index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
41,003
pyglove.core.symbolic.list
List
Symbolic list. ``pg.List`` implements a list type whose instances are symbolically programmable, which is a subclass of the built-in Python ``list``, and the subclass of ``pg.Symbolic``. ``pg.List`` can be used as a regular list:: # Construct a symbolic list from an iterable object. l = pg.List(range(10)) It also supports symbolic validation through the ``value_spec`` argument:: l = pg.List([1, 2, 3], value_spec=pg.typing.List( pg.typing.Int(min_value=1), max_size=10 )) # Raises: 0 is not in acceptable range. l.append(0) And can be symbolically manipulated:: l = pg.List([{'foo': 1}]) l.rebind({ '[0].foo': 2 }) pg.query(l, where=lambda x: isinstance(x, int)) The user call also subscribe changes to its sub-nodes:: def on_change(updates): print(updates) l = pg.List([{'foo': 1}], onchange_callaback=on_change) # `on_change` will be triggered on item insertion. l.append({'bar': 2}) # `on_change` will be triggered on item removal. l.pop(0) # `on_change` will also be triggered on subtree change. l.rebind({'[0].bar': 3})
class List(list, base.Symbolic, pg_typing.CustomTyping): """Symbolic list. ``pg.List`` implements a list type whose instances are symbolically programmable, which is a subclass of the built-in Python ``list``, and the subclass of ``pg.Symbolic``. ``pg.List`` can be used as a regular list:: # Construct a symbolic list from an iterable object. l = pg.List(range(10)) It also supports symbolic validation through the ``value_spec`` argument:: l = pg.List([1, 2, 3], value_spec=pg.typing.List( pg.typing.Int(min_value=1), max_size=10 )) # Raises: 0 is not in acceptable range. l.append(0) And can be symbolically manipulated:: l = pg.List([{'foo': 1}]) l.rebind({ '[0].foo': 2 }) pg.query(l, where=lambda x: isinstance(x, int)) The user call also subscribe changes to its sub-nodes:: def on_change(updates): print(updates) l = pg.List([{'foo': 1}], onchange_callaback=on_change) # `on_change` will be triggered on item insertion. l.append({'bar': 2}) # `on_change` will be triggered on item removal. l.pop(0) # `on_change` will also be triggered on subtree change. l.rebind({'[0].bar': 3}) """ @classmethod def partial(cls, items: Optional[Iterable[Any]] = None, *, value_spec: Optional[pg_typing.List] = None, onchange_callback: Optional[Callable[ [Dict[object_utils.KeyPath, base.FieldUpdate]], None]] = None, **kwargs) -> 'List': """Class method that creates a partial List object.""" return cls(items, value_spec=value_spec, onchange_callback=onchange_callback, allow_partial=True, **kwargs) @classmethod def from_json(cls, json_value: Any, *, value_spec: Optional[pg_typing.List] = None, allow_partial: bool = False, root_path: Optional[object_utils.KeyPath] = None, **kwargs) -> 'List': """Class method that load an symbolic List from a JSON value. Example:: l = List.from_json([{ '_type': '__main__.Foo', 'f1': 1, 'f2': { 'f21': True } }, 1 ]) assert l.value_spec is None # Okay: l.append('abc') # [0].f2 is bound by class Foo's field 'f2' definition # (assuming it defines a schema for the Dict field). assert l[0].f2.value_spec is not None # Not okay: l[0].f2.abc = 1 Args: json_value: Input JSON value, only JSON list is acceptable. value_spec: An optional `pg.typing.List` object as the schema for the list. allow_partial: Whether to allow elements of the list to be partial. root_path: KeyPath of loaded object in its object tree. **kwargs: Allow passing through keyword arguments that are not applicable. Returns: A schema-less symbolic list, but its items maybe symbolic. """ return cls(json_value, value_spec=value_spec, allow_partial=allow_partial, root_path=root_path) def __init__( self, items: Optional[Iterable[Any]] = None, *, value_spec: Optional[pg_typing.List] = None, onchange_callback: Optional[Callable[ [Dict[object_utils.KeyPath, base.FieldUpdate]], None]] = None, allow_partial: bool = False, accessor_writable: bool = True, sealed: bool = False, root_path: Optional[object_utils.KeyPath] = None): """Constructor. Args: items: A optional iterable object as initial value for this list. value_spec: Value spec that applies to this List. onchange_callback: Callback when sub-tree has been modified. allow_partial: Whether to allow unbound or partial fields. This takes effect only when value_spec is not None. accessor_writable: Whether to allow modification of this List using accessors (operator[]). sealed: Whether to seal this List after creation. root_path: KeyPath of this List in its object tree. """ if value_spec and not isinstance(value_spec, pg_typing.List): raise TypeError( f'Argument \'value_spec\' must be a `pg.typing.List` object. ' f'Encountered {value_spec}.') # We delay seal operation until items are filled. base.Symbolic.__init__( self, allow_partial=allow_partial, accessor_writable=accessor_writable, sealed=False, root_path=root_path) self._value_spec = None self._onchange_callback = None list.__init__(self) if items: # Copy the symbolic form instead of evaluated form. if isinstance(items, List): items = items.sym_values() for item in items: self._set_item_without_permission_check(len(self), item) if value_spec: self.use_value_spec(value_spec, allow_partial) # NOTE(daiyip): We set onchange callback at the end of init to avoid # triggering during initialization. self._onchange_callback = onchange_callback self.seal(sealed) @property def max_size(self) -> Optional[int]: """Returns max size of this list.""" if self._value_spec: return typing.cast(pg_typing.ListKey, self._value_spec.element.key).max_value return None def use_value_spec(self, value_spec: Optional[pg_typing.List], allow_partial: bool = False) -> 'List': """Applies a ``pg.List`` as the value spec for current list. Args: value_spec: A List ValueSpec to apply to this List. If current List is schema-less (whose immediate members are not validated against schema), and `value_spec` is not None, the value spec will be applied to the List. Or else if current List is already symbolic (whose immediate members are under the constraint of a List value spec), and `value_spec` is None, current List will become schema-less. However, the schema constraints for non-immediate members will remain. allow_partial: Whether allow partial dict based on the schema. This flag will override allow_partial flag in __init__ for spec-less List. Returns: Self. Raises: ValueError: schema validation failed due to value error. RuntimeError: List is already bound with another value_spec. TypeError: type errors during validation. KeyError: key errors during validation. """ if value_spec is None: self._value_spec = None self._accessor_writable = True return self if not isinstance(value_spec, pg_typing.List): raise ValueError( self._error_message( f'Value spec for list must be a `pg.typing.List` object. ' f'Encountered: {value_spec!r}')) if self._value_spec and self._value_spec != value_spec: raise RuntimeError( self._error_message( f'List is already bound with a different value ' f'spec: {self._value_spec}. New value spec: {value_spec}.')) self._allow_partial = allow_partial if flags.is_type_check_enabled(): # NOTE(daiyip): self._value_spec will be set in List.custom_apply method # called by spec.apply, thus we don't need to set the _value_spec # explicitly. value_spec.apply( self, allow_partial=base.accepts_partial(self), child_transform=base.symbolic_transform_fn(self._allow_partial), root_path=self.sym_path) else: self._value_spec = value_spec return self @property def value_spec(self) -> Optional[pg_typing.List]: """Returns value spec of this List.""" return self._value_spec def sym_attr_field(self, key: Union[str, int]) -> Optional[pg_typing.Field]: """Returns the field definition for a symbolic attribute.""" del key if self._value_spec is None: return None return self._value_spec.element def sym_hasattr(self, key: Union[str, int]) -> bool: """Tests if a symbolic attribute exists.""" return (isinstance(key, numbers.Integral) and key >= -len(self) and key < len(self)) def sym_keys(self) -> Iterator[int]: """Symbolically iterates indices.""" for i in range(len(self)): yield i def sym_values(self) -> Iterator[Any]: """Iterates the values of symbolic attributes.""" for i in range(len(self)): yield super().__getitem__(i) def sym_items(self) -> Iterator[Tuple[int, Any]]: """Iterates the (key, value) pairs of symbolic attributes.""" for i in range(len(self)): yield (i, super().__getitem__(i)) def sym_hash(self) -> int: """Symbolically hashing.""" return base.sym_hash( (self.__class__, tuple([base.sym_hash(e) for e in self.sym_values()])) ) def _sym_getattr(self, key: int) -> Any: # pytype: disable=signature-mismatch # overriding-parameter-type-checks """Gets symbolic attribute by index.""" return super().__getitem__(key) def _sym_clone(self, deep: bool, memo=None) -> 'List': """Override Symbolic._clone.""" source = [] for v in self.sym_values(): if deep or isinstance(v, base.Symbolic): v = base.clone(v, deep, memo) source.append(v) return List( source, value_spec=self._value_spec, allow_partial=self._allow_partial, accessor_writable=self._accessor_writable, # NOTE(daiyip): parent and root_path are reset to empty # for copy object. root_path=None) def _sym_missing(self) -> Dict[Any, Any]: """Returns missing fields.""" missing = dict() for idx, elem in self.sym_items(): if isinstance(elem, base.Symbolic): missing_child = elem.sym_missing(flatten=False) if missing_child: missing[idx] = missing_child return missing def _sym_rebind( self, path_value_pairs: typing.Dict[object_utils.KeyPath, Any] ) -> typing.List[base.FieldUpdate]: """Subclass specific rebind implementation.""" updates = [] # Apply the updates in reverse order, so the operated path will not alter # from insertions and deletions. path_value_pairs = sorted( path_value_pairs.items(), key=lambda x: x[0], reverse=True) for k, v in path_value_pairs: update = self._set_item_of_current_tree(k, v) if update is not None: updates.append(update) # Reverse the updates so the update is from the smallest number to # the largest. updates.reverse() return updates def _sym_nondefault(self) -> Dict[int, Any]: """Returns non-default values.""" non_defaults = dict() for idx, elem in self.sym_items(): if isinstance(elem, base.Symbolic): non_defaults_child = elem.non_default_values(flatten=False) if non_defaults_child: non_defaults[idx] = non_defaults_child else: non_defaults[idx] = elem return non_defaults def seal(self, sealed: bool = True) -> 'List': """Seal or unseal current object from further modification.""" if self.is_sealed == sealed: return self for elem in self.sym_values(): if isinstance(elem, base.Symbolic): elem.seal(sealed) super().seal(sealed) return self def _update_children_paths( self, old_path: object_utils.KeyPath, new_path: object_utils.KeyPath) -> None: """Update children paths according to root_path of current node.""" del old_path for idx, item in self.sym_items(): if isinstance(item, base.TopologyAware): item.sym_setpath(object_utils.KeyPath(idx, new_path)) def _set_item_without_permission_check( # pytype: disable=signature-mismatch # overriding-parameter-type-checks self, key: int, value: Any) -> Optional[base.FieldUpdate]: """Set or add an item without permission check.""" assert isinstance(key, numbers.Integral), key index = key if index >= len(self): # Appending MISSING_VALUE is considered no-op. if value == pg_typing.MISSING_VALUE: return None index = len(self) should_insert = False if isinstance(value, Insertion): should_insert = True value = value.value old_value = pg_typing.MISSING_VALUE # Replace an existing value. if index < len(self) and not should_insert: old_value = list.__getitem__(self, index) # Generates no update as old value is the same as the new value. if old_value is value: return None new_value = self._formalized_value(index, value) if index < len(self): if should_insert: list.insert(self, index, new_value) else: list.__setitem__(self, index, new_value) # Detach old value from object tree. if isinstance(old_value, base.TopologyAware): old_value.sym_setparent(None) else: super().append(new_value) return base.FieldUpdate( self.sym_path + index, self, self._value_spec.element if self._value_spec else None, old_value, new_value) def _formalized_value(self, idx: int, value: Any): """Get transformed (formal) value from user input.""" allow_partial = base.accepts_partial(self) value = base.from_json( value, allow_partial=allow_partial, root_path=object_utils.KeyPath(idx, self.sym_path)) if self._value_spec and flags.is_type_check_enabled(): value = self._value_spec.element.apply( value, allow_partial=allow_partial, transform_fn=base.symbolic_transform_fn(self._allow_partial), root_path=object_utils.KeyPath(idx, self.sym_path)) return self._relocate_if_symbolic(idx, value) @property def _subscribes_field_updates(self) -> bool: """Returns True if current list subscribes field updates.""" return self._onchange_callback is not None def _on_change(self, field_updates: Dict[object_utils.KeyPath, base.FieldUpdate]): """On change event of List.""" # Do nothing for now to handle changes of List. # NOTE(daiyip): Remove items that are MISSING_VALUES. keys_to_remove = [] for i, item in self.sym_items(): if pg_typing.MISSING_VALUE == item: keys_to_remove.append(i) if keys_to_remove: for i in reversed(keys_to_remove): list.__delitem__(self, i) # Update paths for children. for idx, item in self.sym_items(): if isinstance(item, base.TopologyAware) and item.sym_path.key != idx: item.sym_setpath(object_utils.KeyPath(idx, self.sym_path)) if self._onchange_callback is not None: self._onchange_callback(field_updates) def _parse_slice(self, index: slice) -> Tuple[int, int, int]: start = index.start if index.start is not None else 0 start = max(-len(self), start) start = min(len(self), start) if start < 0: start += len(self) stop = index.stop if index.stop is not None else len(self) stop = max(-len(self), stop) stop = min(len(self), stop) if stop < 0: stop += len(self) step = index.step if index.step is not None else 1 return start, stop, step def _init_kwargs(self) -> typing.Dict[str, Any]: kwargs = super()._init_kwargs() if not self._accessor_writable: kwargs['accessor_writable'] = False if self._onchange_callback is not None: kwargs['onchange_callback'] = self._onchange_callback # NOTE(daiyip): We do not serialize ValueSpec for now as in most use # cases they come from the subclasses of `pg.Object`. return kwargs def __getstate__(self) -> Any: """Customizes pickle.dump.""" return dict(value=list(self), kwargs=self._init_kwargs()) def __setstate__(self, state) -> None: """Customizes pickle.load.""" self.__init__(state['value'], **state['kwargs']) def __getitem__(self, index) -> Any: """Gets the item at a given position.""" if isinstance(index, numbers.Integral): if index < -len(self) or index >= len(self): raise IndexError('list index out of range') return self.sym_inferred(index) elif isinstance(index, slice): return [self[i] for i in range(*self._parse_slice(index))] else: raise TypeError( f'list index must be an integer. Encountered {index!r}.') def __iter__(self): """Iterates the list.""" for i in range(len(self)): yield self.sym_inferred(i) def __setitem__(self, index, value: Any) -> None: """Set item in this List.""" if base.treats_as_sealed(self): raise base.WritePermissionError( self._error_message('Cannot set item for a sealed List.')) if not base.writtable_via_accessors(self): raise base.WritePermissionError( self._error_message('Cannot modify List item by __setitem__ while ' 'accessor_writable is set to False. ' 'Use \'rebind\' method instead.')) if isinstance(index, slice): start, stop, step = self._parse_slice(index) replacements = [self._formalized_value(i, v) for i, v in enumerate(value)] if step < 0: replacements.reverse() step = -step slice_size = math.ceil((stop - start) * 1.0 / step) if step == 1: if slice_size < len(replacements): for i in range(slice_size, len(replacements)): replacements[i] = Insertion(replacements[i]) else: replacements.extend( [pg_typing.MISSING_VALUE for _ in range(slice_size - len(replacements))]) elif slice_size != len(replacements): raise ValueError( f'attempt to assign sequence of size {len(replacements)} to ' f'extended slice of size {slice_size}') updates = [] for i, r in enumerate(replacements): update = self._set_item_without_permission_check(start + i * step, r) if update is not None: updates.append(update) if flags.is_change_notification_enabled() and updates: self._notify_field_updates(updates) elif isinstance(index, numbers.Integral): if index < -len(self) or index >= len(self): raise IndexError( f'list assignment index out of range. ' f'Length={len(self)}, index={index}') update = self._set_item_without_permission_check(index, value) if flags.is_change_notification_enabled() and update: self._notify_field_updates([update]) else: raise TypeError( f'list assignment index must be an integer. Encountered {index!r}.') def __delitem__(self, index: int) -> None: """Delete an item from the List.""" if base.treats_as_sealed(self): raise base.WritePermissionError('Cannot delete item from a sealed List.') if not base.writtable_via_accessors(self): raise base.WritePermissionError( self._error_message('Cannot delete List item while accessor_writable ' 'is set to False. ' 'Use \'rebind\' method instead.')) if not isinstance(index, numbers.Integral): raise TypeError( f'list index must be an integer. Encountered {index!r}.') if index < -len(self) or index >= len(self): raise IndexError( f'list index out of range. ' f'Length={len(self)}, index={index}') old_value = self.sym_getattr(index) super().__delitem__(index) if flags.is_change_notification_enabled(): self._notify_field_updates([ base.FieldUpdate( self.sym_path + index, self, self._value_spec.element if self._value_spec else None, old_value, pg_typing.MISSING_VALUE) ]) def __add__(self, other: Iterable[Any]) -> 'List': """Returns a concatenated List of self and other.""" concatenated = self.copy() concatenated.extend(other) return concatenated def __mul__(self, n: int) -> 'List': """Returns a repeated Lit of self.""" result = List() for _ in range(n): result.extend(self) if self._value_spec is not None: result.use_value_spec(self._value_spec) return result def __rmul__(self, n: int) -> 'List': """Returns a repeated Lit of self.""" return self.__mul__(n) def copy(self) -> 'List': """Shallow current list.""" return List(super().copy(), value_spec=self._value_spec) def append(self, value: Any) -> None: """Appends an item.""" if base.treats_as_sealed(self): raise base.WritePermissionError('Cannot append element on a sealed List.') if self.max_size is not None and len(self) >= self.max_size: raise ValueError(f'List reached its max size {self.max_size}.') update = self._set_item_without_permission_check(len(self), value) if flags.is_change_notification_enabled() and update: self._notify_field_updates([update]) def insert(self, index: int, value: Any) -> None: """Inserts an item at a given position.""" if base.treats_as_sealed(self): raise base.WritePermissionError( 'Cannot insert element into a sealed List.') if self.max_size is not None and len(self) >= self.max_size: raise ValueError(f'List reached its max size {self.max_size}.') update = self._set_item_without_permission_check( index, mark_as_insertion(value)) if flags.is_change_notification_enabled() and update: self._notify_field_updates([update]) def pop(self, index: int = -1) -> Any: """Pop an item and return its value.""" if index < -len(self) or index >= len(self): raise IndexError('pop index out of range') index = (index + len(self)) % len(self) value = self[index] with flags.allow_writable_accessors(True): del self[index] return value def remove(self, value: Any) -> None: """Removes the first occurrence of the value.""" for i, item in self.sym_items(): if item == value: if (self._value_spec and self._value_spec.min_size == len(self)): raise ValueError( f'Cannot remove item: min size ({self._value_spec.min_size}) ' f'is reached.') del self[i] return raise ValueError(f'{value!r} not in list.') def extend(self, other: Iterable[Any]) -> None: # NOTE(daiyip): THIS IS A WORKAROUND FOR WORKING WITH PICKLE. # `pg.List` is a subclass of `list`, therefore, when pickle loads a list, # it tries to set the list values directly by calling `extend` without # calling `pg.List.__init__` at the first place. As a result, an error will # raise, which complains about that an attribute set up during `__init__` is # not available. A mitigation to this issue is to detect such calls in # `extend`, and simply do nothing as follows, which will give a chance to # `pg.List.__getstate__` to deal with the restoration logic as an object # (instead of a list). if not hasattr(self, '_sym_parent'): return if base.treats_as_sealed(self): raise base.WritePermissionError('Cannot extend a sealed List.') # Extend on the symbolic form instead of the evaluated form. iter_other = other.sym_values() if isinstance(other, List) else other other = list(iter_other) if self.max_size is not None and len(self) + len(other) > self.max_size: raise ValueError( f'Cannot extend List: the number of elements ' f'({len(self) + len(other)}) exceeds max size ({self.max_size}).') updates = [] for v in other: update = self._set_item_without_permission_check(len(self), v) if update is not None: updates.append(update) if flags.is_change_notification_enabled() and updates: self._notify_field_updates(updates) def clear(self) -> None: """Clears the list.""" if base.treats_as_sealed(self): raise base.WritePermissionError('Cannot clear a sealed List.') if self._value_spec and self._value_spec.min_size > 0: raise ValueError( f'List cannot be cleared: min size is {self._value_spec.min_size}.') super().clear() def sort(self, *, key=None, reverse=False) -> None: """Sorts the items of the list in place..""" if base.treats_as_sealed(self): raise base.WritePermissionError('Cannot sort a sealed List.') super().sort(key=key, reverse=reverse) def reverse(self) -> None: """Reverse the elements of the list in place.""" if base.treats_as_sealed(self): raise base.WritePermissionError('Cannot reverse a sealed List.') super().reverse() def custom_apply( self, path: object_utils.KeyPath, value_spec: pg_typing.ValueSpec, allow_partial: bool, child_transform: Optional[ Callable[[object_utils.KeyPath, pg_typing.Field, Any], Any]] = None ) -> Tuple[bool, 'List']: """Implement pg.typing.CustomTyping interface. Args: path: KeyPath of current object. value_spec: Origin value spec of the field. allow_partial: Whether allow partial object to be created. child_transform: Function to transform child node values in dict_obj into their final values. Transform function is called on leaf nodes first, then on their containers, recursively. Returns: A tuple (proceed_with_standard_apply, transformed value) """ proceed_with_standard_apply = True if self._value_spec: if value_spec and not value_spec.is_compatible(self._value_spec): raise ValueError( object_utils.message_on_path( f'List (spec={self._value_spec!r}) cannot be assigned to an ' f'incompatible field (spec={value_spec!r}).', path)) if self._allow_partial == allow_partial: proceed_with_standard_apply = False else: self._allow_partial = allow_partial elif isinstance(value_spec, pg_typing.List): self._value_spec = value_spec return (proceed_with_standard_apply, self) def sym_jsonify( self, use_inferred: bool = False, **kwargs) -> object_utils.JSONValueType: """Converts current list to a list of plain Python objects.""" def json_item(idx): v = self.sym_getattr(idx) if use_inferred and isinstance(v, base.Inferential): v = self.sym_inferred(idx, default=v) return base.to_json(v, use_inferred=use_inferred, **kwargs) return [json_item(i) for i in range(len(self))] def format( self, compact: bool = False, verbose: bool = True, root_indent: int = 0, *, python_format: bool = False, use_inferred: bool = False, cls_name: Optional[str] = None, bracket_type: object_utils.BracketType = object_utils.BracketType.SQUARE, **kwargs) -> str: """Formats this List.""" def _indent(text, indent): return ' ' * 2 * indent + text cls_name = cls_name or '' open_bracket, close_bracket = object_utils.bracket_chars(bracket_type) s = [f'{cls_name}{open_bracket}'] if compact: kv_strs = [] for idx, elem in self.sym_items(): if use_inferred and isinstance(elem, base.Inferential): elem = self.sym_inferred(idx, default=elem) v_str = object_utils.format( elem, compact, verbose, root_indent + 1, python_format=python_format, use_inferred=use_inferred, **kwargs) if python_format: kv_strs.append(v_str) else: kv_strs.append(f'{idx}: {v_str}') s.append(', '.join(kv_strs)) s.append(close_bracket) else: if self: for idx, elem in self.sym_items(): if use_inferred and isinstance(elem, base.Inferential): elem = self.sym_inferred(idx, default=elem) if idx == 0: s.append('\n') else: s.append(',\n') v_str = object_utils.format( elem, compact, verbose, root_indent + 1, python_format=python_format, use_inferred=use_inferred, **kwargs) if python_format: s.append(_indent(v_str, root_indent + 1)) else: s.append(_indent(f'{idx} : {v_str}', root_indent + 1)) s.append('\n') s.append(_indent(close_bracket, root_indent)) else: s.append(close_bracket) return ''.join(s) def __copy__(self) -> 'List': """List.copy.""" return self.sym_clone(deep=False) def __deepcopy__(self, memo) -> 'List': return self.sym_clone(deep=True, memo=memo) def __hash__(self) -> int: """Overriden hashing function.""" return self.sym_hash()
(items: Optional[Iterable[Any]] = None, *, value_spec: Optional[pyglove.core.typing.value_specs.List] = None, onchange_callback: Optional[Callable[[Dict[pyglove.core.object_utils.value_location.KeyPath, pyglove.core.symbolic.base.FieldUpdate]], NoneType]] = None, allow_partial: bool = False, accessor_writable: bool = True, sealed: bool = False, root_path: Optional[pyglove.core.object_utils.value_location.KeyPath] = None)
41,005
pyglove.core.symbolic.list
__add__
Returns a concatenated List of self and other.
def __add__(self, other: Iterable[Any]) -> 'List': """Returns a concatenated List of self and other.""" concatenated = self.copy() concatenated.extend(other) return concatenated
(self, other: Iterable[Any]) -> pyglove.core.symbolic.list.List
41,006
pyglove.core.symbolic.list
__copy__
List.copy.
def __copy__(self) -> 'List': """List.copy.""" return self.sym_clone(deep=False)
(self) -> pyglove.core.symbolic.list.List
41,007
pyglove.core.symbolic.list
__deepcopy__
null
def __deepcopy__(self, memo) -> 'List': return self.sym_clone(deep=True, memo=memo)
(self, memo) -> pyglove.core.symbolic.list.List
41,008
pyglove.core.symbolic.list
__delitem__
Delete an item from the List.
def __delitem__(self, index: int) -> None: """Delete an item from the List.""" if base.treats_as_sealed(self): raise base.WritePermissionError('Cannot delete item from a sealed List.') if not base.writtable_via_accessors(self): raise base.WritePermissionError( self._error_message('Cannot delete List item while accessor_writable ' 'is set to False. ' 'Use \'rebind\' method instead.')) if not isinstance(index, numbers.Integral): raise TypeError( f'list index must be an integer. Encountered {index!r}.') if index < -len(self) or index >= len(self): raise IndexError( f'list index out of range. ' f'Length={len(self)}, index={index}') old_value = self.sym_getattr(index) super().__delitem__(index) if flags.is_change_notification_enabled(): self._notify_field_updates([ base.FieldUpdate( self.sym_path + index, self, self._value_spec.element if self._value_spec else None, old_value, pg_typing.MISSING_VALUE) ])
(self, index: int) -> NoneType
41,009
pyglove.core.symbolic.list
__getitem__
Gets the item at a given position.
def __getitem__(self, index) -> Any: """Gets the item at a given position.""" if isinstance(index, numbers.Integral): if index < -len(self) or index >= len(self): raise IndexError('list index out of range') return self.sym_inferred(index) elif isinstance(index, slice): return [self[i] for i in range(*self._parse_slice(index))] else: raise TypeError( f'list index must be an integer. Encountered {index!r}.')
(self, index) -> Any
41,010
pyglove.core.symbolic.list
__getstate__
Customizes pickle.dump.
def __getstate__(self) -> Any: """Customizes pickle.dump.""" return dict(value=list(self), kwargs=self._init_kwargs())
(self) -> Any
41,011
pyglove.core.symbolic.list
__hash__
Overriden hashing function.
def __hash__(self) -> int: """Overriden hashing function.""" return self.sym_hash()
(self) -> int
41,012
pyglove.core.symbolic.list
__init__
Constructor. Args: items: A optional iterable object as initial value for this list. value_spec: Value spec that applies to this List. onchange_callback: Callback when sub-tree has been modified. allow_partial: Whether to allow unbound or partial fields. This takes effect only when value_spec is not None. accessor_writable: Whether to allow modification of this List using accessors (operator[]). sealed: Whether to seal this List after creation. root_path: KeyPath of this List in its object tree.
def __init__( self, items: Optional[Iterable[Any]] = None, *, value_spec: Optional[pg_typing.List] = None, onchange_callback: Optional[Callable[ [Dict[object_utils.KeyPath, base.FieldUpdate]], None]] = None, allow_partial: bool = False, accessor_writable: bool = True, sealed: bool = False, root_path: Optional[object_utils.KeyPath] = None): """Constructor. Args: items: A optional iterable object as initial value for this list. value_spec: Value spec that applies to this List. onchange_callback: Callback when sub-tree has been modified. allow_partial: Whether to allow unbound or partial fields. This takes effect only when value_spec is not None. accessor_writable: Whether to allow modification of this List using accessors (operator[]). sealed: Whether to seal this List after creation. root_path: KeyPath of this List in its object tree. """ if value_spec and not isinstance(value_spec, pg_typing.List): raise TypeError( f'Argument \'value_spec\' must be a `pg.typing.List` object. ' f'Encountered {value_spec}.') # We delay seal operation until items are filled. base.Symbolic.__init__( self, allow_partial=allow_partial, accessor_writable=accessor_writable, sealed=False, root_path=root_path) self._value_spec = None self._onchange_callback = None list.__init__(self) if items: # Copy the symbolic form instead of evaluated form. if isinstance(items, List): items = items.sym_values() for item in items: self._set_item_without_permission_check(len(self), item) if value_spec: self.use_value_spec(value_spec, allow_partial) # NOTE(daiyip): We set onchange callback at the end of init to avoid # triggering during initialization. self._onchange_callback = onchange_callback self.seal(sealed)
(self, items: Optional[Iterable[Any]] = None, *, value_spec: Optional[pyglove.core.typing.value_specs.List] = None, onchange_callback: Optional[Callable[[Dict[pyglove.core.object_utils.value_location.KeyPath, pyglove.core.symbolic.base.FieldUpdate]], NoneType]] = None, allow_partial: bool = False, accessor_writable: bool = True, sealed: bool = False, root_path: Optional[pyglove.core.object_utils.value_location.KeyPath] = None)
41,013
pyglove.core.symbolic.list
__iter__
Iterates the list.
def __iter__(self): """Iterates the list.""" for i in range(len(self)): yield self.sym_inferred(i)
(self)
41,014
pyglove.core.symbolic.list
__mul__
Returns a repeated Lit of self.
def __mul__(self, n: int) -> 'List': """Returns a repeated Lit of self.""" result = List() for _ in range(n): result.extend(self) if self._value_spec is not None: result.use_value_spec(self._value_spec) return result
(self, n: int) -> pyglove.core.symbolic.list.List
41,015
pyglove.core.symbolic.list
__rmul__
Returns a repeated Lit of self.
def __rmul__(self, n: int) -> 'List': """Returns a repeated Lit of self.""" return self.__mul__(n)
(self, n: int) -> pyglove.core.symbolic.list.List
41,016
pyglove.core.symbolic.list
__setitem__
Set item in this List.
def __setitem__(self, index, value: Any) -> None: """Set item in this List.""" if base.treats_as_sealed(self): raise base.WritePermissionError( self._error_message('Cannot set item for a sealed List.')) if not base.writtable_via_accessors(self): raise base.WritePermissionError( self._error_message('Cannot modify List item by __setitem__ while ' 'accessor_writable is set to False. ' 'Use \'rebind\' method instead.')) if isinstance(index, slice): start, stop, step = self._parse_slice(index) replacements = [self._formalized_value(i, v) for i, v in enumerate(value)] if step < 0: replacements.reverse() step = -step slice_size = math.ceil((stop - start) * 1.0 / step) if step == 1: if slice_size < len(replacements): for i in range(slice_size, len(replacements)): replacements[i] = Insertion(replacements[i]) else: replacements.extend( [pg_typing.MISSING_VALUE for _ in range(slice_size - len(replacements))]) elif slice_size != len(replacements): raise ValueError( f'attempt to assign sequence of size {len(replacements)} to ' f'extended slice of size {slice_size}') updates = [] for i, r in enumerate(replacements): update = self._set_item_without_permission_check(start + i * step, r) if update is not None: updates.append(update) if flags.is_change_notification_enabled() and updates: self._notify_field_updates(updates) elif isinstance(index, numbers.Integral): if index < -len(self) or index >= len(self): raise IndexError( f'list assignment index out of range. ' f'Length={len(self)}, index={index}') update = self._set_item_without_permission_check(index, value) if flags.is_change_notification_enabled() and update: self._notify_field_updates([update]) else: raise TypeError( f'list assignment index must be an integer. Encountered {index!r}.')
(self, index, value: Any) -> NoneType
41,020
pyglove.core.symbolic.list
_formalized_value
Get transformed (formal) value from user input.
def _formalized_value(self, idx: int, value: Any): """Get transformed (formal) value from user input.""" allow_partial = base.accepts_partial(self) value = base.from_json( value, allow_partial=allow_partial, root_path=object_utils.KeyPath(idx, self.sym_path)) if self._value_spec and flags.is_type_check_enabled(): value = self._value_spec.element.apply( value, allow_partial=allow_partial, transform_fn=base.symbolic_transform_fn(self._allow_partial), root_path=object_utils.KeyPath(idx, self.sym_path)) return self._relocate_if_symbolic(idx, value)
(self, idx: int, value: Any)
41,024
pyglove.core.symbolic.list
_on_change
On change event of List.
def _on_change(self, field_updates: Dict[object_utils.KeyPath, base.FieldUpdate]): """On change event of List.""" # Do nothing for now to handle changes of List. # NOTE(daiyip): Remove items that are MISSING_VALUES. keys_to_remove = [] for i, item in self.sym_items(): if pg_typing.MISSING_VALUE == item: keys_to_remove.append(i) if keys_to_remove: for i in reversed(keys_to_remove): list.__delitem__(self, i) # Update paths for children. for idx, item in self.sym_items(): if isinstance(item, base.TopologyAware) and item.sym_path.key != idx: item.sym_setpath(object_utils.KeyPath(idx, self.sym_path)) if self._onchange_callback is not None: self._onchange_callback(field_updates)
(self, field_updates: Dict[pyglove.core.object_utils.value_location.KeyPath, pyglove.core.symbolic.base.FieldUpdate])
41,025
pyglove.core.symbolic.list
_parse_slice
null
def _parse_slice(self, index: slice) -> Tuple[int, int, int]: start = index.start if index.start is not None else 0 start = max(-len(self), start) start = min(len(self), start) if start < 0: start += len(self) stop = index.stop if index.stop is not None else len(self) stop = max(-len(self), stop) stop = min(len(self), stop) if stop < 0: stop += len(self) step = index.step if index.step is not None else 1 return start, stop, step
(self, index: slice) -> Tuple[int, int, int]
41,028
pyglove.core.symbolic.list
_set_item_without_permission_check
Set or add an item without permission check.
def _set_item_without_permission_check( # pytype: disable=signature-mismatch # overriding-parameter-type-checks self, key: int, value: Any) -> Optional[base.FieldUpdate]: """Set or add an item without permission check.""" assert isinstance(key, numbers.Integral), key index = key if index >= len(self): # Appending MISSING_VALUE is considered no-op. if value == pg_typing.MISSING_VALUE: return None index = len(self) should_insert = False if isinstance(value, Insertion): should_insert = True value = value.value old_value = pg_typing.MISSING_VALUE # Replace an existing value. if index < len(self) and not should_insert: old_value = list.__getitem__(self, index) # Generates no update as old value is the same as the new value. if old_value is value: return None new_value = self._formalized_value(index, value) if index < len(self): if should_insert: list.insert(self, index, new_value) else: list.__setitem__(self, index, new_value) # Detach old value from object tree. if isinstance(old_value, base.TopologyAware): old_value.sym_setparent(None) else: super().append(new_value) return base.FieldUpdate( self.sym_path + index, self, self._value_spec.element if self._value_spec else None, old_value, new_value)
(self, key: int, value: Any) -> Optional[pyglove.core.symbolic.base.FieldUpdate]
41,030
pyglove.core.symbolic.list
_sym_clone
Override Symbolic._clone.
def _sym_clone(self, deep: bool, memo=None) -> 'List': """Override Symbolic._clone.""" source = [] for v in self.sym_values(): if deep or isinstance(v, base.Symbolic): v = base.clone(v, deep, memo) source.append(v) return List( source, value_spec=self._value_spec, allow_partial=self._allow_partial, accessor_writable=self._accessor_writable, # NOTE(daiyip): parent and root_path are reset to empty # for copy object. root_path=None)
(self, deep: bool, memo=None) -> pyglove.core.symbolic.list.List
41,031
pyglove.core.symbolic.list
_sym_getattr
Gets symbolic attribute by index.
def _sym_getattr(self, key: int) -> Any: # pytype: disable=signature-mismatch # overriding-parameter-type-checks """Gets symbolic attribute by index.""" return super().__getitem__(key)
(self, key: int) -> Any
41,033
pyglove.core.symbolic.list
_sym_missing
Returns missing fields.
def _sym_missing(self) -> Dict[Any, Any]: """Returns missing fields.""" missing = dict() for idx, elem in self.sym_items(): if isinstance(elem, base.Symbolic): missing_child = elem.sym_missing(flatten=False) if missing_child: missing[idx] = missing_child return missing
(self) -> Dict[Any, Any]
41,034
pyglove.core.symbolic.list
_sym_nondefault
Returns non-default values.
def _sym_nondefault(self) -> Dict[int, Any]: """Returns non-default values.""" non_defaults = dict() for idx, elem in self.sym_items(): if isinstance(elem, base.Symbolic): non_defaults_child = elem.non_default_values(flatten=False) if non_defaults_child: non_defaults[idx] = non_defaults_child else: non_defaults[idx] = elem return non_defaults
(self) -> Dict[int, Any]
41,036
pyglove.core.symbolic.list
_sym_rebind
Subclass specific rebind implementation.
def _sym_rebind( self, path_value_pairs: typing.Dict[object_utils.KeyPath, Any] ) -> typing.List[base.FieldUpdate]: """Subclass specific rebind implementation.""" updates = [] # Apply the updates in reverse order, so the operated path will not alter # from insertions and deletions. path_value_pairs = sorted( path_value_pairs.items(), key=lambda x: x[0], reverse=True) for k, v in path_value_pairs: update = self._set_item_of_current_tree(k, v) if update is not None: updates.append(update) # Reverse the updates so the update is from the smallest number to # the largest. updates.reverse() return updates
(self, path_value_pairs: Dict[pyglove.core.object_utils.value_location.KeyPath, Any]) -> List[pyglove.core.symbolic.base.FieldUpdate]
41,037
pyglove.core.symbolic.list
_update_children_paths
Update children paths according to root_path of current node.
def _update_children_paths( self, old_path: object_utils.KeyPath, new_path: object_utils.KeyPath) -> None: """Update children paths according to root_path of current node.""" del old_path for idx, item in self.sym_items(): if isinstance(item, base.TopologyAware): item.sym_setpath(object_utils.KeyPath(idx, new_path))
(self, old_path: pyglove.core.object_utils.value_location.KeyPath, new_path: pyglove.core.object_utils.value_location.KeyPath) -> NoneType
41,038
pyglove.core.symbolic.list
append
Appends an item.
def append(self, value: Any) -> None: """Appends an item.""" if base.treats_as_sealed(self): raise base.WritePermissionError('Cannot append element on a sealed List.') if self.max_size is not None and len(self) >= self.max_size: raise ValueError(f'List reached its max size {self.max_size}.') update = self._set_item_without_permission_check(len(self), value) if flags.is_change_notification_enabled() and update: self._notify_field_updates([update])
(self, value: Any) -> NoneType
41,039
pyglove.core.symbolic.list
clear
Clears the list.
def clear(self) -> None: """Clears the list.""" if base.treats_as_sealed(self): raise base.WritePermissionError('Cannot clear a sealed List.') if self._value_spec and self._value_spec.min_size > 0: raise ValueError( f'List cannot be cleared: min size is {self._value_spec.min_size}.') super().clear()
(self) -> NoneType
41,041
pyglove.core.symbolic.list
copy
Shallow current list.
def copy(self) -> 'List': """Shallow current list.""" return List(super().copy(), value_spec=self._value_spec)
(self) -> pyglove.core.symbolic.list.List
41,042
pyglove.core.symbolic.list
custom_apply
Implement pg.typing.CustomTyping interface. Args: path: KeyPath of current object. value_spec: Origin value spec of the field. allow_partial: Whether allow partial object to be created. child_transform: Function to transform child node values in dict_obj into their final values. Transform function is called on leaf nodes first, then on their containers, recursively. Returns: A tuple (proceed_with_standard_apply, transformed value)
def custom_apply( self, path: object_utils.KeyPath, value_spec: pg_typing.ValueSpec, allow_partial: bool, child_transform: Optional[ Callable[[object_utils.KeyPath, pg_typing.Field, Any], Any]] = None ) -> Tuple[bool, 'List']: """Implement pg.typing.CustomTyping interface. Args: path: KeyPath of current object. value_spec: Origin value spec of the field. allow_partial: Whether allow partial object to be created. child_transform: Function to transform child node values in dict_obj into their final values. Transform function is called on leaf nodes first, then on their containers, recursively. Returns: A tuple (proceed_with_standard_apply, transformed value) """ proceed_with_standard_apply = True if self._value_spec: if value_spec and not value_spec.is_compatible(self._value_spec): raise ValueError( object_utils.message_on_path( f'List (spec={self._value_spec!r}) cannot be assigned to an ' f'incompatible field (spec={value_spec!r}).', path)) if self._allow_partial == allow_partial: proceed_with_standard_apply = False else: self._allow_partial = allow_partial elif isinstance(value_spec, pg_typing.List): self._value_spec = value_spec return (proceed_with_standard_apply, self)
(self, path: pyglove.core.object_utils.value_location.KeyPath, value_spec: pyglove.core.typing.class_schema.ValueSpec, allow_partial: bool, child_transform: Optional[Callable[[pyglove.core.object_utils.value_location.KeyPath, pyglove.core.typing.class_schema.Field, Any], Any]] = None) -> Tuple[bool, pyglove.core.symbolic.list.List]
41,043
pyglove.core.symbolic.list
extend
null
def extend(self, other: Iterable[Any]) -> None: # NOTE(daiyip): THIS IS A WORKAROUND FOR WORKING WITH PICKLE. # `pg.List` is a subclass of `list`, therefore, when pickle loads a list, # it tries to set the list values directly by calling `extend` without # calling `pg.List.__init__` at the first place. As a result, an error will # raise, which complains about that an attribute set up during `__init__` is # not available. A mitigation to this issue is to detect such calls in # `extend`, and simply do nothing as follows, which will give a chance to # `pg.List.__getstate__` to deal with the restoration logic as an object # (instead of a list). if not hasattr(self, '_sym_parent'): return if base.treats_as_sealed(self): raise base.WritePermissionError('Cannot extend a sealed List.') # Extend on the symbolic form instead of the evaluated form. iter_other = other.sym_values() if isinstance(other, List) else other other = list(iter_other) if self.max_size is not None and len(self) + len(other) > self.max_size: raise ValueError( f'Cannot extend List: the number of elements ' f'({len(self) + len(other)}) exceeds max size ({self.max_size}).') updates = [] for v in other: update = self._set_item_without_permission_check(len(self), v) if update is not None: updates.append(update) if flags.is_change_notification_enabled() and updates: self._notify_field_updates(updates)
(self, other: Iterable[Any]) -> NoneType
41,044
pyglove.core.symbolic.list
format
Formats this List.
def format( self, compact: bool = False, verbose: bool = True, root_indent: int = 0, *, python_format: bool = False, use_inferred: bool = False, cls_name: Optional[str] = None, bracket_type: object_utils.BracketType = object_utils.BracketType.SQUARE, **kwargs) -> str: """Formats this List.""" def _indent(text, indent): return ' ' * 2 * indent + text cls_name = cls_name or '' open_bracket, close_bracket = object_utils.bracket_chars(bracket_type) s = [f'{cls_name}{open_bracket}'] if compact: kv_strs = [] for idx, elem in self.sym_items(): if use_inferred and isinstance(elem, base.Inferential): elem = self.sym_inferred(idx, default=elem) v_str = object_utils.format( elem, compact, verbose, root_indent + 1, python_format=python_format, use_inferred=use_inferred, **kwargs) if python_format: kv_strs.append(v_str) else: kv_strs.append(f'{idx}: {v_str}') s.append(', '.join(kv_strs)) s.append(close_bracket) else: if self: for idx, elem in self.sym_items(): if use_inferred and isinstance(elem, base.Inferential): elem = self.sym_inferred(idx, default=elem) if idx == 0: s.append('\n') else: s.append(',\n') v_str = object_utils.format( elem, compact, verbose, root_indent + 1, python_format=python_format, use_inferred=use_inferred, **kwargs) if python_format: s.append(_indent(v_str, root_indent + 1)) else: s.append(_indent(f'{idx} : {v_str}', root_indent + 1)) s.append('\n') s.append(_indent(close_bracket, root_indent)) else: s.append(close_bracket) return ''.join(s)
(self, compact: bool = False, verbose: bool = True, root_indent: int = 0, *, python_format: bool = False, use_inferred: bool = False, cls_name: Optional[str] = None, bracket_type: pyglove.core.object_utils.formatting.BracketType = <BracketType.SQUARE: 1>, **kwargs) -> str
41,045
pyglove.core.symbolic.list
insert
Inserts an item at a given position.
def insert(self, index: int, value: Any) -> None: """Inserts an item at a given position.""" if base.treats_as_sealed(self): raise base.WritePermissionError( 'Cannot insert element into a sealed List.') if self.max_size is not None and len(self) >= self.max_size: raise ValueError(f'List reached its max size {self.max_size}.') update = self._set_item_without_permission_check( index, mark_as_insertion(value)) if flags.is_change_notification_enabled() and update: self._notify_field_updates([update])
(self, index: int, value: Any) -> NoneType
41,049
pyglove.core.symbolic.list
pop
Pop an item and return its value.
def pop(self, index: int = -1) -> Any: """Pop an item and return its value.""" if index < -len(self) or index >= len(self): raise IndexError('pop index out of range') index = (index + len(self)) % len(self) value = self[index] with flags.allow_writable_accessors(True): del self[index] return value
(self, index: int = -1) -> Any
41,051
pyglove.core.symbolic.list
remove
Removes the first occurrence of the value.
def remove(self, value: Any) -> None: """Removes the first occurrence of the value.""" for i, item in self.sym_items(): if item == value: if (self._value_spec and self._value_spec.min_size == len(self)): raise ValueError( f'Cannot remove item: min size ({self._value_spec.min_size}) ' f'is reached.') del self[i] return raise ValueError(f'{value!r} not in list.')
(self, value: Any) -> NoneType
41,052
pyglove.core.symbolic.list
reverse
Reverse the elements of the list in place.
def reverse(self) -> None: """Reverse the elements of the list in place.""" if base.treats_as_sealed(self): raise base.WritePermissionError('Cannot reverse a sealed List.') super().reverse()
(self) -> NoneType
41,054
pyglove.core.symbolic.list
seal
Seal or unseal current object from further modification.
def seal(self, sealed: bool = True) -> 'List': """Seal or unseal current object from further modification.""" if self.is_sealed == sealed: return self for elem in self.sym_values(): if isinstance(elem, base.Symbolic): elem.seal(sealed) super().seal(sealed) return self
(self, sealed: bool = True) -> pyglove.core.symbolic.list.List
41,056
pyglove.core.symbolic.list
sort
Sorts the items of the list in place..
def sort(self, *, key=None, reverse=False) -> None: """Sorts the items of the list in place..""" if base.treats_as_sealed(self): raise base.WritePermissionError('Cannot sort a sealed List.') super().sort(key=key, reverse=reverse)
(self, *, key=None, reverse=False) -> NoneType
41,058
pyglove.core.symbolic.list
sym_attr_field
Returns the field definition for a symbolic attribute.
def sym_attr_field(self, key: Union[str, int]) -> Optional[pg_typing.Field]: """Returns the field definition for a symbolic attribute.""" del key if self._value_spec is None: return None return self._value_spec.element
(self, key: Union[str, int]) -> Optional[pyglove.core.typing.class_schema.Field]
41,067
pyglove.core.symbolic.list
sym_hasattr
Tests if a symbolic attribute exists.
def sym_hasattr(self, key: Union[str, int]) -> bool: """Tests if a symbolic attribute exists.""" return (isinstance(key, numbers.Integral) and key >= -len(self) and key < len(self))
(self, key: Union[str, int]) -> bool
41,068
pyglove.core.symbolic.list
sym_hash
Symbolically hashing.
def sym_hash(self) -> int: """Symbolically hashing.""" return base.sym_hash( (self.__class__, tuple([base.sym_hash(e) for e in self.sym_values()])) )
(self) -> int
41,071
pyglove.core.symbolic.list
sym_items
Iterates the (key, value) pairs of symbolic attributes.
def sym_items(self) -> Iterator[Tuple[int, Any]]: """Iterates the (key, value) pairs of symbolic attributes.""" for i in range(len(self)): yield (i, super().__getitem__(i))
(self) -> Iterator[Tuple[int, Any]]
41,072
pyglove.core.symbolic.list
sym_jsonify
Converts current list to a list of plain Python objects.
def sym_jsonify( self, use_inferred: bool = False, **kwargs) -> object_utils.JSONValueType: """Converts current list to a list of plain Python objects.""" def json_item(idx): v = self.sym_getattr(idx) if use_inferred and isinstance(v, base.Inferential): v = self.sym_inferred(idx, default=v) return base.to_json(v, use_inferred=use_inferred, **kwargs) return [json_item(i) for i in range(len(self))]
(self, use_inferred: bool = False, **kwargs) -> Union[int, float, bool, str, List[Any], Dict[str, Any]]
41,073
pyglove.core.symbolic.list
sym_keys
Symbolically iterates indices.
def sym_keys(self) -> Iterator[int]: """Symbolically iterates indices.""" for i in range(len(self)): yield i
(self) -> Iterator[int]
41,081
pyglove.core.symbolic.base
sym_setparent
Sets the parent of current node in the symbolic tree.
def sym_setparent(self, parent: 'Symbolic'): """Sets the parent of current node in the symbolic tree.""" self._set_raw_attr('_sym_parent', parent)
(self, parent: pyglove.core.symbolic.base.Symbolic)
41,083
pyglove.core.symbolic.list
sym_values
Iterates the values of symbolic attributes.
def sym_values(self) -> Iterator[Any]: """Iterates the values of symbolic attributes.""" for i in range(len(self)): yield super().__getitem__(i)
(self) -> Iterator[Any]
41,086
pyglove.core.symbolic.list
use_value_spec
Applies a ``pg.List`` as the value spec for current list. Args: value_spec: A List ValueSpec to apply to this List. If current List is schema-less (whose immediate members are not validated against schema), and `value_spec` is not None, the value spec will be applied to the List. Or else if current List is already symbolic (whose immediate members are under the constraint of a List value spec), and `value_spec` is None, current List will become schema-less. However, the schema constraints for non-immediate members will remain. allow_partial: Whether allow partial dict based on the schema. This flag will override allow_partial flag in __init__ for spec-less List. Returns: Self. Raises: ValueError: schema validation failed due to value error. RuntimeError: List is already bound with another value_spec. TypeError: type errors during validation. KeyError: key errors during validation.
def use_value_spec(self, value_spec: Optional[pg_typing.List], allow_partial: bool = False) -> 'List': """Applies a ``pg.List`` as the value spec for current list. Args: value_spec: A List ValueSpec to apply to this List. If current List is schema-less (whose immediate members are not validated against schema), and `value_spec` is not None, the value spec will be applied to the List. Or else if current List is already symbolic (whose immediate members are under the constraint of a List value spec), and `value_spec` is None, current List will become schema-less. However, the schema constraints for non-immediate members will remain. allow_partial: Whether allow partial dict based on the schema. This flag will override allow_partial flag in __init__ for spec-less List. Returns: Self. Raises: ValueError: schema validation failed due to value error. RuntimeError: List is already bound with another value_spec. TypeError: type errors during validation. KeyError: key errors during validation. """ if value_spec is None: self._value_spec = None self._accessor_writable = True return self if not isinstance(value_spec, pg_typing.List): raise ValueError( self._error_message( f'Value spec for list must be a `pg.typing.List` object. ' f'Encountered: {value_spec!r}')) if self._value_spec and self._value_spec != value_spec: raise RuntimeError( self._error_message( f'List is already bound with a different value ' f'spec: {self._value_spec}. New value spec: {value_spec}.')) self._allow_partial = allow_partial if flags.is_type_check_enabled(): # NOTE(daiyip): self._value_spec will be set in List.custom_apply method # called by spec.apply, thus we don't need to set the _value_spec # explicitly. value_spec.apply( self, allow_partial=base.accepts_partial(self), child_transform=base.symbolic_transform_fn(self._allow_partial), root_path=self.sym_path) else: self._value_spec = value_spec return self
(self, value_spec: Optional[pyglove.core.typing.value_specs.List], allow_partial: bool = False) -> pyglove.core.symbolic.list.List
41,087
pyglove.core.object_utils.common_traits
MaybePartial
Interface for classes whose instances can be partially constructed. A ``MaybePartial`` object is an object whose ``__init__`` method can accept ``pg.MISSING_VALUE`` as its argument values. All symbolic types (see :class:`pyglove.Symbolic`) implements this interface, as their symbolic attributes can be partially filled. Example:: d = pg.Dict(x=pg.MISSING_VALUE, y=1) assert d.is_partial assert 'x' in d.missing_values()
class MaybePartial(metaclass=abc.ABCMeta): """Interface for classes whose instances can be partially constructed. A ``MaybePartial`` object is an object whose ``__init__`` method can accept ``pg.MISSING_VALUE`` as its argument values. All symbolic types (see :class:`pyglove.Symbolic`) implements this interface, as their symbolic attributes can be partially filled. Example:: d = pg.Dict(x=pg.MISSING_VALUE, y=1) assert d.is_partial assert 'x' in d.missing_values() """ @property def is_partial(self) -> bool: """Returns True if this object is partial. Otherwise False. An object is considered partial when any of its required fields is missing, or at least one member is partial. The subclass can override this method to provide a more efficient solution. """ return len(self.missing_values()) > 0 # pylint: disable=g-explicit-length-test @abc.abstractmethod def missing_values(self, flatten: bool = True) -> Dict[str, Any]: # pylint: disable=redefined-outer-name """Returns missing values from this object. Args: flatten: If True, convert nested structures into a flattened dict using key path (delimited by '.' and '[]') as key. Returns: A dict of key to MISSING_VALUE. """
()
41,088
pyglove.core.object_utils.common_traits
missing_values
Returns missing values from this object. Args: flatten: If True, convert nested structures into a flattened dict using key path (delimited by '.' and '[]') as key. Returns: A dict of key to MISSING_VALUE.
@abc.abstractmethod def missing_values(self, flatten: bool = True) -> Dict[str, Any]: # pylint: disable=redefined-outer-name """Returns missing values from this object. Args: flatten: If True, convert nested structures into a flattened dict using key path (delimited by '.' and '[]') as key. Returns: A dict of key to MISSING_VALUE. """
(self, flatten: bool = True) -> Dict[str, Any]
41,089
pyglove.core.symbolic.object
Object
Base class for symbolic user classes. PyGlove allow symbolic programming interfaces to be easily added to most Python classes in two ways: * Developing a dataclass-like symbolic class by subclassing ``pg.Object``. * Developing a class as usual and decorate it using :func:`pyglove.symbolize`. This also work with existing classes. By directly subclassing ``pg.Object``, programmers can create new symbolic classes with the least effort. For example:: @pg.members([ # Each tuple in the list defines a symbolic field for `__init__`. ('name', pg.typing.Str().noneable(), 'Name to greet'), ('time_of_day', pg.typing.Enum('morning', ['morning', 'afternnon', 'evening']), 'Time of the day.') ]) class Greeting(pg.Object): def __call__(self): # Values for symbolic fields can be accessed # as public data members of the symbolic object. print(f'Good {self.time_of_day}, {self.name}') # Create an object of Greeting and invoke it, # which shall print 'Good morning, Bob'. Greeting('Bob')() Symbolic fields can be inherited from the base symbolic class: the fields from the base class will be copied to the subclass in their declaration order, while the subclass can override the inherited fields with more restricted validation rules or different default values. For example:: @pg.members([ ('x', pg.typing.Int(max_value=10)), ('y', pg.typing.Float(min_value=0)) ]) class Foo(pg.Object) pass @pg.members([ ('x', pg.typing.Int(min_value=1, default=1)), ('z', pg.typing.Str().noneable()) ]) class Bar(Foo) pass # Printing Bar's schema will show that there are 3 parameters defined: # x : pg.typing.Int(min_value=1, max_value=10, default=1)) # y : pg.typing.Float(min_value=0) # z : pg.typing.Str().noneable() print(Bar.__schema__)
class Object(base.Symbolic, metaclass=ObjectMeta): """Base class for symbolic user classes. PyGlove allow symbolic programming interfaces to be easily added to most Python classes in two ways: * Developing a dataclass-like symbolic class by subclassing ``pg.Object``. * Developing a class as usual and decorate it using :func:`pyglove.symbolize`. This also work with existing classes. By directly subclassing ``pg.Object``, programmers can create new symbolic classes with the least effort. For example:: @pg.members([ # Each tuple in the list defines a symbolic field for `__init__`. ('name', pg.typing.Str().noneable(), 'Name to greet'), ('time_of_day', pg.typing.Enum('morning', ['morning', 'afternnon', 'evening']), 'Time of the day.') ]) class Greeting(pg.Object): def __call__(self): # Values for symbolic fields can be accessed # as public data members of the symbolic object. print(f'Good {self.time_of_day}, {self.name}') # Create an object of Greeting and invoke it, # which shall print 'Good morning, Bob'. Greeting('Bob')() Symbolic fields can be inherited from the base symbolic class: the fields from the base class will be copied to the subclass in their declaration order, while the subclass can override the inherited fields with more restricted validation rules or different default values. For example:: @pg.members([ ('x', pg.typing.Int(max_value=10)), ('y', pg.typing.Float(min_value=0)) ]) class Foo(pg.Object) pass @pg.members([ ('x', pg.typing.Int(min_value=1, default=1)), ('z', pg.typing.Str().noneable()) ]) class Bar(Foo) pass # Printing Bar's schema will show that there are 3 parameters defined: # x : pg.typing.Int(min_value=1, max_value=10, default=1)) # y : pg.typing.Float(min_value=0) # z : pg.typing.Str().noneable() print(Bar.__schema__) """ # Disable pytype attribute checking. _HAS_DYNAMIC_ATTRIBUTES = True # Class property that indicates whether to allow attribute access on symbolic # members. allow_symbolic_attribute = True # Class property that indicates whether to allow to set or rebind symbolic # members by value assginment. allow_symbolic_assignment = False # Allow symbolic mutation using `rebind`. allow_symbolic_mutation = True # Class property that indicates whether to use `sym_eq` for `__eq__`, # `sym_ne` for `__ne__`, and `sym_hash` for `__hash__`. use_symbolic_comparison = True # If True, symbolic fields will be inferred from class annotations. # It's an alternative way of declaring symbolic fields other than # `pg.members`. # # e.g.:: # # class A(pg.Object): # x: int # y: str # # Please note that class attributes in UPPER_CASE or starting with '_' will # not be considered as symbolic fields even if they have annotations. infer_symbolic_fields_from_annotations = True # Automatically infer schema during subclass creation time. auto_schema = True # # Customizable class behaviors. # def __init_subclass__(cls, user_cls=None): """Initializes subclass. `pg.Object` allows child classes to explicit call `pg.Object.__init_subclass__` in their `__init_subclass__`, to bypass other classes' `__init__subclass__` in multi-inheritance use cases. Example: class Subclass(pg.Object, UserClass): def __init_subclass__(cls): # This bypasses UserClass.__init_subclass__ pg.Object.__init_subclass__(cls) Args: user_cls: The source class that calls this class method. """ object_utils.ensure_explicit_method_override( cls.__init__, ( '`pg.Object.__init__` is a PyGlove managed method. For setting up ' 'the class initialization logic, please override `_on_bound()` or ' '`_on_init()`. If you do have a need to override `__init__` and ' 'know the implications, please decorate your overridden method ' 'with `@pg.explicit_method_override`.' )) # Set `__serialization_key__` before JSONConvertible.__init_subclass__ # is called. setattr(cls, '__serialization_key__', cls.__type_name__) super().__init_subclass__() user_cls = user_cls or cls if user_cls.auto_schema: # Inherit schema from base classes that have schema # in the ordered of inheritance. # TODO(daiyip): size of base_schema_list can be reduced # by looking at their inheritance chains. base_schema_list = [] for base_cls in user_cls.__bases__: base_schema = getattr(base_cls, '__schema__', None) if isinstance(base_schema, pg_typing.Schema): base_schema_list.append(base_schema) new_fields = user_cls._infer_fields_from_annotations() cls_schema = schema_utils.formalize_schema( pg_typing.create_schema( new_fields, name=user_cls.__type_name__, base_schema_list=base_schema_list, allow_nonconst_keys=True, metadata={}, ) ) # NOTE(daiyip): When new fields are added through class attributes. # We invalidate `init_arg_list` so PyGlove could recompute it based # on its schema during `apply_schema`. Otherwise, we inherit the # `init_arg_list` from the base class. # TODO(daiyip): detect new fields based on the differences from the base # schema. if new_fields: cls_schema.metadata['init_arg_list'] = None user_cls.apply_schema(cls_schema) @classmethod def _on_schema_update(cls): """Customizable trait: handling schema change.""" # Update the default value for each field after schema is updated. This is # because that users may change a field's default value via class attribute. cls._update_default_values_from_class_attributes() # pylint: disable=no-value-for-parameter # Update all schema-based signatures. cls._update_signatures_based_on_schema() # Expose symbolic attributes as object attributes when being asked. if cls.allow_symbolic_attribute: cls._generate_sym_attributes() @classmethod def _update_signatures_based_on_schema(cls): """Customizable trait: updates method signatures upon schema change.""" if cls.__init__ is not Object.__init__ and not hasattr( cls.__init__, '__sym_generated_init__' ): # We only generate `__init__` from pg.Object subclass which does not # override the `__init__` method. # Functor and ClassWrapper override their `__init__` methods, therefore # they need to synchronize the __init__ signature by themselves. return signature = pg_typing.Signature.from_schema( cls.__schema__, cls.__module__, '__init__', f'{cls.__name__}.__init__' ) pseudo_init = signature.make_function(['pass']) # Create a new `__init__` that passes through all the arguments to # in `pg.Object.__init__`. This is needed for each class to use different # signature. @object_utils.explicit_method_override @functools.wraps(pseudo_init) def _init(self, *args, **kwargs): # We pass through the arguments to `Object.__init__` instead of # `super()` since the parent class uses a generated `__init__` will # be delegated to `Object.__init__` eventually. Therefore, directly # calling `Object.__init__` is equivalent to calling `super().__init__`. Object.__init__(self, *args, **kwargs) setattr(_init, '__sym_generated_init__', True) setattr(cls, '__init__', _init) @classmethod def _generate_sym_attributes(cls): """Customizable trait: logics for generating symbolic attributes..""" for key, field in cls.__schema__.fields.items(): if isinstance(key, pg_typing.ConstStrKey): attr_name = str(key) attr_value = cls.__dict__.get(attr_name, pg_typing.MISSING_VALUE) if attr_value == pg_typing.MISSING_VALUE or ( not inspect.isfunction(attr_value) and not isinstance(attr_value, property) ): setattr(cls, attr_name, cls._create_sym_attribute(attr_name, field)) @classmethod def _create_sym_attribute(cls, attr_name, field): """Customizable trait: template of single symbolic attribute.""" return property( object_utils.make_function( attr_name, ['self'], [f"return self.sym_inferred('{attr_name}')"], return_type=field.value.annotation, ) ) @classmethod def _begin_annotation_inference(cls) -> None: """Event that is triggered before annotation inference begins.""" @classmethod def _end_annotation_inference( cls, fields: List[pg_typing.Field] ) -> List[pg_typing.Field]: """Event that is triggered after annotation inference ends.""" return fields # # Class methods. # @classmethod def partial(cls, *args, **kwargs) -> 'Object': """Class method that creates a partial object of current class.""" return cls(*args, allow_partial=True, **kwargs) @classmethod def from_json( cls, json_value: Any, *, allow_partial: bool = False, root_path: Optional[object_utils.KeyPath] = None) -> 'Object': """Class method that load an symbolic Object from a JSON value. Example:: @pg.members([ ('f1', pg.typing.Int()), ('f2', pg.typing.Dict([ ('f21', pg.typing.Bool()) ])) ]) class Foo(pg.Object): pass foo = Foo.from_json({ 'f1': 1, 'f2': { 'f21': True } }) # or foo2 = symbolic.from_json({ '_type': '__main__.Foo', 'f1': 1, 'f2': { 'f21': True } }) assert foo == foo2 Args: json_value: Input JSON value, only JSON dict is acceptable. allow_partial: Whether to allow elements of the list to be partial. root_path: KeyPath of loaded object in its object tree. Returns: A symbolic Object instance. """ return cls(allow_partial=allow_partial, root_path=root_path, **{ k: base.from_json(v, allow_partial=allow_partial) for k, v in json_value.items() }) @object_utils.explicit_method_override def __init__( self, *args, allow_partial: bool = False, sealed: Optional[bool] = None, root_path: Optional[object_utils.KeyPath] = None, explicit_init: bool = False, **kwargs): """Create an Object instance. Args: *args: positional arguments. allow_partial: If True, the object can be partial. sealed: If True, seal the object from future modification (unless under a `pg.seal(False)` context manager). If False, treat the object as unsealed. If None, it's determined by `cls.allow_symbolic_mutation`. root_path: The symbolic path for current object. By default it's None, which indicates that newly constructed object does not have a parent. explicit_init: Should set to `True` when `__init__` is called via `pg.Object.__init__` instead of `super().__init__`. **kwargs: key/value arguments that align with the schema. All required keys in the schema must be specified, and values should be acceptable according to their value spec. Raises: KeyError: When required key(s) are missing. ValueError: When value(s) are not acceptable by their value spec. """ # Placeholder for Google-internal usage instrumentation. if sealed is None: sealed = not self.__class__.allow_symbolic_mutation if not isinstance(allow_partial, bool): raise TypeError( f'Expect bool type for argument \'allow_partial\' in ' f'symbolic.Object.__init__ but encountered {allow_partial}.') # We delay the seal attempt until members are all set. super().__init__( allow_partial=allow_partial, accessor_writable=self.__class__.allow_symbolic_assignment, sealed=sealed, root_path=root_path, init_super=not explicit_init) # Fill field_args and init_args from **kwargs. _, unmatched_keys = self.__class__.__schema__.resolve(list(kwargs.keys())) if unmatched_keys: arg_phrase = object_utils.auto_plural(len(unmatched_keys), 'argument') keys_str = object_utils.comma_delimited_str(unmatched_keys) raise TypeError( f'{self.__class__.__name__}.__init__() got unexpected ' f'keyword {arg_phrase}: {keys_str}') field_args = {} # Fill field_args and init_args from *args. init_arg_names = self.__class__.init_arg_list if args: if not self.__class__.__schema__.fields: raise TypeError(f'{self.__class__.__name__}() takes no arguments.') elif init_arg_names and init_arg_names[-1].startswith('*'): vararg_name = init_arg_names[-1][1:] vararg_field = self.__class__.__schema__.get_field(vararg_name) assert vararg_field is not None num_named_args = len(init_arg_names) - 1 field_args[vararg_name] = list(args[num_named_args:]) args = args[:num_named_args] elif len(args) > len(init_arg_names): arg_phrase = object_utils.auto_plural(len(init_arg_names), 'argument') was_phrase = object_utils.auto_plural(len(args), 'was', 'were') raise TypeError( f'{self.__class__.__name__}.__init__() takes ' f'{len(init_arg_names)} positional {arg_phrase} but {len(args)} ' f'{was_phrase} given.') for i, arg_value in enumerate(args): arg_name = init_arg_names[i] field_args[arg_name] = arg_value for k, v in kwargs.items(): if k in field_args: values_str = object_utils.comma_delimited_str([field_args[k], v]) raise TypeError( f'{self.__class__.__name__}.__init__() got multiple values for ' f'argument \'{k}\': {values_str}.') field_args[k] = v # Check missing arguments when partial binding is disallowed. if not base.accepts_partial(self): missing_args = [] for field in self.__class__.__schema__.fields.values(): if (not field.value.has_default and isinstance(field.key, pg_typing.ConstStrKey) and field.key not in field_args): missing_args.append(str(field.key)) if missing_args: arg_phrase = object_utils.auto_plural(len(missing_args), 'argument') keys_str = object_utils.comma_delimited_str(missing_args) raise TypeError( f'{self.__class__.__name__}.__init__() missing {len(missing_args)} ' f'required {arg_phrase}: {keys_str}.') self._set_raw_attr( '_sym_attributes', pg_dict.Dict( field_args, value_spec=self.__class__.sym_fields, allow_partial=allow_partial, sealed=sealed, # NOTE(daiyip): Accessor writable is honored by # `Object.__setattr__` thus we could always make `_sym_attributes` # accessor writable. This prevents a child object's attribute access # from being changed when it's attached to a parent whose symbolic # attributes could not be directly written. accessor_writable=True, root_path=root_path, as_object_attributes_container=True, ), ) self._sym_attributes.sym_setparent(self) self._on_init() self.seal(sealed) # # Events that subclasses can override. # def _on_init(self): """Event that is triggered at then end of __init__.""" self._on_bound() def _on_bound(self) -> None: """Event that is triggered when any value in the subtree are set/updated. NOTE(daiyip): This is the best place to set derived members from members registered by the schema. It's called when any value in the sub-tree is modified, thus making sure derived members are up-to-date. When derived members are expensive to create/update, you can implement _init, _on_rebound, _on_subtree_rebound to update derived members only when they are impacted. _on_bound is not called on per-field basis, it's called at most once during a rebind call (though many fields may be updated) and during __init__. """ def _on_change(self, field_updates: Dict[object_utils.KeyPath, base.FieldUpdate]): """Event that is triggered when field values in the subtree are updated. This event will be called * On per-field basis when object is modified via attribute. * In batch when multiple fields are modified via `rebind` method. When a field in an object tree is updated, all ancestors' `_on_change` event will be triggered in order, from the nearest one to furthest one. Args: field_updates: Updates made to the subtree. Key path is relative to current object. Returns: it will call `_on_bound` and return the return value of `_on_bound`. """ del field_updates return self._on_bound() def _on_path_change( self, old_path: object_utils.KeyPath, new_path: object_utils.KeyPath): """Event that is triggered after the symbolic path changes.""" del old_path, new_path def _on_parent_change( self, old_parent: Optional[base.Symbolic], new_parent: Optional[base.Symbolic]): """Event that is triggered after the symbolic parent changes.""" del old_parent, new_parent @property def sym_init_args(self) -> pg_dict.Dict: """Returns the symbolic attributes which are also the `__init__` args. Returns: A symbolic Dict as evaluated symbolic attributes, meaning that all ``pg.ContextValue`` will be resolved. """ return self._sym_attributes def sym_hasattr(self, key: Union[str, int]) -> bool: """Tests if a symbolic attribute exists.""" if key == '_sym_attributes': raise ValueError( f'{self.__class__.__name__}.__init__ should call `super().__init__`.') return ( isinstance(key, str) and not key.startswith('_') and key in self._sym_attributes ) def sym_attr_field( self, key: Union[str, int] ) -> Optional[pg_typing.Field]: """Returns the field definition for a symbolic attribute.""" return self._sym_attributes.sym_attr_field(key) def sym_keys(self) -> Iterator[str]: """Iterates the keys of symbolic attributes.""" return self._sym_attributes.sym_keys() def sym_values(self): """Iterates the values of symbolic attributes.""" return self._sym_attributes.sym_values() def sym_items(self): """Iterates the (key, value) pairs of symbolic attributes.""" return self._sym_attributes.sym_items() def sym_eq(self, other: Any) -> bool: """Tests symbolic equality.""" return self is other or ( type(self) is type(other) and base.eq( self._sym_attributes, other._sym_attributes)) # pylint: disable=protected-access def sym_lt(self, other: Any) -> bool: """Tests symbolic less-than.""" if type(self) is not type(other): return base.lt(self, other) return base.lt(self._sym_attributes, other._sym_attributes) # pylint: disable=protected-access def sym_hash(self) -> int: """Symbolically hashing.""" return base.sym_hash((self.__class__, base.sym_hash(self._sym_attributes))) def sym_setparent(self, parent: base.Symbolic): """Sets the parent of current node in the symbolic tree.""" old_parent = self.sym_parent super().sym_setparent(parent) if old_parent is not parent: self._on_parent_change(old_parent, parent) def _sym_getattr( # pytype: disable=signature-mismatch # overriding-parameter-type-checks self, key: str) -> Any: """Get symbolic field by key.""" return self._sym_attributes.sym_getattr(key) def _sym_rebind( self, path_value_pairs: Dict[object_utils.KeyPath, Any] ) -> List[base.FieldUpdate]: """Rebind current object using object-form members.""" if base.treats_as_sealed(self): raise base.WritePermissionError( f'Cannot rebind a sealed {self.__class__.__name__}.') return self._sym_attributes._sym_rebind(path_value_pairs) # pylint: disable=protected-access def _sym_clone(self, deep: bool, memo: Any = None) -> 'Object': """Copy flags.""" kwargs = dict() for k, v in self._sym_attributes.sym_items(): if deep or isinstance(v, base.Symbolic): v = base.clone(v, deep, memo) kwargs[k] = v return self.__class__(allow_partial=self._allow_partial, sealed=self._sealed, **kwargs) # pytype: disable=not-instantiable def _sym_missing(self) -> Dict[str, Any]: """Returns missing values.""" # Invalidate the cache of child attributes' missing values before calling # `Dict.sym_missing`. setattr(self._sym_attributes, '_sym_missing_values', None) return self._sym_attributes.sym_missing(flatten=False) def _sym_nondefault(self) -> Dict[str, Any]: """Returns non-default values.""" # Invalidate the cache of child attributes' non-default values before # calling `Dict.sym_nondefault`. setattr(self._sym_attributes, '_sym_nondefault_values', None) return self._sym_attributes.sym_nondefault(flatten=False) def seal(self, sealed: bool = True) -> 'Object': """Seal or unseal current object from further modification.""" self._sym_attributes.seal(sealed) super().seal(sealed) return self def _update_children_paths( self, old_path: object_utils.KeyPath, new_path: object_utils.KeyPath) -> None: """Update children paths according to root_path of current node.""" self._sym_attributes.sym_setpath(new_path) self._on_path_change(old_path, new_path) def _set_item_without_permission_check( # pytype: disable=signature-mismatch # overriding-parameter-type-checks self, key: str, value: Any) -> Optional[base.FieldUpdate]: """Set item without permission check.""" return self._sym_attributes._set_item_without_permission_check(key, value) # pylint: disable=protected-access @property def _subscribes_field_updates(self) -> bool: """Returns True if current object subscribes field updates. For pg.Object, this return True only when _on_change is overridden from subclass. """ return self._on_change.__code__ is not Object._on_change.__code__ # pytype: disable=attribute-error def _init_kwargs(self) -> typing.Dict[str, Any]: kwargs = super()._init_kwargs() kwargs.update(self._sym_attributes) return kwargs def __getstate__(self) -> Dict[str, Any]: """Customizes pickle.dump.""" return dict(kwargs=self._init_kwargs()) def __setstate__(self, state) -> None: """Customizes pickle.load.""" self.__init__(**state['kwargs']) def __setattr__(self, name: str, value: Any) -> None: """Set field value by attribute.""" # NOTE(daiyip): two types of members are treated as regular members: # 1) All private members which prefixed with '_'. # 2) Public members that are not declared as symbolic members. if ( not self.allow_symbolic_attribute or not self.__class__.__schema__.get_field(name) or name.startswith('_') ): super().__setattr__(name, value) else: if base.treats_as_sealed(self): raise base.WritePermissionError( self._error_message( f'Cannot set attribute {name!r}: object is sealed.')) if not base.writtable_via_accessors(self): raise base.WritePermissionError( self._error_message( f'Cannot set attribute of <class {self.__class__.__name__}> ' f'while `{self.__class__.__name__}.allow_symbolic_assignment` ' f'is set to False or under `pg.as_sealed` context.')) self._sym_attributes[name] = value def __getattribute__(self, name: str) -> Any: """Override to accomondate symbolic attributes with variable keys.""" try: return super().__getattribute__(name) except AttributeError as error: if not self.allow_symbolic_attribute or not self.sym_hasattr(name): raise error return self.sym_inferred(name) def __eq__(self, other: Any) -> bool: """Operator==.""" if self.use_symbolic_comparison: return self.sym_eq(other) return super().__eq__(other) def __ne__(self, other: Any) -> bool: """Operator!=.""" r = self.__eq__(other) if r is NotImplemented: return r return not r def __hash__(self) -> int: """Hashing function.""" if self.use_symbolic_comparison: return self.sym_hash() return super().__hash__() def sym_jsonify(self, **kwargs) -> object_utils.JSONValueType: """Converts current object to a dict of plain Python objects.""" return object_utils.merge([ { object_utils.JSONConvertible.TYPE_NAME_KEY: ( self.__class__.__serialization_key__ ) }, self._sym_attributes.to_json(**kwargs), ]) def format(self, compact: bool = False, verbose: bool = False, root_indent: int = 0, **kwargs) -> str: """Formats this object.""" return self._sym_attributes.format( compact, verbose, root_indent, cls_name=self.__class__.__name__, key_as_attribute=True, bracket_type=object_utils.BracketType.ROUND, **kwargs)
(*args, allow_partial: bool = False, sealed: Optional[bool] = None, root_path: Optional[pyglove.core.object_utils.value_location.KeyPath] = None, explicit_init: bool = False, **kwargs)
41,097
pyglove.core.symbolic.object
__init__
Create an Object instance. Args: *args: positional arguments. allow_partial: If True, the object can be partial. sealed: If True, seal the object from future modification (unless under a `pg.seal(False)` context manager). If False, treat the object as unsealed. If None, it's determined by `cls.allow_symbolic_mutation`. root_path: The symbolic path for current object. By default it's None, which indicates that newly constructed object does not have a parent. explicit_init: Should set to `True` when `__init__` is called via `pg.Object.__init__` instead of `super().__init__`. **kwargs: key/value arguments that align with the schema. All required keys in the schema must be specified, and values should be acceptable according to their value spec. Raises: KeyError: When required key(s) are missing. ValueError: When value(s) are not acceptable by their value spec.
@object_utils.explicit_method_override def __init__( self, *args, allow_partial: bool = False, sealed: Optional[bool] = None, root_path: Optional[object_utils.KeyPath] = None, explicit_init: bool = False, **kwargs): """Create an Object instance. Args: *args: positional arguments. allow_partial: If True, the object can be partial. sealed: If True, seal the object from future modification (unless under a `pg.seal(False)` context manager). If False, treat the object as unsealed. If None, it's determined by `cls.allow_symbolic_mutation`. root_path: The symbolic path for current object. By default it's None, which indicates that newly constructed object does not have a parent. explicit_init: Should set to `True` when `__init__` is called via `pg.Object.__init__` instead of `super().__init__`. **kwargs: key/value arguments that align with the schema. All required keys in the schema must be specified, and values should be acceptable according to their value spec. Raises: KeyError: When required key(s) are missing. ValueError: When value(s) are not acceptable by their value spec. """ # Placeholder for Google-internal usage instrumentation. if sealed is None: sealed = not self.__class__.allow_symbolic_mutation if not isinstance(allow_partial, bool): raise TypeError( f'Expect bool type for argument \'allow_partial\' in ' f'symbolic.Object.__init__ but encountered {allow_partial}.') # We delay the seal attempt until members are all set. super().__init__( allow_partial=allow_partial, accessor_writable=self.__class__.allow_symbolic_assignment, sealed=sealed, root_path=root_path, init_super=not explicit_init) # Fill field_args and init_args from **kwargs. _, unmatched_keys = self.__class__.__schema__.resolve(list(kwargs.keys())) if unmatched_keys: arg_phrase = object_utils.auto_plural(len(unmatched_keys), 'argument') keys_str = object_utils.comma_delimited_str(unmatched_keys) raise TypeError( f'{self.__class__.__name__}.__init__() got unexpected ' f'keyword {arg_phrase}: {keys_str}') field_args = {} # Fill field_args and init_args from *args. init_arg_names = self.__class__.init_arg_list if args: if not self.__class__.__schema__.fields: raise TypeError(f'{self.__class__.__name__}() takes no arguments.') elif init_arg_names and init_arg_names[-1].startswith('*'): vararg_name = init_arg_names[-1][1:] vararg_field = self.__class__.__schema__.get_field(vararg_name) assert vararg_field is not None num_named_args = len(init_arg_names) - 1 field_args[vararg_name] = list(args[num_named_args:]) args = args[:num_named_args] elif len(args) > len(init_arg_names): arg_phrase = object_utils.auto_plural(len(init_arg_names), 'argument') was_phrase = object_utils.auto_plural(len(args), 'was', 'were') raise TypeError( f'{self.__class__.__name__}.__init__() takes ' f'{len(init_arg_names)} positional {arg_phrase} but {len(args)} ' f'{was_phrase} given.') for i, arg_value in enumerate(args): arg_name = init_arg_names[i] field_args[arg_name] = arg_value for k, v in kwargs.items(): if k in field_args: values_str = object_utils.comma_delimited_str([field_args[k], v]) raise TypeError( f'{self.__class__.__name__}.__init__() got multiple values for ' f'argument \'{k}\': {values_str}.') field_args[k] = v # Check missing arguments when partial binding is disallowed. if not base.accepts_partial(self): missing_args = [] for field in self.__class__.__schema__.fields.values(): if (not field.value.has_default and isinstance(field.key, pg_typing.ConstStrKey) and field.key not in field_args): missing_args.append(str(field.key)) if missing_args: arg_phrase = object_utils.auto_plural(len(missing_args), 'argument') keys_str = object_utils.comma_delimited_str(missing_args) raise TypeError( f'{self.__class__.__name__}.__init__() missing {len(missing_args)} ' f'required {arg_phrase}: {keys_str}.') self._set_raw_attr( '_sym_attributes', pg_dict.Dict( field_args, value_spec=self.__class__.sym_fields, allow_partial=allow_partial, sealed=sealed, # NOTE(daiyip): Accessor writable is honored by # `Object.__setattr__` thus we could always make `_sym_attributes` # accessor writable. This prevents a child object's attribute access # from being changed when it's attached to a parent whose symbolic # attributes could not be directly written. accessor_writable=True, root_path=root_path, as_object_attributes_container=True, ), ) self._sym_attributes.sym_setparent(self) self._on_init() self.seal(sealed)
(self, *args, allow_partial: bool = False, sealed: Optional[bool] = None, root_path: Optional[pyglove.core.object_utils.value_location.KeyPath] = None, explicit_init: bool = False, **kwargs)
41,162
pyglove.core.patching.object_factory
ObjectFactory
A factory to create symbolic object from a base value and patches. Args: value_type: Type of return value. base_value: An instance of `value_type`, or a callable object that produces an instance of `value_type`, or a string as the path to the serialized value. patches: Optional patching rules. See :func:`patch` for details. params_override: A rebind dict (or a JSON string as serialized rebind dict) as an additional patch to the value, Returns: Value after applying `patchers` and `params_override` based on `base_value`.
from pyglove.core.patching.object_factory import ObjectFactory
null
41,181
pyglove.core.symbolic.functor
_call
null
def functor_class( func: types.FunctionType, args: Optional[List[Union[ Tuple[Tuple[str, pg_typing.KeySpec], pg_typing.ValueSpec, str], Tuple[Tuple[str, pg_typing.KeySpec], pg_typing.ValueSpec, str, Any]]] ] = None, # pylint: disable=bad-continuation returns: Optional[pg_typing.ValueSpec] = None, base_class: Optional[Type[Functor]] = None, *, auto_doc: bool = False, auto_typing: bool = False, serialization_key: Optional[str] = None, additional_keys: Optional[List[str]] = None, add_to_registry: bool = False, ) -> Type[Functor]: """Returns a functor class from a function. Args: func: Function to be wrapped into a functor. args: Symbolic args specification. `args` is a list of tuples, each describes an argument from the input function. Each tuple is the format of (<argumment-name>, <value-spec>, [description], [metadata-objects]). `argument-name` - a `str` or `pg_typing.StrKey` object. When `pg_typing.StrKey` is used, it describes the wildcard keyword argument. `value-spec` - a `pg_typing.ValueSpec` object or equivalent, e.g. primitive values which will be converted to ValueSpec implementation according to its type and used as its default value. `description` - a string to describe the agument. `metadata-objects` - an optional list of any type, which can be used to generate code according to the schema. There are notable rules in filling the `args`: 1) When `args` is None or arguments from the function signature are missing from it, `schema.Field` for these fields will be automatically generated and inserted into `args`. That being said, every arguments in input function will have a `schema.Field` counterpart in `Functor.__schema__.fields` sorted by the declaration order of each argument in the function signature ( other than the order in `args`). 2) Default argument values are specified along with function definition as regular python functions, instead of being set at `schema.Field` level. But validation rules can be set using `args` and apply to argument values. For example:: @pg.functor([('c', pg.typing.Int(min_value=0), 'Arg c')]) def foo(a, b, c=1, **kwargs): return a + b + c + sum(kwargs.values()) assert foo.schema.fields() == [ pg.typing.Field('a', pg.Any(), 'Argument a'.), pg.typing.Field('b', pg.Any(), 'Argument b'.), pg.typing.Field('c', pg.typing.Int(), 'Arg c.), pg.typing.Filed( pg.typing.StrKey(), pg.Any(), 'Other arguments.') ] # Prebind a=1, b=2, with default value c=1. assert foo(1, 2)() == 4 returns: Optional schema specification for the return value. base_class: Optional base class (derived from `symbolic.Functor`). If None, returned type will inherit from `Functor` directly. auto_doc: If True, the descriptions of argument fields will be inherited from funciton docstr if they are not explicitly specified through ``args``. auto_typing: If True, the value spec for constraining each argument will be inferred from its annotation. Otherwise the value specs for all arguments will be ``pg.typing.Any()``. serialization_key: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. additional_keys: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. add_to_registry: If True, the newly created functor class will be added to the registry for deserialization. Returns: `symbolic.Functor` subclass that wraps input function. Raises: KeyError: names of symbolic arguments are not compatible with function signature. TypeError: types of symbolic arguments are not compatible with function signature. ValueError: default values of symbolic arguments are not compatible with function signature. """ if not inspect.isfunction(func): raise TypeError(f'{func!r} is not a function.') class _Functor(base_class or Functor): """Functor wrapper for input function.""" # The schema for function-based Functor will be inferred from the function # signature. Therefore we do not infer the schema automatically during class # creation. auto_schema = False # Do not infer symbolic fields from annotations, since this functor is # created from function definition which does not have class-level # attributes. infer_symbolic_fields_from_annotations = True def _call(self, *args, **kwargs): return func(*args, **kwargs) cls = typing.cast(Type[Functor], _Functor) cls.__name__ = func.__name__ cls.__qualname__ = func.__qualname__ cls.__module__ = getattr(func, '__module__', 'wrapper') cls.__doc__ = func.__doc__ # Enable automatic registration for subclass. cls.auto_register = True # Apply function schema. schema = schema_utils.function_schema( func, args, returns, auto_doc=auto_doc, auto_typing=auto_typing) cls.apply_schema(schema) # Register functor class for deserialization if needed. if add_to_registry: cls.register_for_deserialization(serialization_key, additional_keys) return cls
(self, *args, **kwargs)
41,242
pyglove.core.symbolic.origin
Origin
Class that represents the origin of a symbolic value. Origin is used for debugging the creation chain of a symbolic value, as well as keeping track of the factory or builder in creational design patterns. An `Origin` object records the source value, a string tag, and optional stack information on where a symbolic value is created. Built-in tags are '__init__', 'clone', 'deepclone' and 'return'. Users can pass custom tags to the `sym_setorigin` method of a symbolic value for tracking its source in their own scenarios. When origin tracking is enabled by calling `pg.track_origin(True)`, the `sym_setorigin` method of symbolic values will be automatically called during object creation, cloning or being returned from a functor. The stack information can be obtained by `origin.stack` or `origin.stacktrace`.
class Origin(object_utils.Formattable): """Class that represents the origin of a symbolic value. Origin is used for debugging the creation chain of a symbolic value, as well as keeping track of the factory or builder in creational design patterns. An `Origin` object records the source value, a string tag, and optional stack information on where a symbolic value is created. Built-in tags are '__init__', 'clone', 'deepclone' and 'return'. Users can pass custom tags to the `sym_setorigin` method of a symbolic value for tracking its source in their own scenarios. When origin tracking is enabled by calling `pg.track_origin(True)`, the `sym_setorigin` method of symbolic values will be automatically called during object creation, cloning or being returned from a functor. The stack information can be obtained by `origin.stack` or `origin.stacktrace`. """ def __init__(self, source: Any, tag: str, stacktrace: Optional[bool] = None, stacklimit: Optional[int] = None, stacktop: int = -1): """Constructor. Args: source: Source value for the origin. tag: A descriptive tag of the origin. Built-in tags are: '__init__', 'clone', 'deepclone', 'return'. Users can manually call `sym_setorigin` with custom tag value. stacktrace: If True, enable stack trace for the origin. If None, enable stack trace if `pg.tracek_origin()` is called. Otherwise stack trace is disabled. stacklimit: An optional integer to limit the stack depth. If None, it's determined by the value passed to `pg.set_origin_stacktrace_limit`, which is 10 by default. stacktop: A negative integer to indicate the stack top among the stack frames that we want to present to user, by default it's 2-level up from the stack within current `sym_setorigin` call. """ if not isinstance(tag, str): raise ValueError(f'`tag` must be a string. Encountered: {tag!r}.') self._source = source self._tag = tag self._stack = None self._stacktrace = None if stacktrace is None: stacktrace = flags.is_tracking_origin() if stacklimit is None: stacklimit = flags.get_origin_stacktrace_limit() if stacktrace: self._stack = traceback.extract_stack(limit=stacklimit - stacktop) if stacktop < 0: self._stack = self._stack[:stacktop] @property def source(self) -> Any: """Returns the source object.""" return self._source @property def root(self) -> 'Origin': """Returns the root source of the origin.""" current = self while True: parent = getattr(current.source, 'sym_origin', None) if parent is None: break current = parent return current def history( self, condition: Optional[Callable[['Origin'], bool]] = None) -> List['Origin']: """Returns a history of origins with an optional filter. Args: condition: An optional callable object with signature (origin) -> should_list. If None, all origins will be listed. Returns: A list of filtered origin from the earliest (root) to the most recent. """ condition = condition or (lambda o: True) current = self history = [] while current is not None: if condition(current): history.append(current) current = getattr(current.source, 'sym_origin', None) history.reverse() return history @property def tag(self) -> str: """Returns tag.""" return self._tag @property def stack(self) -> Optional[List[traceback.FrameSummary]]: """Returns the frame summary of original stack.""" return self._stack @property def stacktrace(self) -> Optional[str]: """Returns stack trace string.""" if self._stack is None: return None if self._stacktrace is None: self._stacktrace = ''.join(traceback.format_list(self._stack)) return self._stacktrace def chain(self, tag: Optional[str] = None) -> List['Origin']: """Get the origin list from the neareast to the farthest filtered by tag.""" origins = [] o = self while o is not None: if tag is None or tag == o.tag: origins.append(o) o = getattr(o.source, 'sym_origin', None) return origins def format(self, compact: bool = False, verbose: bool = True, root_indent: int = 0, **kwargs) -> str: """Formats this object.""" if isinstance(self._source, (str, type(None))): source_str = object_utils.quote_if_str(self._source) else: source_info = object_utils.format( self._source, compact, verbose, root_indent + 1, **kwargs) source_str = f'{source_info} at 0x{id(self._source):8x}' details = object_utils.kvlist_str([ ('tag', object_utils.quote_if_str(self._tag), None), ('source', source_str, None), ]) return f'{self.__class__.__name__}({details})' def __eq__(self, other: Any) -> bool: """Operator ==.""" if not isinstance(other, self.__class__): return False return self._source is other.source and self._tag == other.tag def __ne__(self, other: Any) -> bool: """Operator !=.""" return not self.__eq__(other)
(source: Any, tag: str, stacktrace: Optional[bool] = None, stacklimit: Optional[int] = None, stacktop: int = -1)
41,243
pyglove.core.symbolic.origin
__eq__
Operator ==.
def __eq__(self, other: Any) -> bool: """Operator ==.""" if not isinstance(other, self.__class__): return False return self._source is other.source and self._tag == other.tag
(self, other: Any) -> bool
41,244
pyglove.core.symbolic.origin
__init__
Constructor. Args: source: Source value for the origin. tag: A descriptive tag of the origin. Built-in tags are: '__init__', 'clone', 'deepclone', 'return'. Users can manually call `sym_setorigin` with custom tag value. stacktrace: If True, enable stack trace for the origin. If None, enable stack trace if `pg.tracek_origin()` is called. Otherwise stack trace is disabled. stacklimit: An optional integer to limit the stack depth. If None, it's determined by the value passed to `pg.set_origin_stacktrace_limit`, which is 10 by default. stacktop: A negative integer to indicate the stack top among the stack frames that we want to present to user, by default it's 2-level up from the stack within current `sym_setorigin` call.
def __init__(self, source: Any, tag: str, stacktrace: Optional[bool] = None, stacklimit: Optional[int] = None, stacktop: int = -1): """Constructor. Args: source: Source value for the origin. tag: A descriptive tag of the origin. Built-in tags are: '__init__', 'clone', 'deepclone', 'return'. Users can manually call `sym_setorigin` with custom tag value. stacktrace: If True, enable stack trace for the origin. If None, enable stack trace if `pg.tracek_origin()` is called. Otherwise stack trace is disabled. stacklimit: An optional integer to limit the stack depth. If None, it's determined by the value passed to `pg.set_origin_stacktrace_limit`, which is 10 by default. stacktop: A negative integer to indicate the stack top among the stack frames that we want to present to user, by default it's 2-level up from the stack within current `sym_setorigin` call. """ if not isinstance(tag, str): raise ValueError(f'`tag` must be a string. Encountered: {tag!r}.') self._source = source self._tag = tag self._stack = None self._stacktrace = None if stacktrace is None: stacktrace = flags.is_tracking_origin() if stacklimit is None: stacklimit = flags.get_origin_stacktrace_limit() if stacktrace: self._stack = traceback.extract_stack(limit=stacklimit - stacktop) if stacktop < 0: self._stack = self._stack[:stacktop]
(self, source: Any, tag: str, stacktrace: Optional[bool] = None, stacklimit: Optional[int] = None, stacktop: int = -1)
41,249
pyglove.core.symbolic.origin
chain
Get the origin list from the neareast to the farthest filtered by tag.
def chain(self, tag: Optional[str] = None) -> List['Origin']: """Get the origin list from the neareast to the farthest filtered by tag.""" origins = [] o = self while o is not None: if tag is None or tag == o.tag: origins.append(o) o = getattr(o.source, 'sym_origin', None) return origins
(self, tag: Optional[str] = None) -> List[pyglove.core.symbolic.origin.Origin]
41,250
pyglove.core.symbolic.origin
format
Formats this object.
def format(self, compact: bool = False, verbose: bool = True, root_indent: int = 0, **kwargs) -> str: """Formats this object.""" if isinstance(self._source, (str, type(None))): source_str = object_utils.quote_if_str(self._source) else: source_info = object_utils.format( self._source, compact, verbose, root_indent + 1, **kwargs) source_str = f'{source_info} at 0x{id(self._source):8x}' details = object_utils.kvlist_str([ ('tag', object_utils.quote_if_str(self._tag), None), ('source', source_str, None), ]) return f'{self.__class__.__name__}({details})'
(self, compact: bool = False, verbose: bool = True, root_indent: int = 0, **kwargs) -> str
41,251
pyglove.core.symbolic.origin
history
Returns a history of origins with an optional filter. Args: condition: An optional callable object with signature (origin) -> should_list. If None, all origins will be listed. Returns: A list of filtered origin from the earliest (root) to the most recent.
def history( self, condition: Optional[Callable[['Origin'], bool]] = None) -> List['Origin']: """Returns a history of origins with an optional filter. Args: condition: An optional callable object with signature (origin) -> should_list. If None, all origins will be listed. Returns: A list of filtered origin from the earliest (root) to the most recent. """ condition = condition or (lambda o: True) current = self history = [] while current is not None: if condition(current): history.append(current) current = getattr(current.source, 'sym_origin', None) history.reverse() return history
(self, condition: Optional[Callable[[pyglove.core.symbolic.origin.Origin], bool]] = None) -> List[pyglove.core.symbolic.origin.Origin]
41,252
pyglove.core.symbolic.pure_symbolic
PureSymbolic
Base class to classes whose objects are considered pure symbolic. Pure symbolic objects can be used for representing abstract concepts - for example, a search space of objects - which cannot be executed but soely representational. Having pure symbolic object is a key differentiator of symbolic OOP from regular OOP, which can be used to placehold values in an object as a high-level expression of ideas. Later, with symbolic manipulation, the pure symbolic objects are replaced with material values so the object can be evaluated. This effectively decouples the expression of ideas from the implementation of ideas. For example: ``pg.oneof(['a', 'b', 'c']`` will be manipulated into 'a', 'b' or 'c' based on the decision of a search algorithm, letting the program evolve itself.
class PureSymbolic(pg_typing.CustomTyping): """Base class to classes whose objects are considered pure symbolic. Pure symbolic objects can be used for representing abstract concepts - for example, a search space of objects - which cannot be executed but soely representational. Having pure symbolic object is a key differentiator of symbolic OOP from regular OOP, which can be used to placehold values in an object as a high-level expression of ideas. Later, with symbolic manipulation, the pure symbolic objects are replaced with material values so the object can be evaluated. This effectively decouples the expression of ideas from the implementation of ideas. For example: ``pg.oneof(['a', 'b', 'c']`` will be manipulated into 'a', 'b' or 'c' based on the decision of a search algorithm, letting the program evolve itself. """ def custom_apply( self, path: object_utils.KeyPath, value_spec: pg_typing.ValueSpec, allow_partial: bool, child_transform: Optional[ Callable[[object_utils.KeyPath, pg_typing.Field, Any], Any]] = None ) -> Tuple[bool, Any]: """Custom apply on a value based on its original value spec. This implements ``pg.pg_typing.CustomTyping``, allowing a pure symbolic value to be assigned to any field. To customize this behavior, override this method in subclasses. Args: path: KeyPath of current object under its object tree. value_spec: Original value spec for this field. allow_partial: Whether allow partial object to be created. child_transform: Function to transform child node values into their final values. Transform function is called on leaf nodes first, then on their parents, recursively. Returns: A tuple (proceed_with_standard_apply, value_to_proceed). If proceed_with_standard_apply is set to False, value_to_proceed will be used as final value. Raises: Error when the value is not compatible with the value spec. """ del path, value_spec, allow_partial, child_transform return (False, self)
()
41,254
pyglove.core.symbolic.ref
Ref
Symbolic reference. When adding a symbolic node to a symbolic tree, it undergoes a copy operation if it already has a parent, ensuring that all symbolic objects have a single parent. Additionally, list and dict objects are automatically converted to ``pg.List`` and ``pg.Dict``, respectively, to enable symbolic operability. However, these two conventions come with certain costs. The act of making copies incurs a runtime cost, and it also introduces challenges in sharing states across different symbolic objects. To address this issue, symbolic reference is introduced. This feature allows a symbolic node to refer to value objects without the need for transformation or copying, even when the symbolic node itself is copied. For example:: class A(pg.Object): x: int a = pg.Ref(A(1)) b = pg.Dict(x=a) c = pg.Dict(y=a) assert b.x is a assert c.y is a assert b.clone().x is a assert c.clone(deep=True).y is a In this example, ``pg.Ref`` is used to create a symbolic reference to the object ``A(1)``, and the ``pg.Dict`` objects `b` and `c` can then reference `a` without creating additional copies. This mechanism not only mitigates the runtime cost but also facilitates seamless sharing of states among various symbolic objects. Another useful scenario arises when we wish to utilize regular Python list and dict objects. In this case, ``pg.Ref`` enables us to access the list/dict object as fields in the symbolic tree without requiring them to be transformed into ``pg.List`` and ``pg.Dict``. This allows for seamless integration of standard Python containers within the symbolic structure:: d = pg.Dict(x=pg.Ref({1: 2})) assert isinstance(d.x, dict) assert not isinstance(d.x, pg.Dict) e = pg.Dict(x=pg.Ref([0, 1, 2]])) assert isinstance(e.x, list) assert not isinstance(e.x, pg.List) Please be aware that ``pg.Ref`` objects are treated as leaf nodes in the symbolic tree, even when they reference other symbolic objects. As a result, the ``rebind()`` method cannot modify the value they are pointing to. For primitive types, ``pg.Ref()`` returns their values directly without creating a reference. For example, ``pg.Ref(1)`` and ``pg.Ref('abc')`` will simply return the values 1 and 'abc', respectively, without any additional referencing.
class Ref(Object, base.Inferential): """Symbolic reference. When adding a symbolic node to a symbolic tree, it undergoes a copy operation if it already has a parent, ensuring that all symbolic objects have a single parent. Additionally, list and dict objects are automatically converted to ``pg.List`` and ``pg.Dict``, respectively, to enable symbolic operability. However, these two conventions come with certain costs. The act of making copies incurs a runtime cost, and it also introduces challenges in sharing states across different symbolic objects. To address this issue, symbolic reference is introduced. This feature allows a symbolic node to refer to value objects without the need for transformation or copying, even when the symbolic node itself is copied. For example:: class A(pg.Object): x: int a = pg.Ref(A(1)) b = pg.Dict(x=a) c = pg.Dict(y=a) assert b.x is a assert c.y is a assert b.clone().x is a assert c.clone(deep=True).y is a In this example, ``pg.Ref`` is used to create a symbolic reference to the object ``A(1)``, and the ``pg.Dict`` objects `b` and `c` can then reference `a` without creating additional copies. This mechanism not only mitigates the runtime cost but also facilitates seamless sharing of states among various symbolic objects. Another useful scenario arises when we wish to utilize regular Python list and dict objects. In this case, ``pg.Ref`` enables us to access the list/dict object as fields in the symbolic tree without requiring them to be transformed into ``pg.List`` and ``pg.Dict``. This allows for seamless integration of standard Python containers within the symbolic structure:: d = pg.Dict(x=pg.Ref({1: 2})) assert isinstance(d.x, dict) assert not isinstance(d.x, pg.Dict) e = pg.Dict(x=pg.Ref([0, 1, 2]])) assert isinstance(e.x, list) assert not isinstance(e.x, pg.List) Please be aware that ``pg.Ref`` objects are treated as leaf nodes in the symbolic tree, even when they reference other symbolic objects. As a result, the ``rebind()`` method cannot modify the value they are pointing to. For primitive types, ``pg.Ref()`` returns their values directly without creating a reference. For example, ``pg.Ref(1)`` and ``pg.Ref('abc')`` will simply return the values 1 and 'abc', respectively, without any additional referencing. """ def __new__(cls, value: Any, **kwargs): del kwargs if isinstance(value, (bool, numbers.Number, str)): return value return object.__new__(cls) @object_utils.explicit_method_override def __init__(self, value: Any, **kwargs) -> None: super().__init__(**kwargs) if isinstance(value, Ref): value = value.value self._value = value def _on_parent_change( self, old_parent: Optional[base.Symbolic], new_parent: Optional[base.Symbolic]) -> None: if (new_parent is not None and isinstance(self._value, base.Symbolic) and self._value.sym_root is new_parent.sym_root): raise NotImplementedError('Self-referential object is not supported.') @property def value(self) -> Any: """Returns the referenced value.""" return self._value def infer(self, **kwargs) -> Any: """Returns the referenced value.""" return self._value def custom_apply( self, path: object_utils.KeyPath, value_spec: pg_typing.ValueSpec, allow_partial: bool = False, child_transform: Optional[Callable[ [object_utils.KeyPath, pg_typing.Field, Any], Any]] = None ) -> Tuple[bool, Any]: """Validate candidates during value_spec binding time.""" del child_transform # Check if the field being assigned could accept the referenced value. # We do not do any transformation, thus not passing the child transform. value_spec.apply( self._value, allow_partial=allow_partial) return (False, self) def _sym_clone(self, deep: bool, memo: Any = None) -> 'Ref': # Always create a new object. # TODO(daiyip): support deep clone with the update of reference when # the original value is updated. return Ref(self._value, allow_partial=self.allow_partial) def sym_eq(self, other: Any) -> bool: return isinstance(other, Ref) and self.value is other.value def sym_jsonify(self, **kwargs: Any) -> Any: raise TypeError(f'{self!r} cannot be serialized at the moment.') def __getstate__(self): raise TypeError(f'{self!r} cannot be pickled at the moment.') def format( self, compact: bool = False, verbose: bool = False, root_indent: int = 0, **kwargs: Any) -> str: value_str = object_utils.format( self._value, compact=compact, verbose=verbose, root_indent=root_indent + 1) if compact: return f'{self.__class__.__name__}({value_str})' else: return (f'{self.__class__.__name__}(\n' + ' ' * (root_indent + 1) + f'value = {value_str}\n' + ' ' * root_indent + ')')
(value: Any, **kwargs)
41,260
pyglove.core.symbolic.ref
__getstate__
null
def __getstate__(self): raise TypeError(f'{self!r} cannot be pickled at the moment.')
(self)
41,262
pyglove.core.symbolic.ref
__init__
null
@object_utils.explicit_method_override def __init__(self, value: Any, **kwargs) -> None: super().__init__(**kwargs) if isinstance(value, Ref): value = value.value self._value = value
(self, value: Any, **kwargs) -> NoneType
41,264
pyglove.core.symbolic.ref
__new__
null
def __new__(cls, value: Any, **kwargs): del kwargs if isinstance(value, (bool, numbers.Number, str)): return value return object.__new__(cls)
(cls, value: Any, **kwargs)
41,276
pyglove.core.symbolic.ref
_on_parent_change
null
def _on_parent_change( self, old_parent: Optional[base.Symbolic], new_parent: Optional[base.Symbolic]) -> None: if (new_parent is not None and isinstance(self._value, base.Symbolic) and self._value.sym_root is new_parent.sym_root): raise NotImplementedError('Self-referential object is not supported.')
(self, old_parent: Optional[pyglove.core.symbolic.base.Symbolic], new_parent: Optional[pyglove.core.symbolic.base.Symbolic]) -> NoneType
41,282
pyglove.core.symbolic.ref
_sym_clone
null
def _sym_clone(self, deep: bool, memo: Any = None) -> 'Ref': # Always create a new object. # TODO(daiyip): support deep clone with the update of reference when # the original value is updated. return Ref(self._value, allow_partial=self.allow_partial)
(self, deep: bool, memo: Optional[Any] = None) -> pyglove.core.symbolic.ref.Ref
41,291
pyglove.core.symbolic.ref
custom_apply
Validate candidates during value_spec binding time.
def custom_apply( self, path: object_utils.KeyPath, value_spec: pg_typing.ValueSpec, allow_partial: bool = False, child_transform: Optional[Callable[ [object_utils.KeyPath, pg_typing.Field, Any], Any]] = None ) -> Tuple[bool, Any]: """Validate candidates during value_spec binding time.""" del child_transform # Check if the field being assigned could accept the referenced value. # We do not do any transformation, thus not passing the child transform. value_spec.apply( self._value, allow_partial=allow_partial) return (False, self)
(self, path: pyglove.core.object_utils.value_location.KeyPath, value_spec: pyglove.core.typing.class_schema.ValueSpec, allow_partial: bool = False, child_transform: Optional[Callable[[pyglove.core.object_utils.value_location.KeyPath, pyglove.core.typing.class_schema.Field, Any], Any]] = None) -> Tuple[bool, Any]
41,292
pyglove.core.symbolic.ref
format
null
def format( self, compact: bool = False, verbose: bool = False, root_indent: int = 0, **kwargs: Any) -> str: value_str = object_utils.format( self._value, compact=compact, verbose=verbose, root_indent=root_indent + 1) if compact: return f'{self.__class__.__name__}({value_str})' else: return (f'{self.__class__.__name__}(\n' + ' ' * (root_indent + 1) + f'value = {value_str}\n' + ' ' * root_indent + ')')
(self, compact: bool = False, verbose: bool = False, root_indent: int = 0, **kwargs: Any) -> str
41,293
pyglove.core.symbolic.ref
infer
Returns the referenced value.
def infer(self, **kwargs) -> Any: """Returns the referenced value.""" return self._value
(self, **kwargs) -> Any
41,306
pyglove.core.symbolic.ref
sym_eq
null
def sym_eq(self, other: Any) -> bool: return isinstance(other, Ref) and self.value is other.value
(self, other: Any) -> bool
41,316
pyglove.core.symbolic.ref
sym_jsonify
null
def sym_jsonify(self, **kwargs: Any) -> Any: raise TypeError(f'{self!r} cannot be serialized at the moment.')
(self, **kwargs: Any) -> Any
41,330
pyglove.core.typing.class_schema
Schema
Class that represents a schema. PyGlove's runtime type system is based on the concept of ``Schema`` ( class :class:`pyglove.Schema`), which defines what symbolic attributes are held by a symbolic type (e.g. a symbolic dict, a symbolic list or a symbolic class) and what values each attribute accepts. A ``Schema`` object consists of a list of ``Field`` (class :class:`pyglove.Field`), which define the acceptable keys and their values for these attributes. A ``Schema`` object is usually created automatically and associated with a symbolic type upon its declaration, through decorators such as :func:`pyglove.members`, :func:`pyglove.symbolize` or :func:`pyglove.functor`. For example:: @pg.members([ ('x', pg.typing.Int(default=1)), ('y', pg.typing.Float().noneable()) ]) class A(pg.Object): pass print(A.__schema__) @pg.symbolize([ ('a', pg.typing.Int()), ('b', pg.typing.Float()) ]) def foo(a, b): return a + b print(foo.__schema__) Implementation-wise it holds an ordered dictionary of a field key (:class:`pyglove.KeySpec`) to its field definition (:class:`pyglove.Field`). The key specification describes what keys/attributes are acceptable for the field, and value specification within the ``Field`` describes the value type of the field and their validation rules, default values, and etc. Symbolic attributes can be inherited during subclassing. Accordingly, the schema that defines a symbolic class' attributes can be inherited too by its subclasses. The fields from the bases' schema will be carried over into the subclasses' schema, while the subclass can override, by redefining that field with the same key. The subclass cannot override its base classes' field with arbitrary value specs, it must be overriding non-frozen fields with more restrictive validation rules of the same type, or change their default values. See :meth:`pyglove.ValueSpec.extend` for more details. The code snippet below illustrates schema inheritance during subclassing:: @pg.members([ ('x', pg.typing.Int(min_value=1)), ('y', pg.typing.Float()), ]) class A(pg.Object): pass @pg.members([ # Further restrict inherited 'x' by specifying the max value, as well # as providing a default value. ('x', pg.typing.Int(max_value=5, default=2)), ('z', pg.typing.Str('foo').freeze()) ]) class B(A): pass assert B.schema.fields.keys() == ['x', 'y', 'z'] @pg.members([ # Raises: 'z' is frozen in class B and cannot be extended further. ('z', pg.typing.Str()) ]) class C(B): pass With a schema, an input dict can be validated and completed by the schema via :meth:`apply`. If required a field is missing from the schema, and the object's `allow_partial` is set to False, a ``KeyError`` will raise. Otherwise a partially validated/transformed dict will be returned. Missing values in the object will be placeheld by :const:`pyglove.MISSING_VALUE`.
class Schema(object_utils.Formattable, object_utils.JSONConvertible): """Class that represents a schema. PyGlove's runtime type system is based on the concept of ``Schema`` ( class :class:`pyglove.Schema`), which defines what symbolic attributes are held by a symbolic type (e.g. a symbolic dict, a symbolic list or a symbolic class) and what values each attribute accepts. A ``Schema`` object consists of a list of ``Field`` (class :class:`pyglove.Field`), which define the acceptable keys and their values for these attributes. A ``Schema`` object is usually created automatically and associated with a symbolic type upon its declaration, through decorators such as :func:`pyglove.members`, :func:`pyglove.symbolize` or :func:`pyglove.functor`. For example:: @pg.members([ ('x', pg.typing.Int(default=1)), ('y', pg.typing.Float().noneable()) ]) class A(pg.Object): pass print(A.__schema__) @pg.symbolize([ ('a', pg.typing.Int()), ('b', pg.typing.Float()) ]) def foo(a, b): return a + b print(foo.__schema__) Implementation-wise it holds an ordered dictionary of a field key (:class:`pyglove.KeySpec`) to its field definition (:class:`pyglove.Field`). The key specification describes what keys/attributes are acceptable for the field, and value specification within the ``Field`` describes the value type of the field and their validation rules, default values, and etc. Symbolic attributes can be inherited during subclassing. Accordingly, the schema that defines a symbolic class' attributes can be inherited too by its subclasses. The fields from the bases' schema will be carried over into the subclasses' schema, while the subclass can override, by redefining that field with the same key. The subclass cannot override its base classes' field with arbitrary value specs, it must be overriding non-frozen fields with more restrictive validation rules of the same type, or change their default values. See :meth:`pyglove.ValueSpec.extend` for more details. The code snippet below illustrates schema inheritance during subclassing:: @pg.members([ ('x', pg.typing.Int(min_value=1)), ('y', pg.typing.Float()), ]) class A(pg.Object): pass @pg.members([ # Further restrict inherited 'x' by specifying the max value, as well # as providing a default value. ('x', pg.typing.Int(max_value=5, default=2)), ('z', pg.typing.Str('foo').freeze()) ]) class B(A): pass assert B.schema.fields.keys() == ['x', 'y', 'z'] @pg.members([ # Raises: 'z' is frozen in class B and cannot be extended further. ('z', pg.typing.Str()) ]) class C(B): pass With a schema, an input dict can be validated and completed by the schema via :meth:`apply`. If required a field is missing from the schema, and the object's `allow_partial` is set to False, a ``KeyError`` will raise. Otherwise a partially validated/transformed dict will be returned. Missing values in the object will be placeheld by :const:`pyglove.MISSING_VALUE`. """ __serialization_key__ = 'pyglove.typing.Schema' def __init__( self, fields: List[Field], name: Optional[str] = None, base_schema_list: Optional[List['Schema']] = None, description: Optional[str] = None, *, allow_nonconst_keys: bool = False, metadata: Optional[Dict[str, Any]] = None): """Constructor. Args: fields: A list of Field as the definition of the schema. The order of the fields will be preserved. name: Optional name of this schema. Useful for debugging. base_schema_list: List of schema used as base. When present, fields from these schema will be copied to this schema. Fields from the latter schema will override those from the former ones. description: Optional str as the description for the schema. allow_nonconst_keys: Whether immediate fields can use non-const keys. metadata: Optional dict of user objects as schema-level metadata. Raises: TypeError: Argument `fields` is not a list. KeyError: If a field name contains characters ('.') which is not allowed, or a field name from `fields` already exists in parent schema. ValueError: When failed to create ValueSpec from `fields`. It could be an unsupported value type, default value doesn't conform with value specification, etc. """ if not isinstance(fields, list): raise TypeError( f"Argument 'fields' must be a list. Encountered: {fields}." ) self._name = name self._allow_nonconst_keys = allow_nonconst_keys self._fields = {f.key: f for f in fields} self._description = description self._metadata = metadata or {} self._dynamic_field = None for f in fields: if not f.key.is_const: self._dynamic_field = f break if base_schema_list: # Extend base schema from the nearest ancestor to the farthest. for base in reversed(base_schema_list): self.extend(base) if not allow_nonconst_keys and self._dynamic_field is not None: raise ValueError( f'NonConstKey is not allowed in schema. ' f'Encountered \'{self._dynamic_field.key}\'.') def extend(self, base: 'Schema') -> 'Schema': """Extend current schema based on a base schema.""" def _merge_field( path, parent_field: Field, child_field: Field) -> Field: """Merge function on field with the same key.""" if parent_field != object_utils.MISSING_VALUE: if object_utils.MISSING_VALUE == child_field: if (not self._allow_nonconst_keys and not parent_field.key.is_const): hints = object_utils.kvlist_str([ ('base', object_utils.quote_if_str(base.name), None), ('path', path, None) ]) raise ValueError( f'Non-const key {parent_field.key} is not allowed to be ' f'added to the schema. ({hints})') return copy.deepcopy(parent_field) else: try: child_field.extend(parent_field) except Exception as e: # pylint: disable=broad-except hints = object_utils.kvlist_str([ ('base', object_utils.quote_if_str(base.name), None), ('path', path, None) ]) raise e.__class__(f'{e} ({hints})').with_traceback( sys.exc_info()[2]) return child_field self._fields = object_utils.merge([base.fields, self.fields], _merge_field) self._metadata = object_utils.merge([base.metadata, self.metadata]) # Inherit dynamic field from base if it's not present in the child. if self._dynamic_field is None: for k, f in self._fields.items(): if not k.is_const: self._dynamic_field = f break return self def is_compatible(self, other: 'Schema') -> bool: """Returns whether current schema is compatible with the other schema. NOTE(daiyip): schema A is compatible with schema B when: schema A and schema B have the same keys, with compatible values specs. Args: other: Other schema. Returns: True if values that is acceptable to the other schema is acceptable to current schema. Raises: TypeError: If `other` is not a schema object. """ if not isinstance(other, Schema): raise TypeError(f'Argument \'other\' should be a Schema object. ' f'Encountered {other}.') for key_spec in other.keys(): if key_spec not in self: return False for key_spec, field in self.items(): if key_spec not in other: return False if not field.value.is_compatible(other[key_spec].value): return False return True def get_field(self, key: str) -> Optional[Field]: """Get field definition (Field) for a key. Args: key: string as input key. Returns: Matched field. A field is considered a match when: * Its key spec is a ConstStrKey that equals to the input key. * Or it's the first field whose key spec is a NonConstKey which matches the input key. """ # For const string key, we can directly retrieve from fields dict. if key in self._fields: return self._fields[key] if self._allow_nonconst_keys: for key_spec, field in self._fields.items(): if key_spec.match(key): return field return None @property def description(self) -> Optional[str]: """Returns the description for the schema.""" return self._description def set_description(self, description: str) -> None: """Sets the description for the schema.""" self._description = description @property def dynamic_field(self) -> Optional[Field]: """Returns the field that matches multiple keys if any.""" return self._dynamic_field def resolve( self, keys: Iterable[str] ) -> Tuple[Dict[KeySpec, List[str]], List[str]]: """Resolve keys by grouping them by their matched fields. Args: keys: A list of string keys. Returns: A tuple of matched key results and unmatched keys. Matched key results are an ordered dict of KeySpec to matched keys, in field declaration order. Unmatched keys are strings from input. """ keys = list(keys) input_keyset = set(keys) nonconst_key_specs = [k for k in self._fields.keys() if not k.is_const] nonconst_keys = {k: [] for k in nonconst_key_specs} unmatched_keys = [] keys_by_key_spec = dict() for key in keys: if key not in self._fields: matched_nonconst_keys = False for key_spec in nonconst_key_specs: if key_spec.match(key): nonconst_keys[key_spec].append(key) matched_nonconst_keys = True break if not matched_nonconst_keys: unmatched_keys.append(key) for key_spec in self._fields.keys(): keys = [] if not key_spec.is_const: keys = nonconst_keys.get(key_spec, []) elif key_spec in input_keyset: keys.append(str(key_spec)) keys_by_key_spec[key_spec] = keys return (keys_by_key_spec, unmatched_keys) def apply( self, dict_obj: Dict[str, Any], allow_partial: bool = False, child_transform: Optional[Callable[ [object_utils.KeyPath, Field, Any], Any]] = None, root_path: Optional[object_utils.KeyPath] = None, ) -> Dict[str, Any]: # pyformat: disable # pyformat: disable """Apply this schema to a dict object, validate and transform it. Args: dict_obj: JSON dict type that (maybe) conform to the schema. allow_partial: Whether allow partial object to be created. child_transform: Function to transform child node values in dict_obj into their final values. Transform function is called on leaf nodes first, then on their containers, recursively. The signature of transform_fn is: `(path, field, value) -> new_value` Argument `path` is a KeyPath object to the field. Argument `field` is on which Field the value should apply. Argument `value` is the value from input that matches a Field from the schema, with child fields already transformed by this function. There are possible values for these two arguments:: ------------------------------------------------------------ | field | value ------------------------------------------------------------ The value with | | applicable Field is | Not None | Not MISSING_VALUE found in schema. | | value. | | ------------------------------------------------------------ The value is | | not present for a | Not None | MISSING_VALUE key defined in schema. | | ------------------------------------------------------------ Return value will be inserted to the parent dict under path, unless return value is MISSING_VALUE. root_path: KeyPath of root element of dict_obj. Returns: A dict filled by the schema with transformed values. Raises: KeyError: Key is not allowed in schema. TypeError: Type of dict values are not aligned with schema. ValueError: Value of dict values are not aligned with schema. """ # pyformat: enable matched_keys, unmatched_keys = self.resolve(dict_obj.keys()) if unmatched_keys: raise KeyError( f'Keys {unmatched_keys} are not allowed in Schema. ' f'(parent=\'{root_path}\')') for key_spec, keys in matched_keys.items(): field = self._fields[key_spec] # For missing const keys, we add to keys collection to add missing value. if key_spec.is_const and key_spec not in keys: keys.append(str(key_spec)) for key in keys: if dict_obj: value = dict_obj.get(key, object_utils.MISSING_VALUE) else: value = object_utils.MISSING_VALUE # NOTE(daiyip): field.default_value may be MISSING_VALUE too # or partial. if object_utils.MISSING_VALUE == value: value = copy.deepcopy(field.default_value) new_value = field.apply( value, allow_partial=allow_partial, transform_fn=child_transform, root_path=object_utils.KeyPath(key, root_path)) # NOTE(daiyip): `pg.Dict.__getitem__`` has special logics in handling # `pg.Contextual`` values. Therefore, we user `dict.__getitem__()`` to # avoid triggering side effect. if (key not in dict_obj or dict.__getitem__(dict_obj, key) is not new_value): # NOTE(daiyip): minimize call to __setitem__ when possible. # Custom like symbolic dict may trigger additional logic # when __setitem__ is called. dict_obj[key] = new_value return dict_obj def validate(self, dict_obj: Dict[str, Any], allow_partial: bool = False, root_path: Optional[object_utils.KeyPath] = None) -> None: """Validates whether dict object is conformed with the schema.""" self.apply( copy.deepcopy(dict_obj), allow_partial=allow_partial, root_path=root_path) @property def name(self) -> Optional[str]: """Name of this schema.""" return self._name def set_name(self, name: str) -> None: """Sets the name of this schema.""" self._name = name @property def allow_nonconst_keys(self) -> bool: """Returns whether to allow non-const keys.""" return self._allow_nonconst_keys @property def fields(self) -> Dict[KeySpec, Field]: """Returns fields of this schema.""" return self._fields def __getitem__(self, key: Union[str, KeySpec]) -> Field: """Returns field by key.""" return self._fields[key] def __contains__(self, key: Union[str, KeySpec]) -> bool: """Returns if a key or key spec exists in the schema.""" return key in self._fields def get(self, key: Union[str, KeySpec], default: Optional[Field] = None ) -> Optional[Field]: """Returns field by key with default value if not found.""" return self._fields.get(key, default) def keys(self) -> Iterable[KeySpec]: """Return an iteratable of KeySpecs in declaration order.""" return self._fields.keys() def values(self) -> Iterable[Field]: """Returns an iterable of Field in declaration order.""" return self._fields.values() def items(self) -> Iterable[Tuple[KeySpec, Field]]: """Returns an iterable of (KeySpec, Field) tuple in declaration order.""" return self._fields.items() @property def metadata(self) -> Dict[str, Any]: """Returns metadata of this schema.""" return self._metadata def format( self, compact: bool = False, verbose: bool = True, root_indent: int = 0, cls_name: Optional[str] = None, bracket_type: object_utils.BracketType = object_utils.BracketType.ROUND, **kwargs) -> str: """Format current Schema into nicely printed string.""" if cls_name is None: cls_name = 'Schema' def _indent(text, indent): return ' ' * 2 * indent + text def _format_child(child): return child.format( compact=compact, verbose=verbose, root_indent=root_indent + 1, **kwargs) open_bracket, close_bracket = object_utils.bracket_chars(bracket_type) if compact: s = [f'{cls_name}{open_bracket}'] s.append(', '.join([ f'{f.key}={_format_child(f.value)}' for f in self.fields.values() ])) s.append(close_bracket) else: s = [f'{cls_name}{open_bracket}\n'] last_field_show_description = False for i, f in enumerate(self.fields.values()): this_field_show_description = verbose and f.description if i != 0: s.append(',\n') if last_field_show_description or this_field_show_description: s.append('\n') if this_field_show_description: s.append(_indent(f'# {f.description}\n', root_indent + 1)) last_field_show_description = this_field_show_description s.append( _indent(f'{f.key} = {_format_child(f.value)}', root_indent + 1)) s.append('\n') s.append(_indent(close_bracket, root_indent)) return ''.join(s) def to_json(self, **kwargs) -> Dict[str, Any]: return self.to_json_dict( fields=dict( fields=(list(self._fields.values()), []), name=(self._name, None), description=(self._description, None), allow_nonconst_keys=(self._allow_nonconst_keys, False), metadata=(self._metadata, {}), ), exclude_default=True, **kwargs, ) def __eq__(self, other: Any) -> bool: if self is other: return True return isinstance(other, Schema) and self._fields == other._fields def __ne__(self, other: Any) -> bool: return not self.__eq__(other)
(fields: List[pyglove.core.typing.class_schema.Field], name: Optional[str] = None, base_schema_list: Optional[List[ForwardRef('Schema')]] = None, description: Optional[str] = None, *, allow_nonconst_keys: bool = False, metadata: Optional[Dict[str, Any]] = None)
41,332
pyglove.core.typing.class_schema
__contains__
Returns if a key or key spec exists in the schema.
def __contains__(self, key: Union[str, KeySpec]) -> bool: """Returns if a key or key spec exists in the schema.""" return key in self._fields
(self, key: Union[str, pyglove.core.typing.class_schema.KeySpec]) -> bool
41,333
pyglove.core.typing.class_schema
__eq__
null
def __eq__(self, other: Any) -> bool: if self is other: return True return isinstance(other, Schema) and self._fields == other._fields
(self, other: Any) -> bool
41,334
pyglove.core.typing.class_schema
__getitem__
Returns field by key.
def __getitem__(self, key: Union[str, KeySpec]) -> Field: """Returns field by key.""" return self._fields[key]
(self, key: Union[str, pyglove.core.typing.class_schema.KeySpec]) -> pyglove.core.typing.class_schema.Field
41,335
pyglove.core.typing.class_schema
__init__
Constructor. Args: fields: A list of Field as the definition of the schema. The order of the fields will be preserved. name: Optional name of this schema. Useful for debugging. base_schema_list: List of schema used as base. When present, fields from these schema will be copied to this schema. Fields from the latter schema will override those from the former ones. description: Optional str as the description for the schema. allow_nonconst_keys: Whether immediate fields can use non-const keys. metadata: Optional dict of user objects as schema-level metadata. Raises: TypeError: Argument `fields` is not a list. KeyError: If a field name contains characters ('.') which is not allowed, or a field name from `fields` already exists in parent schema. ValueError: When failed to create ValueSpec from `fields`. It could be an unsupported value type, default value doesn't conform with value specification, etc.
def __init__( self, fields: List[Field], name: Optional[str] = None, base_schema_list: Optional[List['Schema']] = None, description: Optional[str] = None, *, allow_nonconst_keys: bool = False, metadata: Optional[Dict[str, Any]] = None): """Constructor. Args: fields: A list of Field as the definition of the schema. The order of the fields will be preserved. name: Optional name of this schema. Useful for debugging. base_schema_list: List of schema used as base. When present, fields from these schema will be copied to this schema. Fields from the latter schema will override those from the former ones. description: Optional str as the description for the schema. allow_nonconst_keys: Whether immediate fields can use non-const keys. metadata: Optional dict of user objects as schema-level metadata. Raises: TypeError: Argument `fields` is not a list. KeyError: If a field name contains characters ('.') which is not allowed, or a field name from `fields` already exists in parent schema. ValueError: When failed to create ValueSpec from `fields`. It could be an unsupported value type, default value doesn't conform with value specification, etc. """ if not isinstance(fields, list): raise TypeError( f"Argument 'fields' must be a list. Encountered: {fields}." ) self._name = name self._allow_nonconst_keys = allow_nonconst_keys self._fields = {f.key: f for f in fields} self._description = description self._metadata = metadata or {} self._dynamic_field = None for f in fields: if not f.key.is_const: self._dynamic_field = f break if base_schema_list: # Extend base schema from the nearest ancestor to the farthest. for base in reversed(base_schema_list): self.extend(base) if not allow_nonconst_keys and self._dynamic_field is not None: raise ValueError( f'NonConstKey is not allowed in schema. ' f'Encountered \'{self._dynamic_field.key}\'.')
(self, fields: List[pyglove.core.typing.class_schema.Field], name: Optional[str] = None, base_schema_list: Optional[List[pyglove.core.typing.class_schema.Schema]] = None, description: Optional[str] = None, *, allow_nonconst_keys: bool = False, metadata: Optional[Dict[str, Any]] = None)
41,340
pyglove.core.typing.class_schema
apply
Apply this schema to a dict object, validate and transform it. Args: dict_obj: JSON dict type that (maybe) conform to the schema. allow_partial: Whether allow partial object to be created. child_transform: Function to transform child node values in dict_obj into their final values. Transform function is called on leaf nodes first, then on their containers, recursively. The signature of transform_fn is: `(path, field, value) -> new_value` Argument `path` is a KeyPath object to the field. Argument `field` is on which Field the value should apply. Argument `value` is the value from input that matches a Field from the schema, with child fields already transformed by this function. There are possible values for these two arguments:: ------------------------------------------------------------ | field | value ------------------------------------------------------------ The value with | | applicable Field is | Not None | Not MISSING_VALUE found in schema. | | value. | | ------------------------------------------------------------ The value is | | not present for a | Not None | MISSING_VALUE key defined in schema. | | ------------------------------------------------------------ Return value will be inserted to the parent dict under path, unless return value is MISSING_VALUE. root_path: KeyPath of root element of dict_obj. Returns: A dict filled by the schema with transformed values. Raises: KeyError: Key is not allowed in schema. TypeError: Type of dict values are not aligned with schema. ValueError: Value of dict values are not aligned with schema.
def apply( self, dict_obj: Dict[str, Any], allow_partial: bool = False, child_transform: Optional[Callable[ [object_utils.KeyPath, Field, Any], Any]] = None, root_path: Optional[object_utils.KeyPath] = None, ) -> Dict[str, Any]: # pyformat: disable # pyformat: disable """Apply this schema to a dict object, validate and transform it. Args: dict_obj: JSON dict type that (maybe) conform to the schema. allow_partial: Whether allow partial object to be created. child_transform: Function to transform child node values in dict_obj into their final values. Transform function is called on leaf nodes first, then on their containers, recursively. The signature of transform_fn is: `(path, field, value) -> new_value` Argument `path` is a KeyPath object to the field. Argument `field` is on which Field the value should apply. Argument `value` is the value from input that matches a Field from the schema, with child fields already transformed by this function. There are possible values for these two arguments:: ------------------------------------------------------------ | field | value ------------------------------------------------------------ The value with | | applicable Field is | Not None | Not MISSING_VALUE found in schema. | | value. | | ------------------------------------------------------------ The value is | | not present for a | Not None | MISSING_VALUE key defined in schema. | | ------------------------------------------------------------ Return value will be inserted to the parent dict under path, unless return value is MISSING_VALUE. root_path: KeyPath of root element of dict_obj. Returns: A dict filled by the schema with transformed values. Raises: KeyError: Key is not allowed in schema. TypeError: Type of dict values are not aligned with schema. ValueError: Value of dict values are not aligned with schema. """ # pyformat: enable matched_keys, unmatched_keys = self.resolve(dict_obj.keys()) if unmatched_keys: raise KeyError( f'Keys {unmatched_keys} are not allowed in Schema. ' f'(parent=\'{root_path}\')') for key_spec, keys in matched_keys.items(): field = self._fields[key_spec] # For missing const keys, we add to keys collection to add missing value. if key_spec.is_const and key_spec not in keys: keys.append(str(key_spec)) for key in keys: if dict_obj: value = dict_obj.get(key, object_utils.MISSING_VALUE) else: value = object_utils.MISSING_VALUE # NOTE(daiyip): field.default_value may be MISSING_VALUE too # or partial. if object_utils.MISSING_VALUE == value: value = copy.deepcopy(field.default_value) new_value = field.apply( value, allow_partial=allow_partial, transform_fn=child_transform, root_path=object_utils.KeyPath(key, root_path)) # NOTE(daiyip): `pg.Dict.__getitem__`` has special logics in handling # `pg.Contextual`` values. Therefore, we user `dict.__getitem__()`` to # avoid triggering side effect. if (key not in dict_obj or dict.__getitem__(dict_obj, key) is not new_value): # NOTE(daiyip): minimize call to __setitem__ when possible. # Custom like symbolic dict may trigger additional logic # when __setitem__ is called. dict_obj[key] = new_value return dict_obj
(self, dict_obj: Dict[str, Any], allow_partial: bool = False, child_transform: Optional[Callable[[pyglove.core.object_utils.value_location.KeyPath, pyglove.core.typing.class_schema.Field, Any], Any]] = None, root_path: Optional[pyglove.core.object_utils.value_location.KeyPath] = None) -> Dict[str, Any]
41,341
pyglove.core.typing.class_schema
extend
Extend current schema based on a base schema.
def extend(self, base: 'Schema') -> 'Schema': """Extend current schema based on a base schema.""" def _merge_field( path, parent_field: Field, child_field: Field) -> Field: """Merge function on field with the same key.""" if parent_field != object_utils.MISSING_VALUE: if object_utils.MISSING_VALUE == child_field: if (not self._allow_nonconst_keys and not parent_field.key.is_const): hints = object_utils.kvlist_str([ ('base', object_utils.quote_if_str(base.name), None), ('path', path, None) ]) raise ValueError( f'Non-const key {parent_field.key} is not allowed to be ' f'added to the schema. ({hints})') return copy.deepcopy(parent_field) else: try: child_field.extend(parent_field) except Exception as e: # pylint: disable=broad-except hints = object_utils.kvlist_str([ ('base', object_utils.quote_if_str(base.name), None), ('path', path, None) ]) raise e.__class__(f'{e} ({hints})').with_traceback( sys.exc_info()[2]) return child_field self._fields = object_utils.merge([base.fields, self.fields], _merge_field) self._metadata = object_utils.merge([base.metadata, self.metadata]) # Inherit dynamic field from base if it's not present in the child. if self._dynamic_field is None: for k, f in self._fields.items(): if not k.is_const: self._dynamic_field = f break return self
(self, base: pyglove.core.typing.class_schema.Schema) -> pyglove.core.typing.class_schema.Schema
41,342
pyglove.core.typing.class_schema
format
Format current Schema into nicely printed string.
def format( self, compact: bool = False, verbose: bool = True, root_indent: int = 0, cls_name: Optional[str] = None, bracket_type: object_utils.BracketType = object_utils.BracketType.ROUND, **kwargs) -> str: """Format current Schema into nicely printed string.""" if cls_name is None: cls_name = 'Schema' def _indent(text, indent): return ' ' * 2 * indent + text def _format_child(child): return child.format( compact=compact, verbose=verbose, root_indent=root_indent + 1, **kwargs) open_bracket, close_bracket = object_utils.bracket_chars(bracket_type) if compact: s = [f'{cls_name}{open_bracket}'] s.append(', '.join([ f'{f.key}={_format_child(f.value)}' for f in self.fields.values() ])) s.append(close_bracket) else: s = [f'{cls_name}{open_bracket}\n'] last_field_show_description = False for i, f in enumerate(self.fields.values()): this_field_show_description = verbose and f.description if i != 0: s.append(',\n') if last_field_show_description or this_field_show_description: s.append('\n') if this_field_show_description: s.append(_indent(f'# {f.description}\n', root_indent + 1)) last_field_show_description = this_field_show_description s.append( _indent(f'{f.key} = {_format_child(f.value)}', root_indent + 1)) s.append('\n') s.append(_indent(close_bracket, root_indent)) return ''.join(s)
(self, compact: bool = False, verbose: bool = True, root_indent: int = 0, cls_name: Optional[str] = None, bracket_type: pyglove.core.object_utils.formatting.BracketType = <BracketType.ROUND: 0>, **kwargs) -> str
41,343
pyglove.core.typing.class_schema
get
Returns field by key with default value if not found.
def get(self, key: Union[str, KeySpec], default: Optional[Field] = None ) -> Optional[Field]: """Returns field by key with default value if not found.""" return self._fields.get(key, default)
(self, key: Union[str, pyglove.core.typing.class_schema.KeySpec], default: Optional[pyglove.core.typing.class_schema.Field] = None) -> Optional[pyglove.core.typing.class_schema.Field]
41,344
pyglove.core.typing.class_schema
get_field
Get field definition (Field) for a key. Args: key: string as input key. Returns: Matched field. A field is considered a match when: * Its key spec is a ConstStrKey that equals to the input key. * Or it's the first field whose key spec is a NonConstKey which matches the input key.
def get_field(self, key: str) -> Optional[Field]: """Get field definition (Field) for a key. Args: key: string as input key. Returns: Matched field. A field is considered a match when: * Its key spec is a ConstStrKey that equals to the input key. * Or it's the first field whose key spec is a NonConstKey which matches the input key. """ # For const string key, we can directly retrieve from fields dict. if key in self._fields: return self._fields[key] if self._allow_nonconst_keys: for key_spec, field in self._fields.items(): if key_spec.match(key): return field return None
(self, key: str) -> Optional[pyglove.core.typing.class_schema.Field]
41,345
pyglove.core.typing.class_schema
is_compatible
Returns whether current schema is compatible with the other schema. NOTE(daiyip): schema A is compatible with schema B when: schema A and schema B have the same keys, with compatible values specs. Args: other: Other schema. Returns: True if values that is acceptable to the other schema is acceptable to current schema. Raises: TypeError: If `other` is not a schema object.
def is_compatible(self, other: 'Schema') -> bool: """Returns whether current schema is compatible with the other schema. NOTE(daiyip): schema A is compatible with schema B when: schema A and schema B have the same keys, with compatible values specs. Args: other: Other schema. Returns: True if values that is acceptable to the other schema is acceptable to current schema. Raises: TypeError: If `other` is not a schema object. """ if not isinstance(other, Schema): raise TypeError(f'Argument \'other\' should be a Schema object. ' f'Encountered {other}.') for key_spec in other.keys(): if key_spec not in self: return False for key_spec, field in self.items(): if key_spec not in other: return False if not field.value.is_compatible(other[key_spec].value): return False return True
(self, other: pyglove.core.typing.class_schema.Schema) -> bool
41,346
pyglove.core.typing.class_schema
items
Returns an iterable of (KeySpec, Field) tuple in declaration order.
def items(self) -> Iterable[Tuple[KeySpec, Field]]: """Returns an iterable of (KeySpec, Field) tuple in declaration order.""" return self._fields.items()
(self) -> Iterable[Tuple[pyglove.core.typing.class_schema.KeySpec, pyglove.core.typing.class_schema.Field]]
41,347
pyglove.core.typing.class_schema
keys
Return an iteratable of KeySpecs in declaration order.
def keys(self) -> Iterable[KeySpec]: """Return an iteratable of KeySpecs in declaration order.""" return self._fields.keys()
(self) -> Iterable[pyglove.core.typing.class_schema.KeySpec]
41,348
pyglove.core.typing.class_schema
resolve
Resolve keys by grouping them by their matched fields. Args: keys: A list of string keys. Returns: A tuple of matched key results and unmatched keys. Matched key results are an ordered dict of KeySpec to matched keys, in field declaration order. Unmatched keys are strings from input.
def resolve( self, keys: Iterable[str] ) -> Tuple[Dict[KeySpec, List[str]], List[str]]: """Resolve keys by grouping them by their matched fields. Args: keys: A list of string keys. Returns: A tuple of matched key results and unmatched keys. Matched key results are an ordered dict of KeySpec to matched keys, in field declaration order. Unmatched keys are strings from input. """ keys = list(keys) input_keyset = set(keys) nonconst_key_specs = [k for k in self._fields.keys() if not k.is_const] nonconst_keys = {k: [] for k in nonconst_key_specs} unmatched_keys = [] keys_by_key_spec = dict() for key in keys: if key not in self._fields: matched_nonconst_keys = False for key_spec in nonconst_key_specs: if key_spec.match(key): nonconst_keys[key_spec].append(key) matched_nonconst_keys = True break if not matched_nonconst_keys: unmatched_keys.append(key) for key_spec in self._fields.keys(): keys = [] if not key_spec.is_const: keys = nonconst_keys.get(key_spec, []) elif key_spec in input_keyset: keys.append(str(key_spec)) keys_by_key_spec[key_spec] = keys return (keys_by_key_spec, unmatched_keys)
(self, keys: Iterable[str]) -> Tuple[Dict[pyglove.core.typing.class_schema.KeySpec, List[str]], List[str]]
41,349
pyglove.core.typing.class_schema
set_description
Sets the description for the schema.
def set_description(self, description: str) -> None: """Sets the description for the schema.""" self._description = description
(self, description: str) -> NoneType
41,350
pyglove.core.typing.class_schema
set_name
Sets the name of this schema.
def set_name(self, name: str) -> None: """Sets the name of this schema.""" self._name = name
(self, name: str) -> NoneType
41,351
pyglove.core.typing.class_schema
to_json
null
def to_json(self, **kwargs) -> Dict[str, Any]: return self.to_json_dict( fields=dict( fields=(list(self._fields.values()), []), name=(self._name, None), description=(self._description, None), allow_nonconst_keys=(self._allow_nonconst_keys, False), metadata=(self._metadata, {}), ), exclude_default=True, **kwargs, )
(self, **kwargs) -> Dict[str, Any]
41,352
pyglove.core.typing.class_schema
validate
Validates whether dict object is conformed with the schema.
def validate(self, dict_obj: Dict[str, Any], allow_partial: bool = False, root_path: Optional[object_utils.KeyPath] = None) -> None: """Validates whether dict object is conformed with the schema.""" self.apply( copy.deepcopy(dict_obj), allow_partial=allow_partial, root_path=root_path)
(self, dict_obj: Dict[str, Any], allow_partial: bool = False, root_path: Optional[pyglove.core.object_utils.value_location.KeyPath] = None) -> NoneType
41,353
pyglove.core.typing.class_schema
values
Returns an iterable of Field in declaration order.
def values(self) -> Iterable[Field]: """Returns an iterable of Field in declaration order.""" return self._fields.values()
(self) -> Iterable[pyglove.core.typing.class_schema.Field]
41,354
pyglove.core.symbolic.base
Symbolic
Base for all symbolic types. Symbolic types are types that provide interfaces for symbolic programming, based on which symbolic objects can be created. In PyGlove, there are three categories of symbolic types: * Symbolic classes: Defined by :class:`pyglove.Object` subclasses, including symbolic classes created from :func:`pyglove.symbolize`, which inherit :class:`pyglove.ClassWrapper`, a subclass of ``pg.Object``. * Symbolic functions: Defined by :class:`pyglove.Functor`. * Symbolic container types: Defined by :class:`pyglove.List` and :class:`pyglove.Dict`.
class Symbolic( TopologyAware, object_utils.JSONConvertible, object_utils.MaybePartial, object_utils.Formattable, ): """Base for all symbolic types. Symbolic types are types that provide interfaces for symbolic programming, based on which symbolic objects can be created. In PyGlove, there are three categories of symbolic types: * Symbolic classes: Defined by :class:`pyglove.Object` subclasses, including symbolic classes created from :func:`pyglove.symbolize`, which inherit :class:`pyglove.ClassWrapper`, a subclass of ``pg.Object``. * Symbolic functions: Defined by :class:`pyglove.Functor`. * Symbolic container types: Defined by :class:`pyglove.List` and :class:`pyglove.Dict`. """ # Do not include comments in str output. __str_format_kwargs__ = dict(compact=False, verbose=False) # Symbolic sub-types that will be set when they are defined. # pylint: disable=invalid-name DictType = None ListType = None ObjectType = None # pylint: enable=invalid-name def __init__(self, *, allow_partial: bool, accessor_writable: bool, sealed: bool, root_path: Optional[object_utils.KeyPath], init_super: bool = True): """Constructor. Args: allow_partial: Whether to allow required fields to be MISSING_VALUE or partial. accessor_writable: Whether to allow write access via attributes. This flag is useful when we want to enforce update of fields using `rebind` method, which leads to better trackability and batched field update notification. sealed: Whether object is sealed that cannot be changed. This flag is useful when we don't want downstream to modify the object. root_path: KeyPath of current object in its context (object tree). init_super: If True, call super.__init__, otherwise short-circuit. This flag is useful when user want to explicitly implement `__init__` for multi-inheritance, which is needed to pass different arguments to different bases. Please see `symbolic_test.py#testMultiInheritance` for more details. """ # NOTE(daiyip): we uses `self._set_raw_attr` here to avoid overridden # `__setattr__` from subclasses change the behavior unintentionally. self._set_raw_attr('_allow_partial', allow_partial) self._set_raw_attr('_accessor_writable', accessor_writable) self._set_raw_attr('_sealed', sealed) # NOTE(daiyip): parent is used for rebind call to notify their ancestors # for updates, not for external usage. self._set_raw_attr('_sym_parent', None) self._set_raw_attr('_sym_path', root_path or object_utils.KeyPath()) self._set_raw_attr('_sym_puresymbolic', None) self._set_raw_attr('_sym_missing_values', None) self._set_raw_attr('_sym_nondefault_values', None) origin = Origin(None, '__init__') if flags.is_tracking_origin() else None self._set_raw_attr('_sym_origin', origin) # super.__init__ may enter into next base class's __init__ when # multi-inheritance is used. Since we have override `__setattr__` for # symbolic.Object, which depends on `_accessor_writable` and so on, # we want to call make `__setattr__` ready to call before entering # other base's `__init__`. if init_super: super().__init__() else: object.__init__(self) def _init_kwargs(self) -> Dict[str, Any]: kwargs = {} def add_if_nondefault(key, attrname, default): v = getattr(self, attrname) if v != default: kwargs[key] = v add_if_nondefault('allow_partial', '_allow_partial', False) add_if_nondefault('sealed', '_sealed', False) return kwargs # # Formal contract for symbolic operations. # # NOTE(daiyip): Since methods such as `__getattr__`, `keys` can be overriden # by subclasses of `pg.Object`, we introduces a set of methods in signature # `sym_<xxx>` as the contract to symbolically operate on a symbolic # value, which are less likely to clash with other names. These methods will # be used insided PyGlove library. Users can either use these methods or their # convenient version at their preferences. # @property def sym_partial(self) -> bool: """Returns True if current value is partial.""" return bool(self.sym_missing(flatten=False)) @property def sym_puresymbolic(self) -> bool: """Returns True if current value is or contains subnodes of PureSymbolic.""" pure_symbolic = getattr(self, '_sym_puresymbolic') if pure_symbolic is None: pure_symbolic = isinstance(self, PureSymbolic) if not pure_symbolic: for v in self.sym_values(): if is_pure_symbolic(v): pure_symbolic = True break self._set_raw_attr('_sym_puresymbolic', pure_symbolic) return pure_symbolic @property def sym_abstract(self) -> bool: """Returns True if current value is abstract (partial or pure symbolic).""" return self.sym_partial or self.sym_puresymbolic @property def sym_sealed(self) -> bool: """Returns True if current object is sealed.""" return getattr(self, '_sealed') def sym_seal(self, is_seal: bool = True) -> 'Symbolic': """Seals or unseals current object from further modification.""" return self._set_raw_attr('_sealed', is_seal) def sym_missing(self, flatten: bool = True) -> Dict[str, Any]: """Returns missing values.""" missing = getattr(self, '_sym_missing_values') if missing is None: missing = self._sym_missing() self._set_raw_attr('_sym_missing_values', missing) if flatten: missing = object_utils.flatten(missing) return missing def sym_nondefault(self, flatten: bool = True) -> Dict[Union[int, str], Any]: """Returns missing values.""" nondefault = getattr(self, '_sym_nondefault_values') if nondefault is None: nondefault = self._sym_nondefault() self._set_raw_attr('_sym_nondefault_values', nondefault) if flatten: nondefault = object_utils.flatten(nondefault) return nondefault @property def sym_field(self) -> Optional[pg_typing.Field]: """Returns the symbolic field for current object.""" if self.sym_parent is None: return None return self.sym_parent.sym_attr_field(self.sym_path.key) @property def sym_root(self) -> 'Symbolic': """Returns the root of the symbolic tree.""" root = self while root.sym_parent is not None: root = root.sym_parent return root def sym_ancestor( self, where: Optional[Callable[[Any], bool]] = None, ) -> Optional['Symbolic']: """Returns the nearest ancestor of specific classes.""" ancestor = self.sym_parent where = where or (lambda x: True) while ancestor is not None and not where(ancestor): ancestor = ancestor.sym_parent return ancestor def sym_descendants( self, where: Optional[Callable[[Any], bool]] = None, option: DescendantQueryOption = DescendantQueryOption.ALL, include_self: bool = False) -> List[Any]: """Returns all descendants of specific classes. Args: where: Optional callable object as the filter of descendants to return. option: Descendant query options, indicating whether all matched, immediate matched or only the matched leaf nodes will be returned. include_self: If True, `self` will be included in the query, otherwise only strict descendants are included. Returns: A list of objects that match the descendant_cls. """ descendants = [] where = where or (lambda x: True) def visit(k, v, p): del k, p if not where(v): return TraverseAction.ENTER if not include_self and self is v: return TraverseAction.ENTER if option == DescendantQueryOption.IMMEDIATE: descendants.append(v) return TraverseAction.CONTINUE # Dealing with option = ALL or LEAF. leaf_descendants = [] if isinstance(v, Symbolic): leaf_descendants = v.sym_descendants(where, option) if option is DescendantQueryOption.ALL or not leaf_descendants: descendants.append(v) descendants.extend(leaf_descendants) return TraverseAction.CONTINUE traverse(self, visit) return descendants @abc.abstractmethod def sym_attr_field(self, key: Union[str, int]) -> Optional[pg_typing.Field]: """Returns the field definition for a symbolic attribute.""" def sym_has(self, path: Union[object_utils.KeyPath, str, int]) -> bool: """Returns True if a path exists in the sub-tree. Args: path: A KeyPath object or equivalence. Returns: True if the path exists in current sub-tree, otherwise False. """ return object_utils.KeyPath.from_value(path).exists(self) def sym_get( self, path: Union[object_utils.KeyPath, str, int], default: Any = RAISE_IF_NOT_FOUND) -> Any: """Returns a sub-node by path. NOTE: there is no `sym_set`, use `sym_rebind`. Args: path: A KeyPath object or equivalence. default: Default value if path does not exists. If absent, `KeyError` will be thrown. Returns: Value of symbolic attribute specified by path if found, otherwise the default value if it's specified. Raises: KeyError if `path` does not exist and `default` is not specified. """ path = object_utils.KeyPath.from_value(path) if default is RAISE_IF_NOT_FOUND: return path.query(self) else: return path.get(self, default) @abc.abstractmethod def sym_hasattr(self, key: Union[str, int]) -> bool: """Returns if a symbolic attribute exists.""" def sym_getattr( self, key: Union[str, int], default: Any = RAISE_IF_NOT_FOUND ) -> Any: """Gets a symbolic attribute. Args: key: Key of symbolic attribute. default: Default value if attribute does not exist. If absent, Returns: Value of symbolic attribute if found, otherwise the default value if it's specified. Raises: AttributeError if `key` does not exist and `default` is not provided. """ if not self.sym_hasattr(key): if default is RAISE_IF_NOT_FOUND: raise AttributeError( self._error_message( f'{self.__class__!r} object has no symbolic attribute {key!r}.' ) ) return default return self._sym_getattr(key) def sym_inferrable(self, key: Union[str, int], **kwargs) -> bool: """Returns True if the attribute under key can be inferred.""" return ( self.sym_inferred(key, pg_typing.MISSING_VALUE, **kwargs) != pg_typing.MISSING_VALUE ) def sym_inferred( self, key: Union[str, int], default: Any = RAISE_IF_NOT_FOUND, **kwargs, ) -> Any: """Returns the inferred value of the attribute under key.""" if default is RAISE_IF_NOT_FOUND: return self._sym_inferred(key, **kwargs) else: try: return self._sym_inferred(key, **kwargs) except Exception: # pylint: disable=broad-exception-caught return default def _sym_inferred(self, key: Union[str, int], **kwargs) -> Any: v = self.sym_getattr(key) if isinstance(v, Inferential): v = v.infer(**kwargs) return v @abc.abstractmethod def sym_keys(self) -> Iterator[Union[str, int]]: """Iterates the keys of symbolic attributes.""" @abc.abstractmethod def sym_values(self) -> Iterator[Any]: """Iterates the values of symbolic attributes.""" @abc.abstractmethod def sym_items(self) -> Iterator[Tuple[Union[str, int], Any]]: """Iterates the (key, value) pairs of symbolic attributes.""" @property def sym_parent(self) -> 'Symbolic': """Returns the containing symbolic object.""" return getattr(self, '_sym_parent') def sym_setparent(self, parent: 'Symbolic'): """Sets the parent of current node in the symbolic tree.""" self._set_raw_attr('_sym_parent', parent) def sym_contains( self, value: Any = None, type: Union[None, Type[Any], Tuple[Type[Any]]] = None # pylint: disable=redefined-builtin ) -> bool: """Returns True if the object contains sub-nodes of given value or type.""" return contains(self, value, type) @property def sym_path(self) -> object_utils.KeyPath: """Returns the path of current object from the root of its symbolic tree.""" return getattr(self, '_sym_path') def sym_setpath( self, path: Optional[Union[str, object_utils.KeyPath]]) -> None: """Sets the path of current node in its symbolic tree.""" if self.sym_path != path: old_path = self.sym_path self._set_raw_attr('_sym_path', path) self._update_children_paths(old_path, path) def sym_rebind( self, path_value_pairs: Optional[Union[ Dict[ Union[object_utils.KeyPath, str, int], Any], Callable]] = None, # pylint: disable=g-bare-generic *, raise_on_no_change: bool = True, notify_parents: bool = True, skip_notification: Optional[bool] = None, **kwargs, ) -> 'Symbolic': """Mutates the sub-nodes of current object. Please see `rebind`.""" assert Symbolic.DictType is not None if callable(path_value_pairs): path_value_pairs = get_rebind_dict(path_value_pairs, self) elif path_value_pairs is None: path_value_pairs = {} elif isinstance(path_value_pairs, Symbolic.DictType): # Rebind work on symbolic form, thus we get their symbol instead of # their evaluated value when building the rebind dict. sd = typing.cast(Symbolic.DictType, path_value_pairs) path_value_pairs = {k: v for k, v in sd.sym_items()} if not isinstance(path_value_pairs, dict): raise ValueError( self._error_message( f'Argument \'path_value_pairs\' should be a dict. ' f'Encountered {path_value_pairs}')) path_value_pairs.update(kwargs) path_value_pairs = {object_utils.KeyPath.from_value(k): v for k, v in path_value_pairs.items()} if not path_value_pairs and raise_on_no_change: raise ValueError(self._error_message('There are no values to rebind.')) updates = self._sym_rebind(path_value_pairs) if skip_notification is None: skip_notification = not flags.is_change_notification_enabled() if not skip_notification: self._notify_field_updates(updates, notify_parents=notify_parents) return self def sym_clone(self, deep: bool = False, memo: Optional[Any] = None, override: Optional[Dict[str, Any]] = None): """Clones current object symbolically.""" assert deep or not memo new_value = self._sym_clone(deep, memo) if override: new_value.sym_rebind(override, raise_on_no_change=False) if flags.is_tracking_origin(): new_value.sym_setorigin(self, 'deepclone' if deep else 'clone') return new_value @abc.abstractmethod def sym_jsonify(self, *, hide_default_values: bool = False, **kwargs) -> object_utils.JSONValueType: """Converts representation of current object to a plain Python object.""" def sym_ne(self, other: Any) -> bool: """Returns if this object does not equal to another object symbolically.""" return ne(self, other) def sym_eq(self, other: Any) -> bool: """Returns if this object equals to another object symbolically.""" return eq(self, other) def sym_gt(self, other: Any) -> bool: """Returns if this object is symbolically greater than another object.""" return gt(self, other) def sym_lt(self, other: Any) -> bool: """Returns True if this object is symbolically less than other object.""" return lt(self, other) @abc.abstractmethod def sym_hash(self) -> int: """Computes the symbolic hash of current object.""" @property def sym_origin(self) -> Optional[Origin]: """Returns the symbolic origin of current object.""" return getattr(self, '_sym_origin') def sym_setorigin( self, source: Any, tag: str, stacktrace: Optional[bool] = None, stacklimit: Optional[int] = None, stacktop: int = -1): """Sets the symbolic origin of current object. Args: source: Source value for current object. tag: A descriptive tag of the origin. Built-in tags are: `__init__`, `clone`, `deepclone`, `return`. Users can manually call `sym_setorigin` with custom tag value. stacktrace: If True, enable stack trace for the origin. If None, enable stack trace if `pg.tracek_origin()` is called. Otherwise stack trace is disabled. stacklimit: An optional integer to limit the stack depth. If None, it's determined by the value passed to `pg.set_origin_stacktrace_limit`, which is 10 by default. stacktop: A negative or zero-value integer indicating the stack top among the stack frames that we want to present to user, by default it's 1-level up from the stack within current `sym_setorigin` call. Example:: def foo(): return bar() def bar(): s = MyObject() t = s.build() t.sym_setorigin(s, 'builder', stacktrace=True, stacklimit=5, stacktop=-1) This example sets the origin of `t` using `s` as its source with tag 'builder'. We also record the callstack where the `sym_setorigin` is called, so users can call `t.sym_origin.stacktrace` to get the call stack later. The `stacktop` -1 indicates that we do not need the stack frame within ``sym_setorigin``, so users will see the stack top within the function `bar`. We also set the max number of stack frames to display to 5, not including the stack frame inside ``sym_setorigin``. """ if self.sym_origin is not None: current_source = self.sym_origin.source if current_source is not None and current_source is not source: raise ValueError( f'Cannot set the origin with a different source value. ' f'Origin source: {current_source!r}, New source: {source!r}.') # NOTE(daiyip): We decrement the stacktop by 1 as the physical stack top # is within Origin. self._set_raw_attr( '_sym_origin', Origin(source, tag, stacktrace, stacklimit, stacktop - 1)) # # Methods for operating the control flags of symbolic behaviors. # @property def allow_partial(self) -> bool: """Returns True if partial binding is allowed.""" return getattr(self, '_allow_partial') @property def accessor_writable(self) -> bool: """Returns True if mutation can be made by attribute assignment.""" return getattr(self, '_accessor_writable') def set_accessor_writable(self, writable: bool = True) -> 'Symbolic': """Sets accessor writable.""" return self._set_raw_attr('_accessor_writable', writable) # # Easier-to-access aliases of formal symbolic operations. # @property def is_partial(self) -> bool: """Alias for `sym_partial`.""" return self.sym_partial @property def is_pure_symbolic(self) -> bool: """Alias for `sym_puresymbolic`.""" return self.sym_puresymbolic @property def is_abstract(self) -> bool: """Alias for `sym_abstract`.""" return self.sym_abstract @property def is_deterministic(self) -> bool: """Returns if current object is deterministic.""" return is_deterministic(self) def missing_values(self, flatten: bool = True) -> Dict[str, Any]: """Alias for `sym_missing`.""" return self.sym_missing(flatten) def non_default_values( self, flatten: bool = True) -> Dict[Union[int, str], Any]: """Alias for `sym_nondefault`.""" return self.sym_nondefault(flatten) def seal(self, sealed: bool = True) -> 'Symbolic': """Alias for `sym_seal`.""" return self.sym_seal(sealed) @property def is_sealed(self) -> bool: """Alias for `sym_sealed`.""" return self.sym_sealed def rebind( self, path_value_pairs: Optional[Union[ Dict[ Union[object_utils.KeyPath, str, int], Any], Callable]] = None, # pylint: disable=g-bare-generic *, raise_on_no_change: bool = True, notify_parents: bool = True, skip_notification: Optional[bool] = None, **kwargs) -> 'Symbolic': """Alias for `sym_rebind`. Alias for `sym_rebind`. `rebind` is the recommended way for mutating symbolic objects in PyGlove: * It allows mutations not only on immediate child nodes, but on the entire sub-tree. * It allows mutations by rules via passing a callable object as the value for `path_value_pairs`. * It batches the updates from multiple sub-nodes, which triggers the `_on_change` or `_on_bound` event once for recomputing the parent object's internal states. * It respects the "sealed" flag of the object or the `pg.seal` context manager to trigger permission error. Example:: # # Rebind on pg.Object subclasses. # @pg.members([ ('x', pg.typing.Dict([ ('y', pg.typing.Int(default=0)) ])), ('z', pg.typing.Int(default=1)) ]) class A(pg.Object): pass a = A() # Rebind using path-value pairs. a.rebind({ 'x.y': 1, 'z': 0 }) # Rebind using **kwargs. a.rebind(x={y: 1}, z=0) # Rebind using rebinders. # Rebind based on path. a.rebind(lambda k, v: 1 if k == 'x.y' else v) # Rebind based on key. a.rebind(lambda k, v: 1 if k and k.key == 'y' else v) # Rebind based on value. a.rebind(lambda k, v: 0 if v == 1 else v) # Rebind baesd on value and parent. a.rebind(lambda k, v, p: (0 if isinstance(p, A) and isinstance(v, int) else v)) # Rebind on pg.Dict. # d = pg.Dict(value_spec=pg.typing.Dict([ ('a', pg.typing.Dict([ ('b', pg.typing.Int()), ])), ('c', pg.typing.Float()) ]) # Rebind using **kwargs. d.rebind(a={b: 1}, c=1.0) # Rebind using key path to value dict. d.rebind({ 'a.b': 2, 'c': 2.0 }) # NOT OKAY: **kwargs and dict/rebinder cannot be used at the same time. d.rebind({'a.b': 2}, c=2) # Rebind with rebinder by path (on subtree). d.rebind(lambda k, v: 1 if k.key == 'b' else v) # Rebind with rebinder by value (on subtree). d.rebind(lambda k, v: 0 if isinstance(v, int) else v) # # Rebind on pg.List. # l = pg.List([{ 'a': 'foo', 'b': 0, } ], value_spec = pg.typing.List(pg.typing.Dict([ ('a', pg.typing.Str()), ('b', pg.typing.Int()) ]), max_size=10)) # Rebind using integer as list index: update semantics on list[0]. l.rebind({ 0: { 'a': 'bar', 'b': 1 } }) # Rebind: trigger append semantics when index is larger than list length. l.rebind({ 999: { 'a': 'fun', 'b': 2 } }) # Rebind using key path. l.rebind({ '[0].a': 'bar2' '[1].b': 3 }) # Rebind using function (rebinder). # Change all integers to 0 in sub-tree. l.rebind(lambda k, v: v if not isinstance(v, int) else 0) Args: path_value_pairs: A dictionary of key/or key path to new field value, or a function that generate updates based on the key path, value and parent of each node under current object. We use terminology 'rebinder' for this type of functions. The signature of a rebinder is: `(key_path: pg.KeyPath, value: Any)` or `(key_path: pg.KeyPath, value: Any, parent: pg.Symbolic)` raise_on_no_change: If True, raises ``ValueError`` when there are no values to change. This is useful when rebinder is used, which may or may not generate any updates. notify_parents: If True (default), parents will be notified upon change. Otherwisee only the current object and the impacted children will be notified. A most common use case for setting this flag to False is when users want to rebind a child within the parent `_on_bound` method. skip_notification: If True, there will be no ``_on_change`` event triggered from current `rebind`. If None, the default value will be inferred from the :func:`pyglove.notify_on_change` context manager. Use it only when you are certain that current rebind does not invalidate internal states of its object tree. **kwargs: For ``pg.Dict`` and ``pg.Object`` subclasses, user can use keyword arguments (in format of `<field_name>=<field_value>`) to directly modify immediate child nodes. Returns: Self. Raises: WritePermissionError: If object is sealed. KeyError: If update location specified by key or key path is not aligned with the schema of the object tree. TypeError: If updated field value type does not conform to field spec. ValueError: If updated field value is not acceptable according to field spec, or nothing is updated and `raise_on_no_change` is set to True. """ return self.sym_rebind( path_value_pairs, raise_on_no_change=raise_on_no_change, notify_parents=notify_parents, skip_notification=skip_notification, **kwargs) def clone( self, deep: bool = False, memo: Optional[Any] = None, override: Optional[Dict[str, Any]] = None ) -> 'Symbolic': """Clones current object symbolically. Args: deep: If True, perform deep copy (equivalent to copy.deepcopy). Otherwise shallow copy (equivalent to copy.copy). memo: Memo object for deep clone. override: An optional dict of key path to new values to override cloned value. Returns: A copy of self. """ return self.sym_clone(deep, memo, override) def to_json(self, **kwargs) -> object_utils.JSONValueType: """Alias for `sym_jsonify`.""" return self.sym_jsonify(**kwargs) def to_json_str(self, json_indent: Optional[int] = None, **kwargs) -> str: """Serializes current object into a JSON string.""" return json.dumps(self.sym_jsonify(**kwargs), indent=json_indent) @classmethod def load(cls, *args, **kwargs) -> Any: """Loads an instance of this type using the global load handler.""" value = load(*args, **kwargs) if not isinstance(value, cls): raise TypeError(f'Value is not of type {cls!r}: {value!r}.') return value def save(self, *args, **kwargs) -> Any: """Saves current object using the global save handler.""" return save(self, *args, **kwargs) def inspect( self, path_regex: Optional[str] = None, where: Optional[Union[Callable[[Any], bool], Callable[[Any, Any], bool]]] = None, custom_selector: Optional[Union[ Callable[[object_utils.KeyPath, Any], bool], Callable[[object_utils.KeyPath, Any, Any], bool]]] = None, file=sys.stdout, # pylint: disable=redefined-builtin **kwargs) -> None: """Inspects current object by printing out selected values. Example:: @pg.members([ ('x', pg.typing.Int(0)), ('y', pg.typing.Str()) ]) class A(pg.Object): pass value = { 'a1': A(x=0, y=0), 'a2': [A(x=1, y=1), A(x=1, y=2)], 'a3': { 'p': A(x=2, y=1), 'q': A(x=2, y=2) } } # Inspect without constraint, # which is equivalent as `print(value.format(hide_default_values=True))` # Shall print: # { # a1 = A(y=0) # a2 = [ # 0: A(x=1, y=1) # 1: A(x=1, y=2) # a3 = { # p = A(x=2, y=1) # q = A(x=2, y=2) # } # } value.inspect(hide_default_values=True) # Inspect by path regex. # Shall print: # {'a3.p': A(x=2, y=1)} value.inspect(r'.*p') # Inspect by value. # Shall print: # { # 'a3.p.x': 2, # 'a3.q.x': 2, # 'a3.q.y': 2, # } value.inspect(where=lambda v: v==2) # Inspect by path, value and parent. # Shall print: # { # 'a2[1].y': 2 # } value.inspect( r'.*y', where=lambda v, p: v > 1 and isinstance(p, A) and p.x == 1)) # Inspect by custom_selector. # Shall print: # { # 'a2[0].x': 1, # 'a2[0].y': 1, # 'a3.q.x': 2, # 'a3.q.y': 2 # } value.inspect( custom_selector=lambda k, v, p: ( len(k) == 3 and isinstance(p, A) and p.x == v)) Args: path_regex: Optional regex expression to constrain path. where: Optional callable to constrain value and parent when path matches `path_regex` or `path_regex` is not provided. The signature is: `(value) -> should_select`, or `(value, parent) -> should_select`. custom_selector: Optional callable object as custom selector. When `custom_selector` is provided, `path_regex` and `where` must be None. The signature of `custom_selector` is: `(key_path, value) -> should_select` or `(key_path, value, parent) -> should_select`. file: Output file stream. This can be any object with a `write(str)` method. **kwargs: Wildcard keyword arguments to pass to `format`. """ if path_regex is None and where is None and custom_selector is None: v = self else: v = query(self, path_regex, where, False, custom_selector) object_utils.print(v, file=file, **kwargs) def __copy__(self) -> 'Symbolic': """Overridden shallow copy.""" return self.sym_clone(deep=False) def __deepcopy__(self, memo) -> 'Symbolic': """Overridden deep copy.""" return self.sym_clone(deep=True, memo=memo) # # Proteted methods to implement from subclasses # @abc.abstractmethod def _sym_rebind( self, path_value_pairs: Dict[object_utils.KeyPath, Any] ) -> List[FieldUpdate]: """Subclass specific rebind implementation. Args: path_value_pairs: A dictionary of key path to new field value. Returns: A list of FieldUpdate from this rebind. Raises: WritePermissionError: If object is sealed. KeyError: If update location specified by key or key path is not aligned with the schema of the object tree. TypeError: If updated field value type does not conform to field spec. ValueError: If updated field value is not acceptable according to field spec. """ @abc.abstractmethod def _sym_missing(self) -> Dict[str, Any]: """Returns missing values.""" @abc.abstractmethod def _sym_nondefault(self) -> Dict[Union[int, str], Any]: """Returns non-default values.""" @abc.abstractmethod def _sym_getattr(self, key: Union[str, int]) -> Any: """Get symbolic attribute by key.""" @abc.abstractmethod def _sym_clone(self, deep: bool, memo=None) -> 'Symbolic': """Subclass specific clone implementation.""" @abc.abstractmethod def _update_children_paths( self, old_path: object_utils.KeyPath, new_path: object_utils.KeyPath) -> None: """Update children paths according to root_path of current node.""" @abc.abstractmethod def _set_item_without_permission_check( self, key: Union[str, int], value: Any) -> Optional[FieldUpdate]: """Child should implement: set an item without permission check.""" @abc.abstractmethod def _on_change(self, field_updates: Dict[object_utils.KeyPath, FieldUpdate]): """Event that is triggered when field values in the subtree are updated. This event will be called * On per-field basis when object is modified via attribute. * In batch when multiple fields are modified via `rebind` method. When a field in an object tree is updated, all ancestors' `_on_change` event will be triggered in order, from the nearest one to furthest one. Args: field_updates: Updates made to the subtree. Key path is relative to current object. """ @property @abc.abstractmethod def _subscribes_field_updates(self) -> bool: """Returns True if current object subscribes field updates in `on_change`. NOTE(daiyip): When it returns False, we don't need to compute field updates for this object, but simply invoke onchange with empty fields. """ # # Protected helper methods. # def _set_raw_attr(self, name: str, value: Any) -> 'Symbolic': """Set raw property without trigger __setattr__.""" # `object.__setattr__` adds a property to the instance without side effects. object.__setattr__(self, name, value) return self def _relocate_if_symbolic(self, key: Union[str, int], value: Any) -> Any: """Relocate if a symbolic value is to be inserted as member. NOTE(daiyip): when a symbolic value is inserted into the object tree, if it already has a parent, we need to make a shallow copy of this object to avoid multiple parents. Otherwise we need to set its parent and root_path according to current object. Args: key: Key used to insert the value. value: formal value to be inserted. Returns: Formalized value that is ready for insertion as members. """ if isinstance(value, Symbolic): # NOTE(daiyip): make a copy of symbolic object if it belongs to another # object tree, this prevents it from having multiple parents. See # List._formalized_value for similar logic. root_path = object_utils.KeyPath(key, self.sym_path) if (value.sym_parent is not None and (value.sym_parent is not self or root_path != value.sym_path)): value = value.clone() if isinstance(value, TopologyAware): value.sym_setpath(object_utils.KeyPath(key, self.sym_path)) value.sym_setparent(self._sym_parent_for_children()) return value def _sym_parent_for_children(self) -> Optional['Symbolic']: """Returns the symbolic parent for children.""" return self def _set_item_of_current_tree( self, path: object_utils.KeyPath, value: Any) -> Optional[FieldUpdate]: """Set a field of current tree by key path and return its parent.""" assert isinstance(path, object_utils.KeyPath), path if not path: raise KeyError( self._error_message( f'Root key \'$\' cannot be used in ' f'{self.__class__.__name__}.rebind. ' f'Encountered {path!r}')) parent_node = path.parent.query(self) if not isinstance(parent_node, Symbolic): raise KeyError( f'Cannot rebind key {path.key!r}: {parent_node!r} is not a ' f'symbolic type. (path=\'{path.parent}\')') if treats_as_sealed(parent_node): raise WritePermissionError( f'Cannot rebind key {path.key!r} of ' f'sealed {parent_node.__class__.__name__}: {parent_node!r}. ' f'(path=\'{path.parent}\')') return parent_node._set_item_without_permission_check(path.key, value) # pylint: disable=protected-access def _notify_field_updates( self, field_updates: List[FieldUpdate], notify_parents: bool = True) -> None: """Notify field updates.""" per_target_updates = dict() def _get_target_updates( target: 'Symbolic' ) -> Dict[object_utils.KeyPath, FieldUpdate]: target_id = id(target) if target_id not in per_target_updates: per_target_updates[target_id] = (target, dict()) return per_target_updates[target_id][1] for update in field_updates: target = update.target while target is not None: target_updates = _get_target_updates(target) if target._subscribes_field_updates: # pylint: disable=protected-access relative_path = update.path - target.sym_path target_updates[relative_path] = update target = target.sym_parent # Trigger the notification bottom-up, thus the parent node will always # be notified after the child nodes. for target, updates in sorted(per_target_updates.values(), key=lambda x: x[0].sym_path, reverse=True): # Reset content-based cache for the object being notified. target._set_raw_attr('_sym_puresymbolic', None) # pylint: disable=protected-access target._set_raw_attr('_sym_missing_values', None) # pylint: disable=protected-access target._set_raw_attr('_sym_nondefault_values', None) # pylint: disable=protected-access target._on_change(updates) # pylint: disable=protected-access # If `notify_parents` is set to False, stop notifications once `self` # is processed. if target is self and not notify_parents: break def _error_message(self, message: str) -> str: """Create error message to include path information.""" return object_utils.message_on_path(message, self.sym_path)
(*, allow_partial: bool, accessor_writable: bool, sealed: bool, root_path: Optional[pyglove.core.object_utils.value_location.KeyPath], init_super: bool = True)
41,358
pyglove.core.symbolic.base
__init__
Constructor. Args: allow_partial: Whether to allow required fields to be MISSING_VALUE or partial. accessor_writable: Whether to allow write access via attributes. This flag is useful when we want to enforce update of fields using `rebind` method, which leads to better trackability and batched field update notification. sealed: Whether object is sealed that cannot be changed. This flag is useful when we don't want downstream to modify the object. root_path: KeyPath of current object in its context (object tree). init_super: If True, call super.__init__, otherwise short-circuit. This flag is useful when user want to explicitly implement `__init__` for multi-inheritance, which is needed to pass different arguments to different bases. Please see `symbolic_test.py#testMultiInheritance` for more details.
def __init__(self, *, allow_partial: bool, accessor_writable: bool, sealed: bool, root_path: Optional[object_utils.KeyPath], init_super: bool = True): """Constructor. Args: allow_partial: Whether to allow required fields to be MISSING_VALUE or partial. accessor_writable: Whether to allow write access via attributes. This flag is useful when we want to enforce update of fields using `rebind` method, which leads to better trackability and batched field update notification. sealed: Whether object is sealed that cannot be changed. This flag is useful when we don't want downstream to modify the object. root_path: KeyPath of current object in its context (object tree). init_super: If True, call super.__init__, otherwise short-circuit. This flag is useful when user want to explicitly implement `__init__` for multi-inheritance, which is needed to pass different arguments to different bases. Please see `symbolic_test.py#testMultiInheritance` for more details. """ # NOTE(daiyip): we uses `self._set_raw_attr` here to avoid overridden # `__setattr__` from subclasses change the behavior unintentionally. self._set_raw_attr('_allow_partial', allow_partial) self._set_raw_attr('_accessor_writable', accessor_writable) self._set_raw_attr('_sealed', sealed) # NOTE(daiyip): parent is used for rebind call to notify their ancestors # for updates, not for external usage. self._set_raw_attr('_sym_parent', None) self._set_raw_attr('_sym_path', root_path or object_utils.KeyPath()) self._set_raw_attr('_sym_puresymbolic', None) self._set_raw_attr('_sym_missing_values', None) self._set_raw_attr('_sym_nondefault_values', None) origin = Origin(None, '__init__') if flags.is_tracking_origin() else None self._set_raw_attr('_sym_origin', origin) # super.__init__ may enter into next base class's __init__ when # multi-inheritance is used. Since we have override `__setattr__` for # symbolic.Object, which depends on `_accessor_writable` and so on, # we want to call make `__setattr__` ready to call before entering # other base's `__init__`. if init_super: super().__init__() else: object.__init__(self)
(self, *, allow_partial: bool, accessor_writable: bool, sealed: bool, root_path: Optional[pyglove.core.object_utils.value_location.KeyPath], init_super: bool = True)
41,362
pyglove.core.symbolic.base
_init_kwargs
null
def _init_kwargs(self) -> Dict[str, Any]: kwargs = {} def add_if_nondefault(key, attrname, default): v = getattr(self, attrname) if v != default: kwargs[key] = v add_if_nondefault('allow_partial', '_allow_partial', False) add_if_nondefault('sealed', '_sealed', False) return kwargs
(self) -> Dict[str, Any]
41,365
pyglove.core.symbolic.base
_on_change
Event that is triggered when field values in the subtree are updated. This event will be called * On per-field basis when object is modified via attribute. * In batch when multiple fields are modified via `rebind` method. When a field in an object tree is updated, all ancestors' `_on_change` event will be triggered in order, from the nearest one to furthest one. Args: field_updates: Updates made to the subtree. Key path is relative to current object.
@abc.abstractmethod def _on_change(self, field_updates: Dict[object_utils.KeyPath, FieldUpdate]): """Event that is triggered when field values in the subtree are updated. This event will be called * On per-field basis when object is modified via attribute. * In batch when multiple fields are modified via `rebind` method. When a field in an object tree is updated, all ancestors' `_on_change` event will be triggered in order, from the nearest one to furthest one. Args: field_updates: Updates made to the subtree. Key path is relative to current object. """
(self, field_updates: Dict[pyglove.core.object_utils.value_location.KeyPath, pyglove.core.symbolic.base.FieldUpdate])
41,368
pyglove.core.symbolic.base
_set_item_without_permission_check
Child should implement: set an item without permission check.
@abc.abstractmethod def _set_item_without_permission_check( self, key: Union[str, int], value: Any) -> Optional[FieldUpdate]: """Child should implement: set an item without permission check."""
(self, key: Union[str, int], value: Any) -> Optional[pyglove.core.symbolic.base.FieldUpdate]
41,370
pyglove.core.symbolic.base
_sym_clone
Subclass specific clone implementation.
@abc.abstractmethod def _sym_clone(self, deep: bool, memo=None) -> 'Symbolic': """Subclass specific clone implementation."""
(self, deep: bool, memo=None) -> pyglove.core.symbolic.base.Symbolic
41,371
pyglove.core.symbolic.base
_sym_getattr
Get symbolic attribute by key.
@abc.abstractmethod def _sym_getattr(self, key: Union[str, int]) -> Any: """Get symbolic attribute by key."""
(self, key: Union[str, int]) -> Any
41,373
pyglove.core.symbolic.base
_sym_missing
Returns missing values.
@abc.abstractmethod def _sym_missing(self) -> Dict[str, Any]: """Returns missing values."""
(self) -> Dict[str, Any]
41,374
pyglove.core.symbolic.base
_sym_nondefault
Returns non-default values.
@abc.abstractmethod def _sym_nondefault(self) -> Dict[Union[int, str], Any]: """Returns non-default values."""
(self) -> Dict[Union[int, str], Any]
41,376
pyglove.core.symbolic.base
_sym_rebind
Subclass specific rebind implementation. Args: path_value_pairs: A dictionary of key path to new field value. Returns: A list of FieldUpdate from this rebind. Raises: WritePermissionError: If object is sealed. KeyError: If update location specified by key or key path is not aligned with the schema of the object tree. TypeError: If updated field value type does not conform to field spec. ValueError: If updated field value is not acceptable according to field spec.
@abc.abstractmethod def _sym_rebind( self, path_value_pairs: Dict[object_utils.KeyPath, Any] ) -> List[FieldUpdate]: """Subclass specific rebind implementation. Args: path_value_pairs: A dictionary of key path to new field value. Returns: A list of FieldUpdate from this rebind. Raises: WritePermissionError: If object is sealed. KeyError: If update location specified by key or key path is not aligned with the schema of the object tree. TypeError: If updated field value type does not conform to field spec. ValueError: If updated field value is not acceptable according to field spec. """
(self, path_value_pairs: Dict[pyglove.core.object_utils.value_location.KeyPath, Any]) -> List[pyglove.core.symbolic.base.FieldUpdate]
41,377
pyglove.core.symbolic.base
_update_children_paths
Update children paths according to root_path of current node.
@abc.abstractmethod def _update_children_paths( self, old_path: object_utils.KeyPath, new_path: object_utils.KeyPath) -> None: """Update children paths according to root_path of current node."""
(self, old_path: pyglove.core.object_utils.value_location.KeyPath, new_path: pyglove.core.object_utils.value_location.KeyPath) -> NoneType
41,385
pyglove.core.symbolic.base
seal
Alias for `sym_seal`.
def seal(self, sealed: bool = True) -> 'Symbolic': """Alias for `sym_seal`.""" return self.sym_seal(sealed)
(self, sealed: bool = True) -> pyglove.core.symbolic.base.Symbolic
41,388
pyglove.core.symbolic.base
sym_attr_field
Returns the field definition for a symbolic attribute.
@abc.abstractmethod def sym_attr_field(self, key: Union[str, int]) -> Optional[pg_typing.Field]: """Returns the field definition for a symbolic attribute."""
(self, key: Union[str, int]) -> Optional[pyglove.core.typing.class_schema.Field]