM people") >>> sorted(df3.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropTempView("people") True """ self._jdf.createOrReplaceTempView(name)
(self, name: str) -> NoneType
39,367
pyspark.sql.dataframe
createTempView
Creates a local temporary view with this :class:`DataFrame`. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. .. versionadded:: 2.0.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- name : str Name of the view. Examples -------- Create a local temporary view. >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.createTempView("people") >>> df2 = spark.sql("SELECT * FROM people") >>> sorted(df.collect()) == sorted(df2.collect()) True Throw an exception if the table already exists. >>> df.createTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: "Temporary table 'people' already exists;" >>> spark.catalog.dropTempView("people") True
def createTempView(self, name: str) -> None: """Creates a local temporary view with this :class:`DataFrame`. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. .. versionadded:: 2.0.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- name : str Name of the view. Examples -------- Create a local temporary view. >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.createTempView("people") >>> df2 = spark.sql("SELECT * FROM people") >>> sorted(df.collect()) == sorted(df2.collect()) True Throw an exception if the table already exists. >>> df.createTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: "Temporary table 'people' already exists;" >>> spark.catalog.dropTempView("people") True """ self._jdf.createTempView(name)
(self, name: str) -> NoneType
39,368
pyspark.sql.dataframe
crossJoin
Returns the cartesian product with another :class:`DataFrame`. .. versionadded:: 2.1.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other : :class:`DataFrame` Right side of the cartesian product. Returns ------- :class:`DataFrame` Joined DataFrame. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) >>> df2 = spark.createDataFrame( ... [Row(height=80, name="Tom"), Row(height=85, name="Bob")]) >>> df.crossJoin(df2.select("height")).select("age", "name", "height").show() +---+-----+------+ |age| name|height| +---+-----+------+ | 14| Tom| 80| | 14| Tom| 85| | 23|Alice| 80| | 23|Alice| 85| | 16| Bob| 80| | 16| Bob| 85| +---+-----+------+
def crossJoin(self, other: "DataFrame") -> "DataFrame": """Returns the cartesian product with another :class:`DataFrame`. .. versionadded:: 2.1.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- other : :class:`DataFrame` Right side of the cartesian product. Returns ------- :class:`DataFrame` Joined DataFrame. Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) >>> df2 = spark.createDataFrame( ... [Row(height=80, name="Tom"), Row(height=85, name="Bob")]) >>> df.crossJoin(df2.select("height")).select("age", "name", "height").show() +---+-----+------+ |age| name|height| +---+-----+------+ | 14| Tom| 80| | 14| Tom| 85| | 23|Alice| 80| | 23|Alice| 85| | 16| Bob| 80| | 16| Bob| 85| +---+-----+------+ """ jdf = self._jdf.crossJoin(other._jdf) return DataFrame(jdf, self.sparkSession)
(self, other: pyspark.sql.dataframe.DataFrame) -> pyspark.sql.dataframe.DataFrame
39,369
pyspark.sql.dataframe
crosstab
Computes a pair-wise frequency table of the given columns. Also known as a contingency table. The first column of each row will be the distinct values of `col1` and the column names will be the distinct values of `col2`. The name of the first column will be `$col1_$col2`. Pairs that have no occurrences will have zero as their counts. :func:`DataFrame.crosstab` and :func:`DataFrameStatFunctions.crosstab` are aliases. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- col1 : str The name of the first column. Distinct items will make the first item of each row. col2 : str The name of the second column. Distinct items will make the column names of the :class:`DataFrame`. Returns ------- :class:`DataFrame` Frequency matrix of two columns. Examples -------- >>> df = spark.createDataFrame([(1, 11), (1, 11), (3, 10), (4, 8), (4, 8)], ["c1", "c2"]) >>> df.crosstab("c1", "c2").sort("c1_c2").show() +-----+---+---+---+ |c1_c2| 10| 11| 8| +-----+---+---+---+ | 1| 0| 2| 0| | 3| 1| 0| 0| | 4| 0| 0| 2| +-----+---+---+---+
def crosstab(self, col1: str, col2: str) -> "DataFrame": """ Computes a pair-wise frequency table of the given columns. Also known as a contingency table. The first column of each row will be the distinct values of `col1` and the column names will be the distinct values of `col2`. The name of the first column will be `$col1_$col2`. Pairs that have no occurrences will have zero as their counts. :func:`DataFrame.crosstab` and :func:`DataFrameStatFunctions.crosstab` are aliases. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- col1 : str The name of the first column. Distinct items will make the first item of each row. col2 : str The name of the second column. Distinct items will make the column names of the :class:`DataFrame`. Returns ------- :class:`DataFrame` Frequency matrix of two columns. Examples -------- >>> df = spark.createDataFrame([(1, 11), (1, 11), (3, 10), (4, 8), (4, 8)], ["c1", "c2"]) >>> df.crosstab("c1", "c2").sort("c1_c2").show() +-----+---+---+---+ |c1_c2| 10| 11| 8| +-----+---+---+---+ | 1| 0| 2| 0| | 3| 1| 0| 0| | 4| 0| 0| 2| +-----+---+---+---+ """ if not isinstance(col1, str): raise PySparkTypeError( error_class="NOT_STR", message_parameters={"arg_name": "col1", "arg_type": type(col1).__name__}, ) if not isinstance(col2, str): raise PySparkTypeError( error_class="NOT_STR", message_parameters={"arg_name": "col2", "arg_type": type(col2).__name__}, ) return DataFrame(self._jdf.stat().crosstab(col1, col2), self.sparkSession)
(self, col1: str, col2: str) -> pyspark.sql.dataframe.DataFrame
39,370
pyspark.sql.dataframe
cube
Create a multi-dimensional cube for the current :class:`DataFrame` using the specified columns, so we can run aggregations on them. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- cols : list, str or :class:`Column` columns to create cube by. Each element should be a column name (string) or an expression (:class:`Column`) or list of them. Returns ------- :class:`GroupedData` Cube of the data by given columns. Examples -------- >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.cube("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | NULL|NULL| 2| | NULL| 2| 1| | NULL| 5| 1| |Alice|NULL| 1| |Alice| 2| 1| | Bob|NULL| 1| | Bob| 5| 1| +-----+----+-----+
def cube(self, *cols: "ColumnOrName") -> "GroupedData": # type: ignore[misc] """ Create a multi-dimensional cube for the current :class:`DataFrame` using the specified columns, so we can run aggregations on them. .. versionadded:: 1.4.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Parameters ---------- cols : list, str or :class:`Column` columns to create cube by. Each element should be a column name (string) or an expression (:class:`Column`) or list of them. Returns ------- :class:`GroupedData` Cube of the data by given columns. Examples -------- >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.cube("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | NULL|NULL| 2| | NULL| 2| 1| | NULL| 5| 1| |Alice|NULL| 1| |Alice| 2| 1| | Bob|NULL| 1| | Bob| 5| 1| +-----+----+-----+ """ jgd = self._jdf.cube(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self)
(self, *cols: 'ColumnOrName') -> 'GroupedData'
39,371
pyspark.sql.dataframe
describe
Computes basic statistics for numeric and string columns. .. versionadded:: 1.3.1 .. versionchanged:: 3.4.0 Supports Spark Connect. This includes count, mean, stddev, min, and max. If no columns are given, this function computes statistics for all numerical or string columns. Notes ----- This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting :class:`DataFrame`. Use summary for expanded statistics and control over which statistics to compute. Parameters ---------- cols : str, list, optional Column name or list of column names to describe by (default All columns). Returns ------- :class:`DataFrame` A new DataFrame that describes (provides statistics) given DataFrame. Examples -------- >>> df = spark.createDataFrame( ... [("Bob", 13, 40.3, 150.5), ("Alice", 12, 37.8, 142.3), ("Tom", 11, 44.1, 142.2)], ... ["name", "age", "weight", "height"], ... ) >>> df.describe(['age']).show() +-------+----+ |summary| age| +-------+----+ | count| 3| | mean|12.0| | stddev| 1.0| | min| 11| | max| 13| +-------+----+ >>> df.describe(['age', 'weight', 'height']).show() +-------+----+------------------+-----------------+ |summary| age| weight| height| +-------+----+------------------+-----------------+ | count| 3| 3| 3| | mean|12.0| 40.73333333333333| 145.0| | stddev| 1.0|3.1722757341273704|4.763402145525822| | min| 11| 37.8| 142.2| | max| 13| 44.1| 150.5| +-------+----+------------------+-----------------+ See Also -------- DataFrame.summary
def describe(self, *cols: Union[str, List[str]]) -> "DataFrame": """Computes basic statistics for numeric and string columns. .. versionadded:: 1.3.1 .. versionchanged:: 3.4.0 Supports Spark Connect. This includes count, mean, stddev, min, and max. If no columns are given, this function computes statistics for all numerical or string columns. Notes ----- This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting :class:`DataFrame`. Use summary for expanded statistics and control over which statistics to compute. Parameters ---------- cols : str, list, optional Column name or list of column names to describe by (default All columns). Returns ------- :class:`DataFrame` A new DataFrame that describes (provides statistics) given DataFrame. Examples -------- >>> df = spark.createDataFrame( ... [("Bob", 13, 40.3, 150.5), ("Alice", 12, 37.8, 142.3), ("Tom", 11, 44.1, 142.2)], ... ["name", "age", "weight", "height"], ... ) >>> df.describe(['age']).show() +-------+----+ |summary| age| +-------+----+ | count| 3| | mean|12.0| | stddev| 1.0| | min| 11| | max| 13| +-------+----+ >>> df.describe(['age', 'weight', 'height']).show() +-------+----+------------------+-----------------+ |summary| age| weight| height| +-------+----+------------------+-----------------+ | count| 3| 3| 3| | mean|12.0| 40.73333333333333| 145.0| | stddev| 1.0|3.1722757341273704|4.763402145525822| | min| 11| 37.8| 142.2| | max| 13| 44.1| 150.5| +-------+----+------------------+-----------------+ See Also -------- DataFrame.summary """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] # type: ignore[assignment] jdf = self._jdf.describe(self._jseq(cols)) return DataFrame(jdf, self.sparkSession)
(self, *cols: Union[str, List[str]]) -> pyspark.sql.dataframe.DataFrame
39,372
pyspark.sql.dataframe
distinct
Returns a new :class:`DataFrame` containing the distinct rows in this :class:`DataFrame`. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Returns ------- :class:`DataFrame` DataFrame with distinct records. Examples -------- >>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (23, "Alice")], ["age", "name"]) Return the number of distinct rows in the :class:`DataFrame` >>> df.distinct().count() 2
def distinct(self) -> "DataFrame": """Returns a new :class:`DataFrame` containing the distinct rows in this :class:`DataFrame`. .. versionadded:: 1.3.0 .. versionchanged:: 3.4.0 Supports Spark Connect. Returns ------- :class:`DataFrame` DataFrame with distinct records. Examples -------- >>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (23, "Alice")], ["age", "name"]) Return the number of distinct rows in the :class:`DataFrame` >>> df.distinct().count() 2 """ return DataFrame(self._jdf.distinct(), self.sparkSession)
(self) -> pyspark.sql.dataframe.DataFrame