index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
42,886
linearmodels.system.model
IV3SLS
Three-stage Least Squares (3SLS) Estimator Parameters ---------- equations : dict Dictionary-like structure containing dependent, exogenous, endogenous and instrumental variables. Each key is an equations label and must be a string. Each value must be either a tuple of the form (dependent, exog, endog, instrument[, weights]) or a dictionary with keys "dependent", and at least one of "exog" or "endog" and "instruments". When using a tuple, values must be provided for all 4 variables, although either empty arrays or `None` can be passed if a category of variable is not included in a model. The dictionary may contain optional keys for "exog", "endog", "instruments", and "weights". "exog" can be omitted if all variables in an equation are endogenous. Alternatively, "exog" can contain either an empty array or `None` to indicate that an equation contains no exogenous regressors. Similarly "endog" and "instruments" can either be omitted or may contain an empty array (or `None`) if all variables in an equation are exogenous. sigma : array_like Prespecified residual covariance to use in GLS estimation. If not provided, FGLS is implemented based on an estimate of sigma. Notes ----- Estimates a set of regressions which are seemingly unrelated in the sense that separate estimation would lead to consistent parameter estimates. Each equation is of the form .. math:: y_{i,k} = x_{i,k}\beta_i + \epsilon_{i,k} where k denotes the equation and i denoted the observation index. By stacking vertically arrays of dependent and placing the exogenous variables into a block diagonal array, the entire system can be compactly expressed as .. math:: Y = X\beta + \epsilon where .. math:: Y = \left[\begin{array}{x}Y_1 \\ Y_2 \\ \vdots \\ Y_K\end{array}\right] and .. math:: X = \left[\begin{array}{cccc} X_1 & 0 & \ldots & 0 \\ 0 & X_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & X_K \end{array}\right] The system instrumental variable (IV) estimator is .. math:: \hat{\beta}_{IV} & = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'Y \\ & = (\hat{X}'\hat{X})^{-1}\hat{X}'Y where :math:`\hat{X} = Z(Z'Z)^{-1}Z'X` and. When certain conditions are satisfied, a GLS estimator of the form .. math:: \hat{\beta}_{3SLS} = (\hat{X}'\Omega^{-1}\hat{X})^{-1}\hat{X}'\Omega^{-1}Y can improve accuracy of coefficient estimates where .. math:: \Omega = \Sigma \otimes I_N where :math:`\Sigma` is the covariance matrix of the residuals.
class IV3SLS(_LSSystemModelBase): r""" Three-stage Least Squares (3SLS) Estimator Parameters ---------- equations : dict Dictionary-like structure containing dependent, exogenous, endogenous and instrumental variables. Each key is an equations label and must be a string. Each value must be either a tuple of the form (dependent, exog, endog, instrument[, weights]) or a dictionary with keys "dependent", and at least one of "exog" or "endog" and "instruments". When using a tuple, values must be provided for all 4 variables, although either empty arrays or `None` can be passed if a category of variable is not included in a model. The dictionary may contain optional keys for "exog", "endog", "instruments", and "weights". "exog" can be omitted if all variables in an equation are endogenous. Alternatively, "exog" can contain either an empty array or `None` to indicate that an equation contains no exogenous regressors. Similarly "endog" and "instruments" can either be omitted or may contain an empty array (or `None`) if all variables in an equation are exogenous. sigma : array_like Prespecified residual covariance to use in GLS estimation. If not provided, FGLS is implemented based on an estimate of sigma. Notes ----- Estimates a set of regressions which are seemingly unrelated in the sense that separate estimation would lead to consistent parameter estimates. Each equation is of the form .. math:: y_{i,k} = x_{i,k}\beta_i + \epsilon_{i,k} where k denotes the equation and i denoted the observation index. By stacking vertically arrays of dependent and placing the exogenous variables into a block diagonal array, the entire system can be compactly expressed as .. math:: Y = X\beta + \epsilon where .. math:: Y = \left[\begin{array}{x}Y_1 \\ Y_2 \\ \vdots \\ Y_K\end{array}\right] and .. math:: X = \left[\begin{array}{cccc} X_1 & 0 & \ldots & 0 \\ 0 & X_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & X_K \end{array}\right] The system instrumental variable (IV) estimator is .. math:: \hat{\beta}_{IV} & = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'Y \\ & = (\hat{X}'\hat{X})^{-1}\hat{X}'Y where :math:`\hat{X} = Z(Z'Z)^{-1}Z'X` and. When certain conditions are satisfied, a GLS estimator of the form .. math:: \hat{\beta}_{3SLS} = (\hat{X}'\Omega^{-1}\hat{X})^{-1}\hat{X}'\Omega^{-1}Y can improve accuracy of coefficient estimates where .. math:: \Omega = \Sigma \otimes I_N where :math:`\Sigma` is the covariance matrix of the residuals. """ def __init__( self, equations: Mapping[ str, Mapping[str, ArrayLike | None] | Sequence[ArrayLike | None] ], *, sigma: ArrayLike | None = None, ) -> None: super().__init__(equations, sigma=sigma) @classmethod def multivariate_iv( cls, dependent: ArrayLike, exog: ArrayLike | None = None, endog: ArrayLike | None = None, instruments: ArrayLike | None = None, ) -> IV3SLS: """ Interface for specification of multivariate IV models Parameters ---------- dependent : array_like nobs by ndep array of dependent variables exog : array_like nobs by nexog array of exogenous regressors common to all models endog : array_like nobs by nendog array of endogenous regressors common to all models instruments : array_like nobs by ninstr array of instruments to use in all equations Returns ------- model : IV3SLS Model instance Notes ----- At least one of exog or endog must be provided. Utility function to simplify the construction of multivariate IV models which all use the same regressors and instruments. Constructs the dictionary of equations from the variables using the common exogenous, endogenous and instrumental variables. """ equations = {} dependent_ivd = IVData(dependent, var_name="dependent") if exog is None and endog is None: raise ValueError("At least one of exog or endog must be provided") exog_ivd = IVData(exog, var_name="exog") endog_ivd = IVData(endog, var_name="endog", nobs=dependent.shape[0]) instr_ivd = IVData(instruments, var_name="instruments", nobs=dependent.shape[0]) for col in dependent_ivd.pandas: equations[str(col)] = { # TODO: Bug in pandas-stubs # https://github.com/pandas-dev/pandas-stubs/issues/97 "dependent": dependent_ivd.pandas[[col]], "exog": exog_ivd.pandas, "endog": endog_ivd.pandas, "instruments": instr_ivd.pandas, } return cls(equations) @classmethod def from_formula( cls, formula: str | dict[str, str], data: DataFrame, *, sigma: ArrayLike | None = None, weights: Mapping[str, ArrayLike] | None = None, ) -> IV3SLS: """ Specify a 3SLS using the formula interface Parameters ---------- formula : {str, dict-like} Either a string or a dictionary of strings where each value in the dictionary represents a single equation. See Notes for a description of the accepted syntax data : DataFrame Frame containing named variables sigma : array_like Prespecified residual covariance to use in GLS estimation. If not provided, FGLS is implemented based on an estimate of sigma. weights : dict-like Dictionary like object (e.g. a DataFrame) containing variable weights. Each entry must have the same number of observations as data. If an equation label is not a key weights, the weights will be set to unity Returns ------- model : IV3SLS Model instance Notes ----- Models can be specified in one of two ways. The first uses curly braces to encapsulate equations. The second uses a dictionary where each key is an equation name. Examples -------- The simplest format uses standard formulas for each equation in a dictionary. Best practice is to use an Ordered Dictionary >>> import pandas as pd >>> import numpy as np >>> cols = ["y1", "x1_1", "x1_2", "z1", "y2", "x2_1", "x2_2", "z2"] >>> data = pd.DataFrame(np.random.randn(500, 8), columns=cols) >>> from linearmodels.system import IV3SLS >>> formula = {"eq1": "y1 ~ 1 + x1_1 + [x1_2 ~ z1]", ... "eq2": "y2 ~ 1 + x2_1 + [x2_2 ~ z2]"} >>> mod = IV3SLS.from_formula(formula, data) The second format uses curly braces {} to surround distinct equations >>> formula = "{y1 ~ 1 + x1_1 + [x1_2 ~ z1]} {y2 ~ 1 + x2_1 + [x2_2 ~ z2]}" >>> mod = IV3SLS.from_formula(formula, data) It is also possible to include equation labels when using curly braces >>> formula = "{eq1: y1 ~ x1_1 + [x1_2 ~ z1]} {eq2: y2 ~ 1 + [x2_2 ~ z2]}" >>> mod = IV3SLS.from_formula(formula, data) """ context = capture_context(1) parser = SystemFormulaParser(formula, data, weights, context=context) eqns = parser.data mod = cls(eqns, sigma=sigma) mod.formula = formula return mod
(equations: 'Mapping[str, Mapping[str, ArrayLike | None] | Sequence[ArrayLike | None]]', *, sigma: 'ArrayLike | None' = None) -> 'None'
42,887
linearmodels.system.model
__init__
null
def __init__( self, equations: Mapping[ str, Mapping[str, ArrayLike | None] | Sequence[ArrayLike | None] ], *, sigma: ArrayLike | None = None, ) -> None: super().__init__(equations, sigma=sigma)
(self, equations: collections.abc.Mapping[str, collections.abc.Mapping[str, typing.Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType]] | collections.abc.Sequence[typing.Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType]]], *, sigma: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None) -> NoneType
42,888
linearmodels.system.model
__repr__
null
def __repr__(self) -> str: return self.__str__() + f"\nid: {hex(id(self))}"
(self) -> str
42,889
linearmodels.system.model
__str__
null
def __str__(self) -> str: out = self._model_name + ", " out += f"{len(self._y)} Equations:\n" eqns = ", ".join(self._equations.keys()) out += "\n".join(textwrap.wrap(eqns, 70)) if self._common_exog: out += "\nCommon Exogenous Variables" return out
(self) -> str
42,890
linearmodels.system.model
_common_indiv_results
null
def _common_indiv_results( self, index: int, beta: Float64Array, cov: Float64Array, wresid: Float64Array, resid: Float64Array, method: str, cov_type: str, cov_est: ( HomoskedasticCovariance | HeteroskedasticCovariance | KernelCovariance | ClusteredCovariance | GMMHeteroskedasticCovariance | GMMHomoskedasticCovariance ), iter_count: int, debiased: bool, constant: bool, total_ss: float, *, weight_est: None | ( HomoskedasticWeightMatrix | HeteroskedasticWeightMatrix | KernelWeightMatrix ) = None, ) -> AttrDict: loc = 0 for i in range(index): loc += self._wx[i].shape[1] i = index stats = AttrDict() # Static properties stats["eq_label"] = self._eq_labels[i] stats["dependent"] = self._dependent[i].cols[0] stats["instruments"] = ( self._instr[i].cols if self._instr[i].shape[1] > 0 else None ) stats["endog"] = self._endog[i].cols if self._endog[i].shape[1] > 0 else None stats["method"] = method stats["cov_type"] = cov_type stats["cov_estimator"] = cov_est stats["cov_config"] = cov_est.cov_config stats["weight_estimator"] = weight_est stats["index"] = self._dependent[i].rows stats["original_index"] = self._original_index stats["iter"] = iter_count stats["debiased"] = debiased stats["has_constant"] = constant assert self._constant_loc is not None stats["constant_loc"] = self._constant_loc[i] # Parameters, errors and measures of fit wxi = self._wx[i] nobs, df = wxi.shape b = beta[loc : loc + df] e = wresid[:, [i]] nobs = e.shape[0] df_c = nobs - int(constant) df_r = nobs - df stats["params"] = b stats["cov"] = cov[loc : loc + df, loc : loc + df] stats["wresid"] = e stats["nobs"] = nobs stats["df_model"] = df stats["resid"] = resid[:, [i]] stats["fitted"] = self._x[i] @ b stats["resid_ss"] = float(np.squeeze(resid[:, [i]].T @ resid[:, [i]])) stats["total_ss"] = total_ss stats["r2"] = 1.0 - stats.resid_ss / stats.total_ss stats["r2a"] = 1.0 - (stats.resid_ss / df_r) / (stats.total_ss / df_c) names = self._param_names[loc : loc + df] offset = len(stats.eq_label) + 1 stats["param_names"] = [n[offset:] for n in names] # F-statistic stats["f_stat"] = self._f_stat(stats, debiased) return stats
(self, index: int, beta: numpy.ndarray, cov: numpy.ndarray, wresid: numpy.ndarray, resid: numpy.ndarray, method: str, cov_type: str, cov_est: linearmodels.system.covariance.HomoskedasticCovariance | linearmodels.system.covariance.HeteroskedasticCovariance | linearmodels.system.covariance.KernelCovariance | linearmodels.system.covariance.ClusteredCovariance | linearmodels.system.covariance.GMMHeteroskedasticCovariance | linearmodels.system.covariance.GMMHomoskedasticCovariance, iter_count: int, debiased: bool, constant: bool, total_ss: float, *, weight_est: Union[NoneType, linearmodels.system.gmm.HomoskedasticWeightMatrix, linearmodels.system.gmm.HeteroskedasticWeightMatrix, linearmodels.system.gmm.KernelWeightMatrix] = None) -> linearmodels.shared.utility.AttrDict
42,891
linearmodels.system.model
_common_results
null
def _common_results( self, beta: Float64Array, cov: Float64Array, method: str, iter_count: int, nobs: int, cov_type: str, sigma: Float64Array, individual: AttrDict, debiased: bool, ) -> AttrDict: results = AttrDict() results["method"] = method results["iter"] = iter_count results["nobs"] = nobs results["cov_type"] = cov_type results["index"] = self._dependent[0].rows results["original_index"] = self._original_index names = list(individual.keys()) results["sigma"] = DataFrame(sigma, columns=names, index=names) results["individual"] = individual results["params"] = beta results["df_model"] = beta.shape[0] results["param_names"] = self._param_names results["cov"] = cov results["debiased"] = debiased total_ss = resid_ss = 0.0 residuals = [] for key in individual: total_ss += individual[key].total_ss resid_ss += individual[key].resid_ss residuals.append(individual[key].resid) resid = np.hstack(residuals) results["resid_ss"] = resid_ss results["total_ss"] = total_ss results["r2"] = 1.0 - results.resid_ss / results.total_ss results["resid"] = resid results["constraints"] = self._constraints results["model"] = self x = self._x k = len(x) loc = 0 fitted_vals = [] for i in range(k): nb = x[i].shape[1] b = beta[loc : loc + nb] fitted_vals.append(x[i] @ b) loc += nb fitted = np.hstack(fitted_vals) results["fitted"] = fitted return results
(self, beta: numpy.ndarray, cov: numpy.ndarray, method: str, iter_count: int, nobs: int, cov_type: str, sigma: numpy.ndarray, individual: linearmodels.shared.utility.AttrDict, debiased: bool) -> linearmodels.shared.utility.AttrDict
42,892
linearmodels.system.model
_construct_xhat
null
def _construct_xhat(self) -> None: k = len(self._x) self._xhat = [] self._wxhat = [] for i in range(k): x, z = self._x[i], self._z[i] if z.shape == x.shape and np.all(z == x): # OLS, no instruments self._xhat.append(x) self._wxhat.append(self._wx[i]) else: delta = lstsq(z, x, rcond=None)[0] xhat = z @ delta self._xhat.append(xhat) w = self._w[i] self._wxhat.append(xhat * np.sqrt(w))
(self) -> NoneType
42,893
linearmodels.system.model
_drop_missing
null
def _drop_missing(self) -> None: k = len(self._dependent) nobs = self._dependent[0].shape[0] self._original_index = Index(self._dependent[0].rows) missing = np.zeros(nobs, dtype=bool) values = [self._dependent, self._exog, self._endog, self._instr, self._weights] for i in range(k): for value in values: nulls = value[i].isnull if nulls.any(): missing |= np.asarray(nulls) missing_warning(missing, stacklevel=4) if np.any(missing): for i in range(k): self._dependent[i].drop(missing) self._exog[i].drop(missing) self._endog[i].drop(missing) self._instr[i].drop(missing) self._weights[i].drop(missing)
(self) -> NoneType
42,894
linearmodels.system.model
_f_stat
null
def _f_stat( self, stats: AttrDict, debiased: bool ) -> WaldTestStatistic | InvalidTestStatistic: cov = stats.cov k = cov.shape[0] sel = list(range(k)) if stats.has_constant: sel.pop(stats.constant_loc) cov = cov[sel][:, sel] params = stats.params[sel] df = params.shape[0] nobs = stats.nobs null = "All parameters ex. constant are zero" name = "Equation F-statistic" try: stat = float(np.squeeze(params.T @ inv(cov) @ params)) except np.linalg.LinAlgError: return InvalidTestStatistic( "Covariance is singular, possibly due " "to constraints.", name=name ) if debiased: total_reg = np.sum([s.shape[1] for s in self._wx]) df_denom = len(self._wx) * nobs - total_reg wald = WaldTestStatistic(stat / df, null, df, df_denom=df_denom, name=name) else: return WaldTestStatistic(stat, null=null, df=df, name=name) return wald
(self, stats: linearmodels.shared.utility.AttrDict, debiased: bool) -> linearmodels.shared.hypotheses.WaldTestStatistic | linearmodels.shared.hypotheses.InvalidTestStatistic
42,895
linearmodels.system.model
_gls_estimate
Core estimation routine for iterative GLS
def _gls_estimate( self, eps: Float64Array, nobs: int, total_cols: int, ci: Sequence[int], full_cov: bool, debiased: bool, ) -> tuple[Float64Array, Float64Array, Float64Array, Float64Array]: """Core estimation routine for iterative GLS""" wy, wx, wxhat = self._wy, self._wx, self._wxhat if self._sigma is None: sigma = eps.T @ eps / nobs sigma *= self._sigma_scale(debiased) else: sigma = self._sigma est_sigma = sigma if not full_cov: sigma = np.diag(np.diag(sigma)) sigma_inv = inv(sigma) k = len(wy) xpx = blocked_inner_prod(wxhat, sigma_inv) xpy = np.zeros((total_cols, 1)) for i in range(k): sy = np.zeros((nobs, 1)) for j in range(k): sy += sigma_inv[i, j] * wy[j] xpy[ci[i] : ci[i + 1]] = wxhat[i].T @ sy beta = _parameters_from_xprod(xpx, xpy, constraints=self.constraints) loc = 0 for j in range(k): _wx = wx[j] _wy = wy[j] kx = _wx.shape[1] eps[:, [j]] = _wy - _wx @ beta[loc : loc + kx] loc += kx return beta, eps, sigma, est_sigma
(self, eps: numpy.ndarray, nobs: int, total_cols: int, ci: collections.abc.Sequence[int], full_cov: bool, debiased: bool) -> tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
42,896
linearmodels.system.model
_gls_finalize
Collect results to return after GLS estimation
def _gls_finalize( self, beta: Float64Array, sigma: Float64Array, full_sigma: Float64Array, est_sigma: Float64Array, gls_eps: Float64Array, eps: Float64Array, full_cov: bool, cov_type: str, iter_count: int, **cov_config: bool, ) -> SystemResults: """Collect results to return after GLS estimation""" k = len(self._wy) # Covariance estimation cov_estimator = COV_EST[cov_type] gls_eps = np.reshape(gls_eps, (k, gls_eps.shape[0] // k)).T eps = np.reshape(eps, (k, eps.shape[0] // k)).T cov_est = cov_estimator( self._wxhat, eps, sigma, full_sigma, gls=True, constraints=self._constraints, **cov_config, ) cov = cov_est.cov # Repackage results for individual equations individual = AttrDict() debiased = cov_config.get("debiased", False) method = "Iterative GLS" if iter_count > 1 else "GLS" for i in range(k): cons = bool(self.has_constant.iloc[i]) if cons: c = np.sqrt(self._w[i]) ye = self._wy[i] - c @ lstsq(c, self._wy[i], rcond=None)[0] else: ye = self._wy[i] total_ss = float(np.squeeze(ye.T @ ye)) stats = self._common_indiv_results( i, beta, cov, gls_eps, eps, method, cov_type, cov_est, iter_count, debiased, cons, total_ss, ) key = self._eq_labels[i] individual[key] = stats # Populate results dictionary nobs = eps.size results = self._common_results( beta, cov, method, iter_count, nobs, cov_type, est_sigma, individual, debiased, ) # wresid is different between GLS and OLS wresiduals = [] for individual_key in individual: wresiduals.append(individual[individual_key].wresid) wresid = np.hstack(wresiduals) results["wresid"] = wresid results["cov_estimator"] = cov_est results["cov_config"] = cov_est.cov_config individual = results["individual"] r2s = [individual[eq].r2 for eq in individual] results["system_r2"] = self._system_r2( eps, sigma, "gls", full_cov, debiased, r2s ) return SystemResults(results)
(self, beta: numpy.ndarray, sigma: numpy.ndarray, full_sigma: numpy.ndarray, est_sigma: numpy.ndarray, gls_eps: numpy.ndarray, eps: numpy.ndarray, full_cov: bool, cov_type: str, iter_count: int, **cov_config: bool) -> linearmodels.system.results.SystemResults
42,897
linearmodels.system.model
_multivariate_ls_finalize
null
def _multivariate_ls_finalize( self, beta: Float64Array, eps: Float64Array, sigma: Float64Array, cov_type: str, **cov_config: bool, ) -> SystemResults: k = len(self._wx) # Covariance estimation cov_estimator = COV_EST[cov_type] cov_est = cov_estimator( self._wxhat, eps, sigma, sigma, gls=False, constraints=self._constraints, **cov_config, ) cov = cov_est.cov individual = AttrDict() debiased = cov_config.get("debiased", False) for i in range(k): wy = wye = self._wy[i] w = self._w[i] cons = bool(self.has_constant.iloc[i]) if cons: wc = np.ones_like(wy) * np.sqrt(w) wye = wy - wc @ lstsq(wc, wy, rcond=None)[0] total_ss = float(np.squeeze(wye.T @ wye)) stats = self._common_indiv_results( i, beta, cov, eps, eps, "OLS", cov_type, cov_est, 0, debiased, cons, total_ss, ) key = self._eq_labels[i] individual[key] = stats nobs = eps.size results = self._common_results( beta, cov, "OLS", 0, nobs, cov_type, sigma, individual, debiased ) results["wresid"] = results.resid results["cov_estimator"] = cov_est results["cov_config"] = cov_est.cov_config individual = results["individual"] r2s = [individual[eq].r2 for eq in individual] results["system_r2"] = self._system_r2(eps, sigma, "ols", False, debiased, r2s) return SystemResults(results)
(self, beta: numpy.ndarray, eps: numpy.ndarray, sigma: numpy.ndarray, cov_type: str, **cov_config: bool) -> linearmodels.system.results.SystemResults
42,898
linearmodels.system.model
_multivariate_ls_fit
null
def _multivariate_ls_fit(self) -> tuple[Float64Array, Float64Array]: wy, wx, wxhat = self._wy, self._wx, self._wxhat k = len(wxhat) xpx = blocked_inner_prod(wxhat, np.eye(len(wxhat))) _xpy = [] for i in range(k): _xpy.append(wxhat[i].T @ wy[i]) xpy = np.vstack(_xpy) beta = _parameters_from_xprod(xpx, xpy, constraints=self.constraints) loc = 0 eps = [] for i in range(k): nb = wx[i].shape[1] b = beta[loc : loc + nb] eps.append(wy[i] - wx[i] @ b) loc += nb eps_arr = np.hstack(eps) return beta, eps_arr
(self) -> tuple[numpy.ndarray, numpy.ndarray]
42,899
linearmodels.system.model
_sigma_scale
null
def _sigma_scale(self, debiased: bool) -> float | Float64Array: if not debiased: return 1.0 nobs = float(self._wx[0].shape[0]) scales = np.array([nobs - x.shape[1] for x in self._wx], dtype=np.float64) scales = cast(Float64Array, np.sqrt(nobs / scales)) return scales[:, None] @ scales[None, :]
(self, debiased: bool) -> float | numpy.ndarray
42,900
linearmodels.system.model
_system_r2
null
def _system_r2( self, eps: Float64Array, sigma: Float64Array, method: str, full_cov: bool, debiased: bool, r2s: Sequence[float], ) -> Series: sigma_resid = sigma # System regression on a constant using weights if provided wy, w = self._wy, self._w wi = [cast(Float64Array, np.sqrt(weights)) for weights in w] if method == "ols": est_sigma = np.eye(len(wy)) else: # gls est_sigma = sigma if not full_cov: est_sigma = np.diag(np.diag(est_sigma)) est_sigma_inv = inv(est_sigma) nobs = wy[0].shape[0] k = len(wy) xpx = blocked_inner_prod(wi, est_sigma_inv) xpy = np.zeros((k, 1)) for i in range(k): sy = np.zeros((nobs, 1)) for j in range(k): sy += est_sigma_inv[i, j] * wy[j] xpy[i : (i + 1)] = wi[i].T @ sy mu = _parameters_from_xprod(xpx, xpy) eps_const = np.hstack([self._y[j] - mu[j] for j in range(k)]) # Judge judge = 1 - (eps**2).sum() / (eps_const**2).sum() # Dhrymes tot_eps_const_sq = (eps_const**2).sum(0) r2s_arr = np.asarray(r2s) dhrymes = (r2s_arr * tot_eps_const_sq).sum() / tot_eps_const_sq.sum() # Berndt sigma_y = (eps_const.T @ eps_const / nobs) * self._sigma_scale(debiased) berndt = np.nan # Avoid division by 0 if np.linalg.det(sigma_y) > 0: berndt = 1 - np.linalg.det(sigma_resid) / np.linalg.det(sigma_y) mcelroy = np.nan # Check that the matrix is invertible if np.linalg.matrix_rank(sigma) == sigma.shape[0]: # McElroy sigma_m12 = inv_matrix_sqrt(sigma) std_eps = eps @ sigma_m12 numerator = (std_eps**2).sum() std_eps_const = eps_const @ sigma_m12 denom = (std_eps_const**2).sum() mcelroy = 1.0 - numerator / denom r2 = dict(mcelroy=mcelroy, berndt=berndt, judge=judge, dhrymes=dhrymes) return Series(r2)
(self, eps: numpy.ndarray, sigma: numpy.ndarray, method: str, full_cov: bool, debiased: bool, r2s: collections.abc.Sequence[float]) -> pandas.core.series.Series
42,901
linearmodels.system.model
_validate_data
null
def _validate_data(self) -> None: ids = [] for i, key in enumerate(self._equations): self._eq_labels.append(key) eq_data = self._equations[key] dep_name = "dependent_" + str(i) exog_name = "exog_" + str(i) endog_name = "endog_" + str(i) instr_name = "instr_" + str(i) if isinstance(eq_data, (tuple, list)): dep = IVData(eq_data[0], var_name=dep_name) self._dependent.append(dep) current_id: tuple[int, ...] = (id(eq_data[1]),) self._exog.append( IVData(eq_data[1], var_name=exog_name, nobs=dep.shape[0]) ) endog = IVData(eq_data[2], var_name=endog_name, nobs=dep.shape[0]) if endog.shape[1] > 0: current_id += (id(eq_data[2]),) ids.append(current_id) self._endog.append(endog) self._instr.append( IVData(eq_data[3], var_name=instr_name, nobs=dep.shape[0]) ) if len(eq_data) == 5: self._weights.append(IVData(eq_data[4])) else: dep_shape = self._dependent[-1].shape self._weights.append(IVData(np.ones(dep_shape))) elif isinstance(eq_data, (dict, Mapping)): dep = IVData(eq_data["dependent"], var_name=dep_name) self._dependent.append(dep) exog = eq_data.get("exog", None) self._exog.append(IVData(exog, var_name=exog_name, nobs=dep.shape[0])) current_id = (id(exog),) endog_values = eq_data.get("endog", None) endog = IVData(endog_values, var_name=endog_name, nobs=dep.shape[0]) self._endog.append(endog) if "endog" in eq_data: current_id += (id(eq_data["endog"]),) ids.append(current_id) instr_values = eq_data.get("instruments", None) instr = IVData(instr_values, var_name=instr_name, nobs=dep.shape[0]) self._instr.append(instr) if "weights" in eq_data: self._weights.append(IVData(eq_data["weights"])) else: self._weights.append(IVData(np.ones(dep.shape))) else: msg = UNKNOWN_EQ_TYPE.format(key=key, type=type(vars)) raise TypeError(msg) self._has_instruments = False for instr in self._instr: self._has_instruments = self._has_instruments or (instr.shape[1] > 1) for i, comps in enumerate( zip(self._dependent, self._exog, self._endog, self._instr, self._weights) ): shapes = [a.shape[0] for a in comps] if min(shapes) != max(shapes): raise ValueError( "Dependent, exogenous, endogenous and " "instruments, and weights, if provided, do " "not have the same number of observations in " "{eq}".format(eq=self._eq_labels[i]) ) self._drop_missing() self._common_exog = len(set(ids)) == 1 if self._common_exog: # Common exog requires weights are also equal w0 = self._weights[0].ndarray for w in self._weights: self._common_exog = self._common_exog and bool(np.all(w.ndarray == w0)) constant = [] constant_loc = [] exog_ivd: IVData for dep, exog_ivd, endog, instr, w, label in zip( self._dependent, self._exog, self._endog, self._instr, self._weights, self._eq_labels, ): y = cast(Float64Array, dep.ndarray) x = np.concatenate([exog_ivd.ndarray, endog.ndarray], 1, dtype=float) z = np.concatenate([exog_ivd.ndarray, instr.ndarray], 1, dtype=float) w_arr = cast(Float64Array, w.ndarray) w_arr = w_arr / np.nanmean(w_arr) w_sqrt = np.sqrt(w_arr) self._w.append(w_arr) self._y.append(y) self._x.append(x) self._z.append(z) self._wy.append(y * w_sqrt) self._wx.append(x * w_sqrt) self._wz.append(z * w_sqrt) cols = list(exog_ivd.cols) + list(endog.cols) self._param_names.extend([label + "_" + col for col in cols]) if y.shape[0] <= x.shape[1]: raise ValueError( "Fewer observations than variables in " "equation {eq}".format(eq=label) ) if matrix_rank(x) < x.shape[1]: raise ValueError( "Equation {eq} regressor array is not full " "rank".format(eq=label) ) if x.shape[1] > z.shape[1]: raise ValueError( "Equation {eq} has fewer instruments than " "endogenous variables.".format(eq=label) ) if z.shape[1] > z.shape[0]: raise ValueError( "Fewer observations than instruments in " "equation {eq}".format(eq=label) ) if matrix_rank(z) < z.shape[1]: raise ValueError( "Equation {eq} instrument array is full " "rank".format(eq=label) ) for rhs in self._x: const, const_loc = has_constant(rhs) constant.append(const) constant_loc.append(const_loc) self._has_constant = Series( constant, index=[d.cols[0] for d in self._dependent] ) self._constant_loc = constant_loc
(self) -> NoneType
42,902
linearmodels.system.model
add_constraints
Add parameter constraints to a model. Parameters ---------- r : DataFrame Constraint matrix. nconstraints by nparameters q : Series Constraint values (nconstraints). If not set, set to 0 Notes ----- Constraints are of the form .. math :: r \beta = q The property `param_names` can be used to determine the order of parameters.
def add_constraints(self, r: DataFrame, q: Series | None = None) -> None: r""" Add parameter constraints to a model. Parameters ---------- r : DataFrame Constraint matrix. nconstraints by nparameters q : Series Constraint values (nconstraints). If not set, set to 0 Notes ----- Constraints are of the form .. math :: r \beta = q The property `param_names` can be used to determine the order of parameters. """ self._constraints = LinearConstraint( r, q=q, num_params=len(self._param_names), require_pandas=True )
(self, r: pandas.core.frame.DataFrame, q: Optional[pandas.core.series.Series] = None) -> NoneType
42,903
linearmodels.system.model
fit
Estimate model parameters Parameters ---------- method : {None, "gls", "ols"} Estimation method. Default auto selects based on regressors, using OLS only if all regressors are identical. The other two arguments force the use of GLS or OLS. full_cov : bool Flag indicating whether to utilize information in correlations when estimating the model with GLS iterate : bool Flag indicating to iterate GLS until convergence of iter limit iterations have been completed iter_limit : int Maximum number of iterations for iterative GLS tol : float Tolerance to use when checking for convergence in iterative GLS cov_type : str Name of covariance estimator. Valid options are * "unadjusted", "homoskedastic" - Classic covariance estimator * "robust", "heteroskedastic" - Heteroskedasticity robust covariance estimator * "kernel" - Allows for heteroskedasticity and autocorrelation * "clustered" - Allows for 1 and 2-way clustering of errors (Rogers). **cov_config Additional parameters to pass to covariance estimator. All estimators support debiased which employs a small-sample adjustment Returns ------- results : SystemResults Estimation results See Also -------- linearmodels.system.covariance.HomoskedasticCovariance linearmodels.system.covariance.HeteroskedasticCovariance linearmodels.system.covariance.KernelCovariance linearmodels.system.covariance.ClusteredCovariance
def fit( self, *, method: Literal["ols", "gls", None] = None, full_cov: bool = True, iterate: bool = False, iter_limit: int = 100, tol: float = 1e-6, cov_type: str = "robust", **cov_config: bool, ) -> SystemResults: """ Estimate model parameters Parameters ---------- method : {None, "gls", "ols"} Estimation method. Default auto selects based on regressors, using OLS only if all regressors are identical. The other two arguments force the use of GLS or OLS. full_cov : bool Flag indicating whether to utilize information in correlations when estimating the model with GLS iterate : bool Flag indicating to iterate GLS until convergence of iter limit iterations have been completed iter_limit : int Maximum number of iterations for iterative GLS tol : float Tolerance to use when checking for convergence in iterative GLS cov_type : str Name of covariance estimator. Valid options are * "unadjusted", "homoskedastic" - Classic covariance estimator * "robust", "heteroskedastic" - Heteroskedasticity robust covariance estimator * "kernel" - Allows for heteroskedasticity and autocorrelation * "clustered" - Allows for 1 and 2-way clustering of errors (Rogers). **cov_config Additional parameters to pass to covariance estimator. All estimators support debiased which employs a small-sample adjustment Returns ------- results : SystemResults Estimation results See Also -------- linearmodels.system.covariance.HomoskedasticCovariance linearmodels.system.covariance.HeteroskedasticCovariance linearmodels.system.covariance.KernelCovariance linearmodels.system.covariance.ClusteredCovariance """ if method is None: method = ( "ols" if (self._common_exog and self._constraints is None) else "gls" ) else: if method.lower() not in ("ols", "gls"): raise ValueError( f"method must be 'ols' or 'gls' when not None. Got {method}." ) method = cast(Literal["ols", "gls"], method.lower()) cov_type = cov_type.lower() if cov_type not in COV_TYPES: raise ValueError(f"Unknown cov_type: {cov_type}") cov_type = COV_TYPES[cov_type] k = len(self._dependent) col_sizes = [0] + [v.shape[1] for v in self._x] col_idx = [int(i) for i in np.cumsum(col_sizes)] total_cols = col_idx[-1] self._construct_xhat() beta, eps = self._multivariate_ls_fit() nobs = eps.shape[0] debiased = cov_config.get("debiased", False) full_sigma = sigma = (eps.T @ eps / nobs) * self._sigma_scale(debiased) if method == "ols": return self._multivariate_ls_finalize( beta, eps, sigma, cov_type, **cov_config ) beta_hist = [beta] nobs = eps.shape[0] iter_count = 0 delta = np.inf while ( (iter_count < iter_limit and iterate) or iter_count == 0 ) and delta >= tol: beta, eps, sigma, est_sigma = self._gls_estimate( eps, nobs, total_cols, col_idx, full_cov, debiased ) beta_hist.append(beta) diff = beta_hist[-1] - beta_hist[-2] delta = float(np.sqrt(np.mean(diff**2))) iter_count += 1 sigma_m12 = inv_matrix_sqrt(sigma) wy = blocked_column_product(self._wy, sigma_m12) wx = blocked_diag_product(self._wx, sigma_m12) gls_eps = wy - wx @ beta y = blocked_column_product(self._y, np.eye(k)) x = blocked_diag_product(self._x, np.eye(k)) eps = y - x @ beta return self._gls_finalize( beta, sigma, full_sigma, est_sigma, gls_eps, eps, full_cov, cov_type, iter_count, **cov_config, )
(self, *, method: Optional[Literal['ols', 'gls', None]] = None, full_cov: bool = True, iterate: bool = False, iter_limit: int = 100, tol: float = 1e-06, cov_type: str = 'robust', **cov_config: bool) -> linearmodels.system.results.SystemResults
42,904
linearmodels.system.model
predict
Predict values for additional data Parameters ---------- params : array_like Model parameters (nvar by 1) equations : dict Dictionary-like structure containing exogenous and endogenous variables. Each key is an equations label and must match the labels used to fir the model. Each value must be a dictionary with keys "exog" and "endog". If predictions are not required for one of more of the model equations, these keys can be omitted. data : DataFrame Values to use when making predictions from a model constructed from a formula eval_env : int Depth to use when evaluating formulas. Returns ------- predictions : DataFrame Fitted values from supplied data and parameters Notes ----- If `data` is not none, then `equations` must be none. Predictions from models constructed using formulas can be computed using either `equations`, which will treat these are arrays of values corresponding to the formula-process data, or using `data` which will be processed using the formula used to construct the values corresponding to the original model specification. When using `exog` and `endog`, the regressor array for a particular equation is assembled as `[equations[eqn]["exog"], equations[eqn]["endog"]]` where `eqn` is an equation label. These must correspond to the columns in the estimated model.
def predict( self, params: ArrayLike, *, equations: Mapping[str, Mapping[str, ArrayLike]] | None = None, data: DataFrame | None = None, eval_env: int = 1, ) -> DataFrame: """ Predict values for additional data Parameters ---------- params : array_like Model parameters (nvar by 1) equations : dict Dictionary-like structure containing exogenous and endogenous variables. Each key is an equations label and must match the labels used to fir the model. Each value must be a dictionary with keys "exog" and "endog". If predictions are not required for one of more of the model equations, these keys can be omitted. data : DataFrame Values to use when making predictions from a model constructed from a formula eval_env : int Depth to use when evaluating formulas. Returns ------- predictions : DataFrame Fitted values from supplied data and parameters Notes ----- If `data` is not none, then `equations` must be none. Predictions from models constructed using formulas can be computed using either `equations`, which will treat these are arrays of values corresponding to the formula-process data, or using `data` which will be processed using the formula used to construct the values corresponding to the original model specification. When using `exog` and `endog`, the regressor array for a particular equation is assembled as `[equations[eqn]["exog"], equations[eqn]["endog"]]` where `eqn` is an equation label. These must correspond to the columns in the estimated model. """ if data is not None: assert self.formula is not None parser = SystemFormulaParser( self.formula, data=data, context=capture_context(eval_env) ) equations_d = parser.data else: if equations is None: raise ValueError("One of equations or data must be provided.") assert equations is not None equations_d = {k: dict(v) for k, v in equations.items()} params = np.atleast_2d(np.asarray(params)) if params.shape[0] == 1: params = params.T nx = int(sum(_x.shape[1] for _x in self._x)) if params.shape[0] != nx: raise ValueError( f"Parameters must have {nx} elements; found {params.shape[0]}." ) loc = 0 out = dict() for i, label in enumerate(self._eq_labels): kx = self._x[i].shape[1] if label in equations_d: b = params[loc : loc + kx] eqn = equations_d[label] exog = eqn.get("exog", None) endog = eqn.get("endog", None) if exog is None and endog is None: loc += kx continue if exog is not None: exog_endog = IVData(exog).pandas if endog is not None: endog_ivd = IVData(endog) exog_endog = concat([exog_endog, endog_ivd.pandas], axis=1) else: exog_endog = IVData(endog).pandas fitted = np.asarray(exog_endog) @ b fitted_df = DataFrame(fitted, index=exog_endog.index, columns=[label]) out[label] = fitted_df loc += kx out_df = reduce( lambda left, right: left.merge( right, how="outer", left_index=True, right_index=True ), [out[key] for key in out], ) return out_df
(self, params: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], *, equations: Optional[collections.abc.Mapping[str, collections.abc.Mapping[str, Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]]]] = None, data: Optional[pandas.core.frame.DataFrame] = None, eval_env: int = 1) -> pandas.core.frame.DataFrame
42,905
linearmodels.system.model
reset_constraints
Remove all model constraints
def reset_constraints(self) -> None: """Remove all model constraints""" self._constraints = None
(self) -> NoneType
42,906
linearmodels.iv.model
IVGMM
Estimation of IV models using the generalized method of moments (GMM) Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) endog : array_like Endogenous regressors (nobs by nendog) instruments : array_like Instrumental variables (nobs by ninstr) weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- Available GMM weight functions are: * "unadjusted", "homoskedastic" - Assumes moment conditions are homoskedastic * "robust", "heteroskedastic" - Allows for heteroskedasticity by not autocorrelation * "kernel" - Allows for heteroskedasticity and autocorrelation * "cluster" - Allows for one-way cluster dependence The estimator is defined as .. math:: \hat{\beta}_{gmm}=(X'ZW^{-1}Z'X)^{-1}X'ZW^{-1}Z'Y where :math:`W` is a positive definite weight matrix and :math:`Z` contains both the exogenous regressors and the instruments. .. todo:: * VCV: bootstrap See Also -------- IV2SLS, IVLIML, IVGMMCUE
class IVGMM(_IVGMMBase): r""" Estimation of IV models using the generalized method of moments (GMM) Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) endog : array_like Endogenous regressors (nobs by nendog) instruments : array_like Instrumental variables (nobs by ninstr) weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- Available GMM weight functions are: * "unadjusted", "homoskedastic" - Assumes moment conditions are homoskedastic * "robust", "heteroskedastic" - Allows for heteroskedasticity by not autocorrelation * "kernel" - Allows for heteroskedasticity and autocorrelation * "cluster" - Allows for one-way cluster dependence The estimator is defined as .. math:: \hat{\beta}_{gmm}=(X'ZW^{-1}Z'X)^{-1}X'ZW^{-1}Z'Y where :math:`W` is a positive definite weight matrix and :math:`Z` contains both the exogenous regressors and the instruments. .. todo:: * VCV: bootstrap See Also -------- IV2SLS, IVLIML, IVGMMCUE """ def __init__( self, dependent: IVDataLike, exog: IVDataLike | None, endog: IVDataLike | None, instruments: IVDataLike | None, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ): super().__init__(dependent, exog, endog, instruments, weights=weights) self._method = "IV-GMM" weight_matrix_estimator = WEIGHT_MATRICES[weight_type] self._weight = weight_matrix_estimator(**weight_config) self._weight_type = weight_type self._weight_config = self._weight.config @staticmethod def from_formula( formula: str, data: DataFrame, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ) -> IVGMM: """ Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using "1 +" if required. Returns ------- IVGMM Model instance Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IVGMM >>> data = wage.load() >>> formula = "np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]" >>> mod = IVGMM.from_formula(formula, data) """ mod = _gmm_model_from_formula( IVGMM, formula, data, weights, weight_type, **weight_config ) assert isinstance(mod, IVGMM) return mod @staticmethod def estimate_parameters( x: Float64Array, y: Float64Array, z: Float64Array, w: Float64Array ) -> Float64Array: """ Parameters ---------- x : ndarray Regressor matrix (nobs by nvar) y : ndarray Regressand matrix (nobs by 1) z : ndarray Instrument matrix (nobs by ninstr) w : ndarray GMM weight matrix (ninstr by ninstr) Returns ------- ndarray Estimated parameters (nvar by 1) Notes ----- Exposed as a static method to facilitate estimation with other data, e.g., bootstrapped samples. Performs no error checking. """ xpz = x.T @ z zpy = z.T @ y return inv(xpz @ w @ xpz.T) @ (xpz @ w @ zpy) def fit( self, *, iter_limit: int = 2, tol: float = 1e-4, initial_weight: Float64Array | None = None, cov_type: str = "robust", debiased: bool = False, **cov_config: Any, ) -> OLSResults | IVGMMResults: """ Estimate model parameters Parameters ---------- iter_limit : int Maximum number of iterations. Default is 2, which produces two-step efficient GMM estimates. Larger values can be used to iterate between parameter estimation and optimal weight matrix estimation until convergence. tol : float Convergence criteria. Measured as covariance normalized change in parameters across iterations where the covariance estimator is based on the first step parameter estimates. initial_weight : ndarray Initial weighting matrix to use in the first step. If not specified, uses the average outer-product of the set containing the exogenous variables and instruments. cov_type : str Name of covariance estimator to use. Available covariance functions are: * "unadjusted", "homoskedastic" - Assumes moment conditions are homoskedastic * "robust", "heteroskedastic" - Allows for heteroskedasticity but not autocorrelation * "kernel" - Allows for heteroskedasticity and autocorrelation * "cluster" - Allows for one-way cluster dependence debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. **cov_config Additional parameters to pass to covariance estimator. Supported parameters depend on specific covariance structure assumed. See :class:`linearmodels.iv.gmm.IVGMMCovariance` for details on the available options. Defaults are used if no covariance configuration is provided. Returns ------- IVGMMResults Results container See also -------- linearmodels.iv.gmm.IVGMMCovariance """ wy, wx, wz = self._wy, self._wx, self._wz nobs = wy.shape[0] weight_matrix = self._weight.weight_matrix k_wz = wz.shape[1] if initial_weight is not None: initial_weight = asarray(initial_weight) if initial_weight.ndim != 2 or initial_weight.shape != (k_wz, k_wz): raise ValueError(f"initial_weight must be a {k_wz} by {k_wz} array") wmat = inv(wz.T @ wz / nobs) if initial_weight is None else initial_weight _params = params = self.estimate_parameters(wx, wy, wz, wmat) iters, norm = 1, 10 * tol + 1 vinv = eye(params.shape[0]) while iters < iter_limit and norm > tol: eps = wy - wx @ params wmat = inv(weight_matrix(wx, wz, eps)) params = self.estimate_parameters(wx, wy, wz, wmat) delta = params - _params if iters == 1: xpz = wx.T @ wz / nobs v = (xpz @ wmat @ xpz.T) / nobs vinv = inv(v) _params = params norm = float(squeeze(delta.T @ vinv @ delta)) iters += 1 cov_config["debiased"] = debiased cov_estimator = IVGMMCovariance( wx, wy, wz, params, wmat, cov_type, **cov_config ) results = self._post_estimation(params, cov_estimator, cov_type) gmm_pe = self._gmm_post_estimation(params, wmat, iters) results.update(gmm_pe) return IVGMMResults(results, self) def _gmm_post_estimation( self, params: Float64Array, weight_mat: Float64Array, iters: int ) -> dict[str, Any]: """GMM-specific post-estimation results""" instr = self._instr_columns gmm_specific = { "weight_mat": DataFrame(weight_mat, columns=instr, index=instr), "weight_type": self._weight_type, "weight_config": self._weight_type, "iterations": iters, "j_stat": self._j_statistic(params, weight_mat), } return gmm_specific
(dependent: 'IVDataLike', exog: 'IVDataLike | None', endog: 'IVDataLike | None', instruments: 'IVDataLike | None', *, weights: 'IVDataLike | None' = None, weight_type: 'str' = 'robust', **weight_config: 'Any')
42,907
linearmodels.iv.model
__init__
null
def __init__( self, dependent: IVDataLike, exog: IVDataLike | None, endog: IVDataLike | None, instruments: IVDataLike | None, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ): super().__init__(dependent, exog, endog, instruments, weights=weights) self._method = "IV-GMM" weight_matrix_estimator = WEIGHT_MATRICES[weight_type] self._weight = weight_matrix_estimator(**weight_config) self._weight_type = weight_type self._weight_config = self._weight.config
(self, dependent: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], exog: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType], endog: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType], instruments: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType], *, weights: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, weight_type: str = 'robust', **weight_config: Any)
42,910
linearmodels.iv.model
_gmm_post_estimation
GMM-specific post-estimation results
def _gmm_post_estimation( self, params: Float64Array, weight_mat: Float64Array, iters: int ) -> dict[str, Any]: """GMM-specific post-estimation results""" instr = self._instr_columns gmm_specific = { "weight_mat": DataFrame(weight_mat, columns=instr, index=instr), "weight_type": self._weight_type, "weight_config": self._weight_type, "iterations": iters, "j_stat": self._j_statistic(params, weight_mat), } return gmm_specific
(self, params: numpy.ndarray, weight_mat: numpy.ndarray, iters: int) -> dict[str, typing.Any]
42,911
linearmodels.iv.model
_j_statistic
J stat and test
def _j_statistic( self, params: Float64Array, weight_mat: Float64Array ) -> WaldTestStatistic: """J stat and test""" y, x, z = self._wy, self._wx, self._wz nobs, nvar, ninstr = y.shape[0], x.shape[1], z.shape[1] eps = y - x @ params g_bar = (z * eps).mean(0) stat = float(nobs * g_bar.T @ weight_mat @ g_bar.T) null = "Expected moment conditions are equal to 0" return WaldTestStatistic(stat, null, ninstr - nvar)
(self, params: numpy.ndarray, weight_mat: numpy.ndarray) -> linearmodels.shared.hypotheses.WaldTestStatistic
42,914
linearmodels.iv.model
estimate_parameters
Parameters ---------- x : ndarray Regressor matrix (nobs by nvar) y : ndarray Regressand matrix (nobs by 1) z : ndarray Instrument matrix (nobs by ninstr) w : ndarray GMM weight matrix (ninstr by ninstr) Returns ------- ndarray Estimated parameters (nvar by 1) Notes ----- Exposed as a static method to facilitate estimation with other data, e.g., bootstrapped samples. Performs no error checking.
@staticmethod def estimate_parameters( x: Float64Array, y: Float64Array, z: Float64Array, w: Float64Array ) -> Float64Array: """ Parameters ---------- x : ndarray Regressor matrix (nobs by nvar) y : ndarray Regressand matrix (nobs by 1) z : ndarray Instrument matrix (nobs by ninstr) w : ndarray GMM weight matrix (ninstr by ninstr) Returns ------- ndarray Estimated parameters (nvar by 1) Notes ----- Exposed as a static method to facilitate estimation with other data, e.g., bootstrapped samples. Performs no error checking. """ xpz = x.T @ z zpy = z.T @ y return inv(xpz @ w @ xpz.T) @ (xpz @ w @ zpy)
(x: numpy.ndarray, y: numpy.ndarray, z: numpy.ndarray, w: numpy.ndarray) -> numpy.ndarray
42,915
linearmodels.iv.model
fit
Estimate model parameters Parameters ---------- iter_limit : int Maximum number of iterations. Default is 2, which produces two-step efficient GMM estimates. Larger values can be used to iterate between parameter estimation and optimal weight matrix estimation until convergence. tol : float Convergence criteria. Measured as covariance normalized change in parameters across iterations where the covariance estimator is based on the first step parameter estimates. initial_weight : ndarray Initial weighting matrix to use in the first step. If not specified, uses the average outer-product of the set containing the exogenous variables and instruments. cov_type : str Name of covariance estimator to use. Available covariance functions are: * "unadjusted", "homoskedastic" - Assumes moment conditions are homoskedastic * "robust", "heteroskedastic" - Allows for heteroskedasticity but not autocorrelation * "kernel" - Allows for heteroskedasticity and autocorrelation * "cluster" - Allows for one-way cluster dependence debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. **cov_config Additional parameters to pass to covariance estimator. Supported parameters depend on specific covariance structure assumed. See :class:`linearmodels.iv.gmm.IVGMMCovariance` for details on the available options. Defaults are used if no covariance configuration is provided. Returns ------- IVGMMResults Results container See also -------- linearmodels.iv.gmm.IVGMMCovariance
def fit( self, *, iter_limit: int = 2, tol: float = 1e-4, initial_weight: Float64Array | None = None, cov_type: str = "robust", debiased: bool = False, **cov_config: Any, ) -> OLSResults | IVGMMResults: """ Estimate model parameters Parameters ---------- iter_limit : int Maximum number of iterations. Default is 2, which produces two-step efficient GMM estimates. Larger values can be used to iterate between parameter estimation and optimal weight matrix estimation until convergence. tol : float Convergence criteria. Measured as covariance normalized change in parameters across iterations where the covariance estimator is based on the first step parameter estimates. initial_weight : ndarray Initial weighting matrix to use in the first step. If not specified, uses the average outer-product of the set containing the exogenous variables and instruments. cov_type : str Name of covariance estimator to use. Available covariance functions are: * "unadjusted", "homoskedastic" - Assumes moment conditions are homoskedastic * "robust", "heteroskedastic" - Allows for heteroskedasticity but not autocorrelation * "kernel" - Allows for heteroskedasticity and autocorrelation * "cluster" - Allows for one-way cluster dependence debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. **cov_config Additional parameters to pass to covariance estimator. Supported parameters depend on specific covariance structure assumed. See :class:`linearmodels.iv.gmm.IVGMMCovariance` for details on the available options. Defaults are used if no covariance configuration is provided. Returns ------- IVGMMResults Results container See also -------- linearmodels.iv.gmm.IVGMMCovariance """ wy, wx, wz = self._wy, self._wx, self._wz nobs = wy.shape[0] weight_matrix = self._weight.weight_matrix k_wz = wz.shape[1] if initial_weight is not None: initial_weight = asarray(initial_weight) if initial_weight.ndim != 2 or initial_weight.shape != (k_wz, k_wz): raise ValueError(f"initial_weight must be a {k_wz} by {k_wz} array") wmat = inv(wz.T @ wz / nobs) if initial_weight is None else initial_weight _params = params = self.estimate_parameters(wx, wy, wz, wmat) iters, norm = 1, 10 * tol + 1 vinv = eye(params.shape[0]) while iters < iter_limit and norm > tol: eps = wy - wx @ params wmat = inv(weight_matrix(wx, wz, eps)) params = self.estimate_parameters(wx, wy, wz, wmat) delta = params - _params if iters == 1: xpz = wx.T @ wz / nobs v = (xpz @ wmat @ xpz.T) / nobs vinv = inv(v) _params = params norm = float(squeeze(delta.T @ vinv @ delta)) iters += 1 cov_config["debiased"] = debiased cov_estimator = IVGMMCovariance( wx, wy, wz, params, wmat, cov_type, **cov_config ) results = self._post_estimation(params, cov_estimator, cov_type) gmm_pe = self._gmm_post_estimation(params, wmat, iters) results.update(gmm_pe) return IVGMMResults(results, self)
(self, *, iter_limit: int = 2, tol: float = 0.0001, initial_weight: Optional[numpy.ndarray] = None, cov_type: str = 'robust', debiased: bool = False, **cov_config: Any) -> linearmodels.iv.results.OLSResults | linearmodels.iv.results.IVGMMResults
42,916
linearmodels.iv.model
from_formula
Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using "1 +" if required. Returns ------- IVGMM Model instance Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IVGMM >>> data = wage.load() >>> formula = "np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]" >>> mod = IVGMM.from_formula(formula, data)
@staticmethod def from_formula( formula: str, data: DataFrame, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ) -> IVGMM: """ Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using "1 +" if required. Returns ------- IVGMM Model instance Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IVGMM >>> data = wage.load() >>> formula = "np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]" >>> mod = IVGMM.from_formula(formula, data) """ mod = _gmm_model_from_formula( IVGMM, formula, data, weights, weight_type, **weight_config ) assert isinstance(mod, IVGMM) return mod
(formula: str, data: pandas.core.frame.DataFrame, *, weights: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, weight_type: str = 'robust', **weight_config: Any) -> linearmodels.iv.model.IVGMM
42,920
linearmodels.iv.model
IVGMMCUE
Estimation of IV models using continuously updating GMM Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) endog : array_like Endogenous regressors (nobs by nendog) instruments : array_like Instrumental variables (nobs by ninstr) weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- Available weight functions are: * "unadjusted", "homoskedastic" - Assumes moment conditions are homoskedastic * "robust", "heteroskedastic" - Allows for heteroskedasticity by not autocorrelation * "kernel" - Allows for heteroskedasticity and autocorrelation * "cluster" - Allows for one-way cluster dependence In most circumstances, the ``center`` weight option should be ``True`` to avoid starting value dependence. .. math:: \hat{\beta}_{cue} & =\min_{\beta}\bar{g}(\beta)'W(\beta)^{-1}g(\beta)\\ g(\beta) & =n^{-1}\sum_{i=1}^{n}z_{i}(y_{i}-x_{i}\beta) where :math:`W(\beta)` is a weight matrix that depends on :math:`\beta` through :math:`\epsilon_i = y_i - x_i\beta`. See Also -------- IV2SLS, IVLIML, IVGMM
class IVGMMCUE(_IVGMMBase): r""" Estimation of IV models using continuously updating GMM Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) endog : array_like Endogenous regressors (nobs by nendog) instruments : array_like Instrumental variables (nobs by ninstr) weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- Available weight functions are: * "unadjusted", "homoskedastic" - Assumes moment conditions are homoskedastic * "robust", "heteroskedastic" - Allows for heteroskedasticity by not autocorrelation * "kernel" - Allows for heteroskedasticity and autocorrelation * "cluster" - Allows for one-way cluster dependence In most circumstances, the ``center`` weight option should be ``True`` to avoid starting value dependence. .. math:: \hat{\beta}_{cue} & =\min_{\beta}\bar{g}(\beta)'W(\beta)^{-1}g(\beta)\\ g(\beta) & =n^{-1}\sum_{i=1}^{n}z_{i}(y_{i}-x_{i}\beta) where :math:`W(\beta)` is a weight matrix that depends on :math:`\beta` through :math:`\epsilon_i = y_i - x_i\beta`. See Also -------- IV2SLS, IVLIML, IVGMM """ def __init__( self, dependent: IVDataLike, exog: IVDataLike | None, endog: IVDataLike | None, instruments: IVDataLike | None, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ) -> None: self._method = "IV-GMM-CUE" super().__init__( dependent, exog, endog, instruments, weights=weights, weight_type=weight_type, **weight_config, ) if "center" not in weight_config: weight_config["center"] = True @staticmethod def from_formula( formula: str, data: DataFrame, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ) -> IVGMMCUE: """ Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Returns ------- IVGMMCUE Model instance Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using "1 +" if required. Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IVGMMCUE >>> data = wage.load() >>> formula = "np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]" >>> mod = IVGMMCUE.from_formula(formula, data) """ mod = _gmm_model_from_formula( IVGMMCUE, formula, data, weights, weight_type, **weight_config ) assert isinstance(mod, IVGMMCUE) return mod def j( self, params: Float64Array, x: Float64Array, y: Float64Array, z: Float64Array ) -> float: r""" Optimization target Parameters ---------- params : ndarray Parameter vector (nvar) x : ndarray Regressor matrix (nobs by nvar) y : ndarray Regressand matrix (nobs by 1) z : ndarray Instrument matrix (nobs by ninstr) Returns ------- float GMM objective function, also known as the J statistic Notes ----- The GMM objective function is defined as .. math:: J(\beta) = \bar{g}(\beta)'W(\beta)^{-1}\bar{g}(\beta) where :math:`\bar{g}(\beta)` is the average of the moment conditions, :math:`z_i \hat{\epsilon}_i`, where :math:`\hat{\epsilon}_i = y_i - x_i\beta`. The weighting matrix is some estimator of the long-run variance of the moment conditions. Unlike tradition GMM, the weighting matrix is simultaneously computed with the moment conditions, and so has explicit dependence on :math:`\beta`. """ nobs = y.shape[0] weight_matrix = self._weight.weight_matrix eps = y - x @ params[:, None] w = inv(weight_matrix(x, z, eps)) g_bar = (z * eps).mean(0) return nobs * float(g_bar.T @ w @ g_bar.T) def estimate_parameters( self, starting: Float64Array, x: Float64Array, y: Float64Array, z: Float64Array, display: bool = False, opt_options: dict[str, Any] | None = None, ) -> tuple[Float64Array, int]: r""" Parameters ---------- starting : ndarray Starting values for the optimization x : ndarray Regressor matrix (nobs by nvar) y : ndarray Regressand matrix (nobs by 1) z : ndarray Instrument matrix (nobs by ninstr) display : bool Flag indicating whether to display iterative optimizer output opt_options : dict Dictionary containing additional keyword arguments to pass to scipy.optimize.minimize. Returns ------- ndarray Estimated parameters (nvar by 1) Notes ----- Exposed to facilitate estimation with other data, e.g., bootstrapped samples. Performs no error checking. See Also -------- scipy.optimize.minimize """ args = (x, y, z) if opt_options is None: opt_options = {} assert opt_options is not None options = {"disp": display} if "options" in opt_options: opt_options = opt_options.copy() options.update(opt_options.pop("options")) res = minimize(self.j, starting, args=args, options=options, **opt_options) return res.x[:, None], res.nit def fit( self, *, starting: Float64Array | Series | None = None, display: bool = False, cov_type: str = "robust", debiased: bool = False, opt_options: dict[str, Any] | None = None, **cov_config: Any, ) -> OLSResults | IVGMMResults: r""" Estimate model parameters Parameters ---------- starting : ndarray Starting values to use in optimization. If not provided, 2SLS estimates are used. display : bool Flag indicating whether to display optimization output cov_type : str Name of covariance estimator to use debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. opt_options : dict Additional options to pass to scipy.optimize.minimize when optimizing the objective function. If not provided, defers to scipy to choose an appropriate optimizer. All minimize inputs except ``fun``, ``x0``, and ``args`` can be overridden. **cov_config Additional parameters to pass to covariance estimator. Supported parameters depend on specific covariance structure assumed. See :class:`linearmodels.iv.gmm.IVGMMCovariance` for details on the available options. Defaults are used if no covariance configuration is provided. Returns ------- IVGMMResults Results container Notes ----- Starting values are computed by IVGMM. See also -------- linearmodels.iv.gmm.IVGMMCovariance """ wy, wx, wz = self._wy, self._wx, self._wz weight_matrix = self._weight.weight_matrix if starting is None: exog = None if self.exog.shape[1] == 0 else self.exog endog = None if self.endog.shape[1] == 0 else self.endog instr = None if self.instruments.shape[1] == 0 else self.instruments res = IVGMM( self.dependent, exog, endog, instr, weights=self.weights, weight_type=self._weight_type, **self._weight_config, ).fit() starting = asarray(res.params) else: starting = asarray(starting) if len(starting) != self.exog.shape[1] + self.endog.shape[1]: raise ValueError( "starting does not have the correct number " "of values" ) params, iters = self.estimate_parameters( starting, wx, wy, wz, display, opt_options=opt_options ) eps = wy - wx @ params wmat = inv(weight_matrix(wx, wz, eps)) cov_config["debiased"] = debiased cov_estimator = IVGMMCovariance( wx, wy, wz, params, wmat, cov_type, **cov_config ) results = self._post_estimation(params, cov_estimator, cov_type) gmm_pe = self._gmm_post_estimation(params, wmat, iters) results.update(gmm_pe) return IVGMMResults(results, self)
(dependent: 'IVDataLike', exog: 'IVDataLike | None', endog: 'IVDataLike | None', instruments: 'IVDataLike | None', *, weights: 'IVDataLike | None' = None, weight_type: 'str' = 'robust', **weight_config: 'Any') -> 'None'
42,921
linearmodels.iv.model
__init__
null
def __init__( self, dependent: IVDataLike, exog: IVDataLike | None, endog: IVDataLike | None, instruments: IVDataLike | None, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ) -> None: self._method = "IV-GMM-CUE" super().__init__( dependent, exog, endog, instruments, weights=weights, weight_type=weight_type, **weight_config, ) if "center" not in weight_config: weight_config["center"] = True
(self, dependent: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], exog: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType], endog: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType], instruments: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType], *, weights: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, weight_type: str = 'robust', **weight_config: Any) -> NoneType
42,928
linearmodels.iv.model
estimate_parameters
Parameters ---------- starting : ndarray Starting values for the optimization x : ndarray Regressor matrix (nobs by nvar) y : ndarray Regressand matrix (nobs by 1) z : ndarray Instrument matrix (nobs by ninstr) display : bool Flag indicating whether to display iterative optimizer output opt_options : dict Dictionary containing additional keyword arguments to pass to scipy.optimize.minimize. Returns ------- ndarray Estimated parameters (nvar by 1) Notes ----- Exposed to facilitate estimation with other data, e.g., bootstrapped samples. Performs no error checking. See Also -------- scipy.optimize.minimize
def estimate_parameters( self, starting: Float64Array, x: Float64Array, y: Float64Array, z: Float64Array, display: bool = False, opt_options: dict[str, Any] | None = None, ) -> tuple[Float64Array, int]: r""" Parameters ---------- starting : ndarray Starting values for the optimization x : ndarray Regressor matrix (nobs by nvar) y : ndarray Regressand matrix (nobs by 1) z : ndarray Instrument matrix (nobs by ninstr) display : bool Flag indicating whether to display iterative optimizer output opt_options : dict Dictionary containing additional keyword arguments to pass to scipy.optimize.minimize. Returns ------- ndarray Estimated parameters (nvar by 1) Notes ----- Exposed to facilitate estimation with other data, e.g., bootstrapped samples. Performs no error checking. See Also -------- scipy.optimize.minimize """ args = (x, y, z) if opt_options is None: opt_options = {} assert opt_options is not None options = {"disp": display} if "options" in opt_options: opt_options = opt_options.copy() options.update(opt_options.pop("options")) res = minimize(self.j, starting, args=args, options=options, **opt_options) return res.x[:, None], res.nit
(self, starting: numpy.ndarray, x: numpy.ndarray, y: numpy.ndarray, z: numpy.ndarray, display: bool = False, opt_options: Optional[dict[str, Any]] = None) -> tuple[numpy.ndarray, int]
42,929
linearmodels.iv.model
fit
Estimate model parameters Parameters ---------- starting : ndarray Starting values to use in optimization. If not provided, 2SLS estimates are used. display : bool Flag indicating whether to display optimization output cov_type : str Name of covariance estimator to use debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. opt_options : dict Additional options to pass to scipy.optimize.minimize when optimizing the objective function. If not provided, defers to scipy to choose an appropriate optimizer. All minimize inputs except ``fun``, ``x0``, and ``args`` can be overridden. **cov_config Additional parameters to pass to covariance estimator. Supported parameters depend on specific covariance structure assumed. See :class:`linearmodels.iv.gmm.IVGMMCovariance` for details on the available options. Defaults are used if no covariance configuration is provided. Returns ------- IVGMMResults Results container Notes ----- Starting values are computed by IVGMM. See also -------- linearmodels.iv.gmm.IVGMMCovariance
def fit( self, *, starting: Float64Array | Series | None = None, display: bool = False, cov_type: str = "robust", debiased: bool = False, opt_options: dict[str, Any] | None = None, **cov_config: Any, ) -> OLSResults | IVGMMResults: r""" Estimate model parameters Parameters ---------- starting : ndarray Starting values to use in optimization. If not provided, 2SLS estimates are used. display : bool Flag indicating whether to display optimization output cov_type : str Name of covariance estimator to use debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. opt_options : dict Additional options to pass to scipy.optimize.minimize when optimizing the objective function. If not provided, defers to scipy to choose an appropriate optimizer. All minimize inputs except ``fun``, ``x0``, and ``args`` can be overridden. **cov_config Additional parameters to pass to covariance estimator. Supported parameters depend on specific covariance structure assumed. See :class:`linearmodels.iv.gmm.IVGMMCovariance` for details on the available options. Defaults are used if no covariance configuration is provided. Returns ------- IVGMMResults Results container Notes ----- Starting values are computed by IVGMM. See also -------- linearmodels.iv.gmm.IVGMMCovariance """ wy, wx, wz = self._wy, self._wx, self._wz weight_matrix = self._weight.weight_matrix if starting is None: exog = None if self.exog.shape[1] == 0 else self.exog endog = None if self.endog.shape[1] == 0 else self.endog instr = None if self.instruments.shape[1] == 0 else self.instruments res = IVGMM( self.dependent, exog, endog, instr, weights=self.weights, weight_type=self._weight_type, **self._weight_config, ).fit() starting = asarray(res.params) else: starting = asarray(starting) if len(starting) != self.exog.shape[1] + self.endog.shape[1]: raise ValueError( "starting does not have the correct number " "of values" ) params, iters = self.estimate_parameters( starting, wx, wy, wz, display, opt_options=opt_options ) eps = wy - wx @ params wmat = inv(weight_matrix(wx, wz, eps)) cov_config["debiased"] = debiased cov_estimator = IVGMMCovariance( wx, wy, wz, params, wmat, cov_type, **cov_config ) results = self._post_estimation(params, cov_estimator, cov_type) gmm_pe = self._gmm_post_estimation(params, wmat, iters) results.update(gmm_pe) return IVGMMResults(results, self)
(self, *, starting: Union[numpy.ndarray, pandas.core.series.Series, NoneType] = None, display: bool = False, cov_type: str = 'robust', debiased: bool = False, opt_options: Optional[dict[str, Any]] = None, **cov_config: Any) -> linearmodels.iv.results.OLSResults | linearmodels.iv.results.IVGMMResults
42,930
linearmodels.iv.model
from_formula
Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Returns ------- IVGMMCUE Model instance Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using "1 +" if required. Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IVGMMCUE >>> data = wage.load() >>> formula = "np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]" >>> mod = IVGMMCUE.from_formula(formula, data)
@staticmethod def from_formula( formula: str, data: DataFrame, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ) -> IVGMMCUE: """ Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Returns ------- IVGMMCUE Model instance Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using "1 +" if required. Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IVGMMCUE >>> data = wage.load() >>> formula = "np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]" >>> mod = IVGMMCUE.from_formula(formula, data) """ mod = _gmm_model_from_formula( IVGMMCUE, formula, data, weights, weight_type, **weight_config ) assert isinstance(mod, IVGMMCUE) return mod
(formula: str, data: pandas.core.frame.DataFrame, *, weights: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, weight_type: str = 'robust', **weight_config: Any) -> linearmodels.iv.model.IVGMMCUE
42,931
linearmodels.iv.model
j
Optimization target Parameters ---------- params : ndarray Parameter vector (nvar) x : ndarray Regressor matrix (nobs by nvar) y : ndarray Regressand matrix (nobs by 1) z : ndarray Instrument matrix (nobs by ninstr) Returns ------- float GMM objective function, also known as the J statistic Notes ----- The GMM objective function is defined as .. math:: J(\beta) = \bar{g}(\beta)'W(\beta)^{-1}\bar{g}(\beta) where :math:`\bar{g}(\beta)` is the average of the moment conditions, :math:`z_i \hat{\epsilon}_i`, where :math:`\hat{\epsilon}_i = y_i - x_i\beta`. The weighting matrix is some estimator of the long-run variance of the moment conditions. Unlike tradition GMM, the weighting matrix is simultaneously computed with the moment conditions, and so has explicit dependence on :math:`\beta`.
def j( self, params: Float64Array, x: Float64Array, y: Float64Array, z: Float64Array ) -> float: r""" Optimization target Parameters ---------- params : ndarray Parameter vector (nvar) x : ndarray Regressor matrix (nobs by nvar) y : ndarray Regressand matrix (nobs by 1) z : ndarray Instrument matrix (nobs by ninstr) Returns ------- float GMM objective function, also known as the J statistic Notes ----- The GMM objective function is defined as .. math:: J(\beta) = \bar{g}(\beta)'W(\beta)^{-1}\bar{g}(\beta) where :math:`\bar{g}(\beta)` is the average of the moment conditions, :math:`z_i \hat{\epsilon}_i`, where :math:`\hat{\epsilon}_i = y_i - x_i\beta`. The weighting matrix is some estimator of the long-run variance of the moment conditions. Unlike tradition GMM, the weighting matrix is simultaneously computed with the moment conditions, and so has explicit dependence on :math:`\beta`. """ nobs = y.shape[0] weight_matrix = self._weight.weight_matrix eps = y - x @ params[:, None] w = inv(weight_matrix(x, z, eps)) g_bar = (z * eps).mean(0) return nobs * float(g_bar.T @ w @ g_bar.T)
(self, params: numpy.ndarray, x: numpy.ndarray, y: numpy.ndarray, z: numpy.ndarray) -> float
42,935
linearmodels.iv.model
IVLIML
Limited information ML and k-class estimation of IV models Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) endog : array_like Endogenous regressors (nobs by nendog) instruments : array_like Instrumental variables (nobs by ninstr) weights : array_like Observation weights used in estimation fuller : float Fuller's alpha to modify LIML estimator. Default returns unmodified LIML estimator. kappa : float Parameter value for k-class estimation. If None, computed to produce LIML parameter estimate. Notes ----- ``kappa`` and ``fuller`` should not be used simultaneously since Fuller's alpha applies an adjustment to ``kappa``, and so the same result can be computed using only ``kappa``. Fuller's alpha is used to adjust the LIML estimate of :math:`\kappa`, which is computed whenever ``kappa`` is not provided. The LIML estimator is defined as .. math:: \hat{\beta}_{\kappa} & =(X(I-\kappa M_{z})X)^{-1}X(I-\kappa M_{z})Y\\ M_{z} & =I-P_{z}\\ P_{z} & =Z(Z'Z)^{-1}Z' where :math:`Z` contains both the exogenous regressors and the instruments. :math:`\kappa` is estimated as part of the LIML estimator. When using Fuller's :math:`\alpha`, the value used is modified to .. math:: \kappa-\alpha/(n-n_{instr}) .. todo:: * VCV: bootstrap See Also -------- IV2SLS, IVGMM, IVGMMCUE
class IVLIML(_IVLSModelBase): r""" Limited information ML and k-class estimation of IV models Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) endog : array_like Endogenous regressors (nobs by nendog) instruments : array_like Instrumental variables (nobs by ninstr) weights : array_like Observation weights used in estimation fuller : float Fuller's alpha to modify LIML estimator. Default returns unmodified LIML estimator. kappa : float Parameter value for k-class estimation. If None, computed to produce LIML parameter estimate. Notes ----- ``kappa`` and ``fuller`` should not be used simultaneously since Fuller's alpha applies an adjustment to ``kappa``, and so the same result can be computed using only ``kappa``. Fuller's alpha is used to adjust the LIML estimate of :math:`\kappa`, which is computed whenever ``kappa`` is not provided. The LIML estimator is defined as .. math:: \hat{\beta}_{\kappa} & =(X(I-\kappa M_{z})X)^{-1}X(I-\kappa M_{z})Y\\ M_{z} & =I-P_{z}\\ P_{z} & =Z(Z'Z)^{-1}Z' where :math:`Z` contains both the exogenous regressors and the instruments. :math:`\kappa` is estimated as part of the LIML estimator. When using Fuller's :math:`\alpha`, the value used is modified to .. math:: \kappa-\alpha/(n-n_{instr}) .. todo:: * VCV: bootstrap See Also -------- IV2SLS, IVGMM, IVGMMCUE """ def __init__( self, dependent: IVDataLike, exog: IVDataLike | None, endog: IVDataLike | None, instruments: IVDataLike | None, *, weights: IVDataLike | None = None, fuller: Numeric = 0, kappa: OptionalNumeric = None, ): super().__init__( dependent, exog, endog, instruments, weights=weights, fuller=fuller, kappa=kappa, ) @staticmethod def from_formula( formula: str, data: DataFrame, *, weights: IVDataLike | None = None, fuller: float = 0, kappa: OptionalNumeric = None, ) -> IVLIML: """ Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation fuller : float Fuller's alpha to modify LIML estimator. Default returns unmodified LIML estimator. kappa : float Parameter value for k-class estimation. If not provided, computed to produce LIML parameter estimate. Returns ------- IVLIML Model instance Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using '1 +' if required. Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IVLIML >>> data = wage.load() >>> formula = "np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]" >>> mod = IVLIML.from_formula(formula, data) """ parser = IVFormulaParser(formula, data) dep, exog, endog, instr = parser.data mod: IVLIML = IVLIML( dep, exog, endog, instr, weights=weights, fuller=fuller, kappa=kappa ) mod.formula = formula return mod
(dependent: 'IVDataLike', exog: 'IVDataLike | None', endog: 'IVDataLike | None', instruments: 'IVDataLike | None', *, weights: 'IVDataLike | None' = None, fuller: 'Numeric' = 0, kappa: 'OptionalNumeric' = None)
42,936
linearmodels.iv.model
__init__
null
def __init__( self, dependent: IVDataLike, exog: IVDataLike | None, endog: IVDataLike | None, instruments: IVDataLike | None, *, weights: IVDataLike | None = None, fuller: Numeric = 0, kappa: OptionalNumeric = None, ): super().__init__( dependent, exog, endog, instruments, weights=weights, fuller=fuller, kappa=kappa, )
(self, dependent: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], exog: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType], endog: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType], instruments: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType], *, weights: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, fuller: Union[int, float] = 0, kappa: Union[int, float, NoneType] = None)
42,944
linearmodels.iv.model
from_formula
Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation fuller : float Fuller's alpha to modify LIML estimator. Default returns unmodified LIML estimator. kappa : float Parameter value for k-class estimation. If not provided, computed to produce LIML parameter estimate. Returns ------- IVLIML Model instance Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using '1 +' if required. Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IVLIML >>> data = wage.load() >>> formula = "np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]" >>> mod = IVLIML.from_formula(formula, data)
@staticmethod def from_formula( formula: str, data: DataFrame, *, weights: IVDataLike | None = None, fuller: float = 0, kappa: OptionalNumeric = None, ) -> IVLIML: """ Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation fuller : float Fuller's alpha to modify LIML estimator. Default returns unmodified LIML estimator. kappa : float Parameter value for k-class estimation. If not provided, computed to produce LIML parameter estimate. Returns ------- IVLIML Model instance Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using '1 +' if required. Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IVLIML >>> data = wage.load() >>> formula = "np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]" >>> mod = IVLIML.from_formula(formula, data) """ parser = IVFormulaParser(formula, data) dep, exog, endog, instr = parser.data mod: IVLIML = IVLIML( dep, exog, endog, instr, weights=weights, fuller=fuller, kappa=kappa ) mod.formula = formula return mod
(formula: str, data: pandas.core.frame.DataFrame, *, weights: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, fuller: float = 0, kappa: Union[int, float, NoneType] = None) -> linearmodels.iv.model.IVLIML
42,948
linearmodels.system.model
IVSystemGMM
System Generalized Method of Moments (GMM) estimation of linear IV models Parameters ---------- equations : dict Dictionary-like structure containing dependent, exogenous, endogenous and instrumental variables. Each key is an equations label and must be a string. Each value must be either a tuple of the form (dependent, exog, endog, instrument[, weights]) or a dictionary with keys "dependent", "exog". The dictionary may contain optional keys for "endog", "instruments", and "weights". Endogenous and/or Instrument can be empty if all variables in an equation are exogenous. sigma : array_like Prespecified residual covariance to use in GLS estimation. If not provided, FGLS is implemented based on an estimate of sigma. Only used if weight_type is "unadjusted" weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- Estimates a linear model using GMM. Each equation is of the form .. math:: y_{i,k} = x_{i,k}\beta_i + \epsilon_{i,k} where k denotes the equation and i denoted the observation index. By stacking vertically arrays of dependent and placing the exogenous variables into a block diagonal array, the entire system can be compactly expressed as .. math:: Y = X\beta + \epsilon where .. math:: Y = \left[\begin{array}{x}Y_1 \\ Y_2 \\ \vdots \\ Y_K\end{array}\right] and .. math:: X = \left[\begin{array}{cccc} X_1 & 0 & \ldots & 0 \\ 0 & X_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & X_K \end{array}\right] The system GMM estimator uses the moment condition .. math:: z_{ij}(y_{ij} - x_{ij}\beta_j) = 0 where j indexes the equation. The estimator for the coefficients is given by .. math:: \hat{\beta}_{GMM} & = (X'ZW^{-1}Z'X)^{-1}X'ZW^{-1}Z'Y \\ where :math:`W` is a positive definite weighting matrix.
class IVSystemGMM(_SystemModelBase): r""" System Generalized Method of Moments (GMM) estimation of linear IV models Parameters ---------- equations : dict Dictionary-like structure containing dependent, exogenous, endogenous and instrumental variables. Each key is an equations label and must be a string. Each value must be either a tuple of the form (dependent, exog, endog, instrument[, weights]) or a dictionary with keys "dependent", "exog". The dictionary may contain optional keys for "endog", "instruments", and "weights". Endogenous and/or Instrument can be empty if all variables in an equation are exogenous. sigma : array_like Prespecified residual covariance to use in GLS estimation. If not provided, FGLS is implemented based on an estimate of sigma. Only used if weight_type is "unadjusted" weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- Estimates a linear model using GMM. Each equation is of the form .. math:: y_{i,k} = x_{i,k}\beta_i + \epsilon_{i,k} where k denotes the equation and i denoted the observation index. By stacking vertically arrays of dependent and placing the exogenous variables into a block diagonal array, the entire system can be compactly expressed as .. math:: Y = X\beta + \epsilon where .. math:: Y = \left[\begin{array}{x}Y_1 \\ Y_2 \\ \vdots \\ Y_K\end{array}\right] and .. math:: X = \left[\begin{array}{cccc} X_1 & 0 & \ldots & 0 \\ 0 & X_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & X_K \end{array}\right] The system GMM estimator uses the moment condition .. math:: z_{ij}(y_{ij} - x_{ij}\beta_j) = 0 where j indexes the equation. The estimator for the coefficients is given by .. math:: \hat{\beta}_{GMM} & = (X'ZW^{-1}Z'X)^{-1}X'ZW^{-1}Z'Y \\ where :math:`W` is a positive definite weighting matrix. """ def __init__( self, equations: Mapping[ str, Mapping[str, ArrayLike | None] | Sequence[ArrayLike | None] ], *, sigma: ArrayLike | None = None, weight_type: str = "robust", **weight_config: bool | str | float, ) -> None: super().__init__(equations, sigma=sigma) self._weight_type = weight_type self._weight_config = weight_config if weight_type not in COV_TYPES: raise ValueError("Unknown estimator for weight_type") if weight_type not in ("unadjusted", "homoskedastic") and sigma is not None: warnings.warn( "sigma has been provided but the estimated weight " "matrix not unadjusted (homoskedastic). sigma will " "be ignored.", UserWarning, ) weight_type = COV_TYPES[weight_type] self._weight_est = GMM_W_EST[weight_type](**weight_config) def fit( self, *, iter_limit: int = 2, tol: float = 1e-6, initial_weight: Float64Array | None = None, cov_type: str = "robust", **cov_config: bool | float, ) -> GMMSystemResults: """ Estimate model parameters Parameters ---------- iter_limit : int Maximum number of iterations for iterative GLS tol : float Tolerance to use when checking for convergence in iterative GLS initial_weight : ndarray Initial weighting matrix to use in the first step. If not specified, uses the average outer-product of the set containing the exogenous variables and instruments. cov_type : str Name of covariance estimator. Valid options are * "unadjusted", "homoskedastic" - Classic covariance estimator * "robust", "heteroskedastic" - Heteroskedasticity robust covariance estimator **cov_config Additional parameters to pass to covariance estimator. All estimators support debiased which employs a small-sample adjustment Returns ------- GMMSystemResults Estimation results """ if cov_type not in COV_TYPES: raise ValueError(f"Unknown cov_type: {cov_type}") # Parameter estimation wx, wy, wz = self._wx, self._wy, self._wz k = len(wx) nobs = wx[0].shape[0] k_total = sum(map(lambda a: a.shape[1], wz)) if initial_weight is None: w = blocked_inner_prod(wz, np.eye(k_total)) / nobs else: w = initial_weight assert w is not None beta_last = beta = self._blocked_gmm( wx, wy, wz, w=cast(Float64Array, w), constraints=self.constraints ) _eps = [] loc = 0 for i in range(k): nb = wx[i].shape[1] b = beta[loc : loc + nb] _eps.append(wy[i] - wx[i] @ b) loc += nb eps = np.hstack(_eps) sigma = self._weight_est.sigma(eps, wx) if self._sigma is None else self._sigma vinv = None iters = 1 norm = 10 * tol + 1 while iters < iter_limit and norm > tol: sigma = ( self._weight_est.sigma(eps, wx) if self._sigma is None else self._sigma ) w = self._weight_est.weight_matrix(wx, wz, eps, sigma=sigma) beta = self._blocked_gmm( wx, wy, wz, w=cast(Float64Array, w), constraints=self.constraints ) delta = beta_last - beta if vinv is None: winv = np.linalg.inv(w) xpz = blocked_cross_prod(wx, wz, np.eye(k)) xpz = cast(Float64Array, xpz / nobs) v = (xpz @ winv @ xpz.T) / nobs vinv = inv(v) norm = float(np.squeeze(delta.T @ vinv @ delta)) beta_last = beta _eps = [] loc = 0 for i in range(k): nb = wx[i].shape[1] b = beta[loc : loc + nb] _eps.append(wy[i] - wx[i] @ b) loc += nb eps = np.hstack(_eps) iters += 1 cov_type = COV_TYPES[cov_type] cov_est = GMM_COV_EST[cov_type] cov = cov_est( wx, wz, eps, w, sigma=sigma, constraints=self._constraints, **cov_config ) weps = eps _eps = [] loc = 0 x, y = self._x, self._y for i in range(k): nb = x[i].shape[1] b = beta[loc : loc + nb] _eps.append(y[i] - x[i] @ b) loc += nb eps = np.hstack(_eps) iters += 1 return self._finalize_results( beta, cov.cov, weps, eps, cast(np.ndarray, w), sigma, iters - 1, cov_type, cov_config, cov, ) @staticmethod def _blocked_gmm( x: ArraySequence, y: ArraySequence, z: ArraySequence, *, w: Float64Array, constraints: LinearConstraint | None = None, ) -> Float64Array: k = len(x) xpz = blocked_cross_prod(x, z, np.eye(k)) wi = np.linalg.inv(w) xpz_wi_zpx = xpz @ wi @ xpz.T zpy_arrs = [] for i in range(k): zpy_arrs.append(z[i].T @ y[i]) zpy = np.vstack(zpy_arrs) xpz_wi_zpy = xpz @ wi @ zpy params = _parameters_from_xprod(xpz_wi_zpx, xpz_wi_zpy, constraints=constraints) return params def _finalize_results( self, beta: Float64Array, cov: Float64Array, weps: Float64Array, eps: Float64Array, wmat: Float64Array, sigma: Float64Array, iter_count: int, cov_type: str, cov_config: dict[str, bool | float], cov_est: GMMHeteroskedasticCovariance | GMMHomoskedasticCovariance, ) -> GMMSystemResults: """Collect results to return after GLS estimation""" k = len(self._wy) # Repackage results for individual equations individual = AttrDict() debiased = bool(cov_config.get("debiased", False)) method = f"{iter_count}-Step System GMM" if iter_count > 2: method = "Iterative System GMM" for i in range(k): cons = bool(self.has_constant.iloc[i]) if cons: c = np.sqrt(self._w[i]) ye = self._wy[i] - c @ lstsq(c, self._wy[i], rcond=None)[0] else: ye = self._wy[i] total_ss = float(np.squeeze(ye.T @ ye)) stats = self._common_indiv_results( i, beta, cov, weps, eps, method, cov_type, cov_est, iter_count, debiased, cons, total_ss, weight_est=self._weight_est, ) key = self._eq_labels[i] individual[key] = stats # Populate results dictionary nobs = eps.size results = self._common_results( beta, cov, method, iter_count, nobs, cov_type, sigma, individual, debiased ) # wresid is different between GLS and OLS wresiduals = [] for individual_key in individual: wresiduals.append(individual[individual_key].wresid) wresid = np.hstack(wresiduals) results["wresid"] = wresid results["wmat"] = wmat results["weight_type"] = self._weight_type results["weight_config"] = self._weight_est.config results["cov_estimator"] = cov_est results["cov_config"] = cov_est.cov_config results["weight_estimator"] = self._weight_est results["j_stat"] = self._j_statistic(beta, wmat) r2s = [individual[eq].r2 for eq in individual] results["system_r2"] = self._system_r2(eps, sigma, "gls", False, debiased, r2s) return GMMSystemResults(results) @classmethod def from_formula( cls, formula: str | dict[str, str], data: DataFrame, *, weights: dict[str, ArrayLike] | None = None, weight_type: str = "robust", **weight_config: bool | str | float, ) -> IVSystemGMM: """ Specify a 3SLS using the formula interface Parameters ---------- formula : {str, dict-like} Either a string or a dictionary of strings where each value in the dictionary represents a single equation. See Notes for a description of the accepted syntax data : DataFrame Frame containing named variables weights : dict-like Dictionary like object (e.g. a DataFrame) containing variable weights. Each entry must have the same number of observations as data. If an equation label is not a key weights, the weights will be set to unity weight_type : str Name of moment condition weight function to use in the GMM estimation. Valid options are: * "unadjusted", "homoskedastic" - Assume moments are homoskedastic * "robust", "heteroskedastic" - Allow for heteroskedasticity **weight_config Additional keyword arguments to pass to the moment condition weight function Returns ------- model : IVSystemGMM Model instance Notes ----- Models can be specified in one of two ways. The first uses curly braces to encapsulate equations. The second uses a dictionary where each key is an equation name. Examples -------- The simplest format uses standard formulas for each equation in a dictionary. Best practice is to use an Ordered Dictionary >>> import pandas as pd >>> import numpy as np >>> cols = ["y1", "x1_1", "x1_2", "z1", "y2", "x2_1", "x2_2", "z2"] >>> data = pd.DataFrame(np.random.randn(500, 8), columns=cols) >>> from linearmodels.system import IVSystemGMM >>> formula = {"eq1": "y1 ~ 1 + x1_1 + [x1_2 ~ z1]", ... "eq2": "y2 ~ 1 + x2_1 + [x2_2 ~ z2]"} >>> mod = IVSystemGMM.from_formula(formula, data) The second format uses curly braces {} to surround distinct equations >>> formula = "{y1 ~ 1 + x1_1 + [x1_2 ~ z1]} {y2 ~ 1 + x2_1 + [x2_2 ~ z2]}" >>> mod = IVSystemGMM.from_formula(formula, data) It is also possible to include equation labels when using curly braces >>> formula = "{eq1: y1 ~ x1_1 + [x1_2 ~ z1]} {eq2: y2 ~ 1 + [x2_2 ~ z2]}" >>> mod = IVSystemGMM.from_formula(formula, data) """ context = capture_context(1) parser = SystemFormulaParser(formula, data, weights, context=context) eqns = parser.data mod = cls(eqns, sigma=None, weight_type=weight_type, **weight_config) mod.formula = formula return mod def _j_statistic( self, params: Float64Array, weight_mat: Float64Array ) -> WaldTestStatistic: """ J stat and test Parameters ---------- params : ndarray Estimated model parameters weight_mat : ndarray Weighting matrix used in estimation of the parameters Returns ------- stat : WaldTestStatistic Test statistic Notes ----- Assumes that the efficient weighting matrix has been used. Using other weighting matrices will not produce the correct test. """ y, x, z = self._wy, self._wx, self._wz k = len(x) ze_lst = [] idx = 0 for i in range(k): kx = x[i].shape[1] beta = params[idx : idx + kx] eps = y[i] - x[i] @ beta ze_lst.append(z[i] * eps) idx += kx ze = np.concatenate(ze_lst, 1) g_bar = ze.mean(0) nobs = x[0].shape[0] stat = float(nobs * g_bar.T @ np.linalg.inv(weight_mat) @ g_bar.T) null = "Expected moment conditions are equal to 0" ninstr = sum(map(lambda a: a.shape[1], z)) nvar = sum(map(lambda a: a.shape[1], x)) ncons = 0 if self.constraints is None else self.constraints.r.shape[0] return WaldTestStatistic(stat, null, ninstr - (nvar - ncons))
(equations: 'Mapping[str, Mapping[str, ArrayLike | None] | Sequence[ArrayLike | None]]', *, sigma: 'ArrayLike | None' = None, weight_type: 'str' = 'robust', **weight_config: 'bool | str | float') -> 'None'
42,949
linearmodels.system.model
__init__
null
def __init__( self, equations: Mapping[ str, Mapping[str, ArrayLike | None] | Sequence[ArrayLike | None] ], *, sigma: ArrayLike | None = None, weight_type: str = "robust", **weight_config: bool | str | float, ) -> None: super().__init__(equations, sigma=sigma) self._weight_type = weight_type self._weight_config = weight_config if weight_type not in COV_TYPES: raise ValueError("Unknown estimator for weight_type") if weight_type not in ("unadjusted", "homoskedastic") and sigma is not None: warnings.warn( "sigma has been provided but the estimated weight " "matrix not unadjusted (homoskedastic). sigma will " "be ignored.", UserWarning, ) weight_type = COV_TYPES[weight_type] self._weight_est = GMM_W_EST[weight_type](**weight_config)
(self, equations: collections.abc.Mapping[str, collections.abc.Mapping[str, typing.Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType]] | collections.abc.Sequence[typing.Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType]]], *, sigma: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, weight_type: str = 'robust', **weight_config: bool | str | float) -> NoneType
42,952
linearmodels.system.model
_blocked_gmm
null
@staticmethod def _blocked_gmm( x: ArraySequence, y: ArraySequence, z: ArraySequence, *, w: Float64Array, constraints: LinearConstraint | None = None, ) -> Float64Array: k = len(x) xpz = blocked_cross_prod(x, z, np.eye(k)) wi = np.linalg.inv(w) xpz_wi_zpx = xpz @ wi @ xpz.T zpy_arrs = [] for i in range(k): zpy_arrs.append(z[i].T @ y[i]) zpy = np.vstack(zpy_arrs) xpz_wi_zpy = xpz @ wi @ zpy params = _parameters_from_xprod(xpz_wi_zpx, xpz_wi_zpy, constraints=constraints) return params
(x: collections.abc.Sequence[numpy.ndarray], y: collections.abc.Sequence[numpy.ndarray], z: collections.abc.Sequence[numpy.ndarray], *, w: numpy.ndarray, constraints: Optional[linearmodels.system._utility.LinearConstraint] = None) -> numpy.ndarray
42,958
linearmodels.system.model
_finalize_results
Collect results to return after GLS estimation
def _finalize_results( self, beta: Float64Array, cov: Float64Array, weps: Float64Array, eps: Float64Array, wmat: Float64Array, sigma: Float64Array, iter_count: int, cov_type: str, cov_config: dict[str, bool | float], cov_est: GMMHeteroskedasticCovariance | GMMHomoskedasticCovariance, ) -> GMMSystemResults: """Collect results to return after GLS estimation""" k = len(self._wy) # Repackage results for individual equations individual = AttrDict() debiased = bool(cov_config.get("debiased", False)) method = f"{iter_count}-Step System GMM" if iter_count > 2: method = "Iterative System GMM" for i in range(k): cons = bool(self.has_constant.iloc[i]) if cons: c = np.sqrt(self._w[i]) ye = self._wy[i] - c @ lstsq(c, self._wy[i], rcond=None)[0] else: ye = self._wy[i] total_ss = float(np.squeeze(ye.T @ ye)) stats = self._common_indiv_results( i, beta, cov, weps, eps, method, cov_type, cov_est, iter_count, debiased, cons, total_ss, weight_est=self._weight_est, ) key = self._eq_labels[i] individual[key] = stats # Populate results dictionary nobs = eps.size results = self._common_results( beta, cov, method, iter_count, nobs, cov_type, sigma, individual, debiased ) # wresid is different between GLS and OLS wresiduals = [] for individual_key in individual: wresiduals.append(individual[individual_key].wresid) wresid = np.hstack(wresiduals) results["wresid"] = wresid results["wmat"] = wmat results["weight_type"] = self._weight_type results["weight_config"] = self._weight_est.config results["cov_estimator"] = cov_est results["cov_config"] = cov_est.cov_config results["weight_estimator"] = self._weight_est results["j_stat"] = self._j_statistic(beta, wmat) r2s = [individual[eq].r2 for eq in individual] results["system_r2"] = self._system_r2(eps, sigma, "gls", False, debiased, r2s) return GMMSystemResults(results)
(self, beta: numpy.ndarray, cov: numpy.ndarray, weps: numpy.ndarray, eps: numpy.ndarray, wmat: numpy.ndarray, sigma: numpy.ndarray, iter_count: int, cov_type: str, cov_config: dict[str, bool | float], cov_est: linearmodels.system.covariance.GMMHeteroskedasticCovariance | linearmodels.system.covariance.GMMHomoskedasticCovariance) -> linearmodels.system.results.GMMSystemResults
42,961
linearmodels.system.model
_j_statistic
J stat and test Parameters ---------- params : ndarray Estimated model parameters weight_mat : ndarray Weighting matrix used in estimation of the parameters Returns ------- stat : WaldTestStatistic Test statistic Notes ----- Assumes that the efficient weighting matrix has been used. Using other weighting matrices will not produce the correct test.
def _j_statistic( self, params: Float64Array, weight_mat: Float64Array ) -> WaldTestStatistic: """ J stat and test Parameters ---------- params : ndarray Estimated model parameters weight_mat : ndarray Weighting matrix used in estimation of the parameters Returns ------- stat : WaldTestStatistic Test statistic Notes ----- Assumes that the efficient weighting matrix has been used. Using other weighting matrices will not produce the correct test. """ y, x, z = self._wy, self._wx, self._wz k = len(x) ze_lst = [] idx = 0 for i in range(k): kx = x[i].shape[1] beta = params[idx : idx + kx] eps = y[i] - x[i] @ beta ze_lst.append(z[i] * eps) idx += kx ze = np.concatenate(ze_lst, 1) g_bar = ze.mean(0) nobs = x[0].shape[0] stat = float(nobs * g_bar.T @ np.linalg.inv(weight_mat) @ g_bar.T) null = "Expected moment conditions are equal to 0" ninstr = sum(map(lambda a: a.shape[1], z)) nvar = sum(map(lambda a: a.shape[1], x)) ncons = 0 if self.constraints is None else self.constraints.r.shape[0] return WaldTestStatistic(stat, null, ninstr - (nvar - ncons))
(self, params: numpy.ndarray, weight_mat: numpy.ndarray) -> linearmodels.shared.hypotheses.WaldTestStatistic
42,968
linearmodels.system.model
fit
Estimate model parameters Parameters ---------- iter_limit : int Maximum number of iterations for iterative GLS tol : float Tolerance to use when checking for convergence in iterative GLS initial_weight : ndarray Initial weighting matrix to use in the first step. If not specified, uses the average outer-product of the set containing the exogenous variables and instruments. cov_type : str Name of covariance estimator. Valid options are * "unadjusted", "homoskedastic" - Classic covariance estimator * "robust", "heteroskedastic" - Heteroskedasticity robust covariance estimator **cov_config Additional parameters to pass to covariance estimator. All estimators support debiased which employs a small-sample adjustment Returns ------- GMMSystemResults Estimation results
def fit( self, *, iter_limit: int = 2, tol: float = 1e-6, initial_weight: Float64Array | None = None, cov_type: str = "robust", **cov_config: bool | float, ) -> GMMSystemResults: """ Estimate model parameters Parameters ---------- iter_limit : int Maximum number of iterations for iterative GLS tol : float Tolerance to use when checking for convergence in iterative GLS initial_weight : ndarray Initial weighting matrix to use in the first step. If not specified, uses the average outer-product of the set containing the exogenous variables and instruments. cov_type : str Name of covariance estimator. Valid options are * "unadjusted", "homoskedastic" - Classic covariance estimator * "robust", "heteroskedastic" - Heteroskedasticity robust covariance estimator **cov_config Additional parameters to pass to covariance estimator. All estimators support debiased which employs a small-sample adjustment Returns ------- GMMSystemResults Estimation results """ if cov_type not in COV_TYPES: raise ValueError(f"Unknown cov_type: {cov_type}") # Parameter estimation wx, wy, wz = self._wx, self._wy, self._wz k = len(wx) nobs = wx[0].shape[0] k_total = sum(map(lambda a: a.shape[1], wz)) if initial_weight is None: w = blocked_inner_prod(wz, np.eye(k_total)) / nobs else: w = initial_weight assert w is not None beta_last = beta = self._blocked_gmm( wx, wy, wz, w=cast(Float64Array, w), constraints=self.constraints ) _eps = [] loc = 0 for i in range(k): nb = wx[i].shape[1] b = beta[loc : loc + nb] _eps.append(wy[i] - wx[i] @ b) loc += nb eps = np.hstack(_eps) sigma = self._weight_est.sigma(eps, wx) if self._sigma is None else self._sigma vinv = None iters = 1 norm = 10 * tol + 1 while iters < iter_limit and norm > tol: sigma = ( self._weight_est.sigma(eps, wx) if self._sigma is None else self._sigma ) w = self._weight_est.weight_matrix(wx, wz, eps, sigma=sigma) beta = self._blocked_gmm( wx, wy, wz, w=cast(Float64Array, w), constraints=self.constraints ) delta = beta_last - beta if vinv is None: winv = np.linalg.inv(w) xpz = blocked_cross_prod(wx, wz, np.eye(k)) xpz = cast(Float64Array, xpz / nobs) v = (xpz @ winv @ xpz.T) / nobs vinv = inv(v) norm = float(np.squeeze(delta.T @ vinv @ delta)) beta_last = beta _eps = [] loc = 0 for i in range(k): nb = wx[i].shape[1] b = beta[loc : loc + nb] _eps.append(wy[i] - wx[i] @ b) loc += nb eps = np.hstack(_eps) iters += 1 cov_type = COV_TYPES[cov_type] cov_est = GMM_COV_EST[cov_type] cov = cov_est( wx, wz, eps, w, sigma=sigma, constraints=self._constraints, **cov_config ) weps = eps _eps = [] loc = 0 x, y = self._x, self._y for i in range(k): nb = x[i].shape[1] b = beta[loc : loc + nb] _eps.append(y[i] - x[i] @ b) loc += nb eps = np.hstack(_eps) iters += 1 return self._finalize_results( beta, cov.cov, weps, eps, cast(np.ndarray, w), sigma, iters - 1, cov_type, cov_config, cov, )
(self, *, iter_limit: int = 2, tol: float = 1e-06, initial_weight: Optional[numpy.ndarray] = None, cov_type: str = 'robust', **cov_config: bool | float) -> linearmodels.system.results.GMMSystemResults
42,971
linearmodels.asset_pricing.model
LinearFactorModel
Linear factor model estimator Parameters ---------- portfolios : array_like Test portfolio returns (nobs by nportfolio) factors : array_like Priced factor returns (nobs by nfactor) risk_free : bool Flag indicating whether the risk-free rate should be estimated from returns along other risk premia. If False, the returns are assumed to be excess returns using the correct risk-free rate. sigma : array_like Positive definite residual covariance (nportfolio by nportfolio) Notes ----- Suitable for traded or non-traded factors. Implements a 2-step estimator of risk premia, factor loadings and model tests. The first stage model estimated is .. math:: r_{it} = c_i + f_t \beta_i + \epsilon_{it} where :math:`r_{it}` is the return on test portfolio i and :math:`f_t` are the traded factor returns. The parameters :math:`c_i` are required to allow non-traded to be tested, but are not economically interesting. These are not reported. The second stage model uses the estimated factor loadings from the first and is .. math:: \bar{r}_i = \lambda_0 + \hat{\beta}_i^\prime \lambda + \eta_i where :math:`\bar{r}_i` is the average excess return to portfolio i and :math:`\lambda_0` is only included if estimating the risk-free rate. GLS is used in the second stage if ``sigma`` is provided. The model is tested using the estimated values :math:`\hat{\alpha}_i=\hat{\eta}_i`.
class LinearFactorModel(_LinearFactorModelBase): r""" Linear factor model estimator Parameters ---------- portfolios : array_like Test portfolio returns (nobs by nportfolio) factors : array_like Priced factor returns (nobs by nfactor) risk_free : bool Flag indicating whether the risk-free rate should be estimated from returns along other risk premia. If False, the returns are assumed to be excess returns using the correct risk-free rate. sigma : array_like Positive definite residual covariance (nportfolio by nportfolio) Notes ----- Suitable for traded or non-traded factors. Implements a 2-step estimator of risk premia, factor loadings and model tests. The first stage model estimated is .. math:: r_{it} = c_i + f_t \beta_i + \epsilon_{it} where :math:`r_{it}` is the return on test portfolio i and :math:`f_t` are the traded factor returns. The parameters :math:`c_i` are required to allow non-traded to be tested, but are not economically interesting. These are not reported. The second stage model uses the estimated factor loadings from the first and is .. math:: \bar{r}_i = \lambda_0 + \hat{\beta}_i^\prime \lambda + \eta_i where :math:`\bar{r}_i` is the average excess return to portfolio i and :math:`\lambda_0` is only included if estimating the risk-free rate. GLS is used in the second stage if ``sigma`` is provided. The model is tested using the estimated values :math:`\hat{\alpha}_i=\hat{\eta}_i`. """ def __init__( self, portfolios: IVDataLike, factors: IVDataLike, *, risk_free: bool = False, sigma: ArrayLike | None = None, ) -> None: super().__init__(portfolios, factors, risk_free=risk_free, sigma=sigma) @classmethod def from_formula( cls, formula: str, data: DataFrame, *, portfolios: DataFrame | None = None, risk_free: bool = False, sigma: ArrayLike | None = None, ) -> LinearFactorModel: """ Parameters ---------- formula : str Formula modified for the syntax described in the notes data : DataFrame DataFrame containing the variables used in the formula portfolios : array_like Portfolios to be used in the model. If provided, must use formula syntax containing only factors. risk_free : bool Flag indicating whether the risk-free rate should be estimated from returns along other risk premia. If False, the returns are assumed to be excess returns using the correct risk-free rate. sigma : array_like Positive definite residual covariance (nportfolio by nportfolio) Returns ------- LinearFactorModel Model instance Notes ----- The formula can be used in one of two ways. The first specified only the factors and uses the data provided in ``portfolios`` as the test portfolios. The second specified the portfolio using ``+`` to separate the test portfolios and ``~`` to separate the test portfolios from the factors. Examples -------- >>> from linearmodels.datasets import french >>> from linearmodels.asset_pricing import LinearFactorModel >>> data = french.load() >>> formula = "S1M1 + S1M5 + S3M3 + S5M1 + S5M5 ~ MktRF + SMB + HML" >>> mod = LinearFactorModel.from_formula(formula, data) Using only factors >>> portfolios = data[["S1M1", "S1M5", "S3M1", "S3M5", "S5M1", "S5M5"]] >>> formula = "MktRF + SMB + HML" >>> mod = LinearFactorModel.from_formula(formula, data, portfolios=portfolios) """ factors, portfolios, formula = cls._prepare_data_from_formula( formula, data, portfolios ) mod = cls(portfolios, factors, risk_free=risk_free, sigma=sigma) mod.formula = formula return mod def fit( self, cov_type: str = "robust", debiased: bool = True, **cov_config: bool | int | str, ) -> LinearFactorModelResults: """ Estimate model parameters Parameters ---------- cov_type : str Name of covariance estimator debiased : bool Flag indicating whether to debias the covariance estimator using a degree of freedom adjustment **cov_config Additional covariance-specific options. See Notes. Returns ------- LinearFactorModelResults Results class with parameter estimates, covariance and test statistics Notes ----- The kernel covariance estimator takes the optional arguments ``kernel``, one of "bartlett", "parzen" or "qs" (quadratic spectral) and ``bandwidth`` (a positive integer). """ nobs, nf, nport, nrf, s1, s2, s3 = self._boundaries() excess_returns = not self._risk_free f = self.factors.ndarray p = self.portfolios.ndarray nport = p.shape[1] # Step 1, n regressions to get B fc = np.c_[np.ones((nobs, 1)), f] b = lstsq(fc, p, rcond=None)[0] # nf+1 by np eps = p - fc @ b if excess_returns: betas = b[1:].T else: betas = b.T.copy() betas[:, 0] = 1.0 sigma_m12 = self._sigma_m12 lam = lstsq(sigma_m12 @ betas, sigma_m12 @ p.mean(0)[:, None], rcond=None)[0] expected = betas @ lam pricing_errors = p - expected.T # Moments alphas = pricing_errors.mean(0)[:, None] moments = self._moments(eps, betas, alphas, pricing_errors) # Jacobian jacobian = self._jacobian(betas, lam, alphas) if cov_type not in ("robust", "heteroskedastic", "kernel"): raise ValueError(f"Unknown weight: {cov_type}") if cov_type in ("robust", "heteroskedastic"): cov_est_inst = HeteroskedasticCovariance( moments, jacobian=jacobian, center=False, debiased=debiased, df=fc.shape[1], ) else: # "kernel": bandwidth = get_float(cov_config, "bandwidth") kernel = get_string(cov_config, "kernel") cov_est_inst = KernelCovariance( moments, jacobian=jacobian, center=False, debiased=debiased, df=fc.shape[1], kernel=kernel, bandwidth=bandwidth, ) # VCV full_vcv = cov_est_inst.cov alpha_vcv = full_vcv[s2:, s2:] stat = float(np.squeeze(alphas.T @ np.linalg.pinv(alpha_vcv) @ alphas)) jstat = WaldTestStatistic( stat, "All alphas are 0", nport - nf - nrf, name="J-statistic" ) total_ss = ((p - p.mean(0)[None, :]) ** 2).sum() residual_ss = (eps**2).sum() r2 = 1 - residual_ss / total_ss rp = lam rp_cov = full_vcv[s1:s2, s1:s2] betas = betas if excess_returns else betas[:, 1:] params = np.c_[alphas, betas] param_names = [] for portfolio in self.portfolios.cols: param_names.append(f"alpha-{portfolio}") for factor in self.factors.cols: param_names.append(f"beta-{portfolio}-{factor}") if not excess_returns: param_names.append("lambda-risk_free") for factor in self.factors.cols: param_names.append(f"lambda-{factor}") # Pivot vcv to remove unnecessary and have correct order order = np.reshape(np.arange(s1), (nport, nf + 1)) order[:, 0] = np.arange(s2, s3) order = order.ravel() order = np.r_[order, s1:s2] full_vcv = full_vcv[order][:, order] factor_names = list(self.factors.cols) rp_names = factor_names[:] if not excess_returns: rp_names.insert(0, "risk_free") res = AttrDict( params=params, cov=full_vcv, betas=betas, rp=rp, rp_cov=rp_cov, alphas=alphas, alpha_vcv=alpha_vcv, jstat=jstat, rsquared=r2, total_ss=total_ss, residual_ss=residual_ss, param_names=param_names, portfolio_names=self.portfolios.cols, factor_names=factor_names, name=self._name, cov_type=cov_type, model=self, nobs=nobs, rp_names=rp_names, cov_est=cov_est_inst, ) return LinearFactorModelResults(res) def _jacobian( self, betas: Float64Array, lam: Float64Array, alphas: Float64Array ) -> Float64Array: nobs, nf, nport, nrf, s1, s2, s3 = self._boundaries() f = self.factors.ndarray fc = np.c_[np.ones((nobs, 1)), f] excess_returns = not self._risk_free bc = betas sigma_inv = self._sigma_inv jac = np.eye((nport * (nf + 1)) + (nf + nrf) + nport) fpf = fc.T @ fc / nobs jac[:s1, :s1] = np.kron(np.eye(nport), fpf) b_tilde = sigma_inv @ bc alpha_tilde = sigma_inv @ alphas _lam = lam if excess_returns else lam[1:] for i in range(nport): block = np.zeros((nf + nrf, nf + 1)) block[:, 1:] = b_tilde[[i]].T @ _lam.T block[nrf:, 1:] -= alpha_tilde[i] * np.eye(nf) jac[s1:s2, (i * (nf + 1)) : ((i + 1) * (nf + 1))] = block jac[s1:s2, s1:s2] = bc.T @ sigma_inv @ bc zero_lam = np.r_[[[0]], _lam] jac[s2:s3, :s1] = np.kron(np.eye(nport), zero_lam.T) jac[s2:s3, s1:s2] = bc return jac def _moments( self, eps: Float64Array, betas: Float64Array, alphas: Float64Array, pricing_errors: Float64Array, ) -> Float64Array: sigma_inv = self._sigma_inv f = self.factors.ndarray nobs, nf, nport, _, s1, s2, s3 = self._boundaries() fc = np.c_[np.ones((nobs, 1)), f] f_rep = np.tile(fc, (1, nport)) eps_rep = np.tile(eps, (nf + 1, 1)) eps_rep = np.reshape(eps_rep.T, (nport * (nf + 1), nobs)).T # Moments g1 = f_rep * eps_rep g2 = pricing_errors @ sigma_inv @ betas g3 = pricing_errors - alphas.T return np.c_[g1, g2, g3]
(portfolios: 'IVDataLike', factors: 'IVDataLike', *, risk_free: 'bool' = False, sigma: 'ArrayLike | None' = None) -> 'None'
42,972
linearmodels.asset_pricing.model
__init__
null
def __init__( self, portfolios: IVDataLike, factors: IVDataLike, *, risk_free: bool = False, sigma: ArrayLike | None = None, ) -> None: super().__init__(portfolios, factors, risk_free=risk_free, sigma=sigma)
(self, portfolios: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], factors: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], *, risk_free: bool = False, sigma: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None) -> NoneType
42,974
linearmodels.asset_pricing.model
__str__
null
def __str__(self) -> str: out = super().__str__() if np.any(self._sigma != np.eye(self.portfolios.shape[1])): out += " using GLS" out += f"\nEstimated risk-free rate: {self._risk_free}" return out
(self) -> str
42,975
linearmodels.asset_pricing.model
_boundaries
null
def _boundaries(self) -> tuple[int, int, int, int, int, int, int]: nobs, nf = self.factors.ndarray.shape nport = self.portfolios.ndarray.shape[1] nrf = int(bool(self._risk_free)) s1 = (nf + 1) * nport s2 = s1 + (nf + nrf) s3 = s2 + nport return nobs, nf, nport, nrf, s1, s2, s3
(self) -> tuple[int, int, int, int, int, int, int]
42,976
linearmodels.asset_pricing.model
_drop_missing
null
def _drop_missing(self) -> BoolArray: data = (self.portfolios, self.factors) missing = cast(BoolArray, np.any(np.c_[[dh.isnull for dh in data]], 0)) if any(missing): if all(missing): raise ValueError( "All observations contain missing data. " "Model cannot be estimated." ) self.portfolios.drop(missing) self.factors.drop(missing) missing_warning(missing) return missing
(self) -> numpy.ndarray
42,977
linearmodels.asset_pricing.model
_jacobian
null
def _jacobian( self, betas: Float64Array, lam: Float64Array, alphas: Float64Array ) -> Float64Array: nobs, nf, nport, nrf, s1, s2, s3 = self._boundaries() f = self.factors.ndarray fc = np.c_[np.ones((nobs, 1)), f] excess_returns = not self._risk_free bc = betas sigma_inv = self._sigma_inv jac = np.eye((nport * (nf + 1)) + (nf + nrf) + nport) fpf = fc.T @ fc / nobs jac[:s1, :s1] = np.kron(np.eye(nport), fpf) b_tilde = sigma_inv @ bc alpha_tilde = sigma_inv @ alphas _lam = lam if excess_returns else lam[1:] for i in range(nport): block = np.zeros((nf + nrf, nf + 1)) block[:, 1:] = b_tilde[[i]].T @ _lam.T block[nrf:, 1:] -= alpha_tilde[i] * np.eye(nf) jac[s1:s2, (i * (nf + 1)) : ((i + 1) * (nf + 1))] = block jac[s1:s2, s1:s2] = bc.T @ sigma_inv @ bc zero_lam = np.r_[[[0]], _lam] jac[s2:s3, :s1] = np.kron(np.eye(nport), zero_lam.T) jac[s2:s3, s1:s2] = bc return jac
(self, betas: numpy.ndarray, lam: numpy.ndarray, alphas: numpy.ndarray) -> numpy.ndarray
42,978
linearmodels.asset_pricing.model
_moments
null
def _moments( self, eps: Float64Array, betas: Float64Array, alphas: Float64Array, pricing_errors: Float64Array, ) -> Float64Array: sigma_inv = self._sigma_inv f = self.factors.ndarray nobs, nf, nport, _, s1, s2, s3 = self._boundaries() fc = np.c_[np.ones((nobs, 1)), f] f_rep = np.tile(fc, (1, nport)) eps_rep = np.tile(eps, (nf + 1, 1)) eps_rep = np.reshape(eps_rep.T, (nport * (nf + 1), nobs)).T # Moments g1 = f_rep * eps_rep g2 = pricing_errors @ sigma_inv @ betas g3 = pricing_errors - alphas.T return np.c_[g1, g2, g3]
(self, eps: numpy.ndarray, betas: numpy.ndarray, alphas: numpy.ndarray, pricing_errors: numpy.ndarray) -> numpy.ndarray
42,979
linearmodels.asset_pricing.model
_prepare_data_from_formula
null
@staticmethod def _prepare_data_from_formula( formula: str, data: DataFrame, portfolios: DataFrame | None ) -> tuple[DataFrame, DataFrame, str]: orig_formula = formula na_action = NAAction("raise") if portfolios is not None: factors_mm = model_matrix( formula + " + 0", data, context=0, # TODO: self._eval_env, ensure_full_rank=True, na_action=na_action, ) factors = DataFrame(factors_mm) else: formula_components = formula.split("~") portfolios_mm = model_matrix( formula_components[0].strip() + " + 0", data, context=0, # TODO: self._eval_env, ensure_full_rank=False, na_action=na_action, ) portfolios = DataFrame(portfolios_mm) factors_mm = model_matrix( formula_components[1].strip() + " + 0", data, context=0, # TODO: self._eval_env, ensure_full_rank=False, na_action=na_action, ) factors = DataFrame(factors_mm) return factors, portfolios, orig_formula
(formula: str, data: pandas.core.frame.DataFrame, portfolios: pandas.core.frame.DataFrame | None) -> tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, str]
42,980
linearmodels.asset_pricing.model
_validate_additional_data
null
def _validate_additional_data(self) -> None: f = self.factors.ndarray p = self.portfolios.ndarray nrp = f.shape[1] + int(self._risk_free) if p.shape[1] < nrp: raise ValueError( "The number of test portfolio must be at least as " "large as the number of risk premia, including the " "risk free rate if estimated." )
(self) -> NoneType
42,981
linearmodels.asset_pricing.model
_validate_data
null
def _validate_data(self) -> None: p = self.portfolios.ndarray f = self.factors.ndarray if p.shape[0] != f.shape[0]: raise ValueError( "The number of observations in portfolios and " "factors is not the same." ) self._drop_missing() p = cast(Float64Array, self.portfolios.ndarray) f = cast(Float64Array, self.factors.ndarray) if has_constant(p)[0]: raise ValueError( "portfolios must not contains a constant or " "equivalent and must not have rank\n" "less than the dimension of the smaller shape." ) if has_constant(f)[0]: raise ValueError("factors must not contain a constant or equivalent.") if np.linalg.matrix_rank(f) < f.shape[1]: raise ValueError( "Model cannot be estimated. factors do not have full column rank." ) if p.shape[0] < (f.shape[1] + 1): raise ValueError( "Model cannot be estimated. portfolios must have factors + 1 or " "more returns to\nestimate the model parameters." )
(self) -> NoneType
42,982
linearmodels.asset_pricing.model
fit
Estimate model parameters Parameters ---------- cov_type : str Name of covariance estimator debiased : bool Flag indicating whether to debias the covariance estimator using a degree of freedom adjustment **cov_config Additional covariance-specific options. See Notes. Returns ------- LinearFactorModelResults Results class with parameter estimates, covariance and test statistics Notes ----- The kernel covariance estimator takes the optional arguments ``kernel``, one of "bartlett", "parzen" or "qs" (quadratic spectral) and ``bandwidth`` (a positive integer).
def fit( self, cov_type: str = "robust", debiased: bool = True, **cov_config: bool | int | str, ) -> LinearFactorModelResults: """ Estimate model parameters Parameters ---------- cov_type : str Name of covariance estimator debiased : bool Flag indicating whether to debias the covariance estimator using a degree of freedom adjustment **cov_config Additional covariance-specific options. See Notes. Returns ------- LinearFactorModelResults Results class with parameter estimates, covariance and test statistics Notes ----- The kernel covariance estimator takes the optional arguments ``kernel``, one of "bartlett", "parzen" or "qs" (quadratic spectral) and ``bandwidth`` (a positive integer). """ nobs, nf, nport, nrf, s1, s2, s3 = self._boundaries() excess_returns = not self._risk_free f = self.factors.ndarray p = self.portfolios.ndarray nport = p.shape[1] # Step 1, n regressions to get B fc = np.c_[np.ones((nobs, 1)), f] b = lstsq(fc, p, rcond=None)[0] # nf+1 by np eps = p - fc @ b if excess_returns: betas = b[1:].T else: betas = b.T.copy() betas[:, 0] = 1.0 sigma_m12 = self._sigma_m12 lam = lstsq(sigma_m12 @ betas, sigma_m12 @ p.mean(0)[:, None], rcond=None)[0] expected = betas @ lam pricing_errors = p - expected.T # Moments alphas = pricing_errors.mean(0)[:, None] moments = self._moments(eps, betas, alphas, pricing_errors) # Jacobian jacobian = self._jacobian(betas, lam, alphas) if cov_type not in ("robust", "heteroskedastic", "kernel"): raise ValueError(f"Unknown weight: {cov_type}") if cov_type in ("robust", "heteroskedastic"): cov_est_inst = HeteroskedasticCovariance( moments, jacobian=jacobian, center=False, debiased=debiased, df=fc.shape[1], ) else: # "kernel": bandwidth = get_float(cov_config, "bandwidth") kernel = get_string(cov_config, "kernel") cov_est_inst = KernelCovariance( moments, jacobian=jacobian, center=False, debiased=debiased, df=fc.shape[1], kernel=kernel, bandwidth=bandwidth, ) # VCV full_vcv = cov_est_inst.cov alpha_vcv = full_vcv[s2:, s2:] stat = float(np.squeeze(alphas.T @ np.linalg.pinv(alpha_vcv) @ alphas)) jstat = WaldTestStatistic( stat, "All alphas are 0", nport - nf - nrf, name="J-statistic" ) total_ss = ((p - p.mean(0)[None, :]) ** 2).sum() residual_ss = (eps**2).sum() r2 = 1 - residual_ss / total_ss rp = lam rp_cov = full_vcv[s1:s2, s1:s2] betas = betas if excess_returns else betas[:, 1:] params = np.c_[alphas, betas] param_names = [] for portfolio in self.portfolios.cols: param_names.append(f"alpha-{portfolio}") for factor in self.factors.cols: param_names.append(f"beta-{portfolio}-{factor}") if not excess_returns: param_names.append("lambda-risk_free") for factor in self.factors.cols: param_names.append(f"lambda-{factor}") # Pivot vcv to remove unnecessary and have correct order order = np.reshape(np.arange(s1), (nport, nf + 1)) order[:, 0] = np.arange(s2, s3) order = order.ravel() order = np.r_[order, s1:s2] full_vcv = full_vcv[order][:, order] factor_names = list(self.factors.cols) rp_names = factor_names[:] if not excess_returns: rp_names.insert(0, "risk_free") res = AttrDict( params=params, cov=full_vcv, betas=betas, rp=rp, rp_cov=rp_cov, alphas=alphas, alpha_vcv=alpha_vcv, jstat=jstat, rsquared=r2, total_ss=total_ss, residual_ss=residual_ss, param_names=param_names, portfolio_names=self.portfolios.cols, factor_names=factor_names, name=self._name, cov_type=cov_type, model=self, nobs=nobs, rp_names=rp_names, cov_est=cov_est_inst, ) return LinearFactorModelResults(res)
(self, cov_type: str = 'robust', debiased: bool = True, **cov_config: bool | int | str) -> linearmodels.asset_pricing.results.LinearFactorModelResults
42,983
linearmodels.asset_pricing.model
LinearFactorModelGMM
GMM estimator of Linear factor models Parameters ---------- portfolios : array_like Test portfolio returns (nobs by nportfolio) factors : array_like Priced factors values (nobs by nfactor) risk_free : bool Flag indicating whether the risk-free rate should be estimated from returns along other risk premia. If False, the returns are assumed to be excess returns using the correct risk-free rate. Notes ----- Suitable for traded or non-traded factors. Implements a GMM estimator of risk premia, factor loadings and model tests. The moments are .. math:: \left[\begin{array}{c} \epsilon_{t}\otimes f_{c,t}\\ f_{t}-\mu \end{array}\right] and .. math:: \epsilon_{t}=r_{t}-\left[1_{N}\;\beta\right]\lambda-\beta\left(f_{t}-\mu\right) where :math:`r_{it}` is the return on test portfolio i and :math:`f_t` are the factor returns. The model is tested using the optimized objective function using the usual GMM J statistic.
class LinearFactorModelGMM(_LinearFactorModelBase): r""" GMM estimator of Linear factor models Parameters ---------- portfolios : array_like Test portfolio returns (nobs by nportfolio) factors : array_like Priced factors values (nobs by nfactor) risk_free : bool Flag indicating whether the risk-free rate should be estimated from returns along other risk premia. If False, the returns are assumed to be excess returns using the correct risk-free rate. Notes ----- Suitable for traded or non-traded factors. Implements a GMM estimator of risk premia, factor loadings and model tests. The moments are .. math:: \left[\begin{array}{c} \epsilon_{t}\otimes f_{c,t}\\ f_{t}-\mu \end{array}\right] and .. math:: \epsilon_{t}=r_{t}-\left[1_{N}\;\beta\right]\lambda-\beta\left(f_{t}-\mu\right) where :math:`r_{it}` is the return on test portfolio i and :math:`f_t` are the factor returns. The model is tested using the optimized objective function using the usual GMM J statistic. """ def __init__( self, portfolios: IVDataLike, factors: IVDataLike, *, risk_free: bool = False ) -> None: super().__init__(portfolios, factors, risk_free=risk_free) @classmethod def from_formula( cls, formula: str, data: DataFrame, *, portfolios: DataFrame | None = None, risk_free: bool = False, ) -> LinearFactorModelGMM: """ Parameters ---------- formula : str Formula modified for the syntax described in the notes data : DataFrame DataFrame containing the variables used in the formula portfolios : array_like Portfolios to be used in the model. If provided, must use formula syntax containing only factors. risk_free : bool Flag indicating whether the risk-free rate should be estimated from returns along other risk premia. If False, the returns are assumed to be excess returns using the correct risk-free rate. Returns ------- LinearFactorModelGMM Model instance Notes ----- The formula can be used in one of two ways. The first specified only the factors and uses the data provided in ``portfolios`` as the test portfolios. The second specified the portfolio using ``+`` to separate the test portfolios and ``~`` to separate the test portfolios from the factors. Examples -------- >>> from linearmodels.datasets import french >>> from linearmodels.asset_pricing import LinearFactorModel >>> data = french.load() >>> formula = "S1M1 + S1M5 + S3M3 + S5M1 + S5M5 ~ MktRF + SMB + HML" >>> mod = LinearFactorModel.from_formula(formula, data) Using only factors >>> portfolios = data[["S1M1", "S1M5", "S3M1", "S3M5", "S5M1", "S5M5"]] >>> formula = "MktRF + SMB + HML" >>> mod = LinearFactorModel.from_formula(formula, data, portfolios=portfolios) """ factors, portfolios, formula = cls._prepare_data_from_formula( formula, data, portfolios ) mod = cls(portfolios, factors, risk_free=risk_free) mod.formula = formula return mod def fit( self, *, center: bool = True, use_cue: bool = False, steps: int = 2, disp: int = 10, max_iter: int = 1000, cov_type: str = "robust", debiased: bool = True, starting: ArrayLike | None = None, opt_options: dict[str, Any] | None = None, **cov_config: bool | int | str, ) -> GMMFactorModelResults: """ Estimate model parameters Parameters ---------- center : bool Flag indicating to center the moment conditions before computing the weighting matrix. use_cue : bool Flag indicating to use continuously updating estimator steps : int Number of steps to use when estimating parameters. 2 corresponds to the standard efficient GMM estimator. Higher values will iterate until convergence or up to the number of steps given disp : int Number of iterations between printed update. 0 or negative values suppresses output max_iter : int Maximum number of iterations when minimizing objective. Must be positive. cov_type : str Name of covariance estimator debiased : bool Flag indicating whether to debias the covariance estimator using a degree of freedom adjustment starting : array_like Starting values to use in optimization. If not provided, 2SLS estimates are used. opt_options : dict Additional options to pass to scipy.optimize.minimize when optimizing the objective function. If not provided, defers to scipy to choose an appropriate optimizer. All minimize inputs except ``fun``, ``x0``, and ``args`` can be overridden. **cov_config Additional covariance-specific options. See Notes. Returns ------- GMMFactorModelResults Results class with parameter estimates, covariance and test statistics Notes ----- The kernel covariance estimator takes the optional arguments ``kernel``, one of "bartlett", "parzen" or "qs" (quadratic spectral) and ``bandwidth`` (a positive integer). """ nobs, n = self.portfolios.shape k = self.factors.shape[1] excess_returns = not self._risk_free nrf = int(not bool(excess_returns)) # 1. Starting Values - use 2 pass mod = LinearFactorModel( self.portfolios, self.factors, risk_free=self._risk_free ) res = mod.fit() betas = np.asarray(res.betas).ravel() lam = np.asarray(res.risk_premia) mu = self.factors.ndarray.mean(0) sv = np.r_[betas, lam, mu][:, None] if starting is not None: starting = np.asarray(starting) if starting.ndim == 1: starting = starting[:, None] if starting.shape != sv.shape: raise ValueError(f"Starting values must have {sv.shape} elements.") sv = starting g = self._moments(sv, excess_returns) g -= g.mean(0)[None, :] if center else 0 kernel: str | None = None bandwidth: float | None = None if cov_type not in ("robust", "heteroskedastic", "kernel"): raise ValueError(f"Unknown weight: {cov_type}") if cov_type in ("robust", "heteroskedastic"): weight_est_instance = HeteroskedasticWeight(g, center=center) cov_est = HeteroskedasticCovariance else: # "kernel": kernel = get_string(cov_config, "kernel") bandwidth = get_float(cov_config, "bandwidth") weight_est_instance = KernelWeight( g, center=center, kernel=kernel, bandwidth=bandwidth ) cov_est = KernelCovariance w = weight_est_instance.w(g) args = (excess_returns, w) # 2. Step 1 using w = inv(s) from SV callback = callback_factory(self._j, args, disp=disp) _default_options: dict[str, Any] = {"callback": callback} options = {"disp": bool(disp), "maxiter": max_iter} opt_options = {} if opt_options is None else opt_options options.update(opt_options.get("options", {})) _default_options.update(opt_options) _default_options["options"] = options opt_res = minimize( fun=self._j, x0=np.squeeze(sv), args=args, **_default_options, ) params = opt_res.x last_obj = opt_res.fun iters = 1 # 3. Step 2 using step 1 estimates if not use_cue: while iters < steps: iters += 1 g = self._moments(params, excess_returns) w = weight_est_instance.w(g) args = (excess_returns, w) # 2. Step 1 using w = inv(s) from SV callback = callback_factory(self._j, args, disp=disp) opt_res = minimize( self._j, params, args=args, callback=callback, options={"disp": bool(disp), "maxiter": max_iter}, ) params = opt_res.x obj = opt_res.fun if np.abs(obj - last_obj) < 1e-6: break last_obj = obj else: cue_args = (excess_returns, weight_est_instance) callback = callback_factory(self._j_cue, cue_args, disp=disp) opt_res = minimize( self._j_cue, params, args=cue_args, callback=callback, options={"disp": bool(disp), "maxiter": max_iter}, ) params = opt_res.x # 4. Compute final S and G for inference g = self._moments(params, excess_returns) s = g.T @ g / nobs jac = self._jacobian(params, excess_returns) if cov_est is HeteroskedasticCovariance: cov_est_inst = HeteroskedasticCovariance( g, jacobian=jac, center=center, debiased=debiased, df=self.factors.shape[1], ) else: cov_est_inst = KernelCovariance( g, jacobian=jac, center=center, debiased=debiased, df=self.factors.shape[1], kernel=kernel, bandwidth=bandwidth, ) full_vcv = cov_est_inst.cov sel = slice((n * k), (n * k + k + nrf)) rp = params[sel] rp_cov = full_vcv[sel, sel] sel = slice(0, (n * (k + 1)), (k + 1)) alphas = g.mean(0)[sel, None] alpha_vcv = s[sel, sel] / nobs stat = self._j(params, excess_returns, w) jstat = WaldTestStatistic( stat, "All alphas are 0", n - k - nrf, name="J-statistic" ) # R2 calculation betas = np.reshape(params[: (n * k)], (n, k)) resids = self.portfolios.ndarray - self.factors.ndarray @ betas.T resids -= resids.mean(0)[None, :] residual_ss = (resids**2).sum() total = self.portfolios.ndarray total = total - total.mean(0)[None, :] total_ss = (total**2).sum() r2 = 1.0 - residual_ss / total_ss param_names = [] for portfolio in self.portfolios.cols: for factor in self.factors.cols: param_names.append(f"beta-{portfolio}-{factor}") if not excess_returns: param_names.append("lambda-risk_free") param_names.extend([f"lambda-{f}" for f in self.factors.cols]) param_names.extend([f"mu-{f}" for f in self.factors.cols]) rp_names = list(self.factors.cols)[:] if not excess_returns: rp_names.insert(0, "risk_free") params = np.c_[alphas, betas] # 5. Return values res_dict = AttrDict( params=params, cov=full_vcv, betas=betas, rp=rp, rp_cov=rp_cov, alphas=alphas, alpha_vcv=alpha_vcv, jstat=jstat, rsquared=r2, total_ss=total_ss, residual_ss=residual_ss, param_names=param_names, portfolio_names=self.portfolios.cols, factor_names=self.factors.cols, name=self._name, cov_type=cov_type, model=self, nobs=nobs, rp_names=rp_names, iter=iters, cov_est=cov_est_inst, ) return GMMFactorModelResults(res_dict) def _moments(self, parameters: Float64Array, excess_returns: bool) -> Float64Array: """Calculate nobs by nmoments moment conditions""" nrf = int(not excess_returns) p = np.asarray(self.portfolios.ndarray, dtype=float) nobs, n = p.shape f = np.asarray(self.factors.ndarray, dtype=float) k = f.shape[1] s1, s2 = n * k, n * k + k + nrf betas = parameters[:s1] lam = parameters[s1:s2] mu = parameters[s2:] betas = np.reshape(betas, (n, k)) expected = np.c_[np.ones((n, nrf)), betas] @ lam fe = f - mu.T eps = p - expected.T - fe @ betas.T f = np.column_stack((np.ones((nobs, 1)), f)) f = np.tile(f, (1, n)) eps = np.reshape(np.tile(eps, (k + 1, 1)).T, (n * (k + 1), nobs)).T g = np.c_[eps * f, fe] return g def _j( self, parameters: Float64Array, excess_returns: bool, w: Float64Array ) -> float: """Objective function""" g = self._moments(parameters, excess_returns) nobs = self.portfolios.shape[0] gbar = g.mean(0)[:, None] return nobs * float(np.squeeze(gbar.T @ w @ gbar)) def _j_cue( self, parameters: Float64Array, excess_returns: bool, weight_est: HeteroskedasticWeight | KernelWeight, ) -> float: """CUE Objective function""" g = self._moments(parameters, excess_returns) gbar = g.mean(0)[:, None] nobs = self.portfolios.shape[0] w = weight_est.w(g) return nobs * float(np.squeeze(gbar.T @ w @ gbar)) def _jacobian(self, params: Float64Array, excess_returns: bool) -> Float64Array: """Jacobian matrix for inference""" nobs, k = self.factors.shape n = self.portfolios.shape[1] nrf = int(bool(not excess_returns)) jac = np.zeros((n * k + n + k, params.shape[0])) s1, s2 = (n * k), (n * k) + k + nrf betas = params[:s1] betas = np.reshape(betas, (n, k)) lam = params[s1:s2] mu = params[-k:] lam_tilde = lam if excess_returns else lam[1:] f = self.factors.ndarray fe = f - mu.T + lam_tilde.T f_aug = np.c_[np.ones((nobs, 1)), f] fef = f_aug.T @ fe / nobs r1 = n * (k + 1) jac[:r1, :s1] = np.kron(np.eye(n), fef) jac12 = np.zeros((r1, (k + nrf))) jac13 = np.zeros((r1, k)) iota = np.ones((nobs, 1)) for i in range(n): if excess_returns: b = betas[[i]] else: b = np.c_[[1], betas[[i]]] jac12[(i * (k + 1)) : (i + 1) * (k + 1)] = f_aug.T @ (iota @ b) / nobs b = betas[[i]] jac13[(i * (k + 1)) : (i + 1) * (k + 1)] = -f_aug.T @ (iota @ b) / nobs jac[:r1, s1:s2] = jac12 jac[:r1, s2:] = jac13 jac[-k:, -k:] = np.eye(k) return jac
(portfolios: 'IVDataLike', factors: 'IVDataLike', *, risk_free: 'bool' = False) -> 'None'
42,984
linearmodels.asset_pricing.model
__init__
null
def __init__( self, portfolios: IVDataLike, factors: IVDataLike, *, risk_free: bool = False ) -> None: super().__init__(portfolios, factors, risk_free=risk_free)
(self, portfolios: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], factors: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], *, risk_free: bool = False) -> NoneType
42,989
linearmodels.asset_pricing.model
_j
Objective function
def _j( self, parameters: Float64Array, excess_returns: bool, w: Float64Array ) -> float: """Objective function""" g = self._moments(parameters, excess_returns) nobs = self.portfolios.shape[0] gbar = g.mean(0)[:, None] return nobs * float(np.squeeze(gbar.T @ w @ gbar))
(self, parameters: numpy.ndarray, excess_returns: bool, w: numpy.ndarray) -> float
42,990
linearmodels.asset_pricing.model
_j_cue
CUE Objective function
def _j_cue( self, parameters: Float64Array, excess_returns: bool, weight_est: HeteroskedasticWeight | KernelWeight, ) -> float: """CUE Objective function""" g = self._moments(parameters, excess_returns) gbar = g.mean(0)[:, None] nobs = self.portfolios.shape[0] w = weight_est.w(g) return nobs * float(np.squeeze(gbar.T @ w @ gbar))
(self, parameters: numpy.ndarray, excess_returns: bool, weight_est: linearmodels.asset_pricing.covariance.HeteroskedasticWeight | linearmodels.asset_pricing.covariance.KernelWeight) -> float
42,991
linearmodels.asset_pricing.model
_jacobian
Jacobian matrix for inference
def _jacobian(self, params: Float64Array, excess_returns: bool) -> Float64Array: """Jacobian matrix for inference""" nobs, k = self.factors.shape n = self.portfolios.shape[1] nrf = int(bool(not excess_returns)) jac = np.zeros((n * k + n + k, params.shape[0])) s1, s2 = (n * k), (n * k) + k + nrf betas = params[:s1] betas = np.reshape(betas, (n, k)) lam = params[s1:s2] mu = params[-k:] lam_tilde = lam if excess_returns else lam[1:] f = self.factors.ndarray fe = f - mu.T + lam_tilde.T f_aug = np.c_[np.ones((nobs, 1)), f] fef = f_aug.T @ fe / nobs r1 = n * (k + 1) jac[:r1, :s1] = np.kron(np.eye(n), fef) jac12 = np.zeros((r1, (k + nrf))) jac13 = np.zeros((r1, k)) iota = np.ones((nobs, 1)) for i in range(n): if excess_returns: b = betas[[i]] else: b = np.c_[[1], betas[[i]]] jac12[(i * (k + 1)) : (i + 1) * (k + 1)] = f_aug.T @ (iota @ b) / nobs b = betas[[i]] jac13[(i * (k + 1)) : (i + 1) * (k + 1)] = -f_aug.T @ (iota @ b) / nobs jac[:r1, s1:s2] = jac12 jac[:r1, s2:] = jac13 jac[-k:, -k:] = np.eye(k) return jac
(self, params: numpy.ndarray, excess_returns: bool) -> numpy.ndarray
42,992
linearmodels.asset_pricing.model
_moments
Calculate nobs by nmoments moment conditions
def _moments(self, parameters: Float64Array, excess_returns: bool) -> Float64Array: """Calculate nobs by nmoments moment conditions""" nrf = int(not excess_returns) p = np.asarray(self.portfolios.ndarray, dtype=float) nobs, n = p.shape f = np.asarray(self.factors.ndarray, dtype=float) k = f.shape[1] s1, s2 = n * k, n * k + k + nrf betas = parameters[:s1] lam = parameters[s1:s2] mu = parameters[s2:] betas = np.reshape(betas, (n, k)) expected = np.c_[np.ones((n, nrf)), betas] @ lam fe = f - mu.T eps = p - expected.T - fe @ betas.T f = np.column_stack((np.ones((nobs, 1)), f)) f = np.tile(f, (1, n)) eps = np.reshape(np.tile(eps, (k + 1, 1)).T, (n * (k + 1), nobs)).T g = np.c_[eps * f, fe] return g
(self, parameters: numpy.ndarray, excess_returns: bool) -> numpy.ndarray
42,996
linearmodels.asset_pricing.model
fit
Estimate model parameters Parameters ---------- center : bool Flag indicating to center the moment conditions before computing the weighting matrix. use_cue : bool Flag indicating to use continuously updating estimator steps : int Number of steps to use when estimating parameters. 2 corresponds to the standard efficient GMM estimator. Higher values will iterate until convergence or up to the number of steps given disp : int Number of iterations between printed update. 0 or negative values suppresses output max_iter : int Maximum number of iterations when minimizing objective. Must be positive. cov_type : str Name of covariance estimator debiased : bool Flag indicating whether to debias the covariance estimator using a degree of freedom adjustment starting : array_like Starting values to use in optimization. If not provided, 2SLS estimates are used. opt_options : dict Additional options to pass to scipy.optimize.minimize when optimizing the objective function. If not provided, defers to scipy to choose an appropriate optimizer. All minimize inputs except ``fun``, ``x0``, and ``args`` can be overridden. **cov_config Additional covariance-specific options. See Notes. Returns ------- GMMFactorModelResults Results class with parameter estimates, covariance and test statistics Notes ----- The kernel covariance estimator takes the optional arguments ``kernel``, one of "bartlett", "parzen" or "qs" (quadratic spectral) and ``bandwidth`` (a positive integer).
def fit( self, *, center: bool = True, use_cue: bool = False, steps: int = 2, disp: int = 10, max_iter: int = 1000, cov_type: str = "robust", debiased: bool = True, starting: ArrayLike | None = None, opt_options: dict[str, Any] | None = None, **cov_config: bool | int | str, ) -> GMMFactorModelResults: """ Estimate model parameters Parameters ---------- center : bool Flag indicating to center the moment conditions before computing the weighting matrix. use_cue : bool Flag indicating to use continuously updating estimator steps : int Number of steps to use when estimating parameters. 2 corresponds to the standard efficient GMM estimator. Higher values will iterate until convergence or up to the number of steps given disp : int Number of iterations between printed update. 0 or negative values suppresses output max_iter : int Maximum number of iterations when minimizing objective. Must be positive. cov_type : str Name of covariance estimator debiased : bool Flag indicating whether to debias the covariance estimator using a degree of freedom adjustment starting : array_like Starting values to use in optimization. If not provided, 2SLS estimates are used. opt_options : dict Additional options to pass to scipy.optimize.minimize when optimizing the objective function. If not provided, defers to scipy to choose an appropriate optimizer. All minimize inputs except ``fun``, ``x0``, and ``args`` can be overridden. **cov_config Additional covariance-specific options. See Notes. Returns ------- GMMFactorModelResults Results class with parameter estimates, covariance and test statistics Notes ----- The kernel covariance estimator takes the optional arguments ``kernel``, one of "bartlett", "parzen" or "qs" (quadratic spectral) and ``bandwidth`` (a positive integer). """ nobs, n = self.portfolios.shape k = self.factors.shape[1] excess_returns = not self._risk_free nrf = int(not bool(excess_returns)) # 1. Starting Values - use 2 pass mod = LinearFactorModel( self.portfolios, self.factors, risk_free=self._risk_free ) res = mod.fit() betas = np.asarray(res.betas).ravel() lam = np.asarray(res.risk_premia) mu = self.factors.ndarray.mean(0) sv = np.r_[betas, lam, mu][:, None] if starting is not None: starting = np.asarray(starting) if starting.ndim == 1: starting = starting[:, None] if starting.shape != sv.shape: raise ValueError(f"Starting values must have {sv.shape} elements.") sv = starting g = self._moments(sv, excess_returns) g -= g.mean(0)[None, :] if center else 0 kernel: str | None = None bandwidth: float | None = None if cov_type not in ("robust", "heteroskedastic", "kernel"): raise ValueError(f"Unknown weight: {cov_type}") if cov_type in ("robust", "heteroskedastic"): weight_est_instance = HeteroskedasticWeight(g, center=center) cov_est = HeteroskedasticCovariance else: # "kernel": kernel = get_string(cov_config, "kernel") bandwidth = get_float(cov_config, "bandwidth") weight_est_instance = KernelWeight( g, center=center, kernel=kernel, bandwidth=bandwidth ) cov_est = KernelCovariance w = weight_est_instance.w(g) args = (excess_returns, w) # 2. Step 1 using w = inv(s) from SV callback = callback_factory(self._j, args, disp=disp) _default_options: dict[str, Any] = {"callback": callback} options = {"disp": bool(disp), "maxiter": max_iter} opt_options = {} if opt_options is None else opt_options options.update(opt_options.get("options", {})) _default_options.update(opt_options) _default_options["options"] = options opt_res = minimize( fun=self._j, x0=np.squeeze(sv), args=args, **_default_options, ) params = opt_res.x last_obj = opt_res.fun iters = 1 # 3. Step 2 using step 1 estimates if not use_cue: while iters < steps: iters += 1 g = self._moments(params, excess_returns) w = weight_est_instance.w(g) args = (excess_returns, w) # 2. Step 1 using w = inv(s) from SV callback = callback_factory(self._j, args, disp=disp) opt_res = minimize( self._j, params, args=args, callback=callback, options={"disp": bool(disp), "maxiter": max_iter}, ) params = opt_res.x obj = opt_res.fun if np.abs(obj - last_obj) < 1e-6: break last_obj = obj else: cue_args = (excess_returns, weight_est_instance) callback = callback_factory(self._j_cue, cue_args, disp=disp) opt_res = minimize( self._j_cue, params, args=cue_args, callback=callback, options={"disp": bool(disp), "maxiter": max_iter}, ) params = opt_res.x # 4. Compute final S and G for inference g = self._moments(params, excess_returns) s = g.T @ g / nobs jac = self._jacobian(params, excess_returns) if cov_est is HeteroskedasticCovariance: cov_est_inst = HeteroskedasticCovariance( g, jacobian=jac, center=center, debiased=debiased, df=self.factors.shape[1], ) else: cov_est_inst = KernelCovariance( g, jacobian=jac, center=center, debiased=debiased, df=self.factors.shape[1], kernel=kernel, bandwidth=bandwidth, ) full_vcv = cov_est_inst.cov sel = slice((n * k), (n * k + k + nrf)) rp = params[sel] rp_cov = full_vcv[sel, sel] sel = slice(0, (n * (k + 1)), (k + 1)) alphas = g.mean(0)[sel, None] alpha_vcv = s[sel, sel] / nobs stat = self._j(params, excess_returns, w) jstat = WaldTestStatistic( stat, "All alphas are 0", n - k - nrf, name="J-statistic" ) # R2 calculation betas = np.reshape(params[: (n * k)], (n, k)) resids = self.portfolios.ndarray - self.factors.ndarray @ betas.T resids -= resids.mean(0)[None, :] residual_ss = (resids**2).sum() total = self.portfolios.ndarray total = total - total.mean(0)[None, :] total_ss = (total**2).sum() r2 = 1.0 - residual_ss / total_ss param_names = [] for portfolio in self.portfolios.cols: for factor in self.factors.cols: param_names.append(f"beta-{portfolio}-{factor}") if not excess_returns: param_names.append("lambda-risk_free") param_names.extend([f"lambda-{f}" for f in self.factors.cols]) param_names.extend([f"mu-{f}" for f in self.factors.cols]) rp_names = list(self.factors.cols)[:] if not excess_returns: rp_names.insert(0, "risk_free") params = np.c_[alphas, betas] # 5. Return values res_dict = AttrDict( params=params, cov=full_vcv, betas=betas, rp=rp, rp_cov=rp_cov, alphas=alphas, alpha_vcv=alpha_vcv, jstat=jstat, rsquared=r2, total_ss=total_ss, residual_ss=residual_ss, param_names=param_names, portfolio_names=self.portfolios.cols, factor_names=self.factors.cols, name=self._name, cov_type=cov_type, model=self, nobs=nobs, rp_names=rp_names, iter=iters, cov_est=cov_est_inst, ) return GMMFactorModelResults(res_dict)
(self, *, center: bool = True, use_cue: bool = False, steps: int = 2, disp: int = 10, max_iter: int = 1000, cov_type: str = 'robust', debiased: bool = True, starting: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, opt_options: Optional[dict[str, Any]] = None, **cov_config: bool | int | str) -> linearmodels.asset_pricing.results.GMMFactorModelResults
42,997
linearmodels.iv.model
_OLS
Computes OLS estimates when required Private class used when model reduces to OLS. Should use the statsmodels version when neeeding a supported public API. Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) weights : array_like Observation weights used in estimation Notes ----- Uses IV2SLS internally by setting endog and instruments to None. Uses IVLIML with kappa=0 to estimate OLS models. See Also -------- statsmodels.regression.linear_model.OLS, statsmodels.regression.linear_model.GLS
class _OLS(IVLIML): """ Computes OLS estimates when required Private class used when model reduces to OLS. Should use the statsmodels version when neeeding a supported public API. Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) weights : array_like Observation weights used in estimation Notes ----- Uses IV2SLS internally by setting endog and instruments to None. Uses IVLIML with kappa=0 to estimate OLS models. See Also -------- statsmodels.regression.linear_model.OLS, statsmodels.regression.linear_model.GLS """ def __init__( self, dependent: IVDataLike, exog: IVDataLike, *, weights: IVDataLike | None = None, ): super().__init__(dependent, exog, None, None, weights=weights, kappa=0.0) self._result_container = OLSResults
(dependent: 'IVDataLike', exog: 'IVDataLike', *, weights: 'IVDataLike | None' = None)
42,998
linearmodels.iv.model
__init__
null
def __init__( self, dependent: IVDataLike, exog: IVDataLike, *, weights: IVDataLike | None = None, ): super().__init__(dependent, exog, None, None, weights=weights, kappa=0.0) self._result_container = OLSResults
(self, dependent: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], exog: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], *, weights: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None)
43,010
linearmodels.panel.model
PanelOLS
One- and two-way fixed effects estimator for panel data Parameters ---------- dependent : array_like Dependent (left-hand-side) variable (time by entity). exog : array_like Exogenous or right-hand-side variables (variable by time by entity). weights : array_like Weights to use in estimation. Assumes residual variance is proportional to inverse of weight to that the residual time the weight should be homoskedastic. entity_effects : bool Flag whether to include entity (fixed) effects in the model time_effects : bool Flag whether to include time effects in the model other_effects : array_like Category codes to use for any effects that are not entity or time effects. Each variable is treated as an effect. singletons : bool Flag indicating whether to drop singleton observation drop_absorbed : bool Flag indicating whether to drop absorbed variables check_rank : bool Flag indicating whether to perform a rank check on the exogenous variables to ensure that the model is identified. Skipping this check can reduce the time required to validate a model specification. Results may be numerically unstable if this check is skipped and the matrix is not full rank. Notes ----- Many models can be estimated. The most common included entity effects and can be described .. math:: y_{it} = \alpha_i + \beta^{\prime}x_{it} + \epsilon_{it} where :math:`\alpha_i` is included if ``entity_effects=True``. Time effect are also supported, which leads to a model of the form .. math:: y_{it}= \gamma_t + \beta^{\prime}x_{it} + \epsilon_{it} where :math:`\gamma_i` is included if ``time_effects=True``. Both effects can be simultaneously used, .. math:: y_{it}=\alpha_i + \gamma_t + \beta^{\prime}x_{it} + \epsilon_{it} Additionally , arbitrary effects can be specified using categorical variables. If both ``entity_effect`` and ``time_effects`` are ``False``, and no other effects are included, the model reduces to :class:`PooledOLS`. Model supports at most 2 effects. These can be entity-time, entity-other, time-other or 2 other.
class PanelOLS(_PanelModelBase): r""" One- and two-way fixed effects estimator for panel data Parameters ---------- dependent : array_like Dependent (left-hand-side) variable (time by entity). exog : array_like Exogenous or right-hand-side variables (variable by time by entity). weights : array_like Weights to use in estimation. Assumes residual variance is proportional to inverse of weight to that the residual time the weight should be homoskedastic. entity_effects : bool Flag whether to include entity (fixed) effects in the model time_effects : bool Flag whether to include time effects in the model other_effects : array_like Category codes to use for any effects that are not entity or time effects. Each variable is treated as an effect. singletons : bool Flag indicating whether to drop singleton observation drop_absorbed : bool Flag indicating whether to drop absorbed variables check_rank : bool Flag indicating whether to perform a rank check on the exogenous variables to ensure that the model is identified. Skipping this check can reduce the time required to validate a model specification. Results may be numerically unstable if this check is skipped and the matrix is not full rank. Notes ----- Many models can be estimated. The most common included entity effects and can be described .. math:: y_{it} = \alpha_i + \beta^{\prime}x_{it} + \epsilon_{it} where :math:`\alpha_i` is included if ``entity_effects=True``. Time effect are also supported, which leads to a model of the form .. math:: y_{it}= \gamma_t + \beta^{\prime}x_{it} + \epsilon_{it} where :math:`\gamma_i` is included if ``time_effects=True``. Both effects can be simultaneously used, .. math:: y_{it}=\alpha_i + \gamma_t + \beta^{\prime}x_{it} + \epsilon_{it} Additionally , arbitrary effects can be specified using categorical variables. If both ``entity_effect`` and ``time_effects`` are ``False``, and no other effects are included, the model reduces to :class:`PooledOLS`. Model supports at most 2 effects. These can be entity-time, entity-other, time-other or 2 other. """ def __init__( self, dependent: PanelDataLike, exog: PanelDataLike, *, weights: PanelDataLike | None = None, entity_effects: bool = False, time_effects: bool = False, other_effects: PanelDataLike | None = None, singletons: bool = True, drop_absorbed: bool = False, check_rank: bool = True, ) -> None: super().__init__(dependent, exog, weights=weights, check_rank=check_rank) self._entity_effects = entity_effects self._time_effects = time_effects self._other_effect_cats: PanelData | None = None self._singletons = singletons self._other_effects = self._validate_effects(other_effects) self._has_effect = entity_effects or time_effects or self.other_effects self._drop_absorbed = drop_absorbed self._singleton_index = None self._drop_singletons() def _collect_effects(self) -> NumericArray: if not self._has_effect: return np.empty((self.dependent.shape[0], 0)) effects = [] if self.entity_effects: effects.append(np.asarray(self.dependent.entity_ids).squeeze()) if self.time_effects: effects.append(np.asarray(self.dependent.time_ids).squeeze()) if self.other_effects: assert self._other_effect_cats is not None other = self._other_effect_cats.dataframe for col in other: effects.append(np.asarray(other[col]).squeeze()) return np.column_stack(effects) def _drop_singletons(self) -> None: if self._singletons or not self._has_effect: return effects = self._collect_effects() retain = in_2core_graph(effects) if np.all(retain): return import warnings as warn nobs = retain.shape[0] ndropped = nobs - retain.sum() warn.warn( f"{ndropped} singleton observations dropped", SingletonWarning, stacklevel=3, ) drop = ~retain self._singleton_index = cast(BoolArray, drop) self.dependent.drop(drop) self.exog.drop(drop) self.weights.drop(drop) if self.other_effects: assert self._other_effect_cats is not None self._other_effect_cats.drop(drop) # Reverify exog matrix self._check_exog_rank() def __str__(self) -> str: out = super().__str__() additional = ( "\nEntity Effects: {ee}, Time Effects: {te}, Num Other Effects: {oe}" ) oe = 0 if self.other_effects: assert self._other_effect_cats is not None oe = self._other_effect_cats.nvar additional = additional.format( ee=self.entity_effects, te=self.time_effects, oe=oe ) out += additional return out def _validate_effects(self, effects: PanelDataLike | None) -> bool: """Check model effects""" if effects is None: return False effects = PanelData(effects, var_name="OtherEffect", convert_dummies=False) if effects.shape[1:] != self._original_shape[1:]: raise ValueError( "other_effects must have the same number of " "entities and time periods as dependent." ) num_effects = effects.nvar if num_effects + self.entity_effects + self.time_effects > 2: raise ValueError("At most two effects supported.") cats = {} effects_frame = effects.dataframe for col in effects_frame: cat = Categorical(effects_frame[col]) # TODO: Bug in pandas-stube # https://github.com/pandas-dev/pandas-stubs/issues/111 cats[col] = cat.codes.astype(np.int64) # type: ignore cats_df = DataFrame(cats, index=effects_frame.index) cats_df = cats_df[effects_frame.columns] other_effects = PanelData(cats_df) other_effects.drop(~self.not_null) self._other_effect_cats = other_effects cats_array = other_effects.values2d nested = False nesting_effect = "" if cats_array.shape[1] == 2: nested = self._is_effect_nested(cats_array[:, [0]], cats_array[:, [1]]) nested |= self._is_effect_nested(cats_array[:, [1]], cats_array[:, [0]]) nesting_effect = "other effects" elif self.entity_effects: nested = self._is_effect_nested( cats_array[:, [0]], self.dependent.entity_ids ) nested |= self._is_effect_nested( self.dependent.entity_ids, cats_array[:, [0]] ) nesting_effect = "entity effects" elif self.time_effects: nested = self._is_effect_nested(cats_array[:, [0]], self.dependent.time_ids) nested |= self._is_effect_nested( self.dependent.time_ids, cats_array[:, [0]] ) nesting_effect = "time effects" if nested: raise ValueError( "Included other effects nest or are nested " "by {effect}".format(effect=nesting_effect) ) return True @property def entity_effects(self) -> bool: """Flag indicating whether entity effects are included""" return self._entity_effects @property def time_effects(self) -> bool: """Flag indicating whether time effects are included""" return self._time_effects @property def other_effects(self) -> bool: """Flag indicating whether other (generic) effects are included""" return self._other_effects @classmethod def from_formula( cls, formula: str, data: PanelDataLike, *, weights: PanelDataLike | None = None, other_effects: PanelDataLike | None = None, singletons: bool = True, drop_absorbed: bool = False, check_rank: bool = True, ) -> PanelOLS: """ Create a model from a formula Parameters ---------- formula : str Formula to transform into model. Conforms to formulaic formula rules with two special variable names, EntityEffects and TimeEffects which can be used to specify that the model should contain an entity effect or a time effect, respectively. See Examples. data : array_like Data structure that can be coerced into a PanelData. In most cases, this should be a multi-index DataFrame where the level 0 index contains the entities and the level 1 contains the time. weights: array_like Weights to use in estimation. Assumes residual variance is proportional to inverse of weight to that the residual time the weight should be homoskedastic. other_effects : array_like Category codes to use for any effects that are not entity or time effects. Each variable is treated as an effect. singletons : bool Flag indicating whether to drop singleton observation drop_absorbed : bool Flag indicating whether to drop absorbed variables check_rank : bool Flag indicating whether to perform a rank check on the exogenous variables to ensure that the model is identified. Skipping this check can reduce the time required to validate a model specification. Results may be numerically unstable if this check is skipped and the matrix is not full rank. Returns ------- PanelOLS Model specified using the formula Examples -------- >>> from linearmodels import PanelOLS >>> from linearmodels.panel import generate_panel_data >>> panel_data = generate_panel_data() >>> mod = PanelOLS.from_formula("y ~ 1 + x1 + EntityEffects", panel_data.data) >>> res = mod.fit(cov_type="clustered", cluster_entity=True) """ parser = PanelFormulaParser(formula, data, context=capture_context(1)) entity_effect = parser.entity_effect time_effect = parser.time_effect dependent, exog = parser.data mod = cls( dependent, exog, entity_effects=entity_effect, time_effects=time_effect, weights=weights, other_effects=other_effects, singletons=singletons, drop_absorbed=drop_absorbed, check_rank=check_rank, ) mod.formula = formula return mod def _lsmr_path( self, ) -> tuple[Float64Array, Float64Array, Float64Array, Float64Array, Float64Array]: """Sparse implementation, works for all scenarios""" y = cast(Float64Array, self.dependent.values2d) x = cast(Float64Array, self.exog.values2d) w = cast(Float64Array, self.weights.values2d) root_w = np.sqrt(w) wybar = root_w * (w.T @ y / w.sum()) wy = root_w * y wx = root_w * x if not self._has_effect: y_effect, x_effect = np.zeros_like(wy), np.zeros_like(wx) return wy, wx, wybar, y_effect, x_effect wy_gm = wybar wx_gm = root_w * (w.T @ x / w.sum()) root_w_sparse = csc_matrix(root_w) cats_l: list[IntArray | Float64Array] = [] if self.entity_effects: cats_l.append(self.dependent.entity_ids) if self.time_effects: cats_l.append(self.dependent.time_ids) if self.other_effects: assert self._other_effect_cats is not None cats_l.append(self._other_effect_cats.values2d) cats = np.concatenate(cats_l, 1) wd, cond = dummy_matrix(cats, precondition=True) assert isinstance(wd, csc_matrix) if self._is_weighted: wd = wd.multiply(root_w_sparse) wx_mean_l = [] for i in range(x.shape[1]): cond_mean = lsmr(wd, wx[:, i], atol=1e-8, btol=1e-8)[0] cond_mean /= cond wx_mean_l.append(cond_mean) wx_mean = np.column_stack(wx_mean_l) wy_mean = lsmr(wd, wy, atol=1e-8, btol=1e-8)[0] wy_mean /= cond wy_mean = wy_mean[:, None] wx_mean = csc_matrix(wx_mean) wy_mean = csc_matrix(wy_mean) # Purge fitted, weighted values sp_cond = diags(cond, format="csc") wx = wx - (wd @ sp_cond @ wx_mean).A wy = wy - (wd @ sp_cond @ wy_mean).A if self.has_constant: wy += wy_gm wx += wx_gm else: wybar = 0 y_effects = y - wy / root_w x_effects = x - wx / root_w return wy, wx, wybar, y_effects, x_effects def _slow_path( self, ) -> tuple[Float64Array, Float64Array, Float64Array, Float64Array, Float64Array]: """Frisch-Waugh-Lovell implementation, works for all scenarios""" w = cast(Float64Array, self.weights.values2d) root_w = np.sqrt(w) y = root_w * cast(Float64Array, self.dependent.values2d) x = root_w * cast(Float64Array, self.exog.values2d) if not self._has_effect: ybar = root_w @ _lstsq(root_w, y, rcond=None)[0] y_effect, x_effect = np.zeros_like(y), np.zeros_like(x) return y, x, ybar, y_effect, x_effect drop_first = self._constant d_l = [] if self.entity_effects: d_l.append(self.dependent.dummies("entity", drop_first=drop_first).values) drop_first = True if self.time_effects: d_l.append(self.dependent.dummies("time", drop_first=drop_first).values) drop_first = True if self.other_effects: assert self._other_effect_cats is not None oe = self._other_effect_cats.dataframe for c in oe: dummies = get_dummies(oe[c], drop_first=drop_first).astype(np.float64) d_l.append(dummies.values) drop_first = True d = np.column_stack(d_l) wd = root_w * d if self.has_constant: wd -= root_w * (w.T @ d / w.sum()) z = np.ones_like(root_w) d -= z * (z.T @ d / z.sum()) x_mean = _lstsq(wd, x, rcond=None)[0] y_mean = _lstsq(wd, y, rcond=None)[0] # Save fitted unweighted effects to use in eps calculation x_effects = d @ x_mean y_effects = d @ y_mean # Purge fitted, weighted values x = x - wd @ x_mean y = y - wd @ y_mean ybar = root_w @ _lstsq(root_w, y, rcond=None)[0] return y, x, ybar, y_effects, x_effects def _choose_twoway_algo(self) -> bool: if not (self.entity_effects and self.time_effects): return False nentity, nobs = self.dependent.nentity, self.dependent.nobs nreg = min(nentity, nobs) if nreg < self.exog.shape[1]: return False # MiB reg_size = 8 * nentity * nobs * nreg // 2**20 low_memory = reg_size > 2**10 if low_memory: import warnings warnings.warn( "Using low-memory algorithm to estimate two-way model. Explicitly set " "low_memory=True to silence this message. Set low_memory=False to use " "the standard algorithm that creates dummy variables for the smaller " "of the number of entities or number of time periods.", MemoryWarning, stacklevel=3, ) return low_memory def _fast_path( self, low_memory: bool ) -> tuple[Float64Array, Float64Array, Float64Array]: """Dummy-variable free estimation without weights""" _y = self.dependent.values2d _x = self.exog.values2d ybar = np.asarray(_y.mean(0)) if not self._has_effect: return _y, _x, ybar y_gm = ybar x_gm = _x.mean(0) y = self.dependent x = self.exog if self.other_effects: assert self._other_effect_cats is not None groups = self._other_effect_cats if self.entity_effects or self.time_effects: groups = groups.copy() if self.entity_effects: effect = self.dependent.entity_ids else: effect = self.dependent.time_ids col = ensure_unique_column("additional.effect", groups.dataframe) groups.dataframe[col] = effect y = cast(PanelData, y.general_demean(groups)) x = cast(PanelData, x.general_demean(groups)) elif self.entity_effects and self.time_effects: y = cast(PanelData, y.demean("both", low_memory=low_memory)) x = cast(PanelData, x.demean("both", low_memory=low_memory)) elif self.entity_effects: y = cast(PanelData, y.demean("entity")) x = cast(PanelData, x.demean("entity")) else: # self.time_effects y = cast(PanelData, y.demean("time")) x = cast(PanelData, x.demean("time")) y_arr = y.values2d x_arr = x.values2d if self.has_constant: y_arr = y_arr + y_gm x_arr = x_arr + x_gm else: ybar = np.asarray(0.0) return y_arr, x_arr, ybar def _weighted_fast_path( self, low_memory: bool ) -> tuple[Float64Array, Float64Array, Float64Array, Float64Array, Float64Array]: """Dummy-variable free estimation with weights""" y_arr = self.dependent.values2d x_arr = self.exog.values2d w = self.weights.values2d root_w = cast(Float64Array, np.sqrt(w)) wybar = root_w * (w.T @ y_arr / w.sum()) if not self._has_effect: wy_arr = root_w * self.dependent.values2d wx_arr = root_w * self.exog.values2d y_effect, x_effect = np.zeros_like(wy_arr), np.zeros_like(wx_arr) return wy_arr, wx_arr, wybar, y_effect, x_effect wy_gm = wybar wx_gm = root_w * (w.T @ x_arr / w.sum()) y = self.dependent x = self.exog if self.other_effects: assert self._other_effect_cats is not None groups = self._other_effect_cats if self.entity_effects or self.time_effects: groups = groups.copy() if self.entity_effects: effect = self.dependent.entity_ids else: effect = self.dependent.time_ids col = ensure_unique_column("additional.effect", groups.dataframe) groups.dataframe[col] = effect wy = y.general_demean(groups, weights=self.weights) wx = x.general_demean(groups, weights=self.weights) elif self.entity_effects and self.time_effects: wy = cast( PanelData, y.demean("both", weights=self.weights, low_memory=low_memory) ) wx = cast( PanelData, x.demean("both", weights=self.weights, low_memory=low_memory) ) elif self.entity_effects: wy = cast(PanelData, y.demean("entity", weights=self.weights)) wx = cast(PanelData, x.demean("entity", weights=self.weights)) else: # self.time_effects wy = cast(PanelData, y.demean("time", weights=self.weights)) wx = cast(PanelData, x.demean("time", weights=self.weights)) wy_arr = wy.values2d wx_arr = wx.values2d if self.has_constant: wy_arr += wy_gm wx_arr += wx_gm else: wybar = 0 wy_effects = y.values2d - wy_arr / root_w wx_effects = x.values2d - wx_arr / root_w return wy_arr, wx_arr, wybar, wy_effects, wx_effects def _info(self) -> tuple[Series, Series, DataFrame | None]: """Information about model effects and panel structure""" entity_info, time_info, other_info = super()._info() if self.other_effects: other_info_values: list[Series] = [] assert self._other_effect_cats is not None oe = self._other_effect_cats.dataframe for c in oe: name = "Observations per group (" + str(c) + ")" other_info_values.append( panel_structure_stats(oe[c].values.astype(np.int32), name) ) other_info = DataFrame(other_info_values) return entity_info, time_info, other_info @staticmethod def _is_effect_nested(effects: NumericArray, clusters: NumericArray) -> bool: """Determine whether an effect is nested by the covariance clusters""" is_nested = np.zeros(effects.shape[1], dtype=bool) for i, e in enumerate(effects.T): e = (e - e.min()).astype(np.int64) e_count = len(np.unique(e)) for c in clusters.T: c = (c - c.min()).astype(np.int64) cmax = c.max() ec = e * (cmax + 1) + c is_nested[i] = len(np.unique(ec)) == e_count return bool(np.all(is_nested)) def _determine_df_adjustment( self, cov_type: str, **cov_config: bool | float | str | IntArray | DataFrame | PanelData, ) -> bool: if cov_type != "clustered" or not self._has_effect: return True num_effects = self.entity_effects + self.time_effects if self.other_effects: assert self._other_effect_cats is not None num_effects += self._other_effect_cats.shape[1] clusters = cov_config.get("clusters", None) if clusters is None: # No clusters return True effects = self._collect_effects() if num_effects == 1: return not self._is_effect_nested(effects, cast(IntArray, clusters)) return True # Default case for 2-way -- not completely clear def fit( self, *, use_lsdv: bool = False, use_lsmr: bool = False, low_memory: bool | None = None, cov_type: str = "unadjusted", debiased: bool = True, auto_df: bool = True, count_effects: bool = True, **cov_config: bool | float | str | IntArray | DataFrame | PanelData, ) -> PanelEffectsResults: """ Estimate model parameters Parameters ---------- use_lsdv : bool Flag indicating to use the Least Squares Dummy Variable estimator to eliminate effects. The default value uses only means and does note require constructing dummy variables for each effect. use_lsmr : bool Flag indicating to use LSDV with the Sparse Equations and Least Squares estimator to eliminate the fixed effects. low_memory : {bool, None} Flag indicating whether to use a low-memory algorithm when a model contains two-way fixed effects. If `None`, the choice is taken automatically, and the low memory algorithm is used if the required dummy variable array is both larger than then array of regressors in the model and requires more than 1 GiB . cov_type : str Name of covariance estimator. See Notes. debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. auto_df : bool Flag indicating that the treatment of estimated effects in degree of freedom adjustment is automatically handled. This is useful since clustered standard errors that are clustered using the same variable as an effect do not require degree of freedom correction while other estimators such as the unadjusted covariance do. count_effects : bool Flag indicating that the covariance estimator should be adjusted to account for the estimation of effects in the model. Only used if ``auto_df=False``. **cov_config Additional covariance-specific options. See Notes. Returns ------- PanelEffectsResults Estimation results Examples -------- >>> from linearmodels import PanelOLS >>> mod = PanelOLS(y, x, entity_effects=True) >>> res = mod.fit(cov_type="clustered", cluster_entity=True) Notes ----- Three covariance estimators are supported: * "unadjusted", "homoskedastic" - Assume residual are homoskedastic * "robust", "heteroskedastic" - Control for heteroskedasticity using White's estimator * "clustered` - One- or two-way clustering. Configuration options are: * ``clusters`` - Input containing 1 or 2 variables. Clusters should be integer valued, although other types will be coerced to integer values by treating as categorical variables * ``cluster_entity`` - Boolean flag indicating to use entity clusters * ``cluster_time`` - Boolean indicating to use time clusters * "kernel" - Driscoll-Kraay HAC estimator. Configurations options are: * ``kernel`` - One of the supported kernels (bartlett, parzen, qs). Default is Bartlett's kernel, which is produces a covariance estimator similar to the Newey-West covariance estimator. * ``bandwidth`` - Bandwidth to use when computing the kernel. If not provided, a naive default is used. """ weighted = np.any(self.weights.values2d != 1.0) if use_lsmr: y, x, ybar, y_effects, x_effects = self._lsmr_path() elif use_lsdv: y, x, ybar, y_effects, x_effects = self._slow_path() else: low_memory = ( self._choose_twoway_algo() if low_memory is None else low_memory ) if not weighted: y, x, ybar = self._fast_path(low_memory=low_memory) y_effects = np.array([0.0]) x_effects = np.zeros(x.shape) else: y, x, ybar, y_effects, x_effects = self._weighted_fast_path( low_memory=low_memory ) neffects = 0 drop_first = self.has_constant if self.entity_effects: neffects += self.dependent.nentity - drop_first drop_first = True if self.time_effects: neffects += self.dependent.nobs - drop_first drop_first = True if self.other_effects: assert self._other_effect_cats is not None oe = self._other_effect_cats.dataframe for c in oe: neffects += oe[c].nunique() - drop_first drop_first = True if self.entity_effects or self.time_effects or self.other_effects: if not self._drop_absorbed: check_absorbed(x, [str(var) for var in self.exog.vars]) else: # TODO: Need to special case the constant here when determining which # to retain since we always want to retain the constant if present retain = not_absorbed(x, self._constant, self._constant_index) if not retain: raise ValueError( "All columns in exog have been fully absorbed by the included" " effects. This model cannot be estimated." ) if len(retain) != x.shape[1]: drop = set(range(x.shape[1])).difference(retain) dropped = ", ".join([str(self.exog.vars[i]) for i in drop]) import warnings warnings.warn( absorbing_warn_msg.format(absorbed_variables=dropped), AbsorbingEffectWarning, stacklevel=2, ) x = x[:, retain] # Update constant index loc if self._constant: assert isinstance(self._constant_index, int) self._constant_index = int( np.squeeze( np.argwhere(np.array(retain) == self._constant_index) ) ) # Adjust exog self.exog = PanelData(self.exog.dataframe.iloc[:, retain]) x_effects = x_effects[:, retain] params = _lstsq(x, y, rcond=None)[0] nobs = self.dependent.dataframe.shape[0] df_model = x.shape[1] + neffects df_resid = nobs - df_model # Check clusters if singletons were removed cov_config = self._setup_clusters(cov_config) if auto_df: count_effects = self._determine_df_adjustment(cov_type, **cov_config) extra_df = neffects if count_effects else 0 cov = setup_covariance_estimator( self._cov_estimators, cov_type, y, x, params, self.dependent.entity_ids, self.dependent.time_ids, debiased=debiased, extra_df=extra_df, **cov_config, ) weps = y - x @ params eps = weps _y = self.dependent.values2d _x = self.exog.values2d if weighted: eps = (_y - y_effects) - (_x - x_effects) @ params if self.has_constant: # Correction since y_effects and x_effects @ params add mean w = self.weights.values2d eps -= (w * eps).sum() / w.sum() index = self.dependent.index fitted = DataFrame(_x @ params, index, ["fitted_values"]) idiosyncratic = DataFrame(eps, index, ["idiosyncratic"]) eps_effects = _y - fitted.values sigma2_tot = float(np.squeeze(eps_effects.T @ eps_effects) / nobs) sigma2_eps = float(np.squeeze(eps.T @ eps) / nobs) sigma2_effects = sigma2_tot - sigma2_eps rho = sigma2_effects / sigma2_tot if sigma2_tot > 0.0 else 0.0 resid_ss = float(np.squeeze(weps.T @ weps)) if self.has_constant: mu = ybar else: mu = np.array([0.0]) total_ss = float(np.squeeze((y - mu).T @ (y - mu))) r2 = 1 - resid_ss / total_ss if total_ss > 0.0 else 0.0 root_w = cast(Float64Array, np.sqrt(self.weights.values2d)) y_ex = root_w * self.dependent.values2d mu_ex = 0 if ( self.has_constant or self.entity_effects or self.time_effects or self.other_effects ): mu_ex = root_w * ((root_w.T @ y_ex) / (root_w.T @ root_w)) total_ss_ex_effect = float(np.squeeze((y_ex - mu_ex).T @ (y_ex - mu_ex))) r2_ex_effects = ( 1 - resid_ss / total_ss_ex_effect if total_ss_ex_effect > 0.0 else 0.0 ) res = self._postestimation(params, cov, debiased, df_resid, weps, y, x, root_w) ###################################### # Pooled f-stat ###################################### if self.entity_effects or self.time_effects or self.other_effects: wy, wx = root_w * self.dependent.values2d, root_w * self.exog.values2d df_num, df_denom = (df_model - wx.shape[1]), df_resid if not self.has_constant: # Correction for when models does not have explicit constant wy -= root_w * _lstsq(root_w, wy, rcond=None)[0] wx -= root_w * _lstsq(root_w, wx, rcond=None)[0] df_num -= 1 weps_pooled = wy - wx @ _lstsq(wx, wy, rcond=None)[0] resid_ss_pooled = float(np.squeeze(weps_pooled.T @ weps_pooled)) num = (resid_ss_pooled - resid_ss) / df_num denom = resid_ss / df_denom stat = num / denom f_pooled = WaldTestStatistic( stat, "Effects are zero", df_num, df_denom=df_denom, name="Pooled F-statistic", ) res.update(f_pooled=f_pooled) effects = DataFrame( eps_effects - eps, columns=["estimated_effects"], index=self.dependent.index, ) else: effects = DataFrame( np.zeros_like(eps), columns=["estimated_effects"], index=self.dependent.index, ) res.update( dict( df_resid=df_resid, df_model=df_model, nobs=y.shape[0], residual_ss=resid_ss, total_ss=total_ss, wresids=weps, resids=eps, r2=r2, entity_effects=self.entity_effects, time_effects=self.time_effects, other_effects=self.other_effects, sigma2_eps=sigma2_eps, sigma2_effects=sigma2_effects, rho=rho, r2_ex_effects=r2_ex_effects, effects=effects, fitted=fitted, idiosyncratic=idiosyncratic, ) ) return PanelEffectsResults(res)
(dependent: 'PanelDataLike', exog: 'PanelDataLike', *, weights: 'PanelDataLike | None' = None, entity_effects: 'bool' = False, time_effects: 'bool' = False, other_effects: 'PanelDataLike | None' = None, singletons: 'bool' = True, drop_absorbed: 'bool' = False, check_rank: 'bool' = True) -> 'None'
43,011
linearmodels.panel.model
__init__
null
def __init__( self, dependent: PanelDataLike, exog: PanelDataLike, *, weights: PanelDataLike | None = None, entity_effects: bool = False, time_effects: bool = False, other_effects: PanelDataLike | None = None, singletons: bool = True, drop_absorbed: bool = False, check_rank: bool = True, ) -> None: super().__init__(dependent, exog, weights=weights, check_rank=check_rank) self._entity_effects = entity_effects self._time_effects = time_effects self._other_effect_cats: PanelData | None = None self._singletons = singletons self._other_effects = self._validate_effects(other_effects) self._has_effect = entity_effects or time_effects or self.other_effects self._drop_absorbed = drop_absorbed self._singleton_index = None self._drop_singletons()
(self, dependent: Union[linearmodels.panel.data.PanelData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], exog: Union[linearmodels.panel.data.PanelData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], *, weights: Union[linearmodels.panel.data.PanelData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, entity_effects: bool = False, time_effects: bool = False, other_effects: Union[linearmodels.panel.data.PanelData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, singletons: bool = True, drop_absorbed: bool = False, check_rank: bool = True) -> NoneType
43,013
linearmodels.panel.model
__str__
null
def __str__(self) -> str: out = super().__str__() additional = ( "\nEntity Effects: {ee}, Time Effects: {te}, Num Other Effects: {oe}" ) oe = 0 if self.other_effects: assert self._other_effect_cats is not None oe = self._other_effect_cats.nvar additional = additional.format( ee=self.entity_effects, te=self.time_effects, oe=oe ) out += additional return out
(self) -> str
43,016
linearmodels.panel.model
_choose_twoway_algo
null
def _choose_twoway_algo(self) -> bool: if not (self.entity_effects and self.time_effects): return False nentity, nobs = self.dependent.nentity, self.dependent.nobs nreg = min(nentity, nobs) if nreg < self.exog.shape[1]: return False # MiB reg_size = 8 * nentity * nobs * nreg // 2**20 low_memory = reg_size > 2**10 if low_memory: import warnings warnings.warn( "Using low-memory algorithm to estimate two-way model. Explicitly set " "low_memory=True to silence this message. Set low_memory=False to use " "the standard algorithm that creates dummy variables for the smaller " "of the number of entities or number of time periods.", MemoryWarning, stacklevel=3, ) return low_memory
(self) -> bool
43,017
linearmodels.panel.model
_collect_effects
null
def _collect_effects(self) -> NumericArray: if not self._has_effect: return np.empty((self.dependent.shape[0], 0)) effects = [] if self.entity_effects: effects.append(np.asarray(self.dependent.entity_ids).squeeze()) if self.time_effects: effects.append(np.asarray(self.dependent.time_ids).squeeze()) if self.other_effects: assert self._other_effect_cats is not None other = self._other_effect_cats.dataframe for col in other: effects.append(np.asarray(other[col]).squeeze()) return np.column_stack(effects)
(self) -> numpy.ndarray
43,018
linearmodels.panel.model
_determine_df_adjustment
null
def _determine_df_adjustment( self, cov_type: str, **cov_config: bool | float | str | IntArray | DataFrame | PanelData, ) -> bool: if cov_type != "clustered" or not self._has_effect: return True num_effects = self.entity_effects + self.time_effects if self.other_effects: assert self._other_effect_cats is not None num_effects += self._other_effect_cats.shape[1] clusters = cov_config.get("clusters", None) if clusters is None: # No clusters return True effects = self._collect_effects() if num_effects == 1: return not self._is_effect_nested(effects, cast(IntArray, clusters)) return True # Default case for 2-way -- not completely clear
(self, cov_type: str, **cov_config: bool | float | str | numpy.ndarray | pandas.core.frame.DataFrame | linearmodels.panel.data.PanelData) -> bool
43,019
linearmodels.panel.model
_drop_singletons
null
def _drop_singletons(self) -> None: if self._singletons or not self._has_effect: return effects = self._collect_effects() retain = in_2core_graph(effects) if np.all(retain): return import warnings as warn nobs = retain.shape[0] ndropped = nobs - retain.sum() warn.warn( f"{ndropped} singleton observations dropped", SingletonWarning, stacklevel=3, ) drop = ~retain self._singleton_index = cast(BoolArray, drop) self.dependent.drop(drop) self.exog.drop(drop) self.weights.drop(drop) if self.other_effects: assert self._other_effect_cats is not None self._other_effect_cats.drop(drop) # Reverify exog matrix self._check_exog_rank()
(self) -> NoneType
43,022
linearmodels.panel.model
_fast_path
Dummy-variable free estimation without weights
def _fast_path( self, low_memory: bool ) -> tuple[Float64Array, Float64Array, Float64Array]: """Dummy-variable free estimation without weights""" _y = self.dependent.values2d _x = self.exog.values2d ybar = np.asarray(_y.mean(0)) if not self._has_effect: return _y, _x, ybar y_gm = ybar x_gm = _x.mean(0) y = self.dependent x = self.exog if self.other_effects: assert self._other_effect_cats is not None groups = self._other_effect_cats if self.entity_effects or self.time_effects: groups = groups.copy() if self.entity_effects: effect = self.dependent.entity_ids else: effect = self.dependent.time_ids col = ensure_unique_column("additional.effect", groups.dataframe) groups.dataframe[col] = effect y = cast(PanelData, y.general_demean(groups)) x = cast(PanelData, x.general_demean(groups)) elif self.entity_effects and self.time_effects: y = cast(PanelData, y.demean("both", low_memory=low_memory)) x = cast(PanelData, x.demean("both", low_memory=low_memory)) elif self.entity_effects: y = cast(PanelData, y.demean("entity")) x = cast(PanelData, x.demean("entity")) else: # self.time_effects y = cast(PanelData, y.demean("time")) x = cast(PanelData, x.demean("time")) y_arr = y.values2d x_arr = x.values2d if self.has_constant: y_arr = y_arr + y_gm x_arr = x_arr + x_gm else: ybar = np.asarray(0.0) return y_arr, x_arr, ybar
(self, low_memory: bool) -> tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]
43,023
linearmodels.panel.model
_info
Information about model effects and panel structure
def _info(self) -> tuple[Series, Series, DataFrame | None]: """Information about model effects and panel structure""" entity_info, time_info, other_info = super()._info() if self.other_effects: other_info_values: list[Series] = [] assert self._other_effect_cats is not None oe = self._other_effect_cats.dataframe for c in oe: name = "Observations per group (" + str(c) + ")" other_info_values.append( panel_structure_stats(oe[c].values.astype(np.int32), name) ) other_info = DataFrame(other_info_values) return entity_info, time_info, other_info
(self) -> tuple[pandas.core.series.Series, pandas.core.series.Series, pandas.core.frame.DataFrame | None]
43,024
linearmodels.panel.model
_is_effect_nested
Determine whether an effect is nested by the covariance clusters
@staticmethod def _is_effect_nested(effects: NumericArray, clusters: NumericArray) -> bool: """Determine whether an effect is nested by the covariance clusters""" is_nested = np.zeros(effects.shape[1], dtype=bool) for i, e in enumerate(effects.T): e = (e - e.min()).astype(np.int64) e_count = len(np.unique(e)) for c in clusters.T: c = (c - c.min()).astype(np.int64) cmax = c.max() ec = e * (cmax + 1) + c is_nested[i] = len(np.unique(ec)) == e_count return bool(np.all(is_nested))
(effects: numpy.ndarray, clusters: numpy.ndarray) -> bool
43,025
linearmodels.panel.model
_lsmr_path
Sparse implementation, works for all scenarios
def _lsmr_path( self, ) -> tuple[Float64Array, Float64Array, Float64Array, Float64Array, Float64Array]: """Sparse implementation, works for all scenarios""" y = cast(Float64Array, self.dependent.values2d) x = cast(Float64Array, self.exog.values2d) w = cast(Float64Array, self.weights.values2d) root_w = np.sqrt(w) wybar = root_w * (w.T @ y / w.sum()) wy = root_w * y wx = root_w * x if not self._has_effect: y_effect, x_effect = np.zeros_like(wy), np.zeros_like(wx) return wy, wx, wybar, y_effect, x_effect wy_gm = wybar wx_gm = root_w * (w.T @ x / w.sum()) root_w_sparse = csc_matrix(root_w) cats_l: list[IntArray | Float64Array] = [] if self.entity_effects: cats_l.append(self.dependent.entity_ids) if self.time_effects: cats_l.append(self.dependent.time_ids) if self.other_effects: assert self._other_effect_cats is not None cats_l.append(self._other_effect_cats.values2d) cats = np.concatenate(cats_l, 1) wd, cond = dummy_matrix(cats, precondition=True) assert isinstance(wd, csc_matrix) if self._is_weighted: wd = wd.multiply(root_w_sparse) wx_mean_l = [] for i in range(x.shape[1]): cond_mean = lsmr(wd, wx[:, i], atol=1e-8, btol=1e-8)[0] cond_mean /= cond wx_mean_l.append(cond_mean) wx_mean = np.column_stack(wx_mean_l) wy_mean = lsmr(wd, wy, atol=1e-8, btol=1e-8)[0] wy_mean /= cond wy_mean = wy_mean[:, None] wx_mean = csc_matrix(wx_mean) wy_mean = csc_matrix(wy_mean) # Purge fitted, weighted values sp_cond = diags(cond, format="csc") wx = wx - (wd @ sp_cond @ wx_mean).A wy = wy - (wd @ sp_cond @ wy_mean).A if self.has_constant: wy += wy_gm wx += wx_gm else: wybar = 0 y_effects = y - wy / root_w x_effects = x - wx / root_w return wy, wx, wybar, y_effects, x_effects
(self) -> tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
43,031
linearmodels.panel.model
_slow_path
Frisch-Waugh-Lovell implementation, works for all scenarios
def _slow_path( self, ) -> tuple[Float64Array, Float64Array, Float64Array, Float64Array, Float64Array]: """Frisch-Waugh-Lovell implementation, works for all scenarios""" w = cast(Float64Array, self.weights.values2d) root_w = np.sqrt(w) y = root_w * cast(Float64Array, self.dependent.values2d) x = root_w * cast(Float64Array, self.exog.values2d) if not self._has_effect: ybar = root_w @ _lstsq(root_w, y, rcond=None)[0] y_effect, x_effect = np.zeros_like(y), np.zeros_like(x) return y, x, ybar, y_effect, x_effect drop_first = self._constant d_l = [] if self.entity_effects: d_l.append(self.dependent.dummies("entity", drop_first=drop_first).values) drop_first = True if self.time_effects: d_l.append(self.dependent.dummies("time", drop_first=drop_first).values) drop_first = True if self.other_effects: assert self._other_effect_cats is not None oe = self._other_effect_cats.dataframe for c in oe: dummies = get_dummies(oe[c], drop_first=drop_first).astype(np.float64) d_l.append(dummies.values) drop_first = True d = np.column_stack(d_l) wd = root_w * d if self.has_constant: wd -= root_w * (w.T @ d / w.sum()) z = np.ones_like(root_w) d -= z * (z.T @ d / z.sum()) x_mean = _lstsq(wd, x, rcond=None)[0] y_mean = _lstsq(wd, y, rcond=None)[0] # Save fitted unweighted effects to use in eps calculation x_effects = d @ x_mean y_effects = d @ y_mean # Purge fitted, weighted values x = x - wd @ x_mean y = y - wd @ y_mean ybar = root_w @ _lstsq(root_w, y, rcond=None)[0] return y, x, ybar, y_effects, x_effects
(self) -> tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
43,033
linearmodels.panel.model
_validate_effects
Check model effects
def _validate_effects(self, effects: PanelDataLike | None) -> bool: """Check model effects""" if effects is None: return False effects = PanelData(effects, var_name="OtherEffect", convert_dummies=False) if effects.shape[1:] != self._original_shape[1:]: raise ValueError( "other_effects must have the same number of " "entities and time periods as dependent." ) num_effects = effects.nvar if num_effects + self.entity_effects + self.time_effects > 2: raise ValueError("At most two effects supported.") cats = {} effects_frame = effects.dataframe for col in effects_frame: cat = Categorical(effects_frame[col]) # TODO: Bug in pandas-stube # https://github.com/pandas-dev/pandas-stubs/issues/111 cats[col] = cat.codes.astype(np.int64) # type: ignore cats_df = DataFrame(cats, index=effects_frame.index) cats_df = cats_df[effects_frame.columns] other_effects = PanelData(cats_df) other_effects.drop(~self.not_null) self._other_effect_cats = other_effects cats_array = other_effects.values2d nested = False nesting_effect = "" if cats_array.shape[1] == 2: nested = self._is_effect_nested(cats_array[:, [0]], cats_array[:, [1]]) nested |= self._is_effect_nested(cats_array[:, [1]], cats_array[:, [0]]) nesting_effect = "other effects" elif self.entity_effects: nested = self._is_effect_nested( cats_array[:, [0]], self.dependent.entity_ids ) nested |= self._is_effect_nested( self.dependent.entity_ids, cats_array[:, [0]] ) nesting_effect = "entity effects" elif self.time_effects: nested = self._is_effect_nested(cats_array[:, [0]], self.dependent.time_ids) nested |= self._is_effect_nested( self.dependent.time_ids, cats_array[:, [0]] ) nesting_effect = "time effects" if nested: raise ValueError( "Included other effects nest or are nested " "by {effect}".format(effect=nesting_effect) ) return True
(self, effects: Union[linearmodels.panel.data.PanelData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType]) -> bool
43,034
linearmodels.panel.model
_weighted_fast_path
Dummy-variable free estimation with weights
def _weighted_fast_path( self, low_memory: bool ) -> tuple[Float64Array, Float64Array, Float64Array, Float64Array, Float64Array]: """Dummy-variable free estimation with weights""" y_arr = self.dependent.values2d x_arr = self.exog.values2d w = self.weights.values2d root_w = cast(Float64Array, np.sqrt(w)) wybar = root_w * (w.T @ y_arr / w.sum()) if not self._has_effect: wy_arr = root_w * self.dependent.values2d wx_arr = root_w * self.exog.values2d y_effect, x_effect = np.zeros_like(wy_arr), np.zeros_like(wx_arr) return wy_arr, wx_arr, wybar, y_effect, x_effect wy_gm = wybar wx_gm = root_w * (w.T @ x_arr / w.sum()) y = self.dependent x = self.exog if self.other_effects: assert self._other_effect_cats is not None groups = self._other_effect_cats if self.entity_effects or self.time_effects: groups = groups.copy() if self.entity_effects: effect = self.dependent.entity_ids else: effect = self.dependent.time_ids col = ensure_unique_column("additional.effect", groups.dataframe) groups.dataframe[col] = effect wy = y.general_demean(groups, weights=self.weights) wx = x.general_demean(groups, weights=self.weights) elif self.entity_effects and self.time_effects: wy = cast( PanelData, y.demean("both", weights=self.weights, low_memory=low_memory) ) wx = cast( PanelData, x.demean("both", weights=self.weights, low_memory=low_memory) ) elif self.entity_effects: wy = cast(PanelData, y.demean("entity", weights=self.weights)) wx = cast(PanelData, x.demean("entity", weights=self.weights)) else: # self.time_effects wy = cast(PanelData, y.demean("time", weights=self.weights)) wx = cast(PanelData, x.demean("time", weights=self.weights)) wy_arr = wy.values2d wx_arr = wx.values2d if self.has_constant: wy_arr += wy_gm wx_arr += wx_gm else: wybar = 0 wy_effects = y.values2d - wy_arr / root_w wx_effects = x.values2d - wx_arr / root_w return wy_arr, wx_arr, wybar, wy_effects, wx_effects
(self, low_memory: bool) -> tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
43,035
linearmodels.panel.model
fit
Estimate model parameters Parameters ---------- use_lsdv : bool Flag indicating to use the Least Squares Dummy Variable estimator to eliminate effects. The default value uses only means and does note require constructing dummy variables for each effect. use_lsmr : bool Flag indicating to use LSDV with the Sparse Equations and Least Squares estimator to eliminate the fixed effects. low_memory : {bool, None} Flag indicating whether to use a low-memory algorithm when a model contains two-way fixed effects. If `None`, the choice is taken automatically, and the low memory algorithm is used if the required dummy variable array is both larger than then array of regressors in the model and requires more than 1 GiB . cov_type : str Name of covariance estimator. See Notes. debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. auto_df : bool Flag indicating that the treatment of estimated effects in degree of freedom adjustment is automatically handled. This is useful since clustered standard errors that are clustered using the same variable as an effect do not require degree of freedom correction while other estimators such as the unadjusted covariance do. count_effects : bool Flag indicating that the covariance estimator should be adjusted to account for the estimation of effects in the model. Only used if ``auto_df=False``. **cov_config Additional covariance-specific options. See Notes. Returns ------- PanelEffectsResults Estimation results Examples -------- >>> from linearmodels import PanelOLS >>> mod = PanelOLS(y, x, entity_effects=True) >>> res = mod.fit(cov_type="clustered", cluster_entity=True) Notes ----- Three covariance estimators are supported: * "unadjusted", "homoskedastic" - Assume residual are homoskedastic * "robust", "heteroskedastic" - Control for heteroskedasticity using White's estimator * "clustered` - One- or two-way clustering. Configuration options are: * ``clusters`` - Input containing 1 or 2 variables. Clusters should be integer valued, although other types will be coerced to integer values by treating as categorical variables * ``cluster_entity`` - Boolean flag indicating to use entity clusters * ``cluster_time`` - Boolean indicating to use time clusters * "kernel" - Driscoll-Kraay HAC estimator. Configurations options are: * ``kernel`` - One of the supported kernels (bartlett, parzen, qs). Default is Bartlett's kernel, which is produces a covariance estimator similar to the Newey-West covariance estimator. * ``bandwidth`` - Bandwidth to use when computing the kernel. If not provided, a naive default is used.
def fit( self, *, use_lsdv: bool = False, use_lsmr: bool = False, low_memory: bool | None = None, cov_type: str = "unadjusted", debiased: bool = True, auto_df: bool = True, count_effects: bool = True, **cov_config: bool | float | str | IntArray | DataFrame | PanelData, ) -> PanelEffectsResults: """ Estimate model parameters Parameters ---------- use_lsdv : bool Flag indicating to use the Least Squares Dummy Variable estimator to eliminate effects. The default value uses only means and does note require constructing dummy variables for each effect. use_lsmr : bool Flag indicating to use LSDV with the Sparse Equations and Least Squares estimator to eliminate the fixed effects. low_memory : {bool, None} Flag indicating whether to use a low-memory algorithm when a model contains two-way fixed effects. If `None`, the choice is taken automatically, and the low memory algorithm is used if the required dummy variable array is both larger than then array of regressors in the model and requires more than 1 GiB . cov_type : str Name of covariance estimator. See Notes. debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. auto_df : bool Flag indicating that the treatment of estimated effects in degree of freedom adjustment is automatically handled. This is useful since clustered standard errors that are clustered using the same variable as an effect do not require degree of freedom correction while other estimators such as the unadjusted covariance do. count_effects : bool Flag indicating that the covariance estimator should be adjusted to account for the estimation of effects in the model. Only used if ``auto_df=False``. **cov_config Additional covariance-specific options. See Notes. Returns ------- PanelEffectsResults Estimation results Examples -------- >>> from linearmodels import PanelOLS >>> mod = PanelOLS(y, x, entity_effects=True) >>> res = mod.fit(cov_type="clustered", cluster_entity=True) Notes ----- Three covariance estimators are supported: * "unadjusted", "homoskedastic" - Assume residual are homoskedastic * "robust", "heteroskedastic" - Control for heteroskedasticity using White's estimator * "clustered` - One- or two-way clustering. Configuration options are: * ``clusters`` - Input containing 1 or 2 variables. Clusters should be integer valued, although other types will be coerced to integer values by treating as categorical variables * ``cluster_entity`` - Boolean flag indicating to use entity clusters * ``cluster_time`` - Boolean indicating to use time clusters * "kernel" - Driscoll-Kraay HAC estimator. Configurations options are: * ``kernel`` - One of the supported kernels (bartlett, parzen, qs). Default is Bartlett's kernel, which is produces a covariance estimator similar to the Newey-West covariance estimator. * ``bandwidth`` - Bandwidth to use when computing the kernel. If not provided, a naive default is used. """ weighted = np.any(self.weights.values2d != 1.0) if use_lsmr: y, x, ybar, y_effects, x_effects = self._lsmr_path() elif use_lsdv: y, x, ybar, y_effects, x_effects = self._slow_path() else: low_memory = ( self._choose_twoway_algo() if low_memory is None else low_memory ) if not weighted: y, x, ybar = self._fast_path(low_memory=low_memory) y_effects = np.array([0.0]) x_effects = np.zeros(x.shape) else: y, x, ybar, y_effects, x_effects = self._weighted_fast_path( low_memory=low_memory ) neffects = 0 drop_first = self.has_constant if self.entity_effects: neffects += self.dependent.nentity - drop_first drop_first = True if self.time_effects: neffects += self.dependent.nobs - drop_first drop_first = True if self.other_effects: assert self._other_effect_cats is not None oe = self._other_effect_cats.dataframe for c in oe: neffects += oe[c].nunique() - drop_first drop_first = True if self.entity_effects or self.time_effects or self.other_effects: if not self._drop_absorbed: check_absorbed(x, [str(var) for var in self.exog.vars]) else: # TODO: Need to special case the constant here when determining which # to retain since we always want to retain the constant if present retain = not_absorbed(x, self._constant, self._constant_index) if not retain: raise ValueError( "All columns in exog have been fully absorbed by the included" " effects. This model cannot be estimated." ) if len(retain) != x.shape[1]: drop = set(range(x.shape[1])).difference(retain) dropped = ", ".join([str(self.exog.vars[i]) for i in drop]) import warnings warnings.warn( absorbing_warn_msg.format(absorbed_variables=dropped), AbsorbingEffectWarning, stacklevel=2, ) x = x[:, retain] # Update constant index loc if self._constant: assert isinstance(self._constant_index, int) self._constant_index = int( np.squeeze( np.argwhere(np.array(retain) == self._constant_index) ) ) # Adjust exog self.exog = PanelData(self.exog.dataframe.iloc[:, retain]) x_effects = x_effects[:, retain] params = _lstsq(x, y, rcond=None)[0] nobs = self.dependent.dataframe.shape[0] df_model = x.shape[1] + neffects df_resid = nobs - df_model # Check clusters if singletons were removed cov_config = self._setup_clusters(cov_config) if auto_df: count_effects = self._determine_df_adjustment(cov_type, **cov_config) extra_df = neffects if count_effects else 0 cov = setup_covariance_estimator( self._cov_estimators, cov_type, y, x, params, self.dependent.entity_ids, self.dependent.time_ids, debiased=debiased, extra_df=extra_df, **cov_config, ) weps = y - x @ params eps = weps _y = self.dependent.values2d _x = self.exog.values2d if weighted: eps = (_y - y_effects) - (_x - x_effects) @ params if self.has_constant: # Correction since y_effects and x_effects @ params add mean w = self.weights.values2d eps -= (w * eps).sum() / w.sum() index = self.dependent.index fitted = DataFrame(_x @ params, index, ["fitted_values"]) idiosyncratic = DataFrame(eps, index, ["idiosyncratic"]) eps_effects = _y - fitted.values sigma2_tot = float(np.squeeze(eps_effects.T @ eps_effects) / nobs) sigma2_eps = float(np.squeeze(eps.T @ eps) / nobs) sigma2_effects = sigma2_tot - sigma2_eps rho = sigma2_effects / sigma2_tot if sigma2_tot > 0.0 else 0.0 resid_ss = float(np.squeeze(weps.T @ weps)) if self.has_constant: mu = ybar else: mu = np.array([0.0]) total_ss = float(np.squeeze((y - mu).T @ (y - mu))) r2 = 1 - resid_ss / total_ss if total_ss > 0.0 else 0.0 root_w = cast(Float64Array, np.sqrt(self.weights.values2d)) y_ex = root_w * self.dependent.values2d mu_ex = 0 if ( self.has_constant or self.entity_effects or self.time_effects or self.other_effects ): mu_ex = root_w * ((root_w.T @ y_ex) / (root_w.T @ root_w)) total_ss_ex_effect = float(np.squeeze((y_ex - mu_ex).T @ (y_ex - mu_ex))) r2_ex_effects = ( 1 - resid_ss / total_ss_ex_effect if total_ss_ex_effect > 0.0 else 0.0 ) res = self._postestimation(params, cov, debiased, df_resid, weps, y, x, root_w) ###################################### # Pooled f-stat ###################################### if self.entity_effects or self.time_effects or self.other_effects: wy, wx = root_w * self.dependent.values2d, root_w * self.exog.values2d df_num, df_denom = (df_model - wx.shape[1]), df_resid if not self.has_constant: # Correction for when models does not have explicit constant wy -= root_w * _lstsq(root_w, wy, rcond=None)[0] wx -= root_w * _lstsq(root_w, wx, rcond=None)[0] df_num -= 1 weps_pooled = wy - wx @ _lstsq(wx, wy, rcond=None)[0] resid_ss_pooled = float(np.squeeze(weps_pooled.T @ weps_pooled)) num = (resid_ss_pooled - resid_ss) / df_num denom = resid_ss / df_denom stat = num / denom f_pooled = WaldTestStatistic( stat, "Effects are zero", df_num, df_denom=df_denom, name="Pooled F-statistic", ) res.update(f_pooled=f_pooled) effects = DataFrame( eps_effects - eps, columns=["estimated_effects"], index=self.dependent.index, ) else: effects = DataFrame( np.zeros_like(eps), columns=["estimated_effects"], index=self.dependent.index, ) res.update( dict( df_resid=df_resid, df_model=df_model, nobs=y.shape[0], residual_ss=resid_ss, total_ss=total_ss, wresids=weps, resids=eps, r2=r2, entity_effects=self.entity_effects, time_effects=self.time_effects, other_effects=self.other_effects, sigma2_eps=sigma2_eps, sigma2_effects=sigma2_effects, rho=rho, r2_ex_effects=r2_ex_effects, effects=effects, fitted=fitted, idiosyncratic=idiosyncratic, ) ) return PanelEffectsResults(res)
(self, *, use_lsdv: bool = False, use_lsmr: bool = False, low_memory: Optional[bool] = None, cov_type: str = 'unadjusted', debiased: bool = True, auto_df: bool = True, count_effects: bool = True, **cov_config: bool | float | str | numpy.ndarray | pandas.core.frame.DataFrame | linearmodels.panel.data.PanelData) -> linearmodels.panel.results.PanelEffectsResults
43,038
linearmodels.panel.model
PooledOLS
Pooled coefficient estimator for panel data Parameters ---------- dependent : array_like Dependent (left-hand-side) variable (time by entity) exog : array_like Exogenous or right-hand-side variables (variable by time by entity). weights : array_like Weights to use in estimation. Assumes residual variance is proportional to inverse of weight to that the residual time the weight should be homoskedastic. check_rank : bool Flag indicating whether to perform a rank check on the exogenous variables to ensure that the model is identified. Skipping this check can reduce the time required to validate a model specification. Results may be numerically unstable if this check is skipped and the matrix is not full rank. Notes ----- The model is given by .. math:: y_{it}=\beta^{\prime}x_{it}+\epsilon_{it}
class PooledOLS(_PanelModelBase): r""" Pooled coefficient estimator for panel data Parameters ---------- dependent : array_like Dependent (left-hand-side) variable (time by entity) exog : array_like Exogenous or right-hand-side variables (variable by time by entity). weights : array_like Weights to use in estimation. Assumes residual variance is proportional to inverse of weight to that the residual time the weight should be homoskedastic. check_rank : bool Flag indicating whether to perform a rank check on the exogenous variables to ensure that the model is identified. Skipping this check can reduce the time required to validate a model specification. Results may be numerically unstable if this check is skipped and the matrix is not full rank. Notes ----- The model is given by .. math:: y_{it}=\beta^{\prime}x_{it}+\epsilon_{it} """ def __init__( self, dependent: PanelDataLike, exog: PanelDataLike, *, weights: PanelDataLike | None = None, check_rank: bool = True, ) -> None: super().__init__(dependent, exog, weights=weights, check_rank=check_rank) @classmethod def from_formula( cls, formula: str, data: PanelDataLike, *, weights: PanelDataLike | None = None, check_rank: bool = True, ) -> PooledOLS: """ Create a model from a formula Parameters ---------- formula : str Formula to transform into model. Conforms to formulaic formula rules. data : array_like Data structure that can be coerced into a PanelData. In most cases, this should be a multi-index DataFrame where the level 0 index contains the entities and the level 1 contains the time. weights: array_like Weights to use in estimation. Assumes residual variance is proportional to inverse of weight to that the residual times the weight should be homoskedastic. check_rank : bool Flag indicating whether to perform a rank check on the exogenous variables to ensure that the model is identified. Skipping this check can reduce the time required to validate a model specification. Results may be numerically unstable if this check is skipped and the matrix is not full rank. Returns ------- PooledOLS Model specified using the formula Notes ----- Unlike standard formula syntax, it is necessary to explicitly include a constant using the constant indicator (1) Examples -------- >>> from linearmodels import PooledOLS >>> from linearmodels.panel import generate_panel_data >>> panel_data = generate_panel_data() >>> mod = PooledOLS.from_formula("y ~ 1 + x1", panel_data.data) >>> res = mod.fit() """ parser = PanelFormulaParser(formula, data, context=capture_context(1)) dependent, exog = parser.data mod = cls(dependent, exog, weights=weights, check_rank=check_rank) mod.formula = formula return mod def fit( self, *, cov_type: str = "unadjusted", debiased: bool = True, **cov_config: bool | float | str | IntArray | DataFrame | PanelData, ) -> PanelResults: """ Estimate model parameters Parameters ---------- cov_type : str Name of covariance estimator. See Notes. debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. **cov_config Additional covariance-specific options. See Notes. Returns ------- PanelResults Estimation results Examples -------- >>> from linearmodels import PooledOLS >>> mod = PooledOLS(y, x) >>> res = mod.fit(cov_type="clustered", cluster_entity=True) Notes ----- Four covariance estimators are supported: * "unadjusted", "homoskedastic" - Assume residual are homoskedastic * "robust", "heteroskedastic" - Control for heteroskedasticity using White's estimator * "clustered` - One- or two-way clustering. Configuration options are: * ``clusters`` - Input containing 1 or 2 variables. Clusters should be integer values, although other types will be coerced to integer values by treating as categorical variables * ``cluster_entity`` - Boolean flag indicating to use entity clusters * ``cluster_time`` - Boolean indicating to use time clusters * "kernel" - Driscoll-Kraay HAC estimator. Configurations options are: * ``kernel`` - One of the supported kernels (bartlett, parzen, qs). Default is Bartlett's kernel, which is produces a covariance estimator similar to the Newey-West covariance estimator. * ``bandwidth`` - Bandwidth to use when computing the kernel. If not provided, a naive default is used. """ y = self.dependent.values2d x = self.exog.values2d w = self.weights.values2d root_w = cast(Float64Array, np.sqrt(w)) wx = root_w * x wy = root_w * y params = _lstsq(wx, wy, rcond=None)[0] nobs = y.shape[0] df_model = x.shape[1] df_resid = nobs - df_model cov_config = self._setup_clusters(cov_config) extra_df = 0 if "extra_df" in cov_config: cov_config = cov_config.copy() _extra_df = cov_config.pop("extra_df") assert isinstance(_extra_df, (str, int)) extra_df = int(_extra_df) cov = setup_covariance_estimator( self._cov_estimators, cov_type, wy, wx, params, self.dependent.entity_ids, self.dependent.time_ids, debiased=debiased, extra_df=extra_df, **cov_config, ) weps = wy - wx @ params index = self.dependent.index fitted = DataFrame(x @ params, index, ["fitted_values"]) effects = DataFrame( np.full_like(np.asarray(fitted), np.nan), index, ["estimated_effects"] ) eps = y - fitted.values idiosyncratic = DataFrame(eps, index, ["idiosyncratic"]) residual_ss = float(np.squeeze(weps.T @ weps)) e = y if self._constant: e = e - (w * y).sum() / w.sum() total_ss = float(np.squeeze(w.T @ (e**2))) r2 = 1 - residual_ss / total_ss res = self._postestimation( params, cov, debiased, df_resid, weps, wy, wx, root_w ) res.update( dict( df_resid=df_resid, df_model=df_model, nobs=y.shape[0], residual_ss=residual_ss, total_ss=total_ss, r2=r2, wresids=weps, resids=eps, index=self.dependent.index, fitted=fitted, effects=effects, idiosyncratic=idiosyncratic, ) ) return PanelResults(res) def predict( self, params: ArrayLike, *, exog: PanelDataLike | None = None, data: PanelDataLike | None = None, eval_env: int = 1, context: Mapping[str, Any] | None = None, ) -> DataFrame: """ Predict values for additional data Parameters ---------- params : array_like Model parameters (nvar by 1) exog : array_like Exogenous regressors (nobs by nvar) data : DataFrame Values to use when making predictions from a model constructed from a formula context : int Depth to use when evaluating formulas. Returns ------- DataFrame Fitted values from supplied data and parameters Notes ----- If `data` is not None, then `exog` must be None. Predictions from models constructed using formulas can be computed using either `exog`, which will treat these are arrays of values corresponding to the formula-processed data, or using `data` which will be processed using the formula used to construct the values corresponding to the original model specification. """ if data is not None and self.formula is None: raise ValueError( "Unable to use data when the model was not " "created using a formula." ) if data is not None and exog is not None: raise ValueError( "Predictions can only be constructed using one " "of exog or data, but not both." ) if exog is not None: exog = PanelData(exog).dataframe else: assert self._formula is not None assert data is not None if context is None: context = capture_context(eval_env) parser = PanelFormulaParser(self._formula, data, context=context) exog = parser.exog x = exog.values params = np.atleast_2d(np.asarray(params)) if params.shape[0] == 1: params = params.T if x.shape[1] != params.shape[0]: raise ValueError( EXOG_PREDICT_MSG.format( x_shape=x.shape[1], params_shape=params.shape[0] ) ) pred = DataFrame(x @ params, index=exog.index, columns=["predictions"]) return pred
(dependent: 'PanelDataLike', exog: 'PanelDataLike', *, weights: 'PanelDataLike | None' = None, check_rank: 'bool' = True) -> 'None'
43,039
linearmodels.panel.model
__init__
null
def __init__( self, dependent: PanelDataLike, exog: PanelDataLike, *, weights: PanelDataLike | None = None, check_rank: bool = True, ) -> None: super().__init__(dependent, exog, weights=weights, check_rank=check_rank)
(self, dependent: Union[linearmodels.panel.data.PanelData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], exog: Union[linearmodels.panel.data.PanelData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], *, weights: Union[linearmodels.panel.data.PanelData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, check_rank: bool = True) -> NoneType
43,053
linearmodels.panel.model
fit
Estimate model parameters Parameters ---------- cov_type : str Name of covariance estimator. See Notes. debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. **cov_config Additional covariance-specific options. See Notes. Returns ------- PanelResults Estimation results Examples -------- >>> from linearmodels import PooledOLS >>> mod = PooledOLS(y, x) >>> res = mod.fit(cov_type="clustered", cluster_entity=True) Notes ----- Four covariance estimators are supported: * "unadjusted", "homoskedastic" - Assume residual are homoskedastic * "robust", "heteroskedastic" - Control for heteroskedasticity using White's estimator * "clustered` - One- or two-way clustering. Configuration options are: * ``clusters`` - Input containing 1 or 2 variables. Clusters should be integer values, although other types will be coerced to integer values by treating as categorical variables * ``cluster_entity`` - Boolean flag indicating to use entity clusters * ``cluster_time`` - Boolean indicating to use time clusters * "kernel" - Driscoll-Kraay HAC estimator. Configurations options are: * ``kernel`` - One of the supported kernels (bartlett, parzen, qs). Default is Bartlett's kernel, which is produces a covariance estimator similar to the Newey-West covariance estimator. * ``bandwidth`` - Bandwidth to use when computing the kernel. If not provided, a naive default is used.
def fit( self, *, cov_type: str = "unadjusted", debiased: bool = True, **cov_config: bool | float | str | IntArray | DataFrame | PanelData, ) -> PanelResults: """ Estimate model parameters Parameters ---------- cov_type : str Name of covariance estimator. See Notes. debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. **cov_config Additional covariance-specific options. See Notes. Returns ------- PanelResults Estimation results Examples -------- >>> from linearmodels import PooledOLS >>> mod = PooledOLS(y, x) >>> res = mod.fit(cov_type="clustered", cluster_entity=True) Notes ----- Four covariance estimators are supported: * "unadjusted", "homoskedastic" - Assume residual are homoskedastic * "robust", "heteroskedastic" - Control for heteroskedasticity using White's estimator * "clustered` - One- or two-way clustering. Configuration options are: * ``clusters`` - Input containing 1 or 2 variables. Clusters should be integer values, although other types will be coerced to integer values by treating as categorical variables * ``cluster_entity`` - Boolean flag indicating to use entity clusters * ``cluster_time`` - Boolean indicating to use time clusters * "kernel" - Driscoll-Kraay HAC estimator. Configurations options are: * ``kernel`` - One of the supported kernels (bartlett, parzen, qs). Default is Bartlett's kernel, which is produces a covariance estimator similar to the Newey-West covariance estimator. * ``bandwidth`` - Bandwidth to use when computing the kernel. If not provided, a naive default is used. """ y = self.dependent.values2d x = self.exog.values2d w = self.weights.values2d root_w = cast(Float64Array, np.sqrt(w)) wx = root_w * x wy = root_w * y params = _lstsq(wx, wy, rcond=None)[0] nobs = y.shape[0] df_model = x.shape[1] df_resid = nobs - df_model cov_config = self._setup_clusters(cov_config) extra_df = 0 if "extra_df" in cov_config: cov_config = cov_config.copy() _extra_df = cov_config.pop("extra_df") assert isinstance(_extra_df, (str, int)) extra_df = int(_extra_df) cov = setup_covariance_estimator( self._cov_estimators, cov_type, wy, wx, params, self.dependent.entity_ids, self.dependent.time_ids, debiased=debiased, extra_df=extra_df, **cov_config, ) weps = wy - wx @ params index = self.dependent.index fitted = DataFrame(x @ params, index, ["fitted_values"]) effects = DataFrame( np.full_like(np.asarray(fitted), np.nan), index, ["estimated_effects"] ) eps = y - fitted.values idiosyncratic = DataFrame(eps, index, ["idiosyncratic"]) residual_ss = float(np.squeeze(weps.T @ weps)) e = y if self._constant: e = e - (w * y).sum() / w.sum() total_ss = float(np.squeeze(w.T @ (e**2))) r2 = 1 - residual_ss / total_ss res = self._postestimation( params, cov, debiased, df_resid, weps, wy, wx, root_w ) res.update( dict( df_resid=df_resid, df_model=df_model, nobs=y.shape[0], residual_ss=residual_ss, total_ss=total_ss, r2=r2, wresids=weps, resids=eps, index=self.dependent.index, fitted=fitted, effects=effects, idiosyncratic=idiosyncratic, ) ) return PanelResults(res)
(self, *, cov_type: str = 'unadjusted', debiased: bool = True, **cov_config: bool | float | str | numpy.ndarray | pandas.core.frame.DataFrame | linearmodels.panel.data.PanelData) -> linearmodels.panel.results.PanelResults
43,054
linearmodels.panel.model
predict
Predict values for additional data Parameters ---------- params : array_like Model parameters (nvar by 1) exog : array_like Exogenous regressors (nobs by nvar) data : DataFrame Values to use when making predictions from a model constructed from a formula context : int Depth to use when evaluating formulas. Returns ------- DataFrame Fitted values from supplied data and parameters Notes ----- If `data` is not None, then `exog` must be None. Predictions from models constructed using formulas can be computed using either `exog`, which will treat these are arrays of values corresponding to the formula-processed data, or using `data` which will be processed using the formula used to construct the values corresponding to the original model specification.
def predict( self, params: ArrayLike, *, exog: PanelDataLike | None = None, data: PanelDataLike | None = None, eval_env: int = 1, context: Mapping[str, Any] | None = None, ) -> DataFrame: """ Predict values for additional data Parameters ---------- params : array_like Model parameters (nvar by 1) exog : array_like Exogenous regressors (nobs by nvar) data : DataFrame Values to use when making predictions from a model constructed from a formula context : int Depth to use when evaluating formulas. Returns ------- DataFrame Fitted values from supplied data and parameters Notes ----- If `data` is not None, then `exog` must be None. Predictions from models constructed using formulas can be computed using either `exog`, which will treat these are arrays of values corresponding to the formula-processed data, or using `data` which will be processed using the formula used to construct the values corresponding to the original model specification. """ if data is not None and self.formula is None: raise ValueError( "Unable to use data when the model was not " "created using a formula." ) if data is not None and exog is not None: raise ValueError( "Predictions can only be constructed using one " "of exog or data, but not both." ) if exog is not None: exog = PanelData(exog).dataframe else: assert self._formula is not None assert data is not None if context is None: context = capture_context(eval_env) parser = PanelFormulaParser(self._formula, data, context=context) exog = parser.exog x = exog.values params = np.atleast_2d(np.asarray(params)) if params.shape[0] == 1: params = params.T if x.shape[1] != params.shape[0]: raise ValueError( EXOG_PREDICT_MSG.format( x_shape=x.shape[1], params_shape=params.shape[0] ) ) pred = DataFrame(x @ params, index=exog.index, columns=["predictions"]) return pred
(self, params: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], *, exog: Union[linearmodels.panel.data.PanelData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, data: Union[linearmodels.panel.data.PanelData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, eval_env: int = 1, context: Optional[collections.abc.Mapping[str, Any]] = None) -> pandas.core.frame.DataFrame
43,056
linearmodels.panel.model
RandomEffects
One-way Random Effects model for panel data Parameters ---------- dependent : array_like Dependent (left-hand-side) variable (time by entity) exog : array_like Exogenous or right-hand-side variables (variable by time by entity). weights : array_like Weights to use in estimation. Assumes residual variance is proportional to inverse of weight to that the residual time the weight should be homoskedastic. Notes ----- The model is given by .. math:: y_{it} = \beta^{\prime}x_{it} + u_i + \epsilon_{it} where :math:`u_i` is a shock that is independent of :math:`x_{it}` but common to all entities i.
class RandomEffects(_PanelModelBase): r""" One-way Random Effects model for panel data Parameters ---------- dependent : array_like Dependent (left-hand-side) variable (time by entity) exog : array_like Exogenous or right-hand-side variables (variable by time by entity). weights : array_like Weights to use in estimation. Assumes residual variance is proportional to inverse of weight to that the residual time the weight should be homoskedastic. Notes ----- The model is given by .. math:: y_{it} = \beta^{\prime}x_{it} + u_i + \epsilon_{it} where :math:`u_i` is a shock that is independent of :math:`x_{it}` but common to all entities i. """ def __init__( self, dependent: PanelDataLike, exog: PanelDataLike, *, weights: PanelDataLike | None = None, check_rank: bool = True, ) -> None: super().__init__(dependent, exog, weights=weights, check_rank=check_rank) @classmethod def from_formula( cls, formula: str, data: PanelDataLike, *, weights: PanelDataLike | None = None, check_rank: bool = True, ) -> RandomEffects: """ Create a model from a formula Parameters ---------- formula : str Formula to transform into model. Conforms to formulaic formula rules. data : array_like Data structure that can be coerced into a PanelData. In most cases, this should be a multi-index DataFrame where the level 0 index contains the entities and the level 1 contains the time. weights: array_like Weights to use in estimation. Assumes residual variance is proportional to inverse of weight to that the residual times the weight should be homoskedastic. check_rank : bool Flag indicating whether to perform a rank check on the exogenous variables to ensure that the model is identified. Skipping this check can reduce the time required to validate a model specification. Results may be numerically unstable if this check is skipped and the matrix is not full rank. Returns ------- RandomEffects Model specified using the formula Notes ----- Unlike standard formula syntax, it is necessary to explicitly include a constant using the constant indicator (1) Examples -------- >>> from linearmodels import RandomEffects >>> from linearmodels.panel import generate_panel_data >>> panel_data = generate_panel_data() >>> mod = RandomEffects.from_formula("y ~ 1 + x1", panel_data.data) >>> res = mod.fit() """ parser = PanelFormulaParser(formula, data, context=capture_context(1)) dependent, exog = parser.data mod = cls(dependent, exog, weights=weights, check_rank=check_rank) mod.formula = formula return mod def fit( self, *, small_sample: bool = False, cov_type: str = "unadjusted", debiased: bool = True, **cov_config: bool | float | str | IntArray | DataFrame | PanelData, ) -> RandomEffectsResults: """ Estimate model parameters Parameters ---------- small_sample : bool Apply a small-sample correction to the estimate of the variance of the random effect. cov_type : str Name of covariance estimator (see notes). Default is "unadjusted". debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. **cov_config Additional covariance-specific options. See Notes. Returns ------- RandomEffectsResults Estimation results Examples -------- >>> from linearmodels import RandomEffects >>> mod = RandomEffects(y, x) >>> res = mod.fit(cov_type="clustered", cluster_entity=True) Notes ----- Four covariance estimators are supported: * "unadjusted", "homoskedastic" - Assume residual are homoskedastic * "robust", "heteroskedastic" - Control for heteroskedasticity using White's estimator * "clustered` - One- or two-way clustering. Configuration options are: * ``clusters`` - Input containing 1 or 2 variables. Clusters should be integer values, although other types will be coerced to integer values by treating as categorical variables * ``cluster_entity`` - Boolean flag indicating to use entity clusters * ``cluster_time`` - Boolean indicating to use time clusters * "kernel" - Driscoll-Kraay HAC estimator. Configurations options are: * ``kernel`` - One of the supported kernels (bartlett, parzen, qs). Default is Bartlett's kernel, which is produces a covariance estimator similar to the Newey-West covariance estimator. * ``bandwidth`` - Bandwidth to use when computing the kernel. If not provided, a naive default is used. """ w = self.weights.values2d root_w = cast(Float64Array, np.sqrt(w)) demeaned_dep = self.dependent.demean("entity", weights=self.weights) demeaned_exog = self.exog.demean("entity", weights=self.weights) assert isinstance(demeaned_dep, PanelData) assert isinstance(demeaned_exog, PanelData) y = demeaned_dep.values2d x = demeaned_exog.values2d if self.has_constant: w_sum = w.sum() y_gm = (w * self.dependent.values2d).sum(0) / w_sum x_gm = (w * self.exog.values2d).sum(0) / w_sum y += root_w * y_gm x += root_w * x_gm params = _lstsq(x, y, rcond=None)[0] weps = y - x @ params wybar = self.dependent.mean("entity", weights=self.weights) wxbar = self.exog.mean("entity", weights=self.weights) params = _lstsq(np.asarray(wxbar), np.asarray(wybar), rcond=None)[0] wu = np.asarray(wybar) - np.asarray(wxbar) @ params nobs = weps.shape[0] neffects = wu.shape[0] nvar = x.shape[1] sigma2_e = float(np.squeeze(weps.T @ weps)) / (nobs - nvar - neffects + 1) ssr = float(np.squeeze(wu.T @ wu)) t = np.asarray(self.dependent.count("entity")) unbalanced = np.ptp(t) != 0 if small_sample and unbalanced: ssr = float(np.squeeze((t * wu).T @ wu)) wx_df = cast(DataFrame, root_w * self.exog.dataframe) means = wx_df.groupby(level=0).transform("mean").values denom = means.T @ means sums = wx_df.groupby(level=0).sum().values num = sums.T @ sums tr = np.trace(np.linalg.inv(denom) @ num) sigma2_u = max(0, (ssr - (neffects - nvar) * sigma2_e) / (nobs - tr)) else: t_bar = neffects / ((1.0 / t).sum()) sigma2_u = max(0, ssr / (neffects - nvar) - sigma2_e / t_bar) rho = sigma2_u / (sigma2_u + sigma2_e) theta = 1.0 - np.sqrt(sigma2_e / (t * sigma2_u + sigma2_e)) theta_out = DataFrame(theta, columns=["theta"], index=wybar.index) wy: Float64Array = np.asarray(root_w * self.dependent.values2d, dtype=float) wx: Float64Array = np.asarray(root_w * self.exog.values2d, dtype=float) index = self.dependent.index reindex = index.levels[0][index.codes[0]] wybar = (theta * wybar).loc[reindex] wxbar = (theta * wxbar).loc[reindex] wy -= wybar.values wx -= wxbar.values params = _lstsq(wx, wy, rcond=None)[0] df_resid = wy.shape[0] - wx.shape[1] cov_config = self._setup_clusters(cov_config) extra_df = 0 if "extra_df" in cov_config: cov_config = cov_config.copy() _extra_df = cov_config.pop("extra_df") assert isinstance(_extra_df, (str, int)) extra_df = int(_extra_df) cov = setup_covariance_estimator( self._cov_estimators, cov_type, wy, np.asarray(wx), params, self.dependent.entity_ids, self.dependent.time_ids, debiased=debiased, extra_df=extra_df, **cov_config, ) weps = wy - wx @ params eps = weps / root_w index = self.dependent.index fitted = DataFrame(self.exog.values2d @ params, index, ["fitted_values"]) effects = DataFrame( self.dependent.values2d - np.asarray(fitted) - eps, index, ["estimated_effects"], ) idiosyncratic = DataFrame(eps, index, ["idiosyncratic"]) residual_ss = float(np.squeeze(weps.T @ weps)) wmu: float | Float64Array = 0.0 if self.has_constant: wmu = root_w * _lstsq(root_w, wy, rcond=None)[0] wy_demeaned = wy - wmu total_ss = float(np.squeeze(wy_demeaned.T @ wy_demeaned)) r2 = 1 - residual_ss / total_ss res = self._postestimation( params, cov, debiased, df_resid, weps, wy, wx, root_w ) res.update( dict( df_resid=df_resid, df_model=x.shape[1], nobs=y.shape[0], residual_ss=residual_ss, total_ss=total_ss, r2=r2, resids=eps, wresids=weps, index=index, sigma2_eps=sigma2_e, sigma2_effects=sigma2_u, rho=rho, theta=theta_out, fitted=fitted, effects=effects, idiosyncratic=idiosyncratic, ) ) return RandomEffectsResults(res)
(dependent: 'PanelDataLike', exog: 'PanelDataLike', *, weights: 'PanelDataLike | None' = None, check_rank: 'bool' = True) -> 'None'
43,071
linearmodels.panel.model
fit
Estimate model parameters Parameters ---------- small_sample : bool Apply a small-sample correction to the estimate of the variance of the random effect. cov_type : str Name of covariance estimator (see notes). Default is "unadjusted". debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. **cov_config Additional covariance-specific options. See Notes. Returns ------- RandomEffectsResults Estimation results Examples -------- >>> from linearmodels import RandomEffects >>> mod = RandomEffects(y, x) >>> res = mod.fit(cov_type="clustered", cluster_entity=True) Notes ----- Four covariance estimators are supported: * "unadjusted", "homoskedastic" - Assume residual are homoskedastic * "robust", "heteroskedastic" - Control for heteroskedasticity using White's estimator * "clustered` - One- or two-way clustering. Configuration options are: * ``clusters`` - Input containing 1 or 2 variables. Clusters should be integer values, although other types will be coerced to integer values by treating as categorical variables * ``cluster_entity`` - Boolean flag indicating to use entity clusters * ``cluster_time`` - Boolean indicating to use time clusters * "kernel" - Driscoll-Kraay HAC estimator. Configurations options are: * ``kernel`` - One of the supported kernels (bartlett, parzen, qs). Default is Bartlett's kernel, which is produces a covariance estimator similar to the Newey-West covariance estimator. * ``bandwidth`` - Bandwidth to use when computing the kernel. If not provided, a naive default is used.
def fit( self, *, small_sample: bool = False, cov_type: str = "unadjusted", debiased: bool = True, **cov_config: bool | float | str | IntArray | DataFrame | PanelData, ) -> RandomEffectsResults: """ Estimate model parameters Parameters ---------- small_sample : bool Apply a small-sample correction to the estimate of the variance of the random effect. cov_type : str Name of covariance estimator (see notes). Default is "unadjusted". debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. **cov_config Additional covariance-specific options. See Notes. Returns ------- RandomEffectsResults Estimation results Examples -------- >>> from linearmodels import RandomEffects >>> mod = RandomEffects(y, x) >>> res = mod.fit(cov_type="clustered", cluster_entity=True) Notes ----- Four covariance estimators are supported: * "unadjusted", "homoskedastic" - Assume residual are homoskedastic * "robust", "heteroskedastic" - Control for heteroskedasticity using White's estimator * "clustered` - One- or two-way clustering. Configuration options are: * ``clusters`` - Input containing 1 or 2 variables. Clusters should be integer values, although other types will be coerced to integer values by treating as categorical variables * ``cluster_entity`` - Boolean flag indicating to use entity clusters * ``cluster_time`` - Boolean indicating to use time clusters * "kernel" - Driscoll-Kraay HAC estimator. Configurations options are: * ``kernel`` - One of the supported kernels (bartlett, parzen, qs). Default is Bartlett's kernel, which is produces a covariance estimator similar to the Newey-West covariance estimator. * ``bandwidth`` - Bandwidth to use when computing the kernel. If not provided, a naive default is used. """ w = self.weights.values2d root_w = cast(Float64Array, np.sqrt(w)) demeaned_dep = self.dependent.demean("entity", weights=self.weights) demeaned_exog = self.exog.demean("entity", weights=self.weights) assert isinstance(demeaned_dep, PanelData) assert isinstance(demeaned_exog, PanelData) y = demeaned_dep.values2d x = demeaned_exog.values2d if self.has_constant: w_sum = w.sum() y_gm = (w * self.dependent.values2d).sum(0) / w_sum x_gm = (w * self.exog.values2d).sum(0) / w_sum y += root_w * y_gm x += root_w * x_gm params = _lstsq(x, y, rcond=None)[0] weps = y - x @ params wybar = self.dependent.mean("entity", weights=self.weights) wxbar = self.exog.mean("entity", weights=self.weights) params = _lstsq(np.asarray(wxbar), np.asarray(wybar), rcond=None)[0] wu = np.asarray(wybar) - np.asarray(wxbar) @ params nobs = weps.shape[0] neffects = wu.shape[0] nvar = x.shape[1] sigma2_e = float(np.squeeze(weps.T @ weps)) / (nobs - nvar - neffects + 1) ssr = float(np.squeeze(wu.T @ wu)) t = np.asarray(self.dependent.count("entity")) unbalanced = np.ptp(t) != 0 if small_sample and unbalanced: ssr = float(np.squeeze((t * wu).T @ wu)) wx_df = cast(DataFrame, root_w * self.exog.dataframe) means = wx_df.groupby(level=0).transform("mean").values denom = means.T @ means sums = wx_df.groupby(level=0).sum().values num = sums.T @ sums tr = np.trace(np.linalg.inv(denom) @ num) sigma2_u = max(0, (ssr - (neffects - nvar) * sigma2_e) / (nobs - tr)) else: t_bar = neffects / ((1.0 / t).sum()) sigma2_u = max(0, ssr / (neffects - nvar) - sigma2_e / t_bar) rho = sigma2_u / (sigma2_u + sigma2_e) theta = 1.0 - np.sqrt(sigma2_e / (t * sigma2_u + sigma2_e)) theta_out = DataFrame(theta, columns=["theta"], index=wybar.index) wy: Float64Array = np.asarray(root_w * self.dependent.values2d, dtype=float) wx: Float64Array = np.asarray(root_w * self.exog.values2d, dtype=float) index = self.dependent.index reindex = index.levels[0][index.codes[0]] wybar = (theta * wybar).loc[reindex] wxbar = (theta * wxbar).loc[reindex] wy -= wybar.values wx -= wxbar.values params = _lstsq(wx, wy, rcond=None)[0] df_resid = wy.shape[0] - wx.shape[1] cov_config = self._setup_clusters(cov_config) extra_df = 0 if "extra_df" in cov_config: cov_config = cov_config.copy() _extra_df = cov_config.pop("extra_df") assert isinstance(_extra_df, (str, int)) extra_df = int(_extra_df) cov = setup_covariance_estimator( self._cov_estimators, cov_type, wy, np.asarray(wx), params, self.dependent.entity_ids, self.dependent.time_ids, debiased=debiased, extra_df=extra_df, **cov_config, ) weps = wy - wx @ params eps = weps / root_w index = self.dependent.index fitted = DataFrame(self.exog.values2d @ params, index, ["fitted_values"]) effects = DataFrame( self.dependent.values2d - np.asarray(fitted) - eps, index, ["estimated_effects"], ) idiosyncratic = DataFrame(eps, index, ["idiosyncratic"]) residual_ss = float(np.squeeze(weps.T @ weps)) wmu: float | Float64Array = 0.0 if self.has_constant: wmu = root_w * _lstsq(root_w, wy, rcond=None)[0] wy_demeaned = wy - wmu total_ss = float(np.squeeze(wy_demeaned.T @ wy_demeaned)) r2 = 1 - residual_ss / total_ss res = self._postestimation( params, cov, debiased, df_resid, weps, wy, wx, root_w ) res.update( dict( df_resid=df_resid, df_model=x.shape[1], nobs=y.shape[0], residual_ss=residual_ss, total_ss=total_ss, r2=r2, resids=eps, wresids=weps, index=index, sigma2_eps=sigma2_e, sigma2_effects=sigma2_u, rho=rho, theta=theta_out, fitted=fitted, effects=effects, idiosyncratic=idiosyncratic, ) ) return RandomEffectsResults(res)
(self, *, small_sample: bool = False, cov_type: str = 'unadjusted', debiased: bool = True, **cov_config: bool | float | str | numpy.ndarray | pandas.core.frame.DataFrame | linearmodels.panel.data.PanelData) -> linearmodels.panel.results.RandomEffectsResults
43,074
linearmodels.system.model
SUR
Seemingly unrelated regression estimation (SUR/SURE) Parameters ---------- equations : dict Dictionary-like structure containing dependent and exogenous variable values. Each key is an equations label and must be a string. Each value must be either a tuple of the form (dependent, exog, [weights]) or a dictionary with keys "dependent" and "exog" and the optional key "weights". sigma : array_like Prespecified residual covariance to use in GLS estimation. If not provided, FGLS is implemented based on an estimate of sigma. Notes ----- Estimates a set of regressions which are seemingly unrelated in the sense that separate estimation would lead to consistent parameter estimates. Each equation is of the form .. math:: y_{i,k} = x_{i,k}\beta_i + \epsilon_{i,k} where k denotes the equation and i denoted the observation index. By stacking vertically arrays of dependent and placing the exogenous variables into a block diagonal array, the entire system can be compactly expressed as .. math:: Y = X\beta + \epsilon where .. math:: Y = \left[\begin{array}{x}Y_1 \\ Y_2 \\ \vdots \\ Y_K\end{array}\right] and .. math:: X = \left[\begin{array}{cccc} X_1 & 0 & \ldots & 0 \\ 0 & X_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & X_K \end{array}\right] The system OLS estimator is .. math:: \hat{\beta}_{OLS} = (X'X)^{-1}X'Y When certain conditions are satisfied, a GLS estimator of the form .. math:: \hat{\beta}_{GLS} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}Y can improve accuracy of coefficient estimates where .. math:: \Omega = \Sigma \otimes I_N where :math:`\Sigma` is the covariance matrix of the residuals. SUR is a special case of 3SLS where there are no endogenous regressors and no instruments.
class SUR(_LSSystemModelBase): r""" Seemingly unrelated regression estimation (SUR/SURE) Parameters ---------- equations : dict Dictionary-like structure containing dependent and exogenous variable values. Each key is an equations label and must be a string. Each value must be either a tuple of the form (dependent, exog, [weights]) or a dictionary with keys "dependent" and "exog" and the optional key "weights". sigma : array_like Prespecified residual covariance to use in GLS estimation. If not provided, FGLS is implemented based on an estimate of sigma. Notes ----- Estimates a set of regressions which are seemingly unrelated in the sense that separate estimation would lead to consistent parameter estimates. Each equation is of the form .. math:: y_{i,k} = x_{i,k}\beta_i + \epsilon_{i,k} where k denotes the equation and i denoted the observation index. By stacking vertically arrays of dependent and placing the exogenous variables into a block diagonal array, the entire system can be compactly expressed as .. math:: Y = X\beta + \epsilon where .. math:: Y = \left[\begin{array}{x}Y_1 \\ Y_2 \\ \vdots \\ Y_K\end{array}\right] and .. math:: X = \left[\begin{array}{cccc} X_1 & 0 & \ldots & 0 \\ 0 & X_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & X_K \end{array}\right] The system OLS estimator is .. math:: \hat{\beta}_{OLS} = (X'X)^{-1}X'Y When certain conditions are satisfied, a GLS estimator of the form .. math:: \hat{\beta}_{GLS} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}Y can improve accuracy of coefficient estimates where .. math:: \Omega = \Sigma \otimes I_N where :math:`\Sigma` is the covariance matrix of the residuals. SUR is a special case of 3SLS where there are no endogenous regressors and no instruments. """ def __init__( self, equations: Mapping[ str, Mapping[str, ArrayLike | None] | Sequence[ArrayLike | None] ], *, sigma: ArrayLike | None = None, ) -> None: if not isinstance(equations, Mapping): raise TypeError("equations must be a dictionary-like") for key in equations: if not isinstance(key, str): raise ValueError("Equation labels (keys) must be strings") reformatted = {} for key in equations: eqn = equations[key] if isinstance(eqn, tuple): if len(eqn) == 3: w = eqn[-1] eqn = eqn[:2] eqn = eqn + (None, None) + (w,) else: eqn = eqn + (None, None) reformatted[key] = eqn super().__init__(reformatted, sigma=sigma) self._model_name = "Seemingly Unrelated Regression (SUR)" @classmethod def multivariate_ls(cls, dependent: ArrayLike, exog: ArrayLike) -> SUR: """ Interface for specification of multivariate regression models Parameters ---------- dependent : array_like nobs by ndep array of dependent variables exog : array_like nobs by nvar array of exogenous regressors common to all models Returns ------- model : SUR Model instance Notes ----- Utility function to simplify the construction of multivariate regression models which all use the same regressors. Constructs the dictionary of equations from the variables using the common exogenous variable. Examples -------- A simple CAP-M can be estimated as a multivariate regression >>> from linearmodels.datasets import french >>> from linearmodels.system import SUR >>> data = french.load() >>> portfolios = data[["S1V1","S1V5","S5V1","S5V5"]] >>> factors = data[["MktRF"]].copy() >>> factors["alpha"] = 1 >>> mod = SUR.multivariate_ls(portfolios, factors) """ equations = {} dependent_ivd = IVData(dependent, var_name="dependent") exog_ivd = IVData(exog, var_name="exog") for col in dependent_ivd.pandas: # TODO: Bug in pandas-stubs # https://github.com/pandas-dev/pandas-stubs/issues/97 equations[str(col)] = (dependent_ivd.pandas[[col]], exog_ivd.pandas) return cls(equations) @classmethod def from_formula( cls, formula: str | dict[str, str], data: DataFrame, *, sigma: ArrayLike | None = None, weights: Mapping[str, ArrayLike] | None = None, ) -> SUR: """ Specify a SUR using the formula interface Parameters ---------- formula : {str, dict[str, str]} Either a string or a dictionary of strings where each value in the dictionary represents a single equation. See Notes for a description of the accepted syntax data : DataFrame Frame containing named variables sigma : array_like Prespecified residual covariance to use in GLS estimation. If not provided, FGLS is implemented based on an estimate of sigma. weights : dict[str, array_like] Dictionary like object (e.g. a DataFrame) containing variable weights. Each entry must have the same number of observations as data. If an equation label is not a key weights, the weights will be set to unity Returns ------- model : SUR Model instance Notes ----- Models can be specified in one of two ways. The first uses curly braces to encapsulate equations. The second uses a dictionary where each key is an equation name. Examples -------- The simplest format uses standard formulas for each equation in a dictionary. Best practice is to use an Ordered Dictionary >>> import pandas as pd >>> import numpy as np >>> data = pd.DataFrame(np.random.randn(500, 4), ... columns=["y1", "x1_1", "y2", "x2_1"]) >>> from linearmodels.system import SUR >>> formula = {"eq1": "y1 ~ 1 + x1_1", "eq2": "y2 ~ 1 + x2_1"} >>> mod = SUR.from_formula(formula, data) The second format uses curly braces {} to surround distinct equations >>> formula = "{y1 ~ 1 + x1_1} {y2 ~ 1 + x2_1}" >>> mod = SUR.from_formula(formula, data) It is also possible to include equation labels when using curly braces >>> formula = "{eq1: y1 ~ 1 + x1_1} {eq2: y2 ~ 1 + x2_1}" >>> mod = SUR.from_formula(formula, data) """ context = capture_context(1) parser = SystemFormulaParser(formula, data, weights, context=context) eqns = parser.data mod = cls(eqns, sigma=sigma) mod.formula = formula return mod
(equations: 'Mapping[str, Mapping[str, ArrayLike | None] | Sequence[ArrayLike | None]]', *, sigma: 'ArrayLike | None' = None) -> 'None'
43,075
linearmodels.system.model
__init__
null
def __init__( self, equations: Mapping[ str, Mapping[str, ArrayLike | None] | Sequence[ArrayLike | None] ], *, sigma: ArrayLike | None = None, ) -> None: if not isinstance(equations, Mapping): raise TypeError("equations must be a dictionary-like") for key in equations: if not isinstance(key, str): raise ValueError("Equation labels (keys) must be strings") reformatted = {} for key in equations: eqn = equations[key] if isinstance(eqn, tuple): if len(eqn) == 3: w = eqn[-1] eqn = eqn[:2] eqn = eqn + (None, None) + (w,) else: eqn = eqn + (None, None) reformatted[key] = eqn super().__init__(reformatted, sigma=sigma) self._model_name = "Seemingly Unrelated Regression (SUR)"
(self, equations: collections.abc.Mapping[str, collections.abc.Mapping[str, typing.Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType]] | collections.abc.Sequence[typing.Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType]]], *, sigma: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None) -> NoneType
43,094
linearmodels.asset_pricing.model
TradedFactorModel
Linear factor models estimator applicable to traded factors Parameters ---------- portfolios : array_like Test portfolio returns (nobs by nportfolio) factors : array_like Priced factor returns (nobs by nfactor) Notes ----- Implements both time-series estimators of risk premia, factor loadings and zero-alpha tests. The model estimated is .. math:: r_{it}^e = \alpha_i + f_t \beta_i + \epsilon_{it} where :math:`r_{it}^e` is the excess return on test portfolio i and :math:`f_t` are the traded factor returns. The model is directly tested using the estimated values :math:`\hat{\alpha}_i`. Risk premia, :math:`\lambda_i` are estimated using the sample averages of the factors, which must be excess returns on traded portfolios.
class TradedFactorModel(_FactorModelBase): r""" Linear factor models estimator applicable to traded factors Parameters ---------- portfolios : array_like Test portfolio returns (nobs by nportfolio) factors : array_like Priced factor returns (nobs by nfactor) Notes ----- Implements both time-series estimators of risk premia, factor loadings and zero-alpha tests. The model estimated is .. math:: r_{it}^e = \alpha_i + f_t \beta_i + \epsilon_{it} where :math:`r_{it}^e` is the excess return on test portfolio i and :math:`f_t` are the traded factor returns. The model is directly tested using the estimated values :math:`\hat{\alpha}_i`. Risk premia, :math:`\lambda_i` are estimated using the sample averages of the factors, which must be excess returns on traded portfolios. """ def __init__(self, portfolios: IVDataLike, factors: IVDataLike): super().__init__(portfolios, factors) @classmethod def from_formula( cls, formula: str, data: DataFrame, *, portfolios: DataFrame | None = None ) -> TradedFactorModel: """ Parameters ---------- formula : str Formula modified for the syntax described in the notes data : DataFrame DataFrame containing the variables used in the formula portfolios : array_like Portfolios to be used in the model Returns ------- TradedFactorModel Model instance Notes ----- The formula can be used in one of two ways. The first specified only the factors and uses the data provided in ``portfolios`` as the test portfolios. The second specified the portfolio using ``+`` to separate the test portfolios and ``~`` to separate the test portfolios from the factors. Examples -------- >>> from linearmodels.datasets import french >>> from linearmodels.asset_pricing import TradedFactorModel >>> data = french.load() >>> formula = "S1M1 + S1M5 + S3M3 + S5M1 + S5M5 ~ MktRF + SMB + HML" >>> mod = TradedFactorModel.from_formula(formula, data) Using only factors >>> portfolios = data[["S1M1", "S1M5", "S3M1", "S3M5", "S5M1", "S5M5"]] >>> formula = "MktRF + SMB + HML" >>> mod = TradedFactorModel.from_formula(formula, data, portfolios=portfolios) """ factors, portfolios, formula = cls._prepare_data_from_formula( formula, data, portfolios ) mod = cls(portfolios, factors) mod.formula = formula return mod def fit( self, cov_type: str = "robust", debiased: bool = True, **cov_config: str | float, ) -> LinearFactorModelResults: """ Estimate model parameters Parameters ---------- cov_type : str Name of covariance estimator debiased : bool Flag indicating whether to debias the covariance estimator using a degree of freedom adjustment **cov_config : dict Additional covariance-specific options. See Notes. Returns ------- LinearFactorModelResults Results class with parameter estimates, covariance and test statistics Notes ----- Supported covariance estimators are: * "robust" - Heteroskedasticity-robust covariance estimator * "kernel" - Heteroskedasticity and Autocorrelation consistent (HAC) covariance estimator The kernel covariance estimator takes the optional arguments ``kernel``, one of "bartlett", "parzen" or "qs" (quadratic spectral) and ``bandwidth`` (a positive integer). """ p = self.portfolios.ndarray f = self.factors.ndarray nportfolio = p.shape[1] nobs, nfactor = f.shape fc = np.c_[np.ones((nobs, 1)), f] rp = f.mean(0)[:, None] fe = f - f.mean(0) b = np.linalg.pinv(fc) @ p eps = p - fc @ b alphas = b[:1].T nloading = (nfactor + 1) * nportfolio xpxi = np.eye(nloading + nfactor) xpxi[:nloading, :nloading] = np.kron( np.eye(nportfolio), np.linalg.pinv(fc.T @ fc / nobs) ) f_rep = np.tile(fc, (1, nportfolio)) eps_rep = np.tile(eps, (nfactor + 1, 1)) # 1 2 3 ... 25 1 2 3 ... eps_rep = eps_rep.ravel(order="F") eps_rep = np.reshape(eps_rep, (nobs, (nfactor + 1) * nportfolio), order="F") xe = f_rep * eps_rep xe = np.c_[xe, fe] if cov_type in ("robust", "heteroskedastic"): cov_est = HeteroskedasticCovariance( xe, inv_jacobian=xpxi, center=False, debiased=debiased, df=fc.shape[1] ) rp_cov_est = HeteroskedasticCovariance( fe, jacobian=np.eye(f.shape[1]), center=False, debiased=debiased, df=1 ) elif cov_type == "kernel": kernel = get_string(cov_config, "kernel") bandwidth = get_float(cov_config, "bandwidth") cov_est = KernelCovariance( xe, inv_jacobian=xpxi, center=False, debiased=debiased, df=fc.shape[1], bandwidth=bandwidth, kernel=kernel, ) bw = cov_est.bandwidth _cov_config = {k: v for k, v in cov_config.items()} _cov_config["bandwidth"] = bw rp_cov_est = KernelCovariance( fe, jacobian=np.eye(f.shape[1]), center=False, debiased=debiased, df=1, bandwidth=bw, kernel=kernel, ) else: raise ValueError(f"Unknown cov_type: {cov_type}") full_vcv = cov_est.cov rp_cov = rp_cov_est.cov vcv = full_vcv[:nloading, :nloading] # Rearrange VCV order = np.reshape( np.arange((nfactor + 1) * nportfolio), (nportfolio, nfactor + 1) ) order = order.T.ravel() vcv = vcv[order][:, order] # Return values alpha_vcv = vcv[:nportfolio, :nportfolio] stat = float(np.squeeze(alphas.T @ np.linalg.pinv(alpha_vcv) @ alphas)) jstat = WaldTestStatistic( stat, "All alphas are 0", nportfolio, name="J-statistic" ) params = b.T betas = b[1:].T residual_ss = (eps**2).sum() e = p - p.mean(0)[None, :] total_ss = (e**2).sum() r2 = 1 - residual_ss / total_ss param_names = [] for portfolio in self.portfolios.cols: param_names.append(f"alpha-{portfolio}") for factor in self.factors.cols: param_names.append(f"beta-{portfolio}-{factor}") for factor in self.factors.cols: param_names.append(f"lambda-{factor}") res = AttrDict( params=params, cov=full_vcv, betas=betas, rp=rp, rp_cov=rp_cov, alphas=alphas, alpha_vcv=alpha_vcv, jstat=jstat, rsquared=r2, total_ss=total_ss, residual_ss=residual_ss, param_names=param_names, portfolio_names=self.portfolios.cols, factor_names=self.factors.cols, name=self._name, cov_type=cov_type, model=self, nobs=nobs, rp_names=self.factors.cols, cov_est=cov_est, ) return LinearFactorModelResults(res)
(portfolios: 'IVDataLike', factors: 'IVDataLike')
43,095
linearmodels.asset_pricing.model
__init__
null
def __init__(self, portfolios: IVDataLike, factors: IVDataLike): super().__init__(portfolios, factors)
(self, portfolios: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], factors: Union[linearmodels.iv.data.IVData, numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series])
43,097
linearmodels.asset_pricing.model
__str__
null
def __str__(self) -> str: out = self.__class__.__name__ f, p = self.factors.shape[1], self.portfolios.shape[1] out += f" with {f} factors, {p} test portfolios" return out
(self) -> str
43,101
linearmodels.asset_pricing.model
fit
Estimate model parameters Parameters ---------- cov_type : str Name of covariance estimator debiased : bool Flag indicating whether to debias the covariance estimator using a degree of freedom adjustment **cov_config : dict Additional covariance-specific options. See Notes. Returns ------- LinearFactorModelResults Results class with parameter estimates, covariance and test statistics Notes ----- Supported covariance estimators are: * "robust" - Heteroskedasticity-robust covariance estimator * "kernel" - Heteroskedasticity and Autocorrelation consistent (HAC) covariance estimator The kernel covariance estimator takes the optional arguments ``kernel``, one of "bartlett", "parzen" or "qs" (quadratic spectral) and ``bandwidth`` (a positive integer).
def fit( self, cov_type: str = "robust", debiased: bool = True, **cov_config: str | float, ) -> LinearFactorModelResults: """ Estimate model parameters Parameters ---------- cov_type : str Name of covariance estimator debiased : bool Flag indicating whether to debias the covariance estimator using a degree of freedom adjustment **cov_config : dict Additional covariance-specific options. See Notes. Returns ------- LinearFactorModelResults Results class with parameter estimates, covariance and test statistics Notes ----- Supported covariance estimators are: * "robust" - Heteroskedasticity-robust covariance estimator * "kernel" - Heteroskedasticity and Autocorrelation consistent (HAC) covariance estimator The kernel covariance estimator takes the optional arguments ``kernel``, one of "bartlett", "parzen" or "qs" (quadratic spectral) and ``bandwidth`` (a positive integer). """ p = self.portfolios.ndarray f = self.factors.ndarray nportfolio = p.shape[1] nobs, nfactor = f.shape fc = np.c_[np.ones((nobs, 1)), f] rp = f.mean(0)[:, None] fe = f - f.mean(0) b = np.linalg.pinv(fc) @ p eps = p - fc @ b alphas = b[:1].T nloading = (nfactor + 1) * nportfolio xpxi = np.eye(nloading + nfactor) xpxi[:nloading, :nloading] = np.kron( np.eye(nportfolio), np.linalg.pinv(fc.T @ fc / nobs) ) f_rep = np.tile(fc, (1, nportfolio)) eps_rep = np.tile(eps, (nfactor + 1, 1)) # 1 2 3 ... 25 1 2 3 ... eps_rep = eps_rep.ravel(order="F") eps_rep = np.reshape(eps_rep, (nobs, (nfactor + 1) * nportfolio), order="F") xe = f_rep * eps_rep xe = np.c_[xe, fe] if cov_type in ("robust", "heteroskedastic"): cov_est = HeteroskedasticCovariance( xe, inv_jacobian=xpxi, center=False, debiased=debiased, df=fc.shape[1] ) rp_cov_est = HeteroskedasticCovariance( fe, jacobian=np.eye(f.shape[1]), center=False, debiased=debiased, df=1 ) elif cov_type == "kernel": kernel = get_string(cov_config, "kernel") bandwidth = get_float(cov_config, "bandwidth") cov_est = KernelCovariance( xe, inv_jacobian=xpxi, center=False, debiased=debiased, df=fc.shape[1], bandwidth=bandwidth, kernel=kernel, ) bw = cov_est.bandwidth _cov_config = {k: v for k, v in cov_config.items()} _cov_config["bandwidth"] = bw rp_cov_est = KernelCovariance( fe, jacobian=np.eye(f.shape[1]), center=False, debiased=debiased, df=1, bandwidth=bw, kernel=kernel, ) else: raise ValueError(f"Unknown cov_type: {cov_type}") full_vcv = cov_est.cov rp_cov = rp_cov_est.cov vcv = full_vcv[:nloading, :nloading] # Rearrange VCV order = np.reshape( np.arange((nfactor + 1) * nportfolio), (nportfolio, nfactor + 1) ) order = order.T.ravel() vcv = vcv[order][:, order] # Return values alpha_vcv = vcv[:nportfolio, :nportfolio] stat = float(np.squeeze(alphas.T @ np.linalg.pinv(alpha_vcv) @ alphas)) jstat = WaldTestStatistic( stat, "All alphas are 0", nportfolio, name="J-statistic" ) params = b.T betas = b[1:].T residual_ss = (eps**2).sum() e = p - p.mean(0)[None, :] total_ss = (e**2).sum() r2 = 1 - residual_ss / total_ss param_names = [] for portfolio in self.portfolios.cols: param_names.append(f"alpha-{portfolio}") for factor in self.factors.cols: param_names.append(f"beta-{portfolio}-{factor}") for factor in self.factors.cols: param_names.append(f"lambda-{factor}") res = AttrDict( params=params, cov=full_vcv, betas=betas, rp=rp, rp_cov=rp_cov, alphas=alphas, alpha_vcv=alpha_vcv, jstat=jstat, rsquared=r2, total_ss=total_ss, residual_ss=residual_ss, param_names=param_names, portfolio_names=self.portfolios.cols, factor_names=self.factors.cols, name=self._name, cov_type=cov_type, model=self, nobs=nobs, rp_names=self.factors.cols, cov_est=cov_est, ) return LinearFactorModelResults(res)
(self, cov_type: str = 'robust', debiased: bool = True, **cov_config: str | float) -> linearmodels.asset_pricing.results.LinearFactorModelResults
43,123
linearmodels
test
null
def test( extra_args: str | list[str] | None = None, exit: bool = True, append: bool = True, location: str = "", ) -> int: import sys try: import pytest except ImportError: # pragma: no cover raise ImportError("Need pytest to run tests") cmd = ["--tb=auto"] if extra_args: if not isinstance(extra_args, list): pytest_args = [extra_args] else: pytest_args = extra_args if append: cmd += pytest_args[:] else: cmd = pytest_args print(location) pkg = os.path.dirname(__file__) print(pkg) if location: pkg = os.path.abspath(os.path.join(pkg, location)) print(pkg) if not os.path.exists(pkg): raise RuntimeError(f"{pkg} was not found. Unable to run tests") cmd = [pkg] + cmd print("running: pytest {}".format(" ".join(cmd))) status = pytest.main(cmd) if exit: # pragma: no cover sys.exit(status) return status
(extra_args: Union[str, list[str], NoneType] = None, exit: bool = True, append: bool = True, location: str = '') -> int
43,125
ltxpdflinks._extractor
ExtractedGraphicLinks
null
class ExtractedGraphicLinks: def __init__(self, graphic_fname, size, links, *, unitlength='1bp', **kwargs): self.graphic_fname = graphic_fname self.unitlength = unitlength # LaTeX length (w,h) = size self.size = (float(w),float(h)) # (width, height) self.links = links self.dic = dict(kwargs) def __repr__(self): return self.__class__.__name__ + \ '({!r}, {!r}, {!r}, unitlength={!r}, **{!r})'.format( self.graphic_fname, self.size, self.links, self.unitlength, self.dic )
(graphic_fname, size, links, *, unitlength='1bp', **kwargs)
43,126
ltxpdflinks._extractor
__init__
null
def __init__(self, graphic_fname, size, links, *, unitlength='1bp', **kwargs): self.graphic_fname = graphic_fname self.unitlength = unitlength # LaTeX length (w,h) = size self.size = (float(w),float(h)) # (width, height) self.links = links self.dic = dict(kwargs)
(self, graphic_fname, size, links, *, unitlength='1bp', **kwargs)
43,127
ltxpdflinks._extractor
__repr__
null
def __repr__(self): return self.__class__.__name__ + \ '({!r}, {!r}, {!r}, unitlength={!r}, **{!r})'.format( self.graphic_fname, self.size, self.links, self.unitlength, self.dic )
(self)
43,128
ltxpdflinks._extractor
ExtractedLink
.......... - `link_bbox` is relative to the page bottom left corner in user space units, given as `(x, y, w, h)` - `link_type` is one of 'URI', 'latex-ref', 'latex-cite'. When extracting special types of URLs (e.g. 'latexpdf://xxx/xxx') then the extracted type is 'URI' with the special URI, then use a relevant SpecialLinkConverter to convert the special URI's to specialized types.
class ExtractedLink: """ .......... - `link_bbox` is relative to the page bottom left corner in user space units, given as `(x, y, w, h)` - `link_type` is one of 'URI', 'latex-ref', 'latex-cite'. When extracting special types of URLs (e.g. 'latexpdf://xxx/xxx') then the extracted type is 'URI' with the special URI, then use a relevant SpecialLinkConverter to convert the special URI's to specialized types. """ def __init__(self, link_bbox, link_type, link_target, **kwargs): super().__init__() x, y, w, h = link_bbox self.link_bbox = (float(x), float(y), float(w), float(h)) self.link_type = link_type self.link_target = link_target self.dic = dict(kwargs) def __repr__(self): return self.__class__.__name__ + '({!r}, {!r}, {!r}, **{!r})'.format( self.link_bbox, self.link_type, self.link_target, self.dic )
(link_bbox, link_type, link_target, **kwargs)
43,129
ltxpdflinks._extractor
__init__
null
def __init__(self, link_bbox, link_type, link_target, **kwargs): super().__init__() x, y, w, h = link_bbox self.link_bbox = (float(x), float(y), float(w), float(h)) self.link_type = link_type self.link_target = link_target self.dic = dict(kwargs)
(self, link_bbox, link_type, link_target, **kwargs)
43,130
ltxpdflinks._extractor
__repr__
null
def __repr__(self): return self.__class__.__name__ + '({!r}, {!r}, {!r}, **{!r})'.format( self.link_bbox, self.link_type, self.link_target, self.dic )
(self)
43,131
ltxpdflinks._linkconverter
LatexRefsLinkConverter
null
class LatexRefsLinkConverter: def __init__(self): super().__init__() def convertLinks(self, extracted_links): """ Go over URI hyperlinks, and convert those whose "protocol" in the URL is "latexref". Conversion is performed in-place, directly modifying the input object hierarchy. This function doesn't return anything. Argument `extracted_links` is a :py:class:`ExtractedGraphicLinks` instance. """ for lnk in extracted_links.links: if lnk.link_type == 'URI': uri = lnk.link_target m = _rx_latexrefurl.match(uri) if m is None: continue # found match! change link type. ref_type, ref_target = m.group('ref_type'), m.group('ref_target') ref_target = urllib.parse.unquote(ref_target) if ref_type == 'ref': lnk.link_type = 'latex-ref' lnk.link_target = ref_target continue if ref_type == 'cite': lnk.link_type = 'latex-cite' lnk.link_target = ref_target continue logger.warning("Unsupported ref_type in special URL %r", uri) # done! everything was modified in-place, so we don't return anything return
()
43,132
ltxpdflinks._linkconverter
__init__
null
def __init__(self): super().__init__()
(self)
43,133
ltxpdflinks._linkconverter
convertLinks
Go over URI hyperlinks, and convert those whose "protocol" in the URL is "latexref". Conversion is performed in-place, directly modifying the input object hierarchy. This function doesn't return anything. Argument `extracted_links` is a :py:class:`ExtractedGraphicLinks` instance.
def convertLinks(self, extracted_links): """ Go over URI hyperlinks, and convert those whose "protocol" in the URL is "latexref". Conversion is performed in-place, directly modifying the input object hierarchy. This function doesn't return anything. Argument `extracted_links` is a :py:class:`ExtractedGraphicLinks` instance. """ for lnk in extracted_links.links: if lnk.link_type == 'URI': uri = lnk.link_target m = _rx_latexrefurl.match(uri) if m is None: continue # found match! change link type. ref_type, ref_target = m.group('ref_type'), m.group('ref_target') ref_target = urllib.parse.unquote(ref_target) if ref_type == 'ref': lnk.link_type = 'latex-ref' lnk.link_target = ref_target continue if ref_type == 'cite': lnk.link_type = 'latex-cite' lnk.link_target = ref_target continue logger.warning("Unsupported ref_type in special URL %r", uri) # done! everything was modified in-place, so we don't return anything return
(self, extracted_links)
43,134
ltxpdflinks._lplxexporter
LplxPictureEnvExporter
null
class LplxPictureEnvExporter: def __init__(self, *, include_comments_catcode=False): super().__init__() self.include_comments_catcode = include_comments_catcode def export(self, extractedgraphiclinks): e = extractedgraphiclinks # shorthand graphic_basefname, graphic_ext = os.path.splitext(e.graphic_fname) s = "" if self.include_comments_catcode: s += r"""\catcode`\%=14\relax""" + "\n" s += ( r"""% Automatically generated by ltxpdflinks """ + version_str + r""" on """ + datetime.datetime.now().isoformat() + r""" % % LPLX - """ + _makeltxsafe(e.graphic_fname) + r""" % \LPLX{version=0,ltxpdflinksversion={""" + version_str + r"""},features={bbox}}{% \lplxGraphic{""" + _makeltxsafe(graphic_basefname) + r"""}{""" + _makeltxsafe(graphic_ext) + r"""}% \lplxUserSpaceUnitLength{""" + e.unitlength + r"""}% \lplxSetBbox{0}{0}""" + "{{{:.6g}}}{{{:.6g}}}".format(e.size[0], e.size[1]) + r"""% %%BoundingBox: 0 0 """ + "{:d} {:d}".format(int(e.size[0]+0.5), int(e.size[1]+0.5)) + r""" %%HiResBoundingBox: 0 0 """ + "{:.6g} {:.6g}".format(e.size[0], e.size[1]) + r""" \lplxPicture{% """ ) for el in e.links: x, y, w, h = el.link_bbox lplxcmd = r'\lplxPutLink' lplxtailargs = '' if el.link_type == 'URI': hrstart = r"""\href{{{tgt}}}""".format(tgt=_makeltxsafe(el.link_target)) lplxtailargs = '{{{hrstart}}}{{}}'.format(hrstart=hrstart) elif el.link_type == 'latex-ref': hrstart = r"""\hyperref[{{{tgt}}}]""".format(tgt=_makeltxsafe(el.link_target)) lplxtailargs = '{{{hrstart}}}{{}}'.format(hrstart=hrstart) elif el.link_type == 'latex-cite': hrstart = r"""\hyperlink{{cite.{tgt}}}""".format(tgt=_makeltxsafe(el.link_target)) lplxtailargs = '{{{hrstart}}}{{}}'.format(hrstart=hrstart) elif el.link_type == 'latex-box': lplxcmd, lplxtailargs = _make_latexbox_from_url(el.link_target, el) else: logger.warning("Ignoring link with unsupported link_type: %r", el) continue # s += ( # r"\put({x},{y})".format(x=el.link_bbox[0], y=el.link_bbox[1]) + # "{" + s2 + "}\n" # ) s += ( r"{lplxcmd}{{{x:.8g}}}{{{y:.8g}}}{{{w:.8g}}}{{{h:.8g}}}{lplxtailargs}" .format(lplxcmd=lplxcmd, x=x, y=y, w=w, h=h, lplxtailargs=lplxtailargs) + r"%" + "\n" ) s += r"""}}%""" + "\n" return s
(*, include_comments_catcode=False)