index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
52,725
flaml.automl.automl
retrain_from_log
Retrain from log file. This function is intended to retrain the logged configurations. NOTE: In some rare case, the last config is early stopped to meet time_budget and it's the best config. But the logged config's ITER_HP (e.g., n_estimators) is not reduced. Args: log_file_name: A string of the log file name. X_train: A numpy array or dataframe of training data in shape n*m. For time series forecast tasks, the first column of X_train must be the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). y_train: A numpy array or series of labels in shape n*1. dataframe: A dataframe of training data including label column. For time series forecast tasks, dataframe must be specified and should have at least two columns: timestamp and label, where the first column is the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). label: A str of the label column name, e.g., 'label'; Note: If X_train and y_train are provided, dataframe and label are ignored; If not, dataframe and label must be provided. time_budget: A float number of the time budget in seconds. task: A string of the task type, e.g., 'classification', 'regression', 'ts_forecast', 'rank', 'seq-classification', 'seq-regression', 'summarization', or an instance of Task class. eval_method: A string of resampling strategy, one of ['auto', 'cv', 'holdout']. split_ratio: A float of the validation data percentage for holdout. n_splits: An integer of the number of folds for cross-validation. split_type: str or splitter object, default="auto" | the data split type. * A valid splitter object is an instance of a derived class of scikit-learn [KFold](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold) and have ``split`` and ``get_n_splits`` methods with the same signatures. Set eval_method to "cv" to use the splitter object. * Valid str options depend on different tasks. For classification tasks, valid choices are ["auto", 'stratified', 'uniform', 'time', 'group']. "auto" -> stratified. For regression tasks, valid choices are ["auto", 'uniform', 'time']. "auto" -> uniform. For time series forecast tasks, must be "auto" or 'time'. For ranking task, must be "auto" or 'group'. groups: None or array-like | Group labels (with matching length to y_train) or groups counts (with sum equal to length of y_train) for training data. n_jobs: An integer of the number of threads for training | default=-1. Use all available resources when n_jobs == -1. train_best: A boolean of whether to train the best config in the time budget; if false, train the last config in the budget. train_full: A boolean of whether to train on the full data. If true, eval_method and sample_size in the log file will be ignored. record_id: the ID of the training log record from which the model will be retrained. By default `record_id = -1` which means this will be ignored. `record_id = 0` corresponds to the first trial, and when `record_id >= 0`, `time_budget` will be ignored. auto_augment: boolean, default=True | Whether to automatically augment rare classes. custom_hp: dict, default=None | The custom search space specified by user Each key is the estimator name, each value is a dict of the custom search space for that estimator. Notice the domain of the custom search space can either be a value or a sample.Domain object. ```python custom_hp = { "transformer_ms": { "model_path": { "domain": "albert-base-v2", }, "learning_rate": { "domain": tune.choice([1e-4, 1e-5]), } } } ``` fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name. e.g., ```python fit_kwargs_by_estimator = { "transformer": { "output_dir": "test/data/output/", "fp16": False, } } ``` **fit_kwargs: Other key word arguments to pass to fit() function of the searched learners, such as sample_weight. Below are a few examples of estimator-specific parameters: period: int | forecast horizon for all time series forecast tasks. gpu_per_trial: float, default = 0 | A float of the number of gpus per trial, only used by TransformersEstimator, XGBoostSklearnEstimator, and TemporalFusionTransformerEstimator. group_ids: list of strings of column names identifying a time series, only used by TemporalFusionTransformerEstimator, required for 'ts_forecast_panel' task. `group_ids` is a parameter for TimeSeriesDataSet object from PyTorchForecasting. For other parameters to describe your dataset, refer to [TimeSeriesDataSet PyTorchForecasting](https://pytorch-forecasting.readthedocs.io/en/stable/api/pytorch_forecasting.data.timeseries.TimeSeriesDataSet.html). To specify your variables, use `static_categoricals`, `static_reals`, `time_varying_known_categoricals`, `time_varying_known_reals`, `time_varying_unknown_categoricals`, `time_varying_unknown_reals`, `variable_groups`. To provide more information on your data, use `max_encoder_length`, `min_encoder_length`, `lags`. log_dir: str, default = "lightning_logs" | Folder into which to log results for tensorboard, only used by TemporalFusionTransformerEstimator. max_epochs: int, default = 20 | Maximum number of epochs to run training, only used by TemporalFusionTransformerEstimator. batch_size: int, default = 64 | Batch size for training model, only used by TemporalFusionTransformerEstimator.
def retrain_from_log( self, log_file_name, X_train=None, y_train=None, dataframe=None, label=None, time_budget=np.inf, task: Optional[Union[str, Task]] = None, eval_method=None, split_ratio=None, n_splits=None, split_type=None, groups=None, n_jobs=-1, # gpu_per_trial=0, train_best=True, train_full=False, record_id=-1, auto_augment=None, custom_hp=None, skip_transform=None, preserve_checkpoint=True, fit_kwargs_by_estimator=None, **fit_kwargs, ): """Retrain from log file. This function is intended to retrain the logged configurations. NOTE: In some rare case, the last config is early stopped to meet time_budget and it's the best config. But the logged config's ITER_HP (e.g., n_estimators) is not reduced. Args: log_file_name: A string of the log file name. X_train: A numpy array or dataframe of training data in shape n*m. For time series forecast tasks, the first column of X_train must be the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). y_train: A numpy array or series of labels in shape n*1. dataframe: A dataframe of training data including label column. For time series forecast tasks, dataframe must be specified and should have at least two columns: timestamp and label, where the first column is the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). label: A str of the label column name, e.g., 'label'; Note: If X_train and y_train are provided, dataframe and label are ignored; If not, dataframe and label must be provided. time_budget: A float number of the time budget in seconds. task: A string of the task type, e.g., 'classification', 'regression', 'ts_forecast', 'rank', 'seq-classification', 'seq-regression', 'summarization', or an instance of Task class. eval_method: A string of resampling strategy, one of ['auto', 'cv', 'holdout']. split_ratio: A float of the validation data percentage for holdout. n_splits: An integer of the number of folds for cross-validation. split_type: str or splitter object, default="auto" | the data split type. * A valid splitter object is an instance of a derived class of scikit-learn [KFold](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold) and have ``split`` and ``get_n_splits`` methods with the same signatures. Set eval_method to "cv" to use the splitter object. * Valid str options depend on different tasks. For classification tasks, valid choices are ["auto", 'stratified', 'uniform', 'time', 'group']. "auto" -> stratified. For regression tasks, valid choices are ["auto", 'uniform', 'time']. "auto" -> uniform. For time series forecast tasks, must be "auto" or 'time'. For ranking task, must be "auto" or 'group'. groups: None or array-like | Group labels (with matching length to y_train) or groups counts (with sum equal to length of y_train) for training data. n_jobs: An integer of the number of threads for training | default=-1. Use all available resources when n_jobs == -1. train_best: A boolean of whether to train the best config in the time budget; if false, train the last config in the budget. train_full: A boolean of whether to train on the full data. If true, eval_method and sample_size in the log file will be ignored. record_id: the ID of the training log record from which the model will be retrained. By default `record_id = -1` which means this will be ignored. `record_id = 0` corresponds to the first trial, and when `record_id >= 0`, `time_budget` will be ignored. auto_augment: boolean, default=True | Whether to automatically augment rare classes. custom_hp: dict, default=None | The custom search space specified by user Each key is the estimator name, each value is a dict of the custom search space for that estimator. Notice the domain of the custom search space can either be a value or a sample.Domain object. ```python custom_hp = { "transformer_ms": { "model_path": { "domain": "albert-base-v2", }, "learning_rate": { "domain": tune.choice([1e-4, 1e-5]), } } } ``` fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name. e.g., ```python fit_kwargs_by_estimator = { "transformer": { "output_dir": "test/data/output/", "fp16": False, } } ``` **fit_kwargs: Other key word arguments to pass to fit() function of the searched learners, such as sample_weight. Below are a few examples of estimator-specific parameters: period: int | forecast horizon for all time series forecast tasks. gpu_per_trial: float, default = 0 | A float of the number of gpus per trial, only used by TransformersEstimator, XGBoostSklearnEstimator, and TemporalFusionTransformerEstimator. group_ids: list of strings of column names identifying a time series, only used by TemporalFusionTransformerEstimator, required for 'ts_forecast_panel' task. `group_ids` is a parameter for TimeSeriesDataSet object from PyTorchForecasting. For other parameters to describe your dataset, refer to [TimeSeriesDataSet PyTorchForecasting](https://pytorch-forecasting.readthedocs.io/en/stable/api/pytorch_forecasting.data.timeseries.TimeSeriesDataSet.html). To specify your variables, use `static_categoricals`, `static_reals`, `time_varying_known_categoricals`, `time_varying_known_reals`, `time_varying_unknown_categoricals`, `time_varying_unknown_reals`, `variable_groups`. To provide more information on your data, use `max_encoder_length`, `min_encoder_length`, `lags`. log_dir: str, default = "lightning_logs" | Folder into which to log results for tensorboard, only used by TemporalFusionTransformerEstimator. max_epochs: int, default = 20 | Maximum number of epochs to run training, only used by TemporalFusionTransformerEstimator. batch_size: int, default = 64 | Batch size for training model, only used by TemporalFusionTransformerEstimator. """ task = task or self._settings.get("task") if isinstance(task, str): task = task_factory(task) eval_method = eval_method or self._settings.get("eval_method") split_ratio = split_ratio or self._settings.get("split_ratio") n_splits = n_splits or self._settings.get("n_splits") split_type = split_type or self._settings.get("split_type") auto_augment = self._settings.get("auto_augment") if auto_augment is None else auto_augment self._state.task = task self._estimator_type = "classifier" if task.is_classification() else "regressor" self._state.fit_kwargs = fit_kwargs self._state.custom_hp = custom_hp or self._settings.get("custom_hp") self._skip_transform = self._settings.get("skip_transform") if skip_transform is None else skip_transform self._state.fit_kwargs_by_estimator = fit_kwargs_by_estimator or self._settings.get("fit_kwargs_by_estimator") self.preserve_checkpoint = ( self._settings.get("preserve_checkpoint") if preserve_checkpoint is None else preserve_checkpoint ) task.validate_data(self, self._state, X_train, y_train, dataframe, label, groups=groups) logger.info("log file name {}".format(log_file_name)) best_config = None best_val_loss = float("+inf") best_estimator = None sample_size = None time_used = 0.0 training_duration = 0 best = None with training_log_reader(log_file_name) as reader: if record_id >= 0: best = reader.get_record(record_id) else: for record in reader.records(): time_used = record.wall_clock_time if time_used > time_budget: break training_duration = time_used val_loss = record.validation_loss if val_loss <= best_val_loss or not train_best: if val_loss == best_val_loss and train_best: size = record.sample_size if size > sample_size: best = record best_val_loss = val_loss sample_size = size else: best = record size = record.sample_size best_val_loss = val_loss sample_size = size if not training_duration: logger.warning(f"No estimator found within time_budget={time_budget}") from .model import BaseEstimator as Estimator self._trained_estimator = Estimator() return training_duration if not best: return best_estimator = best.learner best_config = best.config sample_size = len(self._y_train_all) if train_full else best.sample_size this_estimator_kwargs = self._state.fit_kwargs_by_estimator.get(best_estimator) if this_estimator_kwargs: this_estimator_kwargs = ( this_estimator_kwargs.copy() ) # make another shallow copy of the value (a dict obj), so user's fit_kwargs_by_estimator won't be updated this_estimator_kwargs.update(self._state.fit_kwargs) self._state.fit_kwargs_by_estimator[best_estimator] = this_estimator_kwargs else: self._state.fit_kwargs_by_estimator[best_estimator] = self._state.fit_kwargs logger.info( "estimator = {}, config = {}, #training instances = {}".format(best_estimator, best_config, sample_size) ) # Partially copied from fit() function # Initilize some attributes required for retrain_from_log self._split_type = task.decide_split_type( split_type, self._y_train_all, self._state.fit_kwargs, self._state.groups, ) eval_method = self._decide_eval_method(eval_method, time_budget) self.modelcount = 0 self._auto_augment = auto_augment self._prepare_data(eval_method, split_ratio, n_splits) self._state.time_budget = -1 self._state.free_mem_ratio = 0 self._state.n_jobs = n_jobs import os self._state.resources_per_trial = ( { "cpu": max(1, os.cpu_count() >> 1), "gpu": fit_kwargs.get("gpu_per_trial", 0), } if self._state.n_jobs < 0 else {"cpu": self._state.n_jobs, "gpu": fit_kwargs.get("gpu_per_trial", 0)} ) self._trained_estimator = self._state._train_with_config( best_estimator, best_config, sample_size=sample_size, )[0] logger.info("retrain from log succeeded") return training_duration
(self, log_file_name, X_train=None, y_train=None, dataframe=None, label=None, time_budget=inf, task: Union[str, flaml.automl.task.task.Task, NoneType] = None, eval_method=None, split_ratio=None, n_splits=None, split_type=None, groups=None, n_jobs=-1, train_best=True, train_full=False, record_id=-1, auto_augment=None, custom_hp=None, skip_transform=None, preserve_checkpoint=True, fit_kwargs_by_estimator=None, **fit_kwargs)
52,726
flaml.automl.automl
save_best_config
null
def save_best_config(self, filename): best = { "class": self.best_estimator, "hyperparameters": self.best_config, } os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, "w") as f: json.dump(best, f)
(self, filename)
52,727
flaml.automl.automl
score
null
def score( self, X: Union[DataFrame, psDataFrame], y: Union[Series, psSeries], **kwargs, ): estimator = getattr(self, "_trained_estimator", None) if estimator is None: logger.warning("No estimator is trained. Please run fit with enough budget.") return None X = self._state.task.preprocess(X, self._transformer) if self._label_transformer: y = self._label_transformer.transform(y) return estimator.score(X, y, **kwargs)
(self, X: Union[pandas.core.frame.DataFrame, flaml.automl.spark.psDataFrame], y: Union[pandas.core.series.Series, flaml.automl.spark.psDataFrame], **kwargs)
52,728
flaml.onlineml.autovw
AutoVW
Class for the AutoVW algorithm.
class AutoVW: """Class for the AutoVW algorithm.""" WARMSTART_NUM = 100 AUTOMATIC = "_auto" VW_INTERACTION_ARG_NAME = "interactions" def __init__( self, max_live_model_num: int, search_space: dict, init_config: Optional[dict] = {}, min_resource_lease: Optional[Union[str, float]] = "auto", automl_runner_args: Optional[dict] = {}, scheduler_args: Optional[dict] = {}, model_select_policy: Optional[str] = "threshold_loss_ucb", metric: Optional[str] = "mae_clipped", random_seed: Optional[int] = None, model_selection_mode: Optional[str] = "min", cb_coef: Optional[float] = None, ): """Constructor. Args: max_live_model_num: An int to specify the maximum number of 'live' models, which, in other words, is the maximum number of models allowed to update in each learning iteraction. search_space: A dictionary of the search space. This search space includes both hyperparameters we want to tune and fixed hyperparameters. In the latter case, the value is a fixed value. init_config: A dictionary of a partial or full initial config, e.g. {'interactions': set(), 'learning_rate': 0.5} min_resource_lease: string or float | The minimum resource lease assigned to a particular model/trial. If set as 'auto', it will be calculated automatically. automl_runner_args: A dictionary of configuration for the OnlineTrialRunner. If set {}, default values will be used, which is equivalent to using the following configs. Example: ```python automl_runner_args = { "champion_test_policy": 'loss_ucb', # the statistic test for a better champion "remove_worse": False, # whether to do worse than test } ``` scheduler_args: A dictionary of configuration for the scheduler. If set {}, default values will be used, which is equivalent to using the following config. Example: ```python scheduler_args = { "keep_challenger_metric": 'ucb', # what metric to use when deciding the top performing challengers "keep_challenger_ratio": 0.5, # denotes the ratio of top performing challengers to keep live "keep_champion": True, # specifcies whether to keep the champion always running } ``` model_select_policy: A string in ['threshold_loss_ucb', 'threshold_loss_lcb', 'threshold_loss_avg', 'loss_ucb', 'loss_lcb', 'loss_avg'] to specify how to select one model to do prediction from the live model pool. Default value is 'threshold_loss_ucb'. metric: A string in ['mae_clipped', 'mae', 'mse', 'absolute_clipped', 'absolute', 'squared'] to specify the name of the loss function used for calculating the progressive validation loss in ChaCha. random_seed: An integer of the random seed used in the searcher (more specifically this the random seed for ConfigOracle). model_selection_mode: A string in ['min', 'max'] to specify the objective as minimization or maximization. cb_coef: A float coefficient (optional) used in the sample complexity bound. """ self._max_live_model_num = max_live_model_num self._search_space = search_space self._init_config = init_config self._online_trial_args = { "metric": metric, "min_resource_lease": min_resource_lease, "cb_coef": cb_coef, } self._automl_runner_args = automl_runner_args self._scheduler_args = scheduler_args self._model_select_policy = model_select_policy self._model_selection_mode = model_selection_mode self._random_seed = random_seed self._trial_runner = None self._best_trial = None # code for debugging purpose self._prediction_trial_id = None self._iter = 0 def _setup_trial_runner(self, vw_example): """Set up the _trial_runner based on one vw_example.""" # setup the default search space for the namespace interaction hyperparameter search_space = self._search_space.copy() for k, v in self._search_space.items(): if k == self.VW_INTERACTION_ARG_NAME and v == self.AUTOMATIC: raw_namespaces = self.get_ns_feature_dim_from_vw_example(vw_example).keys() search_space[k] = polynomial_expansion_set(init_monomials=set(raw_namespaces)) # setup the init config based on the input _init_config and search space init_config = self._init_config.copy() for k, v in search_space.items(): if k not in init_config.keys(): if isinstance(v, PolynomialExpansionSet): init_config[k] = set() elif not isinstance(v, Categorical) and not isinstance(v, Float): init_config[k] = v searcher_args = { "init_config": init_config, "space": search_space, "random_seed": self._random_seed, "online_trial_args": self._online_trial_args, } logger.info("original search_space %s", self._search_space) logger.info("original init_config %s", self._init_config) logger.info("searcher_args %s", searcher_args) logger.info("scheduler_args %s", self._scheduler_args) logger.info("automl_runner_args %s", self._automl_runner_args) searcher = ChampionFrontierSearcher(**searcher_args) scheduler = ChaChaScheduler(**self._scheduler_args) self._trial_runner = OnlineTrialRunner( max_live_model_num=self._max_live_model_num, searcher=searcher, scheduler=scheduler, **self._automl_runner_args, ) def predict(self, data_sample): """Predict on the input data sample. Args: data_sample: one data example in vw format. """ if self._trial_runner is None: self._setup_trial_runner(data_sample) self._best_trial = self._select_best_trial() self._y_predict = self._best_trial.predict(data_sample) # code for debugging purpose if self._prediction_trial_id is None or self._prediction_trial_id != self._best_trial.trial_id: self._prediction_trial_id = self._best_trial.trial_id logger.info( "prediction trial id changed to %s at iter %s, resource used: %s", self._prediction_trial_id, self._iter, self._best_trial.result.resource_used, ) return self._y_predict def learn(self, data_sample): """Perform one online learning step with the given data sample. Args: data_sample: one data example in vw format. It will be used to update the vw model. """ self._iter += 1 self._trial_runner.step(data_sample, (self._y_predict, self._best_trial)) def _select_best_trial(self): """Select a best trial from the running trials according to the _model_select_policy.""" best_score = float("+inf") if self._model_selection_mode == "min" else float("-inf") new_best_trial = None for trial in self._trial_runner.running_trials: if trial.result is not None and ( "threshold" not in self._model_select_policy or trial.result.resource_used >= self.WARMSTART_NUM ): score = trial.result.get_score(self._model_select_policy) if ("min" == self._model_selection_mode and score < best_score) or ( "max" == self._model_selection_mode and score > best_score ): best_score = score new_best_trial = trial if new_best_trial is not None: logger.debug("best_trial resource used: %s", new_best_trial.result.resource_used) return new_best_trial else: # This branch will be triggered when the resource consumption all trials are smaller # than the WARMSTART_NUM threshold. In this case, we will select the _best_trial # selected in the previous iteration. if self._best_trial is not None and self._best_trial.status == Trial.RUNNING: logger.debug("old best trial %s", self._best_trial.trial_id) return self._best_trial else: # this will be triggered in the first iteration or in the iteration where we want # to select the trial from the previous iteration but that trial has been paused # (i.e., self._best_trial.status != Trial.RUNNING) by the scheduler. logger.debug( "using champion trial: %s", self._trial_runner.champion_trial.trial_id, ) return self._trial_runner.champion_trial @staticmethod def get_ns_feature_dim_from_vw_example(vw_example) -> dict: """Get a dictionary of feature dimensionality for each namespace singleton.""" return get_ns_feature_dim_from_vw_example(vw_example)
(max_live_model_num: int, search_space: dict, init_config: Optional[dict] = {}, min_resource_lease: Union[str, float, NoneType] = 'auto', automl_runner_args: Optional[dict] = {}, scheduler_args: Optional[dict] = {}, model_select_policy: Optional[str] = 'threshold_loss_ucb', metric: Optional[str] = 'mae_clipped', random_seed: Optional[int] = None, model_selection_mode: Optional[str] = 'min', cb_coef: Optional[float] = None)
52,729
flaml.onlineml.autovw
__init__
Constructor. Args: max_live_model_num: An int to specify the maximum number of 'live' models, which, in other words, is the maximum number of models allowed to update in each learning iteraction. search_space: A dictionary of the search space. This search space includes both hyperparameters we want to tune and fixed hyperparameters. In the latter case, the value is a fixed value. init_config: A dictionary of a partial or full initial config, e.g. {'interactions': set(), 'learning_rate': 0.5} min_resource_lease: string or float | The minimum resource lease assigned to a particular model/trial. If set as 'auto', it will be calculated automatically. automl_runner_args: A dictionary of configuration for the OnlineTrialRunner. If set {}, default values will be used, which is equivalent to using the following configs. Example: ```python automl_runner_args = { "champion_test_policy": 'loss_ucb', # the statistic test for a better champion "remove_worse": False, # whether to do worse than test } ``` scheduler_args: A dictionary of configuration for the scheduler. If set {}, default values will be used, which is equivalent to using the following config. Example: ```python scheduler_args = { "keep_challenger_metric": 'ucb', # what metric to use when deciding the top performing challengers "keep_challenger_ratio": 0.5, # denotes the ratio of top performing challengers to keep live "keep_champion": True, # specifcies whether to keep the champion always running } ``` model_select_policy: A string in ['threshold_loss_ucb', 'threshold_loss_lcb', 'threshold_loss_avg', 'loss_ucb', 'loss_lcb', 'loss_avg'] to specify how to select one model to do prediction from the live model pool. Default value is 'threshold_loss_ucb'. metric: A string in ['mae_clipped', 'mae', 'mse', 'absolute_clipped', 'absolute', 'squared'] to specify the name of the loss function used for calculating the progressive validation loss in ChaCha. random_seed: An integer of the random seed used in the searcher (more specifically this the random seed for ConfigOracle). model_selection_mode: A string in ['min', 'max'] to specify the objective as minimization or maximization. cb_coef: A float coefficient (optional) used in the sample complexity bound.
def __init__( self, max_live_model_num: int, search_space: dict, init_config: Optional[dict] = {}, min_resource_lease: Optional[Union[str, float]] = "auto", automl_runner_args: Optional[dict] = {}, scheduler_args: Optional[dict] = {}, model_select_policy: Optional[str] = "threshold_loss_ucb", metric: Optional[str] = "mae_clipped", random_seed: Optional[int] = None, model_selection_mode: Optional[str] = "min", cb_coef: Optional[float] = None, ): """Constructor. Args: max_live_model_num: An int to specify the maximum number of 'live' models, which, in other words, is the maximum number of models allowed to update in each learning iteraction. search_space: A dictionary of the search space. This search space includes both hyperparameters we want to tune and fixed hyperparameters. In the latter case, the value is a fixed value. init_config: A dictionary of a partial or full initial config, e.g. {'interactions': set(), 'learning_rate': 0.5} min_resource_lease: string or float | The minimum resource lease assigned to a particular model/trial. If set as 'auto', it will be calculated automatically. automl_runner_args: A dictionary of configuration for the OnlineTrialRunner. If set {}, default values will be used, which is equivalent to using the following configs. Example: ```python automl_runner_args = { "champion_test_policy": 'loss_ucb', # the statistic test for a better champion "remove_worse": False, # whether to do worse than test } ``` scheduler_args: A dictionary of configuration for the scheduler. If set {}, default values will be used, which is equivalent to using the following config. Example: ```python scheduler_args = { "keep_challenger_metric": 'ucb', # what metric to use when deciding the top performing challengers "keep_challenger_ratio": 0.5, # denotes the ratio of top performing challengers to keep live "keep_champion": True, # specifcies whether to keep the champion always running } ``` model_select_policy: A string in ['threshold_loss_ucb', 'threshold_loss_lcb', 'threshold_loss_avg', 'loss_ucb', 'loss_lcb', 'loss_avg'] to specify how to select one model to do prediction from the live model pool. Default value is 'threshold_loss_ucb'. metric: A string in ['mae_clipped', 'mae', 'mse', 'absolute_clipped', 'absolute', 'squared'] to specify the name of the loss function used for calculating the progressive validation loss in ChaCha. random_seed: An integer of the random seed used in the searcher (more specifically this the random seed for ConfigOracle). model_selection_mode: A string in ['min', 'max'] to specify the objective as minimization or maximization. cb_coef: A float coefficient (optional) used in the sample complexity bound. """ self._max_live_model_num = max_live_model_num self._search_space = search_space self._init_config = init_config self._online_trial_args = { "metric": metric, "min_resource_lease": min_resource_lease, "cb_coef": cb_coef, } self._automl_runner_args = automl_runner_args self._scheduler_args = scheduler_args self._model_select_policy = model_select_policy self._model_selection_mode = model_selection_mode self._random_seed = random_seed self._trial_runner = None self._best_trial = None # code for debugging purpose self._prediction_trial_id = None self._iter = 0
(self, max_live_model_num: int, search_space: dict, init_config: Optional[dict] = {}, min_resource_lease: Union[str, float, NoneType] = 'auto', automl_runner_args: Optional[dict] = {}, scheduler_args: Optional[dict] = {}, model_select_policy: Optional[str] = 'threshold_loss_ucb', metric: Optional[str] = 'mae_clipped', random_seed: Optional[int] = None, model_selection_mode: Optional[str] = 'min', cb_coef: Optional[float] = None)
52,730
flaml.onlineml.autovw
_select_best_trial
Select a best trial from the running trials according to the _model_select_policy.
def _select_best_trial(self): """Select a best trial from the running trials according to the _model_select_policy.""" best_score = float("+inf") if self._model_selection_mode == "min" else float("-inf") new_best_trial = None for trial in self._trial_runner.running_trials: if trial.result is not None and ( "threshold" not in self._model_select_policy or trial.result.resource_used >= self.WARMSTART_NUM ): score = trial.result.get_score(self._model_select_policy) if ("min" == self._model_selection_mode and score < best_score) or ( "max" == self._model_selection_mode and score > best_score ): best_score = score new_best_trial = trial if new_best_trial is not None: logger.debug("best_trial resource used: %s", new_best_trial.result.resource_used) return new_best_trial else: # This branch will be triggered when the resource consumption all trials are smaller # than the WARMSTART_NUM threshold. In this case, we will select the _best_trial # selected in the previous iteration. if self._best_trial is not None and self._best_trial.status == Trial.RUNNING: logger.debug("old best trial %s", self._best_trial.trial_id) return self._best_trial else: # this will be triggered in the first iteration or in the iteration where we want # to select the trial from the previous iteration but that trial has been paused # (i.e., self._best_trial.status != Trial.RUNNING) by the scheduler. logger.debug( "using champion trial: %s", self._trial_runner.champion_trial.trial_id, ) return self._trial_runner.champion_trial
(self)
52,731
flaml.onlineml.autovw
_setup_trial_runner
Set up the _trial_runner based on one vw_example.
def _setup_trial_runner(self, vw_example): """Set up the _trial_runner based on one vw_example.""" # setup the default search space for the namespace interaction hyperparameter search_space = self._search_space.copy() for k, v in self._search_space.items(): if k == self.VW_INTERACTION_ARG_NAME and v == self.AUTOMATIC: raw_namespaces = self.get_ns_feature_dim_from_vw_example(vw_example).keys() search_space[k] = polynomial_expansion_set(init_monomials=set(raw_namespaces)) # setup the init config based on the input _init_config and search space init_config = self._init_config.copy() for k, v in search_space.items(): if k not in init_config.keys(): if isinstance(v, PolynomialExpansionSet): init_config[k] = set() elif not isinstance(v, Categorical) and not isinstance(v, Float): init_config[k] = v searcher_args = { "init_config": init_config, "space": search_space, "random_seed": self._random_seed, "online_trial_args": self._online_trial_args, } logger.info("original search_space %s", self._search_space) logger.info("original init_config %s", self._init_config) logger.info("searcher_args %s", searcher_args) logger.info("scheduler_args %s", self._scheduler_args) logger.info("automl_runner_args %s", self._automl_runner_args) searcher = ChampionFrontierSearcher(**searcher_args) scheduler = ChaChaScheduler(**self._scheduler_args) self._trial_runner = OnlineTrialRunner( max_live_model_num=self._max_live_model_num, searcher=searcher, scheduler=scheduler, **self._automl_runner_args, )
(self, vw_example)
52,732
flaml.onlineml.autovw
get_ns_feature_dim_from_vw_example
Get a dictionary of feature dimensionality for each namespace singleton.
@staticmethod def get_ns_feature_dim_from_vw_example(vw_example) -> dict: """Get a dictionary of feature dimensionality for each namespace singleton.""" return get_ns_feature_dim_from_vw_example(vw_example)
(vw_example) -> dict
52,733
flaml.onlineml.autovw
learn
Perform one online learning step with the given data sample. Args: data_sample: one data example in vw format. It will be used to update the vw model.
def learn(self, data_sample): """Perform one online learning step with the given data sample. Args: data_sample: one data example in vw format. It will be used to update the vw model. """ self._iter += 1 self._trial_runner.step(data_sample, (self._y_predict, self._best_trial))
(self, data_sample)
52,734
flaml.onlineml.autovw
predict
Predict on the input data sample. Args: data_sample: one data example in vw format.
def predict(self, data_sample): """Predict on the input data sample. Args: data_sample: one data example in vw format. """ if self._trial_runner is None: self._setup_trial_runner(data_sample) self._best_trial = self._select_best_trial() self._y_predict = self._best_trial.predict(data_sample) # code for debugging purpose if self._prediction_trial_id is None or self._prediction_trial_id != self._best_trial.trial_id: self._prediction_trial_id = self._best_trial.trial_id logger.info( "prediction trial id changed to %s at iter %s, resource used: %s", self._prediction_trial_id, self._iter, self._best_trial.result.resource_used, ) return self._y_predict
(self, data_sample)
52,735
flaml.tune.searcher.blendsearch
BlendSearch
class for BlendSearch algorithm.
class BlendSearch(Searcher): """class for BlendSearch algorithm.""" lagrange = "_lagrange" # suffix for lagrange-modified metric LocalSearch = FLOW2 def __init__( self, metric: Optional[str] = None, mode: Optional[str] = None, space: Optional[dict] = None, low_cost_partial_config: Optional[dict] = None, cat_hp_cost: Optional[dict] = None, points_to_evaluate: Optional[List[dict]] = None, evaluated_rewards: Optional[List] = None, time_budget_s: Union[int, float] = None, num_samples: Optional[int] = None, resource_attr: Optional[str] = None, min_resource: Optional[float] = None, max_resource: Optional[float] = None, reduction_factor: Optional[float] = None, global_search_alg: Optional[Searcher] = None, config_constraints: Optional[List[Tuple[Callable[[dict], float], str, float]]] = None, metric_constraints: Optional[List[Tuple[str, str, float]]] = None, seed: Optional[int] = 20, cost_attr: Optional[str] = "auto", cost_budget: Optional[float] = None, experimental: Optional[bool] = False, lexico_objectives: Optional[dict] = None, use_incumbent_result_in_evaluation=False, allow_empty_config=False, ): """Constructor. Args: metric: A string of the metric name to optimize for. mode: A string in ['min', 'max'] to specify the objective as minimization or maximization. space: A dictionary to specify the search space. low_cost_partial_config: A dictionary from a subset of controlled dimensions to the initial low-cost values. E.g., ```{'n_estimators': 4, 'max_leaves': 4}```. cat_hp_cost: A dictionary from a subset of categorical dimensions to the relative cost of each choice. E.g., ```{'tree_method': [1, 1, 2]}```. I.e., the relative cost of the three choices of 'tree_method' is 1, 1 and 2 respectively. points_to_evaluate: Initial parameter suggestions to be run first. evaluated_rewards (list): If you have previously evaluated the parameters passed in as points_to_evaluate you can avoid re-running those trials by passing in the reward attributes as a list so the optimiser can be told the results without needing to re-compute the trial. Must be the same or shorter length than points_to_evaluate. When provided, `mode` must be specified. time_budget_s: int or float | Time budget in seconds. num_samples: int | The number of configs to try. -1 means no limit on the number of configs to try. resource_attr: A string to specify the resource dimension and the best performance is assumed to be at the max_resource. min_resource: A float of the minimal resource to use for the resource_attr. max_resource: A float of the maximal resource to use for the resource_attr. reduction_factor: A float of the reduction factor used for incremental pruning. global_search_alg: A Searcher instance as the global search instance. If omitted, Optuna is used. The following algos have known issues when used as global_search_alg: - HyperOptSearch raises exception sometimes - TuneBOHB has its own scheduler config_constraints: A list of config constraints to be satisfied. E.g., ```config_constraints = [(mem_size, '<=', 1024**3)]```. `mem_size` is a function which produces a float number for the bytes needed for a config. It is used to skip configs which do not fit in memory. metric_constraints: A list of metric constraints to be satisfied. E.g., `['precision', '>=', 0.9]`. The sign can be ">=" or "<=". seed: An integer of the random seed. cost_attr: None or str to specify the attribute to evaluate the cost of different trials. Default is "auto", which means that we will automatically choose the cost attribute to use (depending on the nature of the resource budget). When cost_attr is set to None, cost differences between different trials will be omitted in our search algorithm. When cost_attr is set to a str different from "auto" and "time_total_s", this cost_attr must be available in the result dict of the trial. cost_budget: A float of the cost budget. Only valid when cost_attr is a str different from "auto" and "time_total_s". lexico_objectives: dict, default=None | It specifics information needed to perform multi-objective optimization with lexicographic preferences. This is only supported in CFO currently. When lexico_objectives is not None, the arguments metric, mode will be invalid. This dictionary shall contain the following fields of key-value pairs: - "metrics": a list of optimization objectives with the orders reflecting the priorities/preferences of the objectives. - "modes" (optional): a list of optimization modes (each mode either "min" or "max") corresponding to the objectives in the metric list. If not provided, we use "min" as the default mode for all the objectives. - "targets" (optional): a dictionary to specify the optimization targets on the objectives. The keys are the metric names (provided in "metric"), and the values are the numerical target values. - "tolerances" (optional): a dictionary to specify the optimality tolerances on objectives. The keys are the metric names (provided in "metrics"), and the values are the absolute/percentage tolerance in the form of numeric/string. E.g., ```python lexico_objectives = { "metrics": ["error_rate", "pred_time"], "modes": ["min", "min"], "tolerances": {"error_rate": 0.01, "pred_time": 0.0}, "targets": {"error_rate": 0.0}, } ``` We also support percentage tolerance. E.g., ```python lexico_objectives = { "metrics": ["error_rate", "pred_time"], "modes": ["min", "min"], "tolerances": {"error_rate": "5%", "pred_time": "0%"}, "targets": {"error_rate": 0.0}, } ``` experimental: A bool of whether to use experimental features. """ self._eps = SEARCH_THREAD_EPS self._input_cost_attr = cost_attr if cost_attr == "auto": if time_budget_s is not None: self.cost_attr = TIME_TOTAL_S else: self.cost_attr = None self._cost_budget = None else: self.cost_attr = cost_attr self._cost_budget = cost_budget self.penalty = PENALTY # penalty term for constraints self._metric, self._mode = metric, mode self._use_incumbent_result_in_evaluation = use_incumbent_result_in_evaluation self.lexico_objectives = lexico_objectives init_config = low_cost_partial_config or {} if not init_config: logger.info( "No low-cost partial config given to the search algorithm. " "For cost-frugal search, " "consider providing low-cost values for cost-related hps via " "'low_cost_partial_config'. More info can be found at " "https://microsoft.github.io/FLAML/docs/FAQ#about-low_cost_partial_config-in-tune" ) if evaluated_rewards: assert mode, "mode must be specified when evaluted_rewards is provided." self._points_to_evaluate = [] self._evaluated_rewards = [] n = len(evaluated_rewards) self._evaluated_points = points_to_evaluate[:n] new_points_to_evaluate = points_to_evaluate[n:] self._all_rewards = evaluated_rewards best = max(evaluated_rewards) if mode == "max" else min(evaluated_rewards) # only keep the best points as start points for i, r in enumerate(evaluated_rewards): if r == best: p = points_to_evaluate[i] self._points_to_evaluate.append(p) self._evaluated_rewards.append(r) self._points_to_evaluate.extend(new_points_to_evaluate) else: self._points_to_evaluate = points_to_evaluate or [] self._evaluated_rewards = evaluated_rewards or [] self._config_constraints = config_constraints self._metric_constraints = metric_constraints if metric_constraints: assert all(x[1] in ["<=", ">="] for x in metric_constraints), "sign of metric constraints must be <= or >=." # metric modified by lagrange metric += self.lagrange self._cat_hp_cost = cat_hp_cost or {} if space: add_cost_to_space(space, init_config, self._cat_hp_cost) self._ls = self.LocalSearch( init_config, metric, mode, space, resource_attr, min_resource, max_resource, reduction_factor, self.cost_attr, seed, self.lexico_objectives, ) if global_search_alg is not None: self._gs = global_search_alg elif getattr(self, "__name__", None) != "CFO": if space and self._ls.hierarchical: from functools import partial gs_space = partial(define_by_run_func, space=space) evaluated_rewards = None # not supported by define-by-run else: gs_space = space gs_seed = seed - 10 if (seed - 10) >= 0 else seed - 11 + (1 << 32) self._gs_seed = gs_seed if experimental: import optuna as ot sampler = ot.samplers.TPESampler(seed=gs_seed, multivariate=True, group=True) else: sampler = None try: assert evaluated_rewards self._gs = GlobalSearch( space=gs_space, metric=metric, mode=mode, seed=gs_seed, sampler=sampler, points_to_evaluate=self._evaluated_points, evaluated_rewards=evaluated_rewards, ) except (AssertionError, ValueError): self._gs = GlobalSearch( space=gs_space, metric=metric, mode=mode, seed=gs_seed, sampler=sampler, ) self._gs.space = space else: self._gs = None self._experimental = experimental if getattr(self, "__name__", None) == "CFO" and points_to_evaluate and len(self._points_to_evaluate) > 1: # use the best config in points_to_evaluate as the start point self._candidate_start_points = {} self._started_from_low_cost = not low_cost_partial_config else: self._candidate_start_points = None self._time_budget_s, self._num_samples = time_budget_s, num_samples self._allow_empty_config = allow_empty_config if space is not None: self._init_search() def set_search_properties( self, metric: Optional[str] = None, mode: Optional[str] = None, config: Optional[Dict] = None, **spec, ) -> bool: metric_changed = mode_changed = False if metric and self._metric != metric: metric_changed = True self._metric = metric if self._metric_constraints: # metric modified by lagrange metric += self.lagrange # TODO: don't change metric for global search methods that # can handle constraints already if mode and self._mode != mode: mode_changed = True self._mode = mode if not self._ls.space: # the search space can be set only once if self._gs is not None: # define-by-run is not supported via set_search_properties self._gs.set_search_properties(metric, mode, config) self._gs.space = config if config: add_cost_to_space(config, self._ls.init_config, self._cat_hp_cost) self._ls.set_search_properties(metric, mode, config) self._init_search() else: if metric_changed or mode_changed: # reset search when metric or mode changed self._ls.set_search_properties(metric, mode) if self._gs is not None: self._gs = GlobalSearch( space=self._gs._space, metric=metric, mode=mode, seed=self._gs_seed, ) self._gs.space = self._ls.space self._init_search() if spec: # CFO doesn't need these settings if "time_budget_s" in spec: self._time_budget_s = spec["time_budget_s"] # budget from now now = time.time() self._time_used += now - self._start_time self._start_time = now self._set_deadline() if self._input_cost_attr == "auto" and self._time_budget_s: self.cost_attr = self._ls.cost_attr = TIME_TOTAL_S if "metric_target" in spec: self._metric_target = spec.get("metric_target") num_samples = spec.get("num_samples") if num_samples is not None: self._num_samples = ( (num_samples + len(self._result) + len(self._trial_proposed_by)) if num_samples > 0 # 0 is currently treated the same as -1 else num_samples ) return True def _set_deadline(self): if self._time_budget_s is not None: self._deadline = self._time_budget_s + self._start_time self._set_eps() else: self._deadline = np.inf def _set_eps(self): """set eps for search threads according to time budget""" self._eps = max(min(self._time_budget_s / 1000.0, 1.0), 1e-9) def _init_search(self): """initialize the search""" self._start_time = time.time() self._time_used = 0 self._set_deadline() self._is_ls_ever_converged = False self._subspace = {} # the subspace for each trial id self._metric_target = np.inf * self._ls.metric_op self._search_thread_pool = { # id: int -> thread: SearchThread 0: SearchThread(self._ls.mode, self._gs, self.cost_attr, self._eps) } self._thread_count = 1 # total # threads created self._init_used = self._ls.init_config is None self._trial_proposed_by = {} # trial_id: str -> thread_id: int self._ls_bound_min = normalize( self._ls.init_config.copy(), self._ls.space, self._ls.init_config, {}, recursive=True, ) self._ls_bound_max = normalize( self._ls.init_config.copy(), self._ls.space, self._ls.init_config, {}, recursive=True, ) self._gs_admissible_min = self._ls_bound_min.copy() self._gs_admissible_max = self._ls_bound_max.copy() if self._metric_constraints: self._metric_constraint_satisfied = False self._metric_constraint_penalty = [self.penalty for _ in self._metric_constraints] else: self._metric_constraint_satisfied = True self._metric_constraint_penalty = None self.best_resource = self._ls.min_resource i = 0 # config_signature: tuple -> result: Dict self._result = {} self._cost_used = 0 while self._evaluated_rewards: # go over the evaluated rewards trial_id = f"trial_for_evaluated_{i}" self.suggest(trial_id) i += 1 def save(self, checkpoint_path: str): """save states to a checkpoint path.""" self._time_used += time.time() - self._start_time self._start_time = time.time() save_object = self with open(checkpoint_path, "wb") as outputFile: pickle.dump(save_object, outputFile) def restore(self, checkpoint_path: str): """restore states from checkpoint.""" with open(checkpoint_path, "rb") as inputFile: state = pickle.load(inputFile) self.__dict__ = state.__dict__ self._start_time = time.time() self._set_deadline() @property def metric_target(self): return self._metric_target @property def is_ls_ever_converged(self): return self._is_ls_ever_converged def on_trial_complete(self, trial_id: str, result: Optional[Dict] = None, error: bool = False): """search thread updater and cleaner.""" metric_constraint_satisfied = True if result and not error and self._metric_constraints: # account for metric constraints if any objective = result[self._metric] for i, constraint in enumerate(self._metric_constraints): metric_constraint, sign, threshold = constraint value = result.get(metric_constraint) if value: sign_op = 1 if sign == "<=" else -1 violation = (value - threshold) * sign_op if violation > 0: # add penalty term to the metric objective += self._metric_constraint_penalty[i] * violation * self._ls.metric_op metric_constraint_satisfied = False if self._metric_constraint_penalty[i] < self.penalty: self._metric_constraint_penalty[i] += violation result[self._metric + self.lagrange] = objective if metric_constraint_satisfied and not self._metric_constraint_satisfied: # found a feasible point self._metric_constraint_penalty = [1 for _ in self._metric_constraints] self._metric_constraint_satisfied |= metric_constraint_satisfied thread_id = self._trial_proposed_by.get(trial_id) if thread_id in self._search_thread_pool: self._search_thread_pool[thread_id].on_trial_complete(trial_id, result, error) del self._trial_proposed_by[trial_id] if result: config = result.get("config", {}) if not config: for key, value in result.items(): if key.startswith("config/"): config[key[7:]] = value if self._allow_empty_config and not config: return signature = self._ls.config_signature(config, self._subspace.get(trial_id, {})) if error: # remove from result cache del self._result[signature] else: # add to result cache self._cost_used += result.get(self.cost_attr, 0) self._result[signature] = result # update target metric if improved objective = result[self._ls.metric] if (objective - self._metric_target) * self._ls.metric_op < 0: self._metric_target = objective if self._ls.resource: self._best_resource = config[self._ls.resource_attr] if thread_id: if not self._metric_constraint_satisfied: # no point has been found to satisfy metric constraint self._expand_admissible_region( self._ls_bound_min, self._ls_bound_max, self._subspace.get(trial_id, self._ls.space), ) if self._gs is not None and self._experimental and (not self._ls.hierarchical): self._gs.add_evaluated_point(flatten_dict(config), objective) # TODO: recover when supported # converted = convert_key(config, self._gs.space) # logger.info(converted) # self._gs.add_evaluated_point(converted, objective) elif metric_constraint_satisfied and self._create_condition(result): # thread creator thread_id = self._thread_count self._started_from_given = self._candidate_start_points and trial_id in self._candidate_start_points if self._started_from_given: del self._candidate_start_points[trial_id] else: self._started_from_low_cost = True self._create_thread(config, result, self._subspace.get(trial_id, self._ls.space)) # reset admissible region to ls bounding box self._gs_admissible_min.update(self._ls_bound_min) self._gs_admissible_max.update(self._ls_bound_max) # cleaner if thread_id and thread_id in self._search_thread_pool: # local search thread self._clean(thread_id) if trial_id in self._subspace and not ( self._candidate_start_points and trial_id in self._candidate_start_points ): del self._subspace[trial_id] def _create_thread(self, config, result, space): if self.lexico_objectives is None: obj = result[self._ls.metric] else: obj = {k: result[k] for k in self.lexico_objectives["metrics"]} self._search_thread_pool[self._thread_count] = SearchThread( self._ls.mode, self._ls.create( config, obj, cost=result.get(self.cost_attr, 1), space=space, ), self.cost_attr, self._eps, ) self._thread_count += 1 self._update_admissible_region( unflatten_dict(config), self._ls_bound_min, self._ls_bound_max, space, self._ls.space, ) def _update_admissible_region( self, config, admissible_min, admissible_max, subspace: Dict = {}, space: Dict = {}, ): # update admissible region normalized_config = normalize(config, subspace, config, {}) for key in admissible_min: value = normalized_config[key] if isinstance(admissible_max[key], list): domain = space[key] choice = indexof(domain, value) self._update_admissible_region( value, admissible_min[key][choice], admissible_max[key][choice], subspace[key], domain[choice], ) if len(admissible_max[key]) > len(domain.categories): # points + index normal = (choice + 0.5) / len(domain.categories) admissible_max[key][-1] = max(normal, admissible_max[key][-1]) admissible_min[key][-1] = min(normal, admissible_min[key][-1]) elif isinstance(value, dict): self._update_admissible_region( value, admissible_min[key], admissible_max[key], subspace[key], space[key], ) else: if value > admissible_max[key]: admissible_max[key] = value elif value < admissible_min[key]: admissible_min[key] = value def _create_condition(self, result: Dict) -> bool: """create thread condition""" if len(self._search_thread_pool) < 2: return True obj_median = np.median([thread.obj_best1 for id, thread in self._search_thread_pool.items() if id]) return result[self._ls.metric] * self._ls.metric_op < obj_median def _clean(self, thread_id: int): """delete thread and increase admissible region if converged, merge local threads if they are close """ assert thread_id todelete = set() for id in self._search_thread_pool: if id and id != thread_id: if self._inferior(id, thread_id): todelete.add(id) for id in self._search_thread_pool: if id and id != thread_id: if self._inferior(thread_id, id): todelete.add(thread_id) break create_new = False if self._search_thread_pool[thread_id].converged: self._is_ls_ever_converged = True todelete.add(thread_id) self._expand_admissible_region( self._ls_bound_min, self._ls_bound_max, self._search_thread_pool[thread_id].space, ) if self._candidate_start_points: if not self._started_from_given: # remove start points whose perf is worse than the converged obj = self._search_thread_pool[thread_id].obj_best1 worse = [ trial_id for trial_id, r in self._candidate_start_points.items() if r and r[self._ls.metric] * self._ls.metric_op >= obj ] # logger.info(f"remove candidate start points {worse} than {obj}") for trial_id in worse: del self._candidate_start_points[trial_id] if self._candidate_start_points and self._started_from_low_cost: create_new = True for id in todelete: del self._search_thread_pool[id] if create_new: self._create_thread_from_best_candidate() def _create_thread_from_best_candidate(self): # find the best start point best_trial_id = None obj_best = None for trial_id, r in self._candidate_start_points.items(): if r and (best_trial_id is None or r[self._ls.metric] * self._ls.metric_op < obj_best): best_trial_id = trial_id obj_best = r[self._ls.metric] * self._ls.metric_op if best_trial_id: # create a new thread config = {} result = self._candidate_start_points[best_trial_id] for key, value in result.items(): if key.startswith("config/"): config[key[7:]] = value self._started_from_given = True del self._candidate_start_points[best_trial_id] self._create_thread(config, result, self._subspace.get(best_trial_id, self._ls.space)) def _expand_admissible_region(self, lower, upper, space): """expand the admissible region for the subspace `space`""" for key in upper: ub = upper[key] if isinstance(ub, list): choice = space[key].get("_choice_") if choice: self._expand_admissible_region(lower[key][choice], upper[key][choice], space[key]) elif isinstance(ub, dict): self._expand_admissible_region(lower[key], ub, space[key]) else: upper[key] += self._ls.STEPSIZE lower[key] -= self._ls.STEPSIZE def _inferior(self, id1: int, id2: int) -> bool: """whether thread id1 is inferior to id2""" t1 = self._search_thread_pool[id1] t2 = self._search_thread_pool[id2] if t1.obj_best1 < t2.obj_best2: return False elif t1.resource and t1.resource < t2.resource: return False elif t2.reach(t1): return True return False def on_trial_result(self, trial_id: str, result: Dict): """receive intermediate result.""" if trial_id not in self._trial_proposed_by: return thread_id = self._trial_proposed_by[trial_id] if thread_id not in self._search_thread_pool: return if result and self._metric_constraints: result[self._metric + self.lagrange] = result[self._metric] self._search_thread_pool[thread_id].on_trial_result(trial_id, result) def suggest(self, trial_id: str) -> Optional[Dict]: """choose thread, suggest a valid config.""" if self._init_used and not self._points_to_evaluate: if self._cost_budget and self._cost_used >= self._cost_budget: return None choice, backup = self._select_thread() config = self._search_thread_pool[choice].suggest(trial_id) if not choice and config is not None and self._ls.resource: config[self._ls.resource_attr] = self.best_resource elif choice and config is None: # local search thread finishes if self._search_thread_pool[choice].converged: self._expand_admissible_region( self._ls_bound_min, self._ls_bound_max, self._search_thread_pool[choice].space, ) del self._search_thread_pool[choice] return # preliminary check; not checking config validation space = self._search_thread_pool[choice].space skip = self._should_skip(choice, trial_id, config, space) use_rs = 0 if skip: if choice: return # use rs when BO fails to suggest a config config, space = self._ls.complete_config({}) skip = self._should_skip(-1, trial_id, config, space) if skip: return use_rs = 1 if choice or self._valid( config, self._ls.space, space, self._gs_admissible_min, self._gs_admissible_max, ): # LS or valid or no backup choice self._trial_proposed_by[trial_id] = choice self._search_thread_pool[choice].running += use_rs else: # invalid config proposed by GS if choice == backup: # use CFO's init point init_config = self._ls.init_config config, space = self._ls.complete_config(init_config, self._ls_bound_min, self._ls_bound_max) self._trial_proposed_by[trial_id] = choice self._search_thread_pool[choice].running += 1 else: thread = self._search_thread_pool[backup] config = thread.suggest(trial_id) space = thread.space skip = self._should_skip(backup, trial_id, config, space) if skip: return self._trial_proposed_by[trial_id] = backup choice = backup if not choice: # global search # temporarily relax admissible region for parallel proposals self._update_admissible_region( config, self._gs_admissible_min, self._gs_admissible_max, space, self._ls.space, ) else: self._update_admissible_region( config, self._ls_bound_min, self._ls_bound_max, space, self._ls.space, ) self._gs_admissible_min.update(self._ls_bound_min) self._gs_admissible_max.update(self._ls_bound_max) signature = self._ls.config_signature(config, space) self._result[signature] = {} self._subspace[trial_id] = space else: # use init config if self._candidate_start_points is not None and self._points_to_evaluate: self._candidate_start_points[trial_id] = None reward = None if self._points_to_evaluate: init_config = self._points_to_evaluate.pop(0) if self._evaluated_rewards: reward = self._evaluated_rewards.pop(0) else: init_config = self._ls.init_config if self._allow_empty_config and not init_config: assert reward is None, "Empty config can't have reward." return init_config config, space = self._ls.complete_config(init_config, self._ls_bound_min, self._ls_bound_max) config_signature = self._ls.config_signature(config, space) if reward is None: result = self._result.get(config_signature) if result: # tried before return elif result is None: # not tried before if self._violate_config_constriants(config, config_signature): # violate config constraints return self._result[config_signature] = {} else: # running but no result yet return self._init_used = True self._trial_proposed_by[trial_id] = 0 self._search_thread_pool[0].running += 1 self._subspace[trial_id] = space if reward is not None: result = {self._metric: reward, self.cost_attr: 1, "config": config} # result = self._result[config_signature] self.on_trial_complete(trial_id, result) return if self._use_incumbent_result_in_evaluation: if self._trial_proposed_by[trial_id] > 0: choice_thread = self._search_thread_pool[self._trial_proposed_by[trial_id]] config[INCUMBENT_RESULT] = choice_thread.best_result return config def _violate_config_constriants(self, config, config_signature): """check if config violates config constraints. If so, set the result to worst and return True. """ if not self._config_constraints: return False for constraint in self._config_constraints: func, sign, threshold = constraint value = func(config) if ( sign == "<=" and value > threshold or sign == ">=" and value < threshold or sign == ">" and value <= threshold or sign == "<" and value > threshold ): self._result[config_signature] = { self._metric: np.inf * self._ls.metric_op, "time_total_s": 1, } return True return False def _should_skip(self, choice, trial_id, config, space) -> bool: """if config is None or config's result is known or constraints are violated return True; o.w. return False """ if config is None: return True config_signature = self._ls.config_signature(config, space) exists = config_signature in self._result if not exists: # check constraints exists = self._violate_config_constriants(config, config_signature) if exists: # suggested before (including violate constraints) if choice >= 0: # not fallback to rs result = self._result.get(config_signature) if result: # finished self._search_thread_pool[choice].on_trial_complete(trial_id, result, error=False) if choice: # local search thread self._clean(choice) # else: # running # # tell the thread there is an error # self._search_thread_pool[choice].on_trial_complete( # trial_id, {}, error=True) return True return False def _select_thread(self) -> Tuple: """thread selector; use can_suggest to check LS availability""" # calculate min_eci according to the budget left min_eci = np.inf if self.cost_attr == TIME_TOTAL_S: now = time.time() min_eci = self._deadline - now if min_eci <= 0: # return -1, -1 # keep proposing new configs assuming no budget left min_eci = 0 elif self._num_samples and self._num_samples > 0: # estimate time left according to num_samples limitation num_finished = len(self._result) num_proposed = num_finished + len(self._trial_proposed_by) num_left = max(self._num_samples - num_proposed, 0) if num_proposed > 0: time_used = now - self._start_time + self._time_used min_eci = min(min_eci, time_used / num_finished * num_left) # print(f"{min_eci}, {time_used / num_finished * num_left}, {num_finished}, {num_left}") elif self.cost_attr is not None and self._cost_budget: min_eci = max(self._cost_budget - self._cost_used, 0) elif self._num_samples and self._num_samples > 0: num_finished = len(self._result) num_proposed = num_finished + len(self._trial_proposed_by) min_eci = max(self._num_samples - num_proposed, 0) # update priority max_speed = 0 for thread in self._search_thread_pool.values(): if thread.speed > max_speed: max_speed = thread.speed for thread in self._search_thread_pool.values(): thread.update_eci(self._metric_target, max_speed) if thread.eci < min_eci: min_eci = thread.eci for thread in self._search_thread_pool.values(): thread.update_priority(min_eci) top_thread_id = backup_thread_id = 0 priority1 = priority2 = self._search_thread_pool[0].priority for thread_id, thread in self._search_thread_pool.items(): if thread_id and thread.can_suggest: priority = thread.priority if priority > priority1: priority1 = priority top_thread_id = thread_id if priority > priority2 or backup_thread_id == 0: priority2 = priority backup_thread_id = thread_id return top_thread_id, backup_thread_id def _valid(self, config: Dict, space: Dict, subspace: Dict, lower: Dict, upper: Dict) -> bool: """config validator""" normalized_config = normalize(config, subspace, config, {}) for key, lb in lower.items(): if key in config: value = normalized_config[key] if isinstance(lb, list): domain = space[key] index = indexof(domain, value) nestedspace = subspace[key] lb = lb[index] ub = upper[key][index] elif isinstance(lb, dict): nestedspace = subspace[key] domain = space[key] ub = upper[key] else: nestedspace = None if nestedspace: valid = self._valid(value, domain, nestedspace, lb, ub) if not valid: return False elif value + self._ls.STEPSIZE < lower[key] or value > upper[key] + self._ls.STEPSIZE: return False return True @property def results(self) -> List[Dict]: """A list of dicts of results for each evaluated configuration. Each dict has "config" and metric names as keys. The returned dict includes the initial results provided via `evaluated_reward`. """ return [x for x in getattr(self, "_result", {}).values() if x]
(metric: Optional[str] = None, mode: Optional[str] = None, space: Optional[dict] = None, low_cost_partial_config: Optional[dict] = None, cat_hp_cost: Optional[dict] = None, points_to_evaluate: Optional[List[dict]] = None, evaluated_rewards: Optional[List] = None, time_budget_s: Union[int, float] = None, num_samples: Optional[int] = None, resource_attr: Optional[str] = None, min_resource: Optional[float] = None, max_resource: Optional[float] = None, reduction_factor: Optional[float] = None, global_search_alg: Optional[flaml.tune.searcher.suggestion.Searcher] = None, config_constraints: Optional[List[Tuple[Callable[[dict], float], str, float]]] = None, metric_constraints: Optional[List[Tuple[str, str, float]]] = None, seed: Optional[int] = 20, cost_attr: Optional[str] = 'auto', cost_budget: Optional[float] = None, experimental: Optional[bool] = False, lexico_objectives: Optional[dict] = None, use_incumbent_result_in_evaluation=False, allow_empty_config=False)
52,736
flaml.tune.searcher.blendsearch
__init__
Constructor. Args: metric: A string of the metric name to optimize for. mode: A string in ['min', 'max'] to specify the objective as minimization or maximization. space: A dictionary to specify the search space. low_cost_partial_config: A dictionary from a subset of controlled dimensions to the initial low-cost values. E.g., ```{'n_estimators': 4, 'max_leaves': 4}```. cat_hp_cost: A dictionary from a subset of categorical dimensions to the relative cost of each choice. E.g., ```{'tree_method': [1, 1, 2]}```. I.e., the relative cost of the three choices of 'tree_method' is 1, 1 and 2 respectively. points_to_evaluate: Initial parameter suggestions to be run first. evaluated_rewards (list): If you have previously evaluated the parameters passed in as points_to_evaluate you can avoid re-running those trials by passing in the reward attributes as a list so the optimiser can be told the results without needing to re-compute the trial. Must be the same or shorter length than points_to_evaluate. When provided, `mode` must be specified. time_budget_s: int or float | Time budget in seconds. num_samples: int | The number of configs to try. -1 means no limit on the number of configs to try. resource_attr: A string to specify the resource dimension and the best performance is assumed to be at the max_resource. min_resource: A float of the minimal resource to use for the resource_attr. max_resource: A float of the maximal resource to use for the resource_attr. reduction_factor: A float of the reduction factor used for incremental pruning. global_search_alg: A Searcher instance as the global search instance. If omitted, Optuna is used. The following algos have known issues when used as global_search_alg: - HyperOptSearch raises exception sometimes - TuneBOHB has its own scheduler config_constraints: A list of config constraints to be satisfied. E.g., ```config_constraints = [(mem_size, '<=', 1024**3)]```. `mem_size` is a function which produces a float number for the bytes needed for a config. It is used to skip configs which do not fit in memory. metric_constraints: A list of metric constraints to be satisfied. E.g., `['precision', '>=', 0.9]`. The sign can be ">=" or "<=". seed: An integer of the random seed. cost_attr: None or str to specify the attribute to evaluate the cost of different trials. Default is "auto", which means that we will automatically choose the cost attribute to use (depending on the nature of the resource budget). When cost_attr is set to None, cost differences between different trials will be omitted in our search algorithm. When cost_attr is set to a str different from "auto" and "time_total_s", this cost_attr must be available in the result dict of the trial. cost_budget: A float of the cost budget. Only valid when cost_attr is a str different from "auto" and "time_total_s". lexico_objectives: dict, default=None | It specifics information needed to perform multi-objective optimization with lexicographic preferences. This is only supported in CFO currently. When lexico_objectives is not None, the arguments metric, mode will be invalid. This dictionary shall contain the following fields of key-value pairs: - "metrics": a list of optimization objectives with the orders reflecting the priorities/preferences of the objectives. - "modes" (optional): a list of optimization modes (each mode either "min" or "max") corresponding to the objectives in the metric list. If not provided, we use "min" as the default mode for all the objectives. - "targets" (optional): a dictionary to specify the optimization targets on the objectives. The keys are the metric names (provided in "metric"), and the values are the numerical target values. - "tolerances" (optional): a dictionary to specify the optimality tolerances on objectives. The keys are the metric names (provided in "metrics"), and the values are the absolute/percentage tolerance in the form of numeric/string. E.g., ```python lexico_objectives = { "metrics": ["error_rate", "pred_time"], "modes": ["min", "min"], "tolerances": {"error_rate": 0.01, "pred_time": 0.0}, "targets": {"error_rate": 0.0}, } ``` We also support percentage tolerance. E.g., ```python lexico_objectives = { "metrics": ["error_rate", "pred_time"], "modes": ["min", "min"], "tolerances": {"error_rate": "5%", "pred_time": "0%"}, "targets": {"error_rate": 0.0}, } ``` experimental: A bool of whether to use experimental features.
def __init__( self, metric: Optional[str] = None, mode: Optional[str] = None, space: Optional[dict] = None, low_cost_partial_config: Optional[dict] = None, cat_hp_cost: Optional[dict] = None, points_to_evaluate: Optional[List[dict]] = None, evaluated_rewards: Optional[List] = None, time_budget_s: Union[int, float] = None, num_samples: Optional[int] = None, resource_attr: Optional[str] = None, min_resource: Optional[float] = None, max_resource: Optional[float] = None, reduction_factor: Optional[float] = None, global_search_alg: Optional[Searcher] = None, config_constraints: Optional[List[Tuple[Callable[[dict], float], str, float]]] = None, metric_constraints: Optional[List[Tuple[str, str, float]]] = None, seed: Optional[int] = 20, cost_attr: Optional[str] = "auto", cost_budget: Optional[float] = None, experimental: Optional[bool] = False, lexico_objectives: Optional[dict] = None, use_incumbent_result_in_evaluation=False, allow_empty_config=False, ): """Constructor. Args: metric: A string of the metric name to optimize for. mode: A string in ['min', 'max'] to specify the objective as minimization or maximization. space: A dictionary to specify the search space. low_cost_partial_config: A dictionary from a subset of controlled dimensions to the initial low-cost values. E.g., ```{'n_estimators': 4, 'max_leaves': 4}```. cat_hp_cost: A dictionary from a subset of categorical dimensions to the relative cost of each choice. E.g., ```{'tree_method': [1, 1, 2]}```. I.e., the relative cost of the three choices of 'tree_method' is 1, 1 and 2 respectively. points_to_evaluate: Initial parameter suggestions to be run first. evaluated_rewards (list): If you have previously evaluated the parameters passed in as points_to_evaluate you can avoid re-running those trials by passing in the reward attributes as a list so the optimiser can be told the results without needing to re-compute the trial. Must be the same or shorter length than points_to_evaluate. When provided, `mode` must be specified. time_budget_s: int or float | Time budget in seconds. num_samples: int | The number of configs to try. -1 means no limit on the number of configs to try. resource_attr: A string to specify the resource dimension and the best performance is assumed to be at the max_resource. min_resource: A float of the minimal resource to use for the resource_attr. max_resource: A float of the maximal resource to use for the resource_attr. reduction_factor: A float of the reduction factor used for incremental pruning. global_search_alg: A Searcher instance as the global search instance. If omitted, Optuna is used. The following algos have known issues when used as global_search_alg: - HyperOptSearch raises exception sometimes - TuneBOHB has its own scheduler config_constraints: A list of config constraints to be satisfied. E.g., ```config_constraints = [(mem_size, '<=', 1024**3)]```. `mem_size` is a function which produces a float number for the bytes needed for a config. It is used to skip configs which do not fit in memory. metric_constraints: A list of metric constraints to be satisfied. E.g., `['precision', '>=', 0.9]`. The sign can be ">=" or "<=". seed: An integer of the random seed. cost_attr: None or str to specify the attribute to evaluate the cost of different trials. Default is "auto", which means that we will automatically choose the cost attribute to use (depending on the nature of the resource budget). When cost_attr is set to None, cost differences between different trials will be omitted in our search algorithm. When cost_attr is set to a str different from "auto" and "time_total_s", this cost_attr must be available in the result dict of the trial. cost_budget: A float of the cost budget. Only valid when cost_attr is a str different from "auto" and "time_total_s". lexico_objectives: dict, default=None | It specifics information needed to perform multi-objective optimization with lexicographic preferences. This is only supported in CFO currently. When lexico_objectives is not None, the arguments metric, mode will be invalid. This dictionary shall contain the following fields of key-value pairs: - "metrics": a list of optimization objectives with the orders reflecting the priorities/preferences of the objectives. - "modes" (optional): a list of optimization modes (each mode either "min" or "max") corresponding to the objectives in the metric list. If not provided, we use "min" as the default mode for all the objectives. - "targets" (optional): a dictionary to specify the optimization targets on the objectives. The keys are the metric names (provided in "metric"), and the values are the numerical target values. - "tolerances" (optional): a dictionary to specify the optimality tolerances on objectives. The keys are the metric names (provided in "metrics"), and the values are the absolute/percentage tolerance in the form of numeric/string. E.g., ```python lexico_objectives = { "metrics": ["error_rate", "pred_time"], "modes": ["min", "min"], "tolerances": {"error_rate": 0.01, "pred_time": 0.0}, "targets": {"error_rate": 0.0}, } ``` We also support percentage tolerance. E.g., ```python lexico_objectives = { "metrics": ["error_rate", "pred_time"], "modes": ["min", "min"], "tolerances": {"error_rate": "5%", "pred_time": "0%"}, "targets": {"error_rate": 0.0}, } ``` experimental: A bool of whether to use experimental features. """ self._eps = SEARCH_THREAD_EPS self._input_cost_attr = cost_attr if cost_attr == "auto": if time_budget_s is not None: self.cost_attr = TIME_TOTAL_S else: self.cost_attr = None self._cost_budget = None else: self.cost_attr = cost_attr self._cost_budget = cost_budget self.penalty = PENALTY # penalty term for constraints self._metric, self._mode = metric, mode self._use_incumbent_result_in_evaluation = use_incumbent_result_in_evaluation self.lexico_objectives = lexico_objectives init_config = low_cost_partial_config or {} if not init_config: logger.info( "No low-cost partial config given to the search algorithm. " "For cost-frugal search, " "consider providing low-cost values for cost-related hps via " "'low_cost_partial_config'. More info can be found at " "https://microsoft.github.io/FLAML/docs/FAQ#about-low_cost_partial_config-in-tune" ) if evaluated_rewards: assert mode, "mode must be specified when evaluted_rewards is provided." self._points_to_evaluate = [] self._evaluated_rewards = [] n = len(evaluated_rewards) self._evaluated_points = points_to_evaluate[:n] new_points_to_evaluate = points_to_evaluate[n:] self._all_rewards = evaluated_rewards best = max(evaluated_rewards) if mode == "max" else min(evaluated_rewards) # only keep the best points as start points for i, r in enumerate(evaluated_rewards): if r == best: p = points_to_evaluate[i] self._points_to_evaluate.append(p) self._evaluated_rewards.append(r) self._points_to_evaluate.extend(new_points_to_evaluate) else: self._points_to_evaluate = points_to_evaluate or [] self._evaluated_rewards = evaluated_rewards or [] self._config_constraints = config_constraints self._metric_constraints = metric_constraints if metric_constraints: assert all(x[1] in ["<=", ">="] for x in metric_constraints), "sign of metric constraints must be <= or >=." # metric modified by lagrange metric += self.lagrange self._cat_hp_cost = cat_hp_cost or {} if space: add_cost_to_space(space, init_config, self._cat_hp_cost) self._ls = self.LocalSearch( init_config, metric, mode, space, resource_attr, min_resource, max_resource, reduction_factor, self.cost_attr, seed, self.lexico_objectives, ) if global_search_alg is not None: self._gs = global_search_alg elif getattr(self, "__name__", None) != "CFO": if space and self._ls.hierarchical: from functools import partial gs_space = partial(define_by_run_func, space=space) evaluated_rewards = None # not supported by define-by-run else: gs_space = space gs_seed = seed - 10 if (seed - 10) >= 0 else seed - 11 + (1 << 32) self._gs_seed = gs_seed if experimental: import optuna as ot sampler = ot.samplers.TPESampler(seed=gs_seed, multivariate=True, group=True) else: sampler = None try: assert evaluated_rewards self._gs = GlobalSearch( space=gs_space, metric=metric, mode=mode, seed=gs_seed, sampler=sampler, points_to_evaluate=self._evaluated_points, evaluated_rewards=evaluated_rewards, ) except (AssertionError, ValueError): self._gs = GlobalSearch( space=gs_space, metric=metric, mode=mode, seed=gs_seed, sampler=sampler, ) self._gs.space = space else: self._gs = None self._experimental = experimental if getattr(self, "__name__", None) == "CFO" and points_to_evaluate and len(self._points_to_evaluate) > 1: # use the best config in points_to_evaluate as the start point self._candidate_start_points = {} self._started_from_low_cost = not low_cost_partial_config else: self._candidate_start_points = None self._time_budget_s, self._num_samples = time_budget_s, num_samples self._allow_empty_config = allow_empty_config if space is not None: self._init_search()
(self, metric: Optional[str] = None, mode: Optional[str] = None, space: Optional[dict] = None, low_cost_partial_config: Optional[dict] = None, cat_hp_cost: Optional[dict] = None, points_to_evaluate: Optional[List[dict]] = None, evaluated_rewards: Optional[List] = None, time_budget_s: Union[int, float, NoneType] = None, num_samples: Optional[int] = None, resource_attr: Optional[str] = None, min_resource: Optional[float] = None, max_resource: Optional[float] = None, reduction_factor: Optional[float] = None, global_search_alg: Optional[flaml.tune.searcher.suggestion.Searcher] = None, config_constraints: Optional[List[Tuple[Callable[[dict], float], str, float]]] = None, metric_constraints: Optional[List[Tuple[str, str, float]]] = None, seed: Optional[int] = 20, cost_attr: Optional[str] = 'auto', cost_budget: Optional[float] = None, experimental: Optional[bool] = False, lexico_objectives: Optional[dict] = None, use_incumbent_result_in_evaluation=False, allow_empty_config=False)
52,737
flaml.tune.searcher.blendsearch
_clean
delete thread and increase admissible region if converged, merge local threads if they are close
def _clean(self, thread_id: int): """delete thread and increase admissible region if converged, merge local threads if they are close """ assert thread_id todelete = set() for id in self._search_thread_pool: if id and id != thread_id: if self._inferior(id, thread_id): todelete.add(id) for id in self._search_thread_pool: if id and id != thread_id: if self._inferior(thread_id, id): todelete.add(thread_id) break create_new = False if self._search_thread_pool[thread_id].converged: self._is_ls_ever_converged = True todelete.add(thread_id) self._expand_admissible_region( self._ls_bound_min, self._ls_bound_max, self._search_thread_pool[thread_id].space, ) if self._candidate_start_points: if not self._started_from_given: # remove start points whose perf is worse than the converged obj = self._search_thread_pool[thread_id].obj_best1 worse = [ trial_id for trial_id, r in self._candidate_start_points.items() if r and r[self._ls.metric] * self._ls.metric_op >= obj ] # logger.info(f"remove candidate start points {worse} than {obj}") for trial_id in worse: del self._candidate_start_points[trial_id] if self._candidate_start_points and self._started_from_low_cost: create_new = True for id in todelete: del self._search_thread_pool[id] if create_new: self._create_thread_from_best_candidate()
(self, thread_id: int)
52,738
flaml.tune.searcher.blendsearch
_create_condition
create thread condition
def _create_condition(self, result: Dict) -> bool: """create thread condition""" if len(self._search_thread_pool) < 2: return True obj_median = np.median([thread.obj_best1 for id, thread in self._search_thread_pool.items() if id]) return result[self._ls.metric] * self._ls.metric_op < obj_median
(self, result: Dict) -> bool
52,739
flaml.tune.searcher.blendsearch
_create_thread
null
def _create_thread(self, config, result, space): if self.lexico_objectives is None: obj = result[self._ls.metric] else: obj = {k: result[k] for k in self.lexico_objectives["metrics"]} self._search_thread_pool[self._thread_count] = SearchThread( self._ls.mode, self._ls.create( config, obj, cost=result.get(self.cost_attr, 1), space=space, ), self.cost_attr, self._eps, ) self._thread_count += 1 self._update_admissible_region( unflatten_dict(config), self._ls_bound_min, self._ls_bound_max, space, self._ls.space, )
(self, config, result, space)
52,740
flaml.tune.searcher.blendsearch
_create_thread_from_best_candidate
null
def _create_thread_from_best_candidate(self): # find the best start point best_trial_id = None obj_best = None for trial_id, r in self._candidate_start_points.items(): if r and (best_trial_id is None or r[self._ls.metric] * self._ls.metric_op < obj_best): best_trial_id = trial_id obj_best = r[self._ls.metric] * self._ls.metric_op if best_trial_id: # create a new thread config = {} result = self._candidate_start_points[best_trial_id] for key, value in result.items(): if key.startswith("config/"): config[key[7:]] = value self._started_from_given = True del self._candidate_start_points[best_trial_id] self._create_thread(config, result, self._subspace.get(best_trial_id, self._ls.space))
(self)
52,741
flaml.tune.searcher.blendsearch
_expand_admissible_region
expand the admissible region for the subspace `space`
def _expand_admissible_region(self, lower, upper, space): """expand the admissible region for the subspace `space`""" for key in upper: ub = upper[key] if isinstance(ub, list): choice = space[key].get("_choice_") if choice: self._expand_admissible_region(lower[key][choice], upper[key][choice], space[key]) elif isinstance(ub, dict): self._expand_admissible_region(lower[key], ub, space[key]) else: upper[key] += self._ls.STEPSIZE lower[key] -= self._ls.STEPSIZE
(self, lower, upper, space)
52,742
flaml.tune.searcher.blendsearch
_inferior
whether thread id1 is inferior to id2
def _inferior(self, id1: int, id2: int) -> bool: """whether thread id1 is inferior to id2""" t1 = self._search_thread_pool[id1] t2 = self._search_thread_pool[id2] if t1.obj_best1 < t2.obj_best2: return False elif t1.resource and t1.resource < t2.resource: return False elif t2.reach(t1): return True return False
(self, id1: int, id2: int) -> bool
52,743
flaml.tune.searcher.blendsearch
_init_search
initialize the search
def _init_search(self): """initialize the search""" self._start_time = time.time() self._time_used = 0 self._set_deadline() self._is_ls_ever_converged = False self._subspace = {} # the subspace for each trial id self._metric_target = np.inf * self._ls.metric_op self._search_thread_pool = { # id: int -> thread: SearchThread 0: SearchThread(self._ls.mode, self._gs, self.cost_attr, self._eps) } self._thread_count = 1 # total # threads created self._init_used = self._ls.init_config is None self._trial_proposed_by = {} # trial_id: str -> thread_id: int self._ls_bound_min = normalize( self._ls.init_config.copy(), self._ls.space, self._ls.init_config, {}, recursive=True, ) self._ls_bound_max = normalize( self._ls.init_config.copy(), self._ls.space, self._ls.init_config, {}, recursive=True, ) self._gs_admissible_min = self._ls_bound_min.copy() self._gs_admissible_max = self._ls_bound_max.copy() if self._metric_constraints: self._metric_constraint_satisfied = False self._metric_constraint_penalty = [self.penalty for _ in self._metric_constraints] else: self._metric_constraint_satisfied = True self._metric_constraint_penalty = None self.best_resource = self._ls.min_resource i = 0 # config_signature: tuple -> result: Dict self._result = {} self._cost_used = 0 while self._evaluated_rewards: # go over the evaluated rewards trial_id = f"trial_for_evaluated_{i}" self.suggest(trial_id) i += 1
(self)
52,744
flaml.tune.searcher.blendsearch
_select_thread
thread selector; use can_suggest to check LS availability
def _select_thread(self) -> Tuple: """thread selector; use can_suggest to check LS availability""" # calculate min_eci according to the budget left min_eci = np.inf if self.cost_attr == TIME_TOTAL_S: now = time.time() min_eci = self._deadline - now if min_eci <= 0: # return -1, -1 # keep proposing new configs assuming no budget left min_eci = 0 elif self._num_samples and self._num_samples > 0: # estimate time left according to num_samples limitation num_finished = len(self._result) num_proposed = num_finished + len(self._trial_proposed_by) num_left = max(self._num_samples - num_proposed, 0) if num_proposed > 0: time_used = now - self._start_time + self._time_used min_eci = min(min_eci, time_used / num_finished * num_left) # print(f"{min_eci}, {time_used / num_finished * num_left}, {num_finished}, {num_left}") elif self.cost_attr is not None and self._cost_budget: min_eci = max(self._cost_budget - self._cost_used, 0) elif self._num_samples and self._num_samples > 0: num_finished = len(self._result) num_proposed = num_finished + len(self._trial_proposed_by) min_eci = max(self._num_samples - num_proposed, 0) # update priority max_speed = 0 for thread in self._search_thread_pool.values(): if thread.speed > max_speed: max_speed = thread.speed for thread in self._search_thread_pool.values(): thread.update_eci(self._metric_target, max_speed) if thread.eci < min_eci: min_eci = thread.eci for thread in self._search_thread_pool.values(): thread.update_priority(min_eci) top_thread_id = backup_thread_id = 0 priority1 = priority2 = self._search_thread_pool[0].priority for thread_id, thread in self._search_thread_pool.items(): if thread_id and thread.can_suggest: priority = thread.priority if priority > priority1: priority1 = priority top_thread_id = thread_id if priority > priority2 or backup_thread_id == 0: priority2 = priority backup_thread_id = thread_id return top_thread_id, backup_thread_id
(self) -> Tuple
52,745
flaml.tune.searcher.blendsearch
_set_deadline
null
def _set_deadline(self): if self._time_budget_s is not None: self._deadline = self._time_budget_s + self._start_time self._set_eps() else: self._deadline = np.inf
(self)
52,746
flaml.tune.searcher.blendsearch
_set_eps
set eps for search threads according to time budget
def _set_eps(self): """set eps for search threads according to time budget""" self._eps = max(min(self._time_budget_s / 1000.0, 1.0), 1e-9)
(self)
52,747
flaml.tune.searcher.blendsearch
_should_skip
if config is None or config's result is known or constraints are violated return True; o.w. return False
def _should_skip(self, choice, trial_id, config, space) -> bool: """if config is None or config's result is known or constraints are violated return True; o.w. return False """ if config is None: return True config_signature = self._ls.config_signature(config, space) exists = config_signature in self._result if not exists: # check constraints exists = self._violate_config_constriants(config, config_signature) if exists: # suggested before (including violate constraints) if choice >= 0: # not fallback to rs result = self._result.get(config_signature) if result: # finished self._search_thread_pool[choice].on_trial_complete(trial_id, result, error=False) if choice: # local search thread self._clean(choice) # else: # running # # tell the thread there is an error # self._search_thread_pool[choice].on_trial_complete( # trial_id, {}, error=True) return True return False
(self, choice, trial_id, config, space) -> bool
52,748
flaml.tune.searcher.blendsearch
_update_admissible_region
null
def _update_admissible_region( self, config, admissible_min, admissible_max, subspace: Dict = {}, space: Dict = {}, ): # update admissible region normalized_config = normalize(config, subspace, config, {}) for key in admissible_min: value = normalized_config[key] if isinstance(admissible_max[key], list): domain = space[key] choice = indexof(domain, value) self._update_admissible_region( value, admissible_min[key][choice], admissible_max[key][choice], subspace[key], domain[choice], ) if len(admissible_max[key]) > len(domain.categories): # points + index normal = (choice + 0.5) / len(domain.categories) admissible_max[key][-1] = max(normal, admissible_max[key][-1]) admissible_min[key][-1] = min(normal, admissible_min[key][-1]) elif isinstance(value, dict): self._update_admissible_region( value, admissible_min[key], admissible_max[key], subspace[key], space[key], ) else: if value > admissible_max[key]: admissible_max[key] = value elif value < admissible_min[key]: admissible_min[key] = value
(self, config, admissible_min, admissible_max, subspace: Dict = {}, space: Dict = {})
52,749
flaml.tune.searcher.blendsearch
_valid
config validator
def _valid(self, config: Dict, space: Dict, subspace: Dict, lower: Dict, upper: Dict) -> bool: """config validator""" normalized_config = normalize(config, subspace, config, {}) for key, lb in lower.items(): if key in config: value = normalized_config[key] if isinstance(lb, list): domain = space[key] index = indexof(domain, value) nestedspace = subspace[key] lb = lb[index] ub = upper[key][index] elif isinstance(lb, dict): nestedspace = subspace[key] domain = space[key] ub = upper[key] else: nestedspace = None if nestedspace: valid = self._valid(value, domain, nestedspace, lb, ub) if not valid: return False elif value + self._ls.STEPSIZE < lower[key] or value > upper[key] + self._ls.STEPSIZE: return False return True
(self, config: Dict, space: Dict, subspace: Dict, lower: Dict, upper: Dict) -> bool
52,750
flaml.tune.searcher.blendsearch
_violate_config_constriants
check if config violates config constraints. If so, set the result to worst and return True.
def _violate_config_constriants(self, config, config_signature): """check if config violates config constraints. If so, set the result to worst and return True. """ if not self._config_constraints: return False for constraint in self._config_constraints: func, sign, threshold = constraint value = func(config) if ( sign == "<=" and value > threshold or sign == ">=" and value < threshold or sign == ">" and value <= threshold or sign == "<" and value > threshold ): self._result[config_signature] = { self._metric: np.inf * self._ls.metric_op, "time_total_s": 1, } return True return False
(self, config, config_signature)
52,751
flaml.tune.searcher.blendsearch
on_trial_complete
search thread updater and cleaner.
def on_trial_complete(self, trial_id: str, result: Optional[Dict] = None, error: bool = False): """search thread updater and cleaner.""" metric_constraint_satisfied = True if result and not error and self._metric_constraints: # account for metric constraints if any objective = result[self._metric] for i, constraint in enumerate(self._metric_constraints): metric_constraint, sign, threshold = constraint value = result.get(metric_constraint) if value: sign_op = 1 if sign == "<=" else -1 violation = (value - threshold) * sign_op if violation > 0: # add penalty term to the metric objective += self._metric_constraint_penalty[i] * violation * self._ls.metric_op metric_constraint_satisfied = False if self._metric_constraint_penalty[i] < self.penalty: self._metric_constraint_penalty[i] += violation result[self._metric + self.lagrange] = objective if metric_constraint_satisfied and not self._metric_constraint_satisfied: # found a feasible point self._metric_constraint_penalty = [1 for _ in self._metric_constraints] self._metric_constraint_satisfied |= metric_constraint_satisfied thread_id = self._trial_proposed_by.get(trial_id) if thread_id in self._search_thread_pool: self._search_thread_pool[thread_id].on_trial_complete(trial_id, result, error) del self._trial_proposed_by[trial_id] if result: config = result.get("config", {}) if not config: for key, value in result.items(): if key.startswith("config/"): config[key[7:]] = value if self._allow_empty_config and not config: return signature = self._ls.config_signature(config, self._subspace.get(trial_id, {})) if error: # remove from result cache del self._result[signature] else: # add to result cache self._cost_used += result.get(self.cost_attr, 0) self._result[signature] = result # update target metric if improved objective = result[self._ls.metric] if (objective - self._metric_target) * self._ls.metric_op < 0: self._metric_target = objective if self._ls.resource: self._best_resource = config[self._ls.resource_attr] if thread_id: if not self._metric_constraint_satisfied: # no point has been found to satisfy metric constraint self._expand_admissible_region( self._ls_bound_min, self._ls_bound_max, self._subspace.get(trial_id, self._ls.space), ) if self._gs is not None and self._experimental and (not self._ls.hierarchical): self._gs.add_evaluated_point(flatten_dict(config), objective) # TODO: recover when supported # converted = convert_key(config, self._gs.space) # logger.info(converted) # self._gs.add_evaluated_point(converted, objective) elif metric_constraint_satisfied and self._create_condition(result): # thread creator thread_id = self._thread_count self._started_from_given = self._candidate_start_points and trial_id in self._candidate_start_points if self._started_from_given: del self._candidate_start_points[trial_id] else: self._started_from_low_cost = True self._create_thread(config, result, self._subspace.get(trial_id, self._ls.space)) # reset admissible region to ls bounding box self._gs_admissible_min.update(self._ls_bound_min) self._gs_admissible_max.update(self._ls_bound_max) # cleaner if thread_id and thread_id in self._search_thread_pool: # local search thread self._clean(thread_id) if trial_id in self._subspace and not ( self._candidate_start_points and trial_id in self._candidate_start_points ): del self._subspace[trial_id]
(self, trial_id: str, result: Optional[Dict] = None, error: bool = False)
52,752
flaml.tune.searcher.blendsearch
on_trial_result
receive intermediate result.
def on_trial_result(self, trial_id: str, result: Dict): """receive intermediate result.""" if trial_id not in self._trial_proposed_by: return thread_id = self._trial_proposed_by[trial_id] if thread_id not in self._search_thread_pool: return if result and self._metric_constraints: result[self._metric + self.lagrange] = result[self._metric] self._search_thread_pool[thread_id].on_trial_result(trial_id, result)
(self, trial_id: str, result: Dict)
52,753
flaml.tune.searcher.blendsearch
restore
restore states from checkpoint.
def restore(self, checkpoint_path: str): """restore states from checkpoint.""" with open(checkpoint_path, "rb") as inputFile: state = pickle.load(inputFile) self.__dict__ = state.__dict__ self._start_time = time.time() self._set_deadline()
(self, checkpoint_path: str)
52,754
flaml.tune.searcher.blendsearch
save
save states to a checkpoint path.
def save(self, checkpoint_path: str): """save states to a checkpoint path.""" self._time_used += time.time() - self._start_time self._start_time = time.time() save_object = self with open(checkpoint_path, "wb") as outputFile: pickle.dump(save_object, outputFile)
(self, checkpoint_path: str)
52,755
flaml.tune.searcher.blendsearch
set_search_properties
null
def set_search_properties( self, metric: Optional[str] = None, mode: Optional[str] = None, config: Optional[Dict] = None, **spec, ) -> bool: metric_changed = mode_changed = False if metric and self._metric != metric: metric_changed = True self._metric = metric if self._metric_constraints: # metric modified by lagrange metric += self.lagrange # TODO: don't change metric for global search methods that # can handle constraints already if mode and self._mode != mode: mode_changed = True self._mode = mode if not self._ls.space: # the search space can be set only once if self._gs is not None: # define-by-run is not supported via set_search_properties self._gs.set_search_properties(metric, mode, config) self._gs.space = config if config: add_cost_to_space(config, self._ls.init_config, self._cat_hp_cost) self._ls.set_search_properties(metric, mode, config) self._init_search() else: if metric_changed or mode_changed: # reset search when metric or mode changed self._ls.set_search_properties(metric, mode) if self._gs is not None: self._gs = GlobalSearch( space=self._gs._space, metric=metric, mode=mode, seed=self._gs_seed, ) self._gs.space = self._ls.space self._init_search() if spec: # CFO doesn't need these settings if "time_budget_s" in spec: self._time_budget_s = spec["time_budget_s"] # budget from now now = time.time() self._time_used += now - self._start_time self._start_time = now self._set_deadline() if self._input_cost_attr == "auto" and self._time_budget_s: self.cost_attr = self._ls.cost_attr = TIME_TOTAL_S if "metric_target" in spec: self._metric_target = spec.get("metric_target") num_samples = spec.get("num_samples") if num_samples is not None: self._num_samples = ( (num_samples + len(self._result) + len(self._trial_proposed_by)) if num_samples > 0 # 0 is currently treated the same as -1 else num_samples ) return True
(self, metric: Optional[str] = None, mode: Optional[str] = None, config: Optional[Dict] = None, **spec) -> bool
52,756
flaml.tune.searcher.blendsearch
suggest
choose thread, suggest a valid config.
def suggest(self, trial_id: str) -> Optional[Dict]: """choose thread, suggest a valid config.""" if self._init_used and not self._points_to_evaluate: if self._cost_budget and self._cost_used >= self._cost_budget: return None choice, backup = self._select_thread() config = self._search_thread_pool[choice].suggest(trial_id) if not choice and config is not None and self._ls.resource: config[self._ls.resource_attr] = self.best_resource elif choice and config is None: # local search thread finishes if self._search_thread_pool[choice].converged: self._expand_admissible_region( self._ls_bound_min, self._ls_bound_max, self._search_thread_pool[choice].space, ) del self._search_thread_pool[choice] return # preliminary check; not checking config validation space = self._search_thread_pool[choice].space skip = self._should_skip(choice, trial_id, config, space) use_rs = 0 if skip: if choice: return # use rs when BO fails to suggest a config config, space = self._ls.complete_config({}) skip = self._should_skip(-1, trial_id, config, space) if skip: return use_rs = 1 if choice or self._valid( config, self._ls.space, space, self._gs_admissible_min, self._gs_admissible_max, ): # LS or valid or no backup choice self._trial_proposed_by[trial_id] = choice self._search_thread_pool[choice].running += use_rs else: # invalid config proposed by GS if choice == backup: # use CFO's init point init_config = self._ls.init_config config, space = self._ls.complete_config(init_config, self._ls_bound_min, self._ls_bound_max) self._trial_proposed_by[trial_id] = choice self._search_thread_pool[choice].running += 1 else: thread = self._search_thread_pool[backup] config = thread.suggest(trial_id) space = thread.space skip = self._should_skip(backup, trial_id, config, space) if skip: return self._trial_proposed_by[trial_id] = backup choice = backup if not choice: # global search # temporarily relax admissible region for parallel proposals self._update_admissible_region( config, self._gs_admissible_min, self._gs_admissible_max, space, self._ls.space, ) else: self._update_admissible_region( config, self._ls_bound_min, self._ls_bound_max, space, self._ls.space, ) self._gs_admissible_min.update(self._ls_bound_min) self._gs_admissible_max.update(self._ls_bound_max) signature = self._ls.config_signature(config, space) self._result[signature] = {} self._subspace[trial_id] = space else: # use init config if self._candidate_start_points is not None and self._points_to_evaluate: self._candidate_start_points[trial_id] = None reward = None if self._points_to_evaluate: init_config = self._points_to_evaluate.pop(0) if self._evaluated_rewards: reward = self._evaluated_rewards.pop(0) else: init_config = self._ls.init_config if self._allow_empty_config and not init_config: assert reward is None, "Empty config can't have reward." return init_config config, space = self._ls.complete_config(init_config, self._ls_bound_min, self._ls_bound_max) config_signature = self._ls.config_signature(config, space) if reward is None: result = self._result.get(config_signature) if result: # tried before return elif result is None: # not tried before if self._violate_config_constriants(config, config_signature): # violate config constraints return self._result[config_signature] = {} else: # running but no result yet return self._init_used = True self._trial_proposed_by[trial_id] = 0 self._search_thread_pool[0].running += 1 self._subspace[trial_id] = space if reward is not None: result = {self._metric: reward, self.cost_attr: 1, "config": config} # result = self._result[config_signature] self.on_trial_complete(trial_id, result) return if self._use_incumbent_result_in_evaluation: if self._trial_proposed_by[trial_id] > 0: choice_thread = self._search_thread_pool[self._trial_proposed_by[trial_id]] config[INCUMBENT_RESULT] = choice_thread.best_result return config
(self, trial_id: str) -> Optional[Dict]
52,757
flaml.tune.searcher.blendsearch
BlendSearchTuner
Tuner class for NNI.
class BlendSearchTuner(BlendSearch, NNITuner): """Tuner class for NNI.""" def receive_trial_result(self, parameter_id, parameters, value, **kwargs): """Receive trial's final result. Args: parameter_id: int. parameters: object created by `generate_parameters()`. value: final metrics of the trial, including default metric. """ result = { "config": parameters, self._metric: extract_scalar_reward(value), self.cost_attr: 1 if isinstance(value, float) else value.get(self.cost_attr, value.get("sequence", 1)), # if nni does not report training cost, # using sequence as an approximation. # if no sequence, using a constant 1 } self.on_trial_complete(str(parameter_id), result) ... def generate_parameters(self, parameter_id, **kwargs) -> Dict: """Returns a set of trial (hyper-)parameters, as a serializable object. Args: parameter_id: int. """ return self.suggest(str(parameter_id)) ... def update_search_space(self, search_space): """Required by NNI. Tuners are advised to support updating search space at run-time. If a tuner can only set search space once before generating first hyper-parameters, it should explicitly document this behaviour. Args: search_space: JSON object created by experiment owner. """ config = {} for key, value in search_space.items(): v = value.get("_value") _type = value["_type"] if _type == "choice": config[key] = choice(v) elif _type == "randint": config[key] = randint(*v) elif _type == "uniform": config[key] = uniform(*v) elif _type == "quniform": config[key] = quniform(*v) elif _type == "loguniform": config[key] = loguniform(*v) elif _type == "qloguniform": config[key] = qloguniform(*v) elif _type == "normal": config[key] = randn(*v) elif _type == "qnormal": config[key] = qrandn(*v) else: raise ValueError(f"unsupported type in search_space {_type}") # low_cost_partial_config is passed to constructor, # which is before update_search_space() is called init_config = self._ls.init_config add_cost_to_space(config, init_config, self._cat_hp_cost) self._ls = self.LocalSearch( init_config, self._ls.metric, self._mode, config, self._ls.resource_attr, self._ls.min_resource, self._ls.max_resource, self._ls.resource_multiple_factor, cost_attr=self.cost_attr, seed=self._ls.seed, lexico_objectives=self.lexico_objectives, ) if self._gs is not None: self._gs = GlobalSearch( space=config, metric=self._metric, mode=self._mode, sampler=self._gs._sampler, ) self._gs.space = config self._init_search()
(metric: Optional[str] = None, mode: Optional[str] = None, space: Optional[dict] = None, low_cost_partial_config: Optional[dict] = None, cat_hp_cost: Optional[dict] = None, points_to_evaluate: Optional[List[dict]] = None, evaluated_rewards: Optional[List] = None, time_budget_s: Union[int, float] = None, num_samples: Optional[int] = None, resource_attr: Optional[str] = None, min_resource: Optional[float] = None, max_resource: Optional[float] = None, reduction_factor: Optional[float] = None, global_search_alg: Optional[flaml.tune.searcher.suggestion.Searcher] = None, config_constraints: Optional[List[Tuple[Callable[[dict], float], str, float]]] = None, metric_constraints: Optional[List[Tuple[str, str, float]]] = None, seed: Optional[int] = 20, cost_attr: Optional[str] = 'auto', cost_budget: Optional[float] = None, experimental: Optional[bool] = False, lexico_objectives: Optional[dict] = None, use_incumbent_result_in_evaluation=False, allow_empty_config=False)
52,773
flaml.tune.searcher.blendsearch
generate_parameters
Returns a set of trial (hyper-)parameters, as a serializable object. Args: parameter_id: int.
def generate_parameters(self, parameter_id, **kwargs) -> Dict: """Returns a set of trial (hyper-)parameters, as a serializable object. Args: parameter_id: int. """ return self.suggest(str(parameter_id))
(self, parameter_id, **kwargs) -> Dict
52,776
flaml.tune.searcher.blendsearch
receive_trial_result
Receive trial's final result. Args: parameter_id: int. parameters: object created by `generate_parameters()`. value: final metrics of the trial, including default metric.
def receive_trial_result(self, parameter_id, parameters, value, **kwargs): """Receive trial's final result. Args: parameter_id: int. parameters: object created by `generate_parameters()`. value: final metrics of the trial, including default metric. """ result = { "config": parameters, self._metric: extract_scalar_reward(value), self.cost_attr: 1 if isinstance(value, float) else value.get(self.cost_attr, value.get("sequence", 1)), # if nni does not report training cost, # using sequence as an approximation. # if no sequence, using a constant 1 } self.on_trial_complete(str(parameter_id), result)
(self, parameter_id, parameters, value, **kwargs)
52,781
flaml.tune.searcher.blendsearch
update_search_space
Required by NNI. Tuners are advised to support updating search space at run-time. If a tuner can only set search space once before generating first hyper-parameters, it should explicitly document this behaviour. Args: search_space: JSON object created by experiment owner.
def update_search_space(self, search_space): """Required by NNI. Tuners are advised to support updating search space at run-time. If a tuner can only set search space once before generating first hyper-parameters, it should explicitly document this behaviour. Args: search_space: JSON object created by experiment owner. """ config = {} for key, value in search_space.items(): v = value.get("_value") _type = value["_type"] if _type == "choice": config[key] = choice(v) elif _type == "randint": config[key] = randint(*v) elif _type == "uniform": config[key] = uniform(*v) elif _type == "quniform": config[key] = quniform(*v) elif _type == "loguniform": config[key] = loguniform(*v) elif _type == "qloguniform": config[key] = qloguniform(*v) elif _type == "normal": config[key] = randn(*v) elif _type == "qnormal": config[key] = qrandn(*v) else: raise ValueError(f"unsupported type in search_space {_type}") # low_cost_partial_config is passed to constructor, # which is before update_search_space() is called init_config = self._ls.init_config add_cost_to_space(config, init_config, self._cat_hp_cost) self._ls = self.LocalSearch( init_config, self._ls.metric, self._mode, config, self._ls.resource_attr, self._ls.min_resource, self._ls.max_resource, self._ls.resource_multiple_factor, cost_attr=self.cost_attr, seed=self._ls.seed, lexico_objectives=self.lexico_objectives, ) if self._gs is not None: self._gs = GlobalSearch( space=config, metric=self._metric, mode=self._mode, sampler=self._gs._sampler, ) self._gs.space = config self._init_search()
(self, search_space)
52,782
flaml.tune.searcher.blendsearch
CFO
class for CFO algorithm.
class CFO(BlendSearchTuner): """class for CFO algorithm.""" __name__ = "CFO" def suggest(self, trial_id: str) -> Optional[Dict]: # Number of threads is 1 or 2. Thread 0 is a vacuous thread assert len(self._search_thread_pool) < 3, len(self._search_thread_pool) if len(self._search_thread_pool) < 2: # When a local thread converges, the number of threads is 1 # Need to restart self._init_used = False return super().suggest(trial_id) def _select_thread(self) -> Tuple: for key in self._search_thread_pool: if key: return key, key def _create_condition(self, result: Dict) -> bool: """create thread condition""" if self._points_to_evaluate: # still evaluating user-specified init points # we evaluate all candidate start points before we # create the first local search thread return False if len(self._search_thread_pool) == 2: return False if self._candidate_start_points and self._thread_count == 1: # result needs to match or exceed the best candidate start point obj_best = min( (self._ls.metric_op * r[self._ls.metric] for r in self._candidate_start_points.values() if r), default=-np.inf, ) return result[self._ls.metric] * self._ls.metric_op <= obj_best else: return True def on_trial_complete(self, trial_id: str, result: Optional[Dict] = None, error: bool = False): super().on_trial_complete(trial_id, result, error) if self._candidate_start_points and trial_id in self._candidate_start_points: # the trial is a candidate start point self._candidate_start_points[trial_id] = result if len(self._search_thread_pool) < 2 and not self._points_to_evaluate: self._create_thread_from_best_candidate()
(metric: Optional[str] = None, mode: Optional[str] = None, space: Optional[dict] = None, low_cost_partial_config: Optional[dict] = None, cat_hp_cost: Optional[dict] = None, points_to_evaluate: Optional[List[dict]] = None, evaluated_rewards: Optional[List] = None, time_budget_s: Union[int, float] = None, num_samples: Optional[int] = None, resource_attr: Optional[str] = None, min_resource: Optional[float] = None, max_resource: Optional[float] = None, reduction_factor: Optional[float] = None, global_search_alg: Optional[flaml.tune.searcher.suggestion.Searcher] = None, config_constraints: Optional[List[Tuple[Callable[[dict], float], str, float]]] = None, metric_constraints: Optional[List[Tuple[str, str, float]]] = None, seed: Optional[int] = 20, cost_attr: Optional[str] = 'auto', cost_budget: Optional[float] = None, experimental: Optional[bool] = False, lexico_objectives: Optional[dict] = None, use_incumbent_result_in_evaluation=False, allow_empty_config=False)
52,785
flaml.tune.searcher.blendsearch
_create_condition
create thread condition
def _create_condition(self, result: Dict) -> bool: """create thread condition""" if self._points_to_evaluate: # still evaluating user-specified init points # we evaluate all candidate start points before we # create the first local search thread return False if len(self._search_thread_pool) == 2: return False if self._candidate_start_points and self._thread_count == 1: # result needs to match or exceed the best candidate start point obj_best = min( (self._ls.metric_op * r[self._ls.metric] for r in self._candidate_start_points.values() if r), default=-np.inf, ) return result[self._ls.metric] * self._ls.metric_op <= obj_best else: return True
(self, result: Dict) -> bool
52,791
flaml.tune.searcher.blendsearch
_select_thread
null
def _select_thread(self) -> Tuple: for key in self._search_thread_pool: if key: return key, key
(self) -> Tuple
52,799
flaml.tune.searcher.blendsearch
on_trial_complete
null
def on_trial_complete(self, trial_id: str, result: Optional[Dict] = None, error: bool = False): super().on_trial_complete(trial_id, result, error) if self._candidate_start_points and trial_id in self._candidate_start_points: # the trial is a candidate start point self._candidate_start_points[trial_id] = result if len(self._search_thread_pool) < 2 and not self._points_to_evaluate: self._create_thread_from_best_candidate()
(self, trial_id: str, result: Optional[Dict] = None, error: bool = False)
52,805
flaml.tune.searcher.blendsearch
suggest
null
def suggest(self, trial_id: str) -> Optional[Dict]: # Number of threads is 1 or 2. Thread 0 is a vacuous thread assert len(self._search_thread_pool) < 3, len(self._search_thread_pool) if len(self._search_thread_pool) < 2: # When a local thread converges, the number of threads is 1 # Need to restart self._init_used = False return super().suggest(trial_id)
(self, trial_id: str) -> Optional[Dict]
52,807
flaml.tune.searcher.flow2
FLOW2
Local search algorithm FLOW2, with adaptive step size.
class FLOW2(Searcher): """Local search algorithm FLOW2, with adaptive step size.""" STEPSIZE = 0.1 STEP_LOWER_BOUND = 0.0001 def __init__( self, init_config: dict, metric: Optional[str] = None, mode: Optional[str] = None, space: Optional[dict] = None, resource_attr: Optional[str] = None, min_resource: Optional[float] = None, max_resource: Optional[float] = None, resource_multiple_factor: Optional[float] = None, cost_attr: Optional[str] = "time_total_s", seed: Optional[int] = 20, lexico_objectives=None, ): """Constructor. Args: init_config: a dictionary of a partial or full initial config, e.g., from a subset of controlled dimensions to the initial low-cost values. E.g., {'epochs': 1}. metric: A string of the metric name to optimize for. mode: A string in ['min', 'max'] to specify the objective as minimization or maximization. space: A dictionary to specify the search space. resource_attr: A string to specify the resource dimension and the best performance is assumed to be at the max_resource. min_resource: A float of the minimal resource to use for the resource_attr. max_resource: A float of the maximal resource to use for the resource_attr. resource_multiple_factor: A float of the multiplicative factor used for increasing resource. cost_attr: A string of the attribute used for cost. seed: An integer of the random seed. lexico_objectives: dict, default=None | It specifics information needed to perform multi-objective optimization with lexicographic preferences. When lexico_objectives is not None, the arguments metric, mode will be invalid. This dictionary shall contain the following fields of key-value pairs: - "metrics": a list of optimization objectives with the orders reflecting the priorities/preferences of the objectives. - "modes" (optional): a list of optimization modes (each mode either "min" or "max") corresponding to the objectives in the metric list. If not provided, we use "min" as the default mode for all the objectives - "targets" (optional): a dictionary to specify the optimization targets on the objectives. The keys are the metric names (provided in "metric"), and the values are the numerical target values. - "tolerances" (optional): a dictionary to specify the optimality tolerances on objectives. The keys are the metric names (provided in "metrics"), and the values are the absolute/percentage tolerance in the form of numeric/string. E.g., ```python lexico_objectives = { "metrics": ["error_rate", "pred_time"], "modes": ["min", "min"], "tolerances": {"error_rate": 0.01, "pred_time": 0.0}, "targets": {"error_rate": 0.0}, } ``` We also support percentage tolerance. E.g., ```python lexico_objectives = { "metrics": ["error_rate", "pred_time"], "modes": ["min", "min"], "tolerances": {"error_rate": "5%", "pred_time": "0%"}, "targets": {"error_rate": 0.0}, } ``` """ if mode: assert mode in ["min", "max"], "`mode` must be 'min' or 'max'." else: mode = "min" super(FLOW2, self).__init__(metric=metric, mode=mode) # internally minimizes, so "max" => -1 if mode == "max": self.metric_op = -1.0 elif mode == "min": self.metric_op = 1.0 self.space = space or {} self._space = flatten_dict(self.space, prevent_delimiter=True) self._random = np.random.RandomState(seed) self.rs_random = sample._BackwardsCompatibleNumpyRng(seed + 19823) self.seed = seed self.init_config = init_config self.best_config = flatten_dict(init_config) self.resource_attr = resource_attr self.min_resource = min_resource self.lexico_objectives = lexico_objectives if self.lexico_objectives is not None: if "modes" not in self.lexico_objectives.keys(): self.lexico_objectives["modes"] = ["min"] * len(self.lexico_objectives["metrics"]) for t_metric, t_mode in zip(self.lexico_objectives["metrics"], self.lexico_objectives["modes"]): if t_metric not in self.lexico_objectives["tolerances"].keys(): self.lexico_objectives["tolerances"][t_metric] = 0 if t_metric not in self.lexico_objectives["targets"].keys(): self.lexico_objectives["targets"][t_metric] = -float("inf") if t_mode == "min" else float("inf") self.resource_multiple_factor = resource_multiple_factor or SAMPLE_MULTIPLY_FACTOR self.cost_attr = cost_attr self.max_resource = max_resource self._resource = None self._f_best = None # only use for lexico_comapre. It represent the best value achieved by lexico_flow. self._step_lb = np.inf self._histories = None # only use for lexico_comapre. It records the result of historical configurations. if space is not None: self._init_search() def _init_search(self): self._tunable_keys = [] self._bounded_keys = [] self._unordered_cat_hp = {} hier = False for key, domain in self._space.items(): assert not ( isinstance(domain, dict) and "grid_search" in domain ), f"{key}'s domain is grid search, not supported in FLOW^2." if callable(getattr(domain, "get_sampler", None)): self._tunable_keys.append(key) sampler = domain.get_sampler() # the step size lower bound for uniform variables doesn't depend # on the current config if isinstance(sampler, sample.Quantized): q = sampler.q sampler = sampler.get_sampler() if str(sampler) == "Uniform": self._step_lb = min(self._step_lb, q / (domain.upper - domain.lower + 1)) elif isinstance(domain, sample.Integer) and str(sampler) == "Uniform": self._step_lb = min(self._step_lb, 1.0 / (domain.upper - domain.lower)) if isinstance(domain, sample.Categorical): if not domain.ordered: self._unordered_cat_hp[key] = len(domain.categories) if not hier: for cat in domain.categories: if isinstance(cat, dict): hier = True break if str(sampler) != "Normal": self._bounded_keys.append(key) if not hier: self._space_keys = sorted(self._tunable_keys) self.hierarchical = hier if self.resource_attr and self.resource_attr not in self._space and self.max_resource: self.min_resource = self.min_resource or self._min_resource() self._resource = self._round(self.min_resource) if not hier: self._space_keys.append(self.resource_attr) else: self._resource = None self.incumbent = {} self.incumbent = self.normalize(self.best_config) # flattened self.best_obj = self.cost_incumbent = None self.dim = len(self._tunable_keys) # total # tunable dimensions self._direction_tried = None self._num_complete4incumbent = self._cost_complete4incumbent = 0 self._num_allowed4incumbent = 2 * self.dim self._proposed_by = {} # trial_id: int -> incumbent: Dict self.step_ub = np.sqrt(self.dim) self.step = self.STEPSIZE * self.step_ub lb = self.step_lower_bound if lb > self.step: self.step = lb * 2 # upper bound self.step = min(self.step, self.step_ub) # maximal # consecutive no improvements self.dir = 2 ** (min(9, self.dim)) self._configs = {} # dict from trial_id to (config, stepsize) self._K = 0 self._iter_best_config = 1 self.trial_count_proposed = self.trial_count_complete = 1 self._num_proposedby_incumbent = 0 self._reset_times = 0 # record intermediate trial cost self._trial_cost = {} self._same = False # whether the proposed config is the same as best_config self._init_phase = True # initial phase to increase initial stepsize self._trunc = 0 # no truncation by default. when > 0, it means how many # non-zero dimensions to keep in the random unit vector @property def step_lower_bound(self) -> float: step_lb = self._step_lb for key in self._tunable_keys: if key not in self.best_config: continue domain = self._space[key] sampler = domain.get_sampler() # the stepsize lower bound for log uniform variables depends on the # current config if isinstance(sampler, sample.Quantized): q = sampler.q sampler_inner = sampler.get_sampler() if str(sampler_inner) == "LogUniform": step_lb = min( step_lb, np.log(1.0 + q / self.best_config[key]) / np.log(domain.upper / domain.lower), ) elif isinstance(domain, sample.Integer) and str(sampler) == "LogUniform": step_lb = min( step_lb, np.log(1.0 + 1.0 / self.best_config[key]) / np.log((domain.upper - 1) / domain.lower), ) if np.isinf(step_lb): step_lb = self.STEP_LOWER_BOUND else: step_lb *= self.step_ub return step_lb @property def resource(self) -> float: return self._resource def _min_resource(self) -> float: """automatically decide minimal resource""" return self.max_resource / np.pow(self.resource_multiple_factor, 5) def _round(self, resource) -> float: """round the resource to self.max_resource if close to it""" if resource * self.resource_multiple_factor > self.max_resource: return self.max_resource return resource def rand_vector_gaussian(self, dim, std=1.0): return self._random.normal(0, std, dim) def complete_config( self, partial_config: Dict, lower: Optional[Dict] = None, upper: Optional[Dict] = None, ) -> Tuple[Dict, Dict]: """Generate a complete config from the partial config input. Add minimal resource to config if available. """ disturb = self._reset_times and partial_config == self.init_config # if not the first time to complete init_config, use random gaussian config, space = complete_config(partial_config, self.space, self, disturb, lower, upper) if partial_config == self.init_config: self._reset_times += 1 if self._resource: config[self.resource_attr] = self.min_resource return config, space def create(self, init_config: Dict, obj: float, cost: float, space: Dict) -> Searcher: # space is the subspace where the init_config is located flow2 = self.__class__( init_config, self.metric, self.mode, space, self.resource_attr, self.min_resource, self.max_resource, self.resource_multiple_factor, self.cost_attr, self.seed + 1, self.lexico_objectives, ) if self.lexico_objectives is not None: flow2.best_obj = {} for k, v in obj.items(): flow2.best_obj[k] = ( -v if self.lexico_objectives["modes"][self.lexico_objectives["metrics"].index(k)] == "max" else v ) else: flow2.best_obj = obj * self.metric_op # minimize internally flow2.cost_incumbent = cost self.seed += 1 return flow2 def normalize(self, config, recursive=False) -> Dict: """normalize each dimension in config to [0,1].""" return normalize(config, self._space, self.best_config, self.incumbent, recursive) def denormalize(self, config): """denormalize each dimension in config from [0,1].""" return denormalize(config, self._space, self.best_config, self.incumbent, self._random) def set_search_properties( self, metric: Optional[str] = None, mode: Optional[str] = None, config: Optional[Dict] = None, ) -> bool: if metric: self._metric = metric if mode: assert mode in ["min", "max"], "`mode` must be 'min' or 'max'." self._mode = mode if mode == "max": self.metric_op = -1.0 elif mode == "min": self.metric_op = 1.0 if config: self.space = config self._space = flatten_dict(self.space) self._init_search() return True def update_fbest( self, ): obj_initial = self.lexico_objectives["metrics"][0] feasible_index = np.array([*range(len(self._histories[obj_initial]))]) for k_metric in self.lexico_objectives["metrics"]: k_values = np.array(self._histories[k_metric]) feasible_value = k_values.take(feasible_index) self._f_best[k_metric] = np.min(feasible_value) if not isinstance(self.lexico_objectives["tolerances"][k_metric], str): tolerance_bound = self._f_best[k_metric] + self.lexico_objectives["tolerances"][k_metric] else: assert ( self.lexico_objectives["tolerances"][k_metric][-1] == "%" ), "String tolerance of {} should use %% as the suffix".format(k_metric) tolerance_bound = self._f_best[k_metric] * ( 1 + 0.01 * float(self.lexico_objectives["tolerances"][k_metric].replace("%", "")) ) feasible_index_filter = np.where( feasible_value <= max( tolerance_bound, self.lexico_objectives["targets"][k_metric], ) )[0] feasible_index = feasible_index.take(feasible_index_filter) def lexico_compare(self, result) -> bool: if self._histories is None: self._histories, self._f_best = defaultdict(list), {} for k in self.lexico_objectives["metrics"]: self._histories[k].append(result[k]) self.update_fbest() return True else: for k in self.lexico_objectives["metrics"]: self._histories[k].append(result[k]) self.update_fbest() for k_metric, k_mode in zip(self.lexico_objectives["metrics"], self.lexico_objectives["modes"]): k_target = ( self.lexico_objectives["targets"][k_metric] if k_mode == "min" else -self.lexico_objectives["targets"][k_metric] ) if not isinstance(self.lexico_objectives["tolerances"][k_metric], str): tolerance_bound = self._f_best[k_metric] + self.lexico_objectives["tolerances"][k_metric] else: assert ( self.lexico_objectives["tolerances"][k_metric][-1] == "%" ), "String tolerance of {} should use %% as the suffix".format(k_metric) tolerance_bound = self._f_best[k_metric] * ( 1 + 0.01 * float(self.lexico_objectives["tolerances"][k_metric].replace("%", "")) ) if (result[k_metric] < max(tolerance_bound, k_target)) and ( self.best_obj[k_metric] < max( tolerance_bound, k_target, ) ): continue elif result[k_metric] < self.best_obj[k_metric]: return True else: return False for k_metr in self.lexico_objectives["metrics"]: if result[k_metr] == self.best_obj[k_metr]: continue elif result[k_metr] < self.best_obj[k_metr]: return True else: return False def on_trial_complete(self, trial_id: str, result: Optional[Dict] = None, error: bool = False): """ Compare with incumbent. If better, move, reset num_complete and num_proposed. If not better and num_complete >= 2*dim, num_allowed += 2. """ self.trial_count_complete += 1 if not error and result: obj = ( result.get(self._metric) if self.lexico_objectives is None else {k: result[k] for k in self.lexico_objectives["metrics"]} ) if obj: obj = ( { k: -obj[k] if m == "max" else obj[k] for k, m in zip( self.lexico_objectives["metrics"], self.lexico_objectives["modes"], ) } if isinstance(obj, dict) else obj * self.metric_op ) if ( self.best_obj is None or (self.lexico_objectives is None and obj < self.best_obj) or (self.lexico_objectives is not None and self.lexico_compare(obj)) ): self.best_obj = obj self.best_config, self.step = self._configs[trial_id] self.incumbent = self.normalize(self.best_config) self.cost_incumbent = result.get(self.cost_attr, 1) if self._resource: self._resource = self.best_config[self.resource_attr] self._num_complete4incumbent = 0 self._cost_complete4incumbent = 0 self._num_proposedby_incumbent = 0 self._num_allowed4incumbent = 2 * self.dim self._proposed_by.clear() if self._K > 0: self.step *= np.sqrt(self._K / self._oldK) self.step = min(self.step, self.step_ub) self._iter_best_config = self.trial_count_complete if self._trunc: self._trunc = min(self._trunc + 1, self.dim) return elif self._trunc: self._trunc = max(self._trunc >> 1, 1) proposed_by = self._proposed_by.get(trial_id) if proposed_by == self.incumbent: self._num_complete4incumbent += 1 cost = result.get(self.cost_attr, 1) if result else self._trial_cost.get(trial_id) if cost: self._cost_complete4incumbent += cost if self._num_complete4incumbent >= 2 * self.dim and self._num_allowed4incumbent == 0: self._num_allowed4incumbent = 2 if self._num_complete4incumbent == self.dir and (not self._resource or self._resource == self.max_resource): self._num_complete4incumbent -= 2 self._num_allowed4incumbent = max(self._num_allowed4incumbent, 2) def on_trial_result(self, trial_id: str, result: Dict): """Early update of incumbent.""" if result: obj = ( result.get(self._metric) if self.lexico_objectives is None else {k: result[k] for k in self.lexico_objectives["metrics"]} ) if obj: obj = ( { k: -obj[k] if m == "max" else obj[k] for k, m in zip( self.lexico_objectives["metrics"], self.lexico_objectives["modes"], ) } if isinstance(obj, dict) else obj * self.metric_op ) if ( self.best_obj is None or (self.lexico_objectives is None and obj < self.best_obj) or (self.lexico_objectives is not None and self.lexico_compare(obj)) ): self.best_obj = obj config = self._configs[trial_id][0] if self.best_config != config: self.best_config = config if self._resource: self._resource = config[self.resource_attr] self.incumbent = self.normalize(self.best_config) self.cost_incumbent = result.get(self.cost_attr, 1) self._cost_complete4incumbent = 0 self._num_complete4incumbent = 0 self._num_proposedby_incumbent = 0 self._num_allowed4incumbent = 2 * self.dim self._proposed_by.clear() self._iter_best_config = self.trial_count_complete cost = result.get(self.cost_attr, 1) # record the cost in case it is pruned and cost info is lost self._trial_cost[trial_id] = cost def rand_vector_unit_sphere(self, dim, trunc=0) -> np.ndarray: vec = self._random.normal(0, 1, dim) if 0 < trunc < dim: vec[np.abs(vec).argsort()[: dim - trunc]] = 0 mag = np.linalg.norm(vec) return vec / mag def suggest(self, trial_id: str) -> Optional[Dict]: """Suggest a new config, one of the following cases: 1. same incumbent, increase resource. 2. same resource, move from the incumbent to a random direction. 3. same resource, move from the incumbent to the opposite direction. """ # TODO: better decouple FLOW2 config suggestion and stepsize update self.trial_count_proposed += 1 if ( self._num_complete4incumbent > 0 and self.cost_incumbent and self._resource and self._resource < self.max_resource and (self._cost_complete4incumbent >= self.cost_incumbent * self.resource_multiple_factor) ): return self._increase_resource(trial_id) self._num_allowed4incumbent -= 1 move = self.incumbent.copy() if self._direction_tried is not None: # return negative direction for i, key in enumerate(self._tunable_keys): move[key] -= self._direction_tried[i] self._direction_tried = None else: # propose a new direction self._direction_tried = self.rand_vector_unit_sphere(self.dim, self._trunc) * self.step for i, key in enumerate(self._tunable_keys): move[key] += self._direction_tried[i] self._project(move) config = self.denormalize(move) self._proposed_by[trial_id] = self.incumbent self._configs[trial_id] = (config, self.step) self._num_proposedby_incumbent += 1 best_config = self.best_config if self._init_phase: if self._direction_tried is None: if self._same: same = not any(key not in best_config or value != best_config[key] for key, value in config.items()) if same: # increase step size self.step += self.STEPSIZE self.step = min(self.step, self.step_ub) else: same = not any(key not in best_config or value != best_config[key] for key, value in config.items()) self._same = same if self._num_proposedby_incumbent == self.dir and (not self._resource or self._resource == self.max_resource): # check stuck condition if using max resource self._num_proposedby_incumbent -= 2 self._init_phase = False if self.step < self.step_lower_bound: return None # decrease step size self._oldK = self._K or self._iter_best_config self._K = self.trial_count_proposed + 1 self.step *= np.sqrt(self._oldK / self._K) if self._init_phase: return unflatten_dict(config) if self._trunc == 1 and self._direction_tried is not None: # random for i, key in enumerate(self._tunable_keys): if self._direction_tried[i] != 0: for _, generated in generate_variants_compatible( {"config": {key: self._space[key]}}, random_state=self.rs_random ): if generated["config"][key] != best_config[key]: config[key] = generated["config"][key] return unflatten_dict(config) break elif len(config) == len(best_config): for key, value in best_config.items(): if value != config[key]: return unflatten_dict(config) # print('move to', move) self.incumbent = move return unflatten_dict(config) def _increase_resource(self, trial_id): # consider increasing resource using sum eval cost of complete # configs old_resource = self._resource self._resource = self._round(self._resource * self.resource_multiple_factor) self.cost_incumbent *= self._resource / old_resource config = self.best_config.copy() config[self.resource_attr] = self._resource self._direction_tried = None self._configs[trial_id] = (config, self.step) return unflatten_dict(config) def _project(self, config): """project normalized config in the feasible region and set resource_attr""" for key in self._bounded_keys: value = config[key] config[key] = max(0, min(1, value)) if self._resource: config[self.resource_attr] = self._resource @property def can_suggest(self) -> bool: """Can't suggest if 2*dim configs have been proposed for the incumbent while fewer are completed. """ return self._num_allowed4incumbent > 0 def config_signature(self, config, space: Dict = None) -> tuple: """Return the signature tuple of a config.""" config = flatten_dict(config) space = flatten_dict(space) if space else self._space value_list = [] # self._space_keys doesn't contain keys with const values, # e.g., "eval_metric": ["logloss", "error"]. keys = sorted(config.keys()) if self.hierarchical else self._space_keys for key in keys: value = config[key] if key == self.resource_attr: value_list.append(value) else: # key must be in space domain = space[key] if self.hierarchical and not ( domain is None or type(domain) in (str, int, float) or isinstance(domain, sample.Domain) ): # not domain or hashable # get rid of list type for hierarchical search space. continue if isinstance(domain, sample.Integer): value_list.append(int(round(value))) else: value_list.append(value) return tuple(value_list) @property def converged(self) -> bool: """Whether the local search has converged.""" if self._num_complete4incumbent < self.dir - 2: return False # check stepsize after enough configs are completed return self.step < self.step_lower_bound def reach(self, other: Searcher) -> bool: """whether the incumbent can reach the incumbent of other.""" config1, config2 = self.best_config, other.best_config incumbent1, incumbent2 = self.incumbent, other.incumbent if self._resource and config1[self.resource_attr] > config2[self.resource_attr]: # resource will not decrease return False for key in self._unordered_cat_hp: # unordered cat choice is hard to reach by chance if config1[key] != config2.get(key): return False delta = np.array([incumbent1[key] - incumbent2.get(key, np.inf) for key in self._tunable_keys]) return np.linalg.norm(delta) <= self.step
(init_config: dict, metric: Optional[str] = None, mode: Optional[str] = None, space: Optional[dict] = None, resource_attr: Optional[str] = None, min_resource: Optional[float] = None, max_resource: Optional[float] = None, resource_multiple_factor: Optional[float] = None, cost_attr: Optional[str] = 'time_total_s', seed: Optional[int] = 20, lexico_objectives=None)
52,808
flaml.tune.searcher.flow2
__init__
Constructor. Args: init_config: a dictionary of a partial or full initial config, e.g., from a subset of controlled dimensions to the initial low-cost values. E.g., {'epochs': 1}. metric: A string of the metric name to optimize for. mode: A string in ['min', 'max'] to specify the objective as minimization or maximization. space: A dictionary to specify the search space. resource_attr: A string to specify the resource dimension and the best performance is assumed to be at the max_resource. min_resource: A float of the minimal resource to use for the resource_attr. max_resource: A float of the maximal resource to use for the resource_attr. resource_multiple_factor: A float of the multiplicative factor used for increasing resource. cost_attr: A string of the attribute used for cost. seed: An integer of the random seed. lexico_objectives: dict, default=None | It specifics information needed to perform multi-objective optimization with lexicographic preferences. When lexico_objectives is not None, the arguments metric, mode will be invalid. This dictionary shall contain the following fields of key-value pairs: - "metrics": a list of optimization objectives with the orders reflecting the priorities/preferences of the objectives. - "modes" (optional): a list of optimization modes (each mode either "min" or "max") corresponding to the objectives in the metric list. If not provided, we use "min" as the default mode for all the objectives - "targets" (optional): a dictionary to specify the optimization targets on the objectives. The keys are the metric names (provided in "metric"), and the values are the numerical target values. - "tolerances" (optional): a dictionary to specify the optimality tolerances on objectives. The keys are the metric names (provided in "metrics"), and the values are the absolute/percentage tolerance in the form of numeric/string. E.g., ```python lexico_objectives = { "metrics": ["error_rate", "pred_time"], "modes": ["min", "min"], "tolerances": {"error_rate": 0.01, "pred_time": 0.0}, "targets": {"error_rate": 0.0}, } ``` We also support percentage tolerance. E.g., ```python lexico_objectives = { "metrics": ["error_rate", "pred_time"], "modes": ["min", "min"], "tolerances": {"error_rate": "5%", "pred_time": "0%"}, "targets": {"error_rate": 0.0}, } ```
def __init__( self, init_config: dict, metric: Optional[str] = None, mode: Optional[str] = None, space: Optional[dict] = None, resource_attr: Optional[str] = None, min_resource: Optional[float] = None, max_resource: Optional[float] = None, resource_multiple_factor: Optional[float] = None, cost_attr: Optional[str] = "time_total_s", seed: Optional[int] = 20, lexico_objectives=None, ): """Constructor. Args: init_config: a dictionary of a partial or full initial config, e.g., from a subset of controlled dimensions to the initial low-cost values. E.g., {'epochs': 1}. metric: A string of the metric name to optimize for. mode: A string in ['min', 'max'] to specify the objective as minimization or maximization. space: A dictionary to specify the search space. resource_attr: A string to specify the resource dimension and the best performance is assumed to be at the max_resource. min_resource: A float of the minimal resource to use for the resource_attr. max_resource: A float of the maximal resource to use for the resource_attr. resource_multiple_factor: A float of the multiplicative factor used for increasing resource. cost_attr: A string of the attribute used for cost. seed: An integer of the random seed. lexico_objectives: dict, default=None | It specifics information needed to perform multi-objective optimization with lexicographic preferences. When lexico_objectives is not None, the arguments metric, mode will be invalid. This dictionary shall contain the following fields of key-value pairs: - "metrics": a list of optimization objectives with the orders reflecting the priorities/preferences of the objectives. - "modes" (optional): a list of optimization modes (each mode either "min" or "max") corresponding to the objectives in the metric list. If not provided, we use "min" as the default mode for all the objectives - "targets" (optional): a dictionary to specify the optimization targets on the objectives. The keys are the metric names (provided in "metric"), and the values are the numerical target values. - "tolerances" (optional): a dictionary to specify the optimality tolerances on objectives. The keys are the metric names (provided in "metrics"), and the values are the absolute/percentage tolerance in the form of numeric/string. E.g., ```python lexico_objectives = { "metrics": ["error_rate", "pred_time"], "modes": ["min", "min"], "tolerances": {"error_rate": 0.01, "pred_time": 0.0}, "targets": {"error_rate": 0.0}, } ``` We also support percentage tolerance. E.g., ```python lexico_objectives = { "metrics": ["error_rate", "pred_time"], "modes": ["min", "min"], "tolerances": {"error_rate": "5%", "pred_time": "0%"}, "targets": {"error_rate": 0.0}, } ``` """ if mode: assert mode in ["min", "max"], "`mode` must be 'min' or 'max'." else: mode = "min" super(FLOW2, self).__init__(metric=metric, mode=mode) # internally minimizes, so "max" => -1 if mode == "max": self.metric_op = -1.0 elif mode == "min": self.metric_op = 1.0 self.space = space or {} self._space = flatten_dict(self.space, prevent_delimiter=True) self._random = np.random.RandomState(seed) self.rs_random = sample._BackwardsCompatibleNumpyRng(seed + 19823) self.seed = seed self.init_config = init_config self.best_config = flatten_dict(init_config) self.resource_attr = resource_attr self.min_resource = min_resource self.lexico_objectives = lexico_objectives if self.lexico_objectives is not None: if "modes" not in self.lexico_objectives.keys(): self.lexico_objectives["modes"] = ["min"] * len(self.lexico_objectives["metrics"]) for t_metric, t_mode in zip(self.lexico_objectives["metrics"], self.lexico_objectives["modes"]): if t_metric not in self.lexico_objectives["tolerances"].keys(): self.lexico_objectives["tolerances"][t_metric] = 0 if t_metric not in self.lexico_objectives["targets"].keys(): self.lexico_objectives["targets"][t_metric] = -float("inf") if t_mode == "min" else float("inf") self.resource_multiple_factor = resource_multiple_factor or SAMPLE_MULTIPLY_FACTOR self.cost_attr = cost_attr self.max_resource = max_resource self._resource = None self._f_best = None # only use for lexico_comapre. It represent the best value achieved by lexico_flow. self._step_lb = np.inf self._histories = None # only use for lexico_comapre. It records the result of historical configurations. if space is not None: self._init_search()
(self, init_config: dict, metric: Optional[str] = None, mode: Optional[str] = None, space: Optional[dict] = None, resource_attr: Optional[str] = None, min_resource: Optional[float] = None, max_resource: Optional[float] = None, resource_multiple_factor: Optional[float] = None, cost_attr: Optional[str] = 'time_total_s', seed: Optional[int] = 20, lexico_objectives=None)
52,809
flaml.tune.searcher.flow2
_increase_resource
null
def _increase_resource(self, trial_id): # consider increasing resource using sum eval cost of complete # configs old_resource = self._resource self._resource = self._round(self._resource * self.resource_multiple_factor) self.cost_incumbent *= self._resource / old_resource config = self.best_config.copy() config[self.resource_attr] = self._resource self._direction_tried = None self._configs[trial_id] = (config, self.step) return unflatten_dict(config)
(self, trial_id)
52,810
flaml.tune.searcher.flow2
_init_search
null
def _init_search(self): self._tunable_keys = [] self._bounded_keys = [] self._unordered_cat_hp = {} hier = False for key, domain in self._space.items(): assert not ( isinstance(domain, dict) and "grid_search" in domain ), f"{key}'s domain is grid search, not supported in FLOW^2." if callable(getattr(domain, "get_sampler", None)): self._tunable_keys.append(key) sampler = domain.get_sampler() # the step size lower bound for uniform variables doesn't depend # on the current config if isinstance(sampler, sample.Quantized): q = sampler.q sampler = sampler.get_sampler() if str(sampler) == "Uniform": self._step_lb = min(self._step_lb, q / (domain.upper - domain.lower + 1)) elif isinstance(domain, sample.Integer) and str(sampler) == "Uniform": self._step_lb = min(self._step_lb, 1.0 / (domain.upper - domain.lower)) if isinstance(domain, sample.Categorical): if not domain.ordered: self._unordered_cat_hp[key] = len(domain.categories) if not hier: for cat in domain.categories: if isinstance(cat, dict): hier = True break if str(sampler) != "Normal": self._bounded_keys.append(key) if not hier: self._space_keys = sorted(self._tunable_keys) self.hierarchical = hier if self.resource_attr and self.resource_attr not in self._space and self.max_resource: self.min_resource = self.min_resource or self._min_resource() self._resource = self._round(self.min_resource) if not hier: self._space_keys.append(self.resource_attr) else: self._resource = None self.incumbent = {} self.incumbent = self.normalize(self.best_config) # flattened self.best_obj = self.cost_incumbent = None self.dim = len(self._tunable_keys) # total # tunable dimensions self._direction_tried = None self._num_complete4incumbent = self._cost_complete4incumbent = 0 self._num_allowed4incumbent = 2 * self.dim self._proposed_by = {} # trial_id: int -> incumbent: Dict self.step_ub = np.sqrt(self.dim) self.step = self.STEPSIZE * self.step_ub lb = self.step_lower_bound if lb > self.step: self.step = lb * 2 # upper bound self.step = min(self.step, self.step_ub) # maximal # consecutive no improvements self.dir = 2 ** (min(9, self.dim)) self._configs = {} # dict from trial_id to (config, stepsize) self._K = 0 self._iter_best_config = 1 self.trial_count_proposed = self.trial_count_complete = 1 self._num_proposedby_incumbent = 0 self._reset_times = 0 # record intermediate trial cost self._trial_cost = {} self._same = False # whether the proposed config is the same as best_config self._init_phase = True # initial phase to increase initial stepsize self._trunc = 0 # no truncation by default. when > 0, it means how many # non-zero dimensions to keep in the random unit vector
(self)
52,811
flaml.tune.searcher.flow2
_min_resource
automatically decide minimal resource
def _min_resource(self) -> float: """automatically decide minimal resource""" return self.max_resource / np.pow(self.resource_multiple_factor, 5)
(self) -> float
52,812
flaml.tune.searcher.flow2
_project
project normalized config in the feasible region and set resource_attr
def _project(self, config): """project normalized config in the feasible region and set resource_attr""" for key in self._bounded_keys: value = config[key] config[key] = max(0, min(1, value)) if self._resource: config[self.resource_attr] = self._resource
(self, config)
52,813
flaml.tune.searcher.flow2
_round
round the resource to self.max_resource if close to it
def _round(self, resource) -> float: """round the resource to self.max_resource if close to it""" if resource * self.resource_multiple_factor > self.max_resource: return self.max_resource return resource
(self, resource) -> float
52,814
flaml.tune.searcher.flow2
complete_config
Generate a complete config from the partial config input. Add minimal resource to config if available.
def complete_config( self, partial_config: Dict, lower: Optional[Dict] = None, upper: Optional[Dict] = None, ) -> Tuple[Dict, Dict]: """Generate a complete config from the partial config input. Add minimal resource to config if available. """ disturb = self._reset_times and partial_config == self.init_config # if not the first time to complete init_config, use random gaussian config, space = complete_config(partial_config, self.space, self, disturb, lower, upper) if partial_config == self.init_config: self._reset_times += 1 if self._resource: config[self.resource_attr] = self.min_resource return config, space
(self, partial_config: Dict, lower: Optional[Dict] = None, upper: Optional[Dict] = None) -> Tuple[Dict, Dict]
52,815
flaml.tune.searcher.flow2
config_signature
Return the signature tuple of a config.
def config_signature(self, config, space: Dict = None) -> tuple: """Return the signature tuple of a config.""" config = flatten_dict(config) space = flatten_dict(space) if space else self._space value_list = [] # self._space_keys doesn't contain keys with const values, # e.g., "eval_metric": ["logloss", "error"]. keys = sorted(config.keys()) if self.hierarchical else self._space_keys for key in keys: value = config[key] if key == self.resource_attr: value_list.append(value) else: # key must be in space domain = space[key] if self.hierarchical and not ( domain is None or type(domain) in (str, int, float) or isinstance(domain, sample.Domain) ): # not domain or hashable # get rid of list type for hierarchical search space. continue if isinstance(domain, sample.Integer): value_list.append(int(round(value))) else: value_list.append(value) return tuple(value_list)
(self, config, space: Optional[Dict] = None) -> tuple
52,816
flaml.tune.searcher.flow2
create
null
def create(self, init_config: Dict, obj: float, cost: float, space: Dict) -> Searcher: # space is the subspace where the init_config is located flow2 = self.__class__( init_config, self.metric, self.mode, space, self.resource_attr, self.min_resource, self.max_resource, self.resource_multiple_factor, self.cost_attr, self.seed + 1, self.lexico_objectives, ) if self.lexico_objectives is not None: flow2.best_obj = {} for k, v in obj.items(): flow2.best_obj[k] = ( -v if self.lexico_objectives["modes"][self.lexico_objectives["metrics"].index(k)] == "max" else v ) else: flow2.best_obj = obj * self.metric_op # minimize internally flow2.cost_incumbent = cost self.seed += 1 return flow2
(self, init_config: Dict, obj: float, cost: float, space: Dict) -> flaml.tune.searcher.suggestion.Searcher
52,817
flaml.tune.searcher.flow2
denormalize
denormalize each dimension in config from [0,1].
def denormalize(self, config): """denormalize each dimension in config from [0,1].""" return denormalize(config, self._space, self.best_config, self.incumbent, self._random)
(self, config)
52,818
flaml.tune.searcher.flow2
lexico_compare
null
def lexico_compare(self, result) -> bool: if self._histories is None: self._histories, self._f_best = defaultdict(list), {} for k in self.lexico_objectives["metrics"]: self._histories[k].append(result[k]) self.update_fbest() return True else: for k in self.lexico_objectives["metrics"]: self._histories[k].append(result[k]) self.update_fbest() for k_metric, k_mode in zip(self.lexico_objectives["metrics"], self.lexico_objectives["modes"]): k_target = ( self.lexico_objectives["targets"][k_metric] if k_mode == "min" else -self.lexico_objectives["targets"][k_metric] ) if not isinstance(self.lexico_objectives["tolerances"][k_metric], str): tolerance_bound = self._f_best[k_metric] + self.lexico_objectives["tolerances"][k_metric] else: assert ( self.lexico_objectives["tolerances"][k_metric][-1] == "%" ), "String tolerance of {} should use %% as the suffix".format(k_metric) tolerance_bound = self._f_best[k_metric] * ( 1 + 0.01 * float(self.lexico_objectives["tolerances"][k_metric].replace("%", "")) ) if (result[k_metric] < max(tolerance_bound, k_target)) and ( self.best_obj[k_metric] < max( tolerance_bound, k_target, ) ): continue elif result[k_metric] < self.best_obj[k_metric]: return True else: return False for k_metr in self.lexico_objectives["metrics"]: if result[k_metr] == self.best_obj[k_metr]: continue elif result[k_metr] < self.best_obj[k_metr]: return True else: return False
(self, result) -> bool
52,819
flaml.tune.searcher.flow2
normalize
normalize each dimension in config to [0,1].
def normalize(self, config, recursive=False) -> Dict: """normalize each dimension in config to [0,1].""" return normalize(config, self._space, self.best_config, self.incumbent, recursive)
(self, config, recursive=False) -> Dict
52,820
flaml.tune.searcher.flow2
on_trial_complete
Compare with incumbent. If better, move, reset num_complete and num_proposed. If not better and num_complete >= 2*dim, num_allowed += 2.
def on_trial_complete(self, trial_id: str, result: Optional[Dict] = None, error: bool = False): """ Compare with incumbent. If better, move, reset num_complete and num_proposed. If not better and num_complete >= 2*dim, num_allowed += 2. """ self.trial_count_complete += 1 if not error and result: obj = ( result.get(self._metric) if self.lexico_objectives is None else {k: result[k] for k in self.lexico_objectives["metrics"]} ) if obj: obj = ( { k: -obj[k] if m == "max" else obj[k] for k, m in zip( self.lexico_objectives["metrics"], self.lexico_objectives["modes"], ) } if isinstance(obj, dict) else obj * self.metric_op ) if ( self.best_obj is None or (self.lexico_objectives is None and obj < self.best_obj) or (self.lexico_objectives is not None and self.lexico_compare(obj)) ): self.best_obj = obj self.best_config, self.step = self._configs[trial_id] self.incumbent = self.normalize(self.best_config) self.cost_incumbent = result.get(self.cost_attr, 1) if self._resource: self._resource = self.best_config[self.resource_attr] self._num_complete4incumbent = 0 self._cost_complete4incumbent = 0 self._num_proposedby_incumbent = 0 self._num_allowed4incumbent = 2 * self.dim self._proposed_by.clear() if self._K > 0: self.step *= np.sqrt(self._K / self._oldK) self.step = min(self.step, self.step_ub) self._iter_best_config = self.trial_count_complete if self._trunc: self._trunc = min(self._trunc + 1, self.dim) return elif self._trunc: self._trunc = max(self._trunc >> 1, 1) proposed_by = self._proposed_by.get(trial_id) if proposed_by == self.incumbent: self._num_complete4incumbent += 1 cost = result.get(self.cost_attr, 1) if result else self._trial_cost.get(trial_id) if cost: self._cost_complete4incumbent += cost if self._num_complete4incumbent >= 2 * self.dim and self._num_allowed4incumbent == 0: self._num_allowed4incumbent = 2 if self._num_complete4incumbent == self.dir and (not self._resource or self._resource == self.max_resource): self._num_complete4incumbent -= 2 self._num_allowed4incumbent = max(self._num_allowed4incumbent, 2)
(self, trial_id: str, result: Optional[Dict] = None, error: bool = False)
52,821
flaml.tune.searcher.flow2
on_trial_result
Early update of incumbent.
def on_trial_result(self, trial_id: str, result: Dict): """Early update of incumbent.""" if result: obj = ( result.get(self._metric) if self.lexico_objectives is None else {k: result[k] for k in self.lexico_objectives["metrics"]} ) if obj: obj = ( { k: -obj[k] if m == "max" else obj[k] for k, m in zip( self.lexico_objectives["metrics"], self.lexico_objectives["modes"], ) } if isinstance(obj, dict) else obj * self.metric_op ) if ( self.best_obj is None or (self.lexico_objectives is None and obj < self.best_obj) or (self.lexico_objectives is not None and self.lexico_compare(obj)) ): self.best_obj = obj config = self._configs[trial_id][0] if self.best_config != config: self.best_config = config if self._resource: self._resource = config[self.resource_attr] self.incumbent = self.normalize(self.best_config) self.cost_incumbent = result.get(self.cost_attr, 1) self._cost_complete4incumbent = 0 self._num_complete4incumbent = 0 self._num_proposedby_incumbent = 0 self._num_allowed4incumbent = 2 * self.dim self._proposed_by.clear() self._iter_best_config = self.trial_count_complete cost = result.get(self.cost_attr, 1) # record the cost in case it is pruned and cost info is lost self._trial_cost[trial_id] = cost
(self, trial_id: str, result: Dict)
52,822
flaml.tune.searcher.flow2
rand_vector_gaussian
null
def rand_vector_gaussian(self, dim, std=1.0): return self._random.normal(0, std, dim)
(self, dim, std=1.0)
52,823
flaml.tune.searcher.flow2
rand_vector_unit_sphere
null
def rand_vector_unit_sphere(self, dim, trunc=0) -> np.ndarray: vec = self._random.normal(0, 1, dim) if 0 < trunc < dim: vec[np.abs(vec).argsort()[: dim - trunc]] = 0 mag = np.linalg.norm(vec) return vec / mag
(self, dim, trunc=0) -> numpy.ndarray
52,824
flaml.tune.searcher.flow2
reach
whether the incumbent can reach the incumbent of other.
def reach(self, other: Searcher) -> bool: """whether the incumbent can reach the incumbent of other.""" config1, config2 = self.best_config, other.best_config incumbent1, incumbent2 = self.incumbent, other.incumbent if self._resource and config1[self.resource_attr] > config2[self.resource_attr]: # resource will not decrease return False for key in self._unordered_cat_hp: # unordered cat choice is hard to reach by chance if config1[key] != config2.get(key): return False delta = np.array([incumbent1[key] - incumbent2.get(key, np.inf) for key in self._tunable_keys]) return np.linalg.norm(delta) <= self.step
(self, other: flaml.tune.searcher.suggestion.Searcher) -> bool
52,825
flaml.tune.searcher.flow2
set_search_properties
null
def set_search_properties( self, metric: Optional[str] = None, mode: Optional[str] = None, config: Optional[Dict] = None, ) -> bool: if metric: self._metric = metric if mode: assert mode in ["min", "max"], "`mode` must be 'min' or 'max'." self._mode = mode if mode == "max": self.metric_op = -1.0 elif mode == "min": self.metric_op = 1.0 if config: self.space = config self._space = flatten_dict(self.space) self._init_search() return True
(self, metric: Optional[str] = None, mode: Optional[str] = None, config: Optional[Dict] = None) -> bool
52,826
flaml.tune.searcher.flow2
suggest
Suggest a new config, one of the following cases: 1. same incumbent, increase resource. 2. same resource, move from the incumbent to a random direction. 3. same resource, move from the incumbent to the opposite direction.
def suggest(self, trial_id: str) -> Optional[Dict]: """Suggest a new config, one of the following cases: 1. same incumbent, increase resource. 2. same resource, move from the incumbent to a random direction. 3. same resource, move from the incumbent to the opposite direction. """ # TODO: better decouple FLOW2 config suggestion and stepsize update self.trial_count_proposed += 1 if ( self._num_complete4incumbent > 0 and self.cost_incumbent and self._resource and self._resource < self.max_resource and (self._cost_complete4incumbent >= self.cost_incumbent * self.resource_multiple_factor) ): return self._increase_resource(trial_id) self._num_allowed4incumbent -= 1 move = self.incumbent.copy() if self._direction_tried is not None: # return negative direction for i, key in enumerate(self._tunable_keys): move[key] -= self._direction_tried[i] self._direction_tried = None else: # propose a new direction self._direction_tried = self.rand_vector_unit_sphere(self.dim, self._trunc) * self.step for i, key in enumerate(self._tunable_keys): move[key] += self._direction_tried[i] self._project(move) config = self.denormalize(move) self._proposed_by[trial_id] = self.incumbent self._configs[trial_id] = (config, self.step) self._num_proposedby_incumbent += 1 best_config = self.best_config if self._init_phase: if self._direction_tried is None: if self._same: same = not any(key not in best_config or value != best_config[key] for key, value in config.items()) if same: # increase step size self.step += self.STEPSIZE self.step = min(self.step, self.step_ub) else: same = not any(key not in best_config or value != best_config[key] for key, value in config.items()) self._same = same if self._num_proposedby_incumbent == self.dir and (not self._resource or self._resource == self.max_resource): # check stuck condition if using max resource self._num_proposedby_incumbent -= 2 self._init_phase = False if self.step < self.step_lower_bound: return None # decrease step size self._oldK = self._K or self._iter_best_config self._K = self.trial_count_proposed + 1 self.step *= np.sqrt(self._oldK / self._K) if self._init_phase: return unflatten_dict(config) if self._trunc == 1 and self._direction_tried is not None: # random for i, key in enumerate(self._tunable_keys): if self._direction_tried[i] != 0: for _, generated in generate_variants_compatible( {"config": {key: self._space[key]}}, random_state=self.rs_random ): if generated["config"][key] != best_config[key]: config[key] = generated["config"][key] return unflatten_dict(config) break elif len(config) == len(best_config): for key, value in best_config.items(): if value != config[key]: return unflatten_dict(config) # print('move to', move) self.incumbent = move return unflatten_dict(config)
(self, trial_id: str) -> Optional[Dict]
52,827
flaml.tune.searcher.flow2
update_fbest
null
def update_fbest( self, ): obj_initial = self.lexico_objectives["metrics"][0] feasible_index = np.array([*range(len(self._histories[obj_initial]))]) for k_metric in self.lexico_objectives["metrics"]: k_values = np.array(self._histories[k_metric]) feasible_value = k_values.take(feasible_index) self._f_best[k_metric] = np.min(feasible_value) if not isinstance(self.lexico_objectives["tolerances"][k_metric], str): tolerance_bound = self._f_best[k_metric] + self.lexico_objectives["tolerances"][k_metric] else: assert ( self.lexico_objectives["tolerances"][k_metric][-1] == "%" ), "String tolerance of {} should use %% as the suffix".format(k_metric) tolerance_bound = self._f_best[k_metric] * ( 1 + 0.01 * float(self.lexico_objectives["tolerances"][k_metric].replace("%", "")) ) feasible_index_filter = np.where( feasible_value <= max( tolerance_bound, self.lexico_objectives["targets"][k_metric], ) )[0] feasible_index = feasible_index.take(feasible_index_filter)
(self)
52,828
flaml.tune.searcher.blendsearch
RandomSearch
Class for random search.
class RandomSearch(CFO): """Class for random search.""" def suggest(self, trial_id: str) -> Optional[Dict]: if self._points_to_evaluate: return super().suggest(trial_id) config, _ = self._ls.complete_config({}) return config def on_trial_complete(self, trial_id: str, result: Optional[Dict] = None, error: bool = False): return def on_trial_result(self, trial_id: str, result: Dict): return
(metric: Optional[str] = None, mode: Optional[str] = None, space: Optional[dict] = None, low_cost_partial_config: Optional[dict] = None, cat_hp_cost: Optional[dict] = None, points_to_evaluate: Optional[List[dict]] = None, evaluated_rewards: Optional[List] = None, time_budget_s: Union[int, float] = None, num_samples: Optional[int] = None, resource_attr: Optional[str] = None, min_resource: Optional[float] = None, max_resource: Optional[float] = None, reduction_factor: Optional[float] = None, global_search_alg: Optional[flaml.tune.searcher.suggestion.Searcher] = None, config_constraints: Optional[List[Tuple[Callable[[dict], float], str, float]]] = None, metric_constraints: Optional[List[Tuple[str, str, float]]] = None, seed: Optional[int] = 20, cost_attr: Optional[str] = 'auto', cost_budget: Optional[float] = None, experimental: Optional[bool] = False, lexico_objectives: Optional[dict] = None, use_incumbent_result_in_evaluation=False, allow_empty_config=False)
52,845
flaml.tune.searcher.blendsearch
on_trial_complete
null
def on_trial_complete(self, trial_id: str, result: Optional[Dict] = None, error: bool = False): return
(self, trial_id: str, result: Optional[Dict] = None, error: bool = False)
52,846
flaml.tune.searcher.blendsearch
on_trial_result
null
def on_trial_result(self, trial_id: str, result: Dict): return
(self, trial_id: str, result: Dict)
52,851
flaml.tune.searcher.blendsearch
suggest
null
def suggest(self, trial_id: str) -> Optional[Dict]: if self._points_to_evaluate: return super().suggest(trial_id) config, _ = self._ls.complete_config({}) return config
(self, trial_id: str) -> Optional[Dict]
52,860
duckduckgo_search.duckduckgo_search_async
AsyncDDGS
DuckDuckgo_search async class to get search results from duckduckgo.com.
class AsyncDDGS: """DuckDuckgo_search async class to get search results from duckduckgo.com.""" _executor: Optional[ThreadPoolExecutor] = None def __init__( self, headers: Optional[Dict[str, str]] = None, proxy: Optional[str] = None, proxies: Union[Dict[str, str], str, None] = None, # deprecated timeout: Optional[int] = 10, ) -> None: """Initialize the AsyncDDGS object. Args: headers (dict, optional): Dictionary of headers for the HTTP client. Defaults to None. proxy (str, optional): proxy for the HTTP client, supports http/https/socks5 protocols. example: "http://user:[email protected]:3128". Defaults to None. timeout (int, optional): Timeout value for the HTTP client. Defaults to 10. """ self.proxy: Optional[str] = proxy assert self.proxy is None or isinstance(self.proxy, str), "proxy must be a str" if not proxy and proxies: warnings.warn("'proxies' is deprecated, use 'proxy' instead.", stacklevel=1) self.proxy = proxies.get("http") or proxies.get("https") if isinstance(proxies, dict) else proxies self._asession = requests.AsyncSession( headers=headers, proxy=self.proxy, timeout=timeout, impersonate="chrome", allow_redirects=False, ) self._asession.headers["Referer"] = "https://duckduckgo.com/" self._exception_event = asyncio.Event() async def __aenter__(self) -> "AsyncDDGS": return self async def __aexit__( self, exc_type: Optional[Type[BaseException]] = None, exc_val: Optional[BaseException] = None, exc_tb: Optional[TracebackType] = None, ) -> None: await self._asession.__aexit__(exc_type, exc_val, exc_tb) def __del__(self) -> None: if hasattr(self, "_asession") and self._asession._closed is False: with suppress(RuntimeError, RuntimeWarning): asyncio.create_task(self._asession.close()) @cached_property def parser(self) -> Optional["LHTMLParser"]: """Get HTML parser.""" return LHTMLParser(remove_blank_text=True, remove_comments=True, remove_pis=True, collect_ids=False) @classmethod def _get_executor(cls, max_workers: int = 1) -> ThreadPoolExecutor: """Get ThreadPoolExecutor. Default max_workers=1, because >=2 leads to a big overhead""" if cls._executor is None: cls._executor = ThreadPoolExecutor(max_workers=max_workers) return cls._executor @property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor() async def _aget_url( self, method: str, url: str, data: Optional[Union[Dict[str, str], bytes]] = None, params: Optional[Dict[str, str]] = None, ) -> bytes: if self._exception_event.is_set(): raise DuckDuckGoSearchException("Exception occurred in previous call.") try: resp = await self._asession.request(method, url, data=data, params=params) except Exception as ex: self._exception_event.set() if "time" in str(ex).lower(): raise TimeoutException(f"{url} {type(ex).__name__}: {ex}") from ex raise DuckDuckGoSearchException(f"{url} {type(ex).__name__}: {ex}") from ex logger.debug(f"_aget_url() {resp.url} {resp.status_code} {resp.elapsed:.2f} {len(resp.content)}") if resp.status_code == 200: return cast(bytes, resp.content) self._exception_event.set() if resp.status_code in (202, 301, 403): raise RatelimitException(f"{resp.url} {resp.status_code} Ratelimit") raise DuckDuckGoSearchException(f"{resp.url} return None. {params=} {data=}") async def _aget_vqd(self, keywords: str) -> str: """Get vqd value for a search query.""" resp_content = await self._aget_url("POST", "https://duckduckgo.com", data={"q": keywords}) return _extract_vqd(resp_content, keywords) async def text( self, keywords: str, region: str = "wt-wt", safesearch: str = "moderate", timelimit: Optional[str] = None, backend: str = "api", max_results: Optional[int] = None, ) -> List[Dict[str, str]]: """DuckDuckGo text search generator. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". safesearch: on, moderate, off. Defaults to "moderate". timelimit: d, w, m, y. Defaults to None. backend: api, html, lite. Defaults to api. api - collect data from https://duckduckgo.com, html - collect data from https://html.duckduckgo.com, lite - collect data from https://lite.duckduckgo.com. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with search results, or None if there was an error. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts. """ if LXML_AVAILABLE is False and backend != "api": backend = "api" warnings.warn("lxml is not installed. Using backend='api'.", stacklevel=2) if backend == "api": results = await self._text_api(keywords, region, safesearch, timelimit, max_results) elif backend == "html": results = await self._text_html(keywords, region, safesearch, timelimit, max_results) elif backend == "lite": results = await self._text_lite(keywords, region, timelimit, max_results) return results async def _text_api( self, keywords: str, region: str = "wt-wt", safesearch: str = "moderate", timelimit: Optional[str] = None, max_results: Optional[int] = None, ) -> List[Dict[str, str]]: """DuckDuckGo text search generator. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". safesearch: on, moderate, off. Defaults to "moderate". timelimit: d, w, m, y. Defaults to None. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with search results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts. """ assert keywords, "keywords is mandatory" vqd = await self._aget_vqd(keywords) payload = { "q": keywords, "kl": region, "l": region, "p": "", "s": "0", "df": "", "vqd": vqd, "ex": "", } safesearch = safesearch.lower() if safesearch == "moderate": payload["ex"] = "-1" elif safesearch == "off": payload["ex"] = "-2" elif safesearch == "on": # strict payload["p"] = "1" if timelimit: payload["df"] = timelimit cache = set() results: List[Optional[Dict[str, str]]] = [None] * 1100 async def _text_api_page(s: int, page: int) -> None: priority = page * 100 payload["s"] = f"{s}" resp_content = await self._aget_url("GET", "https://links.duckduckgo.com/d.js", params=payload) page_data = _text_extract_json(resp_content, keywords) for row in page_data: href = row.get("u", None) if href and href not in cache and href != f"http://www.google.com/search?q={keywords}": cache.add(href) body = _normalize(row["a"]) if body: priority += 1 result = { "title": _normalize(row["t"]), "href": _normalize_url(href), "body": body, } results[priority] = result tasks = [asyncio.create_task(_text_api_page(0, 0))] if max_results: max_results = min(max_results, 500) tasks.extend( asyncio.create_task(_text_api_page(s, i)) for i, s in enumerate(range(23, max_results, 50), start=1) ) try: await asyncio.gather(*tasks) except Exception as e: for task in tasks: task.cancel() await asyncio.gather(*tasks, return_exceptions=True) raise e return list(islice(filter(None, results), max_results)) async def _text_html( self, keywords: str, region: str = "wt-wt", safesearch: str = "moderate", timelimit: Optional[str] = None, max_results: Optional[int] = None, ) -> List[Dict[str, str]]: """DuckDuckGo text search generator. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". safesearch: on, moderate, off. Defaults to "moderate". timelimit: d, w, m, y. Defaults to None. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with search results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts. """ assert keywords, "keywords is mandatory" self._asession.headers["Referer"] = "https://html.duckduckgo.com/" safesearch_base = {"on": "1", "moderate": "-1", "off": "-2"} payload = { "q": keywords, "kl": region, "p": safesearch_base[safesearch.lower()], "o": "json", "api": "d.js", } if timelimit: payload["df"] = timelimit if max_results and max_results > 20: vqd = await self._aget_vqd(keywords) payload["vqd"] = vqd cache = set() results: List[Optional[Dict[str, str]]] = [None] * 1100 async def _text_html_page(s: int, page: int) -> None: priority = page * 100 payload["s"] = f"{s}" resp_content = await self._aget_url("POST", "https://html.duckduckgo.com/html", data=payload) if b"No results." in resp_content: return tree = await self._asession.loop.run_in_executor( self.executor, partial(document_fromstring, resp_content, self.parser) ) for e in tree.xpath("//div[h2]"): href = e.xpath("./a/@href") href = href[0] if href else None if ( href and href not in cache and not href.startswith( ("http://www.google.com/search?q=", "https://duckduckgo.com/y.js?ad_domain") ) ): cache.add(href) title = e.xpath("./h2/a/text()") body = e.xpath("./a//text()") priority += 1 result = { "title": _normalize(title[0]), "href": _normalize_url(href), "body": _normalize("".join(body)), } results[priority] = result tasks = [asyncio.create_task(_text_html_page(0, 0))] if max_results: max_results = min(max_results, 500) tasks.extend( asyncio.create_task(_text_html_page(s, i)) for i, s in enumerate(range(23, max_results, 50), start=1) ) try: await asyncio.gather(*tasks) except Exception as e: for task in tasks: task.cancel() await asyncio.gather(*tasks, return_exceptions=True) raise e return list(islice(filter(None, results), max_results)) async def _text_lite( self, keywords: str, region: str = "wt-wt", timelimit: Optional[str] = None, max_results: Optional[int] = None, ) -> List[Dict[str, str]]: """DuckDuckGo text search generator. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". timelimit: d, w, m, y. Defaults to None. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with search results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts. """ assert keywords, "keywords is mandatory" self._asession.headers["Referer"] = "https://lite.duckduckgo.com/" payload = { "q": keywords, "o": "json", "api": "d.js", "kl": region, } if timelimit: payload["df"] = timelimit cache = set() results: List[Optional[Dict[str, str]]] = [None] * 1100 async def _text_lite_page(s: int, page: int) -> None: priority = page * 100 payload["s"] = f"{s}" resp_content = await self._aget_url("POST", "https://lite.duckduckgo.com/lite/", data=payload) if b"No more results." in resp_content: return tree = await self._asession.loop.run_in_executor( self.executor, partial(document_fromstring, resp_content, self.parser) ) data = zip(cycle(range(1, 5)), tree.xpath("//table[last()]//tr")) for i, e in data: if i == 1: href = e.xpath(".//a//@href") href = href[0] if href else None if ( href is None or href in cache or href.startswith(("http://www.google.com/search?q=", "https://duckduckgo.com/y.js?ad_domain")) ): [next(data, None) for _ in range(3)] # skip block(i=1,2,3,4) else: cache.add(href) title = e.xpath(".//a//text()")[0] elif i == 2: body = e.xpath(".//td[@class='result-snippet']//text()") body = "".join(body).strip() elif i == 3: priority += 1 result = { "title": _normalize(title), "href": _normalize_url(href), "body": _normalize(body), } results[priority] = result tasks = [asyncio.create_task(_text_lite_page(0, 0))] if max_results: max_results = min(max_results, 500) tasks.extend( asyncio.create_task(_text_lite_page(s, i)) for i, s in enumerate(range(23, max_results, 50), start=1) ) try: await asyncio.gather(*tasks) except Exception as e: for task in tasks: task.cancel() await asyncio.gather(*tasks, return_exceptions=True) raise e return list(islice(filter(None, results), max_results)) async def images( self, keywords: str, region: str = "wt-wt", safesearch: str = "moderate", timelimit: Optional[str] = None, size: Optional[str] = None, color: Optional[str] = None, type_image: Optional[str] = None, layout: Optional[str] = None, license_image: Optional[str] = None, max_results: Optional[int] = None, ) -> List[Dict[str, str]]: """DuckDuckGo images search. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". safesearch: on, moderate, off. Defaults to "moderate". timelimit: Day, Week, Month, Year. Defaults to None. size: Small, Medium, Large, Wallpaper. Defaults to None. color: color, Monochrome, Red, Orange, Yellow, Green, Blue, Purple, Pink, Brown, Black, Gray, Teal, White. Defaults to None. type_image: photo, clipart, gif, transparent, line. Defaults to None. layout: Square, Tall, Wide. Defaults to None. license_image: any (All Creative Commons), Public (PublicDomain), Share (Free to Share and Use), ShareCommercially (Free to Share and Use Commercially), Modify (Free to Modify, Share, and Use), ModifyCommercially (Free to Modify, Share, and Use Commercially). Defaults to None. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with images search results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts. """ assert keywords, "keywords is mandatory" vqd = await self._aget_vqd(keywords) safesearch_base = {"on": "1", "moderate": "1", "off": "-1"} timelimit = f"time:{timelimit}" if timelimit else "" size = f"size:{size}" if size else "" color = f"color:{color}" if color else "" type_image = f"type:{type_image}" if type_image else "" layout = f"layout:{layout}" if layout else "" license_image = f"license:{license_image}" if license_image else "" payload = { "l": region, "o": "json", "q": keywords, "vqd": vqd, "f": f"{timelimit},{size},{color},{type_image},{layout},{license_image}", "p": safesearch_base[safesearch.lower()], } cache = set() results: List[Optional[Dict[str, str]]] = [None] * 600 async def _images_page(s: int, page: int) -> None: priority = page * 100 payload["s"] = f"{s}" resp_content = await self._aget_url("GET", "https://duckduckgo.com/i.js", params=payload) resp_json = json_loads(resp_content) page_data = resp_json.get("results", []) for row in page_data: image_url = row.get("image") if image_url and image_url not in cache: cache.add(image_url) priority += 1 result = { "title": row["title"], "image": _normalize_url(image_url), "thumbnail": _normalize_url(row["thumbnail"]), "url": _normalize_url(row["url"]), "height": row["height"], "width": row["width"], "source": row["source"], } results[priority] = result tasks = [asyncio.create_task(_images_page(0, page=0))] if max_results: max_results = min(max_results, 500) tasks.extend( asyncio.create_task(_images_page(s, i)) for i, s in enumerate(range(100, max_results, 100), start=1) ) try: await asyncio.gather(*tasks) except Exception as e: for task in tasks: task.cancel() await asyncio.gather(*tasks, return_exceptions=True) raise e return list(islice(filter(None, results), max_results)) async def videos( self, keywords: str, region: str = "wt-wt", safesearch: str = "moderate", timelimit: Optional[str] = None, resolution: Optional[str] = None, duration: Optional[str] = None, license_videos: Optional[str] = None, max_results: Optional[int] = None, ) -> List[Dict[str, str]]: """DuckDuckGo videos search. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". safesearch: on, moderate, off. Defaults to "moderate". timelimit: d, w, m. Defaults to None. resolution: high, standart. Defaults to None. duration: short, medium, long. Defaults to None. license_videos: creativeCommon, youtube. Defaults to None. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with videos search results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts. """ assert keywords, "keywords is mandatory" vqd = await self._aget_vqd(keywords) safesearch_base = {"on": "1", "moderate": "-1", "off": "-2"} timelimit = f"publishedAfter:{timelimit}" if timelimit else "" resolution = f"videoDefinition:{resolution}" if resolution else "" duration = f"videoDuration:{duration}" if duration else "" license_videos = f"videoLicense:{license_videos}" if license_videos else "" payload = { "l": region, "o": "json", "q": keywords, "vqd": vqd, "f": f"{timelimit},{resolution},{duration},{license_videos}", "p": safesearch_base[safesearch.lower()], } cache = set() results: List[Optional[Dict[str, str]]] = [None] * 700 async def _videos_page(s: int, page: int) -> None: priority = page * 100 payload["s"] = f"{s}" resp_content = await self._aget_url("GET", "https://duckduckgo.com/v.js", params=payload) resp_json = json_loads(resp_content) page_data = resp_json.get("results", []) for row in page_data: if row["content"] not in cache: cache.add(row["content"]) priority += 1 results[priority] = row tasks = [asyncio.create_task(_videos_page(0, 0))] if max_results: max_results = min(max_results, 400) tasks.extend( asyncio.create_task(_videos_page(s, i)) for i, s in enumerate(range(59, max_results, 59), start=1) ) try: await asyncio.gather(*tasks) except Exception as e: for task in tasks: task.cancel() await asyncio.gather(*tasks, return_exceptions=True) raise e return list(islice(filter(None, results), max_results)) async def news( self, keywords: str, region: str = "wt-wt", safesearch: str = "moderate", timelimit: Optional[str] = None, max_results: Optional[int] = None, ) -> List[Dict[str, str]]: """DuckDuckGo news search. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". safesearch: on, moderate, off. Defaults to "moderate". timelimit: d, w, m. Defaults to None. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with news search results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts. """ assert keywords, "keywords is mandatory" vqd = await self._aget_vqd(keywords) safesearch_base = {"on": "1", "moderate": "-1", "off": "-2"} payload = { "l": region, "o": "json", "noamp": "1", "q": keywords, "vqd": vqd, "p": safesearch_base[safesearch.lower()], } if timelimit: payload["df"] = timelimit cache = set() results: List[Optional[Dict[str, str]]] = [None] * 700 async def _news_page(s: int, page: int) -> None: priority = page * 100 payload["s"] = f"{s}" resp_content = await self._aget_url("GET", "https://duckduckgo.com/news.js", params=payload) resp_json = json_loads(resp_content) page_data = resp_json.get("results", []) for row in page_data: if row["url"] not in cache: cache.add(row["url"]) image_url = row.get("image", None) priority += 1 result = { "date": datetime.fromtimestamp(row["date"], timezone.utc).isoformat(), "title": row["title"], "body": _normalize(row["excerpt"]), "url": _normalize_url(row["url"]), "image": _normalize_url(image_url), "source": row["source"], } results[priority] = result tasks = [asyncio.create_task(_news_page(0, 0))] if max_results: max_results = min(max_results, 200) tasks.extend( asyncio.create_task(_news_page(s, i)) for i, s in enumerate(range(29, max_results, 29), start=1) ) try: await asyncio.gather(*tasks) except Exception as e: for task in tasks: task.cancel() await asyncio.gather(*tasks, return_exceptions=True) raise e return list(islice(filter(None, results), max_results)) async def answers(self, keywords: str) -> List[Dict[str, str]]: """DuckDuckGo instant answers. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query, Returns: List of dictionaries with instant answers results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts. """ assert keywords, "keywords is mandatory" payload = { "q": f"what is {keywords}", "format": "json", } resp_content = await self._aget_url("GET", "https://api.duckduckgo.com/", params=payload) page_data = json_loads(resp_content) results = [] answer = page_data.get("AbstractText") url = page_data.get("AbstractURL") if answer: results.append( { "icon": None, "text": answer, "topic": None, "url": url, } ) # related payload = { "q": f"{keywords}", "format": "json", } resp_content = await self._aget_url("GET", "https://api.duckduckgo.com/", params=payload) resp_json = json_loads(resp_content) page_data = resp_json.get("RelatedTopics", []) for row in page_data: topic = row.get("Name") if not topic: icon = row["Icon"].get("URL") results.append( { "icon": f"https://duckduckgo.com{icon}" if icon else "", "text": row["Text"], "topic": None, "url": row["FirstURL"], } ) else: for subrow in row["Topics"]: icon = subrow["Icon"].get("URL") results.append( { "icon": f"https://duckduckgo.com{icon}" if icon else "", "text": subrow["Text"], "topic": topic, "url": subrow["FirstURL"], } ) return results async def suggestions(self, keywords: str, region: str = "wt-wt") -> List[Dict[str, str]]: """DuckDuckGo suggestions. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". Returns: List of dictionaries with suggestions results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts. """ assert keywords, "keywords is mandatory" payload = { "q": keywords, "kl": region, } resp_content = await self._aget_url("GET", "https://duckduckgo.com/ac/", params=payload) page_data = json_loads(resp_content) return [r for r in page_data] async def maps( self, keywords: str, place: Optional[str] = None, street: Optional[str] = None, city: Optional[str] = None, county: Optional[str] = None, state: Optional[str] = None, country: Optional[str] = None, postalcode: Optional[str] = None, latitude: Optional[str] = None, longitude: Optional[str] = None, radius: int = 0, max_results: Optional[int] = None, ) -> List[Dict[str, str]]: """DuckDuckGo maps search. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query place: if set, the other parameters are not used. Defaults to None. street: house number/street. Defaults to None. city: city of search. Defaults to None. county: county of search. Defaults to None. state: state of search. Defaults to None. country: country of search. Defaults to None. postalcode: postalcode of search. Defaults to None. latitude: geographic coordinate (north-south position). Defaults to None. longitude: geographic coordinate (east-west position); if latitude and longitude are set, the other parameters are not used. Defaults to None. radius: expand the search square by the distance in kilometers. Defaults to 0. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with maps search results, or None if there was an error. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts. """ assert keywords, "keywords is mandatory" vqd = await self._aget_vqd(keywords) # if longitude and latitude are specified, skip the request about bbox to the nominatim api if latitude and longitude: lat_t = Decimal(latitude.replace(",", ".")) lat_b = Decimal(latitude.replace(",", ".")) lon_l = Decimal(longitude.replace(",", ".")) lon_r = Decimal(longitude.replace(",", ".")) if radius == 0: radius = 1 # otherwise request about bbox to nominatim api else: if place: params = { "q": place, "polygon_geojson": "0", "format": "jsonv2", } else: params = { "polygon_geojson": "0", "format": "jsonv2", } if street: params["street"] = street if city: params["city"] = city if county: params["county"] = county if state: params["state"] = state if country: params["country"] = country if postalcode: params["postalcode"] = postalcode # request nominatim api to get coordinates box resp_content = await self._aget_url( "GET", "https://nominatim.openstreetmap.org/search.php", params=params, ) if resp_content == b"[]": raise DuckDuckGoSearchException("maps() Сoordinates are not found, check function parameters.") resp_json = json_loads(resp_content) coordinates = resp_json[0]["boundingbox"] lat_t, lon_l = Decimal(coordinates[1]), Decimal(coordinates[2]) lat_b, lon_r = Decimal(coordinates[0]), Decimal(coordinates[3]) # if a radius is specified, expand the search square lat_t += Decimal(radius) * Decimal(0.008983) lat_b -= Decimal(radius) * Decimal(0.008983) lon_l -= Decimal(radius) * Decimal(0.008983) lon_r += Decimal(radius) * Decimal(0.008983) logger.debug(f"bbox coordinates\n{lat_t} {lon_l}\n{lat_b} {lon_r}") cache = set() results: List[Dict[str, str]] = [] async def _maps_page( bbox: Tuple[Decimal, Decimal, Decimal, Decimal], ) -> Optional[List[Dict[str, str]]]: if max_results and len(results) >= max_results: return None lat_t, lon_l, lat_b, lon_r = bbox params = { "q": keywords, "vqd": vqd, "tg": "maps_places", "rt": "D", "mkexp": "b", "wiki_info": "1", "is_requery": "1", "bbox_tl": f"{lat_t},{lon_l}", "bbox_br": f"{lat_b},{lon_r}", "strict_bbox": "1", } resp_content = await self._aget_url("GET", "https://duckduckgo.com/local.js", params=params) resp_json = json_loads(resp_content) page_data = resp_json.get("results", []) page_results = [] for res in page_data: r_name = f'{res["name"]} {res["address"]}' if r_name in cache: continue else: cache.add(r_name) result = { "title": res["name"], "address": res["address"], "country_code": res["country_code"], "url": _normalize_url(res["website"]), "phone": res["phone"] or "", "latitude": res["coordinates"]["latitude"], "longitude": res["coordinates"]["longitude"], "source": _normalize_url(res["url"]), "image": x.get("image", "") if (x := res["embed"]) else "", "desc": x.get("description", "") if (x := res["embed"]) else "", "hours": res["hours"] or "", "category": res["ddg_category"] or "", "facebook": f"www.facebook.com/profile.php?id={x}" if (x := res["facebook_id"]) else "", "instagram": f"https://www.instagram.com/{x}" if (x := res["instagram_id"]) else "", "twitter": f"https://twitter.com/{x}" if (x := res["twitter_id"]) else "", } page_results.append(result) return page_results # search squares (bboxes) start_bbox = (lat_t, lon_l, lat_b, lon_r) work_bboxes = [start_bbox] while work_bboxes: queue_bboxes = [] # for next iteration, at the end of the iteration work_bboxes = queue_bboxes tasks = [] for bbox in work_bboxes: tasks.append(asyncio.create_task(_maps_page(bbox))) # if distance between coordinates > 1, divide the square into 4 parts and save them in queue_bboxes if _calculate_distance(lat_t, lon_l, lat_b, lon_r) > 1: lat_t, lon_l, lat_b, lon_r = bbox lat_middle = (lat_t + lat_b) / 2 lon_middle = (lon_l + lon_r) / 2 bbox1 = (lat_t, lon_l, lat_middle, lon_middle) bbox2 = (lat_t, lon_middle, lat_middle, lon_r) bbox3 = (lat_middle, lon_l, lat_b, lon_middle) bbox4 = (lat_middle, lon_middle, lat_b, lon_r) queue_bboxes.extend([bbox1, bbox2, bbox3, bbox4]) # gather tasks using asyncio.wait_for and timeout with suppress(Exception): work_bboxes_results = await asyncio.gather(*[asyncio.wait_for(task, timeout=10) for task in tasks]) for x in work_bboxes_results: if isinstance(x, list): results.extend(x) elif isinstance(x, dict): results.append(x) work_bboxes = queue_bboxes if not max_results or len(results) >= max_results or len(work_bboxes_results) == 0: break return list(islice(results, max_results)) async def translate( self, keywords: Union[List[str], str], from_: Optional[str] = None, to: str = "en" ) -> List[Dict[str, str]]: """DuckDuckGo translate. Args: keywords: string or list of strings to translate. from_: translate from (defaults automatically). Defaults to None. to: what language to translate. Defaults to "en". Returns: List od dictionaries with translated keywords. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts. """ assert keywords, "keywords is mandatory" vqd = await self._aget_vqd("translate") payload = { "vqd": vqd, "query": "translate", "to": to, } if from_: payload["from"] = from_ results = [] async def _translate_keyword(keyword: str) -> None: resp_content = await self._aget_url( "POST", "https://duckduckgo.com/translation.js", params=payload, data=keyword.encode(), ) page_data = json_loads(resp_content) page_data["original"] = keyword results.append(page_data) if isinstance(keywords, str): keywords = [keywords] tasks = [asyncio.create_task(_translate_keyword(keyword)) for keyword in keywords] try: await asyncio.gather(*tasks) except Exception as e: for task in tasks: task.cancel() await asyncio.gather(*tasks, return_exceptions=True) raise e return results
(headers: Optional[Dict[str, str]] = None, proxy: Optional[str] = None, proxies: Union[Dict[str, str], str, NoneType] = None, timeout: Optional[int] = 10) -> None
52,861
duckduckgo_search.duckduckgo_search_async
__aenter__
null
def __init__( self, headers: Optional[Dict[str, str]] = None, proxy: Optional[str] = None, proxies: Union[Dict[str, str], str, None] = None, # deprecated timeout: Optional[int] = 10, ) -> None: """Initialize the AsyncDDGS object. Args: headers (dict, optional): Dictionary of headers for the HTTP client. Defaults to None. proxy (str, optional): proxy for the HTTP client, supports http/https/socks5 protocols. example: "http://user:[email protected]:3128". Defaults to None. timeout (int, optional): Timeout value for the HTTP client. Defaults to 10. """ self.proxy: Optional[str] = proxy assert self.proxy is None or isinstance(self.proxy, str), "proxy must be a str" if not proxy and proxies: warnings.warn("'proxies' is deprecated, use 'proxy' instead.", stacklevel=1) self.proxy = proxies.get("http") or proxies.get("https") if isinstance(proxies, dict) else proxies self._asession = requests.AsyncSession( headers=headers, proxy=self.proxy, timeout=timeout, impersonate="chrome", allow_redirects=False, ) self._asession.headers["Referer"] = "https://duckduckgo.com/" self._exception_event = asyncio.Event()
(self) -> duckduckgo_search.duckduckgo_search_async.AsyncDDGS
52,863
duckduckgo_search.duckduckgo_search_async
__del__
null
def __del__(self) -> None: if hasattr(self, "_asession") and self._asession._closed is False: with suppress(RuntimeError, RuntimeWarning): asyncio.create_task(self._asession.close())
(self) -> NoneType
52,864
duckduckgo_search.duckduckgo_search_async
__init__
Initialize the AsyncDDGS object. Args: headers (dict, optional): Dictionary of headers for the HTTP client. Defaults to None. proxy (str, optional): proxy for the HTTP client, supports http/https/socks5 protocols. example: "http://user:[email protected]:3128". Defaults to None. timeout (int, optional): Timeout value for the HTTP client. Defaults to 10.
def __init__( self, headers: Optional[Dict[str, str]] = None, proxy: Optional[str] = None, proxies: Union[Dict[str, str], str, None] = None, # deprecated timeout: Optional[int] = 10, ) -> None: """Initialize the AsyncDDGS object. Args: headers (dict, optional): Dictionary of headers for the HTTP client. Defaults to None. proxy (str, optional): proxy for the HTTP client, supports http/https/socks5 protocols. example: "http://user:[email protected]:3128". Defaults to None. timeout (int, optional): Timeout value for the HTTP client. Defaults to 10. """ self.proxy: Optional[str] = proxy assert self.proxy is None or isinstance(self.proxy, str), "proxy must be a str" if not proxy and proxies: warnings.warn("'proxies' is deprecated, use 'proxy' instead.", stacklevel=1) self.proxy = proxies.get("http") or proxies.get("https") if isinstance(proxies, dict) else proxies self._asession = requests.AsyncSession( headers=headers, proxy=self.proxy, timeout=timeout, impersonate="chrome", allow_redirects=False, ) self._asession.headers["Referer"] = "https://duckduckgo.com/" self._exception_event = asyncio.Event()
(self, headers: Optional[Dict[str, str]] = None, proxy: Optional[str] = None, proxies: Union[Dict[str, str], str, NoneType] = None, timeout: Optional[int] = 10) -> NoneType
52,865
duckduckgo_search.duckduckgo_search_async
_aget_url
null
@property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor()
(self, method: str, url: str, data: Union[Dict[str, str], bytes, NoneType] = None, params: Optional[Dict[str, str]] = None) -> bytes
52,866
duckduckgo_search.duckduckgo_search_async
_aget_vqd
Get vqd value for a search query.
@property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor()
(self, keywords: str) -> str
52,867
duckduckgo_search.duckduckgo_search_async
_text_api
DuckDuckGo text search generator. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". safesearch: on, moderate, off. Defaults to "moderate". timelimit: d, w, m, y. Defaults to None. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with search results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts.
@property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor()
(self, keywords: str, region: str = 'wt-wt', safesearch: str = 'moderate', timelimit: Optional[str] = None, max_results: Optional[int] = None) -> List[Dict[str, str]]
52,869
duckduckgo_search.duckduckgo_search_async
_text_lite
DuckDuckGo text search generator. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". timelimit: d, w, m, y. Defaults to None. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with search results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts.
@property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor()
(self, keywords: str, region: str = 'wt-wt', timelimit: Optional[str] = None, max_results: Optional[int] = None) -> List[Dict[str, str]]
52,870
duckduckgo_search.duckduckgo_search_async
answers
DuckDuckGo instant answers. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query, Returns: List of dictionaries with instant answers results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts.
@property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor()
(self, keywords: str) -> List[Dict[str, str]]
52,871
duckduckgo_search.duckduckgo_search_async
images
DuckDuckGo images search. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". safesearch: on, moderate, off. Defaults to "moderate". timelimit: Day, Week, Month, Year. Defaults to None. size: Small, Medium, Large, Wallpaper. Defaults to None. color: color, Monochrome, Red, Orange, Yellow, Green, Blue, Purple, Pink, Brown, Black, Gray, Teal, White. Defaults to None. type_image: photo, clipart, gif, transparent, line. Defaults to None. layout: Square, Tall, Wide. Defaults to None. license_image: any (All Creative Commons), Public (PublicDomain), Share (Free to Share and Use), ShareCommercially (Free to Share and Use Commercially), Modify (Free to Modify, Share, and Use), ModifyCommercially (Free to Modify, Share, and Use Commercially). Defaults to None. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with images search results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts.
@property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor()
(self, keywords: str, region: str = 'wt-wt', safesearch: str = 'moderate', timelimit: Optional[str] = None, size: Optional[str] = None, color: Optional[str] = None, type_image: Optional[str] = None, layout: Optional[str] = None, license_image: Optional[str] = None, max_results: Optional[int] = None) -> List[Dict[str, str]]
52,872
duckduckgo_search.duckduckgo_search_async
maps
DuckDuckGo maps search. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query place: if set, the other parameters are not used. Defaults to None. street: house number/street. Defaults to None. city: city of search. Defaults to None. county: county of search. Defaults to None. state: state of search. Defaults to None. country: country of search. Defaults to None. postalcode: postalcode of search. Defaults to None. latitude: geographic coordinate (north-south position). Defaults to None. longitude: geographic coordinate (east-west position); if latitude and longitude are set, the other parameters are not used. Defaults to None. radius: expand the search square by the distance in kilometers. Defaults to 0. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with maps search results, or None if there was an error. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts.
@property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor()
(self, keywords: str, place: Optional[str] = None, street: Optional[str] = None, city: Optional[str] = None, county: Optional[str] = None, state: Optional[str] = None, country: Optional[str] = None, postalcode: Optional[str] = None, latitude: Optional[str] = None, longitude: Optional[str] = None, radius: int = 0, max_results: Optional[int] = None) -> List[Dict[str, str]]
52,873
duckduckgo_search.duckduckgo_search_async
news
DuckDuckGo news search. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". safesearch: on, moderate, off. Defaults to "moderate". timelimit: d, w, m. Defaults to None. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with news search results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts.
@property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor()
(self, keywords: str, region: str = 'wt-wt', safesearch: str = 'moderate', timelimit: Optional[str] = None, max_results: Optional[int] = None) -> List[Dict[str, str]]
52,874
duckduckgo_search.duckduckgo_search_async
suggestions
DuckDuckGo suggestions. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". Returns: List of dictionaries with suggestions results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts.
@property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor()
(self, keywords: str, region: str = 'wt-wt') -> List[Dict[str, str]]
52,875
duckduckgo_search.duckduckgo_search_async
text
DuckDuckGo text search generator. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". safesearch: on, moderate, off. Defaults to "moderate". timelimit: d, w, m, y. Defaults to None. backend: api, html, lite. Defaults to api. api - collect data from https://duckduckgo.com, html - collect data from https://html.duckduckgo.com, lite - collect data from https://lite.duckduckgo.com. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with search results, or None if there was an error. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts.
@property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor()
(self, keywords: str, region: str = 'wt-wt', safesearch: str = 'moderate', timelimit: Optional[str] = None, backend: str = 'api', max_results: Optional[int] = None) -> List[Dict[str, str]]
52,876
duckduckgo_search.duckduckgo_search_async
translate
DuckDuckGo translate. Args: keywords: string or list of strings to translate. from_: translate from (defaults automatically). Defaults to None. to: what language to translate. Defaults to "en". Returns: List od dictionaries with translated keywords. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts.
@property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor()
(self, keywords: Union[List[str], str], from_: Optional[str] = None, to: str = 'en') -> List[Dict[str, str]]
52,877
duckduckgo_search.duckduckgo_search_async
videos
DuckDuckGo videos search. Query params: https://duckduckgo.com/params. Args: keywords: keywords for query. region: wt-wt, us-en, uk-en, ru-ru, etc. Defaults to "wt-wt". safesearch: on, moderate, off. Defaults to "moderate". timelimit: d, w, m. Defaults to None. resolution: high, standart. Defaults to None. duration: short, medium, long. Defaults to None. license_videos: creativeCommon, youtube. Defaults to None. max_results: max number of results. If None, returns results only from the first response. Defaults to None. Returns: List of dictionaries with videos search results. Raises: DuckDuckGoSearchException: Base exception for duckduckgo_search errors. RatelimitException: Inherits from DuckDuckGoSearchException, raised for exceeding API request rate limits. TimeoutException: Inherits from DuckDuckGoSearchException, raised for API request timeouts.
@property def executor(cls) -> Optional[ThreadPoolExecutor]: return cls._get_executor()
(self, keywords: str, region: str = 'wt-wt', safesearch: str = 'moderate', timelimit: Optional[str] = None, resolution: Optional[str] = None, duration: Optional[str] = None, license_videos: Optional[str] = None, max_results: Optional[int] = None) -> List[Dict[str, str]]
52,878
duckduckgo_search.duckduckgo_search
DDGS
null
class DDGS(AsyncDDGS): _loop: asyncio.AbstractEventLoop = asyncio.new_event_loop() Thread(target=_loop.run_forever, daemon=True).start() # Start the event loop run in a separate thread. def __init__( self, headers: Optional[Dict[str, str]] = None, proxy: Optional[str] = None, proxies: Union[Dict[str, str], str, None] = None, # deprecated timeout: Optional[int] = 10, ) -> None: """Initialize the DDGS object. Args: headers (dict, optional): Dictionary of headers for the HTTP client. Defaults to None. proxy (str, optional): proxy for the HTTP client, supports http/https/socks5 protocols. example: "http://user:[email protected]:3128". Defaults to None. timeout (int, optional): Timeout value for the HTTP client. Defaults to 10. """ super().__init__(headers=headers, proxy=proxy, proxies=proxies, timeout=timeout) def __enter__(self) -> "DDGS": return self def __exit__( self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType], ) -> None: self._close_session() def __del__(self) -> None: self._close_session() def _close_session(self) -> None: """Close the curl-cffi async session.""" if hasattr(self, "_asession") and self._asession._closed is False: self._run_async_in_thread(self._asession.close()) def _run_async_in_thread(self, coro: Awaitable[Any]) -> Any: """Runs an async coroutine in a separate thread.""" future: Future[Any] = asyncio.run_coroutine_threadsafe(coro, self._loop) result = future.result() return result def text(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().text(*args, **kwargs)) def images(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().images(*args, **kwargs)) def videos(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().videos(*args, **kwargs)) def news(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().news(*args, **kwargs)) def answers(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().answers(*args, **kwargs)) def suggestions(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().suggestions(*args, **kwargs)) def maps(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().maps(*args, **kwargs)) def translate(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().translate(*args, **kwargs))
(headers: Optional[Dict[str, str]] = None, proxy: Optional[str] = None, proxies: Union[Dict[str, str], str, NoneType] = None, timeout: Optional[int] = 10) -> None
52,881
duckduckgo_search.duckduckgo_search
__del__
null
def __del__(self) -> None: self._close_session()
(self) -> NoneType
52,882
duckduckgo_search.duckduckgo_search
__enter__
null
def __enter__(self) -> "DDGS": return self
(self) -> duckduckgo_search.duckduckgo_search.DDGS
52,883
duckduckgo_search.duckduckgo_search
__exit__
null
def __exit__( self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType], ) -> None: self._close_session()
(self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[traceback]) -> NoneType
52,884
duckduckgo_search.duckduckgo_search
__init__
Initialize the DDGS object. Args: headers (dict, optional): Dictionary of headers for the HTTP client. Defaults to None. proxy (str, optional): proxy for the HTTP client, supports http/https/socks5 protocols. example: "http://user:[email protected]:3128". Defaults to None. timeout (int, optional): Timeout value for the HTTP client. Defaults to 10.
def __init__( self, headers: Optional[Dict[str, str]] = None, proxy: Optional[str] = None, proxies: Union[Dict[str, str], str, None] = None, # deprecated timeout: Optional[int] = 10, ) -> None: """Initialize the DDGS object. Args: headers (dict, optional): Dictionary of headers for the HTTP client. Defaults to None. proxy (str, optional): proxy for the HTTP client, supports http/https/socks5 protocols. example: "http://user:[email protected]:3128". Defaults to None. timeout (int, optional): Timeout value for the HTTP client. Defaults to 10. """ super().__init__(headers=headers, proxy=proxy, proxies=proxies, timeout=timeout)
(self, headers: Optional[Dict[str, str]] = None, proxy: Optional[str] = None, proxies: Union[Dict[str, str], str, NoneType] = None, timeout: Optional[int] = 10) -> NoneType
52,887
duckduckgo_search.duckduckgo_search
_close_session
Close the curl-cffi async session.
def _close_session(self) -> None: """Close the curl-cffi async session.""" if hasattr(self, "_asession") and self._asession._closed is False: self._run_async_in_thread(self._asession.close())
(self) -> NoneType
52,888
duckduckgo_search.duckduckgo_search
_run_async_in_thread
Runs an async coroutine in a separate thread.
def _run_async_in_thread(self, coro: Awaitable[Any]) -> Any: """Runs an async coroutine in a separate thread.""" future: Future[Any] = asyncio.run_coroutine_threadsafe(coro, self._loop) result = future.result() return result
(self, coro: Awaitable[Any]) -> Any
52,892
duckduckgo_search.duckduckgo_search
answers
null
def answers(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().answers(*args, **kwargs))
(self, *args: Any, **kwargs: Any) -> Any
52,893
duckduckgo_search.duckduckgo_search
images
null
def images(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().images(*args, **kwargs))
(self, *args: Any, **kwargs: Any) -> Any
52,894
duckduckgo_search.duckduckgo_search
maps
null
def maps(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().maps(*args, **kwargs))
(self, *args: Any, **kwargs: Any) -> Any
52,895
duckduckgo_search.duckduckgo_search
news
null
def news(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().news(*args, **kwargs))
(self, *args: Any, **kwargs: Any) -> Any
52,896
duckduckgo_search.duckduckgo_search
suggestions
null
def suggestions(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().suggestions(*args, **kwargs))
(self, *args: Any, **kwargs: Any) -> Any
52,897
duckduckgo_search.duckduckgo_search
text
null
def text(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().text(*args, **kwargs))
(self, *args: Any, **kwargs: Any) -> Any
52,898
duckduckgo_search.duckduckgo_search
translate
null
def translate(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().translate(*args, **kwargs))
(self, *args: Any, **kwargs: Any) -> Any
52,899
duckduckgo_search.duckduckgo_search
videos
null
def videos(self, *args: Any, **kwargs: Any) -> Any: return self._run_async_in_thread(super().videos(*args, **kwargs))
(self, *args: Any, **kwargs: Any) -> Any
52,908
argparse_ext
HelpFormatter
formatter for generating usage messages and argument help strings; improvements over super class: - default indent increment is 4 (io: 2); - default max help position is 48 (io: 24); - short and long options are formatted together; - do not list options in usage; - do not wrap usage; - enclose metavars of mandatory arguments in braces; - do not format choices metavar; - do not capitalize default optional metavar;
class HelpFormatter(argparse.HelpFormatter): ''' formatter for generating usage messages and argument help strings; improvements over super class: - default indent increment is 4 (io: 2); - default max help position is 48 (io: 24); - short and long options are formatted together; - do not list options in usage; - do not wrap usage; - enclose metavars of mandatory arguments in braces; - do not format choices metavar; - do not capitalize default optional metavar; ''' def __init__(self, prog, indent_increment=4, max_help_position=48, width=None): return super().__init__( prog=prog, indent_increment=indent_increment, max_help_position=max_help_position, width=width, ) def _format_action_invocation(self, action): if not action.option_strings: default = self._get_default_metavar_for_positional(action) args_string = self._format_args(action, default) if args_string: return args_string return ', '.join(self._metavar_formatter(action, default)(1)) else: if action.nargs == 0: return '{}{}'.format( ' ' * 4 * int(action.option_strings[0].startswith('--')), ', '.join(action.option_strings), ) else: default = self._get_default_metavar_for_optional(action) args_string = self._format_args(action, default) return '{}{}'.format( ' ' * 4 * int(action.option_strings[0].startswith('--')), ', '.join(action.option_strings), ) + ' ' + args_string def _metavar_formatter(self, action, default_metavar): if action.metavar is not None: result = action.metavar # elif action.choices is not None: # choice_strs = [str(choice) for choice in action.choices] # result = '%s' % ','.join(choice_strs) else: result = default_metavar def format(tuple_size): if isinstance(result, tuple): return result else: return (result, ) * tuple_size return format def _format_args(self, action, default_metavar): get_metavar = self._metavar_formatter(action, default_metavar) if action.nargs is None: result = '{%s}' % get_metavar(1) elif action.nargs == OPTIONAL: result = '[%s]' % get_metavar(1) elif action.nargs == ZERO_OR_MORE: result = '[%s [%s ...]]' % get_metavar(2) elif action.nargs == ONE_OR_MORE: result = '%s [%s ...]' % get_metavar(2) elif action.nargs == REMAINDER: result = '...' elif action.nargs == PARSER: result = '%s ...' % get_metavar(1) else: formats = ['{%s}' for _ in range(action.nargs)] result = ' '.join(formats) % get_metavar(action.nargs) return result def _format_usage(self, usage, actions, groups, prefix): if prefix is None: prefix = _('usage: ') # if usage is specified, use that if usage is not None: usage = usage % dict(prog=self._prog) # if no optionals or positionals are available, usage is just prog elif usage is None and not actions: usage = '%(prog)s' % dict(prog=self._prog) # if optionals and positionals are available, calculate usage elif usage is None: prog = '%(prog)s' % dict(prog=self._prog) # split optionals from positionals optionals = [] positionals = [] for action in actions: if action.option_strings: optionals.append(action) else: positionals.append(action) # build full usage string format = self._format_actions_usage action_usage = format(positionals, groups) usage = ' '.join([s for s in [ prog, '[options]' if optionals else '', action_usage ] if s]) # prefix with 'usage:' return '%s%s\n\n' % (prefix, usage) def _get_default_metavar_for_optional(self, action): return action.dest
(prog, indent_increment=4, max_help_position=48, width=None)
52,909
argparse_ext
__init__
null
def __init__(self, prog, indent_increment=4, max_help_position=48, width=None): return super().__init__( prog=prog, indent_increment=indent_increment, max_help_position=max_help_position, width=width, )
(self, prog, indent_increment=4, max_help_position=48, width=None)
52,915
argparse_ext
_format_action_invocation
null
def _format_action_invocation(self, action): if not action.option_strings: default = self._get_default_metavar_for_positional(action) args_string = self._format_args(action, default) if args_string: return args_string return ', '.join(self._metavar_formatter(action, default)(1)) else: if action.nargs == 0: return '{}{}'.format( ' ' * 4 * int(action.option_strings[0].startswith('--')), ', '.join(action.option_strings), ) else: default = self._get_default_metavar_for_optional(action) args_string = self._format_args(action, default) return '{}{}'.format( ' ' * 4 * int(action.option_strings[0].startswith('--')), ', '.join(action.option_strings), ) + ' ' + args_string
(self, action)