index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
43,135 |
ltxpdflinks._lplxexporter
|
__init__
| null |
def __init__(self, *, include_comments_catcode=False):
super().__init__()
self.include_comments_catcode = include_comments_catcode
|
(self, *, include_comments_catcode=False)
|
43,136 |
ltxpdflinks._lplxexporter
|
export
| null |
def export(self, extractedgraphiclinks):
e = extractedgraphiclinks # shorthand
graphic_basefname, graphic_ext = os.path.splitext(e.graphic_fname)
s = ""
if self.include_comments_catcode:
s += r"""\catcode`\%=14\relax""" + "\n"
s += (
r"""% Automatically generated by ltxpdflinks """ + version_str + r""" on """ +
datetime.datetime.now().isoformat() + r"""
%
% LPLX - """ + _makeltxsafe(e.graphic_fname) + r"""
%
\LPLX{version=0,ltxpdflinksversion={""" + version_str +
r"""},features={bbox}}{%
\lplxGraphic{""" + _makeltxsafe(graphic_basefname) + r"""}{"""
+ _makeltxsafe(graphic_ext) + r"""}%
\lplxUserSpaceUnitLength{""" + e.unitlength + r"""}%
\lplxSetBbox{0}{0}""" + "{{{:.6g}}}{{{:.6g}}}".format(e.size[0], e.size[1]) + r"""%
%%BoundingBox: 0 0 """ + "{:d} {:d}".format(int(e.size[0]+0.5), int(e.size[1]+0.5)) + r"""
%%HiResBoundingBox: 0 0 """ + "{:.6g} {:.6g}".format(e.size[0], e.size[1]) + r"""
\lplxPicture{%
"""
)
for el in e.links:
x, y, w, h = el.link_bbox
lplxcmd = r'\lplxPutLink'
lplxtailargs = ''
if el.link_type == 'URI':
hrstart = r"""\href{{{tgt}}}""".format(tgt=_makeltxsafe(el.link_target))
lplxtailargs = '{{{hrstart}}}{{}}'.format(hrstart=hrstart)
elif el.link_type == 'latex-ref':
hrstart = r"""\hyperref[{{{tgt}}}]""".format(tgt=_makeltxsafe(el.link_target))
lplxtailargs = '{{{hrstart}}}{{}}'.format(hrstart=hrstart)
elif el.link_type == 'latex-cite':
hrstart = r"""\hyperlink{{cite.{tgt}}}""".format(tgt=_makeltxsafe(el.link_target))
lplxtailargs = '{{{hrstart}}}{{}}'.format(hrstart=hrstart)
elif el.link_type == 'latex-box':
lplxcmd, lplxtailargs = _make_latexbox_from_url(el.link_target, el)
else:
logger.warning("Ignoring link with unsupported link_type: %r", el)
continue
# s += (
# r"\put({x},{y})".format(x=el.link_bbox[0], y=el.link_bbox[1]) +
# "{" + s2 + "}\n"
# )
s += (
r"{lplxcmd}{{{x:.8g}}}{{{y:.8g}}}{{{w:.8g}}}{{{h:.8g}}}{lplxtailargs}"
.format(lplxcmd=lplxcmd, x=x, y=y, w=w, h=h, lplxtailargs=lplxtailargs)
+ r"%" + "\n"
)
s += r"""}}%""" + "\n"
return s
|
(self, extractedgraphiclinks)
|
43,137 |
ltxpdflinks._extractor
|
PdfGraphicLinksExtractor
| null |
class PdfGraphicLinksExtractor:
def __init__(self, fname):
super().__init__()
self.fname = fname
def extractGraphicLinks(self, pageno=None):
if pageno is None:
pageno = 0
with open(self.fname, 'rb') as f:
pdf = PyPDF2.PdfFileReader(f)
page = pdf.getPage(pageno).getObject()
page_size = (page.mediaBox.getWidth(), page.mediaBox.getHeight())
page_bottomleft = page.mediaBox.lowerLeft
extracted_list = []
if '/Annots' in page:
for annot in page['/Annots']:
annot = annot.getObject()
extracted = self._extract_annot_link(annot,
shift_rect_origin=page_bottomleft)
if extracted is not None:
logger.debug("Extracted link: %r", extracted)
extracted_list.append(extracted)
return ExtractedGraphicLinks(self.fname, page_size, extracted_list)
def _extract_annot_link(self, annot, *, shift_rect_origin=(0,0)):
if '/Subtype' not in annot or annot['/Subtype'].getObject() != '/Link':
logger.debug("Found annotation, not a link: %r", annot)
return None
if '/A' not in annot:
return None
annot_A = annot['/A'].getObject()
if '/S' not in annot_A or annot_A['/S'].getObject() != '/URI':
logger.warning("Link action %r has supported type (/S!=/URI)", annot_A)
return None
if '/URI' not in annot_A:
logger.warning("Link action %r does not have URI", annot_A)
return None
URI = annot_A['/URI'].getObject()
if '/Rect' not in annot:
logger.warning("Can't get annotation's bounding box (/Rect): %r", annot)
return None
else:
(x0,y0,x1,y1) = annot['/Rect'].getObject()
x = x0 - shift_rect_origin[0]
y = y0 - shift_rect_origin[1]
w = x1 - x0
h = y1 - y0
return ExtractedLink(link_bbox=(x,y,w,h), link_type='URI', link_target=URI)
|
(fname)
|
43,138 |
ltxpdflinks._extractor
|
__init__
| null |
def __init__(self, fname):
super().__init__()
self.fname = fname
|
(self, fname)
|
43,139 |
ltxpdflinks._extractor
|
_extract_annot_link
| null |
def _extract_annot_link(self, annot, *, shift_rect_origin=(0,0)):
if '/Subtype' not in annot or annot['/Subtype'].getObject() != '/Link':
logger.debug("Found annotation, not a link: %r", annot)
return None
if '/A' not in annot:
return None
annot_A = annot['/A'].getObject()
if '/S' not in annot_A or annot_A['/S'].getObject() != '/URI':
logger.warning("Link action %r has supported type (/S!=/URI)", annot_A)
return None
if '/URI' not in annot_A:
logger.warning("Link action %r does not have URI", annot_A)
return None
URI = annot_A['/URI'].getObject()
if '/Rect' not in annot:
logger.warning("Can't get annotation's bounding box (/Rect): %r", annot)
return None
else:
(x0,y0,x1,y1) = annot['/Rect'].getObject()
x = x0 - shift_rect_origin[0]
y = y0 - shift_rect_origin[1]
w = x1 - x0
h = y1 - y0
return ExtractedLink(link_bbox=(x,y,w,h), link_type='URI', link_target=URI)
|
(self, annot, *, shift_rect_origin=(0, 0))
|
43,140 |
ltxpdflinks._extractor
|
extractGraphicLinks
| null |
def extractGraphicLinks(self, pageno=None):
if pageno is None:
pageno = 0
with open(self.fname, 'rb') as f:
pdf = PyPDF2.PdfFileReader(f)
page = pdf.getPage(pageno).getObject()
page_size = (page.mediaBox.getWidth(), page.mediaBox.getHeight())
page_bottomleft = page.mediaBox.lowerLeft
extracted_list = []
if '/Annots' in page:
for annot in page['/Annots']:
annot = annot.getObject()
extracted = self._extract_annot_link(annot,
shift_rect_origin=page_bottomleft)
if extracted is not None:
logger.debug("Extracted link: %r", extracted)
extracted_list.append(extracted)
return ExtractedGraphicLinks(self.fname, page_size, extracted_list)
|
(self, pageno=None)
|
43,145 |
salesforce_api.client
|
Client
| null |
class Client:
def __init__(self,
connection: Connection = None,
domain: str = None,
username: str = None,
password: str = None,
security_token: str = None,
password_and_security_token: str = None,
client_id: str = None,
client_secret: str = None,
access_token: str = None,
session: requests.Session = None,
is_sandbox=False,
api_version: str = None):
self.connection = connection if connection else login.magic(
domain=domain,
username=username,
password=password,
security_token=security_token,
password_and_security_token=password_and_security_token,
client_id=client_id,
client_secret=client_secret,
access_token=access_token,
session=misc_utils.get_session(session),
is_sandbox=is_sandbox,
api_version=api_version
)
self._setup_services()
def _setup_services(self):
self.basic = basic.Basic(self.connection)
self.sobjects = sobjects.SObjects(self.connection)
self.tooling = tooling.Tooling(self.connection)
self.deploy = deploy.Deploy(self.connection)
self.retrieve = retrieve.Retrieve(self.connection)
self.bulk = bulk.Client(self.connection)
self.bulk_v1 = bulk.v1.Client(self.connection)
self.bulk_v2 = bulk.v2.Client(self.connection)
|
(connection: salesforce_api.core.Connection = None, domain: str = None, username: str = None, password: str = None, security_token: str = None, password_and_security_token: str = None, client_id: str = None, client_secret: str = None, access_token: str = None, session: requests.sessions.Session = None, is_sandbox=False, api_version: str = None)
|
43,146 |
salesforce_api.client
|
__init__
| null |
def __init__(self,
connection: Connection = None,
domain: str = None,
username: str = None,
password: str = None,
security_token: str = None,
password_and_security_token: str = None,
client_id: str = None,
client_secret: str = None,
access_token: str = None,
session: requests.Session = None,
is_sandbox=False,
api_version: str = None):
self.connection = connection if connection else login.magic(
domain=domain,
username=username,
password=password,
security_token=security_token,
password_and_security_token=password_and_security_token,
client_id=client_id,
client_secret=client_secret,
access_token=access_token,
session=misc_utils.get_session(session),
is_sandbox=is_sandbox,
api_version=api_version
)
self._setup_services()
|
(self, connection: Optional[salesforce_api.core.Connection] = None, domain: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, security_token: Optional[str] = None, password_and_security_token: Optional[str] = None, client_id: Optional[str] = None, client_secret: Optional[str] = None, access_token: Optional[str] = None, session: Optional[requests.sessions.Session] = None, is_sandbox=False, api_version: Optional[str] = None)
|
43,147 |
salesforce_api.client
|
_setup_services
| null |
def _setup_services(self):
self.basic = basic.Basic(self.connection)
self.sobjects = sobjects.SObjects(self.connection)
self.tooling = tooling.Tooling(self.connection)
self.deploy = deploy.Deploy(self.connection)
self.retrieve = retrieve.Retrieve(self.connection)
self.bulk = bulk.Client(self.connection)
self.bulk_v1 = bulk.v1.Client(self.connection)
self.bulk_v2 = bulk.v2.Client(self.connection)
|
(self)
|
43,157 |
fast_poisson_solver.data
|
Data
| null |
class Data:
def __init__(self, cases, domain_x=None, domain_y=None, grid_num=32, noise_std=0, shuffle=False,
initial_shuffle=False, batchsize=-1, batchsize_bc=-1,
use_torch=False, device='cpu', precision=torch.float32, random_coords=False, seed=0):
if domain_y is None:
domain_y = [0, 1]
if domain_x is None:
domain_x = [0, 1]
self.y = None
self.x = None
self.y_grid = None
self.x_grid = None
self.domain_x = domain_x
self.domain_y = domain_y
self.grid_num = grid_num
self.cases = cases
self.noise_std = noise_std
self.num_cases = len(cases)
self.shuffle = shuffle
self.initial_shuffle = initial_shuffle
self.batchsize = batchsize if batchsize > 0 else self.grid_num ** 2
self.batchsize_bc = batchsize_bc if batchsize_bc > 0 else 4 * self.grid_num + 4
self.batch_number = 0
self.number_of_batches = np.ceil(self.grid_num ** 2 / self.batchsize).astype(int)
self.use_torch = use_torch
self.device = device
self.random_coords = random_coords
self.seed = seed
self.precision = precision
assert 0 <= self.domain_y[0] <= 1 and 0 <= self.domain_y[1] <= 1, \
"Both elements of domain_y should lie within the interval [0, 1] inclusive"
assert self.domain_y[1] > self.domain_y[0], \
"The second element of domain_y should be larger than the first element"
assert 0 <= self.domain_x[0] <= 1 and 0 <= self.domain_x[1] <= 1, \
"Both elements of domain_x should lie within the interval [0, 1] inclusive"
assert self.domain_x[1] > self.domain_x[0], \
"The second element of domain_y should be larger than the first element"
x_domain_length = self.domain_x[1] - self.domain_x[0]
y_domain_length = self.domain_y[1] - self.domain_y[0]
if x_domain_length > y_domain_length:
self.x_grid_num = self.grid_num
self.y_grid_num = int(self.grid_num * y_domain_length / x_domain_length)
elif x_domain_length < y_domain_length:
self.x_grid_num = int(self.grid_num * x_domain_length / y_domain_length)
self.y_grid_num = self.grid_num
else:
self.x_grid_num = self.grid_num
self.y_grid_num = self.grid_num
np.random.seed(self.seed)
torch.manual_seed(self.seed)
# self.indices = [np.random.choice(self.grid_num**2, self.batchsize, replace=False) for _ in range(self.num_cases)]
# self.indices = np.arange(self.grid_num ** 2)
self.indices = np.arange(self.x_grid_num * self.y_grid_num)
# self.indices_bc = np.arange(4 * self.grid_num + 4)
self.indices_bc = np.arange(2 * self.x_grid_num + 2 * self.y_grid_num + 4)
if self.initial_shuffle:
self.indices = np.random.permutation(self.indices)
self.indices_bc = np.random.permutation(self.indices_bc)
self.generate_boundary_coords()
if not random_coords:
self.generate_grid()
else:
self.generate_random_coords()
self.calculate_cases()
if self.use_torch:
self.to_torch_tensors()
else:
self.x_grid = self.x_grid.reshape(-1, 1)
self.y_grid = self.x_grid.reshape(-1, 1)
self.x_bc = self.x_grid.reshape(-1, 1)
self.y_bc = self.x_grid.reshape(-1, 1)
def get_infos(self):
data = {
'domain_x': self.domain_x,
'domain_y': self.domain_y,
'grid_num': self.grid_num,
'num_cases': self.num_cases,
'shuffle': self.shuffle,
'initial_shuffle': self.initial_shuffle,
'batchsize': self.batchsize,
'batchsize_bc': self.batchsize_bc,
'use_torch': self.use_torch,
'device': self.device,
'seed': self.seed,
'precision': str(self.precision),
'cases': self.cases,
}
return data
def to_torch_tensors(self):
self.out = torch.from_numpy(self.out).to(self.device).to(self.precision)
self.x_grid = torch.from_numpy(self.x_grid).unsqueeze(1).to(self.device).to(self.precision)
self.y_grid = torch.from_numpy(self.y_grid).unsqueeze(1).to(self.device).to(self.precision)
self.bc = torch.from_numpy(self.bc).to(self.device).to(self.precision)
self.x_bc = torch.from_numpy(self.x_bc).unsqueeze(1).to(self.device).to(self.precision)
self.y_bc = torch.from_numpy(self.y_bc).unsqueeze(1).to(self.device).to(self.precision)
self.indices = torch.from_numpy(self.indices).long().to(self.device)
self.indices_bc = torch.from_numpy(self.indices_bc).long().to(self.device)
def __iter__(self):
return self
def __next__(self):
if self.batch_number < self.number_of_batches:
out_call, x_call, y_call, bc_call, x_bc_call, y_bc_call = self.__call__(self.batch_number)
self.batch_number += 1
return out_call, x_call, y_call, bc_call, x_bc_call, y_bc_call
else:
self.batch_number = 0
raise StopIteration
def __call__(self, batch_number):
if batch_number == 0 and self.shuffle:
self.shuffle_epoch()
min_batch = batch_number * self.batchsize
max_batch = min((min_batch + self.batchsize, self.grid_num ** 2))
max_batch = min((min_batch + self.batchsize, self.x_grid_num * self.y_grid_num))
batchsize_i = max_batch - min_batch
min_batch_bc = batch_number * self.batchsize_bc
# max_batch_bc = min((min_batch_bc + self.batchsize_bc, 4 * self.grid_num + 4))
max_batch_bc = min((min_batch_bc + self.batchsize_bc, 2 * self.x_grid_num + 2 * self.y_grid_num + 4))
batchsize_i_bc = max_batch_bc - min_batch_bc
indices_call = self.indices[min_batch: max_batch]
if self.use_torch:
out_call = torch.zeros(size=(batchsize_i, self.num_cases), device=self.device, dtype=self.precision)
else:
out_call = np.zeros((batchsize_i, self.num_cases))
x_call = self.x_grid[indices_call]
y_call = self.y_grid[indices_call]
for i, out_i in enumerate(self.out.T):
out_call[:, i] = out_i[indices_call]
indices_call_bc = self.indices_bc[min_batch_bc: max_batch_bc]
if self.use_torch:
bc_call = torch.zeros(size=(batchsize_i_bc, self.num_cases), device=self.device, dtype=self.precision)
else:
bc_call = np.zeros((batchsize_i_bc, self.num_cases))
x_bc_call = self.x_bc[indices_call_bc]
y_bc_call = self.y_bc[indices_call_bc]
for i, bc_i in enumerate(self.bc.T):
bc_call[:, i] = bc_i[indices_call_bc]
return out_call, x_call, y_call, bc_call, x_bc_call, y_bc_call
def shuffle_epoch(self):
if self.use_torch:
self.indices = torch.randperm(self.indices.shape[0])
self.indices_bc = torch.randperm(self.indices_bc.shape[0])
else:
self.indices = np.random.permutation(self.indices)
self.indices_bc = np.random.permutation(self.indices_bc)
def generate_grid(self):
# x = np.linspace(self.domain_x[0], self.domain_x[1], self.grid_num + 2)[1:-1]
x = np.linspace(self.domain_x[0], self.domain_x[1], self.x_grid_num + 2)[1:-1]
y = np.linspace(self.domain_y[0], self.domain_y[1], self.y_grid_num + 2)[1:-1]
x, y = np.meshgrid(x, y)
self.x_grid = x.flatten()
self.y_grid = y.flatten()
def generate_random_coords(self):
engine = qmc.Sobol(d=2, scramble=True, seed=self.seed) # d=2 for 2D points
sample = engine.random(int(self.grid_num ** 2))
self.x_grid, self.y_grid = np.hsplit(sample, 2)
self.y_grid = self.y_grid.flatten()
self.x_grid = self.x_grid.flatten()
def generate_boundary_coords(self):
# x_grid = np.linspace(self.domain_x[0], self.domain_x[1], self.grid_num + 2)
x_grid = np.linspace(self.domain_x[0], self.domain_x[1], self.x_grid_num + 2)
y_grid = np.linspace(self.domain_y[0], self.domain_y[1], self.y_grid_num + 2)[1:-1]
lower_x = np.ones_like(y_grid) * self.domain_x[0]
lower_y = np.ones_like(x_grid) * self.domain_y[0]
upper_x = np.ones_like(y_grid) * self.domain_x[1]
upper_y = np.ones_like(x_grid) * self.domain_y[1]
self.x_bc = np.concatenate([x_grid, x_grid, lower_x, upper_x]).flatten()
self.y_bc = np.concatenate([lower_y, upper_y, y_grid, y_grid]).flatten()
def calculate_cases(self):
self.out = np.zeros((len(self.x_grid), len(self.cases)))
self.bc = np.zeros((len(self.x_bc), len(self.cases)))
for i, case in enumerate(self.cases):
if case['b_val'] == 'random':
self.bc[:, i] = np.ones_like(self.x_bc) * np.random.uniform(-10, 10)
else:
np.random.uniform(-10, 10) # to make sure the random seed is not affected
self.bc[:, i] = np.ones_like(self.x_bc) * case['b_val']
# if case['name'] == 'sinsin':
# self.out[:, i] = sf.sinsin(self.x_grid, self.y_grid, case['param'])
if case['name'] == 'sin':
self.out[:, i] = sf.sincos(self.x_grid, self.y_grid, case['param'])
elif case['name'] == 'exp':
self.out[:, i] = sf.exp(self.x_grid, self.y_grid, case['param'])
elif case['name'] == 'perlin':
self.out[:, i] = sf.perlin(self.x_grid, self.y_grid, case['param'])
# elif case['name'] == 'rectangle':
# self.out[:, i] = sf.rectangle(self.x_grid, self.y_grid, case['param'])
# elif case['name'] == 'circle':
# self.out[:, i] = sf.circle(self.x_grid, self.y_grid, case['param'])
elif case['name'] == 'geo':
self.out[:, i] = sf.rectangle_circle(self.x_grid, self.y_grid, case['param'], grid_num=self.grid_num)
else:
raise ValueError('Unknown case')
if self.noise_std > 0:
self.out[:, i] *= np.random.normal(1, self.noise_std, len(self.x_grid))
def plot_functions(self):
f, x, y, *_ = self.__call__(0)
if self.use_torch:
f = f.float().cpu().detach().numpy()
x = x.float().cpu().detach().numpy()
y = y.float().cpu().detach().numpy()
xy = np.array([x, y]).T
ind = np.lexsort((xy[:, 1], xy[:, 0]))
f = f[ind]
x = x[ind]
y = y[ind]
def plot(fig, ax, x, y, v, title):
x = x.reshape(self.grid_num, self.grid_num)
y = y.reshape(self.grid_num, self.grid_num)
v = v.reshape(self.grid_num, self.grid_num)
c = ax.contourf(x, y, v, 100, cmap='jet')
# c = ax.scatter(x, y, c=v, s=1)
ax.set_title(title)
ax.set_xlabel('x')
ax.set_ylabel('y')
fig.colorbar(c, ax=ax)
plots_x = np.min((self.num_cases, 4))
plots_y = int(np.ceil(self.num_cases / plots_x))
fig, axs = plt.subplots(plots_y, plots_x, figsize=(plots_x * 4, plots_y * 4), dpi=100, tight_layout=True)
if self.num_cases == 1:
plot(fig, axs, x, y, f[:, 0], self.cases[0]['name'])
else:
i = 0
for ax in axs.flatten():
if i < self.num_cases:
plot(fig, ax, x, y, f[:, i], self.cases[i]['name'])
else:
ax.axis('off')
i += 1
plt.savefig(os.path.join('..', 'images', 'functions.png'))
plt.close()
|
(cases, domain_x=None, domain_y=None, grid_num=32, noise_std=0, shuffle=False, initial_shuffle=False, batchsize=-1, batchsize_bc=-1, use_torch=False, device='cpu', precision=torch.float32, random_coords=False, seed=0)
|
43,158 |
fast_poisson_solver.data
|
__call__
| null |
def __call__(self, batch_number):
if batch_number == 0 and self.shuffle:
self.shuffle_epoch()
min_batch = batch_number * self.batchsize
max_batch = min((min_batch + self.batchsize, self.grid_num ** 2))
max_batch = min((min_batch + self.batchsize, self.x_grid_num * self.y_grid_num))
batchsize_i = max_batch - min_batch
min_batch_bc = batch_number * self.batchsize_bc
# max_batch_bc = min((min_batch_bc + self.batchsize_bc, 4 * self.grid_num + 4))
max_batch_bc = min((min_batch_bc + self.batchsize_bc, 2 * self.x_grid_num + 2 * self.y_grid_num + 4))
batchsize_i_bc = max_batch_bc - min_batch_bc
indices_call = self.indices[min_batch: max_batch]
if self.use_torch:
out_call = torch.zeros(size=(batchsize_i, self.num_cases), device=self.device, dtype=self.precision)
else:
out_call = np.zeros((batchsize_i, self.num_cases))
x_call = self.x_grid[indices_call]
y_call = self.y_grid[indices_call]
for i, out_i in enumerate(self.out.T):
out_call[:, i] = out_i[indices_call]
indices_call_bc = self.indices_bc[min_batch_bc: max_batch_bc]
if self.use_torch:
bc_call = torch.zeros(size=(batchsize_i_bc, self.num_cases), device=self.device, dtype=self.precision)
else:
bc_call = np.zeros((batchsize_i_bc, self.num_cases))
x_bc_call = self.x_bc[indices_call_bc]
y_bc_call = self.y_bc[indices_call_bc]
for i, bc_i in enumerate(self.bc.T):
bc_call[:, i] = bc_i[indices_call_bc]
return out_call, x_call, y_call, bc_call, x_bc_call, y_bc_call
|
(self, batch_number)
|
43,159 |
fast_poisson_solver.data
|
__init__
| null |
def __init__(self, cases, domain_x=None, domain_y=None, grid_num=32, noise_std=0, shuffle=False,
initial_shuffle=False, batchsize=-1, batchsize_bc=-1,
use_torch=False, device='cpu', precision=torch.float32, random_coords=False, seed=0):
if domain_y is None:
domain_y = [0, 1]
if domain_x is None:
domain_x = [0, 1]
self.y = None
self.x = None
self.y_grid = None
self.x_grid = None
self.domain_x = domain_x
self.domain_y = domain_y
self.grid_num = grid_num
self.cases = cases
self.noise_std = noise_std
self.num_cases = len(cases)
self.shuffle = shuffle
self.initial_shuffle = initial_shuffle
self.batchsize = batchsize if batchsize > 0 else self.grid_num ** 2
self.batchsize_bc = batchsize_bc if batchsize_bc > 0 else 4 * self.grid_num + 4
self.batch_number = 0
self.number_of_batches = np.ceil(self.grid_num ** 2 / self.batchsize).astype(int)
self.use_torch = use_torch
self.device = device
self.random_coords = random_coords
self.seed = seed
self.precision = precision
assert 0 <= self.domain_y[0] <= 1 and 0 <= self.domain_y[1] <= 1, \
"Both elements of domain_y should lie within the interval [0, 1] inclusive"
assert self.domain_y[1] > self.domain_y[0], \
"The second element of domain_y should be larger than the first element"
assert 0 <= self.domain_x[0] <= 1 and 0 <= self.domain_x[1] <= 1, \
"Both elements of domain_x should lie within the interval [0, 1] inclusive"
assert self.domain_x[1] > self.domain_x[0], \
"The second element of domain_y should be larger than the first element"
x_domain_length = self.domain_x[1] - self.domain_x[0]
y_domain_length = self.domain_y[1] - self.domain_y[0]
if x_domain_length > y_domain_length:
self.x_grid_num = self.grid_num
self.y_grid_num = int(self.grid_num * y_domain_length / x_domain_length)
elif x_domain_length < y_domain_length:
self.x_grid_num = int(self.grid_num * x_domain_length / y_domain_length)
self.y_grid_num = self.grid_num
else:
self.x_grid_num = self.grid_num
self.y_grid_num = self.grid_num
np.random.seed(self.seed)
torch.manual_seed(self.seed)
# self.indices = [np.random.choice(self.grid_num**2, self.batchsize, replace=False) for _ in range(self.num_cases)]
# self.indices = np.arange(self.grid_num ** 2)
self.indices = np.arange(self.x_grid_num * self.y_grid_num)
# self.indices_bc = np.arange(4 * self.grid_num + 4)
self.indices_bc = np.arange(2 * self.x_grid_num + 2 * self.y_grid_num + 4)
if self.initial_shuffle:
self.indices = np.random.permutation(self.indices)
self.indices_bc = np.random.permutation(self.indices_bc)
self.generate_boundary_coords()
if not random_coords:
self.generate_grid()
else:
self.generate_random_coords()
self.calculate_cases()
if self.use_torch:
self.to_torch_tensors()
else:
self.x_grid = self.x_grid.reshape(-1, 1)
self.y_grid = self.x_grid.reshape(-1, 1)
self.x_bc = self.x_grid.reshape(-1, 1)
self.y_bc = self.x_grid.reshape(-1, 1)
|
(self, cases, domain_x=None, domain_y=None, grid_num=32, noise_std=0, shuffle=False, initial_shuffle=False, batchsize=-1, batchsize_bc=-1, use_torch=False, device='cpu', precision=torch.float32, random_coords=False, seed=0)
|
43,161 |
fast_poisson_solver.data
|
__next__
| null |
def __next__(self):
if self.batch_number < self.number_of_batches:
out_call, x_call, y_call, bc_call, x_bc_call, y_bc_call = self.__call__(self.batch_number)
self.batch_number += 1
return out_call, x_call, y_call, bc_call, x_bc_call, y_bc_call
else:
self.batch_number = 0
raise StopIteration
|
(self)
|
43,162 |
fast_poisson_solver.data
|
calculate_cases
| null |
def calculate_cases(self):
self.out = np.zeros((len(self.x_grid), len(self.cases)))
self.bc = np.zeros((len(self.x_bc), len(self.cases)))
for i, case in enumerate(self.cases):
if case['b_val'] == 'random':
self.bc[:, i] = np.ones_like(self.x_bc) * np.random.uniform(-10, 10)
else:
np.random.uniform(-10, 10) # to make sure the random seed is not affected
self.bc[:, i] = np.ones_like(self.x_bc) * case['b_val']
# if case['name'] == 'sinsin':
# self.out[:, i] = sf.sinsin(self.x_grid, self.y_grid, case['param'])
if case['name'] == 'sin':
self.out[:, i] = sf.sincos(self.x_grid, self.y_grid, case['param'])
elif case['name'] == 'exp':
self.out[:, i] = sf.exp(self.x_grid, self.y_grid, case['param'])
elif case['name'] == 'perlin':
self.out[:, i] = sf.perlin(self.x_grid, self.y_grid, case['param'])
# elif case['name'] == 'rectangle':
# self.out[:, i] = sf.rectangle(self.x_grid, self.y_grid, case['param'])
# elif case['name'] == 'circle':
# self.out[:, i] = sf.circle(self.x_grid, self.y_grid, case['param'])
elif case['name'] == 'geo':
self.out[:, i] = sf.rectangle_circle(self.x_grid, self.y_grid, case['param'], grid_num=self.grid_num)
else:
raise ValueError('Unknown case')
if self.noise_std > 0:
self.out[:, i] *= np.random.normal(1, self.noise_std, len(self.x_grid))
|
(self)
|
43,163 |
fast_poisson_solver.data
|
generate_boundary_coords
| null |
def generate_boundary_coords(self):
# x_grid = np.linspace(self.domain_x[0], self.domain_x[1], self.grid_num + 2)
x_grid = np.linspace(self.domain_x[0], self.domain_x[1], self.x_grid_num + 2)
y_grid = np.linspace(self.domain_y[0], self.domain_y[1], self.y_grid_num + 2)[1:-1]
lower_x = np.ones_like(y_grid) * self.domain_x[0]
lower_y = np.ones_like(x_grid) * self.domain_y[0]
upper_x = np.ones_like(y_grid) * self.domain_x[1]
upper_y = np.ones_like(x_grid) * self.domain_y[1]
self.x_bc = np.concatenate([x_grid, x_grid, lower_x, upper_x]).flatten()
self.y_bc = np.concatenate([lower_y, upper_y, y_grid, y_grid]).flatten()
|
(self)
|
43,164 |
fast_poisson_solver.data
|
generate_grid
| null |
def generate_grid(self):
# x = np.linspace(self.domain_x[0], self.domain_x[1], self.grid_num + 2)[1:-1]
x = np.linspace(self.domain_x[0], self.domain_x[1], self.x_grid_num + 2)[1:-1]
y = np.linspace(self.domain_y[0], self.domain_y[1], self.y_grid_num + 2)[1:-1]
x, y = np.meshgrid(x, y)
self.x_grid = x.flatten()
self.y_grid = y.flatten()
|
(self)
|
43,165 |
fast_poisson_solver.data
|
generate_random_coords
| null |
def generate_random_coords(self):
engine = qmc.Sobol(d=2, scramble=True, seed=self.seed) # d=2 for 2D points
sample = engine.random(int(self.grid_num ** 2))
self.x_grid, self.y_grid = np.hsplit(sample, 2)
self.y_grid = self.y_grid.flatten()
self.x_grid = self.x_grid.flatten()
|
(self)
|
43,166 |
fast_poisson_solver.data
|
get_infos
| null |
def get_infos(self):
data = {
'domain_x': self.domain_x,
'domain_y': self.domain_y,
'grid_num': self.grid_num,
'num_cases': self.num_cases,
'shuffle': self.shuffle,
'initial_shuffle': self.initial_shuffle,
'batchsize': self.batchsize,
'batchsize_bc': self.batchsize_bc,
'use_torch': self.use_torch,
'device': self.device,
'seed': self.seed,
'precision': str(self.precision),
'cases': self.cases,
}
return data
|
(self)
|
43,167 |
fast_poisson_solver.data
|
plot_functions
| null |
def plot_functions(self):
f, x, y, *_ = self.__call__(0)
if self.use_torch:
f = f.float().cpu().detach().numpy()
x = x.float().cpu().detach().numpy()
y = y.float().cpu().detach().numpy()
xy = np.array([x, y]).T
ind = np.lexsort((xy[:, 1], xy[:, 0]))
f = f[ind]
x = x[ind]
y = y[ind]
def plot(fig, ax, x, y, v, title):
x = x.reshape(self.grid_num, self.grid_num)
y = y.reshape(self.grid_num, self.grid_num)
v = v.reshape(self.grid_num, self.grid_num)
c = ax.contourf(x, y, v, 100, cmap='jet')
# c = ax.scatter(x, y, c=v, s=1)
ax.set_title(title)
ax.set_xlabel('x')
ax.set_ylabel('y')
fig.colorbar(c, ax=ax)
plots_x = np.min((self.num_cases, 4))
plots_y = int(np.ceil(self.num_cases / plots_x))
fig, axs = plt.subplots(plots_y, plots_x, figsize=(plots_x * 4, plots_y * 4), dpi=100, tight_layout=True)
if self.num_cases == 1:
plot(fig, axs, x, y, f[:, 0], self.cases[0]['name'])
else:
i = 0
for ax in axs.flatten():
if i < self.num_cases:
plot(fig, ax, x, y, f[:, i], self.cases[i]['name'])
else:
ax.axis('off')
i += 1
plt.savefig(os.path.join('..', 'images', 'functions.png'))
plt.close()
|
(self)
|
43,168 |
fast_poisson_solver.data
|
shuffle_epoch
| null |
def shuffle_epoch(self):
if self.use_torch:
self.indices = torch.randperm(self.indices.shape[0])
self.indices_bc = torch.randperm(self.indices_bc.shape[0])
else:
self.indices = np.random.permutation(self.indices)
self.indices_bc = np.random.permutation(self.indices_bc)
|
(self)
|
43,169 |
fast_poisson_solver.data
|
to_torch_tensors
| null |
def to_torch_tensors(self):
self.out = torch.from_numpy(self.out).to(self.device).to(self.precision)
self.x_grid = torch.from_numpy(self.x_grid).unsqueeze(1).to(self.device).to(self.precision)
self.y_grid = torch.from_numpy(self.y_grid).unsqueeze(1).to(self.device).to(self.precision)
self.bc = torch.from_numpy(self.bc).to(self.device).to(self.precision)
self.x_bc = torch.from_numpy(self.x_bc).unsqueeze(1).to(self.device).to(self.precision)
self.y_bc = torch.from_numpy(self.y_bc).unsqueeze(1).to(self.device).to(self.precision)
self.indices = torch.from_numpy(self.indices).long().to(self.device)
self.indices_bc = torch.from_numpy(self.indices_bc).long().to(self.device)
|
(self)
|
43,170 |
matplotlib.cm
|
ScalarMappable
|
A mixin class to map scalar data to RGBA.
The ScalarMappable applies data normalization before returning RGBA colors
from the given colormap.
|
class ScalarMappable:
"""
A mixin class to map scalar data to RGBA.
The ScalarMappable applies data normalization before returning RGBA colors
from the given colormap.
"""
def __init__(self, norm=None, cmap=None):
"""
Parameters
----------
norm : `.Normalize` (or subclass thereof) or str or None
The normalizing object which scales data, typically into the
interval ``[0, 1]``.
If a `str`, a `.Normalize` subclass is dynamically generated based
on the scale with the corresponding name.
If *None*, *norm* defaults to a *colors.Normalize* object which
initializes its scaling based on the first data processed.
cmap : str or `~matplotlib.colors.Colormap`
The colormap used to map normalized data values to RGBA colors.
"""
self._A = None
self._norm = None # So that the setter knows we're initializing.
self.set_norm(norm) # The Normalize instance of this ScalarMappable.
self.cmap = None # So that the setter knows we're initializing.
self.set_cmap(cmap) # The Colormap instance of this ScalarMappable.
#: The last colorbar associated with this ScalarMappable. May be None.
self.colorbar = None
self.callbacks = cbook.CallbackRegistry(signals=["changed"])
def _scale_norm(self, norm, vmin, vmax):
"""
Helper for initial scaling.
Used by public functions that create a ScalarMappable and support
parameters *vmin*, *vmax* and *norm*. This makes sure that a *norm*
will take precedence over *vmin*, *vmax*.
Note that this method does not set the norm.
"""
if vmin is not None or vmax is not None:
self.set_clim(vmin, vmax)
if isinstance(norm, colors.Normalize):
raise ValueError(
"Passing a Normalize instance simultaneously with "
"vmin/vmax is not supported. Please pass vmin/vmax "
"directly to the norm when creating it.")
# always resolve the autoscaling so we have concrete limits
# rather than deferring to draw time.
self.autoscale_None()
def to_rgba(self, x, alpha=None, bytes=False, norm=True):
"""
Return a normalized RGBA array corresponding to *x*.
In the normal case, *x* is a 1D or 2D sequence of scalars, and
the corresponding `~numpy.ndarray` of RGBA values will be returned,
based on the norm and colormap set for this ScalarMappable.
There is one special case, for handling images that are already
RGB or RGBA, such as might have been read from an image file.
If *x* is an `~numpy.ndarray` with 3 dimensions,
and the last dimension is either 3 or 4, then it will be
treated as an RGB or RGBA array, and no mapping will be done.
The array can be `~numpy.uint8`, or it can be floats with
values in the 0-1 range; otherwise a ValueError will be raised.
If it is a masked array, any masked elements will be set to 0 alpha.
If the last dimension is 3, the *alpha* kwarg (defaulting to 1)
will be used to fill in the transparency. If the last dimension
is 4, the *alpha* kwarg is ignored; it does not
replace the preexisting alpha. A ValueError will be raised
if the third dimension is other than 3 or 4.
In either case, if *bytes* is *False* (default), the RGBA
array will be floats in the 0-1 range; if it is *True*,
the returned RGBA array will be `~numpy.uint8` in the 0 to 255 range.
If norm is False, no normalization of the input data is
performed, and it is assumed to be in the range (0-1).
"""
# First check for special case, image input:
try:
if x.ndim == 3:
if x.shape[2] == 3:
if alpha is None:
alpha = 1
if x.dtype == np.uint8:
alpha = np.uint8(alpha * 255)
m, n = x.shape[:2]
xx = np.empty(shape=(m, n, 4), dtype=x.dtype)
xx[:, :, :3] = x
xx[:, :, 3] = alpha
elif x.shape[2] == 4:
xx = x
else:
raise ValueError("Third dimension must be 3 or 4")
if xx.dtype.kind == 'f':
if norm and (xx.max() > 1 or xx.min() < 0):
raise ValueError("Floating point image RGB values "
"must be in the 0..1 range.")
if bytes:
xx = (xx * 255).astype(np.uint8)
elif xx.dtype == np.uint8:
if not bytes:
xx = xx.astype(np.float32) / 255
else:
raise ValueError("Image RGB array must be uint8 or "
"floating point; found %s" % xx.dtype)
# Account for any masked entries in the original array
# If any of R, G, B, or A are masked for an entry, we set alpha to 0
if np.ma.is_masked(x):
xx[np.any(np.ma.getmaskarray(x), axis=2), 3] = 0
return xx
except AttributeError:
# e.g., x is not an ndarray; so try mapping it
pass
# This is the normal case, mapping a scalar array:
x = ma.asarray(x)
if norm:
x = self.norm(x)
rgba = self.cmap(x, alpha=alpha, bytes=bytes)
return rgba
def set_array(self, A):
"""
Set the value array from array-like *A*.
Parameters
----------
A : array-like or None
The values that are mapped to colors.
The base class `.ScalarMappable` does not make any assumptions on
the dimensionality and shape of the value array *A*.
"""
if A is None:
self._A = None
return
A = cbook.safe_masked_invalid(A, copy=True)
if not np.can_cast(A.dtype, float, "same_kind"):
raise TypeError(f"Image data of dtype {A.dtype} cannot be "
"converted to float")
self._A = A
def get_array(self):
"""
Return the array of values, that are mapped to colors.
The base class `.ScalarMappable` does not make any assumptions on
the dimensionality and shape of the array.
"""
return self._A
def get_cmap(self):
"""Return the `.Colormap` instance."""
return self.cmap
def get_clim(self):
"""
Return the values (min, max) that are mapped to the colormap limits.
"""
return self.norm.vmin, self.norm.vmax
def set_clim(self, vmin=None, vmax=None):
"""
Set the norm limits for image scaling.
Parameters
----------
vmin, vmax : float
The limits.
The limits may also be passed as a tuple (*vmin*, *vmax*) as a
single positional argument.
.. ACCEPTS: (vmin: float, vmax: float)
"""
# If the norm's limits are updated self.changed() will be called
# through the callbacks attached to the norm
if vmax is None:
try:
vmin, vmax = vmin
except (TypeError, ValueError):
pass
if vmin is not None:
self.norm.vmin = colors._sanitize_extrema(vmin)
if vmax is not None:
self.norm.vmax = colors._sanitize_extrema(vmax)
def get_alpha(self):
"""
Returns
-------
float
Always returns 1.
"""
# This method is intended to be overridden by Artist sub-classes
return 1.
def set_cmap(self, cmap):
"""
Set the colormap for luminance data.
Parameters
----------
cmap : `.Colormap` or str or None
"""
in_init = self.cmap is None
self.cmap = _ensure_cmap(cmap)
if not in_init:
self.changed() # Things are not set up properly yet.
@property
def norm(self):
return self._norm
@norm.setter
def norm(self, norm):
_api.check_isinstance((colors.Normalize, str, None), norm=norm)
if norm is None:
norm = colors.Normalize()
elif isinstance(norm, str):
try:
scale_cls = scale._scale_mapping[norm]
except KeyError:
raise ValueError(
"Invalid norm str name; the following values are "
f"supported: {', '.join(scale._scale_mapping)}"
) from None
norm = _auto_norm_from_scale(scale_cls)()
if norm is self.norm:
# We aren't updating anything
return
in_init = self.norm is None
# Remove the current callback and connect to the new one
if not in_init:
self.norm.callbacks.disconnect(self._id_norm)
self._norm = norm
self._id_norm = self.norm.callbacks.connect('changed',
self.changed)
if not in_init:
self.changed()
def set_norm(self, norm):
"""
Set the normalization instance.
Parameters
----------
norm : `.Normalize` or str or None
Notes
-----
If there are any colorbars using the mappable for this norm, setting
the norm of the mappable will reset the norm, locator, and formatters
on the colorbar to default.
"""
self.norm = norm
def autoscale(self):
"""
Autoscale the scalar limits on the norm instance using the
current array
"""
if self._A is None:
raise TypeError('You must first set_array for mappable')
# If the norm's limits are updated self.changed() will be called
# through the callbacks attached to the norm
self.norm.autoscale(self._A)
def autoscale_None(self):
"""
Autoscale the scalar limits on the norm instance using the
current array, changing only limits that are None
"""
if self._A is None:
raise TypeError('You must first set_array for mappable')
# If the norm's limits are updated self.changed() will be called
# through the callbacks attached to the norm
self.norm.autoscale_None(self._A)
def changed(self):
"""
Call this whenever the mappable is changed to notify all the
callbackSM listeners to the 'changed' signal.
"""
self.callbacks.process('changed', self)
self.stale = True
|
(norm=None, cmap=None)
|
43,171 |
matplotlib.cm
|
__init__
|
Parameters
----------
norm : `.Normalize` (or subclass thereof) or str or None
The normalizing object which scales data, typically into the
interval ``[0, 1]``.
If a `str`, a `.Normalize` subclass is dynamically generated based
on the scale with the corresponding name.
If *None*, *norm* defaults to a *colors.Normalize* object which
initializes its scaling based on the first data processed.
cmap : str or `~matplotlib.colors.Colormap`
The colormap used to map normalized data values to RGBA colors.
|
def __init__(self, norm=None, cmap=None):
"""
Parameters
----------
norm : `.Normalize` (or subclass thereof) or str or None
The normalizing object which scales data, typically into the
interval ``[0, 1]``.
If a `str`, a `.Normalize` subclass is dynamically generated based
on the scale with the corresponding name.
If *None*, *norm* defaults to a *colors.Normalize* object which
initializes its scaling based on the first data processed.
cmap : str or `~matplotlib.colors.Colormap`
The colormap used to map normalized data values to RGBA colors.
"""
self._A = None
self._norm = None # So that the setter knows we're initializing.
self.set_norm(norm) # The Normalize instance of this ScalarMappable.
self.cmap = None # So that the setter knows we're initializing.
self.set_cmap(cmap) # The Colormap instance of this ScalarMappable.
#: The last colorbar associated with this ScalarMappable. May be None.
self.colorbar = None
self.callbacks = cbook.CallbackRegistry(signals=["changed"])
|
(self, norm=None, cmap=None)
|
43,172 |
matplotlib.cm
|
_scale_norm
|
Helper for initial scaling.
Used by public functions that create a ScalarMappable and support
parameters *vmin*, *vmax* and *norm*. This makes sure that a *norm*
will take precedence over *vmin*, *vmax*.
Note that this method does not set the norm.
|
def _scale_norm(self, norm, vmin, vmax):
"""
Helper for initial scaling.
Used by public functions that create a ScalarMappable and support
parameters *vmin*, *vmax* and *norm*. This makes sure that a *norm*
will take precedence over *vmin*, *vmax*.
Note that this method does not set the norm.
"""
if vmin is not None or vmax is not None:
self.set_clim(vmin, vmax)
if isinstance(norm, colors.Normalize):
raise ValueError(
"Passing a Normalize instance simultaneously with "
"vmin/vmax is not supported. Please pass vmin/vmax "
"directly to the norm when creating it.")
# always resolve the autoscaling so we have concrete limits
# rather than deferring to draw time.
self.autoscale_None()
|
(self, norm, vmin, vmax)
|
43,173 |
matplotlib.cm
|
autoscale
|
Autoscale the scalar limits on the norm instance using the
current array
|
def autoscale(self):
"""
Autoscale the scalar limits on the norm instance using the
current array
"""
if self._A is None:
raise TypeError('You must first set_array for mappable')
# If the norm's limits are updated self.changed() will be called
# through the callbacks attached to the norm
self.norm.autoscale(self._A)
|
(self)
|
43,174 |
matplotlib.cm
|
autoscale_None
|
Autoscale the scalar limits on the norm instance using the
current array, changing only limits that are None
|
def autoscale_None(self):
"""
Autoscale the scalar limits on the norm instance using the
current array, changing only limits that are None
"""
if self._A is None:
raise TypeError('You must first set_array for mappable')
# If the norm's limits are updated self.changed() will be called
# through the callbacks attached to the norm
self.norm.autoscale_None(self._A)
|
(self)
|
43,175 |
matplotlib.cm
|
changed
|
Call this whenever the mappable is changed to notify all the
callbackSM listeners to the 'changed' signal.
|
def changed(self):
"""
Call this whenever the mappable is changed to notify all the
callbackSM listeners to the 'changed' signal.
"""
self.callbacks.process('changed', self)
self.stale = True
|
(self)
|
43,176 |
matplotlib.cm
|
get_alpha
|
Returns
-------
float
Always returns 1.
|
def get_alpha(self):
"""
Returns
-------
float
Always returns 1.
"""
# This method is intended to be overridden by Artist sub-classes
return 1.
|
(self)
|
43,177 |
matplotlib.cm
|
get_array
|
Return the array of values, that are mapped to colors.
The base class `.ScalarMappable` does not make any assumptions on
the dimensionality and shape of the array.
|
def get_array(self):
"""
Return the array of values, that are mapped to colors.
The base class `.ScalarMappable` does not make any assumptions on
the dimensionality and shape of the array.
"""
return self._A
|
(self)
|
43,178 |
matplotlib.cm
|
get_clim
|
Return the values (min, max) that are mapped to the colormap limits.
|
def get_clim(self):
"""
Return the values (min, max) that are mapped to the colormap limits.
"""
return self.norm.vmin, self.norm.vmax
|
(self)
|
43,179 |
matplotlib.cm
|
get_cmap
|
Return the `.Colormap` instance.
|
def get_cmap(self):
"""Return the `.Colormap` instance."""
return self.cmap
|
(self)
|
43,180 |
matplotlib.cm
|
set_array
|
Set the value array from array-like *A*.
Parameters
----------
A : array-like or None
The values that are mapped to colors.
The base class `.ScalarMappable` does not make any assumptions on
the dimensionality and shape of the value array *A*.
|
def set_array(self, A):
"""
Set the value array from array-like *A*.
Parameters
----------
A : array-like or None
The values that are mapped to colors.
The base class `.ScalarMappable` does not make any assumptions on
the dimensionality and shape of the value array *A*.
"""
if A is None:
self._A = None
return
A = cbook.safe_masked_invalid(A, copy=True)
if not np.can_cast(A.dtype, float, "same_kind"):
raise TypeError(f"Image data of dtype {A.dtype} cannot be "
"converted to float")
self._A = A
|
(self, A)
|
43,181 |
matplotlib.cm
|
set_clim
|
Set the norm limits for image scaling.
Parameters
----------
vmin, vmax : float
The limits.
The limits may also be passed as a tuple (*vmin*, *vmax*) as a
single positional argument.
.. ACCEPTS: (vmin: float, vmax: float)
|
def set_clim(self, vmin=None, vmax=None):
"""
Set the norm limits for image scaling.
Parameters
----------
vmin, vmax : float
The limits.
The limits may also be passed as a tuple (*vmin*, *vmax*) as a
single positional argument.
.. ACCEPTS: (vmin: float, vmax: float)
"""
# If the norm's limits are updated self.changed() will be called
# through the callbacks attached to the norm
if vmax is None:
try:
vmin, vmax = vmin
except (TypeError, ValueError):
pass
if vmin is not None:
self.norm.vmin = colors._sanitize_extrema(vmin)
if vmax is not None:
self.norm.vmax = colors._sanitize_extrema(vmax)
|
(self, vmin=None, vmax=None)
|
43,182 |
matplotlib.cm
|
set_cmap
|
Set the colormap for luminance data.
Parameters
----------
cmap : `.Colormap` or str or None
|
def set_cmap(self, cmap):
"""
Set the colormap for luminance data.
Parameters
----------
cmap : `.Colormap` or str or None
"""
in_init = self.cmap is None
self.cmap = _ensure_cmap(cmap)
if not in_init:
self.changed() # Things are not set up properly yet.
|
(self, cmap)
|
43,183 |
matplotlib.cm
|
set_norm
|
Set the normalization instance.
Parameters
----------
norm : `.Normalize` or str or None
Notes
-----
If there are any colorbars using the mappable for this norm, setting
the norm of the mappable will reset the norm, locator, and formatters
on the colorbar to default.
|
def set_norm(self, norm):
"""
Set the normalization instance.
Parameters
----------
norm : `.Normalize` or str or None
Notes
-----
If there are any colorbars using the mappable for this norm, setting
the norm of the mappable will reset the norm, locator, and formatters
on the colorbar to default.
"""
self.norm = norm
|
(self, norm)
|
43,184 |
matplotlib.cm
|
to_rgba
|
Return a normalized RGBA array corresponding to *x*.
In the normal case, *x* is a 1D or 2D sequence of scalars, and
the corresponding `~numpy.ndarray` of RGBA values will be returned,
based on the norm and colormap set for this ScalarMappable.
There is one special case, for handling images that are already
RGB or RGBA, such as might have been read from an image file.
If *x* is an `~numpy.ndarray` with 3 dimensions,
and the last dimension is either 3 or 4, then it will be
treated as an RGB or RGBA array, and no mapping will be done.
The array can be `~numpy.uint8`, or it can be floats with
values in the 0-1 range; otherwise a ValueError will be raised.
If it is a masked array, any masked elements will be set to 0 alpha.
If the last dimension is 3, the *alpha* kwarg (defaulting to 1)
will be used to fill in the transparency. If the last dimension
is 4, the *alpha* kwarg is ignored; it does not
replace the preexisting alpha. A ValueError will be raised
if the third dimension is other than 3 or 4.
In either case, if *bytes* is *False* (default), the RGBA
array will be floats in the 0-1 range; if it is *True*,
the returned RGBA array will be `~numpy.uint8` in the 0 to 255 range.
If norm is False, no normalization of the input data is
performed, and it is assumed to be in the range (0-1).
|
def to_rgba(self, x, alpha=None, bytes=False, norm=True):
"""
Return a normalized RGBA array corresponding to *x*.
In the normal case, *x* is a 1D or 2D sequence of scalars, and
the corresponding `~numpy.ndarray` of RGBA values will be returned,
based on the norm and colormap set for this ScalarMappable.
There is one special case, for handling images that are already
RGB or RGBA, such as might have been read from an image file.
If *x* is an `~numpy.ndarray` with 3 dimensions,
and the last dimension is either 3 or 4, then it will be
treated as an RGB or RGBA array, and no mapping will be done.
The array can be `~numpy.uint8`, or it can be floats with
values in the 0-1 range; otherwise a ValueError will be raised.
If it is a masked array, any masked elements will be set to 0 alpha.
If the last dimension is 3, the *alpha* kwarg (defaulting to 1)
will be used to fill in the transparency. If the last dimension
is 4, the *alpha* kwarg is ignored; it does not
replace the preexisting alpha. A ValueError will be raised
if the third dimension is other than 3 or 4.
In either case, if *bytes* is *False* (default), the RGBA
array will be floats in the 0-1 range; if it is *True*,
the returned RGBA array will be `~numpy.uint8` in the 0 to 255 range.
If norm is False, no normalization of the input data is
performed, and it is assumed to be in the range (0-1).
"""
# First check for special case, image input:
try:
if x.ndim == 3:
if x.shape[2] == 3:
if alpha is None:
alpha = 1
if x.dtype == np.uint8:
alpha = np.uint8(alpha * 255)
m, n = x.shape[:2]
xx = np.empty(shape=(m, n, 4), dtype=x.dtype)
xx[:, :, :3] = x
xx[:, :, 3] = alpha
elif x.shape[2] == 4:
xx = x
else:
raise ValueError("Third dimension must be 3 or 4")
if xx.dtype.kind == 'f':
if norm and (xx.max() > 1 or xx.min() < 0):
raise ValueError("Floating point image RGB values "
"must be in the 0..1 range.")
if bytes:
xx = (xx * 255).astype(np.uint8)
elif xx.dtype == np.uint8:
if not bytes:
xx = xx.astype(np.float32) / 255
else:
raise ValueError("Image RGB array must be uint8 or "
"floating point; found %s" % xx.dtype)
# Account for any masked entries in the original array
# If any of R, G, B, or A are masked for an entry, we set alpha to 0
if np.ma.is_masked(x):
xx[np.any(np.ma.getmaskarray(x), axis=2), 3] = 0
return xx
except AttributeError:
# e.g., x is not an ndarray; so try mapping it
pass
# This is the normal case, mapping a scalar array:
x = ma.asarray(x)
if norm:
x = self.norm(x)
rgba = self.cmap(x, alpha=alpha, bytes=bytes)
return rgba
|
(self, x, alpha=None, bytes=False, norm=True)
|
43,185 |
fast_poisson_solver.solver
|
Solver
|
This class represents the main solver used for fast Poisson equation solving.
It is a key component of the `fast_poisson_solver` package.
Parameters
----------
device : str, optional
Specifies the device where the computations will be performed.
This should be a valid PyTorch device string such as 'cuda' for GPU processing or 'cpu' for CPU processing.
Default is 'cuda'.
precision : torch.dtype, optional
This determines the precision of the computation.
This should be a valid PyTorch data type such as torch.float32 or torch.float64.
Default is torch.float32.
verbose : bool, optional
When set to True, enables the printing of detailed logs during computation.
Default is False.
use_weights : bool, optional
Determines whether the network uses pre-trained weights or random weights.
If True, the network uses pre-trained weights. Default is True.
compile_model : bool, optional
Specifies whether the network model is compiled for faster inference.
If False, the model won't be compiled. Default is True.
lambdas_pde : list of float, optional
A list that weights the influence of the PDE part in the loss term.
If None, default weight 1e-12 will be used. Default is None.
seed : int, optional
This parameter sets the seed for generating random numbers,
which helps in achieving deterministic results. Default is 0.
|
class Solver:
"""
This class represents the main solver used for fast Poisson equation solving.
It is a key component of the `fast_poisson_solver` package.
Parameters
----------
device : str, optional
Specifies the device where the computations will be performed.
This should be a valid PyTorch device string such as 'cuda' for GPU processing or 'cpu' for CPU processing.
Default is 'cuda'.
precision : torch.dtype, optional
This determines the precision of the computation.
This should be a valid PyTorch data type such as torch.float32 or torch.float64.
Default is torch.float32.
verbose : bool, optional
When set to True, enables the printing of detailed logs during computation.
Default is False.
use_weights : bool, optional
Determines whether the network uses pre-trained weights or random weights.
If True, the network uses pre-trained weights. Default is True.
compile_model : bool, optional
Specifies whether the network model is compiled for faster inference.
If False, the model won't be compiled. Default is True.
lambdas_pde : list of float, optional
A list that weights the influence of the PDE part in the loss term.
If None, default weight 1e-12 will be used. Default is None.
seed : int, optional
This parameter sets the seed for generating random numbers,
which helps in achieving deterministic results. Default is 0.
"""
def __init__(self, device='cuda', precision=torch.float32, verbose=False,
use_weights=True, compile_model=True, lambdas_pde=None, seed=0):
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
if lambdas_pde is None:
lambdas_pde = [2 ** -12]
self.path = os.path.join('resources', 'final.pt')
self.verbose = verbose
self.precision = precision
self.device = device if torch.cuda.is_available() else 'cpu'
self.use_weights = use_weights
self.compile_model = compile_model
self.lambdas_pde = lambdas_pde
self.seed = seed
random.seed(self.seed)
np.random.seed(self.seed)
torch.manual_seed(self.seed)
self.n_lambdas = len(self.lambdas_pde)
# The losses for all the different values of lambda are put in those arrays
self.Ls = np.zeros(self.n_lambdas)
self.Ls_pde = np.zeros(self.n_lambdas)
self.Ls_bc = np.zeros(self.n_lambdas)
if self.path.endswith('.pt'):
self.weights_input = True
self.weights_path = pkg_resources.resource_stream(__name__, self.path)
self.path = os.path.join(*os.path.split(self.path)[:1])
else:
self.weights_input = False
# Path to the where the pre-computed data_utils will be saved.
self.precompute_path = 'precomputed-resources'
if not os.path.isdir(self.precompute_path):
os.makedirs(self.precompute_path)
self.precompute_file = os.path.join(self.precompute_path, 'default.pkl')
self.load_data()
self.build_model()
def load_data(self):
def tuple_constructor(loader, node):
return tuple(loader.construct_sequence(node))
yaml.SafeLoader.add_constructor('tag:yaml.org,2002:python/tuple', tuple_constructor)
path = pkg_resources.resource_stream(__name__, os.path.join(self.path, 'infos.yaml'))
self.infos = yaml.safe_load(path)
if 'out' not in self.infos['model']:
self.infos['model']['out'] = self.infos['data_utils']['num_cases']
if 'width' not in self.infos['model']:
if 'network_width' in self.infos['model']:
self.infos['model']['width'] = self.infos['model']['network_width']
if 'depth' not in self.infos['model']:
if 'network_depth' in self.infos['model']:
self.infos['model']['depth'] = self.infos['model']['network_depth'] - 1
# self.infos['model']['width'] = 800
# self.infos['model']['depth'] = 8
def build_model(self):
self.model = PINN(self.infos['model']).to(self.device)
if self.use_weights:
state_dict = torch.load(self.weights_path, map_location=self.device)
is_data_parallel = any('module' in key for key in state_dict.keys())
is_compiled = any('_orig_mod' in key for key in state_dict.keys())
if is_data_parallel:
state_dict = {key.replace("module.", ""): value for key, value in state_dict.items()}
if is_compiled:
state_dict = {key.replace("_orig_mod.", ""): value for key, value in state_dict.items()}
self.model.load_state_dict(state_dict)
self.model.to(self.precision)
if self.compile_model:
try:
self.model = torch.compile(self.model)
except Exception as e:
print(e)
print('Compiling did not work but do not worry, it will work without it.')
print('You need pytorch 2.0 for compiling and Linux.')
def evaluate_network_pde(self):
self.x_pde.requires_grad = True
self.y_pde.requires_grad = True
self.H = self.model.h(self.x_pde, self.y_pde)
self.DH = calculate_laplace(self.H, self.x_pde, self.y_pde).detach().to(self.precision)
self.DHtDH = torch.matmul(self.DH.t(), self.DH)
self.Dht = self.DH.t()
self.x_pde.requires_grad = False
self.y_pde.requires_grad = False
self.H = self.H.detach()
def evaluate_network_bc(self):
with torch.no_grad():
self.H_bc = self.model.h(self.x_bc, self.y_bc).to(self.precision)
self.Ht_bc = self.H_bc.t()
ones_Hbc = torch.ones(self.H_bc.shape[0], 1, device=self.device).to(self.precision)
self.Ht_bc_ones = (self.Ht_bc @ ones_Hbc).t()
def load_precomputed_data(self):
with open(self.precompute_file, 'rb') as f:
self.LHSs, self.RHSs, self.H, self.DH, self.Dht, self.DHtDH, self.H_bc, self.Ht_bc, self.Ht_bc_ones, self.NdO, self.NO = format_input(
pickle.load(f), self.precision, self.device, reshape=False)
if self.verbose > 0:
print('Pre-Computed data_utils loaded from storage.')
def precompute_LHS_RHS(self):
self.NO = self.DH.shape[0]
self.NdO = self.H_bc.shape[0]
M = torch.eye(self.NdO, device=self.device, dtype=self.precision) - \
torch.ones(self.NdO, device=self.device, dtype=self.precision) / self.NdO
lambdas = torch.tensor(self.lambdas_pde, device=self.device, dtype=self.precision).view(-1, 1, 1)
self.LHSs = lambdas / self.NO * self.DHtDH + \
1 / self.NdO * torch.matmul(self.Ht_bc, torch.matmul(M, self.H_bc))
self.RHSs = lambdas / self.NO * self.Dht
if self.verbose > 0:
print('Pre-Computed data_utils calculated.')
def save_precomputed_data(self):
with open(self.precompute_file, 'wb') as file:
pickle.dump(
[self.LHSs, self.RHSs, self.H, self.DH, self.Dht, self.DHtDH, self.H_bc, self.Ht_bc, self.Ht_bc_ones, self.NdO, self.NO],
file)
if self.verbose > 0:
print('Pre-Computed stored.')
def precompute(self, x_pde, y_pde, x_bc, y_bc, name=None, save=False, load=False):
"""
This method is used for precomputing of the data based on the given coordinates.
Parameters
----------
x_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the partial differential equation (PDE).
y_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the partial differential equation (PDE).
x_bc : tensor/array/list
Coordinates of the boundary condition.
y_bc : tensor/array/list
Coordinates of the boundary condition.
name : str, optional
Name used for saving or loading the precomputed data.
If no name is provided, the default name will be used. Default is None.
save : bool, optional
Specifies whether the precomputed data should be saved.
If True, the data will be saved using the provided `name`. Default is True.
load : bool, optional
Specifies whether the precomputed data with the provided `name` should be loaded.
If True, the method will attempt to load the data with the given name. Default is True.
"""
t0 = time.perf_counter()
if name is not None:
self.precompute_file = os.path.join(self.precompute_path, name + f'.pkl')
self.x_pde, self.y_pde, self.x_bc, self.y_bc = format_input([x_pde, y_pde, x_bc, y_bc],
self.precision, self.device)
self.x_tot = torch.cat([self.x_pde, self.x_bc], dim=0)
self.y_tot = torch.cat([self.y_pde, self.y_bc], dim=0)
assert torch.min(self.x_tot) >= 0 and torch.max(
self.x_tot) <= 1, 'x coordinates should be in [0, 1]. Please rescale.'
assert torch.min(self.y_tot) >= 0 and torch.max(
self.y_tot) <= 1, 'y coordinates should be in [0, 1]. Please rescale.'
if load and os.path.isfile(self.precompute_file):
self.load_precomputed_data()
else:
self.evaluate_network_pde()
self.evaluate_network_bc()
self.precompute_LHS_RHS()
if save:
self.save_precomputed_data()
# First time running torch.linalg.solve() is very slow, so we run it once here to get rid of the delay
torch.linalg.solve(
torch.rand(self.LHSs[0].shape).to(self.device).to(self.precision),
torch.rand(self.LHSs[0].shape[0], 1).to(self.device).to(self.precision))
t3 = time.perf_counter()
if self.verbose > 0:
print('\nPre-Computing Successful:', t3 - t0, 'seconds')
def solve(self, f, bc):
"""
This method is used to solve the PDE with the provided source function and boundary condition.
Parameters
----------
f : tensor/array/list
The source function for the PDE.
bc : tensor/array/list
The boundary condition for the PDE.
Returns
-------
tuple
The tuple contains the following elements:
u_pred : tensor
The complete solution of the PDE.
u_pde_pred : tensor
The solution of the PDE inside the domain.
u_bc_pred : tensor
The solution for the boundary condition.
f_pred : tensor
The predicted source function.
runtime : float
The time it took the method to run in seconds.
"""
self.f, self.bc = format_input([f, bc], self.precision, self.device)
w_outs = []
biases = np.empty(len(self.lambdas_pde))
t0 = time.perf_counter()
RHSs = torch.matmul(self.RHSs, self.f)
self.bct_ones = torch.sum(self.bc).reshape(1, 1)
for i, l in enumerate(self.lambdas_pde):
self.w_out = torch.linalg.solve(self.LHSs[i], RHSs[i])
self.bias = - 1 / self.NdO * (self.Ht_bc_ones @ self.w_out - self.bct_ones)
# Just calculates the loss if multiple lambdas are provided to find the best one.
if self.n_lambdas > 1:
u_pred_bc = torch.matmul(self.H_bc, self.w_out) + self.bias
f_pred = torch.matmul(self.DH, self.w_out)
self.Ls_pde[i] = torch.mean((f_pred - self.f) ** 2).item()
self.Ls_bc[i] = torch.mean((u_pred_bc - self.bc) ** 2).item()
self.Ls[i] = self.Ls_pde[i] + self.Ls_bc[i]
w_outs.append(self.w_out)
biases[i] = self.bias
if self.n_lambdas > 1:
minimum = np.argmin(self.Ls)
self.lambda_pde = self.lambdas_pde[minimum]
self.w_out = w_outs[minimum]
self.bias = biases[minimum]
else:
self.lambda_pde = self.lambdas_pde[0]
self.u_pde_pred = torch.add(torch.matmul(self.H, self.w_out), self.bias)
self.f_pred = torch.matmul(self.DH, self.w_out)
self.u_bc_pred = torch.matmul(self.H_bc, self.w_out) + self.bias
self.u_pred = torch.cat([self.u_pde_pred, self.u_bc_pred])
t1 = time.perf_counter()
if self.verbose > 0:
print('\nRun Successful:', t1 - t0, 'seconds\n')
return self.u_pred, self.u_pde_pred, self.u_bc_pred, self.f_pred, t1 - t0
|
(device='cuda', precision=torch.float32, verbose=False, use_weights=True, compile_model=True, lambdas_pde=None, seed=0)
|
43,186 |
fast_poisson_solver.solver
|
__init__
| null |
def __init__(self, device='cuda', precision=torch.float32, verbose=False,
use_weights=True, compile_model=True, lambdas_pde=None, seed=0):
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
if lambdas_pde is None:
lambdas_pde = [2 ** -12]
self.path = os.path.join('resources', 'final.pt')
self.verbose = verbose
self.precision = precision
self.device = device if torch.cuda.is_available() else 'cpu'
self.use_weights = use_weights
self.compile_model = compile_model
self.lambdas_pde = lambdas_pde
self.seed = seed
random.seed(self.seed)
np.random.seed(self.seed)
torch.manual_seed(self.seed)
self.n_lambdas = len(self.lambdas_pde)
# The losses for all the different values of lambda are put in those arrays
self.Ls = np.zeros(self.n_lambdas)
self.Ls_pde = np.zeros(self.n_lambdas)
self.Ls_bc = np.zeros(self.n_lambdas)
if self.path.endswith('.pt'):
self.weights_input = True
self.weights_path = pkg_resources.resource_stream(__name__, self.path)
self.path = os.path.join(*os.path.split(self.path)[:1])
else:
self.weights_input = False
# Path to the where the pre-computed data_utils will be saved.
self.precompute_path = 'precomputed-resources'
if not os.path.isdir(self.precompute_path):
os.makedirs(self.precompute_path)
self.precompute_file = os.path.join(self.precompute_path, 'default.pkl')
self.load_data()
self.build_model()
|
(self, device='cuda', precision=torch.float32, verbose=False, use_weights=True, compile_model=True, lambdas_pde=None, seed=0)
|
43,187 |
fast_poisson_solver.solver
|
build_model
| null |
def build_model(self):
self.model = PINN(self.infos['model']).to(self.device)
if self.use_weights:
state_dict = torch.load(self.weights_path, map_location=self.device)
is_data_parallel = any('module' in key for key in state_dict.keys())
is_compiled = any('_orig_mod' in key for key in state_dict.keys())
if is_data_parallel:
state_dict = {key.replace("module.", ""): value for key, value in state_dict.items()}
if is_compiled:
state_dict = {key.replace("_orig_mod.", ""): value for key, value in state_dict.items()}
self.model.load_state_dict(state_dict)
self.model.to(self.precision)
if self.compile_model:
try:
self.model = torch.compile(self.model)
except Exception as e:
print(e)
print('Compiling did not work but do not worry, it will work without it.')
print('You need pytorch 2.0 for compiling and Linux.')
|
(self)
|
43,188 |
fast_poisson_solver.solver
|
evaluate_network_bc
| null |
def evaluate_network_bc(self):
with torch.no_grad():
self.H_bc = self.model.h(self.x_bc, self.y_bc).to(self.precision)
self.Ht_bc = self.H_bc.t()
ones_Hbc = torch.ones(self.H_bc.shape[0], 1, device=self.device).to(self.precision)
self.Ht_bc_ones = (self.Ht_bc @ ones_Hbc).t()
|
(self)
|
43,189 |
fast_poisson_solver.solver
|
evaluate_network_pde
| null |
def evaluate_network_pde(self):
self.x_pde.requires_grad = True
self.y_pde.requires_grad = True
self.H = self.model.h(self.x_pde, self.y_pde)
self.DH = calculate_laplace(self.H, self.x_pde, self.y_pde).detach().to(self.precision)
self.DHtDH = torch.matmul(self.DH.t(), self.DH)
self.Dht = self.DH.t()
self.x_pde.requires_grad = False
self.y_pde.requires_grad = False
self.H = self.H.detach()
|
(self)
|
43,190 |
fast_poisson_solver.solver
|
load_data
| null |
def load_data(self):
def tuple_constructor(loader, node):
return tuple(loader.construct_sequence(node))
yaml.SafeLoader.add_constructor('tag:yaml.org,2002:python/tuple', tuple_constructor)
path = pkg_resources.resource_stream(__name__, os.path.join(self.path, 'infos.yaml'))
self.infos = yaml.safe_load(path)
if 'out' not in self.infos['model']:
self.infos['model']['out'] = self.infos['data_utils']['num_cases']
if 'width' not in self.infos['model']:
if 'network_width' in self.infos['model']:
self.infos['model']['width'] = self.infos['model']['network_width']
if 'depth' not in self.infos['model']:
if 'network_depth' in self.infos['model']:
self.infos['model']['depth'] = self.infos['model']['network_depth'] - 1
# self.infos['model']['width'] = 800
# self.infos['model']['depth'] = 8
|
(self)
|
43,191 |
fast_poisson_solver.solver
|
load_precomputed_data
| null |
def load_precomputed_data(self):
with open(self.precompute_file, 'rb') as f:
self.LHSs, self.RHSs, self.H, self.DH, self.Dht, self.DHtDH, self.H_bc, self.Ht_bc, self.Ht_bc_ones, self.NdO, self.NO = format_input(
pickle.load(f), self.precision, self.device, reshape=False)
if self.verbose > 0:
print('Pre-Computed data_utils loaded from storage.')
|
(self)
|
43,192 |
fast_poisson_solver.solver
|
precompute
|
This method is used for precomputing of the data based on the given coordinates.
Parameters
----------
x_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the partial differential equation (PDE).
y_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the partial differential equation (PDE).
x_bc : tensor/array/list
Coordinates of the boundary condition.
y_bc : tensor/array/list
Coordinates of the boundary condition.
name : str, optional
Name used for saving or loading the precomputed data.
If no name is provided, the default name will be used. Default is None.
save : bool, optional
Specifies whether the precomputed data should be saved.
If True, the data will be saved using the provided `name`. Default is True.
load : bool, optional
Specifies whether the precomputed data with the provided `name` should be loaded.
If True, the method will attempt to load the data with the given name. Default is True.
|
def precompute(self, x_pde, y_pde, x_bc, y_bc, name=None, save=False, load=False):
"""
This method is used for precomputing of the data based on the given coordinates.
Parameters
----------
x_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the partial differential equation (PDE).
y_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the partial differential equation (PDE).
x_bc : tensor/array/list
Coordinates of the boundary condition.
y_bc : tensor/array/list
Coordinates of the boundary condition.
name : str, optional
Name used for saving or loading the precomputed data.
If no name is provided, the default name will be used. Default is None.
save : bool, optional
Specifies whether the precomputed data should be saved.
If True, the data will be saved using the provided `name`. Default is True.
load : bool, optional
Specifies whether the precomputed data with the provided `name` should be loaded.
If True, the method will attempt to load the data with the given name. Default is True.
"""
t0 = time.perf_counter()
if name is not None:
self.precompute_file = os.path.join(self.precompute_path, name + f'.pkl')
self.x_pde, self.y_pde, self.x_bc, self.y_bc = format_input([x_pde, y_pde, x_bc, y_bc],
self.precision, self.device)
self.x_tot = torch.cat([self.x_pde, self.x_bc], dim=0)
self.y_tot = torch.cat([self.y_pde, self.y_bc], dim=0)
assert torch.min(self.x_tot) >= 0 and torch.max(
self.x_tot) <= 1, 'x coordinates should be in [0, 1]. Please rescale.'
assert torch.min(self.y_tot) >= 0 and torch.max(
self.y_tot) <= 1, 'y coordinates should be in [0, 1]. Please rescale.'
if load and os.path.isfile(self.precompute_file):
self.load_precomputed_data()
else:
self.evaluate_network_pde()
self.evaluate_network_bc()
self.precompute_LHS_RHS()
if save:
self.save_precomputed_data()
# First time running torch.linalg.solve() is very slow, so we run it once here to get rid of the delay
torch.linalg.solve(
torch.rand(self.LHSs[0].shape).to(self.device).to(self.precision),
torch.rand(self.LHSs[0].shape[0], 1).to(self.device).to(self.precision))
t3 = time.perf_counter()
if self.verbose > 0:
print('\nPre-Computing Successful:', t3 - t0, 'seconds')
|
(self, x_pde, y_pde, x_bc, y_bc, name=None, save=False, load=False)
|
43,193 |
fast_poisson_solver.solver
|
precompute_LHS_RHS
| null |
def precompute_LHS_RHS(self):
self.NO = self.DH.shape[0]
self.NdO = self.H_bc.shape[0]
M = torch.eye(self.NdO, device=self.device, dtype=self.precision) - \
torch.ones(self.NdO, device=self.device, dtype=self.precision) / self.NdO
lambdas = torch.tensor(self.lambdas_pde, device=self.device, dtype=self.precision).view(-1, 1, 1)
self.LHSs = lambdas / self.NO * self.DHtDH + \
1 / self.NdO * torch.matmul(self.Ht_bc, torch.matmul(M, self.H_bc))
self.RHSs = lambdas / self.NO * self.Dht
if self.verbose > 0:
print('Pre-Computed data_utils calculated.')
|
(self)
|
43,194 |
fast_poisson_solver.solver
|
save_precomputed_data
| null |
def save_precomputed_data(self):
with open(self.precompute_file, 'wb') as file:
pickle.dump(
[self.LHSs, self.RHSs, self.H, self.DH, self.Dht, self.DHtDH, self.H_bc, self.Ht_bc, self.Ht_bc_ones, self.NdO, self.NO],
file)
if self.verbose > 0:
print('Pre-Computed stored.')
|
(self)
|
43,195 |
fast_poisson_solver.solver
|
solve
|
This method is used to solve the PDE with the provided source function and boundary condition.
Parameters
----------
f : tensor/array/list
The source function for the PDE.
bc : tensor/array/list
The boundary condition for the PDE.
Returns
-------
tuple
The tuple contains the following elements:
u_pred : tensor
The complete solution of the PDE.
u_pde_pred : tensor
The solution of the PDE inside the domain.
u_bc_pred : tensor
The solution for the boundary condition.
f_pred : tensor
The predicted source function.
runtime : float
The time it took the method to run in seconds.
|
def solve(self, f, bc):
"""
This method is used to solve the PDE with the provided source function and boundary condition.
Parameters
----------
f : tensor/array/list
The source function for the PDE.
bc : tensor/array/list
The boundary condition for the PDE.
Returns
-------
tuple
The tuple contains the following elements:
u_pred : tensor
The complete solution of the PDE.
u_pde_pred : tensor
The solution of the PDE inside the domain.
u_bc_pred : tensor
The solution for the boundary condition.
f_pred : tensor
The predicted source function.
runtime : float
The time it took the method to run in seconds.
"""
self.f, self.bc = format_input([f, bc], self.precision, self.device)
w_outs = []
biases = np.empty(len(self.lambdas_pde))
t0 = time.perf_counter()
RHSs = torch.matmul(self.RHSs, self.f)
self.bct_ones = torch.sum(self.bc).reshape(1, 1)
for i, l in enumerate(self.lambdas_pde):
self.w_out = torch.linalg.solve(self.LHSs[i], RHSs[i])
self.bias = - 1 / self.NdO * (self.Ht_bc_ones @ self.w_out - self.bct_ones)
# Just calculates the loss if multiple lambdas are provided to find the best one.
if self.n_lambdas > 1:
u_pred_bc = torch.matmul(self.H_bc, self.w_out) + self.bias
f_pred = torch.matmul(self.DH, self.w_out)
self.Ls_pde[i] = torch.mean((f_pred - self.f) ** 2).item()
self.Ls_bc[i] = torch.mean((u_pred_bc - self.bc) ** 2).item()
self.Ls[i] = self.Ls_pde[i] + self.Ls_bc[i]
w_outs.append(self.w_out)
biases[i] = self.bias
if self.n_lambdas > 1:
minimum = np.argmin(self.Ls)
self.lambda_pde = self.lambdas_pde[minimum]
self.w_out = w_outs[minimum]
self.bias = biases[minimum]
else:
self.lambda_pde = self.lambdas_pde[0]
self.u_pde_pred = torch.add(torch.matmul(self.H, self.w_out), self.bias)
self.f_pred = torch.matmul(self.DH, self.w_out)
self.u_bc_pred = torch.matmul(self.H_bc, self.w_out) + self.bias
self.u_pred = torch.cat([self.u_pde_pred, self.u_bc_pred])
t1 = time.perf_counter()
if self.verbose > 0:
print('\nRun Successful:', t1 - t0, 'seconds\n')
return self.u_pred, self.u_pde_pred, self.u_bc_pred, self.f_pred, t1 - t0
|
(self, f, bc)
|
43,196 |
fast_poisson_solver.analyze
|
analyze
|
Analyze the performance of a Poisson equation solver by comparing predictions with true or numerical values.
This function calculates various error metrics including Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Relative Mean Absolute Error (rMSE), Structural Similarity Index (SSIM),
Peak Signal-to-Noise Ratio (PSNR), and R-Squared (R2) for each of the source term (f), solution (u), and
boundary condition (bc) predictions.
The predicted source term 'f_pred' and boundary condition 'u_bc_pred' are compared with the true source term 'f'
and true boundary condition 'u_bc'. If provided, the predicted solution 'u_pred' is compared with the numerical
solution 'u_num'.
Parameters
----------
f_pred : array-like
The predicted source term by the solver. Can be a list, numpy array or PyTorch tensor.
f : array-like
The true source term of the Poisson equation. Can be a list, numpy array or PyTorch tensor.
u_bc_pred : array-like
The predicted solution for the boundary condition. Can be a list, numpy array or PyTorch tensor.
u_bc : array-like
The true boundary condition. Can be a list, numpy array or PyTorch tensor.
u_pred : array-like, optional
The predicted solution of the Poisson equation. Can be a list, numpy array or PyTorch tensor (default is None).
u_num : array-like, optional
The numerical solution of the Poisson equation. Can be a list, numpy array or PyTorch tensor (default is None).
normalize : bool, optional
If True, normalize the input arrays before calculating the error metrics (default is True).
Returns
-------
dict
A dictionary containing the calculated error metrics for the corresponding part of the Poisson equation.
'u'
A dictionary containing the error metrics for the predicted solution 'u_pred' compared to the numerical
solution 'u_num' (only if 'u_num' and 'u_pred' are provided).
'f'
A dictionary containing the error metrics for the predicted source term 'f_pred' compared to the true
source term 'f'.
'bc'
A dictionary containing the error metrics for the predicted boundary condition 'u_bc_pred' compared to the
true boundary condition 'u_bc'.
|
def analyze(f_pred, f, u_bc_pred, u_bc, u_pred=None, u_num=None, normalize=True):
"""
Analyze the performance of a Poisson equation solver by comparing predictions with true or numerical values.
This function calculates various error metrics including Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Relative Mean Absolute Error (rMSE), Structural Similarity Index (SSIM),
Peak Signal-to-Noise Ratio (PSNR), and R-Squared (R2) for each of the source term (f), solution (u), and
boundary condition (bc) predictions.
The predicted source term 'f_pred' and boundary condition 'u_bc_pred' are compared with the true source term 'f'
and true boundary condition 'u_bc'. If provided, the predicted solution 'u_pred' is compared with the numerical
solution 'u_num'.
Parameters
----------
f_pred : array-like
The predicted source term by the solver. Can be a list, numpy array or PyTorch tensor.
f : array-like
The true source term of the Poisson equation. Can be a list, numpy array or PyTorch tensor.
u_bc_pred : array-like
The predicted solution for the boundary condition. Can be a list, numpy array or PyTorch tensor.
u_bc : array-like
The true boundary condition. Can be a list, numpy array or PyTorch tensor.
u_pred : array-like, optional
The predicted solution of the Poisson equation. Can be a list, numpy array or PyTorch tensor (default is None).
u_num : array-like, optional
The numerical solution of the Poisson equation. Can be a list, numpy array or PyTorch tensor (default is None).
normalize : bool, optional
If True, normalize the input arrays before calculating the error metrics (default is True).
Returns
-------
dict
A dictionary containing the calculated error metrics for the corresponding part of the Poisson equation.
'u'
A dictionary containing the error metrics for the predicted solution 'u_pred' compared to the numerical
solution 'u_num' (only if 'u_num' and 'u_pred' are provided).
'f'
A dictionary containing the error metrics for the predicted source term 'f_pred' compared to the true
source term 'f'.
'bc'
A dictionary containing the error metrics for the predicted boundary condition 'u_bc_pred' compared to the
true boundary condition 'u_bc'.
"""
if u_num is None or u_pred is None:
u_num = [0]
u_pred = [0]
u_comparison = False
else:
u_comparison = True
f, f_pred, u_pred, u_bc_pred, u_num, u_bc = format_input([f, f_pred, u_pred, u_bc_pred, u_num, u_bc], as_array=True)
f, f_pred, u_pred, u_bc_pred, u_num, u_bc = [v.reshape(-1) for v in [f, f_pred, u_pred, u_bc_pred, u_num, u_bc]]
if normalize:
bv = u_bc[0]
else:
bv = 0
def analyze_struct(image1, image2, bv):
image1_ = image1 - bv
image2_ = image2 - bv
maximum = np.max(image1_)
minimum = np.min(image1_)
if len(np.unique(image1_)) != 1 and normalize:
image1_ = (image1_ - minimum) / (maximum - minimum)
image2_ = (image2_ - minimum) / (maximum - minimum)
range = 1
else:
range = np.min((maximum - minimum, 1e-8))
ssim_value = ssim(image1_, image2_, data_range=range + 1e-8, multichannel=False, gaussian_weights=True)
psnr_value = psnr(image1_, image2_, data_range=range)
r2 = r2_score(image1_.reshape(-1), image2_.reshape(-1))
return ssim_value, psnr_value, r2
def analyze_standard(image1, image2, bv):
image1_ = image1 - bv
image2_ = image2 - bv
maximum = np.max(image1_)
minimum = np.min(image1_)
if len(np.unique(image1_)) != 1 and normalize:
image1_ = (image1_ - minimum) / (maximum - minimum)
image2_ = (image2_ - minimum) / (maximum - minimum)
mse = np.mean((image1_ - image2_) ** 2)
rmse = np.sqrt(mse)
mae = np.mean(np.abs(image1_ - image2_))
mae_r = np.mean(np.abs(image1_ - image2_)) / np.max((np.mean(np.abs(image1_)), 1e-6))
return mse, rmse, mae, mae_r
res = {}
if u_comparison:
ssim_value_u, psnr_value_u, r2_u = analyze_struct(u_num, u_pred, bv)
mse_u, rmse_u, mae_u, mae_r_u = analyze_standard(u_num, u_pred, bv)
res['u'] = {
'MSE': mse_u,
'RMSE': rmse_u,
'MAE': mae_u,
'rMAE': mae_r_u,
'SSIM': ssim_value_u,
'PSNR': psnr_value_u,
'R2': r2_u
}
ssim_value_f, psnr_valuie_f, r2_f = analyze_struct(f, f_pred, 0)
mse_f, rmse_f, mae_f, mae_r_f = analyze_standard(f, f_pred, 0)
res['f'] = {
'MSE': mse_f,
'RMSE': rmse_f,
'MAE': mae_f,
'rMAE': mae_r_f,
'SSIM': ssim_value_f,
'PSNR': psnr_valuie_f,
'R2': r2_f
}
mse_u_bc, rmse_u_bc, mae_u_bc, mae_r_bc = analyze_standard(u_bc, u_bc_pred, bv)
res['bc'] = {
'MSE': mse_u_bc,
'RMSE': rmse_u_bc,
'MAE': mae_u_bc,
'rMAE': mae_r_bc
}
return res
|
(f_pred, f, u_bc_pred, u_bc, u_pred=None, u_num=None, normalize=True)
|
43,197 |
fast_poisson_solver.utils
|
bicubic_interpolate
|
Performs bicubic interpolation of a two-dimensional field.
The function performs bicubic interpolation of a field, which is defined by its values `v_base` at points
`(x_pde_base, y_pde_base)` for the domain and `(x_bc_base, y_bc_base)` for the boundary. Interpolation is done
at new points `(x_pde_new, y_pde_new)` for the domain and `(x_bc_new, y_bc_new)` for the boundary.
Interpolation can be done only inside the domain, excluding the boundary, depending on the `domain` parameter.
Parameters
----------
x_pde_base : tensor/array/list
x-coordinates of the PDE base points.
y_pde_base : tensor/array/list
y-coordinates of the PDE base points.
x_bc_base : tensor/array/list
x-coordinates of the boundary base points.
y_bc_base : tensor/array/list
y-coordinates of the boundary base points.
v_base : tensor/array/list
Values of the field at the base points.
x_pde_new : tensor/array/list
x-coordinates of the new PDE points for interpolation.
y_pde_new : tensor/array/list
y-coordinates of the new PDE points for interpolation.
x_bc_new : tensor/array/list
x-coordinates of the new boundary points for interpolation.
y_bc_new : tensor/array/list
y-coordinates of the new boundary points for interpolation.
domain : bool, optional
If True, the interpolation is done only inside the domain, not on the boundary. Defaults to False.
Returns
-------
tensor/array/list
The interpolated field values at the new points.
|
def bicubic_interpolate(x_pde_base, y_pde_base, x_bc_base, y_bc_base, v_base, x_pde_new, y_pde_new, x_bc_new, y_bc_new,
domain=False):
"""
Performs bicubic interpolation of a two-dimensional field.
The function performs bicubic interpolation of a field, which is defined by its values `v_base` at points
`(x_pde_base, y_pde_base)` for the domain and `(x_bc_base, y_bc_base)` for the boundary. Interpolation is done
at new points `(x_pde_new, y_pde_new)` for the domain and `(x_bc_new, y_bc_new)` for the boundary.
Interpolation can be done only inside the domain, excluding the boundary, depending on the `domain` parameter.
Parameters
----------
x_pde_base : tensor/array/list
x-coordinates of the PDE base points.
y_pde_base : tensor/array/list
y-coordinates of the PDE base points.
x_bc_base : tensor/array/list
x-coordinates of the boundary base points.
y_bc_base : tensor/array/list
y-coordinates of the boundary base points.
v_base : tensor/array/list
Values of the field at the base points.
x_pde_new : tensor/array/list
x-coordinates of the new PDE points for interpolation.
y_pde_new : tensor/array/list
y-coordinates of the new PDE points for interpolation.
x_bc_new : tensor/array/list
x-coordinates of the new boundary points for interpolation.
y_bc_new : tensor/array/list
y-coordinates of the new boundary points for interpolation.
domain : bool, optional
If True, the interpolation is done only inside the domain, not on the boundary. Defaults to False.
Returns
-------
tensor/array/list
The interpolated field values at the new points.
"""
x_pde_base, y_pde_base, x_bc_base, y_bc_base, v_base, x_pde_new, y_pde_new, x_bc_new, y_bc_new = format_input(
[x_pde_base, y_pde_base, x_bc_base, y_bc_base, v_base, x_pde_new, y_pde_new, x_bc_new, y_bc_new],
precision=v_base.dtype, device='cpu', as_array=True, reshape=True)
if domain:
x_base = x_pde_base.reshape(-1)
y_base = y_pde_base.reshape(-1)
x_new = x_pde_new.reshape(-1)
y_new = y_pde_new.reshape(-1)
else:
x_base = np.concatenate([x_pde_base, x_bc_base]).reshape(-1)
y_base = np.concatenate([y_pde_base, y_bc_base]).reshape(-1)
x_new = np.concatenate([x_pde_new, x_bc_new]).reshape(-1)
y_new = np.concatenate([y_pde_new, y_bc_new]).reshape(-1)
coordinates_base = np.array([x_base, y_base]).T
coordinates_new = np.array([x_new, y_new]).T
v_new = griddata(coordinates_base, v_base.reshape(-1), coordinates_new, method='cubic')
return v_new
|
(x_pde_base, y_pde_base, x_bc_base, y_bc_base, v_base, x_pde_new, y_pde_new, x_bc_new, y_bc_new, domain=False)
|
43,202 |
fast_poisson_solver.utils
|
format_input
| null |
def format_input(v, precision=torch.float32, device='cpu', as_array=False, reshape=True):
if isinstance(device, str):
device = torch.device(device)
for i in range(len(v)):
if isinstance(v[i], list):
v[i] = torch.tensor(v[i], dtype=precision, device=device)
elif isinstance(v[i], np.ndarray):
v[i] = torch.tensor(v[i], dtype=precision, device=device)
elif isinstance(v[i], int) or isinstance(v[i], float):
continue
else:
v[i] = v[i].to(precision).to(device)
if reshape:
v = [v_i.reshape(-1, 1) for v_i in v]
if as_array:
v = [v_i.detach().cpu().numpy() for v_i in v]
return v
|
(v, precision=torch.float32, device='cpu', as_array=False, reshape=True)
|
43,203 |
fast_poisson_solver.utils
|
minmax
| null |
def minmax(v1, v2=None):
if v2 is None:
v2 = v1
vmin = min((np.min(v1), np.min(v2)))
vmax = max((np.max(v1), np.max(v2)))
return vmin, vmax
|
(v1, v2=None)
|
43,206 |
fast_poisson_solver.numeric_solver
|
numeric_solve
|
This function numerically solves the partial differential equation (PDE) using the provided source function,
PDE coordinates, boundary condition, and boundary condition coordinates. It uses the precision specified,
measures the time taken for the operation if requested, and controls the verbosity of the output.
Parameters
----------
f : tensor/array/list
The source function for the PDE.
x_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
y_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
u_bc : tensor/array/list
The boundary condition for the PDE.
x_bc : tensor/array/list
Coordinates of the boundary condition.
y_bc : tensor/array/list
Coordinates of the boundary condition.
precision : torch.dtype, optional
The precision to be used for the numeric solver. Default is torch.float32.
verbose : int, optional
Controls the verbosity of the output. If 0, only the solution 'u' is returned. If greater than 0,
both the solution 'u' and runtime 'delta t' are returned. Default is 1.
Returns
-------
tuple
u : tensor
The complete numeric solution of the PDE.
t : float
The runtime, i.e., the time it took the method to run in seconds.
References
----------
Zaman, M.A. "Numerical Solution of the Poisson Equation Using Finite Difference Matrix Operators",
Electronics 2022, 11, 2365. https://doi.org/10.3390/electronics11152365
See also: https://github.com/zaman13/Poisson-solver-2D
|
def numeric_solve(f, x_pde, y_pde, u_bc, x_bc, y_bc, precision=torch.float32, verbose=0):
"""
This function numerically solves the partial differential equation (PDE) using the provided source function,
PDE coordinates, boundary condition, and boundary condition coordinates. It uses the precision specified,
measures the time taken for the operation if requested, and controls the verbosity of the output.
Parameters
----------
f : tensor/array/list
The source function for the PDE.
x_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
y_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
u_bc : tensor/array/list
The boundary condition for the PDE.
x_bc : tensor/array/list
Coordinates of the boundary condition.
y_bc : tensor/array/list
Coordinates of the boundary condition.
precision : torch.dtype, optional
The precision to be used for the numeric solver. Default is torch.float32.
verbose : int, optional
Controls the verbosity of the output. If 0, only the solution 'u' is returned. If greater than 0,
both the solution 'u' and runtime 'delta t' are returned. Default is 1.
Returns
-------
tuple
u : tensor
The complete numeric solution of the PDE.
t : float
The runtime, i.e., the time it took the method to run in seconds.
References
----------
Zaman, M.A. "Numerical Solution of the Poisson Equation Using Finite Difference Matrix Operators",
Electronics 2022, 11, 2365. https://doi.org/10.3390/electronics11152365
See also: https://github.com/zaman13/Poisson-solver-2D
"""
f, x_pde, y_pde, u_bc, x_bc, y_bc = format_input([f, x_pde, y_pde, u_bc, x_bc, y_bc],
precision=precision, device="cpu", as_array=True)
dtype_map = {
torch.float32: np.float32,
torch.float64: np.float64,
# add more mappings as needed
}
precision = dtype_map.get(precision, None)
x = np.concatenate([x_pde, x_bc], axis=0)
y = np.concatenate([y_pde, y_bc], axis=0)
x_unique = np.unique(x)
y_unique = np.unique(y)
Nx = len(x_unique)
Ny = len(y_unique)
dx = x_unique[1] - x_unique[0]
dy = y_unique[1] - y_unique[0]
Dx_2d, Dy_2d, D2x_2d, D2y_2d = Diff_mat_2D(Nx, Ny)
Dx_2d = Dx_2d.astype(precision)
Dy_2d = Dy_2d.astype(precision)
D2x_2d = D2x_2d.astype(precision)
D2y_2d = D2y_2d.astype(precision)
# Construction of the system matrix and adjust the right hand vector for boundary conditions
I_sp = sp.eye(Nx * Ny).tocsr().astype(precision)
L_sys = D2x_2d / dx ** 2 + D2y_2d / dy ** 2
BD = I_sp # .tolil() # Dirichlet boundary operator
BNx = Dx_2d # .tolil() # Neumann boundary operator for x component
BNy = Dy_2d # .tolil() # Neumann boundary operator for y component
t0_run = time.perf_counter()
xy = np.concatenate([x.reshape(-1, 1), y.reshape(-1, 1)], 1)
ind = np.lexsort((xy[:, 0], xy[:, 1]))
reverse_ind = np.argsort(ind)
b_ind = [np.argwhere(ind >= len(x_pde)).reshape(-1)]
f = np.concatenate([f, u_bc], axis=0)
f = f[ind]
b_type = [0]
b_val = [u_bc[0]]
N_B = len(b_val)
# Selectively replace the rows of the system matrix that correspond to
# boundary value points. We replace these rows with
# those of the boundary operator
for m in range(N_B):
# print(f[b_ind[m]], b_val[m] )
# f[b_ind[m]] = b_val[m] # Insert boundary values at the outer boundary points
if b_type[m] == 0:
L_sys[b_ind[m], :] = BD[b_ind[m], :]
elif b_type[m] == 1:
L_sys[b_ind[m], :] = BNx[b_ind[m], :]
elif b_type[m] == 2:
L_sys[b_ind[m], :] = BNy[b_ind[m], :]
u = spsolve(L_sys, f)
u = u[reverse_ind] # reorder the solution to the original order
u = u.astype(precision)
end = time.perf_counter()
dt = end - t0_run
if verbose > 0:
print(f"Time Numeric Solver: {dt:.6f} s")
return u, dt
|
(f, x_pde, y_pde, u_bc, x_bc, y_bc, precision=torch.float32, verbose=0)
|
43,209 |
fast_poisson_solver.plotter
|
plot
|
This function is used to plot the predicted Machine Learning solution of the PDE,
the true source function, and the predicted source function.
Parameters
----------
x_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
y_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
x_bc : tensor/array/list
Coordinates of the boundary condition.
y_bc : tensor/array/list
Coordinates of the boundary condition.
u_pred : tensor/array/list
The predicted solution of the PDE using Machine Learning.
f : tensor/array/list
The true source function for the PDE.
f_pred : tensor/array/list
The predicted source function for the PDE.
grid : bool, optional
If True, the data is arranged into a grid and plotted as an image.
If False, tricontourf is used to create a contour plot. Default is False.
save : bool, optional
Whether to save the image. The image is saved in both .pdf and .png formats. Default is False.
save_path : str, optional
Path where the image will be saved. Used only if `save` is True. Default is None.
name : str, optional
Name of the image file. Used only if `save` is True. Default is None.
show : bool, optional
Whether to display the plot. Default is False.
show_points: bool, optional
Whether to show the points used to train the model. Default is False.
|
def plot(x_pde, y_pde, x_bc, y_bc, u_pred, f, f_pred, grid=False, save=False, save_path=None, name=None, show=True,
show_points=False):
"""
This function is used to plot the predicted Machine Learning solution of the PDE,
the true source function, and the predicted source function.
Parameters
----------
x_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
y_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
x_bc : tensor/array/list
Coordinates of the boundary condition.
y_bc : tensor/array/list
Coordinates of the boundary condition.
u_pred : tensor/array/list
The predicted solution of the PDE using Machine Learning.
f : tensor/array/list
The true source function for the PDE.
f_pred : tensor/array/list
The predicted source function for the PDE.
grid : bool, optional
If True, the data is arranged into a grid and plotted as an image.
If False, tricontourf is used to create a contour plot. Default is False.
save : bool, optional
Whether to save the image. The image is saved in both .pdf and .png formats. Default is False.
save_path : str, optional
Path where the image will be saved. Used only if `save` is True. Default is None.
name : str, optional
Name of the image file. Used only if `save` is True. Default is None.
show : bool, optional
Whether to display the plot. Default is False.
show_points: bool, optional
Whether to show the points used to train the model. Default is False.
"""
u_pred, f, f_pred, x, y, x_bc, y_bc = format_input([u_pred, f, f_pred, x_pde, y_pde, x_bc, y_bc],
precision=torch.float64, device="cpu", as_array=True)
x_tot = np.concatenate([x, x_bc])
y_tot = np.concatenate([y, y_bc])
if grid:
x_tot, y_tot, u_pred = process_grid_data(x_tot, y_tot, u_pred)
x, y, f, f_pred = process_grid_data(x, y, f, f_pred)
vmin_u, vmax_u = minmax(u_pred)
vmin_f, vmax_f = minmax(f_pred, f)
fig, axs = plt.subplots(2, 3, figsize=(10, 8), dpi=400, tight_layout=True, sharey='row', sharex='col')
axs[0][0].text(-0.15, 0.5, 'Potential', ha='center', va='center', rotation='vertical', fontsize=16,
fontweight='bold')
axs[1][0].text(-0.15, 0.5, 'Source Function', ha='center', va='center', rotation='vertical', fontsize=16,
fontweight='bold')
plot_subplot(axs[0][1], x_tot, y_tot, u_pred, 'Machine Learning', vmin_u, vmax_u, cb_pad=0.03, grid=grid)
plot_subplot(axs[1][0], x, y, f, '', vmin_f, vmax_f, cb_pad=0.08, grid=grid, show_points=show_points)
plot_subplot(axs[1][1], x, y, f_pred, '', vmin_f, vmax_f, cb_pad=0.08, grid=grid)
plot_subplot(axs[1][2], x, y, (f_pred - f), '', cb_pad=0.08, cb_ztick=True, grid=grid)
axs[0][0].set_ylabel('y', labelpad=-10, fontsize=14)
axs[1][0].set_ylabel('y', labelpad=-10, fontsize=14)
axs[1][0].set_xlabel('x', labelpad=-15, fontsize=14)
axs[1][1].set_xlabel('x', labelpad=-15, fontsize=14)
axs[1][2].set_xlabel('x', labelpad=-15, fontsize=14)
if save:
if not os.path.isdir(save_path):
os.makedirs(save_path, exist_ok=True)
plt.savefig(os.path.join(save_path, name + '.pdf'), bbox_inches="tight")
plt.savefig(os.path.join(save_path, name + '.png'), bbox_inches="tight")
if show:
plt.show()
plt.close()
|
(x_pde, y_pde, x_bc, y_bc, u_pred, f, f_pred, grid=False, save=False, save_path=None, name=None, show=True, show_points=False)
|
43,210 |
fast_poisson_solver.plotter
|
plot_comparison
|
This function is used to plot and compare the numeric solution, the predicted Machine Learning solution,
and the residual between the two. It also shows the true source function, the predicted source function,
and the residual between these two.
Parameters
----------
x_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
y_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
x_bc : tensor/array/list
Coordinates of the boundary condition.
y_bc : tensor/array/list
Coordinates of the boundary condition.
u_pred : tensor/array/list
The predicted solution of the PDE using Machine Learning.
f : tensor/array/list
The true source function for the PDE.
f_pred : tensor/array/list
The predicted source function for the PDE.
u_num : tensor/array/list
The numeric solution of the PDE.
grid : bool, optional
If True, the data is arranged into a grid and plotted as an image.
If False, tricontourf is used to create a contour plot. Default is False.
save : bool, optional
Whether to save the image. The image is saved in both .pdf and .png formats. Default is False.
save_path : str, optional
Path where the image will be saved. Used only if `save` is True. Default is None.
name : str, optional
Name of the image file. Used only if `save` is True. Default is None.
show : bool, optional
Whether to display the plot. Default is False.
show_points: bool, optional
Whether to show the points of the data. Default is False.
|
def plot_comparison(x_pde, y_pde, x_bc, y_bc, u_pred, f, f_pred, u_num,
grid=False, save=False, save_path=None, name=None, show=True,
show_points=False):
"""
This function is used to plot and compare the numeric solution, the predicted Machine Learning solution,
and the residual between the two. It also shows the true source function, the predicted source function,
and the residual between these two.
Parameters
----------
x_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
y_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
x_bc : tensor/array/list
Coordinates of the boundary condition.
y_bc : tensor/array/list
Coordinates of the boundary condition.
u_pred : tensor/array/list
The predicted solution of the PDE using Machine Learning.
f : tensor/array/list
The true source function for the PDE.
f_pred : tensor/array/list
The predicted source function for the PDE.
u_num : tensor/array/list
The numeric solution of the PDE.
grid : bool, optional
If True, the data is arranged into a grid and plotted as an image.
If False, tricontourf is used to create a contour plot. Default is False.
save : bool, optional
Whether to save the image. The image is saved in both .pdf and .png formats. Default is False.
save_path : str, optional
Path where the image will be saved. Used only if `save` is True. Default is None.
name : str, optional
Name of the image file. Used only if `save` is True. Default is None.
show : bool, optional
Whether to display the plot. Default is False.
show_points: bool, optional
Whether to show the points of the data. Default is False.
"""
u_pred, u_num, f, f_pred, x, y, x_bc, y_bc = format_input([u_pred, u_num, f, f_pred, x_pde, y_pde, x_bc, y_bc],
precision=torch.float64, device="cpu", as_array=True)
x_tot = np.concatenate([x, x_bc])
y_tot = np.concatenate([y, y_bc])
if grid:
x_tot, y_tot, u_num, u_pred = process_grid_data(x_tot, y_tot, u_num, u_pred)
x, y, f, f_pred = process_grid_data(x, y, f, f_pred)
vmin_u, vmax_u = minmax(u_pred, u_num)
vmin_f, vmax_f = minmax(f_pred, f)
fig, axs = plt.subplots(2, 3, figsize=(10, 8), dpi=400, tight_layout=True, sharey='row', sharex='col')
axs[0][0].text(-0.15, 0.5, 'Potential', ha='center', va='center', rotation='vertical', fontsize=16,
fontweight='bold')
axs[1][0].text(-0.15, 0.5, 'Source Function', ha='center', va='center', rotation='vertical', fontsize=16,
fontweight='bold')
plot_subplot(axs[0][0], x_tot, y_tot, u_num, 'Numeric', vmin_u, vmax_u, cb_pad=0.03, grid=grid)
plot_subplot(axs[0][1], x_tot, y_tot, u_pred, 'Machine Learning', vmin_u, vmax_u, cb_pad=0.03, grid=grid)
plot_subplot(axs[0][2], x_tot, y_tot, (u_pred - u_num), 'Residual', cb_pad=0.03, cb_ztick=True, grid=grid)
plot_subplot(axs[1][0], x, y, f, '', vmin_f, vmax_f, cb_pad=0.08, grid=grid, show_points=show_points)
plot_subplot(axs[1][1], x, y, f_pred, '', vmin_f, vmax_f, cb_pad=0.08, grid=grid)
plot_subplot(axs[1][2], x, y, (f_pred - f), '', cb_pad=0.08, cb_ztick=True, grid=grid)
axs[0][0].set_ylabel('y', labelpad=-10, fontsize=14)
axs[1][0].set_ylabel('y', labelpad=-10, fontsize=14)
axs[1][0].set_xlabel('x', labelpad=-15, fontsize=14)
axs[1][1].set_xlabel('x', labelpad=-15, fontsize=14)
axs[1][2].set_xlabel('x', labelpad=-15, fontsize=14)
if save:
if not os.path.isdir(save_path):
os.makedirs(save_path, exist_ok=True)
plt.savefig(os.path.join(save_path, name + '.pdf'), bbox_inches="tight")
plt.savefig(os.path.join(save_path, name + '.png'), bbox_inches="tight")
if show:
plt.show()
plt.close()
# np.save(os.path.join(save_path, name + '_residual.npy'), (u_pred - u_num).reshape(solver.grid_size, solver.grid_size))
|
(x_pde, y_pde, x_bc, y_bc, u_pred, f, f_pred, u_num, grid=False, save=False, save_path=None, name=None, show=True, show_points=False)
|
43,211 |
fast_poisson_solver.plotter
|
plot_side_by_side
|
This function is used to plot and compare the numeric solution, the predicted Machine Learning solution,
and the residual between the two. It also shows the true source function, the predicted source function,
and the residual between these two.
Parameters
----------
x_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
y_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
x_bc : tensor/array/list
Coordinates of the boundary condition.
y_bc : tensor/array/list
Coordinates of the boundary condition.
u_pred : tensor/array/list
The predicted solution of the PDE using Machine Learning.
f : tensor/array/list
The true source function for the PDE.
f_pred : tensor/array/list
The predicted source function for the PDE.
u_num : tensor/array/list
The numeric solution of the PDE.
grid : bool, optional
If True, the data is arranged into a grid and plotted as an image.
If False, tricontourf is used to create a contour plot. Default is False.
save : bool, optional
Whether to save the image. The image is saved in both .pdf and .png formats. Default is False.
save_path : str, optional
Path where the image will be saved. Used only if `save` is True. Default is None.
name : str, optional
Name of the image file. Used only if `save` is True. Default is None.
show : bool, optional
Whether to display the plot. Default is False.
|
def plot_side_by_side(x_pde, y_pde, x_bc, y_bc, u_pred, f, f_pred, u_num,
grid=False, save=False, save_path=None, name=None, show=True):
"""
This function is used to plot and compare the numeric solution, the predicted Machine Learning solution,
and the residual between the two. It also shows the true source function, the predicted source function,
and the residual between these two.
Parameters
----------
x_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
y_pde : tensor/array/list
Coordinates that lie inside the domain and define the behavior of the PDE.
x_bc : tensor/array/list
Coordinates of the boundary condition.
y_bc : tensor/array/list
Coordinates of the boundary condition.
u_pred : tensor/array/list
The predicted solution of the PDE using Machine Learning.
f : tensor/array/list
The true source function for the PDE.
f_pred : tensor/array/list
The predicted source function for the PDE.
u_num : tensor/array/list
The numeric solution of the PDE.
grid : bool, optional
If True, the data is arranged into a grid and plotted as an image.
If False, tricontourf is used to create a contour plot. Default is False.
save : bool, optional
Whether to save the image. The image is saved in both .pdf and .png formats. Default is False.
save_path : str, optional
Path where the image will be saved. Used only if `save` is True. Default is None.
name : str, optional
Name of the image file. Used only if `save` is True. Default is None.
show : bool, optional
Whether to display the plot. Default is False.
"""
u_pred, u_num, f, f_pred, x, y, x_bc, y_bc = format_input([u_pred, u_num, f, f_pred, x_pde, y_pde, x_bc, y_bc],
precision=torch.float64, device="cpu", as_array=True)
x_tot = np.concatenate([x, x_bc])
y_tot = np.concatenate([y, y_bc])
if grid:
x_tot, y_tot, u_num, u_pred = process_grid_data(x_tot, y_tot, u_num, u_pred)
x, y, f, f_pred = process_grid_data(x, y, f, f_pred)
vmin_u, vmax_u = minmax(u_pred, u_num)
vmin_f, vmax_f = minmax(f_pred, f)
fig, ax = plt.subplots(1, 2, figsize=(10, 8), dpi=400, tight_layout=True, sharey='row', sharex='col')
ax[0].tricontourf(x_tot.reshape(-1), y_tot.reshape(-1), u_num.reshape(-1), 200, cmap='jet', vmin=vmin_u,
vmax=vmax_u)
ax[1].tricontourf(x_tot.reshape(-1), y_tot.reshape(-1), u_pred.reshape(-1), 200, cmap='jet', vmin=vmin_u,
vmax=vmax_u)
font_name = "Calibri" if "Calibri" in fm.findSystemFonts(fontpaths=None, fontext='ttf') else None
ax[0].set_title('Numeric (5s)', fontsize=30, fontweight='bold', fontname=font_name, pad=20)
ax[1].set_title('Ours (0.003s)', fontsize=30, fontweight='bold', fontname=font_name, pad=20)
ax[0].set_aspect('equal', adjustable='box')
ax[1].set_aspect('equal', adjustable='box')
ax[0].axis('off')
ax[1].axis('off')
plt.text(1, -0.06, '400x400 Grid', ha='right', va='bottom', transform=plt.gca().transAxes)
if save:
if not os.path.isdir(save_path):
os.makedirs(save_path, exist_ok=True)
plt.savefig(os.path.join(save_path, name + '.pdf'), bbox_inches="tight")
plt.savefig(os.path.join(save_path, name + '.png'), bbox_inches="tight")
if show:
plt.show()
plt.close()
# np.save(os.path.join(save_path, name + '_residual.npy'), (u_pred - u_num).reshape(solver.grid_size, solver.grid_size))
|
(x_pde, y_pde, x_bc, y_bc, u_pred, f, f_pred, u_num, grid=False, save=False, save_path=None, name=None, show=True)
|
43,212 |
fast_poisson_solver.plotter
|
plot_subplot
| null |
def plot_subplot(ax, x, y, v, title, vmin=None, vmax=None, cb_pad=0.018, cb_ztick=False, grid=False, show_points=False):
if vmin is None:
vmin = min((np.min(v), 0))
if vmax is None:
vmax = max((np.max(v), 0))
if grid:
c = ax.imshow(v, cmap='jet', vmin=vmin, vmax=vmax, extent=(0, 1, 0, 1), origin='lower')
else:
c = ax.tricontourf(x.reshape(-1), y.reshape(-1), v.reshape(-1), 100, cmap='jet', vmin=vmin,
vmax=vmax) # , extent=(0, 1, 0, 1))
if show_points:
ax.scatter(x, y, s=1, c='black', marker='.', alpha=0.5)
if title != '':
ax.set_title(title, fontsize=16, pad=12, fontweight='bold')
# ax.set_xlim(0, 1)
# ax.set_ylim(0, 1)
ax.set_aspect('equal', adjustable='box')
ax.set_xticks((0, 1), labels=('0', '1'), fontsize=14)
ax.set_yticks((0, 1), labels=('0', '1'), fontsize=14)
for spine in ax.spines.values():
spine.set_visible(False)
cb = plt.colorbar(ScalarMappable(norm=c.norm, cmap=c.cmap), ax=ax, extendrect=True, pad=cb_pad,
location='bottom', shrink=0.8)
cb.outline.set_visible(False)
if cb_ztick:
cb.set_ticks([vmin, 0, vmax], labels=[f'{vmin:.4f}', '0', f'{vmax:.4f}'], fontsize=15)
else:
cb.set_ticks([vmin, vmax], labels=[f'{vmin:.4f}', f'{vmax:.4f}'], fontsize=15)
|
(ax, x, y, v, title, vmin=None, vmax=None, cb_pad=0.018, cb_ztick=False, grid=False, show_points=False)
|
43,215 |
fast_poisson_solver.utils
|
process_grid_data
| null |
def process_grid_data(x, y, z1, z2=None):
x_num = len(np.unique(x))
y_num = len(np.unique(y))
if z2 is not None:
x, y, [z1, z2] = sort_ascend(x, y, [z1, z2])
z1 = z1.reshape(x_num, y_num)
z2 = z2.reshape(x_num, y_num)
return x, y, z1, z2
else:
x, y, [z1] = sort_ascend(x, y, [z1])
z1 = z1.reshape(x_num, y_num)
return x, y, z1
|
(x, y, z1, z2=None)
|
43,216 |
skimage.metrics.simple_metrics
|
peak_signal_noise_ratio
|
Compute the peak signal to noise ratio (PSNR) for an image.
Parameters
----------
image_true : ndarray
Ground-truth image, same shape as im_test.
image_test : ndarray
Test image.
data_range : int, optional
The data range of the input image (distance between minimum and
maximum possible values). By default, this is estimated from the image
data-type.
Returns
-------
psnr : float
The PSNR metric.
Notes
-----
.. versionchanged:: 0.16
This function was renamed from ``skimage.measure.compare_psnr`` to
``skimage.metrics.peak_signal_noise_ratio``.
References
----------
.. [1] https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
|
def peak_signal_noise_ratio(image_true, image_test, *, data_range=None):
"""
Compute the peak signal to noise ratio (PSNR) for an image.
Parameters
----------
image_true : ndarray
Ground-truth image, same shape as im_test.
image_test : ndarray
Test image.
data_range : int, optional
The data range of the input image (distance between minimum and
maximum possible values). By default, this is estimated from the image
data-type.
Returns
-------
psnr : float
The PSNR metric.
Notes
-----
.. versionchanged:: 0.16
This function was renamed from ``skimage.measure.compare_psnr`` to
``skimage.metrics.peak_signal_noise_ratio``.
References
----------
.. [1] https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
"""
check_shape_equality(image_true, image_test)
if data_range is None:
if image_true.dtype != image_test.dtype:
warn(
"Inputs have mismatched dtype. Setting data_range based on "
"image_true."
)
dmin, dmax = dtype_range[image_true.dtype.type]
true_min, true_max = np.min(image_true), np.max(image_true)
if true_max > dmax or true_min < dmin:
raise ValueError(
"image_true has intensity values outside the range expected "
"for its data type. Please manually specify the data_range."
)
if true_min >= 0:
# most common case (255 for uint8, 1 for float)
data_range = dmax
else:
data_range = dmax - dmin
image_true, image_test = _as_floats(image_true, image_test)
err = mean_squared_error(image_true, image_test)
return 10 * np.log10((data_range**2) / err)
|
(image_true, image_test, *, data_range=None)
|
43,217 |
sklearn.metrics._regression
|
r2_score
|
:math:`R^2` (coefficient of determination) regression score function.
Best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). In the general case when the true y is
non-constant, a constant model that always predicts the average y
disregarding the input features would get a :math:`R^2` score of 0.0.
In the particular case when ``y_true`` is constant, the :math:`R^2` score
is not finite: it is either ``NaN`` (perfect predictions) or ``-Inf``
(imperfect predictions). To prevent such non-finite numbers to pollute
higher-level experiments such as a grid search cross-validation, by default
these cases are replaced with 1.0 (perfect predictions) or 0.0 (imperfect
predictions) respectively. You can set ``force_finite`` to ``False`` to
prevent this fix from happening.
Note: when the prediction residuals have zero mean, the :math:`R^2` score
is identical to the
:func:`Explained Variance score <explained_variance_score>`.
Read more in the :ref:`User Guide <r2_score>`.
Parameters
----------
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
multioutput : {'raw_values', 'uniform_average', 'variance_weighted'}, array-like of shape (n_outputs,) or None, default='uniform_average'
Defines aggregating of multiple output scores.
Array-like value defines weights used to average scores.
Default is "uniform_average".
'raw_values' :
Returns a full set of scores in case of multioutput input.
'uniform_average' :
Scores of all outputs are averaged with uniform weight.
'variance_weighted' :
Scores of all outputs are averaged, weighted by the variances
of each individual output.
.. versionchanged:: 0.19
Default value of multioutput is 'uniform_average'.
force_finite : bool, default=True
Flag indicating if ``NaN`` and ``-Inf`` scores resulting from constant
data should be replaced with real numbers (``1.0`` if prediction is
perfect, ``0.0`` otherwise). Default is ``True``, a convenient setting
for hyperparameters' search procedures (e.g. grid search
cross-validation).
.. versionadded:: 1.1
Returns
-------
z : float or ndarray of floats
The :math:`R^2` score or ndarray of scores if 'multioutput' is
'raw_values'.
Notes
-----
This is not a symmetric function.
Unlike most other scores, :math:`R^2` score may be negative (it need not
actually be the square of a quantity R).
This metric is not well-defined for single samples and will return a NaN
value if n_samples is less than two.
References
----------
.. [1] `Wikipedia entry on the Coefficient of determination
<https://en.wikipedia.org/wiki/Coefficient_of_determination>`_
Examples
--------
>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred,
... multioutput='variance_weighted')
0.938...
>>> y_true = [1, 2, 3]
>>> y_pred = [1, 2, 3]
>>> r2_score(y_true, y_pred)
1.0
>>> y_true = [1, 2, 3]
>>> y_pred = [2, 2, 2]
>>> r2_score(y_true, y_pred)
0.0
>>> y_true = [1, 2, 3]
>>> y_pred = [3, 2, 1]
>>> r2_score(y_true, y_pred)
-3.0
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2]
>>> r2_score(y_true, y_pred)
1.0
>>> r2_score(y_true, y_pred, force_finite=False)
nan
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2 + 1e-8]
>>> r2_score(y_true, y_pred)
0.0
>>> r2_score(y_true, y_pred, force_finite=False)
-inf
|
def mean_absolute_error(
y_true, y_pred, *, sample_weight=None, multioutput="uniform_average"
):
"""Mean absolute error regression loss.
Read more in the :ref:`User Guide <mean_absolute_error>`.
Parameters
----------
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
multioutput : {'raw_values', 'uniform_average'} or array-like of shape \
(n_outputs,), default='uniform_average'
Defines aggregating of multiple output values.
Array-like value defines weights used to average errors.
'raw_values' :
Returns a full set of errors in case of multioutput input.
'uniform_average' :
Errors of all outputs are averaged with uniform weight.
Returns
-------
loss : float or ndarray of floats
If multioutput is 'raw_values', then mean absolute error is returned
for each output separately.
If multioutput is 'uniform_average' or an ndarray of weights, then the
weighted average of all output errors is returned.
MAE output is non-negative floating point. The best value is 0.0.
Examples
--------
>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...
"""
y_type, y_true, y_pred, multioutput = _check_reg_targets(
y_true, y_pred, multioutput
)
check_consistent_length(y_true, y_pred, sample_weight)
output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0)
if isinstance(multioutput, str):
if multioutput == "raw_values":
return output_errors
elif multioutput == "uniform_average":
# pass None as weights to np.average: uniform mean
multioutput = None
return np.average(output_errors, weights=multioutput)
|
(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average', force_finite=True)
|
43,219 |
skimage.metrics._structural_similarity
|
structural_similarity
|
Compute the mean structural similarity index between two images.
Please pay attention to the `data_range` parameter with floating-point images.
Parameters
----------
im1, im2 : ndarray
Images. Any dimensionality with same shape.
win_size : int or None, optional
The side-length of the sliding window used in comparison. Must be an
odd value. If `gaussian_weights` is True, this is ignored and the
window size will depend on `sigma`.
gradient : bool, optional
If True, also return the gradient with respect to im2.
data_range : float, optional
The data range of the input image (difference between maximum and
minimum possible values). By default, this is estimated from the image
data type. This estimate may be wrong for floating-point image data.
Therefore it is recommended to always pass this scalar value explicitly
(see note below).
channel_axis : int or None, optional
If None, the image is assumed to be a grayscale (single channel) image.
Otherwise, this parameter indicates which axis of the array corresponds
to channels.
.. versionadded:: 0.19
``channel_axis`` was added in 0.19.
gaussian_weights : bool, optional
If True, each patch has its mean and variance spatially weighted by a
normalized Gaussian kernel of width sigma=1.5.
full : bool, optional
If True, also return the full structural similarity image.
Other Parameters
----------------
use_sample_covariance : bool
If True, normalize covariances by N-1 rather than, N where N is the
number of pixels within the sliding window.
K1 : float
Algorithm parameter, K1 (small constant, see [1]_).
K2 : float
Algorithm parameter, K2 (small constant, see [1]_).
sigma : float
Standard deviation for the Gaussian when `gaussian_weights` is True.
Returns
-------
mssim : float
The mean structural similarity index over the image.
grad : ndarray
The gradient of the structural similarity between im1 and im2 [2]_.
This is only returned if `gradient` is set to True.
S : ndarray
The full SSIM image. This is only returned if `full` is set to True.
Notes
-----
If `data_range` is not specified, the range is automatically guessed
based on the image data type. However for floating-point image data, this
estimate yields a result double the value of the desired range, as the
`dtype_range` in `skimage.util.dtype.py` has defined intervals from -1 to
+1. This yields an estimate of 2, instead of 1, which is most often
required when working with image data (as negative light intensities are
nonsensical). In case of working with YCbCr-like color data, note that
these ranges are different per channel (Cb and Cr have double the range
of Y), so one cannot calculate a channel-averaged SSIM with a single call
to this function, as identical ranges are assumed for each channel.
To match the implementation of Wang et al. [1]_, set `gaussian_weights`
to True, `sigma` to 1.5, `use_sample_covariance` to False, and
specify the `data_range` argument.
.. versionchanged:: 0.16
This function was renamed from ``skimage.measure.compare_ssim`` to
``skimage.metrics.structural_similarity``.
References
----------
.. [1] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P.
(2004). Image quality assessment: From error visibility to
structural similarity. IEEE Transactions on Image Processing,
13, 600-612.
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf,
:DOI:`10.1109/TIP.2003.819861`
.. [2] Avanaki, A. N. (2009). Exact global histogram specification
optimized for structural similarity. Optical Review, 16, 613-621.
:arxiv:`0901.0065`
:DOI:`10.1007/s10043-009-0119-z`
|
def structural_similarity(
im1,
im2,
*,
win_size=None,
gradient=False,
data_range=None,
channel_axis=None,
gaussian_weights=False,
full=False,
**kwargs,
):
"""
Compute the mean structural similarity index between two images.
Please pay attention to the `data_range` parameter with floating-point images.
Parameters
----------
im1, im2 : ndarray
Images. Any dimensionality with same shape.
win_size : int or None, optional
The side-length of the sliding window used in comparison. Must be an
odd value. If `gaussian_weights` is True, this is ignored and the
window size will depend on `sigma`.
gradient : bool, optional
If True, also return the gradient with respect to im2.
data_range : float, optional
The data range of the input image (difference between maximum and
minimum possible values). By default, this is estimated from the image
data type. This estimate may be wrong for floating-point image data.
Therefore it is recommended to always pass this scalar value explicitly
(see note below).
channel_axis : int or None, optional
If None, the image is assumed to be a grayscale (single channel) image.
Otherwise, this parameter indicates which axis of the array corresponds
to channels.
.. versionadded:: 0.19
``channel_axis`` was added in 0.19.
gaussian_weights : bool, optional
If True, each patch has its mean and variance spatially weighted by a
normalized Gaussian kernel of width sigma=1.5.
full : bool, optional
If True, also return the full structural similarity image.
Other Parameters
----------------
use_sample_covariance : bool
If True, normalize covariances by N-1 rather than, N where N is the
number of pixels within the sliding window.
K1 : float
Algorithm parameter, K1 (small constant, see [1]_).
K2 : float
Algorithm parameter, K2 (small constant, see [1]_).
sigma : float
Standard deviation for the Gaussian when `gaussian_weights` is True.
Returns
-------
mssim : float
The mean structural similarity index over the image.
grad : ndarray
The gradient of the structural similarity between im1 and im2 [2]_.
This is only returned if `gradient` is set to True.
S : ndarray
The full SSIM image. This is only returned if `full` is set to True.
Notes
-----
If `data_range` is not specified, the range is automatically guessed
based on the image data type. However for floating-point image data, this
estimate yields a result double the value of the desired range, as the
`dtype_range` in `skimage.util.dtype.py` has defined intervals from -1 to
+1. This yields an estimate of 2, instead of 1, which is most often
required when working with image data (as negative light intensities are
nonsensical). In case of working with YCbCr-like color data, note that
these ranges are different per channel (Cb and Cr have double the range
of Y), so one cannot calculate a channel-averaged SSIM with a single call
to this function, as identical ranges are assumed for each channel.
To match the implementation of Wang et al. [1]_, set `gaussian_weights`
to True, `sigma` to 1.5, `use_sample_covariance` to False, and
specify the `data_range` argument.
.. versionchanged:: 0.16
This function was renamed from ``skimage.measure.compare_ssim`` to
``skimage.metrics.structural_similarity``.
References
----------
.. [1] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P.
(2004). Image quality assessment: From error visibility to
structural similarity. IEEE Transactions on Image Processing,
13, 600-612.
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf,
:DOI:`10.1109/TIP.2003.819861`
.. [2] Avanaki, A. N. (2009). Exact global histogram specification
optimized for structural similarity. Optical Review, 16, 613-621.
:arxiv:`0901.0065`
:DOI:`10.1007/s10043-009-0119-z`
"""
check_shape_equality(im1, im2)
float_type = _supported_float_type(im1.dtype)
if channel_axis is not None:
# loop over channels
args = dict(
win_size=win_size,
gradient=gradient,
data_range=data_range,
channel_axis=None,
gaussian_weights=gaussian_weights,
full=full,
)
args.update(kwargs)
nch = im1.shape[channel_axis]
mssim = np.empty(nch, dtype=float_type)
if gradient:
G = np.empty(im1.shape, dtype=float_type)
if full:
S = np.empty(im1.shape, dtype=float_type)
channel_axis = channel_axis % im1.ndim
_at = functools.partial(utils.slice_at_axis, axis=channel_axis)
for ch in range(nch):
ch_result = structural_similarity(im1[_at(ch)], im2[_at(ch)], **args)
if gradient and full:
mssim[ch], G[_at(ch)], S[_at(ch)] = ch_result
elif gradient:
mssim[ch], G[_at(ch)] = ch_result
elif full:
mssim[ch], S[_at(ch)] = ch_result
else:
mssim[ch] = ch_result
mssim = mssim.mean()
if gradient and full:
return mssim, G, S
elif gradient:
return mssim, G
elif full:
return mssim, S
else:
return mssim
K1 = kwargs.pop('K1', 0.01)
K2 = kwargs.pop('K2', 0.03)
sigma = kwargs.pop('sigma', 1.5)
if K1 < 0:
raise ValueError("K1 must be positive")
if K2 < 0:
raise ValueError("K2 must be positive")
if sigma < 0:
raise ValueError("sigma must be positive")
use_sample_covariance = kwargs.pop('use_sample_covariance', True)
if gaussian_weights:
# Set to give an 11-tap filter with the default sigma of 1.5 to match
# Wang et. al. 2004.
truncate = 3.5
if win_size is None:
if gaussian_weights:
# set win_size used by crop to match the filter size
r = int(truncate * sigma + 0.5) # radius as in ndimage
win_size = 2 * r + 1
else:
win_size = 7 # backwards compatibility
if np.any((np.asarray(im1.shape) - win_size) < 0):
raise ValueError(
'win_size exceeds image extent. '
'Either ensure that your images are '
'at least 7x7; or pass win_size explicitly '
'in the function call, with an odd value '
'less than or equal to the smaller side of your '
'images. If your images are multichannel '
'(with color channels), set channel_axis to '
'the axis number corresponding to the channels.'
)
if not (win_size % 2 == 1):
raise ValueError('Window size must be odd.')
if data_range is None:
if np.issubdtype(im1.dtype, np.floating) or np.issubdtype(
im2.dtype, np.floating
):
raise ValueError(
'Since image dtype is floating point, you must specify '
'the data_range parameter. Please read the documentation '
'carefully (including the note). It is recommended that '
'you always specify the data_range anyway.'
)
if im1.dtype != im2.dtype:
warn(
"Inputs have mismatched dtypes. Setting data_range based on im1.dtype.",
stacklevel=2,
)
dmin, dmax = dtype_range[im1.dtype.type]
data_range = dmax - dmin
if np.issubdtype(im1.dtype, np.integer) and (im1.dtype != np.uint8):
warn(
"Setting data_range based on im1.dtype. "
+ f"data_range = {data_range:.0f}. "
+ "Please specify data_range explicitly to avoid mistakes.",
stacklevel=2,
)
ndim = im1.ndim
if gaussian_weights:
filter_func = gaussian
filter_args = {'sigma': sigma, 'truncate': truncate, 'mode': 'reflect'}
else:
filter_func = uniform_filter
filter_args = {'size': win_size}
# ndimage filters need floating point data
im1 = im1.astype(float_type, copy=False)
im2 = im2.astype(float_type, copy=False)
NP = win_size**ndim
# filter has already normalized by NP
if use_sample_covariance:
cov_norm = NP / (NP - 1) # sample covariance
else:
cov_norm = 1.0 # population covariance to match Wang et. al. 2004
# compute (weighted) means
ux = filter_func(im1, **filter_args)
uy = filter_func(im2, **filter_args)
# compute (weighted) variances and covariances
uxx = filter_func(im1 * im1, **filter_args)
uyy = filter_func(im2 * im2, **filter_args)
uxy = filter_func(im1 * im2, **filter_args)
vx = cov_norm * (uxx - ux * ux)
vy = cov_norm * (uyy - uy * uy)
vxy = cov_norm * (uxy - ux * uy)
R = data_range
C1 = (K1 * R) ** 2
C2 = (K2 * R) ** 2
A1, A2, B1, B2 = (
2 * ux * uy + C1,
2 * vxy + C2,
ux**2 + uy**2 + C1,
vx + vy + C2,
)
D = B1 * B2
S = (A1 * A2) / D
# to avoid edge effects will ignore filter radius strip around edges
pad = (win_size - 1) // 2
# compute (weighted) mean of ssim. Use float64 for accuracy.
mssim = crop(S, pad).mean(dtype=np.float64)
if gradient:
# The following is Eqs. 7-8 of Avanaki 2009.
grad = filter_func(A1 / D, **filter_args) * im1
grad += filter_func(-S / B2, **filter_args) * im2
grad += filter_func((ux * (A2 - A1) - uy * (B2 - B1) * S) / D, **filter_args)
grad *= 2 / im1.size
if full:
return mssim, grad, S
else:
return mssim, grad
else:
if full:
return mssim, S
else:
return mssim
|
(im1, im2, *, win_size=None, gradient=False, data_range=None, channel_axis=None, gaussian_weights=False, full=False, **kwargs)
|
43,292 |
plumage
|
get_path
|
Returns installation path of the theme.
Used in ``pelicanconf.py`` to dynamiccaly fetch theme location on the system.
|
def get_path() -> str:
"""Returns installation path of the theme.
Used in ``pelicanconf.py`` to dynamiccaly fetch theme location on the system.
"""
return str(PLUMAGE_ROOT)
|
() -> str
|
43,294 |
plumage.config
|
register_signals
| null |
def register_signals() -> None:
signals.initialized.connect(check_config)
signals.static_generator_finalized.connect(add_favicon_assets)
signals.content_written.connect(transform)
|
() -> NoneType
|
43,296 |
mo_dots.datas
|
Data
|
Please see https://github.com/klahnakoski/mo-dots/tree/dev/docs#data-replaces-pythons-dict
|
class Data:
"""
Please see https://github.com/klahnakoski/mo-dots/tree/dev/docs#data-replaces-pythons-dict
"""
__slots__ = [SLOT]
def __init__(self, *args, **kwargs):
"""
CONSTRUCT DATA WITH GIVEN PROPERTY VALUES
"""
if args:
raise Exception("only keywords are allowed, not " + args[0].__class__.__name__)
_set(self, SLOT, kwargs)
def __bool__(self):
d = _get(self, SLOT)
if _get(d, CLASS) is dict:
return True
else:
return d != None
__nonzero__ = __bool__
def __contains__(self, item):
value = Data.__getitem__(self, item)
if is_data(value) or value:
return True
return False
def __iter__(self):
d = _get(self, SLOT)
if _get(d, CLASS) is dict:
yield from d.items()
else:
yield from d.__iter__()
def __getitem__(self, key):
if is_null(key):
return Null
if key == ".":
output = _get(self, SLOT)
if is_data(output):
return self
else:
return output
key = str(key)
d = _get(self, SLOT)
if key.find(".") >= 0:
seq = _split_field(key)
for n in seq:
if _get(d, CLASS) is NullType:
d = NullType(d, n) # OH DEAR, Null TREATS n AS PATH, NOT LITERAL
elif is_many(d):
d = [_getdefault(dd, n) for dd in d]
else:
d = _getdefault(d, n) # EVERYTHING ELSE TREATS n AS LITERAL
return to_data(d)
else:
o = d.get(key)
if is_null(o):
return NullType(d, key)
return to_data(o)
def __setitem__(self, key, value):
if key == "":
get_logger().error("key is empty string. Probably a bad idea")
if is_null(key):
return Null
if key == ".":
# SOMETHING TERRIBLE HAPPENS WHEN value IS NOT A Mapping;
# HOPEFULLY THE ONLY OTHER METHOD RUN ON self IS from_data()
v = from_data(value)
if is_many(v):
_set(self, CLASS, FlatList)
_set(self, SLOT, v)
return self
try:
d = _get(self, SLOT)
value = from_data(value)
if "." not in key:
if value is None:
d.pop(key, None)
else:
d[key] = value
return self
seq = _split_field(key)
for k in seq[:-1]:
d = _getdefault(d, k)
if is_null(value):
try:
d.pop(seq[-1], None)
except Exception as _:
pass
elif is_null(d):
d[literal_field(seq[-1])] = value
elif is_sequence(d):
for dd in d:
from_data(dd)[seq[-1]] = value
else:
d[seq[-1]] = value
return self
except Exception as e:
from mo_logs import Log
Log.error("can not set key={{key}}", key=key, cause=e)
def __getattr__(self, key):
d = _get(self, SLOT)
v = d.get(key)
t = _get(v, CLASS)
# OPTIMIZED to_data()
if t is dict:
return dict_to_data(v)
elif t in utils._null_types:
return NullType(d, key)
elif t is list:
return list_to_data(v)
elif t in generator_types:
return FlatList(list(from_data(vv) for vv in v))
else:
return v
def __setattr__(self, key, value):
d = _get(self, SLOT)
value = from_data(value)
if value is None:
d = _get(self, SLOT)
d.pop(key, None)
else:
d[key] = value
return self
def __add__(self, other):
return _iadd(_iadd({}, self), other)
def __radd__(self, other):
return _iadd(_iadd({}, other), self)
def __iadd__(self, other):
return _iadd(self, other)
def __or__(self, other):
"""
RECURSIVE COALESCE OF DATA PROPERTIES
"""
if not is_data(other):
get_logger().error("Expecting Data")
d = _get(self, SLOT)
output = Data(**d) # COPY
output.__ior__(other)
return output
def __ror__(self, other):
"""
RECURSIVE COALESCE OF DATA PROPERTIES
"""
if not is_data(other):
get_logger().error("Expecting Data")
return to_data(other).__or__(self)
def __ior__(self, other):
"""
RECURSIVE COALESCE OF DATA PROPERTIES
"""
d = _get(self, SLOT)
if not is_data(other):
if is_missing(d) or (isinstance(d, dict) and not d):
_set(self, SLOT, other)
return self
for ok, ov in other.items():
if is_null(ov):
continue
sv = to_data(d.get(ok))
if is_null(sv):
d[ok] = ov
elif is_data(sv):
d[ok] = sv | ov
return self
def __hash__(self):
d = _get(self, SLOT)
return hash_value(d)
def __eq__(self, other):
if self is other:
return True
d = _get(self, SLOT)
if _get(d, CLASS) is not dict:
return d == other
if not d and is_null(other):
return False
if not is_data(other):
return False
e = other
for k, v in d.items():
if e.get(k) != v:
return False
for k, v in e.items():
if d.get(k) != v:
return False
return True
def __ne__(self, other):
return not self.__eq__(other)
def get(self, key, default=Null):
v = self[key]
if _get(v, CLASS) == NullType:
if default is Null:
return NullType(self, key)
return default
return v
def items(self):
d = _get(self, SLOT)
return [(k, to_data(v)) for k, v in d.items() if v != None or is_data(v)]
def leaves(self, prefix=None):
"""
LIKE items() BUT RECURSIVE, AND ONLY FOR THE LEAVES (non dict) VALUES
"""
return leaves(self, prefix)
def iteritems(self):
# LOW LEVEL ITERATION, NO WRAPPING
d = _get(self, SLOT)
return ((k, to_data(v)) for k, v in d.items())
def pop(self, key, default=Null):
if is_null(key):
return Null
if key == ".":
raise NotImplemented()
key = str(key)
d = _get(self, SLOT)
if key.find(".") >= 0:
seq = _split_field(key)
for n in seq[:-1]:
if _get(d, CLASS) is NullType:
d = NullType(d, n) # OH DEAR, Null TREATS n AS PATH, NOT LITERAL
elif is_many(d):
d = [_getdefault(dd, n) for dd in d]
else:
d = _getdefault(d, n) # EVERYTHING ELSE TREATS n AS LITERAL
key = seq[-1]
o = d.get(key)
if is_null(o):
if default is Null:
return NullType(d, key)
return default
d[key] = None
return to_data(o)
def keys(self):
d = _get(self, SLOT)
return set(d.keys())
def values(self):
d = _get(self, SLOT)
return listwrap(list(d.values()))
def clear(self):
get_logger().error("clear() not supported")
def __len__(self):
d = _get(self, SLOT)
return dict.__len__(d)
def copy(self):
d = _get(self, SLOT)
if _get(d, CLASS) is dict:
return Data(**d)
else:
return copy(d)
def __copy__(self):
d = _get(self, SLOT)
if _get(d, CLASS) is dict:
return Data(**self)
else:
return copy(d)
def __deepcopy__(self, memo):
d = _get(self, SLOT)
return to_data(deepcopy(d, memo))
def __delitem__(self, key):
if "." not in key:
d = _get(self, SLOT)
d.pop(key, None)
return
d = _get(self, SLOT)
seq = _split_field(key)
for k in seq[:-1]:
d = d[k]
d.pop(seq[-1], None)
def __delattr__(self, key):
key = str(key)
d = _get(self, SLOT)
d.pop(key, None)
def setdefault(self, k, d=None):
v = self[k]
if is_null(v):
self[k] = d
return d
return v
def __str__(self):
return str(_get(self, SLOT))
def __dir__(self):
d = _get(self, SLOT)
return d.keys()
def __repr__(self):
try:
return f"to_data({repr(_get(self, SLOT))})"
except Exception as e:
return "Data(?)"
|
(*args, **kwargs)
|
43,297 |
mo_dots.datas
|
__add__
| null |
def __add__(self, other):
return _iadd(_iadd({}, self), other)
|
(self, other)
|
43,298 |
mo_dots.datas
|
__bool__
| null |
def __bool__(self):
d = _get(self, SLOT)
if _get(d, CLASS) is dict:
return True
else:
return d != None
|
(self)
|
43,299 |
mo_dots.datas
|
__contains__
| null |
def __contains__(self, item):
value = Data.__getitem__(self, item)
if is_data(value) or value:
return True
return False
|
(self, item)
|
43,300 |
mo_dots.datas
|
__copy__
| null |
def __copy__(self):
d = _get(self, SLOT)
if _get(d, CLASS) is dict:
return Data(**self)
else:
return copy(d)
|
(self)
|
43,301 |
mo_dots.datas
|
__deepcopy__
| null |
def __deepcopy__(self, memo):
d = _get(self, SLOT)
return to_data(deepcopy(d, memo))
|
(self, memo)
|
43,302 |
mo_dots.datas
|
__delattr__
| null |
def __delattr__(self, key):
key = str(key)
d = _get(self, SLOT)
d.pop(key, None)
|
(self, key)
|
43,303 |
mo_dots.datas
|
__delitem__
| null |
def __delitem__(self, key):
if "." not in key:
d = _get(self, SLOT)
d.pop(key, None)
return
d = _get(self, SLOT)
seq = _split_field(key)
for k in seq[:-1]:
d = d[k]
d.pop(seq[-1], None)
|
(self, key)
|
43,304 |
mo_dots.datas
|
__dir__
| null |
def __dir__(self):
d = _get(self, SLOT)
return d.keys()
|
(self)
|
43,305 |
mo_dots.datas
|
__eq__
| null |
def __eq__(self, other):
if self is other:
return True
d = _get(self, SLOT)
if _get(d, CLASS) is not dict:
return d == other
if not d and is_null(other):
return False
if not is_data(other):
return False
e = other
for k, v in d.items():
if e.get(k) != v:
return False
for k, v in e.items():
if d.get(k) != v:
return False
return True
|
(self, other)
|
43,306 |
mo_dots.datas
|
__getattr__
| null |
def __getattr__(self, key):
d = _get(self, SLOT)
v = d.get(key)
t = _get(v, CLASS)
# OPTIMIZED to_data()
if t is dict:
return dict_to_data(v)
elif t in utils._null_types:
return NullType(d, key)
elif t is list:
return list_to_data(v)
elif t in generator_types:
return FlatList(list(from_data(vv) for vv in v))
else:
return v
|
(self, key)
|
43,307 |
mo_dots.datas
|
__getitem__
| null |
def __getitem__(self, key):
if is_null(key):
return Null
if key == ".":
output = _get(self, SLOT)
if is_data(output):
return self
else:
return output
key = str(key)
d = _get(self, SLOT)
if key.find(".") >= 0:
seq = _split_field(key)
for n in seq:
if _get(d, CLASS) is NullType:
d = NullType(d, n) # OH DEAR, Null TREATS n AS PATH, NOT LITERAL
elif is_many(d):
d = [_getdefault(dd, n) for dd in d]
else:
d = _getdefault(d, n) # EVERYTHING ELSE TREATS n AS LITERAL
return to_data(d)
else:
o = d.get(key)
if is_null(o):
return NullType(d, key)
return to_data(o)
|
(self, key)
|
43,308 |
mo_dots.datas
|
__hash__
| null |
def __hash__(self):
d = _get(self, SLOT)
return hash_value(d)
|
(self)
|
43,309 |
mo_dots.datas
|
__iadd__
| null |
def __iadd__(self, other):
return _iadd(self, other)
|
(self, other)
|
43,310 |
mo_dots.datas
|
__init__
|
CONSTRUCT DATA WITH GIVEN PROPERTY VALUES
|
def __init__(self, *args, **kwargs):
"""
CONSTRUCT DATA WITH GIVEN PROPERTY VALUES
"""
if args:
raise Exception("only keywords are allowed, not " + args[0].__class__.__name__)
_set(self, SLOT, kwargs)
|
(self, *args, **kwargs)
|
43,311 |
mo_dots.datas
|
__ior__
|
RECURSIVE COALESCE OF DATA PROPERTIES
|
def __ior__(self, other):
"""
RECURSIVE COALESCE OF DATA PROPERTIES
"""
d = _get(self, SLOT)
if not is_data(other):
if is_missing(d) or (isinstance(d, dict) and not d):
_set(self, SLOT, other)
return self
for ok, ov in other.items():
if is_null(ov):
continue
sv = to_data(d.get(ok))
if is_null(sv):
d[ok] = ov
elif is_data(sv):
d[ok] = sv | ov
return self
|
(self, other)
|
43,312 |
mo_dots.datas
|
__iter__
| null |
def __iter__(self):
d = _get(self, SLOT)
if _get(d, CLASS) is dict:
yield from d.items()
else:
yield from d.__iter__()
|
(self)
|
43,313 |
mo_dots.datas
|
__len__
| null |
def __len__(self):
d = _get(self, SLOT)
return dict.__len__(d)
|
(self)
|
43,316 |
mo_dots.datas
|
__or__
|
RECURSIVE COALESCE OF DATA PROPERTIES
|
def __or__(self, other):
"""
RECURSIVE COALESCE OF DATA PROPERTIES
"""
if not is_data(other):
get_logger().error("Expecting Data")
d = _get(self, SLOT)
output = Data(**d) # COPY
output.__ior__(other)
return output
|
(self, other)
|
43,317 |
mo_dots.datas
|
__radd__
| null |
def __radd__(self, other):
return _iadd(_iadd({}, other), self)
|
(self, other)
|
43,318 |
mo_dots.datas
|
__repr__
| null |
def __repr__(self):
try:
return f"to_data({repr(_get(self, SLOT))})"
except Exception as e:
return "Data(?)"
|
(self)
|
43,319 |
mo_dots.datas
|
__ror__
|
RECURSIVE COALESCE OF DATA PROPERTIES
|
def __ror__(self, other):
"""
RECURSIVE COALESCE OF DATA PROPERTIES
"""
if not is_data(other):
get_logger().error("Expecting Data")
return to_data(other).__or__(self)
|
(self, other)
|
43,320 |
mo_dots.datas
|
__setattr__
| null |
def __setattr__(self, key, value):
d = _get(self, SLOT)
value = from_data(value)
if value is None:
d = _get(self, SLOT)
d.pop(key, None)
else:
d[key] = value
return self
|
(self, key, value)
|
43,321 |
mo_dots.datas
|
__setitem__
| null |
def __setitem__(self, key, value):
if key == "":
get_logger().error("key is empty string. Probably a bad idea")
if is_null(key):
return Null
if key == ".":
# SOMETHING TERRIBLE HAPPENS WHEN value IS NOT A Mapping;
# HOPEFULLY THE ONLY OTHER METHOD RUN ON self IS from_data()
v = from_data(value)
if is_many(v):
_set(self, CLASS, FlatList)
_set(self, SLOT, v)
return self
try:
d = _get(self, SLOT)
value = from_data(value)
if "." not in key:
if value is None:
d.pop(key, None)
else:
d[key] = value
return self
seq = _split_field(key)
for k in seq[:-1]:
d = _getdefault(d, k)
if is_null(value):
try:
d.pop(seq[-1], None)
except Exception as _:
pass
elif is_null(d):
d[literal_field(seq[-1])] = value
elif is_sequence(d):
for dd in d:
from_data(dd)[seq[-1]] = value
else:
d[seq[-1]] = value
return self
except Exception as e:
from mo_logs import Log
Log.error("can not set key={{key}}", key=key, cause=e)
|
(self, key, value)
|
43,322 |
mo_dots.datas
|
__str__
| null |
def __str__(self):
return str(_get(self, SLOT))
|
(self)
|
43,323 |
mo_dots.datas
|
clear
| null |
def clear(self):
get_logger().error("clear() not supported")
|
(self)
|
43,324 |
mo_dots.datas
|
copy
| null |
def copy(self):
d = _get(self, SLOT)
if _get(d, CLASS) is dict:
return Data(**d)
else:
return copy(d)
|
(self)
|
43,325 |
mo_dots.datas
|
get
| null |
def get(self, key, default=Null):
v = self[key]
if _get(v, CLASS) == NullType:
if default is Null:
return NullType(self, key)
return default
return v
|
(self, key, default=Null)
|
43,326 |
mo_dots.datas
|
items
| null |
def items(self):
d = _get(self, SLOT)
return [(k, to_data(v)) for k, v in d.items() if v != None or is_data(v)]
|
(self)
|
43,327 |
mo_dots.datas
|
iteritems
| null |
def iteritems(self):
# LOW LEVEL ITERATION, NO WRAPPING
d = _get(self, SLOT)
return ((k, to_data(v)) for k, v in d.items())
|
(self)
|
43,328 |
mo_dots.datas
|
keys
| null |
def keys(self):
d = _get(self, SLOT)
return set(d.keys())
|
(self)
|
43,329 |
mo_dots.datas
|
leaves
|
LIKE items() BUT RECURSIVE, AND ONLY FOR THE LEAVES (non dict) VALUES
|
def leaves(self, prefix=None):
"""
LIKE items() BUT RECURSIVE, AND ONLY FOR THE LEAVES (non dict) VALUES
"""
return leaves(self, prefix)
|
(self, prefix=None)
|
43,330 |
mo_dots.datas
|
pop
| null |
def pop(self, key, default=Null):
if is_null(key):
return Null
if key == ".":
raise NotImplemented()
key = str(key)
d = _get(self, SLOT)
if key.find(".") >= 0:
seq = _split_field(key)
for n in seq[:-1]:
if _get(d, CLASS) is NullType:
d = NullType(d, n) # OH DEAR, Null TREATS n AS PATH, NOT LITERAL
elif is_many(d):
d = [_getdefault(dd, n) for dd in d]
else:
d = _getdefault(d, n) # EVERYTHING ELSE TREATS n AS LITERAL
key = seq[-1]
o = d.get(key)
if is_null(o):
if default is Null:
return NullType(d, key)
return default
d[key] = None
return to_data(o)
|
(self, key, default=Null)
|
43,331 |
mo_dots.datas
|
setdefault
| null |
def setdefault(self, k, d=None):
v = self[k]
if is_null(v):
self[k] = d
return d
return v
|
(self, k, d=None)
|
43,332 |
mo_dots.datas
|
values
| null |
def values(self):
d = _get(self, SLOT)
return listwrap(list(d.values()))
|
(self)
|
43,333 |
mo_dots.objects
|
DataClass
|
ALLOW INSTANCES OF class_ TO ACT LIKE dicts
ALLOW CONSTRUCTOR TO ACCEPT @override
|
class DataClass(object):
"""
ALLOW INSTANCES OF class_ TO ACT LIKE dicts
ALLOW CONSTRUCTOR TO ACCEPT @override
"""
def __init__(self, _class):
register_type(_class)
self.class_ = _class
self.constructor = _class.__init__
def __call__(self, *args, **kwargs):
settings = to_data(kwargs).settings
params = get_function_arguments(self.constructor)[1:]
func_defaults = get_function_defaults(self.constructor)
if not func_defaults:
defaults = {}
else:
defaults = {k: v for k, v in zip(reversed(params), reversed(func_defaults))}
ordered_params = dict(zip(params, args))
output = self.class_(**params_pack(params, ordered_params, kwargs, settings, defaults))
return DataObject(output)
|
(_class)
|
43,334 |
mo_dots.objects
|
__call__
| null |
def __call__(self, *args, **kwargs):
settings = to_data(kwargs).settings
params = get_function_arguments(self.constructor)[1:]
func_defaults = get_function_defaults(self.constructor)
if not func_defaults:
defaults = {}
else:
defaults = {k: v for k, v in zip(reversed(params), reversed(func_defaults))}
ordered_params = dict(zip(params, args))
output = self.class_(**params_pack(params, ordered_params, kwargs, settings, defaults))
return DataObject(output)
|
(self, *args, **kwargs)
|
43,335 |
mo_dots.objects
|
__init__
| null |
def __init__(self, _class):
register_type(_class)
self.class_ = _class
self.constructor = _class.__init__
|
(self, _class)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.