index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
52,557
asyncache
cached
Decorator to wrap a function or a coroutine with a memoizing callable that saves results in a cache. When ``lock`` is provided for a standard function, it's expected to implement ``__enter__`` and ``__exit__`` that will be used to lock the cache when gets updated. If it wraps a coroutine, ``lock`` must implement ``__aenter__`` and ``__aexit__``.
def cached( cache: Optional[MutableMapping[_KT, Any]], # ignoring the mypy error to be consistent with the type used # in https://github.com/python/typeshed/tree/master/stubs/cachetools key: Callable[..., _KT] = keys.hashkey, # type:ignore lock: Optional["AbstractContextManager[Any]"] = None, ) -> IdentityFunction: """ Decorator to wrap a function or a coroutine with a memoizing callable that saves results in a cache. When ``lock`` is provided for a standard function, it's expected to implement ``__enter__`` and ``__exit__`` that will be used to lock the cache when gets updated. If it wraps a coroutine, ``lock`` must implement ``__aenter__`` and ``__aexit__``. """ lock = lock or NullContext() def decorator(func): if asyncio.iscoroutinefunction(func): async def wrapper(*args, **kwargs): k = key(*args, **kwargs) try: async with lock: return cache[k] except KeyError: pass # key not found val = await func(*args, **kwargs) try: async with lock: cache[k] = val except ValueError: pass # val too large return val else: def wrapper(*args, **kwargs): k = key(*args, **kwargs) try: with lock: return cache[k] except KeyError: pass # key not found val = func(*args, **kwargs) try: with lock: cache[k] = val except ValueError: pass # val too large return val return functools.wraps(func)(wrapper) return decorator
(cache: Optional[MutableMapping[~_KT, Any]], key: Callable[..., ~_KT] = <function hashkey at 0x7f76318b20e0>, lock: Optional[contextlib.AbstractContextManager[Any]] = None) -> asyncache.IdentityFunction
52,558
asyncache
cachedmethod
Decorator to wrap a class or instance method with a memoizing callable that saves results in a cache. This works similarly to `cached`, but the arguments `cache` and `lock` are callables that return the cache object and the lock respectively.
def cachedmethod( cache: Callable[[Any], Optional[MutableMapping[_KT, Any]]], # ignoring the mypy error to be consistent with the type used # in https://github.com/python/typeshed/tree/master/stubs/cachetools key: Callable[..., _KT] = keys.hashkey, # type:ignore lock: Optional[Callable[[Any], "AbstractContextManager[Any]"]] = None, ) -> IdentityFunction: """Decorator to wrap a class or instance method with a memoizing callable that saves results in a cache. This works similarly to `cached`, but the arguments `cache` and `lock` are callables that return the cache object and the lock respectively. """ lock = lock or (lambda _: NullContext()) def decorator(method): if asyncio.iscoroutinefunction(method): async def wrapper(self, *args, **kwargs): method_cache = cache(self) if method_cache is None: return await method(self, *args, **kwargs) k = key(self, *args, **kwargs) try: async with lock(self): return method_cache[k] except KeyError: pass # key not found val = await method(self, *args, **kwargs) try: async with lock(self): method_cache[k] = val except ValueError: pass # val too large return val else: def wrapper(self, *args, **kwargs): method_cache = cache(self) if method_cache is None: return method(self, *args, **kwargs) k = key(*args, **kwargs) try: with lock(self): return method_cache[k] except KeyError: pass # key not found val = method(self, *args, **kwargs) try: with lock(self): method_cache[k] = val except ValueError: pass # val too large return val return functools.wraps(method)(wrapper) return decorator
(cache: Callable[[Any], Optional[MutableMapping[~_KT, Any]]], key: Callable[..., ~_KT] = <function hashkey at 0x7f76318b20e0>, lock: Optional[Callable[[Any], contextlib.AbstractContextManager[Any]]] = None) -> asyncache.IdentityFunction
52,561
boxdiff.models.core
BoundingBox
Identified 2D bounding box: label + position, width, and height.
class BoundingBox: """ Identified 2D bounding box: label + position, width, and height. """ id: ID label: str x: float y: float width: float height: float def __sub__(self, other: 'BoundingBox') -> BoundingBoxDelta: """ Compute the delta between two bounding boxes. """ return BoundingBoxDelta( self.id, other.label, self.label, self.x - other.x, self.y - other.y, self.width - other.width, self.height - other.height, ) def __add__(self, delta: BoundingBoxDelta) -> 'BoundingBox': return BoundingBox( delta.id, delta.label_new, self.x + delta.x_delta, self.y + delta.y_delta, self.width + delta.width_delta, self.height + delta.height_delta, ) def __iadd__(self, delta: BoundingBoxDelta) -> 'BoundingBox': self.label = delta.label_new self.x += delta.x_delta self.y += delta.y_delta self.width += delta.width_delta self.height += delta.height_delta return self @property def points(self) -> Tuple[float]: """ Return the 4 points of the bounding box. """ return self.x, self.y, self.x + self.width, self.y + self.height @property def area(self) -> float: """ Return the area of the bounding box. """ return self.width * self.height def __and__(self, other: 'BoundingBox') -> Optional['BoundingBox']: """ Compute the intersection of two bounding boxes, or None if they don't overlap. """ x1, y1, x2, y2 = self.points x3, y3, x4, y4 = other.points x = max(x1, x3) y = max(y1, y3) w = min(x2, x4) - x h = min(y2, y4) - y if w <= 0 or h <= 0: return None return BoundingBox(self.id, self.label, x, y, w, h) def iou(self, other: 'BoundingBox') -> float: """ Compute the intersection over union of two bounding boxes. """ intersection = self & other if intersection is None: return 0 return intersection.area / (self.area + other.area - intersection.area)
(id: ~ID, label: str, x: float, y: float, width: float, height: float) -> None
52,562
boxdiff.models.core
__add__
null
def __add__(self, delta: BoundingBoxDelta) -> 'BoundingBox': return BoundingBox( delta.id, delta.label_new, self.x + delta.x_delta, self.y + delta.y_delta, self.width + delta.width_delta, self.height + delta.height_delta, )
(self, delta: boxdiff.models.deltas.BoundingBoxDelta) -> boxdiff.models.core.BoundingBox
52,563
boxdiff.models.core
__and__
Compute the intersection of two bounding boxes, or None if they don't overlap.
def __and__(self, other: 'BoundingBox') -> Optional['BoundingBox']: """ Compute the intersection of two bounding boxes, or None if they don't overlap. """ x1, y1, x2, y2 = self.points x3, y3, x4, y4 = other.points x = max(x1, x3) y = max(y1, y3) w = min(x2, x4) - x h = min(y2, y4) - y if w <= 0 or h <= 0: return None return BoundingBox(self.id, self.label, x, y, w, h)
(self, other: boxdiff.models.core.BoundingBox) -> Optional[boxdiff.models.core.BoundingBox]
52,564
boxdiff.models.core
__eq__
null
from typing import List, Optional, Tuple, TypeVar from uuid import UUID from pydantic.dataclasses import dataclass from dataclasses_json import dataclass_json from boxdiff.models.deltas import BoundingBoxDelta, ImageDelta, ImageSetDelta ID = TypeVar('ID', int, UUID, str) # Parses in order: int, UUID, then str @dataclass_json @dataclass class BoundingBox: """ Identified 2D bounding box: label + position, width, and height. """ id: ID label: str x: float y: float width: float height: float def __sub__(self, other: 'BoundingBox') -> BoundingBoxDelta: """ Compute the delta between two bounding boxes. """ return BoundingBoxDelta( self.id, other.label, self.label, self.x - other.x, self.y - other.y, self.width - other.width, self.height - other.height, ) def __add__(self, delta: BoundingBoxDelta) -> 'BoundingBox': return BoundingBox( delta.id, delta.label_new, self.x + delta.x_delta, self.y + delta.y_delta, self.width + delta.width_delta, self.height + delta.height_delta, ) def __iadd__(self, delta: BoundingBoxDelta) -> 'BoundingBox': self.label = delta.label_new self.x += delta.x_delta self.y += delta.y_delta self.width += delta.width_delta self.height += delta.height_delta return self @property def points(self) -> Tuple[float]: """ Return the 4 points of the bounding box. """ return self.x, self.y, self.x + self.width, self.y + self.height @property def area(self) -> float: """ Return the area of the bounding box. """ return self.width * self.height def __and__(self, other: 'BoundingBox') -> Optional['BoundingBox']: """ Compute the intersection of two bounding boxes, or None if they don't overlap. """ x1, y1, x2, y2 = self.points x3, y3, x4, y4 = other.points x = max(x1, x3) y = max(y1, y3) w = min(x2, x4) - x h = min(y2, y4) - y if w <= 0 or h <= 0: return None return BoundingBox(self.id, self.label, x, y, w, h) def iou(self, other: 'BoundingBox') -> float: """ Compute the intersection over union of two bounding boxes. """ intersection = self & other if intersection is None: return 0 return intersection.area / (self.area + other.area - intersection.area)
(self, other)
52,565
boxdiff.models.core
__iadd__
null
def __iadd__(self, delta: BoundingBoxDelta) -> 'BoundingBox': self.label = delta.label_new self.x += delta.x_delta self.y += delta.y_delta self.width += delta.width_delta self.height += delta.height_delta return self
(self, delta: boxdiff.models.deltas.BoundingBoxDelta) -> boxdiff.models.core.BoundingBox
52,566
pydantic._internal._dataclasses
__init__
null
def complete_dataclass( cls: type[Any], config_wrapper: _config.ConfigWrapper, *, raise_errors: bool = True, types_namespace: dict[str, Any] | None, ) -> bool: """Finish building a pydantic dataclass. This logic is called on a class which has already been wrapped in `dataclasses.dataclass()`. This is somewhat analogous to `pydantic._internal._model_construction.complete_model_class`. Args: cls: The class. config_wrapper: The config wrapper instance. raise_errors: Whether to raise errors, defaults to `True`. types_namespace: The types namespace. Returns: `True` if building a pydantic dataclass is successfully completed, `False` otherwise. Raises: PydanticUndefinedAnnotation: If `raise_error` is `True` and there is an undefined annotations. """ if hasattr(cls, '__post_init_post_parse__'): warnings.warn( 'Support for `__post_init_post_parse__` has been dropped, the method will not be called', DeprecationWarning ) if types_namespace is None: types_namespace = _typing_extra.get_cls_types_namespace(cls) set_dataclass_fields(cls, types_namespace, config_wrapper=config_wrapper) typevars_map = get_standard_typevars_map(cls) gen_schema = GenerateSchema( config_wrapper, types_namespace, typevars_map, ) # This needs to be called before we change the __init__ sig = generate_pydantic_signature( init=cls.__init__, fields=cls.__pydantic_fields__, # type: ignore config_wrapper=config_wrapper, is_dataclass=True, ) # dataclass.__init__ must be defined here so its `__qualname__` can be changed since functions can't be copied. def __init__(__dataclass_self__: PydanticDataclass, *args: Any, **kwargs: Any) -> None: __tracebackhide__ = True s = __dataclass_self__ s.__pydantic_validator__.validate_python(ArgsKwargs(args, kwargs), self_instance=s) __init__.__qualname__ = f'{cls.__qualname__}.__init__' cls.__init__ = __init__ # type: ignore cls.__pydantic_config__ = config_wrapper.config_dict # type: ignore cls.__signature__ = sig # type: ignore get_core_schema = getattr(cls, '__get_pydantic_core_schema__', None) try: if get_core_schema: schema = get_core_schema( cls, CallbackGetCoreSchemaHandler( partial(gen_schema.generate_schema, from_dunder_get_core_schema=False), gen_schema, ref_mode='unpack', ), ) else: schema = gen_schema.generate_schema(cls, from_dunder_get_core_schema=False) except PydanticUndefinedAnnotation as e: if raise_errors: raise set_dataclass_mocks(cls, cls.__name__, f'`{e.name}`') return False core_config = config_wrapper.core_config(cls) try: schema = gen_schema.clean_schema(schema) except gen_schema.CollectedInvalid: set_dataclass_mocks(cls, cls.__name__, 'all referenced types') return False # We are about to set all the remaining required properties expected for this cast; # __pydantic_decorators__ and __pydantic_fields__ should already be set cls = typing.cast('type[PydanticDataclass]', cls) # debug(schema) cls.__pydantic_core_schema__ = schema cls.__pydantic_validator__ = validator = create_schema_validator( schema, cls, cls.__module__, cls.__qualname__, 'dataclass', core_config, config_wrapper.plugin_settings ) cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config) if config_wrapper.validate_assignment: @wraps(cls.__setattr__) def validated_setattr(instance: Any, field: str, value: str, /) -> None: validator.validate_assignment(instance, field, value) cls.__setattr__ = validated_setattr.__get__(None, cls) # type: ignore return True
(__dataclass_self__: 'PydanticDataclass', *args: 'Any', **kwargs: 'Any') -> 'None'
52,568
boxdiff.models.core
__sub__
Compute the delta between two bounding boxes.
def __sub__(self, other: 'BoundingBox') -> BoundingBoxDelta: """ Compute the delta between two bounding boxes. """ return BoundingBoxDelta( self.id, other.label, self.label, self.x - other.x, self.y - other.y, self.width - other.width, self.height - other.height, )
(self, other: boxdiff.models.core.BoundingBox) -> boxdiff.models.deltas.BoundingBoxDelta
52,569
boxdiff.models.core
iou
Compute the intersection over union of two bounding boxes.
def iou(self, other: 'BoundingBox') -> float: """ Compute the intersection over union of two bounding boxes. """ intersection = self & other if intersection is None: return 0 return intersection.area / (self.area + other.area - intersection.area)
(self, other: boxdiff.models.core.BoundingBox) -> float
52,570
dataclasses_json.api
to_dict
null
def to_dict(self, encode_json=False) -> Dict[str, Json]: return _asdict(self, encode_json=encode_json)
(self, encode_json=False) -> Dict[str, Union[dict, list, str, int, float, bool, NoneType]]
52,571
dataclasses_json.api
to_json
null
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Optional[Union[int, str]] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) -> str: return json.dumps(self.to_dict(encode_json=False), cls=_ExtendedEncoder, skipkeys=skipkeys, ensure_ascii=ensure_ascii, check_circular=check_circular, allow_nan=allow_nan, indent=indent, separators=separators, default=default, sort_keys=sort_keys, **kw)
(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, NoneType] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) -> str
52,572
boxdiff.models.deltas
BoundingBoxDelta
BoundingBoxDelta(id: 'ID', label_old: str, label_new: str, x_delta: float, y_delta: float, width_delta: float, height_delta: float)
class BoundingBoxDelta: id: 'ID' label_old: str label_new: str x_delta: float y_delta: float width_delta: float height_delta: float @property def flags(self) -> BoundingBoxDifference: f = BoundingBoxDifference(0) if self.label_old != self.label_new: f |= BoundingBoxDifference.RELABELED if self.x_delta != 0 or self.y_delta != 0: f |= BoundingBoxDifference.MOVED if self.width_delta != 0 or self.height_delta != 0: f |= BoundingBoxDifference.RESIZED return f
(id: 'ID', label_old: str, label_new: str, x_delta: float, y_delta: float, width_delta: float, height_delta: float) -> None
52,573
boxdiff.models.deltas
__eq__
null
from typing import List, TYPE_CHECKING from dataclasses import dataclass if TYPE_CHECKING: from boxdiff.models.core import ID, BoundingBox from boxdiff.models.flags import ( BoundingBoxDifference, ImageDifference, ImageSetDifference, ) @dataclass class BoundingBoxDelta: id: 'ID' label_old: str label_new: str x_delta: float y_delta: float width_delta: float height_delta: float @property def flags(self) -> BoundingBoxDifference: f = BoundingBoxDifference(0) if self.label_old != self.label_new: f |= BoundingBoxDifference.RELABELED if self.x_delta != 0 or self.y_delta != 0: f |= BoundingBoxDifference.MOVED if self.width_delta != 0 or self.height_delta != 0: f |= BoundingBoxDifference.RESIZED return f
(self, other)
52,576
boxdiff.models.flags
BoundingBoxDifference
Flag enum for the different types of box-level differences.
class BoundingBoxDifference(Flag): """ Flag enum for the different types of box-level differences. """ MOVED = auto() RESIZED = auto() RELABELED = auto()
(value, names=None, *, module=None, qualname=None, type=None, start=1)
52,577
boxdiff.models.core
Image
Identified list of bounding boxes.
class Image: """ Identified list of bounding boxes. """ id: ID bounding_boxes: List[BoundingBox] def __sub__(self, other: 'Image') -> 'ImageDelta': """ Compute the delta between two images. """ # Get the unique set of IDs for the boxes in each image box_ids_self = {box.id for box in self.bounding_boxes} box_ids_other = {box.id for box in other.bounding_boxes} # Find the boxes that are in one image but not the other boxes_added = [ box for box in other.bounding_boxes if box.id not in box_ids_self ] boxes_removed = [ box for box in self.bounding_boxes if box.id not in box_ids_other ] # Find the boxes that are in both images box_ids_common = box_ids_self & box_ids_other boxes_common_self = sorted( [box for box in self.bounding_boxes if box.id in box_ids_common], key=lambda box: box.id, ) boxes_common_other = sorted( [box for box in other.bounding_boxes if box.id in box_ids_common], key=lambda box: box.id, ) assert len(boxes_common_self) == len( boxes_common_other ), 'Common box count mismatch' # Compute the deltas between the common boxes box_deltas = [] for box_self, box_other in zip(boxes_common_self, boxes_common_other): box_deltas.append(box_self - box_other) return ImageDelta(self.id, boxes_added, boxes_removed, box_deltas)
(id: ~ID, bounding_boxes: List[boxdiff.models.core.BoundingBox]) -> None
52,581
boxdiff.models.core
__sub__
Compute the delta between two images.
def __sub__(self, other: 'Image') -> 'ImageDelta': """ Compute the delta between two images. """ # Get the unique set of IDs for the boxes in each image box_ids_self = {box.id for box in self.bounding_boxes} box_ids_other = {box.id for box in other.bounding_boxes} # Find the boxes that are in one image but not the other boxes_added = [ box for box in other.bounding_boxes if box.id not in box_ids_self ] boxes_removed = [ box for box in self.bounding_boxes if box.id not in box_ids_other ] # Find the boxes that are in both images box_ids_common = box_ids_self & box_ids_other boxes_common_self = sorted( [box for box in self.bounding_boxes if box.id in box_ids_common], key=lambda box: box.id, ) boxes_common_other = sorted( [box for box in other.bounding_boxes if box.id in box_ids_common], key=lambda box: box.id, ) assert len(boxes_common_self) == len( boxes_common_other ), 'Common box count mismatch' # Compute the deltas between the common boxes box_deltas = [] for box_self, box_other in zip(boxes_common_self, boxes_common_other): box_deltas.append(box_self - box_other) return ImageDelta(self.id, boxes_added, boxes_removed, box_deltas)
(self, other: boxdiff.models.core.Image) -> boxdiff.models.deltas.ImageDelta
52,584
boxdiff.models.deltas
ImageDelta
ImageDelta(id: 'ID', boxes_added: List[ForwardRef('BoundingBox')], boxes_removed: List[ForwardRef('BoundingBox')], box_deltas: List[boxdiff.models.deltas.BoundingBoxDelta])
class ImageDelta: id: 'ID' boxes_added: List['BoundingBox'] boxes_removed: List['BoundingBox'] box_deltas: List[BoundingBoxDelta] @property def flags(self) -> ImageDifference: f = ImageDifference(0) if self.boxes_added: f |= ImageDifference.BOXES_ADDED if self.boxes_removed: f |= ImageDifference.BOXES_REMOVED if any(delta.flags for delta in self.box_deltas): f |= ImageDifference.BOXES_MODIFIED return f
(id: 'ID', boxes_added: List[ForwardRef('BoundingBox')], boxes_removed: List[ForwardRef('BoundingBox')], box_deltas: List[boxdiff.models.deltas.BoundingBoxDelta]) -> None
52,588
boxdiff.models.flags
ImageDifference
Flag enum for the different types of image-level differences.
class ImageDifference(Flag): """ Flag enum for the different types of image-level differences. """ BOXES_ADDED = auto() BOXES_REMOVED = auto() BOXES_MODIFIED = auto()
(value, names=None, *, module=None, qualname=None, type=None, start=1)
52,589
boxdiff.models.core
ImageSet
Identified list of images.
class ImageSet: """ Identified list of images. """ id: ID images: List[Image] def __sub__(self, other: 'ImageSet') -> ImageSetDelta: """ Compute the delta between two image sets. """ # Get the unique set of IDs for the images in each set image_ids_self = {image.id for image in self.images} image_ids_other = {image.id for image in other.images} # Find the images that are in one set but not the other images_added = [ image for image in other.images if image.id not in image_ids_self ] images_removed = [ image for image in self.images if image.id not in image_ids_other ] # Find the images that are in both sets image_ids_common = image_ids_self & image_ids_other images_common_self = sorted( [image for image in self.images if image.id in image_ids_common], key=lambda im: im.id, ) images_common_other = sorted( [image for image in other.images if image.id in image_ids_common], key=lambda im: im.id, ) assert len(images_common_self) == len( images_common_other ), 'Common image count mismatch' # Compute the deltas between the common images image_deltas = [] for image_self, image_other in zip(images_common_self, images_common_other): image_deltas.append(image_self - image_other) return ImageSetDelta(self.id, images_added, images_removed, image_deltas)
(id: ~ID, images: List[boxdiff.models.core.Image]) -> None
52,593
boxdiff.models.core
__sub__
Compute the delta between two image sets.
def __sub__(self, other: 'ImageSet') -> ImageSetDelta: """ Compute the delta between two image sets. """ # Get the unique set of IDs for the images in each set image_ids_self = {image.id for image in self.images} image_ids_other = {image.id for image in other.images} # Find the images that are in one set but not the other images_added = [ image for image in other.images if image.id not in image_ids_self ] images_removed = [ image for image in self.images if image.id not in image_ids_other ] # Find the images that are in both sets image_ids_common = image_ids_self & image_ids_other images_common_self = sorted( [image for image in self.images if image.id in image_ids_common], key=lambda im: im.id, ) images_common_other = sorted( [image for image in other.images if image.id in image_ids_common], key=lambda im: im.id, ) assert len(images_common_self) == len( images_common_other ), 'Common image count mismatch' # Compute the deltas between the common images image_deltas = [] for image_self, image_other in zip(images_common_self, images_common_other): image_deltas.append(image_self - image_other) return ImageSetDelta(self.id, images_added, images_removed, image_deltas)
(self, other: boxdiff.models.core.ImageSet) -> boxdiff.models.deltas.ImageSetDelta
52,596
boxdiff.models.deltas
ImageSetDelta
ImageSetDelta(id: 'ID', images_added: List[boxdiff.models.deltas.ImageDelta], images_removed: List[boxdiff.models.deltas.ImageDelta], image_deltas: List[boxdiff.models.deltas.ImageDelta])
class ImageSetDelta: id: 'ID' images_added: List[ImageDelta] images_removed: List[ImageDelta] image_deltas: List[ImageDelta] @property def flags(self) -> ImageSetDifference: f = ImageSetDifference(0) if self.images_added: f |= ImageSetDifference.IMAGES_ADDED if self.images_removed: f |= ImageSetDifference.IMAGES_REMOVED if any(delta.flags for delta in self.image_deltas): f |= ImageSetDifference.IMAGES_MODIFIED return f
(id: 'ID', images_added: List[boxdiff.models.deltas.ImageDelta], images_removed: List[boxdiff.models.deltas.ImageDelta], image_deltas: List[boxdiff.models.deltas.ImageDelta]) -> None
52,600
boxdiff.models.flags
ImageSetDifference
Flag enum for the different types of image-set-level differences.
class ImageSetDifference(Flag): """ Flag enum for the different types of image-set-level differences. """ IMAGES_ADDED = auto() IMAGES_REMOVED = auto() IMAGES_MODIFIED = auto()
(value, names=None, *, module=None, qualname=None, type=None, start=1)
52,602
causalimpact.analysis
CausalImpact
CausalImpact() performs causal inference through counterfactual predictions using a Bayesian structural time-series model. Parameters: ---------- data : pandas dataframe the response variable must be in the first column, and any covariates in subsequent columns. pre_period : list A list specifying the first and the last time point of the pre-intervention period in the response column. This period can be thought of as a training period, used to determine the relationship between the response variable and the covariates. post_period : list A vector specifying the first and the last day of the post-intervention period we wish to study. This is the period after the intervention has begun whose effect we are interested in. The relationship between response variable and covariates, as determined during the pre-period, will be used to predict how the response variable should have evolved during the post-period had no intervention taken place. model_args : dict Optional arguments that can be used to adjust the default construction of the state-space model used for inference. For full control over the model, you can construct your own model using the statsmodels package and feed the model into CausalImpact(). ucm_model : statsmodels.tsa.statespace.structural.UnobservedComponents Instead of passing in data and having CausalImpact construct a model, it is possible to construct a model yourself using the statsmodel package. In this case, omit data, pre_period, and post_period. Instead only pass in ucm_model, y_post, alpha (optional). The model must have been fitted on data where the response variable was set to np.nan during the post-treatment period. The actual observed data during this period must then be passed to the function in y_post. post_period_response : list | pd.Series | np.Array Actual observed data during the post-intervention period. This is required if and only if a fitted ucm_model is passed instead of data. alpha : float Desired tail-area probability for posterior intervals. Defaults to 0.05, which will produce central 95% intervals. Returns ------- CausalImpact Object
class CausalImpact: """CausalImpact() performs causal inference through counterfactual predictions using a Bayesian structural time-series model. Parameters: ---------- data : pandas dataframe the response variable must be in the first column, and any covariates in subsequent columns. pre_period : list A list specifying the first and the last time point of the pre-intervention period in the response column. This period can be thought of as a training period, used to determine the relationship between the response variable and the covariates. post_period : list A vector specifying the first and the last day of the post-intervention period we wish to study. This is the period after the intervention has begun whose effect we are interested in. The relationship between response variable and covariates, as determined during the pre-period, will be used to predict how the response variable should have evolved during the post-period had no intervention taken place. model_args : dict Optional arguments that can be used to adjust the default construction of the state-space model used for inference. For full control over the model, you can construct your own model using the statsmodels package and feed the model into CausalImpact(). ucm_model : statsmodels.tsa.statespace.structural.UnobservedComponents Instead of passing in data and having CausalImpact construct a model, it is possible to construct a model yourself using the statsmodel package. In this case, omit data, pre_period, and post_period. Instead only pass in ucm_model, y_post, alpha (optional). The model must have been fitted on data where the response variable was set to np.nan during the post-treatment period. The actual observed data during this period must then be passed to the function in y_post. post_period_response : list | pd.Series | np.Array Actual observed data during the post-intervention period. This is required if and only if a fitted ucm_model is passed instead of data. alpha : float Desired tail-area probability for posterior intervals. Defaults to 0.05, which will produce central 95% intervals. Returns ------- CausalImpact Object """ def __init__( self, data=None, pre_period=None, post_period=None, model_args=None, ucm_model=None, post_period_response=None, alpha=0.05, estimation="MLE", ): self.series = None self.model = {} if isinstance(data, pd.DataFrame): self.data = data.copy() else: self.data = data self.params = { "data": data, "pre_period": pre_period, "post_period": post_period, "model_args": model_args, "ucm_model": ucm_model, "post_period_response": post_period_response, "alpha": alpha, "estimation": estimation, } self.inferences = None self.results = None def run(self): kwargs = self._format_input( self.params["data"], self.params["pre_period"], self.params["post_period"], self.params["model_args"], self.params["ucm_model"], self.params["post_period_response"], self.params["alpha"], ) # Depending on input, dispatch to the appropriate Run* method() if self.data is not None: self._run_with_data( kwargs["data"], kwargs["pre_period"], kwargs["post_period"], kwargs["model_args"], kwargs["alpha"], self.params["estimation"], ) else: self._run_with_ucm( kwargs["ucm_model"], kwargs["post_period_response"], kwargs["alpha"], kwargs["model_args"], self.params["estimation"], ) @staticmethod def _format_input_data(data): """Check and format the data argument provided to CausalImpact(). Args: data: Pandas DataFrame Returns: correctly formatted Pandas DataFrame """ # If <data> is a Pandas DataFrame and the first column is 'date', # try to convert if ( isinstance(data, pd.DataFrame) and isinstance(data.columns[0], str) and data.columns[0].lower() in ["date", "time"] ): data = data.set_index(data.columns[0]) # Try to convert to Pandas DataFrame try: data = pd.DataFrame(data) except ValueError: raise ValueError("could not convert input data to Pandas " + "DataFrame") # Must have at least 3 time points if len(data.index) < 3: raise ValueError("data must have at least 3 time points") # Must not have NA in covariates (if any) if len(data.columns) >= 2 and pd.isnull(data.iloc[:, 1:]).any(axis=None): raise ValueError("covariates must not contain null values") return data @staticmethod def _check_periods_are_valid(pre_period, post_period): if not isinstance(pre_period, list) or not isinstance(post_period, list): raise ValueError("pre_period and post_period must both be lists") if len(pre_period) != 2 or len(post_period) != 2: raise ValueError("pre_period and post_period must both be of " + "length 2") if pd.isnull(pre_period).any(axis=None) or pd.isnull(post_period).any( axis=None ): raise ValueError( "pre_period and post period must not contain " + "null values" ) @staticmethod def _align_periods_dtypes(pre_period, post_period, data): """align the dtypes of the pre_period and post_period to the data index. Args: pre_period: two-element list post_period: two-element list data: already-checked Pandas DataFrame, for reference only """ pre_dtype = np.array(pre_period).dtype post_dtype = np.array(post_period).dtype # if index is datetime then convert pre and post to datetimes if isinstance(data.index, pd.core.indexes.datetimes.DatetimeIndex): pre_period = [pd.to_datetime(date) for date in pre_period] post_period = [pd.to_datetime(date) for date in post_period] pd.core.dtypes.common.is_datetime_or_timedelta_dtype(pre_period) # if index is not datetime then error if datetime pre and post is passed elif pd.core.dtypes.common.is_datetime_or_timedelta_dtype( pd.Series(pre_period) ) or pd.core.dtypes.common.is_datetime_or_timedelta_dtype( pd.Series(post_period) ): raise ValueError( "pre_period (" + pre_dtype.name + ") and post_period (" + post_dtype.name + ") should have the same class as the " + "time points in the data (" + data.index.dtype.name + ")" ) # if index is int elif pd.api.types.is_int64_dtype(data.index): pre_period = [int(elem) for elem in pre_period] post_period = [int(elem) for elem in post_period] # if index is int elif pd.api.types.is_float_dtype(data.index): pre_period = [float(elem) for elem in pre_period] post_period = [float(elem) for elem in post_period] # if index is string elif pd.api.types.is_string_dtype(data.index): if pd.api.types.is_numeric_dtype( np.array(pre_period) ) or pd.api.types.is_numeric_dtype(np.array(post_period)): raise ValueError( "pre_period (" + pre_dtype.name + ") and post_period (" + post_dtype.name + ") should have the same class as the " + "time points in the data (" + data.index.dtype.name + ")" ) else: pre_period = [str(idx) for idx in pre_period] post_period = [str(idx) for idx in post_period] else: raise ValueError( "pre_period (" + pre_dtype.name + ") and post_period (" + post_dtype.name + ") should have the same class as the " + "time points in the data (" + data.index.dtype.name + ")" ) return [pre_period, post_period] def _format_input_prepost(self, pre_period, post_period, data): """Check and format the pre_period and post_period input arguments. Args: pre_period: two-element list post_period: two-element list data: already-checked Pandas DataFrame, for reference only """ self._check_periods_are_valid(pre_period, post_period) pre_period, post_period = self._align_periods_dtypes( pre_period, post_period, data ) if pre_period[1] > post_period[0]: raise ValueError( "post period must start at least 1 observation" + " after the end of the pre_period" ) if isinstance(data.index, pd.RangeIndex): loc3 = post_period[0] loc4 = post_period[1] else: loc3 = data.index.get_loc(post_period[0]) loc4 = data.index.get_loc(post_period[1]) if loc4 < loc3: raise ValueError( "post_period[1] must not be earlier than " + "post_period[0]" ) if pre_period[0] < data.index.min(): pre_period[0] = data.index.min() if post_period[1] > data.index.max(): post_period[1] = data.index.max() return {"pre_period": pre_period, "post_period": post_period} @staticmethod def _check_valid_args_combo(args): data_model_args = [True, True, True, False, False] ucm_model_args = [False, False, False, True, True] if np.any(pd.isnull(args) != data_model_args) and np.any( pd.isnull(args) != ucm_model_args ): raise SyntaxError( "Must either provide ``data``, ``pre_period``" + " ,``post_period``, ``model_args``" " or ``ucm_model" + "and ``post_period_response``" ) @staticmethod def _check_valid_alpha(alpha): if alpha is None: raise ValueError("alpha must not be None") if not np.isreal(alpha): raise ValueError("alpha must be a real number") if np.isnan(alpha): raise ValueError("alpha must not be NA") if alpha <= 0 or alpha >= 1: raise ValueError("alpha must be between 0 and 1") def _format_input( self, data, pre_period, post_period, model_args, ucm_model, post_period_response, alpha, ): """Check and format all input arguments supplied to CausalImpact(). See the documentation of CausalImpact() for details Args: data: Pandas DataFrame or data frame pre_period: beginning and end of pre-period post_period: beginning and end of post-period model_args: dict of additional arguments for the model ucm_model: UnobservedComponents model (instead of data) post_period_response: observed response in the post-period alpha: tail-area for posterior intervals estimation: method of estimation for model fitting Returns: list of checked (and possibly reformatted) input arguments """ from statsmodels.tsa.statespace.structural import UnobservedComponents # Check that a consistent set of variables has been provided args = [data, pre_period, post_period, ucm_model, post_period_response] self._check_valid_args_combo(args) # Check <data> and convert to Pandas DataFrame, with rows # representing time points if data is not None: data = self._format_input_data(data) # Check <pre_period> and <post_period> if data is not None: checked = self._format_input_prepost(pre_period, post_period, data) pre_period = checked["pre_period"] post_period = checked["post_period"] self.params["pre_period"] = pre_period self.params["post_period"] = post_period # Parse <model_args>, fill gaps using <_defaults> _defaults = { "ndraws": 1000, "nburn": 100, "niter": 1000, "standardize_data": True, "prior_level_sd": 0.01, "nseasons": 1, "season_duration": 1, "dynamic_regression": False, } if model_args is None: model_args = _defaults else: missing = [key for key in _defaults if key not in model_args] for arg in missing: model_args[arg] = _defaults[arg] # Check <standardize_data> if not isinstance(model_args["standardize_data"], bool): raise ValueError("model_args.standardize_data must be a" + " boolean value") # Check <ucm_model> if ucm_model is not None and not isinstance(ucm_model, UnobservedComponents): raise ValueError( "ucm_model must be an object of class " "statsmodels.tsa.statespace.structural.UnobservedComponents " "instead received " + str(type(ucm_model))[8:-2] ) # Check <post_period_response> if ucm_model is not None: if not is_list_like(post_period_response): raise ValueError("post_period_response must be list-like") if np.array(post_period_response).dtype.num == 17: raise ValueError( "post_period_response should not be" + " datetime values" ) if not np.all(np.isreal(post_period_response)): raise ValueError( "post_period_response must contain all" + " real values" ) # Check <alpha> self._check_valid_alpha(alpha) # Return updated arguments kwargs = { "data": data, "pre_period": pre_period, "post_period": post_period, "model_args": model_args, "ucm_model": ucm_model, "post_period_response": post_period_response, "alpha": alpha, } return kwargs def _run_with_data( self, data, pre_period, post_period, model_args, alpha, estimation ): # Zoom in on data in modeling range if data.shape[1] == 1: # no exogenous values provided raise ValueError("data contains no exogenous variables") data_modeling = data.copy() df_pre = data_modeling.loc[pre_period[0] : pre_period[1], :] df_post = data_modeling.loc[post_period[0] : post_period[1], :] # Standardize all variables orig_std_params = (0, 1) if model_args["standardize_data"]: sd_results = standardize_all_variables( data_modeling, pre_period, post_period ) df_pre = sd_results["data_pre"] df_post = sd_results["data_post"] orig_std_params = sd_results["orig_std_params"] # Construct model and perform inference model = construct_model(df_pre, model_args) self.model = model model_results = model_fit(model, estimation, model_args) inferences = compile_inferences( model_results, data, df_pre, df_post, None, alpha, orig_std_params, estimation, ) # "append" to 'CausalImpact' object self.inferences = inferences["series"] self.results = model_results def _run_with_ucm( self, ucm_model, post_period_response, alpha, model_args, estimation ): """Runs an impact analysis on top of a ucm model. Args: ucm_model: Model as returned by UnobservedComponents(), in which the data during the post-period was set to NA post_period_response: observed data during the post-intervention period alpha: tail-probabilities of posterior intervals""" df_pre = ucm_model.data.orig_endog[: -len(post_period_response)] df_pre = pd.DataFrame(df_pre) post_period_response = pd.DataFrame(post_period_response) data = pd.DataFrame( np.concatenate([df_pre.values, post_period_response.values]) ) orig_std_params = (0, 1) model_results = model_fit(ucm_model, estimation, model_args) # Compile posterior inferences inferences = compile_inferences( model_results, data, df_pre, None, post_period_response, alpha, orig_std_params, estimation, ) obs_inter = model_results.model_nobs - len(post_period_response) self.params["pre_period"] = [0, obs_inter - 1] self.params["post_period"] = [obs_inter, -1] self.data = pd.concat([df_pre, post_period_response]) self.inferences = inferences["series"] self.results = model_results @staticmethod def _print_report( mean_pred_fmt, mean_resp_fmt, mean_lower_fmt, mean_upper_fmt, abs_effect_fmt, abs_effect_upper_fmt, abs_effect_lower_fmt, rel_effect_fmt, rel_effect_upper_fmt, rel_effect_lower_fmt, cum_resp_fmt, cum_pred_fmt, cum_lower_fmt, cum_upper_fmt, confidence, cum_rel_effect_lower, cum_rel_effect_upper, cum_rel_effect, width, p_value, alpha, ): sig = not (cum_rel_effect_lower < 0 < cum_rel_effect_upper) pos = cum_rel_effect > 0 # Summarize averages stmt = textwrap.dedent( """During the post-intervention period, the response variable had an average value of approx. {mean_resp}. """.format( mean_resp=mean_resp_fmt ) ) if sig: stmt += " By contrast, in " else: stmt += " In " stmt += textwrap.dedent( """ the absence of an intervention, we would have expected an average response of {mean_pred}. The {confidence} interval of this counterfactual prediction is [{mean_lower}, {mean_upper}]. Subtracting this prediction from the observed response yields an estimate of the causal effect the intervention had on the response variable. This effect is {abs_effect} with a {confidence} interval of [{abs_lower}, {abs_upper}]. For a discussion of the significance of this effect, see below. """.format( mean_pred=mean_pred_fmt, confidence=confidence, mean_lower=mean_lower_fmt, mean_upper=mean_upper_fmt, abs_effect=abs_effect_fmt, abs_upper=abs_effect_upper_fmt, abs_lower=abs_effect_lower_fmt, ) ) # Summarize sums stmt2 = textwrap.dedent( """ Summing up the individual data points during the post-intervention period (which can only sometimes be meaningfully interpreted), the response variable had an overall value of {cum_resp}. """.format( cum_resp=cum_resp_fmt ) ) if sig: stmt2 += " By contrast, had " else: stmt2 += " Had " stmt2 += textwrap.dedent( """ the intervention not taken place, we would have expected a sum of {cum_pred}. The {confidence} interval of this prediction is [{cum_pred_lower}, {cum_pred_upper}] """.format( cum_pred=cum_pred_fmt, confidence=confidence, cum_pred_lower=cum_lower_fmt, cum_pred_upper=cum_upper_fmt, ) ) # Summarize relative numbers (in which case row [1] = row [2]) stmt3 = textwrap.dedent( """ The above results are given in terms of absolute numbers. In relative terms, the response variable showed """ ) if pos: stmt3 += " an increase of " else: stmt3 += " a decrease of " stmt3 += textwrap.dedent( """ {rel_effect}. The {confidence} interval of this percentage is [{rel_effect_lower}, {rel_effect_upper}] """.format( confidence=confidence, rel_effect=rel_effect_fmt, rel_effect_lower=rel_effect_lower_fmt, rel_effect_upper=rel_effect_upper_fmt, ) ) # Comment on significance if sig and pos: stmt4 = textwrap.dedent( """ This means that the positive effect observed during the intervention period is statistically significant and unlikely to be due to random fluctuations. It should be noted, however, that the question of whether this increase also bears substantive significance can only be answered by comparing the absolute effect {abs_effect} to the original goal of the underlying intervention. """.format( abs_effect=abs_effect_fmt ) ) elif sig and not pos: stmt4 = textwrap.dedent( """ This means that the negative effect observed during the intervention period is statistically significant. If the experimenter had expected a positive effect, it is recommended to double-check whether anomalies in the control variables may have caused an overly optimistic expectation of what should have happened in the response variable in the absence of the intervention. """ ) elif not sig and pos: stmt4 = textwrap.dedent( """ This means that, although the intervention appears to have caused a positive effect, this effect is not statistically significant when considering the post-intervention period as a whole. Individual days or shorter stretches within the intervention period may of course still have had a significant effect, as indicated whenever the lower limit of the impact time series (lower plot) was above zero. """ ) elif not sig and not pos: stmt4 = textwrap.dedent( """ This means that, although it may look as though the intervention has exerted a negative effect on the response variable when considering the intervention period as a whole, this effect is not statistically significant, and so cannot be meaningfully interpreted. """ ) if not sig: stmt4 += textwrap.dedent( """ The apparent effect could be the result of random fluctuations that are unrelated to the intervention. This is often the case when the intervention period is very long and includes much of the time when the effect has already worn off. It can also be the case when the intervention period is too short to distinguish the signal from the noise. Finally, failing to find a significant effect can happen when there are not enough control variables or when these variables do not correlate well with the response variable during the learning period.""" ) if p_value < alpha: stmt5 = textwrap.dedent( """The probability of obtaining this effect by chance is very small (Bayesian one-sided tail-area probability {p}). This means the causal effect can be considered statistically significant.""".format( p=np.round(p_value, 3) ) ) else: stmt5 = """The probability of obtaining this effect by chance is p = ", round(p, 3), "). This means the effect may be spurious and would generally not be considered statistically significant.""".format() print(textwrap.fill(stmt, width=width)) print("\n") print(textwrap.fill(stmt2, width=width)) print("\n") print(textwrap.fill(stmt3, width=width)) print("\n") print(textwrap.fill(stmt4, width=width)) print("\n") print(textwrap.fill(stmt5, width=width)) def summary(self, output="summary", width=120, path=None): """reports a summary of the results Parameters ---------- output: str can be summary or report. summary outputs a table. report outputs a natural language description of the findings width : int line width of the output. Only relevant if output == report path : str path to output summary to csv. Only relevant if output == summary """ alpha = self.params["alpha"] confidence = "{}%".format(int((1 - alpha) * 100)) post_period = self.params["post_period"] post_inf = self.inferences.loc[post_period[0] : post_period[1], :] post_point_resp = post_inf.loc[:, "response"] post_point_pred = post_inf.loc[:, "point_pred"] post_point_upper = post_inf.loc[:, "point_pred_upper"] post_point_lower = post_inf.loc[:, "point_pred_lower"] mean_resp = post_point_resp.mean() mean_resp_fmt = int(mean_resp) cum_resp = post_point_resp.sum() cum_resp_fmt = int(cum_resp) mean_pred = post_point_pred.mean() mean_pred_fmt = int(post_point_pred.mean()) cum_pred = post_point_pred.sum() cum_pred_fmt = int(cum_pred) mean_lower = post_point_lower.mean() mean_lower_fmt = int(mean_lower) mean_upper = post_point_upper.mean() mean_upper_fmt = int(mean_upper) mean_ci_fmt = [mean_lower_fmt, mean_upper_fmt] cum_lower = post_point_lower.sum() cum_lower_fmt = int(cum_lower) cum_upper = post_point_upper.sum() cum_upper_fmt = int(cum_upper) cum_ci_fmt = [cum_lower_fmt, cum_upper_fmt] abs_effect = (post_point_resp - post_point_pred).mean() abs_effect_fmt = int(abs_effect) cum_abs_effect = (post_point_resp - post_point_pred).sum() cum_abs_effect_fmt = int(cum_abs_effect) abs_effect_lower = (post_point_resp - post_point_lower).mean() abs_effect_lower_fmt = int(abs_effect_lower) abs_effect_upper = (post_point_resp - post_point_upper).mean() abs_effect_upper_fmt = int(abs_effect_upper) abs_effect_ci_fmt = [abs_effect_lower_fmt, abs_effect_upper_fmt] cum_abs_lower = (post_point_resp - post_point_lower).sum() cum_abs_lower_fmt = int(cum_abs_lower) cum_abs_upper = (post_point_resp - post_point_upper).sum() cum_abs_upper_fmt = int(cum_abs_upper) cum_abs_effect_ci_fmt = [cum_abs_lower_fmt, cum_abs_upper_fmt] rel_effect = abs_effect / mean_pred * 100 rel_effect_fmt = "{:.1f}%".format(rel_effect) cum_rel_effect = cum_abs_effect / cum_pred * 100 cum_rel_effect_fmt = "{:.1f}%".format(cum_rel_effect) rel_effect_lower = abs_effect_lower / mean_pred * 100 rel_effect_lower_fmt = "{:.1f}%".format(rel_effect_lower) rel_effect_upper = abs_effect_upper / mean_pred * 100 rel_effect_upper_fmt = "{:.1f}%".format(rel_effect_upper) rel_effect_ci_fmt = [rel_effect_lower_fmt, rel_effect_upper_fmt] cum_rel_effect_lower = cum_abs_lower / cum_pred * 100 cum_rel_effect_lower_fmt = "{:.1f}%".format(cum_rel_effect_lower) cum_rel_effect_upper = cum_abs_upper / cum_pred * 100 cum_rel_effect_upper_fmt = "{:.1f}%".format(cum_rel_effect_upper) cum_rel_effect_ci_fmt = [cum_rel_effect_lower_fmt, cum_rel_effect_upper_fmt] # assuming approximately normal distribution # calculate standard deviation from the 95% conf interval std_pred = ( mean_upper - mean_pred ) / 1.96 # from mean_upper = mean_pred + 1.96 * std # calculate z score z_score = (0 - mean_pred) / std_pred # pvalue from zscore p_value = st.norm.cdf(z_score) prob_causal = 1 - p_value p_value_perc = p_value * 100 prob_causal_perc = prob_causal * 100 if output == "summary": # Posterior inference {CausalImpact} summary = [ [mean_resp_fmt, cum_resp_fmt], [mean_pred_fmt, cum_pred_fmt], [mean_ci_fmt, cum_ci_fmt], [" ", " "], [abs_effect_fmt, cum_abs_effect_fmt], [abs_effect_ci_fmt, cum_abs_effect_ci_fmt], [" ", " "], [rel_effect_fmt, cum_rel_effect_fmt], [rel_effect_ci_fmt, cum_rel_effect_ci_fmt], [" ", " "], ["{:.1f}%".format(p_value_perc), " "], ["{:.1f}%".format(prob_causal_perc), " "], ] summary = pd.DataFrame( summary, columns=["Average", "Cumulative"], index=[ "Actual", "Predicted", "95% CI", " ", "Absolute Effect", "95% CI", " ", "Relative Effect", "95% CI", " ", "P-value", "Prob. of Causal Effect", ], ) df_print(summary, path) elif output == "report": self._print_report( mean_pred_fmt, mean_resp_fmt, mean_lower_fmt, mean_upper_fmt, abs_effect_fmt, abs_effect_upper_fmt, abs_effect_lower_fmt, rel_effect_fmt, rel_effect_upper_fmt, rel_effect_lower_fmt, cum_resp_fmt, cum_pred_fmt, cum_lower_fmt, cum_upper_fmt, confidence, cum_rel_effect_lower, cum_rel_effect_upper, cum_rel_effect, width, p_value, alpha, ) else: raise ValueError( "Output argument must be either 'summary' " + "or 'report'" ) def plot( self, panels=None, figsize=(15, 12), fname=None, ): if panels is None: panels = ["original", "pointwise", "cumulative"] plt = get_matplotlib() fig = plt.figure(figsize=figsize) data_inter = self.params["pre_period"][1] if isinstance(data_inter, pd.DatetimeIndex): data_inter = pd.Timestamp(data_inter) inferences = self.inferences.iloc[1:, :] # Observation and regression components if "original" in panels: ax1 = plt.subplot(3, 1, 1) plt.plot(inferences.point_pred, "r--", linewidth=2, label="model") plt.plot(inferences.response, "k", linewidth=2, label="endog") plt.axvline(data_inter, c="k", linestyle="--") plt.fill_between( inferences.index, inferences.point_pred_lower, inferences.point_pred_upper, facecolor="gray", interpolate=True, alpha=0.25, ) plt.setp(ax1.get_xticklabels(), visible=False) plt.legend(loc="upper left") plt.title("Observation vs prediction") if "pointwise" in panels: # Pointwise difference if "ax1" in locals(): ax2 = plt.subplot(312, sharex=ax1) else: ax2 = plt.subplot(312) lift = inferences.point_effect plt.plot(lift, "r--", linewidth=2) plt.plot(self.data.index, np.zeros(self.data.shape[0]), "g-", linewidth=2) plt.axvline(data_inter, c="k", linestyle="--") lift_lower = inferences.point_effect_lower lift_upper = inferences.point_effect_upper plt.fill_between( inferences.index, lift_lower, lift_upper, facecolor="gray", interpolate=True, alpha=0.25, ) plt.setp(ax2.get_xticklabels(), visible=False) plt.title("Difference") # Cumulative impact if "cumulative" in panels: if "ax1" in locals(): plt.subplot(313, sharex=ax1) elif "ax2" in locals(): plt.subplot(313, sharex=ax2) else: plt.subplot(313) plt.plot( inferences.index, inferences.cum_effect, "r--", linewidth=2, ) plt.plot(self.data.index, np.zeros(self.data.shape[0]), "g-", linewidth=2) plt.axvline(data_inter, c="k", linestyle="--") plt.fill_between( inferences.index, inferences.cum_effect_lower, inferences.cum_effect_upper, facecolor="gray", interpolate=True, alpha=0.25, ) plt.axis([inferences.index[0], inferences.index[-1], None, None]) plt.title("Cumulative Impact") plt.xlabel("$T$") if fname is None: plt.show() else: fig.savefig(fname, bbox_inches="tight") plt.close(fig)
(data=None, pre_period=None, post_period=None, model_args=None, ucm_model=None, post_period_response=None, alpha=0.05, estimation='MLE')
52,603
causalimpact.analysis
__init__
null
def __init__( self, data=None, pre_period=None, post_period=None, model_args=None, ucm_model=None, post_period_response=None, alpha=0.05, estimation="MLE", ): self.series = None self.model = {} if isinstance(data, pd.DataFrame): self.data = data.copy() else: self.data = data self.params = { "data": data, "pre_period": pre_period, "post_period": post_period, "model_args": model_args, "ucm_model": ucm_model, "post_period_response": post_period_response, "alpha": alpha, "estimation": estimation, } self.inferences = None self.results = None
(self, data=None, pre_period=None, post_period=None, model_args=None, ucm_model=None, post_period_response=None, alpha=0.05, estimation='MLE')
52,604
causalimpact.analysis
_align_periods_dtypes
align the dtypes of the pre_period and post_period to the data index. Args: pre_period: two-element list post_period: two-element list data: already-checked Pandas DataFrame, for reference only
@staticmethod def _align_periods_dtypes(pre_period, post_period, data): """align the dtypes of the pre_period and post_period to the data index. Args: pre_period: two-element list post_period: two-element list data: already-checked Pandas DataFrame, for reference only """ pre_dtype = np.array(pre_period).dtype post_dtype = np.array(post_period).dtype # if index is datetime then convert pre and post to datetimes if isinstance(data.index, pd.core.indexes.datetimes.DatetimeIndex): pre_period = [pd.to_datetime(date) for date in pre_period] post_period = [pd.to_datetime(date) for date in post_period] pd.core.dtypes.common.is_datetime_or_timedelta_dtype(pre_period) # if index is not datetime then error if datetime pre and post is passed elif pd.core.dtypes.common.is_datetime_or_timedelta_dtype( pd.Series(pre_period) ) or pd.core.dtypes.common.is_datetime_or_timedelta_dtype( pd.Series(post_period) ): raise ValueError( "pre_period (" + pre_dtype.name + ") and post_period (" + post_dtype.name + ") should have the same class as the " + "time points in the data (" + data.index.dtype.name + ")" ) # if index is int elif pd.api.types.is_int64_dtype(data.index): pre_period = [int(elem) for elem in pre_period] post_period = [int(elem) for elem in post_period] # if index is int elif pd.api.types.is_float_dtype(data.index): pre_period = [float(elem) for elem in pre_period] post_period = [float(elem) for elem in post_period] # if index is string elif pd.api.types.is_string_dtype(data.index): if pd.api.types.is_numeric_dtype( np.array(pre_period) ) or pd.api.types.is_numeric_dtype(np.array(post_period)): raise ValueError( "pre_period (" + pre_dtype.name + ") and post_period (" + post_dtype.name + ") should have the same class as the " + "time points in the data (" + data.index.dtype.name + ")" ) else: pre_period = [str(idx) for idx in pre_period] post_period = [str(idx) for idx in post_period] else: raise ValueError( "pre_period (" + pre_dtype.name + ") and post_period (" + post_dtype.name + ") should have the same class as the " + "time points in the data (" + data.index.dtype.name + ")" ) return [pre_period, post_period]
(pre_period, post_period, data)
52,605
causalimpact.analysis
_check_periods_are_valid
null
@staticmethod def _check_periods_are_valid(pre_period, post_period): if not isinstance(pre_period, list) or not isinstance(post_period, list): raise ValueError("pre_period and post_period must both be lists") if len(pre_period) != 2 or len(post_period) != 2: raise ValueError("pre_period and post_period must both be of " + "length 2") if pd.isnull(pre_period).any(axis=None) or pd.isnull(post_period).any( axis=None ): raise ValueError( "pre_period and post period must not contain " + "null values" )
(pre_period, post_period)
52,606
causalimpact.analysis
_check_valid_alpha
null
@staticmethod def _check_valid_alpha(alpha): if alpha is None: raise ValueError("alpha must not be None") if not np.isreal(alpha): raise ValueError("alpha must be a real number") if np.isnan(alpha): raise ValueError("alpha must not be NA") if alpha <= 0 or alpha >= 1: raise ValueError("alpha must be between 0 and 1")
(alpha)
52,607
causalimpact.analysis
_check_valid_args_combo
null
@staticmethod def _check_valid_args_combo(args): data_model_args = [True, True, True, False, False] ucm_model_args = [False, False, False, True, True] if np.any(pd.isnull(args) != data_model_args) and np.any( pd.isnull(args) != ucm_model_args ): raise SyntaxError( "Must either provide ``data``, ``pre_period``" + " ,``post_period``, ``model_args``" " or ``ucm_model" + "and ``post_period_response``" )
(args)
52,608
causalimpact.analysis
_format_input
Check and format all input arguments supplied to CausalImpact(). See the documentation of CausalImpact() for details Args: data: Pandas DataFrame or data frame pre_period: beginning and end of pre-period post_period: beginning and end of post-period model_args: dict of additional arguments for the model ucm_model: UnobservedComponents model (instead of data) post_period_response: observed response in the post-period alpha: tail-area for posterior intervals estimation: method of estimation for model fitting Returns: list of checked (and possibly reformatted) input arguments
def _format_input( self, data, pre_period, post_period, model_args, ucm_model, post_period_response, alpha, ): """Check and format all input arguments supplied to CausalImpact(). See the documentation of CausalImpact() for details Args: data: Pandas DataFrame or data frame pre_period: beginning and end of pre-period post_period: beginning and end of post-period model_args: dict of additional arguments for the model ucm_model: UnobservedComponents model (instead of data) post_period_response: observed response in the post-period alpha: tail-area for posterior intervals estimation: method of estimation for model fitting Returns: list of checked (and possibly reformatted) input arguments """ from statsmodels.tsa.statespace.structural import UnobservedComponents # Check that a consistent set of variables has been provided args = [data, pre_period, post_period, ucm_model, post_period_response] self._check_valid_args_combo(args) # Check <data> and convert to Pandas DataFrame, with rows # representing time points if data is not None: data = self._format_input_data(data) # Check <pre_period> and <post_period> if data is not None: checked = self._format_input_prepost(pre_period, post_period, data) pre_period = checked["pre_period"] post_period = checked["post_period"] self.params["pre_period"] = pre_period self.params["post_period"] = post_period # Parse <model_args>, fill gaps using <_defaults> _defaults = { "ndraws": 1000, "nburn": 100, "niter": 1000, "standardize_data": True, "prior_level_sd": 0.01, "nseasons": 1, "season_duration": 1, "dynamic_regression": False, } if model_args is None: model_args = _defaults else: missing = [key for key in _defaults if key not in model_args] for arg in missing: model_args[arg] = _defaults[arg] # Check <standardize_data> if not isinstance(model_args["standardize_data"], bool): raise ValueError("model_args.standardize_data must be a" + " boolean value") # Check <ucm_model> if ucm_model is not None and not isinstance(ucm_model, UnobservedComponents): raise ValueError( "ucm_model must be an object of class " "statsmodels.tsa.statespace.structural.UnobservedComponents " "instead received " + str(type(ucm_model))[8:-2] ) # Check <post_period_response> if ucm_model is not None: if not is_list_like(post_period_response): raise ValueError("post_period_response must be list-like") if np.array(post_period_response).dtype.num == 17: raise ValueError( "post_period_response should not be" + " datetime values" ) if not np.all(np.isreal(post_period_response)): raise ValueError( "post_period_response must contain all" + " real values" ) # Check <alpha> self._check_valid_alpha(alpha) # Return updated arguments kwargs = { "data": data, "pre_period": pre_period, "post_period": post_period, "model_args": model_args, "ucm_model": ucm_model, "post_period_response": post_period_response, "alpha": alpha, } return kwargs
(self, data, pre_period, post_period, model_args, ucm_model, post_period_response, alpha)
52,609
causalimpact.analysis
_format_input_data
Check and format the data argument provided to CausalImpact(). Args: data: Pandas DataFrame Returns: correctly formatted Pandas DataFrame
@staticmethod def _format_input_data(data): """Check and format the data argument provided to CausalImpact(). Args: data: Pandas DataFrame Returns: correctly formatted Pandas DataFrame """ # If <data> is a Pandas DataFrame and the first column is 'date', # try to convert if ( isinstance(data, pd.DataFrame) and isinstance(data.columns[0], str) and data.columns[0].lower() in ["date", "time"] ): data = data.set_index(data.columns[0]) # Try to convert to Pandas DataFrame try: data = pd.DataFrame(data) except ValueError: raise ValueError("could not convert input data to Pandas " + "DataFrame") # Must have at least 3 time points if len(data.index) < 3: raise ValueError("data must have at least 3 time points") # Must not have NA in covariates (if any) if len(data.columns) >= 2 and pd.isnull(data.iloc[:, 1:]).any(axis=None): raise ValueError("covariates must not contain null values") return data
(data)
52,610
causalimpact.analysis
_format_input_prepost
Check and format the pre_period and post_period input arguments. Args: pre_period: two-element list post_period: two-element list data: already-checked Pandas DataFrame, for reference only
def _format_input_prepost(self, pre_period, post_period, data): """Check and format the pre_period and post_period input arguments. Args: pre_period: two-element list post_period: two-element list data: already-checked Pandas DataFrame, for reference only """ self._check_periods_are_valid(pre_period, post_period) pre_period, post_period = self._align_periods_dtypes( pre_period, post_period, data ) if pre_period[1] > post_period[0]: raise ValueError( "post period must start at least 1 observation" + " after the end of the pre_period" ) if isinstance(data.index, pd.RangeIndex): loc3 = post_period[0] loc4 = post_period[1] else: loc3 = data.index.get_loc(post_period[0]) loc4 = data.index.get_loc(post_period[1]) if loc4 < loc3: raise ValueError( "post_period[1] must not be earlier than " + "post_period[0]" ) if pre_period[0] < data.index.min(): pre_period[0] = data.index.min() if post_period[1] > data.index.max(): post_period[1] = data.index.max() return {"pre_period": pre_period, "post_period": post_period}
(self, pre_period, post_period, data)
52,611
causalimpact.analysis
_print_report
null
@staticmethod def _print_report( mean_pred_fmt, mean_resp_fmt, mean_lower_fmt, mean_upper_fmt, abs_effect_fmt, abs_effect_upper_fmt, abs_effect_lower_fmt, rel_effect_fmt, rel_effect_upper_fmt, rel_effect_lower_fmt, cum_resp_fmt, cum_pred_fmt, cum_lower_fmt, cum_upper_fmt, confidence, cum_rel_effect_lower, cum_rel_effect_upper, cum_rel_effect, width, p_value, alpha, ): sig = not (cum_rel_effect_lower < 0 < cum_rel_effect_upper) pos = cum_rel_effect > 0 # Summarize averages stmt = textwrap.dedent( """During the post-intervention period, the response variable had an average value of approx. {mean_resp}. """.format( mean_resp=mean_resp_fmt ) ) if sig: stmt += " By contrast, in " else: stmt += " In " stmt += textwrap.dedent( """ the absence of an intervention, we would have expected an average response of {mean_pred}. The {confidence} interval of this counterfactual prediction is [{mean_lower}, {mean_upper}]. Subtracting this prediction from the observed response yields an estimate of the causal effect the intervention had on the response variable. This effect is {abs_effect} with a {confidence} interval of [{abs_lower}, {abs_upper}]. For a discussion of the significance of this effect, see below. """.format( mean_pred=mean_pred_fmt, confidence=confidence, mean_lower=mean_lower_fmt, mean_upper=mean_upper_fmt, abs_effect=abs_effect_fmt, abs_upper=abs_effect_upper_fmt, abs_lower=abs_effect_lower_fmt, ) ) # Summarize sums stmt2 = textwrap.dedent( """ Summing up the individual data points during the post-intervention period (which can only sometimes be meaningfully interpreted), the response variable had an overall value of {cum_resp}. """.format( cum_resp=cum_resp_fmt ) ) if sig: stmt2 += " By contrast, had " else: stmt2 += " Had " stmt2 += textwrap.dedent( """ the intervention not taken place, we would have expected a sum of {cum_pred}. The {confidence} interval of this prediction is [{cum_pred_lower}, {cum_pred_upper}] """.format( cum_pred=cum_pred_fmt, confidence=confidence, cum_pred_lower=cum_lower_fmt, cum_pred_upper=cum_upper_fmt, ) ) # Summarize relative numbers (in which case row [1] = row [2]) stmt3 = textwrap.dedent( """ The above results are given in terms of absolute numbers. In relative terms, the response variable showed """ ) if pos: stmt3 += " an increase of " else: stmt3 += " a decrease of " stmt3 += textwrap.dedent( """ {rel_effect}. The {confidence} interval of this percentage is [{rel_effect_lower}, {rel_effect_upper}] """.format( confidence=confidence, rel_effect=rel_effect_fmt, rel_effect_lower=rel_effect_lower_fmt, rel_effect_upper=rel_effect_upper_fmt, ) ) # Comment on significance if sig and pos: stmt4 = textwrap.dedent( """ This means that the positive effect observed during the intervention period is statistically significant and unlikely to be due to random fluctuations. It should be noted, however, that the question of whether this increase also bears substantive significance can only be answered by comparing the absolute effect {abs_effect} to the original goal of the underlying intervention. """.format( abs_effect=abs_effect_fmt ) ) elif sig and not pos: stmt4 = textwrap.dedent( """ This means that the negative effect observed during the intervention period is statistically significant. If the experimenter had expected a positive effect, it is recommended to double-check whether anomalies in the control variables may have caused an overly optimistic expectation of what should have happened in the response variable in the absence of the intervention. """ ) elif not sig and pos: stmt4 = textwrap.dedent( """ This means that, although the intervention appears to have caused a positive effect, this effect is not statistically significant when considering the post-intervention period as a whole. Individual days or shorter stretches within the intervention period may of course still have had a significant effect, as indicated whenever the lower limit of the impact time series (lower plot) was above zero. """ ) elif not sig and not pos: stmt4 = textwrap.dedent( """ This means that, although it may look as though the intervention has exerted a negative effect on the response variable when considering the intervention period as a whole, this effect is not statistically significant, and so cannot be meaningfully interpreted. """ ) if not sig: stmt4 += textwrap.dedent( """ The apparent effect could be the result of random fluctuations that are unrelated to the intervention. This is often the case when the intervention period is very long and includes much of the time when the effect has already worn off. It can also be the case when the intervention period is too short to distinguish the signal from the noise. Finally, failing to find a significant effect can happen when there are not enough control variables or when these variables do not correlate well with the response variable during the learning period.""" ) if p_value < alpha: stmt5 = textwrap.dedent( """The probability of obtaining this effect by chance is very small (Bayesian one-sided tail-area probability {p}). This means the causal effect can be considered statistically significant.""".format( p=np.round(p_value, 3) ) ) else: stmt5 = """The probability of obtaining this effect by chance is p = ", round(p, 3), "). This means the effect may be spurious and would generally not be considered statistically significant.""".format() print(textwrap.fill(stmt, width=width)) print("\n") print(textwrap.fill(stmt2, width=width)) print("\n") print(textwrap.fill(stmt3, width=width)) print("\n") print(textwrap.fill(stmt4, width=width)) print("\n") print(textwrap.fill(stmt5, width=width))
(mean_pred_fmt, mean_resp_fmt, mean_lower_fmt, mean_upper_fmt, abs_effect_fmt, abs_effect_upper_fmt, abs_effect_lower_fmt, rel_effect_fmt, rel_effect_upper_fmt, rel_effect_lower_fmt, cum_resp_fmt, cum_pred_fmt, cum_lower_fmt, cum_upper_fmt, confidence, cum_rel_effect_lower, cum_rel_effect_upper, cum_rel_effect, width, p_value, alpha)
52,612
causalimpact.analysis
_run_with_data
null
def _run_with_data( self, data, pre_period, post_period, model_args, alpha, estimation ): # Zoom in on data in modeling range if data.shape[1] == 1: # no exogenous values provided raise ValueError("data contains no exogenous variables") data_modeling = data.copy() df_pre = data_modeling.loc[pre_period[0] : pre_period[1], :] df_post = data_modeling.loc[post_period[0] : post_period[1], :] # Standardize all variables orig_std_params = (0, 1) if model_args["standardize_data"]: sd_results = standardize_all_variables( data_modeling, pre_period, post_period ) df_pre = sd_results["data_pre"] df_post = sd_results["data_post"] orig_std_params = sd_results["orig_std_params"] # Construct model and perform inference model = construct_model(df_pre, model_args) self.model = model model_results = model_fit(model, estimation, model_args) inferences = compile_inferences( model_results, data, df_pre, df_post, None, alpha, orig_std_params, estimation, ) # "append" to 'CausalImpact' object self.inferences = inferences["series"] self.results = model_results
(self, data, pre_period, post_period, model_args, alpha, estimation)
52,613
causalimpact.analysis
_run_with_ucm
Runs an impact analysis on top of a ucm model. Args: ucm_model: Model as returned by UnobservedComponents(), in which the data during the post-period was set to NA post_period_response: observed data during the post-intervention period alpha: tail-probabilities of posterior intervals
def _run_with_ucm( self, ucm_model, post_period_response, alpha, model_args, estimation ): """Runs an impact analysis on top of a ucm model. Args: ucm_model: Model as returned by UnobservedComponents(), in which the data during the post-period was set to NA post_period_response: observed data during the post-intervention period alpha: tail-probabilities of posterior intervals""" df_pre = ucm_model.data.orig_endog[: -len(post_period_response)] df_pre = pd.DataFrame(df_pre) post_period_response = pd.DataFrame(post_period_response) data = pd.DataFrame( np.concatenate([df_pre.values, post_period_response.values]) ) orig_std_params = (0, 1) model_results = model_fit(ucm_model, estimation, model_args) # Compile posterior inferences inferences = compile_inferences( model_results, data, df_pre, None, post_period_response, alpha, orig_std_params, estimation, ) obs_inter = model_results.model_nobs - len(post_period_response) self.params["pre_period"] = [0, obs_inter - 1] self.params["post_period"] = [obs_inter, -1] self.data = pd.concat([df_pre, post_period_response]) self.inferences = inferences["series"] self.results = model_results
(self, ucm_model, post_period_response, alpha, model_args, estimation)
52,614
causalimpact.analysis
plot
null
def plot( self, panels=None, figsize=(15, 12), fname=None, ): if panels is None: panels = ["original", "pointwise", "cumulative"] plt = get_matplotlib() fig = plt.figure(figsize=figsize) data_inter = self.params["pre_period"][1] if isinstance(data_inter, pd.DatetimeIndex): data_inter = pd.Timestamp(data_inter) inferences = self.inferences.iloc[1:, :] # Observation and regression components if "original" in panels: ax1 = plt.subplot(3, 1, 1) plt.plot(inferences.point_pred, "r--", linewidth=2, label="model") plt.plot(inferences.response, "k", linewidth=2, label="endog") plt.axvline(data_inter, c="k", linestyle="--") plt.fill_between( inferences.index, inferences.point_pred_lower, inferences.point_pred_upper, facecolor="gray", interpolate=True, alpha=0.25, ) plt.setp(ax1.get_xticklabels(), visible=False) plt.legend(loc="upper left") plt.title("Observation vs prediction") if "pointwise" in panels: # Pointwise difference if "ax1" in locals(): ax2 = plt.subplot(312, sharex=ax1) else: ax2 = plt.subplot(312) lift = inferences.point_effect plt.plot(lift, "r--", linewidth=2) plt.plot(self.data.index, np.zeros(self.data.shape[0]), "g-", linewidth=2) plt.axvline(data_inter, c="k", linestyle="--") lift_lower = inferences.point_effect_lower lift_upper = inferences.point_effect_upper plt.fill_between( inferences.index, lift_lower, lift_upper, facecolor="gray", interpolate=True, alpha=0.25, ) plt.setp(ax2.get_xticklabels(), visible=False) plt.title("Difference") # Cumulative impact if "cumulative" in panels: if "ax1" in locals(): plt.subplot(313, sharex=ax1) elif "ax2" in locals(): plt.subplot(313, sharex=ax2) else: plt.subplot(313) plt.plot( inferences.index, inferences.cum_effect, "r--", linewidth=2, ) plt.plot(self.data.index, np.zeros(self.data.shape[0]), "g-", linewidth=2) plt.axvline(data_inter, c="k", linestyle="--") plt.fill_between( inferences.index, inferences.cum_effect_lower, inferences.cum_effect_upper, facecolor="gray", interpolate=True, alpha=0.25, ) plt.axis([inferences.index[0], inferences.index[-1], None, None]) plt.title("Cumulative Impact") plt.xlabel("$T$") if fname is None: plt.show() else: fig.savefig(fname, bbox_inches="tight") plt.close(fig)
(self, panels=None, figsize=(15, 12), fname=None)
52,615
causalimpact.analysis
run
null
def run(self): kwargs = self._format_input( self.params["data"], self.params["pre_period"], self.params["post_period"], self.params["model_args"], self.params["ucm_model"], self.params["post_period_response"], self.params["alpha"], ) # Depending on input, dispatch to the appropriate Run* method() if self.data is not None: self._run_with_data( kwargs["data"], kwargs["pre_period"], kwargs["post_period"], kwargs["model_args"], kwargs["alpha"], self.params["estimation"], ) else: self._run_with_ucm( kwargs["ucm_model"], kwargs["post_period_response"], kwargs["alpha"], kwargs["model_args"], self.params["estimation"], )
(self)
52,616
causalimpact.analysis
summary
reports a summary of the results Parameters ---------- output: str can be summary or report. summary outputs a table. report outputs a natural language description of the findings width : int line width of the output. Only relevant if output == report path : str path to output summary to csv. Only relevant if output == summary
def summary(self, output="summary", width=120, path=None): """reports a summary of the results Parameters ---------- output: str can be summary or report. summary outputs a table. report outputs a natural language description of the findings width : int line width of the output. Only relevant if output == report path : str path to output summary to csv. Only relevant if output == summary """ alpha = self.params["alpha"] confidence = "{}%".format(int((1 - alpha) * 100)) post_period = self.params["post_period"] post_inf = self.inferences.loc[post_period[0] : post_period[1], :] post_point_resp = post_inf.loc[:, "response"] post_point_pred = post_inf.loc[:, "point_pred"] post_point_upper = post_inf.loc[:, "point_pred_upper"] post_point_lower = post_inf.loc[:, "point_pred_lower"] mean_resp = post_point_resp.mean() mean_resp_fmt = int(mean_resp) cum_resp = post_point_resp.sum() cum_resp_fmt = int(cum_resp) mean_pred = post_point_pred.mean() mean_pred_fmt = int(post_point_pred.mean()) cum_pred = post_point_pred.sum() cum_pred_fmt = int(cum_pred) mean_lower = post_point_lower.mean() mean_lower_fmt = int(mean_lower) mean_upper = post_point_upper.mean() mean_upper_fmt = int(mean_upper) mean_ci_fmt = [mean_lower_fmt, mean_upper_fmt] cum_lower = post_point_lower.sum() cum_lower_fmt = int(cum_lower) cum_upper = post_point_upper.sum() cum_upper_fmt = int(cum_upper) cum_ci_fmt = [cum_lower_fmt, cum_upper_fmt] abs_effect = (post_point_resp - post_point_pred).mean() abs_effect_fmt = int(abs_effect) cum_abs_effect = (post_point_resp - post_point_pred).sum() cum_abs_effect_fmt = int(cum_abs_effect) abs_effect_lower = (post_point_resp - post_point_lower).mean() abs_effect_lower_fmt = int(abs_effect_lower) abs_effect_upper = (post_point_resp - post_point_upper).mean() abs_effect_upper_fmt = int(abs_effect_upper) abs_effect_ci_fmt = [abs_effect_lower_fmt, abs_effect_upper_fmt] cum_abs_lower = (post_point_resp - post_point_lower).sum() cum_abs_lower_fmt = int(cum_abs_lower) cum_abs_upper = (post_point_resp - post_point_upper).sum() cum_abs_upper_fmt = int(cum_abs_upper) cum_abs_effect_ci_fmt = [cum_abs_lower_fmt, cum_abs_upper_fmt] rel_effect = abs_effect / mean_pred * 100 rel_effect_fmt = "{:.1f}%".format(rel_effect) cum_rel_effect = cum_abs_effect / cum_pred * 100 cum_rel_effect_fmt = "{:.1f}%".format(cum_rel_effect) rel_effect_lower = abs_effect_lower / mean_pred * 100 rel_effect_lower_fmt = "{:.1f}%".format(rel_effect_lower) rel_effect_upper = abs_effect_upper / mean_pred * 100 rel_effect_upper_fmt = "{:.1f}%".format(rel_effect_upper) rel_effect_ci_fmt = [rel_effect_lower_fmt, rel_effect_upper_fmt] cum_rel_effect_lower = cum_abs_lower / cum_pred * 100 cum_rel_effect_lower_fmt = "{:.1f}%".format(cum_rel_effect_lower) cum_rel_effect_upper = cum_abs_upper / cum_pred * 100 cum_rel_effect_upper_fmt = "{:.1f}%".format(cum_rel_effect_upper) cum_rel_effect_ci_fmt = [cum_rel_effect_lower_fmt, cum_rel_effect_upper_fmt] # assuming approximately normal distribution # calculate standard deviation from the 95% conf interval std_pred = ( mean_upper - mean_pred ) / 1.96 # from mean_upper = mean_pred + 1.96 * std # calculate z score z_score = (0 - mean_pred) / std_pred # pvalue from zscore p_value = st.norm.cdf(z_score) prob_causal = 1 - p_value p_value_perc = p_value * 100 prob_causal_perc = prob_causal * 100 if output == "summary": # Posterior inference {CausalImpact} summary = [ [mean_resp_fmt, cum_resp_fmt], [mean_pred_fmt, cum_pred_fmt], [mean_ci_fmt, cum_ci_fmt], [" ", " "], [abs_effect_fmt, cum_abs_effect_fmt], [abs_effect_ci_fmt, cum_abs_effect_ci_fmt], [" ", " "], [rel_effect_fmt, cum_rel_effect_fmt], [rel_effect_ci_fmt, cum_rel_effect_ci_fmt], [" ", " "], ["{:.1f}%".format(p_value_perc), " "], ["{:.1f}%".format(prob_causal_perc), " "], ] summary = pd.DataFrame( summary, columns=["Average", "Cumulative"], index=[ "Actual", "Predicted", "95% CI", " ", "Absolute Effect", "95% CI", " ", "Relative Effect", "95% CI", " ", "P-value", "Prob. of Causal Effect", ], ) df_print(summary, path) elif output == "report": self._print_report( mean_pred_fmt, mean_resp_fmt, mean_lower_fmt, mean_upper_fmt, abs_effect_fmt, abs_effect_upper_fmt, abs_effect_lower_fmt, rel_effect_fmt, rel_effect_upper_fmt, rel_effect_lower_fmt, cum_resp_fmt, cum_pred_fmt, cum_lower_fmt, cum_upper_fmt, confidence, cum_rel_effect_lower, cum_rel_effect_upper, cum_rel_effect, width, p_value, alpha, ) else: raise ValueError( "Output argument must be either 'summary' " + "or 'report'" )
(self, output='summary', width=120, path=None)
52,622
streamx.stream
AsyncStream
null
class AsyncStream(Generic[T]): def __init__(self) -> None: self._consuming_tasks: list[asyncio.Task] = [] self._closed: bool = False self._event = SharedEvent[T]() self._listeners = set[AsyncStreamListener[T]]() @property def listeners(self) -> set[AsyncStreamListener[T]]: return self._listeners @property def closed(self) -> bool: return self._closed async def push(self, item: T) -> None: if self._closed: raise StreamClosedError("Can't push item into a closed stream.") current_task = asyncio.current_task() if current_task in self._consuming_tasks: raise StreamShortCircuitError( "Can't push an item while the task is listening to this stream." ) await self._event.share(asyncio.sleep(0, item)) async def close(self) -> None: if self._closed: return try: await self.push(StopAsyncIteration) # type: ignore except StreamShortCircuitError: raise StreamShortCircuitError( "Can't close a stream from a task that is listening to it." ) from None self._closed = True for listener in self._listeners: listener.close() @contextmanager def listen(self) -> Iterator[AsyncStreamListener[T]]: if self._closed: raise StreamClosedError("Can't listen to a closed stream.") current_task = asyncio.current_task() if current_task in self._consuming_tasks: raise StreamShortCircuitError("Task is already listening to this stream.") listener = None try: with self._event.listen() as event_listener: listener = AsyncStreamListener(event_listener) self._listeners.add(listener) if listener.current_task: self._consuming_tasks.append(listener.current_task) yield listener finally: if listener: listener.close() self._listeners.remove(listener) if listener.current_task: self._consuming_tasks.remove(listener.current_task)
() -> None
52,623
streamx.stream
__init__
null
def __init__(self) -> None: self._consuming_tasks: list[asyncio.Task] = [] self._closed: bool = False self._event = SharedEvent[T]() self._listeners = set[AsyncStreamListener[T]]()
(self) -> NoneType
52,627
streamx.stream
AsyncStreamIterator
null
class AsyncStreamIterator(AsyncIterator[T], Generic[T], AsyncIterable[T]): def __init__(self, event_listener: SharedEventListener[T]) -> None: self._event_listener = event_listener async def __anext__(self) -> T: item = await self._event_listener.wait() if item is StopAsyncIteration: raise StopAsyncIteration return item
(event_listener: streamx.event.SharedEventListener[~T]) -> None
52,629
streamx.stream
__anext__
null
def __init__(self, event_listener: SharedEventListener[T]) -> None: self._event_listener = event_listener
(self) -> ~T
52,631
streamx.stream
AsyncStreamListener
null
class AsyncStreamListener(Generic[T]): def __init__(self, event_listener: SharedEventListener[T]) -> None: self._event_listener = event_listener self._current_task = asyncio.current_task() self._closed = False @property def current_task(self) -> asyncio.Task | None: return self._current_task @property def closed(self) -> bool: return self._closed def close(self) -> None: self._closed = True def __aiter__(self) -> AsyncStreamIterator[T]: if self._closed: raise StreamClosedError("Can't iterate over a closed stream.") return AsyncStreamIterator(self._event_listener)
(event_listener: streamx.event.SharedEventListener[~T]) -> None
52,632
streamx.stream
__aiter__
null
def __aiter__(self) -> AsyncStreamIterator[T]: if self._closed: raise StreamClosedError("Can't iterate over a closed stream.") return AsyncStreamIterator(self._event_listener)
(self) -> streamx.stream.AsyncStreamIterator[~T]
52,633
streamx.stream
__init__
null
def __init__(self, event_listener: SharedEventListener[T]) -> None: self._event_listener = event_listener self._current_task = asyncio.current_task() self._closed = False
(self, event_listener: streamx.event.SharedEventListener[~T]) -> NoneType
52,634
streamx.stream
close
null
def close(self) -> None: self._closed = True
(self) -> NoneType
52,635
streamx.event
SharedEvent
null
class SharedEvent(Generic[T]): def __init__(self, loop: asyncio.AbstractEventLoop | None = None): self.loop = loop or asyncio.get_event_loop() self._listeners: set[SharedEventListener[T]] = set() @contextmanager def listen(self) -> Iterator[SharedEventListener[T]]: listener = None try: listener = SharedEventListener(self.loop) self._listeners.add(listener) yield listener finally: if listener: self._listeners.remove(listener) async def share(self, coro: ...) -> T: value: T = await coro await asyncio.gather(*[listener.ready.wait() for listener in self._listeners]) for listener in self._listeners: listener.push(value) return value
(loop: asyncio.events.AbstractEventLoop | None = None)
52,636
streamx.event
__init__
null
def __init__(self, loop: asyncio.AbstractEventLoop | None = None): self.loop = loop or asyncio.get_event_loop() self._listeners: set[SharedEventListener[T]] = set()
(self, loop: Optional[asyncio.events.AbstractEventLoop] = None)
52,638
streamx.event
share
null
@contextmanager def listen(self) -> Iterator[SharedEventListener[T]]: listener = None try: listener = SharedEventListener(self.loop) self._listeners.add(listener) yield listener finally: if listener: self._listeners.remove(listener)
(self, coro: Ellipsis) -> ~T
52,639
streamx.event
SharedEventListener
null
class SharedEventListener(Generic[T]): def __init__(self, loop: asyncio.AbstractEventLoop | None = None) -> None: self._loop = loop or asyncio.get_event_loop() self._waiter: asyncio.Future[T] = self._loop.create_future() self._ready = asyncio.Event() @property def ready(self) -> asyncio.Event: return self._ready def push(self, value: T) -> None: self._waiter.set_result(value) async def wait(self) -> T: try: self._ready.set() return await self._waiter finally: self._ready.clear() self._waiter = self._loop.create_future()
(loop: asyncio.events.AbstractEventLoop | None = None) -> None
52,640
streamx.event
__init__
null
def __init__(self, loop: asyncio.AbstractEventLoop | None = None) -> None: self._loop = loop or asyncio.get_event_loop() self._waiter: asyncio.Future[T] = self._loop.create_future() self._ready = asyncio.Event()
(self, loop: Optional[asyncio.events.AbstractEventLoop] = None) -> NoneType
52,641
streamx.event
push
null
def push(self, value: T) -> None: self._waiter.set_result(value)
(self, value: ~T) -> NoneType
52,643
streamx.errors
StreamClosedError
Raised when operations are performed on a closed stream
class StreamClosedError(StreamError): """ Raised when operations are performed on a closed stream """
null
52,644
streamx.errors
StreamError
Base class for all streamx exceptions
class StreamError(Exception): """Base class for all streamx exceptions"""
null
52,645
streamx.errors
StreamShortCircuitError
Raised when a stream is being consumed by the same task and a new item is pushed
class StreamShortCircuitError(StreamError): """ Raised when a stream is being consumed by the same task and a new item is pushed """
null
52,649
bmitzkus_pulumi_onepassword.get_item
AwaitableGetItemResult
null
class AwaitableGetItemResult(GetItemResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetItemResult( category=self.category, database=self.database, hostname=self.hostname, id=self.id, note_value=self.note_value, password=self.password, port=self.port, sections=self.sections, tags=self.tags, title=self.title, type=self.type, url=self.url, username=self.username, uuid=self.uuid, vault=self.vault)
(category=None, database=None, hostname=None, id=None, note_value=None, password=None, port=None, sections=None, tags=None, title=None, type=None, url=None, username=None, uuid=None, vault=None)
52,650
bmitzkus_pulumi_onepassword.get_item
__await__
null
def __await__(self): if False: yield self return GetItemResult( category=self.category, database=self.database, hostname=self.hostname, id=self.id, note_value=self.note_value, password=self.password, port=self.port, sections=self.sections, tags=self.tags, title=self.title, type=self.type, url=self.url, username=self.username, uuid=self.uuid, vault=self.vault)
(self)
52,652
bmitzkus_pulumi_onepassword.get_item
__init__
null
def __init__(__self__, category=None, database=None, hostname=None, id=None, note_value=None, password=None, port=None, sections=None, tags=None, title=None, type=None, url=None, username=None, uuid=None, vault=None): if category and not isinstance(category, str): raise TypeError("Expected argument 'category' to be a str") pulumi.set(__self__, "category", category) if database and not isinstance(database, str): raise TypeError("Expected argument 'database' to be a str") pulumi.set(__self__, "database", database) if hostname and not isinstance(hostname, str): raise TypeError("Expected argument 'hostname' to be a str") pulumi.set(__self__, "hostname", hostname) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if note_value and not isinstance(note_value, str): raise TypeError("Expected argument 'note_value' to be a str") pulumi.set(__self__, "note_value", note_value) if password and not isinstance(password, str): raise TypeError("Expected argument 'password' to be a str") pulumi.set(__self__, "password", password) if port and not isinstance(port, str): raise TypeError("Expected argument 'port' to be a str") pulumi.set(__self__, "port", port) if sections and not isinstance(sections, list): raise TypeError("Expected argument 'sections' to be a list") pulumi.set(__self__, "sections", sections) if tags and not isinstance(tags, list): raise TypeError("Expected argument 'tags' to be a list") pulumi.set(__self__, "tags", tags) if title and not isinstance(title, str): raise TypeError("Expected argument 'title' to be a str") pulumi.set(__self__, "title", title) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if url and not isinstance(url, str): raise TypeError("Expected argument 'url' to be a str") pulumi.set(__self__, "url", url) if username and not isinstance(username, str): raise TypeError("Expected argument 'username' to be a str") pulumi.set(__self__, "username", username) if uuid and not isinstance(uuid, str): raise TypeError("Expected argument 'uuid' to be a str") pulumi.set(__self__, "uuid", uuid) if vault and not isinstance(vault, str): raise TypeError("Expected argument 'vault' to be a str") pulumi.set(__self__, "vault", vault)
(__self__, category=None, database=None, hostname=None, id=None, note_value=None, password=None, port=None, sections=None, tags=None, title=None, type=None, url=None, username=None, uuid=None, vault=None)
52,653
bmitzkus_pulumi_onepassword.get_vault
AwaitableGetVaultResult
null
class AwaitableGetVaultResult(GetVaultResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetVaultResult( description=self.description, id=self.id, name=self.name, uuid=self.uuid)
(description=None, id=None, name=None, uuid=None)
52,654
bmitzkus_pulumi_onepassword.get_vault
__await__
null
def __await__(self): if False: yield self return GetVaultResult( description=self.description, id=self.id, name=self.name, uuid=self.uuid)
(self)
52,656
bmitzkus_pulumi_onepassword.get_vault
__init__
null
def __init__(__self__, description=None, id=None, name=None, uuid=None): if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") pulumi.set(__self__, "description", description) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if uuid and not isinstance(uuid, str): raise TypeError("Expected argument 'uuid' to be a str") pulumi.set(__self__, "uuid", uuid)
(__self__, description=None, id=None, name=None, uuid=None)
52,657
bmitzkus_pulumi_onepassword.get_item
GetItemResult
A collection of values returned by getItem.
class GetItemResult: """ A collection of values returned by getItem. """ def __init__(__self__, category=None, database=None, hostname=None, id=None, note_value=None, password=None, port=None, sections=None, tags=None, title=None, type=None, url=None, username=None, uuid=None, vault=None): if category and not isinstance(category, str): raise TypeError("Expected argument 'category' to be a str") pulumi.set(__self__, "category", category) if database and not isinstance(database, str): raise TypeError("Expected argument 'database' to be a str") pulumi.set(__self__, "database", database) if hostname and not isinstance(hostname, str): raise TypeError("Expected argument 'hostname' to be a str") pulumi.set(__self__, "hostname", hostname) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if note_value and not isinstance(note_value, str): raise TypeError("Expected argument 'note_value' to be a str") pulumi.set(__self__, "note_value", note_value) if password and not isinstance(password, str): raise TypeError("Expected argument 'password' to be a str") pulumi.set(__self__, "password", password) if port and not isinstance(port, str): raise TypeError("Expected argument 'port' to be a str") pulumi.set(__self__, "port", port) if sections and not isinstance(sections, list): raise TypeError("Expected argument 'sections' to be a list") pulumi.set(__self__, "sections", sections) if tags and not isinstance(tags, list): raise TypeError("Expected argument 'tags' to be a list") pulumi.set(__self__, "tags", tags) if title and not isinstance(title, str): raise TypeError("Expected argument 'title' to be a str") pulumi.set(__self__, "title", title) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if url and not isinstance(url, str): raise TypeError("Expected argument 'url' to be a str") pulumi.set(__self__, "url", url) if username and not isinstance(username, str): raise TypeError("Expected argument 'username' to be a str") pulumi.set(__self__, "username", username) if uuid and not isinstance(uuid, str): raise TypeError("Expected argument 'uuid' to be a str") pulumi.set(__self__, "uuid", uuid) if vault and not isinstance(vault, str): raise TypeError("Expected argument 'vault' to be a str") pulumi.set(__self__, "vault", vault) @property @pulumi.getter def category(self) -> str: """ The category of the item. One of ["login" "password" "database"] """ return pulumi.get(self, "category") @property @pulumi.getter def database(self) -> str: """ (Only applies to the database category) The name of the database. """ return pulumi.get(self, "database") @property @pulumi.getter def hostname(self) -> str: """ (Only applies to the database category) The address where the database can be found """ return pulumi.get(self, "hostname") @property @pulumi.getter def id(self) -> str: return pulumi.get(self, "id") @property @pulumi.getter(name="noteValue") def note_value(self) -> str: """ Secure Note value. """ return pulumi.get(self, "note_value") @property @pulumi.getter def password(self) -> str: """ Password for this item. """ return pulumi.get(self, "password") @property @pulumi.getter def port(self) -> str: """ (Only applies to the database category) The port the database is listening on. """ return pulumi.get(self, "port") @property @pulumi.getter def sections(self) -> Sequence['outputs.GetItemSectionResult']: """ A list of custom sections in an item """ return pulumi.get(self, "sections") @property @pulumi.getter def tags(self) -> Sequence[str]: """ An array of strings of the tags assigned to the item. """ return pulumi.get(self, "tags") @property @pulumi.getter def title(self) -> str: """ The title of the item to retrieve. This field will be populated with the title of the item if the item it looked up by its UUID. """ return pulumi.get(self, "title") @property @pulumi.getter def type(self) -> str: """ (Only applies to the database category) The type of database. One of ["db2" "filemaker" "msaccess" "mssql" "mysql" "oracle" "postgresql" "sqlite" "other"] """ return pulumi.get(self, "type") @property @pulumi.getter def url(self) -> str: """ The primary URL for the item. """ return pulumi.get(self, "url") @property @pulumi.getter def username(self) -> str: """ Username for this item. """ return pulumi.get(self, "username") @property @pulumi.getter def uuid(self) -> str: """ The UUID of the item to retrieve. This field will be populated with the UUID of the item if the item it looked up by its title. """ return pulumi.get(self, "uuid") @property @pulumi.getter def vault(self) -> str: """ The UUID of the vault the item is in. """ return pulumi.get(self, "vault")
(category=None, database=None, hostname=None, id=None, note_value=None, password=None, port=None, sections=None, tags=None, title=None, type=None, url=None, username=None, uuid=None, vault=None)
52,660
bmitzkus_pulumi_onepassword.get_vault
GetVaultResult
A collection of values returned by getVault.
class GetVaultResult: """ A collection of values returned by getVault. """ def __init__(__self__, description=None, id=None, name=None, uuid=None): if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") pulumi.set(__self__, "description", description) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if uuid and not isinstance(uuid, str): raise TypeError("Expected argument 'uuid' to be a str") pulumi.set(__self__, "uuid", uuid) @property @pulumi.getter def description(self) -> str: """ The description of the vault. """ return pulumi.get(self, "description") @property @pulumi.getter def id(self) -> str: return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> str: """ The name of the vault to retrieve. This field will be populated with the name of the vault if the vault it looked up by its UUID. """ return pulumi.get(self, "name") @property @pulumi.getter def uuid(self) -> str: """ The UUID of the vault to retrieve. This field will be populated with the UUID of the vault if the vault it looked up by its name. """ return pulumi.get(self, "uuid")
(description=None, id=None, name=None, uuid=None)
52,663
bmitzkus_pulumi_onepassword.item
Item
null
class Item(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, category: Optional[pulumi.Input[str]] = None, database: Optional[pulumi.Input[str]] = None, hostname: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input[str]] = None, password_recipe: Optional[pulumi.Input[pulumi.InputType['ItemPasswordRecipeArgs']]] = None, port: Optional[pulumi.Input[str]] = None, sections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ItemSectionArgs']]]]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, title: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[str]] = None, url: Optional[pulumi.Input[str]] = None, username: Optional[pulumi.Input[str]] = None, vault: Optional[pulumi.Input[str]] = None, __props__=None): """ A 1Password item. ## Example Usage ```python import pulumi import bmitzkus_pulumi_onepassword as onepassword demo_password = onepassword.Item("demoPassword", vault=var["demo_vault"], title="Demo Password Recipe", category="password", password_recipe=onepassword.ItemPasswordRecipeArgs( length=40, symbols=False, )) demo_login = onepassword.Item("demoLogin", vault=var["demo_vault"], title="Demo Terraform Login", category="login", username="[email protected]") demo_db = onepassword.Item("demoDb", vault=var["demo_vault"], category="database", type="mysql", title="Demo TF Database", username="root", database="Example MySQL Instance", hostname="localhost", port="3306") ``` ## Import import an existing 1Password item ```sh $ pulumi import onepassword:index/item:Item myitem vaults/<vault uuid>/items/<item uuid> ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] category: The category of the item. One of ["login" "password" "database"] :param pulumi.Input[str] database: (Only applies to the database category) The name of the database. :param pulumi.Input[str] hostname: (Only applies to the database category) The address where the database can be found :param pulumi.Input[str] password: Password for this item. :param pulumi.Input[pulumi.InputType['ItemPasswordRecipeArgs']] password_recipe: Password for this item. :param pulumi.Input[str] port: (Only applies to the database category) The port the database is listening on. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ItemSectionArgs']]]] sections: A list of custom sections in an item :param pulumi.Input[Sequence[pulumi.Input[str]]] tags: An array of strings of the tags assigned to the item. :param pulumi.Input[str] title: The title of the item. :param pulumi.Input[str] type: The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] :param pulumi.Input[str] url: The primary URL for the item. :param pulumi.Input[str] username: Username for this item. :param pulumi.Input[str] vault: The UUID of the vault the item is in. """ ... @overload def __init__(__self__, resource_name: str, args: ItemArgs, opts: Optional[pulumi.ResourceOptions] = None): """ A 1Password item. ## Example Usage ```python import pulumi import bmitzkus_pulumi_onepassword as onepassword demo_password = onepassword.Item("demoPassword", vault=var["demo_vault"], title="Demo Password Recipe", category="password", password_recipe=onepassword.ItemPasswordRecipeArgs( length=40, symbols=False, )) demo_login = onepassword.Item("demoLogin", vault=var["demo_vault"], title="Demo Terraform Login", category="login", username="[email protected]") demo_db = onepassword.Item("demoDb", vault=var["demo_vault"], category="database", type="mysql", title="Demo TF Database", username="root", database="Example MySQL Instance", hostname="localhost", port="3306") ``` ## Import import an existing 1Password item ```sh $ pulumi import onepassword:index/item:Item myitem vaults/<vault uuid>/items/<item uuid> ``` :param str resource_name: The name of the resource. :param ItemArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ItemArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, category: Optional[pulumi.Input[str]] = None, database: Optional[pulumi.Input[str]] = None, hostname: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input[str]] = None, password_recipe: Optional[pulumi.Input[pulumi.InputType['ItemPasswordRecipeArgs']]] = None, port: Optional[pulumi.Input[str]] = None, sections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ItemSectionArgs']]]]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, title: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[str]] = None, url: Optional[pulumi.Input[str]] = None, username: Optional[pulumi.Input[str]] = None, vault: Optional[pulumi.Input[str]] = None, __props__=None): opts = pulumi.ResourceOptions.merge(_utilities.get_resource_opts_defaults(), opts) if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = ItemArgs.__new__(ItemArgs) __props__.__dict__["category"] = category __props__.__dict__["database"] = database __props__.__dict__["hostname"] = hostname __props__.__dict__["password"] = None if password is None else pulumi.Output.secret(password) __props__.__dict__["password_recipe"] = password_recipe __props__.__dict__["port"] = port __props__.__dict__["sections"] = sections __props__.__dict__["tags"] = tags __props__.__dict__["title"] = title __props__.__dict__["type"] = type __props__.__dict__["url"] = url __props__.__dict__["username"] = username if vault is None and not opts.urn: raise TypeError("Missing required property 'vault'") __props__.__dict__["vault"] = vault __props__.__dict__["uuid"] = None secret_opts = pulumi.ResourceOptions(additional_secret_outputs=["password"]) opts = pulumi.ResourceOptions.merge(opts, secret_opts) super(Item, __self__).__init__( 'onepassword:index/item:Item', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, category: Optional[pulumi.Input[str]] = None, database: Optional[pulumi.Input[str]] = None, hostname: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input[str]] = None, password_recipe: Optional[pulumi.Input[pulumi.InputType['ItemPasswordRecipeArgs']]] = None, port: Optional[pulumi.Input[str]] = None, sections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ItemSectionArgs']]]]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, title: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[str]] = None, url: Optional[pulumi.Input[str]] = None, username: Optional[pulumi.Input[str]] = None, uuid: Optional[pulumi.Input[str]] = None, vault: Optional[pulumi.Input[str]] = None) -> 'Item': """ Get an existing Item resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] category: The category of the item. One of ["login" "password" "database"] :param pulumi.Input[str] database: (Only applies to the database category) The name of the database. :param pulumi.Input[str] hostname: (Only applies to the database category) The address where the database can be found :param pulumi.Input[str] password: Password for this item. :param pulumi.Input[pulumi.InputType['ItemPasswordRecipeArgs']] password_recipe: Password for this item. :param pulumi.Input[str] port: (Only applies to the database category) The port the database is listening on. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ItemSectionArgs']]]] sections: A list of custom sections in an item :param pulumi.Input[Sequence[pulumi.Input[str]]] tags: An array of strings of the tags assigned to the item. :param pulumi.Input[str] title: The title of the item. :param pulumi.Input[str] type: The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] :param pulumi.Input[str] url: The primary URL for the item. :param pulumi.Input[str] username: Username for this item. :param pulumi.Input[str] uuid: The UUID of the item. Item identifiers are unique within a specific vault. :param pulumi.Input[str] vault: The UUID of the vault the item is in. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _ItemState.__new__(_ItemState) __props__.__dict__["category"] = category __props__.__dict__["database"] = database __props__.__dict__["hostname"] = hostname __props__.__dict__["password"] = password __props__.__dict__["password_recipe"] = password_recipe __props__.__dict__["port"] = port __props__.__dict__["sections"] = sections __props__.__dict__["tags"] = tags __props__.__dict__["title"] = title __props__.__dict__["type"] = type __props__.__dict__["url"] = url __props__.__dict__["username"] = username __props__.__dict__["uuid"] = uuid __props__.__dict__["vault"] = vault return Item(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def category(self) -> pulumi.Output[Optional[str]]: """ The category of the item. One of ["login" "password" "database"] """ return pulumi.get(self, "category") @property @pulumi.getter def database(self) -> pulumi.Output[Optional[str]]: """ (Only applies to the database category) The name of the database. """ return pulumi.get(self, "database") @property @pulumi.getter def hostname(self) -> pulumi.Output[Optional[str]]: """ (Only applies to the database category) The address where the database can be found """ return pulumi.get(self, "hostname") @property @pulumi.getter def password(self) -> pulumi.Output[str]: """ Password for this item. """ return pulumi.get(self, "password") @property @pulumi.getter(name="passwordRecipe") def password_recipe(self) -> pulumi.Output[Optional['outputs.ItemPasswordRecipe']]: """ Password for this item. """ return pulumi.get(self, "password_recipe") @property @pulumi.getter def port(self) -> pulumi.Output[Optional[str]]: """ (Only applies to the database category) The port the database is listening on. """ return pulumi.get(self, "port") @property @pulumi.getter def sections(self) -> pulumi.Output[Optional[Sequence['outputs.ItemSection']]]: """ A list of custom sections in an item """ return pulumi.get(self, "sections") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Sequence[str]]]: """ An array of strings of the tags assigned to the item. """ return pulumi.get(self, "tags") @property @pulumi.getter def title(self) -> pulumi.Output[Optional[str]]: """ The title of the item. """ return pulumi.get(self, "title") @property @pulumi.getter def type(self) -> pulumi.Output[Optional[str]]: """ The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] """ return pulumi.get(self, "type") @property @pulumi.getter def url(self) -> pulumi.Output[Optional[str]]: """ The primary URL for the item. """ return pulumi.get(self, "url") @property @pulumi.getter def username(self) -> pulumi.Output[Optional[str]]: """ Username for this item. """ return pulumi.get(self, "username") @property @pulumi.getter def uuid(self) -> pulumi.Output[str]: """ The UUID of the item. Item identifiers are unique within a specific vault. """ return pulumi.get(self, "uuid") @property @pulumi.getter def vault(self) -> pulumi.Output[str]: """ The UUID of the vault the item is in. """ return pulumi.get(self, "vault")
(resource_name: str, *args, **kwargs)
52,664
bmitzkus_pulumi_onepassword.item
__init__
null
def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ItemArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs)
(__self__, resource_name: str, *args, **kwargs)
52,666
bmitzkus_pulumi_onepassword.item
_internal_init
null
def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, category: Optional[pulumi.Input[str]] = None, database: Optional[pulumi.Input[str]] = None, hostname: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input[str]] = None, password_recipe: Optional[pulumi.Input[pulumi.InputType['ItemPasswordRecipeArgs']]] = None, port: Optional[pulumi.Input[str]] = None, sections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ItemSectionArgs']]]]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, title: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[str]] = None, url: Optional[pulumi.Input[str]] = None, username: Optional[pulumi.Input[str]] = None, vault: Optional[pulumi.Input[str]] = None, __props__=None): opts = pulumi.ResourceOptions.merge(_utilities.get_resource_opts_defaults(), opts) if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = ItemArgs.__new__(ItemArgs) __props__.__dict__["category"] = category __props__.__dict__["database"] = database __props__.__dict__["hostname"] = hostname __props__.__dict__["password"] = None if password is None else pulumi.Output.secret(password) __props__.__dict__["password_recipe"] = password_recipe __props__.__dict__["port"] = port __props__.__dict__["sections"] = sections __props__.__dict__["tags"] = tags __props__.__dict__["title"] = title __props__.__dict__["type"] = type __props__.__dict__["url"] = url __props__.__dict__["username"] = username if vault is None and not opts.urn: raise TypeError("Missing required property 'vault'") __props__.__dict__["vault"] = vault __props__.__dict__["uuid"] = None secret_opts = pulumi.ResourceOptions(additional_secret_outputs=["password"]) opts = pulumi.ResourceOptions.merge(opts, secret_opts) super(Item, __self__).__init__( 'onepassword:index/item:Item', resource_name, __props__, opts)
(__self__, resource_name: str, opts: Optional[pulumi.resource.ResourceOptions] = None, category: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, database: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, hostname: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, password: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, password_recipe: Union[ForwardRef('ItemPasswordRecipeArgs'), Mapping[str, Any], Awaitable[Union[ForwardRef('ItemPasswordRecipeArgs'), Mapping[str, Any]]], ForwardRef('Output[T]'), NoneType] = None, port: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, sections: Union[Sequence[Union[ForwardRef('ItemSectionArgs'), Mapping[str, Any], Awaitable[Union[ForwardRef('ItemSectionArgs'), Mapping[str, Any]]], ForwardRef('Output[T]')]], Awaitable[Sequence[Union[ForwardRef('ItemSectionArgs'), Mapping[str, Any], Awaitable[Union[ForwardRef('ItemSectionArgs'), Mapping[str, Any]]], ForwardRef('Output[T]')]]], ForwardRef('Output[T]'), NoneType] = None, tags: Union[Sequence[Union[str, Awaitable[str], ForwardRef('Output[T]')]], Awaitable[Sequence[Union[str, Awaitable[str], ForwardRef('Output[T]')]]], ForwardRef('Output[T]'), NoneType] = None, title: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, type: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, url: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, username: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, vault: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, __props__=None)
52,667
bmitzkus_pulumi_onepassword.item
get
Get an existing Item resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] category: The category of the item. One of ["login" "password" "database"] :param pulumi.Input[str] database: (Only applies to the database category) The name of the database. :param pulumi.Input[str] hostname: (Only applies to the database category) The address where the database can be found :param pulumi.Input[str] password: Password for this item. :param pulumi.Input[pulumi.InputType['ItemPasswordRecipeArgs']] password_recipe: Password for this item. :param pulumi.Input[str] port: (Only applies to the database category) The port the database is listening on. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ItemSectionArgs']]]] sections: A list of custom sections in an item :param pulumi.Input[Sequence[pulumi.Input[str]]] tags: An array of strings of the tags assigned to the item. :param pulumi.Input[str] title: The title of the item. :param pulumi.Input[str] type: The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] :param pulumi.Input[str] url: The primary URL for the item. :param pulumi.Input[str] username: Username for this item. :param pulumi.Input[str] uuid: The UUID of the item. Item identifiers are unique within a specific vault. :param pulumi.Input[str] vault: The UUID of the vault the item is in.
@staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, category: Optional[pulumi.Input[str]] = None, database: Optional[pulumi.Input[str]] = None, hostname: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input[str]] = None, password_recipe: Optional[pulumi.Input[pulumi.InputType['ItemPasswordRecipeArgs']]] = None, port: Optional[pulumi.Input[str]] = None, sections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ItemSectionArgs']]]]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, title: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[str]] = None, url: Optional[pulumi.Input[str]] = None, username: Optional[pulumi.Input[str]] = None, uuid: Optional[pulumi.Input[str]] = None, vault: Optional[pulumi.Input[str]] = None) -> 'Item': """ Get an existing Item resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] category: The category of the item. One of ["login" "password" "database"] :param pulumi.Input[str] database: (Only applies to the database category) The name of the database. :param pulumi.Input[str] hostname: (Only applies to the database category) The address where the database can be found :param pulumi.Input[str] password: Password for this item. :param pulumi.Input[pulumi.InputType['ItemPasswordRecipeArgs']] password_recipe: Password for this item. :param pulumi.Input[str] port: (Only applies to the database category) The port the database is listening on. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ItemSectionArgs']]]] sections: A list of custom sections in an item :param pulumi.Input[Sequence[pulumi.Input[str]]] tags: An array of strings of the tags assigned to the item. :param pulumi.Input[str] title: The title of the item. :param pulumi.Input[str] type: The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] :param pulumi.Input[str] url: The primary URL for the item. :param pulumi.Input[str] username: Username for this item. :param pulumi.Input[str] uuid: The UUID of the item. Item identifiers are unique within a specific vault. :param pulumi.Input[str] vault: The UUID of the vault the item is in. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _ItemState.__new__(_ItemState) __props__.__dict__["category"] = category __props__.__dict__["database"] = database __props__.__dict__["hostname"] = hostname __props__.__dict__["password"] = password __props__.__dict__["password_recipe"] = password_recipe __props__.__dict__["port"] = port __props__.__dict__["sections"] = sections __props__.__dict__["tags"] = tags __props__.__dict__["title"] = title __props__.__dict__["type"] = type __props__.__dict__["url"] = url __props__.__dict__["username"] = username __props__.__dict__["uuid"] = uuid __props__.__dict__["vault"] = vault return Item(resource_name, opts=opts, __props__=__props__)
(resource_name: str, id: Union[str, Awaitable[str], ForwardRef('Output[T]')], opts: Optional[pulumi.resource.ResourceOptions] = None, category: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, database: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, hostname: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, password: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, password_recipe: Union[ForwardRef('ItemPasswordRecipeArgs'), Mapping[str, Any], Awaitable[Union[ForwardRef('ItemPasswordRecipeArgs'), Mapping[str, Any]]], ForwardRef('Output[T]'), NoneType] = None, port: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, sections: Union[Sequence[Union[ForwardRef('ItemSectionArgs'), Mapping[str, Any], Awaitable[Union[ForwardRef('ItemSectionArgs'), Mapping[str, Any]]], ForwardRef('Output[T]')]], Awaitable[Sequence[Union[ForwardRef('ItemSectionArgs'), Mapping[str, Any], Awaitable[Union[ForwardRef('ItemSectionArgs'), Mapping[str, Any]]], ForwardRef('Output[T]')]]], ForwardRef('Output[T]'), NoneType] = None, tags: Union[Sequence[Union[str, Awaitable[str], ForwardRef('Output[T]')]], Awaitable[Sequence[Union[str, Awaitable[str], ForwardRef('Output[T]')]]], ForwardRef('Output[T]'), NoneType] = None, title: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, type: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, url: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, username: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, uuid: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, vault: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None) -> 'Item'
52,671
bmitzkus_pulumi_onepassword.item
ItemArgs
null
class ItemArgs: def __init__(__self__, *, vault: pulumi.Input[str], category: Optional[pulumi.Input[str]] = None, database: Optional[pulumi.Input[str]] = None, hostname: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input[str]] = None, password_recipe: Optional[pulumi.Input['ItemPasswordRecipeArgs']] = None, port: Optional[pulumi.Input[str]] = None, sections: Optional[pulumi.Input[Sequence[pulumi.Input['ItemSectionArgs']]]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, title: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[str]] = None, url: Optional[pulumi.Input[str]] = None, username: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a Item resource. :param pulumi.Input[str] vault: The UUID of the vault the item is in. :param pulumi.Input[str] category: The category of the item. One of ["login" "password" "database"] :param pulumi.Input[str] database: (Only applies to the database category) The name of the database. :param pulumi.Input[str] hostname: (Only applies to the database category) The address where the database can be found :param pulumi.Input[str] password: Password for this item. :param pulumi.Input['ItemPasswordRecipeArgs'] password_recipe: Password for this item. :param pulumi.Input[str] port: (Only applies to the database category) The port the database is listening on. :param pulumi.Input[Sequence[pulumi.Input['ItemSectionArgs']]] sections: A list of custom sections in an item :param pulumi.Input[Sequence[pulumi.Input[str]]] tags: An array of strings of the tags assigned to the item. :param pulumi.Input[str] title: The title of the item. :param pulumi.Input[str] type: The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] :param pulumi.Input[str] url: The primary URL for the item. :param pulumi.Input[str] username: Username for this item. """ pulumi.set(__self__, "vault", vault) if category is not None: pulumi.set(__self__, "category", category) if database is not None: pulumi.set(__self__, "database", database) if hostname is not None: pulumi.set(__self__, "hostname", hostname) if password is not None: pulumi.set(__self__, "password", password) if password_recipe is not None: pulumi.set(__self__, "password_recipe", password_recipe) if port is not None: pulumi.set(__self__, "port", port) if sections is not None: pulumi.set(__self__, "sections", sections) if tags is not None: pulumi.set(__self__, "tags", tags) if title is not None: pulumi.set(__self__, "title", title) if type is not None: pulumi.set(__self__, "type", type) if url is not None: pulumi.set(__self__, "url", url) if username is not None: pulumi.set(__self__, "username", username) @property @pulumi.getter def vault(self) -> pulumi.Input[str]: """ The UUID of the vault the item is in. """ return pulumi.get(self, "vault") @vault.setter def vault(self, value: pulumi.Input[str]): pulumi.set(self, "vault", value) @property @pulumi.getter def category(self) -> Optional[pulumi.Input[str]]: """ The category of the item. One of ["login" "password" "database"] """ return pulumi.get(self, "category") @category.setter def category(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "category", value) @property @pulumi.getter def database(self) -> Optional[pulumi.Input[str]]: """ (Only applies to the database category) The name of the database. """ return pulumi.get(self, "database") @database.setter def database(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "database", value) @property @pulumi.getter def hostname(self) -> Optional[pulumi.Input[str]]: """ (Only applies to the database category) The address where the database can be found """ return pulumi.get(self, "hostname") @hostname.setter def hostname(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "hostname", value) @property @pulumi.getter def password(self) -> Optional[pulumi.Input[str]]: """ Password for this item. """ return pulumi.get(self, "password") @password.setter def password(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "password", value) @property @pulumi.getter(name="passwordRecipe") def password_recipe(self) -> Optional[pulumi.Input['ItemPasswordRecipeArgs']]: """ Password for this item. """ return pulumi.get(self, "password_recipe") @password_recipe.setter def password_recipe(self, value: Optional[pulumi.Input['ItemPasswordRecipeArgs']]): pulumi.set(self, "password_recipe", value) @property @pulumi.getter def port(self) -> Optional[pulumi.Input[str]]: """ (Only applies to the database category) The port the database is listening on. """ return pulumi.get(self, "port") @port.setter def port(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "port", value) @property @pulumi.getter def sections(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['ItemSectionArgs']]]]: """ A list of custom sections in an item """ return pulumi.get(self, "sections") @sections.setter def sections(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['ItemSectionArgs']]]]): pulumi.set(self, "sections", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ An array of strings of the tags assigned to the item. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter def title(self) -> Optional[pulumi.Input[str]]: """ The title of the item. """ return pulumi.get(self, "title") @title.setter def title(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "title", value) @property @pulumi.getter def type(self) -> Optional[pulumi.Input[str]]: """ The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] """ return pulumi.get(self, "type") @type.setter def type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "type", value) @property @pulumi.getter def url(self) -> Optional[pulumi.Input[str]]: """ The primary URL for the item. """ return pulumi.get(self, "url") @url.setter def url(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "url", value) @property @pulumi.getter def username(self) -> Optional[pulumi.Input[str]]: """ Username for this item. """ return pulumi.get(self, "username") @username.setter def username(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "username", value)
(*, vault: Union[str, Awaitable[str], ForwardRef('Output[T]')], category: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, database: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, hostname: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, password: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, password_recipe: Union[ForwardRef('ItemPasswordRecipeArgs'), Awaitable[ForwardRef('ItemPasswordRecipeArgs')], ForwardRef('Output[T]'), NoneType] = None, port: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, sections: Union[Sequence[Union[ForwardRef('ItemSectionArgs'), Awaitable[ForwardRef('ItemSectionArgs')], ForwardRef('Output[T]')]], Awaitable[Sequence[Union[ForwardRef('ItemSectionArgs'), Awaitable[ForwardRef('ItemSectionArgs')], ForwardRef('Output[T]')]]], ForwardRef('Output[T]'), NoneType] = None, tags: Union[Sequence[Union[str, Awaitable[str], ForwardRef('Output[T]')]], Awaitable[Sequence[Union[str, Awaitable[str], ForwardRef('Output[T]')]]], ForwardRef('Output[T]'), NoneType] = None, title: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, type: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, url: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, username: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None)
52,673
bmitzkus_pulumi_onepassword.item
__init__
The set of arguments for constructing a Item resource. :param pulumi.Input[str] vault: The UUID of the vault the item is in. :param pulumi.Input[str] category: The category of the item. One of ["login" "password" "database"] :param pulumi.Input[str] database: (Only applies to the database category) The name of the database. :param pulumi.Input[str] hostname: (Only applies to the database category) The address where the database can be found :param pulumi.Input[str] password: Password for this item. :param pulumi.Input['ItemPasswordRecipeArgs'] password_recipe: Password for this item. :param pulumi.Input[str] port: (Only applies to the database category) The port the database is listening on. :param pulumi.Input[Sequence[pulumi.Input['ItemSectionArgs']]] sections: A list of custom sections in an item :param pulumi.Input[Sequence[pulumi.Input[str]]] tags: An array of strings of the tags assigned to the item. :param pulumi.Input[str] title: The title of the item. :param pulumi.Input[str] type: The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] :param pulumi.Input[str] url: The primary URL for the item. :param pulumi.Input[str] username: Username for this item.
def __init__(__self__, *, vault: pulumi.Input[str], category: Optional[pulumi.Input[str]] = None, database: Optional[pulumi.Input[str]] = None, hostname: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input[str]] = None, password_recipe: Optional[pulumi.Input['ItemPasswordRecipeArgs']] = None, port: Optional[pulumi.Input[str]] = None, sections: Optional[pulumi.Input[Sequence[pulumi.Input['ItemSectionArgs']]]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, title: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[str]] = None, url: Optional[pulumi.Input[str]] = None, username: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a Item resource. :param pulumi.Input[str] vault: The UUID of the vault the item is in. :param pulumi.Input[str] category: The category of the item. One of ["login" "password" "database"] :param pulumi.Input[str] database: (Only applies to the database category) The name of the database. :param pulumi.Input[str] hostname: (Only applies to the database category) The address where the database can be found :param pulumi.Input[str] password: Password for this item. :param pulumi.Input['ItemPasswordRecipeArgs'] password_recipe: Password for this item. :param pulumi.Input[str] port: (Only applies to the database category) The port the database is listening on. :param pulumi.Input[Sequence[pulumi.Input['ItemSectionArgs']]] sections: A list of custom sections in an item :param pulumi.Input[Sequence[pulumi.Input[str]]] tags: An array of strings of the tags assigned to the item. :param pulumi.Input[str] title: The title of the item. :param pulumi.Input[str] type: The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] :param pulumi.Input[str] url: The primary URL for the item. :param pulumi.Input[str] username: Username for this item. """ pulumi.set(__self__, "vault", vault) if category is not None: pulumi.set(__self__, "category", category) if database is not None: pulumi.set(__self__, "database", database) if hostname is not None: pulumi.set(__self__, "hostname", hostname) if password is not None: pulumi.set(__self__, "password", password) if password_recipe is not None: pulumi.set(__self__, "password_recipe", password_recipe) if port is not None: pulumi.set(__self__, "port", port) if sections is not None: pulumi.set(__self__, "sections", sections) if tags is not None: pulumi.set(__self__, "tags", tags) if title is not None: pulumi.set(__self__, "title", title) if type is not None: pulumi.set(__self__, "type", type) if url is not None: pulumi.set(__self__, "url", url) if username is not None: pulumi.set(__self__, "username", username)
(__self__, *, vault: Union[str, Awaitable[str], ForwardRef('Output[T]')], category: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, database: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, hostname: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, password: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, password_recipe: Union[ForwardRef('ItemPasswordRecipeArgs'), Awaitable[ForwardRef('ItemPasswordRecipeArgs')], ForwardRef('Output[T]'), NoneType] = None, port: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, sections: Union[Sequence[Union[ForwardRef('ItemSectionArgs'), Awaitable[ForwardRef('ItemSectionArgs')], ForwardRef('Output[T]')]], Awaitable[Sequence[Union[ForwardRef('ItemSectionArgs'), Awaitable[ForwardRef('ItemSectionArgs')], ForwardRef('Output[T]')]]], ForwardRef('Output[T]'), NoneType] = None, tags: Union[Sequence[Union[str, Awaitable[str], ForwardRef('Output[T]')]], Awaitable[Sequence[Union[str, Awaitable[str], ForwardRef('Output[T]')]]], ForwardRef('Output[T]'), NoneType] = None, title: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, type: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, url: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, username: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None)
52,674
bmitzkus_pulumi_onepassword._inputs
ItemPasswordRecipeArgs
null
class ItemPasswordRecipeArgs: def __init__(__self__, *, digits: Optional[pulumi.Input[bool]] = None, length: Optional[pulumi.Input[int]] = None, letters: Optional[pulumi.Input[bool]] = None, symbols: Optional[pulumi.Input[bool]] = None): """ :param pulumi.Input[bool] digits: Use digits [0-9] when generating the password. :param pulumi.Input[int] length: The length of the password to be generated. :param pulumi.Input[bool] letters: Use letters [a-zA-Z] when generating the password. :param pulumi.Input[bool] symbols: Use symbols [[email protected]_*] when generating the password. """ if digits is not None: pulumi.set(__self__, "digits", digits) if length is not None: pulumi.set(__self__, "length", length) if letters is not None: pulumi.set(__self__, "letters", letters) if symbols is not None: pulumi.set(__self__, "symbols", symbols) @property @pulumi.getter def digits(self) -> Optional[pulumi.Input[bool]]: """ Use digits [0-9] when generating the password. """ return pulumi.get(self, "digits") @digits.setter def digits(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "digits", value) @property @pulumi.getter def length(self) -> Optional[pulumi.Input[int]]: """ The length of the password to be generated. """ return pulumi.get(self, "length") @length.setter def length(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "length", value) @property @pulumi.getter def letters(self) -> Optional[pulumi.Input[bool]]: """ Use letters [a-zA-Z] when generating the password. """ return pulumi.get(self, "letters") @letters.setter def letters(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "letters", value) @property @pulumi.getter def symbols(self) -> Optional[pulumi.Input[bool]]: """ Use symbols [[email protected]_*] when generating the password. """ return pulumi.get(self, "symbols") @symbols.setter def symbols(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "symbols", value)
(*, digits: Union[bool, Awaitable[bool], ForwardRef('Output[T]'), NoneType] = None, length: Union[int, Awaitable[int], ForwardRef('Output[T]'), NoneType] = None, letters: Union[bool, Awaitable[bool], ForwardRef('Output[T]'), NoneType] = None, symbols: Union[bool, Awaitable[bool], ForwardRef('Output[T]'), NoneType] = None)
52,676
bmitzkus_pulumi_onepassword._inputs
__init__
:param pulumi.Input[bool] digits: Use digits [0-9] when generating the password. :param pulumi.Input[int] length: The length of the password to be generated. :param pulumi.Input[bool] letters: Use letters [a-zA-Z] when generating the password. :param pulumi.Input[bool] symbols: Use symbols [[email protected]_*] when generating the password.
def __init__(__self__, *, digits: Optional[pulumi.Input[bool]] = None, length: Optional[pulumi.Input[int]] = None, letters: Optional[pulumi.Input[bool]] = None, symbols: Optional[pulumi.Input[bool]] = None): """ :param pulumi.Input[bool] digits: Use digits [0-9] when generating the password. :param pulumi.Input[int] length: The length of the password to be generated. :param pulumi.Input[bool] letters: Use letters [a-zA-Z] when generating the password. :param pulumi.Input[bool] symbols: Use symbols [[email protected]_*] when generating the password. """ if digits is not None: pulumi.set(__self__, "digits", digits) if length is not None: pulumi.set(__self__, "length", length) if letters is not None: pulumi.set(__self__, "letters", letters) if symbols is not None: pulumi.set(__self__, "symbols", symbols)
(__self__, *, digits: Union[bool, Awaitable[bool], ForwardRef('Output[T]'), NoneType] = None, length: Union[int, Awaitable[int], ForwardRef('Output[T]'), NoneType] = None, letters: Union[bool, Awaitable[bool], ForwardRef('Output[T]'), NoneType] = None, symbols: Union[bool, Awaitable[bool], ForwardRef('Output[T]'), NoneType] = None)
52,677
bmitzkus_pulumi_onepassword._inputs
ItemSectionArgs
null
class ItemSectionArgs: def __init__(__self__, *, label: pulumi.Input[str], fields: Optional[pulumi.Input[Sequence[pulumi.Input['ItemSectionFieldArgs']]]] = None, id: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[str] label: The label for the section. :param pulumi.Input[Sequence[pulumi.Input['ItemSectionFieldArgs']]] fields: A list of custom fields in the section. :param pulumi.Input[str] id: A unique identifier for the section. """ pulumi.set(__self__, "label", label) if fields is not None: pulumi.set(__self__, "fields", fields) if id is not None: pulumi.set(__self__, "id", id) @property @pulumi.getter def label(self) -> pulumi.Input[str]: """ The label for the section. """ return pulumi.get(self, "label") @label.setter def label(self, value: pulumi.Input[str]): pulumi.set(self, "label", value) @property @pulumi.getter def fields(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['ItemSectionFieldArgs']]]]: """ A list of custom fields in the section. """ return pulumi.get(self, "fields") @fields.setter def fields(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['ItemSectionFieldArgs']]]]): pulumi.set(self, "fields", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ A unique identifier for the section. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value)
(*, label: Union[str, Awaitable[str], ForwardRef('Output[T]')], fields: Union[Sequence[Union[ForwardRef('ItemSectionFieldArgs'), Awaitable[ForwardRef('ItemSectionFieldArgs')], ForwardRef('Output[T]')]], Awaitable[Sequence[Union[ForwardRef('ItemSectionFieldArgs'), Awaitable[ForwardRef('ItemSectionFieldArgs')], ForwardRef('Output[T]')]]], ForwardRef('Output[T]'), NoneType] = None, id: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None)
52,679
bmitzkus_pulumi_onepassword._inputs
__init__
:param pulumi.Input[str] label: The label for the section. :param pulumi.Input[Sequence[pulumi.Input['ItemSectionFieldArgs']]] fields: A list of custom fields in the section. :param pulumi.Input[str] id: A unique identifier for the section.
def __init__(__self__, *, label: pulumi.Input[str], fields: Optional[pulumi.Input[Sequence[pulumi.Input['ItemSectionFieldArgs']]]] = None, id: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[str] label: The label for the section. :param pulumi.Input[Sequence[pulumi.Input['ItemSectionFieldArgs']]] fields: A list of custom fields in the section. :param pulumi.Input[str] id: A unique identifier for the section. """ pulumi.set(__self__, "label", label) if fields is not None: pulumi.set(__self__, "fields", fields) if id is not None: pulumi.set(__self__, "id", id)
(__self__, *, label: Union[str, Awaitable[str], ForwardRef('Output[T]')], fields: Union[Sequence[Union[ForwardRef('ItemSectionFieldArgs'), Awaitable[ForwardRef('ItemSectionFieldArgs')], ForwardRef('Output[T]')]], Awaitable[Sequence[Union[ForwardRef('ItemSectionFieldArgs'), Awaitable[ForwardRef('ItemSectionFieldArgs')], ForwardRef('Output[T]')]]], ForwardRef('Output[T]'), NoneType] = None, id: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None)
52,680
bmitzkus_pulumi_onepassword._inputs
ItemSectionFieldArgs
null
class ItemSectionFieldArgs: def __init__(__self__, *, label: pulumi.Input[str], id: Optional[pulumi.Input[str]] = None, password_recipe: Optional[pulumi.Input['ItemSectionFieldPasswordRecipeArgs']] = None, purpose: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[str]] = None, value: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[str] label: The label for the field. :param pulumi.Input[str] id: A unique identifier for the field. :param pulumi.Input['ItemSectionFieldPasswordRecipeArgs'] password_recipe: Password for this item. :param pulumi.Input[str] purpose: Purpose indicates this is a special field: a username, password, or notes field. One of ["USERNAME" "PASSWORD" "NOTES"] :param pulumi.Input[str] type: The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] :param pulumi.Input[str] value: The value of the field. """ pulumi.set(__self__, "label", label) if id is not None: pulumi.set(__self__, "id", id) if password_recipe is not None: pulumi.set(__self__, "password_recipe", password_recipe) if purpose is not None: pulumi.set(__self__, "purpose", purpose) if type is not None: pulumi.set(__self__, "type", type) if value is not None: pulumi.set(__self__, "value", value) @property @pulumi.getter def label(self) -> pulumi.Input[str]: """ The label for the field. """ return pulumi.get(self, "label") @label.setter def label(self, value: pulumi.Input[str]): pulumi.set(self, "label", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ A unique identifier for the field. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @property @pulumi.getter(name="passwordRecipe") def password_recipe(self) -> Optional[pulumi.Input['ItemSectionFieldPasswordRecipeArgs']]: """ Password for this item. """ return pulumi.get(self, "password_recipe") @password_recipe.setter def password_recipe(self, value: Optional[pulumi.Input['ItemSectionFieldPasswordRecipeArgs']]): pulumi.set(self, "password_recipe", value) @property @pulumi.getter def purpose(self) -> Optional[pulumi.Input[str]]: """ Purpose indicates this is a special field: a username, password, or notes field. One of ["USERNAME" "PASSWORD" "NOTES"] """ return pulumi.get(self, "purpose") @purpose.setter def purpose(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "purpose", value) @property @pulumi.getter def type(self) -> Optional[pulumi.Input[str]]: """ The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] """ return pulumi.get(self, "type") @type.setter def type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "type", value) @property @pulumi.getter def value(self) -> Optional[pulumi.Input[str]]: """ The value of the field. """ return pulumi.get(self, "value") @value.setter def value(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "value", value)
(*, label: Union[str, Awaitable[str], ForwardRef('Output[T]')], id: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, password_recipe: Union[ForwardRef('ItemSectionFieldPasswordRecipeArgs'), Awaitable[ForwardRef('ItemSectionFieldPasswordRecipeArgs')], ForwardRef('Output[T]'), NoneType] = None, purpose: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, type: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, value: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None)
52,682
bmitzkus_pulumi_onepassword._inputs
__init__
:param pulumi.Input[str] label: The label for the field. :param pulumi.Input[str] id: A unique identifier for the field. :param pulumi.Input['ItemSectionFieldPasswordRecipeArgs'] password_recipe: Password for this item. :param pulumi.Input[str] purpose: Purpose indicates this is a special field: a username, password, or notes field. One of ["USERNAME" "PASSWORD" "NOTES"] :param pulumi.Input[str] type: The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] :param pulumi.Input[str] value: The value of the field.
def __init__(__self__, *, label: pulumi.Input[str], id: Optional[pulumi.Input[str]] = None, password_recipe: Optional[pulumi.Input['ItemSectionFieldPasswordRecipeArgs']] = None, purpose: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[str]] = None, value: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[str] label: The label for the field. :param pulumi.Input[str] id: A unique identifier for the field. :param pulumi.Input['ItemSectionFieldPasswordRecipeArgs'] password_recipe: Password for this item. :param pulumi.Input[str] purpose: Purpose indicates this is a special field: a username, password, or notes field. One of ["USERNAME" "PASSWORD" "NOTES"] :param pulumi.Input[str] type: The type of value stored in the field. One of ["STRING" "EMAIL" "CONCEALED" "URL" "OTP" "DATE" "MONTH_YEAR" "MENU"] :param pulumi.Input[str] value: The value of the field. """ pulumi.set(__self__, "label", label) if id is not None: pulumi.set(__self__, "id", id) if password_recipe is not None: pulumi.set(__self__, "password_recipe", password_recipe) if purpose is not None: pulumi.set(__self__, "purpose", purpose) if type is not None: pulumi.set(__self__, "type", type) if value is not None: pulumi.set(__self__, "value", value)
(__self__, *, label: Union[str, Awaitable[str], ForwardRef('Output[T]')], id: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, password_recipe: Union[ForwardRef('ItemSectionFieldPasswordRecipeArgs'), Awaitable[ForwardRef('ItemSectionFieldPasswordRecipeArgs')], ForwardRef('Output[T]'), NoneType] = None, purpose: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, type: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, value: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None)
52,683
bmitzkus_pulumi_onepassword._inputs
ItemSectionFieldPasswordRecipeArgs
null
class ItemSectionFieldPasswordRecipeArgs: def __init__(__self__, *, digits: Optional[pulumi.Input[bool]] = None, length: Optional[pulumi.Input[int]] = None, letters: Optional[pulumi.Input[bool]] = None, symbols: Optional[pulumi.Input[bool]] = None): """ :param pulumi.Input[bool] digits: Use digits [0-9] when generating the password. :param pulumi.Input[int] length: The length of the password to be generated. :param pulumi.Input[bool] letters: Use letters [a-zA-Z] when generating the password. :param pulumi.Input[bool] symbols: Use symbols [[email protected]_*] when generating the password. """ if digits is not None: pulumi.set(__self__, "digits", digits) if length is not None: pulumi.set(__self__, "length", length) if letters is not None: pulumi.set(__self__, "letters", letters) if symbols is not None: pulumi.set(__self__, "symbols", symbols) @property @pulumi.getter def digits(self) -> Optional[pulumi.Input[bool]]: """ Use digits [0-9] when generating the password. """ return pulumi.get(self, "digits") @digits.setter def digits(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "digits", value) @property @pulumi.getter def length(self) -> Optional[pulumi.Input[int]]: """ The length of the password to be generated. """ return pulumi.get(self, "length") @length.setter def length(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "length", value) @property @pulumi.getter def letters(self) -> Optional[pulumi.Input[bool]]: """ Use letters [a-zA-Z] when generating the password. """ return pulumi.get(self, "letters") @letters.setter def letters(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "letters", value) @property @pulumi.getter def symbols(self) -> Optional[pulumi.Input[bool]]: """ Use symbols [[email protected]_*] when generating the password. """ return pulumi.get(self, "symbols") @symbols.setter def symbols(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "symbols", value)
(*, digits: Union[bool, Awaitable[bool], ForwardRef('Output[T]'), NoneType] = None, length: Union[int, Awaitable[int], ForwardRef('Output[T]'), NoneType] = None, letters: Union[bool, Awaitable[bool], ForwardRef('Output[T]'), NoneType] = None, symbols: Union[bool, Awaitable[bool], ForwardRef('Output[T]'), NoneType] = None)
52,686
bmitzkus_pulumi_onepassword.provider
Provider
null
class Provider(pulumi.ProviderResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account: Optional[pulumi.Input[str]] = None, op_cli_path: Optional[pulumi.Input[str]] = None, service_account_token: Optional[pulumi.Input[str]] = None, token: Optional[pulumi.Input[str]] = None, url: Optional[pulumi.Input[str]] = None, __props__=None): """ The provider type for the onepassword package. By default, resources use package-wide configuration settings, however an explicit `Provider` instance may be created and passed during resource construction to achieve fine-grained programmatic control over provider settings. See the [documentation](https://www.pulumi.com/docs/reference/programming-model/#providers) for more information. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account: A valid account's sign-in address or ID to use biometrics unlock. Can also be sourced from `OP_ACCOUNT` environment variable. Provider will use the 1Password CLI if set. :param pulumi.Input[str] op_cli_path: The path to the 1Password CLI binary. Can also be sourced from `OP_CLI_PATH` environment variable. Defaults to `op`. :param pulumi.Input[str] service_account_token: A valid 1Password service account token. Can also be sourced from `OP_SERVICE_ACCOUNT_TOKEN` environment variable. Provider will use the 1Password CLI if set. :param pulumi.Input[str] token: A valid token for your 1Password Connect server. Can also be sourced from `OP_CONNECT_TOKEN` environment variable. Provider will use 1Password Connect server if set. :param pulumi.Input[str] url: The HTTP(S) URL where your 1Password Connect server can be found. Can also be sourced `OP_CONNECT_HOST` environment variable. Provider will use 1Password Connect server if set. """ ... @overload def __init__(__self__, resource_name: str, args: Optional[ProviderArgs] = None, opts: Optional[pulumi.ResourceOptions] = None): """ The provider type for the onepassword package. By default, resources use package-wide configuration settings, however an explicit `Provider` instance may be created and passed during resource construction to achieve fine-grained programmatic control over provider settings. See the [documentation](https://www.pulumi.com/docs/reference/programming-model/#providers) for more information. :param str resource_name: The name of the resource. :param ProviderArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ProviderArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account: Optional[pulumi.Input[str]] = None, op_cli_path: Optional[pulumi.Input[str]] = None, service_account_token: Optional[pulumi.Input[str]] = None, token: Optional[pulumi.Input[str]] = None, url: Optional[pulumi.Input[str]] = None, __props__=None): opts = pulumi.ResourceOptions.merge(_utilities.get_resource_opts_defaults(), opts) if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = ProviderArgs.__new__(ProviderArgs) __props__.__dict__["account"] = account __props__.__dict__["op_cli_path"] = op_cli_path __props__.__dict__["service_account_token"] = service_account_token __props__.__dict__["token"] = token __props__.__dict__["url"] = url super(Provider, __self__).__init__( 'onepassword', resource_name, __props__, opts) @property @pulumi.getter def account(self) -> pulumi.Output[Optional[str]]: """ A valid account's sign-in address or ID to use biometrics unlock. Can also be sourced from `OP_ACCOUNT` environment variable. Provider will use the 1Password CLI if set. """ return pulumi.get(self, "account") @property @pulumi.getter(name="opCliPath") def op_cli_path(self) -> pulumi.Output[Optional[str]]: """ The path to the 1Password CLI binary. Can also be sourced from `OP_CLI_PATH` environment variable. Defaults to `op`. """ return pulumi.get(self, "op_cli_path") @property @pulumi.getter(name="serviceAccountToken") def service_account_token(self) -> pulumi.Output[Optional[str]]: """ A valid 1Password service account token. Can also be sourced from `OP_SERVICE_ACCOUNT_TOKEN` environment variable. Provider will use the 1Password CLI if set. """ return pulumi.get(self, "service_account_token") @property @pulumi.getter def token(self) -> pulumi.Output[Optional[str]]: """ A valid token for your 1Password Connect server. Can also be sourced from `OP_CONNECT_TOKEN` environment variable. Provider will use 1Password Connect server if set. """ return pulumi.get(self, "token") @property @pulumi.getter def url(self) -> pulumi.Output[Optional[str]]: """ The HTTP(S) URL where your 1Password Connect server can be found. Can also be sourced `OP_CONNECT_HOST` environment variable. Provider will use 1Password Connect server if set. """ return pulumi.get(self, "url")
(resource_name: str, *args, **kwargs)
52,689
bmitzkus_pulumi_onepassword.provider
_internal_init
null
def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account: Optional[pulumi.Input[str]] = None, op_cli_path: Optional[pulumi.Input[str]] = None, service_account_token: Optional[pulumi.Input[str]] = None, token: Optional[pulumi.Input[str]] = None, url: Optional[pulumi.Input[str]] = None, __props__=None): opts = pulumi.ResourceOptions.merge(_utilities.get_resource_opts_defaults(), opts) if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = ProviderArgs.__new__(ProviderArgs) __props__.__dict__["account"] = account __props__.__dict__["op_cli_path"] = op_cli_path __props__.__dict__["service_account_token"] = service_account_token __props__.__dict__["token"] = token __props__.__dict__["url"] = url super(Provider, __self__).__init__( 'onepassword', resource_name, __props__, opts)
(__self__, resource_name: str, opts: Optional[pulumi.resource.ResourceOptions] = None, account: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, op_cli_path: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, service_account_token: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, token: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, url: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, __props__=None)
52,693
bmitzkus_pulumi_onepassword.provider
ProviderArgs
null
class ProviderArgs: def __init__(__self__, *, account: Optional[pulumi.Input[str]] = None, op_cli_path: Optional[pulumi.Input[str]] = None, service_account_token: Optional[pulumi.Input[str]] = None, token: Optional[pulumi.Input[str]] = None, url: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a Provider resource. :param pulumi.Input[str] account: A valid account's sign-in address or ID to use biometrics unlock. Can also be sourced from `OP_ACCOUNT` environment variable. Provider will use the 1Password CLI if set. :param pulumi.Input[str] op_cli_path: The path to the 1Password CLI binary. Can also be sourced from `OP_CLI_PATH` environment variable. Defaults to `op`. :param pulumi.Input[str] service_account_token: A valid 1Password service account token. Can also be sourced from `OP_SERVICE_ACCOUNT_TOKEN` environment variable. Provider will use the 1Password CLI if set. :param pulumi.Input[str] token: A valid token for your 1Password Connect server. Can also be sourced from `OP_CONNECT_TOKEN` environment variable. Provider will use 1Password Connect server if set. :param pulumi.Input[str] url: The HTTP(S) URL where your 1Password Connect server can be found. Can also be sourced `OP_CONNECT_HOST` environment variable. Provider will use 1Password Connect server if set. """ if account is not None: pulumi.set(__self__, "account", account) if op_cli_path is not None: pulumi.set(__self__, "op_cli_path", op_cli_path) if service_account_token is not None: pulumi.set(__self__, "service_account_token", service_account_token) if token is not None: pulumi.set(__self__, "token", token) if url is not None: pulumi.set(__self__, "url", url) @property @pulumi.getter def account(self) -> Optional[pulumi.Input[str]]: """ A valid account's sign-in address or ID to use biometrics unlock. Can also be sourced from `OP_ACCOUNT` environment variable. Provider will use the 1Password CLI if set. """ return pulumi.get(self, "account") @account.setter def account(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "account", value) @property @pulumi.getter(name="opCliPath") def op_cli_path(self) -> Optional[pulumi.Input[str]]: """ The path to the 1Password CLI binary. Can also be sourced from `OP_CLI_PATH` environment variable. Defaults to `op`. """ return pulumi.get(self, "op_cli_path") @op_cli_path.setter def op_cli_path(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "op_cli_path", value) @property @pulumi.getter(name="serviceAccountToken") def service_account_token(self) -> Optional[pulumi.Input[str]]: """ A valid 1Password service account token. Can also be sourced from `OP_SERVICE_ACCOUNT_TOKEN` environment variable. Provider will use the 1Password CLI if set. """ return pulumi.get(self, "service_account_token") @service_account_token.setter def service_account_token(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "service_account_token", value) @property @pulumi.getter def token(self) -> Optional[pulumi.Input[str]]: """ A valid token for your 1Password Connect server. Can also be sourced from `OP_CONNECT_TOKEN` environment variable. Provider will use 1Password Connect server if set. """ return pulumi.get(self, "token") @token.setter def token(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "token", value) @property @pulumi.getter def url(self) -> Optional[pulumi.Input[str]]: """ The HTTP(S) URL where your 1Password Connect server can be found. Can also be sourced `OP_CONNECT_HOST` environment variable. Provider will use 1Password Connect server if set. """ return pulumi.get(self, "url") @url.setter def url(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "url", value)
(*, account: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, op_cli_path: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, service_account_token: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, token: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, url: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None)
52,695
bmitzkus_pulumi_onepassword.provider
__init__
The set of arguments for constructing a Provider resource. :param pulumi.Input[str] account: A valid account's sign-in address or ID to use biometrics unlock. Can also be sourced from `OP_ACCOUNT` environment variable. Provider will use the 1Password CLI if set. :param pulumi.Input[str] op_cli_path: The path to the 1Password CLI binary. Can also be sourced from `OP_CLI_PATH` environment variable. Defaults to `op`. :param pulumi.Input[str] service_account_token: A valid 1Password service account token. Can also be sourced from `OP_SERVICE_ACCOUNT_TOKEN` environment variable. Provider will use the 1Password CLI if set. :param pulumi.Input[str] token: A valid token for your 1Password Connect server. Can also be sourced from `OP_CONNECT_TOKEN` environment variable. Provider will use 1Password Connect server if set. :param pulumi.Input[str] url: The HTTP(S) URL where your 1Password Connect server can be found. Can also be sourced `OP_CONNECT_HOST` environment variable. Provider will use 1Password Connect server if set.
def __init__(__self__, *, account: Optional[pulumi.Input[str]] = None, op_cli_path: Optional[pulumi.Input[str]] = None, service_account_token: Optional[pulumi.Input[str]] = None, token: Optional[pulumi.Input[str]] = None, url: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a Provider resource. :param pulumi.Input[str] account: A valid account's sign-in address or ID to use biometrics unlock. Can also be sourced from `OP_ACCOUNT` environment variable. Provider will use the 1Password CLI if set. :param pulumi.Input[str] op_cli_path: The path to the 1Password CLI binary. Can also be sourced from `OP_CLI_PATH` environment variable. Defaults to `op`. :param pulumi.Input[str] service_account_token: A valid 1Password service account token. Can also be sourced from `OP_SERVICE_ACCOUNT_TOKEN` environment variable. Provider will use the 1Password CLI if set. :param pulumi.Input[str] token: A valid token for your 1Password Connect server. Can also be sourced from `OP_CONNECT_TOKEN` environment variable. Provider will use 1Password Connect server if set. :param pulumi.Input[str] url: The HTTP(S) URL where your 1Password Connect server can be found. Can also be sourced `OP_CONNECT_HOST` environment variable. Provider will use 1Password Connect server if set. """ if account is not None: pulumi.set(__self__, "account", account) if op_cli_path is not None: pulumi.set(__self__, "op_cli_path", op_cli_path) if service_account_token is not None: pulumi.set(__self__, "service_account_token", service_account_token) if token is not None: pulumi.set(__self__, "token", token) if url is not None: pulumi.set(__self__, "url", url)
(__self__, *, account: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, op_cli_path: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, service_account_token: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, token: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None, url: Union[str, Awaitable[str], ForwardRef('Output[T]'), NoneType] = None)
52,699
bmitzkus_pulumi_onepassword.get_item
get_item
Use this data source to get details of an item by its vault uuid and either the title or the uuid of the item. ## Example Usage ```python import pulumi import pulumi_onepassword as onepassword example = onepassword.get_item(vault=var["demo_vault"], uuid=onepassword_item["demo_sections"]["uuid"]) ``` :param str note_value: Secure Note value. :param str title: The title of the item to retrieve. This field will be populated with the title of the item if the item it looked up by its UUID. :param str uuid: The UUID of the item to retrieve. This field will be populated with the UUID of the item if the item it looked up by its title. :param str vault: The UUID of the vault the item is in.
def get_item(note_value: Optional[str] = None, title: Optional[str] = None, uuid: Optional[str] = None, vault: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetItemResult: """ Use this data source to get details of an item by its vault uuid and either the title or the uuid of the item. ## Example Usage ```python import pulumi import pulumi_onepassword as onepassword example = onepassword.get_item(vault=var["demo_vault"], uuid=onepassword_item["demo_sections"]["uuid"]) ``` :param str note_value: Secure Note value. :param str title: The title of the item to retrieve. This field will be populated with the title of the item if the item it looked up by its UUID. :param str uuid: The UUID of the item to retrieve. This field will be populated with the UUID of the item if the item it looked up by its title. :param str vault: The UUID of the vault the item is in. """ __args__ = dict() __args__['noteValue'] = note_value __args__['title'] = title __args__['uuid'] = uuid __args__['vault'] = vault opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('onepassword:index/getItem:getItem', __args__, opts=opts, typ=GetItemResult).value return AwaitableGetItemResult( category=pulumi.get(__ret__, 'category'), database=pulumi.get(__ret__, 'database'), hostname=pulumi.get(__ret__, 'hostname'), id=pulumi.get(__ret__, 'id'), note_value=pulumi.get(__ret__, 'note_value'), password=pulumi.get(__ret__, 'password'), port=pulumi.get(__ret__, 'port'), sections=pulumi.get(__ret__, 'sections'), tags=pulumi.get(__ret__, 'tags'), title=pulumi.get(__ret__, 'title'), type=pulumi.get(__ret__, 'type'), url=pulumi.get(__ret__, 'url'), username=pulumi.get(__ret__, 'username'), uuid=pulumi.get(__ret__, 'uuid'), vault=pulumi.get(__ret__, 'vault'))
(note_value: Optional[str] = None, title: Optional[str] = None, uuid: Optional[str] = None, vault: Optional[str] = None, opts: Optional[pulumi.invoke.InvokeOptions] = None) -> bmitzkus_pulumi_onepassword.get_item.AwaitableGetItemResult
52,701
bmitzkus_pulumi_onepassword.get_vault
get_vault
Use this data source to get details of a vault by either its name or uuid. :param str name: The name of the vault to retrieve. This field will be populated with the name of the vault if the vault it looked up by its UUID. :param str uuid: The UUID of the vault to retrieve. This field will be populated with the UUID of the vault if the vault it looked up by its name.
def get_vault(name: Optional[str] = None, uuid: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetVaultResult: """ Use this data source to get details of a vault by either its name or uuid. :param str name: The name of the vault to retrieve. This field will be populated with the name of the vault if the vault it looked up by its UUID. :param str uuid: The UUID of the vault to retrieve. This field will be populated with the UUID of the vault if the vault it looked up by its name. """ __args__ = dict() __args__['name'] = name __args__['uuid'] = uuid opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('onepassword:index/getVault:getVault', __args__, opts=opts, typ=GetVaultResult).value return AwaitableGetVaultResult( description=pulumi.get(__ret__, 'description'), id=pulumi.get(__ret__, 'id'), name=pulumi.get(__ret__, 'name'), uuid=pulumi.get(__ret__, 'uuid'))
(name: Optional[str] = None, uuid: Optional[str] = None, opts: Optional[pulumi.invoke.InvokeOptions] = None) -> bmitzkus_pulumi_onepassword.get_vault.AwaitableGetVaultResult
52,707
flaml.automl.automl
AutoML
The AutoML class. Example: ```python automl = AutoML() automl_settings = { "time_budget": 60, "metric": 'accuracy', "task": 'classification', "log_file_name": 'mylog.log', } automl.fit(X_train = X_train, y_train = y_train, **automl_settings) ```
class AutoML(BaseEstimator): """The AutoML class. Example: ```python automl = AutoML() automl_settings = { "time_budget": 60, "metric": 'accuracy', "task": 'classification', "log_file_name": 'mylog.log', } automl.fit(X_train = X_train, y_train = y_train, **automl_settings) ``` """ __version__ = flaml_version def __init__(self, **settings): """Constructor. Many settings in fit() can be passed to the constructor too. If an argument in fit() is provided, it will override the setting passed to the constructor. If an argument in fit() is not provided but provided in the constructor, the value passed to the constructor will be used. Args: metric: A string of the metric name or a function, e.g., 'accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'roc_auc_weighted', 'roc_auc_ovo_weighted', 'roc_auc_ovr_weighted', 'f1', 'micro_f1', 'macro_f1', 'log_loss', 'mae', 'mse', 'r2', 'mape'. Default is 'auto'. If passing a customized metric function, the function needs to have the following input arguments: ```python def custom_metric( X_test, y_test, estimator, labels, X_train, y_train, weight_test=None, weight_train=None, config=None, groups_test=None, groups_train=None, ): return metric_to_minimize, metrics_to_log ``` which returns a float number as the minimization objective, and a dictionary as the metrics to log. E.g., ```python def custom_metric( X_val, y_val, estimator, labels, X_train, y_train, weight_val=None, weight_train=None, *args, ): from sklearn.metrics import log_loss import time start = time.time() y_pred = estimator.predict_proba(X_val) pred_time = (time.time() - start) / len(X_val) val_loss = log_loss(y_val, y_pred, labels=labels, sample_weight=weight_val) y_pred = estimator.predict_proba(X_train) train_loss = log_loss(y_train, y_pred, labels=labels, sample_weight=weight_train) alpha = 0.5 return val_loss * (1 + alpha) - alpha * train_loss, { "val_loss": val_loss, "train_loss": train_loss, "pred_time": pred_time, } ``` task: A string of the task type, e.g., 'classification', 'regression', 'ts_forecast', 'rank', 'seq-classification', 'seq-regression', 'summarization', or an instance of the Task class. n_jobs: An integer of the number of threads for training | default=-1. Use all available resources when n_jobs == -1. log_file_name: A string of the log file name | default="". To disable logging, set it to be an empty string "". estimator_list: A list of strings for estimator names, or 'auto'. e.g., ```['lgbm', 'xgboost', 'xgb_limitdepth', 'catboost', 'rf', 'extra_tree']```. time_budget: A float number of the time budget in seconds. Use -1 if no time limit. max_iter: An integer of the maximal number of iterations. sample: A boolean of whether to sample the training data during search. ensemble: boolean or dict | default=False. Whether to perform ensemble after search. Can be a dict with keys 'passthrough' and 'final_estimator' to specify the passthrough and final_estimator in the stacker. The dict can also contain 'n_jobs' as the key to specify the number of jobs for the stacker. eval_method: A string of resampling strategy, one of ['auto', 'cv', 'holdout']. split_ratio: A float of the valiation data percentage for holdout. n_splits: An integer of the number of folds for cross - validation. log_type: A string of the log type, one of ['better', 'all']. 'better' only logs configs with better loss than previos iters 'all' logs all the tried configs. model_history: A boolean of whether to keep the best model per estimator. Make sure memory is large enough if setting to True. log_training_metric: A boolean of whether to log the training metric for each model. mem_thres: A float of the memory size constraint in bytes. pred_time_limit: A float of the prediction latency constraint in seconds. It refers to the average prediction time per row in validation data. train_time_limit: A float of the training time constraint in seconds. verbose: int, default=3 | Controls the verbosity, higher means more messages. retrain_full: bool or str, default=True | whether to retrain the selected model on the full training data when using holdout. True - retrain only after search finishes; False - no retraining; 'budget' - do best effort to retrain without violating the time budget. split_type: str or splitter object, default="auto" | the data split type. * A valid splitter object is an instance of a derived class of scikit-learn [KFold](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold) and have ``split`` and ``get_n_splits`` methods with the same signatures. Set eval_method to "cv" to use the splitter object. * Valid str options depend on different tasks. For classification tasks, valid choices are ["auto", 'stratified', 'uniform', 'time', 'group']. "auto" -> stratified. For regression tasks, valid choices are ["auto", 'uniform', 'time']. "auto" -> uniform. For time series forecast tasks, must be "auto" or 'time'. For ranking task, must be "auto" or 'group'. hpo_method: str, default="auto" | The hyperparameter optimization method. By default, CFO is used for sequential search and BlendSearch is used for parallel search. No need to set when using flaml's default search space or using a simple customized search space. When set to 'bs', BlendSearch is used. BlendSearch can be tried when the search space is complex, for example, containing multiple disjoint, discontinuous subspaces. When set to 'random', random search is used. starting_points: A dictionary or a str to specify the starting hyperparameter config for the estimators | default="static". If str: - if "data", use data-dependent defaults; - if "data:path" use data-dependent defaults which are stored at path; - if "static", use data-independent defaults. If dict, keys are the name of the estimators, and values are the starting hyperparamter configurations for the corresponding estimators. The value can be a single hyperparamter configuration dict or a list of hyperparamter configuration dicts. In the following code example, we get starting_points from the `automl` object and use them in the `new_automl` object. e.g., ```python from flaml import AutoML automl = AutoML() X_train, y_train = load_iris(return_X_y=True) automl.fit(X_train, y_train) starting_points = automl.best_config_per_estimator new_automl = AutoML() new_automl.fit(X_train, y_train, starting_points=starting_points) ``` seed: int or None, default=None | The random seed for hpo. n_concurrent_trials: [In preview] int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, flaml performes [parallel tuning](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and installation of ray or spark is required: `pip install flaml[ray]` or `pip install flaml[spark]`. Please check [here](https://spark.apache.org/docs/latest/api/python/getting_started/install.html) for more details about installing Spark. keep_search_state: boolean, default=False | Whether to keep data needed for model search after fit(). By default the state is deleted for space saving. preserve_checkpoint: boolean, default=True | Whether to preserve the saved checkpoint on disk when deleting automl. By default the checkpoint is preserved. early_stop: boolean, default=False | Whether to stop early if the search is considered to converge. force_cancel: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. append_log: boolean, default=False | Whether to directly append the log records to the input log file if it exists. auto_augment: boolean, default=True | Whether to automatically augment rare classes. min_sample_size: int, default=MIN_SAMPLE_TRAIN | the minimal sample size when sample=True. use_ray: boolean or dict. If boolean: default=False | Whether to use ray to run the training in separate processes. This can be used to prevent OOM for large datasets, but will incur more overhead in time. If dict: the dict contains the keywords arguments to be passed to [ray.tune.run](https://docs.ray.io/en/latest/tune/api_docs/execution.html). use_spark: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`. free_mem_ratio: float between 0 and 1, default=0. The free memory ratio to keep during training. metric_constraints: list, default=[] | The list of metric constraints. Each element in this list is a 3-tuple, which shall be expressed in the following format: the first element of the 3-tuple is the name of the metric, the second element is the inequality sign chosen from ">=" and "<=", and the third element is the constraint value. E.g., `('val_loss', '<=', 0.1)`. Note that all the metric names in metric_constraints need to be reported via the metrics_to_log dictionary returned by a customized metric function. The customized metric function shall be provided via the `metric` key word argument of the fit() function or the automl constructor. Find an example in the 4th constraint type in this [doc](/docs/Use-Cases/Task-Oriented-AutoML#constraint). If `pred_time_limit` is provided as one of keyword arguments to fit() function or the automl constructor, flaml will automatically (and under the hood) add it as an additional element in the metric_constraints. Essentially 'pred_time_limit' specifies a constraint about the prediction latency constraint in seconds. custom_hp: dict, default=None | The custom search space specified by user. It is a nested dict with keys being the estimator names, and values being dicts per estimator search space. In the per estimator search space dict, the keys are the hyperparameter names, and values are dicts of info ("domain", "init_value", and "low_cost_init_value") about the search space associated with the hyperparameter (i.e., per hyperparameter search space dict). When custom_hp is provided, the built-in search space which is also a nested dict of per estimator search space dict, will be updated with custom_hp. Note that during this nested dict update, the per hyperparameter search space dicts will be replaced (instead of updated) by the ones provided in custom_hp. Note that the value for "domain" can either be a constant or a sample.Domain object. e.g., ```python custom_hp = { "transformer_ms": { "model_path": { "domain": "albert-base-v2", }, "learning_rate": { "domain": tune.choice([1e-4, 1e-5]), } } } ``` skip_transform: boolean, default=False | Whether to pre-process data prior to modeling. fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name. e.g., ```python fit_kwargs_by_estimator = { "transformer": { "output_dir": "test/data/output/", "fp16": False, } } ``` mlflow_logging: boolean, default=True | Whether to log the training results to mlflow. This requires mlflow to be installed and to have an active mlflow run. FLAML will create nested runs. """ if ERROR: raise ERROR self._track_iter = 0 self._state = AutoMLState() self._state.learner_classes = {} self._settings = settings # no budget by default settings["time_budget"] = settings.get("time_budget", -1) settings["task"] = settings.get("task", "classification") settings["n_jobs"] = settings.get("n_jobs", -1) settings["eval_method"] = settings.get("eval_method", "auto") settings["split_ratio"] = settings.get("split_ratio", SPLIT_RATIO) settings["n_splits"] = settings.get("n_splits", N_SPLITS) settings["auto_augment"] = settings.get("auto_augment", True) settings["metric"] = settings.get("metric", "auto") settings["estimator_list"] = settings.get("estimator_list", "auto") settings["log_file_name"] = settings.get("log_file_name", "") settings["max_iter"] = settings.get("max_iter") # no budget by default settings["sample"] = settings.get("sample", True) settings["ensemble"] = settings.get("ensemble", False) settings["log_type"] = settings.get("log_type", "better") settings["model_history"] = settings.get("model_history", False) settings["log_training_metric"] = settings.get("log_training_metric", False) settings["mem_thres"] = settings.get("mem_thres", MEM_THRES) settings["pred_time_limit"] = settings.get("pred_time_limit", np.inf) settings["train_time_limit"] = settings.get("train_time_limit", None) settings["verbose"] = settings.get("verbose", 3) settings["retrain_full"] = settings.get("retrain_full", True) settings["split_type"] = settings.get("split_type", "auto") settings["hpo_method"] = settings.get("hpo_method", "auto") settings["learner_selector"] = settings.get("learner_selector", "sample") settings["starting_points"] = settings.get("starting_points", "static") settings["n_concurrent_trials"] = settings.get("n_concurrent_trials", 1) settings["keep_search_state"] = settings.get("keep_search_state", False) settings["preserve_checkpoint"] = settings.get("preserve_checkpoint", True) settings["early_stop"] = settings.get("early_stop", False) settings["force_cancel"] = settings.get("force_cancel", False) settings["append_log"] = settings.get("append_log", False) settings["min_sample_size"] = settings.get("min_sample_size", MIN_SAMPLE_TRAIN) settings["use_ray"] = settings.get("use_ray", False) settings["use_spark"] = settings.get("use_spark", False) if settings["use_ray"] is not False and settings["use_spark"] is not False: raise ValueError("use_ray and use_spark cannot be both True.") settings["free_mem_ratio"] = settings.get("free_mem_ratio", 0) settings["metric_constraints"] = settings.get("metric_constraints", []) settings["cv_score_agg_func"] = settings.get("cv_score_agg_func", None) settings["fit_kwargs_by_estimator"] = settings.get("fit_kwargs_by_estimator", {}) settings["custom_hp"] = settings.get("custom_hp", {}) settings["skip_transform"] = settings.get("skip_transform", False) settings["mlflow_logging"] = settings.get("mlflow_logging", True) self._estimator_type = "classifier" if settings["task"] in CLASSIFICATION else "regressor" def get_params(self, deep: bool = False) -> dict: return self._settings.copy() @property def config_history(self) -> dict: """A dictionary of iter->(estimator, config, time), storing the best estimator, config, and the time when the best model is updated each time. """ return self._config_history @property def model(self): """An object with `predict()` and `predict_proba()` method (for classification), storing the best trained model. """ return self.__dict__.get("_trained_estimator") def best_model_for_estimator(self, estimator_name: str): """Return the best model found for a particular estimator. Args: estimator_name: a str of the estimator's name. Returns: An object storing the best model for estimator_name. If `model_history` was set to False during fit(), then the returned model is untrained unless estimator_name is the best estimator. If `model_history` was set to True, then the returned model is trained. """ state = self._search_states.get(estimator_name) return state and getattr(state, "trained_estimator", None) @property def best_estimator(self): """A string indicating the best estimator found.""" return self._best_estimator @property def best_iteration(self): """An integer of the iteration number where the best config is found.""" return self._best_iteration @property def best_config(self): """A dictionary of the best configuration.""" state = self._search_states.get(self._best_estimator) config = state and getattr(state, "best_config", None) return config and AutoMLState.sanitize(config) @property def best_config_per_estimator(self): """A dictionary of all estimators' best configuration.""" return { e: e_search_state.best_config and AutoMLState.sanitize(e_search_state.best_config) for e, e_search_state in self._search_states.items() } @property def best_loss_per_estimator(self): """A dictionary of all estimators' best loss.""" return {e: e_search_state.best_loss for e, e_search_state in self._search_states.items()} @property def best_loss(self): """A float of the best loss found.""" return self._state.best_loss @property def best_result(self): """Result dictionary for model trained with the best config.""" state = self._search_states.get(self._best_estimator) return state and getattr(state, "best_result", None) @property def metrics_for_best_config(self): """Returns a float of the best loss, and a dictionary of the auxiliary metrics to log associated with the best config. These two objects correspond to the returned objects by the customized metric function for the config with the best loss.""" state = self._search_states.get(self._best_estimator) return self._state.best_loss, state and getattr(state, "best_result", {}).get("metric_for_logging") @property def best_config_train_time(self): """A float of the seconds taken by training the best config.""" return getattr(self._search_states[self._best_estimator], "best_config_train_time", None) def save_best_config(self, filename): best = { "class": self.best_estimator, "hyperparameters": self.best_config, } os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, "w") as f: json.dump(best, f) @property def feature_transformer(self): """Returns feature transformer which is used to preprocess data before applying training or inference.""" return getattr(self, "_transformer", None) @property def label_transformer(self): """Returns label transformer which is used to preprocess labels before scoring, and inverse transform labels after inference.""" return getattr(self, "_label_transformer", None) @property def classes_(self): """A numpy array of shape (n_classes,) for class labels.""" attr = getattr(self, "_label_transformer", None) if attr: return attr.classes_ attr = getattr(self, "_trained_estimator", None) if attr: return attr.classes_ return None @property def n_features_in_(self): return self._trained_estimator.n_features_in_ @property def feature_names_in_(self): attr = getattr(self, "_trained_estimator", None) attr = attr and getattr(attr, "feature_names_in_", None) if attr is not None: return attr return getattr(self, "_feature_names_in_", None) @property def feature_importances_(self): attr = getattr(self, "_trained_estimator", None) attr = attr and getattr(attr, "feature_importances_", None) return attr @property def time_to_find_best_model(self) -> float: """Time taken to find best model in seconds.""" return self.__dict__.get("_time_taken_best_iter") def score( self, X: Union[DataFrame, psDataFrame], y: Union[Series, psSeries], **kwargs, ): estimator = getattr(self, "_trained_estimator", None) if estimator is None: logger.warning("No estimator is trained. Please run fit with enough budget.") return None X = self._state.task.preprocess(X, self._transformer) if self._label_transformer: y = self._label_transformer.transform(y) return estimator.score(X, y, **kwargs) def predict( self, X: Union[np.array, DataFrame, List[str], List[List[str]], psDataFrame], **pred_kwargs, ): """Predict label from features. Args: X: A numpy array or pandas dataframe or pyspark.pandas dataframe of featurized instances, shape n * m, or for time series forcast tasks: a pandas dataframe with the first column containing timestamp values (datetime type) or an integer n for the predict steps (only valid when the estimator is arima or sarimax). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). **pred_kwargs: Other key word arguments to pass to predict() function of the searched learners, such as per_device_eval_batch_size. ```python multivariate_X_test = DataFrame({ 'timeStamp': pd.date_range(start='1/1/2022', end='1/07/2022'), 'categorical_col': ['yes', 'yes', 'no', 'no', 'yes', 'no', 'yes'], 'continuous_col': [105, 107, 120, 118, 110, 112, 115] }) model.predict(multivariate_X_test) ``` Returns: A array-like of shape n * 1: each element is a predicted label for an instance. """ estimator = getattr(self, "_trained_estimator", None) if estimator is None: logger.warning("No estimator is trained. Please run fit with enough budget.") return None X = self._state.task.preprocess(X, self._transformer) y_pred = estimator.predict(X, **pred_kwargs) if isinstance(y_pred, np.ndarray) and y_pred.ndim > 1 and isinstance(y_pred, np.ndarray): y_pred = y_pred.flatten() if self._label_transformer: return self._label_transformer.inverse_transform(Series(y_pred.astype(int))) else: return y_pred def predict_proba(self, X, **pred_kwargs): """Predict the probability of each class from features, only works for classification problems. Args: X: A numpy array of featurized instances, shape n * m. **pred_kwargs: Other key word arguments to pass to predict_proba() function of the searched learners, such as per_device_eval_batch_size. Returns: A numpy array of shape n * c. c is the # classes. Each element at (i, j) is the probability for instance i to be in class j. """ estimator = getattr(self, "_trained_estimator", None) if estimator is None: logger.warning("No estimator is trained. Please run fit with enough budget.") return None X = self._state.task.preprocess(X, self._transformer) proba = self._trained_estimator.predict_proba(X, **pred_kwargs) return proba def add_learner(self, learner_name, learner_class): """Add a customized learner. Args: learner_name: A string of the learner's name. learner_class: A subclass of flaml.automl.model.BaseEstimator. """ self._state.learner_classes[learner_name] = learner_class def get_estimator_from_log(self, log_file_name: str, record_id: int, task: Union[str, Task]): """Get the estimator from log file. Args: log_file_name: A string of the log file name. record_id: An integer of the record ID in the file, 0 corresponds to the first trial. task: A string of the task type, 'binary', 'multiclass', 'regression', 'ts_forecast', 'rank', or an instance of the Task class. Returns: An estimator object for the given configuration. """ with training_log_reader(log_file_name) as reader: record = reader.get_record(record_id) estimator = record.learner config = AutoMLState.sanitize(record.config) if isinstance(task, str): task = task_factory(task) estimator, _ = train_estimator( X_train=None, y_train=None, config_dic=config, task=task, estimator_name=estimator, estimator_class=self._state.learner_classes.get(estimator), eval_metric="train_time", ) return estimator def retrain_from_log( self, log_file_name, X_train=None, y_train=None, dataframe=None, label=None, time_budget=np.inf, task: Optional[Union[str, Task]] = None, eval_method=None, split_ratio=None, n_splits=None, split_type=None, groups=None, n_jobs=-1, # gpu_per_trial=0, train_best=True, train_full=False, record_id=-1, auto_augment=None, custom_hp=None, skip_transform=None, preserve_checkpoint=True, fit_kwargs_by_estimator=None, **fit_kwargs, ): """Retrain from log file. This function is intended to retrain the logged configurations. NOTE: In some rare case, the last config is early stopped to meet time_budget and it's the best config. But the logged config's ITER_HP (e.g., n_estimators) is not reduced. Args: log_file_name: A string of the log file name. X_train: A numpy array or dataframe of training data in shape n*m. For time series forecast tasks, the first column of X_train must be the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). y_train: A numpy array or series of labels in shape n*1. dataframe: A dataframe of training data including label column. For time series forecast tasks, dataframe must be specified and should have at least two columns: timestamp and label, where the first column is the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). label: A str of the label column name, e.g., 'label'; Note: If X_train and y_train are provided, dataframe and label are ignored; If not, dataframe and label must be provided. time_budget: A float number of the time budget in seconds. task: A string of the task type, e.g., 'classification', 'regression', 'ts_forecast', 'rank', 'seq-classification', 'seq-regression', 'summarization', or an instance of Task class. eval_method: A string of resampling strategy, one of ['auto', 'cv', 'holdout']. split_ratio: A float of the validation data percentage for holdout. n_splits: An integer of the number of folds for cross-validation. split_type: str or splitter object, default="auto" | the data split type. * A valid splitter object is an instance of a derived class of scikit-learn [KFold](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold) and have ``split`` and ``get_n_splits`` methods with the same signatures. Set eval_method to "cv" to use the splitter object. * Valid str options depend on different tasks. For classification tasks, valid choices are ["auto", 'stratified', 'uniform', 'time', 'group']. "auto" -> stratified. For regression tasks, valid choices are ["auto", 'uniform', 'time']. "auto" -> uniform. For time series forecast tasks, must be "auto" or 'time'. For ranking task, must be "auto" or 'group'. groups: None or array-like | Group labels (with matching length to y_train) or groups counts (with sum equal to length of y_train) for training data. n_jobs: An integer of the number of threads for training | default=-1. Use all available resources when n_jobs == -1. train_best: A boolean of whether to train the best config in the time budget; if false, train the last config in the budget. train_full: A boolean of whether to train on the full data. If true, eval_method and sample_size in the log file will be ignored. record_id: the ID of the training log record from which the model will be retrained. By default `record_id = -1` which means this will be ignored. `record_id = 0` corresponds to the first trial, and when `record_id >= 0`, `time_budget` will be ignored. auto_augment: boolean, default=True | Whether to automatically augment rare classes. custom_hp: dict, default=None | The custom search space specified by user Each key is the estimator name, each value is a dict of the custom search space for that estimator. Notice the domain of the custom search space can either be a value or a sample.Domain object. ```python custom_hp = { "transformer_ms": { "model_path": { "domain": "albert-base-v2", }, "learning_rate": { "domain": tune.choice([1e-4, 1e-5]), } } } ``` fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name. e.g., ```python fit_kwargs_by_estimator = { "transformer": { "output_dir": "test/data/output/", "fp16": False, } } ``` **fit_kwargs: Other key word arguments to pass to fit() function of the searched learners, such as sample_weight. Below are a few examples of estimator-specific parameters: period: int | forecast horizon for all time series forecast tasks. gpu_per_trial: float, default = 0 | A float of the number of gpus per trial, only used by TransformersEstimator, XGBoostSklearnEstimator, and TemporalFusionTransformerEstimator. group_ids: list of strings of column names identifying a time series, only used by TemporalFusionTransformerEstimator, required for 'ts_forecast_panel' task. `group_ids` is a parameter for TimeSeriesDataSet object from PyTorchForecasting. For other parameters to describe your dataset, refer to [TimeSeriesDataSet PyTorchForecasting](https://pytorch-forecasting.readthedocs.io/en/stable/api/pytorch_forecasting.data.timeseries.TimeSeriesDataSet.html). To specify your variables, use `static_categoricals`, `static_reals`, `time_varying_known_categoricals`, `time_varying_known_reals`, `time_varying_unknown_categoricals`, `time_varying_unknown_reals`, `variable_groups`. To provide more information on your data, use `max_encoder_length`, `min_encoder_length`, `lags`. log_dir: str, default = "lightning_logs" | Folder into which to log results for tensorboard, only used by TemporalFusionTransformerEstimator. max_epochs: int, default = 20 | Maximum number of epochs to run training, only used by TemporalFusionTransformerEstimator. batch_size: int, default = 64 | Batch size for training model, only used by TemporalFusionTransformerEstimator. """ task = task or self._settings.get("task") if isinstance(task, str): task = task_factory(task) eval_method = eval_method or self._settings.get("eval_method") split_ratio = split_ratio or self._settings.get("split_ratio") n_splits = n_splits or self._settings.get("n_splits") split_type = split_type or self._settings.get("split_type") auto_augment = self._settings.get("auto_augment") if auto_augment is None else auto_augment self._state.task = task self._estimator_type = "classifier" if task.is_classification() else "regressor" self._state.fit_kwargs = fit_kwargs self._state.custom_hp = custom_hp or self._settings.get("custom_hp") self._skip_transform = self._settings.get("skip_transform") if skip_transform is None else skip_transform self._state.fit_kwargs_by_estimator = fit_kwargs_by_estimator or self._settings.get("fit_kwargs_by_estimator") self.preserve_checkpoint = ( self._settings.get("preserve_checkpoint") if preserve_checkpoint is None else preserve_checkpoint ) task.validate_data(self, self._state, X_train, y_train, dataframe, label, groups=groups) logger.info("log file name {}".format(log_file_name)) best_config = None best_val_loss = float("+inf") best_estimator = None sample_size = None time_used = 0.0 training_duration = 0 best = None with training_log_reader(log_file_name) as reader: if record_id >= 0: best = reader.get_record(record_id) else: for record in reader.records(): time_used = record.wall_clock_time if time_used > time_budget: break training_duration = time_used val_loss = record.validation_loss if val_loss <= best_val_loss or not train_best: if val_loss == best_val_loss and train_best: size = record.sample_size if size > sample_size: best = record best_val_loss = val_loss sample_size = size else: best = record size = record.sample_size best_val_loss = val_loss sample_size = size if not training_duration: logger.warning(f"No estimator found within time_budget={time_budget}") from .model import BaseEstimator as Estimator self._trained_estimator = Estimator() return training_duration if not best: return best_estimator = best.learner best_config = best.config sample_size = len(self._y_train_all) if train_full else best.sample_size this_estimator_kwargs = self._state.fit_kwargs_by_estimator.get(best_estimator) if this_estimator_kwargs: this_estimator_kwargs = ( this_estimator_kwargs.copy() ) # make another shallow copy of the value (a dict obj), so user's fit_kwargs_by_estimator won't be updated this_estimator_kwargs.update(self._state.fit_kwargs) self._state.fit_kwargs_by_estimator[best_estimator] = this_estimator_kwargs else: self._state.fit_kwargs_by_estimator[best_estimator] = self._state.fit_kwargs logger.info( "estimator = {}, config = {}, #training instances = {}".format(best_estimator, best_config, sample_size) ) # Partially copied from fit() function # Initilize some attributes required for retrain_from_log self._split_type = task.decide_split_type( split_type, self._y_train_all, self._state.fit_kwargs, self._state.groups, ) eval_method = self._decide_eval_method(eval_method, time_budget) self.modelcount = 0 self._auto_augment = auto_augment self._prepare_data(eval_method, split_ratio, n_splits) self._state.time_budget = -1 self._state.free_mem_ratio = 0 self._state.n_jobs = n_jobs import os self._state.resources_per_trial = ( { "cpu": max(1, os.cpu_count() >> 1), "gpu": fit_kwargs.get("gpu_per_trial", 0), } if self._state.n_jobs < 0 else {"cpu": self._state.n_jobs, "gpu": fit_kwargs.get("gpu_per_trial", 0)} ) self._trained_estimator = self._state._train_with_config( best_estimator, best_config, sample_size=sample_size, )[0] logger.info("retrain from log succeeded") return training_duration def _decide_eval_method(self, eval_method, time_budget): if not isinstance(self._split_type, str): assert eval_method in [ "auto", "cv", ], "eval_method must be 'auto' or 'cv' for custom data splitter." assert self._state.X_val is None, "custom splitter and custom validation data can't be used together." return "cv" if self._state.X_val is not None and ( not isinstance(self._state.X_val, TimeSeriesDataset) or len(self._state.X_val.test_data) > 0 ): assert eval_method in [ "auto", "holdout", ], "eval_method must be 'auto' or 'holdout' for custom validation data." return "holdout" if eval_method != "auto": assert eval_method in [ "holdout", "cv", ], "eval_method must be 'holdout', 'cv' or 'auto'." return eval_method nrow, dim = self._nrow, self._ndim if ( time_budget < 0 or nrow * dim / 0.9 < SMALL_LARGE_THRES * (time_budget / 3600) and nrow < CV_HOLDOUT_THRESHOLD ): # time allows or sampling can be used and cv is necessary return "cv" else: return "holdout" @property def search_space(self) -> dict: """Search space. Must be called after fit(...) (use max_iter=0 and retrain_final=False to prevent actual fitting). Returns: A dict of the search space. """ estimator_list = self.estimator_list if len(estimator_list) == 1: estimator = estimator_list[0] space = self._search_states[estimator].search_space.copy() space["learner"] = estimator return space choices = [] for estimator in estimator_list: space = self._search_states[estimator].search_space.copy() space["learner"] = estimator choices.append(space) return {"ml": tune.choice(choices)} @property def low_cost_partial_config(self) -> dict: """Low cost partial config. Returns: A dict. (a) if there is only one estimator in estimator_list, each key is a hyperparameter name. (b) otherwise, it is a nested dict with 'ml' as the key, and a list of the low_cost_partial_configs as the value, corresponding to each learner's low_cost_partial_config; the estimator index as an integer corresponding to the cheapest learner is appended to the list at the end. """ if len(self.estimator_list) == 1: estimator = self.estimator_list[0] c = self._search_states[estimator].low_cost_partial_config return c else: configs = [] for estimator in self.estimator_list: c = self._search_states[estimator].low_cost_partial_config configs.append(c) configs.append( np.argmin( [ self._state.learner_classes.get(estimator).cost_relative2lgbm() for estimator in self.estimator_list ] ) ) config = {"ml": configs} return config @property def cat_hp_cost(self) -> dict: """Categorical hyperparameter cost Returns: A dict. (a) if there is only one estimator in estimator_list, each key is a hyperparameter name. (b) otherwise, it is a nested dict with 'ml' as the key, and a list of the cat_hp_cost's as the value, corresponding to each learner's cat_hp_cost; the cost relative to lgbm for each learner (as a list itself) is appended to the list at the end. """ if len(self.estimator_list) == 1: estimator = self.estimator_list[0] c = self._search_states[estimator].cat_hp_cost return c else: configs = [] for estimator in self.estimator_list: c = self._search_states[estimator].cat_hp_cost configs.append(c) configs.append( [self._state.learner_classes.get(estimator).cost_relative2lgbm() for estimator in self.estimator_list] ) config = {"ml": configs} return config @property def points_to_evaluate(self) -> dict: """Initial points to evaluate. Returns: A list of dicts. Each dict is the initial point for each learner. """ points = [] for estimator in self.estimator_list: configs = self._search_states[estimator].init_config for config in configs: config["learner"] = estimator if len(self.estimator_list) > 1: points.append({"ml": config}) else: points.append(config) return points @property def resource_attr(self) -> Optional[str]: """Attribute of the resource dimension. Returns: A string for the sample size attribute (the resource attribute in AutoML) or None. """ return "FLAML_sample_size" if self._sample else None @property def min_resource(self) -> Optional[float]: """Attribute for pruning. Returns: A float for the minimal sample size or None. """ return self._min_sample_size if self._sample else None @property def max_resource(self) -> Optional[float]: """Attribute for pruning. Returns: A float for the maximal sample size or None. """ return self._state.data_size[0] if self._sample else None def pickle(self, output_file_name): import pickle estimator_to_training_function = {} for estimator in self.estimator_list: search_state = self._search_states[estimator] if hasattr(search_state, "training_function"): estimator_to_training_function[estimator] = search_state.training_function del search_state.training_function with open(output_file_name, "wb") as f: pickle.dump(self, f, pickle.HIGHEST_PROTOCOL) @property def trainable(self) -> Callable[[dict], Optional[float]]: """Training function. Returns: A function that evaluates each config and returns the loss. """ self._state.time_from_start = 0 states = self._search_states mem_res = self._mem_thres def train(config: dict, state, is_report=True): # handle spark broadcast variables state = get_broadcast_data(state) is_report = get_broadcast_data(is_report) sample_size = config.get("FLAML_sample_size") config = config.get("ml", config).copy() if sample_size: config["FLAML_sample_size"] = sample_size estimator = config["learner"] # check memory constraints before training if states[estimator].learner_class.size(config) <= mem_res: del config["learner"] config.pop("_choice_", None) result = AutoMLState._compute_with_config_base( config, state=state, estimator=estimator, is_report=is_report ) else: # If search algorithm is not in flaml, it does not handle the config constraint, should also tune.report before return result = { "pred_time": 0, "wall_clock_time": None, "metric_for_logging": np.inf, "val_loss": np.inf, "trained_estimator": None, } if is_report is True: tune.report(**result) return result if self._use_ray is not False: from ray.tune import with_parameters return with_parameters( train, state=self._state, ) elif self._use_spark: from flaml.tune.spark.utils import with_parameters return with_parameters(train, state=self._state, is_report=False) else: return partial( train, state=self._state, ) @property def metric_constraints(self) -> list: """Metric constraints. Returns: A list of the metric constraints. """ return self._metric_constraints def _prepare_data(self, eval_method, split_ratio, n_splits): self._state.task.prepare_data( self._state, self._X_train_all, self._y_train_all, self._auto_augment, eval_method, self._split_type, split_ratio, n_splits, self._df, self._sample_weight_full, ) self.data_size_full = self._state.data_size_full def fit( self, X_train=None, y_train=None, dataframe=None, label=None, metric=None, task: Optional[Union[str, Task]] = None, n_jobs=None, # gpu_per_trial=0, log_file_name=None, estimator_list=None, time_budget=None, max_iter=None, sample=None, ensemble=None, eval_method=None, log_type=None, model_history=None, split_ratio=None, n_splits=None, log_training_metric=None, mem_thres=None, pred_time_limit=None, train_time_limit=None, X_val=None, y_val=None, sample_weight_val=None, groups_val=None, groups=None, verbose=None, retrain_full=None, split_type=None, learner_selector=None, hpo_method=None, starting_points=None, seed=None, n_concurrent_trials=None, keep_search_state=None, preserve_checkpoint=True, early_stop=None, force_cancel=None, append_log=None, auto_augment=None, min_sample_size=None, use_ray=None, use_spark=None, free_mem_ratio=0, metric_constraints=None, custom_hp=None, time_col=None, cv_score_agg_func=None, skip_transform=None, mlflow_logging=None, fit_kwargs_by_estimator=None, **fit_kwargs, ): """Find a model for a given task. Args: X_train: A numpy array or a pandas dataframe of training data in shape (n, m). For time series forecsat tasks, the first column of X_train must be the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). When using ray, X_train can be a ray.ObjectRef. y_train: A numpy array or a pandas series of labels in shape (n, ). dataframe: A dataframe of training data including label column. For time series forecast tasks, dataframe must be specified and must have at least two columns, timestamp and label, where the first column is the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). When using ray, dataframe can be a ray.ObjectRef. label: A str of the label column name for, e.g., 'label'; Note: If X_train and y_train are provided, dataframe and label are ignored; If not, dataframe and label must be provided. metric: A string of the metric name or a function, e.g., 'accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'roc_auc_weighted', 'roc_auc_ovo_weighted', 'roc_auc_ovr_weighted', 'f1', 'micro_f1', 'macro_f1', 'log_loss', 'mae', 'mse', 'r2', 'mape'. Default is 'auto'. If passing a customized metric function, the function needs to have the following input arguments: ```python def custom_metric( X_test, y_test, estimator, labels, X_train, y_train, weight_test=None, weight_train=None, config=None, groups_test=None, groups_train=None, ): return metric_to_minimize, metrics_to_log ``` which returns a float number as the minimization objective, and a dictionary as the metrics to log. E.g., ```python def custom_metric( X_val, y_val, estimator, labels, X_train, y_train, weight_val=None, weight_train=None, *args, ): from sklearn.metrics import log_loss import time start = time.time() y_pred = estimator.predict_proba(X_val) pred_time = (time.time() - start) / len(X_val) val_loss = log_loss(y_val, y_pred, labels=labels, sample_weight=weight_val) y_pred = estimator.predict_proba(X_train) train_loss = log_loss(y_train, y_pred, labels=labels, sample_weight=weight_train) alpha = 0.5 return val_loss * (1 + alpha) - alpha * train_loss, { "val_loss": val_loss, "train_loss": train_loss, "pred_time": pred_time, } ``` task: A string of the task type, e.g., 'classification', 'regression', 'ts_forecast_regression', 'ts_forecast_classification', 'rank', 'seq-classification', 'seq-regression', 'summarization', or an instance of Task class n_jobs: An integer of the number of threads for training | default=-1. Use all available resources when n_jobs == -1. log_file_name: A string of the log file name | default="". To disable logging, set it to be an empty string "". estimator_list: A list of strings for estimator names, or 'auto'. e.g., ```['lgbm', 'xgboost', 'xgb_limitdepth', 'catboost', 'rf', 'extra_tree']```. time_budget: A float number of the time budget in seconds. Use -1 if no time limit. max_iter: An integer of the maximal number of iterations. NOTE: when both time_budget and max_iter are unspecified, only one model will be trained per estimator. sample: A boolean of whether to sample the training data during search. ensemble: boolean or dict | default=False. Whether to perform ensemble after search. Can be a dict with keys 'passthrough' and 'final_estimator' to specify the passthrough and final_estimator in the stacker. The dict can also contain 'n_jobs' as the key to specify the number of jobs for the stacker. eval_method: A string of resampling strategy, one of ['auto', 'cv', 'holdout']. split_ratio: A float of the valiation data percentage for holdout. n_splits: An integer of the number of folds for cross - validation. log_type: A string of the log type, one of ['better', 'all']. 'better' only logs configs with better loss than previos iters 'all' logs all the tried configs. model_history: A boolean of whether to keep the trained best model per estimator. Make sure memory is large enough if setting to True. Default value is False: best_model_for_estimator would return a untrained model for non-best learner. log_training_metric: A boolean of whether to log the training metric for each model. mem_thres: A float of the memory size constraint in bytes. pred_time_limit: A float of the prediction latency constraint in seconds. It refers to the average prediction time per row in validation data. train_time_limit: None or a float of the training time constraint in seconds. X_val: None or a numpy array or a pandas dataframe of validation data. y_val: None or a numpy array or a pandas series of validation labels. sample_weight_val: None or a numpy array of the sample weight of validation data of the same shape as y_val. groups_val: None or array-like | group labels (with matching length to y_val) or group counts (with sum equal to length of y_val) for validation data. Need to be consistent with groups. groups: None or array-like | Group labels (with matching length to y_train) or groups counts (with sum equal to length of y_train) for training data. verbose: int, default=3 | Controls the verbosity, higher means more messages. retrain_full: bool or str, default=True | whether to retrain the selected model on the full training data when using holdout. True - retrain only after search finishes; False - no retraining; 'budget' - do best effort to retrain without violating the time budget. split_type: str or splitter object, default="auto" | the data split type. * A valid splitter object is an instance of a derived class of scikit-learn [KFold](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold) and have ``split`` and ``get_n_splits`` methods with the same signatures. Set eval_method to "cv" to use the splitter object. * Valid str options depend on different tasks. For classification tasks, valid choices are ["auto", 'stratified', 'uniform', 'time', 'group']. "auto" -> stratified. For regression tasks, valid choices are ["auto", 'uniform', 'time']. "auto" -> uniform. For time series forecast tasks, must be "auto" or 'time'. For ranking task, must be "auto" or 'group'. hpo_method: str, default="auto" | The hyperparameter optimization method. By default, CFO is used for sequential search and BlendSearch is used for parallel search. No need to set when using flaml's default search space or using a simple customized search space. When set to 'bs', BlendSearch is used. BlendSearch can be tried when the search space is complex, for example, containing multiple disjoint, discontinuous subspaces. When set to 'random', random search is used. starting_points: A dictionary or a str to specify the starting hyperparameter config for the estimators | default="data". If str: - if "data", use data-dependent defaults; - if "data:path" use data-dependent defaults which are stored at path; - if "static", use data-independent defaults. If dict, keys are the name of the estimators, and values are the starting hyperparamter configurations for the corresponding estimators. The value can be a single hyperparamter configuration dict or a list of hyperparamter configuration dicts. In the following code example, we get starting_points from the `automl` object and use them in the `new_automl` object. e.g., ```python from flaml import AutoML automl = AutoML() X_train, y_train = load_iris(return_X_y=True) automl.fit(X_train, y_train) starting_points = automl.best_config_per_estimator new_automl = AutoML() new_automl.fit(X_train, y_train, starting_points=starting_points) ``` seed: int or None, default=None | The random seed for hpo. n_concurrent_trials: [In preview] int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, flaml performes [parallel tuning](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and installation of ray or spark is required: `pip install flaml[ray]` or `pip install flaml[spark]`. Please check [here](https://spark.apache.org/docs/latest/api/python/getting_started/install.html) for more details about installing Spark. keep_search_state: boolean, default=False | Whether to keep data needed for model search after fit(). By default the state is deleted for space saving. preserve_checkpoint: boolean, default=True | Whether to preserve the saved checkpoint on disk when deleting automl. By default the checkpoint is preserved. early_stop: boolean, default=False | Whether to stop early if the search is considered to converge. force_cancel: boolean, default=False | Whether to forcely cancel the PySpark job if overtime. append_log: boolean, default=False | Whether to directly append the log records to the input log file if it exists. auto_augment: boolean, default=True | Whether to automatically augment rare classes. min_sample_size: int, default=MIN_SAMPLE_TRAIN | the minimal sample size when sample=True. use_ray: boolean or dict. If boolean: default=False | Whether to use ray to run the training in separate processes. This can be used to prevent OOM for large datasets, but will incur more overhead in time. If dict: the dict contains the keywords arguments to be passed to [ray.tune.run](https://docs.ray.io/en/latest/tune/api_docs/execution.html). use_spark: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. free_mem_ratio: float between 0 and 1, default=0. The free memory ratio to keep during training. metric_constraints: list, default=[] | The list of metric constraints. Each element in this list is a 3-tuple, which shall be expressed in the following format: the first element of the 3-tuple is the name of the metric, the second element is the inequality sign chosen from ">=" and "<=", and the third element is the constraint value. E.g., `('precision', '>=', 0.9)`. Note that all the metric names in metric_constraints need to be reported via the metrics_to_log dictionary returned by a customized metric function. The customized metric function shall be provided via the `metric` key word argument of the fit() function or the automl constructor. Find examples in this [test](https://github.com/microsoft/FLAML/tree/main/test/automl/test_constraints.py). If `pred_time_limit` is provided as one of keyword arguments to fit() function or the automl constructor, flaml will automatically (and under the hood) add it as an additional element in the metric_constraints. Essentially 'pred_time_limit' specifies a constraint about the prediction latency constraint in seconds. custom_hp: dict, default=None | The custom search space specified by user Each key is the estimator name, each value is a dict of the custom search space for that estimator. Notice the domain of the custom search space can either be a value of a sample.Domain object. ```python custom_hp = { "transformer_ms": { "model_path": { "domain": "albert-base-v2", }, "learning_rate": { "domain": tune.choice([1e-4, 1e-5]), } } } ``` time_col: for a time series task, name of the column containing the timestamps. If not provided, defaults to the first column of X_train/X_val cv_score_agg_func: customized cross-validation scores aggregate function. Default to average metrics across folds. If specificed, this function needs to have the following input arguments: * val_loss_folds: list of floats, the loss scores of each fold; * log_metrics_folds: list of dicts/floats, the metrics of each fold to log. This function should return the final aggregate result of all folds. A float number of the minimization objective, and a dictionary as the metrics to log or None. E.g., ```python def cv_score_agg_func(val_loss_folds, log_metrics_folds): metric_to_minimize = sum(val_loss_folds)/len(val_loss_folds) metrics_to_log = None for single_fold in log_metrics_folds: if metrics_to_log is None: metrics_to_log = single_fold elif isinstance(metrics_to_log, dict): metrics_to_log = {k: metrics_to_log[k] + v for k, v in single_fold.items()} else: metrics_to_log += single_fold if metrics_to_log: n = len(val_loss_folds) metrics_to_log = ( {k: v / n for k, v in metrics_to_log.items()} if isinstance(metrics_to_log, dict) else metrics_to_log / n ) return metric_to_minimize, metrics_to_log ``` skip_transform: boolean, default=False | Whether to pre-process data prior to modeling. mlflow_logging: boolean, default=None | Whether to log the training results to mlflow. Default value is None, which means the logging decision is made based on AutoML.__init__'s mlflow_logging argument. This requires mlflow to be installed and to have an active mlflow run. FLAML will create nested runs. fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name. For TransformersEstimator, available fit_kwargs can be found from [TrainingArgumentsForAuto](nlp/huggingface/training_args). e.g., ```python fit_kwargs_by_estimator = { "transformer": { "output_dir": "test/data/output/", "fp16": False, }, "tft": { "max_encoder_length": 1, "min_encoder_length": 1, "static_categoricals": [], "static_reals": [], "time_varying_known_categoricals": [], "time_varying_known_reals": [], "time_varying_unknown_categoricals": [], "time_varying_unknown_reals": [], "variable_groups": {}, "lags": {}, } } ``` **fit_kwargs: Other key word arguments to pass to fit() function of the searched learners, such as sample_weight. Below are a few examples of estimator-specific parameters: period: int | forecast horizon for all time series forecast tasks. gpu_per_trial: float, default = 0 | A float of the number of gpus per trial, only used by TransformersEstimator, XGBoostSklearnEstimator, and TemporalFusionTransformerEstimator. group_ids: list of strings of column names identifying a time series, only used by TemporalFusionTransformerEstimator, required for 'ts_forecast_panel' task. `group_ids` is a parameter for TimeSeriesDataSet object from PyTorchForecasting. For other parameters to describe your dataset, refer to [TimeSeriesDataSet PyTorchForecasting](https://pytorch-forecasting.readthedocs.io/en/stable/api/pytorch_forecasting.data.timeseries.TimeSeriesDataSet.html). To specify your variables, use `static_categoricals`, `static_reals`, `time_varying_known_categoricals`, `time_varying_known_reals`, `time_varying_unknown_categoricals`, `time_varying_unknown_reals`, `variable_groups`. To provide more information on your data, use `max_encoder_length`, `min_encoder_length`, `lags`. log_dir: str, default = "lightning_logs" | Folder into which to log results for tensorboard, only used by TemporalFusionTransformerEstimator. max_epochs: int, default = 20 | Maximum number of epochs to run training, only used by TemporalFusionTransformerEstimator. batch_size: int, default = 64 | Batch size for training model, only used by TemporalFusionTransformerEstimator. """ self._state._start_time_flag = self._start_time_flag = time.time() task = task or self._settings.get("task") if isinstance(task, str): task = task_factory(task, X_train, y_train) self._state.task = task self._state.task.time_col = time_col self._estimator_type = "classifier" if task.is_classification() else "regressor" time_budget = time_budget or self._settings.get("time_budget") n_jobs = n_jobs or self._settings.get("n_jobs") gpu_per_trial = fit_kwargs.get("gpu_per_trial", 0) eval_method = eval_method or self._settings.get("eval_method") split_ratio = split_ratio or self._settings.get("split_ratio") n_splits = n_splits or self._settings.get("n_splits") auto_augment = self._settings.get("auto_augment") if auto_augment is None else auto_augment metric = metric or self._settings.get("metric") estimator_list = estimator_list or self._settings.get("estimator_list") log_file_name = self._settings.get("log_file_name") if log_file_name is None else log_file_name max_iter = self._settings.get("max_iter") if max_iter is None else max_iter sample_is_none = sample is None if sample_is_none: sample = self._settings.get("sample") ensemble = self._settings.get("ensemble") if ensemble is None else ensemble log_type = log_type or self._settings.get("log_type") model_history = self._settings.get("model_history") if model_history is None else model_history log_training_metric = ( self._settings.get("log_training_metric") if log_training_metric is None else log_training_metric ) mem_thres = mem_thres or self._settings.get("mem_thres") pred_time_limit = pred_time_limit or self._settings.get("pred_time_limit") train_time_limit = train_time_limit or self._settings.get("train_time_limit") self._metric_constraints = metric_constraints or self._settings.get("metric_constraints") if np.isfinite(pred_time_limit): self._metric_constraints.append(("pred_time", "<=", pred_time_limit)) verbose = self._settings.get("verbose") if verbose is None else verbose retrain_full = self._settings.get("retrain_full") if retrain_full is None else retrain_full split_type = split_type or self._settings.get("split_type") hpo_method = hpo_method or self._settings.get("hpo_method") learner_selector = learner_selector or self._settings.get("learner_selector") no_starting_points = starting_points is None if no_starting_points: starting_points = self._settings.get("starting_points") n_concurrent_trials = n_concurrent_trials or self._settings.get("n_concurrent_trials") keep_search_state = self._settings.get("keep_search_state") if keep_search_state is None else keep_search_state self.preserve_checkpoint = ( self._settings.get("preserve_checkpoint") if preserve_checkpoint is None else preserve_checkpoint ) early_stop = self._settings.get("early_stop") if early_stop is None else early_stop force_cancel = self._settings.get("force_cancel") if force_cancel is None else force_cancel # no search budget is provided? no_budget = time_budget < 0 and max_iter is None and not early_stop append_log = self._settings.get("append_log") if append_log is None else append_log min_sample_size = min_sample_size or self._settings.get("min_sample_size") use_ray = self._settings.get("use_ray") if use_ray is None else use_ray use_spark = self._settings.get("use_spark") if use_spark is None else use_spark if use_spark and use_ray is not False: raise ValueError("use_spark and use_ray cannot be both True.") elif use_spark: spark_available, spark_error_msg = check_spark() if not spark_available: raise spark_error_msg old_level = logger.getEffectiveLevel() self.verbose = verbose logger.setLevel(50 - verbose * 10) if not logger.handlers: # Add the console handler. _ch = logging.StreamHandler(stream=sys.stdout) _ch.setFormatter(logger_formatter) logger.addHandler(_ch) if not use_ray and not use_spark and n_concurrent_trials > 1: if ray_available: logger.warning( "n_concurrent_trials > 1 is only supported when using Ray or Spark. " "Ray installed, setting use_ray to True. If you want to use Spark, set use_spark to True." ) use_ray = True else: spark_available, _ = check_spark() if spark_available: logger.warning( "n_concurrent_trials > 1 is only supported when using Ray or Spark. " "Spark installed, setting use_spark to True. If you want to use Ray, set use_ray to True." ) use_spark = True else: logger.warning( "n_concurrent_trials > 1 is only supported when using Ray or Spark. " "Neither Ray nor Spark installed, setting n_concurrent_trials to 1." ) n_concurrent_trials = 1 self._state.n_jobs = n_jobs self._n_concurrent_trials = n_concurrent_trials self._early_stop = early_stop self._use_spark = use_spark self._force_cancel = force_cancel self._use_ray = use_ray # use the following condition if we have an estimation of average_trial_time and average_trial_overhead # self._use_ray = use_ray or n_concurrent_trials > ( average_trial_time + average_trial_overhead) / (average_trial_time) if self._use_ray is not False: import ray n_cpus = ray.is_initialized() and ray.available_resources()["CPU"] or os.cpu_count() self._state.resources_per_trial = ( # when using gpu, default cpu is 1 per job; otherwise, default cpu is n_cpus / n_concurrent_trials ( { "cpu": max(int((n_cpus - 2) / 2 / n_concurrent_trials), 1), "gpu": gpu_per_trial, } if gpu_per_trial == 0 else {"cpu": 1, "gpu": gpu_per_trial} ) if n_jobs < 0 else {"cpu": n_jobs, "gpu": gpu_per_trial} ) if isinstance(X_train, ray.ObjectRef): X_train = ray.get(X_train) elif isinstance(dataframe, ray.ObjectRef): dataframe = ray.get(dataframe) else: # TODO: Integrate with Spark self._state.resources_per_trial = {"cpu": n_jobs} if n_jobs > 0 else {"cpu": 1} self._state.free_mem_ratio = self._settings.get("free_mem_ratio") if free_mem_ratio is None else free_mem_ratio self._state.task = task self._state.log_training_metric = log_training_metric self._state.fit_kwargs = fit_kwargs custom_hp = custom_hp or self._settings.get("custom_hp") self._skip_transform = self._settings.get("skip_transform") if skip_transform is None else skip_transform self._mlflow_logging = self._settings.get("mlflow_logging") if mlflow_logging is None else mlflow_logging fit_kwargs_by_estimator = fit_kwargs_by_estimator or self._settings.get("fit_kwargs_by_estimator") self._state.fit_kwargs_by_estimator = fit_kwargs_by_estimator.copy() # shallow copy of fit_kwargs_by_estimator self._state.weight_val = sample_weight_val task.validate_data( self, self._state, X_train, y_train, dataframe, label, X_val, y_val, groups_val, groups, ) self._search_states = {} # key: estimator name; value: SearchState self._random = np.random.RandomState(RANDOM_SEED) self._seed = seed if seed is not None else 20 self._learner_selector = learner_selector logger.info(f"task = {task}") self._split_type = self._state.task.decide_split_type( split_type, self._y_train_all, self._state.fit_kwargs, self._state.groups, ) if X_val is not None: logger.info(f"Data split method: {self._split_type}") eval_method = self._decide_eval_method(eval_method, time_budget) self._state.eval_method = eval_method logger.info("Evaluation method: {}".format(eval_method)) self._state.cv_score_agg_func = cv_score_agg_func or self._settings.get("cv_score_agg_func") self._retrain_in_budget = retrain_full == "budget" and (eval_method == "holdout" and self._state.X_val is None) self._auto_augment = auto_augment _sample_size_from_starting_points = {} if isinstance(starting_points, dict): for _estimator, _point_per_estimator in starting_points.items(): sample_size = ( _point_per_estimator and isinstance(_point_per_estimator, dict) and _point_per_estimator.get("FLAML_sample_size") ) if sample_size: _sample_size_from_starting_points[_estimator] = sample_size elif _point_per_estimator and isinstance(_point_per_estimator, list): _sample_size_set = set( [ config["FLAML_sample_size"] for config in _point_per_estimator if "FLAML_sample_size" in config ] ) if _sample_size_set: _sample_size_from_starting_points[_estimator] = min(_sample_size_set) if len(_sample_size_set) > 1: logger.warning( "Using the min FLAML_sample_size of all the provided starting points for estimator {}. (Provided FLAML_sample_size are: {})".format( _estimator, _sample_size_set ) ) if not sample and isinstance(starting_points, dict): assert ( not _sample_size_from_starting_points ), "When subsampling is disabled, do not include FLAML_sample_size in the starting point." self._min_sample_size = _sample_size_from_starting_points or min_sample_size self._min_sample_size_input = min_sample_size self._prepare_data(eval_method, split_ratio, n_splits) # TODO pull this to task as decide_sample_size if isinstance(self._min_sample_size, dict): self._sample = { ( k, sample and not task.is_rank() and eval_method != "cv" and (self._min_sample_size[k] * SAMPLE_MULTIPLY_FACTOR < self._state.data_size[0]), ) for k in self._min_sample_size.keys() } else: self._sample = ( sample and not task.is_rank() and eval_method != "cv" and (self._min_sample_size * SAMPLE_MULTIPLY_FACTOR < self._state.data_size[0]) ) metric = task.default_metric(metric) self._state.metric = metric # TODO pull this to task def is_to_reverse_metric(metric, task): if metric.startswith("ndcg"): return True, f"1-{metric}" if metric in [ "r2", "accuracy", "roc_auc", "roc_auc_ovr", "roc_auc_ovo", "roc_auc_weighted", "roc_auc_ovr_weighted", "roc_auc_ovo_weighted", "f1", "ap", "micro_f1", "macro_f1", ]: return True, f"1-{metric}" if task.is_nlp(): from flaml.automl.ml import huggingface_metric_to_mode if metric in huggingface_metric_to_mode and huggingface_metric_to_mode[metric] == "max": return True, f"-{metric}" return False, None if isinstance(metric, str): is_reverse, reverse_metric = is_to_reverse_metric(metric, task) if is_reverse: error_metric = reverse_metric else: error_metric = metric else: error_metric = "customized metric" logger.info(f"Minimizing error metric: {error_metric}") self._state.error_metric = error_metric is_spark_dataframe = isinstance(X_train, psDataFrame) or isinstance(dataframe, psDataFrame) estimator_list = task.default_estimator_list(estimator_list, is_spark_dataframe) if is_spark_dataframe and self._use_spark: # For spark dataframe, use_spark must be False because spark models are trained in parallel themselves self._use_spark = False logger.warning( "Spark dataframes support only spark.ml type models, which will be trained " "with spark themselves, no need to start spark trials in flaml. " "`use_spark` is set to False." ) # When no search budget is specified if no_budget: max_iter = len(estimator_list) self._learner_selector = "roundrobin" if sample_is_none: self._sample = False if no_starting_points: starting_points = "data" logger.warning( "No search budget is provided via time_budget or max_iter." " Training only one model per estimator." " Zero-shot AutoML is used for certain tasks and estimators." " To tune hyperparameters for each estimator," " please provide budget either via time_budget or max_iter." ) elif max_iter is None: # set to a large number max_iter = 1000000 self._state.retrain_final = ( retrain_full is True and eval_method == "holdout" and (X_val is None or self._use_ray is not False) or eval_method == "cv" and (max_iter > 0 or retrain_full is True) or max_iter == 1 ) # add custom learner for estimator_name in estimator_list: if estimator_name not in self._state.learner_classes: self.add_learner( estimator_name, self._state.task.estimator_class_from_str(estimator_name), ) # set up learner search space if isinstance(starting_points, str) and starting_points.startswith("data"): from flaml.default import suggest_config location = starting_points[5:] starting_points = {} for estimator_name in estimator_list: try: configs = suggest_config( self._state.task, self._X_train_all, self._y_train_all, estimator_name, location, k=1, ) starting_points[estimator_name] = [x["hyperparameters"] for x in configs] except FileNotFoundError: pass try: learner = suggest_learner( self._state.task, self._X_train_all, self._y_train_all, estimator_list=estimator_list, location=location, ) if learner != estimator_list[0]: estimator_list.remove(learner) estimator_list.insert(0, learner) except FileNotFoundError: pass self._state.time_budget = time_budget starting_points = {} if starting_points == "static" else starting_points for estimator_name in estimator_list: estimator_class = self._state.learner_classes[estimator_name] estimator_class.init() this_estimator_kwargs = self._state.fit_kwargs_by_estimator.get(estimator_name) if this_estimator_kwargs: # make another shallow copy of the value (a dict obj), so user's fit_kwargs_by_estimator won't be updated this_estimator_kwargs = this_estimator_kwargs.copy() this_estimator_kwargs.update( self._state.fit_kwargs ) # update the shallow copy of fit_kwargs to fit_kwargs_by_estimator self._state.fit_kwargs_by_estimator[ estimator_name ] = this_estimator_kwargs # set self._state.fit_kwargs_by_estimator[estimator_name] to the update, so only self._state.fit_kwargs_by_estimator will be updated else: self._state.fit_kwargs_by_estimator[estimator_name] = self._state.fit_kwargs self._search_states[estimator_name] = SearchState( learner_class=estimator_class, # data_size=self._state.data_size, data=self._state.X_train, task=self._state.task, starting_point=starting_points.get(estimator_name), period=self._state.fit_kwargs.get( "period" ), # NOTE: this is after kwargs is updated to fit_kwargs_by_estimator custom_hp=custom_hp and custom_hp.get(estimator_name), max_iter=max_iter / len(estimator_list) if self._learner_selector == "roundrobin" else max_iter, budget=self._state.time_budget, ) logger.info("List of ML learners in AutoML Run: {}".format(estimator_list)) self.estimator_list = estimator_list self._active_estimators = estimator_list.copy() self._ensemble = ensemble self._max_iter = max_iter self._mem_thres = mem_thres self._pred_time_limit = pred_time_limit self._state.train_time_limit = train_time_limit self._log_type = log_type self.split_ratio = split_ratio self._state.model_history = model_history self._hpo_method = ( hpo_method if hpo_method != "auto" else ( "bs" if n_concurrent_trials > 1 or (self._use_ray is not False or self._use_spark) and len(estimator_list) > 1 else "cfo" ) ) if log_file_name: with training_log_writer(log_file_name, append_log) as save_helper: self._training_log = save_helper self._search() else: self._training_log = None self._search() if self._best_estimator: logger.info("fit succeeded") logger.info(f"Time taken to find the best model: {self._time_taken_best_iter}") if ( self._hpo_method in ("cfo", "bs") and self._state.time_budget > 0 and (self._time_taken_best_iter >= self._state.time_budget * 0.7) and not all( state.search_alg and state.search_alg.searcher.is_ls_ever_converged for state in self._search_states.values() ) ): logger.warning( "Time taken to find the best model is {0:.0f}% of the " "provided time budget and not all estimators' hyperparameter " "search converged. Consider increasing the time budget.".format( self._time_taken_best_iter / self._state.time_budget * 100 ) ) if not keep_search_state: # release space del self._X_train_all, self._y_train_all, self._state.kf del self._state.X_train, self._state.X_train_all, self._state.X_val del self._state.y_train, self._state.y_train_all, self._state.y_val del ( self._sample_weight_full, self._state.fit_kwargs_by_estimator, self._state.fit_kwargs, ) # NOTE: this is after kwargs is updated to fit_kwargs_by_estimator del self._state.groups, self._state.groups_all, self._state.groups_val logger.setLevel(old_level) def _search_parallel(self): if self._use_ray is not False: try: from ray import __version__ as ray_version assert ray_version >= "1.10.0" if ray_version.startswith("1."): from ray.tune.suggest import ConcurrencyLimiter else: from ray.tune.search import ConcurrencyLimiter import ray except (ImportError, AssertionError): raise ImportError("use_ray=True requires installation of ray. " "Please run pip install flaml[ray]") else: from flaml.tune.searcher.suggestion import ConcurrencyLimiter if self._hpo_method in ("cfo", "grid"): from flaml import CFO as SearchAlgo elif "bs" == self._hpo_method: from flaml import BlendSearch as SearchAlgo elif "random" == self._hpo_method: from flaml import RandomSearch as SearchAlgo elif "optuna" == self._hpo_method: if self._use_ray is not False: try: from ray import __version__ as ray_version assert ray_version >= "1.10.0" if ray_version.startswith("1."): from ray.tune.suggest.optuna import OptunaSearch as SearchAlgo else: from ray.tune.search.optuna import OptunaSearch as SearchAlgo except (ImportError, AssertionError): from flaml.tune.searcher.suggestion import ( OptunaSearch as SearchAlgo, ) else: from flaml.tune.searcher.suggestion import OptunaSearch as SearchAlgo else: raise NotImplementedError( f"hpo_method={self._hpo_method} is not recognized. " "'auto', 'cfo' and 'bs' are supported." ) space = self.search_space self._state.time_from_start = time.time() - self._start_time_flag time_budget_s = self._state.time_budget - self._state.time_from_start if self._state.time_budget >= 0 else None if self._hpo_method != "optuna": min_resource = self.min_resource if isinstance(min_resource, dict): _min_resource_set = set(min_resource.values()) min_resource_all_estimator = min(_min_resource_set) if len(_min_resource_set) > 1: logger.warning( "Using the min FLAML_sample_size of all the provided starting points as the starting sample size in the case of parallel search." ) else: min_resource_all_estimator = min_resource search_alg = SearchAlgo( metric="val_loss", space=space, low_cost_partial_config=self.low_cost_partial_config, points_to_evaluate=self.points_to_evaluate, cat_hp_cost=self.cat_hp_cost, resource_attr=self.resource_attr, min_resource=min_resource_all_estimator, max_resource=self.max_resource, config_constraints=[(partial(size, self._state.learner_classes), "<=", self._mem_thres)], metric_constraints=self.metric_constraints, seed=self._seed, time_budget_s=time_budget_s, num_samples=self._max_iter, allow_empty_config=True, ) else: # if self._hpo_method is optuna, sometimes the search space and the initial config dimension do not match # need to remove the extra keys from the search space to be consistent with the initial config converted_space = SearchAlgo.convert_search_space(space) removed_keys = set(space.keys()).difference(converted_space.keys()) new_points_to_evaluate = [] for idx in range(len(self.points_to_evaluate)): r = self.points_to_evaluate[idx].copy() for each_key in removed_keys: r.pop(each_key) new_points_to_evaluate.append(r) search_alg = SearchAlgo( metric="val_loss", mode="min", points_to_evaluate=[p for p in new_points_to_evaluate if len(p) == len(converted_space)], ) search_alg = ConcurrencyLimiter(search_alg, self._n_concurrent_trials) resources_per_trial = self._state.resources_per_trial if self._use_spark: # use spark as parallel backend analysis = tune.run( self.trainable, search_alg=search_alg, config=space, metric="val_loss", mode="min", time_budget_s=time_budget_s, num_samples=self._max_iter, verbose=max(self.verbose - 2, 0), use_ray=False, use_spark=True, force_cancel=self._force_cancel, # raise_on_failed_trial=False, # keep_checkpoints_num=1, # checkpoint_score_attr="min-val_loss", ) else: # use ray as parallel backend analysis = ray.tune.run( self.trainable, search_alg=search_alg, config=space, metric="val_loss", mode="min", resources_per_trial=resources_per_trial, time_budget_s=time_budget_s, num_samples=self._max_iter, verbose=max(self.verbose - 2, 0), raise_on_failed_trial=False, keep_checkpoints_num=1, checkpoint_score_attr="min-val_loss", **self._use_ray if isinstance(self._use_ray, dict) else {}, ) # logger.info([trial.last_result for trial in analysis.trials]) trials = sorted( ( trial for trial in analysis.trials if trial.last_result and trial.last_result.get("wall_clock_time") is not None ), key=lambda x: x.last_result["wall_clock_time"], ) for self._track_iter, trial in enumerate(trials): result = trial.last_result better = False if result: config = result["config"] estimator = config.get("ml", config)["learner"] search_state = self._search_states[estimator] search_state.update(result, 0) wall_time = result.get("wall_clock_time") if wall_time is not None: self._state.time_from_start = wall_time self._iter_per_learner[estimator] += 1 if search_state.sample_size == self._state.data_size[0]: if not self._fullsize_reached: self._fullsize_reached = True if search_state.best_loss < self._state.best_loss: self._state.best_loss = search_state.best_loss self._best_estimator = estimator self._config_history[self._track_iter] = ( self._best_estimator, config, self._time_taken_best_iter, ) self._trained_estimator = search_state.trained_estimator self._best_iteration = self._track_iter self._time_taken_best_iter = self._state.time_from_start better = True self._search_states[estimator].best_config = config if better or self._log_type == "all": self._log_trial(search_state, estimator) def _log_trial(self, search_state, estimator): if self._training_log: self._training_log.append( self._iter_per_learner[estimator], search_state.metric_for_logging, search_state.trial_time, self._state.time_from_start, search_state.val_loss, search_state.config, estimator, search_state.sample_size, ) if self._mlflow_logging and mlflow is not None and mlflow.active_run(): with mlflow.start_run(nested=True): mlflow.log_metric("iter_counter", self._track_iter) if (search_state.metric_for_logging is not None) and ( "intermediate_results" in search_state.metric_for_logging ): for each_entry in search_state.metric_for_logging["intermediate_results"]: with mlflow.start_run(nested=True): mlflow.log_metrics(each_entry) mlflow.log_metric("iter_counter", self._iter_per_learner[estimator]) del search_state.metric_for_logging["intermediate_results"] if search_state.metric_for_logging: mlflow.log_metrics(search_state.metric_for_logging) mlflow.log_metric("trial_time", search_state.trial_time) mlflow.log_metric("wall_clock_time", self._state.time_from_start) mlflow.log_metric("validation_loss", search_state.val_loss) mlflow.log_params(search_state.config) mlflow.log_param("learner", estimator) mlflow.log_param("sample_size", search_state.sample_size) mlflow.log_metric("best_validation_loss", search_state.best_loss) mlflow.log_param("best_config", search_state.best_config) mlflow.log_param("best_learner", self._best_estimator) mlflow.log_metric( self._state.metric if isinstance(self._state.metric, str) else self._state.error_metric, 1 - search_state.val_loss if self._state.error_metric.startswith("1-") else -search_state.val_loss if self._state.error_metric.startswith("-") else search_state.val_loss, ) def _search_sequential(self): try: from ray import __version__ as ray_version assert ray_version >= "1.10.0" if ray_version.startswith("1."): from ray.tune.suggest import ConcurrencyLimiter else: from ray.tune.search import ConcurrencyLimiter except (ImportError, AssertionError): from flaml.tune.searcher.suggestion import ConcurrencyLimiter if self._hpo_method in ("cfo", "grid"): from flaml import CFO as SearchAlgo elif "optuna" == self._hpo_method: try: from ray import __version__ as ray_version assert ray_version >= "1.10.0" if ray_version.startswith("1."): from ray.tune.suggest.optuna import OptunaSearch as SearchAlgo else: from ray.tune.search.optuna import OptunaSearch as SearchAlgo except (ImportError, AssertionError): from flaml.tune.searcher.suggestion import OptunaSearch as SearchAlgo elif "bs" == self._hpo_method: from flaml import BlendSearch as SearchAlgo elif "random" == self._hpo_method: from flaml.tune.searcher import RandomSearch as SearchAlgo elif "cfocat" == self._hpo_method: from flaml.tune.searcher.cfo_cat import CFOCat as SearchAlgo else: raise NotImplementedError( f"hpo_method={self._hpo_method} is not recognized. " "'cfo' and 'bs' are supported." ) est_retrain_time = next_trial_time = 0 best_config_sig = None better = True # whether we find a better model in one trial for self._track_iter in range(self._max_iter): if self._estimator_index is None: estimator = self._active_estimators[0] else: estimator = self._select_estimator(self._active_estimators) if not estimator: break logger.info(f"iteration {self._track_iter}, current learner {estimator}") search_state = self._search_states[estimator] self._state.time_from_start = time.time() - self._start_time_flag time_left = self._state.time_budget - self._state.time_from_start budget_left = ( time_left if not self._retrain_in_budget or better or (not self.best_estimator) or self._search_states[self.best_estimator].sample_size < self._state.data_size[0] else time_left - est_retrain_time ) if not search_state.search_alg: search_state.training_function = partial( AutoMLState._compute_with_config_base, state=self._state, estimator=estimator, ) search_space = search_state.search_space if self._sample: resource_attr = "FLAML_sample_size" min_resource = ( self._min_sample_size[estimator] if isinstance(self._min_sample_size, dict) and estimator in self._min_sample_size else self._min_sample_size_input ) max_resource = self._state.data_size[0] else: resource_attr = min_resource = max_resource = None learner_class = self._state.learner_classes.get(estimator) if "grid" == self._hpo_method: # for synthetic exp only points_to_evaluate = [] space = search_space keys = list(space.keys()) domain0, domain1 = space[keys[0]], space[keys[1]] for x1 in range(domain0.lower, domain0.upper + 1): for x2 in range(domain1.lower, domain1.upper + 1): points_to_evaluate.append( { keys[0]: x1, keys[1]: x2, } ) self._max_iter_per_learner = len(points_to_evaluate) low_cost_partial_config = None else: points_to_evaluate = search_state.init_config.copy() low_cost_partial_config = search_state.low_cost_partial_config time_budget_s = ( min(budget_left, self._state.train_time_limit or np.inf) if self._state.time_budget >= 0 else None ) if self._hpo_method in ("bs", "cfo", "grid", "cfocat", "random"): algo = SearchAlgo( metric="val_loss", mode="min", space=search_space, points_to_evaluate=points_to_evaluate, low_cost_partial_config=low_cost_partial_config, cat_hp_cost=search_state.cat_hp_cost, resource_attr=resource_attr, min_resource=min_resource, max_resource=max_resource, config_constraints=[(learner_class.size, "<=", self._mem_thres)], metric_constraints=self.metric_constraints, seed=self._seed, allow_empty_config=True, time_budget_s=time_budget_s, num_samples=self._max_iter, ) else: # if self._hpo_method is optuna, sometimes the search space and the initial config dimension do not match # need to remove the extra keys from the search space to be consistent with the initial config converted_space = SearchAlgo.convert_search_space(search_space) removed_keys = set(search_space.keys()).difference(converted_space.keys()) new_points_to_evaluate = [] for idx in range(len(points_to_evaluate)): r = points_to_evaluate[idx].copy() for each_key in removed_keys: r.pop(each_key) new_points_to_evaluate.append(r) points_to_evaluate = new_points_to_evaluate algo = SearchAlgo( metric="val_loss", mode="min", space=search_space, points_to_evaluate=[p for p in points_to_evaluate if len(p) == len(search_space)], ) search_state.search_alg = ConcurrencyLimiter(algo, max_concurrent=1) # search_state.search_alg = algo else: search_space = None if self._hpo_method in ("bs", "cfo", "cfocat"): search_state.search_alg.searcher.set_search_properties( metric=None, mode=None, metric_target=self._state.best_loss, ) start_run_time = time.time() analysis = tune.run( search_state.training_function, search_alg=search_state.search_alg, time_budget_s=time_budget_s, verbose=max(self.verbose - 3, 0), use_ray=False, use_spark=False, ) time_used = time.time() - start_run_time better = False if analysis.trials: result = analysis.trials[-1].last_result search_state.update(result, time_used=time_used) if self._estimator_index is None: # update init eci estimate eci_base = search_state.init_eci self._eci.append(search_state.estimated_cost4improvement) for e in self.estimator_list[1:]: self._eci.append(self._search_states[e].init_eci / eci_base * self._eci[0]) self._estimator_index = 0 min_budget = max(10 * self._eci[0], sum(self._eci)) max_budget = 10000 * self._eci[0] if search_state.sample_size: ratio = search_state.data_size[0] / search_state.sample_size min_budget *= ratio max_budget *= ratio logger.info( f"Estimated sufficient time budget={max_budget:.0f}s." f" Estimated necessary time budget={min_budget:.0f}s." ) wall_time = result.get("wall_clock_time") if wall_time is not None: self._state.time_from_start = wall_time # logger.info(f"{self._search_states[estimator].sample_size}, {data_size}") if search_state.sample_size == self._state.data_size[0]: self._iter_per_learner_fullsize[estimator] += 1 self._fullsize_reached = True self._iter_per_learner[estimator] += 1 if search_state.best_loss < self._state.best_loss: best_config_sig = estimator + search_state.get_hist_config_sig( self.data_size_full, search_state.best_config ) self._state.best_loss = search_state.best_loss self._best_estimator = estimator est_retrain_time = ( search_state.est_retrain_time(self.data_size_full) if (best_config_sig not in self._retrained_config) else 0 ) self._config_history[self._track_iter] = ( estimator, search_state.best_config, self._state.time_from_start, ) if self._trained_estimator: self._trained_estimator.cleanup() del self._trained_estimator self._trained_estimator = None if not self._state.retrain_final: self._trained_estimator = search_state.trained_estimator self._best_iteration = self._track_iter self._time_taken_best_iter = self._state.time_from_start better = True next_trial_time = search_state.time2eval_best if ( search_state.trained_estimator and not self._state.model_history and search_state.trained_estimator != self._trained_estimator ): search_state.trained_estimator.cleanup() if better or self._log_type == "all": self._log_trial(search_state, estimator) logger.info( " at {:.1f}s,\testimator {}'s best error={:.4f},\tbest estimator {}'s best error={:.4f}".format( self._state.time_from_start, estimator, search_state.best_loss, self._best_estimator, self._state.best_loss, ) ) if ( self._hpo_method in ("cfo", "bs") and all( state.search_alg and state.search_alg.searcher.is_ls_ever_converged for state in self._search_states.values() ) and (self._state.time_from_start > self._warn_threshold * self._time_taken_best_iter) ): logger.warning( "All estimator hyperparameters local search has " "converged at least once, and the total search time " f"exceeds {self._warn_threshold} times the time taken " "to find the best model." ) if self._early_stop: logger.warning("Stopping search as early_stop is set to True.") break self._warn_threshold *= 10 else: logger.info(f"stop trying learner {estimator}") if self._estimator_index is not None: self._active_estimators.remove(estimator) self._estimator_index -= 1 search_state.search_alg.searcher._is_ls_ever_converged = True if ( self._retrain_in_budget and best_config_sig and est_retrain_time and not better and self._search_states[self._best_estimator].sample_size == self._state.data_size[0] and ( est_retrain_time <= self._state.time_budget - self._state.time_from_start <= est_retrain_time + next_trial_time ) ): state = self._search_states[self._best_estimator] self._trained_estimator, retrain_time = self._state._train_with_config( self._best_estimator, state.best_config, self.data_size_full, ) logger.info("retrain {} for {:.1f}s".format(self._best_estimator, retrain_time)) self._retrained_config[best_config_sig] = state.best_config_train_time = retrain_time est_retrain_time = 0 self._state.time_from_start = time.time() - self._start_time_flag if self._state.time_from_start >= self._state.time_budget >= 0 or not self._active_estimators: break if self._ensemble and self._best_estimator: time_left = self._state.time_budget - self._state.time_from_start time_ensemble = self._search_states[self._best_estimator].time2eval_best if time_left < time_ensemble < 2 * time_left: break def _search(self): # initialize the search_states self._eci = [] self._state.best_loss = float("+inf") self._state.time_from_start = 0 self._estimator_index = None self._best_iteration = 0 self._time_taken_best_iter = 0 self._config_history = {} self._max_iter_per_learner = 10000 self._iter_per_learner = dict([(e, 0) for e in self.estimator_list]) self._iter_per_learner_fullsize = dict([(e, 0) for e in self.estimator_list]) self._fullsize_reached = False self._trained_estimator = None self._best_estimator = None self._retrained_config = {} self._warn_threshold = 10 self._selected = None self.modelcount = 0 if self._max_iter < 2 and self.estimator_list and self._state.retrain_final: # when max_iter is 1, no need to search self.modelcount = self._max_iter self._max_iter = 0 self._best_estimator = estimator = self.estimator_list[0] self._selected = state = self._search_states[estimator] state.best_config_sample_size = self._state.data_size[0] state.best_config = state.init_config[0] if state.init_config else {} elif self._use_ray is False and self._use_spark is False: self._search_sequential() else: self._search_parallel() # Add a checkpoint for the current best config to the log. if self._training_log: self._training_log.checkpoint() self._state.time_from_start = time.time() - self._start_time_flag if self._best_estimator: self._selected = self._search_states[self._best_estimator] self.modelcount = sum(search_state.total_iter for search_state in self._search_states.values()) if self._trained_estimator: logger.info(f"selected model: {self._trained_estimator.model}") estimators = [] if self._ensemble and self._state.task in ( "binary", "multiclass", "regression", ): search_states = list(x for x in self._search_states.items() if x[1].best_config) search_states.sort(key=lambda x: x[1].best_loss) estimators = [ ( x[0], x[1].learner_class( task=self._state.task, n_jobs=self._state.n_jobs, **AutoMLState.sanitize(x[1].best_config), ), ) for x in search_states[:2] ] estimators += [ ( x[0], x[1].learner_class( task=self._state.task, n_jobs=self._state.n_jobs, **AutoMLState.sanitize(x[1].best_config), ), ) for x in search_states[2:] if x[1].best_loss < 4 * self._selected.best_loss ] logger.info([(estimator[0], estimator[1].params) for estimator in estimators]) if len(estimators) > 1: if self._state.task.is_classification(): from sklearn.ensemble import StackingClassifier as Stacker else: from sklearn.ensemble import StackingRegressor as Stacker if self._use_ray is not False: import ray n_cpus = ray.is_initialized() and ray.available_resources()["CPU"] or os.cpu_count() elif self._use_spark: from flaml.tune.spark.utils import get_n_cpus n_cpus = get_n_cpus() else: n_cpus = os.cpu_count() ensemble_n_jobs = ( -self._state.n_jobs # maximize total parallelization degree if abs(self._state.n_jobs) == 1 # 1 and -1 correspond to min/max parallelization else max(1, int(n_cpus / 2 / self._state.n_jobs)) # the total degree of parallelization = parallelization degree per estimator * parallelization degree of ensemble ) if isinstance(self._ensemble, dict): final_estimator = self._ensemble.get("final_estimator", self._trained_estimator) passthrough = self._ensemble.get("passthrough", True) ensemble_n_jobs = self._ensemble.get("n_jobs", ensemble_n_jobs) else: final_estimator = self._trained_estimator passthrough = True stacker = Stacker( estimators, final_estimator, n_jobs=ensemble_n_jobs, passthrough=passthrough, ) sample_weight_dict = ( (self._sample_weight_full is not None) and {"sample_weight": self._sample_weight_full} or {} ) for e in estimators: e[1].__class__.init() import joblib try: logger.info("Building ensemble with tuned estimators") stacker.fit( self._X_train_all, self._y_train_all, **sample_weight_dict, # NOTE: _search is after kwargs is updated to fit_kwargs_by_estimator ) logger.info(f"ensemble: {stacker}") self._trained_estimator = stacker self._trained_estimator.model = stacker except ValueError as e: if passthrough: logger.warning( "Using passthrough=False for ensemble because the data contain categorical features." ) stacker = Stacker( estimators, final_estimator, n_jobs=self._state.n_jobs, passthrough=False, ) stacker.fit( self._X_train_all, self._y_train_all, **sample_weight_dict, # NOTE: _search is after kwargs is updated to fit_kwargs_by_estimator ) logger.info(f"ensemble: {stacker}") self._trained_estimator = stacker self._trained_estimator.model = stacker else: raise e except joblib.externals.loky.process_executor.TerminatedWorkerError: logger.error( "No enough memory to build the ensemble." " Please try increasing available RAM, decreasing n_jobs for ensemble, or disabling ensemble." ) elif self._state.retrain_final: # reset time budget for retraining if self._max_iter > 1: self._state.time_budget = -1 if ( self._state.task.is_ts_forecast() or self._trained_estimator is None or self._trained_estimator.model is None or ( self._state.time_budget < 0 or self._state.time_budget - self._state.time_from_start > self._selected.est_retrain_time(self.data_size_full) ) and self._selected.best_config_sample_size == self._state.data_size[0] ): state = self._search_states[self._best_estimator] ( self._trained_estimator, retrain_time, ) = self._state._train_with_config( self._best_estimator, state.best_config, self.data_size_full, ) logger.info("retrain {} for {:.1f}s".format(self._best_estimator, retrain_time)) state.best_config_train_time = retrain_time if self._trained_estimator: logger.info(f"retrained model: {self._trained_estimator.model}") else: logger.info("not retraining because the time budget is too small.") def __del__(self): if ( hasattr(self, "_trained_estimator") and self._trained_estimator and hasattr(self._trained_estimator, "cleanup") ): if self.preserve_checkpoint is False: self._trained_estimator.cleanup() del self._trained_estimator def _select_estimator(self, estimator_list): if self._learner_selector == "roundrobin": self._estimator_index += 1 if self._estimator_index == len(estimator_list): self._estimator_index = 0 return estimator_list[self._estimator_index] min_estimated_cost, selected = np.inf, None inv = [] untried_exists = False for i, estimator in enumerate(estimator_list): if estimator in self._search_states and ( self._search_states[estimator].sample_size ): # sample_size=None meaning no result search_state = self._search_states[estimator] if ( self._state.time_budget >= 0 and self._search_states[estimator].time2eval_best > self._state.time_budget - self._state.time_from_start or self._iter_per_learner_fullsize[estimator] >= self._max_iter_per_learner ): inv.append(0) continue estimated_cost = search_state.estimated_cost4improvement if search_state.sample_size < self._state.data_size[0] and self._state.time_budget >= 0: estimated_cost = min( estimated_cost, search_state.time2eval_best * min( SAMPLE_MULTIPLY_FACTOR, self._state.data_size[0] / search_state.sample_size, ), ) gap = search_state.best_loss - self._state.best_loss if gap > 0 and not self._ensemble: delta_loss = (search_state.best_loss_old - search_state.best_loss) or search_state.best_loss delta_time = (search_state.total_time_used - search_state.time_best_found_old) or 1e-10 speed = delta_loss / delta_time if speed: estimated_cost = max(2 * gap / speed, estimated_cost) estimated_cost = estimated_cost or 1e-9 inv.append(1 / estimated_cost) else: estimated_cost = self._eci[i] inv.append(0) untried_exists = True if estimated_cost < min_estimated_cost: min_estimated_cost = estimated_cost selected = estimator if untried_exists or not selected: state = self._search_states.get(selected) if not (state and state.sample_size): return selected s = sum(inv) p = self._random.rand() q = 0 for i in range(len(inv)): if inv[i]: q += inv[i] / s if p < q: return estimator_list[i]
(**settings)
52,708
flaml.automl.automl
__del__
null
def __del__(self): if ( hasattr(self, "_trained_estimator") and self._trained_estimator and hasattr(self._trained_estimator, "cleanup") ): if self.preserve_checkpoint is False: self._trained_estimator.cleanup() del self._trained_estimator
(self)
52,709
flaml.automl.automl
__init__
Constructor. Many settings in fit() can be passed to the constructor too. If an argument in fit() is provided, it will override the setting passed to the constructor. If an argument in fit() is not provided but provided in the constructor, the value passed to the constructor will be used. Args: metric: A string of the metric name or a function, e.g., 'accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'roc_auc_weighted', 'roc_auc_ovo_weighted', 'roc_auc_ovr_weighted', 'f1', 'micro_f1', 'macro_f1', 'log_loss', 'mae', 'mse', 'r2', 'mape'. Default is 'auto'. If passing a customized metric function, the function needs to have the following input arguments: ```python def custom_metric( X_test, y_test, estimator, labels, X_train, y_train, weight_test=None, weight_train=None, config=None, groups_test=None, groups_train=None, ): return metric_to_minimize, metrics_to_log ``` which returns a float number as the minimization objective, and a dictionary as the metrics to log. E.g., ```python def custom_metric( X_val, y_val, estimator, labels, X_train, y_train, weight_val=None, weight_train=None, *args, ): from sklearn.metrics import log_loss import time start = time.time() y_pred = estimator.predict_proba(X_val) pred_time = (time.time() - start) / len(X_val) val_loss = log_loss(y_val, y_pred, labels=labels, sample_weight=weight_val) y_pred = estimator.predict_proba(X_train) train_loss = log_loss(y_train, y_pred, labels=labels, sample_weight=weight_train) alpha = 0.5 return val_loss * (1 + alpha) - alpha * train_loss, { "val_loss": val_loss, "train_loss": train_loss, "pred_time": pred_time, } ``` task: A string of the task type, e.g., 'classification', 'regression', 'ts_forecast', 'rank', 'seq-classification', 'seq-regression', 'summarization', or an instance of the Task class. n_jobs: An integer of the number of threads for training | default=-1. Use all available resources when n_jobs == -1. log_file_name: A string of the log file name | default="". To disable logging, set it to be an empty string "". estimator_list: A list of strings for estimator names, or 'auto'. e.g., ```['lgbm', 'xgboost', 'xgb_limitdepth', 'catboost', 'rf', 'extra_tree']```. time_budget: A float number of the time budget in seconds. Use -1 if no time limit. max_iter: An integer of the maximal number of iterations. sample: A boolean of whether to sample the training data during search. ensemble: boolean or dict | default=False. Whether to perform ensemble after search. Can be a dict with keys 'passthrough' and 'final_estimator' to specify the passthrough and final_estimator in the stacker. The dict can also contain 'n_jobs' as the key to specify the number of jobs for the stacker. eval_method: A string of resampling strategy, one of ['auto', 'cv', 'holdout']. split_ratio: A float of the valiation data percentage for holdout. n_splits: An integer of the number of folds for cross - validation. log_type: A string of the log type, one of ['better', 'all']. 'better' only logs configs with better loss than previos iters 'all' logs all the tried configs. model_history: A boolean of whether to keep the best model per estimator. Make sure memory is large enough if setting to True. log_training_metric: A boolean of whether to log the training metric for each model. mem_thres: A float of the memory size constraint in bytes. pred_time_limit: A float of the prediction latency constraint in seconds. It refers to the average prediction time per row in validation data. train_time_limit: A float of the training time constraint in seconds. verbose: int, default=3 | Controls the verbosity, higher means more messages. retrain_full: bool or str, default=True | whether to retrain the selected model on the full training data when using holdout. True - retrain only after search finishes; False - no retraining; 'budget' - do best effort to retrain without violating the time budget. split_type: str or splitter object, default="auto" | the data split type. * A valid splitter object is an instance of a derived class of scikit-learn [KFold](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold) and have ``split`` and ``get_n_splits`` methods with the same signatures. Set eval_method to "cv" to use the splitter object. * Valid str options depend on different tasks. For classification tasks, valid choices are ["auto", 'stratified', 'uniform', 'time', 'group']. "auto" -> stratified. For regression tasks, valid choices are ["auto", 'uniform', 'time']. "auto" -> uniform. For time series forecast tasks, must be "auto" or 'time'. For ranking task, must be "auto" or 'group'. hpo_method: str, default="auto" | The hyperparameter optimization method. By default, CFO is used for sequential search and BlendSearch is used for parallel search. No need to set when using flaml's default search space or using a simple customized search space. When set to 'bs', BlendSearch is used. BlendSearch can be tried when the search space is complex, for example, containing multiple disjoint, discontinuous subspaces. When set to 'random', random search is used. starting_points: A dictionary or a str to specify the starting hyperparameter config for the estimators | default="static". If str: - if "data", use data-dependent defaults; - if "data:path" use data-dependent defaults which are stored at path; - if "static", use data-independent defaults. If dict, keys are the name of the estimators, and values are the starting hyperparamter configurations for the corresponding estimators. The value can be a single hyperparamter configuration dict or a list of hyperparamter configuration dicts. In the following code example, we get starting_points from the `automl` object and use them in the `new_automl` object. e.g., ```python from flaml import AutoML automl = AutoML() X_train, y_train = load_iris(return_X_y=True) automl.fit(X_train, y_train) starting_points = automl.best_config_per_estimator new_automl = AutoML() new_automl.fit(X_train, y_train, starting_points=starting_points) ``` seed: int or None, default=None | The random seed for hpo. n_concurrent_trials: [In preview] int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, flaml performes [parallel tuning](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and installation of ray or spark is required: `pip install flaml[ray]` or `pip install flaml[spark]`. Please check [here](https://spark.apache.org/docs/latest/api/python/getting_started/install.html) for more details about installing Spark. keep_search_state: boolean, default=False | Whether to keep data needed for model search after fit(). By default the state is deleted for space saving. preserve_checkpoint: boolean, default=True | Whether to preserve the saved checkpoint on disk when deleting automl. By default the checkpoint is preserved. early_stop: boolean, default=False | Whether to stop early if the search is considered to converge. force_cancel: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. append_log: boolean, default=False | Whether to directly append the log records to the input log file if it exists. auto_augment: boolean, default=True | Whether to automatically augment rare classes. min_sample_size: int, default=MIN_SAMPLE_TRAIN | the minimal sample size when sample=True. use_ray: boolean or dict. If boolean: default=False | Whether to use ray to run the training in separate processes. This can be used to prevent OOM for large datasets, but will incur more overhead in time. If dict: the dict contains the keywords arguments to be passed to [ray.tune.run](https://docs.ray.io/en/latest/tune/api_docs/execution.html). use_spark: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`. free_mem_ratio: float between 0 and 1, default=0. The free memory ratio to keep during training. metric_constraints: list, default=[] | The list of metric constraints. Each element in this list is a 3-tuple, which shall be expressed in the following format: the first element of the 3-tuple is the name of the metric, the second element is the inequality sign chosen from ">=" and "<=", and the third element is the constraint value. E.g., `('val_loss', '<=', 0.1)`. Note that all the metric names in metric_constraints need to be reported via the metrics_to_log dictionary returned by a customized metric function. The customized metric function shall be provided via the `metric` key word argument of the fit() function or the automl constructor. Find an example in the 4th constraint type in this [doc](/docs/Use-Cases/Task-Oriented-AutoML#constraint). If `pred_time_limit` is provided as one of keyword arguments to fit() function or the automl constructor, flaml will automatically (and under the hood) add it as an additional element in the metric_constraints. Essentially 'pred_time_limit' specifies a constraint about the prediction latency constraint in seconds. custom_hp: dict, default=None | The custom search space specified by user. It is a nested dict with keys being the estimator names, and values being dicts per estimator search space. In the per estimator search space dict, the keys are the hyperparameter names, and values are dicts of info ("domain", "init_value", and "low_cost_init_value") about the search space associated with the hyperparameter (i.e., per hyperparameter search space dict). When custom_hp is provided, the built-in search space which is also a nested dict of per estimator search space dict, will be updated with custom_hp. Note that during this nested dict update, the per hyperparameter search space dicts will be replaced (instead of updated) by the ones provided in custom_hp. Note that the value for "domain" can either be a constant or a sample.Domain object. e.g., ```python custom_hp = { "transformer_ms": { "model_path": { "domain": "albert-base-v2", }, "learning_rate": { "domain": tune.choice([1e-4, 1e-5]), } } } ``` skip_transform: boolean, default=False | Whether to pre-process data prior to modeling. fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name. e.g., ```python fit_kwargs_by_estimator = { "transformer": { "output_dir": "test/data/output/", "fp16": False, } } ``` mlflow_logging: boolean, default=True | Whether to log the training results to mlflow. This requires mlflow to be installed and to have an active mlflow run. FLAML will create nested runs.
def __init__(self, **settings): """Constructor. Many settings in fit() can be passed to the constructor too. If an argument in fit() is provided, it will override the setting passed to the constructor. If an argument in fit() is not provided but provided in the constructor, the value passed to the constructor will be used. Args: metric: A string of the metric name or a function, e.g., 'accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'roc_auc_weighted', 'roc_auc_ovo_weighted', 'roc_auc_ovr_weighted', 'f1', 'micro_f1', 'macro_f1', 'log_loss', 'mae', 'mse', 'r2', 'mape'. Default is 'auto'. If passing a customized metric function, the function needs to have the following input arguments: ```python def custom_metric( X_test, y_test, estimator, labels, X_train, y_train, weight_test=None, weight_train=None, config=None, groups_test=None, groups_train=None, ): return metric_to_minimize, metrics_to_log ``` which returns a float number as the minimization objective, and a dictionary as the metrics to log. E.g., ```python def custom_metric( X_val, y_val, estimator, labels, X_train, y_train, weight_val=None, weight_train=None, *args, ): from sklearn.metrics import log_loss import time start = time.time() y_pred = estimator.predict_proba(X_val) pred_time = (time.time() - start) / len(X_val) val_loss = log_loss(y_val, y_pred, labels=labels, sample_weight=weight_val) y_pred = estimator.predict_proba(X_train) train_loss = log_loss(y_train, y_pred, labels=labels, sample_weight=weight_train) alpha = 0.5 return val_loss * (1 + alpha) - alpha * train_loss, { "val_loss": val_loss, "train_loss": train_loss, "pred_time": pred_time, } ``` task: A string of the task type, e.g., 'classification', 'regression', 'ts_forecast', 'rank', 'seq-classification', 'seq-regression', 'summarization', or an instance of the Task class. n_jobs: An integer of the number of threads for training | default=-1. Use all available resources when n_jobs == -1. log_file_name: A string of the log file name | default="". To disable logging, set it to be an empty string "". estimator_list: A list of strings for estimator names, or 'auto'. e.g., ```['lgbm', 'xgboost', 'xgb_limitdepth', 'catboost', 'rf', 'extra_tree']```. time_budget: A float number of the time budget in seconds. Use -1 if no time limit. max_iter: An integer of the maximal number of iterations. sample: A boolean of whether to sample the training data during search. ensemble: boolean or dict | default=False. Whether to perform ensemble after search. Can be a dict with keys 'passthrough' and 'final_estimator' to specify the passthrough and final_estimator in the stacker. The dict can also contain 'n_jobs' as the key to specify the number of jobs for the stacker. eval_method: A string of resampling strategy, one of ['auto', 'cv', 'holdout']. split_ratio: A float of the valiation data percentage for holdout. n_splits: An integer of the number of folds for cross - validation. log_type: A string of the log type, one of ['better', 'all']. 'better' only logs configs with better loss than previos iters 'all' logs all the tried configs. model_history: A boolean of whether to keep the best model per estimator. Make sure memory is large enough if setting to True. log_training_metric: A boolean of whether to log the training metric for each model. mem_thres: A float of the memory size constraint in bytes. pred_time_limit: A float of the prediction latency constraint in seconds. It refers to the average prediction time per row in validation data. train_time_limit: A float of the training time constraint in seconds. verbose: int, default=3 | Controls the verbosity, higher means more messages. retrain_full: bool or str, default=True | whether to retrain the selected model on the full training data when using holdout. True - retrain only after search finishes; False - no retraining; 'budget' - do best effort to retrain without violating the time budget. split_type: str or splitter object, default="auto" | the data split type. * A valid splitter object is an instance of a derived class of scikit-learn [KFold](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold) and have ``split`` and ``get_n_splits`` methods with the same signatures. Set eval_method to "cv" to use the splitter object. * Valid str options depend on different tasks. For classification tasks, valid choices are ["auto", 'stratified', 'uniform', 'time', 'group']. "auto" -> stratified. For regression tasks, valid choices are ["auto", 'uniform', 'time']. "auto" -> uniform. For time series forecast tasks, must be "auto" or 'time'. For ranking task, must be "auto" or 'group'. hpo_method: str, default="auto" | The hyperparameter optimization method. By default, CFO is used for sequential search and BlendSearch is used for parallel search. No need to set when using flaml's default search space or using a simple customized search space. When set to 'bs', BlendSearch is used. BlendSearch can be tried when the search space is complex, for example, containing multiple disjoint, discontinuous subspaces. When set to 'random', random search is used. starting_points: A dictionary or a str to specify the starting hyperparameter config for the estimators | default="static". If str: - if "data", use data-dependent defaults; - if "data:path" use data-dependent defaults which are stored at path; - if "static", use data-independent defaults. If dict, keys are the name of the estimators, and values are the starting hyperparamter configurations for the corresponding estimators. The value can be a single hyperparamter configuration dict or a list of hyperparamter configuration dicts. In the following code example, we get starting_points from the `automl` object and use them in the `new_automl` object. e.g., ```python from flaml import AutoML automl = AutoML() X_train, y_train = load_iris(return_X_y=True) automl.fit(X_train, y_train) starting_points = automl.best_config_per_estimator new_automl = AutoML() new_automl.fit(X_train, y_train, starting_points=starting_points) ``` seed: int or None, default=None | The random seed for hpo. n_concurrent_trials: [In preview] int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, flaml performes [parallel tuning](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and installation of ray or spark is required: `pip install flaml[ray]` or `pip install flaml[spark]`. Please check [here](https://spark.apache.org/docs/latest/api/python/getting_started/install.html) for more details about installing Spark. keep_search_state: boolean, default=False | Whether to keep data needed for model search after fit(). By default the state is deleted for space saving. preserve_checkpoint: boolean, default=True | Whether to preserve the saved checkpoint on disk when deleting automl. By default the checkpoint is preserved. early_stop: boolean, default=False | Whether to stop early if the search is considered to converge. force_cancel: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. append_log: boolean, default=False | Whether to directly append the log records to the input log file if it exists. auto_augment: boolean, default=True | Whether to automatically augment rare classes. min_sample_size: int, default=MIN_SAMPLE_TRAIN | the minimal sample size when sample=True. use_ray: boolean or dict. If boolean: default=False | Whether to use ray to run the training in separate processes. This can be used to prevent OOM for large datasets, but will incur more overhead in time. If dict: the dict contains the keywords arguments to be passed to [ray.tune.run](https://docs.ray.io/en/latest/tune/api_docs/execution.html). use_spark: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`. free_mem_ratio: float between 0 and 1, default=0. The free memory ratio to keep during training. metric_constraints: list, default=[] | The list of metric constraints. Each element in this list is a 3-tuple, which shall be expressed in the following format: the first element of the 3-tuple is the name of the metric, the second element is the inequality sign chosen from ">=" and "<=", and the third element is the constraint value. E.g., `('val_loss', '<=', 0.1)`. Note that all the metric names in metric_constraints need to be reported via the metrics_to_log dictionary returned by a customized metric function. The customized metric function shall be provided via the `metric` key word argument of the fit() function or the automl constructor. Find an example in the 4th constraint type in this [doc](/docs/Use-Cases/Task-Oriented-AutoML#constraint). If `pred_time_limit` is provided as one of keyword arguments to fit() function or the automl constructor, flaml will automatically (and under the hood) add it as an additional element in the metric_constraints. Essentially 'pred_time_limit' specifies a constraint about the prediction latency constraint in seconds. custom_hp: dict, default=None | The custom search space specified by user. It is a nested dict with keys being the estimator names, and values being dicts per estimator search space. In the per estimator search space dict, the keys are the hyperparameter names, and values are dicts of info ("domain", "init_value", and "low_cost_init_value") about the search space associated with the hyperparameter (i.e., per hyperparameter search space dict). When custom_hp is provided, the built-in search space which is also a nested dict of per estimator search space dict, will be updated with custom_hp. Note that during this nested dict update, the per hyperparameter search space dicts will be replaced (instead of updated) by the ones provided in custom_hp. Note that the value for "domain" can either be a constant or a sample.Domain object. e.g., ```python custom_hp = { "transformer_ms": { "model_path": { "domain": "albert-base-v2", }, "learning_rate": { "domain": tune.choice([1e-4, 1e-5]), } } } ``` skip_transform: boolean, default=False | Whether to pre-process data prior to modeling. fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name. e.g., ```python fit_kwargs_by_estimator = { "transformer": { "output_dir": "test/data/output/", "fp16": False, } } ``` mlflow_logging: boolean, default=True | Whether to log the training results to mlflow. This requires mlflow to be installed and to have an active mlflow run. FLAML will create nested runs. """ if ERROR: raise ERROR self._track_iter = 0 self._state = AutoMLState() self._state.learner_classes = {} self._settings = settings # no budget by default settings["time_budget"] = settings.get("time_budget", -1) settings["task"] = settings.get("task", "classification") settings["n_jobs"] = settings.get("n_jobs", -1) settings["eval_method"] = settings.get("eval_method", "auto") settings["split_ratio"] = settings.get("split_ratio", SPLIT_RATIO) settings["n_splits"] = settings.get("n_splits", N_SPLITS) settings["auto_augment"] = settings.get("auto_augment", True) settings["metric"] = settings.get("metric", "auto") settings["estimator_list"] = settings.get("estimator_list", "auto") settings["log_file_name"] = settings.get("log_file_name", "") settings["max_iter"] = settings.get("max_iter") # no budget by default settings["sample"] = settings.get("sample", True) settings["ensemble"] = settings.get("ensemble", False) settings["log_type"] = settings.get("log_type", "better") settings["model_history"] = settings.get("model_history", False) settings["log_training_metric"] = settings.get("log_training_metric", False) settings["mem_thres"] = settings.get("mem_thres", MEM_THRES) settings["pred_time_limit"] = settings.get("pred_time_limit", np.inf) settings["train_time_limit"] = settings.get("train_time_limit", None) settings["verbose"] = settings.get("verbose", 3) settings["retrain_full"] = settings.get("retrain_full", True) settings["split_type"] = settings.get("split_type", "auto") settings["hpo_method"] = settings.get("hpo_method", "auto") settings["learner_selector"] = settings.get("learner_selector", "sample") settings["starting_points"] = settings.get("starting_points", "static") settings["n_concurrent_trials"] = settings.get("n_concurrent_trials", 1) settings["keep_search_state"] = settings.get("keep_search_state", False) settings["preserve_checkpoint"] = settings.get("preserve_checkpoint", True) settings["early_stop"] = settings.get("early_stop", False) settings["force_cancel"] = settings.get("force_cancel", False) settings["append_log"] = settings.get("append_log", False) settings["min_sample_size"] = settings.get("min_sample_size", MIN_SAMPLE_TRAIN) settings["use_ray"] = settings.get("use_ray", False) settings["use_spark"] = settings.get("use_spark", False) if settings["use_ray"] is not False and settings["use_spark"] is not False: raise ValueError("use_ray and use_spark cannot be both True.") settings["free_mem_ratio"] = settings.get("free_mem_ratio", 0) settings["metric_constraints"] = settings.get("metric_constraints", []) settings["cv_score_agg_func"] = settings.get("cv_score_agg_func", None) settings["fit_kwargs_by_estimator"] = settings.get("fit_kwargs_by_estimator", {}) settings["custom_hp"] = settings.get("custom_hp", {}) settings["skip_transform"] = settings.get("skip_transform", False) settings["mlflow_logging"] = settings.get("mlflow_logging", True) self._estimator_type = "classifier" if settings["task"] in CLASSIFICATION else "regressor"
(self, **settings)
52,710
flaml.automl.automl
_decide_eval_method
null
def _decide_eval_method(self, eval_method, time_budget): if not isinstance(self._split_type, str): assert eval_method in [ "auto", "cv", ], "eval_method must be 'auto' or 'cv' for custom data splitter." assert self._state.X_val is None, "custom splitter and custom validation data can't be used together." return "cv" if self._state.X_val is not None and ( not isinstance(self._state.X_val, TimeSeriesDataset) or len(self._state.X_val.test_data) > 0 ): assert eval_method in [ "auto", "holdout", ], "eval_method must be 'auto' or 'holdout' for custom validation data." return "holdout" if eval_method != "auto": assert eval_method in [ "holdout", "cv", ], "eval_method must be 'holdout', 'cv' or 'auto'." return eval_method nrow, dim = self._nrow, self._ndim if ( time_budget < 0 or nrow * dim / 0.9 < SMALL_LARGE_THRES * (time_budget / 3600) and nrow < CV_HOLDOUT_THRESHOLD ): # time allows or sampling can be used and cv is necessary return "cv" else: return "holdout"
(self, eval_method, time_budget)
52,711
flaml.automl.automl
_log_trial
null
def _log_trial(self, search_state, estimator): if self._training_log: self._training_log.append( self._iter_per_learner[estimator], search_state.metric_for_logging, search_state.trial_time, self._state.time_from_start, search_state.val_loss, search_state.config, estimator, search_state.sample_size, ) if self._mlflow_logging and mlflow is not None and mlflow.active_run(): with mlflow.start_run(nested=True): mlflow.log_metric("iter_counter", self._track_iter) if (search_state.metric_for_logging is not None) and ( "intermediate_results" in search_state.metric_for_logging ): for each_entry in search_state.metric_for_logging["intermediate_results"]: with mlflow.start_run(nested=True): mlflow.log_metrics(each_entry) mlflow.log_metric("iter_counter", self._iter_per_learner[estimator]) del search_state.metric_for_logging["intermediate_results"] if search_state.metric_for_logging: mlflow.log_metrics(search_state.metric_for_logging) mlflow.log_metric("trial_time", search_state.trial_time) mlflow.log_metric("wall_clock_time", self._state.time_from_start) mlflow.log_metric("validation_loss", search_state.val_loss) mlflow.log_params(search_state.config) mlflow.log_param("learner", estimator) mlflow.log_param("sample_size", search_state.sample_size) mlflow.log_metric("best_validation_loss", search_state.best_loss) mlflow.log_param("best_config", search_state.best_config) mlflow.log_param("best_learner", self._best_estimator) mlflow.log_metric( self._state.metric if isinstance(self._state.metric, str) else self._state.error_metric, 1 - search_state.val_loss if self._state.error_metric.startswith("1-") else -search_state.val_loss if self._state.error_metric.startswith("-") else search_state.val_loss, )
(self, search_state, estimator)
52,712
flaml.automl.automl
_prepare_data
null
def _prepare_data(self, eval_method, split_ratio, n_splits): self._state.task.prepare_data( self._state, self._X_train_all, self._y_train_all, self._auto_augment, eval_method, self._split_type, split_ratio, n_splits, self._df, self._sample_weight_full, ) self.data_size_full = self._state.data_size_full
(self, eval_method, split_ratio, n_splits)
52,713
flaml.automl.automl
_search
null
def _search(self): # initialize the search_states self._eci = [] self._state.best_loss = float("+inf") self._state.time_from_start = 0 self._estimator_index = None self._best_iteration = 0 self._time_taken_best_iter = 0 self._config_history = {} self._max_iter_per_learner = 10000 self._iter_per_learner = dict([(e, 0) for e in self.estimator_list]) self._iter_per_learner_fullsize = dict([(e, 0) for e in self.estimator_list]) self._fullsize_reached = False self._trained_estimator = None self._best_estimator = None self._retrained_config = {} self._warn_threshold = 10 self._selected = None self.modelcount = 0 if self._max_iter < 2 and self.estimator_list and self._state.retrain_final: # when max_iter is 1, no need to search self.modelcount = self._max_iter self._max_iter = 0 self._best_estimator = estimator = self.estimator_list[0] self._selected = state = self._search_states[estimator] state.best_config_sample_size = self._state.data_size[0] state.best_config = state.init_config[0] if state.init_config else {} elif self._use_ray is False and self._use_spark is False: self._search_sequential() else: self._search_parallel() # Add a checkpoint for the current best config to the log. if self._training_log: self._training_log.checkpoint() self._state.time_from_start = time.time() - self._start_time_flag if self._best_estimator: self._selected = self._search_states[self._best_estimator] self.modelcount = sum(search_state.total_iter for search_state in self._search_states.values()) if self._trained_estimator: logger.info(f"selected model: {self._trained_estimator.model}") estimators = [] if self._ensemble and self._state.task in ( "binary", "multiclass", "regression", ): search_states = list(x for x in self._search_states.items() if x[1].best_config) search_states.sort(key=lambda x: x[1].best_loss) estimators = [ ( x[0], x[1].learner_class( task=self._state.task, n_jobs=self._state.n_jobs, **AutoMLState.sanitize(x[1].best_config), ), ) for x in search_states[:2] ] estimators += [ ( x[0], x[1].learner_class( task=self._state.task, n_jobs=self._state.n_jobs, **AutoMLState.sanitize(x[1].best_config), ), ) for x in search_states[2:] if x[1].best_loss < 4 * self._selected.best_loss ] logger.info([(estimator[0], estimator[1].params) for estimator in estimators]) if len(estimators) > 1: if self._state.task.is_classification(): from sklearn.ensemble import StackingClassifier as Stacker else: from sklearn.ensemble import StackingRegressor as Stacker if self._use_ray is not False: import ray n_cpus = ray.is_initialized() and ray.available_resources()["CPU"] or os.cpu_count() elif self._use_spark: from flaml.tune.spark.utils import get_n_cpus n_cpus = get_n_cpus() else: n_cpus = os.cpu_count() ensemble_n_jobs = ( -self._state.n_jobs # maximize total parallelization degree if abs(self._state.n_jobs) == 1 # 1 and -1 correspond to min/max parallelization else max(1, int(n_cpus / 2 / self._state.n_jobs)) # the total degree of parallelization = parallelization degree per estimator * parallelization degree of ensemble ) if isinstance(self._ensemble, dict): final_estimator = self._ensemble.get("final_estimator", self._trained_estimator) passthrough = self._ensemble.get("passthrough", True) ensemble_n_jobs = self._ensemble.get("n_jobs", ensemble_n_jobs) else: final_estimator = self._trained_estimator passthrough = True stacker = Stacker( estimators, final_estimator, n_jobs=ensemble_n_jobs, passthrough=passthrough, ) sample_weight_dict = ( (self._sample_weight_full is not None) and {"sample_weight": self._sample_weight_full} or {} ) for e in estimators: e[1].__class__.init() import joblib try: logger.info("Building ensemble with tuned estimators") stacker.fit( self._X_train_all, self._y_train_all, **sample_weight_dict, # NOTE: _search is after kwargs is updated to fit_kwargs_by_estimator ) logger.info(f"ensemble: {stacker}") self._trained_estimator = stacker self._trained_estimator.model = stacker except ValueError as e: if passthrough: logger.warning( "Using passthrough=False for ensemble because the data contain categorical features." ) stacker = Stacker( estimators, final_estimator, n_jobs=self._state.n_jobs, passthrough=False, ) stacker.fit( self._X_train_all, self._y_train_all, **sample_weight_dict, # NOTE: _search is after kwargs is updated to fit_kwargs_by_estimator ) logger.info(f"ensemble: {stacker}") self._trained_estimator = stacker self._trained_estimator.model = stacker else: raise e except joblib.externals.loky.process_executor.TerminatedWorkerError: logger.error( "No enough memory to build the ensemble." " Please try increasing available RAM, decreasing n_jobs for ensemble, or disabling ensemble." ) elif self._state.retrain_final: # reset time budget for retraining if self._max_iter > 1: self._state.time_budget = -1 if ( self._state.task.is_ts_forecast() or self._trained_estimator is None or self._trained_estimator.model is None or ( self._state.time_budget < 0 or self._state.time_budget - self._state.time_from_start > self._selected.est_retrain_time(self.data_size_full) ) and self._selected.best_config_sample_size == self._state.data_size[0] ): state = self._search_states[self._best_estimator] ( self._trained_estimator, retrain_time, ) = self._state._train_with_config( self._best_estimator, state.best_config, self.data_size_full, ) logger.info("retrain {} for {:.1f}s".format(self._best_estimator, retrain_time)) state.best_config_train_time = retrain_time if self._trained_estimator: logger.info(f"retrained model: {self._trained_estimator.model}") else: logger.info("not retraining because the time budget is too small.")
(self)
52,714
flaml.automl.automl
_search_parallel
null
def _search_parallel(self): if self._use_ray is not False: try: from ray import __version__ as ray_version assert ray_version >= "1.10.0" if ray_version.startswith("1."): from ray.tune.suggest import ConcurrencyLimiter else: from ray.tune.search import ConcurrencyLimiter import ray except (ImportError, AssertionError): raise ImportError("use_ray=True requires installation of ray. " "Please run pip install flaml[ray]") else: from flaml.tune.searcher.suggestion import ConcurrencyLimiter if self._hpo_method in ("cfo", "grid"): from flaml import CFO as SearchAlgo elif "bs" == self._hpo_method: from flaml import BlendSearch as SearchAlgo elif "random" == self._hpo_method: from flaml import RandomSearch as SearchAlgo elif "optuna" == self._hpo_method: if self._use_ray is not False: try: from ray import __version__ as ray_version assert ray_version >= "1.10.0" if ray_version.startswith("1."): from ray.tune.suggest.optuna import OptunaSearch as SearchAlgo else: from ray.tune.search.optuna import OptunaSearch as SearchAlgo except (ImportError, AssertionError): from flaml.tune.searcher.suggestion import ( OptunaSearch as SearchAlgo, ) else: from flaml.tune.searcher.suggestion import OptunaSearch as SearchAlgo else: raise NotImplementedError( f"hpo_method={self._hpo_method} is not recognized. " "'auto', 'cfo' and 'bs' are supported." ) space = self.search_space self._state.time_from_start = time.time() - self._start_time_flag time_budget_s = self._state.time_budget - self._state.time_from_start if self._state.time_budget >= 0 else None if self._hpo_method != "optuna": min_resource = self.min_resource if isinstance(min_resource, dict): _min_resource_set = set(min_resource.values()) min_resource_all_estimator = min(_min_resource_set) if len(_min_resource_set) > 1: logger.warning( "Using the min FLAML_sample_size of all the provided starting points as the starting sample size in the case of parallel search." ) else: min_resource_all_estimator = min_resource search_alg = SearchAlgo( metric="val_loss", space=space, low_cost_partial_config=self.low_cost_partial_config, points_to_evaluate=self.points_to_evaluate, cat_hp_cost=self.cat_hp_cost, resource_attr=self.resource_attr, min_resource=min_resource_all_estimator, max_resource=self.max_resource, config_constraints=[(partial(size, self._state.learner_classes), "<=", self._mem_thres)], metric_constraints=self.metric_constraints, seed=self._seed, time_budget_s=time_budget_s, num_samples=self._max_iter, allow_empty_config=True, ) else: # if self._hpo_method is optuna, sometimes the search space and the initial config dimension do not match # need to remove the extra keys from the search space to be consistent with the initial config converted_space = SearchAlgo.convert_search_space(space) removed_keys = set(space.keys()).difference(converted_space.keys()) new_points_to_evaluate = [] for idx in range(len(self.points_to_evaluate)): r = self.points_to_evaluate[idx].copy() for each_key in removed_keys: r.pop(each_key) new_points_to_evaluate.append(r) search_alg = SearchAlgo( metric="val_loss", mode="min", points_to_evaluate=[p for p in new_points_to_evaluate if len(p) == len(converted_space)], ) search_alg = ConcurrencyLimiter(search_alg, self._n_concurrent_trials) resources_per_trial = self._state.resources_per_trial if self._use_spark: # use spark as parallel backend analysis = tune.run( self.trainable, search_alg=search_alg, config=space, metric="val_loss", mode="min", time_budget_s=time_budget_s, num_samples=self._max_iter, verbose=max(self.verbose - 2, 0), use_ray=False, use_spark=True, force_cancel=self._force_cancel, # raise_on_failed_trial=False, # keep_checkpoints_num=1, # checkpoint_score_attr="min-val_loss", ) else: # use ray as parallel backend analysis = ray.tune.run( self.trainable, search_alg=search_alg, config=space, metric="val_loss", mode="min", resources_per_trial=resources_per_trial, time_budget_s=time_budget_s, num_samples=self._max_iter, verbose=max(self.verbose - 2, 0), raise_on_failed_trial=False, keep_checkpoints_num=1, checkpoint_score_attr="min-val_loss", **self._use_ray if isinstance(self._use_ray, dict) else {}, ) # logger.info([trial.last_result for trial in analysis.trials]) trials = sorted( ( trial for trial in analysis.trials if trial.last_result and trial.last_result.get("wall_clock_time") is not None ), key=lambda x: x.last_result["wall_clock_time"], ) for self._track_iter, trial in enumerate(trials): result = trial.last_result better = False if result: config = result["config"] estimator = config.get("ml", config)["learner"] search_state = self._search_states[estimator] search_state.update(result, 0) wall_time = result.get("wall_clock_time") if wall_time is not None: self._state.time_from_start = wall_time self._iter_per_learner[estimator] += 1 if search_state.sample_size == self._state.data_size[0]: if not self._fullsize_reached: self._fullsize_reached = True if search_state.best_loss < self._state.best_loss: self._state.best_loss = search_state.best_loss self._best_estimator = estimator self._config_history[self._track_iter] = ( self._best_estimator, config, self._time_taken_best_iter, ) self._trained_estimator = search_state.trained_estimator self._best_iteration = self._track_iter self._time_taken_best_iter = self._state.time_from_start better = True self._search_states[estimator].best_config = config if better or self._log_type == "all": self._log_trial(search_state, estimator)
(self)
52,715
flaml.automl.automl
_search_sequential
null
def _search_sequential(self): try: from ray import __version__ as ray_version assert ray_version >= "1.10.0" if ray_version.startswith("1."): from ray.tune.suggest import ConcurrencyLimiter else: from ray.tune.search import ConcurrencyLimiter except (ImportError, AssertionError): from flaml.tune.searcher.suggestion import ConcurrencyLimiter if self._hpo_method in ("cfo", "grid"): from flaml import CFO as SearchAlgo elif "optuna" == self._hpo_method: try: from ray import __version__ as ray_version assert ray_version >= "1.10.0" if ray_version.startswith("1."): from ray.tune.suggest.optuna import OptunaSearch as SearchAlgo else: from ray.tune.search.optuna import OptunaSearch as SearchAlgo except (ImportError, AssertionError): from flaml.tune.searcher.suggestion import OptunaSearch as SearchAlgo elif "bs" == self._hpo_method: from flaml import BlendSearch as SearchAlgo elif "random" == self._hpo_method: from flaml.tune.searcher import RandomSearch as SearchAlgo elif "cfocat" == self._hpo_method: from flaml.tune.searcher.cfo_cat import CFOCat as SearchAlgo else: raise NotImplementedError( f"hpo_method={self._hpo_method} is not recognized. " "'cfo' and 'bs' are supported." ) est_retrain_time = next_trial_time = 0 best_config_sig = None better = True # whether we find a better model in one trial for self._track_iter in range(self._max_iter): if self._estimator_index is None: estimator = self._active_estimators[0] else: estimator = self._select_estimator(self._active_estimators) if not estimator: break logger.info(f"iteration {self._track_iter}, current learner {estimator}") search_state = self._search_states[estimator] self._state.time_from_start = time.time() - self._start_time_flag time_left = self._state.time_budget - self._state.time_from_start budget_left = ( time_left if not self._retrain_in_budget or better or (not self.best_estimator) or self._search_states[self.best_estimator].sample_size < self._state.data_size[0] else time_left - est_retrain_time ) if not search_state.search_alg: search_state.training_function = partial( AutoMLState._compute_with_config_base, state=self._state, estimator=estimator, ) search_space = search_state.search_space if self._sample: resource_attr = "FLAML_sample_size" min_resource = ( self._min_sample_size[estimator] if isinstance(self._min_sample_size, dict) and estimator in self._min_sample_size else self._min_sample_size_input ) max_resource = self._state.data_size[0] else: resource_attr = min_resource = max_resource = None learner_class = self._state.learner_classes.get(estimator) if "grid" == self._hpo_method: # for synthetic exp only points_to_evaluate = [] space = search_space keys = list(space.keys()) domain0, domain1 = space[keys[0]], space[keys[1]] for x1 in range(domain0.lower, domain0.upper + 1): for x2 in range(domain1.lower, domain1.upper + 1): points_to_evaluate.append( { keys[0]: x1, keys[1]: x2, } ) self._max_iter_per_learner = len(points_to_evaluate) low_cost_partial_config = None else: points_to_evaluate = search_state.init_config.copy() low_cost_partial_config = search_state.low_cost_partial_config time_budget_s = ( min(budget_left, self._state.train_time_limit or np.inf) if self._state.time_budget >= 0 else None ) if self._hpo_method in ("bs", "cfo", "grid", "cfocat", "random"): algo = SearchAlgo( metric="val_loss", mode="min", space=search_space, points_to_evaluate=points_to_evaluate, low_cost_partial_config=low_cost_partial_config, cat_hp_cost=search_state.cat_hp_cost, resource_attr=resource_attr, min_resource=min_resource, max_resource=max_resource, config_constraints=[(learner_class.size, "<=", self._mem_thres)], metric_constraints=self.metric_constraints, seed=self._seed, allow_empty_config=True, time_budget_s=time_budget_s, num_samples=self._max_iter, ) else: # if self._hpo_method is optuna, sometimes the search space and the initial config dimension do not match # need to remove the extra keys from the search space to be consistent with the initial config converted_space = SearchAlgo.convert_search_space(search_space) removed_keys = set(search_space.keys()).difference(converted_space.keys()) new_points_to_evaluate = [] for idx in range(len(points_to_evaluate)): r = points_to_evaluate[idx].copy() for each_key in removed_keys: r.pop(each_key) new_points_to_evaluate.append(r) points_to_evaluate = new_points_to_evaluate algo = SearchAlgo( metric="val_loss", mode="min", space=search_space, points_to_evaluate=[p for p in points_to_evaluate if len(p) == len(search_space)], ) search_state.search_alg = ConcurrencyLimiter(algo, max_concurrent=1) # search_state.search_alg = algo else: search_space = None if self._hpo_method in ("bs", "cfo", "cfocat"): search_state.search_alg.searcher.set_search_properties( metric=None, mode=None, metric_target=self._state.best_loss, ) start_run_time = time.time() analysis = tune.run( search_state.training_function, search_alg=search_state.search_alg, time_budget_s=time_budget_s, verbose=max(self.verbose - 3, 0), use_ray=False, use_spark=False, ) time_used = time.time() - start_run_time better = False if analysis.trials: result = analysis.trials[-1].last_result search_state.update(result, time_used=time_used) if self._estimator_index is None: # update init eci estimate eci_base = search_state.init_eci self._eci.append(search_state.estimated_cost4improvement) for e in self.estimator_list[1:]: self._eci.append(self._search_states[e].init_eci / eci_base * self._eci[0]) self._estimator_index = 0 min_budget = max(10 * self._eci[0], sum(self._eci)) max_budget = 10000 * self._eci[0] if search_state.sample_size: ratio = search_state.data_size[0] / search_state.sample_size min_budget *= ratio max_budget *= ratio logger.info( f"Estimated sufficient time budget={max_budget:.0f}s." f" Estimated necessary time budget={min_budget:.0f}s." ) wall_time = result.get("wall_clock_time") if wall_time is not None: self._state.time_from_start = wall_time # logger.info(f"{self._search_states[estimator].sample_size}, {data_size}") if search_state.sample_size == self._state.data_size[0]: self._iter_per_learner_fullsize[estimator] += 1 self._fullsize_reached = True self._iter_per_learner[estimator] += 1 if search_state.best_loss < self._state.best_loss: best_config_sig = estimator + search_state.get_hist_config_sig( self.data_size_full, search_state.best_config ) self._state.best_loss = search_state.best_loss self._best_estimator = estimator est_retrain_time = ( search_state.est_retrain_time(self.data_size_full) if (best_config_sig not in self._retrained_config) else 0 ) self._config_history[self._track_iter] = ( estimator, search_state.best_config, self._state.time_from_start, ) if self._trained_estimator: self._trained_estimator.cleanup() del self._trained_estimator self._trained_estimator = None if not self._state.retrain_final: self._trained_estimator = search_state.trained_estimator self._best_iteration = self._track_iter self._time_taken_best_iter = self._state.time_from_start better = True next_trial_time = search_state.time2eval_best if ( search_state.trained_estimator and not self._state.model_history and search_state.trained_estimator != self._trained_estimator ): search_state.trained_estimator.cleanup() if better or self._log_type == "all": self._log_trial(search_state, estimator) logger.info( " at {:.1f}s,\testimator {}'s best error={:.4f},\tbest estimator {}'s best error={:.4f}".format( self._state.time_from_start, estimator, search_state.best_loss, self._best_estimator, self._state.best_loss, ) ) if ( self._hpo_method in ("cfo", "bs") and all( state.search_alg and state.search_alg.searcher.is_ls_ever_converged for state in self._search_states.values() ) and (self._state.time_from_start > self._warn_threshold * self._time_taken_best_iter) ): logger.warning( "All estimator hyperparameters local search has " "converged at least once, and the total search time " f"exceeds {self._warn_threshold} times the time taken " "to find the best model." ) if self._early_stop: logger.warning("Stopping search as early_stop is set to True.") break self._warn_threshold *= 10 else: logger.info(f"stop trying learner {estimator}") if self._estimator_index is not None: self._active_estimators.remove(estimator) self._estimator_index -= 1 search_state.search_alg.searcher._is_ls_ever_converged = True if ( self._retrain_in_budget and best_config_sig and est_retrain_time and not better and self._search_states[self._best_estimator].sample_size == self._state.data_size[0] and ( est_retrain_time <= self._state.time_budget - self._state.time_from_start <= est_retrain_time + next_trial_time ) ): state = self._search_states[self._best_estimator] self._trained_estimator, retrain_time = self._state._train_with_config( self._best_estimator, state.best_config, self.data_size_full, ) logger.info("retrain {} for {:.1f}s".format(self._best_estimator, retrain_time)) self._retrained_config[best_config_sig] = state.best_config_train_time = retrain_time est_retrain_time = 0 self._state.time_from_start = time.time() - self._start_time_flag if self._state.time_from_start >= self._state.time_budget >= 0 or not self._active_estimators: break if self._ensemble and self._best_estimator: time_left = self._state.time_budget - self._state.time_from_start time_ensemble = self._search_states[self._best_estimator].time2eval_best if time_left < time_ensemble < 2 * time_left: break
(self)
52,716
flaml.automl.automl
_select_estimator
null
def _select_estimator(self, estimator_list): if self._learner_selector == "roundrobin": self._estimator_index += 1 if self._estimator_index == len(estimator_list): self._estimator_index = 0 return estimator_list[self._estimator_index] min_estimated_cost, selected = np.inf, None inv = [] untried_exists = False for i, estimator in enumerate(estimator_list): if estimator in self._search_states and ( self._search_states[estimator].sample_size ): # sample_size=None meaning no result search_state = self._search_states[estimator] if ( self._state.time_budget >= 0 and self._search_states[estimator].time2eval_best > self._state.time_budget - self._state.time_from_start or self._iter_per_learner_fullsize[estimator] >= self._max_iter_per_learner ): inv.append(0) continue estimated_cost = search_state.estimated_cost4improvement if search_state.sample_size < self._state.data_size[0] and self._state.time_budget >= 0: estimated_cost = min( estimated_cost, search_state.time2eval_best * min( SAMPLE_MULTIPLY_FACTOR, self._state.data_size[0] / search_state.sample_size, ), ) gap = search_state.best_loss - self._state.best_loss if gap > 0 and not self._ensemble: delta_loss = (search_state.best_loss_old - search_state.best_loss) or search_state.best_loss delta_time = (search_state.total_time_used - search_state.time_best_found_old) or 1e-10 speed = delta_loss / delta_time if speed: estimated_cost = max(2 * gap / speed, estimated_cost) estimated_cost = estimated_cost or 1e-9 inv.append(1 / estimated_cost) else: estimated_cost = self._eci[i] inv.append(0) untried_exists = True if estimated_cost < min_estimated_cost: min_estimated_cost = estimated_cost selected = estimator if untried_exists or not selected: state = self._search_states.get(selected) if not (state and state.sample_size): return selected s = sum(inv) p = self._random.rand() q = 0 for i in range(len(inv)): if inv[i]: q += inv[i] / s if p < q: return estimator_list[i]
(self, estimator_list)
52,717
flaml.automl.automl
add_learner
Add a customized learner. Args: learner_name: A string of the learner's name. learner_class: A subclass of flaml.automl.model.BaseEstimator.
def add_learner(self, learner_name, learner_class): """Add a customized learner. Args: learner_name: A string of the learner's name. learner_class: A subclass of flaml.automl.model.BaseEstimator. """ self._state.learner_classes[learner_name] = learner_class
(self, learner_name, learner_class)
52,718
flaml.automl.automl
best_model_for_estimator
Return the best model found for a particular estimator. Args: estimator_name: a str of the estimator's name. Returns: An object storing the best model for estimator_name. If `model_history` was set to False during fit(), then the returned model is untrained unless estimator_name is the best estimator. If `model_history` was set to True, then the returned model is trained.
def best_model_for_estimator(self, estimator_name: str): """Return the best model found for a particular estimator. Args: estimator_name: a str of the estimator's name. Returns: An object storing the best model for estimator_name. If `model_history` was set to False during fit(), then the returned model is untrained unless estimator_name is the best estimator. If `model_history` was set to True, then the returned model is trained. """ state = self._search_states.get(estimator_name) return state and getattr(state, "trained_estimator", None)
(self, estimator_name: str)
52,719
flaml.automl.automl
fit
Find a model for a given task. Args: X_train: A numpy array or a pandas dataframe of training data in shape (n, m). For time series forecsat tasks, the first column of X_train must be the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). When using ray, X_train can be a ray.ObjectRef. y_train: A numpy array or a pandas series of labels in shape (n, ). dataframe: A dataframe of training data including label column. For time series forecast tasks, dataframe must be specified and must have at least two columns, timestamp and label, where the first column is the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). When using ray, dataframe can be a ray.ObjectRef. label: A str of the label column name for, e.g., 'label'; Note: If X_train and y_train are provided, dataframe and label are ignored; If not, dataframe and label must be provided. metric: A string of the metric name or a function, e.g., 'accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'roc_auc_weighted', 'roc_auc_ovo_weighted', 'roc_auc_ovr_weighted', 'f1', 'micro_f1', 'macro_f1', 'log_loss', 'mae', 'mse', 'r2', 'mape'. Default is 'auto'. If passing a customized metric function, the function needs to have the following input arguments: ```python def custom_metric( X_test, y_test, estimator, labels, X_train, y_train, weight_test=None, weight_train=None, config=None, groups_test=None, groups_train=None, ): return metric_to_minimize, metrics_to_log ``` which returns a float number as the minimization objective, and a dictionary as the metrics to log. E.g., ```python def custom_metric( X_val, y_val, estimator, labels, X_train, y_train, weight_val=None, weight_train=None, *args, ): from sklearn.metrics import log_loss import time start = time.time() y_pred = estimator.predict_proba(X_val) pred_time = (time.time() - start) / len(X_val) val_loss = log_loss(y_val, y_pred, labels=labels, sample_weight=weight_val) y_pred = estimator.predict_proba(X_train) train_loss = log_loss(y_train, y_pred, labels=labels, sample_weight=weight_train) alpha = 0.5 return val_loss * (1 + alpha) - alpha * train_loss, { "val_loss": val_loss, "train_loss": train_loss, "pred_time": pred_time, } ``` task: A string of the task type, e.g., 'classification', 'regression', 'ts_forecast_regression', 'ts_forecast_classification', 'rank', 'seq-classification', 'seq-regression', 'summarization', or an instance of Task class n_jobs: An integer of the number of threads for training | default=-1. Use all available resources when n_jobs == -1. log_file_name: A string of the log file name | default="". To disable logging, set it to be an empty string "". estimator_list: A list of strings for estimator names, or 'auto'. e.g., ```['lgbm', 'xgboost', 'xgb_limitdepth', 'catboost', 'rf', 'extra_tree']```. time_budget: A float number of the time budget in seconds. Use -1 if no time limit. max_iter: An integer of the maximal number of iterations. NOTE: when both time_budget and max_iter are unspecified, only one model will be trained per estimator. sample: A boolean of whether to sample the training data during search. ensemble: boolean or dict | default=False. Whether to perform ensemble after search. Can be a dict with keys 'passthrough' and 'final_estimator' to specify the passthrough and final_estimator in the stacker. The dict can also contain 'n_jobs' as the key to specify the number of jobs for the stacker. eval_method: A string of resampling strategy, one of ['auto', 'cv', 'holdout']. split_ratio: A float of the valiation data percentage for holdout. n_splits: An integer of the number of folds for cross - validation. log_type: A string of the log type, one of ['better', 'all']. 'better' only logs configs with better loss than previos iters 'all' logs all the tried configs. model_history: A boolean of whether to keep the trained best model per estimator. Make sure memory is large enough if setting to True. Default value is False: best_model_for_estimator would return a untrained model for non-best learner. log_training_metric: A boolean of whether to log the training metric for each model. mem_thres: A float of the memory size constraint in bytes. pred_time_limit: A float of the prediction latency constraint in seconds. It refers to the average prediction time per row in validation data. train_time_limit: None or a float of the training time constraint in seconds. X_val: None or a numpy array or a pandas dataframe of validation data. y_val: None or a numpy array or a pandas series of validation labels. sample_weight_val: None or a numpy array of the sample weight of validation data of the same shape as y_val. groups_val: None or array-like | group labels (with matching length to y_val) or group counts (with sum equal to length of y_val) for validation data. Need to be consistent with groups. groups: None or array-like | Group labels (with matching length to y_train) or groups counts (with sum equal to length of y_train) for training data. verbose: int, default=3 | Controls the verbosity, higher means more messages. retrain_full: bool or str, default=True | whether to retrain the selected model on the full training data when using holdout. True - retrain only after search finishes; False - no retraining; 'budget' - do best effort to retrain without violating the time budget. split_type: str or splitter object, default="auto" | the data split type. * A valid splitter object is an instance of a derived class of scikit-learn [KFold](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold) and have ``split`` and ``get_n_splits`` methods with the same signatures. Set eval_method to "cv" to use the splitter object. * Valid str options depend on different tasks. For classification tasks, valid choices are ["auto", 'stratified', 'uniform', 'time', 'group']. "auto" -> stratified. For regression tasks, valid choices are ["auto", 'uniform', 'time']. "auto" -> uniform. For time series forecast tasks, must be "auto" or 'time'. For ranking task, must be "auto" or 'group'. hpo_method: str, default="auto" | The hyperparameter optimization method. By default, CFO is used for sequential search and BlendSearch is used for parallel search. No need to set when using flaml's default search space or using a simple customized search space. When set to 'bs', BlendSearch is used. BlendSearch can be tried when the search space is complex, for example, containing multiple disjoint, discontinuous subspaces. When set to 'random', random search is used. starting_points: A dictionary or a str to specify the starting hyperparameter config for the estimators | default="data". If str: - if "data", use data-dependent defaults; - if "data:path" use data-dependent defaults which are stored at path; - if "static", use data-independent defaults. If dict, keys are the name of the estimators, and values are the starting hyperparamter configurations for the corresponding estimators. The value can be a single hyperparamter configuration dict or a list of hyperparamter configuration dicts. In the following code example, we get starting_points from the `automl` object and use them in the `new_automl` object. e.g., ```python from flaml import AutoML automl = AutoML() X_train, y_train = load_iris(return_X_y=True) automl.fit(X_train, y_train) starting_points = automl.best_config_per_estimator new_automl = AutoML() new_automl.fit(X_train, y_train, starting_points=starting_points) ``` seed: int or None, default=None | The random seed for hpo. n_concurrent_trials: [In preview] int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, flaml performes [parallel tuning](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and installation of ray or spark is required: `pip install flaml[ray]` or `pip install flaml[spark]`. Please check [here](https://spark.apache.org/docs/latest/api/python/getting_started/install.html) for more details about installing Spark. keep_search_state: boolean, default=False | Whether to keep data needed for model search after fit(). By default the state is deleted for space saving. preserve_checkpoint: boolean, default=True | Whether to preserve the saved checkpoint on disk when deleting automl. By default the checkpoint is preserved. early_stop: boolean, default=False | Whether to stop early if the search is considered to converge. force_cancel: boolean, default=False | Whether to forcely cancel the PySpark job if overtime. append_log: boolean, default=False | Whether to directly append the log records to the input log file if it exists. auto_augment: boolean, default=True | Whether to automatically augment rare classes. min_sample_size: int, default=MIN_SAMPLE_TRAIN | the minimal sample size when sample=True. use_ray: boolean or dict. If boolean: default=False | Whether to use ray to run the training in separate processes. This can be used to prevent OOM for large datasets, but will incur more overhead in time. If dict: the dict contains the keywords arguments to be passed to [ray.tune.run](https://docs.ray.io/en/latest/tune/api_docs/execution.html). use_spark: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. free_mem_ratio: float between 0 and 1, default=0. The free memory ratio to keep during training. metric_constraints: list, default=[] | The list of metric constraints. Each element in this list is a 3-tuple, which shall be expressed in the following format: the first element of the 3-tuple is the name of the metric, the second element is the inequality sign chosen from ">=" and "<=", and the third element is the constraint value. E.g., `('precision', '>=', 0.9)`. Note that all the metric names in metric_constraints need to be reported via the metrics_to_log dictionary returned by a customized metric function. The customized metric function shall be provided via the `metric` key word argument of the fit() function or the automl constructor. Find examples in this [test](https://github.com/microsoft/FLAML/tree/main/test/automl/test_constraints.py). If `pred_time_limit` is provided as one of keyword arguments to fit() function or the automl constructor, flaml will automatically (and under the hood) add it as an additional element in the metric_constraints. Essentially 'pred_time_limit' specifies a constraint about the prediction latency constraint in seconds. custom_hp: dict, default=None | The custom search space specified by user Each key is the estimator name, each value is a dict of the custom search space for that estimator. Notice the domain of the custom search space can either be a value of a sample.Domain object. ```python custom_hp = { "transformer_ms": { "model_path": { "domain": "albert-base-v2", }, "learning_rate": { "domain": tune.choice([1e-4, 1e-5]), } } } ``` time_col: for a time series task, name of the column containing the timestamps. If not provided, defaults to the first column of X_train/X_val cv_score_agg_func: customized cross-validation scores aggregate function. Default to average metrics across folds. If specificed, this function needs to have the following input arguments: * val_loss_folds: list of floats, the loss scores of each fold; * log_metrics_folds: list of dicts/floats, the metrics of each fold to log. This function should return the final aggregate result of all folds. A float number of the minimization objective, and a dictionary as the metrics to log or None. E.g., ```python def cv_score_agg_func(val_loss_folds, log_metrics_folds): metric_to_minimize = sum(val_loss_folds)/len(val_loss_folds) metrics_to_log = None for single_fold in log_metrics_folds: if metrics_to_log is None: metrics_to_log = single_fold elif isinstance(metrics_to_log, dict): metrics_to_log = {k: metrics_to_log[k] + v for k, v in single_fold.items()} else: metrics_to_log += single_fold if metrics_to_log: n = len(val_loss_folds) metrics_to_log = ( {k: v / n for k, v in metrics_to_log.items()} if isinstance(metrics_to_log, dict) else metrics_to_log / n ) return metric_to_minimize, metrics_to_log ``` skip_transform: boolean, default=False | Whether to pre-process data prior to modeling. mlflow_logging: boolean, default=None | Whether to log the training results to mlflow. Default value is None, which means the logging decision is made based on AutoML.__init__'s mlflow_logging argument. This requires mlflow to be installed and to have an active mlflow run. FLAML will create nested runs. fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name. For TransformersEstimator, available fit_kwargs can be found from [TrainingArgumentsForAuto](nlp/huggingface/training_args). e.g., ```python fit_kwargs_by_estimator = { "transformer": { "output_dir": "test/data/output/", "fp16": False, }, "tft": { "max_encoder_length": 1, "min_encoder_length": 1, "static_categoricals": [], "static_reals": [], "time_varying_known_categoricals": [], "time_varying_known_reals": [], "time_varying_unknown_categoricals": [], "time_varying_unknown_reals": [], "variable_groups": {}, "lags": {}, } } ``` **fit_kwargs: Other key word arguments to pass to fit() function of the searched learners, such as sample_weight. Below are a few examples of estimator-specific parameters: period: int | forecast horizon for all time series forecast tasks. gpu_per_trial: float, default = 0 | A float of the number of gpus per trial, only used by TransformersEstimator, XGBoostSklearnEstimator, and TemporalFusionTransformerEstimator. group_ids: list of strings of column names identifying a time series, only used by TemporalFusionTransformerEstimator, required for 'ts_forecast_panel' task. `group_ids` is a parameter for TimeSeriesDataSet object from PyTorchForecasting. For other parameters to describe your dataset, refer to [TimeSeriesDataSet PyTorchForecasting](https://pytorch-forecasting.readthedocs.io/en/stable/api/pytorch_forecasting.data.timeseries.TimeSeriesDataSet.html). To specify your variables, use `static_categoricals`, `static_reals`, `time_varying_known_categoricals`, `time_varying_known_reals`, `time_varying_unknown_categoricals`, `time_varying_unknown_reals`, `variable_groups`. To provide more information on your data, use `max_encoder_length`, `min_encoder_length`, `lags`. log_dir: str, default = "lightning_logs" | Folder into which to log results for tensorboard, only used by TemporalFusionTransformerEstimator. max_epochs: int, default = 20 | Maximum number of epochs to run training, only used by TemporalFusionTransformerEstimator. batch_size: int, default = 64 | Batch size for training model, only used by TemporalFusionTransformerEstimator.
def fit( self, X_train=None, y_train=None, dataframe=None, label=None, metric=None, task: Optional[Union[str, Task]] = None, n_jobs=None, # gpu_per_trial=0, log_file_name=None, estimator_list=None, time_budget=None, max_iter=None, sample=None, ensemble=None, eval_method=None, log_type=None, model_history=None, split_ratio=None, n_splits=None, log_training_metric=None, mem_thres=None, pred_time_limit=None, train_time_limit=None, X_val=None, y_val=None, sample_weight_val=None, groups_val=None, groups=None, verbose=None, retrain_full=None, split_type=None, learner_selector=None, hpo_method=None, starting_points=None, seed=None, n_concurrent_trials=None, keep_search_state=None, preserve_checkpoint=True, early_stop=None, force_cancel=None, append_log=None, auto_augment=None, min_sample_size=None, use_ray=None, use_spark=None, free_mem_ratio=0, metric_constraints=None, custom_hp=None, time_col=None, cv_score_agg_func=None, skip_transform=None, mlflow_logging=None, fit_kwargs_by_estimator=None, **fit_kwargs, ): """Find a model for a given task. Args: X_train: A numpy array or a pandas dataframe of training data in shape (n, m). For time series forecsat tasks, the first column of X_train must be the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). When using ray, X_train can be a ray.ObjectRef. y_train: A numpy array or a pandas series of labels in shape (n, ). dataframe: A dataframe of training data including label column. For time series forecast tasks, dataframe must be specified and must have at least two columns, timestamp and label, where the first column is the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). When using ray, dataframe can be a ray.ObjectRef. label: A str of the label column name for, e.g., 'label'; Note: If X_train and y_train are provided, dataframe and label are ignored; If not, dataframe and label must be provided. metric: A string of the metric name or a function, e.g., 'accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'roc_auc_weighted', 'roc_auc_ovo_weighted', 'roc_auc_ovr_weighted', 'f1', 'micro_f1', 'macro_f1', 'log_loss', 'mae', 'mse', 'r2', 'mape'. Default is 'auto'. If passing a customized metric function, the function needs to have the following input arguments: ```python def custom_metric( X_test, y_test, estimator, labels, X_train, y_train, weight_test=None, weight_train=None, config=None, groups_test=None, groups_train=None, ): return metric_to_minimize, metrics_to_log ``` which returns a float number as the minimization objective, and a dictionary as the metrics to log. E.g., ```python def custom_metric( X_val, y_val, estimator, labels, X_train, y_train, weight_val=None, weight_train=None, *args, ): from sklearn.metrics import log_loss import time start = time.time() y_pred = estimator.predict_proba(X_val) pred_time = (time.time() - start) / len(X_val) val_loss = log_loss(y_val, y_pred, labels=labels, sample_weight=weight_val) y_pred = estimator.predict_proba(X_train) train_loss = log_loss(y_train, y_pred, labels=labels, sample_weight=weight_train) alpha = 0.5 return val_loss * (1 + alpha) - alpha * train_loss, { "val_loss": val_loss, "train_loss": train_loss, "pred_time": pred_time, } ``` task: A string of the task type, e.g., 'classification', 'regression', 'ts_forecast_regression', 'ts_forecast_classification', 'rank', 'seq-classification', 'seq-regression', 'summarization', or an instance of Task class n_jobs: An integer of the number of threads for training | default=-1. Use all available resources when n_jobs == -1. log_file_name: A string of the log file name | default="". To disable logging, set it to be an empty string "". estimator_list: A list of strings for estimator names, or 'auto'. e.g., ```['lgbm', 'xgboost', 'xgb_limitdepth', 'catboost', 'rf', 'extra_tree']```. time_budget: A float number of the time budget in seconds. Use -1 if no time limit. max_iter: An integer of the maximal number of iterations. NOTE: when both time_budget and max_iter are unspecified, only one model will be trained per estimator. sample: A boolean of whether to sample the training data during search. ensemble: boolean or dict | default=False. Whether to perform ensemble after search. Can be a dict with keys 'passthrough' and 'final_estimator' to specify the passthrough and final_estimator in the stacker. The dict can also contain 'n_jobs' as the key to specify the number of jobs for the stacker. eval_method: A string of resampling strategy, one of ['auto', 'cv', 'holdout']. split_ratio: A float of the valiation data percentage for holdout. n_splits: An integer of the number of folds for cross - validation. log_type: A string of the log type, one of ['better', 'all']. 'better' only logs configs with better loss than previos iters 'all' logs all the tried configs. model_history: A boolean of whether to keep the trained best model per estimator. Make sure memory is large enough if setting to True. Default value is False: best_model_for_estimator would return a untrained model for non-best learner. log_training_metric: A boolean of whether to log the training metric for each model. mem_thres: A float of the memory size constraint in bytes. pred_time_limit: A float of the prediction latency constraint in seconds. It refers to the average prediction time per row in validation data. train_time_limit: None or a float of the training time constraint in seconds. X_val: None or a numpy array or a pandas dataframe of validation data. y_val: None or a numpy array or a pandas series of validation labels. sample_weight_val: None or a numpy array of the sample weight of validation data of the same shape as y_val. groups_val: None or array-like | group labels (with matching length to y_val) or group counts (with sum equal to length of y_val) for validation data. Need to be consistent with groups. groups: None or array-like | Group labels (with matching length to y_train) or groups counts (with sum equal to length of y_train) for training data. verbose: int, default=3 | Controls the verbosity, higher means more messages. retrain_full: bool or str, default=True | whether to retrain the selected model on the full training data when using holdout. True - retrain only after search finishes; False - no retraining; 'budget' - do best effort to retrain without violating the time budget. split_type: str or splitter object, default="auto" | the data split type. * A valid splitter object is an instance of a derived class of scikit-learn [KFold](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold) and have ``split`` and ``get_n_splits`` methods with the same signatures. Set eval_method to "cv" to use the splitter object. * Valid str options depend on different tasks. For classification tasks, valid choices are ["auto", 'stratified', 'uniform', 'time', 'group']. "auto" -> stratified. For regression tasks, valid choices are ["auto", 'uniform', 'time']. "auto" -> uniform. For time series forecast tasks, must be "auto" or 'time'. For ranking task, must be "auto" or 'group'. hpo_method: str, default="auto" | The hyperparameter optimization method. By default, CFO is used for sequential search and BlendSearch is used for parallel search. No need to set when using flaml's default search space or using a simple customized search space. When set to 'bs', BlendSearch is used. BlendSearch can be tried when the search space is complex, for example, containing multiple disjoint, discontinuous subspaces. When set to 'random', random search is used. starting_points: A dictionary or a str to specify the starting hyperparameter config for the estimators | default="data". If str: - if "data", use data-dependent defaults; - if "data:path" use data-dependent defaults which are stored at path; - if "static", use data-independent defaults. If dict, keys are the name of the estimators, and values are the starting hyperparamter configurations for the corresponding estimators. The value can be a single hyperparamter configuration dict or a list of hyperparamter configuration dicts. In the following code example, we get starting_points from the `automl` object and use them in the `new_automl` object. e.g., ```python from flaml import AutoML automl = AutoML() X_train, y_train = load_iris(return_X_y=True) automl.fit(X_train, y_train) starting_points = automl.best_config_per_estimator new_automl = AutoML() new_automl.fit(X_train, y_train, starting_points=starting_points) ``` seed: int or None, default=None | The random seed for hpo. n_concurrent_trials: [In preview] int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, flaml performes [parallel tuning](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and installation of ray or spark is required: `pip install flaml[ray]` or `pip install flaml[spark]`. Please check [here](https://spark.apache.org/docs/latest/api/python/getting_started/install.html) for more details about installing Spark. keep_search_state: boolean, default=False | Whether to keep data needed for model search after fit(). By default the state is deleted for space saving. preserve_checkpoint: boolean, default=True | Whether to preserve the saved checkpoint on disk when deleting automl. By default the checkpoint is preserved. early_stop: boolean, default=False | Whether to stop early if the search is considered to converge. force_cancel: boolean, default=False | Whether to forcely cancel the PySpark job if overtime. append_log: boolean, default=False | Whether to directly append the log records to the input log file if it exists. auto_augment: boolean, default=True | Whether to automatically augment rare classes. min_sample_size: int, default=MIN_SAMPLE_TRAIN | the minimal sample size when sample=True. use_ray: boolean or dict. If boolean: default=False | Whether to use ray to run the training in separate processes. This can be used to prevent OOM for large datasets, but will incur more overhead in time. If dict: the dict contains the keywords arguments to be passed to [ray.tune.run](https://docs.ray.io/en/latest/tune/api_docs/execution.html). use_spark: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. free_mem_ratio: float between 0 and 1, default=0. The free memory ratio to keep during training. metric_constraints: list, default=[] | The list of metric constraints. Each element in this list is a 3-tuple, which shall be expressed in the following format: the first element of the 3-tuple is the name of the metric, the second element is the inequality sign chosen from ">=" and "<=", and the third element is the constraint value. E.g., `('precision', '>=', 0.9)`. Note that all the metric names in metric_constraints need to be reported via the metrics_to_log dictionary returned by a customized metric function. The customized metric function shall be provided via the `metric` key word argument of the fit() function or the automl constructor. Find examples in this [test](https://github.com/microsoft/FLAML/tree/main/test/automl/test_constraints.py). If `pred_time_limit` is provided as one of keyword arguments to fit() function or the automl constructor, flaml will automatically (and under the hood) add it as an additional element in the metric_constraints. Essentially 'pred_time_limit' specifies a constraint about the prediction latency constraint in seconds. custom_hp: dict, default=None | The custom search space specified by user Each key is the estimator name, each value is a dict of the custom search space for that estimator. Notice the domain of the custom search space can either be a value of a sample.Domain object. ```python custom_hp = { "transformer_ms": { "model_path": { "domain": "albert-base-v2", }, "learning_rate": { "domain": tune.choice([1e-4, 1e-5]), } } } ``` time_col: for a time series task, name of the column containing the timestamps. If not provided, defaults to the first column of X_train/X_val cv_score_agg_func: customized cross-validation scores aggregate function. Default to average metrics across folds. If specificed, this function needs to have the following input arguments: * val_loss_folds: list of floats, the loss scores of each fold; * log_metrics_folds: list of dicts/floats, the metrics of each fold to log. This function should return the final aggregate result of all folds. A float number of the minimization objective, and a dictionary as the metrics to log or None. E.g., ```python def cv_score_agg_func(val_loss_folds, log_metrics_folds): metric_to_minimize = sum(val_loss_folds)/len(val_loss_folds) metrics_to_log = None for single_fold in log_metrics_folds: if metrics_to_log is None: metrics_to_log = single_fold elif isinstance(metrics_to_log, dict): metrics_to_log = {k: metrics_to_log[k] + v for k, v in single_fold.items()} else: metrics_to_log += single_fold if metrics_to_log: n = len(val_loss_folds) metrics_to_log = ( {k: v / n for k, v in metrics_to_log.items()} if isinstance(metrics_to_log, dict) else metrics_to_log / n ) return metric_to_minimize, metrics_to_log ``` skip_transform: boolean, default=False | Whether to pre-process data prior to modeling. mlflow_logging: boolean, default=None | Whether to log the training results to mlflow. Default value is None, which means the logging decision is made based on AutoML.__init__'s mlflow_logging argument. This requires mlflow to be installed and to have an active mlflow run. FLAML will create nested runs. fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name. For TransformersEstimator, available fit_kwargs can be found from [TrainingArgumentsForAuto](nlp/huggingface/training_args). e.g., ```python fit_kwargs_by_estimator = { "transformer": { "output_dir": "test/data/output/", "fp16": False, }, "tft": { "max_encoder_length": 1, "min_encoder_length": 1, "static_categoricals": [], "static_reals": [], "time_varying_known_categoricals": [], "time_varying_known_reals": [], "time_varying_unknown_categoricals": [], "time_varying_unknown_reals": [], "variable_groups": {}, "lags": {}, } } ``` **fit_kwargs: Other key word arguments to pass to fit() function of the searched learners, such as sample_weight. Below are a few examples of estimator-specific parameters: period: int | forecast horizon for all time series forecast tasks. gpu_per_trial: float, default = 0 | A float of the number of gpus per trial, only used by TransformersEstimator, XGBoostSklearnEstimator, and TemporalFusionTransformerEstimator. group_ids: list of strings of column names identifying a time series, only used by TemporalFusionTransformerEstimator, required for 'ts_forecast_panel' task. `group_ids` is a parameter for TimeSeriesDataSet object from PyTorchForecasting. For other parameters to describe your dataset, refer to [TimeSeriesDataSet PyTorchForecasting](https://pytorch-forecasting.readthedocs.io/en/stable/api/pytorch_forecasting.data.timeseries.TimeSeriesDataSet.html). To specify your variables, use `static_categoricals`, `static_reals`, `time_varying_known_categoricals`, `time_varying_known_reals`, `time_varying_unknown_categoricals`, `time_varying_unknown_reals`, `variable_groups`. To provide more information on your data, use `max_encoder_length`, `min_encoder_length`, `lags`. log_dir: str, default = "lightning_logs" | Folder into which to log results for tensorboard, only used by TemporalFusionTransformerEstimator. max_epochs: int, default = 20 | Maximum number of epochs to run training, only used by TemporalFusionTransformerEstimator. batch_size: int, default = 64 | Batch size for training model, only used by TemporalFusionTransformerEstimator. """ self._state._start_time_flag = self._start_time_flag = time.time() task = task or self._settings.get("task") if isinstance(task, str): task = task_factory(task, X_train, y_train) self._state.task = task self._state.task.time_col = time_col self._estimator_type = "classifier" if task.is_classification() else "regressor" time_budget = time_budget or self._settings.get("time_budget") n_jobs = n_jobs or self._settings.get("n_jobs") gpu_per_trial = fit_kwargs.get("gpu_per_trial", 0) eval_method = eval_method or self._settings.get("eval_method") split_ratio = split_ratio or self._settings.get("split_ratio") n_splits = n_splits or self._settings.get("n_splits") auto_augment = self._settings.get("auto_augment") if auto_augment is None else auto_augment metric = metric or self._settings.get("metric") estimator_list = estimator_list or self._settings.get("estimator_list") log_file_name = self._settings.get("log_file_name") if log_file_name is None else log_file_name max_iter = self._settings.get("max_iter") if max_iter is None else max_iter sample_is_none = sample is None if sample_is_none: sample = self._settings.get("sample") ensemble = self._settings.get("ensemble") if ensemble is None else ensemble log_type = log_type or self._settings.get("log_type") model_history = self._settings.get("model_history") if model_history is None else model_history log_training_metric = ( self._settings.get("log_training_metric") if log_training_metric is None else log_training_metric ) mem_thres = mem_thres or self._settings.get("mem_thres") pred_time_limit = pred_time_limit or self._settings.get("pred_time_limit") train_time_limit = train_time_limit or self._settings.get("train_time_limit") self._metric_constraints = metric_constraints or self._settings.get("metric_constraints") if np.isfinite(pred_time_limit): self._metric_constraints.append(("pred_time", "<=", pred_time_limit)) verbose = self._settings.get("verbose") if verbose is None else verbose retrain_full = self._settings.get("retrain_full") if retrain_full is None else retrain_full split_type = split_type or self._settings.get("split_type") hpo_method = hpo_method or self._settings.get("hpo_method") learner_selector = learner_selector or self._settings.get("learner_selector") no_starting_points = starting_points is None if no_starting_points: starting_points = self._settings.get("starting_points") n_concurrent_trials = n_concurrent_trials or self._settings.get("n_concurrent_trials") keep_search_state = self._settings.get("keep_search_state") if keep_search_state is None else keep_search_state self.preserve_checkpoint = ( self._settings.get("preserve_checkpoint") if preserve_checkpoint is None else preserve_checkpoint ) early_stop = self._settings.get("early_stop") if early_stop is None else early_stop force_cancel = self._settings.get("force_cancel") if force_cancel is None else force_cancel # no search budget is provided? no_budget = time_budget < 0 and max_iter is None and not early_stop append_log = self._settings.get("append_log") if append_log is None else append_log min_sample_size = min_sample_size or self._settings.get("min_sample_size") use_ray = self._settings.get("use_ray") if use_ray is None else use_ray use_spark = self._settings.get("use_spark") if use_spark is None else use_spark if use_spark and use_ray is not False: raise ValueError("use_spark and use_ray cannot be both True.") elif use_spark: spark_available, spark_error_msg = check_spark() if not spark_available: raise spark_error_msg old_level = logger.getEffectiveLevel() self.verbose = verbose logger.setLevel(50 - verbose * 10) if not logger.handlers: # Add the console handler. _ch = logging.StreamHandler(stream=sys.stdout) _ch.setFormatter(logger_formatter) logger.addHandler(_ch) if not use_ray and not use_spark and n_concurrent_trials > 1: if ray_available: logger.warning( "n_concurrent_trials > 1 is only supported when using Ray or Spark. " "Ray installed, setting use_ray to True. If you want to use Spark, set use_spark to True." ) use_ray = True else: spark_available, _ = check_spark() if spark_available: logger.warning( "n_concurrent_trials > 1 is only supported when using Ray or Spark. " "Spark installed, setting use_spark to True. If you want to use Ray, set use_ray to True." ) use_spark = True else: logger.warning( "n_concurrent_trials > 1 is only supported when using Ray or Spark. " "Neither Ray nor Spark installed, setting n_concurrent_trials to 1." ) n_concurrent_trials = 1 self._state.n_jobs = n_jobs self._n_concurrent_trials = n_concurrent_trials self._early_stop = early_stop self._use_spark = use_spark self._force_cancel = force_cancel self._use_ray = use_ray # use the following condition if we have an estimation of average_trial_time and average_trial_overhead # self._use_ray = use_ray or n_concurrent_trials > ( average_trial_time + average_trial_overhead) / (average_trial_time) if self._use_ray is not False: import ray n_cpus = ray.is_initialized() and ray.available_resources()["CPU"] or os.cpu_count() self._state.resources_per_trial = ( # when using gpu, default cpu is 1 per job; otherwise, default cpu is n_cpus / n_concurrent_trials ( { "cpu": max(int((n_cpus - 2) / 2 / n_concurrent_trials), 1), "gpu": gpu_per_trial, } if gpu_per_trial == 0 else {"cpu": 1, "gpu": gpu_per_trial} ) if n_jobs < 0 else {"cpu": n_jobs, "gpu": gpu_per_trial} ) if isinstance(X_train, ray.ObjectRef): X_train = ray.get(X_train) elif isinstance(dataframe, ray.ObjectRef): dataframe = ray.get(dataframe) else: # TODO: Integrate with Spark self._state.resources_per_trial = {"cpu": n_jobs} if n_jobs > 0 else {"cpu": 1} self._state.free_mem_ratio = self._settings.get("free_mem_ratio") if free_mem_ratio is None else free_mem_ratio self._state.task = task self._state.log_training_metric = log_training_metric self._state.fit_kwargs = fit_kwargs custom_hp = custom_hp or self._settings.get("custom_hp") self._skip_transform = self._settings.get("skip_transform") if skip_transform is None else skip_transform self._mlflow_logging = self._settings.get("mlflow_logging") if mlflow_logging is None else mlflow_logging fit_kwargs_by_estimator = fit_kwargs_by_estimator or self._settings.get("fit_kwargs_by_estimator") self._state.fit_kwargs_by_estimator = fit_kwargs_by_estimator.copy() # shallow copy of fit_kwargs_by_estimator self._state.weight_val = sample_weight_val task.validate_data( self, self._state, X_train, y_train, dataframe, label, X_val, y_val, groups_val, groups, ) self._search_states = {} # key: estimator name; value: SearchState self._random = np.random.RandomState(RANDOM_SEED) self._seed = seed if seed is not None else 20 self._learner_selector = learner_selector logger.info(f"task = {task}") self._split_type = self._state.task.decide_split_type( split_type, self._y_train_all, self._state.fit_kwargs, self._state.groups, ) if X_val is not None: logger.info(f"Data split method: {self._split_type}") eval_method = self._decide_eval_method(eval_method, time_budget) self._state.eval_method = eval_method logger.info("Evaluation method: {}".format(eval_method)) self._state.cv_score_agg_func = cv_score_agg_func or self._settings.get("cv_score_agg_func") self._retrain_in_budget = retrain_full == "budget" and (eval_method == "holdout" and self._state.X_val is None) self._auto_augment = auto_augment _sample_size_from_starting_points = {} if isinstance(starting_points, dict): for _estimator, _point_per_estimator in starting_points.items(): sample_size = ( _point_per_estimator and isinstance(_point_per_estimator, dict) and _point_per_estimator.get("FLAML_sample_size") ) if sample_size: _sample_size_from_starting_points[_estimator] = sample_size elif _point_per_estimator and isinstance(_point_per_estimator, list): _sample_size_set = set( [ config["FLAML_sample_size"] for config in _point_per_estimator if "FLAML_sample_size" in config ] ) if _sample_size_set: _sample_size_from_starting_points[_estimator] = min(_sample_size_set) if len(_sample_size_set) > 1: logger.warning( "Using the min FLAML_sample_size of all the provided starting points for estimator {}. (Provided FLAML_sample_size are: {})".format( _estimator, _sample_size_set ) ) if not sample and isinstance(starting_points, dict): assert ( not _sample_size_from_starting_points ), "When subsampling is disabled, do not include FLAML_sample_size in the starting point." self._min_sample_size = _sample_size_from_starting_points or min_sample_size self._min_sample_size_input = min_sample_size self._prepare_data(eval_method, split_ratio, n_splits) # TODO pull this to task as decide_sample_size if isinstance(self._min_sample_size, dict): self._sample = { ( k, sample and not task.is_rank() and eval_method != "cv" and (self._min_sample_size[k] * SAMPLE_MULTIPLY_FACTOR < self._state.data_size[0]), ) for k in self._min_sample_size.keys() } else: self._sample = ( sample and not task.is_rank() and eval_method != "cv" and (self._min_sample_size * SAMPLE_MULTIPLY_FACTOR < self._state.data_size[0]) ) metric = task.default_metric(metric) self._state.metric = metric # TODO pull this to task def is_to_reverse_metric(metric, task): if metric.startswith("ndcg"): return True, f"1-{metric}" if metric in [ "r2", "accuracy", "roc_auc", "roc_auc_ovr", "roc_auc_ovo", "roc_auc_weighted", "roc_auc_ovr_weighted", "roc_auc_ovo_weighted", "f1", "ap", "micro_f1", "macro_f1", ]: return True, f"1-{metric}" if task.is_nlp(): from flaml.automl.ml import huggingface_metric_to_mode if metric in huggingface_metric_to_mode and huggingface_metric_to_mode[metric] == "max": return True, f"-{metric}" return False, None if isinstance(metric, str): is_reverse, reverse_metric = is_to_reverse_metric(metric, task) if is_reverse: error_metric = reverse_metric else: error_metric = metric else: error_metric = "customized metric" logger.info(f"Minimizing error metric: {error_metric}") self._state.error_metric = error_metric is_spark_dataframe = isinstance(X_train, psDataFrame) or isinstance(dataframe, psDataFrame) estimator_list = task.default_estimator_list(estimator_list, is_spark_dataframe) if is_spark_dataframe and self._use_spark: # For spark dataframe, use_spark must be False because spark models are trained in parallel themselves self._use_spark = False logger.warning( "Spark dataframes support only spark.ml type models, which will be trained " "with spark themselves, no need to start spark trials in flaml. " "`use_spark` is set to False." ) # When no search budget is specified if no_budget: max_iter = len(estimator_list) self._learner_selector = "roundrobin" if sample_is_none: self._sample = False if no_starting_points: starting_points = "data" logger.warning( "No search budget is provided via time_budget or max_iter." " Training only one model per estimator." " Zero-shot AutoML is used for certain tasks and estimators." " To tune hyperparameters for each estimator," " please provide budget either via time_budget or max_iter." ) elif max_iter is None: # set to a large number max_iter = 1000000 self._state.retrain_final = ( retrain_full is True and eval_method == "holdout" and (X_val is None or self._use_ray is not False) or eval_method == "cv" and (max_iter > 0 or retrain_full is True) or max_iter == 1 ) # add custom learner for estimator_name in estimator_list: if estimator_name not in self._state.learner_classes: self.add_learner( estimator_name, self._state.task.estimator_class_from_str(estimator_name), ) # set up learner search space if isinstance(starting_points, str) and starting_points.startswith("data"): from flaml.default import suggest_config location = starting_points[5:] starting_points = {} for estimator_name in estimator_list: try: configs = suggest_config( self._state.task, self._X_train_all, self._y_train_all, estimator_name, location, k=1, ) starting_points[estimator_name] = [x["hyperparameters"] for x in configs] except FileNotFoundError: pass try: learner = suggest_learner( self._state.task, self._X_train_all, self._y_train_all, estimator_list=estimator_list, location=location, ) if learner != estimator_list[0]: estimator_list.remove(learner) estimator_list.insert(0, learner) except FileNotFoundError: pass self._state.time_budget = time_budget starting_points = {} if starting_points == "static" else starting_points for estimator_name in estimator_list: estimator_class = self._state.learner_classes[estimator_name] estimator_class.init() this_estimator_kwargs = self._state.fit_kwargs_by_estimator.get(estimator_name) if this_estimator_kwargs: # make another shallow copy of the value (a dict obj), so user's fit_kwargs_by_estimator won't be updated this_estimator_kwargs = this_estimator_kwargs.copy() this_estimator_kwargs.update( self._state.fit_kwargs ) # update the shallow copy of fit_kwargs to fit_kwargs_by_estimator self._state.fit_kwargs_by_estimator[ estimator_name ] = this_estimator_kwargs # set self._state.fit_kwargs_by_estimator[estimator_name] to the update, so only self._state.fit_kwargs_by_estimator will be updated else: self._state.fit_kwargs_by_estimator[estimator_name] = self._state.fit_kwargs self._search_states[estimator_name] = SearchState( learner_class=estimator_class, # data_size=self._state.data_size, data=self._state.X_train, task=self._state.task, starting_point=starting_points.get(estimator_name), period=self._state.fit_kwargs.get( "period" ), # NOTE: this is after kwargs is updated to fit_kwargs_by_estimator custom_hp=custom_hp and custom_hp.get(estimator_name), max_iter=max_iter / len(estimator_list) if self._learner_selector == "roundrobin" else max_iter, budget=self._state.time_budget, ) logger.info("List of ML learners in AutoML Run: {}".format(estimator_list)) self.estimator_list = estimator_list self._active_estimators = estimator_list.copy() self._ensemble = ensemble self._max_iter = max_iter self._mem_thres = mem_thres self._pred_time_limit = pred_time_limit self._state.train_time_limit = train_time_limit self._log_type = log_type self.split_ratio = split_ratio self._state.model_history = model_history self._hpo_method = ( hpo_method if hpo_method != "auto" else ( "bs" if n_concurrent_trials > 1 or (self._use_ray is not False or self._use_spark) and len(estimator_list) > 1 else "cfo" ) ) if log_file_name: with training_log_writer(log_file_name, append_log) as save_helper: self._training_log = save_helper self._search() else: self._training_log = None self._search() if self._best_estimator: logger.info("fit succeeded") logger.info(f"Time taken to find the best model: {self._time_taken_best_iter}") if ( self._hpo_method in ("cfo", "bs") and self._state.time_budget > 0 and (self._time_taken_best_iter >= self._state.time_budget * 0.7) and not all( state.search_alg and state.search_alg.searcher.is_ls_ever_converged for state in self._search_states.values() ) ): logger.warning( "Time taken to find the best model is {0:.0f}% of the " "provided time budget and not all estimators' hyperparameter " "search converged. Consider increasing the time budget.".format( self._time_taken_best_iter / self._state.time_budget * 100 ) ) if not keep_search_state: # release space del self._X_train_all, self._y_train_all, self._state.kf del self._state.X_train, self._state.X_train_all, self._state.X_val del self._state.y_train, self._state.y_train_all, self._state.y_val del ( self._sample_weight_full, self._state.fit_kwargs_by_estimator, self._state.fit_kwargs, ) # NOTE: this is after kwargs is updated to fit_kwargs_by_estimator del self._state.groups, self._state.groups_all, self._state.groups_val logger.setLevel(old_level)
(self, X_train=None, y_train=None, dataframe=None, label=None, metric=None, task: Union[str, flaml.automl.task.task.Task, NoneType] = None, n_jobs=None, log_file_name=None, estimator_list=None, time_budget=None, max_iter=None, sample=None, ensemble=None, eval_method=None, log_type=None, model_history=None, split_ratio=None, n_splits=None, log_training_metric=None, mem_thres=None, pred_time_limit=None, train_time_limit=None, X_val=None, y_val=None, sample_weight_val=None, groups_val=None, groups=None, verbose=None, retrain_full=None, split_type=None, learner_selector=None, hpo_method=None, starting_points=None, seed=None, n_concurrent_trials=None, keep_search_state=None, preserve_checkpoint=True, early_stop=None, force_cancel=None, append_log=None, auto_augment=None, min_sample_size=None, use_ray=None, use_spark=None, free_mem_ratio=0, metric_constraints=None, custom_hp=None, time_col=None, cv_score_agg_func=None, skip_transform=None, mlflow_logging=None, fit_kwargs_by_estimator=None, **fit_kwargs)
52,720
flaml.automl.automl
get_estimator_from_log
Get the estimator from log file. Args: log_file_name: A string of the log file name. record_id: An integer of the record ID in the file, 0 corresponds to the first trial. task: A string of the task type, 'binary', 'multiclass', 'regression', 'ts_forecast', 'rank', or an instance of the Task class. Returns: An estimator object for the given configuration.
def get_estimator_from_log(self, log_file_name: str, record_id: int, task: Union[str, Task]): """Get the estimator from log file. Args: log_file_name: A string of the log file name. record_id: An integer of the record ID in the file, 0 corresponds to the first trial. task: A string of the task type, 'binary', 'multiclass', 'regression', 'ts_forecast', 'rank', or an instance of the Task class. Returns: An estimator object for the given configuration. """ with training_log_reader(log_file_name) as reader: record = reader.get_record(record_id) estimator = record.learner config = AutoMLState.sanitize(record.config) if isinstance(task, str): task = task_factory(task) estimator, _ = train_estimator( X_train=None, y_train=None, config_dic=config, task=task, estimator_name=estimator, estimator_class=self._state.learner_classes.get(estimator), eval_metric="train_time", ) return estimator
(self, log_file_name: str, record_id: int, task: Union[str, flaml.automl.task.task.Task])
52,721
flaml.automl.automl
get_params
null
def get_params(self, deep: bool = False) -> dict: return self._settings.copy()
(self, deep: bool = False) -> dict
52,722
flaml.automl.automl
pickle
null
def pickle(self, output_file_name): import pickle estimator_to_training_function = {} for estimator in self.estimator_list: search_state = self._search_states[estimator] if hasattr(search_state, "training_function"): estimator_to_training_function[estimator] = search_state.training_function del search_state.training_function with open(output_file_name, "wb") as f: pickle.dump(self, f, pickle.HIGHEST_PROTOCOL)
(self, output_file_name)
52,723
flaml.automl.automl
predict
Predict label from features. Args: X: A numpy array or pandas dataframe or pyspark.pandas dataframe of featurized instances, shape n * m, or for time series forcast tasks: a pandas dataframe with the first column containing timestamp values (datetime type) or an integer n for the predict steps (only valid when the estimator is arima or sarimax). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). **pred_kwargs: Other key word arguments to pass to predict() function of the searched learners, such as per_device_eval_batch_size. ```python multivariate_X_test = DataFrame({ 'timeStamp': pd.date_range(start='1/1/2022', end='1/07/2022'), 'categorical_col': ['yes', 'yes', 'no', 'no', 'yes', 'no', 'yes'], 'continuous_col': [105, 107, 120, 118, 110, 112, 115] }) model.predict(multivariate_X_test) ``` Returns: A array-like of shape n * 1: each element is a predicted label for an instance.
def predict( self, X: Union[np.array, DataFrame, List[str], List[List[str]], psDataFrame], **pred_kwargs, ): """Predict label from features. Args: X: A numpy array or pandas dataframe or pyspark.pandas dataframe of featurized instances, shape n * m, or for time series forcast tasks: a pandas dataframe with the first column containing timestamp values (datetime type) or an integer n for the predict steps (only valid when the estimator is arima or sarimax). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). **pred_kwargs: Other key word arguments to pass to predict() function of the searched learners, such as per_device_eval_batch_size. ```python multivariate_X_test = DataFrame({ 'timeStamp': pd.date_range(start='1/1/2022', end='1/07/2022'), 'categorical_col': ['yes', 'yes', 'no', 'no', 'yes', 'no', 'yes'], 'continuous_col': [105, 107, 120, 118, 110, 112, 115] }) model.predict(multivariate_X_test) ``` Returns: A array-like of shape n * 1: each element is a predicted label for an instance. """ estimator = getattr(self, "_trained_estimator", None) if estimator is None: logger.warning("No estimator is trained. Please run fit with enough budget.") return None X = self._state.task.preprocess(X, self._transformer) y_pred = estimator.predict(X, **pred_kwargs) if isinstance(y_pred, np.ndarray) and y_pred.ndim > 1 and isinstance(y_pred, np.ndarray): y_pred = y_pred.flatten() if self._label_transformer: return self._label_transformer.inverse_transform(Series(y_pred.astype(int))) else: return y_pred
(self, X: Union[<built-in function array>, pandas.core.frame.DataFrame, List[str], List[List[str]], flaml.automl.spark.psDataFrame], **pred_kwargs)
52,724
flaml.automl.automl
predict_proba
Predict the probability of each class from features, only works for classification problems. Args: X: A numpy array of featurized instances, shape n * m. **pred_kwargs: Other key word arguments to pass to predict_proba() function of the searched learners, such as per_device_eval_batch_size. Returns: A numpy array of shape n * c. c is the # classes. Each element at (i, j) is the probability for instance i to be in class j.
def predict_proba(self, X, **pred_kwargs): """Predict the probability of each class from features, only works for classification problems. Args: X: A numpy array of featurized instances, shape n * m. **pred_kwargs: Other key word arguments to pass to predict_proba() function of the searched learners, such as per_device_eval_batch_size. Returns: A numpy array of shape n * c. c is the # classes. Each element at (i, j) is the probability for instance i to be in class j. """ estimator = getattr(self, "_trained_estimator", None) if estimator is None: logger.warning("No estimator is trained. Please run fit with enough budget.") return None X = self._state.task.preprocess(X, self._transformer) proba = self._trained_estimator.predict_proba(X, **pred_kwargs) return proba
(self, X, **pred_kwargs)