index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
63,951 |
openai.pagination
|
SyncCursorPage
| null |
class SyncCursorPage(BaseSyncPage[_T], BasePage[_T], Generic[_T]):
data: List[_T]
@override
def _get_page_items(self) -> List[_T]:
data = self.data
if not data:
return []
return data
@override
def next_page_info(self) -> Optional[PageInfo]:
data = self.data
if not data:
return None
item = cast(Any, data[-1])
if not isinstance(item, CursorPageItem) or item.id is None:
# TODO emit warning log
return None
return PageInfo(params={"after": item.id})
|
(*, data: List[~_T], **extra_data: Any) -> None
|
63,959 |
openai._base_client
|
__iter__
| null |
def __iter__(self) -> Iterator[_T]: # type: ignore
for page in self.iter_pages():
for item in page._get_page_items():
yield item
|
(self) -> Iterator[~_T]
|
63,972 |
openai.pagination
|
_get_page_items
| null |
@override
def _get_page_items(self) -> List[_T]:
data = self.data
if not data:
return []
return data
|
(self) -> List[~_T]
|
63,973 |
openai._base_client
|
_info_to_options
| null |
def _info_to_options(self, info: PageInfo) -> FinalRequestOptions:
options = model_copy(self._options)
options._strip_raw_response_header()
if not isinstance(info.params, NotGiven):
options.params = {**options.params, **info.params}
return options
if not isinstance(info.url, NotGiven):
params = self._params_from_url(info.url)
url = info.url.copy_with(params=params)
options.params = dict(url.params)
options.url = str(url)
return options
raise ValueError("Unexpected PageInfo state")
|
(self, info: openai._base_client.PageInfo) -> openai._models.FinalRequestOptions
|
63,975 |
openai._base_client
|
_params_from_url
| null |
def _params_from_url(self, url: URL) -> httpx.QueryParams:
# TODO: do we have to preprocess params here?
return httpx.QueryParams(cast(Any, self._options.params)).merge(url.params)
|
(self, url: httpx.URL) -> httpx.QueryParams
|
63,976 |
openai._base_client
|
_set_private_attributes
| null |
def _set_private_attributes(
self,
client: SyncAPIClient,
model: Type[_T],
options: FinalRequestOptions,
) -> None:
self._model = model
self._client = client
self._options = options
|
(self, client: openai._base_client.SyncAPIClient, model: Type[~_T], options: openai._models.FinalRequestOptions) -> NoneType
|
63,979 |
openai._base_client
|
get_next_page
| null |
def get_next_page(self: SyncPageT) -> SyncPageT:
info = self.next_page_info()
if not info:
raise RuntimeError(
"No next page expected; please check `.has_next_page()` before calling `.get_next_page()`."
)
options = self._info_to_options(info)
return self._client._request_api_list(self._model, page=self.__class__, options=options)
|
(self: ~SyncPageT) -> ~SyncPageT
|
63,980 |
openai._base_client
|
has_next_page
| null |
def has_next_page(self) -> bool:
items = self._get_page_items()
if not items:
return False
return self.next_page_info() is not None
|
(self) -> bool
|
63,981 |
openai._base_client
|
iter_pages
| null |
def iter_pages(self: SyncPageT) -> Iterator[SyncPageT]:
page = self
while True:
yield page
if page.has_next_page():
page = page.get_next_page()
else:
return
|
(self: ~SyncPageT) -> Iterator[~SyncPageT]
|
63,986 |
pydantic._internal._model_construction
|
wrapped_model_post_init
|
We need to both initialize private attributes and call the user-defined model_post_init
method.
|
def __new__(
mcs,
cls_name: str,
bases: tuple[type[Any], ...],
namespace: dict[str, Any],
__pydantic_generic_metadata__: PydanticGenericMetadata | None = None,
__pydantic_reset_parent_namespace__: bool = True,
_create_model_module: str | None = None,
**kwargs: Any,
) -> type:
"""Metaclass for creating Pydantic models.
Args:
cls_name: The name of the class to be created.
bases: The base classes of the class to be created.
namespace: The attribute dictionary of the class to be created.
__pydantic_generic_metadata__: Metadata for generic models.
__pydantic_reset_parent_namespace__: Reset parent namespace.
_create_model_module: The module of the class to be created, if created by `create_model`.
**kwargs: Catch-all for any other keyword arguments.
Returns:
The new class created by the metaclass.
"""
# Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we rely on the fact
# that `BaseModel` itself won't have any bases, but any subclass of it will, to determine whether the `__new__`
# call we're in the middle of is for the `BaseModel` class.
if bases:
base_field_names, class_vars, base_private_attributes = mcs._collect_bases_data(bases)
config_wrapper = ConfigWrapper.for_model(bases, namespace, kwargs)
namespace['model_config'] = config_wrapper.config_dict
private_attributes = inspect_namespace(
namespace, config_wrapper.ignored_types, class_vars, base_field_names
)
if private_attributes or base_private_attributes:
original_model_post_init = get_model_post_init(namespace, bases)
if original_model_post_init is not None:
# if there are private_attributes and a model_post_init function, we handle both
def wrapped_model_post_init(self: BaseModel, __context: Any) -> None:
"""We need to both initialize private attributes and call the user-defined model_post_init
method.
"""
init_private_attributes(self, __context)
original_model_post_init(self, __context)
namespace['model_post_init'] = wrapped_model_post_init
else:
namespace['model_post_init'] = init_private_attributes
namespace['__class_vars__'] = class_vars
namespace['__private_attributes__'] = {**base_private_attributes, **private_attributes}
cls: type[BaseModel] = super().__new__(mcs, cls_name, bases, namespace, **kwargs) # type: ignore
from ..main import BaseModel
mro = cls.__mro__
if Generic in mro and mro.index(Generic) < mro.index(BaseModel):
warnings.warn(
GenericBeforeBaseModelWarning(
'Classes should inherit from `BaseModel` before generic classes (e.g. `typing.Generic[T]`) '
'for pydantic generics to work properly.'
),
stacklevel=2,
)
cls.__pydantic_custom_init__ = not getattr(cls.__init__, '__pydantic_base_init__', False)
cls.__pydantic_post_init__ = None if cls.model_post_init is BaseModel.model_post_init else 'model_post_init'
cls.__pydantic_decorators__ = DecoratorInfos.build(cls)
# Use the getattr below to grab the __parameters__ from the `typing.Generic` parent class
if __pydantic_generic_metadata__:
cls.__pydantic_generic_metadata__ = __pydantic_generic_metadata__
else:
parent_parameters = getattr(cls, '__pydantic_generic_metadata__', {}).get('parameters', ())
parameters = getattr(cls, '__parameters__', None) or parent_parameters
if parameters and parent_parameters and not all(x in parameters for x in parent_parameters):
from ..root_model import RootModelRootType
missing_parameters = tuple(x for x in parameters if x not in parent_parameters)
if RootModelRootType in parent_parameters and RootModelRootType not in parameters:
# This is a special case where the user has subclassed `RootModel`, but has not parametrized
# RootModel with the generic type identifiers being used. Ex:
# class MyModel(RootModel, Generic[T]):
# root: T
# Should instead just be:
# class MyModel(RootModel[T]):
# root: T
parameters_str = ', '.join([x.__name__ for x in missing_parameters])
error_message = (
f'{cls.__name__} is a subclass of `RootModel`, but does not include the generic type identifier(s) '
f'{parameters_str} in its parameters. '
f'You should parametrize RootModel directly, e.g., `class {cls.__name__}(RootModel[{parameters_str}]): ...`.'
)
else:
combined_parameters = parent_parameters + missing_parameters
parameters_str = ', '.join([str(x) for x in combined_parameters])
generic_type_label = f'typing.Generic[{parameters_str}]'
error_message = (
f'All parameters must be present on typing.Generic;'
f' you should inherit from {generic_type_label}.'
)
if Generic not in bases: # pragma: no cover
# We raise an error here not because it is desirable, but because some cases are mishandled.
# It would be nice to remove this error and still have things behave as expected, it's just
# challenging because we are using a custom `__class_getitem__` to parametrize generic models,
# and not returning a typing._GenericAlias from it.
bases_str = ', '.join([x.__name__ for x in bases] + [generic_type_label])
error_message += (
f' Note: `typing.Generic` must go last: `class {cls.__name__}({bases_str}): ...`)'
)
raise TypeError(error_message)
cls.__pydantic_generic_metadata__ = {
'origin': None,
'args': (),
'parameters': parameters,
}
cls.__pydantic_complete__ = False # Ensure this specific class gets completed
# preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487
# for attributes not in `new_namespace` (e.g. private attributes)
for name, obj in private_attributes.items():
obj.__set_name__(cls, name)
if __pydantic_reset_parent_namespace__:
cls.__pydantic_parent_namespace__ = build_lenient_weakvaluedict(parent_frame_namespace())
parent_namespace = getattr(cls, '__pydantic_parent_namespace__', None)
if isinstance(parent_namespace, dict):
parent_namespace = unpack_lenient_weakvaluedict(parent_namespace)
types_namespace = get_cls_types_namespace(cls, parent_namespace)
set_model_fields(cls, bases, config_wrapper, types_namespace)
if config_wrapper.frozen and '__hash__' not in namespace:
set_default_hash_func(cls, bases)
complete_model_class(
cls,
cls_name,
config_wrapper,
raise_errors=False,
types_namespace=types_namespace,
create_model_module=_create_model_module,
)
# If this is placed before the complete_model_class call above,
# the generic computed fields return type is set to PydanticUndefined
cls.model_computed_fields = {k: v.info for k, v in cls.__pydantic_decorators__.computed_fields.items()}
set_deprecated_descriptors(cls)
# using super(cls, cls) on the next line ensures we only call the parent class's __pydantic_init_subclass__
# I believe the `type: ignore` is only necessary because mypy doesn't realize that this code branch is
# only hit for _proper_ subclasses of BaseModel
super(cls, cls).__pydantic_init_subclass__(**kwargs) # type: ignore[misc]
return cls
else:
# this is the BaseModel class itself being created, no logic required
return super().__new__(mcs, cls_name, bases, namespace, **kwargs)
|
(self: 'BaseModel', _ModelMetaclass__context: 'Any') -> 'None'
|
63,987 |
openai.pagination
|
next_page_info
| null |
@override
def next_page_info(self) -> Optional[PageInfo]:
data = self.data
if not data:
return None
item = cast(Any, data[-1])
if not isinstance(item, CursorPageItem) or item.id is None:
# TODO emit warning log
return None
return PageInfo(params={"after": item.id})
|
(self) -> Optional[openai._base_client.PageInfo]
|
63,990 |
litellm.utils
|
TextChoices
| null |
class TextChoices(OpenAIObject):
def __init__(self, finish_reason=None, index=0, text=None, logprobs=None, **params):
super(TextChoices, self).__init__(**params)
if finish_reason:
self.finish_reason = map_finish_reason(finish_reason)
else:
self.finish_reason = None
self.index = index
if text is not None:
self.text = text
else:
self.text = None
if logprobs is None:
self.logprobs = None
else:
if isinstance(logprobs, dict):
self.logprobs = Logprobs(**logprobs)
else:
self.logprobs = logprobs
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
def json(self, **kwargs):
try:
return self.model_dump() # noqa
except:
# if using pydantic v1
return self.dict()
|
(finish_reason=None, index=0, text=None, logprobs=None, **params)
|
63,999 |
litellm.utils
|
__init__
| null |
def __init__(self, finish_reason=None, index=0, text=None, logprobs=None, **params):
super(TextChoices, self).__init__(**params)
if finish_reason:
self.finish_reason = map_finish_reason(finish_reason)
else:
self.finish_reason = None
self.index = index
if text is not None:
self.text = text
else:
self.text = None
if logprobs is None:
self.logprobs = None
else:
if isinstance(logprobs, dict):
self.logprobs = Logprobs(**logprobs)
else:
self.logprobs = logprobs
|
(self, finish_reason=None, index=0, text=None, logprobs=None, **params)
|
64,025 |
litellm.utils
|
TextCompletionResponse
|
{
"id": response["id"],
"object": "text_completion",
"created": response["created"],
"model": response["model"],
"choices": [
{
"text": response["choices"][0]["message"]["content"],
"index": response["choices"][0]["index"],
"logprobs": transformed_logprobs,
"finish_reason": response["choices"][0]["finish_reason"]
}
],
"usage": response["usage"]
}
|
class TextCompletionResponse(OpenAIObject):
"""
{
"id": response["id"],
"object": "text_completion",
"created": response["created"],
"model": response["model"],
"choices": [
{
"text": response["choices"][0]["message"]["content"],
"index": response["choices"][0]["index"],
"logprobs": transformed_logprobs,
"finish_reason": response["choices"][0]["finish_reason"]
}
],
"usage": response["usage"]
}
"""
id: str
object: str
created: int
model: Optional[str]
choices: List[TextChoices]
usage: Optional[Usage]
_response_ms: Optional[int] = None
_hidden_params: HiddenParams
def __init__(
self,
id=None,
choices=None,
created=None,
model=None,
usage=None,
stream=False,
response_ms=None,
object=None,
**params,
):
if stream:
object = "text_completion.chunk"
choices = [TextChoices()]
else:
object = "text_completion"
if choices is not None and isinstance(choices, list):
new_choices = []
for choice in choices:
if isinstance(choice, TextChoices):
_new_choice = choice
elif isinstance(choice, dict):
_new_choice = TextChoices(**choice)
new_choices.append(_new_choice)
choices = new_choices
else:
choices = [TextChoices()]
if object is not None:
object = object
if id is None:
id = _generate_id()
else:
id = id
if created is None:
created = int(time.time())
else:
created = created
model = model
if usage:
usage = usage
else:
usage = Usage()
super(TextCompletionResponse, self).__init__(
id=id,
object=object,
created=created,
model=model,
choices=choices,
usage=usage,
**params,
)
if response_ms:
self._response_ms = response_ms
else:
self._response_ms = None
self._hidden_params = HiddenParams()
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
|
(id=None, choices=None, created=None, model=None, usage=None, stream=False, response_ms=None, object=None, **params)
|
64,034 |
litellm.utils
|
__init__
| null |
def __init__(
self,
id=None,
choices=None,
created=None,
model=None,
usage=None,
stream=False,
response_ms=None,
object=None,
**params,
):
if stream:
object = "text_completion.chunk"
choices = [TextChoices()]
else:
object = "text_completion"
if choices is not None and isinstance(choices, list):
new_choices = []
for choice in choices:
if isinstance(choice, TextChoices):
_new_choice = choice
elif isinstance(choice, dict):
_new_choice = TextChoices(**choice)
new_choices.append(_new_choice)
choices = new_choices
else:
choices = [TextChoices()]
if object is not None:
object = object
if id is None:
id = _generate_id()
else:
id = id
if created is None:
created = int(time.time())
else:
created = created
model = model
if usage:
usage = usage
else:
usage = Usage()
super(TextCompletionResponse, self).__init__(
id=id,
object=object,
created=created,
model=model,
choices=choices,
usage=usage,
**params,
)
if response_ms:
self._response_ms = response_ms
else:
self._response_ms = None
self._hidden_params = HiddenParams()
|
(self, id=None, choices=None, created=None, model=None, usage=None, stream=False, response_ms=None, object=None, **params)
|
64,060 |
litellm.utils
|
TextCompletionStreamWrapper
| null |
class TextCompletionStreamWrapper:
def __init__(self, completion_stream, model, stream_options: Optional[dict] = None):
self.completion_stream = completion_stream
self.model = model
self.stream_options = stream_options
def __iter__(self):
return self
def __aiter__(self):
return self
def convert_to_text_completion_object(self, chunk: ModelResponse):
try:
response = TextCompletionResponse()
response["id"] = chunk.get("id", None)
response["object"] = "text_completion"
response["created"] = chunk.get("created", None)
response["model"] = chunk.get("model", None)
text_choices = TextChoices()
if isinstance(
chunk, Choices
): # chunk should always be of type StreamingChoices
raise Exception
text_choices["text"] = chunk["choices"][0]["delta"]["content"]
text_choices["index"] = chunk["choices"][0]["index"]
text_choices["finish_reason"] = chunk["choices"][0]["finish_reason"]
response["choices"] = [text_choices]
# only pass usage when stream_options["include_usage"] is True
if (
self.stream_options
and self.stream_options.get("include_usage", False) == True
):
response["usage"] = chunk.get("usage", None)
return response
except Exception as e:
raise Exception(
f"Error occurred converting to text completion object - chunk: {chunk}; Error: {str(e)}"
)
def __next__(self):
# model_response = ModelResponse(stream=True, model=self.model)
response = TextCompletionResponse()
try:
for chunk in self.completion_stream:
if chunk == "None" or chunk is None:
raise Exception
processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
return processed_chunk
raise StopIteration
except StopIteration:
raise StopIteration
except Exception as e:
print(f"got exception {e}") # noqa
async def __anext__(self):
try:
async for chunk in self.completion_stream:
if chunk == "None" or chunk is None:
raise Exception
processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
return processed_chunk
raise StopIteration
except StopIteration:
raise StopAsyncIteration
|
(completion_stream, model, stream_options: Optional[dict] = None)
|
64,062 |
litellm.utils
|
__anext__
| null |
def __next__(self):
# model_response = ModelResponse(stream=True, model=self.model)
response = TextCompletionResponse()
try:
for chunk in self.completion_stream:
if chunk == "None" or chunk is None:
raise Exception
processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
return processed_chunk
raise StopIteration
except StopIteration:
raise StopIteration
except Exception as e:
print(f"got exception {e}") # noqa
|
(self)
|
64,063 |
litellm.utils
|
__init__
| null |
def __init__(self, completion_stream, model, stream_options: Optional[dict] = None):
self.completion_stream = completion_stream
self.model = model
self.stream_options = stream_options
|
(self, completion_stream, model, stream_options: Optional[dict] = None)
|
64,066 |
litellm.utils
|
convert_to_text_completion_object
| null |
def convert_to_text_completion_object(self, chunk: ModelResponse):
try:
response = TextCompletionResponse()
response["id"] = chunk.get("id", None)
response["object"] = "text_completion"
response["created"] = chunk.get("created", None)
response["model"] = chunk.get("model", None)
text_choices = TextChoices()
if isinstance(
chunk, Choices
): # chunk should always be of type StreamingChoices
raise Exception
text_choices["text"] = chunk["choices"][0]["delta"]["content"]
text_choices["index"] = chunk["choices"][0]["index"]
text_choices["finish_reason"] = chunk["choices"][0]["finish_reason"]
response["choices"] = [text_choices]
# only pass usage when stream_options["include_usage"] is True
if (
self.stream_options
and self.stream_options.get("include_usage", False) == True
):
response["usage"] = chunk.get("usage", None)
return response
except Exception as e:
raise Exception(
f"Error occurred converting to text completion object - chunk: {chunk}; Error: {str(e)}"
)
|
(self, chunk: litellm.utils.ModelResponse)
|
64,067 |
litellm.types.llms.openai
|
Thread
| null |
class Thread(BaseModel):
id: str
"""The identifier, which can be referenced in API endpoints."""
created_at: int
"""The Unix timestamp (in seconds) for when the thread was created."""
metadata: Optional[object] = None
"""Set of 16 key-value pairs that can be attached to an object.
This can be useful for storing additional information about the object in a
structured format. Keys can be a maximum of 64 characters long and values can be
a maxium of 512 characters long.
"""
object: Literal["thread"]
"""The object type, which is always `thread`."""
|
(*, id: str, created_at: int, metadata: Optional[object] = None, object: Literal['thread']) -> None
|
64,105 |
litellm.exceptions
|
Timeout
| null |
class Timeout(openai.APITimeoutError): # type: ignore
def __init__(self, message, model, llm_provider):
request = httpx.Request(method="POST", url="https://api.openai.com/v1")
super().__init__(
request=request
) # Call the base class constructor with the parameters it needs
self.status_code = 408
self.message = message
self.model = model
self.llm_provider = llm_provider
# custom function to convert to str
def __str__(self):
return str(self.message)
|
(message, model, llm_provider)
|
64,106 |
litellm.exceptions
|
__init__
| null |
def __init__(self, message, model, llm_provider):
request = httpx.Request(method="POST", url="https://api.openai.com/v1")
super().__init__(
request=request
) # Call the base class constructor with the parameters it needs
self.status_code = 408
self.message = message
self.model = model
self.llm_provider = llm_provider
|
(self, message, model, llm_provider)
|
64,108 |
litellm.llms.together_ai
|
TogetherAIConfig
|
Reference: https://docs.together.ai/reference/inference
The class `TogetherAIConfig` provides configuration for the TogetherAI's API interface. Here are the parameters:
- `max_tokens` (int32, required): The maximum number of tokens to generate.
- `stop` (string, optional): A string sequence that will truncate (stop) the inference text output. For example, "
" will stop generation as soon as the model generates two newlines.
- `temperature` (float, optional): A decimal number that determines the degree of randomness in the response. A value of 1 will always yield the same output. A temperature less than 1 favors more correctness and is appropriate for question answering or summarization. A value greater than 1 introduces more randomness in the output.
- `top_p` (float, optional): The `top_p` (nucleus) parameter is used to dynamically adjust the number of choices for each predicted token based on the cumulative probabilities. It specifies a probability threshold, below which all less likely tokens are filtered out. This technique helps to maintain diversity and generate more fluent and natural-sounding text.
- `top_k` (int32, optional): The `top_k` parameter is used to limit the number of choices for the next predicted word or token. It specifies the maximum number of tokens to consider at each step, based on their probability of occurrence. This technique helps to speed up the generation process and can improve the quality of the generated text by focusing on the most likely options.
- `repetition_penalty` (float, optional): A number that controls the diversity of generated text by reducing the likelihood of repeated sequences. Higher values decrease repetition.
- `logprobs` (int32, optional): This parameter is not described in the prompt.
|
class TogetherAIConfig:
"""
Reference: https://docs.together.ai/reference/inference
The class `TogetherAIConfig` provides configuration for the TogetherAI's API interface. Here are the parameters:
- `max_tokens` (int32, required): The maximum number of tokens to generate.
- `stop` (string, optional): A string sequence that will truncate (stop) the inference text output. For example, "\n\n" will stop generation as soon as the model generates two newlines.
- `temperature` (float, optional): A decimal number that determines the degree of randomness in the response. A value of 1 will always yield the same output. A temperature less than 1 favors more correctness and is appropriate for question answering or summarization. A value greater than 1 introduces more randomness in the output.
- `top_p` (float, optional): The `top_p` (nucleus) parameter is used to dynamically adjust the number of choices for each predicted token based on the cumulative probabilities. It specifies a probability threshold, below which all less likely tokens are filtered out. This technique helps to maintain diversity and generate more fluent and natural-sounding text.
- `top_k` (int32, optional): The `top_k` parameter is used to limit the number of choices for the next predicted word or token. It specifies the maximum number of tokens to consider at each step, based on their probability of occurrence. This technique helps to speed up the generation process and can improve the quality of the generated text by focusing on the most likely options.
- `repetition_penalty` (float, optional): A number that controls the diversity of generated text by reducing the likelihood of repeated sequences. Higher values decrease repetition.
- `logprobs` (int32, optional): This parameter is not described in the prompt.
"""
max_tokens: Optional[int] = None
stop: Optional[str] = None
temperature: Optional[int] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
repetition_penalty: Optional[float] = None
logprobs: Optional[int] = None
def __init__(
self,
max_tokens: Optional[int] = None,
stop: Optional[str] = None,
temperature: Optional[int] = None,
top_p: Optional[float] = None,
top_k: Optional[int] = None,
repetition_penalty: Optional[float] = None,
logprobs: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
|
(max_tokens: Optional[int] = None, stop: Optional[str] = None, temperature: Optional[int] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, repetition_penalty: Optional[float] = None, logprobs: Optional[int] = None) -> None
|
64,109 |
litellm.llms.together_ai
|
__init__
| null |
def __init__(
self,
max_tokens: Optional[int] = None,
stop: Optional[str] = None,
temperature: Optional[int] = None,
top_p: Optional[float] = None,
top_k: Optional[int] = None,
repetition_penalty: Optional[float] = None,
logprobs: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
|
(self, max_tokens: Optional[int] = None, stop: Optional[str] = None, temperature: Optional[int] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, repetition_penalty: Optional[float] = None, logprobs: Optional[int] = None) -> NoneType
|
64,110 |
litellm.types.llms.openai
|
ToolResourcesCodeInterpreter
| null |
class ToolResourcesCodeInterpreter(TypedDict, total=False):
file_ids: List[str]
"""
A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made
available to the `code_interpreter` tool. There can be a maximum of 20 files
associated with the tool.
"""
| null |
64,111 |
litellm.types.llms.openai
|
ToolResourcesFileSearch
| null |
class ToolResourcesFileSearch(TypedDict, total=False):
vector_store_ids: List[str]
"""
The
[vector store](https://platform.openai.com/docs/api-reference/vector-stores/object)
attached to this thread. There can be a maximum of 1 vector store attached to
the thread.
"""
vector_stores: Iterable[ToolResourcesFileSearchVectorStore]
"""
A helper to create a
[vector store](https://platform.openai.com/docs/api-reference/vector-stores/object)
with file_ids and attach it to this thread. There can be a maximum of 1 vector
store attached to the thread.
"""
| null |
64,112 |
litellm.types.llms.openai
|
ToolResourcesFileSearchVectorStore
| null |
class ToolResourcesFileSearchVectorStore(TypedDict, total=False):
file_ids: List[str]
"""
A list of [file](https://platform.openai.com/docs/api-reference/files) IDs to
add to the vector store. There can be a maximum of 10000 files in a vector
store.
"""
metadata: object
"""Set of 16 key-value pairs that can be attached to a vector store.
This can be useful for storing additional information about the vector store in
a structured format. Keys can be a maximum of 64 characters long and values can
be a maxium of 512 characters long.
"""
| null |
64,113 |
litellm.utils
|
TranscriptionResponse
| null |
class TranscriptionResponse(OpenAIObject):
text: Optional[str] = None
_hidden_params: dict = {}
def __init__(self, text=None):
super().__init__(text=text)
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
def json(self, **kwargs):
try:
return self.model_dump() # noqa
except:
# if using pydantic v1
return self.dict()
|
(text=None)
|
64,122 |
litellm.utils
|
__init__
| null |
def __init__(self, text=None):
super().__init__(text=text)
|
(self, text=None)
|
64,148 |
litellm.llms.triton
|
TritonChatCompletion
| null |
class TritonChatCompletion(BaseLLM):
def __init__(self) -> None:
super().__init__()
async def aembedding(
self,
data: dict,
model_response: litellm.utils.EmbeddingResponse,
api_base: str,
logging_obj=None,
api_key: Optional[str] = None,
):
async_handler = AsyncHTTPHandler(
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
)
response = await async_handler.post(url=api_base, data=json.dumps(data))
if response.status_code != 200:
raise TritonError(status_code=response.status_code, message=response.text)
_text_response = response.text
logging_obj.post_call(original_response=_text_response)
_json_response = response.json()
_outputs = _json_response["outputs"]
_output_data = _outputs[0]["data"]
_embedding_output = {
"object": "embedding",
"index": 0,
"embedding": _output_data,
}
model_response.model = _json_response.get("model_name", "None")
model_response.data = [_embedding_output]
return model_response
def embedding(
self,
model: str,
input: list,
timeout: float,
api_base: str,
model_response: litellm.utils.EmbeddingResponse,
api_key: Optional[str] = None,
logging_obj=None,
optional_params=None,
client=None,
aembedding=None,
):
data_for_triton = {
"inputs": [
{
"name": "input_text",
"shape": [1],
"datatype": "BYTES",
"data": input,
}
]
}
## LOGGING
curl_string = f"curl {api_base} -X POST -H 'Content-Type: application/json' -d '{data_for_triton}'"
logging_obj.pre_call(
input="",
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": curl_string,
},
)
if aembedding == True:
response = self.aembedding(
data=data_for_triton,
model_response=model_response,
logging_obj=logging_obj,
api_base=api_base,
api_key=api_key,
)
return response
else:
raise Exception(
"Only async embedding supported for triton, please use litellm.aembedding() for now"
)
|
() -> None
|
64,156 |
litellm.llms.triton
|
embedding
| null |
def embedding(
self,
model: str,
input: list,
timeout: float,
api_base: str,
model_response: litellm.utils.EmbeddingResponse,
api_key: Optional[str] = None,
logging_obj=None,
optional_params=None,
client=None,
aembedding=None,
):
data_for_triton = {
"inputs": [
{
"name": "input_text",
"shape": [1],
"datatype": "BYTES",
"data": input,
}
]
}
## LOGGING
curl_string = f"curl {api_base} -X POST -H 'Content-Type: application/json' -d '{data_for_triton}'"
logging_obj.pre_call(
input="",
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": curl_string,
},
)
if aembedding == True:
response = self.aembedding(
data=data_for_triton,
model_response=model_response,
logging_obj=logging_obj,
api_base=api_base,
api_key=api_key,
)
return response
else:
raise Exception(
"Only async embedding supported for triton, please use litellm.aembedding() for now"
)
|
(self, model: str, input: list, timeout: float, api_base: str, model_response: litellm.utils.EmbeddingResponse, api_key: Optional[str] = None, logging_obj=None, optional_params=None, client=None, aembedding=None)
|
64,160 |
litellm.exceptions
|
UnprocessableEntityError
| null |
class UnprocessableEntityError(openai.UnprocessableEntityError): # type: ignore
def __init__(self, message, model, llm_provider, response: httpx.Response):
self.status_code = 422
self.message = message
self.model = model
self.llm_provider = llm_provider
super().__init__(
self.message, response=response, body=None
) # Call the base class constructor with the parameters it needs
|
(message, model, llm_provider, response: httpx.Response)
|
64,161 |
litellm.exceptions
|
__init__
| null |
def __init__(self, message, model, llm_provider, response: httpx.Response):
self.status_code = 422
self.message = message
self.model = model
self.llm_provider = llm_provider
super().__init__(
self.message, response=response, body=None
) # Call the base class constructor with the parameters it needs
|
(self, message, model, llm_provider, response: httpx.Response)
|
64,162 |
litellm.types.router
|
UpdateRouterConfig
|
Set of params that you can modify via `router.update_settings()`.
|
class UpdateRouterConfig(BaseModel):
"""
Set of params that you can modify via `router.update_settings()`.
"""
routing_strategy_args: Optional[dict] = None
routing_strategy: Optional[str] = None
model_group_retry_policy: Optional[dict] = None
allowed_fails: Optional[int] = None
cooldown_time: Optional[float] = None
num_retries: Optional[int] = None
timeout: Optional[float] = None
max_retries: Optional[int] = None
retry_after: Optional[float] = None
fallbacks: Optional[List[dict]] = None
context_window_fallbacks: Optional[List[dict]] = None
class Config:
protected_namespaces = ()
|
(*, routing_strategy_args: Optional[dict] = None, routing_strategy: Optional[str] = None, model_group_retry_policy: Optional[dict] = None, allowed_fails: Optional[int] = None, cooldown_time: Optional[float] = None, num_retries: Optional[int] = None, timeout: Optional[float] = None, max_retries: Optional[int] = None, retry_after: Optional[float] = None, fallbacks: Optional[List[dict]] = None, context_window_fallbacks: Optional[List[dict]] = None) -> None
|
64,191 |
litellm.utils
|
Usage
| null |
class Usage(OpenAIObject):
def __init__(
self, prompt_tokens=None, completion_tokens=None, total_tokens=None, **params
):
super(Usage, self).__init__(**params)
if prompt_tokens:
self.prompt_tokens = prompt_tokens
if completion_tokens:
self.completion_tokens = completion_tokens
if total_tokens:
self.total_tokens = total_tokens
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
|
(prompt_tokens=None, completion_tokens=None, total_tokens=None, **params)
|
64,200 |
litellm.utils
|
__init__
| null |
def __init__(
self, prompt_tokens=None, completion_tokens=None, total_tokens=None, **params
):
super(Usage, self).__init__(**params)
if prompt_tokens:
self.prompt_tokens = prompt_tokens
if completion_tokens:
self.completion_tokens = completion_tokens
if total_tokens:
self.total_tokens = total_tokens
|
(self, prompt_tokens=None, completion_tokens=None, total_tokens=None, **params)
|
64,226 |
litellm.llms.vertex_ai_anthropic
|
VertexAIAnthropicConfig
|
Reference: https://docs.anthropic.com/claude/reference/messages_post
Note that the API for Claude on Vertex differs from the Anthropic API documentation in the following ways:
- `model` is not a valid parameter. The model is instead specified in the Google Cloud endpoint URL.
- `anthropic_version` is a required parameter and must be set to "vertex-2023-10-16".
The class `VertexAIAnthropicConfig` provides configuration for the VertexAI's Anthropic API interface. Below are the parameters:
- `max_tokens` Required (integer) max tokens,
- `anthropic_version` Required (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
- `system` Optional (string) the system prompt, conversion from openai format to this is handled in factory.py
- `temperature` Optional (float) The amount of randomness injected into the response
- `top_p` Optional (float) Use nucleus sampling.
- `top_k` Optional (int) Only sample from the top K options for each subsequent token
- `stop_sequences` Optional (List[str]) Custom text sequences that cause the model to stop generating
Note: Please make sure to modify the default parameters as required for your use case.
|
class VertexAIAnthropicConfig:
"""
Reference: https://docs.anthropic.com/claude/reference/messages_post
Note that the API for Claude on Vertex differs from the Anthropic API documentation in the following ways:
- `model` is not a valid parameter. The model is instead specified in the Google Cloud endpoint URL.
- `anthropic_version` is a required parameter and must be set to "vertex-2023-10-16".
The class `VertexAIAnthropicConfig` provides configuration for the VertexAI's Anthropic API interface. Below are the parameters:
- `max_tokens` Required (integer) max tokens,
- `anthropic_version` Required (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
- `system` Optional (string) the system prompt, conversion from openai format to this is handled in factory.py
- `temperature` Optional (float) The amount of randomness injected into the response
- `top_p` Optional (float) Use nucleus sampling.
- `top_k` Optional (int) Only sample from the top K options for each subsequent token
- `stop_sequences` Optional (List[str]) Custom text sequences that cause the model to stop generating
Note: Please make sure to modify the default parameters as required for your use case.
"""
max_tokens: Optional[int] = (
4096 # anthropic max - setting this doesn't impact response, but is required by anthropic.
)
system: Optional[str] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
stop_sequences: Optional[List[str]] = None
def __init__(
self,
max_tokens: Optional[int] = None,
anthropic_version: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key == "max_tokens" and value is None:
value = self.max_tokens
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return [
"max_tokens",
"tools",
"tool_choice",
"stream",
"stop",
"temperature",
"top_p",
]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens"] = value
if param == "tools":
optional_params["tools"] = value
if param == "stream":
optional_params["stream"] = value
if param == "stop":
optional_params["stop_sequences"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
return optional_params
|
(max_tokens: Optional[int] = None, anthropic_version: Optional[str] = None) -> None
|
64,227 |
litellm.llms.vertex_ai_anthropic
|
__init__
| null |
def __init__(
self,
max_tokens: Optional[int] = None,
anthropic_version: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key == "max_tokens" and value is None:
value = self.max_tokens
if key != "self" and value is not None:
setattr(self.__class__, key, value)
|
(self, max_tokens: Optional[int] = None, anthropic_version: Optional[str] = None) -> NoneType
|
64,228 |
litellm.llms.vertex_ai_anthropic
|
get_supported_openai_params
| null |
def get_supported_openai_params(self):
return [
"max_tokens",
"tools",
"tool_choice",
"stream",
"stop",
"temperature",
"top_p",
]
|
(self)
|
64,230 |
litellm.llms.vertex_ai
|
VertexAIConfig
|
Reference: https://cloud.google.com/vertex-ai/docs/generative-ai/chat/test-chat-prompts
Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
The class `VertexAIConfig` provides configuration for the VertexAI's API interface. Below are the parameters:
- `temperature` (float): This controls the degree of randomness in token selection.
- `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256.
- `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95.
- `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40.
- `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'.
- `candidate_count` (int): Number of generated responses to return.
- `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response.
- `frequency_penalty` (float): This parameter is used to penalize the model from repeating the same output. The default value is 0.0.
- `presence_penalty` (float): This parameter is used to penalize the model from generating the same output as the input. The default value is 0.0.
Note: Please make sure to modify the default parameters as required for your use case.
|
class VertexAIConfig:
"""
Reference: https://cloud.google.com/vertex-ai/docs/generative-ai/chat/test-chat-prompts
Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
The class `VertexAIConfig` provides configuration for the VertexAI's API interface. Below are the parameters:
- `temperature` (float): This controls the degree of randomness in token selection.
- `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256.
- `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95.
- `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40.
- `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'.
- `candidate_count` (int): Number of generated responses to return.
- `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response.
- `frequency_penalty` (float): This parameter is used to penalize the model from repeating the same output. The default value is 0.0.
- `presence_penalty` (float): This parameter is used to penalize the model from generating the same output as the input. The default value is 0.0.
Note: Please make sure to modify the default parameters as required for your use case.
"""
temperature: Optional[float] = None
max_output_tokens: Optional[int] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
response_mime_type: Optional[str] = None
candidate_count: Optional[int] = None
stop_sequences: Optional[list] = None
frequency_penalty: Optional[float] = None
presence_penalty: Optional[float] = None
def __init__(
self,
temperature: Optional[float] = None,
max_output_tokens: Optional[int] = None,
top_p: Optional[float] = None,
top_k: Optional[int] = None,
response_mime_type: Optional[str] = None,
candidate_count: Optional[int] = None,
stop_sequences: Optional[list] = None,
frequency_penalty: Optional[float] = None,
presence_penalty: Optional[float] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return [
"temperature",
"top_p",
"max_tokens",
"stream",
"tools",
"tool_choice",
"response_format",
"n",
"stop",
]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if (
param == "stream" and value == True
): # sending stream = False, can cause it to get passed unchecked and raise issues
optional_params["stream"] = value
if param == "n":
optional_params["candidate_count"] = value
if param == "stop":
if isinstance(value, str):
optional_params["stop_sequences"] = [value]
elif isinstance(value, list):
optional_params["stop_sequences"] = value
if param == "max_tokens":
optional_params["max_output_tokens"] = value
if param == "response_format" and value["type"] == "json_object":
optional_params["response_mime_type"] = "application/json"
if param == "frequency_penalty":
optional_params["frequency_penalty"] = value
if param == "presence_penalty":
optional_params["presence_penalty"] = value
if param == "tools" and isinstance(value, list):
from vertexai.preview import generative_models
gtool_func_declarations = []
for tool in value:
gtool_func_declaration = generative_models.FunctionDeclaration(
name=tool["function"]["name"],
description=tool["function"].get("description", ""),
parameters=tool["function"].get("parameters", {}),
)
gtool_func_declarations.append(gtool_func_declaration)
optional_params["tools"] = [
generative_models.Tool(
function_declarations=gtool_func_declarations
)
]
if param == "tool_choice" and (
isinstance(value, str) or isinstance(value, dict)
):
pass
return optional_params
def get_mapped_special_auth_params(self) -> dict:
"""
Common auth params across bedrock/vertex_ai/azure/watsonx
"""
return {"project": "vertex_project", "region_name": "vertex_location"}
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
mapped_params = self.get_mapped_special_auth_params()
for param, value in non_default_params.items():
if param in mapped_params:
optional_params[mapped_params[param]] = value
return optional_params
def get_eu_regions(self) -> List[str]:
"""
Source: https://cloud.google.com/vertex-ai/generative-ai/docs/learn/locations#available-regions
"""
return [
"europe-central2",
"europe-north1",
"europe-southwest1",
"europe-west1",
"europe-west2",
"europe-west3",
"europe-west4",
"europe-west6",
"europe-west8",
"europe-west9",
]
|
(temperature: Optional[float] = None, max_output_tokens: Optional[int] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, response_mime_type: Optional[str] = None, candidate_count: Optional[int] = None, stop_sequences: Optional[list] = None, frequency_penalty: Optional[float] = None, presence_penalty: Optional[float] = None) -> None
|
64,231 |
litellm.llms.vertex_ai
|
__init__
| null |
def __init__(
self,
temperature: Optional[float] = None,
max_output_tokens: Optional[int] = None,
top_p: Optional[float] = None,
top_k: Optional[int] = None,
response_mime_type: Optional[str] = None,
candidate_count: Optional[int] = None,
stop_sequences: Optional[list] = None,
frequency_penalty: Optional[float] = None,
presence_penalty: Optional[float] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
|
(self, temperature: Optional[float] = None, max_output_tokens: Optional[int] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, response_mime_type: Optional[str] = None, candidate_count: Optional[int] = None, stop_sequences: Optional[list] = None, frequency_penalty: Optional[float] = None, presence_penalty: Optional[float] = None) -> NoneType
|
64,232 |
litellm.llms.vertex_ai
|
get_eu_regions
|
Source: https://cloud.google.com/vertex-ai/generative-ai/docs/learn/locations#available-regions
|
def get_eu_regions(self) -> List[str]:
"""
Source: https://cloud.google.com/vertex-ai/generative-ai/docs/learn/locations#available-regions
"""
return [
"europe-central2",
"europe-north1",
"europe-southwest1",
"europe-west1",
"europe-west2",
"europe-west3",
"europe-west4",
"europe-west6",
"europe-west8",
"europe-west9",
]
|
(self) -> List[str]
|
64,233 |
litellm.llms.vertex_ai
|
get_mapped_special_auth_params
|
Common auth params across bedrock/vertex_ai/azure/watsonx
|
def get_mapped_special_auth_params(self) -> dict:
"""
Common auth params across bedrock/vertex_ai/azure/watsonx
"""
return {"project": "vertex_project", "region_name": "vertex_location"}
|
(self) -> dict
|
64,234 |
litellm.llms.vertex_ai
|
get_supported_openai_params
| null |
def get_supported_openai_params(self):
return [
"temperature",
"top_p",
"max_tokens",
"stream",
"tools",
"tool_choice",
"response_format",
"n",
"stop",
]
|
(self)
|
64,235 |
litellm.llms.vertex_ai
|
map_openai_params
| null |
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if (
param == "stream" and value == True
): # sending stream = False, can cause it to get passed unchecked and raise issues
optional_params["stream"] = value
if param == "n":
optional_params["candidate_count"] = value
if param == "stop":
if isinstance(value, str):
optional_params["stop_sequences"] = [value]
elif isinstance(value, list):
optional_params["stop_sequences"] = value
if param == "max_tokens":
optional_params["max_output_tokens"] = value
if param == "response_format" and value["type"] == "json_object":
optional_params["response_mime_type"] = "application/json"
if param == "frequency_penalty":
optional_params["frequency_penalty"] = value
if param == "presence_penalty":
optional_params["presence_penalty"] = value
if param == "tools" and isinstance(value, list):
from vertexai.preview import generative_models
gtool_func_declarations = []
for tool in value:
gtool_func_declaration = generative_models.FunctionDeclaration(
name=tool["function"]["name"],
description=tool["function"].get("description", ""),
parameters=tool["function"].get("parameters", {}),
)
gtool_func_declarations.append(gtool_func_declaration)
optional_params["tools"] = [
generative_models.Tool(
function_declarations=gtool_func_declarations
)
]
if param == "tool_choice" and (
isinstance(value, str) or isinstance(value, dict)
):
pass
return optional_params
|
(self, non_default_params: dict, optional_params: dict)
|
64,237 |
litellm.utils
|
_calculate_retry_after
|
Reimplementation of openai's calculate retry after, since that one can't be imported.
https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L631
|
def _calculate_retry_after(
remaining_retries: int,
max_retries: int,
response_headers: Optional[httpx.Headers] = None,
min_timeout: int = 0,
):
"""
Reimplementation of openai's calculate retry after, since that one can't be imported.
https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L631
"""
try:
import email # openai import
# About the Retry-After header: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After
#
# <http-date>". See https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After#syntax for
# details.
if response_headers is not None:
retry_header = response_headers.get("retry-after")
try:
retry_after = int(retry_header)
except Exception:
retry_date_tuple = email.utils.parsedate_tz(retry_header) # type: ignore
if retry_date_tuple is None:
retry_after = -1
else:
retry_date = email.utils.mktime_tz(retry_date_tuple) # type: ignore
retry_after = int(retry_date - time.time())
else:
retry_after = -1
except Exception:
retry_after = -1
# If the API asks us to wait a certain amount of time (and it's a reasonable amount), just do what it says.
if 0 < retry_after <= 60:
return retry_after
initial_retry_delay = 0.5
max_retry_delay = 8.0
nb_retries = max_retries - remaining_retries
# Apply exponential backoff, but not more than the max.
sleep_seconds = min(initial_retry_delay * pow(2.0, nb_retries), max_retry_delay)
# Apply some jitter, plus-or-minus half a second.
jitter = 1 - 0.25 * random.random()
timeout = sleep_seconds * jitter
return timeout if timeout >= min_timeout else min_timeout
|
(remaining_retries: int, max_retries: int, response_headers: Optional[httpx.Headers] = None, min_timeout: int = 0)
|
64,240 |
litellm.utils
|
_should_retry
|
Reimplementation of openai's should retry logic, since that one can't be imported.
https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L639
|
def _should_retry(status_code: int):
"""
Reimplementation of openai's should retry logic, since that one can't be imported.
https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L639
"""
# If the server explicitly says whether or not to retry, obey.
# Retry on request timeouts.
if status_code == 408:
return True
# Retry on lock timeouts.
if status_code == 409:
return True
# Retry on rate limits.
if status_code == 429:
return True
# Retry internal errors.
if status_code >= 500:
return True
return False
|
(status_code: int)
|
64,241 |
litellm._logging
|
_turn_on_debug
| null |
def _turn_on_debug():
verbose_logger.setLevel(level=logging.DEBUG) # set package log to debug
verbose_router_logger.setLevel(level=logging.DEBUG) # set router logs to debug
verbose_proxy_logger.setLevel(level=logging.DEBUG) # set proxy logs to debug
|
()
|
64,242 |
litellm.main
|
acompletion
|
Asynchronously executes a litellm.completion() call for any of litellm supported llms (example gpt-4, gpt-3.5-turbo, claude-2, command-nightly)
Parameters:
model (str): The name of the language model to use for text completion. see all supported LLMs: https://docs.litellm.ai/docs/providers/
messages (List): A list of message objects representing the conversation context (default is an empty list).
OPTIONAL PARAMS
functions (List, optional): A list of functions to apply to the conversation messages (default is an empty list).
function_call (str, optional): The name of the function to call within the conversation (default is an empty string).
temperature (float, optional): The temperature parameter for controlling the randomness of the output (default is 1.0).
top_p (float, optional): The top-p parameter for nucleus sampling (default is 1.0).
n (int, optional): The number of completions to generate (default is 1).
stream (bool, optional): If True, return a streaming response (default is False).
stream_options (dict, optional): A dictionary containing options for the streaming response. Only use this if stream is True.
stop(string/list, optional): - Up to 4 sequences where the LLM API will stop generating further tokens.
max_tokens (integer, optional): The maximum number of tokens in the generated completion (default is infinity).
presence_penalty (float, optional): It is used to penalize new tokens based on their existence in the text so far.
frequency_penalty: It is used to penalize new tokens based on their frequency in the text so far.
logit_bias (dict, optional): Used to modify the probability of specific tokens appearing in the completion.
user (str, optional): A unique identifier representing your end-user. This can help the LLM provider to monitor and detect abuse.
metadata (dict, optional): Pass in additional metadata to tag your completion calls - eg. prompt version, details, etc.
api_base (str, optional): Base URL for the API (default is None).
api_version (str, optional): API version (default is None).
api_key (str, optional): API key (default is None).
model_list (list, optional): List of api base, version, keys
timeout (float, optional): The maximum execution time in seconds for the completion request.
LITELLM Specific Params
mock_response (str, optional): If provided, return a mock completion response for testing or debugging purposes (default is None).
custom_llm_provider (str, optional): Used for Non-OpenAI LLMs, Example usage for bedrock, set model="amazon.titan-tg1-large" and custom_llm_provider="bedrock"
Returns:
ModelResponse: A response object containing the generated completion and associated metadata.
Notes:
- This function is an asynchronous version of the `completion` function.
- The `completion` function is called using `run_in_executor` to execute synchronously in the event loop.
- If `stream` is True, the function returns an async generator that yields completion lines.
|
@client
async def atext_completion(*args, **kwargs):
"""
Implemented to handle async streaming for the text completion endpoint
"""
loop = asyncio.get_event_loop()
model = args[0] if len(args) > 0 else kwargs["model"]
### PASS ARGS TO COMPLETION ###
kwargs["acompletion"] = True
custom_llm_provider = None
try:
# Use a partial function to pass your keyword arguments
func = partial(text_completion, *args, **kwargs)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
_, custom_llm_provider, _, _ = get_llm_provider(
model=model, api_base=kwargs.get("api_base", None)
)
if (
custom_llm_provider == "openai"
or custom_llm_provider == "azure"
or custom_llm_provider == "azure_text"
or custom_llm_provider == "custom_openai"
or custom_llm_provider == "anyscale"
or custom_llm_provider == "mistral"
or custom_llm_provider == "openrouter"
or custom_llm_provider == "deepinfra"
or custom_llm_provider == "perplexity"
or custom_llm_provider == "groq"
or custom_llm_provider == "deepseek"
or custom_llm_provider == "fireworks_ai"
or custom_llm_provider == "text-completion-openai"
or custom_llm_provider == "huggingface"
or custom_llm_provider == "ollama"
or custom_llm_provider == "vertex_ai"
or custom_llm_provider in litellm.openai_compatible_providers
): # currently implemented aiohttp calls for just azure and openai, soon all.
# Await normally
response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(response):
response = await response
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context)
if kwargs.get("stream", False) == True: # return an async generator
return TextCompletionStreamWrapper(
completion_stream=_async_streaming(
response=response,
model=model,
custom_llm_provider=custom_llm_provider,
args=args,
),
model=model,
)
else:
transformed_logprobs = None
# only supported for TGI models
try:
raw_response = response._hidden_params.get("original_response", None)
transformed_logprobs = litellm.utils.transform_logprobs(raw_response)
except Exception as e:
print_verbose(f"LiteLLM non blocking exception: {e}")
## TRANSLATE CHAT TO TEXT FORMAT ##
if isinstance(response, TextCompletionResponse):
return response
elif asyncio.iscoroutine(response):
response = await response
text_completion_response = TextCompletionResponse()
text_completion_response["id"] = response.get("id", None)
text_completion_response["object"] = "text_completion"
text_completion_response["created"] = response.get("created", None)
text_completion_response["model"] = response.get("model", None)
text_choices = TextChoices()
text_choices["text"] = response["choices"][0]["message"]["content"]
text_choices["index"] = response["choices"][0]["index"]
text_choices["logprobs"] = transformed_logprobs
text_choices["finish_reason"] = response["choices"][0]["finish_reason"]
text_completion_response["choices"] = [text_choices]
text_completion_response["usage"] = response.get("usage", None)
return text_completion_response
except Exception as e:
custom_llm_provider = custom_llm_provider or "openai"
raise exception_type(
model=model,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=args,
extra_kwargs=kwargs,
)
|
(model: str, messages: List = [], functions: Optional[List] = None, function_call: Optional[str] = None, timeout: Union[float, int, NoneType] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, n: Optional[int] = None, stream: Optional[bool] = None, stream_options: Optional[dict] = None, stop=None, max_tokens: Optional[int] = None, presence_penalty: Optional[float] = None, frequency_penalty: Optional[float] = None, logit_bias: Optional[dict] = None, user: Optional[str] = None, response_format: Optional[dict] = None, seed: Optional[int] = None, tools: Optional[List] = None, tool_choice: Optional[str] = None, logprobs: Optional[bool] = None, top_logprobs: Optional[int] = None, deployment_id=None, base_url: Optional[str] = None, api_version: Optional[str] = None, api_key: Optional[str] = None, model_list: Optional[list] = None, extra_headers: Optional[dict] = None, **kwargs)
|
64,243 |
litellm.main
|
acompletion_with_retries
|
Executes a litellm.completion() with 3 retries
|
def completion_with_retries(*args, **kwargs):
"""
Executes a litellm.completion() with 3 retries
"""
try:
import tenacity
except Exception as e:
raise Exception(
f"tenacity import failed please run `pip install tenacity`. Error{e}"
)
num_retries = kwargs.pop("num_retries", 3)
retry_strategy = kwargs.pop("retry_strategy", "constant_retry")
original_function = kwargs.pop("original_function", completion)
if retry_strategy == "constant_retry":
retryer = tenacity.Retrying(
stop=tenacity.stop_after_attempt(num_retries), reraise=True
)
elif retry_strategy == "exponential_backoff_retry":
retryer = tenacity.Retrying(
wait=tenacity.wait_exponential(multiplier=1, max=10),
stop=tenacity.stop_after_attempt(num_retries),
reraise=True,
)
return retryer(original_function, *args, **kwargs)
|
(*args, **kwargs)
|
64,244 |
litellm.utils
|
acreate
| null |
def acreate(*args, **kwargs): ## Thin client to handle the acreate langchain call
return litellm.acompletion(*args, **kwargs)
|
(*args, **kwargs)
|
64,245 |
litellm.assistants.main
|
add_message
| null |
def add_message(
custom_llm_provider: Literal["openai"],
thread_id: str,
role: Literal["user", "assistant"],
content: str,
attachments: Optional[List[Attachment]] = None,
metadata: Optional[dict] = None,
client: Optional[OpenAI] = None,
**kwargs,
) -> OpenAIMessage:
### COMMON OBJECTS ###
message_data = MessageData(
role=role, content=content, attachments=attachments, metadata=metadata
)
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
response: Optional[OpenAIMessage] = None
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_assistants_api.add_message(
thread_id=thread_id,
message_data=message_data,
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
client=client,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'create_thread'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
|
(custom_llm_provider: Literal['openai'], thread_id: str, role: Literal['user', 'assistant'], content: str, attachments: Optional[List[litellm.types.llms.openai.Attachment]] = None, metadata: Optional[dict] = None, client: Optional[openai.OpenAI] = None, **kwargs) -> openai.types.beta.threads.message.Message
|
64,246 |
litellm.main
|
aembedding
|
Asynchronously calls the `embedding` function with the given arguments and keyword arguments.
Parameters:
- `args` (tuple): Positional arguments to be passed to the `embedding` function.
- `kwargs` (dict): Keyword arguments to be passed to the `embedding` function.
Returns:
- `response` (Any): The response returned by the `embedding` function.
|
@client
async def atext_completion(*args, **kwargs):
"""
Implemented to handle async streaming for the text completion endpoint
"""
loop = asyncio.get_event_loop()
model = args[0] if len(args) > 0 else kwargs["model"]
### PASS ARGS TO COMPLETION ###
kwargs["acompletion"] = True
custom_llm_provider = None
try:
# Use a partial function to pass your keyword arguments
func = partial(text_completion, *args, **kwargs)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
_, custom_llm_provider, _, _ = get_llm_provider(
model=model, api_base=kwargs.get("api_base", None)
)
if (
custom_llm_provider == "openai"
or custom_llm_provider == "azure"
or custom_llm_provider == "azure_text"
or custom_llm_provider == "custom_openai"
or custom_llm_provider == "anyscale"
or custom_llm_provider == "mistral"
or custom_llm_provider == "openrouter"
or custom_llm_provider == "deepinfra"
or custom_llm_provider == "perplexity"
or custom_llm_provider == "groq"
or custom_llm_provider == "deepseek"
or custom_llm_provider == "fireworks_ai"
or custom_llm_provider == "text-completion-openai"
or custom_llm_provider == "huggingface"
or custom_llm_provider == "ollama"
or custom_llm_provider == "vertex_ai"
or custom_llm_provider in litellm.openai_compatible_providers
): # currently implemented aiohttp calls for just azure and openai, soon all.
# Await normally
response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(response):
response = await response
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context)
if kwargs.get("stream", False) == True: # return an async generator
return TextCompletionStreamWrapper(
completion_stream=_async_streaming(
response=response,
model=model,
custom_llm_provider=custom_llm_provider,
args=args,
),
model=model,
)
else:
transformed_logprobs = None
# only supported for TGI models
try:
raw_response = response._hidden_params.get("original_response", None)
transformed_logprobs = litellm.utils.transform_logprobs(raw_response)
except Exception as e:
print_verbose(f"LiteLLM non blocking exception: {e}")
## TRANSLATE CHAT TO TEXT FORMAT ##
if isinstance(response, TextCompletionResponse):
return response
elif asyncio.iscoroutine(response):
response = await response
text_completion_response = TextCompletionResponse()
text_completion_response["id"] = response.get("id", None)
text_completion_response["object"] = "text_completion"
text_completion_response["created"] = response.get("created", None)
text_completion_response["model"] = response.get("model", None)
text_choices = TextChoices()
text_choices["text"] = response["choices"][0]["message"]["content"]
text_choices["index"] = response["choices"][0]["index"]
text_choices["logprobs"] = transformed_logprobs
text_choices["finish_reason"] = response["choices"][0]["finish_reason"]
text_completion_response["choices"] = [text_choices]
text_completion_response["usage"] = response.get("usage", None)
return text_completion_response
except Exception as e:
custom_llm_provider = custom_llm_provider or "openai"
raise exception_type(
model=model,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=args,
extra_kwargs=kwargs,
)
|
(*args, **kwargs)
|
64,247 |
litellm.main
|
ahealth_check
|
Support health checks for different providers. Return remaining rate limit, etc.
For azure/openai -> completion.with_raw_response
For rest -> litellm.acompletion()
|
def transcription(
model: str,
file: BinaryIO,
## OPTIONAL OPENAI PARAMS ##
language: Optional[str] = None,
prompt: Optional[str] = None,
response_format: Optional[
Literal["json", "text", "srt", "verbose_json", "vtt"]
] = None,
temperature: Optional[int] = None, # openai defaults this to 0
## LITELLM PARAMS ##
user: Optional[str] = None,
timeout=600, # default to 10 minutes
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
max_retries: Optional[int] = None,
litellm_logging_obj=None,
custom_llm_provider=None,
**kwargs,
):
"""
Calls openai + azure whisper endpoints.
Allows router to load balance between them
"""
atranscription = kwargs.get("atranscription", False)
litellm_call_id = kwargs.get("litellm_call_id", None)
logger_fn = kwargs.get("logger_fn", None)
proxy_server_request = kwargs.get("proxy_server_request", None)
model_info = kwargs.get("model_info", None)
metadata = kwargs.get("metadata", {})
if max_retries is None:
max_retries = openai.DEFAULT_MAX_RETRIES
model_response = litellm.utils.TranscriptionResponse()
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider, api_base=api_base) # type: ignore
optional_params = {
"language": language,
"prompt": prompt,
"response_format": response_format,
"temperature": None, # openai defaults this to 0
}
if custom_llm_provider == "azure":
# azure configs
api_base = api_base or litellm.api_base or get_secret("AZURE_API_BASE")
api_version = (
api_version or litellm.api_version or get_secret("AZURE_API_VERSION")
)
azure_ad_token = kwargs.pop("azure_ad_token", None) or get_secret(
"AZURE_AD_TOKEN"
)
api_key = (
api_key
or litellm.api_key
or litellm.azure_key
or get_secret("AZURE_API_KEY")
)
response = azure_chat_completions.audio_transcriptions(
model=model,
audio_file=file,
optional_params=optional_params,
model_response=model_response,
atranscription=atranscription,
timeout=timeout,
logging_obj=litellm_logging_obj,
api_base=api_base,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
max_retries=max_retries,
)
elif custom_llm_provider == "openai":
response = openai_chat_completions.audio_transcriptions(
model=model,
audio_file=file,
optional_params=optional_params,
model_response=model_response,
atranscription=atranscription,
timeout=timeout,
logging_obj=litellm_logging_obj,
max_retries=max_retries,
)
return response
|
(model_params: dict, mode: Optional[Literal['completion', 'embedding', 'image_generation', 'chat']] = None, prompt: Optional[str] = None, input: Optional[List] = None, default_timeout: float = 6000)
|
64,249 |
litellm.main
|
aimage_generation
|
Asynchronously calls the `image_generation` function with the given arguments and keyword arguments.
Parameters:
- `args` (tuple): Positional arguments to be passed to the `image_generation` function.
- `kwargs` (dict): Keyword arguments to be passed to the `image_generation` function.
Returns:
- `response` (Any): The response returned by the `image_generation` function.
|
@client
async def atext_completion(*args, **kwargs):
"""
Implemented to handle async streaming for the text completion endpoint
"""
loop = asyncio.get_event_loop()
model = args[0] if len(args) > 0 else kwargs["model"]
### PASS ARGS TO COMPLETION ###
kwargs["acompletion"] = True
custom_llm_provider = None
try:
# Use a partial function to pass your keyword arguments
func = partial(text_completion, *args, **kwargs)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
_, custom_llm_provider, _, _ = get_llm_provider(
model=model, api_base=kwargs.get("api_base", None)
)
if (
custom_llm_provider == "openai"
or custom_llm_provider == "azure"
or custom_llm_provider == "azure_text"
or custom_llm_provider == "custom_openai"
or custom_llm_provider == "anyscale"
or custom_llm_provider == "mistral"
or custom_llm_provider == "openrouter"
or custom_llm_provider == "deepinfra"
or custom_llm_provider == "perplexity"
or custom_llm_provider == "groq"
or custom_llm_provider == "deepseek"
or custom_llm_provider == "fireworks_ai"
or custom_llm_provider == "text-completion-openai"
or custom_llm_provider == "huggingface"
or custom_llm_provider == "ollama"
or custom_llm_provider == "vertex_ai"
or custom_llm_provider in litellm.openai_compatible_providers
): # currently implemented aiohttp calls for just azure and openai, soon all.
# Await normally
response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(response):
response = await response
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context)
if kwargs.get("stream", False) == True: # return an async generator
return TextCompletionStreamWrapper(
completion_stream=_async_streaming(
response=response,
model=model,
custom_llm_provider=custom_llm_provider,
args=args,
),
model=model,
)
else:
transformed_logprobs = None
# only supported for TGI models
try:
raw_response = response._hidden_params.get("original_response", None)
transformed_logprobs = litellm.utils.transform_logprobs(raw_response)
except Exception as e:
print_verbose(f"LiteLLM non blocking exception: {e}")
## TRANSLATE CHAT TO TEXT FORMAT ##
if isinstance(response, TextCompletionResponse):
return response
elif asyncio.iscoroutine(response):
response = await response
text_completion_response = TextCompletionResponse()
text_completion_response["id"] = response.get("id", None)
text_completion_response["object"] = "text_completion"
text_completion_response["created"] = response.get("created", None)
text_completion_response["model"] = response.get("model", None)
text_choices = TextChoices()
text_choices["text"] = response["choices"][0]["message"]["content"]
text_choices["index"] = response["choices"][0]["index"]
text_choices["logprobs"] = transformed_logprobs
text_choices["finish_reason"] = response["choices"][0]["finish_reason"]
text_completion_response["choices"] = [text_choices]
text_completion_response["usage"] = response.get("usage", None)
return text_completion_response
except Exception as e:
custom_llm_provider = custom_llm_provider or "openai"
raise exception_type(
model=model,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=args,
extra_kwargs=kwargs,
)
|
(*args, **kwargs)
|
64,252 |
litellm.main
|
amoderation
| null |
@client
async def atext_completion(*args, **kwargs):
"""
Implemented to handle async streaming for the text completion endpoint
"""
loop = asyncio.get_event_loop()
model = args[0] if len(args) > 0 else kwargs["model"]
### PASS ARGS TO COMPLETION ###
kwargs["acompletion"] = True
custom_llm_provider = None
try:
# Use a partial function to pass your keyword arguments
func = partial(text_completion, *args, **kwargs)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
_, custom_llm_provider, _, _ = get_llm_provider(
model=model, api_base=kwargs.get("api_base", None)
)
if (
custom_llm_provider == "openai"
or custom_llm_provider == "azure"
or custom_llm_provider == "azure_text"
or custom_llm_provider == "custom_openai"
or custom_llm_provider == "anyscale"
or custom_llm_provider == "mistral"
or custom_llm_provider == "openrouter"
or custom_llm_provider == "deepinfra"
or custom_llm_provider == "perplexity"
or custom_llm_provider == "groq"
or custom_llm_provider == "deepseek"
or custom_llm_provider == "fireworks_ai"
or custom_llm_provider == "text-completion-openai"
or custom_llm_provider == "huggingface"
or custom_llm_provider == "ollama"
or custom_llm_provider == "vertex_ai"
or custom_llm_provider in litellm.openai_compatible_providers
): # currently implemented aiohttp calls for just azure and openai, soon all.
# Await normally
response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(response):
response = await response
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context)
if kwargs.get("stream", False) == True: # return an async generator
return TextCompletionStreamWrapper(
completion_stream=_async_streaming(
response=response,
model=model,
custom_llm_provider=custom_llm_provider,
args=args,
),
model=model,
)
else:
transformed_logprobs = None
# only supported for TGI models
try:
raw_response = response._hidden_params.get("original_response", None)
transformed_logprobs = litellm.utils.transform_logprobs(raw_response)
except Exception as e:
print_verbose(f"LiteLLM non blocking exception: {e}")
## TRANSLATE CHAT TO TEXT FORMAT ##
if isinstance(response, TextCompletionResponse):
return response
elif asyncio.iscoroutine(response):
response = await response
text_completion_response = TextCompletionResponse()
text_completion_response["id"] = response.get("id", None)
text_completion_response["object"] = "text_completion"
text_completion_response["created"] = response.get("created", None)
text_completion_response["model"] = response.get("model", None)
text_choices = TextChoices()
text_choices["text"] = response["choices"][0]["message"]["content"]
text_choices["index"] = response["choices"][0]["index"]
text_choices["logprobs"] = transformed_logprobs
text_choices["finish_reason"] = response["choices"][0]["finish_reason"]
text_completion_response["choices"] = [text_choices]
text_completion_response["usage"] = response.get("usage", None)
return text_completion_response
except Exception as e:
custom_llm_provider = custom_llm_provider or "openai"
raise exception_type(
model=model,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=args,
extra_kwargs=kwargs,
)
|
(input: str, model: str, api_key: Optional[str] = None, **kwargs)
|
64,255 |
litellm.utils
|
async_mock_completion_streaming_obj
| null |
def mock_completion_streaming_obj(model_response, mock_response, model):
for i in range(0, len(mock_response), 3):
completion_obj = {"role": "assistant", "content": mock_response[i : i + 3]}
model_response.choices[0].delta = completion_obj
yield model_response
|
(model_response, mock_response, model)
|
64,257 |
litellm.main
|
atext_completion
|
Implemented to handle async streaming for the text completion endpoint
|
@client
async def atext_completion(*args, **kwargs):
"""
Implemented to handle async streaming for the text completion endpoint
"""
loop = asyncio.get_event_loop()
model = args[0] if len(args) > 0 else kwargs["model"]
### PASS ARGS TO COMPLETION ###
kwargs["acompletion"] = True
custom_llm_provider = None
try:
# Use a partial function to pass your keyword arguments
func = partial(text_completion, *args, **kwargs)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
_, custom_llm_provider, _, _ = get_llm_provider(
model=model, api_base=kwargs.get("api_base", None)
)
if (
custom_llm_provider == "openai"
or custom_llm_provider == "azure"
or custom_llm_provider == "azure_text"
or custom_llm_provider == "custom_openai"
or custom_llm_provider == "anyscale"
or custom_llm_provider == "mistral"
or custom_llm_provider == "openrouter"
or custom_llm_provider == "deepinfra"
or custom_llm_provider == "perplexity"
or custom_llm_provider == "groq"
or custom_llm_provider == "deepseek"
or custom_llm_provider == "fireworks_ai"
or custom_llm_provider == "text-completion-openai"
or custom_llm_provider == "huggingface"
or custom_llm_provider == "ollama"
or custom_llm_provider == "vertex_ai"
or custom_llm_provider in litellm.openai_compatible_providers
): # currently implemented aiohttp calls for just azure and openai, soon all.
# Await normally
response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(response):
response = await response
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context)
if kwargs.get("stream", False) == True: # return an async generator
return TextCompletionStreamWrapper(
completion_stream=_async_streaming(
response=response,
model=model,
custom_llm_provider=custom_llm_provider,
args=args,
),
model=model,
)
else:
transformed_logprobs = None
# only supported for TGI models
try:
raw_response = response._hidden_params.get("original_response", None)
transformed_logprobs = litellm.utils.transform_logprobs(raw_response)
except Exception as e:
print_verbose(f"LiteLLM non blocking exception: {e}")
## TRANSLATE CHAT TO TEXT FORMAT ##
if isinstance(response, TextCompletionResponse):
return response
elif asyncio.iscoroutine(response):
response = await response
text_completion_response = TextCompletionResponse()
text_completion_response["id"] = response.get("id", None)
text_completion_response["object"] = "text_completion"
text_completion_response["created"] = response.get("created", None)
text_completion_response["model"] = response.get("model", None)
text_choices = TextChoices()
text_choices["text"] = response["choices"][0]["message"]["content"]
text_choices["index"] = response["choices"][0]["index"]
text_choices["logprobs"] = transformed_logprobs
text_choices["finish_reason"] = response["choices"][0]["finish_reason"]
text_completion_response["choices"] = [text_choices]
text_completion_response["usage"] = response.get("usage", None)
return text_completion_response
except Exception as e:
custom_llm_provider = custom_llm_provider or "openai"
raise exception_type(
model=model,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=args,
extra_kwargs=kwargs,
)
|
(*args, **kwargs)
|
64,259 |
litellm.main
|
atranscription
|
Calls openai + azure whisper endpoints.
Allows router to load balance between them
|
@client
async def atext_completion(*args, **kwargs):
"""
Implemented to handle async streaming for the text completion endpoint
"""
loop = asyncio.get_event_loop()
model = args[0] if len(args) > 0 else kwargs["model"]
### PASS ARGS TO COMPLETION ###
kwargs["acompletion"] = True
custom_llm_provider = None
try:
# Use a partial function to pass your keyword arguments
func = partial(text_completion, *args, **kwargs)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
_, custom_llm_provider, _, _ = get_llm_provider(
model=model, api_base=kwargs.get("api_base", None)
)
if (
custom_llm_provider == "openai"
or custom_llm_provider == "azure"
or custom_llm_provider == "azure_text"
or custom_llm_provider == "custom_openai"
or custom_llm_provider == "anyscale"
or custom_llm_provider == "mistral"
or custom_llm_provider == "openrouter"
or custom_llm_provider == "deepinfra"
or custom_llm_provider == "perplexity"
or custom_llm_provider == "groq"
or custom_llm_provider == "deepseek"
or custom_llm_provider == "fireworks_ai"
or custom_llm_provider == "text-completion-openai"
or custom_llm_provider == "huggingface"
or custom_llm_provider == "ollama"
or custom_llm_provider == "vertex_ai"
or custom_llm_provider in litellm.openai_compatible_providers
): # currently implemented aiohttp calls for just azure and openai, soon all.
# Await normally
response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(response):
response = await response
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context)
if kwargs.get("stream", False) == True: # return an async generator
return TextCompletionStreamWrapper(
completion_stream=_async_streaming(
response=response,
model=model,
custom_llm_provider=custom_llm_provider,
args=args,
),
model=model,
)
else:
transformed_logprobs = None
# only supported for TGI models
try:
raw_response = response._hidden_params.get("original_response", None)
transformed_logprobs = litellm.utils.transform_logprobs(raw_response)
except Exception as e:
print_verbose(f"LiteLLM non blocking exception: {e}")
## TRANSLATE CHAT TO TEXT FORMAT ##
if isinstance(response, TextCompletionResponse):
return response
elif asyncio.iscoroutine(response):
response = await response
text_completion_response = TextCompletionResponse()
text_completion_response["id"] = response.get("id", None)
text_completion_response["object"] = "text_completion"
text_completion_response["created"] = response.get("created", None)
text_completion_response["model"] = response.get("model", None)
text_choices = TextChoices()
text_choices["text"] = response["choices"][0]["message"]["content"]
text_choices["index"] = response["choices"][0]["index"]
text_choices["logprobs"] = transformed_logprobs
text_choices["finish_reason"] = response["choices"][0]["finish_reason"]
text_completion_response["choices"] = [text_choices]
text_completion_response["usage"] = response.get("usage", None)
return text_completion_response
except Exception as e:
custom_llm_provider = custom_llm_provider or "openai"
raise exception_type(
model=model,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=args,
extra_kwargs=kwargs,
)
|
(*args, **kwargs)
|
64,261 |
litellm.main
|
batch_completion
|
Batch litellm.completion function for a given model.
Args:
model (str): The model to use for generating completions.
messages (List, optional): List of messages to use as input for generating completions. Defaults to [].
functions (List, optional): List of functions to use as input for generating completions. Defaults to [].
function_call (str, optional): The function call to use as input for generating completions. Defaults to "".
temperature (float, optional): The temperature parameter for generating completions. Defaults to None.
top_p (float, optional): The top-p parameter for generating completions. Defaults to None.
n (int, optional): The number of completions to generate. Defaults to None.
stream (bool, optional): Whether to stream completions or not. Defaults to None.
stop (optional): The stop parameter for generating completions. Defaults to None.
max_tokens (float, optional): The maximum number of tokens to generate. Defaults to None.
presence_penalty (float, optional): The presence penalty for generating completions. Defaults to None.
frequency_penalty (float, optional): The frequency penalty for generating completions. Defaults to None.
logit_bias (dict, optional): The logit bias for generating completions. Defaults to {}.
user (str, optional): The user string for generating completions. Defaults to "".
deployment_id (optional): The deployment ID for generating completions. Defaults to None.
request_timeout (int, optional): The request timeout for generating completions. Defaults to None.
Returns:
list: A list of completion results.
|
def batch_completion(
model: str,
# Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create
messages: List = [],
functions: Optional[List] = None,
function_call: Optional[str] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
n: Optional[int] = None,
stream: Optional[bool] = None,
stop=None,
max_tokens: Optional[int] = None,
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[dict] = None,
user: Optional[str] = None,
deployment_id=None,
request_timeout: Optional[int] = None,
timeout: Optional[int] = 600,
# Optional liteLLM function params
**kwargs,
):
"""
Batch litellm.completion function for a given model.
Args:
model (str): The model to use for generating completions.
messages (List, optional): List of messages to use as input for generating completions. Defaults to [].
functions (List, optional): List of functions to use as input for generating completions. Defaults to [].
function_call (str, optional): The function call to use as input for generating completions. Defaults to "".
temperature (float, optional): The temperature parameter for generating completions. Defaults to None.
top_p (float, optional): The top-p parameter for generating completions. Defaults to None.
n (int, optional): The number of completions to generate. Defaults to None.
stream (bool, optional): Whether to stream completions or not. Defaults to None.
stop (optional): The stop parameter for generating completions. Defaults to None.
max_tokens (float, optional): The maximum number of tokens to generate. Defaults to None.
presence_penalty (float, optional): The presence penalty for generating completions. Defaults to None.
frequency_penalty (float, optional): The frequency penalty for generating completions. Defaults to None.
logit_bias (dict, optional): The logit bias for generating completions. Defaults to {}.
user (str, optional): The user string for generating completions. Defaults to "".
deployment_id (optional): The deployment ID for generating completions. Defaults to None.
request_timeout (int, optional): The request timeout for generating completions. Defaults to None.
Returns:
list: A list of completion results.
"""
args = locals()
batch_messages = messages
completions = []
model = model
custom_llm_provider = None
if model.split("/", 1)[0] in litellm.provider_list:
custom_llm_provider = model.split("/", 1)[0]
model = model.split("/", 1)[1]
if custom_llm_provider == "vllm":
optional_params = get_optional_params(
functions=functions,
function_call=function_call,
temperature=temperature,
top_p=top_p,
n=n,
stream=stream,
stop=stop,
max_tokens=max_tokens,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
user=user,
# params to identify the model
model=model,
custom_llm_provider=custom_llm_provider,
)
results = vllm.batch_completions(
model=model,
messages=batch_messages,
custom_prompt_dict=litellm.custom_prompt_dict,
optional_params=optional_params,
)
# all non VLLM models for batch completion models
else:
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i : i + n]
with ThreadPoolExecutor(max_workers=100) as executor:
for sub_batch in chunks(batch_messages, 100):
for message_list in sub_batch:
kwargs_modified = args.copy()
kwargs_modified["messages"] = message_list
original_kwargs = {}
if "kwargs" in kwargs_modified:
original_kwargs = kwargs_modified.pop("kwargs")
future = executor.submit(
completion, **kwargs_modified, **original_kwargs
)
completions.append(future)
# Retrieve the results from the futures
results = [future.result() for future in completions]
return results
|
(model: str, messages: List = [], functions: Optional[List] = None, function_call: Optional[str] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, n: Optional[int] = None, stream: Optional[bool] = None, stop=None, max_tokens: Optional[int] = None, presence_penalty: Optional[float] = None, frequency_penalty: Optional[float] = None, logit_bias: Optional[dict] = None, user: Optional[str] = None, deployment_id=None, request_timeout: Optional[int] = None, timeout: Optional[int] = 600, **kwargs)
|
64,262 |
litellm.main
|
batch_completion_models
|
Send a request to multiple language models concurrently and return the response
as soon as one of the models responds.
Args:
*args: Variable-length positional arguments passed to the completion function.
**kwargs: Additional keyword arguments:
- models (str or list of str): The language models to send requests to.
- Other keyword arguments to be passed to the completion function.
Returns:
str or None: The response from one of the language models, or None if no response is received.
Note:
This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models.
It sends requests concurrently and returns the response from the first model that responds.
|
def batch_completion_models(*args, **kwargs):
"""
Send a request to multiple language models concurrently and return the response
as soon as one of the models responds.
Args:
*args: Variable-length positional arguments passed to the completion function.
**kwargs: Additional keyword arguments:
- models (str or list of str): The language models to send requests to.
- Other keyword arguments to be passed to the completion function.
Returns:
str or None: The response from one of the language models, or None if no response is received.
Note:
This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models.
It sends requests concurrently and returns the response from the first model that responds.
"""
import concurrent
if "model" in kwargs:
kwargs.pop("model")
if "models" in kwargs:
models = kwargs["models"]
kwargs.pop("models")
futures = {}
with concurrent.futures.ThreadPoolExecutor(max_workers=len(models)) as executor:
for model in models:
futures[model] = executor.submit(
completion, *args, model=model, **kwargs
)
for model, future in sorted(
futures.items(), key=lambda x: models.index(x[0])
):
if future.result() is not None:
return future.result()
elif "deployments" in kwargs:
deployments = kwargs["deployments"]
kwargs.pop("deployments")
kwargs.pop("model_list")
nested_kwargs = kwargs.pop("kwargs", {})
futures = {}
with concurrent.futures.ThreadPoolExecutor(
max_workers=len(deployments)
) as executor:
for deployment in deployments:
for key in kwargs.keys():
if (
key not in deployment
): # don't override deployment values e.g. model name, api base, etc.
deployment[key] = kwargs[key]
kwargs = {**deployment, **nested_kwargs}
futures[deployment["model"]] = executor.submit(completion, **kwargs)
while futures:
# wait for the first returned future
print_verbose("\n\n waiting for next result\n\n")
done, _ = concurrent.futures.wait(
futures.values(), return_when=concurrent.futures.FIRST_COMPLETED
)
print_verbose(f"done list\n{done}")
for future in done:
try:
result = future.result()
return result
except Exception as e:
# if model 1 fails, continue with response from model 2, model3
print_verbose(
f"\n\ngot an exception, ignoring, removing from futures"
)
print_verbose(futures)
new_futures = {}
for key, value in futures.items():
if future == value:
print_verbose(f"removing key{key}")
continue
else:
new_futures[key] = value
futures = new_futures
print_verbose(f"new futures{futures}")
continue
print_verbose("\n\ndone looping through futures\n\n")
print_verbose(futures)
return None # If no response is received from any model
|
(*args, **kwargs)
|
64,263 |
litellm.main
|
batch_completion_models_all_responses
|
Send a request to multiple language models concurrently and return a list of responses
from all models that respond.
Args:
*args: Variable-length positional arguments passed to the completion function.
**kwargs: Additional keyword arguments:
- models (str or list of str): The language models to send requests to.
- Other keyword arguments to be passed to the completion function.
Returns:
list: A list of responses from the language models that responded.
Note:
This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models.
It sends requests concurrently and collects responses from all models that respond.
|
def batch_completion_models_all_responses(*args, **kwargs):
"""
Send a request to multiple language models concurrently and return a list of responses
from all models that respond.
Args:
*args: Variable-length positional arguments passed to the completion function.
**kwargs: Additional keyword arguments:
- models (str or list of str): The language models to send requests to.
- Other keyword arguments to be passed to the completion function.
Returns:
list: A list of responses from the language models that responded.
Note:
This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models.
It sends requests concurrently and collects responses from all models that respond.
"""
import concurrent.futures
# ANSI escape codes for colored output
GREEN = "\033[92m"
RED = "\033[91m"
RESET = "\033[0m"
if "model" in kwargs:
kwargs.pop("model")
if "models" in kwargs:
models = kwargs["models"]
kwargs.pop("models")
responses = []
with concurrent.futures.ThreadPoolExecutor(max_workers=len(models)) as executor:
for idx, model in enumerate(models):
future = executor.submit(completion, *args, model=model, **kwargs)
if future.result() is not None:
responses.append(future.result())
return responses
|
(*args, **kwargs)
|
64,267 |
litellm.utils
|
check_valid_key
|
Checks if a given API key is valid for a specific model by making a litellm.completion call with max_tokens=10
Args:
model (str): The name of the model to check the API key against.
api_key (str): The API key to be checked.
Returns:
bool: True if the API key is valid for the model, False otherwise.
|
def check_valid_key(model: str, api_key: str):
"""
Checks if a given API key is valid for a specific model by making a litellm.completion call with max_tokens=10
Args:
model (str): The name of the model to check the API key against.
api_key (str): The API key to be checked.
Returns:
bool: True if the API key is valid for the model, False otherwise.
"""
messages = [{"role": "user", "content": "Hey, how's it going?"}]
try:
litellm.completion(
model=model, messages=messages, api_key=api_key, max_tokens=10
)
return True
except AuthenticationError as e:
return False
except Exception as e:
return False
|
(model: str, api_key: str)
|
64,270 |
litellm.utils
|
client
| null |
def client(original_function):
global liteDebuggerClient, get_all_keys
rules_obj = Rules()
def check_coroutine(value) -> bool:
if inspect.iscoroutine(value):
return True
elif inspect.iscoroutinefunction(value):
return True
else:
return False
def post_call_processing(original_response, model):
try:
if original_response is None:
pass
else:
call_type = original_function.__name__
if (
call_type == CallTypes.completion.value
or call_type == CallTypes.acompletion.value
):
is_coroutine = check_coroutine(original_function)
if is_coroutine == True:
pass
else:
if isinstance(original_response, ModelResponse):
model_response = original_response["choices"][0]["message"][
"content"
]
### POST-CALL RULES ###
rules_obj.post_call_rules(input=model_response, model=model)
except Exception as e:
raise e
@wraps(original_function)
def wrapper(*args, **kwargs):
# DO NOT MOVE THIS. It always needs to run first
# Check if this is an async function. If so only execute the async function
if (
kwargs.get("acompletion", False) == True
or kwargs.get("aembedding", False) == True
or kwargs.get("aimg_generation", False) == True
or kwargs.get("amoderation", False) == True
or kwargs.get("atext_completion", False) == True
or kwargs.get("atranscription", False) == True
):
# [OPTIONAL] CHECK MAX RETRIES / REQUEST
if litellm.num_retries_per_request is not None:
# check if previous_models passed in as ['litellm_params']['metadata]['previous_models']
previous_models = kwargs.get("metadata", {}).get(
"previous_models", None
)
if previous_models is not None:
if litellm.num_retries_per_request <= len(previous_models):
raise Exception(f"Max retries per request hit!")
# MODEL CALL
result = original_function(*args, **kwargs)
if "stream" in kwargs and kwargs["stream"] == True:
if (
"complete_response" in kwargs
and kwargs["complete_response"] == True
):
chunks = []
for idx, chunk in enumerate(result):
chunks.append(chunk)
return litellm.stream_chunk_builder(
chunks, messages=kwargs.get("messages", None)
)
else:
return result
return result
# Prints Exactly what was passed to litellm function - don't execute any logic here - it should just print
print_args_passed_to_litellm(original_function, args, kwargs)
start_time = datetime.datetime.now()
result = None
logging_obj = kwargs.get("litellm_logging_obj", None)
# only set litellm_call_id if its not in kwargs
call_type = original_function.__name__
if "litellm_call_id" not in kwargs:
kwargs["litellm_call_id"] = str(uuid.uuid4())
try:
model = args[0] if len(args) > 0 else kwargs["model"]
except:
model = None
if (
call_type != CallTypes.image_generation.value
and call_type != CallTypes.text_completion.value
):
raise ValueError("model param not passed in.")
try:
if logging_obj is None:
logging_obj, kwargs = function_setup(
original_function.__name__, rules_obj, start_time, *args, **kwargs
)
kwargs["litellm_logging_obj"] = logging_obj
# CHECK FOR 'os.environ/' in kwargs
for k, v in kwargs.items():
if v is not None and isinstance(v, str) and v.startswith("os.environ/"):
kwargs[k] = litellm.get_secret(v)
# [OPTIONAL] CHECK BUDGET
if litellm.max_budget:
if litellm._current_cost > litellm.max_budget:
raise BudgetExceededError(
current_cost=litellm._current_cost,
max_budget=litellm.max_budget,
)
# [OPTIONAL] CHECK MAX RETRIES / REQUEST
if litellm.num_retries_per_request is not None:
# check if previous_models passed in as ['litellm_params']['metadata]['previous_models']
previous_models = kwargs.get("metadata", {}).get(
"previous_models", None
)
if previous_models is not None:
if litellm.num_retries_per_request <= len(previous_models):
raise Exception(f"Max retries per request hit!")
# [OPTIONAL] CHECK CACHE
print_verbose(
f"SYNC kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}; kwargs.get('cache')['no-cache']: {kwargs.get('cache', {}).get('no-cache', False)}"
)
# if caching is false or cache["no-cache"]==True, don't run this
if (
(
(
(
kwargs.get("caching", None) is None
and litellm.cache is not None
)
or kwargs.get("caching", False) == True
)
and kwargs.get("cache", {}).get("no-cache", False) != True
)
and kwargs.get("aembedding", False) != True
and kwargs.get("atext_completion", False) != True
and kwargs.get("acompletion", False) != True
and kwargs.get("aimg_generation", False) != True
and kwargs.get("atranscription", False) != True
): # allow users to control returning cached responses from the completion function
# checking cache
print_verbose(f"INSIDE CHECKING CACHE")
if (
litellm.cache is not None
and str(original_function.__name__)
in litellm.cache.supported_call_types
):
print_verbose(f"Checking Cache")
preset_cache_key = litellm.cache.get_cache_key(*args, **kwargs)
kwargs["preset_cache_key"] = (
preset_cache_key # for streaming calls, we need to pass the preset_cache_key
)
cached_result = litellm.cache.get_cache(*args, **kwargs)
if cached_result != None:
if "detail" in cached_result:
# implies an error occurred
pass
else:
call_type = original_function.__name__
print_verbose(
f"Cache Response Object routing: call_type - {call_type}; cached_result instace: {type(cached_result)}"
)
if call_type == CallTypes.completion.value and isinstance(
cached_result, dict
):
cached_result = convert_to_model_response_object(
response_object=cached_result,
model_response_object=ModelResponse(),
stream=kwargs.get("stream", False),
)
if kwargs.get("stream", False) == True:
cached_result = CustomStreamWrapper(
completion_stream=cached_result,
model=model,
custom_llm_provider="cached_response",
logging_obj=logging_obj,
)
elif call_type == CallTypes.embedding.value and isinstance(
cached_result, dict
):
cached_result = convert_to_model_response_object(
response_object=cached_result,
response_type="embedding",
)
# LOG SUCCESS
cache_hit = True
end_time = datetime.datetime.now()
(
model,
custom_llm_provider,
dynamic_api_key,
api_base,
) = litellm.get_llm_provider(
model=model,
custom_llm_provider=kwargs.get(
"custom_llm_provider", None
),
api_base=kwargs.get("api_base", None),
api_key=kwargs.get("api_key", None),
)
print_verbose(
f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
)
logging_obj.update_environment_variables(
model=model,
user=kwargs.get("user", None),
optional_params={},
litellm_params={
"logger_fn": kwargs.get("logger_fn", None),
"acompletion": False,
"metadata": kwargs.get("metadata", {}),
"model_info": kwargs.get("model_info", {}),
"proxy_server_request": kwargs.get(
"proxy_server_request", None
),
"preset_cache_key": kwargs.get(
"preset_cache_key", None
),
"stream_response": kwargs.get(
"stream_response", {}
),
},
input=kwargs.get("messages", ""),
api_key=kwargs.get("api_key", None),
original_response=str(cached_result),
additional_args=None,
stream=kwargs.get("stream", False),
)
threading.Thread(
target=logging_obj.success_handler,
args=(cached_result, start_time, end_time, cache_hit),
).start()
return cached_result
# CHECK MAX TOKENS
if (
kwargs.get("max_tokens", None) is not None
and model is not None
and litellm.modify_params
== True # user is okay with params being modified
and (
call_type == CallTypes.acompletion.value
or call_type == CallTypes.completion.value
)
):
try:
base_model = model
if kwargs.get("hf_model_name", None) is not None:
base_model = f"huggingface/{kwargs.get('hf_model_name')}"
max_output_tokens = (
get_max_tokens(model=base_model) or 4096
) # assume min context window is 4k tokens
user_max_tokens = kwargs.get("max_tokens")
## Scenario 1: User limit + prompt > model limit
messages = None
if len(args) > 1:
messages = args[1]
elif kwargs.get("messages", None):
messages = kwargs["messages"]
input_tokens = token_counter(model=base_model, messages=messages)
input_tokens += max(
0.1 * input_tokens, 10
) # give at least a 10 token buffer. token counting can be imprecise.
if input_tokens > max_output_tokens:
pass # allow call to fail normally
elif user_max_tokens + input_tokens > max_output_tokens:
user_max_tokens = max_output_tokens - input_tokens
print_verbose(f"user_max_tokens: {user_max_tokens}")
kwargs["max_tokens"] = int(
round(user_max_tokens)
) # make sure max tokens is always an int
except Exception as e:
print_verbose(f"Error while checking max token limit: {str(e)}")
# MODEL CALL
result = original_function(*args, **kwargs)
end_time = datetime.datetime.now()
if "stream" in kwargs and kwargs["stream"] == True:
if (
"complete_response" in kwargs
and kwargs["complete_response"] == True
):
chunks = []
for idx, chunk in enumerate(result):
chunks.append(chunk)
return litellm.stream_chunk_builder(
chunks, messages=kwargs.get("messages", None)
)
else:
return result
elif "acompletion" in kwargs and kwargs["acompletion"] == True:
return result
elif "aembedding" in kwargs and kwargs["aembedding"] == True:
return result
elif "aimg_generation" in kwargs and kwargs["aimg_generation"] == True:
return result
elif "atranscription" in kwargs and kwargs["atranscription"] == True:
return result
### POST-CALL RULES ###
post_call_processing(original_response=result, model=model or None)
# [OPTIONAL] ADD TO CACHE
if (
litellm.cache is not None
and str(original_function.__name__)
in litellm.cache.supported_call_types
) and (kwargs.get("cache", {}).get("no-store", False) != True):
litellm.cache.add_cache(result, *args, **kwargs)
# LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated
verbose_logger.info(f"Wrapper: Completed Call, calling success_handler")
threading.Thread(
target=logging_obj.success_handler, args=(result, start_time, end_time)
).start()
# RETURN RESULT
if hasattr(result, "_hidden_params"):
result._hidden_params["model_id"] = kwargs.get("model_info", {}).get(
"id", None
)
result._hidden_params["api_base"] = get_api_base(
model=model,
optional_params=getattr(logging_obj, "optional_params", {}),
)
result._response_ms = (
end_time - start_time
).total_seconds() * 1000 # return response latency in ms like openai
return result
except Exception as e:
call_type = original_function.__name__
if call_type == CallTypes.completion.value:
num_retries = (
kwargs.get("num_retries", None) or litellm.num_retries or None
)
litellm.num_retries = (
None # set retries to None to prevent infinite loops
)
context_window_fallback_dict = kwargs.get(
"context_window_fallback_dict", {}
)
_is_litellm_router_call = "model_group" in kwargs.get(
"metadata", {}
) # check if call from litellm.router/proxy
if (
num_retries and not _is_litellm_router_call
): # only enter this if call is not from litellm router/proxy. router has it's own logic for retrying
if (
isinstance(e, openai.APIError)
or isinstance(e, openai.Timeout)
or isinstance(e, openai.APIConnectionError)
):
kwargs["num_retries"] = num_retries
return litellm.completion_with_retries(*args, **kwargs)
elif (
isinstance(e, litellm.exceptions.ContextWindowExceededError)
and context_window_fallback_dict
and model in context_window_fallback_dict
):
if len(args) > 0:
args[0] = context_window_fallback_dict[model]
else:
kwargs["model"] = context_window_fallback_dict[model]
return original_function(*args, **kwargs)
traceback_exception = traceback.format_exc()
end_time = datetime.datetime.now()
# LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated
if logging_obj:
logging_obj.failure_handler(
e, traceback_exception, start_time, end_time
) # DO NOT MAKE THREADED - router retry fallback relies on this!
my_thread = threading.Thread(
target=handle_failure,
args=(e, traceback_exception, start_time, end_time, args, kwargs),
) # don't interrupt execution of main thread
my_thread.start()
if hasattr(e, "message"):
if (
liteDebuggerClient and liteDebuggerClient.dashboard_url != None
): # make it easy to get to the debugger logs if you've initialized it
e.message += f"\n Check the log in your dashboard - {liteDebuggerClient.dashboard_url}"
raise e
@wraps(original_function)
async def wrapper_async(*args, **kwargs):
print_args_passed_to_litellm(original_function, args, kwargs)
start_time = datetime.datetime.now()
result = None
logging_obj = kwargs.get("litellm_logging_obj", None)
# only set litellm_call_id if its not in kwargs
call_type = original_function.__name__
if "litellm_call_id" not in kwargs:
kwargs["litellm_call_id"] = str(uuid.uuid4())
model = ""
try:
model = args[0] if len(args) > 0 else kwargs["model"]
except:
if (
call_type != CallTypes.aimage_generation.value # model optional
and call_type != CallTypes.atext_completion.value # can also be engine
):
raise ValueError("model param not passed in.")
try:
if logging_obj is None:
logging_obj, kwargs = function_setup(
original_function.__name__, rules_obj, start_time, *args, **kwargs
)
kwargs["litellm_logging_obj"] = logging_obj
# [OPTIONAL] CHECK BUDGET
if litellm.max_budget:
if litellm._current_cost > litellm.max_budget:
raise BudgetExceededError(
current_cost=litellm._current_cost,
max_budget=litellm.max_budget,
)
# [OPTIONAL] CHECK CACHE
print_verbose(
f"ASYNC kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}; kwargs.get('cache'): {kwargs.get('cache', None)}"
)
# if caching is false, don't run this
final_embedding_cached_response = None
if (
(kwargs.get("caching", None) is None and litellm.cache is not None)
or kwargs.get("caching", False) == True
) and (
kwargs.get("cache", {}).get("no-cache", False) != True
): # allow users to control returning cached responses from the completion function
# checking cache
print_verbose("INSIDE CHECKING CACHE")
if (
litellm.cache is not None
and str(original_function.__name__)
in litellm.cache.supported_call_types
):
print_verbose(f"Checking Cache")
if call_type == CallTypes.aembedding.value and isinstance(
kwargs["input"], list
):
tasks = []
for idx, i in enumerate(kwargs["input"]):
preset_cache_key = litellm.cache.get_cache_key(
*args, **{**kwargs, "input": i}
)
tasks.append(
litellm.cache.async_get_cache(
cache_key=preset_cache_key
)
)
cached_result = await asyncio.gather(*tasks)
## check if cached result is None ##
if cached_result is not None and isinstance(
cached_result, list
):
if len(cached_result) == 1 and cached_result[0] is None:
cached_result = None
elif isinstance(
litellm.cache.cache, RedisSemanticCache
) or isinstance(litellm.cache.cache, RedisCache):
preset_cache_key = litellm.cache.get_cache_key(*args, **kwargs)
kwargs["preset_cache_key"] = (
preset_cache_key # for streaming calls, we need to pass the preset_cache_key
)
cached_result = await litellm.cache.async_get_cache(
*args, **kwargs
)
else: # for s3 caching. [NOT RECOMMENDED IN PROD - this will slow down responses since boto3 is sync]
preset_cache_key = litellm.cache.get_cache_key(*args, **kwargs)
kwargs["preset_cache_key"] = (
preset_cache_key # for streaming calls, we need to pass the preset_cache_key
)
cached_result = litellm.cache.get_cache(*args, **kwargs)
if cached_result is not None and not isinstance(
cached_result, list
):
print_verbose(f"Cache Hit!")
cache_hit = True
end_time = datetime.datetime.now()
(
model,
custom_llm_provider,
dynamic_api_key,
api_base,
) = litellm.get_llm_provider(
model=model,
custom_llm_provider=kwargs.get("custom_llm_provider", None),
api_base=kwargs.get("api_base", None),
api_key=kwargs.get("api_key", None),
)
print_verbose(
f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
)
logging_obj.update_environment_variables(
model=model,
user=kwargs.get("user", None),
optional_params={},
litellm_params={
"logger_fn": kwargs.get("logger_fn", None),
"acompletion": True,
"metadata": kwargs.get("metadata", {}),
"model_info": kwargs.get("model_info", {}),
"proxy_server_request": kwargs.get(
"proxy_server_request", None
),
"preset_cache_key": kwargs.get(
"preset_cache_key", None
),
"stream_response": kwargs.get("stream_response", {}),
"api_base": kwargs.get("api_base", ""),
},
input=kwargs.get("messages", ""),
api_key=kwargs.get("api_key", None),
original_response=str(cached_result),
additional_args=None,
stream=kwargs.get("stream", False),
)
call_type = original_function.__name__
if call_type == CallTypes.acompletion.value and isinstance(
cached_result, dict
):
if kwargs.get("stream", False) == True:
cached_result = convert_to_streaming_response_async(
response_object=cached_result,
)
cached_result = CustomStreamWrapper(
completion_stream=cached_result,
model=model,
custom_llm_provider="cached_response",
logging_obj=logging_obj,
)
else:
cached_result = convert_to_model_response_object(
response_object=cached_result,
model_response_object=ModelResponse(),
)
if (
call_type == CallTypes.atext_completion.value
and isinstance(cached_result, dict)
):
if kwargs.get("stream", False) == True:
cached_result = convert_to_streaming_response_async(
response_object=cached_result,
)
cached_result = CustomStreamWrapper(
completion_stream=cached_result,
model=model,
custom_llm_provider="cached_response",
logging_obj=logging_obj,
)
else:
cached_result = TextCompletionResponse(**cached_result)
elif call_type == CallTypes.aembedding.value and isinstance(
cached_result, dict
):
cached_result = convert_to_model_response_object(
response_object=cached_result,
model_response_object=EmbeddingResponse(),
response_type="embedding",
)
elif call_type == CallTypes.atranscription.value and isinstance(
cached_result, dict
):
hidden_params = {
"model": "whisper-1",
"custom_llm_provider": custom_llm_provider,
}
cached_result = convert_to_model_response_object(
response_object=cached_result,
model_response_object=TranscriptionResponse(),
response_type="audio_transcription",
hidden_params=hidden_params,
)
if kwargs.get("stream", False) == False:
# LOG SUCCESS
asyncio.create_task(
logging_obj.async_success_handler(
cached_result, start_time, end_time, cache_hit
)
)
threading.Thread(
target=logging_obj.success_handler,
args=(cached_result, start_time, end_time, cache_hit),
).start()
cache_key = kwargs.get("preset_cache_key", None)
cached_result._hidden_params["cache_key"] = cache_key
return cached_result
elif (
call_type == CallTypes.aembedding.value
and cached_result is not None
and isinstance(cached_result, list)
and litellm.cache is not None
and not isinstance(
litellm.cache.cache, S3Cache
) # s3 doesn't support bulk writing. Exclude.
):
remaining_list = []
non_null_list = []
for idx, cr in enumerate(cached_result):
if cr is None:
remaining_list.append(kwargs["input"][idx])
else:
non_null_list.append((idx, cr))
original_kwargs_input = kwargs["input"]
kwargs["input"] = remaining_list
if len(non_null_list) > 0:
print_verbose(
f"EMBEDDING CACHE HIT! - {len(non_null_list)}"
)
final_embedding_cached_response = EmbeddingResponse(
model=kwargs.get("model"),
data=[None] * len(original_kwargs_input),
)
final_embedding_cached_response._hidden_params[
"cache_hit"
] = True
for val in non_null_list:
idx, cr = val # (idx, cr) tuple
if cr is not None:
final_embedding_cached_response.data[idx] = (
Embedding(
embedding=cr["embedding"],
index=idx,
object="embedding",
)
)
if len(remaining_list) == 0:
# LOG SUCCESS
cache_hit = True
end_time = datetime.datetime.now()
(
model,
custom_llm_provider,
dynamic_api_key,
api_base,
) = litellm.get_llm_provider(
model=model,
custom_llm_provider=kwargs.get(
"custom_llm_provider", None
),
api_base=kwargs.get("api_base", None),
api_key=kwargs.get("api_key", None),
)
print_verbose(
f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
)
logging_obj.update_environment_variables(
model=model,
user=kwargs.get("user", None),
optional_params={},
litellm_params={
"logger_fn": kwargs.get("logger_fn", None),
"acompletion": True,
"metadata": kwargs.get("metadata", {}),
"model_info": kwargs.get("model_info", {}),
"proxy_server_request": kwargs.get(
"proxy_server_request", None
),
"preset_cache_key": kwargs.get(
"preset_cache_key", None
),
"stream_response": kwargs.get(
"stream_response", {}
),
"api_base": "",
},
input=kwargs.get("messages", ""),
api_key=kwargs.get("api_key", None),
original_response=str(final_embedding_cached_response),
additional_args=None,
stream=kwargs.get("stream", False),
)
asyncio.create_task(
logging_obj.async_success_handler(
final_embedding_cached_response,
start_time,
end_time,
cache_hit,
)
)
threading.Thread(
target=logging_obj.success_handler,
args=(
final_embedding_cached_response,
start_time,
end_time,
cache_hit,
),
).start()
return final_embedding_cached_response
# MODEL CALL
result = await original_function(*args, **kwargs)
end_time = datetime.datetime.now()
if "stream" in kwargs and kwargs["stream"] == True:
if (
"complete_response" in kwargs
and kwargs["complete_response"] == True
):
chunks = []
for idx, chunk in enumerate(result):
chunks.append(chunk)
return litellm.stream_chunk_builder(
chunks, messages=kwargs.get("messages", None)
)
else:
return result
# ADD HIDDEN PARAMS - additional call metadata
if hasattr(result, "_hidden_params"):
result._hidden_params["model_id"] = kwargs.get("model_info", {}).get(
"id", None
)
result._hidden_params["api_base"] = get_api_base(
model=model,
optional_params=kwargs,
)
if (
isinstance(result, ModelResponse)
or isinstance(result, EmbeddingResponse)
or isinstance(result, TranscriptionResponse)
):
result._response_ms = (
end_time - start_time
).total_seconds() * 1000 # return response latency in ms like openai
### POST-CALL RULES ###
post_call_processing(original_response=result, model=model)
# [OPTIONAL] ADD TO CACHE
if (
(litellm.cache is not None)
and (
str(original_function.__name__)
in litellm.cache.supported_call_types
)
and (kwargs.get("cache", {}).get("no-store", False) != True)
):
if (
isinstance(result, litellm.ModelResponse)
or isinstance(result, litellm.EmbeddingResponse)
or isinstance(result, TranscriptionResponse)
):
if (
isinstance(result, EmbeddingResponse)
and isinstance(kwargs["input"], list)
and litellm.cache is not None
and not isinstance(
litellm.cache.cache, S3Cache
) # s3 doesn't support bulk writing. Exclude.
):
asyncio.create_task(
litellm.cache.async_add_cache_pipeline(
result, *args, **kwargs
)
)
elif isinstance(litellm.cache.cache, S3Cache):
threading.Thread(
target=litellm.cache.add_cache,
args=(result,) + args,
kwargs=kwargs,
).start()
else:
asyncio.create_task(
litellm.cache.async_add_cache(
result.json(), *args, **kwargs
)
)
else:
asyncio.create_task(
litellm.cache.async_add_cache(result, *args, **kwargs)
)
# LOG SUCCESS - handle streaming success logging in the _next_ object
print_verbose(
f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
)
# check if user does not want this to be logged
asyncio.create_task(
logging_obj.async_success_handler(result, start_time, end_time)
)
threading.Thread(
target=logging_obj.success_handler,
args=(result, start_time, end_time),
).start()
# REBUILD EMBEDDING CACHING
if (
isinstance(result, EmbeddingResponse)
and final_embedding_cached_response is not None
):
idx = 0
final_data_list = []
for item in final_embedding_cached_response.data:
if item is None:
final_data_list.append(result.data[idx])
idx += 1
else:
final_data_list.append(item)
final_embedding_cached_response.data = final_data_list
final_embedding_cached_response._hidden_params["cache_hit"] = True
final_embedding_cached_response._response_ms = (
end_time - start_time
).total_seconds() * 1000
return final_embedding_cached_response
return result
except Exception as e:
traceback_exception = traceback.format_exc()
end_time = datetime.datetime.now()
if logging_obj:
try:
logging_obj.failure_handler(
e, traceback_exception, start_time, end_time
) # DO NOT MAKE THREADED - router retry fallback relies on this!
except Exception as e:
raise e
try:
await logging_obj.async_failure_handler(
e, traceback_exception, start_time, end_time
)
except Exception as e:
raise e
call_type = original_function.__name__
if call_type == CallTypes.acompletion.value:
num_retries = (
kwargs.get("num_retries", None) or litellm.num_retries or None
)
litellm.num_retries = (
None # set retries to None to prevent infinite loops
)
context_window_fallback_dict = kwargs.get(
"context_window_fallback_dict", {}
)
_is_litellm_router_call = "model_group" in kwargs.get(
"metadata", {}
) # check if call from litellm.router/proxy
if (
num_retries and not _is_litellm_router_call
): # only enter this if call is not from litellm router/proxy. router has it's own logic for retrying
try:
kwargs["num_retries"] = num_retries
kwargs["original_function"] = original_function
if isinstance(
e, openai.RateLimitError
): # rate limiting specific error
kwargs["retry_strategy"] = "exponential_backoff_retry"
elif isinstance(e, openai.APIError): # generic api error
kwargs["retry_strategy"] = "constant_retry"
return await litellm.acompletion_with_retries(*args, **kwargs)
except:
pass
elif (
isinstance(e, litellm.exceptions.ContextWindowExceededError)
and context_window_fallback_dict
and model in context_window_fallback_dict
):
if len(args) > 0:
args[0] = context_window_fallback_dict[model]
else:
kwargs["model"] = context_window_fallback_dict[model]
return await original_function(*args, **kwargs)
raise e
is_coroutine = inspect.iscoroutinefunction(original_function)
# Return the appropriate wrapper based on the original function type
if is_coroutine:
return wrapper_async
else:
return wrapper
|
(original_function)
|
64,274 |
litellm.main
|
completion
|
Perform a completion() using any of litellm supported llms (example gpt-4, gpt-3.5-turbo, claude-2, command-nightly)
Parameters:
model (str): The name of the language model to use for text completion. see all supported LLMs: https://docs.litellm.ai/docs/providers/
messages (List): A list of message objects representing the conversation context (default is an empty list).
OPTIONAL PARAMS
functions (List, optional): A list of functions to apply to the conversation messages (default is an empty list).
function_call (str, optional): The name of the function to call within the conversation (default is an empty string).
temperature (float, optional): The temperature parameter for controlling the randomness of the output (default is 1.0).
top_p (float, optional): The top-p parameter for nucleus sampling (default is 1.0).
n (int, optional): The number of completions to generate (default is 1).
stream (bool, optional): If True, return a streaming response (default is False).
stream_options (dict, optional): A dictionary containing options for the streaming response. Only set this when you set stream: true.
stop(string/list, optional): - Up to 4 sequences where the LLM API will stop generating further tokens.
max_tokens (integer, optional): The maximum number of tokens in the generated completion (default is infinity).
presence_penalty (float, optional): It is used to penalize new tokens based on their existence in the text so far.
frequency_penalty: It is used to penalize new tokens based on their frequency in the text so far.
logit_bias (dict, optional): Used to modify the probability of specific tokens appearing in the completion.
user (str, optional): A unique identifier representing your end-user. This can help the LLM provider to monitor and detect abuse.
logprobs (bool, optional): Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each output token returned in the content of message
top_logprobs (int, optional): An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with an associated log probability. logprobs must be set to true if this parameter is used.
metadata (dict, optional): Pass in additional metadata to tag your completion calls - eg. prompt version, details, etc.
api_base (str, optional): Base URL for the API (default is None).
api_version (str, optional): API version (default is None).
api_key (str, optional): API key (default is None).
model_list (list, optional): List of api base, version, keys
extra_headers (dict, optional): Additional headers to include in the request.
LITELLM Specific Params
mock_response (str, optional): If provided, return a mock completion response for testing or debugging purposes (default is None).
custom_llm_provider (str, optional): Used for Non-OpenAI LLMs, Example usage for bedrock, set model="amazon.titan-tg1-large" and custom_llm_provider="bedrock"
max_retries (int, optional): The number of retries to attempt (default is 0).
Returns:
ModelResponse: A response object containing the generated completion and associated metadata.
Note:
- This function is used to perform completions() using the specified language model.
- It supports various optional parameters for customizing the completion behavior.
- If 'mock_response' is provided, a mock completion response is returned for testing or debugging.
|
def embedding(
model,
input=[],
# Optional params
dimensions: Optional[int] = None,
timeout=600, # default to 10 minutes
# set api_base, api_version, api_key
api_base: Optional[str] = None,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
api_type: Optional[str] = None,
caching: bool = False,
user: Optional[str] = None,
custom_llm_provider=None,
litellm_call_id=None,
litellm_logging_obj=None,
logger_fn=None,
**kwargs,
):
"""
Embedding function that calls an API to generate embeddings for the given input.
Parameters:
- model: The embedding model to use.
- input: The input for which embeddings are to be generated.
- dimensions: The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
- timeout: The timeout value for the API call, default 10 mins
- litellm_call_id: The call ID for litellm logging.
- litellm_logging_obj: The litellm logging object.
- logger_fn: The logger function.
- api_base: Optional. The base URL for the API.
- api_version: Optional. The version of the API.
- api_key: Optional. The API key to use.
- api_type: Optional. The type of the API.
- caching: A boolean indicating whether to enable caching.
- custom_llm_provider: The custom llm provider.
Returns:
- response: The response received from the API call.
Raises:
- exception_type: If an exception occurs during the API call.
"""
azure = kwargs.get("azure", None)
client = kwargs.pop("client", None)
rpm = kwargs.pop("rpm", None)
tpm = kwargs.pop("tpm", None)
max_parallel_requests = kwargs.pop("max_parallel_requests", None)
model_info = kwargs.get("model_info", None)
metadata = kwargs.get("metadata", None)
encoding_format = kwargs.get("encoding_format", None)
proxy_server_request = kwargs.get("proxy_server_request", None)
aembedding = kwargs.get("aembedding", None)
### CUSTOM MODEL COST ###
input_cost_per_token = kwargs.get("input_cost_per_token", None)
output_cost_per_token = kwargs.get("output_cost_per_token", None)
input_cost_per_second = kwargs.get("input_cost_per_second", None)
output_cost_per_second = kwargs.get("output_cost_per_second", None)
openai_params = [
"user",
"dimensions",
"request_timeout",
"api_base",
"api_version",
"api_key",
"deployment_id",
"organization",
"base_url",
"default_headers",
"timeout",
"max_retries",
"encoding_format",
]
litellm_params = [
"metadata",
"aembedding",
"caching",
"mock_response",
"api_key",
"api_version",
"api_base",
"force_timeout",
"logger_fn",
"verbose",
"custom_llm_provider",
"litellm_logging_obj",
"litellm_call_id",
"use_client",
"id",
"fallbacks",
"azure",
"headers",
"model_list",
"num_retries",
"context_window_fallback_dict",
"retry_policy",
"roles",
"final_prompt_value",
"bos_token",
"eos_token",
"request_timeout",
"complete_response",
"self",
"client",
"rpm",
"tpm",
"max_parallel_requests",
"input_cost_per_token",
"output_cost_per_token",
"input_cost_per_second",
"output_cost_per_second",
"hf_model_name",
"proxy_server_request",
"model_info",
"preset_cache_key",
"caching_groups",
"ttl",
"cache",
"no-log",
"region_name",
"allowed_model_region",
]
default_params = openai_params + litellm_params
non_default_params = {
k: v for k, v in kwargs.items() if k not in default_params
} # model-specific params - pass them straight to the model/provider
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(
model=model,
custom_llm_provider=custom_llm_provider,
api_base=api_base,
api_key=api_key,
)
optional_params = get_optional_params_embeddings(
model=model,
user=user,
dimensions=dimensions,
encoding_format=encoding_format,
custom_llm_provider=custom_llm_provider,
**non_default_params,
)
### REGISTER CUSTOM MODEL PRICING -- IF GIVEN ###
if input_cost_per_token is not None and output_cost_per_token is not None:
litellm.register_model(
{
model: {
"input_cost_per_token": input_cost_per_token,
"output_cost_per_token": output_cost_per_token,
"litellm_provider": custom_llm_provider,
}
}
)
if input_cost_per_second is not None: # time based pricing just needs cost in place
output_cost_per_second = output_cost_per_second or 0.0
litellm.register_model(
{
model: {
"input_cost_per_second": input_cost_per_second,
"output_cost_per_second": output_cost_per_second,
"litellm_provider": custom_llm_provider,
}
}
)
try:
response = None
logging = litellm_logging_obj
logging.update_environment_variables(
model=model,
user=user,
optional_params=optional_params,
litellm_params={
"timeout": timeout,
"azure": azure,
"litellm_call_id": litellm_call_id,
"logger_fn": logger_fn,
"proxy_server_request": proxy_server_request,
"model_info": model_info,
"metadata": metadata,
"aembedding": aembedding,
"preset_cache_key": None,
"stream_response": {},
},
)
if azure == True or custom_llm_provider == "azure":
# azure configs
api_type = get_secret("AZURE_API_TYPE") or "azure"
api_base = api_base or litellm.api_base or get_secret("AZURE_API_BASE")
api_version = (
api_version or litellm.api_version or get_secret("AZURE_API_VERSION")
)
azure_ad_token = optional_params.pop("azure_ad_token", None) or get_secret(
"AZURE_AD_TOKEN"
)
api_key = (
api_key
or litellm.api_key
or litellm.azure_key
or get_secret("AZURE_API_KEY")
)
## EMBEDDING CALL
response = azure_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif (
model in litellm.open_ai_embedding_models or custom_llm_provider == "openai"
):
api_base = (
api_base
or litellm.api_base
or get_secret("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
openai.organization = (
litellm.organization
or get_secret("OPENAI_ORGANIZATION")
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
api_key
or litellm.api_key
or litellm.openai_key
or get_secret("OPENAI_API_KEY")
)
api_type = "openai"
api_version = None
## EMBEDDING CALL
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "cohere":
cohere_key = (
api_key
or litellm.cohere_key
or get_secret("COHERE_API_KEY")
or get_secret("CO_API_KEY")
or litellm.api_key
)
response = cohere.embedding(
model=model,
input=input,
optional_params=optional_params,
encoding=encoding,
api_key=cohere_key,
logging_obj=logging,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "huggingface":
api_key = (
api_key
or litellm.huggingface_key
or get_secret("HUGGINGFACE_API_KEY")
or litellm.api_key
)
response = huggingface.embedding(
model=model,
input=input,
encoding=encoding,
api_key=api_key,
api_base=api_base,
logging_obj=logging,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "bedrock":
response = bedrock.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "triton":
if api_base is None:
raise ValueError(
"api_base is required for triton. Please pass `api_base`"
)
response = triton_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "vertex_ai":
vertex_ai_project = (
optional_params.pop("vertex_project", None)
or optional_params.pop("vertex_ai_project", None)
or litellm.vertex_project
or get_secret("VERTEXAI_PROJECT")
or get_secret("VERTEX_PROJECT")
)
vertex_ai_location = (
optional_params.pop("vertex_location", None)
or optional_params.pop("vertex_ai_location", None)
or litellm.vertex_location
or get_secret("VERTEXAI_LOCATION")
or get_secret("VERTEX_LOCATION")
)
vertex_credentials = (
optional_params.pop("vertex_credentials", None)
or optional_params.pop("vertex_ai_credentials", None)
or get_secret("VERTEXAI_CREDENTIALS")
or get_secret("VERTEX_CREDENTIALS")
)
response = vertex_ai.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
vertex_project=vertex_ai_project,
vertex_location=vertex_ai_location,
vertex_credentials=vertex_credentials,
aembedding=aembedding,
print_verbose=print_verbose,
)
elif custom_llm_provider == "oobabooga":
response = oobabooga.embedding(
model=model,
input=input,
encoding=encoding,
api_base=api_base,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "ollama":
api_base = (
litellm.api_base
or api_base
or get_secret("OLLAMA_API_BASE")
or "http://localhost:11434"
)
if isinstance(input, str):
input = [input]
if not all(isinstance(item, str) for item in input):
raise litellm.BadRequestError(
message=f"Invalid input for ollama embeddings. input={input}",
model=model, # type: ignore
llm_provider="ollama", # type: ignore
)
ollama_embeddings_fn = (
ollama.ollama_aembeddings if aembedding else ollama.ollama_embeddings
)
response = ollama_embeddings_fn(
api_base=api_base,
model=model,
prompts=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "sagemaker":
response = sagemaker.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
print_verbose=print_verbose,
)
elif custom_llm_provider == "mistral":
api_key = api_key or litellm.api_key or get_secret("MISTRAL_API_KEY")
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "voyage":
api_key = api_key or litellm.api_key or get_secret("VOYAGE_API_KEY")
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "xinference":
api_key = (
api_key
or litellm.api_key
or get_secret("XINFERENCE_API_KEY")
or "stub-xinference-key"
) # xinference does not need an api key, pass a stub key if user did not set one
api_base = (
api_base
or litellm.api_base
or get_secret("XINFERENCE_API_BASE")
or "http://127.0.0.1:9997/v1"
)
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "watsonx":
response = watsonx.IBMWatsonXAI().embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
else:
args = locals()
raise ValueError(f"No valid embedding model args passed in - {args}")
if response is not None and hasattr(response, "_hidden_params"):
response._hidden_params["custom_llm_provider"] = custom_llm_provider
return response
except Exception as e:
## LOGGING
logging.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
## Map to OpenAI Exception
raise exception_type(
model=model,
original_exception=e,
custom_llm_provider=custom_llm_provider,
extra_kwargs=kwargs,
)
|
(model: str, messages: List = [], timeout: Union[float, str, openai.Timeout, NoneType] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, n: Optional[int] = None, stream: Optional[bool] = None, stream_options: Optional[dict] = None, stop=None, max_tokens: Optional[int] = None, presence_penalty: Optional[float] = None, frequency_penalty: Optional[float] = None, logit_bias: Optional[dict] = None, user: Optional[str] = None, response_format: Optional[dict] = None, seed: Optional[int] = None, tools: Optional[List] = None, tool_choice: Optional[str] = None, logprobs: Optional[bool] = None, top_logprobs: Optional[int] = None, deployment_id=None, extra_headers: Optional[dict] = None, functions: Optional[List] = None, function_call: Optional[str] = None, base_url: Optional[str] = None, api_version: Optional[str] = None, api_key: Optional[str] = None, model_list: Optional[list] = None, **kwargs) -> Union[litellm.utils.ModelResponse, litellm.utils.CustomStreamWrapper]
|
64,275 |
litellm.utils
|
completion_cost
|
Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm.
Parameters:
completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request.
[OPTIONAL PARAMS]
model (str): Optional. The name of the language model used in the completion calls
prompt (str): Optional. The input prompt passed to the llm
completion (str): Optional. The output completion text from the llm
total_time (float): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds
Returns:
float: The cost in USD dollars for the completion based on the provided parameters.
Note:
- If completion_response is provided, the function extracts token information and the model name from it.
- If completion_response is not provided, the function calculates token counts based on the model and input text.
- The cost is calculated based on the model, prompt tokens, and completion tokens.
- For certain models containing "togethercomputer" in the name, prices are based on the model size.
- For Replicate models, the cost is calculated based on the total time used for the request.
Exceptions:
- If an error occurs during execution, the function returns 0.0 without blocking the user's execution path.
|
def completion_cost(
completion_response=None,
model=None,
prompt="",
messages: List = [],
completion="",
total_time=0.0, # used for replicate, sagemaker
call_type: Literal[
"completion",
"acompletion",
"embedding",
"aembedding",
"atext_completion",
"text_completion",
"image_generation",
"aimage_generation",
"transcription",
"atranscription",
] = "completion",
### REGION ###
custom_llm_provider=None,
region_name=None, # used for bedrock pricing
### IMAGE GEN ###
size=None,
quality=None,
n=None, # number of images
):
"""
Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm.
Parameters:
completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request.
[OPTIONAL PARAMS]
model (str): Optional. The name of the language model used in the completion calls
prompt (str): Optional. The input prompt passed to the llm
completion (str): Optional. The output completion text from the llm
total_time (float): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds
Returns:
float: The cost in USD dollars for the completion based on the provided parameters.
Note:
- If completion_response is provided, the function extracts token information and the model name from it.
- If completion_response is not provided, the function calculates token counts based on the model and input text.
- The cost is calculated based on the model, prompt tokens, and completion tokens.
- For certain models containing "togethercomputer" in the name, prices are based on the model size.
- For Replicate models, the cost is calculated based on the total time used for the request.
Exceptions:
- If an error occurs during execution, the function returns 0.0 without blocking the user's execution path.
"""
try:
if (
(call_type == "aimage_generation" or call_type == "image_generation")
and model is not None
and isinstance(model, str)
and len(model) == 0
and custom_llm_provider == "azure"
):
model = "dall-e-2" # for dall-e-2, azure expects an empty model name
# Handle Inputs to completion_cost
prompt_tokens = 0
completion_tokens = 0
custom_llm_provider = None
if completion_response is not None:
# get input/output tokens from completion_response
prompt_tokens = completion_response.get("usage", {}).get("prompt_tokens", 0)
completion_tokens = completion_response.get("usage", {}).get(
"completion_tokens", 0
)
total_time = completion_response.get("_response_ms", 0)
verbose_logger.debug(
f"completion_response response ms: {completion_response.get('_response_ms')} "
)
model = model or completion_response.get(
"model", None
) # check if user passed an override for model, if it's none check completion_response['model']
if hasattr(completion_response, "_hidden_params"):
if (
completion_response._hidden_params.get("model", None) is not None
and len(completion_response._hidden_params["model"]) > 0
):
model = completion_response._hidden_params.get("model", model)
custom_llm_provider = completion_response._hidden_params.get(
"custom_llm_provider", ""
)
region_name = completion_response._hidden_params.get(
"region_name", region_name
)
size = completion_response._hidden_params.get(
"optional_params", {}
).get(
"size", "1024-x-1024"
) # openai default
quality = completion_response._hidden_params.get(
"optional_params", {}
).get(
"quality", "standard"
) # openai default
n = completion_response._hidden_params.get("optional_params", {}).get(
"n", 1
) # openai default
else:
if len(messages) > 0:
prompt_tokens = token_counter(model=model, messages=messages)
elif len(prompt) > 0:
prompt_tokens = token_counter(model=model, text=prompt)
completion_tokens = token_counter(model=model, text=completion)
if model == None:
raise ValueError(
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
)
if (
call_type == CallTypes.image_generation.value
or call_type == CallTypes.aimage_generation.value
):
### IMAGE GENERATION COST CALCULATION ###
# fix size to match naming convention
if "x" in size and "-x-" not in size:
size = size.replace("x", "-x-")
image_gen_model_name = f"{size}/{model}"
image_gen_model_name_with_quality = image_gen_model_name
if quality is not None:
image_gen_model_name_with_quality = f"{quality}/{image_gen_model_name}"
size = size.split("-x-")
height = int(size[0]) # if it's 1024-x-1024 vs. 1024x1024
width = int(size[1])
verbose_logger.debug(f"image_gen_model_name: {image_gen_model_name}")
verbose_logger.debug(
f"image_gen_model_name_with_quality: {image_gen_model_name_with_quality}"
)
if image_gen_model_name in litellm.model_cost:
return (
litellm.model_cost[image_gen_model_name]["input_cost_per_pixel"]
* height
* width
* n
)
elif image_gen_model_name_with_quality in litellm.model_cost:
return (
litellm.model_cost[image_gen_model_name_with_quality][
"input_cost_per_pixel"
]
* height
* width
* n
)
else:
raise Exception(
f"Model={image_gen_model_name} not found in completion cost model map"
)
# Calculate cost based on prompt_tokens, completion_tokens
if (
"togethercomputer" in model
or "together_ai" in model
or custom_llm_provider == "together_ai"
):
# together ai prices based on size of llm
# get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json
model = get_model_params_and_category(model)
# replicate llms are calculate based on time for request running
# see https://replicate.com/pricing
elif (
model in litellm.replicate_models or "replicate" in model
) and model not in litellm.model_cost:
# for unmapped replicate model, default to replicate's time tracking logic
return get_replicate_completion_pricing(completion_response, total_time)
(
prompt_tokens_cost_usd_dollar,
completion_tokens_cost_usd_dollar,
) = cost_per_token(
model=model,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
custom_llm_provider=custom_llm_provider,
response_time_ms=total_time,
region_name=region_name,
)
_final_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
print_verbose(
f"final cost: {_final_cost}; prompt_tokens_cost_usd_dollar: {prompt_tokens_cost_usd_dollar}; completion_tokens_cost_usd_dollar: {completion_tokens_cost_usd_dollar}"
)
return _final_cost
except Exception as e:
raise e
|
(completion_response=None, model=None, prompt='', messages: List = [], completion='', total_time=0.0, call_type: Literal['completion', 'acompletion', 'embedding', 'aembedding', 'atext_completion', 'text_completion', 'image_generation', 'aimage_generation', 'transcription', 'atranscription'] = 'completion', custom_llm_provider=None, region_name=None, size=None, quality=None, n=None)
|
64,276 |
litellm.utils
|
completion_with_fallbacks
| null |
def completion_with_fallbacks(**kwargs):
nested_kwargs = kwargs.pop("kwargs", {})
response = None
rate_limited_models = set()
model_expiration_times = {}
start_time = time.time()
original_model = kwargs["model"]
fallbacks = [kwargs["model"]] + nested_kwargs.get("fallbacks", [])
if "fallbacks" in nested_kwargs:
del nested_kwargs["fallbacks"] # remove fallbacks so it's not recursive
litellm_call_id = str(uuid.uuid4())
# max time to process a request with fallbacks: default 45s
while response == None and time.time() - start_time < 45:
for model in fallbacks:
# loop thru all models
try:
# check if it's dict or new model string
if isinstance(
model, dict
): # completion(model="gpt-4", fallbacks=[{"api_key": "", "api_base": ""}, {"api_key": "", "api_base": ""}])
kwargs["api_key"] = model.get("api_key", None)
kwargs["api_base"] = model.get("api_base", None)
model = model.get("model", original_model)
elif (
model in rate_limited_models
): # check if model is currently cooling down
if (
model_expiration_times.get(model)
and time.time() >= model_expiration_times[model]
):
rate_limited_models.remove(
model
) # check if it's been 60s of cool down and remove model
else:
continue # skip model
# delete model from kwargs if it exists
if kwargs.get("model"):
del kwargs["model"]
print_verbose(f"trying to make completion call with model: {model}")
kwargs["litellm_call_id"] = litellm_call_id
kwargs = {
**kwargs,
**nested_kwargs,
} # combine the openai + litellm params at the same level
response = litellm.completion(**kwargs, model=model)
print_verbose(f"response: {response}")
if response != None:
return response
except Exception as e:
print_verbose(e)
rate_limited_models.add(model)
model_expiration_times[model] = (
time.time() + 60
) # cool down this selected model
pass
return response
|
(**kwargs)
|
64,278 |
litellm.main
|
config_completion
| null |
def config_completion(**kwargs):
if litellm.config_path != None:
config_args = read_config_args(litellm.config_path)
# overwrite any args passed in with config args
return completion(**kwargs, **config_args)
else:
raise ValueError(
"No config path set, please set a config path using `litellm.config_path = 'path/to/config.json'`"
)
|
(**kwargs)
|
64,280 |
litellm.utils
|
convert_to_model_response_object
| null |
def convert_to_model_response_object(
response_object: Optional[dict] = None,
model_response_object: Optional[
Union[ModelResponse, EmbeddingResponse, ImageResponse, TranscriptionResponse]
] = None,
response_type: Literal[
"completion", "embedding", "image_generation", "audio_transcription"
] = "completion",
stream=False,
start_time=None,
end_time=None,
hidden_params: Optional[dict] = None,
):
received_args = locals()
try:
if response_type == "completion" and (
model_response_object is None
or isinstance(model_response_object, ModelResponse)
):
if response_object is None or model_response_object is None:
raise Exception("Error in response object format")
if stream == True:
# for returning cached responses, we need to yield a generator
return convert_to_streaming_response(response_object=response_object)
choice_list = []
assert response_object["choices"] is not None and isinstance(
response_object["choices"], Iterable
)
for idx, choice in enumerate(response_object["choices"]):
message = Message(
content=choice["message"].get("content", None),
role=choice["message"]["role"],
function_call=choice["message"].get("function_call", None),
tool_calls=choice["message"].get("tool_calls", None),
)
finish_reason = choice.get("finish_reason", None)
if finish_reason == None:
# gpt-4 vision can return 'finish_reason' or 'finish_details'
finish_reason = choice.get("finish_details")
logprobs = choice.get("logprobs", None)
enhancements = choice.get("enhancements", None)
choice = Choices(
finish_reason=finish_reason,
index=idx,
message=message,
logprobs=logprobs,
enhancements=enhancements,
)
choice_list.append(choice)
model_response_object.choices = choice_list
if "usage" in response_object and response_object["usage"] is not None:
model_response_object.usage.completion_tokens = response_object["usage"].get("completion_tokens", 0) # type: ignore
model_response_object.usage.prompt_tokens = response_object["usage"].get("prompt_tokens", 0) # type: ignore
model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore
if "created" in response_object:
model_response_object.created = response_object["created"]
if "id" in response_object:
model_response_object.id = response_object["id"]
if "system_fingerprint" in response_object:
model_response_object.system_fingerprint = response_object[
"system_fingerprint"
]
if "model" in response_object and model_response_object.model is None:
model_response_object.model = response_object["model"]
if start_time is not None and end_time is not None:
if isinstance(start_time, type(end_time)):
model_response_object._response_ms = ( # type: ignore
end_time - start_time
).total_seconds() * 1000
if hidden_params is not None:
model_response_object._hidden_params = hidden_params
return model_response_object
elif response_type == "embedding" and (
model_response_object is None
or isinstance(model_response_object, EmbeddingResponse)
):
if response_object is None:
raise Exception("Error in response object format")
if model_response_object is None:
model_response_object = EmbeddingResponse()
if "model" in response_object:
model_response_object.model = response_object["model"]
if "object" in response_object:
model_response_object.object = response_object["object"]
model_response_object.data = response_object["data"]
if "usage" in response_object and response_object["usage"] is not None:
model_response_object.usage.completion_tokens = response_object["usage"].get("completion_tokens", 0) # type: ignore
model_response_object.usage.prompt_tokens = response_object["usage"].get("prompt_tokens", 0) # type: ignore
model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore
if start_time is not None and end_time is not None:
model_response_object._response_ms = ( # type: ignore
end_time - start_time
).total_seconds() * 1000 # return response latency in ms like openai
if hidden_params is not None:
model_response_object._hidden_params = hidden_params
return model_response_object
elif response_type == "image_generation" and (
model_response_object is None
or isinstance(model_response_object, ImageResponse)
):
if response_object is None:
raise Exception("Error in response object format")
if model_response_object is None:
model_response_object = ImageResponse()
if "created" in response_object:
model_response_object.created = response_object["created"]
if "data" in response_object:
model_response_object.data = response_object["data"]
if hidden_params is not None:
model_response_object._hidden_params = hidden_params
return model_response_object
elif response_type == "audio_transcription" and (
model_response_object is None
or isinstance(model_response_object, TranscriptionResponse)
):
if response_object is None:
raise Exception("Error in response object format")
if model_response_object is None:
model_response_object = TranscriptionResponse()
if "text" in response_object:
model_response_object.text = response_object["text"]
if hidden_params is not None:
model_response_object._hidden_params = hidden_params
return model_response_object
except Exception as e:
raise Exception(
f"Invalid response object {traceback.format_exc()}\n\nreceived_args={received_args}"
)
|
(response_object: Optional[dict] = None, model_response_object: Union[litellm.utils.ModelResponse, litellm.utils.EmbeddingResponse, litellm.utils.ImageResponse, litellm.utils.TranscriptionResponse, NoneType] = None, response_type: Literal['completion', 'embedding', 'image_generation', 'audio_transcription'] = 'completion', stream=False, start_time=None, end_time=None, hidden_params: Optional[dict] = None)
|
64,281 |
litellm.utils
|
cost_per_token
|
Calculates the cost per token for a given model, prompt tokens, and completion tokens.
Parameters:
model (str): The name of the model to use. Default is ""
prompt_tokens (int): The number of tokens in the prompt.
completion_tokens (int): The number of tokens in the completion.
Returns:
tuple: A tuple containing the cost in USD dollars for prompt tokens and completion tokens, respectively.
|
def cost_per_token(
model="",
prompt_tokens=0,
completion_tokens=0,
response_time_ms=None,
custom_llm_provider=None,
region_name=None,
):
"""
Calculates the cost per token for a given model, prompt tokens, and completion tokens.
Parameters:
model (str): The name of the model to use. Default is ""
prompt_tokens (int): The number of tokens in the prompt.
completion_tokens (int): The number of tokens in the completion.
Returns:
tuple: A tuple containing the cost in USD dollars for prompt tokens and completion tokens, respectively.
"""
# given
prompt_tokens_cost_usd_dollar = 0
completion_tokens_cost_usd_dollar = 0
model_cost_ref = litellm.model_cost
model_with_provider = model
if custom_llm_provider is not None:
model_with_provider = custom_llm_provider + "/" + model
if region_name is not None:
model_with_provider_and_region = (
f"{custom_llm_provider}/{region_name}/{model}"
)
if (
model_with_provider_and_region in model_cost_ref
): # use region based pricing, if it's available
model_with_provider = model_with_provider_and_region
model_without_prefix = model
model_parts = model.split("/")
if len(model_parts) > 1:
model_without_prefix = model_parts[1]
else:
model_without_prefix = model
"""
Code block that formats model to lookup in litellm.model_cost
Option1. model = "bedrock/ap-northeast-1/anthropic.claude-instant-v1". This is the most accurate since it is region based. Should always be option 1
Option2. model = "openai/gpt-4" - model = provider/model
Option3. model = "anthropic.claude-3" - model = model
"""
if (
model_with_provider in model_cost_ref
): # Option 2. use model with provider, model = "openai/gpt-4"
model = model_with_provider
elif model in model_cost_ref: # Option 1. use model passed, model="gpt-4"
model = model
elif (
model_without_prefix in model_cost_ref
): # Option 3. if user passed model="bedrock/anthropic.claude-3", use model="anthropic.claude-3"
model = model_without_prefix
# see this https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
print_verbose(f"Looking up model={model} in model_cost_map")
if model in model_cost_ref:
print_verbose(f"Success: model={model} in model_cost_map")
print_verbose(
f"prompt_tokens={prompt_tokens}; completion_tokens={completion_tokens}"
)
if (
model_cost_ref[model].get("input_cost_per_token", None) is not None
and model_cost_ref[model].get("output_cost_per_token", None) is not None
):
## COST PER TOKEN ##
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
)
elif (
model_cost_ref[model].get("output_cost_per_second", None) is not None
and response_time_ms is not None
):
print_verbose(
f"For model={model} - output_cost_per_second: {model_cost_ref[model].get('output_cost_per_second')}; response time: {response_time_ms}"
)
## COST PER SECOND ##
prompt_tokens_cost_usd_dollar = 0
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_second"]
* response_time_ms
/ 1000
)
elif (
model_cost_ref[model].get("input_cost_per_second", None) is not None
and response_time_ms is not None
):
print_verbose(
f"For model={model} - input_cost_per_second: {model_cost_ref[model].get('input_cost_per_second')}; response time: {response_time_ms}"
)
## COST PER SECOND ##
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_second"] * response_time_ms / 1000
)
completion_tokens_cost_usd_dollar = 0.0
print_verbose(
f"Returned custom cost for model={model} - prompt_tokens_cost_usd_dollar: {prompt_tokens_cost_usd_dollar}, completion_tokens_cost_usd_dollar: {completion_tokens_cost_usd_dollar}"
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif "ft:gpt-3.5-turbo" in model:
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
# fuzzy match ft:gpt-3.5-turbo:abcd-id-cool-litellm
prompt_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-3.5-turbo"]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-3.5-turbo"]["output_cost_per_token"]
* completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif model in litellm.azure_llms:
verbose_logger.debug(f"Cost Tracking: {model} is an Azure LLM")
model = litellm.azure_llms[model]
verbose_logger.debug(
f"applying cost={model_cost_ref[model]['input_cost_per_token']} for prompt_tokens={prompt_tokens}"
)
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
)
verbose_logger.debug(
f"applying cost={model_cost_ref[model]['output_cost_per_token']} for completion_tokens={completion_tokens}"
)
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif model in litellm.azure_embedding_models:
verbose_logger.debug(f"Cost Tracking: {model} is an Azure Embedding Model")
model = litellm.azure_embedding_models[model]
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
else:
# if model is not in model_prices_and_context_window.json. Raise an exception-let users know
error_str = f"Model not in model_prices_and_context_window.json. You passed model={model}. Register pricing for model - https://docs.litellm.ai/docs/proxy/custom_pricing\n"
raise litellm.exceptions.NotFoundError( # type: ignore
message=error_str,
model=model,
response=httpx.Response(
status_code=404,
content=error_str,
request=httpx.Request(method="cost_per_token", url="https://github.com/BerriAI/litellm"), # type: ignore
),
llm_provider="",
)
|
(model='', prompt_tokens=0, completion_tokens=0, response_time_ms=None, custom_llm_provider=None, region_name=None)
|
64,282 |
litellm.utils
|
create_pretrained_tokenizer
|
Creates a tokenizer from an existing file on a HuggingFace repository to be used with `token_counter`.
Args:
identifier (str): The identifier of a Model on the Hugging Face Hub, that contains a tokenizer.json file
revision (str, defaults to main): A branch or commit id
auth_token (str, optional, defaults to None): An optional auth token used to access private repositories on the Hugging Face Hub
Returns:
dict: A dictionary with the tokenizer and its type.
|
def create_pretrained_tokenizer(
identifier: str, revision="main", auth_token: Optional[str] = None
):
"""
Creates a tokenizer from an existing file on a HuggingFace repository to be used with `token_counter`.
Args:
identifier (str): The identifier of a Model on the Hugging Face Hub, that contains a tokenizer.json file
revision (str, defaults to main): A branch or commit id
auth_token (str, optional, defaults to None): An optional auth token used to access private repositories on the Hugging Face Hub
Returns:
dict: A dictionary with the tokenizer and its type.
"""
tokenizer = Tokenizer.from_pretrained(
identifier, revision=revision, auth_token=auth_token
)
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
(identifier: str, revision='main', auth_token: Optional[str] = None)
|
64,283 |
litellm.assistants.main
|
create_thread
|
- get the llm provider
- if openai - route it there
- pass through relevant params
```
from litellm import create_thread
create_thread(
custom_llm_provider="openai",
### OPTIONAL ###
messages = {
"role": "user",
"content": "Hello, what is AI?"
},
{
"role": "user",
"content": "How does AI work? Explain it in simple terms."
}]
)
```
|
def create_thread(
custom_llm_provider: Literal["openai"],
messages: Optional[Iterable[OpenAICreateThreadParamsMessage]] = None,
metadata: Optional[dict] = None,
tool_resources: Optional[OpenAICreateThreadParamsToolResources] = None,
client: Optional[OpenAI] = None,
**kwargs,
) -> Thread:
"""
- get the llm provider
- if openai - route it there
- pass through relevant params
```
from litellm import create_thread
create_thread(
custom_llm_provider="openai",
### OPTIONAL ###
messages = {
"role": "user",
"content": "Hello, what is AI?"
},
{
"role": "user",
"content": "How does AI work? Explain it in simple terms."
}]
)
```
"""
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
response: Optional[Thread] = None
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_assistants_api.create_thread(
messages=messages,
metadata=metadata,
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
client=client,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'create_thread'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
|
(custom_llm_provider: Literal['openai'], messages: Optional[Iterable[openai.types.beta.thread_create_params.Message]] = None, metadata: Optional[dict] = None, tool_resources: Optional[litellm.types.llms.openai.OpenAICreateThreadParamsToolResources] = None, client: Optional[openai.OpenAI] = None, **kwargs) -> litellm.types.llms.openai.Thread
|
64,284 |
litellm.utils
|
create_tokenizer
|
Creates a tokenizer from a valid JSON string for use with `token_counter`.
Args:
json (str): A valid JSON string representing a previously serialized tokenizer
Returns:
dict: A dictionary with the tokenizer and its type.
|
def create_tokenizer(json: str):
"""
Creates a tokenizer from a valid JSON string for use with `token_counter`.
Args:
json (str): A valid JSON string representing a previously serialized tokenizer
Returns:
dict: A dictionary with the tokenizer and its type.
"""
tokenizer = Tokenizer.from_str(json)
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
(json: str)
|
64,286 |
litellm.llms.prompt_templates.factory
|
custom_prompt
| null |
def custom_prompt(
role_dict: dict,
messages: list,
initial_prompt_value: str = "",
final_prompt_value: str = "",
bos_token: str = "",
eos_token: str = "",
):
prompt = bos_token + initial_prompt_value
bos_open = True
## a bos token is at the start of a system / human message
## an eos token is at the end of the assistant response to the message
for message in messages:
role = message["role"]
if role in ["system", "human"] and not bos_open:
prompt += bos_token
bos_open = True
pre_message_str = (
role_dict[role]["pre_message"]
if role in role_dict and "pre_message" in role_dict[role]
else ""
)
post_message_str = (
role_dict[role]["post_message"]
if role in role_dict and "post_message" in role_dict[role]
else ""
)
prompt += pre_message_str + message["content"] + post_message_str
if role == "assistant":
prompt += eos_token
bos_open = False
prompt += final_prompt_value
return prompt
|
(role_dict: dict, messages: list, initial_prompt_value: str = '', final_prompt_value: str = '', bos_token: str = '', eos_token: str = '')
|
64,289 |
litellm.utils
|
decode
| null |
def decode(model="", tokens: List[int] = [], custom_tokenizer: Optional[dict] = None):
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
dec = tokenizer_json["tokenizer"].decode(tokens)
return dec
|
(model='', tokens: List[int] = [], custom_tokenizer: Optional[dict] = None)
|
64,291 |
litellm.caching
|
disable_cache
|
Disable the cache used by LiteLLM.
This function disables the cache used by the LiteLLM module. It removes the cache-related callbacks from the input_callback, success_callback, and _async_success_callback lists. It also sets the litellm.cache attribute to None.
Parameters:
None
Returns:
None
|
def disable_cache():
"""
Disable the cache used by LiteLLM.
This function disables the cache used by the LiteLLM module. It removes the cache-related callbacks from the input_callback, success_callback, and _async_success_callback lists. It also sets the litellm.cache attribute to None.
Parameters:
None
Returns:
None
"""
from contextlib import suppress
print_verbose("LiteLLM: Disabling Cache")
with suppress(ValueError):
litellm.input_callback.remove("cache")
litellm.success_callback.remove("cache")
litellm._async_success_callback.remove("cache")
litellm.cache = None
print_verbose(f"LiteLLM: Cache disabled, litellm.cache={litellm.cache}")
|
()
|
64,294 |
litellm.main
|
embedding
|
Embedding function that calls an API to generate embeddings for the given input.
Parameters:
- model: The embedding model to use.
- input: The input for which embeddings are to be generated.
- dimensions: The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
- timeout: The timeout value for the API call, default 10 mins
- litellm_call_id: The call ID for litellm logging.
- litellm_logging_obj: The litellm logging object.
- logger_fn: The logger function.
- api_base: Optional. The base URL for the API.
- api_version: Optional. The version of the API.
- api_key: Optional. The API key to use.
- api_type: Optional. The type of the API.
- caching: A boolean indicating whether to enable caching.
- custom_llm_provider: The custom llm provider.
Returns:
- response: The response received from the API call.
Raises:
- exception_type: If an exception occurs during the API call.
|
def embedding(
model,
input=[],
# Optional params
dimensions: Optional[int] = None,
timeout=600, # default to 10 minutes
# set api_base, api_version, api_key
api_base: Optional[str] = None,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
api_type: Optional[str] = None,
caching: bool = False,
user: Optional[str] = None,
custom_llm_provider=None,
litellm_call_id=None,
litellm_logging_obj=None,
logger_fn=None,
**kwargs,
):
"""
Embedding function that calls an API to generate embeddings for the given input.
Parameters:
- model: The embedding model to use.
- input: The input for which embeddings are to be generated.
- dimensions: The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
- timeout: The timeout value for the API call, default 10 mins
- litellm_call_id: The call ID for litellm logging.
- litellm_logging_obj: The litellm logging object.
- logger_fn: The logger function.
- api_base: Optional. The base URL for the API.
- api_version: Optional. The version of the API.
- api_key: Optional. The API key to use.
- api_type: Optional. The type of the API.
- caching: A boolean indicating whether to enable caching.
- custom_llm_provider: The custom llm provider.
Returns:
- response: The response received from the API call.
Raises:
- exception_type: If an exception occurs during the API call.
"""
azure = kwargs.get("azure", None)
client = kwargs.pop("client", None)
rpm = kwargs.pop("rpm", None)
tpm = kwargs.pop("tpm", None)
max_parallel_requests = kwargs.pop("max_parallel_requests", None)
model_info = kwargs.get("model_info", None)
metadata = kwargs.get("metadata", None)
encoding_format = kwargs.get("encoding_format", None)
proxy_server_request = kwargs.get("proxy_server_request", None)
aembedding = kwargs.get("aembedding", None)
### CUSTOM MODEL COST ###
input_cost_per_token = kwargs.get("input_cost_per_token", None)
output_cost_per_token = kwargs.get("output_cost_per_token", None)
input_cost_per_second = kwargs.get("input_cost_per_second", None)
output_cost_per_second = kwargs.get("output_cost_per_second", None)
openai_params = [
"user",
"dimensions",
"request_timeout",
"api_base",
"api_version",
"api_key",
"deployment_id",
"organization",
"base_url",
"default_headers",
"timeout",
"max_retries",
"encoding_format",
]
litellm_params = [
"metadata",
"aembedding",
"caching",
"mock_response",
"api_key",
"api_version",
"api_base",
"force_timeout",
"logger_fn",
"verbose",
"custom_llm_provider",
"litellm_logging_obj",
"litellm_call_id",
"use_client",
"id",
"fallbacks",
"azure",
"headers",
"model_list",
"num_retries",
"context_window_fallback_dict",
"retry_policy",
"roles",
"final_prompt_value",
"bos_token",
"eos_token",
"request_timeout",
"complete_response",
"self",
"client",
"rpm",
"tpm",
"max_parallel_requests",
"input_cost_per_token",
"output_cost_per_token",
"input_cost_per_second",
"output_cost_per_second",
"hf_model_name",
"proxy_server_request",
"model_info",
"preset_cache_key",
"caching_groups",
"ttl",
"cache",
"no-log",
"region_name",
"allowed_model_region",
]
default_params = openai_params + litellm_params
non_default_params = {
k: v for k, v in kwargs.items() if k not in default_params
} # model-specific params - pass them straight to the model/provider
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(
model=model,
custom_llm_provider=custom_llm_provider,
api_base=api_base,
api_key=api_key,
)
optional_params = get_optional_params_embeddings(
model=model,
user=user,
dimensions=dimensions,
encoding_format=encoding_format,
custom_llm_provider=custom_llm_provider,
**non_default_params,
)
### REGISTER CUSTOM MODEL PRICING -- IF GIVEN ###
if input_cost_per_token is not None and output_cost_per_token is not None:
litellm.register_model(
{
model: {
"input_cost_per_token": input_cost_per_token,
"output_cost_per_token": output_cost_per_token,
"litellm_provider": custom_llm_provider,
}
}
)
if input_cost_per_second is not None: # time based pricing just needs cost in place
output_cost_per_second = output_cost_per_second or 0.0
litellm.register_model(
{
model: {
"input_cost_per_second": input_cost_per_second,
"output_cost_per_second": output_cost_per_second,
"litellm_provider": custom_llm_provider,
}
}
)
try:
response = None
logging = litellm_logging_obj
logging.update_environment_variables(
model=model,
user=user,
optional_params=optional_params,
litellm_params={
"timeout": timeout,
"azure": azure,
"litellm_call_id": litellm_call_id,
"logger_fn": logger_fn,
"proxy_server_request": proxy_server_request,
"model_info": model_info,
"metadata": metadata,
"aembedding": aembedding,
"preset_cache_key": None,
"stream_response": {},
},
)
if azure == True or custom_llm_provider == "azure":
# azure configs
api_type = get_secret("AZURE_API_TYPE") or "azure"
api_base = api_base or litellm.api_base or get_secret("AZURE_API_BASE")
api_version = (
api_version or litellm.api_version or get_secret("AZURE_API_VERSION")
)
azure_ad_token = optional_params.pop("azure_ad_token", None) or get_secret(
"AZURE_AD_TOKEN"
)
api_key = (
api_key
or litellm.api_key
or litellm.azure_key
or get_secret("AZURE_API_KEY")
)
## EMBEDDING CALL
response = azure_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif (
model in litellm.open_ai_embedding_models or custom_llm_provider == "openai"
):
api_base = (
api_base
or litellm.api_base
or get_secret("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
openai.organization = (
litellm.organization
or get_secret("OPENAI_ORGANIZATION")
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
api_key
or litellm.api_key
or litellm.openai_key
or get_secret("OPENAI_API_KEY")
)
api_type = "openai"
api_version = None
## EMBEDDING CALL
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "cohere":
cohere_key = (
api_key
or litellm.cohere_key
or get_secret("COHERE_API_KEY")
or get_secret("CO_API_KEY")
or litellm.api_key
)
response = cohere.embedding(
model=model,
input=input,
optional_params=optional_params,
encoding=encoding,
api_key=cohere_key,
logging_obj=logging,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "huggingface":
api_key = (
api_key
or litellm.huggingface_key
or get_secret("HUGGINGFACE_API_KEY")
or litellm.api_key
)
response = huggingface.embedding(
model=model,
input=input,
encoding=encoding,
api_key=api_key,
api_base=api_base,
logging_obj=logging,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "bedrock":
response = bedrock.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "triton":
if api_base is None:
raise ValueError(
"api_base is required for triton. Please pass `api_base`"
)
response = triton_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "vertex_ai":
vertex_ai_project = (
optional_params.pop("vertex_project", None)
or optional_params.pop("vertex_ai_project", None)
or litellm.vertex_project
or get_secret("VERTEXAI_PROJECT")
or get_secret("VERTEX_PROJECT")
)
vertex_ai_location = (
optional_params.pop("vertex_location", None)
or optional_params.pop("vertex_ai_location", None)
or litellm.vertex_location
or get_secret("VERTEXAI_LOCATION")
or get_secret("VERTEX_LOCATION")
)
vertex_credentials = (
optional_params.pop("vertex_credentials", None)
or optional_params.pop("vertex_ai_credentials", None)
or get_secret("VERTEXAI_CREDENTIALS")
or get_secret("VERTEX_CREDENTIALS")
)
response = vertex_ai.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
vertex_project=vertex_ai_project,
vertex_location=vertex_ai_location,
vertex_credentials=vertex_credentials,
aembedding=aembedding,
print_verbose=print_verbose,
)
elif custom_llm_provider == "oobabooga":
response = oobabooga.embedding(
model=model,
input=input,
encoding=encoding,
api_base=api_base,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "ollama":
api_base = (
litellm.api_base
or api_base
or get_secret("OLLAMA_API_BASE")
or "http://localhost:11434"
)
if isinstance(input, str):
input = [input]
if not all(isinstance(item, str) for item in input):
raise litellm.BadRequestError(
message=f"Invalid input for ollama embeddings. input={input}",
model=model, # type: ignore
llm_provider="ollama", # type: ignore
)
ollama_embeddings_fn = (
ollama.ollama_aembeddings if aembedding else ollama.ollama_embeddings
)
response = ollama_embeddings_fn(
api_base=api_base,
model=model,
prompts=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "sagemaker":
response = sagemaker.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
print_verbose=print_verbose,
)
elif custom_llm_provider == "mistral":
api_key = api_key or litellm.api_key or get_secret("MISTRAL_API_KEY")
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "voyage":
api_key = api_key or litellm.api_key or get_secret("VOYAGE_API_KEY")
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "xinference":
api_key = (
api_key
or litellm.api_key
or get_secret("XINFERENCE_API_KEY")
or "stub-xinference-key"
) # xinference does not need an api key, pass a stub key if user did not set one
api_base = (
api_base
or litellm.api_base
or get_secret("XINFERENCE_API_BASE")
or "http://127.0.0.1:9997/v1"
)
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "watsonx":
response = watsonx.IBMWatsonXAI().embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
else:
args = locals()
raise ValueError(f"No valid embedding model args passed in - {args}")
if response is not None and hasattr(response, "_hidden_params"):
response._hidden_params["custom_llm_provider"] = custom_llm_provider
return response
except Exception as e:
## LOGGING
logging.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
## Map to OpenAI Exception
raise exception_type(
model=model,
original_exception=e,
custom_llm_provider=custom_llm_provider,
extra_kwargs=kwargs,
)
|
(model, input=[], dimensions: Optional[int] = None, timeout=600, api_base: Optional[str] = None, api_version: Optional[str] = None, api_key: Optional[str] = None, api_type: Optional[str] = None, caching: bool = False, user: Optional[str] = None, custom_llm_provider=None, litellm_call_id=None, litellm_logging_obj=None, logger_fn=None, **kwargs)
|
64,295 |
litellm.caching
|
enable_cache
|
Enable cache with the specified configuration.
Args:
type (Optional[Literal["local", "redis"]]): The type of cache to enable. Defaults to "local".
host (Optional[str]): The host address of the cache server. Defaults to None.
port (Optional[str]): The port number of the cache server. Defaults to None.
password (Optional[str]): The password for the cache server. Defaults to None.
supported_call_types (Optional[List[Literal["completion", "acompletion", "embedding", "aembedding"]]]):
The supported call types for the cache. Defaults to ["completion", "acompletion", "embedding", "aembedding"].
**kwargs: Additional keyword arguments.
Returns:
None
Raises:
None
|
def enable_cache(
type: Optional[Literal["local", "redis", "s3"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[
Literal[
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
]
]
] = [
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
],
**kwargs,
):
"""
Enable cache with the specified configuration.
Args:
type (Optional[Literal["local", "redis"]]): The type of cache to enable. Defaults to "local".
host (Optional[str]): The host address of the cache server. Defaults to None.
port (Optional[str]): The port number of the cache server. Defaults to None.
password (Optional[str]): The password for the cache server. Defaults to None.
supported_call_types (Optional[List[Literal["completion", "acompletion", "embedding", "aembedding"]]]):
The supported call types for the cache. Defaults to ["completion", "acompletion", "embedding", "aembedding"].
**kwargs: Additional keyword arguments.
Returns:
None
Raises:
None
"""
print_verbose("LiteLLM: Enabling Cache")
if "cache" not in litellm.input_callback:
litellm.input_callback.append("cache")
if "cache" not in litellm.success_callback:
litellm.success_callback.append("cache")
if "cache" not in litellm._async_success_callback:
litellm._async_success_callback.append("cache")
if litellm.cache == None:
litellm.cache = Cache(
type=type,
host=host,
port=port,
password=password,
supported_call_types=supported_call_types,
**kwargs,
)
print_verbose(f"LiteLLM: Cache enabled, litellm.cache={litellm.cache}")
print_verbose(f"LiteLLM Cache: {vars(litellm.cache)}")
|
(type: Optional[Literal['local', 'redis', 's3']] = 'local', host: Optional[str] = None, port: Optional[str] = None, password: Optional[str] = None, supported_call_types: Optional[List[Literal['completion', 'acompletion', 'embedding', 'aembedding', 'atranscription', 'transcription']]] = ['completion', 'acompletion', 'embedding', 'aembedding', 'atranscription', 'transcription'], **kwargs)
|
64,296 |
litellm.utils
|
encode
|
Encodes the given text using the specified model.
Args:
model (str): The name of the model to use for tokenization.
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
text (str): The text to be encoded.
Returns:
enc: The encoded text.
|
def encode(model="", text="", custom_tokenizer: Optional[dict] = None):
"""
Encodes the given text using the specified model.
Args:
model (str): The name of the model to use for tokenization.
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
text (str): The text to be encoded.
Returns:
enc: The encoded text.
"""
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
enc = tokenizer_json["tokenizer"].encode(text)
return enc
|
(model='', text='', custom_tokenizer: Optional[dict] = None)
|
64,298 |
litellm.utils
|
exception_type
| null |
def exception_type(
model,
original_exception,
custom_llm_provider,
completion_kwargs={},
extra_kwargs={},
):
global user_logger_fn, liteDebuggerClient
exception_mapping_worked = False
if litellm.suppress_debug_info is False:
print() # noqa
print( # noqa
"\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m" # noqa
) # noqa
print( # noqa
"LiteLLM.Info: If you need to debug this error, use `litellm.set_verbose=True'." # noqa
) # noqa
print() # noqa
try:
if model:
error_str = str(original_exception)
if isinstance(original_exception, BaseException):
exception_type = type(original_exception).__name__
else:
exception_type = ""
################################################################################
# Common Extra information needed for all providers
# We pass num retries, api_base, vertex_deployment etc to the exception here
################################################################################
_api_base = litellm.get_api_base(model=model, optional_params=extra_kwargs)
messages = litellm.get_first_chars_messages(kwargs=completion_kwargs)
_vertex_project = extra_kwargs.get("vertex_project")
_vertex_location = extra_kwargs.get("vertex_location")
_metadata = extra_kwargs.get("metadata", {}) or {}
_model_group = _metadata.get("model_group")
_deployment = _metadata.get("deployment")
extra_information = f"\nModel: {model}"
if _api_base:
extra_information += f"\nAPI Base: {_api_base}"
if messages and len(messages) > 0:
extra_information += f"\nMessages: {messages}"
if _model_group is not None:
extra_information += f"\nmodel_group: {_model_group}\n"
if _deployment is not None:
extra_information += f"\ndeployment: {_deployment}\n"
if _vertex_project is not None:
extra_information += f"\nvertex_project: {_vertex_project}\n"
if _vertex_location is not None:
extra_information += f"\nvertex_location: {_vertex_location}\n"
# on litellm proxy add key name + team to exceptions
extra_information = _add_key_name_and_team_to_alert(
request_info=extra_information, metadata=_metadata
)
################################################################################
# End of Common Extra information Needed for all providers
################################################################################
################################################################################
#################### Start of Provider Exception mapping ####################
################################################################################
if "Request Timeout Error" in error_str or "Request timed out" in error_str:
exception_mapping_worked = True
raise Timeout(
message=f"APITimeoutError - Request timed out. {extra_information} \n error_str: {error_str}",
model=model,
llm_provider=custom_llm_provider,
)
if (
custom_llm_provider == "openai"
or custom_llm_provider == "text-completion-openai"
or custom_llm_provider == "custom_openai"
or custom_llm_provider in litellm.openai_compatible_providers
):
# custom_llm_provider is openai, make it OpenAI
if hasattr(original_exception, "message"):
message = original_exception.message
else:
message = str(original_exception)
if message is not None and isinstance(message, str):
message = message.replace("OPENAI", custom_llm_provider.upper())
message = message.replace("openai", custom_llm_provider)
message = message.replace("OpenAI", custom_llm_provider)
if custom_llm_provider == "openai":
exception_provider = "OpenAI" + "Exception"
else:
exception_provider = (
custom_llm_provider[0].upper()
+ custom_llm_provider[1:]
+ "Exception"
)
if "This model's maximum context length is" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
)
elif (
"invalid_request_error" in error_str
and "model_not_found" in error_str
):
exception_mapping_worked = True
raise NotFoundError(
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
)
elif (
"invalid_request_error" in error_str
and "content_policy_violation" in error_str
):
exception_mapping_worked = True
raise ContentPolicyViolationError(
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
)
elif (
"invalid_request_error" in error_str
and "Incorrect API key provided" not in error_str
):
exception_mapping_worked = True
raise BadRequestError(
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
)
elif "Request too large" in error_str:
raise RateLimitError(
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
response=original_exception.response,
)
elif (
"The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable"
in error_str
):
exception_mapping_worked = True
raise AuthenticationError(
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
)
elif "Mistral API raised a streaming error" in error_str:
exception_mapping_worked = True
_request = httpx.Request(
method="POST", url="https://api.openai.com/v1"
)
raise APIError(
status_code=500,
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
request=_request,
)
elif hasattr(original_exception, "status_code"):
exception_mapping_worked = True
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 404:
exception_mapping_worked = True
raise NotFoundError(
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
response=original_exception.response,
)
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
)
elif original_exception.status_code == 422:
exception_mapping_worked = True
raise BadRequestError(
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
response=original_exception.response,
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
response=original_exception.response,
)
elif original_exception.status_code == 503:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
response=original_exception.response,
)
elif original_exception.status_code == 504: # gateway timeout error
exception_mapping_worked = True
raise Timeout(
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
)
else:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
request=original_exception.request,
)
else:
# if no status code then it is an APIConnectionError: https://github.com/openai/openai-python#handling-errors
raise APIConnectionError(
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
request=httpx.Request(
method="POST", url="https://api.openai.com/v1/"
),
)
elif custom_llm_provider == "anthropic": # one of the anthropics
if hasattr(original_exception, "message"):
if (
"prompt is too long" in original_exception.message
or "prompt: length" in original_exception.message
):
exception_mapping_worked = True
raise ContextWindowExceededError(
message=original_exception.message,
model=model,
llm_provider="anthropic",
response=original_exception.response,
)
if "Invalid API Key" in original_exception.message:
exception_mapping_worked = True
raise AuthenticationError(
message=original_exception.message,
model=model,
llm_provider="anthropic",
response=original_exception.response,
)
if hasattr(original_exception, "status_code"):
print_verbose(f"status_code: {original_exception.status_code}")
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"AnthropicException - {original_exception.message}",
llm_provider="anthropic",
model=model,
response=original_exception.response,
)
elif (
original_exception.status_code == 400
or original_exception.status_code == 413
):
exception_mapping_worked = True
raise BadRequestError(
message=f"AnthropicException - {original_exception.message}",
model=model,
llm_provider="anthropic",
response=original_exception.response,
)
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"AnthropicException - {original_exception.message}",
model=model,
llm_provider="anthropic",
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"AnthropicException - {original_exception.message}",
llm_provider="anthropic",
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 500:
exception_mapping_worked = True
raise APIError(
status_code=500,
message=f"AnthropicException - {original_exception.message}. Handle with `litellm.APIError`.",
llm_provider="anthropic",
model=model,
request=original_exception.request,
)
elif custom_llm_provider == "replicate":
if "Incorrect authentication token" in error_str:
exception_mapping_worked = True
raise AuthenticationError(
message=f"ReplicateException - {error_str}",
llm_provider="replicate",
model=model,
response=original_exception.response,
)
elif "input is too long" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"ReplicateException - {error_str}",
model=model,
llm_provider="replicate",
response=original_exception.response,
)
elif exception_type == "ModelError":
exception_mapping_worked = True
raise BadRequestError(
message=f"ReplicateException - {error_str}",
model=model,
llm_provider="replicate",
response=original_exception.response,
)
elif "Request was throttled" in error_str:
exception_mapping_worked = True
raise RateLimitError(
message=f"ReplicateException - {error_str}",
llm_provider="replicate",
model=model,
response=original_exception.response,
)
elif hasattr(original_exception, "status_code"):
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"ReplicateException - {original_exception.message}",
llm_provider="replicate",
model=model,
response=original_exception.response,
)
elif (
original_exception.status_code == 400
or original_exception.status_code == 422
or original_exception.status_code == 413
):
exception_mapping_worked = True
raise BadRequestError(
message=f"ReplicateException - {original_exception.message}",
model=model,
llm_provider="replicate",
response=original_exception.response,
)
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"ReplicateException - {original_exception.message}",
model=model,
llm_provider="replicate",
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"ReplicateException - {original_exception.message}",
llm_provider="replicate",
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 500:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"ReplicateException - {original_exception.message}",
llm_provider="replicate",
model=model,
response=original_exception.response,
)
exception_mapping_worked = True
raise APIError(
status_code=500,
message=f"ReplicateException - {str(original_exception)}",
llm_provider="replicate",
model=model,
request=original_exception.request,
)
elif custom_llm_provider == "bedrock":
if (
"too many tokens" in error_str
or "expected maxLength:" in error_str
or "Input is too long" in error_str
or "prompt: length: 1.." in error_str
or "Too many input tokens" in error_str
):
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"BedrockException: Context Window Error - {error_str}",
model=model,
llm_provider="bedrock",
response=original_exception.response,
)
if "Malformed input request" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"BedrockException - {error_str}",
model=model,
llm_provider="bedrock",
response=original_exception.response,
)
if (
"Unable to locate credentials" in error_str
or "The security token included in the request is invalid"
in error_str
):
exception_mapping_worked = True
raise AuthenticationError(
message=f"BedrockException Invalid Authentication - {error_str}",
model=model,
llm_provider="bedrock",
response=original_exception.response,
)
if "AccessDeniedException" in error_str:
exception_mapping_worked = True
raise PermissionDeniedError(
message=f"BedrockException PermissionDeniedError - {error_str}",
model=model,
llm_provider="bedrock",
response=original_exception.response,
)
if (
"throttlingException" in error_str
or "ThrottlingException" in error_str
):
exception_mapping_worked = True
raise RateLimitError(
message=f"BedrockException: Rate Limit Error - {error_str}",
model=model,
llm_provider="bedrock",
response=original_exception.response,
)
if "Connect timeout on endpoint URL" in error_str:
exception_mapping_worked = True
raise Timeout(
message=f"BedrockException: Timeout Error - {error_str}",
model=model,
llm_provider="bedrock",
)
if hasattr(original_exception, "status_code"):
if original_exception.status_code == 500:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"BedrockException - {original_exception.message}",
llm_provider="bedrock",
model=model,
response=httpx.Response(
status_code=500,
request=httpx.Request(
method="POST", url="https://api.openai.com/v1/"
),
),
)
elif original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"BedrockException - {original_exception.message}",
llm_provider="bedrock",
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 400:
exception_mapping_worked = True
raise BadRequestError(
message=f"BedrockException - {original_exception.message}",
llm_provider="bedrock",
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 404:
exception_mapping_worked = True
raise NotFoundError(
message=f"BedrockException - {original_exception.message}",
llm_provider="bedrock",
model=model,
response=original_exception.response,
)
elif custom_llm_provider == "sagemaker":
if "Unable to locate credentials" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"SagemakerException - {error_str}",
model=model,
llm_provider="sagemaker",
response=original_exception.response,
)
elif (
"Input validation error: `best_of` must be > 0 and <= 2"
in error_str
):
exception_mapping_worked = True
raise BadRequestError(
message=f"SagemakerException - the value of 'n' must be > 0 and <= 2 for sagemaker endpoints",
model=model,
llm_provider="sagemaker",
response=original_exception.response,
)
elif (
"`inputs` tokens + `max_new_tokens` must be <=" in error_str
or "instance type with more CPU capacity or memory" in error_str
):
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"SagemakerException - {error_str}",
model=model,
llm_provider="sagemaker",
response=original_exception.response,
)
elif custom_llm_provider == "vertex_ai":
if (
"Vertex AI API has not been used in project" in error_str
or "Unable to find your project" in error_str
):
exception_mapping_worked = True
raise BadRequestError(
message=f"VertexAIException - {error_str} {extra_information}",
model=model,
llm_provider="vertex_ai",
response=original_exception.response,
)
elif (
"None Unknown Error." in error_str
or "Content has no parts." in error_str
):
exception_mapping_worked = True
raise APIError(
message=f"VertexAIException - {error_str} {extra_information}",
status_code=500,
model=model,
llm_provider="vertex_ai",
request=original_exception.request,
)
elif "403" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"VertexAIException - {error_str} {extra_information}",
model=model,
llm_provider="vertex_ai",
response=original_exception.response,
)
elif "The response was blocked." in error_str:
exception_mapping_worked = True
raise UnprocessableEntityError(
message=f"VertexAIException - {error_str} {extra_information}",
model=model,
llm_provider="vertex_ai",
response=httpx.Response(
status_code=429,
request=httpx.Request(
method="POST",
url=" https://cloud.google.com/vertex-ai/",
),
),
)
elif (
"429 Quota exceeded" in error_str
or "IndexError: list index out of range" in error_str
or "429 Unable to submit request because the service is temporarily out of capacity."
in error_str
):
exception_mapping_worked = True
raise RateLimitError(
message=f"VertexAIException - {error_str} {extra_information}",
model=model,
llm_provider="vertex_ai",
response=httpx.Response(
status_code=429,
request=httpx.Request(
method="POST",
url=" https://cloud.google.com/vertex-ai/",
),
),
)
if hasattr(original_exception, "status_code"):
if original_exception.status_code == 400:
exception_mapping_worked = True
raise BadRequestError(
message=f"VertexAIException - {error_str} {extra_information}",
model=model,
llm_provider="vertex_ai",
response=original_exception.response,
)
if original_exception.status_code == 500:
exception_mapping_worked = True
raise APIError(
message=f"VertexAIException - {error_str} {extra_information}",
status_code=500,
model=model,
llm_provider="vertex_ai",
request=original_exception.request,
)
elif custom_llm_provider == "palm" or custom_llm_provider == "gemini":
if "503 Getting metadata" in error_str:
# auth errors look like this
# 503 Getting metadata from plugin failed with error: Reauthentication is needed. Please run `gcloud auth application-default login` to reauthenticate.
exception_mapping_worked = True
raise BadRequestError(
message=f"GeminiException - Invalid api key",
model=model,
llm_provider="palm",
response=original_exception.response,
)
if (
"504 Deadline expired before operation could complete." in error_str
or "504 Deadline Exceeded" in error_str
):
exception_mapping_worked = True
raise Timeout(
message=f"GeminiException - {original_exception.message}",
model=model,
llm_provider="palm",
)
if "400 Request payload size exceeds" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"GeminiException - {error_str}",
model=model,
llm_provider="palm",
response=original_exception.response,
)
if (
"500 An internal error has occurred." in error_str
or "list index out of range" in error_str
):
exception_mapping_worked = True
raise APIError(
status_code=getattr(original_exception, "status_code", 500),
message=f"GeminiException - {original_exception.message}",
llm_provider="palm",
model=model,
request=httpx.Response(
status_code=429,
request=httpx.Request(
method="POST",
url=" https://cloud.google.com/vertex-ai/",
),
),
)
if hasattr(original_exception, "status_code"):
if original_exception.status_code == 400:
exception_mapping_worked = True
raise BadRequestError(
message=f"GeminiException - {error_str}",
model=model,
llm_provider="palm",
response=original_exception.response,
)
# Dailed: Error occurred: 400 Request payload size exceeds the limit: 20000 bytes
elif custom_llm_provider == "cloudflare":
if "Authentication error" in error_str:
exception_mapping_worked = True
raise AuthenticationError(
message=f"Cloudflare Exception - {original_exception.message}",
llm_provider="cloudflare",
model=model,
response=original_exception.response,
)
if "must have required property" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"Cloudflare Exception - {original_exception.message}",
llm_provider="cloudflare",
model=model,
response=original_exception.response,
)
elif (
custom_llm_provider == "cohere" or custom_llm_provider == "cohere_chat"
): # Cohere
if (
"invalid api token" in error_str
or "No API key provided." in error_str
):
exception_mapping_worked = True
raise AuthenticationError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model,
response=original_exception.response,
)
elif "too many tokens" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"CohereException - {original_exception.message}",
model=model,
llm_provider="cohere",
response=original_exception.response,
)
elif hasattr(original_exception, "status_code"):
if (
original_exception.status_code == 400
or original_exception.status_code == 498
):
exception_mapping_worked = True
raise BadRequestError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 500:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model,
response=original_exception.response,
)
elif (
"CohereConnectionError" in exception_type
): # cohere seems to fire these errors when we load test it (1k+ messages / min)
exception_mapping_worked = True
raise RateLimitError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model,
response=original_exception.response,
)
elif "invalid type:" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model,
response=original_exception.response,
)
elif "Unexpected server error" in error_str:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model,
response=original_exception.response,
)
else:
if hasattr(original_exception, "status_code"):
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model,
request=original_exception.request,
)
raise original_exception
elif custom_llm_provider == "huggingface":
if "length limit exceeded" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=error_str,
model=model,
llm_provider="huggingface",
response=original_exception.response,
)
elif "A valid user token is required" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=error_str,
llm_provider="huggingface",
model=model,
response=original_exception.response,
)
if hasattr(original_exception, "status_code"):
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"HuggingfaceException - {original_exception.message}",
llm_provider="huggingface",
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 400:
exception_mapping_worked = True
raise BadRequestError(
message=f"HuggingfaceException - {original_exception.message}",
model=model,
llm_provider="huggingface",
response=original_exception.response,
)
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"HuggingfaceException - {original_exception.message}",
model=model,
llm_provider="huggingface",
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"HuggingfaceException - {original_exception.message}",
llm_provider="huggingface",
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 503:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"HuggingfaceException - {original_exception.message}",
llm_provider="huggingface",
model=model,
response=original_exception.response,
)
else:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"HuggingfaceException - {original_exception.message}",
llm_provider="huggingface",
model=model,
request=original_exception.request,
)
elif custom_llm_provider == "ai21":
if hasattr(original_exception, "message"):
if "Prompt has too many tokens" in original_exception.message:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"AI21Exception - {original_exception.message}",
model=model,
llm_provider="ai21",
response=original_exception.response,
)
if "Bad or missing API token." in original_exception.message:
exception_mapping_worked = True
raise BadRequestError(
message=f"AI21Exception - {original_exception.message}",
model=model,
llm_provider="ai21",
response=original_exception.response,
)
if hasattr(original_exception, "status_code"):
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"AI21Exception - {original_exception.message}",
llm_provider="ai21",
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"AI21Exception - {original_exception.message}",
model=model,
llm_provider="ai21",
)
if original_exception.status_code == 422:
exception_mapping_worked = True
raise BadRequestError(
message=f"AI21Exception - {original_exception.message}",
model=model,
llm_provider="ai21",
response=original_exception.response,
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"AI21Exception - {original_exception.message}",
llm_provider="ai21",
model=model,
response=original_exception.response,
)
else:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"AI21Exception - {original_exception.message}",
llm_provider="ai21",
model=model,
request=original_exception.request,
)
elif custom_llm_provider == "nlp_cloud":
if "detail" in error_str:
if "Input text length should not exceed" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"NLPCloudException - {error_str}",
model=model,
llm_provider="nlp_cloud",
response=original_exception.response,
)
elif "value is not a valid" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"NLPCloudException - {error_str}",
model=model,
llm_provider="nlp_cloud",
response=original_exception.response,
)
else:
exception_mapping_worked = True
raise APIError(
status_code=500,
message=f"NLPCloudException - {error_str}",
model=model,
llm_provider="nlp_cloud",
request=original_exception.request,
)
if hasattr(
original_exception, "status_code"
): # https://docs.nlpcloud.com/?shell#errors
if (
original_exception.status_code == 400
or original_exception.status_code == 406
or original_exception.status_code == 413
or original_exception.status_code == 422
):
exception_mapping_worked = True
raise BadRequestError(
message=f"NLPCloudException - {original_exception.message}",
llm_provider="nlp_cloud",
model=model,
response=original_exception.response,
)
elif (
original_exception.status_code == 401
or original_exception.status_code == 403
):
exception_mapping_worked = True
raise AuthenticationError(
message=f"NLPCloudException - {original_exception.message}",
llm_provider="nlp_cloud",
model=model,
response=original_exception.response,
)
elif (
original_exception.status_code == 522
or original_exception.status_code == 524
):
exception_mapping_worked = True
raise Timeout(
message=f"NLPCloudException - {original_exception.message}",
model=model,
llm_provider="nlp_cloud",
)
elif (
original_exception.status_code == 429
or original_exception.status_code == 402
):
exception_mapping_worked = True
raise RateLimitError(
message=f"NLPCloudException - {original_exception.message}",
llm_provider="nlp_cloud",
model=model,
response=original_exception.response,
)
elif (
original_exception.status_code == 500
or original_exception.status_code == 503
):
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"NLPCloudException - {original_exception.message}",
llm_provider="nlp_cloud",
model=model,
request=original_exception.request,
)
elif (
original_exception.status_code == 504
or original_exception.status_code == 520
):
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"NLPCloudException - {original_exception.message}",
model=model,
llm_provider="nlp_cloud",
response=original_exception.response,
)
else:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"NLPCloudException - {original_exception.message}",
llm_provider="nlp_cloud",
model=model,
request=original_exception.request,
)
elif custom_llm_provider == "together_ai":
import json
try:
error_response = json.loads(error_str)
except:
error_response = {"error": error_str}
if (
"error" in error_response
and "`inputs` tokens + `max_new_tokens` must be <="
in error_response["error"]
):
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"TogetherAIException - {error_response['error']}",
model=model,
llm_provider="together_ai",
response=original_exception.response,
)
elif (
"error" in error_response
and "invalid private key" in error_response["error"]
):
exception_mapping_worked = True
raise AuthenticationError(
message=f"TogetherAIException - {error_response['error']}",
llm_provider="together_ai",
model=model,
response=original_exception.response,
)
elif (
"error" in error_response
and "INVALID_ARGUMENT" in error_response["error"]
):
exception_mapping_worked = True
raise BadRequestError(
message=f"TogetherAIException - {error_response['error']}",
model=model,
llm_provider="together_ai",
response=original_exception.response,
)
elif (
"error" in error_response
and "API key doesn't match expected format."
in error_response["error"]
):
exception_mapping_worked = True
raise BadRequestError(
message=f"TogetherAIException - {error_response['error']}",
model=model,
llm_provider="together_ai",
response=original_exception.response,
)
elif (
"error_type" in error_response
and error_response["error_type"] == "validation"
):
exception_mapping_worked = True
raise BadRequestError(
message=f"TogetherAIException - {error_response['error']}",
model=model,
llm_provider="together_ai",
response=original_exception.response,
)
if hasattr(original_exception, "status_code"):
if original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"TogetherAIException - {original_exception.message}",
model=model,
llm_provider="together_ai",
)
elif original_exception.status_code == 422:
exception_mapping_worked = True
raise BadRequestError(
message=f"TogetherAIException - {error_response['error']}",
model=model,
llm_provider="together_ai",
response=original_exception.response,
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"TogetherAIException - {original_exception.message}",
llm_provider="together_ai",
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 524:
exception_mapping_worked = True
raise Timeout(
message=f"TogetherAIException - {original_exception.message}",
llm_provider="together_ai",
model=model,
)
else:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"TogetherAIException - {original_exception.message}",
llm_provider="together_ai",
model=model,
request=original_exception.request,
)
elif custom_llm_provider == "aleph_alpha":
if (
"This is longer than the model's maximum context length"
in error_str
):
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"AlephAlphaException - {original_exception.message}",
llm_provider="aleph_alpha",
model=model,
response=original_exception.response,
)
elif "InvalidToken" in error_str or "No token provided" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"AlephAlphaException - {original_exception.message}",
llm_provider="aleph_alpha",
model=model,
response=original_exception.response,
)
elif hasattr(original_exception, "status_code"):
print_verbose(f"status code: {original_exception.status_code}")
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"AlephAlphaException - {original_exception.message}",
llm_provider="aleph_alpha",
model=model,
)
elif original_exception.status_code == 400:
exception_mapping_worked = True
raise BadRequestError(
message=f"AlephAlphaException - {original_exception.message}",
llm_provider="aleph_alpha",
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"AlephAlphaException - {original_exception.message}",
llm_provider="aleph_alpha",
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 500:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"AlephAlphaException - {original_exception.message}",
llm_provider="aleph_alpha",
model=model,
response=original_exception.response,
)
raise original_exception
raise original_exception
elif (
custom_llm_provider == "ollama" or custom_llm_provider == "ollama_chat"
):
if isinstance(original_exception, dict):
error_str = original_exception.get("error", "")
else:
error_str = str(original_exception)
if "no such file or directory" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"OllamaException: Invalid Model/Model not loaded - {original_exception}",
model=model,
llm_provider="ollama",
response=original_exception.response,
)
elif "Failed to establish a new connection" in error_str:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"OllamaException: {original_exception}",
llm_provider="ollama",
model=model,
response=original_exception.response,
)
elif "Invalid response object from API" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"OllamaException: {original_exception}",
llm_provider="ollama",
model=model,
response=original_exception.response,
)
elif "Read timed out" in error_str:
exception_mapping_worked = True
raise Timeout(
message=f"OllamaException: {original_exception}",
llm_provider="ollama",
model=model,
)
elif custom_llm_provider == "vllm":
if hasattr(original_exception, "status_code"):
if original_exception.status_code == 0:
exception_mapping_worked = True
raise APIConnectionError(
message=f"VLLMException - {original_exception.message}",
llm_provider="vllm",
model=model,
request=original_exception.request,
)
elif custom_llm_provider == "azure":
if "Internal server error" in error_str:
exception_mapping_worked = True
raise APIError(
status_code=500,
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
request=httpx.Request(method="POST", url="https://openai.com/"),
)
elif "This model's maximum context length is" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
response=original_exception.response,
)
elif "DeploymentNotFound" in error_str:
exception_mapping_worked = True
raise NotFoundError(
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
response=original_exception.response,
)
elif (
"invalid_request_error" in error_str
and "content_policy_violation" in error_str
) or (
"The response was filtered due to the prompt triggering Azure OpenAI's content management"
in error_str
):
exception_mapping_worked = True
raise ContentPolicyViolationError(
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
response=original_exception.response,
)
elif "invalid_request_error" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
response=original_exception.response,
)
elif (
"The api_key client option must be set either by passing api_key to the client or by setting"
in error_str
):
exception_mapping_worked = True
raise AuthenticationError(
message=f"{exception_provider} - {original_exception.message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
)
elif hasattr(original_exception, "status_code"):
exception_mapping_worked = True
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
response=original_exception.response,
)
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"AzureException - {original_exception.message} {extra_information}",
model=model,
llm_provider="azure",
)
if original_exception.status_code == 422:
exception_mapping_worked = True
raise BadRequestError(
message=f"AzureException - {original_exception.message} {extra_information}",
model=model,
llm_provider="azure",
response=original_exception.response,
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"AzureException - {original_exception.message} {extra_information}",
model=model,
llm_provider="azure",
response=original_exception.response,
)
elif original_exception.status_code == 503:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"AzureException - {original_exception.message} {extra_information}",
model=model,
llm_provider="azure",
response=original_exception.response,
)
elif original_exception.status_code == 504: # gateway timeout error
exception_mapping_worked = True
raise Timeout(
message=f"AzureException - {original_exception.message} {extra_information}",
model=model,
llm_provider="azure",
)
else:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
request=httpx.Request(
method="POST", url="https://openai.com/"
),
)
else:
# if no status code then it is an APIConnectionError: https://github.com/openai/openai-python#handling-errors
raise APIConnectionError(
message=f"{exception_provider} - {message} {extra_information}",
llm_provider="azure",
model=model,
request=httpx.Request(method="POST", url="https://openai.com/"),
)
if (
"BadRequestError.__init__() missing 1 required positional argument: 'param'"
in str(original_exception)
): # deal with edge-case invalid request error bug in openai-python sdk
exception_mapping_worked = True
raise BadRequestError(
message=f"{exception_provider}: This can happen due to missing AZURE_API_VERSION: {str(original_exception)}",
model=model,
llm_provider=custom_llm_provider,
response=original_exception.response,
)
else: # ensure generic errors always return APIConnectionError=
exception_mapping_worked = True
if hasattr(original_exception, "request"):
raise APIConnectionError(
message=f"{str(original_exception)}",
llm_provider=custom_llm_provider,
model=model,
request=original_exception.request,
)
else:
raise APIConnectionError(
message=f"{str(original_exception)}",
llm_provider=custom_llm_provider,
model=model,
request=httpx.Request(
method="POST", url="https://api.openai.com/v1/"
), # stub the request
)
except Exception as e:
# LOGGING
exception_logging(
logger_fn=user_logger_fn,
additional_args={
"exception_mapping_worked": exception_mapping_worked,
"original_exception": original_exception,
},
exception=e,
)
## AUTH ERROR
if isinstance(e, AuthenticationError) and (
litellm.email or "LITELLM_EMAIL" in os.environ
):
threading.Thread(target=get_all_keys, args=(e.llm_provider,)).start()
# don't let an error with mapping interrupt the user from receiving an error from the llm api calls
if exception_mapping_worked:
raise e
else:
raise original_exception
|
(model, original_exception, custom_llm_provider, completion_kwargs={}, extra_kwargs={})
|
64,300 |
litellm.llms.prompt_templates.factory
|
function_call_prompt
| null |
def function_call_prompt(messages: list, functions: list):
function_prompt = """Produce JSON OUTPUT ONLY! Adhere to this format {"name": "function_name", "arguments":{"argument_name": "argument_value"}} The following functions are available to you:"""
for function in functions:
function_prompt += f"""\n{function}\n"""
function_added_to_prompt = False
for message in messages:
if "system" in message["role"]:
message["content"] += f""" {function_prompt}"""
function_added_to_prompt = True
if function_added_to_prompt == False:
messages.append({"role": "system", "content": f"""{function_prompt}"""})
return messages
|
(messages: list, functions: list)
|
64,302 |
litellm.utils
|
get_api_base
|
Returns the api base used for calling the model.
Parameters:
- model: str - the model passed to litellm.completion()
- optional_params - the 'litellm_params' in router.completion *OR* additional params passed to litellm.completion - eg. api_base, api_key, etc. See `LiteLLM_Params` - https://github.com/BerriAI/litellm/blob/f09e6ba98d65e035a79f73bc069145002ceafd36/litellm/router.py#L67
Returns:
- string (api_base) or None
Example:
```
from litellm import get_api_base
get_api_base(model="gemini/gemini-pro")
```
|
def get_api_base(model: str, optional_params: dict) -> Optional[str]:
"""
Returns the api base used for calling the model.
Parameters:
- model: str - the model passed to litellm.completion()
- optional_params - the 'litellm_params' in router.completion *OR* additional params passed to litellm.completion - eg. api_base, api_key, etc. See `LiteLLM_Params` - https://github.com/BerriAI/litellm/blob/f09e6ba98d65e035a79f73bc069145002ceafd36/litellm/router.py#L67
Returns:
- string (api_base) or None
Example:
```
from litellm import get_api_base
get_api_base(model="gemini/gemini-pro")
```
"""
try:
if "model" in optional_params:
_optional_params = LiteLLM_Params(**optional_params)
else: # prevent needing to copy and pop the dict
_optional_params = LiteLLM_Params(
model=model, **optional_params
) # convert to pydantic object
except Exception as e:
verbose_logger.debug("Error occurred in getting api base - {}".format(str(e)))
return None
# get llm provider
if _optional_params.api_base is not None:
return _optional_params.api_base
if litellm.model_alias_map and model in litellm.model_alias_map:
model = litellm.model_alias_map[model]
try:
model, custom_llm_provider, dynamic_api_key, dynamic_api_base = (
get_llm_provider(
model=model,
custom_llm_provider=_optional_params.custom_llm_provider,
api_base=_optional_params.api_base,
api_key=_optional_params.api_key,
)
)
except Exception as e:
verbose_logger.error("Error occurred in getting api base - {}".format(str(e)))
custom_llm_provider = None
dynamic_api_key = None
dynamic_api_base = None
if dynamic_api_base is not None:
return dynamic_api_base
if (
_optional_params.vertex_location is not None
and _optional_params.vertex_project is not None
):
_api_base = "{}-aiplatform.googleapis.com/v1/projects/{}/locations/{}/publishers/google/models/{}:streamGenerateContent".format(
_optional_params.vertex_location,
_optional_params.vertex_project,
_optional_params.vertex_location,
model,
)
return _api_base
if custom_llm_provider is None:
return None
if custom_llm_provider == "gemini":
_api_base = "https://generativelanguage.googleapis.com/v1beta/models/{}:generateContent".format(
model
)
return _api_base
elif custom_llm_provider == "openai":
_api_base = "https://api.openai.com"
return _api_base
return None
|
(model: str, optional_params: dict) -> Optional[str]
|
64,303 |
litellm.utils
|
get_api_key
| null |
def get_api_key(llm_provider: str, dynamic_api_key: Optional[str]):
api_key = dynamic_api_key or litellm.api_key
# openai
if llm_provider == "openai" or llm_provider == "text-completion-openai":
api_key = api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
# anthropic
elif llm_provider == "anthropic":
api_key = api_key or litellm.anthropic_key or get_secret("ANTHROPIC_API_KEY")
# ai21
elif llm_provider == "ai21":
api_key = api_key or litellm.ai21_key or get_secret("AI211_API_KEY")
# aleph_alpha
elif llm_provider == "aleph_alpha":
api_key = (
api_key or litellm.aleph_alpha_key or get_secret("ALEPH_ALPHA_API_KEY")
)
# baseten
elif llm_provider == "baseten":
api_key = api_key or litellm.baseten_key or get_secret("BASETEN_API_KEY")
# cohere
elif llm_provider == "cohere" or llm_provider == "cohere_chat":
api_key = api_key or litellm.cohere_key or get_secret("COHERE_API_KEY")
# huggingface
elif llm_provider == "huggingface":
api_key = (
api_key or litellm.huggingface_key or get_secret("HUGGINGFACE_API_KEY")
)
# nlp_cloud
elif llm_provider == "nlp_cloud":
api_key = api_key or litellm.nlp_cloud_key or get_secret("NLP_CLOUD_API_KEY")
# replicate
elif llm_provider == "replicate":
api_key = api_key or litellm.replicate_key or get_secret("REPLICATE_API_KEY")
# together_ai
elif llm_provider == "together_ai":
api_key = (
api_key
or litellm.togetherai_api_key
or get_secret("TOGETHERAI_API_KEY")
or get_secret("TOGETHER_AI_TOKEN")
)
return api_key
|
(llm_provider: str, dynamic_api_key: Optional[str])
|
64,304 |
litellm.assistants.main
|
get_assistants
| null |
def get_assistants(
custom_llm_provider: Literal["openai"],
client: Optional[OpenAI] = None,
**kwargs,
) -> SyncCursorPage[Assistant]:
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
response: Optional[SyncCursorPage[Assistant]] = None
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_assistants_api.get_assistants(
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
client=client,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'get_assistants'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
|
(custom_llm_provider: Literal['openai'], client: Optional[openai.OpenAI] = None, **kwargs) -> openai.pagination.SyncCursorPage[Assistant]
|
64,305 |
litellm.utils
|
get_first_chars_messages
| null |
def get_first_chars_messages(kwargs: dict) -> str:
try:
_messages = kwargs.get("messages")
_messages = str(_messages)[:100]
return _messages
except:
return ""
|
(kwargs: dict) -> str
|
64,306 |
litellm.utils
|
get_litellm_params
| null |
def get_litellm_params(
api_key=None,
force_timeout=600,
azure=False,
logger_fn=None,
verbose=False,
hugging_face=False,
replicate=False,
together_ai=False,
custom_llm_provider=None,
api_base=None,
litellm_call_id=None,
model_alias_map=None,
completion_call_id=None,
metadata=None,
model_info=None,
proxy_server_request=None,
acompletion=None,
preset_cache_key=None,
no_log=None,
):
litellm_params = {
"acompletion": acompletion,
"api_key": api_key,
"force_timeout": force_timeout,
"logger_fn": logger_fn,
"verbose": verbose,
"custom_llm_provider": custom_llm_provider,
"api_base": api_base,
"litellm_call_id": litellm_call_id,
"model_alias_map": model_alias_map,
"completion_call_id": completion_call_id,
"metadata": metadata,
"model_info": model_info,
"proxy_server_request": proxy_server_request,
"preset_cache_key": preset_cache_key,
"no-log": no_log,
"stream_response": {}, # litellm_call_id: ModelResponse Dict
}
return litellm_params
|
(api_key=None, force_timeout=600, azure=False, logger_fn=None, verbose=False, hugging_face=False, replicate=False, together_ai=False, custom_llm_provider=None, api_base=None, litellm_call_id=None, model_alias_map=None, completion_call_id=None, metadata=None, model_info=None, proxy_server_request=None, acompletion=None, preset_cache_key=None, no_log=None)
|
64,307 |
litellm.utils
|
get_llm_provider
|
Returns the provider for a given model name - e.g. 'azure/chatgpt-v-2' -> 'azure'
For router -> Can also give the whole litellm param dict -> this function will extract the relevant details
|
def get_llm_provider(
model: str,
custom_llm_provider: Optional[str] = None,
api_base: Optional[str] = None,
api_key: Optional[str] = None,
litellm_params: Optional[LiteLLM_Params] = None,
) -> Tuple[str, str, Optional[str], Optional[str]]:
"""
Returns the provider for a given model name - e.g. 'azure/chatgpt-v-2' -> 'azure'
For router -> Can also give the whole litellm param dict -> this function will extract the relevant details
"""
try:
## IF LITELLM PARAMS GIVEN ##
if litellm_params is not None:
assert (
custom_llm_provider is None and api_base is None and api_key is None
), "Either pass in litellm_params or the custom_llm_provider/api_base/api_key. Otherwise, these values will be overriden."
custom_llm_provider = litellm_params.custom_llm_provider
api_base = litellm_params.api_base
api_key = litellm_params.api_key
dynamic_api_key = None
# check if llm provider provided
# AZURE AI-Studio Logic - Azure AI Studio supports AZURE/Cohere
# If User passes azure/command-r-plus -> we should send it to cohere_chat/command-r-plus
if model.split("/", 1)[0] == "azure":
if _is_non_openai_azure_model(model):
custom_llm_provider = "openai"
return model, custom_llm_provider, dynamic_api_key, api_base
if custom_llm_provider:
return model, custom_llm_provider, dynamic_api_key, api_base
if api_key and api_key.startswith("os.environ/"):
dynamic_api_key = get_secret(api_key)
# check if llm provider part of model name
if (
model.split("/", 1)[0] in litellm.provider_list
and model.split("/", 1)[0] not in litellm.model_list
and len(model.split("/"))
> 1 # handle edge case where user passes in `litellm --model mistral` https://github.com/BerriAI/litellm/issues/1351
):
custom_llm_provider = model.split("/", 1)[0]
model = model.split("/", 1)[1]
if custom_llm_provider == "perplexity":
# perplexity is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.perplexity.ai
api_base = "https://api.perplexity.ai"
dynamic_api_key = get_secret("PERPLEXITYAI_API_KEY")
elif custom_llm_provider == "anyscale":
# anyscale is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.endpoints.anyscale.com/v1
api_base = "https://api.endpoints.anyscale.com/v1"
dynamic_api_key = get_secret("ANYSCALE_API_KEY")
elif custom_llm_provider == "deepinfra":
# deepinfra is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.endpoints.anyscale.com/v1
api_base = "https://api.deepinfra.com/v1/openai"
dynamic_api_key = get_secret("DEEPINFRA_API_KEY")
elif custom_llm_provider == "groq":
# groq is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.groq.com/openai/v1
api_base = "https://api.groq.com/openai/v1"
dynamic_api_key = get_secret("GROQ_API_KEY")
elif custom_llm_provider == "deepseek":
# deepseek is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.deepseek.com/v1
api_base = "https://api.deepseek.com/v1"
dynamic_api_key = get_secret("DEEPSEEK_API_KEY")
elif custom_llm_provider == "fireworks_ai":
# fireworks is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.fireworks.ai/inference/v1
if not model.startswith("accounts/fireworks/models"):
model = f"accounts/fireworks/models/{model}"
api_base = "https://api.fireworks.ai/inference/v1"
dynamic_api_key = (
get_secret("FIREWORKS_API_KEY")
or get_secret("FIREWORKS_AI_API_KEY")
or get_secret("FIREWORKSAI_API_KEY")
or get_secret("FIREWORKS_AI_TOKEN")
)
elif custom_llm_provider == "mistral":
# mistral is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.mistral.ai
api_base = (
api_base
or get_secret("MISTRAL_AZURE_API_BASE") # for Azure AI Mistral
or "https://api.mistral.ai/v1"
) # type: ignore
# if api_base does not end with /v1 we add it
if api_base is not None and not api_base.endswith(
"/v1"
): # Mistral always needs a /v1 at the end
api_base = api_base + "/v1"
dynamic_api_key = (
api_key
or get_secret("MISTRAL_AZURE_API_KEY") # for Azure AI Mistral
or get_secret("MISTRAL_API_KEY")
)
elif custom_llm_provider == "voyage":
# voyage is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.voyageai.com/v1
api_base = "https://api.voyageai.com/v1"
dynamic_api_key = get_secret("VOYAGE_API_KEY")
elif custom_llm_provider == "together_ai":
api_base = "https://api.together.xyz/v1"
dynamic_api_key = (
get_secret("TOGETHER_API_KEY")
or get_secret("TOGETHER_AI_API_KEY")
or get_secret("TOGETHERAI_API_KEY")
or get_secret("TOGETHER_AI_TOKEN")
)
if api_base is not None and not isinstance(api_base, str):
raise Exception(
"api base needs to be a string. api_base={}".format(api_base)
)
if dynamic_api_key is not None and not isinstance(dynamic_api_key, str):
raise Exception(
"dynamic_api_key needs to be a string. dynamic_api_key={}".format(
dynamic_api_key
)
)
return model, custom_llm_provider, dynamic_api_key, api_base
elif model.split("/", 1)[0] in litellm.provider_list:
custom_llm_provider = model.split("/", 1)[0]
model = model.split("/", 1)[1]
if api_base is not None and not isinstance(api_base, str):
raise Exception(
"api base needs to be a string. api_base={}".format(api_base)
)
if dynamic_api_key is not None and not isinstance(dynamic_api_key, str):
raise Exception(
"dynamic_api_key needs to be a string. dynamic_api_key={}".format(
dynamic_api_key
)
)
return model, custom_llm_provider, dynamic_api_key, api_base
# check if api base is a known openai compatible endpoint
if api_base:
for endpoint in litellm.openai_compatible_endpoints:
if endpoint in api_base:
if endpoint == "api.perplexity.ai":
custom_llm_provider = "perplexity"
dynamic_api_key = get_secret("PERPLEXITYAI_API_KEY")
elif endpoint == "api.endpoints.anyscale.com/v1":
custom_llm_provider = "anyscale"
dynamic_api_key = get_secret("ANYSCALE_API_KEY")
elif endpoint == "api.deepinfra.com/v1/openai":
custom_llm_provider = "deepinfra"
dynamic_api_key = get_secret("DEEPINFRA_API_KEY")
elif endpoint == "api.mistral.ai/v1":
custom_llm_provider = "mistral"
dynamic_api_key = get_secret("MISTRAL_API_KEY")
elif endpoint == "api.groq.com/openai/v1":
custom_llm_provider = "groq"
dynamic_api_key = get_secret("GROQ_API_KEY")
elif endpoint == "api.deepseek.com/v1":
custom_llm_provider = "deepseek"
dynamic_api_key = get_secret("DEEPSEEK_API_KEY")
if api_base is not None and not isinstance(api_base, str):
raise Exception(
"api base needs to be a string. api_base={}".format(
api_base
)
)
if dynamic_api_key is not None and not isinstance(
dynamic_api_key, str
):
raise Exception(
"dynamic_api_key needs to be a string. dynamic_api_key={}".format(
dynamic_api_key
)
)
return model, custom_llm_provider, dynamic_api_key, api_base # type: ignore
# check if model in known model provider list -> for huggingface models, raise exception as they don't have a fixed provider (can be togetherai, anyscale, baseten, runpod, et.)
## openai - chatcompletion + text completion
if (
model in litellm.open_ai_chat_completion_models
or "ft:gpt-3.5-turbo" in model
or model in litellm.openai_image_generation_models
):
custom_llm_provider = "openai"
elif model in litellm.open_ai_text_completion_models:
custom_llm_provider = "text-completion-openai"
## anthropic
elif model in litellm.anthropic_models:
custom_llm_provider = "anthropic"
## cohere
elif model in litellm.cohere_models or model in litellm.cohere_embedding_models:
custom_llm_provider = "cohere"
## cohere chat models
elif model in litellm.cohere_chat_models:
custom_llm_provider = "cohere_chat"
## replicate
elif model in litellm.replicate_models or (":" in model and len(model) > 64):
model_parts = model.split(":")
if (
len(model_parts) > 1 and len(model_parts[1]) == 64
): ## checks if model name has a 64 digit code - e.g. "meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3"
custom_llm_provider = "replicate"
elif model in litellm.replicate_models:
custom_llm_provider = "replicate"
## openrouter
elif model in litellm.openrouter_models:
custom_llm_provider = "openrouter"
## openrouter
elif model in litellm.maritalk_models:
custom_llm_provider = "maritalk"
## vertex - text + chat + language (gemini) models
elif (
model in litellm.vertex_chat_models
or model in litellm.vertex_code_chat_models
or model in litellm.vertex_text_models
or model in litellm.vertex_code_text_models
or model in litellm.vertex_language_models
or model in litellm.vertex_embedding_models
or model in litellm.vertex_vision_models
):
custom_llm_provider = "vertex_ai"
## ai21
elif model in litellm.ai21_models:
custom_llm_provider = "ai21"
## aleph_alpha
elif model in litellm.aleph_alpha_models:
custom_llm_provider = "aleph_alpha"
## baseten
elif model in litellm.baseten_models:
custom_llm_provider = "baseten"
## nlp_cloud
elif model in litellm.nlp_cloud_models:
custom_llm_provider = "nlp_cloud"
## petals
elif model in litellm.petals_models:
custom_llm_provider = "petals"
## bedrock
elif (
model in litellm.bedrock_models or model in litellm.bedrock_embedding_models
):
custom_llm_provider = "bedrock"
elif model in litellm.watsonx_models:
custom_llm_provider = "watsonx"
# openai embeddings
elif model in litellm.open_ai_embedding_models:
custom_llm_provider = "openai"
if custom_llm_provider is None or custom_llm_provider == "":
if litellm.suppress_debug_info == False:
print() # noqa
print( # noqa
"\033[1;31mProvider List: https://docs.litellm.ai/docs/providers\033[0m" # noqa
) # noqa
print() # noqa
error_str = f"LLM Provider NOT provided. Pass in the LLM provider you are trying to call. You passed model={model}\n Pass model as E.g. For 'Huggingface' inference endpoints pass in `completion(model='huggingface/starcoder',..)` Learn more: https://docs.litellm.ai/docs/providers"
# maps to openai.NotFoundError, this is raised when openai does not recognize the llm
raise litellm.exceptions.BadRequestError( # type: ignore
message=error_str,
model=model,
response=httpx.Response(
status_code=400,
content=error_str,
request=httpx.Request(method="completion", url="https://github.com/BerriAI/litellm"), # type: ignore
),
llm_provider="",
)
if api_base is not None and not isinstance(api_base, str):
raise Exception(
"api base needs to be a string. api_base={}".format(api_base)
)
if dynamic_api_key is not None and not isinstance(dynamic_api_key, str):
raise Exception(
"dynamic_api_key needs to be a string. dynamic_api_key={}".format(
dynamic_api_key
)
)
return model, custom_llm_provider, dynamic_api_key, api_base
except Exception as e:
if isinstance(e, litellm.exceptions.BadRequestError):
raise e
else:
error_str = (
f"GetLLMProvider Exception - {str(e)}\n\noriginal model: {model}"
)
raise litellm.exceptions.BadRequestError( # type: ignore
message=f"GetLLMProvider Exception - {str(e)}\n\noriginal model: {model}",
model=model,
response=httpx.Response(
status_code=400,
content=error_str,
request=httpx.Request(method="completion", url="https://github.com/BerriAI/litellm"), # type: ignore
),
llm_provider="",
)
|
(model: str, custom_llm_provider: Optional[str] = None, api_base: Optional[str] = None, api_key: Optional[str] = None, litellm_params: Optional[litellm.types.router.LiteLLM_Params] = None) -> Tuple[str, str, Optional[str], Optional[str]]
|
64,308 |
litellm.utils
|
get_max_tokens
|
Get the maximum number of output tokens allowed for a given model.
Parameters:
model (str): The name of the model.
Returns:
int: The maximum number of tokens allowed for the given model.
Raises:
Exception: If the model is not mapped yet.
Example:
>>> get_max_tokens("gpt-4")
8192
|
def get_max_tokens(model: str):
"""
Get the maximum number of output tokens allowed for a given model.
Parameters:
model (str): The name of the model.
Returns:
int: The maximum number of tokens allowed for the given model.
Raises:
Exception: If the model is not mapped yet.
Example:
>>> get_max_tokens("gpt-4")
8192
"""
def _get_max_position_embeddings(model_name):
# Construct the URL for the config.json file
config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
try:
# Make the HTTP request to get the raw JSON file
response = requests.get(config_url)
response.raise_for_status() # Raise an exception for bad responses (4xx or 5xx)
# Parse the JSON response
config_json = response.json()
# Extract and return the max_position_embeddings
max_position_embeddings = config_json.get("max_position_embeddings")
if max_position_embeddings is not None:
return max_position_embeddings
else:
return None
except requests.exceptions.RequestException as e:
return None
try:
if model in litellm.model_cost:
if "max_output_tokens" in litellm.model_cost[model]:
return litellm.model_cost[model]["max_output_tokens"]
elif "max_tokens" in litellm.model_cost[model]:
return litellm.model_cost[model]["max_tokens"]
model, custom_llm_provider, _, _ = get_llm_provider(model=model)
if custom_llm_provider == "huggingface":
max_tokens = _get_max_position_embeddings(model_name=model)
return max_tokens
else:
raise Exception()
except:
raise Exception(
"This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
)
|
(model: str)
|
64,309 |
litellm.assistants.main
|
get_messages
| null |
def get_messages(
custom_llm_provider: Literal["openai"],
thread_id: str,
client: Optional[OpenAI] = None,
**kwargs,
) -> SyncCursorPage[OpenAIMessage]:
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
response: Optional[SyncCursorPage[OpenAIMessage]] = None
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_assistants_api.get_messages(
thread_id=thread_id,
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
client=client,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'get_messages'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
|
(custom_llm_provider: Literal['openai'], thread_id: str, client: Optional[openai.OpenAI] = None, **kwargs) -> openai.pagination.SyncCursorPage[Message]
|
64,310 |
litellm
|
get_model_cost_map
| null |
def get_model_cost_map(url: str):
if (
os.getenv("LITELLM_LOCAL_MODEL_COST_MAP", False) == True
or os.getenv("LITELLM_LOCAL_MODEL_COST_MAP", False) == "True"
):
import importlib.resources
import json
with importlib.resources.open_text(
"litellm", "model_prices_and_context_window_backup.json"
) as f:
content = json.load(f)
return content
try:
with requests.get(
url, timeout=5
) as response: # set a 5 second timeout for the get request
response.raise_for_status() # Raise an exception if the request is unsuccessful
content = response.json()
return content
except Exception as e:
import importlib.resources
import json
with importlib.resources.open_text(
"litellm", "model_prices_and_context_window_backup.json"
) as f:
content = json.load(f)
return content
|
(url: str)
|
64,311 |
litellm.utils
|
get_model_info
|
Get a dict for the maximum tokens (context window),
input_cost_per_token, output_cost_per_token for a given model.
Parameters:
model (str): The name of the model.
Returns:
dict: A dictionary containing the following information:
- max_tokens (int): The maximum number of tokens allowed for the given model.
- input_cost_per_token (float): The cost per token for input.
- output_cost_per_token (float): The cost per token for output.
- litellm_provider (str): The provider of the model (e.g., "openai").
- mode (str): The mode of the model (e.g., "chat" or "completion").
Raises:
Exception: If the model is not mapped yet.
Example:
>>> get_model_info("gpt-4")
{
"max_tokens": 8192,
"input_cost_per_token": 0.00003,
"output_cost_per_token": 0.00006,
"litellm_provider": "openai",
"mode": "chat"
}
|
def get_model_info(model: str):
"""
Get a dict for the maximum tokens (context window),
input_cost_per_token, output_cost_per_token for a given model.
Parameters:
model (str): The name of the model.
Returns:
dict: A dictionary containing the following information:
- max_tokens (int): The maximum number of tokens allowed for the given model.
- input_cost_per_token (float): The cost per token for input.
- output_cost_per_token (float): The cost per token for output.
- litellm_provider (str): The provider of the model (e.g., "openai").
- mode (str): The mode of the model (e.g., "chat" or "completion").
Raises:
Exception: If the model is not mapped yet.
Example:
>>> get_model_info("gpt-4")
{
"max_tokens": 8192,
"input_cost_per_token": 0.00003,
"output_cost_per_token": 0.00006,
"litellm_provider": "openai",
"mode": "chat"
}
"""
def _get_max_position_embeddings(model_name):
# Construct the URL for the config.json file
config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
try:
# Make the HTTP request to get the raw JSON file
response = requests.get(config_url)
response.raise_for_status() # Raise an exception for bad responses (4xx or 5xx)
# Parse the JSON response
config_json = response.json()
# Extract and return the max_position_embeddings
max_position_embeddings = config_json.get("max_position_embeddings")
if max_position_embeddings is not None:
return max_position_embeddings
else:
return None
except requests.exceptions.RequestException as e:
return None
try:
azure_llms = litellm.azure_llms
if model in azure_llms:
model = azure_llms[model]
if model in litellm.model_cost:
return litellm.model_cost[model]
model, custom_llm_provider, _, _ = get_llm_provider(model=model)
if custom_llm_provider == "huggingface":
max_tokens = _get_max_position_embeddings(model_name=model)
return {
"max_tokens": max_tokens,
"input_cost_per_token": 0,
"output_cost_per_token": 0,
"litellm_provider": "huggingface",
"mode": "chat",
}
else:
"""
Check if model in model cost map
"""
if model in litellm.model_cost:
return litellm.model_cost[model]
else:
raise Exception()
except:
raise Exception(
"This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
)
|
(model: str)
|
64,312 |
litellm.utils
|
get_model_list
| null |
def get_model_list():
global last_fetched_at, print_verbose
try:
# if user is using hosted product -> get their updated model list
user_email = (
os.getenv("LITELLM_EMAIL")
or litellm.email
or litellm.token
or os.getenv("LITELLM_TOKEN")
)
if user_email:
# make the api call
last_fetched_at = time.time()
print_verbose(f"last_fetched_at: {last_fetched_at}")
response = requests.post(
url="http://api.litellm.ai/get_model_list",
headers={"content-type": "application/json"},
data=json.dumps({"user_email": user_email}),
)
print_verbose(f"get_model_list response: {response.text}")
data = response.json()
# update model list
model_list = data["model_list"]
# # check if all model providers are in environment
# model_providers = data["model_providers"]
# missing_llm_provider = None
# for item in model_providers:
# if f"{item.upper()}_API_KEY" not in os.environ:
# missing_llm_provider = item
# break
# # update environment - if required
# threading.Thread(target=get_all_keys, args=(missing_llm_provider)).start()
return model_list
return [] # return empty list by default
except:
print_verbose(
f"[Non-Blocking Error] get_model_list error - {traceback.format_exc()}"
)
|
()
|
64,313 |
litellm.utils
|
get_optional_params
| null |
def get_optional_params(
# use the openai defaults
# https://platform.openai.com/docs/api-reference/chat/create
model: str,
functions=None,
function_call=None,
temperature=None,
top_p=None,
n=None,
stream=False,
stream_options=None,
stop=None,
max_tokens=None,
presence_penalty=None,
frequency_penalty=None,
logit_bias=None,
user=None,
custom_llm_provider="",
response_format=None,
seed=None,
tools=None,
tool_choice=None,
max_retries=None,
logprobs=None,
top_logprobs=None,
extra_headers=None,
**kwargs,
):
# retrieve all parameters passed to the function
passed_params = locals().copy()
special_params = passed_params.pop("kwargs")
for k, v in special_params.items():
if k.startswith("aws_") and (
custom_llm_provider != "bedrock" and custom_llm_provider != "sagemaker"
): # allow dynamically setting boto3 init logic
continue
elif k == "hf_model_name" and custom_llm_provider != "sagemaker":
continue
elif (
k.startswith("vertex_") and custom_llm_provider != "vertex_ai"
): # allow dynamically setting vertex ai init logic
continue
passed_params[k] = v
optional_params: Dict = {}
common_auth_dict = litellm.common_cloud_provider_auth_params
if custom_llm_provider in common_auth_dict["providers"]:
"""
Check if params = ["project", "region_name", "token"]
and correctly translate for = ["azure", "vertex_ai", "watsonx", "aws"]
"""
if custom_llm_provider == "azure":
optional_params = litellm.AzureOpenAIConfig().map_special_auth_params(
non_default_params=passed_params, optional_params=optional_params
)
elif custom_llm_provider == "bedrock":
optional_params = (
litellm.AmazonBedrockGlobalConfig().map_special_auth_params(
non_default_params=passed_params, optional_params=optional_params
)
)
elif custom_llm_provider == "vertex_ai":
optional_params = litellm.VertexAIConfig().map_special_auth_params(
non_default_params=passed_params, optional_params=optional_params
)
elif custom_llm_provider == "watsonx":
optional_params = litellm.IBMWatsonXAIConfig().map_special_auth_params(
non_default_params=passed_params, optional_params=optional_params
)
default_params = {
"functions": None,
"function_call": None,
"temperature": None,
"top_p": None,
"n": None,
"stream": None,
"stream_options": None,
"stop": None,
"max_tokens": None,
"presence_penalty": None,
"frequency_penalty": None,
"logit_bias": None,
"user": None,
"model": None,
"custom_llm_provider": "",
"response_format": None,
"seed": None,
"tools": None,
"tool_choice": None,
"max_retries": None,
"logprobs": None,
"top_logprobs": None,
"extra_headers": None,
}
# filter out those parameters that were passed with non-default values
non_default_params = {
k: v
for k, v in passed_params.items()
if (
k != "model"
and k != "custom_llm_provider"
and k in default_params
and v != default_params[k]
)
}
## raise exception if function calling passed in for a provider that doesn't support it
if (
"functions" in non_default_params
or "function_call" in non_default_params
or "tools" in non_default_params
):
if (
custom_llm_provider != "openai"
and custom_llm_provider != "text-completion-openai"
and custom_llm_provider != "azure"
and custom_llm_provider != "vertex_ai"
and custom_llm_provider != "anyscale"
and custom_llm_provider != "together_ai"
and custom_llm_provider != "groq"
and custom_llm_provider != "deepseek"
and custom_llm_provider != "mistral"
and custom_llm_provider != "anthropic"
and custom_llm_provider != "cohere_chat"
and custom_llm_provider != "cohere"
and custom_llm_provider != "bedrock"
and custom_llm_provider != "ollama_chat"
):
if custom_llm_provider == "ollama":
# ollama actually supports json output
optional_params["format"] = "json"
litellm.add_function_to_prompt = (
True # so that main.py adds the function call to the prompt
)
if "tools" in non_default_params:
optional_params["functions_unsupported_model"] = (
non_default_params.pop("tools")
)
non_default_params.pop(
"tool_choice", None
) # causes ollama requests to hang
elif "functions" in non_default_params:
optional_params["functions_unsupported_model"] = (
non_default_params.pop("functions")
)
elif (
litellm.add_function_to_prompt
): # if user opts to add it to prompt instead
optional_params["functions_unsupported_model"] = non_default_params.pop(
"tools", non_default_params.pop("functions", None)
)
else:
raise UnsupportedParamsError(
status_code=500,
message=f"Function calling is not supported by {custom_llm_provider}.",
)
def _check_valid_arg(supported_params):
verbose_logger.debug(
f"\nLiteLLM completion() model= {model}; provider = {custom_llm_provider}"
)
verbose_logger.debug(
f"\nLiteLLM: Params passed to completion() {passed_params}"
)
verbose_logger.debug(
f"\nLiteLLM: Non-Default params passed to completion() {non_default_params}"
)
unsupported_params = {}
for k in non_default_params.keys():
if k not in supported_params:
if k == "user":
continue
if k == "n" and n == 1: # langchain sends n=1 as a default value
continue # skip this param
if (
k == "max_retries"
): # TODO: This is a patch. We support max retries for OpenAI, Azure. For non OpenAI LLMs we need to add support for max retries
continue # skip this param
# Always keeps this in elif code blocks
else:
unsupported_params[k] = non_default_params[k]
if unsupported_params and not litellm.drop_params:
raise UnsupportedParamsError(
status_code=500,
message=f"{custom_llm_provider} does not support parameters: {unsupported_params}. To drop these, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\n",
)
def _map_and_modify_arg(supported_params: dict, provider: str, model: str):
"""
filter params to fit the required provider format, drop those that don't fit if user sets `litellm.drop_params = True`.
"""
filtered_stop = None
if "stop" in supported_params and litellm.drop_params:
if provider == "bedrock" and "amazon" in model:
filtered_stop = []
if isinstance(stop, list):
for s in stop:
if re.match(r"^(\|+|User:)$", s):
filtered_stop.append(s)
if filtered_stop is not None:
supported_params["stop"] = filtered_stop
return supported_params
## raise exception if provider doesn't support passed in param
if custom_llm_provider == "anthropic":
## check if unsupported param passed in
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.AnthropicConfig().map_openai_params(
non_default_params=non_default_params, optional_params=optional_params
)
elif custom_llm_provider == "cohere":
## check if unsupported param passed in
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
# handle cohere params
if stream:
optional_params["stream"] = stream
if temperature is not None:
optional_params["temperature"] = temperature
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
if n is not None:
optional_params["num_generations"] = n
if logit_bias is not None:
optional_params["logit_bias"] = logit_bias
if top_p is not None:
optional_params["p"] = top_p
if frequency_penalty is not None:
optional_params["frequency_penalty"] = frequency_penalty
if presence_penalty is not None:
optional_params["presence_penalty"] = presence_penalty
if stop is not None:
optional_params["stop_sequences"] = stop
elif custom_llm_provider == "cohere_chat":
## check if unsupported param passed in
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
# handle cohere params
if stream:
optional_params["stream"] = stream
if temperature is not None:
optional_params["temperature"] = temperature
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
if n is not None:
optional_params["num_generations"] = n
if top_p is not None:
optional_params["p"] = top_p
if frequency_penalty is not None:
optional_params["frequency_penalty"] = frequency_penalty
if presence_penalty is not None:
optional_params["presence_penalty"] = presence_penalty
if stop is not None:
optional_params["stop_sequences"] = stop
if tools is not None:
optional_params["tools"] = tools
if seed is not None:
optional_params["seed"] = seed
elif custom_llm_provider == "maritalk":
## check if unsupported param passed in
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
# handle cohere params
if stream:
optional_params["stream"] = stream
if temperature is not None:
optional_params["temperature"] = temperature
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
if logit_bias is not None:
optional_params["logit_bias"] = logit_bias
if top_p is not None:
optional_params["p"] = top_p
if presence_penalty is not None:
optional_params["repetition_penalty"] = presence_penalty
if stop is not None:
optional_params["stopping_tokens"] = stop
elif custom_llm_provider == "replicate":
## check if unsupported param passed in
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if stream:
optional_params["stream"] = stream
return optional_params
if max_tokens is not None:
if "vicuna" in model or "flan" in model:
optional_params["max_length"] = max_tokens
elif "meta/codellama-13b" in model:
optional_params["max_tokens"] = max_tokens
else:
optional_params["max_new_tokens"] = max_tokens
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if stop is not None:
optional_params["stop_sequences"] = stop
elif custom_llm_provider == "huggingface":
## check if unsupported param passed in
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.HuggingfaceConfig().map_openai_params(
non_default_params=non_default_params, optional_params=optional_params
)
elif custom_llm_provider == "together_ai":
## check if unsupported param passed in
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if stream:
optional_params["stream"] = stream
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
if frequency_penalty is not None:
optional_params["frequency_penalty"] = frequency_penalty
if stop is not None:
optional_params["stop"] = stop
if tools is not None:
optional_params["tools"] = tools
if tool_choice is not None:
optional_params["tool_choice"] = tool_choice
elif custom_llm_provider == "ai21":
## check if unsupported param passed in
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if stream:
optional_params["stream"] = stream
if n is not None:
optional_params["numResults"] = n
if max_tokens is not None:
optional_params["maxTokens"] = max_tokens
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["topP"] = top_p
if stop is not None:
optional_params["stopSequences"] = stop
if frequency_penalty is not None:
optional_params["frequencyPenalty"] = {"scale": frequency_penalty}
if presence_penalty is not None:
optional_params["presencePenalty"] = {"scale": presence_penalty}
elif (
custom_llm_provider == "palm" or custom_llm_provider == "gemini"
): # https://developers.generativeai.google/tutorials/curl_quickstart
## check if unsupported param passed in
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if stream:
optional_params["stream"] = stream
if n is not None:
optional_params["candidate_count"] = n
if stop is not None:
if isinstance(stop, str):
optional_params["stop_sequences"] = [stop]
elif isinstance(stop, list):
optional_params["stop_sequences"] = stop
if max_tokens is not None:
optional_params["max_output_tokens"] = max_tokens
elif custom_llm_provider == "vertex_ai" and (
model in litellm.vertex_chat_models
or model in litellm.vertex_code_chat_models
or model in litellm.vertex_text_models
or model in litellm.vertex_code_text_models
or model in litellm.vertex_language_models
or model in litellm.vertex_embedding_models
or model in litellm.vertex_vision_models
):
print_verbose(f"(start) INSIDE THE VERTEX AI OPTIONAL PARAM BLOCK")
## check if unsupported param passed in
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.VertexAIConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
)
print_verbose(
f"(end) INSIDE THE VERTEX AI OPTIONAL PARAM BLOCK - optional_params: {optional_params}"
)
elif (
custom_llm_provider == "vertex_ai" and model in litellm.vertex_anthropic_models
):
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.VertexAIAnthropicConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
)
elif custom_llm_provider == "sagemaker":
## check if unsupported param passed in
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
# temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
if temperature is not None:
if temperature == 0.0 or temperature == 0:
# hugging face exception raised when temp==0
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
temperature = 0.01
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if n is not None:
optional_params["best_of"] = n
optional_params["do_sample"] = (
True # Need to sample if you want best of for hf inference endpoints
)
if stream is not None:
optional_params["stream"] = stream
if stop is not None:
optional_params["stop"] = stop
if max_tokens is not None:
# HF TGI raises the following exception when max_new_tokens==0
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
if max_tokens == 0:
max_tokens = 1
optional_params["max_new_tokens"] = max_tokens
elif custom_llm_provider == "bedrock":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
if "ai21" in model:
_check_valid_arg(supported_params=supported_params)
# params "maxTokens":200,"temperature":0,"topP":250,"stop_sequences":[],
# https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra
if max_tokens is not None:
optional_params["maxTokens"] = max_tokens
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["topP"] = top_p
if stream:
optional_params["stream"] = stream
elif "anthropic" in model:
_check_valid_arg(supported_params=supported_params)
# anthropic params on bedrock
# \"max_tokens_to_sample\":300,\"temperature\":0.5,\"top_p\":1,\"stop_sequences\":[\"\\\\n\\\\nHuman:\"]}"
if model.startswith("anthropic.claude-3"):
optional_params = (
litellm.AmazonAnthropicClaude3Config().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
)
)
else:
optional_params = litellm.AmazonAnthropicConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
)
elif "amazon" in model: # amazon titan llms
_check_valid_arg(supported_params=supported_params)
# see https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-large
if max_tokens is not None:
optional_params["maxTokenCount"] = max_tokens
if temperature is not None:
optional_params["temperature"] = temperature
if stop is not None:
filtered_stop = _map_and_modify_arg(
{"stop": stop}, provider="bedrock", model=model
)
optional_params["stopSequences"] = filtered_stop["stop"]
if top_p is not None:
optional_params["topP"] = top_p
if stream:
optional_params["stream"] = stream
elif "meta" in model: # amazon / meta llms
_check_valid_arg(supported_params=supported_params)
# see https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-large
if max_tokens is not None:
optional_params["max_gen_len"] = max_tokens
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if stream:
optional_params["stream"] = stream
elif "cohere" in model: # cohere models on bedrock
_check_valid_arg(supported_params=supported_params)
# handle cohere params
if stream:
optional_params["stream"] = stream
if temperature is not None:
optional_params["temperature"] = temperature
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
elif "mistral" in model:
_check_valid_arg(supported_params=supported_params)
# mistral params on bedrock
# \"max_tokens\":400,\"temperature\":0.7,\"top_p\":0.7,\"stop\":[\"\\\\n\\\\nHuman:\"]}"
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if stop is not None:
optional_params["stop"] = stop
if stream is not None:
optional_params["stream"] = stream
elif custom_llm_provider == "aleph_alpha":
supported_params = [
"max_tokens",
"stream",
"top_p",
"temperature",
"presence_penalty",
"frequency_penalty",
"n",
"stop",
]
_check_valid_arg(supported_params=supported_params)
if max_tokens is not None:
optional_params["maximum_tokens"] = max_tokens
if stream:
optional_params["stream"] = stream
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if presence_penalty is not None:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty is not None:
optional_params["frequency_penalty"] = frequency_penalty
if n is not None:
optional_params["n"] = n
if stop is not None:
optional_params["stop_sequences"] = stop
elif custom_llm_provider == "cloudflare":
# https://developers.cloudflare.com/workers-ai/models/text-generation/#input
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
if stream is not None:
optional_params["stream"] = stream
elif custom_llm_provider == "ollama":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if max_tokens is not None:
optional_params["num_predict"] = max_tokens
if stream:
optional_params["stream"] = stream
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if frequency_penalty is not None:
optional_params["repeat_penalty"] = frequency_penalty
if stop is not None:
optional_params["stop"] = stop
if response_format is not None and response_format["type"] == "json_object":
optional_params["format"] = "json"
elif custom_llm_provider == "ollama_chat":
supported_params = litellm.OllamaChatConfig().get_supported_openai_params()
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.OllamaChatConfig().map_openai_params(
non_default_params=non_default_params, optional_params=optional_params
)
elif custom_llm_provider == "nlp_cloud":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if max_tokens is not None:
optional_params["max_length"] = max_tokens
if stream:
optional_params["stream"] = stream
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if presence_penalty is not None:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty is not None:
optional_params["frequency_penalty"] = frequency_penalty
if n is not None:
optional_params["num_return_sequences"] = n
if stop is not None:
optional_params["stop_sequences"] = stop
elif custom_llm_provider == "petals":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
# max_new_tokens=1,temperature=0.9, top_p=0.6
if max_tokens is not None:
optional_params["max_new_tokens"] = max_tokens
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if stream:
optional_params["stream"] = stream
elif custom_llm_provider == "deepinfra":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if temperature is not None:
if (
temperature == 0 and model == "mistralai/Mistral-7B-Instruct-v0.1"
): # this model does no support temperature == 0
temperature = 0.0001 # close to 0
optional_params["temperature"] = temperature
if top_p:
optional_params["top_p"] = top_p
if n:
optional_params["n"] = n
if stream:
optional_params["stream"] = stream
if stop:
optional_params["stop"] = stop
if max_tokens:
optional_params["max_tokens"] = max_tokens
if presence_penalty:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty:
optional_params["frequency_penalty"] = frequency_penalty
if logit_bias:
optional_params["logit_bias"] = logit_bias
if user:
optional_params["user"] = user
elif custom_llm_provider == "perplexity":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if temperature is not None:
if (
temperature == 0 and model == "mistral-7b-instruct"
): # this model does no support temperature == 0
temperature = 0.0001 # close to 0
optional_params["temperature"] = temperature
if top_p:
optional_params["top_p"] = top_p
if stream:
optional_params["stream"] = stream
if max_tokens:
optional_params["max_tokens"] = max_tokens
if presence_penalty:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty:
optional_params["frequency_penalty"] = frequency_penalty
elif custom_llm_provider == "anyscale":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
if model in [
"mistralai/Mistral-7B-Instruct-v0.1",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
]:
supported_params += [
"functions",
"function_call",
"tools",
"tool_choice",
"response_format",
]
_check_valid_arg(supported_params=supported_params)
optional_params = non_default_params
if temperature is not None:
if temperature == 0 and model in [
"mistralai/Mistral-7B-Instruct-v0.1",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
]: # this model does no support temperature == 0
temperature = 0.0001 # close to 0
optional_params["temperature"] = temperature
if top_p:
optional_params["top_p"] = top_p
if stream:
optional_params["stream"] = stream
if max_tokens:
optional_params["max_tokens"] = max_tokens
elif custom_llm_provider == "mistral":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if stream is not None:
optional_params["stream"] = stream
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
if tools is not None:
optional_params["tools"] = tools
if tool_choice is not None:
optional_params["tool_choice"] = tool_choice
if response_format is not None:
optional_params["response_format"] = response_format
# check safe_mode, random_seed: https://docs.mistral.ai/api/#operation/createChatCompletion
safe_mode = passed_params.pop("safe_mode", None)
random_seed = passed_params.pop("random_seed", None)
extra_body = {}
if safe_mode is not None:
extra_body["safe_mode"] = safe_mode
if random_seed is not None:
extra_body["random_seed"] = random_seed
optional_params["extra_body"] = (
extra_body # openai client supports `extra_body` param
)
elif custom_llm_provider == "groq":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if temperature is not None:
optional_params["temperature"] = temperature
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
if top_p is not None:
optional_params["top_p"] = top_p
if stream is not None:
optional_params["stream"] = stream
if stop is not None:
optional_params["stop"] = stop
if tools is not None:
optional_params["tools"] = tools
if tool_choice is not None:
optional_params["tool_choice"] = tool_choice
if response_format is not None:
optional_params["response_format"] = response_format
if seed is not None:
optional_params["seed"] = seed
elif custom_llm_provider == "deepseek":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if frequency_penalty is not None:
optional_params["frequency_penalty"] = frequency_penalty
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
if presence_penalty is not None:
optional_params["presence_penalty"] = presence_penalty
if stop is not None:
optional_params["stop"] = stop
if stream is not None:
optional_params["stream"] = stream
if temperature is not None:
optional_params["temperature"] = temperature
if logprobs is not None:
optional_params["logprobs"] = logprobs
if top_logprobs is not None:
optional_params["top_logprobs"] = top_logprobs
elif custom_llm_provider == "openrouter":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if functions is not None:
optional_params["functions"] = functions
if function_call is not None:
optional_params["function_call"] = function_call
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if n is not None:
optional_params["n"] = n
if stream is not None:
optional_params["stream"] = stream
if stop is not None:
optional_params["stop"] = stop
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
if presence_penalty is not None:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty is not None:
optional_params["frequency_penalty"] = frequency_penalty
if logit_bias is not None:
optional_params["logit_bias"] = logit_bias
if user is not None:
optional_params["user"] = user
if response_format is not None:
optional_params["response_format"] = response_format
if seed is not None:
optional_params["seed"] = seed
if tools is not None:
optional_params["tools"] = tools
if tool_choice is not None:
optional_params["tool_choice"] = tool_choice
if max_retries is not None:
optional_params["max_retries"] = max_retries
# OpenRouter-only parameters
extra_body = {}
transforms = passed_params.pop("transforms", None)
models = passed_params.pop("models", None)
route = passed_params.pop("route", None)
if transforms is not None:
extra_body["transforms"] = transforms
if models is not None:
extra_body["models"] = models
if route is not None:
extra_body["route"] = route
optional_params["extra_body"] = (
extra_body # openai client supports `extra_body` param
)
elif custom_llm_provider == "watsonx":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if max_tokens is not None:
optional_params["max_new_tokens"] = max_tokens
if stream:
optional_params["stream"] = stream
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if frequency_penalty is not None:
optional_params["repetition_penalty"] = frequency_penalty
if seed is not None:
optional_params["random_seed"] = seed
if stop is not None:
optional_params["stop_sequences"] = stop
# WatsonX-only parameters
extra_body = {}
if "decoding_method" in passed_params:
extra_body["decoding_method"] = passed_params.pop("decoding_method")
if "min_tokens" in passed_params or "min_new_tokens" in passed_params:
extra_body["min_new_tokens"] = passed_params.pop(
"min_tokens", passed_params.pop("min_new_tokens")
)
if "top_k" in passed_params:
extra_body["top_k"] = passed_params.pop("top_k")
if "truncate_input_tokens" in passed_params:
extra_body["truncate_input_tokens"] = passed_params.pop(
"truncate_input_tokens"
)
if "length_penalty" in passed_params:
extra_body["length_penalty"] = passed_params.pop("length_penalty")
if "time_limit" in passed_params:
extra_body["time_limit"] = passed_params.pop("time_limit")
if "return_options" in passed_params:
extra_body["return_options"] = passed_params.pop("return_options")
optional_params["extra_body"] = (
extra_body # openai client supports `extra_body` param
)
else: # assume passing in params for openai/azure openai
supported_params = get_supported_openai_params(
model=model, custom_llm_provider="openai"
)
_check_valid_arg(supported_params=supported_params)
if functions is not None:
optional_params["functions"] = functions
if function_call is not None:
optional_params["function_call"] = function_call
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if n is not None:
optional_params["n"] = n
if stream is not None:
optional_params["stream"] = stream
if stream_options is not None:
optional_params["stream_options"] = stream_options
if stop is not None:
optional_params["stop"] = stop
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
if presence_penalty is not None:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty is not None:
optional_params["frequency_penalty"] = frequency_penalty
if logit_bias is not None:
optional_params["logit_bias"] = logit_bias
if user is not None:
optional_params["user"] = user
if response_format is not None:
optional_params["response_format"] = response_format
if seed is not None:
optional_params["seed"] = seed
if tools is not None:
optional_params["tools"] = tools
if tool_choice is not None:
optional_params["tool_choice"] = tool_choice
if max_retries is not None:
optional_params["max_retries"] = max_retries
if logprobs is not None:
optional_params["logprobs"] = logprobs
if top_logprobs is not None:
optional_params["top_logprobs"] = top_logprobs
if extra_headers is not None:
optional_params["extra_headers"] = extra_headers
if custom_llm_provider in ["openai", "azure"] + litellm.openai_compatible_providers:
# for openai, azure we should pass the extra/passed params within `extra_body` https://github.com/openai/openai-python/blob/ac33853ba10d13ac149b1fa3ca6dba7d613065c9/src/openai/resources/models.py#L46
extra_body = passed_params.pop("extra_body", {})
for k in passed_params.keys():
if k not in default_params.keys():
extra_body[k] = passed_params[k]
optional_params["extra_body"] = extra_body
else:
# if user passed in non-default kwargs for specific providers/models, pass them along
for k in passed_params.keys():
if k not in default_params.keys():
optional_params[k] = passed_params[k]
print_verbose(f"Final returned optional params: {optional_params}")
return optional_params
|
(model: str, functions=None, function_call=None, temperature=None, top_p=None, n=None, stream=False, stream_options=None, stop=None, max_tokens=None, presence_penalty=None, frequency_penalty=None, logit_bias=None, user=None, custom_llm_provider='', response_format=None, seed=None, tools=None, tool_choice=None, max_retries=None, logprobs=None, top_logprobs=None, extra_headers=None, **kwargs)
|
64,314 |
litellm.utils
|
get_optional_params_embeddings
| null |
def get_optional_params_embeddings(
# 2 optional params
model=None,
user=None,
encoding_format=None,
dimensions=None,
custom_llm_provider="",
**kwargs,
):
# retrieve all parameters passed to the function
passed_params = locals()
custom_llm_provider = passed_params.pop("custom_llm_provider", None)
special_params = passed_params.pop("kwargs")
for k, v in special_params.items():
passed_params[k] = v
default_params = {"user": None, "encoding_format": None, "dimensions": None}
non_default_params = {
k: v
for k, v in passed_params.items()
if (k in default_params and v != default_params[k])
}
## raise exception if non-default value passed for non-openai/azure embedding calls
if custom_llm_provider == "openai":
# 'dimensions` is only supported in `text-embedding-3` and later models
if (
model is not None
and "text-embedding-3" not in model
and "dimensions" in non_default_params.keys()
):
raise UnsupportedParamsError(
status_code=500,
message=f"Setting dimensions is not supported for OpenAI `text-embedding-3` and later models. To drop it from the call, set `litellm.drop_params = True`.",
)
if custom_llm_provider == "triton":
keys = list(non_default_params.keys())
for k in keys:
non_default_params.pop(k, None)
final_params = {**non_default_params, **kwargs}
return final_params
if custom_llm_provider == "vertex_ai":
if len(non_default_params.keys()) > 0:
if litellm.drop_params is True: # drop the unsupported non-default values
keys = list(non_default_params.keys())
for k in keys:
non_default_params.pop(k, None)
final_params = {**non_default_params, **kwargs}
return final_params
raise UnsupportedParamsError(
status_code=500,
message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
)
if custom_llm_provider == "bedrock":
# if dimensions is in non_default_params -> pass it for model=bedrock/amazon.titan-embed-text-v2
if (
"dimensions" in non_default_params.keys()
and "amazon.titan-embed-text-v2" in model
):
kwargs["dimensions"] = non_default_params["dimensions"]
non_default_params.pop("dimensions", None)
if len(non_default_params.keys()) > 0:
if litellm.drop_params is True: # drop the unsupported non-default values
keys = list(non_default_params.keys())
for k in keys:
non_default_params.pop(k, None)
final_params = {**non_default_params, **kwargs}
return final_params
raise UnsupportedParamsError(
status_code=500,
message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
)
return {**non_default_params, **kwargs}
if (
custom_llm_provider != "openai"
and custom_llm_provider != "azure"
and custom_llm_provider not in litellm.openai_compatible_providers
):
if len(non_default_params.keys()) > 0:
if litellm.drop_params is True: # drop the unsupported non-default values
keys = list(non_default_params.keys())
for k in keys:
non_default_params.pop(k, None)
else:
raise UnsupportedParamsError(
status_code=500,
message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
)
final_params = {**non_default_params, **kwargs}
return final_params
|
(model=None, user=None, encoding_format=None, dimensions=None, custom_llm_provider='', **kwargs)
|
64,315 |
litellm.utils
|
get_optional_params_image_gen
| null |
def get_optional_params_image_gen(
n: Optional[int] = None,
quality: Optional[str] = None,
response_format: Optional[str] = None,
size: Optional[str] = None,
style: Optional[str] = None,
user: Optional[str] = None,
custom_llm_provider: Optional[str] = None,
**kwargs,
):
# retrieve all parameters passed to the function
passed_params = locals()
custom_llm_provider = passed_params.pop("custom_llm_provider")
special_params = passed_params.pop("kwargs")
for k, v in special_params.items():
passed_params[k] = v
default_params = {
"n": None,
"quality": None,
"response_format": None,
"size": None,
"style": None,
"user": None,
}
non_default_params = {
k: v
for k, v in passed_params.items()
if (k in default_params and v != default_params[k])
}
optional_params = {}
## raise exception if non-default value passed for non-openai/azure embedding calls
def _check_valid_arg(supported_params):
if len(non_default_params.keys()) > 0:
keys = list(non_default_params.keys())
for k in keys:
if (
litellm.drop_params is True and k not in supported_params
): # drop the unsupported non-default values
non_default_params.pop(k, None)
elif k not in supported_params:
raise UnsupportedParamsError(
status_code=500,
message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
)
return non_default_params
if (
custom_llm_provider == "openai"
or custom_llm_provider == "azure"
or custom_llm_provider in litellm.openai_compatible_providers
):
optional_params = non_default_params
elif custom_llm_provider == "bedrock":
supported_params = ["size"]
_check_valid_arg(supported_params=supported_params)
if size is not None:
width, height = size.split("x")
optional_params["width"] = int(width)
optional_params["height"] = int(height)
for k in passed_params.keys():
if k not in default_params.keys():
optional_params[k] = passed_params[k]
return optional_params
|
(n: Optional[int] = None, quality: Optional[str] = None, response_format: Optional[str] = None, size: Optional[str] = None, style: Optional[str] = None, user: Optional[str] = None, custom_llm_provider: Optional[str] = None, **kwargs)
|
64,316 |
litellm.utils
|
get_secret
| null |
def get_secret(
secret_name: str,
default_value: Optional[Union[str, bool]] = None,
):
key_management_system = litellm._key_management_system
key_management_settings = litellm._key_management_settings
if secret_name.startswith("os.environ/"):
secret_name = secret_name.replace("os.environ/", "")
# Example: oidc/google/https://bedrock-runtime.us-east-1.amazonaws.com/model/stability.stable-diffusion-xl-v1/invoke
if secret_name.startswith("oidc/"):
secret_name_split = secret_name.replace("oidc/", "")
oidc_provider, oidc_aud = secret_name_split.split("/", 1)
# TODO: Add caching for HTTP requests
if oidc_provider == "google":
oidc_token = oidc_cache.get_cache(key=secret_name)
if oidc_token is not None:
return oidc_token
oidc_client = HTTPHandler(timeout=httpx.Timeout(timeout=600.0, connect=5.0))
# https://cloud.google.com/compute/docs/instances/verifying-instance-identity#request_signature
response = oidc_client.get(
"http://metadata.google.internal/computeMetadata/v1/instance/service-accounts/default/identity",
params={"audience": oidc_aud},
headers={"Metadata-Flavor": "Google"},
)
if response.status_code == 200:
oidc_token = response.text
oidc_cache.set_cache(key=secret_name, value=oidc_token, ttl=3600 - 60)
return oidc_token
else:
raise ValueError("Google OIDC provider failed")
elif oidc_provider == "circleci":
# https://circleci.com/docs/openid-connect-tokens/
env_secret = os.getenv("CIRCLE_OIDC_TOKEN")
if env_secret is None:
raise ValueError("CIRCLE_OIDC_TOKEN not found in environment")
return env_secret
elif oidc_provider == "circleci_v2":
# https://circleci.com/docs/openid-connect-tokens/
env_secret = os.getenv("CIRCLE_OIDC_TOKEN_V2")
if env_secret is None:
raise ValueError("CIRCLE_OIDC_TOKEN_V2 not found in environment")
return env_secret
elif oidc_provider == "github":
# https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-cloud-providers#using-custom-actions
actions_id_token_request_url = os.getenv("ACTIONS_ID_TOKEN_REQUEST_URL")
actions_id_token_request_token = os.getenv("ACTIONS_ID_TOKEN_REQUEST_TOKEN")
if (
actions_id_token_request_url is None
or actions_id_token_request_token is None
):
raise ValueError(
"ACTIONS_ID_TOKEN_REQUEST_URL or ACTIONS_ID_TOKEN_REQUEST_TOKEN not found in environment"
)
oidc_token = oidc_cache.get_cache(key=secret_name)
if oidc_token is not None:
return oidc_token
oidc_client = HTTPHandler(timeout=httpx.Timeout(timeout=600.0, connect=5.0))
response = oidc_client.get(
actions_id_token_request_url,
params={"audience": oidc_aud},
headers={
"Authorization": f"Bearer {actions_id_token_request_token}",
"Accept": "application/json; api-version=2.0",
},
)
if response.status_code == 200:
oidc_token = response.text["value"]
oidc_cache.set_cache(key=secret_name, value=oidc_token, ttl=300 - 5)
return oidc_token
else:
raise ValueError("Github OIDC provider failed")
else:
raise ValueError("Unsupported OIDC provider")
try:
if litellm.secret_manager_client is not None:
try:
client = litellm.secret_manager_client
key_manager = "local"
if key_management_system is not None:
key_manager = key_management_system.value
if key_management_settings is not None:
if (
secret_name not in key_management_settings.hosted_keys
): # allow user to specify which keys to check in hosted key manager
key_manager = "local"
if (
key_manager == KeyManagementSystem.AZURE_KEY_VAULT
or type(client).__module__ + "." + type(client).__name__
== "azure.keyvault.secrets._client.SecretClient"
): # support Azure Secret Client - from azure.keyvault.secrets import SecretClient
secret = client.get_secret(secret_name).value
elif (
key_manager == KeyManagementSystem.GOOGLE_KMS
or client.__class__.__name__ == "KeyManagementServiceClient"
):
encrypted_secret: Any = os.getenv(secret_name)
if encrypted_secret is None:
raise ValueError(
f"Google KMS requires the encrypted secret to be in the environment!"
)
b64_flag = _is_base64(encrypted_secret)
if b64_flag == True: # if passed in as encoded b64 string
encrypted_secret = base64.b64decode(encrypted_secret)
if not isinstance(encrypted_secret, bytes):
# If it's not, assume it's a string and encode it to bytes
ciphertext = eval(
encrypted_secret.encode()
) # assuming encrypted_secret is something like - b'\n$\x00D\xac\xb4/t)07\xe5\xf6..'
else:
ciphertext = encrypted_secret
response = client.decrypt(
request={
"name": litellm._google_kms_resource_name,
"ciphertext": ciphertext,
}
)
secret = response.plaintext.decode(
"utf-8"
) # assumes the original value was encoded with utf-8
elif key_manager == KeyManagementSystem.AWS_SECRET_MANAGER.value:
try:
get_secret_value_response = client.get_secret_value(
SecretId=secret_name
)
print_verbose(
f"get_secret_value_response: {get_secret_value_response}"
)
except Exception as e:
print_verbose(f"An error occurred - {str(e)}")
# For a list of exceptions thrown, see
# https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
raise e
# assume there is 1 secret per secret_name
secret_dict = json.loads(get_secret_value_response["SecretString"])
print_verbose(f"secret_dict: {secret_dict}")
for k, v in secret_dict.items():
secret = v
print_verbose(f"secret: {secret}")
else: # assume the default is infisicial client
secret = client.get_secret(secret_name).secret_value
except Exception as e: # check if it's in os.environ
print_verbose(f"An exception occurred - {str(e)}")
secret = os.getenv(secret_name)
try:
secret_value_as_bool = ast.literal_eval(secret)
if isinstance(secret_value_as_bool, bool):
return secret_value_as_bool
else:
return secret
except:
return secret
else:
secret = os.environ.get(secret_name)
try:
secret_value_as_bool = (
ast.literal_eval(secret) if secret is not None else None
)
if isinstance(secret_value_as_bool, bool):
return secret_value_as_bool
else:
return secret
except:
return secret
except Exception as e:
if default_value is not None:
return default_value
else:
raise e
|
(secret_name: str, default_value: Union[bool, str, NoneType] = None)
|
64,317 |
litellm.utils
|
get_supported_openai_params
|
Returns the supported openai params for a given model + provider
Example:
```
get_supported_openai_params(model="anthropic.claude-3", custom_llm_provider="bedrock")
```
|
def get_supported_openai_params(model: str, custom_llm_provider: str):
"""
Returns the supported openai params for a given model + provider
Example:
```
get_supported_openai_params(model="anthropic.claude-3", custom_llm_provider="bedrock")
```
"""
if custom_llm_provider == "bedrock":
if model.startswith("anthropic.claude-3"):
return litellm.AmazonAnthropicClaude3Config().get_supported_openai_params()
elif model.startswith("anthropic"):
return litellm.AmazonAnthropicConfig().get_supported_openai_params()
elif model.startswith("ai21"):
return ["max_tokens", "temperature", "top_p", "stream"]
elif model.startswith("amazon"):
return ["max_tokens", "temperature", "stop", "top_p", "stream"]
elif model.startswith("meta"):
return ["max_tokens", "temperature", "top_p", "stream"]
elif model.startswith("cohere"):
return ["stream", "temperature", "max_tokens"]
elif model.startswith("mistral"):
return ["max_tokens", "temperature", "stop", "top_p", "stream"]
elif custom_llm_provider == "ollama_chat":
return litellm.OllamaChatConfig().get_supported_openai_params()
elif custom_llm_provider == "anthropic":
return litellm.AnthropicConfig().get_supported_openai_params()
elif custom_llm_provider == "groq":
return [
"temperature",
"max_tokens",
"top_p",
"stream",
"stop",
"tools",
"tool_choice",
"response_format",
"seed",
]
elif custom_llm_provider == "deepseek":
return [
# https://platform.deepseek.com/api-docs/api/create-chat-completion
"frequency_penalty",
"max_tokens",
"presence_penalty",
"stop",
"stream",
"temperature",
"top_p",
"logprobs",
"top_logprobs",
]
elif custom_llm_provider == "cohere":
return [
"stream",
"temperature",
"max_tokens",
"logit_bias",
"top_p",
"frequency_penalty",
"presence_penalty",
"stop",
"n",
]
elif custom_llm_provider == "cohere_chat":
return [
"stream",
"temperature",
"max_tokens",
"top_p",
"frequency_penalty",
"presence_penalty",
"stop",
"n",
"tools",
"tool_choice",
"seed",
]
elif custom_llm_provider == "maritalk":
return [
"stream",
"temperature",
"max_tokens",
"top_p",
"presence_penalty",
"stop",
]
elif custom_llm_provider == "openai" or custom_llm_provider == "azure":
return [
"functions",
"function_call",
"temperature",
"top_p",
"n",
"stream",
"stream_options",
"stop",
"max_tokens",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
"response_format",
"seed",
"tools",
"tool_choice",
"max_retries",
"logprobs",
"top_logprobs",
"extra_headers",
]
elif custom_llm_provider == "openrouter":
return [
"functions",
"function_call",
"temperature",
"top_p",
"n",
"stream",
"stop",
"max_tokens",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
"response_format",
"seed",
"tools",
"tool_choice",
"max_retries",
]
elif custom_llm_provider == "mistral":
return [
"temperature",
"top_p",
"stream",
"max_tokens",
"tools",
"tool_choice",
"response_format",
]
elif custom_llm_provider == "replicate":
return [
"stream",
"temperature",
"max_tokens",
"top_p",
"stop",
"seed",
]
elif custom_llm_provider == "huggingface":
return litellm.HuggingfaceConfig().get_supported_openai_params()
elif custom_llm_provider == "together_ai":
return [
"stream",
"temperature",
"max_tokens",
"top_p",
"stop",
"frequency_penalty",
"tools",
"tool_choice",
]
elif custom_llm_provider == "ai21":
return [
"stream",
"n",
"temperature",
"max_tokens",
"top_p",
"stop",
"frequency_penalty",
"presence_penalty",
]
elif custom_llm_provider == "palm" or custom_llm_provider == "gemini":
return ["temperature", "top_p", "stream", "n", "stop", "max_tokens"]
elif custom_llm_provider == "vertex_ai":
return litellm.VertexAIConfig().get_supported_openai_params()
elif custom_llm_provider == "sagemaker":
return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
elif custom_llm_provider == "aleph_alpha":
return [
"max_tokens",
"stream",
"top_p",
"temperature",
"presence_penalty",
"frequency_penalty",
"n",
"stop",
]
elif custom_llm_provider == "cloudflare":
return ["max_tokens", "stream"]
elif custom_llm_provider == "ollama":
return [
"max_tokens",
"stream",
"top_p",
"temperature",
"frequency_penalty",
"stop",
"response_format",
]
elif custom_llm_provider == "nlp_cloud":
return [
"max_tokens",
"stream",
"temperature",
"top_p",
"presence_penalty",
"frequency_penalty",
"n",
"stop",
]
elif custom_llm_provider == "petals":
return ["max_tokens", "temperature", "top_p", "stream"]
elif custom_llm_provider == "deepinfra":
return [
"temperature",
"top_p",
"n",
"stream",
"stop",
"max_tokens",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
"response_format",
]
elif custom_llm_provider == "perplexity":
return [
"temperature",
"top_p",
"stream",
"max_tokens",
"presence_penalty",
"frequency_penalty",
]
elif custom_llm_provider == "anyscale":
return [
"temperature",
"top_p",
"stream",
"max_tokens",
"stop",
"frequency_penalty",
"presence_penalty",
]
elif custom_llm_provider == "watsonx":
return litellm.IBMWatsonXAIConfig().get_supported_openai_params()
|
(model: str, custom_llm_provider: str)
|
64,318 |
litellm.assistants.main
|
get_thread
|
Get the thread object, given a thread_id
|
def get_thread(
custom_llm_provider: Literal["openai"],
thread_id: str,
client: Optional[OpenAI] = None,
**kwargs,
) -> Thread:
"""Get the thread object, given a thread_id"""
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
response: Optional[Thread] = None
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_assistants_api.get_thread(
thread_id=thread_id,
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
client=client,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'get_thread'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
|
(custom_llm_provider: Literal['openai'], thread_id: str, client: Optional[openai.OpenAI] = None, **kwargs) -> litellm.types.llms.openai.Thread
|
64,323 |
litellm
|
identify
| null |
def identify(event_details):
# Store user in thread local data
if "user" in event_details:
_thread_context.user = event_details["user"]
|
(event_details)
|
64,324 |
litellm.main
|
image_generation
|
Maps the https://api.openai.com/v1/images/generations endpoint.
Currently supports just Azure + OpenAI.
|
def embedding(
model,
input=[],
# Optional params
dimensions: Optional[int] = None,
timeout=600, # default to 10 minutes
# set api_base, api_version, api_key
api_base: Optional[str] = None,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
api_type: Optional[str] = None,
caching: bool = False,
user: Optional[str] = None,
custom_llm_provider=None,
litellm_call_id=None,
litellm_logging_obj=None,
logger_fn=None,
**kwargs,
):
"""
Embedding function that calls an API to generate embeddings for the given input.
Parameters:
- model: The embedding model to use.
- input: The input for which embeddings are to be generated.
- dimensions: The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
- timeout: The timeout value for the API call, default 10 mins
- litellm_call_id: The call ID for litellm logging.
- litellm_logging_obj: The litellm logging object.
- logger_fn: The logger function.
- api_base: Optional. The base URL for the API.
- api_version: Optional. The version of the API.
- api_key: Optional. The API key to use.
- api_type: Optional. The type of the API.
- caching: A boolean indicating whether to enable caching.
- custom_llm_provider: The custom llm provider.
Returns:
- response: The response received from the API call.
Raises:
- exception_type: If an exception occurs during the API call.
"""
azure = kwargs.get("azure", None)
client = kwargs.pop("client", None)
rpm = kwargs.pop("rpm", None)
tpm = kwargs.pop("tpm", None)
max_parallel_requests = kwargs.pop("max_parallel_requests", None)
model_info = kwargs.get("model_info", None)
metadata = kwargs.get("metadata", None)
encoding_format = kwargs.get("encoding_format", None)
proxy_server_request = kwargs.get("proxy_server_request", None)
aembedding = kwargs.get("aembedding", None)
### CUSTOM MODEL COST ###
input_cost_per_token = kwargs.get("input_cost_per_token", None)
output_cost_per_token = kwargs.get("output_cost_per_token", None)
input_cost_per_second = kwargs.get("input_cost_per_second", None)
output_cost_per_second = kwargs.get("output_cost_per_second", None)
openai_params = [
"user",
"dimensions",
"request_timeout",
"api_base",
"api_version",
"api_key",
"deployment_id",
"organization",
"base_url",
"default_headers",
"timeout",
"max_retries",
"encoding_format",
]
litellm_params = [
"metadata",
"aembedding",
"caching",
"mock_response",
"api_key",
"api_version",
"api_base",
"force_timeout",
"logger_fn",
"verbose",
"custom_llm_provider",
"litellm_logging_obj",
"litellm_call_id",
"use_client",
"id",
"fallbacks",
"azure",
"headers",
"model_list",
"num_retries",
"context_window_fallback_dict",
"retry_policy",
"roles",
"final_prompt_value",
"bos_token",
"eos_token",
"request_timeout",
"complete_response",
"self",
"client",
"rpm",
"tpm",
"max_parallel_requests",
"input_cost_per_token",
"output_cost_per_token",
"input_cost_per_second",
"output_cost_per_second",
"hf_model_name",
"proxy_server_request",
"model_info",
"preset_cache_key",
"caching_groups",
"ttl",
"cache",
"no-log",
"region_name",
"allowed_model_region",
]
default_params = openai_params + litellm_params
non_default_params = {
k: v for k, v in kwargs.items() if k not in default_params
} # model-specific params - pass them straight to the model/provider
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(
model=model,
custom_llm_provider=custom_llm_provider,
api_base=api_base,
api_key=api_key,
)
optional_params = get_optional_params_embeddings(
model=model,
user=user,
dimensions=dimensions,
encoding_format=encoding_format,
custom_llm_provider=custom_llm_provider,
**non_default_params,
)
### REGISTER CUSTOM MODEL PRICING -- IF GIVEN ###
if input_cost_per_token is not None and output_cost_per_token is not None:
litellm.register_model(
{
model: {
"input_cost_per_token": input_cost_per_token,
"output_cost_per_token": output_cost_per_token,
"litellm_provider": custom_llm_provider,
}
}
)
if input_cost_per_second is not None: # time based pricing just needs cost in place
output_cost_per_second = output_cost_per_second or 0.0
litellm.register_model(
{
model: {
"input_cost_per_second": input_cost_per_second,
"output_cost_per_second": output_cost_per_second,
"litellm_provider": custom_llm_provider,
}
}
)
try:
response = None
logging = litellm_logging_obj
logging.update_environment_variables(
model=model,
user=user,
optional_params=optional_params,
litellm_params={
"timeout": timeout,
"azure": azure,
"litellm_call_id": litellm_call_id,
"logger_fn": logger_fn,
"proxy_server_request": proxy_server_request,
"model_info": model_info,
"metadata": metadata,
"aembedding": aembedding,
"preset_cache_key": None,
"stream_response": {},
},
)
if azure == True or custom_llm_provider == "azure":
# azure configs
api_type = get_secret("AZURE_API_TYPE") or "azure"
api_base = api_base or litellm.api_base or get_secret("AZURE_API_BASE")
api_version = (
api_version or litellm.api_version or get_secret("AZURE_API_VERSION")
)
azure_ad_token = optional_params.pop("azure_ad_token", None) or get_secret(
"AZURE_AD_TOKEN"
)
api_key = (
api_key
or litellm.api_key
or litellm.azure_key
or get_secret("AZURE_API_KEY")
)
## EMBEDDING CALL
response = azure_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif (
model in litellm.open_ai_embedding_models or custom_llm_provider == "openai"
):
api_base = (
api_base
or litellm.api_base
or get_secret("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
openai.organization = (
litellm.organization
or get_secret("OPENAI_ORGANIZATION")
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
api_key
or litellm.api_key
or litellm.openai_key
or get_secret("OPENAI_API_KEY")
)
api_type = "openai"
api_version = None
## EMBEDDING CALL
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "cohere":
cohere_key = (
api_key
or litellm.cohere_key
or get_secret("COHERE_API_KEY")
or get_secret("CO_API_KEY")
or litellm.api_key
)
response = cohere.embedding(
model=model,
input=input,
optional_params=optional_params,
encoding=encoding,
api_key=cohere_key,
logging_obj=logging,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "huggingface":
api_key = (
api_key
or litellm.huggingface_key
or get_secret("HUGGINGFACE_API_KEY")
or litellm.api_key
)
response = huggingface.embedding(
model=model,
input=input,
encoding=encoding,
api_key=api_key,
api_base=api_base,
logging_obj=logging,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "bedrock":
response = bedrock.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "triton":
if api_base is None:
raise ValueError(
"api_base is required for triton. Please pass `api_base`"
)
response = triton_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "vertex_ai":
vertex_ai_project = (
optional_params.pop("vertex_project", None)
or optional_params.pop("vertex_ai_project", None)
or litellm.vertex_project
or get_secret("VERTEXAI_PROJECT")
or get_secret("VERTEX_PROJECT")
)
vertex_ai_location = (
optional_params.pop("vertex_location", None)
or optional_params.pop("vertex_ai_location", None)
or litellm.vertex_location
or get_secret("VERTEXAI_LOCATION")
or get_secret("VERTEX_LOCATION")
)
vertex_credentials = (
optional_params.pop("vertex_credentials", None)
or optional_params.pop("vertex_ai_credentials", None)
or get_secret("VERTEXAI_CREDENTIALS")
or get_secret("VERTEX_CREDENTIALS")
)
response = vertex_ai.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
vertex_project=vertex_ai_project,
vertex_location=vertex_ai_location,
vertex_credentials=vertex_credentials,
aembedding=aembedding,
print_verbose=print_verbose,
)
elif custom_llm_provider == "oobabooga":
response = oobabooga.embedding(
model=model,
input=input,
encoding=encoding,
api_base=api_base,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "ollama":
api_base = (
litellm.api_base
or api_base
or get_secret("OLLAMA_API_BASE")
or "http://localhost:11434"
)
if isinstance(input, str):
input = [input]
if not all(isinstance(item, str) for item in input):
raise litellm.BadRequestError(
message=f"Invalid input for ollama embeddings. input={input}",
model=model, # type: ignore
llm_provider="ollama", # type: ignore
)
ollama_embeddings_fn = (
ollama.ollama_aembeddings if aembedding else ollama.ollama_embeddings
)
response = ollama_embeddings_fn(
api_base=api_base,
model=model,
prompts=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "sagemaker":
response = sagemaker.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
print_verbose=print_verbose,
)
elif custom_llm_provider == "mistral":
api_key = api_key or litellm.api_key or get_secret("MISTRAL_API_KEY")
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "voyage":
api_key = api_key or litellm.api_key or get_secret("VOYAGE_API_KEY")
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "xinference":
api_key = (
api_key
or litellm.api_key
or get_secret("XINFERENCE_API_KEY")
or "stub-xinference-key"
) # xinference does not need an api key, pass a stub key if user did not set one
api_base = (
api_base
or litellm.api_base
or get_secret("XINFERENCE_API_BASE")
or "http://127.0.0.1:9997/v1"
)
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "watsonx":
response = watsonx.IBMWatsonXAI().embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
else:
args = locals()
raise ValueError(f"No valid embedding model args passed in - {args}")
if response is not None and hasattr(response, "_hidden_params"):
response._hidden_params["custom_llm_provider"] = custom_llm_provider
return response
except Exception as e:
## LOGGING
logging.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
## Map to OpenAI Exception
raise exception_type(
model=model,
original_exception=e,
custom_llm_provider=custom_llm_provider,
extra_kwargs=kwargs,
)
|
(prompt: str, model: Optional[str] = None, n: Optional[int] = None, quality: Optional[str] = None, response_format: Optional[str] = None, size: Optional[str] = None, style: Optional[str] = None, user: Optional[str] = None, timeout=600, api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, litellm_logging_obj=None, custom_llm_provider=None, **kwargs)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.