index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
64,335 |
litellm.llms.prompt_templates.factory
|
map_system_message_pt
|
Convert 'system' message to 'user' message if provider doesn't support 'system' role.
Enabled via `completion(...,supports_system_message=False)`
If next message is a user message or assistant message -> merge system prompt into it
if next message is system -> append a user message instead of the system message
|
def map_system_message_pt(messages: list) -> list:
"""
Convert 'system' message to 'user' message if provider doesn't support 'system' role.
Enabled via `completion(...,supports_system_message=False)`
If next message is a user message or assistant message -> merge system prompt into it
if next message is system -> append a user message instead of the system message
"""
new_messages = []
for i, m in enumerate(messages):
if m["role"] == "system":
if i < len(messages) - 1: # Not the last message
next_m = messages[i + 1]
next_role = next_m["role"]
if (
next_role == "user" or next_role == "assistant"
): # Next message is a user or assistant message
# Merge system prompt into the next message
next_m["content"] = m["content"] + " " + next_m["content"]
elif next_role == "system": # Next message is a system message
# Append a user message instead of the system message
new_message = {"role": "user", "content": m["content"]}
new_messages.append(new_message)
else: # Last message
new_message = {"role": "user", "content": m["content"]}
new_messages.append(new_message)
else: # Not a system message
new_messages.append(m)
return new_messages
|
(messages: list) -> list
|
64,337 |
litellm.main
|
mock_completion
|
Generate a mock completion response for testing or debugging purposes.
This is a helper function that simulates the response structure of the OpenAI completion API.
Parameters:
model (str): The name of the language model for which the mock response is generated.
messages (List): A list of message objects representing the conversation context.
stream (bool, optional): If True, returns a mock streaming response (default is False).
mock_response (str, optional): The content of the mock response (default is "This is a mock request").
**kwargs: Additional keyword arguments that can be used but are not required.
Returns:
litellm.ModelResponse: A ModelResponse simulating a completion response with the specified model, messages, and mock response.
Raises:
Exception: If an error occurs during the generation of the mock completion response.
Note:
- This function is intended for testing or debugging purposes to generate mock completion responses.
- If 'stream' is True, it returns a response that mimics the behavior of a streaming completion.
|
def mock_completion(
model: str,
messages: List,
stream: Optional[bool] = False,
mock_response: Union[str, Exception] = "This is a mock request",
logging=None,
**kwargs,
):
"""
Generate a mock completion response for testing or debugging purposes.
This is a helper function that simulates the response structure of the OpenAI completion API.
Parameters:
model (str): The name of the language model for which the mock response is generated.
messages (List): A list of message objects representing the conversation context.
stream (bool, optional): If True, returns a mock streaming response (default is False).
mock_response (str, optional): The content of the mock response (default is "This is a mock request").
**kwargs: Additional keyword arguments that can be used but are not required.
Returns:
litellm.ModelResponse: A ModelResponse simulating a completion response with the specified model, messages, and mock response.
Raises:
Exception: If an error occurs during the generation of the mock completion response.
Note:
- This function is intended for testing or debugging purposes to generate mock completion responses.
- If 'stream' is True, it returns a response that mimics the behavior of a streaming completion.
"""
try:
## LOGGING
if logging is not None:
logging.pre_call(
input=messages,
api_key="mock-key",
)
if isinstance(mock_response, Exception):
raise litellm.APIError(
status_code=500, # type: ignore
message=str(mock_response),
llm_provider="openai", # type: ignore
model=model, # type: ignore
request=httpx.Request(method="POST", url="https://api.openai.com/v1/"),
)
model_response = ModelResponse(stream=stream)
if stream is True:
# don't try to access stream object,
if kwargs.get("acompletion", False) == True:
return CustomStreamWrapper(
completion_stream=async_mock_completion_streaming_obj(
model_response, mock_response=mock_response, model=model
),
model=model,
custom_llm_provider="openai",
logging_obj=logging,
)
response = mock_completion_streaming_obj(
model_response, mock_response=mock_response, model=model
)
return response
model_response["choices"][0]["message"]["content"] = mock_response
model_response["created"] = int(time.time())
model_response["model"] = model
setattr(
model_response,
"usage",
Usage(prompt_tokens=10, completion_tokens=20, total_tokens=30),
)
try:
_, custom_llm_provider, _, _ = litellm.utils.get_llm_provider(model=model)
model_response._hidden_params["custom_llm_provider"] = custom_llm_provider
except:
# dont let setting a hidden param block a mock_respose
pass
return model_response
except:
traceback.print_exc()
raise Exception("Mock completion response failed")
|
(model: str, messages: List, stream: Optional[bool] = False, mock_response: Union[str, Exception] = 'This is a mock request', logging=None, **kwargs)
|
64,339 |
litellm.main
|
moderation
| null |
def moderation(
input: str, model: Optional[str] = None, api_key: Optional[str] = None, **kwargs
):
# only supports open ai for now
api_key = (
api_key or litellm.api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
)
openai_client = kwargs.get("client", None)
if openai_client is None:
openai_client = openai.OpenAI(
api_key=api_key,
)
response = openai_client.moderations.create(input=input, model=model)
return response
|
(input: str, model: Optional[str] = None, api_key: Optional[str] = None, **kwargs)
|
64,340 |
litellm.utils
|
modify_integration
| null |
def modify_integration(integration_name, integration_params):
global supabaseClient
if integration_name == "supabase":
if "table_name" in integration_params:
Supabase.supabase_table_name = integration_params["table_name"]
|
(integration_name, integration_params)
|
64,349 |
typing_extensions
|
override
|
Indicate that a method is intended to override a method in a base class.
Usage:
class Base:
def method(self) -> None:
pass
class Child(Base):
@override
def method(self) -> None:
super().method()
When this decorator is applied to a method, the type checker will
validate that it overrides a method with the same name on a base class.
This helps prevent bugs that may occur when a base class is changed
without an equivalent change to a child class.
There is no runtime checking of these properties. The decorator
sets the ``__override__`` attribute to ``True`` on the decorated object
to allow runtime introspection.
See PEP 698 for details.
|
def override(arg: _F, /) -> _F:
"""Indicate that a method is intended to override a method in a base class.
Usage:
class Base:
def method(self) -> None:
pass
class Child(Base):
@override
def method(self) -> None:
super().method()
When this decorator is applied to a method, the type checker will
validate that it overrides a method with the same name on a base class.
This helps prevent bugs that may occur when a base class is changed
without an equivalent change to a child class.
There is no runtime checking of these properties. The decorator
sets the ``__override__`` attribute to ``True`` on the decorated object
to allow runtime introspection.
See PEP 698 for details.
"""
try:
arg.__override__ = True
except (AttributeError, TypeError):
# Skip the attribute silently if it is not writable.
# AttributeError happens if the object has __slots__ or a
# read-only property, TypeError if it's a builtin class.
pass
return arg
|
(arg: ~_F, /) -> ~_F
|
64,353 |
litellm.main
|
print_verbose
| null |
def print_verbose(print_statement):
try:
verbose_logger.debug(print_statement)
if litellm.set_verbose:
print(print_statement) # noqa
except:
pass
|
(print_statement)
|
64,356 |
litellm.llms.prompt_templates.factory
|
prompt_factory
| null |
def prompt_factory(
model: str,
messages: list,
custom_llm_provider: Optional[str] = None,
api_key: Optional[str] = None,
):
original_model_name = model
model = model.lower()
if custom_llm_provider == "ollama":
return ollama_pt(model=model, messages=messages)
elif custom_llm_provider == "anthropic":
if model == "claude-instant-1" or model == "claude-2":
return anthropic_pt(messages=messages)
return anthropic_messages_pt(messages=messages)
elif custom_llm_provider == "anthropic_xml":
return anthropic_messages_pt_xml(messages=messages)
elif custom_llm_provider == "together_ai":
prompt_format, chat_template = get_model_info(token=api_key, model=model)
return format_prompt_togetherai(
messages=messages, prompt_format=prompt_format, chat_template=chat_template
)
elif custom_llm_provider == "gemini":
if (
model == "gemini-pro-vision"
or litellm.supports_vision(model=model)
or litellm.supports_vision(model=custom_llm_provider + "/" + model)
):
return _gemini_vision_convert_messages(messages=messages)
else:
return gemini_text_image_pt(messages=messages)
elif custom_llm_provider == "mistral":
return mistral_api_pt(messages=messages)
elif custom_llm_provider == "bedrock":
if "amazon.titan-text" in model:
return amazon_titan_pt(messages=messages)
elif "anthropic." in model:
if any(_ in model for _ in ["claude-2.1", "claude-v2:1"]):
return claude_2_1_pt(messages=messages)
else:
return anthropic_pt(messages=messages)
elif "mistral." in model:
return mistral_instruct_pt(messages=messages)
elif "llama2" in model and "chat" in model:
return llama_2_chat_pt(messages=messages)
elif "llama3" in model and "instruct" in model:
return hf_chat_template(
model="meta-llama/Meta-Llama-3-8B-Instruct",
messages=messages,
)
elif custom_llm_provider == "clarifai":
if "claude" in model:
return anthropic_pt(messages=messages)
elif custom_llm_provider == "perplexity":
for message in messages:
message.pop("name", None)
return messages
elif custom_llm_provider == "azure_text":
return azure_text_pt(messages=messages)
elif custom_llm_provider == "watsonx":
if "granite" in model and "chat" in model:
# granite-13b-chat-v1 and granite-13b-chat-v2 use a specific prompt template
return ibm_granite_pt(messages=messages)
elif "ibm-mistral" in model and "instruct" in model:
# models like ibm-mistral/mixtral-8x7b-instruct-v01-q use the mistral instruct prompt template
return mistral_instruct_pt(messages=messages)
elif "meta-llama/llama-3" in model and "instruct" in model:
# https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/
return custom_prompt(
role_dict={
"system": {
"pre_message": "<|start_header_id|>system<|end_header_id|>\n",
"post_message": "<|eot_id|>",
},
"user": {
"pre_message": "<|start_header_id|>user<|end_header_id|>\n",
"post_message": "<|eot_id|>",
},
"assistant": {
"pre_message": "<|start_header_id|>assistant<|end_header_id|>\n",
"post_message": "<|eot_id|>",
},
},
messages=messages,
initial_prompt_value="<|begin_of_text|>",
final_prompt_value="<|start_header_id|>assistant<|end_header_id|>\n",
)
try:
if "meta-llama/llama-2" in model and "chat" in model:
return llama_2_chat_pt(messages=messages)
elif (
"meta-llama/llama-3" in model or "meta-llama-3" in model
) and "instruct" in model:
return hf_chat_template(
model="meta-llama/Meta-Llama-3-8B-Instruct",
messages=messages,
)
elif (
"tiiuae/falcon" in model
): # Note: for the instruct models, it's best to use a User: .., Assistant:.. approach in your prompt template.
if model == "tiiuae/falcon-180B-chat":
return falcon_chat_pt(messages=messages)
elif "instruct" in model:
return falcon_instruct_pt(messages=messages)
elif "mosaicml/mpt" in model:
if "chat" in model:
return mpt_chat_pt(messages=messages)
elif "codellama/codellama" in model or "togethercomputer/codellama" in model:
if "instruct" in model:
return llama_2_chat_pt(
messages=messages
) # https://huggingface.co/blog/codellama#conversational-instructions
elif "wizardlm/wizardcoder" in model:
return wizardcoder_pt(messages=messages)
elif "phind/phind-codellama" in model:
return phind_codellama_pt(messages=messages)
elif "togethercomputer/llama-2" in model and (
"instruct" in model or "chat" in model
):
return llama_2_chat_pt(messages=messages)
elif model in [
"gryphe/mythomax-l2-13b",
"gryphe/mythomix-l2-13b",
"gryphe/mythologic-l2-13b",
]:
return alpaca_pt(messages=messages)
elif model.strip() == "meta-llama/llamaguard-7b":
chat_template = "{% if messages|length % 2 == 0 %}{% set role = 'Agent' %}{% else %}{% set role = 'User' %}{% endif %}{{ \"[INST] Task: Check if there is unsafe content in '\" + role + \"' messages in conversations according our safety policy with the below categories.\n\n<BEGIN UNSAFE CONTENT CATEGORIES>\nO1: Violence and Hate. \nShould not\n- Help people plan or engage in violence.\n- Encourage people to engage in violence.\n- Express hateful, derogatory, or demeaning sentiments against people based on sensitive personal characteristics like their race, color, religion, national origin, sexual orientation, gender, gender identity, or disability.\n- Encourage discrimination against people based on those characteristics and should not use slurs or create insults based on those characteristics.\nCan\n- Provide information on violence and discrimination.\n- Discuss the topics of hate and violence, and can discuss historical events involving violence.\nO2: Sexual Content.\nShould not\n- Engage in sexually explicit (i.e., erotic) conversations and should not encourage people to engage in sexual activities.\nCan\n- Discuss topics related to sexuality and sexual education.\n- Provide general information regarding sexual activities.\n- Provide guidance on topics related to sexual health.\nO3: Criminal Planning.\nShould not\n- Help people plan or engage in criminal activities like theft, kidnapping, or financial crimes, especially when the person indicates that they may act on the information provided to them.\n- Encourage people to engage in criminal activities or condone criminal behavior.\nCan\n- Help people understand how crimes are committed, provided that the response is not so detailed that it could be used to provide a roadmap for future crimes.\n- Help people understand how systems work that are used to prevent crimes, provided those descriptions do not provide detailed information on how to defeat those systems.\nO4: Guns and Illegal Weapons.\nShould not\n- Assist in the planning or execution of firearm or illegal weapons crimes, especially when the person indicates that they may act on the information provided to them.\n- Encourage people to engage in firearm or illegal weapons crimes or condone such behavior.\nCan\n- Discuss firearms and the arguments for and against firearm ownership.\nO5: Regulated or Controlled Substances.\nShould not\n- Encourage or assist people in the trafficking, consumption, or use of regulated or controlled substances, including but not limited to illegal drugs, tobacco, alcohol, and cannabis.\n- Assist or encourage people to create such substances when it is illegal to do so.\nCan\n- Discuss the use of regulated or controlled substances, and can provide general information on those substances (ex: what their chemical composition is and what their effects are).\n- Provide information on how those substances are manufactured, provided that the information is not so detailed as to provide step-by-step instructions for their creation.\nO6: Self-Harm.\nShould not\n- Encourage people to harm themselves.\n- Romanticize or condone self-harm or suicide.\n- Provide information regarding the methods of suicide or self-harm.\n- Provide any information or advice, other than information regarding appropriate health resources, to people who express or imply that they wish to harm themselves.\nCan\n- Provide general information regarding self-harm and suicide (ex: statistics, the mental health challenges faced by those who take these actions).\nShould\n- Provide information regarding appropriate health resources to people who imply or express the desire to harm themselves.\n<END UNSAFE CONTENT CATEGORIES>\n\n<BEGIN CONVERSATION>\n\n\" }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{% set role = 'User' %}{% elif message['role'] == 'assistant' %}{% set role = 'Agent' %}{% endif %}{{ role + ': ' + content.strip() + '\n\n' }}{% endfor %}{{ \"<END CONVERSATION>\n\nProvide your safety assessment for \" + role + \" in the above conversation:\n- First line must read 'safe' or 'unsafe'.\n- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]\" }}"
return hf_chat_template(
model=model, messages=messages, chat_template=chat_template
)
else:
return hf_chat_template(original_model_name, messages)
except Exception as e:
return default_pt(
messages=messages
) # default that covers Bloom, T-5, any non-chat tuned model (e.g. base Llama2)
|
(model: str, messages: list, custom_llm_provider: Optional[str] = None, api_key: Optional[str] = None)
|
64,360 |
litellm.utils
|
read_config_args
| null |
def read_config_args(config_path) -> dict:
try:
import os
current_path = os.getcwd()
with open(config_path, "r") as config_file:
config = json.load(config_file)
# read keys/ values from config file and return them
return config
except Exception as e:
raise e
|
(config_path) -> dict
|
64,361 |
litellm.utils
|
register_model
|
Register new / Override existing models (and their pricing) to specific providers.
Provide EITHER a model cost dictionary or a url to a hosted json blob
Example usage:
model_cost_dict = {
"gpt-4": {
"max_tokens": 8192,
"input_cost_per_token": 0.00003,
"output_cost_per_token": 0.00006,
"litellm_provider": "openai",
"mode": "chat"
},
}
|
def register_model(model_cost: Union[str, dict]):
"""
Register new / Override existing models (and their pricing) to specific providers.
Provide EITHER a model cost dictionary or a url to a hosted json blob
Example usage:
model_cost_dict = {
"gpt-4": {
"max_tokens": 8192,
"input_cost_per_token": 0.00003,
"output_cost_per_token": 0.00006,
"litellm_provider": "openai",
"mode": "chat"
},
}
"""
loaded_model_cost = {}
if isinstance(model_cost, dict):
loaded_model_cost = model_cost
elif isinstance(model_cost, str):
loaded_model_cost = litellm.get_model_cost_map(url=model_cost)
for key, value in loaded_model_cost.items():
## override / add new keys to the existing model cost dictionary
litellm.model_cost.setdefault(key, {}).update(value)
verbose_logger.debug(f"{key} added to model cost map")
# add new model names to provider lists
if value.get("litellm_provider") == "openai":
if key not in litellm.open_ai_chat_completion_models:
litellm.open_ai_chat_completion_models.append(key)
elif value.get("litellm_provider") == "text-completion-openai":
if key not in litellm.open_ai_text_completion_models:
litellm.open_ai_text_completion_models.append(key)
elif value.get("litellm_provider") == "cohere":
if key not in litellm.cohere_models:
litellm.cohere_models.append(key)
elif value.get("litellm_provider") == "anthropic":
if key not in litellm.anthropic_models:
litellm.anthropic_models.append(key)
elif value.get("litellm_provider") == "openrouter":
split_string = key.split("/", 1)
if key not in litellm.openrouter_models:
litellm.openrouter_models.append(split_string[1])
elif value.get("litellm_provider") == "vertex_ai-text-models":
if key not in litellm.vertex_text_models:
litellm.vertex_text_models.append(key)
elif value.get("litellm_provider") == "vertex_ai-code-text-models":
if key not in litellm.vertex_code_text_models:
litellm.vertex_code_text_models.append(key)
elif value.get("litellm_provider") == "vertex_ai-chat-models":
if key not in litellm.vertex_chat_models:
litellm.vertex_chat_models.append(key)
elif value.get("litellm_provider") == "vertex_ai-code-chat-models":
if key not in litellm.vertex_code_chat_models:
litellm.vertex_code_chat_models.append(key)
elif value.get("litellm_provider") == "ai21":
if key not in litellm.ai21_models:
litellm.ai21_models.append(key)
elif value.get("litellm_provider") == "nlp_cloud":
if key not in litellm.nlp_cloud_models:
litellm.nlp_cloud_models.append(key)
elif value.get("litellm_provider") == "aleph_alpha":
if key not in litellm.aleph_alpha_models:
litellm.aleph_alpha_models.append(key)
elif value.get("litellm_provider") == "bedrock":
if key not in litellm.bedrock_models:
litellm.bedrock_models.append(key)
return model_cost
|
(model_cost: Union[str, dict])
|
64,362 |
litellm.utils
|
register_prompt_template
|
Register a prompt template to follow your custom format for a given model
Args:
model (str): The name of the model.
roles (dict): A dictionary mapping roles to their respective prompt values.
initial_prompt_value (str, optional): The initial prompt value. Defaults to "".
final_prompt_value (str, optional): The final prompt value. Defaults to "".
Returns:
dict: The updated custom prompt dictionary.
Example usage:
```
import litellm
litellm.register_prompt_template(
model="llama-2",
initial_prompt_value="You are a good assistant" # [OPTIONAL]
roles={
"system": {
"pre_message": "[INST] <<SYS>>
", # [OPTIONAL]
"post_message": "
<</SYS>>
[/INST]
" # [OPTIONAL]
},
"user": {
"pre_message": "[INST] ", # [OPTIONAL]
"post_message": " [/INST]" # [OPTIONAL]
},
"assistant": {
"pre_message": "
" # [OPTIONAL]
"post_message": "
" # [OPTIONAL]
}
}
final_prompt_value="Now answer as best you can:" # [OPTIONAL]
)
```
|
def register_prompt_template(
model: str,
roles: dict,
initial_prompt_value: str = "",
final_prompt_value: str = "",
):
"""
Register a prompt template to follow your custom format for a given model
Args:
model (str): The name of the model.
roles (dict): A dictionary mapping roles to their respective prompt values.
initial_prompt_value (str, optional): The initial prompt value. Defaults to "".
final_prompt_value (str, optional): The final prompt value. Defaults to "".
Returns:
dict: The updated custom prompt dictionary.
Example usage:
```
import litellm
litellm.register_prompt_template(
model="llama-2",
initial_prompt_value="You are a good assistant" # [OPTIONAL]
roles={
"system": {
"pre_message": "[INST] <<SYS>>\n", # [OPTIONAL]
"post_message": "\n<</SYS>>\n [/INST]\n" # [OPTIONAL]
},
"user": {
"pre_message": "[INST] ", # [OPTIONAL]
"post_message": " [/INST]" # [OPTIONAL]
},
"assistant": {
"pre_message": "\n" # [OPTIONAL]
"post_message": "\n" # [OPTIONAL]
}
}
final_prompt_value="Now answer as best you can:" # [OPTIONAL]
)
```
"""
model = get_llm_provider(model=model)[0]
litellm.custom_prompt_dict[model] = {
"roles": roles,
"initial_prompt_value": initial_prompt_value,
"final_prompt_value": final_prompt_value,
}
return litellm.custom_prompt_dict
|
(model: str, roles: dict, initial_prompt_value: str = '', final_prompt_value: str = '')
|
64,367 |
litellm.assistants.main
|
run_thread
|
Run a given thread + assistant.
|
def run_thread(
custom_llm_provider: Literal["openai"],
thread_id: str,
assistant_id: str,
additional_instructions: Optional[str] = None,
instructions: Optional[str] = None,
metadata: Optional[dict] = None,
model: Optional[str] = None,
stream: Optional[bool] = None,
tools: Optional[Iterable[AssistantToolParam]] = None,
client: Optional[OpenAI] = None,
**kwargs,
) -> Run:
"""Run a given thread + assistant."""
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
response: Optional[Run] = None
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_assistants_api.run_thread(
thread_id=thread_id,
assistant_id=assistant_id,
additional_instructions=additional_instructions,
instructions=instructions,
metadata=metadata,
model=model,
stream=stream,
tools=tools,
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
client=client,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'run_thread'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
|
(custom_llm_provider: Literal['openai'], thread_id: str, assistant_id: str, additional_instructions: Optional[str] = None, instructions: Optional[str] = None, metadata: Optional[dict] = None, model: Optional[str] = None, stream: Optional[bool] = None, tools: Optional[Iterable[Union[openai.types.beta.code_interpreter_tool_param.CodeInterpreterToolParam, openai.types.beta.file_search_tool_param.FileSearchToolParam, openai.types.beta.function_tool_param.FunctionToolParam]]] = None, client: Optional[openai.OpenAI] = None, **kwargs) -> openai.types.beta.threads.run.Run
|
64,370 |
litellm.main
|
stream_chunk_builder
| null |
def stream_chunk_builder(
chunks: list, messages: Optional[list] = None, start_time=None, end_time=None
):
model_response = litellm.ModelResponse()
### SORT CHUNKS BASED ON CREATED ORDER ##
print_verbose("Goes into checking if chunk has hiddden created at param")
if chunks[0]._hidden_params.get("created_at", None):
print_verbose("Chunks have a created at hidden param")
# Sort chunks based on created_at in ascending order
chunks = sorted(
chunks, key=lambda x: x._hidden_params.get("created_at", float("inf"))
)
print_verbose("Chunks sorted")
# set hidden params from chunk to model_response
if model_response is not None and hasattr(model_response, "_hidden_params"):
model_response._hidden_params = chunks[0].get("_hidden_params", {})
id = chunks[0]["id"]
object = chunks[0]["object"]
created = chunks[0]["created"]
model = chunks[0]["model"]
system_fingerprint = chunks[0].get("system_fingerprint", None)
if isinstance(
chunks[0]["choices"][0], litellm.utils.TextChoices
): # route to the text completion logic
return stream_chunk_builder_text_completion(chunks=chunks, messages=messages)
role = chunks[0]["choices"][0]["delta"]["role"]
finish_reason = chunks[-1]["choices"][0]["finish_reason"]
# Initialize the response dictionary
response = {
"id": id,
"object": object,
"created": created,
"model": model,
"system_fingerprint": system_fingerprint,
"choices": [
{
"index": 0,
"message": {"role": role, "content": ""},
"finish_reason": finish_reason,
}
],
"usage": {
"prompt_tokens": 0, # Modify as needed
"completion_tokens": 0, # Modify as needed
"total_tokens": 0, # Modify as needed
},
}
# Extract the "content" strings from the nested dictionaries within "choices"
content_list = []
combined_content = ""
combined_arguments = ""
if (
"tool_calls" in chunks[0]["choices"][0]["delta"]
and chunks[0]["choices"][0]["delta"]["tool_calls"] is not None
):
argument_list = []
delta = chunks[0]["choices"][0]["delta"]
message = response["choices"][0]["message"]
message["tool_calls"] = []
id = None
name = None
type = None
tool_calls_list = []
prev_index = 0
prev_id = None
curr_id = None
curr_index = 0
for chunk in chunks:
choices = chunk["choices"]
for choice in choices:
delta = choice.get("delta", {})
tool_calls = delta.get("tool_calls", "")
# Check if a tool call is present
if tool_calls and tool_calls[0].function is not None:
if tool_calls[0].id:
id = tool_calls[0].id
curr_id = id
if prev_id is None:
prev_id = curr_id
if tool_calls[0].index:
curr_index = tool_calls[0].index
if tool_calls[0].function.arguments:
# Now, tool_calls is expected to be a dictionary
arguments = tool_calls[0].function.arguments
argument_list.append(arguments)
if tool_calls[0].function.name:
name = tool_calls[0].function.name
if tool_calls[0].type:
type = tool_calls[0].type
if curr_index != prev_index: # new tool call
combined_arguments = "".join(argument_list)
tool_calls_list.append(
{
"id": prev_id,
"index": prev_index,
"function": {"arguments": combined_arguments, "name": name},
"type": type,
}
)
argument_list = [] # reset
prev_index = curr_index
prev_id = curr_id
combined_arguments = "".join(argument_list)
tool_calls_list.append(
{
"id": id,
"function": {"arguments": combined_arguments, "name": name},
"type": type,
}
)
response["choices"][0]["message"]["content"] = None
response["choices"][0]["message"]["tool_calls"] = tool_calls_list
elif (
"function_call" in chunks[0]["choices"][0]["delta"]
and chunks[0]["choices"][0]["delta"]["function_call"] is not None
):
argument_list = []
delta = chunks[0]["choices"][0]["delta"]
function_call = delta.get("function_call", "")
function_call_name = function_call.name
message = response["choices"][0]["message"]
message["function_call"] = {}
message["function_call"]["name"] = function_call_name
for chunk in chunks:
choices = chunk["choices"]
for choice in choices:
delta = choice.get("delta", {})
function_call = delta.get("function_call", "")
# Check if a function call is present
if function_call:
# Now, function_call is expected to be a dictionary
arguments = function_call.arguments
argument_list.append(arguments)
combined_arguments = "".join(argument_list)
response["choices"][0]["message"]["content"] = None
response["choices"][0]["message"]["function_call"][
"arguments"
] = combined_arguments
else:
for chunk in chunks:
choices = chunk["choices"]
for choice in choices:
delta = choice.get("delta", {})
content = delta.get("content", "")
if content == None:
continue # openai v1.0.0 sets content = None for chunks
content_list.append(content)
# Combine the "content" strings into a single string || combine the 'function' strings into a single string
combined_content = "".join(content_list)
# Update the "content" field within the response dictionary
response["choices"][0]["message"]["content"] = combined_content
if len(combined_content) > 0:
completion_output = combined_content
elif len(combined_arguments) > 0:
completion_output = combined_arguments
else:
completion_output = ""
# # Update usage information if needed
try:
response["usage"]["prompt_tokens"] = token_counter(
model=model, messages=messages
)
except: # don't allow this failing to block a complete streaming response from being returned
print_verbose(f"token_counter failed, assuming prompt tokens is 0")
response["usage"]["prompt_tokens"] = 0
response["usage"]["completion_tokens"] = token_counter(
model=model,
text=completion_output,
count_response_tokens=True, # count_response_tokens is a Flag to tell token counter this is a response, No need to add extra tokens we do for input messages
)
response["usage"]["total_tokens"] = (
response["usage"]["prompt_tokens"] + response["usage"]["completion_tokens"]
)
return convert_to_model_response_object(
response_object=response,
model_response_object=model_response,
start_time=start_time,
end_time=end_time,
)
|
(chunks: list, messages: Optional[list] = None, start_time=None, end_time=None)
|
64,371 |
litellm.main
|
stream_chunk_builder_text_completion
| null |
def stream_chunk_builder_text_completion(chunks: list, messages: Optional[List] = None):
id = chunks[0]["id"]
object = chunks[0]["object"]
created = chunks[0]["created"]
model = chunks[0]["model"]
system_fingerprint = chunks[0].get("system_fingerprint", None)
finish_reason = chunks[-1]["choices"][0]["finish_reason"]
logprobs = chunks[-1]["choices"][0]["logprobs"]
response = {
"id": id,
"object": object,
"created": created,
"model": model,
"system_fingerprint": system_fingerprint,
"choices": [
{
"text": None,
"index": 0,
"logprobs": logprobs,
"finish_reason": finish_reason,
}
],
"usage": {
"prompt_tokens": None,
"completion_tokens": None,
"total_tokens": None,
},
}
content_list = []
for chunk in chunks:
choices = chunk["choices"]
for choice in choices:
if (
choice is not None
and hasattr(choice, "text")
and choice.get("text") is not None
):
_choice = choice.get("text")
content_list.append(_choice)
# Combine the "content" strings into a single string || combine the 'function' strings into a single string
combined_content = "".join(content_list)
# Update the "content" field within the response dictionary
response["choices"][0]["text"] = combined_content
if len(combined_content) > 0:
completion_output = combined_content
else:
completion_output = ""
# # Update usage information if needed
try:
response["usage"]["prompt_tokens"] = token_counter(
model=model, messages=messages
)
except: # don't allow this failing to block a complete streaming response from being returned
print_verbose(f"token_counter failed, assuming prompt tokens is 0")
response["usage"]["prompt_tokens"] = 0
response["usage"]["completion_tokens"] = token_counter(
model=model,
text=combined_content,
count_response_tokens=True, # count_response_tokens is a Flag to tell token counter this is a response, No need to add extra tokens we do for input messages
)
response["usage"]["total_tokens"] = (
response["usage"]["prompt_tokens"] + response["usage"]["completion_tokens"]
)
return response
|
(chunks: list, messages: Optional[List] = None)
|
64,373 |
litellm.utils
|
supports_function_calling
|
Check if the given model supports function calling and return a boolean value.
Parameters:
model (str): The model name to be checked.
Returns:
bool: True if the model supports function calling, False otherwise.
Raises:
Exception: If the given model is not found in model_prices_and_context_window.json.
|
def supports_function_calling(model: str) -> bool:
"""
Check if the given model supports function calling and return a boolean value.
Parameters:
model (str): The model name to be checked.
Returns:
bool: True if the model supports function calling, False otherwise.
Raises:
Exception: If the given model is not found in model_prices_and_context_window.json.
"""
if model in litellm.model_cost:
model_info = litellm.model_cost[model]
if model_info.get("supports_function_calling", False):
return True
return False
else:
raise Exception(
f"Model not in model_prices_and_context_window.json. You passed model={model}."
)
|
(model: str) -> bool
|
64,374 |
litellm.utils
|
supports_httpx_timeout
|
Helper function to know if a provider implementation supports httpx timeout
|
def supports_httpx_timeout(custom_llm_provider: str) -> bool:
"""
Helper function to know if a provider implementation supports httpx timeout
"""
supported_providers = ["openai", "azure", "bedrock"]
if custom_llm_provider in supported_providers:
return True
return False
|
(custom_llm_provider: str) -> bool
|
64,375 |
litellm.utils
|
supports_parallel_function_calling
|
Check if the given model supports parallel function calling and return True if it does, False otherwise.
Parameters:
model (str): The model to check for support of parallel function calling.
Returns:
bool: True if the model supports parallel function calling, False otherwise.
Raises:
Exception: If the model is not found in the model_cost dictionary.
|
def supports_parallel_function_calling(model: str):
"""
Check if the given model supports parallel function calling and return True if it does, False otherwise.
Parameters:
model (str): The model to check for support of parallel function calling.
Returns:
bool: True if the model supports parallel function calling, False otherwise.
Raises:
Exception: If the model is not found in the model_cost dictionary.
"""
if model in litellm.model_cost:
model_info = litellm.model_cost[model]
if model_info.get("supports_parallel_function_calling", False):
return True
return False
else:
raise Exception(
f"Model not in model_prices_and_context_window.json. You passed model={model}."
)
|
(model: str)
|
64,376 |
litellm.utils
|
supports_vision
|
Check if the given model supports vision and return a boolean value.
Parameters:
model (str): The model name to be checked.
Returns:
bool: True if the model supports vision, False otherwise.
Raises:
Exception: If the given model is not found in model_prices_and_context_window.json.
|
def supports_vision(model: str):
"""
Check if the given model supports vision and return a boolean value.
Parameters:
model (str): The model name to be checked.
Returns:
bool: True if the model supports vision, False otherwise.
Raises:
Exception: If the given model is not found in model_prices_and_context_window.json.
"""
if model in litellm.model_cost:
model_info = litellm.model_cost[model]
if model_info.get("supports_vision", False):
return True
return False
else:
return False
|
(model: str)
|
64,378 |
litellm.main
|
text_completion
| null |
def embedding(
model,
input=[],
# Optional params
dimensions: Optional[int] = None,
timeout=600, # default to 10 minutes
# set api_base, api_version, api_key
api_base: Optional[str] = None,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
api_type: Optional[str] = None,
caching: bool = False,
user: Optional[str] = None,
custom_llm_provider=None,
litellm_call_id=None,
litellm_logging_obj=None,
logger_fn=None,
**kwargs,
):
"""
Embedding function that calls an API to generate embeddings for the given input.
Parameters:
- model: The embedding model to use.
- input: The input for which embeddings are to be generated.
- dimensions: The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
- timeout: The timeout value for the API call, default 10 mins
- litellm_call_id: The call ID for litellm logging.
- litellm_logging_obj: The litellm logging object.
- logger_fn: The logger function.
- api_base: Optional. The base URL for the API.
- api_version: Optional. The version of the API.
- api_key: Optional. The API key to use.
- api_type: Optional. The type of the API.
- caching: A boolean indicating whether to enable caching.
- custom_llm_provider: The custom llm provider.
Returns:
- response: The response received from the API call.
Raises:
- exception_type: If an exception occurs during the API call.
"""
azure = kwargs.get("azure", None)
client = kwargs.pop("client", None)
rpm = kwargs.pop("rpm", None)
tpm = kwargs.pop("tpm", None)
max_parallel_requests = kwargs.pop("max_parallel_requests", None)
model_info = kwargs.get("model_info", None)
metadata = kwargs.get("metadata", None)
encoding_format = kwargs.get("encoding_format", None)
proxy_server_request = kwargs.get("proxy_server_request", None)
aembedding = kwargs.get("aembedding", None)
### CUSTOM MODEL COST ###
input_cost_per_token = kwargs.get("input_cost_per_token", None)
output_cost_per_token = kwargs.get("output_cost_per_token", None)
input_cost_per_second = kwargs.get("input_cost_per_second", None)
output_cost_per_second = kwargs.get("output_cost_per_second", None)
openai_params = [
"user",
"dimensions",
"request_timeout",
"api_base",
"api_version",
"api_key",
"deployment_id",
"organization",
"base_url",
"default_headers",
"timeout",
"max_retries",
"encoding_format",
]
litellm_params = [
"metadata",
"aembedding",
"caching",
"mock_response",
"api_key",
"api_version",
"api_base",
"force_timeout",
"logger_fn",
"verbose",
"custom_llm_provider",
"litellm_logging_obj",
"litellm_call_id",
"use_client",
"id",
"fallbacks",
"azure",
"headers",
"model_list",
"num_retries",
"context_window_fallback_dict",
"retry_policy",
"roles",
"final_prompt_value",
"bos_token",
"eos_token",
"request_timeout",
"complete_response",
"self",
"client",
"rpm",
"tpm",
"max_parallel_requests",
"input_cost_per_token",
"output_cost_per_token",
"input_cost_per_second",
"output_cost_per_second",
"hf_model_name",
"proxy_server_request",
"model_info",
"preset_cache_key",
"caching_groups",
"ttl",
"cache",
"no-log",
"region_name",
"allowed_model_region",
]
default_params = openai_params + litellm_params
non_default_params = {
k: v for k, v in kwargs.items() if k not in default_params
} # model-specific params - pass them straight to the model/provider
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(
model=model,
custom_llm_provider=custom_llm_provider,
api_base=api_base,
api_key=api_key,
)
optional_params = get_optional_params_embeddings(
model=model,
user=user,
dimensions=dimensions,
encoding_format=encoding_format,
custom_llm_provider=custom_llm_provider,
**non_default_params,
)
### REGISTER CUSTOM MODEL PRICING -- IF GIVEN ###
if input_cost_per_token is not None and output_cost_per_token is not None:
litellm.register_model(
{
model: {
"input_cost_per_token": input_cost_per_token,
"output_cost_per_token": output_cost_per_token,
"litellm_provider": custom_llm_provider,
}
}
)
if input_cost_per_second is not None: # time based pricing just needs cost in place
output_cost_per_second = output_cost_per_second or 0.0
litellm.register_model(
{
model: {
"input_cost_per_second": input_cost_per_second,
"output_cost_per_second": output_cost_per_second,
"litellm_provider": custom_llm_provider,
}
}
)
try:
response = None
logging = litellm_logging_obj
logging.update_environment_variables(
model=model,
user=user,
optional_params=optional_params,
litellm_params={
"timeout": timeout,
"azure": azure,
"litellm_call_id": litellm_call_id,
"logger_fn": logger_fn,
"proxy_server_request": proxy_server_request,
"model_info": model_info,
"metadata": metadata,
"aembedding": aembedding,
"preset_cache_key": None,
"stream_response": {},
},
)
if azure == True or custom_llm_provider == "azure":
# azure configs
api_type = get_secret("AZURE_API_TYPE") or "azure"
api_base = api_base or litellm.api_base or get_secret("AZURE_API_BASE")
api_version = (
api_version or litellm.api_version or get_secret("AZURE_API_VERSION")
)
azure_ad_token = optional_params.pop("azure_ad_token", None) or get_secret(
"AZURE_AD_TOKEN"
)
api_key = (
api_key
or litellm.api_key
or litellm.azure_key
or get_secret("AZURE_API_KEY")
)
## EMBEDDING CALL
response = azure_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif (
model in litellm.open_ai_embedding_models or custom_llm_provider == "openai"
):
api_base = (
api_base
or litellm.api_base
or get_secret("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
openai.organization = (
litellm.organization
or get_secret("OPENAI_ORGANIZATION")
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
api_key
or litellm.api_key
or litellm.openai_key
or get_secret("OPENAI_API_KEY")
)
api_type = "openai"
api_version = None
## EMBEDDING CALL
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "cohere":
cohere_key = (
api_key
or litellm.cohere_key
or get_secret("COHERE_API_KEY")
or get_secret("CO_API_KEY")
or litellm.api_key
)
response = cohere.embedding(
model=model,
input=input,
optional_params=optional_params,
encoding=encoding,
api_key=cohere_key,
logging_obj=logging,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "huggingface":
api_key = (
api_key
or litellm.huggingface_key
or get_secret("HUGGINGFACE_API_KEY")
or litellm.api_key
)
response = huggingface.embedding(
model=model,
input=input,
encoding=encoding,
api_key=api_key,
api_base=api_base,
logging_obj=logging,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "bedrock":
response = bedrock.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "triton":
if api_base is None:
raise ValueError(
"api_base is required for triton. Please pass `api_base`"
)
response = triton_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "vertex_ai":
vertex_ai_project = (
optional_params.pop("vertex_project", None)
or optional_params.pop("vertex_ai_project", None)
or litellm.vertex_project
or get_secret("VERTEXAI_PROJECT")
or get_secret("VERTEX_PROJECT")
)
vertex_ai_location = (
optional_params.pop("vertex_location", None)
or optional_params.pop("vertex_ai_location", None)
or litellm.vertex_location
or get_secret("VERTEXAI_LOCATION")
or get_secret("VERTEX_LOCATION")
)
vertex_credentials = (
optional_params.pop("vertex_credentials", None)
or optional_params.pop("vertex_ai_credentials", None)
or get_secret("VERTEXAI_CREDENTIALS")
or get_secret("VERTEX_CREDENTIALS")
)
response = vertex_ai.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
vertex_project=vertex_ai_project,
vertex_location=vertex_ai_location,
vertex_credentials=vertex_credentials,
aembedding=aembedding,
print_verbose=print_verbose,
)
elif custom_llm_provider == "oobabooga":
response = oobabooga.embedding(
model=model,
input=input,
encoding=encoding,
api_base=api_base,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "ollama":
api_base = (
litellm.api_base
or api_base
or get_secret("OLLAMA_API_BASE")
or "http://localhost:11434"
)
if isinstance(input, str):
input = [input]
if not all(isinstance(item, str) for item in input):
raise litellm.BadRequestError(
message=f"Invalid input for ollama embeddings. input={input}",
model=model, # type: ignore
llm_provider="ollama", # type: ignore
)
ollama_embeddings_fn = (
ollama.ollama_aembeddings if aembedding else ollama.ollama_embeddings
)
response = ollama_embeddings_fn(
api_base=api_base,
model=model,
prompts=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "sagemaker":
response = sagemaker.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
print_verbose=print_verbose,
)
elif custom_llm_provider == "mistral":
api_key = api_key or litellm.api_key or get_secret("MISTRAL_API_KEY")
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "voyage":
api_key = api_key or litellm.api_key or get_secret("VOYAGE_API_KEY")
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "xinference":
api_key = (
api_key
or litellm.api_key
or get_secret("XINFERENCE_API_KEY")
or "stub-xinference-key"
) # xinference does not need an api key, pass a stub key if user did not set one
api_base = (
api_base
or litellm.api_base
or get_secret("XINFERENCE_API_BASE")
or "http://127.0.0.1:9997/v1"
)
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "watsonx":
response = watsonx.IBMWatsonXAI().embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
else:
args = locals()
raise ValueError(f"No valid embedding model args passed in - {args}")
if response is not None and hasattr(response, "_hidden_params"):
response._hidden_params["custom_llm_provider"] = custom_llm_provider
return response
except Exception as e:
## LOGGING
logging.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
## Map to OpenAI Exception
raise exception_type(
model=model,
original_exception=e,
custom_llm_provider=custom_llm_provider,
extra_kwargs=kwargs,
)
|
(prompt: Union[str, List[Union[str, List[Union[str, List[int]]]]]], model: Optional[str] = None, best_of: Optional[int] = None, echo: Optional[bool] = None, frequency_penalty: Optional[float] = None, logit_bias: Optional[Dict[int, int]] = None, logprobs: Optional[int] = None, max_tokens: Optional[int] = None, n: Optional[int] = None, presence_penalty: Optional[float] = None, stop: Union[str, List[str], NoneType] = None, stream: Optional[bool] = None, stream_options: Optional[dict] = None, suffix: Optional[str] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, user: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, api_key: Optional[str] = None, model_list: Optional[list] = None, custom_llm_provider: Optional[str] = None, *args, **kwargs)
|
64,382 |
litellm.timeout
|
timeout
|
Wraps a function to raise the specified exception if execution time
is greater than the specified timeout.
Works with both synchronous and asynchronous callables, but with synchronous ones will introduce
some overhead due to the backend use of threads and asyncio.
:param float timeout_duration: Timeout duration in seconds. If none callable won't time out.
:param OpenAIError exception_to_raise: Exception to raise when the callable times out.
Defaults to TimeoutError.
:return: The decorated function.
:rtype: callable
|
def timeout(timeout_duration: float = 0.0, exception_to_raise=Timeout):
"""
Wraps a function to raise the specified exception if execution time
is greater than the specified timeout.
Works with both synchronous and asynchronous callables, but with synchronous ones will introduce
some overhead due to the backend use of threads and asyncio.
:param float timeout_duration: Timeout duration in seconds. If none callable won't time out.
:param OpenAIError exception_to_raise: Exception to raise when the callable times out.
Defaults to TimeoutError.
:return: The decorated function.
:rtype: callable
"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
async def async_func():
return func(*args, **kwargs)
thread = _LoopWrapper()
thread.start()
future = asyncio.run_coroutine_threadsafe(async_func(), thread.loop)
local_timeout_duration = timeout_duration
if "force_timeout" in kwargs and kwargs["force_timeout"] is not None:
local_timeout_duration = kwargs["force_timeout"]
elif "request_timeout" in kwargs and kwargs["request_timeout"] is not None:
local_timeout_duration = kwargs["request_timeout"]
try:
result = future.result(timeout=local_timeout_duration)
except futures.TimeoutError:
thread.stop_loop()
model = args[0] if len(args) > 0 else kwargs["model"]
raise exception_to_raise(
f"A timeout error occurred. The function call took longer than {local_timeout_duration} second(s).",
model=model, # [TODO]: replace with logic for parsing out llm provider from model name
llm_provider="openai",
)
thread.stop_loop()
return result
@wraps(func)
async def async_wrapper(*args, **kwargs):
local_timeout_duration = timeout_duration
if "force_timeout" in kwargs:
local_timeout_duration = kwargs["force_timeout"]
elif "request_timeout" in kwargs and kwargs["request_timeout"] is not None:
local_timeout_duration = kwargs["request_timeout"]
try:
value = await asyncio.wait_for(
func(*args, **kwargs), timeout=timeout_duration
)
return value
except asyncio.TimeoutError:
model = args[0] if len(args) > 0 else kwargs["model"]
raise exception_to_raise(
f"A timeout error occurred. The function call took longer than {local_timeout_duration} second(s).",
model=model, # [TODO]: replace with logic for parsing out llm provider from model name
llm_provider="openai",
)
if iscoroutinefunction(func):
return async_wrapper
return wrapper
return decorator
|
(timeout_duration: float = 0.0, exception_to_raise=<class 'litellm.exceptions.Timeout'>)
|
64,384 |
litellm.utils
|
token_counter
|
Count the number of tokens in a given text using a specified model.
Args:
model (str): The name of the model to use for tokenization. Default is an empty string.
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
text (str): The raw text string to be passed to the model. Default is None.
messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None.
Returns:
int: The number of tokens in the text.
|
def token_counter(
model="",
custom_tokenizer: Optional[dict] = None,
text: Optional[Union[str, List[str]]] = None,
messages: Optional[List] = None,
count_response_tokens: Optional[bool] = False,
):
"""
Count the number of tokens in a given text using a specified model.
Args:
model (str): The name of the model to use for tokenization. Default is an empty string.
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
text (str): The raw text string to be passed to the model. Default is None.
messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None.
Returns:
int: The number of tokens in the text.
"""
# use tiktoken, anthropic, cohere, llama2, or llama3's tokenizer depending on the model
is_tool_call = False
num_tokens = 0
if text == None:
if messages is not None:
print_verbose(f"token_counter messages received: {messages}")
text = ""
for message in messages:
if message.get("content", None) is not None:
content = message.get("content")
if isinstance(content, str):
text += message["content"]
elif isinstance(content, List):
for c in content:
if c["type"] == "text":
text += c["text"]
elif c["type"] == "image_url":
if isinstance(c["image_url"], dict):
image_url_dict = c["image_url"]
detail = image_url_dict.get("detail", "auto")
url = image_url_dict.get("url")
num_tokens += calculage_img_tokens(
data=url, mode=detail
)
elif isinstance(c["image_url"], str):
image_url_str = c["image_url"]
num_tokens += calculage_img_tokens(
data=image_url_str, mode="auto"
)
if "tool_calls" in message:
is_tool_call = True
for tool_call in message["tool_calls"]:
if "function" in tool_call:
function_arguments = tool_call["function"]["arguments"]
text += function_arguments
else:
raise ValueError("text and messages cannot both be None")
elif isinstance(text, List):
text = "".join(t for t in text if isinstance(t, str))
elif isinstance(text, str):
count_response_tokens = True # user just trying to count tokens for a text. don't add the chat_ml +3 tokens to this
if model is not None or custom_tokenizer is not None:
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
if tokenizer_json["type"] == "huggingface_tokenizer":
print_verbose(
f"Token Counter - using hugging face token counter, for model={model}"
)
enc = tokenizer_json["tokenizer"].encode(text)
num_tokens = len(enc.ids)
elif tokenizer_json["type"] == "openai_tokenizer":
if (
model in litellm.open_ai_chat_completion_models
or model in litellm.azure_llms
):
if model in litellm.azure_llms:
# azure llms use gpt-35-turbo instead of gpt-3.5-turbo 🙃
model = model.replace("-35", "-3.5")
print_verbose(
f"Token Counter - using OpenAI token counter, for model={model}"
)
num_tokens = openai_token_counter(
text=text, # type: ignore
model=model,
messages=messages,
is_tool_call=is_tool_call,
count_response_tokens=count_response_tokens,
)
else:
print_verbose(
f"Token Counter - using generic token counter, for model={model}"
)
num_tokens = openai_token_counter(
text=text, # type: ignore
model="gpt-3.5-turbo",
messages=messages,
is_tool_call=is_tool_call,
count_response_tokens=count_response_tokens,
)
else:
num_tokens = len(encoding.encode(text, disallowed_special=())) # type: ignore
return num_tokens
|
(model='', custom_tokenizer: Optional[dict] = None, text: Union[str, List[str], NoneType] = None, messages: Optional[List] = None, count_response_tokens: Optional[bool] = False)
|
64,387 |
litellm.main
|
transcription
|
Calls openai + azure whisper endpoints.
Allows router to load balance between them
|
def embedding(
model,
input=[],
# Optional params
dimensions: Optional[int] = None,
timeout=600, # default to 10 minutes
# set api_base, api_version, api_key
api_base: Optional[str] = None,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
api_type: Optional[str] = None,
caching: bool = False,
user: Optional[str] = None,
custom_llm_provider=None,
litellm_call_id=None,
litellm_logging_obj=None,
logger_fn=None,
**kwargs,
):
"""
Embedding function that calls an API to generate embeddings for the given input.
Parameters:
- model: The embedding model to use.
- input: The input for which embeddings are to be generated.
- dimensions: The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
- timeout: The timeout value for the API call, default 10 mins
- litellm_call_id: The call ID for litellm logging.
- litellm_logging_obj: The litellm logging object.
- logger_fn: The logger function.
- api_base: Optional. The base URL for the API.
- api_version: Optional. The version of the API.
- api_key: Optional. The API key to use.
- api_type: Optional. The type of the API.
- caching: A boolean indicating whether to enable caching.
- custom_llm_provider: The custom llm provider.
Returns:
- response: The response received from the API call.
Raises:
- exception_type: If an exception occurs during the API call.
"""
azure = kwargs.get("azure", None)
client = kwargs.pop("client", None)
rpm = kwargs.pop("rpm", None)
tpm = kwargs.pop("tpm", None)
max_parallel_requests = kwargs.pop("max_parallel_requests", None)
model_info = kwargs.get("model_info", None)
metadata = kwargs.get("metadata", None)
encoding_format = kwargs.get("encoding_format", None)
proxy_server_request = kwargs.get("proxy_server_request", None)
aembedding = kwargs.get("aembedding", None)
### CUSTOM MODEL COST ###
input_cost_per_token = kwargs.get("input_cost_per_token", None)
output_cost_per_token = kwargs.get("output_cost_per_token", None)
input_cost_per_second = kwargs.get("input_cost_per_second", None)
output_cost_per_second = kwargs.get("output_cost_per_second", None)
openai_params = [
"user",
"dimensions",
"request_timeout",
"api_base",
"api_version",
"api_key",
"deployment_id",
"organization",
"base_url",
"default_headers",
"timeout",
"max_retries",
"encoding_format",
]
litellm_params = [
"metadata",
"aembedding",
"caching",
"mock_response",
"api_key",
"api_version",
"api_base",
"force_timeout",
"logger_fn",
"verbose",
"custom_llm_provider",
"litellm_logging_obj",
"litellm_call_id",
"use_client",
"id",
"fallbacks",
"azure",
"headers",
"model_list",
"num_retries",
"context_window_fallback_dict",
"retry_policy",
"roles",
"final_prompt_value",
"bos_token",
"eos_token",
"request_timeout",
"complete_response",
"self",
"client",
"rpm",
"tpm",
"max_parallel_requests",
"input_cost_per_token",
"output_cost_per_token",
"input_cost_per_second",
"output_cost_per_second",
"hf_model_name",
"proxy_server_request",
"model_info",
"preset_cache_key",
"caching_groups",
"ttl",
"cache",
"no-log",
"region_name",
"allowed_model_region",
]
default_params = openai_params + litellm_params
non_default_params = {
k: v for k, v in kwargs.items() if k not in default_params
} # model-specific params - pass them straight to the model/provider
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(
model=model,
custom_llm_provider=custom_llm_provider,
api_base=api_base,
api_key=api_key,
)
optional_params = get_optional_params_embeddings(
model=model,
user=user,
dimensions=dimensions,
encoding_format=encoding_format,
custom_llm_provider=custom_llm_provider,
**non_default_params,
)
### REGISTER CUSTOM MODEL PRICING -- IF GIVEN ###
if input_cost_per_token is not None and output_cost_per_token is not None:
litellm.register_model(
{
model: {
"input_cost_per_token": input_cost_per_token,
"output_cost_per_token": output_cost_per_token,
"litellm_provider": custom_llm_provider,
}
}
)
if input_cost_per_second is not None: # time based pricing just needs cost in place
output_cost_per_second = output_cost_per_second or 0.0
litellm.register_model(
{
model: {
"input_cost_per_second": input_cost_per_second,
"output_cost_per_second": output_cost_per_second,
"litellm_provider": custom_llm_provider,
}
}
)
try:
response = None
logging = litellm_logging_obj
logging.update_environment_variables(
model=model,
user=user,
optional_params=optional_params,
litellm_params={
"timeout": timeout,
"azure": azure,
"litellm_call_id": litellm_call_id,
"logger_fn": logger_fn,
"proxy_server_request": proxy_server_request,
"model_info": model_info,
"metadata": metadata,
"aembedding": aembedding,
"preset_cache_key": None,
"stream_response": {},
},
)
if azure == True or custom_llm_provider == "azure":
# azure configs
api_type = get_secret("AZURE_API_TYPE") or "azure"
api_base = api_base or litellm.api_base or get_secret("AZURE_API_BASE")
api_version = (
api_version or litellm.api_version or get_secret("AZURE_API_VERSION")
)
azure_ad_token = optional_params.pop("azure_ad_token", None) or get_secret(
"AZURE_AD_TOKEN"
)
api_key = (
api_key
or litellm.api_key
or litellm.azure_key
or get_secret("AZURE_API_KEY")
)
## EMBEDDING CALL
response = azure_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif (
model in litellm.open_ai_embedding_models or custom_llm_provider == "openai"
):
api_base = (
api_base
or litellm.api_base
or get_secret("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
openai.organization = (
litellm.organization
or get_secret("OPENAI_ORGANIZATION")
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
api_key
or litellm.api_key
or litellm.openai_key
or get_secret("OPENAI_API_KEY")
)
api_type = "openai"
api_version = None
## EMBEDDING CALL
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "cohere":
cohere_key = (
api_key
or litellm.cohere_key
or get_secret("COHERE_API_KEY")
or get_secret("CO_API_KEY")
or litellm.api_key
)
response = cohere.embedding(
model=model,
input=input,
optional_params=optional_params,
encoding=encoding,
api_key=cohere_key,
logging_obj=logging,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "huggingface":
api_key = (
api_key
or litellm.huggingface_key
or get_secret("HUGGINGFACE_API_KEY")
or litellm.api_key
)
response = huggingface.embedding(
model=model,
input=input,
encoding=encoding,
api_key=api_key,
api_base=api_base,
logging_obj=logging,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "bedrock":
response = bedrock.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "triton":
if api_base is None:
raise ValueError(
"api_base is required for triton. Please pass `api_base`"
)
response = triton_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "vertex_ai":
vertex_ai_project = (
optional_params.pop("vertex_project", None)
or optional_params.pop("vertex_ai_project", None)
or litellm.vertex_project
or get_secret("VERTEXAI_PROJECT")
or get_secret("VERTEX_PROJECT")
)
vertex_ai_location = (
optional_params.pop("vertex_location", None)
or optional_params.pop("vertex_ai_location", None)
or litellm.vertex_location
or get_secret("VERTEXAI_LOCATION")
or get_secret("VERTEX_LOCATION")
)
vertex_credentials = (
optional_params.pop("vertex_credentials", None)
or optional_params.pop("vertex_ai_credentials", None)
or get_secret("VERTEXAI_CREDENTIALS")
or get_secret("VERTEX_CREDENTIALS")
)
response = vertex_ai.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
vertex_project=vertex_ai_project,
vertex_location=vertex_ai_location,
vertex_credentials=vertex_credentials,
aembedding=aembedding,
print_verbose=print_verbose,
)
elif custom_llm_provider == "oobabooga":
response = oobabooga.embedding(
model=model,
input=input,
encoding=encoding,
api_base=api_base,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "ollama":
api_base = (
litellm.api_base
or api_base
or get_secret("OLLAMA_API_BASE")
or "http://localhost:11434"
)
if isinstance(input, str):
input = [input]
if not all(isinstance(item, str) for item in input):
raise litellm.BadRequestError(
message=f"Invalid input for ollama embeddings. input={input}",
model=model, # type: ignore
llm_provider="ollama", # type: ignore
)
ollama_embeddings_fn = (
ollama.ollama_aembeddings if aembedding else ollama.ollama_embeddings
)
response = ollama_embeddings_fn(
api_base=api_base,
model=model,
prompts=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "sagemaker":
response = sagemaker.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
print_verbose=print_verbose,
)
elif custom_llm_provider == "mistral":
api_key = api_key or litellm.api_key or get_secret("MISTRAL_API_KEY")
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "voyage":
api_key = api_key or litellm.api_key or get_secret("VOYAGE_API_KEY")
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "xinference":
api_key = (
api_key
or litellm.api_key
or get_secret("XINFERENCE_API_KEY")
or "stub-xinference-key"
) # xinference does not need an api key, pass a stub key if user did not set one
api_base = (
api_base
or litellm.api_base
or get_secret("XINFERENCE_API_BASE")
or "http://127.0.0.1:9997/v1"
)
response = openai_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "watsonx":
response = watsonx.IBMWatsonXAI().embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
else:
args = locals()
raise ValueError(f"No valid embedding model args passed in - {args}")
if response is not None and hasattr(response, "_hidden_params"):
response._hidden_params["custom_llm_provider"] = custom_llm_provider
return response
except Exception as e:
## LOGGING
logging.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
## Map to OpenAI Exception
raise exception_type(
model=model,
original_exception=e,
custom_llm_provider=custom_llm_provider,
extra_kwargs=kwargs,
)
|
(model: str, file: <class 'BinaryIO'>, language: Optional[str] = None, prompt: Optional[str] = None, response_format: Optional[Literal['json', 'text', 'srt', 'verbose_json', 'vtt']] = None, temperature: Optional[int] = None, user: Optional[str] = None, timeout=600, api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, max_retries: Optional[int] = None, litellm_logging_obj=None, custom_llm_provider=None, **kwargs)
|
64,390 |
litellm.types.router
|
updateDeployment
| null |
class updateDeployment(BaseModel):
model_name: Optional[str] = None
litellm_params: Optional[updateLiteLLMParams] = None
model_info: Optional[ModelInfo] = None
class Config:
protected_namespaces = ()
|
(*, model_name: Optional[str] = None, litellm_params: Optional[litellm.types.router.updateLiteLLMParams] = None, model_info: Optional[litellm.types.router.ModelInfo] = None) -> None
|
64,419 |
litellm.types.router
|
updateLiteLLMParams
| null |
class updateLiteLLMParams(GenericLiteLLMParams):
# This class is used to update the LiteLLM_Params
# only differece is model is optional
model: Optional[str] = None
|
(custom_llm_provider: Optional[str] = None, max_retries: Optional[int] = None, tpm: Optional[int] = None, rpm: Optional[int] = None, api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, timeout: Union[float, str, openai.Timeout, NoneType] = None, stream_timeout: Union[float, str, NoneType] = None, organization: Optional[str] = None, region_name: Optional[str] = None, vertex_project: Optional[str] = None, vertex_location: Optional[str] = None, aws_access_key_id: Optional[str] = None, aws_secret_access_key: Optional[str] = None, aws_region_name: Optional[str] = None, watsonx_region_name: Optional[str] = None, input_cost_per_token: Optional[float] = None, output_cost_per_token: Optional[float] = None, input_cost_per_second: Optional[float] = None, output_cost_per_second: Optional[float] = None, *, model: Optional[str] = None, **params) -> None
|
64,452 |
litellm.caching
|
update_cache
|
Update the cache for LiteLLM.
Args:
type (Optional[Literal["local", "redis"]]): The type of cache. Defaults to "local".
host (Optional[str]): The host of the cache. Defaults to None.
port (Optional[str]): The port of the cache. Defaults to None.
password (Optional[str]): The password for the cache. Defaults to None.
supported_call_types (Optional[List[Literal["completion", "acompletion", "embedding", "aembedding"]]]):
The supported call types for the cache. Defaults to ["completion", "acompletion", "embedding", "aembedding"].
**kwargs: Additional keyword arguments for the cache.
Returns:
None
|
def update_cache(
type: Optional[Literal["local", "redis"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[
Literal[
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
]
]
] = [
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
],
**kwargs,
):
"""
Update the cache for LiteLLM.
Args:
type (Optional[Literal["local", "redis"]]): The type of cache. Defaults to "local".
host (Optional[str]): The host of the cache. Defaults to None.
port (Optional[str]): The port of the cache. Defaults to None.
password (Optional[str]): The password for the cache. Defaults to None.
supported_call_types (Optional[List[Literal["completion", "acompletion", "embedding", "aembedding"]]]):
The supported call types for the cache. Defaults to ["completion", "acompletion", "embedding", "aembedding"].
**kwargs: Additional keyword arguments for the cache.
Returns:
None
"""
print_verbose("LiteLLM: Updating Cache")
litellm.cache = Cache(
type=type,
host=host,
port=port,
password=password,
supported_call_types=supported_call_types,
**kwargs,
)
print_verbose(f"LiteLLM: Cache Updated, litellm.cache={litellm.cache}")
print_verbose(f"LiteLLM Cache: {vars(litellm.cache)}")
|
(type: Optional[Literal['local', 'redis']] = 'local', host: Optional[str] = None, port: Optional[str] = None, password: Optional[str] = None, supported_call_types: Optional[List[Literal['completion', 'acompletion', 'embedding', 'aembedding', 'atranscription', 'transcription']]] = ['completion', 'acompletion', 'embedding', 'aembedding', 'atranscription', 'transcription'], **kwargs)
|
64,455 |
litellm.utils
|
validate_environment
|
Checks if the environment variables are valid for the given model.
Args:
model (Optional[str]): The name of the model. Defaults to None.
Returns:
dict: A dictionary containing the following keys:
- keys_in_environment (bool): True if all the required keys are present in the environment, False otherwise.
- missing_keys (List[str]): A list of missing keys in the environment.
|
def validate_environment(model: Optional[str] = None) -> dict:
"""
Checks if the environment variables are valid for the given model.
Args:
model (Optional[str]): The name of the model. Defaults to None.
Returns:
dict: A dictionary containing the following keys:
- keys_in_environment (bool): True if all the required keys are present in the environment, False otherwise.
- missing_keys (List[str]): A list of missing keys in the environment.
"""
keys_in_environment = False
missing_keys: List[str] = []
if model is None:
return {
"keys_in_environment": keys_in_environment,
"missing_keys": missing_keys,
}
## EXTRACT LLM PROVIDER - if model name provided
try:
_, custom_llm_provider, _, _ = get_llm_provider(model=model)
except:
custom_llm_provider = None
# # check if llm provider part of model name
# if model.split("/",1)[0] in litellm.provider_list:
# custom_llm_provider = model.split("/", 1)[0]
# model = model.split("/", 1)[1]
# custom_llm_provider_passed_in = True
if custom_llm_provider:
if custom_llm_provider == "openai":
if "OPENAI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("OPENAI_API_KEY")
elif custom_llm_provider == "azure":
if (
"AZURE_API_BASE" in os.environ
and "AZURE_API_VERSION" in os.environ
and "AZURE_API_KEY" in os.environ
):
keys_in_environment = True
else:
missing_keys.extend(
["AZURE_API_BASE", "AZURE_API_VERSION", "AZURE_API_KEY"]
)
elif custom_llm_provider == "anthropic":
if "ANTHROPIC_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("ANTHROPIC_API_KEY")
elif custom_llm_provider == "cohere":
if "COHERE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("COHERE_API_KEY")
elif custom_llm_provider == "replicate":
if "REPLICATE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("REPLICATE_API_KEY")
elif custom_llm_provider == "openrouter":
if "OPENROUTER_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("OPENROUTER_API_KEY")
elif custom_llm_provider == "vertex_ai":
if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
keys_in_environment = True
else:
missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_LOCATION"])
elif custom_llm_provider == "huggingface":
if "HUGGINGFACE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("HUGGINGFACE_API_KEY")
elif custom_llm_provider == "ai21":
if "AI21_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("AI21_API_KEY")
elif custom_llm_provider == "together_ai":
if "TOGETHERAI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("TOGETHERAI_API_KEY")
elif custom_llm_provider == "aleph_alpha":
if "ALEPH_ALPHA_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("ALEPH_ALPHA_API_KEY")
elif custom_llm_provider == "baseten":
if "BASETEN_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("BASETEN_API_KEY")
elif custom_llm_provider == "nlp_cloud":
if "NLP_CLOUD_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("NLP_CLOUD_API_KEY")
elif custom_llm_provider == "bedrock" or custom_llm_provider == "sagemaker":
if (
"AWS_ACCESS_KEY_ID" in os.environ
and "AWS_SECRET_ACCESS_KEY" in os.environ
):
keys_in_environment = True
else:
missing_keys.append("AWS_ACCESS_KEY_ID")
missing_keys.append("AWS_SECRET_ACCESS_KEY")
elif custom_llm_provider in ["ollama", "ollama_chat"]:
if "OLLAMA_API_BASE" in os.environ:
keys_in_environment = True
else:
missing_keys.append("OLLAMA_API_BASE")
elif custom_llm_provider == "anyscale":
if "ANYSCALE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("ANYSCALE_API_KEY")
elif custom_llm_provider == "deepinfra":
if "DEEPINFRA_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("DEEPINFRA_API_KEY")
elif custom_llm_provider == "gemini":
if "GEMINI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("GEMINI_API_KEY")
elif custom_llm_provider == "groq":
if "GROQ_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("GROQ_API_KEY")
elif custom_llm_provider == "deepseek":
if "DEEPSEEK_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("DEEPSEEK_API_KEY")
elif custom_llm_provider == "mistral":
if "MISTRAL_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("MISTRAL_API_KEY")
elif custom_llm_provider == "palm":
if "PALM_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("PALM_API_KEY")
elif custom_llm_provider == "perplexity":
if "PERPLEXITYAI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("PERPLEXITYAI_API_KEY")
elif custom_llm_provider == "voyage":
if "VOYAGE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("VOYAGE_API_KEY")
elif custom_llm_provider == "fireworks_ai":
if (
"FIREWORKS_AI_API_KEY" in os.environ
or "FIREWORKS_API_KEY" in os.environ
or "FIREWORKSAI_API_KEY" in os.environ
or "FIREWORKS_AI_TOKEN" in os.environ
):
keys_in_environment = True
else:
missing_keys.append("FIREWORKS_AI_API_KEY")
elif custom_llm_provider == "cloudflare":
if "CLOUDFLARE_API_KEY" in os.environ and (
"CLOUDFLARE_ACCOUNT_ID" in os.environ
or "CLOUDFLARE_API_BASE" in os.environ
):
keys_in_environment = True
else:
missing_keys.append("CLOUDFLARE_API_KEY")
missing_keys.append("CLOUDFLARE_API_BASE")
else:
## openai - chatcompletion + text completion
if (
model in litellm.open_ai_chat_completion_models
or model in litellm.open_ai_text_completion_models
or model in litellm.open_ai_embedding_models
or model in litellm.openai_image_generation_models
):
if "OPENAI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("OPENAI_API_KEY")
## anthropic
elif model in litellm.anthropic_models:
if "ANTHROPIC_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("ANTHROPIC_API_KEY")
## cohere
elif model in litellm.cohere_models:
if "COHERE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("COHERE_API_KEY")
## replicate
elif model in litellm.replicate_models:
if "REPLICATE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("REPLICATE_API_KEY")
## openrouter
elif model in litellm.openrouter_models:
if "OPENROUTER_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("OPENROUTER_API_KEY")
## vertex - text + chat models
elif (
model in litellm.vertex_chat_models
or model in litellm.vertex_text_models
or model in litellm.models_by_provider["vertex_ai"]
):
if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
keys_in_environment = True
else:
missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_PROJECT"])
## huggingface
elif model in litellm.huggingface_models:
if "HUGGINGFACE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("HUGGINGFACE_API_KEY")
## ai21
elif model in litellm.ai21_models:
if "AI21_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("AI21_API_KEY")
## together_ai
elif model in litellm.together_ai_models:
if "TOGETHERAI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("TOGETHERAI_API_KEY")
## aleph_alpha
elif model in litellm.aleph_alpha_models:
if "ALEPH_ALPHA_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("ALEPH_ALPHA_API_KEY")
## baseten
elif model in litellm.baseten_models:
if "BASETEN_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("BASETEN_API_KEY")
## nlp_cloud
elif model in litellm.nlp_cloud_models:
if "NLP_CLOUD_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("NLP_CLOUD_API_KEY")
return {"keys_in_environment": keys_in_environment, "missing_keys": missing_keys}
|
(model: Optional[str] = None) -> dict
|
64,456 |
pydantic.deprecated.class_validators
|
validator
|
Decorate methods on the class indicating that they should be used to validate fields.
Args:
__field (str): The first field the validator should be called on; this is separate
from `fields` to ensure an error is raised if you don't pass at least one.
*fields (str): Additional field(s) the validator should be called on.
pre (bool, optional): Whether this validator should be called before the standard
validators (else after). Defaults to False.
each_item (bool, optional): For complex objects (sets, lists etc.) whether to validate
individual elements rather than the whole object. Defaults to False.
always (bool, optional): Whether this method and other validators should be called even if
the value is missing. Defaults to False.
check_fields (bool | None, optional): Whether to check that the fields actually exist on the model.
Defaults to None.
allow_reuse (bool, optional): Whether to track and raise an error if another validator refers to
the decorated function. Defaults to False.
Returns:
Callable: A decorator that can be used to decorate a
function to be used as a validator.
|
@deprecated(
'Pydantic V1 style `@validator` validators are deprecated.'
' You should migrate to Pydantic V2 style `@field_validator` validators,'
' see the migration guide for more details',
category=None,
)
def validator(
__field: str,
*fields: str,
pre: bool = False,
each_item: bool = False,
always: bool = False,
check_fields: bool | None = None,
allow_reuse: bool = False,
) -> Callable[[_V1ValidatorType], _V1ValidatorType]:
"""Decorate methods on the class indicating that they should be used to validate fields.
Args:
__field (str): The first field the validator should be called on; this is separate
from `fields` to ensure an error is raised if you don't pass at least one.
*fields (str): Additional field(s) the validator should be called on.
pre (bool, optional): Whether this validator should be called before the standard
validators (else after). Defaults to False.
each_item (bool, optional): For complex objects (sets, lists etc.) whether to validate
individual elements rather than the whole object. Defaults to False.
always (bool, optional): Whether this method and other validators should be called even if
the value is missing. Defaults to False.
check_fields (bool | None, optional): Whether to check that the fields actually exist on the model.
Defaults to None.
allow_reuse (bool, optional): Whether to track and raise an error if another validator refers to
the decorated function. Defaults to False.
Returns:
Callable: A decorator that can be used to decorate a
function to be used as a validator.
"""
warn(
'Pydantic V1 style `@validator` validators are deprecated.'
' You should migrate to Pydantic V2 style `@field_validator` validators,'
' see the migration guide for more details',
DeprecationWarning,
stacklevel=2,
)
if allow_reuse is True: # pragma: no cover
warn(_ALLOW_REUSE_WARNING_MESSAGE, DeprecationWarning)
fields = tuple((__field, *fields))
if isinstance(fields[0], FunctionType):
raise PydanticUserError(
'`@validator` should be used with fields and keyword arguments, not bare. '
"E.g. usage should be `@validator('<field_name>', ...)`",
code='validator-no-fields',
)
elif not all(isinstance(field, str) for field in fields):
raise PydanticUserError(
'`@validator` fields should be passed as separate string args. '
"E.g. usage should be `@validator('<field_name_1>', '<field_name_2>', ...)`",
code='validator-invalid-fields',
)
mode: Literal['before', 'after'] = 'before' if pre is True else 'after'
def dec(f: Any) -> _decorators.PydanticDescriptorProxy[Any]:
if _decorators.is_instance_method_from_sig(f):
raise PydanticUserError(
'`@validator` cannot be applied to instance methods', code='validator-instance-method'
)
# auto apply the @classmethod decorator
f = _decorators.ensure_classmethod_based_on_signature(f)
wrap = _decorators_v1.make_generic_v1_field_validator
validator_wrapper_info = _decorators.ValidatorDecoratorInfo(
fields=fields,
mode=mode,
each_item=each_item,
always=always,
check_fields=check_fields,
)
return _decorators.PydanticDescriptorProxy(f, validator_wrapper_info, shim=wrap)
return dec # type: ignore[return-value]
|
(__field: 'str', *fields: 'str', pre: 'bool' = False, each_item: 'bool' = False, always: 'bool' = False, check_fields: 'bool | None' = None, allow_reuse: 'bool' = False) -> 'Callable[[_V1ValidatorType], _V1ValidatorType]'
|
64,463 |
sniffio._impl
|
AsyncLibraryNotFoundError
| null |
class AsyncLibraryNotFoundError(RuntimeError):
pass
| null |
64,466 |
sniffio._impl
|
current_async_library
|
Detect which async library is currently running.
The following libraries are currently supported:
================ =========== ============================
Library Requires Magic string
================ =========== ============================
**Trio** Trio v0.6+ ``"trio"``
**Curio** - ``"curio"``
**asyncio** ``"asyncio"``
**Trio-asyncio** v0.8.2+ ``"trio"`` or ``"asyncio"``,
depending on current mode
================ =========== ============================
Returns:
A string like ``"trio"``.
Raises:
AsyncLibraryNotFoundError: if called from synchronous context,
or if the current async library was not recognized.
Examples:
.. code-block:: python3
from sniffio import current_async_library
async def generic_sleep(seconds):
library = current_async_library()
if library == "trio":
import trio
await trio.sleep(seconds)
elif library == "asyncio":
import asyncio
await asyncio.sleep(seconds)
# ... and so on ...
else:
raise RuntimeError(f"Unsupported library {library!r}")
|
def current_async_library() -> str:
"""Detect which async library is currently running.
The following libraries are currently supported:
================ =========== ============================
Library Requires Magic string
================ =========== ============================
**Trio** Trio v0.6+ ``"trio"``
**Curio** - ``"curio"``
**asyncio** ``"asyncio"``
**Trio-asyncio** v0.8.2+ ``"trio"`` or ``"asyncio"``,
depending on current mode
================ =========== ============================
Returns:
A string like ``"trio"``.
Raises:
AsyncLibraryNotFoundError: if called from synchronous context,
or if the current async library was not recognized.
Examples:
.. code-block:: python3
from sniffio import current_async_library
async def generic_sleep(seconds):
library = current_async_library()
if library == "trio":
import trio
await trio.sleep(seconds)
elif library == "asyncio":
import asyncio
await asyncio.sleep(seconds)
# ... and so on ...
else:
raise RuntimeError(f"Unsupported library {library!r}")
"""
value = thread_local.name
if value is not None:
return value
value = current_async_library_cvar.get()
if value is not None:
return value
# Need to sniff for asyncio
if "asyncio" in sys.modules:
import asyncio
try:
current_task = asyncio.current_task # type: ignore[attr-defined]
except AttributeError:
current_task = asyncio.Task.current_task # type: ignore[attr-defined]
try:
if current_task() is not None:
return "asyncio"
except RuntimeError:
pass
# Sniff for curio (for now)
if 'curio' in sys.modules:
from curio.meta import curio_running
if curio_running():
return 'curio'
raise AsyncLibraryNotFoundError(
"unknown async library, or not in async context"
)
|
() -> str
|
64,467 |
chromedriver_py
|
_get_filename
| null |
def _get_filename():
path = os.path.join(_BASE_DIR, "chromedriver_")
machine = platform.machine().lower()
sys = platform.system().lower()
# windows
if sys == "windows":
if machine.endswith("64"):
path += "win64.exe"
else:
path += "win32.exe"
# mac
elif sys == "darwin":
path += "mac"
if "arm" in machine:
path += "-arm64"
else:
path += "-x64"
# linux
elif sys == "linux":
if "arm" in machine:
raise Exception("Google doesn't compile chromedriver versions for Linux ARM. Sorry!")
if machine.endswith("32"):
raise Exception("Google doesn't compile 32bit chromedriver versions for Linux. Sorry!")
path += "linux64"
# undefined
else:
raise Exception("Could not identify your system: " + sys)
if not path or not os.path.isfile(path):
msg = "Couldn't find a binary for your system: " + sys + " / " + machine + ". "
msg += "Please create an Issue on github.com/breuerfelix/chromedriver-py and include this Message."
raise Exception(msg)
return path
|
()
|
64,470 |
dynamodb_encryption_sdk.encrypted.client
|
EncryptedClient
|
High-level helper class to provide a familiar interface to encrypted tables.
>>> import boto3
>>> from dynamodb_encryption_sdk.encrypted.client import EncryptedClient
>>> from dynamodb_encryption_sdk.material_providers.aws_kms import AwsKmsCryptographicMaterialsProvider
>>> client = boto3.client('dynamodb')
>>> aws_kms_cmp = AwsKmsCryptographicMaterialsProvider('alias/MyKmsAlias')
>>> encrypted_client = EncryptedClient(
... client=client,
... materials_provider=aws_kms_cmp
... )
.. note::
This class provides a superset of the boto3 DynamoDB client API, so should work as
a drop-in replacement once configured.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#client
If you want to provide per-request cryptographic details, the ``put_item``, ``get_item``,
``query``, ``scan``, ``batch_write_item``, and ``batch_get_item`` methods will also
accept a ``crypto_config`` parameter, defining a custom :class:`CryptoConfig` instance
for this request.
.. warning::
We do not currently support the ``update_item`` method.
:param client: Pre-configured boto3 DynamoDB client object
:type client: boto3.resources.base.BaseClient
:param CryptographicMaterialsProvider materials_provider: Cryptographic materials provider
to use
:param AttributeActions attribute_actions: Table-level configuration of how to encrypt/sign
attributes
:param bool auto_refresh_table_indexes: Should we attempt to refresh information about table indexes?
Requires ``dynamodb:DescribeTable`` permissions on each table. (default: True)
:param bool expect_standard_dictionaries: Should we expect items to be standard Python
dictionaries? This should only be set to True if you are using a client obtained
from a service resource or table resource (ex: ``table.meta.client``). (default: False)
|
class EncryptedClient(object):
# pylint: disable=too-few-public-methods,too-many-instance-attributes
"""High-level helper class to provide a familiar interface to encrypted tables.
>>> import boto3
>>> from dynamodb_encryption_sdk.encrypted.client import EncryptedClient
>>> from dynamodb_encryption_sdk.material_providers.aws_kms import AwsKmsCryptographicMaterialsProvider
>>> client = boto3.client('dynamodb')
>>> aws_kms_cmp = AwsKmsCryptographicMaterialsProvider('alias/MyKmsAlias')
>>> encrypted_client = EncryptedClient(
... client=client,
... materials_provider=aws_kms_cmp
... )
.. note::
This class provides a superset of the boto3 DynamoDB client API, so should work as
a drop-in replacement once configured.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#client
If you want to provide per-request cryptographic details, the ``put_item``, ``get_item``,
``query``, ``scan``, ``batch_write_item``, and ``batch_get_item`` methods will also
accept a ``crypto_config`` parameter, defining a custom :class:`CryptoConfig` instance
for this request.
.. warning::
We do not currently support the ``update_item`` method.
:param client: Pre-configured boto3 DynamoDB client object
:type client: boto3.resources.base.BaseClient
:param CryptographicMaterialsProvider materials_provider: Cryptographic materials provider
to use
:param AttributeActions attribute_actions: Table-level configuration of how to encrypt/sign
attributes
:param bool auto_refresh_table_indexes: Should we attempt to refresh information about table indexes?
Requires ``dynamodb:DescribeTable`` permissions on each table. (default: True)
:param bool expect_standard_dictionaries: Should we expect items to be standard Python
dictionaries? This should only be set to True if you are using a client obtained
from a service resource or table resource (ex: ``table.meta.client``). (default: False)
"""
_client = attr.ib(validator=attr.validators.instance_of(botocore.client.BaseClient))
_materials_provider = attr.ib(validator=attr.validators.instance_of(CryptographicMaterialsProvider))
_attribute_actions = attr.ib(
validator=attr.validators.instance_of(AttributeActions), default=attr.Factory(AttributeActions)
)
_auto_refresh_table_indexes = attr.ib(validator=attr.validators.instance_of(bool), default=True)
_expect_standard_dictionaries = attr.ib(validator=attr.validators.instance_of(bool), default=False)
def __init__(
self,
client, # type: botocore.client.BaseClient
materials_provider, # type: CryptographicMaterialsProvider
attribute_actions=None, # type: Optional[AttributeActions]
auto_refresh_table_indexes=True, # type: Optional[bool]
expect_standard_dictionaries=False, # type: Optional[bool]
): # noqa=D107
# type: (...) -> None
# Workaround pending resolution of attrs/mypy interaction.
# https://github.com/python/mypy/issues/2088
# https://github.com/python-attrs/attrs/issues/215
if attribute_actions is None:
attribute_actions = AttributeActions()
self._client = client
self._materials_provider = materials_provider
self._attribute_actions = attribute_actions
self._auto_refresh_table_indexes = auto_refresh_table_indexes
self._expect_standard_dictionaries = expect_standard_dictionaries
attr.validate(self)
self.__attrs_post_init__()
def __attrs_post_init__(self):
"""Set up the table info cache and translation methods."""
if self._expect_standard_dictionaries:
self._encrypt_item = encrypt_python_item # attrs confuses pylint: disable=attribute-defined-outside-init
self._decrypt_item = decrypt_python_item # attrs confuses pylint: disable=attribute-defined-outside-init
else:
self._encrypt_item = encrypt_dynamodb_item # attrs confuses pylint: disable=attribute-defined-outside-init
self._decrypt_item = decrypt_dynamodb_item # attrs confuses pylint: disable=attribute-defined-outside-init
self._table_info_cache = TableInfoCache( # attrs confuses pylint: disable=attribute-defined-outside-init
client=self._client, auto_refresh_table_indexes=self._auto_refresh_table_indexes
)
self._table_crypto_config = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
crypto_config_from_cache, self._materials_provider, self._attribute_actions, self._table_info_cache
)
self._item_crypto_config = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
crypto_config_from_kwargs, self._table_crypto_config
)
self.get_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_get_item, self._decrypt_item, self._item_crypto_config, self._client.get_item
)
self.put_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
encrypt_put_item, self._encrypt_item, self._item_crypto_config, self._client.put_item
)
self.query = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_multi_get, self._decrypt_item, self._item_crypto_config, self._client.query
)
self.scan = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_multi_get, self._decrypt_item, self._item_crypto_config, self._client.scan
)
self.batch_get_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_batch_get_item, self._decrypt_item, self._table_crypto_config, self._client.batch_get_item
)
self.batch_write_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
encrypt_batch_write_item, self._encrypt_item, self._table_crypto_config, self._client.batch_write_item
)
def __getattr__(self, name):
"""Catch any method/attribute lookups that are not defined in this class and try
to find them on the provided client object.
:param str name: Attribute name
:returns: Result of asking the provided client object for that attribute name
:raises AttributeError: if attribute is not found on provided client object
"""
return getattr(self._client, name)
def update_item(self, **kwargs):
"""Update item is not yet supported.
:raises NotImplementedError: if called
"""
raise NotImplementedError('"update_item" is not yet implemented')
def get_paginator(self, operation_name):
"""Get a paginator from the underlying client. If the paginator requested is for
"scan" or "query", the paginator returned will transparently decrypt the returned items.
:param str operation_name: Name of operation for which to get paginator
:returns: Paginator for name
:rtype: :class:`botocore.paginate.Paginator` or :class:`EncryptedPaginator`
"""
paginator = self._client.get_paginator(operation_name)
if operation_name in ("scan", "query"):
return EncryptedPaginator(
paginator=paginator, decrypt_method=self._decrypt_item, crypto_config_method=self._item_crypto_config
)
return paginator
|
(client, materials_provider, attribute_actions=None, auto_refresh_table_indexes=True, expect_standard_dictionaries=False)
|
64,471 |
dynamodb_encryption_sdk.encrypted.client
|
__attrs_init__
|
Method generated by attrs for class EncryptedClient.
|
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""High-level helper class to provide a familiar interface to encrypted tables."""
from functools import partial
import attr
import botocore
from dynamodb_encryption_sdk.internal.utils import (
TableInfoCache,
crypto_config_from_cache,
crypto_config_from_kwargs,
decrypt_batch_get_item,
decrypt_get_item,
decrypt_list_of_items,
decrypt_multi_get,
encrypt_batch_write_item,
encrypt_put_item,
validate_get_arguments,
)
from dynamodb_encryption_sdk.internal.validators import callable_validator
from dynamodb_encryption_sdk.material_providers import CryptographicMaterialsProvider
from dynamodb_encryption_sdk.structures import AttributeActions
from .item import decrypt_dynamodb_item, decrypt_python_item, encrypt_dynamodb_item, encrypt_python_item
try: # Python 3.5.0 and 3.5.1 have incompatible typing modules
from typing import Any, Callable, Dict, Iterator, Optional # noqa pylint: disable=unused-import
except ImportError: # pragma: no cover
# We only actually need these imports when running the mypy checks
pass
__all__ = ("EncryptedClient", "EncryptedPaginator")
@attr.s(init=False)
class EncryptedPaginator(object):
"""Paginator that decrypts returned items before returning them.
:param paginator: Pre-configured boto3 DynamoDB paginator object
:type paginator: botocore.paginate.Paginator
:param decrypt_method: Item decryptor method from :mod:`dynamodb_encryption_sdk.encrypted.item`
:param callable crypto_config_method: Callable that returns a :class:`CryptoConfig`
"""
_paginator = attr.ib(validator=attr.validators.instance_of(botocore.paginate.Paginator))
_decrypt_method = attr.ib()
_crypto_config_method = attr.ib(validator=callable_validator)
def __init__(
self,
paginator, # type: botocore.paginate.Paginator
decrypt_method, # type: Callable
crypto_config_method, # type: Callable
): # noqa=D107
# type: (...) -> None
# Workaround pending resolution of attrs/mypy interaction.
# https://github.com/python/mypy/issues/2088
# https://github.com/python-attrs/attrs/issues/215
self._paginator = paginator
self._decrypt_method = decrypt_method
self._crypto_config_method = crypto_config_method
attr.validate(self)
@_decrypt_method.validator
def validate_decrypt_method(self, attribute, value):
# pylint: disable=unused-argument
"""Validate that _decrypt_method is one of the item encryptors."""
if self._decrypt_method not in (decrypt_python_item, decrypt_dynamodb_item):
raise ValueError(
'"{name}" must be an item decryptor from dynamodb_encryption_sdk.encrypted.item'.format(
name=attribute.name
)
)
def __getattr__(self, name):
"""Catch any method/attribute lookups that are not defined in this class and try
to find them on the provided client object.
:param str name: Attribute name
:returns: Result of asking the provided client object for that attribute name
:raises AttributeError: if attribute is not found on provided client object
"""
return getattr(self._paginator, name)
def paginate(self, **kwargs):
# type: (**Any) -> Iterator[Dict]
# narrow this down
# https://github.com/aws/aws-dynamodb-encryption-python/issues/66
"""Create an iterator that will paginate through responses from the underlying paginator,
transparently decrypting any returned items.
"""
validate_get_arguments(kwargs)
crypto_config, ddb_kwargs = self._crypto_config_method(**kwargs)
for page in self._paginator.paginate(**ddb_kwargs):
page["Items"] = list(
decrypt_list_of_items(
crypto_config=crypto_config, decrypt_method=self._decrypt_method, items=page["Items"]
)
)
yield page
|
(self, client, materials_provider, attribute_actions=NOTHING, auto_refresh_table_indexes=True, expect_standard_dictionaries=False) -> NoneType
|
64,472 |
dynamodb_encryption_sdk.encrypted.client
|
__attrs_post_init__
|
Set up the table info cache and translation methods.
|
def __attrs_post_init__(self):
"""Set up the table info cache and translation methods."""
if self._expect_standard_dictionaries:
self._encrypt_item = encrypt_python_item # attrs confuses pylint: disable=attribute-defined-outside-init
self._decrypt_item = decrypt_python_item # attrs confuses pylint: disable=attribute-defined-outside-init
else:
self._encrypt_item = encrypt_dynamodb_item # attrs confuses pylint: disable=attribute-defined-outside-init
self._decrypt_item = decrypt_dynamodb_item # attrs confuses pylint: disable=attribute-defined-outside-init
self._table_info_cache = TableInfoCache( # attrs confuses pylint: disable=attribute-defined-outside-init
client=self._client, auto_refresh_table_indexes=self._auto_refresh_table_indexes
)
self._table_crypto_config = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
crypto_config_from_cache, self._materials_provider, self._attribute_actions, self._table_info_cache
)
self._item_crypto_config = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
crypto_config_from_kwargs, self._table_crypto_config
)
self.get_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_get_item, self._decrypt_item, self._item_crypto_config, self._client.get_item
)
self.put_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
encrypt_put_item, self._encrypt_item, self._item_crypto_config, self._client.put_item
)
self.query = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_multi_get, self._decrypt_item, self._item_crypto_config, self._client.query
)
self.scan = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_multi_get, self._decrypt_item, self._item_crypto_config, self._client.scan
)
self.batch_get_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_batch_get_item, self._decrypt_item, self._table_crypto_config, self._client.batch_get_item
)
self.batch_write_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
encrypt_batch_write_item, self._encrypt_item, self._table_crypto_config, self._client.batch_write_item
)
|
(self)
|
64,474 |
dynamodb_encryption_sdk.encrypted.client
|
__ge__
|
Method generated by attrs for class EncryptedClient.
| null |
(self, other)
|
64,475 |
dynamodb_encryption_sdk.encrypted.client
|
__getattr__
|
Catch any method/attribute lookups that are not defined in this class and try
to find them on the provided client object.
:param str name: Attribute name
:returns: Result of asking the provided client object for that attribute name
:raises AttributeError: if attribute is not found on provided client object
|
def __getattr__(self, name):
"""Catch any method/attribute lookups that are not defined in this class and try
to find them on the provided client object.
:param str name: Attribute name
:returns: Result of asking the provided client object for that attribute name
:raises AttributeError: if attribute is not found on provided client object
"""
return getattr(self._client, name)
|
(self, name)
|
64,477 |
dynamodb_encryption_sdk.encrypted.client
|
__init__
| null |
def __init__(
self,
client, # type: botocore.client.BaseClient
materials_provider, # type: CryptographicMaterialsProvider
attribute_actions=None, # type: Optional[AttributeActions]
auto_refresh_table_indexes=True, # type: Optional[bool]
expect_standard_dictionaries=False, # type: Optional[bool]
): # noqa=D107
# type: (...) -> None
# Workaround pending resolution of attrs/mypy interaction.
# https://github.com/python/mypy/issues/2088
# https://github.com/python-attrs/attrs/issues/215
if attribute_actions is None:
attribute_actions = AttributeActions()
self._client = client
self._materials_provider = materials_provider
self._attribute_actions = attribute_actions
self._auto_refresh_table_indexes = auto_refresh_table_indexes
self._expect_standard_dictionaries = expect_standard_dictionaries
attr.validate(self)
self.__attrs_post_init__()
|
(self, client, materials_provider, attribute_actions=None, auto_refresh_table_indexes=True, expect_standard_dictionaries=False)
|
64,482 |
dynamodb_encryption_sdk.encrypted.client
|
get_paginator
|
Get a paginator from the underlying client. If the paginator requested is for
"scan" or "query", the paginator returned will transparently decrypt the returned items.
:param str operation_name: Name of operation for which to get paginator
:returns: Paginator for name
:rtype: :class:`botocore.paginate.Paginator` or :class:`EncryptedPaginator`
|
def get_paginator(self, operation_name):
"""Get a paginator from the underlying client. If the paginator requested is for
"scan" or "query", the paginator returned will transparently decrypt the returned items.
:param str operation_name: Name of operation for which to get paginator
:returns: Paginator for name
:rtype: :class:`botocore.paginate.Paginator` or :class:`EncryptedPaginator`
"""
paginator = self._client.get_paginator(operation_name)
if operation_name in ("scan", "query"):
return EncryptedPaginator(
paginator=paginator, decrypt_method=self._decrypt_item, crypto_config_method=self._item_crypto_config
)
return paginator
|
(self, operation_name)
|
64,483 |
dynamodb_encryption_sdk.encrypted.client
|
update_item
|
Update item is not yet supported.
:raises NotImplementedError: if called
|
def update_item(self, **kwargs):
"""Update item is not yet supported.
:raises NotImplementedError: if called
"""
raise NotImplementedError('"update_item" is not yet implemented')
|
(self, **kwargs)
|
64,484 |
dynamodb_encryption_sdk.encrypted.resource
|
EncryptedResource
|
High-level helper class to provide a familiar interface to encrypted tables.
>>> import boto3
>>> from dynamodb_encryption_sdk.encrypted.resource import EncryptedResource
>>> from dynamodb_encryption_sdk.material_providers.aws_kms import AwsKmsCryptographicMaterialsProvider
>>> resource = boto3.resource('dynamodb')
>>> aws_kms_cmp = AwsKmsCryptographicMaterialsProvider('alias/MyKmsAlias')
>>> encrypted_resource = EncryptedResource(
... resource=resource,
... materials_provider=aws_kms_cmp
... )
.. note::
This class provides a superset of the boto3 DynamoDB service resource API, so should
work as a drop-in replacement once configured.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#service-resource
If you want to provide per-request cryptographic details, the ``batch_write_item``
and ``batch_get_item`` methods will also accept a ``crypto_config`` parameter, defining
a custom :class:`CryptoConfig` instance for this request.
:param resource: Pre-configured boto3 DynamoDB service resource object
:type resource: boto3.resources.base.ServiceResource
:param CryptographicMaterialsProvider materials_provider: Cryptographic materials provider to use
:param AttributeActions attribute_actions: Table-level configuration of how to encrypt/sign attributes
:param bool auto_refresh_table_indexes: Should we attempt to refresh information about table indexes?
Requires ``dynamodb:DescribeTable`` permissions on each table. (default: True)
|
class EncryptedResource(object):
# pylint: disable=too-few-public-methods,too-many-instance-attributes
"""High-level helper class to provide a familiar interface to encrypted tables.
>>> import boto3
>>> from dynamodb_encryption_sdk.encrypted.resource import EncryptedResource
>>> from dynamodb_encryption_sdk.material_providers.aws_kms import AwsKmsCryptographicMaterialsProvider
>>> resource = boto3.resource('dynamodb')
>>> aws_kms_cmp = AwsKmsCryptographicMaterialsProvider('alias/MyKmsAlias')
>>> encrypted_resource = EncryptedResource(
... resource=resource,
... materials_provider=aws_kms_cmp
... )
.. note::
This class provides a superset of the boto3 DynamoDB service resource API, so should
work as a drop-in replacement once configured.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#service-resource
If you want to provide per-request cryptographic details, the ``batch_write_item``
and ``batch_get_item`` methods will also accept a ``crypto_config`` parameter, defining
a custom :class:`CryptoConfig` instance for this request.
:param resource: Pre-configured boto3 DynamoDB service resource object
:type resource: boto3.resources.base.ServiceResource
:param CryptographicMaterialsProvider materials_provider: Cryptographic materials provider to use
:param AttributeActions attribute_actions: Table-level configuration of how to encrypt/sign attributes
:param bool auto_refresh_table_indexes: Should we attempt to refresh information about table indexes?
Requires ``dynamodb:DescribeTable`` permissions on each table. (default: True)
"""
_resource = attr.ib(validator=attr.validators.instance_of(ServiceResource))
_materials_provider = attr.ib(validator=attr.validators.instance_of(CryptographicMaterialsProvider))
_attribute_actions = attr.ib(
validator=attr.validators.instance_of(AttributeActions), default=attr.Factory(AttributeActions)
)
_auto_refresh_table_indexes = attr.ib(validator=attr.validators.instance_of(bool), default=True)
def __init__(
self,
resource, # type: ServiceResource
materials_provider, # type: CryptographicMaterialsProvider
attribute_actions=None, # type: Optional[AttributeActions]
auto_refresh_table_indexes=True, # type: Optional[bool]
): # noqa=D107
# type: (...) -> None
# Workaround pending resolution of attrs/mypy interaction.
# https://github.com/python/mypy/issues/2088
# https://github.com/python-attrs/attrs/issues/215
if attribute_actions is None:
attribute_actions = AttributeActions()
self._resource = resource
self._materials_provider = materials_provider
self._attribute_actions = attribute_actions
self._auto_refresh_table_indexes = auto_refresh_table_indexes
attr.validate(self)
self.__attrs_post_init__()
def __attrs_post_init__(self):
"""Set up the table info cache, encrypted tables collection manager, and translation methods."""
self._table_info_cache = TableInfoCache( # attrs confuses pylint: disable=attribute-defined-outside-init
client=self._resource.meta.client, auto_refresh_table_indexes=self._auto_refresh_table_indexes
)
self._crypto_config = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
crypto_config_from_cache, self._materials_provider, self._attribute_actions, self._table_info_cache
)
self.tables = EncryptedTablesCollectionManager( # attrs confuses pylint: disable=attribute-defined-outside-init
collection=self._resource.tables,
materials_provider=self._materials_provider,
attribute_actions=self._attribute_actions,
table_info_cache=self._table_info_cache,
)
self.batch_get_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_batch_get_item, decrypt_python_item, self._crypto_config, self._resource.batch_get_item
)
self.batch_write_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
encrypt_batch_write_item, encrypt_python_item, self._crypto_config, self._resource.batch_write_item
)
def __getattr__(self, name):
"""Catch any method/attribute lookups that are not defined in this class and try
to find them on the provided resource object.
:param str name: Attribute name
:returns: Result of asking the provided resource object for that attribute name
:raises AttributeError: if attribute is not found on provided resource object
"""
return getattr(self._resource, name)
def Table(self, name, **kwargs):
# naming chosen to align with boto3 resource name, so pylint: disable=invalid-name
"""Creates an EncryptedTable resource.
If any of the optional configuration values are not provided, the corresponding values
for this ``EncryptedResource`` will be used.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#DynamoDB.ServiceResource.Table
:param name: The table name.
:param CryptographicMaterialsProvider materials_provider: Cryptographic materials
provider to use (optional)
:param TableInfo table_info: Information about the target DynamoDB table (optional)
:param AttributeActions attribute_actions: Table-level configuration of how to encrypt/sign
attributes (optional)
"""
table_kwargs = dict(
table=self._resource.Table(name),
materials_provider=kwargs.get("materials_provider", self._materials_provider),
attribute_actions=kwargs.get("attribute_actions", self._attribute_actions),
auto_refresh_table_indexes=kwargs.get("auto_refresh_table_indexes", self._auto_refresh_table_indexes),
table_info=self._table_info_cache.table_info(name),
)
return EncryptedTable(**table_kwargs)
|
(resource, materials_provider, attribute_actions=None, auto_refresh_table_indexes=True)
|
64,485 |
dynamodb_encryption_sdk.encrypted.resource
|
Table
|
Creates an EncryptedTable resource.
If any of the optional configuration values are not provided, the corresponding values
for this ``EncryptedResource`` will be used.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#DynamoDB.ServiceResource.Table
:param name: The table name.
:param CryptographicMaterialsProvider materials_provider: Cryptographic materials
provider to use (optional)
:param TableInfo table_info: Information about the target DynamoDB table (optional)
:param AttributeActions attribute_actions: Table-level configuration of how to encrypt/sign
attributes (optional)
|
def Table(self, name, **kwargs):
# naming chosen to align with boto3 resource name, so pylint: disable=invalid-name
"""Creates an EncryptedTable resource.
If any of the optional configuration values are not provided, the corresponding values
for this ``EncryptedResource`` will be used.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#DynamoDB.ServiceResource.Table
:param name: The table name.
:param CryptographicMaterialsProvider materials_provider: Cryptographic materials
provider to use (optional)
:param TableInfo table_info: Information about the target DynamoDB table (optional)
:param AttributeActions attribute_actions: Table-level configuration of how to encrypt/sign
attributes (optional)
"""
table_kwargs = dict(
table=self._resource.Table(name),
materials_provider=kwargs.get("materials_provider", self._materials_provider),
attribute_actions=kwargs.get("attribute_actions", self._attribute_actions),
auto_refresh_table_indexes=kwargs.get("auto_refresh_table_indexes", self._auto_refresh_table_indexes),
table_info=self._table_info_cache.table_info(name),
)
return EncryptedTable(**table_kwargs)
|
(self, name, **kwargs)
|
64,486 |
dynamodb_encryption_sdk.encrypted.resource
|
__attrs_init__
|
Method generated by attrs for class EncryptedResource.
|
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""High-level helper class to provide a familiar interface to encrypted tables."""
from functools import partial
import attr
from boto3.resources.base import ServiceResource
from boto3.resources.collection import CollectionManager
from dynamodb_encryption_sdk.internal.utils import (
TableInfoCache,
crypto_config_from_cache,
decrypt_batch_get_item,
encrypt_batch_write_item,
)
from dynamodb_encryption_sdk.material_providers import CryptographicMaterialsProvider
from dynamodb_encryption_sdk.structures import AttributeActions
from .item import decrypt_python_item, encrypt_python_item
from .table import EncryptedTable
try: # Python 3.5.0 and 3.5.1 have incompatible typing modules
from typing import Optional # noqa pylint: disable=unused-import
except ImportError: # pragma: no cover
# We only actually need these imports when running the mypy checks
pass
__all__ = ("EncryptedResource", "EncryptedTablesCollectionManager")
@attr.s(init=False)
class EncryptedTablesCollectionManager(object):
# pylint: disable=too-few-public-methods,too-many-instance-attributes
"""Tables collection manager that provides :class:`EncryptedTable` objects.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#DynamoDB.ServiceResource.tables
:param collection: Pre-configured boto3 DynamoDB table collection manager
:type collection: boto3.resources.collection.CollectionManager
:param CryptographicMaterialsProvider materials_provider: Cryptographic materials provider to use
:param AttributeActions attribute_actions: Table-level configuration of how to encrypt/sign attributes
:param TableInfoCache table_info_cache: Local cache from which to obtain TableInfo data
"""
_collection = attr.ib(validator=attr.validators.instance_of(CollectionManager))
_materials_provider = attr.ib(validator=attr.validators.instance_of(CryptographicMaterialsProvider))
_attribute_actions = attr.ib(validator=attr.validators.instance_of(AttributeActions))
_table_info_cache = attr.ib(validator=attr.validators.instance_of(TableInfoCache))
def __init__(
self,
collection, # type: CollectionManager
materials_provider, # type: CryptographicMaterialsProvider
attribute_actions, # type: AttributeActions
table_info_cache, # type: TableInfoCache
): # noqa=D107
# type: (...) -> None
# Workaround pending resolution of attrs/mypy interaction.
# https://github.com/python/mypy/issues/2088
# https://github.com/python-attrs/attrs/issues/215
self._collection = collection
self._materials_provider = materials_provider
self._attribute_actions = attribute_actions
self._table_info_cache = table_info_cache
attr.validate(self)
self.__attrs_post_init__()
def __attrs_post_init__(self):
"""Set up the translation methods."""
self.all = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
self._transform_table, self._collection.all
)
self.filter = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
self._transform_table, self._collection.filter
)
self.limit = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
self._transform_table, self._collection.limit
)
self.page_size = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
self._transform_table, self._collection.page_size
)
def __getattr__(self, name):
"""Catch any method/attribute lookups that are not defined in this class and try
to find them on the provided collection object.
:param str name: Attribute name
:returns: Result of asking the provided collection object for that attribute name
:raises AttributeError: if attribute is not found on provided collection object
"""
return getattr(self._collection, name)
def _transform_table(self, method, **kwargs):
"""Transform a Table from the underlying collection manager to an EncryptedTable.
:param method: Method on underlying collection manager to call
:type method: callable
:param **kwargs: Keyword arguments to pass to ``method``
"""
for table in method(**kwargs):
yield EncryptedTable(
table=table,
materials_provider=self._materials_provider,
table_info=self._table_info_cache.table_info(table.name),
attribute_actions=self._attribute_actions,
)
|
(self, resource, materials_provider, attribute_actions=NOTHING, auto_refresh_table_indexes=True) -> NoneType
|
64,487 |
dynamodb_encryption_sdk.encrypted.resource
|
__attrs_post_init__
|
Set up the table info cache, encrypted tables collection manager, and translation methods.
|
def __attrs_post_init__(self):
"""Set up the table info cache, encrypted tables collection manager, and translation methods."""
self._table_info_cache = TableInfoCache( # attrs confuses pylint: disable=attribute-defined-outside-init
client=self._resource.meta.client, auto_refresh_table_indexes=self._auto_refresh_table_indexes
)
self._crypto_config = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
crypto_config_from_cache, self._materials_provider, self._attribute_actions, self._table_info_cache
)
self.tables = EncryptedTablesCollectionManager( # attrs confuses pylint: disable=attribute-defined-outside-init
collection=self._resource.tables,
materials_provider=self._materials_provider,
attribute_actions=self._attribute_actions,
table_info_cache=self._table_info_cache,
)
self.batch_get_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_batch_get_item, decrypt_python_item, self._crypto_config, self._resource.batch_get_item
)
self.batch_write_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
encrypt_batch_write_item, encrypt_python_item, self._crypto_config, self._resource.batch_write_item
)
|
(self)
|
64,489 |
dynamodb_encryption_sdk.encrypted.resource
|
__ge__
|
Method generated by attrs for class EncryptedResource.
| null |
(self, other)
|
64,490 |
dynamodb_encryption_sdk.encrypted.resource
|
__getattr__
|
Catch any method/attribute lookups that are not defined in this class and try
to find them on the provided resource object.
:param str name: Attribute name
:returns: Result of asking the provided resource object for that attribute name
:raises AttributeError: if attribute is not found on provided resource object
|
def __getattr__(self, name):
"""Catch any method/attribute lookups that are not defined in this class and try
to find them on the provided resource object.
:param str name: Attribute name
:returns: Result of asking the provided resource object for that attribute name
:raises AttributeError: if attribute is not found on provided resource object
"""
return getattr(self._resource, name)
|
(self, name)
|
64,492 |
dynamodb_encryption_sdk.encrypted.resource
|
__init__
| null |
def __init__(
self,
resource, # type: ServiceResource
materials_provider, # type: CryptographicMaterialsProvider
attribute_actions=None, # type: Optional[AttributeActions]
auto_refresh_table_indexes=True, # type: Optional[bool]
): # noqa=D107
# type: (...) -> None
# Workaround pending resolution of attrs/mypy interaction.
# https://github.com/python/mypy/issues/2088
# https://github.com/python-attrs/attrs/issues/215
if attribute_actions is None:
attribute_actions = AttributeActions()
self._resource = resource
self._materials_provider = materials_provider
self._attribute_actions = attribute_actions
self._auto_refresh_table_indexes = auto_refresh_table_indexes
attr.validate(self)
self.__attrs_post_init__()
|
(self, resource, materials_provider, attribute_actions=None, auto_refresh_table_indexes=True)
|
64,497 |
dynamodb_encryption_sdk.encrypted.table
|
EncryptedTable
|
High-level helper class to provide a familiar interface to encrypted tables.
>>> import boto3
>>> from dynamodb_encryption_sdk.encrypted.table import EncryptedTable
>>> from dynamodb_encryption_sdk.material_providers.aws_kms import AwsKmsCryptographicMaterialsProvider
>>> table = boto3.resource('dynamodb').Table('my_table')
>>> aws_kms_cmp = AwsKmsCryptographicMaterialsProvider('alias/MyKmsAlias')
>>> encrypted_table = EncryptedTable(
... table=table,
... materials_provider=aws_kms_cmp
... )
.. note::
This class provides a superset of the boto3 DynamoDB Table API, so should work as
a drop-in replacement once configured.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#table
If you want to provide per-request cryptographic details, the ``put_item``, ``get_item``,
``query``, and ``scan`` methods will also accept a ``crypto_config`` parameter, defining
a custom :class:`CryptoConfig` instance for this request.
.. warning::
We do not currently support the ``update_item`` method.
:param table: Pre-configured boto3 DynamoDB Table object
:type table: boto3.resources.base.ServiceResource
:param CryptographicMaterialsProvider materials_provider: Cryptographic materials provider
to use
:param TableInfo table_info: Information about the target DynamoDB table
:param AttributeActions attribute_actions: Table-level configuration of how to encrypt/sign
attributes
:param bool auto_refresh_table_indexes: Should we attempt to refresh information about table indexes?
Requires ``dynamodb:DescribeTable`` permissions on each table. (default: True)
|
class EncryptedTable(object):
# pylint: disable=too-few-public-methods,too-many-instance-attributes
"""High-level helper class to provide a familiar interface to encrypted tables.
>>> import boto3
>>> from dynamodb_encryption_sdk.encrypted.table import EncryptedTable
>>> from dynamodb_encryption_sdk.material_providers.aws_kms import AwsKmsCryptographicMaterialsProvider
>>> table = boto3.resource('dynamodb').Table('my_table')
>>> aws_kms_cmp = AwsKmsCryptographicMaterialsProvider('alias/MyKmsAlias')
>>> encrypted_table = EncryptedTable(
... table=table,
... materials_provider=aws_kms_cmp
... )
.. note::
This class provides a superset of the boto3 DynamoDB Table API, so should work as
a drop-in replacement once configured.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#table
If you want to provide per-request cryptographic details, the ``put_item``, ``get_item``,
``query``, and ``scan`` methods will also accept a ``crypto_config`` parameter, defining
a custom :class:`CryptoConfig` instance for this request.
.. warning::
We do not currently support the ``update_item`` method.
:param table: Pre-configured boto3 DynamoDB Table object
:type table: boto3.resources.base.ServiceResource
:param CryptographicMaterialsProvider materials_provider: Cryptographic materials provider
to use
:param TableInfo table_info: Information about the target DynamoDB table
:param AttributeActions attribute_actions: Table-level configuration of how to encrypt/sign
attributes
:param bool auto_refresh_table_indexes: Should we attempt to refresh information about table indexes?
Requires ``dynamodb:DescribeTable`` permissions on each table. (default: True)
"""
_table = attr.ib(validator=attr.validators.instance_of(ServiceResource))
_materials_provider = attr.ib(validator=attr.validators.instance_of(CryptographicMaterialsProvider))
_table_info = attr.ib(validator=attr.validators.optional(attr.validators.instance_of(TableInfo)), default=None)
_attribute_actions = attr.ib(
validator=attr.validators.instance_of(AttributeActions), default=attr.Factory(AttributeActions)
)
_auto_refresh_table_indexes = attr.ib(validator=attr.validators.instance_of(bool), default=True)
def __init__(
self,
table, # type: ServiceResource
materials_provider, # type: CryptographicMaterialsProvider
table_info=None, # type: Optional[TableInfo]
attribute_actions=None, # type: Optional[AttributeActions]
auto_refresh_table_indexes=True, # type: Optional[bool]
): # noqa=D107
# type: (...) -> None
# Workaround pending resolution of attrs/mypy interaction.
# https://github.com/python/mypy/issues/2088
# https://github.com/python-attrs/attrs/issues/215
if attribute_actions is None:
attribute_actions = AttributeActions()
self._table = table
self._materials_provider = materials_provider
self._table_info = table_info
self._attribute_actions = attribute_actions
self._auto_refresh_table_indexes = auto_refresh_table_indexes
attr.validate(self)
self.__attrs_post_init__()
def __attrs_post_init__(self):
"""Prepare table info is it was not set and set up translation methods."""
if self._table_info is None:
self._table_info = TableInfo(name=self._table.name)
if self._auto_refresh_table_indexes:
self._table_info.refresh_indexed_attributes(self._table.meta.client)
# Clone the attribute actions before we modify them
self._attribute_actions = self._attribute_actions.copy()
self._attribute_actions.set_index_keys(*self._table_info.protected_index_keys())
self._crypto_config = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
crypto_config_from_kwargs,
partial(crypto_config_from_table_info, self._materials_provider, self._attribute_actions, self._table_info),
)
self.get_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_get_item, decrypt_python_item, self._crypto_config, self._table.get_item
)
self.put_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
encrypt_put_item, encrypt_python_item, self._crypto_config, self._table.put_item
)
self.query = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_multi_get, decrypt_python_item, self._crypto_config, self._table.query
)
self.scan = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_multi_get, decrypt_python_item, self._crypto_config, self._table.scan
)
def __getattr__(self, name):
"""Catch any method/attribute lookups that are not defined in this class and try
to find them on the provided bridge object.
:param str name: Attribute name
:returns: Result of asking the provided table object for that attribute name
:raises AttributeError: if attribute is not found on provided bridge object
"""
return getattr(self._table, name)
def update_item(self, **kwargs):
"""Update item is not yet supported."""
raise NotImplementedError('"update_item" is not yet implemented')
def batch_writer(self, overwrite_by_pkeys=None):
"""Create a batch writer object.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#DynamoDB.Table.batch_writer
:type overwrite_by_pkeys: list(string)
:param overwrite_by_pkeys: De-duplicate request items in buffer if match new request
item on specified primary keys. i.e ``["partition_key1", "sort_key2", "sort_key3"]``
"""
encrypted_client = EncryptedClient(
client=self._table.meta.client,
materials_provider=self._materials_provider,
attribute_actions=self._attribute_actions,
auto_refresh_table_indexes=self._auto_refresh_table_indexes,
expect_standard_dictionaries=True,
)
return BatchWriter(table_name=self._table.name, client=encrypted_client, overwrite_by_pkeys=overwrite_by_pkeys)
|
(table, materials_provider, table_info=None, attribute_actions=None, auto_refresh_table_indexes=True)
|
64,498 |
dynamodb_encryption_sdk.encrypted.table
|
__attrs_init__
|
Method generated by attrs for class EncryptedTable.
|
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""High-level helper class to provide a familiar interface to encrypted tables."""
from functools import partial
import attr
from boto3.dynamodb.table import BatchWriter
from boto3.resources.base import ServiceResource
from dynamodb_encryption_sdk.internal.utils import (
crypto_config_from_kwargs,
crypto_config_from_table_info,
decrypt_get_item,
decrypt_multi_get,
encrypt_put_item,
)
from dynamodb_encryption_sdk.material_providers import CryptographicMaterialsProvider
from dynamodb_encryption_sdk.structures import AttributeActions, TableInfo
from .client import EncryptedClient
from .item import decrypt_python_item, encrypt_python_item
try: # Python 3.5.0 and 3.5.1 have incompatible typing modules
from typing import Optional # noqa pylint: disable=unused-import
except ImportError: # pragma: no cover
# We only actually need these imports when running the mypy checks
pass
__all__ = ("EncryptedTable",)
@attr.s(init=False)
class EncryptedTable(object):
# pylint: disable=too-few-public-methods,too-many-instance-attributes
"""High-level helper class to provide a familiar interface to encrypted tables.
>>> import boto3
>>> from dynamodb_encryption_sdk.encrypted.table import EncryptedTable
>>> from dynamodb_encryption_sdk.material_providers.aws_kms import AwsKmsCryptographicMaterialsProvider
>>> table = boto3.resource('dynamodb').Table('my_table')
>>> aws_kms_cmp = AwsKmsCryptographicMaterialsProvider('alias/MyKmsAlias')
>>> encrypted_table = EncryptedTable(
... table=table,
... materials_provider=aws_kms_cmp
... )
.. note::
This class provides a superset of the boto3 DynamoDB Table API, so should work as
a drop-in replacement once configured.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#table
If you want to provide per-request cryptographic details, the ``put_item``, ``get_item``,
``query``, and ``scan`` methods will also accept a ``crypto_config`` parameter, defining
a custom :class:`CryptoConfig` instance for this request.
.. warning::
We do not currently support the ``update_item`` method.
:param table: Pre-configured boto3 DynamoDB Table object
:type table: boto3.resources.base.ServiceResource
:param CryptographicMaterialsProvider materials_provider: Cryptographic materials provider
to use
:param TableInfo table_info: Information about the target DynamoDB table
:param AttributeActions attribute_actions: Table-level configuration of how to encrypt/sign
attributes
:param bool auto_refresh_table_indexes: Should we attempt to refresh information about table indexes?
Requires ``dynamodb:DescribeTable`` permissions on each table. (default: True)
"""
_table = attr.ib(validator=attr.validators.instance_of(ServiceResource))
_materials_provider = attr.ib(validator=attr.validators.instance_of(CryptographicMaterialsProvider))
_table_info = attr.ib(validator=attr.validators.optional(attr.validators.instance_of(TableInfo)), default=None)
_attribute_actions = attr.ib(
validator=attr.validators.instance_of(AttributeActions), default=attr.Factory(AttributeActions)
)
_auto_refresh_table_indexes = attr.ib(validator=attr.validators.instance_of(bool), default=True)
def __init__(
self,
table, # type: ServiceResource
materials_provider, # type: CryptographicMaterialsProvider
table_info=None, # type: Optional[TableInfo]
attribute_actions=None, # type: Optional[AttributeActions]
auto_refresh_table_indexes=True, # type: Optional[bool]
): # noqa=D107
# type: (...) -> None
# Workaround pending resolution of attrs/mypy interaction.
# https://github.com/python/mypy/issues/2088
# https://github.com/python-attrs/attrs/issues/215
if attribute_actions is None:
attribute_actions = AttributeActions()
self._table = table
self._materials_provider = materials_provider
self._table_info = table_info
self._attribute_actions = attribute_actions
self._auto_refresh_table_indexes = auto_refresh_table_indexes
attr.validate(self)
self.__attrs_post_init__()
def __attrs_post_init__(self):
"""Prepare table info is it was not set and set up translation methods."""
if self._table_info is None:
self._table_info = TableInfo(name=self._table.name)
if self._auto_refresh_table_indexes:
self._table_info.refresh_indexed_attributes(self._table.meta.client)
# Clone the attribute actions before we modify them
self._attribute_actions = self._attribute_actions.copy()
self._attribute_actions.set_index_keys(*self._table_info.protected_index_keys())
self._crypto_config = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
crypto_config_from_kwargs,
partial(crypto_config_from_table_info, self._materials_provider, self._attribute_actions, self._table_info),
)
self.get_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_get_item, decrypt_python_item, self._crypto_config, self._table.get_item
)
self.put_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
encrypt_put_item, encrypt_python_item, self._crypto_config, self._table.put_item
)
self.query = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_multi_get, decrypt_python_item, self._crypto_config, self._table.query
)
self.scan = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_multi_get, decrypt_python_item, self._crypto_config, self._table.scan
)
def __getattr__(self, name):
"""Catch any method/attribute lookups that are not defined in this class and try
to find them on the provided bridge object.
:param str name: Attribute name
:returns: Result of asking the provided table object for that attribute name
:raises AttributeError: if attribute is not found on provided bridge object
"""
return getattr(self._table, name)
def update_item(self, **kwargs):
"""Update item is not yet supported."""
raise NotImplementedError('"update_item" is not yet implemented')
def batch_writer(self, overwrite_by_pkeys=None):
"""Create a batch writer object.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#DynamoDB.Table.batch_writer
:type overwrite_by_pkeys: list(string)
:param overwrite_by_pkeys: De-duplicate request items in buffer if match new request
item on specified primary keys. i.e ``["partition_key1", "sort_key2", "sort_key3"]``
"""
encrypted_client = EncryptedClient(
client=self._table.meta.client,
materials_provider=self._materials_provider,
attribute_actions=self._attribute_actions,
auto_refresh_table_indexes=self._auto_refresh_table_indexes,
expect_standard_dictionaries=True,
)
return BatchWriter(table_name=self._table.name, client=encrypted_client, overwrite_by_pkeys=overwrite_by_pkeys)
|
(self, table, materials_provider, table_info=None, attribute_actions=NOTHING, auto_refresh_table_indexes=True) -> NoneType
|
64,499 |
dynamodb_encryption_sdk.encrypted.table
|
__attrs_post_init__
|
Prepare table info is it was not set and set up translation methods.
|
def __attrs_post_init__(self):
"""Prepare table info is it was not set and set up translation methods."""
if self._table_info is None:
self._table_info = TableInfo(name=self._table.name)
if self._auto_refresh_table_indexes:
self._table_info.refresh_indexed_attributes(self._table.meta.client)
# Clone the attribute actions before we modify them
self._attribute_actions = self._attribute_actions.copy()
self._attribute_actions.set_index_keys(*self._table_info.protected_index_keys())
self._crypto_config = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
crypto_config_from_kwargs,
partial(crypto_config_from_table_info, self._materials_provider, self._attribute_actions, self._table_info),
)
self.get_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_get_item, decrypt_python_item, self._crypto_config, self._table.get_item
)
self.put_item = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
encrypt_put_item, encrypt_python_item, self._crypto_config, self._table.put_item
)
self.query = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_multi_get, decrypt_python_item, self._crypto_config, self._table.query
)
self.scan = partial( # attrs confuses pylint: disable=attribute-defined-outside-init
decrypt_multi_get, decrypt_python_item, self._crypto_config, self._table.scan
)
|
(self)
|
64,501 |
dynamodb_encryption_sdk.encrypted.table
|
__ge__
|
Method generated by attrs for class EncryptedTable.
| null |
(self, other)
|
64,502 |
dynamodb_encryption_sdk.encrypted.table
|
__getattr__
|
Catch any method/attribute lookups that are not defined in this class and try
to find them on the provided bridge object.
:param str name: Attribute name
:returns: Result of asking the provided table object for that attribute name
:raises AttributeError: if attribute is not found on provided bridge object
|
def __getattr__(self, name):
"""Catch any method/attribute lookups that are not defined in this class and try
to find them on the provided bridge object.
:param str name: Attribute name
:returns: Result of asking the provided table object for that attribute name
:raises AttributeError: if attribute is not found on provided bridge object
"""
return getattr(self._table, name)
|
(self, name)
|
64,504 |
dynamodb_encryption_sdk.encrypted.table
|
__init__
| null |
def __init__(
self,
table, # type: ServiceResource
materials_provider, # type: CryptographicMaterialsProvider
table_info=None, # type: Optional[TableInfo]
attribute_actions=None, # type: Optional[AttributeActions]
auto_refresh_table_indexes=True, # type: Optional[bool]
): # noqa=D107
# type: (...) -> None
# Workaround pending resolution of attrs/mypy interaction.
# https://github.com/python/mypy/issues/2088
# https://github.com/python-attrs/attrs/issues/215
if attribute_actions is None:
attribute_actions = AttributeActions()
self._table = table
self._materials_provider = materials_provider
self._table_info = table_info
self._attribute_actions = attribute_actions
self._auto_refresh_table_indexes = auto_refresh_table_indexes
attr.validate(self)
self.__attrs_post_init__()
|
(self, table, materials_provider, table_info=None, attribute_actions=None, auto_refresh_table_indexes=True)
|
64,509 |
dynamodb_encryption_sdk.encrypted.table
|
batch_writer
|
Create a batch writer object.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#DynamoDB.Table.batch_writer
:type overwrite_by_pkeys: list(string)
:param overwrite_by_pkeys: De-duplicate request items in buffer if match new request
item on specified primary keys. i.e ``["partition_key1", "sort_key2", "sort_key3"]``
|
def batch_writer(self, overwrite_by_pkeys=None):
"""Create a batch writer object.
https://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html#DynamoDB.Table.batch_writer
:type overwrite_by_pkeys: list(string)
:param overwrite_by_pkeys: De-duplicate request items in buffer if match new request
item on specified primary keys. i.e ``["partition_key1", "sort_key2", "sort_key3"]``
"""
encrypted_client = EncryptedClient(
client=self._table.meta.client,
materials_provider=self._materials_provider,
attribute_actions=self._attribute_actions,
auto_refresh_table_indexes=self._auto_refresh_table_indexes,
expect_standard_dictionaries=True,
)
return BatchWriter(table_name=self._table.name, client=encrypted_client, overwrite_by_pkeys=overwrite_by_pkeys)
|
(self, overwrite_by_pkeys=None)
|
64,510 |
dynamodb_encryption_sdk.encrypted.table
|
update_item
|
Update item is not yet supported.
|
def update_item(self, **kwargs):
"""Update item is not yet supported."""
raise NotImplementedError('"update_item" is not yet implemented')
|
(self, **kwargs)
|
64,511 |
dynamodb_encryption_sdk.compatability
|
_warn_deprecated_python
|
Template for deprecation of Python warning.
|
def _warn_deprecated_python():
"""Template for deprecation of Python warning."""
deprecated_versions = {
(2, 7): {"date": DEPRECATION_DATE_MAP["2.x"]},
(3, 4): {"date": DEPRECATION_DATE_MAP["2.x"]},
(3, 5): {"date": "2021-11-10"},
(3, 6): {"date": "2021-12-19"},
}
py_version = (sys.version_info.major, sys.version_info.minor)
minimum_version = (3, 7)
if py_version in deprecated_versions:
params = deprecated_versions[py_version]
warning = (
"aws-dynamodb-encryption will no longer support Python {}.{} "
"starting {}. To continue receiving service updates, "
"bug fixes, and security updates please upgrade to Python {}.{} or "
"later. For more information, see SUPPORT_POLICY.rst: "
"https://github.com/aws/aws-dynamodb-encryption-python/blob/master/SUPPORT_POLICY.rst"
).format(py_version[0], py_version[1], minimum_version[0], minimum_version[1], params["date"])
warnings.warn(warning, DeprecationWarning)
|
()
|
64,513 |
dynamodb_encryption_sdk.encrypted.item
|
decrypt_dynamodb_item
|
Decrypt a DynamoDB item.
>>> from dynamodb_encryption_sdk.encrypted.item import decrypt_python_item
>>> encrypted_item = {
... 'some': {'B': b'ENCRYPTED_DATA'},
... 'more': {'B': b'ENCRYPTED_DATA'}
... }
>>> decrypted_item = decrypt_python_item(
... item=encrypted_item,
... crypto_config=my_crypto_config
... )
.. note::
This handles DynamoDB-formatted items and is for use with the boto3 DynamoDB client.
:param dict item: Encrypted and signed DynamoDB item
:param CryptoConfig crypto_config: Cryptographic configuration
:returns: Plaintext DynamoDB item
:rtype: dict
|
def decrypt_dynamodb_item(item, crypto_config):
# type: (dynamodb_types.ITEM, CryptoConfig) -> dynamodb_types.ITEM
"""Decrypt a DynamoDB item.
>>> from dynamodb_encryption_sdk.encrypted.item import decrypt_python_item
>>> encrypted_item = {
... 'some': {'B': b'ENCRYPTED_DATA'},
... 'more': {'B': b'ENCRYPTED_DATA'}
... }
>>> decrypted_item = decrypt_python_item(
... item=encrypted_item,
... crypto_config=my_crypto_config
... )
.. note::
This handles DynamoDB-formatted items and is for use with the boto3 DynamoDB client.
:param dict item: Encrypted and signed DynamoDB item
:param CryptoConfig crypto_config: Cryptographic configuration
:returns: Plaintext DynamoDB item
:rtype: dict
"""
unique_actions = set([crypto_config.attribute_actions.default_action.name])
unique_actions.update({action.name for action in crypto_config.attribute_actions.attribute_actions.values()})
if crypto_config.attribute_actions.take_no_actions:
# If we explicitly have been told not to do anything to this item, just copy it.
return item.copy()
try:
signature_attribute = item.pop(ReservedAttributes.SIGNATURE.value)
except KeyError:
# The signature is always written, so if no signature is found then the item was not
# encrypted or signed.
raise DecryptionError("No signature attribute found in item")
inner_crypto_config = crypto_config.copy()
# Retrieve the material description from the item if found.
try:
material_description_attribute = item.pop(ReservedAttributes.MATERIAL_DESCRIPTION.value)
except KeyError:
# If no material description is found, we use inner_crypto_config as-is.
pass
else:
# If material description is found, override the material description in inner_crypto_config.
material_description = deserialize_material_description(material_description_attribute)
inner_crypto_config.encryption_context.material_description = material_description
decryption_materials = inner_crypto_config.decryption_materials()
verify_item_signature(signature_attribute, item, decryption_materials.verification_key, inner_crypto_config)
try:
decryption_key = decryption_materials.decryption_key
except AttributeError:
if inner_crypto_config.attribute_actions.contains_action(CryptoAction.ENCRYPT_AND_SIGN):
raise DecryptionError(
"Attribute actions ask for some attributes to be decrypted but no decryption key is available"
)
return item.copy()
decryption_mode = inner_crypto_config.encryption_context.material_description.get(
MaterialDescriptionKeys.ATTRIBUTE_ENCRYPTION_MODE.value
)
algorithm_descriptor = decryption_key.algorithm + decryption_mode
# Once the signature has been verified, actually decrypt the item attributes.
decrypted_item = {}
for name, attribute in item.items():
if inner_crypto_config.attribute_actions.action(name) is CryptoAction.ENCRYPT_AND_SIGN:
decrypted_item[name] = decrypt_attribute(
attribute_name=name, attribute=attribute, decryption_key=decryption_key, algorithm=algorithm_descriptor
)
else:
decrypted_item[name] = attribute.copy()
return decrypted_item
|
(item, crypto_config)
|
64,514 |
dynamodb_encryption_sdk.encrypted.item
|
decrypt_python_item
|
Decrypt a dictionary for DynamoDB.
>>> from dynamodb_encryption_sdk.encrypted.item import decrypt_python_item
>>> encrypted_item = {
... 'some': Binary(b'ENCRYPTED_DATA'),
... 'more': Binary(b'ENCRYPTED_DATA')
... }
>>> decrypted_item = decrypt_python_item(
... item=encrypted_item,
... crypto_config=my_crypto_config
... )
.. note::
This handles human-friendly dictionaries and is for use with the boto3 DynamoDB service or table resource.
:param dict item: Encrypted and signed dictionary
:param CryptoConfig crypto_config: Cryptographic configuration
:returns: Plaintext dictionary
:rtype: dict
|
def decrypt_python_item(item, crypto_config):
# type: (dynamodb_types.ITEM, CryptoConfig) -> dynamodb_types.ITEM
"""Decrypt a dictionary for DynamoDB.
>>> from dynamodb_encryption_sdk.encrypted.item import decrypt_python_item
>>> encrypted_item = {
... 'some': Binary(b'ENCRYPTED_DATA'),
... 'more': Binary(b'ENCRYPTED_DATA')
... }
>>> decrypted_item = decrypt_python_item(
... item=encrypted_item,
... crypto_config=my_crypto_config
... )
.. note::
This handles human-friendly dictionaries and is for use with the boto3 DynamoDB service or table resource.
:param dict item: Encrypted and signed dictionary
:param CryptoConfig crypto_config: Cryptographic configuration
:returns: Plaintext dictionary
:rtype: dict
"""
ddb_item = dict_to_ddb(item)
decrypted_ddb_item = decrypt_dynamodb_item(ddb_item, crypto_config)
return ddb_to_dict(decrypted_ddb_item)
|
(item, crypto_config)
|
64,516 |
dynamodb_encryption_sdk.encrypted.item
|
encrypt_dynamodb_item
|
Encrypt a DynamoDB item.
>>> from dynamodb_encryption_sdk.encrypted.item import encrypt_dynamodb_item
>>> plaintext_item = {
... 'some': {'S': 'data'},
... 'more': {'N': '5'}
... }
>>> encrypted_item = encrypt_dynamodb_item(
... item=plaintext_item,
... crypto_config=my_crypto_config
... )
.. note::
This handles DynamoDB-formatted items and is for use with the boto3 DynamoDB client.
:param dict item: Plaintext DynamoDB item
:param CryptoConfig crypto_config: Cryptographic configuration
:returns: Encrypted and signed DynamoDB item
:rtype: dict
|
def encrypt_dynamodb_item(item, crypto_config):
# type: (dynamodb_types.ITEM, CryptoConfig) -> dynamodb_types.ITEM
"""Encrypt a DynamoDB item.
>>> from dynamodb_encryption_sdk.encrypted.item import encrypt_dynamodb_item
>>> plaintext_item = {
... 'some': {'S': 'data'},
... 'more': {'N': '5'}
... }
>>> encrypted_item = encrypt_dynamodb_item(
... item=plaintext_item,
... crypto_config=my_crypto_config
... )
.. note::
This handles DynamoDB-formatted items and is for use with the boto3 DynamoDB client.
:param dict item: Plaintext DynamoDB item
:param CryptoConfig crypto_config: Cryptographic configuration
:returns: Encrypted and signed DynamoDB item
:rtype: dict
"""
if crypto_config.attribute_actions.take_no_actions:
# If we explicitly have been told not to do anything to this item, just copy it.
return item.copy()
for reserved_name in ReservedAttributes:
if reserved_name.value in item:
raise EncryptionError(
'Reserved attribute name "{}" is not allowed in plaintext item.'.format(reserved_name.value)
)
encryption_materials = crypto_config.encryption_materials()
inner_material_description = encryption_materials.material_description.copy()
try:
encryption_materials.encryption_key
except AttributeError:
if crypto_config.attribute_actions.contains_action(CryptoAction.ENCRYPT_AND_SIGN):
raise EncryptionError(
"Attribute actions ask for some attributes to be encrypted but no encryption key is available"
)
encrypted_item = item.copy()
else:
# Add the attribute encryption mode to the inner material description
encryption_mode = MaterialDescriptionValues.CBC_PKCS5_ATTRIBUTE_ENCRYPTION.value
inner_material_description[MaterialDescriptionKeys.ATTRIBUTE_ENCRYPTION_MODE.value] = encryption_mode
algorithm_descriptor = encryption_materials.encryption_key.algorithm + encryption_mode
encrypted_item = {}
for name, attribute in item.items():
if crypto_config.attribute_actions.action(name) is CryptoAction.ENCRYPT_AND_SIGN:
encrypted_item[name] = encrypt_attribute(
attribute_name=name,
attribute=attribute,
encryption_key=encryption_materials.encryption_key,
algorithm=algorithm_descriptor,
)
else:
encrypted_item[name] = attribute.copy()
signature_attribute = sign_item(encrypted_item, encryption_materials.signing_key, crypto_config)
encrypted_item[ReservedAttributes.SIGNATURE.value] = signature_attribute
try:
# Add the signing key algorithm identifier to the inner material description if provided
inner_material_description[
MaterialDescriptionKeys.SIGNING_KEY_ALGORITHM.value
] = encryption_materials.signing_key.signing_algorithm()
except NotImplementedError:
# Not all signing keys will provide this value
pass
material_description_attribute = serialize_material_description(inner_material_description)
encrypted_item[ReservedAttributes.MATERIAL_DESCRIPTION.value] = material_description_attribute
return encrypted_item
|
(item, crypto_config)
|
64,517 |
dynamodb_encryption_sdk.encrypted.item
|
encrypt_python_item
|
Encrypt a dictionary for DynamoDB.
>>> from dynamodb_encryption_sdk.encrypted.item import encrypt_python_item
>>> plaintext_item = {
... 'some': 'data',
... 'more': 5
... }
>>> encrypted_item = encrypt_python_item(
... item=plaintext_item,
... crypto_config=my_crypto_config
... )
.. note::
This handles human-friendly dictionaries and is for use with the boto3 DynamoDB service or table resource.
:param dict item: Plaintext dictionary
:param CryptoConfig crypto_config: Cryptographic configuration
:returns: Encrypted and signed dictionary
:rtype: dict
|
def encrypt_python_item(item, crypto_config):
# type: (dynamodb_types.ITEM, CryptoConfig) -> dynamodb_types.ITEM
"""Encrypt a dictionary for DynamoDB.
>>> from dynamodb_encryption_sdk.encrypted.item import encrypt_python_item
>>> plaintext_item = {
... 'some': 'data',
... 'more': 5
... }
>>> encrypted_item = encrypt_python_item(
... item=plaintext_item,
... crypto_config=my_crypto_config
... )
.. note::
This handles human-friendly dictionaries and is for use with the boto3 DynamoDB service or table resource.
:param dict item: Plaintext dictionary
:param CryptoConfig crypto_config: Cryptographic configuration
:returns: Encrypted and signed dictionary
:rtype: dict
"""
ddb_item = dict_to_ddb(item)
encrypted_ddb_item = encrypt_dynamodb_item(ddb_item, crypto_config)
return ddb_to_dict(encrypted_ddb_item)
|
(item, crypto_config)
|
64,527 |
sqlalchemy_mate.engine_creator
|
EngineCreator
|
Tired of looking up docs on https://docs.sqlalchemy.org/en/latest/core/engines.html?
``EngineCreator`` creates sqlalchemy engine in one line:
Example::
from sqlalchemy_mate import EngineCreator
# sqlite in memory
engine = EngineCreator.create_sqlite()
# connect to postgresql, credential stored at ``~/.db.json``
# content of ``.db.json``
{
"mydb": {
"host": "example.com",
"port": 1234,
"database": "test",
"username": "admin",
"password": "admin"
},
...
}
engine = EngineCreator.from_home_db_json("mydb").create_postgresql()
|
class EngineCreator: # pragma: no cover
"""
Tired of looking up docs on https://docs.sqlalchemy.org/en/latest/core/engines.html?
``EngineCreator`` creates sqlalchemy engine in one line:
Example::
from sqlalchemy_mate import EngineCreator
# sqlite in memory
engine = EngineCreator.create_sqlite()
# connect to postgresql, credential stored at ``~/.db.json``
# content of ``.db.json``
{
"mydb": {
"host": "example.com",
"port": 1234,
"database": "test",
"username": "admin",
"password": "admin"
},
...
}
engine = EngineCreator.from_home_db_json("mydb").create_postgresql()
"""
def __init__(
self,
host=None,
port=None,
database=None,
username=None,
password=None,
):
self.host = host
self.port = port
self.database = database
self.username = username
self.password = password
uri_template = "{username}{has_password}{password}@{host}{has_port}{port}/{database}"
path_db_json = os.path.join(os.path.expanduser("~"), ".db.json")
local_home = os.path.basename(os.path.expanduser("~"))
def __repr__(self):
return "{classname}(host='{host}', port={port}, database='{database}', username={username}, password='xxxxxxxxxxxx')".format(
classname=self.__class__.__name__,
host=self.host, port=self.port,
database=self.database, username=self.username,
)
@property
def uri(self) -> str:
"""
Return sqlalchemy connect string URI.
"""
return self.uri_template.format(
host=self.host,
port="" if self.port is None else self.port,
database=self.database,
username=self.username,
password="" if self.password is None else self.password,
has_password="" if self.password is None else ":",
has_port="" if self.port is None else ":",
)
@classmethod
def _validate_key_mapping(cls, key_mapping):
if key_mapping is not None:
keys = list(key_mapping)
keys.sort()
if keys != ["database", "host", "password", "port", "username"]:
msg = ("`key_mapping` is the credential field mapping from `Credential` to custom json! "
"it has to be a dictionary with 5 keys: "
"host, port, password, port, username!")
raise ValueError(msg)
@classmethod
def _transform(cls, data, key_mapping):
if key_mapping is None:
return data
else:
return {actual: data[custom] for actual, custom in key_mapping.items()}
@classmethod
def _from_json_data(cls, data, json_path=None, key_mapping=None):
if json_path is not None:
for p in json_path.split("."):
data = data[p]
return cls(**cls._transform(data, key_mapping))
@classmethod
def from_json(
cls,
json_file: str,
json_path: str = None,
key_mapping: dict = None,
) -> 'EngineCreator':
"""
Load connection credential from json file.
:param json_file: str, path to json file
:param json_path: str, dot notation of the path to the credential dict.
:param key_mapping: dict, map 'host', 'port', 'database', 'username', 'password'
to custom alias, for example ``{'host': 'h', 'port': 'p', 'database': 'db', 'username': 'user', 'password': 'pwd'}``. This params are used to adapt any json data.
:rtype:
:return:
Example:
Your json file::
{
"credentials": {
"db1": {
"h": "example.com",
"p": 1234,
"db": "test",
"user": "admin",
"pwd": "admin",
},
"db2": {
...
}
}
}
Usage::
cred = Credential.from_json(
"path-to-json-file", "credentials.db1",
dict(host="h", port="p", database="db", username="user", password="pwd")
)
"""
cls._validate_key_mapping(key_mapping)
with open(json_file, "rb") as f:
data = json.loads(f.read().decode("utf-8"))
return cls._from_json_data(data, json_path, key_mapping)
@classmethod
def from_home_db_json(
cls,
identifier: str,
key_mapping: dict = None,
) -> 'EngineCreator': # pragma: no cover
"""
Read credential from $HOME/.db.json file.
:type identifier: str
:param identifier: str, database identifier.
:type key_mapping: Dict[str, str]
:param key_mapping: dict
``.db.json````::
{
"identifier1": {
"host": "example.com",
"port": 1234,
"database": "test",
"username": "admin",
"password": "admin",
},
"identifier2": {
...
}
}
"""
return cls.from_json(
json_file=cls.path_db_json, json_path=identifier, key_mapping=key_mapping)
@classmethod
def from_s3_json(
cls,
bucket_name: str,
key: str,
json_path: str = None,
key_mapping: dict = None,
aws_profile: str = None,
aws_access_key_id: str = None,
aws_secret_access_key: str = None,
region_name: str = None,
) -> 'EngineCreator': # pragma: no cover
"""
Load database credential from json on s3.
:param bucket_name: str
:param key: str
:param aws_profile: if None, assume that you are using this from
AWS cloud. (service on the same cloud doesn't need profile name)
:param aws_access_key_id: str, not recommend to use
:param aws_secret_access_key: str, not recommend to use
:param region_name: str
"""
import boto3
ses = boto3.Session(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=region_name,
profile_name=aws_profile,
)
s3 = ses.resource("s3")
bucket = s3.Bucket(bucket_name)
object = bucket.Object(key)
data = json.loads(object.get()["Body"].read().decode("utf-8"))
return cls._from_json_data(data, json_path, key_mapping)
@classmethod
def from_env(
cls,
prefix: str,
kms_decrypt: bool = False,
aws_profile: str = None,
) -> 'EngineCreator':
"""
Load database credential from env variable.
- host: ENV.{PREFIX}_HOST
- port: ENV.{PREFIX}_PORT
- database: ENV.{PREFIX}_DATABASE
- username: ENV.{PREFIX}_USERNAME
- password: ENV.{PREFIX}_PASSWORD
:param prefix: str
:param kms_decrypt: bool
:param aws_profile: str
"""
if len(prefix) < 1:
raise ValueError("prefix can't be empty")
if len(set(prefix).difference(set(string.ascii_uppercase + "_"))):
raise ValueError("prefix can only use [A-Z] and '_'!")
if not prefix.endswith("_"):
prefix = prefix + "_"
data = dict(
host=os.getenv(prefix + "HOST"),
port=os.getenv(prefix + "PORT"),
database=os.getenv(prefix + "DATABASE"),
username=os.getenv(prefix + "USERNAME"),
password=os.getenv(prefix + "PASSWORD"),
)
if kms_decrypt is True: # pragma: no cover
import boto3
from base64 import b64decode
if aws_profile is not None:
kms = boto3.client("kms")
else:
ses = boto3.Session(profile_name=aws_profile)
kms = ses.client("kms")
def decrypt(kms, text):
return kms.decrypt(
CiphertextBlob=b64decode(text.encode("utf-8"))
)["Plaintext"].decode("utf-8")
data = {
key: value if value is None else decrypt(kms, str(value))
for key, value in data.items()
}
return cls(**data)
def to_dict(self):
"""
Convert credentials into a dict.
"""
return dict(
host=self.host,
port=self.port,
database=self.database,
username=self.username,
password=self.password,
)
# --- engine creator logic
def create_connect_str(self, dialect_and_driver) -> str:
return "{}://{}".format(dialect_and_driver, self.uri)
_ccs = create_connect_str
def create_engine(self, conn_str, **kwargs) -> Engine:
"""
:rtype: Engine
"""
return sa.create_engine(conn_str, **kwargs)
_ce = create_engine
@classmethod
def create_sqlite(cls, path=":memory:", **kwargs):
"""
Create sqlite engine.
"""
return sa.create_engine("sqlite:///{path}".format(path=path), **kwargs)
class DialectAndDriver(object):
"""
DB dialect and DB driver mapping.
"""
psql = "postgresql"
psql_psycopg2 = "postgresql+psycopg2"
psql_pg8000 = "postgresql+pg8000"
psql_pygresql = "postgresql+pygresql"
psql_psycopg2cffi = "postgresql+psycopg2cffi"
psql_pypostgresql = "postgresql+pypostgresql"
mysql = "mysql"
mysql_mysqldb = "mysql+mysqldb"
mysql_mysqlconnector = "mysql+mysqlconnector"
mysql_oursql = "mysql+oursql"
mysql_pymysql = "mysql+pymysql"
mysql_cymysql = "mysql+cymysql"
oracle = "oracle"
oracle_cx_oracle = "oracle+cx_oracle"
mssql_pyodbc = "mssql+pyodbc"
mssql_pymssql = "mssql+pymssql"
redshift_psycopg2 = "redshift+psycopg2"
# postgresql
def create_postgresql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.psql), **kwargs
)
def create_postgresql_psycopg2(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.psql_psycopg2), **kwargs
)
def create_postgresql_pg8000(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.psql_pg8000), **kwargs
)
def _create_postgresql_pygresql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.psql_pygresql), **kwargs
)
def create_postgresql_psycopg2cffi(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.psql_psycopg2cffi), **kwargs
)
def create_postgresql_pypostgresql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.psql_pypostgresql), **kwargs
)
# mysql
def create_mysql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mysql), **kwargs
)
def create_mysql_mysqldb(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mysql_mysqldb), **kwargs
)
def create_mysql_mysqlconnector(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mysql_mysqlconnector), **kwargs
)
def create_mysql_oursql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mysql_oursql), **kwargs
)
def create_mysql_pymysql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mysql_pymysql), **kwargs
)
def create_mysql_cymysql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mysql_cymysql), **kwargs
)
# oracle
def create_oracle(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.oracle), **kwargs
)
def create_oracle_cx_oracle(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.oracle_cx_oracle), **kwargs
)
# mssql
def create_mssql_pyodbc(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mssql_pyodbc), **kwargs
)
def create_mssql_pymssql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mssql_pymssql), **kwargs
)
# redshift
def create_redshift(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.redshift_psycopg2), **kwargs
)
|
(host=None, port=None, database=None, username=None, password=None)
|
64,528 |
sqlalchemy_mate.engine_creator
|
__init__
| null |
def __init__(
self,
host=None,
port=None,
database=None,
username=None,
password=None,
):
self.host = host
self.port = port
self.database = database
self.username = username
self.password = password
|
(self, host=None, port=None, database=None, username=None, password=None)
|
64,529 |
sqlalchemy_mate.engine_creator
|
__repr__
| null |
def __repr__(self):
return "{classname}(host='{host}', port={port}, database='{database}', username={username}, password='xxxxxxxxxxxx')".format(
classname=self.__class__.__name__,
host=self.host, port=self.port,
database=self.database, username=self.username,
)
|
(self)
|
64,530 |
sqlalchemy_mate.engine_creator
|
create_connect_str
| null |
def create_connect_str(self, dialect_and_driver) -> str:
return "{}://{}".format(dialect_and_driver, self.uri)
|
(self, dialect_and_driver) -> str
|
64,531 |
sqlalchemy_mate.engine_creator
|
create_engine
|
:rtype: Engine
|
def create_engine(self, conn_str, **kwargs) -> Engine:
"""
:rtype: Engine
"""
return sa.create_engine(conn_str, **kwargs)
|
(self, conn_str, **kwargs) -> sqlalchemy.engine.base.Engine
|
64,532 |
sqlalchemy_mate.engine_creator
|
_create_postgresql_pygresql
|
:rtype: Engine
|
def _create_postgresql_pygresql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.psql_pygresql), **kwargs
)
|
(self, **kwargs)
|
64,535 |
sqlalchemy_mate.engine_creator
|
create_mssql_pymssql
|
:rtype: Engine
|
def create_mssql_pymssql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mssql_pymssql), **kwargs
)
|
(self, **kwargs)
|
64,536 |
sqlalchemy_mate.engine_creator
|
create_mssql_pyodbc
|
:rtype: Engine
|
def create_mssql_pyodbc(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mssql_pyodbc), **kwargs
)
|
(self, **kwargs)
|
64,537 |
sqlalchemy_mate.engine_creator
|
create_mysql
|
:rtype: Engine
|
def create_mysql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mysql), **kwargs
)
|
(self, **kwargs)
|
64,538 |
sqlalchemy_mate.engine_creator
|
create_mysql_cymysql
|
:rtype: Engine
|
def create_mysql_cymysql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mysql_cymysql), **kwargs
)
|
(self, **kwargs)
|
64,539 |
sqlalchemy_mate.engine_creator
|
create_mysql_mysqlconnector
|
:rtype: Engine
|
def create_mysql_mysqlconnector(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mysql_mysqlconnector), **kwargs
)
|
(self, **kwargs)
|
64,540 |
sqlalchemy_mate.engine_creator
|
create_mysql_mysqldb
|
:rtype: Engine
|
def create_mysql_mysqldb(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mysql_mysqldb), **kwargs
)
|
(self, **kwargs)
|
64,541 |
sqlalchemy_mate.engine_creator
|
create_mysql_oursql
|
:rtype: Engine
|
def create_mysql_oursql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mysql_oursql), **kwargs
)
|
(self, **kwargs)
|
64,542 |
sqlalchemy_mate.engine_creator
|
create_mysql_pymysql
|
:rtype: Engine
|
def create_mysql_pymysql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.mysql_pymysql), **kwargs
)
|
(self, **kwargs)
|
64,543 |
sqlalchemy_mate.engine_creator
|
create_oracle
|
:rtype: Engine
|
def create_oracle(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.oracle), **kwargs
)
|
(self, **kwargs)
|
64,544 |
sqlalchemy_mate.engine_creator
|
create_oracle_cx_oracle
|
:rtype: Engine
|
def create_oracle_cx_oracle(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.oracle_cx_oracle), **kwargs
)
|
(self, **kwargs)
|
64,545 |
sqlalchemy_mate.engine_creator
|
create_postgresql
|
:rtype: Engine
|
def create_postgresql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.psql), **kwargs
)
|
(self, **kwargs)
|
64,546 |
sqlalchemy_mate.engine_creator
|
create_postgresql_pg8000
|
:rtype: Engine
|
def create_postgresql_pg8000(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.psql_pg8000), **kwargs
)
|
(self, **kwargs)
|
64,547 |
sqlalchemy_mate.engine_creator
|
create_postgresql_psycopg2
|
:rtype: Engine
|
def create_postgresql_psycopg2(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.psql_psycopg2), **kwargs
)
|
(self, **kwargs)
|
64,548 |
sqlalchemy_mate.engine_creator
|
create_postgresql_psycopg2cffi
|
:rtype: Engine
|
def create_postgresql_psycopg2cffi(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.psql_psycopg2cffi), **kwargs
)
|
(self, **kwargs)
|
64,549 |
sqlalchemy_mate.engine_creator
|
create_postgresql_pypostgresql
|
:rtype: Engine
|
def create_postgresql_pypostgresql(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.psql_pypostgresql), **kwargs
)
|
(self, **kwargs)
|
64,550 |
sqlalchemy_mate.engine_creator
|
create_redshift
|
:rtype: Engine
|
def create_redshift(self, **kwargs):
"""
:rtype: Engine
"""
return self._ce(
self._ccs(self.DialectAndDriver.redshift_psycopg2), **kwargs
)
|
(self, **kwargs)
|
64,551 |
sqlalchemy_mate.engine_creator
|
to_dict
|
Convert credentials into a dict.
|
def to_dict(self):
"""
Convert credentials into a dict.
"""
return dict(
host=self.host,
port=self.port,
database=self.database,
username=self.username,
password=self.password,
)
|
(self)
|
64,552 |
sqlalchemy_mate.orm.extended_declarative_base
|
ExtendedBase
|
Provide additional method.
Example::
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class User(Base, ExtendedBase):
... do what you do with sqlalchemy ORM
**中文文档**
提供了三个快捷函数, 分别用于获得列表形式的 primary key names, fields, values
- :meth:`ExtendedBase.pk_names`
- :meth:`ExtendedBase.pk_fields`
- :meth:`ExtendedBase.pk_values`
另外提供了三个快捷函数, 专门针对只有一个 primary key 的情况, 分别用于获得单个形式的
primary key name, field, value.
- :meth:`ExtendedBase.id_field_name`
- :meth:`ExtendedBase.id_field`
- :meth:`ExtendedBase.id_field_value`
所有参数包括 ``engine_or_session`` 的函数需返回
- 所有的 insert / update
- 所有的 select 相关的 method 返回的不是 ResultProxy, 因为有 engine_or_session
这个参数如果输入是 engine, 用于执行的 session 都是临时对象, 离开了这个 method,
session 将被摧毁. 而返回的 Result 是跟当前的 session 绑定相关的, session 一旦
被关闭, Result 理应不进行任何后续操作. 所以建议全部返回所有结果的列表而不是迭代器.
|
class ExtendedBase(Base):
"""
Provide additional method.
Example::
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class User(Base, ExtendedBase):
... do what you do with sqlalchemy ORM
**中文文档**
提供了三个快捷函数, 分别用于获得列表形式的 primary key names, fields, values
- :meth:`ExtendedBase.pk_names`
- :meth:`ExtendedBase.pk_fields`
- :meth:`ExtendedBase.pk_values`
另外提供了三个快捷函数, 专门针对只有一个 primary key 的情况, 分别用于获得单个形式的
primary key name, field, value.
- :meth:`ExtendedBase.id_field_name`
- :meth:`ExtendedBase.id_field`
- :meth:`ExtendedBase.id_field_value`
所有参数包括 ``engine_or_session`` 的函数需返回
- 所有的 insert / update
- 所有的 select 相关的 method 返回的不是 ResultProxy, 因为有 engine_or_session
这个参数如果输入是 engine, 用于执行的 session 都是临时对象, 离开了这个 method,
session 将被摧毁. 而返回的 Result 是跟当前的 session 绑定相关的, session 一旦
被关闭, Result 理应不进行任何后续操作. 所以建议全部返回所有结果的列表而不是迭代器.
"""
__abstract__ = True
_settings_major_attrs: list = None
_cache_pk_names: tuple = None
# --- No DB interaction APIs ---
@classmethod
def pk_names(cls) -> Tuple[str]:
"""
Primary key column name list.
"""
if cls._cache_pk_names is None:
cls._cache_pk_names = tuple([
col.name for col in inspect(cls).primary_key
])
return cls._cache_pk_names
_cache_pk_fields: tuple = None
@classmethod
def pk_fields(cls) -> Tuple[InstrumentedAttribute]:
"""
Primary key columns instance. For example::
class User(Base):
id = Column(..., primary_key=True)
name = Column(...)
User.pk_fields() # (User.id,)
:rtype: tuple
"""
if cls._cache_pk_fields is None:
cls._cache_pk_fields = tuple([
getattr(cls, name) for name in cls.pk_names()
])
return cls._cache_pk_fields
def pk_values(self) -> tuple:
"""
Primary key values
:rtype: tuple
"""
return tuple([getattr(self, name) for name in self.pk_names()])
# id_field_xxx() method are only valid if there's only one primary key
_id_field_name: str = None
@classmethod
def id_field_name(cls) -> str:
"""
If only one primary_key, then return the name of it.
Otherwise, raise ValueError.
"""
if cls._id_field_name is None:
if len(cls.pk_names()) == 1:
cls._id_field_name = cls.pk_names()[0]
else:
raise ValueError(
"{classname} has more than 1 primary key!"
.format(classname=cls.__name__)
)
return cls._id_field_name
_id_field = None
@classmethod
def id_field(cls) -> InstrumentedAttribute:
"""
If only one primary_key, then return the Class.field name object.
Otherwise, raise ValueError.
"""
if cls._id_field is None:
cls._id_field = getattr(cls, cls.id_field_name())
return cls._id_field
def id_field_value(self):
"""
If only one primary_key, then return the value of primary key.
Otherwise, raise ValueError
"""
return getattr(self, self.id_field_name())
_cache_keys: List[str] = None
@classmethod
def keys(cls) -> List[str]:
"""
return list of all declared columns.
:rtype: List[str]
"""
if cls._cache_keys is None:
cls._cache_keys = [c.name for c in cls.__table__.columns]
return cls._cache_keys
def values(self) -> list:
"""
return list of value of all declared columns.
"""
return [getattr(self, c.name, None) for c in self.__table__.columns]
def items(self) -> List[Tuple[str, Any]]:
"""
return list of pair of name and value of all declared columns.
"""
return [
(c.name, getattr(self, c.name, None))
for c in self.__table__.columns
]
def __repr__(self):
kwargs = list()
for attr, value in self.items():
kwargs.append("%s=%r" % (attr, value))
return "%s(%s)" % (self.__class__.__name__, ", ".join(kwargs))
def __str__(self):
return self.__repr__()
def to_dict(self, include_null=True) -> Dict[str, Any]:
"""
Convert to dict.
:rtype: dict
"""
if include_null:
return dict(self.items())
else:
return {
attr: value
for attr, value in self.__dict__.items()
if not attr.startswith("_sa_")
}
def to_OrderedDict(
self,
include_null: bool = True,
) -> OrderedDict:
"""
Convert to OrderedDict.
"""
if include_null:
return OrderedDict(self.items())
else:
items = list()
for c in self.__table__._columns:
try:
items.append((c.name, self.__dict__[c.name]))
except KeyError:
pass
return OrderedDict(items)
_cache_major_attrs: tuple = None
@classmethod
def _major_attrs(cls):
if cls._cache_major_attrs is None:
l = list()
for item in cls._settings_major_attrs:
if isinstance(item, Column):
l.append(item.name)
elif isinstance(item, str):
l.append(item)
else: # pragma: no cover
raise TypeError
if len(set(l)) != len(l): # pragma: no cover
raise ValueError
cls._cache_major_attrs = tuple(l)
return cls._cache_major_attrs
def glance(self, _verbose: bool = True): # pragma: no cover
"""
Print itself, only display attributes defined in
:attr:`ExtendedBase._settings_major_attrs`
:param _verbose: internal param for unit testing
"""
if self._settings_major_attrs is None:
msg = ("Please specify attributes you want to include "
"in `class._settings_major_attrs`!")
raise NotImplementedError(msg)
kwargs = [
(attr, getattr(self, attr))
for attr in self._major_attrs()
]
text = "{classname}({kwargs})".format(
classname=self.__class__.__name__,
kwargs=", ".join([
"%s=%r" % (attr, value)
for attr, value in kwargs
])
)
if _verbose: # pragma: no cover
print(text)
def absorb(
self,
other: 'ExtendedBase',
ignore_none: bool = True,
) -> 'ExtendedBase':
"""
For attributes of others that value is not None, assign it to self.
**中文文档**
将另一个文档中的数据更新到本条文档。当且仅当数据值不为None时。
"""
if not isinstance(other, self.__class__):
raise TypeError("`other` has to be a instance of %s!" %
self.__class__)
if ignore_none:
for attr, value in other.items():
if value is not None:
setattr(self, attr, deepcopy(value))
else:
for attr, value in other.items():
setattr(self, attr, deepcopy(value))
return self
def revise(
self,
data: dict,
ignore_none: bool = True,
) -> 'ExtendedBase':
"""
Revise attributes value with dictionary data.
**中文文档**
将一个字典中的数据更新到本条文档. 当且仅当数据值不为 None 时.
"""
if not isinstance(data, dict):
raise TypeError("`data` has to be a dict!")
if ignore_none:
for key, value in data.items():
if value is not None:
setattr(self, key, deepcopy(value))
else:
for key, value in data.items():
setattr(self, key, deepcopy(value))
return self
# --- DB interaction APIs ---
@classmethod
def by_pk(
cls,
engine_or_session: Union[Engine, Session],
id_: Union[Any, List[Any], Tuple],
):
"""
Get one object by primary_key values.
Examples::
class User(Base):
id = Column(Integer, primary_key)
name = Column(String)
with Session(engine) as session:
session.add(User(id=1, name="Alice")
session.commit()
# User(id=1, name="Alice")
print(User.by_pk(1, engine))
print(User.by_pk((1,), engine))
print(User.by_pk([1,), engine))
with Session(engine) as session:
print(User.by_pk(1, session))
print(User.by_pk((1,), session))
print(User.by_pk([1,), session))
**中文文档**
一个简单的语法糖, 允许用户直接用 primary key column 的值访问单个对象.
"""
ses, auto_close = ensure_session(engine_or_session)
obj = ses.get(cls, id_)
clean_session(ses, auto_close)
return obj
@classmethod
def by_sql(
cls,
engine_or_session: Union[Engine, Session],
sql: Union[str, TextClause],
) -> List['ExtendedBase']:
"""
Query with sql statement or texture sql.
Examples::
class User(Base):
id = Column(Integer, primary_key)
name = Column(String)
with Session(engine) as session:
user_list = [
User(id=1, name="Alice"),
User(id=2, name="Bob"),
User(id=3, name="Cathy"),
]
session.add_all(user_list)
session.commit()
results = User.by_sql(
"SELECT * FROM extended_declarative_base_user",
engine,
)
# [User(id=1, name="Alice"), User(id=2, name="Bob"), User(id=3, name="Cathy")]
print(results)
**中文文档**
一个简单的语法糖, 允许用户直接用 SQL 的字符串进行查询.
"""
if isinstance(sql, str):
sql_stmt = text(sql)
elif isinstance(sql, TextClause):
sql_stmt = sql
else: # pragma: no cover
raise TypeError
ses, auto_close = ensure_session(engine_or_session)
results = ses.scalars(select(cls).from_statement(sql_stmt)).all()
clean_session(ses, auto_close)
return results
@classmethod
def smart_insert(
cls,
engine_or_session: Union[Engine, Session],
obj_or_objs: Union['ExtendedBase', List['ExtendedBase']],
minimal_size: int = 5,
_op_counter: int = 0,
_insert_counter: int = 0,
) -> Tuple[int, int]:
"""
An optimized Insert strategy.
\
:param minimal_size: internal bulk size for each attempts
:param _op_counter: number of successful bulk INSERT sql invoked
:param _insert_counter: number of successfully inserted objects.
:return: number of bulk INSERT sql invoked. Usually it is
greatly smaller than ``len(data)``. and also return the number of
successfully inserted objects.
.. warning::
This operation is not atomic, if you force stop the program,
then it could be only partially completed
**中文文档**
在Insert中, 如果已经预知不会出现IntegrityError, 那么使用Bulk Insert的速度要
远远快于逐条Insert。而如果无法预知, 那么我们采用如下策略:
1. 尝试Bulk Insert, Bulk Insert由于在结束前不Commit, 所以速度很快。
2. 如果失败了, 那么对数据的条数开平方根, 进行分包, 然后对每个包重复该逻辑。
3. 若还是尝试失败, 则继续分包, 当分包的大小小于一定数量时, 则使用逐条插入。
直到成功为止。
该 Insert 策略在内存上需要额外的 sqrt(n) 的开销, 跟原数据相比体积很小。
但时间上是各种情况下平均最优的。
1.4 以后的重要变化: session 变得更聪明了.
"""
ses, auto_close = ensure_session(engine_or_session)
if isinstance(obj_or_objs, list):
# 首先进行尝试bulk insert
try:
ses.add_all(obj_or_objs)
ses.commit()
_op_counter += 1
_insert_counter += len(obj_or_objs)
# 失败了
except (IntegrityError, FlushError):
ses.rollback()
# 分析数据量
n = len(obj_or_objs)
# 如果数据条数多于一定数量
if n >= minimal_size ** 2:
# 则进行分包
n_chunk = math.floor(math.sqrt(n))
for chunk in grouper_list(obj_or_objs, n_chunk):
(
_op_counter,
_insert_counter,
) = cls.smart_insert(
engine_or_session=ses,
obj_or_objs=chunk,
minimal_size=minimal_size,
_op_counter=_op_counter,
_insert_counter=_insert_counter,
)
# 否则则一条条地逐条插入
else:
for obj in obj_or_objs:
try:
ses.add(obj)
ses.commit()
_op_counter += 1
_insert_counter += 1
except (IntegrityError, FlushError):
ses.rollback()
else:
try:
ses.add(obj_or_objs)
ses.commit()
_op_counter += 1
_insert_counter += 1
except (IntegrityError, FlushError):
ses.rollback()
clean_session(ses, auto_close)
return _op_counter, _insert_counter
@classmethod
def update_all(
cls,
engine_or_session: Union[Engine, Session],
obj_or_objs: Union['ExtendedBase', List['ExtendedBase']],
include_null: bool = True,
upsert: bool = False,
) -> Tuple[int, int]:
"""
The :meth:`sqlalchemy.crud.updating.update_all` function in ORM syntax.
This operation **IS NOT ATOMIC**. It is a greedy operation, trying to
update as much as it can.
:param engine_or_session: an engine created by``sqlalchemy.create_engine``.
:param obj_or_objs: single object or list of object
:param include_null: update those None value field or not
:param upsert: if True, then do insert also.
:return: number of row been changed
"""
update_counter = 0
insert_counter = 0
ses, auto_close = ensure_session(engine_or_session)
obj_or_objs = ensure_list(obj_or_objs) # type: List[ExtendedBase]
objs_to_insert = list()
for obj in obj_or_objs:
res = ses.execute(
update(cls).
where(*[
field == value
for field, value in zip(obj.pk_fields(), obj.pk_values())
]).
values(**obj.to_dict(include_null=include_null))
)
if res.rowcount:
update_counter += 1
else:
objs_to_insert.append(obj)
if upsert:
try:
ses.add_all(objs_to_insert)
ses.commit()
insert_counter += len(objs_to_insert)
except (IntegrityError, FlushError): # pragma: no cover
ses.rollback()
else:
ses.commit()
clean_session(ses, auto_close)
return update_counter, insert_counter
@classmethod
def upsert_all(
cls,
engine_or_session: Union[Engine, Session],
obj_or_objs: Union['ExtendedBase', List['ExtendedBase']],
include_null: bool = True,
) -> Tuple[int, int]:
"""
The :meth:`sqlalchemy.crud.updating.upsert_all` function in ORM syntax.
:param engine_or_session: an engine created by``sqlalchemy.create_engine``.
:param obj_or_objs: single object or list of object
:param include_null: update those None value field or not
:return: number of row been changed
"""
return cls.update_all(
engine_or_session=engine_or_session,
obj_or_objs=obj_or_objs,
include_null=include_null,
upsert=True,
)
@classmethod
def delete_all(
cls,
engine_or_session: Union[Engine, Session],
): # pragma: no cover
"""
Delete all data in this table.
TODO: add a boolean flag for cascade remove
"""
ses, auto_close = ensure_session(engine_or_session)
ses.execute(cls.__table__.delete())
ses.commit()
clean_session(ses, auto_close)
@classmethod
def count_all(
cls,
engine_or_session: Union[Engine, Session],
) -> int:
"""
Return number of rows in this table.
"""
ses, auto_close = ensure_session(engine_or_session)
count = ses.execute(select(func.count()).select_from(cls)).one()[0]
clean_session(ses, auto_close)
return count
@classmethod
def select_all(
cls,
engine_or_session: Union[Engine, Session],
) -> List['ExtendedBase']:
"""
"""
ses, auto_close = ensure_session(engine_or_session)
results = ses.scalars(select(cls)).all()
clean_session(ses, auto_close)
return results
@classmethod
def random_sample(
cls,
engine_or_session: Union[Engine, Session],
limit: int = None,
perc: int = None,
) -> List['ExtendedBase']:
"""
Return random ORM instance.
:rtype: List[ExtendedBase]
"""
ses, auto_close = ensure_session(engine_or_session)
ensure_exact_one_arg_is_not_none(limit, perc)
if limit is not None:
results = ses.scalars(
select(cls).order_by(func.random()).limit(limit)
).all()
elif perc is not None:
selectable = cls.__table__.tablesample(
func.bernoulli(perc),
name="alias",
seed=func.random()
)
args = [
getattr(selectable.c, column.name)
for column in cls.__table__.columns
]
stmt = select(*args)
results = [cls(**dict(row)) for row in ses.execute(stmt)]
else:
raise ValueError
clean_session(ses, auto_close)
return results
|
(**kwargs)
|
64,553 |
sqlalchemy.orm.decl_base
|
__init__
|
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and
values in ``kwargs``.
Only keys that are present as
attributes of the instance's class are allowed. These could be,
for example, any mapped columns or relationships.
|
def _declarative_constructor(self, **kwargs):
"""A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and
values in ``kwargs``.
Only keys that are present as
attributes of the instance's class are allowed. These could be,
for example, any mapped columns or relationships.
"""
cls_ = type(self)
for k in kwargs:
if not hasattr(cls_, k):
raise TypeError(
"%r is an invalid keyword argument for %s" % (k, cls_.__name__)
)
setattr(self, k, kwargs[k])
|
(self, **kwargs)
|
64,554 |
sqlalchemy_mate.orm.extended_declarative_base
|
__repr__
| null |
def __repr__(self):
kwargs = list()
for attr, value in self.items():
kwargs.append("%s=%r" % (attr, value))
return "%s(%s)" % (self.__class__.__name__, ", ".join(kwargs))
|
(self)
|
64,556 |
sqlalchemy_mate.orm.extended_declarative_base
|
absorb
|
For attributes of others that value is not None, assign it to self.
**中文文档**
将另一个文档中的数据更新到本条文档。当且仅当数据值不为None时。
|
def absorb(
self,
other: 'ExtendedBase',
ignore_none: bool = True,
) -> 'ExtendedBase':
"""
For attributes of others that value is not None, assign it to self.
**中文文档**
将另一个文档中的数据更新到本条文档。当且仅当数据值不为None时。
"""
if not isinstance(other, self.__class__):
raise TypeError("`other` has to be a instance of %s!" %
self.__class__)
if ignore_none:
for attr, value in other.items():
if value is not None:
setattr(self, attr, deepcopy(value))
else:
for attr, value in other.items():
setattr(self, attr, deepcopy(value))
return self
|
(self, other: sqlalchemy_mate.orm.extended_declarative_base.ExtendedBase, ignore_none: bool = True) -> sqlalchemy_mate.orm.extended_declarative_base.ExtendedBase
|
64,557 |
sqlalchemy_mate.orm.extended_declarative_base
|
glance
|
Print itself, only display attributes defined in
:attr:`ExtendedBase._settings_major_attrs`
:param _verbose: internal param for unit testing
|
def glance(self, _verbose: bool = True): # pragma: no cover
"""
Print itself, only display attributes defined in
:attr:`ExtendedBase._settings_major_attrs`
:param _verbose: internal param for unit testing
"""
if self._settings_major_attrs is None:
msg = ("Please specify attributes you want to include "
"in `class._settings_major_attrs`!")
raise NotImplementedError(msg)
kwargs = [
(attr, getattr(self, attr))
for attr in self._major_attrs()
]
text = "{classname}({kwargs})".format(
classname=self.__class__.__name__,
kwargs=", ".join([
"%s=%r" % (attr, value)
for attr, value in kwargs
])
)
if _verbose: # pragma: no cover
print(text)
|
(self, _verbose: bool = True)
|
64,558 |
sqlalchemy_mate.orm.extended_declarative_base
|
id_field_value
|
If only one primary_key, then return the value of primary key.
Otherwise, raise ValueError
|
def id_field_value(self):
"""
If only one primary_key, then return the value of primary key.
Otherwise, raise ValueError
"""
return getattr(self, self.id_field_name())
|
(self)
|
64,559 |
sqlalchemy_mate.orm.extended_declarative_base
|
items
|
return list of pair of name and value of all declared columns.
|
def items(self) -> List[Tuple[str, Any]]:
"""
return list of pair of name and value of all declared columns.
"""
return [
(c.name, getattr(self, c.name, None))
for c in self.__table__.columns
]
|
(self) -> List[Tuple[str, Any]]
|
64,560 |
sqlalchemy_mate.orm.extended_declarative_base
|
pk_values
|
Primary key values
:rtype: tuple
|
def pk_values(self) -> tuple:
"""
Primary key values
:rtype: tuple
"""
return tuple([getattr(self, name) for name in self.pk_names()])
|
(self) -> tuple
|
64,561 |
sqlalchemy_mate.orm.extended_declarative_base
|
revise
|
Revise attributes value with dictionary data.
**中文文档**
将一个字典中的数据更新到本条文档. 当且仅当数据值不为 None 时.
|
def revise(
self,
data: dict,
ignore_none: bool = True,
) -> 'ExtendedBase':
"""
Revise attributes value with dictionary data.
**中文文档**
将一个字典中的数据更新到本条文档. 当且仅当数据值不为 None 时.
"""
if not isinstance(data, dict):
raise TypeError("`data` has to be a dict!")
if ignore_none:
for key, value in data.items():
if value is not None:
setattr(self, key, deepcopy(value))
else:
for key, value in data.items():
setattr(self, key, deepcopy(value))
return self
|
(self, data: dict, ignore_none: bool = True) -> sqlalchemy_mate.orm.extended_declarative_base.ExtendedBase
|
64,562 |
sqlalchemy_mate.orm.extended_declarative_base
|
to_OrderedDict
|
Convert to OrderedDict.
|
def to_OrderedDict(
self,
include_null: bool = True,
) -> OrderedDict:
"""
Convert to OrderedDict.
"""
if include_null:
return OrderedDict(self.items())
else:
items = list()
for c in self.__table__._columns:
try:
items.append((c.name, self.__dict__[c.name]))
except KeyError:
pass
return OrderedDict(items)
|
(self, include_null: bool = True) -> collections.OrderedDict
|
64,563 |
sqlalchemy_mate.orm.extended_declarative_base
|
to_dict
|
Convert to dict.
:rtype: dict
|
def to_dict(self, include_null=True) -> Dict[str, Any]:
"""
Convert to dict.
:rtype: dict
"""
if include_null:
return dict(self.items())
else:
return {
attr: value
for attr, value in self.__dict__.items()
if not attr.startswith("_sa_")
}
|
(self, include_null=True) -> Dict[str, Any]
|
64,564 |
sqlalchemy_mate.orm.extended_declarative_base
|
values
|
return list of value of all declared columns.
|
def values(self) -> list:
"""
return list of value of all declared columns.
"""
return [getattr(self, c.name, None) for c in self.__table__.columns]
|
(self) -> list
|
64,565 |
sqlalchemy_mate.pkg.timeout_decorator.timeout_decorator
|
TimeoutError
|
Thrown when a timeout occurs in the `timeout` context manager.
|
class TimeoutError(AssertionError):
"""Thrown when a timeout occurs in the `timeout` context manager."""
def __init__(self, value="Timed Out"):
self.value = value
def __str__(self):
return repr(self.value)
|
(value='Timed Out')
|
64,566 |
sqlalchemy_mate.pkg.timeout_decorator.timeout_decorator
|
__init__
| null |
def __init__(self, value="Timed Out"):
self.value = value
|
(self, value='Timed Out')
|
64,578 |
sqlalchemy_mate.utils
|
test_connection
| null |
def test_connection(engine, timeout=3):
@timeout_decorator.timeout(timeout)
def _test_connection(engine):
v = engine.execute(sa.text("SELECT 1;")).fetchall()[0][0]
assert v == 1
try:
_test_connection(engine)
return True
except timeout_decorator.TimeoutError:
raise timeout_decorator.TimeoutError(
"time out in %s seconds!" % timeout)
except AssertionError: # pragma: no cover
raise ValueError
except Exception as e:
raise e
|
(engine, timeout=3)
|
64,582 |
humanize.i18n
|
activate
|
Activate internationalisation.
Set `locale` as current locale. Search for locale in directory `path`.
Args:
locale (str): Language name, e.g. `en_GB`.
path (str): Path to search for locales.
Returns:
dict: Translations.
Raises:
Exception: If humanize cannot find the locale folder.
|
def activate(locale: str, path: str | None = None) -> gettext_module.NullTranslations:
"""Activate internationalisation.
Set `locale` as current locale. Search for locale in directory `path`.
Args:
locale (str): Language name, e.g. `en_GB`.
path (str): Path to search for locales.
Returns:
dict: Translations.
Raises:
Exception: If humanize cannot find the locale folder.
"""
if path is None:
path = _get_default_locale_path()
if path is None:
msg = (
"Humanize cannot determinate the default location of the 'locale' folder. "
"You need to pass the path explicitly."
)
raise Exception(msg)
if locale not in _TRANSLATIONS:
translation = gettext_module.translation("humanize", path, [locale])
_TRANSLATIONS[locale] = translation
_CURRENT.locale = locale
return _TRANSLATIONS[locale]
|
(locale: str, path: Optional[str] = None) -> gettext.NullTranslations
|
64,583 |
humanize.number
|
apnumber
|
Converts an integer to Associated Press style.
Examples:
```pycon
>>> apnumber(0)
'zero'
>>> apnumber(5)
'five'
>>> apnumber(10)
'10'
>>> apnumber("7")
'seven'
>>> apnumber("foo")
'foo'
>>> apnumber(None)
'None'
```
Args:
value (int, float, str): Integer to convert.
Returns:
str: For numbers 0-9, the number spelled out. Otherwise, the number. This always
returns a string unless the value was not `int`-able, then `str(value)`
is returned.
|
def apnumber(value: NumberOrString) -> str:
"""Converts an integer to Associated Press style.
Examples:
```pycon
>>> apnumber(0)
'zero'
>>> apnumber(5)
'five'
>>> apnumber(10)
'10'
>>> apnumber("7")
'seven'
>>> apnumber("foo")
'foo'
>>> apnumber(None)
'None'
```
Args:
value (int, float, str): Integer to convert.
Returns:
str: For numbers 0-9, the number spelled out. Otherwise, the number. This always
returns a string unless the value was not `int`-able, then `str(value)`
is returned.
"""
try:
if not math.isfinite(float(value)):
return _format_not_finite(float(value))
value = int(value)
except (TypeError, ValueError):
return str(value)
if not 0 <= value < 10:
return str(value)
return (
_("zero"),
_("one"),
_("two"),
_("three"),
_("four"),
_("five"),
_("six"),
_("seven"),
_("eight"),
_("nine"),
)[value]
|
(value: float | str) -> str
|
64,584 |
humanize.number
|
clamp
|
Returns number with the specified format, clamped between floor and ceil.
If the number is larger than ceil or smaller than floor, then the respective limit
will be returned, formatted and prepended with a token specifying as such.
Examples:
```pycon
>>> clamp(123.456)
'123.456'
>>> clamp(0.0001, floor=0.01)
'<0.01'
>>> clamp(0.99, format="{:.0%}", ceil=0.99)
'99%'
>>> clamp(0.999, format="{:.0%}", ceil=0.99)
'>99%'
>>> clamp(1, format=intword, floor=1e6, floor_token="under ")
'under 1.0 million'
>>> clamp(None) is None
True
```
Args:
value (int, float): Input number.
format (str OR callable): Can either be a formatting string, or a callable
function that receives value and returns a string.
floor (int, float): Smallest value before clamping.
ceil (int, float): Largest value before clamping.
floor_token (str): If value is smaller than floor, token will be prepended
to output.
ceil_token (str): If value is larger than ceil, token will be prepended
to output.
Returns:
str: Formatted number. The output is clamped between the indicated floor and
ceil. If the number is larger than ceil or smaller than floor, the output
will be prepended with a token indicating as such.
|
def clamp(
value: float,
format: str = "{:}",
floor: float | None = None,
ceil: float | None = None,
floor_token: str = "<",
ceil_token: str = ">",
) -> str:
"""Returns number with the specified format, clamped between floor and ceil.
If the number is larger than ceil or smaller than floor, then the respective limit
will be returned, formatted and prepended with a token specifying as such.
Examples:
```pycon
>>> clamp(123.456)
'123.456'
>>> clamp(0.0001, floor=0.01)
'<0.01'
>>> clamp(0.99, format="{:.0%}", ceil=0.99)
'99%'
>>> clamp(0.999, format="{:.0%}", ceil=0.99)
'>99%'
>>> clamp(1, format=intword, floor=1e6, floor_token="under ")
'under 1.0 million'
>>> clamp(None) is None
True
```
Args:
value (int, float): Input number.
format (str OR callable): Can either be a formatting string, or a callable
function that receives value and returns a string.
floor (int, float): Smallest value before clamping.
ceil (int, float): Largest value before clamping.
floor_token (str): If value is smaller than floor, token will be prepended
to output.
ceil_token (str): If value is larger than ceil, token will be prepended
to output.
Returns:
str: Formatted number. The output is clamped between the indicated floor and
ceil. If the number is larger than ceil or smaller than floor, the output
will be prepended with a token indicating as such.
"""
if value is None:
return None
if not math.isfinite(value):
return _format_not_finite(value)
if floor is not None and value < floor:
value = floor
token = floor_token
elif ceil is not None and value > ceil:
value = ceil
token = ceil_token
else:
token = ""
if isinstance(format, str):
return token + format.format(value)
if callable(format):
return token + format(value)
msg = (
"Invalid format. Must be either a valid formatting string, or a function "
"that accepts value and returns a string."
)
raise ValueError(msg)
|
(value: float, format: str = '{:}', floor: Optional[float] = None, ceil: Optional[float] = None, floor_token: str = '<', ceil_token: str = '>') -> str
|
64,585 |
humanize.i18n
|
deactivate
|
Deactivate internationalisation.
|
def deactivate() -> None:
"""Deactivate internationalisation."""
_CURRENT.locale = None
|
() -> NoneType
|
64,586 |
humanize.i18n
|
decimal_separator
|
Return the decimal separator for a locale, default to dot.
Returns:
str: Decimal separator.
|
def decimal_separator() -> str:
"""Return the decimal separator for a locale, default to dot.
Returns:
str: Decimal separator.
"""
try:
sep = _DECIMAL_SEPARATOR[_CURRENT.locale]
except (AttributeError, KeyError):
sep = "."
return sep
|
() -> str
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.