content
stringlengths
0
894k
type
stringclasses
2 values
#!/usr/bin/env python from multi_circle_2 import Multi_circle_2 if __name__ == '__main__': multi_circle_2 = Multi_circle_2( [ #x , y, z, yaw, sleep [0.0 , 0.0, 1.0, 0, 8], [0.0 , 0.0 ,1.0, 0, 3], [-0.3 , -1.4, 0.0, 0, 0], ] ) multi_circle_2.run()
python
# Given a column title as appear in an Excel sheet, return its corresponding column number. # For example: # A -> 1 # B -> 2 # C -> 3 # ... # Z -> 26 # AA -> 27 # AB -> 28 class Solution: # @param s, a string # @return an integer def titleToNumber(self, s): d = {'A':1, 'B':2, 'C':3, 'D':4, 'E':5, 'F':6, 'G':7, 'H':8, 'I':9, 'J':10, 'K':11, 'L':12, 'M':13, 'N':14, 'O':15, 'P':16, 'Q':17, 'R':18, 'S':19, 'T':20, 'U':21, 'V':22, 'W':23, 'X':24, 'Y':25, 'Z':26} num = 0 while(len(s)): num += d[s[0]] * pow(26, len(s) - 1) s = s[1:] return num if __name__ == '__main__': s = Solution() print s.titleToNumber('ABC')
python
""" Clustered/Convolutional/Variational autoencoder, including demonstration of training such a network on MNIST, CelebNet and the film, "Sita Sings The Blues" using an image pipeline. Copyright Yida Wang, May 2017 """ import matplotlib import tensorflow as tf import numpy as np from scipy.misc import imsave import os import csv from libs.dataset_utils import create_input_pipeline from libs.vae import VAE # Those lines must be setted when we ssh other servers without displaying matplotlib.use('Agg') def generate_vae( files_train, input_shape=[None, 784], output_shape=[None, 784], batch_size=128, n_examples=6, crop_shape=[64, 64], crop_factor=1, n_filters=[100, 100, 100, 100], n_hidden=256, n_code=50, n_clusters=12, convolutional=True, fire=True, variational=True, metric=False, filter_sizes=[3, 3, 3, 3], dropout=True, keep_prob=1.0, activation=tf.nn.relu, output_path="result", ckpt_name="vae.ckpt"): """General purpose training of a (Variational) (Convolutional) (Clustered) Autoencoder. Supply a list of file paths to images, and this will do everything else. Parameters ---------- files_train : list of strings List of paths to images for training. input_shape : list Must define what the input image's shape is. batch_size : int, optional Batch size. n_examples : int, optional Number of example to use while demonstrating the current training iteration's reconstruction. Creates a square montage, so: n_examples**2 = 16, 25, 36, ... 100. crop_shape : list, optional Size to centrally crop the image to. crop_factor : float, optional Resize factor to apply before cropping. n_filters : list, optional Same as VAE's n_filters. n_hidden : int, optional Same as VAE's n_hidden. n_code : int, optional Same as VAE's n_code. convolutional : bool, optional Use convolution or not. fire: bool, optional Use fire module or not. variational : bool, optional Use variational layer or not. filter_sizes : list, optional Same as VAE's filter_sizes. dropout : bool, optional Use dropout or not keep_prob : float, optional Percent of keep for dropout. activation : function, optional Which activation function to use. img_step : int, optional How often to save training images showing the manifold and reconstruction. save_step : int, optional How often to save checkpoints. output_path : str, optional Defien a path for saving result and sample images ckpt_name : str, optional Checkpoints will be named as this, e.g. 'model.ckpt' """ # Those should be defined before we finalize the graph batch_train = create_input_pipeline( files=files_train, batch_size=batch_size, n_epochs=1, crop_shape=crop_shape, crop_factor=crop_factor, input_shape=input_shape, output_shape=output_shape, shuffle=False) ae = VAE(input_shape=[None] + crop_shape + [input_shape[-1]], output_shape=[None] + crop_shape + [output_shape[-1]], convolutional=convolutional, variational=variational, fire=fire, metric=metric, n_filters=n_filters, n_hidden=n_hidden, n_code=n_code, n_clusters=n_clusters, dropout=dropout, filter_sizes=filter_sizes, activation=activation) # We create a session to use the config = tf.ConfigProto() config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction = 0.3 sess = tf.Session(config=config) saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) # This will handle our threaded image pipeline coord = tf.train.Coordinator() # Ensure no more changes to graph tf.get_default_graph().finalize() # Start up the queues for handling the image pipeline threads = tf.train.start_queue_runners(sess=sess, coord=coord) if ( os.path.exists(output_path + '/' + ckpt_name + '.index') or os.path.exists(ckpt_name) ): saver.restore(sess, output_path + '/' + ckpt_name) print("Model restored.") else: print("No model, train at first!") # Get the number of training samples with open(files_train, "r") as f: reader = csv.reader(f, delimiter=",") data = list(reader) n_files_train = len(data) batch_i = 0 try: while not coord.should_stop() and batch_i < n_files_train/batch_size: batch_xs, batch_ts, batch_ys = sess.run(batch_train) batch_xs /= 255.0 batch_ts /= 255.0 # Plot example reconstructions input_x, recon, target = sess.run( [ae['x'], ae['y'], ae['t']], feed_dict={ ae['x']: batch_xs, ae['t']: batch_ts, ae['train']: False, ae['keep_prob']: 1.0})[:] # This is for avoiding 0 in the denomiters depth_recon = recon[:, :, :, -1] + 0.001 depth_target = target[:, :, :, -1] for sam_id in range(target.shape[0]): name_img = data[batch_i*batch_size+sam_id][0] label_start = name_img.rfind('_') + 1 label_end = name_img.rfind('.') imsave( arr=input_x[sam_id, :], name=output_path+'/generated/input_' + name_img[label_start:label_end] + '.png') imsave( arr=np.squeeze(target[sam_id, :]), name=output_path+'/generated/target_' + name_img[label_start:label_end] + '.png') imsave( arr=np.squeeze(recon[sam_id, :]), name=output_path+'/generated/recon_' + name_img[label_start:label_end] + '.png') # Evaluation for depth images valid_pos = np.nonzero(depth_target) delta1 = (np.count_nonzero( np.maximum( 1.25 - np.maximum( depth_recon[valid_pos]/depth_target[valid_pos], depth_target[valid_pos]/depth_recon[valid_pos]), 0)) / depth_target[valid_pos].size) delta2 = (np.count_nonzero( np.maximum( 1.25**2 - np.maximum( depth_recon[valid_pos]/depth_target[valid_pos], depth_target[valid_pos]/depth_recon[valid_pos]), 0)) / depth_target[valid_pos].size) delta3 = (np.count_nonzero( np.maximum( 1.25**3 - np.maximum( depth_recon[valid_pos]/depth_target[valid_pos], depth_target[valid_pos]/depth_recon[valid_pos]), 0)) / depth_target[valid_pos].size) rel = (np.mean( np.abs(depth_recon[valid_pos] - depth_target[valid_pos]) / depth_target[valid_pos])) print( 'rel:', rel, ', delta 1:', delta1, ', delta 2:', delta2, ', delta 3:', delta3) batch_i += 1 except tf.errors.OutOfRangeError: print('Done.') finally: # One of the threads has issued an exception. So let's tell all the # threads to shutdown. coord.request_stop() # Wait until all threads have finished. coord.join(threads) # Clean up the session. sess.close()
python
""" This provides wrappers for FMUs so they are easy to assemble in a short script, as well as support writing data in HDF5 format using pytable, as well as a library of FMUs ready to be assembled. The structure of the file starts with the FMU utilities, goes on to define modules and simulations, and ends with a list of FMUs. The end result is a simulation that is easy to specify in python, and self described data stored in HDF5 files which can be read with either python or matlab. This does not work with octave however. """ import tables as tb import re import os import platform import numpy as np from collections import OrderedDict import datetime as dtime import time # this might be redundant import sys import subprocess import timeit import shutil as shutil import tempfile as tempfile from collections import Counter def patch_string(s): special = "[=~!@\$%\^&\.\(\)-\+\\\|\]\}\[\{';:/\?<>]" return re.sub(special, "_", s) def platform_path(): if 'linux' in sys.platform: return 'dymola_models/Linux/' elif 'win' in sys.platform: return 'dymola_models/Windows/' else: print('Unsupported platform ' + sys.platform) sys.exit(1) class module: """ Base class for FMUs Everything and the kitchen sink. This contains enough info to hide all the complexity of constructing the command line for the execution environment. Also, there is information here that goes into the HDF5 datafile. That information is not mandatory but useful. No effort is made at this time to parse modelDescription.xml files to gather UUID and other good info. """ def __init__(self, filename, name, connectors=None, inputs=None, outputs=None, parameters=None, host="tcp://localhost", prefixcmd=[], debug_level=0, port = None, description="", aliases={}, attributes={} ): self.id = None # for fmigo's command line self.name=name self.description=description self.filename = filename # the fmu itself self.connectors=connectors #kinematic couplings: variable lists self.inputs = inputs # input ports self.outputs = outputs # outs if hasattr(self, "parameters") and parameters: self.parameters.update(parameters) else: self.parameters=parameters self.id = None # unique id assigned from simulation self.port = port # will be assigned by simulation if on local host self.host = host # which computer this runs on self.prefixcmd = prefixcmd # special extra commands like optirun or # xterm etc. self.debug_level=debug_level self.attributes = attributes self.aliases = aliases def make_aliases(self): """ this is to make identical names for corresponding variables""" if hasattr(self, "inputs") and self.inputs: self.aliases.update(self.inputs) if hasattr(self, "outputs") and self.outputs and type(self.outputs)==type({}): self.aliases.update(self.outputs) if hasattr(self, "connectors") and self.connectors: for k,v in self.connectors.items(): self.aliases["phi_"+k] = v[0] self.aliases["w_" +k] = v[1] self.aliases["a_" +k] = v[2] self.aliases["tau_"+k] = v[3] # now construct the reverse map self.raliases = {} for k,v in self.aliases.items(): self.raliases[v] = k # construct command line for parameters def make_pars(self): s="" if self.parameters: for k in self.parameters: s +=":"+str(self.id)+","+k+","+self.parameters[k] return ['-p', s[1:]] else: return [] def uri(self, mode="tcp"): if mode == "tcp": return self.host+":"+str(self.port) elif mode=="mpi": return self.filename else: print("Only mpi and tcp modes are available but %s was requested." %mode) sys.exit(-1) class simulation: """ Here is all the runtime support for both TCP and MPI. Modules are initialized and then sorted for the connections can be delivered to the master directly from the dictionary of connections""" def __init__(self, fmus, couplings=(), signals=(), cleanup=None, annotations=(), START_PORT=3000, extra_args=[], debug_level=0 , name="", variant="", description="some simulation" ): self.fmus = self.remove_name_clashes(fmus) self.couplings = couplings # maybe this doesn't need to be stored self.signals = signals # same self.cleanup = cleanup self.cmd_pre = [] self.cmd = [] self.cmd_post = [] self.cmd_pars = [] self.cmd_couplings = [] self.cmd_signals = [] self.ports = [] self.processes = [] # for when we use TCP self.port = START_PORT self.uris = None self.extra_args = extra_args self.debug_level = debug_level self.is_kinematic = False self.wall_time = 0 self.name = name self.description = description self.annotations = annotations self.variant = variant ## Assign an ordering to the FMUs from 0 ## This id is relevant only to fmigo-{master|mpi} ## We also take care of the parameters here --- could be done when ## launching simulation def init_fmus(self, comm_step): id = 0 self.cmd_pars = [] for k,f in self.fmus.items(): f.id = id if hasattr(f, "setup"): f.setup(comm_step) id += 1 s="" if f.parameters: for k in f.parameters: s +=":"+str(f.id)+","+k+","+f.parameters[k] self.cmd_pars += ['-p', s[1:]] f.make_aliases() return # assuming that no work has been done so far, one might have simply a # dictionary of pairs and connector tags which then generates the # command line bits. This really belongs in this class. def init_couplings(self): c = [] self.is_kinematic = True if self.couplings else False for i in self.couplings: if len(i) == 4: c += ["-C", "shaft,%d,%d,%s,%s" % (self.fmus[i[0]].id, self.fmus[i[2]].id, ",".join(self.fmus[i[0]].connectors[i[1]]), ",".join(self.fmus[i[2]].connectors[i[3]]))] else: c+= ["-C", "shaft,%d,%d,%s,%s,%s,%s,%s,%s,%s,%s" %(self.fmus[i[0]].id, self.fmus[i[5]].id, i[1], i[2], i[3], i[4], i[6], i[7], i[8], i[9])] self.cmd_couplings = c def init_signals(self): c = [] if self.signals: for i in self.signals: c+= ["-c", "%d,%s,%d,%s" % (self.fmus[i[0]].id, self.fmus[i[0]].outputs[i[1]] if hasattr(self.fmus[i[0]], "outputs") and i[1] in self.fmus[i[0]].outputs else i[1], self.fmus[i[2]].id, self.fmus[i[2]].inputs[i[3]] if hasattr(self.fmus[i[2]], "inputs") and i[3] in self.fmus[i[2]].inputs else i[3] ) ] self.cmd_signals = c # find the runtime resources dependencies and paths, which would # include the AGX paths and environment variables. def find_external_dependencies(self): pass # Construct command line for fmigo-server processes, start these, # report both process ID and URI def launch_tcp_servers(self): self.uris = [] self.processes = [] for n,i in self.fmus.items(): cmd = [] if i.prefixcmd: cmd = i.prefixcmd cmd += ["fmigo-server"] if i.debug_level: cmd += ['-l', str(i.debug_level)] cmd += ["--port", str(self.port), i.filename] # TODO: this needs work since a given FMU might work on a different # host but that's beyond the current scope self.uris = self.uris +['tcp://localhost:%d' %self.port] self.ports = self.ports + [self.port] self.port += 1 self.processes = self.processes + [subprocess.Popen(cmd)] return cmd ## Given an already assembled command line for connections and parameters, ## run the simulation and a cleanup command as needed. ## There's a possibility to override the filename here def simulate(self,tend, dt, datafile, mode="tcp", holonomic=True, parallel=True, max_samples=None, convertonly=False, extra_args = None): if extra_args: self.extra_args = extra_args self.datafile = datafile self.tend = tend self.dt = dt self.mode = mode self.annotations += ("mode", mode), if datafile: self.datafile = datafile self.init_fmus( dt) self.init_couplings() self.init_signals() self.parallel = parallel self.mode = mode processes = [] opts = ["-t", str(self.tend), "-d", str(self.dt), '-H'] if max_samples: opts += ['-S', str(max_samples)] if self.is_kinematic: self.parallel = True self.annotations += ("coupling", "kinematic"), self.annotations += ("coupling_type", "%s" % "holonomic" if holonomic else "nonholonomic"), if not holonomic: opts += ["-N"] else: self.annotations += ("coupling", "signals"), self.annotations += ("parallel", str(self.parallel)), opts += ["-m", "%s" % ("jacobi" if self.parallel else "gs")] opts += self.extra_args if self.datafile: opts += ['-o', self.datafile + ".csv" ] opts += self.cmd_pars + self.cmd_couplings + self.cmd_signals if self.debug_level: opts += ['-l', str(self.debug_level)] if self.mode == "tcp": cmd = ['fmigo-master']+ opts if not convertonly: self.launch_tcp_servers() cmd = cmd + self.uris if not convertonly: time.sleep(1) elif self.mode == "mpi": cmd = ['mpiexec', '-oversubscribe', '-np', str(1),'fmigo-mpi'] + opts for n,i in self.fmus.items(): cmd += [":", "-np", str(1)] if i.prefixcmd: cmd += i.prefixcmd cmd += ["fmigo-mpi"] if i.debug_level: cmd += ['l', str(i.debug_level)] cmd += [i.filename] else: print("Only mpi and tcp modes are available but %s was requested." %mode) sys.exit(-1) print(' '.join(cmd)) ts = dtime.datetime.now() if not convertonly: proc = subprocess.Popen(cmd) self.wall_time = str(dtime.datetime.now() -ts) self.annotations += ("wall_time", self.wall_time), self.annotations += ("fail", "true" if convertonly or proc.wait() != 0 else "success"), csv = self.datafile + ".csv" self.fix_csv(csv) self.pack_FMU_CSV_H5() # raise a signal if things went wrong if not convertonly and proc.wait() != 0: sys.exit(1) return cmd def fix_csv(self, csv): ## truncate file if there are bad lines infile = open(csv, "r") infile.seek(0) l = infile.readline() N = len(re.findall(",", l)) infile.close() if N > 0: outfile = tempfile.NamedTemporaryFile() infile = open(csv, "r") infile.seek(0) for l in infile: if N == len(re.findall(",", l)): outfile.write(l.encode()) else: break # close and reopen to overwrite outfile.seek(0) infile.close() infile = open(csv, "wb") shutil.copyfileobj(outfile, infile) outfile.close() infile.close() # # This provides the operations necessary to take a csv file containing # data from several different modules and repack them in a well structured # hdf5 file with annotation. # # It is also possible to append the full simulation to an existing HDF5 # file. # # Because there are many operations involved in converting csv files to # decent HDF5 ones, we make a class and split the various tricks into # methods which can be tested individually. # def pack_FMU_CSV_H5(self): """ List of FMU names, csv file to read from h5 file to write to, communication step, a tuple of duples with (name, value) for attributes, and additional description string The HDF5 files have a structure as follows: / ./simulation0001 ./simulation0002 ... ./simulationXXXX Numbering is done automatically for each new simulation dumped in a file. Simulation groups have the structure ./simulationXXXX ./global_data ./fmu1 ./fmu2 .../fmuN and the group for each fmu group is the name of the FMU as given in the module definitions. The global_data group contains a pytable with data collected by the master which does not belong to any FMU. Each fmu group then contains a pytable. The simulation groups also contain the following attributes: -- date -- start (TODO: this should be as accurate as possible) -- stop -- comm_step -- N (number of steps) -- kinematic (value is no, holonomic, nonholonomic) -- OS on which simulation ran -- mode (mpi or tcp/ip) -- parallel (yes or no, depending on whether we used Jacobi or sequential) """ ## short hands csv = self.datafile+".csv" hdf = self.datafile+".h5" H = self.dt fmus = list(self.fmus.items()) ### Utility functions follow ## Replace special characters in `names' in csv files otherwise they ## get deleted. def patch_string(s): special = "[=~!@\$%\^&\.\(\)-\+\\\|\]\}\[\{';:/\?<>]" return re.sub(special, "_", s) ## Replace special characters in `names' in csv files otherwise they ## get deleted. def patch_names(file): f = open(file, "r+") line = f.readline() n = len(line) line = patch_string(line) if len(line) <= n: # here we can do this in place. f.seek(0) f.write(line) f.close() else: # here we have to move all the data tf = tempfile.NamedTemporaryFile() tf.write(line) for l in f: fs.write(l) f.close() shutil.move(tf.name, file) def set_attr(g, name, attr): g._f_setattr(patch_string(name), attr) # Works with a numpy structured array and replace non-descript names with # sensible ones so that # `fmu_XXX_something' `something' # This is all put under a group called fmu_XXX in the end # Here, x contains all the names corresponding to one given FMU, i.e., # fmu1_x, fmu1_y, fmu1_z,, ... , fmu1_.... def rename(x): names = () for i in x.dtype.names: v = re.search('fmu([^_]+)_*',i) if v: i = re.sub("fmu[^_]+_", "", i) names = names + (i,) x.dtype.names = names # remove bad characters in the names in the data file. patch_names(csv) # read data = np.genfromtxt(csv, delimiter=",", names=True) # split the columns according to fmu0_*, fmu1_* etc # and the rest # get all keys starting with fmu[[:digits:]]+_ and replace with # fmu_[[:digits:]] # sorted makes the list [fmu1, fmu2, fmu3 ... ] keys = sorted(list(OrderedDict.fromkeys( re.sub("(fmu[^_]+)_[^ ]*", "\g<1>", " ".join(data.dtype.names)).split()))) # global simulation data: whatever does not start with fmu global_cols = sorted(re.sub("fmu[^ ]+", "", " ".join(keys)).split()) # modules is what's left over fmu_cols = sorted(list(set(keys) - set(global_cols))) # Time to get an output file dfile = tb.open_file(hdf, mode = "a") ## TODO: something smart to organize data n = len(dfile.list_nodes("/")) +1 g = dfile.create_group("/", 'simulation%04d' % n , 'Simulation') set_attr(g,"date", dtime.datetime.now().strftime("%Y-%m-%d-%H:%M:%S")) time_units = [["s", 1], ["ms", 1e3], ["mus", 1e6]] time_scale = 2 set_attr(g,"comm_step", str(self.dt*time_units[time_scale][1])) set_attr(g,"time_unit", str(time_units[time_scale][0])) set_attr(g,"time_factor", str(time_units[time_scale][1])) set_attr(g,"tend", str(self.tend)) set_attr(g, "os", platform.uname().system) set_attr(g, "machine", platform.uname().node) set_attr(g, "release", platform.uname().release) if self.name: set_attr(g, "name", self.name) if self.variant: set_attr(g, "variant", self.variant) for i in self.annotations: set_attr(g, i[0], i[1]) if self.description: set_attr(g, "description", self.description) data_map = {} # store all columns fmuX_* in a separate group, name the group # according to a dictionary entry in fmus for i in fmu_cols: # get the FMU id ix = int(re.sub("fmu([^ ]*)", "\g<1>", i)) rx = re.compile("%s_[^ ]*" % i) # get the list of columns c = re.findall(rx, " ".join(data.dtype.names)) # put the corresponding table in a dictionary data_map[fmus[ix][0]] = data[c] # now time for suitable names rename(data_map[fmus[ix][0]]) # Here's where we insert the data # TODO: the group should have additional attributes from the tuple # of duple. table = dfile.create_table(g, fmus[ix][0], data_map[fmus[ix][0]], "FMU data") set_attr(table, "name", fmus[ix][1].name) ## attributes are if hasattr(fmus[ix][1], "attributes"): for k,v in fmus[ix][1].attributes.items(): set_attr(table, k, v) if hasattr(fmus[ix][1], "parameters") and fmus[ix][1].parameters: for k,v in fmus[ix][1].parameters.items(): set_attr(table, k, v) if hasattr(fmus[ix][1], "description"): set_attr(table, "description", fmus[ix][1].description) if hasattr(fmus[ix][1], "aliases"): set_attr(table, "aliases", fmus[ix][1].aliases) if hasattr(fmus[ix][1], "raliases"): set_attr(table, "raliases", fmus[ix][1].raliases) data_map["stepper"] = data[global_cols] table = dfile.create_table(g, "simulation", data_map["stepper"], "Stepper data") dfile.close() return dfile ## It is possible for a given FMU to appear more than once in a simulation so this ## function will rename as needed. def remove_name_clashes(self, fmus): """ fmus is a dictionary containing objects which are assumed to have a "name" attribute """ #1) collect names from the dictionary into a list names = [] for k,v in fmus.items(): names += [v.name] # Counter creates a dictionary with the names as key and incidence # count as value. counts = Counter(names) # Here we take care of elements with incidence count higher than 1 # for each of thense, names.index(s) will return the index of the # first element with that name. Since that name is being modified, we # consume all duplicates and append an integer xxx to it. for s,num in counts.items(): if num > 1: for suffix in range(1, num+1): names[names.index(s)] += "%03d" % suffix # Now replace the names in the original dictionary, # consuming the elements in names as we go along. The sequence of the # dictionary traversal is the same as before. for k,v in fmus.items(): v.name = names.pop(0) return fmus
python
import numpy as np from jitcdde import input as system_input from symengine import exp from ..builder.base.constants import EXC, INH, LAMBDA_SPEED from ..builder.base.network import SingleCouplingExcitatoryInhibitoryNode from ..builder.base.neural_mass import NeuralMass from .model_input import OrnsteinUhlenbeckProcess, ZeroInput TCR_DEFAULT_PARAMS = { "tau": 20.0, # ms "Q_max": 400.0e-3, # 1/ms "theta": -58.5, # mV "sigma": 6.0, "C1": 1.8137993642, "C_m": 1.0, # muF/cm^2 "gamma_e": 70.0e-3, # 1/ms "gamma_r": 100.0e-3, # 1/ms "g_L": 1.0, # AU "g_GABA": 1.0, # ms "g_AMPA": 1.0, # ms "g_LK": 0.018, # mS/cm^2 "g_T": 3.0, # mS/cm^2 "g_h": 0.062, # mS/cm^2 "E_AMPA": 0.0, # mV "E_GABA": -70.0, # mV "E_L": -70.0, # mV "E_K": -100.0, # mV "E_Ca": 120.0, # mV "E_h": -40.0, # mV "alpha_Ca": -51.8e-6, # nmol "tau_Ca": 10.0, # ms "Ca_0": 2.4e-4, "k1": 2.5e7, "k2": 4.0e-4, "k3": 1.0e-1, "k4": 1.0e-3, "n_P": 4.0, "g_inc": 2.0, "ext_current": 0.0, "lambda": LAMBDA_SPEED, } TRN_DEFAULT_PARAMS = { "tau": 20.0, # ms "Q_max": 400.0e-3, # 1/ms "theta": -58.5, # mV "sigma": 6.0, "C1": 1.8137993642, "C_m": 1.0, # muF/cm^2 "gamma_e": 70.0e-3, # 1/ms "gamma_r": 100.0e-3, # 1/ms "g_L": 1.0, # AU "g_GABA": 1.0, # ms "g_AMPA": 1.0, # ms "g_LK": 0.018, # mS/cm^2 "g_T": 2.3, # mS/cm^2 "E_AMPA": 0.0, # mV "E_GABA": -70.0, # mV "E_L": -70.0, # mV "E_K": -100.0, # mV "E_Ca": 120.0, # mV "ext_current": 0.0, "lambda": LAMBDA_SPEED, } # matrix as [to, from], masses as (TCR, TRN) THALAMUS_NODE_DEFAULT_CONNECTIVITY = np.array([[0.0, 5.0], [3.0, 25.0]]) class ThalamicMass(NeuralMass): """ Base for thalamic neural populations Reference: Costa, M. S., Weigenand, A., Ngo, H. V. V., Marshall, L., Born, J., Martinetz, T., & Claussen, J. C. (2016). A thalamocortical neural mass model of the EEG during NREM sleep and its response to auditory stimulation. PLoS computational biology, 12(9). """ name = "Thalamic mass" label = "THLM" def _get_firing_rate(self, voltage): return self.params["Q_max"] / ( 1.0 + exp(-self.params["C1"] * (voltage - self.params["theta"]) / self.params["sigma"]) ) # synaptic currents def _get_excitatory_current(self, voltage, synaptic_rate): return self.params["g_AMPA"] * synaptic_rate * (voltage - self.params["E_AMPA"]) def _get_inhibitory_current(self, voltage, synaptic_rate): return self.params["g_GABA"] * synaptic_rate * (voltage - self.params["E_GABA"]) # intrinsic currents def _get_leak_current(self, voltage): return self.params["g_L"] * (voltage - self.params["E_L"]) def _get_potassium_leak_current(self, voltage): return self.params["g_LK"] * (voltage - self.params["E_K"]) def _get_T_type_current(self, voltage, h_T_value): return ( self.params["g_T"] * self._m_inf_T(voltage) * self._m_inf_T(voltage) * h_T_value * (voltage - self.params["E_Ca"]) ) class ThalamocorticalMass(ThalamicMass): """ Excitatory mass representing thalamocortical relay neurons in the thalamus. """ name = "Thalamocortical relay mass" label = "TCR" mass_type = EXC num_state_variables = 10 num_noise_variables = 1 coupling_variables = {9: f"r_mean_{EXC}"} required_couplings = ["node_exc_exc", "node_exc_inh", "network_exc_exc"] state_variable_names = [ "V", "Ca", "h_T", "m_h1", "m_h2", "s_e", "s_i", "ds_e", "ds_i", "r_mean", ] required_params = [ "tau", "Q_max", "theta", "sigma", "C1", "C_m", "gamma_e", "gamma_r", "g_L", "g_GABA", "g_AMPA", "g_LK", "g_T", "g_h", "E_AMPA", "E_GABA", "E_L", "E_K", "E_Ca", "E_h", "alpha_Ca", "tau_Ca", "Ca_0", "k1", "k2", "k3", "k4", "n_P", "g_inc", "ext_current", "lambda", ] noise_input = [OrnsteinUhlenbeckProcess(mu=0.0, sigma=0.0, tau=5.0)] def __init__(self, params=None): super().__init__(params=params or TCR_DEFAULT_PARAMS) def _initialize_state_vector(self): """ Initialize state vector. """ self.initial_state = [ self.params["E_L"], self.params["Ca_0"], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] def _get_anomalous_rectifier_current(self, voltage, m_h1_value, m_h2_value): return self.params["g_h"] * (m_h1_value + self.params["g_inc"] * m_h2_value) * (voltage - self.params["E_h"]) def _m_inf_T(self, voltage): return 1.0 / (1.0 + exp(-(voltage + 59.0) / 6.2)) def _h_inf_T(self, voltage): return 1.0 / (1.0 + exp((voltage + 81.0) / 4.0)) def _tau_h_T(self, voltage): return (30.8 + (211.4 + exp((voltage + 115.2) / 5.0)) / (1.0 + exp((voltage + 86.0) / 3.2))) / 3.7371928 def _m_inf_h(self, voltage): return 1.0 / (1.0 + exp((voltage + 75.0) / 5.5)) def _tau_m_h(self, voltage): return 20.0 + 1000.0 / (exp((voltage + 71.5) / 14.2) + exp(-(voltage + 89.0) / 11.6)) def _P_h(self, ca_conc): return (self.params["k1"] * ca_conc ** self.params["n_P"]) / ( self.params["k1"] * ca_conc ** self.params["n_P"] + self.params["k2"] ) def _derivatives(self, coupling_variables): ( voltage, ca_conc, h_T, m_h1, m_h2, syn_ext, syn_inh, dsyn_ext, dsyn_inh, firing_rate, ) = self._unwrap_state_vector() # voltage dynamics d_voltage = -( self._get_leak_current(voltage) + self._get_excitatory_current(voltage, syn_ext) + self._get_inhibitory_current(voltage, syn_inh) + self.params["ext_current"] ) / self.params["tau"] - (1.0 / self.params["C_m"]) * ( self._get_potassium_leak_current(voltage) + self._get_T_type_current(voltage, h_T) + self._get_anomalous_rectifier_current(voltage, m_h1, m_h2) ) # calcium concetration dynamics d_ca_conc = ( self.params["alpha_Ca"] * self._get_T_type_current(voltage, h_T) - (ca_conc - self.params["Ca_0"]) / self.params["tau_Ca"] ) # channel dynamics: T-type and rectifier current d_h_T = (self._h_inf_T(voltage) - h_T) / self._tau_h_T(voltage) d_m_h1 = ( (self._m_inf_h(voltage) * (1.0 - m_h2) - m_h1) / self._tau_m_h(voltage) - self.params["k3"] * self._P_h(ca_conc) * m_h1 + self.params["k4"] * m_h2 ) d_m_h2 = self.params["k3"] * self._P_h(ca_conc) * m_h1 - self.params["k4"] * m_h2 # synaptic dynamics d_syn_ext = dsyn_ext d_syn_inh = dsyn_inh d_dsyn_ext = ( self.params["gamma_e"] ** 2 * ( coupling_variables["node_exc_exc"] + coupling_variables["network_exc_exc"] + system_input(self.noise_input_idx[0]) - syn_ext ) - 2 * self.params["gamma_e"] * dsyn_ext ) d_dsyn_inh = ( self.params["gamma_r"] ** 2 * (coupling_variables["node_exc_inh"] - syn_inh) - 2 * self.params["gamma_r"] * dsyn_inh ) # firing rate as dummy dynamical variable with infinitely fast # fixed-point dynamics firing_rate_now = self._get_firing_rate(voltage) d_firing_rate = -self.params["lambda"] * (firing_rate - firing_rate_now) return [ d_voltage, d_ca_conc, d_h_T, d_m_h1, d_m_h2, d_syn_ext, d_syn_inh, d_dsyn_ext, d_dsyn_inh, d_firing_rate, ] class ThalamicReticularMass(ThalamicMass): """ Inhibitory mass representing thalamic reticular nuclei neurons in the thalamus. """ name = "Thalamic reticular nuclei mass" label = "TRN" mass_type = INH num_state_variables = 7 num_noise_variables = 1 coupling_variables = {6: f"r_mean_{INH}"} required_couplings = ["node_inh_exc", "node_inh_inh", "network_inh_exc"] state_variable_names = [ "V", "h_T", "s_e", "s_i", "ds_e", "ds_i", "r_mean", ] required_params = [ "tau", "Q_max", "theta", "sigma", "C1", "C_m", "gamma_e", "gamma_r", "g_L", "g_GABA", "g_AMPA", "g_LK", "g_T", "E_AMPA", "E_GABA", "E_L", "E_K", "E_Ca", "ext_current", "lambda", ] noise_input = [ZeroInput()] def __init__(self, params=None): super().__init__(params=params or TRN_DEFAULT_PARAMS) def _m_inf_T(self, voltage): return 1.0 / (1.0 + exp(-(voltage + 52.0) / 7.4)) def _h_inf_T(self, voltage): return 1.0 / (1.0 + exp((voltage + 80.0) / 5.0)) def _tau_h_T(self, voltage): return (85.0 + 1.0 / (exp((voltage + 48.0) / 4.0) + exp(-(voltage + 407.0) / 50.0))) / 3.7371928 def _initialize_state_vector(self): """ Initialize state vector. """ self.initial_state = [ self.params["E_L"], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] def _derivatives(self, coupling_variables): ( voltage, h_T, syn_ext, syn_inh, dsyn_ext, dsyn_inh, firing_rate, ) = self._unwrap_state_vector() # voltage dynamics d_voltage = -( self._get_leak_current(voltage) + self._get_excitatory_current(voltage, syn_ext) + self._get_inhibitory_current(voltage, syn_inh) + self.params["ext_current"] ) / self.params["tau"] - (1.0 / self.params["C_m"]) * ( self._get_potassium_leak_current(voltage) + self._get_T_type_current(voltage, h_T) ) # channel dynamics: T-type d_h_T = (self._h_inf_T(voltage) - h_T) / self._tau_h_T(voltage) # synaptic dynamics d_syn_ext = dsyn_ext d_syn_inh = dsyn_inh d_dsyn_ext = ( self.params["gamma_e"] ** 2 * ( coupling_variables["node_inh_exc"] + coupling_variables["network_inh_exc"] + system_input(self.noise_input_idx[0]) - syn_ext ) - 2 * self.params["gamma_e"] * dsyn_ext ) d_dsyn_inh = ( self.params["gamma_r"] ** 2 * (coupling_variables["node_inh_inh"] - syn_inh) - 2 * self.params["gamma_r"] * dsyn_inh ) # firing rate as dummy dynamical variable with infinitely fast # fixed-point dynamics firing_rate_now = self._get_firing_rate(voltage) d_firing_rate = -self.params["lambda"] * (firing_rate - firing_rate_now) return [ d_voltage, d_h_T, d_syn_ext, d_syn_inh, d_dsyn_ext, d_dsyn_inh, d_firing_rate, ] class ThalamicNode(SingleCouplingExcitatoryInhibitoryNode): """ Thalamic mass model network node with 1 excitatory (TCR) and 1 inhibitory (TRN) population due to Costa et al. """ name = "Thalamic mass model node" label = "THLMnode" default_network_coupling = {"network_exc_exc": 0.0, "network_inh_exc": 0.0} default_output = f"r_mean_{EXC}" output_vars = [f"r_mean_{EXC}", f"r_mean_{INH}", f"V_{EXC}", f"V_{INH}"] def __init__( self, tcr_params=None, trn_params=None, connectivity=THALAMUS_NODE_DEFAULT_CONNECTIVITY, ): """ :param tcr_params: parameters for the excitatory (TCR) mass :type tcr_params: dict|None :param trn_params: parameters for the inhibitory (TRN) mass :type trn_params: dict|None :param connectivity: local connectivity matrix :type connectivity: np.ndarray """ tcr_mass = ThalamocorticalMass(params=tcr_params) tcr_mass.index = 0 trn_mass = ThalamicReticularMass(params=trn_params) trn_mass.index = 1 super().__init__( neural_masses=[tcr_mass, trn_mass], local_connectivity=connectivity, # within thalamic node there are no local delays local_delays=None, )
python
import os import shutil os_license = '{{ cookiecutter.license }}' notebooks = '{{ cookiecutter['jupyter notebooks'] }}' containers = '{{ cookiecutter.containers }}' if os_license == "No license file": os.remove("LICENSE") if notebooks == "No": shutil.rmtree("src/notebooks") if containers == "one": shutil.rmtree('containers/exploration') elif containers == "several": os.remove("containers/Dockerfile") os.remove("containers/environment.yml")
python
"""Basic functionality sanity tests""" from urllib.parse import urljoin import pytest # Various sub-urls for the main page PAGE_URL_LIST = ["", "about/", "docs/", "scls/"] # Various sub-urls for a collection SCL_URL_LIST = ["", "edit/", "coprs/", "repos/", "acl/", "review_req/"] @pytest.mark.django_db def test_scl_page(client): """Selected SCL page contains expected content""" response = client.get("/en/scls/hhorak/rpmquality/") assert b"check-content-instructions" in response.content assert b"check-content-description" in response.content assert b"yum install centos-release-scl" in response.content @pytest.mark.parametrize("url_tail", PAGE_URL_LIST) @pytest.mark.django_db def test_top_page_accessible(client, url_tail): """Top-level sub-page is accessible.""" url = urljoin("/en/", url_tail) response = client.get(url) assert response.status_code == 200 @pytest.mark.parametrize("url_tail", SCL_URL_LIST) @pytest.mark.django_db def test_scl_page_accessible(admin_client, url_tail): """SCL-level sub-page is accessible.""" url = urljoin("/en/scls/hhorak/rpmquality/", url_tail) response = admin_client.get(url) assert response.status_code == 200 @pytest.mark.parametrize( "endpoint", [ pytest.param("/scls/-/live"), pytest.param("/scls/-/ready", marks=pytest.mark.django_db), ], ) def test_scl_health_checks_is_never_cached(client, endpoint): """The health check indicator instructs clients to never cache the results""" response = client.get(endpoint, follow=True) assert 200 <= response.status_code < 300 assert "no-cache" in response["Cache-Control"]
python
from collections import OrderedDict import jsonschema from django.db.models import Q from jsonschema import Draft4Validator from rest_framework import serializers from architecture_tool_django.modeling.models import Edgetype, Nodetype from ..models import Edge, Node class EdgeSerializer(serializers.ModelSerializer): edge_type = serializers.CharField(source="edge_type.edgetype") class Meta: model = Edge fields = ["edge_type", "target"] def to_representation(self, instance): ret = super().to_representation(instance) # Here we filter the null values and creates a new dictionary # We use OrderedDict like in original method return OrderedDict([(key, ret[key]) for key in ret if ret[key] is not None]) class NodeSerializer(serializers.ModelSerializer): outbound_edges = EdgeSerializer(many=True, read_only=True) class Meta: model = Node fields = ["key", "nodetype", "attributeSet", "outbound_edges"] def to_representation(self, instance): ret = super().to_representation(instance) # Here we filter the null values and creates a new dictionary # We use OrderedDict like in original method return OrderedDict([(key, ret[key]) for key in ret if ret[key] is not None]) def validate_attributeSet(self, value): nodetype = self.get_initial().get("nodetype") v = Draft4Validator( Nodetype.objects.get(pk=nodetype).attribute_schema.schema, format_checker=jsonschema.FormatChecker(), ) errors = [] for error in v.iter_errors(value): errors.append(error.message) if errors: raise serializers.ValidationError(errors) return value # def validate_outbound_edges(self, value): # return value def create(self, validated_data): try: node = Node.objects.create(**validated_data) for edge in self.initial_data["outbound_edges"]: target_node = Node.objects.get(key=edge["target"]) edge_type = Edgetype.objects.get( Q(source_nodetype=node.nodetype) & Q(target_nodetype=target_node.nodetype) & Q(edgetype=edge["edge_type"]) ) node.add_edge(target_node, edge_type) node.save() except Exception as error: raise serializers.ValidationError(error) return node def update(self, instance, validated_data): try: instance.remove_all_edges() for edge in self.initial_data["outbound_edges"]: target_node = Node.objects.get(key=edge["target"]) edge_type = Edgetype.objects.get( Q(source_nodetype=instance.nodetype) & Q(target_nodetype=target_node.nodetype) & Q(edgetype=edge["edge_type"]) ) instance.add_edge(target_node, edge_type) instance.attributeSet = validated_data.get( "attributeSet", instance.attributeSet ) instance.save() except Exception as error: raise serializers.ValidationError(error) return instance
python
#!/usr/bin/env python # -*- coding: utf-8 -*- from patsy import dmatrix from patsy import DesignMatrix, DesignInfo from patsy import LookupFactor,ModelDesc,Term X = [[1, 10], [1, 20], [1, -2]] print(dmatrix(X)) design_info = DesignInfo(["Intercept!", "Not intercept!"]) X_dm = DesignMatrix(X, design_info) print(dmatrix(X_dm)) def add_predictors(base_formula, extra_predictors): desc = ModelDesc.from_formula(base_formula) # Using LookupFactor here ensures that everything will work correctly even # if one of the column names in extra_columns is named like "weight.in.kg" # or "sys.exit()" or "LittleBobbyTables()". desc.rhs_termlist += [Term([LookupFactor(p)]) for p in extra_predictors] return desc extra_predictors = [f"x{i}" for i in range(10)] desc = add_predictors("np.log(y) ~ a*b + c:d", extra_predictors) print(desc.describe())
python
table_file_template = """ import argparse from deriva.core import ErmrestCatalog, AttrDict, get_credential import deriva.core.ermrest_model as em from deriva.core import tag as chaise_tags from deriva.utils.catalog.manage.update_catalog import CatalogUpdater, parse_args {groups} table_name = '{table_name}' schema_name = '{schema_name}' {column_annotations} {column_defs} {table_annotations} {key_defs} {fkey_defs} {table_def} def main(catalog, mode, replace=False, really=False): updater = CatalogUpdater(catalog) table_def['column_annotations'] = column_annotations table_def['column_comment'] = column_comment updater.update_table(mode, schema_name, table_def,replace=replace, really=really) if __name__ == "__main__": host = {host!r} catalog_id = {catalog_id} mode, replace, host, catalog_id = parse_args(host, catalog_id, is_table=True) catalog = ErmrestCatalog('https', host, catalog_id=catalog_id, credentials=get_credential(host)) main(catalog, mode, replace) """ schema_file_template = """ import argparse from deriva.core import ErmrestCatalog, AttrDict, get_credential import deriva.core.ermrest_model as em from deriva.core import tag as chaise_tags from deriva.utils.catalog.manage.update_catalog import CatalogUpdater, parse_args {groups} schema_name = '{schema_name}' {table_names} {annotations} {acls} {comments} schema_def = em.Schema.define( '{schema_name}', comment=comment, acls=acls, annotations=annotations, ) def main(catalog, mode, replace=False): updater = CatalogUpdater(catalog) updater.update_schema(mode, schema_def, replace=replace) if __name__ == "__main__": host = {host!r} catalog_id = {catalog_id} mode, replace, host, catalog_id = parse_args(host, catalog_id) catalog = ErmrestCatalog('https', host, catalog_id=catalog_id, credentials=get_credential(host)) main(catalog, mode, replace) """ catalog_file_template = """ import argparse from deriva.core import ErmrestCatalog, AttrDict, get_credential from deriva.utils.catalog.manage.update_catalog import CatalogUpdater, parse_args from deriva.core import tag as chaise_tags import deriva.core.ermrest_model as em {groups} {tag_variables} {annotations} {acls} def main(catalog, mode, replace=False): updater = CatalogUpdater(catalog) updater.update_catalog(mode, annotations, acls, replace=replace) if __name__ == "__main__": host = {host!r} catalog_id = {catalog_id} mode, replace, host, catalog_id = parse_args(host, catalog_id, is_catalog=True) catalog = ErmrestCatalog('https', host, catalog_id=catalog_id, credentials=get_credential(host)) main(catalog, mode, replace) """
python
from opentelemetry import trace from opentelemetry.exporter.cloud_trace import CloudTraceSpanExporter from opentelemetry.sdk.trace import TracerProvider from opentelemetry.sdk.trace.export import SimpleExportSpanProcessor trace.set_tracer_provider(TracerProvider()) cloud_trace_exporter = CloudTraceSpanExporter() trace.get_tracer_provider().add_span_processor( SimpleExportSpanProcessor(cloud_trace_exporter) ) tracer = trace.get_tracer(__name__) with tracer.start_as_current_span("foo"): print("Hello world!")
python
# Duas formas para se fazer a leitura de um número inteiro...# def leiaint(msg): valor = 0 while True: n = str(input(msg)) if n.isnumeric(): valor = int(n) break else: print('\033[31mERRO ! Digite um número inteiro válido.\033[m') return valor a = leiaint('Digite um valor: ') print(f'{a} É um inteiro!!') def leiainteiro(msg): while True: try: n = int(input(msg)) break except ValueError: print('\033[31mERRO ! Digite um número inteiro válido.\033[m') return n b = leiainteiro('Digite um numero: ') print(f'{b} É um inteiro!!')
python
from torch.nn import CrossEntropyLoss class GPT2Loss(CrossEntropyLoss): def __init__(self, pad_token_id): super(GPT2Loss, self).__init__(ignore_index=pad_token_id) def forward(self, output, labels): """ Loss function for gpt2 :param output: :param labels: :return: """ # Flatten the tensors (shift-align) # Remove last token from output output = output[..., :-1, :].contiguous().view(-1, output.size(-1)) # Remove the first token from labels e do not care for question labels = (labels[..., 1:].contiguous()).view(-1) # Compute the actual loss return super(GPT2Loss, self).forward(output, labels) class VisualGPT2Loss(GPT2Loss): def __init__(self, pad_token_id, extract=None): super(VisualGPT2Loss, self).__init__(pad_token_id=pad_token_id) if extract is not None: assert type(extract) == int, 'Extract value MUST be integer' self.extract = extract def forward(self, output, labels): if self.extract is not None: output = output[self.extract] # Compute the actual loss return super(VisualGPT2Loss, self).forward(output, labels[0]) class BERTLoss(CrossEntropyLoss): def __init__(self, pad_token_id): super(BERTLoss, self).__init__(ignore_index=pad_token_id) def forward(self, output, labels): """ Loss function for gpt2 :param output: :param labels: :return: """ # Flatten the tensors (shift-align) # Remove last token from output output = output[..., :-1, :].contiguous().view(-1, output.size(-1)) # Remove the first token from labels e do not care for question labels = (labels[..., 1:].contiguous()).view(-1) # Compute the actual loss return super(BERTLoss, self).forward(output, labels)
python
from mccq.cli import cli
python
import sys from bidi.algorithm import get_display # variable length print, the string constants are adjusted for bidi. # an unrelated editor is that vs code doesn't support bidi. # the workaround is to put bidi text into separate string variables. #not entirely sure, if we need to swap each element seperately... def printb(*args, sep=' ', end='\n', file=sys.stdout, flush=False): #lst = reversed( list( map( lambda arg : get_display(arg) if isinstance(arg, str) else str(arg), args) ) ) lst = reversed( list( map( lambda arg : get_display(str(arg)), args) ) ) print( ' '.join( lst ), sep=sep, end=end, file=file, flush=flush) #def printb(*args, sep=' ', end='\n', file=sys.stdout, flush=False): # print( get_display( ' '.join(map(str, args))), sep=sep, end=end, file=file, flush=flush) # def inputb(prompt=''): printb( prompt ,end="", flush=True) return input()
python
import os from pathlib import Path from string import Template template = Template(""" Package: zram-swap Version: $version Depends: python3, libpython3-stdlib Section: custom Priority: optional Architecture: all Essential: no Installed-Size: $size Maintainer: Dmitry Orlov <[email protected]> Description: Easy way to configure swap over zram """.strip()) files = ( Path("zram-swap"), Path("zram-swap.default"), Path("zram-swap.service"), ) print(template.substitute( version=os.environ['VERSION'], size=sum(file.stat().st_size for file in files) ))
python
"""Test label""" from napari.components.text_overlay import TextOverlay def test_label(): """Test creating label object""" label = TextOverlay() assert label is not None
python
import sys, clr import ConfigParser from os.path import expanduser # Set system path home = expanduser("~") cfgfile = open(home + "\\STVTools.ini", 'r') config = ConfigParser.ConfigParser() config.read(home + "\\STVTools.ini") # Master Path syspath1 = config.get('SysDir','MasterPackage') sys.path.append(syspath1) # Built Path syspath2 = config.get('SysDir','SecondaryPackage') sys.path.append(syspath2) uidoc = __revit__.ActiveUIDocument doc = __revit__.ActiveUIDocument.Document from Autodesk.Revit.DB import Document,FilteredElementCollector,FamilySymbol,Transaction,\ BuiltInCategory, ElementId, ViewSchedule, View, ImportInstance from Autodesk.Revit.UI import TaskDialog from pyrevit.framework import List from pyrevit import revit, DB from pyrevit import forms __doc__ = 'Replace DWG with Annotation, select from a list.' def get_selected_elements(doc): """API change in Revit 2016 makes old method throw an error""" try: # Revit 2016 return [doc.GetElement(id) for id in __revit__.ActiveUIDocument.Selection.GetElementIds()] except: # old method return list(__revit__.ActiveUIDocument.Selection.Elements) # selection = get_selected_elements(doc) importInstance = [] replaceImports = [] ownerView = [] # collect dwg from view imports = DB.FilteredElementCollector(doc) \ .OfClass(ImportInstance)\ .ToElements() for i in imports: if not i.LookupParameter('Name').AsString() in importInstance: importInstance.append(i.LookupParameter('Name').AsString()) replaceDWG = forms.SelectFromList.show(importInstance, multiselect=True, button_name='Select DWG') # Selected for i in imports: if i.LookupParameter('Name').AsString() in replaceDWG and i.ViewSpecific: replaceImports.append(i) ownerView.append(i.OwnerViewId) # Get all Annotation Symbols symbols = DB.FilteredElementCollector(doc) \ .OfClass(FamilySymbol) .OfCategory(BuiltInCategory.OST_GenericAnnotation)\ .ToElements() # Select Name sNames = [] replaceAnno = () # Get the selected symbol for i in symbols: sNames.append(i.Family.Name) replaceName = forms.SelectFromList.show(sNames, multiselect=False, button_name='Select Annotation') for i in symbols: if i.Family.Name == replaceName: replaceAnno = i t = Transaction(doc, 'Replace dwg') t.Start() count = 0 for cad in replaceImports: if cad.ViewSpecific: max = cad.BoundingBox[doc.ActiveView].Max min = cad.BoundingBox[doc.ActiveView].Min location = (max + min)/2 boxes = doc.Create.NewFamilyInstance(location, replaceAnno, doc.GetElement(ownerView[count])) doc.Delete(cad.Id) count += 1 t.Commit()
python
import json from urllib.parse import urlencode from flask import Response, request def _create_link(path, limit, offset, order_by, order_how, args_dict): # copy of the dict passed in so we don't modify the original params = dict(args_dict) params["limit"] = limit params["offset"] = offset params["order_by"] = order_by params["order_how"] = order_how return "{}?{}".format(path, urlencode(params)) def _create_first_link(path, limit, offset, count, order_by, order_how, args_dict): # Example return string: # "/api/item-service/v1/items?limit=20&offset=0&order_by=captured_date&order_how=desc" return _create_link(path, limit, 0, order_by, order_how, args_dict) def _create_previous_link(path, limit, offset, count, order_by, order_how, args_dict): # if we are at the beginning, do not create a previous link # Example return string: # "/api/item-service/v1/items?limit=20&offset=20&order_by=captured_date&order_how=desc" if offset == 0 or offset - limit < 0: return _create_first_link(path, limit, offset, count, order_by, order_how, args_dict) return _create_link(path, limit, offset - limit, order_by, order_how, args_dict) def _create_next_link(path, limit, offset, count, order_by, order_how, args_dict): # if we are at the end, do not create a next link # Example return string: # "/api/item-service/v1/items?limit=20&offset=40&order_by=captured_date&order_how=desc" if limit + offset >= count: return _create_last_link(path, limit, offset, count, order_by, order_how, args_dict) return _create_link(path, limit, limit + offset, order_by, order_how, args_dict) def _create_last_link(path, limit, offset, count, order_by, order_how, args_dict): # Example return string: # "/api/item-service/v1/items?limit=20&offset=100&order_by=captured_date&order_how=desc" final_offset = count - limit if (count - limit) >= 0 else 0 return _create_link(path, limit, final_offset, order_by, order_how, args_dict) def build_paginated_baseline_list_response( limit, offset, order_by, order_how, json_list, total_available, count, args_dict={} ): json_output = { "meta": { "count": count, "limit": limit, "offset": offset, "total_available": total_available, }, "links": { "first": _create_first_link( request.path, limit, offset, count, order_by, order_how, args_dict ), "next": _create_next_link( request.path, limit, offset, count, order_by, order_how, args_dict ), "previous": _create_previous_link( request.path, limit, offset, count, order_by, order_how, args_dict ), "last": _create_last_link( request.path, limit, offset, count, order_by, order_how, args_dict ), }, "data": json_list, } return _build_json_response(json_output) def _build_json_response(json_data, status=200): return Response(json.dumps(json_data), status=status, mimetype="application/json")
python
from distutils.core import setup setup( name='http_request', version='1.1', packages=['http_request'], url='https://github.com/dennisfischer/http_request', license='MIT', author='Dennis Fischer', author_email='[email protected]', description='A small python library to parse and build HTTP requests' )
python
# -*- coding: utf-8 -*- # * Copyright (c) 2009-2018. Authors: see NOTICE file. # * # * Licensed under the Apache License, Version 2.0 (the "License"); # * you may not use this file except in compliance with the License. # * You may obtain a copy of the License at # * # * http://www.apache.org/licenses/LICENSE-2.0 # * # * Unless required by applicable law or agreed to in writing, software # * distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import re __author__ = "Rubens Ulysse <[email protected]>" __contributors__ = ["Marée Raphaël <[email protected]>", "Mormont Romain <[email protected]>"] __copyright__ = "Copyright 2010-2018 University of Liège, Belgium, http://www.cytomine.be/" from cytomine.cytomine import Cytomine from cytomine.models.annotation import Annotation from cytomine.models.collection import Collection, DomainCollection from cytomine.models.model import Model, DomainModel class Property(DomainModel): def __init__(self, object, key=None, value=None, **attributes): super(Property, self).__init__(object) self.key = key self.value = value self.populate(attributes) self._by_key = False @property def obj(self): return self._object @obj.setter def obj(self, value): self._object = value if isinstance(value, Annotation): self.domainClassName = "annotation" else: self.domainClassName = value.class_ self.domainIdent = value.id def uri(self): if self._by_key and self.domainClassName and self.domainIdent and self.key: uri = "domain/{}/{}/key/{}/property.json".format(self.domainClassName, self.domainIdent, self.key) else: uri = super(Property, self).uri() if self.domainClassName == "annotation": uri = uri.replace("domain/", "") return uri def fetch(self, id=None, key=None): if self.id is None and id is None and self.key is None and key is None: raise ValueError("Cannot fetch a model with no ID and no key.") if id is not None: self.id = id if key is not None: self.key = key self._by_key = True model = Cytomine.get_instance().get_model(self, self.query_parameters) self._by_key = False return model def __str__(self): return "[{}] {} : {} ({}) - Key: {} - Value {}".format(self.callback_identifier, self.id, self.domainClassName, self.domainIdent, self.key, self.value) class PropertyCollection(DomainCollection): def __init__(self, object, filters=None, max=0, offset=0, **parameters): super(PropertyCollection, self).__init__(Property, object, filters, max, offset) self._allowed_filters = [None] self.set_parameters(parameters) def uri(self, without_filters=False): uri = super(PropertyCollection, self).uri(without_filters) if self._domainClassName == "annotation": uri = uri.replace("domain/", "") return uri def as_dict(self): """Transform the property collection into a python dictionary mapping keys with their respective Property objects. """ return {p.key: p for p in self} @property def _obj(self): return self._object @_obj.setter def _obj(self, value): self._object = value if isinstance(value, Annotation): self._domainClassName = "annotation" else: self._domainClassName = value.class_ self._domainIdent = value.id class AttachedFile(DomainModel): def __init__(self, object, filename=None, **attributes): super(AttachedFile, self).__init__(object) self.filename = filename self.url = None self.populate(attributes) def uri(self): if self.is_new(): return "{}.json".format(self.callback_identifier) else: return "{}/{}.json".format(self.callback_identifier, self.id) def save(self): return self.upload() def update(self, id=None, **attributes): return self.upload() def upload(self): return Cytomine.get_instance().upload_file(self, self.filename, query_parameters={"domainClassName": self.domainClassName, "domainIdent": self.domainIdent}) def download(self, destination="{filename}", override=False): if self.is_new(): raise ValueError("Cannot download file if not existing ID.") pattern = re.compile("{(.*?)}") destination = re.sub(pattern, lambda m: str(getattr(self, str(m.group(0))[1:-1], "_")), destination) return Cytomine.get_instance().download_file("{}/{}/download".format(self.callback_identifier, self.id), destination, override) class AttachedFileCollection(DomainCollection): def __init__(self, object, filters=None, max=0, offset=0, **parameters): super(AttachedFileCollection, self).__init__(AttachedFile, object, filters, max, offset) self._allowed_filters = [None] self.set_parameters(parameters) class Description(DomainModel): def __init__(self, object, data=None, **attributes): super(Description, self).__init__(object) self.data = data self.populate(attributes) def uri(self): return "domain/{}/{}/{}.json".format(self._object.class_, self._object.id, self.callback_identifier) def fetch(self, id=None): if id is not None: self.id = id return Cytomine.get_instance().get_model(self, self.query_parameters) class Tag(Model): def __init__(self, name=None, **attributes): super(Tag, self).__init__() self.name = name self.populate(attributes) class TagCollection(Collection): def __init__(self, filters=None, max=0, offset=0, **parameters): super(TagCollection, self).__init__(Tag, filters, max, offset) self._allowed_filters = [None] self.set_parameters(parameters) class TagDomainAssociation(DomainModel): def __init__(self, object, tag=None, **attributes): super(TagDomainAssociation, self).__init__(object) self.tag = tag self.populate(attributes) def uri(self): if self.id: uri = "tag_domain_association/{}.json".format(self.id) elif self.domainClassName and self.domainIdent: uri = super(TagDomainAssociation, self).uri() return uri @property def callback_identifier(self): return "tag_domain_association" class TagDomainAssociationCollection(DomainCollection): def __init__(self, object, filters=None, max=0, offset=0, **parameters): super(TagDomainAssociationCollection, self).__init__(TagDomainAssociation, object, filters, max, offset) self._allowed_filters = [None] self.set_parameters(parameters) @property def callback_identifier(self): return "tag_domain_association"
python
import pandas as pd from age.data.load.countries import base from age.data.load import transformations from age.data.load import utils from age.data.load import ined import logging import datetime from urllib.request import urlopen _CASES_PATH = 'https://data.rivm.nl/covid-19/COVID-19_casus_landelijk.csv' _INED_URL = 'https://dc-covid.site.ined.fr/en/data/netherlands/' _COLUMN_MAP = { 'Date_statistics': 'Date', 'Agegroup': 'Age', } ISO = 'NLD' def _load_raw_cases(): df = pd.read_csv(_CASES_PATH, sep=';') df = (df.rename(columns=_COLUMN_MAP) .groupby(['Date', 'Age', 'Sex']) .Date_file .count() .reset_index() .rename(columns={'Date_file': 'cases_new'})) df.Date = pd.to_datetime(df.Date) df.Sex = df.Sex.replace({'Female': 'f', 'Male': 'm'}) df = df[df.Sex != "Unknown"] df = df[df.Age != "Unknown"] df = df[df.Age != "<50"] return df class Netherlands(base.LoaderBase): def __init__(self): self._raw_cases = None self._raw_deaths = None def raw_cases(self) -> pd.DataFrame: if self._raw_cases is None: self._raw_cases = _load_raw_cases() return self._raw_cases def raw_deaths(self) -> pd.DataFrame: if self._raw_deaths is None: self._raw_deaths = ined.read_ined_table(_INED_URL, 'RIVM_Data', num_rows=20) return self._raw_deaths def cases(self) -> pd.DataFrame: raw_cases = self.raw_cases() cases = transformations.ensure_contiguous(raw_cases) cases = transformations.add_both_sexes(cases) cases['ISO'] = ISO return cases def deaths(self) -> pd.DataFrame: deaths = self.raw_deaths() deaths['ISO'] = ISO return deaths
python
""" MIT License Copyright (c) 2018 Elias Doehne Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from setuptools import setup try: # Try to build the cython extension locally from Cython.Build import cythonize extension_modules = cythonize("stellarisdashboard/parsing/cython_ext/tokenizer.pyx") except ImportError: print( "Cython is not installed, using pre-built C-extension if available, or (slow) fallback solution." ) extension_modules = [] except RuntimeError as e: print(f"Warning: RuntimeError while building Cython extension: {e}") print("Using pre-built C-extension if available, or (slow) fallback solution.") extension_modules = [] with open("requirements.txt", "r") as f: install_requires = f.read().strip().split() setup( name="stellarisdashboard", ext_modules=extension_modules, install_requires=install_requires, entry_points={ "console_scripts": [ "stellarisdashboard = stellarisdashboard.__main__:main", "stellarisdashboardcli = stellarisdashboard.cli:cli", ], }, )
python
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os import os.path import xml.dom.minidom import argparse class Config(): def __add_server(self, parent_node, settings, server_name): try: os.environ["TRAVIS_SECURE_ENV_VARS"] except KeyError: print "no secure env vars available, please declare it first" sys.exit() serversNodes = settings.getElementsByTagName("servers") if not serversNodes: serversNode = parent_node.createElement("servers") settings.appendChild(serversNode) else: serversNode = serversNodes[0] sonatypeServerNode = parent_node.createElement("server") sonatypeServerId = parent_node.createElement("id") sonatypeServerUser = parent_node.createElement("username") sonatypeServerPass = parent_node.createElement("password") idNode = parent_node.createTextNode(server_name) userNode = parent_node.createTextNode(os.environ["SONATYPE_USERNAME"]) passNode = parent_node.createTextNode(os.environ["SONATYPE_PASSWORD"]) sonatypeServerId.appendChild(idNode) sonatypeServerUser.appendChild(userNode) sonatypeServerPass.appendChild(passNode) sonatypeServerNode.appendChild(sonatypeServerId) sonatypeServerNode.appendChild(sonatypeServerUser) sonatypeServerNode.appendChild(sonatypeServerPass) serversNode.appendChild(sonatypeServerNode) def __add_mirror(self, parent_node, settings): mirrors = parent_node.createElement("mirrors") settings.appendChild(mirrors) mirror = parent_node.createElement("mirror") mirror_id = parent_node.createElement("id") mirror_id_text = parent_node.createTextNode("nexus") mirror_mirrorOf = parent_node.createElement("mirrorOf") mirror_mirrorOf_text = parent_node.createTextNode("*") mirror_url = parent_node.createElement("url") mirror_url_value = parent_node.createTextNode("http://130.206.80.85/nexus/content/groups/public") mirrors.appendChild(mirror) mirror_id.appendChild(mirror_id_text) mirror_mirrorOf.appendChild(mirror_mirrorOf_text) mirror_url.appendChild(mirror_url_value) mirror.appendChild(mirror_id) mirror.appendChild(mirror_mirrorOf) mirror.appendChild(mirror_url) def configure_server(self, server=True, mirrors=True, home_dir=os.path.expanduser("~")): m2 = xml.dom.minidom.parse(home_dir + '/.m2/settings.xml') settings = m2.getElementsByTagName("settings")[0] if mirrors: self.__add_mirror(m2, settings) if server: self.__add_server(m2, settings, "repo-release") self.__add_server(m2, settings, "repo-snapshot") m2Str = m2.toxml() f = open(home_dir + '/.m2/settings.xml', 'w') f.write(m2Str) f.close() def main(prog_args): parser = argparse.ArgumentParser() parser.add_argument("--deploy", help="add servers tag to settings.xml", action="store_true") parser.add_argument("--mirrors", help="add mirrors tag to settings.xml", action="store_true") args = parser.parse_args() config = Config() config.configure_server(server=args.deploy, mirrors=args.mirrors) if __name__ == "__main__": sys.exit(main(sys.argv))
python
#!/usr/bin/python import gzip import socket #UDP_IP = "127.0.0.1" UDP_IP = "0.0.0.0" UDP_PORT = 6550 sock = socket.socket(socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP sock.bind((UDP_IP, UDP_PORT)) f = gzip.open('flight.dat.gz', 'wb') print "Aura Logger" print "listening for", UDP_IP, UDP_PORT while True: data, addr = sock.recvfrom(1024) # buffer size is 1024 bytes print "received message:", len(data) f.write(data)
python
"""REST API endpoints""" from fastapi import APIRouter from app.api.api_v1.endpoints import items, users api_router = APIRouter() api_router.include_router(users.router, prefix="/users", tags=["users"]) api_router.include_router(items.router, prefix="/items", tags=["items"])
python
import os import sys import time import gc import copy import random import numpy as np import pandas as pd import torch.optim as optim import torch.nn.functional as F import torch.nn as nn from torch.autograd import Variable from image_util import * from data_util import * from env import * from sum_tree import * import model_creator as mCreator class ReplayMemory: def __init__(self, capacity): self.capacity = capacity self.memory = [] def push(self, transition): self.memory.append(transition) if len(self.memory) > self.capacity: del self.memory[0] def sample(self, batch_size): return random.sample(self.memory, batch_size) def __len__(self): return len(self.memory) class PrioritizedReplayMemory: # stored as ( s, a, r, s_ ) in SumTree e = 0.01 a = 0.6 beta = 0.4 beta_increment_per_sampling = 0.001 def __init__(self, capacity): self.tree = sum_tree(capacity) self.capacity = capacity def _get_priority(self, error): return (error + self.e) ** self.a def add(self, error, sample): p = self._get_priority(error) self.tree.add(p, sample) def sample(self, n): batch = [] idxs = [] segment = self.tree.total() / n priorities = [] self.beta = np.min([1., self.beta + self.beta_increment_per_sampling]) for i in range(n): a = segment * i b = segment * (i + 1) s = random.uniform(a, b) (idx, p, data) = self.tree.get(s) priorities.append(p) batch.append(data) idxs.append(idx) sampling_probabilities = priorities / self.tree.total() is_weight = np.power(self.tree.n_entries * sampling_probabilities, -self.beta) is_weight /= is_weight.max() return batch, idxs, is_weight def update(self, idx, error): p = self._get_priority(error) self.tree.update(idx, p) def __len__(self): return int(self.tree.n_entries) class DQN_Agent: def __init__(self, global_features_net, local_features_net, num_epoch, num_actions, num_fc_nodes, lr=0.0001, lr_decay=0.01, gamma=0.9, epsilon=1.0, min_epsilon=0.1, epsilon_decay=0.99, guided_eps=0.5, mem_size=10000, batch_size=32, iter_update_target = 300, use_gpu = True, use_chex_net = False, transforms = None): #Initiate agent components self.num_actions = num_actions self.evaluate_net = mCreator.Bi_DQN(num_actions, global_features_net, local_features_net, num_fc_nodes, True, use_chex_net) self.target_net = mCreator.Bi_DQN(num_actions, global_features_net, local_features_net, num_fc_nodes, True, use_chex_net) self.evaluate_net.train(True) self.target_net.train(True) if(use_gpu): #self.evaluate_net = torch.nn.DataParallel(self.evaluate_net.cuda(), device_ids=[0, 1]) #self.target_net = torch.nn.DataParallel(self.target_net.cuda(), device_ids=[0, 1]) self.evaluate_net = self.evaluate_net.cuda() self.target_net = self.target_net.cuda() self.optimizer = torch.optim.Adam(self.evaluate_net.parameters(), lr=lr, weight_decay=lr_decay) self.loss_function = nn.MSELoss() self.memory = ReplayMemory(capacity=mem_size) self.transforms = transforms self.batch_size = batch_size self.epsilon = epsilon self.epsilon_decay = epsilon_decay self.min_epsilon = min_epsilon self.epsilon_linear_factor = float(self.epsilon-self.min_epsilon)/float(num_epoch) self.guided_eps = guided_eps self.gamma = gamma self.iter_update_target = iter_update_target self.iter_counter = 0 #@profile def select_action(self, current_env, bb_img): sample = np.random.uniform() if(sample > self.epsilon): #Exploitation #print("Exploitation") #Convert to 3 channel and apply torchvision transforms #unsqueeze for batch size global_img = transform_img_for_model(current_env.full_env) if(self.transforms is not None): global_img = self.transforms(global_img) global_img.unsqueeze_(0) global_img = global_img.to(0) bb_img = transform_img_for_model(bb_img) if(self.transforms is not None): bb_img = self.transforms(bb_img) bb_img.unsqueeze_(0) bb_img = bb_img.to(0) q = self.evaluate_net(global_img, bb_img) action = torch.max(q, 1)[1].data[0] return action else: #Exploration sample = np.random.uniform() if(sample > self.guided_eps): #print("Random exploration") #Random exploration return random.randint(0, self.num_actions-1) else: #print("Guided exploration") #Guided exploration rewards = [] for i in range(self.num_actions): rewards.append(current_env.step_foresee(i)) pos_reward_index = [] zero_reward_index = [] for i in range(len(rewards)): if(rewards[i] > 0): pos_reward_index.append(i) if(rewards[i] == 0): zero_reward_index.append(i) if(len(pos_reward_index) > 0): return random.choice(pos_reward_index) elif(len(zero_reward_index) > 0): return random.choice(zero_reward_index) else: return random.randint(0, self.num_actions-1) #For inference once agent is trained def select_action_infer(self, current_env, bb_img): global_img = transform_img_for_model(current_env.full_env) bb_img = transform_img_for_model(bb_img) if(self.transforms is not None): global_img = self.transforms(global_img) bb_img = self.transforms(bb_img) q = self.target_net(global_img, bb_img) action = torch.max(q, 1)[1].data[0] return action def store_transitions(self, state_tup, action, reward, next_state_tup, done): self.memory.push((state_tup, action, reward, next_state_tup, done)) #@profile def learn(self): self.iter_counter += 1 if(len(self.memory) < self.batch_size): return #Random transition batch is taken from experience replay memory transitions = self.memory.sample(self.batch_size) batch_state_env = [] batch_state = [] batch_action = [] batch_reward = [] batch_state_next_env = [] batch_state_next_state = [] batch_done = [] for t in transitions: (bse, bs), ba, br, (bsne, bsns), bd = t bse = transform_img_for_model(bse) bs = transform_img_for_model(bs) bsne = transform_img_for_model(bsne) bsns = transform_img_for_model(bsns) if(self.transforms is not None): bse = self.transforms(bse) bs = self.transforms(bs) bsne = self.transforms(bsne) bsns = self.transforms(bsns) batch_state_env.append(bse) batch_state.append(bs) batch_action.append(ba) batch_reward.append(br) batch_state_next_env.append(bsne) batch_state_next_state.append(bsns) batch_done.append(bd) batch_state = Variable(torch.stack(batch_state)).cuda(async=True) batch_state_env = Variable(torch.stack(batch_state_env)).cuda(async=True) batch_action = torch.FloatTensor(batch_action).unsqueeze_(0) batch_action = batch_action.view(batch_action.size(1), -1) batch_action = Variable(batch_action).cuda(async=True) batch_reward = torch.FloatTensor(batch_reward).unsqueeze_(0) batch_reward = batch_reward.view(batch_reward.size(1), -1) batch_reward = Variable(batch_reward).cuda(async=True) batch_next_state = Variable(torch.stack(batch_state_next_state)).cuda(async=True) batch_state_next_env = Variable(torch.stack(batch_state_next_env)).cuda(async=True) # current Q values are estimated by NN for all actions current_q_values = self.evaluate_net(batch_state_env, batch_state).gather(1, batch_action.long()) # expected Q values are estimated from actions which gives maximum Q value max_next_q_values = self.target_net(batch_state_next_env, batch_next_state).detach().max(1)[0] max_next_q_values = max_next_q_values.unsqueeze_(0) max_next_q_values = max_next_q_values.view(max_next_q_values.size(1), -1) expected_q_values = batch_reward + (self.gamma * max_next_q_values) # loss is measured from error between current and newly expected Q values loss = self.loss_function(current_q_values, expected_q_values) # backpropagation of loss to NN self.optimizer.zero_grad() loss.backward() self.optimizer.step() #free variables del batch_state, batch_state_env, batch_action, batch_reward, batch_next_state, batch_state_next_env, loss if(self.iter_counter % self.iter_update_target == 0): self.target_net.load_state_dict(self.evaluate_net.state_dict()) #Per Episode def decay_epsilon(self): new_epsilon = self.epsilon * self.epsilon_decay if new_epsilon < self.min_epsilon: self.epsilon = self.min_epsilon else: self.epsilon = new_epsilon #Per Epoch def decay_epsilon_linear(self): self.epsilon -= self.epsilon_linear_factor if(self.epsilon < self.min_epsilon): self.epsilon = self.min_epsilon def set_training(self, train_or_not=True): if(train_or_not): self.evaluate_net.train(True) self.target_net.train(True) else: self.evaluate_net.train(False) self.target_net.train(False) self.evaluate_net.eval() self.target_net.eval() class DQN_Agent_Single_Net: def __init__(self, features_net, num_epoch, num_actions, num_fc_nodes, lr=0.0001, lr_decay=0.01, gamma=0.9, epsilon=1.0, min_epsilon=0.1, epsilon_decay=0.99, guided_eps=0.5, mem_size=10000, batch_size=32, iter_update_target = 300, use_gpu = True, use_chex_net = False, transforms = None, use_pr_replay=True): #Initiate agent components self.num_actions = num_actions self.evaluate_net = mCreator.DQN(num_actions, features_net, num_fc_nodes, True, use_chex_net) self.target_net = mCreator.DQN(num_actions, features_net, num_fc_nodes, True, use_chex_net) self.evaluate_net.train(True) self.target_net.train(True) if(use_gpu): #self.evaluate_net = torch.nn.DataParallel(self.evaluate_net.cuda(), device_ids=[0, 1]) #self.target_net = torch.nn.DataParallel(self.target_net.cuda(), device_ids=[0, 1]) self.evaluate_net = self.evaluate_net.cuda() self.target_net = self.target_net.cuda() self.optimizer = torch.optim.Adam(self.evaluate_net.parameters(), lr=lr, weight_decay=lr_decay) #self.loss_function = nn.MSELoss() self.use_pr_replay = use_pr_replay if(use_pr_replay): self.memory = PrioritizedReplayMemory(mem_size) else: self.memory = ReplayMemory(capacity=mem_size) self.loss_function = nn.SmoothL1Loss().cuda() self.transforms = transforms self.batch_size = batch_size self.epsilon = epsilon self.epsilon_decay = epsilon_decay self.min_epsilon = min_epsilon self.epsilon_linear_factor = float(self.epsilon-self.min_epsilon)/float(num_epoch) self.guided_eps = guided_eps self.gamma = gamma self.iter_update_target = iter_update_target self.use_ddqn = True self.iter_counter = 0 #@profile def select_action(self, current_env, bb_img): sample = np.random.uniform() if(sample > self.epsilon): #Exploitation #print("Exploitation") #Convert to 3 channel and apply torchvision transforms #unsqueeze for batch size bb_img = transform_img_for_model(bb_img.numpy(), self.transforms) #bb_img = transform_img_for_model(bb_img) #if(self.transforms is not None): # bb_img = self.transforms(bb_img) bb_img.unsqueeze_(0) bb_img = bb_img.to(0) q = self.evaluate_net(bb_img) action = torch.max(q, 1)[1].data[0] return action else: #Exploration sample = np.random.uniform() if(sample > self.guided_eps): #print("Random exploration") #Random exploration return random.randint(0, self.num_actions-1) else: #print("Guided exploration") #Guided exploration rewards = [] for i in range(self.num_actions): rewards.append(current_env.step_foresee(i)) pos_reward_index = [] zero_reward_index = [] for i in range(len(rewards)): if(rewards[i] > 0): pos_reward_index.append(i) if(rewards[i] == 0): zero_reward_index.append(i) if(len(pos_reward_index) > 0): return random.choice(pos_reward_index) elif(len(zero_reward_index) > 0): return random.choice(zero_reward_index) else: return random.randint(0, self.num_actions-1) #For inference once agent is trained def select_action_infer(self, current_env, bb_img): bb_img = transform_img_for_model(bb_img.numpy(), self.transforms) #bb_img = transform_img_for_model(bb_img) #if(self.transforms is not None): # bb_img = self.transforms(bb_img) bb_img.unsqueeze_(0) bb_img = bb_img.to(0) q = self.target_net(bb_img) action = torch.max(q, 1)[1].data[0] return action def store_transitions(self, state_tup, action, reward, next_state_tup, done): if(self.use_pr_replay): target = self.evaluate_net(transform_img_for_model(state_tup.numpy(), self.transforms).unsqueeze_(0).to(0)).data old_val = target[0][action] target_val = self.target_net(transform_img_for_model(next_state_tup.numpy(), self.transforms).unsqueeze_(0).to(0)).data if done: target[0][action] = reward else: target[0][action] = reward + self.gamma * torch.max(target_val) error = abs(old_val - target[0][action]) self.memory.add(error, (state_tup, action, reward, next_state_tup, done)) else: self.memory.push((state_tup, action, reward, next_state_tup, done)) @profile def learn(self): self.iter_counter += 1 if(len(self.memory) < self.batch_size): return #Random transition batch is taken from experience replay memory if(self.use_pr_replay): transitions, idxs, is_weights = self.memory.sample(self.batch_size) else: transitions = self.memory.sample(self.batch_size) batch_state = [] batch_action = [] batch_reward = [] batch_state_next_state = [] batch_done = [] for t in transitions: bs, ba, br, bsns, bd = t bs = transform_img_for_model(bs.numpy(), self.transforms) #bs = transform_img_for_model(bs) #if(self.transforms is not None): # bs = self.transforms(bs) batch_state.append(bs) batch_action.append(ba) batch_reward.append(br) bsns = transform_img_for_model(bsns.numpy(), self.transforms) #bsns = transform_img_for_model(bsns) #if(self.transforms is not None): # bsns = self.transforms(bsns) batch_state_next_state.append(bsns) batch_done.append(bd) with torch.no_grad(): batch_state = Variable(torch.stack(batch_state).cuda(async=True)) batch_next_state = Variable(torch.stack(batch_state_next_state).cuda(async=True)) batch_action = torch.FloatTensor(batch_action).unsqueeze_(0) batch_action = batch_action.view(batch_action.size(1), -1) batch_action = Variable(batch_action.cuda(async=True)) batch_reward = torch.FloatTensor(batch_reward).unsqueeze_(0) batch_reward = batch_reward.view(batch_reward.size(1), -1) batch_reward = Variable(batch_reward.cuda(async=True)) batch_dones = torch.FloatTensor(batch_done).unsqueeze_(0) batch_dones = batch_dones.view(batch_dones.size(1), -1) batch_dones = Variable(batch_dones.cuda(async=True)) # current Q values are estimated by NN for all actions current_q_values = self.evaluate_net(batch_state).gather(1, batch_action.long()) # expected Q values are estimated from actions which gives maximum Q value if(self.use_ddqn): next_actions = torch.max(self.evaluate_net(batch_next_state),1)[1].detach() next_actions = next_actions.unsqueeze_(0) next_actions = next_actions.view(next_actions.size(1), -1) max_next_q_values = self.target_net(batch_next_state).gather(1, next_actions.long()).detach() else: max_next_q_values = self.target_net(batch_next_state).max(1)[0].detach() max_next_q_values = max_next_q_values.unsqueeze_(0) max_next_q_values = max_next_q_values.view(max_next_q_values.size(1), -1) expected_q_values = batch_reward + (1 - batch_dones) * (self.gamma * max_next_q_values) # loss is measured from error between current and newly expected Q values #torch.cuda.synchronize() loss = self.loss_function(current_q_values, expected_q_values) errors = torch.abs(expected_q_values - current_q_values).cpu().data.numpy() # update priority for i in range(self.batch_size): idx = idxs[i] self.memory.update(idx, errors[i]) #print(loss) # backpropagation of loss to NN self.optimizer.zero_grad() loss.backward() self.optimizer.step() #free variables del batch_state, batch_action, batch_reward, batch_next_state, transitions, current_q_values, max_next_q_values, expected_q_values #for obj in gc.get_objects(): # if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): # print(type(obj), obj.size()) #if(self.iter_counter % self.iter_update_target == 0): # self.target_net.load_state_dict(self.evaluate_net.state_dict()) return loss #Per Episode def decay_epsilon(self): new_epsilon = self.epsilon * self.epsilon_decay if new_epsilon < self.min_epsilon: self.epsilon = self.min_epsilon else: self.epsilon = new_epsilon #Per Epoch def decay_epsilon_linear(self): self.epsilon -= self.epsilon_linear_factor if(self.epsilon < self.min_epsilon): self.epsilon = self.min_epsilon def set_training(self, train_or_not=True): if(train_or_not): self.evaluate_net.train(True) self.target_net.train(True) else: self.evaluate_net.train(False) self.target_net.train(False) self.evaluate_net.eval() self.target_net.eval()
python
from py_queryable import Model from py_queryable import Column, PrimaryKey, ForeignKey class StubModel(Model): __table_name__ = u'test_table' test_int_column = Column(int, 'int_column') class StubModel2(Model): __table_name__ = u'test_table' test_int_column = Column(int) class StubPrimary(Model): __table_name__ = u"test_table" test_pk = PrimaryKey(int, 'int_pk') class StubPrimaryString(Model): __table_name__ = u"test_table" test_pk = PrimaryKey(unicode, 'unicode_pk') class StubIntUnique(Model): __table_name__ = u"test_table" test_pk = PrimaryKey(int) test_unique = Column(int, 'int_column', is_unique=True) class StubForeignKey(Model): __table_name__ = u"foreign_key_table" test_pk = PrimaryKey(int, 'int_pk') test_fk = ForeignKey(StubPrimary, 'test_fk', is_nullable=False) class StubUpdateModel(Model): __table_name__ = u"test_update_table" key = PrimaryKey(int, 'key_column') update_col = Column(int, 'update_column') class Student(Model): __table_name__ = u"student" student_id = PrimaryKey(int, "student_id") first_name = Column(unicode, "first_name") last_name = Column(unicode, "last_name") gpa = Column(int, "gpa")
python
from mmcv.utils import Registry,build_from_cfg TRANSFORMER = Registry('Transformer') POSITIONAL_ENCODING = Registry('Position encoding') def build_transformer(cfg,default_args=None): """Builder for Transfomer.""" return build_from_cfg(cfg,TRANSFORMER,default_args) def build_positional_encoding(cfg,default_args=None): """Builder for Position Encoding.""" return build_from_cfg(cfg,POSITIONAL_ENCODING,default_args)
python
from sports.nba.nba_team import NBA_Team class HoustonRockets(NBA_Team): """ NBA Golden State Warriors Static Information """ full_name = "Houston Rockets" name = "Rockets" team_id = 1610612745 def __init__(self): """ """ super().__init__()
python
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2019-02-17 09:46 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('backend', '0043_backend_filteredlanguage'), ] operations = [ migrations.AddField( model_name='backend', name='supportedFunctions', field=models.TextField(blank=True, default='asc, desc, avg, values, score, text, count, sample, min, max, average, concat, group_concat, langMatches, lang, regex, sum', help_text='Comma separated list of SPARQL functions supported by the backend. Will be used for funciton highlighting.', verbose_name='Supported functions'), ), migrations.AddField( model_name='backend', name='supportedKeywords', field=models.TextField(blank=True, default='prefix, select, distinct, where, order, limit, offset, optional, by, as, having, not, textlimit, contains-entity, contains-word, filter, group, union, optional, has-predicate', help_text='Comma separated list of SPARQL keywords supported by the backend. Will be used for keyword highlighting.', verbose_name='Supported keywords'), ), migrations.AlterField( model_name='backend', name='filteredLanguage', field=models.CharField(blank=True, default='en', help_text='Comma separated language codes used for filter suggestions', max_length=2000, verbose_name='Filter languages'), ), ]
python
import sys import secrets from toolbox._common import PlaybookRun class OCMAddon: """ Commands for managing OCM addons """ @staticmethod def install(ocm_refresh_token, ocm_cluster_id, ocm_url, ocm_addon_id, wait_for_ready_state=False): """ Installs an OCM addon Args: ocm_refresh_token: For OCM login auth ocm_cluster_id: Cluster ID from OCM's POV ocm_url: Used to determine environment ocm_addon_id: the addon id to install. (such as `managed-odh`, `gpu-operator-certified-addon` etc.) wait_for_ready_state: Optional. If true will cause the role to wait until addon reports ready state. (Can time out) """ opt = { "ocm_addon_id": ocm_addon_id, "ocm_cluster_id": ocm_cluster_id, "ocm_url": ocm_url, "ocm_refresh_token": ocm_refresh_token, "wait_for_ready_state": wait_for_ready_state, } return PlaybookRun("ocm_install_addon", opt)
python
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-03-31 08:21 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('first_app', '0005_inventory'), ] operations = [ migrations.CreateModel( name='InventoryCell', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('inv_content', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='first_app.Loot')), ('inv_coord', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='first_app.Cell')), ], ), migrations.RemoveField( model_name='inventory', name='inv_content', ), migrations.RemoveField( model_name='inventory', name='inv_coord', ), migrations.DeleteModel( name='Inventory', ), ]
python
import random from shop import db from shop.models import Menu, Computers class Computer: computers = 1 def __init__(self): self.name = "Model: MacBook {}".format(self.computers) self.price = random.randint(20000, 30000) self.currency = '₽' self.disk_size = "Disk size:{} Gb".format(random.randint(128, 512)) self.weight = "Weight: {}".format(random.randrange(1, 3)) self.memory_size = "RAM memory size: {}".format(4, 32) self.display_size = "Display size: {}".format(random.randint(10, 20)) self.img_link = 'img/{}.jpeg'.format(self.computers) self.page_link = '/product/{}'.format(self.computers) Computer.computers += 1 @classmethod def generate_n_computers(cls, number_of_computers): computers = [] for i in range(number_of_computers): computers.append(cls()) return computers def create_db(): db.drop_all() db.create_all() def fill_db(): for item in {"description", "stats", "modifications", "prices", "reviews", "discussions"}: menu_item = Menu(name=item) db.session.add(menu_item) computers = Computer.generate_n_computers(5) for cmp in computers: computer = Computers(name=cmp.name, price=cmp.price, currency=cmp.currency, page_link=cmp.page_link, img_file=cmp.img_link ) db.session.add(computer) db.session.commit()
python
import math from collections import OrderedDict from typing import Optional, Dict, List, Union import numpy import shapely.geometry from OpenGL.GL import GL_RGB8 from pyrr import Vector3 from rasterio import features from rasterio import transform from rasterstats import zonal_stats from shapely.geometry import Polygon, Point, LinearRing from vistas.core.color import RGBColor from vistas.core.graphics.mesh import Mesh from vistas.core.graphics.terrain import TerrainColorGeometry, TerrainColorShaderProgram from vistas.core.graphics.texture import Texture from vistas.core.graphics.vector import VectorGeometry, VectorShaderProgram from vistas.core.histogram import Histogram from vistas.core.legend import StretchedLegend from vistas.core.plugins.data import DataPlugin from vistas.core.plugins.option import Option, OptionGroup from vistas.core.plugins.visualization import VisualizationPlugin3D from vistas.core.timeline import Timeline from vistas.ui.utils import * class TerrainAndColorPlugin(VisualizationPlugin3D): id = 'terrain_and_color_plugin' name = 'Terrain & Color' description = 'Terrain visualization with color inputs.' author = 'Conservation Biology Institute' version = '1.0' visualization_name = 'Terrain & Color' zonal_stats = dict(median=numpy.median, stdev=numpy.std, range=lambda array: numpy.max(array) - numpy.min(array)) def __init__(self): super().__init__() self.terrain_mesh = None self.vector_mesh = None self._scene = None # data inputs self.terrain_data = None self.attribute_data = None self.boundary_data = None self.flow_dir_data = None self.flow_acc_data = None self.selected_point = (-1, -1) self.feature_boundary = None self._needs_terrain = self._needs_color = False self._needs_boundaries = False self._needs_flow = False self._is_filtered = False self._filter_min = self._filter_max = 0 # Primary plugin options self._options = OptionGroup() color_group = OptionGroup("Colors") self._min_color = Option(self, Option.COLOR, "Min Color Value", RGBColor(0, 0, 1)) self._max_color = Option(self, Option.COLOR, "Max Color Value", RGBColor(1, 0, 0)) self._nodata_color = Option(self, Option.COLOR, "No Data Color", RGBColor(0.5, 0.5, 0.5)) color_group.items = [self._min_color, self._max_color,self._nodata_color] value_group = OptionGroup("Values") self._min_value = Option(self, Option.FLOAT, "Minimum Value", 0.0) self._max_value = Option(self, Option.FLOAT, "Maximum Value", 0.0) value_group.items = [self._min_value, self._max_value] data_group = OptionGroup("Data") self._elevation_attribute = Option(self, Option.CHOICE, "Elevation Attribute", 0) self._attribute = Option(self, Option.CHOICE, "Data Attribute", 0) self._elevation_factor = Option(self, Option.SLIDER, "Elevation Factor", 1.0, min_value=0.0, max_value=5.0) data_group.items = [self._elevation_attribute, self._attribute, self._elevation_factor] graphics_group = OptionGroup("Graphics Options") self._hide_no_data = Option(self, Option.CHECKBOX, "Hide No Data Values", False) self._per_vertex_color = Option(self, Option.CHECKBOX, "Per Vertex Color", True) self._per_vertex_lighting = Option(self, Option.CHECKBOX, "Per Vertex Lighting", False) graphics_group.items = [self._hide_no_data, self._per_vertex_color, self._per_vertex_lighting] self._options.items = [color_group, value_group, data_group, graphics_group] # Secondary plugin options self._boundary_group = OptionGroup("Boundary") self._boundary_color = Option(self, Option.COLOR, "Boundary Color", RGBColor(0, 0, 0)) self._zonal_boundary_color = Option(self, Option.COLOR, "Zonal Boundary Color", RGBColor(1, 1, 0)) self._boundary_width = Option(self, Option.FLOAT, "Boundary Width", 1.0) self._boundary_group.items = [self._boundary_color, self._zonal_boundary_color, self._boundary_width] self._flow_group = OptionGroup("Flow Options") self._show_flow = Option(self, Option.CHECKBOX, "Show Flow Direction", True) self._hide_no_data_vectors = Option(self, Option.CHECKBOX, "Hide No Data Vectors", True) self._flow_stride = Option(self, Option.INT, "Stride", 1, 1, 10) self._flow_color = Option(self, Option.COLOR, "Vector Color", RGBColor(1, 1, 0)) self._flow_scale = Option(self, Option.SLIDER, "Vector Scale", 1.0, 0.01, 20.0) self._flow_group.items = [self._show_flow, self._hide_no_data_vectors, self._flow_stride, self._flow_color, self._flow_scale] self._animation_group = OptionGroup("Animation Options") self._animate_flow = Option(self, Option.CHECKBOX, "Enable Flow Animation", False) self._animation_speed = Option(self, Option.INT, "Animation Speed (ms)", 100) self._vector_speed = Option(self, Option.SLIDER, "Animation Speed Factor", 1.0, 0.01, 5.0) self._animation_group.items = [self._animate_flow, self._animation_speed, self._vector_speed] self._accumulation_group = OptionGroup("Flow Accumulation Options") self._acc_filter = Option(self, Option.CHECKBOX, "Enable Accumulation Filter", False) self._acc_min = Option(self, Option.INT, "Accumulation Min", 0) self._acc_max = Option(self, Option.INT, "Accumulation Max", 0) self._acc_scale = Option(self, Option.CHECKBOX, "Scale Flow by Acc. Value", False) self._accumulation_group.items = [self._acc_filter, self._acc_min, self._acc_max, self._acc_scale] def get_options(self): options = OptionGroup() options.items = self._options.items.copy() if self.boundary_data is not None: options.items.append(self._boundary_group) if self.flow_dir_data is not None: options.items.append(self._flow_group) options.items.append(self._animation_group) if self.flow_acc_data is not None: options.items.append(self._accumulation_group) return options def update_option(self, option: Option=None): if option is None or option.plugin is not self: return name = option.name if name in [self._min_color.name, self._max_color.name, self._min_value.name, self._max_value.name]: post_new_legend() elif name == self._attribute.name: self._needs_color = True stats = self.attribute_data.variable_stats(self._attribute.selected) self._min_value.value = stats.min_value self._max_value.value = stats.max_value post_newoptions_available(self) post_new_legend() elif name == self._elevation_attribute.name: self._needs_terrain = True elif name is self._boundary_width.name: self._needs_boundaries = True if self.flow_dir_data is not None: vector_shader = self.vector_mesh.shader if name == self._animate_flow.name: vector_shader.animate = self._animate_flow.value elif name == self._animation_speed.name: vector_shader.animation_speed = self._animation_speed.value elif name == self._elevation_factor.name: self.vector_mesh.geometry.vertex_scalars = Vector3( [1, 1, self._elevation_factor.value], dtype=numpy.float32 ) elif name == self._flow_color.name: vector_shader.color = self._flow_color.value elif name == self._flow_scale.name: vector_shader.vector_scale = self._flow_scale.value elif name == self._show_flow.name: self.vector_mesh.visible = self._show_flow.value elif name == self._hide_no_data_vectors.name: vector_shader.hide_no_data = self._hide_no_data_vectors.value elif name == self._acc_filter.name: vector_shader.use_mag_filter = self._acc_filter.value and self.flow_acc_data is not None elif name == self._vector_speed.name: vector_shader.vector_speed = self._vector_speed.value elif name in [self._acc_min.name, self._acc_max.name]: vector_shader.mag_min = self._acc_min.value vector_shader.mag_max = self._acc_max.value elif name == self._acc_scale.name: vector_shader.use_magnitude_scale = self._acc_scale.value and self.flow_acc_data is not None self.refresh() def timeline_changed(self): if self.terrain_data and self.terrain_data.time_info and self.terrain_data.time_info.is_temporal: self._needs_terrain = True self._needs_color = True self.refresh() @property def can_visualize(self): return self.terrain_data is not None @property def data_roles(self): return [ (DataPlugin.RASTER, 'Terrain'), (DataPlugin.RASTER, 'Attribute'), (DataPlugin.FEATURE, 'Boundaries'), (DataPlugin.RASTER, 'Flow Direction'), (DataPlugin.RASTER, 'Flow Accumulation') ] def set_data(self, data: DataPlugin, role): if role == 0: self.terrain_data = data self._needs_terrain = True if data is not None: self._elevation_attribute.labels = data.variables else: self._elevation_attribute.labels = [] post_newoptions_available(self) elif role == 1: self.attribute_data = data self._needs_color = True if data is not None: stats = data.variable_stats(data.variables[0]) self._min_value.value = round(stats.min_value, 6) # User can specify higher sig figs self._max_value.value = round(stats.max_value, 6) self._attribute.value = 0 self._attribute.labels = data.variables else: self._min_value.value, self._max_value.value = 0, 0 self._attribute.labels = [] post_newoptions_available(self) post_new_legend() elif role == 2: self.boundary_data = data self._needs_boundaries = True elif role == 3: self.flow_dir_data = data self._needs_flow = True post_newoptions_available(self) elif role == 4: self.flow_acc_data = data self._needs_flow = True if data is not None: stats = data.variable_stats(data.variables[0]) self._acc_min.value, self._acc_max.value = stats.min_value, stats.max_value else: self._acc_min.value, self._acc_max.value = 0, 0 post_newoptions_available(self) def get_data(self, role): if role == 0: return self.terrain_data elif role == 1: return self.attribute_data elif role == 2: return self.boundary_data elif role == 3: return self.flow_dir_data elif role == 4: return self.flow_acc_data return None @property def is_filterable(self): return True @property def is_filtered(self): return self._is_filtered @property def filter_histogram(self): if self.attribute_data is not None: variable = self._attribute.selected stats = self.attribute_data.variable_stats(variable) return Histogram( self.attribute_data.get_data(variable, Timeline.app().current), min_value=stats.min_value, max_value=stats.max_value, nodata_value=stats.nodata_value ) else: return Histogram() def set_filter(self, min_value, max_value): self._is_filtered = True self._filter_min, self._filter_max = min_value, max_value self.refresh() def clear_filter(self): self._is_filtered = False self.refresh() @property def filter_min(self): return self._filter_min @property def filter_max(self): return self._filter_max @property def scene(self): return self._scene @scene.setter def scene(self, scene): if self._scene is not None: if self.terrain_mesh is not None: self._scene.remove_object(self.terrain_mesh) if self.vector_mesh is not None: self._scene.remove_object(self.vector_mesh) self._scene = scene if self.terrain_mesh is not None and self._scene is not None: self._scene.add_object(self.terrain_mesh) if self.vector_mesh is not None and self._scene is not None: self._scene.add_object(self.vector_mesh) def refresh(self): if self._needs_terrain: self._create_terrain_mesh() self._needs_terrain = False self._needs_color = False elif self._needs_color: self._update_terrain_color() self._needs_color = False if self._needs_boundaries: self._update_boundaries() self._needs_boundaries = False if self._needs_flow: self._update_flow() self._needs_flow = False if self.terrain_mesh is not None: shader = self.terrain_mesh.shader # Update shaders with Option values shader.hide_no_data = self._hide_no_data.value shader.per_vertex_color = self._per_vertex_color.value shader.per_vertex_lighting = self._per_vertex_lighting.value shader.min_value = self._min_value.value shader.max_value = self._max_value.value # If attribute data does not specify a nodata_value, set something that won't affect rendering if self.attribute_data: stats = self.attribute_data.variable_stats(self._attribute.selected) if stats.nodata_value is None: shader.nodata_value = stats.min_value - 1 shader.min_color = self._min_color.value.hsv.hsva_list shader.max_color = self._max_color.value.hsv.hsva_list shader.nodata_color = self._nodata_color.value.hsv.hsva_list shader.boundary_color = self._boundary_color.value.hsv.hsva_list shader.zonal_color = self._zonal_boundary_color.value.hsv.hsva_list shader.height_factor = self._elevation_factor.value if self._elevation_factor.value > 0 else 0.01 shader.is_filtered = self._is_filtered shader.filter_min = self._filter_min shader.filter_max = self._filter_max post_redisplay() def _create_terrain_mesh(self): if self.terrain_data is not None: if self.terrain_mesh is not None: # height grid was set before, needs to be removed self._scene.remove_object(self.terrain_mesh) self.terrain_mesh.geometry.dispose() self.terrain_mesh = None elevation_attribute = self._elevation_attribute.selected height_stats = self.terrain_data.variable_stats(elevation_attribute) nodata_value = height_stats.nodata_value min_value = height_stats.min_value max_value = height_stats.max_value cellsize = self.terrain_data.resolution height_data = self.terrain_data.get_data(elevation_attribute) if isinstance(height_data, numpy.ma.MaskedArray): height_data = height_data.data factor = 1.0 height, width = height_data.shape max_height = math.sqrt(width * height * cellsize) / 2 if max_value > max_height: factor = max_height / max_value height_data[height_data != nodata_value] *= factor # Apply factor where needed height_data[height_data == nodata_value] = min_value # Otherwise, set to min value geometry = TerrainColorGeometry(width, height, cellsize, height_data) shader = TerrainColorShaderProgram() mesh = Mesh(geometry, shader, plugin=self) self.terrain_mesh = mesh self._scene.add_object(self.terrain_mesh) self._update_terrain_color() else: if self.terrain_mesh is not None: self._scene.remove_object(self.terrain_mesh) self.terrain_mesh.geometry.dispose() self.terrain_mesh = None def _update_terrain_color(self): if self.terrain_mesh is not None: shader = self.terrain_mesh.shader if self.terrain_data and self.attribute_data: shader.has_color = True # Retrieve color layer attribute = self._attribute.selected data = self.attribute_data.get_data(attribute, Timeline.app().current) if type(data) is numpy.ma.MaskedArray: data = data.data color_stats = self.attribute_data.variable_stats(attribute) if color_stats.nodata_value: shader.nodata_value = color_stats.nodata_value self.terrain_mesh.geometry.values = data post_redisplay() else: shader.has_color = False def _update_boundaries(self): if self.terrain_mesh is None: return shader = self.terrain_mesh.shader if self.terrain_data is not None: shader.has_boundaries = True # Create boundary image texture_w, texture_h = 512, 512 image_data = numpy.ones((texture_h, texture_w, 3), dtype=numpy.uint8) * 255 terrain_extent = self.terrain_data.extent if self.boundary_data is not None: # Burn geometry to texture shapes = self.boundary_data.get_features() image_data[:, :, 0] = numpy.flipud(features.rasterize( [shapely.geometry.shape(f['geometry']).exterior.buffer(self._boundary_width.value) for f in shapes if f['geometry']['type'] == 'Polygon'], out_shape=(texture_h, texture_w), fill=255, default_value=0, transform=transform.from_bounds(*terrain_extent.as_list(), texture_w, texture_h) )) if self.selected_point != (-1, -1): p = (self.selected_point[0], self.selected_point[1] + 1) cell_size = self.terrain_data.resolution grid_width, grid_height = self.terrain_data.shape xscale = texture_w / terrain_extent.width yscale = texture_h / terrain_extent.height box_w, box_h = cell_size * xscale, cell_size * yscale center = (int(p[0] / grid_height * texture_h), int(512 - p[1] / grid_width * texture_w)) # Draw black rectangle directly into data min_x = min(max(center[0] - box_w / 2, 0), 510) max_x = min(max(center[0] + box_w / 2, min_x + 1), 511) min_y = min(max(center[1] - box_h / 2, 0), 510) max_y = min(max(center[1] + box_h / 2, min_y + 1), 511) image_data[round(min_y): round(max_y), round(min_x): round(max_x), 0] = 0 shader.boundary_texture = Texture( data=image_data.ravel(), width=texture_w, height=texture_h, src_format=GL_RGB8 ) # Update zonal stats texture image_data = numpy.ones((texture_h, texture_w, 3), dtype=numpy.uint8) * 255 if self.feature_boundary is not None: shader.has_zonal_boundary = True t_res = self.terrain_data.resolution normalized_coords = [(p[0] / t_res, p[1] / t_res) for p in self.feature_boundary.coords] if isinstance(self.feature_boundary, Point): feat = Point(*[[transform.xy(self.terrain_data.affine, *p) for p in normalized_coords]]) else: feat = LinearRing(*[[transform.xy(self.terrain_data.affine, *p) for p in normalized_coords]]) image_data[:, :, 0] = numpy.flipud(features.rasterize( [feat.buffer(self._boundary_width.value)], out_shape=(texture_h, texture_w), fill=255, default_value=1, all_touched=True, transform=transform.from_bounds(*terrain_extent.as_list(), texture_w, texture_h) )) else: shader.has_zonal_boundary = False shader.zonal_texture = Texture( data=image_data.ravel(), width=texture_w, height=texture_h, src_format=GL_RGB8 ) else: shader.has_boundaries = False shader.has_zonal_boundary = False shader.boundary_texture = Texture() shader.zonal_texture = Texture() def _update_flow(self): if self.terrain_data is not None and self.flow_dir_data is not None: height_label = self._elevation_attribute.selected flow_dir_label = self.flow_dir_data.variables[0] flow_acc_label = self.flow_acc_data.variables[0] if self.flow_acc_data is not None else "" attribute_label = self._attribute.selected if self.attribute_data is not None else "" height_data = self.terrain_data.get_data(height_label, Timeline.app().current) flow_dir = self.flow_dir_data.get_data(flow_dir_label, Timeline.app().current) height, width = flow_dir.shape if not flow_dir.shape == height_data.shape: post_message("Terrain and flow grids don't match. Did you load the correct flow grid for this terrain?", MessageEvent.ERROR) return # Clobber all the data into one big array vector_data = numpy.zeros((height, width, VectorGeometry.BUFFER_WIDTH), dtype=numpy.float32) vector_data[:, :, 0:3] = self.terrain_mesh.geometry.vertices.reshape((height, width, 3)) vector_data[:, :, 3] = flow_dir * -45.0 + 45.0 # VELMA flow direction, converted to polar degrees vector_data[:, :, 4] = 90 - numpy.arcsin(numpy.abs( self.terrain_mesh.geometry.normals.reshape((height, width, 3))[:, :, 2] )) * 180 / numpy.pi vector_data[:, :, 5] = numpy.ones((height, width), dtype=numpy.float32) if self.flow_acc_data is None else \ self.flow_acc_data.get_data(flow_acc_label, Timeline.app().current) vector_data[:, :, 6] = numpy.zeros((height, width), dtype=numpy.float32) if self.attribute_data is None \ else self.attribute_data.get_data(attribute_label, Timeline.app().current) # Inform vector_renderable of attribute grid (if set) so shader knows whether to hide nodata values if self.attribute_data is not None: nodata_value = self.attribute_data.variable_stats(attribute_label).nodata_value else: nodata_value = 1.0 if self.vector_mesh is None: self.vector_mesh = Mesh( VectorGeometry(max_instances=width * height, data=vector_data), VectorShaderProgram() ) self.scene.add_object(self.vector_mesh) else: self.vector_mesh.geometry.vector_data = vector_data self.vector_mesh.shader.nodata_value = nodata_value self.vector_mesh.shader.use_mag_filter = self._acc_filter.value and self.flow_acc_data is not None self.vector_mesh.shader.mag_min = self._acc_min.value self.vector_mesh.shader.mag_max = self._acc_max.value self.vector_mesh.shader.use_magnitude_scale = self._acc_scale.value and self.flow_acc_data is not None self.vector_mesh.visible = self._show_flow.value elif self.vector_mesh is not None: self.scene.remove_object(self.vector_mesh) self.vector_mesh = None def has_legend(self): return self.attribute_data is not None def get_legend(self, width, height): legend = StretchedLegend(self._min_value.value, self._max_value.value, self._min_color.value, self._max_color.value) return legend.render(width, height) def get_identify_detail(self, point: Vector3) -> Optional[Dict]: if self.terrain_data is not None: res = self.terrain_data.resolution cell_x = int(round((point.y / res))) cell_y = int(round((point.x / res))) terrain_attr = self._elevation_attribute.selected terrain_ref = self.terrain_data.get_data(terrain_attr) if self.attribute_data is not None: attribute_ref = self.attribute_data.get_data( self._attribute.selected, Timeline.app().current ) attr_height, attr_width = attribute_ref.shape if 0 <= cell_x < attr_width and 0 <= cell_y < attr_height: result = OrderedDict() result['Point'] = "{}, {}".format(cell_x, cell_y) result['Value'] = attribute_ref[cell_y, cell_x] result['Height'] = terrain_ref[cell_y, cell_x] if self.flow_dir_data is not None: flow_dir_ref = self.flow_dir_data.get_data(self.flow_dir_data.variables[0]) direction = flow_dir_ref[cell_y, cell_x] result['Flow Direction (input)'] = direction degrees = 45.0 + 45.0 * direction result['Flow Direction (degrees)'] = degrees if degrees < 360.0 else degrees - 360.0 if self.flow_acc_data is not None: result['Flow Accumulation'] = self.flow_acc_data.get_data( self.flow_acc_data.variables[0] )[cell_y, cell_x] self.selected_point = (cell_x, cell_y) self._needs_boundaries = True self.refresh() return result self.selected_point = (-1, -1) self._needs_boundaries = True self.refresh() return None def get_zonal_stats_from_point(self, point: Vector3) -> List[Optional[Dict]]: results = [] if self.boundary_data: for plugin in (x for x in (self.terrain_data, self.attribute_data, self.flow_dir_data, self.flow_dir_data) if x is not None): if plugin is self.terrain_data: var = self._elevation_attribute.selected elif plugin is self.attribute_data: var = self._attribute.selected else: var = '' raster = plugin.get_data(var) affine = plugin.affine res = plugin.resolution var_stats = plugin.variable_stats(var) nodata = var_stats.nodata_value # Transform point coordinates to crs of raster p = shapely.geometry.Point(*transform.xy(affine, point.x / res, point.y / res)) zones = [] for feat in self.boundary_data.get_features(): if shapely.geometry.shape(feat['geometry']).contains(p): zones.append(feat) # Retrieve zonal stats for this raster result = zonal_stats(zones, raster, affine=affine, nodata=nodata, add_stats=self.zonal_stats) for j, row in enumerate(result): row['Name'] = "{} (Zone {})".format(plugin.data_name, zones[j].get('id')) results.append(row) return results def get_zonal_stats_from_feature(self, feature: LinearRing) -> List[Optional[Dict]]: results = [] if self.terrain_data: # Normalize feature coordinates to terrain resolution t_res = self.terrain_data.resolution normalized_coords = [(p[0] / t_res, p[1] / t_res) for p in feature.coords] for plugin in (x for x in (self.terrain_data, self.attribute_data, self.flow_dir_data, self.flow_dir_data) if x is not None): if plugin is self.terrain_data: var = self._elevation_attribute.selected elif plugin is self.attribute_data: var = self._attribute.selected else: var = '' raster = plugin.get_data(var, Timeline.app().current) affine = plugin.affine var_stats = plugin.variable_stats(var) nodata = var_stats.nodata_value feat = Polygon(*[[transform.xy(affine, *p) for p in normalized_coords]]) # Transform normalized raster coordinates to CRS of raster to query and obtain results result = zonal_stats(feat, raster, affine=affine, nodata=nodata, add_stats=self.zonal_stats)[0] result['Name'] = plugin.data_name results.append(result) return results def update_zonal_boundary(self, feature: Union[LinearRing, Point]): self.feature_boundary = feature self._needs_boundaries = True self.refresh()
python
# Copyright (c) 2014-2015, NVIDIA CORPORATION. All rights reserved. from gevent import monkey; monkey.patch_all() from nose.tools import assert_raises import mock from . import scheduler as _ from config import config_value from job import Job from digits.utils import subclass, override class TestScheduler(): def get_scheduler(self): return _.Scheduler(config_value('gpu_list')) def test_add_before_start(self): s = self.get_scheduler() assert not s.add_job(None), 'add_job should fail' def test_start_twice(self): s = self.get_scheduler() assert s.start(), 'failed to start' assert s.start(), 'failed to start the second time' assert s.stop(), 'failed to stop' def test_stop_before_start(self): s = self.get_scheduler() assert s.stop(), 'failed to stop' @subclass class JobForTesting(Job): @override def job_type(self): return 'Job For Testing' class TestSchedulerFlow(): @classmethod def setUpClass(cls): cls.s = _.Scheduler(config_value('gpu_list')) assert cls.s.start(), 'failed to start' @classmethod def tearDownClass(cls): assert cls.s.stop(), 'failed to stop' def test_add_remove_job(self): job = JobForTesting('tmp') assert self.s.add_job(job), 'failed to add job' assert len(self.s.jobs) == 1, 'scheduler has %d jobs' % len(self.s.jobs) assert self.s.delete_job(job), 'failed to delete job' assert len(self.s.jobs) == 0, 'scheduler has %d jobs' % len(self.s.jobs)
python
from pathlib import Path from flask_wtf import FlaskForm from wtforms import SelectMultipleField, SubmitField from wtforms.validators import DataRequired path = Path(".") forecast = sorted(path.glob("data/forecast_*.json"), reverse=True) choices = [(p, p) for p in forecast] class YearSelectForm(FlaskForm): year = SelectMultipleField( f"Available Data ({len(choices)} years, multiple selectable)", choices=choices, validators=[DataRequired()], ) submit = SubmitField("Make Plot")
python
""" 1. Clarification 2. Possible solutions - Brute force - HashMap 3. Coding 4. Tests """ # T=O(n^2), S=O(1) class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: if len(nums) < 2: return [-1, -1] for i in range(len(nums)): for j in range(i + 1, len(nums)): if nums[i] + nums[j] == target: return [i, j] # T=O(n), S=O(n) class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: if len(nums) < 2: return [-1, -1] hash_map = {} for i, x in enumerate(nums): if target - x in hash_map: return [hash_map[target - x], i] hash_map[x] = i
python
import enum from typing import Dict class PropertyType(enum.Enum): HOUSE = 0 FLAT = 1 BUNGALOW = 2 class BuiltForm(enum.Enum): MID_TERRACE = 0 SEMI_DETACHED = 1 DETACHED = 2 END_TERRACE = 3 class OccupantType(enum.Enum): OWNER_OCCUPIED = 0 RENTED_PRIVATE = 1 RENTED_SOCIAL = 2 class EPCRating(enum.Enum): G = 0 F = 1 E = 2 D = 3 C = 4 B = 5 A = 6 class HeatingSystem(enum.Enum): BOILER_GAS = 0 BOILER_OIL = 1 BOILER_ELECTRIC = 2 HEAT_PUMP_AIR_SOURCE = 3 HEAT_PUMP_GROUND_SOURCE = 4 class HeatingFuel(enum.Enum): GAS = 0 ELECTRICITY = 1 OIL = 2 HEATING_SYSTEM_FUEL: Dict[HeatingSystem, HeatingFuel] = { HeatingSystem.BOILER_GAS: HeatingFuel.GAS, HeatingSystem.BOILER_OIL: HeatingFuel.OIL, HeatingSystem.BOILER_ELECTRIC: HeatingFuel.ELECTRICITY, HeatingSystem.HEAT_PUMP_AIR_SOURCE: HeatingFuel.ELECTRICITY, HeatingSystem.HEAT_PUMP_GROUND_SOURCE: HeatingFuel.ELECTRICITY, } HEATING_SYSTEM_LIFETIME_YEARS = 15 HAZARD_RATE_HEATING_SYSTEM_ALPHA = 6 HAZARD_RATE_HEATING_SYSTEM_BETA = 15 # If a ban is active and has been announced, irrespective of the `SIGMOID_{K, OFFSET}` values, # all agents will not consider banned heating systems after this time MAX_BAN_LEAD_TIME_YEARS = 10 SIGMOID_K = 2 SIGMOID_OFFSET = 0 class ConstructionYearBand(enum.Enum): # These categories match the England & Wales EPC categories BUILT_PRE_1900 = 0 BUILT_1900_1929 = 1 BUILT_1930_1949 = 2 BUILT_1950_1966 = 3 BUILT_1967_1975 = 4 BUILT_1976_1982 = 5 BUILT_1983_1990 = 6 BUILT_1991_1995 = 7 BUILT_1996_2002 = 8 BUILT_2003_2006 = 9 BUILT_2007_ONWARDS = 10 # Parameters describing distributions # A distribution matching 50th/90th percentiles from 2020 Houzz & Home report (11k/100k respectively) # http://st.hzcdn.com/static/econ/en-GB/2020_HouzzAndHome_UK_Renovation_Trends_Study.pdf GB_RENOVATION_BUDGET_WEIBULL_ALPHA = 0.55 GB_RENOVATION_BUDGET_WEIBULL_BETA = 21_994 # A distribution aligned to Q2 2021 GB property values GB_PROPERTY_VALUE_WEIBULL_ALPHA = 1.61 GB_PROPERTY_VALUE_WEIBULL_BETA = 280_000 class Element(enum.Enum): ROOF = 0 GLAZING = 1 WALLS = 2 class InsulationSegment(enum.Enum): SMALL_FLAT = 0 LARGE_FLAT = 1 SMALL_MID_TERRACE_HOUSE = 2 LARGE_MID_TERRACE_HOUSE = 3 SMALL_SEMI_END_TERRACE_HOUSE = 4 LARGE_SEMI_END_TERRACE_HOUSE = 5 SMALL_DETACHED_HOUSE = 6 LARGE_DETACHED_HOUSE = 7 BUNGALOW = 8 # parameters chosen to align to a distribution of discount rates obtained from an investigation of 1,217 random # U.S. homeowners given choice experiments relating to the purchase of a water heater (mean 19%; std. 23%) # Individual Time Preferences and Energy Efficiency (NBER Working Paper No. 20969) DISCOUNT_RATE_WEIBULL_ALPHA = 0.8 DISCOUNT_RATE_WEIBULL_BETA = 0.165 class EventTrigger(enum.Enum): BREAKDOWN = 0 RENOVATION = 1 EPC_C_UPGRADE = 2 # Scale factor is inferred from general relationship between estimated floor area and kW capacity # https://www.boilerguide.co.uk/articles/size-heat-pump-need (see table) # https://www.imsheatpumps.co.uk/blog/what-size-heat-pump-do-i-need-for-my-house/ # https://www.homeheatingguide.co.uk/renewables-advice/air-source-heat-pumps-a-sizing-guide HEAT_PUMP_CAPACITY_SCALE_FACTOR = { HeatingSystem.HEAT_PUMP_AIR_SOURCE: 0.1, HeatingSystem.HEAT_PUMP_GROUND_SOURCE: 0.08, } MAX_HEAT_PUMP_CAPACITY_KW = { HeatingSystem.HEAT_PUMP_AIR_SOURCE: 20.0, HeatingSystem.HEAT_PUMP_GROUND_SOURCE: 25.0, } MIN_HEAT_PUMP_CAPACITY_KW = { HeatingSystem.HEAT_PUMP_AIR_SOURCE: 4.0, HeatingSystem.HEAT_PUMP_GROUND_SOURCE: 4.0, } class PropertySize(enum.Enum): SMALL = 0 MEDIUM = 1 LARGE = 2 # Source: https://www.ovoenergy.com/guides/energy-guides/how-much-heating-energy-do-you-use # Assume figure of 133kWh/m2a a reflects an average heating system Coefficient of Performance of 0.92 (gas boiler) # 133 * 0.92 = 122kWh/m2a HEATING_KWH_PER_SQM_ANNUAL = 122 FUEL_KWH_TO_HEAT_KWH: Dict[HeatingSystem, float] = { # The conversion factor between 1kWh of fuel and useful heat. For example: # Gas Boilers ~ 0.9, since 1kWh of gas produces ~0.9kWh of heat (due to inefficiencies in the boiler) HeatingSystem.BOILER_GAS: 0.92, HeatingSystem.BOILER_OIL: 0.92, HeatingSystem.BOILER_ELECTRIC: 0.995, HeatingSystem.HEAT_PUMP_AIR_SOURCE: 3, HeatingSystem.HEAT_PUMP_GROUND_SOURCE: 4, } HEAT_PUMPS = {HeatingSystem.HEAT_PUMP_AIR_SOURCE, HeatingSystem.HEAT_PUMP_GROUND_SOURCE} BOILERS = { HeatingSystem.BOILER_GAS, HeatingSystem.BOILER_OIL, HeatingSystem.BOILER_ELECTRIC, } # The likelihoods of houses under renovation choosing to address heating system and/or insulation as part of project # Derived from the VERD Project, 2012-2013. UK Data Service. SN: 7773, http://doi.org/10.5255/UKDA-SN-7773-1 # Based upon the choices of houses in 'Stage 3' - finalising or actively renovating RENO_PROBA_HEATING_SYSTEM_UPDATE = 0.18 RENO_PROBA_INSULATION_UPDATE = 0.33 # Likelihood of upgrading 1,2 or 3 insulation elements during a renovation # Derived from the VERD Project, 2012-2013. UK Data Service. SN: 7773, http://doi.org/10.5255/UKDA-SN-7773-1 # Based upon the choices of houses in 'Stage 3' - finalising or actively renovating RENO_NUM_INSULATION_ELEMENTS_UPGRADED = {1: 0.76, 2: 0.17, 3: 0.07} # An amount a house may set aside for work related to home heating and energy efficiency # Expressed as a proportion of their total renovation budget (20%) HEATING_PROPORTION_OF_RENO_BUDGET = 0.2 # Upper bound on floor area sqm for to be classed as 'Small', by property type / built form # As per the segmentation used in Source: BEIS - WHAT DOES IT COST TO RETROFIT HOMES? RETROFIT_COSTS_SMALL_PROPERTY_SQM_LIMIT = { "FLAT": 54, "MID_TERRACE_HOUSE": 76, "SEMI_OR_END_TERRACE_HOUSE": 80, "SMALL_DETACHED_HOUSE": 117, } # Floor area of homes in England and Wales # Source: England/Wales Energy Performance Certificates FLOOR_AREA_SQM_33RD_PERCENTILE = 66 FLOOR_AREA_SQM_66TH_PERCENTILE = 89 class InterventionType(enum.Enum): RHI = 0 BOILER_UPGRADE_SCHEME = 1 GAS_OIL_BOILER_BAN = 2 # Source: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/families/datasets/householdsbytypeofhouseholdandfamilyregionsofenglandandukconstituentcountries ENGLAND_WALES_HOUSEHOLD_COUNT_2020 = 24_600_000 # Source - https://www.heatpumps.org.uk/wp-content/uploads/2020/06/Building-the-Installer-Base-for-Net-Zero-Heating_02.06.pdf # Uses the CCC Balanced Pathway scenario of 625k HPs/year in 2028, stating it requires 33,700 installers - i.e. an installation takes ~19 days HEAT_PUMP_INSTALLATION_DURATION_MONTHS = 0.65 # Source: https://ukerc.ac.uk/news/heating-engineers-skills-and-heat-decarbonisation/ # Assuming a 1:1 replacement of gas engineer to heat pump engineers # In 2019, 130K heating engineers registered with Gas Safe; 27.8mil households = ~215 households to every installer HOUSEHOLDS_PER_HEAT_PUMP_INSTALLER_FLOOR = 215 # Source: Element Energy for CCC (pg 33 https://www.theccc.org.uk/wp-content/uploads/2020/12/Element-Energy-Trajectories-for-Residential-Heat-Decarbonisation-Executive-Summary.pdf) # Note: These figures have been adjusted to the England/Wales population using ONS data ENGLAND_WALES_ANNUAL_NEW_BUILDS = { 2021: 45238, 2022: 62202, 2023: 73511, 2024: 79166, 2025: 282735, 2026: 282735, 2027: 294044, 2028: 254461, 2029: 254461, 2030: 209224, 2031: 197914, 2032: 180950, 2033: 384520, 2034: 384520, 2035: 339282, 2036: 344937, 2037: 390174, 2038: 378865, 2039: 390174, 2040: 384520, 2041: 390174, 2042: 395829, 2043: 356246, 2044: 327973, 2045: 282735, 2046: 271425, 2047: 254461, 2048: 463685, 2049: 446721, 2050: 390174, }
python
import pdb import logging import numpy as np import sys sys.path.append('..') import MRATools as mt def determine_radius(k, h): if k==0: raise ValueError("Ensemble size must be stricly positive") s = np.floor(np.sqrt(k)) if s % 2==0: sf = s-1 else: sf = s if k==sf**2: return h*1.01*(sf-1)/2*np.sqrt(2) base = (sf-1)/2.0 intervals = np.array([sf**2]) while intervals[-1]<(sf+2)**2: if len(intervals)==1 or ((sf+2)**2 - intervals[-1]==4): intervals = np.append(intervals, intervals[-1] + 4) else: intervals = np.append(intervals, intervals[-1] + 8) ind = intervals.searchsorted(k) middle = (intervals[ind-1] + intervals[ind])/2.0 if k<=middle: print('k=%d, app=%d, ind=%d, base=%d' % (k, intervals[ind-1], ind-1, (sf-1)/2.0)) app_ind = ind-1 else: print('k=%d, app=%d, ind=%d, base=%d' % (k, intervals[ind], ind, (sf-1)/2.0)) app_ind = ind if app_ind==0: return h*base*np.sqrt(2) + h*0.01 else: return h*np.sqrt((base+1)**2 + (app_ind-1)**2) + h*0.01 if __name__=='__main__': dim_x = 34 dim_y = 34 locs = mt.genLocations2d( Nx=dim_x, Ny=dim_y ) for Nens in [43]: Sig = mt.KanterCovFun(locs, radius=Nens, circular=False) mt.dispMat(mt.filterNNZ(Sig[1050,:].reshape(34,34)), cmap="Spectral") print(len(np.where(Sig[1050,:])[0]))
python
# -*- coding: utf-8 -*- """Code for creating diagrams."""
python
from .confirmationwindow import ConfirmationWindow from .menu import Menu from .popupwindow import PopupWindow from .scrollselector import ScrollSelector from .filemenu import FileMenu __all__ = ["PopupWindow","ScrollSelector", "ConfirmationWindow","Menu", "FileMenu"]
python
from typing import Optional import torch from anndata import AnnData from scvi.model import SCVI use_gpu = torch.cuda.is_available() def unsupervised_training_one_epoch( adata: AnnData, run_setup_anndata: bool = True, batch_key: Optional[str] = None, labels_key: Optional[str] = None, ): if run_setup_anndata: SCVI.setup_anndata(adata, batch_key=batch_key, labels_key=labels_key) m = SCVI(adata) m.train(1, train_size=0.4, use_gpu=use_gpu)
python
from jmanager.utils.print_utils import get_progress_text PROGRESS_TEXT = "test |========================= | 50.0%" class TestPrintUtils: def test_get_progress_text(self): assert get_progress_text(msg="test", iteration=1, total=2) == PROGRESS_TEXT
python
import numpy as np def get_pieces_count(state): count = 0 for s in state: if s.isalpha(): count += 1 return count def is_kill_move(state_prev, state_next): return get_pieces_count(state_prev) - get_pieces_count(state_next) def create_position_labels(): labels_array = [] letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'] letters.reverse() numbers = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] for l1 in range(9): for n1 in range(10): move = letters[8 - l1] + numbers[n1] labels_array.append(move) # labels_array.reverse() return labels_array def create_position_labels_reverse(): labels_array = [] letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'] letters.reverse() numbers = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] for l1 in range(9): for n1 in range(10): move = letters[l1] + numbers[n1] labels_array.append(move) labels_array.reverse() return labels_array class GameBoard(object): board_pos_name = np.array(create_position_labels()).reshape(9,10).transpose() Ny = 10 Nx = 9 def __init__(self): self.state = "RNBAKABNR/9/1C5C1/P1P1P1P1P/9/9/p1p1p1p1p/1c5c1/9/rnbakabnr"#"rnbakabnr/9/1c5c1/p1p1p1p1p/9/9/P1P1P1P1P/1C5C1/9/RNBAKABNR" # self.round = 1 # self.players = ["w", "b"] self.current_player = "w" self.restrict_round = 0 # 小写表示黑方,大写表示红方 # [ # "rheakaehr", # " ", # " c c ", # "p p p p p", # " ", # " ", # "P P P P P", # " C C ", # " ", # "RHEAKAEHR" # ] def reload(self): self.state = "RNBAKABNR/9/1C5C1/P1P1P1P1P/9/9/p1p1p1p1p/1c5c1/9/rnbakabnr"#"rnbakabnr/9/1c5c1/p1p1p1p1p/9/9/P1P1P1P1P/1C5C1/9/RNBAKABNR" # self.round = 1 self.current_player = "w" self.restrict_round = 0 @staticmethod def print_borad(board, action = None): def string_reverse(string): # return ''.join(string[len(string) - i] for i in range(1, len(string)+1)) return ''.join(string[i] for i in range(len(string) - 1, -1, -1)) x_trans = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 5, 'g': 6, 'h': 7, 'i': 8} if(action != None): src = action[0:2] src_x = int(x_trans[src[0]]) src_y = int(src[1]) # board = string_reverse(board) board = board.replace("1", " ") board = board.replace("2", " ") board = board.replace("3", " ") board = board.replace("4", " ") board = board.replace("5", " ") board = board.replace("6", " ") board = board.replace("7", " ") board = board.replace("8", " ") board = board.replace("9", " ") board = board.split('/') # board = board.replace("/", "\n") print(" abcdefghi") for i,line in enumerate(board): if (action != None): if(i == src_y): s = list(line) s[src_x] = 'x' line = ''.join(s) print(i,line) # print(board) @staticmethod def sim_do_action(in_action, in_state): x_trans = {'a':0, 'b':1, 'c':2, 'd':3, 'e':4, 'f':5, 'g':6, 'h':7, 'i':8} src = in_action[0:2] dst = in_action[2:4] src_x = int(x_trans[src[0]]) src_y = int(src[1]) dst_x = int(x_trans[dst[0]]) dst_y = int(dst[1]) # GameBoard.print_borad(in_state) # print("sim_do_action : ", in_action) # print(dst_y, dst_x, src_y, src_x) board_positions = GameBoard.board_to_pos_name(in_state) line_lst = [] for line in board_positions: line_lst.append(list(line)) lines = np.array(line_lst) # print(lines.shape) # print(board_positions[src_y]) # print("before board_positions[dst_y] = ",board_positions[dst_y]) lines[dst_y][dst_x] = lines[src_y][src_x] lines[src_y][src_x] = '1' board_positions[dst_y] = ''.join(lines[dst_y]) board_positions[src_y] = ''.join(lines[src_y]) # src_str = list(board_positions[src_y]) # dst_str = list(board_positions[dst_y]) # print("src_str[src_x] = ", src_str[src_x]) # print("dst_str[dst_x] = ", dst_str[dst_x]) # c = copy.deepcopy(src_str[src_x]) # dst_str[dst_x] = c # src_str[src_x] = '1' # board_positions[dst_y] = ''.join(dst_str) # board_positions[src_y] = ''.join(src_str) # print("after board_positions[dst_y] = ", board_positions[dst_y]) # board_positions[dst_y][dst_x] = board_positions[src_y][src_x] # board_positions[src_y][src_x] = '1' board = "/".join(board_positions) board = board.replace("111111111", "9") board = board.replace("11111111", "8") board = board.replace("1111111", "7") board = board.replace("111111", "6") board = board.replace("11111", "5") board = board.replace("1111", "4") board = board.replace("111", "3") board = board.replace("11", "2") # GameBoard.print_borad(board) return board @staticmethod def board_to_pos_name(board): board = board.replace("2", "11") board = board.replace("3", "111") board = board.replace("4", "1111") board = board.replace("5", "11111") board = board.replace("6", "111111") board = board.replace("7", "1111111") board = board.replace("8", "11111111") board = board.replace("9", "111111111") return board.split("/") @staticmethod def check_bounds(toY, toX): if toY < 0 or toX < 0: return False if toY >= GameBoard.Ny or toX >= GameBoard.Nx: return False return True @staticmethod def validate_move(c, upper=True): if (c.isalpha()): if (upper == True): if (c.islower()): return True else: return False else: if (c.isupper()): return True else: return False else: return True @staticmethod def get_legal_moves(state, current_player): moves = [] k_x = None k_y = None K_x = None K_y = None face_to_face = False board_positions = np.array(GameBoard.board_to_pos_name(state)) for y in range(board_positions.shape[0]): for x in range(len(board_positions[y])): if(board_positions[y][x].isalpha()): if(board_positions[y][x] == 'r' and current_player == 'b'): toY = y for toX in range(x - 1, -1, -1): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].isupper()): moves.append(m) break moves.append(m) for toX in range(x + 1, GameBoard.Nx): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].isupper()): moves.append(m) break moves.append(m) toX = x for toY in range(y - 1, -1, -1): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].isupper()): moves.append(m) break moves.append(m) for toY in range(y + 1, GameBoard.Ny): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].isupper()): moves.append(m) break moves.append(m) elif(board_positions[y][x] == 'R' and current_player == 'w'): toY = y for toX in range(x - 1, -1, -1): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].islower()): moves.append(m) break moves.append(m) for toX in range(x + 1, GameBoard.Nx): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].islower()): moves.append(m) break moves.append(m) toX = x for toY in range(y - 1, -1, -1): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].islower()): moves.append(m) break moves.append(m) for toY in range(y + 1, GameBoard.Ny): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].islower()): moves.append(m) break moves.append(m) elif ((board_positions[y][x] == 'n' or board_positions[y][x] == 'h') and current_player == 'b'): for i in range(-1, 3, 2): for j in range(-1, 3, 2): toY = y + 2 * i toX = x + 1 * j if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=False) and board_positions[toY - i][x].isalpha() == False: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) toY = y + 1 * i toX = x + 2 * j if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=False) and board_positions[y][toX - j].isalpha() == False: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) elif ((board_positions[y][x] == 'N' or board_positions[y][x] == 'H') and current_player == 'w'): for i in range(-1, 3, 2): for j in range(-1, 3, 2): toY = y + 2 * i toX = x + 1 * j if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=True) and board_positions[toY - i][x].isalpha() == False: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) toY = y + 1 * i toX = x + 2 * j if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=True) and board_positions[y][toX - j].isalpha() == False: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) elif ((board_positions[y][x] == 'b' or board_positions[y][x] == 'e') and current_player == 'b'): for i in range(-2, 3, 4): toY = y + i toX = x + i if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=False) and toY >= 5 and \ board_positions[y + i // 2][x + i // 2].isalpha() == False: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) toY = y + i toX = x - i if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=False) and toY >= 5 and \ board_positions[y + i // 2][x - i // 2].isalpha() == False: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) elif ((board_positions[y][x] == 'B' or board_positions[y][x] == 'E') and current_player == 'w'): for i in range(-2, 3, 4): toY = y + i toX = x + i if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=True) and toY <= 4 and \ board_positions[y + i // 2][x + i // 2].isalpha() == False: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) toY = y + i toX = x - i if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=True) and toY <= 4 and \ board_positions[y + i // 2][x - i // 2].isalpha() == False: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) elif (board_positions[y][x] == 'a' and current_player == 'b'): for i in range(-1, 3, 2): toY = y + i toX = x + i if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=False) and toY >= 7 and toX >= 3 and toX <= 5: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) toY = y + i toX = x - i if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=False) and toY >= 7 and toX >= 3 and toX <= 5: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) elif (board_positions[y][x] == 'A' and current_player == 'w'): for i in range(-1, 3, 2): toY = y + i toX = x + i if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=True) and toY <= 2 and toX >= 3 and toX <= 5: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) toY = y + i toX = x - i if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=True) and toY <= 2 and toX >= 3 and toX <= 5: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) elif (board_positions[y][x] == 'k'): k_x = x k_y = y if(current_player == 'b'): for i in range(2): for sign in range(-1, 2, 2): j = 1 - i toY = y + i * sign toX = x + j * sign if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=False) and toY >= 7 and toX >= 3 and toX <= 5: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) elif (board_positions[y][x] == 'K'): K_x = x K_y = y if(current_player == 'w'): for i in range(2): for sign in range(-1, 2, 2): j = 1 - i toY = y + i * sign toX = x + j * sign if GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=True) and toY <= 2 and toX >= 3 and toX <= 5: moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) elif (board_positions[y][x] == 'c' and current_player == 'b'): toY = y hits = False for toX in range(x - 1, -1, -1): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (hits == False): if (board_positions[toY][toX].isalpha()): hits = True else: moves.append(m) else: if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].isupper()): moves.append(m) break hits = False for toX in range(x + 1, GameBoard.Nx): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (hits == False): if (board_positions[toY][toX].isalpha()): hits = True else: moves.append(m) else: if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].isupper()): moves.append(m) break toX = x hits = False for toY in range(y - 1, -1, -1): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (hits == False): if (board_positions[toY][toX].isalpha()): hits = True else: moves.append(m) else: if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].isupper()): moves.append(m) break hits = False for toY in range(y + 1, GameBoard.Ny): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (hits == False): if (board_positions[toY][toX].isalpha()): hits = True else: moves.append(m) else: if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].isupper()): moves.append(m) break elif (board_positions[y][x] == 'C' and current_player == 'w'): toY = y hits = False for toX in range(x - 1, -1, -1): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (hits == False): if (board_positions[toY][toX].isalpha()): hits = True else: moves.append(m) else: if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].islower()): moves.append(m) break hits = False for toX in range(x + 1, GameBoard.Nx): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (hits == False): if (board_positions[toY][toX].isalpha()): hits = True else: moves.append(m) else: if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].islower()): moves.append(m) break toX = x hits = False for toY in range(y - 1, -1, -1): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (hits == False): if (board_positions[toY][toX].isalpha()): hits = True else: moves.append(m) else: if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].islower()): moves.append(m) break hits = False for toY in range(y + 1, GameBoard.Ny): m = GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX] if (hits == False): if (board_positions[toY][toX].isalpha()): hits = True else: moves.append(m) else: if (board_positions[toY][toX].isalpha()): if (board_positions[toY][toX].islower()): moves.append(m) break elif (board_positions[y][x] == 'p' and current_player == 'b'): toY = y - 1 toX = x if (GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=False)): moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) if y < 5: toY = y toX = x + 1 if (GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=False)): moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) toX = x - 1 if (GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=False)): moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) elif (board_positions[y][x] == 'P' and current_player == 'w'): toY = y + 1 toX = x if (GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=True)): moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) if y > 4: toY = y toX = x + 1 if (GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=True)): moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) toX = x - 1 if (GameBoard.check_bounds(toY, toX) and GameBoard.validate_move(board_positions[toY][toX], upper=True)): moves.append(GameBoard.board_pos_name[y][x] + GameBoard.board_pos_name[toY][toX]) if(K_x != None and k_x != None and K_x == k_x): face_to_face = True for i in range(K_y + 1, k_y, 1): if(board_positions[i][K_x].isalpha()): face_to_face = False if(face_to_face == True): if(current_player == 'b'): moves.append(GameBoard.board_pos_name[k_y][k_x] + GameBoard.board_pos_name[K_y][K_x]) else: moves.append(GameBoard.board_pos_name[K_y][K_x] + GameBoard.board_pos_name[k_y][k_x]) return moves
python
import numpy as np import theano import theano.tensor as T import util def vanilla(params, gradients, opts): return [(param, param - opts.learning_rate * gradient) for param, gradient in zip(params, gradients)] def momentum(params, gradients, opts): assert opts.momentum >= 0.0 and opts.momentum <= 1.0 updates = [] for param, gradient in zip(params, gradients): velocity_t0 = util.zeros_in_the_shape_of(param) velocity_t1 = opts.momentum * velocity_t0 - opts.learning_rate * gradient updates.append((velocity_t0, velocity_t1)) updates.append((param, param + velocity_t1)) return updates def rmsprop(params, gradients, opts): assert opts.momentum assert opts.momentum >= 0.0 and opts.momentum <= 1.0 updates = [] for param_t0, gradient in zip(params, gradients): # rmsprop see slide 29 of http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf # first the mean_sqr exponential moving average mean_sqr_t0 = util.zeros_in_the_shape_of(param_t0) mean_sqr_t1 = (opts.momentum * mean_sqr_t0) + ((1.0-opts.momentum) * gradient**2) updates.append((mean_sqr_t0, mean_sqr_t1)) # update param surpressing gradient by this average param_t1 = param_t0 - opts.learning_rate * (gradient / T.sqrt(mean_sqr_t1 + 1e-10)) updates.append((param_t0, param_t1)) return updates
python
distancia = float(input('Qual é a distancia da sua viagem?' )) print('voce esta prestes a começa uma viagem de {}km.'.format(distancia)) preço = distancia * 0.50 if distancia <= 200 else distancia * 0.45 print('É o preço da sua passagem sera de R${:2f}'.format(preço)) opcao4 = '' while opcao4!= 'S' and opcao4 != 'N': opcao4 = str(input('você deseja executar novamente [S/N]?')).upper()[0] if opcao4 == 'S': import JOGO if opcao4 == 'N': print('obrigado por ultilizar nossos serviços') break
python
# ### 1.5 function that post process the ccs results import numpy as np import pandas as pd # define a function that could calculate the overall annual emission and lock emission def bau_ccs_post (df): coal_annual_existing_emission = df.loc[:,('coal_power_annual_emission_existing')].values coal_annual_new_emission = df.loc[:,('coal_power_annual_emission_new')].values gas_annual_existing_emission = df.loc[:,('gas_power_annual_emission_existing')].values gas_annual_new_emission = df.loc[:,('gas_power_annual_emission_new')].values oil_annual_existing_emission = df.loc[:,('oil_power_annual_emission_existing')].values oil_annual_new_emission = df.loc[:,('oil_power_annual_emission_new')].values coal_lock_existing_emission = df.loc[:,('coal_power_lock_emission_existing')].values coal_lock_new_emission = df.loc[:,('coal_power_lock_emission_new')].values gas_lock_existing_emission = df.loc[:,('gas_power_lock_emission_existing')].values gas_lock_new_emission = df.loc[:,('gas_power_lock_emission_new')].values oil_lock_existing_emission = df.loc[:,('oil_power_lock_emission_existing')].values oil_lock_new_emission = df.loc[:,('oil_power_lock_emission_new')].values coal_overall_lock_emission = np.zeros(shape=(36)) gas_overall_lock_emission = np.zeros(shape=(36)) oil_overall_lock_emission = np.zeros(shape=(36)) coal_overall_annual_emission = np.zeros(shape=(36)) gas_overall_annual_emission = np.zeros(shape=(36)) oil_overall_annual_emission = np.zeros(shape=(36)) for i in range(36): coal_annual_exisitng = coal_annual_existing_emission[i] gas_annual_exisitng = gas_annual_existing_emission[i] oil_annual_exisitng = oil_annual_existing_emission[i] coal_annual_added = 0 gas_annual_added = 0 oil_annual_added = 0 for j in range(i+1): coal_annual_new = coal_annual_new_emission[j] coal_annual_added = coal_annual_added + coal_annual_new gas_annual_new = gas_annual_new_emission[j] gas_annual_added = gas_annual_added + gas_annual_new oil_annual_new = oil_annual_new_emission[j] oil_annual_added = oil_annual_added + oil_annual_new coal_overall_annual_emission[i] = coal_annual_exisitng + coal_annual_added df.loc[:,('coal_annual_emission')] = coal_overall_annual_emission gas_overall_annual_emission[i] = gas_annual_exisitng + gas_annual_added df.loc[:,('gas_annual_emission')] = gas_overall_annual_emission oil_overall_annual_emission[i] = oil_annual_exisitng + oil_annual_added df.loc[:,('oil_annual_emission')] = oil_overall_annual_emission for i in range(36): coal_lock_exisitng = coal_lock_existing_emission[i] gas_lock_exisitng = gas_lock_existing_emission[i] oil_lock_exisitng = oil_lock_existing_emission[i] coal_lock_added = 0 gas_lock_added = 0 oil_lock_added = 0 for j in range(i+1): coal_lock_new = coal_lock_new_emission[j]* (1-0.025*(i-j)) coal_lock_added = coal_lock_added + coal_lock_new gas_lock_new = gas_lock_new_emission[j]* (1-0.025*(i-j)) gas_lock_added = gas_lock_added + gas_lock_new oil_lock_new = oil_lock_new_emission[j]* (1-0.025*(i-j)) oil_lock_added = oil_lock_added + oil_lock_new coal_overall_lock_emission[i] = coal_lock_exisitng + coal_lock_added df.loc[:,('coal_lock_emission')] = coal_overall_lock_emission gas_overall_lock_emission[i] = gas_lock_exisitng + gas_lock_added df.loc[:,('gas_lock_emission')] = gas_overall_lock_emission oil_overall_lock_emission[i] = oil_lock_exisitng + oil_lock_added df.loc[:,('oil_lock_emission')] = oil_overall_lock_emission return df # define a function that could select the useful columns from the table def ccs_results (ccs): ccs_cols = ['year', 'coal_power_capacity_GW','coal_power_capacity_existing','coal_power_capacity_new', 'coal_annual_emission','coal_power_annual_emission_existing','coal_power_annual_emission_new', 'coal_lock_emission','coal_power_lock_emission_existing','coal_power_lock_emission_new', 'gas_power_capacity_GW','gas_power_capacity_existing','gas_power_capacity_new', 'gas_annual_emission','gas_power_annual_emission_existing','gas_power_annual_emission_new', 'gas_lock_emission','gas_power_lock_emission_existing','gas_power_lock_emission_new', 'oil_power_capacity_GW','oil_power_capacity_existing','oil_power_capacity_new', 'oil_annual_emission','oil_power_annual_emission_existing','oil_power_annual_emission_new', 'oil_lock_emission','oil_power_lock_emission_existing','oil_power_lock_emission_new', 'coal_power_capacity_new1','coal_power_annual_emission_new1','coal_power_annual_emission_new1', 'coal_power_capacity_new2','coal_power_annual_emission_new2','coal_power_annual_emission_new2', 'gas_power_capacity_new1','gas_power_annual_emission_new1','gas_power_annual_emission_new1', 'gas_power_capacity_new2','gas_power_annual_emission_new2','gas_power_annual_emission_new2', 'oil_power_capacity_new1','oil_power_annual_emission_new1','oil_power_annual_emission_new1', 'oil_power_capacity_new2','oil_power_annual_emission_new2','oil_power_annual_emission_new2'] ccs = ccs[ccs_cols] return ccs
python
from bokeh.models import HoverTool, ColumnDataSource from bokeh.plotting import figure, output_file, show from bokeh.models.markers import marker_types import bokeh.layouts import datetime import numpy as np import DownloadData age, year_week, data = DownloadData.incidence() np_data = np.array(data) np_data[np_data == None] = 0 data = np_data np.savetxt('age.txt', age, fmt="%s") np.savetxt('year_week.txt', year_week, fmt="%s") np.savetxt('data.txt', np_data, fmt="%s") age = np.genfromtxt('age.txt', dtype='str') year_week = np.genfromtxt('year_week.txt', dtype='str') data = np.loadtxt('data.txt') data, interp = DownloadData.extrapolateLastWeek(year_week, data) print('Extrapolated last DataPoint: ', interp) def yw2datetime(yw): if isinstance(yw, (list, np.ndarray)): return [yw2datetime(i) for i in yw] yw_int = [int(i) for i in yw.split('-KW')] weekday = datetime.datetime(yw_int[0], 1, 1).weekday() if weekday <= 3: # Thursday date_diff = 1 - weekday else: date_diff = 8 - weekday if date_diff > 0: return datetime.datetime(yw_int[0], 1, date_diff) + datetime.timedelta(weeks=yw_int[1] - 1, days=6) else: return datetime.datetime(yw_int[0] - 1, 12, 31 + date_diff) + datetime.timedelta(weeks=yw_int[1] - 1, days=6) # output to static HTML file output_file("lines.html") # create a new plot with a title and axis labels hover_tool = HoverTool( tooltips=[ ('Altersgruppe', "$name"), ("Datum", "$x"), ("Inzidenz", "$y"), ], formatters={ '$x': 'datetime', }, mode='vline' ) p1 = figure(title="Inzidenz nach Altersgruppen", x_axis_type='datetime', x_axis_label='Datum', y_axis_label='Inzidenz', tools='pan,wheel_zoom,box_zoom,reset') p1.sizing_mode = "stretch_both" label = bokeh.models.Label(x=3, y=3, x_units='screen', y_units='screen', text='Stand: ' + datetime.datetime.now().strftime("%d.%m.%Y %H:%M") + '; Quellen: Fallzahlen - Robert Koch-Institut: SurvStat@RKI 2.0, https://survstat.rki.de;' + ' Bevölkerung: https://www-genesis.destatis.de/ 12411-0005 31.12.2019', text_font_size='8pt') # p1.add_layout(label) p1.xaxis[0].formatter = bokeh.models.DatetimeTickFormatter() # PrintfTickFormatter(format="%d.%m.%Y") cmap_colors = np.zeros([3, len(age)]) cmap_colors[0] = np.interp(np.linspace(0, 1, len(age)), np.linspace(0, 1, 4), np.array([17.6, 19.2, 83.1, 83.1]) / 100 * 255) cmap_colors[1] = np.interp(np.linspace(0, 1, len(age)), np.linspace(0, 1, 4), np.array([66.7, 30.2, 22, 62.7]) / 100 * 255) cmap_colors[2] = np.interp(np.linspace(0, 1, len(age)), np.linspace(0, 1, 4), np.array([17.6, 55.7, 22, 22]) / 100 * 255) cmap_colors = cmap_colors.astype(np.uint8) marker_list = [m_type for m_type in marker_types] marker_selector = [0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25, 0, 1, 6, 8, 14, 15, 16, 12, 21, 24, 25] glyph_list = [] for i in range(len(age)): if age[i] == 'Gesamt': line_color = (0, 0, 0) line_width = 2 else: line_color = tuple(cmap_colors[:, i]) line_width = 1 muted_alpha = .1 source = ColumnDataSource(data=dict( x_list=list(yw2datetime(year_week)), y_list=list(data[i][:]), desc=[age[i] for x in range(len(year_week))], col=[line_color for x in year_week] )) if interp: li = p1.line(source.data['x_list'][:-1], source.data['y_list'][:-1], line_color=line_color, line_width=line_width, line_alpha=1, muted_alpha=muted_alpha, legend_label=age[i]) li2 = p1.line(source.data['x_list'][-2:], source.data['y_list'][-2:], line_color=line_color, line_width=line_width, line_alpha=1, muted_alpha=muted_alpha, legend_label=age[i], line_dash=[3, 3]) else: li = p1.line(source.data['x_list'], source.data['y_list'], line_color=line_color, line_width=line_width, line_alpha=1, muted_alpha=muted_alpha, legend_label=age[i]) sca = p1.scatter(x="x_list", y="y_list", source=source, muted_alpha=muted_alpha, legend_label=age[i]) sca.glyph.marker = marker_list[marker_selector[i]] sca.glyph.line_color = line_color sca.glyph.fill_color = None sca.glyph.size = 8 glyph_list.append(sca) p1.add_tools(HoverTool( renderers=glyph_list, tooltips=[ ("Alter", "@desc"), ("Datum", "@x_list{%d.%m.%Y}"), ("Inzidenz", "@y_list{0}"), ], formatters={'@x_list': 'datetime', }, )) p1.legend.location = "top_left" p1.legend.click_policy = "mute" p1.legend.orientation = "horizontal" column = bokeh.layouts.column([p1]) # , p2]) column.sizing_mode = "stretch_both" show(column)
python
#!/usr/bin/env python # # Copyright 2014 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from hpsdnclient.api import Api from hpsdnclient.auth import XAuthToken from hpsdnclient.apibase import ApiBase from hpsdnclient.core import CoreMixin from hpsdnclient.net import NetMixin from hpsdnclient.of import OfMixin class ApiTestCase(unittest.TestCase): def setUp(self): self.auth = XAuthToken(server='example.com', user='sdn', password='skyline' ) def test_api_instantiation(self): api = Api('10.10.10.10', self.auth) self.assertTrue(isinstance(api, ApiBase)) self.assertTrue(isinstance(api, CoreMixin)) self.assertTrue(isinstance(api, NetMixin)) self.assertTrue(isinstance(api, OfMixin)) self.assertEqual(api.restclient.auth, self.auth) self.assertEqual(api.controller, '10.10.10.10')
python
#!/usr/bin/env python3 """ Author : Ken Youens-Clark <[email protected]> Date : 2020-11-11 Purpose: Find patterns in files """ import argparse import re from typing import List, NamedTuple, TextIO class Args(NamedTuple): """ Command-line arguments """ pattern_file: TextIO search_files: List[TextIO] out_file: TextIO # -------------------------------------------------- def get_args() -> Args: """ Get command-line arguments """ parser = argparse.ArgumentParser( description='Find patterns in files', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-p', '--pattern', help='Patterns file', metavar='FILE', type=argparse.FileType('rt'), required=True) parser.add_argument('-f', '--file', help='A readable file', metavar='FILE', type=argparse.FileType('rt'), required=True, nargs='+') parser.add_argument('-o', '--out_file', help='Output file', metavar='FILE', type=argparse.FileType('wt'), default='out.txt') args = parser.parse_args() return Args(pattern_file=args.pattern, search_files=args.file, out_file=args.out_file) # -------------------------------------------------- def main() -> None: """ Make a jazz noise here """ args = get_args() patterns = list(map(lambda s: re.compile(s.rstrip()), args.pattern_file)) num_found = 0 for fh in args.search_files: for line in map(str.rstrip, fh): for regex in patterns: if regex.search(line): num_found += 1 print(line, file=args.out_file) print(f'Done, wrote {num_found} matches to "{args.out_file.name}."') # -------------------------------------------------- if __name__ == '__main__': main()
python
#!/usr/bin/env python3 from __future__ import division, absolute_import, print_function, unicode_literals import subprocess import re import time import sys import argparse import yaml from timeparse import timeparse def call(args): return '\n'.join(subprocess.check_output(args).decode().splitlines()) def get_all_statuses(): return [tuple(x.split(",")) for x in call(["docker", "ps", "--all", "--format", "{{.ID}},{{.Status}}"]).splitlines()] def get_statuses_for_ids(ids): status_list = get_all_statuses() statuses = {} for id in ids: status = None for s in status_list: if id.find(s[0]) == 0: status = s[1] break if status is None: status = "removed" statuses[id] = status return statuses def convert_status(s): res = re.search(r"^([^\s]+)[^\(]*(?:\((.*)\).*)?$", s) if res is None: raise Exception("Unknown status format %s" % s) if res.group(1) == "Up": if res.group(2) == "health: starting": return "starting" elif res.group(2) == "healthy": return "healthy" elif res.group(2) == "unhealthy": return "unhealthy" elif res.group(2) is None: return "up" else: raise Exception("Unknown status format %s" % s) else: return "down" def get_converted_statuses(ids): return dict([(k, convert_status(v)) for k, v in get_statuses_for_ids(ids).items()]) def get_docker_compose_args(args): nargs = [] for f in args.file: nargs += ['-f', f] if args.project_name: nargs += ['-p', args.project_name] return nargs def get_services_ids(dc_args): services_names = yaml.safe_load(call(["docker-compose"] + dc_args + ["config"]))["services"].keys() services = {} for name in services_names: id = call(["docker-compose"] + dc_args + ["ps", '-q', name]).strip() if id == '': continue services[name] = id return services def get_services_statuses(services_with_ids): statuses_by_id = get_converted_statuses(services_with_ids.values()) return dict([(k, statuses_by_id[v]) for k, v in services_with_ids.items()]) def main(): parser = argparse.ArgumentParser( description='Wait until all services in a docker-compose file are healthy. Options are forwarded to docker-compose.', usage='docker-compose-wait.py [options]' ) parser.add_argument('-f', '--file', action='append', default=[], help='Specify an alternate compose file (default: docker-compose.yml)') parser.add_argument('-p', '--project-name', help='Specify an alternate project name (default: directory name)') parser.add_argument('-w', '--wait', action='store_true', help='Wait for all the processes to stabilize before exit (default behavior is to exit ' + 'as soon as any of the processes is unhealthy)') parser.add_argument('-t', '--timeout', default=None, help='Max amount of time during which this command will run (expressed using the ' + 'same format than in docker-compose.yml files, example: 5s, 10m,... ). If there is a ' + 'timeout this command will exit returning 1. (default: wait for an infinite amount of time)') args = parser.parse_args() dc_args = get_docker_compose_args(args) start_time = time.time() timeout = timeparse(args.timeout) if args.timeout is not None else None services_ids = get_services_ids(dc_args) up_statuses = set(['healthy', 'up']) down_statuses = set(['down', 'unhealthy', 'removed']) stabilized_statuses = up_statuses | down_statuses while True: statuses = get_services_statuses(services_ids) if args.wait: if any([v not in stabilized_statuses for k, v in statuses.items()]): continue if all([v in up_statuses for k, v in statuses.items()]): print("All processes up and running") exit(0) elif any([v in down_statuses for k, v in statuses.items()]): print("Some processes failed:") for k, v in [(k, v) for k, v in statuses.items() if v in down_statuses]: print("%s is %s" % (k, v)) exit(-1) if args.timeout is not None and time.time() > start_time + timeout: print("Timeout") exit(1) time.sleep(1) if __name__ == "__main__": # execute only if run as a script main()
python
from durabledict.base import DurableDict from durabledict.encoding import NoOpEncoding class MemoryDict(DurableDict): ''' Does not actually persist any data to a persistant storage. Instead, keeps everything in memory. This is really only useful for use in tests ''' def __init__(self, autosync=True, encoding=NoOpEncoding, *args, **kwargs): self.__storage = dict() self.__last_updated = 1 super(MemoryDict, self).__init__(autosync, encoding, *args, **kwargs) def persist(self, key, val): self.__storage[key] = self.encoding.encode(val) self.__last_updated += 1 def depersist(self, key): del self.__storage[key] self.__last_updated += 1 def durables(self): encoded_tuples = self.__storage.items() tuples = [(k, self.encoding.decode(v)) for k, v in encoded_tuples] return dict(tuples) def last_updated(self): return self.__last_updated def _setdefault(self, key, default=None): self.__last_updated += 1 val = self.__storage.setdefault(key, self.encoding.encode(default)) return self.encoding.decode(val) def _pop(self, key, default=None): self.__last_updated += 1 if default: default = self.encoding.encode(default) val = self.__storage.pop(key, default) if val is None: raise KeyError return self.encoding.decode(val)
python
# Copyright (c) The InferLO authors. All rights reserved. # Licensed under the Apache License, Version 2.0 - see LICENSE. import random from copy import copy from functools import reduce from typing import List, Optional import numpy as np from .factor import Factor, product_over_ from .graphical_model import GraphicalModel class MiniBucketElimination: """Mini-Bucket elimination algorithm.""" def __init__(self, model: GraphicalModel = None, **kwargs): self.base_logZ = 0.0 self.model = model.copy() self.working_model = None # type: Optional[GraphicalModel] if "elimination_order" in kwargs: self.elimination_order = copy(kwargs["elimination_order"]) else: self.elimination_order = [] if "renormalized_model" not in kwargs: self._renormalize_model(**kwargs) else: self.renormalized_model = kwargs["renormalized_model"].copy() self.renormalized_elimination_order = kwargs[ "renormalized_elimination_order"] self.variables_replicated_from_ = kwargs[ "variables_replicated_from_"] self.base_logZ = kwargs["base_logZ"] self._initialize_relation() def _initialize_relation(self): variable_upper_to_ = {var: None for var in self.renormalized_model.variables} variables_lower_to_ = {var: [] for var in self.renormalized_model.variables} factor_upper_to_ = {var: Factor.scalar(1.0) for var in self.renormalized_model.variables} upper_candidate_for_ = {var: set() for var in self.renormalized_model.variables} for fac in self.renormalized_model.factors: lower_var = fac.first_variable_in_order(self.renormalized_elimination_order) if lower_var is not None: factor_upper_to_[lower_var] = fac for var in fac.variables: if var in self.renormalized_elimination_order: upper_candidate_for_[lower_var].add(var) for var in self.renormalized_elimination_order: m_vars = sorted( upper_candidate_for_[var], key=self.renormalized_elimination_order.index ) upper_candidate_for_[var] = copy(m_vars[m_vars.index(var) + 1:]) if m_vars.index(var) + 1 < len(m_vars): upper_var = m_vars[m_vars.index(var) + 1] variable_upper_to_[var] = upper_var variables_lower_to_[upper_var].append(var) upper_candidate_for_[upper_var] = upper_candidate_for_[ upper_var].union( m_vars[m_vars.index(var) + 1:] ) self.variable_upper_to_ = variable_upper_to_ self.variables_lower_to_ = variables_lower_to_ self.factors_adj_to_ = { var: self.renormalized_model.get_adj_factors(var) for var in self.renormalized_model.variables } self.factor_upper_to_ = factor_upper_to_ # self.upper_candidate_for_ = upper_candidate_for_ def _renormalize_model(self, **kwargs): ibound = kwargs["ibound"] use_min_fill = True if "elimination_order_method" in kwargs: if kwargs["elimination_order_method"] == "random": elimination_order = copy(self.model.variables) use_min_fill = False random.shuffle(elimination_order) elif kwargs["elimination_order_method"] == "not_random": elimination_order = copy(self.model.variables) use_min_fill = False elif kwargs["elimination_order_method"] == "min_fill": elimination_order = [] use_min_fill = True elif "elimination_order" in kwargs: elimination_order = copy(kwargs["elimination_order"]) use_min_fill = False else: elimination_order = copy(self.model.variables) use_min_fill = False random.shuffle(elimination_order) # elimination_order = [] # use_min_fill = True renormalized_model = self.model.copy() renormalized_elimination_order = [] variables_replicated_from_ = {var: [] for var in self.model.variables} factors_adj_to_ = dict() working_factorss = [[fac] for fac in renormalized_model.factors] eliminated_variables = [] for t in range(len(elimination_order)): uneliminated_variables = sorted( set(self.model.variables) - set(eliminated_variables)) candidate_mini_buckets_for_ = dict() bucket_for_ = {cand_var: [] for cand_var in uneliminated_variables} for facs in working_factorss: for cand_var in self._get_variables_in( [[fac] for fac in facs], eliminated=eliminated_variables): bucket_for_[cand_var].append(facs) for cand_var in uneliminated_variables: candidate_mini_buckets_for_[cand_var] = [] for facs in bucket_for_[cand_var]: mini_bucket = None for mb in candidate_mini_buckets_for_[cand_var]: eliminated = eliminated_variables + [cand_var] if self.get_bucket_size( mb + [facs], eliminated=eliminated) < ibound: mini_bucket = mb break if mini_bucket: mini_bucket.append(facs) else: candidate_mini_buckets_for_[cand_var].append([facs]) if use_min_fill: var, mini_buckets = min( candidate_mini_buckets_for_.items(), key=lambda x: len( x[1])) elimination_order.append(var) else: var = elimination_order[t] mini_buckets = candidate_mini_buckets_for_[var] eliminated_variables.append(var) mini_buckets.sort( key=lambda mb: self.get_bucket_size( mb, eliminated=eliminated_variables)) remove_idx = [] for working_facs_idx, working_facs in enumerate(working_factorss): if var in self._get_variables_in( [[fac] for fac in working_facs]): remove_idx.append(working_facs_idx) for i in reversed(sorted(remove_idx)): working_factorss.pop(i) for (i, mb) in enumerate(mini_buckets): mb_facs = [fac for facs in mb for fac in facs] working_factorss.append(mb_facs) replicated_var = var + "_" + str(i) variables_replicated_from_[var].append(replicated_var) factors_adj_to_[replicated_var] = [fac for fac in mb_facs if var in fac.variables] for var in elimination_order: for replicated_var in variables_replicated_from_[var]: renormalized_model.add_variable(replicated_var) renormalized_elimination_order.append(replicated_var) for fac in factors_adj_to_[replicated_var]: fac.variables[fac.variables.index(var)] = replicated_var renormalized_model.remove_variable(var) # For each variable find factors which will be eliminated with it. factors_upper_to_ = {var: [] for var in renormalized_elimination_order} for fac in renormalized_model.factors: lower_var = fac.first_variable_in_order(renormalized_elimination_order) if lower_var is not None: factors_upper_to_[lower_var].append(fac) assert set(factors_upper_to_.keys()) == set( renormalized_elimination_order) for var, facs in factors_upper_to_.items(): if facs: new_fac = product_over_(*facs) for fac in facs: renormalized_model.remove_factor(fac) renormalized_model.add_factor(new_fac) base_logZ = 0.0 for fac in renormalized_model.factors: base_logZ += np.max(fac.log_values) fac.log_values -= np.max(fac.log_values) self.elimination_order = elimination_order self.renormalized_model = renormalized_model self.renormalized_elimination_order = renormalized_elimination_order self.variables_replicated_from_ = variables_replicated_from_ self.base_logZ = base_logZ def run(self, get_z=True): """Runs the algorithm. Eliminates all variables in elimination_order, and stores eliminated model in self.working_model. """ self.working_model = self.renormalized_model.copy() for var in self.elimination_order: for i, rvar in enumerate(self.variables_replicated_from_[var]): if i < len(self.variables_replicated_from_[var]) - 1: self.working_model.contract_variable(rvar, operator="max") else: self.working_model.contract_variable(rvar, operator="sum") def get_log_z(self) -> float: """Returns logarithm of partition function for fully eliminated model.""" assert self.working_model is not None, 'Called get_log_z() before run().' assert len(self.working_model.variables) == 0, "Model is not fully eliminated." log_z = self.base_logZ for fac in self.working_model.factors: log_z += fac.log_values return log_z def _get_variables_in(self, bucket, eliminated=None): if eliminated is None: eliminated = [] if [fac.variables for facs in bucket for fac in facs]: variables_in_bucket = reduce( lambda vars1, vars2: set(vars1).union(set(vars2)), [fac.variables for facs in bucket for fac in facs], ) variables_in_bucket = sorted( set(variables_in_bucket) - set(eliminated)) return list(variables_in_bucket) else: return [] def get_bucket_size(self, bucket: List[Factor], eliminated=None): """Counts variables referenced by factors in given bucket.""" if eliminated is None: eliminated = [] variables_in_bucket = self._get_variables_in(bucket, eliminated) if variables_in_bucket: return len(variables_in_bucket) else: return 0
python
import itertools from collections import defaultdict, OrderedDict, Counter, namedtuple, deque # defaultdict can define default_factory where # accessing a key which does not exist, creates it with a default value # and the default value is returned # commonly used to append to lists in dictionaries dd1 = defaultdict(list) print dd1 print dd1['addme'] print dd1 print dict(dd1) print '---' # grouping idiom names = ['van Rossum', 'torvalds', 'stallman', 'thompson', 'ritchie', 'wall', 'gosling'] d = defaultdict(list) for name in names: key = len(name) d[key].append(name) print d print '---' # defaultdict inside defaultdict... # trees, json # https://gist.github.com/hrldcpr/2012250 # https://www.youtube.com/watch?v=uWGPxYDo87Q#t=14m35s dd2 = defaultdict(lambda: defaultdict(dict)) print dd2 print dd2['lev1']['lev2'] print dd2 print '---' # Counter - unordered collection where elements are dict keys # and their counts are stored as dict values c = Counter('these are attack eyebrows.') print c print "t occurs", c['t'], "times" #0 returned for missing items instead of KeyError as with dict print "z occurs", c['z'], "times" print "Top two most common:", c.most_common(2) print "appear more than once:", [k for k, v in c.iteritems() if v > 1] #elements returns iterator print "elements:", list(c.elements()) del c['t'] print "after 't' removed:", c print '-' # with generator print Counter(len(name) for name in names) print '-' # nested lst = [[1, 2, 1], [2, 3, 1, 1], [], [4, 5]] print Counter(itertools.chain(*lst)) #print Counter(val for sub in lst for val in sub) print '-' # other ways to init print Counter({'a': 4, 'b': 3}) print Counter(a=4, b=3) print '---' # namedtuple- tuple subclass, uses no more memory than regular tuple # "you should use named tuples instead of tuples anywhere you think object notation # will make your code more pythonic and more easily readable" # http://stackoverflow.com/a/2970722 # fieldnames specified as a sequence of strings # can also specify fieldnames as single string with fieldnames separated by # whitespace and/or commas Point = namedtuple('Point', ['x', 'y']) p1 = Point(1.0, 2.0) p2 = Point(x=-1.0, y=-2.0) print p1 print p2 print p1.x, p1[1] print p2.x, p2.y print '-' # Raymond Hettinger, author of namedtuple on 'clarifying # multiple return values with named tuples': # https://www.youtube.com/watch?v=OSGv2VnC0go&t=32m19s def get_name(): name = namedtuple("name", ["first", "middle", "last"]) return name("John", "Marwood", "Cleese") name = get_name() print name.first, name.middle, name.last print '---' # deque - pronounced 'deck', thread-safe d = deque('efg') d.append('h') d.appendleft('d') print d # extend and extendleft take an iterable d.extend('ijk') # left appends in the arg in reverse order to the front d.extendleft('cba') print d print d.pop() print d.popleft() print d d.remove('i') print d # when new items are added beyond maxlen an equal number # are removed from the opposite end d = deque(maxlen=3) d.extend('abc') print d d.append('d') print d d.appendleft('a') print d print '---' # OrderedDict - dictionary that preserves the order keys were added od1 = OrderedDict() od1['a'] = 0 od1['b'] = 1 od1['c'] = 2 od1['d'] = 3 print od1 a_dict = {} a_dict['a'] = 0 a_dict['b'] = 1 a_dict['c'] = 2 a_dict['d'] = 3 print a_dict print '-' lst = [1, 2, 3, 1, 1, 4, 5, 4, 1] print "lst:", lst # https://stackoverflow.com/a/7961425 print "with duplicates removed, order maintained:", list(OrderedDict.fromkeys(lst))
python
#!/usr/bin/python3 from evdev import InputDevice, categorize, ecodes import configparser, os config = configparser.ConfigParser() config.read(os.path.dirname(os.path.realpath(__file__))+'/config.ini') def sysrun(command): os.system(command+ " &") dev = InputDevice(config["DEVICE"]["path"]) dev.grab() for event in dev.read_loop(): if event.type == ecodes.EV_KEY: key = categorize(event) if key.keystate == key.key_down: print(key.keycode) if key.keycode in config["KEYS"].keys(): print("Executing "+config["KEYS"][key.keycode]) sysrun(config["KEYS"][key.keycode])
python
from .colored import ( info, error, fatal ) from .get_env_var import get_env_var from .sync_to_async import sync_to_async __ALL__ = ( 'info', 'error', 'fatal', 'get_env_var', 'sync_to_async' )
python
from .doc import AssemblyDocCommand from .helpers import instruction_set from .helpers import support_set from .completion import completionListener from .context import ContextManager __all__ = ["AssemblyDocCommand", "instruction_set","support_set", "completionListener", "ContextManager"]
python
#!/usr/bin/python # Filename: ex_for.py for i in range(0, 5): print("{0}: hello".format(i)) print('The for loop is over')
python
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # ============================================================================ # Erfr - One-time pad encryption tool # Extractor script # Copyright (C) 2018 by Ralf Kilian # Distributed under the MIT License (https://opensource.org/licenses/MIT) # # Website: http://www.urbanware.org # GitHub: https://github.com/urbanware-org/erfr # ============================================================================ import os import sys def main(): from core import clap from core import common from datetime import datetime as dt try: p = clap.Parser() except Exception as e: print "%s: error: %s" % (os.path.basename(sys.argv[0]), e) sys.exit(1) p.set_description("Extract a user-defined byte range from an existing " \ "into a new file.") p.set_epilog("Further information and usage examples can be found " \ "inside the documentation file for this script.") # Define required arguments p.add_avalue("-i", "--input-file", "input file path", "input_file", None, True) p.add_avalue("-l", "--length", "number of bytes to read", "length", None, True) p.add_avalue("-o", "--output-file", "output file path", "output_file", None, True) p.add_avalue("-s", "--offset", "position where to start reading", "offset", None, True) # Define optional arguments p.add_avalue("-b", "--buffer-size", "buffer size in bytes", "buffer_size", 4096, False) p.add_switch("-h", "--help", "print this help message and exit", None, True, False) p.add_switch(None, "--overwrite", "overwrite existing file", "overwrite", True, False) p.add_switch("-r", "--remove", "remove the extracted data from the " \ "input file", "remove_bytes", True, False) p.add_switch(None, "--version", "print the version number and exit", None, True, False) if len(sys.argv) == 1: p.error("At least one required argument is missing.") elif ("-h" in sys.argv) or ("--help" in sys.argv): p.print_help() sys.exit(0) elif "--version" in sys.argv: print common.get_version() sys.exit(0) args = p.parse_args() remove_bytes = None force_remove = \ bool(int(common.global_config(["Extractor"], ["force_remove"], "0"))) if force_remove: remove_bytes = True else: remove_bytes = args.remove_bytes try: timestamp = dt.now() common.extract_bytes(args.input_file, args.output_file, args.offset, args.length, args.buffer_size, args.overwrite, remove_bytes) print "Elapsed time: %s" % (dt.now() - timestamp) except Exception as e: p.error(e) if __name__ == "__main__": main() # EOF
python
import logging g_logger = None def get_logger(): return g_logger def configure_logging(name: str, level: int = logging.DEBUG): logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=level) global g_logger g_logger = logging.getLogger(name=name) g_logger.debug("logger with name=\"{}\" configured, min severity={}".format(name, logging.getLevelName(level)))
python
import numpy as np import torch import torch.nn.functional as F from PIL import Image from scipy import linalg import torchvision from torchvision import datasets, transforms from Tools import FLAGS def get_dataset(train, subset): transf = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),] ) if FLAGS.dataset.lower() == "svhn": if train is True: split = "train" else: split = "test" sets = datasets.SVHN( "/home/LargeData/Regular/svhn", split=split, download=True, transform=transf ) elif FLAGS.dataset.lower() == "cifar10": sets = datasets.CIFAR10( "/home/LargeData/Regular/cifar", train=train, download=True, transform=transf, ) elif FLAGS.dataset.lower() == "cifar100": sets = datasets.CIFAR100( "/home/LargeData/Regular/cifar", train=train, download=True, transform=transf, ) return sets def inf_train_gen(batch_size, train=True, infinity=True, subset=0): loader = torch.utils.data.DataLoader( get_dataset(train, subset), batch_size, drop_last=True, shuffle=True, num_workers=8, ) if infinity is True: while True: for img, labels in loader: yield img, labels else: for img, labels in loader: yield img, labels if __name__ == "__main__": # Utils.config.load_config("./configs/classifier_cifar10_mt_aug.yaml") FLAGS.zca = True FLAGS.translate = 2 # wrapper = AugmentWrapper() dataset = get_dataset(True, 0) img_list = [] for i in range(100): img, _ = dataset.__getitem__(i) img_list.append(img) img_list = torch.stack(img_list, 0).cuda() torchvision.utils.save_image((img_list + 1) / 2, "./tmp.png", nrow=10) # img_list = wrapper(img_list) # print(torch.max(img_list), torch.min(img_list)) # torchvision.utils.save_image((img_list + 1) / 2, "./tmp1.png", nrow=10)
python
from collections.abc import Container class MyContainer(Container): def __init__(self, value): self.data = value def __contains__(self, value): return value in self.data
python
# names, grades, attributes, sentences names = ['Tom', 'Fred', 'Harry', 'Hermione', 'Ron', 'Sarah', 'Ele', 'Mike', 'Peter'] subjects = ['Maths','Science','English', 'Arts', 'Music', 'German', 'French', 'PE'] grade_adjective = { 1: ['terrible', 'horrible'], 2: ['below average', 'mediocre'], 3: ['Average', 'As expected'], 4: ['good','above average'], 5: ['Excellent', 'awesome'] } silly_excuse = { 1: ['Needs to pay attention to reading'], 2: ['should consider wearing blue wellies'], 3: ['dog ate their homework'], 4: ['is always late'], 5: ['is a genius anyway'] }
python
from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt from oauth2_provider.decorators import protected_resource import json from datetime import datetime from django.utils import timezone from sqlshare_rest.util.db import get_backend from sqlshare_rest.models import Dataset, User, Query, RecentDatasetView from sqlshare_rest.views import get_oauth_user, get403, get404, get405 from sqlshare_rest.views.sql import response_for_query from sqlshare_rest.dao.user import get_user from sqlshare_rest.dao.dataset import create_dataset_from_query from sqlshare_rest.dao.dataset import create_dataset_from_snapshot from sqlshare_rest.dao.dataset import create_preview_for_dataset from sqlshare_rest.dao.dataset import get_dataset_by_owner_and_name from sqlshare_rest.dao.dataset import update_dataset_sql, add_public_access from sqlshare_rest.dao.dataset import remove_public_access from sqlshare_rest.util.query import get_sample_data_for_query from sqlshare_rest.logger import getLogger logger = getLogger(__name__) @csrf_exempt @protected_resource() def download(request, owner, name): get_oauth_user(request) if request.META['REQUEST_METHOD'] != "POST": response = HttpResponse("") response.status_code = 405 return response try: dataset = get_dataset_by_owner_and_name(owner, name) except Dataset.DoesNotExist: return get404() except User.DoesNotExist: return get404() except Exception as ex: raise user = get_user(request) if not dataset.user_has_read_access(user): return get403() backend = get_backend() sql = backend.get_download_sql_for_dataset(dataset) download_name = "%s.csv" % name return response_for_query(sql, user, download_name) @csrf_exempt @protected_resource() def snapshot(request, owner, name): get_oauth_user(request) if request.META['REQUEST_METHOD'] != "POST": return get405() try: dataset = get_dataset_by_owner_and_name(owner, name) except Dataset.DoesNotExist: return get404() except User.DoesNotExist: return get404() except Exception as ex: raise user = get_user(request) if not dataset.user_has_read_access(user): return get403() values = json.loads(request.body.decode("utf-8")) new_name = values["name"] description = values["description"] is_public = values.get("is_public", True) logger.info("POST dataset snapshot; owner: %s; name: %s; " "destination_name: %s; is_public: %s" % (owner, name, new_name, is_public), request) new_dataset = create_dataset_from_snapshot(user, new_name, dataset) if is_public: new_dataset.is_public = True else: new_dataset.is_public = False new_dataset.save() response = HttpResponse("") response["location"] = new_dataset.get_url() response.status_code = 201 return response @csrf_exempt @protected_resource() def dataset(request, owner, name): get_oauth_user(request) if request.META['REQUEST_METHOD'] == "GET": return _get_dataset(request, owner, name) if request.META['REQUEST_METHOD'] == "PUT": return _put_dataset(request, owner, name) if request.META['REQUEST_METHOD'] == "PATCH": return _patch_dataset(request, owner, name) if request.META['REQUEST_METHOD'] == "DELETE": return _delete_dataset(request, owner, name) def _get_dataset(request, owner, name): try: dataset = get_dataset_by_owner_and_name(owner, name) except Dataset.DoesNotExist: return get404() except User.DoesNotExist: return get404() except Exception as ex: raise user = get_user(request) if not dataset.user_has_read_access(user): return get403() if dataset.popularity: dataset.popularity = dataset.popularity + 1 else: dataset.popularity = 1 dataset.last_viewed = timezone.now() dataset.save() get_or_create = RecentDatasetView.objects.get_or_create recent_view, created = get_or_create(dataset=dataset, user=user) recent_view.timestamp = timezone.now() recent_view.save() data = dataset.json_data() if dataset.preview_is_finished: username = user.username query = Query.objects.get(is_preview_for=dataset) sample_data, columns = get_sample_data_for_query(query, username) data["sample_data"] = sample_data data["columns"] = columns logger.info("GET dataset; owner: %s; name: %s" % (owner, name), request) data["qualified_name"] = get_backend().get_qualified_name(dataset) return HttpResponse(json.dumps(data)) def _put_dataset(request, owner, name): user = get_user(request) username = user.username if username != owner: raise Exception("Owner doesn't match user: %s, %s" % (owner, username)) data = json.loads(request.body.decode("utf-8")) try: dataset = create_dataset_from_query(username, name, data["sql_code"]) description = data.get("description", "") is_public = data.get("is_public", False) dataset.description = description dataset.is_public = is_public dataset.save() if is_public: add_public_access(dataset) else: remove_public_access(dataset) response = HttpResponse(json.dumps(dataset.json_data())) response.status_code = 201 logger.info("PUT dataset; owner: %s; name: %s" % (owner, name), request) return response except Exception as ex: response = HttpResponse("Error saving dataset: %s" % ex) response.status_code = 400 return response def _patch_dataset(request, owner, name): user = get_user(request) username = user.username if username != owner: raise Exception("Owner doesn't match user: %s, %s" % (owner, username)) dataset = get_dataset_by_owner_and_name(owner, name) data = json.loads(request.body.decode("utf-8")) updated = False if "description" in data: dataset.description = data["description"] logger.info("PATCH dataset description; owner: %s; name: %s; " "description: %s" % (owner, name, data["description"]), request) updated = True if "sql_code" in data: dataset.sql = data["sql_code"] updated = True logger.info("PATCH dataset sql_code; owner: %s; name: %s; " "sql_code: %s" % (owner, name, dataset.sql), request) try: update_dataset_sql(owner, dataset, data["sql_code"]) updated = True except Exception as ex: r = HttpResponse("Error updating sql: %s" % (str(ex))) r.status_code = 400 return r if "is_public" in data: dataset.is_public = data["is_public"] logger.info("PATCH dataset is_public; owner: %s; name: %s; " "is_public: %s" % (owner, name, dataset.is_public), request) if dataset.is_public: get_backend().add_public_access(dataset, user) else: get_backend().remove_public_access(dataset, user) updated = True dataset.save() return HttpResponse(json.dumps(dataset.json_data())) def _delete_dataset(request, owner, name): user = get_user(request) username = user.username if username != owner: raise Exception("Owner doesn't match user: %s, %s" % (owner, username)) response = HttpResponse("") try: dataset = get_dataset_by_owner_and_name(owner, name) Query.objects.filter(is_preview_for=dataset).delete() except Dataset.DoesNotExist: response.status_code = 404 return response logger.info("DELETE dataset; owner: %s; name: %s" % (owner, name), request) dataset.delete() return response
python
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.orchestration.portable.inputs_utils.""" import os import tensorflow as tf from tfx import types from tfx.orchestration import metadata from tfx.orchestration.portable import execution_publish_utils from tfx.orchestration.portable import inputs_utils from tfx.orchestration.portable import test_utils from tfx.orchestration.portable.mlmd import context_lib from tfx.proto.orchestration import pipeline_pb2 from google.protobuf import text_format from ml_metadata.proto import metadata_store_pb2 class InputsUtilsTest(test_utils.TfxTest): def setUp(self): super().setUp() self._testdata_dir = os.path.join(os.path.dirname(__file__), 'testdata') def testResolveParameters(self): parameters = pipeline_pb2.NodeParameters() text_format.Parse( """ parameters { key: 'key_one' value { field_value {string_value: 'value_one'} } } parameters { key: 'key_two' value { field_value {int_value: 2} } }""", parameters) parameters = inputs_utils.resolve_parameters(parameters) self.assertEqual(len(parameters), 2) self.assertEqual(parameters['key_one'], 'value_one') self.assertEqual(parameters['key_two'], 2) def testResolveParametersFail(self): parameters = pipeline_pb2.NodeParameters() text_format.Parse( """ parameters { key: 'key_one' value { runtime_parameter {name: 'rp'} } }""", parameters) with self.assertRaisesRegex(RuntimeError, 'Parameter value not ready'): inputs_utils.resolve_parameters(parameters) def testResolverInputsArtifacts(self): pipeline = pipeline_pb2.Pipeline() self.load_proto_from_text( os.path.join(self._testdata_dir, 'pipeline_for_input_resolver_test.pbtxt'), pipeline) my_example_gen = pipeline.nodes[0].pipeline_node another_example_gen = pipeline.nodes[1].pipeline_node my_transform = pipeline.nodes[2].pipeline_node my_trainer = pipeline.nodes[3].pipeline_node connection_config = metadata_store_pb2.ConnectionConfig() connection_config.sqlite.SetInParent() with metadata.Metadata(connection_config=connection_config) as m: # Publishes first ExampleGen with two output channels. `output_examples` # will be consumed by downstream Transform. output_example = types.Artifact( my_example_gen.outputs.outputs['output_examples'].artifact_spec.type) output_example.uri = 'my_examples_uri' side_examples = types.Artifact( my_example_gen.outputs.outputs['side_examples'].artifact_spec.type) side_examples.uri = 'side_examples_uri' contexts = context_lib.register_contexts_if_not_exists( m, my_example_gen.contexts) execution = execution_publish_utils.register_execution( m, my_example_gen.node_info.type, contexts) execution_publish_utils.publish_succeeded_execution( m, execution.id, contexts, { 'output_examples': [output_example], 'another_examples': [side_examples] }) # Publishes second ExampleGen with one output channel with the same output # key as the first ExampleGen. However this is not consumed by downstream # nodes. another_output_example = types.Artifact( another_example_gen.outputs.outputs['output_examples'].artifact_spec .type) another_output_example.uri = 'another_examples_uri' contexts = context_lib.register_contexts_if_not_exists( m, another_example_gen.contexts) execution = execution_publish_utils.register_execution( m, another_example_gen.node_info.type, contexts) execution_publish_utils.publish_succeeded_execution( m, execution.id, contexts, { 'output_examples': [another_output_example], }) # Gets inputs for transform. Should get back what the first ExampleGen # published in the `output_examples` channel. transform_inputs = inputs_utils.resolve_input_artifacts( m, my_transform.inputs) self.assertEqual(len(transform_inputs), 1) self.assertEqual(len(transform_inputs['examples']), 1) self.assertProtoPartiallyEquals( transform_inputs['examples'][0].mlmd_artifact, output_example.mlmd_artifact, ignored_fields=[ 'create_time_since_epoch', 'last_update_time_since_epoch' ]) # Tries to resolve inputs for trainer. As trainer also requires min_count # for both input channels (from example_gen and from transform) but we did # not publish anything from transform, it should return nothing. self.assertIsNone( inputs_utils.resolve_input_artifacts(m, my_trainer.inputs)) if __name__ == '__main__': tf.test.main()
python
#!/usr/bin/env python # -*- coding: utf-8 -*- from sys import argv import bottle from bottle import default_app, request, route, response, get from pymongo import MongoClient import json import api bottle.debug(True) def enable_cors(fn): def _enable_cors(*args, **kwargs): # set CORS headers response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'GET, POST, PUT, OPTIONS' response.headers['Access-Control-Allow-Headers'] = 'Origin, Accept, Content-Type, X-Requested-With, X-CSRF-Token' if bottle.request.method != 'OPTIONS': # actual request; reply with the actual response return fn(*args, **kwargs) return _enable_cors @get('/') def home(): return "welcome to the official api for rateurspkear!" @get('/geek') def geek(): return api.__geek() @route def yo(): return "yo" @route('/login', method=["OPTIONS", "POST"]) @enable_cors def post_login(**user): return api.__post_login(**user) @route('/signup', method=["OPTIONS", "POST"]) @enable_cors def post_signup(): return api.__post_signup() # --------------------------------------------- # # speakrs api: # ready: # GET /speakrs # todo: # POST /me/set-speech-title # GET /speakr?id=id # --------------------------------------------- # @get('/speakrs') @enable_cors def get_speakrs(): return api.__get_speakrs() @get('/speakr') @enable_cors def get_speakr(): speakr_id = int(request.query.speakrId) return api.__get_speakr_by_id(speakr_id) # --------------------------------------------- # # talks api: # ready: # GET /talks # GET /get-talk?talkId=talkId # todo: # POST /rate?talkId=talkId # --------------------------------------------- # @get('/talks') @enable_cors def get_talks(): if request.query.speakrId != "": speakr_id = request.query.speakrId return api.__get_talks_by_speakrid(int(speakr_id)) else: return api.__get_talks() @get('/talk') @enable_cors def get_talk(): talkId = int(request.query.talkId) return api.__get_talk_by_id(talkId) bottle.run(host='0.0.0.0', port=argv[1])
python
class Pelicula: # Constructor de clase def __init__(self, titulo, duracion, lanzamiento): self.titulo = titulo self.duracion = duracion self.lanzamiento = lanzamiento print("Se ha creado la pelicula", self.titulo) # Redefinimos el metodo String def __str__(self): return "{} lanzada en {} con una duración de {} minutos".format(self.titulo, self.lanzamiento, self.duracion) # Redefinimos el método Length def __len__(self): return self.duracion class Catalogo: peliculas = [] def __init__(self, peliculas=[]): self.peliculas = peliculas def agregar_pelicula(self, pelicula): self.peliculas.append(pelicula) def mostrar_catalogo(self): print("El Catalogo Contiene las siguientes preguntas:") for p in self.peliculas: print(p) p = Pelicula("El Padrino", 175, 1972) c = Catalogo([p]) c.agregar_pelicula(Pelicula("Interestelar", 2015, 280)) c.mostrar_catalogo()
python
#!/usr/bin/python # -*- coding: utf-8 -*- from random import randint import time,sys braille = ['⣽','⢿','⣻','⡿','⣾','⣟','⣯','⣷'] z = len(braille) for x in range(10): r = (randint(0,z-1)) sys.stdout.write("Working " + braille[r] + " " + str(x*10) + "% done" ) sys.stdout.flush() time.sleep(1) sys.stdout.write("\r") sys.stdout.flush() sys.stdout.write("Working " + braille[r] + " " + "100 % done" ) print "\nCompleted."
python
# Generated by Django 3.0.4 on 2020-03-30 20:18 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('base', '0002_auto_20200330_1310'), ] operations = [ migrations.RenameField( model_name='product', old_name='descrtiption', new_name='description', ), ]
python
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @Title : 字符串工具类 @File : string_utils.py @Author : vincent @Time : 2020/9/15 11:14 上午 @Version : 1.0 ''' import os def is_null(obj): if obj is None: return True if len(obj) == 0: return True def list_2_str(str_list): r_str = '' if str_list: for s in str_list: r_str = r_str + str(s) + "\n" return r_str def to_str(obj): if not obj: return "" str1 = replace((str(obj))) return str1 def replace(str1): str1 = str1.replace("(", "(") str1 = str1.replace(")", ")") return str1 def equals(str1, str2): str1 = replace(to_str(str1)) str2 = replace(to_str(str2)) if str1 == str2: return True else: return False def equals_list(list1, list2): str1 = list_2_str(list1) str2 = list_2_str(list2) return equals(str1, str2) def create_header_line(file_name, max_len=70): s_len = len(file_name) if s_len >= max_len: return file_name w_size = (max_len - s_len) // 2 t_str = "-" * w_size return t_str + file_name + t_str def create_header_link(channel, data_type, file_name): file_name = os.path.split(file_name)[-1] # file_name is full path with dirs, we only need the last file name file_name_a = '<a href="./case_ocr.html?data_type=' + data_type + '&file_name=' + file_name \ + "&channel=" + channel \ + '" target="_blank">' + file_name + '</a>' return file_name_a def create_demo_link(case_type, ip_address, file_name): img_name = os.path.basename(file_name) file_name_a = '<a href="./demo_result.html?case_type=' + case_type + '&ip_address=' + ip_address \ + "&file_name=" + img_name \ + '" target="_blank">' + img_name + '</a>' return file_name_a def rate_format(rate): """ 传入rate的小数格式,返回百分比格式的字符串 @param rate: @return: """ filed_rate = rate * 100 rate_str = "{:.2f}".format(filed_rate) return rate_str def temp_reg_date_format(date_str): if date_str and len(date_str) >= 7: return date_str[0:7] else: return date_str def temp_duration_format(duration: str): if duration: d_arr = duration.split("至") if len(d_arr) == 2: return temp_reg_date_format(d_arr[0]) + "至" + temp_reg_date_format(d_arr[1]) else: return duration else: return duration def create_compare_result(gt_value, pred_value): if gt_value == pred_value: result_str = "<p>{}<p>".format("正确") else: result_str = "<p style=\"color:red\">{}<p>".format("错误") return result_str
python
# Generated by Django 2.2.10 on 2020-02-27 14:37 from django.db import migrations, models def nullify_courserun_expiration_dates(apps, schema_editor): """ Unset all of the expiration dates set automatically by the previous code. We are moving to empty expiration dates by default and only explicitly setting them if needed on a specific course run. """ CourseRun = apps.get_model("courses", "CourseRun") CourseRun.objects.update(expiration_date=None) class Migration(migrations.Migration): dependencies = [("courses", "0025_run_tag")] operations = [ migrations.AlterField( model_name="courserun", name="expiration_date", field=models.DateTimeField( blank=True, db_index=True, help_text="The date beyond which the learner should not see link to this course run on their dashboard.", null=True, ), ), migrations.RunPython( nullify_courserun_expiration_dates, migrations.RunPython.noop ), ]
python
# Generated by Django 3.0.4 on 2020-03-11 21:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('kegs', '0001_initial'), ] operations = [ migrations.AddField( model_name='beer', name='description', field=models.TextField(default=1, max_length=250), preserve_default=False, ), migrations.AddField( model_name='keg', name='number', field=models.IntegerField(default=1), preserve_default=False, ), ]
python
# Generated by Django 3.1.14 on 2022-03-24 11:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('feedback', '0030_auto_20220324_0947'), ] operations = [ migrations.AddField( model_name='report', name='eid', field=models.CharField(blank=True, default='', max_length=1024, verbose_name='External id'), ), ]
python
from http import HTTPStatus from django.urls import resolve, reverse from mock import patch from barriers.views.public_barriers import PublicBarrierDetail from core.tests import MarketAccessTestCase class PublicBarrierViewTestCase(MarketAccessTestCase): def test_public_barrier_url_resolves_to_correct_view(self): match = resolve(f'/barriers/{self.barrier["id"]}/public/') assert match.func.view_class == PublicBarrierDetail @patch("utils.api.client.PublicBarriersResource.get") @patch("utils.api.client.PublicBarriersResource.get_activity") @patch("utils.api.client.PublicBarriersResource.get_notes") def test_public_barrier_view_loads_correct_template( self, _mock_get_notes, _mock_get_activity, mock_get ): mock_get.return_value = self.barrier url = reverse( "barriers:public_barrier_detail", kwargs={"barrier_id": self.barrier["id"]} ) response = self.client.get(url) assert HTTPStatus.OK == response.status_code self.assertTemplateUsed(response, "barriers/public_barriers/detail.html") @patch("utils.api.client.PublicBarriersResource.get") @patch("utils.api.client.PublicBarriersResource.get_activity") @patch("utils.api.client.PublicBarriersResource.get_notes") def test_public_barrier_view_loads_html( self, _mock_get_notes, _mock_get_activity, mock_get ): mock_get.return_value = self.public_barrier url = reverse( "barriers:public_barrier_detail", kwargs={"barrier_id": self.barrier["id"]} ) title = "<title>Market Access - Public barrier</title>" section_head = '<h2 class="summary-group__heading">Public view:' notes_head = '<h2 class="section-heading govuk-!-margin-bottom-0">Internal notes and updates</h2>' add_note_button = ( '<a class="govuk-button button--primary" href="?add-note=1">Add a note</a>' ) response = self.client.get(url) html = response.content.decode("utf8") assert HTTPStatus.OK == response.status_code assert title in html assert section_head in html assert notes_head in html assert add_note_button in html @patch("utils.api.resources.APIResource.list") @patch("utils.api.client.PublicBarriersResource.get") @patch("utils.api.client.PublicBarriersResource.get_activity") @patch("utils.api.client.PublicBarriersResource.get_notes") def test_public_barrier_search_view_loads_html( self, _mock_get_notes, _mock_get_activity, mock_get, mock_list ): mock_get.return_value = self.public_barrier url = reverse("barriers:public_barriers") title = "<title>Market Access - Public barriers</title>" section_head = '<h1 class="govuk-heading-l govuk-!-margin-bottom-5">Market access public barriers</h1>' response = self.client.get(url) html = response.content.decode("utf8") assert HTTPStatus.OK == response.status_code assert title in html assert section_head in html @patch("utils.api.resources.APIResource.list") @patch("utils.api.client.PublicBarriersResource.get") @patch("utils.api.client.PublicBarriersResource.get_activity") @patch("utils.api.client.PublicBarriersResource.get_notes") def test_public_barrier_search_view_filters_correctly( self, _mock_get_notes, _mock_get_activity, mock_get, mock_list ): def fetch_html_for_params(params): url = reverse("barriers:public_barriers") response = self.client.get(url, data=params) html = response.content.decode("utf8") return html, response html, response = fetch_html_for_params( { "country": [ "9f5f66a0-5d95-e211-a939-e4115bead28a", "83756b9a-5d95-e211-a939-e4115bead28a", ], "sector": [ "9538cecc-5f95-e211-a939-e4115bead28a", "aa22c9d2-5f95-e211-a939-e4115bead28a", ], "region": [ "3e6809d6-89f6-4590-8458-1d0dab73ad1a", "5616ccf5-ab4a-4c2c-9624-13c69be3c46b", ], "status": ["0", "10", "30"], } ) form = response.context["form"] assert HTTPStatus.OK == response.status_code assert form.cleaned_data["country"] == [ "9f5f66a0-5d95-e211-a939-e4115bead28a", "83756b9a-5d95-e211-a939-e4115bead28a", ] assert form.cleaned_data["sector"] == [ "9538cecc-5f95-e211-a939-e4115bead28a", "aa22c9d2-5f95-e211-a939-e4115bead28a", ] assert form.cleaned_data["region"] == [ "3e6809d6-89f6-4590-8458-1d0dab73ad1a", "5616ccf5-ab4a-4c2c-9624-13c69be3c46b", ] assert form.cleaned_data["status"] == ["0", "10", "30"] mock_list.assert_called_with( country=",".join( [ "9f5f66a0-5d95-e211-a939-e4115bead28a", "83756b9a-5d95-e211-a939-e4115bead28a", ] ), sector=",".join( [ "9538cecc-5f95-e211-a939-e4115bead28a", "aa22c9d2-5f95-e211-a939-e4115bead28a", ] ), region=",".join( [ "3e6809d6-89f6-4590-8458-1d0dab73ad1a", "5616ccf5-ab4a-4c2c-9624-13c69be3c46b", ] ), status=",".join(["0", "10", "30"]), )
python
from __future__ import absolute_import from __future__ import unicode_literals import multiprocessing import os import sys import mock import pytest import pre_commit.constants as C from pre_commit.languages import helpers from pre_commit.prefix import Prefix from pre_commit.util import CalledProcessError from testing.auto_namedtuple import auto_namedtuple def test_basic_get_default_version(): assert helpers.basic_get_default_version() == C.DEFAULT def test_basic_healthy(): assert helpers.basic_healthy(None, None) is True def test_failed_setup_command_does_not_unicode_error(): script = ( 'import sys\n' "getattr(sys.stderr, 'buffer', sys.stderr).write(b'\\x81\\xfe')\n" 'exit(1)\n' ) # an assertion that this does not raise `UnicodeError` with pytest.raises(CalledProcessError): helpers.run_setup_cmd(Prefix('.'), (sys.executable, '-c', script)) def test_assert_no_additional_deps(): with pytest.raises(AssertionError) as excinfo: helpers.assert_no_additional_deps('lang', ['hmmm']) msg, = excinfo.value.args assert msg == ( 'For now, pre-commit does not support additional_dependencies for lang' ) SERIAL_FALSE = auto_namedtuple(require_serial=False) SERIAL_TRUE = auto_namedtuple(require_serial=True) def test_target_concurrency_normal(): with mock.patch.object(multiprocessing, 'cpu_count', return_value=123): with mock.patch.dict(os.environ, {}, clear=True): assert helpers.target_concurrency(SERIAL_FALSE) == 123 def test_target_concurrency_cpu_count_require_serial_true(): with mock.patch.dict(os.environ, {}, clear=True): assert helpers.target_concurrency(SERIAL_TRUE) == 1 def test_target_concurrency_testing_env_var(): with mock.patch.dict( os.environ, {'PRE_COMMIT_NO_CONCURRENCY': '1'}, clear=True, ): assert helpers.target_concurrency(SERIAL_FALSE) == 1 def test_target_concurrency_on_travis(): with mock.patch.dict(os.environ, {'TRAVIS': '1'}, clear=True): assert helpers.target_concurrency(SERIAL_FALSE) == 2 def test_target_concurrency_cpu_count_not_implemented(): with mock.patch.object( multiprocessing, 'cpu_count', side_effect=NotImplementedError, ): with mock.patch.dict(os.environ, {}, clear=True): assert helpers.target_concurrency(SERIAL_FALSE) == 1 def test_shuffled_is_deterministic(): assert helpers._shuffled(range(10)) == [3, 7, 8, 2, 4, 6, 5, 1, 0, 9]
python
import requests import os import shutil from constants import chromedriverPath # Constants chromedriverUrl = 'https://chromedriver.storage.googleapis.com/89.0.4389.23/chromedriver_win32.zip' chromedriverFile = 'chromedriver.zip' def downloadFile(url, name): r = requests.get(url, allow_redirects=True) open(name, 'wb').write(r.content) def downloadChromedriver(): downloadFile(chromedriverUrl, chromedriverFile) shutil.unpack_archive(chromedriverFile, chromedriverPath) if __name__ == '__main__': downloadChromedriver()
python
import turtle ################################################### # range = antal gange # rigth or left = grader til højre eller venstre # forward or backward = længde på streg + retning fremad/tilbage # kan man tegne flere samtidig? hvordan ################################################### <<<<<<< HEAD for n in range(1,80): turtle.left(80) turtle.forward(n*2) turtle.right(40) turtle.backward(n*2) for n in range(1,50): turtle.right(80) turtle.forward(n*1.5) ======= for n in range(1,32): turtle.left(45) turtle.forward(n*7) >>>>>>> 553b976d6b623bd6c685c9241d731a21b1faed94 input()
python
# __init__.py from cogs.add import add from cogs.add import add_all from cogs.apply import apply from cogs.clear import clear from cogs.connect import connect from cogs.delete import delete from cogs.diff import diff from cogs.fetch import fetch from cogs.ignore import ignore from cogs.init import init from cogs.ls import ls from cogs.mv import mv from cogs.merge import merge from cogs.push import push from cogs.rm import rm from cogs.share import share from cogs.status import status from cogs.helpers import get_sheet_url # Version of COGS __version__ = "0.0.1"
python
class ActivationFrame(): def __init__(self, owner): self.owner = owner self.static_link = None self.dynamic_link = None self.params = [] self.local_vars = [] self.static_vars = [] self.external_vars = [] self.temp_vars = [] self.previous_PC = 0 def get_deep_copy(self): copy = ActivationFrame(self.owner) copy.static_link = self.static_link copy.dynamic_link = self.dynamic_link copy.params = self.params.copy() copy.local_vars = self.local_vars.copy() copy.static_vars = self.static_vars.copy() copy.temp_vars = self.temp_vars.copy() return copy def __str__(self): output = "" output += f"owner_function: {self.owner.name} " output += f"| static_link: ({str(self.static_link)}) " output += f"| dynamic_link: ({str(self.dynamic_link)}) " output += f"| params: ({str(self.params)}) " output += f"| local_vars: ({str(self.local_vars)}) " output += f"| static_vars: ({str(self.static_vars)}) " output += f"| temp_vars: ({str(self.temp_vars)})" return output
python
#4. Crie um código em Python que receba uma lista de nomes informados pelo usuário com tamanho indefinido (a lista deve ser encerrada quando o usuário digitar 0) e, na sequência, receba um nome para que seja verificado se este consta na lista ou não. Observação: ignorar diferenças entre maiúsculas e minúsculas. nomes = [] for i in range(1000): a = input('Digite um nome pra acrescentar a lista ou 0 para sair: ').lower() if a == '0': break else: nomes.append(a.lower()) nome = input('Digite um nome a ser buscado na lista: ') if nome in nomes: print('O nome está na lista!') else: print('O nome NÃO está na lista!')
python
from __future__ import unicode_literals from frappe import _ def get_data(): return [ { "label": _("BSC Indicator"), "items": [ { "type": "doctype", "name": "BSC Initiative Log", "description":_("BSC Initiative Log"), "onboard": 1, "dependencies": ["BSC Initiative"], }, { "type": "doctype", "name": "BSC Initiative", "description":_("BSC Initiative"), "onboard": 1, "dependencies": ["BSC Target"], }, { "type": "doctype", "name": "BSC Target", "description":_("BSC Target"), "onboard": 1, "dependencies": ["BSC Indicator"], }, { "type": "doctype", "name": "BSC Indicator", "description":_("BSC Indicator"), "onboard": 1, "dependencies": ["BSC Objective"], } ] }, { "label": _("BSC Meeting"), "items": [ { "type": "doctype", "name": "BSC Meeting", "description":_("BSC Meeting"), }, { "type": "doctype", "name": "BSC Meeting Minutes", "description":_("BSC Meeting Minutes"), "onboard": 1, "dependencies": ["BSC Meeting"], }, { "type": "doctype", "name": "BSC Meeting Recommendation", "description":_("BSC Meeting Recommendation"), "onboard": 1, "dependencies": ["BSC Meeting Minutes"], }, { "type": "doctype", "name": "BSC Committee", "description":_("BSC Committee"), }, { "type": "report", "name": "BSC Meeting Report Summery", "doctype": "BSC Meeting", "is_query_report": True } ] }, { "label": _("Reports"), "icon": "fa fa-list", "items": [ { "type": "report", "name": "Department-wise Indicator Performance", "doctype": "BSC Indicator", "is_query_report": True }, { "type": "report", "name": "Department-wise Initiative Performance", "doctype": "BSC Initiative", "is_query_report": True }, { "type": "report", "name": "BSC Initiative Analysis", "doctype": "BSC Initiative Log", "is_query_report": True }, { "type": "report", "name": "Department-wise Operation Plan and Program Budget", "doctype": "BSC Initiative", "is_query_report": True }, { "type": "report", "name": "Department-wise Initiative Achievement Report", "doctype": "BSC Initiative Log", "is_query_report": True }, { "type": "report", "name": "BSC Performance Report", "doctype": "BSC Perspective", "is_query_report": True } ] }, { "label": _("Setup"), "items": [ { "type": "doctype", "name": "BSC Perspective", "description":_("BSC Perspective"), "onboard": 1, }, { "type": "doctype", "name": "BSC Objective", "description":_("BSC Objective"), "onboard": 1, "dependencies": ["BSC Perspective"], }, { "type": "doctype", "name": "BSC Target Group", "description":_("BSC Target Group"), "onboard": 1 }, { "type": "doctype", "name": "BSC Settings", "description":_("BSC Settings"), } ] }, ]
python
# -*- coding: utf-8 -*- """ 空白模板 """ ###### 欢迎使用脚本任务,首先让我们熟悉脚本任务的一些使用规则 ###### # 详细教程请在AI Studio文档(https://ai.baidu.com/ai-doc/AISTUDIO/Ik3e3g4lt)中进行查看. # 脚本任务使用流程: # 1.编写代码/上传本地代码文件 # 2.调整数据集路径以及输出文件路径 # 3.填写启动命令和备注 # 4.提交任务选择运行方式(单机单卡/单机四卡/双机四卡) # 5.项目详情页查看任务进度及日志 # 注意事项: # 1.输出结果的体积上限为20GB,超过上限可能导致下载输出失败. # 2.脚本任务单次任务最大运行时长为72小时(三天). # 3.在使用单机四卡或双击四卡时可不配置GPU编号,默认启动所有可见卡;如需配置GPU编号,单机四卡的GPU编号为0,1,2,3;双机四卡的GPU编号为0,1. # 日志记录. 任务会自动记录环境初始化日志、任务执行日志、错误日志、执行脚本中所有标准输出和标准出错流(例如print()),用户可以在「提交」任务后,通过「查看日志」追踪日志信息. # -------------------------------关于数据集和输出文件的路径问题--------------------------------- # 数据集路径 # datasets_prefix为数据集的根路径,完整的数据集文件路径是由根路径和相对路径拼接组成的。 # 相对路径获取方式:请在编辑项目状态下通过点击左侧导航「数据集」中文件右侧的【复制】按钮获取. # datasets_prefix = '/root/paddlejob/workspace/train_data/datasets/' # train_datasets = datasets_prefix + '通过路径拷贝获取真实数据集文件路径' # 输出文件路径 # 任务完成后平台会自动把output_dir目录所有文件压缩为tar.gz包,用户可以通过「下载输出」将输出结果下载到本地. # output_dir = "/root/paddlejob/workspace/output" # -------------------------------关于启动命令需要注意的问题------------------------------------ # 脚本任务支持两种运行方式 # 1.shell 脚本. 在 run.sh 中编写项目运行时所需的命令,并在启动命令框中填写如 bash run.sh 的命令使脚本任务正常运行. # 2.python 指令. 在 run.py 编写运行所需的代码,并在启动命令框中填写如 python run.py <参数1> <参数2> 的命令使脚本任务正常运行. # 注:run.sh、run.py 可使用自己的文件替代,如python train.py 、bash train.sh. # 命令示例: # 1. python 指令 # ---------------------------------------单机四卡------------------------------------------- # 方式一(不配置GPU编号):python -m paddle.distributed.launch run.py # 方式二(配置GPU编号):python -m paddle.distributed.launch --gpus="0,1,2,3" run.py # ---------------------------------------双机四卡------------------------------------------- # 方式一(不配置GPU编号):python -m paddle.distributed.launch run.py # 方式二(配置GPU编号):python -m paddle.distributed.launch --gpus="0,1" run.py # 2. shell 命令 # 使用run.sh或自行创建新的shell文件并在对应的文件中写下需要执行的命令(需要运行多条命令建议使用shell命令的方式)。 # 以单机四卡不配置GPU编号为例,将单机四卡方式一的指令复制在run.sh中,并在启动命令出写出bash run.sh # 从paddle.vision.models 模块中import 残差网络,VGG网络,LeNet网络 import paddle from paddle.vision.models import resnet50, vgg16, LeNet from paddle.vision.datasets import Cifar10 from paddle.optimizer import Momentum from paddle.regularizer import L2Decay from paddle.nn import CrossEntropyLoss from paddle.metric import Accuracy import paddle.vision.transforms as T # 在使用GPU机器时,可以将use_gpu变量设置成True,可以灵活调整 # print(paddle.device.get_device()) # 查看一下设备 # use_gpu = True # paddle.set_device('gpu:0') if use_gpu else paddle.set_device('cpu') # 用于模型保存和可视化参数的路径 import os # filepath, filename = os.path.split(os.path.realpath(__file__)) # stem, suffix = os.path.splitext(filename) # filename .py filepath = './output' stem = 'cifar10_b' # 版本a表示底层API,版本b表示使用高层API SAVE_DIR = '{}/model/{}'.format(filepath, stem) visualdl = paddle.callbacks.VisualDL(log_dir='{}/visualdl_log/{}'.format(filepath, stem)) # 确保从paddle.vision.datasets.Cifar10中加载的图像数据是np.ndarray类型 paddle.vision.set_image_backend('cv2') # 调用resnet50模型 model = paddle.Model(resnet50(pretrained=True, num_classes=10)) # 使用Cifar10数据集 stats = ((0.491401, 0.4821591, 0.44653094), (0.20220289, 0.1993163, 0.20086345)) train_transform = T.Compose([ T.RandomCrop(32, padding=4), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(*stats) ]) test_transform = T.Compose([ T.ToTensor(), T.Normalize(*stats) ]) train_dataset = Cifar10(mode='train', transform=train_transform) val_dataset = Cifar10(mode='test', transform=test_transform) # 定义优化器 optimizer = Momentum( learning_rate=0.01, # 应为是高层API这里的学习率没法使用好的策略 momentum=0.9, weight_decay=L2Decay(1e-4), parameters=model.parameters()) # 进行训练前准备 model.prepare(optimizer, CrossEntropyLoss(), Accuracy(topk=(1, 5))) # 启动训练 model.fit( # 如果train_dataset是DataLoader格式的,则batch_size和shuffle失效 train_dataset, val_dataset, epochs=100, batch_size=64, save_dir=SAVE_DIR, save_freq=10, num_workers=8, verbose=1, shuffle=True, callbacks=visualdl) # 1. python 指令 # ---------------------------------------单机四卡------------------------------------------- # 方式一(不配置GPU编号):python -m paddle.distributed.launch run.py # 方式二(配置GPU编号):python -m paddle.distributed.launch --gpus="0,1,2,3" run.py # ---------------------------------------双机四卡------------------------------------------- # 方式一(不配置GPU编号):python -m paddle.distributed.launch run.py # 方式二(配置GPU编号):python -m paddle.distributed.launch --gpus="0,1" run.py
python
# Generated by Django 2.1.7 on 2019-06-03 05:56 import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('blog', '0015_auto_20190601_2202'), ] operations = [ migrations.AlterField( model_name='post', name='created_date', field=models.DateTimeField(default=datetime.datetime(2019, 6, 3, 5, 56, 44, 241352, tzinfo=utc)), ), ]
python
from flask_babel import lazy_gettext as _ from .model import ( Session, CirculationEvent, ExternalIntegration, get_one, create ) class LocalAnalyticsProvider(object): NAME = _("Local Analytics") DESCRIPTION = _("Store analytics events in the 'circulationevents' database table.") # A given site can only have one analytics provider. CARDINALITY = 1 # Where to get the 'location' of an analytics event. LOCATION_SOURCE = "location_source" # The 'location' of an analytics event is the 'neighborhood' of # the request's authenticated patron. LOCATION_SOURCE_NEIGHBORHOOD = "neighborhood" # Analytics events have no 'location'. LOCATION_SOURCE_DISABLED = "" SETTINGS = [ { "key": LOCATION_SOURCE, "label": _("Geographic location of events"), "description": _("Local analytics events may have a geographic location associated with them. How should the location be determined?<p>Note: to use the patron's neighborhood as the event location, you must also tell your patron authentication mechanism how to <i>gather</i> a patron's neighborhood information."), "default": LOCATION_SOURCE_DISABLED, "type": "select", "options": [ { "key": LOCATION_SOURCE_DISABLED, "label": _("Disable this feature.") }, { "key": LOCATION_SOURCE_NEIGHBORHOOD, "label": _("Use the patron's neighborhood as the event location.") }, ], }, ] def __init__(self, integration, library=None): self.integration_id = integration.id self.location_source = integration.setting( self.LOCATION_SOURCE ).value or self.LOCATION_SOURCE_DISABLED if library: self.library_id = library.id else: self.library_id = None def collect_event(self, library, license_pool, event_type, time, old_value=None, new_value=None, **kwargs): if not library and not license_pool: raise ValueError("Either library or license_pool must be provided.") if library: _db = Session.object_session(library) else: _db = Session.object_session(license_pool) if library and self.library_id and library.id != self.library_id: return neighborhood = None if self.location_source == self.LOCATION_SOURCE_NEIGHBORHOOD: neighborhood = kwargs.pop("neighborhood", None) return CirculationEvent.log( _db, license_pool, event_type, old_value, new_value, start=time, library=library, location=neighborhood ) @classmethod def initialize(cls, _db): """Find or create a local analytics service. """ # If a local analytics service already exists, return it. local_analytics = get_one( _db, ExternalIntegration, protocol=cls.__module__, goal=ExternalIntegration.ANALYTICS_GOAL ) # If a local analytics service already exists, don't create a # default one. Otherwise, create it with default name of # "Local Analytics". if not local_analytics: local_analytics, ignore = create( _db, ExternalIntegration, protocol=cls.__module__, goal=ExternalIntegration.ANALYTICS_GOAL, name=str(cls.NAME) ) return local_analytics Provider = LocalAnalyticsProvider
python
import shutil, ssl, json import requests, zipfile, gzip, io import pandas as pd from tbsdq import utilities as dqutils from tbsdq import configuration as dqconfig from topN import configuration as topnconfig """ Non-Spatial dataset analysis on the open data registry """ def fetch_and_parse_catalogue(zip_url, expected_file): format_list = ['CSV', 'JSON', 'JSONL', 'XML', 'XLS', 'XLSX', 'XLSM', 'TXT', 'TAB', 'ZIP'] df = pd.DataFrame() catalogue_data = [] dqutils.get_and_extract_gzip(zip_url, expected_file) try: with open(expected_file, encoding=dqconfig.encoding_type) as f: for line in f: data = json.loads(line) for r in data['resources']: dict_entry = { "c_id": r['package_id'], "source_format": r['format'], "resource_type": r['resource_type'] } catalogue_data.append(dict_entry) except: print('Error reading expected file: {0}'.format(expected_file)) pass if len(catalogue_data) > 0: df = pd.DataFrame(catalogue_data) df['dataset_format'] = df.source_format.apply(lambda x: x.upper() if x.upper() in format_list else 'OTHER') df = df[df['resource_type'].isin(['dataset','api'])] df['dataset_format'] = pd.Categorical(df['dataset_format'], format_list.append('OTHER')) df = df[['c_id', 'dataset_format']] df = df.sort_values(['c_id','dataset_format']) df = df.groupby('c_id', as_index=False).first() return df def build_top_N_dataset(): try: ssl._create_default_https_context = ssl._create_unverified_context output_file = topnconfig.topN_file output_size = topnconfig.topN_size df_downloads = dqutils.excel_delete_and_merge_tabs(topnconfig.downloads_file, ['Summary by departments', 'Top 100 Datasets']) df_downloads.columns = ['d_id', 'd_title_en', 'd_title_fr', 'd_downloads'] df_visits = dqutils.excel_delete_and_merge_tabs(topnconfig.visits_file, ['Summary by departments', 'Top 100 Datasets']) df_visits.columns = ['v_id', 'v_title_en', 'v_title_fr', 'v_visits'] df_analysis = pd.merge(left=df_downloads, right=df_visits, left_on='d_id', right_on='v_id') df_analysis = df_analysis[['d_id', 'd_title_en', 'd_downloads', 'v_visits']] df_nonspatial = pd.read_csv(topnconfig.nonspatial_file, encoding=dqconfig.encoding_type) df_merged = pd.merge(left=df_nonspatial, right=df_analysis, left_on='id_s', right_on='d_id') df_merged.columns = ['id', 'owner_org_en', 'owner_org_fr', 'title_en', 'title_fr', 'desc_en', 'desc_fr', 'link_en', 'link_fr', 'id2', 'title_en_2', 'downloads', 'visits'] col_list = ['id', 'owner_org_en', 'title_en', 'desc_en', 'link_en', 'downloads', 'visits'] df = df_merged[col_list] df_openness = dqutils.fetch_zipped_csv(topnconfig.openness_zip_file, topnconfig.openness_file) if not df_openness.empty: df_openness.columns = ['department', 'title', 'URL', 'openness_rating'] df_openness[['e_url', 'f_url']] = df_openness['URL'].str.split('|', expand=True) df_openness['o_id'] = df_openness['e_url'].str.split('/').str[-1].str.strip() df_openness = df_openness[['o_id', 'openness_rating']] df = pd.merge(left=df, right=df_openness, left_on='id', right_on='o_id') col_list.append('openness_rating') df = df[col_list] df_catalogue = fetch_and_parse_catalogue(topnconfig.catalogue_zip_file, topnconfig.catalogue_file) if not df_catalogue.empty: df = pd.merge(left=df, right=df_catalogue, left_on='id', right_on='c_id') col_list.append('dataset_format') df = df[col_list] df_user_ratings = pd.read_csv(topnconfig.user_ratings_file, encoding=dqconfig.encoding_type) df_user_ratings.columns = ['j1', 'j2', 'ur_id', 'user_rating_score', 'user_rating_count', 'l1', 'l2'] df_user_ratings = df_user_ratings[['ur_id', 'user_rating_score', 'user_rating_count']] df = pd.merge(left=df, right=df_user_ratings, left_on='id', right_on='ur_id') col_list.append('user_rating_score') col_list.append('user_rating_count') df = df[col_list] df.sort_values(by='downloads', ascending=False).head(output_size).to_csv(output_file, index=None, header=True, encoding=dqconfig.encoding_type) if dqconfig.remove_temp_data: shutil.rmtree(dqconfig.temp_data_folder) except: raise
python
from django.contrib.auth.models import Permission class TestPermissionsMixin: def _clean_permissions(self): self.user.user_permissions.clear() self._clean_perm_cache() def _set_permissions(self, perms): self.user.user_permissions.add( *Permission.objects.filter(codename__in=perms) ) self._clean_perm_cache() def _clean_perm_cache(self): for cache in ['_user_perm_cache', '_perm_cache']: if hasattr(self.user, cache): delattr(self.user, cache)
python
# -*- coding: utf-8 -*- """ github3.repos.commit ==================== This module contains the RepoCommit class alone """ from __future__ import unicode_literals from . import status from .. import git, models, users from .comment import RepoComment class RepoCommit(models.BaseCommit): """The :class:`RepoCommit <RepoCommit>` object. This represents a commit as viewed by a :class:`Repository`. This is different from a Commit object returned from the git data section. Two commit instances can be checked like so:: c1 == c2 c1 != c2 And is equivalent to:: c1.sha == c2.sha c1.sha != c2.sha """ def _update_attributes(self, commit): super(RepoCommit, self)._update_attributes(commit) #: :class:`User <github3.users.User>` who authored the commit. self.author = self._class_attribute(commit, 'author', users.User, self) #: :class:`User <github3.users.User>` who committed the commit. self.committer = self._class_attribute( commit, 'committer', users.User, self ) #: :class:`Commit <github3.git.Commit>`. self.commit = self._class_attribute(commit, 'commit', git.Commit, self) self.sha = self._get_attribute(commit, 'sha') #: The number of additions made in the commit. self.additions = 0 #: The number of deletions made in the commit. self.deletions = 0 #: Total number of changes in the files. self.total = 0 stats = self._get_attribute(commit, 'stats') if stats and stats is not self.Empty: self.additions = commit['stats'].get('additions') self.deletions = commit['stats'].get('deletions') self.total = commit['stats'].get('total') #: The files that were modified by this commit. self.files = self._get_attribute(commit, 'files', []) self._uniq = self.sha #: The commit message self.message = getattr(self.commit, 'message', self.Empty) def _repr(self): return '<Repository Commit [{0}]>'.format(self.sha[:7]) def diff(self): """Retrieve the diff for this commit. :returns: the diff as a bytes object :rtype: bytes """ resp = self._get(self._api, headers={'Accept': 'application/vnd.github.diff'}) return resp.content if self._boolean(resp, 200, 404) else b'' def patch(self): """Retrieve the patch formatted diff for this commit. :returns: the patch as a bytes object :rtype: bytes """ resp = self._get(self._api, headers={'Accept': 'application/vnd.github.patch'}) return resp.content if self._boolean(resp, 200, 404) else b'' def statuses(self): """Retrieve the statuses for this commit. :returns: the statuses for this commit :rtype: :class:`~github3.repos.status.Status` """ url = self._build_url('statuses', base_url=self._api) return self._iter(-1, url, status.Status) def comments(self, number=-1, etag=None): """Iterate over comments for this commit. :param int number: (optional), number of comments to return. Default: -1 returns all comments :param str etag: (optional), ETag from a previous request to the same endpoint :returns: generator of :class:`RepoComment <github3.repos.comment.RepoComment>`\ s """ url = self._build_url('comments', base_url=self._api) return self._iter(int(number), url, RepoComment, etag=etag)
python
from pymusicterm.util.time import milliseconds_to_minutes, milliseconds_to_seconds from py_cui.widgets import Widget class LoadingBarWidget(Widget): BAR_COMPLETED_CHAR=u'\u2588' def __init__(self,id,title,grid,row,column,row_span,column_span,padx,pady,logger) -> None: """ Initializer for LoadingBar Widget """ super().__init__(id,title,grid,row,column,row_span,column_span,padx,pady,logger) self._draw_border=True self._num_items=10 self._completed_items=0 self._total_duration=title self._time_elapsed=title def increment_items(self,time_elapsed:int): self._completed_items=time_elapsed minutes=milliseconds_to_minutes(self._completed_items) seconds=milliseconds_to_seconds(self._completed_items) self._time_elapsed='{}:{}'.format(minutes,seconds) self._title='{}-{}'.format(self._time_elapsed,self._total_duration) def set_total_duration(self,total_duration:int): self._num_items=total_duration self._completed_items=0 minutes=milliseconds_to_minutes(self._num_items) seconds=milliseconds_to_seconds(self._num_items) self._time_elapsed="0:00" self._total_duration='{}:{}'.format(minutes,seconds) self._title='{}-{}'.format(self._time_elapsed,self._total_duration) def _draw(self): """ Override base draw class. """ super()._draw() self._title="{}-{}".format(self._time_elapsed,self._total_duration) width=self._stop_x -self._start_x bar_width=width items_per_bar_block=self._num_items / bar_width bar_blocks_per_item=bar_width/self._num_items if items_per_bar_block >=1: completed_blocks=int(self._completed_items/items_per_bar_block) else: completed_blocks=int(bar_blocks_per_item * self._completed_items) non_completed_blocks= bar_width - completed_blocks #TODO: STOP INCREMENT text='{}{}'.format(self.BAR_COMPLETED_CHAR* completed_blocks,'-'*non_completed_blocks) self._renderer.set_color_mode(self._color) # if self._draw_border: # self._renderer.draw_border(self,with_title=True) target_y=self._start_y+int(self._height/2) #FIXME: DOESN'T UPDATE IN REALTIME self._renderer.set_color_mode(self._color) self._renderer.draw_text(self,self._title,target_y-1,centered=True,selected=True) self._renderer.draw_text(self,text,target_y,centered=True,bordered=self._draw_border,selected=True) self._renderer.unset_color_mode(self._color) self._renderer.reset_cursor(self)
python
import json from typing import List, Dict, Union import bleach allowed_items = { "section", "subsection", "link" } allowed_sub_items = { "title", "url", "metadata", "desc", "commentary" } def clean_submission(upload_post: str) -> List[Union[str, Dict[str, str]]]: output = [] for resource in json.loads(upload_post): for key, value in resource.items(): if key in allowed_items: included_item = {} if key == "link": for link_key, link_value in value.items(): if link_key in allowed_sub_items: included_item[link_key] = bleach.clean(link_value) else: included_item = bleach.clean(value) output.append({key: included_item}) return output
python
import psycopg2 as pg from psycopg2.extras import DictCursor from getpass import getpass ############## # Connecting # ############## cx = pg.connect( host='localhost', database='abq', user=input('Username: '), password=getpass('Password: '), cursor_factory=DictCursor ) cur = cx.cursor() ##################### # Executing Queries # ##################### cur.execute(""" CREATE TABLE test (id SERIAL PRIMARY KEY, val TEXT) """) cur.execute(""" INSERT INTO test (val) VALUES ('Banana'), ('Orange'), ('Apple'); """) ################### # Retrieving Data # ################### cur.execute("SELECT * FROM test") num_rows = cur.rowcount data = cur.fetchall() print(f'Got {num_rows} rows from database:') #print(data) for row in data: # DictCursor rows can use string indexes print(row['val']) ######################### # Parameterized Queries # ######################### new_item = input('Enter new item: ') #Never do this: #cur.execute(f"INSERT INTO test (val) VALUES ('{new_item}')") cur.execute("INSERT INTO test (val) VALUES (%s)", (new_item,)) # or: # cur.execute("INSERT INTO test (val) VALUES (%(item)s)", {'item': new_item}) cur.execute('SELECT * FROM test') print(cur.fetchall()) ############### # Cleaning Up # ############### # Call this to actually save the data before leaving # cx.commit() # This is usually not necessary, but you can do it if you wish. #cx.close()
python
def train(model, link_predictor, emb, edge_index, pos_train_edge, batch_size, optimizer): """ Runs offline training for model, link_predictor and node embeddings given the message edges and supervision edges. 1. Updates node embeddings given the edge index (i.e. the message passing edges) 2. Computes predictions on the positive supervision edges 3. Computes predictions on the negative supervision edges (which are sampled) 4. Computes the loss on the positive and negative edges and updates parameters """ model.train() link_predictor.train() train_losses = [] for edge_id in DataLoader(range(pos_train_edge.shape[0]), batch_size, shuffle=True): optimizer.zero_grad() node_emb = model(emb, edge_index) # (N, d) pos_edge = pos_train_edge[edge_id].T # (2, B) pos_pred = link_predictor(node_emb[pos_edge[0]], node_emb[pos_edge[1]]) # (B, ) neg_edge = negative_sampling(edge_index, num_nodes=emb.shape[0], num_neg_samples=edge_id.shape[0], method='dense') # (Ne,2) neg_pred = link_predictor(node_emb[neg_edge[0]], node_emb[neg_edge[1]]) # (Ne,) loss = -torch.log(pos_pred + 1e-15).mean() - torch.log(1 - neg_pred + 1e-15).mean() loss.backward() optimizer.step() train_losses.append(loss.item()) return sum(train_losses) / len(train_losses)
python
from .base import TemplateView class Index(TemplateView): template_name = 'feats/index.html'
python
from github import GitHub username = "github_username" db_path_account = "C:/GitHub.Accounts.sqlite3" db_path_api = "C:/GitHub.Apis.sqlite3" g = GitHub.GitHub(db_path_account, db_path_api, username) g.repo.create('repository_name', description='this is repository description.', homepage='http://homepage.com')
python
#!/usr/bin/env python2.7 import argparse import sys import rospy import tf from gazebo_msgs.srv import GetLinkState, GetLinkStateRequest parser = argparse.ArgumentParser() parser.add_argument("object_name", help="Name of the object") parser.add_argument("link_name", help="Link of the object") parser.add_argument("world_name", help="Name of the parent link") args = parser.parse_args(sys.argv[1:4]) gz_name = "::".join([args.object_name, args.link_name]) tf_name = "/".join([args.object_name, args.link_name]) world_name = args.world_name if __name__ == "__main__": rospy.init_node("gazebo_object_to_tf") rate = rospy.Rate(10) rospy.wait_for_service("/gazebo/get_link_state") get_link_state = rospy.ServiceProxy("/gazebo/get_link_state", GetLinkState) request = GetLinkStateRequest(gz_name, "") tb = tf.TransformBroadcaster() while not rospy.is_shutdown(): rospy.wait_for_service("/gazebo/get_link_state") ans = get_link_state(request) if ans.success: tb.sendTransform( ( ans.link_state.pose.position.x, ans.link_state.pose.position.y, ans.link_state.pose.position.z, ), ( ans.link_state.pose.orientation.x, ans.link_state.pose.orientation.y, ans.link_state.pose.orientation.z, ans.link_state.pose.orientation.w, ), rospy.Time.now(), tf_name, world_name, ) else: rospy.logerr(ans.status_message) rate.sleep()
python
import json from datetime import date from unittest.mock import MagicMock, patch from django.contrib.auth import get_user_model from django.core.management import call_command from django.test import TestCase from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient from exo_currency.models import Currency, CurrencyExchangeRate, Provider CURRENCY_EXCHANGE_RATES_URL = 'currency-exchange-rates' CALCULATE_AMOUNT_URL = 'calculate-amount' CALCULATE_TIME_WEIGHTED_RATE_URL = 'calculate-time-weighted-rate' class ExoCurrencyV1ApiTests(TestCase): """Test for the API V1 of exo_currency""" def setUp(self): self.client = APIClient() providers = Provider.objects.all().count() if not providers: call_command('load_providers') currencies = Currency.objects.all().count() if not currencies: call_command('load_currencies', 'currencies.csv') currency_exchange_rates = CurrencyExchangeRate.objects.all().count() if not currency_exchange_rates: call_command('load_exchange_rates', 'data.csv') def test_currency_exchange_rates(self): """Test listing currency exchange rates with a valid request""" res = self.client.get(reverse(CURRENCY_EXCHANGE_RATES_URL)) currency_exchange_rates_count = CurrencyExchangeRate.objects.all().count() self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data['count'], currency_exchange_rates_count) def test_currency_exchange_rates_with_from(self): """Test listing currency exchange rates with a valid request with from filter""" _from = '2020-01-01' url = '{}{}'.format( reverse(CURRENCY_EXCHANGE_RATES_URL), '?from=' + _from, ) res = self.client.get(url) currency_exchange_rates_count = CurrencyExchangeRate.objects.filter(valuation_date__gte=_from).count() self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data['count'], currency_exchange_rates_count) def test_currency_exchange_rates_with_to(self): """Test listing currency exchange rates with a valid request with to filter""" _to = '2020-06-10' url = '{}{}'.format( reverse(CURRENCY_EXCHANGE_RATES_URL), '?to=' + _to, ) res = self.client.get(url) currency_exchange_rates_count = CurrencyExchangeRate.objects.filter(valuation_date__lte=_to).count() self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data['count'], currency_exchange_rates_count) def test_currency_exchange_rates_with_from_and_to(self): """Test listing currency exchange rates with a valid request with from and to filter""" _from = '2020-06-05' _to = '2020-06-10' url = '{}{}{}'.format( reverse(CURRENCY_EXCHANGE_RATES_URL), '?from=' + _from, '&to=' + _to, ) res = self.client.get(url) currency_exchange_rates_count = CurrencyExchangeRate.objects\ .filter(valuation_date__gte=_from)\ .filter(valuation_date__lte=_to)\ .count() self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data['count'], currency_exchange_rates_count) @patch('requests.get') def test_calculate_amount(self, mock_get): """Test creating user with valid payload is successful""" mock_return_value = MagicMock() mock_return_value.status_code = 200 mock_return_value.text = json.dumps({ 'success': True, 'imestamp': 1363478399, 'historical': True, 'base': 'EUR', 'date': '2020-06-23', 'rates': { 'USD': 1.307716, } }) mock_get.return_value = mock_return_value url = reverse( CALCULATE_AMOUNT_URL, kwargs={ 'origin_currency': 'EUR', 'amount': '5', 'target_currency': 'USD', }, ) res = self.client.get(url) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertIsNotNone(res.data.get('amount')) @patch('requests.get') def test_calculate_time_weighted_rate(self, mock_get): """Test creating user with valid payload is successful""" mock_return_value = MagicMock() mock_return_value.status_code = 200 mock_return_value.text = json.dumps({ 'success': True, 'imestamp': 1363478399, 'historical': True, 'base': 'EUR', 'date': '2020-06-23', 'rates': { 'USD': 1.307716, } }) mock_get.return_value = mock_return_value url = reverse( CALCULATE_TIME_WEIGHTED_RATE_URL, kwargs={ 'origin_currency': 'EUR', 'amount': '5', 'target_currency': 'USD', 'date_invested': '2020-06-20', }, ) res = self.client.get(url) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertIsNotNone(res.data.get('twr'))
python
from flask import Flask, request, Response import json import numpy as np import gpt_gen import gpt_gen_thread import sys import time import logging import torch from Config import config_predict from datetime import datetime ConfigPredict = config_predict() batchGenerating=ConfigPredict.batchGenerating path_configs = ConfigPredict.model_configs num0 = ConfigPredict.predict_nums tags = ConfigPredict.tags rmHFW = ConfigPredict.rmHFW maxNext = ConfigPredict.maxNext_JLX path_next = ConfigPredict.path_JLX_next path_simi = ConfigPredict.path_JLX_simi model,tokenizer,config,device,GPUs = [],[],[],[],[] ModelIndex = [] for ii in range(len(path_configs)): M0,T0,C0,D0 = [],[],[],[] gpus = ConfigPredict.gpus[ii].split(',') idx = path_configs[ii].index('config_')+len('config_') key = path_configs[ii][idx:-5] for gpu in gpus: m0,t0,c0,d0 = gpt_gen.getModel(path_config=path_configs[ii],gpu=gpu) c0['repetition_penalty'] = ConfigPredict.repetition_penalty[ii] c0['temperature'] = ConfigPredict.temperature[ii] c0['length'] = ConfigPredict.length[ii] M0.append(m0) T0.append(t0) C0.append(c0) D0.append(d0) model.append(M0) tokenizer.append(T0) config.append(C0) device.append(D0) ModelIndex.append([kk for kk in range(len(gpus))]) GPUs.append(gpus) D_simi = json.load(open(path_simi,'r',encoding='utf-8')) D_next = json.load(open(path_next,'r',encoding='utf-8')) D_simi = {k:json.loads(D_simi[k]) for k in D_simi} D_next = {k:json.loads(D_next[k]) for k in D_next} def read_excel(path_source1,index=0): import xlrd workbook = xlrd.open_workbook(path_source1) # 打开excel文件 sheets = workbook.sheets() table = workbook.sheet_by_name(sheets[index].name) # 将文件内容表格化 rows_num = table.nrows # 获取行 cols_num = table.ncols # 获取列 res = [] # 定义一个数组 for rows in range(rows_num): r = [] for cols in range(cols_num): r.append(table.cell(rows, cols).value) # 获取excel中单元格的内容 res.append(r) return res def getdata(path_data='D:\项目\输入法\神配文数据\生成评测\主动详情准确率3.xlsx',path_targe='test_online/data/test_0416.json'): data = read_excel(path_data,index=0) D = [] prefix = '' r = [] for i in range(1,len(data)): if data[i][0]!='': if prefix!='': d = {'input':prefix,'ouput':r} D.append(d) prefix = data[i][0] r = [] if data[i][4]==0 or data[i][4]==1 or data[i][4]==2: r.append(data[i][3]+'\t'+str(int(data[i][4]))) if prefix!='': d = {'input':prefix,'ouput':r} D.append(d) with open(path_targe,'w',encoding='utf-8') as f: json.dump(D,f,ensure_ascii=False,indent=4) def write_excel(path_target,data,sheetname='Sheet1'): import xlwt # 创建一个workbook 设置编码 workbook = xlwt.Workbook(encoding='utf-8') # 创建一个worksheet worksheet = workbook.add_sheet(sheetname) # 写入excel # 参数对应 行, 列, 值 rows,cols = len(data),len(data[0]) for i in range(rows): for j in range(cols): worksheet.write(i, j, label=str(data[i][j])) # 保存 workbook.save(path_target) def test(Data,sym='-new'): modelidx = [np.random.randint(0, len(t)) for t in ModelIndex] # gpu_av = GPUtil.getAvailable(order='load', limit=8, maxLoad=0.9, maxMemory=0.9) # gpu_av = GPUtil.getAvailable(order='random',maxLoad=0.9, maxMemory=0.9, limit=8) # gpu_av = GPUtil.getAvailable(order='memory', limit=8) gpu_av = [] gpu_opt = 0 if len(gpu_av) > 0: for i in range(len(gpu_av)): for j in range(len(GPUs)): if str(gpu_av[i]) in GPUs[j]: gpu_opt = 1 modelidx[j] = GPUs[j].index(str(gpu_av[i])) break quick = False app = '' t0 = time.time() modl = [model[ii][modelidx[ii]] for ii in range(len(modelidx))] conf = [config[ii][modelidx[ii]] for ii in range(len(modelidx))] tokn = [tokenizer[ii][modelidx[ii]] for ii in range(len(modelidx))] devi = [device[ii][modelidx[ii]] for ii in range(len(modelidx))] ConfigPredict.gpus = [GPUs[ii][modelidx[ii]] for ii in range(len(modelidx))] if ConfigPredict.useThread: for D in Data: result = gpt_gen_thread.generating_thread(app, D['input'], modl, conf, tokn, devi, ConfigPredict, quick, num0, removeHighFreqWordss=rmHFW, batchGenerating=batchGenerating, tags=tags, D_simi=D_simi, D_next=D_next, maxNext=maxNext, maxChoice=10) D['ouput'].extend([r + sym for r in result]) else: result = [] for ii in range(len(path_configs)): gpu = ConfigPredict.gpus[ii] torch.cuda.set_device(int(gpu)) if ii == 1: r0 = gpt_gen.generating_poem(app, data, model[ii], config[ii], tokenizer[ii], device[ii], quick, num0[ii], batchGenerating=batchGenerating, gpu=gpu) else: r0 = gpt_gen.generating(app, data, model[ii], config[ii], tokenizer[ii], device[ii], ConfigPredict, quick=quick, num=num0[ii], removeHighFreqWords=rmHFW[ii], batchGenerating=batchGenerating, gpu=gpu) r0 = [rr + tags[ii] for rr in r0] result.extend(r0) result_nnlm = gpt_gen.nnlm_modelpredict(D_simi, D_next, ConfigPredict, inputStr=data, maxNext=maxNext, maxChoice=10, num=num) result += [tmp + tags[-1] for tmp in result_nnlm] t1 = time.time() modelidx_s = ','.join([str(t) for t in ConfigPredict.gpus]) print('total inputs:{} and use time: {} s'.format(len(Data), '%0.4f' % (t1 - t0))) return Data def test_myself(path_data='D:\\项目\\输入法\\数据处理\\GPT2-Chinese\\test_online\\result\\test_text4.json'): import random import json with open(path_data,'r',encoding='utf-8') as f: Data = json.load(f) A = [] for ii in range(len(Data)): r = Data[ii]['output'] n0 = 0 n1 = 0 a = [] for i in range(len(r)): if '(0)' in r[i]: r[i] = r[i].replace('(0)','') tag = '0' n0 += 1 if n0 < 3: a.append([Data[ii]['input']] + [r[i]] + [tag]) else: r[i] = r[i].replace('(1)', '') tag = '1' n1 += 1 if n1 < 3: a.append([Data[ii]['input']] + [r[i]] + [tag]) random.shuffle(a) A.extend(a) write_excel(path_data.replace('json','xls'), A) def test_result(path0,n0,n1): #path0 = 'D:\\项目\\输入法\\数据处理\\GPT2-Chinese\\test_online\\result\\test_text3.xls' Data = read_excel(path0) N0 = 0 N1 = 0 T0 = [0, 0, 0] T1 = [0, 0, 0] for i in range(n0,n1): if Data[i][4] == '0': N0 += 1 T0[int(Data[i][2]) - 1] += 1 else: N1 += 1 T1[int(Data[i][2]) - 1] += 1 print(N0, N1) print(T0, T1) print((T0[1] + T0[2]) / N0, (T1[1] + T1[2]) / N1) def main(path_source,sym): print('test-begin') with open(path_source,'r') as f: Data = json.load(f) t0 = time.time() Data = test(Data,sym) t1 = time.time() print('total samples:{},used time:{} s,QPS:{}'.format(len(Data),'%0.4f'%(t1-t0),'%0.4f'%(len(Data)/(t1-t0)))) with open(path_source.replace('.json','-new.json'),'w',encoding='utf-8') as f: json.dump(Data,f,ensure_ascii=False,indent=4) path_target = path_source.replace('.json', '-new.json').replace('.json','.xls') A = [] for ii in range(len(Data)): a = [Data[ii]['input']] r = Data[ii]['ouput'] for i in range(len(r)): t = r[i].split('\t') if len(t)==1: b = [t[0],''] else: b = t if i==0: a = [Data[ii]['input']]+b else: a = ['']+b A.append(a) write_excel(path_target,A) print('test-over') if __name__=='__main__': path_source,sym=sys.argv[1:] main(path_source,sym)
python
import pickle class Carro: def __init__(self, modelo, cor): self.modelo = modelo self.cor = cor def __repr__(self): return f'Carro(modelo="{self.modelo}", cor="{self.cor}")' carro_1 = Carro('Celta', 'Prata') data = { 'a': 'Eduardo', 'b': 'Banans', 'c': [1, 2, 3, 4], 'd': {1, 2, 3, 4}, 'car': carro_1 } dumped_data = pickle.dumps(data) xpto = pickle.loads(dumped_data)
python
""" 1579. Remove Max Number of Edges to Keep Graph Fully Traversable Hard Alice and Bob have an undirected graph of n nodes and 3 types of edges: Type 1: Can be traversed by Alice only. Type 2: Can be traversed by Bob only. Type 3: Can by traversed by both Alice and Bob. Given an array edges where edges[i] = [typei, ui, vi] represents a bidirectional edge of type typei between nodes ui and vi, find the maximum number of edges you can remove so that after removing the edges, the graph can still be fully traversed by both Alice and Bob. The graph is fully traversed by Alice and Bob if starting from any node, they can reach all other nodes. Return the maximum number of edges you can remove, or return -1 if it's impossible for the graph to be fully traversed by Alice and Bob. Example 1: Input: n = 4, edges = [[3,1,2],[3,2,3],[1,1,3],[1,2,4],[1,1,2],[2,3,4]] Output: 2 Explanation: If we remove the 2 edges [1,1,2] and [1,1,3]. The graph will still be fully traversable by Alice and Bob. Removing any additional edge will not make it so. So the maximum number of edges we can remove is 2. Example 2: Input: n = 4, edges = [[3,1,2],[3,2,3],[1,1,4],[2,1,4]] Output: 0 Explanation: Notice that removing any edge will not make the graph fully traversable by Alice and Bob. Example 3: Input: n = 4, edges = [[3,2,3],[1,1,2],[2,3,4]] Output: -1 Explanation: In the current graph, Alice cannot reach node 4 from the other nodes. Likewise, Bob cannot reach 1. Therefore it's impossible to make the graph fully traversable. Constraints: 1 <= n <= 10^5 1 <= edges.length <= min(10^5, 3 * n * (n-1) / 2) edges[i].length == 3 1 <= edges[i][0] <= 3 1 <= edges[i][1] < edges[i][2] <= n All tuples (typei, ui, vi) are distinct. """ class Solution: def maxNumEdgesToRemove(self, n: int, edges: List[List[int]]) -> int: f = {} def find(x): f.setdefault(x, x) if x != f[x]: f[x] = find(f[x]) return f[x] def union(x, y): x = find(x) y = find(y) if x == y: return False f[x] = y return True res, e1, e2 = 0, 0, 0 for t, u, v in edges: if t == 3: if union(u, v): e1 += 1 e2 += 1 else: res += 1 copy_f = f.copy() for t, u, v in edges: if t == 1: if union(u, v): e1 += 1 else: res += 1 f = copy_f for t, u, v in edges: if t == 2: if union(u, v): e2 += 1 else: res += 1 return res if e1 == e2 == n - 1 else -1
python
import os from setuptools import setup, find_packages here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, 'README.rst')) as f: README = f.read() requires = [ 'cornice', 'gevent', 'pyramid_exclog', 'setuptools', 'couchdb', 'couchapp', 'pycrypto', 'openprocurement_client', 'munch', 'tzlocal', 'pyyaml', 'psutil', 'iso8601' ] test_requires = requires + [ 'requests', 'webtest', 'python-coveralls', 'nose', 'mock' ] entry_points = { 'paste.app_factory': [ 'main = openprocurement.edge.main:main' ], 'console_scripts': [ 'edge_data_bridge = openprocurement.edge.databridge:main' ] } setup(name='openprocurement.edge', version='1.0.0', description='openprocurement.edge', long_description=README, classifiers=[ "Framework :: Pylons", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Topic :: Internet :: WWW/HTTP", "Topic :: Internet :: WWW/HTTP :: WSGI :: Application" ], keywords="web services", author='Quintagroup, Ltd.', author_email='[email protected]', license='Apache License 2.0', url='https://github.com/openprocurement/openprocurement.edge', packages=find_packages(exclude=['ez_setup']), namespace_packages=['openprocurement'], include_package_data=True, zip_safe=False, install_requires=requires, tests_require=test_requires, extras_require={'test': test_requires}, test_suite="openprocurement.edge.tests.main.suite", entry_points=entry_points)
python