content
stringlengths
0
894k
type
stringclasses
2 values
#!/usr/bin/env python # coding: utf-8 # In[2]: # In[6]: # In[16]: # In[18]: # In[21]: from __future__ import division, print_function # coding=utf-8 import streamlit as st import h5py from PIL import Image import os import numpy as np import json import predict3 from tensorflow.keras.models import load_model import keras from keras.models import Model from keras.layers import Dense, Activation from keras.layers import GlobalAveragePooling2D from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.callbacks import ReduceLROnPlateau, CSVLogger from keras.preprocessing.image import ImageDataGenerator from keras.applications.inception_v3 import InceptionV3, preprocess_input from keras.optimizers import Adam import argparse import pandas as pd from tqdm import tqdm IM_WIDTH, IM_HEIGHT = 299, 299 NB_EPOCHS = 5 BATCH_SIZE = 32 FC_SIZE = 1024 # Get Inception model without final layer base_model = InceptionV3(weights='imagenet', include_top=False) # Add new fully connected layer to base model x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(FC_SIZE, activation='relu')(x) predictions = Dense(38, activation='softmax')(x) model = Model(base_model.input, predictions) # Compile model model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy']) #from tensorflow.keras.models import load_weights # Model path folder_path = "./models" #model_name = "model_vgg16_2.hdf5" #model_name = "inception_1.h5" model_name = "inception_15ep.h5" model_file = os.path.join(folder_path, model_name) # Load your trained model #model = load_model(model_file) #import joblib #model = joblib.load('./models/export_resnet34_model.pkl') #import pickle #pkl_filename = './models/export_resnet34_model.pkl' #with open(pkl_filename, 'rb') as file: #model = pickle.load(file) model.load_weights(model_file) st.markdown("<h1 style='text-align: left; color: green;'>Welcome to your plant HealthScanner!</h1>", unsafe_allow_html=True) st.write("") image = Image.open('./models/logo_crop_2.png') st.sidebar.image(image, use_column_width = True) st.sidebar.title('Image diagnosis') st.set_option('deprecation.showfileUploaderEncoding', False) img_file_buffer = st.sidebar.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) if img_file_buffer is not None: #image = np.array(Image.open(img_file_buffer)) image = Image.open(img_file_buffer) st.image(image, caption='Uploaded Image.') processed_image = predict3.preprocess_image(img_file_buffer) prediction = predict3.model_predict(processed_image, model) st.write("### Diagnosis results:") res = '%s : %s' % (prediction[0][0], prediction[0][1]) st.write(res) st.write("### Disease description:") descr = predict3.description(prediction) st.write(descr[0][1]) st.write("### Treatment recommendations:") tx = predict3.treatment(prediction) st.write(tx[0][1]) else: # st.sidebar.success("Select an image above.") st.markdown( """ HealthScanner help you diagnose your lovely plants, and recommend proper treatments for you! Upload an image on the left to have quick diagnosis! """ ) image2 = Image.open('./models/img_crop.jpg') st.image(image2, use_column_width = True)
python
#!/usr/bin/env python3 from mpl_toolkits.mplot3d import Axes3D from rasterization import Rasterizer from transformation import multiply from transformation import TransformGenerator import argparse import DirectLinearTransform import json import math import matplotlib import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np import random import sys def main(): args = _getParsedArgs(sys.argv[1:]) if args.p: _pointPicker(args.input_image) sys.exit(0) transformImage( args.input_image, args.output_image, _readCorrespondences(args.correspondences), args.background ) def transformImage(input_image_path, output_image_path, corresponding_points, background_path): im = mpimg.imread(input_image_path) bg_im = None if background_path is not None: bg_im = mpimg.imread(background_path) transform_matrix = DirectLinearTransform.computeTransform( corresponding_points ) image_rasterization = Rasterizer( im, transformation_matrix = transform_matrix, background = bg_im ) matplotlib.image.imsave( output_image_path, image_rasterization.rasterize() ) def _pointPicker(input_image_path): """ Utility function to select coordinates on image """ image = mpimg.imread(input_image_path) fig = plt.figure() axes = plt.imshow(image) fig.canvas.mpl_connect( 'button_press_event', lambda ev: print(ev.xdata, ev.ydata) ) plt.show() def _readCorrespondences(correspondenceFilePath): with open(correspondenceFilePath, 'r') as correspondenceFileHandler: return json.load(correspondenceFileHandler) def _getParsedArgs(args): parser = argparse.ArgumentParser( description = "CLI input to homography application" ) parser.add_argument( "-p", action = "store_true", help = "use point picker utility") parser.add_argument( "--input-image", default = "./media/t2.png", help = "input image to be transformed") parser.add_argument( "--output-image", default = "output.png", help = "output image path for saving new image") parser.add_argument( "--correspondences", default = "3.json", help = "corresponding set of points to derive transform") parser.add_argument( "--background", default = None, help = "optionally specify background image to act as canvas") return parser.parse_args(args) if __name__ == "__main__": main()
python
#!/usr/bin/env python3 import argparse import gym import gym-minigrid from baselines import bench, logger from baselines.common import set_global_seeds from baselines.common.cmd_util import make_atari_env, atari_arg_parser from baselines.a2c.a2c import learn from baselines.ppo2.policies import MlpPolicy from baselines.common.vec_env.vec_normalize import VecNormalize from baselines.common.vec_env.dummy_vec_env import DummyVecEnv def train(env_id, num_timesteps, seed, lrschedule, num_env): def make_env(): env = gym.make(env_id) env = bench.Monitor(env, logger.get_dir(), allow_early_resets=True) return env env = DummyVecEnv([make_env]) env = VecNormalize(env) set_global_seeds(seed) policy_fn = MlpPolicy learn(policy_fn, env, seed, total_timesteps=int(num_timesteps * 1.1), lrschedule=lrschedule) env.close() def main(): parser = argparse.ArgumentParser("A2C baseline") parser.add_argument('--env', help='environment ID', default='CartPole-v1') parser.add_argument('--seed', help='RNG seed', type=int, default=0) parser.add_argument('--num-timesteps', type=int, default=int(1e6)) parser.add_argument('--lrschedule', help='Learning rate schedule', choices=['constant', 'linear'], default='constant') args = parser.parse_args() logger.configure() train(args.env, num_timesteps=args.num_timesteps, seed=args.seed, lrschedule=args.lrschedule, num_env=1) if __name__ == '__main__': main()
python
import os import torch from torch import tensor from typing import Optional, Tuple from dataclasses import dataclass from schemes import EventDetectorOutput from models import BaseComponent from models.event_detection.src.models.SingleLabelSequenceClassification import SingleLabelSequenceClassification from stores.ontologies.event_type_wikidata_links_trecis import EVENT_TYPE_WIKIDATA_LINKS from transformers import logging logging.set_verbosity_error() os.environ["TOKENIZERS_PARALLELISM"] = "false" @dataclass class InputFeature: input_ids: tensor attention_mask: tensor labels: Optional[tensor] = None @dataclass class SingleLabelClassificationForwardOutput: loss: Optional[tensor] = None prediction_logits: tensor = None hidden_states: Optional[Tuple[tensor]] = None attentions: Optional[Tuple[tensor]] = None class EventDetector(BaseComponent): def __init__(self, path_to_pretrained_model: str): super(EventDetector).__init__() checkpoint = torch.load(path_to_pretrained_model, map_location=torch.device('cpu')) self.model = SingleLabelSequenceClassification(checkpoint['config']) self.model.load_state_dict(checkpoint['model_state_dict']) self.index_label_map = checkpoint['index_label_map'] def forward(self, tweet: str) -> EventDetectorOutput: tokenized_text = self.model.tokenizer(tweet, padding=True, truncation=True, max_length=512, return_tensors="pt") input_ids: tensor = tokenized_text["input_ids"].to(self.model.device) attention_masks: tensor = tokenized_text["attention_mask"].to(self.model.device) labels = None input_feature: InputFeature = InputFeature(input_ids=input_ids, attention_mask=attention_masks, labels=labels) output: SingleLabelClassificationForwardOutput = self.model.forward(input_feature) prediction = output.prediction_logits.argmax(1).item() event_type = self.index_label_map[str(prediction)] wikidata_link = EVENT_TYPE_WIKIDATA_LINKS.get(event_type) return EventDetectorOutput(tweet=tweet, event_type=event_type, wikidata_links={event_type: wikidata_link}) @property def __version__(self): return "1.0.0"
python
"""test2 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from authe import views as authe_view urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^$', authe_view.index, name='index'), url(r'^contact/', authe_view.contact, name='contact'), url(r'^signup', authe_view.signup, name='signup'), url(r'^signin', authe_view.signin, name='signin'), url(r'^logout', authe_view.logout, name='logout'), url(r'^tiqu', authe_view.tiqu, name='tiqu'), url(r'^xuanran', authe_view.xuanranwj, name='xuanranwj'), url(r'^txcg', authe_view.jieshou, name='jieshou'), url(r'^editor', authe_view.editor, name='editor'), url(r'^teditor', authe_view.teditor, name='teditor'), url(r'houtai', authe_view.houtai, name='houtai'), url(r'cjwj', authe_view.create_houtai, name='create_houtai'), url(r'myques', authe_view.myques, name='myques'), url(r'delete', authe_view.deleteque, name='delete'), url(r'^genggaipw', authe_view.genggaipw, name='genggaipw'), url(r'^Tongji', authe_view.Tongji, name='Tongji'), url(r'^Guanlian', authe_view.Guanlian, name='Guanlian'), url(r'^GLPrint', authe_view.GLPrint, name='GLPrint'), url(r'^Chongzhipw', authe_view.Chongzhipw, name='Chongzhipw'), url(r'^Duibi', authe_view.Duibi, name='Duibi'), url(r'^DBPrint', authe_view.DBPrint, name='DBPrint'), ]
python
import xarray as xr import numpy as np from xrspatial import hillshade def _do_sparse_array(data_array): import random indx = list(zip(*np.where(data_array))) pos = random.sample(range(data_array.size), data_array.size//2) indx = np.asarray(indx)[pos] r = indx[:, 0] c = indx[:, 1] data_half = data_array.copy() data_half[r, c] = 0 return data_half def _do_gaussian_array(): _x = np.linspace(0, 50, 101) _y = _x.copy() _mean = 25 _sdev = 5 X, Y = np.meshgrid(_x, _y, sparse=True) x_fac = -np.power(X-_mean, 2) y_fac = -np.power(Y-_mean, 2) gaussian = np.exp((x_fac+y_fac)/(2*_sdev**2)) / (2.5*_sdev) return gaussian # # ----- data_random = np.random.random_sample((100, 100)) data_random_sparse = _do_sparse_array(data_random) data_gaussian = _do_gaussian_array() def test_hillshade(): """ Assert Simple Hillshade transfer function """ da_gaussian = xr.DataArray(data_gaussian) da_gaussian_shade = hillshade(da_gaussian) assert da_gaussian_shade.dims == da_gaussian.dims assert da_gaussian_shade.coords == da_gaussian.coords assert da_gaussian_shade.attrs == da_gaussian.attrs assert da_gaussian_shade.mean() > 0 assert da_gaussian_shade[60, 60] > 0
python
from django.test import TestCase from django.contrib.auth.models import User from .models import Profile,Procedure # Create your tests here. class ProfileTestClass(TestCase): def setUp(self): self.new_user = User.objects.create_user(username='user',password='password') self.new_profile = Profile(id=1,prof_user=self.new_user,bio='Test Bio',contact_info='0723030837',profile_Id=1) def test_instance(self): self.assertTrue(isinstance(self.new_profile,Profile)) def test_save_profile(self): self.new_profile.save_profile() profiles = Profile.objects.all() self.assertTrue(len(profiles) > 0) def test_delete_profile(self): self.new_profile.delete_profile() profiles = Profile.objects.all() self.assertTrue(len(profiles) == 0) def test_update_bio(self): self.new_profile.save_profile() self.new_profile = Profile.objects.get(id=1) profile = self.new_profile profile.update_bio('updated user-bio') self.updated_profile = Profile.objects.get(id=1) self.assertEqual(self.updated_profile.bio,'updated user-bio') class ProcedureTestClass(TestCase): def setUp(self): self.new_user = User.objects.create_user(username='user',password='password') self.new_profile = Profile(id=1,prof_user=self.new_user,bio='Test Bio',contact_info='0723030837',profile_Id=1) self.new_profile.save_profile() self.new_procedure = Procedure(id=1,title='title',details='details',link='www.link.com',user=self.new_user) def test_instance(self): self.assertTrue(isinstance(self.new_procedure,Procedure)) def test_save_instance(self): self.new_procedure.save_procedure() procedure = Procedure.objects.all() self.assertTrue(len(procedure)>0) def test_delete_profile(self): self.new_procedure.delete_procedure() procedure = Procedure.objects.all() self.assertTrue(len(procedure)==0) def test_fetch_procedure(self): self.new_procedure.save_procedure() procedure = Procedure.fetch_all_images() self.assertTrue(len(procedure)>0) def test_find_procedure(self): self.new_procedure.save_procedure() procedure = Procedure.get_single_procedure(self.new_procedure.id) self.assertTrue(procedure == self.new_procedure)
python
'''Create a segmentation by thresholding a predicted probability map''' import os import logging from time import time as now import numpy as np import configargparse as argparse import daisy logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # patch: suppress daisy warnings logging.getLogger('daisy.client').setLevel(logging.ERROR) def extract_segmentation_with_threshold_worker( block, probas, mask, out, threshold): # load the chunk probas = probas[block.read_roi].to_ndarray() if mask: mask = mask[block.read_roi].to_ndarray() segmentation = ((probas >= threshold) & (mask != 0)) else: segmentation = probas >= threshold # store binary mask as {0,255} segmentation = segmentation.astype(np.uint32) * 255 # save to output dataset out[block.write_roi] = segmentation def extract_segmentation_with_threshold( filename, ds_name, mask_filename, mask_ds_name, out_ds_name, chunk_shape, threshold, num_workers): probas = daisy.open_ds( filename, ds_name, mode='r' ) try: mask = daisy.open_ds( mask_filename, mask_ds_name, mode='r' ) except (KeyError, RuntimeError): logger.warning(( "Did not find a mask dataset " f"at {os.path.join(mask_filename, str(mask_ds_name))}." )) mask = None out = daisy.prepare_ds( filename=filename, ds_name=out_ds_name, total_roi=probas.roi, voxel_size=probas.voxel_size, dtype=np.uint32, write_size=probas.voxel_size * daisy.Coordinate(chunk_shape), compressor={'id': 'zlib', 'level': 3} ) # Spawn a worker per chunk block_roi = daisy.Roi( (0, 0, 0), probas.voxel_size * daisy.Coordinate(chunk_shape) ) start = now() daisy.run_blockwise( total_roi=probas.roi, read_roi=block_roi, write_roi=block_roi, process_function=lambda block: extract_segmentation_with_threshold_worker( block, probas=probas, mask=mask, out=out, threshold=threshold ), read_write_conflict=False, fit='shrink', num_workers=num_workers, ) logger.info(f"Done in {now() - start} s") def parse_args(): p = argparse.ArgParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) p.add('--config', is_config_file=True, help='config file path') p.add( '--prediction_filename', required=True, help="Zarr file with the prediction." ) p.add( '--dataset', '-d', required=True, help='Name of the dataset with prediction probabilities.' ) p.add( '--mask_filename', default="", help="Zarr file with the mask." ) p.add( '--mask', '-m', default='volumes/mask', help='Binary mask to exclude non-cell voxels.' ) p.add( '--out_dataset', '-o', required=True, help='Name of the output segmentation in the prediction zarr file.' ) p.add( '--chunk_shape', '-c', nargs='+', type=int, default=[128, 128, 128], help=( 'Size of a chunk in voxels. Should be a multiple of the existing ' 'chunk size.' ) ) p.add( '--threshold', '-t', type=float, required=True, help='Threshold for positive prediction.' ) p.add( '--num_workers', '-n', type=int, default=32, help='Number of daisy processes.' ) args = p.parse_args() logger.info(f'\n{p.format_values()}') return args def main(): args = parse_args() extract_segmentation_with_threshold( filename=args.prediction_filename, ds_name=args.dataset, mask_filename=args.mask_filename, mask_ds_name=args.mask, out_ds_name=args.out_dataset, chunk_shape=args.chunk_shape, threshold=args.threshold, num_workers=args.num_workers ) if __name__ == '__main__': main()
python
import os import time import pandas as pd import numpy as np import xgboost as xgb import lightgbm as lgb import warnings warnings.filterwarnings('ignore') from sklearn.metrics import log_loss from sklearn.model_selection import train_test_split, StratifiedKFold def lgb_foldrun(X, y, params, name): skf = StratifiedKFold(n_splits = 10, random_state = 111, shuffle = True) if isinstance(X, pd.core.frame.DataFrame): X = X.values if isinstance(y, pd.core.frame.DataFrame): y = y.is_duplicate.values if isinstance(y, pd.core.frame.Series): y = y.values print('Running LGBM model with parameters:', params) i = 1 losses = [] oof_train = np.zeros((X.shape[0])) os.makedirs('saved_models/LGBM/SKF/{}'.format(name), exist_ok = True) for tr_index, val_index in skf.split(X, y): X_tr, X_val = X[tr_index], X[val_index] y_tr, y_val = y[tr_index], y[val_index] t = time.time() lgb_train = lgb.Dataset(X_tr, y_tr) lgb_val = lgb.Dataset(X_val, y_val) print('Start training on fold: {}'.format(i)) gbm = lgb.train(params, lgb_train, num_boost_round = 100000, valid_sets = lgb_val, early_stopping_rounds = 200, verbose_eval = 100) print('Start predicting...') val_pred = gbm.predict(X_val, num_iteration=gbm.best_iteration) oof_train[val_index] = val_pred score = log_loss(y_val, val_pred) losses.append(score) print('Final score for fold {} :'.format(i), score, '\n', 'Time it took to train and predict on fold:', time.time() - t, '\n') gbm.save_model('saved_models/LGBM/SKF/{}/LGBM_10SKF_loss{:.5f}_fold{}.txt'.format(name, score, i)) i += 1 np.save('OOF_preds/train/{}'.format(name), oof_train) print('Mean logloss for model in 10-folds SKF:', np.array(losses).mean(axis = 0)) return def xgb_foldrun(X, y, params, name): skf = StratifiedKFold(n_splits = 10, random_state = 111, shuffle = True) if isinstance(X, pd.core.frame.DataFrame): X = X.values if isinstance(y, pd.core.frame.DataFrame): y = y.is_duplicate.values if isinstance(y, pd.core.frame.Series): y = y.values print('Running XGB model with parameters:', params) i = 1 losses = [] oof_train = np.zeros((X.shape[0])) os.makedirs('saved_models/XGB/SKF/{}'.format(name), exist_ok = True) for tr_index, val_index in skf.split(X, y): X_tr, X_val = X[tr_index], X[val_index] y_tr, y_val = y[tr_index], y[val_index] t = time.time() dtrain = xgb.DMatrix(X_tr, label = y_tr) dval = xgb.DMatrix(X_val, label = y_val) watchlist = [(dtrain, 'train'), (dval, 'valid')] print('Start training on fold: {}'.format(i)) gbm = xgb.train(params, dtrain, 100000, watchlist, early_stopping_rounds = 200, verbose_eval = 100) print('Start predicting...') val_pred = gbm.predict(xgb.DMatrix(X_val), ntree_limit=gbm.best_ntree_limit) oof_train[val_index] = val_pred score = log_loss(y_val, val_pred) losses.append(score) print('Final score for fold {} :'.format(i), score, '\n', 'Time it took to train and predict on fold:', time.time() - t, '\n') gbm.save_model('saved_models/XGB/SKF/{}/XGB_10SKF_loss{:.5f}_fold{}.txt'.format(name, score, i)) i += 1 np.save('OOF_preds/train/{}'.format(name), oof_train) print('Mean logloss for model in 10-folds SKF:', np.array(losses).mean(axis = 0)) return def lgb_foldrun_test(X, y, X_test, params, name, save = True): skf = StratifiedKFold(n_splits = 10, random_state = 111, shuffle = True) if isinstance(X, pd.core.frame.DataFrame): X = X.values if isinstance(y, pd.core.frame.DataFrame): y = y.is_duplicate.values if isinstance(y, pd.core.frame.Series): y = y.values print('Running LGBM model with parameters:', params) i = 0 losses = [] oof_train = np.zeros((X.shape[0])) oof_test = np.zeros((10, 2345796)) os.makedirs('saved_models/LGBM/SKF/{}'.format(name), exist_ok = True) for tr_index, val_index in skf.split(X, y): X_tr, X_val = X[tr_index], X[val_index] y_tr, y_val = y[tr_index], y[val_index] t = time.time() lgb_train = lgb.Dataset(X_tr, y_tr) lgb_val = lgb.Dataset(X_val, y_val) print('Start training on fold: {}'.format(i)) gbm = lgb.train(params, lgb_train, num_boost_round = 100000, valid_sets = lgb_val, early_stopping_rounds = 200, verbose_eval = 100) print('Start predicting...') val_pred = gbm.predict(X_val, num_iteration=gbm.best_iteration) oof_train[val_index] = val_pred score = log_loss(y_val, val_pred) losses.append(score) if X_test is not None: test_preds = gbm.predict(X_test, num_iteration=gbm.best_iteration) oof_test[i, :] = test_preds print('Final score for fold {} :'.format(i), score, '\n', 'Time it took to train and predict on fold:', time.time() - t, '\n') gbm.save_model('saved_models/LGBM/SKF/{}/LGBM_10SKF_loss{:.5f}_fold{}.txt'.format(name, score, i)) i += 1 print('Mean logloss for model in 10-folds SKF:', np.array(losses).mean(axis = 0)) oof_train = pd.DataFrame(oof_train) oof_train.columns = ['{}_prob'.format(name)] oof_test = oof_test.mean(axis = 0) oof_test = pd.DataFrame(oof_test) oof_test.columns = ['{}_prob'.format(name)] if save: oof_train.to_pickle('OOF_preds/train/train_preds_{}.pkl'.format(name)) oof_test.to_pickle('OOF_preds/test/test_preds_{}.pkl'.format(name)) return oof_train, oof_test def xgb_foldrun_test(X, y, X_test, params, name, save = True): skf = StratifiedKFold(n_splits = 10, random_state = 111, shuffle = True) if isinstance(X, pd.core.frame.DataFrame): X = X.values if isinstance(y, pd.core.frame.DataFrame): y = y.is_duplicate.values if isinstance(y, pd.core.frame.Series): y = y.values print('Running XGB model with parameters:', params) i = 0 losses = [] oof_train = np.zeros((X.shape[0])) oof_test = np.zeros((10, 2345796)) os.makedirs('saved_models/XGB/SKF/{}'.format(name), exist_ok = True) for tr_index, val_index in skf.split(X, y): X_tr, X_val = X[tr_index], X[val_index] y_tr, y_val = y[tr_index], y[val_index] t = time.time() dtrain = xgb.DMatrix(X_tr, label = y_tr) dval = xgb.DMatrix(X_val, label = y_val) watchlist = [(dtrain, 'train'), (dval, 'valid')] print('Start training on fold: {}'.format(i)) gbm = xgb.train(params, dtrain, 100000, watchlist, early_stopping_rounds = 200, verbose_eval = 100) print('Start predicting...') val_pred = gbm.predict(xgb.DMatrix(X_val), ntree_limit=gbm.best_ntree_limit) oof_train[val_index] = val_pred score = log_loss(y_val, val_pred) losses.append(score) if X_test is not None: test_preds = gbm.predict(X_test, ntree_limit=gbm.best_ntree_limit) oof_test[i, :] = test_preds print('Final score for fold {} :'.format(i), score, '\n', 'Time it took to train and predict on fold:', time.time() - t, '\n') gbm.save_model('saved_models/XGB/SKF/{}/XGB_10SKF_loss{:.5f}_fold{}.txt'.format(name, score, i)) i += 1 print('Mean logloss for model in 10-folds SKF:', np.array(losses).mean(axis = 0)) oof_train = pd.DataFrame(oof_train) oof_train.columns = ['{}_prob'.format(name)] oof_test = oof_test.mean(axis = 0) oof_test = pd.DataFrame(oof_test) oof_test.columns = ['{}_prob'.format(name)] if save: oof_train.to_pickle('OOF_preds/train/train_preds_{}.pkl'.format(name)) oof_test.to_pickle('OOF_preds/test/test_preds_{}.pkl'.format(name)) return oof_train, oof_test
python
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Session' db.create_table('django_session', ( ('session_key', self.gf('django.db.models.fields.CharField')(max_length=40, primary_key=True)), ('session_data', self.gf('django.db.models.fields.TextField')()), ('expire_date', self.gf('django.db.models.fields.DateTimeField')(db_index=True)), )) db.send_create_signal('sessions', ['Session']) def backwards(self, orm): # Deleting model 'Session' db.delete_table('django_session') models = { 'sessions.session': { 'Meta': {'object_name': 'Session', 'db_table': "'django_session'"}, 'expire_date': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'session_data': ('django.db.models.fields.TextField', [], {}), 'session_key': ('django.db.models.fields.CharField', [], {'max_length': '40', 'primary_key': 'True'}) } } complete_apps = ['sessions']
python
# =============================================================================== # Copyright 2012 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from __future__ import absolute_import from traits.api import Str, Property, Int, List, Button, \ cached_property, on_trait_change, Instance # ============= standard library imports ======================== import os # ============= local library imports ========================== from pychron.experiment.automated_run.factory import AutomatedRunFactory from pychron.pychron_constants import NULL_STR from pychron.experiment.automated_run.uv.factory_view import UVFactoryView from pychron.experiment.automated_run.uv.spec import UVAutomatedRunSpec from pychron.paths import paths class UVAutomatedRunFactory(AutomatedRunFactory): reprate = Int mask = Str attenuator = Str image = Str masks = Property extract_units_names = List([NULL_STR, 'burst', 'continuous']) _default_extract_units = 'burst' browser_button = Button('Browse') _spec_klass = UVAutomatedRunSpec factory_view_klass = UVFactoryView def _get_run_attr(self): #r = super(UVAutomatedRunFactory, self)._get_run_attr() #r.extend(['mask', 'attenuator', ]) r=['position', 'extract_value', 'extract_units', 'cleanup', 'mask','attenuator','reprate', 'weight', 'comment', 'sample', 'irradiation', 'skip', 'mass_spectrometer', 'extract_device'] return r @cached_property def _get_masks(self): p = os.path.join(paths.device_dir, 'fusions_uv', 'mask_names.txt') masks = [] if os.path.isfile(p): with open(p, 'r') as rfile: for lin in rfile: lin = lin.strip() if not lin or lin.startswith('#'): continue masks.append(lin) return masks @on_trait_change('mask, attenuator, reprate') def _uv_edit_handler(self, name, new): self._update_run_values(name, new) # ============= EOF =============================================
python
import unittest from circleofgifts.dealer import Dealer class DealerTestCase(unittest.TestCase): def test_sorted_deal(self): """Test deal which uses sorted() as the sort method for both teams and players. This makes the results predicable.""" players = [['Pierre', 'Paul'], ['Jeanne', 'Julie'], ['Sylvain', 'Sandra']] dealer = Dealer(players) dealer.sort_players_callback = lambda x: sorted(x) dealer.sort_teams_callback = lambda x: sorted(x) deal = dealer.deal() self.assertEqual(deal, ['Jeanne', 'Paul', 'Sandra', 'Julie', 'Pierre', 'Sylvain']) def test_deal_with_respect_to_history(self): # When there is no alternative (sorted result), then the dealer # MUST return successfully... and has no choice: it MUST return the # same result again and again, whatever the history. players = [['Pierre', 'Paul'], ['Jeanne', 'Julie'], ['Sylvain', 'Sandra']] dealer = Dealer(players) dealer.sort_players_callback = lambda x: sorted(x) dealer.sort_teams_callback = lambda x: sorted(x) deal = dealer.deal_with_respect_to_history() self.assertEqual(deal, ['Jeanne', 'Paul', 'Sandra', 'Julie', 'Pierre', 'Sylvain']) deal = dealer.deal_with_respect_to_history() self.assertEqual(deal, ['Jeanne', 'Paul', 'Sandra', 'Julie', 'Pierre', 'Sylvain']) def test_is_deal_valid(self): dealer = Dealer([1, 2, 3, 4, 5, 6]) # No repetition: valid self.assertTrue(dealer.is_deal_valid([1, 2, 3, 4, 5, 6], [1, 3, 5, 2, 6, 4])) # Exactly the same: invalid self.assertFalse(dealer.is_deal_valid([1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6])) # Scheme 6-1 is repeated: invalid self.assertFalse(dealer.is_deal_valid([1, 2, 3, 4, 5, 6], [1, 3, 5, 2, 4, 6])) # Exactly the opposite: invalid self.assertFalse(dealer.is_deal_valid([1, 2, 3, 4, 5, 6], [6, 5, 4, 3, 2, 1])) # Nothing in common: valid self.assertTrue(dealer.is_deal_valid([1, 2, 3, 4, 5, 6], [7, 8, 9]))
python
from django.shortcuts import render from django.http import HttpResponse def explore(request): return HttpResponse('This will list all chemicals.') def my_chemicals(request): return HttpResponse('This will list MY chemicals!')
python
import re # Your puzzle input is 246540-787419. ## Part 1 pwords = [] for i in range(246540,787419): if(int(str(i)[0]) <= int(str(i)[1]) <= int(str(i)[2]) <= int(str(i)[3]) <= int(str(i)[4]) <= int(str(i)[5])): if((str(i)[0] == str(i)[1]) or (str(i)[1] == str(i)[2]) or (str(i)[2] == str(i)[3]) or (str(i)[3] == str(i)[4]) or (str(i)[4] == str(i)[5])): pwords.append(i) print("Candidate found " + str(i)) print("Number of possible passwords: " + str(len(pwords))) input() ## Part 2 pwords2 = [] for pw in pwords: # search for packages of three and more digits x = re.sub(r"(\d)\1{2,6}", "", str(pw)) if(x): # but allow packages with two other digits y = re.search(r"(\d)\1", str(x)) if(not y): print("Invalid password " + str(pw)) else: # collect valid pw for counting pwords2.append(pw) print("Number of possible passwords left: " + str(len(pwords2))) input()
python
class Server(object): def __init__(self, host, port): self.host = host self.port = port def get_host(self): return self.host def get_port(self): return self.port class MailType(object): def __init__(self): pass
python
from django import template import base64 from socialDistribution.models.post import Post, InboxPost from socialDistribution.utility import get_post_like_info, get_like_text register = template.Library() # Django Software Foundation, "Custom Template tags and Filters", 2021-10-10 # https://docs.djangoproject.com/en/3.2/howto/custom-template-tags/#inclusion-tags @register.inclusion_tag('tagtemplates/post.html') def post_card(post, author): """ Handles "liking" and "deleting" a post """ # Delete/Edit is_author = post.author == author is_public = post.is_public() is_friends = post.is_friends() if type(post) is InboxPost: post_type = 'inbox' else: post_type = 'local' is_liked, likes = get_post_like_info(post, author) like_text = get_like_text(is_liked, likes) return { 'post': post, 'post_type': post_type, 'is_author': is_author, 'is_liked': is_liked, 'like_text': like_text, 'is_public': is_public, 'is_friends': is_friends }
python
""" Setup of core python codebase Author: Jeff Mahler """ import os from setuptools import setup requirements = [ "numpy", "scipy", "scikit-image", "scikit-learn", "ruamel.yaml", "matplotlib", "multiprocess", "setproctitle", "opencv-python", "Pillow", "joblib", "colorlog", "pyreadline; platform_system=='Windows'", ] # load __version__ without importing anything version_file = os.path.join( os.path.dirname(__file__), "autolab_core/version.py" ) with open(version_file, "r") as f: # use eval to get a clean string of version from file __version__ = eval(f.read().strip().split("=")[-1]) setup( name="autolab_core", version=__version__, description="Core utilities for the Berkeley AutoLab", long_description=( "Core utilities for the Berkeley AutoLab. " "Includes rigid transformations, loggers, and 3D data wrappers." ), author="Jeff Mahler", author_email="[email protected]", maintainer="Mike Danielczuk", maintainer_email="[email protected]", license="Apache Software License", url="https://github.com/BerkeleyAutomation/autolab_core", keywords="robotics grasping transformations", classifiers=[ "Development Status :: 4 - Beta", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Natural Language :: English", "Topic :: Scientific/Engineering", ], packages=["autolab_core"], install_requires=requirements, extras_require={ "docs": ["sphinx", "sphinxcontrib-napoleon", "sphinx_rtd_theme"], "ros": ["rospkg", "catkin_pkg", "empy"], }, )
python
from collections.abc import Iterable from itertools import chain, product import pprint import inspect from .nodes import * from .graph import * class GraphGenerator(): def __init__(self, specifications): """ Parameters ---------- specifications: Iterable[Specification] -- TODO """ self._specifications = specifications self._graph_iterator = None def iterator(): for s in self._specifications: for g in self._build_graph_iterator(s): yield g self._iterator = iterator() def __iter__(self): return self._iterator def __next__(self): return next(self._iterator) def _build_graph_iterator(self, specification): # 1. Expand specification combinations into multiple flat specifications. specifications = self._expand(specification) # [print(s.get_providers(), '\n') for s in specifications] for specification in specifications: # 2. Expand into node lists. specification._build_nodes() specification._build_edges() # 3. Sort nodes topologically specification._sort_topologically() def generator(): for specification in specifications: # 4. Instanitate nodes, injecting dependencies, and set graph... specification._complete() yield Graph(specification.top) return generator() def _expand(self, specification): """ Returns list of expanded specifications. """ expanded_nodes = [node.expand() for node in specification.get_providers()] return [Specification(nodes=nodes) for nodes in product(*expanded_nodes)]
python
# -*- coding: utf-8 -*- # --------------------------------------------------------------------- # Allocated Blocks Report # --------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Django Modules from django.utils.translation import ugettext_lazy as _ from django import forms from django.db.models import Q # NOC Modules from noc.lib.app.simplereport import SimpleReport, TableColumn from noc.core.validators import check_ipv4_prefix, check_ipv6_prefix, ValidationError from noc.ip.models.vrf import VRF from noc.ip.models.prefix import Prefix from noc.main.models.customfield import CustomField class ReportForm(forms.Form): """ Report form """ vrf = forms.ModelChoiceField(label=_("VRF"), queryset=VRF.objects.all().order_by("name")) afi = forms.ChoiceField(label=_("Address Family"), choices=[("4", _("IPv4")), ("6", _("IPv6"))]) prefix = forms.CharField(label=_("Prefix")) def clean_prefix(self): vrf = self.cleaned_data["vrf"] afi = self.cleaned_data["afi"] prefix = self.cleaned_data.get("prefix", "").strip() if afi == "4": check_ipv4_prefix(prefix) elif afi == "6": check_ipv6_prefix(prefix) try: return Prefix.objects.get(vrf=vrf, afi=afi, prefix=prefix) except Prefix.DoesNotExist: raise ValidationError(_("Prefix not found")) class ReportAllocated(SimpleReport): title = _("Allocated Blocks") form = ReportForm def get_form(self): fc = super(ReportAllocated, self).get_form() self.customize_form(fc, "ip_prefix", search=True) return fc def get_data(self, vrf, afi, prefix, **kwargs): def get_row(p): r = [p.prefix, p.state.name, unicode(p.vc) if p.vc else ""] for f in cf: v = getattr(p, f.name) r += [v if v is not None else ""] r += [p.description, p] return r cf = CustomField.table_fields("ip_prefix") cfn = dict((f.name, f) for f in cf) # Prepare columns columns = ["Prefix", "State", "VC"] for f in cf: columns += [f.label] columns += ["Description", TableColumn(_("Tags"), format="tags")] # Prepare query q = Q() for k in kwargs: v = kwargs[k] if k in cfn and v is not None and v != "": q &= Q(**{str(k): v}) # return self.from_dataset( title=_( "Allocated blocks in VRF %(vrf)s (IPv%(afi)s), %(prefix)s" % {"vrf": vrf.name, "afi": afi, "prefix": prefix.prefix} ), columns=columns, data=[get_row(p) for p in prefix.children_set.filter(q).order_by("prefix")], enumerate=True, )
python
from buildbot.config import BuilderConfig from buildbot.changes.gitpoller import GitPoller from buildbot.plugins import util, schedulers from buildbot.process.factory import BuildFactory from buildbot.process.properties import Interpolate from buildbot.process import results from buildbot.steps.source.git import Git from buildbot.steps.shell import ShellCommand from buildbot.steps.transfer import FileDownload from buildbot_ros_cfg.helpers import success def ros_sysbuild(c, job_name, rosdistro, machines, source=True, locks=[]): # Create a Job for system test job_name = sys_name project_name = '_'.join([job_name, rosdistro, 'system_build']) c['schedulers'].append( schedulers.SingleBranchScheduler( name=project_name, builderNames=[project_name, ], change_filter=util.ChangeFilter(category=project_name) ) ) c['schedulers'].append( schedulers.Nightly( name = project_name+'-nightly-master', builderNames = [project_name,], hour=4, minute=0, ) ) # Directory which will be bind-mounted binddir = '/tmp' rosinstall_url = "https://raw.githubusercontent.com/ipa-rwu/scalable_system_setup/master/config/" + job_name + ".rosinstall" f = BuildFactory() # Remove any old crud in /tmp folder f.addStep( ShellCommand( name='rm src', command=['rm', '-rf', 'scalable_ws'], hideStepIf=success, workdir=Interpolate('%(prop:builddir)s/build/') ) ) # wstool init src .rosinstall f.addStep( ShellCommand( haltOnFailure=True, name='wstool_rosintall', command=['wstool', 'init', 'src', rosinstall_url], hideStepIf=success, workdir=Interpolate('%(prop:builddir)s/build/scalable_ws') ) ) # Download Dockerfile_sys.py script from master f.addStep( FileDownload( name=job_name + '-grab-script', mastersrc='docker_components/Dockerfile_sys', workerdest=('Dockerfile_sys'), hideStepIf=success ) ) # Download docker-compose-sys.py script from master f.addStep( FileDownload( name=job_name + '-grab-script', mastersrc='docker_components/docker-compose-sys.yaml', workerdest=('docker-compose-sys.yaml'), hideStepIf=success ) ) f.addStep( FileDownload( name=job_name + '-grab-script', mastersrc='docker_components/rosdep_private.yaml', workerdest=('rosdep_private.yaml'), hideStepIf=success ) ) f.addStep( FileDownload( name=job_name + '-grab-script', mastersrc='scripts/docker-container.py', workerdest=('docker-container.py'), hideStepIf=success ) ) f.addStep( FileDownload( name=job_name + '-grab-script', mastersrc='shell/uplode_docker_image.sh', workerdest=('upload_docker_image.sh'), hideStepIf=success ) ) f.addStep( FileDownload( name=job_name + '-grab-script', mastersrc='scripts/unique_docker_sys.py', workerdest=('unique_docker_sys.py'), mode=0o755, hideStepIf=success ) ) f.addStep( FileDownload( name=job_name + '-grab-script', mastersrc='shell/test_sys.sh', workerdest=('test_sys.sh'), mode=0o755, hideStepIf=success ) ) # reedit docker-compose-deb.yaml f.addStep( ShellCommand( haltOnFailure=True, name=job_name + '-reedit-docker-compose', command=['python','unique_docker_sys.py', 'docker-compose-sys.yaml', Interpolate(job_name)], workdir=Interpolate('%(prop:builddir)s/build/'), descriptionDone=['reedit docker-compose', job_name] ) ) # Build docker image for creating debian f.addStep( ShellCommand( haltOnFailure = True, name = job_name + '-create_docker_image', command=['docker-compose', '-f','docker-compose-sys.yaml', 'build'], workdir=Interpolate('%(prop:builddir)s/build/'), descriptionDone=['sourcedeb', job_name] ) ) # Make and run tests in a docker container f.addStep( ShellCommand( name=job_name + '-test_system', command=['docker', 'run', '--name=' + project_name, 'scalable-sys:' + job_name, 'bash','/usr/local/sbin/test_sys.sh'], descriptionDone=['make and test', job_name] ) ) f.addStep( ShellCommand( name=job_name + '-upload_docker_image', command=['bash', 'upload_docker_image.sh', project_name, binddir, job_name], descriptionDone=['upload_docker_image', job_name], workdir=Interpolate('%(prop:builddir)s/build/') ) ) f.addStep( ShellCommand( name=job_name + '-rm_container', command=['docker', 'rm', project_name], descriptionDone=['remove docker container', job_name] ) ) f.addStep( ShellCommand( name=job_name + '-rm_image', command=['docker', 'image', 'rm', 'scalable-sys:' + job_name], descriptionDone=['remove docker image', job_name] ) ) c['builders'].append( BuilderConfig( name=project_name, workernames=machines, factory=f, locks=locks ) ) # return the name of the job created return project_name ## @brief ShellCommand w/overloaded evaluateCommand so that tests can be Warn
python
import numpy as np # from crf import Sample, CRF from crf_bin import Sample, CRFBin trainCorpus = "/home/laboratory/github/homeWork/machineTranslation/data/train.txt" testCorpus = "/home/laboratory/github/homeWork/machineTranslation/data/test.txt" labelTableverse = {} print("cache label...") with open("/home/laboratory/github/homeWork/machineTranslation/data/label.txt", 'r') as f: index = 0 for line in f: for items in line.strip().replace(" ", " ").split(" "): if items == "": continue word_label = items.split("/") if "]" in word_label[1]: word_label[1] = word_label[1].split("]")[0] if word_label[1] not in labelTableverse: Sample.LabelTable[index] = word_label[1] labelTableverse[Sample.LabelTable[index]] = index index += 1 Sample.LabelSize = len(Sample.LabelTable) # with open("/home/laboratory/corpus/cn_vectorTable/cn_vectors_50.txt", 'r') as f: # for line in f: # items = line.strip().split(" ") # Sample.WordsTable[items[0]] = np.array([float(elem) for elem in items[1:]], dtype=np.float) def load(filename): data = [] maxLen = 0 with open(filename, 'r') as f: for line in f: wordSeq = [] labels = [] for items in line.strip().replace(" ", " ").split(" "): if items == "": continue word_label = items.split("/") if "]" in word_label[1]: word_label[1] = word_label[1].split("]")[0] wordSeq.append(word_label[0]) #print(line) try: labels.append(labelTableverse[word_label[1]]) except: print(word_label[1]) seqLength = len(wordSeq) if seqLength > maxLen: maxLen = seqLength data.append(Sample(wordSeq, labels)) return data, maxLen Sample.DictLength = len(Sample.WordsTable) print("load train data...") train, maxLen = load("/home/laboratory/github/homeWork/machineTranslation/data/train.txt") print("load test data...") test, _ = load("/home/laboratory/github/homeWork/machineTranslation/data/test.txt") nodeFeatureSize = Sample.LabelSize * Sample.DictLength edgeDeatureSize = Sample.LabelSize * Sample.LabelSize * Sample.DictLength crf = CRFBin(nodeFeatureSize, edgeDeatureSize, len(labelTableverse)) print("training...") #0.01 crf.SGA(train[0:30], iterations=1000, a0=1, validate=None) print("sample...") labels = crf.Sample(train[1]) print("prediction: " + str(labels)) print("true : " + str(train[1].Labels)) labelStrs = [] labels = crf.Sample(test[0]) print("prediction: " + str(labels)) print("true : " + str(test[0].Labels)) labelStrs = [] labels = crf.Sample(test[1]) print("prediction: " + str(labels)) print("true : " + str(test[1].Labels)) labelStrs = [] labels = crf.Sample(test[2]) print("prediction: " + str(labels)) print("true : " + str(test[2].Labels))
python
# architecture.py --- # # Filename: architecture.py # Description: defines the architecture of the 3DSmoothNet # Author: Zan Gojcic, Caifa Zhou # # Project: 3DSmoothNet https://github.com/zgojcic/3DSmoothNet # Created: 04.04.2019 # Version: 1.0 # Copyright (C) # IGP @ ETHZ # Code: # Import python dependencies import tensorflow as tf import numpy as np # Import custom functions from core import ops def network_architecture(x_anc,x_pos, dropout_rate, config, reuse=False): # Join the 3DSmoothNet structure with the desired output dimension net_structure = [1, 32, 32, 64, 64, 128, 128] outputDim = config.output_dim channels = [item for sublist in [net_structure, [outputDim]] for item in sublist] # In the third layer stride is 2 stride = np.ones(len(channels)) stride[2] = 2 # Apply dropout in the 6th layer dropout_flag = np.zeros(len(channels)) dropout_flag[5] = 1 # Initalize data input_anc = x_anc input_pos = x_pos layer_index = 0 # Loop over the desired layers with tf.name_scope('3DIM_cnn') as scope: for layer in np.arange(0, len(channels)-2): scope_name = "3DIM_cnn" + str(layer_index+1) with tf.name_scope(scope_name) as inner_scope: input_anc, input_pos = conv_block(input_anc, input_pos, [channels[layer], channels[layer + 1]], dropout_flag[layer], dropout_rate, layer_index, stride_input=stride[layer], reuse=reuse) layer_index += 1 with tf.name_scope('3DIM_cnn7') as inner_scope: input_anc, input_pos = out_block(input_anc, input_pos, [channels[-2], channels[-1]], layer_index, reuse=reuse) return ops.l2_normalize(input_anc), \ ops.l2_normalize(input_pos) def conv_block(input_anc, input_pos, channels, dropout_flag, dropout_rate, laxer_idx, stride_input=1, k_size=3, padding_type='SAME', reuse=False): # Traditional 3D conv layer followed by batch norm and relu activation i_size = input_anc.get_shape().as_list()[-2]/stride_input weights = ops.weight([k_size, k_size, k_size, channels[0], channels[1]], layer_name='wcnn' + str(laxer_idx+1), reuse=reuse) bias = ops.bias([i_size, i_size, i_size, channels[1]], layer_name='bcnn' + str(laxer_idx+1),reuse=reuse) conv_output_anc = tf.add(ops.conv3d(input_anc, weights, stride=[stride_input,stride_input, stride_input], padding=padding_type),bias) conv_output_pos = tf.add(ops.conv3d(input_pos, weights, stride=[stride_input, stride_input, stride_input], padding=padding_type),bias) conv_output_anc = ops.batch_norm(conv_output_anc) conv_output_pos = ops.batch_norm(conv_output_pos) conv_output_anc = ops.relu(conv_output_anc) conv_output_pos = ops.relu(conv_output_pos) if dropout_flag: conv_output_anc = ops.dropout(conv_output_anc, dropout_rate=dropout_rate) conv_output_pos = ops.dropout(conv_output_pos, dropout_rate=dropout_rate) return conv_output_anc, conv_output_pos def out_block(input_anc, input_pos, channels, laxer_idx, stride_input=1, k_size=8, padding_type = 'VALID', reuse=False): # Last conv layer, flatten the output weights = ops.weight([k_size, k_size, k_size, channels[0], channels[1]], layer_name='wcnn' + str(laxer_idx+1), reuse=reuse) bias = ops.bias([1, 1, 1, channels[1]], layer_name='bcnn' + str(laxer_idx + 1),reuse=reuse) conv_output_anc = tf.add(ops.conv3d(input_anc, weights, stride=[stride_input,stride_input, stride_input], padding=padding_type), bias) conv_output_pos = tf.add(ops.conv3d(input_pos, weights, stride=[stride_input, stride_input, stride_input], padding=padding_type), bias) conv_output_anc = ops.batch_norm(conv_output_anc) conv_output_pos = ops.batch_norm(conv_output_pos) conv_output_anc = tf.contrib.layers.flatten(conv_output_anc) conv_output_pos = tf.contrib.layers.flatten(conv_output_pos) return conv_output_anc, conv_output_pos
python
from django.db import models from django.contrib.auth.models import User class UserProfile(models.Model): """ Extension of User model """ user = models.OneToOneField(User, on_delete=models.CASCADE, primary_key=True) # if vacation mode is set to true, task streaks will not be reset vacation = models.BooleanField(default=False)
python
# -*- coding: utf-8 -*- """DigitRecognizer.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/149_-4guTkO2Vzex8bjA402nPcJ_Z7G7W #***Digit Recognizer(MNIST) dataset using CNN*** """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import zipfile zip=zipfile.ZipFile('train.csv (2).zip') zip.extractall() df=pd.read_csv('train.csv') df=df.dropna(how='any') df df['label'].unique() y = df["label"] X = df.drop(labels=["label"],axis=1) X y X = X / 255.0 X X = X.values.reshape(-1,28,28,1) X from tensorflow.keras.utils import to_categorical y = to_categorical(y, 10) y from sklearn.model_selection import train_test_split X_train, X_val, Y_train, Y_val = train_test_split(X, y, test_size = 0.25, random_state=42) print("x_train shape",X_train.shape) print("x_val shape",X_val.shape) print("y_train shape",Y_train.shape) print("y_val shape",Y_val.shape) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import MaxPooling2D from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Dense from tensorflow.keras.layers import BatchNormalization from tensorflow.keras.layers import Dropout from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.optimizers import SGD model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', input_shape=(28, 28, 1))) model.add(BatchNormalization()) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(100, activation='relu', kernel_initializer='he_uniform')) model.add(BatchNormalization()) model.add(Dense(10, activation='softmax')) opt = SGD(lr=0.01, momentum=0.9) model.compile(optimizer=opt,loss='categorical_crossentropy',metrics=['accuracy']) datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=5, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train) model.fit(datagen.flow(X_train,Y_train, batch_size=20), validation_data = (X_val,Y_val),epochs = 1, steps_per_epoch=X_train.shape[0] ) model.save('DR.h5') print("Accuracy of the model is --> " , model.evaluate(X_val, Y_val, batch_size=20)[1]*100 , "%") print("Loss of the model is --> " , model.evaluate(X_val, Y_val, batch_size=20)[0]) """#***Testing the model***""" zip=zipfile.ZipFile('test.csv.zip') zip.extractall() from tensorflow.keras.models import load_model model=load_model('DR.h5') print("loaded model from disk") test=pd.read_csv('test.csv') test=test.dropna(how='any') test X_test = test / 255.0 X_test = X_test.values.reshape(-1,28,28,1) X_test labels = model.predict(X_test) labels = np.argmax(labels, axis=1) len(labels) ss = pd.read_csv("sample_submission.csv") ss.head() index = test.index.values + 1 data = {'ImageId' : index, "Label" : labels} df = pd.DataFrame(data=data) df.head() df.to_csv('submission.csv', index=False) df final = pd.DataFrame({'ImageId' : index, "Label" : labels.astype(int).ravel()}) final.to_csv("final_submission.csv",index = False)
python
# See LICENSE file for full copyright and licensing details. #from . import models
python
import numpy as np import utils # class Piece: # def __init__(self,color = 0, pos=(-1,-1)): # self.color = color # self.pos = pos class Player: def __init__(self, collected_flag=np.zeros(9), collected_shape_dict={}, collected_num=0): self.collected_flag = np.zeros((9,2)) # 收集过的点数及是否使用 self.collected_shape_dict = {} # 收集到的形状 self.collect_num = 0 # 收集了几种点数,4种即胜利 def new_remove(self, position_list, size): self.collected_flag[size, 0] = 1 self.collected_shape_dict[size] = position_list self.collect_num += 1 def new_convert(self): pass class State: def __init__(self): self.turn = 0 self.board_state = np.zeros((3,3)) # board_state element: 1=black, -1=white, 0=none self.shape_area_selected_index = - 1 # -1 = no select, 0 = first self.convert_shape_selected = -1 # -1 = no select, 2 = selected shape size = 2 self.player1 = Player() # Black self.player2 = Player() # White self.result = 0 # 0 = Going, 1 = Black win, 2 = White win def update_board(self, position, operation): # operation 1 = move, 3 = remove, 2 = convert player = self.player1 if self.turn % 2 == 0 else self.player2 # if operation == 1 and self.convert_shape_selected == -1: # move or convert # if self.board_state[position] == 0: # self.board_state[position] = 1 if self.turn % 2 == 0 else -1 # self.next_turn() if operation == 1 and self.board_state[position] == 0: # move self.board_state[position] = 1 if self.turn % 2 == 0 else -1 self.next_turn() elif operation == 1 and self.convert_shape_selected != -1: # convert selected_shape_size = self.convert_shape_selected if player.collected_flag[selected_shape_size, 1] == 0: # unused position_list = self.search_fit_shape(position, selected_shape_size) if position_list != []: print("Convert shape") for pos in position_list: self.board_state[pos] *= -1 player.collected_flag[selected_shape_size, 1] = 1 # mark as used self.next_turn() else: print("This shape has been used") elif operation == 3: # remove #if self.board_state[position] == 1 and self.turn % 2 == 0: position_list, num_list = self.shape_find(position,pos_list=[],flag=np.zeros((3,3)), num=[0]) size = num_list.pop() print('Remove detect: ',position_list, size) if size > 1: if player.collected_flag[size, 0] == 0: player.new_remove(position_list, size) # print(self.player1.collected_flag[size,0]) for pos in position_list: self.board_state[pos] = 0 self.next_turn() elif operation == 2: # wheel click pass def check_result(self): player = player = self.player1 if self.turn % 2 == 0 else self.player2 chess_color = 1 if self.turn % 2 == 0 else -1 black_count = 0 white_count = 0 # result 0 = Going, 1 = black win, 2 = white win if self.player1.collect_num >= 4: self.result = 1 return 1 # white win by collecting 4 shapes elif self.player2.collect_num >= 4: self.result = 2 return 2 # black win by collecting 4 shapes if self.turn > 1: for i in range(3): for j in range(3): if self.board_state[i,j] == 1: black_count+=1 elif self.board_state[i,j] == -1: white_count+=1 if black_count == 0: self.result = 2 return 2 # white win by no black pieces existing elif white_count == 0: self.result = 1 return 1 # black win by no white pieces existing trapped_dead_flag = 0 # Check trapped dead if black_count+white_count == 9: trapped_dead_flag = 1 for i in range(3): # check whether can remove or not #if trapped_dead_flag == 1: for j in range(3): if self.board_state[i, j] == chess_color: position = (i, j) position_list, num_list = self.shape_find(position, pos_list=[], flag=np.zeros((3, 3)), num=[0]) size = num_list.pop() # print('Remove detect: ', position_list, size) if size > 1: if player.collected_flag[size, 0] == 0: print("Find fit shape to remove") trapped_dead_flag = 0 # can do remove break if trapped_dead_flag == 0: break if trapped_dead_flag == 1: for flag_index in range(9): # check whether can convert or not if trapped_dead_flag == 1 and \ player.collected_flag[flag_index, 0] == 1 \ and player.collected_flag[flag_index, 1] == 0: for i in range(3): # if trapped_dead_flag == 1: for j in range(3): selected_shape_size = flag_index position = (i, j) position_list = self.search_fit_shape(position, selected_shape_size) if position_list != []: print("Find fit shape to convert") trapped_dead_flag = 0 # can do convert break if trapped_dead_flag == 0: break if trapped_dead_flag == 0: break if trapped_dead_flag == 1: self.result = 2 if self.turn % 2 == 0 else 1 # print("Trapped dead!") return self.result return self.result def shape_find(self,position,pos_list,flag,num): position_X, position_Y = position if position_X < 0 or position_X > 2 or position_Y < 0 or position_Y > 2: return if (self.board_state[position] == 1 and self.turn % 2 == 0)\ or (self.board_state[position] == -1 and self.turn % 2) == 1: if flag[position] == 0: pos_list.append(position) flag[position] = 1 num.append(num.pop() + 1) self.shape_find(position=(position_X - 1,position_Y), \ pos_list=pos_list, flag=flag, num=num) self.shape_find(position=(position_X + 1, position_Y), \ pos_list=pos_list, flag=flag, num=num) self.shape_find(position=(position_X, position_Y - 1), \ pos_list=pos_list, flag=flag, num=num) self.shape_find(position=(position_X, position_Y + 1), \ pos_list=pos_list, flag=flag, num=num) return pos_list,num def search_fit_shape(self, target_position, selected_shape_size): player = self.player1 if self.turn % 2 == 0 else self.player2 # selected_shape_size = self.convert_shape_selected shape = player.collected_shape_dict[selected_shape_size] # print("Shape:", shape) rel_XY_list = [] # 存储以第一个点为基准的相对距离 pos0 = shape[0] #pos0_X, pos0_Y = pos0 for pos in shape: #pos_X, pos_Y = pos #rel_XY = (pos_X-pos0_X, pos_Y-pos0_Y) rel_XY = utils.minus_tuple(pos,pos0) rel_XY_list.append(rel_XY) # print("rel_XY_list: ", rel_XY_list) chess_color = 1 if self.turn % 2 == 0 else -1 position_list = [] for i in range(3): for j in range(3): #if self.board_state[(i,j)] == chess_color: fit_color_count = 0 position_list = [] click_fit_flag = 0 for rel_XY in rel_XY_list: check_X, check_Y = utils.add_tuple((i,j), rel_XY) if check_X<0 or check_X>2 or check_Y<0 or check_Y>2: position_list = [] break if self.board_state[check_X, check_Y] != -chess_color: position_list = [] break # print("fit_color_count: ", fit_color_count) position_list.append((check_X, check_Y)) fit_color_count += 1 if target_position == (check_X, check_Y): click_fit_flag = 1 if fit_color_count == selected_shape_size: if click_fit_flag == 1: # print("Find fit shape") return position_list else: position_list = [] break return position_list def next_turn(self): self.turn += 1 def update_convert_shape_selected(self, area_index, player_id): self.shape_area_selected_index = area_index if area_index == -1: self.convert_shape_selected = -1 return True shape_count = 0 player = self.player1 if player_id == 1 else self.player2 for i in range(9): # convert area_index to convert_shape_selected if player.collected_flag[i, 0] == 1: shape_count += 1 if shape_count > area_index: self.convert_shape_selected = i return True self.convert_shape_selected = -1 return False
python
"""Integration with nest devices.""" import json import logging import sys from google.appengine.api import urlfetch from google.appengine.ext import ndb from appengine import account, device, rest @device.register('nest_thermostat') class NestThermostat(device.Device): """Class represents a Nest thermostat.""" temperature = ndb.FloatProperty() humidity = ndb.FloatProperty() target_temperature = ndb.FloatProperty() def get_categories(self): return ['CLIMATE'] def handle_event(self, event): self.account = event['account'] self.humidity = event['humidity'] self.temperature = event['ambient_temperature_c'] self.device_name = event['name_long'] self.target_temperature = event['target_temperature_c'] @device.register('nest_protect') class NestProtect(device.Device): """Class represents a Nest protect (smoke alarm).""" def get_categories(self): return ['CLIMATE'] def handle_event(self, event): self.account = event['account'] self.device_name = event['name_long'] @account.register('nest') class NestAccount(account.Account): """Class represents a Nest account.""" AUTH_URL = ('https://home.nest.com/login/oauth2?' 'client_id=%(client_id)s&state=%(state)s') ACCESS_TOKEN_URL = ('https://api.home.nest.com/oauth2/access_token?' 'client_id=%(client_id)s&code=%(auth_code)s&' 'client_secret=%(client_secret)s&' 'grant_type=authorization_code') API_URL = 'https://developer-api.nest.com/devices.json?auth=%(access_token)s' STRUCTURES_URL = ('https://developer-api.nest.com/structures.json' '?auth=%(access_token)s') SINGLE_STRUCTURE_URL = ('https://developer-api.nest.com/structures/' '%(id)s?auth=%(access_token)s') def __init__(self, *args, **kwargs): super(NestAccount, self).__init__(*args, **kwargs) # pylint: disable=invalid-name from common import creds self.CLIENT_ID = creds.NEST_CLIENT_ID self.CLIENT_SECRET = creds.NEST_CLIENT_SECRET def get_human_type(self): return 'Nest' def set_away(self, value): """Set away status of all structures.""" structures = self.do_request(self.STRUCTURES_URL) logging.info(structures) value = 'away' if value else 'home' for structure_id in structures.iterkeys(): url = self.SINGLE_STRUCTURE_URL % {'id': structure_id, 'access_token': self.access_token} request_data = json.dumps({'away': value}) logging.info('Sending request "%s" to %s', request_data, url) try: self.do_request( url, payload=request_data, method=urlfetch.PUT) except: logging.error('Setting Away on nest failed', exc_info=sys.exc_info()) @rest.command def refresh_devices(self): if self.access_token is None: logging.info('No access token, skipping.') return result = self.do_request(self.API_URL) logging.info(result) events = [] if 'smoke_co_alarms' in result: for protect_id, protect_info in result['smoke_co_alarms'].iteritems(): protect_info['account'] = self.key.string_id() events.append({ 'device_type': 'nest_protect', 'device_id': 'nest-protect-%s' % protect_id, 'event': protect_info, }) if 'thermostats' in result: for thermostat_id, thermostat_info in result['thermostats'].iteritems(): thermostat_info['account'] = self.key.string_id() events.append({ 'device_type': 'nest_thermostat', 'device_id': 'nest-thermostat-%s' % thermostat_id, 'event': thermostat_info, }) device.process_events(events)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os def run_tests(**options): import django import sys from django.conf import settings from ginger.conf.settings import template_settings defaults = dict( MIDDLEWARE_CLASSES=( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ), TEMPLATE_DEBUG = True, DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:' } }, TEMPLATES = template_settings(dirs=[os.path.join(os.path.dirname(__file__), 'test_templates'),]) ) defaults.update(options) settings.configure(**defaults) django.setup() # Run the test suite, including the extra validation tests. from django.test.utils import get_runner TestRunner = get_runner(settings) test_runner = TestRunner(verbosity=1, interactive=False, failfast=False) failures = test_runner.run_tests(sys.argv[1:] or settings.INSTALLED_APPS) return failures urlpatterns = [] ROOT_URLCONF = 'runtests' INSTALLED_APPS = [ # 'django_nose', 'ginger', 'ginger.contrib.staging', ] def main(): failures = run_tests( INSTALLED_APPS=INSTALLED_APPS, ROOT_URLCONF=ROOT_URLCONF, # TEST_RUNNER='django_nose.NoseTestSuiteRunner' ) sys.exit(failures) if __name__ == "__main__": main()
python
from __future__ import print_function import os from os.path import dirname, join, abspath, isdir import sys import json import requests try: from urlparse import urljoin except: from urllib.parse import urljoin # python 3.x # http://python-redmine.readthedocs.org/ from redmine import Redmine if __name__=='__main__': SRC_ROOT = dirname(dirname(abspath(__file__))) sys.path.append(SRC_ROOT) from datetime import datetime from utils.msg_util import * class RedmineIssueDownloader: """ For a given Redmine project, download the issues in JSON format """ #TIME_FORMAT_STRING = '%Y-%m%d-%H%M' TIME_FORMAT_STRING = '%Y-%m%d' # Redmine tickets are written to JSON files with the naming convention "(issue id).json" # For file sorting, preceding zeros are tacked on. # Example: If ZERO_PADDING_LEVEL=5: # issue #375 is written to file "00375.json" # issue #1789 is written to file "01789.json" # issue #2 is written to file "00002.json" # # If your issue numbers go beyond 99,999 then increase the ZERO_PADDING_LEVEL # ZERO_PADDING_LEVEL = 5 def __init__(self, redmine_server, redmine_api_key, project_name_or_identifier, issues_base_directory, **kwargs): """ Constructor :param redmine_server: str giving the url of the redmine server. e.g. https://redmine.myorg.edu/ :param redmine_api_key: str with a redmine api key :param project_name_or_identifier: str or int with either the redmine project id or project identifier :param issues_base_directory: str, directory to download the redmine issues in JSON format. Directory will be crated :param specific_tickets_to_download: optional, list of specific ticket numbers to download. e.g. [2215, 2216, etc] """ self.redmine_server = redmine_server self.redmine_api_key = redmine_api_key self.project_name_or_identifier = project_name_or_identifier self.issues_base_directory = issues_base_directory self.issue_status = kwargs.get('issue_status', '*') # values 'open', 'closed', '*' self.specific_tickets_to_download = kwargs.get('specific_tickets_to_download', None) self.redmine_conn = None self.redmine_project = None self.issue_dirname = join(self.issues_base_directory\ , datetime.today().strftime(RedmineIssueDownloader.TIME_FORMAT_STRING)\ ) self.setup() def setup(self): self.connect_to_redmine() if not isdir(self.issue_dirname): os.makedirs(self.issue_dirname) msgt('Directory created: %s' % self.issue_dirname) def connect_to_redmine(self): self.redmine_conn = Redmine(self.redmine_server, key=self.redmine_api_key) self.redmine_project = self.redmine_conn.project.get(self.project_name_or_identifier) msg('Connected to server [%s] project [%s]' % (self.redmine_server, self.project_name_or_identifier)) def get_issue_count(self): msgt('get_issue_count') issue_query_str = 'issues.json?project_id=%s&limit=1&status_id=%s' \ % (self.project_name_or_identifier, self.issue_status) url = urljoin(self.redmine_server, issue_query_str) msg('Issue count url: %s' % url) # Note: Auth purposely uses the API KEY "as a username with a random password via HTTP Basic authentication" # from: http://www.redmine.org/projects/redmine/wiki/Rest_api # auth = (self.redmine_api_key, 'random-pw') r = requests.get(url, auth=auth) if not r.status_code == 200: msgt('Error!') msg(r.text) raise Exception("Request for issue count failed! Status code: %s\nUrl: %s\nAuth:%s" % (r.status_code, url, auth)) msg('Convert result to JSON') try: data = r.json() # Let it blow up except: msgt('Error!') msg('Data from request (as text): %s' % r.text) raise Exception('Failed to convert issue count data to JSON.\nUrl: %s\nAuth:%s" % (url, auth)') if not data.has_key('total_count'): msgx('Total count not found in data: \n[%s]' % data) return data['total_count'] """ from __future__ import print_function import requests project_id = 'dvn' redmine_api_key = 'some-key' url = 'https://redmine.hmdc.harvard.edu/issues.json?project_id=%s&limit=1' % project_id #--------------------- # Alternative 1 #--------------------- auth = (redmine_api_key, 'random-pw') r = requests.get(url, auth=auth) print (r.text) print (r.status_code) data = r.json() print (data['total_count']) #--------------------- # Alternative 2 #--------------------- url2 = '%s&key=%s' % (url, redmine_api_key) r = requests.get(url2) print (r.text) print (r.status_code) data = r.json() print (data['total_count']) """ def write_issue_list(self, issue_fname, issue_dict): if issue_fname is None or not type(issue_dict) == dict: msgx('ERROR: write_issue_list, issue_fname is None or issue_dict not dict') return fh = open(issue_fname, 'w') fh.write(json.dumps(issue_dict)) fh.close() msg('file updated: %s' % issue_fname) def show_project_info(self): msg(self.redmine_project._attributes) def download_tickets2(self): """ fyi: Retrieving total count via regular api, not python redmine package """ issue_dict = {} issue_fname = join(self.issue_dirname, 'issue_list.json') msg('Gathering issue information.... (may take a minute)') ticket_cnt = self.get_issue_count() RECORD_RETRIEVAL_SIZE = 100 num_loops = ticket_cnt / RECORD_RETRIEVAL_SIZE extra_recs = ticket_cnt % RECORD_RETRIEVAL_SIZE if extra_recs > 0: num_loops+=1 #num_loops=3 msg('num_loops: %d' % num_loops) msg('extra_recs: %d' % extra_recs) cnt = 0 for loop_num in range(0, num_loops): start_record = loop_num * RECORD_RETRIEVAL_SIZE end_record = (loop_num+1) * RECORD_RETRIEVAL_SIZE msgt('Retrieve records via idx (skip last): %s - %s' % (start_record, end_record)) # limit of 100 is returning 125 rec_cnt = 0 for item in self.redmine_conn.issue.filter(project_id=self.project_name_or_identifier, status_id=self.issue_status, sort='id', offset=start_record)[:RECORD_RETRIEVAL_SIZE]: #, limit=RECORD_RETRIEVAL_SIZE): #[start_record:end_record] rec_cnt +=1 cnt +=1 msg('(%s) %s - %s' % (rec_cnt, item.id, item.subject)) if self.specific_tickets_to_download is not None: # only download specific tickets # if item.id in self.specific_tickets_to_download: self.save_single_issue(item) issue_dict[self.pad_issue_id(item.id)] = item.subject continue # go to next item else: # Get all tickets # self.save_single_issue(item) issue_dict[self.pad_issue_id(item.id)] = item.subject if rec_cnt == RECORD_RETRIEVAL_SIZE: break #continue #self.save_single_issue(item) self.write_issue_list(issue_fname, issue_dict) def pad_issue_id(self, issue_id): if issue_id is None: msgx('ERROR. pad_issue_id. The "issue_id" is None') return ('%s' % issue_id).zfill(self.ZERO_PADDING_LEVEL) def save_single_issue(self, single_issue): """ Write a single issue object to a file using JSON format :param single_issue: Issue object """ if single_issue is None: msgx('ERROR. download_single_issue. The "single_issue" is None') ## FIX: Expensive adjustment -- to pull out full relation and journal info json_str = self.get_single_issue(single_issue.id) # another call to redmine #json_str = json.dumps(single_issue._attributes, indent=4) fullpath = join(self.issue_dirname, self.pad_issue_id(single_issue.id) + '.json') open(fullpath, 'w').write(json_str) msg('Ticket retrieved: %s' % fullpath) def process_files(self, issues_dirname=None): if issues_dirname is None: issues_dirname = self.issue_dirname tracker_info = [] status_info = [] priority_info = [] fnames = [x for x in os.listdir(issues_dirname) if x.endswith('.json')] for fname in fnames: content = open(join(issues_dirname, fname), 'rU').read() d = json.loads(content) # Tracker Info tracker = d.get('tracker', None) if tracker: tracker_str = '%s|%s' % (tracker['id'], tracker['name']) if not tracker_str in tracker_info: tracker_info.append(tracker_str) # Status Info status = d.get('status', None) if status: status_str = '%s|%s' % (status['id'], status['name']) if not status_str in status_info: status_info.append(status_str) # Priority Info priority = d.get('priority', None) if priority: priority_str = '%s|%s' % (priority['id'], priority['name']) if not priority_str in priority_info: priority_info.append(priority_str) #print d.keys() msg(tracker_info) msg(status_info) msg(priority_info) def get_single_issue(self, issue_id): """ Download a single issue :param ticket_id: int of issue id in redmine :returns: json string with issue information """ # test using .issue.get issue = self.redmine_conn.issue.get(issue_id, include='children,attachments,journals,watchers,relations') json_str = json.dumps(issue._attributes, indent=4) msg('Issue retrieved: %s' % issue_id) return json_str if __name__=='__main__': from settings.base import REDMINE_SERVER, REDMINE_PROJECT_ID, REDMINE_API_KEY, REDMINE_ISSUES_DIRECTORY #rn = RedmineIssueDownloader(REDMINE_SERVER, REDMINE_API_KEY, 'dvn', REDMINE_ISSUES_DIRECTORY) #Only import some specific tickets #kwargs = dict(specific_tickets_to_download=[1371, 1399, 1843, 2214, 2215, 2216, 3362, 3387, 3397, 3400, 3232, 3271, 3305, 3426, 3425, 3313, 3208]) rn = RedmineIssueDownloader(REDMINE_SERVER, REDMINE_API_KEY, REDMINE_PROJECT_ID, REDMINE_ISSUES_DIRECTORY) rn.download_tickets2() msg(rn.get_issue_count()) #rn.show_project_info() #rn.process_files() #msg(rn.get_single_issue(3232)) """ import json c = open('issue_list2.txt', 'rU').read() d = json.loads(c) print(len(d)) """
python
import pygame from pygame.locals import * from OpenGL.GL import * from OpenGL.GLU import * vertices = ( # ( x, y, z) ( 1, -1, -1), # A ( 1, 1, -1), # B (-1, 1, -1), # C (-1, -1, -1), # D ( 1, -1, 1), # E ( 1, 1, 1), # F (-1, -1, 1), # G (-1, 1, 1) # H ) edges = ( (0, 1), (0, 3), (0, 4), (2, 1), (2, 3), (2, 7), (6, 3), (6, 4), (6, 7), (5, 1), (5, 4), (5, 7), # (7, 1), # (5, 2), # (1, 4), # (5, 0), # (7, 4), # (6, 5), # (6, 2), # (7, 3), # (2, 0), # (1, 3), # (6, 0), # (3, 4), # (7, 0), # (5, 3), # (2, 4), # (1, 6) ) surfaces = ( (0, 1, 2, 3), (3, 2, 7, 6), (6, 7, 5, 4), (4, 5, 1, 0), (1, 5, 7, 2), (4, 0, 3, 6) ) color = ( (1, 0, 0), (0, 1, 0), (0, 0, 0), (1, 1, 1), (0, 1, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 0), (0, 0, 1), (0, 1, 0), ) def Cube(): glBegin(GL_QUADS) for surface in surfaces: x = 0 glColor3fv((1, 0, 0)) for vertex in surface: x += 1 glColor3fv(color[x]) glVertex3fv(vertices[vertex]) glEnd() glBegin(GL_LINES) glColor3fv((0, 0.9, 0)) for edge in edges: for vertex in edge: glVertex3fv(vertices[vertex]) glEnd() def main(): pygame.init() screen = pygame.display.set_mode((800, 600), DOUBLEBUF | OPENGL) gluPerspective(45, (800 / 600), 0.1, 50) glTranslatef(0, 0, -5) glRotatef(0, 0, 0, 0) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() glRotatef(1, 1, 1, 1) glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) Cube() pygame.display.flip() pygame.time.wait(10) main()
python
#!/usr/bin/env python import argparse import math from collections import Counter from spawningtool.parser import parse_replay def map_replays(filenames, map_fn, results, update_fn, cache_dir=None, **kwargs): for filename in filenames: filename = filename.rstrip('\n') replay = parse_replay(filename, cache_dir=cache_dir) map_fn(replay, results, update_fn, **kwargs) def check_supplies(replay, results, update_fn, condition=None, min_time=None, max_time=None): if len(replay['players']) != 2: return players = list(replay['players'].values()) player_1 = players[0] player_2 = players[1] if player_1['is_winner'] == player_2['is_winner']: return is_counting_player_1 = not condition or condition(replay, player_1, player_2) is_counting_player_2 = not condition or condition(replay, player_2, player_1) if is_counting_player_1 or is_counting_player_2: if min_time is None: min_time = 0 min_time = int(min_time) * 16 if max_time is None: max_time = 10000 max_time = int(max_time) * 16 player_2_supply = player_2['supply'] supply_len = len(player_2_supply) for i, data in enumerate(player_1['supply']): if i >= supply_len or min_time > data[0]: continue if max_time < data[0]: # we're not going down at this point return diff = data[1] - player_2_supply[i][1] if is_counting_player_1: update_fn(results, player_1, player_2, data[1], player_2_supply[i][1], data[0]) if is_counting_player_2: update_fn(results, player_2, player_1, player_2_supply[i][1], data[1], data[0]) def count_win_rate_by_supply_difference(filenames, condition=None, cache_dir=None, min_time=None, max_time=None): results = { 'num_games_counter': Counter(), 'num_wins_counter': Counter(), } def update_fn(results, player_1, player_2, supply_1, supply_2, frames): diff = supply_1 - supply_2 results['num_games_counter'][diff] += 1 if player_1['is_winner']: results['num_wins_counter'][diff] += 1 map_replays(filenames, check_supplies, results, update_fn, cache_dir, condition=condition, min_time=min_time, max_time=max_time) return [ [str(i), str(results['num_wins_counter'][i]), str(results['num_games_counter'][i])] for i in range(-100, 100)] def count_win_rate_by_supply_ratio(filenames, condition=None, cache_dir=None, min_time=None, max_time=None): results = { 'num_games_counter': Counter(), 'num_wins_counter': Counter(), } def update_fn(results, player_1, player_2, supply_1, supply_2, frames): if supply_1 == 0 or supply_2 == 0: return result = int(round(math.log(1.0 * supply_1 / supply_2) * 50)) results['num_games_counter'][result] += 1 if player_1['is_winner']: results['num_wins_counter'][result] += 1 map_replays(filenames, check_supplies, results, update_fn, cache_dir, condition=condition, min_time=min_time, max_time=max_time) return [ [str(i), str(results['num_wins_counter'][i]), str(results['num_games_counter'][i])] for i in range(-100, 100)] def count_win_rate_by_time_supply_difference(filenames, condition=None, cache_dir=None, min_time=None, max_time=None): results = { 'num_games_counter': Counter(), 'num_wins_counter': Counter(), } def update_fn(results, player_1, player_2, supply_1, supply_2, frames): diff = supply_1 - supply_2 minute = frames / (16 * 60) index = (diff, minute) results['num_games_counter'][index] += 1 if player_1['is_winner']: results['num_wins_counter'][index] += 1 map_replays(filenames, check_supplies, results, update_fn, cache_dir, condition=condition, min_time=min_time, max_time=max_time) return [ [str(index[0]), str(index[1]), str(results['num_wins_counter'][index]), str(results['num_games_counter'][index])] for index in list(results['num_wins_counter'].keys()) if results['num_games_counter'][index] > 30] RACE_BY_LETTER = {'z': 'Zerg', 't': 'Terran', 'p': 'Protoss'} OBJECTIVES = { 'supply_difference': count_win_rate_by_supply_difference, 'supply_ratio': count_win_rate_by_supply_ratio, 'supply_time_difference': count_win_rate_by_time_supply_difference, } def main(): """ Execute spawningtool """ parser = argparse.ArgumentParser() parser.add_argument('filenames', help='text file with a list of SC2Replay paths') parser.add_argument('--cache-dir', help='Directory to cache results in') parser.add_argument('--matchup', help='Which matchup to check') parser.add_argument('--objective', help='What is being calculated') parser.add_argument('--min-time', help='lower bound to count') parser.add_argument('--max-time', help='upper bound to count') args = parser.parse_args() condition = None if args.matchup and len(args.matchup) == 3: player_1_race = RACE_BY_LETTER[args.matchup[0].lower()] player_2_race = RACE_BY_LETTER[args.matchup[2].lower()] condition = lambda replay, player_1, player_2: \ player_1['race'] == player_1_race and player_2['race'] == player_2_race objective_fn = OBJECTIVES.get(args.objective, count_win_rate_by_supply_difference) with open(args.filenames, 'r') as fin: result = objective_fn(fin, condition=condition, cache_dir=args.cache_dir, min_time=args.min_time, max_time=args.max_time) for row in result: print(','.join([str(val) for val in row])) if __name__ == '__main__': main()
python
import numpy as np class Exploration_Noise: def reset(self): """ Reset the noise generator. """ pass def process_action(self, a): """ Add noise to the given action. Args: a: the action to be processed Return: the processed action """ raise NotImplementedError class OUNoise_Exploration: """ The OU noise. """ def __init__(self, action_dimension, mu=0, theta=0.15, init_epsilon=0.2, final_epsilon=0.01, explore_len=100000): self.action_dimension = action_dimension self.mu = mu self.theta = theta self.sigma = init_epsilon self.final_sigma = final_epsilon self.sigma_decay = (init_epsilon - final_epsilon) / explore_len self.state = np.ones(self.action_dimension) * self.mu self.extra_info = ['epsilon'] self.reset() def reset(self): self.state = np.ones(self.action_dimension) * self.mu def process_action(self, a): processed_a = a + self.noise() if self.sigma > self.final_sigma: self.sigma -= self.sigma_decay return processed_a, {'epsilon': self.sigma} def noise(self): x = self.state dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(len(x)) self.state = x + dx return self.state class NoNoise_Exploration: def __init__(self): self.extra_info = [] def process_action(self, a): return np.argmax(a), {} def reset(self): pass class EpsilonGreedy_Exploration: """ The epsilon greedy noise. """ def __init__(self, action_n, init_epsilon, final_epsilon, explore_len): self.epsilon = init_epsilon self.epsilon_decay = (init_epsilon - final_epsilon) / explore_len self.final_epsilon = final_epsilon self.extra_info = ['epsilon'] self.n = action_n def process_action(self, a): if np.random.rand() < self.epsilon: new_a = np.random.randint(0, self.n) else: new_a = np.argmax(a) if self.epsilon > self.final_epsilon: self.epsilon -= self.epsilon_decay return new_a, {'epsilon': self.epsilon} def reset(self): pass class Boltzmann_Exploration: """ The Boltzmann noise. """ def __init__(self, action_n, init_epsilon, final_epsilon, explore_len): self.epsilon = init_epsilon self.epsilon_decay = (init_epsilon - final_epsilon) / explore_len self.final_epsilon = final_epsilon self.extra_info = ['epsilon'] self.n = action_n def process_action(self, a): probs = np.exp(a / self.epsilon) new_a = np.argmax(np.random.multinomial(1, probs)) if self.epsilon > self.final_epsilon: self.epsilon -= self.epsilon_decay return new_a, {'epsilon': self.epsilon} def reset(self): pass
python
from scrapy.http import Request from scrapy.spider import BaseSpider from scrapy.selector import HtmlXPathSelector class HackernewsSpider(BaseSpider): name = 'hackernews' allowed_domains = [] start_urls = ['http://news.ycombinator.com'] def parse(self, response): if 'news.ycombinator.com' in response.url: hxs = HtmlXPathSelector(response) titles = sites = hxs.select('//td[@class="title"]//a/text()') for title in titles: print title.extract()
python
import sys sys.path.insert(0, '/home/vagrant/Integration-Testing-Framework/sikuli/examples') from sikuli import * from test_helper import TestHelper from flex_regions import * from Regionplus import * # Setup helper = TestHelper("drag_column") set_flex_helper(helper) # Opening ############# helper.Click("Lexicon.png", "Couldn't find 'Lexicon' button") LEFT_SIDEBAR.Click("LexiconEdit.png", "Couldn't find 'Lexicon Edit' button") # Goal ############# # Not doing the drag-drop directly, so if it fails we can # pinpoint what wasn't found glosses = MID_TOOLBAR.Find("3losses.png", "Couldn't find 'Glosses' column header") target = MID_TOOLBAR.Find("lLexemeJorm_.png", "'Headword' and 'Lexeme Form' headers not where expected") dragDrop(glosses, target) # Check that it's in the new position helper.Find(Pattern("hexemeformHe.png").similar(0.80), "'Glosses' column not in new position") # Closing ############## helper.write_success() # Drag it back to previous position glosses = MID_TOOLBAR.Find("3losses.png", "Couldn't find 'Glosses' column header", restart=True) target = MID_TOOLBAR.Find("LexemeFormIG.png", "'Lexeme Form' and 'Grammatical Info' headers not where expected", restart=True) dragDrop(glosses, target)
python
# Copyright 2018 Datawire. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import typing from collections import deque from subprocess import DEVNULL, PIPE, Popen from threading import Lock, Thread class BackgroundProcessCrash(Exception): def __init__(self, message: str, details: str) -> None: super().__init__(message) self.details = details class _Logger: """Logger that optionally captures what is logged""" def __init__( self, write: typing.Callable[[str], None], do_log: bool, do_capture: bool, max_capture: int, ): self.write = write self.do_log = do_log self.do_capture = do_capture self.finished = Lock() if max_capture < 0: capture = [] # type: typing.MutableSequence[str] else: capture = deque(maxlen=max_capture) self.capture = capture # type: typing.MutableSequence[str] self.finished.acquire() def log(self, line: str) -> None: if self.do_log: self.write(line) if self.do_capture: self.capture.append(line) def finish(self) -> None: self.finished.release() def get_captured(self) -> str: self.finished.acquire() # Block until finish is called return "".join(self.capture).strip() def _launch_command( args: typing.List[str], out_logger: _Logger, err_logger: _Logger, done: typing.Optional[typing.Callable[[Popen], None]] = None, **kwargs: typing.Any ) -> Popen: """ Launch subprocess with args, kwargs. Log stdout and stderr by calling respective callbacks. """ def pump_stream(logger: _Logger, stream: typing.Iterable[str]) -> None: """Pump the stream""" for line in stream: logger.log(line) logger.finish() def joiner() -> None: """Wait for streams to finish, then call done callback""" for th in threads: th.join() if done: done(process) kwargs = kwargs.copy() in_data = kwargs.get("input") if "input" in kwargs: del kwargs["input"] assert kwargs.get("stdin") is None, kwargs["stdin"] kwargs["stdin"] = PIPE elif "stdin" not in kwargs: kwargs["stdin"] = DEVNULL kwargs.setdefault("stdout", PIPE) kwargs.setdefault("stderr", PIPE) kwargs["universal_newlines"] = True # Text streams, not byte streams process = Popen(args, **kwargs) threads = [] if process.stdout: thread = Thread( target=pump_stream, args=(out_logger, process.stdout), daemon=True ) thread.start() threads.append(thread) if process.stderr: thread = Thread( target=pump_stream, args=(err_logger, process.stderr), daemon=True ) thread.start() threads.append(thread) if done and threads: Thread(target=joiner, daemon=True).start() if in_data: process.stdin.write(str(in_data, "utf-8")) process.stdin.close() return process
python
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: yandex/cloud/logging/v1/log_ingestion_service.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.rpc import status_pb2 as google_dot_rpc_dot_status__pb2 from yandex.cloud.logging.v1 import log_entry_pb2 as yandex_dot_cloud_dot_logging_dot_v1_dot_log__entry__pb2 from yandex.cloud.logging.v1 import log_resource_pb2 as yandex_dot_cloud_dot_logging_dot_v1_dot_log__resource__pb2 from yandex.cloud import validation_pb2 as yandex_dot_cloud_dot_validation__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='yandex/cloud/logging/v1/log_ingestion_service.proto', package='yandex.cloud.logging.v1', syntax='proto3', serialized_options=b'\n\033yandex.cloud.api.logging.v1ZCgithub.com/yandex-cloud/go-genproto/yandex/cloud/logging/v1;logging', create_key=_descriptor._internal_create_key, serialized_pb=b'\n3yandex/cloud/logging/v1/log_ingestion_service.proto\x12\x17yandex.cloud.logging.v1\x1a\x17google/rpc/status.proto\x1a\'yandex/cloud/logging/v1/log_entry.proto\x1a*yandex/cloud/logging/v1/log_resource.proto\x1a\x1dyandex/cloud/validation.proto\"\x90\x02\n\x0cWriteRequest\x12?\n\x0b\x64\x65stination\x18\x01 \x01(\x0b\x32$.yandex.cloud.logging.v1.DestinationB\x04\xe8\xc7\x31\x01\x12;\n\x08resource\x18\x02 \x01(\x0b\x32).yandex.cloud.logging.v1.LogEntryResource\x12\x45\n\x07\x65ntries\x18\x03 \x03(\x0b\x32).yandex.cloud.logging.v1.IncomingLogEntryB\t\x82\xc8\x31\x05\x31-100\x12;\n\x08\x64\x65\x66\x61ults\x18\x04 \x01(\x0b\x32).yandex.cloud.logging.v1.LogEntryDefaults\"\x96\x01\n\rWriteResponse\x12\x42\n\x06\x65rrors\x18\x01 \x03(\x0b\x32\x32.yandex.cloud.logging.v1.WriteResponse.ErrorsEntry\x1a\x41\n\x0b\x45rrorsEntry\x12\x0b\n\x03key\x18\x01 \x01(\x03\x12!\n\x05value\x18\x02 \x01(\x0b\x32\x12.google.rpc.Status:\x02\x38\x01\x32m\n\x13LogIngestionService\x12V\n\x05Write\x12%.yandex.cloud.logging.v1.WriteRequest\x1a&.yandex.cloud.logging.v1.WriteResponseBb\n\x1byandex.cloud.api.logging.v1ZCgithub.com/yandex-cloud/go-genproto/yandex/cloud/logging/v1;loggingb\x06proto3' , dependencies=[google_dot_rpc_dot_status__pb2.DESCRIPTOR,yandex_dot_cloud_dot_logging_dot_v1_dot_log__entry__pb2.DESCRIPTOR,yandex_dot_cloud_dot_logging_dot_v1_dot_log__resource__pb2.DESCRIPTOR,yandex_dot_cloud_dot_validation__pb2.DESCRIPTOR,]) _WRITEREQUEST = _descriptor.Descriptor( name='WriteRequest', full_name='yandex.cloud.logging.v1.WriteRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='destination', full_name='yandex.cloud.logging.v1.WriteRequest.destination', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\350\3071\001', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='resource', full_name='yandex.cloud.logging.v1.WriteRequest.resource', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='entries', full_name='yandex.cloud.logging.v1.WriteRequest.entries', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\202\3101\0051-100', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='defaults', full_name='yandex.cloud.logging.v1.WriteRequest.defaults', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=222, serialized_end=494, ) _WRITERESPONSE_ERRORSENTRY = _descriptor.Descriptor( name='ErrorsEntry', full_name='yandex.cloud.logging.v1.WriteResponse.ErrorsEntry', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='key', full_name='yandex.cloud.logging.v1.WriteResponse.ErrorsEntry.key', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='value', full_name='yandex.cloud.logging.v1.WriteResponse.ErrorsEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'8\001', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=582, serialized_end=647, ) _WRITERESPONSE = _descriptor.Descriptor( name='WriteResponse', full_name='yandex.cloud.logging.v1.WriteResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='errors', full_name='yandex.cloud.logging.v1.WriteResponse.errors', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_WRITERESPONSE_ERRORSENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=497, serialized_end=647, ) _WRITEREQUEST.fields_by_name['destination'].message_type = yandex_dot_cloud_dot_logging_dot_v1_dot_log__entry__pb2._DESTINATION _WRITEREQUEST.fields_by_name['resource'].message_type = yandex_dot_cloud_dot_logging_dot_v1_dot_log__resource__pb2._LOGENTRYRESOURCE _WRITEREQUEST.fields_by_name['entries'].message_type = yandex_dot_cloud_dot_logging_dot_v1_dot_log__entry__pb2._INCOMINGLOGENTRY _WRITEREQUEST.fields_by_name['defaults'].message_type = yandex_dot_cloud_dot_logging_dot_v1_dot_log__entry__pb2._LOGENTRYDEFAULTS _WRITERESPONSE_ERRORSENTRY.fields_by_name['value'].message_type = google_dot_rpc_dot_status__pb2._STATUS _WRITERESPONSE_ERRORSENTRY.containing_type = _WRITERESPONSE _WRITERESPONSE.fields_by_name['errors'].message_type = _WRITERESPONSE_ERRORSENTRY DESCRIPTOR.message_types_by_name['WriteRequest'] = _WRITEREQUEST DESCRIPTOR.message_types_by_name['WriteResponse'] = _WRITERESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) WriteRequest = _reflection.GeneratedProtocolMessageType('WriteRequest', (_message.Message,), { 'DESCRIPTOR' : _WRITEREQUEST, '__module__' : 'yandex.cloud.logging.v1.log_ingestion_service_pb2' # @@protoc_insertion_point(class_scope:yandex.cloud.logging.v1.WriteRequest) }) _sym_db.RegisterMessage(WriteRequest) WriteResponse = _reflection.GeneratedProtocolMessageType('WriteResponse', (_message.Message,), { 'ErrorsEntry' : _reflection.GeneratedProtocolMessageType('ErrorsEntry', (_message.Message,), { 'DESCRIPTOR' : _WRITERESPONSE_ERRORSENTRY, '__module__' : 'yandex.cloud.logging.v1.log_ingestion_service_pb2' # @@protoc_insertion_point(class_scope:yandex.cloud.logging.v1.WriteResponse.ErrorsEntry) }) , 'DESCRIPTOR' : _WRITERESPONSE, '__module__' : 'yandex.cloud.logging.v1.log_ingestion_service_pb2' # @@protoc_insertion_point(class_scope:yandex.cloud.logging.v1.WriteResponse) }) _sym_db.RegisterMessage(WriteResponse) _sym_db.RegisterMessage(WriteResponse.ErrorsEntry) DESCRIPTOR._options = None _WRITEREQUEST.fields_by_name['destination']._options = None _WRITEREQUEST.fields_by_name['entries']._options = None _WRITERESPONSE_ERRORSENTRY._options = None _LOGINGESTIONSERVICE = _descriptor.ServiceDescriptor( name='LogIngestionService', full_name='yandex.cloud.logging.v1.LogIngestionService', file=DESCRIPTOR, index=0, serialized_options=None, create_key=_descriptor._internal_create_key, serialized_start=649, serialized_end=758, methods=[ _descriptor.MethodDescriptor( name='Write', full_name='yandex.cloud.logging.v1.LogIngestionService.Write', index=0, containing_service=None, input_type=_WRITEREQUEST, output_type=_WRITERESPONSE, serialized_options=None, create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_LOGINGESTIONSERVICE) DESCRIPTOR.services_by_name['LogIngestionService'] = _LOGINGESTIONSERVICE # @@protoc_insertion_point(module_scope)
python
""" Tests of simple 2-layer PCBs """ from . import plotting_test_utils import os import mmap import re import logging def expect_file_at(filename): assert(os.path.isfile(filename)) def get_gerber_filename(board_name, layer_slug, ext='.gbr'): return board_name + '-' + layer_slug + ext def find_gerber_aperture(s, ap_desc): m = re.search(r'%AD(.*)' + ap_desc + r'\*%', s) if not m: return None return m.group(1) def expect_gerber_has_apertures(gbr_data, ap_list): aps = [] for ap in ap_list: # find the circular aperture for the outline ap_no = find_gerber_aperture(gbr_data, ap) assert ap_no is not None # apertures from D10 to D999 assert len(ap_no) in [2, 3] aps.append(ap_no) logging.debug("Found apertures {}".format(aps)) return aps def expect_gerber_flash_at(gbr_data, pos): """ Check for a gerber flash at a given point (it's hard to check that aperture is right without a real gerber parser """ repat = r'^X{x}Y{y}D03\*$'.format( x=int(pos[0] * 100000), y=int(pos[1] * 100000) ) m = re.search(repat, gbr_data, re.MULTILINE) assert(m) logging.debug("Gerber flash found: " + repat) def get_mmapped_data(filename): with open(filename) as fo: return mmap.mmap(fo.fileno(), 0, access=mmap.ACCESS_READ) # content of test_sample.py def test_2layer(): ctx = plotting_test_utils.KiPlotTestContext('simple_2layer') ctx.load_yaml_config_file('simple_2layer.kiplot.yaml') ctx.board_name = 'simple_2layer' ctx.do_plot() gbr_dir = ctx.cfg.resolve_output_dir_for_name('gerbers') f_cu_gbr = os.path.join(gbr_dir, get_gerber_filename(ctx.board_name, "F_Cu")) expect_file_at(f_cu_gbr) f_cu_data = get_mmapped_data(f_cu_gbr) ap_ids = expect_gerber_has_apertures(f_cu_data, [ "C,0.200000", "R,2.000000X2.000000", "C,1.000000"]) # expect a flash for the square pad expect_gerber_flash_at(f_cu_data, (140, -100)) ctx.clean_up()
python
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2019-01-09 07:00 from __future__ import unicode_literals import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('sass', '0003_auto_20190109_0659'), ] operations = [ migrations.AlterField( model_name='sitevisit', name='additional_data', field=django.contrib.postgres.fields.jsonb.JSONField(blank=True, default={}, null=True), ), ]
python
""" Fetch ads.txt files from URLs """ from datetime import datetime import logging import os import pandas as pd import requests logger = logging.getLogger(__name__) HEADERS = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.90 Safari/537.36", "Accept": "text/plain" } def fetch_adstxt_file(adstxt_url, timeout=5): logger.info("fetching ads.txt file from %s", adstxt_url) dt = datetime.now() try: response = requests.get(adstxt_url, headers=HEADERS, timeout=timeout) result = { "adstxt_url": adstxt_url, "failed": False, "dt": dt.isoformat(), "exception": None, "status_code": response.status_code, "text": response.text, } except requests.exceptions.RequestException as oops: result = { "adstxt_url": adstxt_url, "failed": True, "dt": dt.isoformat(), "exception": repr(oops), "status_code": None, "text": None, } return result if __name__ == "__main__": logging.basicConfig(level=logging.INFO) all_domains = [] file_path = "unreliable-news/data/fake-news-codex-2018-06.csv" df1 = pd.read_csv(file_path) all_domains.extend(df1["domain"].tolist()) built_with_file = "../data/All-Live-Ads.txt-Sites.csv" df_built_with = pd.read_csv(built_with_file, skiprows=1) all_domains.extend(df_built_with["Domain"].tolist()) adstxt_results = [] for domain in all_domains: adstxt_url = "http://{}/ads.txt".format(domain) adstxt_fetch_result = fetch_adstxt_file(adstxt_url) adstxt_results.append(adstxt_fetch_result)
python
## # Copyright 2021 IBM Corp. All Rights Reserved. # # SPDX-License-Identifier: Apache-2.0 ## import torch from ...._utils import val_clamp from ..node import _NodeActivation from ....constants import Direction from ...parameters.neuron import _NeuronParameters """ Dynamic activation function """ class _NeuronActivation(_NodeActivation, _NeuronParameters): def __init__(self, *args, **kwds): super().__init__(*args, **kwds) self.Xf = 1 - self.alpha self.Xt = self.alpha self.Xmid = 0.5 def function(self, func: str, direction: Direction) -> torch.Tensor: return getattr(self, "_" + func.lower())(direction) @torch.no_grad() def downward_conditional( self, out_bounds: torch.Tensor, f_inv: torch.Tensor, input_terms: torch.Tensor ) -> torch.Tensor: full_and_input = input_terms.sum(dim=-1)[..., None] partial_and_input = (full_and_input - input_terms).flip([-2]) result = 1 + ( (f_inv[..., None] - self.bias + partial_and_input) / self.weights.clamp(min=0) ) unknown = torch.ones_like(result) unknown[..., 0, :] = 0 out_repeat = out_bounds[..., None].repeat_interleave(unknown.shape[-1], dim=-1) result[..., 0, :] = result[..., 0, :].where( out_repeat[..., 0, :] > 1 - self.alpha, unknown[..., 0, :] ) result[..., 1, :] = result[..., 1, :].where( out_repeat[..., 1, :] < self.alpha, unknown[..., 1, :] ) weight_repeat = self.weights[None].repeat_interleave(2, dim=0) result = result.where(weight_repeat != 0, unknown) return val_clamp(result) def _bidirectional(self, direction: Direction): """placeholder for the Bidirectional Neuron This neuron currently uses an AND reformulation to execute """ pass
python
from PIL import Image import pytesseract def extractWords(): img1 = Image.open("Solution\images\img1.jpg") img2 = Image.open("Solution\images\img2.jpg") engText = pytesseract.image_to_string(img1, lang='eng') araText = pytesseract.image_to_string(img2, lang='ara') print(engText) print(araText) extractWords()
python
import lab12 def createSomePlanets(): aPlanet=lab12.Planet("Zorks",2000,30000,100000,5,['Steve','Lou','The Grinch']) bPlanet=lab12.Planet("Zapps",1000,20000,200000,17,[]) print(aPlanet.getName() + " has a radius of " + str(aPlanet.getRadius())) planetList=[aPlanet,bPlanet] for planet in planetList: print(planet.getName() + " has a mass of " + str(planet.getMass())) for planet in planetList: print(planet.getName() + " has " + str(planet.getMoons()) + " moons.") print(bPlanet.getName() + " has a circumference of " + str(bPlanet.getCircumference())) aPlanet.setMoons() print(aPlanet.getName() + " has " + str(aPlanet.getMoons()) + " moons.") aPlanet.addMoon() print("The list of moons for " + aPlanet.getName() + " is " + str(aPlanet.getMoonList())) ##createSomePlanets() def makeASentence(): aString = "The quick brown fox jumps over the lazy dog" aSentence = lab12.Sentence(aString) print(aSentence.getSentence()) print(aSentence.getWords()) print(aSentence.getLength()) print(aSentence.getNumWords()) print(aSentence.capSentence()) print(aSentence.addPunctuation()) ##makeASentence() def makeASentence2(): aString = "The quick brown fox jumps over the lazy dog" aSentence = lab12.Sentence2(aString) print(aSentence.getList()) print(aSentence.getSentence()) print(aSentence.getWords()) print(aSentence.getLength()) print(aSentence.getNumWords()) ##makeASentence2() def Time(): myTime = lab12.Time(15,25,59) myTime2 = lab12.Time(6,8,0) ## myTime.getTime() ## myTime2.getTime() ## myTime.addSec() ## myTime2.subSec() ## myTime.getTime() ## myTime2.getTime() ## print(str(myTime.showHour())) ## print(str(myTime.showMinute())) ## print(str(myTime.showSecond())) ## myTime.changeHour() ## myTime.changeMinute() ## myTime.changeSecond() ## myTime.getTime() ## print(str(myTime.differenceInTime(myTime2))) ## myTime.addTime() ## myTime.getTime() myTime.fullDay() Time()
python
from .__init__ import * def home(request): return Http_Response("", "这是视频API", "") def url(request): # 获取视频URL query = request_query(request, "id", ["res", {"resolution": 1080}]) query["ids"] = '["{}"]'.format(query.pop("id")) data = send(query).POST("weapi/cloudvideo/playurl") return Http_Response(request, data.text) def detail(request): # 获取视频详情 query = request_query(request, "id") data = send(query).POST("weapi/cloudvideo/v1/video/detail") return Http_Response(request, data.text) def lists(request): # 获取视频标签列表 data = send().POST("weapi/cloudvideo/group/list") return Http_Response(request, data.text) def group(request): # 获取视频标签下的视频 query = request_query(request, ["id", "groupId"], ["offset", {"offset": 0}], ["res", {"resolution": 1080}]) query["needUrl"] = True data = send(query).POST("weapi/videotimeline/videogroup/get") return Http_Response(request, data.text) def related(request): # 相关视频 query = request_query(request, "id") query["type"] = 0 if query["id"].isdigit() else 1 data = send(query).POST("weapi/cloudvideo/v1/allvideo/rcmd") return Http_Response(request, data.text) def sub(request): # 收藏与取消收藏视频 query = request_query(request, "id", ["t", {"t": 1}]) t = "sub" if query.pop("t") == "1" else "unsub" data = send(query).POST("weapi/cloudvideo/video/" + t) return Http_Response(request, data.text)
python
# # PySNMP MIB module BNET-ATM-TOPOLOGY-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/BNET-ATM-TOPOLOGY-MIB # Produced by pysmi-0.3.4 at Wed May 1 11:40:07 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, SingleValueConstraint, ValueRangeConstraint, ConstraintsUnion, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsUnion", "ConstraintsIntersection") VpiInteger, = mibBuilder.importSymbols("LAN-EMULATION-CLIENT-MIB", "VpiInteger") s5AtmTop, = mibBuilder.importSymbols("S5-ROOT-MIB", "s5AtmTop") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") TimeTicks, Gauge32, MibIdentifier, NotificationType, iso, ObjectIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress, Counter64, Bits, ModuleIdentity, Counter32, Unsigned32, Integer32 = mibBuilder.importSymbols("SNMPv2-SMI", "TimeTicks", "Gauge32", "MibIdentifier", "NotificationType", "iso", "ObjectIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress", "Counter64", "Bits", "ModuleIdentity", "Counter32", "Unsigned32", "Integer32") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") bnetAtmTopGbl = MibIdentifier((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 1)) bnetAtmTopLinks = MibIdentifier((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2)) bnetAtmTopGblStatus = MibScalar((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("topOn", 1), ("topOff", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: bnetAtmTopGblStatus.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopGblStatus.setDescription('Indicates if the agent is participating in ATM topology discovery. The values are: topOn(1)....topology is on topOff(2)...topology is off When the value is topOff(2) the status of bnetAtmTopLinkTable entries is undefined and the topolgy discovery is disabled for the entire device. When the value is topOn(1) the status of the topology discovery of a given port is defined by the bnetAtmTopLinksPeerStatus in the bnetAtmTopLinkTable. The agent must save the setting of this object in nonvolatile memory (i.e., save across reboots).') bnetAtmTopGblLstChg = MibScalar((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 1, 2), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopGblLstChg.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopGblLstChg.setDescription('The value of sysUpTime the last time an entry in the bnetAtmTopLinkTable was added, deleted, or modified. If bnetAtmTopLinkTable has not changed since cold/warm start of the agent, then the value is zero.') bnetAtmTopGblCurNum = MibScalar((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopGblCurNum.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopGblCurNum.setDescription('The current number of entries in the bnetAtmTopLinkTable.') bnetAtmTopGblCurMibVer = MibScalar((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopGblCurMibVer.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopGblCurMibVer.setDescription('The current version of the ATM Topology mib. This object is provided by agent so NMS can distinguish variations in the mib as they occur in the future.') bnetAtmTopGblOperStatus = MibScalar((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("topOn", 1), ("topOff", 2), ("topUnavailable", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopGblOperStatus.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopGblOperStatus.setDescription('Indicates if the agent is participating in ATM topology discovery. The values are: topOn(1)....topology is on topOff(2)...topology is off When the value is topOff(2) the status of bnetAtmTopLinkTable entries is undefined and the topolgy discovery is disabled for the entire device. When the value is topOn(1) the status of the topology discovery of a given port is defined by the bnetAtmTopLinksPeerStatus in the bnetAtmTopLinkTable. The agent must save the setting of this object in nonvolatile memory (i.e., save across reboots). When status is topUnavailable(3), this implies that ilmi is not configured on this switch at all.') bnetAtmTopLinksTable = MibTable((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 1), ) if mibBuilder.loadTexts: bnetAtmTopLinksTable.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksTable.setDescription('A table of all physical and virtual links attached to this switch. This table is built by aggregating information from all ILMI or PNNI entities in the switch and adding local port information.') bnetAtmTopLinksEntry = MibTableRow((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 1, 1), ).setIndexNames((0, "BNET-ATM-TOPOLOGY-MIB", "bnetAtmTopLinksSlotNumIndx"), (0, "BNET-ATM-TOPOLOGY-MIB", "bnetAtmTopLinksPortNumIndx"), (0, "BNET-ATM-TOPOLOGY-MIB", "bnetAtmTopLinksLcnIndx")) if mibBuilder.loadTexts: bnetAtmTopLinksEntry.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksEntry.setDescription('A row in the ATM topology table. Entries in the table can not be created or deleted via SNMP.') bnetAtmTopLinksSlotNumIndx = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopLinksSlotNumIndx.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksSlotNumIndx.setDescription('Our slot number.') bnetAtmTopLinksPortNumIndx = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 1, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopLinksPortNumIndx.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksPortNumIndx.setDescription('Our port number.') bnetAtmTopLinksLcnIndx = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 1, 1, 3), VpiInteger()).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopLinksLcnIndx.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksLcnIndx.setDescription(' Logical Channel Number, This will give the VP, when the ILMI entity uses the VP signalling. This allows to have multiple NNI or UNI links on a single port.') bnetAtmTopLinksTopoState = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("unavailable", 1), ("notParticipating", 2), ("participating", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopLinksTopoState.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksTopoState.setDescription('The current state of link from topology point of view. Possible values: unavailable(1) - third party device or older version of Bay device notParticipating(2) - peer has set TopoOff participating(3) - actively providing topo info. ') bnetAtmTopLinksPeerSlotNum = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 1, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopLinksPeerSlotNum.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksPeerSlotNum.setDescription("The peer's slot number.") bnetAtmTopLinksPeerPortNum = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 1, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopLinksPeerPortNum.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksPeerPortNum.setDescription("The peer's port number.") bnetAtmTopLinksPeerIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 1, 1, 7), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopLinksPeerIpAddr.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksPeerIpAddr.setDescription("The peer's IP address.") bnetAtmTopLinksPeerChassisType = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 1, 1, 8), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopLinksPeerChassisType.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksPeerChassisType.setDescription('The chassis type of the device that sent the topology message. This number is the leaf of the s5 ChassisType OID registered in s5reg*.mib.') bnetAtmTopLinksPeerChassisSubType = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 1, 1, 9), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopLinksPeerChassisSubType.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksPeerChassisSubType.setDescription('Any relavant additional information of the chassis of the peer Bay device. This is an integer field which could be used as backplane type or any information for stackable devices etc.') bnetAtmTopLinksEosSize = MibScalar((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 1440))).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopLinksEosSize.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksEosSize.setDescription('The current size of a row in the table bnetAtmTopLinksEosTable. This allows applications to be able to break apart rows in the table.') bnetAtmTopLinksEosTable = MibTable((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 3), ) if mibBuilder.loadTexts: bnetAtmTopLinksEosTable.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksEosTable.setDescription("A table of encoded octet strings of entries in table bnetAtmTopLinksTable. The number of entries is determined by packing of 'rows' from bnetAtmTopLinksTable.") bnetAtmTopLinksEosEntry = MibTableRow((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 3, 1), ).setIndexNames((0, "BNET-ATM-TOPOLOGY-MIB", "bnetAtmTopLinksSlotNumIndx"), (0, "BNET-ATM-TOPOLOGY-MIB", "bnetAtmTopLinksPortNumIndx"), (0, "BNET-ATM-TOPOLOGY-MIB", "bnetAtmTopLinksLcnIndx")) if mibBuilder.loadTexts: bnetAtmTopLinksEosEntry.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksEosEntry.setDescription('A row in the table of encoded octet strings for table bnetAtmTopLinksTable. Instance returned in Response PDU: On GETs: instance specified is the instance returned. On GET-NEXTs: instance returned is the instance of the last record contained in the octet string. Entries in the table can not be created or deleted via SNMP.') bnetAtmTopLinksEos = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 1, 6, 14, 2, 3, 1, 1), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 1400))).setMaxAccess("readonly") if mibBuilder.loadTexts: bnetAtmTopLinksEos.setStatus('mandatory') if mibBuilder.loadTexts: bnetAtmTopLinksEos.setDescription("An encoded octet string. On reads it contains an integral number of 'rows' from table bnetAtmTopLinksTable. All 'rows' are the same size which is defined by object bnetAtmTopLinksEosSize.") mibBuilder.exportSymbols("BNET-ATM-TOPOLOGY-MIB", bnetAtmTopGblStatus=bnetAtmTopGblStatus, bnetAtmTopLinksTable=bnetAtmTopLinksTable, bnetAtmTopLinksPeerPortNum=bnetAtmTopLinksPeerPortNum, bnetAtmTopGblOperStatus=bnetAtmTopGblOperStatus, bnetAtmTopLinksEosEntry=bnetAtmTopLinksEosEntry, bnetAtmTopLinksPeerSlotNum=bnetAtmTopLinksPeerSlotNum, bnetAtmTopGbl=bnetAtmTopGbl, bnetAtmTopGblLstChg=bnetAtmTopGblLstChg, bnetAtmTopLinks=bnetAtmTopLinks, bnetAtmTopLinksSlotNumIndx=bnetAtmTopLinksSlotNumIndx, bnetAtmTopLinksPeerIpAddr=bnetAtmTopLinksPeerIpAddr, bnetAtmTopLinksEosSize=bnetAtmTopLinksEosSize, bnetAtmTopLinksEos=bnetAtmTopLinksEos, bnetAtmTopLinksEosTable=bnetAtmTopLinksEosTable, bnetAtmTopLinksEntry=bnetAtmTopLinksEntry, bnetAtmTopLinksPeerChassisSubType=bnetAtmTopLinksPeerChassisSubType, bnetAtmTopGblCurNum=bnetAtmTopGblCurNum, bnetAtmTopLinksPortNumIndx=bnetAtmTopLinksPortNumIndx, bnetAtmTopLinksLcnIndx=bnetAtmTopLinksLcnIndx, bnetAtmTopLinksPeerChassisType=bnetAtmTopLinksPeerChassisType, bnetAtmTopLinksTopoState=bnetAtmTopLinksTopoState, bnetAtmTopGblCurMibVer=bnetAtmTopGblCurMibVer)
python
# -*- coding: utf-8 -*- """ Created on Mar 11, 2012 @author: moloch Copyright 2012 Root the Box Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import imghdr import io import xml.etree.cElementTree as ET from os import urandom from uuid import uuid4 from collections import OrderedDict from sqlalchemy import Column, ForeignKey from sqlalchemy.orm import relationship, backref from sqlalchemy.types import Integer, Unicode, String, Boolean, Enum from models import dbsession from models.BaseModels import DatabaseObject from models.Relationships import team_to_box from models.IpAddress import IpAddress from models.GameLevel import GameLevel from models.Corporation import Corporation from models.Category import Category from models.SourceCode import SourceCode from tornado.options import options from libs.XSSImageCheck import is_xss_image, get_new_avatar from libs.ValidationError import ValidationError from libs.StringCoding import encode from PIL import Image from resizeimage import resizeimage import enum class FlagsSubmissionType(str, enum.Enum): CLASSIC = "CLASSIC" SINGLE_SUBMISSION_BOX = "SINGLE_SUBMISSION_BOX" from builtins import ( # noqa: E402 str, ) # TODO Python2/3 compatibility issue if imported before FlagSubmissionType class Box(DatabaseObject): """ Box definition """ uuid = Column(String(36), unique=True, nullable=False, default=lambda: str(uuid4())) corporation_id = Column(Integer, ForeignKey("corporation.id"), nullable=False) category_id = Column(Integer, ForeignKey("category.id"), nullable=True) _name = Column(Unicode(32), unique=True, nullable=False) _operating_system = Column(Unicode(16)) _description = Column(Unicode(1024)) _capture_message = Column(Unicode(1024)) _difficulty = Column(Unicode(16)) game_level_id = Column(Integer, ForeignKey("game_level.id"), nullable=False) _avatar = Column(String(64)) _value = Column(Integer, nullable=True) _locked = Column(Boolean, default=False, nullable=False) garbage = Column( String(32), unique=True, nullable=False, default=lambda: encode(urandom(16), "hex"), ) teams = relationship( "Team", secondary=team_to_box, back_populates="boxes", lazy="select" ) hints = relationship( "Hint", backref=backref("box", lazy="select"), cascade="all,delete,delete-orphan", ) flags = relationship( "Flag", backref=backref("box", lazy="select"), cascade="all,delete,delete-orphan", order_by="desc(-Flag._order)", ) flag_submission_type = Column( Enum(FlagsSubmissionType), default=FlagsSubmissionType.CLASSIC ) ip_addresses = relationship( "IpAddress", backref=backref("box", lazy="select"), cascade="all,delete,delete-orphan", ) @classmethod def all(cls): """ Returns a list of all objects in the database """ return dbsession.query(cls).all() @classmethod def by_id(cls, _id): """ Returns a the object with id of _id """ return dbsession.query(cls).filter_by(id=_id).first() @classmethod def by_uuid(cls, _uuid): """ Return and object based on a uuid """ return dbsession.query(cls).filter_by(uuid=str(_uuid)).first() @classmethod def by_name(cls, name): """ Return the box object whose name is "name" """ return dbsession.query(cls).filter_by(_name=str(name)).first() @classmethod def by_category(cls, _cat_id): """ Return the box object whose category is "_cat_id" """ return dbsession.query(cls).filter_by(category_id=int(_cat_id)).all() @classmethod def by_garbage(cls, _garbage): return dbsession.query(cls).filter_by(garbage=_garbage).first() @classmethod def by_ip_address(cls, ip_addr): """ Returns a box object based on an ip address, supports both ipv4 and ipv6 """ ip = IpAddress.by_address(ip_addr) return ip.box if ip is not None else None @classmethod def flaglist(self, box_id=None): flags = self.by_id(box_id).flags flaglist = OrderedDict() for flag in flags: flaglist[flag.uuid] = flag.name return flaglist @property def name(self): return self._name @name.setter def name(self, value): if not 3 <= len(str(value)) <= 32: raise ValidationError("Name must be 3 - 32 characters") self._name = str(value) @property def operating_system(self): return self._operating_system if self._operating_system else "?" @operating_system.setter def operating_system(self, value): self._operating_system = str(value) @property def description(self): if self._description is None: self._description = "" ls = [] if 0 < len(self._description): text = self._description.replace("\r\n", "\n").strip() ls.append("%s" % text) else: ls.append("No information on file.") if self.difficulty != "Unknown": ls.append("Reported Difficulty: %s" % self.difficulty) if not encode(ls[-1], "utf-8").endswith(b"\n"): ls[-1] = ls[-1] + "\n" return str("\n\n".join(ls)) @description.setter def description(self, value): if value is None: return "" if 1025 < len(value): raise ValidationError("Description cannot be greater than 1024 characters") self._description = str(value) @property def difficulty(self): return ( self._difficulty if self._difficulty and len(self._difficulty) else "Unknown" ) @difficulty.setter def difficulty(self, value): if value is None: return if 17 < len(value): raise ValidationError("Difficulty cannot be greater than 16 characters") self._difficulty = str(value) @property def capture_message(self): return self._capture_message if self._capture_message else "" @capture_message.setter def capture_message(self, value): self._capture_message = str(value) @property def value(self): if not self._value: return 0 return self._value @value.setter def value(self, value): try: self._value = abs(int(value)) except ValueError: raise ValidationError("Reward value must be an integer") @property def locked(self): """ Determines if an admin has locked an box. """ return self._locked @locked.setter def locked(self, value): """ Setter method for _lock """ assert isinstance(value, bool) self._locked = value @property def avatar(self): if self._avatar is not None: return self._avatar else: avatar = get_new_avatar("box") if not avatar.startswith("default_"): self._avatar = avatar dbsession.add(self) dbsession.commit() return avatar @avatar.setter def avatar(self, image_data): if self.uuid is None: self.uuid = str(uuid4()) if len(image_data) < (1024 * 1024): ext = imghdr.what("", h=image_data) if ext in ["png", "jpeg", "gif", "bmp"] and not is_xss_image(image_data): try: if self._avatar is not None and os.path.exists( options.avatar_dir + "/upload/" + self._avatar ): os.unlink(options.avatar_dir + "/upload/" + self._avatar) file_path = str( options.avatar_dir + "/upload/" + self.uuid + "." + ext ) image = Image.open(io.BytesIO(image_data)) cover = resizeimage.resize_cover(image, [500, 250]) cover.save(file_path, image.format) self._avatar = "upload/" + self.uuid + "." + ext except Exception as e: raise ValidationError(e) else: raise ValidationError( "Invalid image format, avatar must be: .png .jpeg .gif or .bmp" ) else: raise ValidationError("The image is too large") @property def ipv4s(self): """ Return a list of all ipv4 addresses """ return [ip for ip in self.ip_addresses if ip.version == 4] @property def ipv6s(self): """ Return a list of all ipv6 addresses """ return [ip for ip in self.ip_addresses if ip.version == 6] @property def visable_ips(self): return [ip for ip in self.ip_addresses if ip.visable is True] @property def source_code(self): return SourceCode.by_box_id(self.id) def get_garbage_cfg(self): try: hex_name = encode(self.name).hex() except AttributeError: hex_name = encode(self.name, "hex") return "[Bot]\nname = %s\ngarbage = %s\n" % (hex_name, self.garbage) def is_complete(self, user): boxcomplete = True for boxflag in self.flags: if user.team and boxflag not in user.team.flags: boxcomplete = False break return boxcomplete def to_xml(self, parent): """ Convert object to XML """ box_elem = ET.SubElement(parent, "box") box_elem.set("gamelevel", "%s" % str(self.game_level.number)) ET.SubElement(box_elem, "name").text = self.name ET.SubElement(box_elem, "operatingsystem").text = self._operating_system ET.SubElement(box_elem, "description").text = self._description ET.SubElement(box_elem, "capture_message").text = self.capture_message ET.SubElement(box_elem, "value").text = str(self.value) ET.SubElement(box_elem, "flag_submission_type").text = FlagsSubmissionType( self.flag_submission_type ).name ET.SubElement(box_elem, "difficulty").text = self._difficulty ET.SubElement(box_elem, "garbage").text = str(self.garbage) if self.category_id: ET.SubElement(box_elem, "category").text = Category.by_id( self.category_id ).category flags_elem = ET.SubElement(box_elem, "flags") flags_elem.set("count", "%s" % str(len(self.flags))) for flag in self.flags: flag.to_xml(flags_elem) hints_elem = ET.SubElement(box_elem, "hints") count = 0 for hint in self.hints: if hint.flag_id is None: hint.to_xml(hints_elem) count += 1 hints_elem.set("count", "%s" % str(count)) ips_elem = ET.SubElement(box_elem, "ipaddresses") ips_elem.set("count", "%s" % str(len(self.ip_addresses))) for ip in self.ip_addresses: ip.to_xml(ips_elem) avatarfile = os.path.join(options.avatar_dir, self.avatar) if self.avatar and os.path.isfile(avatarfile): with open(avatarfile, mode="rb") as _avatar: data = _avatar.read() ET.SubElement(box_elem, "avatar").text = encode(data, "base64") else: ET.SubElement(box_elem, "avatar").text = "none" def to_dict(self): """ Returns editable data as a dictionary """ corp = Corporation.by_id(self.corporation_id) game_level = GameLevel.by_id(self.game_level_id) cat = Category.by_id(self.category_id) if cat: category = cat.uuid else: category = "" return { "name": self.name, "uuid": self.uuid, "corporation": corp.uuid, "category": category, "operating_system": self.operating_system, "description": self._description, "capture_message": self.capture_message, "difficulty": self.difficulty, "game_level": game_level.uuid, "flag_submission_type": self.flag_submission_type, "flaglist": self.flaglist(self.id), "value": self.value, } def __repr__(self): return "<Box - name: %s>" % (self.name,) def __str__(self): return self.name
python
# License: BSD 3 clause from datetime import datetime from typing import Dict, Iterable from os.path import join from pyspark.sql import DataFrame from pyspark.sql.functions import col, datediff, floor, lit, months_between from scalpel.core.io import get_logger, read_data_frame from scalpel.core import io from scalpel.core.util import data_frame_equality from .util import fold_right class Cohort(object): """A data representation that encapsulates a cohort. A cohort is a set of subjects who experienced a common event in a selected time period. Parameters ---------- name: `str`, name of the Cohort characteristics: `str`, string characterising the cohort contents subjects: `pyspark.sql.DataFrame`, DataFrame containing subject ids in the column 'PatientID' (str). It can also contain information regarding gender, birthdate and deathdate of the subjects. events: `pyspark.sql.DataFrame` or None, DataFrame containing events associated to the subjects, it can be None. # TODO: Add Schema of the two dataframes """ def __init__( self, name: str, characteristics: str, subjects: DataFrame, events: DataFrame = None, ): self._name = name self._characteristics = characteristics self._subjects = subjects self._events = events def __eq__(self, other): if isinstance(other, Cohort): if self.events is not None and other.events is not None: return data_frame_equality( self.subjects, other.subjects ) and data_frame_equality(self.events, other.events) else: return data_frame_equality(self.subjects, other.subjects) else: return False @property def name(self) -> str: return self._name @name.setter def name(self, value): if not isinstance(value, str): raise TypeError("Expected a string") self._name = value @property def characteristics(self) -> str: return self._characteristics @characteristics.setter def characteristics(self, value): if not isinstance(value, str): raise TypeError("Expected a string") self._characteristics = value @property def subjects(self) -> DataFrame: return self._subjects @subjects.setter def subjects(self, value): if not isinstance(value, DataFrame): raise TypeError("Expected a Spark DataFrame") self._subjects = value @property def events(self) -> DataFrame: return self._events @events.setter def events(self, value): if not isinstance(value, DataFrame): raise TypeError("Expected a Spark DataFrame") self._events = value def describe(self) -> str: if self.events is None: return ( "This a subject cohort, no event needed. " + "Subjects are from operation {}.".format(self.name) ) else: return "Events are {}. ".format( self.name ) + "Events contain only {}.".format(self.characteristics) def has_subject_information(self) -> bool: """Returns true if this cohort is the Base Cohort. The base population contains extra columns specifically birthDate, deathDate and gender""" return set(self.subjects.columns).issuperset( {"gender", "patientID", "deathDate", "birthDate"} ) def add_subject_information( self, base_cohort: "Cohort", missing_patients="error" ) -> None: """ Add information of gender and birthDate to subjects in place. WARNING: This methods results in a state mutation. Parameters ---------- missing_patients: behaviour from when missing patients are detected. possible values are "error" or "omit_all" to omit patients and their events or "omit_patients" to omit events and keep their events. cohort that contain information. Returns ------- None. Mutation in place. """ if missing_patients == "error": subjects = self.subjects.join( base_cohort.subjects, on="patientID", how="left" ) extra_subjects_count = subjects.where(col("gender").isNull()).count() if extra_subjects_count > 0: raise ValueError( "Cohort {} contains {} subjects not in base cohort {}".format( self.name, extra_subjects_count, base_cohort.name ) ) else: self._subjects = subjects elif missing_patients == "omit_all": get_logger().warning("Some patients and their events might be ommited") self._subjects = self.subjects.join( base_cohort.subjects, on="patientID", how="inner" ) if self.events is not None: self._events = self.events.join( self.subjects.select("patientID").distinct(), on="patientID", how="inner", ) elif missing_patients == "omit": get_logger().warning( "Some patients might be ommited." + " Their events are kept" ) self._subjects = self.subjects.join( base_cohort.subjects, on="patientID", how="inner" ) else: raise ValueError( "missing_patients is erroneous. Possible options are " + "error, omit, omit_all" ) def add_age_information(self, date: datetime) -> None: self._subjects = self.subjects.withColumn( "age", floor(months_between(lit(date), col("birthDate")) / 12) ).withColumn("ageBucket", floor(col("age") / 5)) def is_duration_events(self) -> bool: """Returns true if the Events have a defined start and end for every line in events dataframe. Returns ------- Boolean. """ if self.events is None: return False else: return ( self.events.where( self.events.end.isNull() | self.events.start.isNull() ).count() == 0 ) def add_duration_information(self) -> "Cohort": """Adds a column with duration in days between start and end for the Events DataFrame. WARNING: This methods results in a state mutation. Returns ------- self with duration column added to events""" if self.is_duration_events(): self._events = self.events.withColumn( "duration", datediff(col("end"), col("start")) ) return self else: raise ValueError( "This Cohort is not a duration events cohort", " please check is_duration_events method", ) def save_cohort(self, output_path: str, mode="overwrite") -> Dict: """Saves current Cohort to "output_path/name". Parameters ---------- output_path root directory for output. mode Writing mode for parquet files. * ``append``: Append contents of this :class:`DataFrame` to existing data. * ``overwrite``(default case): Overwrite existing data. * ``ignore``: Silently ignore this operation if data already exists. * ``error`` or ``errorifexists``: Throw an exception if data already \ exists. Returns ------- A dict with entries to describe where the data is written and the type of the Cohort. """ output = dict() subjects_filepath = join(output_path, self.name, "subjects") io.write_data_frame(self.subjects, subjects_filepath, mode) if self.events is not None: events_filtepath = join(output_path, self.name, "data") io.write_data_frame(self.events, events_filtepath, mode) output["population_path"] = subjects_filepath output["output_path"] = events_filtepath output["name"] = self.name output["output_type"] = "events" else: output["output_path"] = subjects_filepath output["name"] = self.name output["output_type"] = "patients" return output def union(self, other: "Cohort") -> "Cohort": return _union(self, other) def intersection(self, other: "Cohort") -> "Cohort": return _intersection(self, other) def difference(self, other: "Cohort") -> "Cohort": return _difference(self, other) @staticmethod def union_all(cohorts: Iterable["Cohort"]) -> "Cohort": return fold_right(_union, cohorts) @staticmethod def intersect_all(cohorts: Iterable["Cohort"]) -> "Cohort": return fold_right(_intersection, cohorts) @staticmethod def difference_all(cohorts: Iterable["Cohort"]) -> "Cohort": return fold_right(_difference, cohorts) @staticmethod def load(input: Dict) -> "Cohort": if input["output_type"] == "patients": return Cohort( input["name"], input["name"], read_data_frame(input["output_path"]) ) else: return Cohort( input["name"], "subjects with event {}".format(input["name"]), read_data_frame(input["population_path"]), read_data_frame(input["output_path"]), ) @staticmethod def from_description(description: str) -> "Cohort": raise NotImplementedError def _union(a: Cohort, b: Cohort) -> Cohort: if a.events is None or b.events is None: return Cohort( "{} Or {}".format(a.name, b.name), "{} Or {}".format(a.characteristics, b.characteristics), a.subjects.union(b.subjects), ) else: return Cohort( "{} Or {}".format(a.name, b.name), "{} Or {}".format(a.characteristics, b.characteristics), a.subjects.union(b.subjects), a.events.union(b.events), ) def _intersection(a: Cohort, b: Cohort) -> Cohort: subjects_id = a.subjects.select("patientID").intersect( b.subjects.select("patientID") ) subjects = a.subjects.join(subjects_id, on="patientID", how="right") events = None if a.events is not None: events = a.events.join(subjects_id, on="patientID", how="right") return Cohort( a.name, "{} with {}".format(a.characteristics, b.characteristics), subjects, events, ) def _difference(a: Cohort, b: Cohort) -> Cohort: subjects_id = a.subjects.select("patientID").subtract( b.subjects.select("patientID") ) subjects = a.subjects.join(subjects_id, on="patientID", how="right") events = None if a.events is not None: events = a.events.join(subjects_id, on="patientID", how="right") return Cohort( a.name, "{} without {}".format(a.characteristics, b.characteristics), subjects, events, )
python
"""Bagging classifier trained on balanced bootstrap samples.""" # Authors: Guillaume Lemaitre <[email protected]> # Christos Aridas # License: MIT import numbers import numpy as np from sklearn.base import clone from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier from ..pipeline import Pipeline from ..under_sampling import RandomUnderSampler from ..under_sampling.base import BaseUnderSampler from ..utils import Substitution, check_target_type, check_sampling_strategy from ..utils._docstring import _n_jobs_docstring from ..utils._docstring import _random_state_docstring from ..utils._validation import _deprecate_positional_args @Substitution( sampling_strategy=BaseUnderSampler._sampling_strategy_docstring, n_jobs=_n_jobs_docstring, random_state=_random_state_docstring, ) class BalancedBaggingClassifier(BaggingClassifier): """A Bagging classifier with additional balancing. This implementation of Bagging is similar to the scikit-learn implementation. It includes an additional step to balance the training set at fit time using a ``RandomUnderSampler``. Read more in the :ref:`User Guide <bagging>`. Parameters ---------- base_estimator : estimator object, default=None The base estimator to fit on random subsets of the dataset. If None, then the base estimator is a decision tree. n_estimators : int, default=10 The number of base estimators in the ensemble. max_samples : int or float, default=1.0 The number of samples to draw from X to train each base estimator. - If int, then draw ``max_samples`` samples. - If float, then draw ``max_samples * X.shape[0]`` samples. max_features : int or float, default=1.0 The number of features to draw from X to train each base estimator. - If int, then draw ``max_features`` features. - If float, then draw ``max_features * X.shape[1]`` features. bootstrap : bool, default=True Whether samples are drawn with replacement. bootstrap_features : bool, default=False Whether features are drawn with replacement. oob_score : bool, default=False Whether to use out-of-bag samples to estimate the generalization error. warm_start : bool, default=False When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new ensemble. {sampling_strategy} replacement : bool, default=False Whether or not to sample randomly with replacement or not. {n_jobs} {random_state} verbose : int, default=0 Controls the verbosity of the building process. Attributes ---------- base_estimator_ : estimator The base estimator from which the ensemble is grown. n_features_ : int The number of features when `fit` is performed. estimators_ : list of estimators The collection of fitted base estimators. estimators_samples_ : list of ndarray The subset of drawn samples (i.e., the in-bag samples) for each base estimator. Each subset is defined by a boolean mask. estimators_features_ : list of ndarray The subset of drawn features for each base estimator. classes_ : ndarray of shape (n_classes,) The classes labels. n_classes_ : int or list The number of classes. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : ndarray of shape (n_samples, n_classes) Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, ``oob_decision_function_`` might contain NaN. See Also -------- BalancedRandomForestClassifier : Random forest applying random-under sampling to balance the different bootstraps. EasyEnsembleClassifier : Ensemble of AdaBoost classifier trained on balanced bootstraps. RUSBoostClassifier : AdaBoost classifier were each bootstrap is balanced using random-under sampling at each round of boosting. Notes ----- This is possible to turn this classifier into a balanced random forest [5]_ by passing a :class:`~sklearn.tree.DecisionTreeClassifier` with `max_features='auto'` as a base estimator. See :ref:`sphx_glr_auto_examples_ensemble_plot_comparison_ensemble_classifier.py`. References ---------- .. [1] L. Breiman, "Pasting small votes for classification in large databases and on-line", Machine Learning, 36(1), 85-103, 1999. .. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140, 1996. .. [3] T. Ho, "The random subspace method for constructing decision forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844, 1998. .. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine Learning and Knowledge Discovery in Databases, 346-361, 2012. .. [5] Chen, Chao, Andy Liaw, and Leo Breiman. "Using random forest to learn imbalanced data." University of California, Berkeley 110, 2004. Examples -------- >>> from collections import Counter >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.metrics import confusion_matrix >>> from imblearn.ensemble import \ BalancedBaggingClassifier # doctest: +NORMALIZE_WHITESPACE >>> X, y = make_classification(n_classes=2, class_sep=2, ... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, ... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10) >>> print('Original dataset shape %s' % Counter(y)) Original dataset shape Counter({{1: 900, 0: 100}}) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... random_state=0) >>> bbc = BalancedBaggingClassifier(random_state=42) >>> bbc.fit(X_train, y_train) # doctest: +ELLIPSIS BalancedBaggingClassifier(...) >>> y_pred = bbc.predict(X_test) >>> print(confusion_matrix(y_test, y_pred)) [[ 23 0] [ 2 225]] """ @_deprecate_positional_args def __init__( self, base_estimator=None, n_estimators=10, *, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, sampling_strategy="auto", replacement=False, n_jobs=None, random_state=None, verbose=0, ): super().__init__( base_estimator, n_estimators=n_estimators, max_samples=max_samples, max_features=max_features, bootstrap=bootstrap, bootstrap_features=bootstrap_features, oob_score=oob_score, warm_start=warm_start, n_jobs=n_jobs, random_state=random_state, verbose=verbose, ) self.sampling_strategy = sampling_strategy self.replacement = replacement def _validate_y(self, y): y_encoded = super()._validate_y(y) if isinstance(self.sampling_strategy, dict): self._sampling_strategy = { np.where(self.classes_ == key)[0][0]: value for key, value in check_sampling_strategy( self.sampling_strategy, y, "under-sampling", ).items() } else: self._sampling_strategy = self.sampling_strategy return y_encoded def _validate_estimator(self, default=DecisionTreeClassifier()): """Check the estimator and the n_estimator attribute, set the `base_estimator_` attribute.""" if not isinstance(self.n_estimators, (numbers.Integral, np.integer)): raise ValueError( f"n_estimators must be an integer, " f"got {type(self.n_estimators)}." ) if self.n_estimators <= 0: raise ValueError( f"n_estimators must be greater than zero, " f"got {self.n_estimators}." ) if self.base_estimator is not None: base_estimator = clone(self.base_estimator) else: base_estimator = clone(default) self.base_estimator_ = Pipeline( [ ( "sampler", RandomUnderSampler( sampling_strategy=self._sampling_strategy, replacement=self.replacement, ), ), ("classifier", base_estimator), ] ) def fit(self, X, y): """Build a Bagging ensemble of estimators from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. y : array-like of shape (n_samples,) The target values. Returns ------- self : object Returns self. """ check_target_type(y) # RandomUnderSampler is not supporting sample_weight. We need to pass # None. return self._fit(X, y, self.max_samples, sample_weight=None) def _more_tags(self): tags = super()._more_tags() tags_key = "_xfail_checks" failing_test = "check_estimators_nan_inf" reason = "Fails because the sampler removed infinity and NaN values" if tags_key in tags: tags[tags_key][failing_test] = reason else: tags[tags_key] = {failing_test: reason} return tags
python
# import theano.sandbox.cuda # theano.sandbox.cuda.use('gpu0') import numpy as np import cPickle as cP import theano as TH import theano.tensor as T import scipy.misc as sm import nnet.lasagnenetsCFCNN as LN import lasagne as L import datetime def unpickle(file): import cPickle fo = open(file, 'rb') dict = cPickle.load(fo) fo.close() return dict trainX1 = unpickle('./datasets/cifar/cifar-10-batches-py/data_batch_1') trainX2 = unpickle('./datasets/cifar/cifar-10-batches-py/data_batch_2') trainX3 = unpickle('./datasets/cifar/cifar-10-batches-py/data_batch_3') trainX4 = unpickle('./datasets/cifar/cifar-10-batches-py/data_batch_4') trainX5 = unpickle('./datasets/cifar/cifar-10-batches-py/data_batch_5') testX = unpickle('./datasets/cifar/cifar-10-batches-py/test_batch') labelname = unpickle('./datasets/cifar/cifar-10-batches-py/batches.meta') trainX = np.vstack((trainX1['data'], trainX2['data'], trainX3[ 'data'], trainX4['data'], trainX5['data'])) trainY = np.hstack((trainX1['labels'], trainX2['labels'], trainX3[ 'labels'], trainX4['labels'], trainX5['labels'])) testX, testY = testX['data'], testX['labels'] testY = np.asarray(testY) temp = np.zeros((trainY.shape[0], 10), dtype=np.float32) for i in xrange(trainY.shape[0]): temp[i][trainY[i]] = 1 trainY = temp temp = np.zeros((testY.shape[0], 10), dtype=np.float32) for i in xrange(testY.shape[0]): temp[i][testY[i]] = 1 testY = temp trainX = np.asarray(trainX / 256.0, dtype=np.float32) testX = np.asarray(testX / 256.0, dtype=np.float32) trainX = trainX.reshape(-1, 3, 32, 32) testX = testX.reshape(-1, 3, 32, 32) def main(): ''' Creates neural networks with various parameters and trains them. ''' ''' n_out: output size h_layer: hidden layer sizes l_drops: dropout rates of hidden layers. Set as None if dropout not to be used. nonlinearity: activation function to be used. lam: weight of the L2 regularizer. Set as None if L2 regualizer not to be used. clam: weight of VR regularizer. Input size has been hardcoded to (3, 32, 32). ''' #################################################### # VR + L2 nnet = LN.nnet( n_out=10, h_layers=[1000, 1000], lam=500, Temp=1, nonlinearity=L.nonlinearities.rectify, clam=20 ) nnet.train(x=trainX, y=trainY, testx=testX, testy=testY, lrate=0.01, gamma=0.9, batch_size=100, iters=200, thresh=70, filename='runs/Cifar_Vr_L2') #################################################### # L2 nnet = LN.nnet( n_out=10, h_layers=[1000, 1000], lam=500, Temp=1, nonlinearity=L.nonlinearities.rectify, clam=None ) nnet.train(x=trainX, y=trainY, testx=testX, testy=testY, lrate=0.01, gamma=0.9, batch_size=100, iters=200, thresh=70, filename='runs/Cifar_L2') #################################################### # Vr + L2 + Dr nnet = LN.nnet( n_out=10, h_layers=[1000, 1000], l_drops=[0.3, 0.3], lam=10, Temp=1, nonlinearity=L.nonlinearities.rectify, clam=300 ) nnet.train(x=trainX, y=trainY, testx=testX, testy=testY, lrate=0.005, gamma=0.9, batch_size=100, iters=200, thresh=70, filename='runs/Cifar_Vr_L2_Dr') #################################################### # L2 + Dr nnet = LN.nnet( n_out=10, h_layers=[1000, 1000], l_drops=[0.3, 0.3], lam=10, Temp=1, nonlinearity=L.nonlinearities.rectify, clam=None ) nnet.train(x=trainX, y=trainY, testx=testX, testy=testY, lrate=0.001, gamma=0.9, batch_size=100, iters=200, thresh=70, filename='runs/Cifar_L2_Dr') #################################################### # Dr nnet = LN.nnet( n_out=10, h_layers=[1000, 1000], l_drops=[0.3, 0.3], lam=None, Temp=1, nonlinearity=L.nonlinearities.rectify, clam=None ) nnet.train(x=trainX, y=trainY, testx=testX, testy=testY, lrate=0.001, gamma=0.9, batch_size=100, iters=200, thresh=70, filename='runs/Cifar_Dr') #################################################### # Vr + Dr nnet = LN.nnet( n_out=10, h_layers=[1000, 1000], l_drops=[0.3, 0.3], lam=None, Temp=1, nonlinearity=L.nonlinearities.rectify, clam=100 ) nnet.train(x=trainX, y=trainY, testx=testX, testy=testY, lrate=0.005, gamma=0.9, batch_size=100, iters=200, thresh=70, filename='runs/Cifar_Vr_Dr') #################################################### if __name__ == '__main__': main()
python
import tequila as tq class QMBackend(): """ A class that holds information about a backend and can be given as a parameter to an algorithm. Attributes ---------- backend : str The name of the used backend (simulator). """ def __init__(self, backend: str = None): """ Creates a QMBackend object. Parameters ---------- backend : str, optional The name of the backend (simulator) to be used. Supported simulators are 'qulacs_gpu', 'qulacs','qibo', 'qiskit', 'cirq', 'pyquil' and 'symbolic'. """ self.backend = backend @property def backend(self): """The name of the used backend (simulator).""" return self._backend @backend.setter def backend(self, backend: str = None): self._backend = tq.pick_backend(backend)
python
#!/usr/bin/env python3.7 """ The copyrights of this software are owned by Duke University. Please refer to the LICENSE and README.md files for licensing instructions. The source code can be found on the following GitHub repository: https://github.com/wmglab-duke/ascent """ import os import sys sys.path.append(os.path.sep.join([os.getcwd(), ''])) import numpy as np import matplotlib.pyplot as plt from src.core.query import Query # set default fig size plt.rcParams['figure.figsize'] = list(np.array([16.8, 10.14*2]) / 2) q = Query({ 'partial_matches': False, 'include_downstream': True, 'indices': { 'sample': [3008], 'model': [0,1,2,11], 'sim': [3001] } }).run() q.ap_time_and_location( delta_V=60, plot=False, absolute_voltage=False, # n_sim_label_override='7.3 µm MRG Fiber', # model_labels=[ # '5000 µm model radius', # '7500 µm model radius', # '10000 µm model radius', # ], # n_sim_filter=[0, 1, 2], save=True, subplots = True, nodes_only = True)
python
# -*- coding: utf-8 -*- """ pygments.lexers.smv ~~~~~~~~~~~~~~~~~~~ Lexers for the SMV languages. :copyright: Copyright 2006-2015 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.lexer import RegexLexer, words from pygments.token import Comment, Generic, Keyword, Name, Number, \ Operator, Punctuation, Text __all__ = ['NuSMVLexer'] class NuSMVLexer(RegexLexer): """ Lexer for the NuSMV language. """ name = 'NuSMV' aliases = ['nusmv'] filenames = ['*.smv'] mimetypes = [] tokens = { 'root': [ # Comments (r'(?s)\/\-\-.*?\-\-/', Comment), (r'--.*\n', Comment), # Reserved (words(('MODULE','DEFINE','MDEFINE','CONSTANTS','VAR','IVAR', 'FROZENVAR','INIT','TRANS','INVAR','SPEC','CTLSPEC','LTLSPEC', 'PSLSPEC','COMPUTE','NAME','INVARSPEC','FAIRNESS','JUSTICE', 'COMPASSION','ISA','ASSIGN','CONSTRAINT','SIMPWFF','CTLWFF', 'LTLWFF','PSLWFF','COMPWFF','IN','MIN','MAX','MIRROR','PRED', 'PREDICATES'), suffix=r'(?![\w$#-])'), Keyword.Declaration), (r'process(?![\w$#-])', Keyword), (words(('array','of','boolean','integer','real','word'), suffix=r'(?![\w$#-])'), Keyword.Type), (words(('case','esac'), suffix=r'(?![\w$#-])'), Keyword), (words(('word1','bool','signed','unsigned','extend','resize', 'sizeof','uwconst','swconst','init','self','count','abs','max', 'min'), suffix=r'(?![\w$#-])'), Name.Builtin), (words(('EX','AX','EF','AF','EG','AG','E','F','O','G','H','X','Y', 'Z','A','U','S','V','T','BU','EBF','ABF','EBG','ABG','next', 'mod','union','in','xor','xnor'), suffix=r'(?![\w$#-])'), Operator.Word), (words(('TRUE','FALSE'), suffix=r'(?![\w$#-])'), Keyword.Constant), # Names (r'[a-zA-Z_][\w$#-]*', Name.Variable), # Operators (r':=', Operator), (r'[&\|\+\-\*/<>!=]', Operator), # Literals (r'\-?\d+\b', Number.Integer), (r'0[su][bB]\d*_[01_]+', Number.Bin), (r'0[su][oO]\d*_[01234567_]+', Number.Oct), (r'0[su][dD]\d*_[\d_]+', Number.Dec), (r'0[su][hH]\d*_[\da-fA-F_]+', Number.Hex), # Whitespace, punctuation and the rest (r'\s+', Text.Whitespace), (r'[\(\)\[\]\{\};\?:\.,]', Punctuation), (r'.', Generic.Error), ] }
python
fahrenheit = float(input("Enter temperature in Fahrenheit: ")) print("The temperature in Celsius: ", (fahrenheit-32)*(5/9))
python
""" Tool for extending the label information with the chess game state, i.e. the camera piece color and square content. """ import argparse import cv2 as cv from rookowl.global_var import PIECE_DISPLAY_SHAPE from rookowl.label import load_labels, save_label # =≡=-=♔=-=≡=-=♕=-=≡=-=♖=-=≡=-=♗=-=≡=-=♘=-=≡=-=♙=-=≡=-=♚=-=≡=-=♛=-=≡=-=♜=-=≡=-=♝=-=≡=-=♞=-=≡=-=♟︎=- def parse_state_text(state_text: str, near_color: str): state = 64 * ["."] def put(piece: str, file: int, rank: int): assert piece in ["P", "p", "B", "b", "N", "n", "R", "r", "Q", "q", "K", "k"] assert file >= 1 and file <= 8 assert rank >= 1 and rank <= 8 assert near_color in ["b", "w"] index = 8 * (rank-1) + (file-1) if near_color == "b": index = 63 - index state[index] = piece file, rank = 1, 8 for c in state_text: if c == " ": break elif c == "/": file = 1 rank -= 1 elif c.isdigit(): file += int(c) else: put(c, file, rank) file += 1 return "".join(state) # =≡=-=♔=-=≡=-=♕=-=≡=-=♖=-=≡=-=♗=-=≡=-=♘=-=≡=-=♙=-=≡=-=♚=-=≡=-=♛=-=≡=-=♜=-=≡=-=♝=-=≡=-=♞=-=≡=-=♟︎=- class App: MAIN_WIN_NAME = "Piece Labelling Tool" def __init__(self, dirpath): self.labels = load_labels(dirpath) def run(self): self.make_window() for label in self.labels: if "state" in label: continue image = cv.imread(label["image_filepath"]) image = cv.resize( image, (PIECE_DISPLAY_SHAPE[1], PIECE_DISPLAY_SHAPE[0]), interpolation=cv.INTER_CUBIC) cv.imshow(self.MAIN_WIN_NAME, image) cv.waitKey(1) print(80 * "_") print(f"Now presenting: {label['image_filename']}") near_color = input( "Which player holds the camera and it is a known state? [b/w/bs/ws/be/we] ") if not near_color in ["b", "w", "bs", "ws", "be", "we"]: print("Skipping to the next photo") continue if near_color in ["b", "w"]: state_text = input("What is this state? ") elif near_color == "bs": near_color = "b" state_text = "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1" elif near_color == "ws": near_color = "w" state_text = "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1" elif near_color == "be": near_color = "b" state_text = "" elif near_color == "we": near_color = "w" state_text = "" cv.waitKey(1) state = parse_state_text(state_text, near_color) print(f"Parsed state: '{state}'") label_path = label["source_path"] label["state"] = state label["side"] = near_color save_label(label, copylabel=False) print(f"Label '{label_path}' updated.") cv.waitKey(1) cv.destroyAllWindows() def make_window(self): cv.namedWindow(self.MAIN_WIN_NAME) def update_view(): pass # =≡=-=♔=-=≡=-=♕=-=≡=-=♖=-=≡=-=♗=-=≡=-=♘=-=≡=-=♙=-=≡=-=♚=-=≡=-=♛=-=≡=-=♜=-=≡=-=♝=-=≡=-=♞=-=≡=-=♟︎=- def parse_args(): parser = argparse.ArgumentParser( description=__doc__) parser.add_argument("-d", dest="dataset_dir", default="dataset", help="dataset directory path, where chessboard photographs are placed") return parser.parse_args() if __name__ == "__main__": args = parse_args() app = App(args.dataset_dir) app.run() # =≡=-=♔=-=≡=-=♕=-=≡=-=♖=-=≡=-=♗=-=≡=-=♘=-=≡=-=♙=-=≡=-=♚=-=≡=-=♛=-=≡=-=♜=-=≡=-=♝=-=≡=-=♞=-=≡=-=♟︎=-
python
import torch import torch.nn as nn import torch.nn.functional as F # 한 Batch에서의 loss 값 def batch_loss(loss, images): return loss.item() * images.size(0) class FocalLoss(nn.Module): def __init__(self, weight=None, gamma=2.0, reduction="mean"): nn.Module.__init__(self) self.weight = weight self.gamma = gamma self.reduction = reduction def forward(self, input_tensor, target_tensor): log_prob = F.log_softmax(input_tensor, dim=-1) prob = torch.exp(log_prob) return F.nll_loss( ((1 - prob) ** self.gamma) * log_prob, target_tensor, weight=self.weight, reduction=self.reduction, )
python
def spread_pixels(Nside_low, Nside_high, ID): from math import log Llow = int(log(Nside_low, 2)) Lhigh = int(log(Nside_high, 2)) print(Llow, Lhigh) b = bin(ID) DN = Lhigh-Llow a = [bin(i)[2:].zfill(2**DN) for i in range(4**DN)] pix_IDs = [] for i in a: x = (b[2:].zfill(Llow) + i) pix_IDs.append(int(x, 2)) return(pix_IDs)
python
#!/usr/bin/env python """Play a fixed frequency sound.""" from __future__ import division import math from pyaudio import PyAudio # sudo apt-get install python{,3}-pyaudio try: from itertools import izip except ImportError: # Python 3 izip = zip xrange = range def sine_tone(stream, frequency, duration, volume=1, sample_rate=22050): n_samples = int(sample_rate * duration) restframes = n_samples % sample_rate s = lambda t: volume * math.sin(2 * math.pi * frequency * t / sample_rate) samples = (int(s(t) * 0x7f + 0x80) for t in xrange(n_samples)) for buf in izip(*[samples]*sample_rate): # write several samples at a time #print(buf) stream.write(bytes(bytearray(buf))) # fill remainder of frameset with silence stream.write(b'\x80' * restframes) def get_target_pitch_freq(): target_pitch = [ 1046.5, 987.77, 698.46, # bar 06 880.00, 783.99, 698.46, 587.33, # bar 07 523.25, 587.33, 392.00, 587.33, # bar 08 659.26, 261.63, 329.63, 392.00, 523.25, 659.26, 783.99, # bar 09 1046.5, 987.77, 698.46, # bar 10 880.00, 783.99, 698.46, 587.33, # bar 11 523.25, 659.26, 587.33, 659.26, # bar 12 587.33, 523.25 # bar 13 ] return target_pitch p = PyAudio() stream = p.open(format=p.get_format_from_width(1), # 8bit channels=1, # mono rate=44100, output=True) for f in get_target_pitch_freq(): sine_tone(stream, frequency=f, duration=1, volume=0.6,sample_rate=44100) stream.stop_stream() stream.close() p.terminate()
python
#!/usr/bin/env python3 """Forward kinematic example using pinocchio Sends zero-torque commands to the robot and prints finger tip position. """ import os import numpy as np from ament_index_python.packages import get_package_share_directory import pinocchio import robot_interfaces import robot_fingers if __name__ == "__main__": urdf_pkg_path = get_package_share_directory("robot_properties_manipulator") urdf_path = os.path.join(urdf_pkg_path, "urdf", "finger.urdf") model = pinocchio.buildModelFromUrdf(urdf_path) data = model.createData() tip_link_id = model.getFrameId("finger_tip_link") robot = robot_fingers.Robot( robot_interfaces.finger, robot_fingers.create_real_finger_backend, "finger.yml", ) robot.initialize() action = robot.Action() while True: t = robot.frontend.append_desired_action(action) joint_positions = robot.frontend.get_observation(t).position # compute the forward kinematics pinocchio.framesForwardKinematics(model, data, joint_positions) # get the position of the tip link pos = data.oMf[tip_link_id].translation # convert from np.matrix to a flat array (for easy printing) pos = np.asarray(pos).reshape(-1) n_joints = len(pos) format_string = "\r" + ", ".join(["{: 6.3f}"] * n_joints) print(format_string.format(*pos), end="")
python
if __name__ == '__main__' and __package__ is None: import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath(__file__) ) )) import os import torch from utils.model_serialization import strip_prefix_if_present from utils import zipreader import argparse from tqdm import tqdm import pickle import cv2 import numpy as np parser = argparse.ArgumentParser(description="PyTorch Keypoints Training") parser.add_argument( "--src", default="~/datasets", help="source model", type=str, ) parser.add_argument( "--dst", default="~/local/datasets/h36m/undistortedimages", help="dst model", type=str, ) parser.add_argument( "--anno", default="~/datasets/h36m/annot/h36m_validation.pkl", type=str, ) args = parser.parse_args() src = os.path.expanduser(args.src) dst = os.path.expanduser(args.dst) with open(os.path.expanduser(args.anno), 'rb') as f: data = pickle.load(f) for db_rec in tqdm(data): path = db_rec['image'] image_dir = 'images.zip@' image_file = os.path.join(src, db_rec['source'], image_dir, 'images', db_rec['image']) output_path = os.path.join(dst, path) if os.path.exists(output_path): continue output_dir = os.path.dirname(output_path) os.makedirs(output_dir, exist_ok=True) data_numpy = zipreader.imread( image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) camera = db_rec['camera'] K = np.array([ [float(camera['fx']), 0, float(camera['cx'])], [0, float(camera['fy']), float(camera['cy'])], [0, 0, 1.], ]) distCoeffs = np.array([float(i) for i in [camera['k'][0], camera['k'][1], camera['p'][0], camera['p'][1], camera['k'][2]]]) data_numpy = cv2.undistort(data_numpy, K, distCoeffs) #cv2.imwrite(output_path, data_numpy, [int(cv2.IMWRITE_JPEG_QUALITY), 100]) #cv2.imwrite(output_path, data_numpy) cv2.imwrite(output_path, data_numpy, [int(cv2.IMWRITE_JPEG_QUALITY), 90])
python
import datetime from termcolor import cprint import get_all_caches as caches def calculate_all_prices(fiat='EUR', coin='XMR', start='04-02-2020', high_low='high', coin_amount=int(42), fiat_amount_spent=int(0)): coin_amount = int(coin_amount) # double casting to int here prevents crashes later on historical_prices = caches.get_historical_price_cache(fiat, coin, start) # to mitigate a ZeroDivisionError when the start date requested precedes the earliest data for coin in API database: if len(historical_prices[0]['data']['quotes']) == 0: historical_coin_price = 0 cprint(f" No coin data found for this date for {coin}, try a later date.", 'red', 'on_white', attrs=['bold']) else: historical_coin_price = float(historical_prices[0]['data']['quotes'][0]['quote'][fiat][high_low]) fiat_amount_spent = int(coin_amount) * historical_coin_price cprint( f" On {start}, at its {high_low}est price, 1 {coin} would have cost {historical_coin_price:,.2f} {fiat} &" f" to buy your desired amount of {coin_amount:,} {coin} would have cost {fiat_amount_spent:,.2f} {fiat}.", 'yellow', 'on_grey', attrs=['bold', 'dark']) todays_prices = caches.get_todays_price_cache(fiat=fiat) for k, v in enumerate(todays_prices['data']): if todays_prices['data'][k]['symbol'] == coin: todays_coin_price = todays_prices['data'][k]['quote'][fiat]['price'] new_fiat_amount_spent = f"{round(coin_amount * todays_coin_price)}" new_fiat_amount_spent = float(new_fiat_amount_spent) current_coin_amount = fiat_amount_spent / todays_coin_price cprint(f" Whereas today, {fiat_amount_spent:,.2f} {fiat} would buy you {current_coin_amount:,} {coin}.", 'yellow', 'on_grey', attrs=['bold', 'dark']) return fiat_amount_spent, fiat, todays_coin_price, coin, coin_amount, new_fiat_amount_spent, start, \ current_coin_amount, historical_coin_price def calculate_single_profit_loss(fiat_amount_spent, fiat, coin, coin_amount, new_fiat_amount, start): cprint(f" Had you bought {coin_amount} {coin} for {fiat_amount_spent:,.2f} {fiat} on {start} and held on to " f"it, today {coin_amount} {coin} would be worth {new_fiat_amount:,.2f} {fiat}.\n", 'yellow', 'on_grey', attrs=['bold', 'dark']) cprint(f" Pulling the trigger on {start} would have caused your fiat holdings to:", 'yellow', 'on_grey', attrs=['bold', 'dark']) if fiat_amount_spent > new_fiat_amount: loss = fiat_amount_spent - new_fiat_amount state = 'loss' cprint(f' Decrease by {loss:,.2f} {fiat}, so sad, quelle dommage!\n', 'yellow', 'on_grey', attrs=['bold', 'dark']) return loss, state elif fiat_amount_spent < new_fiat_amount: profit = new_fiat_amount - fiat_amount_spent state = 'profit' cprint(f' Increase by {profit:,.2f} {fiat}, what joy, rich as Croesus you could have been!\n', 'yellow', 'on_grey', attrs=['bold', 'dark']) return profit, state elif fiat_amount_spent == new_fiat_amount: stasis = fiat_amount_spent == new_fiat_amount state = 'stasis' cprint(f" My my, how curious, your new and old {fiat} holdings remain identical - welcome to stasis!\n", 'yellow', 'on_grey', attrs=['bold', 'dark']) return stasis, state def calculate_multiple_profit_loss(total_fiat_amount_spent, portfolio, start, fiat_amount_spent, fiat, sum_fiat_profit_amount, sum_fiat_loss_amount, new_fiat_amount): cprint(' Total of all wallets combined:', 'grey', 'on_yellow', attrs=['dark', 'bold']) cprint(f" All of your wallets purchased on {start} would have cost {total_fiat_amount_spent:,.2f} {fiat}.", 'yellow', 'on_grey', attrs=['dark', 'bold']) total_profits_losses = sum_fiat_profit_amount - sum_fiat_loss_amount cprint(f" Had you held onto all them coins, today the total profits of your portfolio would have been" f" {total_profits_losses:,.2f} {fiat}.\n", 'yellow', 'on_grey', attrs=['dark', 'bold']) cprint(f" Pulling the trigger on {start} would have caused your fiat holdings to:", 'yellow', 'on_grey', attrs=['bold', 'dark']) if total_fiat_amount_spent > total_profits_losses: loss = total_fiat_amount_spent - total_profits_losses state = 'loss' cprint(f' Decrease by {loss:,.2f} {fiat}, so sad, quelle dommage!\n', 'yellow', 'on_grey', attrs=['bold', 'dark']) return loss, state elif total_fiat_amount_spent < total_profits_losses: profit = total_profits_losses - total_fiat_amount_spent state = 'profit' cprint(f' Increase by {profit:,.2f} {fiat}, what joy, rich as Croesus you could have been!\n', 'yellow', 'on_grey', attrs=['bold', 'dark']) return profit, state elif fiat_amount_spent == new_fiat_amount: stasis = fiat_amount_spent - new_fiat_amount state = 'stasis' cprint(f" My my, how curious, your new and old {fiat} holdings remain identical - welcome to stasis! \n", 'yellow', 'on_grey', attrs=['bold', 'dark']) return stasis, state def output_coin_histdata(coin_cache, high_or_low, coin, start_date, end_date, fiat): # coin price at start date based on user's high/low request cprint(f" This was the {high_or_low}est price point for 1 {coin} on " f"{datetime.datetime.utcfromtimestamp(start_date).strftime('%d-%m-%Y')} in {fiat}: " f"{coin_cache['data']['quotes'][0]['quote'][fiat][high_or_low]:,.2f}", 'red', 'on_grey', attrs=['bold', 'dark']) # coin price at end date based on user's high/low request length = range(len(coin_cache['data']['quotes'])) cprint(f" This was the {high_or_low}est price point for 1 {coin} on " f"{datetime.datetime.utcfromtimestamp(end_date).strftime('%d-%m-%Y')} in {fiat}: " f"{coin_cache['data']['quotes'][length[-1]]['quote'][fiat][high_or_low]:,.2f}", 'red', 'on_grey', attrs=['bold', 'dark']) cprint(f" Here is your requested output for {coin_cache['data']['name']}'s historical data from " f"{datetime.datetime.utcfromtimestamp(start_date).strftime('%d-%m-%Y')} to " f"{datetime.datetime.utcfromtimestamp(end_date).strftime('%d-%m-%Y')}\ncoin id: {coin_cache['data']['id']}" f" // coin name: {coin_cache['data']['name']} // coin symbol: {coin_cache['data']['symbol']}", 'red', 'on_grey', attrs=['bold', 'dark']) for k, v in enumerate(coin_cache['data']['quotes']): cprint(v, 'yellow', 'on_grey', attrs=['bold', 'dark']) return
python
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2013, James Cammarata <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['deprecated'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: accelerate short_description: Enable accelerated mode on remote node deprecated: removed_in: "2.4" why: Replaced by ControlPersist alternative: Use SSH with ControlPersist instead. removed: True description: - This module has been removed, this file is kept for historical documentation purposes. - This modules launches an ephemeral I(accelerate) daemon on the remote node which Ansible can use to communicate with nodes at high speed. - The daemon listens on a configurable port for a configurable amount of time. - Fireball mode is AES encrypted version_added: "1.3" options: port: description: - TCP port for the socket connection required: false default: 5099 aliases: [] timeout: description: - The number of seconds the socket will wait for data. If none is received when the timeout value is reached, the connection will be closed. required: false default: 300 aliases: [] minutes: description: - The I(accelerate) listener daemon is started on nodes and will stay around for this number of minutes before turning itself off. required: false default: 30 ipv6: description: - The listener daemon on the remote host will bind to the ipv6 localhost socket if this parameter is set to true. required: false default: false multi_key: description: - When enabled, the daemon will open a local socket file which can be used by future daemon executions to upload a new key to the already running daemon, so that multiple users can connect using different keys. This access still requires an ssh connection as the uid for which the daemon is currently running. required: false default: no version_added: "1.6" notes: - See the advanced playbooks chapter for more about using accelerated mode. requirements: - "python >= 2.4" - "python-keyczar" author: "James Cammarata (@jimi-c)" ''' EXAMPLES = ''' # To use accelerate mode, simply add "accelerate: true" to your play. The initial # key exchange and starting up of the daemon will occur over SSH, but all commands and # subsequent actions will be conducted over the raw socket connection using AES encryption - hosts: devservers accelerate: true tasks: - command: /usr/bin/anything ''' from ansible.module_utils.common.removed import removed_module if __name__ == '__main__': removed_module()
python
#!/usr/bin/python # -*- coding: utf-8 -*- # make it possible to run as standalone program import sys import re import random import string sys.path.append('/srv/chemminetools') sys.path.append('/srv/chemminetools/sdftools') # allow tools.py to be imported from django.core.management import setup_environ import chemminetools.settings import argparse setup_environ(chemminetools.settings) from django.contrib.auth.models import User from django.conf import settings from compounddb.tools import parse_annotation, insert_single_compound from compounddb.models import Compound, SDFFile MAX_COMPOUND_LIMIT = settings.MAX_COMPOUND_LIMIT MAX_SDF_LENGTH = settings.MAX_SDF_LENGTH parser = \ argparse.ArgumentParser(description='Add new compounds to a users workbench' ) parser.add_argument('-u', '--user', help='numeric user id', required=True) parser.add_argument('-o', '--outfile', help='output file', required=True) args = vars(parser.parse_args()) def addMyCompounds(sdf, user): sdffile = u'' counter = 0 linecounter = 0 namekey = 'PUBCHEM_IUPAC_NAME' message = 'ERROR: bad input data.' added_ids = [] try: if not isinstance(sdf, unicode): sdf = unicode(sdf, 'utf-8') sdf = sdf.encode('ascii', 'ignore') sdf = sdf.split('\n') for line in sdf: linecounter += 1 if linecounter > MAX_SDF_LENGTH: message = 'ERROR: an input sdf exceeds ' \ + str(MAX_SDF_LENGTH) + ' lines.' raise Exception if linecounter == 1: # clean up cid with regexes line = re.match(r"^\W*(.*?)\W*$", line).group(1) if line == '': line = 'unspecified_' \ + ''.join(random.sample(string.digits, 6)) line = re.sub(r"[^a-zA-Z_0-9-]", '_', line, count=0) # loop adding postfix numbers to the cid until we find a unique cid in the database appendNumber = 1 oldCid = line while len(Compound.objects.filter(cid=line, user=user)) \ > 0: appendNumber += 1 line = oldCid + '_' + str(appendNumber) sdffile += line sdffile += '\n' if line.startswith('$$$$'): try: moldata = parse_annotation(sdffile, namekey) except: message = 'ERROR: invalid input format.' raise Exception counter += 1 linecounter = 0 if counter > MAX_COMPOUND_LIMIT: message = 'ERROR: upload exceeds ' \ + str(MAX_COMPOUND_LIMIT) + ' compounds.' raise Exception try: newid = insert_single_compound(moldata, sdffile, namekey, 'id', user) except: message = \ 'ERROR: Database error, possibly excessively large compound?' raise Exception added_ids.append(newid) sdffile = u'' if counter > 0: return 'Success: Added ' + str(counter) + ' compounds.' else: return 'ERROR: No valid input found.' except: for id in added_ids: try: Compound.objects.get(id=id).delete() except: pass return message def main(): sdf = sys.stdin.read() user = User.objects.get(id=args['user']) output = addMyCompounds(sdf, user) f = open(args['outfile'], 'w') f.write(output) f.close() if __name__ == '__main__': main()
python
import os import argparse import numpy as np class SceneGraphNode(object): def __init__(self): pass def set_attribute(self, attr, value): if attr not in self.__dict__.keys(): raise ValueError(f"Unknown attribute: {attr}") self.__dict__[attr] = value def get_attribute(self, attr): if attr not in self.__dict__.keys(): raise ValueError(f"Unknown attribute: {attr}") return self.__dict__[attr] class Building(SceneGraphNode): def __init__(self): # 2D floor area (sq. meters) self.floor_area = None # Functionality of the building self.function = None # Gibson split (tiny, medium, large) self.gibson_split = None # Unique building id self.id = None # Name of the Gibson model self.name = None # Number of panoramic cameras in the model self.num_cameras = None # Number of floors in the building self.num_floors = None # Number of objects in the building self.num_objects = None # Number of rooms in the building self.num_rooms = None # Building reference point self.reference_point = None # 3D size of building self.size = None # 3D volume of building (in cubic meters, computed from the 3D convex hull) self.volume = None # Size of each voxel self.voxel_size = None # 3D coordinates of voxel centers (N x 3) self.voxel_centers = None # Number of voxels per axis (k x l x m) self.voxel_resolution = None # Minimum Spanning Tree self.MST = None # Instantiate other layers in the graph self.room = {} self.camera = {} self.object = {} def print_attributes(self): print(f'--- Building ID: {self.id} ---') for key in self.__dict__.keys(): if key not in ['room', 'camera', 'object', 'voxel_centers']: print(f"Key: {key} | Value: {self.get_attribute(key)}") class Room(SceneGraphNode): def __init__(self): # 2D floor area (in square meters) self.floor_area = None # Index of the floor that contains this room self.floor_number = None # Unique space id per building self.id = None # 3D coordinates of room center self.location = None # Building face indices that correspond to this room self.inst_segmentation = None # Functionality of the room self.scene_category = None # 3D size of the room self.size = None # Building's voxel indices tha correspond to this space self.voxel_occupancy = None # 3D volume of the room (in cubic meters, computed from the 3D convex hull) self.volume = None # Parent building that contains this room self.parent_building = None # Connected Rooms self.connected_rooms = set() def print_attributes(self): print(f'--- Room ID: {self.id} ---') for key in self.__dict__.keys(): print(f"Key: {key} | Value: {self.get_attribute(key)}") class SceneObject(SceneGraphNode): def __init__(self): # List of possible actions self.action_affordance = None # 2D floor area (in square meters) self.floor_area = None # Total surface coverage (in square meters) self.surface_coverage = None # Object label self.class_ = None # Unique object id per building self.id = None # 3D coordinates of object center self.location = None # List of main object materials self.material = None # 3D object size self.size = None # Building face indices that correspond to this object self.inst_segmentation = None # Main tactile texture (may be None) self.tactile_texture = None # Main visible texture (may be None) self.visual_texture = None # 3D volume of object (in cubic meters, computed from the 3D convex hull) self.volume = None # Building voxel indices corresponding to this object self.voxel_occupancy = None # Parent room that contains this object self.parent_room = None def print_attributes(self): print(f'--- Object ID: {self.id} ---') for key in self.__dict__.keys(): print(f"Key: {key} | Value: {self.get_attribute(key)}") class Camera(SceneGraphNode): def __init__(self): # Name of the camera self.name = None # Unique camera id self.id = None # Camera field of view self.FOV = None # 3D location of camera in the model self.location = None # 3D orientation of camera (quaternion) self.rotation = None # Camera modality (e.g., RGB, grayscale, depth, etc.) self.modality = None # Camera resolution self.resolution = None # Parent room that contains this camera self.parent_room = None def load_scenegraph(datapath): data = np.load(datapath, allow_pickle=True)["output"].item() building = Building() # Set building attributes for key in data["building"].keys(): if key in [ "object_inst_segmentation", "room_inst_segmentation", "object_voxel_occupancy", "room_voxel_occupancy", ]: continue building.set_attribute(key, data["building"][key]) res = building.voxel_resolution voxel_centers = np.reshape(building.voxel_centers, (res[0], res[1], res[2], 3)) building.set_attribute("voxel_centers", voxel_centers) # Set room attributes unique_rooms = np.unique(data["building"]["room_inst_segmentation"]) for room_id in unique_rooms: if room_id == 0: continue building.room[room_id] = Room() room_faces = np.where(data["building"]["room_inst_segmentation"] == room_id)[0] building.room[room_id].set_attribute("inst_segmentation", room_faces) room_voxels = np.where(data["building"]["room_voxel_occupancy"] == room_id)[0] building.room[room_id].set_attribute("voxel_occupancy", room_voxels) for key in data["room"][room_id].keys(): building.room[room_id].set_attribute(key, data["room"][room_id][key]) # Set object attributes unique_objects = np.unique(data["building"]["object_inst_segmentation"]) for object_id in unique_objects: if object_id == 0: continue building.object[object_id] = SceneObject() object_faces = np.where(data["building"]["object_inst_segmentation"] == object_id)[0] building.object[object_id].set_attribute("inst_segmentation", object_faces) object_voxels = np.where(data["building"]["object_voxel_occupancy"] == object_id)[0] building.object[object_id].set_attribute("voxel_occupancy", object_voxels) for key in data["object"][object_id].keys(): building.object[object_id].set_attribute(key, data["object"][object_id][key]) # Set camera attributes for cam_id in data["camera"].keys(): if cam_id == 0: continue building.camera[cam_id] = Camera() for key in data["camera"][cam_id].keys(): building.camera[cam_id].set_attribute(key, data["camera"][cam_id][key]) kruskals_mst(building) return building def kruskals_mst(building): """Apply Kruskal's algorithm to find the minimum spanning tree of room connectivities, where edge weights are determined by the distance between rooms' centroids. """ room_map = dict() floor_map = dict() floor_map_inv = dict() location = dict() floor = dict() floor_count = 0 for i, room_id in enumerate(building.room): room_map[i] = room_id location[i] = building.room[room_id].location floor_name = building.room[room_id].floor_number if floor_name not in floor_map_inv: floor_map_inv[floor_name] = floor_count floor_map[floor_count] = floor_name floor_count += 1 floor[i] = floor_map_inv[floor_name] floor_to_room_map = dict() for room_id, floor_id in floor.items(): if floor_id not in floor_to_room_map: floor_to_room_map[floor_id] = set() floor_to_room_map[floor_id].add(room_id) if building.num_rooms is None: building.num_rooms = len(building.room) assert(len(building.room) == building.num_rooms) num_floors_with_rooms = len(floor_map_inv) # compute room-room distances adj_rooms = np.zeros((building.num_rooms, building.num_rooms)) for i in range(building.num_rooms): for j in range(i+1, building.num_rooms): dist = np.linalg.norm(location[i] - location[j], 2) adj_rooms[i, j] = dist adj_rooms[j, i] = dist # compute minimum spanning tree for all rooms room_graph = Graph(building.num_rooms) # find average-minimum distances of rooms between floors if num_floors_with_rooms > 1: adj_floors = np.zeros((num_floors_with_rooms, num_floors_with_rooms)) adj_floors_count = np.ones((num_floors_with_rooms, num_floors_with_rooms)) for room_id_a, floor_id_a in floor.items(): for floor_id_b in floor_to_room_map: if floor_id_a == floor_id_b: continue # compute minimum room-room distance between different floors room_id_bs = np.array(list(floor_to_room_map[floor_id_b]), dtype=int) room_id_as = np.ones_like(room_id_bs, dtype=int) * room_id_a min_dist = adj_rooms[room_id_as, room_id_bs].min() # compute running average n = adj_floors_count[floor_id_a, floor_id_b] adj_floors[floor_id_a, floor_id_b] += (1/n) * (min_dist - adj_floors[floor_id_a, floor_id_b]) adj_floors_count[floor_id_a, floor_id_b] += 1 # compute minimum spanning floor tree floor_graph = Graph(num_floors_with_rooms) for floor_id_a in range(num_floors_with_rooms): for floor_id_b in range(floor_id_a, num_floors_with_rooms): floor_graph.addEdge(floor_id_a, floor_id_b, adj_floors[floor_id_a, floor_id_b]) floor_mst = floor_graph.KruskalMST() # add minimum edge across floors for floor_id_a, floor_id_b, w in floor_mst: room_id_as = np.array(list(floor_to_room_map[floor_id_a]), dtype=int) room_id_bs = np.array(list(floor_to_room_map[floor_id_b]), dtype=int) ones_b = np.ones_like(room_id_bs, dtype=int) distances = np.zeros(len(room_id_as) * len(room_id_bs)) room_coords = np.empty((2, len(room_id_as) * len(room_id_bs)), dtype=int) i = 0 for room_a in room_id_as: room_idx_as = ones_b.copy() * room_a distances[i:i+len(ones_b)] = adj_rooms[room_idx_as, room_id_bs] room_coords[:, i:i+len(ones_b)] = np.stack((room_idx_as, room_id_bs)) i += len(ones_b) min_edge = np.min(distances) min_room_a, min_room_b = room_coords[:, np.argmin(distances)] room_graph.addEdge(min_room_a, min_room_b, min_edge) for floor_id in floor_to_room_map: room_ids = np.array(list(floor_to_room_map[floor_id]), dtype=int) for i, room_i in enumerate(room_ids): for j, room_j in enumerate(room_ids, i+1): room_graph.addEdge(room_i, room_j, adj_rooms[room_i, room_j]) # compute room MST room_mst = room_graph.KruskalMST() building.MST = room_mst connected_rooms = set() for i, j, w in room_mst: connected_rooms.add(room_map[i]) connected_rooms.add(room_map[j]) building.room[room_map[i]].connected_rooms.add(room_map[j]) building.room[room_map[j]].connected_rooms.add(room_map[i]) assert(len(connected_rooms) == building.num_rooms) assert(len(building.MST) == building.num_rooms - 1) class Graph: def __init__(self, vertices): self.V = vertices # No. of vertices self.graph = [] # default dictionary # to store graph def addEdge(self, u, v, w): self.graph.append([u, v, w]) def find(self, parent, i): if parent[i] == i: return i return self.find(parent, parent[i]) def union(self, parent, rank, x, y): xroot = self.find(parent, x) yroot = self.find(parent, y) if rank[xroot] < rank[yroot]: parent[xroot] = yroot elif rank[xroot] > rank[yroot]: parent[yroot] = xroot else: parent[yroot] = xroot rank[xroot] += 1 def KruskalMST(self): result = [] i = 0 e = 0 self.graph = sorted(self.graph, key=lambda item: item[2]) parent = [] rank = [] # Create V subsets with single elements for node in range(self.V): parent.append(node) rank.append(0) # Number of edges to be taken is equal to V-1 while e < self.V - 1: u, v, w = self.graph[i] i = i + 1 x = self.find(parent, u) y = self.find(parent, v) if x != y: e = e + 1 result.append([u, v, w]) self.union(parent, rank, x, y) minimumCost = 0 for u, v, weight in result: minimumCost += weight return result if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--data-path', type=str, default="/home/agiachris/data/3dscenegraph/tiny") parser.add_argument('--model', type=str, default='Marstons') args = parser.parse_args() model_type = "verified_graph" if os.path.basename(args.data_path) == 'tiny' else "automated_graph" datapath = os.path.join(args.data_path, model_type, "3DSceneGraph_" + args.model + ".npz") scenegraph = {} scenegraph[args.model] = {} scenegraph[args.model]["graph"] = load_scenegraph(datapath)
python
c = {'z': '\033[m'} l = ['w', 'r', 'g', 'y', 'b', 'm', 'c', 'k'] i = j = 0 for lin in range(30, 38): c[l[i]] = f'\033[{lin}m' i += 1 i = j = 0 for lin in range(30, 38): for col in range(40, 48): c[l[i] + l[j]] = f'\033[{lin};{col}m' j += 1 i += 1 j = 0 def clr(text='', value='z'): return c[value] + str(text) + c['z']
python
# Generated by Django 3.2.9 on 2022-01-15 21:28 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('api', '0002_auto_20220115_1425'), ] operations = [ migrations.AlterField( model_name='comments', name='description', field=models.CharField(blank=True, max_length=500), ), migrations.AlterField( model_name='course', name='comments', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='api.comments'), ), ]
python
import sys import os import configparser import tkinter as tk import tkinter.ttk as ttk from tkinter import messagebox from functools import partial from PIL import ImageTk, Image from tkinter import filedialog class Gui: """ This class represents a GUI for reading, changing and writing purposes. The input is read from the parameters.db file. In the GUI the values can be edited and finally saved in beispiel.cfg The GUI is configured by a grid layout using themed widgets (tkinter.ttk). The section must be set as the parameter on the command line. command line: python3<path-to-mini_topsim>gui.py <section-name> At the beginning the default parameters of the section are shown. Use the OK-Button for saving the config and the Cancel-Button for closing the session. If you try to close the window, you will be asked how to close the session if you have still unsaved parameters in comparison to beispiel.cfg """ def __init__(self, section, parameter_file, button_file, cfg_file): """ This function sets all needed configurations of the Tkinter Window. At the beginning the GUI is set in the middle of the screen. Attributes ---------- section : input from user in the command line parameter_file : path to the parameter file button_file : path to the button file cfg_file : path to the config file """ self.section = section self.parameter_file = parameter_file self.button_file = button_file self.cfg_file = cfg_file self.data = self.get_data() self.root = tk.Tk() screen_width = self.root.winfo_screenwidth() screen_height = self.root.winfo_screenheight() gui_width = 500 gui_height = 100 + 30 * len(self.data) if gui_width > screen_width: gui_width = screen_width if gui_height > screen_height: gui_height = screen_height self.root.geometry('{}x{}'.format(gui_width, gui_height)) x_position = int(screen_width/2 - gui_width/2) y_position = int(screen_height/2 - gui_height/2) self.root.geometry('+{}+{}'.format(x_position, y_position)) self.root.columnconfigure(0, weight=0) self.root.columnconfigure(1, weight=1) self.root.columnconfigure(2, weight=0) self.display() def start(self): """ This function starts the GUI. """ self.root.title('MiniTopSim-Project') self.root.mainloop() def get_data(self): """ This function reads parameters.db and copies all data in a dictionary. Returns ------- data_from_file : dict """ data_from_file = {} possible_sections = [] cp = configparser.ConfigParser() cp.optionxform = str cp.read(self.parameter_file) for possible_section in cp.sections(): possible_sections.append(possible_section) if self.section not in possible_sections: print('The given section \"{}\" is not available!'.format( self.section)) print('Try to use one of these next time and type in without ' 'quotes:') print(possible_sections) sys.exit() for option in cp[self.section]: value = list(eval(cp[self.section][option])) data_from_file[option] = value globals()[option] = value[0] if len(data_from_file) == 0: print('The given section \"{}\" doesn\'t contain any data!'.format( self.section)) sys.exit() return data_from_file def display(self): """ This function sets the grid layout and the basic visualisation. If the value is type int or double -> spinbox Else if the value is type bool -> checkbutton else -> entry If the user hits a new content in the GUI, it will be automatically verified if the data is valid too. On the right handside every parameter has got a help button, if the user wants to get further information on the parameter and its condition. At the Bottom there are the two buttons called 'OK' and 'Cancel' situated. If you press 'OK' and the data isn't already set in beispiel.config a filedialog will appear to get the right directory. If you press 'Cancel' the GUI will just close. If you press the 'X' button on the right hand corner then it depends on the current state. If the current config is already saved in beispiel.cfg then it close like the 'Cancel' Button. But if there are unsaved parameters you will be asked if you want to save the current state or discard it. """ self.entries = {} self.root.protocol('WM_DELETE_WINDOW', self.exit_window) info_image = Image.open(self.button_file) self.button_image = ImageTk.PhotoImage(info_image) label = ttk.Label(self.root, relief='sunken', text='PARAMETER') label.grid(row=0, column=0, padx='5', pady='5', sticky='ew') label = ttk.Label(self.root, relief='sunken', text='VALUE') label.grid(row=0, column=1, padx='5', pady='5', sticky='ew') label = ttk.Label(self.root, relief='sunken', text='HELP') label.grid(row=0, column=2, padx='5', pady='5', sticky='ew') current_row = 0 for key, value in self.data.items(): current_row = current_row + 1 label = ttk.Label(self.root, text=key) label.grid(row=current_row, column=0, padx='5', sticky='ew') self.defaultvalue = value[0] defaulttype = type(self.defaultvalue) if defaulttype is int or defaulttype is float: content = tk.DoubleVar() entry = ttk.Spinbox(self.root, textvariable=content, validate='focusout', from_=-1000.0, to=1000.0, validatecommand=partial(self.change_update, key)) elif defaulttype is bool: content = tk.BooleanVar() entry = ttk.Checkbutton(self.root, variable=content, command=partial(self.change_update, key)) else: content = tk.StringVar() entry = ttk.Entry(self.root, textvariable=content, validate='focusout', validatecommand=partial( self.change_update, key)) content.set(self.defaultvalue) entry.grid(row=current_row, column=1, padx='5', sticky='ew') help_button = ttk.Button(self.root, image=self.button_image, command=partial(self.info, key)) help_button.grid(row=current_row, column=2, padx='5', sticky='ew') self.entries[key] = {'content': content, 'entry': entry, 'default': self.defaultvalue} save_button = ttk.Button(self.root, text='OK', command=self.save) save_button.grid(column=1, row=current_row+1, padx='5', pady='5', sticky='nsw') cancel_button = ttk.Button(self.root, text='Cancel', command=self.close) cancel_button.grid(column=1, row=current_row+1, padx='5', pady='5', sticky='nse') def info(self, key): """ This function shows the information on user defined parameter. """ help_text = str(self.data[key][2]) if self.data[key][1] is None: value_text = 'None' else: value_text = str(self.data[key][1]) info_text = 'Info:\n' + help_text + '\n' + 'Condition:\n' + value_text messagebox.showinfo(key, info_text) def change_update(self, key): """ This function processes the user input of the GUI. If the new value doesn't match with the belonging condition, then the old one is set again and the user gets an error message. Returns ------- Bool : error occured or not """ old_value = globals()[key] globals()[key] = self.entries[key]['content'].get() if self.data[key][1] is not None and not eval(self.data[key][1]): error = True else: error = False if error: self.entries[key]['content'].set(old_value) globals()[key] = old_value messagebox.showerror(key, 'The new value isn\'t compatible with '\ 'the existing condition!') self.info(key) return False else: self.defaultvalue = self.data[key][0] self.data[key][0] = self.entries[key]['content'].get() return True def check_data(self): """ This function checks the data if all values correspond with their conditions. This function will be called before saving the data. Returns ------- Bool : warnings occured or not """ warnings = 0 for key, condition in self.data.items(): if condition[1] is not None: if not eval(condition[1]): warnings = warnings + 1 messagebox.showwarning(key, key + ' doesn\'t '\ 'match the requirements!\n\n' + 'Value: ' + str(self.data[key][0]) + '\nCondition: ' + str(self.data[key][1])) if warnings > 0: return False else: return True def save(self): """ This function will call CreateConfigFile class if everything is valid. This function will be called by pressing the 'OK' button or the 'X'. If the data exists already in beispiel.cfg then an information will be printed on the screen. Returns ------- Bool : saving procedure successfully or not """ result = self.data_already_in_file() if result: messagebox.showinfo('Save', 'Data exists already in beispiel.cfg') else: valid_data = self.check_data() if valid_data: config = CreateConfigFile(self.data) success = config.save_file(self.section, self.cfg_file) if success: messagebox.showinfo('Save', 'Save of config successfully!') return True else: messagebox.showerror('Save', 'Please correct the error(s) as '\ 'displayed!') return False def exit_window(self): """ This function will be called when you try to leave the GUI by the 'X'. If there is no unsaved work, it just will close like the 'Cancel' button. If there is something new you will be asked for saving it. """ equal = self.data_already_in_file() answer = False success = True if not equal: messagebox.showwarning('Unsaved Data', 'The data isn\'t equal to '\ 'the file beispiel.cfg') answer = messagebox.askyesno('Create Config file?', 'Do you want '\ 'to save the parameters?') if answer: success = self.save() if success: self.close() def data_already_in_file(self): """ This function evaluates if the data of current state already exists. Returns ------- Bool : savind successfully or not """ path_to_file = os.path.join(self.cfg_file, 'beispiel.cfg') if os.path.exists(path_to_file): data_file = {} cp = configparser.ConfigParser() cp.optionxform = str cp.read(path_to_file) if self.section in cp.sections(): for option in cp[self.section]: value = list(eval(cp[self.section][option])) data_file[option] = value if self.data == data_file: return True return False def close(self): """ This function closes the GUI. """ self.root.destroy() class CreateConfigFile: """ This class represents the procedure of saving your config. The data is given to the class in the __init__ function, which will be used to create a config file. Default is beispiel.cfg in the directory .../work/Aufgabe13_gui/ """ def __init__(self, data): """ This function enables the usage of the config data. Attributes ---------- data : dict of the given section """ self.data = data def save_file(self, section, cfg_file): """ This function saves the data in a config file. Therefore a filedioalog is opened to help you to get the right directory. Attributes ---------- section : input from user in the command line cfg_file : path to the config file Returns ------- Bool : success in saving the data or not """ cp = configparser.ConfigParser() cp.optionxform = str file_name = filedialog.asksaveasfilename(initialdir=cfg_file, title='Save config', filetypes=(('cfg-files', '*.cfg'), ('all files', '*.*')), defaultextension='.cfg', initialfile='beispiel.cfg') if file_name: cp.add_section(section) for key, value in self.data.items(): cp.set(section, key, str(tuple(value))) with open(file_name, 'w') as file: cp.write(file) return True return False def main(command_line_input): """ This function calls and starts the GUI. The function proves the existence of parameters.db and if the command line is valid. If this is the case then the GUI is called. """ current_dir = os.path.dirname(os.path.abspath(__file__)) path_to_parameter_file = os.path.join(current_dir, 'parameters.db') if not os.path.exists(path_to_parameter_file): print('File parameters.db cannot be found in directory {}'.format( path_to_parameter_file)) sys.exit() parent_dir = os.path.dirname(current_dir) path_to_button_file = os.path.join(current_dir, 'info.png') path_to_cfg_file = os.path.join(parent_dir, 'work', 'Aufgabe13_gui') if len(command_line_input) == 2: section_name = command_line_input[1] elif len(command_line_input) > 2: section_name = ' '.join(command_line_input[1:]) else: print('Syntax from command line is not valid!') sys.exit() gui = Gui(section_name, path_to_parameter_file, path_to_button_file, path_to_cfg_file) gui.start() if __name__ == "__main__": main(sys.argv)
python
""" Tests CoreML Imputer converter. """ import numpy as np import unittest try: from sklearn.impute import SimpleImputer as Imputer import sklearn.preprocessing if not hasattr(sklearn.preprocessing, 'Imputer'): # coremltools 3.1 does not work with scikit-learn 0.22 setattr(sklearn.preprocessing, 'Imputer', Imputer) except ImportError: from sklearn.preprocessing import Imputer import sklearn.preprocessing from onnxmltools.utils import dump_data_and_model class TestCoreMLImputerConverter(unittest.TestCase): def test_imputer(self): try: model = Imputer(missing_values='NaN', strategy='mean', axis=0) except TypeError: model = Imputer(missing_values=np.nan, strategy='mean') model.axis = 0 data = [[1, 2], [np.nan, 3], [7, 6]] model.fit(data) from onnxmltools.convert.coreml.convert import convert import coremltools # noqa try: model_coreml = coremltools.converters.sklearn.convert(model) except ValueError as e: if 'not supported' in str(e): # Python 2.7 + scikit-learn 0.22 return model_onnx = convert(model_coreml.get_spec()) self.assertTrue(model_onnx is not None) dump_data_and_model(np.array(data, dtype=np.float32), model, model_onnx, basename="CmlImputerMeanFloat32") if __name__ == "__main__": unittest.main()
python
from django.core.exceptions import ValidationError def following_changed(sender, action, instance, *args, **kwargs): """Raise an error if admin tries to assign User to the Users follow list""" # m2mchanged.connect specified in apps.py following = instance.following.all() creator = instance.user if creator in following: raise ValidationError ("can't like own post")
python
from arcutils.settings import PrefixedSettings DEFAULTS = { 'default': { # Notes: # - There are two LDAP hosts, ldap-bulk and ldap-login; Elliot has # said that ldap-login "has more servers in the pool" and he # recommends using it over ldap-bulk (RT ticket #580686); note that # despite the name, ldap-login does not actually require auth # - It's possible to do unauthenticated requests over SSL # - It's also possible to do authenticated requests over non-SSL # - To use SSL, set ``use_ssl`` to ``true`` # - A project will need an LDAP service account if it does LDAP # requests that return more than 2,000 results # - The defaults here support a typical Odin autocomplete scenario 'host': 'ldap-login.oit.pdx.edu', 'port': None, 'use_ssl': False, 'search_base': 'ou=people,dc=pdx,dc=edu', 'username': None, 'password': None, 'strategy': 'SYNC', 'tls': { 'ca_certs_file': 'certifi:cacert.pem', 'validate': 'CERT_REQUIRED', # This can be set to one of the protocol versions in the ssl module # (e.g., "PROTOCOL_SSLv23"); if it's not set, the ldap3 library will # choose a default value (which is "PROTOCOL_SSLv23" currently) 'version': None, } }, # Active Directory # To connect to AD, a service account is required; request it from # cis-windows. 'ad': { 'hosts': ['oitdcpsu01.psu.ds.pdx.edu', 'oitdcpsu02.psu.ds.pdx.edu'], 'use_ssl': True, 'strategy': 'SYNC', 'search_base': 'ou=people,dc=psu,dc=ds,dc=pdx,dc=edu', # These are required for AD and must be in the project's local settings: # 'username': None, # 'password': None, } } class Settings(PrefixedSettings): def get(self, key, default=None, using='default'): using_key = '{using}.{key}'.format(using=using, key=key) return super().get(using_key, default) settings = Settings('LDAP', DEFAULTS)
python
from django.contrib import admin from ledger.accounts.models import EmailUser from disturbance.components.proposals import models from disturbance.components.proposals import forms from disturbance.components.main.models import ActivityMatrix, SystemMaintenance, ApplicationType #from disturbance.components.main.models import Activity, SubActivityLevel1, SubActivityLevel2, SubCategory from reversion.admin import VersionAdmin from django.conf.urls import url from django.template.response import TemplateResponse from django.http import HttpResponse, HttpResponseRedirect from disturbance.utils import create_helppage_object # Register your models here. @admin.register(models.ProposalType) class ProposalTypeAdmin(admin.ModelAdmin): list_display = ['name','description', 'version'] ordering = ('name', '-version') list_filter = ('name',) #exclude=("site",) class ProposalDocumentInline(admin.TabularInline): model = models.ProposalDocument extra = 0 @admin.register(models.AmendmentReason) class AmendmentReasonAdmin(admin.ModelAdmin): list_display = ['reason'] @admin.register(models.Proposal) class ProposalAdmin(VersionAdmin): inlines =[ProposalDocumentInline,] @admin.register(models.ProposalAssessorGroup) class ProposalAssessorGroupAdmin(admin.ModelAdmin): list_display = ['name','default'] filter_horizontal = ('members',) form = forms.ProposalAssessorGroupAdminForm readonly_fields = ['default'] #readonly_fields = ['regions', 'activities'] def has_delete_permission(self, request, obj=None): if obj and obj.default: return False return super(ProposalAssessorGroupAdmin, self).has_delete_permission(request, obj) @admin.register(models.ProposalApproverGroup) class ProposalApproverGroupAdmin(admin.ModelAdmin): list_display = ['name','default'] filter_horizontal = ('members',) form = forms.ProposalApproverGroupAdminForm readonly_fields = ['default'] #readonly_fields = ['default', 'regions', 'activities'] def has_delete_permission(self, request, obj=None): if obj and obj.default: return False return super(ProposalApproverGroupAdmin, self).has_delete_permission(request, obj) @admin.register(models.ProposalStandardRequirement) class ProposalStandardRequirementAdmin(admin.ModelAdmin): list_display = ['code','text','obsolete'] @admin.register(models.HelpPage) class HelpPageAdmin(admin.ModelAdmin): list_display = ['application_type','help_type', 'description', 'version'] form = forms.DisturbanceHelpPageAdminForm change_list_template = "disturbance/help_page_changelist.html" ordering = ('application_type', 'help_type', '-version') list_filter = ('application_type', 'help_type') def get_urls(self): urls = super(HelpPageAdmin, self).get_urls() my_urls = [ url('create_disturbance_help/', self.admin_site.admin_view(self.create_disturbance_help)), url('create_apiary_help/', self.admin_site.admin_view(self.create_apiary_help)), url('create_disturbance_help_assessor/', self.admin_site.admin_view(self.create_disturbance_help_assessor)), url('create_apiary_help_assessor/', self.admin_site.admin_view(self.create_apiary_help_assessor)), ] return my_urls + urls def create_disturbance_help(self, request): create_helppage_object(application_type='Disturbance', help_type=models.HelpPage.HELP_TEXT_EXTERNAL) return HttpResponseRedirect("../") def create_apiary_help(self, request): create_helppage_object(application_type='Apiary', help_type=models.HelpPage.HELP_TEXT_EXTERNAL) return HttpResponseRedirect("../") def create_disturbance_help_assessor(self, request): create_helppage_object(application_type='Disturbance', help_type=models.HelpPage.HELP_TEXT_INTERNAL) return HttpResponseRedirect("../") def create_apiary_help_assessor(self, request): create_helppage_object(application_type='Apiary', help_type=models.HelpPage.HELP_TEXT_INTERNAL) return HttpResponseRedirect("../") @admin.register(ActivityMatrix) class ActivityMatrixAdmin(admin.ModelAdmin): list_display = ['name', 'description', 'version'] ordering = ('name', '-version') @admin.register(SystemMaintenance) class SystemMaintenanceAdmin(admin.ModelAdmin): list_display = ['name', 'description', 'start_date', 'end_date', 'duration'] ordering = ('start_date',) readonly_fields = ('duration',) form = forms.SystemMaintenanceAdminForm @admin.register(ApplicationType) class ApplicationTypeAdmin(admin.ModelAdmin): list_display = ['name', 'order', 'visible'] ordering = ('order',)
python
# Copyright 2019 Belma Turkovic # TU Delft Embedded and Networked Systems Group. # NOTICE: THIS FILE IS BASED ON https://github.com/p4lang/behavioral-model/blob/master/mininet/p4_mininet.py, BUT WAS MODIFIED UNDER COMPLIANCE # WITH THE APACHE 2.0 LICENCE FROM THE ORIGINAL WORK. # Copyright 2013-present Barefoot Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from mininet.net import Mininet from mininet.node import Switch, Host from mininet.log import setLogLevel, info class P4Host(Host): def config(self, **params): r = super(Host, self).config(**params) self.defaultIntf().rename("eth0") for off in ["rx", "tx", "sg"]: cmd = "/sbin/ethtool --offload eth0 %s off" % off self.cmd(cmd) # disable IPv6 self.cmd("sysctl -w net.ipv6.conf.all.disable_ipv6=1") self.cmd("sysctl -w net.ipv6.conf.default.disable_ipv6=1") self.cmd("sysctl -w net.ipv6.conf.lo.disable_ipv6=1") return r def describe(self): print "**********" print self.name print "default interface: %s\t%s\t%s" %( self.defaultIntf().name, self.defaultIntf().IP(), self.defaultIntf().MAC() ) print "**********" class P4Switch(Switch): """P4 virtual switch""" device_id = 0 def __init__( self, name, sw_path = None, json_path = None, grpc_port = None, thrift_port = None, pcap_dump = False, verbose = False, device_id = None, enable_debugger = False, cpu_port = None, **kwargs ): Switch.__init__( self, name, **kwargs ) assert(sw_path) self.sw_path = sw_path self.json_path = json_path self.verbose = verbose self.pcap_dump = pcap_dump self.enable_debugger = enable_debugger self.cpu_port = cpu_port if device_id is not None: self.device_id = device_id P4Switch.device_id = max(P4Switch.device_id, device_id) else: self.device_id = P4Switch.device_id P4Switch.device_id += 1 self.nanomsg = "ipc:///tmp/bm-%d-log.ipc" % self.device_id @classmethod def setup( cls ): pass def start( self, controllers ): "Start up a new P4 switch" print "Starting P4 switch", self.name args = [self.sw_path] for port, intf in self.intfs.items(): if not intf.IP(): args.extend( ['-i', str(port) + "@" + intf.name] ) if self.pcap_dump: args.append("--pcap") args.extend( ['--device-id', str(self.device_id)] ) P4Switch.device_id += 1 notificationAddr = 'ipc:///tmp/bmv2-'+str(self.device_id)+'-notifications.ipc' args.extend( ['--notifications-addr', str(notificationAddr)] ) if self.json_path: args.append(self.json_path) else: args.append("--no-p4") if self.enable_debugger: args.append("--debugger") args.append("-- --enable-swap") logfile = 'p4s.%s.log' % self.name print ' '.join(args) self.cmd( ' '.join(args) + ' >' + logfile + ' 2>&1 &' ) print "switch has been started" def stop( self ): "Terminate IVS switch." self.output.flush() self.cmd( 'kill %' + self.sw_path ) self.cmd( 'wait' ) self.deleteIntfs() def attach( self, intf ): "Connect a data port" assert(0) def detach( self, intf ): "Disconnect a data port" assert(0) class P4GrpcSwitch(Switch): """P4 virtual switch""" device_id = 0 def __init__( self, name, sw_path = None, json_path = None, thrift_port = None, grpc_port = None, pcap_dump = False, verbose = False, device_id = None, enable_debugger = False, cpu_port = None, **kwargs ): Switch.__init__( self, name, **kwargs ) assert(sw_path) self.sw_path = sw_path self.json_path = json_path self.verbose = verbose self.thrift_port = thrift_port self.grpc_port = grpc_port self.enable_debugger = enable_debugger self.cpu_port = cpu_port if device_id is not None: self.device_id = device_id P4Switch.device_id = max(P4Switch.device_id, device_id) else: self.device_id = P4Switch.device_id P4Switch.device_id += 1 @classmethod def setup( cls ): pass def start( self, controllers ): "Start up a new P4 switch" print "Starting P4 switch", self.name args = [self.sw_path] for port, intf in self.intfs.items(): if not intf.IP(): args.extend( ['-i', str(port) + "@" + intf.name] ) if self.thrift_port: args.extend( ['--thrift-port', str(self.thrift_port)] ) args.extend( ['--device-id', str(self.device_id)] ) P4Switch.device_id += 1 if self.json_path: args.append(self.json_path) else: args.append("--no-p4") args.append("--log-flush --log-level trace --log-file %s.log" % self.name) if self.grpc_port: args.append("-- --grpc-server-addr 0.0.0.0:"+str(self.grpc_port)+" --cpu-port "+self.cpu_port) print ' '.join(args) self.cmd( ' '.join(args) + ' > %s.log 2>&1 &' % self.name) print "switch has been started" def stop( self ): "Terminate IVS switch." self.cmd( 'kill %' + self.sw_path ) self.cmd( 'wait' ) self.deleteIntfs() def attach( self, intf ): "Connect a data port" assert(0) def detach( self, intf ): "Disconnect a data port" assert(0)
python
from rl.agent import DiscreteAgent from rl.environment import DiscreteEnvironment from rl.experience_tuple import ExperienceTupleSerializer class ExperimentConfiguration: """Configuration to run an Experiment.""" def __init__(self, agent: DiscreteAgent, environment: DiscreteEnvironment, num_of_episodes: int, results_directory: str, experience_tuple_serializer: ExperienceTupleSerializer): self._validate_input(agent, environment, num_of_episodes, results_directory, experience_tuple_serializer) self.results_directory = results_directory self.environment = environment self.num_of_episodes = num_of_episodes self.agent = agent self.experience_tuple_serializer = experience_tuple_serializer @staticmethod def _validate_input(agent, environment, num_of_episodes, results_directory, experience_tuple_serializer): assert agent is not None assert environment is not None assert num_of_episodes is not None assert results_directory is not None assert experience_tuple_serializer is not None
python
""" DREAprep.py - Allows for inputs to be passed to multiple components """ from openmdao.main.api import Component, Slot from openmdao.lib.datatypes.api import Float from MEflows import MEflows class DREAprep(Component): """ Passes input variables to output variables so they can be passed to multiple components. """ # Variables from MEflows variable tree # ------------------------- flow_out = Slot(MEflows, iotype='out') # Input variables # ----------------------------- alt = Float(0.0, iotype='in', units='ft', desc='Altitude') Mach = Float(0.0, iotype='in', desc='Freestream Mach number') dTs = Float(0.0, iotype='in', units='degR', desc='Delta in total temperature from standard day') PC = Float(100.0, iotype='in', desc='Engine power code') deltaPt = Float(0.0, iotype='in', units='lbf/ft**2', desc='Change in primary total pressure from baseline') deltaTt = Float(0.0, iotype='in', units='degR', desc='Change in primary total temperature from baseline') deltaM = Float(0.0, iotype='in', desc='Change in primary Mach number from baseline') gamma = Float(1.4, iotype='in', desc='Ratio of specific heats') # Output variables # ----------------------------- #MPRI = Float(iotype='out', desc='Design Mach number of the primary nozzle') #PPRI = Float(iotype='out', units='lbf/ft**2', desc='Primary jet total pressure') #PSEC = Float(iotype='out', units='lbf/ft**2', desc='Secondary jet total pressure') #TPRI = Float(iotype='out', units='degR', desc='Primary jet total temperature') #TSEC = Float(iotype='out', units='degR', desc='Secondary jet total temperature') #Pstatic = Float(iotype='out', units='lbf/ft**2', desc='Freestream static pressure') def __init__(self): super(DREAprep,self).__init__() self.add('flow_out', MEflows()) def execute(self): """ Pass variables from inputs to outputs """ # Calculate freestream flow conditions based on regression of # NPSS Ambient element and isentropic relationships # (regressions valid to 15,000 ft altitude) # -------------------------------------------------------------- self.flow_out.Pstatic = (0.00000000655102*self.alt**2-0.000524157*self.alt+14.6889)*144 Tstatic = (-0.00356559*self.alt+518.668)+self.dTs self.flow_out.sec.Pt = self.flow_out.Pstatic*(1+(self.gamma-1)/2*self.Mach**2)**(self.gamma/(self.gamma-1)) self.flow_out.sec.Tt = Tstatic*(1+(self.gamma-1)/2*self.Mach**2) self.flow_out.sec.Mach = 0.5 # Calculate primary flow conditions based on regression of an # NPSS model provided by Jon Seidel # (deltas can be applied to each regression) # -------------------------------------------------------------- self.flow_out.pri.Pt = (1890.56567716063+1159.46218542673*self.Mach-0.0723607918787817*self.alt+20.1498381047601*self.PC+self.Mach**2*733.160417217374+self.Mach*self.alt*-0.0429594524792568+self.alt**2*0.0000013101980809133+self.Mach*self.PC*4.15624348452779+self.alt*self.PC*-0.00074491162440819+self.PC**2*0.0544282167543358)+self.deltaPt self.flow_out.pri.Tt = (650.074441611223+48.9268880551154*self.Mach+0.000461490510019391*self.alt+4.80356170478831*self.PC+self.Mach**2*195.739109744029+self.Mach*self.alt*0.000946845170794506+self.alt**2*-0.0000004886019754503+self.Mach*self.PC*-0.820921508833817+self.alt*self.PC*-0.0000319239880056947+self.PC**2*-0.00610646669887009)+self.deltaTt self.flow_out.pri.Mach = (0.0278253956300395+1.08027846320383*self.Mach-0.0000001216209649966*self.alt+0.0160466635733684*self.PC+self.Mach**2*-0.0746368646020014+self.Mach*self.alt*0.0000025326149842305+self.alt**2*-4.55813373388211e-11+self.Mach*self.PC*-0.00857252256331783+self.alt*self.PC*0.0000000077897757696+self.PC**2*-0.0000520093017579281)+self.deltaM if __name__ == "__main__": MyComp = DREAprep() MyComp.dTs = 0.0 MyComp.APRI = 12.0 MyComp.AsAp = 1.75 MyComp.AR = 3.0 MyComp.XMAR = 0.95 MyComp.Mach = 0.0 MyComp.alt = 0.0 MyComp.PC = 90 MyComp.deltaPt = 0.0 MyComp.deltaTt = 0.0 MyComp.deltaM = 0.0 MyComp.run() print '\n\n' print '----------OUTPUTS----------' print 'APRI_DREA : ',MyComp.APRI_DREA print 'ASEC_DREA : ',MyComp.ASEC_DREA print 'AEXIT_DREA : ',MyComp.AEXIT_DREA print 'Width : ',MyComp.width print 'Pstatic : ',MyComp.Pstatic print 'PSEC : ',MyComp.PSEC print 'TSEC : ',MyComp.TSEC print 'PPRI : ',MyComp.PPRI print 'TPRI : ',MyComp.TPRI print 'MPRI : ',MyComp.MPRI
python
from multiprocessing import current_process, Value, Process from time import sleep from random import random from reader_writer_lock import MultiprocessingFactory from reader_writer_lock.MpFactory import Integer def test(option): test_name = ["No priority", "Read priority", "Write priority"] print(f"Testing [{test_name[option]}]") rw = MultiprocessingFactory(option) r_lock = rw.get_read_lock() w_lock = rw.get_write_lock() val = Integer(0) def read_val(): nonlocal val with r_lock: sleep(random()) print(f"Reading from {current_process().name}, val = {val.value()}") def write_val(): nonlocal val with w_lock: sleep(random()) val.incre() print(f"Writing from {current_process().name}, val = {val.value()}") r = [] w = [] for i in range(10): t_r = Process(target=read_val, name=f"read_{i}") t_w = Process(target=write_val, name=f"write_{i}") w.append(t_w) r.append(t_r) if option == 1: # start write first, but then the read thread will be prioritized t_w.start() t_r.start() elif option == 2: # start read first, but then the write thread will be prioritized t_r.start() t_w.start() else: # random case t_w.start() t_r.start() for ele in r: ele.join() for ele in w: ele.join() assert val.value() == 10 print("===============================") if __name__ == "__main__": print("Starting test for multiprocessing ....") print("####################################") test(0) test(1) test(2)
python
import numpy as np class FCM: """Fuzzy C-means Parameters ---------- n_clusters: int, optional (default=10) The number of clusters to form as well as the number of centroids to generate max_iter: int, optional (default=150) Hard limit on iterations within solver. m: float, optional (default=2.0) Exponent for the fuzzy partition matrix, specified as a scalar greater than 1.0. This option controls the amount of fuzzy overlap between clusters, with larger values indicating a greater degree of overlap. error: float, optional (default=1e-5) Tolerance for stopping criterion. random_state: int, optional (default=42) Determines random number generation for centroid initialization. Use an int to make the randomness deterministic. Attributes ---------- n_samples: int Number of examples in the data set n_features: int Number of features in samples of the data set u: array, shape = [n_samples, n_clusters] Fuzzy partition array, returned as an array with n_samples rows and n_clusters columns. Element u[i,j] indicates the degree of membership of the jth data point in the ith cluster. For a given data point, the sum of the membership values for all clusters is one. centers: array, shape = [n_class-1, n_SV] Final cluster centers, returned as an array with n_clusters rows containing the coordinates of each cluster center. The number of columns in centers is equal to the dimensionality of the data being clustered. Methods ------- fit(X) fit the data _predict(X) use fitted model and output cluster memberships predict(X) use fitted model and output 1 cluster for each sample References ---------- .. [1] `Pattern Recognition with Fuzzy Objective Function Algorithms <https://doi.org/10.1007/978-1-4757-0450-1>`_ .. [2] `FCM: The fuzzy c-means clustering algorithm <https://doi.org/10.1016/0098-3004(84)90020-7>`_ """ def __init__( self, n_clusters=10, max_iter=150, m=2, error=1e-5, random_state=42 ): assert m > 1 self.u, self.centers = None, None self.n_clusters = n_clusters self.max_iter = max_iter self.m = m self.error = error self.rng = np.random.default_rng(random_state) def fit(self, X): """Compute fuzzy C-means clustering. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training instances to cluster. """ self.n_samples = X.shape[0] self.u = self.rng.uniform(size=(self.n_samples, self.n_clusters)) self.u = self.u / np.tile(self.u.sum(axis=1) [np.newaxis].T, self.n_clusters) for iteration in range(self.max_iter): u_old = self.u.copy() self.centers = FCM._next_centers(X, self.u, self.m) self.u = self.__predict(X) # Stopping rule if np.linalg.norm(self.u - u_old) < self.error: break def __predict(self, X): """ Parameters ---------- X : array, shape = [n_samples, n_features] New data to predict. Returns ------- u: array, shape = [n_samples, n_clusters] Fuzzy partition array, returned as an array with n_samples rows and n_clusters columns. """ temp = FCM._dist(X, self.centers) ** float(2 / (self.m - 1)) denominator_ = temp.reshape( (X.shape[0], 1, -1)).repeat(temp.shape[-1], axis=1) denominator_ = temp[:, :, np.newaxis] / denominator_ return 1 / denominator_.sum(2) def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : array, shape = [n_samples, n_features] New data to predict. Returns ------- labels : array, shape = [n_samples,] Index of the cluster each sample belongs to. """ X = np.expand_dims(X, axis=0) if len(X.shape) == 1 else X return self.__predict(X).argmax(axis=-1) @staticmethod def _dist(A, B): """Compute the euclidean distance two matrices""" return np.sqrt(np.einsum("ijk->ij", (A[:, None, :] - B) ** 2)) @staticmethod def _next_centers(X, u, m): """Update cluster centers""" um = u ** m return (X.T @ um / np.sum(um, axis=0)).T # partition coefficient (Equation 12a of https://doi.org/10.1016/0098-3004(84)90020-7) @property def partition_coefficient(self): if hasattr(self, "u"): return np.sum(self.u ** 2) / self.n_samples else: raise ReferenceError( "You need to train the model first. You can use `.fit()` " "method to this." ) @property def partition_entropy_coefficient(self): if hasattr(self, "u"): return -np.sum(self.u * np.log2(self.u)) / self.n_samples else: raise ReferenceError( "You need to train the model first. You can use `.fit()` " "method to this." )
python
#!/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 19-1-24 下午4:04 # @Author : Hubery # @File : helper.py # @Software: PyCharm import json import requests from django.core.cache import cache from HuberyBlog.settings import BASE_HEADERS def page_cache(timeout): def wrapper1(view_func): def wrapper2(request): key = 'PageCache-%s' % request.get_full_path() response = cache.get(key) if response is None: response = view_func(request) cache.set(key, response, timeout) return response return wrapper2 return wrapper1 def get_ip_address(ip): """ 获取ip地址 :param ip: :return: """ url = 'http://ip.taobao.com//service/getIpInfo.php?ip={}'.format(ip) headers = BASE_HEADERS try: res = requests.get(url, headers=headers, timeout=5) if res.status_code == 200: res_dict_data = json.loads(res.text).get('data', '') country = res_dict_data.get('country', '') region = res_dict_data.get('region', '') city = res_dict_data.get('city', '') isp = res_dict_data.get('isp', '') ip_address = '/'.join([country, region, city, isp]) return ip_address else: return '' except Exception as e: print('请求淘宝地址失败, 失败失败原因{}'.format(e)) return None
python
import re #!/usr/bin/env python3 def getStarSystems(): starsfound = re.compile("\Stars Visited\": (\alnum+\.\alnum+)") result = starsfound.findall(content) stars = [] if result: for r in result: stars.append(r) print(result) return stars
python
import os import sys import tempfile import subprocess import contextlib import json import time # https://stackoverflow.com/questions/6194499/pushd-through-os-system @contextlib.contextmanager def pushd(new_dir): previous_dir = os.getcwd() os.chdir(new_dir) try: yield finally: os.chdir(previous_dir) heartbeat_file = sys.argv[1] + ".json" with tempfile.TemporaryDirectory() as tmpdir, pushd(tmpdir): subprocess.run( ["git", "clone", "https://github.com/regro/autotick-bot.git"], check=True, ) with pushd("autotick-bot"): subprocess.run("git checkout heartbeats", check=True, shell=True) heartbeat = int(time.time()) with open(heartbeat_file, "w") as fp: json.dump({"heartbeat": heartbeat}, fp) subprocess.run( ["git", "add", heartbeat_file], check=True, ) subprocess.run( "git commit --allow-empty -am '[ci skip] heartbeat %s'" % sys.argv[1], check=True, shell=True, ) subprocess.run( "git remote set-url --push origin " "https://${PASSWORD}@github.com/regro/autotick-bot.git", shell=True, check=True, ) i = 0 pushed = False while not pushed and i < 10: try: subprocess.run( "git push", check=True, shell=True, ) pushed = True except subprocess.CalledProcessError: subprocess.run("git pull --rebase", shell=True) i += 1 if not pushed: sys.exit(1)
python
import pandas as pd import shutil from shareplum import Site from shareplum.site import Version from shareplum import Office365 # SharePoint user_name = '@eafit.edu.co' password = '' authcookie = Office365('https://eafit.sharepoint.com', username=user_name, password=password).GetCookies() site = Site('https://eafit.sharepoint.com/sites/Proyectoinformedecoyunturaeconomica/', version=Version.v2016, authcookie=authcookie) folder = site.Folder('Documentos Compartidos/General') allfiles = folder.files #De aqui tomo la relative_url (server relative url) del archivo que necesitamos, en este caso es el "último", ya que es el #primero que se subió al sharepoint #Esto solo lo tengo que usar para la identificar la relative url vistazo_file_info = allfiles[-1] relative_url = vistazo_file_info['ServerRelativeUrl'] nombre_actual_archivo = vistazo_file_info['Name'] data = folder.get_file('NData vistazo 1.09.2020 .xlsx') #O poner aqui nombre_actual_archivo with open('holu.xlsx', 'wb') as f: f.write(data) f.close() relative_url nombre_actual_archivo # Organizing files # Preprocessing: Production # Preprocessing: Prices # Preprocessing: Labor # Preprocessing: External sector # Preprocessing: Fiscal # Preprocessing: Finance # Export data
python
# # Copyright (c) 2019, Corey Smith # # Distributed under the MIT License. # # See LICENCE file for full terms. # """ # Tests for the data examples. # """ # # import sys # import inspect # # import os # from pathlib import Path # import numpy as np # # import paramiko # # import pytest # # import sqlalchemy # # sys.path.append(("../")) # # from ingestion.sql import SQLDatabase, psql_engine # # from ingestion.helper_functions import ssh_tunnel # from instacart_dataset import create_adjancency_matrix # def test_instacart_definition(postgres_db): # postgres_db.define_instacart_db() # ignored_attributes = [ # "conn", # "engine", # "tables", # "db_string", # "metadata", # "table_names", # ] # attributes = inspect.getmembers(postgres_db, lambda x: not (inspect.isroutine(x))) # instacart_table_attributes = [ # a[0] # for a in attributes # if not ( # a[0].startswith("__") and a[0].endswith("__") or a[0] in ignored_attributes # ) # ] # postgres_db.close() # if not np.all([x in instacart_table_attributes for x in postgres_db.table_names]): # raise AssertionError() # def test_adjancency_matrix_creation(postgres_db, test_data_dir=""): # num_orders = 10 # create_adjancency_matrix( # postgres_db, save_folder=test_data_dir, num_orders=num_orders # ) # full_info_filename = Path( # test_data_dir + "full_info_{}_prior_orders.csv".format(num_orders) # ) # weighted_matrix_filename = Path( # test_data_dir + "weighted_adjacency_matrix_{}_orders.csv".format(num_orders) # ) # if full_info_filename.exists(): # full_info_filename.unlink() # else: # raise AssertionError() # if weighted_matrix_filename.exists(): # weighted_matrix_filename.unlink() # else: # raise AssertionError()
python
""" Helios Signals Effectively callbacks that other apps can wait and be notified about """ import django.dispatch # when an election is created election_created = django.dispatch.Signal(providing_args=["election"]) # when a vote is cast vote_cast = django.dispatch.Signal( providing_args=["user", "voter", "election", "cast_vote"] ) # when an election is tallied election_tallied = django.dispatch.Signal(providing_args=["election"])
python
from setuptools import setup, find_packages import sys import os import re org = 'PEtab-dev' repo = 'petab_select' def read(fname): """Read a file.""" return open(fname).read() def absolute_links(txt): """Replace relative petab github links by absolute links.""" raw_base = \ f"(https://raw.githubusercontent.com/{org}/{repo}/main/" embedded_base = \ f"(https://github.com/{org}/{repo}/tree/main/" # iterate over links for var in re.findall(r'\[.*?\]\((?!http).*?\)', txt): if re.match(r'.*?.(png|svg)\)', var): # link to raw file rep = var.replace("(", raw_base) else: # link to github embedded file rep = var.replace("(", embedded_base) txt = txt.replace(var, rep) return txt # 3.7.1 for NumPy minimum_python_version = '3.7.1' if sys.version_info < tuple(map(int, minimum_python_version.split('.'))): sys.exit(f'PEtab Select requires Python >= {minimum_python_version}') # read version from file __version__ = '' version_file = os.path.join('petab_select', 'version.py') # sets __version__ exec(read(version_file)) # pylint: disable=W0122 # nosec ENTRY_POINTS = { 'console_scripts': [ 'petab_select = petab_select.cli:cli', ] } # project metadata # noinspection PyUnresolvedReferences setup( name='petab_select', version=__version__, description='PEtab Select: an extension to PEtab for model selection.', long_description=absolute_links(read('README.md')), long_description_content_type="text/markdown", #author='The PEtab Select developers', #author_email='[email protected]', url=f'https://github.com/{org}/{repo}', packages=find_packages(exclude=['doc*', 'test*']), install_requires=[ # TODO fix versions 'more-itertools', 'numpy', 'pyyaml', #'numpy>=1.15.1', #'pandas>=1.2.0', #'matplotlib>=2.2.3', #'python-libsbml>=5.17.0', #'sympy', #'colorama', #'seaborn', #'pyyaml', #'jsonschema', # required for CLI 'click', 'dill', ], include_package_data=True, tests_require=[ #'flake8', 'pytest', #'python-libcombine', 'amici', 'fides', 'pypesto', ], python_requires=f'>={minimum_python_version}', entry_points=ENTRY_POINTS, extras_require={ #'reports': ['Jinja2'], #'combine': ['python-libcombine>=0.2.6'], #'doc': [ # 'sphinx>=3.5.3', # 'sphinxcontrib-napoleon>=0.7', # 'sphinx-markdown-tables>=0.0.15', # 'sphinx-rtd-theme>=0.5.1', # 'recommonmark>=0.7.1', # 'nbsphinx>=0.8.2', # 'm2r>=0.2.1', # 'ipython>=7.21.0', #] } )
python
REGISTRY = {} from .episode_runner import EpisodeRunner REGISTRY["episode"] = EpisodeRunner from .parallel_runner import ParallelRunner REGISTRY["parallel"] = ParallelRunner from .episode_cross_runner import EpisodeCrossRunner REGISTRY["cross"] = EpisodeCrossRunner
python
import numpy as np import pandas as pd from sklearn.metrics.pairwise import euclidean_distances from scipy.io import loadmat from matplotlib import pyplot as plt from sklearn.metrics import normalized_mutual_info_score from sklearn.metrics import adjusted_rand_score def autoselect_dc(max_id, max_dis, min_dis, distances): dc = (max_dis + min_dis) / 2 while True: nneighs = sum([1 for v in distances if v < dc]) / max_id ** 2 if nneighs >= 0.01 and nneighs <= 0.02: break # binary search if nneighs < 0.01: min_dis = dc else: max_dis = dc dc = (max_dis + min_dis) / 2 if max_dis - min_dis < 0.0001: break return dc class DPC(object): def __init__(self,center_rate=0.6,noise_rate=0.1,dc=None,auto_filt=False): self.distance = None self.dc = None self.rho = None self.sigma = None self.cluster = None self.center = None self.tup = None self.center_rate = center_rate self.noise_rate = noise_rate self.auto_filt = auto_filt if dc != None: self.dc = dc def info_cal(self,X): distance = euclidean_distances(X) if self.dc == None: self.dc = autoselect_dc(distance.shape[0],np.max(distance),np.min(distance),distance.flatten()) rdistance = distance - self.dc rho = np.array([rdistance[rdistance[idx] < 0].shape[0] for idx in range(rdistance.shape[0])]) sigma = np.array([np.min(distance[idx,(rho>value)]) if value < np.max(rho) else np.max(distance[idx]) for idx,value in enumerate(rho)]) map_idx = np.array([np.argwhere(distance[idx] == np.min(distance[idx,(rho>value)])).flatten() if value < np.max(rho) else np.argmax(distance[idx]).flatten() for idx,value in enumerate(rho)]) map_idx = np.array([arr[0] for arr in map_idx]) idx = np.argsort(rho) tup = np.array([i for i in zip(rho[idx],sigma[idx],idx)]) self.distance, self.dc, self.rho, self.sigma = distance, self.dc, rho, sigma return tup,map_idx def remove_noise(self,cluster,tup,map_idx): y_pred = np.array([cluster[idx] for idx in range(map_idx.shape[0])]) distance = self.distance rho = self.rho group = {} for i in list(set(y_pred)): group[i] = np.argwhere(y_pred == i).flatten() for label in group.keys(): max_rho = -1 for i in group[label]: for idx,dis in enumerate(distance[i]): if idx not in group[label] and distance[i,idx] < self.dc and max_rho < rho[i]: max_rho = rho[idx] break if max_rho != -1: for i in group[label]: if self.rho[i] < max_rho: cluster[i] = -1 return cluster def fit_transform(self,X): tup,map_idx = self.info_cal(X) self.tup = tup origin_center_idx = tup[(tup[:,0]>np.max(tup[:,0])*self.center_rate) & (tup[:,1]>np.max(tup[:,1])*self.center_rate)][:,2].astype("int64") self.center = origin_center_idx cluster = {} for idx,center in enumerate(origin_center_idx): cluster[center] = idx if not self.auto_filt: origin_noise_idx = tup[(tup[:,0]<np.max(tup[:,0])*self.noise_rate)][:,2].astype("int64") for center in origin_noise_idx: cluster[center] = -1 for density,distance,idx in tup[::-1]: idx = int(idx) if idx in cluster.keys(): continue if map_idx[idx] in cluster.keys(): cluster[idx] = cluster[map_idx[idx]] else: cluster[idx] = -1 if self.auto_filt: cluster = self.remove_noise(cluster,tup,map_idx) self.cluster = cluster y_pred = np.array([cluster[idx] for idx in range(X.shape[0])]) return y_pred if __name__ == '__main__': data = loadmat(r"D:\jupyter root\data\multi-shape.mat") X = data['X'] y = data['y'][0] # plt.plot(X[y == 0,0],X[y == 0,1],'.',color='red') # plt.plot(X[y == 1,0],X[y == 1,1],'.',color='blue') # plt.show() dpc = DPC(0.55,0.1) y_pred = dpc.fit_transform(X) cluster = dpc.cluster # dpc = DPC(center_rate=0.5,auto_filt=True) # y_pred = dpc.fit_transform(X) # cluster = dpc.cluster for i in set(y_pred): plt.plot(X[y_pred == i,0],X[y_pred == i,1],'.',label=i) plt.legend(loc='best') plt.show() # tup = dpc.tup # origin_center_idx = dpc.center # print(origin_center_idx) # plt.plot(tup[:,0],tup[:,1],'.',color='blue') # plt.show() # plt.plot(X[:,0],X[:,1],'.',color='red') # for i in origin_center_idx: # plt.plot(X[i,0],X[i,1],'.',color='blue') # plt.show() # for i in origin_center_idx: # print(X[i]) nmi = normalized_mutual_info_score(y_pred,y) print(round(nmi,4)) ari = adjusted_rand_score(y_pred,y) print(round(ari,4))
python
from __future__ import print_function import math, types import numpy as N import matplotlib.pyplot as P def plotres(psr,deleted=False,group=None,**kwargs): """Plot residuals, compute unweighted rms residual.""" res, t, errs = psr.residuals(), psr.toas(), psr.toaerrs if (not deleted) and N.any(psr.deleted != 0): res, t, errs = res[psr.deleted == 0], t[psr.deleted == 0], errs[psr.deleted == 0] print("Plotting {0}/{1} nondeleted points.".format(len(res),psr.nobs)) meanres = math.sqrt(N.mean(res**2)) / 1e-6 if group is None: i = N.argsort(t) P.errorbar(t[i],res[i]/1e-6,yerr=errs[i],fmt='x',**kwargs) else: if (not deleted) and N.any(psr.deleted): flagmask = psr.flagvals(group)[~psr.deleted] else: flagmask = psr.flagvals(group) unique = list(set(flagmask)) for flagval in unique: f = (flagmask == flagval) flagres, flagt, flagerrs = res[f], t[f], errs[f] i = N.argsort(flagt) P.errorbar(flagt[i],flagres[i]/1e-6,yerr=flagerrs[i],fmt='x',**kwargs) P.legend(unique,numpoints=1,bbox_to_anchor=(1.1,1.1)) P.xlabel('MJD'); P.ylabel('res [us]') P.title("{0} - rms res = {1:.2f} us".format(psr.name,meanres)) # select parameters by name or number, omit non-existing def _select(p,pars,select): sel = [] for s in select: if isinstance(s,str) and s in pars: sel.append(pars.index(s)) elif isinstance(s,int) and s < p: sel.append(s) return len(sel), sel def plothist(data,pars=[],offsets=[],norms=[],select=[],weights={},ranges={},labels={},skip=[],append=False, bins=50,color='k',linestyle=None,linewidth=1,title=None): if hasattr(data,'data') and not isinstance(data,N.ndarray): # parse a multinestdata structure if not pars and hasattr(data,'parnames'): pars = data.parnames data = data.data p = data.shape[-1] if not pars: pars = map('p{0}'.format,range(p)) if offsets: data = data.copy() if isinstance(offsets,dict): for i,par in enumerate(pars): if par in offsets: data[:,i] = data[:,i] - offsets[par] else: if len(offsets) < p: offsets = offsets + [0.0] * (p - len(offsets)) data = data - N.array(offsets) if norms: if len(norms) < p: norms = norms + [1.0] * (p - len(norms)) data = data / norms if select: p, sel = _select(p,pars,select) data, pars = data[:,sel], [pars[s] for s in sel] if weights: weight = 1 for i,par in enumerate(pars): if par in weights: if isinstance(weights[par],types.FunctionType): weight = weight * N.vectorize(weights[par])(data[:,i]) else: weight = weight * weights[par] else: weight = None # only need lines for multiple plots # lines = ['dotted','dashdot','dashed','solid'] if not append: P.figure(figsize=(16*(min(p,4)/4.0),3*(int((p-1)/4)+1))) for i in range(p): # figure out how big the multiplot needs to be if type(append) == int: # need this since isinstance(False,int) == True q = append elif isinstance(append,(list,tuple)): q = len(append) else: q = p # increment subplot index if we're skipping sp = i + 1 for s in skip: if i >= s: sp = sp + 1 # if we're given the actual parnames of an existing plot, figure out where we fall if isinstance(append,(list,tuple)): try: sp = append.index(pars[i]) + 1 except ValueError: continue P.subplot(int((q-1)/4)+1,min(q,4),sp) if append: P.hold(True) if pars[i] in ranges: dx = ranges[pars[i]] P.hist(data[:,i],bins=int(bins * (N.max(data[:,i]) - N.min(data[:,i])) / (dx[1] - dx[0])), weights=weight,normed=True,histtype='step',color=color,linestyle=linestyle,linewidth=linewidth) P.xlim(dx) else: P.hist(data[:,i],bins=bins, weights=weight,normed=True,histtype='step',color=color,linestyle=linestyle,linewidth=linewidth) P.xlabel(labels[pars[i]] if pars[i] in labels else pars[i]) # P.ticklabel_format(style='sci',axis='both',scilimits=(-3,4),useoffset='True') P.locator_params(axis='both',nbins=6) P.minorticks_on() fx = P.ScalarFormatter(useOffset=True,useMathText=True) fx.set_powerlimits((-3,4)); fx.set_scientific(True) fy = P.ScalarFormatter(useOffset=True,useMathText=True) fy.set_powerlimits((-3,4)); fy.set_scientific(True) P.gca().xaxis.set_major_formatter(fx) P.gca().yaxis.set_major_formatter(fy) P.hold(False) if title and not append: P.suptitle(title) P.tight_layout() # to do: should fix this histogram so that the contours are correct # even for restricted ranges... def _plotonehist2(x,y,parx,pary,smooth=False,colormap=True,ranges={},labels={},bins=50,levels=3,weights=None, color='k',linewidth=1): hold = P.ishold() hrange = [ranges[parx] if parx in ranges else [N.min(x),N.max(x)], ranges[pary] if pary in ranges else [N.min(y),N.max(y)]] [h,xs,ys] = N.histogram2d(x,y,bins=bins,normed=True,range=hrange,weights=weights) if colormap: P.contourf(0.5*(xs[1:]+xs[:-1]),0.5*(ys[1:]+ys[:-1]),h.T,cmap=P.get_cmap('YlOrBr')); P.hold(True) H,tmp1,tmp2 = N.histogram2d(x,y,bins=bins,range=hrange,weights=weights) if smooth: # only need scipy if we're smoothing import scipy.ndimage.filters as SNF H = SNF.gaussian_filter(H,sigma=1.5 if smooth is True else smooth) if weights is None: H = H / len(x) else: H = H / N.sum(H) # I think this is right... Hflat = -N.sort(-H.flatten()) # sort highest to lowest cumprob = N.cumsum(Hflat) # sum cumulative probability levels = [N.interp(level,cumprob,Hflat) for level in [0.6826,0.9547,0.9973][:levels]] xs = N.linspace(hrange[0][0],hrange[0][1],bins) ys = N.linspace(hrange[1][0],hrange[1][1],bins) P.contour(xs,ys,H.T,levels, colors=color,linestyles=['-','--','-.'][:len(levels)],linewidths=linewidth) P.hold(hold) if parx in ranges: P.xlim(ranges[parx]) if pary in ranges: P.ylim(ranges[pary]) P.xlabel(labels[parx] if parx in labels else parx) P.ylabel(labels[pary] if pary in labels else pary) P.locator_params(axis='both',nbins=6) P.minorticks_on() fx = P.ScalarFormatter(useOffset=True,useMathText=True) fx.set_powerlimits((-3,4)); fx.set_scientific(True) fy = P.ScalarFormatter(useOffset=True,useMathText=True) fy.set_powerlimits((-3,4)); fy.set_scientific(True) P.gca().xaxis.set_major_formatter(fx) P.gca().yaxis.set_major_formatter(fy) def plothist2(data,pars=[],offsets=[],smooth=False,colormap=True,select=[],ranges={},labels={},bins=50,levels=3,weights=None,cuts=None, diagonal=True,title=None,color='k',linewidth=1,append=False): if hasattr(data,'data') and not isinstance(data,N.ndarray): # parse a multinestdata structure if not pars and hasattr(data,'parnames'): pars = data.parnames data = data.data m = data.shape[-1] if not pars: pars = map('p{0}'.format,range(m)) if offsets: if len(offsets) < m: offsets = offsets + [0.0] * (m - len(offsets)) data = data - N.array(offsets) if cuts: for i,par in enumerate(pars): if par in cuts: data = data[data[:,i] > cuts[par][0],:] data = data[data[:,i] < cuts[par][1],:] if weights: weight = 1 for i,par in enumerate(pars): if par in weights: if isinstance(weights[par],types.FunctionType): weight = weight * N.vectorize(weights[par])(data[:,i]) else: weight = weight * weights[par] else: weight = None if select: m, sel = _select(m,pars,select) data, pars = data[:,sel], [pars[s] for s in sel] if not append: fs = min((m if diagonal else m-1)*4,16) P.figure(figsize=(fs,fs)) data = data.T if diagonal: for i in range(m): if not append: P.subplot(m,m,i*(m+1)+1) if pars[i] in ranges: dx = ranges[pars[i]] P.hist(data[i],bins=int(50 * (N.max(data[i]) - N.min(data[i])) / (dx[1] - dx[0])), weights=weight,normed=True,histtype='step',color='k') P.xlim(dx) else: P.hist(data[i],bins=50,weights=weight,normed=True,histtype='step',color='k') P.xlabel(labels[pars[i]] if pars[i] in labels else pars[i]) P.ticklabel_format(style='sci',axis='both',scilimits=(-2,2),useoffset='True') # P.tick_params(labelsize=12) for j in range(0,i): if not append: P.subplot(m,m,i*m+j+1) _plotonehist2(data[j],data[i],pars[j],pars[i],smooth,colormap,ranges,labels,bins,levels,weights=weight, color=color,linewidth=linewidth) else: for i in range(m-1): for j in range(i+1,m): if not append: P.subplot(m-1,m-1,(m-1)*i+j) _plotonehist2(data[j],data[i],pars[j],pars[i],smooth,colormap,ranges,labels,bins,levels,weights=weight, color=color,linewidth=linewidth) P.tight_layout() if title and not append: P.suptitle(title) elif title: P.title(title) # if save: # P.savefig('figs/{0}-{1}-2.png'.format(psr,flms[0])) def plotgwsrc(gwb): """ Plot a GWB source population as a mollweide projection. """ theta, phi, omega, polarization = gwb.gw_dist() rho = phi-N.pi eta = 0.5*N.pi - theta # I don't know how to get rid of the RuntimeWarning -- RvH, Oct 10, 2014: # /Users/vhaaster/env/dev/lib/python2.7/site-packages/matplotlib/projections/geo.py:485: # RuntimeWarning: invalid value encountered in arcsin theta = np.arcsin(y / np.sqrt(2)) #old_settings = N.seterr(invalid='ignore') P.title("GWB source population") ax = P.axes(projection='mollweide') foo = P.scatter(rho, eta, marker='.', s=1) #bar = N.seterr(**old_settings) return foo
python
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the NiBabel package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## '''Tests for mghformat reading writing''' from __future__ import with_statement import os from io import StringIO, BytesIO import numpy as np from .. import load, save, MGHImage from ..mghformat import MGHError from ...tmpdirs import InTemporaryDirectory from ...py3k import unicode from ...fileholders import FileHolder from ...testing import data_path from numpy.testing import assert_equal, assert_array_equal, \ assert_array_almost_equal, assert_almost_equal, assert_raises # sample voxel to ras matrix (mri_info --vox2ras) v2r = np.array([[1, 2, 3, -13], [2, 3, 1, -11.5], [3, 1, 2, -11.5], [0, 0, 0, 1]], dtype=np.float32) # sample voxel to ras - tkr matrix (mri_info --vox2ras-tkr) v2rtkr = np.array([[-1.0, 0.0, 0.0, 1.5], [0.0, 0.0, 1.0, -2.5], [0.0, -1.0, 0.0, 2.0], [0.0, 0.0, 0.0, 1.0]], dtype=np.float32) def test_read_mgh(): # test.mgz was generated by the following command # mri_volsynth --dim 3 4 5 2 --vol test.mgz # --cdircos 1 2 3 --rdircos 2 3 1 --sdircos 3 1 2 # mri_volsynth is a FreeSurfer command mgz_path = os.path.join(data_path, 'test.mgz') mgz = load(mgz_path) # header h = mgz.get_header() assert_equal(h['version'], 1) assert_equal(h['type'], 3) assert_equal(h['dof'], 0) assert_equal(h['goodRASFlag'], 1) assert_array_equal(h['dims'], [3, 4, 5, 2]) assert_array_almost_equal(h['mrparms'], [2.0, 0.0, 0.0, 0.0]) assert_array_almost_equal(h.get_zooms(), 1) assert_array_almost_equal(h.get_vox2ras(), v2r) assert_array_almost_equal(h.get_vox2ras_tkr(), v2rtkr) # data. will be different for your own mri_volsynth invocation v = mgz.get_data() assert_almost_equal(v[1, 2, 3, 0], -0.3047, 4) assert_almost_equal(v[1, 2, 3, 1], 0.0018, 4) def test_write_mgh(): # write our data to a tmp file v = np.arange(120) v = v.reshape((5, 4, 3, 2)).astype(np.float32) # form a MGHImage object using data and vox2ras matrix img = MGHImage(v, v2r) with InTemporaryDirectory(): save(img, 'tmpsave.mgz') # read from the tmp file and see if it checks out mgz = load('tmpsave.mgz') h = mgz.get_header() dat = mgz.get_data() # Delete loaded image to allow file deletion by windows del mgz # header assert_equal(h['version'], 1) assert_equal(h['type'], 3) assert_equal(h['dof'], 0) assert_equal(h['goodRASFlag'], 1) assert_array_equal(h['dims'], [5, 4, 3, 2]) assert_array_almost_equal(h['mrparms'], [0.0, 0.0, 0.0, 0.0]) assert_array_almost_equal(h.get_vox2ras(), v2r) # data assert_almost_equal(dat, v, 7) def test_write_noaffine_mgh(): # now just save the image without the vox2ras transform # and see if it uses the default values to save v = np.ones((7, 13, 3, 22)).astype(np.uint8) # form a MGHImage object using data # and the default affine matrix (Note the "None") img = MGHImage(v, None) with InTemporaryDirectory(): save(img, 'tmpsave.mgz') # read from the tmp file and see if it checks out mgz = load('tmpsave.mgz') h = mgz.get_header() # Delete loaded image to allow file deletion by windows del mgz # header assert_equal(h['version'], 1) assert_equal(h['type'], 0) # uint8 for mgh assert_equal(h['dof'], 0) assert_equal(h['goodRASFlag'], 1) assert_array_equal(h['dims'], [7, 13, 3, 22]) assert_array_almost_equal(h['mrparms'], [0.0, 0.0, 0.0, 0.0]) # important part -- whether default affine info is stored ex_mdc = np.array([[-1, 0, 0], [0, 0, -1], [0, 1, 0]], dtype=np.float32) assert_array_almost_equal(h['Mdc'], ex_mdc) ex_pxyzc = np.array([0, 0, 0], dtype=np.float32) assert_array_almost_equal(h['Pxyz_c'], ex_pxyzc) def bad_dtype_mgh(): ''' This function raises an MGHError exception because uint16 is not a valid MGH datatype. ''' # try to write an unsigned short and make sure it # raises MGHError v = np.ones((7, 13, 3, 22)).astype(np.uint16) # form a MGHImage object using data # and the default affine matrix (Note the "None") img = MGHImage(v, None) with TemporaryDirectory() as tmpdir: save(img, os.path.join(tmpdir, 'tmpsave.mgz')) # read from the tmp file and see if it checks out mgz = load(os.path.join(tmpdir, 'tmpsave.mgz')) def test_bad_dtype_mgh(): # Now test the above function assert_raises(MGHError, bad_dtype_mgh) def test_filename_exts(): # Test acceptable filename extensions v = np.ones((7, 13, 3, 22)).astype(np.uint8) # form a MGHImage object using data # and the default affine matrix (Note the "None") img = MGHImage(v, None) # Check if these extensions allow round trip for ext in ('.mgh', '.mgz', '.mgh.gz'): with InTemporaryDirectory(): fname = 'tmpname' + ext save(img, fname) # read from the tmp file and see if it checks out img_back = load(fname) assert_array_equal(img_back.get_data(), v) del img_back def _mgh_rt(img, fobj): file_map = {'image': FileHolder(fileobj=fobj)} img.to_file_map(file_map) return MGHImage.from_file_map(file_map) def test_header_updating(): # Don't update the header information if the affine doesn't change. # Luckily the test.mgz dataset had a bad set of cosine vectors, so these # will be changed if the affine gets updated mgz_path = os.path.join(data_path, 'test.mgz') mgz = load(mgz_path) hdr = mgz.get_header() # Test against mri_info output exp_aff = np.loadtxt(StringIO(unicode(""" 1.0000 2.0000 3.0000 -13.0000 2.0000 3.0000 1.0000 -11.5000 3.0000 1.0000 2.0000 -11.5000 0.0000 0.0000 0.0000 1.0000"""))) assert_almost_equal(mgz.get_affine(), exp_aff, 6) assert_almost_equal(hdr.get_affine(), exp_aff, 6) # Test that initial wonky header elements have not changed assert_equal(hdr['delta'], 1) assert_almost_equal(hdr['Mdc'], exp_aff[:3, :3].T) # Save, reload, same thing img_fobj = BytesIO() mgz2 = _mgh_rt(mgz, img_fobj) hdr2 = mgz2.get_header() assert_almost_equal(hdr2.get_affine(), exp_aff, 6) assert_equal(hdr2['delta'], 1) # Change affine, change underlying header info exp_aff_d = exp_aff.copy() exp_aff_d[0, -1] = -14 # This will (probably) become part of the official API mgz2._affine[:] = exp_aff_d mgz2.update_header() assert_almost_equal(hdr2.get_affine(), exp_aff_d, 6) RZS = exp_aff_d[:3, :3] assert_almost_equal(hdr2['delta'], np.sqrt(np.sum(RZS ** 2, axis=0))) assert_almost_equal(hdr2['Mdc'], (RZS / hdr2['delta']).T) def test_cosine_order(): # Test we are interpreting the cosine order right data = np.arange(60).reshape((3, 4, 5)).astype(np.int32) aff = np.diag([2., 3, 4, 1]) aff[0] = [2, 1, 0, 10] img = MGHImage(data, aff) assert_almost_equal(img.get_affine(), aff, 6) img_fobj = BytesIO() img2 = _mgh_rt(img, img_fobj) hdr2 = img2.get_header() RZS = aff[:3, :3] zooms = np.sqrt(np.sum(RZS ** 2, axis=0)) assert_almost_equal(hdr2['Mdc'], (RZS / zooms).T) assert_almost_equal(hdr2['delta'], zooms)
python
import pathlib import shutil import argparse parser = argparse.ArgumentParser() parser.add_argument("--supplementary_pdf", type=str) args = parser.parse_args() supplementary = pathlib.Path(args.supplementary_pdf) if args.supplementary_pdf else None assert supplementary.exists() and supplementary.is_file() root = (pathlib.Path(__file__).parent / "..") ignore_file_extensions = ["png", "gif"] forbidden_words = ["jb", "cordonnier", "loukas", "jaggi", "epfml", "epfl", "mlbench", "epfml", "github", "arxiv", "eprint"] filter_files = [".git", "tools", "__pycache__", ".DS_Store", ".zip"] def copy_anonymized(source_file, target_file): with open(source_file, "r") as inf, open(target_file, "w") as outf: for line in inf: if any(forbidden.lower() in line.lower() for forbidden in forbidden_words): outf.write("#- anonymized\n") else: outf.write(line) try: tmp_directory = root / "tmp" if tmp_directory.exists(): shutil.rmtree(tmp_directory) tmp_directory.mkdir() files = [f for f in root.glob("**/*") if not any(s in str(f) for s in filter_files)] print(root, files) for source_file in files: target_file = tmp_directory / str(source_file)[3:] print(f"{source_file} -> {target_file}") if source_file.is_dir(): continue target_file.parent.mkdir(parents=True, exist_ok=True) # Simply copy if not a text file if any(str(source_file).endswith(ext) for ext in ignore_file_extensions): shutil.copy(source_file, target_file) # Otherwise anonymise the file line by line else: copy_anonymized(source_file, target_file) # If we provide a PDF, we move the content of tmp/ into tmp/code/ and add the PDF if supplementary: tmp_directory.rename(root / "code") tmp_directory.mkdir() (root / "code").rename(tmp_directory / "code") shutil.copy(supplementary, tmp_directory / "supplementary.pdf") print(f"Added PDF file '{supplementary}'.") # Make the zip archive. zip_file = (root / "supplementary").absolute().resolve() shutil.make_archive(zip_file, 'zip', tmp_directory) print(f"Anonymous supplementary archive saved in '{zip_file}.zip'") finally: # Clean up shutil.rmtree(tmp_directory)
python
import datetime import json from datetime import date,timedelta from selenium import webdriver from selenium.webdriver.common.keys import Keys from operis.log import log from ws4redis.redis_store import RedisMessage from ws4redis.publisher import RedisPublisher from selenium_tests.webdriver import PpfaWebDriver #from selenium_tests.models import PpfaTest, PpfaTestAssertion class BaseTests( PpfaWebDriver ): def runTest(self): self.assert_failed_requests = False self.broadcast("Loading http://www.python.org") self.browser.get("http://www.python.org") self.runassertion( "Welcome to Python.org", "equals", "title" ) self.runassertion( "Python", "in", "title" )
python
from flask import Flask from flask_assets import Bundle, Environment from flask_compress import Compress from flask_talisman import Talisman from flask_wtf.csrf import CSRFProtect from govuk_frontend_wtf.main import WTFormsHelpers from jinja2 import ChoiceLoader, PackageLoader, PrefixLoader from config import Config csrf = CSRFProtect() compress = Compress() talisman = Talisman() assets = Environment() def create_app(config_class=Config): app = Flask(__name__, static_url_path="/assets") app.config.from_object(config_class) app.jinja_env.lstrip_blocks = True app.jinja_env.trim_blocks = True app.jinja_loader = ChoiceLoader( [ PackageLoader("app"), PrefixLoader( { "govuk_frontend_jinja": PackageLoader("govuk_frontend_jinja"), "govuk_frontend_wtf": PackageLoader("govuk_frontend_wtf"), } ), ] ) assets.init_app(app) csrf.init_app(app) compress.init_app(app) csp = { "default-src": "'self'", "script-src": [ "'self'", "'sha256-+6WnXIl4mbFTCARd8N3COQmT3bJJmo32N8q8ZSQAIcU='", "'sha256-l1eTVSK8DTnK8+yloud7wZUqFrI0atVo6VlC6PJvYaQ='", ], "img-src": ["data:", "'self'"], } talisman.init_app(app, content_security_policy=csp) js = Bundle("src/js/*.js", filters="jsmin", output="dist/js/custom-%(version)s.js") if "js" not in assets: assets.register("js", js) WTFormsHelpers(app) # Register blueprints from app.demo import bp as demo_bp from app.main import bp as main_bp app.register_blueprint(main_bp) app.register_blueprint(demo_bp) return app
python
def operate(operator, *args): return eval(operator.join([str(x) for x in args])) print(operate("+", 1, 2, 3)) print(operate("*", 3, 4))
python
# Generated by Django 2.0.8 on 2019-06-05 09:32 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('protein', '0007_proteingproteinpair_references'), ('structure', '0017_structure_contact_representative_score'), ('residue', '0002_auto_20180504_1417'), ('contactnetwork', '0009_auto_20190605_1131'), ] operations = [ migrations.RenameModel( old_name='ConsensusInteractions', new_name='ConsensusInteraction', ), ]
python
# -*- coding: utf-8 -*- # Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) """Utility functions.""" import fnmatch import logging import os import sys import tarfile from distutils.version import LooseVersion import numpy as np import torch import yaml def find_files(root_dir, query="*.wav", include_root_dir=True): """Find files recursively. Args: root_dir (str): Root root_dir to find. query (str): Query to find. include_root_dir (bool): If False, root_dir name is not included. Returns: list: List of found filenames. """ files = [] for root, dirnames, filenames in os.walk(root_dir, followlinks=True): for filename in fnmatch.filter(filenames, query): files.append(os.path.join(root, filename)) if not include_root_dir: files = [file_.replace(root_dir + "/", "") for file_ in files] return files class NpyScpLoader(object): """Loader class for a fests.scp file of npy file. Examples: key1 /some/path/a.npy key2 /some/path/b.npy key3 /some/path/c.npy key4 /some/path/d.npy ... >>> loader = NpyScpLoader("feats.scp") >>> array = loader["key1"] """ def __init__(self, feats_scp): """Initialize npy scp loader. Args: feats_scp (str): Kaldi-style feats.scp file with npy format. """ with open(feats_scp) as f: lines = [line.replace("\n", "") for line in f.readlines()] self.data = {} for line in lines: key, value = line.split() self.data[key] = value def get_path(self, key): """Get npy file path for a given key.""" return self.data[key] def __getitem__(self, key): """Get ndarray for a given key.""" return np.load(self.data[key]) def __len__(self): """Return the length of the scp file.""" return len(self.data) def __iter__(self): """Return the iterator of the scp file.""" return iter(self.data) def keys(self): """Return the keys of the scp file.""" return self.data.keys() def values(self): """Return the values of the scp file.""" for key in self.keys(): yield self[key] def load_model(checkpoint, config=None): """Load trained model. Args: checkpoint (str): Checkpoint path. config (dict): Configuration dict. Return: torch.nn.Module: Model instance. """ # load config if not provided if config is None: dirname = os.path.dirname(checkpoint) config = os.path.join(dirname, "config.yml") with open(config) as f: config = yaml.load(f, Loader=yaml.Loader) # lazy load for circular error import parallel_wavegan.models # get model and load parameters model_class = getattr( parallel_wavegan.models, config.get("generator_type", "ParallelWaveGANGenerator") ) model = model_class(**config["generator_params"]) model.load_state_dict( torch.load(checkpoint, map_location="cpu")["model"]["generator"] ) # add pqmf if needed if config["generator_params"]["out_channels"] > 1: # lazy load for circular error from parallel_wavegan.layers import PQMF pqmf_params = {} # if LooseVersion(config.get("version", "0.1.0")) <= LooseVersion("0.4.2"): # For compatibility, here we set default values in version <= 0.4.2 # pqmf_params.update(taps=62, cutoff_ratio=0.15, beta=9.0) model.pqmf = PQMF( subbands=config["generator_params"]["out_channels"], **config.get("pqmf_params", pqmf_params), ) return model def download_pretrained_model(tag, download_dir=None): """Download pretrained model form google drive. Args: tag (str): Pretrained model tag. download_dir (str): Directory to save downloaded files. Returns: str: Path of downloaded model checkpoint. """ assert tag in PRETRAINED_MODEL_LIST, f"{tag} does not exists." id_ = PRETRAINED_MODEL_LIST[tag] if download_dir is None: download_dir = os.path.expanduser("~/.cache/parallel_wavegan") output_path = f"{download_dir}/{tag}.tar.gz" os.makedirs(f"{download_dir}", exist_ok=True) if not os.path.exists(output_path): # lazy load for compatibility import gdown gdown.download(f"https://drive.google.com/uc?id={id_}", output_path, quiet=False) with tarfile.open(output_path, 'r:*') as tar: for member in tar.getmembers(): if member.isreg(): member.name = os.path.basename(member.name) tar.extract(member, f"{download_dir}/{tag}") checkpoint_path = find_files(f"{download_dir}/{tag}", "checkpoint*.pkl") return checkpoint_path[0]
python
from Attribute import Attribute from Distribution.DistributionFactory import DistributionFactory class AttributeFactory: """ Class to generate and deploy specific attributes that will share a distribution factory. Attributes types are: - custom - boolean - string - int or int64 - float or float64 Implements: - create(name -> str, dtype -> str) --> Attribute() Raises: - AttributeError - dtype is not valid """ def __init__(self): self.central_distribution_factory = DistributionFactory() def create(self, name, dtype, drange = None): attribute_class = None if dtype == 'boolean': attribute_class = Attribute.BooleanAttribute(name, self.central_distribution_factory) elif dtype == 'string': attribute_class = Attribute.StringAttribute(name, self.central_distribution_factory) elif dtype == 'int64' or dtype == 'int': attribute_class = Attribute.IntegerAttribute(name, self.central_distribution_factory) elif dtype == 'float64' or dtype == 'float': attribute_class = Attribute.FloatAttribute(name, self.central_distribution_factory) elif dtype == 'custom': attribute_class = Attribute.Attribute(name, self.central_distribution_factory) else: raise AttributeError('dtype is not valid (must be one of [boolean, string, int, int64, float, float64, custom])') return attribute_class def __str__(self): return 'AttributeFactory()' def __rep__(self): return self.__str__()
python
from django.core.management.base import BaseCommand, CommandError from charts.models import ChartConfig class Command(BaseCommand): help = "Delete all ChartConfig objects" def handle(self, *args, **options): all = ChartConfig.objects.all() self.stdout.write("{} ChartConfig Type objects will be deleted".format(all.count())) all.delete() self.stdout.write("All ChartConfig objects are gone")
python
#!/usr/bin/env python # # Author: Qiming Sun <[email protected]> # ''' Dirac Hartree-Fock ''' import ctypes import time from functools import reduce import numpy import scipy.linalg from pyscf import lib from pyscf.lib import logger from pyscf.scf import hf from pyscf.scf import _vhf import pyscf.scf.chkfile def kernel(mf, conv_tol=1e-9, conv_tol_grad=None, dump_chk=True, dm0=None, callback=None): '''the modified SCF kernel for Dirac-Hartree-Fock. In this kernel, the SCF is carried out in three steps. First the 2-electron part is approximated by large component integrals (LL|LL); Next, (SS|LL) the interaction between large and small components are added; Finally, converge the SCF with the small component contributions (SS|SS) ''' if conv_tol_grad is None: conv_tol_grad = numpy.sqrt(conv_tol) logger.info(mf, 'Set gradient conv threshold to %g', conv_tol_grad) if dm0 is None: dm = mf.get_init_guess() else: dm = dm0 mf._coulomb_now = 'LLLL' if dm0 is None and mf._coulomb_now.upper() == 'LLLL': scf_conv, e_tot, mo_energy, mo_coeff, mo_occ \ = hf.kernel(mf, 1e-2, 1e-1, dump_chk, dm0=dm, callback=callback) dm = mf.make_rdm1(mo_coeff, mo_occ) mf._coulomb_now = 'SSLL' if dm0 is None and (mf._coulomb_now.upper() == 'SSLL' or mf._coulomb_now.upper() == 'LLSS'): scf_conv, e_tot, mo_energy, mo_coeff, mo_occ \ = hf.kernel(mf, 1e-3, 1e-1, dump_chk, dm0=dm, callback=callback) dm = mf.make_rdm1(mo_coeff, mo_occ) mf._coulomb_now = 'SSSS' if mf.with_ssss: mf._coulomb_now = 'SSSS' else: mf._coulomb_now = 'SSLL' return hf.kernel(mf, conv_tol, conv_tol_grad, dump_chk, dm0=dm, callback=callback) def get_jk_coulomb(mol, dm, hermi=1, coulomb_allow='SSSS', opt_llll=None, opt_ssll=None, opt_ssss=None): if coulomb_allow.upper() == 'LLLL': logger.info(mol, 'Coulomb integral: (LL|LL)') j1, k1 = _call_veff_llll(mol, dm, hermi, opt_llll) n2c = j1.shape[1] vj = numpy.zeros_like(dm) vk = numpy.zeros_like(dm) vj[...,:n2c,:n2c] = j1 vk[...,:n2c,:n2c] = k1 elif coulomb_allow.upper() == 'SSLL' \ or coulomb_allow.upper() == 'LLSS': logger.info(mol, 'Coulomb integral: (LL|LL) + (SS|LL)') vj, vk = _call_veff_ssll(mol, dm, hermi, opt_ssll) j1, k1 = _call_veff_llll(mol, dm, hermi, opt_llll) n2c = j1.shape[1] vj[...,:n2c,:n2c] += j1 vk[...,:n2c,:n2c] += k1 else: # coulomb_allow == 'SSSS' logger.info(mol, 'Coulomb integral: (LL|LL) + (SS|LL) + (SS|SS)') vj, vk = _call_veff_ssll(mol, dm, hermi, opt_ssll) j1, k1 = _call_veff_llll(mol, dm, hermi, opt_llll) n2c = j1.shape[1] vj[...,:n2c,:n2c] += j1 vk[...,:n2c,:n2c] += k1 j1, k1 = _call_veff_ssss(mol, dm, hermi, opt_ssss) vj[...,n2c:,n2c:] += j1 vk[...,n2c:,n2c:] += k1 return vj, vk def get_jk(mol, dm, hermi=1, coulomb_allow='SSSS'): return get_jk_coulomb(mol, dm, hermi=hermi, coulomb_allow=coulomb_allow) def get_hcore(mol): n2c = mol.nao_2c() n4c = n2c * 2 c = lib.param.LIGHT_SPEED t = mol.intor_symmetric('cint1e_spsp') * .5 vn = mol.intor_symmetric('cint1e_nuc') wn = mol.intor_symmetric('cint1e_spnucsp') h1e = numpy.empty((n4c, n4c), numpy.complex) h1e[:n2c,:n2c] = vn h1e[n2c:,:n2c] = t h1e[:n2c,n2c:] = t h1e[n2c:,n2c:] = wn * (.25/c**2) - t return h1e def get_ovlp(mol): n2c = mol.nao_2c() n4c = n2c * 2 c = lib.param.LIGHT_SPEED s = mol.intor_symmetric('cint1e_ovlp') t = mol.intor_symmetric('cint1e_spsp') s1e = numpy.zeros((n4c, n4c), numpy.complex) s1e[:n2c,:n2c] = s s1e[n2c:,n2c:] = t * (.5/c)**2 return s1e def make_rdm1(mo_coeff, mo_occ): return numpy.dot(mo_coeff*mo_occ, mo_coeff.T.conj()) def init_guess_by_minao(mol): '''Initial guess in terms of the overlap to minimal basis.''' dm = hf.init_guess_by_minao(mol) return _proj_dmll(mol, dm, mol) def init_guess_by_1e(mol): '''Initial guess from one electron system.''' mf = UHF(mol) return mf.init_guess_by_1e(mol) def init_guess_by_atom(mol): '''Initial guess from atom calculation.''' dm = hf.init_guess_by_atom(mol) return _proj_dmll(mol, dm, mol) def init_guess_by_chkfile(mol, chkfile_name, project=True): from pyscf.scf import addons chk_mol, scf_rec = pyscf.scf.chkfile.load_scf(chkfile_name) if numpy.iscomplexobj(scf_rec['mo_coeff']): mo = scf_rec['mo_coeff'] mo_occ = scf_rec['mo_occ'] if project: dm = make_rdm1(addons.project_mo_r2r(chk_mol, mo, mol), mo_occ) else: dm = make_rdm1(mo, mo_occ) else: if scf_rec['mo_coeff'].ndim == 2: # nr-RHF mo = scf_rec['mo_coeff'] mo_occ = scf_rec['mo_occ'] dm = reduce(numpy.dot, (mo*mo_occ, mo.T)) else: # nr-UHF mo = scf_rec['mo_coeff'] mo_occ = scf_rec['mo_occ'] dm = reduce(numpy.dot, (mo[0]*mo_occ[0], mo[0].T)) \ + reduce(numpy.dot, (mo[1]*mo_occ[1], mo[1].T)) dm = _proj_dmll(chk_mol, dm, mol) return dm def get_init_guess(mol, key='minao'): if callable(key): return key(mol) elif key.lower() == '1e': return init_guess_by_1e(mol) elif key.lower() == 'atom': return init_guess_by_atom(mol) elif key.lower() == 'chkfile': raise RuntimeError('Call pyscf.scf.hf.init_guess_by_chkfile instead') else: return init_guess_by_minao(mol) def time_reversal_matrix(mol, mat): ''' T(A_ij) = A[T(i),T(j)]^* ''' n2c = mol.nao_2c() tao = numpy.asarray(mol.time_reversal_map()) # tao(i) = -j means T(f_i) = -f_j # tao(i) = j means T(f_i) = f_j idx = abs(tao)-1 # -1 for C indexing convention #:signL = [(1 if x>0 else -1) for x in tao] #:sign = numpy.hstack((signL, signL)) #:tmat = numpy.empty_like(mat) #:for j in range(mat.__len__()): #: for i in range(mat.__len__()): #: tmat[idx[i],idx[j]] = mat[i,j] * sign[i]*sign[j] #:return tmat.conjugate() sign_mask = tao<0 if mat.shape[0] == n2c*2: idx = numpy.hstack((idx, idx+n2c)) sign_mask = numpy.hstack((sign_mask, sign_mask)) tmat = mat.take(idx,axis=0).take(idx,axis=1) tmat[sign_mask,:] *= -1 tmat[:,sign_mask] *= -1 return tmat.T def analyze(mf, verbose=logger.DEBUG, **kwargs): #from pyscf.tools import dump_mat if isinstance(verbose, logger.Logger): log = verbose else: log = logger.Logger(mf.stdout, verbose) mo_energy = mf.mo_energy mo_occ = mf.mo_occ #mo_coeff = mf.mo_coeff log.info('**** MO energy ****') for i in range(len(mo_energy)): if mo_occ[i] > 0: log.info('occupied MO #%d energy= %.15g occ= %g', \ i+1, mo_energy[i], mo_occ[i]) else: log.info('virtual MO #%d energy= %.15g occ= %g', \ i+1, mo_energy[i], mo_occ[i]) #TODO if mf.verbose >= logger.DEBUG: #TODO log.debug(' ** MO coefficients **') #TODO label = mf.mol.spinor_labels(True) #TODO dump_mat.dump_rec(mf.stdout, mo_coeff, label, start=1) #TODO dm = mf.make_rdm1(mo_coeff, mo_occ) #TODO return mf.mulliken_pop(mf.mol, dm, mf.get_ovlp(), log) def get_grad(mo_coeff, mo_occ, fock_ao): '''DHF Gradients''' occidx = numpy.where(mo_occ> 0)[0] viridx = numpy.where(mo_occ==0)[0] nocc = len(occidx) nvir = len(viridx) fock = reduce(numpy.dot, (mo_coeff.T.conj(), fock_ao, mo_coeff)) g = fock[occidx[:,None],viridx].T return g.reshape(-1) class UHF(hf.SCF): __doc__ = hf.SCF.__doc__ + ''' Attributes for Dirac-Hartree-Fock with_ssss : bool, for Dirac-Hartree-Fock only If False, ignore small component integrals (SS|SS). Default is True. with_gaunt : bool, for Dirac-Hartree-Fock only Default is False. with_breit : bool, for Dirac-Hartree-Fock only Gaunt + gauge term. Default is False. Examples: >>> mol = gto.M(atom='H 0 0 0; H 0 0 1', basis='ccpvdz', verbose=0) >>> mf = scf.RHF(mol) >>> e0 = mf.scf() >>> mf = scf.DHF(mol) >>> e1 = mf.scf() >>> print('Relativistic effects = %.12f' % (e1-e0)) Relativistic effects = -0.000008854205 ''' def __init__(self, mol): hf.SCF.__init__(self, mol) self.conv_tol = 1e-8 self.with_ssss = True self._coulomb_now = 'SSSS' # 'SSSS' ~ LLLL+LLSS+SSSS self.with_gaunt = False self.with_breit = False self.opt = (None, None, None, None) # (opt_llll, opt_ssll, opt_ssss, opt_gaunt) self._keys = set(self.__dict__.keys()) def dump_flags(self): hf.SCF.dump_flags(self) logger.info(self, 'with_ssss %s, with_gaunt %s, with_breit %s', self.with_ssss, self.with_gaunt, self.with_breit) logger.info(self, 'light speed = %s', lib.param.LIGHT_SPEED) return self def get_hcore(self, mol=None): if mol is None: mol = self.mol return get_hcore(mol) def get_ovlp(self, mol=None): if mol is None: mol = self.mol return get_ovlp(mol) def get_grad(self, mo_coeff, mo_occ, fock=None): if fock is None: dm1 = self.make_rdm1(mo_coeff, mo_occ) fock = self.get_hcore(self.mol) + self.get_veff(self.mol, dm1) return get_grad(mo_coeff, mo_occ, fock) def init_guess_by_minao(self, mol=None): '''Initial guess in terms of the overlap to minimal basis.''' if mol is None: mol = self.mol return init_guess_by_minao(mol) def init_guess_by_atom(self, mol=None): if mol is None: mol = self.mol return init_guess_by_atom(mol) def init_guess_by_chkfile(self, chkfile=None, project=True): if chkfile is None: chkfile = self.chkfile return init_guess_by_chkfile(self.mol, chkfile, project=project) def build(self, mol=None): if self.verbose >= logger.WARN: self.check_sanity() if self.direct_scf: self.opt = self.init_direct_scf(self.mol) def get_occ(self, mo_energy=None, mo_coeff=None): if mo_energy is None: mo_energy = self.mo_energy mol = self.mol c = lib.param.LIGHT_SPEED n4c = len(mo_energy) n2c = n4c // 2 mo_occ = numpy.zeros(n2c * 2) if mo_energy[n2c] > -1.999 * c**2: mo_occ[n2c:n2c+mol.nelectron] = 1 else: n = 0 for i, e in enumerate(mo_energy): if e > -1.999 * c**2 and n < mol.nelectron: mo_occ[i] = 1 n += 1 if self.verbose >= logger.INFO: logger.info(self, 'HOMO %d = %.12g LUMO %d = %.12g', n2c+mol.nelectron, mo_energy[n2c+mol.nelectron-1], n2c+mol.nelectron+1, mo_energy[n2c+mol.nelectron]) logger.debug(self, 'NES mo_energy = %s', mo_energy[:n2c]) logger.debug(self, 'PES mo_energy = %s', mo_energy[n2c:]) return mo_occ # full density matrix for UHF def make_rdm1(self, mo_coeff=None, mo_occ=None): if mo_coeff is None: mo_coeff = self.mo_coeff if mo_occ is None: mo_occ = self.mo_occ return make_rdm1(mo_coeff, mo_occ) def init_direct_scf(self, mol=None): if mol is None: mol = self.mol def set_vkscreen(opt, name): opt._this.contents.r_vkscreen = _vhf._fpointer(name) opt_llll = _vhf.VHFOpt(mol, 'cint2e', 'CVHFrkbllll_prescreen', 'CVHFrkbllll_direct_scf', 'CVHFrkbllll_direct_scf_dm') opt_llll.direct_scf_tol = self.direct_scf_tol set_vkscreen(opt_llll, 'CVHFrkbllll_vkscreen') opt_ssss = _vhf.VHFOpt(mol, 'cint2e_spsp1spsp2', 'CVHFrkbllll_prescreen', 'CVHFrkbssss_direct_scf', 'CVHFrkbssss_direct_scf_dm') opt_ssss.direct_scf_tol = self.direct_scf_tol set_vkscreen(opt_ssss, 'CVHFrkbllll_vkscreen') opt_ssll = _vhf.VHFOpt(mol, 'cint2e_spsp1', 'CVHFrkbssll_prescreen', 'CVHFrkbssll_direct_scf', 'CVHFrkbssll_direct_scf_dm') opt_ssll.direct_scf_tol = self.direct_scf_tol set_vkscreen(opt_ssll, 'CVHFrkbssll_vkscreen') #TODO: prescreen for gaunt opt_gaunt = None return opt_llll, opt_ssll, opt_ssss, opt_gaunt def get_jk(self, mol=None, dm=None, hermi=1): if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() t0 = (time.clock(), time.time()) verbose_bak, mol.verbose = mol.verbose, self.verbose stdout_bak, mol.stdout = mol.stdout , self.stdout if self.direct_scf and self.opt[0] is None: self.opt = self.init_direct_scf(mol) opt_llll, opt_ssll, opt_ssss, opt_gaunt = self.opt vj, vk = get_jk_coulomb(mol, dm, hermi, self._coulomb_now, opt_llll, opt_ssll, opt_ssss) if self.with_breit: if 'SSSS' in self._coulomb_now.upper() or not self.with_ssss: vj1, vk1 = _call_veff_gaunt_breit(mol, dm, hermi, opt_gaunt, True) logger.info(self, 'Add Breit term') vj += vj1 vk += vk1 elif self.with_gaunt and 'SS' in self._coulomb_now.upper(): logger.info(self, 'Add Gaunt term') vj1, vk1 = _call_veff_gaunt_breit(mol, dm, hermi, opt_gaunt, False) vj += vj1 vk += vk1 mol.verbose = verbose_bak mol.stdout = stdout_bak logger.timer(self, 'vj and vk', *t0) return vj, vk def get_veff(self, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1): '''Dirac-Coulomb''' if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() if self.direct_scf: ddm = numpy.array(dm, copy=False) - numpy.array(dm_last, copy=False) vj, vk = self.get_jk(mol, ddm, hermi=hermi) return numpy.array(vhf_last, copy=False) + vj - vk else: vj, vk = self.get_jk(mol, dm, hermi=hermi) return vj - vk def scf(self, dm0=None): cput0 = (time.clock(), time.time()) self.build() self.dump_flags() self.converged, self.e_tot, \ self.mo_energy, self.mo_coeff, self.mo_occ \ = kernel(self, self.conv_tol, self.conv_tol_grad, dm0=dm0, callback=self.callback) logger.timer(self, 'SCF', *cput0) self._finalize() return self.e_tot def analyze(self, verbose=None): if verbose is None: verbose = self.verbose return analyze(self, verbose) def x2c(self): import pyscf.scf.x2c x2chf = pyscf.scf.x2c.UHF(self.mol) x2chf.__dict__.update(self.__dict__) return x2chf class HF1e(UHF): def scf(self, *args): logger.info(self, '\n') logger.info(self, '******** 1 electron system ********') self.converged = True h1e = self.get_hcore(self.mol) s1e = self.get_ovlp(self.mol) self.mo_energy, self.mo_coeff = self.eig(h1e, s1e) self.mo_occ = numpy.zeros_like(self.mo_energy) n2c = len(self.mo_occ) // 2 self.mo_occ[n2c] = 1 self.e_tot = self.mo_energy[n2c] + self.mol.energy_nuc() return self.e_tot class RHF(UHF): '''Dirac-RHF''' def __init__(self, mol): if mol.nelectron.__mod__(2) != 0: raise ValueError('Invalid electron number %i.' % mol.nelectron) UHF.__init__(self, mol) # full density matrix for RHF def make_rdm1(self, mo_coeff=None, mo_occ=None): r'''D/2 = \psi_i^\dag\psi_i = \psi_{Ti}^\dag\psi_{Ti} D(UHF) = \psi_i^\dag\psi_i + \psi_{Ti}^\dag\psi_{Ti} RHF average the density of spin up and spin down: D(RHF) = (D(UHF) + T[D(UHF)])/2 ''' if mo_coeff is None: mo_coeff = self.mo_coeff if mo_occ is None: mo_occ = self.mo_occ dm = make_rdm1(mo_coeff, mo_occ) return (dm + time_reversal_matrix(self.mol, dm)) * .5 def get_occ(self, mo_energy=None, mo_coeff=None): if mo_energy is None: mo_energy = self.mo_energy mol = self.mol c = lib.param.LIGHT_SPEED n4c = len(mo_energy) n2c = n4c // 2 mo_occ = numpy.zeros(n2c * 2) if mo_energy[n2c] > -1.999 * c**2: mo_occ[n2c:n2c+mol.nelectron] = 1 else: n = 0 for i, e in enumerate(mo_energy): if e > -1.999 * c**2 and n < mol.nelectron: mo_occ[i] = 1 n += 1 if self.verbose >= logger.INFO: logger.info(self, 'HOMO %d = %.12g, LUMO %d = %.12g,', (n2c+mol.nelectron)//2, mo_energy[n2c+mol.nelectron-1], (n2c+mol.nelectron)//2+1, mo_energy[n2c+mol.nelectron]) logger.debug(self, 'NES mo_energy = %s', mo_energy[:n2c]) logger.debug(self, 'PES mo_energy = %s', mo_energy[n2c:]) return mo_occ def _jk_triu_(vj, vk, hermi): if hermi == 0: if vj.ndim == 2: vj = lib.hermi_triu(vj, 1) else: for i in range(vj.shape[0]): vj[i] = lib.hermi_triu(vj[i], 1) else: if vj.ndim == 2: vj = lib.hermi_triu(vj, hermi) vk = lib.hermi_triu(vk, hermi) else: for i in range(vj.shape[0]): vj[i] = lib.hermi_triu(vj[i], hermi) vk[i] = lib.hermi_triu(vk[i], hermi) return vj, vk def _call_veff_llll(mol, dm, hermi=1, mf_opt=None): if isinstance(dm, numpy.ndarray) and dm.ndim == 2: n2c = dm.shape[0] // 2 dms = dm[:n2c,:n2c].copy() else: n2c = dm[0].shape[0] // 2 dms = [] for dmi in dm: dms.append(dmi[:n2c,:n2c].copy()) vj, vk = _vhf.rdirect_mapdm('cint2e', 's8', ('ji->s2kl', 'jk->s1il'), dms, 1, mol._atm, mol._bas, mol._env, mf_opt) return _jk_triu_(vj, vk, hermi) def _call_veff_ssll(mol, dm, hermi=1, mf_opt=None): if isinstance(dm, numpy.ndarray) and dm.ndim == 2: n_dm = 1 n2c = dm.shape[0] // 2 dmll = dm[:n2c,:n2c].copy() dmsl = dm[n2c:,:n2c].copy() dmss = dm[n2c:,n2c:].copy() dms = (dmll, dmss, dmsl) else: n_dm = len(dm) n2c = dm[0].shape[0] // 2 dms = [dmi[:n2c,:n2c].copy() for dmi in dm] \ + [dmi[n2c:,n2c:].copy() for dmi in dm] \ + [dmi[n2c:,:n2c].copy() for dmi in dm] jks = ('lk->s2ij',) * n_dm \ + ('ji->s2kl',) * n_dm \ + ('jk->s1il',) * n_dm c1 = .5 / lib.param.LIGHT_SPEED vx = _vhf.rdirect_bindm('cint2e_spsp1', 's4', jks, dms, 1, mol._atm, mol._bas, mol._env, mf_opt) * c1**2 vj = numpy.zeros((n_dm,n2c*2,n2c*2), dtype=numpy.complex) vk = numpy.zeros((n_dm,n2c*2,n2c*2), dtype=numpy.complex) vj[:,n2c:,n2c:] = vx[ :n_dm ,:,:] vj[:,:n2c,:n2c] = vx[n_dm :n_dm*2,:,:] vk[:,n2c:,:n2c] = vx[n_dm*2: ,:,:] if n_dm == 1: vj = vj.reshape(vj.shape[1:]) vk = vk.reshape(vk.shape[1:]) return _jk_triu_(vj, vk, hermi) def _call_veff_ssss(mol, dm, hermi=1, mf_opt=None): c1 = .5 / lib.param.LIGHT_SPEED if isinstance(dm, numpy.ndarray) and dm.ndim == 2: n2c = dm.shape[0] // 2 dms = dm[n2c:,n2c:].copy() else: n2c = dm[0].shape[0] // 2 dms = [] for dmi in dm: dms.append(dmi[n2c:,n2c:].copy()) vj, vk = _vhf.rdirect_mapdm('cint2e_spsp1spsp2', 's8', ('ji->s2kl', 'jk->s1il'), dms, 1, mol._atm, mol._bas, mol._env, mf_opt) * c1**4 return _jk_triu_(vj, vk, hermi) def _call_veff_gaunt_breit(mol, dm, hermi=1, mf_opt=None, with_breit=False): if with_breit: intor_prefix = 'cint2e_breit_' else: intor_prefix = 'cint2e_' if isinstance(dm, numpy.ndarray) and dm.ndim == 2: n_dm = 1 n2c = dm.shape[0] // 2 dmls = dm[:n2c,n2c:].copy() dmsl = dm[n2c:,:n2c].copy() dmll = dm[:n2c,:n2c].copy() dmss = dm[n2c:,n2c:].copy() dms = [dmsl, dmsl, dmls, dmll, dmss] else: n_dm = len(dm) n2c = dm[0].shape[0] // 2 dmll = [dmi[:n2c,:n2c].copy() for dmi in dm] dmls = [dmi[:n2c,n2c:].copy() for dmi in dm] dmsl = [dmi[n2c:,:n2c].copy() for dmi in dm] dmss = [dmi[n2c:,n2c:].copy() for dmi in dm] dms = dmsl + dmsl + dmls + dmll + dmss vj = numpy.zeros((n_dm,n2c*2,n2c*2), dtype=numpy.complex) vk = numpy.zeros((n_dm,n2c*2,n2c*2), dtype=numpy.complex) jks = ('lk->s1ij',) * n_dm \ + ('jk->s1il',) * n_dm vx = _vhf.rdirect_bindm(intor_prefix+'ssp1ssp2', 's1', jks, dms[:n_dm*2], 1, mol._atm, mol._bas, mol._env, mf_opt) vj[:,:n2c,n2c:] = vx[:n_dm,:,:] vk[:,:n2c,n2c:] = vx[n_dm:,:,:] jks = ('lk->s1ij',) * n_dm \ + ('li->s1kj',) * n_dm \ + ('jk->s1il',) * n_dm vx = _vhf.rdirect_bindm(intor_prefix+'ssp1sps2', 's1', jks, dms[n_dm*2:], 1, mol._atm, mol._bas, mol._env, mf_opt) vj[:,:n2c,n2c:]+= vx[ :n_dm ,:,:] vk[:,n2c:,n2c:] = vx[n_dm :n_dm*2,:,:] vk[:,:n2c,:n2c] = vx[n_dm*2: ,:,:] if hermi == 1: vj[:,n2c:,:n2c] = vj[:,:n2c,n2c:].transpose(0,2,1).conj() vk[:,n2c:,:n2c] = vk[:,:n2c,n2c:].transpose(0,2,1).conj() elif hermi == 2: vj[:,n2c:,:n2c] = -vj[:,:n2c,n2c:].transpose(0,2,1).conj() vk[:,n2c:,:n2c] = -vk[:,:n2c,n2c:].transpose(0,2,1).conj() else: raise NotImplementedError if n_dm == 1: vj = vj.reshape(n2c*2,n2c*2) vk = vk.reshape(n2c*2,n2c*2) c1 = .5 / lib.param.LIGHT_SPEED if with_breit: return vj*c1**2, vk*c1**2 else: return -vj*c1**2, -vk*c1**2 def _proj_dmll(mol_nr, dm_nr, mol): from pyscf.scf import addons proj = addons.project_mo_nr2r(mol_nr, 1, mol) n2c = proj.shape[0] n4c = n2c * 2 dm = numpy.zeros((n4c,n4c), dtype=complex) # *.5 because alpha and beta are summed in project_mo_nr2r dm_ll = reduce(numpy.dot, (proj, dm_nr*.5, proj.T.conj())) dm[:n2c,:n2c] = (dm_ll + time_reversal_matrix(mol, dm_ll)) * .5 return dm if __name__ == '__main__': import pyscf.gto mol = pyscf.gto.Mole() mol.verbose = 5 mol.output = 'out_dhf' mol.atom.extend([['He', (0.,0.,0.)], ]) mol.basis = { 'He': [(0, 0, (1, 1)), (0, 0, (3, 1)), (1, 0, (1, 1)), ]} mol.build() ############## # SCF result method = UHF(mol) energy = method.scf() #-2.38146942868 print(energy) method.with_gaunt = True print(method.scf()) # -2.38138339005 method.with_breit = True print(method.scf()) # -2.38138339005
python
import sys import requests import time import datetime # API URLS URL_STATS_PROVIDER = 'https://api.nicehash.com/api?method=stats.provider&addr={}' URL_BTC_PRICE = 'https://min-api.cryptocompare.com/data/pricemulti?fsyms=BTC&tsyms={}' WALLET = '1P5PNW6Wd53QiZLdCs9EXNHmuPTX3rD6hW' #Dummy wallet. To be overwritten ############################################################################### def req_url(url): try: response = requests.get(url).json() except Exception as e: print("Error using API: {0:s}".format(str(e))) return None return response ############################################################################### def get_btc_price(fiat='USD'): response = req_url(URL_BTC_PRICE.format(fiat)) if response is None: return None curr_price = response['BTC'][fiat] return curr_price def get_balances(wallet=WALLET): response = req_url(URL_STATS_PROVIDER.format(wallet)) if response is None: return None if 'error' in response['result']: print(response['result']['error']) return None curr_stats = response['result']['stats'] num_resp = len(curr_stats) dictlist = [dict() for x in range(35)] for idx_algo in range(35): if (idx_algo == 0): algo_str = 'Scrypt' elif (idx_algo == 1): algo_str = 'SHA256' elif (idx_algo == 2): algo_str = 'ScryptNf' elif (idx_algo == 3): algo_str = 'X11' elif (idx_algo == 4): algo_str = 'X13' elif (idx_algo == 5): algo_str = 'Keccak' elif (idx_algo == 6): algo_str = 'X15' elif (idx_algo == 7): algo_str = 'Nist5' elif (idx_algo == 8): algo_str = 'NeoScrypt' elif (idx_algo == 9): algo_str = 'Lyra2RE' elif (idx_algo == 10): algo_str = 'WhirlpoolX' elif (idx_algo == 11): algo_str = 'Qubit' elif (idx_algo == 12): algo_str = 'Quark' elif (idx_algo == 13): algo_str = 'Axiom' elif (idx_algo == 14): algo_str = 'Lyra2REv2' elif (idx_algo == 15): algo_str = 'ScryptJaneNf16' elif (idx_algo == 16): algo_str = 'Blake256r8' elif (idx_algo == 17): algo_str = 'Blake256r14' elif (idx_algo == 18): algo_str = 'Blake256r8vnl' elif (idx_algo == 19): algo_str = 'Hodl' elif (idx_algo == 20): algo_str = 'DaggerHashimoto' elif (idx_algo == 21): algo_str = 'Decred' elif (idx_algo == 22): algo_str = 'CryptoNight' elif (idx_algo == 23): algo_str = 'Lbry' elif (idx_algo == 24): algo_str = 'Equihash' elif (idx_algo == 25): algo_str = 'Pascal' elif (idx_algo == 26): algo_str = 'X11Gost' elif (idx_algo == 27): algo_str = 'Sia' elif (idx_algo == 28): algo_str = 'Blake2s' elif (idx_algo == 29): algo_str = 'Skunk' elif (idx_algo == 30): algo_str = 'CryptoNightV7' elif (idx_algo == 31): algo_str = 'CryptoNightHeavy' elif (idx_algo == 32): algo_str = 'Lyra2Z' elif (idx_algo == 33): algo_str = 'X16R' else: algo_str = 'other' dictlist[idx_algo]['algo_str'] = algo_str dictlist[idx_algo]['balance'] = float(0) for idx_resp in range(num_resp): current_resp = curr_stats[idx_resp] if( (current_resp['algo']<=33) and (current_resp['algo']>=0) ): dictlist[current_resp['algo']]['balance'] = float(current_resp['balance']) else: dictlist[34]['balance'] = dictlist[34]['balance']+float(current_resp['balance']) return dictlist
python
import copy import argparse import os from PIL import Image import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.transforms as transforms import torchvision.models as models from LossFunction import ContentLoss, StyleLoss plt.switch_backend('agg') def image_loader(image_name, transform, device): image = Image.open(image_name) image = transform(image).unsqueeze(0) return image.to(device, torch.float) class Normalization(nn.Module): def __init__(self, mean, std): super(Normalization, self).__init__() self.mean = torch.tensor(mean).view(-1, 1, 1) self.std = torch.tensor(std).view(-1, 1, 1) def forward(self, img): return (img - self.mean) / self.std def get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img, content_layers, style_layers, device): ''' to add content loss and style loss layers after convolution layer by creating a new Sequential module ''' cnn = copy.deepcopy(cnn) content_loss_list = [] style_loss_list = [] normalization = Normalization(normalization_mean, normalization_std).to(device) model = nn.Sequential(normalization) i = 0 for layer in cnn.children(): if isinstance(layer, nn.Conv2d): i += 1 name = 'conv_{}'.format(i) elif isinstance(layer, nn.ReLU): name = 'relu_{}'.format(i) layer = nn.ReLU(inplace=False) elif isinstance(layer, nn.MaxPool2d): name = 'pool_{}'.format(i) elif isinstance(layer, nn.BatchNorm2d): name = 'bn_{}'.format(i) else: raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) model.add_module(name, layer) if name in content_layers: # add content loss target = model(content_img).detach() content_loss = ContentLoss(target) model.add_module("content_loss_{}".format(i), content_loss) content_loss_list.append(content_loss) if name in style_layers: # add style loss target_feature = model(style_img).detach() style_loss = StyleLoss(target_feature) model.add_module("style_loss_{}".format(i), style_loss) style_loss_list.append(style_loss) for i in range(len(model) - 1, -1, -1): if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss): break model = model[:(i + 1)] return model, style_loss_list, content_loss_list def get_input_optimizer(input_img): ''' L-BFGS algorithm to run our gradient descent to train the input image in order to minimise the content/style losses ''' optimizer = optim.LBFGS([input_img.requires_grad_()]) return optimizer def run(cnn, content_layers_default, style_layers_default, content_img, style_img, input_img, device, num_steps=300, style_weight=10000, content_weight=1): """ the function to perform neural transfer """ style_loss_list = [] content_loss_list = [] cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device) cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device) model, style_losses, content_losses = get_style_model_and_losses( cnn, cnn_normalization_mean, cnn_normalization_std, style_img, content_img, content_layers_default, style_layers_default, device) optimizer = get_input_optimizer(input_img) epoch = [0] while epoch[0] <= num_steps: def closure(): input_img.data.clamp_(0, 1) optimizer.zero_grad() model(input_img) style_score = 0 content_score = 0 for sl in style_losses: style_score += sl.loss for cl in content_losses: content_score += cl.loss style_score *= style_weight content_score *= content_weight loss = style_score + content_score loss.backward() epoch[0] += 1 if epoch[0] % 10 == 0: style_loss_list.append(style_score.item()) content_loss_list.append(content_score.item()) if epoch[0] % 50 == 0: print("epoch {}: Style Loss : {:4f} Content Loss: {:4f}".format(epoch[0], style_score.item(), content_score.item())) return style_score + content_score optimizer.step(closure) input_img.data.clamp_(0, 1) return input_img, style_loss_list, content_loss_list def style_transfer(style_img, content_img, outputpath='./result.png', num_steps=500, style_weight=100000, content_weight=1, name='test', loss_dir='losses'): ''' the main function of neural style transfer :param style_img: the image with target style you want to transfer to :param content_img: the original image, to transfer its style while reserve its content :param outputpath: the path to save image with transferred style :param num_steps: number of steps to update parameters :param style_weight: weight of style :param content_weight: weight of loss ''' imsize = 512 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") transform = transforms.Compose([ transforms.Resize(imsize), transforms.CenterCrop(imsize), transforms.ToTensor() ]) style_img = image_loader(style_img, transform, device) content_img = image_loader(content_img, transform, device) # use the features module of pretrained vgg19 # need the output of the individual convolution layers to measure content and style loss. cnn = models.vgg19(pretrained=True).features.to(device).eval() # desired depth layers to compute style/content losses : content_layers_default = ['conv_4'] style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] input_img = content_img.clone() output, style_loss, content_loss = run(cnn, content_layers_default, style_layers_default, content_img, style_img, input_img, device, num_steps=num_steps, style_weight=style_weight, content_weight=content_weight) output = output.detach().cpu().numpy().squeeze(0).transpose([1,2,0]) plt.imsave(outputpath, output) plt.clf() x = [i*10 for i in range(len(style_loss))] plt.plot(x, style_loss, label='style_loss') plt.plot(x, content_loss, label='content_loss') plt.xlabel('steps') plt.ylabel('loss') plt.legend() plt.savefig(os.path.join(loss_dir, "loss" + name)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--style_img_path', default='./data/style/style3.jpg', help='path of style image', type=str) parser.add_argument('--content_img_dir', default='./data/content', help='directory of content images', type=str) parser.add_argument('--result_dir', default='./results', help='directory to save results', type=str) parser.add_argument('--num_steps', default=500, help='number of steps to update', type=int) parser.add_argument('--style_weight', default=100000, help='weight of style', type=int) parser.add_argument('--content_weight', default=1, help='weight of content', type=int) args = parser.parse_args() style_img_path = args.style_img_path content_img_dir = args.content_img_dir result_dir = args.result_dir num_steps = args.num_steps style_weight = args.style_weight content_weight = args.content_weight if not os.path.isdir(result_dir): os.mkdir(result_dir) loss_dir = os.path.join(result_dir, 'losses') if not os.path.isdir(loss_dir): os.mkdir(loss_dir) for img in os.listdir(content_img_dir): content_img_path = os.path.join(content_img_dir, img) outputpath = os.path.join(result_dir, 'result-' + img) style_transfer(style_img_path, content_img_path, outputpath=outputpath, num_steps=num_steps, style_weight=style_weight, content_weight=content_weight, name=img, loss_dir=loss_dir)
python
import os from dotenv import load_dotenv dirname = os.path.dirname(__file__) try: #print(os.path.join(dirname, '.env')) load_dotenv(dotenv_path=os.path.join(dirname, '.env')) except FileNotFoundError: pass
python
#!/home/alvaro/.miniconda3/envs/fazip/bin/python from fazip import fazip import sys import getpass def do_extraction(zipname): host, user, pwd = fazip.get_mysql_info() db = fazip.connect_to_db(user, pwd, host) fazip.unzip_files(db, zipname) db.close() def do_compression(zipname, files): host, user, pwd = fazip.get_mysql_info() db = fazip.connect_to_db(user, pwd, host) str_files = " ".join(files) fazip.zip_files(db, zipname, str_files) db.close() def do_list(zipname): print("TODO") pass def do_add_user(database): print("\n[fazip] Enter the new user's name") user = input("[fazip]> ") if fazip.add_user_db(database, user): print("[fazip] User successfully registered!") else: print("[fazip] User already registered :(") def do_edit_user(database): print("\n[fazip] Enter the user's name you want to edit") user = input("[fazip]> ") if fazip.modify_user_db(database, user): print("[fazip] User successfully edited!") else: print("[fazip] User doesn't exists :(") def do_remove_user(database): print("\n[fazip] Enter the user's name you want to remove") user = input("[fazip]> ") if fazip.remove_user_db(database, user): print("[fazip] User successfully removed!") else: print("[fazip] User doesn't exists :(") def do_list_users(database): users = fazip.get_users_db(database) if users: print("\n[fazip] Those are the registered users:") for user in users: print("=> {}".format(user)) else: print("\n[fazip] There are no users registered :(") def do_change_pass(database): print("[fazip] WARNING: You will not be able to extract files" + "from previously created zip files") verify = input("[fazip] Proceed (y/[n])? ") if verify == 'y' or verify == 'yes': oldp = getpass.getpass("[fazip] Enter your actual password: ") if fazip.get_password_zip(database) == oldp: first = getpass.getpass("[fazip] Enter your new password: ") second = getpass.getpass("[fazip] Enter your new password again: ") if first == second: fazip.set_password_zip(database, first) print("\n[fazip] Password changed successfully!") print("[fazip] Please log in again") sys.exit() else: print("[fazip] Those passwords didn't match.") else: print("[fazip] Access denied") sys.exit() def print_menu(options): print(" ====================================") print("|| \t CONFIGURATION MENU\t ||") print(" ====================================") print("\t-> {}) Exit".format(options['exit_menu'])) print("\t-> {}) List users".format(options['list_users'])) print("\t-> {}) Add user".format(options['add_user'])) print("\t-> {}) Edit user".format(options['edit_user'])) print("\t-> {}) Remove user".format(options['remove_user'])) print("\t-> {}) Change password (CRITICAL)".format(options['change_pass'])) def menu(options, selection): pass def do_configuration(login=False): host, user, pwd = fazip.get_mysql_info() db = fazip.connect_to_db(user, pwd, host) options = {'exit_menu': 0, 'list_users': 1, 'add_user': 2, 'edit_user': 3, 'remove_user': 4, 'change_pass': 5} if not login: pwd = getpass.getpass("Enter password: ") if not fazip.get_password_zip(db) == pwd: print("[fazip] Access denied") sys.exit() print_menu(options) try: selection = int(input("\n[fazip]> ")) except Exception: selection = -1 print("[fazip] Seriously? That's not a number -.-") if options['exit_menu'] <= selection <= options['change_pass']: if selection == options['add_user']: do_add_user(db) elif selection == options['edit_user']: do_edit_user(db) elif selection == options['remove_user']: do_remove_user(db) elif selection == options['list_users']: do_list_users(db) elif selection == options['exit_menu']: sys.exit() elif selection == options['change_pass']: do_change_pass(db) db.close() else: print("[fazip] Wrong answer") do_configuration(True) def print_help(redirected=False): if redirected: print("[fazip] It looks like you missed something :(") else: print("[fazip] Help:") print("\n- Extract an existing zip file with original structure:") print("\n fazip x <zipfile>") print("\n- List the contents of a zip file:") print("\n fazip l <zipfile>") print("\n- Archive a file or directory:") print("\n fazip a <zipfile> <files>") print("\n- Configuration menu:") print("\n fazip config") print("\n- Display this help:") print("\n fazip h") print() def main(): if 2 < len(sys.argv) == 3 and sys.argv[1] == 'x': do_extraction(sys.argv[2]) elif 2 < len(sys.argv) == 3 and sys.argv[1] == 'l': do_list(sys.argv[2]) elif len(sys.argv) >= 4 and sys.argv[1] == 'a': do_compression(sys.argv[2], sys.argv[3:]) elif len(sys.argv) == 2 and sys.argv[1] == 'config': print(fazip.utils.HEADER) do_configuration() elif len(sys.argv) == 2 and sys.argv[1] == 'h': print_help() else: print_help(True) if __name__ == '__main__': main()
python
import sys, os sys.path.append(os.pardir) from lark import Lark, Token from parsing import grammar, cool_ast, preprocess from parsing.cool_transformer import ToCoolASTTransformer from checksemantic.checksemantics import CheckSemanticsVisitor from checksemantic.scope import Scope from cool import fetch_program from code_gen.transpilator import codeVisitor from code_gen.visitorMips import MIPS def compile(parser, program, exception_on_syntax=False, CIL = False, SPIM = False): try: preprocessed = preprocess.preprocess_program(program) try: tree = parser.parse(preprocessed) ast = ToCoolASTTransformer().transform(tree) checkSemanticVisitor = CheckSemanticsVisitor() scope = Scope() errors = [] t = checkSemanticVisitor.visit(ast, scope, errors) if t: try: cv = codeVisitor() cv.visit(ast) #For static code static_code = os.path.join(os.pardir, 'code_gen', 'staticMipsCode.s') mips = MIPS(cv.code, cv.data, static_code) code_lines = mips.generate() return t, errors, code_lines except errors: print(errors) return t, errors, [] except: print('Syntax error!') if exception_on_syntax: raise Exception("") return False, [], [] except: print('Error when preprocessing!') if exception_on_syntax: raise Exception("") return False, [], [] def walk(dir, parser, exception_on_sintax = False, SPIM = False): for (curr_dir, sub_dirs, files) in os.walk(dir): for f in files: print(f) program = fetch_program(os.path.join(curr_dir,f)) #print(f) print('===================================') result, errors, mips_code = compile(parser, program, exception_on_sintax, False,) if not result: for e in errors: print(e) print('On file %s'%(f)) else: print('%s: Succesfully compiled!'%(f)) if SPIM: file_name = f[:f.index('.')] + '.s' path = os.path.join('Output', file_name) with open(path, 'w') as f: f.write(mips_code) print('===================================') if __name__ == '__main__': parser = Lark(grammar.grammar, start='program') if len(sys.argv) == 3 and sys.argv[1] == '-p': program = fetch_program(sys.argv[2]) result, errors, mips_code = compile(parser, program, False) #Cambiar a falso antes de entregar if not result: for e in errors: print(e) print('On file %s'%(sys.argv[2])) else: print('%s: Succesfully compiled!'%(sys.argv[2])) file_name = sys.argv[2].split(os.sep)[-1] file_name = file_name[:file_name.index('.')] + '.s' path = os.path.join('Output', file_name) with open(path, 'w') as f: f.write(mips_code) elif len(sys.argv) == 3 and sys.argv[1] == '-r': walk(sys.argv[2], parser, True, True) #Cambiar a falso antes de entregar elif len(sys.argv) == 1: walk(os.path.join('.', 'test'), parser, True) #Cambiar a falso antes de entregar else: print("Usage: python test.py [<option> <path>]") print() print('Available options:') print("-p: To compile a single file. <path> must be a the path of a file.") print("-r: To compile all the files in a directory tree. <path> must be a the path of a directory.") print() print("When using without options all the files on directory tree rooted at './test' are compiled")
python
#!/usr/bin/env python # -*- animation -*- """ Visualize a complex-valued function """ import numpy as np import gr def domain_colors(w, n): H = np.mod(np.angle(w) / (2 * np.pi) + 1, 1) m = 0.7 M = 1 isol = m + (M - m) * (H * n - np.floor(H * n)) modul = np.absolute(w) Logm = np.log(modul) Logm = np.nan_to_num(Logm) * n / (2 * np.pi) modc = m + (M - m) * (Logm - np.floor(Logm)) V = modc * isol S = 0.9 * np.ones_like(H, float) HSV = np.dstack((H, S, V)) return HSV def func_vals(f, re, im, N): # evaluates the complex function at the nodes of the grid # re and im are tuples defining the rectangular region # N is the number of nodes per unit interval l = re[1] - re[0] h = im[1] - im[0] resL = N * l # horizontal resolution resH = N * h # vertical resolution x = np.linspace(re[0], re[1], resL) y = np.linspace(im[0], im[1], resH) x, y = np.meshgrid(x, y) z = x + 1j * y w = f(z) return w def plot_domain(color_func, f, re=[-1, 1], im=[-1, 1], N=100, n=15): w = func_vals(f, re, im, N) domc = color_func(w, n) * 255 width, height = domc.shape[:2] domc = np.append(domc, np.ones((width, height, 1)) * 255, axis=2) domc = domc.astype(np.uint8) domc = domc.view('<i4') gr.clearws() gr.setviewport(0, 1, 0, 1) gr.drawimage(0, 1, 0, 1, width, height, domc, model=gr.MODEL_HSV) gr.updatews() f = lambda z: (z**2 - 1) * (z - 2 - 1j)**2 / (z**2 + 2 + 2j) for n in range(5, 30): plot_domain(domain_colors, f, re=(-3, 3), im=(-3, 3), n=n)
python