content
stringlengths
0
894k
type
stringclasses
2 values
from django.urls import path,include from django.conf import settings from django.conf.urls.static import static from rest_framework.documentation import include_docs_urls import notifications.urls urlpatterns = [ path(r'', include('rbac.urls')), path(r'', include('cmdb.urls')), path(r'', include('rmms.urls')), path(r'', include('workflow.urls')), path(r'', include('notice.urls')), path(r'', include('deployment.urls')), path(r'', include('filemanage.urls')), path(r'', include('codegenerator.urls')), path(r'', include('cms.urls')), path('docs/', include_docs_urls()), path('inbox/notifications/', include(notifications.urls, namespace='notifications')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
python
# Copyright 2018-2021 Jakub Kuczys (https://github.com/jack1142) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import textwrap from pathlib import Path import requests ROOT_PATH = Path(__file__).parent.parent.absolute() VARIATIONS_FILE = ROOT_PATH / "emojiinfo/variations.py" r = requests.get( "https://www.unicode.org/Public/UCD/latest/ucd/emoji/emoji-variation-sequences.txt" ) r.raise_for_status() backslash_emoji_reprs = [] for line in r.text.splitlines(): if not line or line.startswith("#"): continue variation_sequence = list( map( lambda x: chr(int(x, base=16)), line.split(";", maxsplit=1)[0].strip().split(), ) ) if variation_sequence[1] != "\N{VARIATION SELECTOR-16}": continue emoji = variation_sequence[0] backslash_repr = emoji.encode("ascii", "backslashreplace").decode("utf-8") backslash_emoji_reprs.append(backslash_repr) inner_code = textwrap.indent( ",\n".join(f'"{backslash_repr}"' for backslash_repr in backslash_emoji_reprs), " ", ) code = f"EMOJIS_WITH_VARIATIONS = {{\n{inner_code},\n}}\n" with VARIATIONS_FILE.open("w", encoding="utf-8", newline="\n") as fp: fp.write(code)
python
import logging import os import numpy as np from .siamese_net import DNN logger = logging.getLogger(__name__) package_directory = os.path.dirname(os.path.abspath(__file__)) similarity_model_pretrained = os.path.join(package_directory, "model") class SimilarityModel: def __init__(self): self.model = None def predict(self, file_feature_dict): """ Args: file_feature_dict: A dictionary mapping from original (path,hash) to video-level feature tensor. """ # Get array of (path,hash) and array of corresponding feature # values in the same order keys, features = zip(*file_feature_dict.items()) features = np.array([tensor[0] for tensor in features]) embeddings = self.predict_from_features(features) return dict(zip(keys, embeddings)) def predict_from_features(self, features): # Create model if self.model is None: logger.info("Creating similarity model for shape %s", features.shape) self.model = DNN(features.shape[1], None, similarity_model_pretrained, load_model=True, trainable=False) embeddings = self.model.embeddings(features) embeddings = np.nan_to_num(embeddings) return embeddings
python
from __future__ import annotations from yarl import URL import io import typing import os from .factory import construct_repr if typing.TYPE_CHECKING: from .factory import HttpHandler __all__ = ("Image",) class Image: """ A class representing an `Image`. Attributes: url (str): URL of the image. """ __slots__ = ("url", "_http") def __init__(self, url: str, http: HttpHandler) -> None: self.url = url self._http = http def __str__(self) -> str: """ Returns: URL of the image. """ return self.url def __repr__(self) -> str: """ Returns: Representation of `Image`. """ return construct_repr(self.__class__, self) async def read(self) -> io.BytesIO: """ Reads bytes of the image. Returns: An [io.BytesIO](https://docs.python.org/3/library/io.html#io.BytesIO) object. """ # noqa E501 read_ret = await self._http._read(url=self.url) return read_ret async def save( self, fp: typing.Union[ typing.Union[str, bytes, os.PathLike[str], os.PathLike[bytes]], int ], ) -> int: """ Saves the image at the given file path. Args: fp: Path where the file has to be saved. Returns: The bytes written in int. """ saved = await self._http._save(self.url, fp) return saved def deconstruct_url(self) -> URL: """ Makes a [yarl.URL](https://yarl.readthedocs.io/en/latest/api.html#yarl.URL) object out of the image url. Returns: A [yarl.URL](https://yarl.readthedocs.io/en/latest/api.html#yarl.URL) object. """ # noqa E501 url = URL(self.url) return url
python
import logging import enum import copy import telegram.error from telegram import ( InlineKeyboardButton, InlineKeyboardMarkup, ParseMode ) from app.entities import KnowledgeStatus from app.card import Card logging.basicConfig( format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO ) class KnowledgeCard(Card): def __init__(self, bot, word, listener): self._view = KnowledgeCardView(bot) self._model = KnowledgeCardModel( view=self._view, word=word, listener=listener, ) self._controller = KnowledgeCardController(self._model) self._is_deleted = False def set_old(self): self._model.is_old = True @property def is_old(self): return self._model.is_old def set_as_deleted(self, update, context): self._model.set_as_deleted(update, context) def is_deleted(self) -> bool: return self._is_deleted def get_word(self): return copy.copy(self._model._word) def start(self, update, context) -> str: return self._model.start(update, context) def button_clicked(self, update, context): self._controller.button_clicked(update, context) class Knowledge(enum.Enum): true = "✅" false = "❌" class KnowledgeCardModel: def __init__(self, view, word, listener): self._view = view self._word = word self._listener = listener self._message_id = None self.is_old = False def start(self, update, context) -> str: self._message_id = self._view.send_card( update=update, word=self._word, translation=None, ) return self._message_id def show_translation(self, update, context, knowledge): knowledge_status = KnowledgeStatus.new_word_know if knowledge == Knowledge.false: knowledge_status = KnowledgeStatus.new_word_forgot self._view.update_card( update=update, translation=self._word.get_translation() + " " + knowledge.value, ) self._listener.on_correct_answer_clicked( update=update, context=context, knowledge_status=knowledge_status, ) def set_as_deleted(self, update, context): self._view.update_card_as_deleted( update=update, context=context, message_id=self._message_id, ) self._is_deleted = True class KnowledgeCardController: def __init__(self, model): self._model = model def button_clicked(self, update, context): query_data = update.callback_query.data if query_data == "know": self._model.show_translation( update=update, context=context, knowledge=Knowledge.true, ) elif query_data == "forgot": self._model.show_translation( update=update, context=context, knowledge=Knowledge.false, ) class KnowledgeCardView: def __init__(self, bot): self._bot = bot @staticmethod def _get_card_markup(translation=None): keyboard = [[ InlineKeyboardButton( text="Know " + Knowledge.true.value, callback_data="know" ), InlineKeyboardButton( text="Forgot " + Knowledge.false.value, callback_data="forgot" ), ]] if translation is not None: keyboard.pop(0) keyboard.append([ InlineKeyboardButton( text=translation, callback_data="translation") ]) return InlineKeyboardMarkup(keyboard) def send_card(self, update, word, translation): markup = KnowledgeCardView._get_card_markup( translation=translation, ) return self._bot.send_message( chat_id=update.effective_message.chat_id, text="*"+word.get_word()+"*", reply_markup=markup, parse_mode=ParseMode.MARKDOWN ).message_id def update_card(self, update, translation): reply_markup = KnowledgeCardView._get_card_markup( translation=translation, ) try: return self._bot.edit_message_reply_markup( chat_id=update.effective_message.chat_id, message_id=update.effective_message.message_id, reply_markup=reply_markup ) except telegram.error.BadRequest: return None def update_card_as_deleted(self, update, context, message_id): return self._bot.edit_message_reply_markup( chat_id=update.effective_message.chat_id, message_id=message_id, reply_markup=None )
python
#! /usr/bin/env python # -*- coding: utf-8 -*- import socket default_port = 8003 # default port when adding a new server listen_port = 8003 # server listens on this port my_address = [ip for ip in socket.gethostbyname_ex(socket.gethostname())[2] if not ip.startswith("1.")][0] dns_module_listen_port = 8004 default_ttl = 60 # time to live in seconds default_record_lifetime = 3600 * 24 * 30 # 1 month
python
import datetime import logging from django.core.management.base import BaseCommand from django.db import connection, transaction from framework.celery_tasks import app as celery_app logger = logging.getLogger(__name__) TABLES_TO_POPULATE_WITH_MODIFIED = [ 'addons_zotero_usersettings', 'addons_dropbox_usersettings', 'addons_dropbox_nodesettings', 'addons_figshare_nodesettings', 'addons_figshare_usersettings', 'addons_forward_nodesettings', 'addons_github_nodesettings', 'addons_github_usersettings', 'addons_gitlab_nodesettings', 'addons_gitlab_usersettings', 'addons_googledrive_nodesettings', 'addons_googledrive_usersettings', 'addons_mendeley_nodesettings', 'addons_mendeley_usersettings', 'addons_onedrive_nodesettings', 'addons_onedrive_usersettings', 'addons_osfstorage_nodesettings', 'addons_osfstorage_usersettings', 'addons_bitbucket_nodesettings', 'addons_bitbucket_usersettings', 'addons_owncloud_nodesettings', 'addons_box_nodesettings', 'addons_owncloud_usersettings', 'addons_box_usersettings', 'addons_dataverse_nodesettings', 'addons_dataverse_usersettings', 'addons_s3_nodesettings', 'addons_s3_usersettings', 'addons_twofactor_usersettings', 'addons_wiki_nodesettings', 'addons_zotero_nodesettings' ] UPDATE_DELETED_WITH_MODIFIED = """UPDATE {} SET deleted=modified WHERE id IN (SELECT id FROM {} WHERE is_deleted AND deleted IS NULL LIMIT {}) RETURNING id;""" @celery_app.task(name='management.commands.addon_deleted_date') def populate_deleted(dry_run=False, page_size=1000): with transaction.atomic(): for table in TABLES_TO_POPULATE_WITH_MODIFIED: run_statements(UPDATE_DELETED_WITH_MODIFIED, page_size, table) if dry_run: raise RuntimeError('Dry Run -- Transaction rolled back') def run_statements(statement, page_size, table): logger.info('Populating deleted column in table {}'.format(table)) with connection.cursor() as cursor: cursor.execute(statement.format(table, table, page_size)) rows = cursor.fetchall() if rows: logger.info('Table {} still has rows to populate'.format(table)) class Command(BaseCommand): help = '''Populates new deleted field for various models. Ensure you have run migrations before running this script.''' def add_arguments(self, parser): parser.add_argument( '--dry_run', type=bool, default=False, help='Run queries but do not write files', ) parser.add_argument( '--page_size', type=int, default=1000, help='How many rows to process at a time', ) def handle(self, *args, **options): script_start_time = datetime.datetime.now() logger.info('Script started time: {}'.format(script_start_time)) logger.debug(options) dry_run = options['dry_run'] page_size = options['page_size'] if dry_run: logger.info('DRY RUN') populate_deleted(dry_run, page_size) script_finish_time = datetime.datetime.now() logger.info('Script finished time: {}'.format(script_finish_time)) logger.info('Run time {}'.format(script_finish_time - script_start_time))
python
#!/usr/bin/env python #Makes the output file "grid" which is used in various postprocessing scripts import argparse import numpy as np import sys import os import re # parse command line options parser = argparse.ArgumentParser(description="Generates a cartesian mesh with a uniform region surrounded by a stretched grid", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--output", dest="output", help="name of file generated", default="domain.yaml") parser.add_argument("--input", dest="input", help="name of input file", default="gridOptions") args = parser.parse_args() inFile = os.path.expandvars("${CUIBM_DIR}/scripts/grid/"+args.input); f = open(inFile, 'r') for line in f: b = filter(None, re.split('\[|\]|\n|:|,| ', line)) if b != []: if b[0] == 'DomainBottomLeft': d_blx = float(b[1]) d_bly = float(b[2]) elif b[0] == 'DomainTopRight': d_trx = float(b[1]) d_try = float(b[2]) elif b[0] == 'UniformRegionBottomLeft': u_blx = float(b[1]) u_bly = float(b[2]) elif b[0] == 'UniformRegionTopRight': u_trx = float(b[1]) u_try = float(b[2]) elif b[0] == 'FinestMeshSpacing': h = float(b[1]) elif b[0] == 'StretchingRatio': sr = float(b[1]) print '-'*120 print "Domain:" print "\t(%s, %s) to (%s, %s)\n" % (str(d_blx), str(d_bly), str(d_trx), str(d_try)) print 'Uniform region:' print "\t(%s, %s) to (%s, %s)\n" % (str(u_blx), str(u_bly), str(u_trx), str(u_try)) unx = int((u_trx-u_blx)/h + 0.5) chx = abs((u_trx-u_blx)/h - unx) uny = int((u_try-u_bly)/h + 0.5) chy = abs((u_try-u_bly)/h - uny) if chx > 1e-6 or chy > 1e-6: print "Non-integer number of cells in the uniform region! Choose a different h or change the extent of the uniform region.\n" sys.exit(0) f = open(args.output, 'w') # domain description in the x-direction nx = unx f.write("- direction: x\n") f.write(" start: %s\n" % str(d_blx)) f.write(" subDomains:\n") n = 2 L = (u_blx - d_blx) h1 = L * (sr - 1)/(sr**n - 1) while h1>h: n = n+1 h1 = L * (sr - 1)/(sr**n - 1) n = n-1 nx = nx + n h1 = L * (sr - 1)/(sr**n - 1) h2 = h1 * sr**(n-1) print "-X : h1: %.6f h2: %.6f AR: %.1f" % (h1, h2, h2/h1) f.write(" - end: %s\n" % str(u_blx)) f.write(" cells: %d\n" % n) f.write(" stretchRatio: %s\n" % str(1.0/sr)) f.write(" - end: %s\n" % str(u_trx)) f.write(" cells: %d\n" % unx) f.write(" stretchRatio: 1.0\n") n = 2 L = (d_trx - u_trx) h1 = L * (sr - 1)/(sr**n - 1) while h1>h: n = n+1 h1 = L * (sr - 1)/(sr**n - 1) n = n-1 nx = nx + n h1 = L * (sr - 1)/(sr**n - 1) h2 = h1 * sr**(n-1) print "+X : h1: %.6f h2: %.6f AR: %.1f" % (h1, h2, h2/h1) f.write(" - end: %s\n" % str(d_trx)) f.write(" cells: %d\n" % n) f.write(" stretchRatio: %s\n\n" % str(sr)) # domain description in the y-direction ny = uny f.write("- direction: y\n") f.write(" start: %s\n" % str(d_bly)) f.write(" subDomains:\n") n = 2 L = (u_bly - d_bly) h1 = L * (sr - 1)/(sr**n - 1) while h1>h: n = n+1 h1 = L * (sr - 1)/(sr**n - 1) n = n-1 ny = ny + n h1 = L * (sr - 1)/(sr**n - 1) h2 = h1 * sr**(n-1) print "-Y : h1: %.6f h2: %.6f AR: %.1f" % (h1, h2, h2/h1) f.write(" - end: %s\n" % str(u_bly)) f.write(" cells: %d\n" % n) f.write(" stretchRatio: %s\n" % str(1.0/sr)) f.write(" - end: %s\n" % str(u_try)) f.write(" cells: %d\n" % uny) f.write(" stretchRatio: 1.0\n") n = 2 L = (u_bly - d_bly) h1 = L * (sr - 1)/(sr**n - 1) while h1>h: n = n+1 h1 = L * (sr - 1)/(sr**n - 1) n = n-1 ny = ny + n h1 = L * (sr - 1)/(sr**n - 1) h2 = h1 * sr**(n-1) print "+Y : h1: %.6f h2: %.6f AR: %.1f" % (h1, h2, h2/h1) print '' f.write(" - end: %s\n" % str(d_try)) f.write(" cells: %d\n" % n) f.write(" stretchRatio: %s\n" % str(sr)) f.close() print "h : " + str(h) print "sr : " + str(sr) + '\n' print "Mesh size : " + str(nx) + " x " + str(ny) + '\n' print "Domain information written to file " + args.output print '-'*120
python
""" App entry point which register FastAPI routers. More info about used app structure: https://fastapi.tiangolo.com/tutorial/bigger-applications/ If you want to create a new API endpoint add endpoint handler to existed router or create a new module in `routes` directory. """ from fastapi import FastAPI from fastapi.routing import APIRoute import ppm_telegram_bot from ppm_telegram_bot.routers import ( telegram, triggers, ) app = FastAPI(title="PPM Telegram Bot", version=ppm_telegram_bot.__version__,) app.include_router(telegram.router, prefix="/telegram", tags=["telegram"]) app.include_router(triggers.router, prefix="/triggers", tags=["triggers"]) # Simplify route names in OpenAPI. Idea from https://fastapi-utils.davidmontague.xyz/user-guide/openapi/ for route in app.routes: if isinstance(route, APIRoute): route.operation_id = route.name
python
import numpy as np import pandas as pd import matplotlib.pyplot as plt import os from matplotlib import cm from scipy.interpolate import interp1d from scipy.spatial import distance from scipy.optimize import differential_evolution CELL_INFO_DIR = os.path.join('data-share', 'raw', 'cell_info') def blend_electrodes(electrode_1, electrode_2_pos, electrode_2_neg, x_2): """ Inputs: electrode_1: Primary material in electrode, typically Gr. DataFrame supplied with SOC evenly spaced and voltage. electrode_2: Secondary material in electrode, typically Si. DataFrame supplied with SOC evenly spaced and voltage as an additional column. x_2: Fraction of electrode_2 material. Supplied as scalar value. """ if electrode_2_pos.empty: df_blended = electrode_1 return df_blended if electrode_2_neg.empty: electrode_2 = electrode_2_pos x_2 = np.abs(x_2) elif x_2 > 0: electrode_2 = electrode_2_pos else: electrode_2 = electrode_2_neg x_2 = np.abs(x_2) electrode_1_interper = interp1d(electrode_1['Voltage_aligned'], electrode_1['SOC_aligned'], bounds_error=False, fill_value='extrapolate') electrode_2_interper = interp1d(electrode_2['Voltage_aligned'], electrode_2['SOC_aligned'], bounds_error=False, fill_value='extrapolate') voltage_vec = np.linspace(np.min((np.min(electrode_1['Voltage_aligned']), np.min(electrode_2['Voltage_aligned']))), np.max((np.max(electrode_1['Voltage_aligned']), np.max(electrode_2['Voltage_aligned']))), 1001) electrode_1_voltage_aligned = pd.DataFrame(electrode_1_interper(voltage_vec), columns=['SOC']) electrode_2_voltage_aligned = pd.DataFrame(electrode_2_interper(voltage_vec), columns=['SOC']) electrode_1_voltage_aligned['Voltage'] = voltage_vec electrode_2_voltage_aligned['Voltage'] = voltage_vec df_blend_voltage_aligned = pd.DataFrame( (1 - x_2) * electrode_1_voltage_aligned['SOC'] + x_2 * electrode_2_voltage_aligned['SOC'], columns=['SOC']) df_blend_voltage_aligned['Voltage'] = electrode_1_voltage_aligned.merge(electrode_2_voltage_aligned, on='Voltage')['Voltage'] df_blended_interper = interp1d(df_blend_voltage_aligned['SOC'], df_blend_voltage_aligned['Voltage'], bounds_error=False) soc_vec = np.linspace(0, 100, 1001) df_blended = pd.DataFrame(df_blended_interper(soc_vec), columns=['Voltage_aligned']) df_blended['SOC_aligned'] = soc_vec # Modify NE to fully span 100% SOC within its valid voltage window df_blended_soc_mod_interper = interp1d(df_blended['SOC_aligned'].loc[~df_blended['Voltage_aligned'].isna()], df_blended['Voltage_aligned'].loc[~df_blended['Voltage_aligned'].isna()], bounds_error=False) soc_vec = np.linspace(np.min(df_blended['SOC_aligned'].loc[~df_blended['Voltage_aligned'].isna()]), np.max(df_blended['SOC_aligned'].loc[~df_blended['Voltage_aligned'].isna()]), 1001) df_blended_soc_mod = pd.DataFrame(df_blended_soc_mod_interper(soc_vec), columns=['Voltage_aligned']) df_blended_soc_mod['SOC_aligned'] = soc_vec / np.max(soc_vec) * 100 return df_blended_soc_mod def get_halfcell_voltages(pe_out_centered, ne_out_centered): pe_minus_ne_centered = pd.DataFrame(pe_out_centered['Voltage_aligned'] - ne_out_centered['Voltage_aligned'], columns=['Voltage_aligned']) pe_minus_ne_centered['SOC_aligned'] = pe_out_centered['SOC_aligned'] soc_upper = pe_minus_ne_centered.iloc[ np.argmin(np.abs(pe_minus_ne_centered.Voltage_aligned - 4.20))].SOC_aligned soc_lower = pe_minus_ne_centered.iloc[ np.argmin(np.abs(pe_minus_ne_centered.Voltage_aligned - 2.70))].SOC_aligned pe_upper_voltage = pe_out_centered.loc[pe_out_centered.SOC_aligned == soc_upper].Voltage_aligned.values[0] pe_lower_voltage = pe_out_centered.loc[pe_out_centered.SOC_aligned == soc_lower].Voltage_aligned.values[0] pe_upper_soc = ((pe_out_centered.loc[pe_out_centered.Voltage_aligned == pe_upper_voltage]['SOC_aligned'] - np.min(pe_out_centered['SOC_aligned'].loc[~pe_out_centered['Voltage_aligned'].isna()])) / ( np.max(pe_out_centered['SOC_aligned'].loc[~pe_out_centered['Voltage_aligned'].isna()]) - np.min(pe_out_centered['SOC_aligned'].loc[~pe_out_centered['Voltage_aligned'].isna()])) ).values[0] * 100 pe_lower_soc = ((pe_out_centered.loc[pe_out_centered.Voltage_aligned == pe_lower_voltage]['SOC_aligned'] - np.min(pe_out_centered['SOC_aligned'].loc[~pe_out_centered['Voltage_aligned'].isna()])) / ( np.max(pe_out_centered['SOC_aligned'].loc[~pe_out_centered['Voltage_aligned'].isna()]) - np.min(pe_out_centered['SOC_aligned'].loc[~pe_out_centered['Voltage_aligned'].isna()])) ).values[0] * 100 pe_mass = np.max(pe_out_centered['SOC_aligned'].loc[~pe_out_centered['Voltage_aligned'].isna()]) - np.min( pe_out_centered['SOC_aligned'].loc[~pe_out_centered['Voltage_aligned'].isna()]) ne_upper_voltage = ne_out_centered.loc[ne_out_centered.SOC_aligned == soc_upper].Voltage_aligned.values[0] ne_lower_voltage = ne_out_centered.loc[ne_out_centered.SOC_aligned == soc_lower].Voltage_aligned.values[0] ne_upper_soc = ((ne_out_centered.loc[ne_out_centered.Voltage_aligned == ne_upper_voltage]['SOC_aligned'] - np.min(ne_out_centered['SOC_aligned'].loc[~ne_out_centered['Voltage_aligned'].isna()])) / ( np.max(ne_out_centered['SOC_aligned'].loc[~ne_out_centered['Voltage_aligned'].isna()]) - np.min(ne_out_centered['SOC_aligned'].loc[~ne_out_centered['Voltage_aligned'].isna()])) ).values[0] * 100 ne_lower_soc = ((ne_out_centered.loc[ne_out_centered.Voltage_aligned == ne_lower_voltage]['SOC_aligned'] - np.min(ne_out_centered['SOC_aligned'].loc[~ne_out_centered['Voltage_aligned'].isna()])) / ( np.max(ne_out_centered['SOC_aligned'].loc[~ne_out_centered['Voltage_aligned'].isna()]) - np.min(ne_out_centered['SOC_aligned'].loc[~ne_out_centered['Voltage_aligned'].isna()])) ).values[0] * 100 ne_mass = np.max(ne_out_centered['SOC_aligned'].loc[~ne_out_centered['Voltage_aligned'].isna()]) - np.min( ne_out_centered['SOC_aligned'].loc[~ne_out_centered['Voltage_aligned'].isna()]) li_mass = np.max(pe_minus_ne_centered['SOC_aligned'].loc[~pe_minus_ne_centered.Voltage_aligned.isna()]) - np.min( pe_minus_ne_centered['SOC_aligned'].loc[~pe_minus_ne_centered.Voltage_aligned.isna()]) return (pe_upper_voltage, pe_lower_voltage, pe_upper_soc, pe_lower_soc, pe_mass, ne_upper_voltage, ne_lower_voltage, ne_upper_soc, ne_lower_soc, ne_mass, soc_upper, soc_lower, li_mass) def plot_voltage_curves_for_cell(processed_cycler_run, cycle_type='rpt_0.2C', x_var='capacity', step_type=0, fig_size_inches=(6, 4)): # Plot a series of voltage profiles over cycles for this cell fig = plt.figure() # Filter down to only cycles of cycle_type diag_type_cycles = processed_cycler_run.diagnostic_interpolated.loc[ processed_cycler_run.diagnostic_interpolated['cycle_type'] == cycle_type] # Loop across cycles cycle_indexes = diag_type_cycles['cycle_index'].unique() step_type_list = ['charge', 'discharge'] for i in cycle_indexes: diag_type_cycle_i = diag_type_cycles.loc[diag_type_cycles.cycle_index == i] x_charge = diag_type_cycle_i[step_type_list[step_type] + '_' + x_var].loc[ diag_type_cycles['step_type'] == step_type] y_charge = diag_type_cycle_i.voltage.loc[diag_type_cycles['step_type'] == step_type] plt.plot(x_charge, y_charge, label='cycle ' + str(i) + ' ' + step_type_list[step_type], c=cm.winter((i - np.min(cycle_indexes)) / (np.max(cycle_indexes) - np.min(cycle_indexes))), figure=fig) fig.set_size_inches(fig_size_inches) return fig class IntracellAnalysis: def __init__(self, pe_pristine_file, ne_pristine_file, cycle_type='rpt_0.2C', step_type=0, ne_2pos_file=None, ne_2neg_file=None): """ Invokes the cell electrode analysis class. This is a class designed to fit the cell and electrode parameters in order to determine changes of electrodes within the full cell from only full cell cycling data. Args: pe_pristine_file (str): file name for the half cell data of the pristine (uncycled) positive electrode ne_pristine_file (str): file name for the half cell data of the pristine (uncycled) negative electrode cycle_type (str): type of diagnostic cycle for the fitting step_type (int): charge or discharge (0 for charge, 1 for discharge) ne_2neg_file (str): file name of the data for the negative component of the anode ne_2pos_file (str): file name of the data for the positive component of the anode """ if not os.path.split(pe_pristine_file)[0]: self.pe_pristine = pd.read_csv(os.path.join(os.environ.get("BEEP_PROCESSING_DIR", "/"), CELL_INFO_DIR, pe_pristine_file), usecols=['SOC_aligned', 'Voltage_aligned']) else: self.pe_pristine = pd.read_csv(os.path.join(pe_pristine_file), usecols=['SOC_aligned', 'Voltage_aligned']) if not os.path.split(ne_pristine_file)[0]: self.ne_1_pristine = pd.read_csv(os.path.join(os.environ.get("BEEP_PROCESSING_DIR", "/"), CELL_INFO_DIR, ne_pristine_file), usecols=['SOC_aligned', 'Voltage_aligned']) else: self.ne_1_pristine = pd.read_csv(os.path.join(ne_pristine_file), usecols=['SOC_aligned', 'Voltage_aligned']) if ne_2neg_file and ne_2pos_file: if not os.path.split(ne_2neg_file)[0] and not os.path.split(ne_2pos_file)[0]: self.ne_2_pristine_pos = pd.read_csv(os.path.join(os.environ.get("BEEP_PROCESSING_DIR", "/"), CELL_INFO_DIR, ne_2pos_file)) self.ne_2_pristine_neg = pd.read_csv(os.path.join(os.environ.get("BEEP_PROCESSING_DIR", "/"), CELL_INFO_DIR, ne_2neg_file)) else: self.ne_2_pristine_pos = pd.read_csv(ne_2pos_file) self.ne_2_pristine_neg = pd.read_csv(ne_2neg_file) else: self.ne_2_pristine_pos = pd.DataFrame() self.ne_2_pristine_neg = pd.DataFrame() self.cycle_type = cycle_type self.step_type = step_type self.upper_voltage = 4.2 self.lower_voltage = 2.7 self.threshold = 4.84 * 0.8 def process_beep_cycle_data_for_candidate_halfcell_analysis(self, cell_struct, real_cell_initial_charge_profile_aligned, real_cell_initial_charge_profile, cycle_index): """ Inputs: diag_type_cycles: beep cell_struct.diagnostic_interpolated filtered to one diagnostic type real_cell_initial_charge_profile_aligned: dataframe containing SOC (equally spaced) and voltage columns real_cell_initial_charge_profile: dataframe containing SOC and voltage columns cycle_index: cycle number to evaluate at Outputs real_cell_candidate_charge_profile_aligned: a dataframe containing columns SOC_aligned (evenly spaced) and Voltage_aligned """ diag_type_cycles = cell_struct.diagnostic_data.loc[cell_struct.diagnostic_data['cycle_type'] == self.cycle_type] real_cell_candidate_charge_profile = diag_type_cycles.loc[ (diag_type_cycles.cycle_index == cycle_index) & (diag_type_cycles.step_type == 0) # step_type = 0 is charge, 1 is discharge & (diag_type_cycles.voltage < self.upper_voltage) & (diag_type_cycles.voltage > self.lower_voltage)][['voltage', 'charge_capacity']] real_cell_candidate_charge_profile['SOC'] = ( (real_cell_candidate_charge_profile['charge_capacity'] - np.min(real_cell_initial_charge_profile['charge_capacity'])) / (np.max(real_cell_initial_charge_profile['charge_capacity']) - np.min(real_cell_initial_charge_profile['charge_capacity'])) * 100 ) real_cell_candidate_charge_profile['Voltage'] = real_cell_candidate_charge_profile['voltage'] real_cell_candidate_charge_profile.drop('voltage', axis=1, inplace=True) SOC_vec = np.linspace(0, np.max(real_cell_candidate_charge_profile['SOC']), 1001) # 100 ; np.max(real_cell_candidate_charge_profile['SOC'] real_cell_candidate_charge_profile_aligned = pd.DataFrame() real_cell_candidate_charge_profile_interper = interp1d(real_cell_candidate_charge_profile['SOC'], real_cell_candidate_charge_profile['Voltage'], bounds_error=False) real_cell_candidate_charge_profile_aligned['Voltage_aligned'] = real_cell_candidate_charge_profile_interper( SOC_vec) real_cell_candidate_charge_profile_aligned['Voltage_aligned'].fillna(self.lower_voltage, inplace=True) real_cell_candidate_charge_profile_aligned['SOC_aligned'] = SOC_vec / np.max( real_cell_initial_charge_profile_aligned['SOC_aligned'].loc[ ~real_cell_initial_charge_profile_aligned['Voltage_aligned'].isna()]) * 100 return real_cell_candidate_charge_profile_aligned def process_beep_cycle_data_for_initial_halfcell_analysis(self, cell_struct, step_type=0): """ This function extracts the initial (non-degraded) voltage and soc profiles for the cell with columns interpolated on voltage and soc. Inputs cell_struct: beep cell_struct.diagnostic_interpolated filtered to one diagnostic type step_type: specifies whether the cell is charging or discharging. 0 is charge, 1 is discharge. Outputs real_cell_initial_charge_profile_aligned: a dataframe containing columns SOC_aligned (evenly spaced) and Voltage_aligned real_cell_initial_charge_profile: a dataframe containing columns Voltage (evenly spaced), capacity, and SOC """ if step_type == 0: capacity_col = 'charge_capacity' else: capacity_col = 'discharge_capacity' diag_type_cycles = cell_struct.diagnostic_data.loc[cell_struct.diagnostic_data['cycle_type'] == self.cycle_type] soc_vec = np.linspace(0, 100.0, 1001) cycle_index_of_cycle_type = cell_struct.diagnostic_summary[ cell_struct.diagnostic_summary.cycle_type == self.cycle_type].cycle_index.iloc[0] real_cell_initial_charge_profile = diag_type_cycles.loc[ (diag_type_cycles.cycle_index == cycle_index_of_cycle_type) & (diag_type_cycles.step_type == step_type) # step_type = 0 is charge, 1 is discharge & (diag_type_cycles.voltage < self.upper_voltage) & (diag_type_cycles.voltage > self.lower_voltage)][['voltage', capacity_col]] real_cell_initial_charge_profile['SOC'] = ( ( real_cell_initial_charge_profile[capacity_col] - np.min(real_cell_initial_charge_profile[capacity_col]) ) / ( np.max(real_cell_initial_charge_profile[capacity_col]) - np.min(real_cell_initial_charge_profile[capacity_col]) ) * 100 ) real_cell_initial_charge_profile['Voltage'] = real_cell_initial_charge_profile['voltage'] real_cell_initial_charge_profile.drop('voltage', axis=1, inplace=True) real_cell_initial_charge_profile_aligned = pd.DataFrame() real_cell_initial_charge_profile_aligned['SOC_aligned'] = soc_vec real_cell_initial_charge_profile_interper = interp1d(real_cell_initial_charge_profile['SOC'], real_cell_initial_charge_profile['Voltage'], bounds_error=False) real_cell_initial_charge_profile_aligned['Voltage_aligned'] = real_cell_initial_charge_profile_interper( real_cell_initial_charge_profile_aligned['SOC_aligned']) return real_cell_initial_charge_profile_aligned, real_cell_initial_charge_profile def get_dQdV_over_Q_from_halfcell_initial_matching(self, x, *params): df_1, df_2, df_real_interped, emulated_full_cell_interped = self.halfcell_initial_matching_v2(x, *params) # Calculate dQdV from full cell profiles dq_dv_real = pd.DataFrame(np.gradient(df_real_interped['SOC_aligned'], df_real_interped['Voltage_aligned']), columns=['dQdV']) dq_dv_emulated = pd.DataFrame( np.gradient(emulated_full_cell_interped['SOC_aligned'], emulated_full_cell_interped['Voltage_aligned']), columns=['dQdV']) # Include original data dq_dv_real['SOC_aligned'] = df_real_interped['SOC_aligned'] dq_dv_real['Voltage_aligned'] = df_real_interped['Voltage_aligned'] dq_dv_emulated['SOC_aligned'] = emulated_full_cell_interped['SOC_aligned'] dq_dv_emulated['Voltage_aligned'] = emulated_full_cell_interped['Voltage_aligned'] # Interpolate over Q # ^^ already done in this case as standard data template is over Q return df_1, df_2, dq_dv_real, dq_dv_emulated, df_real_interped, emulated_full_cell_interped def get_error_dQdV_over_Q_from_halfcell_initial_matching(self, x, *params): df_1, df_2, dQdV_real, dQdV_emulated, df_real_interped, emulated_full_cell_interped = \ self.get_dQdV_over_Q_from_halfcell_initial_matching(x, *params) # Calculate distance between lines error = distance.euclidean(dQdV_real['dQdV'], dQdV_emulated['dQdV']) + 0.01 * len( dQdV_emulated['dQdV'].loc[dQdV_emulated['dQdV'].isna()]) return error def get_dQdV_over_V_from_halfcell_initial_matching(self, x, *params): df_1, df_2, df_real_interped, emulated_full_cell_interped = self.halfcell_initial_matching_v2(x, *params) # Calculate dQdV from full cell profiles dq_dv_real = pd.DataFrame(np.gradient(df_real_interped['SOC_aligned'], df_real_interped['Voltage_aligned']), columns=['dQdV']).ewm(alpha=x[-2]).mean() dq_dv_emulated = pd.DataFrame( np.gradient(emulated_full_cell_interped['SOC_aligned'], emulated_full_cell_interped['Voltage_aligned']), columns=['dQdV']).ewm(alpha=x[-1]).mean() # Include original data dq_dv_real['SOC_aligned'] = df_real_interped['SOC_aligned'] dq_dv_real['Voltage_aligned'] = df_real_interped['Voltage_aligned'] dq_dv_emulated['SOC_aligned'] = emulated_full_cell_interped['SOC_aligned'] dq_dv_emulated['Voltage_aligned'] = emulated_full_cell_interped['Voltage_aligned'] # Interpolate over V voltage_vec = np.linspace(2.7, 4.2, 1001) v_dq_dv_interper_real = interp1d(dq_dv_real['Voltage_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], dq_dv_real['dQdV'].loc[~dq_dv_real['Voltage_aligned'].isna()], bounds_error=False, fill_value=0) v_soc_interper_real = interp1d(dq_dv_real['Voltage_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], dq_dv_real['SOC_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], bounds_error=False, fill_value=(0, 100)) v_dq_dv_interper_emulated = interp1d(dq_dv_emulated['Voltage_aligned'].loc[ ~dq_dv_emulated['Voltage_aligned'].isna()], dq_dv_emulated['dQdV'].loc[~dq_dv_emulated['Voltage_aligned'].isna()], bounds_error=False, fill_value=0) v_soc_interper_emulated = interp1d(dq_dv_emulated['Voltage_aligned'].loc[ ~dq_dv_emulated['Voltage_aligned'].isna()], dq_dv_emulated['SOC_aligned'].loc[~dq_dv_emulated['Voltage_aligned'].isna()], bounds_error=False, fill_value=(0, 100)) dq_dv_over_v_real = pd.DataFrame(v_dq_dv_interper_real(voltage_vec), columns=['dQdV']).fillna(0) dq_dv_over_v_real['SOC'] = v_soc_interper_real(voltage_vec) dq_dv_over_v_real['Voltage'] = voltage_vec dq_dv_over_v_emulated = pd.DataFrame(v_dq_dv_interper_emulated(voltage_vec), columns=['dQdV']).fillna(0) dq_dv_over_v_emulated['SOC'] = v_soc_interper_emulated(voltage_vec) dq_dv_over_v_emulated['Voltage'] = voltage_vec return df_1, df_2, dq_dv_over_v_real, dq_dv_over_v_emulated, df_real_interped, emulated_full_cell_interped def get_error_dQdV_over_V_from_halfcell_initial_matching(self, x, *params): df_1, df_2, dq_dv_real, dq_dv_emulated, df_real_interped, emulated_full_cell_interped = \ self.get_dQdV_over_V_from_halfcell_initial_matching(x, *params) # Calculate distance between lines error = distance.euclidean(dq_dv_real['dQdV'], dq_dv_emulated['dQdV']) + 0.01 * len( dq_dv_emulated['dQdV'].loc[dq_dv_emulated['dQdV'].isna()]) return error def get_dVdQ_over_Q_from_halfcell_initial_matching(self, x, *params): df_1, df_2, df_real_interped, emulated_full_cell_interped = self.halfcell_initial_matching_v2(x, *params) # Calculate dVdQ from full cell profiles dv_dq_real = pd.DataFrame(np.gradient(df_real_interped['Voltage_aligned'], df_real_interped['SOC_aligned']), columns=['dVdQ']) dv_dq_emulated = pd.DataFrame( np.gradient(emulated_full_cell_interped['Voltage_aligned'], emulated_full_cell_interped['SOC_aligned']), columns=['dVdQ']) # Include original data dv_dq_real['SOC_aligned'] = df_real_interped['SOC_aligned'] dv_dq_real['Voltage_aligned'] = df_real_interped['Voltage_aligned'] dv_dq_emulated['SOC_aligned'] = emulated_full_cell_interped['SOC_aligned'] dv_dq_emulated['Voltage_aligned'] = emulated_full_cell_interped['Voltage_aligned'] # Interpolate over Q # ^^ already done in this case as standard data template is over Q return df_1, df_2, dv_dq_real, dv_dq_emulated, df_real_interped, emulated_full_cell_interped def get_error_dVdQ_over_Q_from_halfcell_initial_matching(self, x, *params): (df_1, df_2, dVdQ_real, dVdQ_emulated, df_real_interped, emulated_full_cell_interped) = self.get_dVdQ_over_Q_from_halfcell_initial_matching(x, *params) # Calculate distance between lines error = distance.euclidean(dVdQ_real['dVdQ'], dVdQ_emulated['dVdQ']) + 0.01 * len( dVdQ_emulated['dVdQ'].loc[dVdQ_emulated['dVdQ'].isna()]) return error def get_dVdQ_over_V_from_halfcell_initial_matching(self, x, *params): (df_1, df_2, df_real_interped, emulated_full_cell_interped) = self.halfcell_initial_matching_v2(x, *params) # Calculate dVdQ from full cell profiles dv_dq_real = pd.DataFrame(np.gradient(df_real_interped['SOC_aligned'], df_real_interped['Voltage_aligned']), columns=['dVdQ']) dv_dq_emulated = pd.DataFrame( np.gradient(emulated_full_cell_interped['SOC_aligned'], emulated_full_cell_interped['Voltage_aligned']), columns=['dVdQ']) # Include original data dv_dq_real['SOC_aligned'] = df_real_interped['SOC_aligned'] dv_dq_real['Voltage_aligned'] = df_real_interped['Voltage_aligned'] dv_dq_emulated['SOC_aligned'] = emulated_full_cell_interped['SOC_aligned'] dv_dq_emulated['Voltage_aligned'] = emulated_full_cell_interped['Voltage_aligned'] # Interpolate over V voltage_vec = np.linspace(2.7, 4.2, 1001) v_dv_dq_interper_real = interp1d(dv_dq_real['Voltage_aligned'].loc[~dv_dq_real['Voltage_aligned'].isna()], dv_dq_real['dVdQ'].loc[~dv_dq_real['Voltage_aligned'].isna()], bounds_error=False, fill_value=0) v_soc_interper_real = interp1d(dv_dq_real['Voltage_aligned'].loc[~dv_dq_real['Voltage_aligned'].isna()], dv_dq_real['SOC_aligned'].loc[~dv_dq_real['Voltage_aligned'].isna()], bounds_error=False, fill_value=(0, 100)) v_dv_dq_interp_emulated = interp1d(dv_dq_emulated['Voltage_aligned'].loc[ ~dv_dq_emulated['Voltage_aligned'].isna()], dv_dq_emulated['dVdQ'].loc[~dv_dq_emulated['Voltage_aligned'].isna()], bounds_error=False, fill_value=0) v_soc_interper_emulated = interp1d(dv_dq_emulated['Voltage_aligned'].loc[ ~dv_dq_emulated['Voltage_aligned'].isna()], dv_dq_emulated['SOC_aligned'].loc[~dv_dq_emulated['Voltage_aligned'].isna()], bounds_error=False, fill_value=(0, 100)) dv_dq_over_v_real = pd.DataFrame(v_dv_dq_interper_real(voltage_vec), columns=['dVdQ']) dv_dq_over_v_real['SOC'] = v_soc_interper_real(voltage_vec) dv_dq_over_v_real['Voltage'] = voltage_vec dv_dq_over_v_emulated = pd.DataFrame(v_dv_dq_interp_emulated(voltage_vec), columns=['dVdQ']) dv_dq_over_v_emulated['SOC'] = v_soc_interper_emulated(voltage_vec) dv_dq_over_v_emulated['Voltage'] = voltage_vec return df_1, df_2, dv_dq_over_v_real, dv_dq_over_v_emulated, df_real_interped, emulated_full_cell_interped def get_error_dVdQ_over_V_from_halfcell_initial_matching(self, x, *params): df_1, df_2, dv_dq_real, dv_dq_emulated, df_real_interped, emulated_full_cell_interped = \ self.get_dVdQ_over_V_from_halfcell_initial_matching(x, *params) # Calculate distance between lines error = distance.euclidean(dv_dq_real['dVdQ'], dv_dq_emulated['dVdQ']) + 0.01 * len( dv_dq_emulated['dVdQ'].loc[dv_dq_emulated['dVdQ'].isna()]) return error def blend_electrodes_robust(self, ne_pristine_matched, ne_2_pos, ne_2_neg, x_ne_2): """ """ if ne_2_pos.empty: df_blended = ne_pristine_matched return df_blended if ne_2_neg.empty: df_blended = ne_pristine_matched return df_blended if x_ne_2 > 0: ne_2_pristine = ne_2_pos else: ne_2_pristine = ne_2_neg x_ne_2 = np.abs(x_ne_2) # match the two NE materials by SOC ne_pristine_matched_interper = interp1d( ne_pristine_matched.loc[~ne_pristine_matched.Voltage_aligned.isna()]['SOC_aligned'], ne_pristine_matched.loc[~ne_pristine_matched.Voltage_aligned.isna()]['Voltage_aligned'], bounds_error=False) ne_2_pristine_interper = interp1d(ne_2_pristine.loc[~ne_2_pristine.Voltage_aligned.isna()]['SOC_aligned'], ne_2_pristine.loc[~ne_2_pristine.Voltage_aligned.isna()]['Voltage_aligned'], bounds_error=False) soc_vec = np.linspace(0, 100, 1001) ne_pristine_matched_len1001 = pd.DataFrame(soc_vec, columns=['SOC_aligned']) ne_pristine_matched_len1001['Voltage_aligned'] = ne_pristine_matched_interper(soc_vec) ne_2_pristine_interper_len1001 = pd.DataFrame(soc_vec, columns=['SOC_aligned']) ne_2_pristine_interper_len1001['Voltage_aligned'] = ne_2_pristine_interper(soc_vec) df_ne = blend_electrodes(ne_pristine_matched_len1001, ne_2_pristine_interper_len1001, pd.DataFrame(), x_ne_2) return df_ne def blend_electrodes_robust_v2(self, ne_pristine_matched, ne_2_pos, ne_2_neg, x_ne_2): """ """ if ne_2_pos.empty: df_blended = ne_pristine_matched return df_blended if ne_2_neg.empty: df_blended = ne_pristine_matched return df_blended if x_ne_2 > 0: ne_2_pristine = ne_2_pos else: ne_2_pristine = ne_2_neg x_ne_2 = np.abs(x_ne_2) # match the two NE materials by SOC soc_vec = np.linspace(0, 100, 1001) ne_pristine_matched_0to100 = ((ne_pristine_matched.loc[~ne_pristine_matched.Voltage_aligned.isna()][ 'SOC_aligned'] - np.min( ne_pristine_matched.loc[~ne_pristine_matched.Voltage_aligned.isna()]['SOC_aligned'])) / (np.max(ne_pristine_matched.loc[~ne_pristine_matched.Voltage_aligned.isna()][ 'SOC_aligned']) - np.min( ne_pristine_matched.loc[~ne_pristine_matched.Voltage_aligned.isna()][ 'SOC_aligned'])) ) * 100 ne_pristine_matched_interper = interp1d(ne_pristine_matched_0to100, ne_pristine_matched.loc[~ne_pristine_matched.Voltage_aligned.isna()][ 'Voltage_aligned'], bounds_error=False) ne_2_pristine_interper = interp1d(ne_2_pristine.loc[~ne_2_pristine.Voltage_aligned.isna()]['SOC_aligned'], ne_2_pristine.loc[~ne_2_pristine.Voltage_aligned.isna()]['Voltage_aligned'], bounds_error=False) ne_pristine_matched_len1001 = pd.DataFrame(soc_vec, columns=['SOC_aligned']) ne_pristine_matched_len1001['Voltage_aligned'] = ne_pristine_matched_interper(soc_vec) ne_2_pristine_interper_len1001 = pd.DataFrame(soc_vec, columns=['SOC_aligned']) ne_2_pristine_interper_len1001['Voltage_aligned'] = ne_2_pristine_interper(soc_vec) df_ne_blended = blend_electrodes(ne_pristine_matched_len1001, ne_2_pristine_interper_len1001, pd.DataFrame(), x_ne_2) # restore blend back to original SOC span of NE_pristine_matched df_ne_blended_interper = interp1d(df_ne_blended['SOC_aligned'], df_ne_blended['Voltage_aligned'], bounds_error=False) # intiializing interpolation across the blend len_non_na_ne_pristine_matched = len(ne_pristine_matched.loc[ ~ne_pristine_matched.Voltage_aligned.isna()]) # number of points # applicable to NE in NE_pristine_matched soc_vec_prematching = np.linspace(np.min(df_ne_blended['SOC_aligned']), np.max(df_ne_blended['SOC_aligned']), len_non_na_ne_pristine_matched) # vector across blended NE with same number # of applicable points as original (NE_pristine_matched) df_ne_blended_matched = ne_pristine_matched.copy() df_ne_slice_for_matched = df_ne_blended_interper(soc_vec_prematching) df_ne_blended_matched.at[(df_ne_blended_matched.loc[ (~df_ne_blended_matched['Voltage_aligned'].isna())]).index, 'Voltage_aligned'] = df_ne_slice_for_matched return df_ne_blended_matched def halfcell_initial_matching_v2(self, x, *params): """ Augments halfcell voltage profiles by scaling and translating them. Typically used in an optimization routine to fit the emulated full cell profile to a real cell profile. Alternatively, this function can be used for emulation of full cell voltage profiles from its electrode constituents with specified capacity ratio and offset of the two electrodes. Inputs: x: an array of 2 or 3 parameters containing scale_ratio, offset, and optionally NE_2_x. scale_ratio is equal to the capacity of the cathode divided by the capacity of the anode. offset is defined as the SOC between the cathode at zero capacity and the anode at zero capacity. NE_2_x is the fraction of the secondary electrode material in the anode. df_real: dataframe for the first diagnostic (pristine) of the real full cell. Columns for SOC (evenly spaced) and Voltage. df_pe: dataframe for the positive electrode. Columns for SOC (evenly spaced) and Voltage. self.ne_1_pristine: dataframe for the primary material in the negative electrode. Columns for SOC (evenly spaced) and Voltage. df_ne_2: dataframe for the secondary material in the negative electrode. Columns for SOC (evenly spaced) and Voltage. Supply empty DataFrame if not emulating a blend from two known elelctrodes. """ df_real, df_pe, df_ne_1, df_ne_2_pos, df_ne_2_neg = params df_pe = self.pe_pristine df_ne_1 = self.ne_1_pristine df_ne_2_pos = self.ne_2_pristine_pos df_ne_2_neg = self.ne_2_pristine_neg scale_ratio = x[0] offset = x[1] if df_ne_2_pos.empty | df_ne_2_neg.empty: # one-material anode df_ne = pd.DataFrame() df_ne['Voltage_aligned'] = df_ne_1['Voltage_aligned'] df_ne['SOC_aligned'] = df_ne_1['SOC_aligned'] else: # blended anode x_ne_2 = x[2] df_ne = blend_electrodes(df_ne_1, df_ne_2_pos, df_ne_2_neg, x_ne_2) # _robust_v2 # shifted cathode shifted_pe = df_pe.copy() shifted_pe['SOC_aligned'] = shifted_pe['SOC_aligned'] * scale_ratio + offset # shifted anode shifted_ne = df_ne.copy() # Interpolate across the max and min SOC of the half-cell dfs df_1 = shifted_pe.copy() df_2 = shifted_ne.copy() min_soc = np.min((np.min(df_1['SOC_aligned']), np.min(df_2['SOC_aligned']))) max_soc = np.max((np.max(df_1['SOC_aligned']), np.max(df_2['SOC_aligned']))) soc_vec = np.linspace(min_soc, max_soc, 1001) df_1_interper = interp1d(df_1['SOC_aligned'], df_1['Voltage_aligned'], bounds_error=False, fill_value=np.nan) df_1['SOC_aligned'] = soc_vec.copy() df_1['Voltage_aligned'] = df_1_interper(soc_vec) df_2_interper = interp1d(df_2['SOC_aligned'], df_2['Voltage_aligned'], bounds_error=False, fill_value=np.nan) df_2['SOC_aligned'] = soc_vec.copy() df_2['Voltage_aligned'] = df_2_interper(soc_vec) # Calculate the full-cell profile df_3 = pd.DataFrame() df_3['Voltage_aligned'] = df_1['Voltage_aligned'].subtract(df_2['Voltage_aligned']) df_3['SOC_aligned'] = df_2['SOC_aligned'] # centering centering_value = - np.min(df_3['SOC_aligned'].iloc[np.argmin(np.abs(df_3['Voltage_aligned'] - 2.7))]) emulated_full_cell_centered = df_3.copy() emulated_full_cell_centered['SOC_aligned'] = df_3['SOC_aligned'] + centering_value pe_out_centered = df_1.copy() pe_out_centered['SOC_aligned'] = df_1['SOC_aligned'] + centering_value ne_out_centered = df_2.copy() ne_out_centered['SOC_aligned'] = df_2['SOC_aligned'] + centering_value # Scaling emulated_full_cell_centered.loc[(emulated_full_cell_centered['Voltage_aligned'] > self.upper_voltage) | ( emulated_full_cell_centered['Voltage_aligned'] < self.lower_voltage)] = np.nan scaling_value = np.max(emulated_full_cell_centered['SOC_aligned'].loc[~emulated_full_cell_centered[ 'Voltage_aligned'].isna()]) # value to scale emulated back to 100% SOC emulated_full_cell_centered_scaled = emulated_full_cell_centered.copy() emulated_full_cell_centered_scaled['SOC_aligned'] = \ emulated_full_cell_centered['SOC_aligned'] / scaling_value * 100 pe_out_centered_scaled = pe_out_centered.copy() pe_out_centered_scaled['SOC_aligned'] = pe_out_centered['SOC_aligned'] / scaling_value * 100 ne_out_centered_scaled = ne_out_centered.copy() ne_out_centered_scaled['SOC_aligned'] = ne_out_centered['SOC_aligned'] / scaling_value * 100 # Make new interpolation across SOC for full-cell error calculation emulated_full_cell_interper = interp1d( emulated_full_cell_centered_scaled.loc[ ~emulated_full_cell_centered_scaled.Voltage_aligned.isna()].SOC_aligned, emulated_full_cell_centered_scaled.loc[ ~emulated_full_cell_centered_scaled.Voltage_aligned.isna()].Voltage_aligned, bounds_error=False, fill_value='extrapolate', kind='quadratic') real_full_cell_interper = interp1d(df_real.SOC_aligned, df_real.Voltage_aligned, bounds_error=False, fill_value=(self.lower_voltage, self.upper_voltage)) # Interpolate the emulated full-cell profile SOC_vec_full_cell = np.linspace(0, 100.0, 1001) emulated_full_cell_interped = pd.DataFrame() emulated_full_cell_interped['SOC_aligned'] = SOC_vec_full_cell emulated_full_cell_interped['Voltage_aligned'] = emulated_full_cell_interper(SOC_vec_full_cell) # Interpolate the true full-cell profile df_real_interped = emulated_full_cell_interped.copy() df_real_interped['SOC_aligned'] = SOC_vec_full_cell df_real_interped['Voltage_aligned'] = real_full_cell_interper(SOC_vec_full_cell) return pe_out_centered_scaled, ne_out_centered_scaled, df_real_interped, emulated_full_cell_interped def halfcell_initial_matching(self, x, *params): """ Augments halfcell voltage profiles by scaling and translating them. Typically used in an optimization routine to fit the emulated full cell profile to a real cell profile. Inputs: x: an array of 4 or 5 parameters containing scale_pe, offset_pe,scale_pe, scale_ne, offset_ne, and optionally ne_2_x df_real: dataframe for the first diagnostic (pristine) of the real full cell. Columns for SOC (ev) self.pe_pristine: dataframe for the positive electrode. Columns for SOC (evenly spaced) and Voltage. df_ne_1: dataframe for the primary material in the negative electrode. Columns for SOC (evenly spaced) and Voltage. df_ne_2: dataframe for the secondary material in the negative electrode. Columns for SOC (evenly spaced) and Voltage. Supply empty DataFrame if not emulating a blend from two known elelctrodes. """ df_real, df_pe, df_ne_1, df_ne_2 = params scale_pe = x[0] offset_pe = x[1] scale_ne = x[2] offset_ne = x[3] if df_ne_2.empty: # one-material anode df_ne = pd.DataFrame() df_ne['Voltage_aligned'] = df_ne_1['Voltage_aligned'] df_ne['SOC_aligned'] = df_ne_1['SOC_aligned'] else: # blended anode ne_2_x = x[4] # fraction of NE_2 df_ne = pd.DataFrame() df_ne['Voltage_aligned'] = (ne_2_x * df_ne_2['Voltage_aligned'] + (1 - ne_2_x) * df_ne_1['Voltage_aligned']) df_ne['SOC_aligned'] = df_ne_1['SOC_aligned'] # shifted cathode shifted_pe = df_pe.copy() shifted_pe['SOC_aligned'] = shifted_pe['SOC_aligned'] * scale_pe + offset_pe # shifted anode shifted_ne = df_ne.copy() shifted_ne['SOC_aligned'] = shifted_ne['SOC_aligned'] * scale_ne + offset_ne # Interpolate across the max and min SOC of the half-cell dfs df_1 = shifted_pe.copy() df_2 = shifted_ne.copy() min_soc = np.min((np.min(df_1['SOC_aligned']), np.min(df_2['SOC_aligned']))) max_soc = np.max((np.max(df_1['SOC_aligned']), np.max(df_2['SOC_aligned']))) soc_vec = np.linspace(min_soc, max_soc, 1001) df_1_interper = interp1d(df_1['SOC_aligned'], df_1['Voltage_aligned'], bounds_error=False) df_1['SOC_aligned'] = soc_vec.copy() df_1['Voltage_aligned'] = df_1_interper(soc_vec) df_2_interper = interp1d(df_2['SOC_aligned'], df_2['Voltage_aligned'], bounds_error=False) df_2['SOC_aligned'] = soc_vec.copy() df_2['Voltage_aligned'] = df_2_interper(soc_vec) # Calculate the full-cell profile df_3 = pd.DataFrame() df_3['Voltage_aligned'] = df_1['Voltage_aligned'].subtract(df_2['Voltage_aligned']) df_3.loc[(df_3['Voltage_aligned'] > 4.2) | (df_3['Voltage_aligned'] < 2.7)] = np.nan df_3['SOC_aligned'] = df_2['SOC_aligned'] # centering centering_value = (df_real['SOC_aligned'].loc[(np.argmin(np.abs(df_real['Voltage_aligned'] - np.min(df_3['Voltage_aligned'].loc[ ~df_3['Voltage_aligned'].isna()]))))] - np.min(df_3['SOC_aligned'].loc[~df_3['Voltage_aligned'].isna()]) ) emulated_full_cell_centered = df_3.copy() emulated_full_cell_centered['SOC_aligned'] = df_3['SOC_aligned'] + centering_value PE_out_centered = df_1.copy() PE_out_centered['SOC_aligned'] = df_1['SOC_aligned'] + centering_value NE_out_centered = df_2.copy() NE_out_centered['SOC_aligned'] = df_2['SOC_aligned'] + centering_value # Make new interpolation across SOC for full-cell error calculation min_soc_full_cell = np.min((np.min(df_3.loc[~df_3.Voltage_aligned.isna()].SOC_aligned), np.min(df_real.loc[~df_real.Voltage_aligned.isna()].SOC_aligned))) max_soc_full_cell = np.max((np.max(df_3.loc[~df_3.Voltage_aligned.isna()].SOC_aligned), np.max(df_real.loc[~df_real.Voltage_aligned.isna()].SOC_aligned))) soc_vec_full_cell = np.linspace(min_soc_full_cell, max_soc_full_cell, 1001) emulated_full_cell_interper = interp1d(emulated_full_cell_centered.SOC_aligned, emulated_full_cell_centered.Voltage_aligned, bounds_error=False) real_full_cell_interper = interp1d(df_real.SOC_aligned, df_real.Voltage_aligned, bounds_error=False) # Interpolate the emulated full-cell profile emulated_full_cell_interped = pd.DataFrame() emulated_full_cell_interped['SOC_aligned'] = soc_vec_full_cell emulated_full_cell_interped['Voltage_aligned'] = emulated_full_cell_interper(soc_vec_full_cell) # Interpolate the true full-cell profile df_real_interped = emulated_full_cell_interped.copy() df_real_interped['SOC_aligned'] = soc_vec_full_cell df_real_interped['Voltage_aligned'] = real_full_cell_interper(soc_vec_full_cell) return df_1, df_2, df_real_interped, emulated_full_cell_interped def _get_error_from_halfcell_initial_matching(self, x, *params): df_1, df_2, df_real_interped, emulated_full_cell_interped = self.halfcell_initial_matching_v2(x, *params) error = distance.euclidean(df_real_interped['Voltage_aligned'], emulated_full_cell_interped['Voltage_aligned']) + 0.01 * len( emulated_full_cell_interped['Voltage_aligned'].loc[emulated_full_cell_interped['Voltage_aligned'].isna()]) return error def _impose_degradation(self, pe_pristine=pd.DataFrame(), ne_1_pristine=pd.DataFrame(), ne_2_pristine_pos=pd.DataFrame(), ne_2_pristine_neg=pd.DataFrame(), lli=0.0, lam_pe=0.0, lam_ne=0.0, x_ne_2=0.0): pe_translation = 0 pe_shrinkage = 0 ne_translation = 0 ne_shrinkage = 0 # Blend negative electrodes ne_pristine = blend_electrodes(ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, x_ne_2) # Update degradation shifts for LLI ne_translation += lli # Update degradation shifts for LAM_PE upper_voltage_limit = self.upper_voltage pe_soc_setpoint = pe_pristine['SOC_aligned'].loc[ np.argmin(np.abs(pe_pristine['Voltage_aligned'] - ne_pristine[ 'Voltage_aligned'] - upper_voltage_limit))] # SOC at which the upper voltage # limit is hit pe_translation += lam_pe * pe_soc_setpoint / 100 # correction for shrinkage to ensure the locking of # the upper voltage SOC pe_shrinkage += lam_pe # shrinkage of PE capacity due to LAM_PE # Update degradation shifts for LAM_NE lower_voltage_limit = self.lower_voltage ne_soc_setpoint = ne_pristine['SOC_aligned'].loc[ np.argmin((pe_pristine['Voltage_aligned'] - ne_pristine[ 'Voltage_aligned'] - lower_voltage_limit))] # SOC at which the lower voltage limit is hit ne_translation += lam_ne * ne_soc_setpoint / 100 # correction for shrinkage to ensure the locking of the # lower voltage SOC ne_shrinkage += lam_ne # shrinkage of NE capacity due to LAM_NE # Update SOC vector for both electrodes according to their imposed degradation pe_pristine_shifted_by_deg = pe_pristine.copy() pe_pristine_shifted_by_deg['SOC_aligned'] = pe_pristine_shifted_by_deg['SOC_aligned'] * ( 1 - pe_shrinkage / 100) + pe_translation ne_pristine_shifted_by_deg = ne_pristine.copy() ne_pristine_shifted_by_deg['SOC_aligned'] = ne_pristine_shifted_by_deg['SOC_aligned'] * ( 1 - ne_shrinkage / 100) + ne_translation # Re-interpolate to align dataframes for differencing lower_soc = np.min((np.min(pe_pristine_shifted_by_deg['SOC_aligned']), np.min(ne_pristine_shifted_by_deg['SOC_aligned']))) upper_soc = np.max((np.max(pe_pristine_shifted_by_deg['SOC_aligned']), np.max(ne_pristine_shifted_by_deg['SOC_aligned']))) soc_vec = np.linspace(lower_soc, upper_soc, 1001) pe_pristine_interper = interp1d(pe_pristine_shifted_by_deg['SOC_aligned'], pe_pristine_shifted_by_deg['Voltage_aligned'], bounds_error=False) pe_degraded = pe_pristine_shifted_by_deg.copy() pe_degraded['SOC_aligned'] = soc_vec pe_degraded['Voltage_aligned'] = pe_pristine_interper(soc_vec) ne_pristine_interper = interp1d(ne_pristine_shifted_by_deg['SOC_aligned'], ne_pristine_shifted_by_deg['Voltage_aligned'], bounds_error=False) ne_degraded = ne_pristine_shifted_by_deg.copy() ne_degraded['SOC_aligned'] = soc_vec ne_degraded['Voltage_aligned'] = ne_pristine_interper(soc_vec) return pe_degraded, ne_degraded def get_dQdV_over_V_from_degradation_matching(self, x, *params): pe_out_centered, ne_out_centered, df_real_interped, emulated_full_cell_interped = \ self.halfcell_degradation_matching_v3(x, *params) # Calculate dQdV from full cell profiles dq_dv_real = pd.DataFrame(np.gradient(df_real_interped['SOC_aligned'], df_real_interped['Voltage_aligned']), columns=['dQdV']).ewm(alpha=x[-2]).mean() dq_dv_emulated = pd.DataFrame( np.gradient(emulated_full_cell_interped['SOC_aligned'], emulated_full_cell_interped['Voltage_aligned']), columns=['dQdV']).ewm(alpha=x[-1]).mean() # Include original data dq_dv_real['SOC_aligned'] = df_real_interped['SOC_aligned'] dq_dv_real['Voltage_aligned'] = df_real_interped['Voltage_aligned'] dq_dv_emulated['SOC_aligned'] = emulated_full_cell_interped['SOC_aligned'] dq_dv_emulated['Voltage_aligned'] = emulated_full_cell_interped['Voltage_aligned'] # Interpolate over V voltage_vec = np.linspace(2.7, 4.2, 1001) v_dq_dv_interper_real = interp1d(dq_dv_real['Voltage_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], dq_dv_real['dQdV'].loc[~dq_dv_real['Voltage_aligned'].isna()], bounds_error=False, fill_value=0) v_soc_interper_real = interp1d(dq_dv_real['Voltage_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], dq_dv_real['SOC_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], bounds_error=False, fill_value=(0, 100)) v_dq_dv_interper_emulated = interp1d(dq_dv_emulated['Voltage_aligned'].loc[ ~dq_dv_emulated['Voltage_aligned'].isna()], dq_dv_emulated['dQdV'].loc[~dq_dv_emulated['Voltage_aligned'].isna()], bounds_error=False, fill_value=0) v_soc_interper_emulated = interp1d(dq_dv_emulated['Voltage_aligned'].loc[ ~dq_dv_emulated['Voltage_aligned'].isna()], dq_dv_emulated['SOC_aligned'].loc[~dq_dv_emulated['Voltage_aligned'].isna()], bounds_error=False, fill_value=(0, 100)) dq_dv_over_v_real = pd.DataFrame(v_dq_dv_interper_real(voltage_vec), columns=['dQdV']).fillna(0) dq_dv_over_v_real['SOC_aligned'] = v_soc_interper_real(voltage_vec) dq_dv_over_v_real['Voltage_aligned'] = voltage_vec dq_dv_over_v_emulated = pd.DataFrame(v_dq_dv_interper_emulated(voltage_vec), columns=['dQdV']).fillna(0) dq_dv_over_v_emulated['SOC_aligned'] = v_soc_interper_emulated(voltage_vec) dq_dv_over_v_emulated['Voltage_aligned'] = voltage_vec return (pe_out_centered, ne_out_centered, dq_dv_over_v_real, dq_dv_over_v_emulated, df_real_interped, emulated_full_cell_interped) def get_error_dQdV_over_V_from_degradation_matching(self, x, *params): try: (pe_out_centered, ne_out_centered, dq_dv_over_v_real, dq_dv_over_v_emulated, df_real_interped, emulated_full_cell_interped) = self.get_dQdV_over_V_from_degradation_matching(x, *params) error = distance.euclidean(dq_dv_over_v_real['dQdV'], dq_dv_over_v_emulated['dQdV']) + 0.01 * len( dq_dv_over_v_emulated['dQdV'].loc[dq_dv_over_v_emulated['dQdV'].isna()]) except ValueError: error = 1000 # set an error for cases where calcuation fails return error def get_dVdQ_over_SOC_from_degradation_matching(self, x, *params): pe_out_centered, ne_out_centered, df_real_interped, emulated_full_cell_interped = \ self.halfcell_degradation_matching_v3(x, *params) # Calculate dVdQ from full cell profiles dv_dq_over_soc_real = pd.DataFrame(np.gradient(df_real_interped['Voltage_aligned'], df_real_interped['SOC_aligned']), columns=['dVdQ']).ewm(alpha=x[-2]).mean() dv_dq_over_soc_emulated = pd.DataFrame( np.gradient(emulated_full_cell_interped['Voltage_aligned'], emulated_full_cell_interped['SOC_aligned']), columns=['dVdQ']).ewm(alpha=x[-1]).mean() # Include original data dv_dq_over_soc_real['SOC_aligned'] = df_real_interped['SOC_aligned'] dv_dq_over_soc_real['Voltage_aligned'] = df_real_interped['Voltage_aligned'] dv_dq_over_soc_emulated['SOC_aligned'] = emulated_full_cell_interped['SOC_aligned'] dv_dq_over_soc_emulated['Voltage_aligned'] = emulated_full_cell_interped['Voltage_aligned'] # Interpolate over Q # ^^ already done in this case as standard data template is over Q return (pe_out_centered, ne_out_centered, dv_dq_over_soc_real, dv_dq_over_soc_emulated, df_real_interped, emulated_full_cell_interped) def get_error_dVdQ_over_SOC_from_degradation_matching(self, x, *params): try: (pe_out_centered, ne_out_centered, dv_dq_over_soc_real, dv_dq_over_soc_emulated, df_real_interped, emulated_full_cell_interped) = \ self.get_dVdQ_over_SOC_from_degradation_matching(x, *params) error = distance.euclidean(dv_dq_over_soc_real['dVdQ'], dv_dq_over_soc_emulated['dVdQ']) + 0.01 * len( dv_dq_over_soc_emulated['dVdQ'].loc[dv_dq_over_soc_emulated['dVdQ'].isna()]) except ValueError: error = 1000 # set an error for cases where calcuation fails return error def get_V_over_SOC_from_degradation_matching(self, x, *params): (PE_out_centered, NE_out_centered, real_aligned, emulated_aligned) = \ self.halfcell_degradation_matching_v3(x, *params) min_soc_full_cell = np.min(real_aligned.loc[~real_aligned.Voltage_aligned.isna()].SOC_aligned) max_soc_full_cell = np.max(real_aligned.loc[~real_aligned.Voltage_aligned.isna()].SOC_aligned) soc_vec_full_cell = np.linspace(min_soc_full_cell, max_soc_full_cell, 1001) emulated_full_cell_interper = interp1d( emulated_aligned.SOC_aligned.loc[~real_aligned.Voltage_aligned.isna()], emulated_aligned.Voltage_aligned.loc[~real_aligned.Voltage_aligned.isna()], bounds_error=False) real_full_cell_interper = interp1d(real_aligned.SOC_aligned.loc[~real_aligned.Voltage_aligned.isna()], real_aligned.Voltage_aligned.loc[~real_aligned.Voltage_aligned.isna()], bounds_error=False) # Interpolate the emulated full-cell profile emulated_full_cell_interped = pd.DataFrame() emulated_full_cell_interped['SOC_aligned'] = soc_vec_full_cell emulated_full_cell_interped['Voltage_aligned'] = emulated_full_cell_interper(soc_vec_full_cell) # Interpolate the true full-cell profile df_real_interped = emulated_full_cell_interped.copy() df_real_interped['SOC_aligned'] = soc_vec_full_cell df_real_interped['Voltage_aligned'] = real_full_cell_interper(soc_vec_full_cell) return PE_out_centered, NE_out_centered, df_real_interped, emulated_full_cell_interped def _get_error_from_degradation_matching(self, x, *params): try: (pe_out_centered, ne_out_centered, real_aligned, emulated_aligned ) = self.get_V_over_SOC_from_degradation_matching(x, *params) error = (distance.euclidean(real_aligned.loc[~emulated_aligned.Voltage_aligned.isna()].values.ravel(), emulated_aligned.loc[~emulated_aligned.Voltage_aligned.isna()].values.ravel()) + 0.001 * len(emulated_aligned.loc[emulated_aligned.Voltage_aligned.isna()])) except ValueError: error = 100 return error def halfcell_degradation_matching_v3(self, x, *params): lli = x[0] lam_pe = x[1] lam_ne = x[2] x_ne_2 = x[3] pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, real_full_cell_with_degradation = params pe_out, ne_out = self._impose_degradation(pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, lli, lam_pe, lam_ne, x_ne_2) emulated_full_cell_with_degradation = pd.DataFrame() emulated_full_cell_with_degradation['SOC_aligned'] = pe_out['SOC_aligned'].copy() emulated_full_cell_with_degradation['Voltage_aligned'] = pe_out['Voltage_aligned'] - ne_out['Voltage_aligned'] emulated_full_cell_with_degradation_centered = pd.DataFrame() emulated_full_cell_with_degradation_centered['Voltage_aligned'] = emulated_full_cell_with_degradation[ 'Voltage_aligned'] centering_value = - np.min(emulated_full_cell_with_degradation['SOC_aligned'].loc[ (~emulated_full_cell_with_degradation['Voltage_aligned'].isna()) ]) emulated_full_cell_with_degradation_centered['SOC_aligned'] = \ (emulated_full_cell_with_degradation['SOC_aligned'] + centering_value) pe_out_centered = pe_out.copy() pe_out_centered['SOC_aligned'] = pe_out['SOC_aligned'] + centering_value ne_out_centered = ne_out.copy() ne_out_centered['SOC_aligned'] = ne_out['SOC_aligned'] + centering_value # Interpolate full profiles across same SOC range min_soc = np.min( real_full_cell_with_degradation['SOC_aligned'].loc[ ~real_full_cell_with_degradation['Voltage_aligned'].isna()]) max_soc = np.max( real_full_cell_with_degradation['SOC_aligned'].loc[ ~real_full_cell_with_degradation['Voltage_aligned'].isna()]) emulated_interper = interp1d(emulated_full_cell_with_degradation_centered['SOC_aligned'].loc[ ~emulated_full_cell_with_degradation_centered['Voltage_aligned'].isna()], emulated_full_cell_with_degradation_centered['Voltage_aligned'].loc[ ~emulated_full_cell_with_degradation_centered['Voltage_aligned'].isna()], bounds_error=False) real_interper = interp1d( real_full_cell_with_degradation['SOC_aligned'].loc[ ~real_full_cell_with_degradation['Voltage_aligned'].isna()], real_full_cell_with_degradation['Voltage_aligned'].loc[ ~real_full_cell_with_degradation['Voltage_aligned'].isna()], bounds_error=False) soc_vec = np.linspace(min_soc, max_soc, 1001) emulated_aligned = pd.DataFrame() emulated_aligned['SOC_aligned'] = soc_vec emulated_aligned['Voltage_aligned'] = emulated_interper(soc_vec) real_aligned = pd.DataFrame() real_aligned['SOC_aligned'] = soc_vec real_aligned['Voltage_aligned'] = real_interper(soc_vec) return pe_out_centered, ne_out_centered, real_aligned, emulated_aligned def halfcell_degradation_matching_v2(self, x, *params): lli = x[0] lam_pe = x[1] lam_ne = x[2] pe_pristine, ne_pristine, real_full_cell_with_degradation = params pe_out, ne_out = self._impose_degradation(pe_pristine, ne_pristine, lli, lam_pe, lam_ne) emulated_full_cell_with_degradation = pd.DataFrame() emulated_full_cell_with_degradation['SOC_aligned'] = pe_out['SOC_aligned'].copy() emulated_full_cell_with_degradation['Voltage_aligned'] = pe_out['Voltage_aligned'] - ne_out['Voltage_aligned'] emulated_full_cell_with_degradation_centered = pd.DataFrame() emulated_full_cell_with_degradation_centered['Voltage_aligned'] = emulated_full_cell_with_degradation[ 'Voltage_aligned'] emulated_full_cell_with_degradation_centered['Voltage_aligned'].loc[ (emulated_full_cell_with_degradation_centered['Voltage_aligned'] > 4.2) | (emulated_full_cell_with_degradation_centered['Voltage_aligned'] < 2.7)] = np.nan centering_value = ( real_full_cell_with_degradation['SOC_aligned'].loc[ (np.argmin(np.abs(real_full_cell_with_degradation['Voltage_aligned'] - np.min(emulated_full_cell_with_degradation['Voltage_aligned'].loc[ ~emulated_full_cell_with_degradation['Voltage_aligned'].isna()])))) ] - np.min(emulated_full_cell_with_degradation['SOC_aligned'].loc[ ~emulated_full_cell_with_degradation['Voltage_aligned'].isna()]) ) emulated_full_cell_with_degradation_centered['SOC_aligned'] = \ (emulated_full_cell_with_degradation['SOC_aligned'] + centering_value) pe_out_centered = pe_out.copy() pe_out_centered['SOC_aligned'] = pe_out['SOC_aligned'] + centering_value ne_out_centered = ne_out.copy() ne_out_centered['SOC_aligned'] = ne_out['SOC_aligned'] + centering_value # Interpolate full profiles across same SOC range min_soc = np.min( (np.min(emulated_full_cell_with_degradation_centered['SOC_aligned'].loc[ ~emulated_full_cell_with_degradation_centered['Voltage_aligned'].isna()]), np.min(real_full_cell_with_degradation['SOC_aligned'].loc[ ~real_full_cell_with_degradation['Voltage_aligned'].isna()]) ) ) max_soc = np.max( (np.max(emulated_full_cell_with_degradation_centered['SOC_aligned'].loc[ ~emulated_full_cell_with_degradation_centered['Voltage_aligned'].isna()]), np.max(real_full_cell_with_degradation['SOC_aligned'].loc[ ~real_full_cell_with_degradation['Voltage_aligned'].isna()])) ) emulated_interper = interp1d(emulated_full_cell_with_degradation_centered['SOC_aligned'], emulated_full_cell_with_degradation_centered['Voltage_aligned'], bounds_error=False) real_interper = interp1d(real_full_cell_with_degradation['SOC_aligned'], real_full_cell_with_degradation['Voltage_aligned'], bounds_error=False) soc_vec = np.linspace(min_soc, max_soc, 1001) emulated_aligned = pd.DataFrame() emulated_aligned['SOC_aligned'] = soc_vec emulated_aligned['Voltage_aligned'] = emulated_interper(soc_vec) real_aligned = pd.DataFrame() real_aligned['SOC_aligned'] = soc_vec real_aligned['Voltage_aligned'] = real_interper(soc_vec) return pe_out_centered, ne_out_centered, real_aligned, emulated_aligned def get_voltage_curves_for_cell(self, processed_cycler_run, cycle_type='rpt_0.2C'): # Filter down to only cycles of cycle_type diag_type_cycles = processed_cycler_run.diagnostic_interpolated.loc[ processed_cycler_run.diagnostic_interpolated['cycle_type'] == cycle_type] # Loop across cycles cycle_indexes = diag_type_cycles['cycle_index'].unique() for i in cycle_indexes: diag_type_cycle_i = diag_type_cycles.loc[diag_type_cycles.cycle_index == i] x_charge = diag_type_cycle_i.charge_energy.loc[diag_type_cycles['step_type'] == 0] y_charge = diag_type_cycle_i.voltage.loc[diag_type_cycles['step_type'] == 0] return x_charge, y_charge def intracell_wrapper_init(self, cell_struct, initial_matching_bounds=None ): """ Wrapper function that calls all of the functions to get the initial values for the cell before fitting all of the Args: cell_struct (beep.structure): dataframe to determine whether charging or discharging chg (bool): Charge state; True if charging Returns: (bool): True if step is the charge state specified. """ if initial_matching_bounds is None: initial_matching_bounds = ((0.8, 1.2), (-20.0, 20.0), (1, 1), (0.1, 0.1), (0.1, 0.1)) real_cell_initial_charge_profile_aligned, real_cell_initial_charge_profile = \ self.process_beep_cycle_data_for_initial_halfcell_analysis(cell_struct) opt_result_halfcell_initial_matching = differential_evolution(self._get_error_from_halfcell_initial_matching, initial_matching_bounds, args=(real_cell_initial_charge_profile_aligned, self.pe_pristine, self.ne_1_pristine, self.ne_2_pristine_pos, self.ne_2_pristine_neg), strategy='best1bin', maxiter=1000, popsize=15, tol=0.001, mutation=0.5, recombination=0.7, seed=1, callback=None, disp=False, polish=True, init='latinhypercube', atol=0, updating='deferred', workers=-1, constraints=()) (PE_pristine_matched, NE_pristine_matched, df_real_interped, emulated_full_cell_interped) = self.halfcell_initial_matching_v2(opt_result_halfcell_initial_matching.x, real_cell_initial_charge_profile_aligned, self.pe_pristine, self.ne_1_pristine, self.ne_2_pristine_pos, self.ne_2_pristine_neg) return (real_cell_initial_charge_profile_aligned, real_cell_initial_charge_profile, PE_pristine_matched, NE_pristine_matched) def intracell_values_wrapper(self, cycle_index, cell_struct, real_cell_initial_charge_profile_aligned, real_cell_initial_charge_profile, PE_pristine_matched, NE_pristine_matched, degradation_bounds=None ): if degradation_bounds is None: degradation_bounds = ((-10, 50), # LLI (-10, 50), # LAM_PE (-10, 50), # LAM_NE (1, 1), # (-1,1) x_NE_2 (0.1, 0.1), # (0.01,0.1) (0.1, 0.1), # (0.01,0.1) ) real_cell_candidate_charge_profile_aligned = self.process_beep_cycle_data_for_candidate_halfcell_analysis( cell_struct, real_cell_initial_charge_profile_aligned, real_cell_initial_charge_profile, cycle_index) degradation_optimization_result = differential_evolution(self._get_error_from_degradation_matching, degradation_bounds, args=(PE_pristine_matched, NE_pristine_matched, self.ne_2_pristine_pos, self.ne_2_pristine_neg, real_cell_candidate_charge_profile_aligned ), strategy='best1bin', maxiter=100000, popsize=15, tol=0.001, mutation=0.5, recombination=0.7, seed=1, callback=None, disp=False, polish=True, init='latinhypercube', atol=0, updating='deferred', workers=-1, constraints=() ) (PE_out_centered, NE_out_centered, dVdQ_over_SOC_real, dVdQ_over_SOC_emulated, df_real_interped, emulated_full_cell_interped) = self.get_dQdV_over_V_from_degradation_matching( degradation_optimization_result.x, PE_pristine_matched, NE_pristine_matched, self.ne_2_pristine_pos, self.ne_2_pristine_neg, real_cell_candidate_charge_profile_aligned) # (PE_upper_voltage, PE_lower_voltage, PE_upper_SOC, PE_lower_SOC, PE_mass, NE_upper_voltage, NE_lower_voltage, NE_upper_SOC, NE_lower_SOC, NE_mass, SOC_upper, SOC_lower, Li_mass) = get_halfcell_voltages(PE_out_centered, NE_out_centered) # LLI = degradation_optimization_result.x[0] LAM_PE = degradation_optimization_result.x[1] LAM_NE = degradation_optimization_result.x[2] x_NE_2 = degradation_optimization_result.x[3] alpha_real = degradation_optimization_result.x[4] alpha_emulated = degradation_optimization_result.x[5] loss_dict = {cycle_index: [LLI, LAM_PE, LAM_NE, x_NE_2, alpha_real, alpha_emulated, PE_upper_voltage, PE_lower_voltage, PE_upper_SOC, PE_lower_SOC, PE_mass, NE_upper_voltage, NE_lower_voltage, NE_upper_SOC, NE_lower_SOC, NE_mass, Li_mass ] } profiles_dict = {cycle_index: real_cell_candidate_charge_profile_aligned} return loss_dict, profiles_dict
python
#!/usr/bin/env python from distutils.core import setup setup(name = "ciscotropo-webapi-python", version = "0.1.4", url = "http://github.com/tropo/tropo-webapi-python", maintainer = "Cisco", maintainer_email = "[email protected]", description = "Python library for building voice/SMS/IM/Twitter apps at Tropo.com", long_description = "This module implements a set of classes and methods for manipulating the Web API for the Tropo cloud communications service at http://www.tropo.com/", platforms = ["Platform Independent"], license = "MIT", classifiers = [ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python" ], py_modules = ['tropo'], )
python
from heuslertools.tools.measurement import Measurement import xrayutilities as xu import warnings import numpy as np class RSMMeasurement(Measurement): """Object representing rsm measurement. Parameters ---------- file : str path of xrdml file. Attributes ---------- en : str Energy of xrays. wavelength : type wavelength of xrays. resol : float resolution in qz. """ def __init__(self, file, material=None, geometry='hi_lo', beam_direction=None, surface_normale=None, reflex=None): self.material = material self.geometry = geometry self.beam_direction = beam_direction self.surface_normale = surface_normale self.reflex = reflex if any(elem is not None for elem in [material, geometry, beam_direction, surface_normale, reflex]): self._create_experiment() super().__init__(file, "") def _load_data(self): data = {} data['scanmot'], data['Omega'], data['2Theta'], data['Chi'], data['Phi'], data['psd'] = xu.io.getxrdml_scan(self.file, 'om', 'tt', 'c', 'p') return data def _generate_names(self): for name in self.data: self.names[name] = {"short_name": name, "unit": "a.u."} def _create_experiment(self): self.hxrd = xu.HXRD(self.material.Q(self.beam_direction), self.material.Q(self.surface_normale), geometry=self.geometry) def _get_nominal_angle(self, axis): angles = {} [angles['Omega'], angles['Chi'], angles['Phi'], angles['2Theta']] = self.hxrd.Q2Ang(self.material.Q(self.reflex)) return angles[axis] def _get_substrate_peak(self): # anggridder = xu.FuzzyGridder2D(500, 500) # anggridder(self.data['Omega'], self.data['2Theta'], self.data['psd']) # angINT = xu.maplog(anggridder.data.transpose(), 10, 0) # return anggridder.xaxis[np.unravel_index(angINT.argmax(), angINT.shape)[0]], anggridder.yaxis[np.unravel_index(angINT.argmax(), angINT.shape)[1]] threshold = 10**int(np.log10(self.data['psd'].max())) max_values = np.where(self.data['psd'] > threshold) return np.mean(self.data['Omega'][max_values]), np.mean(self.data['2Theta'][max_values]) def get_angle_data(self, size=300, dynamic_range=10): anggridder = xu.FuzzyGridder2D(300, 300) anggridder(self.data['Omega'], self.data['2Theta'], self.data['psd']) angINT = xu.maplog(anggridder.data.transpose(), dynamic_range, 0) ticks = [] for i in range(round(dynamic_range)+1): ticks.append(i) return anggridder, angINT, ticks def get_q_data(self, size=300, dynamic_range=10, om_sub=None, tt_sub=None): sub_peak = self._get_substrate_peak() if om_sub == None: om_sub = sub_peak[0] if tt_sub == None: tt_sub = sub_peak[1] #om_sub, tt_sub = self._get_substrate_peak() qx, qy, qz = self.hxrd.Ang2Q(self.data['Omega'], self.data['2Theta'], delta=[om_sub - self._get_nominal_angle('Omega'), tt_sub - self._get_nominal_angle('2Theta')]) qgridder = xu.FuzzyGridder2D(size, size) qgridder(qy, qz, self.data['psd']) qINT = xu.maplog(qgridder.data.transpose(), dynamic_range, 0) ticks = [] for i in range(round(dynamic_range)+1): ticks.append(i) return qgridder, qINT, ticks def get_hkl_data(self, size=300, dynamic_range=10, om_sub=None, tt_sub=None): sub_peak = self._get_substrate_peak() if om_sub == None: om_sub = sub_peak[0] if tt_sub == None: tt_sub = sub_peak[1] #om_sub, tt_sub = self._get_substrate_peak() h, k, l = self.hxrd.Ang2HKL(self.data['Omega'], self.data['2Theta'], delta=[om_sub - self._get_nominal_angle('Omega'), tt_sub - self._get_nominal_angle('2Theta')], mat=self.material) hklgridder = xu.FuzzyGridder2D(size, size) hklgridder(h, l, self.data['psd']) hklINT = xu.maplog(hklgridder.data.transpose(), dynamic_range, 0) ticks = [] for i in range(round(dynamic_range)+1): ticks.append(i) return hklgridder, hklINT, ticks
python
import numpy as np import numpy.linalg as la def gaussian_estimate(data, label, alpha): assert len(data) == len(label), "label length mismatch" assert label.min() == 0, "label should start from 0" assert label.max() != 0, "label should have multiple" trim = np.sum(data, axis=0) > 0 data = data[:, trim] dimension = len(data[0]) classified = [list() for _ in range(label.max() + 1)] for i in range(len(label)): classified[label[i]].append(data[i]) for i in range(len(classified)): classified[i] = np.array(classified[i]) log_priors = np.array([np.log(1.0 * len(classified[i]) / len(label)) for i in range(len(classified))]) means = np.array([np.mean(points, axis=0) for points in classified]) variances = np.array([np.cov(np.transpose(points)) + alpha * np.eye(dimension) for points in classified]) return log_priors, means, variances, trim, dimension class GaussianClassifier: def __init__(self, data, label, alpha): self.log_priors, self.means, self.variances, self.trim, self.d = gaussian_estimate(data, label, alpha) self.num_classes = len(self.log_priors) def classify(self, point): raise Exception("unimplemented") def classify_all(self, points): return np.apply_along_axis(lambda p: self.classify(p), 1, points) @staticmethod def score(predictions, label): return 1.0 * np.sum(np.equal(predictions, label)) / len(label) class LDAClassifier(GaussianClassifier): def __init__(self, data, label, alpha=1e-6): GaussianClassifier.__init__(self, data, label, alpha) self.variance = np.sum(self.variances, axis=0) del self.variances self.precisions = np.ndarray(shape=(self.num_classes, self.d), dtype=self.variance.dtype) for i in range(self.num_classes): self.precisions[i] = la.solve(self.variance, self.means[i]) del self.variance def classify(self, point): point = point[self.trim] discriminant = np.ndarray(shape=self.num_classes, dtype=np.float) for i in range(self.num_classes): discriminant[i] = np.dot(point - np.divide(self.means[i], 2), self.precisions[i]) + self.log_priors[i] return np.argmax(discriminant) class QDAClassifier(GaussianClassifier): def __init__(self, data, label, alpha=1e-6): GaussianClassifier.__init__(self, data, label, alpha) self.log_determinants = np.ndarray(shape=self.num_classes, dtype=np.float) for i in range(self.num_classes): s, logdet = la.slogdet(self.variances[i]) if s == 0: raise Exception("singular matrix") self.log_determinants[i] = logdet self.precisions = np.array([la.inv(self.variances[i]) for i in range(self.num_classes)]) del self.variances def classify(self, point): discriminant = np.ndarray(shape=(self.num_classes,), dtype=float) for i in range(self.num_classes): normalized = point - self.means[i] discriminant[i] = self.log_priors[i] - self.log_determinants[i] / 2 \ - np.dot(np.dot(normalized, self.precisions[i]), normalized) / 2 return np.argmax(discriminant) __all__ = [gaussian_estimate, LDAClassifier, QDAClassifier]
python
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from ceilometerclient.tests import utils from ceilometerclient.v2 import options class BuildUrlTest(utils.BaseTestCase): def test_one(self): url = options.build_url('/', [{'field': 'this', 'op': 'gt', 'value': 43}]) self.assertEqual(url, '/?q.field=this&q.op=gt&q.type=&q.value=43') def test_two(self): url = options.build_url('/', [{'field': 'this', 'op': 'gt', 'value': 43}, {'field': 'that', 'op': 'lt', 'value': 88}]) ops = 'q.op=gt&q.op=lt' vals = 'q.value=43&q.value=88' types = 'q.type=&q.type=' fields = 'q.field=this&q.field=that' self.assertEqual(url, '/?%s&%s&%s&%s' % (fields, ops, types, vals)) def test_default_op(self): url = options.build_url('/', [{'field': 'this', 'value': 43}]) self.assertEqual(url, '/?q.field=this&q.op=&q.type=&q.value=43') def test_one_param(self): url = options.build_url('/', None, ['period=60']) self.assertEqual(url, '/?period=60') def test_two_params(self): url = options.build_url('/', None, ['period=60', 'others=value']) self.assertEqual(url, '/?period=60&others=value') def test_with_data_type(self): url = options.build_url('/', [{'field': 'f1', 'value': '10', 'type': 'integer'}]) self.assertEqual('/?q.field=f1&q.op=&q.type=integer&q.value=10', url) class CliTest(utils.BaseTestCase): def test_one(self): ar = options.cli_to_array('this<=34') self.assertEqual(ar, [{'field': 'this', 'op': 'le', 'value': '34', 'type': ''}]) def test_two(self): ar = options.cli_to_array('this<=34;that!=foo') self.assertEqual(ar, [{'field': 'this', 'op': 'le', 'value': '34', 'type': ''}, {'field': 'that', 'op': 'ne', 'value': 'foo', 'type': ''}]) def test_negative(self): ar = options.cli_to_array('this>=-783') self.assertEqual(ar, [{'field': 'this', 'op': 'ge', 'value': '-783', 'type': ''}]) def test_float(self): ar = options.cli_to_array('this<=283.347') self.assertEqual(ar, [{'field': 'this', 'op': 'le', 'value': '283.347', 'type': ''}]) def test_comma(self): ar = options.cli_to_array('this=2.4,fooo=doof') self.assertEqual([{'field': 'this', 'op': 'eq', 'value': '2.4,fooo=doof', 'type': ''}], ar) def test_special_character(self): ar = options.cli_to_array('key~123=value!123') self.assertEqual([{'field': 'key~123', 'op': 'eq', 'value': 'value!123', 'type': ''}], ar) def _do_test_typed_float_op(self, op, op_str): ar = options.cli_to_array('that%sfloat::283.347' % op) self.assertEqual([{'field': 'that', 'type': 'float', 'value': '283.347', 'op': op_str}], ar) def test_typed_float_eq(self): self._do_test_typed_float_op('<', 'lt') def test_typed_float_le(self): self._do_test_typed_float_op('<=', 'le') def test_typed_string_whitespace(self): ar = options.cli_to_array('state=string::insufficient data') self.assertEqual([{'field': 'state', 'op': 'eq', 'type': 'string', 'value': 'insufficient data'}], ar) def test_typed_string_whitespace_complex(self): ar = options.cli_to_array( 'that>=float::99.9999;state=string::insufficient data' ) self.assertEqual([{'field': 'that', 'op': 'ge', 'type': 'float', 'value': '99.9999'}, {'field': 'state', 'op': 'eq', 'type': 'string', 'value': 'insufficient data'}], ar) def test_invalid_operator(self): self.assertRaises(ValueError, options.cli_to_array, 'this=2.4;fooo-doof') def test_with_dot(self): ar = options.cli_to_array('metadata.this<=34') self.assertEqual(ar, [{'field': 'metadata.this', 'op': 'le', 'value': '34', 'type': ''}]) def test_single_char_field_or_value(self): ar = options.cli_to_array('m<=34;large.thing>s;x!=y') self.assertEqual([{'field': 'm', 'op': 'le', 'value': '34', 'type': ''}, {'field': 'large.thing', 'op': 'gt', 'value': 's', 'type': ''}, {'field': 'x', 'op': 'ne', 'value': 'y', 'type': ''}], ar) def test_without_data_type(self): ar = options.cli_to_array('hostname=localhost') self.assertEqual(ar, [{'field': 'hostname', 'op': 'eq', 'value': 'localhost', 'type': ''}]) def test_with_string_data_type(self): ar = options.cli_to_array('hostname=string::localhost') self.assertEqual(ar, [{'field': 'hostname', 'op': 'eq', 'type': 'string', 'value': 'localhost'}]) def test_with_int_data_type(self): ar = options.cli_to_array('port=integer::1234') self.assertEqual(ar, [{'field': 'port', 'op': 'eq', 'type': 'integer', 'value': '1234'}]) def test_with_bool_data_type(self): ar = options.cli_to_array('port=boolean::true') self.assertEqual(ar, [{'field': 'port', 'op': 'eq', 'type': 'boolean', 'value': 'true'}]) def test_with_float_data_type(self): ar = options.cli_to_array('average=float::1234.5678') self.assertEqual(ar, [{'field': 'average', 'op': 'eq', 'type': 'float', 'value': '1234.5678'}]) def test_with_datetime_data_type(self): ar = options.cli_to_array('timestamp=datetime::sometimestamp') self.assertEqual(ar, [{'field': 'timestamp', 'op': 'eq', 'type': 'datetime', 'value': 'sometimestamp'}]) def test_with_incorrect_type(self): ar = options.cli_to_array('timestamp=invalid::sometimestamp') self.assertEqual(ar, [{'field': 'timestamp', 'op': 'eq', 'type': '', 'value': 'invalid::sometimestamp'}]) def test_with_single_colon(self): ar = options.cli_to_array('timestamp=datetime:sometimestamp') self.assertEqual(ar, [{'field': 'timestamp', 'op': 'eq', 'type': '', 'value': 'datetime:sometimestamp'}]) def test_missing_key(self): self.assertRaises(ValueError, options.cli_to_array, 'average=float::1234.0;>=string::hello') def test_missing_value(self): self.assertRaises(ValueError, options.cli_to_array, 'average=float::1234.0;house>=') def test_timestamp_value(self): ar = options.cli_to_array( 'project=cow;timestamp>=datetime::2014-03-11T16:02:58' ) self.assertEqual([{'field': 'project', 'op': 'eq', 'type': '', 'value': 'cow'}, {'field': 'timestamp', 'op': 'ge', 'type': 'datetime', 'value': '2014-03-11T16:02:58'}], ar)
python
# coding=utf-8 """ Default Django settings for all Work4 projects. Your own app should import all attributes from this file. """ from __future__ import unicode_literals import os import sys from tzlocal import get_localzone def env_to_bool(val): """Use this when parsing environment variables for booleans as it will properly consider 'FALSE' to be False.""" if isinstance(val, basestring): return val.lower() in ("true", "yes", "1") return bool(val) def init_settings(app_name, debug): """ Initializes default settings. Should be called in the projects settings.py, passing any custom parameters that might be used. """ # Determine project's root directory based on the path to the module # referenced by app_name, in order to handle both standalone and subtree # scenarios for pywork4core project_root_dir = os.path.dirname(__import__(app_name).__path__[0]) app_root_dir = os.path.join(project_root_dir, app_name) temp_dir = os.path.join(project_root_dir, 'temp') # Needs its own line to avoid pragma no cover bleeding into other statements log_level = 'DEBUG' if debug else 'INFO' # pragma: no cover return { 'APP_NAME': app_name, 'DEBUG': debug, 'INSTALLED_APPS': ('django.contrib.contenttypes', 'django_app', 'django_nose', 'django_extensions', app_name), # Directories 'PROJECT_ROOT_DIR': project_root_dir, 'APP_ROOT_DIR': app_root_dir, 'TEMP_DIR': temp_dir, 'VENV_DIR': os.path.join(project_root_dir, 'venv'), # Timezone management: Use operating system's timezone 'TIME_ZONE': get_localzone().zone, 'USE_TZ': True, # Language 'LANGUAGE_CODE': 'en-us', 'USE_I18N': False, 'USE_L10N': False, # Templating 'TEMPLATES': [{ 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True, 'OPTIONS': { 'debug': debug, 'context_processors': [] } }], # Databases 'DATABASES': { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': temp_dir + '/db.sqlite' } }, 'MONGOENGINE': os.environ.get('MONGOENGINE', { 'db': app_name, 'host': 'localhost', 'port': 27017, 'username': '', 'password': '' }), ########### # TESTING # ########### 'TESTING': len(sys.argv) > 1 and sys.argv[1] == 'test', 'TEST_RUNNER': 'django_nose.NoseTestSuiteRunner', # During tests, Nose captures all logs during tests 'NOSE_ARGS': ['--logging-clear-handlers'], ########### # LOGGING # ########### 'LOG_LEVEL': log_level, 'LOGGING': { 'version': 1, 'formatters': { 'standard': { 'format': "%(levelname)s [%(module)s] %(message)s" }, }, 'handlers': { 'console': { 'level': log_level, 'class': 'logging.StreamHandler', 'formatter': 'standard', 'stream': sys.stdout } }, 'loggers': { 'django': { 'level': 'INFO', # We don't want Django's debug, even in development mode. 'handlers': [], # Don't handle logs at this level, 'propagate': True # But bubble up to the `root` logger. }, }, 'root': { 'handlers': ['console'], 'level': log_level } } } def init_web_settings( # pylint: disable=too-many-arguments app_name, debug, sentry_dsn, early_middleware=(), late_middleware=(), context_processors=()): """ Appends extra Django settings useful specifically for web apps, such as static files handling, etc. :param sentry_dsn: a string containing the DSN to configure the raven client. Projects defining this parameter MUST add `raven` to their pip requirements. settings: dict return: dict """ # Load settings dict into local scope for concision and coherence settings = init_settings(app_name, debug) staticfiles_dirs = (os.path.join(settings['APP_ROOT_DIR'], 'static'),) # Needs its own line to avoid pragma no cover bleeding into other statements staticfiles_storage = 'whitenoise.storage.CompressedManifestStaticFilesStorage'\ if not settings['TESTING'] \ else 'django.contrib.staticfiles.storage.StaticFilesStorage' # pragma: no cover if context_processors: settings['TEMPLATES'][0]['OPTIONS']['context_processors'].extend(context_processors) if debug: # pragma: no cover settings['TEMPLATES'][0]['OPTIONS']['context_processors'].append("django.template.context_processors.debug") settings['TEMPLATES'][0]['OPTIONS']['context_processors'].extend([ "django.template.context_processors.i18n", "django.template.context_processors.media", "django.template.context_processors.static", "django.template.context_processors.tz", "django.contrib.messages.context_processors.messages", "django.template.context_processors.request"]) settings.update({ # Installed apps 'INSTALLED_APPS': ('whitenoise.runserver_nostatic', 'django.contrib.staticfiles') + settings['INSTALLED_APPS'], # Routing 'ROOT_URLCONF': app_name + '.urls', # Static files 'STATIC_ROOT': 'staticfiles', 'STATIC_URL': '/static/', 'STATICFILES_DIRS': staticfiles_dirs, # Don't use Whitenoise's static files storage in testing as it requires running collectstatic 'STATICFILES_STORAGE': staticfiles_storage, 'WHITENOISE_ROOT': staticfiles_dirs[0] + '/files', 'WHITENOISE_ALLOW_ALL_ORIGINS': False }) ########## # SENTRY # ########## settings['RAVEN_CONFIG'] = {} # To be extended by the parent project (May remain empty if Sentry is not enabled) if sentry_dsn: # pragma: no cover settings['INSTALLED_APPS'] = ('raven.contrib.django.raven_compat',) + settings['INSTALLED_APPS'] settings['LOGGING']['handlers']['sentry'] = { 'level': 'ERROR', 'class': 'raven.contrib.django.raven_compat.handlers.SentryHandler', } settings['LOGGING']['root']['handlers'].append('sentry') # Raven shall only be a dependency of projects that define sentry_dsn import raven settings['RAVEN_CONFIG']['dsn'] = sentry_dsn try: settings['RAVEN_CONFIG']['release'] = raven.fetch_git_sha(settings['PROJECT_ROOT_DIR']) except raven.exceptions.InvalidGitRepository: # Probably not a git repo (on heroku?) pass settings['MIDDLEWARE'] = _compute_middleware_settings( early_middleware, late_middleware, use_sentry=bool(sentry_dsn)) return settings def _compute_middleware_settings(early=(), late=(), use_sentry=False): """This method takes care of inserting the app's middlewares without conflicting with Sentry's positioning""" return (('raven.contrib.django.raven_compat.middleware.SentryResponseErrorIdMiddleware',) if use_sentry else ()) \ + early + ('django.middleware.common.CommonMiddleware',) + late
python
""" This will module contains the setup_flask function as well as registry functions """ __author__ = 'Ben Christenson' __date__ = "9/15/15" import os import inspect import sys from flask import Flask from flask_sqlalchemy import SQLAlchemy import flask_login from flask_login import LoginManager from flask.blueprints import Blueprint import sqlalchemy from sqlalchemy import create_engine from seaborn.logger import log from seaborn.flask.models import ApiModel from seaborn.flask.blueprint import BlueprintBinding from seaborn.flask.blueprint.python_bindings import create_python_blueprint_bindings from seaborn.flask.blueprint.unity_bindings import create_unity_blueprint_bindings from seaborn.flask import decorators from seaborn.timestamp import set_timezone_aware class SetupFlask(object): def __init__(self, configuration): self.db = None self.configuration = configuration self.endpoints = None setattr(flask_login, 'COOKIE_NAME', 'token') self.app = Flask(__name__, template_folder=self.configuration.TEMPLATE_FOLDER, static_folder=self.configuration.STATIC_FOLDER) self.app.config.from_object(self.configuration) self.app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True set_timezone_aware(self.configuration.timezone_aware) self._setup_database() self._setup_debug_toolbar() decorators.register(self.db, self.configuration.debug, '%s/' % self.configuration.flask_folder) def setup_run(self, endpoints): """ This will setup flask and all the internals :return: obj of the flask run """ try: self.setup_endpoints(endpoints) self._setup_login_manager() self._setup_proxy_conn() self._test_database() run = self._setup_gevent() or self._run_server log.trace("Done with App Setup") return run except Exception as ex: log.error("Exception:: %s" % ex) raise def _setup_database(self): log.trace("Creating Database Connection %s" % self.app.config['SQLALCHEMY_DATABASE_URI']) self.db = SQLAlchemy(self.app) def _setup_gevent(self): if self.configuration.gevent and sys.version_info[0] == 2: log.trace("Setup Gevents for multithreading support") from gevent import monkey monkey.patch_all() from gevent import wsgi server = wsgi.WSGIServer((self.configuration.ip_address, self.configuration.SERVER_PORT), self.app) return server.serve_forever def _test_database(self): User = self.endpoints.User if self.configuration.debug: log.trace("Inspected Database for tables") engine = create_engine(self.configuration.SQLALCHEMY_DATABASE_URI) inspector = sqlalchemy.inspect(engine) if not inspector.get_table_names(): self.initialize_database() self.initialize_users() if User.query.all() == []: self.initialize_database() self.initialize_users() def _setup_proxy_conn(self): if self.configuration.setup_proxy_conn: from seaborn.flask.blueprint import ProxyEndpoint conn = ProxyEndpoint() log.trace("Setup Proxy Connection for internal api calls %s" % id(conn)) blue_prints = [getattr(self.endpoints, name) for name in dir(self.endpoints) if isinstance(getattr(self.endpoints, name), BlueprintBinding)] for blue_print in blue_prints: blue_print.add_proxy_route(conn, True) def _setup_login_manager(self): """ :return: None """ log.trace("Setup Login Manager") # cookies are handled in _load_user login_manager = LoginManager() login_manager.session_protection = 'strong' login_manager.login_view = 'login' login_manager.init_app(self.app) @login_manager.user_loader def load_user(user_id): return self.endpoints.User.query.get(user_id) def setup_endpoints(self, endpoints): """ :param endpoints: :return: None """ self.endpoints = endpoints log.trace("Registering Blueprint Endpoints") for name in dir(self.endpoints): blue_print = getattr(self.endpoints, name) if isinstance(blue_print, Blueprint): try: self.app.register_blueprint(blue_print) except Exception as e: log.error("Problem with blueprint %s" % blue_print) raise def _setup_debug_toolbar(self): if self.configuration.DEBUG_TOOLBAR: log.trace("Setup Debug Toolbar") from flask_debugtoolbar import DebugToolbarExtension DebugToolbarExtension(self.app) def _run_server(self): """ :return: None """ log.trace("Starting App Run") self.app.run(host=self.configuration.ip_address, port=self.configuration.SERVER_PORT) def initialize_database(self): """ WARNING: This will reinitialize the database by dropping all tables and re-creating them. :return: None """ log.warning("Initializing Database") try: self.db.drop_all() except: pass self.db.create_all() def initialize_users(self, admin_password=None, super_password=None, demo_password=None, full_name=""): """ :param admin_password: str of the password for the admin account :param super_password: str of the password for the super-user account :param demo_password: str of the password for the demo account :param full_name: str of full name to give to each of the admin, super, and demo accounts :return: None """ admin_password = admin_password or self.configuration.admin_password super_password = super_password or self.configuration.super_password demo_password = demo_password or self.configuration.demo_password admin_update = self.endpoints.user.views.admin_update base_domain = '.'.join(self.configuration.domain.split('.')[-2:]) demo_user = admin_update._undecorated(username='Demo-User', email='demo@%s' % base_domain, full_name=full_name, password=demo_password, auth_level='Demo') super_user = admin_update._undecorated(username='Super-User', email='super@%s' % base_domain, full_name=full_name, password=super_password, auth_level='Superuser') admin_user = admin_update._undecorated(username='Admin-User', email='admin@%s' % base_domain, full_name=full_name, password=admin_password, auth_level='Admin') self.db.session.add_all([demo_user, super_user, admin_user]) self.db.session.commit() def create_python_bindings(self): """ """ log.warning('Creating python API bindings') create_python_blueprint_bindings( path='%s/bindings/python_bindings' % self.configuration.flask_folder, blue_prints=[getattr(self.endpoints, name) for name in dir(self.endpoints) if isinstance(getattr(self.endpoints, name), BlueprintBinding)], models=[getattr(self.endpoints, name) for name in dir(self.endpoints) if inspect.isclass(getattr(self.endpoints, name)) and issubclass(getattr(self.endpoints, name), ApiModel)]) def create_unity_bindings(self): """ """ log.warning('Creating unity API bindings') vars = dir(self.endpoints) for unity_path in self.configuration.unity_folder: if os.path.exists(unity_path): create_unity_blueprint_bindings( path=unity_path, blue_prints=[getattr(self.endpoints, name) for name in vars if isinstance(getattr(self.endpoints, name), BlueprintBinding)], models=[getattr(self.endpoints, name) for name in vars if inspect.isclass(getattr(self.endpoints, name)) and issubclass(getattr(self.endpoints, name), ApiModel)], base_uri=self.configuration.domain, clear=False, class_members=[])
python
import wasm3 as m3 import pytest from helpers import wat2wasm MV_SWAP_WASM = wat2wasm(""" (module (func (export "swap") (param i32 i32) (result i32 i32) (get_local 1) (get_local 0) ) ) """) MV_IMPORT_WASM = wat2wasm(""" (module (type $t0 (func (param i32 i64) (result i64 i32))) (import "env" "swap" (func $env.swap (type $t0))) (func (export "swap") (type $t0) (get_local 0) (get_local 1) (call $env.swap) ) ) """) def test_multivalue_swap(): env = m3.Environment() rt = env.new_runtime(64) mod = env.parse_module(MV_SWAP_WASM) rt.load(mod) swap = rt.find_function('swap') assert swap(1, 2) == (2, 1) assert swap(2, 1) == (1, 2) assert swap.call_argv('1', '2') == (2, 1) assert swap.call_argv('2', '1') == (1, 2) def test_multivalue_imported(): env = m3.Environment() rt = env.new_runtime(64) mod = env.parse_module(MV_IMPORT_WASM) rt.load(mod) mod.link_function("env", "swap", "Ii(iI)", lambda a,b: (b,a)) swap = rt.find_function('swap') assert swap(1, 2) == (2, 1) assert swap(2, 1) == (1, 2)
python
""" # lint-amnesty, pylint: disable=cyclic-import XFields for video module. """ import datetime from xblock.fields import Boolean, DateTime, Dict, Float, List, Scope, String from xmodule.fields import RelativeTime # Make '_' a no-op so we can scrape strings. Using lambda instead of # `django.utils.translation.ugettext_noop` because Django cannot be imported in this file _ = lambda text: text class VideoFields: """Fields for `VideoBlock`.""" display_name = String( help=_("The display name for this component."), display_name=_("Component Display Name"), default="Video", scope=Scope.settings ) saved_video_position = RelativeTime( help=_("Current position in the video."), scope=Scope.user_state, default=datetime.timedelta(seconds=0) ) # TODO: This should be moved to Scope.content, but this will # require data migration to support the old video module. youtube_id_1_0 = String( help=_("Optional, for older browsers: the YouTube ID for the normal speed video."), display_name=_("YouTube ID"), scope=Scope.settings, default="3_yD_cEKoCk" ) youtube_id_0_75 = String( help=_("Optional, for older browsers: the YouTube ID for the .75x speed video."), display_name=_("YouTube ID for .75x speed"), scope=Scope.settings, default="" ) youtube_id_1_25 = String( help=_("Optional, for older browsers: the YouTube ID for the 1.25x speed video."), display_name=_("YouTube ID for 1.25x speed"), scope=Scope.settings, default="" ) youtube_id_1_5 = String( help=_("Optional, for older browsers: the YouTube ID for the 1.5x speed video."), display_name=_("YouTube ID for 1.5x speed"), scope=Scope.settings, default="" ) start_time = RelativeTime( # datetime.timedelta object help=_( "Time you want the video to start if you don't want the entire video to play. " "Not supported in the native mobile app: the full video file will play. " "Formatted as HH:MM:SS. The maximum value is 23:59:59." ), display_name=_("Video Start Time"), scope=Scope.settings, default=datetime.timedelta(seconds=0) ) end_time = RelativeTime( # datetime.timedelta object help=_( "Time you want the video to stop if you don't want the entire video to play. " "Not supported in the native mobile app: the full video file will play. " "Formatted as HH:MM:SS. The maximum value is 23:59:59." ), display_name=_("Video Stop Time"), scope=Scope.settings, default=datetime.timedelta(seconds=0) ) #front-end code of video player checks logical validity of (start_time, end_time) pair. download_video = Boolean( help=_("Allow students to download versions of this video in different formats if they cannot use the edX video" " player or do not have access to YouTube. You must add at least one non-YouTube URL " "in the Video File URLs field."), display_name=_("Video Download Allowed"), scope=Scope.settings, default=False ) html5_sources = List( help=_("The URL or URLs where you've posted non-YouTube versions of the video. Each URL must end in .mpeg," " .mp4, .ogg, or .webm and cannot be a YouTube URL. (For browser compatibility, we strongly recommend" " .mp4 and .webm format.) Students will be able to view the first listed video that's compatible with" " the student's computer. To allow students to download these videos, " "set Video Download Allowed to True."), display_name=_("Video File URLs"), scope=Scope.settings, ) track = String( help=_("By default, students can download an .srt or .txt transcript when you set Download Transcript " "Allowed to True. If you want to provide a downloadable transcript in a different format, we recommend " "that you upload a handout by using the Upload a Handout field. If this isn't possible, you can post a " "transcript file on the Files & Uploads page or on the Internet, and then add the URL for the " "transcript here. Students see a link to download that transcript below the video."), display_name=_("Downloadable Transcript URL"), scope=Scope.settings, default='' ) download_track = Boolean( help=_("Allow students to download the timed transcript. A link to download the file appears below the video." " By default, the transcript is an .srt or .txt file. If you want to provide the transcript for " "download in a different format, upload a file by using the Upload Handout field."), display_name=_("Download Transcript Allowed"), scope=Scope.settings, default=False ) # `sub` is deprecated field and should not be used in future. Now, transcripts are primarily handled in VAL and # backward compatibility for the video modules already using this field has been ensured. sub = String( help=_("The default transcript for the video, from the Default Timed Transcript field on the Basic tab. " "This transcript should be in English. You don't have to change this setting."), display_name=_("Default Timed Transcript"), scope=Scope.settings, default="" ) show_captions = Boolean( help=_("Specify whether the transcripts appear with the video by default."), display_name=_("Show Transcript"), scope=Scope.settings, default=True ) # Data format: {'de': 'german_translation', 'uk': 'ukrainian_translation'} transcripts = Dict( help=_("Add transcripts in different languages." " Click below to specify a language and upload an .srt transcript file for that language."), display_name=_("Transcript Languages"), scope=Scope.settings, default={} ) transcript_language = String( help=_("Preferred language for transcript."), display_name=_("Preferred language for transcript"), scope=Scope.preferences, default="en" ) transcript_download_format = String( help=_("Transcript file format to download by user."), scope=Scope.preferences, values=[ # Translators: This is a type of file used for captioning in the video player. {"display_name": _("SubRip (.srt) file"), "value": "srt"}, {"display_name": _("Text (.txt) file"), "value": "txt"} ], default='srt', ) speed = Float( help=_("The last speed that the user specified for the video."), scope=Scope.user_state ) global_speed = Float( help=_("The default speed for the video."), scope=Scope.preferences, default=1.0 ) auto_advance = Boolean( help=_("Specify whether to advance automatically to the next unit when the video ends."), scope=Scope.preferences, # The default is True because this field only has an effect when auto-advance controls are enabled # (globally enabled through feature flag and locally enabled through course setting); in that case # it's good to start auto-advancing and let the student disable it, instead of the other way around # (requiring the user to enable it). When auto-advance controls are hidden, this field won't be used. default=True, ) youtube_is_available = Boolean( help=_("Specify whether YouTube is available for the user."), scope=Scope.user_info, default=True ) handout = String( help=_("Upload a handout to accompany this video. Students can download the handout by " "clicking Download Handout under the video."), display_name=_("Upload Handout"), scope=Scope.settings, ) only_on_web = Boolean( help=_( "Specify whether access to this video is limited to browsers only, or if it can be " "accessed from other applications including mobile apps." ), display_name=_("Video Available on Web Only"), scope=Scope.settings, default=False ) edx_video_id = String( help=_("If you were assigned a Video ID by edX for the video to play in this component, enter the ID here." " In this case, do not enter values in the Default Video URL, the Video File URLs, " "and the YouTube ID fields. If you were not assigned a Video ID," " enter values in those other fields and ignore this field."), display_name=_("Video ID"), scope=Scope.settings, default="", ) bumper_last_view_date = DateTime( display_name=_("Date of the last view of the bumper"), scope=Scope.preferences, ) bumper_do_not_show_again = Boolean( display_name=_("Do not show bumper again"), scope=Scope.preferences, default=False, )
python
"""Ingest by directly writing a ZIP file to archive storage. """ from __future__ import print_function import sys import os import os.path import re import time from threading import Thread if sys.version_info < (3, 0): import Queue as queue else: import queue import zlib import logging import pytest import icat import icat.config from icat.query import Query from icat.ids import DataSelection icat.hzb = pytest.importorskip("icat.hzb") # This test module is HZB specific from icat.hzb.proposal import ProposalNo from helper import MemorySpace, DatasetBase from conftest import getConfig, callscript log = logging.getLogger("test.%s" % __name__) # ============================ testdata ============================ testProposalNo = "12100409-ST-1.1-P" testDatasetPrefix = "test_ingestarchive" # ============================= helper ============================= @pytest.fixture(scope="module") def icatconfig(setupicat, testConfig, request): client, conf, config = getConfig(ids="mandatory") client.login(conf.auth, conf.credentials) mainbase = request.config.getini('mainstoragebase') archivebase = request.config.getini('archivestoragebase') conf.cmdargs.append("--mainStorageBase=%s" % mainbase) conf.cmdargs.append("--archiveStorageBase=%s" % archivebase) incomingbase = request.config.getini('incomingbase') proposaldir = os.path.join(incomingbase, testProposalNo.replace('/', '_')) os.mkdir(proposaldir) conf.proposaldir = proposaldir def cleanup(): os.rmdir(proposaldir) client.logout() if testConfig.cleanup: request.addfinalizer(cleanup) return (client, conf, config) @pytest.fixture(scope="function") def dataset(request, icatconfig, testConfig): client, conf, _ = icatconfig assert request.node.name.startswith("test_") name = testDatasetPrefix + request.node.name[4:] name = re.sub(r'[\[\]]', '_', name) dataset = Dataset(conf.proposaldir, testProposalNo, name) def cleanup(): dataset.cleanup(client) if testConfig.cleanup: request.addfinalizer(cleanup) return dataset class Datafile(object): def __init__(self, directory, fname, size): self.directory = directory self.fname = fname self.size = size self.path = os.path.join(self.directory, self.fname) self.crc32 = 0 self._create() def _create(self): size = self.size chunksize = 8192 with open("/dev/urandom", "rb") as infile: with open(self.path, "wb") as outfile: while size > 0: if chunksize > size: chunksize = size chunk = infile.read(chunksize) self.crc32 = zlib.crc32(chunk, self.crc32) outfile.write(chunk) size -= len(chunk) def getcrc(self): return "%x" % (self.crc32 & 0xffffffff) def unlink(self): os.unlink(self.path) class Dataset(DatasetBase): fileCount = 32 fileSize = MemorySpace("10 MiB") def __init__(self, incomingdir, proposal, name): self.proposal = ProposalNo.parse(proposal) self.name = name self.files = [] self.datasetdir = os.path.join(incomingdir, name) os.mkdir(self.datasetdir) for n in range(1,self.fileCount+1): fname = "test_%05d.dat" % n datafile = Datafile(self.datasetdir, fname, self.fileSize) self.files.append(datafile) self.size = self.fileCount*self.fileSize self.dataset = None def cleanup(self, client): super(Dataset, self).cleanup(client) for f in self.files: f.unlink() os.rmdir(self.datasetdir) def uploadFiles(self, client): raise RuntimeError("This Dataset class does not support upload.") def ingest(self, conf): args = conf.cmdargs + [str(self.proposal), self.name] args.extend(f.path for f in self.files) log.info("%s: call ingest script", self.name) callscript("addfile-archive.py", args) log.info("%s: ingest complete", self.name) def search(self, client): query = icat.query.Query(client, "Dataset", conditions={"name":"= '%s'" % self.name}, includes=["datafiles"]) cond = self.proposal.as_conditions() query.addConditions({ "investigation.%s" % a: c for (a, c) in cond.items() }) return client.assertedSearch(query)[0] def verify(self, client): self.dataset = self.search(client) assert len(self.dataset.datafiles) == len(self.files), \ "wrong number of datafiles" dfidx = dict([ (df.name,df) for df in self.dataset.datafiles ]) for f in self.files: assert f.fname in dfidx df = dfidx[f.fname] assert df.location assert df.fileSize == f.size assert df.checksum == f.getcrc() # ============================= tests ============================== def test_ingest(icatconfig, dataset): """Ingest a dataset by directly writing to archive storage. """ client, conf, _ = icatconfig dataset.ingest(conf) dataset.verify(client) dataset.download(client) def test_ingest_and_upload(icatconfig, dataset): """Try to upload a file to the same dataset while we are ingesting it. """ client, conf, config = icatconfig resultQueue = queue.Queue() def upload(conf, client_kwargs, dataset): try: # Note: I'm not sure whether Suds is thread safe. Therefore # use a separate local client object in each thread. client = icat.Client(conf.url, **client_kwargs) client.login(conf.auth, conf.credentials) name = dataset.name datafileFormat = dataset.getDatafileFormat(client) f = Datafile(dataset.datasetdir, "upload.dat", 32) while True: # Get the dataset object from ICAT, continue to retry # while it does not exist yet. try: ds = dataset.search(client) log.info("Upload: dataset %s found.", name) break except icat.SearchAssertionError: log.info("Upload: dataset %s not found (yet).", name) time.sleep(0.2) continue selection = DataSelection([ds]) datafile = client.new("datafile", name=f.fname, dataset=ds, datafileFormat=datafileFormat) while True: # Do the upload. This may (or even should) fail due to # the dataset not online. The error triggers a restore, # so we continue to retry until the restore has been # completed. try: df = client.putData(f.path, datafile) log.info("Upload to dataset %s succeeded.", name) break except icat.IDSDataNotOnlineError: status = client.ids.getStatus(selection) log.info("Upload: dataset %s is %s.", name, status) time.sleep(0.2) continue resultQueue.put(f) client.logout() except Exception as err: resultQueue.put(err) def ingest(conf, dataset): try: dataset.ingest(conf) resultQueue.put("Ok") except Exception as err: resultQueue.put(err) tul = Thread(target=upload, args=(conf, config.client_kwargs, dataset)) tin = Thread(target=ingest, args=(conf, dataset)) threads = [tul, tin] for t in threads: t.start() for t in threads: t.join() c = 0 while True: try: r = resultQueue.get(block=False) c += 1 if isinstance(r, Datafile): dataset.files.append(r) dataset.fileCount += 1 elif isinstance(r, str): pass else: raise r except queue.Empty: break assert c == 2 dataset.verify(client) dataset.download(client) @pytest.mark.parametrize("delay", [False, True]) def test_ingest_existing(icatconfig, dataset, delay): """Try to ingest a dataset that already exist. This must yield an error and must not in any way damage the already existing dataset. """ client, conf, _ = icatconfig query = icat.query.Query(client, "Investigation", conditions=dataset.proposal.as_conditions()) investigation = client.assertedSearch(query)[0] old_dataset = DatasetBase(client, investigation, dataset.name, fileCount=4, fileSize=MemorySpace("10 KiB")) old_dataset.uploadFiles(client) if delay: # Request archive of the old dataset and wait until it is # written to archive storage and removed from main storage. client.ids.archive(DataSelection([old_dataset.dataset])) time.sleep(90) # OSError is raised if the ZIP file in archive storage exists, # RuntimeError is raised if the directory in main storage exists, # icat.ICATObjectExistsError is raised if neither files exist, but # the dataset in ICAT. with pytest.raises( (OSError, RuntimeError, icat.ICATObjectExistsError) ): dataset.ingest(conf) old_dataset.download(client) old_dataset.cleanup()
python
from rest_framework import permissions class UpdateOwnProfile(permissions.BasePermission): def has_object_permission(self,request,view,obj): if request.method in permissions.SAFE_METHODS: return True return obj.id==request.user.id class UpdateStatus(permissions.BasePermission): def has_object_permission(self,request,view,obj): if request.method in permissions.SAFE_METHODS: return obj.user_profile==request.user
python
import collections import logging import string from abc import abstractmethod from typing import Callable, List from flask_sqlalchemy import SQLAlchemy from retrying import retry from sqlalchemy.exc import IntegrityError from sqlalchemy.orm.exc import FlushError, NoResultFound from profiles.exceptions import OrcidTokenNotFound, ProfileNotFound from profiles.models import EmailAddress, ID_LENGTH, OrcidToken, Profile from profiles.types import CanBeCleared from profiles.utilities import generate_random_string LOGGER = logging.getLogger(__name__) class OrcidTokens(CanBeCleared): @abstractmethod def add(self, orcid_token: OrcidToken) -> None: raise NotImplementedError @abstractmethod def get(self, orcid: str) -> OrcidToken: raise NotImplementedError @abstractmethod def remove(self, orcid: str) -> None: raise NotImplementedError class Profiles(CanBeCleared, collections.Sized): @abstractmethod def add(self, profile: Profile) -> Profile: raise NotImplementedError @abstractmethod def get(self, profile_id: str) -> Profile: raise NotImplementedError @abstractmethod def get_by_orcid(self, orcid: str) -> Profile: raise NotImplementedError @abstractmethod def get_by_email_address(self, *email_addresses: str) -> Profile: raise NotImplementedError @abstractmethod def next_id(self) -> str: raise NotImplementedError @abstractmethod def list(self, limit: int = None, offset: int = 0, desc: bool = False) -> List[Profile]: raise NotImplementedError class SQLAlchemyOrcidTokens(OrcidTokens): def __init__(self, db: SQLAlchemy) -> None: self.db = db def add(self, orcid_token: OrcidToken) -> None: self.db.session.add(orcid_token) def get(self, orcid: str) -> OrcidToken: try: return self.db.session.query(OrcidToken).filter_by(orcid=orcid).one() except NoResultFound as exception: msg = 'ORCID token for ORCID {} not found'.format(orcid) LOGGER.info(msg=msg) raise OrcidTokenNotFound(msg) from exception def clear(self) -> None: self.db.session.query(OrcidToken).delete() def remove(self, orcid: str) -> None: try: orcid_token = self.db.session.query(OrcidToken).filter_by(orcid=orcid).one() self.db.session.delete(orcid_token) except NoResultFound: LOGGER.info('Unable to remove ORCID token for ORCID %s. Token not found', orcid) class SQLAlchemyProfiles(Profiles): def __init__(self, db: SQLAlchemy, next_id_generator: Callable[[], str] = None) -> None: if next_id_generator is None: def generate_id(): return generate_random_string(ID_LENGTH, string.ascii_lowercase + string.digits) next_id_generator = generate_id self.db = db self._next_id_generator = next_id_generator def add(self, profile: Profile) -> Profile: self.db.session.begin_nested() self.db.session.add(profile) try: self.db.session.commit() except (FlushError, IntegrityError) as exception: self.db.session.rollback() message = exception.args[0] log_msg = 'Unable to create profile with id {}. '.format(profile.id) if 'orcid' in message and profile.orcid: log_msg += 'Profile with ORCID {} already exists'.format(profile.orcid) LOGGER.info(msg=log_msg) return self.get_by_orcid(profile.orcid) elif 'EmailAddress' in message and profile.email_addresses: email_addresses = [x.email for x in profile.email_addresses] log_msg += 'Profile with email address {} already exists'.format(email_addresses) LOGGER.info(msg=log_msg) return self.get_by_email_address(*email_addresses) raise exception return profile def get(self, profile_id: str) -> Profile: try: return self.db.session.query(Profile).filter_by(id=profile_id).one() except NoResultFound as exception: msg = 'Profile with ID {} not found'.format(profile_id) LOGGER.info(msg=msg) raise ProfileNotFound(msg) from exception def get_by_orcid(self, orcid: str) -> Profile: try: return self.db.session.query(Profile).filter_by(orcid=orcid).one() except NoResultFound as exception: msg = 'Profile with ORCID {} not found'.format(orcid) LOGGER.info(msg=msg) raise ProfileNotFound(msg) from exception def get_by_email_address(self, *email_addresses: str) -> Profile: if not email_addresses: raise ProfileNotFound('No email address(es) provided') try: return self.db.session.query(Profile).join(EmailAddress) \ .filter(EmailAddress.email.in_(email_addresses)).one() except NoResultFound as exception: msg = 'Profile with email address(es) {} not found'.format(email_addresses) LOGGER.info(msg=msg) raise ProfileNotFound(msg) from exception @retry(stop_max_attempt_number=10) def next_id(self) -> str: profile_id = self._next_id_generator() if self.db.session.query(Profile.id).filter_by(id=profile_id).scalar() is not None: raise RuntimeError('Generated ID already in use') return profile_id def list(self, limit: int = None, offset: int = 0, desc: bool = True) -> List[Profile]: query = self.db.session.query(Profile) if desc: query = query.order_by(Profile.desc()) else: query = query.order_by(Profile.asc()) return query.limit(limit).offset(offset).all() def clear(self) -> None: self.db.session.query(Profile).delete() def __len__(self) -> int: return self.db.session.query(Profile).count()
python
from .common import EWSAccountService, create_attachment_ids_element from ..properties import RootItemId from ..util import create_element class DeleteAttachment(EWSAccountService): """MSDN: https://docs.microsoft.com/en-us/exchange/client-developer/web-service-reference/deleteattachment-operation """ SERVICE_NAME = 'DeleteAttachment' def call(self, items): return self._elems_to_objs(self._chunked_get_elements(self.get_payload, items=items)) def _elems_to_objs(self, elems): for elem in elems: if isinstance(elem, Exception): yield elem continue yield RootItemId.from_xml(elem=elem, account=self.account) @classmethod def _get_elements_in_container(cls, container): return container.findall(RootItemId.response_tag()) def get_payload(self, items): payload = create_element('m:%s' % self.SERVICE_NAME) attachment_ids = create_attachment_ids_element(items=items, version=self.account.version) payload.append(attachment_ids) return payload
python
""" 388. Longest Absolute File Path Medium Suppose we have a file system that stores both files and directories. An example of one system is represented in the following picture: Here, we have dir as the only directory in the root. dir contains two subdirectories, subdir1 and subdir2. subdir1 contains a file file1.ext and subdirectory subsubdir1. subdir2 contains a subdirectory subsubdir2, which contains a file file2.ext. In text form, it looks like this (with ⟶ representing the tab character): dir ⟶ subdir1 ⟶ ⟶ file1.ext ⟶ ⟶ subsubdir1 ⟶ subdir2 ⟶ ⟶ subsubdir2 ⟶ ⟶ ⟶ file2.ext If we were to write this representation in code, it will look like this: "dir\n\tsubdir1\n\t\tfile1.ext\n\t\tsubsubdir1\n\tsubdir2\n\t\tsubsubdir2\n\t\t\tfile2.ext". Note that the '\n' and '\t' are the new-line and tab characters. Every file and directory has a unique absolute path in the file system, which is the order of directories that must be opened to reach the file/directory itself, all concatenated by '/'s. Using the above example, the absolute path to file2.ext is "dir/subdir2/subsubdir2/file2.ext". Each directory name consists of letters, digits, and/or spaces. Each file name is of the form name.extension, where name and extension consist of letters, digits, and/or spaces. Given a string input representing the file system in the explained format, return the length of the longest absolute path to a file in the abstracted file system. If there is no file in the system, return 0. Example 1: Input: input = "dir\n\tsubdir1\n\tsubdir2\n\t\tfile.ext" Output: 20 Explanation: We have only one file, and the absolute path is "dir/subdir2/file.ext" of length 20. Example 2: Input: input = "dir\n\tsubdir1\n\t\tfile1.ext\n\t\tsubsubdir1\n\tsubdir2\n\t\tsubsubdir2\n\t\t\tfile2.ext" Output: 32 Explanation: We have two files: "dir/subdir1/file1.ext" of length 21 "dir/subdir2/subsubdir2/file2.ext" of length 32. We return 32 since it is the longest absolute path to a file. Example 3: Input: input = "a" Output: 0 Explanation: We do not have any files, just a single directory named "a". Example 4: Input: input = "file1.txt\nfile2.txt\nlongfile.txt" Output: 12 Explanation: There are 3 files at the root directory. Since the absolute path for anything at the root directory is just the name itself, the answer is "longfile.txt" with length 12. Constraints: 1 <= input.length <= 104 input may contain lowercase or uppercase English letters, a new line character '\n', a tab character '\t', a dot '.', a space ' ', and digits. """ # V0 # IDEA : dict + replae, split class Solution(object): def lengthLongestPath(self, input): # NOTE : we maintain a dict for collecting key and the length till now d={} longest=0 fileList=input.split("\n") for i in fileList: # directory if "." not in i: key = i.count("\t") # level of directory value = len(i.replace("\t","")) # length after removing '\t' d[key]=value # file else: key=i.count("\t") ### NOTE : length of doc (all directory length + doc length + count of '\') length = sum([d[j] for j in d.keys() if j<key]) + len(i.replace("\t","")) + key longest=max(longest,length) print (d) return longest # V0' # IDEA : HASH TABLE class Solution(object): def lengthLongestPath(self, input): maxlen = 0 pathlen = {0: 0} #for line in input.splitlines(): for line in input.split('\n'): name = line.lstrip('\t') depth = len(line) - len(name) if '.' in name: maxlen = max(maxlen, pathlen[depth] + len(name)) else: pathlen[depth + 1] = pathlen[depth] + len(name) + 1 return maxlen # V0'' # IDEA : stack + string op class Solution: def lengthLongestPath(self, input): parts = input.split('\n') ans = 0 stack = [] L = 0 for s in parts: # strip '\t' on left end only cs = s.lstrip('\t') level = len(s) - len(cs) while stack and stack[-1][1] >= level: L -= len(stack.pop()[0]) stack.append((cs, level)) L += len(cs) if "." in cs: ans = max(ans, len(stack) + L - 1) return ans # V1 # IDEA :STACK # https://leetcode.com/problems/longest-absolute-file-path/discuss/812407/Python-3-or-Stack-or-Explanation class Solution: def lengthLongestPath(self, s: str) -> int: paths, stack, ans = s.split('\n'), [], 0 for path in paths: p = path.split('\t') depth, name = len(p) - 1, p[-1] l = len(name) while stack and stack[-1][1] >= depth: stack.pop() if not stack: stack.append((l, depth)) else: stack.append((l+stack[-1][0], depth)) if '.' in name: ans = max(ans, stack[-1][0] + stack[-1][1]) return ans # V1 # IDEA : dict + replae, split # https://leetcode.com/problems/longest-absolute-file-path/discuss/86640/python-solution-easy-to-understand class Solution(object): def lengthLongestPath(self, input): dict={} longest=0 fileList=input.split("\n") for i in fileList: if "." not in i: # directory key = i.count("\t") # level of directory value = len(i.replace("\t","")) # length after removing '\t' dict[key]=value else: # doc key=i.count("\t") # length of doc (all directory length + doc length + count of '\') length = sum([dict[j] for j in dict.keys() if j<key]) + len(i.replace("\t","")) + key longest=max(longest,length) return longest # V1' # http://bookshadow.com/weblog/2016/08/21/leetcode-longest-absolute-file-path/ class Solution(object): def lengthLongestPath(self, input): """ :type input: str :rtype: int """ ans = lengthSum = 0 stack = [(-1, 0)] for p in input.split('\n'): depth = p.count('\t') name = p.replace('\t', '') topDepth, topLength = stack[-1] while depth <= topDepth: stack.pop() lengthSum -= topLength topDepth, topLength = stack[-1] length = len(name) + (depth > 0) lengthSum += length stack.append((depth, length)) if name.count('.'): ans = max(ans, lengthSum) return ans # V1'' # https://leetcode.com/problems/longest-absolute-file-path/discuss/86619/Simple-Python-solution # IDEA : lstrip() : Remove spaces to the left of the string: # https://www.w3schools.com/python/ref_string_lstrip.asp class Solution(object): def lengthLongestPath(self, input): maxlen = 0 pathlen = {0: 0} for line in input.splitlines(): name = line.lstrip('\t') depth = len(line) - len(name) if '.' in name: maxlen = max(maxlen, pathlen[depth] + len(name)) else: pathlen[depth + 1] = pathlen[depth] + len(name) + 1 return maxlen ### Test case : dev # V1''' # http://bookshadow.com/weblog/2016/08/21/leetcode-longest-absolute-file-path/ class Solution(object): def lengthLongestPath(self, input): """ :type input: str :rtype: int """ maxlen = 0 pathlen = {0: 0} for line in input.splitlines(): name = line.lstrip('\t') depth = len(line) - len(name) if '.' in name: maxlen = max(maxlen, pathlen[depth] + len(name)) else: pathlen[depth + 1] = pathlen[depth] + len(name) + 1 return maxlen # V1'''' # https://www.jiuzhang.com/solution/longest-absolute-file-path/#tag-highlight-lang-python import re, collections class Solution: # @param {string} input an abstract file system # @return {int} return the length of the longest absolute path to file def lengthLongestPath(self, input): # Write your code here dict = collections.defaultdict(lambda: "") lines = input.split("\n") n = len(lines) result = 0 for i in xrange(n): count = lines[i].count("\t") lines[i] = dict[count - 1] + re.sub("\\t+","/", lines[i]) if "." in lines[i]: result = max(result, len(lines[i])) dict[count] = lines[i] return result # V1''''' # https://leetcode.com/problems/longest-absolute-file-path/discuss/266896/Simple-(Python)-solution-with-detailed-explanation class Solution: def lengthLongestPath(self, input: str) -> int: # return value maxlen = 0 # map each level (0-indexed) to the current # maximum path length through that level; # # begin with a "-1 level" of 0 length, to simply # index the "level before the 0th level", which # is a common practice in dynamic programming levels = {-1:0} # split up the string so that each file/directory (token) is an # entry in the list; this preserves the tabs in each entry for token in input.split('\n'): # the 0-indexed level of this token is the number of tabs ''' only tabs contribute to the level; spaces are regular characters''' level = token.count('\t') # update the current level to be the length of the path # through the previous level + length of this token; # subtracting the level removes the tabs from the count # # think of this like reading through the structure with your eyes # from top to bottom; for each token you look at on a new line, # you update the line's level to be the path through the current token, # disregarding the remainder. we never "look back up" when reading # the directory from top to bottom, and the string structure is # given to be consistent, so one pass updates the levels as deisred levels[level] = levels[level - 1] + len(token) - level # if we just processed a filename, overwrite the maximum length # if the current path + the number of backslashes is longer; # we store the raw token lengths without any separator, # so adding the 0-indexed level provides the correct number # of separators; if there is 1 item, the level is 0 (so no '/'), # if there are two items, the level is 1 (so one '/' between # the items) and so on if '.' in token: maxlen = max(maxlen, levels[level] + level) return maxlen # V1''''''' # https://leetcode.com/problems/longest-absolute-file-path/discuss/328592/python3-beats-99 class Solution: def lengthLongestPath(self, input): parts = input.split('\n') ans = 0 stack = [] L = 0 for s in parts: cs = s.lstrip('\t') level = len(s) - len(cs) while stack and stack[-1][1] >= level: L -= len(stack.pop()[0]) stack.append((cs, level)) L += len(cs) if "." in cs: ans = max(ans, len(stack) + L - 1) return ans # V2 # Time: O(n) # Space: O(d), d is the max depth of the paths class Solution(object): def lengthLongestPath(self, input): """ :type input: str :rtype: int """ def split_iter(s, tok): start = 0 for i in range(len(s)): if s[i] == tok: yield s[start:i] start = i + 1 yield s[start:] max_len = 0 path_len = {0: 0} for line in split_iter(input, '\n'): name = line.lstrip('\t') depth = len(line) - len(name) if '.' in name: max_len = max(max_len, path_len[depth] + len(name)) else: path_len[depth + 1] = path_len[depth] + len(name) + 1 return max_len
python
# -*- coding: utf-8 -*- # DO NOT EDIT THIS FILE! # This file has been autogenerated by dephell <3 # https://github.com/dephell/dephell try: from setuptools import setup except ImportError: from distutils.core import setup readme = "" setup( long_description=readme, name="tgintegration", version="0.4.0", description="An Integration Test Library for Telegram Messenger Bots on top of Pyrogram.", python_requires="==3.*,>=3.6.7", author="JosXa", author_email="[email protected]", license="MIT", packages=["tgintegration", "tgintegration.containers"], package_dir={"": "."}, package_data={}, install_requires=["pyrogram", "typing-extensions==3.*,>=3.7.4"], dependency_links=["git+https://github.com/pyrogram/pyrogram@asyncio#egg=pyrogram"], extras_require={ "dev": [ "bumpversion==0.5.3", "coverage==4.1", "cryptography==1.7", "flake8==2.6.0", "pytest==2.9.2", "pytest-runner==2.11.1", "pyyaml==5.1", "sphinx==2.*,>=2.3.0", "sphinx-autodoc-typehints==1.*,>=1.10.3", "tgcrypto==1.*,>=1.2.0", "tox==2.3.1", "watchdog==0.8.3", "wheel==0.29.0", ] }, )
python
import logging from datetime import datetime import tweepy import creds from main import make_covid_graph logging.basicConfig(filename='nepal-covid.log', level=logging.INFO, format='%(asctime)s-%(name)s - %(levelname)s - %(message)s', datefmt='%d-%b-%y %H:%M:%S') today = datetime.now().date() reported, reocvered, deaths = make_covid_graph() logging.info('Chart created') auth = tweepy.OAuthHandler(creds.api_key, creds.api_secret) auth.set_access_token(creds.access_token, creds.access_secret) api = tweepy.API(auth) logging.info('API Authenticated') tweet = f""" Nepal Covid graph for {today} with reporeted cases {reported}, deaths {deaths}, and recovered {reocvered}. Source code on https://github.com/upretip/nepal-covid""" image_path = f'output/{today}.png' try: status = api.update_with_media(image_path, tweet) logging.info('Tweet sent') except Exception as e: logging.error(f'{e}')
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ test_compat.py Last updated: 2019-09-27 """ from wz_core.reporting import Report from test_core import testinit, runTests if __name__ == '__main__': testinit () # from wz_compat import migrate # runTests (migrate) # from wz_compat import import_pupils # runTests (import_pupils) from wz_compat import config runTests (config) from wz_compat import grades runTests (grades)
python
import base64 import logging from tornado.escape import json_decode from tornado.web import Finish from db import UserStatus from emailer import send_verification_email, send_password_reset_email from service.property import get_property, set_property from service.user import ( get_user, get_user_profile, get_user_by_email, get_user_verification, get_user_verification_code, update_user_password, update_user_profile, change_user_password, add_location, verify_user ) from .base import CORSHandler, SecureHandler class UserHandler(SecureHandler): """ Get user data for requesting user """ def get(self, path: str): user_id = self.get_user_id() user = get_user(user_id) if not user: logging.warning(f'User {user_id} has token but not found?') self.write_error(400, f'User not found with id: {user_id}') else: self.success(200, user) self.finish() class UserProfileHandler(SecureHandler): def get(self, path): user_id = self.get_user_id() user_profile = get_user_profile(user_id) self.success(200, user_profile) self.finish() def post(self, path): user_id = self.get_user_id() data = self.get_data() logging.info(f'Updating settings for user {user_id}, settings {data}') food = data.get('food_preferences') pantry = data.get('pantry') eager = data.get('eagerness') # validate data if food is not None and not all([1 <= int(pref) <= 4 for pref in food]): fields = ", ".join(set(food) - set(range(1, 5))) self.write_error(400, f'Food preferences not found: {fields}') raise Finish() if pantry is not None and not isinstance(pantry, bool): self.write_error(400, f'Pantry value must be true or false') raise Finish() if eager is not None and (not isinstance(eager, int) or not 1 <= eager <= 5): self.write_error(400, f'Eagerness value must be from 1 to 5') raise Finish() update_user_profile(user_id, food, pantry, eager) self.success(204) self.finish() class UserPasswordHandler(CORSHandler, SecureHandler): required_fields = set(['old_password', 'new_password']) def post(self): user_id = self.get_user_id() data = self.get_data() old_pass = data.get('old_password') new_pass = data.get('new_password') if change_user_password(user_id, old_pass, new_pass): self.success(status=200) else: self.write_error(400, 'Incorrect password') self.finish() class UserPasswordResetHandler(CORSHandler): def initialize(self, token_service: 'JwtTokenService', executor: 'ThreadPoolExecutor'): self.token_service = token_service self.executor = executor def post(self, path): # user forgot password # we need to generate a one-time use reset token # and email them a password reset link data = json_decode(self.request.body) if 'email' in data: # they are requesting the reset link user = get_user_by_email(data['email']) if user: token = self.token_service.create_password_reset_token(user.id) encoded = base64.b64encode(token).decode() logging.info('encoded: ', encoded) self.executor.submit(send_password_reset_email, user.email, encoded) self.success(status=204) else: self.write_error(400, 'No user exists with that email address') elif 'token' in data and 'password' in data: # they are sending their token and new password # check that the token is correct, then # set them up with their new password try: token = base64.b64decode(data['token']).decode() except: logging.warning(f'Encountered invalid token: {data["token"]}') self.write_error(400, 'Password reset failed, invalid token') raise Finish() owner = self.token_service.decode_password_token(token, False)['own'] user = get_user(owner) if user is not None: try: if self.token_service.validate_token(token): password = data['password'] if not update_user_password(owner, password): logging.error(f'Failed password reset for user {owner.id}') self.write_error(500, 'Password reset failed') else: self.success(status=204) else: self.write_error(400, 'Password reset failed, token is expired') except Exception as e: logging.error(e) self.write_error(500, 'Password reset failed') else: logging.warning(f"User with id {owner} tried to reset password, but they don't exist") self.write_error(400, 'No user exists with that id') else: self.write_error(400, 'Missing fields') self.finish() class UserLocationHandler(SecureHandler): required_fields = set(['latitude', 'longitude']) def post(self, path): user_id = self.get_user_id() data = self.get_data() add_location(user_id, data['latitude'], data['longitude'], data.get('time')) self.success(204) self.finish() class UserVerificationHandler(SecureHandler): def get(self, path): user_id = self.get_user_id() try: user = get_user(user_id) threshold = int(get_property('user.threshold')) if user.active: logging.info(f"User {user_id} is already active") self.write_error(400, "Error: user already active") elif user.status == "REQUESTED" and (threshold > 0 or get_user_verification_code(user_id) is not None): code = get_user_verification(user_id) send_verification_email(to=user.email, code=code) set_property('user.threshold', str(threshold-1)) self.success(status=204) elif user.status == 'VERIFIED' or user.status == 'ACCEPTED': self.write_error(400, "User is already verified") else: self.write_error(403, "User has not yet been permitted") except Exception as e: logging.error("Failed to send verification email") logging.error(e) self.write_error(500, "Error: failed to send verification email") finally: self.finish() def post(self, path): # decode json user_id = self.get_user_id() data = self.get_data() code = data.get('code') if not code: self.write_error(400, 'Missing verification code') else: if verify_user(code, user_id): self.success(status=204) else: self.write_error(400, 'Invalid verification code') self.finish()
python
from bs4 import BeautifulSoup from collections import Counter from string import punctuation def word_frequencies(url): """ Downloads the content from the given URL and returns a dict {word -> frequency} giving the count of each word on the page. Ignores HTML tags in the response. :param url: Full URL of HTML page :return: dict {word -> frequency} """ html = open(url, 'r', encoding='utf-8') code = html.read() soup = BeautifulSoup(code, features="html.parser") # We get the words in paragrphs text_p = (''.join(s.findAll(text=True))for s in soup.findAll('p')) c_p = Counter((x.rstrip(punctuation).lower() for y in text_p for x in y.split())) # We get the words in divs text_div = (''.join(s.findAll(text=True))for s in soup.findAll('div')) c_div = Counter((x.rstrip(punctuation).lower() for y in text_div for x in y.split())) # We sum the two countesr and get a list with words count from most to less common total = c_div + c_p returnDict = {} for k, v in total.most_common(): returnDict[k] = v return returnDict
python
import numpy as np array = np.array([['08', '02', '22', '97', '38', '15', '00', '40', '00', '75', '04', '05', '07', '78', '52', '12', '50', '77', '91', '08'], ['49', '49', '99', '40', '17', '81', '18', '57', '60', '87', '17', '40', '98', '43', '69', '48', '04', '56', '62', '00'], ['81', '49', '31', '73', '55', '79', '14', '29', '93', '71', '40', '67', '53', '88', '30', '03', '49', '13', '36', '65'], ['52', '70', '95', '23', '04', '60', '11', '42', '69', '24', '68', '56', '01', '32', '56', '71', '37', '02', '36', '91'], ['22', '31', '16', '71', '51', '67', '63', '89', '41', '92', '36', '54', '22', '40', '40', '28', '66', '33', '13', '80'], ['24', '47', '32', '60', '99', '03', '45', '02', '44', '75', '33', '53', '78', '36', '84', '20', '35', '17', '12', '50'], ['32', '98', '81', '28', '64', '23', '67', '10', '26', '38', '40', '67', '59', '54', '70', '66', '18', '38', '64', '70'], ['67', '26', '20', '68', '02', '62', '12', '20', '95', '63', '94', '39', '63', '08', '40', '91', '66', '49', '94', '21'], ['24', '55', '58', '05', '66', '73', '99', '26', '97', '17', '78', '78', '96', '83', '14', '88', '34', '89', '63', '72'], ['21', '36', '23', '09', '75', '00', '76', '44', '20', '45', '35', '14', '00', '61', '33', '97', '34', '31', '33', '95'], ['78', '17', '53', '28', '22', '75', '31', '67', '15', '94', '03', '80', '04', '62', '16', '14', '09', '53', '56', '92'], ['16', '39', '05', '42', '96', '35', '31', '47', '55', '58', '88', '24', '00', '17', '54', '24', '36', '29', '85', '57'], ['86', '56', '00', '48', '35', '71', '89', '07', '05', '44', '44', '37', '44', '60', '21', '58', '51', '54', '17', '58'], ['19', '80', '81', '68', '05', '94', '47', '69', '28', '73', '92', '13', '86', '52', '17', '77', '04', '89', '55', '40'], ['04', '52', '08', '83', '97', '35', '99', '16', '07', '97', '57', '32', '16', '26', '26', '79', '33', '27', '98', '66'], ['88', '36', '68', '87', '57', '62', '20', '72', '03', '46', '33', '67', '46', '55', '12', '32', '63', '93', '53', '69'], ['04', '42', '16', '73', '38', '25', '39', '11', '24', '94', '72', '18', '08', '46', '29', '32', '40', '62', '76', '36'], ['20', '69', '36', '41', '72', '30', '23', '88', '34', '62', '99', '69', '82', '67', '59', '85', '74', '04', '36', '16'], ['20', '73', '35', '29', '78', '31', '90', '01', '74', '31', '49', '71', '48', '86', '81', '16', '23', '57', '05', '54'], ['01', '70', '54', '71', '83', '51', '54', '69', '16', '92', '33', '48', '61', '43', '52', '01', '89', '19', '67', '48']]) array_aslist = array.astype('int64').tolist() max_row = 20 - 4 max_col = 20 - 4 max_prod = 1 for offset_row in range(0,max_row): for offset_col in range(0,max_col): prod_row = array_aslist[offset_row][offset_col] * array_aslist[offset_row][offset_col + 1] * array_aslist[offset_row][offset_col + 2] * array_aslist[offset_row][offset_col + 3] prod_col = array_aslist[offset_row][offset_col] * array_aslist[offset_row + 1][offset_col] * array_aslist[offset_row + 2][offset_col] * array_aslist[offset_row + 3][offset_col] prod_diag = array_aslist[offset_row][offset_col] * array_aslist[offset_row + 1][offset_col + 1] * array_aslist[offset_row + 2][offset_col + 2] * array_aslist[offset_row + 3][offset_col + 3] prod_antidiag = array_aslist[offset_row + 3][offset_col] * array_aslist[offset_row + 2][offset_col + 1] * array_aslist[offset_row + 1][offset_col + 2] * array_aslist[offset_row][offset_col + 3] max_prod_tmp = max([prod_row,prod_col,prod_diag,prod_antidiag]) if max_prod_tmp > max_prod: max_prod = max_prod_tmp print max_prod
python
import os import logging import cfn_storage_gateway_provider import cfn_cache_provider import cfn_file_share_provider log = logging.getLogger() log.setLevel(os.environ.get("LOG_LEVEL", "INFO")) def handler(request, context): if request['ResourceType'] == 'Custom::StorageGatewayNfsFileShare': return cfn_file_share_provider.handler(request, context) elif request['ResourceType'] == 'Custom::StorageGatewayCache': return cfn_cache_provider.handler(request, context) else: return cfn_storage_gateway_provider.handler(request, context)
python
import matplotlib.pyplot as plt import numpy as np import numpy.random as random import re import textstat from scipy import stats from scipy.stats import spearmanr #coding:utf-8 ############### #一般図書のYL x = [8, 6.6, 8.5, 6.5, 5, 7, 6, 5, 5, 5, 6.5, 6.5, 7, 8.2, 7.6, 7.5, 7.5, 7.3, 7, 8.2, 8, 8.5, 7, 6.6, 7.7, 7, 5, 8.5, 8.5, 7, 7, 8] #FREスケールを入れるリスト y=[] number=2 while number < 36: if (number != 22) and (number != 23): #text_listにリストとして読み込む with open('book'+ str(number)+'.txt', 'r') as f: #改行("\n")を""に変換 text_list = f.read().splitlines() list_suu =0 #改行は1行だけのものをなくす→2行以上の改行を全て消すわけではない while list_suu < len(text_list): if text_list[list_suu] == "": text_list[list_suu] = "\n" list_suu+=1 #正規表現 #イラスト部分は削除 text_list = [s for s in text_list if re.sub('.Illustration:\s\d+.', '', s)] #ページ数は削除 text_list = [s for s in text_list if re.sub('{\d+}', '', s)] #リストを結合して,空白で繋いで,文字列に変換 mojiretu = ''.join(text_list) #正規表現 #{数字}(多分ページ数)を削除 mojiretu_p = re.sub('{\d+}', '', mojiretu) #[Illustration:00]を消す mojiretu_p_ill = re.sub('.Illustration:\s\d+.', '', mojiretu_p) #FREスケールをリストに入れる y.append(textstat.flesch_reading_ease(mojiretu_p_ill)) number+=1 print(y) #相関計算 x_np = np.array(x) y_np = np.array(y) #シャピロウィルク検定で正規性の確認 #w値とp_value shap_w, shap_p_value_x = stats.shapiro(x) shap_w, shap_p_value_y = stats.shapiro(y) print(shap_p_value_x,"x_shapiro") print(shap_p_value_y, "y_syapiro") #p_valueが0.05以上なら,帰無仮説が採択→正規性がある if shap_p_value_x >= 0.05 and shap_p_value_y >= 0.05 : print("正規性があるといえる") #ピアソンの相関係数をとる # 相関行列を計算 coef = np.corrcoef(x_np, y_np) soukan = coef[0][1] #p_valueが0.05以下なら,帰無仮説が棄却→正規性がない else: print("正規性があるといえない") #スピアマンの順位相関係数 correlation, pvalue = spearmanr(x, y) soukan = correlation ############################## print("一般図書のFRE") print(soukan) ##グラフの描写 # グラフの大きさ指定 plt.figure(figsize=(5, 5)) # グラフの描写 plt.plot(x, y, 'o', label='Score') plt.title('Correlation coefficient') # タイトル plt.xlabel('YL') # x軸のラベル plt.ylabel('FRE_No.104') # y軸のラベル plt.grid(True) # gridの表示 plt.legend() # 凡例の表示 plt.savefig("FRE_tamesi.png")
python
import asyncio from collections import OrderedDict import logging import uuid import msgpack import re import types from wolverine.module import MicroModule from wolverine.module.controller.zhelpers import unpackb, packb, dump from wolverine.module.service import ServiceMessage logger = logging.getLogger(__name__) class MicroRouter(MicroModule): def __init__(self): super(MicroRouter, self).__init__() self.name = 'router' self.service_handlers = OrderedDict() self.client_handlers = {} self.clients = {} self.servers = {} self.async_req_queue = {} def init(self): pass # self.sort_handlers() def sort_handlers(self): """sort the service handlers by key length from shortest to longest""" d = self.service_handlers.copy() sorted_handlers = OrderedDict( sorted(d.items(), key=lambda t: len(t[0]))) self.service_handlers = sorted_handlers @asyncio.coroutine def app_stop(self): for service_name in list(self.servers.keys()): self.remove_server(service_name) for key in list(self.clients.keys()): yield from self.remove_client(key) self.service_handlers = {} logger.info("router exited") @asyncio.coroutine def add_client(self, client, name, **options): service_id = options.get('service_id', name) if service_id not in self.clients.keys(): self.clients[service_id] = client up = yield from self.app.registry.register(name, register_type='service') return up else: logger.warning('not overriding a client with route ' + name) return True def remove_client(self, name): if name in self.clients.keys(): try: self.clients[name].close() except Exception: logger.error('error closing client ' + name, exc_info=True) try: yield from \ self.app.registry.deregister(name, register_type='service') except Exception: logger.error('failed to deregister client' + name, exc_info=True) del self.clients[name] def add_server(self, name, service): if name not in self.servers.keys(): self.servers[name] = service return True else: logger.warning('service ' + name + ' already registered') return False def remove_server(self, name): if name in self.servers.keys(): self.servers[name].close() del self.servers[name] def add_service_handler(self, route, func): if route not in self.service_handlers.keys(): self.service_handlers[route] = [] self.service_handlers[route].append(func) def remove_service_handler(self, handler): if handler in self.service_handlers.keys(): logger.info('removing all handlers for route ' + handler) logger.info('removed ' + str(len(self.service_handlers[handler])) + ' handlers') del self.service_handlers[handler] def add_client_handler(self, route, func): if route not in self.client_handlers.keys(): self.client_handlers[route] = [] self.client_handlers[route].append(func) def remove_client_handler(self, handler): if handler in self.service_handlers.keys(): logger.info('removing all handlers for route ' + handler) logger.info('removed ' + str(len(self.service_handlers[handler])) + 'handlers') del self.service_handlers[handler] def handle_service(self, data): route = data[-2] logger.info('handling data for route ' + route.decode('utf-8')) if logger.getEffectiveLevel() == logging.DEBUG: dump(data) return self._handle_service(route, data) def _handle_service(self, route, data): result = {'data': [], 'errors': []} if isinstance(route, bytes): route = route.decode('utf-8') found = False for key, handlers in self.service_handlers.items(): pattern = re.compile(key) if pattern.match(route): req = unpackb(data[-1]) found = True logger.info('handler: ' + key) for func in handlers: try: response = func(req) if isinstance(response, types.GeneratorType): response = yield from response if isinstance(response, ServiceMessage): if response.has_error(): result['errors'].append(response.errors) response = response.data if response is not None: result['data'].append(response) except Exception as ex: logger.error('failed in handling data: ', exc_info=True) logger.error('failed in data handling') result['errors'].append("{0}".format(ex)) break if not found: logger.info('no matching route for ' + route) packet = data[:-1] + [packb(result)] return packet def reply(self, data, name): if name in self.servers.keys(): client = self.servers[name] client.write(data) yield from client.drain() def _send(self, data, client): client.write(data) yield from client.drain() data = yield from client.read() return data @asyncio.coroutine def _send_async(self, data, client, correlation_id, future): self.async_req_queue[correlation_id] = future client.write(data) yield from client.drain() return future def send(self, data, route='.*', version='1', **options): client = None future = options.pop('future', None) service = route.split('/')[0] if len(route.split('/')) < 2: route += '/' for c_client_id, c_client in self.clients.items(): c_service, c_service_id = c_client_id.split(':') c_version = c_service_id.split('_')[1] if service == c_service and version == c_version: client = c_client break if client: correlation_id = str(uuid.uuid1())[:8] b_data = msgpack.packb(data, use_bin_type=True) packet = (bytes(correlation_id, encoding='utf-8'), bytes(route, encoding='utf-8'), b_data) if not future: response = yield from self._send(packet, client) response = msgpack.unpackb(response[-1]) else: response = yield from self._send_async(packet, client, correlation_id, future) return response else: return None
python
""" Class Encore CIS 211 w/ Joseph contest.py Author: Joseph Goh Updated: 03/04/2021 """ from typing import List, Dict class Hometown: def __init__(self, name: str): self.name = name self.champions = [] def get_total_wins(self) -> int: total = 0 for champ in self.champions: total += champ.wins return total def __str__(self): return f"{self.name}: {len(self.champions)} champs with {self.get_total_wins()} wins" class Contestant: def __init__(self, name: str, height: float, weight: float, hometown: Hometown): self.name = name self.height = height self.weight = weight self.hometown = hometown self.wins = 0 def notify_win(self): self.wins += 1 if self not in self.hometown.champions: self.hometown.champions.append(self) def __str__(self): return f"Contestant({self.name}, {self.height} in, {self.weight} lb)" def __repr__(self): return self.__str__() def __lt__(self, other): """ Return True *only if* self is strictly lesser than other in either height or weight while *also* being lesser or equal in the other category. Invoked when you evaluate 'self < other'. (i.e. 'x < y' evaluates to x.__lt__(y).) """ loss_by_height = (self.height < other.height) and (self.weight <= other.weight) loss_by_weight = (self.height <= other.height) and (self.weight < other.weight) return loss_by_height or loss_by_weight def __gt__(self, other): """ Return True *only if* self is strictly greater than other in either height or weight while *also* being greater or equal in the other category. Invoked when you evaluate 'self > other'. (i.e. 'x > y' evaluates to x.__gt__(y).) """ win_by_height = (self.height > other.height) and (self.weight >= other.weight) win_by_weight = (self.height >= other.height) and (self.weight > other.weight) return win_by_height or win_by_weight class Contest: def __init__(self, contestants: List[Contestant]): self.contestants = contestants def assign_rank(self) -> List[int]: ranks_li = [] for entry in self.contestants: rank = 1 for opponent in self.contestants: if entry < opponent: rank += 1 ranks_li.append(rank) return ranks_li def create_rank_dict(self) -> Dict[int, List[Contestant]]: ranks_li = self.assign_rank() # Build a dictionary with ranks as keys and empty lists as values ranks_dict = {} for i in range(1, len(self.contestants) + 1): ranks_dict[i] = [] # Append Contestant objects accordingly to for i in range(len(self.contestants)): ranks_dict[ranks_li[i]].append(self.contestants[i]) return ranks_dict def announce_results(self): ranks_dict = self.create_rank_dict() for champ in ranks_dict[1]: champ.notify_win() dimmsdale = Hometown('Dimmsdale') retroville = Hometown('Retroville') celery0 = Contestant('Fibrous Fred', 21, 4, dimmsdale) celery1 = Contestant('The Magic Cronch', 15, 6, dimmsdale) celery2 = Contestant('Tony Stalk', 20, 5, retroville) celery3 = Contestant('Pascal', 18, 3, retroville) celery4 = Contestant('Salad Spice', 14, 2, retroville) celerlympics = Contest([celery0, celery2]) celery_pageant = Contest([celery0, celery1, celery2, celery3, celery4]) celerlympics.announce_results() celery_pageant.announce_results() print(dimmsdale) print(retroville)
python
#!/usr/bin/env python3 """ Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import sys import time import argparse import numpy as np import cv2 import caffe def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Test a Age-gender model') parser.add_argument('--gpu', help='GPU id to use', default=0, type=int) parser.add_argument('--compute_mode', type=str, choices=['CPU', 'GPU'], default='GPU', help='Caffe compute mode: CPU or GPU') parser.add_argument('--def', dest='prototxt', help='prototxt file defining the network', required=True, type=str) parser.add_argument('--net', dest='caffemodel', help='model to test', required=True, type=str) parser.add_argument('--gt', dest='gt', help='Path to groundtruth annotation txt file', type=str, required=True) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def preprocess_image(img, size): """Transforms input image into network-compatible format. :param img: Input image :param size: Target size of network input :return: Network-compatible input blob """ img = cv2.resize(img, size) return img.transpose((2, 0, 1)).astype(np.float32) def main(): """ """ args = parse_args() if args.compute_mode == 'GPU': caffe.set_mode_gpu() caffe.set_device(args.gpu) if args.compute_mode == 'CPU': caffe.set_mode_cpu() print('Called with args:') print(args) assert os.path.exists(args.gt) assert os.path.exists(args.prototxt) assert os.path.exists(args.caffemodel) net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) net.name = os.path.splitext(os.path.basename(args.caffemodel))[0] data_dir = os.path.dirname(args.gt) with open(args.gt) as f: lines = f.readlines() gender_positives = 0 gender_negatives = 0 age_dif = 0 num = 0 for line in lines: path, l_gen, l_age = line.split() gen = bool(float(l_gen)) age = float(l_age) print('path = ', path, 'gen = ', gen, 'age = ', age) # image reading im_path = os.path.join(data_dir, path) if not os.path.exists(im_path): print("Can't load", im_path) continue img = cv2.imread(im_path) if img is None: print("Can't load", im_path) continue # image resizing in_height, in_width = net.blobs['data'].data.shape[2:] net.blobs['data'].data[...] = np.array(preprocess_image(img, (in_width, in_height)).astype(np.float32)/255.) gender_out_layer = 'prob' age_out_layer = 'fc3_a' #'age_conv3' # forward pass net.forward() female_prob = net.blobs[gender_out_layer].data[0][0][0][0] male_prob = net.blobs[gender_out_layer].data[0][1][0][0] age_output = net.blobs[age_out_layer].data[0][0][0][0] * 100 print("maleProb:", male_prob, "age:", age_output) if bool(male_prob > 0.5) == gen: gender_positives += 1 else: gender_negatives += 1 age_dif += abs(age_output - age*100) num += 1 gender_accuracy = gender_positives / (gender_positives + gender_negatives) print('gender_accuracy = ', gender_accuracy) age_mae = age_dif/num print('age mae = ', age_mae) if __name__ == '__main__': main()
python
'''Adapte o código do desafio #107, criando uma função adicional chamada moeda() que consiga mostrar os números como um valor monetário formatado.''' import moeda preco = float(input('Digite o preço: R$ ')) print(f'A metade de {moeda.moeda(preco)} é {moeda.moeda(moeda.metade(preco))}') print(f'O dobro de {moeda.moeda(preco)} é {moeda.moeda(moeda.dobro(preco))}') print(f'Aumentando 10%, temos {moeda.moeda(moeda.aumentar(preco, 10))}') print(f'Diminuindo 13%, temos {moeda.moeda(moeda.diminuir(preco, 13))}')
python
input = open('/Users/krishjain/Desktop/AdventOfCode/Day 6/input.txt', "r").read() input = input.split("\n\n") countOfAnswersPerGroup = [] for i in input: listOfAnswersToWhichAnsweredYes = [] for j in i.replace("\n", ""): listOfAnswersToWhichAnsweredYes.append(j) unorderedListOfAnswers = list(dict.fromkeys(listOfAnswersToWhichAnsweredYes)) orderedListOfAnswers = sorted(unorderedListOfAnswers) countOfAnswersPerGroup.append(len(orderedListOfAnswers)) sumOfCounts = sum(countOfAnswersPerGroup) print("Answer is: " + str(sumOfCounts))
python
import matplotlib.pyplot as plt env_map = [(8.92, 283.86), (17.83, 283.44), (68.13, 720.79), (112.8, 892.9), (140.79, 888.92), (101.75, 533.38), (106.89, 478.2), (115.39, 449.42), (117.73, 405.24), (111.25, 342.38), (87.73, 243.69), (113.38, 286.37), (121.92, 281.75), (124.33, 264.21), (124.39, 244.14), (125.74, 228.72), (125.22, 211.74), (123.24, 194.2), (122.53, 180.3), (125.2, 172.32), (122.58, 158.03), (123.02, 148.71), (124.99, 141.77), (122.53, 130.49), (124.45, 124.45), (130.49, 122.53), (135.77, 119.7), (145.63, 120.47), (156.45, 121.36), (168.28, 122.26), (172.03, 116.91), (173.09, 109.84), (166.98, 98.75), (170.88, 93.94), (174.64, 88.98), (164.68, 77.49), (137.66, 59.57), (135.75, 53.75), (123.26, 44.37), (122.69, 39.86), (122.92, 35.71), (123.01, 31.58), (122.97, 27.49), (122.79, 23.42), (126.42, 20.02), (141.87, 17.92), (142.37, 13.46), (144.71, 9.1), (147.93, 4.65), (163.0, 0.0), (171.92, -5.4), (170.66, -10.74), (175.22, -16.56), (177.59, -22.43), (160.99, -25.5), (157.17, -29.98), (153.22, -34.25), (151.1, -38.8), (151.73, -44.08), (143.61, -46.66), (132.66, -47.76), (130.17, -51.54), (128.49, -55.6), (125.77, -59.18), (126.52, -64.47), (126.19, -69.37), (126.53, -74.83), (133.4, -84.66), (172.03, -116.91), (165.85, -120.5), (169.09, -131.16), (169.51, -140.23), (157.52, -138.88), (152.35, -143.07), (144.96, -144.96), (136.22, -145.06), (128.29, -145.52), (120.47, -145.63), (112.77, -145.39), (105.21, -144.81), (97.8, -143.91), (90.55, -142.69), (85.52, -144.6), (79.01, -143.71), (73.55, -144.34), (67.27, -142.96), (41.7, -96.36), (57.8, -145.97), (45.05, -125.14), (46.35, -142.66), (34.04, -117.16), (36.06, -140.44), (32.72, -146.39), (27.92, -146.36), (23.31, -147.17), (18.55, -146.83), (13.93, -147.34), (9.29, -147.71), (4.65, -147.93), (-0.0, -148.0), (-4.65, -147.93), (-9.29, -147.71), (-13.93, -147.34), (-18.67, -147.83), (-23.47, -148.15), (-28.29, -148.33), (-33.16, -148.34), (-38.05, -148.19), (-43.24, -148.85), (-48.52, -149.32), (-53.86, -149.6), (-59.27, -149.69), (-64.74, -149.59), (-70.68, -150.2), (-76.72, -150.58), (-79.97, -145.47), (-84.5, -142.88), (-93.23, -146.91), (-100.61, -148.05), (-90.52, -124.59), (-91.32, -117.73), (-93.7, -113.27), (-89.94, -102.02), (-89.68, -95.49), (-89.1, -89.1), (-89.66, -84.2), (-89.26, -78.7), (-89.38, -73.94), (-89.29, -69.26), (-88.99, -64.66), (-89.32, -60.71), (-88.65, -56.26), (-88.66, -52.43), (-88.51, -48.66), (-89.1, -45.4), (-88.67, -41.73), (-89.02, -38.52), (-88.33, -34.97), (-91.27, -32.86), (-98.91, -32.14), (-106.59, -30.97), (-118.17, -30.34), (-131.75, -29.45), (-118.86, -22.67), (-112.6, -17.83), (-129.97, -16.42), (-139.38, -13.18), (-135.73, -8.54), (-89.96, -2.83), (-38.0, 0.0), (-37.98, 1.19), (-63.87, 4.02), (-62.72, 5.93), (-67.46, 8.52), (-78.03, 12.36), (-82.51, 15.74), (-81.98, 18.32), (-82.33, 21.14), (-82.59, 23.99), (-81.79, 26.58), (-81.86, 29.47), (-82.75, 32.76), (-89.94, 38.92), (-136.63, 64.29), (-137.22, 69.91), (-144.59, 79.49), (-154.07, 91.12), (-154.51, 98.06), (-154.66, 105.11), (-155.33, 112.85), (-158.82, 123.19), (-198.79, 164.46), (-203.28, 179.22), (-193.91, 182.09), (-222.03, 222.03), (-219.74, 234.0), (-208.97, 237.04), (-217.36, 262.75), (-205.32, 264.7), (-196.32, 270.21), (-188.86, 277.9), (-165.57, 260.9), (-159.84, 270.27), (-152.72, 277.79), (-139.38, 273.54), (-129.86, 275.97), (-108.02, 249.63), (-110.81, 279.86), (-100.61, 279.44), (-89.61, 275.81), (-81.47, 280.41), (-68.89, 268.3), (-62.17, 278.14), (-53.78, 281.92), (-44.43, 280.5), (-34.72, 274.82), (-25.03, 264.82), (-17.83, 283.44), (-8.89, 282.86), (0.0, 280.0)] x = [x[0]for x in env_map if x[0] > -800 and x[0] < 800] y = [y[1]for y in env_map if y[0] > -800 and y[0] < 800] plt.scatter(x, y) plt.show()
python
# # Copyright (c) 2013-2014 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # import cStringIO import httplib2 import re import sys import fixtures from inventoryclient import exc from inventoryclient import shell as inventoryclient_shell from inventoryclient.tests import utils from testtools import matchers FAKE_ENV = {'OS_USERNAME': 'username', 'OS_PASSWORD': 'password', 'OS_TENANT_NAME': 'tenant_name', 'OS_AUTH_URL': 'http://no.where'} class ShellTest(utils.BaseTestCase): re_options = re.DOTALL | re.MULTILINE # Patch os.environ to avoid required auth info. def make_env(self, exclude=None): env = dict((k, v) for k, v in FAKE_ENV.items() if k != exclude) self.useFixture(fixtures.MonkeyPatch('os.environ', env)) def setUp(self): super(ShellTest, self).setUp() def shell(self, argstr): orig = sys.stdout try: sys.stdout = cStringIO.StringIO() _shell = inventoryclient_shell.InventoryShell() _shell.main(argstr.split()) except SystemExit: exc_type, exc_value, exc_traceback = sys.exc_info() self.assertEqual(exc_value.code, 0) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = orig return out def test_help_unknown_command(self): self.assertRaises(exc.CommandError, self.shell, 'help foofoo') def test_debug(self): httplib2.debuglevel = 0 self.shell('--debug help') self.assertEqual(httplib2.debuglevel, 1) def test_help(self): required = [ '.*?^usage: inventory', '.*?^See "inventory help COMMAND" ' 'for help on a specific command', ] for argstr in ['--help', 'help']: help_text = self.shell(argstr) for r in required: self.assertThat(help_text, matchers.MatchesRegex(r, self.re_options)) def test_help_on_subcommand(self): required = [ '.*?^usage: inventory host-show <hostname or id>' '', ".*?^Show host attributes.", '', ".*?^Positional arguments:", ".*?^ <hostname or id> Name or ID of host", ] argstrings = [ 'help host-show', ] for argstr in argstrings: help_text = self.shell(argstr) for r in required: self.assertThat(help_text, matchers.MatchesRegex(r, self.re_options)) def test_auth_param(self): self.make_env(exclude='OS_USERNAME') self.test_help()
python
# coding: utf-8 # http://gitlab.skoltech.ru/shapeev/mlip-dev/blob/master/src/external/python/mlippy/cfgs.py from __future__ import print_function import numpy as np class Cfg: pos = None lat = None types = None energy = None forces = None stresses = None desc = None grade = None def readcfg(f): cfg = Cfg() cfg.lat = np.zeros((3, 3)) size = -1 mode = -1 line = f.readline() while line: line = line.upper() line = line.strip() if mode == 0: if line.startswith('SIZE'): line = f.readline() size = int(line.strip()) cfg.types = np.zeros(size) cfg.pos = np.zeros((size, 3)) elif line.startswith('SUPERCELL'): line = f.readline() vals = line.strip().split() cfg.lat[0, :] = vals[0:3] line = f.readline() vals = line.strip().split() cfg.lat[1, :] = vals[0:3] line = f.readline() vals = line.strip().split() cfg.lat[2, :] = vals[0:3] elif line.startswith('ATOMDATA'): if line.endswith('FZ'): cfg.forces = np.zeros((size, 3)) for i in range(size): line = f.readline() vals = line.strip().split() cfg.types[i] = vals[1] cfg.pos[i, :] = vals[2:5] if cfg.forces is not None: cfg.forces[i, :] = vals[5:8] elif line.startswith('ENERGY'): line = f.readline() cfg.energy = float(line.strip()) elif line.startswith('PLUSSTRESS'): line = f.readline() vals = line.strip().split() cfg.stresses = np.zeros(6) cfg.stresses[:] = vals[0:6] elif line.startswith('FEATURE MV_GRADE'): cfg.grade = float(line.split()[-1]) elif line.startswith('FEATURE PYIRON'): cfg.desc = line.split()[-1] if line.startswith('BEGIN_CFG'): mode = 0 elif line.startswith('END_CFG'): break line = f.readline() return cfg def savecfg(f, cfg, desc=None): atstr1 = 'AtomData: id type cartes_x cartes_y cartes_z fx fy fz' atstr2 = 'AtomData: id type cartes_x cartes_y cartes_z' size = len(cfg.types) print('BEGIN_CFG', file=f) print('Size', file=f) print(' %-d' % size, file=f) if cfg.lat is not None: print('SuperCell', file=f) for i in range(3): print(' %14f%14f%14f' % (cfg.lat[i, 0], cfg.lat[i, 1], cfg.lat[i, 2]), file=f) if cfg.forces is not None: print(atstr1, file=f) else: print(atstr2, file=f) for i in range(size): if cfg.forces is not None: print(' %4d %4d %14f%14f%14f %16.8e %16.8e %16.8e' % (i+1, cfg.types[i], cfg.pos[i, 0], cfg.pos[i, 1], cfg.pos[i, 2], cfg.forces[i, 0], cfg.forces[i, 1], cfg.forces[i, 2]), file=f) else: print(' %4d %4d %14f%14f%14f' % (i+1, cfg.types[i], cfg.pos[i, 0], cfg.pos[i, 1], cfg.pos[i, 2]), file=f) if cfg.energy is not None: print('Energy\t%14f' % cfg.energy, file=f) if cfg.stresses is not None: print('PlusStress: xx yy zz yz xz xy', file=f) print(' %14f%14f%14f%14f%14f%14f' % (cfg.stresses[0], cfg.stresses[1], cfg.stresses[2], cfg.stresses[3], cfg.stresses[4], cfg.stresses[5]), file=f) if desc is not None: print('Feature from %s' % desc, file=f) if cfg.desc is not None: print('Feature %s' % cfg.desc, file=f) print('END_CFG', file=f) class cfgparser: def __init__(self, file, max_cfgs=None): self.cfgs = [] self.file = file self.max_cfgs = max_cfgs def __enter__(self): while True: if self.max_cfgs is not None and len(self.cfgs) == self.max_cfgs: break cfg = readcfg(self.file) if cfg.types is not None: self.cfgs.append(cfg) else: break return self.cfgs def __exit__(self, *args): self.cfgs = [] def printcfg(cfg): savecfg(None, cfg) def loadcfgs(filename, max_cfgs=None): with open(filename, 'r') as file: with cfgparser(file, max_cfgs) as cfgs: return cfgs def savecfgs(filename, cfgs, desc=None): with open(filename, 'w') as file: for cfg in cfgs: savecfg(file, cfg, desc) print("", file=file)
python
from bitrue.client import Client if __name__ == '__main__': client = Client(api_key='', api_secret='', ) trades = client.get_my_trades() print(client._order_format_print(trades)) ''' symbol id orderId origClientOrderId price qty commission commissionAssert time isBuyer isMaker isBestMatch -------- ------- --------- ------------------- ----------- ---------- ------------ ------------------ ------------- --------- --------- ------------- HOTXRP 1583958 53673021 0.004473 717 1559843532000 True True True '''
python
# coding=utf-8 # Copyright 2022 The Balloon Learning Environment Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Calculates stable parameters for balloon initialization.""" import dataclasses import datetime as dt from balloon_learning_environment.env.balloon import balloon from balloon_learning_environment.env.balloon import solar from balloon_learning_environment.env.balloon import standard_atmosphere from balloon_learning_environment.env.balloon import thermal from balloon_learning_environment.utils import constants import numpy as np import s2sphere as s2 @dataclasses.dataclass class StableParams: ambient_temperature: float internal_temperature: float mols_air: float envelope_volume: float superpressure: float def calculate_stable_params_for_pressure( pressure: float, envelope_volume_base: float, envelope_volume_dv_pressure: float, envelope_mass: float, payload_mass: float, mols_lift_gas: float, latlng: s2.LatLng, date_time: dt.datetime, upwelling_infrared: float, atmosphere: standard_atmosphere.Atmosphere) -> StableParams: """Calculates stable parameter values for the ambient pressure. This calculates the internal and external temperature for a balloon at the specified pressure, as well as the mols air in the ballonet, envelope volume, and superpressure required to float at the specified ambient temperature. Args: pressure: Ambient pressure of the balloon [Pa]. envelope_volume_base: The y-intercept for the balloon envelope volume model [m^3]. envelope_volume_dv_pressure: The slope for the balloon envelope volume model. envelope_mass: Mass of the balloon envelope [kg]. payload_mass: The mass of the payload. The term payload here refers to all parts of the flight system other than the balloon envelope [kg]. mols_lift_gas: Mols of helium within the balloon envelope [mols]. latlng: The current latitude and longitude of the balloon. date_time: The current date and time of the balloon. upwelling_infrared: The upwelling infrared value. atmosphere: The current atmosphere state. Returns: A tuple of (ambient temperature [K], mols air in ballonet [mols]). """ ambient_temperature = atmosphere.at_pressure(pressure).temperature # ---- Cold start mols air in envelope ---- # Compute the mols gas in balloon that gives the desired pressure. # This comes from rho * V = m, where: # #. ambient_pressure * air_molar_mass # rho = ---------------------------------- # universal_gas_const * ambient_temp # # m = (mass_envelope + mass_payload + # helium_molar_mass * mols_helium + # air_molar_mass * mols_air) # # Then, you just solve for mols_air to get the following equation. mols_air = ( (pressure * constants.DRY_AIR_MOLAR_MASS * envelope_volume_base / (constants.UNIVERSAL_GAS_CONSTANT * ambient_temperature) - envelope_mass - payload_mass - constants.HE_MOLAR_MASS * mols_lift_gas) / constants.DRY_AIR_MOLAR_MASS) # TODO(joshgreaves): Warning or Exception for initializing out of range? mols_air = np.clip(mols_air, 0.0, None) # ---- Cold start internal temperature ---- internal_temperature = 206.0 # [K] pick an average value to start search. solar_elevation, _, solar_flux = solar.solar_calculator(latlng, date_time) # Apply a few iterations of Newton-Raphson to find where the rate of # change of temperature is close to 0. delta_temp = 0.01 for _ in range(10): # Note: we use envelope_volume_base rather than envelope_volume, since # empirically it doesn't make much of a difference, and the envelope # volume isn't calculated until the temperature is calculated. d_internal_temp1 = thermal.d_balloon_temperature_dt( envelope_volume_base, envelope_mass, internal_temperature - delta_temp / 2, ambient_temperature, pressure, solar_elevation, solar_flux, upwelling_infrared) d_internal_temp2 = thermal.d_balloon_temperature_dt( envelope_volume_base, envelope_mass, internal_temperature + delta_temp / 2, ambient_temperature, pressure, solar_elevation, solar_flux, upwelling_infrared) # d2_internal_temp is the second derivitive of temperature w.r.t time. d2_internal_temp = (d_internal_temp2 - d_internal_temp1) / delta_temp mean_d_internal_temp = (d_internal_temp1 + d_internal_temp2) / 2.0 if abs(d2_internal_temp) > 0.0: internal_temperature -= (mean_d_internal_temp / d2_internal_temp) if abs(mean_d_internal_temp) < 1e-5: break # ---- Cold start superpressure ---- envelope_volume, superpressure = ( balloon.Balloon.calculate_superpressure_and_volume( mols_lift_gas, mols_air, internal_temperature, pressure, envelope_volume_base, envelope_volume_dv_pressure)) return StableParams(ambient_temperature, internal_temperature, mols_air, envelope_volume, superpressure) def cold_start_to_stable_params( balloon_state: balloon.BalloonState, atmosphere: standard_atmosphere.Atmosphere) -> None: """Sets parameters to stable values for the ambient pressure. The pressure altitude of the balloon depends on a number of variables, such as the number of mols of air in the ballonet, the temperature of air and gas inside the envelope, and the superpressure. To have a balloon float at a specific pressure level, these parameters should be updated to match the specified ambient pressure. Args: balloon_state: The balloon state to update with stable params. atmosphere: The current atmosphere the balloon is flying in. """ stable_params = calculate_stable_params_for_pressure( balloon_state.pressure, balloon_state.envelope_volume_base, balloon_state.envelope_volume_dv_pressure, balloon_state.envelope_mass, balloon_state.payload_mass, balloon_state.mols_lift_gas, balloon_state.latlng, balloon_state.date_time, balloon_state.upwelling_infrared, atmosphere) balloon_state.ambient_temperature = stable_params.ambient_temperature balloon_state.internal_temperature = stable_params.internal_temperature balloon_state.mols_air = stable_params.mols_air balloon_state.envelope_volume = stable_params.envelope_volume balloon_state.superpressure = stable_params.superpressure
python
liste = ["ali", "veli"] print(liste) if "al" not in liste: print("var")
python
from .optim_low import * __all__ = ["OptimMP"]
python
"""empty message Revision ID: dcbee03e3639 Revises: Create Date: 2018-07-10 04:25:35.968792 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'dcbee03e3639' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('credentials', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=50), nullable=True), sa.Column('token_hash', sa.Text(), nullable=True), sa.Column('salt', sa.Text(), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('username') ) op.create_table('uploads', sa.Column('id', sa.Integer(), nullable=False), sa.Column('uploader', sa.Integer(), nullable=True), sa.Column('ipfs_hash', sa.Text(), nullable=True), sa.Column('original_name', sa.Text(), nullable=True), sa.Column('date', sa.DateTime(), server_default=sa.text('now()'), nullable=True), sa.ForeignKeyConstraint(['uploader'], ['credentials.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_unique_constraint("uploader_ipfs_constraint", "uploads", ["uploader", "ipfs_hash"]) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('uploads') op.drop_table('credentials') op.drop_constraint("uploader_ipfs_constraint", "uploads") # ### end Alembic commands ###
python
from trezor import wire from trezor.messages import MessageType def boot(): # only enable LoadDevice in debug builds if __debug__: wire.add(MessageType.LoadDevice, __name__, "load_device") wire.add(MessageType.ResetDevice, __name__, "reset_device") wire.add(MessageType.BackupDevice, __name__, "backup_device") wire.add(MessageType.WipeDevice, __name__, "wipe_device") wire.add(MessageType.RecoveryDevice, __name__, "recovery_device") wire.add(MessageType.ApplySettings, __name__, "apply_settings") wire.add(MessageType.ApplyFlags, __name__, "apply_flags") wire.add(MessageType.ChangePin, __name__, "change_pin") wire.add(MessageType.SetU2FCounter, __name__, "set_u2f_counter")
python
from __future__ import print_function import sys import os import requests from datetime import datetime from random import randint import re class Facegrab: def __init__(self): self.base_url = "http://graph.facebook.com/picture?id={}&width=800" self.sess = requests.Session() self.sess.headers.update({ "User-Agent": "Facegrab v2" }) @staticmethod def create_dir(prefix): dir_c = os.path.join( os.getcwd(), prefix, # datetime.now().strftime("%Y-%m-%d_%H-%M-%S") "myfriends" ) try: os.makedirs(dir_c) except OSError as e: if e.errno != 17: pass else: print("Cannot create a folder.") exit return dir_c def getProfile(self, photoUrl, saveUrl): print(f"Downloading {photoUrl}.") response = self.sess.get(photoUrl) if response.headers["Content-Type"] == "image/gif": return with open(saveUrl, "wb") as f: f.write(response.content) return True def getImages(self, uids): sizeDataset = len(uids) _id = randint(1, int(1e4)) photoCount = 0 folder = self.create_dir("facegrab") while photoCount < sizeDataset: profile = self.getProfile( self.base_url.format(uids[photoCount]), f"{folder}/{_id}.jpg" ) if profile: photoCount += 1 _id += 1 else: _id += 10 # Cannot understand the logic behind this. print( "\nFace Dataset created in facegrab folder." f"\nSize: {photoCount}" ) print() return def retrieve_uids(): pattern = re.compile(r"(\{id:\"\d*\",name)") ids = set() for i in range(1): # repeats the operation 1 times for i, line in enumerate(open('friendslist' + str(i+1) + '.txt','r')): for match in re.finditer(pattern, line): ids.add(match.groups()[0].split("\"")[1]) # print('Found on line %s: %s' % (i+1, match.groups())) # print("found " + str(len(ids)) + " ids") return list(ids) if __name__ == "__main__": checks = [ len(sys.argv) == 1, # sys.argv[1].isdigit() # int(sys.argv[1]) < int(1e7) ] # if not all(checks): # print("\nIncorrect arguments.") # print( # "Usage: python facegrab.py" # ) uids = retrieve_uids() grabby = Facegrab() # grabby.getImages(int(sys.argv[1]), uids) grabby.getImages(uids)
python
from polygon import WebSocketClient from polygon.websocket.models import WebSocketMessage from typing import List import asyncio c = WebSocketClient(subscriptions=["T.*"]) async def handle_msg(msgs: List[WebSocketMessage]): for m in msgs: print(m) async def timeout(): await asyncio.sleep(1) print("unsubscribe_all") c.unsubscribe_all() await asyncio.sleep(1) print("close") await c.close() async def main(): await asyncio.gather(c.connect(handle_msg), timeout()) asyncio.run(main())
python
import numpy as np #import tensorflow as tf from PIL import Image from PIL import ImageDraw from PIL import ImageFont from tqdm import tqdm import argparse import sys import cv2 import math rgb = True def draw_bboxes (img, boxes, outname): for i in range(len(boxes)): xmin,ymin,xmax,ymax,cat = boxes[i] cv2.rectangle(img,(xmin,ymin),(xmax,ymax),(0,0,255),4) font = cv2.FONT_HERSHEY_SIMPLEX #cv2.putText(img, str(cat), (xmin,ymin-10), font, 0.75, (255,255,255), 2, cv2.LINE_AA) print (outname) cv2.imwrite(outname, img) if __name__ == "__main__": #print ("Usage: python show_regions.py image.jpg boxes.txt image_with_boxes.jpg confidence_threshold") image = cv2.imread(sys.argv[1], int(rgb)) fboxes = open(sys.argv[2], 'r') outname = sys.argv[3] confidence = float(sys.argv[4]) boxes = [] for line in fboxes: line = line.strip('\n') fields = line.split(' ') xmin = int(fields[0]) ymin = int(fields[1]) xmax = int(fields[2]) ymax = int(fields[3]) cat = int(fields[4]) score = float(fields[5]) #Showing only some categories: not_show = [44,50,51,54,55,59,72,73,74,75,76,77,79,82,83,84,86,89,91,93,94] if (score > confidence) and (cat not in not_show): boxes.append((xmin,ymin,xmax,ymax,cat)) draw_bboxes(image, boxes, outname)
python
from pylama_dmypy import VERSION from setuptools import setup, find_packages # fmt: off setup( name = "pylama-dmypy" , version = VERSION , packages = find_packages(include="pylama_dmypy.*", exclude=["tests*"]) , extras_require = { 'tests': [ "pylama==8.3.8" , "mypy==0.942" ] } , entry_points = { 'pylama.linter': ['dmypy = pylama_dmypy.linter:Linter'] } # metadata , url = "http://github.com/delfick/pylama_dmypy" , author = "Stephen Moore" , author_email = "[email protected]" , description = "Linting plugin for pylama to see dmypy" , long_description = open("README.rst").read() , license = "MIT" ) # fmt: on
python
# -*- coding: utf-8 -*- __all__ = ('SlashCommandPermissionOverwriteWrapper', 'SlashCommandWrapper', ) from functools import partial as partial_func from ...discord.guild import Guild from ...discord.preconverters import preconvert_snowflake from ...discord.interaction import ApplicationCommandPermissionOverwrite UNLOADING_BEHAVIOUR_DELETE = 0 UNLOADING_BEHAVIOUR_KEEP = 1 UNLOADING_BEHAVIOUR_INHERIT = 2 SYNC_ID_GLOBAL = 0 SYNC_ID_MAIN = 1 SYNC_ID_NON_GLOBAL = 2 def raw_name_to_display(raw_name): """ Converts the given raw application command name to it's display name. Parameters ---------- raw_name : `str` The name to convert. Returns ------- display_name : `str` The converted name. """ return '-'.join([w for w in raw_name.strip('_ ').lower().replace(' ', '-').replace('_', '-').split('-') if w]) class SlashCommandWrapper: """ Wraps a slash command enabling the wrapper to postprocess the created slash command. Attributes ---------- _wrapped : `Any` The wrapped object. """ __slots__ = ('_wrapped',) def __new__(cls): """ Creates a partial function to wrap a slash command. Subclasses should overwrite this method. Returns ------- wrapper : `functools.partial` of ``SlashCommandWrapper._decorate`` Partial function to wrap a slash command. """ return partial_func(cls._decorate, cls) def _decorate(cls, wrapped): """ Wraps the given command. Subclasses should overwrite this method. Parameters ---------- wrapped : `Any` The slash command or other wrapper to wrap. Returns ------- self : ``SlashCommandWrapper`` The created instance. """ self = object.__new__(cls) self._wrapped = wrapped return self def apply(self, slash_command): """ Applies the wrapper's changes on the respective slash command. Subclasses should overwrite this method. Parameters ---------- slash_command : ``SlashCommand`` """ pass def __repr__(self): """Returns the slash command wrapper's representation.""" return f'<{self.__class__.__name__} wrapped={self._wrapped!r}>' def fetch_function_and_wrappers_back(self): """ Fetches back the source function and all the wrappers, the returns them. Returns ------- function : `Any` The wrapped function. wrappers : `list` of ``SlashCommandWrapper`` instances The fetched back wrappers. """ wrappers = [self] maybe_wrapper = self._wrapped while True: if isinstance(maybe_wrapper, SlashCommandWrapper): wrappers.append(maybe_wrapper) maybe_wrapper = maybe_wrapper._wrapped else: function = maybe_wrapper break wrappers.reverse() return function, wrappers class SlashCommandPermissionOverwriteWrapper(SlashCommandWrapper): """ Wraps a slash to command allowing / disallowing it only for the given user or role inside of a guild. Attributes ---------- _wrapped : `Any` The wrapped object. _guild_id : `int` The guild id where the overwrites should be applied to. _overwrite : ``ApplicationCommandPermissionOverwrite`` The permission overwrite to apply. """ __slots__ = ('_guild_id', '_overwrite') def __new__(cls, guild, target, allow): """ Creates a partial function to wrap a slash command. Parameters ---------- guild : ``Guild`` or `int` The guild's identifier where the overwrite is applied. target : ``User``, ``Client`` or ``Role``, `tuple` ((``User``, ``UserBase``, ``Role`` type) or \ `str` (`'Role'`, `'role'`, `'User'`, `'user'`), `int`) The target entity of the overwrite The expected type & value might be pretty confusing, but the target was it to allow relaxing creation. To avoid confusing, here is a list of the expected structures: - ``Role`` instance - ``User`` instance - ``Client`` instance - `tuple` (``Role`` type, `int`) - `tuple` (``User`` type, `int`) - `tuple` (``UserBase`` type, `int`) - `tuple` (`'Role'`, `int`) - `tuple` (`'role'`, `int`) - `tuple` (`'User'`, `int`) - `tuple` (`'user'`, `int`) allow : `bool` Whether the respective application command should be enabled for the respective entity. Returns ------- wrapper : `functools.partial` of ``SlashCommandWrapper._decorate`` Partial function to wrap a slash command. """ if isinstance(guild, Guild): guild_id = guild.id elif isinstance(guild, (int, str)): guild_id = preconvert_snowflake(guild, 'guild') else: raise TypeError(f'`guild` can be given neither as `{Guild.__class__.__name__}`, and as `int` instance, ' f'got {guild.__class__.__name__}.') overwrite = ApplicationCommandPermissionOverwrite(target, allow) return partial_func(cls._decorate, cls, guild_id, overwrite) def _decorate(cls, guild_id, overwrite, wrapped): """ Wraps given command. Parameters ---------- guild_id : `int` The guild id where the overwrites should be applied to. overwrite : ``ApplicationCommandPermissionOverwrite`` The permission overwrite to apply. wrapped : `Any` The slash command or other wrapper to wrap. Returns ------- self : ``SlashCommandWrapper`` The created instance. """ self = object.__new__(cls) self._guild_id = guild_id self._overwrite = overwrite self._wrapped = wrapped return self def apply(self, slash_command): """ Applies the wrapper's changes on the respective slash command. Parameters ---------- slash_command : ``SlashCommand`` """ slash_command.add_overwrite(self._guild_id, self._overwrite) def __repr__(self): """Returns the slash command wrapper's representation.""" return f'<{self.__class__.__name__} wrapped={self._wrapped!r}, guild_id={self._guild_id!r}, ' \ f'overwrite={self._overwrite!r}>' RUNTIME_SYNC_HOOKS = [] def runtime_sync_hook_is_client_running(client): """ Runtime sync hook to check whether a slash command should be registered and synced instantly when added or removed. Parameters ---------- client : ``Client`` The respective client of the ``Slasher``. """ return client.running RUNTIME_SYNC_HOOKS.append(runtime_sync_hook_is_client_running)
python
from collections import deque, defaultdict import sys N = int(input()) ab = [] for i in range(N - 1): ab.append(tuple(map(int, input().split()))) c_list = list(map(int, input().split())) c_list.sort() c_que = deque(c_list) cnt = defaultdict(int) outs = defaultdict(list) for a, b in ab: cnt[a - 1] += 1 cnt[b - 1] += 1 outs[a - 1].append(b - 1) outs[b - 1].append(a - 1) cnt = sorted(cnt.items(), key=lambda x: -x[1]) top = cnt[0][0] tar = defaultdict(lambda: 0) sys.setrecursionlimit(10 ** 9) visit = [False] * N def dfs(start): tmp = [] visit[start] = True for v2 in outs[start]: if visit[v2]: continue q = c_que.pop() tar[v2] = q tmp.append(v2) for v2 in tmp: if visit[v2]: continue dfs(v2) tar[top] = c_que.pop() dfs(top) ans = 0 for a, b in ab: a -= 1 b -= 1 ans += min(tar[a], tar[b]) print(ans) for i in range(N): print(tar[i], end=" ")
python
################################################# # SN74HC595 with software SPI ESP12-E # # Sums up 1 bit by 1 bit till 255 is reached # # Author: Miguel Sama # # Date: 19/06/2018 # ################################################# from machine import Pin, SPI import utime #Software SCLK at PIN 0 (D3 dev board) #Software MOSI at PIN 2 (D4 dev board) #Used PIN 15 (D8 dev board) as latch #~OE connected directly to GND #~SRCLR connected directly to VCC #LSB LED connected to Qa. MSB LED connected to Qh latch = Pin(15,Pin.OUT) spi = SPI(-1, baudrate=200000, polarity=0, phase=0, sck=Pin(0), mosi=Pin(2), miso=Pin(4)) a = 0 while True: while a < 256: latch.value(0) spi.write(bytearray([a])) latch.value(1) a += 1 utime.sleep_ms(50) a = 0
python
#!/usr/bin/env python # -*- cpy-indent-level: 4; indent-tabs-mode: nil -*- # ex: set expandtab softtabstop=4 shiftwidth=4: # # Copyright (C) 2008,2009,2010,2011,2012,2013,2014,2015,2016 Contributor # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for testing using the cluster command to move between clusters.""" import unittest if __name__ == "__main__": import utils utils.import_depends() from brokertest import TestBrokerCommand # Note, this used to test the rebind_cluster, however I've # deco'ed that command. I've kept this test here in order to preserve # the state of all the previous and subsequent tests that assume the # state of evh1 (it's a tangled web of statefulness going on here!) class TestRebindCluster(TestBrokerCommand): # Failure test is in add_virtual_hardware. def test_100_rebind_evh1(self): self.successtest(["cluster", "--hostname", "evh1.aqd-unittest.ms.com", "--cluster", "utecl2"]) def test_110_unbind_evh2(self): # Let's see if we can put a node back after the cluster size has shrunk command = ["uncluster", "--hostname", "evh2.aqd-unittest.ms.com", "--personality", "generic", "--cluster", "utecl1"] self.successtest(command) def test_111_rebind_evh2(self): command = ["cluster", "--hostname", "evh2.aqd-unittest.ms.com", "--personality", "vulcan-10g-server-prod", "--cluster", "utecl1"] self.successtest(command) def test_200_verifyrebindevh1(self): command = "show host --hostname evh1.aqd-unittest.ms.com" out = self.commandtest(command.split(" ")) self.matchoutput(out, "Primary Name: evh1.aqd-unittest.ms.com", command) self.matchoutput(out, "Member of ESX Cluster: utecl2", command) # FIXME: Also test plenary files. def test_200_verify_evh2(self): command = ["show", "cluster", "--cluster", "utecl1"] out = self.commandtest(command) self.matchoutput(out, "Member: evh2.aqd-unittest.ms.com [node_index: 0]", command) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestRebindCluster) unittest.TextTestRunner(verbosity=2).run(suite)
python
import clr if clr.use35: clr.AddReference("Microsoft.Scripting") clr.AddReference("Microsoft.Dynamic") clr.AddReference("Microsoft.Scripting.Core") import Microsoft.Scripting.Ast as Exprs from Microsoft.Scripting.ComInterop import ComBinder from Microsoft.Scripting.Utils import (Action, Func) else: clr.AddReference("System.Core") clr.AddReference("Microsoft.Dynamic") import System.Linq.Expressions as Exprs from Microsoft.Scripting.ComInterop import ComBinder from System import (Action, Func) from System.Runtime.CompilerServices import CallSite from System.Dynamic import (ExpandoObject, InvokeBinder, DynamicMetaObject, GetMemberBinder, SetMemberBinder, CallInfo, BindingRestrictions, IDynamicMetaObjectProvider, InvokeMemberBinder, CreateInstanceBinder, GetIndexBinder, SetIndexBinder, BinaryOperationBinder, UnaryOperationBinder) from System import (MissingMemberException, InvalidOperationException, Boolean, MissingMemberException, Type, Array, Delegate, Void) import System.Reflection as refl from System.IO import Path, File ### RuntimeHelpers is a collection of functions that perform operations at ### runtime of Sympl code, such as performing an import or fetching a global ### variable's value (depending on global look up semantics). ### class RuntimeHelpers (object): ### SymplImport takes the runtime and module as context for the import. ### It takes a list of names, what, that either identify a (possibly dotted ### sequence) of names to fetch from Globals or a file name to load. Names ### is a list of names to fetch from the final object that what indicates ### and then set each name in module. Renames is a list of names to add to ### module instead of names. If names is empty, then the name set in ### module is the last name in what. If renames is not empty, it must have ### the same cardinality as names. ### @staticmethod def SymplImport (runtime, module, what, names, renames): ## Get object or file scope. helpers = DynamicObjectHelpers if len(what) == 1: name = what[0] if helpers.HasMember(runtime.Globals, name): value = helpers.GetMember(runtime.Globals, name) else: f = DynamicObjectHelpers.GetMember(module, "__file__") f = Path.Combine(Path.GetDirectoryName(f), name + ".sympl") if File.Exists(f): value = runtime.ExecuteFile(f) else: raise Exception("Import: can't find name in globals " + "or as file to load -- " + name + ", " + f) else: ## What has more than one name, must be Globals access. value = runtime.Globals for name in what: value = helpers.GetMember(value, name) ## Assign variables in module. if len(names) == 0: setattr(module, what[-1], value) else: for n, m in zip(names, renames or names): setattr(module, m, getattr(value, n)) return None @staticmethod def SymplEq (x, y): ## Not that Sympl has other immediate values, but could add more branches ## for doubles or types that might flow in from .NET interop. if type(x) is int and type(y) is int: return x == y else: return x is y ### Hack until dynamic expr invoking Cons type is fixed in Ipy. ### @staticmethod def MakeCons (x, y): return Cons(x, y) @staticmethod def GetConsElt (lst, i): return RuntimeHelpers._nthcdr(lst, i).First @staticmethod def SetConsElt (lst, i, value): lst = RuntimeHelpers._nthcdr(lst, i) lst.First = value return value @staticmethod def _nthcdr (lst, i): while i > 0 and lst is not None: lst = lst.Rest i = i - 1 if i == 0 and lst is not None: return lst else: raise Exception("List doesn't have " + repr(i) + " elements.") ### Don't need this in C# because can create an Property MemberExpr. This ### works in IPy because our TMMO.BindGetMember falls back to Python's ### MO to fetch the member. ### #@staticmethod #def GetTypeModelReflType (typModel): # return typModel.ReflType ######################## ### Helpers for code gen ######################## ### RunHelpersInvokeBinder is the binder that let's me invoke members of ### runtimeHelpers as DynamicExprs. In C#, we can create MethodCallExprs ### with the MethodInfos of my RuntimeHelpers members, so we don't need this. ### class RunHelpersInvokeBinder (InvokeBinder): #@property doesn't work def get_CacheIdentity (self): return self def GetHashCode (self): ## Random sophmoric hash ... return 197 ^ super(RunHelpersInvokeBinder, self).GetHashCode() def Equals (self, obj): return (isinstance(obj, RunHelpersInvokeBinder) and super(RunHelpersInvokeBinder, self).Equals(obj)) def FallbackInvoke(objMO, argMOs, errorSuggestionMO): ## Python handles the actual invoke in its callable MO ## When translated to C#, won't need DynExpr to call helper ... MCE. pass ### MakeSymplImportCall gets called from analysis code that generates ### Expression Trees for Sympl 'import' expressions. Runtime and module ### are ParamExprs from the outer lambda wrapping a file's top-level exprs. ### What, names, and renames are lists (possibly empty) of IdTokens. ### def MakeSymplImportCall (runtime, module, what, names, renames): if not isinstance(names, list): raise Exception("Internal: name is not list?") return Exprs.Expression.Dynamic( RunHelpersInvokeBinder(CallInfo(5)), object, #ret type Exprs.Expression.Constant(RuntimeHelpers.SymplImport), runtime, module, Exprs.Expression.Constant([x.Name for x in what]), Exprs.Expression.Constant([x.Name for x in names]), Exprs.Expression.Constant([x.Name for x in renames])) def MakeSymplEqCall (left, right): return Exprs.Expression.Convert( Exprs.Expression.Dynamic( RunHelpersInvokeBinder(CallInfo(2)), object, #ret type Exprs.Expression.Constant(RuntimeHelpers.SymplEq), left, right), bool) #clr.GetClrType(Boolean)) def MakeSymplConsCall (left, right): return Exprs.Expression.Dynamic( RunHelpersInvokeBinder(CallInfo(2)), object, #ret type Exprs.Expression.Constant(RuntimeHelpers.MakeCons), left, right) def MakeSymplListCall (args): return Exprs.Expression.Dynamic( RunHelpersInvokeBinder(CallInfo(len(args))), object, #ret type Exprs.Expression.Constant(Cons._List), *args) ############################### ### Helpers for runtime binding ############################### ### GetTargetArgsRestrictions generates the restrictions needed for the ### MO resulting from binding an operation. This combines all existing ### restrictions and adds some for arg conversions. targetInst indicates ### whether to restrict the target to an instance (for operations on type ### objects) or to a type (for operations on an instance of that type). ### ### NOTE, this function should only be used when the caller is converting ### arguments to the same types as these restrictions. See ConvertArguments. ### def GetTargetArgsRestrictions (targetMO, argMOs, targetInst): ## Important to add existing restriction first because the ## DynamicMetaObjects (and possibly values) we're looking at depend ## on the pre-existing restrictions holding true. restrictions = targetMO.Restrictions.Merge( BindingRestrictions.Combine(argMOs)) if targetInst: restrictions = restrictions.Merge( BindingRestrictions.GetInstanceRestriction( targetMO.Expression, targetMO.Value)) else: restrictions = restrictions.Merge( BindingRestrictions.GetTypeRestriction( targetMO.Expression, targetMO.LimitType)) for a in argMOs: if a.HasValue and a.Value is None: r = BindingRestrictions.GetInstanceRestriction(a.Expression, None) else: r = BindingRestrictions.GetTypeRestriction(a.Expression, a.LimitType) restrictions = restrictions.Merge(r) return restrictions ### ParamsMatchArgs returns whether the args are assignable to the parameters. ### We specially check for our TypeModel that wraps .NET's RuntimeType, and ### elsewhere we detect the same situation to convert the TypeModel for calls. ### ### IsAssignableFrom works except for value args that need to pass to reftype ### params. We could detect that to be smarter and then explicitly StrongBox ### the args. ### ### Could check for a.HasValue and a.Value is None and ### ((paramtype is class or interface) or (paramtype is generic and ### nullable<t>)) to support passing nil anywhere. ### ### Consider checking p.IsByRef and returning false since that's not CLS. ### def ParamsMatchArgs (params, args): for a,p in zip(args, params): if (p.ParameterType is clr.GetClrType(Type) and #get past py type wrapping type(a.Value) is TypeModel): #ok if no value, value = null continue if not p.ParameterType.IsAssignableFrom(a.LimitType): ## or p.IsByRef: punt for non CLS return False return True ### Returns a DynamicMetaObject with an expression that fishes the .NET ### RuntimeType object from the TypeModel MO. ### def GetRuntimeTypeMoFromModel (typeMO): if type(typeMO) is not TypeModelMetaObject: raise Exception("Internal: Need TMMO to fish out ReflType.") return DynamicMetaObject( ## In C# can use Expression.Call on methodinfo. Exprs.Expression.Convert( Exprs.Expression.Dynamic( ## This call site doesn't share any L2 caching ## since we don't call GetGetMemberBinder from Sympl. ## We aren't plumbed to get the runtime instance here. SymplGetMemberBinder("ReflType"), object, typeMO.Expression), Type), #Exprs.Expression.Dynamic( # RunHelpersInvokeBinder(CallInfo(1)), # object, # Exprs.Expression.Constant( # RuntimeHelpers.GetTypeModelReflType), # typeMO.Expression), typeMO.Restrictions.Merge( BindingRestrictions.GetTypeRestriction( typeMO.Expression, TypeModel))) #, ## Must supply a value to prevent binder FallbackXXX methods ## from infinitely looping if they do not check this MO for ## HasValue == false and call Defer. After Sympl added Defer ## checks, we could verify, say, FallbackInvokeMember by no ## longer passing a value here. #typeMO.ReflType) ### Returns list of Convert exprs converting args to param types. If an arg ### is a TypeModel, then we treat it special to perform the binding. We need ### to map from our runtime model to .NET's RuntimeType object to match. ### ### To call this function, args and pinfos must be the same length, and param ### types must be assignable from args. ### ### NOTE, if using this function, then need to use GetTargetArgsRestrictions ### and make sure you're performing the same conversions as restrictions. ### def ConvertArguments (argMOs, pinfos): res = [] for p,a in zip(pinfos, argMOs): argExpr = a.Expression if type(a.Value) is TypeModel and p.ParameterType is clr.GetClrType(Type): argExpr = GetRuntimeTypeMoFromModel(a).Expression res.append(Exprs.Expression.Convert(argExpr, p.ParameterType)) return res ### ### Note, callers must ensure the DynamicMetaObject that uses this expression ### has consistent restrictions for the conversion done on args and the target. ### def GetIndexExpression (targetMO, indexMOs): indexExprs = [Exprs.Expression.Convert(x.Expression, x.LimitType) for x in indexMOs] if type(targetMO.Value) is Cons: #Don't look at LimitType to compare py type objs. ## In C# can use Expression.Call on methodinfo. return Exprs.Expression.Dynamic( RunHelpersInvokeBinder(CallInfo(2)), object, Exprs.Expression.Constant(RuntimeHelpers.GetConsElt), Exprs.Expression.Convert(targetMO.Expression, targetMO.LimitType), indexExprs[0]) elif targetMO.LimitType.IsArray: return Exprs.Expression.ArrayAccess( Exprs.Expression.Convert(targetMO.Expression, targetMO.LimitType), indexExprs) else: ## Check for Item indexer. props = targetMO.LimitType.GetProperties() props = [x for x in props if len(x.GetIndexParameters()) == len(indexMOs)] res = [] for p in props: if ParamsMatchArgs(p.GetIndexParameters(), indexMOs): res.append(p) if len(res) == 0: return Exprs.Expression.Throw( Exprs.Expression.New( MissingMemberException.GetConstructor( Array[Type]([str])), Exprs.Expression.Constant( "Can't find matching indexer property."))) return Exprs.Expression.MakeIndex( Exprs.Expression.Convert(targetMO.Expression, targetMO.LimitType), res[0], indexExprs) ## CreateThrow takes arguments like fallback and bind methods, dynamic meta ## objects. It also takes restrictions to constrain when the throw rule is ## good. It takes an Exception type and arguments for the throw the resulting ## DynamicMetaObject represents. It returns a DynamicMetaObject whose expr ## throws the exception, and ensures the expr's type is object to satisfy ## the CallSite return type constraint. ## def CreateThrow (target, args, moreTests, exception, *exceptionArgs): argExprs = None argTypes = Type.EmptyTypes if exceptionArgs is not None: argExprs = [] argTypes = [] for o in exceptionArgs: e = Exprs.Expression.Constant(o) argExprs.append(e) argTypes.append(e.Type) constructor = clr.GetClrType(exception).GetConstructor(Array[Type](argTypes)) if constructor is None: raise ArgumentException( "Type doesn't have constructor with a given signature") return DynamicMetaObject( Exprs.Expression.Throw( Exprs.Expression.New(constructor, argExprs), ## Force expression to be type object so that DLR CallSite code ## things only type object flows out of the CallSite. object), target.Restrictions.Merge(BindingRestrictions.Combine(args)) .Merge(moreTests)) ### EnsureObjectResult wraps expr if necessary so that any binder or ### DynamicMetaObject result expression returns object. This is required ### by CallSites. ### def EnsureObjectResult (expr): if not expr.Type.IsValueType: return expr if expr.Type is clr.GetClrType(Void): return Exprs.Expression.Block(expr, Exprs.Expression.Default(object)) else: return Exprs.Expression.Convert(expr, object) ############################## ### Type model IDynObj wrapper ############################## ### TypeModel wraps System.Runtimetypes. When Sympl code encounters ### a type leaf node in Sympl.Globals and tries to invoke a member, wrapping ### the ReflectionTypes in TypeModels allows member access to get the type's ### members and not ReflectionType's members. ### class TypeModel (object, IDynamicMetaObjectProvider): def __init__ (self, typ): ## Note, need to check for initialized members in GetMetaObject so ## that creating TypeModel's works without using our custom MO. self.ReflType = typ ### GetMetaObject needs to wrap the base IDO due to Python's objects all ### being IDOs. While this GetMetaObject definition is on the stack IPy ### ensures Ipy uses its own MO for TypeModel instances. However, when ### this function is NOT pending on the stack, IPy calls this GetMetaObject ### to get the MO. TypeModelMetaObject needs to delegate to the Python IDO ### to dot into TypeModel instances for members, or capture all the ### TypeModel state in our MO. We pass ReflType here so that in ### TypeModelMetaObject BindXXX methods, we do not have to access TypeModel ### instance members. If we did access TypeModel instance members from ### TypeModelMetaObject, then that code would call this GetMetaObject and ### use the BindGetMember below, which would fail to access ReflType since ### the BindGetMember blow looks for members on the type represented by ### ReflType. ### ### The C# implementation won't need to do this awkward workaround. ### def GetMetaObject (self, objParam): baseIdoMo = IDynamicMetaObjectProvider.GetMetaObject(self, objParam) if hasattr(self, "ReflType"): ## If came through once and initialized this slot, then return ## my MO for accessing the members of the type represented by ## ReflType. return TypeModelMetaObject(objParam, self, self.ReflType, baseIdoMo) return baseIdoMo class TypeModelMetaObject (DynamicMetaObject): ### Constructor takes ParameterExpr to reference CallSite, a TypeModel ### that the new TypeModelMetaObject represents, and the base Python IDO MO ### handle for the TypeModel instance that Python uses. We need to ### delegate to this MO explicitly to get Python to do binding for us on ### TypeModel instances when it is NOT Sympl code that is trying to use ### the TypeModel to dot into members on the type represented by the ### TypeModel instance. ### def __new__ (self, objParam, typModel, refltype, baseIdoMo): mo = super(TypeModelMetaObject, self).__new__( TypeModelMetaObject, objParam, BindingRestrictions.Empty, typModel) mo.TypModel = typModel mo.ReflType = refltype mo.ObjParamExpr = objParam mo.BaseIDOMO = baseIdoMo return mo def BindGetMember (self, binder): #debugprint("tmmo bindgetmember ...", binder.Name) flags = (refl.BindingFlags.IgnoreCase | refl.BindingFlags.Static | refl.BindingFlags.Public) ## consider BindingFlags.Instance if want to return wrapper for ## inst members that is callable. members = self.ReflType.GetMember(binder.Name, flags) if len(members) == 1: return DynamicMetaObject( ## We always access static members for type model ## objects, so the first argument in MakeMemberAccess ## should be null (no instance). EnsureObjectResult( Exprs.Expression.MakeMemberAccess( None, members[0])), ## Don't need restriction test for name since this ## rule is only used where binder is used, which is ## only used in sites with this binder.Name. self.Restrictions.Merge( BindingRestrictions.GetInstanceRestriction( self.Expression, self.Value))) else: ## Defer to IPy binding to access TypeModel instance members. IPy ## will fallback to the binder as appropriate. ##return binder.FallbackGetMember(self) return self.BaseIDOMO.BindGetMember(binder) ### Because we don't ComboBind over several MOs and operations, and no one ### is falling back to this function with MOs that have no values, we ### don't need to check HasValue. If we did check, and HasValue == False, ### then would defer to new InvokeMemberBinder.Defer(). ### def BindInvokeMember (self, binder, args): debugprint("tmmo: bindinvokemember ...", binder.Name) flags = (refl.BindingFlags.IgnoreCase | refl.BindingFlags.Static | refl.BindingFlags.Public) members = self.ReflType.GetMember(binder.Name, flags) if (len(members) == 1 and (isinstance(members[0], refl.PropertyInfo) or isinstance(members[0], refl.FieldInfo))): raise Exception("Haven't implemented invoking delegate values " + "from properties or fields.") ## NOT TESTED, should check type for isinstance delegate #return DynamicMetaObject( # Exprs.Expression.Dynamic( # SymplInvokeBinder(CallInfo(len(args))), # object, # ([Exprs.MakeMemberAccess(self.Expression, mem)] + # (x.Expression for x in args)))) ## Don't test for eventinfos since we do nothing with them now. else: ## Get MethodInfos with right arg count. debugprint("tmmo bind invoke mem ... searching ...", len(members)) mi_mems = [x for x in members if isinstance(x, refl.MethodInfo) and len(x.GetParameters()) == len(args)] debugprint("methodinfo members with same arg count: ", len(mi_mems)) debugprint(mi_mems) res = [] for mem in mi_mems: if ParamsMatchArgs(mem.GetParameters(), args): res.append(mem) if len(res) == 0: ## Sometimes when binding members on TypeModels the member ## is an intance member since the Type is an instance of Type. ## We fallback to the binder with the Type instance to see if ## it binds. The SymplInvokeMemberBinder does handle this. refltypeMO = GetRuntimeTypeMoFromModel(self) return binder.FallbackInvokeMember(refltypeMO, args, None) ## True means generate an instance restriction on the MO. ## We are only looking at the members defined in this Type instance. restrictions = GetTargetArgsRestrictions(self, args, True) ## restrictions and conversion must be done consistently. callArgs = ConvertArguments(args, res[0].GetParameters()) ## Fix expr to satisfy object type required by CallSite. return DynamicMetaObject( EnsureObjectResult(Exprs.Expression.Call(res[0], callArgs)), restrictions) ## Could try just letting Expr.Call factory do the work, but if ## there is more than one applicable method using just ## assignablefrom, Expr.Call flames out. It does not pick a "most ## applicable" method. ## Defer to IPy binding to invoke TypeModel instance members. IPy ## will fallback to the binder as appropriate. ##return binder.FallbackInvokeMember(self) ##return self.BaseIDOMO.BindInvokeMember(binder, args) def BindCreateInstance (self, binder, args): ctors = self.ReflType.GetConstructors() ## Get constructors with right arg count. ctors = [x for x in ctors if len(x.GetParameters()) == len(args)] res = [] for mem in ctors: if ParamsMatchArgs(mem.GetParameters(), args): res.append(mem) if len(res) == 0: refltypeMO = GetRuntimeTypeMoFromModel(self) return binder.FallbackCreateInstance(refltypeMO, args) ## True means generate an instance restriction on the MO. ## We only have a rule to create this exact type. restrictions = GetTargetArgsRestrictions(self, args, True) ## restrictions and conversion must be done consistently. callArgs = ConvertArguments(args, res[0].GetParameters()) return DynamicMetaObject( ## Creating an object, so don't need EnsureObjectResult. Exprs.Expression.New(res[0], callArgs), restrictions) ### ### Bindings I don't care about, so defer to Pythons IDO ### def BindConvert (self, binder): return self.BaseIDOMO.BindConvert(binder) def BindSetMember (self, binder, valueMO): return self.BaseIDOMO.BindSetMember(binder, valueMO) def BindDeleteMember (self, binder): return self.BaseIDOMO.BindDeleteMember(binder) def BindGetIndex (self, binder, indexes): return self.BaseIDOMO.BindGetIndex (binder, indexes) def BindSetIndex (self, binder, indexes, value): return self.BaseIDOMO.BindSetIndex (binder, indexes, value) def BindDeleteIndex (self, binder, indexes): return self.BaseIDOMO.BindDeleteIndex (binder, indexes) def BindInvoke (self, binder, args): return self.BaseIDOMO.BindInvoke (binder, args) def BindUnaryOperation (self, binder): return self.BaseIDOMO.BindUnaryOperation (binder) def BindBinaryOperation (self, binder, arg): return self.BaseIDOMO.BindBinaryOperation (binder, arg) ####################################################### ### Dynamic Helpers for HasMember, GetMember, SetMember ####################################################### ### DynamicObjectHelpers provides access to IDynObj members given names as ### data at runtime. When the names are known at compile time (o.foo), then ### they get baked into specific sites with specific binders that encapsulate ### the name. We need this in python because hasattr et al are case-sensitive. ### ### Currently Sympl only uses this on ExpandoObjects, but it works generally on ### IDOs. ### class DynamicObjectHelpers (object): Sentinel = object() GetSites = {} SetSites = {} @staticmethod def HasMember (dynObj, name): if not isinstance(dynObj, IDynamicMetaObjectProvider): raise Exception("DynamicObjectHelpers only works on IDOs for now.") return (DynamicObjectHelpers.GetMember(dynObj, name) != DynamicObjectHelpers.Sentinel) #Alternative impl used when EOs had bug and didn't call fallback ... #mo = dynObj.GetMetaObject(Exprs.Expression.Parameter(object, "bogus")) #for member in mo.GetDynamicMemberNames(): # if String.Equals(member, name, # String.StringComparison.OrdinalIgnoreCase): # return True #return False @staticmethod def GetMember (dynObj, name): if not isinstance(dynObj, IDynamicMetaObjectProvider): raise Exception("DynamicObjectHelpers only works on IDOs for now.") ## Work around an IronPython 4.0 issue: ## http://ironpython.codeplex.com/WorkItem/View.aspx?WorkItemId=22735 if clr.use35: func = Func else: func = clr.GetPythonType(Type.GetType("System.Func`3")) site = DynamicObjectHelpers.GetSites.get(name) if site is None: site = CallSite[func[CallSite, object, object]].Create( DOHelpersGetMemberBinder(name)) DynamicObjectHelpers.GetSites[name] = site return site.Target(site, dynObj) @staticmethod def GetMemberNames (dynObj): if not isinstance(dynObj, IDynamicMetaObjectProvider): raise Exception("DynamicObjectHelpers only works on IDOs for now.") return (dynObj.GetMetaObject(Exprs.Expression.Parameter(object, "bogus")) .GetDynamicMemberNames()) @staticmethod def SetMember(dynObj, name, value): if not isinstance(dynObj, IDynamicMetaObjectProvider): raise Exception("DynamicObjectHelpers only works on IDOs for now.") ## Work around an IronPython 4.0 issue: ## http://ironpython.codeplex.com/WorkItem/View.aspx?WorkItemId=22735 if clr.use35: action = Action else: action = clr.GetPythonType(Type.GetType("System.Action`3")) site = DynamicObjectHelpers.SetSites.get(name) if site is None: ## For general usage ExpandoObject type param could be object. site = CallSite[action[CallSite, ExpandoObject, object]].Create( DOHelpersSetMemberBinder(name)) DynamicObjectHelpers.SetSites[name] = site site.Target(site, dynObj, value) class DOHelpersGetMemberBinder (GetMemberBinder): #def __init__ (self, name, ignoreCase): # ## super(...) always works, even with multiple inheritance but # ## GetMemberBinder.__init__(self, name, True) would work in this case. # super(DOHelpersGetMemberBinder, self).__init__(name, ignoreCase) def __new__ (cls, name): return GetMemberBinder.__new__(cls, name, True) def FallbackGetMember(self, targetMO, errorSuggestionMO): ## Don't add my own type restriction, target adds them. return DynamicMetaObject( Exprs.Expression.Constant(DynamicObjectHelpers.Sentinel), targetMO.Restrictions) ## Don't need Equals override or GetHashCode because there is no more ## specific binding metadata in this binder than what the base methods ## already compare. # def GetHashCode (self): # pass # # def Equals (self, obj): # return (isinstance(obj, DOHelpersGetMemberBinder) and # super(DOHelpersGetMemberBinder, self).Equals(obj)) class DOHelpersSetMemberBinder (SetMemberBinder): #def __init__ (self, name, ignoreCase): # super(DOHelpersSetMemberBinder, self).__init__(name, ignoreCase) def __new__ (cls, name): return SetMemberBinder.__new__(cls, name, True) def FallbackSetMember(self, targetMO, valueMO, errorSuggestionMO): return (errorSuggestionMO or CreateThrow( targetMO, None, BindingRestrictions.Empty, MissingMemberException, ## General msg: Sympl doesn't override IDOs to set members. "If IDynObj doesn't support setting members, " + "DOHelpers can't do it for the IDO.")) ## Don't need Equals override or GetHashCode because there is no more ## specific binding metadata in this binder than what the base methods ## already compare. #def GetHashCode (self): # pass # #def Equals (self, obj): # return (isinstance(obj, DOHelpersSetMemberBinder) and # super(DOHelpersSetMemberBinder, self).Equals(obj)) ########################### ### General Runtime Binders ########################### ### SymplGetMemberBinder is used for general dotted expressions for fetching ### members. ### class SymplGetMemberBinder (GetMemberBinder): #def __init__ (self, name, ignoreCase): # ## super(...) always works, even with multiple inheritance but # ## GetMemberBinder.__init__(self, name, True) would work in this case. # super(DOHelpersGetMemberBinder, self).__init__(name, ignoreCase) def __new__ (cls, name): return GetMemberBinder.__new__(cls, name, True) # True = IgnoreCase def FallbackGetMember(self, targetMO, errorSuggestionMO): ## Defer if any object has no value so that we evaulate their ## Expressions and nest a CallSite for the GetMember. if not targetMO.HasValue: return self.Defer(targetMO) ## Try COM binding first. isCom, com = ComBinder.TryBindGetMember(self, targetMO, True) if isCom: return com debugprint("symplgetmember ...", targetMO.Expression, self.Name) ## Find our own binding. flags = (refl.BindingFlags.IgnoreCase | refl.BindingFlags.Static | refl.BindingFlags.Instance | refl.BindingFlags.Public) ## bindingflags.flattenhierarchy? public and protected static members members = targetMO.LimitType.GetMember(self.Name, flags) if len(members) == 1: return DynamicMetaObject( EnsureObjectResult( Exprs.Expression.MakeMemberAccess( Exprs.Expression.Convert(targetMO.Expression, members[0].DeclaringType), members[0])), ## Don't need restriction test for name since this ## rule is only used where binder is used, which is ## only used in sites with this binder.Name. BindingRestrictions.GetTypeRestriction( targetMO.Expression, targetMO.LimitType)) else: if errorSuggestionMO is not None: return errorSuggestionMO return CreateThrow( targetMO, None, BindingRestrictions.GetTypeRestriction( targetMO.Expression, targetMO.LimitType), MissingMemberException, "Object " + str(targetMO.Value) + " does not have member " + self.Name) ### SymplSetMemberBinder is used for general dotted expressions for setting ### members. ### class SymplSetMemberBinder (SetMemberBinder): #def __init__ (self, name, ignoreCase): # ## super(...) always works, even with multiple inheritance but # ## GetMemberBinder.__init__(self, name, True) would work in this case. # super(DOHelpersGetMemberBinder, self).__init__(name, ignoreCase) def __new__ (cls, name): return SetMemberBinder.__new__(cls, name, True) # True = IgnoreCase def FallbackSetMember(self, targetMO, valueMO, errorSuggestionMO): debugprint("symplsetmember fallback ...", targetMO.Expression, self.Name, " ..name now expr..", valueMO.Expression) ## Defer if any object has no value so that we evaulate their ## Expressions and nest a CallSite for the SetMember. if not targetMO.HasValue: return self.Defer(targetMO) ## Try COM object first. isCom, com = ComBinder.TryBindSetMember(self, targetMO, valueMO) if isCom: return com ## Find our own binding. flags = (refl.BindingFlags.IgnoreCase | refl.BindingFlags.Static | refl.BindingFlags.Instance | refl.BindingFlags.Public) members = targetMO.LimitType.GetMember(self.Name, flags) if len(members) == 1: mem = members[0] val = None ## Should check for member domain type being Type and value being ## TypeModel, similar to ConvertArguments, and building an ## expression like GetRuntimeTypeMoFromModel. if mem.MemberType == refl.MemberTypes.Property: val = Exprs.Expression.Convert(valueMO.Expression, mem.PropertyType) elif mem.MemberType == refl.MemberTypes.Field: val = Exprs.Expression.Convert(valueMO.Expression, mem.FieldType) else: return (errorSuggestionMO or CreateThrow( targetMO, None, BindingRestrictions.GetTypeRestriction( targetMO.Expression, targetMO.LimitType), InvalidOperationException, "Sympl only support setting properties and " + "fields at this time.")) return DynamicMetaObject( EnsureObjectResult( Exprs.Expression.Assign( Exprs.Expression.MakeMemberAccess( Exprs.Expression.Convert( targetMO.Expression, members[0].DeclaringType), members[0]), valueMO.Expression)), ## Don't need restriction test for name since this ## rule is only used where binder is used, which is ## only used in sites with this binder.Name. BindingRestrictions.GetTypeRestriction( targetMO.Expression, targetMO.LimitType)) else: if errorSuggestionMO is not None: return errorSuggestionMO return CreateThrow( targetMO, None, BindingRestrictions.GetTypeRestriction( targetMO.Expression, targetMO.LimitType), MissingMemberException, "IDynObj member name conflict.") ### SymplInvokeMemberBinder is used for general dotted expressions in function ### calls for invoking members. ### class SymplInvokeMemberBinder (InvokeMemberBinder): def __new__ (cls, name, callinfo): return InvokeMemberBinder.__new__(cls, name, True, callinfo) def FallbackInvokeMember (self, targetMO, argMOs, errorSuggestionMO): ## Defer if any object has no value so that we evaulate their ## Expressions and nest a CallSite for the InvokeMember. if not targetMO.HasValue or not all(map(lambda x: x.HasValue, argMOs)): return self.Defer((targetMO,) + tuple(argMOs)) ## Try COM object first. isCom, com = ComBinder.TryBindInvokeMember(self, targetMO, argMOs) if isCom: return com ## Find our own binding. flags = (refl.BindingFlags.IgnoreCase | refl.BindingFlags.Instance | refl.BindingFlags.Public) members = targetMO.LimitType.GetMember(self.Name, flags) if (len(members) == 1 and (isinstance(members[0], refl.PropertyInfo) or isinstance(members[0], refl.FieldInfo))): raise Exception("Haven't implemented invoking delegate values " + "from properties or fields.") ## NOT TESTED, should check type for isinstance delegate #return DynamicMetaObject( # Exprs.Expression.Dynamic( # SymplInvokeBinder(CallInfo(len(args))), # object, # ([Exprs.MakeMemberAccess(self.Expression, mem)] + # (x.Expression for x in args)))) ## Don't test for eventinfos since we do nothing with them now. else: ## Get MethodInfos with right arg count. debugprint("tmmo bind invoke mem ... searching ...", len(members)) mi_mems = [x for x in members if isinstance(x, refl.MethodInfo) and len(x.GetParameters()) == len(argMOs)] debugprint("methodinfo members with same arg count: ", len(mi_mems)) debugprint(mi_mems) res = [] for mem in mi_mems: if ParamsMatchArgs(mem.GetParameters(), argMOs): res.append(mem) ## False below means generate a type restriction on the MO. ## We are looking at the members targetMO's Type. restrictions = GetTargetArgsRestrictions(targetMO, argMOs, False) ## See if we have a result and return an error MO. if len(res) == 0: return (errorSuggestionMO or CreateThrow( targetMO, argMOs, restrictions, MissingMemberException, "Cannot bind member invoke -- " + repr(argMOs))) ## restrictions and conversion must be done consistently. callArgs = ConvertArguments(argMOs, res[0].GetParameters()) return DynamicMetaObject( EnsureObjectResult( Exprs.Expression.Call( Exprs.Expression.Convert(targetMO.Expression, targetMO.LimitType), res[0], callArgs)), restrictions) def FallbackInvoke (self, targetMO, argMOs, errorSuggestionMO): ## Just "defer" since we have code in SymplInvokeBinder that knows ## what to do, and typically this fallback is from a language like Python ## that passes a DynamicMetaObject with HasValue == false. return DynamicMetaObject( Exprs.Expression.Dynamic( ## This call site doesn't share any L2 caching ## since we don't call GetInvokeBinder from Sympl. ## We aren't plumbed to get the runtime instance here. SymplInvokeBinder(CallInfo(len(argMOs))), object, #ret type [targetMO.Expression] + [x.Expression for x in argMOs]), ## No new restrictions since SymplInvokeBinder will handle it. targetMO.Restrictions.Merge( BindingRestrictions.Combine(argMOs))) ## This class is needed to canonicalize InvokeMemberBinders in Sympl. See ## the comment above the GetXXXBinder methods at the end of the Sympl class. ## class InvokeMemberBinderKey (object): def __init__ (self, name, info): self._name = name self._info = info def _getName (self): return self._name Name = property(_getName) def _getInfo (self): return self._info Info = property(_getInfo) def __eq__ (self, obj): #def Equals (self, obj): return ((obj is not None) and (obj.Name == self._name) and obj.Info.Equals(self._info)) def __hash__ (self): #def GetHashCode (self): return 0x28000000 ^ self._name.GetHashCode() ^ self._info.GetHashCode() ### Used for calling runtime helpers, delegate values, and callable IDO (which ### really get handled by their MOs. ### class SymplInvokeBinder (InvokeBinder): def FallbackInvoke (self, targetMO, argMOs, errorSuggestionMO): debugprint("symplinvokebinder fallback...", targetMO.Expression, "...", [x.Expression for x in argMOs]) ## Defer if any object has no value so that we evaulate their ## Expressions and nest a CallSite for the InvokeMember. if not targetMO.HasValue or not all(map(lambda x: x.HasValue, argMOs)): return self.Defer((targetMO,) + tuple(argMOs)) ## Try COM object first. isCom, com = ComBinder.TryBindInvoke(self, targetMO, argMOs) if isCom: return com ## Find our own binding. if targetMO.LimitType.IsSubclassOf(Delegate): params = targetMO.LimitType.GetMethod("Invoke").GetParameters() if len(params) == len(argMOs): debugprint("returning rule") debugprint(" ... ", targetMO.LimitType, "...", targetMO.Expression.Type, "...", targetMO.Value) ## Don't need to check if argument types match parameters. ## If they don't, users get an argument conversion error. expression = Exprs.Expression.Invoke( Exprs.Expression.Convert(targetMO.Expression, targetMO.LimitType), ConvertArguments(argMOs, params)) return DynamicMetaObject( EnsureObjectResult(expression), BindingRestrictions.GetTypeRestriction( targetMO.Expression, targetMO.LimitType)) return (errorSuggestionMO or CreateThrow( targetMO, argMOs, BindingRestrictions.GetTypeRestriction( targetMO.Expression, targetMO.LimitType), InvalidOperationException, "Wrong number of arguments for function -- " + str(targetMO.LimitType) + " got " + argMOs)) ### Used to instantiate types or IDOs that can be instantiated (though their MOs ### really do the work. ### class SymplCreateInstanceBinder (CreateInstanceBinder): def __new__ (cls, callinfo): return CreateInstanceBinder.__new__(cls, callinfo) def FallbackCreateInstance (self, targetMO, argMOs, errorSuggestionMO): ## Defer if any object has no value so that we evaulate their ## Expressions and nest a CallSite for the CreateInstance. if not targetMO.HasValue or not all(map(lambda x: x.HasValue, argMOs)): return self.Defer((targetMO,) + tuple(argMOs)) ## Make sure target actually contains a Type. if not (Type.IsAssignableFrom(Type, targetMO.LimitType)): return (errorSuggestionMO or CreateThrow( targetMO, argMOs, BindingRestrictions.Empty, InvalidOperationException, ("Type object must be used when creating instance -- " + repr(targetMO)))) ## Get constructors with right arg count. ctors = [x for x in targetMO.Value.GetConstructors() if len(x.GetParameters()) == len(argMOs)] ## Get ctors with param types that work for args. This works ## for except for value args that need to pass to reftype params. ## We could detect that to be smarter and then explicitly StrongBox ## the args. res = [] for mem in ctors: if ParamsMatchArgs(mem.GetParameters(), argMOs): res.append(mem) ## True means generate an instance restriction on the MO. ## We are only looking at the members defined in this Type instance. restrictions = GetTargetArgsRestrictions(targetMO, argMOs, True) if len(res) == 0: return (errorSuggestionMO or CreateThrow( targetMO, argMOs, restrictions, MissingMemberException, "Can't bind create instance -- " + repr(targetMO))) ## restrictions and conversion must be done consistently. callArgs = ConvertArguments(argMOs, res[0].GetParameters()) return DynamicMetaObject( ## Creating an object, so don't need EnsureObjectResult. Exprs.Expression.New(res[0], callArgs), restrictions) class SymplGetIndexBinder (GetIndexBinder): #def __new__ (cls, callinfo): # return GetIndexBinder.__new__(cls, callinfo) def FallbackGetIndex (self, targetMO, argMOs, errorSuggestionMO): ## Defer if any object has no value so that we evaulate their ## Expressions and nest a CallSite for the InvokeMember. if not targetMO.HasValue or not all(map(lambda x: x.HasValue, argMOs)): return self.Defer((targetMO,) + tuple(argMOs)) ## Try COM object first. isCom, com = ComBinder.TryBindGetIndex(self, targetMO, argMOs) if isCom: return com ## Give a good error for Cons. if type(targetMO.Value) is Cons: if len(argMOs) != 1: return (errorSuggestionMO or CreateThrow( targetMO, argMOs, BindingRestrictions.Empty, InvalidOperationException, "Indexing Sympl list requires exactly one argument.")) ## Find our own binding. ## ## Conversions created in GetIndexExpression must be consistent with ## restrictions made in GetTargetArgsRestrictions. return DynamicMetaObject( EnsureObjectResult(GetIndexExpression(targetMO, argMOs)), ## False means make type restriction on targetMO.LimitType GetTargetArgsRestrictions(targetMO, argMOs, False)) class SymplSetIndexBinder (SetIndexBinder): #def __new__ (cls, callinfo): # return SetIndexBinder.__new__(cls, callinfo) def FallbackSetIndex (self, targetMO, argMOs, valueMO, errorSuggestionMO): ## Defer if any object has no value so that we evaulate their ## Expressions and nest a CallSite for the SetIndex. if (not targetMO.HasValue or not all(map(lambda x: x.HasValue, argMOs)) or not valueMO.HasValue): return self.Defer((targetMO,) + tuple(argMOs) + (valueMO,)) ## Try COM object first. isCom, com = ComBinder.TryBindSetIndex(self, targetMO, argMOs, valueMO) if isCom: return com ## Find our own binding. First setup value. valueExpr = valueMO.Expression if type(valueMO.Value) is TypeModel: ## Don't use LimitType to compare py type objs, use the value. valueExpr = GetRuntimeTypeMoFromModel(valueMO).Expression ## Check Cons vs. normal if type(targetMO.Value) is Cons: ## Don't use LimitType to compare py type objs, use the value. if len(argMOs) != 1: return (errorSuggestionMO or CreateThrow( targetMO, argMOs, BindingRestrictions.Empty, InvalidOperationException, "Indexing Sympl list requires exactly one argument.")) setIndexExpr = ( ## In C# can use Expression.Call on methodinfo. Exprs.Expression.Dynamic( RunHelpersInvokeBinder(CallInfo(3)), object, Exprs.Expression.Constant(RuntimeHelpers.SetConsElt), Exprs.Expression.Convert(targetMO.Expression, targetMO.LimitType), Exprs.Expression.Convert(argMOs[0].Expression, argMOs[0].LimitType), ## Calling Py runtime helper doesn't need the type ## conversions, and it is unnecessarily boxing in python. valueExpr)) else: indexExpr = GetIndexExpression(targetMO, argMOs) setIndexExpr = EnsureObjectResult( Exprs.Expression.Assign(indexExpr, valueExpr)) ## False means make type restriction on targetMO.LimitType restrictions = GetTargetArgsRestrictions(targetMO, argMOs, False) return DynamicMetaObject(setIndexExpr, restrictions) class SymplBinaryOperationBinder (BinaryOperationBinder): def FallbackBinaryOperation (self, leftMO, rightMO, errorSuggestionMO): ## Defer if any object has no value so that we evaulate their ## Expressions and nest a CallSite for the SetIndex. if not leftMO.HasValue or not rightMO.HasValue: self.Defer(leftMO, rightMO) restrictions = (leftMO.Restrictions.Merge(rightMO.Restrictions) .Merge(BindingRestrictions.GetTypeRestriction( leftMO.Expression, leftMO.LimitType)) .Merge(BindingRestrictions.GetTypeRestriction( rightMO.Expression, rightMO.LimitType))) return DynamicMetaObject( EnsureObjectResult( Exprs.Expression.MakeBinary( self.Operation, Exprs.Expression.Convert(leftMO.Expression, leftMO.LimitType), Exprs.Expression.Convert(rightMO.Expression, rightMO.LimitType))), restrictions) ### This is mostly for example and plumbing in case anyone adds a dynamic unary ### operator. The only unary Op Sympl suports is logical Not, which it handles ### without a dynamic node since everything that is not nil or false is true. ### class SymplUnaryOperationBinder (UnaryOperationBinder): def FallbackUnaryOperation (self, operandMO, errorSuggestionMO): ## Defer if any object has no value so that we evaulate their ## Expressions and nest a CallSite for the SetIndex. if not operandMO.HasValue: self.Defer(operandMO) return DynamicMetaObject( EnsureObjectResult( Exprs.Expression.MakeUnary( self.Operation, Exprs.Expression.Convert(operandMO.Expression, operandMO.LimitType), operandMO.LimitType)), operandMO.Restrictions.Merge( BindingRestrictions.GetTypeRestriction( operandMO.Expression, operandMO.LimitType))) ########################### ### Cons Cells and Symbols ########################### class Symbol (object): def __init__ (self, name): self._name = name self._value = None self.Plist = None ### Need __repr__ to just print name, not <Symbol name>, when Symbols are ### inside list structures. ### def __repr__ (self): return self._name ## IPy doesn't bind repr for Py printing, and ToString for .NET ## printing. Need to print here like we want for ToString. #return "<Symbol " + self.Name + ">" ### Need ToString when Sympl program passing Symbol to Console.WriteLine. ### Otherwise, it prints as internal IPy constructed type. ### def ToString (self): return self._name def _getName (self): return self._name def _setName (self, value): self._name = value return value Name = property(_getName, _setName) def _getValue (self): return self._value def _setValue (self, value): self._value = value return value Value = property(_getValue, _setValue) def _getPlist (self): return self._plist def _setPlist (self, value): self._plist = value return value PList = property(_getPlist, _setPlist) class Cons (object): def __init__ (self, first, rest): self._first = first self._rest = rest ### NOTE: does not handle circularities! ### def __repr__ (self): head = self res = "(" while head is not None: res = res + repr(head._first) if head._rest is None: head = None elif type(head._rest) is Cons: head = head._rest res = res + " " else: res = res + " . " + repr(head._rest) head = None return res + ")" def ToString (self): return self.__repr__() def _getFirst (self): return self._first def _setFirst (self, value): self._first = value return value First = property(_getFirst, _setFirst) def _getRest (self): return self._rest def _setRest (self, value): self._rest = value return value Rest = property(_getRest, _setRest) ### In C# this will be internal to the Sympl Runtime, called only by the ### code emitted when analyzing a keyword form invocation for List. ### @staticmethod def _List (*elements): if len(elements) == 0: return None head = Cons(elements[0], None) tail = head for elt in elements[1:]: tail.Rest = Cons(elt, None) tail = tail.Rest return head ################## ### Dev-time Utils ################## _debug = False def debugprint (*stuff): if _debug: for x in stuff: print x, print
python
import os import json, boto3 def lambda_handler(event, context): print("Trigger Event: ") print(event) region = os.environ['REGION'] elbv2_client = boto3.client('elbv2', region_name=region) available_target_groups = os.environ['AVAILABLE_TARGET_GROUPS'] arr_available_target_groups = available_target_groups.split(',') # Get HTTP Target Group. http_listener_arn = os.environ['HTTP_LISTENER_ARN'] http_listener = elbv2_client.describe_rules( ListenerArn=http_listener_arn) http_target_group_arn = get_current_http_target_group(http_listener['Rules'], arr_available_target_groups) if http_target_group_arn==False: print("Could not identify the target arn") return False print("Current HTTP target group: ") print(http_target_group_arn) # Get HTTPS listener rules. https_listener_arn = os.environ['SSL_LISTENER_ARN'] https_listener = elbv2_client.describe_rules(ListenerArn=https_listener_arn) https_listener_rules = https_listener['Rules'] print("Current HTTPS target group: ") https_target_group_arn = get_current_http_target_group(https_listener['Rules'], arr_available_target_groups) print(https_target_group_arn) results = {} i = 0 while i < len(https_listener_rules): # Skip default rule if https_listener_rules[i]['IsDefault']==True: i +=1 continue actions = https_listener_rules[i]['Actions'] actions, modify = process_actions(actions, http_target_group_arn, arr_available_target_groups) if modify==1: print("Updating SSL listener rules..") rule_arn = https_listener_rules[i]['RuleArn'] results[rule_arn] = modify_rules(elbv2_client, rule_arn, actions) i +=1 # For ECS After Allow Test Traffic hook print(results) send_codedeploy_validation_status(event, results) return results # Returns the current B/G target group from a list of lister rules. def get_current_http_target_group(http_listener_rules, arr_available_target_groups): i=0 while i < len(http_listener_rules): # Continue if default listener rule. if http_listener_rules[i]['IsDefault']==True: i +=1 continue actions = http_listener_rules[i]['Actions'] n=0 while n<len(actions): try: for tg in actions[n]['ForwardConfig']['TargetGroups']: if tg['TargetGroupArn'] in arr_available_target_groups and (tg['Weight'] is 100 or tg['Weight'] is 1) : return tg['TargetGroupArn'] except Exception as e: print(e) n +=1 i +=1 return False def process_actions(actions, http_target_group_arn, arr_available_target_groups): modify = 0 for ak, action in enumerate(actions): try: if action['Type'] == "forward" and check_target_update(action['TargetGroupArn'], arr_available_target_groups): actions[ak]['TargetGroupArn']=http_target_group_arn for tgk, target_group in enumerate(action['ForwardConfig']['TargetGroups']): if check_target_update(target_group['TargetGroupArn'], arr_available_target_groups): actions[ak]['ForwardConfig']['TargetGroups'][tgk]['TargetGroupArn']=http_target_group_arn modify=1 except Exception as e: print(e) return (actions), modify # Check old target group is associated w/out available target and different. # Be wary I found its possible the Listener rule is updated at the initial Ready Stage. # DO NOT TRY COMPARING OLD AN NEW, SIMPLY ALWAYS UPDATE TO MATCH HTTP IF ONE OF THE AVAILABLE TARGETS def check_target_update(old_target_group, arr_available_target_groups): return old_target_group in arr_available_target_groups # Sends notification to CodeDeploy on hook status... def send_codedeploy_validation_status(event, results): region = os.environ['REGION'] codedeploy_client = boto3.client('codedeploy', region_name=region) status = ('Failed', 'Succeeded')[len(results) > 0] print(status) try: return codedeploy_client.put_lifecycle_event_hook_execution_status( deploymentId=event['DeploymentId'], lifecycleEventHookExecutionId=event['LifecycleEventHookExecutionId'], status=status ) except Exception as e: print("Recoverable Exception: ") print(e) return False def modify_rules(elbv2_client, arn, actions): try: return elbv2_client.modify_rule( RuleArn=arn, Actions=actions ) except Exception as e: print(e)
python
import RPi.GPIO as GPIO import time pinServo=40 GPIO.cleanup() GPIO.setmode(GPIO.BOARD) GPIO.setup(pinServo, GPIO.OUT) servo=GPIO.PWM(pinServo, 50) servo.start(0) while True: ang = int(input()) # if (ang>170 and ang < 0): # print('angulo no posible') # break # else: servo.ChangeDutyCycle((ang*12/180)) time.sleep(0.5)
python
from cdmanager import cd import os import shutil from pathlib import Path working_folder = '../data/tfs_rep_2/' destination_folder = '../gemFiles/rep2/' with cd(working_folder): for root, dirs, files in os.walk('./'): #print(dirs) if 'GEMout' in dirs: namedir = str(root.replace('./', '')) originalfolder = os.path.join( namedir, 'GEMout' ) finalFolder = os.path.join( destination_folder, str(root).replace('/', '').replace('.', '')+'GEMout' ) print(originalfolder, finalFolder) shutil.copytree(originalfolder, finalFolder)
python
from __future__ import annotations import decimal import re import pytest from django.core.validators import MaxValueValidator, MinValueValidator, URLValidator from rest_framework import serializers from rest_framework.fields import ( BooleanField, CharField, DateField, DateTimeField, DecimalField, DurationField, EmailField, Field, FileField, FloatField, ImageField, IntegerField, IPAddressField, JSONField, ReadOnlyField, RegexField, SlugField, TimeField, URLField, UUIDField, ) from rest_framework_gis.fields import GeometryField from restdoctor.rest_framework.schema import RestDoctorSchema url_pattern = URLValidator.regex.pattern.replace('\\Z', '\\z') @pytest.mark.parametrize( ('field', 'expected_schema'), [ (Field(), {'type': 'string'}), (ReadOnlyField(), {'readOnly': True, 'type': 'string'}), (Field(write_only=True), {'writeOnly': True, 'type': 'string'}), (Field(allow_null=True), {'nullable': True, 'type': 'string'}), (Field(default='default'), {'default': 'default', 'type': 'string'}), (Field(help_text='help_text'), {'description': 'help_text', 'type': 'string'}), ], ) def test_basic_fields_schema(field, expected_schema): schema = RestDoctorSchema() result = schema._get_field_schema(field) assert result == expected_schema @pytest.mark.parametrize( ('field', 'expected_schema'), [ ( # AutoField, BigIntegerField, IntegerField, PositiveIntegerField, # PositiveSmallIntegerField, SmallIntegerField IntegerField(validators=[MinValueValidator(10)]), {'type': 'integer', 'minimum': 10}, ), ( # BigIntegerField IntegerField(max_value=2 ** 32), {'type': 'integer', 'maximum': 2 ** 32, 'format': 'int64'}, ), ( # PositiveIntegerField, PositiveSmallIntegerField IntegerField(min_value=0), {'type': 'integer', 'minimum': 0}, ), ( # BooleanField, NullBooleanField BooleanField(), {'type': 'boolean'}, ), ( # NullBooleanField BooleanField(allow_null=True), {'type': 'boolean', 'nullable': True}, ), ( # CharField, TextField CharField(allow_blank=True, max_length=10, min_length=2), {'type': 'string', 'maxLength': 10, 'minLength': 2}, ), ( # CharField, TextField CharField(allow_blank=False), {'type': 'string'}, ), ( # CharField, TextField CharField(trim_whitespace=False), {'type': 'string'}, ), ( # DateField DateField(), {'type': 'string', 'format': 'date'}, ), ( # DateTimeField DateTimeField(), {'type': 'string', 'format': 'date-time'}, ), ( # DecimalField DecimalField( max_digits=4, decimal_places=2, validators=[MinValueValidator(10), MaxValueValidator(20)], ), { 'type': 'string', 'format': 'decimal', 'multipleOf': 0.01, 'maximum': 20, 'minimum': 10, }, ), ( # DecimalField DecimalField(max_digits=5, decimal_places=2, validators=[MinValueValidator(0)]), { 'type': 'string', 'format': 'decimal', 'multipleOf': 0.01, 'maximum': 1000, 'minimum': 0, }, ), ( # DecimalField decimal DecimalField( max_digits=5, decimal_places=2, validators=[ MinValueValidator(decimal.Decimal('0.1')), MaxValueValidator(decimal.Decimal('2.1222')), ], ), { 'type': 'string', 'format': 'decimal', 'multipleOf': 0.01, 'maximum': 2.1222, 'minimum': 0.1, }, ), ( # DurationField DurationField(max_value=300, min_value=100), {'type': 'string', 'maximum': 300, 'minimum': 100}, ), ( # EmailField EmailField(), {'type': 'string', 'format': 'email'}, ), ( # JSONField JSONField(), {'type': 'object'}, ), ( # FileField FileField(), {'type': 'string', 'format': 'binary'}, ), ( # FloatField FloatField(), {'type': 'number'}, ), ( # ImageField ImageField(), {'type': 'string', 'format': 'binary'}, ), ( # SlugField SlugField(), {'type': 'string', 'pattern': '^[-a-zA-Z0-9_]+$'}, ), ( # TimeField TimeField(), {'type': 'string'}, ), ( # URLField URLField(), {'type': 'string', 'format': 'uri', 'pattern': url_pattern}, ), ( # UUIDField UUIDField(), {'type': 'string', 'format': 'uuid'}, ), ( # IPAddressField IPAddressField(protocol='IPv6'), {'type': 'string', 'format': 'ipv6'}, ), ( RegexField(re.compile(r'^[-a-zA-Z0-9_]+$')), {'type': 'string', 'pattern': '^[-a-zA-Z0-9_]+$'}, ), ( # IPAddressField IPAddressField(protocol='IPv4'), {'type': 'string', 'format': 'ipv4'}, ), ( IntegerField(min_value=100, max_value=200), {'type': 'integer', 'minimum': 100, 'maximum': 200}, ), ( IntegerField(max_value=2147483648), {'type': 'integer', 'maximum': 2147483648, 'format': 'int64'}, ), ( CharField(min_length=5, max_length=10), {'type': 'string', 'minLength': 5, 'maxLength': 10}, ), ( GeometryField(), { 'type': 'object', 'required': ['type', 'coordinates'], 'properties': { 'type': {'type': 'string', 'enum': ['Point']}, 'coordinates': { 'type': 'array', 'items': {'type': 'number', 'format': 'float'}, 'example': [12.9721, 77.5933], 'minItems': 2, 'maxItems': 3, }, }, }, ), ], ) def test_fields_validators_schema(field, expected_schema): schema = RestDoctorSchema() result = schema._get_field_schema(field) assert result == expected_schema
python
from typing import Optional from pydantic import BaseModel, Field class ScopeCreate(BaseModel): scope_name: str = Field(max_length=32) description: str = Field(max_length=128) default: Optional[bool] = Field(default=False) class ScopeUpdate(BaseModel): description: str = Field(max_length=128) class Scope(ScopeCreate): class Config: orm_mode = True
python
def day2_1(): total = 0 for line in open('day2input.txt'): l, w, h = line.split('x') l, w, h = int(l), int(w), int(h) area = 2*l*w + 2*w*h + 2*h*l slack = min(l*w, w*h, h*l) total += area + slack print total def day2_2(): total = 0 for line in open('day2input.txt'): l, w, h = line.split('x') l, w, h = int(l), int(w), int(h) ribbon = 2 * min(l+w, h+w, h+l) bow = l*w*h total += ribbon + bow print total
python
# PROJECT DECEMBRE 2019 # PROJECT STAR MAP / DATABASE # By Enguerran VIDAL # This file contains the database handling functions. ############################################################### # IMPORTS # ############################################################### import csv ############################################################### # FUNCTIONS # ############################################################### def csv2txt(csv_file, txt_file): ''' Transforms a csv file into a txt file ''' with open(txt_file, "w") as my_output_file: print(" Opened new txt file") with open(csv_file, "r") as my_input_file: print(" Opened old csv file") [my_output_file.write(",".join(row) + '\n') for row in csv.reader(my_input_file)] my_output_file.close() def format_txt(txt_file, char1, char2): ''' Changes "char1" into "char2" throughout an entire .txt file.''' with open(txt_file, "r") as file: lines = file.readlines() file.close() with open(txt_file, "w") as file: n = len(lines) for i in range(n): lines[i] = lines[i].replace(char1, char2) file.write(lines[i]) file.close() def import_database(txt_file): ''' Returns the data from a .txt file transformed from a csv file''' with open(txt_file, "r") as file: lines = file.readlines() n = len(lines) for i in range(n): lines[i] = lines[i].split(',') m = len(lines[i]) for j in range(m): if lines[i][j] == '' or lines[i][j] == '\n': lines[i][j] = 'N' labels = lines[0] lines.pop(0) return labels, lines def dat2csv(dat_file, csv_file): with open(dat_file) as infile, open(csv_file, "w") as outfile: csv_writer = csv.writer(outfile) prev = '' csv_writer.writerow(['ID', 'PARENT_ID']) for line in infile.read().splitlines(): csv_writer.writerow([line, prev]) prev = line
python
from OpenGL.GL import * from OpenGL.GLUT import * from OpenGL.GLU import * import pydart import controller import numpy as np import pickle import action as ac from numpy.linalg import inv import mmMath state = {} state['DrawAxis'] = True state['DrawGrid'] = True state['DrawDataAbs'] = True state['DrawDataRelGlobal'] = True state['DrawDataRelLocal'] = True data_abs = None data_rel_global = None data_rel_local = None dt = 1.0 / 1000.0 skel_file = '/home/jungdam/Research/AlphaCon/pydart/apps/turtle/data/skel/turtle.skel' data_file = './data/warmup/5.0_100_10_torque.warmup' pydart.init() world = pydart.create_world(dt, skel_file) skel = world.skels[0] skel.controller = controller.Controller(world, skel) def load_data(file_name, world, skel): f = open(file_name, 'r') data = pickle.load(f) size = len(data) data_abs = [] data_rel_local = [] data_rel_global = [] print len(data), 'data loaded' cnt = 0 for d in data: state_skel_init = d[0] state_skel_term = d[1] action = d[2] # world.reset() skel.controller.reset() skel.set_states(state_skel_init) # world.step(False,False) R_1, p_1 = mmMath.T2Rp(skel.body('trunk').T) # p_1 = skel.body('trunk').world_com() # skel.controller.add_action(action) # while True: # world.step() # if skel.controller.is_new_wingbeat(): # break # world.reset() skel.controller.reset() skel.set_states(state_skel_term) # world.step(False,False) R_2, p_2 = mmMath.T2Rp(skel.body('trunk').T) # p_2 = skel.body('trunk').world_com() data_rel_global.append(p_2 - p_1) data_rel_local.append(np.dot(inv(R_1), p_2 - p_1)) data_abs.append(p_1) cnt += 1 if cnt % 1000 == 0: print cnt, "data processed" return data_abs, data_rel_global, data_rel_local def render_callback(): global state global data_rel_global global data_rel_local if state['DrawAxis']: glLineWidth(5.0) glBegin(GL_LINES) glColor3d(1, 0, 0) glVertex3d(0, 0, 0) glVertex3d(1, 0, 0) glColor3d(0, 1, 0) glVertex3d(0, 0, 0) glVertex3d(0, 1, 0) glColor3d(0, 0, 1) glVertex3d(0, 0, 0) glVertex3d(0, 0, 1) glEnd() if state['DrawGrid']: l = 2.0 dl = 0.1 n = int(l / dl) glColor3d(0.5, 0.5, 0.5) glLineWidth(0.5) # xz plane for i in range(2 * n + 1): glBegin(GL_LINES) glVertex3d(-l + i * dl, 0, -l) glVertex3d(-l + i * dl, 0, l) glEnd() for i in range(2 * n + 1): glBegin(GL_LINES) glVertex3d(-l, 0, -l + i * dl) glVertex3d(l, 0, -l + i * dl) glEnd() # xy plane for i in range(2 * n + 1): glBegin(GL_LINES) glVertex3d(-l + i * dl, -l, 0) glVertex3d(-l + i * dl, l, 0) glEnd() for i in range(2 * n + 1): glBegin(GL_LINES) glVertex3d(-l, -l + i * dl, 0) glVertex3d(l, -l + i * dl, 0) glEnd() # yz plane for i in range(2 * n + 1): glBegin(GL_LINES) glVertex3d(0, -l + i * dl, -l) glVertex3d(0, -l + i * dl, l) glEnd() for i in range(2 * n + 1): glBegin(GL_LINES) glVertex3d(0, -l, -l + i * dl) glVertex3d(0, l, -l + i * dl) glEnd() if state['DrawDataRelGlobal']: glColor3d(1.0, 1.0, 0.0) glBegin(GL_POINTS) for d in data_rel_global: glVertex3d(d[0], d[1], d[2]) glEnd() if state['DrawDataRelLocal']: glColor3d(0.0, 1.0, 1.0) glBegin(GL_POINTS) for d in data_rel_local: glVertex3d(d[0], d[1], d[2]) glEnd() if state['DrawDataAbs']: glColor3d(1.0, 0.0, 1.0) glBegin(GL_POINTS) for d in data_abs: glVertex3d(d[0], d[1], d[2]) glEnd() def keyboard_callback(key): """ Programmable interactions """ global state if key == '1': state['DrawDataAbs'] = not state['DrawDataAbs'] elif key == '2': state['DrawDataRelGlobal'] = not state['DrawDataRelGlobal'] elif key == '3': state['DrawDataRelLocal'] = not state['DrawDataRelLocal'] else: return False return True data_abs, data_rel_global, data_rel_local = load_data(data_file, world, skel) pydart.glutgui.glutgui_base.run( title='Data Checker', trans=[0, 0, -30], keyboard_callback=keyboard_callback, render_callback=render_callback)
python
#!/usr/bin/python # -*- coding: UTF-8 -*- from django.conf.urls import include, url from django.contrib import admin from gps.view.index import * urlpatterns = [ url('^getPeople/$', getPeople), url('^getGPS/$', getGPS), url('^sendGPS/$', sendGPS), ]
python
import csv import glob import math import os import sys from random import random, seed from timeit import default_timer as timer import time from statistics import mean from pathlib import Path import networkx as nx import numpy as np from scapy.layers.inet import IP, UDP from scapy.utils import PcapWriter, PcapReader import tkinter as tk from tkinter import filedialog import zat from zat.log_to_dataframe import LogToDataFrame import pandas as pd import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties from matplotlib.pyplot import cm import matplotlib.transforms as mtrans from scripts.dataset_analysis.filtered_dataset_analysis import Filtered_Dataset_Analysis class Failed_Experiment_Analysis(): @staticmethod def create_results_for_failed_experiments(path_to_results, path_to_for_malpaca_files, data_set_name): for_malpaca_folders = [f.path for f in os.scandir(path_to_for_malpaca_files) if f.is_dir()] for_malpaca_folders = [(x, os.path.basename(x)) for x in for_malpaca_folders] results_folders = [f.path for f in os.scandir(path_to_results) if f.is_dir()] results_folders = [os.path.basename(x) for x in results_folders] failed_experiments = [] for path, for_malpaca_name in for_malpaca_folders: if for_malpaca_name not in results_folders: failed_experiments.append((path, for_malpaca_name)) for path, for_malpaca_name in failed_experiments: csv_files = glob.glob(path + "/*.csv") for csv_index, csv_file in enumerate(csv_files): csv_df = pd.read_csv(csv_file) if csv_index == 0: combined_summary_df = csv_df else: combined_summary_df = combined_summary_df.append(csv_df) new_results_path = path_to_results + "/" + for_malpaca_name + "_failed" new_csv_path = new_results_path + "/combined_summary.csv" path_detailed_label_csv = new_results_path + "/detailed_length_summary.csv" path_detailed_label_table = new_results_path + "/detailed_length_summary.png" shortened_summary_path = new_results_path + "/shortened_summary.csv" overall_summary_path = new_results_path + "/overall_summary.csv" os.mkdir(new_results_path) combined_summary_df.to_csv(new_csv_path, index=False) total_amount_connections = len(combined_summary_df.index) dl_average_length_df = combined_summary_df.groupby("detailed_label")[ "connection_length"].mean().to_frame().reset_index() dl_average_length_df = dl_average_length_df.rename( columns={"connection_length": "avg_connection_length"}) dl_average_length_df["avg_connection_length"] = dl_average_length_df["avg_connection_length"].apply( lambda x: round(x, 2)) dl_con_count_df = combined_summary_df.groupby("detailed_label")[ "connection_length"].count().to_frame().reset_index() dl_con_count_df = dl_con_count_df.rename(columns={"connection_length": "connection_count"}) detailed_label_info_df = dl_average_length_df.merge(right=dl_con_count_df, on="detailed_label") detailed_label_info_df["ratio"] = round( (detailed_label_info_df["connection_count"] / total_amount_connections) * 100, 4) detailed_label_info_df = detailed_label_info_df.sort_values(by="connection_count", ascending=False) detailed_label_info_df.to_csv(path_detailed_label_csv, index=False) fig, ax = plt.subplots() fig.patch.set_visible(False) ax.axis('off') ax.axis('tight') table = ax.table(cellText=detailed_label_info_df.values, colLabels=detailed_label_info_df.columns, loc='center', cellLoc='center') table.auto_set_column_width(col=list(range(len(detailed_label_info_df.columns)))) for (row, col), cell in table.get_celld().items(): if (row == 0): cell.set_text_props(fontproperties=FontProperties(weight='bold')) fig.tight_layout(pad=3.0) plt.savefig(path_detailed_label_table, dpi=1200, bbox_inches='tight') plt.close() plt.clf() data_shortened = { "validity_index": "nan", "shilouette_score": "nan", "noise_percentage": "nan", "number_clusters": "nan", "cohesion_score": "nan", "purity_score": "nan", "avg_cluster_probability": "nan", "avg_clustering_error": "nan"} shortened_summary = pd.DataFrame(data_shortened, index=[0]) shortened_summary.to_csv(shortened_summary_path, index=False) data_overall = { "total_time_processing" : "nan", "validity_index" : "nan", "shilouette_score" : "nan", "total_number_connections" : "nan", "total_number_packets" : "nan", "total_number_clusters" : "nan", "avg_cluster_size" : "nan", "std_cluster_size" : "nan", "noise_percentage" : "nan", "avg_label_cohesion" : "nan", "avg_detailed_label_cohesion" : "nan", "avg_application_name_cohesion" : "nan", "avg_application_category_name_cohesion" : "nan", "avg_name_cohesion" : "nan", "avg_label_purity" : "nan", "avg_detailed_label_purity" : "nan", "avg_application_name_purity" : "nan", "avg_application_category_name_purity" : "nan", "avg_name_purity" : "nan", "avg_cluster_probability" : "nan", "avg_clustering_error" : "nan" } overall_summary = pd.DataFrame(data_overall, index=[0]) overall_summary.to_csv(overall_summary_path, index=False)
python
import os import sys import glob import pickle import shutil import argparse import tensorflow as tf def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def read_pickle_from_file(filename): """ function reads pickle file""" with tf.io.gfile.GFile(filename, 'rb') as f: if sys.version_info >= (3, 0): data_dict = pickle.load(f, encoding='bytes') else: data_dict = pickle.load(f) return data_dict def convert_to_tfrecord(input_files, output_file): """Converts a file to TFRecords.""" print('Generating %s' % output_file) with tf.io.TFRecordWriter(output_file) as record_writer: for input_file in input_files: data_dict = read_pickle_from_file(input_file) data = data_dict[b'data'] labels = data_dict[b'labels'] num_entries_in_batch = len(labels) for i in range(num_entries_in_batch): example = tf.train.Example(features=tf.train.Features( feature={ 'image': _bytes_feature(data[i].tobytes()), 'label': _int64_feature(labels[i]) })) record_writer.write(example.SerializeToString()) def _get_file_names(eval_file_idx): """ get the file names for eval """ file_names = {} train_files_idx_list = [1, 2, 3, 4, 5] train_files_idx_list.remove(eval_file_idx) print('Setting idx \'{}\' as validation/eval data.'.format(eval_file_idx)) file_names['train'] = ['data_batch_%d' % i for i in train_files_idx_list] file_names['eval'] = ['data_batch_'+str(eval_file_idx)] file_names['test'] = ['test_batch'] return file_names def create_tfrecords(cifar10_data_folder, validation_data_idx): """ function to generate tfrecords Creates three sub-folders, train, eval, test and put resp tfr files. CIFAR10 데이터를 이용하여 FRecords를 생성해보자. """ batch_files = _get_file_names(validation_data_idx) tfrecords_outdir = './tfrecords' for data_type in ['train', 'eval', 'test']: input_files = [os.path.join(cifar10_data_folder, i) \ for i in batch_files[data_type]] resp_dir = tfrecords_outdir + '/' + data_type shutil.rmtree(resp_dir, ignore_errors=True) os.makedirs(resp_dir) for ifile in input_files: batch_file_name = os.path.basename(ifile).split('.')[0] tfrecords_outfile_name = \ os.path.join(tfrecords_outdir, data_type, batch_file_name + '.tfr') convert_to_tfrecord([ifile], tfrecords_outfile_name) def main(argv): """ main routing to use dump tfrecords for cifar10 data""" if argv is not None: print('argv: {}'.format(argv)) parser = argparse.ArgumentParser() parser.add_argument('-vidx', '--validation_data_idx', type=int, choices=[1, 2, 3, 4, 5], help='Define model to run', default=5) parser.add_argument('-cf', '--cifar10_data_folder', type=str, required=True, help='Cifar10 data folder path') args = parser.parse_args() validation_data_idx = args.validation_data_idx cifar10_data_folder = args.cifar10_data_folder create_tfrecords(cifar10_data_folder, validation_data_idx) if __name__ == '__main__': main(sys.argv)
python
#!/usr/bin/pyton import numpy as np from matplotlib import pyplot as plt from matplotlib import animation import pdb import os directory=os.path.basename(__file__)[:-3] if not os.path.exists('texFiles/'+str(directory)): os.system('mkdir texFiles/'+str(directory)) path='texFiles/'+str(directory) """ Comparison of the implementation of the 1D elastic set of equations in dynamics: - with the USL - with the GIMP """ def export2DTeXFile(fileName,xFields,xlabel,ylabel,time,yfields,*kwargs): TeXFile=open(fileName,"w") n_fields = np.shape(yfields)[0] n_labels = np.shape(kwargs)[0] # Define Paul Tol's colors (purple to red) color=['Purple','Orange','Blue','Red','Duck','Green','Yellow'] col=['120,28,129','231,133,50','63,96,174','217,33,32','83,158,182','109,179,136','202,184,67'] marker=['*','x','triangle*','square*','+','star','pentagone*'] marker=['none','none','+','triangle','none','star','pentagone*'] style=['solid','dashed','solid','solid','solid','star','pentagone*'] thickness=['very thick','very thick','thin','thin','thick'] couleur=['Purple','Orange','Blue','Red','black','Duck','Green'] for i in range(len(col)): TeXFile.write(r'\definecolor{'+color[i]+'}{RGB}{'+col[i]+'}') TeXFile.write('\n') TeXFile.write(r'\begin{tikzpicture}[scale=0.9]');TeXFile.write('\n') TeXFile.write(r'\begin{axis}[xlabel='+str(xlabel)+',ylabel='+str(ylabel)+',ymajorgrids=true,xmajorgrids=true,title={() '+time+'}]');TeXFile.write('\n') legend='' for i in range(n_fields): if i==0: legend=legend+kwargs[0][i] else: legend=legend+','+kwargs[0][i] TeXFile.write(r'\addplot['+str(couleur[i])+','+str(thickness[i])+',mark='+str(marker[i])+','+str(style[i])+'] coordinates {') for j in range(np.shape(yfields[i])[0]): TeXFile.write('('+str(xFields[i][j])+','+str(yfields[i][j])+') ') TeXFile.write('};\n') TeXFile.write(r'\legend{'+str(legend)+'}') TeXFile.write('\n') TeXFile.write(r'\end{axis}') TeXFile.write('\n') TeXFile.write('\end{tikzpicture}') TeXFile.write('\n') TeXFile.close() def export2pgfPlot(fileName,xfield,yfield,xlabel,ylabel): #pdb.set_trace() dataFile=open(fileName,"w") dataFile.write('# Curve ('+str(xlabel)+';'+str(ylabel)+') '+str(len(xfield))+' points.\n') for i,x in enumerate(xfield): dataFile.write(str(x)+' '+str(yfield[i])+' i\n') dataFile.close() ###Opening the files and computation of the solution by each method ###Parameters#### CFL=0.7 NTmaxi = 300 length = 6.0 ppc=1 Nelem = 50 E = 2.0e11 Sigy = 400.0e7 H = 10e9 rho = 7800.0 c=np.sqrt(E/rho) sigd =0.# -0.25*Sigy v0=0.5*Sigy/(2*rho*c) factor=1. timeOut = 0.36*length/(np.sqrt(E/rho))#0.002 t_order=1 timeUnload = 2*timeOut#2.e-4#2*timeOut algo = 'USL' # limit = 0 : minmod // limit = 1 : superbee // limit = 2 : MUSCL limit=-1 update_position=False mpm_mapping=True hardening='isotropic' parameters = {"CFL":CFL,"Nelem":Nelem,"NTmaxi":NTmaxi,"ppc":ppc,"length":length,"Young":E,"Sigy":Sigy, "H":H,"rho":rho,"sigd":sigd,"timeOut":timeOut,"timeUnload":timeUnload,"update_position":update_position,"v0":v0,"factor":factor,"limit":limit,"algo":algo,"t_order":t_order,"mpm_mapping":mpm_mapping,"hardening":hardening} ################# ##MPM: Material Point Method USL = dict(parameters) print 'Computing MPM' execfile('mpm/elasticity.py', USL) algo='USF' parameters = {"CFL":CFL,"Nelem":Nelem,"NTmaxi":NTmaxi,"ppc":ppc,"length":length,"Young":E,"Sigy":Sigy, "H":H,"rho":rho,"sigd":sigd,"timeOut":timeOut,"timeUnload":timeUnload,"update_position":update_position,"v0":v0,"factor":factor,"limit":limit,"algo":algo,"t_order":t_order,"mpm_mapping":mpm_mapping,"hardening":hardening} ##MPM: Material Point Method USF = dict(parameters) print 'Computing modified MPM' execfile('mpm/elasticity.py', USF) algo='USL' ppc=2 parameters = {"CFL":CFL,"Nelem":Nelem,"NTmaxi":NTmaxi,"ppc":ppc,"length":length,"Young":E,"Sigy":Sigy, "H":H,"rho":rho,"sigd":sigd,"timeOut":timeOut,"timeUnload":timeUnload,"update_position":update_position,"v0":v0,"factor":factor,"limit":limit,"algo":algo,"t_order":t_order,"mpm_mapping":mpm_mapping,"hardening":hardening} print "=============== 2PPC COMPUTATIONS ====================" ##MPM: Material Point Method USL2 = dict(parameters) print 'Computing USL' execfile('mpm/elasticity.py', USL2) algo='USF' parameters = {"CFL":CFL,"Nelem":Nelem,"NTmaxi":NTmaxi,"ppc":ppc,"length":length,"Young":E,"Sigy":Sigy, "H":H,"rho":rho,"sigd":sigd,"timeOut":timeOut,"timeUnload":timeUnload,"update_position":update_position,"v0":v0,"factor":factor,"limit":limit,"algo":algo,"t_order":t_order,"mpm_mapping":mpm_mapping,"hardening":hardening} ##MPM: Material Point Method USF2 = dict(parameters) print 'Computing modified MPM' execfile('mpm/elasticity.py', USF2) ############################################################################# ######################### Comparison ###################################### ############################################################################# x = np.linspace(0.,length,Nelem+1) dx = x[1]-x[0] y=x+(dx/2.0) #Centres of cells/Elements y=y[:(len(y)-1)] ####Animated plot ########################################################### from matplotlib import rcParams rcParams['axes.labelsize'] = 16 rcParams['xtick.labelsize'] = 16 rcParams['ytick.labelsize'] = 16 rcParams['legend.fontsize'] = 16 #frames=[20,30,40,50,60,80,100,120,140] frames=[10,25] #pdb.set_trace() c = np.sqrt(E/rho) HT = (H*E)/(H+E) ; cp = np.sqrt(HT/rho) ## Middle point velocity plots plt.plot(USL["time"][:-1],USL["velo"][24,:],label="USL 1ppc") plt.plot(USL2["time"][:-1],USL2["velo"][49,:],label="USL 2ppc") plt.plot(USF["time"][:-1],USF["velo"][24,:],label="USF 1ppc") plt.plot(USF2["time"][:-1],USF2["velo"][49,:],label="USF 2ppc") plt.grid() plt.legend() plt.show() # plt.plot(USF["time"][:-1],USF["NRG"][:-1]/max(USF["NRG"][:-1])) # plt.grid() # plt.show() plt.plot(USL["time"][:-1],USL["NRG"][:-1]/max(USL["NRG"][:-1]),'b-x',lw=2.,label='USL 1ppc') plt.plot(USL2["time"][:-1],USL2["NRG"][:-1]/max(USL2["NRG"][:-1]),'r-x',lw=2.,label='USL 2ppc') plt.plot(USF["time"][:-1],USF["NRG"][:-1]/max(USF["NRG"][:-1]),'bo',lw=2.,label='USF 1ppc') plt.plot(USF2["time"][:-1],USF2["NRG"][:-1]/max(USF2["NRG"][:-1]),'ro',lw=2.,label='USF 2ppc') plt.grid() plt.legend(numpoints=1) plt.show() export2DTeXFile(str(path)+'/US_energies.tex',np.array([USL["time"][:-1],USL2["time"][:-1],USF["time"][:-1],USF2["time"][:-1]]),'$time (s)$',"$\frac{e}{e_{max}}$",'Evolution of total energy',np.array([USL["NRG"][:-1]/max(USL["NRG"][:-1]),USL2["NRG"][:-1]/max(USL2["NRG"][:-1]),USF["NRG"][:-1]/max(USF["NRG"][:-1]),USF2["NRG"][:-1]/max(USF2["NRG"][:-1])]),['USL 1ppc','USL 2ppc','USF 1ppc','USF 2ppc']) N2=int(Nelem/2.)-40 N1=int(Nelem/2.)-50 for n1 in frames: time = '%.2e' % USL["time"][n1] plt.plot(USL["pos"][:,n1],USL["Sth"][:,n1],'k-',lw=2.,ms=8.,label='analytical') plt.plot(USL["pos"][:,n1],USL["sig"][:,n1],'g-x',lw=2.,ms=8.,label='USL 1ppc') plt.plot(USL2["pos"][:,n1],USL2["sig"][:,n1],'g-o',lw=2.,ms=8.,label='USL 2ppc') plt.plot(USF["pos"][:,n1],USF["sig"][:,n1],'rx',lw=2.,ms=8.,label='USF 1ppc') plt.plot(USF2["pos"][:,n1],USF2["sig"][:,n1],'ro',lw=2.,ms=8.,label='USF 2ppc') plt.title('Contrainte longitudinale dans la barre au temps t='+str(time)+' s.',size=24.) plt.xlabel('x (m)',size=24.) plt.ylabel(r'$\sigma (Pa)$',size=28.) plt.legend(numpoints=1) plt.grid() plt.show() export2DTeXFile(str(path)+'/US_diffusion'+str(n1)+'.tex',np.array([USL["pos"][:,n1],USL2["pos"][:,n1],USF["pos"][:,n1],USF2["pos"][:,n1]]),'$x (m)$','$\sigma (Pa)$',str(time),np.array([USL["sig"][:,n1],USL2["sig"][:,n1],USF["sig"][:,n1],USF2["sig"][:,n1]]),['USL 1ppc','USL 2ppc','USF 1ppc','USF 2ppc']) export2DTeXFile(str(path)+'/US_velo'+str(n1)+'.tex',np.array([USL["pos"][:,n1],USL2["pos"][:,n1],USF["pos"][:,n1],USF2["pos"][:,n1],USF2["pos"][:,n1]]),'$x (m)$','$v (m/s)$',str(time),np.array([USL["velo"][:,n1],USL2["velo"][:,n1],USF["velo"][:,n1],USF2["velo"][:,n1],USF2["Vth"][:,n1]]),['USL 1ppc','USL 2ppc','USF 1ppc','USF 2ppc','analytical'])
python
import logging from contextlib import closing from typing import Any, Dict, Optional from flask_appbuilder.security.sqla.models import User from flask_babel import gettext as _ from sqlalchemy.engine.url import make_url from sqlalchemy.exc import DBAPIError, NoSuchModuleError from rabbitai.commands.base import BaseCommand from rabbitai.databases.commands.exceptions import ( DatabaseSecurityUnsafeError, DatabaseTestConnectionDriverError, DatabaseTestConnectionFailedError, DatabaseTestConnectionUnexpectedError, ) from rabbitai.databases.dao import DatabaseDAO from rabbitai.exceptions import RabbitaiSecurityException from rabbitai.extensions import event_logger from rabbitai.models.core import Database logger = logging.getLogger(__name__) class TestConnectionDatabaseCommand(BaseCommand): def __init__(self, user: User, data: Dict[str, Any]): self._actor = user self._properties = data.copy() self._model: Optional[Database] = None def run(self) -> None: self.validate() uri = self._properties.get("sqlalchemy_uri", "") if self._model and uri == self._model.safe_sqlalchemy_uri(): uri = self._model.sqlalchemy_uri_decrypted # context for error messages url = make_url(uri) context = { "hostname": url.host, "password": url.password, "port": url.port, "username": url.username, "database": url.database, } try: database = DatabaseDAO.build_db_for_connection_test( server_cert=self._properties.get("server_cert", ""), extra=self._properties.get("extra", "{}"), impersonate_user=self._properties.get("impersonate_user", False), encrypted_extra=self._properties.get("encrypted_extra", "{}"), ) database.set_sqlalchemy_uri(uri) database.db_engine_spec.mutate_db_for_connection_test(database) username = self._actor.username if self._actor is not None else None engine = database.get_sqla_engine(user_name=username) with closing(engine.raw_connection()) as conn: try: alive = engine.dialect.do_ping(conn) except Exception: # pylint: disable=broad-except alive = False if not alive: raise DBAPIError(None, None, None) # Log succesful connection test with engine event_logger.log_with_context( action="test_connection_success", engine=database.db_engine_spec.__name__, ) except (NoSuchModuleError, ModuleNotFoundError) as ex: event_logger.log_with_context( action=f"test_connection_error.{ex.__class__.__name__}", engine=database.db_engine_spec.__name__, ) raise DatabaseTestConnectionDriverError( message=_("Could not load database driver: {}").format( database.db_engine_spec.__name__ ), ) except DBAPIError as ex: event_logger.log_with_context( action=f"test_connection_error.{ex.__class__.__name__}", engine=database.db_engine_spec.__name__, ) # check for custom errors (wrong username, wrong password, etc) errors = database.db_engine_spec.extract_errors(ex, context) raise DatabaseTestConnectionFailedError(errors) except RabbitaiSecurityException as ex: event_logger.log_with_context( action=f"test_connection_error.{ex.__class__.__name__}", engine=database.db_engine_spec.__name__, ) raise DatabaseSecurityUnsafeError(message=str(ex)) except Exception as ex: # pylint: disable=broad-except event_logger.log_with_context( action=f"test_connection_error.{ex.__class__.__name__}", engine=database.db_engine_spec.__name__, ) errors = database.db_engine_spec.extract_errors(ex, context) raise DatabaseTestConnectionUnexpectedError(errors) def validate(self) -> None: database_name = self._properties.get("database_name") if database_name is not None: self._model = DatabaseDAO.get_database_by_name(database_name)
python
""" Created on Mon Jan 18 12:34:06 2021 Note this is working with ETABs v19, comtypes v1.1.7. It is not working on my local machiene only on the remote desktop @author: aguter """ import numpy as np import os import sys import comtypes.client import matplotlib.pyplot as plt ProgramPath = r"C:\Program Files\Computers and Structures\ETABS 19\ETABS.exe" helper = comtypes.client.CreateObject('ETABSv1.Helper') helper = helper.QueryInterface(comtypes.gen.ETABSv1.cHelper) #create API helper object ETABSObject = comtypes.client.GetActiveObject("CSI.ETABS.API.ETABSObject") SapModel = ETABSObject.SapModel #sets to kip, ft, farienheit SapModel.SetPresentUnits(4) #unlocks model so that sections cuts can be created SapModel.SetModelIsLocked(False) areas = SapModel.SelectObj.GetSelected() area_obj = [] #filters out the floors for type_obj , beam_num in zip(areas[1],areas[2]) : if type_obj == 5 : area_obj.append(beam_num) else : pass AreaInfo = [] PointData = [] for area in area_obj: AreaInfo.append(SapModel.AreaObj.GetPoints(area)) x = SapModel.AreaObj.GetPoints(area)[1] for pnt in x: PointData.append(SapModel.PointObj.GetCoordCartesian(pnt)[0:3]) x_areas = np.array(PointData)[:,0] y_areas = np.array(PointData)[:,1] print(AreaInfo) print(PointData) #sets the Global Coordinates and local coordinate system that points exist within class Global_Coord : def __init__(self, ref_pnt, vector): self.ref_pnt = np.array(ref_pnt) hyp = (vector[0]**2+vector[1]**2+vector[2]**2)**0.5 self.vector = np.array(vector) self.R = np.array([[vector[0]/hyp, -vector[1]/hyp, 0],[vector[1]/hyp,vector[0]/hyp, 0], [0,0,1]]) self.R_inv = np.linalg.inv(self.R) self.A = np.array(ref_pnt) #should make this class accept *args, *kwargs class Point(): def __init__(self, point, global_cord): self.pnt_cord = np.array(point) self.R = global_cord.R self.R_inv = global_cord.R_inv self.A = global_cord.A #https://gamedev.stackexchange.com/questions/79765/how-do-i-convert-from-the-global-coordinate-space-to-a-local-space def glo_to_loc(self): temp = self.pnt_cord-self.A loc_coord = np.matmul(self.R_inv,temp) return loc_coord #https://gamedev.stackexchange.com/questions/79765/how-do-i-convert-from-the-global-coordinate-space-to-a-local-space def loc_to_glo(self, loc_coord): loc_coord = np.array(loc_coord) glo_coord = np.matmul(self.R,loc_coord) + self.A return glo_coord #UI ref_pnt=[0,0,0] #UI vector = [1,0,0] #set up global coordinate system global_sys = Global_Coord(ref_pnt, vector) print(global_sys.R) local_coords = [] for area_pnts in PointData: local_coords.append(Point(area_pnts,global_sys).glo_to_loc()) local_coords_trans = np.transpose(np.array(local_coords)) u_max = max(local_coords_trans[0]) u_min = min(local_coords_trans[0]) v_max = max(local_coords_trans[1]) v_min = min(local_coords_trans[1]) distance = u_max - u_min # UI Number of slices to make along the diahragm n_cuts = 100 u_range = np.linspace(u_min+0.01, u_min+distance-0.01, n_cuts) #UI height = 10 #class to make the cutting plane class four_points(): def __init__(self, u_range, v_min, v_max, z_coord): self.u_range = u_range self.v_min = v_min self.v_max = v_max self.z_coord = z_coord def make_4_pnts(self): cuts = [] for i in self.u_range: cuts.append([[i,self.v_min, self.z_coord-0.5],[i,self.v_min,self.z_coord+0.5],[i,self.v_max,self.z_coord+0.5],[i,self.v_max,self.z_coord-0.5]]) return cuts #Need to make height a variable, last values sections = four_points(u_range, v_min, v_max, height).make_4_pnts() global_quad = [] for quad in sections: one_quad = [] for pnt in quad: x = Point(pnt,global_sys).loc_to_glo(pnt) one_quad.append(x) global_quad.append(one_quad) print(global_quad) x_plt_pnts = [] y_plt_pnts = [] for a in global_quad: x_plt_pnts.append(a[0][0]) x_plt_pnts.append(a[2][0]) y_plt_pnts.append(a[0][1]) y_plt_pnts.append(a[2][1]) plt.plot(x_plt_pnts,y_plt_pnts) plt.plot(x_areas,y_areas, 'ro') plt.show() name = [] for i in range(n_cuts): temp = "0000" len_num = len(str(i)) len_rem = len(temp)-len_num temp_2 = temp[:len_rem] + str(i) name.append(temp_2) print(name) def make_quad_etabs(name_sect,point): name = str(name_sect) final = [] for i in range(4): if i == 0: test = [name, 'Quads', 'All', 'Analysis', 'Default', '', '', '', '0','0','0','','Top or Right or Positive3','1', '1', '1', str(point[0][0]), str(point[0][1]), str(point[0][2]), '1'] final.append(test) elif i == 1: test = [name, '', '','', '', '', '', '', '','','','','','', '1', '2', str(point[1][0]), str(point[1][1]), str(point[1][2]), ''] final.append(test) elif i == 2: test = [name, '', '','', '', '', '', '', '','','','','','', '1', '3', str(point[2][0]), str(point[2][1]), str(point[2][2]), ''] final.append(test) elif i == 3: test = [name, '', '','', '', '', '', '', '','','','','','', '1', '4', str(point[3][0]), str(point[3][1]), str(point[3][2]), ''] final.append(test) return final etabs_data_sect = [] for i,(etabs_quad,sec_name) in enumerate(zip(global_quad,name)): etabs_data_sect.append(make_quad_etabs(sec_name, etabs_quad)) flat_etabs_data = [] for point in etabs_data_sect: temp = [] for data in point: for sing_data in data: temp.append(sing_data) flat_etabs_data.append(temp) mega_data = [] for point in flat_etabs_data: for ind_pnt in point: mega_data.append(ind_pnt) TableKey = 'Section Cut Definitions' TableVersion = 1 FieldsKeysIncluded = ['Name', 'Defined By', 'Group','Result Type', 'Result Location', 'Location X', 'Location Y', 'Location Z', 'Rotation About Z','Rotation About Y', 'Rotation About X', 'Axis Angle', 'Element Side', 'Number of Quads', 'Quad Number', 'Point Number', 'Quad X', 'Quad Y', 'Quad Z', 'GUID'] NumberRecords = len(flat_etabs_data) y = SapModel.DatabaseTables.SetTableForEditingArray(TableKey,TableVersion,FieldsKeysIncluded, NumberRecords,mega_data) FillImport = True z= SapModel.DatabaseTables.ApplyEditedTables(FillImport) model_has_run = SapModel.Analyze.RunAnalysis() #sets to kip, ft, farienheit SapModel.SetPresentUnits(4) SapModel.Results.Setup.SetCaseSelectedForOutput("EQY+") NumberResults = 1 SCut = [] LoadCase = [] StepType = [] StepNum = [] F1 = [] F2 = [] F3 = [] M1 = [] M2 = [] M3 = [] test_cut = SapModel.Results.SectionCutAnalysis(NumberResults, SCut, LoadCase, StepType, StepNum, F1, F2, F3, M1, M2, M3) location = [] for i in sections: location.append(i[0][0]) shear = test_cut[6] moment = test_cut[10] #Plots shear results plt.plot(location,shear, 'ro-') plt.xlabel('location') plt.ylabel('Shear (kips)') plt.title('Shear of the Diaphragm') plt.grid(True) plt.show() #Plots moment results plt.plot(location,moment, 'ro-') plt.xlabel('location') plt.ylabel('Moment (kip*ft)') plt.title('Moment of the Diaphragm') plt.grid(True) plt.show()
python
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import string from copy import deepcopy from typing import List import wordninja from nltk import word_tokenize from tqdm import tqdm from nemo.collections.nlp.data.text_normalization import constants from nemo.utils import logging __all__ = ['read_data_file', 'normalize_str', 'flatten', 'process_url'] def flatten(l): """ flatten a list of lists """ return [item for sublist in l for item in sublist] def input_preprocessing(sent: str, lang: str): """ Function for preprocessing the input texts. The function first does some basic tokenization. For English, it then also processes Greek letters such as Δ or λ (if any). Args: sent: input text. lang: language Returns: preprocessed input text. """ # Basic Preprocessing and Tokenization if lang == constants.ENGLISH: sent = sent.replace('+', ' plus ') sent = sent.replace('=', ' equals ') sent = sent.replace('@', ' at ') sent = sent.replace('*', ' times ') # Greek letters processing if lang == constants.ENGLISH: for jx, tok in enumerate(sent): if tok in constants.EN_GREEK_TO_SPOKEN: sent = sent[:jx] + constants.EN_GREEK_TO_SPOKEN[tok] + sent[jx + 1 :] return sent def read_data_file(fp: str, lang: str, max_insts: int = -1): """ Reading the raw data from a file of NeMo format For more info about the data format, refer to the `text_normalization doc <https://github.com/NVIDIA/NeMo/blob/main/docs/source/nlp/text_normalization.rst>`. Args: fp: file paths lang: language max_insts: Maximum number of instances (-1 means no limit) Returns: insts: List of sentences parsed as list of words """ insts, w_words, s_words, classes = [], [], [], [] # Read input file with open(fp, 'r', encoding='utf-8') as f: for line in tqdm(f): es = [e.strip() for e in input_preprocessing(line.strip(), lang=lang).split('\t')] if es[0] == '<eos>': inst = (deepcopy(classes), deepcopy(w_words), deepcopy(s_words)) insts.append(inst) # Reset w_words, s_words, classes = [], [], [] if max_insts > 0 and len(insts) >= max_insts: break else: classes.append(es[0]) w_words.append(es[1]) s_words.append(es[2]) return insts def process_url(tokens: List[str], outputs: List[str], lang: str): """ The function is used to process the spoken form of every URL in an example. E.g., "dot h_letter _letter t_letter _letter m_letter _letter l_letter" -> "dot h t m l" Args: tokens: The tokens of the written form outputs: The expected outputs for the spoken form lang: Selected language. Return: outputs: The outputs for the spoken form with preprocessed URLs. """ if lang != constants.ENGLISH: return outputs for i in range(len(tokens)): t, o = tokens[i], outputs[i] if o != constants.SIL_WORD and '_letter' in o: o_tokens = o.split(' ') all_spans, cur_span = [], [] for j in range(len(o_tokens)): if len(o_tokens[j]) == 0: continue if o_tokens[j] == '_letter': all_spans.append(cur_span) all_spans.append([' ']) cur_span = [] else: o_tokens[j] = o_tokens[j].replace('_letter', '') cur_span.append(o_tokens[j]) if len(cur_span) > 0: all_spans.append(cur_span) o_tokens = flatten(all_spans) o = '' for o_token in o_tokens: if len(o_token) > 1: o += ' ' + o_token + ' ' else: o += o_token o = o.strip() o_tokens = wordninja.split(o) o = ' '.join(o_tokens) outputs[i] = o return outputs def normalize_str(input_str): """ Normalize an input string """ return input_str.strip().lower().replace(" ", " ") def remove_puncts(input_str): """ Remove punctuations from an input string """ return input_str.translate(str.maketrans('', '', string.punctuation)) def basic_tokenize(input_str, lang): """ The function is used to do some basic tokenization Args: input_str: The input string lang: Language of the input string Return: a list of tokens of the input string """ if lang == constants.ENGLISH: return word_tokenize(input_str) return input_str.strip().split(' ') def post_process_punct(input: str, nn_output: str): """ Post-processing of the normalized output to match input in terms of spaces around punctuation marks. After NN normalization, Moses detokenization puts a space after punctuation marks, and attaches an opening quote "'" to the word to the right. E.g., input to the TN NN model is "12 test' example", after normalization and detokenization -> "twelve test 'example" (the quote is considered to be an opening quote, but it doesn't match the input and can cause issues during TTS voice generation.) The current function will match the punctuation and spaces of the normalized text with the input sequence. "12 test' example" -> "twelve test 'example" -> "twelve test' example" (the quote was shifted to match the input). Args: input: input text (original input to the NN, before normalization or tokenization) nn_output: output text (output of the TN NN model) """ input = [x for x in input] nn_output = [x for x in nn_output] punct_marks = string.punctuation try: for punct in punct_marks: if input.count(punct) != nn_output.count(punct): continue idx_in, idx_out = 0, 0 while punct in input[idx_in:]: idx_in = input.index(punct, idx_in) idx_out = nn_output.index(punct, idx_out) if idx_in > 0 and idx_out > 0: if nn_output[idx_out - 1] == " " and input[idx_in - 1] != " ": nn_output[idx_out - 1] = "" elif nn_output[idx_out - 1] != " " and input[idx_in - 1] == " ": nn_output[idx_out - 1] += " " if idx_in < len(input) - 1 and idx_out < len(nn_output) - 1: if nn_output[idx_out + 1] == " " and input[idx_in + 1] != " ": nn_output[idx_out + 1] = "" elif nn_output[idx_out + 1] != " " and input[idx_in + 1] == " ": nn_output[idx_out] = nn_output[idx_out] + " " idx_out += 1 idx_in += 1 except: logging.warning(f"Skipping post-processing of {''.join(nn_output)}") nn_output = "".join(nn_output) return re.sub(r' +', ' ', nn_output)
python
from unittest import mock from src.video_player import VideoPlayer def test_flag_video_with_reason(capfd): player = VideoPlayer() player.flag_video("amazing_cats_video_id", "dont_like_cats") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "Successfully flagged video: Amazing Cats (reason: dont_like_cats)" \ in lines[0] def test_flag_video_without_reason(capfd): player = VideoPlayer() player.flag_video("another_cat_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "Successfully flagged video: Another Cat Video " \ "(reason: Not supplied)" in lines[0] def test_flag_video_already_flagged(capfd): player = VideoPlayer() player.flag_video("amazing_cats_video_id", "dont_like_cats") player.flag_video("amazing_cats_video_id", "dont_like_cats") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 2 assert "Successfully flagged video: Amazing Cats (reason: dont_like_cats)" in \ lines[0] assert "Cannot flag video: Video is already flagged" in lines[1] def test_flag_video_nonexistent(capfd): player = VideoPlayer() player.flag_video("video_does_not_exist", "flag_video_reason") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "Cannot flag video: Video does not exist" in lines[0] def test_flag_video_can_no_longer_play(capfd): player = VideoPlayer() player.flag_video("amazing_cats_video_id") player.play_video("amazing_cats_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 2 assert "Successfully flagged video: Amazing Cats " \ "(reason: Not supplied)" in lines[0] assert "Cannot play video: Video is currently flagged " \ "(reason: Not supplied)" in lines[1] def test_flag_videos_play_random(capfd): player = VideoPlayer() player.flag_video("funny_dogs_video_id") player.flag_video("amazing_cats_video_id") player.flag_video("another_cat_video_id") player.flag_video("life_at_google_video_id") player.flag_video("nothing_video_id") player.play_random_video() out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 6 assert "Successfully flagged video: Funny Dogs " \ "(reason: Not supplied)" in lines[0] assert "Successfully flagged video: Amazing Cats " \ "(reason: Not supplied)" in lines[1] assert "Successfully flagged video: Another Cat Video " \ "(reason: Not supplied)" in lines[2] assert "Successfully flagged video: Life at Google " \ "(reason: Not supplied)" in lines[3] assert "Successfully flagged video: Video about nothing " \ "(reason: Not supplied)" in lines[4] assert "No videos available" in lines[5] def test_flag_video_add_to_playlist(capfd): player = VideoPlayer() player.flag_video("amazing_cats_video_id") player.create_playlist("my_playlist") player.add_to_playlist("my_playlist", "amazing_cats_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 3 assert ("Successfully flagged video: Amazing Cats " "(reason: Not supplied)") in lines[0] assert "Successfully created new playlist: my_playlist" in lines[1] assert ("Cannot add video to my_playlist: Video is currently " "flagged (reason: Not supplied)") in lines[2] def test_flag_video_show_playlist(capfd): player = VideoPlayer() player.create_playlist("my_playlist") player.add_to_playlist("my_playlist", "amazing_cats_video_id") player.flag_video("amazing_cats_video_id", "dont_like_cats") player.show_playlist("my_playlist") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 5 assert "Successfully created new playlist: my_playlist" in lines[0] assert "Added video to my_playlist: Amazing Cats" in lines[1] assert "Successfully flagged video: Amazing Cats " \ "(reason: dont_like_cats)" in lines[2] assert "Showing playlist: my_playlist" in lines[3] assert ("Amazing Cats (amazing_cats_video_id) [#cat #animal] - FLAGGED " "(reason: dont_like_cats)") in lines[4] def test_flag_video_show_all_videos(capfd): player = VideoPlayer() player.flag_video("amazing_cats_video_id", "dont_like_cats") player.show_all_videos() out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 7 assert "Successfully flagged video: Amazing Cats " \ "(reason: dont_like_cats)" in lines[0] assert "Here's a list of all available videos:" in lines[1] assert ("Amazing Cats (amazing_cats_video_id) [#cat #animal] - FLAGGED " "(reason: dont_like_cats)") in lines[2] assert "Another Cat Video (another_cat_video_id) [#cat #animal]" in lines[3] assert "Funny Dogs (funny_dogs_video_id) [#dog #animal]" in lines[4] assert "Life at Google (life_at_google_video_id) [#google #career]" in \ lines[5] assert "Video about nothing (nothing_video_id) []" in lines[6] @mock.patch('builtins.input', lambda *args: 'No') def test_flag_video_search_videos(capfd): player = VideoPlayer() player.flag_video("amazing_cats_video_id", "dont_like_cats") player.search_videos("cat") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 5 assert "Successfully flagged video: Amazing Cats " \ "(reason: dont_like_cats)" in lines[0] assert "Here are the results for cat:" in lines[1] assert "1) Another Cat Video (another_cat_video_id) [#cat #animal]" in \ lines[2] assert ("Would you like to play any of the above? If yes, " "specify the number of the video.") in lines[3] assert ("If your answer is not a valid number, we will assume " "it's a no.") in lines[4] @mock.patch('builtins.input', lambda *args: 'No') def test_flag_video_search_videos_with_tag(capfd): player = VideoPlayer() player.flag_video("amazing_cats_video_id", "dont_like_cats") player.search_videos_tag("#cat") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 5 assert "Successfully flagged video: Amazing Cats " \ "(reason: dont_like_cats)" in lines[0] assert "Here are the results for #cat:" in lines[1] assert "1) Another Cat Video (another_cat_video_id) [#cat #animal]" in \ lines[2] assert ("Would you like to play any of the above? If yes, " "specify the number of the video.") in lines[3] assert ("If your answer is not a valid number, we will assume " "it's a no.") in lines[4] def test_flag_video_stops_playing_video(capfd): player = VideoPlayer() player.play_video("amazing_cats_video_id") player.flag_video("amazing_cats_video_id", "dont_like_cats") player.show_playing() out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 4 assert "Playing video: Amazing Cats" in lines[0] assert "Stopping video: Amazing Cats" in lines[1] assert "Successfully flagged video: Amazing Cats " \ "(reason: dont_like_cats)" in lines[2] assert "No video is currently playing" in lines[3] def test_flag_video_leaves_video_if_video_is_different(capfd): player = VideoPlayer() player.play_video("amazing_cats_video_id") player.flag_video("another_cat_video_id", "dont_like_cats") player.show_playing() out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 3 assert "Playing video: Amazing Cats" in lines[0] assert "Successfully flagged video: Another Cat Video " \ "(reason: dont_like_cats)" in lines[1] assert "Currently playing: Amazing Cats (amazing_cats_video_id) " \ "[#cat #animal]" in lines[2] def test_flag_video_stops_paused_video(capfd): player = VideoPlayer() player.play_video("amazing_cats_video_id") player.pause_video() player.flag_video("amazing_cats_video_id", "dont_like_cats") player.show_playing() out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 5 assert "Playing video: Amazing Cats" in lines[0] assert "Pausing video: Amazing Cats" in lines[1] assert "Stopping video: Amazing Cats" in lines[2] assert "Successfully flagged video: Amazing Cats " \ "(reason: dont_like_cats)" in lines[3] assert "No video is currently playing" in lines[4] def test_allow_video(capfd): player = VideoPlayer() player.flag_video("amazing_cats_video_id", "dont_like_cats") player.allow_video("amazing_cats_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 2 assert "Successfully flagged video: Amazing Cats " \ "(reason: dont_like_cats)" in lines[0] assert "Successfully removed flag from video: Amazing Cats" in lines[1] def test_allow_video_not_flagged(capfd): player = VideoPlayer() player.allow_video("amazing_cats_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "Cannot remove flag from video: Video is not flagged" in lines[0] def test_allow_video_nonexistent(capfd): player = VideoPlayer() player.allow_video("video_does_not_exist") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "Cannot remove flag from video: Video does not exist" in lines[0] def test_allow_video_show_playlist(capfd): player = VideoPlayer() player.create_playlist("my_playlist") player.add_to_playlist("my_playlist", "amazing_cats_video_id") player.flag_video("amazing_cats_video_id", "dont_like_cats") player.show_playlist("my_playlist") player.allow_video("amazing_cats_video_id") player.show_playlist("my_playlist") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 8 assert "Successfully created new playlist: my_playlist" in lines[0] assert "Added video to my_playlist: Amazing Cats" in lines[1] assert ("Successfully flagged video: Amazing Cats " "(reason: dont_like_cats)") in lines[2] assert "Showing playlist: my_playlist" in lines[3] assert ("Amazing Cats (amazing_cats_video_id) [#cat #animal] - FLAGGED " "(reason: dont_like_cats)") in lines[4] assert "Successfully removed flag from video: Amazing Cats" in lines[5] assert "Showing playlist: my_playlist" in lines[6] assert "Amazing Cats (amazing_cats_video_id) [#cat #animal]" in lines[7]
python
from app import db from app import models from flask import Blueprint bp = Blueprint("setup", __name__) @bp.route("/", methods=["POST"], strict_slashes=False) def setup(): models.Base.metadata.create_all(db.get_engine()) return "<h1> Created DB successfully! </h1>"
python
try: from setuptools import setup except ImportError: print("No setuptools package, using distutils.core") from distutils.core import setup import unittest def my_test_suite(): test_loader = unittest.TestLoader() test_suite = test_loader.discover('tests', pattern='test_*.py') return test_suite setup(name='kpp', version='0.1', author='Jamie Fairbrother', author_email='[email protected]', url='http://www.lancs.ac.uk/~fairbrot', test_suite='setup.my_test_suite', packages=['kpp'])
python
from .compare_gw import *
python
from django import forms from django.forms import widgets from django.utils.translation import ugettext as _ from .models import Organization from .utils import get_data_source_model class OrganizationForm(forms.ModelForm): class Meta: model = Organization fields = ( 'data_source', 'origin_id', 'classification', 'name', 'founding_date', 'dissolution_date', 'internal_type', 'parent', 'admin_users', 'regular_users', 'private_users', 'replaced_by', ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # the fields can be dynamically exclude, for example set them to readonly in admin if 'replaced_by' in self.fields: # An organization cannot be replaced by an organization that have already been replaced qs = Organization.objects.filter(replaced_by__isnull=True) if self.instance.id: # prevent self reference qs = qs.exclude(id=self.instance.id) self.fields['replaced_by'].queryset = qs if 'data_source' in self.fields: # Only allow selecting data source within editable sources self.fields['data_source'].queryset = get_data_source_model().objects.filter(user_editable=True) if 'parent' in self.fields and self.instance.id: # prevent recursive reference desc_ids = self.instance.get_descendants(include_self=True).values_list('id', flat=True) self.fields['parent'].queryset = Organization.objects.exclude(id__in=desc_ids) def clean(self): cleaned_data = super().clean() internal_type = cleaned_data.get('internal_type') parent = cleaned_data.get('parent') if internal_type == Organization.AFFILIATED and parent is None: raise forms.ValidationError(_('Affiliated organization must have a parent organization')) return cleaned_data class SubOrganizationForm(forms.ModelForm): default_internal_type = Organization.NORMAL class Meta: model = Organization fields = ( 'name', 'founding_date', 'classification', 'data_source', 'origin_id', 'internal_type' ) widgets = { 'internal_type': widgets.HiddenInput, } def __init__(self, *args, **kwargs): if 'initial' not in kwargs: kwargs['initial'] = {} kwargs['initial']['internal_type'] = self.default_internal_type super().__init__(*args, **kwargs) # the fields can be dynamically exclude, for example set them to readonly in admin if 'data_source' in self.fields: # Only allow selecting data source within editable sources self.fields['data_source'].queryset = get_data_source_model().objects.filter(user_editable=True) def clean_internal_type(self): return self.initial['internal_type'] # do not allow changing internal_type class AffiliatedOrganizationForm(SubOrganizationForm): default_internal_type = Organization.AFFILIATED
python
import inspect import sys import threading from typing import Callable, Union, TypeVar, Any, Generic, Optional, List, Iterable class PromiseResolver: __slots__ = ("_promise", ) def __init__(self, promise): self._promise = promise def resolve(self, val): if self._promise is None: return self._promise._resolve(val) self._promise = None def reject(self, reason): if self._promise is None: return self._promise._reject(reason) self._promise = None T = TypeVar('T') X = TypeVar('X') PromiseOrT = Union['Promise[T]', T] PromiseOrX = Union['Promise[X]', X] class PromiseEventLoop: def __init__(self): self._scheduled = [] self._scheduled_next = [] self._scheduled_offthread = [] self._cv = threading.Condition() def schedule_thread(self, fn: Callable[[], None]): """ Executes fn the next time event loop is processed. It is safe to call from different thread. """ with self._cv: self._scheduled_offthread.append(fn) self._cv.notify() def schedule(self, fn: Callable[[], None]): """ Executes fn the next time event loop is processed. """ self._scheduled_next.append(fn) def unhandled_rejection(self, promise: PromiseOrX, reason: Any) -> None: raise RuntimeError(f"Unhandled rejection: {reason}") def pull_from_offthread(self): with self._cv: self._scheduled_next.extend(self._scheduled_offthread) self._scheduled_offthread.clear() def process(self): self.pull_from_offthread() while self._scheduled_next: while self._scheduled_next: self._scheduled, self._scheduled_next = self._scheduled_next, self._scheduled for fn in self._scheduled: fn() self._scheduled.clear() self.pull_from_offthread() def wait(self): with self._cv: self.pull_from_offthread() if len(self._scheduled_next) == 0: def has_new_elements(): return len(self._scheduled_offthread) > 0 self._cv.wait_for(has_new_elements) self.process() EventLoop = PromiseEventLoop() STATE_PENDING = 0 STATE_RESOLVED = 1 STATE_REJECTED = 2 class Promise(Generic[T]): __slots__ = ("_listeners", "_state", "_value") def __init__(self, func: Callable[[Callable[[PromiseOrT], None], Callable[[Any], None]], None]): self._listeners = None self._state = STATE_PENDING self._value = None if func: resolver = PromiseResolver(self) def callable(): try: func(resolver.resolve, resolver.reject) except: resolver.reject(sys.exc_info()[1]) EventLoop.schedule(callable) @staticmethod def resolve(value: PromiseOrT) -> 'Promise[T]': if isinstance(value, Promise): return value return Promise(lambda res, _: res(value)) @staticmethod def reject(reason: Any) -> 'Promise[Any]': return Promise(lambda _, rej: rej(reason)) @staticmethod def all(seq: Iterable['Promise[Any]']) -> 'Promise[List[Any]]': promise_list = list(seq) if len(promise_list) == 0: return Promise.resolve([]) def worker(resolve, reject): result = [None] * len(promise_list) pending = len(promise_list) for idx, promise in enumerate(promise_list): def fn(succ, val, idx=idx): if not succ: return reject(val) nonlocal pending result[idx] = val pending -= 1 if pending <= 0: resolve(result) Promise.resolve(promise)._listen(fn) return Promise(worker) def then( self, on_succ: Callable[[T], PromiseOrX], on_fail: Optional[Callable[[Any], PromiseOrX]] = None ) -> 'Promise[X]': def cont(succ, val): if succ: if on_succ is not None: return on_succ(val) else: return val else: if on_fail is not None: return on_fail(val) else: return self return self._chain(cont) def catch(self, on_fail: Callable[[Any], PromiseOrX]) -> 'Promise[X]': def cont(succ, val): if succ: return val else: return on_fail(val) return self._chain(cont) def _chain(self, func: Callable[[bool, Union[T, Any]], PromiseOrX]) -> 'Promise[X]': promise = Promise(lambda res, rej: None) def cont(succ, val): try: promise._resolve(func(succ, val)) except: promise._reject(sys.exc_info()[1]) self._listen(cont) return promise def _listen(self, func: Callable[[bool, Union[T, Any]], None]) -> None: if self._listeners is None: self._listeners = func self._fire_if_settled() else: if not isinstance(self._listeners, list): self._listeners = [self._listeners] self._listeners.append(func) if len(self._listeners) == 1: self._fire_if_settled() def _fire_if_settled(self): if self._state != STATE_PENDING: EventLoop.schedule(self._dispatch) def _dispatch(self): if self._listeners is None: if self._state == STATE_REJECTED: EventLoop.unhandled_rejection(self, self._value) else: to_dispatch = [] if isinstance(self._listeners, list): to_dispatch.extend(self._listeners) self._listeners.clear() else: to_dispatch.append(self._listeners) self._listeners = None for listener in to_dispatch: listener(self._state == STATE_RESOLVED, self._value) def always(self, func: Callable[[], None]) -> 'Promise[T]': def cont(_, __): func() return self return self._chain(cont) def run_until_completion(self) -> T: while self._state == STATE_PENDING: EventLoop.wait() if self._state == STATE_RESOLVED: return self._value else: raise self._value def _resolve(self, val: PromiseOrT) -> None: self._fulfill(True, val) def _reject(self, reason: Any) -> None: self._fulfill(False, reason) def _fulfill(self, succ: bool, val: Union[T, Any]) -> None: if succ: if isinstance(val, Promise): val._listen(self._fulfill) else: self._settle(succ, val) else: self._settle(succ, val) def _settle(self, succ: bool, val: Union[T, Any]) -> None: if succ: self._state = STATE_RESOLVED else: self._state = STATE_REJECTED self._value = val if self._listeners or self._state == STATE_REJECTED: EventLoop.schedule(self._dispatch) def asyncify(fn): def wrapper(*args, **kwargs): def worker(resolve, reject): if not inspect.isgeneratorfunction(fn): resolve(fn(*args, **kwargs)) else: iter = fn(*args, **kwargs) def spin_val(success, value): try: if success: result = iter.send(value) else: result = iter.throw(value) except StopIteration as stop: return resolve(stop.value) except: return reject(sys.exc_info()[1]) if isinstance(result, Promise): result.then( lambda val: spin_val(True, val), lambda reason: spin_val(False, reason) ) else: Promise.resolve(result).then(lambda val: spin_val(True, val)) spin_val(True, None) return Promise(worker) return wrapper
python
from __future__ import annotations import multiprocessing import queue import threading import time from dataclasses import dataclass, field from multiprocessing import Queue, Process from queue import Empty from threading import Thread from typing import List, Dict import psutil import requests from MHDDoS.attack import Attack, AttackState from MHDDoS.utils.config_files import read_configuration_file_lines from MHDDoS.utils.proxies import load_proxies from MHDDoS.utils.targets import Target from utils.input_args import Arguments from utils.logs import get_logger_for_current_process from utils.misc import TimeInterval from utils.network import IPGeolocationData @dataclass(slots=True, order=True, frozen=True) class AttackSupervisorState: is_fetching_targets: bool is_fetching_proxies: bool is_fetching_geolocation: bool attack_states: List[AttackState] targets_addresses: List[str] proxies_addresses: List[str] local_ip_geolocation: IPGeolocationData timestamp: float = field(default_factory=time.time) @property def attack_processes_count(self) -> int: return len(self.attack_states) if (self.attack_states is not None) else 0 @property def proxies_count(self) -> int: return len(self.proxies_addresses) if (self.proxies_addresses is not None) else 0 @property def targets_count(self) -> int: return len(self.targets_addresses) if (self.targets_addresses is not None) else 0 def __eq__(self, other): if not isinstance(other, AttackSupervisorState): return False return self.timestamp == other.timestamp class AttackSupervisor(Thread): """Thread which controls the state of the attack processes in Palyanytsya.""" _args: Arguments _attacks_state_queue: multiprocessing.Queue _supervisor_state_queue: queue.Queue _logging_queue: multiprocessing.Queue _targets: List[Target] = [] _proxies_addresses: List[str] = [] _attack_processes: List[Process] = [] _attack_states: Dict[int, AttackState] = {} _targets_fetch_interval: TimeInterval _proxies_fetch_interval: TimeInterval _geolocation_fetch_interval: TimeInterval _internal_loop_sleep_interval: float = 0.01 _state_publish_interval: float = 0.5 _is_fetching_proxies: bool = False _is_fetching_targets: bool = False _is_fetching_geolocation: bool = False _last_geolocation: IPGeolocationData = None _state_publisher_thread: Thread = None exception: Exception = None def __init__(self, args: Arguments, supervisor_state_queue: queue.Queue, logging_queue: multiprocessing.Queue): Thread.__init__(self, daemon=True, name="Supervisor") self.logger = get_logger_for_current_process(logging_queue, "SUPERVISOR") self._logging_queue = logging_queue self._args = args self._supervisor_state_queue = supervisor_state_queue self._attacks_state_queue = Queue() self._targets_fetch_interval = TimeInterval(args.config_fetch_interval) self._proxies_fetch_interval = TimeInterval(args.proxies_fetch_interval) self._geolocation_fetch_interval = TimeInterval(20) stop_event = threading.Event() stop_event.set() self._stop_event = stop_event self.logger.info("Starting attack supervisor...") def run(self) -> None: logger = self.logger self._state_publisher_thread = Thread(target=self._state_publisher, daemon=True) self._state_publisher_thread.start() try: self.run_main_loop() except Exception as e: self.exception = e logger.exception("Exception in Supervisor", exc_info=e) except (KeyboardInterrupt, SystemExit): pass finally: logger.info("Supervisor thread stopping...") self.stop() self.cleanup() logger.info("Supervisor thread stopped.") def run_main_loop(self): while self._stop_event.is_set(): targets_changed = False if self._targets_fetch_interval.check_if_has_passed(): self._is_fetching_targets = True targets_changed = self._fetch_targets() self._is_fetching_targets = False proxies_changed = False if self._proxies_fetch_interval.check_if_has_passed(): self._is_fetching_proxies = True proxies_changed = self._fetch_proxies() self._is_fetching_proxies = False if self._geolocation_fetch_interval.check_if_has_passed(): self._is_fetching_geolocation = True self._check_geolocation() self._is_fetching_geolocation = False if targets_changed or proxies_changed: self._restart_attacks() self._update_attack_states() time.sleep(self._internal_loop_sleep_interval) def cleanup(self): logger = self.logger logger.info("Stopping state publisher thread...") self._state_publisher_thread.join() logger.info("State publisher thread stopped.") logger.info("Stopping attacks...") self._stop_all_attacks(True) self._attacks_state_queue.close() logger.info("Attacks stopped.") def stop(self): self._stop_event.clear() def _fetch_targets(self) -> bool: """ Fetches targets configuration. Returns: True if targets have changed, False otherwise. """ logger = self.logger logger.info("Fetching targets...") config = self._args.config new_targets_strings: List[str] = [] new_targets_strings.extend(self._args.targets) if config: new_targets_strings.extend(read_configuration_file_lines(config)) new_targets: List[Target] = [] for target_string in new_targets_strings: logger.info(f"parsing from '{target_string}'") target = Target.parse_from_string(target_string) if not target: continue elif target.is_valid: new_targets.append(target) logger.info(f"Fetched target: '{target}'") else: logger.error(f"Target '{target}' is not valid. Will not attack this one.") # check if the targets changed if self._compare_lists(new_targets_strings, self._targets): logger.info("Targets have not changed.") return False self._targets = new_targets logger.info(f"Targets updated. Attack processes will be re-initialized for {len(new_targets)} loaded targets.") return True def _fetch_proxies(self) -> bool: """ Fetches proxies configuration. Returns: True if proxies have changed, False otherwise. """ logger = self.logger proxies_file_path = self._args.proxies if proxies_file_path is None: return False logger.info("Fetching proxies...") new_proxies = load_proxies(proxies_file_path) if new_proxies is None: logger.error(f"Could not load any proxies from the given path: '{proxies_file_path}'") return False # check if the proxies changed (we compare the addresses because Proxy objects do not have __eq__ method defined) new_proxies_addresses = [f"{p}" for p in new_proxies] if self._compare_lists(new_proxies_addresses, self._proxies_addresses): logger.info("Proxies have not changed.") return False self._proxies_addresses = new_proxies_addresses logger.info(f"Proxies updated. Attack processes will be re-initialized for {len(new_proxies_addresses)} loaded proxies.") return True def _check_geolocation(self) -> None: """ Checks local machine's IP geolocation and stops the attacks if it changed since the previous check. """ logger = self.logger try: new_geolocation = IPGeolocationData.get_for_my_ip(10) except requests.ConnectionError: logger.error(f"Failed to get geolocation data for the local IP (ConnectionError). Will retry in {self._geolocation_fetch_interval.time_left:.0f} seconds.") return geolocation_changed = (new_geolocation != self._last_geolocation) and (self._last_geolocation is not None) if geolocation_changed and not self._args.ignore_geolocation_change: # stop running attacks, if any if self.running_attacks_count > 0: logger.warning(f"Geolocation of the local machine's IP has changed!" f" {self._last_geolocation} -> {new_geolocation}\n" f" {self.running_attacks_count} running attack processes will be stopped.") self._stop_all_attacks() # wait for confirmation from the user to continue # TODO: add arg to disable this check entirely? if self._args.no_gui: input(f"Geolocation of the local machine's IP has changed: {self._last_geolocation} -> {new_geolocation}.\n" f"Press any key to restart the attacks, or Ctrl+C to exit.") else: # TODO: warn the user if geolocation has changed and stop the attacks pass self._last_geolocation = new_geolocation logger.info(f"Checked geolocation: {new_geolocation}") def _stop_all_attacks(self, blocking: bool = False) -> None: # kill all existing attack processes processes_to_kill = self._attack_processes.copy() for process in processes_to_kill: process.terminate() if blocking: for process in processes_to_kill: process.join() def _restart_attacks(self) -> None: logger = self.logger # kill all existing attack processes self._stop_all_attacks() # check if we have targets targets_count = len(self._targets) if targets_count <= 0: logger.error("Attacks will not be started, as there are no valid targets.") return # TODO: apply CPU usage limit to attack processes? cpu_count = psutil.cpu_count() cpu_per_target = float(cpu_count) / targets_count # launch attack process for every target for i, target in enumerate(self._targets): attack_process = Attack( target=target, attack_methods=self._args.attack_methods, requests_per_connection=self._args.requests_per_connection, proxies_file_path=self._args.proxies, attack_state_queue=self._attacks_state_queue, logging_queue=self._logging_queue, ) attack_process.name = f"ATTACK_{i + 1}" self._attack_processes.append(attack_process) attack_process.start() logger.info(f"Started attacks upon {len(self._targets)} targets.") def _update_attack_states(self) -> None: if len(self._attack_processes) <= 0: return # collect all that's available in the attack state queue new_states: Dict[int, AttackState] = {} for _ in range(100): # <- limit retries so that we don't run infinitely in that low-chance situation where our attack loops share state faster than the Supervisor updates try: new_state: AttackState = self._attacks_state_queue.get_nowait() new_states[new_state.attack_pid] = new_state # <- overwrite every new state for the same attack PID; this way we will have only the most recent states left in the Dict after this loop except Empty: break previous_attack_states = self._attack_states.copy() previous_attack_states.update(new_states) self._attack_states = previous_attack_states def _restart_dead_attacks(self): # TODO: do this raise NotImplemented def _state_publisher(self): while self._stop_event.is_set(): sorted_attack_states = [self._attack_states[k] for k in sorted(self._attack_states.keys())] state = AttackSupervisorState( is_fetching_proxies=self._is_fetching_proxies, is_fetching_targets=self._is_fetching_targets, is_fetching_geolocation=self._is_fetching_geolocation, attack_states=sorted_attack_states, proxies_addresses=self._proxies_addresses, local_ip_geolocation=self._last_geolocation, targets_addresses=[f"{t}" for t in self._targets] ) self._supervisor_state_queue.put(state) time.sleep(self._state_publish_interval) @staticmethod def _compare_lists(list_a: List, list_b: List) -> bool: """ Compares if two lists have the same items. The lists get sorted in-place before the comparison. Args: list_a: The 1st list. list_b: The 2nd list. Returns: True if all items in the lists are identical, False otherwise. """ list_a.sort() list_b.sort() return list_a == list_b @property def running_attacks_count(self) -> int: alive_processes = [p for p in self._attack_processes if p.is_alive()] return len(alive_processes)
python
from .convscore_solver import SolverConvScore import torch from utils import to_var from tqdm import tqdm from math import isnan import numpy as np class SolverConvScoreSSREM(SolverConvScore): def __init__(self, config, train_data_loader, eval_data_loader, is_train=True, model=None): super(SolverConvScoreSSREM, self).__init__(config, train_data_loader, eval_data_loader, is_train, model) def train(self): epoch_loss_history = [] for epoch_i in range(self.epoch_i, self.config.n_epoch): self.epoch_i = epoch_i batch_loss_history = [] self.model.train() for batch_i, (contexts, res_true, res_ns1, res_ns2, res_ns3, res_ns4) in \ enumerate(tqdm(self.train_data_loader, ncols=80)): contexts = to_var(torch.FloatTensor(contexts)) res_trues = to_var(torch.FloatTensor(res_true)) res_ns1 = to_var(torch.FloatTensor(res_ns1)) res_ns2 = to_var(torch.FloatTensor(res_ns2)) res_ns3 = to_var(torch.FloatTensor(res_ns3)) res_ns4 = to_var(torch.FloatTensor(res_ns4)) self.optimizer.zero_grad() # Call forward function batch_loglikelihood = self.model(contexts, res_trues, res_ns1, res_ns2, res_ns3, res_ns4) batch_loss = -torch.sum(batch_loglikelihood) assert not isnan(batch_loss.item()) batch_loss_history.append(batch_loss.item()) if batch_i % self.config.print_every == 0: tqdm.write(f'Epoch: {epoch_i+1}, iter {batch_i}: loss = {batch_loss.item():.3f}') # Back-propagation batch_loss.backward() # Gradient cliping torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.clip) # Run optimizer self.optimizer.step() epoch_loss = np.mean(batch_loss_history) epoch_loss_history.append(epoch_loss) self.epoch_loss = epoch_loss if epoch_i % self.config.save_every_epoch == 0: self.save_model(epoch_i + 1) self.true_scores, self.false_scores, self.eval_epoch_loss = self.evaluate() print_str = f'Epoch {epoch_i + 1} loss average: {epoch_loss:.3f}, ' \ f'True:{self.true_scores:.3f}, False:{self.false_scores:.3f}, ' \ f'Validation loss: {self.eval_epoch_loss:.3f}' print(print_str) if epoch_i % self.config.plot_every_epoch == 0: self.write_summary(epoch_i) self.save_model(self.config.n_epoch) return epoch_loss_history def evaluate(self): self.model.eval() true_scores_list = list() false_scores_list = list() batch_loss_history = list() for batch_i, (contexts, res_true, res_ns1, res_ns2, res_ns3, res_ns4) in \ enumerate(tqdm(self.eval_data_loader, ncols=80)): with torch.no_grad(): contexts = to_var(torch.FloatTensor(contexts)) res_trues = to_var(torch.FloatTensor(res_true)) res_ns1 = to_var(torch.FloatTensor(res_ns1)) res_ns2 = to_var(torch.FloatTensor(res_ns2)) res_ns3 = to_var(torch.FloatTensor(res_ns3)) res_ns4 = to_var(torch.FloatTensor(res_ns4)) # Call forward function true_scores = self.model.score(contexts, res_trues) false_scores = self.model.score(contexts, res_ns4) true_scores_list += true_scores.data.cpu().numpy().tolist() false_scores_list += false_scores.data.cpu().numpy().tolist() # Call forward function batch_loglikelihood = self.model(contexts, res_trues, res_ns1, res_ns2, res_ns3, res_ns4) batch_loss = -torch.sum(batch_loglikelihood) assert not isnan(batch_loss.item()) batch_loss_history.append(batch_loss.item()) epoch_loss = np.sum(batch_loss_history) return np.mean(true_scores_list), np.mean(false_scores_list), epoch_loss
python
import numpy as np import cv2 as cv def cv_imshow(title='Res',img=None): print(img.shape) cv.imshow(title,img) cv.waitKey(0) cv.destroyAllWindows() def image_normalization(img, img_min=0, img_max=255): """This is a typical image normalization function where the minimum and maximum of the image is needed source: https://en.wikipedia.org/wiki/Normalization_(image_processing) :param img: an image could be gray scale or color :param img_min: for default is 0 :param img_max: for default is 255 :return: a normalized image, if max is 255 the dtype is uint8 """ img = np.float32(img) epsilon=1e-12 # whenever an inconsistent image img = (img-np.min(img))*(img_max-img_min)/((np.max(img)-np.min(img))+epsilon)+img_min return img def restore_rgb(config,I): """ :param config: [args.channel_swap, args.mean_pixel_value] :param I: and image or a set of images :return: an image or a set of images restored """ if len(I)>3 and not type(I)==np.ndarray: I =np.array(I) I = I[:,:,:,0:3] n = I.shape[0] for i in range(n): x = I[i,...] x = np.array(x, dtype=np.float32) x += config[1] x = x[:, :, config[0]] x = image_normalization(x) I[i,:,:,:]=x elif len(I.shape)==3 and I.shape[-1]==3: I = np.array(I, dtype=np.float32) I += config[1] I = I[:, :, config[0]] I = image_normalization(I) else: print("Sorry the input data size is out of our configuration") # print("The enterely I data {} restored".format(I.shape)) return I def visualize_result(imgs_list, arg): """ function for tensorflow results :param imgs_list: a list of prediction, gt and input data :param arg: :return: one image with the whole of imgs_list data """ n_imgs = len(imgs_list) data_list =[] for i in range(n_imgs): tmp = imgs_list[i] if tmp.shape[1]==3: tmp = np.transpose(np.squeeze(tmp),[1,2,0]) tmp=restore_rgb([arg.channel_swap,arg.mean_pixel_values[:3]],tmp) tmp = np.uint8(image_normalization(tmp)) else: tmp= np.squeeze(tmp) if len(tmp.shape) == 2: tmp = np.uint8(image_normalization(tmp)) tmp = cv.bitwise_not(tmp) tmp = cv.cvtColor(tmp, cv.COLOR_GRAY2BGR) else: tmp = np.uint8(image_normalization(tmp)) data_list.append(tmp) img = data_list[0] if n_imgs % 2 == 0: imgs = np.zeros((img.shape[0] * 2 + 10, img.shape[1] * (n_imgs // 2) + ((n_imgs // 2 - 1) * 5), 3)) else: imgs = np.zeros((img.shape[0] * 2 + 10, img.shape[1] * ((1 + n_imgs) // 2) + ((n_imgs // 2) * 5), 3)) n_imgs += 1 k=0 imgs = np.uint8(imgs) i_step = img.shape[0]+10 j_step = img.shape[1]+5 for i in range(2): for j in range(n_imgs//2): if k<len(data_list): imgs[i*i_step:i*i_step+img.shape[0],j*j_step:j*j_step+img.shape[1],:]=data_list[k] k+=1 else: pass return imgs
python
# Lint as: python3 # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Chex: Testing made fun, in JAX!""" from chex._src.asserts import assert_axis_dimension from chex._src.asserts import assert_axis_dimension_gt from chex._src.asserts import assert_devices_available from chex._src.asserts import assert_equal from chex._src.asserts import assert_equal_rank from chex._src.asserts import assert_equal_shape from chex._src.asserts import assert_equal_shape_prefix from chex._src.asserts import assert_equal_shape_suffix from chex._src.asserts import assert_exactly_one_is_none from chex._src.asserts import assert_gpu_available from chex._src.asserts import assert_is_broadcastable from chex._src.asserts import assert_max_traces from chex._src.asserts import assert_not_both_none from chex._src.asserts import assert_numerical_grads from chex._src.asserts import assert_rank from chex._src.asserts import assert_scalar from chex._src.asserts import assert_scalar_in from chex._src.asserts import assert_scalar_negative from chex._src.asserts import assert_scalar_non_negative from chex._src.asserts import assert_scalar_positive from chex._src.asserts import assert_shape from chex._src.asserts import assert_tpu_available from chex._src.asserts import assert_tree_all_close from chex._src.asserts import assert_tree_all_equal_comparator from chex._src.asserts import assert_tree_all_equal_shapes from chex._src.asserts import assert_tree_all_equal_structs from chex._src.asserts import assert_tree_all_finite from chex._src.asserts import assert_tree_no_nones from chex._src.asserts import assert_tree_shape_prefix from chex._src.asserts import assert_type from chex._src.asserts import clear_trace_counter from chex._src.asserts import if_args_not_none from chex._src.dataclass import dataclass from chex._src.dataclass import mappable_dataclass from chex._src.fake import fake_jit from chex._src.fake import fake_pmap from chex._src.fake import fake_pmap_and_jit from chex._src.fake import set_n_cpu_devices from chex._src.pytypes import Array from chex._src.pytypes import ArrayBatched from chex._src.pytypes import ArrayDevice from chex._src.pytypes import ArrayNumpy from chex._src.pytypes import ArraySharded from chex._src.pytypes import ArrayTree from chex._src.pytypes import CpuDevice from chex._src.pytypes import Device from chex._src.pytypes import GpuDevice from chex._src.pytypes import Numeric from chex._src.pytypes import PRNGKey from chex._src.pytypes import Scalar from chex._src.pytypes import Shape from chex._src.pytypes import IpuDevice from chex._src.variants import all_variants from chex._src.variants import ChexVariantType from chex._src.variants import params_product from chex._src.variants import TestCase from chex._src.variants import variants __version__ = "0.0.5" __all__ = ( "all_variants", "Array", "ArrayBatched", "ArrayDevice", "ArrayNumpy", "ArraySharded", "ArrayTree", "assert_axis_dimension", "assert_axis_dimension_gt", "assert_devices_available", "assert_equal", "assert_equal_rank", "assert_equal_shape", "assert_equal_shape_prefix", "assert_equal_shape_suffix", "assert_exactly_one_is_none", "assert_gpu_available", "assert_is_broadcastable", "assert_max_traces", "assert_not_both_none", "assert_numerical_grads", "assert_rank", "assert_scalar", "assert_scalar_in", "assert_scalar_negative", "assert_scalar_non_negative", "assert_scalar_positive", "assert_shape", "assert_tpu_available", "assert_tree_all_close", "assert_tree_all_equal_comparator", "assert_tree_all_equal_shapes", "assert_tree_all_equal_structs", "assert_tree_all_finite", "assert_tree_no_nones", "assert_tree_shape_prefix", "assert_type", "ChexVariantType", "clear_trace_counter", "CpuDevice", "dataclass", "Device", "fake_jit", "fake_pmap", "fake_pmap_and_jit", "GpuDevice", "if_args_not_none", "mappable_dataclass", "Numeric", "params_product", "PRNGKey", "Scalar", "set_n_cpu_devices", "Shape", "TestCase", "IpuDevice", "variants", ) # _________________________________________ # / Please don't use symbols in `_src` they \ # \ are not part of the Chex public API. / # ----------------------------------------- # \ ^__^ # \ (oo)\_______ # (__)\ )\/\ # ||----w | # || || #
python
#!/usr/bin/env python from __future__ import print_function import math import rospy from geometry_msgs.msg import Twist from nav_msgs.msg import Odometry from b2_logic.nodes.pilot import PilotNode, PVelocityController from b2.msg import Proximity DEFAULT_NODE_NAME = "pilot_node" # Subscribes DEFAULT_PROXIMITY_TOPIC = "ir_sensors/proximity" DEFAULT_ODOMETRY_TOPIC = "base_node/odom" # Publishes DEFAULT_CMD_TOPIC = "base_node/cmd_vel" DEFAULT_LOOP_HZ = 5 # hertz DEFAULT_MAX_FWD_SPEED = 0.5 # m/sec DEFAULT_MIN_FWD_SPEED = 0.1 # m/sec DEFAULT_MAX_TURN_SPEED = math.pi / 4 # radians/sec DEFAULT_MIN_TURN_SPEED = 0.1 # radians/sec DEFAULT_TURN_DEGREES = 90 # degrees, will be converted to radians DEFAULT_TURN_DEGREE_TOLERANCE = 5 # degrees, will be converted to radians DEFAULT_LINEAR_K = 1 DEFAULT_ANGULAR_K = 1 # K constant for angular P controller if __name__ == "__main__": rospy.init_node(DEFAULT_NODE_NAME, log_level=rospy.DEBUG) node_name = rospy.get_name() loophz = rospy.get_param("~loop_hz", DEFAULT_LOOP_HZ) max_fwd_speed = rospy.get_param("~max_fwd_speed", DEFAULT_MAX_FWD_SPEED) min_fwd_speed = rospy.get_param("~min_fwd_speed", DEFAULT_MIN_FWD_SPEED) max_turn_speed = rospy.get_param("~max_turn_speed", DEFAULT_MAX_TURN_SPEED) min_turn_speed = rospy.get_param("~min_turn_speed", DEFAULT_MIN_TURN_SPEED) turn_radians = math.radians(rospy.get_param("~turn_degrees", DEFAULT_TURN_DEGREES)) turn_radians_tolerance = math.radians( rospy.get_param("~turn_degree_tolerance", DEFAULT_TURN_DEGREE_TOLERANCE)) linear_k = rospy.get_param("~linear_k", DEFAULT_LINEAR_K) angular_k = rospy.get_param("~angular_k", DEFAULT_ANGULAR_K) # P-Controller pcontroller = PVelocityController( min_fwd_speed, max_fwd_speed, min_turn_speed, max_turn_speed, linear_k=linear_k, angular_k=angular_k ) # Publishes cmd_vel_pub = rospy.Publisher( rospy.get_param('~cmd_topic', DEFAULT_CMD_TOPIC), Twist, queue_size=1 ) node = PilotNode(loophz, turn_radians, turn_radians_tolerance, cmd_vel_pub, pcontroller) # Subscribes rospy.Subscriber( rospy.get_param("~proximity_topic", DEFAULT_PROXIMITY_TOPIC), Proximity, node.prox_callback ) # Subscribes rospy.Subscriber( rospy.get_param("~odom_topic", DEFAULT_ODOMETRY_TOPIC), Odometry, node.odom_callback ) node.run()
python
from aws_cdk import ( aws_s3 as s3, core ) class CdkExampleS3Stack(core.Stack): def __init__(self, scope: core.Construct, construct_id: str, **kwargs) -> None: super().__init__(scope, construct_id, **kwargs) bucket = s3.Bucket( self, "mytestbucket", bucket_name="mytestbucket.mydomain.com" ) bucket.node.find_child('Resource').cfn_options.deletion_policy = core.CfnDeletionPolicy.DELETE
python
""" opencadd.io.core Defines the base class for the io module. """ from pathlib import Path class _Base: """ Base class for io classes. """ def __init__(self): """ This class contains no __init__ initialization. """ raise RuntimeError("This class only support initialization from classmethods.") @classmethod def from_file(cls, filepath, **kwargs): """ Parse a structure from a file into different output data types. Parameters ---------- filepath : pathlib.Path or str Path to file. **kwargs Arbitrary keyword arguments. """ raise NotImplementedError("Implement in your subclass!") @classmethod def from_text(cls, text, **kwargs): """ Parse a structure from a string (text) into different output data types. Parameters ---------- text : str Structure file text. **kwargs Arbitrary keyword arguments. """ raise NotImplementedError("Implement in your subclass!") @classmethod def _file_to_text(cls, filepath): """ Get content (text) from file. Parameters ---------- filepath : pathlib.Path or str Path to file. Returns ------- str File content (text). """ filepath = cls._convert_filepath(filepath) with open(filepath, "r") as f: text = f.read() return text @classmethod def _convert_filepath(cls, filepath): """ Convert a filepath. Parameters ---------- filepath : pathlib.Path or str Path to file. Returns ------- pathlib.Path Path to file. Raises ------ FileNotFoundError Raised if file does not exist. """ filepath = Path(filepath) if not filepath.exists(): raise FileNotFoundError(f"File {filepath} does not exist.") return filepath
python
from django.test import TestCase from django.template import Template, Context class TemplateTagTest(TestCase): def setUp(self): pass def test_tag(self): content = ( "{% load logical_rules_tags %}" "This is a {% testrule test_is_pizza 'pizza' %}test{% endtestrule %}" "{% testrule test_is_pizza 'calzone' %}So is this...{% endtestrule %}" ) expected = "This is a test" r = Template(content).render(Context({})) self.assertEqual(expected, r)
python
#!/usr/bin/env python # -*- coding: utf-8 -* import urllib2 import urllib import cookielib import re from config import WEIBO_ACCOUNT, WEIBO_PWD class Fetcher(object): def __init__(self, username=None, pwd=None, cookie_filename=None): self.cj = cookielib.LWPCookieJar() if cookie_filename is not None: self.cj.load(cookie_filename) self.cookie_processor = urllib2.HTTPCookieProcessor(self.cj) self.opener = urllib2.build_opener(self.cookie_processor, urllib2.HTTPHandler) urllib2.install_opener(self.opener) self.username = username self.pwd = pwd self.headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; rv:14.0) Gecko/20100101 Firefox/14.0.1', 'Referer': '', 'Content-Type': 'application/x-www-form-urlencoded'} def get_rand(self, url): urlre = re.compile(r'form action="([^<>\/].+?)"') vkre = re.compile(r'name="vk" value="([^<>\/].+?)"') passwdre = re.compile(r'type="password" name="([^<>\/].+?)"') headers = {'User-Agent': 'Mozilla/5.0 (Windows;U;Windows NT 5.1;zh-CN;rv:1.9.2.9)Gecko/20100824 Firefox/3.6.9', 'Referer': ''} req = urllib2.Request(url, "", headers) login_page = urllib2.urlopen(req).read() url = urlre.findall(login_page)[0] passwd = passwdre.findall(login_page)[0] vk = vkre.findall(login_page)[0] return url, passwd, vk def login(self, username=None, pwd=None, cookie_filename=None, content=None): if self.username is None or self.pwd is None: self.username = username self.pwd = pwd url = 'http://login.weibo.cn/login/?ns=1&revalid=2&backURL=http%3A%2F%2Fweibo.cn%2F%3Ffrom%3Dindex%26rl%3D1%26luicode%3D20000173&backTitle=%CE%A2%B2%A9&vt=4' # 获取随机数rand、password的name和vk url, passwd, vk = self.get_rand(url) url = 'http://login.weibo.cn/login/' + url data = urllib.urlencode({'mobile': self.username, passwd: self.pwd, 'backURL': 'http%3A%2F%2Fweibo.cn%2F%3Ffrom%3Dindex%26amp%3Brl%3D1%26amp%3Bluicode%3D20000173', 'backTitle': '微博', 'tryCount': '', 'vk': vk, 'submit': '登录', }) # 模拟提交登陆 self.fetch(url, data) page = self.fetch("http://weibo.cn/", data) linkre = re.compile(r'sendmblog([^<>\/].+?)"') link = "http://weibo.cn/mblog/sendmblog" + linkre.findall(page)[0] data = urllib.urlencode({'rl': '1,', 'content': content}) page = self.fetch(link, data) return page.find('发布成功') > 0 def fetch(self, url, data): req = urllib2.Request(url, data, headers=self.headers) return urllib2.urlopen(req).read() weibo = Fetcher() def format(school, card_id, name, note=None, contact_name=None): if int(school) == 1: school_tag = "#南开大学失物招领#" elif int(school) == "2": school_tag = "#天津大学失物招领#" elif int(school) == "4": school_tag = "#河工大失物招领#" else: school_tag = '' if contact_name: picker = "{0}同学".format(contact_name.encode('utf8')) else: picker = '"雷锋同志"' message = "#云印南天校园卡招领中心#{0}*{1}*同学卡号为{2}的校园卡已经被{3}捡到,凭学号进入find.yunyin.org查看详细招领内容".format(school_tag, name.encode('utf8'), card_id, picker) if note: message = "%s 补充:%s" % (message, note) return message def post(text): return weibo.login(WEIBO_ACCOUNT, WEIBO_PWD, "", text)
python
""" Pop does not care what it is removing in case of set Since set is an unordered collection """ from prescription_data import patients trial_patients = {'Denise', 'Eddie', 'Frank', 'Georgia', 'Kenny'} while trial_patients: patient = trial_patients.pop() print(patient, end=':') prescription = patients[patient] print(prescription)
python
# Copyright 2016-2017 SAP SE # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging from swift_health_statsd.ipc import check_output from swift_health_statsd.collector import Collector log = logging.getLogger(__name__) class SwiftDispersionCollector(Collector): def metric_name_prefix(self): return "swift_dispersion" def logger(self): return log def collector_steps(self): return { "dispersion": self.__collect } def __collect(self): cmd = " ".join((self.config.dispersion_report_path, '-j')) out = check_output(cmd, timeout=30) # swift-dispersion-report on Liberty prints an initial line "Using # storage policy: default", so look for the first line that contains # the actual JSON while "\n" in out and not out.lstrip().startswith('{'): # remove first line out = out.split("\n", 1).pop() data = json.loads(out) for server in ['object', 'container']: counts = data.get(server, {}) expected = counts.get('copies_expected') found = counts.get('copies_found') if expected is None or found is None: missing = None else: missing = expected - found self.submit(server + '_copies_expected', expected) self.submit(server + '_copies_found', found) self.submit(server + '_copies_missing', missing) self.submit(server + '_overlapping', counts.get('overlapping'))
python
import argparse import pymongo import uuid import datetime import pprint import copy from datetime import timedelta from starflyer import ScriptBase from camper.app import markdownify from logbook import Logger log = Logger('Migration') def daterange(start_date, end_date): for n in range(int ((end_date - start_date).days)+1): yield start_date + timedelta(n) class MigrateBarcamps(ScriptBase): """script for migrating barcamps to new event format""" def fix_event(self, e): """add all the missing fields to the initial event""" size = self.barcamp['size'] e = copy.copy(e) # better work with a copy if not e.has_key("_id"): e['_id'] = unicode(uuid.uuid4()) log.info("id added,") if not e.has_key("size"): e['size'] = size log.info("size added,") if not e.has_key("timetable"): e['timetable'] = {} log.info("timetable added") if not e.has_key("maybe"): e['maybe'] = [] log.info("maybe added",) if not e.has_key("own_location"): e['own_location'] = False log.info("own location set") e['description'] = markdownify(e['description']) return e def generate_events(self, e): """use the given event and generate copies of that for every day of the barcamp""" if e['start_date'] is None: events = {} else: events = {} for single_date in daterange(e['start_date'], e['end_date']): e = copy.copy(e) e['_id'] = unicode(uuid.uuid4()) e['date'] = single_date e['start_time'] = "8:00" e['end_time'] = "18:00" events[e['_id']] = e self.barcamp['events'] = events return events def fix_location(self, e): """move the location from the event to the barcamp""" self.barcamp['location'] = e['location'] self.barcamp['location']['country'] = self.barcamp['location']['country'].upper() log.info("location copied") def fix_design(self): """fix the barcamp design""" self.barcamp.update({ 'background_color' : '#fcfcfa', 'link_color' : '#337CBB', 'text_color' : '#333', 'header_color' : '#fff', 'navbar_link_color' : '#888', 'navbar_active_bg' : '#555', 'navbar_active_color' : '#eee', 'navbar_border_color' : '#f0f0f0', 'navbar_hover_bg' : '#f8f8f8' }) def __call__(self): barcamps = self.app.config.dbs.db.barcamps # we loop over raw data because the format cannot be serialized yet for b in barcamps.find(): self.barcamp = b log.info("converting %s" %b['name']) # fix the single event to contain all necessary new fields e = b['events'][0] e = self.fix_event(e) self.fix_design() # generate the events self.generate_events(e) # fix location (move it from event to barcamp) self.fix_location(e) # convert all markdown to html b['description'] = markdownify(b['description']) log.info("converted description") pages = self.app.config.dbs.pages.for_slot("menu", barcamp=self.barcamp) for page in pages: page.content = markdownify(page.content) page.save() log.info("converted page %s" %page.title) barcamps.save(b) log.info("barcamp %s saved" %self.barcamp['name']) def migrate_barcamps(*args, **kwargs): s = MigrateBarcamps() s()
python
import json from datetime import datetime import time import PySimpleGUI as sg import os import keyring # for password storage import hashlib # import all the custom functions from functionalities import * # import all the window formats from windows import * if __name__ == "__main__" : # check if the memoir file exists # OR # if the memoir file is deliberately deleted, create an empty list to store future data if not os.path.exists("memoir.json") or os.path.getsize("memoir.json") == 0: # if is does not exists, create a new one with open("memoir.json", "w") as f : f.write(json.dumps([])) # read the settings file settings = read_settings() # check if there is any password set or not password = keyring.get_password('e-memoir', 'user') # if there is a password, run the login screen and get if the password was correct or not # if there is no password, just input True in run_app variable theme = settings[5]['theme'] run_app = loginWindow_fn(theme, password, settings) if password else True # run the app only if the password was right or there was no password at all if run_app : # need the proper date format temp_dic = {"28-11-1999": "%d-%m-%Y", "28-Nov-1999": "%d-%b-%Y", "28-November-1999": "%d-%B-%Y", "11-28-1999": "%m-%d-%Y", "Nov-28-1999": "%b-%d-%Y", "November-28-1999": "%B-%d-%Y", "1999-11-28": "%Y-%m-%d", "1999-Nov-28": "%Y-%b-%d", "1999-November-28": "%Y-%B-%d"} # replace the date format date_format = temp_dic[settings[3]['date_format']] colors = ['Blue', 'Red', 'Yellow', 'Orange', 'Pink', 'Green', 'Violet'] sg.ChangeLookAndFeel(theme) sg.SetOptions(element_padding=((4,4),2)) tabgrp = mainWindowLayout_fn(date_format, settings, temp_dic, have_password=True if password else False) #Define Window window =sg.Window("E-Memoir",tabgrp, icon=settings[6]['icon_path']) while True: # Event Loop event, values = window.Read() if event in (None, "Close") : break if values['message'] : write_functionality(window, event, values, settings, date_format) # if no message is entered and then also the save or preview button is clicked elif event in ("Save", "Show Preview") : window['_output_'].update("No message entered.....") # if quit after saving memoir is enabled, quit the program after a specified delay if event == 'Save' and settings[1]['quit_after_saving_memoir'] : window['_output_'].update('Memoir saved. Quiting.. See you tomorrow :)') time.sleep(settings[1]['delay']) break # if the show memoirs button is clicked if event == "Show Memoirs" : # if the dates are entered if values['-FROM-'] and values['-TO-'] : read_functionality(window, values, date_format, int(settings[4]["max_records_to_display"])) else : window['_memoirs_'].update('Please select the From and To dates.......') if event in ("Save settings", "Reset settings") : update_settings(window, event, values, settings, temp_dic) if event in ("Deletion Preview", "Delete Records") : delete_functionality(window, event, values, date_format, int(settings[4]["max_records_to_display"]), delete_all=values['delete-all']) if event == "Themes Preview" : # open a window with the theme preview themes_preview_fn(settings[6]['theme_path']) if event == "Change Password" : # open the change password window if change_password_fn(theme, settings) : window['_status_'].update('Password changed successfully') if event == "Remove Password" : # open the remove password window if remove_password_fn(theme, settings) : break # since we are not refreshing the layout after setting password # it may happen that user clicks on it again and sets a new password again # which should not happen (that is the function of Change Password) if event == "Set Password" : if keyring.get_password('e-memoir', 'user'): # the password has already been set window['_status_'].update('Password has already been set.') elif set_password_fn(theme, settings): # open the set password window, set the password and show the message window['_status_'].update("Password set successfully.") # update the color of the button window['-color-'].update(button_color=('white', values['color-text'])) #access all the values and if selected add them to a string window.close()
python
#To test how fast rotations.py is from rotations import * import numpy as np from timeit import default_timer as timer ranx5 = np.random.randint(10,size=(100000,3)) ranx6 = np.random.randint(10,size=(1000000,3)) ranx7 = np.random.randint(10,size=(10000000,3)) ranx8 = np.random.randint(10,size=(100000000,3)) start = timer() vrotate(ranx5, 40, [4,2,3]) end = timer() timex5 = end-start start = timer() vrotate(ranx6, 40, [4,2,3]) end = timer() timex6 = end-start start = timer() vrotate(ranx7, 40, [4,2,3]) end = timer() timex7 = end-start start = timer() vrotate(ranx8, 40, [4,2,3]) end = timer() timex8 = end-start print(timex5, timex6, timex7, timex8)
python
from os import getenv, getppid, kill, system from configparser import ConfigParser from typing import Union, Optional from psutil import process_iter from datetime import datetime from subprocess import Popen from signal import SIGHUP from pathlib import Path from sys import platform from re import match from typer import Abort, echo, style from inquirer import prompt, List from urllib.request import urlopen from bs4 import BeautifulSoup from appdirs import AppDirs def print_error(error: str) -> None: echo(style(f'\nERROR:\n%s' % (error), fg='red'), err=True) def print_fatal(error: str) -> None: echo(style(f'\nFATAL:\n%s' % (error), fg='red', bg='bright_white'), err=True) def print_warning(msg: str) -> None: echo(style(f'\nWARNING:\n%s' % (msg), fg='magenta')) def print_prompt(msg: str) -> None: echo(style(f'\n%s' % (msg), fg='bright_yellow')) def print_success(msg: str) -> None: echo(style(f'\n%s' % (msg), fg='bright_green')) def open_and_write(path: str, content: str) -> None: with open(path, 'w', encoding='UTF-8') as file: file.write(content) def check_and_fix_path(path: str) -> Union[str, bool]: path_copy: str = path if platform == 'linux' or platform == 'linux2': if bool(match(r'[~](\/\w+)+', path)): path: str = path[1:] path: str = getenv('HOME') + path elif bool(match(r'home\/\w+\/', path)): if path[0] != '/': path: str = '/' + path if path.find(getenv('HOME'), 0) != 0: return False if Path(path).exists(): return path return path_copy def open_vscode(path: str) -> None: options: tuple[str] = ( 'Nothing', 'Close terminal and open it in VSCode', 'Open VSCode' ) answer: dict\ = prompt([List(name='action', message="What do you want to do with the project?", choices=options)]) if answer['action'] == options[1]: system(f'code {path}') kill(getppid(), SIGHUP) elif answer['action'] == options[2]: system(f'code {path}') def check_and_put_singlequotes(value: str) -> str: if value is not None: if value.find('\'') != -1: value: str = value.replace('\'', '\'\'') return value def reload_tasker_process() -> None: pid: int = int(user_config('processes', 'tasker')) for proc in process_iter(): if proc.pid == pid: proc.kill() try: user_config( section='processes', option='tasker', element='%d' % Popen(['/usr/sbin/vert/tasker']).pid, write=True ) return except Exception as error: print_fatal(error) print_warning('Tasker process was not found') raise Abort() def run_tasker_process() -> None: pid: int = int(user_config('processes', 'tasker')) for proc in process_iter(): if proc.pid == pid: print_warning('Is already running, make more process would target your performance') raise Abort() try: user_config( section='processes', option='tasker', element='%d' % Popen(['/usr/sbin/vert/tasker']).pid, write=True ) return except Exception as error: print_fatal(error) def kill_tasker_process() -> None: pid: int = int(user_config('processes', 'tasker')) for proc in process_iter(): if proc.pid == pid: proc.kill() return print_warning('Tasker process was not found') raise Abort() def html_title_extractor(url: str) -> Union[str, bool]: try: soup = BeautifulSoup(urlopen(url), features='html5lib') return soup.title.get_text() except Exception as _: return False def user_config(section: str, option: str, element: Optional[str] = None, write: Optional[bool] = False) -> Union[str, None]: config: object = ConfigParser() appdir: object = AppDirs() appdir.appname = 'vert' ini_file: str = '%s/config.ini' % (appdir.user_config_dir) if Path(appdir.user_config_dir).exists() and Path(ini_file).exists(): config.read(ini_file) if not write: return config[section][option] if section not in config.sections(): config.add_section(section) if element and option: config.set(section, option, element) with open(ini_file, 'w', encoding='UTF-8') as file: config.write(file) else: if not Path(appdir.user_config_dir).exists(): Path(appdir.user_config_dir).mkdir() Path(ini_file).touch() config.read(appdir.user_config_dir) config.add_section('database') config.set('database', 'dsn', 'dbname=<> user=<> password=<> host=<> port=<>') config.add_section('path') config.set('path', 'workspace', '/home/user/path/to/workspace') with open(ini_file, 'w', encoding='UTF-8') as file: config.write(file) config(section, option, element, write) def date_format(dt: Union[datetime, str]) -> str: if type(dt) is str: return datetime.strptime(dt, '%Y-%m-%d %H:%M:%S.%f').strftime('%B %m, %Y') return dt.strftime('%B %m, %Y') def time_format(dt: Union[datetime, str]) -> str: if type(dt) is str: return datetime.strptime(dt, '%Y-%m-%d %H:%M:%S.%f').strftime('%H:%M') return dt.strftime('%H:%M') if __name__ == '__main__': pass
python
import stanza from stanza.protobuf import DependencyEnhancerRequest, Document, Language from stanza.server.java_protobuf_requests import send_request, add_sentence, JavaProtobufContext ENHANCER_JAVA = "edu.stanford.nlp.trees.ud.ProcessUniversalEnhancerRequest" def build_enhancer_request(doc, language, pronouns_pattern): if bool(language) == bool(pronouns_pattern): raise ValueError("Should set exactly one of language and pronouns_pattern") request = DependencyEnhancerRequest() if pronouns_pattern: request.setRelativePronouns(pronouns_pattern) elif language.lower() in ("en", "english"): request.language = Language.UniversalEnglish elif language.lower() in ("zh", "zh-hans", "chinese"): request.language = Language.UniversalChinese else: raise ValueError("Sorry, but language " + language + " is not supported yet. Either set a pronouns pattern or file an issue at https://stanfordnlp.github.io/stanza suggesting a mechanism for converting this language") request_doc = request.document request_doc.text = doc.text num_tokens = 0 for sent_idx, sentence in enumerate(doc.sentences): request_sentence = add_sentence(request_doc.sentence, sentence, num_tokens) num_tokens = num_tokens + sum(len(token.words) for token in sentence.tokens) graph = request_sentence.basicDependencies nodes = [] word_index = 0 for token in sentence.tokens: for word in token.words: # TODO: refactor with the bit in java_protobuf_requests word_index = word_index + 1 node = graph.node.add() node.sentenceIndex = sent_idx node.index = word_index if word.head != 0: edge = graph.edge.add() edge.source = word.head edge.target = word_index edge.dep = word.deprel return request def process_doc(doc, language=None, pronouns_pattern=None): request = build_enhancer_request(doc, language, pronouns_pattern) return send_request(request, Document, ENHANCER_JAVA, "$CLASSPATH") class UniversalEnhancer(JavaProtobufContext): """ UniversalEnhancer context window This is a context window which keeps a process open. Should allow for multiple requests without launching new java processes each time. """ def __init__(self, language=None, pronouns_pattern=None, classpath=None): super(UniversalEnhancer, self).__init__(classpath, Document, ENHANCER_JAVA) if bool(language) == bool(pronouns_pattern): raise ValueError("Should set exactly one of language and pronouns_pattern") self.language = language self.pronouns_pattern = pronouns_pattern def process(self, doc): request = build_enhancer_request(doc, self.language, self.pronouns_pattern) return self.process_request(request) def main(): nlp = stanza.Pipeline('en', processors='tokenize,pos,lemma,depparse') with UniversalEnhancer(language="en") as enhancer: doc = nlp("This is the car that I bought") result = enhancer.process(doc) print(result.sentence[0].enhancedDependencies) if __name__ == '__main__': main()
python
from .pygbe import *
python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = ['ServiceEndpointPolicyDefinitionInitArgs', 'ServiceEndpointPolicyDefinition'] @pulumi.input_type class ServiceEndpointPolicyDefinitionInitArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], service_endpoint_policy_name: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, service: Optional[pulumi.Input[str]] = None, service_endpoint_policy_definition_name: Optional[pulumi.Input[str]] = None, service_resources: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None): """ The set of arguments for constructing a ServiceEndpointPolicyDefinition resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] service_endpoint_policy_name: The name of the service endpoint policy. :param pulumi.Input[str] description: A description for this rule. Restricted to 140 chars. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param pulumi.Input[str] service: Service endpoint name. :param pulumi.Input[str] service_endpoint_policy_definition_name: The name of the service endpoint policy definition name. :param pulumi.Input[Sequence[pulumi.Input[str]]] service_resources: A list of service resources. """ pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "service_endpoint_policy_name", service_endpoint_policy_name) if description is not None: pulumi.set(__self__, "description", description) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if service is not None: pulumi.set(__self__, "service", service) if service_endpoint_policy_definition_name is not None: pulumi.set(__self__, "service_endpoint_policy_definition_name", service_endpoint_policy_definition_name) if service_resources is not None: pulumi.set(__self__, "service_resources", service_resources) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="serviceEndpointPolicyName") def service_endpoint_policy_name(self) -> pulumi.Input[str]: """ The name of the service endpoint policy. """ return pulumi.get(self, "service_endpoint_policy_name") @service_endpoint_policy_name.setter def service_endpoint_policy_name(self, value: pulumi.Input[str]): pulumi.set(self, "service_endpoint_policy_name", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A description for this rule. Restricted to 140 chars. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ Resource ID. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def service(self) -> Optional[pulumi.Input[str]]: """ Service endpoint name. """ return pulumi.get(self, "service") @service.setter def service(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "service", value) @property @pulumi.getter(name="serviceEndpointPolicyDefinitionName") def service_endpoint_policy_definition_name(self) -> Optional[pulumi.Input[str]]: """ The name of the service endpoint policy definition name. """ return pulumi.get(self, "service_endpoint_policy_definition_name") @service_endpoint_policy_definition_name.setter def service_endpoint_policy_definition_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "service_endpoint_policy_definition_name", value) @property @pulumi.getter(name="serviceResources") def service_resources(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ A list of service resources. """ return pulumi.get(self, "service_resources") @service_resources.setter def service_resources(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "service_resources", value) class ServiceEndpointPolicyDefinition(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, service: Optional[pulumi.Input[str]] = None, service_endpoint_policy_definition_name: Optional[pulumi.Input[str]] = None, service_endpoint_policy_name: Optional[pulumi.Input[str]] = None, service_resources: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, __props__=None): """ Service Endpoint policy definitions. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: A description for this rule. Restricted to 140 chars. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] service: Service endpoint name. :param pulumi.Input[str] service_endpoint_policy_definition_name: The name of the service endpoint policy definition name. :param pulumi.Input[str] service_endpoint_policy_name: The name of the service endpoint policy. :param pulumi.Input[Sequence[pulumi.Input[str]]] service_resources: A list of service resources. """ ... @overload def __init__(__self__, resource_name: str, args: ServiceEndpointPolicyDefinitionInitArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Service Endpoint policy definitions. :param str resource_name: The name of the resource. :param ServiceEndpointPolicyDefinitionInitArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ServiceEndpointPolicyDefinitionInitArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, service: Optional[pulumi.Input[str]] = None, service_endpoint_policy_definition_name: Optional[pulumi.Input[str]] = None, service_endpoint_policy_name: Optional[pulumi.Input[str]] = None, service_resources: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = ServiceEndpointPolicyDefinitionInitArgs.__new__(ServiceEndpointPolicyDefinitionInitArgs) __props__.__dict__["description"] = description __props__.__dict__["id"] = id __props__.__dict__["name"] = name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["service"] = service __props__.__dict__["service_endpoint_policy_definition_name"] = service_endpoint_policy_definition_name if service_endpoint_policy_name is None and not opts.urn: raise TypeError("Missing required property 'service_endpoint_policy_name'") __props__.__dict__["service_endpoint_policy_name"] = service_endpoint_policy_name __props__.__dict__["service_resources"] = service_resources __props__.__dict__["etag"] = None __props__.__dict__["provisioning_state"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network/v20200501:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20180701:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20180701:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20180801:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20180801:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20181001:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20181001:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20181101:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20181101:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20181201:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20181201:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20190201:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20190201:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20190401:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20190401:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20190601:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20190601:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20190701:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20190701:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20190801:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20190801:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20190901:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20190901:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20191101:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20191101:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20191201:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20191201:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20200301:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20200301:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20200401:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20200401:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20200601:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20200601:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20200701:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20200701:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20200801:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20200801:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20201101:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20201101:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20210201:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20210201:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-native:network/v20210301:ServiceEndpointPolicyDefinition"), pulumi.Alias(type_="azure-nextgen:network/v20210301:ServiceEndpointPolicyDefinition")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(ServiceEndpointPolicyDefinition, __self__).__init__( 'azure-native:network/v20200501:ServiceEndpointPolicyDefinition', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'ServiceEndpointPolicyDefinition': """ Get an existing ServiceEndpointPolicyDefinition resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = ServiceEndpointPolicyDefinitionInitArgs.__new__(ServiceEndpointPolicyDefinitionInitArgs) __props__.__dict__["description"] = None __props__.__dict__["etag"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["service"] = None __props__.__dict__["service_resources"] = None return ServiceEndpointPolicyDefinition(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ A description for this rule. Restricted to 140 chars. """ return pulumi.get(self, "description") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def name(self) -> pulumi.Output[Optional[str]]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the service endpoint policy definition resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def service(self) -> pulumi.Output[Optional[str]]: """ Service endpoint name. """ return pulumi.get(self, "service") @property @pulumi.getter(name="serviceResources") def service_resources(self) -> pulumi.Output[Optional[Sequence[str]]]: """ A list of service resources. """ return pulumi.get(self, "service_resources")
python
import carla from leaderboard.envs.map_utils import * def viz(args): client = carla.Client('localhost', 2000) client.set_timeout(10.0) world = client.load_world(args.town_name) carla_map = world.get_map() spawn_points = carla_map.get_spawn_points() blueprint_library = world.get_blueprint_library() vehicle_bp = random.choice(blueprint_library.filter('vehicle.lincoln.mkz2017')) vehicle_bp.set_attribute('role_name', 'hero') start_pose = random.choice(spawn_points) player = world.spawn_actor(vehicle_bp, start_pose) player.set_autopilot(False) # Setup pygame os.environ["SDL_VIDEODRIVER"] = "dummy" pygame.init() display = pygame.display.set_mode((320, 320),0,32) pygame.display.flip() # Set map drawer module input_module = ModuleInput(MODULE_INPUT) hud_module = ModuleHUD(MODULE_HUD, 320, 320) world_module = ModuleWorld(MODULE_WORLD, client, world, carla_map, player) # Register Modules module_manager.register_module(world_module) module_manager.register_module(hud_module) module_manager.register_module(input_module) module_manager.start_modules() # Get map surface map_surface = world_module.map_image.big_map_surface map_image = np.swapaxes(pygame.surfarray.array3d(map_surface),0,1) print (map_image.shape) import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from matplotlib.patches import Circle f, ax = plt.subplots(1,1,figsize=(20,15)) ax.imshow(map_image) for i,spawn_point in enumerate(spawn_points): pixel_x, pixel_y = world_module.map_image.world_to_pixel(spawn_point.location) circle = Circle((pixel_x,pixel_y),5,color='red') ax.add_patch(circle) ax.text(pixel_x,pixel_y,'%d'%i,fontsize=10,color='blue') plt.savefig('%s.png'%args.town_name) print('%s.png'%args.town_name) player.destroy() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--town-name', default='Town01') args = parser.parse_args() viz(args)
python
import os import os.path as path import shutil import unittest from cache import Cache, format_as_timestamp from pathlib import Path from datetime import datetime, timedelta test_folder = 'test-files' db_file_name = path.join(test_folder, 'test.db') table_name = 'cache' folder_path = path.join(test_folder, 'cache-files') def createTestFile(): new_file_name = 'test-file.txt' new_file_path = path.join(test_folder, new_file_name) open(new_file_path, 'w').close() return [new_file_name, new_file_path] class Test(unittest.TestCase): def createCache(self): self.cache = Cache(db_file_name, table_name, folder_path) return self.cache def setUp(self): if path.exists(test_folder): shutil.rmtree(test_folder) Path(test_folder).mkdir(parents=True, exist_ok=True) def test_initializes_db(self): with self.createCache() as cache: c = cache.connection.cursor() c.execute("SELECT name FROM sqlite_master WHERE type='table' AND name=?", (cache.table_name,)) name = c.fetchone()[0] c.close() self.assertEqual(table_name, name) def test_initializes_folder(self): with self.createCache() as cache: exists = os.path.exists(folder_path) self.assertTrue(exists) def test_file_name_exists(self): with self.createCache() as cache: open(path.join(folder_path, 'test-file.txt'), 'w').close() self.assertTrue(cache.file_name_exists('test-file.txt')) self.assertFalse(cache.file_name_exists('not-a-test-file.txt')) def test_add_file(self): with self.createCache() as cache: [new_file_name, new_file_path] = createTestFile() cache.add_file('1234', new_file_path, new_file_name, copy_file=False) c = cache.connection.cursor() rows = c.execute('select * from cache').fetchall() c.close() self.assertEqual(1, len(rows)) self.assertEqual('1234', rows[0][0]) self.assertEqual(new_file_name, rows[0][1]) self.assertFalse(path.exists(new_file_path)) self.assertTrue(path.exists(path.join(cache.folder_path, new_file_name))) def test_add_file_copy(self): with self.createCache() as cache: [new_file_name, new_file_path] = createTestFile() cache.add_file('1234', new_file_path, new_file_name, copy_file=True) self.assertTrue(path.exists(new_file_path)) self.assertTrue(path.exists(path.join(cache.folder_path, new_file_name))) def test_add_file_existing_names(self): with self.createCache() as cache: [new_file_name, new_file_path] = createTestFile() cache.add_file('1', new_file_path, new_file_name, copy_file=True) cache.add_file('2', new_file_path, new_file_name, copy_file=True) cache.add_file('3', new_file_path, new_file_name, copy_file=True) c = cache.connection.cursor() rows = c.execute('select * from cache').fetchall() c.close() names = [x[1] for x in rows] self.assertListEqual( ['test-file.txt', 'test-file (2).txt', 'test-file (3).txt'], names ) for name in names: self.assertTrue(path.exists(path.join(folder_path, name))) def test_add_file_existing_key(self): with self.createCache() as cache: [new_file_name, new_file_path] = createTestFile() cache.add_file('1', new_file_path, new_file_name, copy_file=True) try: cache.add_file('1', new_file_path, new_file_name, copy_file=True) self.fail() except Exception: pass def test_get_file_path(self): with self.createCache() as cache: [new_file_name, new_file_path] = createTestFile() cache.add_file('1234', new_file_path, new_file_name, copy_file=False) file_path = cache.get_file_path('1234') self.assertEqual(file_path, path.join(folder_path, new_file_name)) def test_delete_file(self): with self.createCache() as cache: [new_file_name, new_file_path] = createTestFile() path1 = cache.add_file('1', new_file_path, new_file_name, copy_file=True) path2 = cache.add_file('2', new_file_path, new_file_name, copy_file=True) path3 = cache.add_file('3', new_file_path, new_file_name, copy_file=True) errors = cache.delete_file('2') self.assertEqual(0, len(errors)) self.assertTrue(path.exists(path1)) self.assertFalse(path.exists(path2)) self.assertTrue(path.exists(path3)) c = cache.connection.cursor() rows = c.execute('select * from cache').fetchall() self.assertEqual(2, len(rows)) self.assertListEqual(['1', '3'], [row[0] for row in rows]) c.close() def test_clear(self): with self.createCache() as cache: [new_file_name, new_file_path] = createTestFile() cache.add_file('1', new_file_path, new_file_name, copy_file=True) cache.add_file('2', new_file_path, new_file_name, copy_file=True) cache.add_file('3', new_file_path, new_file_name, copy_file=True) # Delete one of the files to provoke error os.remove(path.join(folder_path, new_file_name)) errors = cache.clear() self.assertEqual(1, len(errors)) self.assertEqual('1', errors[0][0]) c = cache.connection.cursor() rows = c.execute('select * from cache').fetchall() self.assertEqual(1, len(rows)) self.assertEqual('1', rows[0][0]) c.close() def test_delete_older_than(self): with self.createCache() as cache: [new_file_name, new_file_path] = createTestFile() cache.add_file('1', new_file_path, new_file_name, copy_file=True) cache.add_file('2', new_file_path, new_file_name, copy_file=True) cache.add_file('3', new_file_path, new_file_name, copy_file=True) # Manipulate times c = cache.connection.cursor() def update_minus_days(key, days): dt = (datetime.now() - timedelta(days=days)).astimezone() new_dt = format_as_timestamp(dt) c.execute("update cache set timestamp = ? where key = ?", (new_dt, key)) update_minus_days('1', 31) # should delete update_minus_days('2', 29) # should not delete cache.connection.commit() cache.delete_older_than(timedelta(days=30)) rows = c.execute('select * from cache').fetchall() self.assertEqual(2, len(rows)) c.close() if __name__ == '__main__': unittest.main()
python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.db.models.deletion from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('api', '0105_card_promo_link'), ] operations = [ migrations.CreateModel( name='ModerationReport', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('creation', models.DateTimeField(auto_now_add=True)), ('status', models.PositiveIntegerField(default=1, choices=[(0, 'Rejected'), (1, 'Pending'), (2, 'In Progress'), (3, 'Accepted')])), ('comment', models.TextField(help_text='If your report is accepted, the account will be marked as fake and will never appear in leaderboards. Provide proofs below.', null=True, verbose_name='Comment', blank=True)), ('moderation_comment', models.TextField(null=True, verbose_name='Comment', blank=True)), ('fake_account', models.ForeignKey(related_name='moderationreport', to='api.Account')), ('fake_eventparticipation', models.ForeignKey(related_name='moderationreport', to='api.EventParticipation')), ('images', models.ManyToManyField(related_name='report', to='api.UserImage')), ('moderated_by', models.ForeignKey(related_name='moderation_done', on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, null=True)), ('reported_by', models.ForeignKey(related_name='reports_sent', on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, null=True)), ], options={ }, bases=(models.Model,), ), ]
python
import time import torch import numpy as np import pandas as pd import scipy from h5py import File import itertools, random from tqdm import tqdm from loguru import logger import torch.utils.data as tdata from typing import List, Dict class TrainHDF5Dataset(tdata.Dataset): """ HDF5 dataset indexed by a labels dataframe. Indexing is done via the dataframe since we want to preserve some storage in cases where oversampling is needed ( pretty likely ) """ def __init__(self, h5filedict: Dict, h5labeldict: Dict, label_type='soft', transform=None): super(TrainHDF5Dataset, self).__init__() self._h5filedict = h5filedict self._h5labeldict = h5labeldict self._datasetcache = {} self._labelcache = {} self._len = len(self._h5labeldict) # IF none is passed still use no transform at all self._transform = transform assert label_type in ('soft', 'hard', 'softhard', 'hardnoise') self._label_type = label_type self.idx_to_item = { idx: item for idx, item in enumerate(self._h5labeldict.keys()) } first_item = next(iter(self._h5filedict.keys())) with File(self._h5filedict[first_item], 'r') as store: self.datadim = store[first_item].shape[-1] def __len__(self): return self._len def __del__(self): for k, cache in self._datasetcache.items(): cache.close() for k, cache in self._labelcache.items(): cache.close() def __getitem__(self, index: int): fname: str = self.idx_to_item[index] h5file: str = self._h5filedict[fname] labelh5file: str = self._h5labeldict[fname] if not h5file in self._datasetcache: self._datasetcache[h5file] = File(h5file, 'r') if not labelh5file in self._labelcache: self._labelcache[labelh5file] = File(labelh5file, 'r') data = self._datasetcache[h5file][f"{fname}"][()] speech_target = self._labelcache[labelh5file][f"{fname}/speech"][()] noise_target = self._labelcache[labelh5file][f"{fname}/noise"][()] speech_clip_target = self._labelcache[labelh5file][ f"{fname}/clipspeech"][()] noise_clip_target = self._labelcache[labelh5file][ f"{fname}/clipnoise"][()] noise_clip_target = np.max(noise_clip_target) # take max around axis if self._label_type == 'hard': noise_clip_target = noise_clip_target.round() speech_target = speech_target.round() noise_target = noise_target.round() speech_clip_target = speech_clip_target.round() elif self._label_type == 'hardnoise': # only noise yay noise_clip_target = noise_clip_target.round() noise_target = noise_target.round() elif self._label_type == 'softhard': r = np.random.permutation(noise_target.shape[0] // 4) speech_target[r] = speech_target[r].round() target_clip = torch.tensor((noise_clip_target, speech_clip_target)) data = torch.as_tensor(data).float() target_time = torch.as_tensor( np.stack((noise_target, speech_target), axis=-1)).float() if self._transform: data = self._transform(data) return data, target_time, target_clip, fname class HDF5Dataset(tdata.Dataset): """ HDF5 dataset indexed by a labels dataframe. Indexing is done via the dataframe since we want to preserve some storage in cases where oversampling is needed ( pretty likely ) """ def __init__(self, h5file: File, h5label: File, fnames, transform=None): super(HDF5Dataset, self).__init__() self._h5file = h5file self._h5label = h5label self.fnames = fnames self.dataset = None self.label_dataset = None self._len = len(fnames) # IF none is passed still use no transform at all self._transform = transform with File(self._h5file, 'r') as store, File(self._h5label, 'r') as labelstore: self.datadim = store[self.fnames[0]].shape[-1] def __len__(self): return self._len def __getitem__(self, index): if self.dataset is None: self.dataset = File(self._h5file, 'r') self.label_dataset = File(self._h5label, 'r') fname = self.fnames[index] data = self.dataset[fname][()] speech_target = self.label_dataset[f"{fname}/speech"][()] noise_target = self.label_dataset[f"{fname}/noise"][()] speech_clip_target = self.label_dataset[f"{fname}/clipspeech"][()] noise_clip_target = self.label_dataset[f"{fname}/clipnoise"][()] noise_clip_target = np.max(noise_clip_target) # take max around axis target_clip = torch.tensor((noise_clip_target, speech_clip_target)) data = torch.as_tensor(data).float() target_time = torch.as_tensor( np.stack((noise_target, speech_target), axis=-1)).float() if self._transform: data = self._transform(data) return data, target_time, target_clip, fname class EvalH5Dataset(tdata.Dataset): """ HDF5 dataset indexed by a labels dataframe. Indexing is done via the dataframe since we want to preserve some storage in cases where oversampling is needed ( pretty likely ) """ def __init__(self, h5file: File, fnames=None): super(EvalH5Dataset, self).__init__() self._h5file = h5file self._dataset = None # IF none is passed still use no transform at all with File(self._h5file, 'r') as store: if fnames is None: self.fnames = list(store.keys()) else: self.fnames = fnames self.datadim = store[self.fnames[0]].shape[-1] self._len = len(store) def __len__(self): return self._len def __getitem__(self, index): if self._dataset is None: self._dataset = File(self._h5file, 'r') fname = self.fnames[index] data = self._dataset[fname][()] data = torch.as_tensor(data).float() return data, fname class MinimumOccupancySampler(tdata.Sampler): """ docstring for MinimumOccupancySampler samples at least one instance from each class sequentially """ def __init__(self, labels, sampling_mode='same', random_state=None): self.labels = labels data_samples, n_labels = labels.shape label_to_idx_list, label_to_length = [], [] self.random_state = np.random.RandomState(seed=random_state) for lb_idx in range(n_labels): label_selection = labels[:, lb_idx] if scipy.sparse.issparse(label_selection): label_selection = label_selection.toarray() label_indexes = np.where(label_selection == 1)[0] self.random_state.shuffle(label_indexes) label_to_length.append(len(label_indexes)) label_to_idx_list.append(label_indexes) self.longest_seq = max(label_to_length) self.data_source = np.empty((self.longest_seq, len(label_to_length)), dtype=np.uint32) # Each column represents one "single instance per class" data piece for ix, leng in enumerate(label_to_length): # Fill first only "real" samples self.data_source[:leng, ix] = label_to_idx_list[ix] self.label_to_idx_list = label_to_idx_list self.label_to_length = label_to_length if sampling_mode == 'same': self.data_length = data_samples elif sampling_mode == 'over': # Sample all items self.data_length = np.prod(self.data_source.shape) def _reshuffle(self): # Reshuffle for ix, leng in enumerate(self.label_to_length): leftover = self.longest_seq - leng random_idxs = np.random.randint(leng, size=leftover) self.data_source[leng:, ix] = self.label_to_idx_list[ix][random_idxs] def __iter__(self): # Before each epoch, reshuffle random indicies self._reshuffle() n_samples = len(self.data_source) random_indices = self.random_state.permutation(n_samples) data = np.concatenate( self.data_source[random_indices])[:self.data_length] return iter(data) def __len__(self): return self.data_length class MultiBalancedSampler(tdata.sampler.Sampler): """docstring for BalancedSampler Samples for Multi-label training Sampling is not totally equal, but aims to be roughtly equal """ def __init__(self, Y, replacement=False, num_samples=None): assert Y.ndim == 2, "Y needs to be one hot encoded" if scipy.sparse.issparse(Y): raise ValueError("Not supporting sparse amtrices yet") class_counts = np.sum(Y, axis=0) class_weights = 1. / class_counts class_weights = class_weights / class_weights.sum() classes = np.arange(Y[0].shape[0]) # Revert from many_hot to one class_ids = [tuple(classes.compress(idx)) for idx in Y] sample_weights = [] for i in range(len(Y)): # Multiple classes were chosen, calculate average probability weight = class_weights[np.array(class_ids[i])] # Take the mean of the multiple classes and set as weight weight = np.mean(weight) sample_weights.append(weight) self._weights = torch.as_tensor(sample_weights, dtype=torch.float) self._len = num_samples if num_samples else len(Y) self._replacement = replacement def __len__(self): return self._len def __iter__(self): return iter( torch.multinomial(self._weights, self._len, self._replacement).tolist()) def gettraindataloader(h5files, h5labels, label_type=False, transform=None, **dataloader_kwargs): dset = TrainHDF5Dataset(h5files, h5labels, label_type=label_type, transform=transform) return tdata.DataLoader(dset, collate_fn=sequential_collate, **dataloader_kwargs) def getdataloader(h5file, h5label, fnames, transform=None, **dataloader_kwargs): dset = HDF5Dataset(h5file, h5label, fnames, transform=transform) return tdata.DataLoader(dset, collate_fn=sequential_collate, **dataloader_kwargs) def pad(tensorlist, padding_value=0.): lengths = [len(f) for f in tensorlist] max_len = np.max(lengths) # max_len = 2000 batch_dim = len(lengths) data_dim = tensorlist[0].shape[-1] out_tensor = torch.full((batch_dim, max_len, data_dim), fill_value=padding_value, dtype=torch.float32) for i, tensor in enumerate(tensorlist): length = tensor.shape[0] out_tensor[i, :length, ...] = tensor[:length, ...] return out_tensor, torch.tensor(lengths) def sequential_collate(batches): # sort length wise data, targets_time, targets_clip, fnames = zip(*batches) data, lengths_data = pad(data) targets_time, lengths_tar = pad(targets_time, padding_value=0) targets_clip = torch.stack(targets_clip) assert lengths_data.shape == lengths_tar.shape return data, targets_time, targets_clip, fnames, lengths_tar if __name__ == '__main__': import utils label_df = pd.read_csv( 'data/csv_labels/unbalanced_from_unbalanced/unbalanced.csv', sep='\s+') data_df = pd.read_csv("data/data_csv/unbalanced.csv", sep='\s+') merged = data_df.merge(label_df, on='filename') common_idxs = merged['filename'] data_df = data_df[data_df['filename'].isin(common_idxs)] label_df = label_df[label_df['filename'].isin(common_idxs)] label = utils.df_to_dict(label_df) data = utils.df_to_dict(data_df) trainloader = gettraindataloader( h5files=data, h5labels=label, transform=None, label_type='soft', batch_size=64, num_workers=3, shuffle=False, ) with tqdm(total=len(trainloader)) as pbar: for batch in trainloader: inputs, targets_time, targets_clip, filenames, lengths = batch pbar.set_postfix(inp=inputs.shape) pbar.update()
python
import utils.train as train class DataSet: def __init__(self, config, problem): self.config = config self. problem = problem self.update() def update(self): if not self.config.test: y_, x_, y_val_, x_val_ = ( train.setup_input_sc( self.config.test, self.problem, self.config.tbs, self.config.vbs, self.config.fixval, self.config.supp_prob, self.config.SNR, self.config.magdist, **self.config.distargs)) self.x_ = x_ self.y_ = y_ self.x_val_ = x_val_ self.y_val_ = y_val_ else: y_, x_ = ( train.setup_input_sc( self.config.test, self.problem, self.config.tbs, self.config.vbs, self.config.fixval, self.config.supp_prob, self.config.SNR, self.config.magdist, **self.config.distargs)) self.x_ = x_ self.y_ = y_
python
import json from pathlib import Path from typing import Dict import pandas as pd import sha_calc as sha_calc from gmhazard_calc.im import IM from gmhazard_calc import gm_data class BranchUniGCIM(sha_calc.UniIMiDist, sha_calc.CondIMjDist): """Represents the GCIM for a specific IMi and branch Parameters: ----------- See Attributes Attributes: ----------- IMi: IM IM Object of the IMi IMj: IM Conditioning IM im_j: float Value of the conditioning IM branch: Branch lnIMi_IMj_Rup: Uni_lnIMi_IMj_Rup Conditional lnIMi|IMj,Rup distributions lnIMi_IMj: Uni_lnIMi_IMj Marginal lnIMi|IMj distribution """ VARIABLES_FN = "variables.json" LNIMI_IMJ_RUP_MU_FN = "lnIMi_IMj_rup_mu_fn.csv" LNIMI_IMJ_RUP_SIGMA_FN = "lnIMi_IMj_rup_sigma_fn.csv" LNIMI_IMJ_CDF_FN = "lnIMi_IMj_fn.csv" def __init__( self, IMi: IM, IMj: IM, im_j: float, branch: gm_data.Branch, lnIMi_IMj_Rup: sha_calc.Uni_lnIMi_IMj_Rup, lnIMi_IMj: sha_calc.Uni_lnIMi_IMj, ): sha_calc.UniIMiDist.__init__(self, IMi) sha_calc.CondIMjDist.__init__(self, IMj, im_j) self.branch = branch self.lnIMi_IMj_Rup = lnIMi_IMj_Rup self.lnIMi_IMj = lnIMi_IMj def save(self, base_dir: Path): save_dir = base_dir / self.branch.name save_dir.mkdir(exist_ok=False) with open(save_dir / self.VARIABLES_FN, "w") as f: json.dump( dict( IMi=str(self.IMi), IMj=str(self.IMj), im_j=self.im_j, branch_name=self.branch.name, ), f, ) self.lnIMi_IMj_Rup.mu.to_csv(save_dir / self.LNIMI_IMJ_RUP_MU_FN) self.lnIMi_IMj_Rup.sigma.to_csv(save_dir / self.LNIMI_IMJ_RUP_SIGMA_FN) self.lnIMi_IMj.cdf.to_csv(save_dir / self.LNIMI_IMJ_CDF_FN) @classmethod def load(cls, data_dir: Path, branch: gm_data.Branch): with open(data_dir / f"{cls.VARIABLES_FN}", "r") as f: variables_dict = json.load(f) assert branch.name == variables_dict["branch_name"] IMi = IM.from_str(variables_dict["IMi"]) IMj, im_j = IM.from_str(variables_dict["IMj"]), variables_dict["im_j"] lnIMi_IMj_Rup = sha_calc.Uni_lnIMi_IMj_Rup( pd.read_csv(data_dir / cls.LNIMI_IMJ_RUP_MU_FN, index_col=0).squeeze(), pd.read_csv(data_dir / cls.LNIMI_IMJ_RUP_SIGMA_FN, index_col=0).squeeze(), IMi, IMj, im_j, ) lnIMi_IMj = sha_calc.Uni_lnIMi_IMj( pd.read_csv(data_dir / cls.LNIMI_IMJ_CDF_FN, index_col=0).squeeze(), IMi, IMj, im_j, ) return cls(IMi, IMj, im_j, branch, lnIMi_IMj_Rup, lnIMi_IMj) class IMEnsembleUniGCIM(sha_calc.UniIMiDist, sha_calc.CondIMjDist): """Represents the GCIM for a specific IMi and IMEnsemble Parameters: ----------- See Attributes Attributes: ----------- im_ensemble: IMEnsemble IMi: IM IM Object of the IMi IMj: IM Conditioning IM im_j: float Value of the conditioning IM branch_uni_gcims: dictionary Dictionary of the branch GCIM's that make up this combined GCIM """ VARIABLES_FN = "variables.json" LNIMI_IMJ_CDF_FN = "lnIMi_IMj_cdf.csv" def __init__( self, im_ensemble: gm_data.IMEnsemble, IMi: IM, IMj: IM, im_j: float, ln_IMi_IMj: sha_calc.Uni_lnIMi_IMj, branch_uni_gcims: Dict[str, BranchUniGCIM], ): sha_calc.UniIMiDist.__init__(self, IMi) sha_calc.CondIMjDist.__init__(self, IMj, im_j) self.lnIMi_IMj = ln_IMi_IMj self.im_ensemble = im_ensemble self.branch_uni_gcims = branch_uni_gcims def save(self, base_dir: Path): save_dir = base_dir / f"{self.IMi}" save_dir.mkdir(exist_ok=False) with open(save_dir / self.VARIABLES_FN, "w") as f: json.dump(dict(IMi=str(self.IMi), IMj=str(self.IMj), im_j=self.im_j), f) self.lnIMi_IMj.cdf.to_csv(save_dir / self.LNIMI_IMJ_CDF_FN) for cur_branch_name, branch_gcim in self.branch_uni_gcims.items(): branch_gcim.save(save_dir) @classmethod def load(cls, data_dir: Path, im_ensemble: gm_data.IMEnsemble): with open(data_dir / cls.VARIABLES_FN, "r") as f: variables_dict = json.load(f) IMi = IM.from_str(variables_dict["IMi"]) IMj, im_j = IM.from_str(variables_dict["IMj"]), variables_dict["im_j"] sha_calc.Uni_lnIMi_IMj( pd.read_csv(data_dir / cls.LNIMI_IMJ_CDF_FN, index_col=0).squeeze(), IMi, IMj, im_j, ) return cls( im_ensemble, IMi, IMj, im_j, sha_calc.Uni_lnIMi_IMj( pd.read_csv(data_dir / cls.LNIMI_IMJ_CDF_FN, index_col=0).squeeze(), IMi, IMj, im_j, ), { cur_branch_name: BranchUniGCIM.load( data_dir / cur_branch_name, cur_branch ) for cur_branch_name, cur_branch in im_ensemble.branches_dict.items() }, )
python
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from google.ads.google_ads.v4.proto.resources import campaign_bid_modifier_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_resources_dot_campaign__bid__modifier__pb2 from google.ads.google_ads.v4.proto.services import campaign_bid_modifier_service_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2 class CampaignBidModifierServiceStub(object): """Proto file describing the Campaign Bid Modifier service. Service to manage campaign bid modifiers. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetCampaignBidModifier = channel.unary_unary( '/google.ads.googleads.v4.services.CampaignBidModifierService/GetCampaignBidModifier', request_serializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2.GetCampaignBidModifierRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_resources_dot_campaign__bid__modifier__pb2.CampaignBidModifier.FromString, ) self.MutateCampaignBidModifiers = channel.unary_unary( '/google.ads.googleads.v4.services.CampaignBidModifierService/MutateCampaignBidModifiers', request_serializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2.MutateCampaignBidModifiersRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2.MutateCampaignBidModifiersResponse.FromString, ) class CampaignBidModifierServiceServicer(object): """Proto file describing the Campaign Bid Modifier service. Service to manage campaign bid modifiers. """ def GetCampaignBidModifier(self, request, context): """Returns the requested campaign bid modifier in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MutateCampaignBidModifiers(self, request, context): """Creates, updates, or removes campaign bid modifiers. Operation statuses are returned. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_CampaignBidModifierServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetCampaignBidModifier': grpc.unary_unary_rpc_method_handler( servicer.GetCampaignBidModifier, request_deserializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2.GetCampaignBidModifierRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_resources_dot_campaign__bid__modifier__pb2.CampaignBidModifier.SerializeToString, ), 'MutateCampaignBidModifiers': grpc.unary_unary_rpc_method_handler( servicer.MutateCampaignBidModifiers, request_deserializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2.MutateCampaignBidModifiersRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2.MutateCampaignBidModifiersResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v4.services.CampaignBidModifierService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
python