index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
41,397
pyglove.core.symbolic.base
sym_hasattr
Returns if a symbolic attribute exists.
@abc.abstractmethod def sym_hasattr(self, key: Union[str, int]) -> bool: """Returns if a symbolic attribute exists."""
(self, key: Union[str, int]) -> bool
41,398
pyglove.core.symbolic.base
sym_hash
Computes the symbolic hash of current object.
@abc.abstractmethod def sym_hash(self) -> int: """Computes the symbolic hash of current object."""
(self) -> int
41,401
pyglove.core.symbolic.base
sym_items
Iterates the (key, value) pairs of symbolic attributes.
@abc.abstractmethod def sym_items(self) -> Iterator[Tuple[Union[str, int], Any]]: """Iterates the (key, value) pairs of symbolic attributes."""
(self) -> Iterator[Tuple[Union[str, int], Any]]
41,402
pyglove.core.symbolic.base
sym_jsonify
Converts representation of current object to a plain Python object.
@abc.abstractmethod def sym_jsonify(self, *, hide_default_values: bool = False, **kwargs) -> object_utils.JSONValueType: """Converts representation of current object to a plain Python object."""
(self, *, hide_default_values: bool = False, **kwargs) -> Union[int, float, bool, str, List[Any], Dict[str, Any]]
41,403
pyglove.core.symbolic.base
sym_keys
Iterates the keys of symbolic attributes.
@abc.abstractmethod def sym_keys(self) -> Iterator[Union[str, int]]: """Iterates the keys of symbolic attributes."""
(self) -> Iterator[Union[str, int]]
41,413
pyglove.core.symbolic.base
sym_values
Iterates the values of symbolic attributes.
@abc.abstractmethod def sym_values(self) -> Iterator[Any]: """Iterates the values of symbolic attributes."""
(self) -> Iterator[Any]
41,416
pyglove.core.symbolic.base
TraverseAction
Enum for the next action after a symbolic node is visited. See also: :func:`pyglove.traverse`.
class TraverseAction(enum.Enum): """Enum for the next action after a symbolic node is visited. See also: :func:`pyglove.traverse`. """ # Traverse should immediately stop. STOP = 0 # Traverse should enter sub-tree if sub-tree exists and traverse is in # pre-order. For post-order traverse, it has the same effect as CONTINUE. ENTER = 1 # Traverse should continue to next node without entering the sub-tree. CONTINUE = 2
(value, names=None, *, module=None, qualname=None, type=None, start=1)
41,417
pyglove.core.typing.class_schema
ValueSpec
Interface for value specifications. A value specification defines what values are acceptable for a symbolic field (see :class:`pyglove.Field`). When assignments take place on the attributes for the field, the associated ValueSpec object will kick in to intercept the process and take care of the following aspects: * Type check * Noneable check * Value validation and transformation * Default value assignment See :meth:`.apply` for more details. Different aspects of assignment interception are handled by the following methods: +-----------------------+-------------------------------------------------+ | Aspect name | Property/Method | +=======================+=================================================+ | Type check | :attr:`.value_type` | +-----------------------+-------------------------------------------------+ | Noneable check | :attr:`.is_noneable` | +-----------------------+-------------------------------------------------+ | Type-specific value | :meth:`.apply` | | validation and | | | transformation | | +-----------------------+-------------------------------------------------+ | User transform | :attr:`.transform` | +-----------------------+-------------------------------------------------+ | Default value lookup | :attr:`.default` | +-----------------------+-------------------------------------------------+ There are many ``ValueSpec`` subclasses, each correspond to a commonly used Python type, e.g. `Bool`, `Int`, `Float` and etc. PyGlove's builtin value specifications are: +---------------------------+----------------------------------------------+ | ``ValueSpec`` type | Class | +===========================+==============================================+ | bool | :class:`pyglove.typing.Bool` | +---------------------------+----------------------------------------------+ | int | :class:`pyglove.typing.Int` | +---------------------------+----------------------------------------------+ | float | :class:`pyglove.typing.Float` | +---------------------------+----------------------------------------------+ | str | :class:`pyglove.typing.Str` | +---------------------------+----------------------------------------------+ | enum | :class:`pyglove.typing.Enum` | +---------------------------+----------------------------------------------+ | list | :class:`pyglove.typing.List` | +---------------------------+----------------------------------------------+ | tuple | :class:`pyglove.typing.Tuple` | +---------------------------+----------------------------------------------+ | dict | :class:`pyglove.typing.Dict` | +---------------------------+----------------------------------------------+ | instance of a class | :class:`pyglove.typing.Object` | +---------------------------+----------------------------------------------+ | callable | :class:`pyglove.typing.Callable` | +---------------------------+----------------------------------------------+ | functor | :class:`pyglove.typing.Functor` | +---------------------------+----------------------------------------------+ | type | :class:`pyglove.typing.Type` | +---------------------------+----------------------------------------------+ | union | :class:`pyglove.typing.Union` | +---------------------------+----------------------------------------------+ | any | :class:`pyglove.typing.Any` | +---------------------------+----------------------------------------------+ **Construction** A value specification is an instance of a ``ValueSpec`` subclass. All :class:`pyglove.ValueSpec` subclasses follow a common pattern to construct:: pg.typing.<ValueSpecClass>( [validation-rules], [default=<default>], [transform=<transform>]) After creation, a ``ValueSpec`` object can be modified with chaining. The code below creates an int specification with default value 1 and can accept None:: pg.typing.Int().noneable().set_default(1) **Usage** To apply a value specification on an user input to get the accepted value, :meth:`pyglove.ValueSpec.apply` shall be used:: value == pg.typing.Int(min_value=1).apply(4) assert value == 4 **Extension** Besides, a ``ValueSpec`` object can extend another ``ValueSpec`` object to obtain a more restricted ``ValueSpec`` object. For example:: pg.typing.Int(min_value=1).extend(pg.typing.Int(max_value=5)) will end up with:: pg.typing.Int(min_value=1, max_value=5) which will be useful when subclass adds additional restrictions to an inherited symbolic attribute from its base class. For some use cases, a value spec can be frozen to avoid subclass extensions:: pg.typing.Int().freeze(1) ``ValueSpec`` objects can be created and modified with chaining. For example:: pg.typing.Int().noneable().set_default(1) The code above creates an int specification with default value 1 and can accept None. ``ValueSpec`` object can also be derived from annotations. For example, annotation below @pg.members([ ('a', pg.typing.List(pg.typing.Str)), ('b', pg.typing.Dict().set_default('key': 'value')), ('c', pg.typing.List(pg.typing.Any()).noneable()), ('x', pg.typing.Int()), ('y', pg.typing.Str().noneable()), ('z', pg.typing.Union(pg.typing.Int(), pg.typing.Float())) ]) can be writen as @pg.members([ ('a', list[str]), ('b', {'key': 'value}), ('c', Optional[list]), ('x', int), ('y', Optional[str]), ('z', Union[int, float]) ])
class ValueSpec(object_utils.Formattable, object_utils.JSONConvertible): """Interface for value specifications. A value specification defines what values are acceptable for a symbolic field (see :class:`pyglove.Field`). When assignments take place on the attributes for the field, the associated ValueSpec object will kick in to intercept the process and take care of the following aspects: * Type check * Noneable check * Value validation and transformation * Default value assignment See :meth:`.apply` for more details. Different aspects of assignment interception are handled by the following methods: +-----------------------+-------------------------------------------------+ | Aspect name | Property/Method | +=======================+=================================================+ | Type check | :attr:`.value_type` | +-----------------------+-------------------------------------------------+ | Noneable check | :attr:`.is_noneable` | +-----------------------+-------------------------------------------------+ | Type-specific value | :meth:`.apply` | | validation and | | | transformation | | +-----------------------+-------------------------------------------------+ | User transform | :attr:`.transform` | +-----------------------+-------------------------------------------------+ | Default value lookup | :attr:`.default` | +-----------------------+-------------------------------------------------+ There are many ``ValueSpec`` subclasses, each correspond to a commonly used Python type, e.g. `Bool`, `Int`, `Float` and etc. PyGlove's builtin value specifications are: +---------------------------+----------------------------------------------+ | ``ValueSpec`` type | Class | +===========================+==============================================+ | bool | :class:`pyglove.typing.Bool` | +---------------------------+----------------------------------------------+ | int | :class:`pyglove.typing.Int` | +---------------------------+----------------------------------------------+ | float | :class:`pyglove.typing.Float` | +---------------------------+----------------------------------------------+ | str | :class:`pyglove.typing.Str` | +---------------------------+----------------------------------------------+ | enum | :class:`pyglove.typing.Enum` | +---------------------------+----------------------------------------------+ | list | :class:`pyglove.typing.List` | +---------------------------+----------------------------------------------+ | tuple | :class:`pyglove.typing.Tuple` | +---------------------------+----------------------------------------------+ | dict | :class:`pyglove.typing.Dict` | +---------------------------+----------------------------------------------+ | instance of a class | :class:`pyglove.typing.Object` | +---------------------------+----------------------------------------------+ | callable | :class:`pyglove.typing.Callable` | +---------------------------+----------------------------------------------+ | functor | :class:`pyglove.typing.Functor` | +---------------------------+----------------------------------------------+ | type | :class:`pyglove.typing.Type` | +---------------------------+----------------------------------------------+ | union | :class:`pyglove.typing.Union` | +---------------------------+----------------------------------------------+ | any | :class:`pyglove.typing.Any` | +---------------------------+----------------------------------------------+ **Construction** A value specification is an instance of a ``ValueSpec`` subclass. All :class:`pyglove.ValueSpec` subclasses follow a common pattern to construct:: pg.typing.<ValueSpecClass>( [validation-rules], [default=<default>], [transform=<transform>]) After creation, a ``ValueSpec`` object can be modified with chaining. The code below creates an int specification with default value 1 and can accept None:: pg.typing.Int().noneable().set_default(1) **Usage** To apply a value specification on an user input to get the accepted value, :meth:`pyglove.ValueSpec.apply` shall be used:: value == pg.typing.Int(min_value=1).apply(4) assert value == 4 **Extension** Besides, a ``ValueSpec`` object can extend another ``ValueSpec`` object to obtain a more restricted ``ValueSpec`` object. For example:: pg.typing.Int(min_value=1).extend(pg.typing.Int(max_value=5)) will end up with:: pg.typing.Int(min_value=1, max_value=5) which will be useful when subclass adds additional restrictions to an inherited symbolic attribute from its base class. For some use cases, a value spec can be frozen to avoid subclass extensions:: pg.typing.Int().freeze(1) ``ValueSpec`` objects can be created and modified with chaining. For example:: pg.typing.Int().noneable().set_default(1) The code above creates an int specification with default value 1 and can accept None. ``ValueSpec`` object can also be derived from annotations. For example, annotation below @pg.members([ ('a', pg.typing.List(pg.typing.Str)), ('b', pg.typing.Dict().set_default('key': 'value')), ('c', pg.typing.List(pg.typing.Any()).noneable()), ('x', pg.typing.Int()), ('y', pg.typing.Str().noneable()), ('z', pg.typing.Union(pg.typing.Int(), pg.typing.Float())) ]) can be writen as @pg.members([ ('a', list[str]), ('b', {'key': 'value}), ('c', Optional[list]), ('x', int), ('y', Optional[str]), ('z', Union[int, float]) ]) """ # pylint: disable=invalid-name # List-type value spec class. ListType: Type['ValueSpec'] # Dict-type value spec class. DictType: Type['ValueSpec'] # Object-type value spec class. ObjectType: Type['ValueSpec'] # pylint: enable=invalid-name @property @abc.abstractmethod def value_type(self) -> Union[ Type[Any], Tuple[Type[Any], ...]]: # pyformat: disable """Returns acceptable (resolved) value type(s).""" @property @abc.abstractmethod def forward_refs(self) -> Set[ForwardRef]: """Returns forward referenes used by the value spec.""" @abc.abstractmethod def noneable(self) -> 'ValueSpec': """Marks none-able and returns `self`.""" @property @abc.abstractmethod def is_noneable(self) -> bool: """Returns True if current value spec accepts None.""" @abc.abstractmethod def set_default(self, default: Any, use_default_apply: bool = True) -> 'ValueSpec': """Sets the default value and returns `self`. Args: default: Default value. use_default_apply: If True, invoke `apply` to the value, otherwise use default value as is. Returns: ValueSpec itself. Raises: ValueError: If default value cannot be applied when use_default_apply is set to True. """ @property @abc.abstractmethod def default(self) -> Any: """Returns the default value. If no default is provided, MISSING_VALUE will be returned for non-dict types. For Dict type, a dict that may contains nested MISSING_VALUE will be returned. """ @property def has_default(self) -> bool: """Returns True if the default value is provided.""" return self.default != object_utils.MISSING_VALUE @abc.abstractmethod def freeze( self, permanent_value: Any = object_utils.MISSING_VALUE, apply_before_use: bool = True) -> 'ValueSpec': """Sets the default value using a permanent value and freezes current spec. A frozen value spec will not accept any value that is not the default value. A frozen value spec is useful when a subclass fixes the value of a symoblic attribute and want to prevent it from being modified. Args: permanent_value: A permanent value used for current spec. If MISSING_VALUE, freeze the value spec with current default value. apply_before_use: If True, invoke `apply` on permanent value when permanent_value is provided, otherwise use it as is. Returns: ValueSpec itself. Raises: ValueError if current default value is MISSING_VALUE and the permanent value is not specified. """ @property @abc.abstractmethod def frozen(self) -> bool: """Returns True if current value spec is frozen.""" @property @abc.abstractmethod def annotation(self) -> Any: """Returns PyType annotation. MISSING_VALUE if annotation is absent.""" @property @abc.abstractmethod def transform(self) -> Optional[Callable[[Any], Any]]: """Returns a transform that will be applied on the input before apply.""" @abc.abstractmethod def is_compatible(self, other: 'ValueSpec') -> bool: """Returns True if values acceptable to `other` is acceptable to this spec. Args: other: Other value spec. Returns: True if values that is applicable to the other value spec can be applied to current spec. Otherwise False. """ @abc.abstractmethod def extend(self, base: 'ValueSpec') -> 'ValueSpec': """Extends a base spec with current spec's rules. Args: base: Base ValueSpec to extend. Returns: ValueSpec itself. Raises: TypeError: When this value spec cannot extend from base. """ @abc.abstractmethod def apply( self, value: Any, allow_partial: bool = False, child_transform: Optional[Callable[ [object_utils.KeyPath, 'Field', Any], Any]] = None, root_path: Optional[object_utils.KeyPath] = None, ) -> Any: """Validates, completes and transforms the input value. Here is the procedure of ``apply``:: (1). Choose the default value if the input value is ``MISSING_VALUE`` (2). Check whether the input value is None. (2.a) Input value is None and ``value_spec.is_noneable()`` is False, raises Error. (2.b) Input value is not None or ``value_spec.is_noneable()`` is True, goto step (3). (3). Run ``value_spec.custom_apply`` if the input value is a ``CustomTyping`` instance. (3.a). If ``value_spec.custom_apply`` returns a value that indicates to proceed with standard apply, goto step (4). (3.b). Else goto step (6) (4). Check the input value type against the ``value_spec.value_type``. (4.a). If their value type matches, go to step (5) (4.b). Else if there is a converter registered between input value type and the value spec's value type, perform the conversion, and go to step (5). (see pg.typing.register_converter) (4.c) Otherwise raises type mismatch. (5). Perform type-specific and user validation and transformation. For complex types such as Dict, List, Tuple, call `child_spec.apply` recursively on the child fields. (6). Perform user transform and returns final value (invoked at Field.apply.) Args: value: Input value to apply. allow_partial: If True, partial value is allowed. This is useful for container types (dict, list, tuple). child_transform: Function to transform child node values into final values. (NOTE: This transform will not be performed on current value. Instead transform on current value is done by Field.apply, which has adequate information to call transform with both KeySpec and ValueSpec). root_path: Key path of current node. Returns: Final value: * When allow_partial is set to False (default), only input value that has no missing values can be applied. * When allow_partial is set to True, missing fields will be placeheld using MISSING_VALUE. Raises: KeyError: If additional key is found in value, or required key is missing and allow_partial is set to False. TypeError: If type of value is not the same as spec required. ValueError: If value is not acceptable, or value is MISSING_VALUE while allow_partial is set to False. """ @property def type_resolved(self) -> bool: """Returns True if all forward references are resolved.""" return not any(not ref.resolved for ref in self.forward_refs) def __ne__(self, other: Any) -> bool: """Operator !=.""" return not self.__eq__(other) @classmethod def from_annotation( cls, annotation: Any, auto_typing=False, accept_value_as_annotation=False) -> 'ValueSpec': """Gets a concrete ValueSpec from annotation.""" del annotation assert False, 'Overridden in `annotation_conversion.py`.'
()
41,423
pyglove.core.typing.class_schema
apply
Validates, completes and transforms the input value. Here is the procedure of ``apply``:: (1). Choose the default value if the input value is ``MISSING_VALUE`` (2). Check whether the input value is None. (2.a) Input value is None and ``value_spec.is_noneable()`` is False, raises Error. (2.b) Input value is not None or ``value_spec.is_noneable()`` is True, goto step (3). (3). Run ``value_spec.custom_apply`` if the input value is a ``CustomTyping`` instance. (3.a). If ``value_spec.custom_apply`` returns a value that indicates to proceed with standard apply, goto step (4). (3.b). Else goto step (6) (4). Check the input value type against the ``value_spec.value_type``. (4.a). If their value type matches, go to step (5) (4.b). Else if there is a converter registered between input value type and the value spec's value type, perform the conversion, and go to step (5). (see pg.typing.register_converter) (4.c) Otherwise raises type mismatch. (5). Perform type-specific and user validation and transformation. For complex types such as Dict, List, Tuple, call `child_spec.apply` recursively on the child fields. (6). Perform user transform and returns final value (invoked at Field.apply.) Args: value: Input value to apply. allow_partial: If True, partial value is allowed. This is useful for container types (dict, list, tuple). child_transform: Function to transform child node values into final values. (NOTE: This transform will not be performed on current value. Instead transform on current value is done by Field.apply, which has adequate information to call transform with both KeySpec and ValueSpec). root_path: Key path of current node. Returns: Final value: * When allow_partial is set to False (default), only input value that has no missing values can be applied. * When allow_partial is set to True, missing fields will be placeheld using MISSING_VALUE. Raises: KeyError: If additional key is found in value, or required key is missing and allow_partial is set to False. TypeError: If type of value is not the same as spec required. ValueError: If value is not acceptable, or value is MISSING_VALUE while allow_partial is set to False.
@abc.abstractmethod def apply( self, value: Any, allow_partial: bool = False, child_transform: Optional[Callable[ [object_utils.KeyPath, 'Field', Any], Any]] = None, root_path: Optional[object_utils.KeyPath] = None, ) -> Any: """Validates, completes and transforms the input value. Here is the procedure of ``apply``:: (1). Choose the default value if the input value is ``MISSING_VALUE`` (2). Check whether the input value is None. (2.a) Input value is None and ``value_spec.is_noneable()`` is False, raises Error. (2.b) Input value is not None or ``value_spec.is_noneable()`` is True, goto step (3). (3). Run ``value_spec.custom_apply`` if the input value is a ``CustomTyping`` instance. (3.a). If ``value_spec.custom_apply`` returns a value that indicates to proceed with standard apply, goto step (4). (3.b). Else goto step (6) (4). Check the input value type against the ``value_spec.value_type``. (4.a). If their value type matches, go to step (5) (4.b). Else if there is a converter registered between input value type and the value spec's value type, perform the conversion, and go to step (5). (see pg.typing.register_converter) (4.c) Otherwise raises type mismatch. (5). Perform type-specific and user validation and transformation. For complex types such as Dict, List, Tuple, call `child_spec.apply` recursively on the child fields. (6). Perform user transform and returns final value (invoked at Field.apply.) Args: value: Input value to apply. allow_partial: If True, partial value is allowed. This is useful for container types (dict, list, tuple). child_transform: Function to transform child node values into final values. (NOTE: This transform will not be performed on current value. Instead transform on current value is done by Field.apply, which has adequate information to call transform with both KeySpec and ValueSpec). root_path: Key path of current node. Returns: Final value: * When allow_partial is set to False (default), only input value that has no missing values can be applied. * When allow_partial is set to True, missing fields will be placeheld using MISSING_VALUE. Raises: KeyError: If additional key is found in value, or required key is missing and allow_partial is set to False. TypeError: If type of value is not the same as spec required. ValueError: If value is not acceptable, or value is MISSING_VALUE while allow_partial is set to False. """
(self, value: Any, allow_partial: bool = False, child_transform: Optional[Callable[[pyglove.core.object_utils.value_location.KeyPath, pyglove.core.typing.class_schema.Field, Any], Any]] = None, root_path: Optional[pyglove.core.object_utils.value_location.KeyPath] = None) -> Any
41,424
pyglove.core.typing.class_schema
extend
Extends a base spec with current spec's rules. Args: base: Base ValueSpec to extend. Returns: ValueSpec itself. Raises: TypeError: When this value spec cannot extend from base.
@abc.abstractmethod def extend(self, base: 'ValueSpec') -> 'ValueSpec': """Extends a base spec with current spec's rules. Args: base: Base ValueSpec to extend. Returns: ValueSpec itself. Raises: TypeError: When this value spec cannot extend from base. """
(self, base: pyglove.core.typing.class_schema.ValueSpec) -> pyglove.core.typing.class_schema.ValueSpec
41,426
pyglove.core.typing.class_schema
freeze
Sets the default value using a permanent value and freezes current spec. A frozen value spec will not accept any value that is not the default value. A frozen value spec is useful when a subclass fixes the value of a symoblic attribute and want to prevent it from being modified. Args: permanent_value: A permanent value used for current spec. If MISSING_VALUE, freeze the value spec with current default value. apply_before_use: If True, invoke `apply` on permanent value when permanent_value is provided, otherwise use it as is. Returns: ValueSpec itself. Raises: ValueError if current default value is MISSING_VALUE and the permanent value is not specified.
@abc.abstractmethod def freeze( self, permanent_value: Any = object_utils.MISSING_VALUE, apply_before_use: bool = True) -> 'ValueSpec': """Sets the default value using a permanent value and freezes current spec. A frozen value spec will not accept any value that is not the default value. A frozen value spec is useful when a subclass fixes the value of a symoblic attribute and want to prevent it from being modified. Args: permanent_value: A permanent value used for current spec. If MISSING_VALUE, freeze the value spec with current default value. apply_before_use: If True, invoke `apply` on permanent value when permanent_value is provided, otherwise use it as is. Returns: ValueSpec itself. Raises: ValueError if current default value is MISSING_VALUE and the permanent value is not specified. """
(self, permanent_value: Any = MISSING_VALUE, apply_before_use: bool = True) -> pyglove.core.typing.class_schema.ValueSpec
41,427
pyglove.core.typing.annotation_conversion
_value_spec_from_annotation
Creates a value spec from annotation.
def _value_spec_from_annotation( annotation: typing.Any, auto_typing=False, accept_value_as_annotation=False ) -> class_schema.ValueSpec: """Creates a value spec from annotation.""" if isinstance(annotation, class_schema.ValueSpec): return annotation elif annotation == inspect.Parameter.empty: return vs.Any() elif annotation is None: if accept_value_as_annotation: return vs.Any().noneable() else: return vs.Any().freeze(None) if auto_typing: return _value_spec_from_type_annotation( annotation, accept_value_as_annotation) else: value_spec = None if accept_value_as_annotation: # Accept default values is applicable only when auto typing is off. value_spec = _value_spec_from_default_value(annotation) return value_spec or _any_spec_with_annotation(annotation)
(annotation: Any, auto_typing=False, accept_value_as_annotation=False) -> pyglove.core.typing.class_schema.ValueSpec
41,428
pyglove.core.typing.class_schema
is_compatible
Returns True if values acceptable to `other` is acceptable to this spec. Args: other: Other value spec. Returns: True if values that is applicable to the other value spec can be applied to current spec. Otherwise False.
@abc.abstractmethod def is_compatible(self, other: 'ValueSpec') -> bool: """Returns True if values acceptable to `other` is acceptable to this spec. Args: other: Other value spec. Returns: True if values that is applicable to the other value spec can be applied to current spec. Otherwise False. """
(self, other: pyglove.core.typing.class_schema.ValueSpec) -> bool
41,429
pyglove.core.typing.class_schema
noneable
Marks none-able and returns `self`.
@abc.abstractmethod def noneable(self) -> 'ValueSpec': """Marks none-able and returns `self`."""
(self) -> pyglove.core.typing.class_schema.ValueSpec
41,430
pyglove.core.typing.class_schema
set_default
Sets the default value and returns `self`. Args: default: Default value. use_default_apply: If True, invoke `apply` to the value, otherwise use default value as is. Returns: ValueSpec itself. Raises: ValueError: If default value cannot be applied when use_default_apply is set to True.
@abc.abstractmethod def set_default(self, default: Any, use_default_apply: bool = True) -> 'ValueSpec': """Sets the default value and returns `self`. Args: default: Default value. use_default_apply: If True, invoke `apply` to the value, otherwise use default value as is. Returns: ValueSpec itself. Raises: ValueError: If default value cannot be applied when use_default_apply is set to True. """
(self, default: Any, use_default_apply: bool = True) -> pyglove.core.typing.class_schema.ValueSpec
41,432
pyglove.core.symbolic.base
WritePermissionError
Exception raisen when write access to object fields is not allowed.
class WritePermissionError(Exception): """Exception raisen when write access to object fields is not allowed."""
null
41,433
pyglove.core.symbolic.flags
allow_empty_field_description
Allow empty field description, which is useful for testing purposes.
def allow_empty_field_description(allow: bool = True) -> None: """Allow empty field description, which is useful for testing purposes.""" global _ALLOW_EMPTY_FIELD_DESCRIPTION _ALLOW_EMPTY_FIELD_DESCRIPTION = allow
(allow: bool = True) -> NoneType
41,434
pyglove.core.symbolic.flags
allow_partial
Returns a context manager that allows partial values in scope. This function is thread-safe and can be nested. In the nested use case, the allow flag of immediate parent context is effective. Example:: @pg.members([ ('x', pg.typing.Int()), ('y', pg.typing.Int()) ]) class A(pg.Object): pass with pg.allow_partial(True): a = A(x=1) # Missing `y`, but OK with pg.allow_partial(False): a.rebind(x=pg.MISSING_VALUE) # NOT OK a.rebind(x=pg.MISSING_VALUE) # OK Args: allow: If True, allow partial symbolic values in scope. If False, do not allow partial symbolic values in scope even if individual objects allow so. If None, honor object-level `allow_partial` property. Returns: A context manager that allows/disallow partial symbolic values in scope. After leaving the scope, the `allow_partial` state of individual objects will remain intact.
def allow_partial(allow: Optional[bool] = True) -> ContextManager[None]: """Returns a context manager that allows partial values in scope. This function is thread-safe and can be nested. In the nested use case, the allow flag of immediate parent context is effective. Example:: @pg.members([ ('x', pg.typing.Int()), ('y', pg.typing.Int()) ]) class A(pg.Object): pass with pg.allow_partial(True): a = A(x=1) # Missing `y`, but OK with pg.allow_partial(False): a.rebind(x=pg.MISSING_VALUE) # NOT OK a.rebind(x=pg.MISSING_VALUE) # OK Args: allow: If True, allow partial symbolic values in scope. If False, do not allow partial symbolic values in scope even if individual objects allow so. If None, honor object-level `allow_partial` property. Returns: A context manager that allows/disallow partial symbolic values in scope. After leaving the scope, the `allow_partial` state of individual objects will remain intact. """ return thread_local.thread_local_value_scope(_TLS_ALLOW_PARTIAL, allow, None)
(allow: Optional[bool] = True) -> ContextManager[NoneType]
41,435
pyglove.core.symbolic.flags
allow_repeated_class_registration
Allow repeated class registration, which is useful for testing purposes.
def allow_repeated_class_registration(allow: bool = True) -> None: """Allow repeated class registration, which is useful for testing purposes.""" global _ALLOW_REPEATED_CLASS_REGISTRATION _ALLOW_REPEATED_CLASS_REGISTRATION = allow
(allow: bool = True) -> NoneType
41,436
pyglove.core.symbolic.flags
allow_writable_accessors
Returns a context manager that makes accessor writable in scope. This function is thread-safe and can be nested. In the nested use case, the writable flag of immediate parent context is effective. Example:: sd1 = pg.Dict() sd2 = pg.Dict(accessor_writable=False) with pg.allow_writable_accessors(False): sd1.a = 2 # NOT OK sd2.a = 2 # NOT OK with pg.allow_writable_accessors(True): sd1.a = 2 # OK sd2.a = 2 # OK with pg.allow_writable_accessors(None): sd1.a = 1 # OK sd2.a = 1 # NOT OK Args: writable: If True, allow write access with accessors (__setattr__, __setitem__) for all symbolic values in scope. If False, disallow write access via accessors for all symbolic values in scope, even if individual objects allow so. If None, honor object-level `accessor_writable` flag. Returns: A context manager that allows/disallows writable accessors of all symbolic values in scope. After leaving the scope, the `accessor_writable` flag of individual objects will remain intact.
def allow_writable_accessors( writable: Optional[bool] = True) -> ContextManager[None]: """Returns a context manager that makes accessor writable in scope. This function is thread-safe and can be nested. In the nested use case, the writable flag of immediate parent context is effective. Example:: sd1 = pg.Dict() sd2 = pg.Dict(accessor_writable=False) with pg.allow_writable_accessors(False): sd1.a = 2 # NOT OK sd2.a = 2 # NOT OK with pg.allow_writable_accessors(True): sd1.a = 2 # OK sd2.a = 2 # OK with pg.allow_writable_accessors(None): sd1.a = 1 # OK sd2.a = 1 # NOT OK Args: writable: If True, allow write access with accessors (__setattr__, __setitem__) for all symbolic values in scope. If False, disallow write access via accessors for all symbolic values in scope, even if individual objects allow so. If None, honor object-level `accessor_writable` flag. Returns: A context manager that allows/disallows writable accessors of all symbolic values in scope. After leaving the scope, the `accessor_writable` flag of individual objects will remain intact. """ return thread_local.thread_local_value_scope( _TLS_ACCESSOR_WRITABLE, writable, None )
(writable: Optional[bool] = True) -> ContextManager[NoneType]
41,437
pyglove.core.symbolic.class_wrapper
apply_wrappers
Context manager for swapping user classes with their class wrappers. This helper method is a handy tool to swap user classes with their wrappers within a code block, without modifying exisiting code. For example:: def foo(): return A() APrime = pg.wrap(A) with pg.apply_wrappers([APrime]): # Direct creation of an instance of `A` will be detoured to `APrime`. assert isinstance(A(), APrime) Indirect creation of an instance of `A` will be detoured too. assert isinstance(foo(), APrime) # Out of the scope, direct/indirect creation `of` A will be restored. assert not isinstance(A(), APrime) assert not isinstance(foo(), APrime) ``pg.apply_wrappers`` can be nested, under which the inner context will apply the wrappers from the outter context. ``pg.apply_wrappers`` is NOT thread-safe. Args: wrapper_classes: Wrapper classes to use. If None, sets it to all registered wrapper classes. where: An optional filter function in signature (wrapper_class) -> bool. If not None, only filtered `wrapper_class` will be swapped. Returns: A context manager that detours the original classes to the wrapper classes.
def apply_wrappers( wrapper_classes: Optional[Sequence[Type['ClassWrapper']]] = None, where: Optional[Callable[[Type['ClassWrapper']], bool]] = None): """Context manager for swapping user classes with their class wrappers. This helper method is a handy tool to swap user classes with their wrappers within a code block, without modifying exisiting code. For example:: def foo(): return A() APrime = pg.wrap(A) with pg.apply_wrappers([APrime]): # Direct creation of an instance of `A` will be detoured to `APrime`. assert isinstance(A(), APrime) Indirect creation of an instance of `A` will be detoured too. assert isinstance(foo(), APrime) # Out of the scope, direct/indirect creation `of` A will be restored. assert not isinstance(A(), APrime) assert not isinstance(foo(), APrime) ``pg.apply_wrappers`` can be nested, under which the inner context will apply the wrappers from the outter context. ``pg.apply_wrappers`` is NOT thread-safe. Args: wrapper_classes: Wrapper classes to use. If None, sets it to all registered wrapper classes. where: An optional filter function in signature (wrapper_class) -> bool. If not None, only filtered `wrapper_class` will be swapped. Returns: A context manager that detours the original classes to the wrapper classes. """ if not wrapper_classes: wrapper_classes = [] for _, c in object_utils.JSONConvertible.registered_types(): if (issubclass(c, ClassWrapper) and c not in (ClassWrapper, _SubclassedWrapperBase) and (not where or where(c)) and c.sym_wrapped_cls is not None): wrapper_classes.append(c) return detouring.detour([(c.sym_wrapped_cls, c) for c in wrapper_classes])
(wrapper_classes: Optional[Sequence[Type[pyglove.core.symbolic.class_wrapper.ClassWrapper]]] = None, where: Optional[Callable[[Type[pyglove.core.symbolic.class_wrapper.ClassWrapper]], bool]] = None)
41,438
pyglove.core.symbolic.flags
as_sealed
Returns a context manager to treat symbolic values as sealed/unsealed. While the user can use `Symbolic.seal` to seal or unseal an individual object. This context manager is useful to create a readonly zone for operations on all existing symbolic objects. This function is thread-safe and can be nested. In the nested use case, the sealed flag of immediate parent context is effective. Example:: sd1 = pg.Dict() sd2 = pg.Dict().seal() with pg.as_sealed(True): sd1.a = 2 # NOT OK sd2.a = 2 # NOT OK with pg.as_sealed(False): sd1.a = 2 # OK sd2.a = 2 # OK with pg.as_sealed(None): sd1.a = 1 # OK sd2.a = 1 # NOT OK Args: sealed: If True, treats all symbolic values as sealed in scope. If False, treats all as unsealed. If None, honor object-level `sealed` state. Returns: A context manager that treats all symbolic values as sealed/unsealed in scope. After leaving the scope, the sealed state of individual objects will remain intact.
def as_sealed(sealed: Optional[bool] = True) -> ContextManager[None]: """Returns a context manager to treat symbolic values as sealed/unsealed. While the user can use `Symbolic.seal` to seal or unseal an individual object. This context manager is useful to create a readonly zone for operations on all existing symbolic objects. This function is thread-safe and can be nested. In the nested use case, the sealed flag of immediate parent context is effective. Example:: sd1 = pg.Dict() sd2 = pg.Dict().seal() with pg.as_sealed(True): sd1.a = 2 # NOT OK sd2.a = 2 # NOT OK with pg.as_sealed(False): sd1.a = 2 # OK sd2.a = 2 # OK with pg.as_sealed(None): sd1.a = 1 # OK sd2.a = 1 # NOT OK Args: sealed: If True, treats all symbolic values as sealed in scope. If False, treats all as unsealed. If None, honor object-level `sealed` state. Returns: A context manager that treats all symbolic values as sealed/unsealed in scope. After leaving the scope, the sealed state of individual objects will remain intact. """ return thread_local.thread_local_value_scope(_TLS_SEALED, sealed, None)
(sealed: Optional[bool] = True) -> ContextManager[NoneType]
41,439
pyglove.core.symbolic.flags
auto_call_functors
Returns a context manager to enable or disable auto call for functors. `auto_call_functors` is thread-safe and can be nested. For example:: @pg.symbolize def foo(x, y): return x + y with pg.auto_call_functors(True): a = foo(1, 2) assert a == 3 with pg.auto_call_functors(False): b = foo(1, 2) assert isinstance(b, foo) Args: enabled: If True, enable auto call for functors. Otherwise, auto call will be disabled. Returns: A context manager for enabling/disabling auto call for functors.
def auto_call_functors(enabled: bool = True) -> ContextManager[None]: """Returns a context manager to enable or disable auto call for functors. `auto_call_functors` is thread-safe and can be nested. For example:: @pg.symbolize def foo(x, y): return x + y with pg.auto_call_functors(True): a = foo(1, 2) assert a == 3 with pg.auto_call_functors(False): b = foo(1, 2) assert isinstance(b, foo) Args: enabled: If True, enable auto call for functors. Otherwise, auto call will be disabled. Returns: A context manager for enabling/disabling auto call for functors. """ return thread_local.thread_local_value_scope( _TLS_AUTO_CALL_FUNCTORS, enabled, False )
(enabled: bool = True) -> ContextManager[NoneType]
41,440
pyglove.core.symbolic.boilerplate
boilerplate_class
Create a boilerplate class using a symbolic object. As the name indicates, a boilerplate class is a class that can be used as a boilerplate to create object. Implementation-wise it's a class that extends the type of input value, while setting the default values of its (inherited) schema using the value from input. An analogy to boilerplate class is prebound function. For example:: # A regular function: correspond to a pg.Object subclass. def f(a, b, c) return a + b + c # A partially bound function: correspond to a boilerplate class created # from a partially bound object. def g(c): return f(1, 2, c) # A fully bound function: correspond to a boilerplate class created from # a fully bound object. def h(): return f(1, 2, 3) Boilerplate class can be created with a value that is fully bound (like function `h` above), or partially bound (like function `g` above). Since boilerplate class extends the type of the input, we can rebind members of its instances as we modify the input. Here are a few examples:: @pg.members([ ('a', pg.typing.Str(), 'Field A.'), ('b', pg.typing.Int(), 'Field B.'), ]) class A(pg.Object): pass A1 = pg.boilerplate_class('A1', A.partial(a='foo')) assert A1(b=1) == A(a='foo', b=1) A2 = pg.boilerplate_class('A2', A(a='bar', b=2)) assert A2() == A(a='bar', b=2) Args: cls_name: Name of the boilerplate class. value: Value that is used as the default value of the boilerplate class. init_arg_list: An optional list of strings as __init__ positional arguments names. **kwargs: Keyword arguments for infrequently used options. Acceptable keywords are: * `serialization_key`: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. * `additional_keys`: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. Returns: A class which extends the input value's type, with its schema's default values set from the input value. Raises: TypeError: Keyword argumment provided is not supported.
def boilerplate_class( cls_name: str, value: pg_object.Object, init_arg_list: Optional[List[str]] = None, **kwargs) -> Type[pg_object.Object]: """Create a boilerplate class using a symbolic object. As the name indicates, a boilerplate class is a class that can be used as a boilerplate to create object. Implementation-wise it's a class that extends the type of input value, while setting the default values of its (inherited) schema using the value from input. An analogy to boilerplate class is prebound function. For example:: # A regular function: correspond to a pg.Object subclass. def f(a, b, c) return a + b + c # A partially bound function: correspond to a boilerplate class created # from a partially bound object. def g(c): return f(1, 2, c) # A fully bound function: correspond to a boilerplate class created from # a fully bound object. def h(): return f(1, 2, 3) Boilerplate class can be created with a value that is fully bound (like function `h` above), or partially bound (like function `g` above). Since boilerplate class extends the type of the input, we can rebind members of its instances as we modify the input. Here are a few examples:: @pg.members([ ('a', pg.typing.Str(), 'Field A.'), ('b', pg.typing.Int(), 'Field B.'), ]) class A(pg.Object): pass A1 = pg.boilerplate_class('A1', A.partial(a='foo')) assert A1(b=1) == A(a='foo', b=1) A2 = pg.boilerplate_class('A2', A(a='bar', b=2)) assert A2() == A(a='bar', b=2) Args: cls_name: Name of the boilerplate class. value: Value that is used as the default value of the boilerplate class. init_arg_list: An optional list of strings as __init__ positional arguments names. **kwargs: Keyword arguments for infrequently used options. Acceptable keywords are: * `serialization_key`: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. * `additional_keys`: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. Returns: A class which extends the input value's type, with its schema's default values set from the input value. Raises: TypeError: Keyword argumment provided is not supported. """ if not isinstance(value, pg_object.Object): raise ValueError('Argument \'value\' must be an instance of ' 'symbolic.Object subclass.') serialization_key = kwargs.pop('serialization_key', None) additional_keys = kwargs.pop('additional_keys', None) if kwargs: raise TypeError( f'Unsupported keyword arguments: {list(kwargs.keys())!r}.') base_cls = value.__class__ class _BoilerplateClass(base_cls): """Boilerplate class.""" auto_register = False is_boilerplate = True caller_module = inspect.getmodule(inspect.stack()[1][0]) cls_module = caller_module.__name__ if caller_module else '__main__' cls = _BoilerplateClass cls.__name__ = cls_name cls.__qualname__ = cls.__qualname__.replace( 'boilerplate_class.<locals>._BoilerplateClass', cls_name) cls.__module__ = cls_module # Enable automatic registration for subclass. cls.auto_register = True allow_partial = value.allow_partial def _freeze_field(path: object_utils.KeyPath, field: pg_typing.Field, value: Any) -> Any: # We do not do validation since Object is already in valid form. del path if not isinstance(field.key, pg_typing.ListKey): # Recursively freeze dict field. if isinstance(field.value, pg_typing.Dict) and field.value.schema: field.value.schema.apply( value, allow_partial=allow_partial, child_transform=_freeze_field) field.value.set_default(value) if all(f.frozen for f in field.value.schema.values()): field.value.freeze() else: if value != pg_typing.MISSING_VALUE: field.value.freeze(copy.deepcopy(value), apply_before_use=False) else: field.value.set_default( pg_typing.MISSING_VALUE, use_default_apply=False) return value # NOTE(daiyip): we call `cls.__schema__.apply` to freeze fields that have # default values. But we no longer need to formalize `cls.__schema__`, since # it's copied from the boilerplate object's class which was already # formalized. with flags.allow_writable_accessors(): cls.__schema__.apply( value._sym_attributes, # pylint: disable=protected-access allow_partial=allow_partial, child_transform=_freeze_field, ) if init_arg_list is not None: schema_utils.validate_init_arg_list(init_arg_list, cls.__schema__) cls.__schema__.metadata['init_arg_list'] = init_arg_list cls.register_for_deserialization(serialization_key, additional_keys) return cls
(cls_name: str, value: pyglove.core.symbolic.object.Object, init_arg_list: Optional[List[str]] = None, **kwargs) -> Type[pyglove.core.symbolic.object.Object]
41,441
pyglove.core.object_utils.error_utils
catch_errors
Context manager for catching user-specified exceptions. Examples:: with pg.object_utils.catch_errors( [ RuntimeErrror, (ValueError, 'Input is wrong.') ], ) as error_context: do_something() if error_context.error: # Error branch. handle_error(error_context.error) Args: errors: A sequence of exception types or tuples of exception type and error messages (described in regular expression) as the desired exception types to catch. If an error is raised within the scope which does not match with the specification, it will be propagated to the outer scope. error_handler: An optional callable object to handle the error on failure. It's usually provided if the user want to create a context manager based on `pg.catch_errors` with specific error handling logics. Yields: A CatchErrorsContext object.
null
(errors: Union[Type[Exception], Tuple[Exception, str], Sequence[Union[Type[Exception], Tuple[Exception, str]]]], error_handler: Optional[Callable[[Exception], NoneType]] = None)
41,442
pyglove.core.symbolic.base
clone
Clones a value. Use symbolic clone if possible. Example:: @pg.members([ ('x', pg.typing.Int()), ('y', pg.typing.Any()) ]) class A(pg.Object): pass # B is not a symbolic object. class B: pass # Shallow copy on non-symbolic values (by reference). a = A(1, B()) b = pg.clone(a) assert pg.eq(a, b) assert a.y is b.y # Deepcopy on non-symbolic values. c = pg.clone(a, deep=True) assert pg.ne(a, c) assert a.y is not c.y # Copy with override d = pg.clone(a, override={'x': 2}) assert d.x == 2 assert d.y is a.y Args: x: value to clone. deep: If True, use deep clone, otherwise use shallow clone. memo: Optional memo object for deep clone. override: Value to override if value is symbolic. Returns: Cloned instance.
def clone( x: Any, deep: bool = False, memo: Optional[Any] = None, override: Optional[Dict[str, Any]] = None ) -> Any: """Clones a value. Use symbolic clone if possible. Example:: @pg.members([ ('x', pg.typing.Int()), ('y', pg.typing.Any()) ]) class A(pg.Object): pass # B is not a symbolic object. class B: pass # Shallow copy on non-symbolic values (by reference). a = A(1, B()) b = pg.clone(a) assert pg.eq(a, b) assert a.y is b.y # Deepcopy on non-symbolic values. c = pg.clone(a, deep=True) assert pg.ne(a, c) assert a.y is not c.y # Copy with override d = pg.clone(a, override={'x': 2}) assert d.x == 2 assert d.y is a.y Args: x: value to clone. deep: If True, use deep clone, otherwise use shallow clone. memo: Optional memo object for deep clone. override: Value to override if value is symbolic. Returns: Cloned instance. """ if isinstance(x, Symbolic): return x.sym_clone(deep, memo, override) else: assert not override return copy.deepcopy(x, memo) if deep else copy.copy(x)
(x: Any, deep: bool = False, memo: Optional[Any] = None, override: Optional[Dict[str, Any]] = None) -> Any
41,443
pyglove.core.symbolic.compounding
compound
Function decorator to create compound class. Example:: @dataclasses.dataclass class Foo: x: int y: int def sum(self): return self.x + self.y @pg.compound def foo_with_equal_x_y(v: int) -> Foo: return Foo(v, v) f = foo_with_equal_x_y(1) # First of all, the objects of compound classes can be used as an in-place # replacement for the objects of regular classes, as they are subclasses of # the regular classes. assert issubclass(foo_with_equal_x_y, Foo) assert isinstance(f, Foo) # We can access symbolic attributes of the compound object. assert f.v == 1 # We can also access the public APIs of the decomposed object. assert f.x == 1 assert f.y == 1 assert f.sum() == 2 # Or explicit access the decomposed object. assert f.decomposed == Foo(1, 1) # Moreover, symbolic power is fully unleashed to the compound class. f.rebind(v=2) assert f.x == 2 assert f.y == 2 assert f.sum() == 4 # Err with runtime type check: 2.5 is not an integer. f.rebind(v=2.5) Args: base_class: The base class of the compond class, which should be a ``pg.Object`` type. If None, it will be infererenced from the return annotation of `factory_fn`. If the annotation is not present or `auto_typing` is set to False, `base_class` must be present. args: Symbolic args specification. See :class:`pg.compound_class` for details. **kwargs: Keyword arguments. See :class:`pg.compound_class` for details. Returns: A symbolic compound class that subclasses `base_class`.
def compound( base_class: Optional[Type[Object]] = None, args: Optional[ List[ Union[ Tuple[Tuple[str, pg_typing.KeySpec], pg_typing.ValueSpec, str], Tuple[ Tuple[str, pg_typing.KeySpec], pg_typing.ValueSpec, str, Any ], ] ] ] = None, # pylint: disable=bad-continuation **kwargs ): """Function decorator to create compound class. Example:: @dataclasses.dataclass class Foo: x: int y: int def sum(self): return self.x + self.y @pg.compound def foo_with_equal_x_y(v: int) -> Foo: return Foo(v, v) f = foo_with_equal_x_y(1) # First of all, the objects of compound classes can be used as an in-place # replacement for the objects of regular classes, as they are subclasses of # the regular classes. assert issubclass(foo_with_equal_x_y, Foo) assert isinstance(f, Foo) # We can access symbolic attributes of the compound object. assert f.v == 1 # We can also access the public APIs of the decomposed object. assert f.x == 1 assert f.y == 1 assert f.sum() == 2 # Or explicit access the decomposed object. assert f.decomposed == Foo(1, 1) # Moreover, symbolic power is fully unleashed to the compound class. f.rebind(v=2) assert f.x == 2 assert f.y == 2 assert f.sum() == 4 # Err with runtime type check: 2.5 is not an integer. f.rebind(v=2.5) Args: base_class: The base class of the compond class, which should be a ``pg.Object`` type. If None, it will be infererenced from the return annotation of `factory_fn`. If the annotation is not present or `auto_typing` is set to False, `base_class` must be present. args: Symbolic args specification. See :class:`pg.compound_class` for details. **kwargs: Keyword arguments. See :class:`pg.compound_class` for details. Returns: A symbolic compound class that subclasses `base_class`. """ if inspect.isfunction(base_class): assert args is None return compound_class(base_class, add_to_registry=True, **kwargs) return lambda fn: compound_class( # pylint: disable=g-long-lambda # pytype: disable=wrong-arg-types fn, base_class, args, add_to_registry=True, **kwargs )
(base_class: Optional[Type[pyglove.core.symbolic.object.Object]] = None, args: Optional[List[Union[Tuple[Tuple[str, pyglove.core.typing.class_schema.KeySpec], pyglove.core.typing.class_schema.ValueSpec, str], Tuple[Tuple[str, pyglove.core.typing.class_schema.KeySpec], pyglove.core.typing.class_schema.ValueSpec, str, Any]]]] = None, **kwargs)
41,444
pyglove.core.symbolic.compounding
compound_class
Creates a compound class from a factory function. Args: factory_fn: A function that produces a compound object. base_class: The base class of the compond class, which should be a ``pg.Object`` type. If None, it will be infererenced from the return annotation of `factory_fn`. If the annotation is not present or `auto_typing` is set to False, `base_class` must be present. args: Symbolic args specification. `args` is a list of tuples, each describes an argument from the input function. Each tuple is the format of (<argumment-name>, <value-spec>, [description], [metadata-objects]). `argument-name` - a `str` or `pg_typing.StrKey` object. When `pg_typing.StrKey` is used, it describes the wildcard keyword argument. `value-spec` - a `pg_typing.ValueSpec` object or equivalent, e.g. primitive values which will be converted to ValueSpec implementation according to its type and used as its default value. `description` - a string to describe the agument. `metadata-objects` - an optional list of any type, which can be used to generate code according to the schema. There are notable rules in filling the `args`: 1) When `args` is None or arguments from the function signature are missing from it, `schema.Field` for these fields will be automatically generated and inserted into `args`. That being said, every arguments in input function will have a `schema.Field` counterpart in `Functor.schema.fields` sorted by the declaration order of each argument in the function signature ( other than the order in `args`). 2) Default argument values are specified along with function definition as regular python functions, instead of being set at `schema.Field` level. But validation rules can be set using `args` and apply to argument values. lazy_build: If True, `factory_fn` will be called upon first use. Otherwise, it will be called at construction. auto_doc: If True, the descriptions of argument fields will be inherited from `factory_fn` docstr if they are not explicitly specified through ``args``. auto_typing: If True, the value spec for constraining each argument will be inferred from its annotation. Otherwise the value specs for all arguments will be ``pg.typing.Any()``. serialization_key: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. additional_keys: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. add_to_registry: If True, the newly created functor class will be added to the registry for deserialization. Returns: A callable that converts a factory function into a subclass of the base class.
def compound_class( factory_fn: types.FunctionType, base_class: Optional[Type[Object]] = None, args: Optional[ List[ Union[ Tuple[Tuple[str, pg_typing.KeySpec], pg_typing.ValueSpec, str], Tuple[ Tuple[str, pg_typing.KeySpec], pg_typing.ValueSpec, str, Any ], ] ] ] = None, # pylint: disable=bad-continuation *, lazy_build: bool = True, auto_doc: bool = True, auto_typing: bool = True, serialization_key: Optional[str] = None, additional_keys: Optional[List[str]] = None, add_to_registry: bool = False ) -> Type[Compound]: """Creates a compound class from a factory function. Args: factory_fn: A function that produces a compound object. base_class: The base class of the compond class, which should be a ``pg.Object`` type. If None, it will be infererenced from the return annotation of `factory_fn`. If the annotation is not present or `auto_typing` is set to False, `base_class` must be present. args: Symbolic args specification. `args` is a list of tuples, each describes an argument from the input function. Each tuple is the format of (<argumment-name>, <value-spec>, [description], [metadata-objects]). `argument-name` - a `str` or `pg_typing.StrKey` object. When `pg_typing.StrKey` is used, it describes the wildcard keyword argument. `value-spec` - a `pg_typing.ValueSpec` object or equivalent, e.g. primitive values which will be converted to ValueSpec implementation according to its type and used as its default value. `description` - a string to describe the agument. `metadata-objects` - an optional list of any type, which can be used to generate code according to the schema. There are notable rules in filling the `args`: 1) When `args` is None or arguments from the function signature are missing from it, `schema.Field` for these fields will be automatically generated and inserted into `args`. That being said, every arguments in input function will have a `schema.Field` counterpart in `Functor.schema.fields` sorted by the declaration order of each argument in the function signature ( other than the order in `args`). 2) Default argument values are specified along with function definition as regular python functions, instead of being set at `schema.Field` level. But validation rules can be set using `args` and apply to argument values. lazy_build: If True, `factory_fn` will be called upon first use. Otherwise, it will be called at construction. auto_doc: If True, the descriptions of argument fields will be inherited from `factory_fn` docstr if they are not explicitly specified through ``args``. auto_typing: If True, the value spec for constraining each argument will be inferred from its annotation. Otherwise the value specs for all arguments will be ``pg.typing.Any()``. serialization_key: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. additional_keys: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. add_to_registry: If True, the newly created functor class will be added to the registry for deserialization. Returns: A callable that converts a factory function into a subclass of the base class. """ if not inspect.isfunction(factory_fn): raise TypeError('Decorator `compound` is only applicable to functions.') schema = schema_utils.function_schema( factory_fn, args=args, returns=pg_typing.Object(base_class) if base_class else None, auto_doc=auto_doc, auto_typing=auto_typing, ) # Inference the base_class from schema. return_spec = schema.metadata.get('returns', None) if isinstance(return_spec, pg_typing.Object): base_class = return_spec.cls else: raise ValueError( 'Cannot inference the base class from return value annotation. ' 'Please either add an annotation for the return value or provide the ' 'value for the `base_class` argument.' ) class _Compound(Compound, base_class): """The compound class bound to a factory function.""" # Disable auto register so we can use function module and name # for registration later. auto_register = False # The compound class uses the function signature to decide its # schema, thus we do not infer its schema from the class annotations. auto_schema = False def _on_bound(self): # NOTE(daiyip): Do not call `super()._on_bound()` to avoid side effect. # This is okay since all states are delegated to `self.decomposed`. Compound._on_bound(self) # pylint: disable=protected-access self._sym_decomposed = None if not lazy_build: # Trigger build. _ = self.decomposed @property def decomposed(self): if self._sym_decomposed is None: # Build the compound object. self._sym_decomposed = factory_fn(**self.sym_init_args) # This allows the decomposed symbolic object to access the parent chain # for value retrieval of inferred attributes. if isinstance(self._sym_decomposed, Symbolic): self._sym_decomposed.sym_setparent(self.sym_parent) return self._sym_decomposed def _on_parent_change(self, old_parent, new_parent): """Override to allow decomposed object to follow parent chain change.""" super()._on_parent_change(old_parent, new_parent) if isinstance(self._sym_decomposed, Symbolic): self._sym_decomposed.sym_setparent(new_parent) def _sym_inferred(self, key: str, **kwargs) -> Any: # Bypass the user base' `_sym_inferred` if it's overriden. return Compound._sym_inferred(self, key, **kwargs) def __getattribute__(self, name: str): if ( name.startswith('_') or name in _COMPOUND_OWNED_ATTR_NAMES or name in self.sym_init_args ): return Compound.__getattribute__(self, name) # Redirect attribute to the compound object. return getattr(self.decomposed, name) cls = _Compound cls.__name__ = factory_fn.__name__ cls.__qualname__ = factory_fn.__qualname__ cls.__module__ = factory_fn.__module__ cls.__doc__ = factory_fn.__doc__ # Enable automatic registration of subclass. cls.auto_register = True cls.apply_schema(schema) # Supporting abstract class as compound base class. # This is a feature supported for Python 3.10 and above. if sys.version_info >= (3, 10): # NOTE(daiyip): Override abstract methods as non-ops, so `cls` could # have an abstract class as its base. We don't need to worry about the # implementation of the abstract method, since it will be detoured to the # decomposed object at runtime via `__getattribute__`. for key in dir(cls): attr = getattr(cls, key) if getattr(attr, '__isabstractmethod__', False): noop = lambda self, *args, **kwargs: None if isinstance(attr, property): noop = property(noop) else: assert inspect.isfunction(attr), (key, attr) setattr(cls, key, noop) abc.update_abstractmethods(cls) if add_to_registry: cls.register_for_deserialization(serialization_key, additional_keys) return cls
(factory_fn: function, base_class: Optional[Type[pyglove.core.symbolic.object.Object]] = None, args: Optional[List[Union[Tuple[Tuple[str, pyglove.core.typing.class_schema.KeySpec], pyglove.core.typing.class_schema.ValueSpec, str], Tuple[Tuple[str, pyglove.core.typing.class_schema.KeySpec], pyglove.core.typing.class_schema.ValueSpec, str, Any]]]] = None, *, lazy_build: bool = True, auto_doc: bool = True, auto_typing: bool = True, serialization_key: Optional[str] = None, additional_keys: Optional[List[str]] = None, add_to_registry: bool = False) -> Type[pyglove.core.symbolic.compounding.Compound]
41,445
pyglove.core.symbolic.base
contains
Returns if a value contains values of specific type. Example:: @pg.members([ ('x', pg.typing.Any()), ('y', pg.typing.Any()) ]) class A(pg.Object): pass # Test if a symbolic tree contains a value. assert pg.contains(A('a', 'b'), 'a') assert not pg.contains(A('a', 'b'), A) # Test if a symbolic tree contains a type. assert pg.contains({'x': A(1, 2)}, type=A) assert pg.contains({'x': A(1, 2)}, type=int) assert pg.contains({'x': A(1, 2)}, type=(int, float)) Args: x: The source value to query against. value: Value of sub-node to contain. Applicable when `type` is None. type: A type or a tuple of types for the sub-nodes. Applicable if not None. Returns: True if `x` itself or any of its sub-nodes equal to `value` or is an instance of `value_type`.
def contains( x: Any, value: Any = None, type: Optional[Union[ # pylint: disable=redefined-builtin Type[Any], Tuple[Type[Any]]]]=None ) -> bool: """Returns if a value contains values of specific type. Example:: @pg.members([ ('x', pg.typing.Any()), ('y', pg.typing.Any()) ]) class A(pg.Object): pass # Test if a symbolic tree contains a value. assert pg.contains(A('a', 'b'), 'a') assert not pg.contains(A('a', 'b'), A) # Test if a symbolic tree contains a type. assert pg.contains({'x': A(1, 2)}, type=A) assert pg.contains({'x': A(1, 2)}, type=int) assert pg.contains({'x': A(1, 2)}, type=(int, float)) Args: x: The source value to query against. value: Value of sub-node to contain. Applicable when `type` is None. type: A type or a tuple of types for the sub-nodes. Applicable if not None. Returns: True if `x` itself or any of its sub-nodes equal to `value` or is an instance of `value_type`. """ if type is not None: def _contains(k, v, p): del k, p if isinstance(v, type): return TraverseAction.STOP return TraverseAction.ENTER else: def _contains(k, v, p): del k, p if v == value: return TraverseAction.STOP return TraverseAction.ENTER return not traverse(x, _contains)
(x: Any, value: Optional[Any] = None, type: Union[NoneType, Type[Any], Tuple[Type[Any]]] = None) -> bool
41,447
pyglove.core.detouring.class_detour
detour
Context manager for detouring object creation. At times, we want to replace an object of a class to an object of a different class. Usually, we do so by passing the object as a function argument using dependency injection. However, it's not always possible to expose those internal objects as parameters to the class, as we cannot predict what needs to be customized in future. Also, exposing too many arguments will hurt usability, it's big burden to figure out 20 arguments of a function for a user to get started. `pg.detour` provides another option for object replacement in Python, which creates a context in which some source classes can be detoured to specified destination classes or functions. For example, the code snippet below will detour instantation of class A to class B, and vice-versa:: class A: pass class B: pass # Exchange class A and class B. with pg.detour([(A, B), (B, A)]): a = A() # a is a B object. b = B() # b is an A object. Detour destination can be a function, which allows users to intercept the arguments passed to the class constructor. For example:: class Foo: def __init__(self, value): self.value = value class Bar: def __init__(self, value): self.value = value def detoured_foo(cls, value): # cls is the original class before detour. return Bar(value + 1) with pg.detour([(Foo, detoured_foo)]): f = Foo(1) # f will be Bar(2). Detour can be nested. The outer scope mappings take precedence over the mappings from the inner loop, allowing users to change object creation behaviors from the outside. For example, the following code will detour class A to class C:: with pg.detour([(A, C)]): with pg.detour([A, B]): a = A() # a is a C object. Detour is transisive across the inner and outer scope. For example, the code below will detour class A to class C through B:: with pg.detour([(B, C)]): a1 = A() # a1 is an A object. with pg.detour([A, B]): a2 = A() # a2 is a C object. (A -> B -> C) Detour is thread-sfe. Args: mappings: A sequence of tuple (src_cls, dest_cls_or_fn) as mappings for the detour - 'src_cls' is the source class to be detoured, while 'dest_cls_or_fn' is the destination class or function. When it's a class, its `__init__` method should have the same signature as the `__init__` of the original class. When it's a function, it should accept a positional argument `cls`, for passing the original class that is being detoured, followed by all the arguments that the original class should accept. For example, a class with `__init__(self, x, *args, y, **kwargs)` can be detoured to a function with signature `(cls, x, *args, y, **kwargs)`. Yields: Resolved detour mappings. Raises: TypeError: If the first item in each mapping is not a class, or the second item in each mapping is neither a class nor a function.
def get_original_new(self, src_cls): """Returns the original new method of source cls.""" if not _is_detoured_new(src_cls.__new__): orig_new = src_cls.__new__ else: # NOTE(daiyip): there are usually 3 patterns in implementing __new__. # 1) call super.__new__ to return an instance. # 2) explicitly call object.__new__ to return an instance. # 3) return an instance from another class. # # The following code aims to support case #1 by mimicing the call # convention of super.__new__ without access to the super object. # We implement this by maintaining a call history of `__new__` method # returned by `get_original_new` for each top-most call to # `_maybe_detour_new`. Based on the history, we always return the next # __new__ along the inheritance hierarchy. For example, for code: # # ``` # class A: # def __new__(cls, *args, **kwargs): # return super(A, cls).__new__(cls, *args, **kwargs) # # class B: # def __new__(cls, *args, **kwargs): # return super(A, cls).__new__(cls, *args, **kwargs) # # class C(A, B): # pass # ``` # when we detour A and B to other classes, their `__new__` method will be # replaced with `_maybe_detoured_new`. As we create an object of C, it # will call `C.__new__`, which inherits the `_maybe_detoured_new` assigned # to `A.__new__`. `_maybe_detoured_new` calls `get_original_new` on class # C, which should return the original `A.__new__`. It then executes # `super(A, cls).__new__`, which triggers `_maybe_detoured_new` method # again assigned to `B.__new__`. In such case, we cannot differentiate the # first call to `_maybe_detoured_new` (C.__new__) from this call, since # both take class C as the cls argument. However, by assuming that nested # `_maybe_detoured_new` call should always reflect the `super.__new__` # call convention, we can store the call history for these invoked __new__ # methods, and return the one that is one-step closer to `object.__new__`. # This may not work for the most complicated __new__ customization, but # should work well for most __new__ implementations. orig_new = self._original_new.get(src_cls, object.__new__) if orig_new is object.__new__ or orig_new in self._new_stack: for base in src_cls.__bases__: base_new = self.get_original_new(base) if base_new is not object.__new__ and base_new not in self._new_stack: orig_new = base_new break return orig_new
(mappings: Sequence[Tuple[Type[Any], Union[Type[Any], function]]])
41,536
pyglove.core.symbolic.diff
diff
Inspect the symbolic diff between two objects. For example:: @pg.members([ ('x', pg.Any()), ('y', pg.Any()) ]) class A(pg.Object): pass @pg.members([ ('z', pg.Any().noneable()) ]) class B(A): pass # Diff the same object. pg.diff(A(1, 2), A(1, 2)) >> No diff # Diff the same object with mode 'same'. pg.diff(A(1, 2), A(1, 2), mode='same') >> A(1, 2) # Diff different objects of the same type. pg.diff(A(1, 2), A(1, 3)) >> A( >> y = Diff( >> left=2, >> right=3 >> ) >> ) # Diff objects of different type. pg.diff(A(1, 2), B(1, 3)) >> Diff( >> left = A( >> x = 1, >> y = 2 >> ), >> right = B( >> x = 1, >> y = 3, >> z = None >> ) # Diff objects of different type with collapse. pg.diff(A(1, 2), B(1, 3), collapse=True) >> A|B ( >> y = Diff( >> left = 2, >> right = 3, >> ), >> z = Diff( >> left = MISSING, >> right = None >> ) >> ) # Diff objects of different type with collapse and flatten. # Object type is included in key '_type'. pg.diff(A(1, pg.Dict(a=1)), B(1, pg.Dict(a=2)), collapse=True, flatten=True) >> { >> 'y.a': Diff(1, 2), >> 'z', Diff(MISSING, None), >> '_type': Diff(A, B) >> } Args: left: The left object to compare. right: The right object to compare. flatten: If True, returns a level-1 dict with diff keys flattened. Otherwise preserve the hierarchy of the diff result. collapse: One of a boolean value, string or a callable object that indicates whether to collapse two different values. The default value 'same_type' means only collapse when the two values are of the same type. mode: Diff mode, should be one of ['diff', 'same', 'both']. For 'diff' mode (the default), the return value contains only different values. For 'same' mode, the return value contains only same values. For 'both', the return value contains both different and same values. Returns: A `Diff` object when flatten is False. Otherwise a dict of string (key path) to `Diff`.
def diff( left: Any, right: Any, flatten: bool = False, collapse: Union[bool, str, Callable[[Any, Any], bool]] = 'same_type', mode: str = 'diff') -> object_utils.Nestable[Diff]: """Inspect the symbolic diff between two objects. For example:: @pg.members([ ('x', pg.Any()), ('y', pg.Any()) ]) class A(pg.Object): pass @pg.members([ ('z', pg.Any().noneable()) ]) class B(A): pass # Diff the same object. pg.diff(A(1, 2), A(1, 2)) >> No diff # Diff the same object with mode 'same'. pg.diff(A(1, 2), A(1, 2), mode='same') >> A(1, 2) # Diff different objects of the same type. pg.diff(A(1, 2), A(1, 3)) >> A( >> y = Diff( >> left=2, >> right=3 >> ) >> ) # Diff objects of different type. pg.diff(A(1, 2), B(1, 3)) >> Diff( >> left = A( >> x = 1, >> y = 2 >> ), >> right = B( >> x = 1, >> y = 3, >> z = None >> ) # Diff objects of different type with collapse. pg.diff(A(1, 2), B(1, 3), collapse=True) >> A|B ( >> y = Diff( >> left = 2, >> right = 3, >> ), >> z = Diff( >> left = MISSING, >> right = None >> ) >> ) # Diff objects of different type with collapse and flatten. # Object type is included in key '_type'. pg.diff(A(1, pg.Dict(a=1)), B(1, pg.Dict(a=2)), collapse=True, flatten=True) >> { >> 'y.a': Diff(1, 2), >> 'z', Diff(MISSING, None), >> '_type': Diff(A, B) >> } Args: left: The left object to compare. right: The right object to compare. flatten: If True, returns a level-1 dict with diff keys flattened. Otherwise preserve the hierarchy of the diff result. collapse: One of a boolean value, string or a callable object that indicates whether to collapse two different values. The default value 'same_type' means only collapse when the two values are of the same type. mode: Diff mode, should be one of ['diff', 'same', 'both']. For 'diff' mode (the default), the return value contains only different values. For 'same' mode, the return value contains only same values. For 'both', the return value contains both different and same values. Returns: A `Diff` object when flatten is False. Otherwise a dict of string (key path) to `Diff`. """ def _should_collapse(left, right): if isinstance(left, dict): if isinstance(right, dict): return True elif isinstance(left, list): return isinstance(right, list) if (isinstance(left, (dict, base.Symbolic)) and isinstance(right, (dict, base.Symbolic))): if collapse == 'same_type': return type(left) is type(right) elif callable(collapse): return collapse(left, right) elif isinstance(collapse, bool): return collapse else: raise ValueError(f'Unsupported `collapse` value: {collapse!r}') else: return False def _add_child_diff(diff_container, key, value, child_has_diff): if ((mode != 'same' and child_has_diff) or (mode != 'diff' and not child_has_diff)): diff_container[key] = value def _get_container_ops(container): if isinstance(container, dict): return container.__contains__, container.__getitem__, container.items else: assert isinstance(container, base.Symbolic) return container.sym_hasattr, container.sym_getattr, container.sym_items def _diff(x, y) -> Tuple[object_utils.Nestable[Diff], bool]: if x is y or x == y: return (Diff(x, y), False) if not _should_collapse(x, y): return (Diff(x, y), True) diff_value, has_diff = {}, False if isinstance(x, list): assert isinstance(y, list) def _child(l, index): return l[i] if index < len(l) else Diff.MISSING for i in range(max(len(x), len(y))): child_diff, child_has_diff = _diff(_child(x, i), _child(y, i)) has_diff = has_diff or child_has_diff _add_child_diff(diff_value, str(i), child_diff, child_has_diff) diff_value = Diff(pg_list.List, pg_list.List, children=diff_value) else: assert isinstance(x, (dict, base.Symbolic)) assert isinstance(y, (dict, base.Symbolic)) x_haskey, _, x_items = _get_container_ops(x) y_haskey, y_getitem, y_items = _get_container_ops(y) for k, xv in x_items(): yv = y_getitem(k) if y_haskey(k) else Diff.MISSING child_diff, child_has_diff = _diff(xv, yv) has_diff = has_diff or child_has_diff _add_child_diff(diff_value, k, child_diff, child_has_diff) for k, yv in y_items(): if not x_haskey(k): child_diff, _ = _diff(Diff.MISSING, yv) has_diff = True _add_child_diff(diff_value, k, child_diff, True) xt, yt = type(x), type(y) same_type = xt is yt if not same_type: has_diff = True if flatten: # Put type difference with key '_type'. Since symbolic # fields will not start with underscore, so there should be # no clash. if not same_type or mode != 'diff': diff_value['_type'] = Diff(xt, yt) else: diff_value = Diff(xt, yt, children=diff_value) return diff_value, has_diff diff_value, has_diff = _diff(left, right) if not has_diff and mode == 'diff': diff_value = Diff() if flatten: diff_value = object_utils.flatten(diff_value) return diff_value
(left: Any, right: Any, flatten: bool = False, collapse: Union[bool, str, Callable[[Any, Any], bool]] = 'same_type', mode: str = 'diff') -> Union[Any, pyglove.core.symbolic.diff.Diff]
41,537
pyglove.core.hyper.object_template
dna_spec
Returns the DNASpec from a (maybe) hyper value. Example:: hyper = pg.Dict(x=pg.oneof([1, 2, 3]), y=pg.oneof(['a', 'b'])) spec = pg.dna_spec(hyper) assert spec.space_size == 6 assert len(spec.decision_points) == 2 print(spec.decision_points) # Select a partial space with `where` argument. spec = pg.dna_spec(hyper, where=lambda x: len(x.candidates) == 2) assert spec.space_size == 2 assert len(spec.decision_points) == 1 See also: * :class:`pyglove.DNASpec` * :class:`pyglove.DNA` Args: value: A (maybe) hyper value. where: Function to filter hyper primitives. If None, all hyper primitives from `value` will be included in the encoding/decoding process. Otherwise only the hyper primitives on which 'where' returns True will be included. `where` can be very useful to partition a search space into separate optimization processes. Please see 'Template' docstr for details. Returns: A DNASpec object, which represents the search space from algorithm's view.
def dna_spec( value: Any, where: Optional[Callable[[base.HyperPrimitive], bool]] = None ) -> geno.DNASpec: """Returns the DNASpec from a (maybe) hyper value. Example:: hyper = pg.Dict(x=pg.oneof([1, 2, 3]), y=pg.oneof(['a', 'b'])) spec = pg.dna_spec(hyper) assert spec.space_size == 6 assert len(spec.decision_points) == 2 print(spec.decision_points) # Select a partial space with `where` argument. spec = pg.dna_spec(hyper, where=lambda x: len(x.candidates) == 2) assert spec.space_size == 2 assert len(spec.decision_points) == 1 See also: * :class:`pyglove.DNASpec` * :class:`pyglove.DNA` Args: value: A (maybe) hyper value. where: Function to filter hyper primitives. If None, all hyper primitives from `value` will be included in the encoding/decoding process. Otherwise only the hyper primitives on which 'where' returns True will be included. `where` can be very useful to partition a search space into separate optimization processes. Please see 'Template' docstr for details. Returns: A DNASpec object, which represents the search space from algorithm's view. """ return template(value, where).dna_spec()
(value: Any, where: Optional[Callable[[pyglove.core.hyper.base.HyperPrimitive], bool]] = None) -> pyglove.core.geno.base.DNASpec
41,538
pyglove.core.object_utils.docstr_utils
docstr
Gets structure docstring of a Python symbol.
def docstr(symbol: Any) -> Optional[DocStr]: """Gets structure docstring of a Python symbol.""" docstr_text = getattr(symbol, '__doc__', None) return DocStr.parse(docstr_text) if docstr_text else None
(symbol: Any) -> Optional[pyglove.core.object_utils.docstr_utils.DocStr]
41,540
pyglove.core.symbolic.flags
enable_type_check
Returns a context manager to enable or disable runtime type check. `enable_type_check` is thread-safe and can be nested. For example, in the following code, runtime type check with be `a` but not on `b`:: with pg.enable_type_check(False): with pg.enable_type_check(True): a = pg.Dict(x=1, value_spec=pg.typing.Dict([('x', pg.typing.Int())])) b = pg.Dict(y=1, value_spec=pg.typing.Dict([('x', pg.typing.Int())])) Args: enabled: If True, enable runtime type check in current scope. Otherwise, disable runtime type check. Returns: A context manager for allowing/disallowing runtime type check.
def enable_type_check(enabled: bool = True) -> ContextManager[None]: """Returns a context manager to enable or disable runtime type check. `enable_type_check` is thread-safe and can be nested. For example, in the following code, runtime type check with be `a` but not on `b`:: with pg.enable_type_check(False): with pg.enable_type_check(True): a = pg.Dict(x=1, value_spec=pg.typing.Dict([('x', pg.typing.Int())])) b = pg.Dict(y=1, value_spec=pg.typing.Dict([('x', pg.typing.Int())])) Args: enabled: If True, enable runtime type check in current scope. Otherwise, disable runtime type check. Returns: A context manager for allowing/disallowing runtime type check. """ return thread_local.thread_local_value_scope( _TLS_ENABLE_TYPE_CHECK, enabled, True )
(enabled: bool = True) -> ContextManager[NoneType]
41,541
pyglove.core.symbolic.base
eq
Compares if two values are equal. Use symbolic equality if possible. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): def sym_eq(self, right): if super().sym_eq(right): return True return pg.eq(self.x, right) class B: pass assert pg.eq(1, 1) assert pg.eq(A(1), A(1)) # This is True since A has override `sym_eq`. assert pg.eq(A(1), 1) # Objects of B are compared by references. assert not pg.eq(A(B()), A(B())) Args: left: The left-hand value to compare. right: The right-hand value to compare. Returns: True if left and right is equal or symbolically equal. Otherwise False.
def eq(left: Any, right: Any) -> bool: """Compares if two values are equal. Use symbolic equality if possible. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): def sym_eq(self, right): if super().sym_eq(right): return True return pg.eq(self.x, right) class B: pass assert pg.eq(1, 1) assert pg.eq(A(1), A(1)) # This is True since A has override `sym_eq`. assert pg.eq(A(1), 1) # Objects of B are compared by references. assert not pg.eq(A(B()), A(B())) Args: left: The left-hand value to compare. right: The right-hand value to compare. Returns: True if left and right is equal or symbolically equal. Otherwise False. """ # NOTE(daiyip): the default behavior for dict/list/tuple comparison is that # it compares the elements using __eq__, __ne__. For symbolic comparison on # these container types, we need to change the behavior by using symbolic # comparison on their items. if left is right: return True if ((isinstance(left, list) and isinstance(right, list)) or (isinstance(left, tuple) and isinstance(right, tuple))): if len(left) != len(right): return False for x, y in zip(left, right): if ne(x, y): return False return True elif isinstance(left, dict): if (not isinstance(right, dict) or len(left) != len(right) or set(left.keys()) != set(right.keys())): return False # NOTE(daiyip): pg.Dict.__getitem__ will trigger inferred value # evaluation, therefore we always get its symbolic form during traversal. left_items = left.sym_items if isinstance(left, Symbolic) else left.items right_item = ( right.sym_getattr if isinstance(right, Symbolic) else right.__getitem__) for k, v in left_items(): if ne(v, right_item(k)): return False return True # We compare sym_eq with Symbolic.sym_eq to avoid endless recursion. elif (hasattr(left, 'sym_eq') and not inspect.isclass(left) and left.sym_eq.__code__ is not Symbolic.sym_eq.__code__): return left.sym_eq(right) elif (hasattr(right, 'sym_eq') and not inspect.isclass(right) and right.sym_eq.__code__ is not Symbolic.sym_eq.__code__): return right.sym_eq(left) # Compare two maybe callable objects. return pg_typing.callable_eq(left, right)
(left: Any, right: Any) -> bool
41,543
pyglove.core.hyper.evolvable
evolve
An evolvable symbolic value. Example:: @pg.symbolize @dataclasses.dataclass class Foo: x: int y: int @pg.symbolize @dataclasses.dataclass class Bar: a: int b: int # Defines possible transitions. def node_transform(location, value, parent): if isinstance(value, Foo) return Bar(value.x, value.y) if location.key == 'x': return random.choice([1, 2, 3]) if location.key == 'y': return random.choice([3, 4, 5]) v = pg.evolve(Foo(1, 3), node_transform) See also: * :class:`pyglove.hyper.Evolvable` * :func:`pyglove.oneof` * :func:`pyglove.manyof` * :func:`pyglove.permutate` * :func:`pyglove.floatv` Args: initial_value: The initial value to evolve. node_transform: A callable object that takes information of the value to operate (e.g. location, old value, parent node) and returns a new value as a replacement for the node. Such information allows users to not only access the mutation node, but the entire symbolic tree if needed, allowing complex mutation rules to be written with ease - for example - check adjacent nodes while modifying a list element. This function is designed to take care of both node replacements and node insertions. When insertion happens, the old value for the location will be `pg.MISSING_VALUE`. See `pg.composing.SeenObjectReplacer` as an example. weights: An optional callable object that returns the unnormalized (e.g. the sum of all probabilities don't have to sum to 1.0) mutation probabilities for all the nodes in the symbolic tree, based on (mutation type, location, old value, parent node), If None, all the locations and mutation types will be sampled uniformly. name: An optional name of the decision point. hints: An optional hints for the decision point. Returns: A `pg.hyper.Evolvable` object.
def evolve( initial_value: symbolic.Symbolic, node_transform: Callable[ [ object_utils.KeyPath, # Location. Any, # Old value. # pg.MISSING_VALUE for insertion. symbolic.Symbolic, # Parent node. ], Any # Replacement. ], *, weights: Optional[Callable[ [ MutationType, # Mutation type. object_utils.KeyPath, # Location. Any, # Value. symbolic.Symbolic, # Parent. ], float # Mutation weight. ]] = None, # pylint: disable=bad-whitespace name: Optional[str] = None, hints: Optional[Any] = None) -> Evolvable: """An evolvable symbolic value. Example:: @pg.symbolize @dataclasses.dataclass class Foo: x: int y: int @pg.symbolize @dataclasses.dataclass class Bar: a: int b: int # Defines possible transitions. def node_transform(location, value, parent): if isinstance(value, Foo) return Bar(value.x, value.y) if location.key == 'x': return random.choice([1, 2, 3]) if location.key == 'y': return random.choice([3, 4, 5]) v = pg.evolve(Foo(1, 3), node_transform) See also: * :class:`pyglove.hyper.Evolvable` * :func:`pyglove.oneof` * :func:`pyglove.manyof` * :func:`pyglove.permutate` * :func:`pyglove.floatv` Args: initial_value: The initial value to evolve. node_transform: A callable object that takes information of the value to operate (e.g. location, old value, parent node) and returns a new value as a replacement for the node. Such information allows users to not only access the mutation node, but the entire symbolic tree if needed, allowing complex mutation rules to be written with ease - for example - check adjacent nodes while modifying a list element. This function is designed to take care of both node replacements and node insertions. When insertion happens, the old value for the location will be `pg.MISSING_VALUE`. See `pg.composing.SeenObjectReplacer` as an example. weights: An optional callable object that returns the unnormalized (e.g. the sum of all probabilities don't have to sum to 1.0) mutation probabilities for all the nodes in the symbolic tree, based on (mutation type, location, old value, parent node), If None, all the locations and mutation types will be sampled uniformly. name: An optional name of the decision point. hints: An optional hints for the decision point. Returns: A `pg.hyper.Evolvable` object. """ return Evolvable( initial_value=initial_value, node_transform=node_transform, weights=weights, name=name, hints=hints)
(initial_value: pyglove.core.symbolic.base.Symbolic, node_transform: Callable[[pyglove.core.object_utils.value_location.KeyPath, Any, pyglove.core.symbolic.base.Symbolic], Any], *, weights: Optional[Callable[[pyglove.core.hyper.evolvable.MutationType, pyglove.core.object_utils.value_location.KeyPath, Any, pyglove.core.symbolic.base.Symbolic], float]] = None, name: Optional[str] = None, hints: Optional[Any] = None) -> pyglove.core.hyper.evolvable.Evolvable
41,544
pyglove.core.object_utils.common_traits
explicit_method_override
Decorator that marks a member method as explicitly overridden. In PyGlove, many methods are managed by the framework - for example - ``pg.Object.__init__``. It's easy for users to override these methods unconsciously. Therefore, we introduce this decorator to catch error at the first place when such overrides incidentally take place, while allowing advanced users to override them. Usage:: class Foo(pg.Object): @pg.explicit_method_override def __init__(self, *args, **kwargs): ... Args: method: method to explicitly overriden. Returns: The original method with an explicit overriden stamp.
def explicit_method_override(method): """Decorator that marks a member method as explicitly overridden. In PyGlove, many methods are managed by the framework - for example - ``pg.Object.__init__``. It's easy for users to override these methods unconsciously. Therefore, we introduce this decorator to catch error at the first place when such overrides incidentally take place, while allowing advanced users to override them. Usage:: class Foo(pg.Object): @pg.explicit_method_override def __init__(self, *args, **kwargs): ... Args: method: method to explicitly overriden. Returns: The original method with an explicit overriden stamp. """ setattr(method, '__explicit_override__', True) return method
(method)
41,546
pyglove.core.hyper.numerical
floatv
A continuous value within a range. Example:: # A continuous value within [0.0, 1.0] v = pg.floatv(0.0, 1.0) See also: * :class:`pyglove.hyper.Float` * :func:`pyglove.oneof` * :func:`pyglove.manyof` * :func:`pyglove.permutate` * :func:`pyglove.evolve` .. note:: Under symbolic mode (by default), `pg.floatv` returns a ``pg.hyper.Float`` object. Under dynamic evaluate mode, which is called under the context of :meth:`pyglove.hyper.DynamicEvaluationContext.collect` or :meth:`pyglove.hyper.DynamicEvaluationContext.apply`, it evaluates to a concrete candidate value. Args: min_value: Minimum acceptable value (inclusive). max_value: Maximum acceptable value (inclusive). scale: An optional string as the scale of the range. Supported values are None, 'linear', 'log', and 'rlog'. If None, the feasible space is unscaled. If `linear`, the feasible space is mapped to [0, 1] linearly. If `log`, the feasible space is mapped to [0, 1] logarithmically with formula `x -> log(x / min) / log(max / min)`. If `rlog`, the feasible space is mapped to [0, 1] "reverse" logarithmically, resulting in values close to `max_value` spread out more than the points near the `min_value`, with formula: x -> 1.0 - log((max + min - x) / min) / log (max / min). `min_value` must be positive if `scale` is not None. Also, it depends on the search algorithm to decide whether this information is used or not. name: A name that can be used to identify a decision point in the search space. This is needed when the code to instantiate the same hyper primitive may be called multiple times under a `pg.DynamicEvaluationContext.collect` context or a `pg.DynamicEvaluationContext.apply` context. hints: An optional value which acts as a hint for the controller. Returns: In symbolic mode, this function returns a `Float`. In dynamic evaluate mode, this function returns a float value that is no less than the `min_value` and no greater than the `max_value`. If evaluated under an `pg.DynamicEvaluationContext.apply` scope, this function will return a chosen float value from the controller decisions. If evaluated under a `pg.DynamicEvaluationContext.collect` scope, it will return `min_value`.
def floatv(min_value: float, max_value: float, scale: Optional[str] = None, *, name: Optional[str] = None, hints: Optional[Any] = None) -> Any: """A continuous value within a range. Example:: # A continuous value within [0.0, 1.0] v = pg.floatv(0.0, 1.0) See also: * :class:`pyglove.hyper.Float` * :func:`pyglove.oneof` * :func:`pyglove.manyof` * :func:`pyglove.permutate` * :func:`pyglove.evolve` .. note:: Under symbolic mode (by default), `pg.floatv` returns a ``pg.hyper.Float`` object. Under dynamic evaluate mode, which is called under the context of :meth:`pyglove.hyper.DynamicEvaluationContext.collect` or :meth:`pyglove.hyper.DynamicEvaluationContext.apply`, it evaluates to a concrete candidate value. Args: min_value: Minimum acceptable value (inclusive). max_value: Maximum acceptable value (inclusive). scale: An optional string as the scale of the range. Supported values are None, 'linear', 'log', and 'rlog'. If None, the feasible space is unscaled. If `linear`, the feasible space is mapped to [0, 1] linearly. If `log`, the feasible space is mapped to [0, 1] logarithmically with formula `x -> log(x / min) / log(max / min)`. If `rlog`, the feasible space is mapped to [0, 1] "reverse" logarithmically, resulting in values close to `max_value` spread out more than the points near the `min_value`, with formula: x -> 1.0 - log((max + min - x) / min) / log (max / min). `min_value` must be positive if `scale` is not None. Also, it depends on the search algorithm to decide whether this information is used or not. name: A name that can be used to identify a decision point in the search space. This is needed when the code to instantiate the same hyper primitive may be called multiple times under a `pg.DynamicEvaluationContext.collect` context or a `pg.DynamicEvaluationContext.apply` context. hints: An optional value which acts as a hint for the controller. Returns: In symbolic mode, this function returns a `Float`. In dynamic evaluate mode, this function returns a float value that is no less than the `min_value` and no greater than the `max_value`. If evaluated under an `pg.DynamicEvaluationContext.apply` scope, this function will return a chosen float value from the controller decisions. If evaluated under a `pg.DynamicEvaluationContext.collect` scope, it will return `min_value`. """ return Float( min_value=min_value, max_value=max_value, scale=scale, name=name, hints=hints)
(min_value: float, max_value: float, scale: Optional[str] = None, *, name: Optional[str] = None, hints: Optional[Any] = None) -> Any
41,548
pyglove.core.object_utils.formatting
format
Formats a (maybe) hierarchical value with flags. Args: value: The value to format. compact: If True, this object will be formatted into a single line. verbose: If True, this object will be formatted with verbosity. Subclasses should define `verbosity` on their own. root_indent: The start indent level for this object if the output is a multi-line string. list_wrap_threshold: A threshold in number of characters for wrapping a list value in a single line. strip_object_id: If True, format object as '<class-name>(...)' other than 'object at <address>'. include_keys: A set of keys to include from the top-level dict or object. exclude_keys: A set of keys to exclude from the top-level dict or object. Applicable only when `include_keys` is set to None. **kwargs: Keyword arguments that will be passed through unto child ``Formattable`` objects. Returns: A string representation for `value`.
def format(value: Any, # pylint: disable=redefined-builtin compact: bool = False, verbose: bool = True, root_indent: int = 0, list_wrap_threshold: int = 80, strip_object_id: bool = False, include_keys: Optional[Set[str]] = None, exclude_keys: Optional[Set[str]] = None, **kwargs) -> str: """Formats a (maybe) hierarchical value with flags. Args: value: The value to format. compact: If True, this object will be formatted into a single line. verbose: If True, this object will be formatted with verbosity. Subclasses should define `verbosity` on their own. root_indent: The start indent level for this object if the output is a multi-line string. list_wrap_threshold: A threshold in number of characters for wrapping a list value in a single line. strip_object_id: If True, format object as '<class-name>(...)' other than 'object at <address>'. include_keys: A set of keys to include from the top-level dict or object. exclude_keys: A set of keys to exclude from the top-level dict or object. Applicable only when `include_keys` is set to None. **kwargs: Keyword arguments that will be passed through unto child ``Formattable`` objects. Returns: A string representation for `value`. """ exclude_keys = exclude_keys or set() def _indent(text, indent: int) -> str: return ' ' * 2 * indent + text def _should_include_key(key: str) -> bool: if include_keys: return key in include_keys return key not in exclude_keys def _format_child(v): return format(v, compact=compact, verbose=verbose, root_indent=root_indent + 1, list_wrap_threshold=list_wrap_threshold, strip_object_id=strip_object_id, **kwargs) if isinstance(value, common_traits.Formattable): return value.format(compact=compact, verbose=verbose, root_indent=root_indent, list_wrap_threshold=list_wrap_threshold, strip_object_id=strip_object_id, include_keys=include_keys, exclude_keys=exclude_keys, **kwargs) elif isinstance(value, (list, tuple)): # Always try compact representation if length is not too long. open_bracket, close_bracket = bracket_chars( BracketType.SQUARE if isinstance(value, list) else BracketType.ROUND) s = [open_bracket] s.append(', '.join([_format_child(elem) for elem in value])) s.append(close_bracket) s = [''.join(s)] if not compact and len(s[-1]) > list_wrap_threshold: s = [f'{open_bracket}\n'] s.append(',\n'.join([ _indent(_format_child(elem), root_indent + 1) for elem in value ])) s.append('\n') s.append(_indent(close_bracket, root_indent)) elif isinstance(value, dict): if compact or not value: s = ['{'] s.append(', '.join([ f'{k!r}: {_format_child(v)}' for k, v in value.items() if _should_include_key(k) ])) s.append('}') else: s = ['{\n'] s.append(',\n'.join([ _indent(f'{k!r}: {_format_child(v)}', root_indent + 1) for k, v in value.items() if _should_include_key(k) ])) s.append('\n') s.append(_indent('}', root_indent)) else: if isinstance(value, str): s = [repr(value)] else: s = [repr(value) if compact else str(value)] if strip_object_id and 'object at 0x' in s[-1]: s = [f'{value.__class__.__name__}(...)'] return ''.join(s)
(value: Any, compact: bool = False, verbose: bool = True, root_indent: int = 0, list_wrap_threshold: int = 80, strip_object_id: bool = False, include_keys: Optional[Set[str]] = None, exclude_keys: Optional[Set[str]] = None, **kwargs) -> str
41,549
pyglove.core.symbolic.base
from_json
Deserializes a (maybe) symbolic value from JSON value. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): pass a1 = A(1) json = a1.to_json() a2 = pg.from_json(json) assert pg.eq(a1, a2) Args: json_value: Input JSON value. allow_partial: Whether to allow elements of the list to be partial. root_path: KeyPath of loaded object in its object tree. force_dict: If True, "_type" keys will be stripped before loading. As a result, JSONConvertible objects will be returned as dict. **kwargs: Allow passing through keyword arguments to from_json of specific types. Returns: Deserialized value, which is * pg.Dict for dict. * pg.List for list. * symbolic.Object for dict with '_type' property. * value itself.
def from_json(json_value: Any, *, allow_partial: bool = False, root_path: Optional[object_utils.KeyPath] = None, force_dict: bool = False, **kwargs) -> Any: """Deserializes a (maybe) symbolic value from JSON value. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): pass a1 = A(1) json = a1.to_json() a2 = pg.from_json(json) assert pg.eq(a1, a2) Args: json_value: Input JSON value. allow_partial: Whether to allow elements of the list to be partial. root_path: KeyPath of loaded object in its object tree. force_dict: If True, "_type" keys will be stripped before loading. As a result, JSONConvertible objects will be returned as dict. **kwargs: Allow passing through keyword arguments to from_json of specific types. Returns: Deserialized value, which is * pg.Dict for dict. * pg.List for list. * symbolic.Object for dict with '_type' property. * value itself. """ assert Symbolic.DictType is not None if isinstance(json_value, Symbolic): return json_value if force_dict: json_value = object_utils.json_conversion.strip_types(json_value) kwargs.update({ 'allow_partial': allow_partial, 'root_path': root_path, }) if isinstance(json_value, list): if (json_value and json_value[0] == object_utils.JSONConvertible.TUPLE_MARKER): if len(json_value) < 2: raise ValueError( object_utils.message_on_path( f'Tuple should have at least one element ' f'besides \'{object_utils.JSONConvertible.TUPLE_MARKER}\'. ' f'Encountered: {json_value}', root_path)) return tuple([ from_json(v, allow_partial=allow_partial, root_path=object_utils.KeyPath(i, root_path)) for i, v in enumerate(json_value[1:]) ]) return Symbolic.ListType(json_value, **kwargs) # pytype: disable=not-callable # pylint: disable=not-callable elif isinstance(json_value, dict): if object_utils.JSONConvertible.TYPE_NAME_KEY not in json_value: return Symbolic.DictType.from_json(json_value, **kwargs) return object_utils.from_json(json_value, **kwargs) return json_value
(json_value: Any, *, allow_partial: bool = False, root_path: Optional[pyglove.core.object_utils.value_location.KeyPath] = None, force_dict: bool = False, **kwargs) -> Any
41,550
pyglove.core.symbolic.base
from_json_str
Deserialize (maybe) symbolic object from JSON string. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): pass a1 = A(1) json_str = a1.to_json_str() a2 = pg.from_json_str(json_str) assert pg.eq(a1, a2) Args: json_str: JSON string. allow_partial: If True, allow a partial symbolic object to be created. Otherwise error will be raised on partial value. root_path: The symbolic path used for the deserialized root object. force_dict: If True, "_type" keys will be stripped before loading. As a result, JSONConvertible objects will be returned as dict. **kwargs: Additional keyword arguments that will be passed to ``pg.from_json``. Returns: A deserialized value.
def from_json_str(json_str: str, *, allow_partial: bool = False, root_path: Optional[object_utils.KeyPath] = None, force_dict: bool = False, **kwargs) -> Any: """Deserialize (maybe) symbolic object from JSON string. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): pass a1 = A(1) json_str = a1.to_json_str() a2 = pg.from_json_str(json_str) assert pg.eq(a1, a2) Args: json_str: JSON string. allow_partial: If True, allow a partial symbolic object to be created. Otherwise error will be raised on partial value. root_path: The symbolic path used for the deserialized root object. force_dict: If True, "_type" keys will be stripped before loading. As a result, JSONConvertible objects will be returned as dict. **kwargs: Additional keyword arguments that will be passed to ``pg.from_json``. Returns: A deserialized value. """ return from_json( json.loads(json_str), allow_partial=allow_partial, root_path=root_path, force_dict=force_dict, **kwargs)
(json_str: str, *, allow_partial: bool = False, root_path: Optional[pyglove.core.object_utils.value_location.KeyPath] = None, force_dict: bool = False, **kwargs) -> Any
41,551
pyglove.core.symbolic.functor
functor
Function/Decorator for creating symbolic function from regular function. Example:: # Create a symbolic function without specifying the # validation rules for arguments. @pg.functor def foo(x, y): return x + y f = foo(1, 2) assert f() == 3 # Create a symbolic function with specifying the # the validation rules for argument 'a', 'args', and 'kwargs'. @pg.functor([ ('a', pg.typing.Int()), ('b', pg.typing.Float()), ('args', pg.List(pg.typing.Int())), (pg.typing.StrKey(), pg.typing.Int()) ]) def bar(a, b, c, *args, **kwargs): return a * b / c + sum(args) + sum(kwargs.values()) See :class:`pyglove.Functor` for more details on symbolic function. Args: args: A list of tuples that defines the schema for function arguments. Please see `functor_class` for detailed explanation of `args`. returns: Optional value spec for return value. base_class: Optional base class derived from `symbolic.Functor`. If None, returning functor will inherit from `symbolic.Functor`. **kwargs: Keyword arguments for infrequently used options: Acceptable keywords are: * `serialization_key`: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. * `additional_keys`: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. Returns: A function that converts a regular function into a symbolic function.
def functor( args: Optional[List[Union[ Tuple[Union[str, pg_typing.KeySpec], pg_typing.ValueSpec, str], Tuple[Union[str, pg_typing.KeySpec], pg_typing.ValueSpec, str, Any]]] ] = None, # pylint: disable=bad-continuation returns: Optional[pg_typing.ValueSpec] = None, base_class: Optional[Type[Functor]] = None, **kwargs): """Function/Decorator for creating symbolic function from regular function. Example:: # Create a symbolic function without specifying the # validation rules for arguments. @pg.functor def foo(x, y): return x + y f = foo(1, 2) assert f() == 3 # Create a symbolic function with specifying the # the validation rules for argument 'a', 'args', and 'kwargs'. @pg.functor([ ('a', pg.typing.Int()), ('b', pg.typing.Float()), ('args', pg.List(pg.typing.Int())), (pg.typing.StrKey(), pg.typing.Int()) ]) def bar(a, b, c, *args, **kwargs): return a * b / c + sum(args) + sum(kwargs.values()) See :class:`pyglove.Functor` for more details on symbolic function. Args: args: A list of tuples that defines the schema for function arguments. Please see `functor_class` for detailed explanation of `args`. returns: Optional value spec for return value. base_class: Optional base class derived from `symbolic.Functor`. If None, returning functor will inherit from `symbolic.Functor`. **kwargs: Keyword arguments for infrequently used options: Acceptable keywords are: * `serialization_key`: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. * `additional_keys`: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. Returns: A function that converts a regular function into a symbolic function. """ if inspect.isfunction(args): assert returns is None return functor_class( typing.cast(Callable[..., Any], args), base_class=base_class, add_to_registry=True, **kwargs, ) return lambda fn: functor_class( # pylint: disable=g-long-lambda # pytype: disable=wrong-arg-types fn, args, returns, base_class=base_class, add_to_registry=True, **kwargs)
(args: Optional[List[Union[Tuple[Union[str, pyglove.core.typing.class_schema.KeySpec], pyglove.core.typing.class_schema.ValueSpec, str], Tuple[Union[str, pyglove.core.typing.class_schema.KeySpec], pyglove.core.typing.class_schema.ValueSpec, str, Any]]]] = None, returns: Optional[pyglove.core.typing.class_schema.ValueSpec] = None, base_class: Optional[Type[pyglove.core.symbolic.functor.Functor]] = None, **kwargs)
41,552
pyglove.core.symbolic.functor
functor_class
Returns a functor class from a function. Args: func: Function to be wrapped into a functor. args: Symbolic args specification. `args` is a list of tuples, each describes an argument from the input function. Each tuple is the format of (<argumment-name>, <value-spec>, [description], [metadata-objects]). `argument-name` - a `str` or `pg_typing.StrKey` object. When `pg_typing.StrKey` is used, it describes the wildcard keyword argument. `value-spec` - a `pg_typing.ValueSpec` object or equivalent, e.g. primitive values which will be converted to ValueSpec implementation according to its type and used as its default value. `description` - a string to describe the agument. `metadata-objects` - an optional list of any type, which can be used to generate code according to the schema. There are notable rules in filling the `args`: 1) When `args` is None or arguments from the function signature are missing from it, `schema.Field` for these fields will be automatically generated and inserted into `args`. That being said, every arguments in input function will have a `schema.Field` counterpart in `Functor.__schema__.fields` sorted by the declaration order of each argument in the function signature ( other than the order in `args`). 2) Default argument values are specified along with function definition as regular python functions, instead of being set at `schema.Field` level. But validation rules can be set using `args` and apply to argument values. For example:: @pg.functor([('c', pg.typing.Int(min_value=0), 'Arg c')]) def foo(a, b, c=1, **kwargs): return a + b + c + sum(kwargs.values()) assert foo.schema.fields() == [ pg.typing.Field('a', pg.Any(), 'Argument a'.), pg.typing.Field('b', pg.Any(), 'Argument b'.), pg.typing.Field('c', pg.typing.Int(), 'Arg c.), pg.typing.Filed( pg.typing.StrKey(), pg.Any(), 'Other arguments.') ] # Prebind a=1, b=2, with default value c=1. assert foo(1, 2)() == 4 returns: Optional schema specification for the return value. base_class: Optional base class (derived from `symbolic.Functor`). If None, returned type will inherit from `Functor` directly. auto_doc: If True, the descriptions of argument fields will be inherited from funciton docstr if they are not explicitly specified through ``args``. auto_typing: If True, the value spec for constraining each argument will be inferred from its annotation. Otherwise the value specs for all arguments will be ``pg.typing.Any()``. serialization_key: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. additional_keys: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. add_to_registry: If True, the newly created functor class will be added to the registry for deserialization. Returns: `symbolic.Functor` subclass that wraps input function. Raises: KeyError: names of symbolic arguments are not compatible with function signature. TypeError: types of symbolic arguments are not compatible with function signature. ValueError: default values of symbolic arguments are not compatible with function signature.
def functor_class( func: types.FunctionType, args: Optional[List[Union[ Tuple[Tuple[str, pg_typing.KeySpec], pg_typing.ValueSpec, str], Tuple[Tuple[str, pg_typing.KeySpec], pg_typing.ValueSpec, str, Any]]] ] = None, # pylint: disable=bad-continuation returns: Optional[pg_typing.ValueSpec] = None, base_class: Optional[Type[Functor]] = None, *, auto_doc: bool = False, auto_typing: bool = False, serialization_key: Optional[str] = None, additional_keys: Optional[List[str]] = None, add_to_registry: bool = False, ) -> Type[Functor]: """Returns a functor class from a function. Args: func: Function to be wrapped into a functor. args: Symbolic args specification. `args` is a list of tuples, each describes an argument from the input function. Each tuple is the format of (<argumment-name>, <value-spec>, [description], [metadata-objects]). `argument-name` - a `str` or `pg_typing.StrKey` object. When `pg_typing.StrKey` is used, it describes the wildcard keyword argument. `value-spec` - a `pg_typing.ValueSpec` object or equivalent, e.g. primitive values which will be converted to ValueSpec implementation according to its type and used as its default value. `description` - a string to describe the agument. `metadata-objects` - an optional list of any type, which can be used to generate code according to the schema. There are notable rules in filling the `args`: 1) When `args` is None or arguments from the function signature are missing from it, `schema.Field` for these fields will be automatically generated and inserted into `args`. That being said, every arguments in input function will have a `schema.Field` counterpart in `Functor.__schema__.fields` sorted by the declaration order of each argument in the function signature ( other than the order in `args`). 2) Default argument values are specified along with function definition as regular python functions, instead of being set at `schema.Field` level. But validation rules can be set using `args` and apply to argument values. For example:: @pg.functor([('c', pg.typing.Int(min_value=0), 'Arg c')]) def foo(a, b, c=1, **kwargs): return a + b + c + sum(kwargs.values()) assert foo.schema.fields() == [ pg.typing.Field('a', pg.Any(), 'Argument a'.), pg.typing.Field('b', pg.Any(), 'Argument b'.), pg.typing.Field('c', pg.typing.Int(), 'Arg c.), pg.typing.Filed( pg.typing.StrKey(), pg.Any(), 'Other arguments.') ] # Prebind a=1, b=2, with default value c=1. assert foo(1, 2)() == 4 returns: Optional schema specification for the return value. base_class: Optional base class (derived from `symbolic.Functor`). If None, returned type will inherit from `Functor` directly. auto_doc: If True, the descriptions of argument fields will be inherited from funciton docstr if they are not explicitly specified through ``args``. auto_typing: If True, the value spec for constraining each argument will be inferred from its annotation. Otherwise the value specs for all arguments will be ``pg.typing.Any()``. serialization_key: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. additional_keys: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. add_to_registry: If True, the newly created functor class will be added to the registry for deserialization. Returns: `symbolic.Functor` subclass that wraps input function. Raises: KeyError: names of symbolic arguments are not compatible with function signature. TypeError: types of symbolic arguments are not compatible with function signature. ValueError: default values of symbolic arguments are not compatible with function signature. """ if not inspect.isfunction(func): raise TypeError(f'{func!r} is not a function.') class _Functor(base_class or Functor): """Functor wrapper for input function.""" # The schema for function-based Functor will be inferred from the function # signature. Therefore we do not infer the schema automatically during class # creation. auto_schema = False # Do not infer symbolic fields from annotations, since this functor is # created from function definition which does not have class-level # attributes. infer_symbolic_fields_from_annotations = True def _call(self, *args, **kwargs): return func(*args, **kwargs) cls = typing.cast(Type[Functor], _Functor) cls.__name__ = func.__name__ cls.__qualname__ = func.__qualname__ cls.__module__ = getattr(func, '__module__', 'wrapper') cls.__doc__ = func.__doc__ # Enable automatic registration for subclass. cls.auto_register = True # Apply function schema. schema = schema_utils.function_schema( func, args, returns, auto_doc=auto_doc, auto_typing=auto_typing) cls.apply_schema(schema) # Register functor class for deserialization if needed. if add_to_registry: cls.register_for_deserialization(serialization_key, additional_keys) return cls
(func: function, args: Optional[List[Union[Tuple[Tuple[str, pyglove.core.typing.class_schema.KeySpec], pyglove.core.typing.class_schema.ValueSpec, str], Tuple[Tuple[str, pyglove.core.typing.class_schema.KeySpec], pyglove.core.typing.class_schema.ValueSpec, str, Any]]]] = None, returns: Optional[pyglove.core.typing.class_schema.ValueSpec] = None, base_class: Optional[Type[pyglove.core.symbolic.functor.Functor]] = None, *, auto_doc: bool = False, auto_typing: bool = False, serialization_key: Optional[str] = None, additional_keys: Optional[List[str]] = None, add_to_registry: bool = False) -> Type[pyglove.core.symbolic.functor.Functor]
41,554
pyglove.core.typing.type_conversion
get_converter
Get converter from source type to destination type.
def get_converter( src: Type[Any], dest: Union[Type[Any], Tuple[Type[Any], ...]] ) -> Optional[Callable[[Any], Any]]: """Get converter from source type to destination type.""" dest_types = dest if isinstance(dest, tuple) else (dest,) for dest in dest_types: converter = _TYPE_CONVERTER_REGISTRY.get_converter(src, dest) if converter is not None: return converter return None
(src: Type[Any], dest: Union[Type[Any], Tuple[Type[Any], ...]]) -> Optional[Callable[[Any], Any]]
41,555
pyglove.core.symbolic.flags
get_load_handler
Returns global load handler.
def get_load_handler() -> Optional[Callable[..., Any]]: """Returns global load handler.""" return _LOAD_HANDLER
() -> Optional[Callable[..., Any]]
41,556
pyglove.core.symbolic.flags
get_save_handler
Returns global save handler.
def get_save_handler() -> Optional[Callable[..., Any]]: """Returns global save handler.""" return _SAVE_HANDLER
() -> Optional[Callable[..., Any]]
41,557
pyglove.core.typing.callable_signature
get_signature
Gets signature from a python callable.
def get_signature(func: Callable, auto_typing: bool = False) -> Signature: # pylint:disable=g-bare-generic """Gets signature from a python callable.""" return Signature.from_callable(func, auto_typing)
(func: Callable, auto_typing: bool = False) -> pyglove.core.typing.callable_signature.Signature
41,558
pyglove.core.symbolic.base
gt
Returns True if a value is symbolically greater than the other value. Refer to :func:`pyglove.lt` for the definition of symbolic comparison. Args: left: The left-hand value to compare. right: The right-hand value to compare. Returns: True if the left value is symbolically greater than the right value.
def gt(left: Any, right: Any) -> bool: """Returns True if a value is symbolically greater than the other value. Refer to :func:`pyglove.lt` for the definition of symbolic comparison. Args: left: The left-hand value to compare. right: The right-hand value to compare. Returns: True if the left value is symbolically greater than the right value. """ return lt(right, left) # pylint: disable=arguments-out-of-order
(left: Any, right: Any) -> bool
41,559
pyglove.core.symbolic.base
sym_hash
Returns hash of value. Use symbolic hashing function if possible. Example:: @pg.symbolize class A: def __init__(self, x): self.x = x assert hash(A(1)) != hash(A(1)) assert pg.hash(A(1)) == pg.hash(A(1)) assert pg.hash(pg.Dict(x=[A(1)])) == pg.hash(pg.Dict(x=[A(1)])) Args: x: Value for computing hash. Returns: The hash value for `x`.
def sym_hash(x: Any) -> int: """Returns hash of value. Use symbolic hashing function if possible. Example:: @pg.symbolize class A: def __init__(self, x): self.x = x assert hash(A(1)) != hash(A(1)) assert pg.hash(A(1)) == pg.hash(A(1)) assert pg.hash(pg.Dict(x=[A(1)])) == pg.hash(pg.Dict(x=[A(1)])) Args: x: Value for computing hash. Returns: The hash value for `x`. """ if isinstance(x, Symbolic): return x.sym_hash() if inspect.isfunction(x): return hash(x.__code__.co_code) if inspect.ismethod(x): return hash((sym_hash(x.__self__), x.__code__.co_code)) # pytype: disable=attribute-error return hash(x)
(x: Any) -> int
41,562
pyglove.core.symbolic.base
is_abstract
Returns if the input value is abstract. Example:: @pg.symbolize class Foo: def __init__(self, x): pass class Bar(pg.PureSymbolic): pass assert not pg.is_abstract(1) assert not pg.is_abstract(Foo(1)) assert pg.is_abstract(Foo.partial()) assert pg.is_abstract(Bar()) assert pg.is_abstract(Foo(Bar())) assert pg.is_abstract(Foo(pg.oneof([1, 2]))) Args: x: Value to query against. Returns: True if value itself is partial/PureSymbolic or its child and nested child fields contain partial/PureSymbolic values.
def is_abstract(x: Any) -> bool: """Returns if the input value is abstract. Example:: @pg.symbolize class Foo: def __init__(self, x): pass class Bar(pg.PureSymbolic): pass assert not pg.is_abstract(1) assert not pg.is_abstract(Foo(1)) assert pg.is_abstract(Foo.partial()) assert pg.is_abstract(Bar()) assert pg.is_abstract(Foo(Bar())) assert pg.is_abstract(Foo(pg.oneof([1, 2]))) Args: x: Value to query against. Returns: True if value itself is partial/PureSymbolic or its child and nested child fields contain partial/PureSymbolic values. """ return object_utils.is_partial(x) or is_pure_symbolic(x)
(x: Any) -> bool
41,563
pyglove.core.symbolic.base
is_deterministic
Returns if the input value is deterministic. Example:: @pg.symbolize def foo(x, y): pass assert pg.is_deterministic(1) assert pg.is_deterministic(foo(1, 2)) assert not pg.is_deterministic(pg.oneof([1, 2])) assert not pg.is_deterministic(foo(pg.oneof([1, 2]), 3)) Args: x: Value to query against. Returns: True if value itself is not NonDeterministic and its child and nested child fields do not contain NonDeterministic values.
def is_deterministic(x: Any) -> bool: """Returns if the input value is deterministic. Example:: @pg.symbolize def foo(x, y): pass assert pg.is_deterministic(1) assert pg.is_deterministic(foo(1, 2)) assert not pg.is_deterministic(pg.oneof([1, 2])) assert not pg.is_deterministic(foo(pg.oneof([1, 2]), 3)) Args: x: Value to query against. Returns: True if value itself is not NonDeterministic and its child and nested child fields do not contain NonDeterministic values. """ return not contains(x, type=NonDeterministic)
(x: Any) -> bool
41,564
pyglove.core.object_utils.hierarchical
is_partial
Returns True if a value is partially bound.
def is_partial(value: Any) -> bool: """Returns True if a value is partially bound.""" def _check_full_bound(path: KeyPath, value: Any) -> bool: del path if MISSING_VALUE == value: return False elif (isinstance(value, common_traits.MaybePartial) and not isinstance(value, (dict, list))): return not value.is_partial return True return not traverse(value, _check_full_bound)
(value: Any) -> bool
41,565
pyglove.core.symbolic.base
is_pure_symbolic
Returns if the input value is pure symbolic. Example:: class Bar(pg.PureSymbolic): pass @pg.symbolize def foo(x, y): pass assert not pg.is_pure_symbolic(1) assert not pg.is_pure_symbolic(foo(1, 2)) assert pg.is_pure_symbolic(Bar()) assert pg.is_pure_symbolic(foo(Bar(), 1)) assert pg.is_pure_symbolic(foo(pg.oneof([1, 2]), 1)) Args: x: Value to query against. Returns: True if value itself is PureSymbolic or its child and nested child fields contain PureSymbolic values.
def is_pure_symbolic(x: Any) -> bool: """Returns if the input value is pure symbolic. Example:: class Bar(pg.PureSymbolic): pass @pg.symbolize def foo(x, y): pass assert not pg.is_pure_symbolic(1) assert not pg.is_pure_symbolic(foo(1, 2)) assert pg.is_pure_symbolic(Bar()) assert pg.is_pure_symbolic(foo(Bar(), 1)) assert pg.is_pure_symbolic(foo(pg.oneof([1, 2]), 1)) Args: x: Value to query against. Returns: True if value itself is PureSymbolic or its child and nested child fields contain PureSymbolic values. """ def _check_pure_symbolic(k, v, p): del k, p if (isinstance(v, PureSymbolic) or (isinstance(v, Symbolic) and v.sym_puresymbolic)): return TraverseAction.STOP else: return TraverseAction.ENTER return not traverse(x, _check_pure_symbolic)
(x: Any) -> bool
41,566
pyglove.core.hyper.iter
iterate
Iterate a hyper value based on an algorithm. Example:: hyper_dict = pg.Dict(x=pg.oneof([1, 2, 3]), y=pg.oneof(['a', 'b'])) # Get all examples from the hyper_dict. assert list(pg.iter(hyper_dict)) == [ pg.Dict(x=1, y='a'), pg.Dict(x=1, y='b'), pg.Dict(x=2, y='a'), pg.Dict(x=2, y='b'), pg.Dict(x=3, y='a'), pg.Dict(x=3, y='b'), ] # Get the first two examples. assert list(pg.iter(hyper_dict, 2)) == [ pg.Dict(x=1, y='a'), pg.Dict(x=1, y='b'), ] # Random sample examples, which is equivalent to `pg.random_sample`. list(pg.iter(hyper_dict, 2, pg.geno.Random())) # Iterate examples with feedback loop. for d, feedback in pg.iter( hyper_dict, 10, pg.evolution.regularized_evolution(pg.evolution.mutators.Uniform())): feedback(d.x) # Only materialize selected parts. assert list( pg.iter(hyper_dict, where=lambda x: len(x.candidates) == 2)) == [ pg.Dict(x=pg.oneof([1, 2, 3]), y='a'), pg.Dict(x=pg.oneof([1, 2, 3]), y='b'), ] ``pg.iter`` distinguishes from `pg.sample` in that it's designed for simple in-process iteration, which is handy for quickly generating examples from algorithms without maintaining trail states. On the contrary, `pg.sample` is designed for distributed sampling, with parallel workers and failover handling. Args: hyper_value: A hyper value that represents a space of instances. num_examples: An optional integer as the max number of examples to propose. If None, propose will return an iterator of infinite examples. algorithm: An optional DNA generator. If None, Sweeping will be used, which iterates examples in order. where: Function to filter hyper primitives. If None, all hyper primitives from `value` will be included in the encoding/decoding process. Otherwise only the hyper primitives on which 'where' returns True will be included. `where` can be useful to partition a search space into separate optimization processes. Please see 'Template' docstr for details. force_feedback: If True, always return the Feedback object together with the example, this is useful when the user want to pass different DNAGenerators to `pg.iter` and want to handle them uniformly. Yields: A tuple of (example, feedback_fn) if the algorithm needs a feedback or `force_feedback` is True, otherwise the example. Raises: ValueError: when `hyper_value` is a constant value.
def iterate(hyper_value: Any, num_examples: Optional[int] = None, algorithm: Optional[geno.DNAGenerator] = None, where: Optional[Callable[[base.HyperPrimitive], bool]] = None, force_feedback: bool = False): """Iterate a hyper value based on an algorithm. Example:: hyper_dict = pg.Dict(x=pg.oneof([1, 2, 3]), y=pg.oneof(['a', 'b'])) # Get all examples from the hyper_dict. assert list(pg.iter(hyper_dict)) == [ pg.Dict(x=1, y='a'), pg.Dict(x=1, y='b'), pg.Dict(x=2, y='a'), pg.Dict(x=2, y='b'), pg.Dict(x=3, y='a'), pg.Dict(x=3, y='b'), ] # Get the first two examples. assert list(pg.iter(hyper_dict, 2)) == [ pg.Dict(x=1, y='a'), pg.Dict(x=1, y='b'), ] # Random sample examples, which is equivalent to `pg.random_sample`. list(pg.iter(hyper_dict, 2, pg.geno.Random())) # Iterate examples with feedback loop. for d, feedback in pg.iter( hyper_dict, 10, pg.evolution.regularized_evolution(pg.evolution.mutators.Uniform())): feedback(d.x) # Only materialize selected parts. assert list( pg.iter(hyper_dict, where=lambda x: len(x.candidates) == 2)) == [ pg.Dict(x=pg.oneof([1, 2, 3]), y='a'), pg.Dict(x=pg.oneof([1, 2, 3]), y='b'), ] ``pg.iter`` distinguishes from `pg.sample` in that it's designed for simple in-process iteration, which is handy for quickly generating examples from algorithms without maintaining trail states. On the contrary, `pg.sample` is designed for distributed sampling, with parallel workers and failover handling. Args: hyper_value: A hyper value that represents a space of instances. num_examples: An optional integer as the max number of examples to propose. If None, propose will return an iterator of infinite examples. algorithm: An optional DNA generator. If None, Sweeping will be used, which iterates examples in order. where: Function to filter hyper primitives. If None, all hyper primitives from `value` will be included in the encoding/decoding process. Otherwise only the hyper primitives on which 'where' returns True will be included. `where` can be useful to partition a search space into separate optimization processes. Please see 'Template' docstr for details. force_feedback: If True, always return the Feedback object together with the example, this is useful when the user want to pass different DNAGenerators to `pg.iter` and want to handle them uniformly. Yields: A tuple of (example, feedback_fn) if the algorithm needs a feedback or `force_feedback` is True, otherwise the example. Raises: ValueError: when `hyper_value` is a constant value. """ if isinstance(hyper_value, dynamic_evaluation.DynamicEvaluationContext): dynamic_evaluation_context = hyper_value spec = hyper_value.dna_spec t = None else: t = object_template.template(hyper_value, where) if t.is_constant: raise ValueError( f'\'hyper_value\' is a constant value: {hyper_value!r}.') dynamic_evaluation_context = None spec = t.dna_spec() if algorithm is None: algorithm = geno.Sweeping() # NOTE(daiyip): algorithm can continue if it's already set up with the same # DNASpec, or we will setup the algorithm with the DNASpec from the template. if algorithm.dna_spec is None: algorithm.setup(spec) elif symbolic.ne(spec, algorithm.dna_spec): raise ValueError( f'{algorithm!r} has been set up with a different DNASpec. ' f'Existing: {algorithm.dna_spec!r}, New: {spec!r}.') count = 0 while num_examples is None or count < num_examples: try: count += 1 dna = algorithm.propose() if t is not None: example = t.decode(dna) else: assert dynamic_evaluation_context is not None example = lambda: dynamic_evaluation_context.apply(dna) if force_feedback or algorithm.needs_feedback: yield example, Feedback(algorithm, dna) else: yield example except StopIteration: return
(hyper_value: Any, num_examples: Optional[int] = None, algorithm: Optional[pyglove.core.geno.dna_generator.DNAGenerator] = None, where: Optional[Callable[[pyglove.core.hyper.base.HyperPrimitive], bool]] = None, force_feedback: bool = False)
41,651
pyglove.core.symbolic.base
load
Load a symbolic value using the global load handler. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): pass a1 = A(1) file = 'my_file.json' a1.save(file) a2 = pg.load(file) assert pg.eq(a1, a2) Args: path: A path string for loading an object. *args: Positional arguments that will be passed through to the global load handler. **kwargs: Keyword arguments that will be passed through to the global load handler. Returns: Return value from the global load handler.
def load(path: str, *args, **kwargs) -> Any: """Load a symbolic value using the global load handler. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): pass a1 = A(1) file = 'my_file.json' a1.save(file) a2 = pg.load(file) assert pg.eq(a1, a2) Args: path: A path string for loading an object. *args: Positional arguments that will be passed through to the global load handler. **kwargs: Keyword arguments that will be passed through to the global load handler. Returns: Return value from the global load handler. """ load_handler = flags.get_load_handler() or default_load_handler value = load_handler(path, *args, **kwargs) if flags.is_tracking_origin() and isinstance(value, Symbolic): value.sym_setorigin(path, 'load') return value
(path: str, *args, **kwargs) -> Any
41,653
pyglove.core.symbolic.base
lt
Returns True if a value is symbolically less than the other value. Symbolic values are comparable by their symbolic representations. For common types such as numbers and string, symbolic comparison returns the same value as value comparisons. For example:: assert pg.lt(False, True) == Flase < True assert pg.lt(0.1, 1) == 0.1 < 1 assert pg.lt('a', 'ab') == 'a' < 'ab' However, symbolic comparison can be applied on hierarchical values, for example:: assert pg.lt(['a'], ['a', 'b']) assert pg.lt(['a', 'b', 'c'], ['b']) assert pg.lt({'x': 1}, {'x': 2}) assert pg.lt({'x': 1}, {'y': 1}) assert pg.lt(A(x=1), A(x=2)) Also, symbolic values of different types can be compared, for example:: assert pg.lt(pg.MISSING_VALUE, None) assert pg.lt(None, 1) assert pg.lt(1, 'abc') assert pg.lt('abc', []) assert pg.lt([], {}) assert pg.lt([], A(x=1)) The high-level idea is that a value with lower information entropy is less than a value with higher information entropy. As a result, we know that `pg.MISSING_VALUE` is the smallest among all values. The order of symbolic representation are defined by the following rules: 1) If x and y are comparable by their values, they will be compared using operator <. (e.g. bool, int, float, str) 2) If x and y are not directly comparable and are different in their types, they will be compared based on their types. The order of different types are: pg.MISSING_VALUE, NoneType, bool, int, float, str, list, tuple, set, dict, functions/classes. When different functions/classes compare, their order is determined by their qualified name. 3) If x and y are of the same type, which are symbolic containers (e.g. list, dict, pg.Symbolic objects), their order will be determined by the order of their first sub-nodes which are different. Therefore ['b'] is greater than ['a', 'b'], though the later have 2 elements. 4) Non-symbolic classes can define method `sym_lt` to enable symbolic comparison. Args: left: The left-hand value to compare. right: The right-hand value to compare. Returns: True if the left value is symbolically less than the right value.
def lt(left: Any, right: Any) -> bool: """Returns True if a value is symbolically less than the other value. Symbolic values are comparable by their symbolic representations. For common types such as numbers and string, symbolic comparison returns the same value as value comparisons. For example:: assert pg.lt(False, True) == Flase < True assert pg.lt(0.1, 1) == 0.1 < 1 assert pg.lt('a', 'ab') == 'a' < 'ab' However, symbolic comparison can be applied on hierarchical values, for example:: assert pg.lt(['a'], ['a', 'b']) assert pg.lt(['a', 'b', 'c'], ['b']) assert pg.lt({'x': 1}, {'x': 2}) assert pg.lt({'x': 1}, {'y': 1}) assert pg.lt(A(x=1), A(x=2)) Also, symbolic values of different types can be compared, for example:: assert pg.lt(pg.MISSING_VALUE, None) assert pg.lt(None, 1) assert pg.lt(1, 'abc') assert pg.lt('abc', []) assert pg.lt([], {}) assert pg.lt([], A(x=1)) The high-level idea is that a value with lower information entropy is less than a value with higher information entropy. As a result, we know that `pg.MISSING_VALUE` is the smallest among all values. The order of symbolic representation are defined by the following rules: 1) If x and y are comparable by their values, they will be compared using operator <. (e.g. bool, int, float, str) 2) If x and y are not directly comparable and are different in their types, they will be compared based on their types. The order of different types are: pg.MISSING_VALUE, NoneType, bool, int, float, str, list, tuple, set, dict, functions/classes. When different functions/classes compare, their order is determined by their qualified name. 3) If x and y are of the same type, which are symbolic containers (e.g. list, dict, pg.Symbolic objects), their order will be determined by the order of their first sub-nodes which are different. Therefore ['b'] is greater than ['a', 'b'], though the later have 2 elements. 4) Non-symbolic classes can define method `sym_lt` to enable symbolic comparison. Args: left: The left-hand value to compare. right: The right-hand value to compare. Returns: True if the left value is symbolically less than the right value. """ # A fast type check can eliminate most if type(left) is not type(right): tol = _type_order(left) tor = _type_order(right) # When tol == tor, this means different types are treated as same symbols. # E.g. list and pg.List. if tol != tor: return tol < tor # Most symbolic nodes are leaf, which are primitive types, therefore # we detect such types to make `lt` to run faster. if isinstance(left, (int, float, bool, str)): return left < right elif isinstance(left, list): min_len = min(len(left), len(right)) for i in range(min_len): l, r = left[i], right[i] if not eq(l, r): return lt(l, r) # `left` and `right` are equal so far, so `left` is less than `right` # only when left has a smaller length. return len(left) < len(right) elif isinstance(left, dict): lkeys = list(left.keys()) rkeys = list(right.keys()) min_len = min(len(lkeys), len(rkeys)) for i in range(min_len): kl, kr = lkeys[i], rkeys[i] if kl == kr: if not eq(left[kl], right[kr]): return lt(left[kl], right[kr]) else: return kl < kr # `left` and `right` are equal so far, so `left is less than `right` # only when left has fewer keys. return len(lkeys) < len(rkeys) elif hasattr(left, 'sym_lt'): return left.sym_lt(right) return left < right
(left: Any, right: Any) -> bool
41,654
pyglove.core.hyper.categorical
manyof
N choose K. Example:: @pg.members([ ('x', pg.typing.Int()) ]) class A(pg.Object): pass # Chooses 2 distinct candidates. v = pg.manyof(2, [1, 2, 3]) # Chooses 2 non-distinct candidates. v = pg.manyof(2, [1, 2, 3], distinct=False) # Chooses 2 distinct candidates sorted by their indices. v = pg.manyof(2, [1, 2, 3], sorted=True) # A complex type as candidate. v1 = pg.manyof(2, ['a', {'x': 1}, A(1)]) # A hierarchical categorical choice: v2 = pg.manyof(2, [ 'foo', 'bar', A(pg.oneof([1, 2, 3])) ]) .. note:: Under symbolic mode (by default), `pg.manyof` returns a ``pg.hyper.ManyOf`` object. Under dynamic evaluation mode, which is called under the context of :meth:`pyglove.hyper.DynamicEvaluationContext.collect` or :meth:`pyglove.hyper.DynamicEvaluationContext.apply`, it evaluates to a concrete candidate value. To use conditional search space in dynamic evaluate mode, the candidate should be wrapped with a `lambda` function, which is not necessary under symbolic mode. For example:: pg.manyof(2, [ lambda: pg.oneof([0, 1], name='sub_a'), lambda: pg.floatv(0.0, 1.0, name='sub_b'), lambda: pg.manyof(2, ['a', 'b', 'c'], name='sub_c') ], name='root') See also: * :class:`pyglove.hyper.ManyOf` * :func:`pyglove.manyof` * :func:`pyglove.floatv` * :func:`pyglove.permutate` * :func:`pyglove.evolve` Args: k: number of choices to make. Should be no larger than the length of `candidates` unless `choice_distinct` is set to False, candidates: Candidates to select from. Items of candidate can be any type, therefore it can have nested hyper primitives, which forms a hierarchical search space. distinct: If True, each choice needs to be unique. sorted: If True, choices are sorted by their indices in the candidates. name: A name that can be used to identify a decision point in the search space. This is needed when the code to instantiate the same hyper primitive may be called multiple times under a `pg.DynamicEvaluationContext.collect` context or a `pg.DynamicEvaluationContext.apply` context. hints: An optional value which acts as a hint for the controller. **kwargs: Keyword arguments for backward compatibility. `choices_distinct`: Old name for `distinct`. `choices_sorted`: Old name for `sorted`. Returns: In symbolic mode, this function returns a `Choices`. In dynamic evaluate mode, this function returns a list of items in `candidates`. If evaluated under a `pg.DynamicEvaluationContext.apply` scope, this function will return a list of selected candidates. If evaluated under a `pg.DynamicEvaluationContext.collect` scope, it will return a list of the first valid combination from the `candidates`. For example:: # Evaluates to [0, 1, 2]. manyof(3, range(5)) # Evaluates to [0, 0, 0]. manyof(3, range(5), distinct=False)
def manyof(k: int, candidates: Iterable[Any], distinct: bool = True, sorted: bool = False, # pylint: disable=redefined-builtin *, name: Optional[str] = None, hints: Optional[Any] = None, **kwargs) -> Any: """N choose K. Example:: @pg.members([ ('x', pg.typing.Int()) ]) class A(pg.Object): pass # Chooses 2 distinct candidates. v = pg.manyof(2, [1, 2, 3]) # Chooses 2 non-distinct candidates. v = pg.manyof(2, [1, 2, 3], distinct=False) # Chooses 2 distinct candidates sorted by their indices. v = pg.manyof(2, [1, 2, 3], sorted=True) # A complex type as candidate. v1 = pg.manyof(2, ['a', {'x': 1}, A(1)]) # A hierarchical categorical choice: v2 = pg.manyof(2, [ 'foo', 'bar', A(pg.oneof([1, 2, 3])) ]) .. note:: Under symbolic mode (by default), `pg.manyof` returns a ``pg.hyper.ManyOf`` object. Under dynamic evaluation mode, which is called under the context of :meth:`pyglove.hyper.DynamicEvaluationContext.collect` or :meth:`pyglove.hyper.DynamicEvaluationContext.apply`, it evaluates to a concrete candidate value. To use conditional search space in dynamic evaluate mode, the candidate should be wrapped with a `lambda` function, which is not necessary under symbolic mode. For example:: pg.manyof(2, [ lambda: pg.oneof([0, 1], name='sub_a'), lambda: pg.floatv(0.0, 1.0, name='sub_b'), lambda: pg.manyof(2, ['a', 'b', 'c'], name='sub_c') ], name='root') See also: * :class:`pyglove.hyper.ManyOf` * :func:`pyglove.manyof` * :func:`pyglove.floatv` * :func:`pyglove.permutate` * :func:`pyglove.evolve` Args: k: number of choices to make. Should be no larger than the length of `candidates` unless `choice_distinct` is set to False, candidates: Candidates to select from. Items of candidate can be any type, therefore it can have nested hyper primitives, which forms a hierarchical search space. distinct: If True, each choice needs to be unique. sorted: If True, choices are sorted by their indices in the candidates. name: A name that can be used to identify a decision point in the search space. This is needed when the code to instantiate the same hyper primitive may be called multiple times under a `pg.DynamicEvaluationContext.collect` context or a `pg.DynamicEvaluationContext.apply` context. hints: An optional value which acts as a hint for the controller. **kwargs: Keyword arguments for backward compatibility. `choices_distinct`: Old name for `distinct`. `choices_sorted`: Old name for `sorted`. Returns: In symbolic mode, this function returns a `Choices`. In dynamic evaluate mode, this function returns a list of items in `candidates`. If evaluated under a `pg.DynamicEvaluationContext.apply` scope, this function will return a list of selected candidates. If evaluated under a `pg.DynamicEvaluationContext.collect` scope, it will return a list of the first valid combination from the `candidates`. For example:: # Evaluates to [0, 1, 2]. manyof(3, range(5)) # Evaluates to [0, 0, 0]. manyof(3, range(5), distinct=False) """ choices_distinct = kwargs.pop('choices_distinct', distinct) choices_sorted = kwargs.pop('choices_sorted', sorted) return ManyOf( num_choices=k, candidates=list(candidates), choices_distinct=choices_distinct, choices_sorted=choices_sorted, name=name, hints=hints)
(k: int, candidates: Iterable[Any], distinct: bool = True, sorted: bool = False, *, name: Optional[str] = None, hints: Optional[Any] = None, **kwargs) -> Any
41,655
pyglove.core.hyper.object_template
materialize
Materialize a (maybe) hyper value using a DNA or parameter dict. Example:: hyper_dict = pg.Dict(x=pg.oneof(['a', 'b']), y=pg.floatv(0.0, 1.0)) # Materialize using DNA. assert pg.materialize( hyper_dict, pg.DNA([0, 0.5])) == pg.Dict(x='a', y=0.5) # Materialize usign key value pairs. # See `pg.DNA.from_dict` for more details. assert pg.materialize( hyper_dict, {'x': 0, 'y': 0.5}) == pg.Dict(x='a', y=0.5) # Partially materialize. v = pg.materialize( hyper_dict, pg.DNA(0), where=lambda x: isinstance(x, pg.hyper.OneOf)) assert v == pg.Dict(x='a', y=pg.floatv(0.0, 1.0)) Args: value: A (maybe) hyper value parameters: A DNA object or a dict of string (key path) to a string (in format of '<selected_index>/<num_choices>' for `geno.Choices`, or '<float_value>' for `geno.Float`), or their literal values when `use_literal_values` is set to True. use_literal_values: Applicable when `parameters` is a dict. If True, the values in the dict will be from `geno.Choices.literal_values` for `geno.Choices`. where: Function to filter hyper primitives. If None, all hyper primitives from `value` will be included in the encoding/decoding process. Otherwise only the hyper primitives on which 'where' returns True will be included. `where` can be useful to partition a search space into separate optimization processes. Please see 'Template' docstr for details. Returns: A materialized value. Raises: TypeError: if parameters is not a DNA or dict. ValueError: if parameters cannot be decoded.
def materialize( value: Any, parameters: Union[geno.DNA, Dict[str, Any]], use_literal_values: bool = True, where: Optional[Callable[[base.HyperPrimitive], bool]] = None) -> Any: """Materialize a (maybe) hyper value using a DNA or parameter dict. Example:: hyper_dict = pg.Dict(x=pg.oneof(['a', 'b']), y=pg.floatv(0.0, 1.0)) # Materialize using DNA. assert pg.materialize( hyper_dict, pg.DNA([0, 0.5])) == pg.Dict(x='a', y=0.5) # Materialize usign key value pairs. # See `pg.DNA.from_dict` for more details. assert pg.materialize( hyper_dict, {'x': 0, 'y': 0.5}) == pg.Dict(x='a', y=0.5) # Partially materialize. v = pg.materialize( hyper_dict, pg.DNA(0), where=lambda x: isinstance(x, pg.hyper.OneOf)) assert v == pg.Dict(x='a', y=pg.floatv(0.0, 1.0)) Args: value: A (maybe) hyper value parameters: A DNA object or a dict of string (key path) to a string (in format of '<selected_index>/<num_choices>' for `geno.Choices`, or '<float_value>' for `geno.Float`), or their literal values when `use_literal_values` is set to True. use_literal_values: Applicable when `parameters` is a dict. If True, the values in the dict will be from `geno.Choices.literal_values` for `geno.Choices`. where: Function to filter hyper primitives. If None, all hyper primitives from `value` will be included in the encoding/decoding process. Otherwise only the hyper primitives on which 'where' returns True will be included. `where` can be useful to partition a search space into separate optimization processes. Please see 'Template' docstr for details. Returns: A materialized value. Raises: TypeError: if parameters is not a DNA or dict. ValueError: if parameters cannot be decoded. """ t = template(value, where) if isinstance(parameters, dict): dna = geno.DNA.from_parameters( parameters=parameters, dna_spec=t.dna_spec(), use_literal_values=use_literal_values) else: dna = parameters if not isinstance(dna, geno.DNA): raise TypeError( f'\'parameters\' must be a DNA or a dict of string to DNA values. ' f'Encountered: {dna!r}.') return t.decode(dna)
(value: Any, parameters: Union[pyglove.core.geno.base.DNA, Dict[str, Any]], use_literal_values: bool = True, where: Optional[Callable[[pyglove.core.hyper.base.HyperPrimitive], bool]] = None) -> Any
41,656
pyglove.core.symbolic.ref
maybe_ref
Returns a reference if a value is not symbolic or already has a parent.
def maybe_ref(value: Any) -> Optional[Ref]: """Returns a reference if a value is not symbolic or already has a parent.""" if isinstance(value, base.Symbolic): if value.sym_parent is None: return value return Ref(value)
(value: Any) -> Optional[pyglove.core.symbolic.ref.Ref]
41,657
pyglove.core.symbolic.object
members
Function/Decorator for declaring symbolic fields for ``pg.Object``. Example:: @pg.members([ # Declare symbolic fields. Each field produces a symbolic attribute # for its object, which can be accessed by `self.<field_name>`. # Description is optional. ('x', pg.typing.Int(min_value=0, default=0), 'Description for `x`.'), ('y', pg.typing.Str(), 'Description for `y`.') ]) class A(pg.Object): def sum(self): return self.x + self.y @pg.members([ # Override field 'x' inherited from class A and make it more restrictive. ('x', pg.typing.Int(max_value=10, default=5)), # Add field 'z'. ('z', pg.typing.Bool().noneable()) ]) class B(A): pass @pg.members([ # Declare dynamic fields: any keyword can be acceptable during `__init__` # and can be accessed using `self.<field_name>`. (pg.typing.StrKey(), pg.typing.Int()) ]) class D(B): pass @pg.members([ # Declare dynamic fields: keywords started with 'foo' is acceptable. (pg.typing.StrKey('foo.*'), pg.typing.Int()) ]) class E(pg.Object): pass See :class:`pyglove.typing.ValueSpec` for supported value specifications. Args: fields: A list of pg.typing.Field or equivalent tuple representation as (<key>, <value-spec>, [description], [metadata-objects]). `key` should be a string. `value-spec` should be pg_typing.ValueSpec classes or equivalent, e.g. primitive values which will be converted to ValueSpec implementation according to its type and used as its default value. `description` is optional only when field overrides a field from its parent class. `metadata-objects` is an optional list of any type, which can be used to generate code according to the schema. metadata: Optional dict of user objects as class-level metadata which will be attached to class schema. init_arg_list: An optional sequence of strings as the positional argument list for `__init__`. This is helpful when symbolic attributes are inherited from base classes or the user want to change its order. If not provided, the `init_arg_list` will be automatically generated from symbolic attributes defined from ``pg.members`` in their declaration order, from the base classes to the subclass. **kwargs: Keyword arguments for infrequently used options. Acceptable keywords are: * `serialization_key`: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. * `additional_keys`: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. Returns: a decorator function that register the class or function with schema created from the fields. Raises: TypeError: Decorator cannot be applied on target class or keyword argument provided is not supported. KeyError: If type has already been registered in the registry. ValueError: schema cannot be created from fields.
def members( fields: List[Union[ pg_typing.Field, Tuple[Union[str, pg_typing.KeySpec], pg_typing.ValueSpec, str], Tuple[Union[str, pg_typing.KeySpec], pg_typing.ValueSpec, str, Any]]], metadata: Optional[Dict[str, Any]] = None, init_arg_list: Optional[Sequence[str]] = None, **kwargs ) -> pg_typing.Decorator: """Function/Decorator for declaring symbolic fields for ``pg.Object``. Example:: @pg.members([ # Declare symbolic fields. Each field produces a symbolic attribute # for its object, which can be accessed by `self.<field_name>`. # Description is optional. ('x', pg.typing.Int(min_value=0, default=0), 'Description for `x`.'), ('y', pg.typing.Str(), 'Description for `y`.') ]) class A(pg.Object): def sum(self): return self.x + self.y @pg.members([ # Override field 'x' inherited from class A and make it more restrictive. ('x', pg.typing.Int(max_value=10, default=5)), # Add field 'z'. ('z', pg.typing.Bool().noneable()) ]) class B(A): pass @pg.members([ # Declare dynamic fields: any keyword can be acceptable during `__init__` # and can be accessed using `self.<field_name>`. (pg.typing.StrKey(), pg.typing.Int()) ]) class D(B): pass @pg.members([ # Declare dynamic fields: keywords started with 'foo' is acceptable. (pg.typing.StrKey('foo.*'), pg.typing.Int()) ]) class E(pg.Object): pass See :class:`pyglove.typing.ValueSpec` for supported value specifications. Args: fields: A list of pg.typing.Field or equivalent tuple representation as (<key>, <value-spec>, [description], [metadata-objects]). `key` should be a string. `value-spec` should be pg_typing.ValueSpec classes or equivalent, e.g. primitive values which will be converted to ValueSpec implementation according to its type and used as its default value. `description` is optional only when field overrides a field from its parent class. `metadata-objects` is an optional list of any type, which can be used to generate code according to the schema. metadata: Optional dict of user objects as class-level metadata which will be attached to class schema. init_arg_list: An optional sequence of strings as the positional argument list for `__init__`. This is helpful when symbolic attributes are inherited from base classes or the user want to change its order. If not provided, the `init_arg_list` will be automatically generated from symbolic attributes defined from ``pg.members`` in their declaration order, from the base classes to the subclass. **kwargs: Keyword arguments for infrequently used options. Acceptable keywords are: * `serialization_key`: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. * `additional_keys`: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. Returns: a decorator function that register the class or function with schema created from the fields. Raises: TypeError: Decorator cannot be applied on target class or keyword argument provided is not supported. KeyError: If type has already been registered in the registry. ValueError: schema cannot be created from fields. """ serialization_key = kwargs.pop('serialization_key', None) additional_keys = kwargs.pop('additional_keys', None) if kwargs: raise TypeError(f'Unsupported keyword arguments: {list(kwargs.keys())!r}.') def _decorator(cls): """Decorator function that registers schema with an Object class.""" schema_utils.update_schema( cls, fields, extend=True, init_arg_list=init_arg_list, metadata=metadata, serialization_key=serialization_key, additional_keys=additional_keys, ) return cls return typing.cast(pg_typing.Decorator, _decorator)
(fields: List[Union[pyglove.core.typing.class_schema.Field, Tuple[Union[str, pyglove.core.typing.class_schema.KeySpec], pyglove.core.typing.class_schema.ValueSpec, str], Tuple[Union[str, pyglove.core.typing.class_schema.KeySpec], pyglove.core.typing.class_schema.ValueSpec, str, Any]]], metadata: Optional[Dict[str, Any]] = None, init_arg_list: Optional[Sequence[str]] = None, **kwargs) -> <function <lambda> at 0x7f2fa64d25f0>
41,659
pyglove.core.symbolic.base
ne
Compares if two values are not equal. Use symbolic equality if possible. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): def sym_eq(self, right): if super().sym_eq(right): return True return pg.eq(self.x, right) class B: pass assert pg.ne(1, 2) assert pg.ne(A(1), A(2)) # A has override `sym_eq`. assert not pg.ne(A(1), 1) # Objects of B are compared by references. assert pg.ne(A(B()), A(B())) Args: left: The left-hand value to compare. right: The right-hand value to compare. Returns: True if left and right is not equal or symbolically equal. Otherwise False.
def ne(left: Any, right: Any) -> bool: """Compares if two values are not equal. Use symbolic equality if possible. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): def sym_eq(self, right): if super().sym_eq(right): return True return pg.eq(self.x, right) class B: pass assert pg.ne(1, 2) assert pg.ne(A(1), A(2)) # A has override `sym_eq`. assert not pg.ne(A(1), 1) # Objects of B are compared by references. assert pg.ne(A(B()), A(B())) Args: left: The left-hand value to compare. right: The right-hand value to compare. Returns: True if left and right is not equal or symbolically equal. Otherwise False. """ return not eq(left, right)
(left: Any, right: Any) -> bool
41,660
pyglove.core.symbolic.flags
notify_on_change
Returns a context manager to enable or disable notification upon change. `notify_on_change` is thread-safe and can be nested. For example, in the following code, `_on_change` (thus `_on_bound`) method of `a` will be triggered due to the rebind in the inner `with` statement, and those of `b` will not be triggered as the outer `with` statement disables the notification:: with pg.notify_on_change(False): with pg.notify_on_change(True): a.rebind(b=1) b.rebind(x=2) Args: enabled: If True, enable change notification in current scope. Otherwise, disable notification. Returns: A context manager for allowing/disallowing change notification in scope.
def notify_on_change(enabled: bool = True) -> ContextManager[None]: """Returns a context manager to enable or disable notification upon change. `notify_on_change` is thread-safe and can be nested. For example, in the following code, `_on_change` (thus `_on_bound`) method of `a` will be triggered due to the rebind in the inner `with` statement, and those of `b` will not be triggered as the outer `with` statement disables the notification:: with pg.notify_on_change(False): with pg.notify_on_change(True): a.rebind(b=1) b.rebind(x=2) Args: enabled: If True, enable change notification in current scope. Otherwise, disable notification. Returns: A context manager for allowing/disallowing change notification in scope. """ return thread_local.thread_local_value_scope( _TLS_ENABLE_CHANGE_NOTIFICATION, enabled, True )
(enabled: bool = True) -> ContextManager[NoneType]
41,662
pyglove.core.hyper.categorical
oneof
N choose 1. Example:: @pg.members([ ('x', pg.typing.Int()) ]) class A(pg.Object): pass # A single categorical choice: v = pg.oneof([1, 2, 3]) # A complex type as candidate. v1 = pg.oneof(['a', {'x': 1}, A(1)]) # A hierarchical categorical choice: v2 = pg.oneof([ 'foo', 'bar', A(pg.oneof([1, 2, 3])) ]) See also: * :class:`pyglove.hyper.OneOf` * :func:`pyglove.manyof` * :func:`pyglove.floatv` * :func:`pyglove.permutate` * :func:`pyglove.evolve` .. note:: Under symbolic mode (by default), `pg.oneof` returns a ``pg.hyper.OneOf`` object. Under dynamic evaluation mode, which is called under the context of :meth:`pyglove.hyper.DynamicEvaluationContext.collect` or :meth:`pyglove.hyper.DynamicEvaluationContext.apply`, it evaluates to a concrete candidate value. To use conditional search space in dynamic evaluation mode, the candidate should be wrapped with a `lambda` function, which is not necessary under symbolic mode. For example:: pg.oneof([lambda: pg.oneof([0, 1], name='sub'), 2], name='root') Args: candidates: Candidates to select from. Items of candidate can be any type, therefore it can have nested hyper primitives, which forms a hierarchical search space. name: A name that can be used to identify a decision point in the search space. This is needed when the code to instantiate the same hyper primitive may be called multiple times under a `pg.DynamicEvaluationContext.collect` context or under a `pg.DynamicEvaluationContext.apply` context. hints: An optional value which acts as a hint for the controller. Returns: In symbolic mode, this function returns a `ChoiceValue`. In dynamic evaluation mode, this function returns one of the items in `candidates`. If evaluated under a `pg.DynamicEvaluationContext.apply` scope, this function will return the selected candidate. If evaluated under a `pg.DynamicEvaluationContext.collect` scope, it will return the first candidate.
def oneof(candidates: Iterable[Any], *, name: Optional[str] = None, hints: Optional[Any] = None) -> Any: """N choose 1. Example:: @pg.members([ ('x', pg.typing.Int()) ]) class A(pg.Object): pass # A single categorical choice: v = pg.oneof([1, 2, 3]) # A complex type as candidate. v1 = pg.oneof(['a', {'x': 1}, A(1)]) # A hierarchical categorical choice: v2 = pg.oneof([ 'foo', 'bar', A(pg.oneof([1, 2, 3])) ]) See also: * :class:`pyglove.hyper.OneOf` * :func:`pyglove.manyof` * :func:`pyglove.floatv` * :func:`pyglove.permutate` * :func:`pyglove.evolve` .. note:: Under symbolic mode (by default), `pg.oneof` returns a ``pg.hyper.OneOf`` object. Under dynamic evaluation mode, which is called under the context of :meth:`pyglove.hyper.DynamicEvaluationContext.collect` or :meth:`pyglove.hyper.DynamicEvaluationContext.apply`, it evaluates to a concrete candidate value. To use conditional search space in dynamic evaluation mode, the candidate should be wrapped with a `lambda` function, which is not necessary under symbolic mode. For example:: pg.oneof([lambda: pg.oneof([0, 1], name='sub'), 2], name='root') Args: candidates: Candidates to select from. Items of candidate can be any type, therefore it can have nested hyper primitives, which forms a hierarchical search space. name: A name that can be used to identify a decision point in the search space. This is needed when the code to instantiate the same hyper primitive may be called multiple times under a `pg.DynamicEvaluationContext.collect` context or under a `pg.DynamicEvaluationContext.apply` context. hints: An optional value which acts as a hint for the controller. Returns: In symbolic mode, this function returns a `ChoiceValue`. In dynamic evaluation mode, this function returns one of the items in `candidates`. If evaluated under a `pg.DynamicEvaluationContext.apply` scope, this function will return the selected candidate. If evaluated under a `pg.DynamicEvaluationContext.collect` scope, it will return the first candidate. """ return OneOf(candidates=list(candidates), name=name, hints=hints)
(candidates: Iterable[Any], *, name: Optional[str] = None, hints: Optional[Any] = None) -> Any
41,664
pyglove.core.patching.rule_based
patch
Apply patches to a symbolic value. Args: value: A symbolic value to patch. rule: A patching rule is one of the following: 1) A dict of symbolic paths to the new values. 2) A rebind function defined by signature (k, v) or (k, v, p). See :meth:`pyglove.Symbolic.rebind`. 3) A :class:`pyglove.patching.Patcher` object. 4) A URL-like string representing an instance of a register Patcher. The format is "<patcher_name>?<arg1>&<arg2>=<val2>". 5) A list of the mixtures of above. Returns: Value after applying the patchers. If any patcher returned a new value (by returning a single-item dict that containing '' as key), the return value will be a different object other than `value`, otherwise `value` will be returned after applying the patches. Raises: ValueError: Error if the patch name and arguments cannot be parsed successfully.
def patch(value: symbolic.Symbolic, rule: PatchType) -> Any: """Apply patches to a symbolic value. Args: value: A symbolic value to patch. rule: A patching rule is one of the following: 1) A dict of symbolic paths to the new values. 2) A rebind function defined by signature (k, v) or (k, v, p). See :meth:`pyglove.Symbolic.rebind`. 3) A :class:`pyglove.patching.Patcher` object. 4) A URL-like string representing an instance of a register Patcher. The format is "<patcher_name>?<arg1>&<arg2>=<val2>". 5) A list of the mixtures of above. Returns: Value after applying the patchers. If any patcher returned a new value (by returning a single-item dict that containing '' as key), the return value will be a different object other than `value`, otherwise `value` will be returned after applying the patches. Raises: ValueError: Error if the patch name and arguments cannot be parsed successfully. """ patches = [] rules = rule if isinstance(rule, list) else [rule] for p in rules: if isinstance(p, str): p = from_uri(p) if not isinstance(p, (Patcher, dict)) and not callable(p): raise TypeError( f'Patching rule {p!r} should be a dict of path to values, a rebind ' f'function, a patcher (object or string), or a list of their ' f'mixtures.') patches.append(p) # Apply patches in chain. for p in patches: if isinstance(p, Patcher): value = p.patch(value) elif isinstance(p, dict): if len(p) == 1 and '' in p: value = p[''] else: value = value.rebind(p, raise_on_no_change=False) else: value = value.rebind(p, raise_on_no_change=False) # Validate patched values. for p in patches: if isinstance(p, Patcher): p.validate(value) return value
(value: pyglove.core.symbolic.base.Symbolic, rule: Union[Dict[str, Any], Callable, pyglove.core.patching.rule_based.Patcher, str, List[Union[Dict[str, Any], Callable, pyglove.core.patching.rule_based.Patcher, str]]]) -> Any
41,665
pyglove.core.patching.pattern_based
patch_on_key
Recursively patch values on matched keys (leaf-node names). Example:: d = pg.Dict(a=0, b=2) print(pg.patching.patch_on_key(d, 'a', value=3)) # {a=3, b=2} print(pg.patching.patch_on_key(d, '.', value=3)) # {a=3, b=3} @pg.members([ ('x', schema.Int()) ]) class A(pg.Object): def _on_init(self): super()._on_init() self._num_changes = 0 def _on_change(self, updates): super()._on_change(updates) self._num_changes += 1 a = A() pg.patching.patch_on_key(a, 'x', value=2) # a._num_changes is 1. pg.patching.patch_on_key(a, 'x', value=3) # a._num_changes is 2. pg.patching.patch_on_keys(a, 'x', value=4, skip_notification=True) # a._num_changes is still 2. Args: src: symbolic value to patch. regex: Regex for key name. value: New value for field that satisfy `condition`. value_fn: Callable object that produces new value based on old value. If not None, `value` must be None. skip_notification: If True, `on_change` event will not be triggered for this operation. If None, the behavior is decided by `pg.notify_on_rebind`. Please see `symbolic.Symbolic.rebind` for details. Returns: `src` after being patched.
def patch_on_key( src: symbolic.Symbolic, regex: str, value: Any = None, value_fn: Optional[Callable[[Any], Any]] = None, skip_notification: Optional[bool] = None) -> Any: """Recursively patch values on matched keys (leaf-node names). Example:: d = pg.Dict(a=0, b=2) print(pg.patching.patch_on_key(d, 'a', value=3)) # {a=3, b=2} print(pg.patching.patch_on_key(d, '.', value=3)) # {a=3, b=3} @pg.members([ ('x', schema.Int()) ]) class A(pg.Object): def _on_init(self): super()._on_init() self._num_changes = 0 def _on_change(self, updates): super()._on_change(updates) self._num_changes += 1 a = A() pg.patching.patch_on_key(a, 'x', value=2) # a._num_changes is 1. pg.patching.patch_on_key(a, 'x', value=3) # a._num_changes is 2. pg.patching.patch_on_keys(a, 'x', value=4, skip_notification=True) # a._num_changes is still 2. Args: src: symbolic value to patch. regex: Regex for key name. value: New value for field that satisfy `condition`. value_fn: Callable object that produces new value based on old value. If not None, `value` must be None. skip_notification: If True, `on_change` event will not be triggered for this operation. If None, the behavior is decided by `pg.notify_on_rebind`. Please see `symbolic.Symbolic.rebind` for details. Returns: `src` after being patched. """ regex = re.compile(regex) return _conditional_patch( src, lambda k, v, p: k and regex.match(str(k.key)), value, value_fn, skip_notification)
(src: pyglove.core.symbolic.base.Symbolic, regex: str, value: Optional[Any] = None, value_fn: Optional[Callable[[Any], Any]] = None, skip_notification: Optional[bool] = None) -> Any
41,666
pyglove.core.patching.pattern_based
patch_on_member
Recursively patch values that are the requested member of classes. Example:: d = pg.Dict(a=A(x=1), b=2) print(pg.patching.patch_on_member(d, A, 'x', 2) # {a=A(x=2), b=4} Args: src: symbolic value to patch. cls: In which class the member belongs to. name: Member name. value: New value for field that satisfy `condition`. value_fn: Callable object that produces new value based on old value. If not None, `value` must be None. skip_notification: If True, `on_change` event will not be triggered for this operation. If None, the behavior is decided by `pg.notify_on_rebind`. Please see `symbolic.Symbolic.rebind` for details. Returns: `src` after being patched.
def patch_on_member( src: symbolic.Symbolic, cls: Union[Type[Any], Tuple[Type[Any], ...]], name: str, value: Any = None, value_fn: Optional[Callable[[Any], Any]] = None, skip_notification: Optional[bool] = None) -> Any: """Recursively patch values that are the requested member of classes. Example:: d = pg.Dict(a=A(x=1), b=2) print(pg.patching.patch_on_member(d, A, 'x', 2) # {a=A(x=2), b=4} Args: src: symbolic value to patch. cls: In which class the member belongs to. name: Member name. value: New value for field that satisfy `condition`. value_fn: Callable object that produces new value based on old value. If not None, `value` must be None. skip_notification: If True, `on_change` event will not be triggered for this operation. If None, the behavior is decided by `pg.notify_on_rebind`. Please see `symbolic.Symbolic.rebind` for details. Returns: `src` after being patched. """ return _conditional_patch( src, lambda k, v, p: isinstance(p, cls) and k.key == name, value, value_fn, skip_notification)
(src: pyglove.core.symbolic.base.Symbolic, cls: Union[Type[Any], Tuple[Type[Any], ...]], name: str, value: Optional[Any] = None, value_fn: Optional[Callable[[Any], Any]] = None, skip_notification: Optional[bool] = None) -> Any
41,667
pyglove.core.patching.pattern_based
patch_on_path
Recursively patch values on matched paths. Example:: d = pg.Dict(a={'x': 1}, b=2) print(pg.patching.patch_on_path(d, '.*x', value=3)) # {a={x=1}, b=2} Args: src: symbolic value to patch. regex: Regex for key path. value: New value for field that satisfy `condition`. value_fn: Callable object that produces new value based on old value. If not None, `value` must be None. skip_notification: If True, `on_change` event will not be triggered for this operation. If None, the behavior is decided by `pg.notify_on_rebind`. Please see `symbolic.Symbolic.rebind` for details. Returns: `src` after being patched.
def patch_on_path( src: symbolic.Symbolic, regex: str, value: Any = None, value_fn: Optional[Callable[[Any], Any]] = None, skip_notification: Optional[bool] = None) -> Any: """Recursively patch values on matched paths. Example:: d = pg.Dict(a={'x': 1}, b=2) print(pg.patching.patch_on_path(d, '.*x', value=3)) # {a={x=1}, b=2} Args: src: symbolic value to patch. regex: Regex for key path. value: New value for field that satisfy `condition`. value_fn: Callable object that produces new value based on old value. If not None, `value` must be None. skip_notification: If True, `on_change` event will not be triggered for this operation. If None, the behavior is decided by `pg.notify_on_rebind`. Please see `symbolic.Symbolic.rebind` for details. Returns: `src` after being patched. """ regex = re.compile(regex) return _conditional_patch( src, lambda k, v, p: regex.match(str(k)), value, value_fn, skip_notification)
(src: pyglove.core.symbolic.base.Symbolic, regex: str, value: Optional[Any] = None, value_fn: Optional[Callable[[Any], Any]] = None, skip_notification: Optional[bool] = None) -> Any
41,668
pyglove.core.patching.pattern_based
patch_on_type
Recursively patch values on matched types. Example:: d = pg.Dict(a={'x': 1}, b=2) print(pg.patching.patch_on_type(d, int, value_fn=lambda x: x * 2)) # {a={x=2}, b=4} Args: src: symbolic value to patch. value_type: Value type to match. value: New value for field that satisfy `condition`. value_fn: Callable object that produces new value based on old value. If not None, `value` must be None. skip_notification: If True, `on_change` event will not be triggered for this operation. If None, the behavior is decided by `pg.notify_on_rebind`. Please see `symbolic.Symbolic.rebind` for details. Returns: `src` after being patched.
def patch_on_type( src: symbolic.Symbolic, value_type: Union[Type[Any], Tuple[Type[Any], ...]], value: Any = None, value_fn: Optional[Callable[[Any], Any]] = None, skip_notification: Optional[bool] = None) -> Any: """Recursively patch values on matched types. Example:: d = pg.Dict(a={'x': 1}, b=2) print(pg.patching.patch_on_type(d, int, value_fn=lambda x: x * 2)) # {a={x=2}, b=4} Args: src: symbolic value to patch. value_type: Value type to match. value: New value for field that satisfy `condition`. value_fn: Callable object that produces new value based on old value. If not None, `value` must be None. skip_notification: If True, `on_change` event will not be triggered for this operation. If None, the behavior is decided by `pg.notify_on_rebind`. Please see `symbolic.Symbolic.rebind` for details. Returns: `src` after being patched. """ return _conditional_patch( src, lambda k, v, p: isinstance(v, value_type), value, value_fn, skip_notification)
(src: pyglove.core.symbolic.base.Symbolic, value_type: Union[Type[Any], Tuple[Type[Any], ...]], value: Optional[Any] = None, value_fn: Optional[Callable[[Any], Any]] = None, skip_notification: Optional[bool] = None) -> Any
41,669
pyglove.core.patching.pattern_based
patch_on_value
Recursively patch values on matched values. Example:: d = pg.Dict(a={'x': 1}, b=1) print(pg.patching.patch_on_value(d, 1, value=3)) # {a={x=3}, b=3} Args: src: symbolic value to patch. old_value: Old value to match. value: New value for field that satisfy `condition`. value_fn: Callable object that produces new value based on old value. If not None, `value` must be None. skip_notification: If True, `on_change` event will not be triggered for this operation. If None, the behavior is decided by `pg.notify_on_rebind`. Please see `symbolic.Symbolic.rebind` for details. Returns: `src` after being patched.
def patch_on_value( src: symbolic.Symbolic, old_value: Any, value: Any = None, value_fn: Optional[Callable[[Any], Any]] = None, skip_notification: Optional[bool] = None) -> Any: """Recursively patch values on matched values. Example:: d = pg.Dict(a={'x': 1}, b=1) print(pg.patching.patch_on_value(d, 1, value=3)) # {a={x=3}, b=3} Args: src: symbolic value to patch. old_value: Old value to match. value: New value for field that satisfy `condition`. value_fn: Callable object that produces new value based on old value. If not None, `value` must be None. skip_notification: If True, `on_change` event will not be triggered for this operation. If None, the behavior is decided by `pg.notify_on_rebind`. Please see `symbolic.Symbolic.rebind` for details. Returns: `src` after being patched. """ return _conditional_patch( src, lambda k, v, p: v == old_value, value, value_fn, skip_notification)
(src: pyglove.core.symbolic.base.Symbolic, old_value: Any, value: Optional[Any] = None, value_fn: Optional[Callable[[Any], Any]] = None, skip_notification: Optional[bool] = None) -> Any
41,670
pyglove.core.patching.rule_based
patcher
Decorate a function into a Patcher and register it. A patcher function is defined as: `<patcher_fun> := <fun_name>(<target>, [parameters])` The signature takes at least one argument as the patching target, with additional arguments as patching parameters to control the details of this patch. Example:: @pg.patching.patcher([ ('x': pg.typing.Int()) ]) def increment(v, x=1): return pg.symbolic.get_rebind_dict( lambda k, v, p: v + x if isinstance(v, int) else v) # This patcher can be called via: # pg.patching.apply(v, [increment(x=2)]) # or pg.patching.apply(v, ['increment?x=2']) Args: args: A list of (arg_name, arg_value_spec) to schematize patcher arguments. name: String to be used as patcher name in URI. If None, function name will be used as patcher name. Returns: A decorator that converts a function into a Patcher subclass.
def patcher( args: Optional[List[Tuple[str, pg_typing.ValueSpec]]] = None, name: Optional[str] = None) -> Any: """Decorate a function into a Patcher and register it. A patcher function is defined as: `<patcher_fun> := <fun_name>(<target>, [parameters])` The signature takes at least one argument as the patching target, with additional arguments as patching parameters to control the details of this patch. Example:: @pg.patching.patcher([ ('x': pg.typing.Int()) ]) def increment(v, x=1): return pg.symbolic.get_rebind_dict( lambda k, v, p: v + x if isinstance(v, int) else v) # This patcher can be called via: # pg.patching.apply(v, [increment(x=2)]) # or pg.patching.apply(v, ['increment?x=2']) Args: args: A list of (arg_name, arg_value_spec) to schematize patcher arguments. name: String to be used as patcher name in URI. If None, function name will be used as patcher name. Returns: A decorator that converts a function into a Patcher subclass. """ functor_decorator = symbolic.functor(args, base_class=Patcher) def _decorator(fn): """Returns decorated Patcher class.""" cls = functor_decorator(fn) _PATCHER_REGISTRY.register(name or fn.__name__, typing.cast(Type[Patcher], cls)) arg_specs = cls.__signature__.args if len(arg_specs) < 1: raise TypeError( 'Patcher function should have at least 1 argument ' f'as patching target. (Patcher={cls.__type_name__!r})' ) if not _is_patcher_target_spec(arg_specs[0].value_spec): raise TypeError( f'{arg_specs[0].value_spec!r} cannot be used for constraining ' f'Patcher target. (Patcher={cls.__type_name__!r}, ' f'Argument={arg_specs[0].name!r})\n' 'Acceptable value spec types are: ' 'Any, Callable, Dict, Functor, List, Object.' ) for arg_spec in arg_specs[1:]: if not _is_patcher_parameter_spec(arg_spec.value_spec): raise TypeError( f'{arg_spec.value_spec!r} cannot be used for constraining ' f'Patcher argument. (Patcher={cls.__type_name__!r}, ' f'Argument={arg_spec.name!r})\n' 'Consider to treat it as string and parse yourself.' ) return cls return _decorator
(args: Optional[List[Tuple[str, pyglove.core.typing.class_schema.ValueSpec]]] = None, name: Optional[str] = None) -> Any
41,672
pyglove.core.hyper.categorical
permutate
Permuatation of candidates. Example:: @pg.members([ ('x', pg.typing.Int()) ]) class A(pg.Object): pass # Permutates the candidates. v = pg.permutate([1, 2, 3]) # A complex type as candidate. v1 = pg.permutate(['a', {'x': 1}, A(1)]) # A hierarchical categorical choice: v2 = pg.permutate([ 'foo', 'bar', A(pg.oneof([1, 2, 3])) ]) .. note:: Under symbolic mode (by default), `pg.manyof` returns a ``pg.hyper.ManyOf`` object. Under dynamic evaluate mode, which is called under the context of :meth:`pyglove.hyper.DynamicEvaluationContext.collect` or :meth:`pyglove.hyper.DynamicEvaluationContext.apply`, it evaluates to a concrete candidate value. To use conditional search space in dynamic evaluate mode, the candidate should be wrapped with a `lambda` function, which is not necessary under symbolic mode. For example:: pg.permutate([ lambda: pg.oneof([0, 1], name='sub_a'), lambda: pg.floatv(0.0, 1.0, name='sub_b'), lambda: pg.manyof(2, ['a', 'b', 'c'], name='sub_c') ], name='root') See also: * :class:`pyglove.hyper.ManyOf` * :func:`pyglove.oneof` * :func:`pyglove.manyof` * :func:`pyglove.floatv` * :func:`pyglove.evolve` Args: candidates: Candidates to select from. Items of candidate can be any type, therefore it can have nested hyper primitives, which forms a hierarchical search space. name: A name that can be used to identify a decision point in the search space. This is needed when the code to instantiate the same hyper primitive may be called multiple times under a `pg.DynamicEvaluationContext.collect` context or a `pg.DynamicEvaluationContext.apply` context. hints: An optional value which acts as a hint for the controller. Returns: In symbolic mode, this function returns a `Choices`. In dynamic evaluate mode, this function returns a permutation from `candidates`. If evaluated under an `pg.DynamicEvaluationContext.apply` scope, this function will return a permutation of candidates based on controller decisions. If evaluated under a `pg.DynamicEvaluationContext.collect` scope, it will return the first valid permutation. For example:: # Evaluates to [0, 1, 2, 3, 4]. permutate(range(5), name='numbers')
def permutate(candidates: Iterable[Any], name: Optional[str] = None, hints: Optional[Any] = None) -> Any: """Permuatation of candidates. Example:: @pg.members([ ('x', pg.typing.Int()) ]) class A(pg.Object): pass # Permutates the candidates. v = pg.permutate([1, 2, 3]) # A complex type as candidate. v1 = pg.permutate(['a', {'x': 1}, A(1)]) # A hierarchical categorical choice: v2 = pg.permutate([ 'foo', 'bar', A(pg.oneof([1, 2, 3])) ]) .. note:: Under symbolic mode (by default), `pg.manyof` returns a ``pg.hyper.ManyOf`` object. Under dynamic evaluate mode, which is called under the context of :meth:`pyglove.hyper.DynamicEvaluationContext.collect` or :meth:`pyglove.hyper.DynamicEvaluationContext.apply`, it evaluates to a concrete candidate value. To use conditional search space in dynamic evaluate mode, the candidate should be wrapped with a `lambda` function, which is not necessary under symbolic mode. For example:: pg.permutate([ lambda: pg.oneof([0, 1], name='sub_a'), lambda: pg.floatv(0.0, 1.0, name='sub_b'), lambda: pg.manyof(2, ['a', 'b', 'c'], name='sub_c') ], name='root') See also: * :class:`pyglove.hyper.ManyOf` * :func:`pyglove.oneof` * :func:`pyglove.manyof` * :func:`pyglove.floatv` * :func:`pyglove.evolve` Args: candidates: Candidates to select from. Items of candidate can be any type, therefore it can have nested hyper primitives, which forms a hierarchical search space. name: A name that can be used to identify a decision point in the search space. This is needed when the code to instantiate the same hyper primitive may be called multiple times under a `pg.DynamicEvaluationContext.collect` context or a `pg.DynamicEvaluationContext.apply` context. hints: An optional value which acts as a hint for the controller. Returns: In symbolic mode, this function returns a `Choices`. In dynamic evaluate mode, this function returns a permutation from `candidates`. If evaluated under an `pg.DynamicEvaluationContext.apply` scope, this function will return a permutation of candidates based on controller decisions. If evaluated under a `pg.DynamicEvaluationContext.collect` scope, it will return the first valid permutation. For example:: # Evaluates to [0, 1, 2, 3, 4]. permutate(range(5), name='numbers') """ candidates = list(candidates) return manyof( len(candidates), candidates, choices_distinct=True, choices_sorted=False, name=name, hints=hints)
(candidates: Iterable[Any], name: Optional[str] = None, hints: Optional[Any] = None) -> Any
41,673
pyglove.core.tuning.backend
poll_result
Gets tuning result by name.
def poll_result( name: str, backend: Optional[str] = None, **kwargs) -> Result: """Gets tuning result by name.""" return get_backend_cls(backend).poll_result(name, **kwargs)
(name: str, backend: Optional[str] = None, **kwargs) -> pyglove.core.tuning.protocols.Result
41,674
pyglove.core.object_utils.formatting
printv
Prints formatted value.
def printv(v: Any, **kwargs): """Prints formatted value.""" fs = kwargs.pop('file', sys.stdout) print(format(v, **kwargs), file=fs)
(v: Any, **kwargs)
41,675
pyglove.core.symbolic.base
query
Queries a (maybe) symbolic value. Example:: @pg.members([ ('x', pg.typing.Int()), ('y', pg.typing.Int()) ]) class A(pg.Object): pass value = { 'a1': A(x=0, y=1), 'a2': [A(x=1, y=1), A(x=1, y=2)], 'a3': { 'p': A(x=2, y=1), 'q': A(x=2, y=2) } } # Query by path regex. # Shall print: # {'a3.p': A(x=2, y=1)} print(pg.query(value, r'.*p')) # Query by value. # Shall print: # { # 'a2[1].y': 2, # 'a3.p.x': 2, # 'a3.q.x': 2, # 'a3.q.y': 2, # } print(pg.query(value, where=lambda v: v==2)) # Query by path, value and parent. # Shall print: # { # 'a2[1].y': 2, # } print(pg.query( value, r'.*y', where=lambda v, p: v > 1 and isinstance(p, A) and p.x == 1)) Args: x: A nested structure that may contains symbolic value. path_regex: Optional regex expression to constrain path. where: Optional callable to constrain value and parent when path matches with `path_regex` or `path_regex` is not provided. The signature is: `(value) -> should_select` or `(value, parent) -> should_select` enter_selected: If True, if a node is selected, enter the node and query its sub-nodes. custom_selector: Optional callable object as custom selector. When `custom_selector` is provided, `path_regex` and `where` must be None. The signature of `custom_selector` is: `(key_path, value) -> should_select` or `(key_path, value, parent) -> should_select` Returns: A dict of key path to value as results for selected values.
def query( x: Any, path_regex: Optional[str] = None, where: Optional[Union[Callable[[Any], bool], Callable[[Any, Any], bool]]] = None, enter_selected: bool = False, custom_selector: Optional[Union[ Callable[[object_utils.KeyPath, Any], bool], Callable[[object_utils.KeyPath, Any, Any], bool]]] = None ) -> Dict[str, Any]: """Queries a (maybe) symbolic value. Example:: @pg.members([ ('x', pg.typing.Int()), ('y', pg.typing.Int()) ]) class A(pg.Object): pass value = { 'a1': A(x=0, y=1), 'a2': [A(x=1, y=1), A(x=1, y=2)], 'a3': { 'p': A(x=2, y=1), 'q': A(x=2, y=2) } } # Query by path regex. # Shall print: # {'a3.p': A(x=2, y=1)} print(pg.query(value, r'.*p')) # Query by value. # Shall print: # { # 'a2[1].y': 2, # 'a3.p.x': 2, # 'a3.q.x': 2, # 'a3.q.y': 2, # } print(pg.query(value, where=lambda v: v==2)) # Query by path, value and parent. # Shall print: # { # 'a2[1].y': 2, # } print(pg.query( value, r'.*y', where=lambda v, p: v > 1 and isinstance(p, A) and p.x == 1)) Args: x: A nested structure that may contains symbolic value. path_regex: Optional regex expression to constrain path. where: Optional callable to constrain value and parent when path matches with `path_regex` or `path_regex` is not provided. The signature is: `(value) -> should_select` or `(value, parent) -> should_select` enter_selected: If True, if a node is selected, enter the node and query its sub-nodes. custom_selector: Optional callable object as custom selector. When `custom_selector` is provided, `path_regex` and `where` must be None. The signature of `custom_selector` is: `(key_path, value) -> should_select` or `(key_path, value, parent) -> should_select` Returns: A dict of key path to value as results for selected values. """ regex = re.compile(path_regex) if path_regex else None if custom_selector is not None: if path_regex is not None or where is not None: raise ValueError('\'path_regex\' and \'where\' must be None when ' '\'custom_selector\' is provided.') signature = pg_typing.get_signature(custom_selector) if len(signature.args) == 2: select_fn = lambda k, v, p: custom_selector(k, v) # pytype: disable=wrong-arg-count elif len(signature.args) == 3: select_fn = custom_selector else: raise TypeError( f'Custom selector \'{signature.id}\' should accept 2 or 3 arguments. ' f'(key_path, value, [parent]). Encountered: {signature.args}') else: if where is not None: signature = pg_typing.get_signature(where) if len(signature.args) == 1: where_fn = lambda v, p: where(v) # pytype: disable=wrong-arg-count elif len(signature.args) == 2: where_fn = where else: raise TypeError( f'Where function \'{signature.id}\' should accept 1 or 2 ' f'arguments: (value, [parent]). Encountered: {signature.args}.') else: where_fn = lambda v, p: True def select_fn(k, v, p): if regex is not None and not regex.match(str(k)): return False return where_fn(v, p) # pytype: disable=wrong-arg-count results = {} def _preorder_visitor(path: object_utils.KeyPath, v: Any, parent: Any) -> TraverseAction: if select_fn(path, v, parent): # pytype: disable=wrong-arg-count results[str(path)] = v return TraverseAction.ENTER if enter_selected else TraverseAction.CONTINUE return TraverseAction.ENTER traverse(x, preorder_visitor_fn=_preorder_visitor) return results
(x: Any, path_regex: Optional[str] = None, where: Union[Callable[[Any], bool], Callable[[Any, Any], bool], NoneType] = None, enter_selected: bool = False, custom_selector: Union[Callable[[pyglove.core.object_utils.value_location.KeyPath, Any], bool], Callable[[pyglove.core.object_utils.value_location.KeyPath, Any, Any], bool], NoneType] = None) -> Dict[str, Any]
41,676
pyglove.core.geno.random
random_dna
Generates a random DNA from a DNASpec. Example:: spec = pg.geno.space([ pg.geno.oneof([ pg.geno.constant(), pg.geno.constant(), pg.geno.constant() ]), pg.geno.floatv(0.1, 0.2) ]) print(pg.random_dna(spec)) # DNA([2, 0.1123]) Args: dna_spec: a DNASpec object. random_generator: a Python random generator. attach_spec: If True, attach the DNASpec to generated DNA. previous_dna: An optional DNA representing previous DNA. This field might be useful for generating stateful random DNAs. Returns: A DNA object.
def random_dna( dna_spec: DNASpec, random_generator: Union[None, types.ModuleType, random.Random] = None, attach_spec: bool = True, previous_dna: Optional[DNA] = None ) -> DNA: """Generates a random DNA from a DNASpec. Example:: spec = pg.geno.space([ pg.geno.oneof([ pg.geno.constant(), pg.geno.constant(), pg.geno.constant() ]), pg.geno.floatv(0.1, 0.2) ]) print(pg.random_dna(spec)) # DNA([2, 0.1123]) Args: dna_spec: a DNASpec object. random_generator: a Python random generator. attach_spec: If True, attach the DNASpec to generated DNA. previous_dna: An optional DNA representing previous DNA. This field might be useful for generating stateful random DNAs. Returns: A DNA object. """ return dna_spec.random_dna( random_generator or random, attach_spec, previous_dna)
(dna_spec: pyglove.core.geno.base.DNASpec, random_generator: Union[module, random.Random, NoneType] = None, attach_spec: bool = True, previous_dna: Optional[pyglove.core.geno.base.DNA] = None) -> pyglove.core.geno.base.DNA
41,677
pyglove.core.hyper.iter
random_sample
Returns an iterator of random sampled examples. Example:: hyper_dict = pg.Dict(x=pg.oneof(range(3)), y=pg.floatv(0.0, 1.0)) # Generate one random example from the hyper_dict. d = next(pg.random_sample(hyper_dict)) # Generate 5 random examples with random seed. ds = list(pg.random_sample(hyper_dict, 5, seed=1)) # Generate 3 random examples of `x` with `y` intact. ds = list(pg.random_sample(hyper_dict, 3, where=lambda x: isinstance(x, pg.hyper.OneOf))) Args: value: A (maybe) hyper value. num_examples: An optional integer as number of examples to propose. If None, propose will return an iterator that iterates forever. where: Function to filter hyper primitives. If None, all hyper primitives in `value` will be included in the encoding/decoding process. Otherwise only the hyper primitives on which 'where' returns True will be included. `where` can be useful to partition a search space into separate optimization processes. Please see 'Template' docstr for details. seed: An optional integer as random seed. Returns: Iterator of random examples.
def random_sample( value: Any, num_examples: Optional[int] = None, where: Optional[Callable[[base.HyperPrimitive], bool]] = None, seed: Optional[int] = None): """Returns an iterator of random sampled examples. Example:: hyper_dict = pg.Dict(x=pg.oneof(range(3)), y=pg.floatv(0.0, 1.0)) # Generate one random example from the hyper_dict. d = next(pg.random_sample(hyper_dict)) # Generate 5 random examples with random seed. ds = list(pg.random_sample(hyper_dict, 5, seed=1)) # Generate 3 random examples of `x` with `y` intact. ds = list(pg.random_sample(hyper_dict, 3, where=lambda x: isinstance(x, pg.hyper.OneOf))) Args: value: A (maybe) hyper value. num_examples: An optional integer as number of examples to propose. If None, propose will return an iterator that iterates forever. where: Function to filter hyper primitives. If None, all hyper primitives in `value` will be included in the encoding/decoding process. Otherwise only the hyper primitives on which 'where' returns True will be included. `where` can be useful to partition a search space into separate optimization processes. Please see 'Template' docstr for details. seed: An optional integer as random seed. Returns: Iterator of random examples. """ return iterate( value, num_examples, geno.Random(seed), where=where)
(value: Any, num_examples: Optional[int] = None, where: Optional[Callable[[pyglove.core.hyper.base.HyperPrimitive], bool]] = None, seed: Optional[int] = None)
41,678
pyglove.core.typing.type_conversion
register_converter
Register converter from source type to destination type. Examples:: # Add converter from int to float. pg.typing.register_converter(int, float, float) assert pg.typing.Float().apply(1) is 1.0 # Add converter from a dict to class A. def from_dict(d): return A(**d) assert isinstance(pg.typing.Object(A).apply({'x': 1, 'y': 2}), A) Args: src_type: Source value type. dest_type: Target value type. convert_fn: Function that performs the conversion, in signature (src_type) -> dest_type.
def register_converter( src_type: Union[Type[Any], Tuple[Type[Any], ...]], dest_type: Union[Type[Any], Tuple[Type[Any], ...]], convert_fn: Callable[[Any], Any]) -> None: """Register converter from source type to destination type. Examples:: # Add converter from int to float. pg.typing.register_converter(int, float, float) assert pg.typing.Float().apply(1) is 1.0 # Add converter from a dict to class A. def from_dict(d): return A(**d) assert isinstance(pg.typing.Object(A).apply({'x': 1, 'y': 2}), A) Args: src_type: Source value type. dest_type: Target value type. convert_fn: Function that performs the conversion, in signature (src_type) -> dest_type. """ _TYPE_CONVERTER_REGISTRY.register(src_type, dest_type, convert_fn)
(src_type: Union[Type[Any], Tuple[Type[Any], ...]], dest_type: Union[Type[Any], Tuple[Type[Any], ...]], convert_fn: Callable[[Any], Any]) -> NoneType
41,679
pyglove.core.object_utils.json_conversion
registered_types
Returns an iterator of registered (serialization key, class) tuples.
def registered_types() -> Iterable[Tuple[str, Type[JSONConvertible]]]: """Returns an iterator of registered (serialization key, class) tuples.""" return JSONConvertible.registered_types()
() -> Iterable[Tuple[str, Type[pyglove.core.object_utils.json_conversion.JSONConvertible]]]
41,680
pyglove.core.object_utils.common_traits
repr_format
Context manager for setting the default format kwargs for __repr__.
def repr_format(**kwargs) -> ContextManager[Dict[str, Any]]: """Context manager for setting the default format kwargs for __repr__.""" return thread_local.thread_local_arg_scope(_TLS_REPR_FORMAT_KWARGS, **kwargs)
(**kwargs) -> ContextManager[Dict[str, Any]]
41,681
pyglove.core.tuning.sample
sample
Yields an example and its feedback sampled from a hyper value. Example 1: sample a search space defined by a symbolic hyper value:: for example, feedback in pg.sample( pg.Dict(x=pg.floatv(-1, 1))), pg.geno.Random(), num_examples=10, name='my_search'): # We can access trial ID (staring from 1) and DNA from the feedback. print(feedback.id, feedback.dna) # We can report the reward computed on the example using # `feedback.add_measurement`, which can be called # multiple times to report the rewards incrementally. # Once a trial is done, we call `feedback.done` to mark evaluation on # current example as completed, or use `feedback.skip` to move to the # next sample without passing any feedback to the algorithm. # Without `feedback.done` or `feedback.skip`, the same trial will be # iterated over and over again for failover handling purpose. # Besides the reward and the step, metrics and checkpoint can be added # to each measurement. Additional meta-data and related links (URLs) can # be passed to `feedback.done` which can be retrieved via # `pg.poll_result` later. if example.x >= 0: # If we only want to add one measurement for each example, a # shortcut expression for the next two lines can be written as # follows: # `feedback(reward=math.sqrt(example.x), step=1)` feedback.add_measurement(reward=math.sqrt(example.x), step=1) feedback.done() else: feedback.skip() # IMPORTANT: to stop the loop among all workers, we can call # `feedback.end_loop`. As a result, each worker will quit their loop # after current iteration, while using `break` in the for-loop is # only effective for the local process rather than remotely. if session.id > 1000: feedback.end_loop() # At any time, we can poll the search result via `pg.poll_result`, please # see `pg.tuning.Result` for more details. result = pg.poll_result('my_search') print(result.best_trial) Example 2: sample a search space defined by `pg.hyper.trace`:: def fun(): return pg.oneof([ lambda: pg.oneof([1, 2, 3]), lambda: pg.float(0.1, 1.0), 3]) + sum(pg.manyof(2, [1, 2, 3])) for example, feedback in pg.sample( pg.hyper.trace(fun), pg.geno.Random(), num_examples=10, name='my_search'): # When space is a `pg.hyper.DynamicEvaluationContext` object, # the `example` yielded at each iteration is a context manager under which # the hyper primitives (e.g. pg.oneof) will be materialized into concrete # values according to the controller decision. with example(): reward = fun() feedback(reward) Example 3: sample DNAs from an abstract search space represented by `pg.DNASpec`:: for dna, feedback in pg.sample( pg.List([pg.oneof(range(3))] * 5).dna_spec(), pg.geno.Random(), num_examples=10, name='my_search'): reward = evaluate_dna(dna) feedback(reward) **Using `pg.sample` in distributed environment** `pg.sample` is designed with distributed sampling in mind, in which multiple processes can work on the trials of the same sampling loop. While the default 'in-memory' backend works only within a single process without failover handling, other backends may support distributed computing environment with persistent state. Nevertheless, the `pg.sample` API is the same among different backends, users can switch the backend easily by passing a different value to the `backend` argument, or set the default value globally via `pg.tuning.set_default_backend`. **Identifying a sampling** To identify a distributed loop, a unique `name` is introduced, which will also be used to poll the latest sampling result via `pg.poll_result`. **Failover handling** In a distributed setup, worker processes may incidentally die and restart. Unless a trial is explicitly marked as done (via `feedback(reward)` or `feedback.done()`) or skipped (via feedback.skip()), a worker will try to resume its work on the trial from where it left off. **Workroup** In a distributed setup, worker processes may or may not work on the same trials. Worker group is introduced to serve this purpose, which is identified by an integer or a string named `group`. If `group` is not specified or having different values among the workers, every worker will work on different trials of the loop. On the contrary, workers having the same `group` will co-work on the same trials. Group is useful when evaluation on one example can be parallelized - for example - an example in the outer loop of a nested search. However, feedback on the same example should be fed back to the search algorithm only once. Therefore, workers in the same group need to communicate with each other to avoid duplicated evaluation and feedbacks. To facilitate such communication, per-trial metadata is supported, and can be accessed via `feedback.set_metadata/get_metadata` methods. The consistency in reading and writing the metadata is defined by the backend used. For the 'in-memory' backend, all the trials and their metadata is stored in memory, thus will be lost if the process get restarted. On the contrary, the backends built on distributed computing environment may store both the trials and metadata in a persistent storage with varing read/write QPS and read/write consistency guarentees. **Switch between backends** The `backend` argument of `pg.sample` lets users choose a backend used in current sampling loop. Users can use different backends in the same process to achieve a best performance trade-off, e.g., using `in-memory` backend when the communication cost overweighs the redudant evaluation cost upon worker failure. Helper function :func:`pyglove.tuning.set_default_backend` is introduced to set the default tuning backend for the entire process. Args: space: One of (a hyper value, a `pg.hyper.DynamicEvaluationContext`, a `pg.DNASpec`) to sample from. A hyper value is an object with to-be-determined values specified by `pg.oneof`, `pg.manyof`, `pg.floatv` and etc, representing a search space. A `pg.hyper.DynamicEvaluationContext` object represents a search space that is traced via dynamic evaluation. A `pg.DNASpec` represents an abstract search space that emits DNAs. algorithm: The search algorithm that samples the search space. For example: `pg.geno.Random()`, `pg.evolution.regularized_evolution(...)`, and etc. num_examples: An optional integer as the max number of examples to sample. If None, sample will return an iterator of infinite examples. early_stopping_policy: An optional early stopping policy for user to tell if incremental evaluation (which reports multiple measurements) on each example can be early short circuited. After each call to `feedback.add_measurement`, users can use method `feedback.should_stop_early` to check whether current example worth further evaluation or not. where: Function to filter the hyper values. If None, all decision points from the `space` will be included for the algorithm to make decisions. Otherwise only the decision points on which 'where' returns True will be included. The rest decision points will be passed through in the example, intact, which is a sub-space of the search space represented by the `space`. `where` is usually used in nested search flows. Please see 'hyper.Template' docstr for details. name: A string as a unique identifier for current sampling. Two separate calls to `pg.sample` with the same `name` (also the same algorithm) will share the same sampling queue, whose examples are proposed by the same search algorithm. group: An string or integer as the group ID of current process in distributed sampling, which will be used to group different workers into co-worker groups. Workers with the same group id will work on the same trial. On the contrary, workers in different groups will always be working with different trials. If not specified, each worker in current sampling will be in different groups. `group` is usually used in the outer loops of nested search, in order to allow workers to work on the same higher-order item. backend: An optional string to specify the backend name for sampling. if None, the default backend set by `pg.tuning.set_default_backend` will be used. metrics_to_optimize: A sequence of string as the names of the metrics to be optimized by the algorithm, which is ['reward'] by default. When specified, it should have only 1 item for single-objective algorithm and can have multiple items for algorithms that support multi-objective optimization. **kwargs: Arguments passed to the `BackendFactory` subclass registered with the requested backend. Yields: An iterator of tuples (example, feedback) as examples sampled from the search space defined by the `space` through `algorithm`. Raises: ValueError: `space` is a fixed value, or requested `backend` is not available.
def sample(space: Union[HyperValue, hyper.DynamicEvaluationContext, geno.DNASpec], algorithm: geno.DNAGenerator, num_examples: Optional[int] = None, early_stopping_policy: Optional[EarlyStoppingPolicy] = None, where: Optional[Callable[[hyper.HyperPrimitive], bool]] = None, name: Optional[str] = None, group: Union[None, int, str] = None, backend: Optional[str] = None, metrics_to_optimize: Optional[Sequence[str]] = None, **kwargs): """Yields an example and its feedback sampled from a hyper value. Example 1: sample a search space defined by a symbolic hyper value:: for example, feedback in pg.sample( pg.Dict(x=pg.floatv(-1, 1))), pg.geno.Random(), num_examples=10, name='my_search'): # We can access trial ID (staring from 1) and DNA from the feedback. print(feedback.id, feedback.dna) # We can report the reward computed on the example using # `feedback.add_measurement`, which can be called # multiple times to report the rewards incrementally. # Once a trial is done, we call `feedback.done` to mark evaluation on # current example as completed, or use `feedback.skip` to move to the # next sample without passing any feedback to the algorithm. # Without `feedback.done` or `feedback.skip`, the same trial will be # iterated over and over again for failover handling purpose. # Besides the reward and the step, metrics and checkpoint can be added # to each measurement. Additional meta-data and related links (URLs) can # be passed to `feedback.done` which can be retrieved via # `pg.poll_result` later. if example.x >= 0: # If we only want to add one measurement for each example, a # shortcut expression for the next two lines can be written as # follows: # `feedback(reward=math.sqrt(example.x), step=1)` feedback.add_measurement(reward=math.sqrt(example.x), step=1) feedback.done() else: feedback.skip() # IMPORTANT: to stop the loop among all workers, we can call # `feedback.end_loop`. As a result, each worker will quit their loop # after current iteration, while using `break` in the for-loop is # only effective for the local process rather than remotely. if session.id > 1000: feedback.end_loop() # At any time, we can poll the search result via `pg.poll_result`, please # see `pg.tuning.Result` for more details. result = pg.poll_result('my_search') print(result.best_trial) Example 2: sample a search space defined by `pg.hyper.trace`:: def fun(): return pg.oneof([ lambda: pg.oneof([1, 2, 3]), lambda: pg.float(0.1, 1.0), 3]) + sum(pg.manyof(2, [1, 2, 3])) for example, feedback in pg.sample( pg.hyper.trace(fun), pg.geno.Random(), num_examples=10, name='my_search'): # When space is a `pg.hyper.DynamicEvaluationContext` object, # the `example` yielded at each iteration is a context manager under which # the hyper primitives (e.g. pg.oneof) will be materialized into concrete # values according to the controller decision. with example(): reward = fun() feedback(reward) Example 3: sample DNAs from an abstract search space represented by `pg.DNASpec`:: for dna, feedback in pg.sample( pg.List([pg.oneof(range(3))] * 5).dna_spec(), pg.geno.Random(), num_examples=10, name='my_search'): reward = evaluate_dna(dna) feedback(reward) **Using `pg.sample` in distributed environment** `pg.sample` is designed with distributed sampling in mind, in which multiple processes can work on the trials of the same sampling loop. While the default 'in-memory' backend works only within a single process without failover handling, other backends may support distributed computing environment with persistent state. Nevertheless, the `pg.sample` API is the same among different backends, users can switch the backend easily by passing a different value to the `backend` argument, or set the default value globally via `pg.tuning.set_default_backend`. **Identifying a sampling** To identify a distributed loop, a unique `name` is introduced, which will also be used to poll the latest sampling result via `pg.poll_result`. **Failover handling** In a distributed setup, worker processes may incidentally die and restart. Unless a trial is explicitly marked as done (via `feedback(reward)` or `feedback.done()`) or skipped (via feedback.skip()), a worker will try to resume its work on the trial from where it left off. **Workroup** In a distributed setup, worker processes may or may not work on the same trials. Worker group is introduced to serve this purpose, which is identified by an integer or a string named `group`. If `group` is not specified or having different values among the workers, every worker will work on different trials of the loop. On the contrary, workers having the same `group` will co-work on the same trials. Group is useful when evaluation on one example can be parallelized - for example - an example in the outer loop of a nested search. However, feedback on the same example should be fed back to the search algorithm only once. Therefore, workers in the same group need to communicate with each other to avoid duplicated evaluation and feedbacks. To facilitate such communication, per-trial metadata is supported, and can be accessed via `feedback.set_metadata/get_metadata` methods. The consistency in reading and writing the metadata is defined by the backend used. For the 'in-memory' backend, all the trials and their metadata is stored in memory, thus will be lost if the process get restarted. On the contrary, the backends built on distributed computing environment may store both the trials and metadata in a persistent storage with varing read/write QPS and read/write consistency guarentees. **Switch between backends** The `backend` argument of `pg.sample` lets users choose a backend used in current sampling loop. Users can use different backends in the same process to achieve a best performance trade-off, e.g., using `in-memory` backend when the communication cost overweighs the redudant evaluation cost upon worker failure. Helper function :func:`pyglove.tuning.set_default_backend` is introduced to set the default tuning backend for the entire process. Args: space: One of (a hyper value, a `pg.hyper.DynamicEvaluationContext`, a `pg.DNASpec`) to sample from. A hyper value is an object with to-be-determined values specified by `pg.oneof`, `pg.manyof`, `pg.floatv` and etc, representing a search space. A `pg.hyper.DynamicEvaluationContext` object represents a search space that is traced via dynamic evaluation. A `pg.DNASpec` represents an abstract search space that emits DNAs. algorithm: The search algorithm that samples the search space. For example: `pg.geno.Random()`, `pg.evolution.regularized_evolution(...)`, and etc. num_examples: An optional integer as the max number of examples to sample. If None, sample will return an iterator of infinite examples. early_stopping_policy: An optional early stopping policy for user to tell if incremental evaluation (which reports multiple measurements) on each example can be early short circuited. After each call to `feedback.add_measurement`, users can use method `feedback.should_stop_early` to check whether current example worth further evaluation or not. where: Function to filter the hyper values. If None, all decision points from the `space` will be included for the algorithm to make decisions. Otherwise only the decision points on which 'where' returns True will be included. The rest decision points will be passed through in the example, intact, which is a sub-space of the search space represented by the `space`. `where` is usually used in nested search flows. Please see 'hyper.Template' docstr for details. name: A string as a unique identifier for current sampling. Two separate calls to `pg.sample` with the same `name` (also the same algorithm) will share the same sampling queue, whose examples are proposed by the same search algorithm. group: An string or integer as the group ID of current process in distributed sampling, which will be used to group different workers into co-worker groups. Workers with the same group id will work on the same trial. On the contrary, workers in different groups will always be working with different trials. If not specified, each worker in current sampling will be in different groups. `group` is usually used in the outer loops of nested search, in order to allow workers to work on the same higher-order item. backend: An optional string to specify the backend name for sampling. if None, the default backend set by `pg.tuning.set_default_backend` will be used. metrics_to_optimize: A sequence of string as the names of the metrics to be optimized by the algorithm, which is ['reward'] by default. When specified, it should have only 1 item for single-objective algorithm and can have multiple items for algorithms that support multi-objective optimization. **kwargs: Arguments passed to the `BackendFactory` subclass registered with the requested backend. Yields: An iterator of tuples (example, feedback) as examples sampled from the search space defined by the `space` through `algorithm`. Raises: ValueError: `space` is a fixed value, or requested `backend` is not available. """ # Placeholder for Google-internal usage instrumentation. # Create template based on the hyper value. if isinstance(space, hyper.DynamicEvaluationContext): dynamic_evaluation_context = space dna_spec = space.dna_spec template = None elif isinstance(space, geno.DNASpec): dynamic_evaluation_context = None dna_spec = space template = None else: if symbolic.is_deterministic(space): raise ValueError(f'\'space\' is a constant value: {space!r}.') template = hyper.template(space, where) dna_spec = template.dna_spec() dynamic_evaluation_context = None # Create and set up the backend. metrics_to_optimize = metrics_to_optimize or ['reward'] backend = backend_lib.get_backend_cls(backend).create( name, group, dna_spec, algorithm, metrics_to_optimize, early_stopping_policy, num_examples, **kwargs) while True: try: feedback = backend.next() dna = feedback.dna reward = dna.metadata.get('reward') if reward is None: # Decode and return current example to client code for evaluation. if template is not None: value = template.decode(dna) elif dynamic_evaluation_context is not None: value = lambda: dynamic_evaluation_context.apply(dna) else: value = dna yield (value, feedback) else: # Reward may be computed at the controller side, we can # short circuit the client-side evaluation for the current item. # Also, there can be multiple co-workers working on the same trial, # we ignore errors triggered by racing feedbacks, which will be # considered as no-op. with feedback.ignore_race_condition(): feedback(reward, metadata=dict(client_evaluation_skipped=True)) except StopIteration: return
(space: Union[Any, pyglove.core.hyper.dynamic_evaluation.DynamicEvaluationContext, pyglove.core.geno.base.DNASpec], algorithm: pyglove.core.geno.dna_generator.DNAGenerator, num_examples: Optional[int] = None, early_stopping_policy: Optional[pyglove.core.tuning.early_stopping.EarlyStoppingPolicy] = None, where: Optional[Callable[[pyglove.core.hyper.base.HyperPrimitive], bool]] = None, name: Optional[str] = None, group: Union[NoneType, int, str] = None, backend: Optional[str] = None, metrics_to_optimize: Optional[Sequence[str]] = None, **kwargs)
41,682
pyglove.core.symbolic.base
save
Save a symbolic value using the global save handler. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): pass a1 = A(1) file = 'my_file.json' a1.save(file) a2 = pg.load(file) assert pg.eq(a1, a2) Args: value: value to save. path: A path string for saving `value`. *args: Positional arguments that will be passed through to the global save handler. **kwargs: Keyword arguments that will be passed through to the global save handler. Returns: Return value from the global save handler. Raises: RuntimeError: if global save handler is not set.
def save(value: Any, path: str, *args, **kwargs) -> Any: """Save a symbolic value using the global save handler. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): pass a1 = A(1) file = 'my_file.json' a1.save(file) a2 = pg.load(file) assert pg.eq(a1, a2) Args: value: value to save. path: A path string for saving `value`. *args: Positional arguments that will be passed through to the global save handler. **kwargs: Keyword arguments that will be passed through to the global save handler. Returns: Return value from the global save handler. Raises: RuntimeError: if global save handler is not set. """ save_handler = flags.get_save_handler() or default_save_handler return save_handler(value, path, *args, **kwargs)
(value: Any, path: str, *args, **kwargs) -> Any
41,685
pyglove.core.symbolic.flags
set_load_handler
Sets global load handler. Args: load_handler: A callable object that takes arbitrary arguments and returns a value. `symbolic.load` method will pass through all arguments to this handler and return its return value. Returns: Previous global load handler.
def set_load_handler( load_handler: Optional[Callable[..., Any]]) -> Optional[Callable[..., Any]]: """Sets global load handler. Args: load_handler: A callable object that takes arbitrary arguments and returns a value. `symbolic.load` method will pass through all arguments to this handler and return its return value. Returns: Previous global load handler. """ if load_handler and not callable(load_handler): raise ValueError('`load_handler` must be callable.') global _LOAD_HANDLER old_handler = _LOAD_HANDLER _LOAD_HANDLER = load_handler return old_handler
(load_handler: Optional[Callable[..., Any]]) -> Optional[Callable[..., Any]]
41,686
pyglove.core.symbolic.flags
set_origin_stacktrace_limit
Set stack trace limit for origin tracking.
def set_origin_stacktrace_limit(limit: int) -> None: """Set stack trace limit for origin tracking.""" global _ORIGIN_STACKTRACE_LIMIT _ORIGIN_STACKTRACE_LIMIT = limit
(limit: int) -> NoneType
41,687
pyglove.core.symbolic.flags
set_save_handler
Sets global save handler. Args: save_handler: A callable object that takes at least one argument as value to save. `symbolic.save` method will pass through all arguments to this handler and return its return value. Returns: Previous global save handler.
def set_save_handler( save_handler: Optional[Callable[..., Any]]) -> Optional[Callable[..., Any]]: """Sets global save handler. Args: save_handler: A callable object that takes at least one argument as value to save. `symbolic.save` method will pass through all arguments to this handler and return its return value. Returns: Previous global save handler. """ if save_handler and not callable(save_handler): raise ValueError('`save_handler` must be callable.') global _SAVE_HANDLER old_handler = _SAVE_HANDLER _SAVE_HANDLER = save_handler return old_handler
(save_handler: Optional[Callable[..., Any]]) -> Optional[Callable[..., Any]]
41,688
pyglove.core.object_utils.common_traits
str_format
Context manager for setting the default format kwargs for __str__.
def str_format(**kwargs) -> ContextManager[Dict[str, Any]]: """Context manager for setting the default format kwargs for __str__.""" return thread_local.thread_local_arg_scope(_TLS_STR_FORMAT_KWARGS, **kwargs)
(**kwargs) -> ContextManager[Dict[str, Any]]
41,691
pyglove.core.symbolic.symbolize
symbolize
Make a symbolic class/function out of a regular Python class/function. ``pg.symbolize`` is introduced for the purpose of making existing classes/functions symbolically programmable. For use cases that build symbolic classes from scratch (native PyGlove classes), extending `pg.Object` with `@pg.members` that declares the symbolic properties is the recommended way, which automatically generates the ``__init__`` method and allow symbolic attributes to be accessed via `self.<member>`. ``pg.symbolize`` can be invoked as a class/function decorator, or as a function. When it is used as a decorator, the decorated class or function will be converted to a symbolic type (via :func:`pyglove.wrap` and :func:`pyglove.functor_class`). This is preferred when user can modify the files of existing classes/functions. For example:: @pg.symbolize def foo(a, b): return a + b f = foo(1, 2) f.rebind(a=2) f() # Returns 4 @pg.symbolize([ # (Optional) add symbolic constraint for __init__ argument 'a'. ('a', pg.typing.Int(min_value=0), 'Description for `a`.') ]) class Foo: def __init__(self, a, b): self._a = a self._b = b def result(self): return self._a + self._b f = Foo(1, 2) f.rebind(a=2, b=3) f.result() # Returns 5 When it used as a function, the input class or function will not be modified. Instead, a new symbolic type will be created and returned. This is helpful when users want to create new symbolic types from existing classes/functions without modifying their original source code. For example:: def foo(a, b): return a + b # Create a new symbolic type with constraint on 'a'. symbolic_foo = pg.symbolize(foo, [ ('a', pg.typing.Int(min_value=0)) ], returns=pg.typing.Int()) foo(1, 2) # Returns 3 (foo is kept intact). f = symbolic_foo(1, 2) f.rebind(a=2) f() # Returns 4. class Foo: def __init__(self, a, b): self._a = a self._b = b def result(self): return self._a + self._b SymbolicFoo = pg.symbolize(Foo) f = SymbolicFoo(2, 2) f.rebind(a=3) f.result() # Returns 5. Args: *args: The positional arguments for `symbolize` are: * `class_or_fn`: applicable when `symbolize` is called in function mode. * `constraints`: an optional list of tuples that allows users to specify the constraints for arguments from the `__init__` method (for class) or the arguments from the function signature (for function). Each tuple should be in format: `(<arg_name>, <value_spec>, [description], [arg_metadata])` Where `arg_name` is an argument name that is acceptable to the `__init__` method of the class, or the function signature; 'value_spec' is a `pg.ValueSpec` object that validates the value of the argument. `description` and `arg_metadata` are optional, for documentation and meta-programming purposes. **kwargs: Keyword arguments will be passsed through to :func:`pyglove.wrap` (for symbolizing classes) and :func:`pyglove.functor_class` (for symbolizing functions). Returns: A Symbolic subclass for the decorated/input type. Raises: TypeError: input type cannot be symbolized, or it's not a type.
def symbolize(*args, **kwargs): """Make a symbolic class/function out of a regular Python class/function. ``pg.symbolize`` is introduced for the purpose of making existing classes/functions symbolically programmable. For use cases that build symbolic classes from scratch (native PyGlove classes), extending `pg.Object` with `@pg.members` that declares the symbolic properties is the recommended way, which automatically generates the ``__init__`` method and allow symbolic attributes to be accessed via `self.<member>`. ``pg.symbolize`` can be invoked as a class/function decorator, or as a function. When it is used as a decorator, the decorated class or function will be converted to a symbolic type (via :func:`pyglove.wrap` and :func:`pyglove.functor_class`). This is preferred when user can modify the files of existing classes/functions. For example:: @pg.symbolize def foo(a, b): return a + b f = foo(1, 2) f.rebind(a=2) f() # Returns 4 @pg.symbolize([ # (Optional) add symbolic constraint for __init__ argument 'a'. ('a', pg.typing.Int(min_value=0), 'Description for `a`.') ]) class Foo: def __init__(self, a, b): self._a = a self._b = b def result(self): return self._a + self._b f = Foo(1, 2) f.rebind(a=2, b=3) f.result() # Returns 5 When it used as a function, the input class or function will not be modified. Instead, a new symbolic type will be created and returned. This is helpful when users want to create new symbolic types from existing classes/functions without modifying their original source code. For example:: def foo(a, b): return a + b # Create a new symbolic type with constraint on 'a'. symbolic_foo = pg.symbolize(foo, [ ('a', pg.typing.Int(min_value=0)) ], returns=pg.typing.Int()) foo(1, 2) # Returns 3 (foo is kept intact). f = symbolic_foo(1, 2) f.rebind(a=2) f() # Returns 4. class Foo: def __init__(self, a, b): self._a = a self._b = b def result(self): return self._a + self._b SymbolicFoo = pg.symbolize(Foo) f = SymbolicFoo(2, 2) f.rebind(a=3) f.result() # Returns 5. Args: *args: The positional arguments for `symbolize` are: * `class_or_fn`: applicable when `symbolize` is called in function mode. * `constraints`: an optional list of tuples that allows users to specify the constraints for arguments from the `__init__` method (for class) or the arguments from the function signature (for function). Each tuple should be in format: `(<arg_name>, <value_spec>, [description], [arg_metadata])` Where `arg_name` is an argument name that is acceptable to the `__init__` method of the class, or the function signature; 'value_spec' is a `pg.ValueSpec` object that validates the value of the argument. `description` and `arg_metadata` are optional, for documentation and meta-programming purposes. **kwargs: Keyword arguments will be passsed through to :func:`pyglove.wrap` (for symbolizing classes) and :func:`pyglove.functor_class` (for symbolizing functions). Returns: A Symbolic subclass for the decorated/input type. Raises: TypeError: input type cannot be symbolized, or it's not a type. """ cls_or_fn = None if args: if inspect.isclass(args[0]) or inspect.isfunction(args[0]): # pytype: disable=not-supported-yet cls_or_fn = args[0] if cls_or_fn is dict or cls_or_fn is list: if len(args) != 1 or kwargs: raise ValueError( f'Constraints are not supported in symbolic {cls_or_fn!r}. ' f'Encountered: constraints={args[1]!r}.') return pg_dict.Dict if cls_or_fn is dict else pg_list.List args = args[1:] if len(args) > 1: raise ValueError( f'Only `constraint` is supported as positional arguments. ' f'Encountered {args!r}.') elif not isinstance(args[0], list): raise TypeError(f'{args[0]!r} cannot be symbolized.') def _symbolize(cls_or_fn): if inspect.isclass(cls_or_fn): if (issubclass(cls_or_fn, base.Symbolic) and not issubclass(cls_or_fn, class_wrapper.ClassWrapper)): raise ValueError( f'Cannot symbolize {cls_or_fn!r}: {cls_or_fn.__name__} is already ' f'a dataclass-like symbolic class derived from `pg.Object`. ' f'Consider to use `pg.members` to add new symbolic attributes.') return class_wrapper.wrap(cls_or_fn, *args, **kwargs) assert inspect.isfunction(cls_or_fn), ( f'Unexpected: {cls_or_fn!r} should be a class or function.') return functor_class( cls_or_fn, add_to_registry=True, *args, **kwargs) if cls_or_fn is not None: # When `cls_or_fn` is provided, `symbolize` is called under function mode # such as `SymbolicFoo = pg.symbolize(Foo)` or being used as a decorator # with no arguments, e.g: # ``` # @symbolize # class Foo: # pass # ``` # In both case, we return the symbolic type of `cls_or_fn`. return _symbolize(cls_or_fn) else: # Otherwise a factory method is returned to create the symbolic type from # a late-bound `cls_or_fn` input, which is the case when `symbolize` is used # as a decorator with provided arguments. return _symbolize
(*args, **kwargs)
41,692
pyglove.core.hyper.object_template
template
Creates an object template from the input. Example:: d = pg.Dict(x=pg.oneof(['a', 'b', 'c'], y=pg.manyof(2, range(4)))) t = pg.template(d) assert t.dna_spec() == pg.geno.space([ pg.geno.oneof([ pg.geno.constant(), pg.geno.constant(), pg.geno.constant(), ], location='x'), pg.geno.manyof([ pg.geno.constant(), pg.geno.constant(), pg.geno.constant(), pg.geno.constant(), ], location='y') ]) assert t.encode(pg.Dict(x='a', y=0)) == pg.DNA([0, 0]) assert t.decode(pg.DNA([0, 0])) == pg.Dict(x='a', y=0) t = pg.template(d, where=lambda x: isinstance(x, pg.hyper.ManyOf)) assert t.dna_spec() == pg.geno.space([ pg.geno.manyof([ pg.geno.constant(), pg.geno.constant(), pg.geno.constant(), pg.geno.constant(), ], location='y') ]) assert t.encode(pg.Dict(x=pg.oneof(['a', 'b', 'c']), y=0)) == pg.DNA(0) assert t.decode(pg.DNA(0)) == pg.Dict(x=pg.oneof(['a', 'b', 'c']), y=0) Args: value: A value based on which the template is created. where: Function to filter hyper values. If None, all hyper primitives from `value` will be included in the encoding/decoding process. Otherwise only the hyper values on which 'where' returns True will be included. `where` can be useful to partition a search space into separate optimization processes. Please see 'ObjectTemplate' docstr for details. Returns: A template object.
def template( value: Any, where: Optional[Callable[[base.HyperPrimitive], bool]] = None ) -> ObjectTemplate: """Creates an object template from the input. Example:: d = pg.Dict(x=pg.oneof(['a', 'b', 'c'], y=pg.manyof(2, range(4)))) t = pg.template(d) assert t.dna_spec() == pg.geno.space([ pg.geno.oneof([ pg.geno.constant(), pg.geno.constant(), pg.geno.constant(), ], location='x'), pg.geno.manyof([ pg.geno.constant(), pg.geno.constant(), pg.geno.constant(), pg.geno.constant(), ], location='y') ]) assert t.encode(pg.Dict(x='a', y=0)) == pg.DNA([0, 0]) assert t.decode(pg.DNA([0, 0])) == pg.Dict(x='a', y=0) t = pg.template(d, where=lambda x: isinstance(x, pg.hyper.ManyOf)) assert t.dna_spec() == pg.geno.space([ pg.geno.manyof([ pg.geno.constant(), pg.geno.constant(), pg.geno.constant(), pg.geno.constant(), ], location='y') ]) assert t.encode(pg.Dict(x=pg.oneof(['a', 'b', 'c']), y=0)) == pg.DNA(0) assert t.decode(pg.DNA(0)) == pg.Dict(x=pg.oneof(['a', 'b', 'c']), y=0) Args: value: A value based on which the template is created. where: Function to filter hyper values. If None, all hyper primitives from `value` will be included in the encoding/decoding process. Otherwise only the hyper values on which 'where' returns True will be included. `where` can be useful to partition a search space into separate optimization processes. Please see 'ObjectTemplate' docstr for details. Returns: A template object. """ return ObjectTemplate(value, compute_derived=True, where=where)
(value: Any, where: Optional[Callable[[pyglove.core.hyper.base.HyperPrimitive], bool]] = None) -> pyglove.core.hyper.object_template.ObjectTemplate
41,693
pyglove.core.symbolic.base
to_json
Serializes a (maybe) symbolic value into a plain Python object. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): pass a1 = A(1) json = a1.to_json() a2 = pg.from_json(json) assert pg.eq(a1, a2) Args: value: value to serialize. Applicable value types are: * Builtin python types: None, bool, int, float, string; * JSONConvertible types; * List types; * Tuple types; * Dict types. **kwargs: Keyword arguments to pass to value.to_json if value is JSONConvertible. Returns: JSON value.
def to_json(value: Any, **kwargs) -> Any: """Serializes a (maybe) symbolic value into a plain Python object. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): pass a1 = A(1) json = a1.to_json() a2 = pg.from_json(json) assert pg.eq(a1, a2) Args: value: value to serialize. Applicable value types are: * Builtin python types: None, bool, int, float, string; * JSONConvertible types; * List types; * Tuple types; * Dict types. **kwargs: Keyword arguments to pass to value.to_json if value is JSONConvertible. Returns: JSON value. """ # NOTE(daiyip): special handling `sym_jsonify` since symbolized # classes may have conflicting `to_json` method in their existing classes. if isinstance(value, Symbolic): return value.sym_jsonify(**kwargs) return object_utils.to_json(value, **kwargs)
(value: Any, **kwargs) -> Any
41,694
pyglove.core.symbolic.base
to_json_str
Serializes a (maybe) symbolic value into a JSON string. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): pass a1 = A(1) json_str = a1.to_json_str() a2 = pg.from_json_str(json_str) assert pg.eq(a1, a2) Args: value: Value to serialize. json_indent: The size of indentation for JSON format. **kwargs: Additional keyword arguments that are passed to ``pg.to_json``. Returns: A JSON string.
def to_json_str(value: Any, *, json_indent=None, **kwargs) -> str: """Serializes a (maybe) symbolic value into a JSON string. Example:: @pg.members([ ('x', pg.typing.Any()) ]) class A(pg.Object): pass a1 = A(1) json_str = a1.to_json_str() a2 = pg.from_json_str(json_str) assert pg.eq(a1, a2) Args: value: Value to serialize. json_indent: The size of indentation for JSON format. **kwargs: Additional keyword arguments that are passed to ``pg.to_json``. Returns: A JSON string. """ return json.dumps(to_json(value, **kwargs), indent=json_indent)
(value: Any, *, json_indent=None, **kwargs) -> str
41,695
pyglove.core.symbolic.flags
track_origin
Returns a context manager to enable or disable origin tracking. `track_origin` is thread-safe and can be nested. For example:: a = pg.Dict(x=1) with pg.track_origin(False): with pg.track_origin(True): # b's origin will be tracked, which can be accessed by `b.sym_origin`. b = a.clone() # c's origin will not be tracked, `c.sym_origin` returns None. c = a.clone() Args: enabled: If True, the origin of symbolic values will be tracked during object cloning and retuning from functors under current scope. Returns: A context manager for enable or disable origin tracking.
def track_origin(enabled: bool = True) -> ContextManager[None]: """Returns a context manager to enable or disable origin tracking. `track_origin` is thread-safe and can be nested. For example:: a = pg.Dict(x=1) with pg.track_origin(False): with pg.track_origin(True): # b's origin will be tracked, which can be accessed by `b.sym_origin`. b = a.clone() # c's origin will not be tracked, `c.sym_origin` returns None. c = a.clone() Args: enabled: If True, the origin of symbolic values will be tracked during object cloning and retuning from functors under current scope. Returns: A context manager for enable or disable origin tracking. """ return thread_local.thread_local_value_scope( _TLS_ENABLE_ORIGIN_TRACKING, enabled, False )
(enabled: bool = True) -> ContextManager[NoneType]
41,696
pyglove.core.symbolic.base
traverse
Traverse a (maybe) symbolic value using visitor functions. Example:: @pg.members([ ('x', pg.typing.Int()) ]) class A(pg.Object): pass v = [{'a': A(1)}, A(2)] integers = [] def track_integers(k, v, p): if isinstance(v, int): integers.append((k, v)) return pg.TraverseAction.ENTER pg.traverse(v, track_integers) assert integers == [('[0].a.x', 1), ('[1].x', 2)] Args: x: Maybe symbolic value. preorder_visitor_fn: preorder visitor function. Function signature is `(path, value, parent) -> should_continue`. postorder_visitor_fn: postorder visitor function. Function signature is `(path, value, parent) -> should_continue`. root_path: KeyPath of root value. parent: Optional parent of the root node. Returns: True if both `preorder_visitor_fn` and `postorder_visitor_fn` return either `TraverseAction.ENTER` or `TraverseAction.CONTINUE` for all nodes. Otherwise False.
def traverse(x: Any, preorder_visitor_fn: Optional[ Callable[[object_utils.KeyPath, Any, Any], Optional[TraverseAction]]] = None, postorder_visitor_fn: Optional[ Callable[[object_utils.KeyPath, Any, Any], Optional[TraverseAction]]] = None, root_path: Optional[object_utils.KeyPath] = None, parent: Optional[Any] = None) -> bool: """Traverse a (maybe) symbolic value using visitor functions. Example:: @pg.members([ ('x', pg.typing.Int()) ]) class A(pg.Object): pass v = [{'a': A(1)}, A(2)] integers = [] def track_integers(k, v, p): if isinstance(v, int): integers.append((k, v)) return pg.TraverseAction.ENTER pg.traverse(v, track_integers) assert integers == [('[0].a.x', 1), ('[1].x', 2)] Args: x: Maybe symbolic value. preorder_visitor_fn: preorder visitor function. Function signature is `(path, value, parent) -> should_continue`. postorder_visitor_fn: postorder visitor function. Function signature is `(path, value, parent) -> should_continue`. root_path: KeyPath of root value. parent: Optional parent of the root node. Returns: True if both `preorder_visitor_fn` and `postorder_visitor_fn` return either `TraverseAction.ENTER` or `TraverseAction.CONTINUE` for all nodes. Otherwise False. """ root_path = root_path or object_utils.KeyPath() def no_op_visitor(path, value, parent): del path, value, parent return TraverseAction.ENTER if preorder_visitor_fn is None: preorder_visitor_fn = no_op_visitor if postorder_visitor_fn is None: postorder_visitor_fn = no_op_visitor preorder_action = preorder_visitor_fn(root_path, x, parent) if preorder_action is None or preorder_action == TraverseAction.ENTER: if isinstance(x, dict): for k, v in x.items(): if not traverse(v, preorder_visitor_fn, postorder_visitor_fn, object_utils.KeyPath(k, root_path), x): preorder_action = TraverseAction.STOP break elif isinstance(x, list): for i, v in enumerate(x): if not traverse(v, preorder_visitor_fn, postorder_visitor_fn, object_utils.KeyPath(i, root_path), x): preorder_action = TraverseAction.STOP break elif isinstance(x, Symbolic.ObjectType): # pytype: disable=wrong-arg-types for k, v in x.sym_items(): if not traverse(v, preorder_visitor_fn, postorder_visitor_fn, object_utils.KeyPath(k, root_path), x): preorder_action = TraverseAction.STOP break postorder_action = postorder_visitor_fn(root_path, x, parent) if (preorder_action == TraverseAction.STOP or postorder_action == TraverseAction.STOP): return False return True
(x: Any, preorder_visitor_fn: Optional[Callable[[pyglove.core.object_utils.value_location.KeyPath, Any, Any], Optional[pyglove.core.symbolic.base.TraverseAction]]] = None, postorder_visitor_fn: Optional[Callable[[pyglove.core.object_utils.value_location.KeyPath, Any, Any], Optional[pyglove.core.symbolic.base.TraverseAction]]] = None, root_path: Optional[pyglove.core.object_utils.value_location.KeyPath] = None, parent: Optional[Any] = None) -> bool
41,699
pyglove.core.symbolic.object
use_init_args
Decorator for updating the `__init__` signature of a `pg.Object` subclass. Examples:: @pg.use_init_args(['x', 'y', '*z']) class Foo(pg.Object): y: int x: str z: list[int] f = Foo('abc', 1, 2, 3) assert f.x == 'abc' assert f.y == 1 assert f.z == [2, 3] Args: init_arg_list: A sequence of attribute names that will be used as the positional arguments of `__init__`. The last element could be the name of a list-type attribute, indicating it's used as `*args`. Keyword-only arguments are not needed to be present in this list, which will be figured out automatically based on class' schema. Returns: a decorator function that updates the `__init__` signature.
def use_init_args(init_arg_list: Sequence[str]) -> pg_typing.Decorator: """Decorator for updating the `__init__` signature of a `pg.Object` subclass. Examples:: @pg.use_init_args(['x', 'y', '*z']) class Foo(pg.Object): y: int x: str z: list[int] f = Foo('abc', 1, 2, 3) assert f.x == 'abc' assert f.y == 1 assert f.z == [2, 3] Args: init_arg_list: A sequence of attribute names that will be used as the positional arguments of `__init__`. The last element could be the name of a list-type attribute, indicating it's used as `*args`. Keyword-only arguments are not needed to be present in this list, which will be figured out automatically based on class' schema. Returns: a decorator function that updates the `__init__` signature. """ def _decorator(cls): schema_utils.update_schema( cls, [], extend=True, init_arg_list=init_arg_list ) return cls return typing.cast(pg_typing.Decorator, _decorator)
(init_arg_list: Sequence[str]) -> <function <lambda> at 0x7f2fa64d25f0>
41,700
pyglove.core.symbolic.class_wrapper
wrap
Makes a symbolic class wrapper from a regular Python class. ``pg.wrap`` is called by :func:`pyglove.symbolize` for symbolizing existing Python classes. For example:: class A: def __init__(self, x): self.x = x # The following two lines are equivalent. A1 = pg.symbolize(A) A2 = pg.wrap(A) Besides passing the source class, ``pg.wrap`` allows the user to pass symbolic field definitions for the init arguments. For example:: A3 = pg.wrap(A, [ ('x', pg.typing.Int()) ]) Moreover, multiple flags are provided to determine whether or not to use the symbolic operations as the default behaviors. For example:: A4 = pg.wrap( A, [], # Instead clearing out all internal states (default), # do not reset internal state. reset_state_fn=lambda self: None, # Use symbolic representation for __repr__ and __str__. repr=True, # use symbolic equality for __eq__, __ne__ and __hash__. eq=True, # Customize the class name obtained (the default behaivor # is to use the source class name). class_name='A4' # Customize the module name for created class (the default # behavior is to use the source module name). module_name='my_module') Args: cls: Class to wrap. init_args: An optional list of field definitions for the arguments of __init__. It can be a sparse value specifications for argument in the __init__ method of `cls`. reset_state_fn: An optional callable object to reset the internal state of the user class when rebind happens. repr: Options for generating `__repr__` and `__str__`. If True (default), use symbolic representation if the user class does not define its own. Otherwise use the user class' definition. If False, always use non-symbolic representations, which falls back to `object.__repr__` and `object.__str__` if the user class does not define them. eq: Options for generating `__eq__`, `__ne__` and `__hash__`. If True and the `user_cls` defines `__eq__`, `__ne__` and `__hash__`, use the definitions from the `user_cls`. If True and the `user_cls` does not define `__eq__`, `__ne__` and `__hash__`, use symbolic eq/hash. If False (default), use `user_cls`'s definition if present, or the definitions from the `object` class. class_name: An optional string used as class name for the wrapper class. If None, the wrapper class will use the class name of the wrapped class. module_name: An optional string used as module name for the wrapper class. If None, the wrapper class will use the module name of the wrapped class. auto_doc: If True, the descriptions for init argument fields will be extracted from docstring if present. auto_typing: If True, PyGlove typing (runtime-typing) will be enabled based on type annotations inspected from the `__init__` method. serialization_key: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. additional_keys: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. override: Additional class attributes to override. Returns: A subclass of `cls` and `ClassWrapper`. Raises: TypeError: input `cls` is not a class.
def wrap( cls, init_args: Optional[List[Union[ Tuple[Union[Text, pg_typing.KeySpec], pg_typing.ValueSpec, Text], Tuple[Union[Text, pg_typing.KeySpec], pg_typing.ValueSpec, Text, Any] ]]] = None, *, reset_state_fn: Optional[Callable[[Any], None]] = None, repr: bool = True, # pylint: disable=redefined-builtin eq: bool = False, class_name: Optional[str] = None, module_name: Optional[str] = None, auto_doc: bool = False, auto_typing: bool = False, serialization_key: Optional[str] = None, additional_keys: Optional[List[str]] = None, override: Optional[Dict[str, Any]] = None ) -> Type['ClassWrapper']: """Makes a symbolic class wrapper from a regular Python class. ``pg.wrap`` is called by :func:`pyglove.symbolize` for symbolizing existing Python classes. For example:: class A: def __init__(self, x): self.x = x # The following two lines are equivalent. A1 = pg.symbolize(A) A2 = pg.wrap(A) Besides passing the source class, ``pg.wrap`` allows the user to pass symbolic field definitions for the init arguments. For example:: A3 = pg.wrap(A, [ ('x', pg.typing.Int()) ]) Moreover, multiple flags are provided to determine whether or not to use the symbolic operations as the default behaviors. For example:: A4 = pg.wrap( A, [], # Instead clearing out all internal states (default), # do not reset internal state. reset_state_fn=lambda self: None, # Use symbolic representation for __repr__ and __str__. repr=True, # use symbolic equality for __eq__, __ne__ and __hash__. eq=True, # Customize the class name obtained (the default behaivor # is to use the source class name). class_name='A4' # Customize the module name for created class (the default # behavior is to use the source module name). module_name='my_module') Args: cls: Class to wrap. init_args: An optional list of field definitions for the arguments of __init__. It can be a sparse value specifications for argument in the __init__ method of `cls`. reset_state_fn: An optional callable object to reset the internal state of the user class when rebind happens. repr: Options for generating `__repr__` and `__str__`. If True (default), use symbolic representation if the user class does not define its own. Otherwise use the user class' definition. If False, always use non-symbolic representations, which falls back to `object.__repr__` and `object.__str__` if the user class does not define them. eq: Options for generating `__eq__`, `__ne__` and `__hash__`. If True and the `user_cls` defines `__eq__`, `__ne__` and `__hash__`, use the definitions from the `user_cls`. If True and the `user_cls` does not define `__eq__`, `__ne__` and `__hash__`, use symbolic eq/hash. If False (default), use `user_cls`'s definition if present, or the definitions from the `object` class. class_name: An optional string used as class name for the wrapper class. If None, the wrapper class will use the class name of the wrapped class. module_name: An optional string used as module name for the wrapper class. If None, the wrapper class will use the module name of the wrapped class. auto_doc: If True, the descriptions for init argument fields will be extracted from docstring if present. auto_typing: If True, PyGlove typing (runtime-typing) will be enabled based on type annotations inspected from the `__init__` method. serialization_key: An optional string to be used as the serialization key for the class during `sym_jsonify`. If None, `cls.__type_name__` will be used. This is introduced for scenarios when we want to relocate a class, before the downstream can recognize the new location, we need the class to serialize it using previous key. additional_keys: An optional list of strings as additional keys to deserialize an object of the registered class. This can be useful when we need to relocate or rename the registered class while being able to load existing serialized JSON values. override: Additional class attributes to override. Returns: A subclass of `cls` and `ClassWrapper`. Raises: TypeError: input `cls` is not a class. """ if not inspect.isclass(cls): raise TypeError(f'Class wrapper can only be created from classes. ' f'Encountered: {cls!r}.') if not issubclass(cls, ClassWrapper): cls = _subclassed_wrapper( cls, use_symbolic_repr=repr, use_symbolic_comp=eq, reset_state_fn=reset_state_fn, class_name=class_name, module_name=module_name, use_auto_doc=auto_doc, use_auto_typing=auto_typing) if issubclass(cls, ClassWrapper): # Update init argument specifications according to user specified specs. # Replace schema instead of extending it. description, init_arg_list, arg_fields = _extract_init_signature( cls, init_args, auto_doc=auto_doc, auto_typing=auto_typing) schema_utils.update_schema( cls, arg_fields, init_arg_list=init_arg_list, extend=False, description=description, serialization_key=serialization_key, additional_keys=additional_keys) if override: for k, v in override.items(): setattr(cls, k, v) return cls
(cls, init_args: Optional[List[Union[Tuple[Union[str, pyglove.core.typing.class_schema.KeySpec], pyglove.core.typing.class_schema.ValueSpec, str], Tuple[Union[str, pyglove.core.typing.class_schema.KeySpec], pyglove.core.typing.class_schema.ValueSpec, str, Any]]]] = None, *, reset_state_fn: Optional[Callable[[Any], NoneType]] = None, repr: bool = True, eq: bool = False, class_name: Optional[str] = None, module_name: Optional[str] = None, auto_doc: bool = False, auto_typing: bool = False, serialization_key: Optional[str] = None, additional_keys: Optional[List[str]] = None, override: Optional[Dict[str, Any]] = None) -> Type[pyglove.core.symbolic.class_wrapper.ClassWrapper]
41,701
pyglove.core.symbolic.class_wrapper
wrap_module
Wrap classes from a module. For example, users can wrap all subclasses of `xxx.Base` under module `xxx`:: import xxx pg.wrap_module( xxx, where=lambda c: isinstance(c, xxx.Base)) Args: module: A container that contains classes to wrap. names: An optional list of class names. If not provided, all classes under `module` will be considered candidates. where: An optional filter function in signature (user_class) -> bool. Only the classes under `module` with True return value will be wrapped. export_to: An optional module to export the wrapper classes. **kwargs: Keyword arguments passed to `wrap` Returns: Wrapper classes.
def wrap_module( module, names: Optional[Sequence[Text]] = None, where: Optional[Callable[[Type['ClassWrapper']], bool]] = None, export_to: Optional[types.ModuleType] = None, **kwargs): """Wrap classes from a module. For example, users can wrap all subclasses of `xxx.Base` under module `xxx`:: import xxx pg.wrap_module( xxx, where=lambda c: isinstance(c, xxx.Base)) Args: module: A container that contains classes to wrap. names: An optional list of class names. If not provided, all classes under `module` will be considered candidates. where: An optional filter function in signature (user_class) -> bool. Only the classes under `module` with True return value will be wrapped. export_to: An optional module to export the wrapper classes. **kwargs: Keyword arguments passed to `wrap` Returns: Wrapper classes. """ wrapper_classes = [] module_name = export_to.__name__ if export_to else None origin_cls_to_wrap_cls = {} for symbol_name in (names or dir(module)): s = getattr(module, symbol_name) if inspect.isclass(s) and (not where or where(s)): # NOTE(daiyip): It's possible that a name under a module is an alias for # another class. In such case, we do not create duplicated wrappers but # shares the same wrapper classes with different names. if s in origin_cls_to_wrap_cls: wrapper_class = origin_cls_to_wrap_cls[s] else: wrapper_class = wrap(s, module_name=module_name, **kwargs) origin_cls_to_wrap_cls[s] = wrapper_class wrapper_classes.append(wrapper_class) if export_to: setattr(export_to, symbol_name, wrapper_class) return wrapper_classes
(module, names: Optional[Sequence[str]] = None, where: Optional[Callable[[Type[pyglove.core.symbolic.class_wrapper.ClassWrapper]], bool]] = None, export_to: Optional[module] = None, **kwargs)
41,703
builtins
type
type(object) -> the object's type type(name, bases, dict, **kwds) -> a new type
from builtins import type
null
41,707
comm.base_comm
BaseComm
Class for communicating between a Frontend and a Kernel Must be subclassed with a publish_msg method implementation which sends comm messages through the iopub channel.
class BaseComm: """Class for communicating between a Frontend and a Kernel Must be subclassed with a publish_msg method implementation which sends comm messages through the iopub channel. """ def __init__( self, target_name: str = "comm", data: MaybeDict = None, metadata: MaybeDict = None, buffers: BuffersType = None, comm_id: str | None = None, primary: bool = True, target_module: str | None = None, topic: bytes | None = None, _open_data: MaybeDict = None, _close_data: MaybeDict = None, **kwargs: t.Any, ) -> None: super().__init__(**kwargs) self.comm_id = comm_id if comm_id else uuid.uuid4().hex self.primary = primary self.target_name = target_name self.target_module = target_module self.topic = topic if topic else ("comm-%s" % self.comm_id).encode("ascii") self._open_data = _open_data if _open_data else {} self._close_data = _close_data if _close_data else {} self._msg_callback: CommCallback | None = None self._close_callback: CommCallback | None = None self._closed = True if self.primary: # I am primary, open my peer. self.open(data=data, metadata=metadata, buffers=buffers) else: self._closed = False def publish_msg( self, msg_type: str, # noqa: ARG002 data: MaybeDict = None, # noqa: ARG002 metadata: MaybeDict = None, # noqa: ARG002 buffers: BuffersType = None, # noqa: ARG002 **keys: t.Any, # noqa: ARG002 ) -> None: msg = "publish_msg Comm method is not implemented" raise NotImplementedError(msg) def __del__(self) -> None: """trigger close on gc""" with contextlib.suppress(Exception): # any number of things can have gone horribly wrong # when called during interpreter teardown self.close(deleting=True) # publishing messages def open( self, data: MaybeDict = None, metadata: MaybeDict = None, buffers: BuffersType = None ) -> None: """Open the frontend-side version of this comm""" if data is None: data = self._open_data comm_manager = comm.get_comm_manager() if comm_manager is None: msg = "Comms cannot be opened without a comm_manager." # type:ignore[unreachable] raise RuntimeError(msg) comm_manager.register_comm(self) try: self.publish_msg( "comm_open", data=data, metadata=metadata, buffers=buffers, target_name=self.target_name, target_module=self.target_module, ) self._closed = False except Exception: comm_manager.unregister_comm(self) raise def close( self, data: MaybeDict = None, metadata: MaybeDict = None, buffers: BuffersType = None, deleting: bool = False, ) -> None: """Close the frontend-side version of this comm""" if self._closed: # only close once return self._closed = True if data is None: data = self._close_data self.publish_msg( "comm_close", data=data, metadata=metadata, buffers=buffers, ) if not deleting: # If deleting, the comm can't be registered comm.get_comm_manager().unregister_comm(self) def send( self, data: MaybeDict = None, metadata: MaybeDict = None, buffers: BuffersType = None ) -> None: """Send a message to the frontend-side version of this comm""" self.publish_msg( "comm_msg", data=data, metadata=metadata, buffers=buffers, ) # registering callbacks def on_close(self, callback: CommCallback | None) -> None: """Register a callback for comm_close Will be called with the `data` of the close message. Call `on_close(None)` to disable an existing callback. """ self._close_callback = callback def on_msg(self, callback: CommCallback | None) -> None: """Register a callback for comm_msg Will be called with the `data` of any comm_msg messages. Call `on_msg(None)` to disable an existing callback. """ self._msg_callback = callback # handling of incoming messages def handle_close(self, msg: MessageType) -> None: """Handle a comm_close message""" logger.debug("handle_close[%s](%s)", self.comm_id, msg) if self._close_callback: self._close_callback(msg) def handle_msg(self, msg: MessageType) -> None: """Handle a comm_msg message""" logger.debug("handle_msg[%s](%s)", self.comm_id, msg) if self._msg_callback: from IPython import get_ipython shell = get_ipython() if shell: shell.events.trigger("pre_execute") self._msg_callback(msg) if shell: shell.events.trigger("post_execute")
(target_name: 'str' = 'comm', data: 'MaybeDict' = None, metadata: 'MaybeDict' = None, buffers: 'BuffersType' = None, comm_id: 'str | None' = None, primary: 'bool' = True, target_module: 'str | None' = None, topic: 'bytes | None' = None, _open_data: 'MaybeDict' = None, _close_data: 'MaybeDict' = None, **kwargs: 't.Any') -> 'None'
41,708
comm.base_comm
__del__
trigger close on gc
def __del__(self) -> None: """trigger close on gc""" with contextlib.suppress(Exception): # any number of things can have gone horribly wrong # when called during interpreter teardown self.close(deleting=True)
(self) -> NoneType
41,709
comm.base_comm
__init__
null
def __init__( self, target_name: str = "comm", data: MaybeDict = None, metadata: MaybeDict = None, buffers: BuffersType = None, comm_id: str | None = None, primary: bool = True, target_module: str | None = None, topic: bytes | None = None, _open_data: MaybeDict = None, _close_data: MaybeDict = None, **kwargs: t.Any, ) -> None: super().__init__(**kwargs) self.comm_id = comm_id if comm_id else uuid.uuid4().hex self.primary = primary self.target_name = target_name self.target_module = target_module self.topic = topic if topic else ("comm-%s" % self.comm_id).encode("ascii") self._open_data = _open_data if _open_data else {} self._close_data = _close_data if _close_data else {} self._msg_callback: CommCallback | None = None self._close_callback: CommCallback | None = None self._closed = True if self.primary: # I am primary, open my peer. self.open(data=data, metadata=metadata, buffers=buffers) else: self._closed = False
(self, target_name: str = 'comm', data: Optional[Dict[str, Any]] = None, metadata: Optional[Dict[str, Any]] = None, buffers: Optional[List[bytes]] = None, comm_id: Optional[str] = None, primary: bool = True, target_module: Optional[str] = None, topic: Optional[bytes] = None, _open_data: Optional[Dict[str, Any]] = None, _close_data: Optional[Dict[str, Any]] = None, **kwargs: Any) -> NoneType
41,710
comm.base_comm
close
Close the frontend-side version of this comm
def close( self, data: MaybeDict = None, metadata: MaybeDict = None, buffers: BuffersType = None, deleting: bool = False, ) -> None: """Close the frontend-side version of this comm""" if self._closed: # only close once return self._closed = True if data is None: data = self._close_data self.publish_msg( "comm_close", data=data, metadata=metadata, buffers=buffers, ) if not deleting: # If deleting, the comm can't be registered comm.get_comm_manager().unregister_comm(self)
(self, data: Optional[Dict[str, Any]] = None, metadata: Optional[Dict[str, Any]] = None, buffers: Optional[List[bytes]] = None, deleting: bool = False) -> NoneType
41,711
comm.base_comm
handle_close
Handle a comm_close message
def handle_close(self, msg: MessageType) -> None: """Handle a comm_close message""" logger.debug("handle_close[%s](%s)", self.comm_id, msg) if self._close_callback: self._close_callback(msg)
(self, msg: Dict[str, Any]) -> NoneType