index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
52,104
pebble.pool.base_pool
MapFuture
null
class MapFuture(PebbleFuture): def __init__(self, futures: list): super().__init__() self._futures = futures @property def futures(self) -> list: return self._futures def cancel(self) -> bool: """Cancel the future. Returns True if any of the elements of the iterables is cancelled. False otherwise. """ super().cancel() return any(tuple(f.cancel() for f in self._futures))
(futures: list)
52,105
concurrent.futures._base
__get_result
null
def __get_result(self): if self._exception: try: raise self._exception finally: # Break a reference cycle with the exception in self._exception self = None else: return self._result
(self)
52,106
pebble.pool.base_pool
__init__
null
def __init__(self, futures: list): super().__init__() self._futures = futures
(self, futures: list)
52,107
concurrent.futures._base
__repr__
null
def __repr__(self): with self._condition: if self._state == FINISHED: if self._exception: return '<%s at %#x state=%s raised %s>' % ( self.__class__.__name__, id(self), _STATE_TO_DESCRIPTION_MAP[self._state], self._exception.__class__.__name__) else: return '<%s at %#x state=%s returned %s>' % ( self.__class__.__name__, id(self), _STATE_TO_DESCRIPTION_MAP[self._state], self._result.__class__.__name__) return '<%s at %#x state=%s>' % ( self.__class__.__name__, id(self), _STATE_TO_DESCRIPTION_MAP[self._state])
(self)
52,108
concurrent.futures._base
_invoke_callbacks
null
def _invoke_callbacks(self): for callback in self._done_callbacks: try: callback(self) except Exception: LOGGER.exception('exception calling callback for %r', self)
(self)
52,109
concurrent.futures._base
add_done_callback
Attaches a callable that will be called when the future finishes. Args: fn: A callable that will be called with this future as its only argument when the future completes or is cancelled. The callable will always be called by a thread in the same process in which it was added. If the future has already completed or been cancelled then the callable will be called immediately. These callables are called in the order that they were added.
def add_done_callback(self, fn): """Attaches a callable that will be called when the future finishes. Args: fn: A callable that will be called with this future as its only argument when the future completes or is cancelled. The callable will always be called by a thread in the same process in which it was added. If the future has already completed or been cancelled then the callable will be called immediately. These callables are called in the order that they were added. """ with self._condition: if self._state not in [CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED]: self._done_callbacks.append(fn) return try: fn(self) except Exception: LOGGER.exception('exception calling callback for %r', self)
(self, fn)
52,110
pebble.pool.base_pool
cancel
Cancel the future. Returns True if any of the elements of the iterables is cancelled. False otherwise.
def cancel(self) -> bool: """Cancel the future. Returns True if any of the elements of the iterables is cancelled. False otherwise. """ super().cancel() return any(tuple(f.cancel() for f in self._futures))
(self) -> bool
52,111
concurrent.futures._base
cancelled
Return True if the future was cancelled.
def cancelled(self): """Return True if the future was cancelled.""" with self._condition: return self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]
(self)
52,112
concurrent.futures._base
done
Return True if the future was cancelled or finished executing.
def done(self): """Return True if the future was cancelled or finished executing.""" with self._condition: return self._state in [CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED]
(self)
52,113
concurrent.futures._base
exception
Return the exception raised by the call that the future represents. Args: timeout: The number of seconds to wait for the exception if the future isn't done. If None, then there is no limit on the wait time. Returns: The exception raised by the call that the future represents or None if the call completed without raising. Raises: CancelledError: If the future was cancelled. TimeoutError: If the future didn't finish executing before the given timeout.
def exception(self, timeout=None): """Return the exception raised by the call that the future represents. Args: timeout: The number of seconds to wait for the exception if the future isn't done. If None, then there is no limit on the wait time. Returns: The exception raised by the call that the future represents or None if the call completed without raising. Raises: CancelledError: If the future was cancelled. TimeoutError: If the future didn't finish executing before the given timeout. """ with self._condition: if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]: raise CancelledError() elif self._state == FINISHED: return self._exception self._condition.wait(timeout) if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]: raise CancelledError() elif self._state == FINISHED: return self._exception else: raise TimeoutError()
(self, timeout=None)
52,114
concurrent.futures._base
result
Return the result of the call that the future represents. Args: timeout: The number of seconds to wait for the result if the future isn't done. If None, then there is no limit on the wait time. Returns: The result of the call that the future represents. Raises: CancelledError: If the future was cancelled. TimeoutError: If the future didn't finish executing before the given timeout. Exception: If the call raised then that exception will be raised.
def result(self, timeout=None): """Return the result of the call that the future represents. Args: timeout: The number of seconds to wait for the result if the future isn't done. If None, then there is no limit on the wait time. Returns: The result of the call that the future represents. Raises: CancelledError: If the future was cancelled. TimeoutError: If the future didn't finish executing before the given timeout. Exception: If the call raised then that exception will be raised. """ try: with self._condition: if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]: raise CancelledError() elif self._state == FINISHED: return self.__get_result() self._condition.wait(timeout) if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]: raise CancelledError() elif self._state == FINISHED: return self.__get_result() else: raise TimeoutError() finally: # Break a reference cycle with the exception in self._exception self = None
(self, timeout=None)
52,115
concurrent.futures._base
running
Return True if the future is currently executing.
def running(self): """Return True if the future is currently executing.""" with self._condition: return self._state == RUNNING
(self)
52,116
concurrent.futures._base
set_exception
Sets the result of the future as being the given exception. Should only be used by Executor implementations and unit tests.
def set_exception(self, exception): """Sets the result of the future as being the given exception. Should only be used by Executor implementations and unit tests. """ with self._condition: if self._state in {CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED}: raise InvalidStateError('{}: {!r}'.format(self._state, self)) self._exception = exception self._state = FINISHED for waiter in self._waiters: waiter.add_exception(self) self._condition.notify_all() self._invoke_callbacks()
(self, exception)
52,117
concurrent.futures._base
set_result
Sets the return value of work associated with the future. Should only be used by Executor implementations and unit tests.
def set_result(self, result): """Sets the return value of work associated with the future. Should only be used by Executor implementations and unit tests. """ with self._condition: if self._state in {CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED}: raise InvalidStateError('{}: {!r}'.format(self._state, self)) self._result = result self._state = FINISHED for waiter in self._waiters: waiter.add_result(self) self._condition.notify_all() self._invoke_callbacks()
(self, result)
52,118
pebble.common
set_running_or_notify_cancel
Mark the future as running or process any cancel notifications. Should only be used by Executor implementations and unit tests. If the future has been cancelled (cancel() was called and returned True) then any threads waiting on the future completing (though calls to as_completed() or wait()) are notified and False is returned. If the future was not cancelled then it is put in the running state (future calls to running() will return True) and True is returned. This method should be called by Executor implementations before executing the work associated with this future. If this method returns False then the work should not be executed. Returns: False if the Future was cancelled, True otherwise. Raises: RuntimeError: if set_result() or set_exception() was called.
def set_running_or_notify_cancel(self): """Mark the future as running or process any cancel notifications. Should only be used by Executor implementations and unit tests. If the future has been cancelled (cancel() was called and returned True) then any threads waiting on the future completing (though calls to as_completed() or wait()) are notified and False is returned. If the future was not cancelled then it is put in the running state (future calls to running() will return True) and True is returned. This method should be called by Executor implementations before executing the work associated with this future. If this method returns False then the work should not be executed. Returns: False if the Future was cancelled, True otherwise. Raises: RuntimeError: if set_result() or set_exception() was called. """ with self._condition: if self._state == CANCELLED: self._state = CANCELLED_AND_NOTIFIED for waiter in self._waiters: waiter.add_cancelled(self) return False elif self._state == PENDING: self._state = RUNNING return True else: raise RuntimeError('Future in unexpected state')
(self)
52,119
pebble.common
ProcessExpired
Raised when process dies unexpectedly.
class ProcessExpired(OSError): """Raised when process dies unexpectedly.""" def __init__(self, msg, code=0): super(ProcessExpired, self).__init__(msg) self.exitcode = code
(msg, code=0)
52,120
pebble.common
__init__
null
def __init__(self, msg, code=0): super(ProcessExpired, self).__init__(msg) self.exitcode = code
(self, msg, code=0)
52,121
pebble.common
ProcessFuture
null
class ProcessFuture(PebbleFuture): def cancel(self): """Cancel the future. Returns True if the future was cancelled, False otherwise. A future cannot be cancelled if it has already completed. """ with self._condition: if self._state == FINISHED: return False if self._state in (CANCELLED, CANCELLED_AND_NOTIFIED): return True self._state = CANCELLED self._condition.notify_all() self._invoke_callbacks() return True
()
52,123
concurrent.futures._base
__init__
Initializes the future. Should not be called by clients.
def __init__(self): """Initializes the future. Should not be called by clients.""" self._condition = threading.Condition() self._state = PENDING self._result = None self._exception = None self._waiters = [] self._done_callbacks = []
(self)
52,127
pebble.common
cancel
Cancel the future. Returns True if the future was cancelled, False otherwise. A future cannot be cancelled if it has already completed.
def cancel(self): """Cancel the future. Returns True if the future was cancelled, False otherwise. A future cannot be cancelled if it has already completed. """ with self._condition: if self._state == FINISHED: return False if self._state in (CANCELLED, CANCELLED_AND_NOTIFIED): return True self._state = CANCELLED self._condition.notify_all() self._invoke_callbacks() return True
(self)
52,136
pebble.pool.base_pool
ProcessMapFuture
null
class ProcessMapFuture(ProcessFuture): def __init__(self, futures: list): super().__init__() self._futures = futures @property def futures(self) -> list: return self._futures def cancel(self) -> bool: """Cancel the future. Returns True if any of the elements of the iterables is cancelled. False otherwise. """ super().cancel() return any(tuple(f.cancel() for f in self._futures))
(futures: list)
52,151
pebble.pool.process
ProcessPool
Allows to schedule jobs within a Pool of Processes. max_workers is an integer representing the amount of desired process workers managed by the pool. If max_tasks is a number greater than zero, each worker will be restarted after performing an equal amount of tasks. initializer must be callable, if passed, it will be called every time a worker is started, receiving initargs as arguments.
class ProcessPool(BasePool): """Allows to schedule jobs within a Pool of Processes. max_workers is an integer representing the amount of desired process workers managed by the pool. If max_tasks is a number greater than zero, each worker will be restarted after performing an equal amount of tasks. initializer must be callable, if passed, it will be called every time a worker is started, receiving initargs as arguments. """ def __init__(self, max_workers: int = multiprocessing.cpu_count(), max_tasks: int = 0, initializer: Callable = None, initargs: list = (), context: multiprocessing.context.BaseContext = None): super().__init__(max_workers, max_tasks, initializer, initargs) mp_context = multiprocessing if context is None else context self._pool_manager = PoolManager(self._context, mp_context) self._task_scheduler_loop = None self._pool_manager_loop = None self._message_manager_loop = None def _start_pool(self): with self._context.state_mutex: if self._context.state == CREATED: self._pool_manager.start() self._task_scheduler_loop = launch_thread( None, task_scheduler_loop, True, self._pool_manager) self._pool_manager_loop = launch_thread( None, pool_manager_loop, True, self._pool_manager) self._message_manager_loop = launch_thread( None, message_manager_loop, True, self._pool_manager) self._context.state = RUNNING def _stop_pool(self): if self._pool_manager_loop is not None: self._pool_manager_loop.join() self._pool_manager.stop() if self._task_scheduler_loop is not None: self._task_scheduler_loop.join() if self._message_manager_loop is not None: self._message_manager_loop.join() def schedule(self, function: Callable, args: list = (), kwargs: dict = {}, timeout: float = None) -> ProcessFuture: """Schedules *function* to be run the Pool. *args* and *kwargs* will be forwareded to the scheduled function respectively as arguments and keyword arguments. *timeout* is an integer, if expires the task will be terminated and *Future.result()* will raise *TimeoutError*. A *pebble.ProcessFuture* object is returned. """ self._check_pool_state() future = ProcessFuture() payload = TaskPayload(function, args, kwargs) task = Task(next(self._task_counter), future, timeout, payload) self._context.task_queue.put(task) return future def submit(self, function: Callable, timeout: Optional[float], *args, **kwargs) -> ProcessFuture: """This function is provided for compatibility with `asyncio.loop.run_in_executor`. For scheduling jobs within the pool use `schedule` instead. """ return self.schedule( function, args=args, kwargs=kwargs, timeout=timeout) def map(self, function: Callable, *iterables, **kwargs) -> ProcessMapFuture: """Computes the *function* using arguments from each of the iterables. Stops when the shortest iterable is exhausted. *timeout* is an integer, if expires the task will be terminated and the call to next will raise *TimeoutError*. The *timeout* is applied to each chunk of the iterable. *chunksize* controls the size of the chunks the iterable will be broken into before being passed to the function. A *pebble.ProcessFuture* object is returned. """ self._check_pool_state() timeout = kwargs.get('timeout') chunksize = kwargs.get('chunksize', 1) if chunksize < 1: raise ValueError("chunksize must be >= 1") futures = [self.schedule( process_chunk, args=(function, chunk), timeout=timeout) for chunk in iter_chunks(chunksize, *iterables)] return map_results(ProcessMapFuture(futures), timeout)
(max_workers: int = 60, max_tasks: int = 0, initializer: Callable = None, initargs: list = (), context: multiprocessing.context.BaseContext = None)
52,153
pebble.pool.base_pool
__exit__
null
def __exit__(self, *args): self.close() self.join()
(self, *args)
52,154
pebble.pool.process
__init__
null
def __init__(self, max_workers: int = multiprocessing.cpu_count(), max_tasks: int = 0, initializer: Callable = None, initargs: list = (), context: multiprocessing.context.BaseContext = None): super().__init__(max_workers, max_tasks, initializer, initargs) mp_context = multiprocessing if context is None else context self._pool_manager = PoolManager(self._context, mp_context) self._task_scheduler_loop = None self._pool_manager_loop = None self._message_manager_loop = None
(self, max_workers: int = 60, max_tasks: int = 0, initializer: Optional[Callable] = None, initargs: list = (), context: Optional[multiprocessing.context.BaseContext] = None)
52,155
pebble.pool.base_pool
_check_pool_state
null
def _check_pool_state(self): self._update_pool_state() if self._context.state == ERROR: raise RuntimeError('Unexpected error within the Pool') elif self._context.state != RUNNING: raise RuntimeError('The Pool is not active')
(self)
52,156
pebble.pool.process
_start_pool
null
def _start_pool(self): with self._context.state_mutex: if self._context.state == CREATED: self._pool_manager.start() self._task_scheduler_loop = launch_thread( None, task_scheduler_loop, True, self._pool_manager) self._pool_manager_loop = launch_thread( None, pool_manager_loop, True, self._pool_manager) self._message_manager_loop = launch_thread( None, message_manager_loop, True, self._pool_manager) self._context.state = RUNNING
(self)
52,157
pebble.pool.process
_stop_pool
null
def _stop_pool(self): if self._pool_manager_loop is not None: self._pool_manager_loop.join() self._pool_manager.stop() if self._task_scheduler_loop is not None: self._task_scheduler_loop.join() if self._message_manager_loop is not None: self._message_manager_loop.join()
(self)
52,158
pebble.pool.base_pool
_update_pool_state
null
def _update_pool_state(self): if self._context.state == CREATED: self._start_pool() for loop in self._loops: if not loop.is_alive(): self._context.state = ERROR
(self)
52,159
pebble.pool.base_pool
_wait_queue_depletion
null
def _wait_queue_depletion(self, timeout: Optional[float]): tick = time.time() while self.active: if timeout is not None and time.time() - tick > timeout: raise TimeoutError("Tasks are still being executed") elif self._context.task_queue.unfinished_tasks: time.sleep(SLEEP_UNIT) else: return
(self, timeout: Optional[float])
52,160
pebble.pool.base_pool
close
Closes the Pool preventing new tasks from being accepted. Pending tasks will be completed.
def close(self): """Closes the Pool preventing new tasks from being accepted. Pending tasks will be completed. """ self._context.state = CLOSED
(self)
52,161
pebble.pool.base_pool
join
Joins the pool waiting until all workers exited. If *timeout* is set, it block until all workers are done or raises TimeoutError.
def join(self, timeout: float = None): """Joins the pool waiting until all workers exited. If *timeout* is set, it block until all workers are done or raises TimeoutError. """ if self._context.state == RUNNING: raise RuntimeError('The Pool is still running') if self._context.state == CLOSED: self._wait_queue_depletion(timeout) self.stop() self.join() else: self._context.task_queue.put(None) self._stop_pool()
(self, timeout: Optional[float] = None)
52,162
pebble.pool.process
map
Computes the *function* using arguments from each of the iterables. Stops when the shortest iterable is exhausted. *timeout* is an integer, if expires the task will be terminated and the call to next will raise *TimeoutError*. The *timeout* is applied to each chunk of the iterable. *chunksize* controls the size of the chunks the iterable will be broken into before being passed to the function. A *pebble.ProcessFuture* object is returned.
def map(self, function: Callable, *iterables, **kwargs) -> ProcessMapFuture: """Computes the *function* using arguments from each of the iterables. Stops when the shortest iterable is exhausted. *timeout* is an integer, if expires the task will be terminated and the call to next will raise *TimeoutError*. The *timeout* is applied to each chunk of the iterable. *chunksize* controls the size of the chunks the iterable will be broken into before being passed to the function. A *pebble.ProcessFuture* object is returned. """ self._check_pool_state() timeout = kwargs.get('timeout') chunksize = kwargs.get('chunksize', 1) if chunksize < 1: raise ValueError("chunksize must be >= 1") futures = [self.schedule( process_chunk, args=(function, chunk), timeout=timeout) for chunk in iter_chunks(chunksize, *iterables)] return map_results(ProcessMapFuture(futures), timeout)
(self, function: Callable, *iterables, **kwargs) -> pebble.pool.base_pool.ProcessMapFuture
52,163
pebble.pool.process
schedule
Schedules *function* to be run the Pool. *args* and *kwargs* will be forwareded to the scheduled function respectively as arguments and keyword arguments. *timeout* is an integer, if expires the task will be terminated and *Future.result()* will raise *TimeoutError*. A *pebble.ProcessFuture* object is returned.
def schedule(self, function: Callable, args: list = (), kwargs: dict = {}, timeout: float = None) -> ProcessFuture: """Schedules *function* to be run the Pool. *args* and *kwargs* will be forwareded to the scheduled function respectively as arguments and keyword arguments. *timeout* is an integer, if expires the task will be terminated and *Future.result()* will raise *TimeoutError*. A *pebble.ProcessFuture* object is returned. """ self._check_pool_state() future = ProcessFuture() payload = TaskPayload(function, args, kwargs) task = Task(next(self._task_counter), future, timeout, payload) self._context.task_queue.put(task) return future
(self, function: Callable, args: list = (), kwargs: dict = {}, timeout: Optional[float] = None) -> pebble.common.ProcessFuture
52,164
pebble.pool.base_pool
stop
Stops the pool without performing any pending task.
def stop(self): """Stops the pool without performing any pending task.""" self._context.state = STOPPED
(self)
52,165
pebble.pool.process
submit
This function is provided for compatibility with `asyncio.loop.run_in_executor`. For scheduling jobs within the pool use `schedule` instead.
def submit(self, function: Callable, timeout: Optional[float], *args, **kwargs) -> ProcessFuture: """This function is provided for compatibility with `asyncio.loop.run_in_executor`. For scheduling jobs within the pool use `schedule` instead. """ return self.schedule( function, args=args, kwargs=kwargs, timeout=timeout)
(self, function: Callable, timeout: Optional[float], *args, **kwargs) -> pebble.common.ProcessFuture
52,166
pebble.pool.thread
ThreadPool
Allows to schedule jobs within a Pool of Threads. max_workers is an integer representing the amount of desired process workers managed by the pool. If max_tasks is a number greater than zero, each worker will be restarted after performing an equal amount of tasks. initializer must be callable, if passed, it will be called every time a worker is started, receiving initargs as arguments.
class ThreadPool(BasePool): """Allows to schedule jobs within a Pool of Threads. max_workers is an integer representing the amount of desired process workers managed by the pool. If max_tasks is a number greater than zero, each worker will be restarted after performing an equal amount of tasks. initializer must be callable, if passed, it will be called every time a worker is started, receiving initargs as arguments. """ def __init__(self, max_workers: int = multiprocessing.cpu_count(), max_tasks: int = 0, initializer: Callable = None, initargs: list = ()): super().__init__(max_workers, max_tasks, initializer, initargs) self._pool_manager = PoolManager(self._context) self._pool_manager_loop = None def _start_pool(self): with self._context.state_mutex: if self._context.state == CREATED: self._pool_manager.start() self._pool_manager_loop = launch_thread( None, pool_manager_loop, True, self._pool_manager) self._context.state = RUNNING def _stop_pool(self): if self._pool_manager_loop is not None: self._pool_manager_loop.join() self._pool_manager.stop() def schedule(self, function, args=(), kwargs={}) -> Future: """Schedules *function* to be run the Pool. *args* and *kwargs* will be forwareded to the scheduled function respectively as arguments and keyword arguments. A *concurrent.futures.Future* object is returned. """ self._check_pool_state() future = Future() payload = TaskPayload(function, args, kwargs) task = Task(next(self._task_counter), future, None, payload) self._context.task_queue.put(task) return future def submit(self, function: Callable, *args, **kwargs) -> Future: """This function is provided for compatibility with `asyncio.loop.run_in_executor`. For scheduling jobs within the pool use `schedule` instead. """ return self.schedule(function, args=args, kwargs=kwargs) def map(self, function: Callable, *iterables, **kwargs) -> MapFuture: """Returns an iterator equivalent to map(function, iterables). *chunksize* controls the size of the chunks the iterable will be broken into before being passed to the function. If None the size will be controlled by the Pool. """ self._check_pool_state() timeout = kwargs.get('timeout') chunksize = kwargs.get('chunksize', 1) if chunksize < 1: raise ValueError("chunksize must be >= 1") futures = [self.schedule(process_chunk, args=(function, chunk)) for chunk in iter_chunks(chunksize, *iterables)] return map_results(MapFuture(futures), timeout)
(max_workers: int = 60, max_tasks: int = 0, initializer: Callable = None, initargs: list = ())
52,169
pebble.pool.thread
__init__
null
def __init__(self, max_workers: int = multiprocessing.cpu_count(), max_tasks: int = 0, initializer: Callable = None, initargs: list = ()): super().__init__(max_workers, max_tasks, initializer, initargs) self._pool_manager = PoolManager(self._context) self._pool_manager_loop = None
(self, max_workers: int = 60, max_tasks: int = 0, initializer: Optional[Callable] = None, initargs: list = ())
52,171
pebble.pool.thread
_start_pool
null
def _start_pool(self): with self._context.state_mutex: if self._context.state == CREATED: self._pool_manager.start() self._pool_manager_loop = launch_thread( None, pool_manager_loop, True, self._pool_manager) self._context.state = RUNNING
(self)
52,172
pebble.pool.thread
_stop_pool
null
def _stop_pool(self): if self._pool_manager_loop is not None: self._pool_manager_loop.join() self._pool_manager.stop()
(self)
52,177
pebble.pool.thread
map
Returns an iterator equivalent to map(function, iterables). *chunksize* controls the size of the chunks the iterable will be broken into before being passed to the function. If None the size will be controlled by the Pool.
def map(self, function: Callable, *iterables, **kwargs) -> MapFuture: """Returns an iterator equivalent to map(function, iterables). *chunksize* controls the size of the chunks the iterable will be broken into before being passed to the function. If None the size will be controlled by the Pool. """ self._check_pool_state() timeout = kwargs.get('timeout') chunksize = kwargs.get('chunksize', 1) if chunksize < 1: raise ValueError("chunksize must be >= 1") futures = [self.schedule(process_chunk, args=(function, chunk)) for chunk in iter_chunks(chunksize, *iterables)] return map_results(MapFuture(futures), timeout)
(self, function: Callable, *iterables, **kwargs) -> pebble.pool.base_pool.MapFuture
52,178
pebble.pool.thread
schedule
Schedules *function* to be run the Pool. *args* and *kwargs* will be forwareded to the scheduled function respectively as arguments and keyword arguments. A *concurrent.futures.Future* object is returned.
def schedule(self, function, args=(), kwargs={}) -> Future: """Schedules *function* to be run the Pool. *args* and *kwargs* will be forwareded to the scheduled function respectively as arguments and keyword arguments. A *concurrent.futures.Future* object is returned. """ self._check_pool_state() future = Future() payload = TaskPayload(function, args, kwargs) task = Task(next(self._task_counter), future, None, payload) self._context.task_queue.put(task) return future
(self, function, args=(), kwargs={}) -> concurrent.futures._base.Future
52,180
pebble.pool.thread
submit
This function is provided for compatibility with `asyncio.loop.run_in_executor`. For scheduling jobs within the pool use `schedule` instead.
def submit(self, function: Callable, *args, **kwargs) -> Future: """This function is provided for compatibility with `asyncio.loop.run_in_executor`. For scheduling jobs within the pool use `schedule` instead. """ return self.schedule(function, args=args, kwargs=kwargs)
(self, function: Callable, *args, **kwargs) -> concurrent.futures._base.Future
52,185
pebble.decorators
sighandler
Sets the decorated function as signal handler of given *signals*. *signals* can be either a single signal or a list/tuple of multiple ones.
def sighandler(signals: list) -> Callable: """Sets the decorated function as signal handler of given *signals*. *signals* can be either a single signal or a list/tuple of multiple ones. """ def wrap(function): set_signal_handlers(signals, function) @wraps(function) def wrapper(*args, **kwargs): return function(*args, **kwargs) return wrapper return wrap
(signals: list) -> Callable
52,186
pebble.decorators
synchronized
A synchronized function prevents two or more callers to interleave its execution preventing race conditions. The synchronized decorator accepts as optional parameter a Lock, RLock or Semaphore object which will be employed to ensure the function's atomicity. If no synchronization object is given, a single threading.Lock will be used. This implies that between different decorated function only one at a time will be executed.
def synchronized(*args) -> Callable: """A synchronized function prevents two or more callers to interleave its execution preventing race conditions. The synchronized decorator accepts as optional parameter a Lock, RLock or Semaphore object which will be employed to ensure the function's atomicity. If no synchronization object is given, a single threading.Lock will be used. This implies that between different decorated function only one at a time will be executed. """ if callable(args[0]): return decorate_synchronized(args[0], _synchronized_lock) else: def wrap(function) -> type: return decorate_synchronized(function, args[0]) return wrap
(*args) -> Callable
52,187
pebble.functions
waitforqueues
Waits for one or more *Queue* to be ready or until *timeout* expires. *queues* is a list containing one or more *Queue.Queue* objects. If *timeout* is not None the function will block for the specified amount of seconds. The function returns a list containing the ready *Queues*.
def waitforqueues(queues: list, timeout: float = None) -> filter: """Waits for one or more *Queue* to be ready or until *timeout* expires. *queues* is a list containing one or more *Queue.Queue* objects. If *timeout* is not None the function will block for the specified amount of seconds. The function returns a list containing the ready *Queues*. """ lock = threading.Condition(threading.Lock()) prepare_queues(queues, lock) try: wait_queues(queues, lock, timeout) finally: reset_queues(queues) return filter(lambda q: not q.empty(), queues)
(queues: list, timeout: Optional[float] = None) -> filter
52,188
pebble.functions
waitforthreads
Waits for one or more *Thread* to exit or until *timeout* expires. .. note:: Expired *Threads* are not joined by *waitforthreads*. *threads* is a list containing one or more *threading.Thread* objects. If *timeout* is not None the function will block for the specified amount of seconds. The function returns a list containing the ready *Threads*.
def waitforthreads(threads: list, timeout: float = None) -> filter: """Waits for one or more *Thread* to exit or until *timeout* expires. .. note:: Expired *Threads* are not joined by *waitforthreads*. *threads* is a list containing one or more *threading.Thread* objects. If *timeout* is not None the function will block for the specified amount of seconds. The function returns a list containing the ready *Threads*. """ old_function = None lock = threading.Condition(threading.Lock()) def new_function(*args): old_function(*args) with lock: lock.notify_all() old_function = prepare_threads(new_function) try: wait_threads(threads, lock, timeout) finally: reset_threads(old_function) return filter(lambda t: not t.is_alive(), threads)
(threads: list, timeout: Optional[float] = None) -> filter
52,195
osmnx.bearing
add_edge_bearings
Add compass `bearing` attributes to all graph edges. Vectorized function to calculate (initial) bearing from origin node to destination node for each edge in a directed, unprojected graph then add these bearings as new edge attributes. Bearing represents angle in degrees (clockwise) between north and the geodesic line from the origin node to the destination node. Ignores self-loop edges as their bearings are undefined. Parameters ---------- G : networkx.MultiDiGraph unprojected graph precision : int deprecated, do not use Returns ------- G : networkx.MultiDiGraph graph with edge bearing attributes
def add_edge_bearings(G, precision=None): """ Add compass `bearing` attributes to all graph edges. Vectorized function to calculate (initial) bearing from origin node to destination node for each edge in a directed, unprojected graph then add these bearings as new edge attributes. Bearing represents angle in degrees (clockwise) between north and the geodesic line from the origin node to the destination node. Ignores self-loop edges as their bearings are undefined. Parameters ---------- G : networkx.MultiDiGraph unprojected graph precision : int deprecated, do not use Returns ------- G : networkx.MultiDiGraph graph with edge bearing attributes """ if precision is None: precision = 1 else: warn( "The `precision` parameter is deprecated and will be removed in the v2.0.0 release. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) if projection.is_projected(G.graph["crs"]): # pragma: no cover msg = "graph must be unprojected to add edge bearings" raise ValueError(msg) # extract edge IDs and corresponding coordinates from their nodes uvk = [(u, v, k) for u, v, k in G.edges if u != v] x = G.nodes(data="x") y = G.nodes(data="y") coords = np.array([(y[u], x[u], y[v], x[v]) for u, v, k in uvk]) # calculate bearings then set as edge attributes bearings = calculate_bearing(coords[:, 0], coords[:, 1], coords[:, 2], coords[:, 3]) values = zip(uvk, bearings.round(precision)) nx.set_edge_attributes(G, dict(values), name="bearing") return G
(G, precision=None)
52,196
osmnx.elevation
add_edge_grades
Add `grade` attribute to each graph edge. Vectorized function to calculate the directed grade (ie, rise over run) for each edge in the graph and add it to the edge as an attribute. Nodes must already have `elevation` attributes to use this function. See also the `add_node_elevations_raster` and `add_node_elevations_google` functions. Parameters ---------- G : networkx.MultiDiGraph input graph with `elevation` node attribute add_absolute : bool if True, also add absolute value of grade as `grade_abs` attribute precision : int deprecated, do not use Returns ------- G : networkx.MultiDiGraph graph with edge `grade` (and optionally `grade_abs`) attributes
def add_edge_grades(G, add_absolute=True, precision=None): """ Add `grade` attribute to each graph edge. Vectorized function to calculate the directed grade (ie, rise over run) for each edge in the graph and add it to the edge as an attribute. Nodes must already have `elevation` attributes to use this function. See also the `add_node_elevations_raster` and `add_node_elevations_google` functions. Parameters ---------- G : networkx.MultiDiGraph input graph with `elevation` node attribute add_absolute : bool if True, also add absolute value of grade as `grade_abs` attribute precision : int deprecated, do not use Returns ------- G : networkx.MultiDiGraph graph with edge `grade` (and optionally `grade_abs`) attributes """ if precision is None: precision = 3 else: warn( "The `precision` parameter is deprecated and will be removed in the v2.0.0 release. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) elev_lookup = G.nodes(data="elevation") u, v, k, lengths = zip(*G.edges(keys=True, data="length")) uvk = tuple(zip(u, v, k)) # calculate edges' elevation changes from u to v then divide by lengths elevs = np.array([(elev_lookup[u], elev_lookup[v]) for u, v, k in uvk]) grades = ((elevs[:, 1] - elevs[:, 0]) / np.array(lengths)).round(precision) nx.set_edge_attributes(G, dict(zip(uvk, grades)), name="grade") # optionally add grade absolute value to the edge attributes if add_absolute: nx.set_edge_attributes(G, dict(zip(uvk, np.abs(grades))), name="grade_abs") utils.log("Added grade attributes to all edges.") return G
(G, add_absolute=True, precision=None)
52,197
osmnx.routing
add_edge_speeds
Add edge speeds (km per hour) to graph as new `speed_kph` edge attributes. By default, this imputes free-flow travel speeds for all edges via the mean `maxspeed` value of the edges of each highway type. For highway types in the graph that have no `maxspeed` value on any edge, it assigns the mean of all `maxspeed` values in graph. This default mean-imputation can obviously be imprecise, and the user can override it by passing in `hwy_speeds` and/or `fallback` arguments that correspond to local speed limit standards. The user can also specify a different aggregation function (such as the median) to impute missing values from the observed values. If edge `maxspeed` attribute has "mph" in it, value will automatically be converted from miles per hour to km per hour. Any other speed units should be manually converted to km per hour prior to running this function, otherwise there could be unexpected results. If "mph" does not appear in the edge's maxspeed attribute string, then function assumes kph, per OSM guidelines: https://wiki.openstreetmap.org/wiki/Map_Features/Units Parameters ---------- G : networkx.MultiDiGraph input graph hwy_speeds : dict dict keys = OSM highway types and values = typical speeds (km per hour) to assign to edges of that highway type for any edges missing speed data. Any edges with highway type not in `hwy_speeds` will be assigned the mean preexisting speed value of all edges of that highway type. fallback : numeric default speed value (km per hour) to assign to edges whose highway type did not appear in `hwy_speeds` and had no preexisting speed values on any edge precision : int deprecated, do not use agg : function aggregation function to impute missing values from observed values. the default is numpy.mean, but you might also consider for example numpy.median, numpy.nanmedian, or your own custom function Returns ------- G : networkx.MultiDiGraph graph with speed_kph attributes on all edges
def add_edge_speeds(G, hwy_speeds=None, fallback=None, precision=None, agg=np.mean): """ Add edge speeds (km per hour) to graph as new `speed_kph` edge attributes. By default, this imputes free-flow travel speeds for all edges via the mean `maxspeed` value of the edges of each highway type. For highway types in the graph that have no `maxspeed` value on any edge, it assigns the mean of all `maxspeed` values in graph. This default mean-imputation can obviously be imprecise, and the user can override it by passing in `hwy_speeds` and/or `fallback` arguments that correspond to local speed limit standards. The user can also specify a different aggregation function (such as the median) to impute missing values from the observed values. If edge `maxspeed` attribute has "mph" in it, value will automatically be converted from miles per hour to km per hour. Any other speed units should be manually converted to km per hour prior to running this function, otherwise there could be unexpected results. If "mph" does not appear in the edge's maxspeed attribute string, then function assumes kph, per OSM guidelines: https://wiki.openstreetmap.org/wiki/Map_Features/Units Parameters ---------- G : networkx.MultiDiGraph input graph hwy_speeds : dict dict keys = OSM highway types and values = typical speeds (km per hour) to assign to edges of that highway type for any edges missing speed data. Any edges with highway type not in `hwy_speeds` will be assigned the mean preexisting speed value of all edges of that highway type. fallback : numeric default speed value (km per hour) to assign to edges whose highway type did not appear in `hwy_speeds` and had no preexisting speed values on any edge precision : int deprecated, do not use agg : function aggregation function to impute missing values from observed values. the default is numpy.mean, but you might also consider for example numpy.median, numpy.nanmedian, or your own custom function Returns ------- G : networkx.MultiDiGraph graph with speed_kph attributes on all edges """ if precision is None: precision = 1 else: warn( "The `precision` parameter is deprecated and will be removed in the v2.0.0 release. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) if fallback is None: fallback = np.nan edges = convert.graph_to_gdfs(G, nodes=False, fill_edge_geometry=False) # collapse any highway lists (can happen during graph simplification) # into string values simply by keeping just the first element of the list edges["highway"] = edges["highway"].map(lambda x: x[0] if isinstance(x, list) else x) if "maxspeed" in edges.columns: # collapse any maxspeed lists (can happen during graph simplification) # into a single value edges["maxspeed"] = edges["maxspeed"].apply(_collapse_multiple_maxspeed_values, agg=agg) # create speed_kph by cleaning maxspeed strings and converting mph to # kph if necessary edges["speed_kph"] = edges["maxspeed"].astype(str).map(_clean_maxspeed).astype(float) else: # if no edges in graph had a maxspeed attribute edges["speed_kph"] = None # if user provided hwy_speeds, use them as default values, otherwise # initialize an empty series to populate with values hwy_speed_avg = pd.Series(dtype=float) if hwy_speeds is None else pd.Series(hwy_speeds).dropna() # for each highway type that caller did not provide in hwy_speeds, impute # speed of type by taking the mean of the preexisting speed values of that # highway type for hwy, group in edges.groupby("highway"): if hwy not in hwy_speed_avg: hwy_speed_avg.loc[hwy] = agg(group["speed_kph"]) # if any highway types had no preexisting speed values, impute their speed # with fallback value provided by caller. if fallback=np.nan, impute speed # as the mean speed of all highway types that did have preexisting values hwy_speed_avg = hwy_speed_avg.fillna(fallback).fillna(agg(hwy_speed_avg)) # for each edge missing speed data, assign it the imputed value for its # highway type speed_kph = ( edges[["highway", "speed_kph"]].set_index("highway").iloc[:, 0].fillna(hwy_speed_avg) ) # all speeds will be null if edges had no preexisting maxspeed data and # caller did not pass in hwy_speeds or fallback arguments if pd.isna(speed_kph).all(): msg = ( "this graph's edges have no preexisting `maxspeed` attribute " "values so you must pass `hwy_speeds` or `fallback` arguments." ) raise ValueError(msg) # add speed kph attribute to graph edges edges["speed_kph"] = speed_kph.round(precision).to_numpy() nx.set_edge_attributes(G, values=edges["speed_kph"], name="speed_kph") return G
(G, hwy_speeds=None, fallback=None, precision=None, agg=<function mean at 0x7efd24b4dd30>)
52,198
osmnx.routing
add_edge_travel_times
Add edge travel time (seconds) to graph as new `travel_time` edge attributes. Calculates free-flow travel time along each edge, based on `length` and `speed_kph` attributes. Note: run `add_edge_speeds` first to generate the `speed_kph` attribute. All edges must have `length` and `speed_kph` attributes and all their values must be non-null. Parameters ---------- G : networkx.MultiDiGraph input graph precision : int deprecated, do not use Returns ------- G : networkx.MultiDiGraph graph with travel_time attributes on all edges
def add_edge_travel_times(G, precision=None): """ Add edge travel time (seconds) to graph as new `travel_time` edge attributes. Calculates free-flow travel time along each edge, based on `length` and `speed_kph` attributes. Note: run `add_edge_speeds` first to generate the `speed_kph` attribute. All edges must have `length` and `speed_kph` attributes and all their values must be non-null. Parameters ---------- G : networkx.MultiDiGraph input graph precision : int deprecated, do not use Returns ------- G : networkx.MultiDiGraph graph with travel_time attributes on all edges """ if precision is None: precision = 1 else: warn( "The `precision` parameter is deprecated and will be removed in the v2.0.0 release. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) edges = convert.graph_to_gdfs(G, nodes=False) # verify edge length and speed_kph attributes exist if not ("length" in edges.columns and "speed_kph" in edges.columns): # pragma: no cover msg = "all edges must have `length` and `speed_kph` attributes." raise KeyError(msg) # verify edge length and speed_kph attributes contain no nulls if pd.isna(edges["length"]).any() or pd.isna(edges["speed_kph"]).any(): # pragma: no cover msg = "edge `length` and `speed_kph` values must be non-null." raise ValueError(msg) # convert distance meters to km, and speed km per hour to km per second distance_km = edges["length"] / 1000 speed_km_sec = edges["speed_kph"] / (60 * 60) # calculate edge travel time in seconds travel_time = distance_km / speed_km_sec # add travel time attribute to graph edges edges["travel_time"] = travel_time.round(precision).to_numpy() nx.set_edge_attributes(G, values=edges["travel_time"], name="travel_time") return G
(G, precision=None)
52,199
osmnx.elevation
add_node_elevations_google
Add an `elevation` (meters) attribute to each node using a web service. By default, this uses the Google Maps Elevation API but you can optionally use an equivalent API with the same interface and response format, such as Open Topo Data, via the `settings` module's `elevation_url_template`. The Google Maps Elevation API requires an API key but other providers may not. For a free local alternative see the `add_node_elevations_raster` function. See also the `add_edge_grades` function. Parameters ---------- G : networkx.MultiDiGraph input graph api_key : string a valid API key, can be None if the API does not require a key batch_size : int max number of coordinate pairs to submit in each API call (if this is too high, the server will reject the request because its character limit exceeds the max allowed) pause : float time to pause between API calls, which can be increased if you get rate limited max_locations_per_batch : int deprecated, do not use precision : int deprecated, do not use url_template : string deprecated, do not use Returns ------- G : networkx.MultiDiGraph graph with node elevation attributes
def add_node_elevations_google( G, api_key=None, batch_size=350, pause=0, max_locations_per_batch=None, precision=None, url_template=None, ): """ Add an `elevation` (meters) attribute to each node using a web service. By default, this uses the Google Maps Elevation API but you can optionally use an equivalent API with the same interface and response format, such as Open Topo Data, via the `settings` module's `elevation_url_template`. The Google Maps Elevation API requires an API key but other providers may not. For a free local alternative see the `add_node_elevations_raster` function. See also the `add_edge_grades` function. Parameters ---------- G : networkx.MultiDiGraph input graph api_key : string a valid API key, can be None if the API does not require a key batch_size : int max number of coordinate pairs to submit in each API call (if this is too high, the server will reject the request because its character limit exceeds the max allowed) pause : float time to pause between API calls, which can be increased if you get rate limited max_locations_per_batch : int deprecated, do not use precision : int deprecated, do not use url_template : string deprecated, do not use Returns ------- G : networkx.MultiDiGraph graph with node elevation attributes """ if max_locations_per_batch is None: max_locations_per_batch = batch_size else: warn( "The `max_locations_per_batch` parameter is deprecated and will be " "removed the v2.0.0 release, use the `batch_size` parameter instead. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) if precision is None: precision = 3 else: warn( "The `precision` parameter is deprecated and will be removed in the v2.0.0 release. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) if url_template is None: url_template = settings.elevation_url_template else: warn( "The `url_template` parameter is deprecated and will be removed " "in the v2.0.0 release. Configure the `settings` module's " "`elevation_url_template` instead. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) # make a pandas series of all the nodes' coordinates as 'lat,lon' # round coordinates to 5 decimal places (approx 1 meter) to be able to fit # in more locations per API call node_points = pd.Series( {node: f'{data["y"]:.5f},{data["x"]:.5f}' for node, data in G.nodes(data=True)} ) n_calls = int(np.ceil(len(node_points) / max_locations_per_batch)) domain = _downloader._hostname_from_url(url_template) utils.log(f"Requesting node elevations from {domain!r} in {n_calls} request(s)") # break the series of coordinates into chunks of max_locations_per_batch # API format is locations=lat,lon|lat,lon|lat,lon|lat,lon... results = [] for i in range(0, len(node_points), max_locations_per_batch): chunk = node_points.iloc[i : i + max_locations_per_batch] locations = "|".join(chunk) url = url_template.format(locations=locations, key=api_key) # download and append these elevation results to list of all results response_json = _elevation_request(url, pause) if "results" in response_json and len(response_json["results"]) > 0: results.extend(response_json["results"]) else: raise InsufficientResponseError(str(response_json)) # sanity check that all our vectors have the same number of elements msg = f"Graph has {len(G):,} nodes and we received {len(results):,} results from {domain!r}" utils.log(msg) if not (len(results) == len(G) == len(node_points)): # pragma: no cover err_msg = f"{msg}\n{response_json}" raise InsufficientResponseError(err_msg) # add elevation as an attribute to the nodes df_elev = pd.DataFrame(node_points, columns=["node_points"]) df_elev["elevation"] = [result["elevation"] for result in results] df_elev["elevation"] = df_elev["elevation"].round(precision) nx.set_node_attributes(G, name="elevation", values=df_elev["elevation"].to_dict()) utils.log(f"Added elevation data from {domain!r} to all nodes.") return G
(G, api_key=None, batch_size=350, pause=0, max_locations_per_batch=None, precision=None, url_template=None)
52,200
osmnx.elevation
add_node_elevations_raster
Add `elevation` attribute to each node from local raster file(s). If `filepath` is a list of paths, this will generate a virtual raster composed of the files at those paths as an intermediate step. See also the `add_edge_grades` function. Parameters ---------- G : networkx.MultiDiGraph input graph, in same CRS as raster filepath : string or pathlib.Path or list of strings/Paths path (or list of paths) to the raster file(s) to query band : int which raster band to query cpus : int how many CPU cores to use; if None, use all available Returns ------- G : networkx.MultiDiGraph graph with node elevation attributes
def add_node_elevations_raster(G, filepath, band=1, cpus=None): """ Add `elevation` attribute to each node from local raster file(s). If `filepath` is a list of paths, this will generate a virtual raster composed of the files at those paths as an intermediate step. See also the `add_edge_grades` function. Parameters ---------- G : networkx.MultiDiGraph input graph, in same CRS as raster filepath : string or pathlib.Path or list of strings/Paths path (or list of paths) to the raster file(s) to query band : int which raster band to query cpus : int how many CPU cores to use; if None, use all available Returns ------- G : networkx.MultiDiGraph graph with node elevation attributes """ if rasterio is None or gdal is None: # pragma: no cover msg = "gdal and rasterio must be installed to query raster files" raise ImportError(msg) if cpus is None: cpus = mp.cpu_count() cpus = min(cpus, mp.cpu_count()) utils.log(f"Attaching elevations with {cpus} CPUs...") # if a list of filepaths is passed, compose them all as a virtual raster # use the sha1 hash of the filepaths list as the vrt filename if not isinstance(filepath, (str, Path)): filepaths = [str(p) for p in filepath] sha = sha1(str(filepaths).encode("utf-8")).hexdigest() filepath = f"./.osmnx_{sha}.vrt" gdal.UseExceptions() gdal.BuildVRT(filepath, filepaths).FlushCache() nodes = convert.graph_to_gdfs(G, edges=False, node_geometry=False)[["x", "y"]] if cpus == 1: elevs = dict(_query_raster(nodes, filepath, band)) else: # divide nodes into equal-sized chunks for multiprocessing size = int(np.ceil(len(nodes) / cpus)) args = ((nodes.iloc[i : i + size], filepath, band) for i in range(0, len(nodes), size)) with mp.get_context("spawn").Pool(cpus) as pool: results = pool.starmap_async(_query_raster, args).get() elevs = {k: v for kv in results for k, v in kv} assert len(G) == len(elevs) nx.set_node_attributes(G, elevs, name="elevation") utils.log("Added elevation data from raster to all nodes.") return G
(G, filepath, band=1, cpus=None)
52,201
osmnx.stats
basic_stats
Calculate basic descriptive geometric and topological measures of a graph. Density measures are only calculated if `area` is provided and clean intersection measures are only calculated if `clean_int_tol` is provided. Parameters ---------- G : networkx.MultiDiGraph input graph area : float if not None, calculate density measures and use this value (in square meters) as the denominator clean_int_tol : float if not None, calculate consolidated intersections count (and density, if `area` is also provided) and use this tolerance value; refer to the `simplification.consolidate_intersections` function documentation for details Returns ------- stats : dict dictionary containing the following keys - `circuity_avg` - see `circuity_avg` function documentation - `clean_intersection_count` - see `clean_intersection_count` function documentation - `clean_intersection_density_km` - `clean_intersection_count` per sq km - `edge_density_km` - `edge_length_total` per sq km - `edge_length_avg` - `edge_length_total / m` - `edge_length_total` - see `edge_length_total` function documentation - `intersection_count` - see `intersection_count` function documentation - `intersection_density_km` - `intersection_count` per sq km - `k_avg` - graph's average node degree (in-degree and out-degree) - `m` - count of edges in graph - `n` - count of nodes in graph - `node_density_km` - `n` per sq km - `self_loop_proportion` - see `self_loop_proportion` function documentation - `street_density_km` - `street_length_total` per sq km - `street_length_avg` - `street_length_total / street_segment_count` - `street_length_total` - see `street_length_total` function documentation - `street_segment_count` - see `street_segment_count` function documentation - `streets_per_node_avg` - see `streets_per_node_avg` function documentation - `streets_per_node_counts` - see `streets_per_node_counts` function documentation - `streets_per_node_proportions` - see `streets_per_node_proportions` function documentation
def basic_stats(G, area=None, clean_int_tol=None): """ Calculate basic descriptive geometric and topological measures of a graph. Density measures are only calculated if `area` is provided and clean intersection measures are only calculated if `clean_int_tol` is provided. Parameters ---------- G : networkx.MultiDiGraph input graph area : float if not None, calculate density measures and use this value (in square meters) as the denominator clean_int_tol : float if not None, calculate consolidated intersections count (and density, if `area` is also provided) and use this tolerance value; refer to the `simplification.consolidate_intersections` function documentation for details Returns ------- stats : dict dictionary containing the following keys - `circuity_avg` - see `circuity_avg` function documentation - `clean_intersection_count` - see `clean_intersection_count` function documentation - `clean_intersection_density_km` - `clean_intersection_count` per sq km - `edge_density_km` - `edge_length_total` per sq km - `edge_length_avg` - `edge_length_total / m` - `edge_length_total` - see `edge_length_total` function documentation - `intersection_count` - see `intersection_count` function documentation - `intersection_density_km` - `intersection_count` per sq km - `k_avg` - graph's average node degree (in-degree and out-degree) - `m` - count of edges in graph - `n` - count of nodes in graph - `node_density_km` - `n` per sq km - `self_loop_proportion` - see `self_loop_proportion` function documentation - `street_density_km` - `street_length_total` per sq km - `street_length_avg` - `street_length_total / street_segment_count` - `street_length_total` - see `street_length_total` function documentation - `street_segment_count` - see `street_segment_count` function documentation - `streets_per_node_avg` - see `streets_per_node_avg` function documentation - `streets_per_node_counts` - see `streets_per_node_counts` function documentation - `streets_per_node_proportions` - see `streets_per_node_proportions` function documentation """ Gu = convert.to_undirected(G) stats = {} stats["n"] = len(G.nodes) stats["m"] = len(G.edges) stats["k_avg"] = 2 * stats["m"] / stats["n"] stats["edge_length_total"] = edge_length_total(G) stats["edge_length_avg"] = stats["edge_length_total"] / stats["m"] stats["streets_per_node_avg"] = streets_per_node_avg(G) stats["streets_per_node_counts"] = streets_per_node_counts(G) stats["streets_per_node_proportions"] = streets_per_node_proportions(G) stats["intersection_count"] = intersection_count(G) stats["street_length_total"] = street_length_total(Gu) stats["street_segment_count"] = street_segment_count(Gu) stats["street_length_avg"] = stats["street_length_total"] / stats["street_segment_count"] stats["circuity_avg"] = circuity_avg(Gu) stats["self_loop_proportion"] = self_loop_proportion(Gu) # calculate clean intersection counts if requested if clean_int_tol: stats["clean_intersection_count"] = len( simplification.consolidate_intersections( G, tolerance=clean_int_tol, rebuild_graph=False, dead_ends=False ) ) # can only calculate density measures if area was provided if area is not None: area_km = area / 1_000_000 # convert m^2 to km^2 stats["node_density_km"] = stats["n"] / area_km stats["intersection_density_km"] = stats["intersection_count"] / area_km stats["edge_density_km"] = stats["edge_length_total"] / area_km stats["street_density_km"] = stats["street_length_total"] / area_km if clean_int_tol: stats["clean_intersection_density_km"] = stats["clean_intersection_count"] / area_km return stats
(G, area=None, clean_int_tol=None)
52,203
osmnx.utils
citation
Print the OSMnx package's citation information. Boeing, G. (2024). Modeling and Analyzing Urban Networks and Amenities with OSMnx. Working paper. https://geoffboeing.com/publications/osmnx-paper/ Parameters ---------- style : string {"apa", "bibtex", "ieee"} citation format, either APA or BibTeX or IEEE Returns ------- None
def citation(style="bibtex"): """ Print the OSMnx package's citation information. Boeing, G. (2024). Modeling and Analyzing Urban Networks and Amenities with OSMnx. Working paper. https://geoffboeing.com/publications/osmnx-paper/ Parameters ---------- style : string {"apa", "bibtex", "ieee"} citation format, either APA or BibTeX or IEEE Returns ------- None """ if style == "apa": msg = ( "Boeing, G. (2024). Modeling and Analyzing Urban Networks and Amenities " "with OSMnx. Working paper. https://geoffboeing.com/publications/osmnx-paper/" ) elif style == "bibtex": msg = ( "@techreport{boeing_osmnx_2024,\n" " author = {Boeing, Geoff},\n" " title = {{Modeling and Analyzing Urban Networks and Amenities with OSMnx}},\n" " type = {Working paper},\n" " url = {https://geoffboeing.com/publications/osmnx-paper/},\n" " year = {2024}\n" "}" ) elif style == "ieee": msg = ( 'G. Boeing, "Modeling and Analyzing Urban Networks and Amenities with OSMnx," ' "Working paper, https://geoffboeing.com/publications/osmnx-paper/" ) else: # pragma: no cover err_msg = f"unrecognized citation style {style!r}" raise ValueError(err_msg) print(msg) # noqa: T201
(style='bibtex')
52,204
osmnx.utils
config
Do not use: deprecated. Use the settings module directly. Parameters ---------- all_oneway : bool deprecated bidirectional_network_types : list deprecated cache_folder : string or pathlib.Path deprecated data_folder : string or pathlib.Path deprecated cache_only_mode : bool deprecated default_accept_language : string deprecated default_access : string deprecated default_crs : string deprecated default_referer : string deprecated default_user_agent : string deprecated imgs_folder : string or pathlib.Path deprecated log_file : bool deprecated log_filename : string deprecated log_console : bool deprecated log_level : int deprecated log_name : string deprecated logs_folder : string or pathlib.Path deprecated max_query_area_size : int deprecated memory : int deprecated nominatim_endpoint : string deprecated nominatim_key : string deprecated osm_xml_node_attrs : list deprecated osm_xml_node_tags : list deprecated osm_xml_way_attrs : list deprecated osm_xml_way_tags : list deprecated overpass_endpoint : string deprecated overpass_rate_limit : bool deprecated overpass_settings : string deprecated requests_kwargs : dict deprecated timeout : int deprecated use_cache : bool deprecated useful_tags_node : list deprecated useful_tags_way : list deprecated Returns ------- None
def config( all_oneway=settings.all_oneway, bidirectional_network_types=settings.bidirectional_network_types, cache_folder=settings.cache_folder, cache_only_mode=settings.cache_only_mode, data_folder=settings.data_folder, default_accept_language=settings.default_accept_language, default_access=settings.default_access, default_crs=settings.default_crs, default_referer=settings.default_referer, default_user_agent=settings.default_user_agent, imgs_folder=settings.imgs_folder, log_console=settings.log_console, log_file=settings.log_file, log_filename=settings.log_filename, log_level=settings.log_level, log_name=settings.log_name, logs_folder=settings.logs_folder, max_query_area_size=settings.max_query_area_size, memory=settings.memory, nominatim_endpoint=settings.nominatim_endpoint, nominatim_key=settings.nominatim_key, osm_xml_node_attrs=settings.osm_xml_node_attrs, osm_xml_node_tags=settings.osm_xml_node_tags, osm_xml_way_attrs=settings.osm_xml_way_attrs, osm_xml_way_tags=settings.osm_xml_way_tags, overpass_endpoint=settings.overpass_endpoint, overpass_rate_limit=settings.overpass_rate_limit, overpass_settings=settings.overpass_settings, requests_kwargs=settings.requests_kwargs, timeout=settings.timeout, use_cache=settings.use_cache, useful_tags_node=settings.useful_tags_node, useful_tags_way=settings.useful_tags_way, ): """ Do not use: deprecated. Use the settings module directly. Parameters ---------- all_oneway : bool deprecated bidirectional_network_types : list deprecated cache_folder : string or pathlib.Path deprecated data_folder : string or pathlib.Path deprecated cache_only_mode : bool deprecated default_accept_language : string deprecated default_access : string deprecated default_crs : string deprecated default_referer : string deprecated default_user_agent : string deprecated imgs_folder : string or pathlib.Path deprecated log_file : bool deprecated log_filename : string deprecated log_console : bool deprecated log_level : int deprecated log_name : string deprecated logs_folder : string or pathlib.Path deprecated max_query_area_size : int deprecated memory : int deprecated nominatim_endpoint : string deprecated nominatim_key : string deprecated osm_xml_node_attrs : list deprecated osm_xml_node_tags : list deprecated osm_xml_way_attrs : list deprecated osm_xml_way_tags : list deprecated overpass_endpoint : string deprecated overpass_rate_limit : bool deprecated overpass_settings : string deprecated requests_kwargs : dict deprecated timeout : int deprecated use_cache : bool deprecated useful_tags_node : list deprecated useful_tags_way : list deprecated Returns ------- None """ warn( "The `utils.config` function is deprecated and will be removed in " "the v2.0.0 release. Instead, use the `settings` module directly to " "configure a global setting's value. For example, " "`ox.settings.log_console=True`. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) # set each global setting to the argument value settings.all_oneway = all_oneway settings.bidirectional_network_types = bidirectional_network_types settings.cache_folder = cache_folder settings.cache_only_mode = cache_only_mode settings.data_folder = data_folder settings.default_accept_language = default_accept_language settings.default_access = default_access settings.default_crs = default_crs settings.default_referer = default_referer settings.default_user_agent = default_user_agent settings.imgs_folder = imgs_folder settings.log_console = log_console settings.log_file = log_file settings.log_filename = log_filename settings.log_level = log_level settings.log_name = log_name settings.logs_folder = logs_folder settings.max_query_area_size = max_query_area_size settings.memory = memory settings.nominatim_endpoint = nominatim_endpoint settings.nominatim_key = nominatim_key settings.osm_xml_node_attrs = osm_xml_node_attrs settings.osm_xml_node_tags = osm_xml_node_tags settings.osm_xml_way_attrs = osm_xml_way_attrs settings.osm_xml_way_tags = osm_xml_way_tags settings.overpass_endpoint = overpass_endpoint settings.overpass_rate_limit = overpass_rate_limit settings.overpass_settings = overpass_settings settings.timeout = timeout settings.use_cache = use_cache settings.useful_tags_node = useful_tags_node settings.useful_tags_way = useful_tags_way settings.requests_kwargs = requests_kwargs
(all_oneway=False, bidirectional_network_types=['walk'], cache_folder='./cache', cache_only_mode=False, data_folder='./data', default_accept_language=None, default_access='["access"!~"private"]', default_crs='epsg:4326', default_referer=None, default_user_agent=None, imgs_folder='./images', log_console=False, log_file=False, log_filename='osmnx', log_level=20, log_name='OSMnx', logs_folder='./logs', max_query_area_size=2500000000, memory=None, nominatim_endpoint=None, nominatim_key=None, osm_xml_node_attrs=None, osm_xml_node_tags=None, osm_xml_way_attrs=None, osm_xml_way_tags=None, overpass_endpoint=None, overpass_rate_limit=True, overpass_settings='[out:json][timeout:{timeout}]{maxsize}', requests_kwargs={}, timeout=None, use_cache=True, useful_tags_node=['ref', 'highway'], useful_tags_way=['bridge', 'tunnel', 'oneway', 'lanes', 'ref', 'name', 'highway', 'maxspeed', 'service', 'access', 'area', 'landuse', 'width', 'est_width', 'junction'])
52,205
osmnx.simplification
consolidate_intersections
Consolidate intersections comprising clusters of nearby nodes. Merges nearby nodes and returns either their centroids or a rebuilt graph with consolidated intersections and reconnected edge geometries. The tolerance argument should be adjusted to approximately match street design standards in the specific street network, and you should always use a projected graph to work in meaningful and consistent units like meters. Note the tolerance represents a per-node buffering radius: for example, to consolidate nodes within 10 meters of each other, use tolerance=5. When rebuild_graph=False, it uses a purely geometrical (and relatively fast) algorithm to identify "geometrically close" nodes, merge them, and return just the merged intersections' centroids. When rebuild_graph=True, it uses a topological (and slower but more accurate) algorithm to identify "topologically close" nodes, merge them, then rebuild/return the graph. Returned graph's node IDs represent clusters rather than osmids. Refer to nodes' osmid_original attributes for original osmids. If multiple nodes were merged together, the osmid_original attribute is a list of merged nodes' osmids. Divided roads are often represented by separate centerline edges. The intersection of two divided roads thus creates 4 nodes, representing where each edge intersects a perpendicular edge. These 4 nodes represent a single intersection in the real world. A similar situation occurs with roundabouts and traffic circles. This function consolidates nearby nodes by buffering them to an arbitrary distance, merging overlapping buffers, and taking their centroid. Parameters ---------- G : networkx.MultiDiGraph a projected graph tolerance : float nodes are buffered to this distance (in graph's geometry's units) and subsequent overlaps are dissolved into a single node rebuild_graph : bool if True, consolidate the nodes topologically, rebuild the graph, and return as networkx.MultiDiGraph. if False, consolidate the nodes geometrically and return the consolidated node points as geopandas.GeoSeries dead_ends : bool if False, discard dead-end nodes to return only street-intersection points reconnect_edges : bool ignored if rebuild_graph is not True. if True, reconnect edges and their geometries in rebuilt graph to the consolidated nodes and update edge length attributes; if False, returned graph has no edges (which is faster if you just need topologically consolidated intersection counts). Returns ------- networkx.MultiDiGraph or geopandas.GeoSeries if rebuild_graph=True, returns MultiDiGraph with consolidated intersections and reconnected edge geometries. if rebuild_graph=False, returns GeoSeries of shapely Points representing the centroids of street intersections
def consolidate_intersections( G, tolerance=10, rebuild_graph=True, dead_ends=False, reconnect_edges=True ): """ Consolidate intersections comprising clusters of nearby nodes. Merges nearby nodes and returns either their centroids or a rebuilt graph with consolidated intersections and reconnected edge geometries. The tolerance argument should be adjusted to approximately match street design standards in the specific street network, and you should always use a projected graph to work in meaningful and consistent units like meters. Note the tolerance represents a per-node buffering radius: for example, to consolidate nodes within 10 meters of each other, use tolerance=5. When rebuild_graph=False, it uses a purely geometrical (and relatively fast) algorithm to identify "geometrically close" nodes, merge them, and return just the merged intersections' centroids. When rebuild_graph=True, it uses a topological (and slower but more accurate) algorithm to identify "topologically close" nodes, merge them, then rebuild/return the graph. Returned graph's node IDs represent clusters rather than osmids. Refer to nodes' osmid_original attributes for original osmids. If multiple nodes were merged together, the osmid_original attribute is a list of merged nodes' osmids. Divided roads are often represented by separate centerline edges. The intersection of two divided roads thus creates 4 nodes, representing where each edge intersects a perpendicular edge. These 4 nodes represent a single intersection in the real world. A similar situation occurs with roundabouts and traffic circles. This function consolidates nearby nodes by buffering them to an arbitrary distance, merging overlapping buffers, and taking their centroid. Parameters ---------- G : networkx.MultiDiGraph a projected graph tolerance : float nodes are buffered to this distance (in graph's geometry's units) and subsequent overlaps are dissolved into a single node rebuild_graph : bool if True, consolidate the nodes topologically, rebuild the graph, and return as networkx.MultiDiGraph. if False, consolidate the nodes geometrically and return the consolidated node points as geopandas.GeoSeries dead_ends : bool if False, discard dead-end nodes to return only street-intersection points reconnect_edges : bool ignored if rebuild_graph is not True. if True, reconnect edges and their geometries in rebuilt graph to the consolidated nodes and update edge length attributes; if False, returned graph has no edges (which is faster if you just need topologically consolidated intersection counts). Returns ------- networkx.MultiDiGraph or geopandas.GeoSeries if rebuild_graph=True, returns MultiDiGraph with consolidated intersections and reconnected edge geometries. if rebuild_graph=False, returns GeoSeries of shapely Points representing the centroids of street intersections """ # if dead_ends is False, discard dead-ends to retain only intersections if not dead_ends: spn = stats.streets_per_node(G) dead_end_nodes = [node for node, count in spn.items() if count <= 1] # make a copy to not mutate original graph object caller passed in G = G.copy() G.remove_nodes_from(dead_end_nodes) if rebuild_graph: if not G or not G.edges: # cannot rebuild a graph with no nodes or no edges, just return it return G # otherwise return _consolidate_intersections_rebuild_graph(G, tolerance, reconnect_edges) # otherwise, if we're not rebuilding the graph if not G: # if graph has no nodes, just return empty GeoSeries return gpd.GeoSeries(crs=G.graph["crs"]) # otherwise, return the centroids of the merged intersection polygons return _merge_nodes_geometric(G, tolerance).centroid
(G, tolerance=10, rebuild_graph=True, dead_ends=False, reconnect_edges=True)
52,210
osmnx.features
features_from_address
Create GeoDataFrame of OSM features within some distance N, S, E, W of address. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features Parameters ---------- address : string the address to geocode and use as the central point around which to get the features tags : dict Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. dist : numeric distance in meters Returns ------- gdf : geopandas.GeoDataFrame
def features_from_address(address, tags, dist=1000): """ Create GeoDataFrame of OSM features within some distance N, S, E, W of address. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features Parameters ---------- address : string the address to geocode and use as the central point around which to get the features tags : dict Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. dist : numeric distance in meters Returns ------- gdf : geopandas.GeoDataFrame """ # geocode the address string to a (lat, lon) point center_point = geocoder.geocode(query=address) # create GeoDataFrame of features around this point return features_from_point(center_point, tags, dist=dist)
(address, tags, dist=1000)
52,211
osmnx.features
features_from_bbox
Create a GeoDataFrame of OSM features within a N, S, E, W bounding box. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features Parameters ---------- north : float deprecated, do not use south : float deprecated, do not use east : float deprecated, do not use west : float deprecated, do not use bbox : tuple of floats bounding box as (north, south, east, west) tags : dict Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. Returns ------- gdf : geopandas.GeoDataFrame
def features_from_bbox(north=None, south=None, east=None, west=None, bbox=None, tags=None): """ Create a GeoDataFrame of OSM features within a N, S, E, W bounding box. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features Parameters ---------- north : float deprecated, do not use south : float deprecated, do not use east : float deprecated, do not use west : float deprecated, do not use bbox : tuple of floats bounding box as (north, south, east, west) tags : dict Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. Returns ------- gdf : geopandas.GeoDataFrame """ if not (north is None and south is None and east is None and west is None): msg = ( "The `north`, `south`, `east`, and `west` parameters are deprecated and " "will be removed in the v2.0.0 release. Use the `bbox` parameter instead. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123" ) warn(msg, FutureWarning, stacklevel=2) bbox = (north, south, east, west) # convert bounding box to a polygon polygon = utils_geo.bbox_to_poly(bbox=bbox) # create GeoDataFrame of features within this polygon return features_from_polygon(polygon, tags)
(north=None, south=None, east=None, west=None, bbox=None, tags=None)
52,212
osmnx.features
features_from_place
Create GeoDataFrame of OSM features within boundaries of some place(s). The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does not have a polygon for this place, you can instead get features within it using the `features_from_address` function, which geocodes the place name to a point and gets the features within some distance of that point. If OSM does have polygon boundaries for this place but you're not finding it, try to vary the query string, pass in a structured query dict, or vary the `which_result` argument to use a different geocode result. If you know the OSM ID of the place, you can retrieve its boundary polygon using the `geocode_to_gdf` function, then pass it to the `features_from_polygon` function. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features Parameters ---------- query : string or dict or list the query or queries to geocode to get place boundary polygon(s) tags : dict Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. which_result : int which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. buffer_dist : float deprecated, do not use Returns ------- gdf : geopandas.GeoDataFrame
def features_from_place(query, tags, which_result=None, buffer_dist=None): """ Create GeoDataFrame of OSM features within boundaries of some place(s). The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does not have a polygon for this place, you can instead get features within it using the `features_from_address` function, which geocodes the place name to a point and gets the features within some distance of that point. If OSM does have polygon boundaries for this place but you're not finding it, try to vary the query string, pass in a structured query dict, or vary the `which_result` argument to use a different geocode result. If you know the OSM ID of the place, you can retrieve its boundary polygon using the `geocode_to_gdf` function, then pass it to the `features_from_polygon` function. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features Parameters ---------- query : string or dict or list the query or queries to geocode to get place boundary polygon(s) tags : dict Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. which_result : int which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. buffer_dist : float deprecated, do not use Returns ------- gdf : geopandas.GeoDataFrame """ if buffer_dist is not None: warn( "The buffer_dist argument has been deprecated and will be removed " "in the v2.0.0 release. Buffer your query area directly, if desired. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) # create a GeoDataFrame with the spatial boundaries of the place(s) if isinstance(query, (str, dict)): # if it is a string (place name) or dict (structured place query), # then it is a single place gdf_place = geocoder.geocode_to_gdf( query, which_result=which_result, buffer_dist=buffer_dist ) elif isinstance(query, list): # if it is a list, it contains multiple places to get gdf_place = geocoder.geocode_to_gdf(query, buffer_dist=buffer_dist) else: # pragma: no cover msg = "query must be dict, string, or list of strings" raise TypeError(msg) # extract the geometry from the GeoDataFrame to use in API query polygon = gdf_place["geometry"].unary_union utils.log("Constructed place geometry polygon(s) to query API") # create GeoDataFrame using this polygon(s) geometry return features_from_polygon(polygon, tags)
(query, tags, which_result=None, buffer_dist=None)
52,213
osmnx.features
features_from_point
Create GeoDataFrame of OSM features within some distance N, S, E, W of a point. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features Parameters ---------- center_point : tuple the (lat, lon) center point around which to get the features tags : dict Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. dist : numeric distance in meters Returns ------- gdf : geopandas.GeoDataFrame
def features_from_point(center_point, tags, dist=1000): """ Create GeoDataFrame of OSM features within some distance N, S, E, W of a point. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features Parameters ---------- center_point : tuple the (lat, lon) center point around which to get the features tags : dict Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. dist : numeric distance in meters Returns ------- gdf : geopandas.GeoDataFrame """ # create bounding box from center point and distance in each direction bbox = utils_geo.bbox_from_point(center_point, dist) # convert the bounding box to a polygon polygon = utils_geo.bbox_to_poly(bbox=bbox) # create GeoDataFrame of features within this polygon return features_from_polygon(polygon, tags)
(center_point, tags, dist=1000)
52,214
osmnx.features
features_from_polygon
Create GeoDataFrame of OSM features within boundaries of a (multi)polygon. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features Parameters ---------- polygon : shapely.geometry.Polygon or shapely.geometry.MultiPolygon geographic boundaries to fetch features within tags : dict Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. Returns ------- gdf : geopandas.GeoDataFrame
def features_from_polygon(polygon, tags): """ Create GeoDataFrame of OSM features within boundaries of a (multi)polygon. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features Parameters ---------- polygon : shapely.geometry.Polygon or shapely.geometry.MultiPolygon geographic boundaries to fetch features within tags : dict Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. Returns ------- gdf : geopandas.GeoDataFrame """ # verify that the geometry is valid and a Polygon/MultiPolygon if not polygon.is_valid: msg = "The geometry of `polygon` is invalid" raise ValueError(msg) if not isinstance(polygon, (Polygon, MultiPolygon)): msg = ( "Boundaries must be a shapely Polygon or MultiPolygon. If you " "requested features from place name, make sure your query resolves " "to a Polygon or MultiPolygon, and not some other geometry, like a " "Point. See OSMnx documentation for details." ) raise TypeError(msg) # download the data from OSM response_jsons = _overpass._download_overpass_features(polygon, tags) # create GeoDataFrame from the downloaded data return _create_gdf(response_jsons, polygon, tags)
(polygon, tags)
52,215
osmnx.features
features_from_xml
Create a GeoDataFrame of OSM features in an OSM-formatted XML file. Because this function creates a GeoDataFrame of features from an OSM-formatted XML file that has already been downloaded (i.e. no query is made to the Overpass API) the polygon and tags arguments are not required. If they are not supplied to the function, features_from_xml() will return features for all of the tagged elements in the file. If they are supplied they will be used to filter the final GeoDataFrame. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features Parameters ---------- filepath : string or pathlib.Path path to file containing OSM XML data polygon : shapely.geometry.Polygon optional geographic boundary to filter elements tags : dict optional dict of tags for filtering elements from the XML. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. encoding : string the XML file's character encoding Returns ------- gdf : geopandas.GeoDataFrame
def features_from_xml(filepath, polygon=None, tags=None, encoding="utf-8"): """ Create a GeoDataFrame of OSM features in an OSM-formatted XML file. Because this function creates a GeoDataFrame of features from an OSM-formatted XML file that has already been downloaded (i.e. no query is made to the Overpass API) the polygon and tags arguments are not required. If they are not supplied to the function, features_from_xml() will return features for all of the tagged elements in the file. If they are supplied they will be used to filter the final GeoDataFrame. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features Parameters ---------- filepath : string or pathlib.Path path to file containing OSM XML data polygon : shapely.geometry.Polygon optional geographic boundary to filter elements tags : dict optional dict of tags for filtering elements from the XML. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. encoding : string the XML file's character encoding Returns ------- gdf : geopandas.GeoDataFrame """ # transmogrify file of OSM XML data into JSON response_jsons = [osm_xml._overpass_json_from_file(filepath, encoding)] # create GeoDataFrame using this response JSON return _create_gdf(response_jsons, polygon=polygon, tags=tags)
(filepath, polygon=None, tags=None, encoding='utf-8')
52,217
osmnx.geocoder
geocode
Geocode place names or addresses to (lat, lon) with the Nominatim API. This geocodes the query via the Nominatim "search" endpoint. Parameters ---------- query : string the query string to geocode Returns ------- point : tuple the (lat, lon) coordinates returned by the geocoder
def geocode(query): """ Geocode place names or addresses to (lat, lon) with the Nominatim API. This geocodes the query via the Nominatim "search" endpoint. Parameters ---------- query : string the query string to geocode Returns ------- point : tuple the (lat, lon) coordinates returned by the geocoder """ # define the parameters params = OrderedDict() params["format"] = "json" params["limit"] = 1 params["dedupe"] = 0 # prevent deduping to get precise number of results params["q"] = query response_json = _nominatim._nominatim_request(params=params) # if results were returned, parse lat and lon out of the result if response_json and "lat" in response_json[0] and "lon" in response_json[0]: lat = float(response_json[0]["lat"]) lon = float(response_json[0]["lon"]) point = (lat, lon) utils.log(f"Geocoded {query!r} to {point}") return point # otherwise we got no results back msg = f"Nominatim could not geocode query {query!r}" raise InsufficientResponseError(msg)
(query)
52,218
osmnx.geocoder
geocode_to_gdf
Retrieve OSM elements by place name or OSM ID with the Nominatim API. If searching by place name, the `query` argument can be a string or structured dict, or a list of such strings/dicts to send to the geocoder. This uses the Nominatim "search" endpoint to geocode the place name to the best-matching OSM element, then returns that element and its attribute data. You can instead query by OSM ID by passing `by_osmid=True`. This uses the Nominatim "lookup" endpoint to retrieve the OSM element with that ID. In this case, the function treats the `query` argument as an OSM ID (or list of OSM IDs), which must be prepended with their types: node (N), way (W), or relation (R) in accordance with the Nominatim API format. For example, `query=["R2192363", "N240109189", "W427818536"]`. If `query` is a list, then `which_result` must be either a single value or a list with the same length as `query`. The queries you provide must be resolvable to elements in the Nominatim database. The resulting GeoDataFrame's geometry column contains place boundaries if they exist. Parameters ---------- query : string or dict or list of strings/dicts query string(s) or structured dict(s) to geocode which_result : int which search result to return. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. ignored if by_osmid=True. by_osmid : bool if True, treat query as an OSM ID lookup rather than text search buffer_dist : float deprecated, do not use Returns ------- gdf : geopandas.GeoDataFrame a GeoDataFrame with one row for each query
def geocode_to_gdf(query, which_result=None, by_osmid=False, buffer_dist=None): """ Retrieve OSM elements by place name or OSM ID with the Nominatim API. If searching by place name, the `query` argument can be a string or structured dict, or a list of such strings/dicts to send to the geocoder. This uses the Nominatim "search" endpoint to geocode the place name to the best-matching OSM element, then returns that element and its attribute data. You can instead query by OSM ID by passing `by_osmid=True`. This uses the Nominatim "lookup" endpoint to retrieve the OSM element with that ID. In this case, the function treats the `query` argument as an OSM ID (or list of OSM IDs), which must be prepended with their types: node (N), way (W), or relation (R) in accordance with the Nominatim API format. For example, `query=["R2192363", "N240109189", "W427818536"]`. If `query` is a list, then `which_result` must be either a single value or a list with the same length as `query`. The queries you provide must be resolvable to elements in the Nominatim database. The resulting GeoDataFrame's geometry column contains place boundaries if they exist. Parameters ---------- query : string or dict or list of strings/dicts query string(s) or structured dict(s) to geocode which_result : int which search result to return. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. ignored if by_osmid=True. by_osmid : bool if True, treat query as an OSM ID lookup rather than text search buffer_dist : float deprecated, do not use Returns ------- gdf : geopandas.GeoDataFrame a GeoDataFrame with one row for each query """ if buffer_dist is not None: warn( "The buffer_dist argument has been deprecated and will be removed " "in the v2.0.0 release. Buffer your results directly, if desired. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) if not isinstance(query, (str, dict, list)): # pragma: no cover msg = "query must be a string or dict or list" raise TypeError(msg) # if caller passed a list of queries but a scalar which_result value, then # turn which_result into a list with same length as query list if isinstance(query, list) and (isinstance(which_result, int) or which_result is None): which_result = [which_result] * len(query) # turn query and which_result into lists if they're not already if not isinstance(query, list): query = [query] if not isinstance(which_result, list): which_result = [which_result] # ensure same length if len(query) != len(which_result): # pragma: no cover msg = "which_result length must equal query length" raise ValueError(msg) # ensure query type of each item for q in query: if not isinstance(q, (str, dict)): # pragma: no cover msg = "each query must be a dict or a string" raise TypeError(msg) # geocode each query and add to GeoDataFrame as a new row gdf = gpd.GeoDataFrame() for q, wr in zip(query, which_result): gdf = pd.concat([gdf, _geocode_query_to_gdf(q, wr, by_osmid)]) # reset GeoDataFrame index and set its CRS gdf = gdf.reset_index(drop=True) gdf = gdf.set_crs(settings.default_crs) # if buffer_dist was passed in, project the geometry to UTM, buffer it in # meters, then project it back to lat-lon if buffer_dist is not None and len(gdf) > 0: gdf_utm = projection.project_gdf(gdf) gdf_utm["geometry"] = gdf_utm["geometry"].buffer(buffer_dist) gdf = projection.project_gdf(gdf_utm, to_latlong=True) utils.log(f"Buffered GeoDataFrame to {buffer_dist} meters") utils.log(f"Created GeoDataFrame with {len(gdf)} rows from {len(query)} queries") return gdf
(query, which_result=None, by_osmid=False, buffer_dist=None)
52,221
osmnx.geometries
geometries_from_address
Do not use: deprecated. The `geometries` module and `geometries_from_X` functions have been renamed the `features` module and `features_from_X` functions. Use these instead. The `geometries` module and functions are deprecated and will be removed in the v2.0.0 release. Parameters ---------- address : string Do not use: deprecated. tags : dict Do not use: deprecated. dist : numeric Do not use: deprecated. Returns ------- gdf : geopandas.GeoDataFrame
def geometries_from_address(address, tags, dist=1000): """ Do not use: deprecated. The `geometries` module and `geometries_from_X` functions have been renamed the `features` module and `features_from_X` functions. Use these instead. The `geometries` module and functions are deprecated and will be removed in the v2.0.0 release. Parameters ---------- address : string Do not use: deprecated. tags : dict Do not use: deprecated. dist : numeric Do not use: deprecated. Returns ------- gdf : geopandas.GeoDataFrame """ warn(DEP_MSG, FutureWarning, stacklevel=2) return features.features_from_address(address, tags, dist)
(address, tags, dist=1000)
52,222
osmnx.geometries
geometries_from_bbox
Do not use: deprecated. The `geometries` module and `geometries_from_X` functions have been renamed the `features` module and `features_from_X` functions. Use these instead. The `geometries` module and functions are deprecated and will be removed in the v2.0.0 release. Parameters ---------- north : float Do not use: deprecated. south : float Do not use: deprecated. east : float Do not use: deprecated. west : float Do not use: deprecated. tags : dict Do not use: deprecated. Returns ------- gdf : geopandas.GeoDataFrame
def geometries_from_bbox(north, south, east, west, tags): """ Do not use: deprecated. The `geometries` module and `geometries_from_X` functions have been renamed the `features` module and `features_from_X` functions. Use these instead. The `geometries` module and functions are deprecated and will be removed in the v2.0.0 release. Parameters ---------- north : float Do not use: deprecated. south : float Do not use: deprecated. east : float Do not use: deprecated. west : float Do not use: deprecated. tags : dict Do not use: deprecated. Returns ------- gdf : geopandas.GeoDataFrame """ warn(DEP_MSG, FutureWarning, stacklevel=2) return features.features_from_bbox(north, south, east, west, tags=tags)
(north, south, east, west, tags)
52,223
osmnx.geometries
geometries_from_place
Do not use: deprecated. The `geometries` module and `geometries_from_X` functions have been renamed the `features` module and `features_from_X` functions. Use these instead. The `geometries` module and functions are deprecated and will be removed in the v2.0.0 release. Parameters ---------- query : string or dict or list Do not use: deprecated. tags : dict Do not use: deprecated. which_result : int Do not use: deprecated. buffer_dist : float Do not use: deprecated. Returns ------- gdf : geopandas.GeoDataFrame
def geometries_from_place(query, tags, which_result=None, buffer_dist=None): """ Do not use: deprecated. The `geometries` module and `geometries_from_X` functions have been renamed the `features` module and `features_from_X` functions. Use these instead. The `geometries` module and functions are deprecated and will be removed in the v2.0.0 release. Parameters ---------- query : string or dict or list Do not use: deprecated. tags : dict Do not use: deprecated. which_result : int Do not use: deprecated. buffer_dist : float Do not use: deprecated. Returns ------- gdf : geopandas.GeoDataFrame """ warn(DEP_MSG, FutureWarning, stacklevel=2) return features.features_from_place(query, tags, which_result, buffer_dist)
(query, tags, which_result=None, buffer_dist=None)
52,224
osmnx.geometries
geometries_from_point
Do not use: deprecated. The `geometries` module and `geometries_from_X` functions have been renamed the `features` module and `features_from_X` functions. Use these instead. The `geometries` module and functions are deprecated and will be removed in the v2.0.0 release. Parameters ---------- center_point : tuple Do not use: deprecated. tags : dict Do not use: deprecated. dist : numeric Do not use: deprecated. Returns ------- gdf : geopandas.GeoDataFrame
def geometries_from_point(center_point, tags, dist=1000): """ Do not use: deprecated. The `geometries` module and `geometries_from_X` functions have been renamed the `features` module and `features_from_X` functions. Use these instead. The `geometries` module and functions are deprecated and will be removed in the v2.0.0 release. Parameters ---------- center_point : tuple Do not use: deprecated. tags : dict Do not use: deprecated. dist : numeric Do not use: deprecated. Returns ------- gdf : geopandas.GeoDataFrame """ warn(DEP_MSG, FutureWarning, stacklevel=2) return features.features_from_point(center_point, tags, dist)
(center_point, tags, dist=1000)
52,225
osmnx.geometries
geometries_from_polygon
Do not use: deprecated. The `geometries` module and `geometries_from_X` functions have been renamed the `features` module and `features_from_X` functions. Use these instead. The `geometries` module and functions are deprecated and will be removed in the v2.0.0 release. Parameters ---------- polygon : shapely.geometry.Polygon or shapely.geometry.MultiPolygon Do not use: deprecated. tags : dict Do not use: deprecated. Returns ------- gdf : geopandas.GeoDataFrame
def geometries_from_polygon(polygon, tags): """ Do not use: deprecated. The `geometries` module and `geometries_from_X` functions have been renamed the `features` module and `features_from_X` functions. Use these instead. The `geometries` module and functions are deprecated and will be removed in the v2.0.0 release. Parameters ---------- polygon : shapely.geometry.Polygon or shapely.geometry.MultiPolygon Do not use: deprecated. tags : dict Do not use: deprecated. Returns ------- gdf : geopandas.GeoDataFrame """ warn(DEP_MSG, FutureWarning, stacklevel=2) return features.features_from_polygon(polygon, tags)
(polygon, tags)
52,226
osmnx.geometries
geometries_from_xml
Do not use: deprecated. The `geometries` module and `geometries_from_X` functions have been renamed the `features` module and `features_from_X` functions. Use these instead. The `geometries` module and functions are deprecated and will be removed in the v2.0.0 release. Parameters ---------- filepath : string or pathlib.Path Do not use: deprecated. polygon : shapely.geometry.Polygon Do not use: deprecated. tags : dict Do not use: deprecated. Returns ------- gdf : geopandas.GeoDataFrame
def geometries_from_xml(filepath, polygon=None, tags=None): """ Do not use: deprecated. The `geometries` module and `geometries_from_X` functions have been renamed the `features` module and `features_from_X` functions. Use these instead. The `geometries` module and functions are deprecated and will be removed in the v2.0.0 release. Parameters ---------- filepath : string or pathlib.Path Do not use: deprecated. polygon : shapely.geometry.Polygon Do not use: deprecated. tags : dict Do not use: deprecated. Returns ------- gdf : geopandas.GeoDataFrame """ warn(DEP_MSG, FutureWarning, stacklevel=2) return features.features_from_xml(filepath, polygon, tags)
(filepath, polygon=None, tags=None)
52,227
osmnx.utils_graph
get_digraph
Do not use: deprecated. Use the `convert.to_digraph` function instead. Parameters ---------- G : networkx.MultiDiGraph deprecated, do not use weight : string deprecated, do not use Returns ------- networkx.DiGraph
def get_digraph(G, weight="length"): """ Do not use: deprecated. Use the `convert.to_digraph` function instead. Parameters ---------- G : networkx.MultiDiGraph deprecated, do not use weight : string deprecated, do not use Returns ------- networkx.DiGraph """ msg = ( "The `get_digraph` function is deprecated and will be removed in the " "v2.0.0 release. Replace it with `convert.to_digraph` instead. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123" ) warn(msg, FutureWarning, stacklevel=2) return convert.to_digraph(G, weight)
(G, weight='length')
52,228
osmnx.utils_graph
get_undirected
Do not use: deprecated. Use the `convert.to_undirected` function instead. Parameters ---------- G : networkx.MultiDiGraph deprecated, do not use Returns ------- networkx.MultiGraph
def get_undirected(G): """ Do not use: deprecated. Use the `convert.to_undirected` function instead. Parameters ---------- G : networkx.MultiDiGraph deprecated, do not use Returns ------- networkx.MultiGraph """ msg = ( "The `get_undirected` function is deprecated and will be removed in the " "v2.0.0 release. Replace it with `convert.to_undirected` instead. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123" ) warn(msg, FutureWarning, stacklevel=2) return convert.to_undirected(G)
(G)
52,230
osmnx.graph
graph_from_address
Download and create a graph within some distance of an address. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. Parameters ---------- address : string the address to geocode and use as the central point around which to construct the graph dist : int retain only those nodes within this many meters of the center of the graph dist_type : string {"network", "bbox"} if "bbox", retain only those nodes within a bounding box of the distance parameter. if "network", retain only those nodes within some network distance from the center-most node. network_type : string {"all", "all_public", "bike", "drive", "drive_service", "walk"} what type of street network to get if custom_filter is None simplify : bool if True, simplify graph topology with the `simplify_graph` function retain_all : bool if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component. truncate_by_edge : bool if True, retain nodes outside bounding box if at least one of node's neighbors is within the bounding box return_coords : bool deprecated, do not use clean_periphery : bool deprecated, do not use custom_filter : string a custom ways filter to be used instead of the network_type presets e.g., '["power"~"line"]' or '["highway"~"motorway|trunk"]'. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional. Returns ------- networkx.MultiDiGraph or optionally (networkx.MultiDiGraph, (lat, lon)) Notes ----- Very large query areas use the `utils_geo._consolidate_subdivide_geometry` function to automatically make multiple requests: see that function's documentation for caveats.
def graph_from_address( address, dist=1000, dist_type="bbox", network_type="all", simplify=True, retain_all=False, truncate_by_edge=False, return_coords=None, clean_periphery=None, custom_filter=None, ): """ Download and create a graph within some distance of an address. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. Parameters ---------- address : string the address to geocode and use as the central point around which to construct the graph dist : int retain only those nodes within this many meters of the center of the graph dist_type : string {"network", "bbox"} if "bbox", retain only those nodes within a bounding box of the distance parameter. if "network", retain only those nodes within some network distance from the center-most node. network_type : string {"all", "all_public", "bike", "drive", "drive_service", "walk"} what type of street network to get if custom_filter is None simplify : bool if True, simplify graph topology with the `simplify_graph` function retain_all : bool if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component. truncate_by_edge : bool if True, retain nodes outside bounding box if at least one of node's neighbors is within the bounding box return_coords : bool deprecated, do not use clean_periphery : bool deprecated, do not use custom_filter : string a custom ways filter to be used instead of the network_type presets e.g., '["power"~"line"]' or '["highway"~"motorway|trunk"]'. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional. Returns ------- networkx.MultiDiGraph or optionally (networkx.MultiDiGraph, (lat, lon)) Notes ----- Very large query areas use the `utils_geo._consolidate_subdivide_geometry` function to automatically make multiple requests: see that function's documentation for caveats. """ if return_coords is None: return_coords = False else: warn( "The `return_coords` argument has been deprecated and will be removed in " "the v2.0.0 release. Future behavior will be as though `return_coords=False`. " "If you want the address's geocoded coordinates, use the `geocode` function. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) # geocode the address string to a (lat, lon) point point = geocoder.geocode(query=address) # then create a graph from this point G = graph_from_point( point, dist, dist_type, network_type=network_type, simplify=simplify, retain_all=retain_all, truncate_by_edge=truncate_by_edge, clean_periphery=clean_periphery, custom_filter=custom_filter, ) utils.log(f"graph_from_address returned graph with {len(G):,} nodes and {len(G.edges):,} edges") if return_coords: return G, point # otherwise return G
(address, dist=1000, dist_type='bbox', network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, return_coords=None, clean_periphery=None, custom_filter=None)
52,231
osmnx.graph
graph_from_bbox
Download and create a graph within some bounding box. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. Parameters ---------- north : float deprecated, do not use south : float deprecated, do not use east : float deprecated, do not use west : float deprecated, do not use bbox : tuple of floats bounding box as (north, south, east, west) network_type : string {"all", "all_public", "bike", "drive", "drive_service", "walk"} what type of street network to get if custom_filter is None simplify : bool if True, simplify graph topology with the `simplify_graph` function retain_all : bool if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component. truncate_by_edge : bool if True, retain nodes outside bounding box if at least one of node's neighbors is within the bounding box clean_periphery : bool deprecated, do not use custom_filter : string a custom ways filter to be used instead of the network_type presets e.g., '["power"~"line"]' or '["highway"~"motorway|trunk"]'. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional. Returns ------- G : networkx.MultiDiGraph Notes ----- Very large query areas use the `utils_geo._consolidate_subdivide_geometry` function to automatically make multiple requests: see that function's documentation for caveats.
def graph_from_bbox( north=None, south=None, east=None, west=None, bbox=None, network_type="all", simplify=True, retain_all=False, truncate_by_edge=False, clean_periphery=None, custom_filter=None, ): """ Download and create a graph within some bounding box. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. Parameters ---------- north : float deprecated, do not use south : float deprecated, do not use east : float deprecated, do not use west : float deprecated, do not use bbox : tuple of floats bounding box as (north, south, east, west) network_type : string {"all", "all_public", "bike", "drive", "drive_service", "walk"} what type of street network to get if custom_filter is None simplify : bool if True, simplify graph topology with the `simplify_graph` function retain_all : bool if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component. truncate_by_edge : bool if True, retain nodes outside bounding box if at least one of node's neighbors is within the bounding box clean_periphery : bool deprecated, do not use custom_filter : string a custom ways filter to be used instead of the network_type presets e.g., '["power"~"line"]' or '["highway"~"motorway|trunk"]'. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional. Returns ------- G : networkx.MultiDiGraph Notes ----- Very large query areas use the `utils_geo._consolidate_subdivide_geometry` function to automatically make multiple requests: see that function's documentation for caveats. """ if not (north is None and south is None and east is None and west is None): msg = ( "The `north`, `south`, `east`, and `west` parameters are deprecated and " "will be removed in the v2.0.0 release. Use the `bbox` parameter instead. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123" ) warn(msg, FutureWarning, stacklevel=2) bbox = (north, south, east, west) # convert bounding box to a polygon polygon = utils_geo.bbox_to_poly(bbox=bbox) # create graph using this polygon geometry G = graph_from_polygon( polygon, network_type=network_type, simplify=simplify, retain_all=retain_all, truncate_by_edge=truncate_by_edge, clean_periphery=clean_periphery, custom_filter=custom_filter, ) utils.log(f"graph_from_bbox returned graph with {len(G):,} nodes and {len(G.edges):,} edges") return G
(north=None, south=None, east=None, west=None, bbox=None, network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, clean_periphery=None, custom_filter=None)
52,232
osmnx.convert
graph_from_gdfs
Convert node and edge GeoDataFrames to a MultiDiGraph. This function is the inverse of `graph_to_gdfs` and is designed to work in conjunction with it. However, you can convert arbitrary node and edge GeoDataFrames as long as 1) `gdf_nodes` is uniquely indexed by `osmid`, 2) `gdf_nodes` contains `x` and `y` coordinate columns representing node geometries, 3) `gdf_edges` is uniquely multi-indexed by `u`, `v`, `key` (following normal MultiDiGraph structure). This allows you to load any node/edge shapefiles or GeoPackage layers as GeoDataFrames then convert them to a MultiDiGraph for graph analysis. Note that any `geometry` attribute on `gdf_nodes` is discarded since `x` and `y` provide the necessary node geometry information instead. Parameters ---------- gdf_nodes : geopandas.GeoDataFrame GeoDataFrame of graph nodes uniquely indexed by osmid gdf_edges : geopandas.GeoDataFrame GeoDataFrame of graph edges uniquely multi-indexed by u, v, key graph_attrs : dict the new G.graph attribute dict. if None, use crs from gdf_edges as the only graph-level attribute (gdf_edges must have crs attribute set) Returns ------- G : networkx.MultiDiGraph
def graph_from_gdfs(gdf_nodes, gdf_edges, graph_attrs=None): """ Convert node and edge GeoDataFrames to a MultiDiGraph. This function is the inverse of `graph_to_gdfs` and is designed to work in conjunction with it. However, you can convert arbitrary node and edge GeoDataFrames as long as 1) `gdf_nodes` is uniquely indexed by `osmid`, 2) `gdf_nodes` contains `x` and `y` coordinate columns representing node geometries, 3) `gdf_edges` is uniquely multi-indexed by `u`, `v`, `key` (following normal MultiDiGraph structure). This allows you to load any node/edge shapefiles or GeoPackage layers as GeoDataFrames then convert them to a MultiDiGraph for graph analysis. Note that any `geometry` attribute on `gdf_nodes` is discarded since `x` and `y` provide the necessary node geometry information instead. Parameters ---------- gdf_nodes : geopandas.GeoDataFrame GeoDataFrame of graph nodes uniquely indexed by osmid gdf_edges : geopandas.GeoDataFrame GeoDataFrame of graph edges uniquely multi-indexed by u, v, key graph_attrs : dict the new G.graph attribute dict. if None, use crs from gdf_edges as the only graph-level attribute (gdf_edges must have crs attribute set) Returns ------- G : networkx.MultiDiGraph """ if not ("x" in gdf_nodes.columns and "y" in gdf_nodes.columns): # pragma: no cover msg = "gdf_nodes must contain x and y columns" raise ValueError(msg) # if gdf_nodes has a geometry attribute set, drop that column (as we use x # and y for geometry information) and warn the user if the geometry values # differ from the coordinates in the x and y columns if hasattr(gdf_nodes, "geometry"): try: all_x_match = (gdf_nodes.geometry.x == gdf_nodes["x"]).all() all_y_match = (gdf_nodes.geometry.y == gdf_nodes["y"]).all() assert all_x_match assert all_y_match except (AssertionError, ValueError): # pragma: no cover # AssertionError if x/y coords don't match geometry column # ValueError if geometry column contains non-point geometry types warn( "discarding the gdf_nodes geometry column, though its " "values differ from the coordinates in the x and y columns", stacklevel=2, ) gdf_nodes = gdf_nodes.drop(columns=gdf_nodes.geometry.name) # create graph and add graph-level attribute dict if graph_attrs is None: graph_attrs = {"crs": gdf_edges.crs} G = nx.MultiDiGraph(**graph_attrs) # add edges and their attributes to graph, but filter out null attribute # values so that edges only get attributes with non-null values attr_names = gdf_edges.columns.to_list() for (u, v, k), attr_vals in zip(gdf_edges.index, gdf_edges.to_numpy()): data_all = zip(attr_names, attr_vals) data = {name: val for name, val in data_all if isinstance(val, list) or pd.notna(val)} G.add_edge(u, v, key=k, **data) # add any nodes with no incident edges, since they wouldn't be added above G.add_nodes_from(set(gdf_nodes.index) - set(G.nodes)) # now all nodes are added, so set nodes' attributes for col in gdf_nodes.columns: nx.set_node_attributes(G, name=col, values=gdf_nodes[col].dropna()) utils.log("Created graph from node/edge GeoDataFrames") return G
(gdf_nodes, gdf_edges, graph_attrs=None)
52,233
osmnx.graph
graph_from_place
Download and create a graph within the boundaries of some place(s). The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does not have a polygon for this place, you can instead get its street network using the graph_from_address function, which geocodes the place name to a point and gets the network within some distance of that point. If OSM does have polygon boundaries for this place but you're not finding it, try to vary the query string, pass in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to the graph_from_polygon function. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. Parameters ---------- query : string or dict or list the query or queries to geocode to get place boundary polygon(s) network_type : string {"all", "all_public", "bike", "drive", "drive_service", "walk"} what type of street network to get if custom_filter is None simplify : bool if True, simplify graph topology with the `simplify_graph` function retain_all : bool if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component. truncate_by_edge : bool if True, retain nodes outside boundary polygon if at least one of node's neighbors is within the polygon which_result : int which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. buffer_dist : float deprecated, do not use clean_periphery : bool deprecated, do not use custom_filter : string a custom ways filter to be used instead of the network_type presets e.g., '["power"~"line"]' or '["highway"~"motorway|trunk"]'. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional. Returns ------- G : networkx.MultiDiGraph Notes ----- Very large query areas use the `utils_geo._consolidate_subdivide_geometry` function to automatically make multiple requests: see that function's documentation for caveats.
def graph_from_place( query, network_type="all", simplify=True, retain_all=False, truncate_by_edge=False, which_result=None, buffer_dist=None, clean_periphery=None, custom_filter=None, ): """ Download and create a graph within the boundaries of some place(s). The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does not have a polygon for this place, you can instead get its street network using the graph_from_address function, which geocodes the place name to a point and gets the network within some distance of that point. If OSM does have polygon boundaries for this place but you're not finding it, try to vary the query string, pass in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to the graph_from_polygon function. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. Parameters ---------- query : string or dict or list the query or queries to geocode to get place boundary polygon(s) network_type : string {"all", "all_public", "bike", "drive", "drive_service", "walk"} what type of street network to get if custom_filter is None simplify : bool if True, simplify graph topology with the `simplify_graph` function retain_all : bool if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component. truncate_by_edge : bool if True, retain nodes outside boundary polygon if at least one of node's neighbors is within the polygon which_result : int which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. buffer_dist : float deprecated, do not use clean_periphery : bool deprecated, do not use custom_filter : string a custom ways filter to be used instead of the network_type presets e.g., '["power"~"line"]' or '["highway"~"motorway|trunk"]'. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional. Returns ------- G : networkx.MultiDiGraph Notes ----- Very large query areas use the `utils_geo._consolidate_subdivide_geometry` function to automatically make multiple requests: see that function's documentation for caveats. """ if buffer_dist is not None: warn( "The buffer_dist argument has been deprecated and will be removed " "in the v2.0.0 release. Buffer your query area directly, if desired. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) # create a GeoDataFrame with the spatial boundaries of the place(s) if isinstance(query, (str, dict)): # if it is a string (place name) or dict (structured place query), # then it is a single place gdf_place = geocoder.geocode_to_gdf( query, which_result=which_result, buffer_dist=buffer_dist ) elif isinstance(query, list): # if it is a list, it contains multiple places to get gdf_place = geocoder.geocode_to_gdf(query, buffer_dist=buffer_dist) else: # pragma: no cover msg = "query must be dict, string, or list of strings" raise TypeError(msg) # extract the geometry from the GeoDataFrame to use in API query polygon = gdf_place["geometry"].unary_union utils.log("Constructed place geometry polygon(s) to query API") # create graph using this polygon(s) geometry G = graph_from_polygon( polygon, network_type=network_type, simplify=simplify, retain_all=retain_all, truncate_by_edge=truncate_by_edge, clean_periphery=clean_periphery, custom_filter=custom_filter, ) utils.log(f"graph_from_place returned graph with {len(G):,} nodes and {len(G.edges):,} edges") return G
(query, network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, which_result=None, buffer_dist=None, clean_periphery=None, custom_filter=None)
52,234
osmnx.graph
graph_from_point
Download and create a graph within some distance of a (lat, lon) point. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. Parameters ---------- center_point : tuple the (lat, lon) center point around which to construct the graph dist : int retain only those nodes within this many meters of the center of the graph, with distance determined according to dist_type argument dist_type : string {"network", "bbox"} if "bbox", retain only those nodes within a bounding box of the distance parameter. if "network", retain only those nodes within some network distance from the center-most node. network_type : string, {"all", "all_public", "bike", "drive", "drive_service", "walk"} what type of street network to get if custom_filter is None simplify : bool if True, simplify graph topology with the `simplify_graph` function retain_all : bool if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component. truncate_by_edge : bool if True, retain nodes outside bounding box if at least one of node's neighbors is within the bounding box clean_periphery : bool, deprecated, do not use custom_filter : string a custom ways filter to be used instead of the network_type presets e.g., '["power"~"line"]' or '["highway"~"motorway|trunk"]'. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional. Returns ------- G : networkx.MultiDiGraph Notes ----- Very large query areas use the `utils_geo._consolidate_subdivide_geometry` function to automatically make multiple requests: see that function's documentation for caveats.
def graph_from_point( center_point, dist=1000, dist_type="bbox", network_type="all", simplify=True, retain_all=False, truncate_by_edge=False, clean_periphery=None, custom_filter=None, ): """ Download and create a graph within some distance of a (lat, lon) point. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. Parameters ---------- center_point : tuple the (lat, lon) center point around which to construct the graph dist : int retain only those nodes within this many meters of the center of the graph, with distance determined according to dist_type argument dist_type : string {"network", "bbox"} if "bbox", retain only those nodes within a bounding box of the distance parameter. if "network", retain only those nodes within some network distance from the center-most node. network_type : string, {"all", "all_public", "bike", "drive", "drive_service", "walk"} what type of street network to get if custom_filter is None simplify : bool if True, simplify graph topology with the `simplify_graph` function retain_all : bool if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component. truncate_by_edge : bool if True, retain nodes outside bounding box if at least one of node's neighbors is within the bounding box clean_periphery : bool, deprecated, do not use custom_filter : string a custom ways filter to be used instead of the network_type presets e.g., '["power"~"line"]' or '["highway"~"motorway|trunk"]'. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional. Returns ------- G : networkx.MultiDiGraph Notes ----- Very large query areas use the `utils_geo._consolidate_subdivide_geometry` function to automatically make multiple requests: see that function's documentation for caveats. """ if dist_type not in {"bbox", "network"}: # pragma: no cover msg = 'dist_type must be "bbox" or "network"' raise ValueError(msg) # create bounding box from center point and distance in each direction bbox = utils_geo.bbox_from_point(center_point, dist) # create a graph from the bounding box G = graph_from_bbox( bbox=bbox, network_type=network_type, simplify=simplify, retain_all=retain_all, truncate_by_edge=truncate_by_edge, clean_periphery=clean_periphery, custom_filter=custom_filter, ) if dist_type == "network": # if dist_type is network, find node in graph nearest to center point # then truncate graph by network dist from it node = distance.nearest_nodes(G, X=[center_point[1]], Y=[center_point[0]])[0] G = truncate.truncate_graph_dist(G, node, max_dist=dist) utils.log(f"graph_from_point returned graph with {len(G):,} nodes and {len(G.edges):,} edges") return G
(center_point, dist=1000, dist_type='bbox', network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, clean_periphery=None, custom_filter=None)
52,235
osmnx.graph
graph_from_polygon
Download and create a graph within the boundaries of a (multi)polygon. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. Parameters ---------- polygon : shapely.geometry.Polygon or shapely.geometry.MultiPolygon the shape to get network data within. coordinates should be in unprojected latitude-longitude degrees (EPSG:4326). network_type : string {"all", "all_public", "bike", "drive", "drive_service", "walk"} what type of street network to get if custom_filter is None simplify : bool if True, simplify graph topology with the `simplify_graph` function retain_all : bool if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component. truncate_by_edge : bool if True, retain nodes outside boundary polygon if at least one of node's neighbors is within the polygon clean_periphery : bool deprecated, do not use custom_filter : string a custom ways filter to be used instead of the network_type presets e.g., '["power"~"line"]' or '["highway"~"motorway|trunk"]'. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional. Returns ------- G : networkx.MultiDiGraph Notes ----- Very large query areas use the `utils_geo._consolidate_subdivide_geometry` function to automatically make multiple requests: see that function's documentation for caveats.
def graph_from_polygon( polygon, network_type="all", simplify=True, retain_all=False, truncate_by_edge=False, clean_periphery=None, custom_filter=None, ): """ Download and create a graph within the boundaries of a (multi)polygon. You can use the `settings` module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings. Parameters ---------- polygon : shapely.geometry.Polygon or shapely.geometry.MultiPolygon the shape to get network data within. coordinates should be in unprojected latitude-longitude degrees (EPSG:4326). network_type : string {"all", "all_public", "bike", "drive", "drive_service", "walk"} what type of street network to get if custom_filter is None simplify : bool if True, simplify graph topology with the `simplify_graph` function retain_all : bool if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component. truncate_by_edge : bool if True, retain nodes outside boundary polygon if at least one of node's neighbors is within the polygon clean_periphery : bool deprecated, do not use custom_filter : string a custom ways filter to be used instead of the network_type presets e.g., '["power"~"line"]' or '["highway"~"motorway|trunk"]'. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional. Returns ------- G : networkx.MultiDiGraph Notes ----- Very large query areas use the `utils_geo._consolidate_subdivide_geometry` function to automatically make multiple requests: see that function's documentation for caveats. """ if clean_periphery is None: clean_periphery = True else: warn( "The clean_periphery argument has been deprecated and will be removed in " "the v2.0.0 release. Future behavior will be as though clean_periphery=True. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) # verify that the geometry is valid and is a shapely Polygon/MultiPolygon # before proceeding if not polygon.is_valid: # pragma: no cover msg = "The geometry to query within is invalid" raise ValueError(msg) if not isinstance(polygon, (Polygon, MultiPolygon)): # pragma: no cover msg = ( "Geometry must be a shapely Polygon or MultiPolygon. If you " "requested graph from place name, make sure your query resolves " "to a Polygon or MultiPolygon, and not some other geometry, like " "a Point. See OSMnx documentation for details." ) raise TypeError(msg) if clean_periphery: # create a new buffered polygon 0.5km around the desired one buffer_dist = 500 poly_proj, crs_utm = projection.project_geometry(polygon) poly_proj_buff = poly_proj.buffer(buffer_dist) poly_buff, _ = projection.project_geometry(poly_proj_buff, crs=crs_utm, to_latlong=True) # download the network data from OSM within buffered polygon response_jsons = _overpass._download_overpass_network( poly_buff, network_type, custom_filter ) # create buffered graph from the downloaded data bidirectional = network_type in settings.bidirectional_network_types G_buff = _create_graph(response_jsons, retain_all=True, bidirectional=bidirectional) # truncate buffered graph to the buffered polygon and retain_all for # now. needed because overpass returns entire ways that also include # nodes outside the poly if the way (that is, a way with a single OSM # ID) has a node inside the poly at some point. G_buff = truncate.truncate_graph_polygon(G_buff, poly_buff, True, truncate_by_edge) # simplify the graph topology if simplify: G_buff = simplification.simplify_graph(G_buff) # truncate graph by original polygon to return graph within polygon # caller wants. don't simplify again: this allows us to retain # intersections along the street that may now only connect 2 street # segments in the network, but in reality also connect to an # intersection just outside the polygon G = truncate.truncate_graph_polygon(G_buff, polygon, retain_all, truncate_by_edge) # count how many physical streets in buffered graph connect to each # intersection in un-buffered graph, to retain true counts for each # intersection, even if some of its neighbors are outside the polygon spn = stats.count_streets_per_node(G_buff, nodes=G.nodes) nx.set_node_attributes(G, values=spn, name="street_count") # if clean_periphery=False, just use the polygon as provided else: # download the network data from OSM response_jsons = _overpass._download_overpass_network(polygon, network_type, custom_filter) # create graph from the downloaded data bidirectional = network_type in settings.bidirectional_network_types G = _create_graph(response_jsons, retain_all=True, bidirectional=bidirectional) # truncate the graph to the extent of the polygon G = truncate.truncate_graph_polygon(G, polygon, retain_all, truncate_by_edge) # simplify the graph topology after truncation. don't truncate after # simplifying or you may have simplified out to an endpoint beyond the # truncation distance, which would strip out the entire edge if simplify: G = simplification.simplify_graph(G) # count how many physical streets connect to each intersection/deadend # note this will be somewhat inaccurate due to periphery effects, so # it's best to parameterize function with clean_periphery=True spn = stats.count_streets_per_node(G) nx.set_node_attributes(G, values=spn, name="street_count") warn( "the graph-level street_count attribute will likely be inaccurate " "when you set clean_periphery=False", stacklevel=2, ) utils.log(f"graph_from_polygon returned graph with {len(G):,} nodes and {len(G.edges):,} edges") return G
(polygon, network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, clean_periphery=None, custom_filter=None)
52,236
osmnx.graph
graph_from_xml
Create a graph from data in a .osm formatted XML file. Do not load an XML file generated by OSMnx: this use case is not supported and may not behave as expected. To save/load graphs to/from disk for later use in OSMnx, use the `io.save_graphml` and `io.load_graphml` functions instead. Parameters ---------- filepath : string or pathlib.Path path to file containing OSM XML data bidirectional : bool if True, create bi-directional edges for one-way streets simplify : bool if True, simplify graph topology with the `simplify_graph` function retain_all : bool if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component. encoding : string the XML file's character encoding Returns ------- G : networkx.MultiDiGraph
def graph_from_xml( filepath, bidirectional=False, simplify=True, retain_all=False, encoding="utf-8" ): """ Create a graph from data in a .osm formatted XML file. Do not load an XML file generated by OSMnx: this use case is not supported and may not behave as expected. To save/load graphs to/from disk for later use in OSMnx, use the `io.save_graphml` and `io.load_graphml` functions instead. Parameters ---------- filepath : string or pathlib.Path path to file containing OSM XML data bidirectional : bool if True, create bi-directional edges for one-way streets simplify : bool if True, simplify graph topology with the `simplify_graph` function retain_all : bool if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component. encoding : string the XML file's character encoding Returns ------- G : networkx.MultiDiGraph """ # transmogrify file of OSM XML data into JSON response_jsons = [osm_xml._overpass_json_from_file(filepath, encoding)] # create graph using this response JSON G = _create_graph(response_jsons, bidirectional=bidirectional, retain_all=retain_all) # simplify the graph topology as the last step if simplify: G = simplification.simplify_graph(G) utils.log(f"graph_from_xml returned graph with {len(G):,} nodes and {len(G.edges):,} edges") return G
(filepath, bidirectional=False, simplify=True, retain_all=False, encoding='utf-8')
52,237
osmnx.convert
graph_to_gdfs
Convert a MultiDiGraph to node and/or edge GeoDataFrames. This function is the inverse of `graph_from_gdfs`. Parameters ---------- G : networkx.MultiDiGraph input graph nodes : bool if True, convert graph nodes to a GeoDataFrame and return it edges : bool if True, convert graph edges to a GeoDataFrame and return it node_geometry : bool if True, create a geometry column from node x and y attributes fill_edge_geometry : bool if True, fill in missing edge geometry fields using nodes u and v Returns ------- geopandas.GeoDataFrame or tuple gdf_nodes or gdf_edges or tuple of (gdf_nodes, gdf_edges). gdf_nodes is indexed by osmid and gdf_edges is multi-indexed by u, v, key following normal MultiDiGraph structure.
def graph_to_gdfs(G, nodes=True, edges=True, node_geometry=True, fill_edge_geometry=True): """ Convert a MultiDiGraph to node and/or edge GeoDataFrames. This function is the inverse of `graph_from_gdfs`. Parameters ---------- G : networkx.MultiDiGraph input graph nodes : bool if True, convert graph nodes to a GeoDataFrame and return it edges : bool if True, convert graph edges to a GeoDataFrame and return it node_geometry : bool if True, create a geometry column from node x and y attributes fill_edge_geometry : bool if True, fill in missing edge geometry fields using nodes u and v Returns ------- geopandas.GeoDataFrame or tuple gdf_nodes or gdf_edges or tuple of (gdf_nodes, gdf_edges). gdf_nodes is indexed by osmid and gdf_edges is multi-indexed by u, v, key following normal MultiDiGraph structure. """ crs = G.graph["crs"] if nodes: if not G.nodes: # pragma: no cover msg = "graph contains no nodes" raise ValueError(msg) uvk, data = zip(*G.nodes(data=True)) if node_geometry: # convert node x/y attributes to Points for geometry column node_geoms = (Point(d["x"], d["y"]) for d in data) gdf_nodes = gpd.GeoDataFrame(data, index=uvk, crs=crs, geometry=list(node_geoms)) else: gdf_nodes = gpd.GeoDataFrame(data, index=uvk) gdf_nodes.index = gdf_nodes.index.rename("osmid") utils.log("Created nodes GeoDataFrame from graph") if edges: if not G.edges: # pragma: no cover msg = "Graph contains no edges" raise ValueError(msg) u, v, k, data = zip(*G.edges(keys=True, data=True)) if fill_edge_geometry: # subroutine to get geometry for every edge: if edge already has # geometry return it, otherwise create it using the incident nodes x_lookup = nx.get_node_attributes(G, "x") y_lookup = nx.get_node_attributes(G, "y") def _make_edge_geometry(u, v, data, x=x_lookup, y=y_lookup): if "geometry" in data: return data["geometry"] # otherwise return LineString((Point((x[u], y[u])), Point((x[v], y[v])))) edge_geoms = map(_make_edge_geometry, u, v, data) gdf_edges = gpd.GeoDataFrame(data, crs=crs, geometry=list(edge_geoms)) else: gdf_edges = gpd.GeoDataFrame(data) if "geometry" not in gdf_edges.columns: # if no edges have a geometry attribute, create null column gdf_edges = gdf_edges.set_geometry([None] * len(gdf_edges)) gdf_edges = gdf_edges.set_crs(crs) # add u, v, key attributes as index gdf_edges["u"] = u gdf_edges["v"] = v gdf_edges["key"] = k gdf_edges = gdf_edges.set_index(["u", "v", "key"]) utils.log("Created edges GeoDataFrame from graph") if nodes and edges: return gdf_nodes, gdf_edges if nodes: return gdf_nodes if edges: return gdf_edges # otherwise msg = "you must request nodes or edges or both" raise ValueError(msg)
(G, nodes=True, edges=True, node_geometry=True, fill_edge_geometry=True)
52,239
osmnx.routing
k_shortest_paths
Solve `k` shortest paths from an origin node to a destination node. Uses Yen's algorithm. See also `shortest_path` to solve just the one shortest path. Parameters ---------- G : networkx.MultiDiGraph input graph orig : int origin node ID dest : int destination node ID k : int number of shortest paths to solve weight : string edge attribute to minimize when solving shortest paths. default is edge length in meters. Yields ------ path : list a generator of `k` shortest paths ordered by total weight. each path is a list of node IDs.
def k_shortest_paths(G, orig, dest, k, weight="length"): """ Solve `k` shortest paths from an origin node to a destination node. Uses Yen's algorithm. See also `shortest_path` to solve just the one shortest path. Parameters ---------- G : networkx.MultiDiGraph input graph orig : int origin node ID dest : int destination node ID k : int number of shortest paths to solve weight : string edge attribute to minimize when solving shortest paths. default is edge length in meters. Yields ------ path : list a generator of `k` shortest paths ordered by total weight. each path is a list of node IDs. """ _verify_edge_attribute(G, weight) paths_gen = nx.shortest_simple_paths(convert.to_digraph(G, weight), orig, dest, weight) yield from itertools.islice(paths_gen, 0, k)
(G, orig, dest, k, weight='length')
52,240
osmnx.io
load_graphml
Load an OSMnx-saved GraphML file from disk or GraphML string. This function converts node, edge, and graph-level attributes (serialized as strings) to their appropriate data types. These can be customized as needed by passing in dtypes arguments providing types or custom converter functions. For example, if you want to convert some attribute's values to `bool`, consider using the built-in `ox.io._convert_bool_string` function to properly handle "True"/"False" string literals as True/False booleans: `ox.load_graphml(fp, node_dtypes={my_attr: ox.io._convert_bool_string})`. If you manually configured the `all_oneway=True` setting, you may need to manually specify here that edge `oneway` attributes should be type `str`. Note that you must pass one and only one of `filepath` or `graphml_str`. If passing `graphml_str`, you may need to decode the bytes read from your file before converting to string to pass to this function. Parameters ---------- filepath : string or pathlib.Path path to the GraphML file graphml_str : string a valid and decoded string representation of a GraphML file's contents node_dtypes : dict dict of node attribute names:types to convert values' data types. the type can be a python type or a custom string converter function. edge_dtypes : dict dict of edge attribute names:types to convert values' data types. the type can be a python type or a custom string converter function. graph_dtypes : dict dict of graph-level attribute names:types to convert values' data types. the type can be a python type or a custom string converter function. Returns ------- G : networkx.MultiDiGraph
def load_graphml( filepath=None, graphml_str=None, node_dtypes=None, edge_dtypes=None, graph_dtypes=None ): """ Load an OSMnx-saved GraphML file from disk or GraphML string. This function converts node, edge, and graph-level attributes (serialized as strings) to their appropriate data types. These can be customized as needed by passing in dtypes arguments providing types or custom converter functions. For example, if you want to convert some attribute's values to `bool`, consider using the built-in `ox.io._convert_bool_string` function to properly handle "True"/"False" string literals as True/False booleans: `ox.load_graphml(fp, node_dtypes={my_attr: ox.io._convert_bool_string})`. If you manually configured the `all_oneway=True` setting, you may need to manually specify here that edge `oneway` attributes should be type `str`. Note that you must pass one and only one of `filepath` or `graphml_str`. If passing `graphml_str`, you may need to decode the bytes read from your file before converting to string to pass to this function. Parameters ---------- filepath : string or pathlib.Path path to the GraphML file graphml_str : string a valid and decoded string representation of a GraphML file's contents node_dtypes : dict dict of node attribute names:types to convert values' data types. the type can be a python type or a custom string converter function. edge_dtypes : dict dict of edge attribute names:types to convert values' data types. the type can be a python type or a custom string converter function. graph_dtypes : dict dict of graph-level attribute names:types to convert values' data types. the type can be a python type or a custom string converter function. Returns ------- G : networkx.MultiDiGraph """ if (filepath is None and graphml_str is None) or ( filepath is not None and graphml_str is not None ): # pragma: no cover msg = "You must pass one and only one of `filepath` or `graphml_str`." raise ValueError(msg) # specify default graph/node/edge attribute values' data types default_graph_dtypes = {"simplified": _convert_bool_string} default_node_dtypes = { "elevation": float, "elevation_res": float, "lat": float, "lon": float, "osmid": int, "street_count": int, "x": float, "y": float, } default_edge_dtypes = { "bearing": float, "grade": float, "grade_abs": float, "length": float, "oneway": _convert_bool_string, "osmid": int, "reversed": _convert_bool_string, "speed_kph": float, "travel_time": float, } # override default graph/node/edge attr types with user-passed types, if any if graph_dtypes is not None: default_graph_dtypes.update(graph_dtypes) if node_dtypes is not None: default_node_dtypes.update(node_dtypes) if edge_dtypes is not None: default_edge_dtypes.update(edge_dtypes) if filepath is not None: # read the graphml file from disk source = filepath G = nx.read_graphml( Path(filepath), node_type=default_node_dtypes["osmid"], force_multigraph=True ) else: # parse the graphml string source = "string" G = nx.parse_graphml( graphml_str, node_type=default_node_dtypes["osmid"], force_multigraph=True ) # convert graph/node/edge attribute data types utils.log("Converting node, edge, and graph-level attribute data types") G = _convert_graph_attr_types(G, default_graph_dtypes) G = _convert_node_attr_types(G, default_node_dtypes) G = _convert_edge_attr_types(G, default_edge_dtypes) utils.log(f"Loaded graph with {len(G)} nodes and {len(G.edges)} edges from {source!r}") return G
(filepath=None, graphml_str=None, node_dtypes=None, edge_dtypes=None, graph_dtypes=None)
52,241
osmnx.utils
log
Write a message to the logger. This logs to file and/or prints to the console (terminal), depending on the current configuration of settings.log_file and settings.log_console. Parameters ---------- message : string the message to log level : int one of Python's logger.level constants name : string name of the logger filename : string name of the log file, without file extension Returns ------- None
def log(message, level=None, name=None, filename=None): """ Write a message to the logger. This logs to file and/or prints to the console (terminal), depending on the current configuration of settings.log_file and settings.log_console. Parameters ---------- message : string the message to log level : int one of Python's logger.level constants name : string name of the logger filename : string name of the log file, without file extension Returns ------- None """ if level is None: level = settings.log_level if name is None: name = settings.log_name if filename is None: filename = settings.log_filename # if logging to file is turned on if settings.log_file: # get the current logger (or create a new one, if none), then log # message at requested level logger = _get_logger(level=level, name=name, filename=filename) if level == lg.DEBUG: logger.debug(message) elif level == lg.INFO: logger.info(message) elif level == lg.WARNING: logger.warning(message) elif level == lg.ERROR: logger.error(message) # if logging to console (terminal window) is turned on if settings.log_console: # prepend timestamp then convert to ASCII for Windows command prompts message = f"{ts()} {message}" message = ud.normalize("NFKD", message).encode("ascii", errors="replace").decode() try: # print explicitly to terminal in case Jupyter has captured stdout if getattr(sys.stdout, "_original_stdstream_copy", None) is not None: # redirect the Jupyter-captured pipe back to original os.dup2(sys.stdout._original_stdstream_copy, sys.__stdout__.fileno()) sys.stdout._original_stdstream_copy = None with redirect_stdout(sys.__stdout__): print(message, file=sys.__stdout__, flush=True) except OSError: # handle pytest on Windows raising OSError from sys.__stdout__ print(message, flush=True) # noqa: T201
(message, level=None, name=None, filename=None)
52,242
osmnx.distance
nearest_edges
Find the nearest edge to a point or to each of several points. If `X` and `Y` are single coordinate values, this will return the nearest edge to that point. If `X` and `Y` are lists of coordinate values, this will return the nearest edge to each point. This function uses an R-tree spatial index and minimizes the euclidean distance from each point to the possible matches. For accurate results, use a projected graph and points. Parameters ---------- G : networkx.MultiDiGraph graph in which to find nearest edges X : float or list points' x (longitude) coordinates, in same CRS/units as graph and containing no nulls Y : float or list points' y (latitude) coordinates, in same CRS/units as graph and containing no nulls interpolate : float deprecated, do not use return_dist : bool optionally also return distance between points and nearest edges Returns ------- ne or (ne, dist) : tuple or list nearest edges as (u, v, key) or optionally a tuple where `dist` contains distances between the points and their nearest edges
def nearest_edges(G, X, Y, interpolate=None, return_dist=False): """ Find the nearest edge to a point or to each of several points. If `X` and `Y` are single coordinate values, this will return the nearest edge to that point. If `X` and `Y` are lists of coordinate values, this will return the nearest edge to each point. This function uses an R-tree spatial index and minimizes the euclidean distance from each point to the possible matches. For accurate results, use a projected graph and points. Parameters ---------- G : networkx.MultiDiGraph graph in which to find nearest edges X : float or list points' x (longitude) coordinates, in same CRS/units as graph and containing no nulls Y : float or list points' y (latitude) coordinates, in same CRS/units as graph and containing no nulls interpolate : float deprecated, do not use return_dist : bool optionally also return distance between points and nearest edges Returns ------- ne or (ne, dist) : tuple or list nearest edges as (u, v, key) or optionally a tuple where `dist` contains distances between the points and their nearest edges """ is_scalar = False if not (hasattr(X, "__iter__") and hasattr(Y, "__iter__")): # make coordinates arrays if user passed non-iterable values is_scalar = True X = np.array([X]) Y = np.array([Y]) if np.isnan(X).any() or np.isnan(Y).any(): # pragma: no cover msg = "`X` and `Y` cannot contain nulls" raise ValueError(msg) geoms = convert.graph_to_gdfs(G, nodes=False)["geometry"] # if no interpolation distance was provided if interpolate is None: # build an r-tree spatial index by position for subsequent iloc rtree = STRtree(geoms) # use the r-tree to find each point's nearest neighbor and distance points = [Point(xy) for xy in zip(X, Y)] pos, dist = rtree.query_nearest(points, all_matches=False, return_distance=True) # if user passed X/Y lists, the 2nd subarray contains geom indices if len(pos.shape) > 1: pos = pos[1] ne = geoms.iloc[pos].index # otherwise, if interpolation distance was provided else: warn( "The `interpolate` parameter has been deprecated and will be " "removed in the v2.0.0 release. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) # interpolate points along edges to index with k-d tree or ball tree uvk_xy = [] for uvk, geom in zip(geoms.index, geoms.to_numpy()): uvk_xy.extend((uvk, xy) for xy in utils_geo.interpolate_points(geom, interpolate)) labels, xy = zip(*uvk_xy) vertices = pd.DataFrame(xy, index=labels, columns=["x", "y"]) if projection.is_projected(G.graph["crs"]): # if projected, use k-d tree for euclidean nearest-neighbor search if cKDTree is None: # pragma: no cover msg = "scipy must be installed to search a projected graph" raise ImportError(msg) dist, pos = cKDTree(vertices).query(np.array([X, Y]).T, k=1) ne = vertices.index[pos] else: # if unprojected, use ball tree for haversine nearest-neighbor search if BallTree is None: # pragma: no cover msg = "scikit-learn must be installed to search an unprojected graph" raise ImportError(msg) # haversine requires lat, lon coords in radians vertices_rad = np.deg2rad(vertices[["y", "x"]]) points_rad = np.deg2rad(np.array([Y, X]).T) dist, pos = BallTree(vertices_rad, metric="haversine").query(points_rad, k=1) dist = dist[:, 0] * EARTH_RADIUS_M # convert radians -> meters ne = vertices.index[pos[:, 0]] # convert results to correct types for return ne = list(ne) dist = list(dist) if is_scalar: ne = ne[0] dist = dist[0] if return_dist: return ne, dist # otherwise return ne
(G, X, Y, interpolate=None, return_dist=False)
52,243
osmnx.distance
nearest_nodes
Find the nearest node to a point or to each of several points. If `X` and `Y` are single coordinate values, this will return the nearest node to that point. If `X` and `Y` are lists of coordinate values, this will return the nearest node to each point. If the graph is projected, this uses a k-d tree for euclidean nearest neighbor search, which requires that scipy is installed as an optional dependency. If it is unprojected, this uses a ball tree for haversine nearest neighbor search, which requires that scikit-learn is installed as an optional dependency. Parameters ---------- G : networkx.MultiDiGraph graph in which to find nearest nodes X : float or list points' x (longitude) coordinates, in same CRS/units as graph and containing no nulls Y : float or list points' y (latitude) coordinates, in same CRS/units as graph and containing no nulls return_dist : bool optionally also return distance between points and nearest nodes Returns ------- nn or (nn, dist) : int/list or tuple nearest node IDs or optionally a tuple where `dist` contains distances between the points and their nearest nodes
def nearest_nodes(G, X, Y, return_dist=False): """ Find the nearest node to a point or to each of several points. If `X` and `Y` are single coordinate values, this will return the nearest node to that point. If `X` and `Y` are lists of coordinate values, this will return the nearest node to each point. If the graph is projected, this uses a k-d tree for euclidean nearest neighbor search, which requires that scipy is installed as an optional dependency. If it is unprojected, this uses a ball tree for haversine nearest neighbor search, which requires that scikit-learn is installed as an optional dependency. Parameters ---------- G : networkx.MultiDiGraph graph in which to find nearest nodes X : float or list points' x (longitude) coordinates, in same CRS/units as graph and containing no nulls Y : float or list points' y (latitude) coordinates, in same CRS/units as graph and containing no nulls return_dist : bool optionally also return distance between points and nearest nodes Returns ------- nn or (nn, dist) : int/list or tuple nearest node IDs or optionally a tuple where `dist` contains distances between the points and their nearest nodes """ is_scalar = False if not (hasattr(X, "__iter__") and hasattr(Y, "__iter__")): # make coordinates arrays if user passed non-iterable values is_scalar = True X = np.array([X]) Y = np.array([Y]) if np.isnan(X).any() or np.isnan(Y).any(): # pragma: no cover msg = "`X` and `Y` cannot contain nulls" raise ValueError(msg) nodes = convert.graph_to_gdfs(G, edges=False, node_geometry=False)[["x", "y"]] if projection.is_projected(G.graph["crs"]): # if projected, use k-d tree for euclidean nearest-neighbor search if cKDTree is None: # pragma: no cover msg = "scipy must be installed to search a projected graph" raise ImportError(msg) dist, pos = cKDTree(nodes).query(np.array([X, Y]).T, k=1) nn = nodes.index[pos] else: # if unprojected, use ball tree for haversine nearest-neighbor search if BallTree is None: # pragma: no cover msg = "scikit-learn must be installed to search an unprojected graph" raise ImportError(msg) # haversine requires lat, lon coords in radians nodes_rad = np.deg2rad(nodes[["y", "x"]]) points_rad = np.deg2rad(np.array([Y, X]).T) dist, pos = BallTree(nodes_rad, metric="haversine").query(points_rad, k=1) dist = dist[:, 0] * EARTH_RADIUS_M # convert radians -> meters nn = nodes.index[pos[:, 0]] # convert results to correct types for return nn = nn.tolist() dist = dist.tolist() if is_scalar: nn = nn[0] dist = dist[0] if return_dist: return nn, dist # otherwise return nn
(G, X, Y, return_dist=False)
52,244
osmnx.bearing
orientation_entropy
Calculate undirected graph's orientation entropy. Orientation entropy is the entropy of its edges' bidirectional bearings across evenly spaced bins. Ignores self-loop edges as their bearings are undefined. For more info see: Boeing, G. 2019. "Urban Spatial Order: Street Network Orientation, Configuration, and Entropy." Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1 Parameters ---------- Gu : networkx.MultiGraph undirected, unprojected graph with `bearing` attributes on each edge num_bins : int number of bins; for example, if `num_bins=36` is provided, then each bin will represent 10 degrees around the compass min_length : float ignore edges with `length` attributes less than `min_length`; useful to ignore the noise of many very short edges weight : string if not None, weight edges' bearings by this (non-null) edge attribute. for example, if "length" is provided, this will return 1 bearing observation per meter per street, which could result in a very large `bearings` array. Returns ------- entropy : float the graph's orientation entropy
def orientation_entropy(Gu, num_bins=36, min_length=0, weight=None): """ Calculate undirected graph's orientation entropy. Orientation entropy is the entropy of its edges' bidirectional bearings across evenly spaced bins. Ignores self-loop edges as their bearings are undefined. For more info see: Boeing, G. 2019. "Urban Spatial Order: Street Network Orientation, Configuration, and Entropy." Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1 Parameters ---------- Gu : networkx.MultiGraph undirected, unprojected graph with `bearing` attributes on each edge num_bins : int number of bins; for example, if `num_bins=36` is provided, then each bin will represent 10 degrees around the compass min_length : float ignore edges with `length` attributes less than `min_length`; useful to ignore the noise of many very short edges weight : string if not None, weight edges' bearings by this (non-null) edge attribute. for example, if "length" is provided, this will return 1 bearing observation per meter per street, which could result in a very large `bearings` array. Returns ------- entropy : float the graph's orientation entropy """ # check if we were able to import scipy if scipy is None: # pragma: no cover msg = "scipy must be installed to calculate entropy" raise ImportError(msg) bin_counts, _ = _bearings_distribution(Gu, num_bins, min_length, weight) return scipy.stats.entropy(bin_counts)
(Gu, num_bins=36, min_length=0, weight=None)
52,247
osmnx.plot
plot_figure_ground
Plot a figure-ground diagram of a street network. Parameters ---------- G : networkx.MultiDiGraph input graph, must be unprojected address : string deprecated, do not use point : tuple deprecated, do not use dist : numeric how many meters to extend north, south, east, west from center point network_type : string deprecated, do not use street_widths : dict dict keys are street types and values are widths to plot in pixels default_width : numeric fallback width in pixels for any street type not in street_widths color : string color of the streets edge_color : string deprecated, do not use smooth_joints : bool deprecated, do not use pg_kwargs keyword arguments to pass to plot_graph Returns ------- fig, ax : tuple matplotlib figure, axis
def plot_figure_ground( G=None, address=None, point=None, dist=805, network_type="drive_service", street_widths=None, default_width=4, color="w", edge_color=None, smooth_joints=None, **pg_kwargs, ): """ Plot a figure-ground diagram of a street network. Parameters ---------- G : networkx.MultiDiGraph input graph, must be unprojected address : string deprecated, do not use point : tuple deprecated, do not use dist : numeric how many meters to extend north, south, east, west from center point network_type : string deprecated, do not use street_widths : dict dict keys are street types and values are widths to plot in pixels default_width : numeric fallback width in pixels for any street type not in street_widths color : string color of the streets edge_color : string deprecated, do not use smooth_joints : bool deprecated, do not use pg_kwargs keyword arguments to pass to plot_graph Returns ------- fig, ax : tuple matplotlib figure, axis """ _verify_mpl() if edge_color is None: edge_color = color else: msg = ( "The `edge_color` parameter is deprecated and will be removed in the " "v2.0.0 release. Use `color` instead. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123" ) warn(msg, FutureWarning, stacklevel=2) if smooth_joints is None: smooth_joints = True else: msg = ( "The `smooth_joints` parameter is deprecated and will be removed in the " "v2.0.0 release. In the future this function will behave as though True. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123" ) warn(msg, FutureWarning, stacklevel=2) # if user did not pass in custom street widths, create a dict of defaults if street_widths is None: street_widths = { "footway": 1.5, "steps": 1.5, "pedestrian": 1.5, "service": 1.5, "path": 1.5, "track": 1.5, "motorway": 6, } multiplier = 1.2 dep_msg = ( "The `address`, `point`, and `network_type` parameters are deprecated " "and will be removed in the v2.0.0 release. Pass `G` instead. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123" ) # if G was passed in, plot it centered on its node centroid if G is not None: gdf_nodes = convert.graph_to_gdfs(G, edges=False, node_geometry=True) lonlat_point = gdf_nodes.unary_union.centroid.coords[0] point = tuple(reversed(lonlat_point)) # otherwise get network by address or point (whichever was passed) using a # dist multiplier to ensure we get more than enough network. simplify in # non-strict mode to not combine multiple street types into single edge elif address is not None: warn(dep_msg, FutureWarning, stacklevel=2) G, point = graph.graph_from_address( address, dist=dist * multiplier, dist_type="bbox", network_type=network_type, simplify=False, truncate_by_edge=True, return_coords=True, ) G = simplification.simplify_graph(G, edge_attrs_differ=["osmid"]) elif point is not None: warn(dep_msg, FutureWarning, stacklevel=2) G = graph.graph_from_point( point, dist=dist * multiplier, dist_type="bbox", network_type=network_type, simplify=False, truncate_by_edge=True, ) G = simplification.simplify_graph(G, edge_attrs_differ=["osmid"]) else: # pragma: no cover msg = "You must pass an address or lat-lon point or graph." raise ValueError(msg) # we need an undirected graph to find every edge incident on a node Gu = convert.to_undirected(G) # for each edge, get a linewidth according to street type edge_linewidths = [] for _, _, d in Gu.edges(keys=False, data=True): street_type = d["highway"][0] if isinstance(d["highway"], list) else d["highway"] if street_type in street_widths: edge_linewidths.append(street_widths[street_type]) else: edge_linewidths.append(default_width) if smooth_joints: # for each node, get a nodesize according to the narrowest incident edge node_widths = {} for node in Gu.nodes: # first, identify all the highway types of this node's incident edges ie_data = [Gu.get_edge_data(node, nbr) for nbr in Gu.neighbors(node)] edge_types = [d[min(d)]["highway"] for d in ie_data] if not edge_types: # if node has no incident edges, make size zero node_widths[node] = 0 else: # flatten the list of edge types et_flat = [] for et in edge_types: if isinstance(et, list): et_flat.extend(et) else: et_flat.append(et) # lookup corresponding width for each edge type in flat list edge_widths = [street_widths.get(et, default_width) for et in et_flat] # node diameter should equal largest edge width to make joints # perfectly smooth. alternatively use min(?) to prevent # anything larger from extending past smallest street's line. # circle marker sizes are in area, so use diameter squared. circle_diameter = max(edge_widths) circle_area = circle_diameter**2 node_widths[node] = circle_area # assign the node size to each node in the graph node_sizes = [node_widths[node] for node in Gu.nodes] else: node_sizes = 0 # define the view extents of the plotting figure bbox = utils_geo.bbox_from_point(point, dist, project_utm=False) # plot the figure overrides = {"bbox", "node_size", "node_color", "edge_linewidth"} kwargs = {k: v for k, v in pg_kwargs.items() if k not in overrides} fig, ax = plot_graph( G=Gu, bbox=bbox, node_size=node_sizes, node_color=edge_color, edge_color=edge_color, edge_linewidth=edge_linewidths, **kwargs, ) return fig, ax
(G=None, address=None, point=None, dist=805, network_type='drive_service', street_widths=None, default_width=4, color='w', edge_color=None, smooth_joints=None, **pg_kwargs)
52,248
osmnx.plot
plot_footprints
Visualize a GeoDataFrame of geospatial features' footprints. Parameters ---------- gdf : geopandas.GeoDataFrame GeoDataFrame of footprints (shapely Polygons and MultiPolygons) ax : axis if not None, plot on this preexisting axis figsize : tuple if ax is None, create new figure with size (width, height) color : string color of the footprints edge_color : string color of the edge of the footprints edge_linewidth : float width of the edge of the footprints alpha : float opacity of the footprints bgcolor : string background color of the plot bbox : tuple bounding box as (north, south, east, west). if None, will calculate from the spatial extents of the geometries in gdf save : bool if True, save the figure to disk at filepath show : bool if True, call pyplot.show() to show the figure close : bool if True, call pyplot.close() to close the figure filepath : string if save is True, the path to the file. file format determined from extension. if None, use settings.imgs_folder/image.png dpi : int if save is True, the resolution of saved file Returns ------- fig, ax : tuple matplotlib figure, axis
def plot_footprints( gdf, ax=None, figsize=(8, 8), color="orange", edge_color="none", edge_linewidth=0, alpha=None, bgcolor="#111111", bbox=None, save=False, show=True, close=False, filepath=None, dpi=600, ): """ Visualize a GeoDataFrame of geospatial features' footprints. Parameters ---------- gdf : geopandas.GeoDataFrame GeoDataFrame of footprints (shapely Polygons and MultiPolygons) ax : axis if not None, plot on this preexisting axis figsize : tuple if ax is None, create new figure with size (width, height) color : string color of the footprints edge_color : string color of the edge of the footprints edge_linewidth : float width of the edge of the footprints alpha : float opacity of the footprints bgcolor : string background color of the plot bbox : tuple bounding box as (north, south, east, west). if None, will calculate from the spatial extents of the geometries in gdf save : bool if True, save the figure to disk at filepath show : bool if True, call pyplot.show() to show the figure close : bool if True, call pyplot.close() to close the figure filepath : string if save is True, the path to the file. file format determined from extension. if None, use settings.imgs_folder/image.png dpi : int if save is True, the resolution of saved file Returns ------- fig, ax : tuple matplotlib figure, axis """ _verify_mpl() if ax is None: fig, ax = plt.subplots(figsize=figsize, facecolor=bgcolor, frameon=False) ax.set_facecolor(bgcolor) else: fig = ax.figure # retain only Polygons and MultiPolygons, then plot gdf = gdf[gdf["geometry"].type.isin({"Polygon", "MultiPolygon"})] ax = gdf.plot( ax=ax, facecolor=color, edgecolor=edge_color, linewidth=edge_linewidth, alpha=alpha ) # determine figure extents if bbox is None: west, south, east, north = gdf.total_bounds else: north, south, east, west = bbox # configure axis appearance, save/show figure as specified, and return ax = _config_ax(ax, gdf.crs, (north, south, east, west), 0) fig, ax = _save_and_show(fig, ax, save, show, close, filepath, dpi) return fig, ax
(gdf, ax=None, figsize=(8, 8), color='orange', edge_color='none', edge_linewidth=0, alpha=None, bgcolor='#111111', bbox=None, save=False, show=True, close=False, filepath=None, dpi=600)
52,249
osmnx.plot
plot_graph
Visualize a graph. Parameters ---------- G : networkx.MultiDiGraph input graph ax : matplotlib axis if not None, plot on this preexisting axis figsize : tuple if ax is None, create new figure with size (width, height) bgcolor : string background color of plot node_color : string or list color(s) of the nodes node_size : int size of the nodes: if 0, then skip plotting the nodes node_alpha : float opacity of the nodes, note: if you passed RGBA values to node_color, set node_alpha=None to use the alpha channel in node_color node_edgecolor : string color of the nodes' markers' borders node_zorder : int zorder to plot nodes: edges are always 1, so set node_zorder=0 to plot nodes below edges edge_color : string or list color(s) of the edges' lines edge_linewidth : float width of the edges' lines: if 0, then skip plotting the edges edge_alpha : float opacity of the edges, note: if you passed RGBA values to edge_color, set edge_alpha=None to use the alpha channel in edge_color show : bool if True, call pyplot.show() to show the figure close : bool if True, call pyplot.close() to close the figure save : bool if True, save the figure to disk at filepath filepath : string if save is True, the path to the file. file format determined from extension. if None, use settings.imgs_folder/image.png dpi : int if save is True, the resolution of saved file bbox : tuple bounding box as (north, south, east, west). if None, will calculate from spatial extents of plotted geometries. Returns ------- fig, ax : tuple matplotlib figure, axis
def plot_graph( G, ax=None, figsize=(8, 8), bgcolor="#111111", node_color="w", node_size=15, node_alpha=None, node_edgecolor="none", node_zorder=1, edge_color="#999999", edge_linewidth=1, edge_alpha=None, show=True, close=False, save=False, filepath=None, dpi=300, bbox=None, ): """ Visualize a graph. Parameters ---------- G : networkx.MultiDiGraph input graph ax : matplotlib axis if not None, plot on this preexisting axis figsize : tuple if ax is None, create new figure with size (width, height) bgcolor : string background color of plot node_color : string or list color(s) of the nodes node_size : int size of the nodes: if 0, then skip plotting the nodes node_alpha : float opacity of the nodes, note: if you passed RGBA values to node_color, set node_alpha=None to use the alpha channel in node_color node_edgecolor : string color of the nodes' markers' borders node_zorder : int zorder to plot nodes: edges are always 1, so set node_zorder=0 to plot nodes below edges edge_color : string or list color(s) of the edges' lines edge_linewidth : float width of the edges' lines: if 0, then skip plotting the edges edge_alpha : float opacity of the edges, note: if you passed RGBA values to edge_color, set edge_alpha=None to use the alpha channel in edge_color show : bool if True, call pyplot.show() to show the figure close : bool if True, call pyplot.close() to close the figure save : bool if True, save the figure to disk at filepath filepath : string if save is True, the path to the file. file format determined from extension. if None, use settings.imgs_folder/image.png dpi : int if save is True, the resolution of saved file bbox : tuple bounding box as (north, south, east, west). if None, will calculate from spatial extents of plotted geometries. Returns ------- fig, ax : tuple matplotlib figure, axis """ _verify_mpl() max_node_size = max(node_size) if hasattr(node_size, "__iter__") else node_size max_edge_lw = max(edge_linewidth) if hasattr(edge_linewidth, "__iter__") else edge_linewidth if max_node_size <= 0 and max_edge_lw <= 0: # pragma: no cover msg = "Either node_size or edge_linewidth must be > 0 to plot something." raise ValueError(msg) # create fig, ax as needed utils.log("Begin plotting the graph...") if ax is None: fig, ax = plt.subplots(figsize=figsize, facecolor=bgcolor, frameon=False) ax.set_facecolor(bgcolor) else: fig = ax.figure if max_edge_lw > 0: # plot the edges' geometries gdf_edges = convert.graph_to_gdfs(G, nodes=False)["geometry"] ax = gdf_edges.plot(ax=ax, color=edge_color, lw=edge_linewidth, alpha=edge_alpha, zorder=1) if max_node_size > 0: # scatter plot the nodes' x/y coordinates gdf_nodes = convert.graph_to_gdfs(G, edges=False, node_geometry=False)[["x", "y"]] ax.scatter( x=gdf_nodes["x"], y=gdf_nodes["y"], s=node_size, c=node_color, alpha=node_alpha, edgecolor=node_edgecolor, zorder=node_zorder, ) # get spatial extents from bbox parameter or the edges' geometries padding = 0 if bbox is None: try: west, south, east, north = gdf_edges.total_bounds except NameError: west, south = gdf_nodes.min() east, north = gdf_nodes.max() bbox = north, south, east, west padding = 0.02 # pad 2% to not cut off peripheral nodes' circles # configure axis appearance, save/show figure as specified, and return ax = _config_ax(ax, G.graph["crs"], bbox, padding) fig, ax = _save_and_show(fig, ax, save, show, close, filepath, dpi) utils.log("Finished plotting the graph") return fig, ax
(G, ax=None, figsize=(8, 8), bgcolor='#111111', node_color='w', node_size=15, node_alpha=None, node_edgecolor='none', node_zorder=1, edge_color='#999999', edge_linewidth=1, edge_alpha=None, show=True, close=False, save=False, filepath=None, dpi=300, bbox=None)
52,250
osmnx.folium
plot_graph_folium
Do not use: deprecated. You can generate and explore interactive web maps of graph nodes, edges, and/or routes automatically using GeoPandas.GeoDataFrame.explore instead, for example like: `ox.graph_to_gdfs(G, nodes=False).explore()`. See the OSMnx examples gallery for complete details and demonstrations. Parameters ---------- G : networkx.MultiDiGraph deprecated graph_map : folium.folium.Map deprecated popup_attribute : string deprecated tiles : string deprecated zoom : int deprecated fit_bounds : bool deprecated kwargs deprecated Returns ------- folium.folium.Map
def plot_graph_folium( G, graph_map=None, popup_attribute=None, tiles="cartodbpositron", zoom=1, fit_bounds=True, **kwargs, ): """ Do not use: deprecated. You can generate and explore interactive web maps of graph nodes, edges, and/or routes automatically using GeoPandas.GeoDataFrame.explore instead, for example like: `ox.graph_to_gdfs(G, nodes=False).explore()`. See the OSMnx examples gallery for complete details and demonstrations. Parameters ---------- G : networkx.MultiDiGraph deprecated graph_map : folium.folium.Map deprecated popup_attribute : string deprecated tiles : string deprecated zoom : int deprecated fit_bounds : bool deprecated kwargs deprecated Returns ------- folium.folium.Map """ warn( "The `folium` module has been deprecated and will be removed in the v2.0.0 release. " "You can generate and explore interactive web maps of graph nodes, edges, " "and/or routes automatically using GeoPandas.GeoDataFrame.explore instead, " "for example like: `ox.graph_to_gdfs(G, nodes=False).explore()`. See the " "OSMnx examples gallery for complete details and demonstrations.", FutureWarning, stacklevel=2, ) # create gdf of all graph edges gdf_edges = convert.graph_to_gdfs(G, nodes=False) return _plot_folium(gdf_edges, graph_map, popup_attribute, tiles, zoom, fit_bounds, **kwargs)
(G, graph_map=None, popup_attribute=None, tiles='cartodbpositron', zoom=1, fit_bounds=True, **kwargs)
52,251
osmnx.plot
plot_graph_route
Visualize a route along a graph. Parameters ---------- G : networkx.MultiDiGraph input graph route : list route as a list of node IDs route_color : string color of the route route_linewidth : int width of the route line route_alpha : float opacity of the route line orig_dest_size : int size of the origin and destination nodes ax : matplotlib axis if not None, plot route on this preexisting axis instead of creating a new fig, ax and drawing the underlying graph pg_kwargs keyword arguments to pass to plot_graph Returns ------- fig, ax : tuple matplotlib figure, axis
def plot_graph_route( G, route, route_color="r", route_linewidth=4, route_alpha=0.5, orig_dest_size=100, ax=None, **pg_kwargs, ): """ Visualize a route along a graph. Parameters ---------- G : networkx.MultiDiGraph input graph route : list route as a list of node IDs route_color : string color of the route route_linewidth : int width of the route line route_alpha : float opacity of the route line orig_dest_size : int size of the origin and destination nodes ax : matplotlib axis if not None, plot route on this preexisting axis instead of creating a new fig, ax and drawing the underlying graph pg_kwargs keyword arguments to pass to plot_graph Returns ------- fig, ax : tuple matplotlib figure, axis """ _verify_mpl() if ax is None: # plot the graph but not the route, and override any user show/close # args for now: we'll do that later overrides = {"show", "save", "close"} kwargs = {k: v for k, v in pg_kwargs.items() if k not in overrides} fig, ax = plot_graph(G, show=False, save=False, close=False, **kwargs) else: fig = ax.figure # scatterplot origin and destination points (first/last nodes in route) x = (G.nodes[route[0]]["x"], G.nodes[route[-1]]["x"]) y = (G.nodes[route[0]]["y"], G.nodes[route[-1]]["y"]) ax.scatter(x, y, s=orig_dest_size, c=route_color, alpha=route_alpha, edgecolor="none") # assemble the route edge geometries' x and y coords then plot the line x = [] y = [] for u, v in zip(route[:-1], route[1:]): # if there are parallel edges, select the shortest in length data = min(G.get_edge_data(u, v).values(), key=lambda d: d["length"]) if "geometry" in data: # if geometry attribute exists, add all its coords to list xs, ys = data["geometry"].xy x.extend(xs) y.extend(ys) else: # otherwise, the edge is a straight line from node to node x.extend((G.nodes[u]["x"], G.nodes[v]["x"])) y.extend((G.nodes[u]["y"], G.nodes[v]["y"])) ax.plot(x, y, c=route_color, lw=route_linewidth, alpha=route_alpha) # save and show the figure as specified, passing relevant kwargs sas_kwargs = {"save", "show", "close", "filepath", "file_format", "dpi"} kwargs = {k: v for k, v in pg_kwargs.items() if k in sas_kwargs} fig, ax = _save_and_show(fig, ax, **kwargs) return fig, ax
(G, route, route_color='r', route_linewidth=4, route_alpha=0.5, orig_dest_size=100, ax=None, **pg_kwargs)
52,252
osmnx.plot
plot_graph_routes
Visualize several routes along a graph. Parameters ---------- G : networkx.MultiDiGraph input graph routes : list routes as a list of lists of node IDs route_colors : string or list if string, 1 color for all routes. if list, the colors for each route. route_linewidths : int or list if int, 1 linewidth for all routes. if list, the linewidth for each route. pgr_kwargs keyword arguments to pass to plot_graph_route Returns ------- fig, ax : tuple matplotlib figure, axis
def plot_graph_routes(G, routes, route_colors="r", route_linewidths=4, **pgr_kwargs): """ Visualize several routes along a graph. Parameters ---------- G : networkx.MultiDiGraph input graph routes : list routes as a list of lists of node IDs route_colors : string or list if string, 1 color for all routes. if list, the colors for each route. route_linewidths : int or list if int, 1 linewidth for all routes. if list, the linewidth for each route. pgr_kwargs keyword arguments to pass to plot_graph_route Returns ------- fig, ax : tuple matplotlib figure, axis """ _verify_mpl() # check for valid arguments if not all(isinstance(r, list) for r in routes): # pragma: no cover msg = "routes must be a list of route lists" raise ValueError(msg) if len(routes) <= 1: # pragma: no cover msg = "You must pass more than 1 route" raise ValueError(msg) if isinstance(route_colors, str): route_colors = [route_colors] * len(routes) if len(routes) != len(route_colors): # pragma: no cover msg = "route_colors list must have same length as routes" raise ValueError(msg) if isinstance(route_linewidths, int): route_linewidths = [route_linewidths] * len(routes) if len(routes) != len(route_linewidths): # pragma: no cover msg = "route_linewidths list must have same length as routes" raise ValueError(msg) # plot the graph and the first route overrides = {"route", "route_color", "route_linewidth", "show", "save", "close"} kwargs = {k: v for k, v in pgr_kwargs.items() if k not in overrides} fig, ax = plot_graph_route( G, route=routes[0], route_color=route_colors[0], route_linewidth=route_linewidths[0], show=False, save=False, close=False, **kwargs, ) # plot the subsequent routes on top of existing ax overrides.update({"ax"}) kwargs = {k: v for k, v in pgr_kwargs.items() if k not in overrides} r_rc_rlw = zip(routes[1:], route_colors[1:], route_linewidths[1:]) for route, route_color, route_linewidth in r_rc_rlw: fig, ax = plot_graph_route( G, route=route, route_color=route_color, route_linewidth=route_linewidth, show=False, save=False, close=False, ax=ax, **kwargs, ) # save and show the figure as specified, passing relevant kwargs sas_kwargs = {"save", "show", "close", "filepath", "file_format", "dpi"} kwargs = {k: v for k, v in pgr_kwargs.items() if k in sas_kwargs} fig, ax = _save_and_show(fig, ax, **kwargs) return fig, ax
(G, routes, route_colors='r', route_linewidths=4, **pgr_kwargs)
52,253
osmnx.plot
plot_orientation
Plot a polar histogram of a spatial network's bidirectional edge bearings. Ignores self-loop edges as their bearings are undefined. For more info see: Boeing, G. 2019. "Urban Spatial Order: Street Network Orientation, Configuration, and Entropy." Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1 Parameters ---------- Gu : networkx.MultiGraph undirected, unprojected graph with `bearing` attributes on each edge num_bins : int number of bins; for example, if `num_bins=36` is provided, then each bin will represent 10 degrees around the compass min_length : float ignore edges with `length` attributes less than `min_length` weight : string if not None, weight edges' bearings by this (non-null) edge attribute ax : matplotlib.axes.PolarAxesSubplot if not None, plot on this preexisting axis; must have projection=polar figsize : tuple if ax is None, create new figure with size (width, height) area : bool if True, set bar length so area is proportional to frequency, otherwise set bar length so height is proportional to frequency color : string color of histogram bars edgecolor : string color of histogram bar edges linewidth : float width of histogram bar edges alpha : float opacity of histogram bars title : string title for plot title_y : float y position to place title title_font : dict the title's fontdict to pass to matplotlib xtick_font : dict the xtick labels' fontdict to pass to matplotlib Returns ------- fig, ax : tuple matplotlib figure, axis
def plot_orientation( Gu, num_bins=36, min_length=0, weight=None, ax=None, figsize=(5, 5), area=True, color="#003366", edgecolor="k", linewidth=0.5, alpha=0.7, title=None, title_y=1.05, title_font=None, xtick_font=None, ): """ Plot a polar histogram of a spatial network's bidirectional edge bearings. Ignores self-loop edges as their bearings are undefined. For more info see: Boeing, G. 2019. "Urban Spatial Order: Street Network Orientation, Configuration, and Entropy." Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1 Parameters ---------- Gu : networkx.MultiGraph undirected, unprojected graph with `bearing` attributes on each edge num_bins : int number of bins; for example, if `num_bins=36` is provided, then each bin will represent 10 degrees around the compass min_length : float ignore edges with `length` attributes less than `min_length` weight : string if not None, weight edges' bearings by this (non-null) edge attribute ax : matplotlib.axes.PolarAxesSubplot if not None, plot on this preexisting axis; must have projection=polar figsize : tuple if ax is None, create new figure with size (width, height) area : bool if True, set bar length so area is proportional to frequency, otherwise set bar length so height is proportional to frequency color : string color of histogram bars edgecolor : string color of histogram bar edges linewidth : float width of histogram bar edges alpha : float opacity of histogram bars title : string title for plot title_y : float y position to place title title_font : dict the title's fontdict to pass to matplotlib xtick_font : dict the xtick labels' fontdict to pass to matplotlib Returns ------- fig, ax : tuple matplotlib figure, axis """ _verify_mpl() if title_font is None: title_font = {"family": "DejaVu Sans", "size": 24, "weight": "bold"} if xtick_font is None: xtick_font = { "family": "DejaVu Sans", "size": 10, "weight": "bold", "alpha": 1.0, "zorder": 3, } # get the bearings' distribution's bin counts and edges bin_counts, bin_edges = bearing._bearings_distribution(Gu, num_bins, min_length, weight) # positions: where to center each bar. ignore the last bin edge, because # it's the same as the first (i.e., 0 degrees = 360 degrees) positions = np.radians(bin_edges[:-1]) # width: make bars fill the circumference without gaps or overlaps width = 2 * np.pi / num_bins # radius: how long to make each bar. set bar length so either the bar area # (ie, via sqrt) or the bar height is proportional to the bin's frequency bin_frequency = bin_counts / bin_counts.sum() radius = np.sqrt(bin_frequency) if area else bin_frequency # create ax (if necessary) then set N at top and go clockwise if ax is None: fig, ax = plt.subplots(figsize=figsize, subplot_kw={"projection": "polar"}) else: fig = ax.figure ax.set_theta_zero_location("N") ax.set_theta_direction("clockwise") ax.set_ylim(top=radius.max()) # configure the y-ticks and remove their labels ax.set_yticks(np.linspace(0, radius.max(), 5)) ax.set_yticklabels(labels="") # configure the x-ticks and their labels xticklabels = ["N", "", "E", "", "S", "", "W", ""] ax.set_xticks(ax.get_xticks()) ax.set_xticklabels(labels=xticklabels, fontdict=xtick_font) ax.tick_params(axis="x", which="major", pad=-2) # draw the bars ax.bar( positions, height=radius, width=width, align="center", bottom=0, zorder=2, color=color, edgecolor=edgecolor, linewidth=linewidth, alpha=alpha, ) if title: ax.set_title(title, y=title_y, fontdict=title_font) fig.tight_layout() return fig, ax
(Gu, num_bins=36, min_length=0, weight=None, ax=None, figsize=(5, 5), area=True, color='#003366', edgecolor='k', linewidth=0.5, alpha=0.7, title=None, title_y=1.05, title_font=None, xtick_font=None)
52,254
osmnx.folium
plot_route_folium
Do not use: deprecated. You can generate and explore interactive web maps of graph nodes, edges, and/or routes automatically using GeoPandas.GeoDataFrame.explore instead, for example like: `ox.graph_to_gdfs(G, nodes=False).explore()`. See the OSMnx examples gallery for complete details and demonstrations. Parameters ---------- G : networkx.MultiDiGraph deprecated route : list deprecated route_map : folium.folium.Map deprecated popup_attribute : string deprecated tiles : string deprecated zoom : int deprecated fit_bounds : bool deprecated kwargs deprecated Returns ------- folium.folium.Map
def plot_route_folium( G, route, route_map=None, popup_attribute=None, tiles="cartodbpositron", zoom=1, fit_bounds=True, **kwargs, ): """ Do not use: deprecated. You can generate and explore interactive web maps of graph nodes, edges, and/or routes automatically using GeoPandas.GeoDataFrame.explore instead, for example like: `ox.graph_to_gdfs(G, nodes=False).explore()`. See the OSMnx examples gallery for complete details and demonstrations. Parameters ---------- G : networkx.MultiDiGraph deprecated route : list deprecated route_map : folium.folium.Map deprecated popup_attribute : string deprecated tiles : string deprecated zoom : int deprecated fit_bounds : bool deprecated kwargs deprecated Returns ------- folium.folium.Map """ warn( "The `folium` module has been deprecated and will be removed in the v2.0.0 release. " "You can generate and explore interactive web maps of graph nodes, edges, " "and/or routes automatically using GeoPandas.GeoDataFrame.explore instead, " "for example like: `ox.graph_to_gdfs(G, nodes=False).explore()`. See the " "OSMnx examples gallery for complete details and demonstrations.", FutureWarning, stacklevel=2, ) # create gdf of the route edges in order node_pairs = zip(route[:-1], route[1:]) uvk = ((u, v, min(G[u][v].items(), key=lambda k: k[1]["length"])[0]) for u, v in node_pairs) gdf_edges = convert.graph_to_gdfs(G.subgraph(route), nodes=False).loc[uvk] return _plot_folium(gdf_edges, route_map, popup_attribute, tiles, zoom, fit_bounds, **kwargs)
(G, route, route_map=None, popup_attribute=None, tiles='cartodbpositron', zoom=1, fit_bounds=True, **kwargs)
52,255
osmnx.projection
project_gdf
Project a GeoDataFrame from its current CRS to another. If `to_latlong` is `True`, this projects the GeoDataFrame to the CRS defined by `settings.default_crs`, otherwise it projects it to the CRS defined by `to_crs`. If `to_crs` is `None`, it projects it to the CRS of an appropriate UTM zone given `gdf`'s bounds. Parameters ---------- gdf : geopandas.GeoDataFrame the GeoDataFrame to be projected to_crs : string or pyproj.CRS if None, project to an appropriate UTM zone, otherwise project to this CRS to_latlong : bool if True, project to `settings.default_crs` and ignore `to_crs` Returns ------- gdf_proj : geopandas.GeoDataFrame the projected GeoDataFrame
def project_gdf(gdf, to_crs=None, to_latlong=False): """ Project a GeoDataFrame from its current CRS to another. If `to_latlong` is `True`, this projects the GeoDataFrame to the CRS defined by `settings.default_crs`, otherwise it projects it to the CRS defined by `to_crs`. If `to_crs` is `None`, it projects it to the CRS of an appropriate UTM zone given `gdf`'s bounds. Parameters ---------- gdf : geopandas.GeoDataFrame the GeoDataFrame to be projected to_crs : string or pyproj.CRS if None, project to an appropriate UTM zone, otherwise project to this CRS to_latlong : bool if True, project to `settings.default_crs` and ignore `to_crs` Returns ------- gdf_proj : geopandas.GeoDataFrame the projected GeoDataFrame """ if gdf.crs is None or len(gdf) < 1: # pragma: no cover msg = "GeoDataFrame must have a valid CRS and cannot be empty" raise ValueError(msg) # if to_latlong is True, project the gdf to the default_crs if to_latlong: to_crs = settings.default_crs # else if to_crs is None, project gdf to an appropriate UTM zone elif to_crs is None: to_crs = gdf.estimate_utm_crs() # project the gdf gdf_proj = gdf.to_crs(to_crs) crs_desc = f"{gdf_proj.crs.to_string()} / {gdf_proj.crs.name}" utils.log(f"Projected GeoDataFrame to {crs_desc!r}") return gdf_proj
(gdf, to_crs=None, to_latlong=False)
52,256
osmnx.projection
project_graph
Project a graph from its current CRS to another. If `to_latlong` is `True`, this projects the GeoDataFrame to the CRS defined by `settings.default_crs`, otherwise it projects it to the CRS defined by `to_crs`. If `to_crs` is `None`, it projects it to the CRS of an appropriate UTM zone given `G`'s bounds. Parameters ---------- G : networkx.MultiDiGraph the graph to be projected to_crs : string or pyproj.CRS if None, project to an appropriate UTM zone, otherwise project to this CRS to_latlong : bool if True, project to `settings.default_crs` and ignore `to_crs` Returns ------- G_proj : networkx.MultiDiGraph the projected graph
def project_graph(G, to_crs=None, to_latlong=False): """ Project a graph from its current CRS to another. If `to_latlong` is `True`, this projects the GeoDataFrame to the CRS defined by `settings.default_crs`, otherwise it projects it to the CRS defined by `to_crs`. If `to_crs` is `None`, it projects it to the CRS of an appropriate UTM zone given `G`'s bounds. Parameters ---------- G : networkx.MultiDiGraph the graph to be projected to_crs : string or pyproj.CRS if None, project to an appropriate UTM zone, otherwise project to this CRS to_latlong : bool if True, project to `settings.default_crs` and ignore `to_crs` Returns ------- G_proj : networkx.MultiDiGraph the projected graph """ if to_latlong: to_crs = settings.default_crs # STEP 1: PROJECT THE NODES gdf_nodes = convert.graph_to_gdfs(G, edges=False) # create new lat/lon columns to preserve lat/lon for later reference if # cols do not already exist (ie, don't overwrite in later re-projections) if "lon" not in gdf_nodes.columns or "lat" not in gdf_nodes.columns: gdf_nodes["lon"] = gdf_nodes["x"] gdf_nodes["lat"] = gdf_nodes["y"] # project the nodes GeoDataFrame and extract the projected x/y values gdf_nodes_proj = project_gdf(gdf_nodes, to_crs=to_crs) gdf_nodes_proj["x"] = gdf_nodes_proj["geometry"].x gdf_nodes_proj["y"] = gdf_nodes_proj["geometry"].y to_crs = gdf_nodes_proj.crs gdf_nodes_proj = gdf_nodes_proj.drop(columns=["geometry"]) # STEP 2: PROJECT THE EDGES if "simplified" in G.graph and G.graph["simplified"]: # if graph has previously been simplified, project the edge geometries gdf_edges = convert.graph_to_gdfs(G, nodes=False, fill_edge_geometry=False) gdf_edges_proj = project_gdf(gdf_edges, to_crs=to_crs) else: # if not, you don't have to project these edges because the nodes # contain all the spatial data in the graph (unsimplified edges have # no geometry attributes) gdf_edges_proj = convert.graph_to_gdfs(G, nodes=False, fill_edge_geometry=False).drop( columns=["geometry"] ) # STEP 3: REBUILD GRAPH # turn projected node/edge gdfs into a graph and update its CRS attribute G_proj = convert.graph_from_gdfs(gdf_nodes_proj, gdf_edges_proj, G.graph) G_proj.graph["crs"] = to_crs utils.log(f"Projected graph with {len(G)} nodes and {len(G.edges)} edges") return G_proj
(G, to_crs=None, to_latlong=False)
52,259
osmnx.io
save_graph_geopackage
Save graph nodes and edges to disk as layers in a GeoPackage file. Parameters ---------- G : networkx.MultiDiGraph input graph filepath : string or pathlib.Path path to the GeoPackage file including extension. if None, use default data folder + graph.gpkg encoding : string the character encoding for the saved file directed : bool if False, save one edge for each undirected edge in the graph but retain original oneway and to/from information as edge attributes; if True, save one edge for each directed edge in the graph Returns ------- None
def save_graph_geopackage(G, filepath=None, encoding="utf-8", directed=False): """ Save graph nodes and edges to disk as layers in a GeoPackage file. Parameters ---------- G : networkx.MultiDiGraph input graph filepath : string or pathlib.Path path to the GeoPackage file including extension. if None, use default data folder + graph.gpkg encoding : string the character encoding for the saved file directed : bool if False, save one edge for each undirected edge in the graph but retain original oneway and to/from information as edge attributes; if True, save one edge for each directed edge in the graph Returns ------- None """ # default filepath if none was provided filepath = Path(settings.data_folder) / "graph.gpkg" if filepath is None else Path(filepath) # if save folder does not already exist, create it filepath.parent.mkdir(parents=True, exist_ok=True) # convert graph to gdfs and stringify non-numeric columns if directed: gdf_nodes, gdf_edges = convert.graph_to_gdfs(G) else: gdf_nodes, gdf_edges = convert.graph_to_gdfs(convert.to_undirected(G)) gdf_nodes = _stringify_nonnumeric_cols(gdf_nodes) gdf_edges = _stringify_nonnumeric_cols(gdf_edges) # save the nodes and edges as GeoPackage layers gdf_nodes.to_file(filepath, layer="nodes", driver="GPKG", index=True, encoding=encoding) gdf_edges.to_file(filepath, layer="edges", driver="GPKG", index=True, encoding=encoding) utils.log(f"Saved graph as GeoPackage at {filepath!r}")
(G, filepath=None, encoding='utf-8', directed=False)
52,260
osmnx.io
save_graph_shapefile
Do not use: deprecated. Use the save_graph_geopackage function instead. The Shapefile format is proprietary and outdated. Instead, use the superior GeoPackage file format via the save_graph_geopackage function. See http://switchfromshapefile.org/ for more information. Parameters ---------- G : networkx.MultiDiGraph input graph filepath : string or pathlib.Path path to the shapefiles folder (no file extension). if None, use default data folder + graph_shapefile encoding : string the character encoding for the saved files directed : bool if False, save one edge for each undirected edge in the graph but retain original oneway and to/from information as edge attributes; if True, save one edge for each directed edge in the graph Returns ------- None
def save_graph_shapefile(G, filepath=None, encoding="utf-8", directed=False): """ Do not use: deprecated. Use the save_graph_geopackage function instead. The Shapefile format is proprietary and outdated. Instead, use the superior GeoPackage file format via the save_graph_geopackage function. See http://switchfromshapefile.org/ for more information. Parameters ---------- G : networkx.MultiDiGraph input graph filepath : string or pathlib.Path path to the shapefiles folder (no file extension). if None, use default data folder + graph_shapefile encoding : string the character encoding for the saved files directed : bool if False, save one edge for each undirected edge in the graph but retain original oneway and to/from information as edge attributes; if True, save one edge for each directed edge in the graph Returns ------- None """ warn( "The `save_graph_shapefile` function is deprecated and will be removed " "in the v2.0.0 release. Instead, use the `save_graph_geopackage` function " "to save graphs as GeoPackage files for subsequent GIS analysis. " "See the OSMnx v2 migration guide: https://github.com/gboeing/osmnx/issues/1123", FutureWarning, stacklevel=2, ) # default filepath if none was provided filepath = ( Path(settings.data_folder) / "graph_shapefile" if filepath is None else Path(filepath) ) # if save folder does not already exist, create it (shapefiles # get saved as set of files) filepath.mkdir(parents=True, exist_ok=True) filepath_nodes = filepath / "nodes.shp" filepath_edges = filepath / "edges.shp" # convert graph to gdfs and stringify non-numeric columns if directed: gdf_nodes, gdf_edges = convert.graph_to_gdfs(G) else: gdf_nodes, gdf_edges = convert.graph_to_gdfs(convert.to_undirected(G)) gdf_nodes = _stringify_nonnumeric_cols(gdf_nodes) gdf_edges = _stringify_nonnumeric_cols(gdf_edges) # save the nodes and edges as separate ESRI shapefiles gdf_nodes.to_file(filepath_nodes, driver="ESRI Shapefile", index=True, encoding=encoding) gdf_edges.to_file(filepath_edges, driver="ESRI Shapefile", index=True, encoding=encoding) utils.log(f"Saved graph as shapefiles at {filepath!r}")
(G, filepath=None, encoding='utf-8', directed=False)
52,261
osmnx.io
save_graph_xml
Save graph to disk as an OSM-formatted XML .osm file. This function exists only to allow serialization to the .osm file format for applications that require it, and has constraints to conform to that. As such, this function has a limited use case which does not include saving/loading graphs for subsequent OSMnx analysis. To save/load graphs to/from disk for later use in OSMnx, use the `io.save_graphml` and `io.load_graphml` functions instead. To load a graph from a .osm file that you have downloaded or generated elsewhere, use the `graph.graph_from_xml` function. Parameters ---------- data : networkx.MultiDiGraph the input graph filepath : string or pathlib.Path do not use, deprecated node_tags : list do not use, deprecated node_attrs: list do not use, deprecated edge_tags : list do not use, deprecated edge_attrs : list do not use, deprecated oneway : bool do not use, deprecated merge_edges : bool do not use, deprecated edge_tag_aggs : tuple do not use, deprecated api_version : float do not use, deprecated precision : int do not use, deprecated way_tag_aggs : dict Keys are OSM way tag keys and values are aggregation functions (anything accepted as an argument by pandas.agg). Allows user to aggregate graph edge attribute values into single OSM way values. If None, or if some tag's key does not exist in the dict, the way attribute will be assigned the value of the first edge of the way. Returns ------- None
def save_graph_xml( data, filepath=None, node_tags=None, node_attrs=None, edge_tags=None, edge_attrs=None, oneway=None, merge_edges=None, edge_tag_aggs=None, api_version=None, precision=None, way_tag_aggs=None, ): """ Save graph to disk as an OSM-formatted XML .osm file. This function exists only to allow serialization to the .osm file format for applications that require it, and has constraints to conform to that. As such, this function has a limited use case which does not include saving/loading graphs for subsequent OSMnx analysis. To save/load graphs to/from disk for later use in OSMnx, use the `io.save_graphml` and `io.load_graphml` functions instead. To load a graph from a .osm file that you have downloaded or generated elsewhere, use the `graph.graph_from_xml` function. Parameters ---------- data : networkx.MultiDiGraph the input graph filepath : string or pathlib.Path do not use, deprecated node_tags : list do not use, deprecated node_attrs: list do not use, deprecated edge_tags : list do not use, deprecated edge_attrs : list do not use, deprecated oneway : bool do not use, deprecated merge_edges : bool do not use, deprecated edge_tag_aggs : tuple do not use, deprecated api_version : float do not use, deprecated precision : int do not use, deprecated way_tag_aggs : dict Keys are OSM way tag keys and values are aggregation functions (anything accepted as an argument by pandas.agg). Allows user to aggregate graph edge attribute values into single OSM way values. If None, or if some tag's key does not exist in the dict, the way attribute will be assigned the value of the first edge of the way. Returns ------- None """ osm_xml._save_graph_xml( data, filepath, node_tags, node_attrs, edge_tags, edge_attrs, oneway, merge_edges, edge_tag_aggs, api_version, precision, way_tag_aggs, )
(data, filepath=None, node_tags=None, node_attrs=None, edge_tags=None, edge_attrs=None, oneway=None, merge_edges=None, edge_tag_aggs=None, api_version=None, precision=None, way_tag_aggs=None)
52,262
osmnx.io
save_graphml
Save graph to disk as GraphML file. Parameters ---------- G : networkx.MultiDiGraph input graph filepath : string or pathlib.Path path to the GraphML file including extension. if None, use default data folder + graph.graphml gephi : bool if True, give each edge a unique key/id to work around Gephi's interpretation of the GraphML specification encoding : string the character encoding for the saved file Returns ------- None
def save_graphml(G, filepath=None, gephi=False, encoding="utf-8"): """ Save graph to disk as GraphML file. Parameters ---------- G : networkx.MultiDiGraph input graph filepath : string or pathlib.Path path to the GraphML file including extension. if None, use default data folder + graph.graphml gephi : bool if True, give each edge a unique key/id to work around Gephi's interpretation of the GraphML specification encoding : string the character encoding for the saved file Returns ------- None """ # default filepath if none was provided filepath = Path(settings.data_folder) / "graph.graphml" if filepath is None else Path(filepath) # if save folder does not already exist, create it filepath.parent.mkdir(parents=True, exist_ok=True) if gephi: # for gephi compatibility, each edge's key must be unique as an id uvkd = ((u, v, k, d) for k, (u, v, d) in enumerate(G.edges(keys=False, data=True))) G = nx.MultiDiGraph(uvkd) else: # make a copy to not mutate original graph object caller passed in G = G.copy() # stringify all the graph attribute values for attr, value in G.graph.items(): G.graph[attr] = str(value) # stringify all the node attribute values for _, data in G.nodes(data=True): for attr, value in data.items(): data[attr] = str(value) # stringify all the edge attribute values for _, _, data in G.edges(keys=False, data=True): for attr, value in data.items(): data[attr] = str(value) nx.write_graphml(G, path=filepath, encoding=encoding) utils.log(f"Saved graph as GraphML file at {filepath!r}")
(G, filepath=None, gephi=False, encoding='utf-8')