content
stringlengths
0
894k
type
stringclasses
2 values
import pandas as pd from numpy import datetime64 from pandas_datareader import data from pandas.core.series import Series from pandas.core.frame import DataFrame from yahoofinancials import YahooFinancials # holding period return in percents def get_holding_period_return(df: DataFrame, start, end, col) -> float: start_price = df.at[pd.to_datetime(start), col] end_price = df.at[pd.to_datetime(end), col] return round((end_price - start_price) * 100 / start_price, 2) # calculates return for the last x days in percents def get_rolling_x_day_return(df: DataFrame, col: str, days: int) -> DataFrame: def f(x: Series): return round((x[-1:] - x[0]) * 100 / x[0], 2) df['Rolling Return'] = df[col].rolling(days).apply(f) return df # Rolling returns rank is based on the # percentile stock's rolling returns fall into. def get_market_timing(df: DataFrame, col: str) -> DataFrame: df['{} Rank'.format(col)] = round(df[col].rank(pct=True) * 100, 2) return df def format_quater(dt: datetime64) -> str: return '{}Q{}'.format(int((dt.month - 1) / 3) + 1, dt.year) # read stock data from yahoo finance and return adjusted cose prices def read_stock_dataframe(start: str, end: str, symbol: str) -> DataFrame: df = data.get_data_yahoo(symbol, start, end) df['Quarter'] = df.index df['Quarter'] = df['Quarter'].apply(format_quater) df = df[['Quarter', 'Adj Close']] return df # return df with the following columns # Quarter, Shares Outstanding, Net Income, Total Sales, Book Value def read_quarter_res(symbol: str) -> DataFrame: df = { 'Quarter': [], 'Book Value': [], 'Net Income': [], 'Total Sales': [], 'Shares Outstanding': [], } stock = YahooFinancials(symbol) res = stock.get_financial_stmts('quarterly', ['income', 'balance']) income = res['incomeStatementHistoryQuarterly'][symbol] balance = res['balanceSheetHistoryQuarterly'][symbol] for dt in [list(d.items())[0][0] for d in income]: dt_income = [x[dt] for x in income if dt in x.keys()][0] dt_balance = [x[dt] for x in balance if dt in x.keys()][0] df['Quarter'].append(format_quater(pd.to_datetime(dt))) df['Book Value'].append(dt_balance['netTangibleAssets']) df['Net Income'].append(dt_income['netIncome']) df['Total Sales'].append(dt_income['totalRevenue']) df['Shares Outstanding'].append(dt_balance['commonStock']) return pd.DataFrame.from_dict(df) def join_stock_data(df_stock: DataFrame, df_financial: DataFrame) -> DataFrame: df_stock = get_rolling_x_day_return(df_stock, 'Adj Close', 30) df_stock = get_market_timing(df_stock, 'Rolling Return') return pd.merge(df_stock, df_financial, on='Quarter', how='inner')
python
class JobLookupError(KeyError): """Raised when the job store cannot find a job for update or removal.""" def __init__(self, job_id): super().__init__(u'No job by the id of %s was found' % job_id) class ConflictingIdError(KeyError): """Raised when the uniqueness of job IDs is being violated.""" def __init__(self, job_id): super().__init__( u'Job identifier (%s) conflicts with an existing job' % job_id) class TransientJobError(ValueError): """ Raised when an attempt to add transient (with no func_ref) job to a persistent job store is detected. """ def __init__(self, job_id): super().__init__( f'Job ({job_id}) cannot be added to this job store because a reference to the ' f'callable could not be determined.') class SerializationError(Exception): """Raised when a serializer fails to serialize the given object.""" class DeserializationError(Exception): """Raised when a serializer fails to deserialize the given object.""" class MaxIterationsReached(Exception): """ Raised when a trigger has reached its maximum number of allowed computation iterations when trying to calculate the next fire time. """
python
import pytest from src.dataToCode.dataClasses.classData import ClassData from src.dataToCode.dataClasses.interface import Interface from src.dataToCode.languages.toPython.fileNameToPython import FileNameToPython data = [ ("Orc", "orc.py"), ("HighOrc", "high_orc.py"), ("PrettyLongClassName", "pretty_long_class_name.py") ] @pytest.mark.parametrize("data_name, expected", data) def test_file_names_with_class(data_name, expected): assert FileNameToPython(ClassData(data_name)).get_file_name() == expected @pytest.mark.parametrize("data_name, expected", data) def test_file_names_with_interface(data_name, expected): assert FileNameToPython(Interface(data_name, [])).get_file_name() == expected
python
# -*- coding: utf-8 -*- """ # @Time : 29/06/18 12:23 PM # @Author : ZHIMIN HOU # @FileName: run_Control.py # @Software: PyCharm # @Github : https://github.com/hzm2016 """ import numpy as np np.random.seed(1) import time import gym import gym_puddle import gym.spaces import pickle from algorithms import * from Tile_coding import * import argparse """Superparameters""" OUTPUT_GRAPH = True MAX_EPISODE = 5000 DISPLAY_REWARD_THRESHOLD = 4001 MAX_EP_STEPS = 5000 """Environments Informations :: Puddle world""" env = gym.make('PuddleWorld-v0') env.seed(1) env = env.unwrapped # print("Environments information:") # print(env.action_space.n) # print(env.observation_space.shape[0]) # print(env.observation_space.high) # print(env.observation_space.low) """Tile coding""" NumOfTilings = 10 MaxSize = 100000 HashTable = IHT(MaxSize) """position and velocity needs scaling to satisfy the tile software""" PositionScale = NumOfTilings / (env.observation_space.high[0] - env.observation_space.low[0]) VelocityScale = NumOfTilings / (env.observation_space.high[1] - env.observation_space.low[1]) def getQvalueFeature(obv, action): activeTiles = tiles(HashTable, NumOfTilings, [PositionScale * obv[0], VelocityScale * obv[1]], [action]) return activeTiles def getValueFeature(obv): activeTiles = tiles(HashTable, NumOfTilings, [PositionScale * obv[0], VelocityScale * obv[1]]) return activeTiles """Parameters""" def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--dir', default='../control_data') parser.add_argument('alpha', type=float) # default=np.array([1e-4, 5e-4, 1e-3, 1e-2, 0.5, 1.]) parser.add_argument('--alpha_h', type=float, default=np.array([0.0001])) parser.add_argument('--eta', type=float, default=0.0) parser.add_argument('lambda', type=float) # default=np.array([0., 0.2, 0.4, 0.6, 0.8, 0.99]) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--decay', type=float, default=0.99) parser.add_argument('--ISW', type=int, default=0) parser.add_argument('--left_probability', type=float, dest='left_probability', default=0.05) parser.add_argument('--left_probability_end', type=float, dest='left_probability_end', default=0.75) parser.add_argument('--num_seeds', type=int, dest='num_seeds', default=100) parser.add_argument('--num_runs', type=int, dest='num_runs', default=30) parser.add_argument('--num_states', type=int, dest='num_states', default=5) parser.add_argument('--num_actions', type=int, dest='num_actions', default=2) parser.add_argument('--num_episodes', type=int, dest='num_episodes', default=4000) parser.add_argument('--num_frequency', type=int, dest='num_frequency', default=1000) parser.add_argument('--num_change', type=int, dest='num_change', default=1000) parser.add_argument('--all_algorithms', type=str, dest='all_algorithms', default=['OffPAC']) parser.add_argument('--behavior_policy', type=float, dest='behavior_policy', default=np.array([0.2, 0.2, 0.2, 0.2, 0.2])) parser.add_argument('--target_policy', type=float, dest='target_policy', default=np.array([0., 0., 0.5, 0., 0.5])) parser.add_argument('--test_name', default='puddle_control') args = vars(parser.parse_args()) if 'num_steps' not in args: args['num_steps'] = args['num_states'] * 100 return args def control_performance(off_policy, behavior_policy): average_reward = [] for j in range(100): t = 0 track_r = [] observation = env.reset() action_test = off_policy.start(getValueFeature(observation), behavior_policy) while True: observation_, reward, done, info = env.step(action_test) track_r.append(reward) action_test = off_policy.choose_action(getValueFeature(observation)) observation = observation_ t += 1 if done or t > MAX_EP_STEPS: average_reward.append(sum(track_r)) break return np.mean(average_reward) def play_control(learner, behavior_policy): t = 0 observation = env.reset() action = learner.start(getValueFeature(observation), behavior_policy) while True: observation_, reward, done, info = env.step(action) action, delta = learner.step(reward, getValueFeature(observation), behavior_policy) observation = observation_ t += 1 if done or t > MAX_EP_STEPS: break """ ################################offPolicyControl######################### utilized target policy to generate a trajectory sampled 2000 states from one trajectory and run 500 Monte Carlo rollouts to compute an estimate true value """ if __name__ == '__main__': args = parse_args() """Run all the parameters""" print('#############################offPolicyControl::Env_puddle#########################') rewards = np.zeros((len(args['all_algorithms']), args['num_runs'], int(args['num_episodes']/50))) for agentInd, agent in enumerate(args['all_algorithms']): for run in range(args['num_runs']): if agent == 'OffPAC': learner = OffPAC(MaxSize, env.action_space.n, args['gamma'], args['eta'], \ args['alpha']*10, args['alpha'], args['alpha_h'], args['lambda'], args['lambda']) else: print('Please give the right agent!!') for ep in range(args['num_episodes']): play_control(learner, args['behavior_policy']) if ep > 0 and ep % 50 == 0: cum_reward = control_performance(learner, args['behavior_policy']) rewards[agentInd, run, int(ep/50)] = cum_reward print('agent %s, run %d, episode %d, rewards%d' % (agent, run, ep, cum_reward)) with open('{}/rmse_{}_alpha_{}_lambda_{}.npy'.format(args['directory'], args['test_name'], args['alpha'], args['lambda']), 'wb') as outfile: np.save(outfile, rewards) # off_policy = OffActorCritic(MaxSize, env.action_space.n, \ # gamma, eta, alphas[0]*10, alphas[0], lams[0], lams[0]) # behavior_policy = np.array([0.2, 0.2, 0.2, 0.2, 0.2]) # for i_espisode in range(MAX_EPISODE): # # t = 0 # track_r = [] # observation = env.reset() # action = off_policy.start(getValueFeature(observation), behavior_policy) # while True: # # observation_, reward, done, info = env.step(action) # track_r.append(reward) # optimal_action, delta = off_policy.step(reward, getValueFeature(observation), behavior_policy) # observation = observation_ # action = np.random.choice(env.action_space.n, p=behavior_policy) # t += 1 # # if done or t > MAX_EP_STEPS: # break # # if i_espisode % 100 == 0: # cum_reward = test(off_policy) # print('num_espisode %d, cumulative_reward %f' % (i_espisode, cum_reward)) # # LinearAC = DiscreteActorCritic(MaxSize, env.action_space.n, 0.99, 0., 1e-4, 1e-5, 0.3, 0.3) # espisode_reward = [] # observation = env.reset() # action = LinearAC.start(getValueFeature(observation)) # # for i_espisode in range(MAX_EPISODE): # # t = 0 # track_r = [] # while True: # # observation_, reward, done, info = env.step(action) # track_r.append(reward) # action, delta = LinearAC.step(reward, getValueFeature(observation)) # observation = observation_ # t += 1 # if done or t > MAX_EP_STEPS: # # observation = env.reset() # ep_rs_sum = sum(track_r) # if 'running_reward' not in globals(): # running_reward = ep_rs_sum # else: # running_reward = running_reward * 0.99 + ep_rs_sum * 0.01 # print("episode:", i_espisode, "reward:", int(running_reward)) # espisode_reward.append(int(running_reward)) # break
python
from .black_scholes_process import BlackScholesMertonProcess
python
from datetime import datetime from os.path import dirname, join import pytest from city_scrapers_core.constants import COMMISSION from city_scrapers_core.utils import file_response from freezegun import freeze_time from city_scrapers.spiders.chi_ssa_8 import ChiSsa8Spider test_response = file_response( join(dirname(__file__), "files", "chi_ssa_8.html"), url="https://lakevieweast.com/ssa-8/", ) spider = ChiSsa8Spider() freezer = freeze_time("2020-07-29") freezer.start() parsed_items = [item for item in spider.parse(test_response)] freezer.stop() def test_title(): assert parsed_items[0]["title"] == "Special Meeting" assert parsed_items[3]["title"] == "2021 budget meeting" def test_description(): assert parsed_items[0]["description"] == "Special Meeting" assert parsed_items[3]["description"] == "2021 budget meeting" def test_start(): assert parsed_items[0]["start"] == datetime(2020, 2, 25, 0, 0) assert parsed_items[3]["start"] == datetime(2020, 7, 23, 0, 0) def test_end(): assert parsed_items[0]["end"] is None def test_time_notes(): assert parsed_items[0]["time_notes"] == "" def test_id(): assert parsed_items[0]["id"] == "chi_ssa_8/202002250000/x/special_meeting" assert parsed_items[3]["id"] == "chi_ssa_8/202007230000/x/2021_budget_meeting" def test_status(): assert parsed_items[0]["status"] == "passed" def test_location(): assert parsed_items[0]["location"] == { "name": "LVECC office", "address": "3138 N. Broadway, Chicago, IL", } def test_source(): assert parsed_items[0]["source"] == "https://lakevieweast.com/ssa-8/" def test_links(): assert parsed_items[0]["links"] == [] def test_classification(): assert parsed_items[0]["classification"] == COMMISSION @pytest.mark.parametrize("item", parsed_items) def test_all_day(item): assert item["all_day"] is False
python
import os, sys sys.path.insert(0, os.path.join("..","..")) from nodebox.graphics.context import * from nodebox.graphics import * # Generate compositions using random text. font('Arial Black') def rndText(): """Returns a random string of up to 9 characters.""" t = u"" for i in range(random(10)): t += chr(random(10,120)) return t def draw(canvas): canvas.clear() # Define some colors. #colormode(HSB) white = color(1,1,1,0.8) black = color(0,0,0,0.8) red = color(random(),0,0.2,0.8) translate(0,-200) for i in range(100): # This translation is not reset every time, so it is # appended to previous translations. This gives # interesting effects. translate(random(-100,100),random(-100,100)) # Save the current transformation. It's a good idea # to do this in the beginning of a loop. End the # loop with a pop. push() # Rotate in increments of 45 degrees. rotate(random(5)*45) fontsize(random(800)) fill(choice((white,black,red))) someText = rndText() text(someText, 0,0) pop() canvas.size = 500,500 canvas.run(draw)
python
#coding utf8 #!/usr/bin/env python # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 import Queue # local modules from video import create_capture from common import clock, draw_str Sample_Num = 128 xx1 = lambda x1, x2: int((x1+x2)/2-(x2-x1)*0.2) xx2 = lambda x1, x2: int((x1+x2)/2+(x2-x1)*0.2) yy1 = lambda y1, y2: int(y1+(y2-y1)*0.1) yy2 = lambda y1, y2: int(y1+(y2-y1)*0.2) def detect(img, cascade): rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE) if len(rects) == 0: return [] rects[:, 2:] += rects[:, :2] return rects def draw_rects(img, rects, color): for x1, y1, x2, y2 in rects: cv2.rectangle(img, (x1, y1), (x2, y2), color, 2) cv2.rectangle(img, (xx1(x1,x2), yy1(y1,y2)), (xx2(x1,x2), yy2(y1,y2)), (0, 0, 255), 2) if __name__ == '__main__': import sys, getopt q_data = Queue.Queue(maxsize=Sample_Num) q_heart = Queue.Queue(maxsize=10) q_samplefreq = Queue.Queue(maxsize=10) args, video_src = getopt.getopt(sys.argv[1:], '', ['cascade=', 'nested-cascade=']) try: video_src = video_src[0] except: video_src = 0 args = dict(args) cascade_fn = args.get('--cascade', "haarcascade_frontalface_alt.xml") cascade = cv2.CascadeClassifier(cascade_fn) cam = create_capture(video_src) while True: ret, img = cam.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.equalizeHist(gray) t = clock() rects = detect(gray, cascade) vis = img.copy() if len(rects) > 0: x1, y1, x2, y2 = rects[0] xxx1, yyy1, xxx2, yyy2 = xx1(x1,x2), yy1(y1,y2), \ xx2(x1,x2), yy2(y1,y2) gg = img[xxx1:xxx2, yyy1:yyy2, 1] if q_data.full(): q_data.get() q_data.put(gg) else: q_data.put(gg) if len(rects) == 0 and not q_data.empty(): q_data.get() zz = map(lambda x: np.sum(x.ravel()), np.array(q_data.queue)) draw_rects(vis, rects, (0, 255, 0)) dt = clock() - t tf = 0 ft = 1000.0 / (dt * 1000 + 10+5) if q_samplefreq.full(): q_samplefreq.get(); q_samplefreq.put(ft) else: q_samplefreq.put(ft) ft = np.average(np.array(q_samplefreq.queue)) if q_data.full(): frez = np.abs(np.fft.fft(zz, Sample_Num)) frez[0:20] = 0 tf = frez[0:len(frez)/2] tf = np.where(tf == max(tf)) tf = tf[0]*ft/Sample_Num*10 if q_heart.full(): q_heart.get() q_heart.put(tf) else: q_heart.put(tf) tf = np.average(np.array(q_heart.queue)) draw_str(vis, (20, 20), 'Sample Freq: %.0f Heartbeat Freq: %.0f Sample Num: %d '%(ft,tf, len(zz))) cv2.imshow('Heartbeat frequency', vis) if 0xFF & cv2.waitKey(5) == 27: break cv2.destroyAllWindows()
python
#!/usr/bin/env python from __future__ import print_function, division from multiprocessing import Pool import os from shutil import copy import glob from sqlalchemy import or_ from pyql.database.ql_database_interface import Master from pyql.database.ql_database_interface import session from pyql.database.ql_database_interface import UVIS_flt_0 """This script queries the Quicklook database for images potentially affected by dragons breath and copies them to /grp/hst/wfc3t/sasp/data. Authors ------- Larissa Markwardt Use --- This program is intended to be executed via the command line as such: >>> python Dragons_Breath_Query.py Dependencies ------------ This module depends on sqlalchemy and pyql. """ def copy_to_sasp(file_path): """This function copies the file located at file_path to /grp/hst/wfc3t/sasp/data/. Parameters ---------- file_path: string Full path to the flt file. """ files_in_dir = glob.glob('/grp/hst/wfc3t/sasp/data/*_flt.fits') basenames_in_dir = [os.path.basename(file) for file in files_in_dir] if os.path.basename(file_path) not in basenames_in_dir: try: print('Copying from ' + file_path) copy(file_path, '/grp/hst/wfc3t/sasp/data/') print(file_path + ' is done!') except IOError: print(file_path + ' does not exist!') else: print(file_path + ' is already in the directory.') def main(): """Main function which queries for all of the images that might be affected by Dragon's Breath and copies them to /grp/hst/wfc3t/sasp/data. The images that are to be included were taken with either the F606W or F814W filters and had an exposure time > 300 seconds. """ results = session.query(Master.dir, Master.rootname).\ join(UVIS_flt_0).filter(UVIS_flt_0.exptime > 300).\ filter(or_(UVIS_flt_0.filter == 'F606W', UVIS_flt_0.filter == 'F814W')).\ all() origin_paths = ['{}_flt.fits'.format(os.path.join(item.dir, item.rootname)) for item in results] print('Starting to copy images...') p = Pool(4) # for linux server p.map(copy_to_sasp, origin_paths) print('Complete. All files copied over.') if __name__ == "__main__": main()
python
"""This module contains loosely related utility functions used by the Gemicai""" from string import Template import os from tabulate import tabulate from collections import Counter from math import log from matplotlib import pyplot as plt import numpy as np import itertools from sklearn.metrics import confusion_matrix import datetime def strfdelta(tdelta, fmt='%H:%M:%S'): """Similar to strftime, but this one is for a datetime.timedelta object. :param tdelta: datetime object containing some time difference :type tdelta: datetime.timedelta :param fmt: string with a format :type fmt: str :return: string containing a time in a given format """ class DeltaTemplate(Template): delimiter = "%" d = {"D": tdelta.days} hours, rem = divmod(tdelta.seconds, 3600) minutes, seconds = divmod(rem, 60) d["H"] = '{:02d}'.format(hours) d["M"] = '{:02d}'.format(minutes) d["S"] = '{:02d}'.format(seconds) t = DeltaTemplate(fmt) return t.substitute(**d) def format_byte_size(num): """Returns a given number as a formatted binary unit string :param num: number to format eg. 1048576 :type num: int :return: a binary unit formatted string eg. 10 MB """ unit_list = list(zip(['bytes', 'kB', 'MB', 'GB', 'TB', 'PB'], [0, 0, 1, 2, 2, 2])) if num > 1: exponent = min(int(log(num, 1024)), len(unit_list) - 1) quotient = float(num) / 1024 ** exponent unit, num_decimals = unit_list[exponent] format_string = '{:.%sf} {}' % num_decimals return format_string.format(quotient, unit) if num == 0: return '0 bytes' if num == 1: return '1 byte' def dir_info(directory): """Prints extensions, file names and sizes of all files contained inside of a specified directory. :param directory: directory to iterate over :type directory: Union[str, os.path] """ if not os.path.isdir(directory): raise NotADirectoryError('{} isn\'t a directory'.format(directory)) cnt_ext, sum_size = Counter(), {} for root, dirs, files in os.walk(directory): for f in files: fp = os.path.join(root, f) if not os.path.islink(fp): ext = f[f.find('.'):] cnt_ext.update({ext: 1}) if ext in sum_size: sum_size[ext] += os.path.getsize(fp) else: sum_size[ext] = os.path.getsize(fp) data = [] for k in sum_size: data.append([k, cnt_ext[k], format_byte_size(sum_size[k])]) if len(data) > 1: data.append(['TOTAL', sum(cnt_ext.values()), format_byte_size(sum(sum_size.values()))]) print(tabulate(data, headers=['Extension', 'Files', 'Size'], tablefmt='orgtbl'), '\n') def table_print(template, data, is_header=False): """Prints a row of a table using a specified template and data :param template: list of strings containing a table row template :type template: list :param data: list of strings containing a table row data :type data: list :param is_header: whenever passed data should be formatted and printed as a header :type is_header: bool """ assert len(template) == len(data), 'Template length and data length should be equal!' for i, d in enumerate(data): data[i] = template[i].format(str(d)) s = '| ' for d in data: s += d + ' | ' print(s) if is_header: line = '|' for d in data: line += '-' * len(d) + '--+' line = line[:-1] print(line+'|') # if is_header: # print(tabulate([[]], headers=data, tablefmt='orgtbl')) # else: # print(tabulate(data, tablefmt='orgtbl')) def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.figure(figsize=(12, 12)) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) # plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: pass # print('Confusion matrix, without normalization') # print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')
python
# CRINGE FILE NAME ALERT(PC culture is not even rational) import sys DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'autogger', 'USER': 'postgres_user', 'PASSWORD': 'postgres_user_password', 'HOST': 'localhost', 'PORT': '5432', } } if 'test' in sys.argv: DATABASES['default'] = { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'test_autogger', 'USER': 'postgres_user', 'PASSWORD': 'postgres_user_password', 'HOST': 'localhost', } TEST_RUNNER = 'django_nose.NoseTestSuiteRunner' NOSE_ARGS = [ '--with-coverage', '--cover-package=core,jira,github,user', '--cover-html', '--cover-erase' ] ALLOWED_HOSTS = ['localhost', ] ROOT_SITE_DOMAIN = 'http://localhost:8090/' DJANGO_ADMIN_SUPER_USER_EMAIL = '[email protected]' DJANGO_ADMIN_SUPER_USER_PASSWORD = 'EXAMPLE_PASSWORD'
python
# -------------- # Importing header files import numpy as np import warnings warnings.filterwarnings('ignore') #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Reading file data = np.genfromtxt(path, delimiter=",", skip_header=1) #print(data) #Code starts here #Task -1 : In this first task, we will load the data to a numpy array and add a new record to it. census=np.concatenate((data,new_record)) print(census.shape) age=census[:,0].astype('int32') print(age) #Task -2 We often associate the potential of a country based on the age distribution of the people residing there. We too want to do a simple analysis of the age distribution max_age=np.max(age) min_age=np.min(age) age_mean=age.mean() age_std=np.std(age) print(max_age) print(min_age) print(age_mean) print(age_std) #Task -3 The constitution of the country tries it's best to ensure that people of all races are able to live harmoniously. Let's check the country's race distribution to identify the minorities so that the government can help them. race_0=np.array([census for census in census[:,2] if census == 0]) race_1=np.array([census for census in census[:,2] if census == 1]) race_2=np.array([census for census in census[:,2] if census == 2]) race_3=np.array([census for census in census[:,2] if census == 3]) race_4=np.array([census for census in census[:,2] if census == 4]) len_0=len(race_0) len_1=len(race_1) len_2=len(race_2) len_3=len(race_3) len_4=len(race_4) min_race=np.min([len_0,len_1,len_2,len_3,len_4]) if len_0==min_race: minority_race=0 elif len_1==min_race: minority_race=1 elif len_2==min_race: minority_race=2 elif len_3==min_race: minority_race=3 elif len_4==min_race: minority_race=4 print(minority_race) # Task - 4 As per the new govt. policy, all citizens above age 60 should not be made to work more than 25 hours per week. Let us look at the data and see if that policy is followed. senior_citizens=[i for i in census.astype('int32') if i[0]>60] senior_citizens_len=len(senior_citizens) print(senior_citizens_len) #working_hours_sum=[j.size for i,j in zip(senior_citizens,census[:,6].astype('int32'))] #print(working_hours_sum) working_hours_sum=0 for i in senior_citizens: working_hours_sum+=i[6] print(working_hours_sum) avg_working_hours=working_hours_sum/senior_citizens_len print(avg_working_hours) #Task -6 Our parents have repeatedly told us that we need to study well in order to get a good(read: higher-paying) job. Let's see whether the higher educated people have better pay in general. high=np.array([i for i in census.astype('int32') if i[1]>10]) low=np.array([i for i in census.astype('int32') if i[1]<=10]) sum=0 for i in high[:,7]: sum+=i avg_pay_high=(sum/len(high)) print(round(avg_pay_high,2)) sum=0 for i in low[:,7]: sum+=i avg_pay_low=(sum/len(low)) print(round(avg_pay_low,2))
python
import pygame from pygame import color import os letter_x = pygame.image.load(os.path.join('res', 'letter_x.png')) letter_0 = pygame.image.load(os.path.join('res', 'letter_o.png')) class Grip: def __init__(self) : self.grip_line = [((0, 200), (600, 200)), #1st horizontal line ((0, 400), (600, 400)), #2ns horizontal line ((200, 0), (200, 600)), #1st vertical line ((400, 0), (400, 600))] #2nd vertical line self.grid = [[0 for x in range (3)] for y in range (3)] self.switch_player = True #search direction around the current input #direction NE E SE S SW W NW N self.search_direction = [(1, -1), (1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1)] self. game_over = False def print_grid(self): for row in self.grid : print(row) def get_cell_value(self, x, y): return self.grid[y][x] def set_cell_value(self, x, y, value): self.grid[y][x] = value #set 'x' pr 'o' to position in grid def get_mouse(self, x, y, player): if self.get_cell_value(x, y) == 0: self.switch_player = True if player == 'x' : self.set_cell_value(x, y, 'x') elif player == 'o': self.set_cell_value(x, y, 'o') else: self.switch_player = False def draw(self, surface): #draw the line for game for lines in self.grip_line: pygame.draw.line(surface, (200,200,200), lines[0], lines[1], 2) #draw the 'x' and 'o' everytime player press for y in range( len(self.grid)): for x in range (len(self.grid[y])): #check if the cell is empty before input if self.get_cell_value(x, y) == 'x': surface.blit(letter_x, (x*200, y*200)) elif self.get_cell_value(x, y) == 'o': surface.blit(letter_0, (x*200, y*200)) #check when check around cell is in playing area def is_in_bound(self, x, y): return x >= 0 and x < 3 and y >= 0 and y <3 def is_grip_full(self): for row in self.grid: for value in row: if value == 0: return False return True #check for winner #check around the current cell x, y coord def check_grip(self, x, y, player) : #for loop go to each of the direction to check #reset count to 1 when move to the new direction for (dir_x, dir_y) in (self.search_direction): count = 1 #move to the next cell in current direction xx = x + dir_x yy = y + dir_y #while loop to continute to check on that direction while self.is_in_bound(xx, yy) and player == self.get_cell_value(xx, yy): count += 1 xx += dir_x yy += dir_y #after checking everthing in current direction then if count = 3, current player win if count == 3: print(f'Player : {player} win' ) self.game_over = True break elif self.is_grip_full() == True: self.game_over = True def clear_grip(self): self.grid = [[0 for x in range (3)] for y in range (3)] self.game_over = False
python
from dbconnect import session, User, Offer, Skills, Languages from tweetparse import tweetParse def addUserToDB(mentor, twit_uid, tweet_id, screenname): userVar = User(mentor_mentee=mentor, twitter_uid=twit_uid, original_tweet_id=tweet_id, scrn_name=screenname) session.add(userVar) session.commit() return userVar def addSkills(user, skillist): for idx, skill in enumerate(skillist): if idx == 0: skillVar = Skills(skills_1=skill, skillset=user) session.add(skillVar) session.commit() elif idx == 1: skillVar = Skills(skills_2=skill, skillset=user) session.add(skillVar) session.commit() elif idx == 2: skillVar = Skills(skills_3=skill, skillset=user) session.add(skillVar) session.commit() elif idx == 3: skillVar = Skills(skills_4=skill, skillset=user) session.add(skillVar) session.commit() def addLangs(user, langlist): for idx, lang in enumerate(langlist): if idx == 0: langVar = Languages(languages_1=lang, polyglot=user) session.add(langVar) session.commit() elif idx == 1: langVar = Languages(languages_2=lang, polyglot=user) session.add(langVar) session.commit() elif idx == 2: langVar = Languages(languages_3=lang, polyglot=user) session.add(langVar) session.commit() elif idx == 3: langVar = Languages(languages_4=lang, polyglot=user) session.add(langVar) session.commit() def addOffer(user, offlist): for idx, off in enumerate(offlist): if idx == 0: offVar = Offer(offer_1=off, useroffer=user) session.add(offVar) session.commit() elif idx == 1: offVar = Offer(offer_2=off, useroffer=user) session.add(offVar) session.commit() elif idx == 2: offVar = Offer(offer_3=off, useroffer=user) session.add(offVar) session.commit() def dbCheck(user_id_str, mentor_mentee): dbCheckBool = False userList = session.query(User).filter_by(twitter_uid=user_id_str).all() for user in userList: if user.mentor_mentee == mentor_mentee: dbCheckBool = True; return dbCheckBool # mentor = session.query(User).filter_by(="mentor").first() # mentor_status, langs, skill, offer = tweetParse('#WomenToTech #Mentor -langs: javascript, python, haskell -skill: node.js, d3.js, jinja2 -offering: help getting started') # # user_one = addUserToDB(mentor_status, 'tragiccabbage') # addSkills(user_one, skill) # addLangs(user_one, langs) # addOffer(user_one, offer)
python
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json from unittest import mock from sushy.resources import constants as res_cons from sushy.resources.system import ethernet_interface from sushy.tests.unit import base class EthernetInterfaceTestCase(base.TestCase): def setUp(self): super(EthernetInterfaceTestCase, self).setUp() self.conn = mock.Mock() with open('sushy/tests/unit/json_samples/' 'ethernet_interfaces.json') as f: self.json_doc = json.load(f) self.conn.get.return_value.json.return_value = self.json_doc eth_path = ("/redfish/v1/Systems/437XR1138R2/EthernetInterfaces/" "12446A3B0411") self.sys_eth = ethernet_interface.EthernetInterface( self.conn, eth_path, redfish_version='1.0.2') def test__parse_attributes(self): self.sys_eth._parse_attributes(self.json_doc) self.assertEqual('1.0.2', self.sys_eth.redfish_version) self.assertEqual('1', self.sys_eth.identity) self.assertEqual('Ethernet Interface', self.sys_eth.name) self.assertEqual('System NIC 1', self.sys_eth.description) self.assertEqual( '12:44:6A:3B:04:11', self.sys_eth.permanent_mac_address) self.assertEqual('12:44:6A:3B:04:11', self.sys_eth.mac_address) self.assertEqual(res_cons.STATE_ENABLED, self.sys_eth.status.state) self.assertEqual(res_cons.HEALTH_OK, self.sys_eth.status.health) self.assertEqual(1000, self.sys_eth.speed_mbps) class EthernetInterfaceCollectionTestCase(base.TestCase): def setUp(self): super(EthernetInterfaceCollectionTestCase, self).setUp() self.conn = mock.Mock() with open('sushy/tests/unit/json_samples/' 'ethernet_interfaces_collection.json') as f: self.json_doc = json.load(f) self.conn.get.return_value.json.return_value = self.json_doc self.sys_eth_col = ethernet_interface.EthernetInterfaceCollection( self.conn, '/redfish/v1/Systems/437XR1138R2/EthernetInterfaces', redfish_version='1.0.2') def test__parse_attributes(self): self.sys_eth_col._parse_attributes(self.json_doc) self.assertEqual('1.0.2', self.sys_eth_col.redfish_version) self.assertEqual('Ethernet Interface Collection', self.sys_eth_col.name) eth_path = ('/redfish/v1/Systems/437XR1138R2/EthernetInterfaces/' '12446A3B0411',) self.assertEqual(eth_path, self.sys_eth_col.members_identities) @mock.patch.object(ethernet_interface, 'EthernetInterface', autospec=True) def test_get_member(self, mock_eth): self.sys_eth_col.get_member( '/redfish/v1/Systems/437XR1138R2/EthernetInterfaces/' '12446A3B0411') mock_eth.assert_called_once_with( self.sys_eth_col._conn, ('/redfish/v1/Systems/437XR1138R2/EthernetInterfaces/' '12446A3B0411'), redfish_version=self.sys_eth_col.redfish_version, registries=None, root=self.sys_eth_col.root) @mock.patch.object(ethernet_interface, 'EthernetInterface', autospec=True) def test_get_members(self, mock_eth): members = self.sys_eth_col.get_members() eth_path = ("/redfish/v1/Systems/437XR1138R2/EthernetInterfaces/" "12446A3B0411") calls = [ mock.call(self.sys_eth_col._conn, eth_path, redfish_version=self.sys_eth_col.redfish_version, registries=None, root=self.sys_eth_col.root), ] mock_eth.assert_has_calls(calls) self.assertIsInstance(members, list) self.assertEqual(1, len(members)) def test_summary(self): self.conn.get.return_value.json.reset_mock() with open('sushy/tests/unit/json_samples/' 'ethernet_interfaces.json') as f: self.conn.get.return_value.json.return_value = json.load(f) expected_summary = {'12:44:6A:3B:04:11': res_cons.STATE_ENABLED} actual_summary = self.sys_eth_col.summary self.assertEqual(expected_summary, actual_summary)
python
# iNTERFACE 2 - TESTE from tkinter import * from tkinter import messagebox # AINDA EM CONSTRUÇÃO AULA 2 janela = Tk() janela.title('Systems OS') janela.geometry('500x400') w= Spinbox(janela, values=("Python", "HTML", "Java", "Javascript")) w.pack() e = Spinbox(janela, values=("carnes", "Verduras", "Legumes", "Frutas")) e.pack() janela.mainloop()
python
#!/usr/bin/env python3 import SimpleITK as sITK import nibabel as nib import numpy as np class nibabelToSimpleITK(object): ''' Collection of methods to convert from nibabel to simpleITK and vice versa. Note: Only applicable for 3d images for now. ''' @staticmethod def sitkImageFromNib( nibImageIn ): ''' Convert a nibabel image into an SITK object. @param nibImageIn: Image object read with nibabel library ''' # Currently only 3d images are supported if ( nibImageIn.header['dim'][0] != 3): print("WARNING: This class is currently only intended for 3D images") # Generate an sitk image object from the nibabel image array, # Note that the order of the axes is reverted sitkImage = sITK.GetImageFromArray(np.transpose( nibImageIn.get_fdata(), [2, 1, 0])) # Set the image geometry # - origin sitkImage.SetOrigin(nibImageIn.affine[:3, 3] * np.array([-1, -1, 1])) # - spacing sitkImage.SetSpacing( nibImageIn.header['pixdim'][1:4].astype(np.double) ) # - direction dirMatrix = nibImageIn.affine[:3, :3].copy() dirMatrix[:, 0] = dirMatrix[:, 0] / np.linalg.norm(dirMatrix[:, 0]) dirMatrix[:, 1] = dirMatrix[:, 1] / np.linalg.norm(dirMatrix[:, 1]) dirMatrix[:, 2] = dirMatrix[:, 2] / np.linalg.norm(dirMatrix[:, 2]) dirMatrix[:2, :] = dirMatrix[:2, :] * (-1) sitkImage.SetDirection(dirMatrix.reshape(-1)) return sitkImage @staticmethod def nibImageFromSITK( sITKImageIn ): ''' Generate a new nifti image from a given SITK image. @param sITKImageIn: THe simple ITK image object to be converted. Note, only 3D images supported at the moment. ''' # Currently only 3D images supported. if (sITKImageIn.GetDimension() != 3): print("WARNING: This class is currently only intended for 3D images") affineMatrix = np.eye(4) # Create the matrix according to itkSoftware guide affineMatrix[:3,:3] = np.dot( np.diag(sITKImageIn.GetSpacing()), np.array(sITKImageIn.GetDirection()).reshape([3,-1]) ) affineMatrix[:3,3] = sITKImageIn.GetOrigin() # Account for change in geometry dicom/ITK vs. nifti affineMatrix[:2, :] = (-1) * affineMatrix[:2, :] return nib.Nifti1Image( np.transpose( sITK.GetArrayFromImage( sITKImageIn ), [2,1,0]), affineMatrix ) if __name__ == '__main__': # Conversion from SITK to nibabel nImg = nib.load( 'C:/debugData/cidX/resampled_only_follow_up_12.nii' ) sReader = sITK.ImageFileReader() sReader.SetFileName('C:/debugData/cidX/resampled_only_follow_up_12.nii') sImg = sReader.Execute() # Convert nibabel to simple ITK convertedSITKImg = nibabelToSimpleITK.sitkImageFromNib( nImg ) # Convert simpleITK back to nibabel recoveredNibImg = nibabelToSimpleITK.nibImageFromSITK( convertedSITKImg ) nib.save(recoveredNibImg, 'C:/debugData/cidX/resampled_only_follow_up_12_recNib.nii.gz') # Check a simpleITK filter and save the converted nibabel image cropper = sITK.CropImageFilter() cropper.SetUpperBoundaryCropSize([1, 2, 3]) cropper.SetLowerBoundaryCropSize([4, 5, 6]) cImg = cropper.Execute( convertedSITKImg ) ncImg = nibabelToSimpleITK.nibImageFromSITK( cImg ) nib.save(ncImg, 'C:/debugData/cidX/resampled_only_follow_up_12_recNib_cropped.nii.gz')
python
#!/usr/bin/env python3 # Programita para implementar el método de bisección # Busca un cero de f en el intervalo [a,b] # tol= tolerancia prescripta para detener el método numérico # (si no sería un ciclo infinito) # Hipótesis: las del teorema de Bolzano # f(a) y f(b) deben tener signos opuestos # f debe ser continua en [a,b] # Usamos una llamada recursiva por motivos didácticos. # (Es más fácil de entender) def biseccion(f, a, b, n=1, tol=1e-11): # La variable n cuenta las iteraciones # tol especifica la tolerancia permitida # al método numérico print("n= ",n,":Bisección en el intervalo", "[", a,",", b, "]") if abs(b - a) < tol: return a if f(a) == 0: return a if f(b) == 0: return b # Encontramos el punto medio del intervalo [a,b] c = (a + b) / 2 if f(c) == 0: return c if f(a) > 0: if f(b) > 0: raise Exception ("Error: hipótesis!") # Si llegamos acá, f(b)<0 if f(c) > 0: # sabemos que f(b)<0 y f(c)>0 return biseccion(f, c, b, n + 1, tol) else: # sabemos que f(a)>0 y f(c)<0 return biseccion(f, a, c, n + 1, tol) else: # caso en que f(a)<0 if f(b) < 0: raise Exception ("Error: hipótesis!") # si llegamos acá f(b)>0 if f(c) > 0: # sabemos que f(a)<0 y f(c)>0 return biseccion(f, a, c, n + 1, tol) else: # sabemos que f(b)>0 y f(c) <0 return biseccion(f, c, b, n + 1, tol) if __name__ == "__main__": from math import sqrt, exp, log, sin, cos, pi # Ejemplo 1: calculemos la raíz cuadrada de 2 # encontrando una raíz de un polinomio def mi_funcion(x): return x * x - 2 raiz_hallada = biseccion(mi_funcion, 0, 2,tol=1e-3) print("raiz_hallada=", raiz_hallada) print("valor exacto=", sqrt(2)) # Otro ejemplo: calculemos el logaritmo de 2 como la inversa de la # exponencial def mi_funcion2(x): return exp(x) - 2 raiz_hallada = biseccion(mi_funcion2, 0, 2, tol=1e-11) print("raiz_hallada=", raiz_hallada) print("valor exacto=", log(2)) # ejemplo 3: calculemos pi/4 resolviendo la ecuación # sin(x)=cos(x) def mi_funcion3(x): return sin(x) - cos(x) raiz_hallada = biseccion(mi_funcion3, 0, 3, tol=1e-12) print("raiz_hallada=", raiz_hallada) print("valor exacto=", pi / 4)
python
__author__ = "Samantha Lawler" __copyright__ = "Copyright 2020" __version__ = "1.0.1" __maintainer__ = "Rabaa" __email__ = "[email protected]" import numpy as np import sys ## Class: TestParticle # Functions: Default Constructor, DataDissection, IdentifyResonance, PrintData class TestParticle: def __init__(self): # Attributes defined self.Resonant = False self.ResonanceType = 'n:n' self.Name = 'N/A' self.ResonanceCenter = -999 self.ResonanceAmplitude = -999 self.AverageSMA = -999 # Average SemiMajor axist self.AverageEccentricity = -999 self.AverageInclination = -999 self.Kozai = False self.SMAamplitude = -999 self.SMACenter = -999 self.Index = -1 ############################################ FUNCTIONS ################################################# ############################################ DATA DISSECTION ################################################# # Expects: typeOfData, IndexCount # Will do: Alter the Resonance & Kozai attributes of the class, given the write orbital elements def DataDissection(self, typeOfData, IndexCount): self.Index = IndexCount TestParticleSample = sys.argv[1] # User to choose a test sample using terminal with open('tp' + TestParticleSample + ".out") as f: # Counting number of lines for line, l in enumerate(f): pass NumberOfLines = line # Taking the test point's data from the .out file sequentially TestParticleTime, Index, SemiMajorAxis, Eccentricity, Inclination, Omega, omega, AngularPosition, LongitudeTP = np.genfromtxt( 'tp' + TestParticleSample + ".out", unpack=True) Longitude = np.genfromtxt( "LN.out", usecols= 8, unpack=True) NumberOfLines = (NumberOfLines / (max(Index)+1)) -1 # Dividing the total number of lines by number of test particles, to get steps of one test particle. # Matching the orbitals with the index we need TestParticleTime = TestParticleTime[Index == IndexCount] SemiMajorAxis = SemiMajorAxis[Index == IndexCount] Eccentricity = Eccentricity[Index == IndexCount] Inclination = Inclination[Index == IndexCount] Omega = Omega[Index == IndexCount] omega = omega[Index == IndexCount] AngularPosition = AngularPosition[Index == IndexCount] # Calculating Lambda, Pomega Lambda = (Omega + omega + AngularPosition) % 360 # The Lambda for test particles Pomega = (Omega + omega) % 360 # The longitude if pericenter in degrees # Flags "Specific ones" IsItResonant = False # Is it in resonance? ResonanceAmplitude = -999 # The Resonance Amplitude ResonanceCenter = -999 # The Resonance Center ResonanceName = -999 # The Resonance name "Ration" IsItKozai = False # Is it Kozai resonance? SMAAmplitude = -999 # SemiMajor amplitude SMACenter = -999 # SemiMajor center # Flags "General ones" IsIt = False # Resonance / Kozai ? Amplitude = -999 # Phi / SMA Center = -999 # Phi / SMA Name = -999 # Name of the test particle # General flags will be used in the coming loop, Specific flags will then be set at the end, to distinguish Kozai / Resonance # list of resonances to check: pp and qq for pp:qq resonance pp = [2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 10] qq = [1, 1, 2, 1, 3, 1, 2, 3, 4, 1, 1, 2, 3, 4, 1, 3, 1, 2, 4, 1] for jj in np.arange(0, len(pp)): # First Loop ResSemiMajorAxis = 30.1 * (float(pp[jj]) / float(qq[jj])) ** ( 2. / 3.) # Kepler's Third Law to calculate semimajor axis of the resonance # Searching within 2 AUs from the resonance center if IsIt == 0 and (ResSemiMajorAxis + 2) > np.average(SemiMajorAxis) > (ResSemiMajorAxis - 2): phi = (float(pp[jj]) * Lambda - float(qq[jj]) * Longitude - (float(pp[jj]) - float(qq[jj])) * Pomega) % 360 AngleRange = np.arange(0, 360, 15) # Array of angles 15 degrees increment each step Window = int(0) Loop = 0 if typeOfData == 0: # Dividing the timeline to 10 separate windows Detecting resonance on smaller scales WindowStep = int(NumberOfLines / 10) IsItArray = np.zeros(int(len( phi) / WindowStep)) # Array of 10 binary elements to check for resonance each step '10%' set to zero CenterArray = np.zeros(int(len( phi) / WindowStep)) # Array of 10 binary elements to check the res angle each step '10%' set to zero while Window + WindowStep < len(phi): # Average of the semi-major axis from Current Window -> Next Window WindowAverage = np.average(SemiMajorAxis[Window:Window + WindowStep]) if (ResSemiMajorAxis + 2) > WindowAverage > ( ResSemiMajorAxis - 2): # Within 2 AUs of Window Average WindowPhi = phi[Window:Window + WindowStep] # Phi of next window AnglePresent = np.zeros(len(AngleRange)) + 1 for step in np.arange(0, len( AngleRange) - 1): # find out where the res angle doesn't go for 15 degrees, proxy for AnglePresent if len(WindowPhi[ (WindowPhi > AngleRange[step]) * (WindowPhi < (AngleRange[step + 1]))]) == 0: AnglePresent[step] = 0 IsItArray[Loop] = np.average(AnglePresent) * 180. CenterArray[Loop] = np.average( AnglePresent[AnglePresent != 0] * AngleRange[AnglePresent != 0]) else: IsItArray[Loop] = 180. Window += WindowStep # Increment Window Loop += 1 # Increment Loop if len(IsItArray[ IsItArray < 180.]) > 8: # If 8 out of 10 Windows classified as Resonant IsIt = True Amplitude = np.average(IsItArray) Center = np.average(CenterArray) Name = str(pp[jj]) + ':' + str(qq[jj]) MaxCenter = max(CenterArray) MinCenter = min(CenterArray) if (MaxCenter - MinCenter) > 210: # If the centers are too large in difference, it is not resonant IsIt = False Amplitude = -999 Center = -999 break else: Amplitude = -999 Center = -999 else: # If checking for Kozai, we only want one window WindowStep = int(NumberOfLines) IsItArray = np.zeros(int(len( omega) / WindowStep)) # For Kozai we check SMA CenterArray = np.zeros(int(len( omega) / WindowStep)) while Window + WindowStep < len(SemiMajorAxis): # WindowSMA = SemiMajorAxis[Window:Window + WindowStep] # SMA of next window AnglePresent = np.zeros(len(AngleRange)) + 1 for step in np.arange(0, len( AngleRange) - 1): # find out where the res angle doesn't go for 15 degrees, proxy for AnglePresent if len(omega[ (omega > AngleRange[step]) * (omega < (AngleRange[step + 1]))]) == 0: AnglePresent[step] = 0 IsItArray[Loop] = np.average(AnglePresent) * 180. CenterArray[Loop] = np.average( AnglePresent[AnglePresent != 0] * AngleRange[AnglePresent != 0]) Window += WindowStep # Increment Window Loop += 1 # Increment Loop if len(IsItArray[ IsItArray < 180.]) == 1: # If the Window classified as Kozai IsIt = True Amplitude = np.average(IsItArray) Center = np.average(CenterArray) Name = str(pp[jj]) + ':' + str(qq[jj]) else: Amplitude = -999 Center = -999 if typeOfData == 0: # Type 0 means we are looking if it was Resonant IsItResonant = IsIt ResonanceAmplitude = Amplitude ResonanceCenter = Center ResonanceName = Name self.Resonant = IsItResonant self.ResonanceAmplitude = ResonanceAmplitude self.ResonanceCenter = ResonanceCenter self.ResonanceType = ResonanceName else: # Else 1 means we are looking if it was Kozai IsItKozai = IsIt SMAAmplitude = Amplitude SMACenter = Center self.Kozai = IsItKozai self.SMAamplitude = SMAAmplitude self.SMACenter = SMACenter # End Else self.Name = TestParticleSample self.AverageEccentricity = np.average(Eccentricity) self.AverageInclination = np.average(Inclination) self.AverageSMA = np.average(SemiMajorAxis) return ############################################ IDENTIFY RESONANCE ############################################## # Expects: IndexCount # Will do: First call to function DataDissection to check if resonant, if resonant, will do second call to check for Kozai def IdentifyResonance(self, IndexCount): type = 0 # Indicated that the variable Resonant is what we want from DataDissection function self.DataDissection(type, IndexCount) if self.Resonant == True: type = 1 # Indicated that the variable Kozai is what we want from DataDissection function self.DataDissection(type, IndexCount) ############################################## PRINT DATA ############################################## # Expects: IndexCount # Will do: Print Data Into a '.out' file Names tp + 'number you entered' + .out def PrintData(self, IndexCount ): TestParticleSample = sys.argv[1] TestParticleTime, Index, SemiMajorAxis, Eccentricity, Inclination, Omega, omega, AngularPosition, Longitude = np.genfromtxt( "tp" + TestParticleSample + ".out", unpack=True) TextFile.write((str(self.Index) + " " +str(SemiMajorAxis[IndexCount]) + " " + str(Eccentricity[IndexCount]) + " " + str(Inclination[IndexCount]) + " " + str(Omega[IndexCount]) + " " + str(omega[IndexCount]) + " " + str(AngularPosition[IndexCount]) + " " + str(self.Name) + " " + str(self.AverageSMA) + " " + str(self.AverageEccentricity) + " " + str(self.AverageInclination) + " " + str(self.ResonanceCenter) + " " + str(self.ResonanceAmplitude) + " " + str(self.SMACenter) + " " + str(self.SMAamplitude) + " " + '\n')) # Main function if __name__ == '__main__': TestParticleSample = sys.argv[1] # User to enter the number indicating the file number Index = np.genfromtxt('tp' + TestParticleSample + ".out", usecols=1, unpack=True) NumberOfTPs = max(Index) # Assuming there is more than one Testparticle, all with different timesteps, in the same file TextFile = open("TestParticleResonance"+ TestParticleSample +".out", "a+") TextFile.write("# SMA0 Ecc0 Inc0 Node0 ArgPeri0 MeanAnom0 Name AverageSMA AverageEcc AverageInc LibrationCenter LibrationAmp KozaiCenter KozaiAmp" + '\n') IndexCount = 0 for IndexCount in range(0, int(NumberOfTPs)+1 ): Tp = TestParticle() # Initialise the test particle Tp.IdentifyResonance(IndexCount) # Identify its resonant / kozai status Tp.PrintData(IndexCount) # print the results print(TestParticleSample) # ensure it is done
python
# LPS22HB/HH pressure seneor micropython drive # ver: 2.0 # License: MIT # Author: shaoziyang ([email protected]) # v1.0 2016.4 # v2.0 2019.7 LPS22_CTRL_REG1 = const(0x10) LPS22_CTRL_REG2 = const(0x11) LPS22_STATUS = const(0x27) LPS22_TEMP_OUT_L = const(0x2B) LPS22_PRESS_OUT_XL = const(0x28) LPS22_PRESS_OUT_L = const(0x29) class LPS22(): def __init__(self, i2c, addr = 0x5D): self.i2c = i2c self.addr = addr self.tb = bytearray(1) self.rb = bytearray(1) self.oneshot = False self.irq_v = [0, 0] # ODR=1 EN_LPFP=1 BDU=1 self.setreg(LPS22_CTRL_REG1, 0x1A) self.oneshot_mode(False) def oneshot_mode(self, oneshot=None): if oneshot is None: return self.oneshot else: self.getreg(LPS22_CTRL_REG1) self.oneshot = oneshot if oneshot: self.rb[0] &= 0x0F else: self.rb[0] |= 0x10 self.setreg(LPS22_CTRL_REG1, self.rb[0]) def int16(self, d): return d if d < 0x8000 else d - 0x10000 def setreg(self, reg, dat): self.tb[0] = dat self.i2c.writeto_mem(self.addr, reg, self.tb) def getreg(self, reg): self.i2c.readfrom_mem_into(self.addr, reg, self.rb) return self.rb[0] def get2reg(self, reg): return self.getreg(reg) + self.getreg(reg+1) * 256 def ONE_SHOT(self, b): if self.oneshot: self.setreg(LPS22_CTRL_REG2, self.getreg(LPS22_CTRL_REG2) | 0x01) self.getreg(0x28 + b*2) while 1: if self.getreg(LPS22_STATUS) & b: return def temperature(self): self.ONE_SHOT(2) try: return self.int16(self.get2reg(LPS22_TEMP_OUT_L))/100 except MemoryError: return self.temperature_irq() def pressure(self): self.ONE_SHOT(1) try: return (self.getreg(LPS22_PRESS_OUT_XL) + self.get2reg(LPS22_PRESS_OUT_L) * 256)/4096 except MemoryError: return self.pressure_irq() def get(self): try: return self.temperature(), self.pressure() except MemoryError: return self.get_irq() def altitude(self): return (((1013.25 / self.pressure())**(1/5.257)) - 1.0) * (self.temperature() + 273.15) / 0.0065 def temperature_irq(self): self.ONE_SHOT(2) return self.int16(self.get2reg(LPS22_TEMP_OUT_L))//100 def pressure_irq(self): self.ONE_SHOT(1) return self.get2reg(LPS22_PRESS_OUT_L) >> 4 def get_irq(self): self.irq_v[0] = self.temperature_irq() self.irq_v[1] = self.pressure_irq() return self.irq_v
python
from anytree import Resolver, ChildResolverError, Walker from src.tree_node import TreeNode class AssetInfoTree: def __init__(self, texture_info_list): self.walker = Walker() r = Resolver('name') id = 0 self.root = TreeNode('Root', id) id += 1 for info in texture_info_list: respath = info.respath cur_parent = self.root cur_parent.filesize.bytes += info.filesize.bytes cur_node = None for chunk in respath.chunks: try: cur_node = r.get(cur_parent, chunk) cur_parent = cur_node except ChildResolverError: cur_node = TreeNode(chunk, id, cur_parent) cur_parent = cur_node id += 1 if chunk == respath.chunks[-1]: cur_node.horizontal_desc = str(info) finally: cur_node.filesize.bytes += info.filesize.bytes def build_node_path(self, node): path = self.walker.walk(self.root, node) return '/'.join([tn.name for tn in path[2]])
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # https://www.redblobgames.com/articles/visibility/ # https://en.wikipedia.org/wiki/Art_gallery_problem "Hover mouse to illuminate the visible area of the room" from vedo import * import numpy as np rw = Rectangle((0,0), (1,1)).texture(dataurl+"textures/paper1.jpg") tx = Text3D("эd", font="Comae").pickable(False) tx.scale(0.475).pos(0.1, 0.2, 0.0002).c('green4') d = rw.diagonalSize() objs = [rw, tx] mobjs = merge(objs).c('grey4').flat() allpts = mobjs.points() walls = mobjs.extrude(0.03, cap=False).z(-0.01).pickable(False).flat() def func(evt): p = evt.picked3d if p is None: return pts1 = [] for q1 in allpts: v = versor(q1-p) e = cross(v, [0,0,1]) * 0.01 # a small epsilon shift for k in (v, v+e, v-e): ipts = walls.intersectWithLine(p, p+k*d, tol=1e-04) n = len(ipts) if n==1 or n>1 and mag(q1-ipts[0]) < 1e-04: pts1.append(ipts[0]) pts2 = [] for pt in pts1: angle = np.arctan2(pt[1]-p[1], pt[0]-p[0]) pts2.append([pt, angle]) pts = utils.sortByColumn(pts2,1)[:,0].tolist() # sort by angle line = Line(pts, closed=True).z(0.01).lw(4).c('grey3') surf = line.clone().triangulate().lw(0).c('yellow4').alpha(0.3) surf.pickable(False) area = Assembly(surf, line) area.name = "Area" plt.remove("Area").add(area) plt = Plotter(bg2="light blue") plt.addCallback("mouse hover", func) plt.show(objs, walls, __doc__, zoom=1.1, elevation=-20).close()
python
import py import random, sys, os from rpython.jit.backend.ppc.codebuilder import BasicPPCAssembler, PPCBuilder from rpython.jit.backend.ppc.regname import * from rpython.jit.backend.ppc.register import * from rpython.jit.backend.ppc import form from rpython.jit.backend import detect_cpu from rpython.jit.backend.ppc.arch import IS_PPC_32, IS_PPC_64, IS_BIG_ENDIAN from rpython.jit.backend.ppc.arch import WORD from rpython.rtyper.lltypesystem import lltype, rffi from rpython.rtyper.annlowlevel import llhelper cpu = detect_cpu.autodetect() class TestDisassemble(object): def test_match(self): class A(BasicPPCAssembler): insts = [] a = A() a.add(1, 2, 3) inst = a.insts[-1] assert A.add.match(inst.assemble()) """ Creates the boilerplate code for the tests. - Make a PPCBuilder object - Let the given test create the machine code - Create a function and call it - Compare the return value with the expected result """ def asmtest(expected): def testmaker(test): def newtest(self): a = PPCBuilder() test(self, a) f = a.get_assembler_function() assert f() == expected return newtest return testmaker """ Treats the given bitstring as binary representation of an integer in two's complement. """ def bits_to_signed_int(bits): assert len(bits) > 0 sign = 1 if bits[0] == "1": sign = -1 bits = bits[1:].replace("0", "$").replace("1", "0").replace("$", "1") return sign * (int(bits, 2) + 1) def hex_to_signed_int(hx): return bits_to_signed_int(bin(int(hx, 16))[2:]) # Testing simple assembler instructions class TestAssemble(object): def setup_class(cls): if cpu not in ["ppc", "ppc64", "ppc-64"]: py.test.skip("can't test all of ppcgen on non-PPC!") #py.test.xfail("assemble does not return a function any longer, fix tests") """ Tests are build like this: @asmtest(expected=<EXPECTED RESULT>) def testX(self, assembler): <Assembler Code> This is equivalent to: def testX(self): assembler = MyPPCAssembler() <Assembler Code> f = assembler.assemble() assert f() == <EXPECTED RESULT> """ @asmtest(expected=200) def test_li(self, a): a.li(3, 200) a.blr() @asmtest(expected=7) def test_add_imm(self, a): a.li(3, 6) a.addi(3, 3, 1) a.blr() @asmtest(expected=12341234) def test_load_imm(self, a): a.load_imm(r10, 12341234) a.mtctr(10) a.mfctr(11) a.mr(3, 11) a.blr() @asmtest(expected=33333333) def test_add_reg(self, a): a.load_imm(r10, 11111111) a.load_imm(r11, 22222222) a.add(12, 10, 11) a.mr(3, 12) a.blr() @asmtest(expected=-1000) def test_add_pos_and_neg(self, a): a.load_imm(r10, 2000) a.load_imm(r11, -3000) a.add(3, 10, 11) a.blr() @asmtest(expected=7) def test_sub_imm(self, a): a.li(3, 10) a.subi(3, 3, 3) a.blr() @asmtest(expected=(123435 - 76457)) def test_sub_reg(self, a): a.load_imm(r5, 123435) a.load_imm(r6, 76457) a.sub(3, 5, 6) a.blr() @asmtest(expected=(10000 * 5000)) def test_mul_imm(self, a): a.load_imm(r3, 10000) a.mulli(3, 3, 5000) a.blr() # 1000000 * 1000000 = 0b1110100011010100101001010001000000000000 # expect: r3 = -HWORD-|11010100101001010001000000000000 @asmtest(expected=bits_to_signed_int('11010100101001010001000000000000')) def test_mullw(self, a): word = 1000000 a.load_imm(r5, word) a.load_imm(r6, word) a.mullw(3, 5, 6) if IS_PPC_64: a.extsw(3, 3) a.blr() # 1000000 * 1000000 = 0b1110100011010100101001010001000000000000 # expect: r3 = 11101000|------------LWORD-------------- @asmtest(expected=int('11101000', 2)) def test_mulhw(self, a): word = 1000000 a.load_imm(r5, word) a.load_imm(r6, word) a.mulhw(3, 5, 6) if IS_PPC_64: a.extsw(3, 3) a.blr() # 1000000 * 1000000 = 0b1110100011010100101001010001000000000000 # expect: r3 = 11101000|------------LWORD-------------- @asmtest(expected=int('11101000', 2)) def test_mulhwu(self, a): word = 1000000 a.load_imm(r5, word) a.load_imm(r6, word) a.mulhwu(3, 5, 6) if IS_PPC_64: a.extsw(3, 3) a.blr() @asmtest(expected=10000) def test_divw(self, a): divident = 1000000 divisor = 100 a.load_imm(r10, divident) a.load_imm(r11, divisor) a.divw(3, 10, 11) a.blr() def test_call_function(self): functype = lltype.Ptr(lltype.FuncType([lltype.Signed], lltype.Signed)) call_addr = rffi.cast(lltype.Signed, llhelper(functype, func)) a = PPCBuilder() # NOW EXPLICITLY: # # - Load the address of the function to call into a register x # - Move the content of this register x into CTR # - Set the LR manually (or with bctrl) # - Do jump a.li(3, 50) if IS_PPC_32: a.load_imm(r10, call_addr) elif IS_BIG_ENDIAN: # load the 3-words descriptor a.load_from_addr(r10, SCRATCH2, call_addr) a.load_from_addr(r2, SCRATCH2, call_addr+WORD) a.load_from_addr(r11, SCRATCH2, call_addr+2*WORD) py.test.skip("this test started segfaulting on gcc110, but even " "reverting to old versions of the code still segfault, " "so not clue. Maybe something like a ctypes issue") else: # no descriptor on little-endian, but the ABI says r12 must # contain the function pointer a.load_imm(r10, call_addr) a.mr(12, 10) a.mtctr(10) a.bctr() a.blr() f = a.get_assembler_function() assert f() == 65 @asmtest(expected=0) def test_and(self, a): a.load_imm(r10, 8) a.load_imm(r11, 7) a.and_(3, 10, 11) a.blr() @asmtest(expected=15) def test_or(self, a): a.load_imm(r10, 8) a.load_imm(r11, 7) a.or_(3, 10, 11) a.blr() @asmtest(expected=15) def test_nand(self, a): a.load_imm(r10, 8) a.load_imm(r11, 7) a.nand(3, 10, 11) a.load_imm(r12, 0x0000000F) # zero out first 28 bits a.and_(3, 3, 12) # a.blr() @asmtest(expected=1) def test_nor(self, a): a.load_imm(r10, 10) a.load_imm(r11, 6) a.nor(3, 10, 11) a.load_imm(r12, 0x0000000F) # zero out first 28 bits a.and_(3, 3, 12) # a.blr() @asmtest(expected=5) def test_xor(self, a): a.load_imm(r10, 15) a.load_imm(r11, 10) a.xor(3, 10, 11) a.blr() @asmtest(expected=0x120) def test_slw(self, a): a.load_imm(r10, 9) a.load_imm(r11, 5) a.slw(3, 10, 11) a.blr() @asmtest(expected=9) def test_srw(self, a): a.load_imm(r10, 0x120) a.load_imm(r11, 5) a.srw(3, 10, 11) a.blr() def test_neg(self): a = PPCBuilder() a.load_imm(r10, 0x0000F0F0) a.neg(3, 10) a.blr() f = a.get_assembler_function() assert f() == hex_to_signed_int("FFFF0F10") def test_load_and_store(self): a = PPCBuilder() word1 = 1000 word2 = 2000 p = lltype.malloc(rffi.CArray(lltype.Signed), 2, flavor="raw") a.load_imm(r10, word1) a.load_imm(r11, word2) a.load_imm(r8, rffi.cast(lltype.Signed, p)) a.load_imm(r9, rffi.cast(lltype.Signed, p) + WORD) a.stw(10, 8, 0) a.stw(11, 9, 0) a.lwz(4, 8, 0) a.lwz(5, 9, 0) a.add(3, 4, 5) a.blr() f = a.get_assembler_function() assert f() == word1 + word2 lltype.free(p, flavor="raw") def test_load_from(self): a = PPCBuilder() p = lltype.malloc(rffi.CArray(rffi.LONG), 1, flavor="raw") addr = rffi.cast(lltype.Signed, p) p[0] = rffi.cast(rffi.LONG, 200) a.load_from_addr(r3, SCRATCH2, addr) a.blr() f = a.get_assembler_function() assert f() == 200 p[0] = rffi.cast(rffi.LONG, 300) assert f() == 300 lltype.free(p, flavor="raw") def func(arg): return arg + 15 def is_64_bit_arch(): import sys return sys.maxint == 9223372036854775807
python
import discord from utils import DIGITS from utils.config import Users from utils.discord import help_me, get_user, DiscordInteractive from utils.errors import UserNonexistent, NoPlays from utils.osu.apiTools import get_recent from utils.osu.embedding import embed_play from utils.osu.stating import stat_play from utils.utils import Log interact = DiscordInteractive.interact class Command: command = "recent" description = "Show recent score or pass." argsRequired = 0 usage = "[username]" examples = [ { "run": "recent nathan_on_osu", "result": "Returns nathan on osu's most recent score." }, { "run": "recent3 respektive", "result": "Returns respektive's most recent score." }, { "run": "recentpass", "result": "Returns your most recent pass." }] synonyms = [r"recent\d+", "rs", "recentpass", "rp"] async def call(self, package): message, args, user_data, client = package["message_obj"], package["args"], \ package["user_obj"], package["client"] if len(args) < 2 and user_data["osu_ign"] == "": Log.error("No User provided") await help_me(message, "ign-set") return try: user = get_user(args, user_data["osu_ign"], "osu") except UserNonexistent: interact(message.channel.send, "User does not exist") return index = DIGITS.match(args[0]) if index is None: index = 1 else: index = int(index.captures(1)[0]) try: recent_play = get_recent(user, index) except NoPlays as err: interact(message.channel.send, f"`{err}`") Log.log(err) return try: play_data = stat_play(recent_play) except Exception as err: interact(message.channel.send, err) Log.error(err) return Users().update_last_message(message.author.id, recent_play.beatmap_id, "id", recent_play.enabled_mods, play_data.completion, recent_play.accuracy, user, play_data.replay) embed = embed_play(play_data, client) graph = discord.File(play_data.strain_bar, "strains_bar.png") interact(message.channel.send, file=graph, embed=embed) Log.log(f"Returning recent play #{index} for {user}")
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "Christian Heider Nielsen" __doc__ = r""" Created on 08-12-2020 """ from itertools import tee from typing import Any, Generator, Iterable import tqdm from notus.notification import JobNotificationSession from warg import drop_unused_kws, passes_kws_to __all__ = ["progress_bar"] @drop_unused_kws @passes_kws_to(tqdm.tqdm) def progress_bar( iterable: Iterable, description: str = None, *, leave: bool = False, notifications: bool = False, total: int = None, auto_total_generator: bool = False, auto_describe_iterator: bool = True, # DOES NOT WORK IS THIS FUNCTION IS ALIAS does not match! alias="progress_bar", disable: bool = False, **kwargs, ) -> Any: """ hint: use next first and then later use send instead of next to set a new tqdm description if desired. """ if not disable: if description is None and auto_describe_iterator: from warg import get_first_arg_name description = get_first_arg_name(alias) if total is None and isinstance(iterable, Generator) and auto_total_generator: iterable, ic = tee(iterable, 2) total = len(list(ic)) if total == 0: print(f"WARNING zero length iterable - {description}:{iterable}") generator = tqdm.tqdm( iterable, description, leave=leave, total=total, disable=disable, # redundant **kwargs, ) if notifications: with JobNotificationSession(description): for val in generator: a = yield val if a: generator.set_description(a) return for val in generator: a = yield val if a: generator.set_description(a) else: yield from iterable if __name__ == "__main__": def dsad3123(): """ """ from time import sleep for a in progress_bar([2.13, 8921.9123, 923], notifications=False): sleep(1) def asd21sa(): """ """ from time import sleep pb = progress_bar # Aliased! for a in pb([2.13, 8921.9123, 923], notifications=False): sleep(1) def dict_items(): """ """ from time import sleep class exp_v: Test_Sets = {v: v for v in range(9)} for a in progress_bar(exp_v.Test_Sets.items()): sleep(1) def send_example(): from itertools import count pb = progress_bar(count()) next(pb) for a in range(100000): pb.send(f"step_{a}") # dsad3123() # asd21sa() # dict_items() send_example()
python
from util.tipo import tipo class S_PARTY_MEMBER_CHANGE_MP(object): def __init__(self, tracker, time, direction, opcode, data): print(str(type(self)).split('.')[3]+'('+str(len(data))+'): '+ str(data.get_array_hex(1))[1:-1]) server_id = data.read(tipo.uint32) player_id = data.read(tipo.uint32) current_mp = data.read(tipo.int32) max_mp = data.read(tipo.int32) unk1 = data.read(tipo.int16)
python
import os from jina.peapods.pods.k8slib.kubernetes_tools import _get_yaml from jina import Flow def test_custom_resource_dir(): custom_resource_dir = '/test' flow = Flow( name='test-flow', port_expose=8080, infrastructure='K8S', protocol='http' ).add(name='test_executor', k8s_custom_resource_dir=custom_resource_dir) assert ( flow._pod_nodes['test_executor'].args.k8s_custom_resource_dir == custom_resource_dir ) def test_no_resource_dir_specified(): flow = Flow( name='test-flow', port_expose=8080, infrastructure='K8S', protocol='http' ).add(name='test_executor') assert flow._pod_nodes['test_executor'].args.k8s_custom_resource_dir is None def test_template_file_read_correctly(test_dir: str): custom_resource_dir = os.path.join(test_dir, 'custom-resource') content = _get_yaml('namespace', params={}, custom_resource_dir=custom_resource_dir) assert 'Test' in content
python
from models import OrderModel from flask_sqlalchemy import sqlalchemy from config import db import uuid class OrderActions(): # Table actions: @classmethod def create(cls, usastate: str, order_number: int, home_office_code: str, order_status:int): theUuid = str(uuid.uuid4()) new_order = OrderModel(theUuid, usastate, order_number,home_office_code,order_status) db.session.add(new_order) db.session.commit() return new_order @ classmethod def get(cls): orders = OrderModel.query.all() return {"orders": [{"order_number": i.order_number, "uuid": i.uuid, "usa_state": i.usa_state, "home_office_code": i.home_office_code} for i in orders]} # @ classmethod # def get_state(cls, state): # return db.session.query.filter(OrderModel.state == state) @ classmethod def get_order_by_order_number(cls, order_number): order = OrderModel.query.filter(OrderModel.order_number == order_number).first() return order @ classmethod def get_order_by_uuid(cls, uuid): # Return OrderModel object for use by backend order = OrderModel.query.filter(OrderModel.uuid == uuid).first() return order @ classmethod def get_home_office_code(cls, home_office_code): return OrderModel.query.filter(OrderModel.home_office_code == home_office_code) @ classmethod def update_order(cls, uuid, usa_state, order_number , home_office_code): order = cls.get_order_by_uuid(uuid) order.order_number = order_number order.usa_state = usa_state order.home_office_code = home_office_code db.session.commit() return order
python
from io import open from setuptools import find_packages, setup, Extension from setuptools.command.build_ext import build_ext import os import re import sys import shutil from distutils.version import LooseVersion from subprocess import check_output cwd = os.path.dirname(os.path.abspath(__file__)) try: filepath = './neural_compressor/version.py' with open( filepath ) as version_file: __version__ ,= re.findall( '__version__ = "(.*)"', version_file.read() ) except Exception as error: assert False, "Error: Could not open '%s' due %s\n" % (filepath, error) def which(thefile): path = os.environ.get("PATH", os.defpath).split(os.pathsep) for d in path: fname = os.path.join(d, thefile) fnames = [fname] if sys.platform == 'win32': exts = os.environ.get('PATHEXT', '').split(os.pathsep) fnames += [fname + ext for ext in exts] for name in fnames: if os.access(name, os.F_OK | os.X_OK) and not os.path.isdir(name): return name return None def get_version(cmd): "Returns cmake version." try: for line in check_output([cmd, '--version']).decode('utf-8').split('\n'): if 'version' in line: print(line.strip().split(' ')[2]) return LooseVersion(line.strip().split(' ')[2]) except Exception as error: return LooseVersion('0.0.0') def get_cmake_command(): "Returns cmake command." cmake_command = 'cmake' if sys.platform == 'win32': return cmake_command cmake3 = which('cmake3') cmake = which('cmake') if cmake3 is not None: if cmake is not None: bare_version = get_version('cmake') if (bare_version < LooseVersion("3.12.0") and get_version('cmake3') > bare_version): cmake_command = 'cmake3' else: cmake_command = 'cmake3' elif cmake is None: raise RuntimeError('no cmake or cmake3 found') return cmake_command class build_ext(build_ext): def build_extension(self, ext): if not sys.platform.startswith("win"): import pathlib cwd = pathlib.Path().absolute() build_temp = pathlib.Path(self.build_temp) build_temp.mkdir(parents=True, exist_ok=True) extdir = pathlib.Path(self.get_ext_fullpath(ext.name)) executable_path = extdir.parent.absolute() cmake_args = [ '-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + str(extdir.parent.absolute()), '-DPYTHON_EXECUTABLE={}'.format(sys.executable) ] build_args = [ '-j' ] cmake_command = get_cmake_command() os.chdir(str(build_temp)) self.spawn([cmake_command, ext.sourcedir] + cmake_args) self.spawn(['make'] + build_args) if os.path.exists('inferencer'): shutil.copy('inferencer', executable_path) os.chdir(str(cwd)) else: print("Engine is not support windows for now") class CMakeExtension(Extension): def __init__(self, name, sourcedir=""): Extension.__init__(self, name, sources=[]) self.sourcedir = os.path.abspath(sourcedir) def check_submodules(): def check_for_files(folder, files): if not any(os.path.exists(os.path.join(folder, f)) for f in files): report("Could not find any of {} in {}".format(", ".join(files), folder)) report("Did you run 'git submodule update --init --recursive'?") sys.exit(1) def not_exists_or_empty(folder): return not os.path.exists(folder) or (os.path.isdir(folder) and len(os.listdir(folder)) == 0) git_modules_path = os.path.join(cwd, ".gitmodules") with open(git_modules_path) as f: folders = [os.path.join(cwd, line.split("=", 1)[1].strip()) for line in f.readlines() if line.strip().startswith("path")] # If none of the submodule folders exists, try to initialize them if all(not_exists_or_empty(folder) for folder in folders) and not sys.platform.startswith("win"): try: print(' --- Trying to initialize submodules') start = time.time() subprocess.check_call(["git", "submodule", "update", "--init", "--recursive"], cwd=cwd) end = time.time() print(' --- Submodule initialization took {:.2f} sec'.format(end - start)) except Exception: print(' --- Submodule initalization failed') print('Please run:\n\tgit submodule update --init --recursive') sys.exit(1) if __name__ == '__main__': check_submodules() setup( name="neural_compressor", version=__version__, author="Intel MLP/MLPC Team", author_email="[email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]", description="Repository of Intel® Neural Compressor", long_description=open("README.md", "r", encoding='utf-8').read(), long_description_content_type="text/markdown", keywords='quantization, auto-tuning, post-training static quantization, post-training dynamic quantization, quantization-aware training, tuning strategy', license='', url="https://github.com/intel/neural-compressor", ext_modules=[CMakeExtension("engine_py", str(cwd) + '/engine/executor/')], packages = find_packages(), include_package_data = True, package_dir = {'':'.'}, package_data={ '': ['*.py', '*.yaml'], 'neural_compressor.ux': [ "web/static/*.*", "web/static/assets/*.*", "web/static/assets/fonts/*.*", "utils/configs/*.json", "utils/configs/predefined_configs/**/*.yaml", "utils/templates/*.txt", ], 'engine': ['*.py'], }, cmdclass={ 'build_ext': build_ext, }, install_requires=[ 'numpy', 'pyyaml', 'scikit-learn', 'schema', 'py-cpuinfo', 'hyperopt', 'pandas', 'pycocotools', 'opencv-python', 'requests', 'Flask-Cors', 'Flask-SocketIO', 'Flask', 'gevent-websocket', 'gevent', 'psutil', 'Pillow', 'sigopt', 'prettytable', 'cryptography'], scripts=['neural_compressor/ux/bin/inc_bench', 'engine/bin/inferencer'], python_requires='>=3.6.0', classifiers=[ 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], )
python
# # PySNMP MIB module IBMIROCAUTH-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/IBMIROCAUTH-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 19:40:06 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, SingleValueConstraint, ValueSizeConstraint, ConstraintsUnion, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "SingleValueConstraint", "ValueSizeConstraint", "ConstraintsUnion", "ValueRangeConstraint") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") ObjectIdentity, NotificationType, NotificationType, Integer32, Counter32, TimeTicks, Gauge32, ModuleIdentity, enterprises, Unsigned32, IpAddress, iso, MibIdentifier, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "NotificationType", "NotificationType", "Integer32", "Counter32", "TimeTicks", "Gauge32", "ModuleIdentity", "enterprises", "Unsigned32", "IpAddress", "iso", "MibIdentifier", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Bits") TruthValue, DisplayString, RowStatus, TestAndIncr, TextualConvention, AutonomousType, PhysAddress = mibBuilder.importSymbols("SNMPv2-TC", "TruthValue", "DisplayString", "RowStatus", "TestAndIncr", "TextualConvention", "AutonomousType", "PhysAddress") ibmIROCconfigAuth = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2)) ibm = MibIdentifier((1, 3, 6, 1, 4, 1, 2)) ibmProd = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6)) ibm2210 = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 72)) ibmIROC = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 119)) ibmIROCconfig = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 119, 7)) ibmAuthTraps = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 0)) ibmAuthMIB = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1)) ibmAuthDomains = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 2)) ibmAuthConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 3)) ibmAuthGeneral = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 1)) authCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 3, 1)) authGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 3, 2)) class RowDefinition(Integer32): subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 3, 4, 5, 6)) namedValues = NamedValues(("active", 1), ("notReady", 3), ("createAndGo", 4), ("createAndWait", 5), ("destroy", 6)) class Enabled(Integer32): subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1)) namedValues = NamedValues(("disabled", 0), ("enabled", 1)) class DateAndTime2(OctetString): subtypeSpec = OctetString.subtypeSpec + ValueSizeConstraint(0, 11) class SecureOctetString(OctetString): subtypeSpec = OctetString.subtypeSpec + ValueSizeConstraint(0, 65535) class SecureDisplayString(OctetString): subtypeSpec = OctetString.subtypeSpec + ValueSizeConstraint(0, 65535) class SecureRowDefinition(OctetString): subtypeSpec = OctetString.subtypeSpec + ValueSizeConstraint(0, 65535) authUserProfileTable = MibTable((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2), ) if mibBuilder.loadTexts: authUserProfileTable.setStatus('mandatory') authUserProfileEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1), ).setIndexNames((1, "IBMIROCAUTH-MIB", "authUserProfileName")) if mibBuilder.loadTexts: authUserProfileEntry.setStatus('mandatory') authUserProfileName = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 64))) if mibBuilder.loadTexts: authUserProfileName.setStatus('mandatory') authUserProfileRowDefinition = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 2), SecureRowDefinition()).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileRowDefinition.setStatus('mandatory') authUserProfilePassword = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 3), SecureDisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfilePassword.setStatus('mandatory') authUserProfileType = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 4), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 1)).setFixedLength(1).clone(hexValue="20")).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileType.setStatus('mandatory') authUserProfileMaxConnectTime = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483647))).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileMaxConnectTime.setStatus('mandatory') authUserProfileCallbackType = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2))).clone(namedValues=NamedValues(("disabled", 0), ("roaming", 1), ("required", 2))).clone('disabled')).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileCallbackType.setStatus('mandatory') authUserProfileCallbackNum = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 7), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 30))).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileCallbackNum.setStatus('mandatory') authUserProfileDialout = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 8), Enabled().clone('disabled')).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileDialout.setStatus('mandatory') authUserProfileEncryptionKey = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 9), SecureOctetString().clone(hexValue="")).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileEncryptionKey.setStatus('mandatory') authUserProfileStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("enabled", 1), ("disabled", 2), ("locked", 3))).clone('enabled')).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileStatus.setStatus('mandatory') authUserProfileExpirationDate = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 11), DateAndTime2().clone(hexValue="")).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileExpirationDate.setStatus('mandatory') authUserProfileGLoginAllowed = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 12), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileGLoginAllowed.setStatus('mandatory') authUserProfileGLoginsAttempts = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 13), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: authUserProfileGLoginsAttempts.setStatus('mandatory') authUserProfileLoginAttempts = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 14), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: authUserProfileLoginAttempts.setStatus('mandatory') authUserProfileLoginFails = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 15), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: authUserProfileLoginFails.setStatus('mandatory') authUserProfileLoginLock = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 16), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: authUserProfileLoginLock.setStatus('mandatory') authUserProfileIpType = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 17), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 3, 4))).clone(namedValues=NamedValues(("disabled", 0), ("single", 1), ("networkDials", 3), ("singleDials", 4))).clone('single')).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileIpType.setStatus('mandatory') authUserProfileIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 18), IpAddress().clone('0.0.0.0')).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileIpAddr.setStatus('mandatory') authUserProfileIpMask = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 19), IpAddress().clone('255.255.255.255')).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileIpMask.setStatus('mandatory') authUserProfileHostName = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 20), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 16))).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileHostName.setStatus('mandatory') authUserProfileSharedSecurity = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 21), SecureDisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileSharedSecurity.setStatus('mandatory') authUserProfileTunneled = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 22), Enabled().clone('disabled')).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileTunneled.setStatus('mandatory') authUserProfileTunnelType = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 23), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(3))).clone(namedValues=NamedValues(("l2tp", 3))).clone('l2tp')).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileTunnelType.setStatus('mandatory') authUserProfileTunnelMediumType = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 24), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1))).clone(namedValues=NamedValues(("ip", 1))).clone('ip')).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileTunnelMediumType.setStatus('mandatory') authUserProfileTunnelServer = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 25), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 15))).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileTunnelServer.setStatus('mandatory') authUserProfileVcEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 26), Enabled().clone('disabled')).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileVcEnabled.setStatus('mandatory') authUserProfileVcMaxSuspendTime = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 27), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483647)).clone(-1)).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileVcMaxSuspendTime.setStatus('mandatory') authUserProfileVcIdleTime = MibTableColumn((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 1, 2, 1, 28), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483647)).clone(-1)).setMaxAccess("readwrite") if mibBuilder.loadTexts: authUserProfileVcIdleTime.setStatus('mandatory') authUserProfileGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 3, 2, 1)) authUserProfileCompliance = MibIdentifier((1, 3, 6, 1, 4, 1, 2, 6, 119, 7, 2, 3, 1, 1)) mibBuilder.exportSymbols("IBMIROCAUTH-MIB", authUserProfileEncryptionKey=authUserProfileEncryptionKey, authUserProfileLoginFails=authUserProfileLoginFails, authUserProfileVcEnabled=authUserProfileVcEnabled, authUserProfilePassword=authUserProfilePassword, authUserProfileGLoginAllowed=authUserProfileGLoginAllowed, ibmAuthDomains=ibmAuthDomains, SecureOctetString=SecureOctetString, ibm2210=ibm2210, ibmIROCconfig=ibmIROCconfig, ibmIROC=ibmIROC, ibmAuthGeneral=ibmAuthGeneral, authUserProfileVcMaxSuspendTime=authUserProfileVcMaxSuspendTime, authUserProfileHostName=authUserProfileHostName, authUserProfileLoginLock=authUserProfileLoginLock, authUserProfileTable=authUserProfileTable, authUserProfileEntry=authUserProfileEntry, DateAndTime2=DateAndTime2, ibmProd=ibmProd, authUserProfileSharedSecurity=authUserProfileSharedSecurity, authUserProfileLoginAttempts=authUserProfileLoginAttempts, authUserProfileExpirationDate=authUserProfileExpirationDate, authUserProfileStatus=authUserProfileStatus, ibmAuthMIB=ibmAuthMIB, ibmIROCconfigAuth=ibmIROCconfigAuth, authUserProfileCallbackNum=authUserProfileCallbackNum, authUserProfileIpMask=authUserProfileIpMask, authUserProfileName=authUserProfileName, ibm=ibm, authUserProfileCallbackType=authUserProfileCallbackType, authUserProfileVcIdleTime=authUserProfileVcIdleTime, authUserProfileTunnelServer=authUserProfileTunnelServer, authUserProfileRowDefinition=authUserProfileRowDefinition, authUserProfileType=authUserProfileType, authUserProfileMaxConnectTime=authUserProfileMaxConnectTime, Enabled=Enabled, authCompliances=authCompliances, authGroups=authGroups, RowDefinition=RowDefinition, SecureDisplayString=SecureDisplayString, authUserProfileIpAddr=authUserProfileIpAddr, authUserProfileGroup=authUserProfileGroup, authUserProfileIpType=authUserProfileIpType, authUserProfileTunneled=authUserProfileTunneled, ibmAuthTraps=ibmAuthTraps, SecureRowDefinition=SecureRowDefinition, authUserProfileDialout=authUserProfileDialout, authUserProfileTunnelMediumType=authUserProfileTunnelMediumType, authUserProfileTunnelType=authUserProfileTunnelType, authUserProfileCompliance=authUserProfileCompliance, ibmAuthConformance=ibmAuthConformance, authUserProfileGLoginsAttempts=authUserProfileGLoginsAttempts)
python
import functools import numpy as np from itertools import groupby import cv2 import torch from torch import nn from torch.nn import init from torch.optim import lr_scheduler from networks.block import AdaptiveInstanceNorm2d, Identity, AdaptiveInstanceLayerNorm2d, InstanceLayerNorm2d from lib.alphabet import word_capitalize from PIL import Image, ImageDraw, ImageFont def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function if (isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear) or isinstance(m, nn.Embedding)): if init_type == 'N02': init.normal_(m.weight.data, 0.0, init_gain) elif init_type in ['glorot', 'xavier']: init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'ortho': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if init_type in ['N02', 'glorot', 'xavier', 'kaiming', 'ortho']: print('initialize network {} with {}'.format(net.__class__.__name__, init_type)) net.apply(init_func) # apply the initialization function <init_func> return net def get_norm_layer(norm='in', **kwargs): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm == 'bn': norm_layer = functools.partial(nn.BatchNorm2d) elif norm == 'gn': norm_layer = functools.partial(nn.GroupNorm) elif norm == 'in': norm_layer = functools.partial(nn.InstanceNorm2d) elif norm == 'adain': norm_layer = functools.partial(AdaptiveInstanceNorm2d) elif norm == 'iln': norm_layer = functools.partial(InstanceLayerNorm2d) elif norm == 'adailn': norm_layer = functools.partial(AdaptiveInstanceLayerNorm2d) elif norm == 'none': def norm_layer(x): return Identity() else: assert 0, "Unsupported normalization: {}".format(norm) return norm_layer def get_linear_scheduler(optimizer, start_decay_iter, n_iters_decay): def lambda_rule(iter): lr_l = 1.0 - max(0, iter - start_decay_iter) / float(n_iters_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) return scheduler def get_scheduler(optimizer, opt): """Return a learning rate scheduler Parameters: optimizer -- the optimizer of the network opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.  opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs. For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. See https://pytorch.org/docs/stable/optim.html for more details. """ if opt.lr_policy == 'linear': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch - opt.start_decay_epoch) / float(opt.n_epochs_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) elif opt.lr_policy == 'cosine': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def _len2mask(length, max_len, dtype=torch.float32): assert len(length.shape) == 1, 'Length shape should be 1 dimensional.' max_len = max_len or length.max().item() mask = torch.arange(max_len, device=length.device, dtype=length.dtype).expand(len(length), max_len) < length.unsqueeze(1) if dtype is not None: mask = torch.as_tensor(mask, dtype=dtype, device=length.device) return mask def get_init_state(deepth, batch_size, hidden_dim, device, bidirectional=False): """Get cell states and hidden states.""" if bidirectional: deepth *= 2 hidden_dim //= 2 h0_encoder_bi = torch.zeros( deepth, batch_size, hidden_dim, requires_grad=False) c0_encoder_bi = torch.zeros( deepth, batch_size, hidden_dim, requires_grad=False) return h0_encoder_bi.to(device), c0_encoder_bi.to(device) def _info(model, detail=False, ret=False): nParams = sum([p.nelement() for p in model.parameters()]) mSize = nParams * 4.0 / 1024 / 1024 res = "*%-12s param.: %dK Stor.: %.4fMB" % (type(model).__name__, nParams / 1000, mSize) if detail: res += '\r\n' + str(model) if ret: return res else: print(res) def _info_simple(model, tag=None): nParams = sum([p.nelement() for p in model.parameters()]) mSize = nParams * 4.0 / 1024 / 1024 if tag is None: tag = type(model).__name__ res = "%-12s P:%6dK S:%8.4fMB" % (tag, nParams / 1000, mSize) return res def set_requires_grad(nets, requires_grad=False): """Set requires_grad=False for all the networks to avoid unnecessary computations Parameters: nets (network list) -- a list of networks requires_grad (bool) -- whether the networks require gradients or not """ if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad def idx_to_words(idx, lexicon, capitize_ratio=0.5): words = [] for i in idx: word = lexicon[i] if np.random.random() < capitize_ratio: word = word_capitalize(word) words.append(word) return words def pil_text_img(im, text, pos, color=(255, 0, 0), textSize=25): img_PIL = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB)) font = ImageFont.truetype('font/arial.ttf', textSize) fillColor = color # (255,0,0) position = pos # (100,100) draw = ImageDraw.Draw(img_PIL) draw.text(position, text, font=font, fill=fillColor) img = cv2.cvtColor(np.asarray(img_PIL), cv2.COLOR_RGB2BGR) return img def words_to_images(texts, img_h, img_w, n_channel=1): n_channel = 3 word_imgs = np.zeros((len(texts), img_h, img_w, n_channel)).astype(np.uint8) for i in range(len(texts)): # cv2.putText(word_imgs[i], texts[i], (2, 29), cv2.FONT_HERSHEY_SIMPLEX, 0.5, 255, 2) word_imgs[i] = pil_text_img(word_imgs[i], texts[i], (1, 1), textSize=25) word_imgs = word_imgs.sum(axis=-1, keepdims=True).astype(np.uint8) word_imgs = torch.from_numpy(word_imgs).permute([0, 3, 1, 2]).float() / 128 - 1 return word_imgs def ctc_greedy_decoder(probs_seq, blank_index=0): """CTC greedy (best path) decoder. Path consisting of the most probable tokens are further post-processed to remove consecutive repetitions and all blanks. :param probs_seq: 2-D list of probabilities over the vocabulary for each character. Each element is a list of float probabilities for one character. :type probs_seq: list :param vocabulary: Vocabulary list. :type vocabulary: list :return: Decoding result string. :rtype: baseline """ # argmax to get the best index for each time step max_index_list = list(np.array(probs_seq).argmax(axis=1)) # remove consecutive duplicate indexes index_list = [index_group[0] for index_group in groupby(max_index_list)] # remove blank indexes # blank_index = len(vocabulary) index_list = [index for index in index_list if index != blank_index] # convert index list to string return index_list def make_one_hot(labels, len_labels, n_class): one_hot = torch.zeros((labels.shape[0], labels.shape[1], n_class), dtype=torch.float32) for i in range(len(labels)): one_hot[i, np.array(range(len_labels[i])), labels[i,:len_labels[i]]-1]=1 return one_hot def rand_clip(imgs, img_lens, min_clip_width=64): device = imgs.device imgs, img_lens = imgs.cpu().numpy(), img_lens.cpu().numpy() clip_imgs, clip_img_lens = [], [] for img, img_len in zip(imgs, img_lens): if img_len <= min_clip_width: clip_imgs.append(img[:, :, :img_len]) clip_img_lens.append(img_len) else: crop_width = np.random.randint(min_clip_width, img_len) crop_width = crop_width - crop_width % (min_clip_width // 4) rand_pos = np.random.randint(0, img_len - crop_width) clip_img = img[:, :, rand_pos: rand_pos + crop_width] clip_imgs.append(clip_img) clip_img_lens.append(clip_img.shape[-1]) max_img_len = max(clip_img_lens) pad_imgs = -np.ones((imgs.shape[0], 1, imgs.shape[2], max_img_len)) for i, (clip_img, clip_img_len) in enumerate(zip(clip_imgs, clip_img_lens)): pad_imgs[i, 0, :, :clip_img_len] = clip_img return torch.from_numpy(pad_imgs).float().to(device), torch.Tensor(clip_img_lens).int().to(device)
python
import logging import pytest import csv from ocs_ci.ocs import constants, scale_noobaa_lib from ocs_ci.framework.testlib import scale, E2ETest from ocs_ci.ocs.resources.objectconfigfile import ObjectConfFile from ocs_ci.utility.utils import ocsci_log_path from ocs_ci.ocs.utils import oc_get_all_obc_names log = logging.getLogger(__name__) @pytest.fixture(autouse=True) def teardown(request): def finalizer(): scale_noobaa_lib.cleanup(constants.OPENSHIFT_STORAGE_NAMESPACE) request.addfinalizer(finalizer) @scale class TestScaleOCBCreateDelete(E2ETest): """ OBC scale creation and deletion using Multi cloud Object Gateway * Creating up to max support number of OBCs, capture creation time in sec. * Deleting OBCs and capture deleting time in sec. """ namespace = constants.OPENSHIFT_STORAGE_NAMESPACE scale_obc_count = 500 num_obc_batch = 50 @pytest.mark.polarion_id("OCS-2667") def test_scale_obc_create_delete_time(self, tmp_path): """ MCG OBC creation and deletion using Noobaa MCG storage class """ log.info( f"Start creating {self.scale_obc_count} " f"OBCs in a batch of {self.num_obc_batch}" ) obc_create = dict() obc_delete = dict() for i in range(int(self.scale_obc_count / self.num_obc_batch)): obc_dict_list = ( scale_noobaa_lib.construct_obc_creation_yaml_bulk_for_kube_job( no_of_obc=self.num_obc_batch, sc_name=constants.NOOBAA_SC, namespace=self.namespace, ) ) # Create job profile job_file = ObjectConfFile( name="job_profile", obj_dict_list=obc_dict_list, project=self.namespace, tmp_path=tmp_path, ) # Create kube_job job_file.create(namespace=self.namespace) # Check all the OBCs to reach Bound state obc_bound_list = ( scale_noobaa_lib.check_all_obc_reached_bound_state_in_kube_job( kube_job_obj=job_file, namespace=self.namespace, no_of_obc=self.num_obc_batch, ) ) log.info(f"Number of OBCs in Bound state {len(obc_bound_list)}") # Measure obc creation and deletion time obc_creation_time = scale_noobaa_lib.measure_obc_creation_time( obc_name_list=obc_bound_list ) obc_create.update(obc_creation_time) # Delete all obcs in a batch obc_name_list = list(oc_get_all_obc_names()) new_list = [ obc_name_list[i : i + 20] for i in range(0, len(obc_name_list), self.num_obc_batch) ] for i in range(len(new_list)): scale_noobaa_lib.cleanup(self.namespace, obc_count=new_list[i]) obc_deletion_time = scale_noobaa_lib.measure_obc_deletion_time( obc_name_list=new_list[i] ) obc_delete.update(obc_deletion_time) # Store obc creation time on csv file log_path = f"{ocsci_log_path()}/obc-creation" with open(f"{log_path}-{constants.NOOBAA_SC}.csv", "w") as fd: csv_obj = csv.writer(fd) for k, v in obc_create.items(): csv_obj.writerow([k, v]) log.info(f"OBC creation data present in {log_path}-{constants.NOOBAA_SC}.csv") # Store obc deletion time on csv file log_path = f"{ocsci_log_path()}/obc-deletion" with open(f"{log_path}-{constants.NOOBAA_SC}.csv", "w") as fd: csv_obj = csv.writer(fd) for k, v in obc_create.items(): csv_obj.writerow([k, v]) log.info(f"OBC deletion data present in {log_path}-{constants.NOOBAA_SC}.csv")
python
import paramUtils import argparse import metricsJsonUtils import os import json # Generate a csv file for Design Explorer (DEX) # from the input parameters and output # metrics. # Example output csv file for Design Explorer """ in:Inlet Velocity,in:Jet Velocity,in:Pannel Height,out:PMV (person ave),out:PMV (room ave),out:T (person ave),out:T (room ave),out:DR (person ave),out:DR (room ave),out:U (person ave),out:U (room ave),img:T_jetSection.png,img:T_personSection.png,img:U_jetSection.png,img:U_personSection.png 5,0,0.04,-0.74,-0.803,297.381,297.19,72.27,74.74,0.15,0.042,../pngs/0/out_sliceT_jet.png,../pngs/0/out_sliceT_person.png,../pngs/0/out_sliceUMag_jet.png,../pngs/0/out_sliceUMag_person.png 5,0,0.5,-0.693,-0.682,297.258,297.30,67.95,67.45,0.18,0.022,../pngs/1/out_sliceT_jet.png,../pngs/1/out_sliceT_person.png,../pngs/1/out_sliceUMag_jet.png,../pngs/1/out_sliceUMag_person.png 5,20,0.04,-0.7,-0.807,297.437,297.32,71.66,70.22,0.14,0.040,../pngs/2/out_sliceT_jet.png,../pngs/2/out_sliceT_person.png,../pngs/2/out_sliceUMag_jet.png,../pngs/2/out_sliceUMag_person.png 5,20,0.5,0.381,0.326,297.851,297.737,61.59,67.84,0.20,0.024,../pngs/3/out_sliceT_jet.png,../pngs/3/out_sliceT_person.png,../pngs/3/out_sliceUMag_jet.png,../pngs/3/out_sliceUMag_person.png """ # Parse inputs parser = argparse.ArgumentParser( description='Generate a csv file from result files for Design Explorer (DEX)') parser.add_argument("caseListFile", help='The address of a file listing the parameter names and values ' 'for each simulation case per line.') parser.add_argument("kpiFile", help="The address of a json file used for specifying the output " "metrics and images for Metrics Extraction (MEX) Python library") parser.add_argument("basePath", help="The path where the DEX csv and html will be put") parser.add_argument("DEX_CSVFile", help="The address of the DEX csv file to be generated") parser.add_argument("--casesList_paramValueDelimiter", default=',', help='The delimiter between parameter names and parameter values in ' '<caseListFile> (default:",")') parser.add_argument("--casesList_paramsDelimiter", default=',', help='The delimiter to separate parameter/value pairs from each other in ' '<caseListFile> (default:",")') parser.add_argument('--excludeParams', default='', help='A comma separated list specifying the parameters to exclude ' 'from inputs or outputs from in DEX. The default is empty.') parser.add_argument('--includeOutputParamsFile', default='', help='A file specifying the desired outputs to include as output ' 'parameters in DEX. By default all statistics specified in the ' 'kpiFile are included as output parameters in DEX') parser.add_argument('--imagesDirectory', default='', help='The path to output image directories relative to basePath. ' 'The image path can also be provided in the kpi file (with the ' '"imageName" field). Either way, the case number in the path, ' 'if any, should be replaced by {:d}. For example, ' '"outputs/imgs_{:03d}" indicates that the images are in ' 'outputs/imgs_000/, outputs/imgs_0001/, ... ' '(default:"")') parser.add_argument('--MEXCsvPathTemplate', default='', help='The path of csv files generated by MEX. The case number in the ' 'path should be replaced by {:d}. For example, ' '"outputs/case{:03d}/metrics.csv" indicates that the MEX csv ' 'files are: outputs/case000/metrics.csv, ' 'outputs/case001/metrics.csv, ... ' '(default:"", which only works if no output is required from' ' the MEX csv files)') args = parser.parse_args() caseListFile = args.caseListFile kpiFile = args.kpiFile basepath = args.basePath basepath = os.path.join(basepath, '') deCSVFile = args.DEX_CSVFile imagesdir = args.imagesDirectory imagesdir = os.path.join(imagesdir, '') metricsFilesNameTemplate = args.MEXCsvPathTemplate outputParamStatsFile = args.includeOutputParamsFile casesListParamValDelim = args.casesList_paramValueDelimiter casesListParamPairDelim = args.casesList_paramsDelimiter ignoreList_default = [] ignoreList_default = ",".join(ignoreList_default) ignoreList = args.excludeParams ignoreSet = set(ignoreList.split(",")) # Read the input parameters from the cases.list file (also works with a sweep.run file but # make sure the order is the same as cases.list files used for running the cases) cases = paramUtils.readParamsFile(caseListFile, paramValDelim=casesListParamValDelim, paramPairDelim=casesListParamPairDelim) # Correct input variable names: Replace comma's with "_" cases = paramUtils.correct_input_variable_names(cases) print("---> Read " + str(len(cases)) + " cases from " + caseListFile) # Get the list of input parameters from the first case inputVarNames = paramUtils.getParamNamesFromCase(cases[0]) inputVarNames = list(set(inputVarNames)-ignoreSet) print("---> Found these input variable names: ") for varName in inputVarNames: print(varName) # Add the values of input parameters for each case to caselist caselist = paramUtils.writeInputParamVals2caselist(cases, inputVarNames) print("---> Found these cases: ") for case in caselist: print(case) # Read the kpihash and set the default values for missing fields print("---> Reading the kpi.json file...") [kpihash, orderPreservedKeys] = metricsJsonUtils.readKPIJsonFile(kpiFile) print("---> Original input kpi.json:") print(json.dumps(kpihash, indent=4)) print("---> Setting missing fields to defaults:") for kpi in kpihash: kpihash[kpi] = metricsJsonUtils.setKPIFieldDefaults(kpihash[kpi], kpi) print(json.dumps(kpihash, indent=4)) print("---> Reading list of desired output metrics...") outParamTable = paramUtils.getOutputParamsFromKPI(kpihash, orderPreservedKeys, ignoreSet) print("---> Found these output parameters: ") print(outParamTable) print("---> Adding additional simulation_completed parameter...") # This is for displaying solution convergence outParamTable.append(['simulation_completed', -2]) # Read the desired metric from each output file and add them to caselist print("---> Reading metrics from output files...") caselist = paramUtils.writeOutParamVals2caselist(cases, metricsFilesNameTemplate, outParamTable, caselist, kpihash) # Get the list of desired images print("---> Getting images...") imgList, imgNames = paramUtils.getOutImgsFromKPI(kpihash, orderPreservedKeys) caselist = paramUtils.writeImgs2caselist(cases, imgNames, basepath, imagesdir, caselist) # Write the header of the DEX csv file header = paramUtils.generateHeader(inputVarNames, outParamTable, imgList) # Write the Design Explorer csv file: paramUtils.writeDesignExplorerCSVfile(deCSVFile, header, caselist) print("---> Done writing Design Explorer csv file.")
python
import logging import ibmsecurity.utilities.tools logger = logging.getLogger(__name__) module_uri = "/isam/felb" requires_modules = None requires_version = None requires_model= "Appliance" def get(isamAppliance, check_mode=False, force=False): """ Retrieving FELB configuration in full """ return isamAppliance.invoke_get("Retrieving FELB configuration in full", module_uri, requires_modules=requires_modules, requires_version=requires_version, requires_model=requires_model) def get_config(isamAppliance, check_mode=False, force=False): """ Retrieving FELB configuration """ return isamAppliance.invoke_get("Retrieving FELB configuration", "{0}/configuration".format(module_uri), requires_modules=requires_modules, requires_version=requires_version, requires_model=requires_model) def set(isamAppliance, enabled, debug, ha, logging, ssl, services, attributes, check_mode=False, force=False): """ Replacing FELB configuration in full """ if force is False: update_required, json_data, warnings = _check(isamAppliance, enabled, debug, ha, logging, ssl, services, attributes) if force is True or update_required: if check_mode is True: return isamAppliance.create_return_object(changed=True, warnings=warnings) else: return isamAppliance.invoke_put("Replacing FELB configuration in full", module_uri, json_data, requires_modules=requires_modules, requires_version=requires_version, requires_model=requires_model) return isamAppliance.create_return_object(warnings=warnings) def _check(isamAppliance, enabled, debug, ha, logging, ssl, services, attributes): update_required = False ret_obj = get(isamAppliance) warnings=ret_obj['warnings'] json_data = { "enabled": enabled, "debug": debug, "ha": ha, "logging": logging, "ssl": ssl, "services": services, "attributes": attributes } sorted_json_data = ibmsecurity.utilities.tools.json_sort(json_data) logger.debug("Sorted input: {0}".format(sorted_json_data)) sorted_ret_obj = ibmsecurity.utilities.tools.json_sort(ret_obj['data']) logger.debug("Sorted existing data: {0}".format(sorted_ret_obj)) if sorted_ret_obj != sorted_json_data: logger.info("Changes detected, update needed.") update_required = True return update_required, json_data, warnings def export_file(isamAppliance, filename, check_mode=False, force=False): """ Exporting FELB configuration """ import os.path if force is True or os.path.exists(filename) is False: if check_mode is False: # No point downloading a file if in check_mode return isamAppliance.invoke_get_file("Exporting FELB configuration", "{}?export=true".format(module_uri), filename=filename, requires_modules=requires_modules, requires_version=requires_version, requires_model=requires_model) return isamAppliance.create_return_object() def import_file(isamAppliance, file, check_mode=False, force=False): """ Importing FELB configuration """ if check_mode is True: return isamAppliance.create_return_object(changed=True) else: return isamAppliance.invoke_post_files(description="Importing FELB configuration", uri=module_uri, fileinfo=[{ 'file_formfield': 'file', 'filename': file, 'mimetype': 'application/octet-stream' }], data={}, requires_modules=requires_modules, requires_version=requires_version, requires_model=requires_model) def compare(isamAppliance1, isamAppliance2): """ Compare FELB configuration between 2 appliances """ ret_obj1 = get(isamAppliance1) ret_obj2 = get(isamAppliance2) return ibmsecurity.utilities.tools.json_compare(ret_obj1, ret_obj2, deleted_keys=[])
python
from app.experimental.views import experimental
python
# decompyle3 version 3.3.2 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.8.5 (default, Jul 28 2020, 12:59:40) # [GCC 9.3.0] # Embedded file name: lib\bl702\efuse_create_do.py import os, sys, re, binascii, hashlib from lib import bflb_utils from lib import bflb_efuse_boothd_create ef_sf_aes_mode_list = [ 'None', 'AES128', 'AES192', 'AES256'] def verify_hex_num(string): l = len(string) i = 0 while 1: if re.match('\\A[0-9a-fA-F]+\\Z', string[i:i + 1]) == None: return False else: i += 1 if i >= l: break return True def get_eflash_loader(xtal): xtal_suffix = str(xtal).lower().replace('.', 'p').replace('M', 'm').replace('RC', 'rc') return 'eflash_loader_' + xtal_suffix + '.bin' def str_endian_switch(string): s = string[6:8] + string[4:6] + string[2:4] + string[0:2] return s def img_create_sha256_data(data_bytearray): hashfun = hashlib.sha256() hashfun.update(data_bytearray) return bflb_utils.hexstr_to_bytearray(hashfun.hexdigest()) def create_key_data_do(values, chip_name, chip_type, cfg_file, efuse_data): tips = '' bflb_utils.printf('Create_key_data') fp = open(cfg_file, 'w+') fp.write('[EFUSE_CFG]\n') aes_mode = ef_sf_aes_mode_list.index(values['ef_sf_aes_mode']) tips += 'AES Mode:' + values['ef_sf_aes_mode'] + '\r\n' bflb_utils.printf(ef_sf_aes_mode_list[aes_mode]) fp.write('ef_cpu_enc_en = 1\n') if values['cpu0_pk_simple'] != '': if os.path.exists(values['cpu0_pk_simple']) == False: bflb_utils.printf('Error: public key file not found') return 'Error: public key file not found' vk = ecdsa.VerifyingKey.from_pem(open(values['cpu0_pk_simple']).read()) pk_data = vk.to_string() bflb_utils.printf('Public key: ', binascii.hexlify(pk_data)) pk_hash = img_create_sha256_data(pk_data) bflb_utils.printf('Public key hash=', binascii.hexlify(pk_hash)) fp.write('ef_sboot_sign_mode = 1\n') fp.write('ef_key_slot_0_w0 = 0x' + str_endian_switch(str(pk_hash.hex())[0:8]) + '\n') fp.write('ef_key_slot_0_w1 = 0x' + str_endian_switch(str(pk_hash.hex())[8:16]) + '\n') fp.write('ef_key_slot_0_w2 = 0x' + str_endian_switch(str(pk_hash.hex())[16:24]) + '\n') fp.write('ef_key_slot_0_w3 = 0x' + str_endian_switch(str(pk_hash.hex())[24:32]) + '\n') fp.write('ef_key_slot_1_w0 = 0x' + str_endian_switch(str(pk_hash.hex())[32:40]) + '\n') fp.write('ef_key_slot_1_w1 = 0x' + str_endian_switch(str(pk_hash.hex())[40:48]) + '\n') fp.write('ef_key_slot_1_w2 = 0x' + str_endian_switch(str(pk_hash.hex())[48:56]) + '\n') fp.write('ef_key_slot_1_w3 = 0x' + str_endian_switch(str(pk_hash.hex())[56:64]) + '\n') if values['cpu0_pk_wp_enable'] == True: fp.write('wr_lock_key_slot_0 = 1\n') fp.write('wr_lock_key_slot_1 = 1\n') else: fp.write('wr_lock_key_slot_0 = 0\n') fp.write('wr_lock_key_slot_1 = 0\n') tips += 'public key hash\r\n' if aes_mode != 0: if len(values['cpu0_aes_key_simple']) >= 32 and verify_hex_num(values['cpu0_aes_key_simple']) == True: fp.write('ef_sf_aes_mode = ' + str(ef_sf_aes_mode_list.index(values['ef_sf_aes_mode'])) + '\n') fp.write('ef_key_slot_2_w0 = 0x' + str_endian_switch(values['cpu0_aes_key_simple'][0:8]) + '\n') fp.write('ef_key_slot_2_w1 = 0x' + str_endian_switch(values['cpu0_aes_key_simple'][8:16]) + '\n') fp.write('ef_key_slot_2_w2 = 0x' + str_endian_switch(values['cpu0_aes_key_simple'][16:24]) + '\n') fp.write('ef_key_slot_2_w3 = 0x' + str_endian_switch(values['cpu0_aes_key_simple'][24:32]) + '\n') if values['cpu0_aes_key_wp_enable'] == True: fp.write('wr_lock_key_slot_2 = 1\n') else: fp.write('wr_lock_key_slot_2 = 0\n') if values['cpu0_aes_key_rp_enable'] == True: fp.write('rd_lock_key_slot_2 = 1\n') else: fp.write('rd_lock_key_slot_2 = 0\n') tips += 'AES key\r\n' else: bflb_utils.printf('Error: Please check AES key data and len') return 'Error: Please check AES key data and len' elif values['cpu0_aes_key_simple'] != '': bflb_utils.printf('Error: AES mode is None, no need to fill in CPU0 AES key') return 'Error: AES mode is None, no need to fill in CPU0 AES key' if aes_mode == 1: if len(values['cpu0_aes_key_simple']) != 32: bflb_utils.printf('Error: Please check AES key len') return 'Error: Please check AES key len' elif aes_mode == 2: if len(values['cpu0_aes_key_simple']) == 48: fp.write('ef_key_slot_3_w0 = 0x' + str_endian_switch(values['cpu0_aes_key_simple'][32:40]) + '\n') fp.write('ef_key_slot_3_w1 = 0x' + str_endian_switch(values['cpu0_aes_key_simple'][40:48]) + '\n') if values['cpu0_aes_key_wp_enable'] == True: fp.write('wr_lock_key_slot_3 = 1\n') else: fp.write('wr_lock_key_slot_3 = 0\n') if values['cpu0_aes_key_rp_enable'] == True: fp.write('rd_lock_key_slot_3 = 1\n') else: fp.write('rd_lock_key_slot_3 = 0\n') else: bflb_utils.printf('Error: Please check AES key len') return 'Error: Please check AES key len' elif aes_mode == 3: if len(values['cpu0_aes_key_simple']) == 64: fp.write('ef_key_slot_3_w0 = 0x' + str_endian_switch(values['cpu0_aes_key_simple'][32:40]) + '\n') fp.write('ef_key_slot_3_w1 = 0x' + str_endian_switch(values['cpu0_aes_key_simple'][40:48]) + '\n') fp.write('ef_key_slot_3_w2 = 0x' + str_endian_switch(values['cpu0_aes_key_simple'][48:56]) + '\n') fp.write('ef_key_slot_3_w3 = 0x' + str_endian_switch(values['cpu0_aes_key_simple'][56:64]) + '\n') if values['cpu0_aes_key_wp_enable'] == True: fp.write('wr_lock_key_slot_3 = 1\n') else: fp.write('wr_lock_key_slot_3 = 0\n') if values['cpu0_aes_key_rp_enable'] == True: fp.write('rd_lock_key_slot_3 = 1\n') else: fp.write('rd_lock_key_slot_3 = 0\n') else: bflb_utils.printf('Error: Please check AES key len') return 'Error: Please check AES key len' lines = len(tips.split('\r\n')) + 1 bflb_utils.printf('Following will be burned:\r\n' + tips) fp.close() bflb_efuse_boothd_create.efuse_create_process(chip_name, chip_type, cfg_file, efuse_data) # okay decompiling lib.bl702.efuse_create_do.pyc
python
import os import shutil def get_filename(file_dir): filenames=[] for root, dirs, files in os.walk(file_dir): for file in files: filenames.append(os.path.join(root, file)) return filenames # True针对行号False针对列号 def refile(filename, newfilename, rerow=True ,recol=True ): # 一位数组保存行号、列号、非零元个数 origin_first = [] # 二维数组保存当前的每行数据 origin_data = [] # 保存真实的行/列号 origin_row = [] origin_col = [] isFirst = True file = open(filename, 'r') try: text_lines = file.readlines() # 保存内容 for line in text_lines: line_list = line.strip('\n').split(" ") if isFirst: print(line_list) origin_first = line_list isFirst = False else: origin_data.append(line_list) # 只管行。以后拓展成行列都行 # not in 速度太慢,后续使用set处理 # if line_list[0] not in origin_row: origin_row.append(line_list[0]) origin_col.append(line_list[1]) # print(type(line), line) finally: file.close() print("read success!") # 转成set,高效去重 new_row = list(set(origin_row)) new_row.sort() new_col = list(set(origin_col)) new_col.sort() print("compress success!") # 转成dict,降低查找复杂度 new_row_value = list(range(1, len(new_row)+1 )) new_row_dict = dict(zip(new_row,new_row_value)) new_col_value = list(range(1, len(new_col)+1 )) new_col_dict = dict(zip(new_col,new_col_value)) print("zip success!new_row:",len(new_row)) print("zip success!new_col:",len(new_col)) origin_data.sort(key=lambda i:(i[0],i[1])) print("data order success!") with open(newfilename, 'w') as f: f.write('%s %s %s\n' % (len(new_row) if rerow else origin_first[0], len(new_col) if recol else origin_first[1], origin_first[2])) for dataline in origin_data: for ind,val in enumerate(dataline): real_val = val if ind == 0: if rerow: real_val = new_row_dict[val] # real_val = new_row.index(val) f.write('%s ' % real_val) elif ind == 1: if recol: real_val = new_col_dict[val] f.write('%s ' % real_val) elif ind == 2: f.write('%s ' % real_val) f.write('\n') dir_name = "../tensors/mat1nell" new_dir_name = dir_name + "py" if not os.path.exists(new_dir_name): os.makedirs(new_dir_name) # 文件夹存在则删除 else: shutil.rmtree(new_dir_name) os.makedirs(new_dir_name) # new_dir_name_r = dir_name + "pyr" # if not os.path.exists(new_dir_name_r): # os.makedirs(new_dir_name_r) # new_dir_name_c = dir_name + "pyc" # if not os.path.exists(new_dir_name_c): # os.makedirs(new_dir_name_c) filenames = get_filename(dir_name) # 遍历所有文件,读取出所有数据,分别保存。 重新处理行号,再写回文件 fi = 0 for filename in filenames: filename_list = filename.split("/") # 行列双压缩 newfilename = "%s/%s_%s" % (new_dir_name,filename_list[-2],filename_list[-1]) refile(filename, newfilename, rerow=True ,recol=True) # # 行单压缩 # newfilename = "%s/%s" % (new_dir_name_r,filename_list[-1]) # refile(filename, newfilename, rerow=True ,recol=False) # # 列单压缩 # newfilename = "%s/%s" % (new_dir_name_c,filename_list[-1]) # refile(filename, newfilename, rerow=False ,recol=True) # print("filename",filename) # print("newfilename",newfilename) fi = fi + 1
python
#!/usr/bin/env python '''Given desired set of parameters, generates all configurations obtained by enumerate each parameter individually (continuous are discretized). ''' import sys, re, MySQLdb, argparse, os, json, subprocess import pandas as pd import makemodel import numpy as np from MySQLdb.cursors import DictCursor from outputjson import makejson from populaterequests import addrows parser = argparse.ArgumentParser(description='Exhaustive grid search along single axes of variation') parser.add_argument('--host',type=str,help='Database host') parser.add_argument('-p','--password',type=str,help='Database password') parser.add_argument('--db',type=str,help='Database name',default='database') parser.add_argument('-o','--output',type=str,help="Output file",default="rows.txt") parser.add_argument('--parameters',type=file,help='parameters to enumerate',required=True) args = parser.parse_args() #get options defaults = makemodel.getdefaults() options = makemodel.getoptions() opts = sorted(options.items()) #read in list of parameters params = args.parameters.read().rstrip().split() outrows = set() #uniq configurations only (e.g., avoid replicating the default over and over again) for param in params: if param in options: choices = options[param] if isinstance(choices, makemodel.Range): choices = np.linspace(choices.min,choices.max, 9) #for each parameter value, create a row for val in choices: row = ['P','P'] #spearmint for (name,_) in opts: if name == param: row.append(val) else: row.append(defaults[name]) outrows.add(tuple(row)) out = open(args.output,'w') for row in outrows: out.write(' '.join(map(str,row))+'\n') out.close() if args.host: addrows(args.output,args.host,args.db,args.password)
python
# -*- coding: utf-8 -*- # ToMaTo (Topology management software) # Copyright (C) 2010 Dennis Schwerdel, University of Kaiserslautern # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> import os, sys, signal, time, thread os.environ['TOMATO_MODULE'] = "backend" import monkey monkey.patch_all() import config from mongoengine import connect database_connnection = connect(config.DATABASE, host=config.DATABASE_HOST) database_obj = getattr(database_connnection, config.DATABASE) def db_migrate(): def getMigration(version): try: return __import__("tomato.migrations.migration_%04d" % version, {}, {}, 'migration_%04d' % version).migrate except ImportError: return None from .db import data version = data.get('db_version', 0) print >>sys.stderr, "Database version: %04d" % version if version > 0 and not getMigration(version): raise Exception("Database is newer than code") if not version and not getMigration(1): raise Exception("Failed to migrate to initial version") while True: version += 1 migrate = getMigration(version) if not migrate: break print >>sys.stderr, " - migrating to version %04d..." % version try: migrate() except: import traceback traceback.print_exc() raise data.set('db_version', version) import threading _currentUser = threading.local() def currentUser(): return _currentUser.user if hasattr(_currentUser, "user") else None # fixme def setCurrentUser(user): _currentUser.user = user def login(credentials, sslCert): user = auth.login(*credentials) if credentials else None setCurrentUser(user) return user or not credentials from lib import logging def handleError(): logging.logException() dump.dumpException() from lib import tasks #@UnresolvedImport scheduler = tasks.TaskScheduler(maxLateTime=30.0, minWorkers=5, maxWorkers=25) starttime = time.time() from . import host, auth, rpcserver #@UnresolvedImport from lib.cmd import bittorrent, process #@UnresolvedImport from lib import util, cache #@UnresolvedImport scheduler.scheduleRepeated(config.BITTORRENT_RESTART, util.wrap_task(bittorrent.restartClient)) stopped = threading.Event() import dump import dumpmanager import models def start(): logging.openDefault(config.LOG_FILE) if not os.environ.has_key("TOMATO_NO_MIGRATE"): db_migrate() else: print >>sys.stderr, "Skipping migrations" auth.init() global starttime bittorrent.startTracker(config.TRACKER_PORT, config.TEMPLATE_PATH) bittorrent.startClient(config.TEMPLATE_PATH) rpcserver.start() starttime = time.time() if not os.environ.has_key("TOMATO_NO_TASKS"): scheduler.start() else: print >>sys.stderr, "Running without tasks" dump.init() dumpmanager.init()# important: must be called after dump.init() cache.init()# this does not depend on anything (except the scheduler variable being initialized), and nothing depends on this. No need to hurry this. def reload_(*args): print >>sys.stderr, "Reloading..." logging.closeDefault() reload(config) logging.openDefault(config.LOG_FILE) #stopRPCserver() #startRPCserver() def _printStackTraces(): import traceback for threadId, stack in sys._current_frames().items(): print >>sys.stderr, "ThreadID: %s" % threadId for filename, lineno, name, line in traceback.extract_stack(stack): print >>sys.stderr, '\tFile: "%s", line %d, in %s' % (filename, lineno, name) if line: print >>sys.stderr, "\t\t%s" % (line.strip()) def _stopHelper(): stopped.wait(10) if stopped.isSet(): return print >>sys.stderr, "Stopping takes long, waiting some more time..." stopped.wait(10) if stopped.isSet(): return print >>sys.stderr, "Ok last chance, killing process in 10 seconds..." stopped.wait(10) if stopped.isSet(): return print >>sys.stderr, "Some threads are still running:" _printStackTraces() print >>sys.stderr, "Killing process..." process.kill(os.getpid(), force=True) def stop(*args): print >>sys.stderr, "Shutting down..." thread.start_new_thread(_stopHelper, ()) rpcserver.stop() host.stopCaching() scheduler.stop() bittorrent.stopTracker() bittorrent.stopClient() logging.closeDefault() stopped.set() def run(): start() signal.signal(signal.SIGTERM, stop) signal.signal(signal.SIGINT, stop) signal.signal(signal.SIGHUP, reload_) try: while not stopped.isSet(): stopped.wait(1.0) except KeyboardInterrupt: stop()
python
# This is a modification of stlehmann/Flask-MQTT # https://github.com/stlehmann/Flask-MQTT from logzero import logger import paho.mqtt.client as mqtt from paho.mqtt.client import ( # noqa: F401 Client, MQTT_ERR_SUCCESS, MQTT_ERR_ACL_DENIED, MQTT_ERR_AGAIN, MQTT_ERR_AUTH, MQTT_ERR_CONN_LOST, MQTT_ERR_CONN_REFUSED, MQTT_ERR_ERRNO, MQTT_ERR_INVAL, MQTT_ERR_NO_CONN, MQTT_ERR_NOMEM, MQTT_ERR_NOT_FOUND, MQTT_ERR_NOT_SUPPORTED, MQTT_ERR_PAYLOAD_SIZE, MQTT_ERR_PROTOCOL, MQTT_ERR_QUEUE_SIZE, MQTT_ERR_TLS, MQTT_ERR_UNKNOWN, MQTT_LOG_DEBUG, MQTT_LOG_ERR, MQTT_LOG_INFO, MQTT_LOG_NOTICE, MQTT_LOG_WARNING, ) class MqttDecorator(): def _handle_connect(self, client, userdata, flags, rc): # type: (Client, Any, Dict, int) -> None if rc == MQTT_ERR_SUCCESS: self.connected = True for key, item in self.topics.items(): self.client.subscribe(topic=item.topic, qos=item.qos) if self._connect_handler is not None: self._connect_handler(client, userdata, flags, rc) def _handle_disconnect(self, client, userdata, rc): # type: (str, Any, int) -> None self.connected = False if self._disconnect_handler is not None: self._disconnect_handler() def on_topic(self, topic): # type: (str) -> Callable """Decorator. Decorator to add a callback function that is called when a certain topic has been published. The callback function is expected to have the following form: `handle_topic(client, userdata, message)` :parameter topic: a string specifying the subscription topic to subscribe to The topic still needs to be subscribed via mqtt.subscribe() before the callback function can be used to handle a certain topic. This way it is possible to subscribe and unsubscribe during runtime. **Example usage:**:: mqtt = EdgeAgent(__name__) mqtt.subscribe('home/mytopic') @mqtt.on_topic('home/mytopic') def handle_mytopic(client, userdata, message): print('Received message on topic {}: {}' .format(message.topic, message.payload.decode())) """ def decorator(handler): # type: (Callable[[str], None]) -> Callable[[str], None] self.client.message_callback_add(topic, handler) return handler return decorator def subscribe(self, topic, qos=0): # type: (str, int) -> Tuple[int, int] """ Subscribe to a certain topic. :param topic: a string specifying the subscription topic to subscribe to. :param qos: the desired quality of service level for the subscription. Defaults to 0. :rtype: (int, int) :result: (result, mid) A topic is a UTF-8 string, which is used by the broker to filter messages for each connected client. A topic consists of one or more topic levels. Each topic level is separated by a forward slash (topic level separator). The function returns a tuple (result, mid), where result is MQTT_ERR_SUCCESS to indicate success or (MQTT_ERR_NO_CONN, None) if the client is not currently connected. mid is the message ID for the subscribe request. The mid value can be used to track the subscribe request by checking against the mid argument in the on_subscribe() callback if it is defined. **Topic example:** `myhome/groundfloor/livingroom/temperature` """ # TODO: add support for list of topics # don't subscribe if already subscribed # try to subscribe result, mid = self.client.subscribe(topic=topic, qos=qos) # if successful add to topics if result == MQTT_ERR_SUCCESS: self.topics[topic] = TopicQos(topic=topic, qos=qos) logger.debug('Subscribed to topic: {0}, qos: {1}' .format(topic, qos)) else: logger.error('Error {0} subscribing to topic: {1}' .format(result, topic)) return (result, mid) def unsubscribe(self, topic): # type: (str) -> Optional[Tuple[int, int]] """ Unsubscribe from a single topic. :param topic: a single string that is the subscription topic to unsubscribe from :rtype: (int, int) :result: (result, mid) Returns a tuple (result, mid), where result is MQTT_ERR_SUCCESS to indicate success or (MQTT_ERR_NO_CONN, None) if the client is not currently connected. mid is the message ID for the unsubscribe request. The mid value can be used to track the unsubscribe request by checking against the mid argument in the on_unsubscribe() callback if it is defined. """ # don't unsubscribe if not in topics if topic in self.topics: result, mid = self.client.unsubscribe(topic) if result == MQTT_ERR_SUCCESS: self.topics.pop(topic) logger.debug('Unsubscribed from topic: {0}'.format(topic)) else: logger.debug('Error {0} unsubscribing from topic: {1}' .format(result, topic)) # if successful remove from topics return result, mid return None def unsubscribe_all(self): # type: () -> None """Unsubscribe from all topics.""" topics = list(self.topics.keys()) for topic in topics: self.unsubscribe(topic) def publish(self, topic, payload=None, qos=0, retain=False): # type: (str, bytes, int, bool) -> Tuple[int, int] """ Send a message to the broker. :param topic: the topic that the message should be published on :param payload: the actual message to send. If not given, or set to None a zero length message will be used. Passing an int or float will result in the payload being converted to a string representing that number. If you wish to send a true int/float, use struct.pack() to create the payload you require. :param qos: the quality of service level to use :param retain: if set to True, the message will be set as the "last known good"/retained message for the topic :returns: Returns a tuple (result, mid), where result is MQTT_ERR_SUCCESS to indicate success or MQTT_ERR_NO_CONN if the client is not currently connected. mid is the message ID for the publish request. """ if not self.connected: self.client.reconnect() result, mid = self.client.publish(topic, payload, qos, retain) if result == MQTT_ERR_SUCCESS: logger.debug('Published topic {0}: {1}'.format(topic, payload)) else: logger.error('Error {0} publishing topic {1}' .format(result, topic)) return (result, mid) def on_connect(self): # type: () -> Callable """Decorator. Decorator to handle the event when the broker responds to a connection request. Only the last decorated function will be called. """ def decorator(handler): # type: (Callable) -> Callable self._connect_handler = handler return handler return decorator def on_disconnect(self): # type: () -> Callable """Decorator. Decorator to handle the event when client disconnects from broker. Only the last decorated function will be called. """ def decorator(handler): # type: (Callable) -> Callable self._disconnect_handler = handler return handler return decorator def on_message(self): # type: () -> Callable """Decorator. Decorator to handle all messages that have been subscribed and that are not handled via the `on_message` decorator. **Note:** Unlike as written in the paho mqtt documentation this callback will not be called if there exists an topic-specific callback added by the `on_topic` decorator. **Example Usage:**:: @mqtt.on_message() def handle_messages(client, userdata, message): print('Received message on topic {}: {}' .format(message.topic, message.payload.decode())) """ def decorator(handler): # type: (Callable) -> Callable self.client.on_message = handler return handler return decorator def on_publish(self): # type: () -> Callable """Decorator. Decorator to handle all messages that have been published by the client. **Example Usage:**:: @mqtt.on_publish() def handle_publish(client, userdata, mid): print('Published message with mid {}.' .format(mid)) """ def decorator(handler): # type: (Callable) -> Callable self.client.on_publish = handler return handler return decorator def on_subscribe(self): # type: () -> Callable """Decorate a callback function to handle subscritions. **Usage:**:: @mqtt.on_subscribe() def handle_subscribe(client, userdata, mid, granted_qos): print('Subscription id {} granted with qos {}.' .format(mid, granted_qos)) """ def decorator(handler): # type: (Callable) -> Callable self.client.on_subscribe = handler return handler return decorator def on_unsubscribe(self): # type: () -> Callable """Decorate a callback funtion to handle unsubscribtions. **Usage:**:: @mqtt.unsubscribe() def handle_unsubscribe(client, userdata, mid) print('Unsubscribed from topic (id: {})' .format(mid)') """ def decorator(handler): # type: (Callable) -> Callable self.client.on_unsubscribe = handler return handler return decorator def on_log(self): # type: () -> Callable """Decorate a callback function to handle MQTT logging. **Example Usage:** :: @mqtt.on_log() def handle_logging(client, userdata, level, buf): print(client, userdata, level, buf) """ def decorator(handler): # type: (Callable) -> Callable self.client.on_log = handler return handler return decorator
python
__author__ = 'petlja' from docutils import nodes from docutils.parsers.rst import directives from docutils.parsers.rst import Directive def setup(app): app.connect('html-page-context', html_page_context_handler) app.add_stylesheet('notes.css') app.add_javascript('notes.js') app.add_directive('infonote', InfoNoteDirective) app.add_directive('questionnote', QuestionNoteDirective) app.add_directive('level', LevelDirective) app.add_node(InfoNoteNode, html=(visit_info_note_node, depart_info_note_node)) app.add_node(QuestionNoteNode, html=(visit_question_note_node, depart_question_note_node)) app.add_node(LevelNode, html=(visit_level_node, depart_level_node)) def html_page_context_handler(app, pagename, templatename, context, doctree): app.builder.env.h_ctx = context TEMPLATE_START = """ <div class="course-box course-box-info"> <div class="course-content"> <p> """ TEMPLATE_END = """ </p></div></div> """ class InfoNoteNode(nodes.General, nodes.Element): def __init__(self, content): super(InfoNoteNode, self).__init__() self.note = content def visit_info_note_node(self, node): node.delimiter = "_start__{}_".format("info") self.body.append(node.delimiter) res = TEMPLATE_START self.body.append(res) def depart_info_note_node(self, node): res = TEMPLATE_END self.body.append(res) self.body.remove(node.delimiter) class InfoNoteDirective(Directive): """ .. infonote:: """ required_arguments = 0 optional_arguments = 0 has_content = True def run(self): """ generate html to include note box. :param self: :return: """ env = self.state.document.settings.env self.options['source'] = "\n".join(self.content) innode = InfoNoteNode(self.options) self.state.nested_parse(self.content, self.content_offset, innode) return [innode] TEMPLATE_START_Q = """ <div class="course-box course-box-special"> <div class="course-content"> <h4 class="carbox-title"> <img class="corner-image float-right" src="%s" /> </h4> <p> """ TEMPLATE_END_Q = """ </p></div></div> """ class QuestionNoteNode(nodes.General, nodes.Element): def __init__(self, content): super(QuestionNoteNode, self).__init__() self.note = content def visit_question_note_node(self, node): node.delimiter = "_start__{}_".format("info") self.body.append(node.delimiter) prefix = '../' * self.builder.current_docname.count('/') res = TEMPLATE_START_Q % (prefix + "_static/img/question-mark.png") self.body.append(res) def depart_question_note_node(self, node): res = TEMPLATE_END_Q self.body.append(res) self.body.remove(node.delimiter) class QuestionNoteDirective(Directive): """ .. questionnote:: """ required_arguments = 0 optional_arguments = 0 has_content = True def run(self): """ generate html to include note box. :param self: :return: """ env = self.state.document.settings.env self.options['source'] = "\n".join(self.content) qnnode = QuestionNoteNode(self.options) self.state.nested_parse(self.content, self.content_offset, qnnode) return [qnnode] TEMPLATE_START_L_CONTAINER = """ <div class="rst-level rst-level-%(complexity)s"> """ TEMPLATE_START_L = """ <div data-level="%(complexity)s" style="display:none"> """ TEMPLATE_END_L = """ </div> """ class LevelNode(nodes.General, nodes.Element): def __init__(self, content): super(LevelNode, self).__init__() self.note = content def visit_level_node(self, node): node.delimiter = "_start__{}_".format("level") self.body.append(node.delimiter) if 'container' in node.note: res = TEMPLATE_START_L_CONTAINER % node.note else: res = TEMPLATE_START_L % node.note self.body.append(res) def depart_level_node(self, node): res = TEMPLATE_END_L self.body.append(res) self.body.remove(node.delimiter) class LevelDirective(Directive): """ .. level:: 2 :container: """ required_arguments = 1 optional_arguments = 0 has_content = True option_spec = { 'container':directives.flag, } def run(self): """ generate html to include level box. :param self: :return: """ env = self.state.document.settings.env self.options['source'] = "\n".join(self.content) self.options['complexity'] = self.arguments[0] innode = LevelNode(self.options) self.state.nested_parse(self.content, self.content_offset, innode) return [innode]
python
import discord from jinja2 import Environment, FileSystemLoader from configurations import CONFIG from game_constants import RARITY_COLORS from search import _ from util import flatten class Views: WHITE = discord.Color.from_rgb(254, 254, 254) BLACK = discord.Color.from_rgb(0, 0, 0) RED = discord.Color.from_rgb(255, 0, 0) def __init__(self, emojis): self.my_emojis = emojis self.jinja_env = Environment(loader=FileSystemLoader('templates')) def banner_colors(self, banner): return [f'{self.my_emojis.get(d[0], f":{d[0]}:")}{abs(d[1]) * f"{d[1]:+d}"[0]}' for d in banner['colors']] def render_embed(self, embed, template_name, **kwargs): self.jinja_env.filters['emoji'] = self.my_emojis.get self.jinja_env.filters['banner_colors'] = self.banner_colors self.jinja_env.globals.update({ 'emoji': self.my_emojis.get, 'flatten': flatten }) template = self.jinja_env.get_template(template_name) content = template.render(**kwargs) for i, splitted in enumerate(content.split('<T>')): if i == 0: embed.description = splitted else: title_end = splitted.index('</T>') inline = splitted.startswith('inline') embed.add_field( name=splitted[inline * len('inline'):title_end], value=splitted[title_end + 4:], inline=inline) return embed def render_help(self, prefix, lang): title = f'garyatrics.com bot {_("[HELP]", lang)}' e = discord.Embed(title=title, color=self.WHITE) return self.render_embed(e, f'help/help-{lang}.jinja', prefix=prefix) def render_weapon(self, weapon, shortened): rarity_color = RARITY_COLORS.get(weapon['raw_rarity'], RARITY_COLORS['Mythic']) color = discord.Color.from_rgb(*rarity_color) e = discord.Embed(title='Weapon search found one exact match', color=color) thumbnail_url = f'{CONFIG.get("graphics_url")}/Spells/Cards_{weapon["spell_id"]}_full.png' e.set_thumbnail(url=thumbnail_url) if shortened: return self.render_embed(e, 'weapon_shortened.jinja', weapon=weapon) if 'release_date' in weapon: e.set_footer(text='Release date') e.timestamp = weapon["release_date"] return self.render_embed(e, 'weapon.jinja', weapon=weapon) def render_affix(self, affix, shortened): e = discord.Embed(title='Affix search found one exact match', color=self.WHITE) affix['weapons'] = [f'{w["name"]} `#{w["id"]}`' for w in affix['weapons']] thumbnail_url = f'{CONFIG.get("graphics_url")}/Ingots/Ingots_AnvilIcon_full.png' e.set_thumbnail(url=thumbnail_url) return self.render_embed(e, 'affix.jinja', affix=affix) def render_pet(self, pet, shortened): e = discord.Embed(title='Pet search found one exact match', color=self.WHITE) thumbnail_url = f'{CONFIG.get("graphics_url")}/Pets/Cards_{pet["filename"]}_full.png' e.set_thumbnail(url=thumbnail_url) if shortened: return self.render_embed(e, 'pet_shortened.jinja', pet=pet) if 'release_date' in pet: e.set_footer(text='Release date') e.timestamp = pet["release_date"] return self.render_embed(e, 'pet.jinja', pet=pet) def render_troop(self, troop, shortened): rarity_color = RARITY_COLORS.get(troop['raw_rarity'], RARITY_COLORS['Mythic']) if 'Boss' in troop['raw_types']: rarity_color = RARITY_COLORS['Doomed'] e = discord.Embed(title='Troop search found one exact match', color=discord.Color.from_rgb(*rarity_color)) thumbnail_url = f'{CONFIG.get("graphics_url")}/Troops/Cards_{troop["filename"]}_full.png' e.set_thumbnail(url=thumbnail_url) if shortened: return self.render_embed(e, 'troop_shortened.jinja', troop=troop) if 'release_date' in troop: e.set_footer(text='Release date') e.timestamp = troop["release_date"] return self.render_embed(e, 'troop.jinja', troop=troop) def render_traitstone(self, traitstone, shortened): e = discord.Embed(color=self.WHITE) e.title = traitstone['name'] thumbnail_url = f'{CONFIG.get("graphics_url")}/Runes_Rune{traitstone["id"]:02d}_full.png' e.set_thumbnail(url=thumbnail_url) troop_list = ['{0} ({1})'.format(*troop) for troop in traitstone['troops']] troops = self.trim_text_to_length(", ".join(sorted(troop_list)), 900, ',', ', ...') class_list = ['{0} ({1})'.format(*_class) for _class in traitstone['classes']] classes = self.trim_text_to_length(", ".join(sorted(class_list)), 900, ',', ', ...') kingdom_list = [k for k in traitstone['kingdoms']] kingdoms = self.trim_text_to_length(", ".join(sorted(kingdom_list)), 900, ',', ', ...') return self.render_embed(e, 'traitstone.jinja', traitstone=traitstone, troops=troops, classes=classes, kingdoms=kingdoms) def render_talent(self, tree, shortened): e = discord.Embed(color=self.WHITE) if shortened: e.title = tree["name"] return self.render_embed(e, 'talent_shortened.jinja', tree=tree) e.title = 'Talent search found one exact match' return self.render_embed(e, 'talent.jinja', tree=tree) def render_team(self, team, author, shortened): color = discord.Color.from_rgb(*RARITY_COLORS['Mythic']) e = discord.Embed(color=color) if team['banner']: thumbnail_url = f'{CONFIG.get("graphics_url")}/Banners/Banners_{team["banner"]["filename"]}_full.png' e.set_thumbnail(url=thumbnail_url) if shortened: troops = [f'{t[1]}' for t in team['troops']] e.title = ', '.join(troops) return self.render_embed(e, 'team_shortened.jinja', team=team) e.title = f"{author} team" return self.render_embed(e, 'team.jinja', team=team) def render_kingdom(self, kingdom, shortened): e = discord.Embed(title='Kingdom search found one exact match', color=self.WHITE) underworld = 'underworld' if kingdom['underworld'] else '' thumbnail_url = f'{CONFIG.get("graphics_url")}/Maplocations{underworld}_{kingdom["filename"]}_full.png' e.set_thumbnail(url=thumbnail_url) if shortened: return self.render_embed(e, 'kingdom_shortened.jinja', kingdom=kingdom) return self.render_embed(e, 'kingdom.jinja', kingdom=kingdom) def render_trait(self, trait, shortened): e = discord.Embed(title='Trait search found one exact match', color=self.WHITE) thumbnail_url = f'{CONFIG.get("graphics_url")}/Troopcardall_Traits/{trait["image"]}_full.png' e.set_thumbnail(url=thumbnail_url) trait['thumbnail'] = thumbnail_url return self.render_embed(e, 'trait.jinja', trait=trait) def render_class(self, _class, shortened): e = discord.Embed(title='Class search found one exact match', color=self.WHITE) thumbnail_url = f'{CONFIG.get("graphics_url")}/Classes_{_class["code"]}_full.png' e.set_thumbnail(url=thumbnail_url) if shortened: return self.render_embed(e, 'class_shortened.jinja', _class=_class) return self.render_embed(e, 'class.jinja', _class=_class) @staticmethod def trim_text_to_length(text, limit, break_character='\n', indicator=''): input_text = f'{text}{break_character}' trimmed_text = input_text[:input_text[:limit].rfind(break_character)] if trimmed_text != text: trimmed_text += indicator return trimmed_text @classmethod def trim_text_lines_to_length(cls, lines, limit, break_character='\n'): input_text = break_character.join(lines) + break_character trimmed_text = cls.trim_text_to_length(input_text, limit) return trimmed_text.split(break_character) @classmethod def trim_news_to_length(cls, text, link, max_length=900): trimmed_text = cls.trim_text_to_length(text, max_length) if len(trimmed_text) > max_length: trimmed_text = cls.trim_text_to_length(text, max_length, break_character=' ') read_more = '' if len(trimmed_text) != len(text): read_more = '[...] ' result = f'{trimmed_text}{read_more}\n\n[Read full news article]({link}).' return result def render_events(self, events): e = discord.Embed(title='Upcoming GoW Events', color=self.WHITE) message_lines = ['```'] last_event_date = events[0]['start'] for event in events: if event['start'] > last_event_date and event['start'].weekday() == 0: message_lines.append('') last_event_date = event['start'] message_lines.append(f'{event["start"].strftime("%b %d")} - ' f'{event["end"].strftime("%b %d")} ' f'{event["type"]}' f'{":" if event["extra_info"] else ""} ' f'{event["extra_info"]}') message_lines = self.trim_text_lines_to_length(message_lines, 900) message_lines.append('```') e.add_field(name='Spoilers', value='\n'.join(message_lines)) return e def render_levels(self, levels): e = discord.Embed(title='Level progression overview', color=self.WHITE) return self.render_embed(e, 'levels.jinja', levels=levels)
python
def set_clock(time, buttons): res=[int(time.split(":")[0]), int(time.split(":")[1])] for i in buttons: if i=="M": res[1]=(res[1]+1)%60 elif i=="H": res[0]=(res[0]+1)%24 return "{:d}:{:02d}".format(res[0] if res[0] else 24, res[1])
python
def outer_function(msg): def inner_function(): print(msg) return inner_function hi_func=outer_function('Hi') bye_func=outer_function('Bye') hi_func() bye_func()
python
import discord from discord.ext import commands class Build_info(commands.Cog, name='Build_info'): def __init__(self, bot): self.bot = bot @commands.command(description="Displays build info") async def build_info(self,ctx,file_override=None): if file_override is None: file= 'buildinfo.conf' with open(file, 'r') as f: await ctx.send(''.join(f.readlines())) else: file = file_override with open(file, 'r') as f: await ctx.send(''.join(f.readlines())) def setup(bot): bot.add_cog(Build_info(bot))
python
# -*- coding: utf-8 -*- """ Created on Wed Nov 1 23:51:03 2017 @author: Mayur """ """ Grader A regular polygon has n number of sides. Each side has length s. The area of a regular polygon is: (0.25∗n∗s^2)/tan(π/n) The perimeter of a polygon is: length of the boundary of the polygon Write a function called polysum that takes 2 arguments, n and s. This function should sum the area and square of the perimeter of the regular polygon. The function returns the sum, rounded to 4 decimal places. """ #code import math def polysum(n, s): """ n: Number of sides s: Length of each side returns: sum of the area and square of the perimeter of the regular polygon """ area = (0.25*n*s*s)/math.tan(math.pi/n) perimeter = n*s sum = area + perimeter**2 return round(sum,4)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019-07-04 11:04 # @Author : minp # @contact : [email protected] # @Site : # @File : stockdb.py # @Software: PyCharm import pymongo myclient = pymongo.MongoClient("mongodb://localhost:27017/") mydb = myclient["runoobdb2"] mycol = mydb["sites"] mydict = {"name": "RUNOOB", "alexa": "10000", "url": "https://www.runoob.com"} x = mycol.insert_one(mydict) print(x) print(x)
python
import os import unittest import pawnpy basedir = os.path.dirname(os.path.realpath(__file__)) class TestCompile(unittest.TestCase): def test_compile(self): pawnpy.cc(os.path.join(basedir, '../pawnpy/pawn/examples/hello.p'), basedir + '/hello.amx', os.path.join(basedir, '../pawnpy/pawn/include'))
python
from flask import Flask, url_for from flask_migrate import Migrate from flask_security import Security from flask_security.utils import encrypt_password from flask_admin import helpers as admin_helpers from adminlte.admin import AdminLte, admins_store, admin_db from adminlte.models import Role from adminlte.views import FaLink from flask_admin import menu from models import db from models.message import Message from models.device import Device from views.message import MessageView from views.device import DeviceView app = Flask(__name__) app.config.from_pyfile('config.py') db.init_app(app) db.app = app migrate = Migrate(app, db) admin_migrate = Migrate(app, admin_db) security = Security(app, admins_store) admin = AdminLte(app, skin = 'green', name = 'FlaskCMS', short_name = "<b>F</b>C", long_name = "<b>Flask</b>CMS") admin.add_view(MessageView(Message, db.session, name = "Messages", menu_icon_value = 'fa-envelope')) admin.add_view(DeviceView(Device, db.session, name = "Devices", menu_icon_value = 'fa-laptop')) admin.add_link(FaLink(name = 'Website', category = 'Author', url = 'http://tomasznajda.com', icon_value = 'fa-globe', target = "_blank")) admin.add_link(FaLink(name = 'GitHub', category = 'Author', url = 'https://github.com/tomasznajda', icon_value = 'fa-github', target = "_blank")) admin.set_category_icon(name = 'Author', icon_value = 'fa-address-card') @security.context_processor def security_context_processor(): return dict( admin_base_template = admin.base_template, admin_view = admin.index_view, h = admin_helpers, get_url = url_for ) @app.cli.command() def build_sample_db(): """ Populate a small db with some example entries. """ admin_db.drop_all() admin_db.create_all() with app.app_context(): super_admin_role = Role(name = 'superadmin') admin_role = Role(name = 'admin') admin_db.session.add(super_admin_role) admin_db.session.add(admin_role) admin_db.session.commit() test_user = admins_store.create_user( first_name = 'John', last_name = 'Doe', email = '[email protected]', password = encrypt_password('admin'), roles = [super_admin_role, admin_role] ) admin_db.session.add(test_user) admin_db.session.commit() return if __name__ == '__main__': app.run()
python
import time from pymongo import MongoClient from kiroku.config import MONGO_LOGIN client = MongoClient(MONGO_LOGIN) db = client['krk'] def insert_update(data, collection_name): """ Insert if the item has unique _id else update the item. :param dict data: Data to be inserted into the database :param str collection_name: Collection name that the data should be inserted to :return: True if the insert is unique """ col = db[collection_name] _id = data["_id"] cur = col.find_one({"_id": _id}) if cur: log("update", {"id": _id, "previous": cur}) col.replace_one({"_id": _id}, data) return False else: col.insert_one(data) return True def find_by_id(_id, collection_name): """ Fine *one* item by _id :param ? _id: The _id of the item :param str collection_name: The name of the collection that you expect to find the item in. :return: Data if found, else None """ return db[collection_name].find_one({"_id": _id}) def log(event_type, data): """ Log into the database :param str event_type: Type of the event :param dict data: :return: """ db['log'].insert_one({"eventType": event_type, "data": data, "time": time.time()})
python
import json def create_row_w_validated_params(cls, validated_params, rqst_errors): found_specific_concern_rows = cls.check_for_specific_concern_rows_with_given_question( validated_params["rqst_specific_concern_question"], rqst_errors ) specific_concern_row = None if not found_specific_concern_rows and not rqst_errors: specific_concern_row = cls() specific_concern_row.question = validated_params["rqst_specific_concern_question"] specific_concern_row.research_weight = validated_params["rqst_specific_concern_research_weight"] specific_concern_row.save() if "add_related_general_concerns_objects" in validated_params: add_related_general_concerns_to_row(specific_concern_row, validated_params, rqst_errors) if not rqst_errors: specific_concern_row.save() return specific_concern_row def update_row_w_validated_params(cls, validated_params, rqst_errors): rqst_id = validated_params['rqst_id'] if "rqst_specific_concern_question" in validated_params: found_specific_concern_rows = cls.check_for_specific_concern_rows_with_given_question( validated_params["rqst_specific_concern_question"], rqst_errors, rqst_id ) else: found_specific_concern_rows = None specific_concern_row = None if not found_specific_concern_rows and not rqst_errors: try: specific_concern_row = cls.objects.get(id=rqst_id) if "rqst_specific_concern_question" in validated_params: specific_concern_row.question = validated_params["rqst_specific_concern_question"] if "rqst_specific_concern_research_weight" in validated_params: specific_concern_row.research_weight = validated_params["rqst_specific_concern_research_weight"] if "add_related_general_concerns_objects" in validated_params: add_related_general_concerns_to_row(specific_concern_row, validated_params, rqst_errors) elif "remove_related_general_concerns_objects" in validated_params: remove_related_general_concerns_from_row(specific_concern_row, validated_params, rqst_errors) if not rqst_errors: specific_concern_row.save() except cls.DoesNotExist: rqst_errors.append("Specific concern does not exist for database id: {}".format(rqst_id)) return specific_concern_row def delete_row_w_validated_params(cls, validated_params, rqst_errors): rqst_id = validated_params['rqst_id'] try: specific_concern_obj = cls.objects.get(id=rqst_id) specific_concern_obj.delete() except cls.DoesNotExist: rqst_errors.append("Specific concern does not exist for database id: {}".format(rqst_id)) def check_for_specific_concern_rows_with_given_question(cls, specific_concern_question, post_errors, current_specific_concern_id=None): found_specific_concern_obj = False specific_concern_objs = cls.objects.filter(question__iexact=specific_concern_question) if specific_concern_objs: found_specific_concern_obj = True specific_concern_ids = [] len_of_specific_concerns_qset = len(specific_concern_objs) for specific_concern_obj in specific_concern_objs: specific_concern_ids.append(specific_concern_obj.id) if len_of_specific_concerns_qset > 1: post_errors.append( "Multiple specific concerns with question: {} already exist in db. (Hint - Delete all but one and modify the remaining) id's: {}".format( specific_concern_question, json.dumps(specific_concern_ids))) else: if not current_specific_concern_id or current_specific_concern_id not in specific_concern_ids: post_errors.append( "Specific concern with question: {} already exists in db. (Hint - Modify that entry) id: {}".format( specific_concern_question, specific_concern_ids[0])) else: found_specific_concern_obj = False return found_specific_concern_obj def add_related_general_concerns_to_row(specific_concern_row, validated_params, rqst_errors): related_general_concerns_rows = validated_params["add_related_general_concerns_objects"] if related_general_concerns_rows: check_related_general_concerns_for_given_rows(specific_concern_row, related_general_concerns_rows, rqst_errors) for related_general_concerns_row in related_general_concerns_rows: specific_concern_row.related_general_concerns.add(related_general_concerns_row) def remove_related_general_concerns_from_row(specific_concern_row, validated_params, rqst_errors): related_general_concerns_rows = validated_params["remove_related_general_concerns_objects"] check_related_general_concerns_for_not_given_rows( specific_concern_row, related_general_concerns_rows, rqst_errors ) for related_general_concerns_row in related_general_concerns_rows: specific_concern_row.related_general_concerns.remove(related_general_concerns_row) def check_related_general_concerns_for_given_rows(specific_concern_row, related_general_concerns_rows, rqst_errors): cur_related_general_concerns_qset = specific_concern_row.related_general_concerns.all() for related_general_concerns_object in related_general_concerns_rows: if related_general_concerns_object in cur_related_general_concerns_qset: rqst_errors.append( "Related general concern with the following name already exists in db id {}'s related_general_concerns list (Hint - remove from parameter 'related_general_concerns' list): {})".format( specific_concern_row.id, related_general_concerns_object.name ) ) def check_related_general_concerns_for_not_given_rows(specific_concern_rows, related_general_concerns_rows, rqst_errors): cur_related_general_concerns_qset = specific_concern_rows.related_general_concerns.all() for related_general_concerns_object in related_general_concerns_rows: if related_general_concerns_object not in cur_related_general_concerns_qset: rqst_errors.append( "Related general concern with the following name does not exist in db id {}'s related_general_concerns list (Hint - remove from parameter 'related_general_concerns' list): {})".format( specific_concern_rows.id, related_general_concerns_object.name ) )
python
# MIT License # # Copyright (c) 2020 Tri Minh Cao # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Program to plot vias in the whole layout using DEF and LEF data. Author: Tri Minh Cao Email: [email protected] Date: September 2016 """ from def_parser import * from lef_parser import * from util import * import plot_cell import matplotlib.pyplot as plt import numpy as np import time import img_util import pickle import random import os import time import shutil def sort_vias_by_row(layout_area, row_height, vias): """ Sort the vias by row :param layout_area: a list [x, y] that stores the area of the layout :param vias: a list of vias that need to be sorted :return: a list of rows, each containing a list of vias in that row. """ num_rows = layout_area[1] // row_height + 1 rows = [] for i in range(num_rows): rows.append([]) for via in vias: via_y = via[0][1] row_dest = via_y // row_height rows[row_dest].append(via) # sort vias in each row based on x-coordinate for each_row in rows: each_row.sort(key = lambda x: x[0][0]) return rows def plot_window(left_pt, width, height, vias, lef_data, macro=None, comp=None): """ Method to plot a window from the layout with all vias inside it. :param left_pt: bottom left point (origin) of the window :param width: width of the window :param height: height of the window :param vias: a list containing all vias on a row :return: void """ # get the corners for the window corners = [left_pt] corners.append((left_pt[0] + width, left_pt[1] + height)) # compose the output file name out_folder = './images/' # current_time = time.strftime('%H%M%d%m%Y') pos = (str(corners[0][0]) + '_' + str(corners[0][1]) + '_' + str(corners[1][0]) + '_' + str(corners[1][1])) # out_file = out_folder + pos out_file = out_folder # out_file += str(corners[0][0]) out_file += pos if macro: out_file += '_' + macro if comp: out_file += '_' + comp # current_time = time.strftime('%H%M%S%d%m%Y') # out_file += '_' + current_time if os.path.exists(out_file + '.png'): return out_file + '.png' plt.figure(figsize=(3, 5), dpi=80, frameon=False) # scale the axis of the subplot # draw the window boundary # scaled_pts = rect_to_polygon(corners) # draw_shape = plt.Polygon(scaled_pts, closed=True, fill=None, # color="blue") # plt.gca().add_patch(draw_shape) # plot the vias inside the windows # look for the vias for via in vias: if (via[0][0] - left_pt[0] > width): break via_name = via[1] via_info = lef_data.via_dict[via_name] via_loc = via[0] plot_cell.draw_via(via_loc, via_info) # scale the axis of the subplot axis = [corners[0][0], corners[1][0], corners[0][1], corners[1][1]] # print (test_axis) plt.axis(axis) plt.axis('off') plt.gca().set_aspect('equal', adjustable='box') plt.savefig(out_file) # plt.show() plt.close('all') return out_file + '.png' def group_via(via_list, max_number, max_distance): """ Method to group the vias together to check if they belong to a cell. :param via_list: a list of all vias. :return: a list of groups of vias. """ groups = [] length = len(via_list) for i in range(length): # one_group = [via_list[i]] curr_via = via_list[i] curr_list = [] for j in range(2, max_number + 1): if i + j - 1 < length: right_via = via_list[i + j - 1] dist = right_via[0][0] - curr_via[0][0] if dist < max_distance: curr_list.append(via_list[i:i+j]) # only add via group list that is not empty if len(curr_list) > 0: groups.append(curr_list) return groups def predict_cell(candidates, row, model, lef_data, std_cells): """ Use the trained model to choose the most probable cell from via groups. :param candidates: 2-via and 3-via groups that could make a cell :return: a tuple (chosen via group, predicted cell name) """ margin = 350 img_width = 200 img_height = 400 img_shape = img_width * img_height possible_candidates = [] for i in range(len(candidates)): # dataset = np.ndarray(shape=(len(candidates), img_height, img_width), # dtype=np.float32) if candidates[i] != -1: possible_candidates.append(i) dataset = np.ndarray(shape=(1, img_height, img_width), dtype=np.float32) each_group = candidates[i] left_pt = [each_group[0][0][0] - margin, CELL_HEIGHT * row] width = each_group[-1][0][0] - left_pt[0] + margin # print (width) img_file = plot_window(left_pt, width, CELL_HEIGHT, each_group, lef_data) # print (img_file) image_data = img_util.load_image(img_file) # print (image_data.shape) dataset[0, :, :] = image_data X_test = dataset.reshape(dataset.shape[0], img_shape) result = model.decision_function(X_test) result = result[0] # check for result if result[i] == max(result): return candidates[i], i # if we cannot find a solution, randomly select a choice choice = random.choice(possible_candidates) return candidates[choice], choice def sorted_components(layout_area, row_height, comps): """ Sort the components by row :param layout_area: a list [x, y] that stores the area of the layout :param comps: a list of components that need to be sorted :return: a list of rows, each containing a list of components in that row. """ num_rows = layout_area[1] // row_height + 1 rows = [] for i in range(num_rows): rows.append([]) for comp in comps: comp_y = comp.placed[1] row_dest = comp_y // row_height rows[row_dest].append(comp) # sort vias in each row based on x-coordinate for each_row in rows: each_row.sort(key = lambda x: x.placed[0]) return rows def predict_score(predicts, actuals): """ Find the number of correct cell predictions. :param predicts: a list of predictions. :param actuals: a list of actual cells. :return: # correct predictions, # cells """ len_preds = len(predicts) len_actuals = len(actuals) shorter_len = min(len_preds, len_actuals) gap_predict = 0 gap_actual = 0 num_correct = 0 # print (shorter_len) for i in range(shorter_len): # print (i) # print (gap_predict) # print (gap_actual) # print () if predicts[i + gap_predict] == actuals[i + gap_actual]: num_correct += 1 else: if len_preds < len_actuals: gap_actual += 1 len_preds += 1 elif len_preds > len_actuals: gap_predict += 1 len_actuals += 1 return num_correct, len(actuals) def plot_cell_w_vias(): # process each row, plot all cells # for i in range(num_rows): margin = 350 for i in range(1): via_idx = 0 print (len(components[i])) print (len(via1_sorted[i])) for each_comp in components[i]: comp_name = each_comp.name macro_name = each_comp.macro macro_data = lef_parser.macro_dict[macro_name] num_vias = len(macro_data.pin_dict) - 2 # because of VDD and GND pins # get the vias cell_vias = via1_sorted[i][via_idx:via_idx + num_vias] # update via_idx via_idx += num_vias # plot the cell left_pt = [cell_vias[0][0][0] - margin, CELL_HEIGHT * i] width = cell_vias[-1][0][0] - left_pt[0] + margin # print (width) img_file = plot_window(left_pt, width, CELL_HEIGHT, cell_vias, lef_parser, macro=macro_name, comp = comp_name) print (comp_name) print (macro_name) print (cell_vias) print (via_idx) print('Finished!') def check_via_group(via_group, source_sink): """ Check the validity of each via set in the via group. :param via_group: the via_group in question. :return: via_group with all valid candidate(s) """ # valid for 2-via cell: 1 source, 1 sink # valid for 3-via cell: 2 sink, 1 source valid_group = [] for each_group in via_group: num_vias = len(each_group) num_source = 0 num_sink = 0 for each_via in each_group: # 0 = sink, 1 = source if source_sink[each_via[2]] == 1: num_source += 1 elif source_sink[each_via[2]] == 0: num_sink += 1 if num_source <= 1 and num_sink <=2: valid_group.append(each_group) return valid_group def get_candidates(first_via_idx, via_list, std_cells): """ Generate a list of candidates from the first via. Each standard cell will be considered for candidates. If the standard cell cannot be placed there, the value is -1, otherwise, it will be a list of vias. :param first_via_idx: first via index in the via_list :param via_list: the list of all vias (in a row) :param std_cells: a list that stores information of std cells :return: a list of groups of vias, or -1 """ # candidates = [-1 for i in range(len(std_cells))] candidates = [] first_via = via_list[first_via_idx] # print (first_via) first_via_x = first_via[0][0] for i in range(len(std_cells)): cell_width = std_cells[i][2] min_vias = std_cell_info[i][0] max_vias = std_cells[i][1] pin_left_dist = std_cells[i][3] boundary = first_via_x + cell_width - pin_left_dist # possible vias contain the vias inside the boundary possible_vias = [first_via] for j in range(first_via_idx + 1, len(via_list)): if via_list[j][0][0] <= boundary: possible_vias.append(via_list[j]) else: break # check the candidate against cell info if len(possible_vias) > max_vias or len(possible_vias) < min_vias: candidates.append(-1) else: candidates.append(possible_vias) return candidates def get_inputs_outputs(def_info): """ Method to get all inputs and outputs nets from a DEF file. :param def_info: def info (already parsed). :return: inputs and outputs """ pins = def_parser.pins.pins inputs = [] outputs = [] for each_pin in pins: pin_name = each_pin.name direction = each_pin.direction.lower() if direction == 'input': inputs.append(pin_name) elif direction == 'output': outputs.append(pin_name) return inputs, outputs def recover_netlist(def_info, inputs, outputs, recovered_cells): """ Method to create a netlist from predicted cells :param def_info: information from the DEF file :param inputs: input pins of the design :param outputs: output pins of the design :param recovered_cells: recovered cells with input nets and output nets :return: recovered netlist file name """ # NOTE: the order of nets is not like that in original netlist design = def_info.design_name nets = set(def_info.nets.net_dict.keys()) inputs_set = set(inputs) outputs_set = set(outputs) io = inputs_set | outputs_set wires = nets - io # print(wires) # print(len(wires)) ## dd/mm/yyyy format date = time.strftime("%m/%d/%Y %H:%M:%S") s = '#############################\n' s += '# Generated by TMC\n' s += '# Design: ' + design + '\n' s += '# Date: ' + date + '\n' s += '#############################\n\n' # add module definition s += 'module ' + design + ' ( ' num_ios = len(io) idx = 0 for each_pin in io: s += each_pin idx += 1 if idx < num_ios: s += ', ' s += ' );\n' indent = ' ' # add input num_in = len(inputs) idx = 0 s += indent + 'input ' for each_in in inputs: s += each_in idx += 1 if idx < num_in: s += ', ' s += ';\n' # add output num_out = len(outputs) idx = 0 s += indent + 'output ' for each_out in outputs: s += each_out idx += 1 if idx < num_out: s += ', ' s += ';\n' # add wire num_wire = len(wires) idx = 0 s += indent + 'wire ' for each_wire in wires: s += each_wire idx += 1 if idx < num_wire: s += ', ' s += ';\n' # add cells s += '\n' cell_idx = 2 for each_cell in cells_reco: cell_idx += 1 s += indent + each_cell[0] + ' U' + str(cell_idx) + ' ( ' in_nets = each_cell[1] s += '.A(' + in_nets[0] + ')' + ', ' if len(in_nets) == 2: s += '.B(' + in_nets[1] + ')' + ', ' out_net = each_cell[2] s += '.Y(' + out_net + ')' s += ' );\n' # write to an output file folder = './recovered/' filename = design + '_recovered' + '.v' print('Writing recovered netlist file...') f = open(folder + filename, mode="w+") f.write(s) f.close() print('Writing done.') return filename # Main Class if __name__ == '__main__': start_time = time.time() def_path = './libraries/layout_yujie/c2670_gscl45nm_tri_routing_layer6.def' def_parser = DefParser(def_path) def_parser.parse() scale = def_parser.scale lef_file = "./libraries/FreePDK45/gscl45nm.lef" lef_parser = LefParser(lef_file) lef_parser.parse() macro_dict = lef_parser.macro_dict CELL_HEIGHT = int(float(scale) * lef_parser.cell_height) # print (CELL_HEIGHT) print ("Process file:", def_path) all_via1 = get_all_vias(def_parser, via_type="M2_M1_via") # build the net_via dictionary nets = def_parser.nets.nets # initialize the nets_via_dict nets_vias_dict = {} for net in nets: net_name = net.name nets_vias_dict[net_name] = [] # add vias to nets_dict for each_via in all_via1: net = each_via[2] nets_vias_dict[net].append(each_via) # sort the vias by row via1_sorted = sort_vias_by_row(def_parser.diearea[1], CELL_HEIGHT, all_via1) # add inputs and outputs from the design to via info inputs, outputs = get_inputs_outputs(def_parser) for each_in in inputs: for each_via in nets_vias_dict[each_in]: each_via[3] = 0 for each_out in outputs: for each_via in nets_vias_dict[each_out]: each_via[3] = 1 MAX_DISTANCE = 2280 # OR2 cell width, can be changed later components = sorted_components(def_parser.diearea[1], CELL_HEIGHT, def_parser.components.comps) num_rows = len(components) ############### # DO PREDICTION # predict_row() # We can load the trained model pickle_filename = "./trained_models/logit_model_100916_2.pickle" try: with open(pickle_filename, 'rb') as f: logit_model = pickle.load(f) except Exception as e: print('Unable to read data from', pickle_filename, ':', e) labels = {0: 'and2', 1: 'invx1', 2: 'invx8', 3: 'nand2', 4: 'nor2', 5: 'or2'} macro_from_labels = {0: 'AND2X1', 1: 'INVX1', 2: 'INVX8', 3: 'NAND2X1', 4: 'NOR2X1', 5: 'OR2X1'} cell_labels = {'AND2X1': 'and2', 'INVX1': 'invx1', 'NAND2X1': 'nand2', 'NOR2X1': 'nor2', 'OR2X1': 'or2', 'INVX8': 'invx8'} ############## # List of standard cells std_cell_info = {} # info includes (min num vias, max num vias, width, # distance from left boundary to first pin) # I wonder if max num vias should be used, actually I don't know what is the # maximum number of vias, but I guess +1 is fine. # 0 is and2, 1 is invx1, etc. std_cell_info[0] = (3, 4, 2280, 295) std_cell_info[1] = (2, 3, 1140, 315) std_cell_info[2] = (2, 3, 2660, 695) std_cell_info[3] = (3, 4, 1520, 90) std_cell_info[4] = (3, 4, 1520, 315) std_cell_info[5] = (3, 4, 2280, 695) # process # print the sorted components components = sorted_components(def_parser.diearea[1], CELL_HEIGHT, def_parser.components.comps) correct = 0 total_cells = 0 predicts = [] actuals = [] cells_reco = [] # a list of recovered cells # via_groups is only one row for i in range(len(via1_sorted)): # for i in range(0, 1): print ('Process row', (i + 1)) # each via group in via_groups consist of two candidates # via_groups = group_via(via1_sorted[i], 3, MAX_DISTANCE) visited_vias = [] # later, make visited_vias a set to run faster cells_pred = [] via_idx = 0 while via_idx < len(via1_sorted[i]): # choosing candidates candidates = get_candidates(via_idx, via1_sorted[i], std_cell_info) best_group, prediction = predict_cell(candidates, i, logit_model, lef_parser, std_cell_info) # recover the cell information macro_name = macro_from_labels[prediction] macro_info = macro_dict[macro_from_labels[prediction]] num_pins = len(macro_info.info["PIN"]) - 2 # NOTE: we assume inputs are A, B and output is Y # for each_pin in pins: # print(each_pin.name) recover = [] output_net = best_group[-1][2] input_nets = [] for each_via in best_group: if each_via[2] != output_net: input_nets.append(each_via[2]) # NOTE: the following lines only work for 2-pin and 3-pin cell recover.append(macro_name) recover.append(input_nets) recover.append(output_net) cells_reco.append(recover) via_idx += len(best_group) # print (best_group) # print (labels[prediction]) cells_pred.append(labels[prediction]) for each_via in best_group: visited_vias.append(each_via) print (cells_pred) print (len(cells_pred)) actual_comp = [] actual_macro = [] for each_comp in components[i]: actual_comp.append(cell_labels[each_comp.macro]) actual_macro.append(each_comp.macro) print (actual_comp) print (len(actual_comp)) num_correct, num_cells = predict_score(cells_pred, actual_comp) correct += num_correct total_cells += num_cells predicts.append(cells_pred) actuals.append(actual_comp) print () print ("\nTotal number of cells: ", total_cells) print ("Number of correct cells predicted: ", correct) print ("Accuracy rate (%): ", correct / total_cells * 100) # print the execution time print("\n--- Execution time:") print("--- %s seconds ---" % (time.time() - start_time)) print("\n") # remove images used shutil.rmtree("./images") if not os.path.exists("./images"): os.makedirs("./images") # count the time to generate the netlist separately start_time = time.time() # write the recovered verilog netlist recover_netlist(def_parser, inputs, outputs, cells_reco) print("\n--- Generate netlist time:") print("--- %s seconds ---" % (time.time() - start_time))
python
from django.urls import path from . import views urlpatterns = [ path("",views.home), path("posts/",views.PostList.as_view()), path("posts/api/v1/",views.getDataJson), path("posts/<int:pk>",views.PostDetails.as_view()), path("post/search/<int:pk>",views.get_Data), path('modules/',views.ModuleList.as_view()), path("modules/<int:pk>",views.ModulePost.as_view()) ]
python
import sys fname = sys.argv[1] ofname = fname + '.raw' idx = 0 with open(ofname, 'w') as fo: for line in open(fname).readlines(): fo.write("# ::id %d\n"%(idx, )) fo.write("# ::snt %s\n"%(line.rstrip())) fo.write("(d / dummy)\n\n") idx += 1
python
# Modify print_tree_inorder so that it puts parentheses around every operator and pair of operands. # Is the output correct and unambiguous? Are the parentheses always necessary? class Tree: def __init__(self, cargo, left=None, right=None): self.cargo = cargo self.left = left self.right = right def __str__(self): return str(self.cargo) def total(tree): if tree is None: return 0 return total(tree.left) + total(tree.right) + tree.cargo def print_tree(tree): if tree is None: return print(tree.cargo, end=" ") print_tree(tree.left) print_tree(tree.right) def print_tree_postorder(tree): if tree is None: return print_tree_postorder(tree.left) print_tree_postorder(tree.right) print(tree.cargo, end=" ") def print_tree_inorder(tree): if tree is None: return print_tree_inorder(tree.left) print("({0})".format(tree.cargo), end=" ") # changed format print_tree_inorder(tree.right) def print_tree_indented(tree, level=0): if tree is None: return print_tree_indented(tree.right, level + 1) print(" " * level + str(tree.cargo)) print_tree_indented(tree.left, level + 1) def get_token(token_list, expected): if token_list[0] == expected: del token_list[0] return True return False def get_number(token_list): if get_token(token_list, "("): x = get_sum(token_list) if not get_token(token_list, ")"): raise ValueError("Missing close parenthesis") return x else: x = token_list[0] if type(x) != type(0): return None del token_list[0] return Tree(x, None, None)"" def get_product(token_list): a = get_number(token_list) if get_token(token_list, "*"): b = get_product(token_list) return Tree("*", a, b) return a def get_sum(token_list): a = get_product(token_list) if get_token(token_list, "+"): b = get_sum(token_list) return Tree("+", a, b) return a
python
from flask_login import UserMixin from sqlalchemy import Column, Integer, String, UniqueConstraint, CheckConstraint from .base import Base class User(UserMixin, Base): """ Class representing an application user """ __tablename__ = "Users" #: Primary key id = Column(Integer, primary_key=True) #: Username username = Column(String, unique=True, nullable=False) #: Salt used in password hashing salt = Column(String, nullable=False) #: Hashed password password = Column(String, nullable=False) __table_args__ = (UniqueConstraint('username', name='USER_NAME_UX'), CheckConstraint("LENGTH(TRIM(username)) > 0"), CheckConstraint("LENGTH(TRIM(password)) > 0"), CheckConstraint("LENGTH(TRIM(salt)) > 0")) def __repr__(self): return f"{type(self).__name__}(id={self.id!r}, username={self.username!r}, salt={self.salt!r}," \ f"password={self.password!r})"
python
import requests from bs4 import BeautifulSoup import sqlite3 from sqlite3 import Error from datetime import date #ვიგებთ დღევანდელ რიცხვს თვეს და წელს today = date.today() d = today.strftime('%d/%m/%y') page = 1 #საიტის გვერდი #ვქმნით ბაზას სადაც შევინახავთ დასკრაპულ ინფორმაციას conn = sqlite3.connect('data.db') c = conn.cursor() c.execute('''CREATE TABLE IF NOT EXISTS laptops ([id] INTEGER PRIMARY KEY, [LAP_NAMES] TEXT, [PRICE] INTEGER, [DATE] TEXT);''') conn.commit() #ლინკიდან ვიღებთ ინფორმაციას და ვამუშავებთ (ასევე ვუთითებთ ბრაუზერის ჰედერებს, რადგან მოვატყუოთ საიტი ვითომ ადამიანია) def url(): url = f'https://alta.ge/notebooks-page-{page}.html' headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36'} r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, 'html.parser') print(r) heds = soup.find_all('div', {'class': 'ty-column3'}) return heds #ვეძებთ ინფორმაციას, ვპრინტავთ და ასევე ვდებთ ჩვენს მიერ შექმნილ ბაზაში def data(): info = [] for i in url(): if i.find('a', class_='product-title') is not None: n = i.find('a', class_='product-title').text else: n = 'none' if i.find('span', class_='ty-price-num') is not None: m = i.find('span', class_='ty-price-num').text c.execute('''INSERT INTO laptops (LAP_NAMES, PRICE, DATE) VALUES(?, ?, ?)''', (n, m, d)) conn.commit() else: m = 'none' info.append(n + ': ' + m) return info if __name__ == '__main__': while page <= 7: print(data()) page += 1
python
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import nltk import numpy as np from nltk.metrics import * from nltk.util import ngrams import enchant # spell checker library pyenchant from enchant.checker import SpellChecker from nltk.stem import PorterStemmer from nltk.corpus import words import string import re from collections import Counter from nltk.corpus import brown from nltk.probability import FreqDist from nltk.metrics import edit_distance from sympound import sympound import re from weighted_levenshtein import lev class WordSuggestor(): ''' Code obtained from http://norvig.com/spell-correct.html. ''' def __init__(self): self.words = Counter(brown.words()) def P(self, word): "Probability of `word`." N = sum(self.words.values()) return self.words[word] / N def correction(self, word): "Most probable spelling correction for word." return max(candidates(word), key=self.P) def candidates(self, word): "Generate possible spelling corrections for word." return (self.known([word]) or self.known(self.edits1(word)) or self.known(self.edits2(word)) or [word]) def known(self, words): "The subset of `words` that appear in the dictionary of WORDS." return set(w for w in words if w in self.words) def edits1(self, word): "All edits that are one edit away from `word`." letters = 'abcdefghijklmnopqrstuvwxyz' splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes = [L + R[1:] for L, R in splits if R] transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1] replaces = [L + c + R[1:] for L, R in splits if R for c in letters] inserts = [L + c + R for L, R in splits for c in letters] return set(deletes + transposes + replaces + inserts) def edits2(self, word): "All edits that are two edits away from `word`." return (e2 for e1 in self.edits1(word) for e2 in self.edits1(e1)) class OcrDistanceMeasure(): # Helper class to obtain a handwriting error weighted edit distance. The weighted edit distance class can be found in # https://github.com/infoscout/weighted-levenshtein. # Substitute_costs.txt, insertion_costs and deletion_costs are calculated in # https://github.com/ThomasDelteil/Gluon_OCR_LSTM_CTC/blob/language_model/model_distance.ipynb def __init__(self): self.substitute_costs = self.make_substitute_costs() self.insertion_costs = self.make_insertion_costs() self.deletion_costs = self.make_deletion_costs() def make_substitute_costs(self): substitute_costs = np.loadtxt('models/substitute_costs.txt', dtype=float) #substitute_costs = np.ones((128, 128), dtype=np.float64) return substitute_costs def make_insertion_costs(self): insertion_costs = np.loadtxt('models/insertion_costs.txt', dtype=float) #insertion_costs = np.ones(128, dtype=np.float64) return insertion_costs def make_deletion_costs(self): deletion_costs = np.loadtxt('models/deletion_costs.txt', dtype=float) #deletion_costs = np.ones(128, dtype=np.float64) return deletion_costs def __call__(self, input1, input2): return lev(input1, input2, substitute_costs=self.substitute_costs, insert_costs=self.insertion_costs, delete_costs=self.deletion_costs) class LexiconSearch: ''' Lexicon search was based on https://github.com/rameshjesswani/Semantic-Textual-Similarity/blob/master/nlp_basics/nltk/string_similarity.ipynb ''' def __init__(self): self.dictionary = enchant.Dict('en') self.word_suggestor = WordSuggestor() self.distance_measure = OcrDistanceMeasure() def suggest_words(self, word): candidates = list(self.word_suggestor.candidates(word)) output = [] for word in candidates: if word[0].isupper(): output.append(word) else: if self.dictionary.check(word): output.append(word) return output def minimumEditDistance_spell_corrector(self,word): max_distance = 3 if (self.dictionary.check(word.lower())): return word suggested_words = self.suggest_words(word) num_modified_characters = [] if len(suggested_words) != 0: for sug_words in suggested_words: num_modified_characters.append(self.distance_measure(word, sug_words)) minimum_edit_distance = min(num_modified_characters) best_arg = num_modified_characters.index(minimum_edit_distance) if max_distance > minimum_edit_distance: best_suggestion = suggested_words[best_arg] return best_suggestion else: return word else: return word
python
# -*- coding: utf-8 -*- """ Created on Tue May 03 16:32:53 2016 @author: Peter A collection of functions that can be used to generate a mask for a given tissue. These functions were fine tuned on a personnal data. They can be used at your own risk. """ import numpy as np from skimage.morphology import disk, opening, closing, dilation, remove_small_objects from skimage.filters import threshold_otsu from skimage.measure import label from scipy.ndimage.morphology import binary_fill_holes def opening_(image, disk_size=7): # Computes an opening of size disk. inter_image = image.copy() inter_image = opening(inter_image, disk(disk_size)) return inter_image def tissue_thresh(image, thresh=None): # tissue is in black... Tries to find the best background if thresh is None: thresh = threshold_otsu(image) binary = image > thresh if binary.dtype == 'bool': binary = binary + 0 return binary def fill_hole(bin_image, invert=False): # files holes values = np.unique(bin_image) if len(values) > 2: print("Not binary image") return [] background = min(values) bin_image -= background bin_image[bin_image > 0] = 1 if invert: bin_image -= 1 bin_image[bin_image < 0] = 1 result = np.copy(bin_image) binary_fill_holes(bin_image, output=result) return result def remove_border(image_bin, border=15): # removes borders neg_border = border * -1 result = np.copy(image_bin) result[:, :] = 0 result[border:neg_border, border:neg_border] = image_bin[ border:neg_border, border:neg_border] return result def remove_isolated_points(binary_image, thresh=100): # removing tiny areas... # pdb.set_trace() lbl = label(binary_image) lbl = remove_small_objects(lbl, thresh) binary = (lbl > 0).astype(int) return binary def find_ticket(rgb_image, _3tuple=(80, 80, 80)): # Find the "black ticket on the images" temp_image_3 = np.copy(rgb_image) temp_image_3[:, :, :] = 0 for i in range(3): temp_image_1 = np.zeros(shape=rgb_image.shape[0:2]) temp_image_1[np.where(rgb_image[:, :, i] < _3tuple[i])] = 1 temp_image_3[:, :, i] = temp_image_1 temp_resultat = temp_image_3.sum(axis=2) temp_resultat[temp_resultat > 2] = 3 temp_resultat[temp_resultat < 3] = 0 temp_resultat[temp_resultat == 3] = 1 #temp_resultat = Filling_holes_2(temp_resultat) temp_resultat = closing(temp_resultat, disk(20)) temp_resultat = opening_(temp_resultat, 20) temp_resultat = remove_border(temp_resultat) return temp_resultat def preprocessing(image, thresh=200, invert=True): inter = opening_(image) inter = tissue_thresh(inter, thresh) inter = fill_hole(inter, invert=invert) inter = remove_border(inter) res = remove_isolated_points(inter) return res def combining(numpy_array): res = np.sum(numpy_array, axis=2) res[res > 0] = 1 return res def roi_binary_mask2(sample, size=5, ticket=(80, 80, 80)): #  very slow function at resolution 4 preproc_res = np.copy(sample) for i in range(3): # RGB # this one is painfully slow.. preproc_res[:, :, i] = preprocessing(sample[:, :, i]) res = combining(preproc_res) ticket = find_ticket(sample, ticket) res = res - ticket res[res > 0] = 1 res[res < 0] = 0 res = opening_(res, size) return res def roi_binary_mask(sample, size=5): val = threshold_otsu(sample[:, :, 0]) mask = (sample[:, :, 0] < val).astype(int) mask = dilation(mask, disk(size)) mask = fill_hole(mask) mask = remove_isolated_points(mask) return mask
python
from itertools import product def is_triangle(sides) -> bool: return all(sum(pair[:2]) >= pair[2] != 0 for pair in product(sides, repeat=3)) def equilateral(sides): return is_triangle(sides) and sides[0] == sides[1] == sides[2] def isosceles(sides): return is_triangle(sides) and ( sides[0] == sides[1] or sides[0] == sides[2] or sides[1] == sides[2] ) def scalene(sides): return is_triangle(sides) and sides[0] != sides[1] != sides[2]
python
l086jXnOFE4BtKQlonKnUg+VY1GYfjn3PlxLmSqeVotZ4EuiAMTRmf5+72mmbZZF4OYRQy4ORTJsO2Lt/QsW8VSvG5vQKpjflbbMObnXBVoTrkvHd1i/xYqBUsktc9t4/jn2WW5MROuLwrYvo6gnjHRy6gmPQqxC9RBvC7DXptoYwekEWRh0D5BZ/88slO4iQJ7C+cA0/0fzjIePXkeacQumgZuYLZLnV4+TH9vAQmL4yh4OUnePCcuwG7X74/SlKA065fJIaPqpAE35FC0qaAULRE5E5tdVlWTiwjT1GSFgH2vo18Y7978tgm8D3QhXDcm0dtR6owQA8zbJngxFbQ==
python
# Copyright Contributors to the Packit project. # SPDX-License-Identifier: MIT from tests.testbase import BaseClass import tempfile from requre.simple_object import Simple from requre.online_replacing import replace def x(): return tempfile.mktemp() class Duplicated(BaseClass): @replace("tests.test_duplication.x", decorate=Simple.decorator_plain()) @replace("tempfile.mktemp", decorate=Simple.decorator_plain()) def test(self): a = x() b = tempfile.mktemp() self.assertNotEqual(a, b)
python
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron.tests import base class BaseTestCase(base.BaseTestCase): """ Defines all the dummy resources needed for test_filter.py """ def __init__(self, *args, **kwargs): super(BaseTestCase, self).__init__(*args, **kwargs) self.service_info = {} self.desc1 = ["fip=1.203.1.108", "tunnel_local_cidr=11.0.0.0/24", "user_access_ip=1.203.2.101", "fixed_ip=192.168.0.3", "standby_fip=", "service_vendor=vyos", "stitching_cidr=192.168.0.0/28", "stitching_gateway=192.168.0.1", "mgmt_gw_ip=120.0.0.1"] self.desc2 = ["fip=1.203.1.109", "tunnel_local_cidr=12.0.0.0/24", "user_access_ip=1.203.2.102", "fixed_ip=192.168.0.4", "standby_fip=", "service_vendor=vyos", "stitching_cidr=192.168.0.0/28", "stitching_gateway=192.168.1.1", "mgmt_gw_ip=121.0.0.1"] self.name = ["aff8163b-f964-4ad7-a222-0e0a6e5593fe-8eacf5cf", "-1e92-4e7b-90c4-cc68ef8c4e88"] self.ssl_vpn_connections = [{ "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "id": "b88b1d77-fbf8-45b5-adc3-9cd5169c7103", "name": "ssl_vpn_connections1", "admin_state_up": True, "status": "ACTIVE", "vpnservice_id": "19d22704-69ea-40c8-8bcf-2e1ffd697e33", "credential_id": "8163b-f964-4ad7-a222-0e0a6e5593feaff", "client_address_pool_cidr": "11.0.0.0/24" }] self.ports = [{ "status": "ACTIVE", "name": "", "allowed_address_pairs": [], "admin_state_up": True, "network_id": "92f423a7-f44e-4726-b453-c8a1369a3ad0", "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "extra_dhcp_opts": [], "binding:vnic_type": "normal", "device_owner": "network:dhcp", "mac_address": "fa:16:3e:01:19:11", "fixed_ips": [{ "subnet_id": "2670bdcd-1bcf-4b97-858d-ab0d621983cc", "ip_address": "11.0.0.3" }, { "subnet_id": "94aee832-935b-4e23-8f90-b6a81b0195b1", "ip_address": "192.168.0.2" }], "id": "cfd9fcc0-c27b-478b-985e-8dd73f2c16e8", "security_groups": [], "device_id": ("dhcpf986c817-fd54-5bae-a8e4-e473b69100d2-" "92f423a7-f44e-4726-b453-c8a1369a3ad0") }, { "status": "ACTIVE", "name": ("aff8163b-f964-4ad7-a222-0e0a6e5593fe-" "ea9ff596-51bc-4381-8aff-ee9f0ef7e319"), "allowed_address_pairs": [], "admin_state_up": True, "network_id": "0ced2567-47a0-4b67-be52-0e9695e8b0e6", "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "extra_dhcp_opts": [], "binding:vnic_type": "normal", "device_owner": "network:router_interface", "mac_address": "fa:16:3e:1b:f2:44", "fixed_ips": [{ "subnet_id": "ea9ff596-51bc-4381-8aff-ee9f0ef7e319", "ip_address": "11.0.3.2" }], "id": "31df0d68-e9ea-4713-a629-29e6d87c2727", "security_groups": ["fb44b3f5-a319-4176-9e3b-361c5faafb66"], "device_id": "aff8163b-f964-4ad7-a222-0e0a6e5593fe" }, { "status": "ACTIVE", "name": ";".join(self.name), "allowed_address_pairs": [], "admin_state_up": True, "network_id": "2e9652e8-bd95-472a-96b5-6a7939ae0f8d", "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "extra_dhcp_opts": [], "binding:vnic_type": "normal", "device_owner": "network:router_interface", "mac_address": "fa:16:3e:49:44:b3", "fixed_ips": [{ "subnet_id": "8eacf5cf-1e92-4e7b-90c4-cc68ef8c4e88", "ip_address": "11.0.4.2" }], "id": "214eaa12-36c9-45b1-8fee-350ce2ff2dae", "security_groups": ["fb44b3f5-a319-4176-9e3b-361c5faafb66"], "device_id": "aff8163b-f964-4ad7-a222-0e0a6e5593fe" }] self.subnets = [{ "name": "apic_owned_ew-consumer", "enable_dhcp": True, "network_id": "0ced2567-47a0-4b67-be52-0e9695e8b0e6", "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "dns_nameservers": [], "gateway_ip": "11.0.3.1", "ipv6_ra_mode": None, "allocation_pools": [{"start": "11.0.3.2", "end": "11.0.3.254" }], "host_routes": [], "ip_version": 4, "ipv6_address_mode": None, "cidr": "11.0.3.0/24", "id": "ea9ff596-51bc-4381-8aff-ee9f0ef7e319" }, { "name": "apic_owned_ew-provider", "enable_dhcp": True, "network_id": "2e9652e8-bd95-472a-96b5-6a7939ae0f8d", "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "dns_nameservers": [], "gateway_ip": "11.0.4.1", "ipv6_ra_mode": None, "allocation_pools": [{"start": "11.0.4.2", "end": "11.0.4.254" }], "host_routes": [], "ip_version": 4, "ipv6_address_mode": None, "cidr": "11.0.4.0/24", "id": "94aee832-935b-4e23-8f90-b6a81b0195b1" }] self.routers = [{ "status": "ACTIVE", "external_gateway_info": { "network_id": ( "a413e04d-1431-4b21-8327-d4de25fa604b"), "external_fixed_ips": [{ "subnet_id": ( "fcc74b65-dafe-4b74-91fa-028dec8467a8"), "ip_address": "169.254.2.148" }]}, "name": "remote-vpn-client-pool-cidr-l3policy-Datacenter-Out", "admin_state_up": True, "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "routes": [], "id": "61189c93-d8c7-46ff-b1b1-6a6db2b9ae0a" }, { "status": "ACTIVE", "external_gateway_info": { "network_id": ( "a413e04d-1431-4b21-8327-d4de25fa604b"), "external_fixed_ips": [{ "subnet_id": ( "fcc74b65-dafe-4b74-91fa-028dec8467a8"), "ip_address": "169.254.2.150" }]}, "name": "default-Datacenter-Out", "admin_state_up": True, "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "routes": [], "id": "aff8163b-f964-4ad7-a222-0e0a6e5593fe" }] self.vpnservices = [{ "router_id": "aff8163b-f964-4ad7-a222-0e0a6e5593fe", "status": "ACTIVE", "name": "VPNService", "admin_state_up": True, "subnet_id": "94aee832-935b-4e23-8f90-b6a81b0195b1", "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "id": "19d22704-69ea-40c8-8bcf-2e1ffd697e33", "description": ";".join(self.desc1) }, { "router_id": "61189c93-d8c7-46ff-b1b1-6a6db2b9ae0a", "status": "ACTIVE", "name": "VPNService1", "admin_state_up": True, "subnet_id": "94aee832-935b-4e23-8f90-b6a81b0195b1", "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "id": "19d22704-69ea-40c8-8bcf-2e1ffd697f44", "description": ";".join(self.desc2) }] self.ipsecpolicies = [{ "encapsulation_mode": "tunnel", "encryption_algorithm": "3des", "pfs": "group5", "lifetime": {"units": "seconds", "value": 3600}, "name": "IPsecPolicy", "transform_protocol": "esp", "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "id": "b88b1d77-fbf8-45b5-adc3-9cd5169c7102", "auth_algorithm": "sha1", "description": "" }] self.ikepolicies = [{ "encryption_algorithm": "3des", "pfs": "group5", "name": "IKEPolicy", "phase1_negotiation_mode": "main", "lifetime": {"units": "seconds", "value": 3600}, "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "ike_version": "v1", "id": "ae1dd05c-ac66-45e5-868e-36f20c9aa222", "auth_algorithm": "sha1", "description": "" }] self.ipsec_site_connections = [{ "status": "INIT", "psk": "sapna", "initiator": "bi-directional", "name": "site_to_site_connection1", "admin_state_up": True, "tenant_id": "5e67167662f94fd5987e12a68ea6c1d8", "ipsecpolicy_id": "b88b1d77-fbf8-45b5-adc3-9cd5169c7102", "auth_mode": "psk", "peer_cidrs": ["11.0.1.0/24"], "mtu": 1500, "ikepolicy_id": "ae1dd05c-ac66-45e5-868e-36f20c9aa222", "dpd": {"action": "hold", "interval": 30, "timeout": 120}, "route_mode": "static", "vpnservice_id": "19d22704-69ea-40c8-8bcf-2e1ffd697e33", "peer_address": "1.203.2.1", "peer_id": "1.203.2.1", "id": "9736cb21-4996-4dae-8e66-d13c24c44a8b", "description": ";".join(self.desc1) }] # update the below lists as per the future requirements self.firewalls = [] self.firewall_policies = [] self.firewall_rules = [] def _test_get_vpn_info(self): """Prepares VPN service_info needed for VPN context Returns: VPN service info """ self.service_info['vpnservices'] = self.vpnservices self.service_info['ikepolicies'] = self.ikepolicies self.service_info['ipsecpolicies'] = self.ipsecpolicies self.service_info['ipsec_site_conns'] = self.ipsec_site_connections self.service_info['ssl_vpn_conns'] = self.ssl_vpn_connections self.service_info['routers'] = self.routers self.service_info['subnets'] = self.subnets return self.service_info def _test_get_fw_info(self): """Prepares FW service_info needed for FW context Returns: FW service info """ self.service_info['firewalls'] = self.firewalls self.service_info['firewall_policies'] = self.firewall_policies self.service_info['firewall_rules'] = self.firewall_rules return self.service_info
python
from django.db import models class Conta(models.Model): descricao = models.CharField(max_length=150, verbose_name="Descrição") def __str__(self): return '{}'.format(self.descricao) class Responsavel(models.Model): nome = models.CharField(max_length=150, verbose_name="Nome") def __str__(self): return '{}'.format(self.nome) class Meta: verbose_name_plural = "Responsáveis" class TipoDespesa(models.Model): descricao = models.CharField(max_length=150, verbose_name="Descrição") def __str__(self): return '{}'.format(self.descricao) class Meta: verbose_name_plural = "Tipo de Despesas" class Despesa(models.Model): conta = models.ForeignKey(Conta, on_delete=models.CASCADE, verbose_name="Conta Vinculada") responsavel = models.ForeignKey(Responsavel, on_delete=models.CASCADE, verbose_name="Responsável") tipoDespesa = models.ForeignKey(TipoDespesa, on_delete=models.CASCADE, verbose_name="Tipo de Despesa") descricao = models.CharField(max_length=150, verbose_name="Descrição") valor = models.DecimalField(max_digits=10, decimal_places=2, verbose_name="Valor Compra") dataCompra = models.DateField(auto_now=True, verbose_name="Data da Compra") def __str__(self): return '{} ({}) - {}'.format(self.descricao, self.conta, self.responsavel) class Parcelas(models.Model): despesa = models.ForeignKey(Despesa, on_delete=models.CASCADE, verbose_name="Despesa") valor = models.DecimalField(max_digits=10, decimal_places=2, verbose_name="Valor") dataVencimento = models.DateField(verbose_name="Data de Vencimento") pagamento = models.BooleanField(default=False, verbose_name="Pago?") class Meta: verbose_name = "Parcelas" verbose_name_plural = "Parcelas"
python
class serverLoginValidation(): def __init__(self, email, passwd): self.email = email self.passwd = passwd def validateUser(self): self.db = DataBase() self.userdata = self.db.userDefined(self.email, self.passwd) if self.userdata: return True else: return False
python
from ep.utils import * def first_run(download=False): """ Create csv files from stratch :param download: boolean. Set to False if files have been downloaded and saved to ./resources Set to True to download files from EIA website """ setupDirectories() interest_dataframes = get_new_dataframes() for year in range(2005, END_YEAR+1): for month in range(12): datetime_object = getDateObject(month+1, year) file_name = getFileName(datetime_object) if datetime_object <= getLastDayPreviousMonth(): print('Processing {}..'.format(file_name)) file = getFile(file_name, download=download) with open(file, 'rb') as f: interest_dataframes = update_dataframes_with_file(f, datetime_object, year, month, interest_dataframes) write_dataframes_to_csv(interest_dataframes) def update(year, month, download): """ Assuming an analyst or an automated process has identified a new file published on EIA Assuming existing CSVs are saved in ./csv/, this function updates all csv files with a new EIA file identified by the year and month parameter :param year: int, year of the new file, e.g. 2021 :param month: int, month of the new file, between 1-12 :param download: bool True to download from EIA False to find file already downloaded into ./resources/ e.g. If apr21_base.xlsx is identified, year will be 2021, month will be 4 """ datetime_object = getDateObject(month, year) if datetime_object >= datetime.today(): raise(ValueError( 'Cannot download file for {}. ' 'Check the input year and month'.format(datetime_object))) file_name = getFileName(datetime_object) file = getFile(file_name, download=download) interest_dataframes = get_dataframes() with open(file, 'rb') as f: interest_dataframes = update_dataframes_with_file(f, datetime_object, year, month-1, interest_dataframes) write_dataframes_to_csv(interest_dataframes) def main(): # Run first_run function to build CSV files from stratch # first_run() # Run update function to update the existing CSV files with a new EIA file # update(year=2021, month=4, download=False) pass
python
import os import argparse def main(argv=sys.argv[1:]): pass
python
import dash_mantine_components as dmc component = dmc.Affix( dmc.Button("I'm in an Affix Component"), position={"bottom": 20, "right": 20} )
python
import re import math import tweepy import feedparser from tweepy import OAuthHandler from textblob import TextBlob class TwitterClient(object): # keys and tokens from the Twitter Dev Console consumer_key = '' consumer_secret = '' access_token = '' access_token_secret = '' positive_news = [] negative_news = [] neutral_news = [] all_news = [] positive_tweets = [] negative_tweets = [] neutral_tweets = [] all_tweets = [] def __init__(self): # attempt authentication try: # create OAuthHandler object self.auth = OAuthHandler(self.consumer_key, self.consumer_secret) # set access token and secret self.auth.set_access_token(self.access_token, self.access_token_secret) # create tweepy API object to fetch tweets self.api = tweepy.API(self.auth) except: print("Error: Authentication Failed") def read_tweets(self, query, count): try: # call twitter api to fetch tweets tweet_list = self.api.search(q=query, count=count) for tweet in tweet_list: # ignore retweets if (not tweet.retweeted) and ('RT @' not in tweet.text): # print(tweet.text) self.all_tweets.append(self.clean_text(tweet.text)) except Exception as e: # print error (if any) print("Error : " + str(e)) def read_google_news_feed(self, quote, news_count=100): try: parsed_news = feedparser.parse( "https://finance.google.com/finance/company_news?q={}&output=rss&num={}".format(quote, news_count)) for index in range(len(parsed_news['entries'])): self.all_news.append(self.clean_text(parsed_news['entries'][index]['title'])) except Exception as e: print("<p>Error: %s</p>" % e) # by remove user mentions urls and other special symbolic chars def clean_text(self, text): return ' '.join( re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ", text, flags=re.MULTILINE).split()) def predict_stock_sentiment(self, quote, count=100): result = {} news_sentiment = {} tweet_sentiment = {} # read twitter feed, use keywords with company quotes + " Stocks " etc. tokens = quote.split(":") if len(tokens) > 1: tweet_search = tokens[1] + " Stocks " else: tweet_search = quote + " Stocks " self.read_tweets(tweet_search + '-filter:retweets', count) self.read_google_news_feed(quote, count) for news in self.all_news: # saving sentiment of tweet # print('News- '+news) analysis = TextBlob(news) if analysis.sentiment.polarity > 0: self.positive_news.append(news) elif analysis.sentiment.polarity == 0: self.neutral_news.append(news) else: self.negative_news.append(news) total_news_count = len(self.all_news) positive_news_count = len(self.positive_news) negative_news_count = len(self.negative_news) neutral_news_count = len(self.neutral_news) news_sentiment['positive_per'] = round(100 * (positive_news_count / total_news_count), 2) news_sentiment["negative_per"] = round(100 * (negative_news_count / total_news_count), 2) news_sentiment["neutral_per"] = round(100 * (neutral_news_count / total_news_count), 2) news_sentiment["positive_count"] = positive_news_count news_sentiment["negative_count"] = negative_news_count news_sentiment["neutral_count"] = neutral_news_count print("\n\nNegative news:") for news in self.negative_news[:10]: print('-ve news- ' + news) print("\n\nPositive news:") for news in self.positive_news[:10]: print('+ve news- ' + news) print("\n\nNeutral news:") for news in self.neutral_news[:10]: print('= news- ' + news) for tweet in self.all_tweets: # saving sentiment of tweet # print('News- '+news) analysis = TextBlob(tweet) if analysis.sentiment.polarity > 0: self.positive_tweets.append(tweet) elif analysis.sentiment.polarity == 0: self.neutral_tweets.append(tweet) else: self.negative_tweets.append(tweet) total_tweet_count = len(self.all_tweets) positive_tweet_count = len(self.positive_tweets) negative_tweet_count = len(self.negative_tweets) neutral_tweet_count = len(self.neutral_tweets) tweet_sentiment["positive_per"] = round(100 * (positive_tweet_count / total_tweet_count), 2) tweet_sentiment["negative_per"] = round (100 * (negative_tweet_count / total_tweet_count), 2) tweet_sentiment["neutral_per"] = round(100 * (neutral_tweet_count / total_tweet_count), 2) tweet_sentiment["positive_count"] = positive_tweet_count tweet_sentiment["negative_count"] = negative_tweet_count tweet_sentiment["neutral_count"] = neutral_tweet_count print("\n\nNegative tweets:") for tweet in self.negative_tweets[:10]: print('-ve tweet- ' + tweet) print("\n\nPositive tweet:") for tweet in self.positive_tweets[:10]: print('+ve tweet- ' + tweet) print("\n\nNeutral tweet:") for tweet in self.neutral_tweets[:10]: print('= tweet- ' + tweet) result["tweet_sentiment"] = tweet_sentiment result["news_sentiment"] = news_sentiment return result def main(): client = TwitterClient() # client.get_google_finance_news_feed('NASDAQ:FB',100) result = client.predict_stock_sentiment(quote='NSE:TCS', count=500) print(result) if __name__ == "__main__": # calling main function main()
python
import sys from .bv import get_bv_circuit from .qaoa import get_qaoa_circuit from .qgan import get_qgan_circuit from .ising import get_ising_circuit from .parallel_cnot import get_parallel_cnot, get_parallel_cnot_barriers from .parallel_swap import get_parallel_swap from .xeb import get_xeb_circuit, get_xeb_iswap_circuit, get_xeb_iswap_barriers_circuit def get_circuit(numQ, circ_name, dep=0): if circ_name=='bv': hs = '00101'*(numQ//5 + 1) return get_bv_circuit(numQ, hs[:numQ]) elif circ_name == 'qaoa': return get_qaoa_circuit(numQ, 0.5, 1) elif circ_name == 'qgan': return get_qgan_circuit(numQ) elif circ_name == 'ising': return get_ising_circuit(numQ) elif circ_name == 'parallel_cnot': return get_parallel_cnot(numQ, dep) elif circ_name == 'parallel_cnot_barrier': return get_parallel_cnot_barriers(numQ, dep) elif circ_name == 'parallel_swap': return get_parallel_swap(numQ) elif circ_name == 'xeb': return get_xeb_circuit(numQ,dep) elif circ_name == 'xeb_iswap': return get_xeb_iswap_circuit(numQ,dep) elif circ_name == 'xeb_iswap_barrier': return get_xeb_iswap_barriers_circuit(numQ, dep) else: print("Circuit name %s not recognized." % circ_name) sys.exit()
python
""" Canvas Indexer A flask web application that crawls Activity Streams for IIIF Canvases and offers a search API. """ import atexit from flask import Flask from flask_cors import CORS from canvasindexer.config import Cfg from canvasindexer.crawler.crawler import crawl from apscheduler.schedulers.background import BackgroundScheduler from apscheduler.triggers.interval import IntervalTrigger __version__ = '1.0.0' def create_app(**kwargs): app = Flask(__name__) with app.app_context(): CORS(app) app.cfg = Cfg() app.config['SQLALCHEMY_DATABASE_URI'] = app.cfg.db_uri() app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False from canvasindexer.models import db db.init_app(app) db.create_all() from canvasindexer.api.views import pd app.register_blueprint(pd) if app.cfg.crawler_interval() > 0: crawl() scheduler = BackgroundScheduler() scheduler.start() scheduler.add_job( func=crawl, trigger=IntervalTrigger(seconds=app.cfg.crawler_interval()), id='crawl_job', name='crawl AS with interval set in config', replace_existing=True) atexit.register(lambda: scheduler.shutdown()) return app
python
# Generated by Django 3.1.8 on 2021-08-25 14:00 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("river", "0004_batch_completed_canceled"), ] operations = [ migrations.RemoveField( model_name="error", name="deleted_at", ), ]
python
# -*- coding: utf-8 -*- # Copyright 2015 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Module containing release engineering related builders.""" from __future__ import print_function from chromite.lib import parallel from chromite.cbuildbot.builders import simple_builders from chromite.cbuildbot.stages import build_stages from chromite.cbuildbot.stages import release_stages class GeneratePayloadsBuilder(simple_builders.SimpleBuilder): """Run the PaygenStage once for each board.""" def RunStages(self): """Runs through build process.""" def _RunStageWrapper(board): self._RunStage(build_stages.UprevStage) self._RunStage(build_stages.InitSDKStage) self._RunStage(release_stages.PaygenStage, board=board, channels=self._run.options.channels) with parallel.BackgroundTaskRunner(_RunStageWrapper) as queue: for board in self._run.config.boards: queue.put([board])
python
"""Configs for global use""" cfg = {'seed': 1971}
python
# -*- coding: utf-8 - import codecs import io import os from setuptools import setup with io.open(os.path.join(os.path.dirname(__file__), 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name = 'bernhard', version = '0.2.6', description = 'Python client for Riemann', long_description = long_description, author = 'Benjamin Anderspn', author_email = '[email protected]', license = 'ASF2.0', url = 'http://github.com/banjiewen/bernhard.git', classifiers = [ 'Development Status :: 4 - Beta', 'Environment :: Other Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX', 'Operating System :: Unix', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Topic :: Internet :: Log Analysis', 'Topic :: Utilities', 'Topic :: System :: Networking :: Monitoring' ], zip_safe = False, packages = ['bernhard'], include_package_data = True, install_requires=['protobuf >= 2.4'] )
python
import asyncio, pathlib, importlib parent = pathlib.Path(__file__).resolve().parent for _ in parent.iterdir(): if _.is_dir() and not _.name.startswith('.'): importlib.import_module('.main', _.name)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/11/6 上午11:33 # @Title : 58. 最后一个单词的长度 # @Link : https://leetcode-cn.com/problems/length-of-last-word/ QUESTION = """ 给定一个仅包含大小写字母和空格 ' ' 的字符串,返回其最后一个单词的长度 如果不存在最后一个单词,请返回 0 。 说明:一个单词是指由字母组成,但不包含任何空格的字符串。 示例: 输入: "Hello World" 输出: 5 """ THINKING = """ 先左右去空格,再按照空格分隔取最后一个求长度 """ class Solution: def lengthOfLastWord(self, s: str) -> int: s = s.strip() result = s.split(" ")[-1] return len(result) if __name__ == '__main__': s = Solution() string = "Hello World" print(s.lengthOfLastWord(string))
python
from __future__ import absolute_import, print_function from django.conf.urls import patterns, url from .metadata import CloudflareMetadataEndpoint from .webhook import CloudflareWebhookEndpoint urlpatterns = patterns( "", url(r"^metadata/$", CloudflareMetadataEndpoint.as_view()), url(r"^webhook/$", CloudflareWebhookEndpoint.as_view()), )
python
from sparkpost import SparkPost import requests import os class SparkPostIPNotifier: current_ip = None fetched_ip = None def __init__(self, sparkpost_api_key, subject, from_email, recipients): self.subject = subject self.from_email = from_email self.recipients = recipients self.current_ip = self.get_saved_ip() self.fetched_ip = self.fetch_and_save_ip_from_sites() self.sparkpost = SparkPost(sparkpost_api_key) if self.has_ip_changed(): self.send_notification() @staticmethod def get_sites(): return [ {'url': 'http://jsonip.com/', 'key': 'ip', 'kind': 'json'}, {'url': 'http://httpbin.org/ip', 'key': 'origin', 'kind': 'json'}, {'url': 'https://api.ipify.org?format=json', 'key': 'ip', 'kind': 'json'}, {'url': 'http://ip.42.pl/raw', 'key': 'ip', 'kind': 'text'} ] @staticmethod def save_ip(ip): with open('ip.txt', 'w') as f: f.write(ip) @staticmethod def get_saved_ip(): if not os.path.isfile('ip.txt'): return with open('ip.txt', 'r') as f: return f.read() @classmethod def fetch_and_save_ip_from_sites(self): ip = self.current_ip sites = self.get_sites() for site in sites: key = site.get('key') url = site.get('url') kind = site.get('kind') try: response = requests.get(url) if kind is 'text': ip = response.text elif kind is 'json': json = response.json() ip = json.get(key) except Exception, e: pass if ip is not None: break self.save_ip(ip) return ip def send_notification(self): text = 'New IP-address: {}.\nOld IP-address: {}'.format(self.fetched_ip, self.current_ip) r = self.sparkpost.transmission.send(subject=self.subject, from_email=self.from_email, text=text, recipients=self.recipients) return r def has_ip_changed(self): return self.current_ip != self.fetched_ip
python
""" Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT """ # Test case ID : C4976201 # Test Case Title : Verify that the value assigned to the Mass of the object, gets actually assigned to the object # fmt: off class Tests: # test iteration 1 enter_game_mode_1 = ("Entered game mode first time", "Failed to enter game mode first time") ProjectileSphere_exists_1 = ("ProjectileSphere entity found first time", "ProjectileSphere entity not found first time") TargetSphere_exists_1 = ("TargetSphere entity found first time", "TargetSphere entity not found first time") Trigger1_exists_1 = ("Trigger1 entity found first time", "Trigger1 entity not found first time") Trigger2_exists_1 = ("Trigger2 entity found first time", "Trigger2 entity not found first time") Trigger3_exists_1 = ("Trigger3 entity found first time", "Trigger3 entity not found first time") TargetSphere_mass_1 = ("Mass of TargetSphere was set to 1.0", "Mass of TargetSphere was not set to 1.0") spheres_collided_1 = ("ProjectileSphere and TargetSphere collided first time", "Timed out before ProjectileSphere & 2 collided first time") stopped_correctly_1 = ("TargetSphere hit Trigger1 & Trigger2 but not Trigger_3", "TargetSphere did not stop correctly") check_y_1 = ("sphere did not move far from expected in Y direction _1", "TargetSphere moved an unexpected distance in Y direction _1") check_z_1 = ("sphere did not move far from expected in Z direction _1", "TargetSphere moved an unexpected distance in Z direction _1") exit_game_mode_1 = ("Exited game mode first time", "Couldn't exit game mode first time") # test iteration 2 enter_game_mode_2 = ("Entered game mode second time", "Failed to enter game mode second time") ProjectileSphere_exists_2 = ("ProjectileSphere entity found second time", "ProjectileSphere entity not found second time") TargetSphere_exists_2 = ("TargetSphere entity found second time", "TargetSphere entity not found second time") Trigger1_exists_2 = ("Trigger1 entity found second time", "Trigger1 entity not found second time") Trigger2_exists_2 = ("Trigger2 entity found second time", "Trigger2 entity not found second time") Trigger3_exists_2 = ("Trigger3 entity found second time", "Trigger3 entity not found second time") TargetSphere_mass_2 = ("Mass of TargetSphere was set to 10.0", "Mass of TargetSphere was not set to 10.0") spheres_collided_2 = ("ProjectileSphere and TargetSphere collided second time", "Timed out before ProjectileSphere & 2 collided second time") stopped_correctly_2 = ("TargetSphere hit Trigger1 but not Trigger2 or Trigger3", "TargetSphere did not stop correctly") check_y_2 = ("sphere did not move far from expected in Y direction _2", "TargetSphere moved an unexpected distance in Y direction _2") check_z_2 = ("sphere did not move far from expected in Z direction _2", "TargetSphere moved an unexpected distance in Z direction _2") exit_game_mode_2 = ("Exited game mode second time", "Couldn't exit game mode second time") # test iteration 3 enter_game_mode_3 = ("Entered game mode third time", "Failed to enter game mode third time") ProjectileSphere_exists_3 = ("ProjectileSphere entity found third time", "ProjectileSphere entity not found third time") TargetSphere_exists_3 = ("TargetSphere entity found third time", "TargetSphere entity not found third time") Trigger1_exists_3 = ("Trigger1 entity found third time", "Trigger1 entity not found third time") Trigger2_exists_3 = ("Trigger2 entity found third time", "Trigger2 entity not found third time") Trigger3_exists_3 = ("Trigger3 entity found third time", "Trigger3 entity not found third time") TargetSphere_mass_3 = ("Mass of TargetSphere was set to 100.0", "Mass of TargetSphere was not set to 100.0") spheres_collided_3 = ("ProjectileSphere and TargetSphere collided third time", "Timed out before ProjectileSphere & 2 collided third time") stopped_correctly_3 = ("TargetSphere did not hit Trigger1, Trigger2, or Trigger3", "TargetSphere hit one or more triggers before stopping") check_y_3 = ("sphere did not move far from expected in Y direction _3", "TargetSphere moved an unexpected distance in Y direction _3") check_z_3 = ("sphere did not move far from expected in Z direction _3", "TargetSphere moved an unexpected distance in Z direction _3") exit_game_mode_3 = ("Exited game mode third time", "Couldn't exit game mode third time") # general velocity_sizing = ("The velocities are in the correct order of magnitude", "The velocities are not correctly ordered in magnitude") # fmt: on def C4976201_RigidBody_MassIsAssigned(): """ Summary: Checking that the mass set to the object is actually applied via colliding entities Level Description: ProjectileSphere (entity) - Sphere shaped Mesh; Sphere shaped PhysX Collider; PhysX Rigid Body: initial linear velocity in X direction is 5m/s, initial mass 1kg, gravity disabled, linear damping default (0.05) TargetSphere (entity) - Sphere shaped Mesh; Sphere shaped PhysX Collider; PhysX Rigid Body: no initial velocity, initial mass 1kg, gravity disabled, linear damping 1.0 Expected Behavior: The ProjectileSphere entity will float towards TargetSphere entity and then collide with it. Because they are the same mass initially, the second sphere will move after collision. TargetSphere's mass will be increased and scenario will run again, but TargetSphere will have a smaller velocity after collision. TargetSphere will then increase mass again and should barely move after the final collision. Test Steps: 1) Open level 2) Repeat steps 3-9 3) Enter game mode 4) Find and setup entities 5) Set mass of the TargetSphere 6) Check for collision 7) Wait for TargetSphere x velocity = 0 8) Check the triggers 9) Exit game mode 10) Verify the velocity of TargetSphere decreased after collision as mass increased 11) Close the editor Note: - This test file must be called from the Open 3D Engine Editor command terminal - Any passed and failed tests are written to the Editor.log file. Parsing the file or running a log_monitor are required to observe the test results. :return: None """ import os import sys import azlmbr.legacy.general as general import azlmbr.bus import azlmbr from editor_python_test_tools.utils import Report from editor_python_test_tools.utils import TestHelper as helper MOVEMENT_TIMEOUT = 7.0 COLLISION_TIMEOUT = 2.0 VELOCITY_ZERO = 0.01 Y_Z_BUFFER = 0.01 TARGET_SPHERE_NAME = "TargetSphere" PROJECTILE_SPHERE_NAME = "ProjectileSphere" TRIGGER_1_NAME = "Trigger1" TRIGGER_2_NAME = "Trigger2" TRIGGER_3_NAME = "Trigger3" class ProjectileSphere: def __init__(self, test_iteration): self.name = PROJECTILE_SPHERE_NAME self.test_iteration = test_iteration self.timeout_reached = True self.id = general.find_game_entity(self.name) Report.critical_result( Tests.__dict__["ProjectileSphere_exists_" + str(self.test_iteration)], self.id.IsValid() ) def destroy_me(self): azlmbr.entity.GameEntityContextRequestBus(azlmbr.bus.Broadcast, "DestroyGameEntity", self.id) class TargetSphere: def __init__(self, mass_to_assign, stop_before_trigger_name, expected_trigger_pattern, test_iteration): self.id = None self.name = TARGET_SPHERE_NAME self.start_mass = None self.mass_to_assign = mass_to_assign self.collision_begin = False self.after_collision_velocity = None self.x_movement_timeout = True self.stop_before_trigger_name = stop_before_trigger_name self.expected_trigger_pattern = expected_trigger_pattern self.collision_ended = False self.test_iteration = test_iteration self.test_set_mass = self.get_test("TargetSphere_mass_") self.test_enter_game_mode = self.get_test("enter_game_mode_") self.test_ProjectileSphere_exist = self.get_test("ProjectileSphere_exists_") self.test_TargetSphere_exist = self.get_test("TargetSphere_exists_") self.test_spheres_collided = self.get_test("spheres_collided_") self.test_stop_properly = self.get_test("stopped_correctly_") self.test_check_y = self.get_test("check_y_") self.test_check_z = self.get_test("check_z_") self.test_exit_game_mode = self.get_test("exit_game_mode_") def get_test(self, test_prefix): return Tests.__dict__[test_prefix + str(self.test_iteration)] def find(self): self.id = general.find_game_entity(self.name) Report.critical_result(Tests.__dict__["TargetSphere_exists_" + str(self.test_iteration)], self.id.IsValid()) def setup_mass(self): self.start_mass = azlmbr.physics.RigidBodyRequestBus(azlmbr.bus.Event, "GetMass", self.id) Report.info("{} starting mass: {}".format(self.name, self.start_mass)) azlmbr.physics.RigidBodyRequestBus(azlmbr.bus.Event, "SetMass", self.id, self.mass_to_assign) general.idle_wait_frames(1) # wait for mass to apply mass_after_set = azlmbr.physics.RigidBodyRequestBus(azlmbr.bus.Event, "GetMass", self.id) Report.info("{} mass after setting: {}".format(self.name, mass_after_set)) Report.result(self.test_set_mass, self.mass_to_assign == mass_after_set) def current_velocity(self): return azlmbr.physics.RigidBodyRequestBus(azlmbr.bus.Event, "GetLinearVelocity", self.id) def on_collision_begin(self, args): other_id = args[0] if other_id.Equal(self.id): Report.info("spheres collision begin") self.collision_begin = True def on_collision_end(self, args): other_id = args[0] if other_id.Equal(self.id): Report.info("spheres collision end") self.after_collision_velocity = self.current_velocity() self.collision_ended = True def add_collision_handlers(self, projectile_sphere_id): self.handler = azlmbr.physics.CollisionNotificationBusHandler() self.handler.connect(projectile_sphere_id) self.handler.add_callback("OnCollisionBegin", self.on_collision_begin) self.handler.add_callback("OnCollisionEnd", self.on_collision_end) def x_velocity_zero(self): if abs(self.current_velocity().x) < VELOCITY_ZERO: Report.info("TargetSphere has stopped moving.") self.x_movement_timeout = False return True return False def collision_complete(self): return self.collision_begin and self.collision_ended def check_y_z_movement_from_collision(self): """ Used to check that the entity has not moved too far in either the Y or Z direction """ def is_within_tolerance(velocity_one_direction): return abs(velocity_one_direction) < Y_Z_BUFFER Report.info_vector3(self.after_collision_velocity, "Initial Velocity: ") Report.result(self.test_check_y, is_within_tolerance(self.after_collision_velocity.y)) Report.result(self.test_check_z, is_within_tolerance(self.after_collision_velocity.z)) class Trigger: """ Used in the level to tell if the TargetSphere entity has moved a certain distance. There are three triggers set up in the level. """ def __init__(self, name, test_iteration): self.name = name self.handler = None self.triggered = False self.test_iteration = test_iteration self.id = general.find_game_entity(self.name) Report.critical_result(Tests.__dict__[self.name + "_exists_" + str(self.test_iteration)], self.id.IsValid()) self.setup_handler() def on_trigger_enter(self, args): """ This is passed into this object's handler.add_callback(). """ other_id = args[0] self.triggered = True triggered_by_name = azlmbr.entity.GameEntityContextRequestBus( azlmbr.bus.Broadcast, "GetEntityName", other_id ) Report.info("{} was triggered by {}.".format(self.name, triggered_by_name)) def setup_handler(self): """ This is called to setup the handler for this trigger object """ self.handler = azlmbr.physics.TriggerNotificationBusHandler() self.handler.connect(self.id) self.handler.add_callback("OnTriggerEnter", self.on_trigger_enter) class TriggerResultPattern: """ Used to store and determine which triggers were activated and compare to expected """ def __init__(self, trigger1_activated, trigger2_activated, trigger3_activated): self.trigger1_activated = trigger1_activated self.trigger2_activated = trigger2_activated self.trigger3_activated = trigger3_activated def __eq__(self, other_pattern): """ Used to determine if two patterns equal/match each other (i.e. Expected VS Actual) """ if isinstance(other_pattern, self.__class__): return ( self.trigger1_activated == other_pattern.trigger1_activated and self.trigger2_activated == other_pattern.trigger2_activated and self.trigger3_activated == other_pattern.trigger3_activated ) else: return False def report(self, expect_actual): Report.info( """TargetSphere {} Triggers: Trigger_1: {} Trigger_2: {} Trigger_3: {} """.format( expect_actual, self.trigger1_activated, self.trigger2_activated, self.trigger3_activated ) ) target_sphere_1kg = TargetSphere( mass_to_assign=1.0, stop_before_trigger_name=TRIGGER_3_NAME, expected_trigger_pattern=TriggerResultPattern(True, True, False), test_iteration=1, ) target_sphere_10kg = TargetSphere( mass_to_assign=10.0, stop_before_trigger_name=TRIGGER_2_NAME, expected_trigger_pattern=TriggerResultPattern(True, False, False), test_iteration=2, ) target_sphere_100kg = TargetSphere( mass_to_assign=100.0, stop_before_trigger_name=TRIGGER_1_NAME, expected_trigger_pattern=TriggerResultPattern(False, False, False), test_iteration=3, ) target_spheres = [target_sphere_1kg, target_sphere_10kg, target_sphere_100kg] target_sphere_velocities = {} helper.init_idle() # 1) Open level helper.open_level("Physics", "C4976201_RigidBody_MassIsAssigned") # 2) Repeat steps 3-9 for target_sphere in target_spheres: Report.info("***************** Begin Test Iteration {} ******************".format(target_sphere.test_iteration)) # 3) Enter game mode helper.enter_game_mode(target_sphere.test_enter_game_mode) # 4) Find and setup entities projectile_sphere = ProjectileSphere(target_sphere.test_iteration) target_sphere.find() target_sphere.add_collision_handlers(projectile_sphere.id) trigger_1 = Trigger(TRIGGER_1_NAME, target_sphere.test_iteration) trigger_2 = Trigger(TRIGGER_2_NAME, target_sphere.test_iteration) trigger_3 = Trigger(TRIGGER_3_NAME, target_sphere.test_iteration) # 5) Set mass of the TargetSphere target_sphere.setup_mass() # 6) Check for collision helper.wait_for_condition(target_sphere.collision_complete, COLLISION_TIMEOUT) Report.critical_result(target_sphere.test_spheres_collided, target_sphere.collision_complete()) projectile_sphere.destroy_me() Report.info_vector3( target_sphere.after_collision_velocity, "Velocity of {} after the collision: ".format(target_sphere.name) ) Report.info("The sphere should stop before touching {}".format(target_sphere.stop_before_trigger_name)) # 7) Wait for TargetSphere x velocity = 0 helper.wait_for_condition(target_sphere.x_velocity_zero, MOVEMENT_TIMEOUT) if target_sphere.x_movement_timeout is True: Report.info("TargetSphere failed to stop moving in the x direction before timeout was reached.") # 8) Check the triggers actual_trigger_pattern = TriggerResultPattern(trigger_1.triggered, trigger_2.triggered, trigger_3.triggered) patterns_match = actual_trigger_pattern == target_sphere.expected_trigger_pattern target_sphere.expected_trigger_pattern.report("Expected") actual_trigger_pattern.report("Actual") Report.result(target_sphere.test_stop_properly, patterns_match) target_sphere.check_y_z_movement_from_collision() target_sphere_velocities.update({target_sphere.test_iteration: target_sphere.after_collision_velocity.x}) # 9) Exit game mode helper.exit_game_mode(target_sphere.test_exit_game_mode) Report.info("~~~~~~~~~~~~~~ Test Iteration {} End ~~~~~~~~~~~~~~~~~~".format(target_sphere.test_iteration)) # 10) Verify the velocity of TargetSphere decreased after collision as mass increased outcome = target_sphere_velocities[1] > target_sphere_velocities[2] > target_sphere_velocities[3] Report.result(Tests.velocity_sizing, outcome) if __name__ == "__main__": from editor_python_test_tools.utils import Report Report.start_test(C4976201_RigidBody_MassIsAssigned)
python
# -*- coding: utf-8 -*- """ Query permutator to match multiword queries. Given a query with n tokens we assume the first n-1 to be complete while the last might be partial. From that we want to match using the following algorithm. Bag of words reordering is applied to the first n-1 tokens, n-th token (partial) is kept last. Example: "messenger facebook deu" -> "facebook messenger deu" In order to match the index entry: "facebook messenger download deutsch" we need an entry: "facebook messenger deutsch" which corresponds to tokens 0 1 3 We do not require "messenger facebook deu" (1 0 3) due to the BOW reordering at lookup """ import sys import keyvi # permutation lookup table, number_of_tokens - > permutations_to_build # the table is build with scripts/build_bow_completion_permutations PERMUTATION_LOOKUP_TABLE = { 2: [ [0], [1], [0, 1], [1, 0], ], 3: [ [0], [1], [2], [0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1], [0, 1, 2], [0, 2, 1], [1, 2, 0], ], 4: [ [0], [1], [2], [3], [0, 1], [0, 2], [0, 3], [1, 0], [1, 2], [1, 3], [2, 0], [2, 1], [2, 3], [3, 0], [3, 1], [3, 2], [0, 1, 2], [0, 1, 3], [0, 2, 1], [0, 2, 3], [0, 3, 1], [0, 3, 2], [1, 2, 0], [1, 2, 3], [1, 3, 0], [1, 3, 2], [2, 3, 0], [2, 3, 1], [0, 1, 2, 3], ], } MULTIWORD_QUERY_SEPARATOR = '\x1b' class MultiWordPermutation: def __init__(self): pass def __call__(self, query): query_tokens = query.split(" ") query_tokens_bow = sorted(query_tokens) length = len(query_tokens_bow) if not PERMUTATION_LOOKUP_TABLE.has_key(length): yield query return for permutation in PERMUTATION_LOOKUP_TABLE[len(query_tokens_bow)]: if len(permutation) < 3: first_token = query_tokens_bow[permutation[0]] if first_token != query_tokens[permutation[0]] and len(first_token) == 1: continue yield " ".join([query_tokens_bow[i] for i in permutation]) + MULTIWORD_QUERY_SEPARATOR + query if __name__ == '__main__': pipeline = [] pipeline.append(MultiWordPermutation()) c = keyvi.CompletionDictionaryCompiler() for line in sys.stdin: key, weight = line.split("\t") for q in reduce(lambda x, y: y(x), pipeline, key): c.Add(q, int(weight)) c.Compile() c.WriteToFile("mw-completion.keyvi")
python
# -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2018-10-25 19:58 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('s3pooler', '0001_initial'), ] operations = [ migrations.DeleteModel( name='RawEvents', ), migrations.DeleteModel( name='UsersEvents', ), ]
python
import matplotlib.pyplot as plt def main(): # The iteration number 0 corresponds to 0 DAger's iteration, which corresponds to the simple behavioral cloning model iterations = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] dagger_mean_return = [499, 491.00752037626864, 280.35493455713464, 313.0841462553591, 281.2280666853588, 302.32458150840415, 375.3346917930867, 526.2328895242667, 722.7978505443548, 623.9050590062458, 1398.44995600636, 3076.955646121361, 8253.923134108587, 7629.325002257281, 7246.285399942843, 8087.738743306754, 3893.1664238204467, 9132.88474770422, 9460.28598069521, 9726.914701058917] dagger_stds = [499, 107.8460299321844, 13.621758933207397, 13.659271852314815, 18.423331558439394, 9.814398412282554, 184.14841961543374, 207.72978567273103, 508.0083698513861, 695.3579276517936, 904.658395758084, 2612.8369380474232, 3498.691955383935, 3287.0477377140114, 4022.94659430406, 2843.4029358558473, 1324.384546716151, 2446.9232315473655, 2682.070975182269, 2073.0612932329764] plt.figure() plt.errorbar(iterations, dagger_mean_return, color='r', yerr=dagger_stds, label='DAgger') plt.suptitle('DAgger - Mean reward function of number of iterations') plt.xlabel('DAgger iteration') plt.ylabel('Mean reward') plt.xlim([-0.5, 20]) plt.ylim([450, 10800]) expert = plt.axhline(y=10477, color='g', label='Expert Policy') bc = plt.axhline(y=499, color='b', label='Behavioral Cloning') plt.legend(loc=4) plt.savefig('figures/Q3.2.png') plt.show() if __name__ == '__main__': main()
python
"""broccoliフレームワーク内データの、シリアライズ・デシリアライズに関するモジュール。""" import json from broccoli import register from broccoli.layer import BaseLayer, BaseItemLayer, BaseObjectLayer, BaseTileLayer from broccoli.material import BaseTile, BaseObject, BaseItem, BaseMaterial MANAGER = 'Manager' LAYER = 'Layer' TILE = 'Tile' OBJECT = 'Object' ITEM = 'Item' MATERIALS = (TILE, OBJECT, ITEM) class JsonEncoder(json.JSONEncoder): """broccoliフレームワーク専用JSONエンコーダー。 json.dump(tile_layer, file, cls=serializers.JsonEncoder) のように使ってください。 通常のJSONEncoderと違い、 - 関数 - マテリアル - レイヤー もJSONエンコードされます。 レイヤー内にマテリアルがある場合はマテリアルも正しくエンコードされ、 更にマテリアルが何らかのマテリアルを保持している場合(アイテムなど)も再帰的にエンコードされます。 関数は、 "generic.do_nothing" のような単純な文字列になります。この文字列は関数の登録名です。 マテリアルは、 { "class_name": "KindnessSheep", "kwargs": {}, "kind": "Object" } という表現になります。 レイヤーは、 { "kind": "Layer", "layer": [ [マテリアル, マテリアル...], [マテリアル, マテリアル...], [マテリアル, マテリアル...], ] } という表現になります。内部のマテリアル部分は、上で紹介したマテリアルのJSON表現が入ります。 実際にどういうJSONになるかは、samples/roguelike内のjsonファイルを見てください。 """ def manager_to_json(self, o): """マネージャーをJSONエンコードする。""" canvas = o.current_canvas result = { 'kind': MANAGER, 'name': o.current_canvas_name, 'vars': self.default(o.vars), 'tile_layer': self.layer_to_json(canvas.tile_layer), 'object_layer': self.layer_to_json(canvas.object_layer), 'item_layer': self.layer_to_json(canvas.item_layer), } return result def layer_to_json(self, o): """レイヤーをJSONエンコードする。""" result = {'kind': LAYER} if isinstance(o, BaseItemLayer): result['layer'] = [[[] for _ in range(o.tile_layer.x_length)] for _ in range(o.tile_layer.y_length)] for x, y, items in o.all(): if items: result['layer'][y][x] = [self.material_to_json(item, kind=ITEM) for item in items] else: result['layer'][y][x] = [] elif isinstance(o, BaseTileLayer): result.update({ 'x_length': o.x_length, 'y_length': o.y_length, 'layer': [[None for _ in range(o.x_length)] for _ in range(o.y_length)], }) for x, y, tile in o.all(): result['layer'][y][x] = self.material_to_json(tile, kind=TILE) elif isinstance(o, BaseObjectLayer): result['layer'] = [[None for _ in range(o.tile_layer.x_length)] for _ in range(o.tile_layer.y_length)] for x, y, obj in o.all(): if obj is None: result['layer'][y][x] = None else: result['layer'][y][x] = self.material_to_json(obj, kind=OBJECT) return result def material_dump_to_json(self, o): """マテリアルダンプをJSONエンコードする。 (cls, kwargs)形式のマテリアルダンプを一度インスタンス化し、 それを再度defaultメソッドに渡し、マテリアルのJSONエンコードを行います。 """ cls = o[0] kwargs = o[1] material = cls(**kwargs) return self.default(material) def material_to_json(self, o, kind): """マテリアルをJSONエンコードする。""" result = { 'class_name': o.__class__.__name__, 'kwargs': self.kwargs_to_json(o), 'kind': kind, } return result def kwargs_to_json(self, o): """マテリアルのインスタンス属性をJSONエンコードする。""" result = o.get_instance_attrs() for key, value in result.items(): if key in o.func_attrs: result[key] = value.name # 関数のname属性に、registerに登録する名前が入っている elif isinstance(value, (list, tuple)): for i, data in enumerate(value): value[i] = self.default(data) elif isinstance(value, dict): for attr_name, attr_value in value.items(): value[attr_name] = self.default(attr_value) return result def default(self, o): """JSONエンコードする。 このメソッドが最初に呼び出されます。 """ from broccoli.manage import BaseManager # マネージャークラスを渡された場合 if isinstance(o, BaseManager): return self.manager_to_json(o) # レイヤーを渡された場合。レイヤーの専用エンコード処理を呼ぶ。 elif isinstance(o, BaseLayer): return self.layer_to_json(o) # 各マテリアルも、専用のエンコード処理を呼ぶ。 elif isinstance(o, BaseTile): return self.material_to_json(o, kind=TILE) elif isinstance(o, BaseObject): return self.material_to_json(o, kind=OBJECT) elif isinstance(o, BaseItem): return self.material_to_json(o, kind=ITEM) # (Material, kwargs)形式のデータの場合 elif isinstance(o, tuple) and len(o) >= 2 and issubclass(o[0], BaseMaterial) and isinstance(o[1], dict): return self.material_dump_to_json(o) # リストやタプルならば、中身がマテリアル等の場合もあるので # 再帰的にJSONエンコードする。 elif isinstance(o, list): for i, data in enumerate(o): o[i] = self.default(data) return o # 辞書の場合も、中身がマテリアルの場合があるので再帰的にエンコード。 elif isinstance(o, dict): for attr_name, attr_value in o.items(): o[attr_name] = self.default(attr_value) # 通常の数値や文字列は、そのまま値を返す。 return o class JsonDecoder(json.JSONDecoder): """broccoliフレームワーク専用JSONデコーダー。 data = json.load(file, cls=serializers.JsonDecoder) のように使ってください。 JSONEncoderでエンコードされたJSONファイルを、broccoliフレームワークで使える形に出コードします。 通常のJSONデコードと違うのは、 - 関数のエンコード表現 - マテリアルのエンコード表現 - レイヤーのエンコード表現 もデコードされることです。 関数は "generic.do_nothing" のような文字列となっていますが、これをPythonの関数オブジェクトに変換します。 マテリアルは { "class_name": "KindnessSheep", "kwargs": {}, "kind": "Object" } のような表現ですが、これを (クラスオブジェクト, インスタンス属性の辞書) に変換します。cls(**kwargs)としてインスタンス化できる形式です。 レイヤーは、 { "kind": "Layer", "layer": [ [マテリアル, マテリアル...], [マテリアル, マテリアル...], [マテリアル, マテリアル...], ] } という表現ですが、これを [ [(cls, kwargs), (cls, kwargs)...], [(cls, kwargs), (cls, kwargs)...], [(cls, kwargs), (cls, kwargs)...], ] という2次元のリストに変換します。(cls, kwargs)部分は上で紹介したマテリアルのデコード表現です。 """ def _load_material(self, col, container): """マテリアルをデコードする。""" class_name = col['class_name'] kwargs = col['kwargs'] cls = container[class_name] # インスタンスの属性を見ていく。 for key, value in kwargs.items(): # 関数となる属性ならば、関数のロード if key in cls.func_attrs: kwargs[key] = register.functions[value] # 属性がリストや辞書ならば、中の要素を再帰的にデコード。 elif isinstance(value, list): for i, data in enumerate(value): value[i] = self._decode(data) elif isinstance(value, dict): for attr_name, attr_value in value.items(): value[attr_name] = self._decode(attr_value) return cls, kwargs def tile_from_json(self, o): return self._load_material(o, register.tiles) def object_from_json(self, o): return self._load_material(o, register.objects) def item_from_json(self, o): return self._load_material(o, register.items) def _decode(self, o): """マテリアル、レイヤーなどをデコードする。""" # リストならば各要素を_decodeし、中のマテリアルなどを再帰的にデコードする。 if isinstance(o, list): for i, data in enumerate(o): o[i] = self._decode(data) # 辞書の場合、マテリアルなどの場合は専用のメソッドを、そうでなければ再帰的にデコードする。 elif isinstance(o, dict): kind = o.get('kind') if kind == TILE: return self.tile_from_json(o) elif kind == OBJECT: return self.object_from_json(o) elif kind == ITEM: return self.item_from_json(o) for key, value in o.items(): o[key] = self._decode(value) # ここは数値や文字列などがくる。 return o def decode(self, s, **kwargs): """デコードする。最初に呼ばれる。""" # まず、デフォルトのdecodeで # リストと辞書のPythonオブジェクトに変換してもらう。 o = super().decode(s, **kwargs) # そのPythonオブジェクトの中から、マテリアルやレイヤー、関数部分を更にデコードする。 return self._decode(o)
python
import numpy as np import rasterio as rio import geopandas as gpd import cartopy.crs as ccrs import matplotlib.pyplot as plt from shapely.ops import cascaded_union from shapely.geometry.polygon import Polygon from cartopy.feature import ShapelyFeature import matplotlib.patches as mpatches def generate_handles(labels, colors, edge='k', alpha=1): lc = len(colors) # get the length of the color list handles = [] for i in range(len(labels)): handles.append(mpatches.Rectangle((0, 0), 1, 1, facecolor=colors[i % lc], edgecolor=edge, alpha=alpha)) return handles def percentile_stretch(img, pmin=0., pmax=100.): ''' This is where you should write a docstring. ''' # here, we make sure that pmin < pmax, and that they are between 0, 100 if not 0 <= pmin < pmax <= 100: raise ValueError('0 <= pmin < pmax <= 100') # here, we make sure that the image is only 2-dimensional if not img.ndim == 2: raise ValueError('Image can only have two dimensions (row, column)') minval = np.percentile(img, pmin) maxval = np.percentile(img, pmax) stretched = (img - minval) / (maxval - minval) # stretch the image to 0, 1 stretched[img < minval] = 0 # set anything less than minval to the new minimum, 0. stretched[img > maxval] = 1 # set anything greater than maxval to the new maximum, 1. return stretched def img_display(img, ax, bands, stretch_args=None, **imshow_args): ''' This is where you should write a docstring. ''' dispimg = img.copy().astype(np.float32) # make a copy of the original image, # but be sure to cast it as a floating-point image, rather than an integer for b in range(img.shape[0]): # loop over each band, stretching using percentile_stretch() if stretch_args is None: # if stretch_args is None, use the default values for percentile_stretch dispimg[b] = percentile_stretch(img[b]) else: dispimg[b] = percentile_stretch(img[b], **stretch_args) # next, we transpose the image to re-order the indices dispimg = dispimg.transpose([1, 2, 0]) # finally, we display the image handle = ax.imshow(dispimg[:, :, bands], **imshow_args) return handle, ax # ------------------------------------------------------------------------ # note - rasterio's open() function works in much the same way as python's - once we open a file, # we have to make sure to close it. One easy way to do this in a script is by using the with statement shown # below - once we get to the end of this statement, the file is closed. with rio.open('data_files/NI_Mosaic.tif') as dataset: img = dataset.read() xmin, ymin, xmax, ymax = dataset.bounds # your code goes here!
python
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import argparse import logging import random import numpy as np import torch from run import run def main(): parser = argparse.ArgumentParser() ## Basic parameters parser.add_argument("--train_file", default="data/structured_zeroshot-train-kilt.jsonl") parser.add_argument("--predict_file", default="data/structured_zeroshot-dev-kilt.jsonl") parser.add_argument("--dataset", default="zsre", required=True) parser.add_argument("--model", default="facebook/bart-base", required=False) parser.add_argument("--output_dir", default=None, type=str, required=True) parser.add_argument("--do_train", action='store_true') parser.add_argument("--do_predict", action='store_true') parser.add_argument("--predict_checkpoint", type=str, default="best-model.pt") ## Model parameters parser.add_argument("--checkpoint", type=str) parser.add_argument("--do_lowercase", action='store_true', default=False) parser.add_argument("--freeze_embeds", action='store_true', default=False) # Preprocessing/decoding-related parameters parser.add_argument('--max_input_length', type=int, default=24) parser.add_argument('--max_output_length', type=int, default=12) parser.add_argument('--num_beams', type=int, default=4) parser.add_argument("--append_another_bos", action='store_true', default=False) # Training-related parameters parser.add_argument("--train_batch_size", default=64, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--predict_batch_size", default=64, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument("--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--warmup_proportion", default=0.01, type=float, help="Weight decay if we apply some.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=0.1, type=float, help="Max gradient norm.") parser.add_argument("--gradient_accumulation_steps", default=4, type=int, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=30.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_steps", default=500, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--total_steps", default=100000, type=int, help="Linear warmup over warmup_steps.") parser.add_argument('--wait_step', type=int, default=10000000000) # Other parameters parser.add_argument("--verbose", action='store_true', help="If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") parser.add_argument('--eval_period', type=int, default=2000, help="Evaluate & save model") parser.add_argument('--prefix', type=str, default='', help="Prefix for saving predictions") parser.add_argument('--debug', action='store_true', help="Use a subset of data for debugging") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") args = parser.parse_args() if os.path.exists(args.output_dir) and os.listdir(args.output_dir): print("Output directory () already exists and is not empty.") if not os.path.exists(args.output_dir): os.makedirs(args.output_dir, exist_ok=True) ##### Start writing logs log_filename = "{}log.txt".format("" if args.do_train else "eval_") logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, handlers=[logging.FileHandler(os.path.join(args.output_dir, log_filename)), logging.StreamHandler()]) logger = logging.getLogger(__name__) logger.info(args) logger.info(args.output_dir) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) args.n_gpu = torch.cuda.device_count() if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_predict: raise ValueError("At least one of `do_train` or `do_predict` must be True.") if args.do_train: if not args.train_file: raise ValueError("If `do_train` is True, then `train_file` must be specified.") if not args.predict_file: raise ValueError("If `do_train` is True, then `predict_file` must be specified.") if args.do_predict: if not args.predict_file: raise ValueError("If `do_predict` is True, then `predict_file` must be specified.") logger.info("Using {} gpus".format(args.n_gpu)) run(args, logger) if __name__=='__main__': main()
python
from apistar import http, Route from apistar.backends.sqlalchemy_backend import Session from db import Auto def make_auto_dict(auto: Auto) -> dict: """ Returns a dictionary of the relevant attributes from an Auto object """ return { "id": auto.id, "name": auto.name, "make": auto.make, "model": auto.model, "year": auto.year } def create_auto(session: Session, data: http.RequestData) -> dict: """ Creates auto in db. Called from POST /autos/ """ auto = Auto(**data) session.add(auto) session.flush() return make_auto_dict(auto) def list_autos(session: Session) -> list: """ Lists autos from db. Called from GET /autos/ """ queryset = session.query(Auto).all() return [ { "id": auto.id, "name": auto.name, "make": auto.make, "model": auto.model, "year": auto.year } for auto in queryset ] def get_auto(session: Session, auto_id: int) -> dict: """ Get an auto from db by id. Called from GET /autos/:id """ auto = session.query(Auto).get(auto_id) return make_auto_dict(auto) def update_auto(session: Session, auto_id: int, data: http.RequestData) -> dict: """ Update a given auto. Called from PATCH /autos/:id """ auto_properties = ["name", "make", "model", "year"] auto = session.query(Auto).get(auto_id) for auto_prop in auto_properties: if auto_prop in data: setattr(auto, auto_prop, data[auto_prop]) session.flush() return make_auto_dict(auto) def delete_auto(session: Session, auto_id: int, data: http.RequestData) -> None: """ Delete a given auto. Called from DELETE /autos/:id """ auto = session.query(Auto).get(auto_id) session.delete(auto) session.flush() return None auto_urls = [ Route('/', 'GET', list_autos), Route('/', 'POST', create_auto), Route('/{auto_id}', 'PATCH', update_auto), Route('/{auto_id}', 'DELETE', delete_auto), Route('/{auto_id}', 'GET', get_auto) ]
python
# MIT License # Copyright (c) 2016 Alexis Bekhdadi (midoriiro) <[email protected]> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # TODO: write module, function, class, method docstring # pylint: disable=missing-docstring import os import pytest def get_data_path(filename): base = os.path.join( os.path.dirname(os.path.realpath(__file__)), 'data' ) return os.path.join(base, filename)
python
import unittest import time from datetime import datetime from sqlalchemy.exc import IntegrityError from app import mail from flask import current_app from app import create_app, db from app.models import User, AnonymousUser, Role, Permission, Follow class AdditionModelTestCase(unittest.TestCase): def setUp(self): self.app = create_app('testing') self.app_context = self.app.app_context() self.app_context.push() db.create_all() Role.insert_roles() def tearDown(self): db.session.remove() db.drop_all() self.app_context.pop() def test_mail_send(self): app = current_app._get_current_object() with mail.record_messages() as outbox: mail.send_message(subject='testing', body='test', sender=app.config['FLASKY_MAIL_SENDER'], recipients=["[email protected]"]) self.assertTrue(len(outbox) == 1) self.assertTrue(outbox[0].subject == "testing")
python
from django.test import TestCase from accounts.forms import RegisterForm, SignInForm from django.contrib.auth.models import User class TestAccountForm(TestCase): def test_register_form(self): form = RegisterForm( data={ "email": "[email protected]", "username": "testuser24", "password1": "Justatest123", "password2": "Justatest123", } ) self.assertTrue(form.is_valid()) def test_register_form_invalid(self): form = RegisterForm( data={ "email": "[email protected]", "username": "testuser24", "password1": "Justatest12", "password2": "Justatest123", } ) self.assertFalse(form.is_valid()) def test_register_form_no_data(self): form = RegisterForm(data={}) self.assertFalse(form.is_valid()) self.assertEquals(len(form.errors), 4) def test_signIn_form(self): user = User.objects.create_user(username="testuser", password="justatest12") form = SignInForm(data={"username": "testuser", "password": "justatest12"}) self.assertTrue(form.is_valid()) def test_sigIn_form_invalid(self): user = User.objects.create_user(username="testuser", password="justatest12") form = SignInForm(data={"username": "testuse", "password": "justatest12"}) self.assertFalse(form.is_valid()) self.assertEquals(len(form.errors), 1) def test_signIn_form_no_data(self): user = User.objects.create_user(username="testuser", password="justatest12") form = SignInForm(data={}) self.assertFalse(form.is_valid()) self.assertEquals(len(form.errors), 2)
python
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'settings_widget.ui' # # by: pyside-uic 0.2.15 running on PySide 1.2.2 # # WARNING! All changes made in this file will be lost! from tank.platform.qt import QtCore, QtGui class Ui_SettingsWidget(object): def setupUi(self, SettingsWidget): SettingsWidget.setObjectName("SettingsWidget") SettingsWidget.resize(337, 645) self.verticalLayout = QtGui.QVBoxLayout(SettingsWidget) self.verticalLayout.setSpacing(0) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setObjectName("verticalLayout") self.settings_scroll_area = QtGui.QScrollArea(SettingsWidget) self.settings_scroll_area.setWidgetResizable(True) self.settings_scroll_area.setObjectName("settings_scroll_area") self.settings_host = QtGui.QWidget() self.settings_host.setGeometry(QtCore.QRect(0, 0, 335, 643)) self.settings_host.setObjectName("settings_host") self.settings_layout = QtGui.QGridLayout(self.settings_host) self.settings_layout.setContentsMargins(0, 0, 0, 0) self.settings_layout.setSpacing(0) self.settings_layout.setObjectName("settings_layout") self.settings_scroll_area.setWidget(self.settings_host) self.verticalLayout.addWidget(self.settings_scroll_area) self.retranslateUi(SettingsWidget) QtCore.QMetaObject.connectSlotsByName(SettingsWidget) def retranslateUi(self, SettingsWidget): SettingsWidget.setWindowTitle(QtGui.QApplication.translate("SettingsWidget", "Form", None, QtGui.QApplication.UnicodeUTF8))
python
#!/usr/bin/env python import logging from lxml import etree from ncclient import manager from ncclient.xml_ import * def connect(host, port, user, password): conn = manager.connect(host=host, port=port, username=user, password=password, timeout=10, device_params={'name': 'alu'}, hostkey_verify=False) logging.info('Retrieving full config, please wait ...') result = conn.get_configuration() logging.info(result) logging.info('Here is the chassis configuration') output = result.xpath('data/configure/system/chassis')[0] logging.info(to_xml(output)) logging.info('Retrieving service config') # specify filter to pass to get_config filter = new_ele('configure', attrs={'xmlns': ALU_CONFIG}) sub_ele(filter, 'service') result = conn.get_configuration(filter=filter) epipes = result.xpath('data/configure/service/epipe') for i in epipes: logging.info(etree.tostring(i, pretty_print=True).decode('utf-8')) logging.info('Getting CLI -config') cli_cfg = conn.get_configuration(content='cli', filter=['port 1/1/11']) logging.info(cli_cfg) logging.info('Get detailed CLI -config') cli_cfg = conn.get_configuration(content='cli', filter=['port 1/1/11'], detail=True) logging.info(cli_cfg) conn.close_session() if __name__ == '__main__': LOG_FORMAT = '%(asctime)s %(levelname)s %(filename)s:%(lineno)d %(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=LOG_FORMAT) connect('localhost', 830, 'admin', 'admin')
python
import shlex def parse_query(query): tokens = shlex.split(query) dsl = {'search': []} key = '' for token in tokens: if token.endswith(':'): key = token[:-1] else: value = token or '' if ':' in token: key, word = token.split(':', 1) value = word elif not key: key = 'search' if key in dsl: dsl[key].append(value) else: dsl[key] = [value] key = '' # if key: # dsl[key] = '' return dsl
python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle import paddle.nn as nn import paddle.nn.functional as F def SyncBatchNorm(*args, **kwargs): """In cpu environment nn.SyncBatchNorm does not have kernel so use nn.BatchNorm2D instead""" if paddle.get_device() == 'cpu' or os.environ.get('PADDLESEG_EXPORT_STAGE'): return nn.BatchNorm2D(*args, **kwargs) elif paddle.distributed.ParallelEnv().nranks == 1: return nn.BatchNorm2D(*args, **kwargs) else: return nn.SyncBatchNorm(*args, **kwargs) class ConvBNReLU(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, padding='same', **kwargs): super().__init__() self._conv = nn.Conv2D( in_channels, out_channels, kernel_size, padding=padding, **kwargs) if 'data_format' in kwargs: data_format = kwargs['data_format'] else: data_format = 'NCHW' self._batch_norm = SyncBatchNorm(out_channels, data_format=data_format) def forward(self, x): x = self._conv(x) x = self._batch_norm(x) x = F.relu(x) return x class ConvBN(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, padding='same', **kwargs): super().__init__() self._conv = nn.Conv2D( in_channels, out_channels, kernel_size, padding=padding, **kwargs) if 'data_format' in kwargs: data_format = kwargs['data_format'] else: data_format = 'NCHW' self._batch_norm = SyncBatchNorm(out_channels, data_format=data_format) def forward(self, x): x = self._conv(x) x = self._batch_norm(x) return x class ConvReLUPool(nn.Layer): def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Conv2D( in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1) def forward(self, x): x = self.conv(x) x = F.relu(x) x = F.pool2d(x, pool_size=2, pool_type="max", pool_stride=2) return x class SeparableConvBNReLU(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, padding='same', **kwargs): super().__init__() self.depthwise_conv = ConvBN( in_channels, out_channels=in_channels, kernel_size=kernel_size, padding=padding, groups=in_channels, **kwargs) if 'data_format' in kwargs: data_format = kwargs['data_format'] else: data_format = 'NCHW' self.piontwise_conv = ConvBNReLU( in_channels, out_channels, kernel_size=1, groups=1, data_format=data_format) def forward(self, x): x = self.depthwise_conv(x) x = self.piontwise_conv(x) return x class DepthwiseConvBN(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, padding='same', **kwargs): super().__init__() self.depthwise_conv = ConvBN( in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, groups=in_channels, **kwargs) def forward(self, x): x = self.depthwise_conv(x) return x class AuxLayer(nn.Layer): """ The auxiliary layer implementation for auxiliary loss. Args: in_channels (int): The number of input channels. inter_channels (int): The intermediate channels. out_channels (int): The number of output channels, and usually it is num_classes. dropout_prob (float, optional): The drop rate. Default: 0.1. """ def __init__(self, in_channels, inter_channels, out_channels, dropout_prob=0.1): super().__init__() self.conv_bn_relu = ConvBNReLU( in_channels=in_channels, out_channels=inter_channels, kernel_size=3, padding=1) self.dropout = nn.Dropout(p=dropout_prob) self.conv = nn.Conv2D( in_channels=inter_channels, out_channels=out_channels, kernel_size=1) def forward(self, x): x = self.conv_bn_relu(x) x = self.dropout(x) x = self.conv(x) return x
python
# Generated by Django 3.2.7 on 2021-10-30 21:49 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('workOrder', '0001_initial'), ] operations = [ migrations.RenameField( model_name='directive', old_name='workOders', new_name='workOrders', ), ]
python
# Excreva um programa que leia um valor em metros e o exiba convertido em centimetros e em milimetros medida = float(input('Digite a sua medida: ')) print(f'A medida de {medida}m corresponde a {medida*100}cm e {medida*1000}mm')
python
"""This module contains modules. Submodules ========== .. autosummary:: :toctree: _autosummary module gp_modules """ __all__ = ['module', 'gp_modules']
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' alphabet.py Automation sketch to fire LEDs to display clue words. usage: python3 alphabet.py [-h] [-s SERVER] [-p PORT] [-d] [-l LOGGER] optional arguments: -h, --help show this help message and exit -s SERVER, --server SERVER change MQTT server host -p PORT, --port PORT change MQTT server port -d, --debug set DEBUG log level -l LOGGER, --logger LOGGER use logging config file To switch MQTT broker, kill the program and start again with new arguments. ''' from PyQt5.QtCore import QUuid import paho.mqtt.client as mqtt import os, sys, platform, signal from constants import * from AlphabetApp import AlphabetApp from Singleton import Singleton, SingletonException me = None try: me = Singleton() except SingletonException: sys.exit(-1) except BaseException as e: print(e) os.chdir(os.path.dirname(os.path.abspath(__file__))) clientid = MQTT_CLIENTID_PREFIX + QUuid.createUuid().toString() mqtt_client = mqtt.Client(clientid, clean_session=True, userdata=None) sketch = AlphabetApp(sys.argv, mqtt_client, debugging_mqtt=False, gpio_bcm=True, no_gpio=False) if sketch._logger: sketch._logger.info(sketch.tr("Sketch started")) # Assign handler for process exit (shows not effect on Windows in debug here) signal.signal(signal.SIGTERM, sketch.quit) signal.signal(signal.SIGINT, sketch.quit) if platform.system() != 'Windows': signal.signal(signal.SIGHUP, sketch.quit) signal.signal(signal.SIGQUIT, sketch.quit) sketch.start() if sketch._logger: raspberryPi = sketch.raspberryPiVersion() if raspberryPi: sketch._logger.info("{0} {1}".format(sketch.tr("Sketch running on Raspberry Pi"), raspberryPi)) elif platform.system() == 'Windows': sketch._logger.info(sketch.tr("Sketch running on Windows")) rc = sketch.exec_() try: mqtt_client.disconnect() mqtt_client.loop_stop() except: pass if sketch._logger: sketch._logger.info(sketch.tr("Sketch done")) del(me) sys.exit(rc)
python
"""empty message Revision ID: fd51d3fa9aef Revises: 1c96aaeccb0b Create Date: 2022-03-14 12:16:43.830823 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'fd51d3fa9aef' down_revision = '1c96aaeccb0b' branch_labels = None depends_on = None def upgrade(): pass def downgrade(): pass
python
# coding=utf-8 #空文件,只是为了handle目录成为一个模块,python的奇妙规则~
python