index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
52,418
zabbix_utils.types
__init__
null
def __init__(self, host: str, key: str, value: str, clock: Union[int, None] = None, ns: Union[int, None] = None): self.host = str(host) self.key = str(key) self.value = str(value) self.clock = None self.ns = None if clock is not None: try: self.clock = int(clock) except ValueError: raise ValueError( 'The clock value must be expressed in the Unix Timestamp format') from None if ns is not None: try: self.ns = int(ns) except ValueError: raise ValueError( 'The ns value must be expressed in the integer value of nanoseconds') from None
(self, host: str, key: str, value: str, clock: Optional[int] = None, ns: Optional[int] = None)
52,419
zabbix_utils.types
__repr__
null
def __repr__(self) -> str: return self.__str__()
(self) -> str
52,420
zabbix_utils.types
__str__
null
def __str__(self) -> str: return json.dumps(self.to_json(), ensure_ascii=False)
(self) -> str
52,421
zabbix_utils.types
to_json
Represents ItemValue object in dictionary for json. Returns: dict: Object attributes in dictionary.
def to_json(self) -> dict: """Represents ItemValue object in dictionary for json. Returns: dict: Object attributes in dictionary. """ return {k: v for k, v in self.__dict__.items() if v is not None}
(self) -> dict
52,422
zabbix_utils.exceptions
ModuleBaseException
null
class ModuleBaseException(Exception): pass
null
52,423
zabbix_utils.exceptions
ProcessingError
null
class ProcessingError(ModuleBaseException): def __init__(self, *args): super().__init__(" ".join(map(str, args))) return
(*args)
52,424
zabbix_utils.exceptions
__init__
null
def __init__(self, *args): super().__init__(" ".join(map(str, args))) return
(self, *args)
52,425
zabbix_utils.sender
Sender
Zabbix sender synchronous implementation. Args: server (str, optional): Zabbix server address. Defaults to `'127.0.0.1'`. port (int, optional): Zabbix server port. Defaults to `10051`. use_config (bool, optional): Specifying configuration use. Defaults to `False`. timeout (int, optional): Connection timeout value. Defaults to `10`. use_ipv6 (bool, optional): Specifying IPv6 use instead of IPv4. Defaults to `False`. source_ip (str, optional): IP from which to establish connection. Defaults to `None`. chunk_size (int, optional): Number of packets in one chunk. Defaults to `250`. clusters (tuple|list, optional): List of Zabbix clusters. Defaults to `None`. socket_wrapper (Callable, optional): Func(`conn`,`tls`) to wrap socket. Defaults to `None`. compression (bool, optional): Specifying compression use. Defaults to `False`. config_path (str, optional): Path to Zabbix agent configuration file. Defaults to `/etc/zabbix/zabbix_agentd.conf`.
class Sender(): """Zabbix sender synchronous implementation. Args: server (str, optional): Zabbix server address. Defaults to `'127.0.0.1'`. port (int, optional): Zabbix server port. Defaults to `10051`. use_config (bool, optional): Specifying configuration use. Defaults to `False`. timeout (int, optional): Connection timeout value. Defaults to `10`. use_ipv6 (bool, optional): Specifying IPv6 use instead of IPv4. Defaults to `False`. source_ip (str, optional): IP from which to establish connection. Defaults to `None`. chunk_size (int, optional): Number of packets in one chunk. Defaults to `250`. clusters (tuple|list, optional): List of Zabbix clusters. Defaults to `None`. socket_wrapper (Callable, optional): Func(`conn`,`tls`) to wrap socket. Defaults to `None`. compression (bool, optional): Specifying compression use. Defaults to `False`. config_path (str, optional): Path to Zabbix agent configuration file. Defaults to \ `/etc/zabbix/zabbix_agentd.conf`. """ def __init__(self, server: Optional[str] = None, port: int = 10051, use_config: bool = False, timeout: int = 10, use_ipv6: bool = False, source_ip: Optional[str] = None, chunk_size: int = 250, clusters: Union[tuple, list] = None, socket_wrapper: Optional[Callable] = None, compression: bool = False, config_path: Optional[str] = '/etc/zabbix/zabbix_agentd.conf'): self.timeout = timeout self.use_ipv6 = use_ipv6 self.tls = {} self.source_ip = None self.chunk_size = chunk_size self.compression = compression if socket_wrapper is not None: if not isinstance(socket_wrapper, Callable): raise TypeError('Value "socket_wrapper" should be a function.') from None self.socket_wrapper = socket_wrapper if source_ip is not None: self.source_ip = source_ip if use_config: self.clusters = [] self.__load_config(config_path) return if clusters is not None: if not (isinstance(clusters, tuple) or isinstance(clusters, list)): raise TypeError('Value "clusters" should be a tuple or a list.') from None clusters = clusters.copy() if server is not None: clusters.append([f"{server}:{port}"]) self.clusters = [Cluster(c) for c in clusters] else: self.clusters = [Cluster([f"{server or '127.0.0.1'}:{port}"])] def __read_config(self, config: configparser.SectionProxy) -> None: server_row = config.get('ServerActive') or config.get('Server') or '127.0.0.1:10051' for cluster in server_row.split(','): self.clusters.append(Cluster(cluster.strip().split(';'))) if 'SourceIP' in config: self.source_ip = config.get('SourceIP') for key in config: if key.startswith('tls'): self.tls[key] = config.get(key) def __load_config(self, filepath: str) -> None: config = configparser.ConfigParser(strict=False) with open(filepath, 'r', encoding='utf-8') as cfg: config.read_string('[root]\n' + cfg.read()) self.__read_config(config['root']) def __get_response(self, conn: socket) -> Optional[str]: try: result = json.loads( ZabbixProtocol.parse_sync_packet(conn, log, ProcessingError) ) except json.decoder.JSONDecodeError as err: log.debug('Unexpected response was received from Zabbix.') raise err log.debug('Received data: %s', result) return result def __create_request(self, items: list) -> dict: return { "request": "sender data", "data": [i.to_json() for i in items] } def __chunk_send(self, items: list) -> dict: responses = {} packet = ZabbixProtocol.create_packet(self.__create_request(items), log, self.compression) for cluster in self.clusters: active_node = None for i, node in enumerate(cluster.nodes): log.debug('Trying to send data to %s', node) try: if self.use_ipv6: connection = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) else: connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM) except socket.error: raise ProcessingError(f"Error creating socket for {node}") from None connection.settimeout(self.timeout) if self.source_ip: connection.bind((self.source_ip, 0,)) try: connection.connect((node.address, node.port)) except (TimeoutError, socket.timeout): log.debug( 'The connection to %s timed out after %d seconds', node, self.timeout ) except (ConnectionRefusedError, socket.gaierror) as err: log.debug( 'An error occurred while trying to connect to %s: %s', node, getattr(err, 'msg', str(err)) ) else: if i > 0: cluster.nodes[0], cluster.nodes[i] = cluster.nodes[i], cluster.nodes[0] active_node = node break if active_node is None: log.error( 'Couldn\'t connect to all of cluster nodes: %s', str(list(cluster.nodes)) ) connection.close() raise ProcessingError( f"Couldn't connect to all of cluster nodes: {list(cluster.nodes)}" ) if self.socket_wrapper is not None: connection = self.socket_wrapper(connection, self.tls) try: connection.sendall(packet) except (TimeoutError, socket.timeout) as err: log.error( 'The connection to %s timed out after %d seconds while trying to send', active_node, self.timeout ) connection.close() raise err except (OSError, socket.error) as err: log.warning( 'An error occurred while trying to send to %s: %s', active_node, getattr(err, 'msg', str(err)) ) connection.close() raise err try: response = self.__get_response(connection) except ConnectionResetError as err: log.debug('Get value error: %s', err) raise err log.debug('Response from %s: %s', active_node, response) if response and response.get('response') != 'success': raise socket.error(response) responses[active_node] = response try: connection.close() except socket.error: pass return responses def send(self, items: list) -> TrapperResponse: """Sends packets and receives an answer from Zabbix. Args: items (list): List of ItemValue objects. Returns: TrapperResponse: Response from Zabbix server/proxy. """ # Split the list of items into chunks of size self.chunk_size. chunks = [items[i:i + self.chunk_size] for i in range(0, len(items), self.chunk_size)] # Merge responses into a single TrapperResponse object. try: result = TrapperResponse() except ProcessingError as err: log.debug(err) raise ProcessingError(err) from err # TrapperResponse details for each node and chunk. result.details = {} for i, chunk in enumerate(chunks): if not all(isinstance(item, ItemValue) for item in chunk): log.debug('Received unexpected item list. It must be a list of \ ItemValue objects: %s', json.dumps(chunk)) raise ProcessingError(f"Received unexpected item list. \ It must be a list of ItemValue objects: {json.dumps(chunk)}") resp_by_node = self.__chunk_send(chunk) node_step = 1 for node, resp in resp_by_node.items(): try: result.add(resp, (i + 1) * node_step) except ProcessingError as err: log.debug(err) raise ProcessingError(err) from None node_step += 1 if node not in result.details: result.details[node] = [] result.details[node].append(TrapperResponse(i+1).add(resp)) return result def send_value(self, host: str, key: str, value: str, clock: Optional[int] = None, ns: Optional[int] = None) -> TrapperResponse: """Sends one value and receives an answer from Zabbix. Args: host (str): Specify host name the item belongs to (as registered in Zabbix frontend). key (str): Specify item key to send value to. value (str): Specify item value. clock (int, optional): Specify time in Unix timestamp format. Defaults to `None`. ns (int, optional): Specify time expressed in nanoseconds. Defaults to `None`. Returns: TrapperResponse: Response from Zabbix server/proxy. """ return self.send([ItemValue(host, key, value, clock, ns)])
(server: Optional[str] = None, port: int = 10051, use_config: bool = False, timeout: int = 10, use_ipv6: bool = False, source_ip: Optional[str] = None, chunk_size: int = 250, clusters: Union[tuple, list] = None, socket_wrapper: Optional[Callable] = None, compression: bool = False, config_path: Optional[str] = '/etc/zabbix/zabbix_agentd.conf')
52,426
zabbix_utils.sender
__chunk_send
null
def __chunk_send(self, items: list) -> dict: responses = {} packet = ZabbixProtocol.create_packet(self.__create_request(items), log, self.compression) for cluster in self.clusters: active_node = None for i, node in enumerate(cluster.nodes): log.debug('Trying to send data to %s', node) try: if self.use_ipv6: connection = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) else: connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM) except socket.error: raise ProcessingError(f"Error creating socket for {node}") from None connection.settimeout(self.timeout) if self.source_ip: connection.bind((self.source_ip, 0,)) try: connection.connect((node.address, node.port)) except (TimeoutError, socket.timeout): log.debug( 'The connection to %s timed out after %d seconds', node, self.timeout ) except (ConnectionRefusedError, socket.gaierror) as err: log.debug( 'An error occurred while trying to connect to %s: %s', node, getattr(err, 'msg', str(err)) ) else: if i > 0: cluster.nodes[0], cluster.nodes[i] = cluster.nodes[i], cluster.nodes[0] active_node = node break if active_node is None: log.error( 'Couldn\'t connect to all of cluster nodes: %s', str(list(cluster.nodes)) ) connection.close() raise ProcessingError( f"Couldn't connect to all of cluster nodes: {list(cluster.nodes)}" ) if self.socket_wrapper is not None: connection = self.socket_wrapper(connection, self.tls) try: connection.sendall(packet) except (TimeoutError, socket.timeout) as err: log.error( 'The connection to %s timed out after %d seconds while trying to send', active_node, self.timeout ) connection.close() raise err except (OSError, socket.error) as err: log.warning( 'An error occurred while trying to send to %s: %s', active_node, getattr(err, 'msg', str(err)) ) connection.close() raise err try: response = self.__get_response(connection) except ConnectionResetError as err: log.debug('Get value error: %s', err) raise err log.debug('Response from %s: %s', active_node, response) if response and response.get('response') != 'success': raise socket.error(response) responses[active_node] = response try: connection.close() except socket.error: pass return responses
(self, items: list) -> dict
52,428
zabbix_utils.sender
__get_response
null
def __get_response(self, conn: socket) -> Optional[str]: try: result = json.loads( ZabbixProtocol.parse_sync_packet(conn, log, ProcessingError) ) except json.decoder.JSONDecodeError as err: log.debug('Unexpected response was received from Zabbix.') raise err log.debug('Received data: %s', result) return result
(self, conn: <module 'socket' from '/usr/local/lib/python3.10/socket.py'>) -> Optional[str]
52,431
zabbix_utils.sender
__init__
null
def __init__(self, server: Optional[str] = None, port: int = 10051, use_config: bool = False, timeout: int = 10, use_ipv6: bool = False, source_ip: Optional[str] = None, chunk_size: int = 250, clusters: Union[tuple, list] = None, socket_wrapper: Optional[Callable] = None, compression: bool = False, config_path: Optional[str] = '/etc/zabbix/zabbix_agentd.conf'): self.timeout = timeout self.use_ipv6 = use_ipv6 self.tls = {} self.source_ip = None self.chunk_size = chunk_size self.compression = compression if socket_wrapper is not None: if not isinstance(socket_wrapper, Callable): raise TypeError('Value "socket_wrapper" should be a function.') from None self.socket_wrapper = socket_wrapper if source_ip is not None: self.source_ip = source_ip if use_config: self.clusters = [] self.__load_config(config_path) return if clusters is not None: if not (isinstance(clusters, tuple) or isinstance(clusters, list)): raise TypeError('Value "clusters" should be a tuple or a list.') from None clusters = clusters.copy() if server is not None: clusters.append([f"{server}:{port}"]) self.clusters = [Cluster(c) for c in clusters] else: self.clusters = [Cluster([f"{server or '127.0.0.1'}:{port}"])]
(self, server: Optional[str] = None, port: int = 10051, use_config: bool = False, timeout: int = 10, use_ipv6: bool = False, source_ip: Optional[str] = None, chunk_size: int = 250, clusters: Union[tuple, list, NoneType] = None, socket_wrapper: Optional[Callable] = None, compression: bool = False, config_path: Optional[str] = '/etc/zabbix/zabbix_agentd.conf')
52,432
zabbix_utils.sender
send
Sends packets and receives an answer from Zabbix. Args: items (list): List of ItemValue objects. Returns: TrapperResponse: Response from Zabbix server/proxy.
def send(self, items: list) -> TrapperResponse: """Sends packets and receives an answer from Zabbix. Args: items (list): List of ItemValue objects. Returns: TrapperResponse: Response from Zabbix server/proxy. """ # Split the list of items into chunks of size self.chunk_size. chunks = [items[i:i + self.chunk_size] for i in range(0, len(items), self.chunk_size)] # Merge responses into a single TrapperResponse object. try: result = TrapperResponse() except ProcessingError as err: log.debug(err) raise ProcessingError(err) from err # TrapperResponse details for each node and chunk. result.details = {} for i, chunk in enumerate(chunks): if not all(isinstance(item, ItemValue) for item in chunk): log.debug('Received unexpected item list. It must be a list of \ ItemValue objects: %s', json.dumps(chunk)) raise ProcessingError(f"Received unexpected item list. \ It must be a list of ItemValue objects: {json.dumps(chunk)}") resp_by_node = self.__chunk_send(chunk) node_step = 1 for node, resp in resp_by_node.items(): try: result.add(resp, (i + 1) * node_step) except ProcessingError as err: log.debug(err) raise ProcessingError(err) from None node_step += 1 if node not in result.details: result.details[node] = [] result.details[node].append(TrapperResponse(i+1).add(resp)) return result
(self, items: list) -> zabbix_utils.types.TrapperResponse
52,433
zabbix_utils.sender
send_value
Sends one value and receives an answer from Zabbix. Args: host (str): Specify host name the item belongs to (as registered in Zabbix frontend). key (str): Specify item key to send value to. value (str): Specify item value. clock (int, optional): Specify time in Unix timestamp format. Defaults to `None`. ns (int, optional): Specify time expressed in nanoseconds. Defaults to `None`. Returns: TrapperResponse: Response from Zabbix server/proxy.
def send_value(self, host: str, key: str, value: str, clock: Optional[int] = None, ns: Optional[int] = None) -> TrapperResponse: """Sends one value and receives an answer from Zabbix. Args: host (str): Specify host name the item belongs to (as registered in Zabbix frontend). key (str): Specify item key to send value to. value (str): Specify item value. clock (int, optional): Specify time in Unix timestamp format. Defaults to `None`. ns (int, optional): Specify time expressed in nanoseconds. Defaults to `None`. Returns: TrapperResponse: Response from Zabbix server/proxy. """ return self.send([ItemValue(host, key, value, clock, ns)])
(self, host: str, key: str, value: str, clock: Optional[int] = None, ns: Optional[int] = None) -> zabbix_utils.types.TrapperResponse
52,434
zabbix_utils.api
ZabbixAPI
Provide interface for working with Zabbix API. Args: url (str, optional): Zabbix API URL. Defaults to `http://localhost/zabbix/api_jsonrpc.php`. token (str, optional): Zabbix API token. Defaults to `None`. user (str, optional): Zabbix API username. Defaults to `None`. password (str, optional): Zabbix API user's password. Defaults to `None`. http_user (str, optional): Basic Authentication username. Defaults to `None`. http_password (str, optional): Basic Authentication password. Defaults to `None`. skip_version_check (bool, optional): Skip version compatibility check. Defaults to `False`. validate_certs (bool, optional): Specifying certificate validation. Defaults to `True`. timeout (int, optional): Connection timeout to Zabbix API. Defaults to `30`.
class ZabbixAPI(): """Provide interface for working with Zabbix API. Args: url (str, optional): Zabbix API URL. Defaults to `http://localhost/zabbix/api_jsonrpc.php`. token (str, optional): Zabbix API token. Defaults to `None`. user (str, optional): Zabbix API username. Defaults to `None`. password (str, optional): Zabbix API user's password. Defaults to `None`. http_user (str, optional): Basic Authentication username. Defaults to `None`. http_password (str, optional): Basic Authentication password. Defaults to `None`. skip_version_check (bool, optional): Skip version compatibility check. Defaults to `False`. validate_certs (bool, optional): Specifying certificate validation. Defaults to `True`. timeout (int, optional): Connection timeout to Zabbix API. Defaults to `30`. """ __version = None __use_token = False __session_id = None __basic_cred = None def __init__(self, url: Optional[str] = None, token: Optional[str] = None, user: Optional[str] = None, password: Optional[str] = None, http_user: Optional[str] = None, http_password: Optional[str] = None, skip_version_check: bool = False, validate_certs: bool = True, timeout: int = 30): url = url or env.get('ZABBIX_URL') or 'http://localhost/zabbix/api_jsonrpc.php' user = user or env.get('ZABBIX_USER') or None password = password or env.get('ZABBIX_PASSWORD') or None token = token or env.get('ZABBIX_TOKEN') or None self.url = ModuleUtils.check_url(url) self.validate_certs = validate_certs self.timeout = timeout if http_user and http_password: self.__basic_auth(http_user, http_password) self.__check_version(skip_version_check) if token or user or password: self.login(token, user, password) def __getattr__(self, name: str) -> Callable: """Dynamic creation of an API object. Args: name (str): Zabbix API method name. Returns: APIObject: Zabbix API object instance. """ return APIObject(name, self) def __enter__(self) -> Callable: return self def __exit__(self, *args) -> None: self.logout() def __basic_auth(self, user: str, password: str) -> None: """Enable Basic Authentication using. Args: user (str): Basic Authentication username. password (str): Basic Authentication password. """ log.debug( "Enable Basic Authentication with username:%s password:%s", user, ModuleUtils.HIDING_MASK ) self.__basic_cred = base64.b64encode( f"{user}:{password}".encode() ).decode() def api_version(self) -> APIVersion: """Return object of Zabbix API version. Returns: APIVersion: Object of Zabbix API version """ if self.__version is None: self.__version = APIVersion(self.apiinfo.version()) return self.__version @property def version(self) -> APIVersion: """Return object of Zabbix API version. Returns: APIVersion: Object of Zabbix API version. """ return self.api_version() def login(self, token: Optional[str] = None, user: Optional[str] = None, password: Optional[str] = None) -> None: """Login to Zabbix API. Args: token (str, optional): Zabbix API token. Defaults to `None`. user (str, optional): Zabbix API username. Defaults to `None`. password (str, optional): Zabbix API user's password. Defaults to `None`. """ if token: if self.version < 5.4: raise APINotSupported( message="Token usage", version=self.version ) if user or password: raise ProcessingError( "Token cannot be used with username and password") self.__use_token = True self.__session_id = token return if not user: raise ProcessingError("Username is missing") if not password: raise ProcessingError("User password is missing") if self.version < 5.4: user_cred = { "user": user, "password": password } else: user_cred = { "username": user, "password": password } log.debug( "Login to Zabbix API using username:%s password:%s", user, ModuleUtils.HIDING_MASK ) self.__use_token = False self.__session_id = self.user.login(**user_cred) log.debug("Connected to Zabbix API version %s: %s", self.version, self.url) def logout(self) -> None: """Logout from Zabbix API.""" if self.__session_id: if self.__use_token: self.__session_id = None self.__use_token = False return log.debug("Logout from Zabbix API") self.user.logout() self.__session_id = None else: log.debug("You're not logged in Zabbix API") def check_auth(self) -> bool: """Check authentication status in Zabbix API. Returns: bool: User authentication status (`True`, `False`) """ if not self.__session_id: log.debug("You're not logged in Zabbix API") return False if self.__use_token: log.debug("Check auth session using token in Zabbix API") refresh_resp = self.user.checkAuthentication(token=self.__session_id) else: log.debug("Check auth session using sessionid in Zabbix API") refresh_resp = self.user.checkAuthentication(sessionid=self.__session_id) return bool(refresh_resp.get('userid')) def send_api_request(self, method: str, params: Optional[dict] = None, need_auth=True) -> dict: """Function for sending request to Zabbix API. Args: method (str): Zabbix API method name. params (dict, optional): Params for request body. Defaults to `None`. need_auth (bool, optional): Authorization using flag. Defaults to `False`. Raises: ProcessingError: Wrapping built-in exceptions during request processing. APIRequestError: Wrapping errors from Zabbix API. Returns: dict: Dictionary with Zabbix API response. """ request_json = { 'jsonrpc': '2.0', 'method': method, 'params': params or {}, 'id': str(uuid4()), } headers = { 'Accept': 'application/json', 'Content-Type': 'application/json-rpc', 'User-Agent': f"{__name__}/{__version__}" } if need_auth: if not self.__session_id: raise ProcessingError("You're not logged in Zabbix API") if self.version < 6.4 or self.__basic_cred is not None: request_json['auth'] = self.__session_id else: headers["Authorization"] = f"Bearer {self.__session_id}" if self.__basic_cred is not None: headers["Authorization"] = f"Basic {self.__basic_cred}" log.debug( "Sending request to %s with body: %s", self.url, request_json ) req = ul.Request( self.url, data=json.dumps(request_json).encode("utf-8"), headers=headers, method='POST' ) req.timeout = self.timeout # Disable SSL certificate validation if needed. if not self.validate_certs: ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE else: ctx = None try: resp = ul.urlopen(req, context=ctx) resp_json = json.loads(resp.read().decode('utf-8')) except URLError as err: raise ProcessingError(f"Unable to connect to {self.url}:", err) from None except ValueError as err: raise ProcessingError("Unable to parse json:", err) from None if method not in ModuleUtils.FILES_METHODS: log.debug( "Received response body: %s", resp_json ) else: debug_json = resp_json.copy() if debug_json.get('result'): debug_json['result'] = shorten(debug_json['result'], 200, placeholder='...') log.debug( "Received response body (clipped): %s", json.dumps(debug_json, indent=4, separators=(',', ': ')) ) if 'error' in resp_json: err = resp_json['error'].copy() err['body'] = request_json.copy() raise APIRequestError(err) return resp_json def __check_version(self, skip_check: bool) -> None: skip_check_help = "If you're sure zabbix_utils will work properly with your current \ Zabbix version you can skip this check by \ specifying skip_version_check=True when create ZabbixAPI object." if self.version < __min_supported__: if skip_check: log.debug( "Version of Zabbix API [%s] is less than the library supports. %s", self.version, "Further library use at your own risk!" ) else: raise APINotSupported( f"Version of Zabbix API [{self.version}] is not supported by the library. " + f"The oldest supported version is {__min_supported__}.0. " + skip_check_help ) if self.version > __max_supported__: if skip_check: log.debug( "Version of Zabbix API [%s] is more than the library was tested on. %s", self.version, "Recommended to update the library. Further library use at your own risk!" ) else: raise APINotSupported( f"Version of Zabbix API [{self.version}] was not tested with the library. " + f"The latest tested version is {__max_supported__}.0. " + skip_check_help )
(url: Optional[str] = None, token: Optional[str] = None, user: Optional[str] = None, password: Optional[str] = None, http_user: Optional[str] = None, http_password: Optional[str] = None, skip_version_check: bool = False, validate_certs: bool = True, timeout: int = 30)
52,435
zabbix_utils.api
__basic_auth
Enable Basic Authentication using. Args: user (str): Basic Authentication username. password (str): Basic Authentication password.
def __basic_auth(self, user: str, password: str) -> None: """Enable Basic Authentication using. Args: user (str): Basic Authentication username. password (str): Basic Authentication password. """ log.debug( "Enable Basic Authentication with username:%s password:%s", user, ModuleUtils.HIDING_MASK ) self.__basic_cred = base64.b64encode( f"{user}:{password}".encode() ).decode()
(self, user: str, password: str) -> NoneType
52,436
zabbix_utils.api
__check_version
null
def __check_version(self, skip_check: bool) -> None: skip_check_help = "If you're sure zabbix_utils will work properly with your current \ Zabbix version you can skip this check by \ specifying skip_version_check=True when create ZabbixAPI object." if self.version < __min_supported__: if skip_check: log.debug( "Version of Zabbix API [%s] is less than the library supports. %s", self.version, "Further library use at your own risk!" ) else: raise APINotSupported( f"Version of Zabbix API [{self.version}] is not supported by the library. " + f"The oldest supported version is {__min_supported__}.0. " + skip_check_help ) if self.version > __max_supported__: if skip_check: log.debug( "Version of Zabbix API [%s] is more than the library was tested on. %s", self.version, "Recommended to update the library. Further library use at your own risk!" ) else: raise APINotSupported( f"Version of Zabbix API [{self.version}] was not tested with the library. " + f"The latest tested version is {__max_supported__}.0. " + skip_check_help )
(self, skip_check: bool) -> NoneType
52,437
zabbix_utils.api
__enter__
null
def __enter__(self) -> Callable: return self
(self) -> Callable
52,438
zabbix_utils.api
__exit__
null
def __exit__(self, *args) -> None: self.logout()
(self, *args) -> NoneType
52,439
zabbix_utils.api
__getattr__
Dynamic creation of an API object. Args: name (str): Zabbix API method name. Returns: APIObject: Zabbix API object instance.
def __getattr__(self, name: str) -> Callable: """Dynamic creation of an API object. Args: name (str): Zabbix API method name. Returns: APIObject: Zabbix API object instance. """ return APIObject(name, self)
(self, name: str) -> Callable
52,440
zabbix_utils.api
__init__
null
def __init__(self, url: Optional[str] = None, token: Optional[str] = None, user: Optional[str] = None, password: Optional[str] = None, http_user: Optional[str] = None, http_password: Optional[str] = None, skip_version_check: bool = False, validate_certs: bool = True, timeout: int = 30): url = url or env.get('ZABBIX_URL') or 'http://localhost/zabbix/api_jsonrpc.php' user = user or env.get('ZABBIX_USER') or None password = password or env.get('ZABBIX_PASSWORD') or None token = token or env.get('ZABBIX_TOKEN') or None self.url = ModuleUtils.check_url(url) self.validate_certs = validate_certs self.timeout = timeout if http_user and http_password: self.__basic_auth(http_user, http_password) self.__check_version(skip_version_check) if token or user or password: self.login(token, user, password)
(self, url: Optional[str] = None, token: Optional[str] = None, user: Optional[str] = None, password: Optional[str] = None, http_user: Optional[str] = None, http_password: Optional[str] = None, skip_version_check: bool = False, validate_certs: bool = True, timeout: int = 30)
52,441
zabbix_utils.api
api_version
Return object of Zabbix API version. Returns: APIVersion: Object of Zabbix API version
def api_version(self) -> APIVersion: """Return object of Zabbix API version. Returns: APIVersion: Object of Zabbix API version """ if self.__version is None: self.__version = APIVersion(self.apiinfo.version()) return self.__version
(self) -> zabbix_utils.types.APIVersion
52,442
zabbix_utils.api
check_auth
Check authentication status in Zabbix API. Returns: bool: User authentication status (`True`, `False`)
def check_auth(self) -> bool: """Check authentication status in Zabbix API. Returns: bool: User authentication status (`True`, `False`) """ if not self.__session_id: log.debug("You're not logged in Zabbix API") return False if self.__use_token: log.debug("Check auth session using token in Zabbix API") refresh_resp = self.user.checkAuthentication(token=self.__session_id) else: log.debug("Check auth session using sessionid in Zabbix API") refresh_resp = self.user.checkAuthentication(sessionid=self.__session_id) return bool(refresh_resp.get('userid'))
(self) -> bool
52,443
zabbix_utils.api
login
Login to Zabbix API. Args: token (str, optional): Zabbix API token. Defaults to `None`. user (str, optional): Zabbix API username. Defaults to `None`. password (str, optional): Zabbix API user's password. Defaults to `None`.
def login(self, token: Optional[str] = None, user: Optional[str] = None, password: Optional[str] = None) -> None: """Login to Zabbix API. Args: token (str, optional): Zabbix API token. Defaults to `None`. user (str, optional): Zabbix API username. Defaults to `None`. password (str, optional): Zabbix API user's password. Defaults to `None`. """ if token: if self.version < 5.4: raise APINotSupported( message="Token usage", version=self.version ) if user or password: raise ProcessingError( "Token cannot be used with username and password") self.__use_token = True self.__session_id = token return if not user: raise ProcessingError("Username is missing") if not password: raise ProcessingError("User password is missing") if self.version < 5.4: user_cred = { "user": user, "password": password } else: user_cred = { "username": user, "password": password } log.debug( "Login to Zabbix API using username:%s password:%s", user, ModuleUtils.HIDING_MASK ) self.__use_token = False self.__session_id = self.user.login(**user_cred) log.debug("Connected to Zabbix API version %s: %s", self.version, self.url)
(self, token: Optional[str] = None, user: Optional[str] = None, password: Optional[str] = None) -> NoneType
52,444
zabbix_utils.api
logout
Logout from Zabbix API.
def logout(self) -> None: """Logout from Zabbix API.""" if self.__session_id: if self.__use_token: self.__session_id = None self.__use_token = False return log.debug("Logout from Zabbix API") self.user.logout() self.__session_id = None else: log.debug("You're not logged in Zabbix API")
(self) -> NoneType
52,445
zabbix_utils.api
send_api_request
Function for sending request to Zabbix API. Args: method (str): Zabbix API method name. params (dict, optional): Params for request body. Defaults to `None`. need_auth (bool, optional): Authorization using flag. Defaults to `False`. Raises: ProcessingError: Wrapping built-in exceptions during request processing. APIRequestError: Wrapping errors from Zabbix API. Returns: dict: Dictionary with Zabbix API response.
def send_api_request(self, method: str, params: Optional[dict] = None, need_auth=True) -> dict: """Function for sending request to Zabbix API. Args: method (str): Zabbix API method name. params (dict, optional): Params for request body. Defaults to `None`. need_auth (bool, optional): Authorization using flag. Defaults to `False`. Raises: ProcessingError: Wrapping built-in exceptions during request processing. APIRequestError: Wrapping errors from Zabbix API. Returns: dict: Dictionary with Zabbix API response. """ request_json = { 'jsonrpc': '2.0', 'method': method, 'params': params or {}, 'id': str(uuid4()), } headers = { 'Accept': 'application/json', 'Content-Type': 'application/json-rpc', 'User-Agent': f"{__name__}/{__version__}" } if need_auth: if not self.__session_id: raise ProcessingError("You're not logged in Zabbix API") if self.version < 6.4 or self.__basic_cred is not None: request_json['auth'] = self.__session_id else: headers["Authorization"] = f"Bearer {self.__session_id}" if self.__basic_cred is not None: headers["Authorization"] = f"Basic {self.__basic_cred}" log.debug( "Sending request to %s with body: %s", self.url, request_json ) req = ul.Request( self.url, data=json.dumps(request_json).encode("utf-8"), headers=headers, method='POST' ) req.timeout = self.timeout # Disable SSL certificate validation if needed. if not self.validate_certs: ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE else: ctx = None try: resp = ul.urlopen(req, context=ctx) resp_json = json.loads(resp.read().decode('utf-8')) except URLError as err: raise ProcessingError(f"Unable to connect to {self.url}:", err) from None except ValueError as err: raise ProcessingError("Unable to parse json:", err) from None if method not in ModuleUtils.FILES_METHODS: log.debug( "Received response body: %s", resp_json ) else: debug_json = resp_json.copy() if debug_json.get('result'): debug_json['result'] = shorten(debug_json['result'], 200, placeholder='...') log.debug( "Received response body (clipped): %s", json.dumps(debug_json, indent=4, separators=(',', ': ')) ) if 'error' in resp_json: err = resp_json['error'].copy() err['body'] = request_json.copy() raise APIRequestError(err) return resp_json
(self, method: str, params: Optional[dict] = None, need_auth=True) -> dict
52,456
vega.vega
Vega
Display a Vega visualization in the Jupyter Notebook.
class Vega(VegaBase): """Display a Vega visualization in the Jupyter Notebook.""" render_type = 'vega'
(spec, data=None, opt=None)
52,457
vega.base
__init__
Initialize the visualization object.
def __init__(self, spec, data=None, opt=None): """Initialize the visualization object.""" self.opt = opt or {} self.spec = self._prepare_spec(spec, data)
(self, spec, data=None, opt=None)
52,458
vega.base
_generate_js
null
def _generate_js(self, id, **kwds): template = utils.get_content(self.JS_TEMPLATE) payload = template.format( id=id, spec=json.dumps(self.spec, **kwds), opt=json.dumps(self.opt, **kwds), type=self.render_type ) return payload
(self, id, **kwds)
52,459
vega.base
_prepare_spec
null
def _prepare_spec(self, spec, data): return spec
(self, spec, data)
52,460
vega.base
_repr_mimebundle_
Display the visualization in the Jupyter notebook.
def _repr_mimebundle_(self, include=None, exclude=None): """Display the visualization in the Jupyter notebook.""" id = uuid.uuid4() return ( {'application/javascript': self._generate_js(id)}, {'jupyter-vega': '#{0}'.format(id)}, )
(self, include=None, exclude=None)
52,461
vega.base
display
Render the visualization.
def display(self): """Render the visualization.""" display(self)
(self)
52,462
vega.vegalite
VegaLite
Display a Vega-Lite visualization in the Jupyter Notebook.
class VegaLite(VegaBase): """Display a Vega-Lite visualization in the Jupyter Notebook.""" render_type = 'vega-lite' def _prepare_spec(self, spec, data): return prepare_spec(spec, data)
(spec, data=None, opt=None)
52,465
vega.vegalite
_prepare_spec
null
def _prepare_spec(self, spec, data): return prepare_spec(spec, data)
(self, spec, data)
52,468
vega
_jupyter_nbextension_paths
Return metadata for the jupyter-vega nbextension.
def _jupyter_nbextension_paths(): """Return metadata for the jupyter-vega nbextension.""" return [dict( section="notebook", # the path is relative to the `vega` directory src="static", # directory in the `nbextension/` namespace dest="jupyter-vega", # _also_ in the `nbextension/` namespace require="jupyter-vega/extension")]
()
52,470
vega
find_static_assets
null
def find_static_assets(): warn("""To use the vega nbextension, you'll need to update the Jupyter notebook to version 4.2 or later.""") return []
()
52,474
smdebug_rulesconfig.actions.actions
ActionList
null
class ActionList(object): def __init__(self, *actions: Action): """ Higher level object to maintain a list of actions to be invoked when a rule is fired. Offers higher level `serialize` function to handle serialization of actions as a string list of dictionaries. :param actions: List of actions. """ if not all(isinstance(action, Action) for action in actions): raise TypeError("actions must be list of Action objects!") self.actions = actions def update_training_job_prefix_if_not_specified(self, training_job_name: str): """ For any StopTraining actions in the action list, update the training job prefix to be the training job name if the user has not already specified a custom training job prefix. This is meant to be called via the sagemaker SDK when `estimator.fit` is called by the user. Validation is purposely excluded here so that any failures in validation of the training job name are intentionally caught in the sagemaker SDK and not here. :param training_job_name: Name of the training job, passed in when `estimator.fit` is called. """ for action in self.actions: if isinstance(action, StopTraining): action.update_training_job_prefix_if_not_specified(training_job_name) def serialize(self): return "[" + ", ".join([action.serialize() for action in self.actions]) + "]"
(*actions: smdebug_rulesconfig.actions.actions.Action)
52,475
smdebug_rulesconfig.actions.actions
__init__
Higher level object to maintain a list of actions to be invoked when a rule is fired. Offers higher level `serialize` function to handle serialization of actions as a string list of dictionaries. :param actions: List of actions.
def __init__(self, *actions: Action): """ Higher level object to maintain a list of actions to be invoked when a rule is fired. Offers higher level `serialize` function to handle serialization of actions as a string list of dictionaries. :param actions: List of actions. """ if not all(isinstance(action, Action) for action in actions): raise TypeError("actions must be list of Action objects!") self.actions = actions
(self, *actions: smdebug_rulesconfig.actions.actions.Action)
52,476
smdebug_rulesconfig.actions.actions
serialize
null
def serialize(self): return "[" + ", ".join([action.serialize() for action in self.actions]) + "]"
(self)
52,477
smdebug_rulesconfig.actions.actions
update_training_job_prefix_if_not_specified
For any StopTraining actions in the action list, update the training job prefix to be the training job name if the user has not already specified a custom training job prefix. This is meant to be called via the sagemaker SDK when `estimator.fit` is called by the user. Validation is purposely excluded here so that any failures in validation of the training job name are intentionally caught in the sagemaker SDK and not here. :param training_job_name: Name of the training job, passed in when `estimator.fit` is called.
def update_training_job_prefix_if_not_specified(self, training_job_name: str): """ For any StopTraining actions in the action list, update the training job prefix to be the training job name if the user has not already specified a custom training job prefix. This is meant to be called via the sagemaker SDK when `estimator.fit` is called by the user. Validation is purposely excluded here so that any failures in validation of the training job name are intentionally caught in the sagemaker SDK and not here. :param training_job_name: Name of the training job, passed in when `estimator.fit` is called. """ for action in self.actions: if isinstance(action, StopTraining): action.update_training_job_prefix_if_not_specified(training_job_name)
(self, training_job_name: str)
52,478
smdebug_rulesconfig.profiler_rules.rules
BatchSize
null
class BatchSize(ProfilerRuleBase): def __init__( self, cpu_threshold_p95=70, gpu_threshold_p95=70, gpu_memory_threshold_p95=70, patience=1000, window=500, scan_interval_us=60 * 1000 * 1000, ): """ This rule helps to detect if GPU is underulitized because of the batch size being too small. To detect this the rule analyzes the average GPU memory footprint, CPU and GPU utilization. If utilization on CPU, GPU and memory footprint is on average low , it may indicate that user can either run on a smaller instance type or that batch size could be increased. This analysis does not work for frameworks that heavily over-allocate memory. Increasing batch size could potentially lead to a processing/dataloading bottleneck, because more data needs to be pre-processed in each iteration. :param cpu_threshold_p95: defines the threshold for 95th quantile of CPU utilization.Default is 70%. :param gpu_threshold_p95: defines the threshold for 95th quantile of GPU utilization.Default is 70%. :param gpu_memory_threshold_p95: defines the threshold for 95th quantile of GPU memory utilization.Default is 70%. :param patience: defines how many datapoints to capture before Rule runs the first evluation. Default 100 :param window: window size for computing quantiles. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_percentile("cpu_threshold_p95", cpu_threshold_p95) validate_percentile("gpu_threshold_p95", gpu_threshold_p95) validate_percentile("gpu_memory_threshold_p95", gpu_memory_threshold_p95) validate_positive_integer("patience", patience) validate_positive_integer("window", window) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__( cpu_threshold_p95=cpu_threshold_p95, gpu_threshold_p95=gpu_threshold_p95, gpu_memory_threshold_p95=gpu_memory_threshold_p95, patience=patience, window=window, scan_interval_us=scan_interval_us, )
(cpu_threshold_p95=70, gpu_threshold_p95=70, gpu_memory_threshold_p95=70, patience=1000, window=500, scan_interval_us=60000000)
52,479
smdebug_rulesconfig.profiler_rules.rules
__init__
This rule helps to detect if GPU is underulitized because of the batch size being too small. To detect this the rule analyzes the average GPU memory footprint, CPU and GPU utilization. If utilization on CPU, GPU and memory footprint is on average low , it may indicate that user can either run on a smaller instance type or that batch size could be increased. This analysis does not work for frameworks that heavily over-allocate memory. Increasing batch size could potentially lead to a processing/dataloading bottleneck, because more data needs to be pre-processed in each iteration. :param cpu_threshold_p95: defines the threshold for 95th quantile of CPU utilization.Default is 70%. :param gpu_threshold_p95: defines the threshold for 95th quantile of GPU utilization.Default is 70%. :param gpu_memory_threshold_p95: defines the threshold for 95th quantile of GPU memory utilization.Default is 70%. :param patience: defines how many datapoints to capture before Rule runs the first evluation. Default 100 :param window: window size for computing quantiles. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us.
def __init__( self, cpu_threshold_p95=70, gpu_threshold_p95=70, gpu_memory_threshold_p95=70, patience=1000, window=500, scan_interval_us=60 * 1000 * 1000, ): """ This rule helps to detect if GPU is underulitized because of the batch size being too small. To detect this the rule analyzes the average GPU memory footprint, CPU and GPU utilization. If utilization on CPU, GPU and memory footprint is on average low , it may indicate that user can either run on a smaller instance type or that batch size could be increased. This analysis does not work for frameworks that heavily over-allocate memory. Increasing batch size could potentially lead to a processing/dataloading bottleneck, because more data needs to be pre-processed in each iteration. :param cpu_threshold_p95: defines the threshold for 95th quantile of CPU utilization.Default is 70%. :param gpu_threshold_p95: defines the threshold for 95th quantile of GPU utilization.Default is 70%. :param gpu_memory_threshold_p95: defines the threshold for 95th quantile of GPU memory utilization.Default is 70%. :param patience: defines how many datapoints to capture before Rule runs the first evluation. Default 100 :param window: window size for computing quantiles. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_percentile("cpu_threshold_p95", cpu_threshold_p95) validate_percentile("gpu_threshold_p95", gpu_threshold_p95) validate_percentile("gpu_memory_threshold_p95", gpu_memory_threshold_p95) validate_positive_integer("patience", patience) validate_positive_integer("window", window) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__( cpu_threshold_p95=cpu_threshold_p95, gpu_threshold_p95=gpu_threshold_p95, gpu_memory_threshold_p95=gpu_memory_threshold_p95, patience=patience, window=window, scan_interval_us=scan_interval_us, )
(self, cpu_threshold_p95=70, gpu_threshold_p95=70, gpu_memory_threshold_p95=70, patience=1000, window=500, scan_interval_us=60000000)
52,480
smdebug_rulesconfig.profiler_rules.rules
CPUBottleneck
null
class CPUBottleneck(ProfilerRuleBase): def __init__( self, threshold=50, gpu_threshold=10, cpu_threshold=90, patience=1000, scan_interval_us=60 * 1000 * 1000, ): """ This rule helps to detect if GPU is underutilized due to CPU bottlenecks. Rule returns True if number of CPU bottlenecks exceeds a predefined threshold. :param threshold: defines the threshold behyond which Rule should return True. Default is 50 percent. So if there is a bottleneck more than 50% of the time during the training Rule will return True. :param gpu_threshold: threshold that defines when GPU is considered being under-utilized. Default is 10% :param cpu_threshold: threshold that defines high CPU utilization. Default is above 90% :param patience: How many values to record before checking for CPU bottlenecks. During training initilization, GPU is likely at 0 percent, so Rule should not check for underutilization immediatly. Default 1000. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_percentile("threshold", threshold) validate_percentile("gpu_threshold", gpu_threshold) validate_percentile("cpu_threshold", cpu_threshold) validate_positive_integer("patience", patience) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__( threshold=threshold, gpu_threshold=gpu_threshold, cpu_threshold=cpu_threshold, patience=patience, scan_interval_us=scan_interval_us, )
(threshold=50, gpu_threshold=10, cpu_threshold=90, patience=1000, scan_interval_us=60000000)
52,481
smdebug_rulesconfig.profiler_rules.rules
__init__
This rule helps to detect if GPU is underutilized due to CPU bottlenecks. Rule returns True if number of CPU bottlenecks exceeds a predefined threshold. :param threshold: defines the threshold behyond which Rule should return True. Default is 50 percent. So if there is a bottleneck more than 50% of the time during the training Rule will return True. :param gpu_threshold: threshold that defines when GPU is considered being under-utilized. Default is 10% :param cpu_threshold: threshold that defines high CPU utilization. Default is above 90% :param patience: How many values to record before checking for CPU bottlenecks. During training initilization, GPU is likely at 0 percent, so Rule should not check for underutilization immediatly. Default 1000. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us.
def __init__( self, threshold=50, gpu_threshold=10, cpu_threshold=90, patience=1000, scan_interval_us=60 * 1000 * 1000, ): """ This rule helps to detect if GPU is underutilized due to CPU bottlenecks. Rule returns True if number of CPU bottlenecks exceeds a predefined threshold. :param threshold: defines the threshold behyond which Rule should return True. Default is 50 percent. So if there is a bottleneck more than 50% of the time during the training Rule will return True. :param gpu_threshold: threshold that defines when GPU is considered being under-utilized. Default is 10% :param cpu_threshold: threshold that defines high CPU utilization. Default is above 90% :param patience: How many values to record before checking for CPU bottlenecks. During training initilization, GPU is likely at 0 percent, so Rule should not check for underutilization immediatly. Default 1000. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_percentile("threshold", threshold) validate_percentile("gpu_threshold", gpu_threshold) validate_percentile("cpu_threshold", cpu_threshold) validate_positive_integer("patience", patience) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__( threshold=threshold, gpu_threshold=gpu_threshold, cpu_threshold=cpu_threshold, patience=patience, scan_interval_us=scan_interval_us, )
(self, threshold=50, gpu_threshold=10, cpu_threshold=90, patience=1000, scan_interval_us=60000000)
52,482
smdebug_rulesconfig.actions.actions
Email
null
class Email(Action): def __init__(self, email_address: str): """ Action for sending an email to the provided email address when the rule is fired. Note that a policy must be created in the AWS account to allow the sagemaker role to send an email to the user: ``` { "Version": "2012-10-17", "Statement": [ { "Sid": "VisualEditor0", "Effect": "Allow", "Action": [ "sns:Publish", "sns:CreateTopic", "sns:Subscribe" ], "Resource": "arn:aws:sns:*:<account-id>:SMDebugRules" } ] } ``` :param email_address: Email address to send the email notification to. """ validate_email_address("email_address", email_address) super(Email, self).__init__(endpoint=email_address)
(email_address: str)
52,483
smdebug_rulesconfig.actions.actions
__init__
Action for sending an email to the provided email address when the rule is fired. Note that a policy must be created in the AWS account to allow the sagemaker role to send an email to the user: ``` { "Version": "2012-10-17", "Statement": [ { "Sid": "VisualEditor0", "Effect": "Allow", "Action": [ "sns:Publish", "sns:CreateTopic", "sns:Subscribe" ], "Resource": "arn:aws:sns:*:<account-id>:SMDebugRules" } ] } ``` :param email_address: Email address to send the email notification to.
def __init__(self, email_address: str): """ Action for sending an email to the provided email address when the rule is fired. Note that a policy must be created in the AWS account to allow the sagemaker role to send an email to the user: ``` { "Version": "2012-10-17", "Statement": [ { "Sid": "VisualEditor0", "Effect": "Allow", "Action": [ "sns:Publish", "sns:CreateTopic", "sns:Subscribe" ], "Resource": "arn:aws:sns:*:<account-id>:SMDebugRules" } ] } ``` :param email_address: Email address to send the email notification to. """ validate_email_address("email_address", email_address) super(Email, self).__init__(endpoint=email_address)
(self, email_address: str)
52,484
smdebug_rulesconfig.actions.actions
serialize
Serialize the action parameters as a string dictionary. :return: Action parameters serialized as a string dictionary.
def serialize(self): """ Serialize the action parameters as a string dictionary. :return: Action parameters serialized as a string dictionary. """ return ( "{" + ", ".join( [f'\\"{key}\\": \\"{value}\\"' for key, value in self.action_parameters.items()] ) + "}" )
(self)
52,485
smdebug_rulesconfig.profiler_rules.rules
GPUMemoryIncrease
null
class GPUMemoryIncrease(ProfilerRuleBase): def __init__(self, increase=5, patience=1000, window=10, scan_interval_us=60 * 1000 * 1000): """ This rule helps to detect large increase in memory usage on GPUs. The rule computes the moving average of continous datapoints and compares it against the moving average of previous iteration. :param increase: defines the threshold for absolute memory increase.Default is 5%. So if moving average increase from 5% to 6%, the rule will fire. :param patience: defines how many continous datapoints to capture before Rule runs the first evluation. Default is 1000 :param window: window size for computing moving average of continous datapoints :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_positive_integer("increase", increase) validate_positive_integer("patience", patience) validate_positive_integer("window", window) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__( increase=increase, patience=patience, window=window, scan_interval_us=scan_interval_us )
(increase=5, patience=1000, window=10, scan_interval_us=60000000)
52,486
smdebug_rulesconfig.profiler_rules.rules
__init__
This rule helps to detect large increase in memory usage on GPUs. The rule computes the moving average of continous datapoints and compares it against the moving average of previous iteration. :param increase: defines the threshold for absolute memory increase.Default is 5%. So if moving average increase from 5% to 6%, the rule will fire. :param patience: defines how many continous datapoints to capture before Rule runs the first evluation. Default is 1000 :param window: window size for computing moving average of continous datapoints :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us.
def __init__(self, increase=5, patience=1000, window=10, scan_interval_us=60 * 1000 * 1000): """ This rule helps to detect large increase in memory usage on GPUs. The rule computes the moving average of continous datapoints and compares it against the moving average of previous iteration. :param increase: defines the threshold for absolute memory increase.Default is 5%. So if moving average increase from 5% to 6%, the rule will fire. :param patience: defines how many continous datapoints to capture before Rule runs the first evluation. Default is 1000 :param window: window size for computing moving average of continous datapoints :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_positive_integer("increase", increase) validate_positive_integer("patience", patience) validate_positive_integer("window", window) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__( increase=increase, patience=patience, window=window, scan_interval_us=scan_interval_us )
(self, increase=5, patience=1000, window=10, scan_interval_us=60000000)
52,487
smdebug_rulesconfig.profiler_rules.rules
IOBottleneck
null
class IOBottleneck(ProfilerRuleBase): def __init__( self, threshold=50, gpu_threshold=10, io_threshold=50, patience=1000, scan_interval_us=60 * 1000 * 1000, ): """ This rule helps to detect if GPU is underutilized due to IO bottlenecks. Rule returns True if number of IO bottlenecks exceeds a predefined threshold. :param threshold: defines the threshold when Rule should return True. Default is 50 percent. So if there is a bottleneck more than 50% of the time during the training Rule will return True. :param gpu_threshold: threshold that defines when GPU is considered being under-utilized. Default is 70% :param io_threshold: threshold that defines high IO wait time. Default is above 50% :param patience: How many values to record before checking for IO bottlenecks. During training initilization, GPU is likely at 0 percent, so Rule should not check for underutilization immediatly. Default 1000. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_percentile("threshold", threshold) validate_percentile("gpu_threshold", gpu_threshold) validate_percentile("io_threshold", io_threshold) validate_positive_integer("patience", patience) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__( threshold=threshold, gpu_threshold=gpu_threshold, io_threshold=io_threshold, patience=patience, scan_interval_us=scan_interval_us, )
(threshold=50, gpu_threshold=10, io_threshold=50, patience=1000, scan_interval_us=60000000)
52,488
smdebug_rulesconfig.profiler_rules.rules
__init__
This rule helps to detect if GPU is underutilized due to IO bottlenecks. Rule returns True if number of IO bottlenecks exceeds a predefined threshold. :param threshold: defines the threshold when Rule should return True. Default is 50 percent. So if there is a bottleneck more than 50% of the time during the training Rule will return True. :param gpu_threshold: threshold that defines when GPU is considered being under-utilized. Default is 70% :param io_threshold: threshold that defines high IO wait time. Default is above 50% :param patience: How many values to record before checking for IO bottlenecks. During training initilization, GPU is likely at 0 percent, so Rule should not check for underutilization immediatly. Default 1000. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us.
def __init__( self, threshold=50, gpu_threshold=10, io_threshold=50, patience=1000, scan_interval_us=60 * 1000 * 1000, ): """ This rule helps to detect if GPU is underutilized due to IO bottlenecks. Rule returns True if number of IO bottlenecks exceeds a predefined threshold. :param threshold: defines the threshold when Rule should return True. Default is 50 percent. So if there is a bottleneck more than 50% of the time during the training Rule will return True. :param gpu_threshold: threshold that defines when GPU is considered being under-utilized. Default is 70% :param io_threshold: threshold that defines high IO wait time. Default is above 50% :param patience: How many values to record before checking for IO bottlenecks. During training initilization, GPU is likely at 0 percent, so Rule should not check for underutilization immediatly. Default 1000. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_percentile("threshold", threshold) validate_percentile("gpu_threshold", gpu_threshold) validate_percentile("io_threshold", io_threshold) validate_positive_integer("patience", patience) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__( threshold=threshold, gpu_threshold=gpu_threshold, io_threshold=io_threshold, patience=patience, scan_interval_us=scan_interval_us, )
(self, threshold=50, gpu_threshold=10, io_threshold=50, patience=1000, scan_interval_us=60000000)
52,489
smdebug_rulesconfig.profiler_rules.rules
LoadBalancing
null
class LoadBalancing(ProfilerRuleBase): def __init__(self, threshold=0.5, patience=1000, scan_interval_us=60 * 1000 * 1000): """ This rule helps to detect issues in workload balancing between multiple GPUs. It computes a histogram of utilization per GPU and measures the distance between those histograms. If the histogram exceeds a pre-defined threshold then rule triggers. :param threshold: difference between 2 histograms 0.5 :param patience: how many values to record before checking for loadbalancing issues :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_percentile("threshold", threshold) validate_positive_integer("patience", patience) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__(threshold=threshold, patience=patience, scan_interval_us=scan_interval_us)
(threshold=0.5, patience=1000, scan_interval_us=60000000)
52,490
smdebug_rulesconfig.profiler_rules.rules
__init__
This rule helps to detect issues in workload balancing between multiple GPUs. It computes a histogram of utilization per GPU and measures the distance between those histograms. If the histogram exceeds a pre-defined threshold then rule triggers. :param threshold: difference between 2 histograms 0.5 :param patience: how many values to record before checking for loadbalancing issues :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us.
def __init__(self, threshold=0.5, patience=1000, scan_interval_us=60 * 1000 * 1000): """ This rule helps to detect issues in workload balancing between multiple GPUs. It computes a histogram of utilization per GPU and measures the distance between those histograms. If the histogram exceeds a pre-defined threshold then rule triggers. :param threshold: difference between 2 histograms 0.5 :param patience: how many values to record before checking for loadbalancing issues :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_percentile("threshold", threshold) validate_positive_integer("patience", patience) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__(threshold=threshold, patience=patience, scan_interval_us=scan_interval_us)
(self, threshold=0.5, patience=1000, scan_interval_us=60000000)
52,491
smdebug_rulesconfig.profiler_rules.rules
LowGPUUtilization
null
class LowGPUUtilization(ProfilerRuleBase): def __init__( self, threshold_p95=70, threshold_p5=10, window=500, patience=1000, scan_interval_us=60 * 1000 * 1000, ): """ This rule helps to detect if GPU utilization is low or suffers from fluctuations. This is checked for each single GPU on each worker node. Rule returns True if 95th quantile is below threshold_p95 which indicates under-utilization. Rule returns true if 95th quantile is above threshold_p95 and 5th quantile is below threshold_p5 which indicates fluctuations. :param threshold_p95: threshold for 95th quantile below which GPU is considered to be underutilized. Default is 70 percent. :param threshold_p5: threshold for 5th quantile. Default is 10 percent. :param window: number of past datapoints which are used to compute the quantiles. :param patience: How many values to record before checking for underutilization/fluctuations. During training initilization, GPU is likely at 0 percent, so Rule should not check for underutilization immediately. Default 1000. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_percentile("threshold_p95", threshold_p95) validate_percentile("threshold_p5", threshold_p5) validate_positive_integer("window", window) validate_positive_integer("patience", patience) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__( threshold_p95=threshold_p95, threshold_p5=threshold_p5, window=window, patience=patience, scan_interval_us=scan_interval_us, )
(threshold_p95=70, threshold_p5=10, window=500, patience=1000, scan_interval_us=60000000)
52,492
smdebug_rulesconfig.profiler_rules.rules
__init__
This rule helps to detect if GPU utilization is low or suffers from fluctuations. This is checked for each single GPU on each worker node. Rule returns True if 95th quantile is below threshold_p95 which indicates under-utilization. Rule returns true if 95th quantile is above threshold_p95 and 5th quantile is below threshold_p5 which indicates fluctuations. :param threshold_p95: threshold for 95th quantile below which GPU is considered to be underutilized. Default is 70 percent. :param threshold_p5: threshold for 5th quantile. Default is 10 percent. :param window: number of past datapoints which are used to compute the quantiles. :param patience: How many values to record before checking for underutilization/fluctuations. During training initilization, GPU is likely at 0 percent, so Rule should not check for underutilization immediately. Default 1000. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us.
def __init__( self, threshold_p95=70, threshold_p5=10, window=500, patience=1000, scan_interval_us=60 * 1000 * 1000, ): """ This rule helps to detect if GPU utilization is low or suffers from fluctuations. This is checked for each single GPU on each worker node. Rule returns True if 95th quantile is below threshold_p95 which indicates under-utilization. Rule returns true if 95th quantile is above threshold_p95 and 5th quantile is below threshold_p5 which indicates fluctuations. :param threshold_p95: threshold for 95th quantile below which GPU is considered to be underutilized. Default is 70 percent. :param threshold_p5: threshold for 5th quantile. Default is 10 percent. :param window: number of past datapoints which are used to compute the quantiles. :param patience: How many values to record before checking for underutilization/fluctuations. During training initilization, GPU is likely at 0 percent, so Rule should not check for underutilization immediately. Default 1000. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_percentile("threshold_p95", threshold_p95) validate_percentile("threshold_p5", threshold_p5) validate_positive_integer("window", window) validate_positive_integer("patience", patience) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__( threshold_p95=threshold_p95, threshold_p5=threshold_p5, window=window, patience=patience, scan_interval_us=scan_interval_us, )
(self, threshold_p95=70, threshold_p5=10, window=500, patience=1000, scan_interval_us=60000000)
52,493
smdebug_rulesconfig.profiler_rules.rules
MaxInitializationTime
null
class MaxInitializationTime(ProfilerRuleBase): def __init__(self, threshold=20, scan_interval_us=60 * 1000 * 1000): """ This rule helps to detect if the training intialization is taking too much time. The rule waits until first step is available. :param threshold: defines the threshold in minutes to wait for first step to become available. Default is 20 minutes. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_positive_integer("threshold", threshold) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__(threshold=threshold, scan_interval_us=scan_interval_us)
(threshold=20, scan_interval_us=60000000)
52,494
smdebug_rulesconfig.profiler_rules.rules
__init__
This rule helps to detect if the training intialization is taking too much time. The rule waits until first step is available. :param threshold: defines the threshold in minutes to wait for first step to become available. Default is 20 minutes. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us.
def __init__(self, threshold=20, scan_interval_us=60 * 1000 * 1000): """ This rule helps to detect if the training intialization is taking too much time. The rule waits until first step is available. :param threshold: defines the threshold in minutes to wait for first step to become available. Default is 20 minutes. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_positive_integer("threshold", threshold) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__(threshold=threshold, scan_interval_us=scan_interval_us)
(self, threshold=20, scan_interval_us=60000000)
52,495
smdebug_rulesconfig.profiler_rules.rules
OverallSystemUsage
null
class OverallSystemUsage(ProfilerRuleBase): def __init__(self, scan_interval_us=60 * 1000 * 1000): """ This rule measures overall system usage per worker node. The rule currently only aggregates values per node and computes their percentiles. The rule does currently not take any threshold parameters into account nor can it trigger. The reason behind that is that other rules already cover cases such as underutilization and they do it at a more fine-grained level e.g. per GPU. We may change this in the future. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__(scan_interval_us=scan_interval_us)
(scan_interval_us=60000000)
52,496
smdebug_rulesconfig.profiler_rules.rules
__init__
This rule measures overall system usage per worker node. The rule currently only aggregates values per node and computes their percentiles. The rule does currently not take any threshold parameters into account nor can it trigger. The reason behind that is that other rules already cover cases such as underutilization and they do it at a more fine-grained level e.g. per GPU. We may change this in the future. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us.
def __init__(self, scan_interval_us=60 * 1000 * 1000): """ This rule measures overall system usage per worker node. The rule currently only aggregates values per node and computes their percentiles. The rule does currently not take any threshold parameters into account nor can it trigger. The reason behind that is that other rules already cover cases such as underutilization and they do it at a more fine-grained level e.g. per GPU. We may change this in the future. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__(scan_interval_us=scan_interval_us)
(self, scan_interval_us=60000000)
52,497
smdebug_rulesconfig.profiler_rules.rules
ProfilerReport
null
class ProfilerReport(ProfilerRuleBase): def __init__(self, **rule_parameters): """ This rule will create a profiler report after invoking all of the rules. The parameters used in any of these rules can be customized by following this naming scheme: <rule_name>_<parameter_name> : value Validation is also done here to ensure that: 1. The key names follow the above format 2. rule_name corresponds to a valid rule name. 3. parameter_name corresponds to a valid parameter of this rule. 4. The parameter for this rule's parameter is valid. :param rule_parameters: Dictionary mapping rule + parameter name to value. """ invalid_key_format_error = ( "Key ({0}) does not follow naming scheme: <rule_name>_<parameter_name>" ) invalid_rule_error = ( "{0} is an invalid rule name! Accepted rule names (case insensitive) are: {1}" ) invalid_param_error = ( "{0} is an invalid parameter name! Accepted parameter names for {1} are: {2}" ) rule_classes = [ BatchSize, CPUBottleneck, Dataloader, GPUMemoryIncrease, IOBottleneck, LoadBalancing, LowGPUUtilization, MaxInitializationTime, OverallSystemUsage, StepOutlier, ] rule_names = [rule.__name__ for rule in rule_classes] rule_classes_by_name = {rule.__name__.lower(): rule for rule in rule_classes} for key, val in rule_parameters.items(): assert key.count("_") >= 1, invalid_key_format_error.format(key) rule_name, *parameter_name = key.split("_") rule_name = rule_name.lower() parameter_name = "_".join(parameter_name).lower() assert rule_name in rule_classes_by_name, invalid_rule_error.format( rule_name, rule_names ) rule_class = rule_classes_by_name[rule_name] try: rule_class(**{parameter_name: val}) except TypeError: rule_signature = inspect.signature(rule_class.__init__) raise TypeError( invalid_param_error.format(parameter_name, rule_class.__name__, rule_signature) ) super().__init__(**rule_parameters)
(**rule_parameters)
52,498
smdebug_rulesconfig.profiler_rules.rules
__init__
This rule will create a profiler report after invoking all of the rules. The parameters used in any of these rules can be customized by following this naming scheme: <rule_name>_<parameter_name> : value Validation is also done here to ensure that: 1. The key names follow the above format 2. rule_name corresponds to a valid rule name. 3. parameter_name corresponds to a valid parameter of this rule. 4. The parameter for this rule's parameter is valid. :param rule_parameters: Dictionary mapping rule + parameter name to value.
def __init__(self, **rule_parameters): """ This rule will create a profiler report after invoking all of the rules. The parameters used in any of these rules can be customized by following this naming scheme: <rule_name>_<parameter_name> : value Validation is also done here to ensure that: 1. The key names follow the above format 2. rule_name corresponds to a valid rule name. 3. parameter_name corresponds to a valid parameter of this rule. 4. The parameter for this rule's parameter is valid. :param rule_parameters: Dictionary mapping rule + parameter name to value. """ invalid_key_format_error = ( "Key ({0}) does not follow naming scheme: <rule_name>_<parameter_name>" ) invalid_rule_error = ( "{0} is an invalid rule name! Accepted rule names (case insensitive) are: {1}" ) invalid_param_error = ( "{0} is an invalid parameter name! Accepted parameter names for {1} are: {2}" ) rule_classes = [ BatchSize, CPUBottleneck, Dataloader, GPUMemoryIncrease, IOBottleneck, LoadBalancing, LowGPUUtilization, MaxInitializationTime, OverallSystemUsage, StepOutlier, ] rule_names = [rule.__name__ for rule in rule_classes] rule_classes_by_name = {rule.__name__.lower(): rule for rule in rule_classes} for key, val in rule_parameters.items(): assert key.count("_") >= 1, invalid_key_format_error.format(key) rule_name, *parameter_name = key.split("_") rule_name = rule_name.lower() parameter_name = "_".join(parameter_name).lower() assert rule_name in rule_classes_by_name, invalid_rule_error.format( rule_name, rule_names ) rule_class = rule_classes_by_name[rule_name] try: rule_class(**{parameter_name: val}) except TypeError: rule_signature = inspect.signature(rule_class.__init__) raise TypeError( invalid_param_error.format(parameter_name, rule_class.__name__, rule_signature) ) super().__init__(**rule_parameters)
(self, **rule_parameters)
52,499
smdebug_rulesconfig.actions.actions
SMS
null
class SMS(Action): def __init__(self, phone_number: str): """ Action for sending an SMS to the provided phone number when the rule is fired. Note that a policy must be created in the AWS account to allow the sagemaker role to send an SMS to the user: ``` { "Version": "2012-10-17", "Statement": [ { "Sid": "VisualEditor0", "Effect": "Allow", "Action": [ "sns:Publish", "sns:CreateTopic", "sns:Subscribe" ], "Resource": "arn:aws:sns:*:<account-id>:SMDebugRules" } ] } ``` :param phone_number: Valid phone number that follows the the E.164 format. See https://docs.aws.amazon.com/sns/latest/dg/sms_publish-to-phone.html for more info. """ validate_phone_number("phone_number", phone_number) super(SMS, self).__init__(endpoint=phone_number)
(phone_number: str)
52,500
smdebug_rulesconfig.actions.actions
__init__
Action for sending an SMS to the provided phone number when the rule is fired. Note that a policy must be created in the AWS account to allow the sagemaker role to send an SMS to the user: ``` { "Version": "2012-10-17", "Statement": [ { "Sid": "VisualEditor0", "Effect": "Allow", "Action": [ "sns:Publish", "sns:CreateTopic", "sns:Subscribe" ], "Resource": "arn:aws:sns:*:<account-id>:SMDebugRules" } ] } ``` :param phone_number: Valid phone number that follows the the E.164 format. See https://docs.aws.amazon.com/sns/latest/dg/sms_publish-to-phone.html for more info.
def __init__(self, phone_number: str): """ Action for sending an SMS to the provided phone number when the rule is fired. Note that a policy must be created in the AWS account to allow the sagemaker role to send an SMS to the user: ``` { "Version": "2012-10-17", "Statement": [ { "Sid": "VisualEditor0", "Effect": "Allow", "Action": [ "sns:Publish", "sns:CreateTopic", "sns:Subscribe" ], "Resource": "arn:aws:sns:*:<account-id>:SMDebugRules" } ] } ``` :param phone_number: Valid phone number that follows the the E.164 format. See https://docs.aws.amazon.com/sns/latest/dg/sms_publish-to-phone.html for more info. """ validate_phone_number("phone_number", phone_number) super(SMS, self).__init__(endpoint=phone_number)
(self, phone_number: str)
52,502
smdebug_rulesconfig.profiler_rules.rules
StepOutlier
null
class StepOutlier(ProfilerRuleBase): def __init__(self, stddev=3, mode=None, n_outliers=10, scan_interval_us=60 * 1000 * 1000): """ This rule helps to detect outlier in step durations. Rule returns True if duration is larger than stddev * standard deviation. :param stddev: factor by which to multiply the standard deviation. Default is 3 :param mode: select mode under which steps have been saved and on which Rule should run on. Per default rule will run on steps from EVAL and TRAIN phase. :param n_outliers: How many outliers to ignore before rule returns True. Default 10. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_positive_integer("stddev", stddev) assert mode is None or isinstance(mode, str), "Mode must be a string if specified!" validate_positive_integer("n_outliers", n_outliers) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__( stddev=stddev, mode=mode, n_outliers=n_outliers, scan_interval_us=scan_interval_us )
(stddev=3, mode=None, n_outliers=10, scan_interval_us=60000000)
52,503
smdebug_rulesconfig.profiler_rules.rules
__init__
This rule helps to detect outlier in step durations. Rule returns True if duration is larger than stddev * standard deviation. :param stddev: factor by which to multiply the standard deviation. Default is 3 :param mode: select mode under which steps have been saved and on which Rule should run on. Per default rule will run on steps from EVAL and TRAIN phase. :param n_outliers: How many outliers to ignore before rule returns True. Default 10. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us.
def __init__(self, stddev=3, mode=None, n_outliers=10, scan_interval_us=60 * 1000 * 1000): """ This rule helps to detect outlier in step durations. Rule returns True if duration is larger than stddev * standard deviation. :param stddev: factor by which to multiply the standard deviation. Default is 3 :param mode: select mode under which steps have been saved and on which Rule should run on. Per default rule will run on steps from EVAL and TRAIN phase. :param n_outliers: How many outliers to ignore before rule returns True. Default 10. :param scan_interval_us: interval with which timeline files are scanned. Default is 60000000 us. """ validate_positive_integer("stddev", stddev) assert mode is None or isinstance(mode, str), "Mode must be a string if specified!" validate_positive_integer("n_outliers", n_outliers) validate_positive_integer("scan_interval_us", scan_interval_us) super().__init__( stddev=stddev, mode=mode, n_outliers=n_outliers, scan_interval_us=scan_interval_us )
(self, stddev=3, mode=None, n_outliers=10, scan_interval_us=60000000)
52,504
smdebug_rulesconfig.actions.actions
StopTraining
null
class StopTraining(Action): def __init__(self, training_job_prefix: Optional[str] = None): """ Action for stopping the training job when a rule is fired. Note that a policy must be created in the AWS account to allow the sagemaker role to stop the training job: ``` { "Version": "2012-10-17", "Statement": [ { "Sid": "VisualEditor0", "Effect": "Allow", "Action": "sagemaker:StopTrainingJob", "Resource": "arn:aws:sagemaker:*:<account_id>:training-job/*" } ] } ``` :param training_job_prefix: The prefix of the training job to stop if the rule is fired. This must only refer to one active training job, otherwise no training job will be stopped. """ self.use_default_training_job_prefix = True if training_job_prefix is not None: validate_training_job_prefix("training_job_prefix", training_job_prefix) self.use_default_training_job_prefix = False super(StopTraining, self).__init__(training_job_prefix=training_job_prefix) def update_training_job_prefix_if_not_specified(self, training_job_name: str): """ Update the training job prefix to be the training job name if the user has not already specified a custom training job prefix. This is only meant to be called via the sagemaker SDK when `estimator.fit` is called by the user. Validation is purposely excluded here so that any failures in validation of the training job name are intentionally caught in the sagemaker SDK and not here. :param training_job_name: Name of the training job, passed in when `estimator.fit` is called. """ if self.use_default_training_job_prefix: self.action_parameters["training_job_prefix"] = training_job_name
(training_job_prefix: Optional[str] = None)
52,505
smdebug_rulesconfig.actions.actions
__init__
Action for stopping the training job when a rule is fired. Note that a policy must be created in the AWS account to allow the sagemaker role to stop the training job: ``` { "Version": "2012-10-17", "Statement": [ { "Sid": "VisualEditor0", "Effect": "Allow", "Action": "sagemaker:StopTrainingJob", "Resource": "arn:aws:sagemaker:*:<account_id>:training-job/*" } ] } ``` :param training_job_prefix: The prefix of the training job to stop if the rule is fired. This must only refer to one active training job, otherwise no training job will be stopped.
def __init__(self, training_job_prefix: Optional[str] = None): """ Action for stopping the training job when a rule is fired. Note that a policy must be created in the AWS account to allow the sagemaker role to stop the training job: ``` { "Version": "2012-10-17", "Statement": [ { "Sid": "VisualEditor0", "Effect": "Allow", "Action": "sagemaker:StopTrainingJob", "Resource": "arn:aws:sagemaker:*:<account_id>:training-job/*" } ] } ``` :param training_job_prefix: The prefix of the training job to stop if the rule is fired. This must only refer to one active training job, otherwise no training job will be stopped. """ self.use_default_training_job_prefix = True if training_job_prefix is not None: validate_training_job_prefix("training_job_prefix", training_job_prefix) self.use_default_training_job_prefix = False super(StopTraining, self).__init__(training_job_prefix=training_job_prefix)
(self, training_job_prefix: Optional[str] = None)
52,507
smdebug_rulesconfig.actions.actions
update_training_job_prefix_if_not_specified
Update the training job prefix to be the training job name if the user has not already specified a custom training job prefix. This is only meant to be called via the sagemaker SDK when `estimator.fit` is called by the user. Validation is purposely excluded here so that any failures in validation of the training job name are intentionally caught in the sagemaker SDK and not here. :param training_job_name: Name of the training job, passed in when `estimator.fit` is called.
def update_training_job_prefix_if_not_specified(self, training_job_name: str): """ Update the training job prefix to be the training job name if the user has not already specified a custom training job prefix. This is only meant to be called via the sagemaker SDK when `estimator.fit` is called by the user. Validation is purposely excluded here so that any failures in validation of the training job name are intentionally caught in the sagemaker SDK and not here. :param training_job_name: Name of the training job, passed in when `estimator.fit` is called. """ if self.use_default_training_job_prefix: self.action_parameters["training_job_prefix"] = training_job_name
(self, training_job_name: str)
52,510
smdebug_rulesconfig.debugger_rules.builtin_rules
all_zero
null
def all_zero(): rule_config = _get_rule_config("AllZero") return rule_config
()
52,511
smdebug_rulesconfig.debugger_rules.builtin_rules
check_input_images
null
def check_input_images(): rule_config = _get_rule_config("CheckInputImages") return rule_config
()
52,512
smdebug_rulesconfig.debugger_rules.builtin_rules
class_imbalance
null
def class_imbalance(): rule_config = _get_rule_config("ClassImbalance") return rule_config
()
52,513
smdebug_rulesconfig.debugger_rules.builtin_rules
confusion
null
def confusion(): rule_config = _get_rule_config("Confusion") return rule_config
()
52,514
smdebug_rulesconfig.debugger_rules.builtin_rules
create_xgboost_report
null
def create_xgboost_report(): rule_config = _get_rule_config("CreateXgboostReport") return rule_config
()
52,515
smdebug_rulesconfig.debugger_rules.builtin_rules
dead_relu
null
def dead_relu(): rule_config = _get_rule_config("DeadRelu") return rule_config
()
52,517
smdebug_rulesconfig.debugger_rules.builtin_rules
exploding_tensor
null
def exploding_tensor(): rule_config = _get_rule_config("ExplodingTensor") return rule_config
()
52,518
smdebug_rulesconfig.debugger_rules.builtin_rules
feature_importance_overweight
null
def feature_importance_overweight(): rule_config = _get_rule_config("FeatureImportanceOverweight") return rule_config
()
52,519
smdebug_rulesconfig.debugger_rules._collections
get_collection
null
def get_collection(collection_name): return _get_collection_config(collection_name)
(collection_name)
52,520
smdebug_rulesconfig.actions.actions
is_valid_action_object
Helper function to be used by the sagemaker SDK to determine whether the provided object is a valid action object or not (must be of type `Action` or `ActionList`. :param actions: actions object specified by the user when calling `Rule.sagemaker` in the sagemaker SDK. :return: Boolean for whether the provided actions object is valid or not.
def is_valid_action_object(actions: Union[Action, ActionList]): """ Helper function to be used by the sagemaker SDK to determine whether the provided object is a valid action object or not (must be of type `Action` or `ActionList`. :param actions: actions object specified by the user when calling `Rule.sagemaker` in the sagemaker SDK. :return: Boolean for whether the provided actions object is valid or not. """ return isinstance(actions, Action) or isinstance(actions, ActionList)
(actions: Union[smdebug_rulesconfig.actions.actions.Action, smdebug_rulesconfig.actions.actions.ActionList])
52,521
smdebug_rulesconfig.debugger_rules.builtin_rules
loss_not_decreasing
null
def loss_not_decreasing(): rule_config = _get_rule_config("LossNotDecreasing") return rule_config
()
52,522
smdebug_rulesconfig.debugger_rules.builtin_rules
nlp_sequence_ratio
null
def nlp_sequence_ratio(): rule_config = _get_rule_config("NLPSequenceRatio") return rule_config
()
52,523
smdebug_rulesconfig.debugger_rules.builtin_rules
overfit
null
def overfit(): rule_config = _get_rule_config("Overfit") return rule_config
()
52,524
smdebug_rulesconfig.debugger_rules.builtin_rules
overtraining
null
def overtraining(): rule_config = _get_rule_config("Overtraining") return rule_config
()
52,525
smdebug_rulesconfig.debugger_rules.builtin_rules
poor_weight_initialization
null
def poor_weight_initialization(): rule_config = _get_rule_config("PoorWeightInitialization") return rule_config
()
52,527
smdebug_rulesconfig.debugger_rules.builtin_rules
saturated_activation
null
def saturated_activation(): rule_config = _get_rule_config("SaturatedActivation") return rule_config
()
52,528
smdebug_rulesconfig.debugger_rules.builtin_rules
similar_across_runs
null
def similar_across_runs(): rule_config = _get_rule_config("SimilarAcrossRuns") return rule_config
()
52,529
smdebug_rulesconfig.debugger_rules.builtin_rules
stalled_training_rule
null
def stalled_training_rule(): rule_config = _get_rule_config("StalledTrainingRule") return rule_config
()
52,530
smdebug_rulesconfig.debugger_rules.builtin_rules
tensor_variance
null
def tensor_variance(): rule_config = _get_rule_config("TensorVariance") return rule_config
()
52,531
smdebug_rulesconfig.debugger_rules.builtin_rules
tree_depth
null
def tree_depth(): rule_config = _get_rule_config("TreeDepth") return rule_config
()
52,532
smdebug_rulesconfig.debugger_rules.builtin_rules
unchanged_tensor
null
def unchanged_tensor(): rule_config = _get_rule_config("UnchangedTensor") return rule_config
()
52,533
smdebug_rulesconfig.debugger_rules.builtin_rules
vanishing_gradient
null
def vanishing_gradient(): rule_config = _get_rule_config("VanishingGradient") return rule_config
()
52,534
smdebug_rulesconfig.debugger_rules.builtin_rules
weight_update_ratio
null
def weight_update_ratio(): rule_config = _get_rule_config("WeightUpdateRatio") return rule_config
()
52,535
contextlib
AbstractContextManager
An abstract base class for context managers.
class AbstractContextManager(abc.ABC): """An abstract base class for context managers.""" __class_getitem__ = classmethod(GenericAlias) def __enter__(self): """Return `self` upon entering the runtime context.""" return self @abc.abstractmethod def __exit__(self, exc_type, exc_value, traceback): """Raise any exception triggered within the runtime context.""" return None @classmethod def __subclasshook__(cls, C): if cls is AbstractContextManager: return _collections_abc._check_methods(C, "__enter__", "__exit__") return NotImplemented
()
52,536
contextlib
__enter__
Return `self` upon entering the runtime context.
def __enter__(self): """Return `self` upon entering the runtime context.""" return self
(self)
52,537
contextlib
__exit__
Raise any exception triggered within the runtime context.
@abc.abstractmethod def __exit__(self, exc_type, exc_value, traceback): """Raise any exception triggered within the runtime context.""" return None
(self, exc_type, exc_value, traceback)
52,538
asyncache
IdentityFunction
Type for a function returning the same type as the one it received.
class IdentityFunction(Protocol): # pylint: disable=too-few-public-methods """ Type for a function returning the same type as the one it received. """ def __call__(self, __x: _T) -> _T: ...
(*args, **kwargs)
52,539
asyncache
__call__
null
def __call__(self, __x: _T) -> _T: ...
(self, _IdentityFunction__x: ~_T) -> ~_T
52,540
typing
_no_init_or_replace_init
null
def _no_init_or_replace_init(self, *args, **kwargs): cls = type(self) if cls._is_protocol: raise TypeError('Protocols cannot be instantiated') # Already using a custom `__init__`. No need to calculate correct # `__init__` to call. This can lead to RecursionError. See bpo-45121. if cls.__init__ is not _no_init_or_replace_init: return # Initially, `__init__` of a protocol subclass is set to `_no_init_or_replace_init`. # The first instantiation of the subclass will call `_no_init_or_replace_init` which # searches for a proper new `__init__` in the MRO. The new `__init__` # replaces the subclass' old `__init__` (ie `_no_init_or_replace_init`). Subsequent # instantiation of the protocol subclass will thus use the new # `__init__` and no longer call `_no_init_or_replace_init`. for base in cls.__mro__: init = base.__dict__.get('__init__', _no_init_or_replace_init) if init is not _no_init_or_replace_init: cls.__init__ = init break else: # should not happen cls.__init__ = object.__init__ cls.__init__(self, *args, **kwargs)
(self, *args, **kwargs)
52,542
asyncache
NullContext
A class for noop context managers.
class NullContext: """A class for noop context managers.""" def __enter__(self): """Return ``self`` upon entering the runtime context.""" return self def __exit__(self, exc_type, exc_value, traceback): """Raise any exception triggered within the runtime context.""" return None async def __aenter__(self): """Return ``self`` upon entering the runtime context.""" return self async def __aexit__(self, exc_type, exc_value, traceback): """Raise any exception triggered within the runtime context.""" return None
()
52,543
asyncache
__aenter__
Return ``self`` upon entering the runtime context.
def __exit__(self, exc_type, exc_value, traceback): """Raise any exception triggered within the runtime context.""" return None
(self)
52,544
asyncache
__aexit__
Raise any exception triggered within the runtime context.
def __exit__(self, exc_type, exc_value, traceback): """Raise any exception triggered within the runtime context.""" return None
(self, exc_type, exc_value, traceback)
52,545
asyncache
__enter__
Return ``self`` upon entering the runtime context.
def __enter__(self): """Return ``self`` upon entering the runtime context.""" return self
(self)