index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
63,338
litellm.llms.watsonx
__init__
null
def __init__( self, decoding_method: Optional[str] = None, temperature: Optional[float] = None, max_new_tokens: Optional[int] = None, min_new_tokens: Optional[int] = None, length_penalty: Optional[dict] = None, stop_sequences: Optional[List[str]] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, repetition_penalty: Optional[float] = None, truncate_input_tokens: Optional[int] = None, include_stop_sequences: Optional[bool] = None, return_options: Optional[dict] = None, random_seed: Optional[int] = None, moderations: Optional[dict] = None, stream: Optional[bool] = None, **kwargs, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value)
(self, decoding_method: Optional[str] = None, temperature: Optional[float] = None, max_new_tokens: Optional[int] = None, min_new_tokens: Optional[int] = None, length_penalty: Optional[dict] = None, stop_sequences: Optional[List[str]] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, repetition_penalty: Optional[float] = None, truncate_input_tokens: Optional[int] = None, include_stop_sequences: Optional[bool] = None, return_options: Optional[dict] = None, random_seed: Optional[int] = None, moderations: Optional[dict] = None, stream: Optional[bool] = None, **kwargs) -> NoneType
63,339
litellm.llms.watsonx
get_eu_regions
Source: https://www.ibm.com/docs/en/watsonx/saas?topic=integrations-regional-availability
def get_eu_regions(self) -> List[str]: """ Source: https://www.ibm.com/docs/en/watsonx/saas?topic=integrations-regional-availability """ return [ "eu-de", "eu-gb", ]
(self) -> List[str]
63,340
litellm.llms.watsonx
get_mapped_special_auth_params
Common auth params across bedrock/vertex_ai/azure/watsonx
def get_mapped_special_auth_params(self) -> dict: """ Common auth params across bedrock/vertex_ai/azure/watsonx """ return { "project": "watsonx_project", "region_name": "watsonx_region_name", "token": "watsonx_token", }
(self) -> dict
63,341
litellm.llms.watsonx
get_supported_openai_params
null
def get_supported_openai_params(self): return [ "temperature", # equivalent to temperature "max_tokens", # equivalent to max_new_tokens "top_p", # equivalent to top_p "frequency_penalty", # equivalent to repetition_penalty "stop", # equivalent to stop_sequences "seed", # equivalent to random_seed "stream", # equivalent to stream ]
(self)
63,343
litellm.utils
ImageResponse
null
class ImageResponse(OpenAIObject): created: Optional[int] = None data: Optional[list] = None usage: Optional[dict] = None _hidden_params: dict = {} def __init__(self, created=None, data=None, response_ms=None): if response_ms: _response_ms = response_ms else: _response_ms = None if data: data = data else: data = None if created: created = created else: created = None super().__init__(data=data, created=created) self.usage = {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0} def __contains__(self, key): # Define custom behavior for the 'in' operator return hasattr(self, key) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) def json(self, **kwargs): try: return self.model_dump() # noqa except: # if using pydantic v1 return self.dict()
(created=None, data=None, response_ms=None)
63,352
litellm.utils
__init__
null
def __init__(self, created=None, data=None, response_ms=None): if response_ms: _response_ms = response_ms else: _response_ms = None if data: data = data else: data = None if created: created = created else: created = None super().__init__(data=data, created=created) self.usage = {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
(self, created=None, data=None, response_ms=None)
63,378
litellm.exceptions
InvalidRequestError
null
class InvalidRequestError(openai.BadRequestError): # type: ignore def __init__(self, message, model, llm_provider): self.status_code = 400 self.message = message self.model = model self.llm_provider = llm_provider super().__init__( self.message, f"{self.model}" ) # Call the base class constructor with the parameters it needs
(message, model, llm_provider)
63,379
litellm.exceptions
__init__
null
def __init__(self, message, model, llm_provider): self.status_code = 400 self.message = message self.model = model self.llm_provider = llm_provider super().__init__( self.message, f"{self.model}" ) # Call the base class constructor with the parameters it needs
(self, message, model, llm_provider)
63,380
litellm.proxy._types
KeyManagementSettings
null
class KeyManagementSettings(LiteLLMBase): hosted_keys: List
(*, hosted_keys: List) -> None
63,404
litellm.proxy._types
fields_set
null
def fields_set(self): try: return self.model_fields_set # noqa except: # if using pydantic v1 return self.__fields_set__
(self)
63,405
litellm.proxy._types
json
null
def json(self, **kwargs): try: return self.model_dump(**kwargs) # noqa except Exception as e: # if using pydantic v1 return self.dict(**kwargs)
(self, **kwargs)
63,410
litellm.proxy._types
KeyManagementSystem
An enumeration.
class KeyManagementSystem(enum.Enum): GOOGLE_KMS = "google_kms" AZURE_KEY_VAULT = "azure_key_vault" AWS_SECRET_MANAGER = "aws_secret_manager" LOCAL = "local"
(value, names=None, *, module=None, qualname=None, type=None, start=1)
63,411
litellm.main
LiteLLM
null
class LiteLLM: def __init__( self, *, api_key=None, organization: Optional[str] = None, base_url: Optional[str] = None, timeout: Optional[float] = 600, max_retries: Optional[int] = litellm.num_retries, default_headers: Optional[Mapping[str, str]] = None, ): self.params = locals() self.chat = Chat(self.params, router_obj=None)
(*, api_key=None, organization: Optional[str] = None, base_url: Optional[str] = None, timeout: Optional[float] = 600, max_retries: Optional[int] = None, default_headers: Optional[Mapping[str, str]] = None)
63,412
litellm.main
__init__
null
def __init__( self, *, api_key=None, organization: Optional[str] = None, base_url: Optional[str] = None, timeout: Optional[float] = 600, max_retries: Optional[int] = litellm.num_retries, default_headers: Optional[Mapping[str, str]] = None, ): self.params = locals() self.chat = Chat(self.params, router_obj=None)
(self, *, api_key=None, organization: Optional[str] = None, base_url: Optional[str] = None, timeout: Optional[float] = 600, max_retries: Optional[int] = None, default_headers: Optional[Mapping[str, str]] = None)
63,413
litellm.types.router
LiteLLM_Params
LiteLLM Params with 'model' requirement - used for completions
class LiteLLM_Params(GenericLiteLLMParams): """ LiteLLM Params with 'model' requirement - used for completions """ model: str def __init__( self, model: str, custom_llm_provider: Optional[str] = None, max_retries: Optional[Union[int, str]] = None, tpm: Optional[int] = None, rpm: Optional[int] = None, api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, timeout: Optional[Union[float, str]] = None, # if str, pass in as os.environ/ stream_timeout: Optional[Union[float, str]] = ( None # timeout when making stream=True calls, if str, pass in as os.environ/ ), organization: Optional[str] = None, # for openai orgs ## VERTEX AI ## vertex_project: Optional[str] = None, vertex_location: Optional[str] = None, ## AWS BEDROCK / SAGEMAKER ## aws_access_key_id: Optional[str] = None, aws_secret_access_key: Optional[str] = None, aws_region_name: Optional[str] = None, **params ): args = locals() args.pop("max_retries", None) args.pop("self", None) args.pop("params", None) args.pop("__class__", None) if max_retries is not None and isinstance(max_retries, str): max_retries = int(max_retries) # cast to int super().__init__(max_retries=max_retries, **args, **params) class Config: extra = "allow" arbitrary_types_allowed = True def __contains__(self, key): # Define custom behavior for the 'in' operator return hasattr(self, key) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value)
(model: str, custom_llm_provider: Optional[str] = None, max_retries: Optional[int] = None, tpm: Optional[int] = None, rpm: Optional[int] = None, api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, timeout: Union[float, str, openai.Timeout, NoneType] = None, stream_timeout: Union[float, str, NoneType] = None, organization: Optional[str] = None, vertex_project: Optional[str] = None, vertex_location: Optional[str] = None, aws_access_key_id: Optional[str] = None, aws_secret_access_key: Optional[str] = None, aws_region_name: Optional[str] = None, *, region_name: Optional[str] = None, watsonx_region_name: Optional[str] = None, input_cost_per_token: Optional[float] = None, output_cost_per_token: Optional[float] = None, input_cost_per_second: Optional[float] = None, output_cost_per_second: Optional[float] = None, **params) -> None
63,422
litellm.types.router
__init__
null
def __init__( self, model: str, custom_llm_provider: Optional[str] = None, max_retries: Optional[Union[int, str]] = None, tpm: Optional[int] = None, rpm: Optional[int] = None, api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, timeout: Optional[Union[float, str]] = None, # if str, pass in as os.environ/ stream_timeout: Optional[Union[float, str]] = ( None # timeout when making stream=True calls, if str, pass in as os.environ/ ), organization: Optional[str] = None, # for openai orgs ## VERTEX AI ## vertex_project: Optional[str] = None, vertex_location: Optional[str] = None, ## AWS BEDROCK / SAGEMAKER ## aws_access_key_id: Optional[str] = None, aws_secret_access_key: Optional[str] = None, aws_region_name: Optional[str] = None, **params ): args = locals() args.pop("max_retries", None) args.pop("self", None) args.pop("params", None) args.pop("__class__", None) if max_retries is not None and isinstance(max_retries, str): max_retries = int(max_retries) # cast to int super().__init__(max_retries=max_retries, **args, **params)
(self, model: str, custom_llm_provider: Optional[str] = None, max_retries: Union[str, int, NoneType] = None, tpm: Optional[int] = None, rpm: Optional[int] = None, api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, timeout: Union[float, str, NoneType] = None, stream_timeout: Union[float, str, NoneType] = None, organization: Optional[str] = None, vertex_project: Optional[str] = None, vertex_location: Optional[str] = None, aws_access_key_id: Optional[str] = None, aws_secret_access_key: Optional[str] = None, aws_region_name: Optional[str] = None, **params)
63,446
litellm.proxy._types
LiteLLM_UpperboundKeyGenerateParams
Set default upperbound to max budget a key called via `/key/generate` can be.
class LiteLLM_UpperboundKeyGenerateParams(LiteLLMBase): """ Set default upperbound to max budget a key called via `/key/generate` can be. """ max_budget: Optional[float] = None budget_duration: Optional[str] = None max_parallel_requests: Optional[int] = None tpm_limit: Optional[int] = None rpm_limit: Optional[int] = None
(*, max_budget: Optional[float] = None, budget_duration: Optional[str] = None, max_parallel_requests: Optional[int] = None, tpm_limit: Optional[int] = None, rpm_limit: Optional[int] = None) -> None
63,476
litellm.utils
Logging
null
class Logging: global supabaseClient, liteDebuggerClient, promptLayerLogger, weightsBiasesLogger, langsmithLogger, capture_exception, add_breadcrumb, lunaryLogger def __init__( self, model, messages, stream, call_type, start_time, litellm_call_id, function_id, dynamic_success_callbacks=None, dynamic_failure_callbacks=None, dynamic_async_success_callbacks=None, langfuse_public_key=None, langfuse_secret=None, ): if call_type not in [item.value for item in CallTypes]: allowed_values = ", ".join([item.value for item in CallTypes]) raise ValueError( f"Invalid call_type {call_type}. Allowed values: {allowed_values}" ) if messages is not None: if isinstance(messages, str): messages = [ {"role": "user", "content": messages} ] # convert text completion input to the chat completion format elif ( isinstance(messages, list) and len(messages) > 0 and isinstance(messages[0], str) ): new_messages = [] for m in messages: new_messages.append({"role": "user", "content": m}) messages = new_messages self.model = model self.messages = messages self.stream = stream self.start_time = start_time # log the call start time self.call_type = call_type self.litellm_call_id = litellm_call_id self.function_id = function_id self.streaming_chunks = [] # for generating complete stream response self.sync_streaming_chunks = [] # for generating complete stream response self.model_call_details = {} self.dynamic_input_callbacks = [] # [TODO] callbacks set for just that call self.dynamic_failure_callbacks = dynamic_failure_callbacks self.dynamic_success_callbacks = ( dynamic_success_callbacks # callbacks set for just that call ) self.dynamic_async_success_callbacks = ( dynamic_async_success_callbacks # callbacks set for just that call ) ## DYNAMIC LANGFUSE KEYS ## self.langfuse_public_key = langfuse_public_key self.langfuse_secret = langfuse_secret ## TIME TO FIRST TOKEN LOGGING ## self.completion_start_time: Optional[datetime.datetime] = None def update_environment_variables( self, model, user, optional_params, litellm_params, **additional_params ): self.optional_params = optional_params self.model = model self.user = user self.litellm_params = litellm_params self.logger_fn = litellm_params.get("logger_fn", None) print_verbose(f"self.optional_params: {self.optional_params}") self.model_call_details = { "model": self.model, "messages": self.messages, "optional_params": self.optional_params, "litellm_params": self.litellm_params, "start_time": self.start_time, "stream": self.stream, "user": user, "call_type": str(self.call_type), "litellm_call_id": self.litellm_call_id, "completion_start_time": self.completion_start_time, **self.optional_params, **additional_params, } def _pre_call(self, input, api_key, model=None, additional_args={}): """ Common helper function across the sync + async pre-call function """ # print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}") self.model_call_details["input"] = input self.model_call_details["api_key"] = api_key self.model_call_details["additional_args"] = additional_args self.model_call_details["log_event_type"] = "pre_api_call" if ( model ): # if model name was changes pre-call, overwrite the initial model call name with the new one self.model_call_details["model"] = model def pre_call(self, input, api_key, model=None, additional_args={}): # Log the exact input to the LLM API litellm.error_logs["PRE_CALL"] = locals() try: self._pre_call( input=input, api_key=api_key, model=model, additional_args=additional_args, ) # User Logging -> if you pass in a custom logging function headers = additional_args.get("headers", {}) if headers is None: headers = {} data = additional_args.get("complete_input_dict", {}) api_base = additional_args.get("api_base", "") self.model_call_details["litellm_params"]["api_base"] = str( api_base ) # used for alerting masked_headers = { k: (v[:-20] + "*" * 20) if (isinstance(v, str) and len(v) > 20) else v for k, v in headers.items() } formatted_headers = " ".join( [f"-H '{k}: {v}'" for k, v in masked_headers.items()] ) verbose_logger.debug(f"PRE-API-CALL ADDITIONAL ARGS: {additional_args}") curl_command = "\n\nPOST Request Sent from LiteLLM:\n" curl_command += "curl -X POST \\\n" curl_command += f"{api_base} \\\n" curl_command += ( f"{formatted_headers} \\\n" if formatted_headers.strip() != "" else "" ) curl_command += f"-d '{str(data)}'\n" if additional_args.get("request_str", None) is not None: # print the sagemaker / bedrock client request curl_command = "\nRequest Sent from LiteLLM:\n" curl_command += additional_args.get("request_str", None) elif api_base == "": curl_command = self.model_call_details # only print verbose if verbose logger is not set if verbose_logger.level == 0: # this means verbose logger was not switched on - user is in litellm.set_verbose=True print_verbose(f"\033[92m{curl_command}\033[0m\n") if litellm.json_logs: verbose_logger.info( "POST Request Sent from LiteLLM", extra={"api_base": {api_base}, **masked_headers}, ) else: verbose_logger.info(f"\033[92m{curl_command}\033[0m\n") if self.logger_fn and callable(self.logger_fn): try: self.logger_fn( self.model_call_details ) # Expectation: any logger function passed in by the user should accept a dict object except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) # Input Integration Logging -> If you want to log the fact that an attempt to call the model was made callbacks = litellm.input_callback + self.dynamic_input_callbacks for callback in callbacks: try: if callback == "supabase": print_verbose("reaches supabase for logging!") model = self.model_call_details["model"] messages = self.model_call_details["input"] print_verbose(f"supabaseClient: {supabaseClient}") supabaseClient.input_log_event( model=model, messages=messages, end_user=self.model_call_details.get("user", "default"), litellm_call_id=self.litellm_params["litellm_call_id"], print_verbose=print_verbose, ) elif callback == "sentry" and add_breadcrumb: try: details_to_log = copy.deepcopy(self.model_call_details) except: details_to_log = self.model_call_details if litellm.turn_off_message_logging: # make a copy of the _model_Call_details and log it details_to_log.pop("messages", None) details_to_log.pop("input", None) details_to_log.pop("prompt", None) add_breadcrumb( category="litellm.llm_call", message=f"Model Call Details pre-call: {details_to_log}", level="info", ) elif isinstance(callback, CustomLogger): # custom logger class callback.log_pre_api_call( model=self.model, messages=self.messages, kwargs=self.model_call_details, ) elif callable(callback): # custom logger functions customLogger.log_input_event( model=self.model, messages=self.messages, kwargs=self.model_call_details, print_verbose=print_verbose, callback_func=callback, ) except Exception as e: traceback.print_exc() print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while input logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) def post_call( self, original_response, input=None, api_key=None, additional_args={} ): # Log the exact result from the LLM API, for streaming - log the type of response received litellm.error_logs["POST_CALL"] = locals() if isinstance(original_response, dict): original_response = json.dumps(original_response) try: self.model_call_details["input"] = input self.model_call_details["api_key"] = api_key self.model_call_details["original_response"] = original_response self.model_call_details["additional_args"] = additional_args self.model_call_details["log_event_type"] = "post_api_call" # User Logging -> if you pass in a custom logging function print_verbose( f"RAW RESPONSE:\n{self.model_call_details.get('original_response', self.model_call_details)}\n\n", log_level="DEBUG", ) if self.logger_fn and callable(self.logger_fn): try: self.logger_fn( self.model_call_details ) # Expectation: any logger function passed in by the user should accept a dict object except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) self.redact_message_input_output_from_logging(result=original_response) # Input Integration Logging -> If you want to log the fact that an attempt to call the model was made callbacks = litellm.input_callback + self.dynamic_input_callbacks for callback in callbacks: try: if callback == "lite_debugger": print_verbose("reaches litedebugger for post-call logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") liteDebuggerClient.post_call_log_event( original_response=original_response, litellm_call_id=self.litellm_params["litellm_call_id"], print_verbose=print_verbose, call_type=self.call_type, stream=self.stream, ) elif callback == "sentry" and add_breadcrumb: print_verbose("reaches sentry breadcrumbing") try: details_to_log = copy.deepcopy(self.model_call_details) except: details_to_log = self.model_call_details if litellm.turn_off_message_logging: # make a copy of the _model_Call_details and log it details_to_log.pop("messages", None) details_to_log.pop("input", None) details_to_log.pop("prompt", None) add_breadcrumb( category="litellm.llm_call", message=f"Model Call Details post-call: {details_to_log}", level="info", ) elif isinstance(callback, CustomLogger): # custom logger class callback.log_post_api_call( kwargs=self.model_call_details, response_obj=None, start_time=self.start_time, end_time=None, ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while post-call logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) pass def _success_handler_helper_fn( self, result=None, start_time=None, end_time=None, cache_hit=None ): try: if start_time is None: start_time = self.start_time if end_time is None: end_time = datetime.datetime.now() if self.completion_start_time is None: self.completion_start_time = end_time self.model_call_details["completion_start_time"] = ( self.completion_start_time ) self.model_call_details["log_event_type"] = "successful_api_call" self.model_call_details["end_time"] = end_time self.model_call_details["cache_hit"] = cache_hit ## if model in model cost map - log the response cost ## else set cost to None verbose_logger.debug(f"Model={self.model};") if ( result is not None and ( isinstance(result, ModelResponse) or isinstance(result, EmbeddingResponse) or isinstance(result, ImageResponse) or isinstance(result, TranscriptionResponse) or isinstance(result, TextCompletionResponse) ) and self.stream != True ): # handle streaming separately try: if self.model_call_details.get("cache_hit", False) == True: self.model_call_details["response_cost"] = 0.0 else: result._hidden_params["optional_params"] = self.optional_params if ( self.call_type == CallTypes.aimage_generation.value or self.call_type == CallTypes.image_generation.value ): self.model_call_details["response_cost"] = ( litellm.completion_cost( completion_response=result, model=self.model, call_type=self.call_type, custom_llm_provider=self.model_call_details.get( "custom_llm_provider", None ), # set for img gen models ) ) else: # check if base_model set on azure base_model = _get_base_model_from_metadata( model_call_details=self.model_call_details ) # base_model defaults to None if not set on model_info self.model_call_details["response_cost"] = ( litellm.completion_cost( completion_response=result, call_type=self.call_type, model=base_model, ) ) except litellm.NotFoundError as e: verbose_logger.debug( f"Model={self.model} not found in completion cost map." ) self.model_call_details["response_cost"] = None else: # streaming chunks + image gen. self.model_call_details["response_cost"] = None if ( litellm.max_budget and self.stream == False and result is not None and "content" in result ): time_diff = (end_time - start_time).total_seconds() float_diff = float(time_diff) litellm._current_cost += litellm.completion_cost( model=self.model, prompt="", completion=result["content"], total_time=float_diff, ) return start_time, end_time, result except Exception as e: raise Exception(f"[Non-Blocking] LiteLLM.Success_Call Error: {str(e)}") def success_handler( self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs ): print_verbose(f"Logging Details LiteLLM-Success Call: {cache_hit}") start_time, end_time, result = self._success_handler_helper_fn( start_time=start_time, end_time=end_time, result=result, cache_hit=cache_hit, ) # print(f"original response in success handler: {self.model_call_details['original_response']}") try: print_verbose(f"success callbacks: {litellm.success_callback}") ## BUILD COMPLETE STREAMED RESPONSE complete_streaming_response = None if self.stream and isinstance(result, ModelResponse): if ( result.choices[0].finish_reason is not None ): # if it's the last chunk self.sync_streaming_chunks.append(result) # print_verbose(f"final set of received chunks: {self.sync_streaming_chunks}") try: complete_streaming_response = litellm.stream_chunk_builder( self.sync_streaming_chunks, messages=self.model_call_details.get("messages", None), start_time=start_time, end_time=end_time, ) except Exception as e: complete_streaming_response = None else: self.sync_streaming_chunks.append(result) if complete_streaming_response is not None: print_verbose( f"Logging Details LiteLLM-Success Call streaming complete" ) self.model_call_details["complete_streaming_response"] = ( complete_streaming_response ) try: if self.model_call_details.get("cache_hit", False) == True: self.model_call_details["response_cost"] = 0.0 else: # check if base_model set on azure base_model = _get_base_model_from_metadata( model_call_details=self.model_call_details ) # base_model defaults to None if not set on model_info self.model_call_details["response_cost"] = ( litellm.completion_cost( completion_response=complete_streaming_response, model=base_model, ) ) verbose_logger.debug( f"Model={self.model}; cost={self.model_call_details['response_cost']}" ) except litellm.NotFoundError as e: verbose_logger.debug( f"Model={self.model} not found in completion cost map." ) self.model_call_details["response_cost"] = None if self.dynamic_success_callbacks is not None and isinstance( self.dynamic_success_callbacks, list ): callbacks = self.dynamic_success_callbacks ## keep the internal functions ## for callback in litellm.success_callback: if ( isinstance(callback, CustomLogger) and "_PROXY_" in callback.__class__.__name__ ): callbacks.append(callback) else: callbacks = litellm.success_callback self.redact_message_input_output_from_logging(result=result) for callback in callbacks: try: litellm_params = self.model_call_details.get("litellm_params", {}) if litellm_params.get("no-log", False) == True: # proxy cost tracking cal backs should run if not ( isinstance(callback, CustomLogger) and "_PROXY_" in callback.__class__.__name__ ): print_verbose("no-log request, skipping logging") continue if callback == "lite_debugger": print_verbose("reaches lite_debugger for logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") print_verbose( f"liteDebuggerClient details function {self.call_type} and stream set to {self.stream}" ) liteDebuggerClient.log_event( end_user=kwargs.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=self.litellm_call_id, print_verbose=print_verbose, call_type=self.call_type, stream=self.stream, ) if callback == "promptlayer": print_verbose("reaches promptlayer for logging!") promptLayerLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "supabase": print_verbose("reaches supabase for logging!") kwargs = self.model_call_details # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: if "complete_streaming_response" not in kwargs: return else: print_verbose("reaches supabase for streaming logging!") result = kwargs["complete_streaming_response"] model = kwargs["model"] messages = kwargs["messages"] optional_params = kwargs.get("optional_params", {}) litellm_params = kwargs.get("litellm_params", {}) supabaseClient.log_event( model=model, messages=messages, end_user=optional_params.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=litellm_params.get( "litellm_call_id", str(uuid.uuid4()) ), print_verbose=print_verbose, ) if callback == "wandb": print_verbose("reaches wandb for logging!") weightsBiasesLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "langsmith": print_verbose("reaches langsmith for logging!") if self.stream: if "complete_streaming_response" not in kwargs: break else: print_verbose( "reaches langsmith for streaming logging!" ) result = kwargs["complete_streaming_response"] langsmithLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "lunary": print_verbose("reaches lunary for logging!") model = self.model kwargs = self.model_call_details input = kwargs.get("messages", kwargs.get("input", None)) type = ( "embed" if self.call_type == CallTypes.embedding.value else "llm" ) # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: if "complete_streaming_response" not in kwargs: break else: result = kwargs["complete_streaming_response"] lunaryLogger.log_event( type=type, kwargs=kwargs, event="end", model=model, input=input, user_id=kwargs.get("user", None), # user_props=self.model_call_details.get("user_props", None), extra=kwargs.get("optional_params", {}), response_obj=result, start_time=start_time, end_time=end_time, run_id=self.litellm_call_id, print_verbose=print_verbose, ) if callback == "helicone": print_verbose("reaches helicone for logging!") model = self.model messages = kwargs["input"] heliconeLogger.log_success( model=model, messages=messages, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "langfuse": global langFuseLogger verbose_logger.debug("reaches langfuse for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: continue else: print_verbose("reaches langfuse for streaming logging!") result = kwargs["complete_streaming_response"] if langFuseLogger is None or ( ( self.langfuse_public_key is not None and self.langfuse_public_key != langFuseLogger.public_key ) and ( self.langfuse_public_key is not None and self.langfuse_public_key != langFuseLogger.public_key ) ): langFuseLogger = LangFuseLogger( langfuse_public_key=self.langfuse_public_key, langfuse_secret=self.langfuse_secret, ) langFuseLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "datadog": global dataDogLogger verbose_logger.debug("reaches datadog for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"datadog: is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: continue else: print_verbose("reaches datadog for streaming logging!") result = kwargs["complete_streaming_response"] dataDogLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "prometheus": global prometheusLogger verbose_logger.debug("reaches prometheus for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"prometheus: is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: continue else: print_verbose( "reaches prometheus for streaming logging!" ) result = kwargs["complete_streaming_response"] prometheusLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "generic": global genericAPILogger verbose_logger.debug("reaches langfuse for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: break else: print_verbose("reaches langfuse for streaming logging!") result = kwargs["complete_streaming_response"] if genericAPILogger is None: genericAPILogger = GenericAPILogger() genericAPILogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "clickhouse": global clickHouseLogger verbose_logger.debug("reaches clickhouse for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: break else: print_verbose( "reaches clickhouse for streaming logging!" ) result = kwargs["complete_streaming_response"] if clickHouseLogger is None: clickHouseLogger = ClickhouseLogger() clickHouseLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "greenscale": kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: break else: print_verbose( "reaches greenscale for streaming logging!" ) result = kwargs["complete_streaming_response"] greenscaleLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "cache" and litellm.cache is not None: # this only logs streaming once, complete_streaming_response exists i.e when stream ends print_verbose("success_callback: reaches cache for logging!") kwargs = self.model_call_details if self.stream: if "complete_streaming_response" not in kwargs: print_verbose( f"success_callback: reaches cache for logging, there is no complete_streaming_response. Kwargs={kwargs}\n\n" ) pass else: print_verbose( "success_callback: reaches cache for logging, there is a complete_streaming_response. Adding to cache" ) result = kwargs["complete_streaming_response"] # only add to cache once we have a complete streaming response litellm.cache.add_cache(result, **kwargs) if callback == "athina": deep_copy = {} for k, v in self.model_call_details.items(): deep_copy[k] = v athinaLogger.log_event( kwargs=deep_copy, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "traceloop": deep_copy = {} for k, v in self.model_call_details.items(): if k != "original_response": deep_copy[k] = v traceloopLogger.log_event( kwargs=deep_copy, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "s3": global s3Logger if s3Logger is None: s3Logger = S3Logger() if self.stream: if "complete_streaming_response" in self.model_call_details: print_verbose( "S3Logger Logger: Got Stream Event - Completed Stream Response" ) s3Logger.log_event( kwargs=self.model_call_details, response_obj=self.model_call_details[ "complete_streaming_response" ], start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) else: print_verbose( "S3Logger Logger: Got Stream Event - No complete stream response as yet" ) else: s3Logger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if ( callback == "openmeter" and self.model_call_details.get("litellm_params", {}).get( "acompletion", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aembedding", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aimage_generation", False ) == False and self.model_call_details.get("litellm_params", {}).get( "atranscription", False ) == False ): global openMeterLogger if openMeterLogger is None: print_verbose("Instantiates openmeter client") openMeterLogger = OpenMeterLogger() if self.stream and complete_streaming_response is None: openMeterLogger.log_stream_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) else: if self.stream and complete_streaming_response: self.model_call_details["complete_response"] = ( self.model_call_details.get( "complete_streaming_response", {} ) ) result = self.model_call_details["complete_response"] openMeterLogger.log_success_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) if ( isinstance(callback, CustomLogger) and self.model_call_details.get("litellm_params", {}).get( "acompletion", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aembedding", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aimage_generation", False ) == False and self.model_call_details.get("litellm_params", {}).get( "atranscription", False ) == False ): # custom logger class if self.stream and complete_streaming_response is None: callback.log_stream_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) else: if self.stream and complete_streaming_response: self.model_call_details["complete_response"] = ( self.model_call_details.get( "complete_streaming_response", {} ) ) result = self.model_call_details["complete_response"] callback.log_success_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) if ( callable(callback) == True and self.model_call_details.get("litellm_params", {}).get( "acompletion", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aembedding", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aimage_generation", False ) == False and self.model_call_details.get("litellm_params", {}).get( "atranscription", False ) == False ): # custom logger functions print_verbose( f"success callbacks: Running Custom Callback Function" ) customLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, callback_func=callback, ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}" ) pass async def async_success_handler( self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs ): """ Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions. """ print_verbose(f"Logging Details LiteLLM-Async Success Call: {cache_hit}") start_time, end_time, result = self._success_handler_helper_fn( start_time=start_time, end_time=end_time, result=result, cache_hit=cache_hit ) ## BUILD COMPLETE STREAMED RESPONSE complete_streaming_response = None if self.stream: if result.choices[0].finish_reason is not None: # if it's the last chunk self.streaming_chunks.append(result) # verbose_logger.debug(f"final set of received chunks: {self.streaming_chunks}") try: complete_streaming_response = litellm.stream_chunk_builder( self.streaming_chunks, messages=self.model_call_details.get("messages", None), start_time=start_time, end_time=end_time, ) except Exception as e: print_verbose( f"Error occurred building stream chunk: {traceback.format_exc()}" ) complete_streaming_response = None else: self.streaming_chunks.append(result) if complete_streaming_response is not None: print_verbose("Async success callbacks: Got a complete streaming response") self.model_call_details["async_complete_streaming_response"] = ( complete_streaming_response ) try: if self.model_call_details.get("cache_hit", False) == True: self.model_call_details["response_cost"] = 0.0 else: # check if base_model set on azure base_model = _get_base_model_from_metadata( model_call_details=self.model_call_details ) # base_model defaults to None if not set on model_info self.model_call_details["response_cost"] = litellm.completion_cost( completion_response=complete_streaming_response, model=base_model, ) verbose_logger.debug( f"Model={self.model}; cost={self.model_call_details['response_cost']}" ) except litellm.NotFoundError as e: verbose_logger.debug( f"Model={self.model} not found in completion cost map." ) self.model_call_details["response_cost"] = None if self.dynamic_async_success_callbacks is not None and isinstance( self.dynamic_async_success_callbacks, list ): callbacks = self.dynamic_async_success_callbacks ## keep the internal functions ## for callback in litellm._async_success_callback: callback_name = "" if isinstance(callback, CustomLogger): callback_name = callback.__class__.__name__ if callable(callback): callback_name = callback.__name__ if "_PROXY_" in callback_name: callbacks.append(callback) else: callbacks = litellm._async_success_callback self.redact_message_input_output_from_logging(result=result) for callback in callbacks: # check if callback can run for this request litellm_params = self.model_call_details.get("litellm_params", {}) if litellm_params.get("no-log", False) == True: # proxy cost tracking cal backs should run if not ( isinstance(callback, CustomLogger) and "_PROXY_" in callback.__class__.__name__ ): print_verbose("no-log request, skipping logging") continue try: if kwargs.get("no-log", False) == True: print_verbose("no-log request, skipping logging") continue if callback == "cache" and litellm.cache is not None: # set_cache once complete streaming response is built print_verbose("async success_callback: reaches cache for logging!") kwargs = self.model_call_details if self.stream: if "async_complete_streaming_response" not in kwargs: print_verbose( f"async success_callback: reaches cache for logging, there is no async_complete_streaming_response. Kwargs={kwargs}\n\n" ) pass else: print_verbose( "async success_callback: reaches cache for logging, there is a async_complete_streaming_response. Adding to cache" ) result = kwargs["async_complete_streaming_response"] # only add to cache once we have a complete streaming response if litellm.cache is not None and not isinstance( litellm.cache.cache, S3Cache ): await litellm.cache.async_add_cache(result, **kwargs) else: litellm.cache.add_cache(result, **kwargs) if callback == "openmeter": global openMeterLogger if self.stream == True: if ( "async_complete_streaming_response" in self.model_call_details ): await openMeterLogger.async_log_success_event( kwargs=self.model_call_details, response_obj=self.model_call_details[ "async_complete_streaming_response" ], start_time=start_time, end_time=end_time, ) else: await openMeterLogger.async_log_stream_event( # [TODO]: move this to being an async log stream event function kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) else: await openMeterLogger.async_log_success_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) if isinstance(callback, CustomLogger): # custom logger class if self.stream == True: if ( "async_complete_streaming_response" in self.model_call_details ): await callback.async_log_success_event( kwargs=self.model_call_details, response_obj=self.model_call_details[ "async_complete_streaming_response" ], start_time=start_time, end_time=end_time, ) else: await callback.async_log_stream_event( # [TODO]: move this to being an async log stream event function kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) else: await callback.async_log_success_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) if callable(callback): # custom logger functions if self.stream: if ( "async_complete_streaming_response" in self.model_call_details ): await customLogger.async_log_event( kwargs=self.model_call_details, response_obj=self.model_call_details[ "async_complete_streaming_response" ], start_time=start_time, end_time=end_time, print_verbose=print_verbose, callback_func=callback, ) else: await customLogger.async_log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, callback_func=callback, ) if callback == "dynamodb": global dynamoLogger if dynamoLogger is None: dynamoLogger = DyanmoDBLogger() if self.stream: if ( "async_complete_streaming_response" in self.model_call_details ): print_verbose( "DynamoDB Logger: Got Stream Event - Completed Stream Response" ) await dynamoLogger._async_log_event( kwargs=self.model_call_details, response_obj=self.model_call_details[ "async_complete_streaming_response" ], start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) else: print_verbose( "DynamoDB Logger: Got Stream Event - No complete stream response as yet" ) else: await dynamoLogger._async_log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}" ) pass def _failure_handler_helper_fn( self, exception, traceback_exception, start_time=None, end_time=None ): if start_time is None: start_time = self.start_time if end_time is None: end_time = datetime.datetime.now() # on some exceptions, model_call_details is not always initialized, this ensures that we still log those exceptions if not hasattr(self, "model_call_details"): self.model_call_details = {} self.model_call_details["log_event_type"] = "failed_api_call" self.model_call_details["exception"] = exception self.model_call_details["traceback_exception"] = traceback_exception self.model_call_details["end_time"] = end_time self.model_call_details.setdefault("original_response", None) return start_time, end_time def failure_handler( self, exception, traceback_exception, start_time=None, end_time=None ): print_verbose(f"Logging Details LiteLLM-Failure Call") try: start_time, end_time = self._failure_handler_helper_fn( exception=exception, traceback_exception=traceback_exception, start_time=start_time, end_time=end_time, ) callbacks = [] # init this to empty incase it's not created if self.dynamic_failure_callbacks is not None and isinstance( self.dynamic_failure_callbacks, list ): callbacks = self.dynamic_failure_callbacks ## keep the internal functions ## for callback in litellm.failure_callback: if ( isinstance(callback, CustomLogger) and "_PROXY_" in callback.__class__.__name__ ): callbacks.append(callback) else: callbacks = litellm.failure_callback result = None # result sent to all loggers, init this to None incase it's not created self.redact_message_input_output_from_logging(result=result) for callback in callbacks: try: if callback == "lite_debugger": print_verbose("reaches lite_debugger for logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") result = { "model": self.model, "created": time.time(), "error": traceback_exception, "usage": { "prompt_tokens": prompt_token_calculator( self.model, messages=self.messages ), "completion_tokens": 0, }, } liteDebuggerClient.log_event( model=self.model, messages=self.messages, end_user=self.model_call_details.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=self.litellm_call_id, print_verbose=print_verbose, call_type=self.call_type, stream=self.stream, ) elif callback == "lunary": print_verbose("reaches lunary for logging error!") model = self.model input = self.model_call_details["input"] _type = ( "embed" if self.call_type == CallTypes.embedding.value else "llm" ) lunaryLogger.log_event( type=_type, event="error", user_id=self.model_call_details.get("user", "default"), model=model, input=input, error=traceback_exception, run_id=self.litellm_call_id, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) elif callback == "sentry": print_verbose("sending exception to sentry") if capture_exception: capture_exception(exception) else: print_verbose( f"capture exception not initialized: {capture_exception}" ) elif callable(callback): # custom logger functions customLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, callback_func=callback, ) elif ( isinstance(callback, CustomLogger) and self.model_call_details.get("litellm_params", {}).get( "acompletion", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aembedding", False ) == False ): # custom logger class callback.log_failure_event( start_time=start_time, end_time=end_time, response_obj=result, kwargs=self.model_call_details, ) elif callback == "langfuse": global langFuseLogger verbose_logger.debug("reaches langfuse for logging failure") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if langFuseLogger is None or ( ( self.langfuse_public_key is not None and self.langfuse_public_key != langFuseLogger.public_key ) and ( self.langfuse_public_key is not None and self.langfuse_public_key != langFuseLogger.public_key ) ): langFuseLogger = LangFuseLogger( langfuse_public_key=self.langfuse_public_key, langfuse_secret=self.langfuse_secret, ) langFuseLogger.log_event( start_time=start_time, end_time=end_time, response_obj=None, user_id=kwargs.get("user", None), print_verbose=print_verbose, status_message=str(exception), level="ERROR", kwargs=self.model_call_details, ) elif callback == "prometheus": global prometheusLogger verbose_logger.debug("reaches prometheus for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v kwargs["exception"] = str(exception) prometheusLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging with integrations {str(e)}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging {traceback.format_exc()}" ) pass async def async_failure_handler( self, exception, traceback_exception, start_time=None, end_time=None ): """ Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions. """ start_time, end_time = self._failure_handler_helper_fn( exception=exception, traceback_exception=traceback_exception, start_time=start_time, end_time=end_time, ) result = None # result sent to all loggers, init this to None incase it's not created for callback in litellm._async_failure_callback: try: if isinstance(callback, CustomLogger): # custom logger class await callback.async_log_failure_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) if callable(callback): # custom logger functions await customLogger.async_log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, callback_func=callback, ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}" ) def redact_message_input_output_from_logging(self, result): """ Removes messages, prompts, input, response from logging. This modifies the data in-place only redacts when litellm.turn_off_message_logging == True """ # check if user opted out of logging message/response to callbacks if litellm.turn_off_message_logging == True: # remove messages, prompts, input, response from logging self.model_call_details["messages"] = "redacted-by-litellm" self.model_call_details["prompt"] = "" self.model_call_details["input"] = "" # response cleaning # ChatCompletion Responses if self.stream and "complete_streaming_response" in self.model_call_details: _streaming_response = self.model_call_details[ "complete_streaming_response" ] for choice in _streaming_response.choices: if isinstance(choice, litellm.Choices): choice.message.content = "redacted-by-litellm" elif isinstance(choice, litellm.utils.StreamingChoices): choice.delta.content = "redacted-by-litellm" else: if result is not None: if isinstance(result, litellm.ModelResponse): if hasattr(result, "choices") and result.choices is not None: for choice in result.choices: if isinstance(choice, litellm.Choices): choice.message.content = "redacted-by-litellm" elif isinstance(choice, litellm.utils.StreamingChoices): choice.delta.content = "redacted-by-litellm"
(model, messages, stream, call_type, start_time, litellm_call_id, function_id, dynamic_success_callbacks=None, dynamic_failure_callbacks=None, dynamic_async_success_callbacks=None, langfuse_public_key=None, langfuse_secret=None)
63,477
litellm.utils
__init__
null
def __init__( self, model, messages, stream, call_type, start_time, litellm_call_id, function_id, dynamic_success_callbacks=None, dynamic_failure_callbacks=None, dynamic_async_success_callbacks=None, langfuse_public_key=None, langfuse_secret=None, ): if call_type not in [item.value for item in CallTypes]: allowed_values = ", ".join([item.value for item in CallTypes]) raise ValueError( f"Invalid call_type {call_type}. Allowed values: {allowed_values}" ) if messages is not None: if isinstance(messages, str): messages = [ {"role": "user", "content": messages} ] # convert text completion input to the chat completion format elif ( isinstance(messages, list) and len(messages) > 0 and isinstance(messages[0], str) ): new_messages = [] for m in messages: new_messages.append({"role": "user", "content": m}) messages = new_messages self.model = model self.messages = messages self.stream = stream self.start_time = start_time # log the call start time self.call_type = call_type self.litellm_call_id = litellm_call_id self.function_id = function_id self.streaming_chunks = [] # for generating complete stream response self.sync_streaming_chunks = [] # for generating complete stream response self.model_call_details = {} self.dynamic_input_callbacks = [] # [TODO] callbacks set for just that call self.dynamic_failure_callbacks = dynamic_failure_callbacks self.dynamic_success_callbacks = ( dynamic_success_callbacks # callbacks set for just that call ) self.dynamic_async_success_callbacks = ( dynamic_async_success_callbacks # callbacks set for just that call ) ## DYNAMIC LANGFUSE KEYS ## self.langfuse_public_key = langfuse_public_key self.langfuse_secret = langfuse_secret ## TIME TO FIRST TOKEN LOGGING ## self.completion_start_time: Optional[datetime.datetime] = None
(self, model, messages, stream, call_type, start_time, litellm_call_id, function_id, dynamic_success_callbacks=None, dynamic_failure_callbacks=None, dynamic_async_success_callbacks=None, langfuse_public_key=None, langfuse_secret=None)
63,478
litellm.utils
_failure_handler_helper_fn
null
def _failure_handler_helper_fn( self, exception, traceback_exception, start_time=None, end_time=None ): if start_time is None: start_time = self.start_time if end_time is None: end_time = datetime.datetime.now() # on some exceptions, model_call_details is not always initialized, this ensures that we still log those exceptions if not hasattr(self, "model_call_details"): self.model_call_details = {} self.model_call_details["log_event_type"] = "failed_api_call" self.model_call_details["exception"] = exception self.model_call_details["traceback_exception"] = traceback_exception self.model_call_details["end_time"] = end_time self.model_call_details.setdefault("original_response", None) return start_time, end_time
(self, exception, traceback_exception, start_time=None, end_time=None)
63,479
litellm.utils
_pre_call
Common helper function across the sync + async pre-call function
def _pre_call(self, input, api_key, model=None, additional_args={}): """ Common helper function across the sync + async pre-call function """ # print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}") self.model_call_details["input"] = input self.model_call_details["api_key"] = api_key self.model_call_details["additional_args"] = additional_args self.model_call_details["log_event_type"] = "pre_api_call" if ( model ): # if model name was changes pre-call, overwrite the initial model call name with the new one self.model_call_details["model"] = model
(self, input, api_key, model=None, additional_args={})
63,480
litellm.utils
_success_handler_helper_fn
null
def _success_handler_helper_fn( self, result=None, start_time=None, end_time=None, cache_hit=None ): try: if start_time is None: start_time = self.start_time if end_time is None: end_time = datetime.datetime.now() if self.completion_start_time is None: self.completion_start_time = end_time self.model_call_details["completion_start_time"] = ( self.completion_start_time ) self.model_call_details["log_event_type"] = "successful_api_call" self.model_call_details["end_time"] = end_time self.model_call_details["cache_hit"] = cache_hit ## if model in model cost map - log the response cost ## else set cost to None verbose_logger.debug(f"Model={self.model};") if ( result is not None and ( isinstance(result, ModelResponse) or isinstance(result, EmbeddingResponse) or isinstance(result, ImageResponse) or isinstance(result, TranscriptionResponse) or isinstance(result, TextCompletionResponse) ) and self.stream != True ): # handle streaming separately try: if self.model_call_details.get("cache_hit", False) == True: self.model_call_details["response_cost"] = 0.0 else: result._hidden_params["optional_params"] = self.optional_params if ( self.call_type == CallTypes.aimage_generation.value or self.call_type == CallTypes.image_generation.value ): self.model_call_details["response_cost"] = ( litellm.completion_cost( completion_response=result, model=self.model, call_type=self.call_type, custom_llm_provider=self.model_call_details.get( "custom_llm_provider", None ), # set for img gen models ) ) else: # check if base_model set on azure base_model = _get_base_model_from_metadata( model_call_details=self.model_call_details ) # base_model defaults to None if not set on model_info self.model_call_details["response_cost"] = ( litellm.completion_cost( completion_response=result, call_type=self.call_type, model=base_model, ) ) except litellm.NotFoundError as e: verbose_logger.debug( f"Model={self.model} not found in completion cost map." ) self.model_call_details["response_cost"] = None else: # streaming chunks + image gen. self.model_call_details["response_cost"] = None if ( litellm.max_budget and self.stream == False and result is not None and "content" in result ): time_diff = (end_time - start_time).total_seconds() float_diff = float(time_diff) litellm._current_cost += litellm.completion_cost( model=self.model, prompt="", completion=result["content"], total_time=float_diff, ) return start_time, end_time, result except Exception as e: raise Exception(f"[Non-Blocking] LiteLLM.Success_Call Error: {str(e)}")
(self, result=None, start_time=None, end_time=None, cache_hit=None)
63,481
litellm.utils
async_failure_handler
Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions.
def failure_handler( self, exception, traceback_exception, start_time=None, end_time=None ): print_verbose(f"Logging Details LiteLLM-Failure Call") try: start_time, end_time = self._failure_handler_helper_fn( exception=exception, traceback_exception=traceback_exception, start_time=start_time, end_time=end_time, ) callbacks = [] # init this to empty incase it's not created if self.dynamic_failure_callbacks is not None and isinstance( self.dynamic_failure_callbacks, list ): callbacks = self.dynamic_failure_callbacks ## keep the internal functions ## for callback in litellm.failure_callback: if ( isinstance(callback, CustomLogger) and "_PROXY_" in callback.__class__.__name__ ): callbacks.append(callback) else: callbacks = litellm.failure_callback result = None # result sent to all loggers, init this to None incase it's not created self.redact_message_input_output_from_logging(result=result) for callback in callbacks: try: if callback == "lite_debugger": print_verbose("reaches lite_debugger for logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") result = { "model": self.model, "created": time.time(), "error": traceback_exception, "usage": { "prompt_tokens": prompt_token_calculator( self.model, messages=self.messages ), "completion_tokens": 0, }, } liteDebuggerClient.log_event( model=self.model, messages=self.messages, end_user=self.model_call_details.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=self.litellm_call_id, print_verbose=print_verbose, call_type=self.call_type, stream=self.stream, ) elif callback == "lunary": print_verbose("reaches lunary for logging error!") model = self.model input = self.model_call_details["input"] _type = ( "embed" if self.call_type == CallTypes.embedding.value else "llm" ) lunaryLogger.log_event( type=_type, event="error", user_id=self.model_call_details.get("user", "default"), model=model, input=input, error=traceback_exception, run_id=self.litellm_call_id, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) elif callback == "sentry": print_verbose("sending exception to sentry") if capture_exception: capture_exception(exception) else: print_verbose( f"capture exception not initialized: {capture_exception}" ) elif callable(callback): # custom logger functions customLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, callback_func=callback, ) elif ( isinstance(callback, CustomLogger) and self.model_call_details.get("litellm_params", {}).get( "acompletion", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aembedding", False ) == False ): # custom logger class callback.log_failure_event( start_time=start_time, end_time=end_time, response_obj=result, kwargs=self.model_call_details, ) elif callback == "langfuse": global langFuseLogger verbose_logger.debug("reaches langfuse for logging failure") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if langFuseLogger is None or ( ( self.langfuse_public_key is not None and self.langfuse_public_key != langFuseLogger.public_key ) and ( self.langfuse_public_key is not None and self.langfuse_public_key != langFuseLogger.public_key ) ): langFuseLogger = LangFuseLogger( langfuse_public_key=self.langfuse_public_key, langfuse_secret=self.langfuse_secret, ) langFuseLogger.log_event( start_time=start_time, end_time=end_time, response_obj=None, user_id=kwargs.get("user", None), print_verbose=print_verbose, status_message=str(exception), level="ERROR", kwargs=self.model_call_details, ) elif callback == "prometheus": global prometheusLogger verbose_logger.debug("reaches prometheus for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v kwargs["exception"] = str(exception) prometheusLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging with integrations {str(e)}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging {traceback.format_exc()}" ) pass
(self, exception, traceback_exception, start_time=None, end_time=None)
63,482
litellm.utils
async_success_handler
Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions.
def success_handler( self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs ): print_verbose(f"Logging Details LiteLLM-Success Call: {cache_hit}") start_time, end_time, result = self._success_handler_helper_fn( start_time=start_time, end_time=end_time, result=result, cache_hit=cache_hit, ) # print(f"original response in success handler: {self.model_call_details['original_response']}") try: print_verbose(f"success callbacks: {litellm.success_callback}") ## BUILD COMPLETE STREAMED RESPONSE complete_streaming_response = None if self.stream and isinstance(result, ModelResponse): if ( result.choices[0].finish_reason is not None ): # if it's the last chunk self.sync_streaming_chunks.append(result) # print_verbose(f"final set of received chunks: {self.sync_streaming_chunks}") try: complete_streaming_response = litellm.stream_chunk_builder( self.sync_streaming_chunks, messages=self.model_call_details.get("messages", None), start_time=start_time, end_time=end_time, ) except Exception as e: complete_streaming_response = None else: self.sync_streaming_chunks.append(result) if complete_streaming_response is not None: print_verbose( f"Logging Details LiteLLM-Success Call streaming complete" ) self.model_call_details["complete_streaming_response"] = ( complete_streaming_response ) try: if self.model_call_details.get("cache_hit", False) == True: self.model_call_details["response_cost"] = 0.0 else: # check if base_model set on azure base_model = _get_base_model_from_metadata( model_call_details=self.model_call_details ) # base_model defaults to None if not set on model_info self.model_call_details["response_cost"] = ( litellm.completion_cost( completion_response=complete_streaming_response, model=base_model, ) ) verbose_logger.debug( f"Model={self.model}; cost={self.model_call_details['response_cost']}" ) except litellm.NotFoundError as e: verbose_logger.debug( f"Model={self.model} not found in completion cost map." ) self.model_call_details["response_cost"] = None if self.dynamic_success_callbacks is not None and isinstance( self.dynamic_success_callbacks, list ): callbacks = self.dynamic_success_callbacks ## keep the internal functions ## for callback in litellm.success_callback: if ( isinstance(callback, CustomLogger) and "_PROXY_" in callback.__class__.__name__ ): callbacks.append(callback) else: callbacks = litellm.success_callback self.redact_message_input_output_from_logging(result=result) for callback in callbacks: try: litellm_params = self.model_call_details.get("litellm_params", {}) if litellm_params.get("no-log", False) == True: # proxy cost tracking cal backs should run if not ( isinstance(callback, CustomLogger) and "_PROXY_" in callback.__class__.__name__ ): print_verbose("no-log request, skipping logging") continue if callback == "lite_debugger": print_verbose("reaches lite_debugger for logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") print_verbose( f"liteDebuggerClient details function {self.call_type} and stream set to {self.stream}" ) liteDebuggerClient.log_event( end_user=kwargs.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=self.litellm_call_id, print_verbose=print_verbose, call_type=self.call_type, stream=self.stream, ) if callback == "promptlayer": print_verbose("reaches promptlayer for logging!") promptLayerLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "supabase": print_verbose("reaches supabase for logging!") kwargs = self.model_call_details # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: if "complete_streaming_response" not in kwargs: return else: print_verbose("reaches supabase for streaming logging!") result = kwargs["complete_streaming_response"] model = kwargs["model"] messages = kwargs["messages"] optional_params = kwargs.get("optional_params", {}) litellm_params = kwargs.get("litellm_params", {}) supabaseClient.log_event( model=model, messages=messages, end_user=optional_params.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=litellm_params.get( "litellm_call_id", str(uuid.uuid4()) ), print_verbose=print_verbose, ) if callback == "wandb": print_verbose("reaches wandb for logging!") weightsBiasesLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "langsmith": print_verbose("reaches langsmith for logging!") if self.stream: if "complete_streaming_response" not in kwargs: break else: print_verbose( "reaches langsmith for streaming logging!" ) result = kwargs["complete_streaming_response"] langsmithLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "lunary": print_verbose("reaches lunary for logging!") model = self.model kwargs = self.model_call_details input = kwargs.get("messages", kwargs.get("input", None)) type = ( "embed" if self.call_type == CallTypes.embedding.value else "llm" ) # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: if "complete_streaming_response" not in kwargs: break else: result = kwargs["complete_streaming_response"] lunaryLogger.log_event( type=type, kwargs=kwargs, event="end", model=model, input=input, user_id=kwargs.get("user", None), # user_props=self.model_call_details.get("user_props", None), extra=kwargs.get("optional_params", {}), response_obj=result, start_time=start_time, end_time=end_time, run_id=self.litellm_call_id, print_verbose=print_verbose, ) if callback == "helicone": print_verbose("reaches helicone for logging!") model = self.model messages = kwargs["input"] heliconeLogger.log_success( model=model, messages=messages, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "langfuse": global langFuseLogger verbose_logger.debug("reaches langfuse for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: continue else: print_verbose("reaches langfuse for streaming logging!") result = kwargs["complete_streaming_response"] if langFuseLogger is None or ( ( self.langfuse_public_key is not None and self.langfuse_public_key != langFuseLogger.public_key ) and ( self.langfuse_public_key is not None and self.langfuse_public_key != langFuseLogger.public_key ) ): langFuseLogger = LangFuseLogger( langfuse_public_key=self.langfuse_public_key, langfuse_secret=self.langfuse_secret, ) langFuseLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "datadog": global dataDogLogger verbose_logger.debug("reaches datadog for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"datadog: is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: continue else: print_verbose("reaches datadog for streaming logging!") result = kwargs["complete_streaming_response"] dataDogLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "prometheus": global prometheusLogger verbose_logger.debug("reaches prometheus for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"prometheus: is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: continue else: print_verbose( "reaches prometheus for streaming logging!" ) result = kwargs["complete_streaming_response"] prometheusLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "generic": global genericAPILogger verbose_logger.debug("reaches langfuse for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: break else: print_verbose("reaches langfuse for streaming logging!") result = kwargs["complete_streaming_response"] if genericAPILogger is None: genericAPILogger = GenericAPILogger() genericAPILogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "clickhouse": global clickHouseLogger verbose_logger.debug("reaches clickhouse for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: break else: print_verbose( "reaches clickhouse for streaming logging!" ) result = kwargs["complete_streaming_response"] if clickHouseLogger is None: clickHouseLogger = ClickhouseLogger() clickHouseLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "greenscale": kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: break else: print_verbose( "reaches greenscale for streaming logging!" ) result = kwargs["complete_streaming_response"] greenscaleLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "cache" and litellm.cache is not None: # this only logs streaming once, complete_streaming_response exists i.e when stream ends print_verbose("success_callback: reaches cache for logging!") kwargs = self.model_call_details if self.stream: if "complete_streaming_response" not in kwargs: print_verbose( f"success_callback: reaches cache for logging, there is no complete_streaming_response. Kwargs={kwargs}\n\n" ) pass else: print_verbose( "success_callback: reaches cache for logging, there is a complete_streaming_response. Adding to cache" ) result = kwargs["complete_streaming_response"] # only add to cache once we have a complete streaming response litellm.cache.add_cache(result, **kwargs) if callback == "athina": deep_copy = {} for k, v in self.model_call_details.items(): deep_copy[k] = v athinaLogger.log_event( kwargs=deep_copy, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "traceloop": deep_copy = {} for k, v in self.model_call_details.items(): if k != "original_response": deep_copy[k] = v traceloopLogger.log_event( kwargs=deep_copy, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "s3": global s3Logger if s3Logger is None: s3Logger = S3Logger() if self.stream: if "complete_streaming_response" in self.model_call_details: print_verbose( "S3Logger Logger: Got Stream Event - Completed Stream Response" ) s3Logger.log_event( kwargs=self.model_call_details, response_obj=self.model_call_details[ "complete_streaming_response" ], start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) else: print_verbose( "S3Logger Logger: Got Stream Event - No complete stream response as yet" ) else: s3Logger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if ( callback == "openmeter" and self.model_call_details.get("litellm_params", {}).get( "acompletion", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aembedding", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aimage_generation", False ) == False and self.model_call_details.get("litellm_params", {}).get( "atranscription", False ) == False ): global openMeterLogger if openMeterLogger is None: print_verbose("Instantiates openmeter client") openMeterLogger = OpenMeterLogger() if self.stream and complete_streaming_response is None: openMeterLogger.log_stream_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) else: if self.stream and complete_streaming_response: self.model_call_details["complete_response"] = ( self.model_call_details.get( "complete_streaming_response", {} ) ) result = self.model_call_details["complete_response"] openMeterLogger.log_success_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) if ( isinstance(callback, CustomLogger) and self.model_call_details.get("litellm_params", {}).get( "acompletion", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aembedding", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aimage_generation", False ) == False and self.model_call_details.get("litellm_params", {}).get( "atranscription", False ) == False ): # custom logger class if self.stream and complete_streaming_response is None: callback.log_stream_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) else: if self.stream and complete_streaming_response: self.model_call_details["complete_response"] = ( self.model_call_details.get( "complete_streaming_response", {} ) ) result = self.model_call_details["complete_response"] callback.log_success_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) if ( callable(callback) == True and self.model_call_details.get("litellm_params", {}).get( "acompletion", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aembedding", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aimage_generation", False ) == False and self.model_call_details.get("litellm_params", {}).get( "atranscription", False ) == False ): # custom logger functions print_verbose( f"success callbacks: Running Custom Callback Function" ) customLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, callback_func=callback, ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}" ) pass
(self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs)
63,483
litellm.utils
failure_handler
null
def failure_handler( self, exception, traceback_exception, start_time=None, end_time=None ): print_verbose(f"Logging Details LiteLLM-Failure Call") try: start_time, end_time = self._failure_handler_helper_fn( exception=exception, traceback_exception=traceback_exception, start_time=start_time, end_time=end_time, ) callbacks = [] # init this to empty incase it's not created if self.dynamic_failure_callbacks is not None and isinstance( self.dynamic_failure_callbacks, list ): callbacks = self.dynamic_failure_callbacks ## keep the internal functions ## for callback in litellm.failure_callback: if ( isinstance(callback, CustomLogger) and "_PROXY_" in callback.__class__.__name__ ): callbacks.append(callback) else: callbacks = litellm.failure_callback result = None # result sent to all loggers, init this to None incase it's not created self.redact_message_input_output_from_logging(result=result) for callback in callbacks: try: if callback == "lite_debugger": print_verbose("reaches lite_debugger for logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") result = { "model": self.model, "created": time.time(), "error": traceback_exception, "usage": { "prompt_tokens": prompt_token_calculator( self.model, messages=self.messages ), "completion_tokens": 0, }, } liteDebuggerClient.log_event( model=self.model, messages=self.messages, end_user=self.model_call_details.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=self.litellm_call_id, print_verbose=print_verbose, call_type=self.call_type, stream=self.stream, ) elif callback == "lunary": print_verbose("reaches lunary for logging error!") model = self.model input = self.model_call_details["input"] _type = ( "embed" if self.call_type == CallTypes.embedding.value else "llm" ) lunaryLogger.log_event( type=_type, event="error", user_id=self.model_call_details.get("user", "default"), model=model, input=input, error=traceback_exception, run_id=self.litellm_call_id, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) elif callback == "sentry": print_verbose("sending exception to sentry") if capture_exception: capture_exception(exception) else: print_verbose( f"capture exception not initialized: {capture_exception}" ) elif callable(callback): # custom logger functions customLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, callback_func=callback, ) elif ( isinstance(callback, CustomLogger) and self.model_call_details.get("litellm_params", {}).get( "acompletion", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aembedding", False ) == False ): # custom logger class callback.log_failure_event( start_time=start_time, end_time=end_time, response_obj=result, kwargs=self.model_call_details, ) elif callback == "langfuse": global langFuseLogger verbose_logger.debug("reaches langfuse for logging failure") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if langFuseLogger is None or ( ( self.langfuse_public_key is not None and self.langfuse_public_key != langFuseLogger.public_key ) and ( self.langfuse_public_key is not None and self.langfuse_public_key != langFuseLogger.public_key ) ): langFuseLogger = LangFuseLogger( langfuse_public_key=self.langfuse_public_key, langfuse_secret=self.langfuse_secret, ) langFuseLogger.log_event( start_time=start_time, end_time=end_time, response_obj=None, user_id=kwargs.get("user", None), print_verbose=print_verbose, status_message=str(exception), level="ERROR", kwargs=self.model_call_details, ) elif callback == "prometheus": global prometheusLogger verbose_logger.debug("reaches prometheus for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v kwargs["exception"] = str(exception) prometheusLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging with integrations {str(e)}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging {traceback.format_exc()}" ) pass
(self, exception, traceback_exception, start_time=None, end_time=None)
63,484
litellm.utils
post_call
null
def post_call( self, original_response, input=None, api_key=None, additional_args={} ): # Log the exact result from the LLM API, for streaming - log the type of response received litellm.error_logs["POST_CALL"] = locals() if isinstance(original_response, dict): original_response = json.dumps(original_response) try: self.model_call_details["input"] = input self.model_call_details["api_key"] = api_key self.model_call_details["original_response"] = original_response self.model_call_details["additional_args"] = additional_args self.model_call_details["log_event_type"] = "post_api_call" # User Logging -> if you pass in a custom logging function print_verbose( f"RAW RESPONSE:\n{self.model_call_details.get('original_response', self.model_call_details)}\n\n", log_level="DEBUG", ) if self.logger_fn and callable(self.logger_fn): try: self.logger_fn( self.model_call_details ) # Expectation: any logger function passed in by the user should accept a dict object except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) self.redact_message_input_output_from_logging(result=original_response) # Input Integration Logging -> If you want to log the fact that an attempt to call the model was made callbacks = litellm.input_callback + self.dynamic_input_callbacks for callback in callbacks: try: if callback == "lite_debugger": print_verbose("reaches litedebugger for post-call logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") liteDebuggerClient.post_call_log_event( original_response=original_response, litellm_call_id=self.litellm_params["litellm_call_id"], print_verbose=print_verbose, call_type=self.call_type, stream=self.stream, ) elif callback == "sentry" and add_breadcrumb: print_verbose("reaches sentry breadcrumbing") try: details_to_log = copy.deepcopy(self.model_call_details) except: details_to_log = self.model_call_details if litellm.turn_off_message_logging: # make a copy of the _model_Call_details and log it details_to_log.pop("messages", None) details_to_log.pop("input", None) details_to_log.pop("prompt", None) add_breadcrumb( category="litellm.llm_call", message=f"Model Call Details post-call: {details_to_log}", level="info", ) elif isinstance(callback, CustomLogger): # custom logger class callback.log_post_api_call( kwargs=self.model_call_details, response_obj=None, start_time=self.start_time, end_time=None, ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while post-call logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) pass
(self, original_response, input=None, api_key=None, additional_args={})
63,485
litellm.utils
pre_call
null
def pre_call(self, input, api_key, model=None, additional_args={}): # Log the exact input to the LLM API litellm.error_logs["PRE_CALL"] = locals() try: self._pre_call( input=input, api_key=api_key, model=model, additional_args=additional_args, ) # User Logging -> if you pass in a custom logging function headers = additional_args.get("headers", {}) if headers is None: headers = {} data = additional_args.get("complete_input_dict", {}) api_base = additional_args.get("api_base", "") self.model_call_details["litellm_params"]["api_base"] = str( api_base ) # used for alerting masked_headers = { k: (v[:-20] + "*" * 20) if (isinstance(v, str) and len(v) > 20) else v for k, v in headers.items() } formatted_headers = " ".join( [f"-H '{k}: {v}'" for k, v in masked_headers.items()] ) verbose_logger.debug(f"PRE-API-CALL ADDITIONAL ARGS: {additional_args}") curl_command = "\n\nPOST Request Sent from LiteLLM:\n" curl_command += "curl -X POST \\\n" curl_command += f"{api_base} \\\n" curl_command += ( f"{formatted_headers} \\\n" if formatted_headers.strip() != "" else "" ) curl_command += f"-d '{str(data)}'\n" if additional_args.get("request_str", None) is not None: # print the sagemaker / bedrock client request curl_command = "\nRequest Sent from LiteLLM:\n" curl_command += additional_args.get("request_str", None) elif api_base == "": curl_command = self.model_call_details # only print verbose if verbose logger is not set if verbose_logger.level == 0: # this means verbose logger was not switched on - user is in litellm.set_verbose=True print_verbose(f"\033[92m{curl_command}\033[0m\n") if litellm.json_logs: verbose_logger.info( "POST Request Sent from LiteLLM", extra={"api_base": {api_base}, **masked_headers}, ) else: verbose_logger.info(f"\033[92m{curl_command}\033[0m\n") if self.logger_fn and callable(self.logger_fn): try: self.logger_fn( self.model_call_details ) # Expectation: any logger function passed in by the user should accept a dict object except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) # Input Integration Logging -> If you want to log the fact that an attempt to call the model was made callbacks = litellm.input_callback + self.dynamic_input_callbacks for callback in callbacks: try: if callback == "supabase": print_verbose("reaches supabase for logging!") model = self.model_call_details["model"] messages = self.model_call_details["input"] print_verbose(f"supabaseClient: {supabaseClient}") supabaseClient.input_log_event( model=model, messages=messages, end_user=self.model_call_details.get("user", "default"), litellm_call_id=self.litellm_params["litellm_call_id"], print_verbose=print_verbose, ) elif callback == "sentry" and add_breadcrumb: try: details_to_log = copy.deepcopy(self.model_call_details) except: details_to_log = self.model_call_details if litellm.turn_off_message_logging: # make a copy of the _model_Call_details and log it details_to_log.pop("messages", None) details_to_log.pop("input", None) details_to_log.pop("prompt", None) add_breadcrumb( category="litellm.llm_call", message=f"Model Call Details pre-call: {details_to_log}", level="info", ) elif isinstance(callback, CustomLogger): # custom logger class callback.log_pre_api_call( model=self.model, messages=self.messages, kwargs=self.model_call_details, ) elif callable(callback): # custom logger functions customLogger.log_input_event( model=self.model, messages=self.messages, kwargs=self.model_call_details, print_verbose=print_verbose, callback_func=callback, ) except Exception as e: traceback.print_exc() print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while input logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e)
(self, input, api_key, model=None, additional_args={})
63,486
litellm.utils
redact_message_input_output_from_logging
Removes messages, prompts, input, response from logging. This modifies the data in-place only redacts when litellm.turn_off_message_logging == True
def redact_message_input_output_from_logging(self, result): """ Removes messages, prompts, input, response from logging. This modifies the data in-place only redacts when litellm.turn_off_message_logging == True """ # check if user opted out of logging message/response to callbacks if litellm.turn_off_message_logging == True: # remove messages, prompts, input, response from logging self.model_call_details["messages"] = "redacted-by-litellm" self.model_call_details["prompt"] = "" self.model_call_details["input"] = "" # response cleaning # ChatCompletion Responses if self.stream and "complete_streaming_response" in self.model_call_details: _streaming_response = self.model_call_details[ "complete_streaming_response" ] for choice in _streaming_response.choices: if isinstance(choice, litellm.Choices): choice.message.content = "redacted-by-litellm" elif isinstance(choice, litellm.utils.StreamingChoices): choice.delta.content = "redacted-by-litellm" else: if result is not None: if isinstance(result, litellm.ModelResponse): if hasattr(result, "choices") and result.choices is not None: for choice in result.choices: if isinstance(choice, litellm.Choices): choice.message.content = "redacted-by-litellm" elif isinstance(choice, litellm.utils.StreamingChoices): choice.delta.content = "redacted-by-litellm"
(self, result)
63,487
litellm.utils
success_handler
null
def success_handler( self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs ): print_verbose(f"Logging Details LiteLLM-Success Call: {cache_hit}") start_time, end_time, result = self._success_handler_helper_fn( start_time=start_time, end_time=end_time, result=result, cache_hit=cache_hit, ) # print(f"original response in success handler: {self.model_call_details['original_response']}") try: print_verbose(f"success callbacks: {litellm.success_callback}") ## BUILD COMPLETE STREAMED RESPONSE complete_streaming_response = None if self.stream and isinstance(result, ModelResponse): if ( result.choices[0].finish_reason is not None ): # if it's the last chunk self.sync_streaming_chunks.append(result) # print_verbose(f"final set of received chunks: {self.sync_streaming_chunks}") try: complete_streaming_response = litellm.stream_chunk_builder( self.sync_streaming_chunks, messages=self.model_call_details.get("messages", None), start_time=start_time, end_time=end_time, ) except Exception as e: complete_streaming_response = None else: self.sync_streaming_chunks.append(result) if complete_streaming_response is not None: print_verbose( f"Logging Details LiteLLM-Success Call streaming complete" ) self.model_call_details["complete_streaming_response"] = ( complete_streaming_response ) try: if self.model_call_details.get("cache_hit", False) == True: self.model_call_details["response_cost"] = 0.0 else: # check if base_model set on azure base_model = _get_base_model_from_metadata( model_call_details=self.model_call_details ) # base_model defaults to None if not set on model_info self.model_call_details["response_cost"] = ( litellm.completion_cost( completion_response=complete_streaming_response, model=base_model, ) ) verbose_logger.debug( f"Model={self.model}; cost={self.model_call_details['response_cost']}" ) except litellm.NotFoundError as e: verbose_logger.debug( f"Model={self.model} not found in completion cost map." ) self.model_call_details["response_cost"] = None if self.dynamic_success_callbacks is not None and isinstance( self.dynamic_success_callbacks, list ): callbacks = self.dynamic_success_callbacks ## keep the internal functions ## for callback in litellm.success_callback: if ( isinstance(callback, CustomLogger) and "_PROXY_" in callback.__class__.__name__ ): callbacks.append(callback) else: callbacks = litellm.success_callback self.redact_message_input_output_from_logging(result=result) for callback in callbacks: try: litellm_params = self.model_call_details.get("litellm_params", {}) if litellm_params.get("no-log", False) == True: # proxy cost tracking cal backs should run if not ( isinstance(callback, CustomLogger) and "_PROXY_" in callback.__class__.__name__ ): print_verbose("no-log request, skipping logging") continue if callback == "lite_debugger": print_verbose("reaches lite_debugger for logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") print_verbose( f"liteDebuggerClient details function {self.call_type} and stream set to {self.stream}" ) liteDebuggerClient.log_event( end_user=kwargs.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=self.litellm_call_id, print_verbose=print_verbose, call_type=self.call_type, stream=self.stream, ) if callback == "promptlayer": print_verbose("reaches promptlayer for logging!") promptLayerLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "supabase": print_verbose("reaches supabase for logging!") kwargs = self.model_call_details # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: if "complete_streaming_response" not in kwargs: return else: print_verbose("reaches supabase for streaming logging!") result = kwargs["complete_streaming_response"] model = kwargs["model"] messages = kwargs["messages"] optional_params = kwargs.get("optional_params", {}) litellm_params = kwargs.get("litellm_params", {}) supabaseClient.log_event( model=model, messages=messages, end_user=optional_params.get("user", "default"), response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=litellm_params.get( "litellm_call_id", str(uuid.uuid4()) ), print_verbose=print_verbose, ) if callback == "wandb": print_verbose("reaches wandb for logging!") weightsBiasesLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "langsmith": print_verbose("reaches langsmith for logging!") if self.stream: if "complete_streaming_response" not in kwargs: break else: print_verbose( "reaches langsmith for streaming logging!" ) result = kwargs["complete_streaming_response"] langsmithLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "lunary": print_verbose("reaches lunary for logging!") model = self.model kwargs = self.model_call_details input = kwargs.get("messages", kwargs.get("input", None)) type = ( "embed" if self.call_type == CallTypes.embedding.value else "llm" ) # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: if "complete_streaming_response" not in kwargs: break else: result = kwargs["complete_streaming_response"] lunaryLogger.log_event( type=type, kwargs=kwargs, event="end", model=model, input=input, user_id=kwargs.get("user", None), # user_props=self.model_call_details.get("user_props", None), extra=kwargs.get("optional_params", {}), response_obj=result, start_time=start_time, end_time=end_time, run_id=self.litellm_call_id, print_verbose=print_verbose, ) if callback == "helicone": print_verbose("reaches helicone for logging!") model = self.model messages = kwargs["input"] heliconeLogger.log_success( model=model, messages=messages, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "langfuse": global langFuseLogger verbose_logger.debug("reaches langfuse for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: continue else: print_verbose("reaches langfuse for streaming logging!") result = kwargs["complete_streaming_response"] if langFuseLogger is None or ( ( self.langfuse_public_key is not None and self.langfuse_public_key != langFuseLogger.public_key ) and ( self.langfuse_public_key is not None and self.langfuse_public_key != langFuseLogger.public_key ) ): langFuseLogger = LangFuseLogger( langfuse_public_key=self.langfuse_public_key, langfuse_secret=self.langfuse_secret, ) langFuseLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "datadog": global dataDogLogger verbose_logger.debug("reaches datadog for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"datadog: is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: continue else: print_verbose("reaches datadog for streaming logging!") result = kwargs["complete_streaming_response"] dataDogLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "prometheus": global prometheusLogger verbose_logger.debug("reaches prometheus for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"prometheus: is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: continue else: print_verbose( "reaches prometheus for streaming logging!" ) result = kwargs["complete_streaming_response"] prometheusLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "generic": global genericAPILogger verbose_logger.debug("reaches langfuse for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: break else: print_verbose("reaches langfuse for streaming logging!") result = kwargs["complete_streaming_response"] if genericAPILogger is None: genericAPILogger = GenericAPILogger() genericAPILogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "clickhouse": global clickHouseLogger verbose_logger.debug("reaches clickhouse for success logging!") kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: break else: print_verbose( "reaches clickhouse for streaming logging!" ) result = kwargs["complete_streaming_response"] if clickHouseLogger is None: clickHouseLogger = ClickhouseLogger() clickHouseLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, user_id=kwargs.get("user", None), print_verbose=print_verbose, ) if callback == "greenscale": kwargs = {} for k, v in self.model_call_details.items(): if ( k != "original_response" ): # copy.deepcopy raises errors as this could be a coroutine kwargs[k] = v # this only logs streaming once, complete_streaming_response exists i.e when stream ends if self.stream: verbose_logger.debug( f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}" ) if complete_streaming_response is None: break else: print_verbose( "reaches greenscale for streaming logging!" ) result = kwargs["complete_streaming_response"] greenscaleLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "cache" and litellm.cache is not None: # this only logs streaming once, complete_streaming_response exists i.e when stream ends print_verbose("success_callback: reaches cache for logging!") kwargs = self.model_call_details if self.stream: if "complete_streaming_response" not in kwargs: print_verbose( f"success_callback: reaches cache for logging, there is no complete_streaming_response. Kwargs={kwargs}\n\n" ) pass else: print_verbose( "success_callback: reaches cache for logging, there is a complete_streaming_response. Adding to cache" ) result = kwargs["complete_streaming_response"] # only add to cache once we have a complete streaming response litellm.cache.add_cache(result, **kwargs) if callback == "athina": deep_copy = {} for k, v in self.model_call_details.items(): deep_copy[k] = v athinaLogger.log_event( kwargs=deep_copy, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "traceloop": deep_copy = {} for k, v in self.model_call_details.items(): if k != "original_response": deep_copy[k] = v traceloopLogger.log_event( kwargs=deep_copy, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if callback == "s3": global s3Logger if s3Logger is None: s3Logger = S3Logger() if self.stream: if "complete_streaming_response" in self.model_call_details: print_verbose( "S3Logger Logger: Got Stream Event - Completed Stream Response" ) s3Logger.log_event( kwargs=self.model_call_details, response_obj=self.model_call_details[ "complete_streaming_response" ], start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) else: print_verbose( "S3Logger Logger: Got Stream Event - No complete stream response as yet" ) else: s3Logger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) if ( callback == "openmeter" and self.model_call_details.get("litellm_params", {}).get( "acompletion", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aembedding", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aimage_generation", False ) == False and self.model_call_details.get("litellm_params", {}).get( "atranscription", False ) == False ): global openMeterLogger if openMeterLogger is None: print_verbose("Instantiates openmeter client") openMeterLogger = OpenMeterLogger() if self.stream and complete_streaming_response is None: openMeterLogger.log_stream_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) else: if self.stream and complete_streaming_response: self.model_call_details["complete_response"] = ( self.model_call_details.get( "complete_streaming_response", {} ) ) result = self.model_call_details["complete_response"] openMeterLogger.log_success_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) if ( isinstance(callback, CustomLogger) and self.model_call_details.get("litellm_params", {}).get( "acompletion", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aembedding", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aimage_generation", False ) == False and self.model_call_details.get("litellm_params", {}).get( "atranscription", False ) == False ): # custom logger class if self.stream and complete_streaming_response is None: callback.log_stream_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) else: if self.stream and complete_streaming_response: self.model_call_details["complete_response"] = ( self.model_call_details.get( "complete_streaming_response", {} ) ) result = self.model_call_details["complete_response"] callback.log_success_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, ) if ( callable(callback) == True and self.model_call_details.get("litellm_params", {}).get( "acompletion", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aembedding", False ) == False and self.model_call_details.get("litellm_params", {}).get( "aimage_generation", False ) == False and self.model_call_details.get("litellm_params", {}).get( "atranscription", False ) == False ): # custom logger functions print_verbose( f"success callbacks: Running Custom Callback Function" ) customLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, callback_func=callback, ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}" ) pass
(self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs)
63,488
litellm.utils
update_environment_variables
null
def update_environment_variables( self, model, user, optional_params, litellm_params, **additional_params ): self.optional_params = optional_params self.model = model self.user = user self.litellm_params = litellm_params self.logger_fn = litellm_params.get("logger_fn", None) print_verbose(f"self.optional_params: {self.optional_params}") self.model_call_details = { "model": self.model, "messages": self.messages, "optional_params": self.optional_params, "litellm_params": self.litellm_params, "start_time": self.start_time, "stream": self.stream, "user": user, "call_type": str(self.call_type), "litellm_call_id": self.litellm_call_id, "completion_start_time": self.completion_start_time, **self.optional_params, **additional_params, }
(self, model, user, optional_params, litellm_params, **additional_params)
63,489
litellm.llms.maritalk
MaritTalkConfig
The class `MaritTalkConfig` provides configuration for the MaritTalk's API interface. Here are the parameters: - `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default is 1. - `model` (string): The model used for conversation. Default is 'maritalk'. - `do_sample` (boolean): If set to True, the API will generate a response using sampling. Default is True. - `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.7. - `top_p` (number): Selection threshold for token inclusion based on cumulative probability. Default is 0.95. - `repetition_penalty` (number): Penalty for repetition in the generated conversation. Default is 1. - `stopping_tokens` (list of string): List of tokens where the conversation can be stopped/stopped.
class MaritTalkConfig: """ The class `MaritTalkConfig` provides configuration for the MaritTalk's API interface. Here are the parameters: - `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default is 1. - `model` (string): The model used for conversation. Default is 'maritalk'. - `do_sample` (boolean): If set to True, the API will generate a response using sampling. Default is True. - `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.7. - `top_p` (number): Selection threshold for token inclusion based on cumulative probability. Default is 0.95. - `repetition_penalty` (number): Penalty for repetition in the generated conversation. Default is 1. - `stopping_tokens` (list of string): List of tokens where the conversation can be stopped/stopped. """ max_tokens: Optional[int] = None model: Optional[str] = None do_sample: Optional[bool] = None temperature: Optional[float] = None top_p: Optional[float] = None repetition_penalty: Optional[float] = None stopping_tokens: Optional[List[str]] = None def __init__( self, max_tokens: Optional[int] = None, model: Optional[str] = None, do_sample: Optional[bool] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, repetition_penalty: Optional[float] = None, stopping_tokens: Optional[List[str]] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return { k: v for k, v in cls.__dict__.items() if not k.startswith("__") and not isinstance( v, ( types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod, ), ) and v is not None }
(max_tokens: Optional[int] = None, model: Optional[str] = None, do_sample: Optional[bool] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, repetition_penalty: Optional[float] = None, stopping_tokens: Optional[List[str]] = None) -> None
63,490
litellm.llms.maritalk
__init__
null
def __init__( self, max_tokens: Optional[int] = None, model: Optional[str] = None, do_sample: Optional[bool] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, repetition_penalty: Optional[float] = None, stopping_tokens: Optional[List[str]] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value)
(self, max_tokens: Optional[int] = None, model: Optional[str] = None, do_sample: Optional[bool] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, repetition_penalty: Optional[float] = None, stopping_tokens: Optional[List[str]] = None) -> NoneType
63,491
litellm.utils
Message
null
class Message(OpenAIObject): def __init__( self, content: Optional[str] = "default", role="assistant", logprobs=None, function_call=None, tool_calls=None, **params, ): super(Message, self).__init__(**params) self.content = content self.role = role if function_call is not None: self.function_call = FunctionCall(**function_call) if tool_calls is not None: self.tool_calls = [] for tool_call in tool_calls: self.tool_calls.append(ChatCompletionMessageToolCall(**tool_call)) if logprobs is not None: self._logprobs = ChoiceLogprobs(**logprobs) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) def json(self, **kwargs): try: return self.model_dump() # noqa except: # if using pydantic v1 return self.dict()
(content: Optional[str] = 'default', role='assistant', logprobs=None, function_call=None, tool_calls=None, **params)
63,499
litellm.utils
__init__
null
def __init__( self, content: Optional[str] = "default", role="assistant", logprobs=None, function_call=None, tool_calls=None, **params, ): super(Message, self).__init__(**params) self.content = content self.role = role if function_call is not None: self.function_call = FunctionCall(**function_call) if tool_calls is not None: self.tool_calls = [] for tool_call in tool_calls: self.tool_calls.append(ChatCompletionMessageToolCall(**tool_call)) if logprobs is not None: self._logprobs = ChoiceLogprobs(**logprobs)
(self, content: Optional[str] = 'default', role='assistant', logprobs=None, function_call=None, tool_calls=None, **params)
63,525
litellm.types.llms.openai
MessageData
null
class MessageData(TypedDict): role: Literal["user", "assistant"] content: str attachments: Optional[List[Attachment]] metadata: Optional[dict]
null
63,526
litellm.types.router
ModelConfig
null
class ModelConfig(BaseModel): model_name: str litellm_params: Union[CompletionRequest, EmbeddingRequest] tpm: int rpm: int class Config: protected_namespaces = ()
(*, model_name: str, litellm_params: Union[litellm.types.completion.CompletionRequest, litellm.types.embedding.EmbeddingRequest], tpm: int, rpm: int) -> None
63,555
litellm.types.router
ModelInfo
null
class ModelInfo(BaseModel): id: Optional[ str ] # Allow id to be optional on input, but it will always be present as a str in the model instance db_model: bool = ( False # used for proxy - to separate models which are stored in the db vs. config. ) def __init__(self, id: Optional[Union[str, int]] = None, **params): if id is None: id = str(uuid.uuid4()) # Generate a UUID if id is None or not provided elif isinstance(id, int): id = str(id) super().__init__(id=id, **params) class Config: extra = "allow" def __contains__(self, key): # Define custom behavior for the 'in' operator return hasattr(self, key) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value)
(id: Optional[str] = None, *, db_model: bool = False, **params) -> None
63,564
litellm.types.router
__init__
null
def __init__(self, id: Optional[Union[str, int]] = None, **params): if id is None: id = str(uuid.uuid4()) # Generate a UUID if id is None or not provided elif isinstance(id, int): id = str(id) super().__init__(id=id, **params)
(self, id: Union[str, int, NoneType] = None, **params)
63,588
litellm.utils
ModelResponse
null
class ModelResponse(OpenAIObject): id: str """A unique identifier for the completion.""" choices: List[Union[Choices, StreamingChoices]] """The list of completion choices the model generated for the input prompt.""" created: int """The Unix timestamp (in seconds) of when the completion was created.""" model: Optional[str] = None """The model used for completion.""" object: str """The object type, which is always "text_completion" """ system_fingerprint: Optional[str] = None """This fingerprint represents the backend configuration that the model runs with. Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism. """ _hidden_params: dict = {} def __init__( self, id=None, choices=None, created=None, model=None, object=None, system_fingerprint=None, usage=None, stream=None, stream_options=None, response_ms=None, hidden_params=None, **params, ): if stream is not None and stream == True: object = "chat.completion.chunk" if choices is not None and isinstance(choices, list): new_choices = [] for choice in choices: if isinstance(choice, StreamingChoices): _new_choice = choice elif isinstance(choice, dict): _new_choice = StreamingChoices(**choice) new_choices.append(_new_choice) choices = new_choices else: choices = [StreamingChoices()] else: if model in litellm.open_ai_embedding_models: object = "embedding" else: object = "chat.completion" if choices is not None and isinstance(choices, list): new_choices = [] for choice in choices: if isinstance(choice, Choices): _new_choice = choice elif isinstance(choice, dict): _new_choice = Choices(**choice) new_choices.append(_new_choice) choices = new_choices else: choices = [Choices()] if id is None: id = _generate_id() else: id = id if created is None: created = int(time.time()) else: created = created model = model if usage is not None: usage = usage elif stream is None or stream == False: usage = Usage() elif ( stream == True and stream_options is not None and stream_options.get("include_usage") == True ): usage = Usage() if hidden_params: self._hidden_params = hidden_params init_values = { "id": id, "choices": choices, "created": created, "model": model, "object": object, "system_fingerprint": system_fingerprint, } if usage is not None: init_values["usage"] = usage super().__init__( **init_values, **params, ) def __contains__(self, key): # Define custom behavior for the 'in' operator return hasattr(self, key) def get(self, key, default=None): # Custom .get() method to access attributes with a default value if the attribute doesn't exist return getattr(self, key, default) def __getitem__(self, key): # Allow dictionary-style access to attributes return getattr(self, key) def __setitem__(self, key, value): # Allow dictionary-style assignment of attributes setattr(self, key, value) def json(self, **kwargs): try: return self.model_dump() # noqa except: # if using pydantic v1 return self.dict()
(id=None, choices=None, created=None, model=None, object=None, system_fingerprint=None, usage=None, stream=None, stream_options=None, response_ms=None, hidden_params=None, **params)
63,597
litellm.utils
__init__
null
def __init__( self, id=None, choices=None, created=None, model=None, object=None, system_fingerprint=None, usage=None, stream=None, stream_options=None, response_ms=None, hidden_params=None, **params, ): if stream is not None and stream == True: object = "chat.completion.chunk" if choices is not None and isinstance(choices, list): new_choices = [] for choice in choices: if isinstance(choice, StreamingChoices): _new_choice = choice elif isinstance(choice, dict): _new_choice = StreamingChoices(**choice) new_choices.append(_new_choice) choices = new_choices else: choices = [StreamingChoices()] else: if model in litellm.open_ai_embedding_models: object = "embedding" else: object = "chat.completion" if choices is not None and isinstance(choices, list): new_choices = [] for choice in choices: if isinstance(choice, Choices): _new_choice = choice elif isinstance(choice, dict): _new_choice = Choices(**choice) new_choices.append(_new_choice) choices = new_choices else: choices = [Choices()] if id is None: id = _generate_id() else: id = id if created is None: created = int(time.time()) else: created = created model = model if usage is not None: usage = usage elif stream is None or stream == False: usage = Usage() elif ( stream == True and stream_options is not None and stream_options.get("include_usage") == True ): usage = Usage() if hidden_params: self._hidden_params = hidden_params init_values = { "id": id, "choices": choices, "created": created, "model": model, "object": object, "system_fingerprint": system_fingerprint, } if usage is not None: init_values["usage"] = usage super().__init__( **init_values, **params, )
(self, id=None, choices=None, created=None, model=None, object=None, system_fingerprint=None, usage=None, stream=None, stream_options=None, response_ms=None, hidden_params=None, **params)
63,623
litellm
MyLocal
null
class MyLocal(threading.local): def __init__(self): self.user = "Hello World"
()
63,624
litellm
__init__
null
def __init__(self): self.user = "Hello World"
(self)
63,625
litellm.llms.nlp_cloud
NLPCloudConfig
Reference: https://docs.nlpcloud.com/#generation - `max_length` (int): Optional. The maximum number of tokens that the generated text should contain. - `length_no_input` (boolean): Optional. Whether `min_length` and `max_length` should not include the length of the input text. - `end_sequence` (string): Optional. A specific token that should be the end of the generated sequence. - `remove_end_sequence` (boolean): Optional. Whether to remove the `end_sequence` string from the result. - `remove_input` (boolean): Optional. Whether to remove the input text from the result. - `bad_words` (list of strings): Optional. List of tokens that are not allowed to be generated. - `temperature` (float): Optional. Temperature sampling. It modulates the next token probabilities. - `top_p` (float): Optional. Top P sampling. Below 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation. - `top_k` (int): Optional. Top K sampling. The number of highest probability vocabulary tokens to keep for top k filtering. - `repetition_penalty` (float): Optional. Prevents the same word from being repeated too many times. - `num_beams` (int): Optional. Number of beams for beam search. - `num_return_sequences` (int): Optional. The number of independently computed returned sequences.
class NLPCloudConfig: """ Reference: https://docs.nlpcloud.com/#generation - `max_length` (int): Optional. The maximum number of tokens that the generated text should contain. - `length_no_input` (boolean): Optional. Whether `min_length` and `max_length` should not include the length of the input text. - `end_sequence` (string): Optional. A specific token that should be the end of the generated sequence. - `remove_end_sequence` (boolean): Optional. Whether to remove the `end_sequence` string from the result. - `remove_input` (boolean): Optional. Whether to remove the input text from the result. - `bad_words` (list of strings): Optional. List of tokens that are not allowed to be generated. - `temperature` (float): Optional. Temperature sampling. It modulates the next token probabilities. - `top_p` (float): Optional. Top P sampling. Below 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation. - `top_k` (int): Optional. Top K sampling. The number of highest probability vocabulary tokens to keep for top k filtering. - `repetition_penalty` (float): Optional. Prevents the same word from being repeated too many times. - `num_beams` (int): Optional. Number of beams for beam search. - `num_return_sequences` (int): Optional. The number of independently computed returned sequences. """ max_length: Optional[int] = None length_no_input: Optional[bool] = None end_sequence: Optional[str] = None remove_end_sequence: Optional[bool] = None remove_input: Optional[bool] = None bad_words: Optional[list] = None temperature: Optional[float] = None top_p: Optional[float] = None top_k: Optional[int] = None repetition_penalty: Optional[float] = None num_beams: Optional[int] = None num_return_sequences: Optional[int] = None def __init__( self, max_length: Optional[int] = None, length_no_input: Optional[bool] = None, end_sequence: Optional[str] = None, remove_end_sequence: Optional[bool] = None, remove_input: Optional[bool] = None, bad_words: Optional[list] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, repetition_penalty: Optional[float] = None, num_beams: Optional[int] = None, num_return_sequences: Optional[int] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return { k: v for k, v in cls.__dict__.items() if not k.startswith("__") and not isinstance( v, ( types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod, ), ) and v is not None }
(max_length: Optional[int] = None, length_no_input: Optional[bool] = None, end_sequence: Optional[str] = None, remove_end_sequence: Optional[bool] = None, remove_input: Optional[bool] = None, bad_words: Optional[list] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, repetition_penalty: Optional[float] = None, num_beams: Optional[int] = None, num_return_sequences: Optional[int] = None) -> None
63,626
litellm.llms.nlp_cloud
__init__
null
def __init__( self, max_length: Optional[int] = None, length_no_input: Optional[bool] = None, end_sequence: Optional[str] = None, remove_end_sequence: Optional[bool] = None, remove_input: Optional[bool] = None, bad_words: Optional[list] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, repetition_penalty: Optional[float] = None, num_beams: Optional[int] = None, num_return_sequences: Optional[int] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value)
(self, max_length: Optional[int] = None, length_no_input: Optional[bool] = None, end_sequence: Optional[str] = None, remove_end_sequence: Optional[bool] = None, remove_input: Optional[bool] = None, bad_words: Optional[list] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, repetition_penalty: Optional[float] = None, num_beams: Optional[int] = None, num_return_sequences: Optional[int] = None) -> NoneType
63,627
litellm.exceptions
NotFoundError
null
class NotFoundError(openai.NotFoundError): # type: ignore def __init__(self, message, model, llm_provider, response: httpx.Response): self.status_code = 404 self.message = message self.model = model self.llm_provider = llm_provider super().__init__( self.message, response=response, body=None ) # Call the base class constructor with the parameters it needs
(message, model, llm_provider, response: httpx.Response)
63,628
litellm.exceptions
__init__
null
def __init__(self, message, model, llm_provider, response: httpx.Response): self.status_code = 404 self.message = message self.model = model self.llm_provider = llm_provider super().__init__( self.message, response=response, body=None ) # Call the base class constructor with the parameters it needs
(self, message, model, llm_provider, response: httpx.Response)
63,629
litellm.types.llms.openai
NotGiven
A sentinel singleton class used to distinguish omitted keyword arguments from those passed in with the value None (which may have different behavior). For example: ```py def get(timeout: Union[int, NotGiven, None] = NotGiven()) -> Response: ... get(timeout=1) # 1s timeout get(timeout=None) # No timeout get() # Default timeout behavior, which may not be statically known at the method definition. ```
class NotGiven: """ A sentinel singleton class used to distinguish omitted keyword arguments from those passed in with the value None (which may have different behavior). For example: ```py def get(timeout: Union[int, NotGiven, None] = NotGiven()) -> Response: ... get(timeout=1) # 1s timeout get(timeout=None) # No timeout get() # Default timeout behavior, which may not be statically known at the method definition. ``` """ def __bool__(self) -> Literal[False]: return False @override def __repr__(self) -> str: return "NOT_GIVEN"
()
63,630
litellm.types.llms.openai
__bool__
null
def __bool__(self) -> Literal[False]: return False
(self) -> Literal[False]
63,631
litellm.types.llms.openai
__repr__
null
@override def __repr__(self) -> str: return "NOT_GIVEN"
(self) -> str
63,632
litellm.llms.ollama_chat
OllamaChatConfig
Reference: https://github.com/ollama/ollama/blob/main/docs/api.md#parameters The class `OllamaConfig` provides the configuration for the Ollama's API interface. Below are the parameters: - `mirostat` (int): Enable Mirostat sampling for controlling perplexity. Default is 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0. Example usage: mirostat 0 - `mirostat_eta` (float): Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. Default: 0.1. Example usage: mirostat_eta 0.1 - `mirostat_tau` (float): Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. Default: 5.0. Example usage: mirostat_tau 5.0 - `num_ctx` (int): Sets the size of the context window used to generate the next token. Default: 2048. Example usage: num_ctx 4096 - `num_gqa` (int): The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b. Example usage: num_gqa 1 - `num_gpu` (int): The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. Example usage: num_gpu 0 - `num_thread` (int): Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Example usage: num_thread 8 - `repeat_last_n` (int): Sets how far back for the model to look back to prevent repetition. Default: 64, 0 = disabled, -1 = num_ctx. Example usage: repeat_last_n 64 - `repeat_penalty` (float): Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. Default: 1.1. Example usage: repeat_penalty 1.1 - `temperature` (float): The temperature of the model. Increasing the temperature will make the model answer more creatively. Default: 0.8. Example usage: temperature 0.7 - `stop` (string[]): Sets the stop sequences to use. Example usage: stop "AI assistant:" - `tfs_z` (float): Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. Default: 1. Example usage: tfs_z 1 - `num_predict` (int): Maximum number of tokens to predict when generating text. Default: 128, -1 = infinite generation, -2 = fill context. Example usage: num_predict 42 - `top_k` (int): Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. Default: 40. Example usage: top_k 40 - `top_p` (float): Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. Default: 0.9. Example usage: top_p 0.9 - `system` (string): system prompt for model (overrides what is defined in the Modelfile) - `template` (string): the full prompt or prompt template (overrides what is defined in the Modelfile)
class OllamaChatConfig: """ Reference: https://github.com/ollama/ollama/blob/main/docs/api.md#parameters The class `OllamaConfig` provides the configuration for the Ollama's API interface. Below are the parameters: - `mirostat` (int): Enable Mirostat sampling for controlling perplexity. Default is 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0. Example usage: mirostat 0 - `mirostat_eta` (float): Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. Default: 0.1. Example usage: mirostat_eta 0.1 - `mirostat_tau` (float): Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. Default: 5.0. Example usage: mirostat_tau 5.0 - `num_ctx` (int): Sets the size of the context window used to generate the next token. Default: 2048. Example usage: num_ctx 4096 - `num_gqa` (int): The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b. Example usage: num_gqa 1 - `num_gpu` (int): The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. Example usage: num_gpu 0 - `num_thread` (int): Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Example usage: num_thread 8 - `repeat_last_n` (int): Sets how far back for the model to look back to prevent repetition. Default: 64, 0 = disabled, -1 = num_ctx. Example usage: repeat_last_n 64 - `repeat_penalty` (float): Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. Default: 1.1. Example usage: repeat_penalty 1.1 - `temperature` (float): The temperature of the model. Increasing the temperature will make the model answer more creatively. Default: 0.8. Example usage: temperature 0.7 - `stop` (string[]): Sets the stop sequences to use. Example usage: stop "AI assistant:" - `tfs_z` (float): Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. Default: 1. Example usage: tfs_z 1 - `num_predict` (int): Maximum number of tokens to predict when generating text. Default: 128, -1 = infinite generation, -2 = fill context. Example usage: num_predict 42 - `top_k` (int): Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. Default: 40. Example usage: top_k 40 - `top_p` (float): Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. Default: 0.9. Example usage: top_p 0.9 - `system` (string): system prompt for model (overrides what is defined in the Modelfile) - `template` (string): the full prompt or prompt template (overrides what is defined in the Modelfile) """ mirostat: Optional[int] = None mirostat_eta: Optional[float] = None mirostat_tau: Optional[float] = None num_ctx: Optional[int] = None num_gqa: Optional[int] = None num_thread: Optional[int] = None repeat_last_n: Optional[int] = None repeat_penalty: Optional[float] = None temperature: Optional[float] = None stop: Optional[list] = ( None # stop is a list based on this - https://github.com/ollama/ollama/pull/442 ) tfs_z: Optional[float] = None num_predict: Optional[int] = None top_k: Optional[int] = None top_p: Optional[float] = None system: Optional[str] = None template: Optional[str] = None def __init__( self, mirostat: Optional[int] = None, mirostat_eta: Optional[float] = None, mirostat_tau: Optional[float] = None, num_ctx: Optional[int] = None, num_gqa: Optional[int] = None, num_thread: Optional[int] = None, repeat_last_n: Optional[int] = None, repeat_penalty: Optional[float] = None, temperature: Optional[float] = None, stop: Optional[list] = None, tfs_z: Optional[float] = None, num_predict: Optional[int] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, system: Optional[str] = None, template: Optional[str] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return { k: v for k, v in cls.__dict__.items() if not k.startswith("__") and k != "function_name" # special param for function calling and not isinstance( v, ( types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod, ), ) and v is not None } def get_supported_openai_params( self, ): return [ "max_tokens", "stream", "top_p", "temperature", "frequency_penalty", "stop", "tools", "tool_choice", "functions", "response_format", ] def map_openai_params(self, non_default_params: dict, optional_params: dict): for param, value in non_default_params.items(): if param == "max_tokens": optional_params["num_predict"] = value if param == "stream": optional_params["stream"] = value if param == "temperature": optional_params["temperature"] = value if param == "top_p": optional_params["top_p"] = value if param == "frequency_penalty": optional_params["repeat_penalty"] = value if param == "stop": optional_params["stop"] = value if param == "response_format" and value["type"] == "json_object": optional_params["format"] = "json" ### FUNCTION CALLING LOGIC ### if param == "tools": # ollama actually supports json output optional_params["format"] = "json" litellm.add_function_to_prompt = ( True # so that main.py adds the function call to the prompt ) optional_params["functions_unsupported_model"] = value if len(optional_params["functions_unsupported_model"]) == 1: optional_params["function_name"] = optional_params[ "functions_unsupported_model" ][0]["function"]["name"] if param == "functions": # ollama actually supports json output optional_params["format"] = "json" litellm.add_function_to_prompt = ( True # so that main.py adds the function call to the prompt ) optional_params["functions_unsupported_model"] = non_default_params.get( "functions" ) non_default_params.pop("tool_choice", None) # causes ollama requests to hang non_default_params.pop("functions", None) # causes ollama requests to hang return optional_params
(mirostat: Optional[int] = None, mirostat_eta: Optional[float] = None, mirostat_tau: Optional[float] = None, num_ctx: Optional[int] = None, num_gqa: Optional[int] = None, num_thread: Optional[int] = None, repeat_last_n: Optional[int] = None, repeat_penalty: Optional[float] = None, temperature: Optional[float] = None, stop: Optional[list] = None, tfs_z: Optional[float] = None, num_predict: Optional[int] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, system: Optional[str] = None, template: Optional[str] = None) -> None
63,633
litellm.llms.ollama_chat
__init__
null
def __init__( self, mirostat: Optional[int] = None, mirostat_eta: Optional[float] = None, mirostat_tau: Optional[float] = None, num_ctx: Optional[int] = None, num_gqa: Optional[int] = None, num_thread: Optional[int] = None, repeat_last_n: Optional[int] = None, repeat_penalty: Optional[float] = None, temperature: Optional[float] = None, stop: Optional[list] = None, tfs_z: Optional[float] = None, num_predict: Optional[int] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, system: Optional[str] = None, template: Optional[str] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value)
(self, mirostat: Optional[int] = None, mirostat_eta: Optional[float] = None, mirostat_tau: Optional[float] = None, num_ctx: Optional[int] = None, num_gqa: Optional[int] = None, num_thread: Optional[int] = None, repeat_last_n: Optional[int] = None, repeat_penalty: Optional[float] = None, temperature: Optional[float] = None, stop: Optional[list] = None, tfs_z: Optional[float] = None, num_predict: Optional[int] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, system: Optional[str] = None, template: Optional[str] = None) -> NoneType
63,634
litellm.llms.ollama_chat
get_supported_openai_params
null
def get_supported_openai_params( self, ): return [ "max_tokens", "stream", "top_p", "temperature", "frequency_penalty", "stop", "tools", "tool_choice", "functions", "response_format", ]
(self)
63,635
litellm.llms.ollama_chat
map_openai_params
null
def map_openai_params(self, non_default_params: dict, optional_params: dict): for param, value in non_default_params.items(): if param == "max_tokens": optional_params["num_predict"] = value if param == "stream": optional_params["stream"] = value if param == "temperature": optional_params["temperature"] = value if param == "top_p": optional_params["top_p"] = value if param == "frequency_penalty": optional_params["repeat_penalty"] = value if param == "stop": optional_params["stop"] = value if param == "response_format" and value["type"] == "json_object": optional_params["format"] = "json" ### FUNCTION CALLING LOGIC ### if param == "tools": # ollama actually supports json output optional_params["format"] = "json" litellm.add_function_to_prompt = ( True # so that main.py adds the function call to the prompt ) optional_params["functions_unsupported_model"] = value if len(optional_params["functions_unsupported_model"]) == 1: optional_params["function_name"] = optional_params[ "functions_unsupported_model" ][0]["function"]["name"] if param == "functions": # ollama actually supports json output optional_params["format"] = "json" litellm.add_function_to_prompt = ( True # so that main.py adds the function call to the prompt ) optional_params["functions_unsupported_model"] = non_default_params.get( "functions" ) non_default_params.pop("tool_choice", None) # causes ollama requests to hang non_default_params.pop("functions", None) # causes ollama requests to hang return optional_params
(self, non_default_params: dict, optional_params: dict)
63,636
litellm.llms.ollama
OllamaConfig
Reference: https://github.com/ollama/ollama/blob/main/docs/api.md#parameters The class `OllamaConfig` provides the configuration for the Ollama's API interface. Below are the parameters: - `mirostat` (int): Enable Mirostat sampling for controlling perplexity. Default is 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0. Example usage: mirostat 0 - `mirostat_eta` (float): Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. Default: 0.1. Example usage: mirostat_eta 0.1 - `mirostat_tau` (float): Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. Default: 5.0. Example usage: mirostat_tau 5.0 - `num_ctx` (int): Sets the size of the context window used to generate the next token. Default: 2048. Example usage: num_ctx 4096 - `num_gqa` (int): The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b. Example usage: num_gqa 1 - `num_gpu` (int): The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. Example usage: num_gpu 0 - `num_thread` (int): Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Example usage: num_thread 8 - `repeat_last_n` (int): Sets how far back for the model to look back to prevent repetition. Default: 64, 0 = disabled, -1 = num_ctx. Example usage: repeat_last_n 64 - `repeat_penalty` (float): Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. Default: 1.1. Example usage: repeat_penalty 1.1 - `temperature` (float): The temperature of the model. Increasing the temperature will make the model answer more creatively. Default: 0.8. Example usage: temperature 0.7 - `stop` (string[]): Sets the stop sequences to use. Example usage: stop "AI assistant:" - `tfs_z` (float): Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. Default: 1. Example usage: tfs_z 1 - `num_predict` (int): Maximum number of tokens to predict when generating text. Default: 128, -1 = infinite generation, -2 = fill context. Example usage: num_predict 42 - `top_k` (int): Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. Default: 40. Example usage: top_k 40 - `top_p` (float): Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. Default: 0.9. Example usage: top_p 0.9 - `system` (string): system prompt for model (overrides what is defined in the Modelfile) - `template` (string): the full prompt or prompt template (overrides what is defined in the Modelfile)
class OllamaConfig: """ Reference: https://github.com/ollama/ollama/blob/main/docs/api.md#parameters The class `OllamaConfig` provides the configuration for the Ollama's API interface. Below are the parameters: - `mirostat` (int): Enable Mirostat sampling for controlling perplexity. Default is 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0. Example usage: mirostat 0 - `mirostat_eta` (float): Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. Default: 0.1. Example usage: mirostat_eta 0.1 - `mirostat_tau` (float): Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. Default: 5.0. Example usage: mirostat_tau 5.0 - `num_ctx` (int): Sets the size of the context window used to generate the next token. Default: 2048. Example usage: num_ctx 4096 - `num_gqa` (int): The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b. Example usage: num_gqa 1 - `num_gpu` (int): The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. Example usage: num_gpu 0 - `num_thread` (int): Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Example usage: num_thread 8 - `repeat_last_n` (int): Sets how far back for the model to look back to prevent repetition. Default: 64, 0 = disabled, -1 = num_ctx. Example usage: repeat_last_n 64 - `repeat_penalty` (float): Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. Default: 1.1. Example usage: repeat_penalty 1.1 - `temperature` (float): The temperature of the model. Increasing the temperature will make the model answer more creatively. Default: 0.8. Example usage: temperature 0.7 - `stop` (string[]): Sets the stop sequences to use. Example usage: stop "AI assistant:" - `tfs_z` (float): Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. Default: 1. Example usage: tfs_z 1 - `num_predict` (int): Maximum number of tokens to predict when generating text. Default: 128, -1 = infinite generation, -2 = fill context. Example usage: num_predict 42 - `top_k` (int): Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. Default: 40. Example usage: top_k 40 - `top_p` (float): Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. Default: 0.9. Example usage: top_p 0.9 - `system` (string): system prompt for model (overrides what is defined in the Modelfile) - `template` (string): the full prompt or prompt template (overrides what is defined in the Modelfile) """ mirostat: Optional[int] = None mirostat_eta: Optional[float] = None mirostat_tau: Optional[float] = None num_ctx: Optional[int] = None num_gqa: Optional[int] = None num_thread: Optional[int] = None repeat_last_n: Optional[int] = None repeat_penalty: Optional[float] = None temperature: Optional[float] = None stop: Optional[list] = ( None # stop is a list based on this - https://github.com/ollama/ollama/pull/442 ) tfs_z: Optional[float] = None num_predict: Optional[int] = None top_k: Optional[int] = None top_p: Optional[float] = None system: Optional[str] = None template: Optional[str] = None def __init__( self, mirostat: Optional[int] = None, mirostat_eta: Optional[float] = None, mirostat_tau: Optional[float] = None, num_ctx: Optional[int] = None, num_gqa: Optional[int] = None, num_thread: Optional[int] = None, repeat_last_n: Optional[int] = None, repeat_penalty: Optional[float] = None, temperature: Optional[float] = None, stop: Optional[list] = None, tfs_z: Optional[float] = None, num_predict: Optional[int] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, system: Optional[str] = None, template: Optional[str] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return { k: v for k, v in cls.__dict__.items() if not k.startswith("__") and not isinstance( v, ( types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod, ), ) and v is not None }
(mirostat: Optional[int] = None, mirostat_eta: Optional[float] = None, mirostat_tau: Optional[float] = None, num_ctx: Optional[int] = None, num_gqa: Optional[int] = None, num_thread: Optional[int] = None, repeat_last_n: Optional[int] = None, repeat_penalty: Optional[float] = None, temperature: Optional[float] = None, stop: Optional[list] = None, tfs_z: Optional[float] = None, num_predict: Optional[int] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, system: Optional[str] = None, template: Optional[str] = None) -> None
63,638
openai
OpenAI
null
from openai import OpenAI
(*, api_key: 'str | None' = None, organization: 'str | None' = None, project: 'str | None' = None, base_url: 'str | httpx.URL | None' = None, timeout: 'Union[float, Timeout, None, NotGiven]' = NOT_GIVEN, max_retries: 'int' = 2, default_headers: 'Mapping[str, str] | None' = None, default_query: 'Mapping[str, object] | None' = None, http_client: 'httpx.Client | None' = None, _strict_response_validation: 'bool' = False) -> 'None'
63,639
openai._base_client
__enter__
null
def __enter__(self: _T) -> _T: return self
(self: ~_T) -> ~_T
63,640
openai._base_client
__exit__
null
def __exit__( self, exc_type: type[BaseException] | None, exc: BaseException | None, exc_tb: TracebackType | None, ) -> None: self.close()
(self, exc_type: type[BaseException] | None, exc: BaseException | None, exc_tb: traceback | None) -> NoneType
63,641
openai._client
__init__
Construct a new synchronous openai client instance. This automatically infers the following arguments from their corresponding environment variables if they are not provided: - `api_key` from `OPENAI_API_KEY` - `organization` from `OPENAI_ORG_ID` - `project` from `OPENAI_PROJECT_ID`
def __init__( self, *, api_key: str | None = None, organization: str | None = None, project: str | None = None, base_url: str | httpx.URL | None = None, timeout: Union[float, Timeout, None, NotGiven] = NOT_GIVEN, max_retries: int = DEFAULT_MAX_RETRIES, default_headers: Mapping[str, str] | None = None, default_query: Mapping[str, object] | None = None, # Configure a custom httpx client. # We provide a `DefaultHttpxClient` class that you can pass to retain the default values we use for `limits`, `timeout` & `follow_redirects`. # See the [httpx documentation](https://www.python-httpx.org/api/#client) for more details. http_client: httpx.Client | None = None, # Enable or disable schema validation for data returned by the API. # When enabled an error APIResponseValidationError is raised # if the API responds with invalid data for the expected schema. # # This parameter may be removed or changed in the future. # If you rely on this feature, please open a GitHub issue # outlining your use-case to help us decide if it should be # part of our public interface in the future. _strict_response_validation: bool = False, ) -> None: """Construct a new synchronous openai client instance. This automatically infers the following arguments from their corresponding environment variables if they are not provided: - `api_key` from `OPENAI_API_KEY` - `organization` from `OPENAI_ORG_ID` - `project` from `OPENAI_PROJECT_ID` """ if api_key is None: api_key = os.environ.get("OPENAI_API_KEY") if api_key is None: raise OpenAIError( "The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable" ) self.api_key = api_key if organization is None: organization = os.environ.get("OPENAI_ORG_ID") self.organization = organization if project is None: project = os.environ.get("OPENAI_PROJECT_ID") self.project = project if base_url is None: base_url = os.environ.get("OPENAI_BASE_URL") if base_url is None: base_url = f"https://api.openai.com/v1" super().__init__( version=__version__, base_url=base_url, max_retries=max_retries, timeout=timeout, http_client=http_client, custom_headers=default_headers, custom_query=default_query, _strict_response_validation=_strict_response_validation, ) self._default_stream_cls = Stream self.completions = resources.Completions(self) self.chat = resources.Chat(self) self.embeddings = resources.Embeddings(self) self.files = resources.Files(self) self.images = resources.Images(self) self.audio = resources.Audio(self) self.moderations = resources.Moderations(self) self.models = resources.Models(self) self.fine_tuning = resources.FineTuning(self) self.beta = resources.Beta(self) self.batches = resources.Batches(self) self.with_raw_response = OpenAIWithRawResponse(self) self.with_streaming_response = OpenAIWithStreamedResponse(self)
(self, *, api_key: Optional[str] = None, organization: Optional[str] = None, project: Optional[str] = None, base_url: Union[str, httpx.URL, NoneType] = None, timeout: Union[float, openai.Timeout, NoneType, openai.NotGiven] = NOT_GIVEN, max_retries: int = 2, default_headers: Optional[Mapping[str, str]] = None, default_query: Optional[Mapping[str, object]] = None, http_client: Optional[httpx.Client] = None, _strict_response_validation: bool = False) -> NoneType
63,642
openai._base_client
_build_headers
null
def _build_headers(self, options: FinalRequestOptions) -> httpx.Headers: custom_headers = options.headers or {} headers_dict = _merge_mappings(self.default_headers, custom_headers) self._validate_headers(headers_dict, custom_headers) # headers are case-insensitive while dictionaries are not. headers = httpx.Headers(headers_dict) idempotency_header = self._idempotency_header if idempotency_header and options.method.lower() != "get" and idempotency_header not in headers: headers[idempotency_header] = options.idempotency_key or self._idempotency_key() return headers
(self, options: openai._models.FinalRequestOptions) -> httpx.Headers
63,643
openai._base_client
_build_request
null
def _build_request( self, options: FinalRequestOptions, ) -> httpx.Request: if log.isEnabledFor(logging.DEBUG): log.debug("Request options: %s", model_dump(options, exclude_unset=True)) kwargs: dict[str, Any] = {} json_data = options.json_data if options.extra_json is not None: if json_data is None: json_data = cast(Body, options.extra_json) elif is_mapping(json_data): json_data = _merge_mappings(json_data, options.extra_json) else: raise RuntimeError(f"Unexpected JSON data type, {type(json_data)}, cannot merge with `extra_body`") headers = self._build_headers(options) params = _merge_mappings(self._custom_query, options.params) content_type = headers.get("Content-Type") # If the given Content-Type header is multipart/form-data then it # has to be removed so that httpx can generate the header with # additional information for us as it has to be in this form # for the server to be able to correctly parse the request: # multipart/form-data; boundary=---abc-- if content_type is not None and content_type.startswith("multipart/form-data"): if "boundary" not in content_type: # only remove the header if the boundary hasn't been explicitly set # as the caller doesn't want httpx to come up with their own boundary headers.pop("Content-Type") # As we are now sending multipart/form-data instead of application/json # we need to tell httpx to use it, https://www.python-httpx.org/advanced/#multipart-file-encoding if json_data: if not is_dict(json_data): raise TypeError( f"Expected query input to be a dictionary for multipart requests but got {type(json_data)} instead." ) kwargs["data"] = self._serialize_multipartform(json_data) # TODO: report this error to httpx return self._client.build_request( # pyright: ignore[reportUnknownMemberType] headers=headers, timeout=self.timeout if isinstance(options.timeout, NotGiven) else options.timeout, method=options.method, url=self._prepare_url(options.url), # the `Query` type that we use is incompatible with qs' # `Params` type as it needs to be typed as `Mapping[str, object]` # so that passing a `TypedDict` doesn't cause an error. # https://github.com/microsoft/pyright/issues/3526#event-6715453066 params=self.qs.stringify(cast(Mapping[str, Any], params)) if params else None, json=json_data, files=options.files, **kwargs, )
(self, options: openai._models.FinalRequestOptions) -> httpx.Request
63,644
openai._base_client
_calculate_retry_timeout
null
def _calculate_retry_timeout( self, remaining_retries: int, options: FinalRequestOptions, response_headers: Optional[httpx.Headers] = None, ) -> float: max_retries = options.get_max_retries(self.max_retries) # If the API asks us to wait a certain amount of time (and it's a reasonable amount), just do what it says. retry_after = self._parse_retry_after_header(response_headers) if retry_after is not None and 0 < retry_after <= 60: return retry_after nb_retries = max_retries - remaining_retries # Apply exponential backoff, but not more than the max. sleep_seconds = min(INITIAL_RETRY_DELAY * pow(2.0, nb_retries), MAX_RETRY_DELAY) # Apply some jitter, plus-or-minus half a second. jitter = 1 - 0.25 * random() timeout = sleep_seconds * jitter return timeout if timeout >= 0 else 0
(self, remaining_retries: int, options: openai._models.FinalRequestOptions, response_headers: Optional[httpx.Headers] = None) -> float
63,645
openai._base_client
_enforce_trailing_slash
null
def _enforce_trailing_slash(self, url: URL) -> URL: if url.raw_path.endswith(b"/"): return url return url.copy_with(raw_path=url.raw_path + b"/")
(self, url: httpx.URL) -> httpx.URL
63,646
openai._base_client
_idempotency_key
null
def _idempotency_key(self) -> str: return f"stainless-python-retry-{uuid.uuid4()}"
(self) -> str
63,647
openai._base_client
_make_sse_decoder
null
def _make_sse_decoder(self) -> SSEDecoder | SSEBytesDecoder: return SSEDecoder()
(self) -> openai._streaming.SSEDecoder | openai._streaming.SSEBytesDecoder
63,648
openai._client
_make_status_error
null
@override def _make_status_error( self, err_msg: str, *, body: object, response: httpx.Response, ) -> APIStatusError: data = body.get("error", body) if is_mapping(body) else body if response.status_code == 400: return _exceptions.BadRequestError(err_msg, response=response, body=data) if response.status_code == 401: return _exceptions.AuthenticationError(err_msg, response=response, body=data) if response.status_code == 403: return _exceptions.PermissionDeniedError(err_msg, response=response, body=data) if response.status_code == 404: return _exceptions.NotFoundError(err_msg, response=response, body=data) if response.status_code == 409: return _exceptions.ConflictError(err_msg, response=response, body=data) if response.status_code == 422: return _exceptions.UnprocessableEntityError(err_msg, response=response, body=data) if response.status_code == 429: return _exceptions.RateLimitError(err_msg, response=response, body=data) if response.status_code >= 500: return _exceptions.InternalServerError(err_msg, response=response, body=data) return APIStatusError(err_msg, response=response, body=data)
(self, err_msg: str, *, body: object, response: httpx.Response) -> openai.APIStatusError
63,649
openai._base_client
_make_status_error_from_response
null
def _make_status_error_from_response( self, response: httpx.Response, ) -> APIStatusError: if response.is_closed and not response.is_stream_consumed: # We can't read the response body as it has been closed # before it was read. This can happen if an event hook # raises a status error. body = None err_msg = f"Error code: {response.status_code}" else: err_text = response.text.strip() body = err_text try: body = json.loads(err_text) err_msg = f"Error code: {response.status_code} - {body}" except Exception: err_msg = err_text or f"Error code: {response.status_code}" return self._make_status_error(err_msg, body=body, response=response)
(self, response: httpx.Response) -> openai.APIStatusError
63,650
openai._base_client
_maybe_override_cast_to
null
def _maybe_override_cast_to(self, cast_to: type[ResponseT], options: FinalRequestOptions) -> type[ResponseT]: if not is_given(options.headers): return cast_to # make a copy of the headers so we don't mutate user-input headers = dict(options.headers) # we internally support defining a temporary header to override the # default `cast_to` type for use with `.with_raw_response` and `.with_streaming_response` # see _response.py for implementation details override_cast_to = headers.pop(OVERRIDE_CAST_TO_HEADER, NOT_GIVEN) if is_given(override_cast_to): options.headers = headers return cast(Type[ResponseT], override_cast_to) return cast_to
(self, cast_to: type[~ResponseT], options: openai._models.FinalRequestOptions) -> type[~ResponseT]
63,651
openai._base_client
_parse_retry_after_header
Returns a float of the number of seconds (not milliseconds) to wait after retrying, or None if unspecified. About the Retry-After header: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After See also https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After#syntax
def _parse_retry_after_header(self, response_headers: Optional[httpx.Headers] = None) -> float | None: """Returns a float of the number of seconds (not milliseconds) to wait after retrying, or None if unspecified. About the Retry-After header: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After See also https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After#syntax """ if response_headers is None: return None # First, try the non-standard `retry-after-ms` header for milliseconds, # which is more precise than integer-seconds `retry-after` try: retry_ms_header = response_headers.get("retry-after-ms", None) return float(retry_ms_header) / 1000 except (TypeError, ValueError): pass # Next, try parsing `retry-after` header as seconds (allowing nonstandard floats). retry_header = response_headers.get("retry-after") try: # note: the spec indicates that this should only ever be an integer # but if someone sends a float there's no reason for us to not respect it return float(retry_header) except (TypeError, ValueError): pass # Last, try parsing `retry-after` as a date. retry_date_tuple = email.utils.parsedate_tz(retry_header) if retry_date_tuple is None: return None retry_date = email.utils.mktime_tz(retry_date_tuple) return float(retry_date - time.time())
(self, response_headers: Optional[httpx.Headers] = None) -> float | None
63,652
openai._base_client
_prepare_options
Hook for mutating the given options
def _prepare_options( self, options: FinalRequestOptions, # noqa: ARG002 ) -> None: """Hook for mutating the given options""" return None
(self, options: openai._models.FinalRequestOptions) -> NoneType
63,653
openai._base_client
_prepare_request
This method is used as a callback for mutating the `Request` object after it has been constructed. This is useful for cases where you want to add certain headers based off of the request properties, e.g. `url`, `method` etc.
def _prepare_request( self, request: httpx.Request, # noqa: ARG002 ) -> None: """This method is used as a callback for mutating the `Request` object after it has been constructed. This is useful for cases where you want to add certain headers based off of the request properties, e.g. `url`, `method` etc. """ return None
(self, request: httpx.Request) -> NoneType
63,654
openai._base_client
_prepare_url
Merge a URL argument together with any 'base_url' on the client, to create the URL used for the outgoing request.
def _prepare_url(self, url: str) -> URL: """ Merge a URL argument together with any 'base_url' on the client, to create the URL used for the outgoing request. """ # Copied from httpx's `_merge_url` method. merge_url = URL(url) if merge_url.is_relative_url: merge_raw_path = self.base_url.raw_path + merge_url.raw_path.lstrip(b"/") return self.base_url.copy_with(raw_path=merge_raw_path) return merge_url
(self, url: str) -> httpx.URL
63,655
openai._base_client
_process_response
null
def _process_response( self, *, cast_to: Type[ResponseT], options: FinalRequestOptions, response: httpx.Response, stream: bool, stream_cls: type[Stream[Any]] | type[AsyncStream[Any]] | None, ) -> ResponseT: if response.request.headers.get(RAW_RESPONSE_HEADER) == "true": return cast( ResponseT, LegacyAPIResponse( raw=response, client=self, cast_to=cast_to, stream=stream, stream_cls=stream_cls, options=options, ), ) origin = get_origin(cast_to) or cast_to if inspect.isclass(origin) and issubclass(origin, BaseAPIResponse): if not issubclass(origin, APIResponse): raise TypeError(f"API Response types must subclass {APIResponse}; Received {origin}") response_cls = cast("type[BaseAPIResponse[Any]]", cast_to) return cast( ResponseT, response_cls( raw=response, client=self, cast_to=extract_response_type(response_cls), stream=stream, stream_cls=stream_cls, options=options, ), ) if cast_to == httpx.Response: return cast(ResponseT, response) api_response = APIResponse( raw=response, client=self, cast_to=cast("type[ResponseT]", cast_to), # pyright: ignore[reportUnnecessaryCast] stream=stream, stream_cls=stream_cls, options=options, ) if bool(response.request.headers.get(RAW_RESPONSE_HEADER)): return cast(ResponseT, api_response) return api_response.parse()
(self, *, cast_to: Type[~ResponseT], options: openai._models.FinalRequestOptions, response: httpx.Response, stream: bool, stream_cls: type[openai.Stream[typing.Any]] | type[openai.AsyncStream[typing.Any]] | None) -> ~ResponseT
63,656
openai._base_client
_process_response_data
null
def _process_response_data( self, *, data: object, cast_to: type[ResponseT], response: httpx.Response, ) -> ResponseT: if data is None: return cast(ResponseT, None) if cast_to is object: return cast(ResponseT, data) try: if inspect.isclass(cast_to) and issubclass(cast_to, ModelBuilderProtocol): return cast(ResponseT, cast_to.build(response=response, data=data)) if self._strict_response_validation: return cast(ResponseT, validate_type(type_=cast_to, value=data)) return cast(ResponseT, construct_type(type_=cast_to, value=data)) except pydantic.ValidationError as err: raise APIResponseValidationError(response=response, body=data) from err
(self, *, data: object, cast_to: type[~ResponseT], response: httpx.Response) -> ~ResponseT
63,657
openai._base_client
_remaining_retries
null
def _remaining_retries( self, remaining_retries: Optional[int], options: FinalRequestOptions, ) -> int: return remaining_retries if remaining_retries is not None else options.get_max_retries(self.max_retries)
(self, remaining_retries: Optional[int], options: openai._models.FinalRequestOptions) -> int
63,658
openai._base_client
_request
null
def _request( self, *, cast_to: Type[ResponseT], options: FinalRequestOptions, remaining_retries: int | None, stream: bool, stream_cls: type[_StreamT] | None, ) -> ResponseT | _StreamT: cast_to = self._maybe_override_cast_to(cast_to, options) self._prepare_options(options) retries = self._remaining_retries(remaining_retries, options) request = self._build_request(options) self._prepare_request(request) kwargs: HttpxSendArgs = {} if self.custom_auth is not None: kwargs["auth"] = self.custom_auth log.debug("Sending HTTP Request: %s %s", request.method, request.url) try: response = self._client.send( request, stream=stream or self._should_stream_response_body(request=request), **kwargs, ) except httpx.TimeoutException as err: log.debug("Encountered httpx.TimeoutException", exc_info=True) if retries > 0: return self._retry_request( options, cast_to, retries, stream=stream, stream_cls=stream_cls, response_headers=None, ) log.debug("Raising timeout error") raise APITimeoutError(request=request) from err except Exception as err: log.debug("Encountered Exception", exc_info=True) if retries > 0: return self._retry_request( options, cast_to, retries, stream=stream, stream_cls=stream_cls, response_headers=None, ) log.debug("Raising connection error") raise APIConnectionError(request=request) from err log.debug( 'HTTP Response: %s %s "%i %s" %s', request.method, request.url, response.status_code, response.reason_phrase, response.headers, ) log.debug("request_id: %s", response.headers.get("x-request-id")) try: response.raise_for_status() except httpx.HTTPStatusError as err: # thrown on 4xx and 5xx status code log.debug("Encountered httpx.HTTPStatusError", exc_info=True) if retries > 0 and self._should_retry(err.response): err.response.close() return self._retry_request( options, cast_to, retries, err.response.headers, stream=stream, stream_cls=stream_cls, ) # If the response is streamed then we need to explicitly read the response # to completion before attempting to access the response text. if not err.response.is_closed: err.response.read() log.debug("Re-raising status error") raise self._make_status_error_from_response(err.response) from None return self._process_response( cast_to=cast_to, options=options, response=response, stream=stream, stream_cls=stream_cls, )
(self, *, cast_to: Type[~ResponseT], options: openai._models.FinalRequestOptions, remaining_retries: int | None, stream: bool, stream_cls: type[~_StreamT] | None) -> Union[~ResponseT, ~_StreamT]
63,659
openai._base_client
_request_api_list
null
def _request_api_list( self, model: Type[object], page: Type[SyncPageT], options: FinalRequestOptions, ) -> SyncPageT: def _parser(resp: SyncPageT) -> SyncPageT: resp._set_private_attributes( client=self, model=model, options=options, ) return resp options.post_parser = _parser return self.request(page, options, stream=False)
(self, model: Type[object], page: Type[~SyncPageT], options: openai._models.FinalRequestOptions) -> ~SyncPageT
63,660
openai._base_client
_retry_request
null
def _retry_request( self, options: FinalRequestOptions, cast_to: Type[ResponseT], remaining_retries: int, response_headers: httpx.Headers | None, *, stream: bool, stream_cls: type[_StreamT] | None, ) -> ResponseT | _StreamT: remaining = remaining_retries - 1 if remaining == 1: log.debug("1 retry left") else: log.debug("%i retries left", remaining) timeout = self._calculate_retry_timeout(remaining, options, response_headers) log.info("Retrying request to %s in %f seconds", options.url, timeout) # In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a # different thread if necessary. time.sleep(timeout) return self._request( options=options, cast_to=cast_to, remaining_retries=remaining, stream=stream, stream_cls=stream_cls, )
(self, options: openai._models.FinalRequestOptions, cast_to: Type[~ResponseT], remaining_retries: int, response_headers: httpx.Headers | None, *, stream: bool, stream_cls: type[~_StreamT] | None) -> Union[~ResponseT, ~_StreamT]
63,661
openai._base_client
_serialize_multipartform
null
def _serialize_multipartform(self, data: Mapping[object, object]) -> dict[str, object]: items = self.qs.stringify_items( # TODO: type ignore is required as stringify_items is well typed but we can't be # well typed without heavy validation. data, # type: ignore array_format="brackets", ) serialized: dict[str, object] = {} for key, value in items: existing = serialized.get(key) if not existing: serialized[key] = value continue # If a value has already been set for this key then that # means we're sending data like `array[]=[1, 2, 3]` and we # need to tell httpx that we want to send multiple values with # the same key which is done by using a list or a tuple. # # Note: 2d arrays should never result in the same key at both # levels so it's safe to assume that if the value is a list, # it was because we changed it to be a list. if is_list(existing): existing.append(value) else: serialized[key] = [existing, value] return serialized
(self, data: Mapping[object, object]) -> dict[str, object]
63,662
openai._base_client
_should_retry
null
def _should_retry(self, response: httpx.Response) -> bool: # Note: this is not a standard header should_retry_header = response.headers.get("x-should-retry") # If the server explicitly says whether or not to retry, obey. if should_retry_header == "true": log.debug("Retrying as header `x-should-retry` is set to `true`") return True if should_retry_header == "false": log.debug("Not retrying as header `x-should-retry` is set to `false`") return False # Retry on request timeouts. if response.status_code == 408: log.debug("Retrying due to status code %i", response.status_code) return True # Retry on lock timeouts. if response.status_code == 409: log.debug("Retrying due to status code %i", response.status_code) return True # Retry on rate limits. if response.status_code == 429: log.debug("Retrying due to status code %i", response.status_code) return True # Retry internal errors. if response.status_code >= 500: log.debug("Retrying due to status code %i", response.status_code) return True log.debug("Not retrying") return False
(self, response: httpx.Response) -> bool
63,663
openai._base_client
_should_stream_response_body
null
def _should_stream_response_body(self, request: httpx.Request) -> bool: return request.headers.get(RAW_RESPONSE_HEADER) == "stream" # type: ignore[no-any-return]
(self, request: httpx.Request) -> bool
63,664
openai._base_client
_validate_headers
Validate the given default headers and custom headers. Does nothing by default.
def _validate_headers( self, headers: Headers, # noqa: ARG002 custom_headers: Headers, # noqa: ARG002 ) -> None: """Validate the given default headers and custom headers. Does nothing by default. """ return
(self, headers: Mapping[str, Union[str, openai._types.Omit]], custom_headers: Mapping[str, Union[str, openai._types.Omit]]) -> NoneType
63,665
openai._base_client
close
Close the underlying HTTPX client. The client will *not* be usable after this.
def close(self) -> None: """Close the underlying HTTPX client. The client will *not* be usable after this. """ # If an error is thrown while constructing a client, self._client # may not be present if hasattr(self, "_client"): self._client.close()
(self) -> NoneType
63,666
openai._client
copy
Create a new client instance re-using the same options given to the current client with optional overriding.
def copy( self, *, api_key: str | None = None, organization: str | None = None, project: str | None = None, base_url: str | httpx.URL | None = None, timeout: float | Timeout | None | NotGiven = NOT_GIVEN, http_client: httpx.Client | None = None, max_retries: int | NotGiven = NOT_GIVEN, default_headers: Mapping[str, str] | None = None, set_default_headers: Mapping[str, str] | None = None, default_query: Mapping[str, object] | None = None, set_default_query: Mapping[str, object] | None = None, _extra_kwargs: Mapping[str, Any] = {}, ) -> Self: """ Create a new client instance re-using the same options given to the current client with optional overriding. """ if default_headers is not None and set_default_headers is not None: raise ValueError("The `default_headers` and `set_default_headers` arguments are mutually exclusive") if default_query is not None and set_default_query is not None: raise ValueError("The `default_query` and `set_default_query` arguments are mutually exclusive") headers = self._custom_headers if default_headers is not None: headers = {**headers, **default_headers} elif set_default_headers is not None: headers = set_default_headers params = self._custom_query if default_query is not None: params = {**params, **default_query} elif set_default_query is not None: params = set_default_query http_client = http_client or self._client return self.__class__( api_key=api_key or self.api_key, organization=organization or self.organization, project=project or self.project, base_url=base_url or self.base_url, timeout=self.timeout if isinstance(timeout, NotGiven) else timeout, http_client=http_client, max_retries=max_retries if is_given(max_retries) else self.max_retries, default_headers=headers, default_query=params, **_extra_kwargs, )
(self, *, api_key: Optional[str] = None, organization: Optional[str] = None, project: Optional[str] = None, base_url: Union[str, httpx.URL, NoneType] = None, timeout: float | openai.Timeout | None | openai.NotGiven = NOT_GIVEN, http_client: Optional[httpx.Client] = None, max_retries: int | openai.NotGiven = NOT_GIVEN, default_headers: Optional[Mapping[str, str]] = None, set_default_headers: Optional[Mapping[str, str]] = None, default_query: Optional[Mapping[str, object]] = None, set_default_query: Optional[Mapping[str, object]] = None, _extra_kwargs: Mapping[str, Any] = {}) -> typing_extensions.Self
63,667
openai._base_client
delete
null
def delete( self, path: str, *, cast_to: Type[ResponseT], body: Body | None = None, options: RequestOptions = {}, ) -> ResponseT: opts = FinalRequestOptions.construct(method="delete", url=path, json_data=body, **options) return self.request(cast_to, opts)
(self, path: str, *, cast_to: Type[~ResponseT], body: Optional[object] = None, options: openai.RequestOptions = {}) -> ~ResponseT
63,668
openai._base_client
get
null
def get( self, path: str, *, cast_to: Type[ResponseT], options: RequestOptions = {}, stream: bool = False, stream_cls: type[_StreamT] | None = None, ) -> ResponseT | _StreamT: opts = FinalRequestOptions.construct(method="get", url=path, **options) # cast is required because mypy complains about returning Any even though # it understands the type variables return cast(ResponseT, self.request(cast_to, opts, stream=stream, stream_cls=stream_cls))
(self, path: str, *, cast_to: Type[~ResponseT], options: openai.RequestOptions = {}, stream: bool = False, stream_cls: Optional[type[~_StreamT]] = None) -> Union[~ResponseT, ~_StreamT]
63,669
openai._base_client
get_api_list
null
def get_api_list( self, path: str, *, model: Type[object], page: Type[SyncPageT], body: Body | None = None, options: RequestOptions = {}, method: str = "get", ) -> SyncPageT: opts = FinalRequestOptions.construct(method=method, url=path, json_data=body, **options) return self._request_api_list(model, page, opts)
(self, path: str, *, model: Type[object], page: Type[~SyncPageT], body: Optional[object] = None, options: openai.RequestOptions = {}, method: str = 'get') -> ~SyncPageT
63,670
openai._base_client
is_closed
null
def is_closed(self) -> bool: return self._client.is_closed
(self) -> bool
63,671
openai._base_client
patch
null
def patch( self, path: str, *, cast_to: Type[ResponseT], body: Body | None = None, options: RequestOptions = {}, ) -> ResponseT: opts = FinalRequestOptions.construct(method="patch", url=path, json_data=body, **options) return self.request(cast_to, opts)
(self, path: str, *, cast_to: Type[~ResponseT], body: Optional[object] = None, options: openai.RequestOptions = {}) -> ~ResponseT
63,672
openai._base_client
platform_headers
null
def platform_headers(self) -> Dict[str, str]: return platform_headers(self._version)
(self) -> Dict[str, str]
63,673
openai._base_client
post
null
def post( self, path: str, *, cast_to: Type[ResponseT], body: Body | None = None, options: RequestOptions = {}, files: RequestFiles | None = None, stream: bool = False, stream_cls: type[_StreamT] | None = None, ) -> ResponseT | _StreamT: opts = FinalRequestOptions.construct( method="post", url=path, json_data=body, files=to_httpx_files(files), **options ) return cast(ResponseT, self.request(cast_to, opts, stream=stream, stream_cls=stream_cls))
(self, path: str, *, cast_to: Type[~ResponseT], body: Optional[object] = None, options: openai.RequestOptions = {}, files: Union[Mapping[str, Union[IO[bytes], bytes, os.PathLike, Tuple[Optional[str], Union[IO[bytes], bytes, os.PathLike]], Tuple[Optional[str], Union[IO[bytes], bytes, os.PathLike], Optional[str]], Tuple[Optional[str], Union[IO[bytes], bytes, os.PathLike], Optional[str], Mapping[str, str]]]], Sequence[Tuple[str, Union[IO[bytes], bytes, os.PathLike, Tuple[Optional[str], Union[IO[bytes], bytes, os.PathLike]], Tuple[Optional[str], Union[IO[bytes], bytes, os.PathLike], Optional[str]], Tuple[Optional[str], Union[IO[bytes], bytes, os.PathLike], Optional[str], Mapping[str, str]]]]], NoneType] = None, stream: bool = False, stream_cls: Optional[type[~_StreamT]] = None) -> Union[~ResponseT, ~_StreamT]
63,674
openai._base_client
put
null
def put( self, path: str, *, cast_to: Type[ResponseT], body: Body | None = None, files: RequestFiles | None = None, options: RequestOptions = {}, ) -> ResponseT: opts = FinalRequestOptions.construct( method="put", url=path, json_data=body, files=to_httpx_files(files), **options ) return self.request(cast_to, opts)
(self, path: str, *, cast_to: Type[~ResponseT], body: Optional[object] = None, files: Union[Mapping[str, Union[IO[bytes], bytes, os.PathLike, Tuple[Optional[str], Union[IO[bytes], bytes, os.PathLike]], Tuple[Optional[str], Union[IO[bytes], bytes, os.PathLike], Optional[str]], Tuple[Optional[str], Union[IO[bytes], bytes, os.PathLike], Optional[str], Mapping[str, str]]]], Sequence[Tuple[str, Union[IO[bytes], bytes, os.PathLike, Tuple[Optional[str], Union[IO[bytes], bytes, os.PathLike]], Tuple[Optional[str], Union[IO[bytes], bytes, os.PathLike], Optional[str]], Tuple[Optional[str], Union[IO[bytes], bytes, os.PathLike], Optional[str], Mapping[str, str]]]]], NoneType] = None, options: openai.RequestOptions = {}) -> ~ResponseT
63,675
openai._base_client
request
null
def request( self, cast_to: Type[ResponseT], options: FinalRequestOptions, remaining_retries: Optional[int] = None, *, stream: bool = False, stream_cls: type[_StreamT] | None = None, ) -> ResponseT | _StreamT: return self._request( cast_to=cast_to, options=options, stream=stream, stream_cls=stream_cls, remaining_retries=remaining_retries, )
(self, cast_to: Type[~ResponseT], options: openai._models.FinalRequestOptions, remaining_retries: Optional[int] = None, *, stream: bool = False, stream_cls: Optional[type[~_StreamT]] = None) -> Union[~ResponseT, ~_StreamT]
63,677
litellm.llms.openai
OpenAIAssistantsAPI
null
class OpenAIAssistantsAPI(BaseLLM): def __init__(self) -> None: super().__init__() def get_openai_client( self, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, httpx.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[OpenAI] = None, ) -> OpenAI: received_args = locals() if client is None: data = {} for k, v in received_args.items(): if k == "self" or k == "client": pass elif k == "api_base" and v is not None: data["base_url"] = v elif v is not None: data[k] = v openai_client = OpenAI(**data) # type: ignore else: openai_client = client return openai_client ### ASSISTANTS ### def get_assistants( self, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, httpx.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[OpenAI], ) -> SyncCursorPage[Assistant]: openai_client = self.get_openai_client( api_key=api_key, api_base=api_base, timeout=timeout, max_retries=max_retries, organization=organization, client=client, ) response = openai_client.beta.assistants.list() return response ### MESSAGES ### def add_message( self, thread_id: str, message_data: MessageData, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, httpx.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[OpenAI] = None, ) -> OpenAIMessage: openai_client = self.get_openai_client( api_key=api_key, api_base=api_base, timeout=timeout, max_retries=max_retries, organization=organization, client=client, ) thread_message: OpenAIMessage = openai_client.beta.threads.messages.create( thread_id, **message_data ) response_obj: Optional[OpenAIMessage] = None if getattr(thread_message, "status", None) is None: thread_message.status = "completed" response_obj = OpenAIMessage(**thread_message.dict()) else: response_obj = OpenAIMessage(**thread_message.dict()) return response_obj def get_messages( self, thread_id: str, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, httpx.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[OpenAI] = None, ) -> SyncCursorPage[OpenAIMessage]: openai_client = self.get_openai_client( api_key=api_key, api_base=api_base, timeout=timeout, max_retries=max_retries, organization=organization, client=client, ) response = openai_client.beta.threads.messages.list(thread_id=thread_id) return response ### THREADS ### def create_thread( self, metadata: Optional[dict], api_key: Optional[str], api_base: Optional[str], timeout: Union[float, httpx.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[OpenAI], messages: Optional[Iterable[OpenAICreateThreadParamsMessage]], ) -> Thread: """ Here's an example: ``` from litellm.llms.openai import OpenAIAssistantsAPI, MessageData # create thread message: MessageData = {"role": "user", "content": "Hey, how's it going?"} openai_api.create_thread(messages=[message]) ``` """ openai_client = self.get_openai_client( api_key=api_key, api_base=api_base, timeout=timeout, max_retries=max_retries, organization=organization, client=client, ) data = {} if messages is not None: data["messages"] = messages # type: ignore if metadata is not None: data["metadata"] = metadata # type: ignore message_thread = openai_client.beta.threads.create(**data) # type: ignore return Thread(**message_thread.dict()) def get_thread( self, thread_id: str, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, httpx.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[OpenAI], ) -> Thread: openai_client = self.get_openai_client( api_key=api_key, api_base=api_base, timeout=timeout, max_retries=max_retries, organization=organization, client=client, ) response = openai_client.beta.threads.retrieve(thread_id=thread_id) return Thread(**response.dict()) def delete_thread(self): pass ### RUNS ### def run_thread( self, thread_id: str, assistant_id: str, additional_instructions: Optional[str], instructions: Optional[str], metadata: Optional[object], model: Optional[str], stream: Optional[bool], tools: Optional[Iterable[AssistantToolParam]], api_key: Optional[str], api_base: Optional[str], timeout: Union[float, httpx.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[OpenAI], ) -> Run: openai_client = self.get_openai_client( api_key=api_key, api_base=api_base, timeout=timeout, max_retries=max_retries, organization=organization, client=client, ) response = openai_client.beta.threads.runs.create_and_poll( thread_id=thread_id, assistant_id=assistant_id, additional_instructions=additional_instructions, instructions=instructions, metadata=metadata, model=model, tools=tools, ) return response
() -> None
63,681
litellm.llms.openai
add_message
null
def add_message( self, thread_id: str, message_data: MessageData, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, httpx.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[OpenAI] = None, ) -> OpenAIMessage: openai_client = self.get_openai_client( api_key=api_key, api_base=api_base, timeout=timeout, max_retries=max_retries, organization=organization, client=client, ) thread_message: OpenAIMessage = openai_client.beta.threads.messages.create( thread_id, **message_data ) response_obj: Optional[OpenAIMessage] = None if getattr(thread_message, "status", None) is None: thread_message.status = "completed" response_obj = OpenAIMessage(**thread_message.dict()) else: response_obj = OpenAIMessage(**thread_message.dict()) return response_obj
(self, thread_id: str, message_data: litellm.types.llms.openai.MessageData, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, openai.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[openai.OpenAI] = None) -> openai.types.beta.threads.message.Message
63,682
litellm.llms.base
completion
null
def completion( self, *args, **kwargs ): # logic for parsing in - calling - parsing out model completion calls pass
(self, *args, **kwargs)
63,685
litellm.llms.openai
create_thread
Here's an example: ``` from litellm.llms.openai import OpenAIAssistantsAPI, MessageData # create thread message: MessageData = {"role": "user", "content": "Hey, how's it going?"} openai_api.create_thread(messages=[message]) ```
def create_thread( self, metadata: Optional[dict], api_key: Optional[str], api_base: Optional[str], timeout: Union[float, httpx.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[OpenAI], messages: Optional[Iterable[OpenAICreateThreadParamsMessage]], ) -> Thread: """ Here's an example: ``` from litellm.llms.openai import OpenAIAssistantsAPI, MessageData # create thread message: MessageData = {"role": "user", "content": "Hey, how's it going?"} openai_api.create_thread(messages=[message]) ``` """ openai_client = self.get_openai_client( api_key=api_key, api_base=api_base, timeout=timeout, max_retries=max_retries, organization=organization, client=client, ) data = {} if messages is not None: data["messages"] = messages # type: ignore if metadata is not None: data["metadata"] = metadata # type: ignore message_thread = openai_client.beta.threads.create(**data) # type: ignore return Thread(**message_thread.dict())
(self, metadata: Optional[dict], api_key: Optional[str], api_base: Optional[str], timeout: Union[float, openai.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[openai.OpenAI], messages: Optional[Iterable[openai.types.beta.thread_create_params.Message]]) -> litellm.types.llms.openai.Thread
63,686
litellm.llms.openai
delete_thread
null
def delete_thread(self): pass
(self)
63,688
litellm.llms.openai
get_assistants
null
def get_assistants( self, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, httpx.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[OpenAI], ) -> SyncCursorPage[Assistant]: openai_client = self.get_openai_client( api_key=api_key, api_base=api_base, timeout=timeout, max_retries=max_retries, organization=organization, client=client, ) response = openai_client.beta.assistants.list() return response
(self, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, openai.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[openai.OpenAI]) -> openai.pagination.SyncCursorPage[Assistant]
63,689
litellm.llms.openai
get_messages
null
def get_messages( self, thread_id: str, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, httpx.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[OpenAI] = None, ) -> SyncCursorPage[OpenAIMessage]: openai_client = self.get_openai_client( api_key=api_key, api_base=api_base, timeout=timeout, max_retries=max_retries, organization=organization, client=client, ) response = openai_client.beta.threads.messages.list(thread_id=thread_id) return response
(self, thread_id: str, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, openai.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[openai.OpenAI] = None) -> openai.pagination.SyncCursorPage[Message]
63,690
litellm.llms.openai
get_openai_client
null
def get_openai_client( self, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, httpx.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[OpenAI] = None, ) -> OpenAI: received_args = locals() if client is None: data = {} for k, v in received_args.items(): if k == "self" or k == "client": pass elif k == "api_base" and v is not None: data["base_url"] = v elif v is not None: data[k] = v openai_client = OpenAI(**data) # type: ignore else: openai_client = client return openai_client
(self, api_key: Optional[str], api_base: Optional[str], timeout: Union[float, openai.Timeout], max_retries: Optional[int], organization: Optional[str], client: Optional[openai.OpenAI] = None) -> openai.OpenAI