content
stringlengths 0
894k
| type
stringclasses 2
values |
---|---|
from bokeh.io import output_file, show
from bokeh.models import ColumnDataSource, GMapOptions
from bokeh.plotting import gmap
output_file("gmap.html")
map_options = GMapOptions(lat=30.2861, lng=-97.7394, map_type="roadmap", zoom=11)
# For GMaps to function, Google requires you obtain and enable an API key:
#
# https://developers.google.com/maps/documentation/javascript/get-api-key
#
# Replace the value below with your personal API key:
p = gmap("GOOGLE_API_KEY", map_options, title="Austin")
source = ColumnDataSource(
data=dict(lat=[ 30.29, 30.20, 30.29],
lon=[-97.70, -97.74, -97.78])
)
p.circle(x="lon", y="lat", size=15, fill_color="blue", fill_alpha=0.8, source=source)
show(p)
|
python
|
"""
Common utility functions for NPP/SNPP
"""
import os
import numpy as np
from pathlib import Path
# Country enumerations
EN = "en"
WA = "wa"
SC = "sc"
NI = "ni"
# Aggregations
EW = [EN, WA]
GB = [EN, WA, SC]
UK = [EN, WA, SC, NI]
# ONS country codes
CODES = {
EN: "E92000001",
WA: "W92000004",
SC: "S92000003",
NI: "N92000002"
}
def country(codes):
"""
Returns country from ONS LAD code or 2-letter country code (above) - simply looks at first letter, case insensitive
"""
if isinstance(codes, str):
codes = [codes]
lookup = {"E": EN, "W": WA, "S": SC, "N": NI}
# return lookup[code[0].upper()]
raw = set([code[0] in lookup and lookup[code[0]] for code in codes])
raw.discard(False)
return sorted(list(raw))
# set([code[0] in lookup and lookup[code[0]].upper() for code in codes]).discard(False))
def split_by_country(codes):
"""
Splits a single array of LAD codes into separate arrays for each country
"""
return {EN: [code for code in codes if code.startswith("E")],
WA: [code for code in codes if code.startswith("W")],
SC: [code for code in codes if code.startswith("S")],
NI: [code for code in codes if code.startswith("N")]}
def default_cache_dir():
"""
Default cache dir location, ensures the path exists (failing if it cannot create)
This *should* work on all platforms
"""
cache_dir = str(Path.home() / ".ukpopulation/cache")
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
return cache_dir
def check_and_invert(categories):
"""
Takes a list of categories to aggregrate and removes them from all possible categories,
creating a list of categories to preserve that can be used by groupby
Will thow ValueError if one of supplied categories is not one of the column names below
"""
inverted = ['C_AGE', 'GENDER', 'GEOGRAPHY_CODE', 'PROJECTED_YEAR_NAME']
# first ensure list
if isinstance(categories, str):
categories = [categories]
if "PROJECTED_YEAR_NAME" in categories:
raise ValueError("It makes no sense to aggregate data over PROJECTED_YEAR_NAME")
for cat in categories:
inverted.remove(cat)
return inverted
def filter_by_age(data, age_range):
return data[data.C_AGE.isin(age_range)]
def aggregate(detail, categories):
"""
Aggregate OBS_VALUE over categories
"""
return detail.groupby(check_and_invert(categories))["OBS_VALUE"].sum().reset_index()
def split_range(full_range, cutoff):
"""
Split a range of values into those within (<=) cutoff and those without (>)
Returns a tuple containing 2 lists (which can be empty)
"""
if np.isscalar(full_range):
full_range = [full_range]
return ([x for x in full_range if x <= cutoff], [x for x in full_range if x > cutoff])
def trim_range(input_range, minval, maxval):
"""
Removes values < minval or > maxval from input_range
If input_range is None, defaults to the inclusive range: range(minval, maxval + 1)
"""
if input_range is None:
return range(minval, maxval + 1)
if np.isscalar(input_range):
input_range = [input_range]
return [x for x in input_range if x >= minval and x <= maxval]
def read_cell_range(worksheet, topleft, bottomright):
data_rows = []
for row in worksheet[topleft:bottomright]:
data_cols = []
for cell in row:
data_cols.append(cell.value)
data_rows.append(data_cols)
return np.array(data_rows)
def integerise(series):
"""
This duplicates functionality that exists in humanleague, rather than intorducing a package dependency solely for this function
"""
sumf = sum(series)
sumi = round(sumf)
# rescale series to nearest-integer sum
series = series * sumi / sumf
# get integer and fractional parts
seriesi = np.floor(series)
seriesf = series - seriesi
# shortfall is integer sum less sum of integer values
shortfall = int(sumi - sum(seriesi))
# select the n largest fractional parts where n=shortfall
idx = np.argpartition(seriesf, -shortfall)[-shortfall:]
# increment the values at these indices
inc = np.zeros(len(series))
np.put(inc, idx, 1)
return seriesi + inc
|
python
|
from __future__ import print_function
from utensor_cgen.ir import uTensorGraph
from utensor_cgen.ir.utils import graph_check
from utensor_cgen.transformer import CMSIS_NN_Transformer
def test_cmsisnn_trnasformer(fusion_graph_tuple):
(ugraph, ugraph1) = fusion_graph_tuple
transformer = CMSIS_NN_Transformer()
test_graph = transformer.transform(ugraph1)
graph_check(test_graph)
print('cmsisnn test topo order: %s' % test_graph.topo_order)
|
python
|
import requests
import json
import execjs # 必须,需要先用pip 安装,用来执行js脚本
from urllib.parse import quote
# 用来判断是否需要打印日志
debug = True
class Py4Js:
def __init__(self):
self.ctx = execjs.compile("""
function TL(a) {
var k = "";
var b = 406644;
var b1 = 3293161072;
var jd = ".";
var $b = "+-a^+6";
var Zb = "+-3^+b+-f";
for (var e = [], f = 0, g = 0; g < a.length; g++) {
var m = a.charCodeAt(g);
128 > m ? e[f++] = m : (2048 > m ? e[f++] = m >> 6 | 192 : (55296 == (m & 64512) && g + 1 < a.length && 56320 == (a.charCodeAt(g + 1) & 64512) ? (m = 65536 + ((m & 1023) << 10) + (a.charCodeAt(++g) & 1023),
e[f++] = m >> 18 | 240,
e[f++] = m >> 12 & 63 | 128) : e[f++] = m >> 12 | 224,
e[f++] = m >> 6 & 63 | 128),
e[f++] = m & 63 | 128)
}
a = b;
for (f = 0; f < e.length; f++) a += e[f],
a = RL(a, $b);
a = RL(a, Zb);
a ^= b1 || 0;
0 > a && (a = (a & 2147483647) + 2147483648);
a %= 1E6;
return a.toString() + jd + (a ^ b)
};
function RL(a, b) {
var t = "a";
var Yb = "+";
for (var c = 0; c < b.length - 2; c += 3) {
var d = b.charAt(c + 2),
d = d >= t ? d.charCodeAt(0) - 87 : Number(d),
d = b.charAt(c + 1) == Yb ? a >>> d: a << d;
a = b.charAt(c) == Yb ? a + d & 4294967295 : a ^ d
}
return a
}
""")
def get_tk(self, text):
return self.ctx.call("TL", text)
def build_url(text, tk, tl='zh-CN'):
"""
需要用转URLEncoder
:param text:
:param tk:
:param tl:
:return:
"""
return 'https://translate.google.cn/translate_a/single?client=webapp&sl=auto&tl=' + tl + '&hl=zh-CN&dt=at&dt=bd&dt=ex&dt=ld&dt=md&dt=qca&dt=rw&dt=rm&dt=ss&dt=t&source=btn&ssel=0&tsel=0&kc=0&tk=' \
+ str(tk) + '&q=' + quote(text, encoding='utf-8')
def translate(js, text, tl='zh-CN'):
"""
tl为要翻译的语言
de:德语
ja:日语
sv:瑞典语
nl:荷兰语
ar:阿拉伯语
ko:韩语
pt:葡萄牙语
zh-CN:中文简体
zh-TW:中文繁体
"""
header = {
'authority': 'translate.google.cn',
'method': 'GET',
'path': '',
'scheme': 'https',
'accept': '*/*',
'accept-encoding': 'gzip, deflate, br',
'accept-language': 'zh-CN,zh;q=0.9,ja;q=0.8',
# 'cookie': '_ga=GA1.3.110668007.1547438795; _gid=GA1.3.791931751.1548053917; 1P_JAR=2019-1-23-1; NID=156=biJbQQ3j2gPAJVBfdgBjWHjpC5m9vPqwJ6n6gxTvY8n1eyM8LY5tkYDRsYvacEnWNtMh3ux0-lUJr439QFquSoqEIByw7al6n_yrHqhFNnb5fKyIWMewmqoOJ2fyNaZWrCwl7MA8P_qqPDM5uRIm9SAc5ybSGZijsjalN8YDkxQ',
'cookie':'_ga=GA1.3.110668007.1547438795; _gid=GA1.3.1522575542.1548327032; 1P_JAR=2019-1-24-10; NID=156=ELGmtJHel1YG9Q3RxRI4HTgAc3l1n7Y6PAxGwvecTJDJ2ScgW2p-CXdvh88XFb9dTbYEBkoayWb-2vjJbB-Rhf6auRj-M-2QRUKdZG04lt7ybh8GgffGtepoA4oPN9OO9TeAoWDY0HJHDWCUwCpYzlaQK-gKCh5aVC4HVMeoppI',
# 'cookie': '',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.108 Safari/537.36',
'x-client-data': 'CKi1yQEIhrbJAQijtskBCMG2yQEIqZ3KAQioo8oBCL+nygEI7KfKAQjiqMoBGPmlygE='
}
url = build_url(text, js.get_tk(text), tl)
res = []
try:
r = requests.get(url, headers=header)
result = json.loads(r.text)
r.encoding = "UTF-8"
if debug:
print(r.url)
print(r.headers)
print(r.request.headers)
print(result)
res = result[0]
if res is None:
if result[7] is not None:
# 如果我们文本输错,提示你是不是要找xxx的话,那么重新把xxx正确的翻译之后返回
try:
correct_text = result[7][0].replace('<b><i>', ' ').replace('</i></b>', '')
if debug:
print(correct_text)
correct_url = build_url(correct_text, js.get_tk(correct_text), tl)
correct_response = requests.get(correct_url)
correct_result = json.loads(correct_response.text)
res = correct_result[0]
except Exception as e:
if debug:
print(e)
res = []
except Exception as e:
res = []
if debug:
print(url)
print("翻译" + text + "失败")
print("错误信息:")
print(e)
finally:
return res
def get_translate(word, tl):
js = Py4Js()
translate_result = translate(js, word, tl)
if debug:
print("word== %s, tl== %s" % (word, tl))
print(translate_result)
return translate_result
if __name__ == '__main__':
debug = True
translate_text = '3.Hear voice prompt \"start configuration mode\". click \"reset successfully\" button\n'
results = get_translate(translate_text, 'cs')
translate_result = ""
if "." in translate_text or "?" in translate_text:
for result in results:
translate_result += result[0]
else:
result_translate = results[0]
if debug:
print("translate_result:" + translate_result)
|
python
|
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pylab as plt
import random
from celluloid import Camera
class Energy(nn.Module):
def __init__(self):
super(Energy, self).__init__()
self.sigma = nn.Parameter(torch.tensor([0.5]))
self.mu = nn.Parameter(torch.tensor([10.0]))
def forward(self, x):
return self.sigma*(x - self.mu)*(x - self.mu)
def energy_ans(x):
return x*x
if __name__=='__main__':
num_epochs = 300
num_steps = 50
Ntrain = 100
mem_max = 20
batch_size = 16
x_train = np.random.randn(Ntrain)
mem = [torch.rand(1) for i in range(batch_size)]
energy = Energy()
energy_optimizer = optim.Adam(energy.parameters(), lr=0.1)
f = plt.figure(figsize=(12,6))
camera = Camera(f)
ax = f.add_subplot(111)
for i in range(num_epochs):
x_batch = random.choices(mem, k=batch_size)
x_batch = torch.stack(x_batch, dim=0)
x_batch.requires_grad_()
energy.eval()
energy.mu.requires_grad = False
energy.sigma.requires_grad = False
langevin_optimizer = optim.Adam([x_batch], lr=0.1)
x_traces = [[] for i in range(batch_size)]
e_traces = [[] for i in range(batch_size)]
for j in range(num_steps):
langevin_optimizer.zero_grad()
E = energy(x_batch)
L = E.mean()
L.backward()
x_batch.grad += torch.randn(batch_size,1)*0.1
langevin_optimizer.step()
for k in range(batch_size):
x_traces[k].append(x_batch[k].item())
e_traces[k].append(E[k].item())
x_batch = x_batch.detach()
for j in range(batch_size):
mem.append(x_batch[j].clone())
if len(mem)>mem_max:
mem.pop(0)
# plt.cla()
for k in range(batch_size):
plt.plot(x_traces[k], e_traces[k], 'r-.')
plt.scatter(x_batch.numpy(), energy(x_batch).detach().numpy(), marker='x', c='g')
plt.scatter(x_train, energy_ans(x_train), marker='o', c='b')
# plt.draw()
# plt.pause(.01)
energy.train()
energy.mu.requires_grad = True
energy.sigma.requires_grad = True
energy_optimizer.zero_grad()
train_batch = torch.from_numpy(np.random.choice(x_train, batch_size))
L = (energy(train_batch) - energy(x_batch)).mean()
L.backward()
energy_optimizer.step()
print(L.item(), energy.mu.item(), energy.sigma.item())
camera.snap()
animation = camera.animate()
animation.save(f'test1d.mp4')
|
python
|
import scrapy
from celery import Celery
from scrapy.settings import Settings
from scrapy.spiders import Spider
from scrapyscript import Job, Processor, ScrapyScriptException
from spiders import ItemSpider, TitleSpider
app = Celery("hello", broker="amqp://guest@localhost//")
@app.task
def celery_job(url):
job = Job(TitleSpider, url=url)
return Processor().run(job)
@app.task
def celery_job_with_custom_settings(url, settings):
job = Job(ItemSpider, url=url)
return Processor(settings=settings).run(job)
class TestScrapyScriptCelery:
def test_celery_job(self):
# for unit testing, call celery synchronously
task = celery_job.s("https://www.python.org").apply()
assert len(task.result[0]["data"]) > 0
def test_celery_job_with_settings(self):
settings = Settings()
settings["BOT_NAME"] = "alpha"
task = celery_job_with_custom_settings.s(
"https://www.python.org", settings
).apply()
print(task.result[0])
assert task.result[0]["bot"] == "alpha"
|
python
|
from copy import copy
from Cat.utils.collections_ import ChainedList
from model.commands.argumentTypes import *
from model.commands.command import CommandSchema, KeywordSchema, ArgumentSchema, TERMINAL, COMMANDS_ROOT, SwitchSchema
from model.data.mcVersions import MCVersion
def fillCommandsFor1_17(version: MCVersion) -> None:
_BASIC_COMMAND_INFO_LIST = [
CommandSchema(
name='?',
description='An alias of /help. Provides help for commands.',
opLevel=0,
),
CommandSchema(
name='advancement',
description='Gives, removes, or checks player advancements.',
opLevel=2,
),
CommandSchema(
name='attribute',
description='Queries, adds, removes or sets an entity attribute.',
opLevel=2,
),
CommandSchema(
name='ban',
description='Adds player to banlist.',
opLevel=3,
availableInSP=False
),
CommandSchema(
name='ban-ip',
description='Adds IP address to banlist.',
opLevel=3,
availableInSP=False
),
CommandSchema(
name='banlist',
description='Displays banlist.',
opLevel=3,
availableInSP=False
),
CommandSchema(
name='bossbar',
description='Creates and modifies bossbars.',
opLevel=2,
),
CommandSchema(
name='clear',
description='Clears items from player inventory.',
opLevel=2,
),
CommandSchema(
name='clone',
description='Copies blocks from one place to another.',
opLevel=2,
),
CommandSchema(
name='data',
description='Gets, merges, modifies and removes block entity and entity NBT data.',
opLevel=2,
),
CommandSchema(
name='datapack',
description='Controls loaded data packs.',
opLevel=2,
),
CommandSchema(
name='debug',
description='Starts or stops a debugging session.',
opLevel=3,
),
CommandSchema(
name='defaultgamemode',
description='Sets the default game mode.',
opLevel=2,
),
CommandSchema(
name='deop',
description='Revokes operator status from a player.',
opLevel=3,
availableInSP=False
),
CommandSchema(
name='difficulty',
description='Sets the difficulty level.',
opLevel=2,
),
CommandSchema(
name='effect',
description='Add or remove status effects.',
opLevel=2,
),
CommandSchema(
name='enchant',
description="Adds an enchantment to a player's selected item.",
opLevel=2,
),
CommandSchema(
name='execute',
description='Executes another command.',
opLevel=2,
),
CommandSchema(
name='experience',
description='An alias of /xp. Adds or removes player experience.',
opLevel=2,
),
CommandSchema(
name='fill',
description='Fills a region with a specific block.',
opLevel=2,
),
CommandSchema(
name='forceload',
description='Forces chunks to constantly be loaded or not.',
opLevel=2,
),
CommandSchema(
name='function',
description='Runs a function.',
opLevel=2,
),
CommandSchema(
name='gamemode',
description="Sets a player's game mode.",
opLevel=2,
),
CommandSchema(
name='gamerule',
description='Sets or queries a game rule value.',
opLevel=2,
),
CommandSchema(
name='give',
description='Gives an item to a player.',
opLevel=2,
),
CommandSchema(
name='help',
description='An alias of /?. Provides help for commands.',
opLevel=0,
),
CommandSchema(
name='item',
description='Manipulates items in inventories.',
opLevel=2,
),
CommandSchema(
name='kick',
description='Kicks a player off a server.',
opLevel=3,
),
CommandSchema(
name='kill',
description='Kills entities (players, mobs, items, etc.).',
opLevel=2,
),
CommandSchema(
name='list',
description='Lists players on the server.',
opLevel=0,
),
CommandSchema(
name='locate',
description='Locates closest structure.',
opLevel=2,
),
CommandSchema(
name='locatebiome',
description='Locates closest biome.',
opLevel=2,
),
CommandSchema(
name='loot',
description='Drops items from an inventory slot onto the ground.',
opLevel=2,
),
CommandSchema(
name='me',
description='Displays a message about the sender.',
opLevel=0,
),
CommandSchema(
name='msg',
description='An alias of /tell and /w. Displays a private message to other players.',
opLevel=0,
),
CommandSchema(
name='op',
description='Grants operator status to a player.',
opLevel=3,
availableInSP=False
),
CommandSchema(
name='pardon',
description='Removes entries from the banlist.',
opLevel=3,
availableInSP=False
),
CommandSchema(
name='pardon-ip',
description='Removes entries from the banlist.',
opLevel=3,
availableInSP=False
),
CommandSchema(
name='particle',
description='Creates particles.',
opLevel=2,
),
CommandSchema(
name='perf',
description='Captures info and metrics about the game for 10 seconds.',
opLevel=4,
availableInSP=False
),
CommandSchema(
name='playsound',
description='Plays a sound.',
opLevel=2,
),
CommandSchema(
name='publish',
description='Opens single-player world to local network.',
opLevel=4,
availableInMP=False
),
CommandSchema(
name='recipe',
description='Gives or takes player recipes.',
opLevel=2,
),
CommandSchema(
name='reload',
description='Reloads loot tables, advancements, and functions from disk.',
opLevel=2,
),
CommandSchema(
name='replaceitem',
description='Replaces items in inventories.',
removed=True,
removedVersion='1.17',
removedComment='Replaced with `/item replace`',
opLevel=2,
),
CommandSchema(
name='save-all',
description='Saves the server to disk.',
opLevel=4,
availableInSP=False
),
CommandSchema(
name='save-off',
description='Disables automatic server saves.',
opLevel=4,
availableInSP=False
),
CommandSchema(
name='save-on',
description='Enables automatic server saves.',
opLevel=4,
availableInSP=False
),
CommandSchema(
name='say',
description='Displays a message to multiple players.',
opLevel=2,
),
CommandSchema(
name='schedule',
description='Delays the execution of a function.',
opLevel=2,
),
CommandSchema(
name='scoreboard',
description='Manages scoreboard objectives and players.',
opLevel=2,
),
CommandSchema(
name='seed',
description='Displays the world seed.',
opLevel='0 in singleplayer, 2 in multiplayer',
),
CommandSchema(
name='setblock',
description='Changes a block to another block.',
opLevel=2,
),
CommandSchema(
name='setidletimeout',
description='Sets the time before idle players are kicked.',
opLevel=3,
availableInSP=False
),
CommandSchema(
name='setworldspawn',
description='Sets the world spawn.',
opLevel=2,
),
CommandSchema(
name='spawnpoint',
description='Sets the spawn point for a player.',
opLevel=2,
),
CommandSchema(
name='spectate',
description='Make one player in spectator mode spectate an entity.',
opLevel=2,
),
CommandSchema(
name='spreadplayers',
description='Teleports entities to random locations.',
opLevel=2,
),
CommandSchema(
name='stop',
description='Stops a server.',
opLevel=4,
availableInSP=False
),
CommandSchema(
name='stopsound',
description='Stops a sound.',
opLevel=2,
),
CommandSchema(
name='summon',
description='Summons an entity.',
opLevel=2,
),
CommandSchema(
name='tag',
description='Controls entity tags.',
opLevel=2,
),
CommandSchema(
name='team',
description='Controls teams.',
opLevel=2,
),
CommandSchema(
name='teammsg',
description='An alias of /tm. Specifies the message to send to team.',
opLevel=0,
),
CommandSchema(
name='teleport',
description='An alias of /tp. Teleports entities.',
opLevel=2,
),
CommandSchema(
name='tell',
description='An alias of /msg and /w. Displays a private message to other players.',
opLevel=0,
),
CommandSchema(
name='tellraw',
description='Displays a JSON message to players.',
opLevel=2,
),
CommandSchema(
name='testfor',
description='Counts entities matching specified conditions.',
removed=True,
removedVersion='1.13',
removedComment='Use `/execute if` instead', # TODO: removedComment for '/testfor' command
opLevel=2,
),
CommandSchema(
name='testforblock',
description='Tests whether a block is in a location.',
removed=True,
removedVersion='1.13',
removedComment='Use `/execute if block` instead',
opLevel=2,
),
CommandSchema(
name='testforblocks',
description='Tests whether the blocks in two regions match.',
removed=True,
removedVersion='1.13',
removedComment='Use `/execute if` instead',
opLevel=2,
),
CommandSchema(
name='time',
description="Changes or queries the world's game time.",
opLevel=2,
),
CommandSchema(
name='title',
description='Manages screen titles.',
opLevel=2,
),
CommandSchema(
name='tm',
description='An alias of /teammsg. Specifies the message to send to team.',
opLevel=0,
),
# CommandSchema(
# name='toggledownfall',
# description='Toggles the weather.',
# removed=True,
# removedVersion='1.13',
# removedComment='Use `/weather ...` instead',
# opLevel=1,
# ),
CommandSchema(
name='tp',
description='An alias of /teleport. Teleports entities.',
opLevel=2,
),
CommandSchema(
name='trigger',
description='Sets a trigger to be activated.',
opLevel=0,
),
CommandSchema(
name='w',
description='An alias of /tell and /msg. Displays a private message to other players.',
opLevel=0,
),
CommandSchema(
name='weather',
description='Sets the weather.',
opLevel=2,
),
CommandSchema(
name='whitelist',
description='Manages server whitelist.',
opLevel=3,
availableInSP=False
),
CommandSchema(
name='worldborder',
description='Manages the world border.',
opLevel=2,
),
CommandSchema(
name='xp',
description='An alias of /experience [Java Edition only]. Adds or removes player experience.',
opLevel=2,
)
]
BASIC_COMMAND_INFO: dict[str, CommandSchema] = {c.name: c for c in _BASIC_COMMAND_INFO_LIST}
version.commands = BASIC_COMMAND_INFO
BASIC_COMMAND_INFO['?'].next = []
BASIC_COMMAND_INFO['advancement'].next = [
ArgumentSchema(
name='__action',
type=makeLiteralsArgumentType(['grant', 'revoke']),
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
KeywordSchema(
name='everything',
),
KeywordSchema(
name='only',
next=[
ArgumentSchema(
name='advancement',
type=DPE_ADVANCEMENT,
next=[
TERMINAL,
ArgumentSchema(
name='criterion',
type=BRIGADIER_STRING,
),
]
),
]
),
KeywordSchema(
name='from',
next=[
ArgumentSchema(
name='advancement',
type=DPE_ADVANCEMENT,
),
]
),
KeywordSchema(
name='through',
next=[
ArgumentSchema(
name='advancement',
type=DPE_ADVANCEMENT,
),
]
),
KeywordSchema(
name='until',
next=[
ArgumentSchema(
name='advancement',
type=DPE_ADVANCEMENT,
),
]
),
],
),
],
),
]
BASIC_COMMAND_INFO['attribute'].next = [
ArgumentSchema(
name='target',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='attribute',
type=MINECRAFT_RESOURCE_LOCATION,
next=[
KeywordSchema(
name='get',
next=[
TERMINAL,
ArgumentSchema(
name='scale',
type=BRIGADIER_DOUBLE,
),
]
),
KeywordSchema(
name='base',
next=[
KeywordSchema(
name='get',
next=[
TERMINAL,
ArgumentSchema(
name='scale',
type=BRIGADIER_DOUBLE,
),
]
),
KeywordSchema(
name='set',
next=[
ArgumentSchema(
name='value',
type=BRIGADIER_DOUBLE,
),
]
),
],
),
KeywordSchema(
name='modifier',
next=[
KeywordSchema(
name='add',
next=[
ArgumentSchema(
name='uuid',
type=MINECRAFT_UUID,
next=[
ArgumentSchema(
name='name',
type=BRIGADIER_STRING,
next=[
ArgumentSchema(
name='value',
type=BRIGADIER_DOUBLE,
next=[
ArgumentSchema(
name='uuid',
type=makeLiteralsArgumentType(['add', 'multiply', 'multiply_base']),
),
]
),
]
),
]
),
]
),
KeywordSchema(
name='remove',
next=[
ArgumentSchema(
name='uuid',
type=MINECRAFT_UUID,
),
]
),
KeywordSchema(
name='value',
next=[
KeywordSchema(
name='get',
next=[
ArgumentSchema(
name='uuid',
type=MINECRAFT_UUID,
next=[
TERMINAL,
ArgumentSchema(
name='scale',
type=BRIGADIER_DOUBLE,
),
]
),
]
),
]
),
],
),
],
),
],
),
]
BASIC_COMMAND_INFO['ban'].next = [
ArgumentSchema(
name='targets',
type=MINECRAFT_GAME_PROFILE,
next=[
TERMINAL,
ArgumentSchema(
name='reason',
type=MINECRAFT_MESSAGE,
),
]
),
]
BASIC_COMMAND_INFO['ban-ip'].next = [
ArgumentSchema(
name='target',
type=BRIGADIER_STRING,
next=[
TERMINAL,
ArgumentSchema(
name='reason',
type=MINECRAFT_MESSAGE,
),
]
),
]
BASIC_COMMAND_INFO['banlist'].next = [
TERMINAL,
KeywordSchema(
name='ips',
),
KeywordSchema(
name='players',
),
]
BASIC_COMMAND_INFO['bossbar'].next = [
KeywordSchema(
name='add',
next=[
ArgumentSchema(
name='id',
type=MINECRAFT_RESOURCE_LOCATION,
next=[
ArgumentSchema(
name='name',
type=MINECRAFT_COMPONENT,
),
]
),
],
),
KeywordSchema(
name='get',
next=[
ArgumentSchema(
name='id',
type=MINECRAFT_RESOURCE_LOCATION,
next=[
ArgumentSchema(
name='__setting',
type=makeLiteralsArgumentType(['max', 'players', 'value', 'visible']),
),
]
),
],
),
KeywordSchema(
name='list',
),
KeywordSchema(
name='remove',
next=[
ArgumentSchema(
name='id',
type=MINECRAFT_RESOURCE_LOCATION,
),
],
),
KeywordSchema(
name='set',
next=[
ArgumentSchema(
name='id',
type=MINECRAFT_RESOURCE_LOCATION,
next=[
KeywordSchema(
name='color',
next=[
ArgumentSchema(
name='color',
type=makeLiteralsArgumentType(['blue', 'green', 'pink', 'purple', 'red', 'white', 'yellow']),
),
],
),
KeywordSchema(
name='max',
next=[
ArgumentSchema(
name='max',
type=BRIGADIER_INTEGER,
),
],
),
KeywordSchema(
name='name',
next=[
ArgumentSchema(
name='name',
type=MINECRAFT_COMPONENT,
),
],
),
KeywordSchema(
name='players',
next=[
TERMINAL,
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
),
],
),
KeywordSchema(
name='style',
next=[
ArgumentSchema(
name='style',
type=makeLiteralsArgumentType(['notched_6', 'notched_10', 'notched_12', 'notched_20', 'progress']),
),
],
),
KeywordSchema(
name='value ',
next=[
ArgumentSchema(
name='value',
type=BRIGADIER_INTEGER,
),
],
),
KeywordSchema(
name='visible',
next=[
ArgumentSchema(
name='visible',
type=BRIGADIER_BOOL,
),
],
),
]
),
],
),
]
BASIC_COMMAND_INFO['clear'].next = [
TERMINAL,
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
TERMINAL,
ArgumentSchema(
name='item',
type=MINECRAFT_ITEM_PREDICATE,
next=[
TERMINAL,
ArgumentSchema(
name='maxCount',
type=BRIGADIER_INTEGER,
),
],
),
],
),
]
BASIC_COMMAND_INFO['clone'].next = [
ArgumentSchema(
name='begin',
type=MINECRAFT_BLOCK_POS,
next=[
ArgumentSchema(
name='end',
type=MINECRAFT_BLOCK_POS,
next=[
ArgumentSchema(
name='destination',
type=MINECRAFT_BLOCK_POS,
next=[
TERMINAL,
ArgumentSchema(
name='maskMode',
type=makeLiteralsArgumentType(['replace', 'masked']),
next=[
TERMINAL,
ArgumentSchema(
name='cloneMode',
type=makeLiteralsArgumentType(['force', 'move', 'normal']),
),
],
),
KeywordSchema(
name='filtered',
next=[
ArgumentSchema(
name='filter',
type=MINECRAFT_BLOCK_PREDICATE,
next=[
TERMINAL,
ArgumentSchema(
name='cloneMode',
type=makeLiteralsArgumentType(['force', 'move', 'normal']),
),
],
),
],
),
],
),
],
),
],
),
]
# data command:
DATA_TARGET = [
KeywordSchema(
name='block',
next=[
ArgumentSchema(
name='targetPos',
type=MINECRAFT_BLOCK_POS,
),
]
),
KeywordSchema(
name='entity',
next=[
ArgumentSchema(
name='target',
type=MINECRAFT_ENTITY,
),
]
),
KeywordSchema(
name='storage',
next=[
ArgumentSchema(
name='target',
type=MINECRAFT_RESOURCE_LOCATION,
),
]
),
]
DATA_MODIFICATION = [
KeywordSchema(
name='append',
),
KeywordSchema(
name='insert',
next=[
ArgumentSchema(
name='index',
type=BRIGADIER_INTEGER,
),
]
),
KeywordSchema(
name='merge',
),
KeywordSchema(
name='prepend',
),
KeywordSchema(
name='set',
),
]
DATA_SOURCE = [
KeywordSchema(
name='block',
next=[
ArgumentSchema(
name='sourcePos',
type=MINECRAFT_BLOCK_POS,
),
]
),
KeywordSchema(
name='entity',
next=[
ArgumentSchema(
name='source',
type=MINECRAFT_ENTITY,
),
]
),
KeywordSchema(
name='storage',
next=[
ArgumentSchema(
name='source',
type=MINECRAFT_RESOURCE_LOCATION,
),
]
),
]
BASIC_COMMAND_INFO['data'].next = [
KeywordSchema(
name='get',
next=[
SwitchSchema(
name='TARGET',
options=DATA_TARGET,
next=[
TERMINAL,
ArgumentSchema(
name='path',
type=MINECRAFT_NBT_PATH,
next=[
TERMINAL,
ArgumentSchema(
name='scale',
type=BRIGADIER_FLOAT,
),
]
),
]
),
]
),
KeywordSchema(
name='merge',
next=[
SwitchSchema(
name='TARGET',
options=DATA_TARGET,
next=[
ArgumentSchema(
name='nbt',
type=MINECRAFT_NBT_COMPOUND_TAG,
),
]
),
]
),
KeywordSchema(
name='modify',
next=[
SwitchSchema(
name='TARGET',
options=DATA_TARGET,
next=[
ArgumentSchema(
name='targetPath',
type=MINECRAFT_NBT_PATH,
next=[
SwitchSchema(
name='MODIFICATION',
options=DATA_MODIFICATION,
next=[
KeywordSchema(
name='from',
next=[
SwitchSchema(
name='SOURCE',
options=DATA_SOURCE,
next=[
TERMINAL,
ArgumentSchema(
name='sourcePath',
type=MINECRAFT_NBT_PATH,
),
]
),
]
),
KeywordSchema(
name='value',
next=[
ArgumentSchema(
name='value',
type=MINECRAFT_NBT_TAG,
),
]
),
]
),
]
),
]
),
]
),
# remove <TARGET> <path>
KeywordSchema(
name='remove',
next=[
SwitchSchema(
name='TARGET',
options=DATA_TARGET,
next=[
ArgumentSchema(
name='path',
type=MINECRAFT_NBT_PATH,
),
]
),
]
),
]
BASIC_COMMAND_INFO['datapack'].next = [
KeywordSchema(
name='disable',
next=[
ArgumentSchema(
name='name',
type=BRIGADIER_STRING,
subType=ST_DPE_DATAPACK,
),
],
),
KeywordSchema(
name='enable',
next=[
ArgumentSchema(
name='name',
type=BRIGADIER_STRING,
subType=ST_DPE_DATAPACK,
next=[
TERMINAL,
KeywordSchema(
name='first',
),
KeywordSchema(
name='last',
),
KeywordSchema(
name='before',
next=[
ArgumentSchema(
name='name',
type=BRIGADIER_STRING,
subType=ST_DPE_DATAPACK,
),
],
),
KeywordSchema(
name='after',
next=[
ArgumentSchema(
name='name',
type=BRIGADIER_STRING,
subType=ST_DPE_DATAPACK,
),
],
),
]
),
],
),
KeywordSchema(
name='list',
description="List all data packs, or list only the available/enabled ones. Hovering over the data packs in the chat output shows their description defined in their pack.mcmeta.",
next=[
TERMINAL,
KeywordSchema(
name='available',
next=[TERMINAL],
),
KeywordSchema(
name='enabled',
next=[TERMINAL],
),
],
),
]
BASIC_COMMAND_INFO['debug'].next = [
KeywordSchema(
name='start',
),
KeywordSchema(
name='stop',
),
KeywordSchema(
name='function',
next=[
ArgumentSchema(
name='name',
type=MINECRAFT_FUNCTION,
),
]
),
]
BASIC_COMMAND_INFO['defaultgamemode'].next = [
ArgumentSchema(
name='mode',
type=makeLiteralsArgumentType(['survival', 'creative', 'adventure', 'spectator']),
),
]
BASIC_COMMAND_INFO['deop'].next = [
ArgumentSchema(
name='targets',
type=MINECRAFT_GAME_PROFILE,
),
]
BASIC_COMMAND_INFO['difficulty'].next = [
TERMINAL,
ArgumentSchema(
name='difficulty',
type=makeLiteralsArgumentType(['peaceful', 'easy', 'normal', 'hard']),
),
]
BASIC_COMMAND_INFO['effect'].next = [
KeywordSchema(
name='give',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='effect',
type=MINECRAFT_MOB_EFFECT,
next=[
TERMINAL,
ArgumentSchema(
name='seconds',
type=BRIGADIER_INTEGER,
args={'min': 0, 'max': 1000000},
next=[
TERMINAL,
ArgumentSchema(
name='amplifier',
type=BRIGADIER_INTEGER,
args={'min': 0, 'max': 255},
next=[
TERMINAL,
ArgumentSchema(
name='hideParticles',
type=BRIGADIER_BOOL,
),
]
),
]
),
]
),
]
),
],
),
KeywordSchema(
name='clear',
next=[
TERMINAL,
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
TERMINAL,
ArgumentSchema(
name='effect',
type=MINECRAFT_MOB_EFFECT,
),
]
),
],
),
]
BASIC_COMMAND_INFO['enchant'].next = [
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='enchantment',
type=MINECRAFT_ITEM_ENCHANTMENT,
next=[
TERMINAL,
ArgumentSchema(
name='level',
type=BRIGADIER_INTEGER,
),
]
),
]
),
]
# execute Command:
EXECUTE_INSTRUCTIONS = []
EXECUTE_INSTRUCTIONS.append(KeywordSchema(name='align',
next=[
ArgumentSchema(
name='axes',
type=MINECRAFT_SWIZZLE,
next=EXECUTE_INSTRUCTIONS
),
],
))
EXECUTE_INSTRUCTIONS.append(KeywordSchema(name='anchored',
next=[
ArgumentSchema(
name='anchor',
type=MINECRAFT_ENTITY_ANCHOR,
next=EXECUTE_INSTRUCTIONS
),
],
))
EXECUTE_INSTRUCTIONS.append(KeywordSchema(name='as',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=EXECUTE_INSTRUCTIONS
),
],
))
EXECUTE_INSTRUCTIONS.append(KeywordSchema(name='at',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=EXECUTE_INSTRUCTIONS
),
],
))
EXECUTE_INSTRUCTIONS.append(KeywordSchema(name='facing',
next=[
ArgumentSchema(
name='pos',
type=MINECRAFT_VEC3,
next=EXECUTE_INSTRUCTIONS
),
KeywordSchema(
name='entity',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='anchor',
type=MINECRAFT_ENTITY_ANCHOR,
next=EXECUTE_INSTRUCTIONS
),
]
),
],
)
],
))
EXECUTE_INSTRUCTIONS.append(KeywordSchema(name='in',
next=[
ArgumentSchema(
name='dimension',
type=MINECRAFT_DIMENSION,
next=EXECUTE_INSTRUCTIONS
),
],
))
EXECUTE_INSTRUCTIONS.append(KeywordSchema(name='positioned',
next=[
ArgumentSchema(
name='pos',
type=MINECRAFT_VEC3,
next=EXECUTE_INSTRUCTIONS
),
KeywordSchema(
name='as',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=EXECUTE_INSTRUCTIONS
),
],
)
],
))
EXECUTE_INSTRUCTIONS.append(KeywordSchema(name='rotated',
next=[
ArgumentSchema(
name='rot',
type=MINECRAFT_ROTATION,
next=EXECUTE_INSTRUCTIONS
),
KeywordSchema(
name='as',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=EXECUTE_INSTRUCTIONS
),
],
)
],
))
EXECUTE_IF_UNLESS_ARGUMENTS = []
TERMINAL_LIST = [TERMINAL]
EXECUTE_IF_UNLESS_ARGUMENTS.append(KeywordSchema(name='block',
next=[
ArgumentSchema(
name='pos',
type=MINECRAFT_BLOCK_POS,
next=[
ArgumentSchema(
name='block',
type=MINECRAFT_BLOCK_PREDICATE,
next=ChainedList(TERMINAL_LIST, EXECUTE_INSTRUCTIONS)
),
],
),
],
))
EXECUTE_IF_UNLESS_ARGUMENTS.append(KeywordSchema(name='blocks',
next=[
ArgumentSchema(
name='start',
type=MINECRAFT_BLOCK_POS,
next=[
ArgumentSchema(
name='end',
type=MINECRAFT_BLOCK_POS,
next=[
ArgumentSchema(
name='destination',
type=MINECRAFT_BLOCK_POS,
next=[
KeywordSchema(
name='all',
next=ChainedList(TERMINAL_LIST, EXECUTE_INSTRUCTIONS),
),
KeywordSchema(
name='masked',
next=ChainedList(TERMINAL_LIST, EXECUTE_INSTRUCTIONS),
),
],
),
],
),
],
),
],
))
EXECUTE_IF_UNLESS_ARGUMENTS.append(KeywordSchema(name='data',
next=[
KeywordSchema(
name='block',
next=[
ArgumentSchema(
name='pos',
type=MINECRAFT_BLOCK_POS,
next=[
ArgumentSchema(
name='path',
type=MINECRAFT_NBT_PATH,
next=ChainedList(TERMINAL_LIST, EXECUTE_INSTRUCTIONS),
),
],
),
],
),
KeywordSchema(
name='entity',
next=[
ArgumentSchema(
name='target',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='path',
type=MINECRAFT_NBT_PATH,
next=ChainedList(TERMINAL_LIST, EXECUTE_INSTRUCTIONS),
),
],
),
],
),
KeywordSchema(
name='storage',
next=[
ArgumentSchema(
name='source',
type=MINECRAFT_RESOURCE_LOCATION,
next=[
ArgumentSchema(
name='path',
type=MINECRAFT_NBT_PATH,
next=ChainedList(TERMINAL_LIST, EXECUTE_INSTRUCTIONS),
),
],
),
],
),
],
))
EXECUTE_IF_UNLESS_ARGUMENTS.append(KeywordSchema(name='entity',
next=[
ArgumentSchema(
name='entities',
type=MINECRAFT_ENTITY,
next=ChainedList(TERMINAL_LIST, EXECUTE_INSTRUCTIONS),
),
],
))
EXECUTE_IF_UNLESS_ARGUMENTS.append(KeywordSchema(name='predicate',
next=[
ArgumentSchema(
name='predicate',
type=MINECRAFT_PREDICATE,
next=ChainedList(TERMINAL_LIST, EXECUTE_INSTRUCTIONS),
),
],
))
EXECUTE_IF_UNLESS_ARGUMENTS.append(KeywordSchema(name='score',
next=[
ArgumentSchema(
name='target',
type=MINECRAFT_SCORE_HOLDER,
next=[
ArgumentSchema(
name='targetObjective',
type=MINECRAFT_OBJECTIVE,
next=[
KeywordSchema(
name='matches',
next=[
ArgumentSchema(
name='range',
type=MINECRAFT_INT_RANGE,
next=ChainedList(TERMINAL_LIST, EXECUTE_INSTRUCTIONS),
),
]
),
ArgumentSchema(
name='__compare',
type=makeLiteralsArgumentType(['<=', '<', '=', '>=', '>']),
next=[
ArgumentSchema(
name='source',
type=MINECRAFT_SCORE_HOLDER,
next=[
ArgumentSchema(
name='sourceObjective',
type=MINECRAFT_OBJECTIVE,
next=ChainedList(TERMINAL_LIST, EXECUTE_INSTRUCTIONS),
),
],
),
],
),
],
),
],
),
],
))
EXECUTE_INSTRUCTIONS.append(KeywordSchema(name='if',
next=EXECUTE_IF_UNLESS_ARGUMENTS,
))
EXECUTE_INSTRUCTIONS.append(KeywordSchema(name='unless',
next=EXECUTE_IF_UNLESS_ARGUMENTS,
))
EXECUTE_STORE_RESULT_SUCCESS_ARGUMENTS = []
EXECUTE_STORE_RESULT_SUCCESS_ARGUMENTS.append(KeywordSchema(name='block',
next=[
ArgumentSchema(
name='targetPos',
type=MINECRAFT_BLOCK_POS,
next=[
ArgumentSchema(
name='path',
type=MINECRAFT_NBT_PATH,
next=[
ArgumentSchema(
name='type',
type=makeLiteralsArgumentType(['byte', 'short', 'int', 'long', 'float', 'double']),
next=[
ArgumentSchema(
name='scale',
description="Multiplier to apply before storing value",
type=BRIGADIER_DOUBLE,
next=EXECUTE_INSTRUCTIONS
),
],
),
],
),
],
),
]
))
EXECUTE_STORE_RESULT_SUCCESS_ARGUMENTS.append(KeywordSchema(name='bossbar',
next=[
ArgumentSchema(
name='id',
type=MINECRAFT_RESOURCE_LOCATION,
next=[
ArgumentSchema(
name='value',
type=makeLiteralsArgumentType(['value', 'max']),
next=EXECUTE_INSTRUCTIONS,
),
],
),
]
))
EXECUTE_STORE_RESULT_SUCCESS_ARGUMENTS.append(KeywordSchema(name='entity',
next=[
ArgumentSchema(
name='target',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='path',
type=MINECRAFT_NBT_PATH,
next=[
ArgumentSchema(
name='type',
type=makeLiteralsArgumentType(['byte', 'short', 'int', 'long', 'float', 'double']),
next=[
ArgumentSchema(
name='scale',
description="Multiplier to apply before storing value",
type=BRIGADIER_DOUBLE,
next=EXECUTE_INSTRUCTIONS
),
],
),
],
),
],
),
]
))
EXECUTE_STORE_RESULT_SUCCESS_ARGUMENTS.append(KeywordSchema(name='score',
next=[
ArgumentSchema(
name='targets',
description='Specifies score holder(s) whose score is to be overridden',
type=MINECRAFT_SCORE_HOLDER,
next=[
ArgumentSchema(
name='objective',
description='A scoreboard objective',
type=MINECRAFT_OBJECTIVE,
next=EXECUTE_INSTRUCTIONS,
),
],
),
]
))
EXECUTE_STORE_RESULT_SUCCESS_ARGUMENTS.append(KeywordSchema(name='storage',
next=[
ArgumentSchema(
name='target',
type=MINECRAFT_RESOURCE_LOCATION,
next=[
ArgumentSchema(
name='path',
type=MINECRAFT_NBT_PATH,
next=[
ArgumentSchema(
name='type',
type=makeLiteralsArgumentType(['byte', 'short', 'int', 'long', 'float', 'double']),
next=[
ArgumentSchema(
name='scale',
description="Multiplier to apply before storing value",
type=BRIGADIER_DOUBLE,
next=EXECUTE_INSTRUCTIONS
),
],
),
],
),
],
),
]
))
EXECUTE_INSTRUCTIONS.append(KeywordSchema(name='store',
next=[
KeywordSchema(
name='result',
next=EXECUTE_STORE_RESULT_SUCCESS_ARGUMENTS,
),
KeywordSchema(
name='success',
next=EXECUTE_STORE_RESULT_SUCCESS_ARGUMENTS,
),
]
))
EXECUTE_INSTRUCTIONS.append(KeywordSchema(name='run',
next=[COMMANDS_ROOT],
))
BASIC_COMMAND_INFO['execute'].next = EXECUTE_INSTRUCTIONS
BASIC_COMMAND_INFO['experience'].next = [
KeywordSchema(
name='add',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='amount',
type=BRIGADIER_INTEGER,
next=[
ArgumentSchema(
name='__levels',
type=makeLiteralsArgumentType(['levels', 'points']),
),
]
),
]
),
]
),
KeywordSchema(
name='set',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='amount',
type=BRIGADIER_INTEGER,
next=[
ArgumentSchema(
name='__levels',
type=makeLiteralsArgumentType(['levels', 'points']),
),
]
),
]
),
],
),
KeywordSchema(
name='query',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='__levels',
type=makeLiteralsArgumentType(['levels', 'points']),
),
]
),
]
),
]
# fill <from> <to> <block> [destroy|hollow|keep|outline]
# fill <from> <to> <block> replace [<filter>]
BASIC_COMMAND_INFO['fill'].next = [
ArgumentSchema(
name='from',
type=MINECRAFT_BLOCK_POS,
next=[
ArgumentSchema(
name='to',
type=MINECRAFT_BLOCK_POS,
next=[
ArgumentSchema(
name='block',
type=MINECRAFT_BLOCK_STATE,
next=[
TERMINAL,
ArgumentSchema(
name='option',
type=makeLiteralsArgumentType(['destroy', 'hollow', 'keep', 'outline']),
),
KeywordSchema(
name='replace',
next=[
TERMINAL,
ArgumentSchema(
name='replace',
type=MINECRAFT_BLOCK_PREDICATE
),
]
),
]
),
]
),
]
),
]
FORCELOAD_RANGE_ARG = ArgumentSchema(
name='from',
type=MINECRAFT_COLUMN_POS,
next=[
TERMINAL,
ArgumentSchema(
name='to',
type=MINECRAFT_COLUMN_POS,
),
]
)
BASIC_COMMAND_INFO['forceload'].next = [
KeywordSchema(
name='add',
next=[
FORCELOAD_RANGE_ARG,
]
),
KeywordSchema(
name='remove',
next=[
KeywordSchema('all'),
FORCELOAD_RANGE_ARG,
]
),
KeywordSchema(
name='query',
next=[
TERMINAL,
ArgumentSchema(
name='pos',
type=MINECRAFT_COLUMN_POS,
),
]
),
]
BASIC_COMMAND_INFO['function'].next = [
ArgumentSchema(
name='name',
type=MINECRAFT_FUNCTION,
),
]
BASIC_COMMAND_INFO['gamemode'].next = [
ArgumentSchema(
name='gamemode',
type=MINECRAFT_GAME_MODE,
next=[
TERMINAL,
ArgumentSchema(
name='target',
type=MINECRAFT_ENTITY,
)
]
),
]
BASIC_COMMAND_INFO['gamerule'].next = [
KeywordSchema(
name=gr.name,
description=gr.description,
next=[
TERMINAL,
ArgumentSchema(
name='value',
type=gr.type,
),
]
) for gr in version.gamerules
]
BASIC_COMMAND_INFO['give'].next = [
ArgumentSchema(
name='target',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='item',
type=MINECRAFT_ITEM_STACK,
next=[
TERMINAL,
ArgumentSchema(
name='count',
type=BRIGADIER_INTEGER,
),
]
),
]
),
]
BASIC_COMMAND_INFO['help'].next = []
ITEM_TARGET = [
KeywordSchema(
name='block',
next=[
ArgumentSchema(
name='pos',
type=MINECRAFT_BLOCK_POS,
),
]
),
KeywordSchema(
name='entity',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
),
]
),
]
ITEM_SOURCE = [
KeywordSchema(
name='block',
next=[
ArgumentSchema(
name='sourcePos',
type=MINECRAFT_BLOCK_POS,
),
]
),
KeywordSchema(
name='entity',
next=[
ArgumentSchema(
name='sourceTarget',
type=MINECRAFT_ENTITY,
),
]
),
]
ITEM_MODIFIER = [
ArgumentSchema(
name='modifier',
type=MINECRAFT_RESOURCE_LOCATION,
),
]
BASIC_COMMAND_INFO['item'].next = [
KeywordSchema(
name='modify',
next=[
SwitchSchema(
name='TARGET',
options=ITEM_TARGET,
next=[
ArgumentSchema(
name='slot',
type=MINECRAFT_NBT_PATH,
next=[*ITEM_MODIFIER]
),
]
),
]
),
KeywordSchema(
name='replace',
next=[
SwitchSchema(
name='TARGET',
options=ITEM_TARGET,
next=[
ArgumentSchema(
name='slot',
type=MINECRAFT_NBT_PATH,
next=[
KeywordSchema(
name='with',
next=[
ArgumentSchema(
name='item',
type=MINECRAFT_ITEM_STACK,
next=[
TERMINAL,
ArgumentSchema(
name='count',
type=BRIGADIER_INTEGER,
args={'min': 1, 'max': 64},
),
]
),
]
),
KeywordSchema(
name='from',
next=[
SwitchSchema(
name='SOURCE',
options=ITEM_SOURCE,
next=[
ArgumentSchema(
name='sourceSlot',
type=MINECRAFT_ITEM_SLOT,
next=[
TERMINAL,
*ITEM_MODIFIER,
]
),
]
),
]
),
]
),
]
),
]
),
]
BASIC_COMMAND_INFO['kick'].next = [
ArgumentSchema(
name='targets',
type=MINECRAFT_GAME_PROFILE,
next=[
TERMINAL,
ArgumentSchema(
name='reason',
type=MINECRAFT_MESSAGE,
),
]
),
]
BASIC_COMMAND_INFO['kill'].next = [
TERMINAL, # An entity is required to run the command without args
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
),
]
BASIC_COMMAND_INFO['list'].next = [
TERMINAL,
KeywordSchema('uuids'),
]
BASIC_COMMAND_INFO['locate'].next = [
ArgumentSchema(
name='StructureType',
type=makeLiteralsArgumentType(list(version.structures)),
),
]
BASIC_COMMAND_INFO['locatebiome'].next = [
ArgumentSchema(
name='biome',
type=DPE_BIOME_ID,
),
]
LOOT_TARGETS = [
KeywordSchema(
name='spawn',
next=[
ArgumentSchema(
name='targetPos',
type=MINECRAFT_BLOCK_POS,
args={'type': float}
),
]
),
KeywordSchema(
name='replace',
next=[
SwitchSchema(
name='REPLACE',
options=[
KeywordSchema(
name='entity',
next=[
ArgumentSchema(
name='entities',
type=MINECRAFT_ENTITY,
),
]
),
KeywordSchema(
name='block',
next=[
ArgumentSchema(
name='targetPos',
type=MINECRAFT_BLOCK_POS,
),
]
),
],
next=[
ArgumentSchema(
name='slot',
type=MINECRAFT_ITEM_SLOT,
next=[
TERMINAL,
ArgumentSchema(
name='count',
type=BRIGADIER_INTEGER,
),
]
),
]
),
]
),
KeywordSchema(
name='give',
next=[
ArgumentSchema(
name='players',
type=MINECRAFT_ENTITY,
),
]
),
KeywordSchema(
name='insert',
next=[
ArgumentSchema(
name='targetPos',
type=MINECRAFT_BLOCK_POS,
),
]
),
]
LOOT_SOURCES = [
KeywordSchema(
name='fish',
next=[
ArgumentSchema(
name='loot_table',
type=MINECRAFT_RESOURCE_LOCATION,
next=[
ArgumentSchema(
name='pos',
type=MINECRAFT_BLOCK_POS,
next=[
TERMINAL,
ArgumentSchema(
name='hand',
type=makeLiteralsArgumentType(['mainhand', 'offhand']),
),
ArgumentSchema(
name='tool',
type=MINECRAFT_ITEM_STACK,
),
]
),
]
),
]
),
KeywordSchema(
name='loot',
next=[
ArgumentSchema(
name='loot_table',
type=MINECRAFT_RESOURCE_LOCATION,
),
]
),
KeywordSchema(
name='kill',
next=[
ArgumentSchema(
name='target',
type=MINECRAFT_ENTITY,
),
]
),
KeywordSchema(
name='mine',
next=[
ArgumentSchema(
name='pos',
type=MINECRAFT_BLOCK_POS,
next=[
TERMINAL,
ArgumentSchema(
name='hand',
type=makeLiteralsArgumentType(['mainhand', 'offhand']),
),
ArgumentSchema(
name='tool',
type=MINECRAFT_ITEM_STACK,
),
]
),
]
),
]
BASIC_COMMAND_INFO['loot'].next = [
SwitchSchema(
name='TARGET',
options=LOOT_TARGETS,
next=[
SwitchSchema(
name='SOURCE',
options=LOOT_SOURCES,
),
]
),
]
BASIC_COMMAND_INFO['me'].next = [
ArgumentSchema(
name='action',
type=MINECRAFT_MESSAGE,
)
]
BASIC_COMMAND_INFO['msg'].next = [
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='message',
type=MINECRAFT_MESSAGE,
),
]
),
]
BASIC_COMMAND_INFO['op'].next = [
ArgumentSchema(
name='targets',
type=MINECRAFT_GAME_PROFILE,
),
]
BASIC_COMMAND_INFO['pardon'].next = [
ArgumentSchema(
name='targets',
type=MINECRAFT_GAME_PROFILE,
),
]
BASIC_COMMAND_INFO['pardon-ip'].next = [
ArgumentSchema(
name='target',
type=BRIGADIER_STRING,
),
]
# particle <name> [<pos>] [<delta> <speed> <count> [force|normal] [<viewers>]]
PARTICLE_ARGUMENTS = [
TERMINAL,
ArgumentSchema(
name='pos',
type=MINECRAFT_VEC3,
next=[
TERMINAL,
ArgumentSchema(
name='delta',
type=MINECRAFT_VEC3,
next=[
ArgumentSchema(
name='speed',
type=BRIGADIER_FLOAT,
next=[
ArgumentSchema(
name='count',
type=BRIGADIER_INTEGER,
next=[
TERMINAL,
ArgumentSchema(
name='display_mode',
type=makeLiteralsArgumentType(['force', 'normal']),
next=[
TERMINAL,
ArgumentSchema(
name='viewers',
type=MINECRAFT_ENTITY,
next=[]
),
]
),
]
),
]
),
]
),
]
),
]
_SPECIAL_PARTICLES_tmp = [
KeywordSchema(
name='dust',
next=[
ArgumentSchema(
name='red',
type=BRIGADIER_FLOAT,
next=[
ArgumentSchema(
name='green',
type=BRIGADIER_FLOAT,
next=[
ArgumentSchema(
name='blue',
type=BRIGADIER_FLOAT,
next=[
ArgumentSchema(
name='size',
type=BRIGADIER_FLOAT,
next=PARTICLE_ARGUMENTS
),
]
),
]
),
]
),
]
),
KeywordSchema(
name='dust_color_transition',
next=[
ArgumentSchema(
name='red',
type=BRIGADIER_FLOAT,
next=[
ArgumentSchema(
name='green',
type=BRIGADIER_FLOAT,
next=[
ArgumentSchema(
name='blue',
type=BRIGADIER_FLOAT,
next=[
ArgumentSchema(
name='size',
type=BRIGADIER_FLOAT,
next=[
ArgumentSchema(
name='red',
type=BRIGADIER_FLOAT,
next=[
ArgumentSchema(
name='green',
type=BRIGADIER_FLOAT,
next=[
ArgumentSchema(
name='blue',
type=BRIGADIER_FLOAT,
next=PARTICLE_ARGUMENTS
),
]
),
]
),
]
),
]
),
]
),
]
),
]
),
KeywordSchema(
name='block',
next=[
ArgumentSchema(
name='blockState',
type=MINECRAFT_BLOCK_STATE,
next=PARTICLE_ARGUMENTS
),
]
),
KeywordSchema(
name='falling_dust',
next=[
ArgumentSchema(
name='blockState',
type=MINECRAFT_BLOCK_STATE,
next=PARTICLE_ARGUMENTS
),
]
),
KeywordSchema(
name='item',
next=[
ArgumentSchema(
name='item',
type=MINECRAFT_ITEM_STACK,
next=PARTICLE_ARGUMENTS
),
]
),
KeywordSchema(
name='vibration',
next=[
ArgumentSchema(
name='x_start',
type=BRIGADIER_DOUBLE,
next=[
ArgumentSchema(
name='y_start',
type=BRIGADIER_DOUBLE,
next=[
ArgumentSchema(
name='z_start',
type=BRIGADIER_DOUBLE,
next=[
ArgumentSchema(
name='x_end',
type=BRIGADIER_DOUBLE,
next=[
ArgumentSchema(
name='y_end',
type=BRIGADIER_DOUBLE,
next=[
ArgumentSchema(
name='z_end',
type=BRIGADIER_DOUBLE,
next=[
ArgumentSchema(
name='duration',
type=BRIGADIER_INTEGER,
next=PARTICLE_ARGUMENTS
),
]
),
]
),
]
),
]
),
]
),
]
),
]
),
]
_SPECIAL_PARTICLES = []
for particle in _SPECIAL_PARTICLES_tmp:
_SPECIAL_PARTICLES.append(particle)
particle = copy(particle)
particle.name = f'minecraft:{particle.name}'
_SPECIAL_PARTICLES.append(particle)
del _SPECIAL_PARTICLES_tmp
BASIC_COMMAND_INFO['particle'].next = [
*_SPECIAL_PARTICLES,
ArgumentSchema(
name='name',
type=MINECRAFT_PARTICLE,
next=PARTICLE_ARGUMENTS
),
]
BASIC_COMMAND_INFO['perf'].next = [
KeywordSchema('start'),
KeywordSchema('stop'),
]
# playsound <sound> <source> <targets> [<pos>] [<volume>] [<pitch>] [<minVolume>]
BASIC_COMMAND_INFO['playsound'].next = [
ArgumentSchema(
name='sound',
type=MINECRAFT_RESOURCE_LOCATION,
next=[
ArgumentSchema(
name='source',
type=makeLiteralsArgumentType(['master', 'music', 'record', 'weather', 'block', 'hostile', 'neutral', 'player', 'ambient', 'voice']),
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
TERMINAL,
ArgumentSchema(
name='pos',
type=MINECRAFT_VEC3,
next=[
TERMINAL,
ArgumentSchema(
name='volume',
type=BRIGADIER_FLOAT,
next=[
TERMINAL,
ArgumentSchema(
name='pitch',
type=BRIGADIER_FLOAT,
next=[
TERMINAL,
ArgumentSchema(
name='minVolume',
type=BRIGADIER_FLOAT,
),
]
),
]
),
]
),
]
),
]
),
]
),
]
BASIC_COMMAND_INFO['publish'].next = [
TERMINAL,
ArgumentSchema(
name='port',
type=BRIGADIER_INTEGER,
),
]
# recipe (give|take) <targets> (*|<recipe>)
BASIC_COMMAND_INFO['recipe'].next = [
ArgumentSchema(
name='action',
type=makeLiteralsArgumentType(['give', 'take']),
next=[
ArgumentSchema(
name='target',
type=MINECRAFT_ENTITY,
next=[
KeywordSchema('*'),
ArgumentSchema(
name='recipe',
type=MINECRAFT_RESOURCE_LOCATION,
),
]
),
]
),
]
BASIC_COMMAND_INFO['reload'].next = [TERMINAL] # has no arguments!
BASIC_COMMAND_INFO['replaceitem'].next = [
ArgumentSchema(
name='OUTDATED!',
type=MINECRAFT_MESSAGE,
),
] # This command was superseded by the /item command in Java Edition 1.17.
BASIC_COMMAND_INFO['save-all'].next = [
TERMINAL,
KeywordSchema('flush'),
]
BASIC_COMMAND_INFO['save-off'].next = [TERMINAL] # has no arguments!
BASIC_COMMAND_INFO['save-on'].next = [TERMINAL] # has no arguments!
BASIC_COMMAND_INFO['say'].next = [
ArgumentSchema(
name='message',
type=MINECRAFT_MESSAGE,
),
]
# schedule function <function> <time> [append|replace]
# schedule clear <function>
BASIC_COMMAND_INFO['schedule'].next = [
KeywordSchema(
name='function',
next=[
ArgumentSchema(
name='function',
type=MINECRAFT_FUNCTION,
next=[
ArgumentSchema(
name='time',
type=MINECRAFT_TIME,
next=[
TERMINAL,
ArgumentSchema(
name='replace_behaviour',
type=makeLiteralsArgumentType(['append', 'replace']),
),
]
),
]
),
]
),
KeywordSchema(
name='clear',
next=[
ArgumentSchema(
name='function',
type=MINECRAFT_FUNCTION,
),
]
),
]
# scoreboard Command:
SCOREBOARD_OBJECTIVES = []
SCOREBOARD_OBJECTIVES.append(KeywordSchema(name='list'))
# scoreboard objectives add <objective> <criteria> [<displayName>]
SCOREBOARD_OBJECTIVES.append(KeywordSchema(name='add',
next=[
ArgumentSchema(
name='objective',
type=BRIGADIER_STRING,
next=[
ArgumentSchema(
name='criteria',
type=MINECRAFT_OBJECTIVE_CRITERIA,
next=[
TERMINAL,
ArgumentSchema(
name='displayName',
type=MINECRAFT_COMPONENT,
),
]
),
]
),
]
))
# scoreboard objectives remove <objective>
SCOREBOARD_OBJECTIVES.append(KeywordSchema(name='remove',
next=[
ArgumentSchema(
name='objective',
type=MINECRAFT_OBJECTIVE,
),
]
))
# scoreboard objectives setdisplay <slot> [<objective>]
SCOREBOARD_OBJECTIVES.append(KeywordSchema(name='setdisplay',
next=[
ArgumentSchema(
name='slot',
type=MINECRAFT_SCOREBOARD_SLOT,
next=[
TERMINAL,
ArgumentSchema(
name='objective',
type=MINECRAFT_OBJECTIVE,
),
]
),
]
))
# scoreboard objectives modify <objective> displayname <displayName>
# scoreboard objectives modify <objective> rendertype (hearts|integer)
SCOREBOARD_OBJECTIVES.append(KeywordSchema(name='modify',
next=[
ArgumentSchema(
name='objective',
type=MINECRAFT_OBJECTIVE,
next=[
KeywordSchema(
name='displayname',
next=[
ArgumentSchema(
name='displayName',
type=MINECRAFT_COMPONENT,
),
]
),
KeywordSchema(
name='rendertype',
next=[
ArgumentSchema(
name='rendertype',
type=makeLiteralsArgumentType(['hearts', 'integer']),
),
]
),
]
),
]
))
SCOREBOARD_PLAYERS = []
# scoreboard players list [<target>]
SCOREBOARD_PLAYERS.append(KeywordSchema(name='list',
next=[
TERMINAL,
ArgumentSchema(
name='target',
type=MINECRAFT_SCORE_HOLDER,
),
]
))
# scoreboard players get <target> <objective>
SCOREBOARD_PLAYERS.append(KeywordSchema(name='get',
next=[
ArgumentSchema(
name='target',
type=MINECRAFT_SCORE_HOLDER,
next=[
ArgumentSchema(
name='objective',
type=MINECRAFT_OBJECTIVE,
),
]
),
]
))
# scoreboard players set <targets> <objective> <score>
SCOREBOARD_PLAYERS.append(KeywordSchema(name='set',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_SCORE_HOLDER,
next=[
ArgumentSchema(
name='objective',
type=MINECRAFT_OBJECTIVE,
next=[
ArgumentSchema(
name='score',
type=BRIGADIER_INTEGER,
),
]
),
]
),
]
))
# scoreboard players add <targets> <objective> <score>
SCOREBOARD_PLAYERS.append(KeywordSchema(name='add',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_SCORE_HOLDER,
next=[
ArgumentSchema(
name='objective',
type=MINECRAFT_OBJECTIVE,
next=[
ArgumentSchema(
name='score',
type=BRIGADIER_INTEGER,
),
]
),
]
),
]
))
# scoreboard players remove <targets> <objective> <score>
SCOREBOARD_PLAYERS.append(KeywordSchema(name='remove',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_SCORE_HOLDER,
next=[
ArgumentSchema(
name='objective',
type=MINECRAFT_OBJECTIVE,
next=[
ArgumentSchema(
name='score',
type=BRIGADIER_INTEGER,
),
]
),
]
),
]
))
# scoreboard players reset <targets> [<objective>]
SCOREBOARD_PLAYERS.append(KeywordSchema(name='reset',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_SCORE_HOLDER,
next=[
TERMINAL,
ArgumentSchema(
name='objective',
type=MINECRAFT_OBJECTIVE,
),
]
),
]
))
# scoreboard players enable <targets> <objective>
SCOREBOARD_PLAYERS.append(KeywordSchema(name='enable',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_SCORE_HOLDER,
next=[
ArgumentSchema(
name='objective',
type=MINECRAFT_OBJECTIVE,
),
]
),
]
))
# scoreboard players operation <targets> <targetObjective> <operation> <source> <sourceObjective>
SCOREBOARD_PLAYERS.append(KeywordSchema(name='operation',
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_SCORE_HOLDER,
next=[
ArgumentSchema(
name='targetObjective',
type=MINECRAFT_OBJECTIVE,
next=[
ArgumentSchema(
name='operation',
type=MINECRAFT_OPERATION,
next=[
ArgumentSchema(
name='source',
type=MINECRAFT_SCORE_HOLDER,
next=[
ArgumentSchema(
name='sourceObjective',
type=MINECRAFT_OBJECTIVE,
),
]
),
]
),
]
),
]
),
]
))
BASIC_COMMAND_INFO['scoreboard'].next = [
KeywordSchema(
name='objectives',
next=SCOREBOARD_OBJECTIVES
),
KeywordSchema(
name='players',
next=SCOREBOARD_PLAYERS
),
]
BASIC_COMMAND_INFO['seed'].next = [TERMINAL] # has no arguments!
# setblock <pos> <block> [destroy|keep|replace]
BASIC_COMMAND_INFO['setblock'].next = [
ArgumentSchema(
name='pos',
type=MINECRAFT_BLOCK_POS,
next=[
ArgumentSchema(
name='block',
type=MINECRAFT_BLOCK_STATE,
next=[
TERMINAL,
ArgumentSchema(
name='operation',
type=makeLiteralsArgumentType(['destroy', 'keep', 'replace']),
),
]
),
]
),
]
BASIC_COMMAND_INFO['setidletimeout'].next = [
ArgumentSchema(
name='minutes',
type=BRIGADIER_INTEGER,
),
]
# setworldspawn [<pos>] [<angle>]
BASIC_COMMAND_INFO['setworldspawn'].next = [
TERMINAL,
ArgumentSchema(
name='pos',
type=MINECRAFT_BLOCK_POS,
next=[
TERMINAL,
ArgumentSchema(
name='angle',
type=MINECRAFT_ANGLE,
),
]
),
]
# spawnpoint [<targets>] [<pos>] [<angle>]
BASIC_COMMAND_INFO['spawnpoint'].next = [
TERMINAL,
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
TERMINAL,
ArgumentSchema(
name='pos',
type=MINECRAFT_BLOCK_POS,
next=[
TERMINAL,
ArgumentSchema(
name='angle',
type=MINECRAFT_ANGLE,
),
]
),
]
),
]
# spectate <target> [<player>]
BASIC_COMMAND_INFO['spectate'].next = [
ArgumentSchema(
name='target',
type=MINECRAFT_ENTITY,
next=[
TERMINAL,
ArgumentSchema(
name='player',
type=MINECRAFT_ENTITY,
),
]
),
]
# spreadplayers <center> <spreadDistance> <maxRange> <respectTeams> <targets>
# spreadplayers <center> <spreadDistance> <maxRange> under <maxHeight> <respectTeams> <targets>
SPREADPLAYERS_RESPECT_TEAMS = [
ArgumentSchema(
name='respectTeams',
type=BRIGADIER_BOOL,
next=[
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
),
]
),
]
BASIC_COMMAND_INFO['spreadplayers'].next = [
ArgumentSchema(
name='center',
type=MINECRAFT_VEC2,
next=[
ArgumentSchema(
name='spreadDistance',
type=BRIGADIER_FLOAT,
next=[
ArgumentSchema(
name='maxRange',
type=BRIGADIER_FLOAT,
next=[
KeywordSchema(
name='under',
next=[
ArgumentSchema(
name='maxHeight',
type=BRIGADIER_INTEGER,
next=SPREADPLAYERS_RESPECT_TEAMS
),
]
),
*SPREADPLAYERS_RESPECT_TEAMS
]
),
]
),
]
),
]
BASIC_COMMAND_INFO['stop'].next = [TERMINAL] # has no arguments!
# stopsound <targets> [<source>] [<sound>]
BASIC_COMMAND_INFO['stopsound'].next = [
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
TERMINAL,
ArgumentSchema(
name='source',
type=makeLiteralsArgumentType(['*', 'master', 'music', 'record', 'weather', 'block', 'hostile', 'neutral', 'player', 'ambient', 'voice']),
next=[
TERMINAL,
ArgumentSchema(
name='sound',
type=MINECRAFT_RESOURCE_LOCATION,
description="Specifies the sound to stop. Must be a resource location. \n\nMust be a sound event defined in `sounds.json` (for example, `entity.pig.ambient`).",
),
]
),
]
),
]
# summon <entity> [<pos>] [<nbt>]
BASIC_COMMAND_INFO['summon'].next = [
ArgumentSchema(
name='entity',
type=MINECRAFT_ENTITY_SUMMON,
next=[
TERMINAL,
ArgumentSchema(
name='pos',
type=MINECRAFT_VEC3,
next=[
TERMINAL,
ArgumentSchema(
name='nbt',
type=MINECRAFT_NBT_COMPOUND_TAG,
),
]
),
]
),
]
# tag <targets> add <name>
# tag <targets> list
# tag <targets> remove <name>
BASIC_COMMAND_INFO['tag'].next = [
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
KeywordSchema(
name='add',
next=[
ArgumentSchema(
name='name',
type=BRIGADIER_STRING,
),
]
),
KeywordSchema('list'),
KeywordSchema(
name='remove',
next=[
ArgumentSchema(
name='name',
type=BRIGADIER_STRING,
),
]
),
]
),
]
# team list [<team>]
# Lists all teams, with their display names and the amount of entities in them. The optional <team> can be used to specify a particular team.
#
# team add <team> [<displayName>]
# Creates a team with the given name and optional display name. <displayName> defaults to <objective> when unspecified.
#
# team remove <team>
# Deletes the specified team.
#
# team empty <team>
# Removes all members from the named team.
#
# team join <team> [<members>]
# Assigns the specified entities to the specified team. If no entities is specified, makes the executor join the team.
#
# team leave <members>
# Makes the specified entities leave their teams.
#
# team modify <team> <option> <value>
# Modifies the options of the specified team.
BASIC_COMMAND_INFO['team'].next = [
KeywordSchema(
name='list',
description="Lists all teams, with their display names and the amount of entities in them. The optional `<team>` can be used to specify a particular team.",
next=[
TERMINAL,
ArgumentSchema(
name='team',
type=MINECRAFT_TEAM,
),
]
),
KeywordSchema(
name='add',
description="Creates a team with the given name and optional display name. `<displayName>` defaults to `<objective>` when unspecified.",
next=[
ArgumentSchema(
name='team',
type=BRIGADIER_STRING,
next=[
TERMINAL,
ArgumentSchema(
name='displayName',
type=MINECRAFT_COMPONENT,
),
]
),
]
),
KeywordSchema(
name='remove',
description="Deletes the specified team.",
next=[
ArgumentSchema(
name='team',
type=MINECRAFT_TEAM,
),
]
),
KeywordSchema(
name='empty',
description="Removes all members from the named team.",
next=[
ArgumentSchema(
name='team',
type=MINECRAFT_TEAM,
),
]
),
KeywordSchema(
name='join',
description="Assigns the specified entities to the specified team. If no entities is specified, makes the executor join the team.",
next=[
ArgumentSchema(
name='team',
type=MINECRAFT_TEAM,
next=[
TERMINAL,
ArgumentSchema(
name='members',
type=MINECRAFT_SCORE_HOLDER,
),
]
),
]
),
KeywordSchema(
name='leave',
description="Makes the specified entities leave their teams.",
next=[
ArgumentSchema(
name='members',
type=MINECRAFT_SCORE_HOLDER,
),
]
),
KeywordSchema(
name='modify',
description="Modifies the options of the specified team.",
next=[
ArgumentSchema(
name='team',
type=MINECRAFT_TEAM,
next=[
SwitchSchema(
name='option',
options=[
KeywordSchema(
name='displayName',
description="Set the display name of the team.",
next=[
ArgumentSchema(
name='displayName',
type=MINECRAFT_COMPONENT,
description="Specifies the team name to be displayed. Must be a raw JSON text.",
),
]
),
KeywordSchema(
name='color',
description="Decide the color of the team and players in chat, above their head, on the Tab menu, and on the sidebar. Also changes the color of the outline of the entities caused by the Glowing effect.",
next=[
ArgumentSchema(
name='value',
type=MINECRAFT_COLOR,
description="Must be a color.\n\nDefaults to reset. If reset, names are shown in default color and formatting.",
),
]
),
KeywordSchema(
name='friendlyFire',
description="Enable/Disable players inflicting damage on each other when on the same team. (Note: players can still inflict status effects on each other.) Does not affect some non-player entities in a team.",
next=[
ArgumentSchema(
name='allowed',
type=BRIGADIER_BOOL,
description=" - true - (Default) Enable players inflicting damage on each other when in the same team.\n - false - Disable players inflicting damage on each other when in the same team.",
),
]
),
KeywordSchema(
name='seeFriendlyInvisibles',
description="Decide players can see invisible players on their team as whether semi-transparent or completely invisible.",
next=[
ArgumentSchema(
name='allowed',
type=BRIGADIER_BOOL,
description=" - true - (Default) Can see invisible players on the same team semi-transparently.\n - false - Cannot see invisible players on the same team.",
),
]
),
KeywordSchema(
name='nametagVisibility',
description="Decide whose name tags above their heads can be seen.",
next=[
KeywordSchema(
name='never',
description="Name above player's head cannot be seen by any players.",
),
KeywordSchema(
name='hideForOtherTeams',
description="Name above player's head can be seen only by players in the same team.",
),
KeywordSchema(
name='hideForOwnTeam',
description="Name above player's head cannot be seen by all the players in the same team.",
),
KeywordSchema(
name='always',
description="(Default) Name above player's head can be seen by all the players.",
),
]
),
KeywordSchema(
name='deathMessageVisibility',
description="Control the visibility of death messages for players.",
next=[
KeywordSchema(
name='never',
description="Hide death message for all the players.",
),
KeywordSchema(
name='hideForOtherTeams',
description="Hide death message to all the players who are not in the same team.",
),
KeywordSchema(
name='hideForOwnTeam',
description="Hide death message to players in the same team.",
),
KeywordSchema(
name='always',
description="(Default) Make death message visible to all the players.",
),
]
),
KeywordSchema(
name='collisionRule',
description="Controls the way the entities on the team collide with other entities.",
next=[
KeywordSchema(
name='always',
description="(Default) Normal collision.",
),
KeywordSchema(
name='never',
description="No entities can push entities in this team.",
),
KeywordSchema(
name='pushOtherTeams',
description="Entities in this team can be pushed only by other entities in the same team.",
),
KeywordSchema(
name='pushOwnTeam',
description="Entities in this team cannot be pushed by another entity in this team.",
),
]
),
KeywordSchema(
name='prefix',
description="Modifies the prefix that displays before players' names.",
next=[
ArgumentSchema(
name='prefix',
type=MINECRAFT_COMPONENT,
description="Specifies the prefix to display. Must be a raw JSON text.",
),
]
),
KeywordSchema(
name='suffix',
description="Modifies the suffix that displays before players' names.",
next=[
ArgumentSchema(
name='suffix',
type=MINECRAFT_COMPONENT,
description="Specifies the suffix to display. Must be a raw JSON text.",
),
]
),
],
),
]
),
]
),
]
BASIC_COMMAND_INFO['teammsg'].next = [
ArgumentSchema(
name='message',
type=MINECRAFT_MESSAGE,
),
]
# teleport <destination>
# teleport <location>
#
# teleport <targets> <destination>
# teleport <targets> <location>
# teleport <targets> <location> <rotation>
# teleport <targets> <location> facing <facingLocation>
# teleport <targets> <location> facing entity <facingEntity> [<facingAnchor>]
BASIC_COMMAND_INFO['teleport'].next = [
# ArgumentSchema(
# name='destination',
# type=MINECRAFT_ENTITY,
# ),
ArgumentSchema(
name='location',
type=MINECRAFT_VEC3,
),
ArgumentSchema(
name='targets|destination',
type=MINECRAFT_ENTITY,
next=[
TERMINAL,
ArgumentSchema(
name='location',
type=MINECRAFT_VEC3,
next=[
TERMINAL,
ArgumentSchema(
name='rotation',
type=MINECRAFT_ROTATION,
),
KeywordSchema(
name='facing',
next=[
ArgumentSchema(
name='facingLocation',
type=MINECRAFT_VEC3,
),
KeywordSchema(
name='entity',
next=[
ArgumentSchema(
name='facingEntity',
type=MINECRAFT_ENTITY,
next=[
TERMINAL,
ArgumentSchema(
name='facingAnchor',
type=MINECRAFT_ENTITY_ANCHOR,
),
]
),
]
),
]
),
]
),
ArgumentSchema(
name='destination',
type=MINECRAFT_ENTITY,
),
]
),
]
BASIC_COMMAND_INFO['tell'].next = BASIC_COMMAND_INFO['msg'].next
# tellraw <targets> <message>
BASIC_COMMAND_INFO['tellraw'].next = [
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='message',
type=MINECRAFT_COMPONENT,
),
]
),
]
BASIC_COMMAND_INFO['testfor'].next = [] # This command has been removed
BASIC_COMMAND_INFO['testforblock'].next = [] # This command has been removed
BASIC_COMMAND_INFO['testforblocks'].next = [] # This command has been removed
BASIC_COMMAND_INFO['time'].next = [
KeywordSchema(
name='add',
description="Adds `<time>` to the in-game daytime.",
next=[
ArgumentSchema(
name='time',
type=MINECRAFT_TIME,
),
]
),
KeywordSchema(
name='query',
description="Queries current time.",
next=[
ArgumentSchema(
name='daytime|gametime|day',
type=makeLiteralsArgumentType(['daytime', 'gametime', 'day']),
),
]
),
KeywordSchema(
name='set',
next=[
ArgumentSchema(
name='timeSpec',
type=makeLiteralsArgumentType(['day', 'night', 'noon', 'midnight']),
),
]
),
KeywordSchema(
name='set',
next=[
ArgumentSchema(
name='time',
type=MINECRAFT_TIME,
),
]
),
]
# title <targets> (clear|reset)
# title <targets> (title|subtitle|actionbar) <title>
# title <targets> times <fadeIn> <stay> <fadeOut>
BASIC_COMMAND_INFO['title'].next = [
ArgumentSchema(
name='targets',
type=MINECRAFT_ENTITY,
next=[
ArgumentSchema(
name='clear|reset',
type=makeLiteralsArgumentType(['clear', 'reset']),
),
ArgumentSchema(
name='title|subtitle|actionbar',
type=makeLiteralsArgumentType(['title', 'subtitle', 'actionbar']),
next=[
ArgumentSchema(
name='title',
type=MINECRAFT_COMPONENT,
),
]
),
KeywordSchema(
name='times',
next=[
ArgumentSchema(
name='fadeIn',
type=BRIGADIER_INTEGER,
next=[
ArgumentSchema(
name='stay',
type=BRIGADIER_INTEGER,
next=[
ArgumentSchema(
name='fadeOut',
type=BRIGADIER_INTEGER,
),
]
),
]
),
]
),
]
),
]
BASIC_COMMAND_INFO['tm'].next = BASIC_COMMAND_INFO['teammsg'].next
# BASIC_COMMAND_INFO['toggledownfall'].next = [] has been removed
BASIC_COMMAND_INFO['tp'].next = BASIC_COMMAND_INFO['teleport'].next
# trigger <objective>
# trigger <objective> add <value>
# trigger <objective> set <value>
BASIC_COMMAND_INFO['trigger'].next = [
ArgumentSchema(
name='objective',
type=MINECRAFT_OBJECTIVE,
next=[
TERMINAL,
KeywordSchema(
name='add',
next=[
ArgumentSchema(
name='value',
type=BRIGADIER_INTEGER,
),
]
),
KeywordSchema(
name='set',
next=[
ArgumentSchema(
name='value',
type=BRIGADIER_INTEGER,
),
],
),
]
),
]
BASIC_COMMAND_INFO['w'].next = BASIC_COMMAND_INFO['msg'].next
# weather (clear|rain|thunder) [<duration>]
BASIC_COMMAND_INFO['weather'].next = [
ArgumentSchema(
name='objective',
type=makeLiteralsArgumentType(['clear', 'rain', 'thunder']),
next=[
TERMINAL,
ArgumentSchema(
name='duration',
type=BRIGADIER_INTEGER,
),
]
),
]
BASIC_COMMAND_INFO['whitelist'].next = [] # TODO: BASIC_COMMAND_INFO['whitelist'].next
BASIC_COMMAND_INFO['worldborder'].next = [] # TODO: BASIC_COMMAND_INFO['worldborder'].next
BASIC_COMMAND_INFO['xp'].next = BASIC_COMMAND_INFO['experience'].next
|
python
|
# -*- coding: utf-8 -*-
# Port of the official ttgo library for the LilyGo TTGO T-Watch 2020.
# Author: Nikita Selin (Anodev)[https://github.com/OPHoperHPO]
import gc
import _thread
import axp202
import lvgl as lv
import st7789_lvgl
import ft6x36
from bma42x import BMA42X
from pcf8563 import PCF8563
from machine import Pin, I2C, PWM
class Watch:
def __init__(self, fastboot=False):
self.__i2c__ = I2C(1, scl=Pin(22), sda=Pin(21))
self.pmu = axp202.PMU(self.__i2c__)
self.tft = self.__init_display__()
self.touch = self.__init_touch__()
self.motor = None
self.rtc = None
self.bma = None
self.ticker = None
self.__fastboot__ = fastboot
if fastboot:
_thread.start_new_thread(self.__init_prep__, ())
else:
self.__init_prep__()
def __init_prep__(self):
self.init_power()
self.motor = Motor()
self.rtc = PCF8563(self.__i2c__)
self.bma = self.__init_bma__()
def __init_touch__(self):
ft6x36.lvgl_touch_init()
return ft6x36
def __init_bma__(self):
# BMA423.init(self.__i2c__, irq=True)
# return BMA423
bma423 = BMA42X(self.__i2c__)
bma423.init()
return bma423
def __init_display__(self):
return Display(self.pmu)
@staticmethod
def pmu_attach_interrupt(callback):
irq = Pin(35, mode=Pin.IN)
irq.irq(handler=callback, trigger=Pin.IRQ_FALLING)
return irq
@staticmethod
def bma_attach_interrupt(callback):
irq = Pin(39, mode=Pin.IN)
irq.irq(handler=callback, trigger=Pin.IRQ_RISING)
return irq
@staticmethod
def rtc_attach_interrupt(rtc_callback):
irq = Pin(37, mode=Pin.IN)
irq.irq(handler=rtc_callback, trigger=Pin.IRQ_FALLING)
return irq
def enable_audio_power(self, en=True):
self.pmu.setLDO3Mode(1)
self.pmu.setPowerOutPut(axp202.AXP202_LDO3, en)
def lvgl_begin(self):
import lvesp32
lv.init()
self.ticker = lvesp32
disp_buf1 = st7789_lvgl.lv_disp_buf_t()
buf1_1 = bytes(240 * 10)
disp_buf1.init(buf1_1, None, len(buf1_1) // 4)
disp_drv = st7789_lvgl.lv_disp_drv_t()
disp_drv.init()
disp_drv.buffer = disp_buf1
disp_drv.flush_cb = st7789_lvgl.driver_flush
disp_drv.hor_res = 240
disp_drv.ver_res = 240
disp_drv.register()
indev_drv = ft6x36.lv_indev_drv_t()
indev_drv.init()
indev_drv.type = lv.INDEV_TYPE.POINTER
indev_drv.read_cb = ft6x36.touch_driver_read
indev_drv.register()
def init_power(self):
# Change the button boot time to 4 seconds
self.pmu.setShutdownTime(axp202.AXP_POWER_OFF_TIME_4S)
# Turn off the charging instructions, there should be no
self.pmu.setChgLEDMode(axp202.AXP20X_LED_OFF)
# Turn off external enable
self.pmu.setPowerOutPut(axp202.AXP202_EXTEN, False)
# axp202 allows maximum charging current of 1800mA, minimum 300mA
self.pmu.setChargeControlCur(300)
def power_off(self):
self.pmu.setPowerOutPut(axp202.AXP202_EXTEN, False)
self.pmu.setPowerOutPut(axp202.AXP202_LDO4, False)
self.pmu.setPowerOutPut(axp202.AXP202_DCDC2, False)
self.pmu.setPowerOutPut(axp202.AXP202_LDO3, False)
self.pmu.setPowerOutPut(axp202.AXP202_LDO2, False)
class Display:
"""Display wrapper"""
def __init__(self, pmu):
"""Inits display"""
# Init display
tft = st7789_lvgl
tft.lvgl_driver_init()
self.tft = tft
self.pmu = pmu
self.set_backlight_level(0) # Turn backlight off
self.backlight_level = 0
self.bl_pin = Pin(12, Pin.OUT)
self.backlight(1) # Enable power on backlight
def backlight_fade(self, val=100):
if val > self.backlight_level:
data = 0
for i in range(self.backlight_level, val):
data = i
self.set_backlight_level(i)
self.backlight_level = data
return True
elif val < self.backlight_level:
data = 0
for i in reversed(range(val, self.backlight_level)):
data = i
self.set_backlight_level(i)
self.backlight_level = data
return True
def switch_scene(self):
level = self.backlight_level
self.backlight_fade(0)
self.backlight_fade(level)
def set_backlight_level(self, percent):
if 0 <= percent <= 100:
voltage = 800 * percent / 100
self.__set_lcd_backlight_voltage__(2400 + voltage)
self.backlight_level = percent
def display_off(self):
self.tft.st7789_send_cmd(0x10)
def display_sleep(self):
self.tft.st7789_send_cmd(0x10)
def display_wakeup(self):
self.tft.st7789_send_cmd(0x11)
def backlight(self, val):
self.bl_pin.value(val)
self.__turn_lcd_backlight__(val)
def __turn_lcd_backlight__(self, val):
if val == 1:
self.pmu.setPowerOutPut(axp202.AXP202_LDO2, True)
else:
self.pmu.setPowerOutPut(axp202.AXP202_LDO2, False)
def __set_lcd_backlight_voltage__(self, voltage=3200):
if voltage >= 3200:
self.pmu.setLDO2Voltage(3200)
elif voltage <= 2400:
self.pmu.setLDO2Voltage(2400)
else:
self.pmu.setLDO2Voltage(voltage)
class Motor:
def __init__(self):
self.pwm = PWM(Pin(4, Pin.OUT), freq=1000, duty=0)
def on(self):
self.pwm.duty(5)
def off(self):
self.pwm.duty(0)
def set_strength(self, strength):
self.pwm.duty(5 * strength / 100)
def set_freq(self, freq):
self.pwm.freq(freq)
|
python
|
# https://leetcode.com/problems/longest-common-prefix/
class Solution:
def longestCommonPrefix(self, strs: List[str]) -> str:
if not strs:
return ''
# since list of string will be sorted and retrieved min max by alphebetic order
s1, s2 = min(strs), max(strs)
for i, c in enumerate(s1):
if c != s2[i]:
return s1[:i] # stop until hit the split index
return s1
|
python
|
from django.apps import AppConfig
class S3FileConfig(AppConfig):
name = 'apps.s3file'
|
python
|
"""
test_django-oci api
-------------------
Tests for `django-oci` api.
"""
from django.urls import reverse
from django.contrib.auth.models import User
from django_oci import settings
from rest_framework import status
from rest_framework.test import APITestCase
from django.test.utils import override_settings
from time import sleep
from unittest import skipIf
import subprocess
import requests
import hashlib
import base64
import json
import os
import re
here = os.path.abspath(os.path.dirname(__file__))
# Boolean from environment that determines authentication required variable
auth_regex = re.compile('(\w+)[:=] ?"?([^"]+)"?')
# Important: user needs to be created globally to be seen
user, _ = User.objects.get_or_create(username="dinosaur")
token = str(user.auth_token)
def calculate_digest(blob):
"""Given a blob (the body of a response) calculate the sha256 digest"""
hasher = hashlib.sha256()
hasher.update(blob)
return hasher.hexdigest()
def get_auth_header(username, password):
"""django oci requires the user token as the password to generate a longer
auth token that will expire after some number of seconds
"""
auth_str = "%s:%s" % (username, password)
auth_header = base64.b64encode(auth_str.encode("utf-8"))
return {"Authorization": "Basic %s" % auth_header.decode("utf-8")}
def get_authentication_headers(response):
"""Given a requests.Response, assert that it has status code 401 and
provides the Www-Authenticate header that can be parsed for the request
"""
assert response.status_code == 401
assert "Www-Authenticate" in response.headers
matches = dict(auth_regex.findall(response.headers["Www-Authenticate"]))
for key in ["scope", "realm", "service"]:
assert key in matches
# Prepare authentication headers and get token
headers = get_auth_header(user.username, token)
url = "%s?service=%s&scope=%s" % (
matches["realm"],
matches["service"],
matches["scope"],
)
# With proper headers should be 200
auth_response = requests.get(url, headers=headers)
assert auth_response.status_code == 200
body = auth_response.json()
# Make sure we have the expected fields
for key in ["token", "expires_in", "issued_at"]:
assert key in body
# Formulate new auth header
return {"Authorization": "Bearer %s" % body["token"]}
def read_in_chunks(image, chunk_size=1024):
"""Helper function to read file in chunks, with default size 1k."""
while True:
data = image.read(chunk_size)
if not data:
break
yield data
def get_manifest(config_digest, layer_digest):
"""A dummy image manifest with a config and single image layer"""
return json.dumps(
{
"schemaVersion": 2,
"config": {
"mediaType": "application/vnd.oci.image.config.v1+json",
"size": 7023,
"digest": config_digest,
},
"layers": [
{
"mediaType": "application/vnd.oci.image.layer.v1.tar+gzip",
"size": 32654,
"digest": layer_digest,
}
],
"annotations": {"com.example.key1": "peas", "com.example.key2": "carrots"},
}
)
class APIBaseTests(APITestCase):
def setUp(self):
self.process = subprocess.Popen(["python", "manage.py", "runserver"])
sleep(2)
def tearDown(self):
os.kill(self.process.pid, 9)
def test_api_version_check(self):
"""
GET of /v2 should return a 200 response.
"""
url = reverse("django_oci:api_version_check")
response = self.client.get(url, format="json")
self.assertEqual(response.status_code, status.HTTP_200_OK)
class APIPushTests(APITestCase):
def push(
self,
digest,
data,
content_type="application/octet-stream",
test_response=True,
extra_headers={},
):
url = "http://127.0.0.1:8000%s?digest=%s" % (
reverse("django_oci:blob_upload", kwargs={"name": self.repository}),
digest,
)
print("Single Monolithic POST: %s" % url)
headers = {
"Content-Length": str(len(data)),
"Content-Type": content_type,
}
headers.update(extra_headers)
response = requests.post(url, data=data, headers=headers)
if test_response:
self.assertTrue(
response.status_code
in [status.HTTP_202_ACCEPTED, status.HTTP_201_CREATED]
)
return response
def test_push_post_then_put(self):
"""
POST /v2/<name>/blobs/uploads/
PUT /v2/<name>/blobs/uploads/
"""
url = "http://127.0.0.1:8000%s" % (
reverse("django_oci:blob_upload", kwargs={"name": self.repository})
)
print("POST to request session: %s" % url)
headers = {"Content-Type": "application/octet-stream"}
response = requests.post(url, headers=headers)
auth_headers = get_authentication_headers(response)
headers.update(auth_headers)
response = requests.post(url, headers=headers)
# Location must be in response header
self.assertEqual(response.status_code, status.HTTP_202_ACCEPTED)
self.assertTrue("Location" in response.headers)
blob_url = "http://127.0.0.1:8000%s?digest=%s" % (
response.headers["Location"],
self.digest,
)
# PUT to upload blob url
headers = {
"Content-Length": str(len(self.data)),
"Content-Type": "application/octet-stream",
}
headers.update(auth_headers)
print("PUT to upload: %s" % blob_url)
response = requests.put(blob_url, data=self.data, headers=headers)
# This should allow HTTP_202_ACCEPTED too
self.assertEqual(response.status_code, status.HTTP_201_CREATED)
self.assertTrue("Location" in response.headers)
download_url = add_url_prefix(response.headers["Location"])
response = requests.get(download_url, headers=auth_headers)
self.assertEqual(response.status_code, status.HTTP_200_OK)
# Test upload request from another repository
non_standard_name = "conformance-aedf05b6-6996-4dae-ad18-70a4db9e9061"
url = "http://127.0.0.1:8000%s" % (
reverse("django_oci:blob_upload", kwargs={"name": non_standard_name})
)
url = "%s?mount=%s&from=%s" % (url, self.digest, self.repository)
print("POST to request mount from another repository: %s" % url)
headers = {"Content-Type": "application/octet-stream"}
response = requests.post(url, headers=headers)
auth_headers = get_authentication_headers(response)
headers.update(auth_headers)
response = requests.post(url, headers=headers)
assert "Location" in response.headers
assert non_standard_name in response.headers["Location"]
download_url = add_url_prefix(response.headers["Location"])
response = requests.get(download_url, headers=auth_headers)
self.assertEqual(response.status_code, status.HTTP_200_OK)
def test_push_chunked(self):
"""
POST /v2/<name>/blobs/uploads/
PATCH <location>
PUT /v2/<name>/blobs/uploads/
"""
url = "http://127.0.0.1:8000%s" % (
reverse("django_oci:blob_upload", kwargs={"name": self.repository})
)
print("POST to request chunked session: %s" % url)
headers = {"Content-Type": "application/octet-stream", "Content-Length": "0"}
response = requests.post(url, headers=headers)
auth_headers = get_authentication_headers(response)
headers.update(auth_headers)
response = requests.post(url, headers=headers)
# Location must be in response header
self.assertEqual(response.status_code, status.HTTP_202_ACCEPTED)
self.assertTrue("Location" in response.headers)
session_url = "http://127.0.0.1:8000%s" % response.headers["Location"]
# Read the file in chunks, for each do a patch
start = 0
with open(self.image, "rb") as fd:
for chunk in read_in_chunks(fd):
if not chunk:
break
end = start + len(chunk) - 1
content_range = "%s-%s" % (start, end)
headers = {
"Content-Range": content_range,
"Content-Length": str(len(chunk)),
"Content-Type": "application/octet-stream",
}
headers.update(auth_headers)
start = end + 1
print("PATCH to upload content range: %s" % content_range)
response = requests.patch(session_url, data=chunk, headers=headers)
self.assertEqual(response.status_code, status.HTTP_202_ACCEPTED)
self.assertTrue("Location" in response.headers)
# Finally, issue a PUT request to close blob
session_url = "%s?digest=%s" % (session_url, self.digest)
response = requests.put(session_url, headers=auth_headers)
# Location must be in response header
self.assertEqual(response.status_code, status.HTTP_201_CREATED)
self.assertTrue("Location" in response.headers)
def test_push_view_delete_manifest(self):
"""
PUT /v2/<name>/manifests/<reference>
DELETE /v2/<name>/manifests/<reference>
"""
url = "http://127.0.0.1:8000%s" % (
reverse(
"django_oci:image_manifest",
kwargs={"name": self.repository, "tag": "latest"},
)
)
print("PUT to create image manifest: %s" % url)
# Calculate digest for config (yes, we haven't uploaded the blob, it's ok)
with open(self.config, "r") as fd:
content = fd.read()
config_digest = calculate_digest(content.encode("utf-8"))
# Prepare the manifest (already a text string)
manifest = get_manifest(config_digest, self.digest)
manifest_reference = "sha256:%s" % calculate_digest(manifest.encode("utf-8"))
headers = {
"Content-Type": "application/vnd.oci.image.manifest.v1+json",
"Content-Length": str(len(manifest)),
}
response = requests.put(url, headers=headers, data=manifest)
auth_headers = get_authentication_headers(response)
headers.update(auth_headers)
response = requests.put(url, headers=headers, data=manifest)
# Location must be in response header
self.assertEqual(response.status_code, status.HTTP_201_CREATED)
self.assertTrue("Location" in response.headers)
# test manifest download
response = requests.get(url, headers=auth_headers).json()
for key in ["schemaVersion", "config", "layers", "annotations"]:
assert key in response
# Retrieve newly created tag
tags_url = "http://127.0.0.1:8000%s" % (
reverse("django_oci:image_tags", kwargs={"name": self.repository})
)
print("GET to list tags: %s" % tags_url)
tags = requests.get(tags_url, headers=auth_headers)
self.assertEqual(tags.status_code, status.HTTP_200_OK)
tags = tags.json()
for key in ["name", "tags"]:
assert key in tags
# First delete tag (we are allowed to have an untagged manifest)
response = requests.delete(url, headers=auth_headers)
self.assertEqual(response.status_code, status.HTTP_202_ACCEPTED)
# Finally, delete the manifest
url = "http://127.0.0.1:8000%s" % (
reverse(
"django_oci:image_manifest",
kwargs={"name": self.repository, "reference": manifest_reference},
)
)
response = requests.delete(url, headers=auth_headers)
self.assertEqual(response.status_code, status.HTTP_202_ACCEPTED)
def test_push_single_monolithic_post(self):
"""
POST /v2/<name>/blobs/uploads/
"""
# Push the image blob, should return 401 without authentication
response = self.push(digest=self.digest, data=self.data, test_response=False)
headers = get_authentication_headers(response)
response = self.push(
digest=self.digest,
data=self.data,
test_response=False,
extra_headers=headers,
)
assert response.status_code == 201
assert "Location" in response.headers
download_url = add_url_prefix(response.headers["Location"])
response = requests.get(download_url, headers=headers if headers else None)
self.assertEqual(response.status_code, status.HTTP_200_OK)
# Upload an image manifest
with open(self.config, "r") as fd:
content = fd.read().encode("utf-8")
config_digest = calculate_digest(content)
self.push(digest=config_digest, data=content, extra_headers=headers)
def setUp(self):
self.repository = "vanessa/container"
self.image = os.path.abspath(
os.path.join(here, "..", "examples", "singularity", "busybox_latest.sif")
)
self.config = os.path.abspath(
os.path.join(here, "..", "examples", "singularity", "config.json")
)
# Read binary data and calculate sha256 digest
with open(self.image, "rb") as fd:
self.data = fd.read()
self._digest = calculate_digest(self.data)
self.digest = "sha256:%s" % self._digest
def add_url_prefix(download_url):
if not download_url.startswith("http"):
download_url = "http://127.0.0.1:8000%s" % download_url
return download_url
|
python
|
from _todefrost import package_md5sum
md5 = None
try:
with open('/flash/package.md5') as f:
md5 = f.read().strip()
except Exception as e:
pass
if md5 != package_md5sum.md5sum:
print("package md5 changed....defrosting...")
from _todefrost import microwave
microwave.defrost()
import machine
machine.reset()
|
python
|
#!/usr/bin/env python
import pytest
from clichain import cli, pipeline
import click
from click.testing import CliRunner
import sys
import ast
import logging
from difflib import SequenceMatcher
def test_main_help():
tasks = cli.Tasks()
args = ['--help']
result = cli.test(tasks, args)
print('>> test_main_help #1:\n', result.output, file=sys.stderr)
assert result.exit_code == 0
assert not result.exception
ratio = SequenceMatcher(None, result.output, cli.usage()).ratio()
assert ratio >= 0.8
def test_basic_single_task_help():
tasks = cli.Tasks()
@tasks
@click.command(name='compute')
@click.option('--approximate', '-a',
help='compute with approximation')
@click.argument('y')
def compute_task_cli(approximate, y):
" divide data by 'y' "
pass
args = ['compute', '--help']
result = cli.test(tasks, args)
print('>> test_basic_single_task_help #1:\n', result.output, file=sys.stderr)
assert result.exit_code == 0
assert not result.exception
usage = """\
Usage: _app compute [OPTIONS] Y
divide data by 'y'
Options:
-a, --approximate TEXT compute with approximation
--help Show this message and exit.
"""
ratio = SequenceMatcher(None, result.output, usage).ratio()
assert ratio >= 0.8
def test_basic_single_sequence():
inputs = '1\n2\n3\n'
tasks = cli.Tasks()
@pipeline.task
def compute_task(ctrl, y):
with ctrl as push:
while True:
push((yield) / y)
@pipeline.task
def parse(ctrl):
_parse = ast.literal_eval
with ctrl as push:
while True:
try:
push(_parse((yield)))
except (SyntaxError, ValueError):
pass
@tasks
@click.command(name='parse')
def parse_cli():
" performs literal_eval on data "
return parse()
@tasks
@click.command(name='compute')
@click.option('--approximate', '-a',
help='compute with approximation')
@click.argument('y')
def compute_task_cli(approximate, y):
" divide data by 'y' "
y = ast.literal_eval(y)
if y == 0:
raise click.BadParameter("can't devide by 0")
if approximate:
y = round(y)
return compute_task(y)
args = ['compute', '0']
result = cli.test(tasks, args, input=inputs, catch_exceptions=False)
print('>> test_basic_single_sequence #1:\n', result.output, file=sys.stderr)
usage = """\
Usage: _app compute [OPTIONS] Y
Error: Invalid value: can't devide by 0
"""
ratio = SequenceMatcher(None, result.output, usage).ratio()
assert ratio >= 0.8
args = ['parse', 'compute', '10']
result = cli.test(tasks, args, input=inputs, catch_exceptions=False)
print('>> test_basic_single_sequence #2:\n', result.output, file=sys.stderr)
assert result.output == """\
0.1
0.2
0.3
"""
def _get_pipeline(args, inputs, err_msg=None):
tasks = cli.Tasks()
@pipeline.task
def compute_task(ctrl, name, err):
print(f'starting {name} (coroutine name: {ctrl.name})')
with ctrl as push:
while True:
value = yield
if isinstance(value, str) and '7' in value and err:
raise RuntimeError(name if err_msg is None else err_msg)
push(f'{value.strip()}->{name}')
print(f'finished {name} (coroutine name: {ctrl.name})')
@tasks
@click.command(name='task')
@click.argument('name')
@click.option('--err', '-e', is_flag=True)
def compute_task_cli(name, err):
return compute_task(name, err)
def test():
result = cli.test(tasks, args.split(), input=inputs,
catch_exceptions=False)
return result
return test
def test_pipeline_one_level_split_and_join():
"""
+--> B --> C --+
inp >>> A--| +--> F >>> out
+--> D --> E --+
=>> A [ B C , D E ] F
"""
inputs = '\n'.join('12345678')
args = 'task A [ task B task C , task D task E ] task F'
name = 'test_pipeline_one_level_split_and_join'
test = _get_pipeline(args, inputs)
result = test()
output = result.output
print(f'>> {name} #1:\n', output, file=sys.stderr)
assert output == """\
starting F (coroutine name: 3)
starting C (coroutine name: 1)
starting E (coroutine name: 2)
starting B (coroutine name: 1_0)
starting D (coroutine name: 2_0)
starting A (coroutine name: 0)
1->A->B->C->F
1->A->D->E->F
2->A->B->C->F
2->A->D->E->F
3->A->B->C->F
3->A->D->E->F
4->A->B->C->F
4->A->D->E->F
5->A->B->C->F
5->A->D->E->F
6->A->B->C->F
6->A->D->E->F
7->A->B->C->F
7->A->D->E->F
8->A->B->C->F
8->A->D->E->F
finished A (coroutine name: 0)
finished D (coroutine name: 2_0)
finished B (coroutine name: 1_0)
finished E (coroutine name: 2)
finished C (coroutine name: 1)
finished F (coroutine name: 3)
"""
def test_pipeline_two_levels_split_and_join():
"""
+--> C1 --+
+--> B --| +-----+
| +--> C2 --+ |
inp >>> A--| +--> F >>> out
+--> D --> E ------------+
=>> A [ B [ C1 , C2 ] , D E ] F
"""
inputs = '\n'.join('12345678')
args = 'task A [ task B [ task C1 , task C2 ] , task D task E ] task F'
name = 'test_pipeline_two_levels_split_and_join'
test = _get_pipeline(args, inputs)
result = test()
output = result.output
print(f'>> {name} #1:\n', output, file=sys.stderr)
assert output == """\
starting F (coroutine name: 5)
starting C1 (coroutine name: 2)
starting C2 (coroutine name: 3)
starting E (coroutine name: 4)
starting B (coroutine name: 1)
starting D (coroutine name: 4_0)
starting A (coroutine name: 0)
1->A->B->C1->F
1->A->B->C2->F
1->A->D->E->F
2->A->B->C1->F
2->A->B->C2->F
2->A->D->E->F
3->A->B->C1->F
3->A->B->C2->F
3->A->D->E->F
4->A->B->C1->F
4->A->B->C2->F
4->A->D->E->F
5->A->B->C1->F
5->A->B->C2->F
5->A->D->E->F
6->A->B->C1->F
6->A->B->C2->F
6->A->D->E->F
7->A->B->C1->F
7->A->B->C2->F
7->A->D->E->F
8->A->B->C1->F
8->A->B->C2->F
8->A->D->E->F
finished A (coroutine name: 0)
finished D (coroutine name: 4_0)
finished B (coroutine name: 1)
finished E (coroutine name: 4)
finished C2 (coroutine name: 3)
finished C1 (coroutine name: 2)
finished F (coroutine name: 5)
"""
def test_pipeline_debug_name(caplog):
"""
+--> B --> C --+
inp >>> A--| +--> B >>> out
+--> B --> D --+
#equivalent:
=>> A { 'b1' [ B C , B D ] } B
=>> A [ { 'b1' B C , B D } ] B
=>> A [ { 'b1' B C , B D ] } B
=>> A [ { 'b1' B C } , { 'b1' B D } ] B
#
=>> A [ { 'b1' B } C , { 'b1' B } D ] B
#equivalent:
=>> A { 'b1' [ B C , { 'b2' B } D ] } B
=>> A [ { 'b1' B C } , { 'b2' B } { 'b1' D } ] B
#no effect:
=>> A [ { 'b1' } B , { 'b2' } B ] B
"""
inputs = '\n'.join('12345678')
name = 'test_pipeline_debug_name'
def _test(ex, i, args, stdout, err_name='{NAME}'):
print('', file=sys.stderr)
err_name = err_name.format(NAME=f'{ex}_{i}')
args = args.format(NAME=f'{ex}_{i}')
test = _get_pipeline(args, inputs, err_msg=err_name)
result = test()
# abort:
assert isinstance(result.exception, SystemExit)
assert result.exit_code == 1
print(f'\n>> {name}-{ex}#{i}: out:', file=sys.stderr)
print(result.output, file=sys.stderr)
assert result.output == stdout.format(NAME=f'{ex}_{i}')
print(f'\n>> {name}-{ex}#{i}: logs:', file=sys.stderr)
_logger = pipeline.logger.getChild(err_name)
print(caplog.text, file=sys.stderr)
assert any(map(lambda r: r.name == _logger.name and
r.msg == "an exception occured:" and
r.exc_info,
caplog.records))
assert f"RuntimeError: {err_name}" in caplog.text
# ---------------------------------------------------------------- #
# equivalent:
# =>> A { 'b1' [ B C , B D ] } B
# =>> A [ { 'b1' B C , B D } ] B
# =>> A [ { 'b1' B C , B D ] } B
# =>> A [ { 'b1' B C } , { 'b1' B D } ] B
# ---------------------------------------------------------------- #
ex = 'ex_1'
# ---------------------------------------------------------------- #
args = [
'task A {{ {NAME} [ task -e B task C , task B task D ] }} task B ',
'task A [ {{ {NAME} task -e B task C , task B task D }} ] task B',
'task A [ {{ {NAME} task -e B task C , task B task D ] }} task B',
'task A [ {{ {NAME} task -e B task C }} , {{ {NAME} task B task D }} ] task B',
]
stdout = """\
starting B (coroutine name: 3)
starting C (coroutine name: {NAME})
starting D (coroutine name: {NAME})
starting B (coroutine name: {NAME})
starting B (coroutine name: {NAME})
starting A (coroutine name: 0)
1->A->B->C->B
1->A->B->D->B
2->A->B->C->B
2->A->B->D->B
3->A->B->C->B
3->A->B->D->B
4->A->B->C->B
4->A->B->D->B
5->A->B->C->B
5->A->B->D->B
6->A->B->C->B
6->A->B->D->B
finished B (coroutine name: {NAME})
finished D (coroutine name: {NAME})
finished C (coroutine name: {NAME})
finished B (coroutine name: 3)
Aborted!
"""
for i, args in enumerate(args):
_test(ex, i, args, stdout)
# ---------------------------------------------------------------- #
# =>> A [ { 'b1' B } C , { 'b1' B } D ] B
# ---------------------------------------------------------------- #
ex = 'ex_2'
# ---------------------------------------------------------------- #
args = [
'task A [ {{ {NAME} task -e B }} task C , {{ {NAME} task B }} task D ] task B',
]
stdout = """\
starting B (coroutine name: 3)
starting C (coroutine name: 1)
starting D (coroutine name: 2)
starting B (coroutine name: {NAME})
starting B (coroutine name: {NAME})
starting A (coroutine name: 0)
1->A->B->C->B
1->A->B->D->B
2->A->B->C->B
2->A->B->D->B
3->A->B->C->B
3->A->B->D->B
4->A->B->C->B
4->A->B->D->B
5->A->B->C->B
5->A->B->D->B
6->A->B->C->B
6->A->B->D->B
finished B (coroutine name: {NAME})
finished D (coroutine name: 2)
finished C (coroutine name: 1)
finished B (coroutine name: 3)
Aborted!
"""
for i, args in enumerate(args):
_test(ex, i, args, stdout)
# ---------------------------------------------------------------- #
# equivalent:
# =>> A { 'b1' [ B C , { 'b2' B } D ] } B
# =>> A [ { 'b1' B C } , { 'b2' B } { 'b1' D } ] B
# ---------------------------------------------------------------- #
ex = 'ex_3'
# ---------------------------------------------------------------- #
args = [
'task A {{ {NAME} [ task -e B task C , {{ {NAME}_bis task B }} task D ] }} task B ',
'task A [ {{ {NAME} task -e B task C }} , {{ {NAME}_bis task B }} {{ {NAME} task D }} ] task B ',
]
stdout = """\
starting B (coroutine name: 3)
starting C (coroutine name: {NAME})
starting D (coroutine name: {NAME})
starting B (coroutine name: {NAME})
starting B (coroutine name: {NAME}_bis)
starting A (coroutine name: 0)
1->A->B->C->B
1->A->B->D->B
2->A->B->C->B
2->A->B->D->B
3->A->B->C->B
3->A->B->D->B
4->A->B->C->B
4->A->B->D->B
5->A->B->C->B
5->A->B->D->B
6->A->B->C->B
6->A->B->D->B
finished B (coroutine name: {NAME}_bis)
finished D (coroutine name: {NAME})
finished C (coroutine name: {NAME})
finished B (coroutine name: 3)
Aborted!
"""
for i, args in enumerate(args):
_test(ex, i, args, stdout)
# ---------------------------------------------------------------- #
# =>> A [ { 'b1' } B , { 'b2' } B ] B
# ---------------------------------------------------------------- #
ex = 'ex_4'
# ---------------------------------------------------------------- #
args = [
'task A [ {{ {NAME} }} task -e B , {{ {NAME} }} task B ] task B',
]
stdout = """\
starting B (coroutine name: 3)
starting B (coroutine name: 1)
starting B (coroutine name: 2)
starting A (coroutine name: 0)
1->A->B->B
1->A->B->B
2->A->B->B
2->A->B->B
3->A->B->B
3->A->B->B
4->A->B->B
4->A->B->B
5->A->B->B
5->A->B->B
6->A->B->B
6->A->B->B
finished B (coroutine name: 2)
finished B (coroutine name: 3)
Aborted!
"""
for i, args in enumerate(args):
_test(ex, i, args, stdout, err_name='1')
|
python
|
compiler = 'C:\\Users\\Public\\Documents\\Mikroelektronika\\mikroC PRO for PIC\\mikroCPIC1618.exe'
settings = {
'cmdln0': '"{compiler}" -MSF -DBG -p{device} -GC -DL -O11111110 -fo{clock} -N"{project}" "{filename}"',
'cmdlnSP': '-SP"{path}"',
'cmdlnIP': '-IP"{path}"',
'cmdlnLIBS': '"__Lib_Math.mcl" "__Lib_MathDouble.mcl" "__Lib_System.mcl" "__Lib_Delays.mcl" "__Lib_CType.mcl" "__Lib_CString.mcl" "__Lib_CStdlib.mcl" "__Lib_CMath.mcl" "__Lib_MemManager.mcl" "__Lib_Conversions.mcl" "__Lib_Sprinti.mcl" "__Lib_Sprintl.mcl" "__Lib_Time.mcl" "__Lib_Trigonometry.mcl" "__Lib_Button.mcl" "__Lib_Keypad4x4.mcl" "__Lib_Manchester.mcl" "__Lib_OneWire.mcl" "__Lib_PS2.mcl" "__Lib_Sound.mcl" "__Lib_SoftI2C.mcl" "__Lib_SoftSPI.mcl" "__Lib_SoftUART.mcl" "__Lib_ADC_A_C.mcl" "__Lib_EEPROM.mcl" "__Lib_FLASH_RW.mcl" "__Lib_I2C_c34.mcl" "__Lib_PWM_c21.mcl" "__Lib_SPI_c345.mcl" "__Lib_UART_c67.mcl" "__Lib_PortExpander.mcl" "__Lib_CANSPI.mcl" "__Lib_CF.mcl" "__Lib_GlcdFonts.mcl" "__Lib_Glcd.mcl" "__Lib_LcdConsts.mcl" "__Lib_Lcd.mcl" "__Lib_RS485.mcl" "__Lib_S1D13700.mcl" "__Lib_T6963C.mcl" "__Lib_SPIGlcd.mcl" "__Lib_SPILcd.mcl" "__Lib_SPILcd8.mcl" "__Lib_SPIT6963C.mcl" "__Lib_EthEnc28j60.mcl" "__Lib_EthEnc24j600.mcl" "__Lib_TouchPanel.mcl"'
}
|
python
|
from rest_framework import serializers
from .models import Post, Category
class BlogCategorySerializer(serializers.ModelSerializer):
class Meta:
model = Category
fields = [
'name',
'created_at',
'updated_at',
]
class BlogPostSerializer(serializers.ModelSerializer):
class Meta:
model = Post
fields = [
'title',
'description',
'body',
'thumb',
'category',
'author',
'created_at',
'updated_at',
'published',
]
|
python
|
from dictpy.dict_search import DictSearch
from dictpy.serializer import Serializer
__all__ = ["DictSearch", "Serializer"]
|
python
|
import pandas as pd
class TrainDataSampler:
def name(self):
raise NotImplementedError
def sample(self, df):
raise NotImplementedError
class CompleteData(TrainDataSampler):
def name(self):
return 'complete_data'
def sample(self, df):
return df
class BalancedExamplesSampler(TrainDataSampler):
def __init__(self, label_name, positive_label, n, random_state):
super().__init__()
self.label_name = label_name
self.positive_label = positive_label
self.n = n
self.random_state = random_state
def name(self):
return 'balanced_data_{}'.format(self.n)
def sample(self, df):
examples_per_class = int(self.n / 2)
positive = df[df[self.label_name] == self.positive_label].sample(n=examples_per_class, random_state=self.random_state)
negative = df[df[self.label_name] != self.positive_label].sample(n=examples_per_class, random_state=self.random_state)
return pd.concat([positive, negative])
|
python
|
from unbillit_project import app
if __name__ == '__main__':
app.run(host='127.0.0.1', port=8000, debug=True)
############## set envirnment variable for secret key #############
# Add password strength validators later to user/form.py
# work on putting everything together
# implement password reset functionality with firebase
# email verification with firebase
# google OAuth
# facebook OAuth
# add contact us page to also send email to an admin
# generate reqiurement.txt
# flask admin functionality
|
python
|
import psycopg2
import pandas as pd
import numpy as np
import pickle
import matplotlib.pyplot as plt
from numpy import random
from sklearn.preprocessing import StandardScaler
import os
os.chdir('/home/rafalb/work/molecules/chemicalSmilesSpace/src')
from keras.layers import LSTM, TimeDistributed, concatenate, Input, Dense, RepeatVector, Lambda
from keras.models import Model
from keras.activations import relu, sigmoid, tanh
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.optimizers import Adam, RMSprop
import keras.backend as K
from keras.utils import plot_model
from keras import losses
import numpy.random as rnd
def sampling(args):
z_mean, z_log_var = args
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
# by default, random_normal has mean=0 and std=1.0
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + K.exp(0.5 * z_log_var) * epsilon
def prepare_model(static, dynamic, k, window, charsetLen, lr, lossFunction, showArch):
input_dynamic = Input(shape=(window, charsetLen), name="input_dynamic")
input_static = Input(shape=(static,), name="input_static")
latent = Dense(k[0], activation=relu)(input_static)
dense_h = Dense(k[0])(latent)
dense_c = Dense(k[0])(latent)
lstm_layer, state_h, state_c = LSTM(k[0], return_sequences=True, return_state=True)(input_dynamic,
initial_state=[dense_h,
dense_c])
for x in k[1:-1]:
concat_h = concatenate([dense_h, state_h])
dense_h = Dense(x)(concat_h)
concat_c = concatenate([dense_c, state_c])
dense_c = Dense(x)(concat_c)
lstm_layer, state_h, state_c = LSTM(x, return_sequences=True, return_state=True)(lstm_layer,
initial_state=[dense_h,
dense_c])
x = k[-1]
concat_h = concatenate([dense_h, state_h])
dense_h = Dense(x)(concat_h)
concat_c = concatenate([dense_c, state_c])
dense_c = Dense(x)(concat_c)
lstm_layer, state_h, state_c = LSTM(x, return_state=True)(lstm_layer, initial_state=[dense_h, dense_c])
concat = concatenate([lstm_layer, latent])
# autoencoder
z_mean = Dense(x, name='z_mean')(concat)
z_log_var = Dense(x, name='z_log_var')(concat)
z = Lambda(sampling, output_shape=(x,), name='z')([z_mean, z_log_var])
state_h = Dense(k[-2], activation=relu)(z)
dense_h = Dense(k[-2], activation=relu)(z)
state_c = Dense(k[-2], activation=relu)(z)
dense_c = Dense(k[-2], activation=relu)(z)
lstm_layer = RepeatVector(window)(z)
for x in np.flip(k[:-1]):
concat_h = concatenate([dense_h, state_h])
dense_h = Dense(x)(concat_h)
concat_c = concatenate([dense_c, state_c])
dense_c = Dense(x)(concat_c)
lstm_layer, state_h, state_c = LSTM(x, return_sequences=True, return_state=True)(lstm_layer,
initial_state=[dense_h,
dense_c])
#result_series = TimeDistributed(Dense(charsetLen))(lstm_layer)
result_series = LSTM(charsetLen, return_sequences=True, activation='softmax')(lstm_layer)
concat = concatenate([state_h, state_c])
#result_sigmoid = Dense(static-3, activation=sigmoid)(concat)
result_relu = Dense(static, activation=sigmoid)(concat)
#model = Model(inputs=[input_dynamic, input_static], outputs=[result_series, result_sigmoid, result_relu])
model = Model(inputs=[input_dynamic, input_static], outputs=[result_series, result_relu])
optimizer = RMSprop(lr=lr)
model.compile(optimizer=optimizer, loss=lossFunction, metrics=['binary_crossentropy', 'mean_absolute_error'])
if (showArch):
print(model.summary())
return model
def prepareModelOnlyDynamic(dynamicDim, k, lr, lossFunction, showArch):
input_dynamic = Input(shape=(dynamicDim[1], dynamicDim[2]), name="inputDynamic")
lstm_layer, state_h, state_c = LSTM(k[0], return_sequences=True, return_state=True)(input_dynamic)
for x in k[1:-1]:
lstm_layer, state_h, state_c = LSTM(x, return_sequences=True, return_state=True)(lstm_layer)
x = k[-1]
lstm_layer, state_h, state_c = LSTM(x, return_state=True)(lstm_layer)
# autoencoder
z_mean = Dense(x, name='z_mean')(lstm_layer)
z_log_var = Dense(x, name='z_log_var')(lstm_layer)
z = Lambda(sampling, output_shape=(x,), name='z')([z_mean, z_log_var])
lstm_layer = RepeatVector(dynamicDim[1])(z)
for x in np.flip(k[:-1]):
lstm_layer, state_h, state_c = LSTM(x, return_sequences=True, return_state=True)(lstm_layer)
#result_series = TimeDistributed(Dense(charsetLen))(lstm_layer)
result_series = LSTM(dynamicDim[2], return_sequences=True, activation='softmax')(lstm_layer)
#model = Model(inputs=[input_dynamic, input_static], outputs=[result_series, result_sigmoid, result_relu])
model = Model(inputs=[input_dynamic], outputs=[result_series])
optimizer = RMSprop(lr=lr)
model.compile(optimizer=optimizer, loss=lossFunction, metrics=['binary_crossentropy', 'mean_absolute_error'])
if (showArch):
print(model.summary())
return model
def prepareEncoder(nCharInSmiles, nCharSet, nStatic, k, lr, lossFunction, showArch):
input_dynamic = Input(shape=(nCharInSmiles, nCharSet), name="inputDynamic")
input_static = Input(shape=(nStatic,), name="inputStatic")
latent = Dense(k[0], activation=relu)(input_static)
dense_h = Dense(k[0])(latent)
dense_c = Dense(k[0])(latent)
encoder, state_h, state_c = LSTM(k[0], return_sequences=True, return_state=True)(input_dynamic, initial_state=[dense_h, dense_c])
for x in k[1:-1]:
concat_h = concatenate([dense_h, state_h])
dense_h = Dense(x)(concat_h)
concat_c = concatenate([dense_c, state_c])
dense_c = Dense(x)(concat_c)
encoder, state_h, state_c = LSTM(x, return_sequences=True, return_state=True)(encoder, initial_state = [dense_h, dense_c])
x = k[-1]
concat_h = concatenate([dense_h, state_h])
dense_h = Dense(x)(concat_h)
concat_c = concatenate([dense_c, state_c])
dense_c = Dense(x)(concat_c)
encoder, state_h, state_c = LSTM(x, return_state=True)(encoder, initial_state=[dense_h, dense_c])
concat = concatenate([encoder, latent])
# autoencoder
z_mean = Dense(x, name='z_mean')(concat)
z_log_var = Dense(x, name='z_log_var')(concat)
z = Lambda(sampling, output_shape=(x,), name='encoderOutput')([z_mean, z_log_var])
#state_h = Dense(k[-2], activation=relu)(z)
#dense_h = Dense(k[-2], activation=relu)(z)
#state_c = Dense(k[-2], activation=relu)(z)
#dense_c = Dense(k[-2], activation=relu)(z)
#encoder = RepeatVector(dynamicDim[1])(z)
model = Model(inputs=[input_dynamic, input_static], outputs=[z])
if (showArch):
print(model.summary())
return model
def prepareDecoder(nCharInSmiles, nCharSet, nStatic, k, lr, lossFunction, showArch):
decoderInput = Input(shape=(k[-1],), name="decoderInput")
state_h = Dense(k[-2], activation=relu, name='ini_state_h')(decoderInput)
dense_h = Dense(k[-2], activation=relu, name='ini_dense_h')(decoderInput)
state_c = Dense(k[-2], activation=relu, name='ini_state_c')(decoderInput)
dense_c = Dense(k[-2], activation=relu, name='ini_dense_c')(decoderInput)
decoder = RepeatVector(nCharInSmiles, name='repeat')(decoderInput)
for x in np.flip(k[:-1]):
concat_h = concatenate([dense_h, state_h])
dense_h = Dense(x)(concat_h)
concat_c = concatenate([dense_c, state_c])
dense_c = Dense(x)(concat_c)
decoder, state_h, state_c = LSTM(x, return_sequences=True, return_state=True)(decoder)
#result_series = TimeDistributed(Dense(charsetLen))(lstm_layer)
resultDynamic = LSTM(nCharSet, return_sequences=True, activation='softmax', name = 'outputDynamic')(decoder)
concat = concatenate([state_h, state_c])
resultStatic = Dense(nStatic, activation=sigmoid, name = 'outputStatic')(concat)
model = Model(inputs=[decoderInput], outputs=[resultDynamic, resultStatic])
if (showArch):
print(model.summary())
return model
#def prepareAutoencoder()
# #model = Model(inputs=[input_dynamic, input_static], outputs=[result_series, result_sigmoid, result_relu])
# model = Model(inputs=[input_dynamic, input_static], outputs=[result_series, result_static])
# optimizer = RMSprop(lr=lr)
# model.compile(optimizer=optimizer, loss=lossFunction, metrics=['binary_crossentropy', 'mean_absolute_error'])
# if (showArch):
# print(model.summary())
# return model
def prepareModelDynamicStatic(dynamicDim, staticDim, k, lr, lossFunction, showArch):
input_dynamic = Input(shape=(dynamicDim[1], dynamicDim[2]), name="inputDynamic")
input_static = Input(shape=(staticDim[1],), name="inputStatic")
latent = Dense(k[0], activation=relu)(input_static)
dense_h = Dense(k[0])(latent)
dense_c = Dense(k[0])(latent)
lstm_layer, state_h, state_c = LSTM(k[0], return_sequences=True, return_state=True)(input_dynamic, initial_state=[dense_h, dense_c])
for x in k[1:-1]:
concat_h = concatenate([dense_h, state_h])
dense_h = Dense(x)(concat_h)
concat_c = concatenate([dense_c, state_c])
dense_c = Dense(x)(concat_c)
lstm_layer, state_h, state_c = LSTM(x, return_sequences=True, return_state=True)(lstm_layer, initial_state = [dense_h, dense_c])
x = k[-1]
concat_h = concatenate([dense_h, state_h])
dense_h = Dense(x)(concat_h)
concat_c = concatenate([dense_c, state_c])
dense_c = Dense(x)(concat_c)
lstm_layer, state_h, state_c = LSTM(x, return_state=True)(lstm_layer, initial_state=[dense_h, dense_c])
concat = concatenate([lstm_layer, latent])
#lstm_layer, state_h, state_c = LSTM(x, return_state=True)(lstm_layer)
# autoencoder
z_mean = Dense(x, name='z_mean')(concat)
z_log_var = Dense(x, name='z_log_var')(concat)
z = Lambda(sampling, output_shape=(x,), name='z')([z_mean, z_log_var])
state_h = Dense(k[-2], activation=relu)(z)
dense_h = Dense(k[-2], activation=relu)(z)
state_c = Dense(k[-2], activation=relu)(z)
dense_c = Dense(k[-2], activation=relu)(z)
lstm_layer = RepeatVector(dynamicDim[1])(z)
for x in np.flip(k[:-1]):
lstm_layer, state_h, state_c = LSTM(x, return_sequences=True, return_state=True)(lstm_layer)
#result_series = TimeDistributed(Dense(charsetLen))(lstm_layer)
result_series = LSTM(dynamicDim[2], return_sequences=True, activation='softmax', name = 'outputDynamic')(lstm_layer)
concat = concatenate([state_h, state_c])
result_static = Dense(staticDim[1], activation=sigmoid, name = 'outputStatic')(concat)
#model = Model(inputs=[input_dynamic, input_static], outputs=[result_series, result_sigmoid, result_relu])
model = Model(inputs=[input_dynamic, input_static], outputs=[result_series, result_static])
optimizer = RMSprop(lr=lr)
model.compile(optimizer=optimizer, loss=lossFunction, metrics=['binary_crossentropy', 'mean_absolute_error'])
if (showArch):
print(model.summary())
return model
def fit(staticFeatures, dynamicFeatures, model, step=1):
#dynamic_data = np.empty((0, window, 1), np.float)
#helper = []
#for d in dynamic:
# new_data = rolling_window(d, window, step)
# helper.append(len(new_data))
# dynamic_data = np.append(dynamic_data, new_data, axis=0)
#print(len(helper))
#static_data = np.repeat(static, helper, axis=0)
order = rnd.permutation(len(staticFeatures))
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
bst_model_path = 'autoencoder.h5'
checkpoint = ModelCheckpoint(bst_model_path, save_best_only=True, save_weights_only=True, monitor='val_loss')
size = int(staticFeaturesSta.shape[0] * 0.9)
training_dynamic, training_static = dynamicFeatures[order[:size]], staticFeatures[order[:size]]
testing_dynamic, testing_static = dynamicFeatures[order[size:]], staticFeatures[order[size:]]
print(training_dynamic.shape, training_static.shape)
print(testing_dynamic.shape, testing_static.shape)
model.fit([training_dynamic, training_static],
[training_dynamic, training_static],
epochs=10,
batch_size=64,
callbacks=[early_stopping, checkpoint],
validation_data=([testing_dynamic, testing_static],
[testing_dynamic, testing_static]))
def fitOnlyDynamic(dynamicFeatures, model, step=1):
order = rnd.permutation(len(staticFeatures))
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
bst_model_path = 'autoencoder.h5'
checkpoint = ModelCheckpoint(bst_model_path, save_best_only=True, save_weights_only=True, monitor='val_loss')
size = int(dynamicFeatures.shape[0] * 0.9)
training_dynamic = dynamicFeatures[order[:size]]
testing_dynamic = dynamicFeatures[order[size:]]
print(training_dynamic.shape)
print(testing_dynamic.shape)
model.fit(training_dynamic,
training_dynamic,
epochs=10,
batch_size=64,
callbacks=[early_stopping, checkpoint],
validation_data=(testing_dynamic,
testing_dynamic))
def fitDynamicStatic(dynamicFeatures, staticFeatures, model, modelFilePath, nEpoch, nBatch):
order = rnd.permutation(len(staticFeatures))
early_stopping = EarlyStopping(monitor='val_loss', patience=3)
checkpoint = ModelCheckpoint(modelFilePath, save_best_only=True, save_weights_only=True, monitor='val_loss')
size = int(staticFeatures.shape[0] * 0.9)
training_dynamic, training_static = dynamicFeatures[order[:size]], staticFeatures[order[:size]]
testing_dynamic, testing_static = dynamicFeatures[order[size:]], staticFeatures[order[size:]]
print(training_dynamic.shape, training_static.shape)
print(testing_dynamic.shape, testing_static.shape)
model.fit([training_dynamic, training_static],
[training_dynamic, training_static],
epochs=nEpoch,
batch_size=nBatch,
callbacks=[early_stopping, checkpoint],
validation_data=([testing_dynamic, testing_static],
[testing_dynamic, testing_static]))
def pad_smile(string, max_len, padding='right'):
if len(string) <= max_len:
if padding == 'right':
return string + " " * (max_len - len(string))
elif padding == 'left':
return " " * (max_len - len(string)) + string
elif padding == 'none':
return string
def prepareData(dataFile, nSample, doPlot = False):
with open(dataFile, 'rb') as file:
molDataGroupedChosen = pickle.load(file)
#nSmilesCodes = 200000
nSmilesMore = np.min([molDataGroupedChosen.shape[0], int(1.2*nSample)])
mask = random.randint(0, molDataGroupedChosen.shape[0], size = nSmilesMore)
#mask = random.randint(0, molDataGroupedChosen.shape[0], size=nSmilesCodes)
mask = molDataGroupedChosen.index
staticFeatures = pd.DataFrame()
toBeAveraged = ['standard_value', 'alogp', 'hba', 'hbd', 'psa', 'rtb', 'full_mwt', 'qed_weighted']
for quantity in toBeAveraged:
staticFeatures.loc[:, quantity] = (molDataGroupedChosen.loc[mask, (quantity, 'min')] + molDataGroupedChosen.loc[mask, (quantity, 'max')])/2
staticFeatures.loc[:, quantity].astype(float)
toBeTaken = ['aromatic_rings', 'heavy_atoms']
for quantity in toBeTaken:
staticFeatures.loc[:, quantity] = molDataGroupedChosen.loc[mask, (quantity, 'min')]
staticFeatures.loc[:, quantity].astype(float)
staticFeatures.loc[:, 'number_of_rings'] = molDataGroupedChosen.loc[mask, 'numberOfRings'].astype(float)
staticFeatures['full_mwt'] = staticFeatures.full_mwt.astype(float)
staticFeatures['qed_weighted'] = staticFeatures.qed_weighted.astype(float)
staticFeatures['aromatic_rings'] = staticFeatures.aromatic_rings.astype(float)
staticFeatures['smiles_length'] = molDataGroupedChosen.loc[staticFeatures.index, 'canonicalSmiles'].apply(lambda x: len(x))
# Remove rows with nans
staticFeatures = staticFeatures.dropna()
# Filter the smiles from given length range
staticFeatures = staticFeatures[(staticFeatures['smiles_length'] >= 40) & (staticFeatures['smiles_length'] <= 60)]
thres = 100000
print(staticFeatures[staticFeatures['standard_value'] < thres].shape[0] / staticFeatures['standard_value'].shape[0])
staticFeatures = staticFeatures[staticFeatures['standard_value'] < thres]
staticFeatures = staticFeatures.sample(nSample)
allDescriptors = ['standard_value', 'alogp', 'hba', 'hbd', 'psa', 'rtb', 'full_mwt', 'qed_weighted', 'aromatic_rings', 'heavy_atoms', 'number_of_rings', 'smiles_length']
if (doPlot):
plotIdx = 1
nRows = np.ceil(len(allDescriptors) / 2)
fig = plt.figure(figsize=(16, 16))
for quantity in allDescriptors:
print(quantity)
plt.subplot(nRows, 2, plotIdx)
plt.hist(staticFeatures[~staticFeatures[quantity].isnull()][quantity], bins = 10)
plt.title(quantity)
plotIdx += 1
smilesCodes = molDataGroupedChosen.loc[staticFeatures.index, 'encodedSmiles']
maxlen = -1
for code in smilesCodes:
if len(code) > maxlen:
maxlen = len(code)
maxlen
minlen = 1e6
for code in smilesCodes:
if len(code) < minlen:
minlen = len(code)
minlen
# pad the codes to the longest code
smilesCodes = smilesCodes.apply(lambda x: pad_smile(x, max_len=maxlen, padding='right'))
chars = sorted(list(set(smilesCodes.str.cat(sep=''))))
print('total chars:', len(chars))
print(chars)
char2indices = dict((c, i) for i, c in enumerate(chars))
indices2char = dict((i, c) for i, c in enumerate(chars))
dynamicFeatures = np.zeros((len(smilesCodes), maxlen, len(chars)), dtype=np.float)
print(dynamicFeatures.shape)
for codeidx, code in enumerate(smilesCodes):
for charidx, char in enumerate(code):
dynamicFeatures[codeidx, charidx, char2indices[char]] = 1
if (doPlot):
sums = []
for idx in range(dynamicFeatures.shape[0]):
sums.append(np.sum(dynamicFeatures[idx, :, :]))
plt.hist(sums)
return staticFeatures, dynamicFeatures
def scaleFeatures(staticFeatures):
# Choose some subset of dynamicFeatures
scaler = StandardScaler()
scaler.fit(staticFeatures)
return scaler.transform(staticFeatures, ), scaler
def loadDecoder(nCharInSmiles, nCharSet, nStatic, modelFile):
lr = 0.001
encoder = prepareEncoder(nCharInSmiles, nCharSet, nStatic, [64,64,64,64,32], lr, ['binary_crossentropy', 'mean_absolute_error'], True)
decoder = prepareDecoder(nCharInSmiles, nCharSet, nStatic, [64,64,64,64,32], lr, ['binary_crossentropy', 'mean_absolute_error'], True)
encoderOutput = encoder.get_layer('encoderOutput').output
decoderOutput = decoder(encoderOutput)
autoencoder = Model(inputs=encoder.input, outputs=decoderOutput)
autoencoder.load_weights(modelFile)
decoder.load_weights(modelFile, by_name=True)
return decoder
def predictStaticDynamic(decoder):
latentVector = [random.random() for iii in range(32)]
latentVector = np.array(latentVector).reshape(-1, 32)
prediction = decoder.predict(latentVector)
return(prediction)
if __name__ == '__main__':
import argparse
#from tabulate import tabulate
from pathlib import Path
import predictiveModel
parser = argparse.ArgumentParser(
description='OpenMM simulation.',
epilog='Examplary usage: python simulate.py -sys mysystem -msteps 500 -ssteps 5000 -ffreq 100 -nthreads 8',
formatter_class=argparse.RawTextHelpFormatter
)
parser.add_argument('-modelFile', action='store', dest='modelFile', required=False, type=str, help='Resulting model file')
parser.add_argument('-modelMetaInformation', action='store', dest='modelMetaInformation', required=False, type=str, help='Resulting model file')
parser.add_argument('-v', '--version', action='version', version='parseAutoDockFiles.py v. 1.0')
args = parser.parse_args()
predictiveModel = predictiveModel.unpicklePredictiveModel(args.modelMetaInformation)
# with open('predictiveModel646432_20191027.pckl') as f:
# predictiveModel = pickle.load(f)
nCharInSmiles = predictiveModel['nCharSmiles']
nCharSet = predictiveModel['nCharSet']
nStatic = predictiveModel['nStatic']
decoder = loadDecoder(nCharInSmiles, nCharSet, nStatic, args.modelFile)
prediction = predictStaticDynamic(decoder)
|
python
|
from django.db import models
class Contact(models.Model):
first_name = models.CharField(null=False, blank=False, max_length=50)
last_name = models.CharField(null=False, blank=False, max_length=50)
email = models.CharField(null=False, blank=False, max_length=50)
ip = models.CharField(null=False, blank=False, max_length=50)
lat = models.CharField(null=False, blank=False, max_length=50)
lng = models.CharField(null=False, blank=False, max_length=50)
|
python
|
"""
Provides animated GIF images of weather-radar imagery derived the Australian
Bureau of Meteorology (http://www.bom.gov.au/australia/radar/).
"""
import datetime as dt
import io
import logging
import os
import re
import time
import PIL.Image
import requests
# Legend:
#
# NSW: http://www.bom.gov.au/australia/radar/nsw_radar_sites_table.shtml
# NT: http://www.bom.gov.au/australia/radar/nt_radar_sites_table.shtml
# QLD: http://www.bom.gov.au/australia/radar/qld_radar_sites_table.shtml
# SA: http://www.bom.gov.au/australia/radar/sa_radar_sites_table.shtml
# TAS: http://www.bom.gov.au/australia/radar/tas_radar_sites_table.shtml
# VIC: http://www.bom.gov.au/australia/radar/vic_radar_sites_table.shtml
# WA: http://www.bom.gov.au/australia/radar/wa_radar_sites_table.shtml
#
# res: 1 => 512km, 2 => 256km, 3 => 128km, 4 => 64km
# fmt: off
RADARS = {
"Adelaide": {"id": "64", "res": (1, 2, 3, 4)}, # Adelaide (Buckland Park) [SA]
"Albany": {"id": "31", "res": (1, 2, 3, 4)}, # Albany [WA]
"AliceSprings": {"id": "25", "res": (1, 2, 3)}, # Alice Springs [NT]
"Bairnsdale": {"id": "68", "res": (1, 2, 3)}, # Bairnsdale [VIC]
"Bowen": {"id": "24", "res": (1, 2, 3)}, # Bowen [QLD]
"Brisbane": {"id": "66", "res": (1, 2, 3, 4)}, # Brisbane (Mt Stapylton) [QLD]
"Broome": {"id": "17", "res": (1, 2, 3)}, # Broome [WA]
"Cairns": {"id": "19", "res": (1, 2, 3, 4)}, # Cairns [QLD]
"Canberra": {"id": "40", "res": (1, 2, 3, 4)}, # Canberra (Captains Flat) [NSW]
"Carnarvon": {"id": "05", "res": (1, 2, 3)}, # Carnarvon [WA]
"Ceduna": {"id": "33", "res": (1, 2, 3)}, # Ceduna [SA]
"Dampier": {"id": "15", "res": (1, 2, 3)}, # Dampier [WA]
"Darwin": {"id": "63", "res": (1, 2, 3, 4)}, # Darwin (Berrimah) [NT]
"Emerald": {"id": "72", "res": (1, 2, 3, 4)}, # Emerald [QLD]
"Esperance": {"id": "32", "res": (1, 2, 3, 4)}, # Esperance [WA]
"Geraldton": {"id": "06", "res": (1, 2, 3, 4)}, # Geraldton [WA]
"Giles": {"id": "44", "res": (1, 2, 3)}, # Giles [WA]
"Gladstone": {"id": "23", "res": (1, 2, 3)}, # Gladstone [QLD]
"Gove": {"id": "09", "res": (1, 2, 3)}, # Gove [NT]
"Grafton": {"id": "28", "res": (1, 2, 3)}, # Grafton [NSW]
"Gympie": {"id": "08", "res": (1, 2, 3, 4)}, # Gympie (Mt Kanigan) [QLD]
"HallsCreek": {"id": "39", "res": (1, 2, 3)}, # Halls Creek [WA]
"Hobart": {"id": "76", "res": (1, 2, 3, 4)}, # Hobart (Mt Koonya) [TAS]
"Kalgoorlie": {"id": "48", "res": (1, 2, 3, 4)}, # Kalgoorlie [WA]
"Katherine": {"id": "42", "res": (1, 2, 3)}, # Katherine (Tindal) [NT]
"Learmonth": {"id": "29", "res": (1, 2, 3)}, # Learmonth [WA]
"Longreach": {"id": "56", "res": (1, 2, 3)}, # Longreach [QLD]
"Mackay": {"id": "22", "res": (1, 2, 3)}, # Mackay [QLD]
"Marburg": {"id": "50", "res": (1, 2, 3)}, # Brisbane (Marburg) [QLD]
"Melbourne": {"id": "02", "res": (1, 2, 3, 4)}, # Melbourne [VIC]
"Mildura": {"id": "30", "res": (1, 2, 3)}, # Mildura [VIC]
"Moree": {"id": "53", "res": (1, 2, 3)}, # Moree [NSW]
"MorningtonIs": {"id": "36", "res": (1, 2, 3)}, # Gulf of Carpentaria (Mornington Is) [QLD]
"MountIsa": {"id": "75", "res": (1, 2, 3, 4)}, # Mount Isa [QLD]
"MtGambier": {"id": "14", "res": (1, 2, 3)}, # Mt Gambier [SA]
"Namoi": {"id": "69", "res": (1, 2, 3, 4)}, # Namoi (Blackjack Mountain) [NSW]
"Newcastle": {"id": "04", "res": (1, 2, 3, 4)}, # Newcastle [NSW]
"Newdegate": {"id": "38", "res": (1, 2, 3, 4)}, # Newdegate [WA]
"NorfolkIs": {"id": "62", "res": (1, 2, 3)}, # Norfolk Island [ET]
"NWTasmania": {"id": "52", "res": (1, 2, 3, 4)}, # N.W. Tasmania (West Takone) [TAS]
"Perth": {"id": "70", "res": (1, 2, 3, 4)}, # Perth (Serpentine) [WA]
"PortHedland": {"id": "16", "res": (1, 2, 3)}, # Pt Hedland [WA]
"Rainbow": {"id": "95", "res": (1, 2, 3, 4)}, # Rainbow [VIC]
"SellicksHill": {"id": "46", "res": (1, 2, 3)}, # Adelaide (Sellicks Hill) [SA]
"SouthDoodlakine": {"id": "58", "res": (1, 2, 3, 4)}, # South Doodlakine [WA]
"Sydney": {"id": "71", "res": (1, 2, 3, 4)}, # Sydney (Terrey Hills) [NSW]
"Townsville": {"id": "73", "res": (1, 2, 3, 4)}, # Townsville (Hervey Range) [QLD]
"WaggaWagga": {"id": "55", "res": (1, 2, 3)}, # Wagga Wagga [NSW]
"Warrego": {"id": "67", "res": (1, 2, 3)}, # Warrego [QLD]
"Warruwi": {"id": "77", "res": (1, 2, 3, 4)}, # Warruwi [NT]
"Watheroo": {"id": "79", "res": (1, 2, 3, 4)}, # Watheroo [WA]
"Weipa": {"id": "78", "res": (1, 2, 3, 4)}, # Weipa [QLD]
"WillisIs": {"id": "41", "res": (1, 2, 3)}, # Willis Island [QLD]
"Wollongong": {"id": "03", "res": (1, 2, 3, 4)}, # Wollongong (Appin) [NSW]
"Woomera": {"id": "27", "res": (1, 2, 3)}, # Woomera [SA]
"Wyndham": {"id": "07", "res": (1, 2, 3)}, # Wyndham [WA]
"Yarrawonga": {"id": "49", "res": (1, 2, 3, 4)}, # Yarrawonga [VIC]
}
# fmt: on
DEFAULT_RESOLUTION = "3"
# Consider using http://reg.bom.gov.au/catalogue/data-feeds.shtml#radar
HEADERS = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36"}
class BOMRadarLoop:
"""
The class to be instantiated by Home Assistant
"""
def __init__(self, location=None, radar_id=None, outfile=None, logger=None):
self._log = logger or logging.getLogger(__name__)
if isinstance(radar_id, int):
radar_id = "%03d" % radar_id
valids = ", ".join(sorted(RADARS.keys()))
if not radar_id and location not in RADARS:
location = "Sydney"
self._log.error("Bad 'location' specified, using '%s' (valid locations are: %s)", location, valids)
if radar_id:
if location in RADARS:
radar_id = None
self._log.error("Valid 'location' specified, ignoring 'radar_id'")
elif location:
self._log.error("Bad 'location' specified, using ID %s (valid locations are: %s)", radar_id, valids)
self._location = location or "ID %s" % radar_id
self._radar_id = radar_id or "%s%s" % (RADARS[location]["id"], DEFAULT_RESOLUTION)
self._outfile = outfile
self._t0 = 0
self._current = self.current
# Public methods
@property
def current(self):
"""
Return the current BOM radar-loop image.
"""
now = int(time.time())
t1 = now - (now % 300) # update every 5 minutes
if t1 > self._t0:
self._t0 = t1
self._current = self._loop
return self._current
# Private methods
@property
def _background(self):
"""
Fetch the background map, then the topography, locations (e.g. city
names), and distance-from-radar range markings, and merge into a single
image.
"""
self._log.debug("Getting background for %s at %s", self._location, self._t0)
suffix = "products/radar_transparencies/IDR%s.background.png"
url = self._url(suffix % self._radar_id)
background = self._image(url)
if background is None:
return None
for layer in ("topography", "locations", "range"):
self._log.debug("Getting %s for %s at %s", layer, self._location, self._t0)
suffix = "products/radar_transparencies/IDR%s.%s.png" % (self._radar_id, layer)
url = self._url(suffix)
image = self._image(url)
if image is not None:
try:
background = PIL.Image.alpha_composite(background, image)
except ValueError:
pass
return background
@property
def _frames(self):
"""
Fetch a radar image for each expected time, composite it with a common
background image, then overlay on the legend to produce a frame. Collect
and return the frames, ignoring any blanks. If no frames were produced,
return None (the caller must expect this).
"""
self._log.debug("Getting frames for %s at %s", self._location, self._t0)
bg = self._background
legend = self._legend
frames = []
if bg and legend:
for image_name in self._image_names:
fg = self._image(self._url(image_name))
if fg is not None:
frames.append(legend.copy())
frames[-1].paste(PIL.Image.alpha_composite(bg, fg), (0, 0))
return frames
def _image(self, url):
"""
Fetch an image from the BOM.
"""
self._log.debug("Getting image %s", url)
response = requests.get(url, headers=HEADERS)
if response.status_code == 200:
log_level = self._log.level
self._log.setLevel(logging.INFO)
image = PIL.Image.open(io.BytesIO(response.content))
rgba_img = image.convert("RGBA")
image.close()
self._log.setLevel(log_level)
return rgba_img
return None
@property
def _image_names(self):
"""
Return the currently available frame images for the given radar,
extracted from the BOM's HTML.
"""
url = self._url("products/IDR%s.loop.shtml" % self._radar_id)
response = requests.get(url, headers=HEADERS)
image_names = []
if response.status_code != 200:
return image_names
pattern = r'^theImageNames\[\d+\] = "/(radar/IDR\d{3}\.T\.\d{12}\.png)";$'
for line in response.text.split("\n"):
m = re.match(pattern, line)
if m:
image_names.append(m.groups()[0])
return sorted(image_names)
@property
def _legend(self):
"""
Fetch the BOM colorbar legend image.
"""
self._log.debug("Getting legend at %s", self._t0)
url = self._url("products/radar_transparencies/IDR.legend.0.png")
return self._image(url)
@property
def _loop(self):
"""
Return an animated GIF comprising a set of frames, where each frame
includes a background, one or more supplemental layers, a colorbar
legend, and a radar image.
"""
self._log.info("Getting loop for %s at %s", self._location, self._t0)
loop = io.BytesIO()
frames = self._frames
if frames:
self._log.debug("Got %s frames for %s at %s", len(frames), self._location, self._t0)
frames[0].save(
loop,
append_images=frames[1:],
duration=500,
format="GIF",
loop=0,
save_all=True,
)
else:
self._log.warning("Got NO frames for %s at %s", self._location, self._t0)
PIL.Image.new("RGB", (512, 557)).save(loop, format="GIF")
if self._outfile:
outdir = os.path.dirname(self._outfile)
if not os.path.isdir(outdir):
try:
os.makedirs(outdir)
except OSError:
self._log.error("Could not create directory %s", outdir)
try:
with open(self._outfile, "wb") as outfile:
outfile.write(loop.getvalue())
except IOError:
self._log.error("Could not write image to %s", self._outfile)
return loop.getvalue()
def _url(self, path):
"""
Return a full URL to a resource on the BOM site.
"""
self._log.debug("Getting URL for path %s", path)
return "http://www.bom.gov.au/%s" % path
|
python
|
from AttachmentFetcherGUI import runGUI
runGUI()
|
python
|
from typing import Tuple
import numpy as np
import tensorflow as tf
from absl import logging
from xain.datasets import prep
from xain.types import KerasHistory, KerasWeights, Metrics, VolumeByClass
from . import ModelProvider
class Participant:
# pylint: disable-msg=too-many-arguments
# pylint: disable=too-many-instance-attributes
def __init__(
self,
cid: int,
model_provider: ModelProvider,
xy_train: Tuple[np.ndarray, np.ndarray],
xy_val: Tuple[np.ndarray, np.ndarray],
num_classes: int,
batch_size: int,
) -> None:
assert xy_train[0].shape[0] == xy_train[1].shape[0]
assert xy_val[0].shape[0] == xy_val[1].shape[0]
self.cid = cid
self.model_provider = model_provider
self.num_classes: int = num_classes
self.batch_size: int = batch_size
self.num_examples = xy_train[0].shape[0]
# Training set
self.xy_train = xy_train
self.steps_train: int = int(xy_train[0].shape[0] / batch_size)
# Validation set
self.xy_val = xy_val
self.steps_val: int = 1
def train_round(
self, theta: KerasWeights, epochs: int, epoch_base: int
) -> Tuple[Tuple[KerasWeights, int], KerasHistory]:
logging.info(
f"Participant {self.cid}: train_round START (epoch_base: {epoch_base})"
)
model = self.model_provider.init_model(epoch_base=epoch_base) # type:ignore
model.set_weights(theta)
hist: KerasHistory = self.fit(model, epochs)
theta_prime = model.get_weights()
logging.info("Participant {}: train_round FINISH".format(self.cid))
return (theta_prime, self.num_examples), hist
def fit(self, model: tf.keras.Model, epochs: int) -> KerasHistory:
ds_train = prep.init_ds_train(self.xy_train, self.num_classes, self.batch_size)
ds_val = prep.init_ds_val(self.xy_val, self.num_classes)
hist = model.fit(
ds_train,
epochs=epochs,
validation_data=ds_val,
callbacks=[LoggingCallback(str(self.cid), logging.info)],
shuffle=False, # Shuffling is handled via tf.data.Dataset
steps_per_epoch=self.steps_train,
validation_steps=self.steps_val,
verbose=0,
)
return cast_to_float(hist.history)
def evaluate(
self, theta: KerasWeights, xy_test: Tuple[np.ndarray, np.ndarray]
) -> Tuple[float, float]:
model = self.model_provider.init_model()
model.set_weights(theta)
ds_val = prep.init_ds_val(xy_test)
# Assume the validation `tf.data.Dataset` to yield exactly one batch containing
# all examples in the validation set
loss, accuracy = model.evaluate(ds_val, steps=1, verbose=0)
return loss, accuracy
def metrics(self) -> Metrics:
vol_by_class = xy_train_volume_by_class(self.num_classes, self.xy_train)
return (self.cid, vol_by_class)
def xy_train_volume_by_class(num_classes: int, xy_train) -> VolumeByClass:
counts = [0] * num_classes
_, y = xy_train
classes, counts_actual = np.unique(y, return_counts=True)
for c in classes:
# Cast explicitly to int so its later JSON serializable
# as other we will get a list of np objects of type int64
counts[c] = int(counts_actual[c])
return counts
def cast_to_float(hist) -> KerasHistory:
for key in hist:
for index, number in enumerate(hist[key]):
hist[key][index] = float(number)
return hist
class LoggingCallback(tf.keras.callbacks.Callback):
def __init__(self, cid: str, print_fn):
tf.keras.callbacks.Callback.__init__(self)
self.cid = cid
self.print_fn = print_fn
def on_epoch_end(self, epoch, logs=None):
msg = "CID {} epoch {}".format(self.cid, epoch)
self.print_fn(msg)
|
python
|
#!/usr/bin/env python3
import sys
import heapq
# Generates gawk code. Run this manually and update hinter.awk if you don't like current alphabet or want to increase number of hints.
#
# This script builds prefix code for given number of hints using n-aray Huffman Coding.
# We precompute hints for hinter.awk to make it fast (and to avoid implementing priority queue in awk).
alphabet = list('sadfjklewcmvpghru')
alphabet_size = len(alphabet)
def generate_hints(num_hints_needed):
def huffman_build_tree(num_hints_needed):
heap = [(1, [i], []) for i in range(num_hints_needed)]
heapq.heapify(heap)
if num_hints_needed <= alphabet_size:
first_step_num_children = num_hints_needed
else:
first_step_num_children = [m for m in range(2, num_hints_needed)
if m % (alphabet_size - 1) == num_hints_needed % (alphabet_size - 1)][0]
while len(heap) > 1:
children = []
while len(heap) > 0 and len(children) < first_step_num_children:
children.append(heapq.heappop(heap))
new_node = (sum(node[0] for node in children),
sum([node[1] for node in children], []),
[node for node in children])
heapq.heappush(heap, new_node)
first_step_num_children = alphabet_size
return heap[0]
def generate_codes(tree, code):
if len(tree[1]) == 1:
yield code
assert len(tree[2]) <= alphabet_size
for child, char in zip(tree[2], alphabet):
yield from generate_codes(child, code + char)
tree = huffman_build_tree(num_hints_needed)
yield from generate_codes(tree, code='')
def generate_gawk_hints():
statement = '\nif'
sizes = [alphabet_size, 30, 50, 80, 110, 150, 200, 300, 500, 1000]
for num_hints_needed in sizes:
hints_string = ' '.join(generate_hints(num_hints_needed))
if num_hints_needed == sizes[-1]:
print(' else {')
else:
print('%s (num_hints_needed <= %d) {' % (statement, num_hints_needed))
print(' split("%s", HINTS]);' % (hints_string))
print('}', end='')
statement = ' else if'
print("")
generate_gawk_hints()
|
python
|
#!/usr/bin/python2.7
# -*- coding=utf-8 -*-
##################################################################
# WaterLevelTree Test
# Goal: Test script for WaterLevelTree algorithm
# Author: wenchieh
#
# Project: eaglemine
# waterleveltree.py
# Version:
# Date: November 29 2017
# Main Contact: Wenchieh Feng ([email protected])
#
# Copyright:
# This software is free of charge under research purposes.
# For commercial purposes, please contact the author.
#
# Created by @wenchieh on <11/30/2017>
#
##################################################################
__author__ = 'wenchieh'
# sys
import os
import time
import argparse
# third-part lib
import numpy as np
# project
from utils.loader import Loader
from core.leveltree import LevelTree
VERBOSE = False
tiny_blobs = 'tiny_blob2cnt.out'
contracttree = 'level_tree_contract.out'
prunetree = 'level_tree_prune.out'
refinetree = 'level_tree_refine.out'
def waterleveltree(cel2cnt_arr, outpath):
tsr_arr = np.asarray(cel2cnt_arr)
values = np.log2(1.0 + tsr_arr[:, -1])
max_level = np.max(values)
step = 0.2
tree = LevelTree()
print("Construct raw-tree.")
tree.build_level_tree(tsr_arr[:, :-1], values, 1.0, max_level, step,
verbose=False, outfn=os.path.join(outpath, tiny_blobs))
print("Refine tree structure.")
print("a). tree contract")
tree.tree_contract(VERBOSE)
tree.save_leveltree(os.path.join(outpath, contracttree))
print("b). tree pruned")
tree.tree_prune(alpha=0.8, verbose=VERBOSE)
tree.save_leveltree(os.path.join(outpath, prunetree))
print("c). tree node expand")
tree.tree_node_expand(VERBOSE)
tree.save_leveltree(os.path.join(outpath, refinetree))
tree.dump()
if __name__ == '__main__':
path = '../output/'
histogram_infn = 'histogram.out'
loader = Loader()
print("load data")
shape, ticks_vec, hist_arr = loader.load_multi_histogram(os.path.join(path, histogram_infn))
mode = len(shape)
print("Info: mode:{} shape:{}".format(mode, shape))
waterleveltree(hist_arr, path)
print("done!")
|
python
|
from restaurant import Restaurant
rest1 = Restaurant('Alitas y Costillas', 'BBQ')
print(rest1.describe_restaurant())
print(rest1.open_restaurant())
from user import Admin
admin1 = Admin('Antonio', 'Perez', '25', 'Monterrey, Nuevo Leon')
admin1.privileges = ['Edit', 'Delete', 'Ban']
print(admin1.describe_User())
admin1.show_privileges()
|
python
|
#!/usr/bin/env python3
"""
See freq_response.md for details
"""
from dataclasses import dataclass
import fractions
import math
from typing import Iterable, Optional, Tuple, Union
import numpy as np
from analysis import linearity, time_domain_response
from utils import utils
from unit_test import unit_test
from processor import ProcessorBase
from generation import signal_generation
PI = math.pi
HALF_PI = 0.5 * math.pi
TWOPI = 2.0 * math.pi
SQRT2 = math.sqrt(2.0)
INV_SQRT2 = 1.0 / SQRT2
# Square wave has THD+N of sqrt(pi^2 / 8 - 1) ~= 0.483 ~= -6.32 dB
# https://en.wikipedia.org/wiki/Total_harmonic_distortion#Examples
SQUARE_THDN = utils.to_dB(math.sqrt((math.pi ** 2.) / 8 - 1))
_unit_tests_short = []
_unit_tests_full = []
@dataclass
class FreqResponse:
freqs: np.ndarray
sample_rate: float
amplitude: Optional[float] = None # Amplitude frequency response was performed at (relevant for nonlinear systems)
mag: Optional[np.ndarray] = None # Magnitude
rms: Optional[np.ndarray] = None # RMS response (only relevant for nonlinear system)
phase: Optional[np.ndarray] = None # Phase response, in radians
group_delay: Optional[np.ndarray] = None
thdn: Optional[np.ndarray] = None # THD + Noise (linear, not dB)
def dft_num_samples(
freq: Union[int, float],
sample_rate: Union[int, float],
min_num_samples=0,
max_num_samples: Optional[int]=None,
maximize=False,
round_up=False,
) -> int:
"""
Determine optimum DFT size at a given frequency and sample rate, in order to get an exact number of cycles at the
frequency, or as close as possible.
:param freq: frequency, in whatever units you want (must be same units as sample rate)
:param sample_rate: sample rate (in same units as freq)
:param min_num_samples:
Minimum number of samples; default 0 (i.e. no minimum).
Actual practical minimum will always be at least 1 cycle
:param max_num_samples:
Maximum number of samples; default is sample_rate or period at frequency, whichever is larger
Must be > (sample_rate/freq).
Must be specified if maximize
:param maximize:
By default, will come up with the minimum possible number of samples that satisfies the criteria sequence;
if maximize, will come up with the longest instead.
Must explicitly specify max_num_samples if maximize
:param round_up:
if True, will always round up instead of rounding to nearest
"""
if maximize and not max_num_samples:
raise ValueError('Must provide max_num_samples if setting maximize')
period = sample_rate / freq
if min_num_samples < 0:
raise ValueError('min_num_samples must be > 0')
elif not isinstance(min_num_samples, int):
raise ValueError('min_num_samples must be integer')
if max_num_samples is None:
max_num_samples = int(math.ceil(max(sample_rate, period)))
elif not isinstance(max_num_samples, int):
raise ValueError('max_num_samples must be integer')
elif max_num_samples <= 0:
raise ValueError('max_num_samples (%g) must be > 0' % max_num_samples)
elif max_num_samples <= min_num_samples:
raise ValueError('max_num_samples (%g) must be > min_num_samples (%g)' % (max_num_samples, min_num_samples))
eps = 1e-12
min_num_cycles = max(min_num_samples / period, 1.)
min_num_cycles_int = int(math.ceil(min_num_cycles - eps))
max_num_cycles = max_num_samples / period
max_num_cycles_int = int(math.floor(max_num_cycles + eps))
if max_num_cycles_int < 1:
assert max_num_samples < period
raise ValueError('max_num_samples (%u) must be >= period (%g)' % (max_num_samples, period))
assert min_num_cycles_int * (period + eps) >= min_num_samples
assert max_num_cycles_int * (period - eps) <= max_num_samples
if max_num_cycles_int == min_num_cycles_int:
# Special case: only 1 possible number of periods
n_samples = max_num_cycles_int * period
n_samples = int(math.ceil(n_samples) if round_up else round(n_samples))
assert min_num_samples <= n_samples <= max_num_samples
return n_samples
elif max_num_cycles_int < min_num_cycles_int:
# TODO: come up with good error message for this
raise ValueError('freq %g, SR %g, min_num_cycles %f -> %u, max_num_cycles %f -> %u' % (
freq, sample_rate,
min_num_cycles, min_num_cycles_int, max_num_cycles, max_num_cycles_int
))
assert max_num_samples >= period # Should be guaranteed by above conditions
freq = utils.integerize_if_int(freq)
sample_rate = utils.integerize_if_int(sample_rate)
if isinstance(freq, int) and isinstance(sample_rate, int):
period_as_fraction = fractions.Fraction(sample_rate, freq)
else:
period_as_fraction = fractions.Fraction.from_float(period)
period_as_fraction = period_as_fraction.limit_denominator(max_denominator=max_num_cycles_int)
n_samples_ideal = period * period_as_fraction.denominator
assert utils.approx_equal(period_as_fraction.numerator, n_samples_ideal, eps=0.5)
if maximize:
if 2*n_samples_ideal <= max_num_samples:
"""
What's the largest integer we can multiply n_samples_ideal by to still be <= max_num_samples?
n * k <= max
k <= max / n
k = floor(max / n)
"""
n_samples_ideal *= math.floor(max_num_samples / n_samples_ideal)
elif n_samples_ideal < min_num_samples:
"""
What's the smallest integer we can multiply n_samples_ideal by to be >= min_num_samples?
n * k >= min
k >= min / n
k = ceil(min / n)
"""
n_samples_ideal *= math.ceil(min_num_samples / n_samples_ideal)
n_samples = int(math.ceil(n_samples_ideal) if round_up else round(n_samples_ideal))
if not (min_num_samples <= n_samples <= max_num_samples):
raise AssertionError('Check n_samples (%i, from %g, fraction %s) in range (%i, %i) failed!' % (
n_samples, n_samples_ideal, period_as_fraction, min_num_samples, max_num_samples))
return n_samples
def _test_dft_num_samples():
from unit_test.unit_test import test_equal, test_threw
"""
Perfect divisors
"""
# 1 kHz @ 96 kHz
# 1 period = 96 samples
test_equal(dft_num_samples(1000, 96000), 96)
test_equal(dft_num_samples(1000, 96000.), 96)
test_equal(dft_num_samples(1000., 96000), 96)
test_equal(dft_num_samples(1000., 96000.), 96)
test_equal(dft_num_samples(1000., 96000., min_num_samples=100), 192)
test_equal(dft_num_samples(1000., 96000., min_num_samples=384), 384)
test_equal(dft_num_samples(1000., 96000., max_num_samples=400, maximize=True), 384)
test_equal(dft_num_samples(1000., 96000., min_num_samples=380, max_num_samples=400), 384)
test_threw(dft_num_samples, 1000., 96000., min_num_samples=398, max_num_samples=400)
# 3.125 (25/8) @ 96 kHz
# 1 period = 30,720 samples
test_equal(dft_num_samples(3.125, 96000.), 30720)
"""
Rational numbers
"""
# 10 kHz @ 96 kHz
# 1 period = 9.6 samples (48/5)
test_equal(dft_num_samples(10000, 96000), 48)
test_equal(dft_num_samples(10000, 96000, maximize=True, max_num_samples=96000), 96000)
# 1 kHz @ 44.1 kHz
# 1 period = 44.1 samples (441/10)
test_equal(dft_num_samples(1000, 44100), 441)
test_equal(dft_num_samples(1000, 44100, maximize=True, max_num_samples=44100), 44100)
# 440 Hz @ 44.1 kHz
# 1 period = 100.2272727 samples (2205/22)
test_equal(dft_num_samples(440, 44100), 2205)
test_equal(dft_num_samples(440, 44100, maximize=True, max_num_samples=44100), 44100)
test_equal(dft_num_samples(440, 44100, max_num_samples=102), 100)
test_equal(dft_num_samples(440, 44100, max_num_samples=102, round_up=True), 101)
test_equal(dft_num_samples(440, 44100, max_num_samples=510, maximize=True), 401)
test_equal(dft_num_samples(440, 44100, max_num_samples=510, round_up=True, maximize=True), 401)
# 100.125 Hz @ 96 kHz
# 1 period = 958.80 samples (256000/267)
test_equal(dft_num_samples(100.125, 96000, max_num_samples=1000000), 256000)
test_equal(dft_num_samples(100.125, 96000, max_num_samples=1000000, maximize=True), 768000)
test_equal(dft_num_samples(100.125, 96000), 92045)
# 3010 Hz @ 96 kHz
# 1 period = 31.89 samples (9600/301)
test_equal(dft_num_samples(3010, 96000), 9600)
test_equal(dft_num_samples(3010, 96000, maximize=True, max_num_samples=96000), 96000)
# 1001 Hz @ 96 kHz (coprime)
# 1 period = 95.904 samples (96000/1001)
test_equal(dft_num_samples(1001, 96000), 96000)
test_equal(dft_num_samples(1001, 96000, maximize=True, max_num_samples=96000), 96000)
# 1000.1 Hz @ 96 kHz
# 1 period = 95.99 samples (960,000/10,001)
test_equal(dft_num_samples(1000.1, 96000), 59994)
test_equal(dft_num_samples(1000.1, 96000, maximize=True, max_num_samples=96000), 59994)
"""
Irrational numbers
"""
# 1000*pi Hz @ 96 kHz
# 1 period = 30.5577 samples
test_equal(dft_num_samples(1000*PI, 96000), 30955)
"""
Rational numbers expressed as ratio of 2 irrational numbers
"""
test_equal(dft_num_samples(1000*PI, 96000*PI), 96)
_unit_tests_short.append(_test_dft_num_samples)
_unit_tests_full.append(_test_dft_num_samples)
def _single_freq_dft(
x: np.ndarray,
cos_sig: np.ndarray,
sin_sig: np.ndarray,
freq: Union[int, float],
sample_rate: Union[int, float],
mag=False,
phase=False,
adjust_num_samp=False,
normalize=False):
# TODO: use Goertzel algo instead
# FIXME: properly deal with boundary conditions - i.e. extra samples at end that don't fit into a complete cycle
# adjust_num_samp should mostly deal with that
if adjust_num_samp:
n_samp = dft_num_samples(freq, sample_rate, min_num_samples=(len(x) // 2), max_num_samples=len(x), maximize=True)
else:
n_samp = len(x)
dft_mult = cos_sig[:n_samp] - 1j * sin_sig[:n_samp]
xs = x[:n_samp] * dft_mult
xs = np.mean(xs) if normalize else sum(xs)
if mag and phase:
return np.abs(xs), np.angle(xs)
elif mag:
return np.abs(xs)
elif phase:
return np.angle(xs)
else:
return xs
def single_freq_dft(
x: np.ndarray,
freq: float,
sample_rate=1.0,
mag=True,
phase=True,
adjust_num_samp=False,
normalize=False):
"""
Perform DFT at a single arbitrary frequency
:param x:
:param freq:
:param sample_rate:
:param mag: return magnitude
:param phase: return phase
:param adjust_num_samp:
if True, will not perform DFT on entire signal; rather, will find optimal number of samples to get as close
to a zero-crossing as possible (though guaranteed to use at least half the samples).
Recommend calling dft_num_samples to determine sample size instead, in order to get the optimal DFT size of the
signal in the first place.
:param normalize: divide by number of samples, i.e. return average power per sample instead of sum
:return: (mag, phase) if mag and phase; magnitude if mag only; phase if phase only; complex result if neither
"""
cos_sig, sin_sig = signal_generation.gen_cos_sine(freq / sample_rate, len(x))
return _single_freq_dft(
x, cos_sig, sin_sig, freq, sample_rate,
mag=mag, phase=phase, adjust_num_samp=adjust_num_samp, normalize=normalize)
def phase_to_group_delay(freqs: np.ndarray, phases_rad: np.ndarray, sample_rate: float) -> np.ndarray:
phases_rad_unwrapped = np.unwrap(phases_rad)
freqs_cycles_per_sample = freqs / sample_rate
freqs_rads_per_sample = freqs_cycles_per_sample * TWOPI
np_version = [int(n) for n in np.__version__.split('.')]
if np_version[0] <= 1 and np_version[1] < 13:
delay_samples = -np.gradient(phases_rad_unwrapped) / np.gradient(freqs_rads_per_sample)
else:
delay_samples = -np.gradient(phases_rad_unwrapped, freqs_rads_per_sample)
delay_seconds = delay_samples / sample_rate
return delay_seconds
def get_ir_freq_response(
ir: np.ndarray,
freqs: Iterable,
sample_rate,
mag=True,
phase=True,
group_delay=True) -> FreqResponse:
"""
Calculate frequency response based on impulse response
:param ir: Impulse response
:param freqs: frequencies to get response at. More frequencies will also lead to more precise group delay
:param sample_rate: sample rate, in Hz
:param mag: if False, does not calculate nor return magnitude
:param rms: if False, does not calculate nor return RMS magnitude
:param phase: if False, does not calculate nor return phase
:param group_delay: if False, does not calculate nor return group delay
:return: frequency response of system
"""
if group_delay and not phase:
raise ValueError('Must calculate phase to calculate group delay!')
freqs = np.array(freqs)
freq_resp = FreqResponse(freqs=freqs, sample_rate=sample_rate)
if mag:
freq_resp.mag = np.zeros(len(freqs))
if phase:
freq_resp.phase = np.zeros(len(freqs))
for n, f_norm in enumerate(freqs / sample_rate):
ret = single_freq_dft(ir, f_norm, mag=mag, phase=phase, adjust_num_samp=True)
if mag:
freq_resp.mag[n] = ret[0]
if phase:
freq_resp.phase[n] = ret[-1]
if group_delay:
freq_resp.group_delay = phase_to_group_delay(freqs, freq_resp.phase, sample_rate)
if phase:
freq_resp.phase = ((freq_resp.phase + PI) % TWOPI) - PI
return freq_resp
def _calc_thdn(y, f_norm, mag, phase, debug_assert=False):
# Subtract fundamental from signal
phase01 = np.mod(phase / TWOPI, 1.0)
fundamental = signal_generation.gen_sine(f_norm, n_samp=len(y), start_phase=phase01) * mag
if debug_assert:
debug_mag, debug_phase = single_freq_dft(fundamental, f_norm, mag=True, phase=True, normalize=True, adjust_num_samp=False)
assert utils.approx_equal(debug_mag, mag, eps=0.001)
assert utils.approx_equal(debug_phase, phase, eps=0.01)
thdn_sig = y - fundamental
return utils.rms(thdn_sig) * SQRT2 / mag
def get_discrete_sine_sweep_freq_response(
system: ProcessorBase,
freqs: Iterable,
sample_rate,
n_cycles=40.0,
n_samp_min: Optional[int]=None,
n_samp=None,
amplitude=1.0,
mag=True,
rms=True,
phase=True,
group_delay=None,
thdn=None) -> FreqResponse:
"""
Calculate frequency response by passing sine waves at various frequencies through system
Unlike impulse response analysis, this will work for nonlinear systems as well
(Of course, the definition of "frequency response" is ill-defined for a nonlinear system - see freq_response.md)
:param system: Processor to process
:param freqs: frequencies to get response at. More frequencies will also lead to more precise group delay
:param sample_rate: sample rate, in Hz
:param n_cycles: how many cycles of waveform to calculate over
:param n_samp_min: if using n_cycles, minimum n_samp
:param n_samp: how many samples to calculate over - overrides n_cycles
:param amplitude: amplitude of sine wave to pass in
:param mag: if False, does not calculate nor return magnitude
:param rms: if False, does not calculate nor return RMS magnitude
:param phase: if False, does not calculate nor return phase
:param group_delay: if False, does not calculate nor return group delay; default true if phase, else false
:param thdn: if False, does not calculate THD+Noise; default true if mag & phase, else false
:return:
frequency response of system.
mag, phase, and group delay are based on measurement of output at only that frequency.
RMS is based on entire signal.
So you can get a proxy for "how nonlinear" the system is by comparing difference between mag & RMS
(if linear, output would be a sine wave, so RMS would be 1/sqrt(2) of magnitude)
"""
if group_delay is None:
group_delay = phase
elif group_delay and not phase:
raise ValueError('Must calculate phase to calculate group delay!')
if thdn is None:
thdn = mag and phase
elif thdn and (not mag or not phase):
raise ValueError('Must calculate magnitude/phase to calculate THD+N')
freqs = np.array(freqs)
freq_resp = FreqResponse(freqs=freqs, sample_rate=sample_rate)
if mag:
freq_resp.mag = np.zeros(len(freqs))
if rms:
freq_resp.rms = np.zeros(len(freqs))
if phase:
freq_resp.phase = np.zeros(len(freqs))
if thdn:
freq_resp.thdn = np.zeros(len(freqs))
debug_use_dft_of_input = True # FIXME: false is broken
for n, freq in enumerate(freqs):
f_norm = freq / sample_rate
period = sample_rate / freq
if n_samp is None:
max_num_samples = int(math.ceil(max(n_cycles * period, sample_rate)))
#n_samp_this_freq = max(math.ceil(n_cycles / f_norm), n_samp_min)
n_samp_this_freq = dft_num_samples(
freq, sample_rate,
min_num_samples=n_samp_min if (n_samp_min is not None) else 0,
max_num_samples=max_num_samples)
else:
n_samp_this_freq = n_samp
scaling = 2.0 / n_samp_this_freq
# Input is actually double the number of samples, but for output we only take the 2nd half
# TODO: be smarter about this, actually watch the output and wait for the system to hit steady-state
# TODO: Can we reach steady-state faster if we ramp up the amplitude?
# (This would avoid the sudden impulse in 2nd, 3rd, etc derivatives)
x_cos_full, x_sin_full = signal_generation.gen_cos_sine(f_norm, 2 * n_samp_this_freq)
x_cos = x_cos_full[n_samp_this_freq:]
x_sin = x_sin_full[n_samp_this_freq:]
x_cos_dft_mag = x_cos_dft_phase = x_sin_dft_mag = x_sin_dft_phase = None
if debug_use_dft_of_input:
x_cos_dft_mag, x_cos_dft_phase = _single_freq_dft(x_cos, x_cos, x_sin, freq, sample_rate, mag=True, phase=True, adjust_num_samp=False)
x_sin_dft_mag, x_sin_dft_phase = _single_freq_dft(x_sin, x_cos, x_sin, freq, sample_rate, mag=True, phase=True, adjust_num_samp=False)
x_rms = utils.rms(x_sin) if rms else None
else:
x_cos_dft_mag = 1.0
x_cos_dft_phase = HALF_PI
x_sin_dft_mag = 1.0
x_sin_dft_phase = 0
x_rms = INV_SQRT2
# TODO: remove y_cos once we know we don't need it anymore
system.reset()
y_cos = system.process_vector(x_cos_full * amplitude)[n_samp_this_freq:] / amplitude
system.reset()
y_sin = system.process_vector(x_sin_full * amplitude)[n_samp_this_freq:] / amplitude
# TODO: use this? the results look really good - in some cases they look even better than impulse response results
# (That doesn't really make sense though - IR should be perfect for linear?)
#mag_sin_cos = np.sqrt(np.square(y_sin) + np.square(y_cos))
if mag or phase:
ret = _single_freq_dft(y_sin, x_cos, x_sin, freq, sample_rate, mag=mag, phase=phase, adjust_num_samp=False)
if mag:
freq_resp.mag[n] = ret[0] if (mag and phase) else ret
if x_sin_dft_mag is not None:
freq_resp.mag[n] /= x_sin_dft_mag
else:
freq_resp.mag[n] *= scaling
if phase:
# TODO: figure out if should use both sin & cos
# TODO: use x_sin_dft_phase
freq_resp.phase[n] = (ret[1] if (mag and phase) else ret) + HALF_PI
if rms:
freq_resp.rms[n] = utils.rms(y_sin) / x_rms
if thdn:
freq_resp.thdn[n] = _calc_thdn(
y=y_sin,
f_norm=f_norm,
mag=freq_resp.mag[n],
phase=freq_resp.phase[n])
if group_delay:
freq_resp.group_delay = phase_to_group_delay(freqs, freq_resp.phase, sample_rate)
if phase:
freq_resp.phase = ((freq_resp.phase + PI) % TWOPI) - PI
return freq_resp
def _test_thdn():
pass # TODO
#_unit_tests_short.append(_test_thdn)
#_unit_tests_full.append(_test_thdn)
def get_white_noise_response(
system: ProcessorBase,
freqs: Iterable,
sample_rate,
n_samp: int,
amplitude=1.0,
gaussian=True,
mag=True,
phase=True,
group_delay=True,
relative_to_input=True) -> FreqResponse:
freqs = np.array(freqs)
freq_resp = FreqResponse(freqs=freqs, sample_rate=sample_rate)
if not (mag or phase):
return freq_resp
if mag:
freq_resp.mag = np.zeros(len(freqs))
if phase:
freq_resp.phase = np.zeros(len(freqs))
x = signal_generation.gen_noise(n_samp, gaussian=gaussian, amp=amplitude)
y = system.process_vector(x)
for n, freq in enumerate(freqs):
kwargs = dict(
freq=freq, sample_rate=sample_rate,
mag=mag, phase=phase,
adjust_num_samp=True, normalize=(not relative_to_input))
x_ret = single_freq_dft(x, **kwargs)
y_ret = single_freq_dft(y, **kwargs)
if mag and phase:
x_mag, x_phase = x_ret
y_mag, y_phase = y_ret
elif mag:
x_mag = x_ret
y_mag = y_ret
else:
assert phase
x_phase = x_ret
y_phase = y_ret
if mag:
freq_resp.mag[n] = (y_mag / x_mag) if relative_to_input else y_mag
if phase:
freq_resp.phase[n] = y_phase - x_phase
if group_delay:
freq_resp.group_delay = phase_to_group_delay(freqs, freq_resp.phase, sample_rate)
return freq_resp
def _test_sine_vs_noise(long: bool):
from filters import one_pole
from filters import biquad
from overdrive import overdrive
from processor import GainWrapper, CascadedProcessors, GainProcessor
from utils.utils import to_dB
sample_rate = 96000
cutoff = 1000
Q = 2.0
wc = cutoff / sample_rate
if long:
n_samp_min = 4096
n_samp_noise = 4 * sample_rate
eps_dB = 3
freqs = [
10,
30,
100,
300,
1000,
3000,
10000,
20000,
]
phase_eps = 0.1
delay_eps = 0.1
else:
n_samp_min = 1024
n_samp_noise = sample_rate
eps_dB = 6
freqs = [
10,
100,
1000,
10000,
20000,
]
phase_eps = 0.1
delay_eps = 0.1
processors = [
("pass-through processor", CascadedProcessors([])),
("Basic one pole", one_pole.BasicOnePole(wc=wc)),
("Trapz one pole", one_pole.TrapzOnePole(wc=wc)),
("Basic one pole highpass", one_pole.BasicOnePoleHighpass(wc=wc)),
("Biquad, Q=%g" % Q, biquad.BiquadLowpass(wc=wc, Q=Q)),
("tanh overdrive", overdrive.TanhProcessor()),
("tanh overdrive, 20 dB gain", GainWrapper(overdrive.TanhProcessor(), 10.)),
("tanh overdrive, -20 dB gain", GainWrapper(overdrive.TanhProcessor(), 0.1)),
("Squarizer", overdrive.Squarizer()),
("Squarizer -20 dB", CascadedProcessors([overdrive.Squarizer(), GainProcessor(0.1)])),
("One pole then tanh", CascadedProcessors([one_pole.BasicOnePole(wc=wc), overdrive.TanhProcessor(gain=2)])),
("tanh then one pole", CascadedProcessors([overdrive.TanhProcessor(gain=2), one_pole.BasicOnePole(wc=wc)])),
("Biquad, Q=%g, then hard clip at 1.1" % Q, CascadedProcessors([biquad.BiquadLowpass(wc=wc, Q=Q), overdrive.Clipper(gain=1.0/1.1)])),
("Biquad, Q=%g, then hard clip at 1" % Q, CascadedProcessors([biquad.BiquadLowpass(wc=wc, Q=Q), overdrive.Clipper()])),
("Rossum 92 Nonlinear Biquad, Q=%g, gain 10" % Q, GainWrapper(biquad.Rossum92Biquad(wc=wc, Q=Q), 10.)),
]
for name, processor in processors:
sine_resp = get_discrete_sine_sweep_freq_response(
processor, freqs, sample_rate=sample_rate, rms=False, thdn=False, n_samp_min=n_samp_min)
noise_resp = get_white_noise_response(processor, freqs=freqs, sample_rate=sample_rate, n_samp=n_samp_noise)
assert np.array_equal(sine_resp.freqs, freqs)
assert np.array_equal(noise_resp.freqs, freqs)
if False:
print(sine_resp.mag)
print(to_dB(sine_resp.mag))
print(noise_resp.mag)
print(to_dB(noise_resp.mag))
print(sine_resp.phase)
print(to_dB(sine_resp.phase))
print(noise_resp.phase)
print(to_dB(noise_resp.phase))
print(sine_resp.group_delay)
print(to_dB(sine_resp.group_delay))
print(noise_resp.group_delay)
print(to_dB(noise_resp.group_delay))
unit_test.test_approx_equal(to_dB(sine_resp.mag), to_dB(noise_resp.mag), eps_abs=eps_dB)
unit_test.test_approx_equal(sine_resp.phase, noise_resp.phase, eps_abs=phase_eps)
unit_test.test_approx_equal(sine_resp.group_delay, noise_resp.group_delay, eps_abs=delay_eps)
_unit_tests_short.append(lambda: _test_sine_vs_noise(False))
_unit_tests_full.append(lambda: _test_sine_vs_noise(True))
def check_linear_and_get_freq_resp(
system: ProcessorBase,
freqs: Iterable,
sample_rate,
n_samp: Optional[int]=None,
n_cycles=40.0,
n_samp_min: Optional[int]=None,
amplitude=1.0,
eps=0.00001,
mag=True,
rms=True,
phase=True,
group_delay=True) -> Tuple[bool, FreqResponse]:
"""
Check if system is linear and calculate frequency response
If linear, impulse response will be used
If nonlinear, sine sweep will be used
Linearity check is done by testing if impulse response is equal to derivative of step response
:param system: Processor to process
:param freqs: frequencies to get response at. More frequencies will also lead to more precise group delay
:param sample_rate: sample rate, in Hz
:param n_cycles: how many cycles of waveform to calculate over
(if using impulse response, IR length will be based on lowest of freqs)
:param n_samp_min: if using n_cycles, minimum n_samp
:param n_samp: how many samples to calculate over - overrides n_cycles
:param amplitude: amplitude of IR/step/sine wave
:param eps: epsilon value for IR/step comparison
:param mag: if False, does not calculate nor return magnitude
:param rms: if False, does not calculate nor return RMS magnitude
:param phase: if False, does not calculate nor return phase
:param group_delay: if False, does not calculate nor return group delay
:return: Tuple (True if linear, frequency response of system)
"""
if n_samp is None:
lowest_freq = min(freqs)
highest_period = sample_rate / lowest_freq
n_samp = highest_period * n_cycles
linear = linearity.check_linear(system, n_samp=n_samp, amplitude=amplitude, eps=eps)
if linear:
freq_resp = get_ir_freq_response(
ir, freqs, sample_rate,
mag=mag, phase=phase, group_delay=group_delay)
else:
freq_resp = get_discrete_sine_sweep_freq_response(
system, freqs, sample_rate,
n_cycles=n_cycles, n_samp=n_samp, n_samp_min=n_samp_min,
amplitude=amplitude,
mag=mag, rms=rms, phase=phase, group_delay=group_delay)
return linear, freq_resp
def _test_dft_trivial():
"""
Test DFT using the same cos/sin signal as the DFT uses
"""
sample_rates = [32000., 44100., 96000., 192000.]
freqs = [
100., 100.125, 107., 440., 500.,
1000., 1001., 2050., 3000., 3010., 5000.,
10000., 20000.,
1000 * PI,
]
for sample_rate in sample_rates:
for freq in freqs:
if (2 * freq) > sample_rate:
continue
f_norm = freq / sample_rate
period = sample_rate / freq
max_num_samples = int(math.ceil(max(period, sample_rate)))
n_samp = dft_num_samples(
freq, sample_rate,
max_num_samples=max_num_samples)
n_cycles = n_samp / period
cycle_err = abs(n_cycles - round(n_cycles))
# TODO: tighten up maximum clip values here
eps_rel = utils.clip(cycle_err, (1e-12, 1e-5))
eps_zero = utils.clip(10*cycle_err, (1e-11, 1e-3))
x_cos, x_sin = signal_generation.gen_cos_sine(f_norm, n_samp)
dft_cos = _single_freq_dft(
x_cos, cos_sig=x_cos, sin_sig=x_sin, freq=freq, sample_rate=sample_rate, adjust_num_samp=False)
dft_sin = _single_freq_dft(
x_sin, cos_sig=x_cos, sin_sig=x_sin, freq=freq, sample_rate=sample_rate, adjust_num_samp=False)
unit_test.test_approx_equal(np.real(dft_cos), 0.5*n_samp, eps=eps_rel, rel=True)
unit_test.test_approx_equal(np.imag(dft_cos), 0., eps=eps_zero)
unit_test.test_approx_equal(np.real(dft_sin), 0., eps=eps_zero)
unit_test.test_approx_equal(np.imag(dft_sin), -0.5*n_samp, eps=eps_rel, rel=True)
_unit_tests_short.append(_test_dft_trivial)
_unit_tests_full.append(_test_dft_trivial)
def _test_dft_against_fft(long=True):
"""
Test single_freq_dft against numpy fft
Note that this is only possible at frequencies that perfectly fit into n samples
"""
eps = 1e-6
mags_short = [1.0, eps, PI, 100.1]
mags_full = [1.0, 0.125, 0.1, eps, PI, 100., 100.1, 100 + eps]
phases_short = [0, 0.1, 0.125, 0.24, 0.25, 0.9]
phases_full = [0, eps, 0.1, 0.124, 0.125, 0.126, 0.25, 0.24, 0.26, 0.25 - eps, 0.25 + eps, 0.5, 0.75, 0.9, 1 - eps]
tests = [
dict(
n_samples=512,
bin_nums=[0, 1, 10, 11, 100, 255, 256],
eps_abs=1e-9,
eps_rel=1e-12,
mags=mags_full,
phases=phases_full,
),
dict(
n_samples=4096,
bin_nums=[0, 1, 10, 11, 100, 512, 1024, 2047, 2048],
eps_abs=1e-9,
eps_rel=1e-9,
mags=mags_full,
phases=phases_full,
),
dict(
n_samples=65536,
bin_nums=(
[0, 1, 10, 11, 100, 512, 1024, 2047, 2048, 4096, 8191, 8192, 32767, 32768] if long else
[0, 1, 10, 11, 100, 2048, 4096, 32767, 32768]
),
eps_abs=1e-9,
eps_rel=1e-8,
mags=(mags_full if long else mags_short),
phases=(phases_full if long else phases_short),
),
]
for test in tests:
eps_abs = test['eps_abs']
eps_rel = test['eps_rel']
n_samples = test['n_samples']
bin_nums = test['bin_nums']
mags = test['mags']
phases = test['phases']
for bin_num in bin_nums:
for mag in mags:
for phase in phases:
unit_test.log('n_samples %u, bin_num %u, mag %g, ph %g' % (n_samples, bin_num, mag, phase))
f_norm = bin_num / n_samples
sig = mag * signal_generation.gen_sine(f_norm, n_samp=n_samples, start_phase=phase)
dft_sig = single_freq_dft(
sig, f_norm, sample_rate=1.0,
mag=False, phase=False,
adjust_num_samp=False, normalize=False)
fft_sig = np.fft.fft(sig)
fft_at_bin = fft_sig[bin_num]
unit_test.test_approx_equal(
np.real(dft_sig), np.real(fft_at_bin),
abs_rel=True, eps_abs=eps_abs, eps_rel=eps_rel)
unit_test.test_approx_equal(
np.imag(dft_sig), np.imag(fft_at_bin),
abs_rel=True, eps_abs=eps_abs, eps_rel=eps_rel)
unit_test.test_approx_equal(
np.abs(dft_sig), np.abs(fft_at_bin),
abs_rel=True, eps_abs=eps_abs, eps_rel=eps_rel
)
_unit_tests_short.append(lambda: _test_dft_against_fft(long=False))
_unit_tests_full.append(lambda: _test_dft_against_fft(long=True))
def _test_dft_sine(long=True):
"""
Test single_freq_dft with sine waves at arbitrary frequency, phase, amplitude
"""
# Similar to both _test_dft_trivial and _test_dft_against_fft but covers some ground those don't
# (arbitrary frequency)
eps = 1e-6
sample_rate = 96000.
mags_short = [1.0, eps, PI, 100.1]
mags_full = [1.0, 0.125, 0.1, eps, PI, 100., 100.1, 100 + eps]
phases_short = [0, 0.1, 0.125, 0.24, 0.25, 0.9]
phases_full = [0, eps, 0.1, 0.124, 0.125, 0.126, 0.25, 0.24, 0.26, 0.25 - eps, 0.25 + eps, 0.5, 0.75, 0.9, 1 - eps]
simple_freqs = [
20., 100., 1000., 10000., 20000., 32000.,
]
complex_freqs = [
440., 440. + 0.1*PI, 1234., 5927., PI*10000.,
]
freqs = [
20., 100., 440., 440. + 0.1*PI, 1000., 1234., 5927., 10000., 20000., PI*10000., 32000.,
]
for freq in freqs:
#eps_abs = test['eps_abs']
#eps_rel = test['eps_rel']
#n_samples = test['n_samples']
#bin_nums = test['bin_nums']
#mags = test['mags']
#phases = test['phases']
pass # TODO: like _test_dft_trivial() but with with non-trivial phase & magnitude
#_unit_tests_short.append(lambda: _test_dft_sine(long=False)) # TODO: enable when ready
#_unit_tests_full.append(lambda: _test_dft_sine(long=True)) # TODO: enable when ready
def _do_detail():
from matplotlib import pyplot as plt
sample_rate = 96000
n_samp = None
n_samp_min = 4096
n_cycles = 128.0
n_samp_plot = 128
freqs = [100., 107., 500., 1000., 2050., 3000., 3010., 5000., 10000., 20000.]
fig = plt.figure()
print('%6s %6s %8s %8s %10s %10s %10s %10s %12s' % (
'freq', 'phase',
'num samp', 'num cyc',
'real err', 'imag err',
'mag err', 'ph err', 'max rec err',))
for n, freq in enumerate(freqs):
f_norm = freq / sample_rate
period = sample_rate / freq
if n_samp is None:
max_num_samples = int(math.ceil(max(n_cycles * period, sample_rate)))
n_samp_this_freq = dft_num_samples(
freq, sample_rate,
min_num_samples=n_samp_min,
max_num_samples=max_num_samples)
else:
n_samp_this_freq = n_samp
n_cycles_this_freq = n_samp_this_freq * f_norm
x_cos, x_sin = signal_generation.gen_cos_sine(f_norm, n_samp_this_freq)
#mag_sin, phase_sin = _single_freq_dft(x_sin, x_cos, x_sin, freq, sample_rate, mag=True, phase=True)
dft_cos = _single_freq_dft(
x_cos, cos_sig=x_cos, sin_sig=x_sin, freq=freq, sample_rate=sample_rate, adjust_num_samp=False)
dft_sin = _single_freq_dft(
x_sin, cos_sig=x_cos, sin_sig=x_sin, freq=freq, sample_rate=sample_rate, adjust_num_samp=False)
dft_cos /= (0.5*n_samp_this_freq)
dft_sin /= (0.5*n_samp_this_freq)
mag_cos = np.abs(dft_cos)
mag_sin = np.abs(dft_sin)
phase_cos = np.angle(dft_cos)
phase_sin = np.angle(dft_sin)
# gen_sine takes phase 0-1, relative to sine (not cos)
phase_cos_01 = np.mod((phase_cos / TWOPI) + 0.25, 1.0)
phase_sin_01 = np.mod((phase_sin / TWOPI) + 0.25, 1.0)
idx = np.arange(n_samp_plot)
reconstructed_cos = signal_generation.gen_sine(f_norm, n_samp=n_samp_this_freq, start_phase=phase_cos_01) * mag_cos
reconstructed_sin = signal_generation.gen_sine(f_norm, n_samp=n_samp_this_freq, start_phase=phase_sin_01) * mag_sin
cos_real_err = np.real(dft_cos) - 1.0
cos_imag_err = np.imag(dft_cos)
sin_real_err = np.real(dft_sin)
sin_imag_err = np.imag(dft_sin) + 1.0
cos_mag_err = mag_cos - 1
sin_mag_err = mag_sin - 1
cos_phase_err = phase_cos
sin_phase_err = phase_sin + HALF_PI
cos_rec_err = reconstructed_cos - x_cos
sin_rec_err = reconstructed_sin - x_sin
plt.subplot(len(freqs), 2, 2*n+1)
if n == 0:
plt.title('cos')
plt.plot(idx, x_cos[:n_samp_plot], label='input')
plt.plot(idx, x_cos[:n_samp_plot], label='output')
plt.plot(idx, reconstructed_cos[:n_samp_plot], label='reconstructed')
plt.plot(idx, cos_rec_err[:n_samp_plot], label='reconst err' % np.amax(np.abs(cos_rec_err)))
plt.grid()
plt.legend()
plt.ylabel('%g Hz' % freq)
plt.subplot(len(freqs), 2, 2*n+2)
if n == 0:
plt.title('sin')
plt.plot(idx, x_sin[:n_samp_plot], label='input')
plt.plot(idx, x_sin[:n_samp_plot], label='output')
plt.plot(idx, reconstructed_sin[:n_samp_plot], label='reconstructed')
plt.plot(idx, sin_rec_err[:n_samp_plot], label='reconst err' % np.amax(np.abs(sin_rec_err)))
plt.grid()
plt.legend()
print()
print('%6g %6s %8g %8g %10.2e %10.2e %10.2e %10.2e %12.2e' % (
freq, 'cos',
n_samp_this_freq, n_cycles_this_freq,
cos_real_err, cos_imag_err,
cos_mag_err, cos_phase_err, np.amax(np.abs(cos_rec_err))))
print('%6g %6s %8g %8g %10.2e %10.2e %10.2e %10.2e %12.2e' % (
freq, 'sin',
n_samp_this_freq, n_cycles_this_freq,
sin_real_err, sin_imag_err,
sin_mag_err, sin_phase_err, np.amax(np.abs(sin_rec_err))))
plt.show()
def _do_main(trivial=True, linear=True, nonlin=True, do_noise=True):
from matplotlib import pyplot as plt
from filters import one_pole
from filters import biquad
from overdrive import overdrive
from processor import GainWrapper, CascadedProcessors, GainProcessor
from utils.utils import to_dB
sample_rate = 96000
cutoff = 1000
Q = 2.0
n_samp_ir = 16384
n_samp_min = 4096
n_samp_noise = 4 * sample_rate
wc = cutoff / sample_rate
filters_trivial = [
("pass-through processor", CascadedProcessors([]), None),
]
filters_linear = [
("Basic one pole", one_pole.BasicOnePole(wc=wc), None),
("Trapz one pole", one_pole.TrapzOnePole(wc=wc), None),
("Basic one pole highpass", one_pole.BasicOnePoleHighpass(wc=wc), None),
("Biquad, Q=%g" % Q, biquad.BiquadLowpass(wc=wc, Q=Q), None),
]
filters_nonlin = [
("tanh overdrive", overdrive.TanhProcessor(), None),
("tanh overdrive, 20 dB gain", GainWrapper(overdrive.TanhProcessor(), 10.), None),
("tanh overdrive, -20 dB gain", GainWrapper(overdrive.TanhProcessor(), 0.1), None),
("Squarizer", overdrive.Squarizer(), SQUARE_THDN),
("Squarizer -20 dB", CascadedProcessors([overdrive.Squarizer(), GainProcessor(0.1)]), SQUARE_THDN),
("One pole then tanh", CascadedProcessors([one_pole.BasicOnePole(wc=wc), overdrive.TanhProcessor(gain=2)]), None),
("tanh then one pole", CascadedProcessors([overdrive.TanhProcessor(gain=2), one_pole.BasicOnePole(wc=wc)]), None),
("Biquad, Q=%g, then hard clip at 1.1" % Q, CascadedProcessors([biquad.BiquadLowpass(wc=wc, Q=Q), overdrive.Clipper(gain=1.0/1.1)]), None),
("Biquad, Q=%g, then hard clip at 1" % Q, CascadedProcessors([biquad.BiquadLowpass(wc=wc, Q=Q), overdrive.Clipper()]), None),
("Rossum 92 Nonlinear Biquad, Q=%g, gain 10" % Q, GainWrapper(biquad.Rossum92Biquad(wc=wc, Q=Q), 10.), None),
]
filters = []
if trivial:
filters += filters_trivial
if linear:
filters += filters_linear
if nonlin:
filters += filters_nonlin
freqs = np.array([
10., 20., 30., 50.,
100., 200., 300., 500., 700., 800., 900., 950.,
1000., 1050., 1100., 1200., 1300., 1500., 2000., 3000., 5000.,
10000., 11000., 13000., 15000., 20000., 25000., 30000., 40000.])
for filter_name, filter, expected_thdn_dB in filters:
print('Processing filter "%s"' % filter_name)
ir = time_domain_response.get_impulse_response(filter, n_samp_ir, amplitude=1.0, reset=True)
ir_freq_resp = get_ir_freq_response(
ir, freqs, sample_rate,
mag=True, phase=True, group_delay=True)
sweep_freq_resp = get_discrete_sine_sweep_freq_response(
filter, freqs, sample_rate,
n_cycles=128.0, n_samp=None, n_samp_min=n_samp_min,
amplitude=1.0,
mag=True, rms=True, phase=True, group_delay=True)
mag_rms_err = np.abs(sweep_freq_resp.mag - sweep_freq_resp.rms)
sweep_ir_err = np.abs(sweep_freq_resp.mag - ir_freq_resp.mag)
if do_noise:
uniform_noise_freq_resp = get_white_noise_response(
filter, freqs, sample_rate, n_samp_noise,
gaussian=False,
mag=True, phase=True, group_delay=True)
gaussian_noise_freq_resp = get_white_noise_response(
filter, freqs, sample_rate, n_samp_noise,
gaussian=True,
mag=True, phase=True, group_delay=True)
fft_bin_freqs = np.fft.fftfreq(n_samp_ir, 1.0 / sample_rate)[:n_samp_ir // 2]
ir_fft = np.fft.fft(ir)[:n_samp_ir // 2]
ir_fft_group_delay = phase_to_group_delay(fft_bin_freqs, np.angle(ir_fft), sample_rate)
#
# Plotting
#
fig = plt.figure()
fig.suptitle(filter_name)
plt.subplot(4, 1, 1)
plt.semilogx(fft_bin_freqs, to_dB(np.abs(ir_fft)), label='IR magnitude from FFT')
plt.semilogx(freqs, to_dB(ir_freq_resp.mag), label='IR magnitude')
plt.semilogx(freqs, to_dB(sweep_freq_resp.mag), label='Sine sweep magnitude')
plt.semilogx(freqs, to_dB(sweep_freq_resp.rms), label='Sine sweep RMS')
if do_noise:
plt.semilogx(freqs, to_dB(uniform_noise_freq_resp.mag), label='Uniform noise')
plt.semilogx(freqs, to_dB(gaussian_noise_freq_resp.mag), label='Gaussian noise')
plt.grid()
plt.legend()
plt.ylabel('dB')
plt.subplot(4, 1, 2)
if expected_thdn_dB is not None:
plt.axhline(expected_thdn_dB, color='g', label='Expected THD + Noise')
plt.semilogx(freqs, to_dB(sweep_freq_resp.thdn, min_dB=-120), label='Measured THD + Noise')
plt.semilogx(freqs, to_dB(sweep_ir_err, min_dB=-120), label='sine vs IR error')
plt.semilogx(freqs, to_dB(mag_rms_err, min_dB=-120), label='sine mag vs RMS error')
plt.grid()
plt.legend()
plt.ylabel('dB')
plt.subplot(4, 1, 3)
plt.semilogx(fft_bin_freqs, np.rad2deg(np.angle(ir_fft)), label='IR phase from FFT')
plt.semilogx(freqs, np.rad2deg(ir_freq_resp.phase), label='IR phase')
plt.semilogx(freqs, np.rad2deg(sweep_freq_resp.phase), label='Sine sweep phase')
if do_noise:
plt.semilogx(freqs, np.rad2deg(uniform_noise_freq_resp.phase), label='Uniform noise')
plt.semilogx(freqs, np.rad2deg(gaussian_noise_freq_resp.phase), label='Gaussian noise')
plt.grid()
plt.legend()
plt.ylabel('Degrees')
plt.subplot(4, 1, 4)
plt.semilogx(fft_bin_freqs, ir_fft_group_delay, label='IR group delay from FFT')
plt.semilogx(freqs, ir_freq_resp.group_delay, label='IR group delay')
plt.semilogx(freqs, sweep_freq_resp.group_delay, label='Sine sweep group delay')
if do_noise:
plt.semilogx(freqs, uniform_noise_freq_resp.group_delay, label='Uniform noise')
plt.semilogx(freqs, gaussian_noise_freq_resp.group_delay, label='Gaussian noise')
plt.grid()
plt.legend()
plt.ylabel('Seconds')
print('Showing plots')
plt.show()
def main(args):
import argparse
parser = argparse.ArgumentParser()
grp = parser.add_argument_group('Standard analysis')
grp.add_argument('--noise', action='store_true', help='Include noise analysis (slow)')
grp.add_argument('--trivial', action='store_true', help='Process only trivial processors')
grp.add_argument('--linear', action='store_true', help='Process only linear filters')
grp.add_argument('--nonlin', action='store_true', help='Process only nonlinear processors')
grp = parser.add_argument_group('Other functions')
grp.add_argument('--detail', action='store_true')
args = parser.parse_args(args)
if args.detail:
return _do_detail()
num_args = sum([args.trivial, args.linear, args.nonlin, args.detail])
if num_args > 1:
raise ValueError('Can only give max 1 of --trivial, --nonlin, --detail')
elif not num_args:
args.trivial = True
args.linear = True
args.nonlin = True
trivial = (args.trivial or args.linear)
linear = args.linear
nonlin = args.nonlin
return _do_main(trivial=trivial, linear=linear, nonlin=nonlin, do_noise=args.noise)
def test(verbose=False, long=False):
if long:
return unit_test.run_unit_tests(_unit_tests_full, verbose=verbose)
else:
return unit_test.run_unit_tests(_unit_tests_short, verbose=verbose)
|
python
|
"""
2019/12/23 23:42
162.【正则表达式】开始结束和或语法
"""
import re
# TODO: 1. ^托字号: 表示以...开始
"""
如果是在中括号中,那么代表取反操作.
"""
text1 = 'hello'
ret_text1 = re.match('^h', text1)
print('^托字号: 表示以...开始...')
print(ret_text1.group())
# TODO: 2.$ 表示以...结束
email = '[email protected]'
ret_email = re.match('\w+@163\.com$', email)
print('$ 表示以...结束...')
print(ret_email.group())
# TODO: 3.| 匹配多个表达式或者字符串
url = 'https'
ret_url = re.match('(http|https|ftp)$', url)
print('| 匹配多个表达式或者字符串...')
print(ret_url.group())
# TODO: 4.贪婪模式和非贪婪模式
"""
贪婪模式:正则表达式会匹配尽量多的字符。默认是贪婪模式。
非贪婪模式:正则表达式会尽量少的匹配字符。
"""
text2 = '01234567'
ret_text2 = re.match('\d+?', text2)
print('贪婪模式和非贪婪模式...')
print(ret_text2.group())
h1 = '<h1>标题</h1>'
ret_h1 = re.match('<.*?>', h1)
print('贪婪模式和非贪婪模式...')
print(ret_h1.group())
# TODO: 5.匹配0-100之间的数字
# TODO: 可以出现的:1,2,3,10,100,99
# TODO: 有三种情况:1,99,100
# TODO: 不可以出现的:09,101
num = '1'
ret_num = re.match('([1-9]?\d$|100$)', num)
print('匹配0-100之间的数字...')
print(ret_num.group())
|
python
|
import paddle
import paddle.nn.functional as F
import random
import numpy as np
import math
from PIL import Image
from ..registry import PIPELINES
from collections.abc import Sequence
import cv2
import random
@PIPELINES.register()
class Toskeleton(object):
"""
transpose (M,T,V,2) to (2,T,V,M)
"""
def __init__(self, label_expand=True):
self.label_expand = label_expand
def __call__(self, results):
data = results['keypoint']
results['data'] = data.astype('float32').transpose(3,1,2,0)
if 'label' in results and self.label_expand:
label = results['label']
results['label'] = np.expand_dims(label, 0).astype('int64')
return results
@PIPELINES.register()
class Norm:
"""
keys:data,label
formal:(2,T,V,M)
"""
def __init__(self, label_expand=True,shape=[64,64],form='CTVM'):
self.label_expand=label_expand
self.h,self.w=shape[0],shape[1]
self.form = form
def __call__(self,results):
if self.form=='CTVM':
data = results['data']
data[0,:,:,:] =( data[0,:,:,:] - self.w/2)/(self.w/2+1e-6)
data[1,:,:,:] =( data[1,:,:,:] - self.h/2)/(self.h/2+1e-6)
# Centralization
data[:,:,:,:] = data[:,:,:,:] - data[:, :, 8:9, :]
results['data'] = data.astype('float32')
elif self.form=='MTVC':
data = results['keypoint']
print(data.max(),data.min())
data[:,:,:,0] =( data[:,:,:,0] - self.w/2)/(self.w/2+1e-6)
data[:,:,:,1] =( data[:,:,:,1] - self.h/2)/(self.h/2+1e-6)
print(data.max(),data.min())
# Centralization
data[:,:,:,:] = data[:,:,:,:] - data[:, :, 8:9, :]
print(data.max(),data.min())
results['keypoint'] = data
else:
assert False,'Wrong form !'
return results
# reference from paper "Revisiting Skeleton-based Action Recognition"
# <https://arxiv.org/pdf/2104.13586v1.pdf>
# @misc{2020mmaction2,
# title={OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark},
# author={MMAction2 Contributors},
# howpublished = {\url{https://github.com/open-mmlab/mmaction2}},
# year={2020}
# }
def downsample(data_numpy, step, random_sample=True):
# input: C,T,V,M
begin = np.random.randint(step) if random_sample else 0
return data_numpy[:, begin::step, :, :]
def normalize(data):
# V,T,H,W
data = (data - data.min())/(data.max()-data.min()+1e-6)
return data
class RandomCrop:
"""Vanilla square random crop that specifics the output size.
Required keys in results are "img_shape", "keypoint" (optional), "imgs"
(optional), added or modified keys are "keypoint", "imgs", "lazy"; Required
keys in "lazy" are "flip", "crop_bbox", added or modified key is
"crop_bbox".
Args:
size (int): The output size of the images.
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
def __init__(self, size, lazy=False):
if not isinstance(size, int):
raise TypeError(f'Size must be an int, but got {type(size)}')
self.size = size
self.lazy = lazy
@staticmethod
def _crop_kps(kps, crop_bbox):
return kps - crop_bbox[:2]
@staticmethod
def _crop_imgs(imgs, crop_bbox):
x1, y1, x2, y2 = crop_bbox
return [img[y1:y2, x1:x2] for img in imgs]
@staticmethod
def _box_crop(box, crop_bbox):
"""Crop the bounding boxes according to the crop_bbox.
Args:
box (np.ndarray): The bounding boxes.
crop_bbox(np.ndarray): The bbox used to crop the original image.
"""
x1, y1, x2, y2 = crop_bbox
img_w, img_h = x2 - x1, y2 - y1
box_ = box.copy()
box_[..., 0::2] = np.clip(box[..., 0::2] - x1, 0, img_w - 1)
box_[..., 1::2] = np.clip(box[..., 1::2] - y1, 0, img_h - 1)
return box_
def _all_box_crop(self, results, crop_bbox):
"""Crop the gt_bboxes and proposals in results according to crop_bbox.
Args:
results (dict): All information about the sample, which contain
'gt_bboxes' and 'proposals' (optional).
crop_bbox(np.ndarray): The bbox used to crop the original image.
"""
results['gt_bboxes'] = self._box_crop(results['gt_bboxes'], crop_bbox)
if 'proposals' in results and results['proposals'] is not None:
assert results['proposals'].shape[1] == 4
results['proposals'] = self._box_crop(results['proposals'],
crop_bbox)
return results
def __call__(self, results):
"""Performs the RandomCrop augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, self.lazy)
if 'keypoint' in results:
assert not self.lazy, ('Keypoint Augmentations are not compatible '
'with lazy == True')
img_h, img_w = results['img_shape']
assert self.size <= img_h and self.size <= img_w
y_offset = 0
x_offset = 0
if img_h > self.size:
y_offset = int(np.random.randint(0, img_h - self.size))
if img_w > self.size:
x_offset = int(np.random.randint(0, img_w - self.size))
if 'crop_quadruple' not in results:
results['crop_quadruple'] = np.array(
[0, 0, 1, 1], # x, y, w, h
dtype=np.float32)
x_ratio, y_ratio = x_offset / img_w, y_offset / img_h
w_ratio, h_ratio = self.size / img_w, self.size / img_h
old_crop_quadruple = results['crop_quadruple']
old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1]
old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3]
new_crop_quadruple = [
old_x_ratio + x_ratio * old_w_ratio,
old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio,
h_ratio * old_h_ratio
]
results['crop_quadruple'] = np.array(
new_crop_quadruple, dtype=np.float32)
new_h, new_w = self.size, self.size
crop_bbox = np.array(
[x_offset, y_offset, x_offset + new_w, y_offset + new_h])
results['crop_bbox'] = crop_bbox
results['img_shape'] = (new_h, new_w)
if not self.lazy:
if 'keypoint' in results:
results['keypoint'] = self._crop_kps(results['keypoint'],
crop_bbox)
if 'imgs' in results:
results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox)
else:
lazyop = results['lazy']
if lazyop['flip']:
raise NotImplementedError('Put Flip at last for now')
# record crop_bbox in lazyop dict to ensure only crop once in Fuse
lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox']
left = x_offset * (lazy_right - lazy_left) / img_w
right = (x_offset + new_w) * (lazy_right - lazy_left) / img_w
top = y_offset * (lazy_bottom - lazy_top) / img_h
bottom = (y_offset + new_h) * (lazy_bottom - lazy_top) / img_h
lazyop['crop_bbox'] = np.array([(lazy_left + left),
(lazy_top + top),
(lazy_left + right),
(lazy_top + bottom)],
dtype=np.float32)
# Process entity boxes
if 'gt_bboxes' in results:
assert not self.lazy
results = self._all_box_crop(results, results['crop_bbox'])
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}(size={self.size}, '
f'lazy={self.lazy})')
return repr_str
@PIPELINES.register()
class RandomResizedCrop(RandomCrop):
"""Random crop that specifics the area and height-weight ratio range.
Required keys in results are "img_shape", "crop_bbox", "imgs" (optional),
"keypoint" (optional), added or modified keys are "imgs", "keypoint",
"crop_bbox" and "lazy"; Required keys in "lazy" are "flip", "crop_bbox",
added or modified key is "crop_bbox".
Args:
area_range (Tuple[float]): The candidate area scales range of
output cropped images. Default: (0.08, 1.0).
aspect_ratio_range (Tuple[float]): The candidate aspect ratio range of
output cropped images. Default: (3 / 4, 4 / 3).
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
def __init__(self,
area_range=(0.08, 1.0),
aspect_ratio_range=(3 / 4, 4 / 3),
lazy=False):
area_range = tuple(area_range)
self.area_range = area_range
self.aspect_ratio_range = aspect_ratio_range
self.lazy = lazy
# if not mmcv.is_tuple_of(self.area_range, float):
# raise TypeError(f'Area_range must be a tuple of float, '
# f'but got {type(area_range)}')
# if not mmcv.is_tuple_of(self.aspect_ratio_range, float):
# raise TypeError(f'Aspect_ratio_range must be a tuple of float, '
# f'but got {type(aspect_ratio_range)}')
@staticmethod
def get_crop_bbox(img_shape,
area_range,
aspect_ratio_range,
max_attempts=10):
"""Get a crop bbox given the area range and aspect ratio range.
Args:
img_shape (Tuple[int]): Image shape
area_range (Tuple[float]): The candidate area scales range of
output cropped images. Default: (0.08, 1.0).
aspect_ratio_range (Tuple[float]): The candidate aspect
ratio range of output cropped images. Default: (3 / 4, 4 / 3).
max_attempts (int): The maximum of attempts. Default: 10.
max_attempts (int): Max attempts times to generate random candidate
bounding box. If it doesn't qualified one, the center bounding
box will be used.
Returns:
(list[int]) A random crop bbox within the area range and aspect
ratio range.
"""
assert 0 < area_range[0] <= area_range[1] <= 1
assert 0 < aspect_ratio_range[0] <= aspect_ratio_range[1]
img_h, img_w = img_shape
area = img_h * img_w
min_ar, max_ar = aspect_ratio_range
aspect_ratios = np.exp(
np.random.uniform(
np.log(min_ar), np.log(max_ar), size=max_attempts))
target_areas = np.random.uniform(*area_range, size=max_attempts) * area
candidate_crop_w = np.round(np.sqrt(target_areas *
aspect_ratios)).astype(np.int32)
candidate_crop_h = np.round(np.sqrt(target_areas /
aspect_ratios)).astype(np.int32)
for i in range(max_attempts):
crop_w = candidate_crop_w[i]
crop_h = candidate_crop_h[i]
if crop_h <= img_h and crop_w <= img_w:
x_offset = random.randint(0, img_w - crop_w)
y_offset = random.randint(0, img_h - crop_h)
return x_offset, y_offset, x_offset + crop_w, y_offset + crop_h
# Fallback
crop_size = min(img_h, img_w)
x_offset = (img_w - crop_size) // 2
y_offset = (img_h - crop_size) // 2
return x_offset, y_offset, x_offset + crop_size, y_offset + crop_size
def __call__(self, results):
"""Performs the RandomResizeCrop augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, self.lazy)
if 'keypoint' in results:
assert not self.lazy, ('Keypoint Augmentations are not compatible '
'with lazy == True')
img_h, img_w = results['img_shape']
left, top, right, bottom = self.get_crop_bbox(
(img_h, img_w), self.area_range, self.aspect_ratio_range)
new_h, new_w = bottom - top, right - left
if 'crop_quadruple' not in results:
results['crop_quadruple'] = np.array(
[0, 0, 1, 1], # x, y, w, h
dtype=np.float32)
x_ratio, y_ratio = left / img_w, top / img_h
w_ratio, h_ratio = new_w / img_w, new_h / img_h
old_crop_quadruple = results['crop_quadruple']
old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1]
old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3]
new_crop_quadruple = [
old_x_ratio + x_ratio * old_w_ratio,
old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio,
h_ratio * old_h_ratio
]
results['crop_quadruple'] = np.array(
new_crop_quadruple, dtype=np.float32)
crop_bbox = np.array([left, top, right, bottom])
results['crop_bbox'] = crop_bbox
results['img_shape'] = (new_h, new_w)
if not self.lazy:
if 'keypoint' in results:
results['keypoint'] = self._crop_kps(results['keypoint'],
crop_bbox)
if 'imgs' in results:
results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox)
else:
lazyop = results['lazy']
if lazyop['flip']:
raise NotImplementedError('Put Flip at last for now')
# record crop_bbox in lazyop dict to ensure only crop once in Fuse
lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox']
left = left * (lazy_right - lazy_left) / img_w
right = right * (lazy_right - lazy_left) / img_w
top = top * (lazy_bottom - lazy_top) / img_h
bottom = bottom * (lazy_bottom - lazy_top) / img_h
lazyop['crop_bbox'] = np.array([(lazy_left + left),
(lazy_top + top),
(lazy_left + right),
(lazy_top + bottom)],
dtype=np.float32)
if 'gt_bboxes' in results:
assert not self.lazy
results = self._all_box_crop(results, results['crop_bbox'])
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'area_range={self.area_range}, '
f'aspect_ratio_range={self.aspect_ratio_range}, '
f'lazy={self.lazy})')
return repr_str
@PIPELINES.register()
class CenterCropkp(RandomCrop):
"""Crop the center area from images.
Required keys are "img_shape", "imgs" (optional), "keypoint" (optional),
added or modified keys are "imgs", "keypoint", "crop_bbox", "lazy" and
"img_shape". Required keys in "lazy" is "crop_bbox", added or modified key
is "crop_bbox".
Args:
crop_size (int | tuple[int]): (w, h) of crop size.
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
def __init__(self, crop_size, lazy=False):
self.crop_size = (crop_size,crop_size)
self.lazy = lazy
def __call__(self, results):
"""Performs the CenterCrop augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, self.lazy)
if 'keypoint' in results:
assert not self.lazy, ('Keypoint Augmentations are not compatible '
'with lazy == True')
img_h, img_w = results['img_shape']
crop_w, crop_h = self.crop_size
left = (img_w - crop_w) // 2
top = (img_h - crop_h) // 2
right = left + crop_w
bottom = top + crop_h
new_h, new_w = bottom - top, right - left
crop_bbox = np.array([left, top, right, bottom])
results['crop_bbox'] = crop_bbox
results['img_shape'] = (new_h, new_w)
if 'crop_quadruple' not in results:
results['crop_quadruple'] = np.array(
[0, 0, 1, 1], # x, y, w, h
dtype=np.float32)
x_ratio, y_ratio = left / img_w, top / img_h
w_ratio, h_ratio = new_w / img_w, new_h / img_h
old_crop_quadruple = results['crop_quadruple']
old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1]
old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3]
new_crop_quadruple = [
old_x_ratio + x_ratio * old_w_ratio,
old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio,
h_ratio * old_h_ratio
]
results['crop_quadruple'] = np.array(
new_crop_quadruple, dtype=np.float32)
if not self.lazy:
if 'keypoint' in results:
results['keypoint'] = self._crop_kps(results['keypoint'],
crop_bbox)
if 'imgs' in results:
results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox)
else:
lazyop = results['lazy']
if lazyop['flip']:
raise NotImplementedError('Put Flip at last for now')
# record crop_bbox in lazyop dict to ensure only crop once in Fuse
lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox']
left = left * (lazy_right - lazy_left) / img_w
right = right * (lazy_right - lazy_left) / img_w
top = top * (lazy_bottom - lazy_top) / img_h
bottom = bottom * (lazy_bottom - lazy_top) / img_h
lazyop['crop_bbox'] = np.array([(lazy_left + left),
(lazy_top + top),
(lazy_left + right),
(lazy_top + bottom)],
dtype=np.float32)
if 'gt_bboxes' in results:
assert not self.lazy
results = self._all_box_crop(results, results['crop_bbox'])
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}(crop_size={self.crop_size}, '
f'lazy={self.lazy})')
return repr_str
def _combine_quadruple(a, b):
return (a[0] + a[2] * b[0], a[1] + a[3] * b[1], a[2] * b[2], a[3] * b[3])
@PIPELINES.register()
class PoseCompact:
"""Convert the coordinates of keypoints to make it more compact.
Specifically, it first find a tight bounding box that surrounds all joints
in each frame, then we expand the tight box by a given padding ratio. For
example, if 'padding == 0.25', then the expanded box has unchanged center,
and 1.25x width and height.
Required keys in results are "img_shape", "keypoint", add or modified keys
are "img_shape", "keypoint", "crop_quadruple".
Args:
padding (float): The padding size. Default: 0.25.
threshold (int): The threshold for the tight bounding box. If the width
or height of the tight bounding box is smaller than the threshold,
we do not perform the compact operation. Default: 10.
hw_ratio (float | tuple[float] | None): The hw_ratio of the expanded
box. Float indicates the specific ratio and tuple indicates a
ratio range. If set as None, it means there is no requirement on
hw_ratio. Default: None.
allow_imgpad (bool): Whether to allow expanding the box outside the
image to meet the hw_ratio requirement. Default: True.
Returns:
type: Description of returned object.
"""
def __init__(self,
padding=0.25,
threshold=10,
hw_ratio=None,
allow_imgpad=True,
step=3,
label=True):
self.padding = padding
self.threshold = threshold
self.step = step
self.label = label
if hw_ratio is not None:
# hw_ratio = _pair(hw_ratio)
hw_ratio = (hw_ratio,hw_ratio)
self.hw_ratio = hw_ratio
self.allow_imgpad = allow_imgpad
assert self.padding >= 0
def __call__(self, results):
results['data']=downsample(results['data'],step=self.step,random_sample=False)
data = results['data'].transpose(3,1,2,0) # (C,T,V,M)-->(M,T,V,C)
if self.label:
label = results['label']
# print(data[:,:,:,2].max(),data[:,:,:,2].min())
data[:,:,:,1] = data[:,:,:,1]*1080/2. + 1080/2. # scale y
data[:,:,:,0] = data[:,:,:,0]*720/2. + 720/2. # scale x
all_kps = data[:,:,:,:2] #(M,T,V,2)
# print(data[:,:,:,2].max(),data[:,:,:,2].min())
# results['keypoint_score'] = data[:,:,:,2] #(M,T,V)
results=dict()
results['keypoint'] = all_kps
results['keypoint_score'] = data[:,:,:,2]
results['img_shape'] = (1080,720)
if self.label:
results['label'] = label
results['modality']='pose'
img_shape = results['img_shape']
h, w = img_shape
kp = results['keypoint']
# Make NaN zero
kp[np.isnan(kp)] = 0.
kp_x = kp[..., 0]
kp_y = kp[..., 1]
min_x = np.min(kp_x[kp_x != 0], initial=np.Inf)
min_y = np.min(kp_y[kp_y != 0], initial=np.Inf)
max_x = np.max(kp_x[kp_x != 0], initial=-np.Inf)
max_y = np.max(kp_y[kp_y != 0], initial=-np.Inf)
# The compact area is too small
if max_x - min_x < self.threshold or max_y - min_y < self.threshold:
return results
center = ((max_x + min_x) / 2, (max_y + min_y) / 2)
half_width = (max_x - min_x) / 2 * (1 + self.padding)
half_height = (max_y - min_y) / 2 * (1 + self.padding)
if self.hw_ratio is not None:
half_height = max(self.hw_ratio[0] * half_width, half_height)
half_width = max(1 / self.hw_ratio[1] * half_height, half_width)
min_x, max_x = center[0] - half_width, center[0] + half_width
min_y, max_y = center[1] - half_height, center[1] + half_height
# hot update
if not self.allow_imgpad:
min_x, min_y = int(max(0, min_x)), int(max(0, min_y))
max_x, max_y = int(min(w, max_x)), int(min(h, max_y))
else:
min_x, min_y = int(min_x), int(min_y)
max_x, max_y = int(max_x), int(max_y)
kp_x[kp_x != 0] -= min_x
kp_y[kp_y != 0] -= min_y
new_shape = (max_y - min_y, max_x - min_x)
results['img_shape'] = new_shape
# the order is x, y, w, h (in [0, 1]), a tuple
crop_quadruple = results.get('crop_quadruple', (0., 0., 1., 1.))
new_crop_quadruple = (min_x / w, min_y / h, (max_x - min_x) / w,
(max_y - min_y) / h)
crop_quadruple = _combine_quadruple(crop_quadruple, new_crop_quadruple)
results['crop_quadruple'] = crop_quadruple
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}(padding={self.padding}, '
f'threshold={self.threshold}, '
f'hw_ratio={self.hw_ratio}, '
f'allow_imgpad={self.allow_imgpad})')
return repr_str
def _init_lazy_if_proper(results, lazy):
"""Initialize lazy operation properly.
Make sure that a lazy operation is properly initialized,
and avoid a non-lazy operation accidentally getting mixed in.
Required keys in results are "imgs" if "img_shape" not in results,
otherwise, Required keys in results are "img_shape", add or modified keys
are "img_shape", "lazy".
Add or modified keys in "lazy" are "original_shape", "crop_bbox", "flip",
"flip_direction", "interpolation".
Args:
results (dict): A dict stores data pipeline result.
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
if 'img_shape' not in results:
results['img_shape'] = results['imgs'][0].shape[:2]
if lazy:
if 'lazy' not in results:
img_h, img_w = results['img_shape']
lazyop = dict()
lazyop['original_shape'] = results['img_shape']
lazyop['crop_bbox'] = np.array([0, 0, img_w, img_h],
dtype=np.float32)
lazyop['flip'] = False
lazyop['flip_direction'] = None
lazyop['interpolation'] = None
results['lazy'] = lazyop
else:
assert 'lazy' not in results, 'Use Fuse after lazy operations'
def imresize(img,
size,
return_scale=False,
interpolation='bilinear',
out=None,
backend=None):
"""Resize image to a given size.
Args:
img (ndarray): The input image.
size (tuple[int]): Target size (w, h).
return_scale (bool): Whether to return `w_scale` and `h_scale`.
interpolation (str): Interpolation method, accepted values are
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
backend, "nearest", "bilinear" for 'pillow' backend.
out (ndarray): The output destination.
backend (str | None): The image resize backend type. Options are `cv2`,
`pillow`, `None`. If backend is None, the global imread_backend
specified by ``mmcv.use_backend()`` will be used. Default: None.
Returns:
tuple | ndarray: (`resized_img`, `w_scale`, `h_scale`) or
`resized_img`.
"""
h, w = img.shape[:2]
resized_img = cv2.resize(
img, size, dst=None, interpolation=cv2.INTER_LINEAR)
return resized_img
def _scale_size(size, scale):
"""Rescale a size by a ratio.
Args:
size (tuple[int]): (w, h).
scale (float | tuple(float)): Scaling factor.
Returns:
tuple[int]: scaled size.
"""
if isinstance(scale, (float, int)):
scale = (scale, scale)
w, h = size
return int(w * float(scale[0]) + 0.5), int(h * float(scale[1]) + 0.5)
def rescale_size(old_size, scale, return_scale=False):
"""Calculate the new size to be rescaled to.
Args:
old_size (tuple[int]): The old size (w, h) of image.
scale (float | tuple[int]): The scaling factor or maximum size.
If it is a float number, then the image will be rescaled by this
factor, else if it is a tuple of 2 integers, then the image will
be rescaled as large as possible within the scale.
return_scale (bool): Whether to return the scaling factor besides the
rescaled image size.
Returns:
tuple[int]: The new rescaled image size.
"""
w, h = old_size
if isinstance(scale, (float, int)):
if scale <= 0:
raise ValueError(f'Invalid scale {scale}, must be positive.')
scale_factor = scale
elif isinstance(scale, tuple):
max_long_edge = max(scale)
max_short_edge = min(scale)
scale_factor = min(max_long_edge / max(h, w),
max_short_edge / min(h, w))
else:
raise TypeError(
f'Scale must be a number or tuple of int, but got {type(scale)}')
new_size = _scale_size((w, h), scale_factor)
if return_scale:
return new_size, scale_factor
else:
return new_size
@PIPELINES.register()
class Resize:
"""Resize images to a specific size.
Required keys are "img_shape", "modality", "imgs" (optional), "keypoint"
(optional), added or modified keys are "imgs", "img_shape", "keep_ratio",
"scale_factor", "lazy", "resize_size". Required keys in "lazy" is None,
added or modified key is "interpolation".
Args:
scale (float | Tuple[int]): If keep_ratio is True, it serves as scaling
factor or maximum size:
If it is a float number, the image will be rescaled by this
factor, else if it is a tuple of 2 integers, the image will
be rescaled as large as possible within the scale.
Otherwise, it serves as (w, h) of output size.
keep_ratio (bool): If set to True, Images will be resized without
changing the aspect ratio. Otherwise, it will resize images to a
given size. Default: True.
interpolation (str): Algorithm used for interpolation:
"nearest" | "bilinear". Default: "bilinear".
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
def __init__(self,
scale,
keep_ratio=True,
interpolation='bilinear',
lazy=False):
scale = tuple(scale)
if isinstance(scale, float):
if scale <= 0:
raise ValueError(f'Invalid scale {scale}, must be positive.')
elif isinstance(scale, tuple):
max_long_edge = max(scale)
max_short_edge = min(scale)
if max_short_edge == -1:
# assign np.inf to long edge for rescaling short edge later.
scale = (np.inf, max_long_edge)
else:
raise TypeError(
f'Scale must be float or tuple of int, but got {type(scale)}')
self.scale = scale
self.keep_ratio = keep_ratio
self.interpolation = interpolation
self.lazy = lazy
def _resize_imgs(self, imgs, new_w, new_h):
return [
imresize(
img, (new_w, new_h), interpolation=self.interpolation)
for img in imgs
]
@staticmethod
def _resize_kps(kps, scale_factor):
return kps * scale_factor
@staticmethod
def _box_resize(box, scale_factor):
"""Rescale the bounding boxes according to the scale_factor.
Args:
box (np.ndarray): The bounding boxes.
scale_factor (np.ndarray): The scale factor used for rescaling.
"""
assert len(scale_factor) == 2
scale_factor = np.concatenate([scale_factor, scale_factor])
return box * scale_factor
def __call__(self, results):
"""Performs the Resize augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, self.lazy)
if 'keypoint' in results:
assert not self.lazy, ('Keypoint Augmentations are not compatible '
'with lazy == True')
if 'scale_factor' not in results:
results['scale_factor'] = np.array([1, 1], dtype=np.float32)
img_h, img_w = results['img_shape']
if self.keep_ratio:
new_w, new_h = rescale_size((img_w, img_h), self.scale)
else:
new_w, new_h = self.scale
self.scale_factor = np.array([new_w / img_w, new_h / img_h],
dtype=np.float32)
results['img_shape'] = (new_h, new_w)
results['keep_ratio'] = self.keep_ratio
results['scale_factor'] = results['scale_factor'] * self.scale_factor
if not self.lazy:
if 'imgs' in results:
results['imgs'] = self._resize_imgs(results['imgs'], new_w,
new_h)
if 'keypoint' in results:
results['keypoint'] = self._resize_kps(results['keypoint'],
self.scale_factor)
else:
lazyop = results['lazy']
if lazyop['flip']:
raise NotImplementedError('Put Flip at last for now')
lazyop['interpolation'] = self.interpolation
if 'gt_bboxes' in results:
assert not self.lazy
results['gt_bboxes'] = self._box_resize(results['gt_bboxes'],
self.scale_factor)
if 'proposals' in results and results['proposals'] is not None:
assert results['proposals'].shape[1] == 4
results['proposals'] = self._box_resize(
results['proposals'], self.scale_factor)
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'scale={self.scale}, keep_ratio={self.keep_ratio}, '
f'interpolation={self.interpolation}, '
f'lazy={self.lazy})')
return repr_str
def imflip_(img, direction='horizontal'):
"""Inplace flip an image horizontally or vertically.
Args:
img (ndarray): Image to be flipped.
direction (str): The flip direction, either "horizontal" or
"vertical" or "diagonal".
Returns:
ndarray: The flipped image (inplace).
"""
assert direction in ['horizontal', 'vertical', 'diagonal']
if direction == 'horizontal':
return cv2.flip(img, 1, img)
elif direction == 'vertical':
return cv2.flip(img, 0, img)
else:
return cv2.flip(img, -1, img)
def iminvert(img):
"""Invert (negate) an image.
Args:
img (ndarray): Image to be inverted.
Returns:
ndarray: The inverted image.
"""
return np.full_like(img, 255) - img
###########keypoint###################
left_kp=[2,3,4,9,10,11,15,17,22,23,24]
right_kp = [5,6,7,12,13,14,16,18,19,20,21,]
@PIPELINES.register()
class Flip:
"""Flip the input images with a probability.
Reverse the order of elements in the given imgs with a specific direction.
The shape of the imgs is preserved, but the elements are reordered.
Required keys are "img_shape", "modality", "imgs" (optional), "keypoint"
(optional), added or modified keys are "imgs", "keypoint", "lazy" and
"flip_direction". Required keys in "lazy" is None, added or modified key
are "flip" and "flip_direction". The Flip augmentation should be placed
after any cropping / reshaping augmentations, to make sure crop_quadruple
is calculated properly.
Args:
flip_ratio (float): Probability of implementing flip. Default: 0.5.
direction (str): Flip imgs horizontally or vertically. Options are
"horizontal" | "vertical". Default: "horizontal".
flip_label_map (Dict[int, int] | None): Transform the label of the
flipped image with the specific label. Default: None.
left_kp (list[int]): Indexes of left keypoints, used to flip keypoints.
Default: None.
right_kp (list[ind]): Indexes of right keypoints, used to flip
keypoints. Default: None.
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
_directions = ['horizontal', 'vertical']
def __init__(self,
flip_ratio=0.5,
direction='horizontal',
flip_label_map=None,
left_kp=left_kp,
right_kp=right_kp,
lazy=False):
if direction not in self._directions:
raise ValueError(f'Direction {direction} is not supported. '
f'Currently support ones are {self._directions}')
self.flip_ratio = flip_ratio
self.direction = direction
self.flip_label_map = flip_label_map
self.left_kp = left_kp
self.right_kp = right_kp
self.lazy = lazy
def _flip_imgs(self, imgs, modality):
_ = [imflip_(img, self.direction) for img in imgs]
lt = len(imgs)
if modality == 'Flow':
# The 1st frame of each 2 frames is flow-x
for i in range(0, lt, 2):
imgs[i] = iminvert(imgs[i])
return imgs
def _flip_kps(self, kps, kpscores, img_width):
kp_x = kps[..., 0]
kp_x[kp_x != 0] = img_width - kp_x[kp_x != 0]
new_order = list(range(kps.shape[2]))
if self.left_kp is not None and self.right_kp is not None:
for left, right in zip(self.left_kp, self.right_kp):
new_order[left] = right
new_order[right] = left
kps = kps[:, :, new_order]
if kpscores is not None:
kpscores = kpscores[:, :, new_order]
return kps, kpscores
@staticmethod
def _box_flip(box, img_width):
"""Flip the bounding boxes given the width of the image.
Args:
box (np.ndarray): The bounding boxes.
img_width (int): The img width.
"""
box_ = box.copy()
box_[..., 0::4] = img_width - box[..., 2::4]
box_[..., 2::4] = img_width - box[..., 0::4]
return box_
def __call__(self, results):
"""Performs the Flip augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, self.lazy)
if 'keypoint' in results:
assert not self.lazy, ('Keypoint Augmentations are not compatible '
'with lazy == True')
assert self.direction == 'horizontal', (
'Only horizontal flips are'
'supported for human keypoints')
modality = results['modality']
if modality == 'Flow':
assert self.direction == 'horizontal'
flip = np.random.rand() < self.flip_ratio
results['flip'] = flip
results['flip_direction'] = self.direction
img_width = results['img_shape'][1]
if self.flip_label_map is not None and flip:
results['label'] = self.flip_label_map.get(results['label'],
results['label'])
if not self.lazy:
if flip:
if 'imgs' in results:
results['imgs'] = self._flip_imgs(results['imgs'],
modality)
if 'keypoint' in results:
kp = results['keypoint']
kpscore = results.get('keypoint_score', None)
kp, kpscore = self._flip_kps(kp, kpscore, img_width)
results['keypoint'] = kp
if 'keypoint_score' in results:
results['keypoint_score'] = kpscore
else:
lazyop = results['lazy']
if lazyop['flip']:
raise NotImplementedError('Use one Flip please')
lazyop['flip'] = flip
lazyop['flip_direction'] = self.direction
if 'gt_bboxes' in results and flip:
assert not self.lazy and self.direction == 'horizontal'
width = results['img_shape'][1]
results['gt_bboxes'] = self._box_flip(results['gt_bboxes'], width)
if 'proposals' in results and results['proposals'] is not None:
assert results['proposals'].shape[1] == 4
results['proposals'] = self._box_flip(results['proposals'],
width)
return results
def __repr__(self):
repr_str = (
f'{self.__class__.__name__}('
f'flip_ratio={self.flip_ratio}, direction={self.direction}, '
f'flip_label_map={self.flip_label_map}, lazy={self.lazy})')
return repr_str
@PIPELINES.register()
class GeneratePoseTarget:
"""Generate pseudo heatmaps based on joint coordinates and confidence.
Required keys are "keypoint", "img_shape", "keypoint_score" (optional),
added or modified keys are "imgs".
Args:
sigma (float): The sigma of the generated gaussian map. Default: 0.6.
use_score (bool): Use the confidence score of keypoints as the maximum
of the gaussian maps. Default: True.
with_kp (bool): Generate pseudo heatmaps for keypoints. Default: True.
with_limb (bool): Generate pseudo heatmaps for limbs. At least one of
'with_kp' and 'with_limb' should be True. Default: False.
skeletons (tuple[tuple]): The definition of human skeletons.
Default: ((0, 1), (0, 2), (1, 3), (2, 4), (0, 5), (5, 7), (7, 9),
(0, 6), (6, 8), (8, 10), (5, 11), (11, 13), (13, 15),
(6, 12), (12, 14), (14, 16), (11, 12)),
which is the definition of COCO-17p skeletons.
double (bool): Output both original heatmaps and flipped heatmaps.
Default: False.
left_kp (tuple[int]): Indexes of left keypoints, which is used when
flipping heatmaps. Default: (1, 3, 5, 7, 9, 11, 13, 15),
which is left keypoints in COCO-17p.
right_kp (tuple[int]): Indexes of right keypoints, which is used when
flipping heatmaps. Default: (2, 4, 6, 8, 10, 12, 14, 16),
which is right keypoints in COCO-17p.
"""
def __init__(self,
sigma=0.6,
use_score=True,
with_kp=True,
with_limb=False,
skeletons=((1, 8), (0, 1), (15, 0), (17, 15), (16, 0),
(18, 16), (5, 1), (6, 5), (7, 6), (2, 1), (3, 2),
(4, 3), (9, 8), (10, 9), (11, 10), (24, 11),
(22, 11), (23, 22), (12, 8), (13, 12), (14, 13),
(21, 14), (19, 14), (20, 19)),
double=False):
self.sigma = sigma
self.use_score = use_score
self.with_kp = with_kp
self.with_limb = with_limb
self.double = double
# an auxiliary const
self.eps = 1e-4
assert self.with_kp or self.with_limb, (
'At least one of "with_limb" '
'and "with_kp" should be set as True.')
self.left_kp = left_kp
self.right_kp = right_kp
self.skeletons = skeletons
def generate_a_heatmap(self, img_h, img_w, centers, sigma, max_values):
"""Generate pseudo heatmap for one keypoint in one frame.
Args:
img_h (int): The height of the heatmap.
img_w (int): The width of the heatmap.
centers (np.ndarray): The coordinates of corresponding keypoints
(of multiple persons).
sigma (float): The sigma of generated gaussian.
max_values (np.ndarray): The max values of each keypoint.
Returns:
np.ndarray: The generated pseudo heatmap.
"""
heatmap = np.zeros([img_h, img_w], dtype=np.float32)
for center, max_value in zip(centers, max_values):
mu_x, mu_y = center[0], center[1]
if max_value < self.eps:
continue
st_x = max(int(mu_x - 3 * sigma), 0)
ed_x = min(int(mu_x + 3 * sigma) + 1, img_w)
st_y = max(int(mu_y - 3 * sigma), 0)
ed_y = min(int(mu_y + 3 * sigma) + 1, img_h)
x = np.arange(st_x, ed_x, 1, np.float32)
y = np.arange(st_y, ed_y, 1, np.float32)
# if the keypoint not in the heatmap coordinate system
if not (len(x) and len(y)):
continue
y = y[:, None]
patch = np.exp(-((x - mu_x)**2 + (y - mu_y)**2) / 2 / sigma**2)
patch = patch * max_value
heatmap[st_y:ed_y,
st_x:ed_x] = np.maximum(heatmap[st_y:ed_y, st_x:ed_x],
patch)
return heatmap
def generate_a_limb_heatmap(self, img_h, img_w, starts, ends, sigma,
start_values, end_values):
"""Generate pseudo heatmap for one limb in one frame.
Args:
img_h (int): The height of the heatmap.
img_w (int): The width of the heatmap.
starts (np.ndarray): The coordinates of one keypoint in the
corresponding limbs (of multiple persons).
ends (np.ndarray): The coordinates of the other keypoint in the
corresponding limbs (of multiple persons).
sigma (float): The sigma of generated gaussian.
start_values (np.ndarray): The max values of one keypoint in the
corresponding limbs.
end_values (np.ndarray): The max values of the other keypoint in
the corresponding limbs.
Returns:
np.ndarray: The generated pseudo heatmap.
"""
heatmap = np.zeros([img_h, img_w], dtype=np.float32)
for start, end, start_value, end_value in zip(starts, ends,
start_values,
end_values):
value_coeff = min(start_value, end_value)
if value_coeff < self.eps:
continue
min_x, max_x = min(start[0], end[0]), max(start[0], end[0])
min_y, max_y = min(start[1], end[1]), max(start[1], end[1])
min_x = max(int(min_x - 3 * sigma), 0)
max_x = min(int(max_x + 3 * sigma) + 1, img_w)
min_y = max(int(min_y - 3 * sigma), 0)
max_y = min(int(max_y + 3 * sigma) + 1, img_h)
x = np.arange(min_x, max_x, 1, np.float32)
y = np.arange(min_y, max_y, 1, np.float32)
if not (len(x) and len(y)):
continue
y = y[:, None]
x_0 = np.zeros_like(x)
y_0 = np.zeros_like(y)
# distance to start keypoints
d2_start = ((x - start[0])**2 + (y - start[1])**2)
# distance to end keypoints
d2_end = ((x - end[0])**2 + (y - end[1])**2)
# the distance between start and end keypoints.
d2_ab = ((start[0] - end[0])**2 + (start[1] - end[1])**2)
if d2_ab < 1:
full_map = self.generate_a_heatmap(img_h, img_w, [start],
sigma, [start_value])
heatmap = np.maximum(heatmap, full_map)
continue
coeff = (d2_start - d2_end + d2_ab) / 2. / d2_ab
a_dominate = coeff <= 0
b_dominate = coeff >= 1
seg_dominate = 1 - a_dominate - b_dominate
position = np.stack([x + y_0, y + x_0], axis=-1)
projection = start + np.stack([coeff, coeff], axis=-1) * (
end - start)
d2_line = position - projection
d2_line = d2_line[:, :, 0]**2 + d2_line[:, :, 1]**2
d2_seg = (
a_dominate * d2_start + b_dominate * d2_end +
seg_dominate * d2_line)
patch = np.exp(-d2_seg / 2. / sigma**2)
patch = patch * value_coeff
heatmap[min_y:max_y, min_x:max_x] = np.maximum(
heatmap[min_y:max_y, min_x:max_x], patch)
return heatmap
def generate_heatmap(self, img_h, img_w, kps, sigma, max_values):
"""Generate pseudo heatmap for all keypoints and limbs in one frame (if
needed).
Args:
img_h (int): The height of the heatmap.
img_w (int): The width of the heatmap.
kps (np.ndarray): The coordinates of keypoints in this frame.
sigma (float): The sigma of generated gaussian.
max_values (np.ndarray): The confidence score of each keypoint.
Returns:
np.ndarray: The generated pseudo heatmap.
"""
heatmaps = []
if self.with_kp:
num_kp = kps.shape[1]
for i in range(num_kp):
heatmap = self.generate_a_heatmap(img_h, img_w, kps[:, i],
sigma, max_values[:, i])
heatmaps.append(heatmap)
if self.with_limb:
for limb in self.skeletons:
start_idx, end_idx = limb
starts = kps[:, start_idx]
ends = kps[:, end_idx]
start_values = max_values[:, start_idx]
end_values = max_values[:, end_idx]
heatmap = self.generate_a_limb_heatmap(img_h, img_w, starts,
ends, sigma,
start_values,
end_values)
heatmaps.append(heatmap)
return np.stack(heatmaps, axis=-1)
def gen_an_aug(self, results):
"""Generate pseudo heatmaps for all frames.
Args:
results (dict): The dictionary that contains all info of a sample.
Returns:
list[np.ndarray]: The generated pseudo heatmaps.
"""
all_kps = results['keypoint']
kp_shape = all_kps.shape
if 'keypoint_score' in results:
all_kpscores = results['keypoint_score']
else:
all_kpscores = np.ones(kp_shape[:-1], dtype=np.float32)
img_h, img_w = results['img_shape']
num_frame = kp_shape[1]
imgs = []
for i in range(num_frame):
sigma = self.sigma
kps = all_kps[:, i]
kpscores = all_kpscores[:, i]
max_values = np.ones(kpscores.shape, dtype=np.float32)
if self.use_score:
max_values = kpscores
hmap = self.generate_heatmap(img_h, img_w, kps, sigma, max_values)
imgs.append(hmap)
return imgs
def __call__(self, results):
if not self.double:
results['data'] = np.stack(self.gen_an_aug(results)).transpose(3,0,1,2)#(T,H,W,V)-->(V,T,H,W)
results['data'] = normalize(results['data'])
results['data'] = results['data'].astype('float32')
if 'label' in results:
label = results['label']
results['label'] = np.expand_dims(label, 0).astype('int64')
return results
|
python
|
class RoundEdge:
def __init__(self, r, obj):
self.r = r
self.obj = obj
self.material = obj.material
self.color = obj.color
def signedDistance(self, point):
return self.obj.signedDistance(point) - self.r
def evalColorAtPoint(self, point):
return self.obj.evalColorAtPoint(point)
|
python
|
# -*- coding: utf-8 -*-
"""
unistorage.adapters.amazon
~~~~~~~~~~~~~~~~~~~~~~~~~~
This module an adapter for Amazon Simple Storage Service (S3).
:copyright: (c) 2012 by Janne Vanhala.
:license: BSD, see LICENSE for more details.
"""
from datetime import datetime, timedelta
from email.utils import parsedate_tz
from unistorage.exceptions import FileNotFound
from unistorage.interface import Adapter
class AmazonS3(Adapter):
"""
An adapter for Amazon Simple Storage Service (S3).
This adapter requires an boto_ library to be installed. You can
install it by executing the following command in the terminal::
pip install boto
.. _boto: https://github.com/boto/boto
Constructor arguments are as follows:
:type access_key: str
:param access_key: your Amazon Web Services access key id
:type secret_key: str
:param secret_key: your Amazon Web Services secret access key
:type bucket_name: str
:param bucket_name: your Amazon S3 bucket name
:type use_query_auth: bool
:param use_query_auth: :method:`url` should use query string
authentication to sign the URL. This is useful for enabling
direct access to private Amazon S3 data without proxying the
request. Defaults to ``True``.
:type querystring_expires: int
:param querystring_expires: The number of seconds a URL signed with
query string authentication is valid before expiring. Defaults
to 3600 (one hour).
"""
def __init__(self, access_key, secret_key, bucket_name,
use_query_auth=True, querystring_expires=3600):
boto = self._import_boto()
self.connection = boto.connect_s3(access_key, secret_key)
self.bucket_name = bucket_name
self.use_query_auth = use_query_auth
self.querystring_expires = querystring_expires
@property
def bucket(self):
"""
The :class:`boto.s3.Bucket` instance with the name
:attr:`bucket_name`.
"""
if not hasattr(self, '_bucket'):
self._bucket = self._get_or_create_bucket()
return self._bucket
def _get_or_create_bucket(self):
"""
Retrive the bucket with the name :attr:`bucket_name`, and create
one if necessary.
:return: a :class:`boto.s3.Bucket` instance
"""
from boto.exception import S3ResponseError
try:
bucket = self.connection.get_bucket(self.bucket_name)
except S3ResponseError as exc:
if exc.status != 404:
raise
bucket = self.connection.create_bucket(self.bucket_name)
return bucket
def _import_boto(self):
"""
Import and return :module:`boto`.
If the module cannot be imported, for example due to it not being
installed, a :exception:`RuntimeError` is raised.
"""
try:
import boto
except ImportError:
raise RuntimeError(
'Could not import boto. Amazon S3 adapter requires boto '
'library to be installed. You can install it by executing '
'``pip install boto`` in the terminal.'
)
return boto
def delete(self, name):
self.bucket.delete_key(name)
def exists(self, name):
key = self.bucket.new_key(name)
return key.exists()
def write(self, name, content):
key = self.bucket.new_key(name)
key.set_contents_from_string(content)
def read(self, name):
key = self.bucket.get_key(name)
if not key:
raise FileNotFound(name)
return key.get_contents_as_string()
def size(self, name):
key = self.bucket.get_key(name)
if not key:
raise FileNotFound(name)
return key.size
def list(self):
for key in self.bucket.list():
yield key.name
def modified(self, name):
key = self.bucket.get_key(name)
if not key:
raise FileNotFound(name)
t = parsedate_tz(key.last_modified)
return datetime(*t[:7]) - timedelta(seconds=t[-1])
def url(self, name):
return self.connection.generate_url(
expires_in=self.querystring_expires,
method='GET',
bucket=self.bucket_name,
key=name,
query_auth=self.use_query_auth
)
|
python
|
import numpy as np
import time
#Note, all modes should have a return to forward, to prevent stucks
def forward_mode(Rover):
# Calm the roll and pitch
if (Rover.roll >= 1.5 and Rover.roll <= 358.5) or (Rover.pitch >= 1.5 and Rover.pitch <= 359):
Rover.max_vel = 0.5
else:
Rover.max_vel = 5
#Segment for follow only nearest left wall angles
steer_angles = np.concatenate((Rover.nav_anglesA,Rover.nav_anglesB),axis=0)
if len(steer_angles) <= 20:
steer_angles = np.copy(Rover.nav_anglesC) #if you don't have enough at the left, turn right
# Check the extent of navigable terrain
if len(Rover.nav_angles) >= Rover.stop_forward:
# If mode is forward, navigable terrain looks good
# and velocity is below max, then throttle
if Rover.vel < Rover.max_vel:
# Set throttle value to throttle setting
Rover.throttle = Rover.throttle_set
else: # Else coast
Rover.throttle = 0
Rover.brake = 0
# Set steering to average angle clipped to the range +/- 15
#Rover.steer = np.clip(np.mean(Rover.nav_angles * 180/np.pi), -15, 15)
Rover.steer = np.clip(np.mean(steer_angles* 180/np.pi), -15, 15) #Using this eventually crash, not founded explain
# If there's a lack of navigable terrain pixels then go to 'stop' mode
elif len(Rover.nav_angles) < Rover.stop_forward:
# Set mode to "stop" and hit the brakes!
Rover.throttle = 0
# Set brake to stored brake value
Rover.brake = Rover.brake_set
Rover.steer = 0
Rover.mode = 'stop'
# If rover have the six samples, and is near home, just stop. (Homing by chance xD)
if Rover.samples_collected == 6:
#if Rover.total_time >= 30:
dist_to_home = np.sqrt((Rover.pos[0] - Rover.start_pos[0])**2+ (Rover.pos[1] - Rover.start_pos[1])**2)
#print("dist_home",dist_to_home,"\n\n")
#print("Have all the balls! \n \n \n \n \n \n \n")
#print("Home position",Rover.pos,"\n\n")
if dist_to_home <= 30.0:
#print("Enter home_alone")
Rover.mode='home_alone'
## Checking if stuck
if Rover.vel <= 0.05:
Rover.stuck +=1
else:
Rover.stuck = 0
if Rover.stuck >=100:
Rover.mode = 'stuck'
Rover.stuck = 0
def stop_mode(Rover):
# If we're in stop mode but still moving keep braking
if Rover.vel > 0.2:
Rover.throttle = 0
Rover.brake = Rover.brake_set
Rover.steer = 0
# If we're not moving (vel < 0.2) then do something else
elif Rover.vel <= 0.2:
# Now we're stopped and we have vision data to see if there's a path forward
if len(Rover.nav_angles) < Rover.go_forward:
Rover.throttle = 0
# Release the brake to allow turning
Rover.brake = 0
# Turn range is +/- 15 degrees, when stopped the next line will induce 4-wheel turning
Rover.steer = -15 # Could be more clever here about which way to turn
# If we're stopped but see sufficient navigable terrain in front then go!
if len(Rover.nav_angles) >= Rover.go_forward:
# Set throttle back to stored value
Rover.throttle = Rover.throttle_set
# Release the brake
Rover.brake = 0
# Set steer to mean angle
Rover.steer = np.clip(np.mean(Rover.nav_angles * 180/np.pi), -15, 15)
Rover.mode = 'forward'
def stuck_mode(Rover):
# print("HEEEEYYYY ____------___--_--____\n \n \n \n ")
# print(Rover.mode)
if Rover.stuck == 0:
Rover.stuck_time = time.time()
Rover.stuck+=1
if time.time() <= Rover.stuck_time + 3:
Rover.throttle = -1
elif time.time()>Rover.stuck_time + 3 and time.time()<=Rover.stuck_time + 6:
Rover.throttle = 0
Rover.steer = -10
elif time.time()>Rover.stuck_time + 6:
Rover.stuck=0
Rover.stuck_time=0
Rover.mode='forward'
def home_alone(Rover):
#this mode does not need a pass to another state, it is the end
# If rover have the six samples, and is near home, just stop. (Homing by chance xD)
Rover.brake = 10
Rover.steer = 10
Rover.throttle = 0
def rock_chasin(Rover):
pass
# This is where you can build a decision tree for determining throttle, brake and steer
# commands based on the output of the perception_step() function
def decision_step(Rover):
#print(Rover.nav_anglesA.dtype)
#print(Rover.nav_anglesA)
#print(Rover.nav_anglesB)
#print(steer_angles)
# Implement conditionals to decide what to do given perception data
# Here you're all set up with some basic functionality but you'll need to
# improve on this decision tree to do a good job of navigating autonomously!
print('this is the decision step')
# Save starting position
if Rover.start_pos==None:
Rover.start_pos = Rover.pos
# Example:
# Check if we have vision data to make decisions with
if Rover.nav_angles is not None:
print('Rover.mode ==',Rover.mode,'\n')
# Check for Rover.mode status
#Note, Machine states reordered for clarity and easy of modification
# forward mode is basically the default mode. Lot of main decision are made there.
if Rover.mode == 'forward':
forward_mode(Rover)
# If we're already in "stop" mode then make different decisions
elif Rover.mode == 'stop':
stop_mode(Rover)
elif Rover.mode == 'stuck':
stuck_mode(Rover)
elif Rover.mode == 'home_alone':
home_alone(Rover)
elif Rover.mode == 'rock_chasin':
rock_chasin(Rover)
# Just to make the rover do something
# even if no modifications have been made to the code
else:
Rover.throttle = Rover.throttle_set
Rover.steer = 0
Rover.brake = 0
# If in a state where want to pickup a rock send pickup command
if Rover.near_sample and Rover.vel == 0 and not Rover.picking_up:
Rover.send_pickup = True
return Rover
|
python
|
# License: MIT License
import typing
import numpy as np
class Trajectory(object):
""" Abstracts the infos about a complete set of trajectories, represented as a numpy array of doubles
(the time deltas) and a numpy matrix of ints (the changes of states).
:param list_of_columns: the list containing the times array and values matrix
:type list_of_columns: List
:param original_cols_number: total number of cols in the data
:type original_cols_number: int
:_actual_trajectory: the trajectory containing also the duplicated/shifted values
:_times: the array containing the time deltas
"""
def __init__(self, list_of_columns: typing.List, original_cols_number: int):
"""Constructor Method
"""
self._times = list_of_columns[0]
self._actual_trajectory = list_of_columns[1]
self._original_cols_number = original_cols_number
@property
def trajectory(self) -> np.ndarray:
return self._actual_trajectory[:, :self._original_cols_number - 1]
@property
def complete_trajectory(self) -> np.ndarray:
return self._actual_trajectory
@property
def times(self):
return self._times
def size(self):
return self._actual_trajectory.shape[0]
def __repr__(self):
return "Complete Trajectory Rows: " + str(self.size()) + "\n" + self.complete_trajectory.__repr__() + \
"\nTimes Rows:" + str(self.times.size) + "\n" + self.times.__repr__()
|
python
|
# -*- coding: utf-8 -*-
# Copyright 2016 Battelle Energy Alliance, LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import unicode_literals, absolute_import
from ci.tests import DBTester, utils
import datetime
from ci import EventsStatus, models
class Tests(DBTester.DBTester):
def create_events(self):
self.set_counts()
self.build_user = utils.create_user_with_token(name="moosebuild")
self.owner = utils.create_user(name="idaholab")
self.repo = utils.create_repo(name="civet", user=self.owner)
self.branch = utils.create_branch(name="devel", repo=self.repo)
pre = utils.create_recipe(name="Precheck", user=self.build_user, repo=self.repo)
test = utils.create_recipe(name="Test", user=self.build_user, repo=self.repo)
test1 = utils.create_recipe(name="Test1", user=self.build_user, repo=self.repo)
test.depends_on.add(pre)
test1.depends_on.add(pre)
merge = utils.create_recipe(name="Merge", user=self.build_user, repo=self.repo)
merge.depends_on.add(test)
merge.depends_on.add(test1)
pr = utils.create_pr(title="{a, b} & <c> … somereallylongwordthatshouldgettruncated", repo=self.repo)
pr.username = 'pr_user'
pr.save()
for commit in ['1234', '2345', '3456']:
e = utils.create_event(user=self.owner, commit1=commit, branch1=self.branch, branch2=self.branch)
e.pull_request = pr
e.description = "some description"
e.save()
j = utils.create_job(recipe=pre, event=e, user=self.build_user)
j.seconds = datetime.timedelta(seconds=10)
j.failed_step = 'failed step'
j.running_step = '3/5'
j.save()
utils.create_job(recipe=test, event=e, user=self.build_user)
utils.create_job(recipe=test1, event=e, user=self.build_user)
utils.create_job(recipe=merge, event=e, user=self.build_user)
self.compare_counts(recipes=4,
deps=4,
current=4,
jobs=12,
active=12,
num_pr_recipes=4,
events=3,
users=2,
repos=1,
branches=1,
commits=3,
prs=1)
def test_get_default_events_query(self):
self.create_events()
q = EventsStatus.get_default_events_query()
with self.assertNumQueries(1):
self.assertEqual(q.count(), 3)
event_q = models.Event.objects.filter(head__sha="1234")
q = EventsStatus.get_default_events_query(event_q=event_q)
with self.assertNumQueries(1):
self.assertEqual(q.count(), 1)
event_q = models.Event.objects.filter(head__sha="invalid")
q = EventsStatus.get_default_events_query(event_q=event_q)
with self.assertNumQueries(1):
self.assertEqual(q.count(), 0)
def test_all_events_info(self):
self.create_events()
with self.assertNumQueries(4):
info = EventsStatus.all_events_info()
self.assertEqual(len(info), 3)
# pre, blank, test, test1, blank, merge
self.assertEqual(len(info[0]["jobs"]), 6)
# make sure limit works
with self.assertNumQueries(4):
info = EventsStatus.all_events_info(limit=1)
self.assertEqual(len(info), 1)
self.assertEqual(len(info[0]["jobs"]), 6)
last_modified = models.Event.objects.last().last_modified
last_modified = last_modified + datetime.timedelta(0,10)
# make sure last_modified works
with self.assertNumQueries(4):
info = EventsStatus.all_events_info(last_modified=last_modified)
self.assertEqual(len(info), 0)
def test_events_with_head(self):
self.create_events()
q = EventsStatus.events_with_head()
with self.assertNumQueries(1):
self.assertEqual(q.count(), 3)
event_q = models.Event.objects.filter(head__sha="1234")
q = EventsStatus.events_with_head(event_q=event_q)
q = EventsStatus.get_default_events_query(event_q=event_q)
with self.assertNumQueries(1):
self.assertEqual(q.count(), 1)
event_q = models.Event.objects.filter(head__sha="invalid")
q = EventsStatus.events_with_head(event_q=event_q)
with self.assertNumQueries(1):
self.assertEqual(q.count(), 0)
def test_events_info(self):
self.create_events()
ev = models.Event.objects.first()
info = EventsStatus.events_info([ev])
self.assertEqual(len(info), 1)
ev = models.Event.objects.all()
info = EventsStatus.events_info(ev)
self.assertEqual(len(info), 3)
def test_multi_line(self):
self.create_events()
e = utils.create_event(user=self.owner, commit1='456', branch1=self.branch, branch2=self.branch, cause=models.Event.PUSH)
e.description = "some description"
e.save()
event_q = EventsStatus.get_default_events_query()[:30]
info = EventsStatus.multiline_events_info(event_q, max_jobs_per_line=100)
self.assertEqual(len(info), 3)
self.assertEqual(len(info[0]["jobs"]), 6)
info = EventsStatus.multiline_events_info(event_q, max_jobs_per_line=1)
self.assertEqual(len(info), 18)
def test_get_single_event_for_open_prs(self):
self.create_events()
pr = models.PullRequest.objects.latest()
latest_event = pr.events.latest()
# 1. main PullRequest query
# 2. latest() for each PullRequest
# 3. jobs query below
with self.assertNumQueries(3):
info = EventsStatus.get_single_event_for_open_prs([pr.pk])
self.assertEqual(len(info), 1) # should only have the latest event
self.assertEqual(info[0].pk, latest_event.pk)
# pre, test, test1, merge
self.assertEqual(info[0].jobs.count(), 4)
last_modified = latest_event.last_modified + datetime.timedelta(0,10)
with self.assertNumQueries(2):
info = EventsStatus.get_single_event_for_open_prs([pr.pk], last_modified)
self.assertEqual(len(info), 0)
last_modified = latest_event.last_modified - datetime.timedelta(0,10)
with self.assertNumQueries(2):
info = EventsStatus.get_single_event_for_open_prs([pr.pk], last_modified)
self.assertEqual(len(info), 1)
self.assertEqual(info[0].pk, latest_event.pk)
|
python
|
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""Conversions between formats."""
import numpy as np
import pytest
from .. import linear as _l
from ..io import LinearTransformArray as LTA
@pytest.mark.parametrize(
"filename",
[
"from-fsnative_to-bold_mode-image",
"from-fsnative_to-scanner_mode-image",
"from-scanner_to-bold_mode-image",
"from-scanner_to-fsnative_mode-image",
],
)
def test_lta2itk_conversions(data_path, filename):
"""Check conversions between formats."""
lta = _l.load(data_path / "regressions" / ".".join((filename, "lta")), fmt="lta")
itk = _l.load(data_path / "regressions" / ".".join((filename, "tfm")), fmt="itk")
assert np.allclose(lta.matrix, itk.matrix)
@pytest.mark.parametrize(
"filename,moving,reference",
[
("from-fsnative_to-bold_mode-image", "T1w_fsnative.nii.gz", "bold.nii.gz"),
(
"from-fsnative_to-scanner_mode-image",
"T1w_fsnative.nii.gz",
"T1w_scanner.nii.gz",
),
("from-scanner_to-bold_mode-image", "T1w_scanner.nii.gz", "bold.nii.gz"),
(
"from-scanner_to-fsnative_mode-image",
"T1w_scanner.nii.gz",
"T1w_fsnative.nii.gz",
),
],
)
def test_itk2lta_conversions(
data_path, testdata_path, tmp_path, filename, moving, reference
):
"""Check conversions between formats."""
itk = _l.load(data_path / "regressions" / "".join((filename, ".tfm")), fmt="itk")
itk.reference = testdata_path / reference
itk.to_filename(tmp_path / "test.lta", fmt="fs", moving=testdata_path / moving)
converted_lta = LTA.from_filename(tmp_path / "test.lta")
expected_fname = (
data_path / "regressions" / "".join((filename, "_type-ras2ras.lta"))
)
if not expected_fname.exists():
expected_fname = data_path / "regressions" / "".join((filename, ".lta"))
exp_lta = LTA.from_filename(expected_fname)
assert np.allclose(converted_lta["xforms"][0]["m_L"], exp_lta["xforms"][0]["m_L"])
def test_concatenation(data_path):
"""Check replacement to lta_concat."""
lta0 = _l.load(
data_path / "regressions" / "from-scanner_to-fsnative_mode-image.lta", fmt="lta"
)
lta1 = _l.load(
data_path / "regressions" / "from-fsnative_to-bold_mode-image.lta", fmt="lta"
)
lta_combined = _l.load(
data_path / "regressions" / "from-scanner_to-bold_mode-image.lta", fmt="lta"
)
assert np.allclose(lta1.matrix.dot(lta0.matrix), lta_combined.matrix)
|
python
|
import sys
import os
class Configuration:
######################################
###### Configuration parameters ######
######################################
# Change them if required
# path to the root of ExaHyPe from this file
pathToExaHyPERoot = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", ".."))
# path to the gemm generator from this file
pathToLibxsmmGemmGenerator = os.path.abspath(os.path.join(pathToExaHyPERoot, "Submodules", "libxsmm", "bin", "libxsmm_gemm_generator"))
# path to jinja2
pathToJinja2 = os.path.abspath(os.path.join(pathToExaHyPERoot, "Submodules", "jinja"))
# path to markupsafe
pathToMarkupsafe = os.path.abspath(os.path.join(pathToExaHyPERoot, "Submodules", "markupsafe", "src"))
# simd size of the accepted architectures
simdWidth = { "noarch" : 1,
"wsm" : 2,
"snb" : 4,
"hsw" : 4,
"knc" : 8,
"knl" : 8,
"skx" : 8
}
# set to false to use standard loops instead of libxsmm
useLibxsmm = True;
# set to true to print models runtime
runtimeDebug = False;
@staticmethod
def checkPythonVersion():
"""check version. Python 3.3 required"""
requiredVersion = (3,3)
currentVersion = sys.version_info
if(requiredVersion > currentVersion):
sys.exit("Requires Python 3.3 or newer. Abort.")
def checkDependencies():
"""check all dependencies are reachable from the configuration path"""
# Check jinja
sys.path.insert(1, Configuration.pathToJinja2)
sys.path.insert(1, Configuration.pathToMarkupsafe)
import jinja2
# Remove added path
sys.path.remove(Configuration.pathToJinja2)
sys.path.remove(Configuration.pathToMarkupsafe)
|
python
|
from socket import socket, AF_INET, SOCK_STREAM
from message_handler import MessageHandler
from string_match import match
from rsa_ops import init_rsa
class Client:
def __init__(self, server_adr, bsize=1024):
self.server_adr = server_adr # a tuple
self.bsize = bsize
self.pubkey, self.privkey = init_rsa()
def run(self):
sock = socket(AF_INET, SOCK_STREAM)
sock.connect(self.server_adr)
print("Client started")
mh = MessageHandler(sock, self.bsize, self.pubkey, self.privkey)
print("Enter command after the PocketDB > prompt. Enter .exit to exit")
while True:
print("PocketDB > ", end='')
command = input().strip()
if command == ".q":
mh.send_message("\n")
break
if command.startswith("filter"):
mh.send_message("select")
data = mh.receive_message()
lines = data.split("\n")
lines = lines[1:-1]
words = [i.strip() for i in lines]
target = command.split()[1:]
target = ' '.join(target)
rst = []
words.pop()
for word in words:
if match(target, word.split(',')[1].strip()):
rst.append(word)
print(">Matched results:")
print(rst)
continue
mh.send_message(command)
data = mh.receive_message()
if data == "\n\n\n":
break
print(data)
print("Database connection closed")
if __name__ == '__main__':
client = Client(('127.0.0.1', 9001))
client.run()
|
python
|
from django.db import models
from datetime import date
class CompletionDate(models.Model):
"""Store a task completion on a certain date"""
completion_date = models.DateField(auto_now_add=True, primary_key=True)
class Task(models.Model):
"""Daily task model and related functions"""
task_id = models.AutoField(primary_key=True)
task_name = models.CharField(max_length=50)
task_completed = models.BooleanField(default="False")
task_streak = models.IntegerField(default=0)
task_maxstreak = models.IntegerField(default=0)
# Relationship with CompletionDate objects this task was completed on
completion_dates = models.ManyToManyField(CompletionDate)
# Date maxstreak is completed on
maxstreak_date = models.DateField(default=date.today)
# Order tasks are displayed in
order = models.IntegerField(blank=True)
def save(self, *args, **kwargs):
"""Override save to set the order"""
if self.order is None:
self.order = Task.objects.count()
super(Task, self).save(*args, **kwargs)
def increment_streak(self):
"""Increase the current task streak and set max streak if necessary"""
self.task_streak += 1
# Create a new completion date object, or return one for today
today = date.today()
date_obj, created = CompletionDate.objects.get_or_create(
completion_date=today)
self.completion_dates.add(date_obj)
# Update max streak if necessary
if self.task_maxstreak < self.task_streak:
self.task_maxstreak = self.task_streak
self.maxstreak_date = date.today()
self.save()
def decrement_streak(self):
"""Decrease the current task streak and set max streak if necessary"""
# Do nothing if streak already at 0
if self.task_streak == 0:
return
self.task_streak -= 1
# Remove task from completion date relationship
today = date.today()
self.completion_dates.remove(
CompletionDate.objects.get(completion_date=today))
# Update maxstreak if it was set today
if self.maxstreak_date == date.today():
self.task_maxstreak = self.task_streak
self.save()
|
python
|
#!/usr/bin/env python
import keras
import numpy as np
from imgaug import augmenters as iaa
from keras.applications.mobilenet import preprocess_input
from keras.preprocessing.image import image
class CustomDataGenerator(keras.utils.Sequence):
"""
Takes input of image paths and corresponding labels and generates batches of tensor image data with real-time
data augmentation. The data will be looped over (in batches).
"""
def __init__(self, images_paths, labels, batch_size=64, image_dimensions=(224, 224, 3), shuffle=False,
augment=False):
self.images_paths = images_paths # array of image paths.
self.labels = labels # array of labels
self.batch_size = batch_size # batch size.
self.dim = image_dimensions # image dimensions.
self.shuffle = shuffle # shuffle Boolean (default False).
self.augment = augment # augment Boolean (default False).
self.on_epoch_end()
def __len__(self):
"""Denotes the number of batches per epoch"""
return int(np.floor(len(self.images_paths) / self.batch_size))
def on_epoch_end(self):
"""Updates indexes after each epoch"""
self.indexes = np.arange(len(self.images_paths))
if self.shuffle:
np.random.shuffle(self.indexes)
def __getitem__(self, index):
"""Generate one batch of data"""
# selects indices of data for next batch
indexes = self.indexes[index * self.batch_size: (index + 1) * self.batch_size]
# select data and load images
labels = np.array([self.labels[k] for k in indexes])
images = [image.img_to_array(image.load_img(self.images_paths[k], target_size=(224, 224))) for k in indexes]
# preprocess and augment data
if self.augment:
images = self.augmentor(images)
images = np.array([preprocess_input(img) for img in images])
return images, labels
def augmentor(self, images):
"""Apply data augmentation"""
sometimes = lambda aug: iaa.Sometimes(1, aug)
seq = iaa.Sequential(
[
iaa.Fliplr(0.5), # horizontally flip 50% of images
sometimes(iaa.Affine(
translate_percent={"x": (-0.1, 0.1), "y": (-0.1, 0.1)},
# translate by -20 to +20 percent (per axis)
rotate=(-10, 10), # rotate by -10 to +10 degrees
))
]
)
return seq.augment_images(images)
|
python
|
# Generated by Django 3.2.7 on 2021-10-06 22:44
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
('app', '0008_alter_review_reviewer'),
]
operations = [
migrations.AlterField(
model_name='watchlist',
name='platforms',
field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='watchlist', to='app.streamplatform'),
),
]
|
python
|
#
# PySNMP MIB module APPACCELERATION-STATUS-MIB (http://snmplabs.com/pysmi)
# ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/APPACCELERATION-STATUS-MIB
# Produced by pysmi-0.3.4 at Mon Apr 29 17:07:44 2019
# On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4
# Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15)
#
appAccelerationMgmt, appAccelerationNotifications = mibBuilder.importSymbols("APPACCELERATION-SMI", "appAccelerationMgmt", "appAccelerationNotifications")
AppAccelerationAlarmSeverity, AppAccelerationSeqNum, AppAccelerationYesNo, AppAccelerationDescription = mibBuilder.importSymbols("APPACCELERATION-TC", "AppAccelerationAlarmSeverity", "AppAccelerationSeqNum", "AppAccelerationYesNo", "AppAccelerationDescription")
Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString")
NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues")
ConstraintsIntersection, ValueSizeConstraint, SingleValueConstraint, ValueRangeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ValueSizeConstraint", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsUnion")
InetAddress, InetAddressType, InetAddressPrefixLength = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddress", "InetAddressType", "InetAddressPrefixLength")
ObjectGroup, ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "ModuleCompliance", "NotificationGroup")
NotificationType, Counter32, Gauge32, MibIdentifier, TimeTicks, Unsigned32, ModuleIdentity, Counter64, iso, Bits, Integer32, ObjectIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress = mibBuilder.importSymbols("SNMPv2-SMI", "NotificationType", "Counter32", "Gauge32", "MibIdentifier", "TimeTicks", "Unsigned32", "ModuleIdentity", "Counter64", "iso", "Bits", "Integer32", "ObjectIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress")
DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention")
appAccelerationStatusMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1))
if mibBuilder.loadTexts: appAccelerationStatusMIB.setLastUpdated('201310110000Z')
if mibBuilder.loadTexts: appAccelerationStatusMIB.setOrganization('www.citrix.com')
wsStatusMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1))
wsStatusMIBNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 3845, 30, 5, 1))
wsStatusMIBConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 2))
wsStatusMIBScalars = MibIdentifier((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1))
wsOperStatus = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 100, 101, 102, 103))).clone(namedValues=NamedValues(("active", 1), ("busy", 100), ("down", 101), ("licenseExpired", 102), ("bypassTraffic", 103)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsOperStatus.setStatus('current')
wsLoad1Min = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 2), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsLoad1Min.setStatus('deprecated')
wsLoad5Min = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 3), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsLoad5Min.setStatus('deprecated')
wsLoad15Min = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 4), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsLoad15Min.setStatus('deprecated')
wsBypass = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("normal", 1), ("bypass", 2)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsBypass.setStatus('current')
wsLastAlarmSeqNum = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 6), AppAccelerationSeqNum()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsLastAlarmSeqNum.setStatus('current')
wsBoostStatus = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("hardboost", 1), ("softboost", 2)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsBoostStatus.setStatus('deprecated')
wsBandwidthMode = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("full", 1), ("partial", 2)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsBandwidthMode.setStatus('current')
wsBandwidthLimit = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 9), Integer32()).setUnits('K-Bits/sec').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsBandwidthLimit.setStatus('current')
wsWanOutOctets = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 10), Counter64()).setUnits('Octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsWanOutOctets.setStatus('current')
wsWanInOctets = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 11), Counter64()).setUnits('Octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsWanInOctets.setStatus('current')
wsLanOutOctets = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 12), Counter64()).setUnits('Octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsLanOutOctets.setStatus('current')
wsLanInOctets = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 13), Counter64()).setUnits('Octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsLanInOctets.setStatus('current')
wsCompressionEffectiveBandwidth = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 14), Integer32()).setUnits('K-Bits/sec').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsCompressionEffectiveBandwidth.setStatus('current')
wsSendCompressionRatio = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 15), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsSendCompressionRatio.setStatus('current')
wsReceiveCompressionRatio = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 16), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsReceiveCompressionRatio.setStatus('current')
wsCompressionStatsCollectionTime = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 17), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsCompressionStatsCollectionTime.setStatus('current')
wsAcceleratedConnections = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 18), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAcceleratedConnections.setStatus('current')
wsNonAcceleratedConnections = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 19), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsNonAcceleratedConnections.setStatus('current')
wsHaState = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 20), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("standalone", 0), ("primary", 1), ("secondary", 2), ("restarting", 3), ("starting", 4), ("invalid", 5)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsHaState.setStatus('current')
wsHaVmIp = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 21), IpAddress()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsHaVmIp.setStatus('current')
wsHaSecondaryIp = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 22), IpAddress()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsHaSecondaryIp.setStatus('current')
wsPrimaryIp = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 23), IpAddress()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsPrimaryIp.setStatus('current')
wsCpuUsage = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 24), Integer32()).setUnits('%').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsCpuUsage.setStatus('current')
wsConnectedPlugIns = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 25), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsConnectedPlugIns.setStatus('current')
wsMaxPlugIns = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 26), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsMaxPlugIns.setStatus('current')
wsQosStatsCollectionTime = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 27), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsQosStatsCollectionTime.setStatus('current')
wsUpTime = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 28), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsUpTime.setStatus('current')
wsSerialNumber = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 29), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsSerialNumber.setStatus('current')
wsNonAcceleratedVolume = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 30), Counter64()).setUnits('1000-Octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsNonAcceleratedVolume.setStatus('current')
wsActiveConnections = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 31), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsActiveConnections.setStatus('current')
wsAccelerationStatus = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 32), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enabled", 1), ("disabled", 2)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAccelerationStatus.setStatus('current')
wsTrafficShapingStatus = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 33), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enabled", 1), ("disabled", 2)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsTrafficShapingStatus.setStatus('current')
wsSystemLoad = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 34), Integer32()).setUnits('%').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsSystemLoad.setStatus('current')
wsWanSendRate = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 35), Integer32()).setUnits('bps').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsWanSendRate.setStatus('current')
wsWanReceiveRate = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 36), Integer32()).setUnits('bps').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsWanReceiveRate.setStatus('current')
wsLanSendRate = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 37), Integer32()).setUnits('bps').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsLanSendRate.setStatus('current')
wsLanReceiveRate = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 38), Integer32()).setUnits('bps').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsLanReceiveRate.setStatus('current')
wsNonAcceleratedRate = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 39), Integer32()).setUnits('bps').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsNonAcceleratedRate.setStatus('current')
wsModelNumber = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 40), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsModelNumber.setStatus('current')
wsWccpStatus = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 1, 41), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enabled", 1), ("disabled", 2)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsWccpStatus.setStatus('current')
wsStatusMIBTables = MibIdentifier((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2))
wsActiveAlarmTable = MibTable((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 1), )
if mibBuilder.loadTexts: wsActiveAlarmTable.setStatus('current')
activeAlarmEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 1, 1), ).setIndexNames((0, "APPACCELERATION-STATUS-MIB", "wsActiveAlarmIndex"))
if mibBuilder.loadTexts: activeAlarmEntry.setStatus('current')
wsActiveAlarmIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsActiveAlarmIndex.setStatus('current')
wsActiveAlarmSeqNum = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 1, 1, 2), AppAccelerationSeqNum()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsActiveAlarmSeqNum.setStatus('current')
wsActiveAlarmID = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 1, 1, 3), ObjectIdentifier()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsActiveAlarmID.setStatus('current')
wsActiveAlarmSeverity = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 1, 1, 4), AppAccelerationAlarmSeverity()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsActiveAlarmSeverity.setStatus('current')
wsActiveAlarmLogTime = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 1, 1, 5), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsActiveAlarmLogTime.setStatus('current')
wsActiveAlarmDesc = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 1, 1, 6), AppAccelerationDescription()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsActiveAlarmDesc.setStatus('current')
wsActiveAlarmAcked = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 1, 1, 7), AppAccelerationYesNo()).setMaxAccess("readwrite")
if mibBuilder.loadTexts: wsActiveAlarmAcked.setStatus('current')
wsActiveAlarmServiceAffect = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 1, 1, 8), AppAccelerationYesNo()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsActiveAlarmServiceAffect.setStatus('current')
wsServiceClassStatsTable = MibTable((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2), )
if mibBuilder.loadTexts: wsServiceClassStatsTable.setStatus('current')
wsServiceClassStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1), ).setIndexNames((0, "APPACCELERATION-STATUS-MIB", "wsServiceClassIndex"))
if mibBuilder.loadTexts: wsServiceClassStatsEntry.setStatus('current')
wsServiceClassIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsServiceClassIndex.setStatus('current')
wsServiceClassName = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 2), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsServiceClassName.setStatus('current')
wsScsCurrentAcceleratedConnections = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 3), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsCurrentAcceleratedConnections.setStatus('current')
wsScsTotalAcceleratedConnections = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 4), Counter64()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsTotalAcceleratedConnections.setStatus('current')
wsScsTotalAcceleratedOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 5), Counter64()).setUnits('Octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsTotalAcceleratedOctets.setStatus('current')
wsScsTotalNonAcceleratedConnections = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 6), Counter64()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsTotalNonAcceleratedConnections.setStatus('current')
wsScsTotalNonAcceleratedOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 7), Counter64()).setUnits('Octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsTotalNonAcceleratedOctets.setStatus('current')
wsScsTotalPreCompressionOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 8), Counter64()).setUnits('Octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsTotalPreCompressionOctets.setStatus('current')
wsScsCompressSentOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 9), Counter64()).setUnits('Octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsCompressSentOctets.setStatus('current')
wsScsCompressReceivedOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 10), Counter64()).setUnits('Octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsCompressReceivedOctets.setStatus('current')
wsScsPreCompressSentOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 11), Counter64()).setUnits('Octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsPreCompressSentOctets.setStatus('current')
wsScsPreCompressReceivedOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 12), Counter64()).setUnits('Octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsPreCompressReceivedOctets.setStatus('current')
wsScsSendBWSavings = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 13), Integer32()).setUnits('%').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsSendBWSavings.setStatus('current')
wsScsRecvBWSavings = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 14), Integer32()).setUnits('%').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsRecvBWSavings.setStatus('current')
wsScsSendRecvBWSavings = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 15), Integer32()).setUnits('%').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsSendRecvBWSavings.setStatus('current')
wsScsSendCompressionRatio = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 16), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsSendCompressionRatio.setStatus('current')
wsScsRecvCompressionRatio = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 17), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsRecvCompressionRatio.setStatus('current')
wsScsSendRecvCompressionRatio = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 2, 1, 18), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsScsSendRecvCompressionRatio.setStatus('current')
wsQosTrafficClassStatsTable = MibTable((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 3), )
if mibBuilder.loadTexts: wsQosTrafficClassStatsTable.setStatus('deprecated')
wsQosTcStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 3, 1), ).setIndexNames((0, "APPACCELERATION-STATUS-MIB", "wsQosIndex"))
if mibBuilder.loadTexts: wsQosTcStatsEntry.setStatus('deprecated')
wsQosIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 3, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsQosIndex.setStatus('deprecated')
wsQosName = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 3, 1, 2), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsQosName.setStatus('deprecated')
wsQosConfiguredSendRatio = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 3, 1, 3), Integer32()).setUnits('%').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsQosConfiguredSendRatio.setStatus('deprecated')
wsQosSentVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 3, 1, 4), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsQosSentVolume.setStatus('deprecated')
wsQosActualSendRatio = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 3, 1, 5), Integer32()).setUnits('%').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsQosActualSendRatio.setStatus('deprecated')
wsIcaStatsTable = MibTable((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 4), )
if mibBuilder.loadTexts: wsIcaStatsTable.setStatus('current')
wsIcaStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 4, 1), ).setIndexNames((0, "APPACCELERATION-STATUS-MIB", "wsIcaIndex"))
if mibBuilder.loadTexts: wsIcaStatsEntry.setStatus('current')
wsIcaIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 4, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsIcaIndex.setStatus('current')
wsIcaServiceName = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 4, 1, 2), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsIcaServiceName.setStatus('current')
wsIcaPriority = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 4, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 9999))).clone(namedValues=NamedValues(("high", 0), ("medium", 1), ("low", 2), ("background", 3), ("notApplicable", 9999)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsIcaPriority.setStatus('deprecated')
wsIcaSentVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 4, 1, 4), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsIcaSentVolume.setStatus('current')
wsIcaSentRatio = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 4, 1, 5), Integer32()).setUnits('%').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsIcaSentRatio.setStatus('current')
wsIcaReceivedVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 4, 1, 6), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsIcaReceivedVolume.setStatus('current')
wsIcaReceivedRatio = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 4, 1, 7), Integer32()).setUnits('%').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsIcaReceivedRatio.setStatus('current')
wsIcaSendRate = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 4, 1, 8), Integer32()).setUnits('bps').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsIcaSendRate.setStatus('current')
wsIcaReceiveRate = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 4, 1, 9), Integer32()).setUnits('bps').setMaxAccess("readonly")
if mibBuilder.loadTexts: wsIcaReceiveRate.setStatus('current')
wsAdapterTable = MibTable((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 5), )
if mibBuilder.loadTexts: wsAdapterTable.setStatus('current')
wsAdapterEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 5, 1), ).setIndexNames((0, "APPACCELERATION-STATUS-MIB", "wsAdapterIndex"))
if mibBuilder.loadTexts: wsAdapterEntry.setStatus('current')
wsAdapterIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 5, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAdapterIndex.setStatus('current')
wsAdapterName = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 5, 1, 2), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAdapterName.setStatus('current')
wsAdapterEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 5, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enabled", 1), ("disabled", 2)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAdapterEnabled.setStatus('current')
wsAdapterIp = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 5, 1, 4), IpAddress()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAdapterIp.setStatus('current')
wsAdapterNetmask = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 5, 1, 5), IpAddress()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAdapterNetmask.setStatus('current')
wsAdapterGateway = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 5, 1, 6), IpAddress()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAdapterGateway.setStatus('current')
wsAdapterVirtualIp = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 5, 1, 7), IpAddress()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAdapterVirtualIp.setStatus('current')
wsAdapterVLanEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 5, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enabled", 1), ("disabled", 2)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAdapterVLanEnabled.setStatus('current')
wsAdapterVLanGroup = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 5, 1, 9), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAdapterVLanGroup.setStatus('current')
wsLinkStatsTable = MibTable((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 6), )
if mibBuilder.loadTexts: wsLinkStatsTable.setStatus('current')
linkStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 6, 1), ).setIndexNames((0, "APPACCELERATION-STATUS-MIB", "linkIndex"))
if mibBuilder.loadTexts: linkStatsEntry.setStatus('current')
linkIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 6, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))).setMaxAccess("readonly")
if mibBuilder.loadTexts: linkIndex.setStatus('current')
linkName = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 6, 1, 2), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: linkName.setStatus('current')
linkSentVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 6, 1, 3), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: linkSentVolume.setStatus('current')
linkReceivedVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 6, 1, 4), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: linkReceivedVolume.setStatus('current')
linkSentPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 6, 1, 5), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: linkSentPackets.setStatus('current')
linkReceivedPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 6, 1, 6), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: linkReceivedPackets.setStatus('current')
linkDroppedSentVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 6, 1, 7), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: linkDroppedSentVolume.setStatus('current')
linkDroppedReceivedVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 6, 1, 8), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: linkDroppedReceivedVolume.setStatus('current')
linkDroppedSentPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 6, 1, 9), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: linkDroppedSentPackets.setStatus('current')
linkDroppedReceivedPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 6, 1, 10), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: linkDroppedReceivedPackets.setStatus('current')
wsAppStatsTable = MibTable((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7), )
if mibBuilder.loadTexts: wsAppStatsTable.setStatus('current')
appStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1), ).setIndexNames((0, "APPACCELERATION-STATUS-MIB", "appIndex"))
if mibBuilder.loadTexts: appStatsEntry.setStatus('current')
appIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))).setMaxAccess("readonly")
if mibBuilder.loadTexts: appIndex.setStatus('current')
appName = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 2), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: appName.setStatus('current')
appId = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 3), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: appId.setStatus('current')
appParentId = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 4), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: appParentId.setStatus('current')
appGroupId = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 5), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: appGroupId.setStatus('current')
appSentVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 6), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: appSentVolume.setStatus('current')
appReceivedVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 7), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: appReceivedVolume.setStatus('current')
appSentPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 8), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: appSentPackets.setStatus('current')
appReceivedPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 9), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: appReceivedPackets.setStatus('current')
appDroppedSentVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 10), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: appDroppedSentVolume.setStatus('current')
appDroppedReceiveVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 11), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: appDroppedReceiveVolume.setStatus('current')
appDroppedSentPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 12), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: appDroppedSentPackets.setStatus('current')
appDroppedReceivedPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 13), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: appDroppedReceivedPackets.setStatus('current')
appSendRate = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 14), Integer32()).setUnits('bps').setMaxAccess("readonly")
if mibBuilder.loadTexts: appSendRate.setStatus('current')
appReceiveRate = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 7, 1, 15), Integer32()).setUnits('bps').setMaxAccess("readonly")
if mibBuilder.loadTexts: appReceiveRate.setStatus('current')
wsQosStatsTable = MibTable((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8), )
if mibBuilder.loadTexts: wsQosStatsTable.setStatus('current')
qosStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8, 1), ).setIndexNames((0, "APPACCELERATION-STATUS-MIB", "qosIndex"))
if mibBuilder.loadTexts: qosStatsEntry.setStatus('current')
qosIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))).setMaxAccess("readonly")
if mibBuilder.loadTexts: qosIndex.setStatus('current')
qosPolicyName = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8, 1, 2), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: qosPolicyName.setStatus('current')
qosLink = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8, 1, 3), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: qosLink.setStatus('current')
qosSentVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8, 1, 4), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: qosSentVolume.setStatus('current')
qosReceiveVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8, 1, 5), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: qosReceiveVolume.setStatus('current')
qosSentPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8, 1, 6), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: qosSentPackets.setStatus('current')
qosReceivedPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8, 1, 7), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: qosReceivedPackets.setStatus('current')
qosDroppedSentVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8, 1, 8), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: qosDroppedSentVolume.setStatus('current')
qosDroppedReceiveVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8, 1, 9), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: qosDroppedReceiveVolume.setStatus('current')
qosDroppedSentPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8, 1, 10), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: qosDroppedSentPackets.setStatus('current')
qosDroppedReceivedPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 8, 1, 11), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: qosDroppedReceivedPackets.setStatus('current')
wsLscStatsTable = MibTable((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9), )
if mibBuilder.loadTexts: wsLscStatsTable.setStatus('current')
lscStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9, 1), ).setIndexNames((0, "APPACCELERATION-STATUS-MIB", "lscIndex"))
if mibBuilder.loadTexts: lscStatsEntry.setStatus('current')
lscIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))).setMaxAccess("readonly")
if mibBuilder.loadTexts: lscIndex.setStatus('current')
lscServiceClassName = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9, 1, 2), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: lscServiceClassName.setStatus('current')
lscLink = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9, 1, 3), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: lscLink.setStatus('current')
lscSentVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9, 1, 4), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: lscSentVolume.setStatus('current')
lscReceivedVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9, 1, 5), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: lscReceivedVolume.setStatus('current')
lscSentPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9, 1, 6), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: lscSentPackets.setStatus('current')
lscReceivedPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9, 1, 7), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: lscReceivedPackets.setStatus('current')
lscDroppedSentVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9, 1, 8), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: lscDroppedSentVolume.setStatus('current')
lscDroppedReceiveVolume = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9, 1, 9), Counter64()).setUnits('K-octets').setMaxAccess("readonly")
if mibBuilder.loadTexts: lscDroppedReceiveVolume.setStatus('current')
lscDroppedSentPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9, 1, 10), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: lscDroppedSentPackets.setStatus('current')
lscDroppedReceivedPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 9, 1, 11), Counter64()).setUnits('Packets').setMaxAccess("readonly")
if mibBuilder.loadTexts: lscDroppedReceivedPackets.setStatus('current')
wsPartnerTable = MibTable((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 10), )
if mibBuilder.loadTexts: wsPartnerTable.setStatus('current')
partnerEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 10, 1), ).setIndexNames((0, "APPACCELERATION-STATUS-MIB", "partnerAddrType"), (0, "APPACCELERATION-STATUS-MIB", "partnerAddr"))
if mibBuilder.loadTexts: partnerEntry.setStatus('current')
partnerAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 10, 1, 1), InetAddressType()).setMaxAccess("readonly")
if mibBuilder.loadTexts: partnerAddrType.setStatus('current')
partnerAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 10, 1, 2), InetAddress()).setMaxAccess("readonly")
if mibBuilder.loadTexts: partnerAddr.setStatus('current')
partnerConnections = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 10, 1, 3), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: partnerConnections.setStatus('current')
partnerSendRate = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 10, 1, 4), Integer32()).setUnits('bps').setMaxAccess("readonly")
if mibBuilder.loadTexts: partnerSendRate.setStatus('current')
partnerReceiveRate = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 10, 1, 5), Integer32()).setUnits('bps').setMaxAccess("readonly")
if mibBuilder.loadTexts: partnerReceiveRate.setStatus('current')
partnerIdleTime = MibTableColumn((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 2, 10, 1, 6), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: partnerIdleTime.setStatus('current')
wsHAMasterIpAddr = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 3), IpAddress()).setMaxAccess("accessiblefornotify")
if mibBuilder.loadTexts: wsHAMasterIpAddr.setStatus('current')
wsSourceIpAddr = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 5), IpAddress()).setMaxAccess("accessiblefornotify")
if mibBuilder.loadTexts: wsSourceIpAddr.setStatus('current')
wsStatusMIBAlertTables = MibIdentifier((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 4))
wsAlertAction = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 4, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3))).clone(namedValues=NamedValues(("oneShot", 0), ("set", 1), ("reset", 2), ("expired", 3)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAlertAction.setStatus('current')
wsAlertClass = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 4, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75))).clone(namedValues=NamedValues(("slowLossRate", 0), ("fastLossRate", 1), ("connectionStalled", 2), ("connectionTimeout", 3), ("connectionInvalid", 4), ("nicHalfDuplex", 5), ("arpTimeout", 6), ("badLicense", 7), ("limitExceeded", 8), ("asymmetric", 9), ("badPackets", 10), ("lowOnCpu", 11), ("lowOnMemory", 12), ("internal", 13), ("restartRequired", 14), ("vridNotSet", 15), ("haConfigurationChanged", 16), ("haNoSecondary", 17), ("haPairCommError", 18), ("haNotCapable", 19), ("haPeerVersion", 20), ("compressionError", 21), ("bwTypeMismatch", 22), ("cpuPegged", 23), ("lowOnVm", 24), ("numSlowRtosExceeded", 25), ("numFastRtosExceeded", 26), ("numBootoutsExceeded", 27), ("numRewindsExceeded", 28), ("diskDriveFailing", 29), ("diskDriveDegraded", 30), ("diskDriveFailed", 31), ("groupModeError", 32), ("nicBypassEvent", 33), ("haMisMatchVmip", 34), ("diskFragmented", 35), ("redirectorModeSyn", 36), ("unreachable", 37), ("dnsLookup", 38), ("redirectorModeFailure", 39), ("applianceInTheMiddle", 40), ("internalCritical", 41), ("internalMajor", 42), ("internalMinor", 43), ("internalWarning", 44), ("wccpMajor", 45), ("wccpMinor", 46), ("wccpWarning", 47), ("driverHung", 48), ("signalingChannelError", 49), ("scpsError", 50), ("plugInNearLimit", 51), ("sslError", 52), ("haDispositionError", 53), ("haVIPNotSet", 54), ("vlanNotSupported", 55), ("tooManyBadTcpChecksum", 56), ("invalidGateway", 57), ("haPeerKeyStoreLocked", 58), ("sslProxyMajor", 59), ("sslProxyMinor", 60), ("sslProxyWarning", 61), ("sslTunnelMajor", 62), ("sslTunnelMinor", 63), ("sslTunnelWarning", 64), ("excessiveIpFragments", 65), ("userAccountLocked", 66), ("smb2AccelerationFailure", 67), ("invalidBridgeConfig", 68), ("invalidHttpCachingConfigFile", 69), ("qosEngineError", 70), ("mapiNtlmError", 71), ("ethernetCrcError", 72), ("qosLinkConfigError", 73), ("maxUnacceleratedConnectionsExceeded", 74), ("badHardware", 75)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAlertClass.setStatus('current')
wsAlertMsg = MibScalar((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 1, 4, 3), AppAccelerationDescription()).setMaxAccess("readonly")
if mibBuilder.loadTexts: wsAlertMsg.setStatus('current')
wsNotifyStart = NotificationType((1, 3, 6, 1, 4, 1, 3845, 30, 5, 1, 1)).setObjects(("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeverity"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeqNum"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmDesc"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmServiceAffect"), ("APPACCELERATION-STATUS-MIB", "wsPrimaryIp"))
if mibBuilder.loadTexts: wsNotifyStart.setStatus('current')
wsNotifyShutdown = NotificationType((1, 3, 6, 1, 4, 1, 3845, 30, 5, 1, 2)).setObjects(("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeverity"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeqNum"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmDesc"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmServiceAffect"), ("APPACCELERATION-STATUS-MIB", "wsPrimaryIp"))
if mibBuilder.loadTexts: wsNotifyShutdown.setStatus('current')
wsNotifyRestart = NotificationType((1, 3, 6, 1, 4, 1, 3845, 30, 5, 1, 3)).setObjects(("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeverity"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeqNum"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmDesc"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmServiceAffect"))
if mibBuilder.loadTexts: wsNotifyRestart.setStatus('deprecated')
wsHANotifyNewMaster = NotificationType((1, 3, 6, 1, 4, 1, 3845, 30, 5, 1, 4)).setObjects(("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeverity"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeqNum"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmDesc"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmServiceAffect"), ("APPACCELERATION-STATUS-MIB", "wsHAMasterIpAddr"), ("APPACCELERATION-STATUS-MIB", "wsPrimaryIp"))
if mibBuilder.loadTexts: wsHANotifyNewMaster.setStatus('current')
wsNotifyAvailBWChange = NotificationType((1, 3, 6, 1, 4, 1, 3845, 30, 5, 1, 5)).setObjects(("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeverity"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeqNum"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmDesc"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmServiceAffect"))
if mibBuilder.loadTexts: wsNotifyAvailBWChange.setStatus('deprecated')
wsNotifyUnexpectedRestart = NotificationType((1, 3, 6, 1, 4, 1, 3845, 30, 5, 1, 6)).setObjects(("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeverity"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeqNum"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmDesc"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmServiceAffect"), ("APPACCELERATION-STATUS-MIB", "wsPrimaryIp"))
if mibBuilder.loadTexts: wsNotifyUnexpectedRestart.setStatus('current')
wsNotifyPersistentError = NotificationType((1, 3, 6, 1, 4, 1, 3845, 30, 5, 1, 7)).setObjects(("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeverity"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeqNum"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmDesc"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmServiceAffect"), ("APPACCELERATION-STATUS-MIB", "wsPrimaryIp"))
if mibBuilder.loadTexts: wsNotifyPersistentError.setStatus('current')
wsNotifyAlert = NotificationType((1, 3, 6, 1, 4, 1, 3845, 30, 5, 1, 8)).setObjects(("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeverity"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeqNum"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmDesc"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmServiceAffect"), ("APPACCELERATION-STATUS-MIB", "wsAlertAction"), ("APPACCELERATION-STATUS-MIB", "wsAlertClass"), ("APPACCELERATION-STATUS-MIB", "wsAlertMsg"), ("APPACCELERATION-STATUS-MIB", "wsPrimaryIp"))
if mibBuilder.loadTexts: wsNotifyAlert.setStatus('current')
wsNotifyConfigurationChanged = NotificationType((1, 3, 6, 1, 4, 1, 3845, 30, 5, 1, 9)).setObjects(("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeverity"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeqNum"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmDesc"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmServiceAffect"), ("APPACCELERATION-STATUS-MIB", "wsPrimaryIp"))
if mibBuilder.loadTexts: wsNotifyConfigurationChanged.setStatus('current')
wsStatusMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 2, 1))
wsStatusMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 2, 2))
wsStatusCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 2, 1, 1)).setObjects(("APPACCELERATION-STATUS-MIB", "wsStatusGroup"), ("APPACCELERATION-STATUS-MIB", "wsStatusTrapGroup"), ("APPACCELERATION-STATUS-MIB", "wsStatusNotifyGroup"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
wsStatusCompliance = wsStatusCompliance.setStatus('current')
wsStatusGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 2, 2, 1)).setObjects(("APPACCELERATION-STATUS-MIB", "wsOperStatus"), ("APPACCELERATION-STATUS-MIB", "wsLoad1Min"), ("APPACCELERATION-STATUS-MIB", "wsLoad5Min"), ("APPACCELERATION-STATUS-MIB", "wsLoad15Min"), ("APPACCELERATION-STATUS-MIB", "wsBypass"), ("APPACCELERATION-STATUS-MIB", "wsLastAlarmSeqNum"), ("APPACCELERATION-STATUS-MIB", "wsBoostStatus"), ("APPACCELERATION-STATUS-MIB", "wsBandwidthMode"), ("APPACCELERATION-STATUS-MIB", "wsBandwidthLimit"), ("APPACCELERATION-STATUS-MIB", "wsWanOutOctets"), ("APPACCELERATION-STATUS-MIB", "wsWanInOctets"), ("APPACCELERATION-STATUS-MIB", "wsLanOutOctets"), ("APPACCELERATION-STATUS-MIB", "wsLanInOctets"), ("APPACCELERATION-STATUS-MIB", "wsCompressionEffectiveBandwidth"), ("APPACCELERATION-STATUS-MIB", "wsSendCompressionRatio"), ("APPACCELERATION-STATUS-MIB", "wsReceiveCompressionRatio"), ("APPACCELERATION-STATUS-MIB", "wsCompressionStatsCollectionTime"), ("APPACCELERATION-STATUS-MIB", "wsAcceleratedConnections"), ("APPACCELERATION-STATUS-MIB", "wsNonAcceleratedConnections"), ("APPACCELERATION-STATUS-MIB", "wsHaState"), ("APPACCELERATION-STATUS-MIB", "wsHaVmIp"), ("APPACCELERATION-STATUS-MIB", "wsHaSecondaryIp"), ("APPACCELERATION-STATUS-MIB", "wsPrimaryIp"), ("APPACCELERATION-STATUS-MIB", "wsCpuUsage"), ("APPACCELERATION-STATUS-MIB", "wsConnectedPlugIns"), ("APPACCELERATION-STATUS-MIB", "wsMaxPlugIns"), ("APPACCELERATION-STATUS-MIB", "wsQosStatsCollectionTime"), ("APPACCELERATION-STATUS-MIB", "wsUpTime"), ("APPACCELERATION-STATUS-MIB", "wsSerialNumber"), ("APPACCELERATION-STATUS-MIB", "wsNonAcceleratedVolume"), ("APPACCELERATION-STATUS-MIB", "wsActiveConnections"), ("APPACCELERATION-STATUS-MIB", "wsAccelerationStatus"), ("APPACCELERATION-STATUS-MIB", "wsTrafficShapingStatus"), ("APPACCELERATION-STATUS-MIB", "wsSystemLoad"), ("APPACCELERATION-STATUS-MIB", "wsWanSendRate"), ("APPACCELERATION-STATUS-MIB", "wsWanReceiveRate"), ("APPACCELERATION-STATUS-MIB", "wsLanSendRate"), ("APPACCELERATION-STATUS-MIB", "wsLanReceiveRate"), ("APPACCELERATION-STATUS-MIB", "wsNonAcceleratedRate"), ("APPACCELERATION-STATUS-MIB", "wsModelNumber"), ("APPACCELERATION-STATUS-MIB", "wsWccpStatus"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmIndex"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeqNum"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmID"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmSeverity"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmLogTime"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmDesc"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmAcked"), ("APPACCELERATION-STATUS-MIB", "wsActiveAlarmServiceAffect"), ("APPACCELERATION-STATUS-MIB", "wsServiceClassIndex"), ("APPACCELERATION-STATUS-MIB", "wsServiceClassName"), ("APPACCELERATION-STATUS-MIB", "wsScsCurrentAcceleratedConnections"), ("APPACCELERATION-STATUS-MIB", "wsScsTotalAcceleratedConnections"), ("APPACCELERATION-STATUS-MIB", "wsScsTotalAcceleratedOctets"), ("APPACCELERATION-STATUS-MIB", "wsScsTotalNonAcceleratedConnections"), ("APPACCELERATION-STATUS-MIB", "wsScsTotalNonAcceleratedOctets"), ("APPACCELERATION-STATUS-MIB", "wsScsTotalPreCompressionOctets"), ("APPACCELERATION-STATUS-MIB", "wsScsCompressSentOctets"), ("APPACCELERATION-STATUS-MIB", "wsScsCompressReceivedOctets"), ("APPACCELERATION-STATUS-MIB", "wsScsPreCompressSentOctets"), ("APPACCELERATION-STATUS-MIB", "wsScsPreCompressReceivedOctets"), ("APPACCELERATION-STATUS-MIB", "wsScsSendBWSavings"), ("APPACCELERATION-STATUS-MIB", "wsScsRecvBWSavings"), ("APPACCELERATION-STATUS-MIB", "wsScsSendRecvBWSavings"), ("APPACCELERATION-STATUS-MIB", "wsScsSendCompressionRatio"), ("APPACCELERATION-STATUS-MIB", "wsScsRecvCompressionRatio"), ("APPACCELERATION-STATUS-MIB", "wsScsSendRecvCompressionRatio"), ("APPACCELERATION-STATUS-MIB", "wsQosIndex"), ("APPACCELERATION-STATUS-MIB", "wsQosName"), ("APPACCELERATION-STATUS-MIB", "wsQosConfiguredSendRatio"), ("APPACCELERATION-STATUS-MIB", "wsQosSentVolume"), ("APPACCELERATION-STATUS-MIB", "wsQosActualSendRatio"), ("APPACCELERATION-STATUS-MIB", "wsIcaIndex"), ("APPACCELERATION-STATUS-MIB", "wsIcaServiceName"), ("APPACCELERATION-STATUS-MIB", "wsIcaPriority"), ("APPACCELERATION-STATUS-MIB", "wsIcaSentVolume"), ("APPACCELERATION-STATUS-MIB", "wsIcaSentRatio"), ("APPACCELERATION-STATUS-MIB", "wsIcaReceivedVolume"), ("APPACCELERATION-STATUS-MIB", "wsIcaReceivedRatio"), ("APPACCELERATION-STATUS-MIB", "wsIcaSendRate"), ("APPACCELERATION-STATUS-MIB", "wsIcaReceiveRate"), ("APPACCELERATION-STATUS-MIB", "wsAdapterIndex"), ("APPACCELERATION-STATUS-MIB", "wsAdapterName"), ("APPACCELERATION-STATUS-MIB", "wsAdapterEnabled"), ("APPACCELERATION-STATUS-MIB", "wsAdapterIp"), ("APPACCELERATION-STATUS-MIB", "wsAdapterNetmask"), ("APPACCELERATION-STATUS-MIB", "wsAdapterGateway"), ("APPACCELERATION-STATUS-MIB", "wsAdapterVirtualIp"), ("APPACCELERATION-STATUS-MIB", "wsAdapterVLanEnabled"), ("APPACCELERATION-STATUS-MIB", "wsAdapterVLanGroup"), ("APPACCELERATION-STATUS-MIB", "linkIndex"), ("APPACCELERATION-STATUS-MIB", "linkName"), ("APPACCELERATION-STATUS-MIB", "linkSentVolume"), ("APPACCELERATION-STATUS-MIB", "linkReceivedVolume"), ("APPACCELERATION-STATUS-MIB", "linkSentPackets"), ("APPACCELERATION-STATUS-MIB", "linkReceivedPackets"), ("APPACCELERATION-STATUS-MIB", "linkDroppedSentVolume"), ("APPACCELERATION-STATUS-MIB", "linkDroppedReceivedVolume"), ("APPACCELERATION-STATUS-MIB", "linkDroppedSentPackets"), ("APPACCELERATION-STATUS-MIB", "linkDroppedReceivedPackets"), ("APPACCELERATION-STATUS-MIB", "appIndex"), ("APPACCELERATION-STATUS-MIB", "appName"), ("APPACCELERATION-STATUS-MIB", "appId"), ("APPACCELERATION-STATUS-MIB", "appParentId"), ("APPACCELERATION-STATUS-MIB", "appGroupId"), ("APPACCELERATION-STATUS-MIB", "appSentVolume"), ("APPACCELERATION-STATUS-MIB", "appReceivedVolume"), ("APPACCELERATION-STATUS-MIB", "appSentPackets"), ("APPACCELERATION-STATUS-MIB", "appReceivedPackets"), ("APPACCELERATION-STATUS-MIB", "appDroppedSentVolume"), ("APPACCELERATION-STATUS-MIB", "appDroppedReceiveVolume"), ("APPACCELERATION-STATUS-MIB", "appDroppedSentPackets"), ("APPACCELERATION-STATUS-MIB", "appDroppedReceivedPackets"), ("APPACCELERATION-STATUS-MIB", "appSendRate"), ("APPACCELERATION-STATUS-MIB", "appReceiveRate"), ("APPACCELERATION-STATUS-MIB", "qosIndex"), ("APPACCELERATION-STATUS-MIB", "qosPolicyName"), ("APPACCELERATION-STATUS-MIB", "qosLink"), ("APPACCELERATION-STATUS-MIB", "qosSentVolume"), ("APPACCELERATION-STATUS-MIB", "qosReceiveVolume"), ("APPACCELERATION-STATUS-MIB", "qosSentPackets"), ("APPACCELERATION-STATUS-MIB", "qosReceivedPackets"), ("APPACCELERATION-STATUS-MIB", "qosDroppedSentVolume"), ("APPACCELERATION-STATUS-MIB", "qosDroppedReceiveVolume"), ("APPACCELERATION-STATUS-MIB", "qosDroppedSentPackets"), ("APPACCELERATION-STATUS-MIB", "qosDroppedReceivedPackets"), ("APPACCELERATION-STATUS-MIB", "lscIndex"), ("APPACCELERATION-STATUS-MIB", "lscServiceClassName"), ("APPACCELERATION-STATUS-MIB", "lscLink"), ("APPACCELERATION-STATUS-MIB", "lscSentVolume"), ("APPACCELERATION-STATUS-MIB", "lscReceivedVolume"), ("APPACCELERATION-STATUS-MIB", "lscSentPackets"), ("APPACCELERATION-STATUS-MIB", "lscReceivedPackets"), ("APPACCELERATION-STATUS-MIB", "lscDroppedSentVolume"), ("APPACCELERATION-STATUS-MIB", "lscDroppedReceiveVolume"), ("APPACCELERATION-STATUS-MIB", "lscDroppedSentPackets"), ("APPACCELERATION-STATUS-MIB", "lscDroppedReceivedPackets"), ("APPACCELERATION-STATUS-MIB", "partnerAddrType"), ("APPACCELERATION-STATUS-MIB", "partnerAddr"), ("APPACCELERATION-STATUS-MIB", "partnerConnections"), ("APPACCELERATION-STATUS-MIB", "partnerSendRate"), ("APPACCELERATION-STATUS-MIB", "partnerReceiveRate"), ("APPACCELERATION-STATUS-MIB", "partnerIdleTime"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
wsStatusGroup = wsStatusGroup.setStatus('current')
wsStatusTrapGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 2, 2, 2)).setObjects(("APPACCELERATION-STATUS-MIB", "wsHAMasterIpAddr"), ("APPACCELERATION-STATUS-MIB", "wsAlertAction"), ("APPACCELERATION-STATUS-MIB", "wsAlertClass"), ("APPACCELERATION-STATUS-MIB", "wsAlertMsg"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
wsStatusTrapGroup = wsStatusTrapGroup.setStatus('current')
wsStatusNotifyGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 3845, 30, 4, 1, 2, 2, 3)).setObjects(("APPACCELERATION-STATUS-MIB", "wsNotifyStart"), ("APPACCELERATION-STATUS-MIB", "wsNotifyShutdown"), ("APPACCELERATION-STATUS-MIB", "wsNotifyRestart"), ("APPACCELERATION-STATUS-MIB", "wsHANotifyNewMaster"), ("APPACCELERATION-STATUS-MIB", "wsNotifyAvailBWChange"), ("APPACCELERATION-STATUS-MIB", "wsNotifyUnexpectedRestart"), ("APPACCELERATION-STATUS-MIB", "wsNotifyPersistentError"), ("APPACCELERATION-STATUS-MIB", "wsNotifyAlert"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
wsStatusNotifyGroup = wsStatusNotifyGroup.setStatus('current')
mibBuilder.exportSymbols("APPACCELERATION-STATUS-MIB", wsNotifyShutdown=wsNotifyShutdown, wsNotifyPersistentError=wsNotifyPersistentError, wsQosTrafficClassStatsTable=wsQosTrafficClassStatsTable, wsActiveAlarmAcked=wsActiveAlarmAcked, PYSNMP_MODULE_ID=appAccelerationStatusMIB, wsNotifyRestart=wsNotifyRestart, wsActiveConnections=wsActiveConnections, wsPrimaryIp=wsPrimaryIp, partnerConnections=partnerConnections, wsQosSentVolume=wsQosSentVolume, wsAdapterNetmask=wsAdapterNetmask, appId=appId, wsPartnerTable=wsPartnerTable, wsUpTime=wsUpTime, wsActiveAlarmIndex=wsActiveAlarmIndex, wsActiveAlarmSeverity=wsActiveAlarmSeverity, wsQosIndex=wsQosIndex, lscLink=lscLink, appParentId=appParentId, wsAdapterName=wsAdapterName, wsQosActualSendRatio=wsQosActualSendRatio, wsQosConfiguredSendRatio=wsQosConfiguredSendRatio, wsIcaStatsTable=wsIcaStatsTable, wsBypass=wsBypass, wsScsRecvBWSavings=wsScsRecvBWSavings, appDroppedReceiveVolume=appDroppedReceiveVolume, qosStatsEntry=qosStatsEntry, lscSentVolume=lscSentVolume, appGroupId=appGroupId, wsMaxPlugIns=wsMaxPlugIns, qosReceivedPackets=qosReceivedPackets, wsScsCompressReceivedOctets=wsScsCompressReceivedOctets, linkReceivedVolume=linkReceivedVolume, wsScsRecvCompressionRatio=wsScsRecvCompressionRatio, appSendRate=appSendRate, wsStatusNotifyGroup=wsStatusNotifyGroup, linkIndex=linkIndex, wsHaVmIp=wsHaVmIp, wsScsTotalNonAcceleratedOctets=wsScsTotalNonAcceleratedOctets, appReceivedPackets=appReceivedPackets, wsScsPreCompressSentOctets=wsScsPreCompressSentOctets, qosSentPackets=qosSentPackets, wsHaSecondaryIp=wsHaSecondaryIp, linkDroppedReceivedPackets=linkDroppedReceivedPackets, lscDroppedSentPackets=lscDroppedSentPackets, wsActiveAlarmServiceAffect=wsActiveAlarmServiceAffect, wsScsSendRecvCompressionRatio=wsScsSendRecvCompressionRatio, qosDroppedReceiveVolume=qosDroppedReceiveVolume, wsHAMasterIpAddr=wsHAMasterIpAddr, qosIndex=qosIndex, qosLink=qosLink, linkSentPackets=linkSentPackets, wsSendCompressionRatio=wsSendCompressionRatio, wsAlertAction=wsAlertAction, wsSystemLoad=wsSystemLoad, wsScsSendBWSavings=wsScsSendBWSavings, wsStatusMIBNotifications=wsStatusMIBNotifications, wsIcaServiceName=wsIcaServiceName, qosReceiveVolume=qosReceiveVolume, wsStatusMIBCompliances=wsStatusMIBCompliances, linkName=linkName, wsLoad5Min=wsLoad5Min, linkDroppedReceivedVolume=linkDroppedReceivedVolume, wsServiceClassIndex=wsServiceClassIndex, wsAdapterIndex=wsAdapterIndex, lscIndex=lscIndex, partnerReceiveRate=partnerReceiveRate, linkDroppedSentVolume=linkDroppedSentVolume, lscSentPackets=lscSentPackets, wsAcceleratedConnections=wsAcceleratedConnections, wsLscStatsTable=wsLscStatsTable, wsStatusMIBConformance=wsStatusMIBConformance, wsNonAcceleratedRate=wsNonAcceleratedRate, wsWccpStatus=wsWccpStatus, wsIcaIndex=wsIcaIndex, qosDroppedReceivedPackets=qosDroppedReceivedPackets, lscDroppedSentVolume=lscDroppedSentVolume, appSentVolume=appSentVolume, partnerEntry=partnerEntry, partnerAddr=partnerAddr, wsStatusMIBScalars=wsStatusMIBScalars, wsScsTotalNonAcceleratedConnections=wsScsTotalNonAcceleratedConnections, lscStatsEntry=lscStatsEntry, qosPolicyName=qosPolicyName, wsWanOutOctets=wsWanOutOctets, wsActiveAlarmLogTime=wsActiveAlarmLogTime, wsModelNumber=wsModelNumber, wsAlertMsg=wsAlertMsg, wsIcaReceiveRate=wsIcaReceiveRate, wsQosStatsCollectionTime=wsQosStatsCollectionTime, appStatsEntry=appStatsEntry, wsTrafficShapingStatus=wsTrafficShapingStatus, wsAdapterVirtualIp=wsAdapterVirtualIp, wsHaState=wsHaState, wsScsCompressSentOctets=wsScsCompressSentOctets, wsSerialNumber=wsSerialNumber, wsBoostStatus=wsBoostStatus, wsScsTotalAcceleratedOctets=wsScsTotalAcceleratedOctets, wsIcaStatsEntry=wsIcaStatsEntry, wsServiceClassStatsEntry=wsServiceClassStatsEntry, wsNotifyAlert=wsNotifyAlert, wsAppStatsTable=wsAppStatsTable, wsLoad1Min=wsLoad1Min, wsWanReceiveRate=wsWanReceiveRate, wsHANotifyNewMaster=wsHANotifyNewMaster, wsIcaSentRatio=wsIcaSentRatio, wsLanSendRate=wsLanSendRate, wsLanInOctets=wsLanInOctets, appDroppedSentVolume=appDroppedSentVolume, wsStatusMIBGroups=wsStatusMIBGroups, wsCompressionEffectiveBandwidth=wsCompressionEffectiveBandwidth, wsIcaReceivedVolume=wsIcaReceivedVolume, wsWanInOctets=wsWanInOctets, wsScsTotalPreCompressionOctets=wsScsTotalPreCompressionOctets, partnerIdleTime=partnerIdleTime, appDroppedReceivedPackets=appDroppedReceivedPackets, lscReceivedPackets=lscReceivedPackets, qosDroppedSentPackets=qosDroppedSentPackets, wsLastAlarmSeqNum=wsLastAlarmSeqNum, wsAdapterIp=wsAdapterIp, linkStatsEntry=linkStatsEntry, wsAdapterEnabled=wsAdapterEnabled, wsWanSendRate=wsWanSendRate, wsBandwidthMode=wsBandwidthMode, wsSourceIpAddr=wsSourceIpAddr, appSentPackets=appSentPackets, wsLanReceiveRate=wsLanReceiveRate, wsIcaSendRate=wsIcaSendRate, wsStatusMIBObjects=wsStatusMIBObjects, wsAlertClass=wsAlertClass, wsCompressionStatsCollectionTime=wsCompressionStatsCollectionTime, appIndex=appIndex, wsLinkStatsTable=wsLinkStatsTable, wsNonAcceleratedConnections=wsNonAcceleratedConnections, wsScsCurrentAcceleratedConnections=wsScsCurrentAcceleratedConnections, wsNonAcceleratedVolume=wsNonAcceleratedVolume, wsAdapterGateway=wsAdapterGateway, linkReceivedPackets=linkReceivedPackets, wsServiceClassStatsTable=wsServiceClassStatsTable, wsActiveAlarmID=wsActiveAlarmID, wsNotifyStart=wsNotifyStart, appName=appName, appReceiveRate=appReceiveRate, wsCpuUsage=wsCpuUsage, wsActiveAlarmSeqNum=wsActiveAlarmSeqNum, linkSentVolume=linkSentVolume, qosSentVolume=qosSentVolume, wsStatusTrapGroup=wsStatusTrapGroup, wsReceiveCompressionRatio=wsReceiveCompressionRatio, lscServiceClassName=lscServiceClassName, wsScsSendCompressionRatio=wsScsSendCompressionRatio, wsServiceClassName=wsServiceClassName, wsLoad15Min=wsLoad15Min, appReceivedVolume=appReceivedVolume, wsScsPreCompressReceivedOctets=wsScsPreCompressReceivedOctets, wsActiveAlarmDesc=wsActiveAlarmDesc, wsAdapterVLanEnabled=wsAdapterVLanEnabled, wsQosTcStatsEntry=wsQosTcStatsEntry, linkDroppedSentPackets=linkDroppedSentPackets, wsStatusMIBTables=wsStatusMIBTables, wsNotifyConfigurationChanged=wsNotifyConfigurationChanged, wsScsSendRecvBWSavings=wsScsSendRecvBWSavings, wsScsTotalAcceleratedConnections=wsScsTotalAcceleratedConnections, wsActiveAlarmTable=wsActiveAlarmTable, wsAdapterVLanGroup=wsAdapterVLanGroup, wsQosName=wsQosName, partnerAddrType=partnerAddrType, lscReceivedVolume=lscReceivedVolume, wsAccelerationStatus=wsAccelerationStatus, partnerSendRate=partnerSendRate, wsOperStatus=wsOperStatus, wsAdapterEntry=wsAdapterEntry, wsConnectedPlugIns=wsConnectedPlugIns, wsBandwidthLimit=wsBandwidthLimit, appDroppedSentPackets=appDroppedSentPackets, wsQosStatsTable=wsQosStatsTable, wsIcaSentVolume=wsIcaSentVolume, wsStatusGroup=wsStatusGroup, activeAlarmEntry=activeAlarmEntry, qosDroppedSentVolume=qosDroppedSentVolume, wsNotifyAvailBWChange=wsNotifyAvailBWChange, wsStatusMIBAlertTables=wsStatusMIBAlertTables, wsAdapterTable=wsAdapterTable, wsStatusCompliance=wsStatusCompliance, appAccelerationStatusMIB=appAccelerationStatusMIB, lscDroppedReceiveVolume=lscDroppedReceiveVolume, wsIcaPriority=wsIcaPriority, wsNotifyUnexpectedRestart=wsNotifyUnexpectedRestart, lscDroppedReceivedPackets=lscDroppedReceivedPackets, wsLanOutOctets=wsLanOutOctets, wsIcaReceivedRatio=wsIcaReceivedRatio)
|
python
|
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import print_function
import os
import sys
if os.name == 'posix' and sys.version_info[0] < 3:
import subprocess32 as subprocess
else:
import subprocess
from . import common as cmn
task_registry = {}
def task(task_func):
"""
Decorate your tasks to register them. The name of the function is the
public task name used to invoke it from the command line.
"""
task_registry[task_func.__name__] = task_func
return task_func
def s(command, verbose=False, fail_fast=True, interactive=False):
"""
Run a shell command.
"""
completed_process = None
output = None
if interactive:
completed_process = subprocess.run(
command,
shell=True,
stdin=sys.stdin,
stdout=sys.stdout,
stderr=sys.stderr,
)
output = {
"exit_code": completed_process.returncode,
}
else:
completed_process = subprocess.run(
command,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
output = {
"exit_code": completed_process.returncode,
"out": completed_process.stdout.decode('utf-8'),
"err": completed_process.stderr.decode('utf-8'),
}
result = None
if completed_process.returncode == 0:
result = cmn.OkResult(output)
else:
result = cmn.ErrorResult(output)
fail = fail_fast and not result.ok
if verbose or fail:
cmn.logger.log(
"Executed shell command '{command}'\n"
"exit code was: {exit_code}\n".format(
command=command,
**result.value
)
)
if (verbose or fail) and not interactive:
cmn.logger.log(
"stdout was:\n{out}\n"
"stderr was:\n{err}".format(
**result.value
)
)
if fail:
cmn.fail("Failed executing shell command '{command}'".format(command=command))
return result
|
python
|
#!/usr/bin/env python
"""Test for near equality
"""
import unittest
class AlmostEqualTest(unittest.TestCase):
def testNotAlmostEqual(self):
self.failIfAlmostEqual(1.1, 3.3 - 2.0, places=1)
def testAlmostEqual(self):
self.failUnlessAlmostEqual(1.1, 3.3 - 2.0, places=0)
if __name__ == '__main__':
unittest.main()
|
python
|
import pytest
from generalizer import generalize_label
test_data = [
('enter the email associated with your account', 'email'),
('zip code', 'ZIPcode'),
('postal code', 'ZIPcode'),
('first name', 'firstname'),
('last name', 'surname'),
('city', 'city'),
('reference name', 'name'),
('password', 'password'),
('username', 'username'),
('email', 'e-mail'),
('street', 'street'),
('street address', 'streetaddress'),
('state', 'state'),
('country', 'country'),
('zip', 'ZIPcode'),
('search', 'search'),
('apt. number', 'apt'),
('credit card number', 'number'),
('cvv', 'cvv'),
('expiration date', 'date'),
('birth date', 'date'),
('birthday', 'birthday'),
('date of birth', 'date'),
('account', 'report'),
('dependent', 'dependent'),
('job title', 'title'),
('title', 'title'),
('zip / postal code', 'ZIPcode'),
('state / province', 'state')
]
@pytest.mark.parametrize("input_data,expected", test_data)
def test_generalize_label(input_data, expected):
assert generalize_label(input_data) == expected
|
python
|
# -*- coding: utf-8 -*-
from __future__ import absolute_import, print_function, unicode_literals
import sys
from json import loads as json_loads
from wolframclient.utils import six
from wolframclient.utils.encoding import force_text
# Python 3.4 and 3.5 json loads only accept str.
if sys.version_info[0] == 3 and sys.version_info[1] <= 5:
def loads(s, **kwargs):
if isinstance(s, six.binary_type):
s = force_text(s)
return json_loads(s)
else:
loads = json_loads
|
python
|
from csc148_queue import Queue
class Tree:
"""
A bare-bones Tree ADT that identifies the root with the entire tree.
"""
def __init__(self, value=None, children=None):
"""
Create Tree self with content value and 0 or more children
@param Tree self: this tree
@param object value: value contained in this tree
@param list[Tree|None] children: possibly-empty list of children
@rtype: None
"""
self.value = value
# copy children if not None
self.children = children.copy() if children else []
def __eq__(self, other):
"""
Return whether this Tree is equivalent to other.
@param Tree self: this tree
@param object|Tree other: object to compare to self
@rtype: bool
>>> t1 = Tree(5)
>>> t2 = Tree(5, [])
>>> t1 == t2
True
>>> t3 = Tree(5, [t1])
>>> t2 == t3
False
"""
# print("{} == {}?".format(self.value, other.value))
return (type(self) == type(other) and
self.value == other.value and
self.children == other.children)
def __str__(self, indent=0):
"""
Produce a user-friendly strindent=ing representation of Tree self,
indenting each level as a visual clue.
@param Tree self: this tree
@param int indent: amount to indent each level of tree
@rtype: str
>>> t = Tree(17)
>>> print(t)
17
>>> t1 = Tree(19, [t, Tree(23)])
>>> print(t1)
19
17
23
>>> t3 = Tree(29, [Tree(31), t1])
>>> print(t3)
29
31
19
17
23
"""
root_str = indent * " " + str(self.value)
return '\n'.join([root_str] +
[c.__str__(indent + 3) for c in self.children])
def __contains__(self, v):
"""
Return whether Tree self contains v.
@param Tree self: this tree
@param object v: value to search this tree for
# >>> t = Tree(17)
# >>> t.__contains__(17)
# True
>>> t = descendants_from_list(Tree(19), [1, 2, 3, 4, 5, 6, 7], 3)
>>> t.__contains__(5)
True
"""
if not self.children:
# self is a leaf
return self.value == v
else:
# self is an interior node
# this else block would probably also work for the base case!
return ((self.value == v) or
(any([v in child for child in self.children])))
# We can shorten the entire method: the lines from the else block are
# sufficient (look closely to convince yourselves!):
# return ((self.value == v) or
# (any([v in child for child in self.children])))
# Any() stops early once it finds a True (no need to traverse the entire
# list, *but* the list has to be fully generated first in memory.
# We can avoid generating the entire list too, by turning the iterable
# argument of any(), into a generator (just remove the []):
# return ((self.value == v) or
# (any(v in child for child in self.children)))
def __repr__(self):
"""
Return representation of Tree (self) as string that
can be evaluated into an equivalent Tree.
@param Tree self: this tree
@rtype: str
>>> t1 = Tree(5)
>>> t1
Tree(5)
>>> t2 = Tree(7, [t1])
>>> t2
Tree(7, [Tree(5)])
"""
# Our __repr__ is recursive, because it can also be called via repr...!
return ('Tree({}, {})'.format(repr(self.value), repr(self.children))
if self.children
else 'Tree({})'.format(repr(self.value)))
# helpful helper function
def descendants_from_list(t, list_, arity):
"""
Populate Tree t's descendants from list_, filling them
in level order, with up to arity children per node.
Then return t.
@param Tree t: tree to populate from list_
@param list list_: list of values to populate from
@param int arity: maximum branching factor
@rtype: Tree
# >>> descendants_from_list(Tree(0), [1, 2, 3, 4], 2)
# Tree(0, [Tree(1, [Tree(3), Tree(4)]), Tree(2)])
"""
q = Queue()
q.add(t)
list_ = list_.copy()
while not q.is_empty(): # unlikely to happen
new_t = q.remove()
for i in range(0, arity):
if len(list_) == 0:
return t # our work here is done
else:
new_t_child = Tree(list_.pop(0))
new_t.children.append(new_t_child)
q.add(new_t_child)
return t
def leaf_count(t):
"""
Return the number of leaves in Tree t.
@param Tree t: tree to count the leaves of
@rtype: int
>>> t = Tree(7)
>>> leaf_count(t)
1
>>> t = descendants_from_list(Tree(7), [0, 1, 3, 5, 7, 9, 11, 13], 3)
>>> leaf_count(t)
6
"""
return (sum([leaf_count(c) for c in t.children]) +
(0 if t.children else 1))
def height(t):
"""
Return 1 + length of longest path of t.
@param Tree t: tree to find height of
@rtype: int
>>> t = Tree(13)
>>> height(t)
1
>>> t = descendants_from_list(Tree(13), [0, 1, 3, 5, 7, 9, 11, 13], 3)
>>> height(t)
3
"""
return 1 + max([height(c) for c in t.children]) if t.children else 1
def count(t):
"""
Return the number of nodes in Tree t.
@param Tree t: tree to find number of nodes in
@rtype: int
>>> t = Tree(17)
>>> count(t)
1
>>> t4 = descendants_from_list(Tree(17), [0, 2, 4, 6, 8, 10, 11], 4)
>>> count(t4)
8
"""
return 1 + sum([count(n) for n in t.children])
# helper function that may be useful for other tree functions
def gather_lists(list_):
"""
Concatenate all the sublists of L and return the result.
@param list[list[object]] list_: list of lists to concatenate
@rtype: list[object]
>>> gather_lists([[1, 2], [3, 4, 5]])
[1, 2, 3, 4, 5]
>>> gather_lists([[6, 7], [8], [9, 10, 11]])
[6, 7, 8, 9, 10, 11]
"""
new_list = []
for l in list_:
new_list += l
return new_list
def list_all(t):
"""
Return list of values in t.
@param Tree t: tree to list values of
@rtype: list[object]
>>> t = Tree(0)
>>> list_all(t)
[0]
>>> t = descendants_from_list(Tree(0), [1, 2, 3, 4, 5, 6, 7, 8], 3)
>>> list_ = list_all(t)
>>> list_.sort()
>>> list_
[0, 1, 2, 3, 4, 5, 6, 7, 8]
"""
return [t.value] + gather_lists([list_all(c) for c in t.children])
def list_if(t, p):
"""
Return a list of values in Tree t that satisfy predicate p(value).
@param Tree t: tree to list values that satisfy predicate p
@param (object)->bool p: predicate to check values with
@rtype: list[object]
>>> def p(v): return v > 4
>>> t = descendants_from_list(Tree(0), [1, 2, 3, 4, 5, 6, 7, 8], 3)
>>> list_ = list_if(t, p)
>>> list_.sort()
>>> list_
[5, 6, 7, 8]
>>> def p(v): return v % 2 == 0
>>> list_ = list_if(t, p)
>>> list_.sort()
>>> list_
[0, 2, 4, 6, 8]
"""
# practice on your own!
pass
def list_leaves(t):
"""
Return list of values in leaves of t.
@param Tree t: tree to list leaf values of
@rtype: list[object]
>>> t = Tree(0)
>>> list_leaves(t)
[0]
>>> t = descendants_from_list(Tree(0), [1, 2, 3, 4, 5, 6, 7, 8], 3)
>>> list_ = list_leaves(t)
>>> list_.sort() # so list_ is predictable to compare
>>> list_
[3, 4, 5, 6, 7, 8]
"""
# practice on your own!
pass
def preorder_visit(t, act):
"""
Visit each node of Tree t in preorder, and act on the nodes
as they are visited.
@param Tree t: tree to visit in preorder
@param (Tree)->Any act: function to carry out on visited Tree node
@rtype: None
>>> t = descendants_from_list(Tree(0), [1, 2, 3, 4, 5, 6, 7], 3)
>>> def act(node): print(node.value)
>>> preorder_visit(t, act)
0
1
4
5
6
2
7
3
"""
act(t)
for child in t.children:
preorder_visit(child, act)
def postorder_visit(t, act):
"""
Visit each node of t in postorder, and act on it when it is visited.
@param Tree t: tree to be visited in postorder
@param (Tree)->Any act: function to do to each node
@rtype: None
>>> t = descendants_from_list(Tree(0), [1, 2, 3, 4, 5, 6, 7], 3)
>>> def act(node): print(node.value)
>>> postorder_visit(t, act)
4
5
6
1
7
2
3
0
"""
for child in t.children:
postorder_visit(child, act)
act(t)
def levelorder_visit(t, act):
"""
Visit every node in Tree t in level order and act on the node
as you visit it.
@param Tree t: tree to visit in level order
@param (Tree)->Any act: function to execute during visit
>>> t = descendants_from_list(Tree(0), [1, 2, 3, 4, 5, 6, 7], 3)
>>> def act(node): print(node.value)
>>> levelorder_visit(t, act)
0
1
2
3
4
5
6
7
"""
nodes_to_be_processed = Queue()
nodes_to_be_processed.add(t)
while not nodes_to_be_processed.is_empty():
next_node = nodes_to_be_processed.remove()
act(next_node)
for c in next_node.children:
nodes_to_be_processed.add(c)
def visit_level(t, n, act):
"""
Visit nodes of t at level n, act on them, and return the number visited.
@param Tree t: tree to visit level n of
@param int n: level (depth) to visit
@param (Tree)->object act: function to execute at level n
@rtype: int
>>> t = descendants_from_list(Tree(0), [1, 2, 3, 4, 5, 6, 7], 3)
>>> def act(node): print(node.value)
>>> visit_level(t, 1, act)
1
2
3
3
"""
if n == 0:
act(t)
return 1
else:
return sum([visit_level(c, n-1, act) for c in t.children])
def levelorder_visit2(t, act):
"""
Visit Tree t in level order and act on its nodes.
@param Tree t: Tree to visit in level order
@param (Tree)->object act: function to execute on visit
@rtype: None
>>> t = descendants_from_list(Tree(0), [1, 2, 3, 4, 5, 6, 7], 3)
>>> def act(node): print(node.value)
>>> levelorder_visit2(t, act)
0
1
2
3
4
5
6
7
"""
visited = visit_level(t, 0, act)
n = 0
while visited > 0:
n += 1
visited = visit_level(t, n, act)
if __name__ == '__main__':
import doctest
doctest.testmod()
t3 = descendants_from_list(Tree(19), [1, 2, 3, 4, 5, 6, 7], 3)
t4 = descendants_from_list(Tree(19), [1, 2, 3, 4, 5, 6, 7], 3)
print(t3 == t4)
# print(5 in t3)
print("===========")
print(str(t3))
print("===========")
print(repr(t3))
t5 = eval(repr(t3))
print("===========")
print(str(t5))
print(t5 == t3)
|
python
|
pythonic_machine_ages = [19, 22, 34, 26, 32, 30, 24, 24]
def mean(dataset):
return sum(dataset) / len(dataset)
print(mean(pythonic_machine_ages))
print(sum(pythonic_machine_ages))
|
python
|
""" business days module """
from datetime import timedelta, date
from collections.abc import Generator
import holidays
def business_days_list(sdate: date, edate: date) -> list[date]:
""" get business days for start and end date inclusive """
days = []
us_holidays = holidays.UnitedStates()
for num in range((edate - sdate).days + 1):
the_date = sdate + timedelta(days=num)
if (the_date.weekday() < 5) and (the_date not in us_holidays):
days.append(the_date)
return days
def business_days(sdate: date, edate: date
) -> Generator[date, None, None]:
""" get business days for start and end date inclusive """
us_holidays = holidays.UnitedStates()
for num in range((edate - sdate).days + 1):
the_date = sdate + timedelta(days=num)
if (the_date.weekday() < 5) and (the_date not in us_holidays):
yield the_date
if __name__ == "__main__":
start_date = date(2021, 1, 1)
end_date = date(2021, 3, 31)
for business_day in business_days(start_date, end_date):
print("in the loop")
print(business_day)
|
python
|
from random import randint
from math import hypot, fabs, ceil
class AudioSource:
def __init__(self, pos, tile):
self.pos = pos
self.tile = tile
def ValidatedMove(self, velocity, map):
new_location = {'tile' : [self.tile.pos[0], self.tile.pos[1]], 'position' : [0, 0]}
if velocity[1] < 0:
if self.pos[1] + velocity[1] >= 0:
new_location['position'][1] = self.pos[1] + velocity[1]
elif self.tile.pos[1] > 0:
new_location['position'][1] = (self.tile.height + velocity[1])
new_location['tile'][1] = self.tile.pos[1] - 1
else:
return False
elif velocity[1] > 0:
if self.pos[1] + velocity[1] <= self.tile.height - 1:
new_location['position'][1] = self.pos[1] + velocity[1]
elif self.tile.pos[1] < map.height - 1:
new_location['position'][1] = velocity[1] - 1
new_location['tile'][1] = self.tile.pos[1] + 1
else:
return False
elif velocity[1] == 0:
new_location['position'][1] = self.pos[1]
new_location['tile'][1] = self.tile.pos[1]
if velocity[0] > 0:
if self.pos[0] + velocity[0] <= self.tile.width - 1:
new_location['position'][0] = self.pos[0] + velocity[0]
elif self.tile.pos[0] < map.width - 1:
new_location['position'][0] = velocity[0] - 1
new_location['tile'][0] = self.tile.pos[0] + 1
else:
return False
elif velocity[0] < 0:
if self.pos[0] + velocity[0] >= 0:
new_location['position'][0] = self.pos[0] + velocity[0]
elif self.tile.pos[0] > 0:
new_location['position'][0] = map.width + velocity[0]
new_location['tile'][0] = self.tile.pos[0] - 1
else:
return False
elif velocity[0] == 0:
new_location['position'][0] = self.pos[0]
new_location['tile'][0] = self.tile.pos[0]
print(new_location)
for field in map.tiles[(new_location['tile'][0], new_location['tile'][1])].FieldsAtLocation(new_location['position']):
if field.clipping == False:
return False
print('moving')
self.pos = new_location['position']
self.tile = map.tiles[(new_location['tile'][0], new_location['tile'][1])]
return True
def Move(self, velocity):
self.pos[0] = self.pos[0] + velocity[0]
self.pos[1] = self.pos[1] + velocity[1]
def DistanceFrom(self, coords):
self.xdist = self.pos[0] - coords[0]
self.ydist = self.pos[1] - coords[1]
self.hdist = hypot(fabs(xdist), fabs(ydist))
return self.hdist
class NamedSource(AudioSource):
def __init__(self, pos, tile, name):
AudioSource.__init__(self, pos, tile)
self.name = name
class Zombie(NamedSource):
def __init__(self, pos, tile):
NamedSource.__init__(self, pos, tile, 'zombie')
self.state = "wander"
def behave(self, target, map):
if self.state == "wander":
if self.sense(target):
self.state = "follow"
elif self.state == "follow":
absolute_self_position = ((self.tile.pos[0]*self.tile.width + self.pos[0]), (self.tile.pos[1]*self.tile.height + self.pos[1]))
absolute_target_position = ((target.tile.pos[0]*target.tile.width + target.pos[0]), (target.tile.pos[1]*target.tile.height + target.pos[1]))
xdist = absolute_target_position[0] - absolute_self_position[0]
ydist = absolute_target_position[1] - absolute_self_position[1]
hdist = hypot(fabs(xdist), fabs(ydist))
try:
velocity = (ceil(xdist/hdist), ceil(ydist/hdist))
except ZeroDivisionError:
self.state = 'kill'
else:
if self.pos == target.pos:
self.state = 'kill'
else:
self.ValidatedMove(velocity, map)
if not self.sense(target):
self.state = "lost"
elif self.state == "lost":
if self.sense(target):
self.state = "follow"
else:
self.state = "wander"
elif self.state == "kill":
self.pos = target.pos
self.tile = target.tile
def sense(self, target):
hdist = hypot(fabs(self.pos[0] - target.pos[0]), fabs(self.pos[1] - target.pos[1]))
if hdist > 7:
return False
else:
return True
"""
class Monster(Creature):
def __init__(self, pos, aggression_sfx, sensory_sfx, footstep_sfx):
Creature.__init__(self, pos)
self.cries = {'aggression' : aggression_sfx, 'sensory' : sensory_sfx, 'footstep' : footstep_sfx}
def aggress(self, listener_pos):
sound_name = self.cries['aggression'] + str(randint(1, 3))
self.MakeNoise(sound_name, listener_pos)
def sense(self, listener_pos):
sound_name = self.cries['sensory'] + str(randint(1, 3))
self.MakeNoise(sound_name, listener_pos)
def step(self, listener_pos, velocity):
self.Move(velocity[0], velocity[1])
sound_name = self.cries['footstep'] + str(randint(1, 3))
self.MakeNoise(sound_name, listener_pos)
"""
class Player(AudioSource):
def __init__(self, pos):
AudioSource.__init__(self, pos)
|
python
|
*
* *
* *
* *
* *
* *
* * * * * * *
PRINT TRIANGLE LOOK LIKE THIS
===========================================
for row in range(7):
for col in range(7):
if(row-col==row)or(row==6)or(row==col):
print("*",end=" ")
else:
print(" ",end=" ")
print() #for next line or row
|
python
|
DEPARTMENTS_MAP = {
"che": "Chemical",
"che-idd": "Chemical IDD",
"cer": "Ceramic",
"cer-idd": "Ceramic IDD",
"civ": "Civil",
"civ-idd": "Civil IDD",
"cse": "Computer Science",
"cse-idd": "Computer Science IDD",
"eee": "Electrical",
"eee-idd": "Electrical IDD",
"ece": "Electronics",
"mat": "Mathematics",
"mat-idd": "Mathematics IDD",
"mec": "Mechanical",
"mec-idd": "Mechanical IDD",
"min": "Mining",
"min-idd": "Mining IDD",
"phe": "Pharma",
"phe-idd": "Pharma IDD",
"chy": "Chemistry",
"chy-idd": "Chemistry IDD",
"met": "Metallurgy",
"met-idd": "Metallurgy IDD",
"mst": "Material",
"mst-idd": "Material IDD",
"hss": "humanities",
"phy": "Physics",
"phy-idd": "Physics IDD",
"bce": "Biotechnology",
"bce-idd": "Biotechnology IDD",
"bme": "Biomedical",
"bme-idd": "Biomedical IDD",
"all": "all"
}
|
python
|
# -*- coding: utf-8 -*-
__author__ = 'study_sun'
from spider_base.downloader import *
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
class IndexDownloader(SBDownloader):
pass
|
python
|
INPUT_IMAGE_WIDTH = 1024
|
python
|
##### Imports #####
from datetime import date, datetime
import json
import dateutil.parser
import babel
from flask import (
Flask,
render_template,
request,
Response,
flash,
redirect,
url_for)
from flask_moment import Moment
from flask_sqlalchemy import SQLAlchemy
from flask_migrate import Migrate
from flask_wtf import Form
import logging
from logging import Formatter, FileHandler
# Import other *.py files of the project
from forms import *
from models import db, Venue, Artist, Show
##### APP CONFIG #####
app = Flask(__name__)
app.config.from_object('config')
moment = Moment(app)
db.init_app(app)
# Activate Migration
migrate = Migrate(app, db)
##### FILTERS #####
def format_datetime(value, format='medium'):
date = dateutil.parser.parse(value)
if format == 'full':
format="EEEE MMMM, d, y 'at' h:mma"
elif format == 'medium':
format="EE MM, dd, y h:mma"
return babel.dates.format_datetime(date, format)
app.jinja_env.filters['datetime'] = format_datetime
##### CONTROLLERS #####
@app.route('/')
def index():
return render_template('pages/home.html')
##### Artists #####
# 1.- Create Artist
@app.route('/artists/create', methods=['GET'])
def create_artist_form():
form = ArtistForm()
return render_template('forms/new_artist.html', form=form)
@app.route('/artists/create', methods=['POST'])
def create_artist_submission():
form = ArtistForm(request.form, csrf_enabled=False)
if form.validate():
try:
# Using FlaskForm:
artist = Artist(
name = form.name.data,
city = form.city.data,
seeking_venue = form.seeking_venue.data,
state = form.state.data,
phone = form.phone.data,
website = form.website.data,
seeking_description = form.seeking_description.data,
image_link = form.image_link.data,
genres = form.genres.data,
facebook_link = form.facebook_link.data,
)
# Or:
# artist = Artist()
# form.populate_obj(artist)
db.session.add(artist)
db.session.commit()
flash('Artist ' + form.name.data + ' was successfully listed!')
except ValueError as e:
print(e)
flash('An error occurred. Artist ' + form.name.data +
' could not be listed.')
db.session.rollback()
finally:
db.session.close()
else:
message = []
for field, err in form.errors.items():
message.append(field + ' ' + '|'.join(err))
flash('Errors ' + str(message))
return render_template('pages/home.html')
# 2.- Get Artist
@app.route('/artists')
def artists():
return render_template('pages/artists.html',
artists=Artist.query.all())
@app.route('/artists/<int:artist_id>')
def show_artist(artist_id):
artist = Artist.query.filter_by(id=artist_id).first_or_404()
past_shows = db.session.query(Venue, Show).join(Show).join(Artist).\
filter(
Show.venue_id == Venue.id,
Show.artist_id == artist_id,
Show.start_time < datetime.now()
).\
all()
upcoming_shows = db.session.query(Venue, Show).join(Show).join(Artist).\
filter(
Show.venue_id == Venue.id,
Show.artist_id == artist_id,
Show.start_time > datetime.now()
).\
all()
data = {
'id': artist.id,
'name': artist.name,
'city': artist.city,
'state': artist.state,
'phone': artist.phone,
'website': artist.website,
'image_link': artist.image_link,
'genres': artist.genres,
'facebook_link': artist.facebook_link,
'seeking_venue': artist.seeking_venue,
'seeking_description': artist.seeking_description,
'past_shows': [{
'venue_id': venue.id,
'venue_name': venue.name,
'venue_image_link': venue.image_link,
'start_time': show.start_time.strftime("%m/%d/%Y, %H:%M")
} for venue, show in past_shows],
'upcoming_shows': [{
'venue_id': venue.id,
'venue_name': venue.name,
'venue_image_link': venue.image_link,
'start_time': show.start_time.strftime("%m/%d/%Y, %H:%M")
} for venue, show in upcoming_shows],
'past_shows_count': len(past_shows),
'upcoming_shows_count': len(upcoming_shows)
}
return render_template('pages/show_artist.html', artist=data)
# 3.- Update Artist
@app.route('/artists/<int:artist_id>/edit', methods=['GET'])
def edit_artist(artist_id):
# OR:
# form = ArtistForm()
# artist = Artist.query.get(artist_id)
# return render_template('forms/edit_artist.html', form=form, artist=artist)
artist = Artist.query.first_or_404(artist_id)
form = ArtistForm(obj=artist)
return render_template('forms/edit_artist.html', form=form, artist=artist)
@app.route('/artists/<int:artist_id>/edit', methods=['POST'])
def edit_artist_submission(artist_id):
artist = Artist.query.get(artist_id)
error = False
form = ArtistForm(request.form, csrf_enabled=False)
if form.validate():
try:
# Using FlaskForm:
artist.name = form.name.data
artist.city = form.city.data
artist.seeking_venue = form.seeking_venue.data
artist.state = form.state.data
artist.phone = form.phone.data
artist.website = form.website.data
artist.seeking_description = form.seeking_description.data
artist.image_link = form.image_link.data
artist.genres = form.genres.data
artist.facebook_link = form.facebook_link.data
db.session.add(artist)
db.session.commit()
flash('Artist ' + artist.name + ' was successfully updated!')
except ValueError as e:
print(e)
flash('An error occurred. Artist ' + artist.name +
' could not be updated.')
db.session.rollback()
finally:
db.session.close()
return redirect(url_for('show_artist', artist_id=artist_id))
@app.route('/artists/search', methods=['POST'])
def search_artists():
search_term = request.form.get('search_term')
search_results = Artist.query.filter(
Artist.name.ilike('%{}%'.format(search_term))).all() # search results by ilike matching partern to match every search term
response = {}
response['count'] = len(search_results)
response['data'] = search_results
return render_template('pages/search_artists.html',
results=response,
search_term=request.form.get('search_term', ''))
##### VENUES #####
# 1.- Create Venue:
@app.route('/venues/create', methods=['GET'])
def create_venue_form():
form = VenueForm()
return render_template('forms/new_venue.html', form=form)
@app.route('/venues/create', methods=['POST'])
def create_venue_submission():
form = VenueForm(request.form, csrf_enabled=False)
if form.validate():
try:
# Using FlaskForm:
venue = Venue(
name = form.name.data,
city = form.city.data,
state = form.state.data,
address = form.address.data,
phone = form.phone.data,
image_link = form.image_link.data,
website = form.website.data,
seeking_talent = form.seeking_talent.data,
seeking_description = form.seeking_description.data,
genres = form.genres.data,
facebook_link = form.facebook_link.data,
)
# Or:
# venue = Venue()
# form.populate_obj(venue)
db.session.add(venue)
db.session.commit()
flash('Venue ' + form.name.data + ' was successfully listed!')
except ValueError as e:
print(e)
flash('An error occured. Venue ' + form.name.data +
' Could not be listed!')
db.session.rollback()
finally:
db.session.close()
else:
message = []
for field, err in form.errors.items():
message.append(field + ' ' + '|'.join(err))
flash('Errors ' + str(message))
return render_template('pages/home.html')
# 2.- Get Venue:
@app.route('/venues')
def venues():
locals = []
venues = Venue.query.all()
places = Venue.query.distinct(Venue.city, Venue.state).all()
for place in places:
locals.append({
'city': place.city,
'state': place.state,
'venues': [{
'id': venue.id,
'name': venue.name,
'num_upcoming_shows': len([show for show in venue.shows if show.start_time > datetime.now()])
} for venue in venues if
venue.city == place.city and venue.state == place.state]
})
print(locals[0])
return render_template('pages/venues.html', areas=locals)
@app.route('/venues/search', methods=['POST'])
def search_venues():
search_term = request.form.get('search_term')
venues = Venue.query.filter(
Venue.name.ilike('%{}%'.format(search_term))).all()
data = []
for venue in venues:
tmp = {}
tmp['id'] = venue.id
tmp['name'] = venue.name
tmp['num_upcoming_shows'] = len(venue.shows)
data.append(tmp)
response = {}
response['count'] = len(data)
response['data'] = data
return render_template('pages/search_venues.html',
results=response,
search_term=request.form.get('search_term', ''))
@app.route('/venues/<int:venue_id>')
def show_venue(venue_id):
venue = Venue.query.filter_by(id=venue_id).first_or_404()
past_shows = db.session.query(Artist, Show).join(Show).join(Venue).\
filter(
Show.venue_id == venue_id,
Show.artist_id == Artist.id,
Show.start_time < datetime.now()
).\
all()
upcoming_shows = db.session.query(Artist, Show).join(Show).join(Venue).\
filter(
Show.venue_id == venue_id,
Show.artist_id == Artist.id,
Show.start_time > datetime.now()
).\
all()
data = {
'id': venue.id,
'name': venue.name,
'city': venue.city,
'state': venue.state,
'address': venue.address,
'phone': venue.phone,
'image_link': venue.image_link,
'website': venue.website,
'seeking_talent': venue.seeking_talent,
'seeking_description': venue.seeking_description,
'genres': venue.genres,
'facebook_link': venue.facebook_link,
'past_shows': [{
'artist_id': artist.id,
"artist_name": artist.name,
"artist_image_link": artist.image_link,
"start_time": show.start_time.strftime("%m/%d/%Y, %H:%M")
} for artist, show in past_shows],
'upcoming_shows': [{
'artist_id': artist.id,
'artist_name': artist.name,
'artist_image_link': artist.image_link,
'start_time': show.start_time.strftime("%m/%d/%Y, %H:%M")
} for artist, show in upcoming_shows],
'past_shows_count': len(past_shows),
'upcoming_shows_count': len(upcoming_shows)
}
print(venue.genres)
return render_template('pages/show_venue.html', venue=data)
# 3.- Update Venue:
@app.route('/venues/<int:venue_id>/edit', methods=['GET'])
def edit_venue(venue_id):
# OR:
# form = VenueForm()
# venue = Venue.query.get(venue_id).to_dict()
# return render_template('forms/edit_venue.html', form=form, venue=venue)
venue = Venue.query.first_or_404(venue_id)
form = VenueForm(obj=venue)
return render_template('forms/edit_venue.html', form=form, venue=venue)
@app.route('/venues/<int:venue_id>/edit', methods=['POST'])
def edit_venue_submission(venue_id):
venue = Venue.query.get(venue_id)
error = False
form = VenueForm(request.form, csrf_enabled=False)
if form.validate():
try:
venue.name = form.name.data
venue.city = form.city.data
venue.state = form.state.data
venue.address = form.address.data
venue.phone = form.phone.data
venue.image_link = form.image_link.data
venue.website = form.website.data
venue.seeking_description = form.seeking_description.data
venue.genres = form.genres.data
# Revisar!!!!:
# tmp_genres = request.form.getlist('genres')
# venue.genres = ','.join(tmp_genres) # convert list to string
venue.facebook_link = form.facebook_link.data
db.session.add(venue)
db.session.commit()
flash('Venue ' + venue.name + ' was successfully updated!')
except ValueError as e:
print(e)
flash('An error occurred. Venue ' + venue.name +
' could not be updated.')
db.session.rollback()
finally:
db.session.close()
return redirect(url_for('show_venue', venue_id=venue_id))
##### SHOWS #####
@app.route('/shows')
def shows():
shows = Show.query.all()
data = []
for show in shows:
data.append({
'venue_id': show.venue.id,
'venue_name': show.venue.name,
'artist_id': show.artist.id,
'artist_name': show.artist.name,
'artist_image_link': show.artist.image_link,
'start_time': show.start_time.isoformat()
})
return render_template('pages/shows.html', shows=data)
@app.route('/shows/create')
def create_shows():
# renders form. do not touch.
form = ShowForm()
return render_template('forms/new_show.html', form=form)
@app.route('/shows/create', methods=['POST'])
def create_show_submission():
error = False
form = ShowForm(request.form, csrf_enabled=False)
if form.validate():
try:
# Using FlaskForm:
show = Show(
artist_id = form.artist_id.data,
venue_id = form.venue_id.data,
start_time = form.start_time.data,
)
# Or:
# show = Show()
# form.populate_obj(show)
db.session.add(show)
db.session.commit()
flash('Requested show was successfully listed')
except ValueError as e:
print(e)
flash('An error occurred. Requested show could not be listed.')
db.session.rollback()
finally:
db.session.close()
else:
message = []
for field, err in form.errors.items():
message.append(field + ' ' + '|'.join(err))
flash('Errors ' + str(message))
return render_template('pages/home.html')
@app.errorhandler(404)
def not_found_error(error):
return render_template('errors/404.html'), 404
@app.errorhandler(500)
def server_error(error):
return render_template('errors/500.html'), 500
if not app.debug:
file_handler = FileHandler('error.log')
file_handler.setFormatter(
Formatter(
'%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]')
)
app.logger.setLevel(logging.INFO)
file_handler.setLevel(logging.INFO)
app.logger.addHandler(file_handler)
app.logger.info('errors')
##### Launch #####
# Default port:
if __name__ == '__main__':
app.run()
|
python
|
#!/usr/bin/env python
""" a collection of functions for reading EEG signals and applying basic filtering operations
"""
import os
import scipy.io
import numpy as np
from scipy.signal import butter, lfilter
def butter_lowpass(cutoff, fs, order=5):
""" wrapper for calculating parameters of a lowpass filter
Args:
cutoff: cutoff frequency
fs: sampling frequency
order: order of butterworth filter
Returns:
parameters used in lowpass filtering
"""
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a
def butter_lowpass_filter(data, cutoff, fs, order=5):
""" apply a lowpass filter
Args:
data: input signal
cutoff: cutoff frequency
fs: sampling frequency
order: order of butterworth filter
Returns:
output signal
"""
b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y
def butter_highpass(cutoff, fs, order=5):
""" wrapper for calculating parameters of a highpass filter
Args:
cutoff: cutoff frequency
fs: sampling frequency
order: order of butterworth filter
Returns:
parameters used in highpass filtering
"""
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = butter(order, normal_cutoff, btype='high', analog=False)
return b, a
def butter_highpass_filter(data, cutoff, fs, order=5):
""" apply a highpass filter
Args:
data: input signal
cutoff: cutoff frequency
fs: sampling frequency
order: order of butterworth filter
Returns:
output signal
"""
b, a = butter_highpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y
def butter_bandpass(lowcut, highcut, fs, order=5):
""" wrapper for calculating parameters of a bandpass filter
Args:
lowcut: cutoff frequency for lowpass
highcut: cutoff frequency for highpass
fs: sampling frequency
order: order of butterworth filter
Returns:
parameters used in bandpass filtering
"""
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band')
return b, a
|
python
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import django.db.models.deletion
from django.db import models, migrations
import orchestra.models.fields
from django.conf import settings
class Migration(migrations.Migration):
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
]
operations = [
migrations.CreateModel(
name='Message',
fields=[
('id', models.AutoField(primary_key=True, serialize=False, auto_created=True, verbose_name='ID')),
('author_name', models.CharField(blank=True, max_length=256, verbose_name='author name')),
('content', models.TextField(verbose_name='content')),
('created_on', models.DateTimeField(auto_now_add=True, verbose_name='created on')),
('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='ticket_messages', to=settings.AUTH_USER_MODEL, verbose_name='author')),
],
options={
'get_latest_by': 'id',
},
),
migrations.CreateModel(
name='Queue',
fields=[
('id', models.AutoField(primary_key=True, serialize=False, auto_created=True, verbose_name='ID')),
('name', models.CharField(max_length=128, verbose_name='name', unique=True)),
('verbose_name', models.CharField(blank=True, max_length=128, verbose_name='verbose_name')),
('default', models.BooleanField(verbose_name='default', default=False)),
('notify', orchestra.models.fields.MultiSelectField(blank=True, max_length=256, help_text='Contacts to notify by email', verbose_name='notify', default=('SUPPORT', 'ADMIN', 'BILLING', 'TECH', 'ADDS', 'EMERGENCY'), choices=[('SUPPORT', 'Support tickets'), ('ADMIN', 'Administrative'), ('BILLING', 'Billing'), ('TECH', 'Technical'), ('ADDS', 'Announcements'), ('EMERGENCY', 'Emergency contact')])),
],
),
migrations.CreateModel(
name='Ticket',
fields=[
('id', models.AutoField(primary_key=True, serialize=False, auto_created=True, verbose_name='ID')),
('creator_name', models.CharField(blank=True, max_length=256, verbose_name='creator name')),
('subject', models.CharField(max_length=256, verbose_name='subject')),
('description', models.TextField(verbose_name='description')),
('priority', models.CharField(max_length=32, default='MEDIUM', verbose_name='priority', choices=[('HIGH', 'High'), ('MEDIUM', 'Medium'), ('LOW', 'Low')])),
('state', models.CharField(max_length=32, default='NEW', verbose_name='state', choices=[('NEW', 'New'), ('IN_PROGRESS', 'In Progress'), ('RESOLVED', 'Resolved'), ('FEEDBACK', 'Feedback'), ('REJECTED', 'Rejected'), ('CLOSED', 'Closed')])),
('created_at', models.DateTimeField(auto_now_add=True, verbose_name='created')),
('updated_at', models.DateTimeField(auto_now=True, verbose_name='modified')),
('cc', models.TextField(blank=True, help_text='emails to send a carbon copy to', verbose_name='CC')),
('creator', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='tickets_created', null=True, to=settings.AUTH_USER_MODEL, verbose_name='created by')),
('owner', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, blank=True, related_name='tickets_owned', null=True, to=settings.AUTH_USER_MODEL, verbose_name='assigned to')),
('queue', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, blank=True, related_name='tickets', null=True, to='issues.Queue')),
],
options={
'ordering': ['-updated_at'],
},
),
migrations.CreateModel(
name='TicketTracker',
fields=[
('id', models.AutoField(primary_key=True, serialize=False, auto_created=True, verbose_name='ID')),
('ticket', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='trackers', to='issues.Ticket', verbose_name='ticket')),
('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='ticket_trackers', to=settings.AUTH_USER_MODEL, verbose_name='user')),
],
),
migrations.AddField(
model_name='message',
name='ticket',
field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='messages', to='issues.Ticket', verbose_name='ticket'),
),
migrations.AlterUniqueTogether(
name='tickettracker',
unique_together=set([('ticket', 'user')]),
),
]
|
python
|
raise ValueError("test failed! wrapper did not ignore polluted PWD. either the wrapper is faulty, or ooni is still unpatched (Tor bug #13581)")
|
python
|
"""empty message
Revision ID: 879fe8a73df4
Revises: 8c3766231a8f
Create Date: 2018-06-07 19:56:40.800424
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '879fe8a73df4'
down_revision = '8c3766231a8f'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.add_column('registrants', sa.Column('addr_lookup_complete', sa.Boolean(), nullable=True))
op.add_column('registrants', sa.Column('reg_lookup_complete', sa.Boolean(), nullable=True))
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.drop_column('registrants', 'reg_lookup_complete')
op.drop_column('registrants', 'addr_lookup_complete')
# ### end Alembic commands ###
|
python
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models, migrations
class Migration(migrations.Migration):
dependencies = [
('peacecorps', '0035_auto_20141202_2354'),
]
operations = [
migrations.AddField(
model_name='campaign',
name='accountnew',
field=models.ForeignKey(blank=True, to='peacecorps.Account', related_name='cam', null=True, unique=True, to_field='code'),
preserve_default=True,
),
migrations.AddField(
model_name='project',
name='accountnew',
field=models.ForeignKey(blank=True, to='peacecorps.Account', related_name='proj', null=True, unique=True, to_field='code'),
preserve_default=True,
),
]
|
python
|
import time
from flask import request, jsonify, make_response
from app import app
from controllers.mock_data import request_method_list, get_mock_data
@app.route('/mock/<path:path>', methods=request_method_list)
def mock_call(path):
try:
if not path.startswith('/'):
path = "/" + path
method = request.method
mock_data = get_mock_data(method, path)
if mock_data:
if 'delaySeconds' in mock_data and mock_data.get('delaySeconds') > 0:
time.sleep(mock_data.get('delaySeconds'))
return make_response(jsonify(mock_data.get('responseBody')), mock_data.get('responseCode'))
else:
return make_response(jsonify({
'status': 'failed',
'msg': 'MockData不存在'
}), 400)
except BaseException as e:
return make_response(jsonify({"error": str(e)}), 500)
|
python
|
# Hyppopy - A Hyper-Parameter Optimization Toolbox
#
# Copyright (c) German Cancer Research Center,
# Division of Medical Image Computing.
# All rights reserved.
#
# This software is distributed WITHOUT ANY WARRANTY; without
# even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.
#
# See LICENSE
import unittest
from hyppopy.SolverPool import SolverPool
from hyppopy.HyppopyProject import HyppopyProject
from hyppopy.FunctionSimulator import FunctionSimulator
from hyppopy.solvers.HyperoptSolver import HyperoptSolver
from hyppopy.solvers.OptunitySolver import OptunitySolver
from hyppopy.solvers.OptunaSolver import OptunaSolver
from hyppopy.solvers.RandomsearchSolver import RandomsearchSolver
from hyppopy.solvers.QuasiRandomsearchSolver import QuasiRandomsearchSolver
from hyppopy.solvers.GridsearchSolver import GridsearchSolver
class SolverPoolTestSuite(unittest.TestCase):
def setUp(self):
pass
def test_PoolContent(self):
names = SolverPool.get_solver_names()
self.assertTrue("hyperopt" in names)
self.assertTrue("optunity" in names)
self.assertTrue("optuna" in names)
self.assertTrue("randomsearch" in names)
self.assertTrue("quasirandomsearch" in names)
self.assertTrue("gridsearch" in names)
def test_getHyperoptSolver(self):
config = {
"hyperparameter": {
"axis_00": {
"domain": "uniform",
"data": [300, 700],
"type": float
},
"axis_01": {
"domain": "uniform",
"data": [0, 0.8],
"type": float
},
"axis_02": {
"domain": "uniform",
"data": [3.5, 6.5],
"type": float
}
},
"max_iterations": 500
}
project = HyppopyProject(config)
solver = SolverPool.get("hyperopt", project)
self.assertTrue(isinstance(solver, HyperoptSolver))
vfunc = FunctionSimulator()
vfunc.load_default()
solver.blackbox = vfunc
solver.run(print_stats=False)
df, best = solver.get_results()
self.assertTrue(300 <= best['axis_00'] <= 700)
self.assertTrue(0 <= best['axis_01'] <= 0.8)
self.assertTrue(3.5 <= best['axis_02'] <= 6.5)
for status in df['status']:
self.assertTrue(status)
for loss in df['losses']:
self.assertTrue(isinstance(loss, float))
def test_getOptunitySolver(self):
config = {
"hyperparameter": {
"axis_00": {
"domain": "uniform",
"data": [300, 800],
"type": float
},
"axis_01": {
"domain": "uniform",
"data": [-1, 1],
"type": float
},
"axis_02": {
"domain": "uniform",
"data": [0, 10],
"type": float
}
},
"max_iterations": 100
}
project = HyppopyProject(config)
solver = SolverPool.get("optunity", project)
self.assertTrue(isinstance(solver, OptunitySolver))
vfunc = FunctionSimulator()
vfunc.load_default()
solver.blackbox = vfunc
solver.run(print_stats=False)
df, best = solver.get_results()
self.assertTrue(300 <= best['axis_00'] <= 800)
self.assertTrue(-1 <= best['axis_01'] <= 1)
self.assertTrue(0 <= best['axis_02'] <= 10)
for status in df['status']:
self.assertTrue(status)
for loss in df['losses']:
self.assertTrue(isinstance(loss, float))
def test_getOptunaSolver(self):
config = {
"hyperparameter": {
"axis_00": {
"domain": "uniform",
"data": [300, 800],
"type": float
},
"axis_01": {
"domain": "uniform",
"data": [-1, 1],
"type": float
},
"axis_02": {
"domain": "uniform",
"data": [0, 10],
"type": float
}
},
"max_iterations": 100
}
project = HyppopyProject(config)
solver = SolverPool.get("optuna", project)
self.assertTrue(isinstance(solver, OptunaSolver))
vfunc = FunctionSimulator()
vfunc.load_default()
solver.blackbox = vfunc
solver.run(print_stats=False)
df, best = solver.get_results()
self.assertTrue(300 <= best['axis_00'] <= 800)
self.assertTrue(-1 <= best['axis_01'] <= 1)
self.assertTrue(0 <= best['axis_02'] <= 10)
for status in df['status']:
self.assertTrue(status)
for loss in df['losses']:
self.assertTrue(isinstance(loss, float))
def test_getRandomsearchSolver(self):
config = {
"hyperparameter": {
"axis_00": {
"domain": "uniform",
"data": [0, 800],
"type": float
},
"axis_01": {
"domain": "uniform",
"data": [-1, 1],
"type": float
},
"axis_02": {
"domain": "uniform",
"data": [0, 10],
"type": float
}
},
"max_iterations": 300
}
project = HyppopyProject(config)
solver = SolverPool.get("randomsearch", project)
self.assertTrue(isinstance(solver, RandomsearchSolver))
vfunc = FunctionSimulator()
vfunc.load_default()
solver.blackbox = vfunc
solver.run(print_stats=False)
df, best = solver.get_results()
self.assertTrue(0 <= best['axis_00'] <= 800)
self.assertTrue(-1 <= best['axis_01'] <= 1)
self.assertTrue(0 <= best['axis_02'] <= 10)
for status in df['status']:
self.assertTrue(status)
for loss in df['losses']:
self.assertTrue(isinstance(loss, float))
def test_getQuasiRandomsearchSolver(self):
config = {
"hyperparameter": {
"axis_00": {
"domain": "uniform",
"data": [0, 800],
"type": float
},
"axis_01": {
"domain": "uniform",
"data": [-1, 1],
"type": float
},
"axis_02": {
"domain": "uniform",
"data": [0, 10],
"type": float
}
},
"max_iterations": 300
}
project = HyppopyProject(config)
solver = SolverPool.get("quasirandomsearch", project)
self.assertTrue(isinstance(solver, QuasiRandomsearchSolver))
vfunc = FunctionSimulator()
vfunc.load_default()
solver.blackbox = vfunc
solver.run(print_stats=False)
df, best = solver.get_results()
self.assertTrue(0 <= best['axis_00'] <= 800)
self.assertTrue(-1 <= best['axis_01'] <= 1)
self.assertTrue(0 <= best['axis_02'] <= 10)
for status in df['status']:
self.assertTrue(status)
for loss in df['losses']:
self.assertTrue(isinstance(loss, float))
def test_getGridsearchSolver(self):
config = {
"hyperparameter": {
"value 1": {
"domain": "uniform",
"data": [0, 20],
"type": int,
"frequency": 11
},
"value 2": {
"domain": "normal",
"data": [0, 20.0],
"type": float,
"frequency": 11
},
"value 3": {
"domain": "loguniform",
"data": [1, 10000],
"type": float,
"frequency": 11
},
"categorical": {
"domain": "categorical",
"data": ["a", "b"],
"type": str,
"frequency": 1
}
}}
res_labels = ['value 1', 'value 2', 'value 3', 'categorical']
res_values = [[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20],
[0.0, 5.467452952462635, 8.663855974622837, 9.755510546899107, 9.973002039367397, 10.0,
10.026997960632603, 10.244489453100893, 11.336144025377163, 14.532547047537365, 20.0],
[1.0, 2.51188643150958, 6.309573444801933, 15.848931924611136, 39.810717055349734,
100.00000000000004, 251.18864315095806, 630.9573444801938, 1584.8931924611143,
3981.071705534977, 10000.00000000001],
['a', 'b']]
project = HyppopyProject(config)
solver = SolverPool.get("gridsearch", project)
self.assertTrue(isinstance(solver, GridsearchSolver))
searchspace = solver.convert_searchspace(config["hyperparameter"])
for n in range(len(res_labels)):
self.assertEqual(res_labels[n], searchspace[0][n])
for i in range(3):
self.assertAlmostEqual(res_values[i], searchspace[1][i])
self.assertEqual(res_values[3], searchspace[1][3])
def test_projectNone(self):
solver = SolverPool.get("hyperopt")
solver = SolverPool.get("optunity")
solver = SolverPool.get("optuna")
solver = SolverPool.get("randomsearch")
solver = SolverPool.get("quasirandomsearch")
solver = SolverPool.get("gridsearch")
self.assertRaises(AssertionError, SolverPool.get, "foo")
|
python
|
"""Routines for performing spectral unmixing on earth engine images."""
import ee as _ee
from tqdm import tqdm as _tqdm
from .utils import selectSpectra as _selectSpectra
# this function must be run before any of the specific unmixing routines are set
def Initialize(sensor, n=30, bands=None):
"""Initializes sensor-specific global variables.
Args:
sensor: the name of the sensor (from earthlib.listSensors()).
n: the number of iterations for unmixing.
bands: a list of bands to select (from earthlib.getBands(sensor)).
Returns:
None: creates a series of global endmember variables.
"""
# get them as a python array
pv_list = _selectSpectra("vegetation", sensor, n, bands)
npv_list = _selectSpectra("npv", sensor, n, bands)
soil_list = _selectSpectra("bare", sensor, n, bands)
burn_list = _selectSpectra("burn", sensor, n, bands)
urban_list = _selectSpectra("urban", sensor, n, bands)
# create a series of global variables for later
global pv
global npv
global soil
global burn
global urban
# then convert them to ee lists
pv = [_ee.List(pv_spectra.tolist()) for pv_spectra in pv_list]
npv = [_ee.List(npv_spectra.tolist()) for npv_spectra in npv_list]
soil = [_ee.List(soil_spectra.tolist()) for soil_spectra in soil_list]
burn = [_ee.List(burn_spectra.tolist()) for burn_spectra in burn_list]
urban = [_ee.List(urban_spectra.tolist()) for urban_spectra in urban_list]
def fractionalCover(
img,
endmembers,
endmember_names,
shade_normalize=True,
):
"""Computes the percent cover of each endmember spectra.
Args:
img: the ee.Image to unmix.
endmembers: lists of ee.List objects, each element corresponding to a sub.
endmember_names: list of names for each endmember. must match the number of lists passed.
shade_normalize: flag to apply shade normalization during unmixing.
Returns:
unmixed: a 3-band image file in order of (soil-veg-impervious).
"""
n_bands = len(list(img.bandNames().getInfo()))
n_classes = len(endmembers)
n_endmembers = len(endmembers[0])
band_numbers = list(range(n_classes))
shade = _ee.List([0] * n_bands)
# create a list of images to append and later convert to an image collection
unmixed = list()
# loop through each iteration and unmix each
for spectra in _tqdm(list(zip(*endmembers)), total=n_endmembers, desc="Unmixing"):
if shade_normalize:
spectra += (shade,)
unmixed_iter = img.unmix(spectra, True, True).toFloat()
# run the forward model to evaluate the fractional cover fit
modeled_reflectance = computeModeledSpectra(spectra, unmixed_iter)
rmse = computeSpectralRMSE(img, modeled_reflectance)
# normalize by the observed shade fraction
if shade_normalize:
shade_fraction = unmixed_iter.select([n_classes]).subtract(1).abs()
unmixed_iter = unmixed_iter.divide(shade_fraction)
# rename the bands and append an rmse band
unmixed.append(
unmixed_iter.select(band_numbers, endmember_names).addBands(rmse)
)
# use the sum of rmse to weight each estimate
rmse_sum = _ee.Image(
_ee.ImageCollection.fromImages(unmixed)
.select(["RMSE"])
.sum()
.select([0], ["SUM"])
.toFloat()
)
unscaled = [computeWeight(fractions, rmse_sum) for fractions in unmixed]
# use these weights to scale each unmixing estimate
weight_sum = _ee.Image(
_ee.ImageCollection.fromImages(unscaled).select(["weight"]).sum().toFloat()
)
scaled = [weightedAverage(fractions, weight_sum) for fractions in unscaled]
# reduce it to a single image and return
unmixed = _ee.ImageCollection.fromImages(scaled).sum().toFloat()
return unmixed
def computeModeledSpectra(endmembers, fractions):
"""Constructs a modeled spectrum for each pixel based on endmember fractions.
Args:
endmembers: a list of _ee.List() items, each representing an endmember spectrum.
fractions: ee.Image output from .unmix() with the same number of bands as items in `endmembers`.
Returns:
modeled_reflectance: an _ee.Image with n_bands equal to the number of endmember bands.
"""
# compute the number of endmember bands
nb = int(endmembers[0].length().getInfo())
band_range = list(range(nb))
band_names = [f"M{band:02d}" for band in band_range]
# create a list to store each reflectance fraction
refl_fraction_images = list()
# loop through each endmember and mulitply the fraction estimated by the reflectance value
for i, endmember in enumerate(endmembers):
fraction = fractions.select([i])
refl_fraction_list = [
fraction.multiply(_ee.Image(endmember.get(band).getInfo()))
for band in band_range
]
refl_fraction_images.append(
_ee.ImageCollection.fromImages(refl_fraction_list)
.toBands()
.select(band_range, band_names)
)
# convert these images to an image collection and sum them together to reconstruct the spectrum
modeled_reflectance = (
_ee.ImageCollection.fromImages(refl_fraction_images)
.sum()
.toFloat()
.select(band_range, band_names)
)
return modeled_reflectance
def computeSpectralRMSE(measured, modeled):
"""Computes root mean squared error between measured and modeled spectra.
Args:
measured: an ee.Image of measured reflectance.
modeled: an ee.Image of modeled reflectance.
Returns:
rmse: a floating point _ee.Image with pixel-wise RMSE values.
"""
# harmonize band info to ensure element-wise computation
band_names = list(measured.bandNames().getInfo())
band_range = list(range(len(band_names)))
# compute rmse
rmse = (
measured.select(band_range, band_names)
.subtract(modeled.select(band_range, band_names))
.pow(2)
.reduce(_ee.Reducer.sum())
.sqrt()
.select([0], ["RMSE"])
.toFloat()
)
return rmse
def computeWeight(fractions, rmse_sum):
"""Computes the relative weight for an image's RMSE based on the sum of the global RMSE.
Args:
fractions: a multi-band ee.Image object with an 'RMSE' band.
rmse_sum: a single-band ee.Image object with the global RMSE value.
Returns:
unweighted: appends the fractions Image with a 'weight' band.
"""
rmse = fractions.select(["RMSE"])
ratio = rmse.divide(rmse_sum).toFloat().select([0], ["ratio"])
weight = _ee.Image(1).subtract(ratio).select([0], ["weight"])
unweighted = fractions.addBands([weight, ratio])
return unweighted
def weightedAverage(fractions, weight_sum):
"""Computes an RMSE-weighted fractional cover image.
Args:
fractions: a multi-band ee.Image object with a 'weight' band.
weight_sum: a single-band _eeImage object with the global weight sum.
Returns:
weighted: scaled fractional cover Image.
"""
# harmonize band info
band_names = list(fractions.bandNames().getInfo())
band_names.pop(band_names.index("weight"))
band_range = list(range(len(band_names)))
scaler = fractions.select(["weight"]).divide(weight_sum)
weighted = fractions.select(band_range, band_names).multiply(scaler)
return weighted
def VIS(img, **normalization):
"""Unmixes according to the Vegetation-Impervious-Soil (VIS) approach.
Args:
img: the ee.Image to unmix.
**normalization: keyword arguments to pass to fractionalCover(),
like shade_normalize=True.
Returns:
unmixed: a 3-band image file in order of (soil-veg-impervious).
"""
endmembers = [soil, pv, urban]
endmember_names = ["soil", "pv", "impervious"]
unmixed = fractionalCover(img, endmembers, endmember_names, **normalization)
return unmixed
def SVN(img, **normalization):
"""Unmixes using Soil-Vegetation-NonphotosyntheticVegetation (SVN) endmembers.
Args:
img: the ee.Image to unmix.
**normalization: keyword arguments to pass to fractionalCover(),
like shade_normalize=True.
Returns:
unmixed: a 3-band image file in order of (soil-veg-npv).
"""
endmembers = [soil, pv, npv]
endmember_names = ["soil", "pv", "npv"]
unmixed = fractionalCover(img, endmembers, endmember_names, **normalization)
return unmixed
def BVN(img, **normalization):
"""Unmixes using Burned-Vegetation-NonphotosyntheticVegetation (BVN) endmembers.
Args:
img: the ee.Image to unmix.
**normalization: keyword arguments to pass to fractionalCover(),
like shade_normalize=True.
Returns:
unmixed: a 4-band image file in order of (burned-veg-npv-soil).
"""
endmembers = [burn, pv, npv]
endmember_names = ["burned", "pv", "npv"]
unmixed = fractionalCover(img, endmembers, endmember_names, **normalization)
return unmixed
|
python
|
from builtins import *
import numpy as np
import scipy.linalg
from scipy.special import gammaln, digamma
from bnpy.suffstats import ParamBag, SuffStatBag
from bnpy.util import LOGTWO, LOGPI, LOGTWOPI, EPS
from bnpy.util import dotATA, dotATB, dotABT
from bnpy.util import as1D, as2D, as3D, toCArray
from bnpy.util import numpyToSharedMemArray, fillSharedMemArray
from bnpy.util.SparseRespStatsUtil import calcSpRXXT
from .AbstractObsModel import AbstractObsModel
class GaussObsModel(AbstractObsModel):
""" Full-covariance gaussian data generation model for real vectors.
Attributes for Prior (Normal-Wishart)
--------
nu : float
degrees of freedom
B : 2D array, size D x D
scale parameters that set mean of parameter sigma
m : 1D array, size D
mean of the parameter mu
kappa : float
scalar precision on parameter mu
Attributes for k-th component of EstParams (EM point estimates)
---------
mu[k] : 1D array, size D
Sigma[k] : 2D array, size DxD
Attributes for k-th component of Post (VB parameter)
---------
nu[k] : float
B[k] : 1D array, size D
m[k] : 1D array, size D
kappa[k] : float
"""
def __init__(self, inferType='EM', D=0, min_covar=None,
Data=None,
**PriorArgs):
''' Initialize bare obsmodel with valid prior hyperparameters.
Resulting object lacks either EstParams or Post,
which must be created separately (see init_global_params).
'''
if Data is not None:
self.D = Data.dim
else:
self.D = int(D)
self.K = 0
self.inferType = inferType
self.min_covar = min_covar
self.createPrior(Data, **PriorArgs)
self.Cache = dict()
def createPrior(self, Data, nu=0, B=None,
m=None, kappa=None,
MMat='zero',
ECovMat=None, sF=1.0, **kwargs):
''' Initialize Prior ParamBag attribute.
Post Condition
------
Prior expected covariance matrix set to match provided value.
'''
D = self.D
nu = np.maximum(nu, D + 2)
if B is None:
if ECovMat is None or isinstance(ECovMat, str):
ECovMat = createECovMatFromUserInput(D, Data, ECovMat, sF)
B = ECovMat * (nu - D - 1)
if B.ndim == 1:
B = np.asarray([B], dtype=np.float)
elif B.ndim == 0:
B = np.asarray([[B]], dtype=np.float)
if m is None:
if MMat == 'data':
m = np.mean(Data.X, axis=0)
else:
m = np.zeros(D)
elif m.ndim < 1:
m = np.asarray([m], dtype=np.float)
if kappa is None:
kappa = 1e-8
else:
kappa = np.maximum(kappa, 1e-8)
self.Prior = ParamBag(K=0, D=D)
self.Prior.setField('nu', nu, dims=None)
self.Prior.setField('kappa', kappa, dims=None)
self.Prior.setField('m', m, dims=('D'))
self.Prior.setField('B', B, dims=('D', 'D'))
def get_mean_for_comp(self, k=None):
if hasattr(self, 'EstParams'):
return self.EstParams.mu[k]
elif k is None or k == 'prior':
return self.Prior.m
else:
return self.Post.m[k]
def get_covar_mat_for_comp(self, k=None):
if hasattr(self, 'EstParams'):
return self.EstParams.Sigma[k]
elif k is None or k == 'prior':
return self._E_CovMat()
else:
return self._E_CovMat(k)
def get_name(self):
return 'Gauss'
def get_info_string(self):
return 'Gaussian with full covariance.'
def get_info_string_prior(self):
msg = 'Gauss-Wishart on mean and covar of each cluster\n'
if self.D > 2:
sfx = ' ...'
else:
sfx = ''
S = self._E_CovMat()[:2, :2]
msg += 'E[ mean[k] ] = \n %s %s\n' % (str(self.Prior.m[:2]), sfx)
msg += 'E[ covar[k] ] = \n'
msg += str(S) + sfx
msg = msg.replace('\n', '\n ')
return msg
def setEstParams(self, obsModel=None, SS=None, LP=None, Data=None,
mu=None, Sigma=None,
**kwargs):
''' Create EstParams ParamBag with fields mu, Sigma
'''
self.ClearCache()
if obsModel is not None:
self.EstParams = obsModel.EstParams.copy()
self.K = self.EstParams.K
return
if LP is not None and Data is not None:
SS = self.calcSummaryStats(Data, None, LP)
if SS is not None:
self.updateEstParams(SS)
else:
Sigma = as3D(Sigma)
K, D, D2 = Sigma.shape
mu = as2D(mu)
if mu.shape[0] != K:
mu = mu.T
assert mu.shape[0] == K
assert mu.shape[1] == D
self.EstParams = ParamBag(K=K, D=D)
self.EstParams.setField('mu', mu, dims=('K', 'D'))
self.EstParams.setField('Sigma', Sigma, dims=('K', 'D', 'D'))
self.K = self.EstParams.K
def setEstParamsFromPost(self, Post):
''' Convert from Post (nu, B, m, kappa) to EstParams (mu, Sigma),
each EstParam is set to its posterior mean.
'''
self.EstParams = ParamBag(K=Post.K, D=Post.D)
mu = Post.m.copy()
Sigma = Post.B / (Post.nu[:, np.newaxis, np.newaxis] - Post.D - 1)
self.EstParams.setField('mu', mu, dims=('K', 'D'))
self.EstParams.setField('Sigma', Sigma, dims=('K', 'D', 'D'))
self.K = self.EstParams.K
def setPostFactors(self, obsModel=None, SS=None, LP=None, Data=None,
nu=0, B=0, m=0, kappa=0,
**kwargs):
''' Set attribute Post to provided values.
'''
self.ClearCache()
if obsModel is not None:
if hasattr(obsModel, 'Post'):
self.Post = obsModel.Post.copy()
self.K = self.Post.K
else:
self.setPostFromEstParams(obsModel.EstParams)
return
if LP is not None and Data is not None:
SS = self.calcSummaryStats(Data, None, LP)
if SS is not None:
self.updatePost(SS)
else:
m = as2D(m)
if m.shape[1] != self.D:
m = m.T.copy()
K, _ = m.shape
self.Post = ParamBag(K=K, D=self.D)
self.Post.setField('nu', as1D(nu), dims=('K'))
self.Post.setField('B', B, dims=('K', 'D', 'D'))
self.Post.setField('m', m, dims=('K', 'D'))
self.Post.setField('kappa', as1D(kappa), dims=('K'))
self.K = self.Post.K
def setPostFromEstParams(self, EstParams, Data=None, N=None):
''' Set attribute Post based on values in EstParams.
'''
K = EstParams.K
D = EstParams.D
if Data is not None:
N = Data.nObsTotal
N = np.asarray(N, dtype=np.float)
if N.ndim == 0:
N = N / K * np.ones(K)
nu = self.Prior.nu + N
B = np.zeros((K, D, D))
for k in range(K):
B[k] = (nu[k] - D - 1) * EstParams.Sigma[k]
m = EstParams.mu.copy()
kappa = self.Prior.kappa + N
self.Post = ParamBag(K=K, D=D)
self.Post.setField('nu', nu, dims=('K'))
self.Post.setField('B', B, dims=('K', 'D', 'D'))
self.Post.setField('m', m, dims=('K', 'D'))
self.Post.setField('kappa', kappa, dims=('K'))
self.K = self.Post.K
def calcSummaryStats(self, Data, SS, LP, **kwargs):
''' Calculate summary statistics for given dataset and local parameters
Returns
--------
SS : SuffStatBag object, with K components.
'''
return calcSummaryStats(Data, SS, LP, **kwargs)
def forceSSInBounds(self, SS):
''' Force count vector N to remain positive
This avoids numerical problems due to incremental add/subtract ops
which can cause computations like
x = 10.
x += 1e-15
x -= 10
x -= 1e-15
to be slightly different than zero instead of exactly zero.
Returns
-------
None. SS.N updated in-place.
'''
np.maximum(SS.N, 0, out=SS.N)
def incrementSS(self, SS, k, x):
SS.x[k] += x
SS.xxT[k] += np.outer(x, x)
def decrementSS(self, SS, k, x):
SS.x[k] -= x
SS.xxT[k] -= np.outer(x, x)
def calcSummaryStatsForContigBlock(self, Data, SS=None, a=0, b=0):
''' Calculate sufficient stats for a single contiguous block of data
'''
if SS is None:
SS = SuffStatBag(K=1, D=Data.dim)
SS.setField('N', (b - a) * np.ones(1), dims='K')
SS.setField(
'x', np.sum(Data.X[a:b], axis=0)[np.newaxis, :], dims=('K', 'D'))
SS.setField(
'xxT', dotATA(Data.X[a:b])[np.newaxis, :, :], dims=('K', 'D', 'D'))
return SS
def calcLogSoftEvMatrix_FromEstParams(self, Data, **kwargs):
''' Compute log soft evidence matrix for Dataset under EstParams.
Returns
---------
L : 2D array, N x K
'''
K = self.EstParams.K
L = np.empty((Data.nObs, K))
for k in range(K):
L[:, k] = - 0.5 * self.D * LOGTWOPI \
- 0.5 * self._logdetSigma(k) \
- 0.5 * self._mahalDist_EstParam(Data.X, k)
return L
def _mahalDist_EstParam(self, X, k):
''' Calc Mahalanobis distance from comp k to every row of X
Args
---------
X : 2D array, size N x D
k : integer ID of comp
Returns
----------
dist : 1D array, size N
'''
Q = np.linalg.solve(self.GetCached('cholSigma', k),
(X - self.EstParams.mu[k]).T)
Q *= Q
return np.sum(Q, axis=0)
def _cholSigma(self, k):
''' Calculate lower cholesky decomposition of Sigma[k]
Returns
--------
L : 2D array, size D x D, lower triangular
Sigma = np.dot(L, L.T)
'''
return scipy.linalg.cholesky(self.EstParams.Sigma[k], lower=1)
def _logdetSigma(self, k):
''' Calculate log determinant of EstParam.Sigma for comp k
Returns
---------
logdet : scalar real
'''
return 2 * np.sum(np.log(np.diag(self.GetCached('cholSigma', k))))
def updateEstParams_MaxLik(self, SS):
''' Update attribute EstParams for all comps given suff stats.
Update uses the maximum likelihood objective for point estimation.
Post Condition
---------
Attributes K and EstParams updated in-place.
'''
self.ClearCache()
if not hasattr(self, 'EstParams') or self.EstParams.K != SS.K:
self.EstParams = ParamBag(K=SS.K, D=SS.D)
mu = SS.x / SS.N[:, np.newaxis]
minCovMat = self.min_covar * np.eye(SS.D)
covMat = np.tile(minCovMat, (SS.K, 1, 1))
for k in range(SS.K):
covMat[k] += SS.xxT[k] / SS.N[k] - np.outer(mu[k], mu[k])
self.EstParams.setField('mu', mu, dims=('K', 'D'))
self.EstParams.setField('Sigma', covMat, dims=('K', 'D', 'D'))
self.K = SS.K
def updateEstParams_MAP(self, SS):
''' Update attribute EstParams for all comps given suff stats.
Update uses the MAP objective for point estimation.
Post Condition
---------
Attributes K and EstParams updated in-place.
'''
self.ClearCache()
if not hasattr(self, 'EstParams') or self.EstParams.K != SS.K:
self.EstParams = ParamBag(K=SS.K, D=SS.D)
Prior = self.Prior
nu = Prior.nu + SS.N
kappa = Prior.kappa + SS.N
PB = Prior.B + Prior.kappa * np.outer(Prior.m, Prior.m)
m = np.empty((SS.K, SS.D))
B = np.empty((SS.K, SS.D, SS.D))
for k in range(SS.K):
km_x = Prior.kappa * Prior.m + SS.x[k]
m[k] = 1.0 / kappa[k] * km_x
B[k] = PB + SS.xxT[k] - 1.0 / kappa[k] * np.outer(km_x, km_x)
mu, Sigma = MAPEstParams_inplace(nu, B, m, kappa)
self.EstParams.setField('mu', mu, dims=('K', 'D'))
self.EstParams.setField('Sigma', Sigma, dims=('K', 'D', 'D'))
self.K = SS.K
def updatePost(self, SS):
''' Update attribute Post for all comps given suff stats.
Update uses the variational objective.
Post Condition
---------
Attributes K and Post updated in-place.
'''
self.ClearCache()
if not hasattr(self, 'Post') or self.Post.K != SS.K:
self.Post = ParamBag(K=SS.K, D=SS.D)
nu, B, m, kappa = self.calcPostParams(SS)
self.Post.setField('nu', nu, dims=('K'))
self.Post.setField('kappa', kappa, dims=('K'))
self.Post.setField('m', m, dims=('K', 'D'))
self.Post.setField('B', B, dims=('K', 'D', 'D'))
self.K = SS.K
def calcPostParams(self, SS):
''' Calc updated params (nu, B, m, kappa) for all comps given suff stats
These params define the common-form of the exponential family
Normal-Wishart posterior distribution over mu, diag(Lambda)
Returns
--------
nu : 1D array, size K
B : 3D array, size K x D x D, each B[k] is symmetric and pos. def.
m : 2D array, size K x D
kappa : 1D array, size K
'''
Prior = self.Prior
nu = Prior.nu + SS.N
kappa = Prior.kappa + SS.N
m = (Prior.kappa * Prior.m + SS.x) / kappa[:, np.newaxis]
Bmm = Prior.B + Prior.kappa * np.outer(Prior.m, Prior.m)
B = SS.xxT + Bmm[np.newaxis, :]
for k in range(B.shape[0]):
B[k] -= kappa[k] * np.outer(m[k], m[k])
return nu, B, m, kappa
def calcPostParamsForComp(self, SS, kA=None, kB=None):
''' Calc params (nu, B, m, kappa) for specific comp, given suff stats
These params define the common-form of the exponential family
Normal-Wishart posterior distribution over mu[k], diag(Lambda)[k]
Returns
--------
nu : positive scalar
B : 2D array, size D x D, symmetric and positive definite
m : 1D array, size D
kappa : positive scalar
'''
if kB is None:
SN = SS.N[kA]
Sx = SS.x[kA]
SxxT = SS.xxT[kA]
else:
SN = SS.N[kA] + SS.N[kB]
Sx = SS.x[kA] + SS.x[kB]
SxxT = SS.xxT[kA] + SS.xxT[kB]
Prior = self.Prior
nu = Prior.nu + SN
kappa = Prior.kappa + SN
m = (Prior.kappa * Prior.m + Sx) / kappa
B = Prior.B + SxxT \
+ Prior.kappa * np.outer(Prior.m, Prior.m) \
- kappa * np.outer(m, m)
return nu, B, m, kappa
def updatePost_stochastic(self, SS, rho):
''' Update attribute Post for all comps given suff stats
Update uses the stochastic variational formula.
Post Condition
---------
Attributes K and Post updated in-place.
'''
assert hasattr(self, 'Post')
assert self.Post.K == SS.K
self.ClearCache()
self.convertPostToNatural()
nu, Bnat, km, kappa = self.calcNaturalPostParams(SS)
Post = self.Post
Post.nu[:] = (1 - rho) * Post.nu + rho * nu
Post.Bnat[:] = (1 - rho) * Post.Bnat + rho * Bnat
Post.km[:] = (1 - rho) * Post.km + rho * km
Post.kappa[:] = (1 - rho) * Post.kappa + rho * kappa
self.convertPostToCommon()
def calcNaturalPostParams(self, SS):
''' Calc natural posterior parameters given suff stats SS.
Returns
--------
nu : 1D array, size K
Bnat : 3D array, size K x D x D
km : 2D array, size K x D
kappa : 1D array, size K
'''
Prior = self.Prior
nu = Prior.nu + SS.N
kappa = Prior.kappa + SS.N
km = Prior.kappa * Prior.m + SS.x
Bnat = (Prior.B + Prior.kappa * np.outer(Prior.m, Prior.m)) + SS.xxT
return nu, Bnat, km, kappa
def convertPostToNatural(self):
''' Convert current posterior params from common to natural form
'''
Post = self.Post
assert hasattr(Post, 'nu')
assert hasattr(Post, 'kappa')
km = Post.m * Post.kappa[:, np.newaxis]
Bnat = np.empty((self.K, self.D, self.D))
for k in range(self.K):
Bnat[k] = Post.B[k] + np.outer(km[k], km[k]) / Post.kappa[k]
Post.setField('km', km, dims=('K', 'D'))
Post.setField('Bnat', Bnat, dims=('K', 'D', 'D'))
def convertPostToCommon(self):
''' Convert current posterior params from natural to common form
'''
Post = self.Post
assert hasattr(Post, 'nu')
assert hasattr(Post, 'kappa')
if hasattr(Post, 'm'):
Post.m[:] = Post.km / Post.kappa[:, np.newaxis]
else:
m = Post.km / Post.kappa[:, np.newaxis]
Post.setField('m', m, dims=('K', 'D'))
if hasattr(Post, 'B'):
B = Post.B # update in place, no reallocation!
else:
B = np.empty((self.K, self.D, self.D))
for k in range(self.K):
B[k] = Post.Bnat[k] - \
np.outer(Post.km[k], Post.km[k]) / Post.kappa[k]
Post.setField('B', B, dims=('K', 'D', 'D'))
def calcLogSoftEvMatrix_FromPost(self, Data, **kwargs):
''' Calculate expected log soft ev matrix under Post.
Returns
------
L : 2D array, size N x K
'''
K = self.Post.K
L = np.zeros((Data.nObs, K))
for k in range(K):
L[:, k] = - 0.5 * self.D * LOGTWOPI \
+ 0.5 * self.GetCached('E_logdetL', k) \
- 0.5 * self._mahalDist_Post(Data.X, k)
return L
def _mahalDist_Post(self, X, k):
''' Calc expected mahalonobis distance from comp k to each data atom
Returns
--------
distvec : 1D array, size nObs
distvec[n] gives E[ (x-\mu) \Lam (x-\mu) ] for comp k
'''
Q = np.linalg.solve(self.GetCached('cholB', k),
(X - self.Post.m[k]).T)
Q *= Q
return self.Post.nu[k] * np.sum(Q, axis=0) \
+ self.D / self.Post.kappa[k]
def calcELBO_Memoized(self, SS, returnVec=0, afterMStep=False, **kwargs):
""" Calculate obsModel's objective using suff stats SS and Post.
Args
-------
SS : bnpy SuffStatBag
afterMStep : boolean flag
if 1, elbo calculated assuming M-step just completed
Returns
-------
obsELBO : scalar float
Equal to E[ log p(x) + log p(phi) - log q(phi)]
"""
elbo = np.zeros(SS.K)
Post = self.Post
Prior = self.Prior
for k in range(SS.K):
elbo[k] = c_Diff(Prior.nu,
self.GetCached('logdetB'),
Prior.m, Prior.kappa,
Post.nu[k],
self.GetCached('logdetB', k),
Post.m[k], Post.kappa[k],
)
if not afterMStep:
aDiff = SS.N[k] + Prior.nu - Post.nu[k]
bDiff = SS.xxT[k] + Prior.B \
+ Prior.kappa * np.outer(Prior.m, Prior.m) \
- Post.B[k] \
- Post.kappa[k] * np.outer(Post.m[k], Post.m[k])
cDiff = SS.x[k] + Prior.kappa * Prior.m \
- Post.kappa[k] * Post.m[k]
dDiff = SS.N[k] + Prior.kappa - Post.kappa[k]
elbo[k] += 0.5 * aDiff * self.GetCached('E_logdetL', k) \
- 0.5 * self._trace__E_L(bDiff, k) \
+ np.inner(cDiff, self.GetCached('E_Lmu', k)) \
- 0.5 * dDiff * self.GetCached('E_muLmu', k)
if returnVec:
return elbo - (0.5 * SS.D * LOGTWOPI) * SS.N
return elbo.sum() - 0.5 * np.sum(SS.N) * SS.D * LOGTWOPI
def getDatasetScale(self, SS):
''' Get number of observed scalars in dataset from suff stats.
Used for normalizing the ELBO so it has reasonable range.
Returns
---------
s : scalar positive integer
'''
return SS.N.sum() * SS.D
def calcHardMergeGap(self, SS, kA, kB):
''' Calculate change in ELBO after a hard merge applied to this model
Returns
---------
gap : scalar real, indicates change in ELBO after merge of kA, kB
'''
Post = self.Post
Prior = self.Prior
cA = c_Func(Post.nu[kA], Post.B[kA], Post.m[kA], Post.kappa[kA])
cB = c_Func(Post.nu[kB], Post.B[kB], Post.m[kB], Post.kappa[kB])
cPrior = c_Func(Prior.nu, Prior.B, Prior.m, Prior.kappa)
nu, B, m, kappa = self.calcPostParamsForComp(SS, kA, kB)
cAB = c_Func(nu, B, m, kappa)
return cA + cB - cPrior - cAB
def calcHardMergeGap_AllPairs(self, SS):
''' Calculate change in ELBO for all candidate hard merge pairs
Returns
---------
Gap : 2D array, size K x K, upper-triangular entries non-zero
Gap[j,k] : scalar change in ELBO after merge of k into j
'''
Post = self.Post
Prior = self.Prior
cPrior = c_Func(Prior.nu, Prior.B, Prior.m, Prior.kappa)
c = np.zeros(SS.K)
for k in range(SS.K):
c[k] = c_Func(Post.nu[k], Post.B[k], Post.m[k], Post.kappa[k])
Gap = np.zeros((SS.K, SS.K))
for j in range(SS.K):
for k in range(j + 1, SS.K):
nu, B, m, kappa = self.calcPostParamsForComp(SS, j, k)
cjk = c_Func(nu, B, m, kappa)
Gap[j, k] = c[j] + c[k] - cPrior - cjk
return Gap
def calcHardMergeGap_SpecificPairs(self, SS, PairList):
''' Calc change in ELBO for specific list of candidate hard merge pairs
Returns
---------
Gaps : 1D array, size L
Gap[j] : scalar change in ELBO after merge of pair in PairList[j]
'''
Gaps = np.zeros(len(PairList))
for ii, (kA, kB) in enumerate(PairList):
Gaps[ii] = self.calcHardMergeGap(SS, kA, kB)
return Gaps
def calcHardMergeGap_SpecificPairSS(self, SS1, SS2):
''' Calc change in ELBO for merge of two K=1 suff stat bags.
Returns
-------
gap : scalar float
'''
assert SS1.K == 1
assert SS2.K == 1
Prior = self.Prior
cPrior = c_Func(Prior.nu, Prior.B, Prior.m, Prior.kappa)
# Compute cumulants of individual states 1 and 2
nu1, B1, m1, kappa1 = self.calcPostParamsForComp(SS1, 0)
nu2, B2, m2, kappa2 = self.calcPostParamsForComp(SS2, 0)
c1 = c_Func(nu1, B1, m1, kappa1)
c2 = c_Func(nu2, B2, m2, kappa2)
# Compute cumulant of merged state 1&2
SS12 = SS1 + SS2
nu12, B12, m12, kappa12 = self.calcPostParamsForComp(SS12, 0)
c12 = c_Func(nu12, B12, m12, kappa12)
return c1 + c2 - cPrior - c12
def calcLogMargLikForComp(self, SS, kA, kB=None, **kwargs):
''' Calc log marginal likelihood of data assigned to given component
Args
-------
SS : bnpy suff stats object
kA : integer ID of target component to compute likelihood for
kB : (optional) integer ID of second component.
If provided, we merge kA, kB into one component for calculation.
Returns
-------
logM : scalar real
logM = log p( data assigned to comp kA )
computed up to an additive constant
'''
nu, beta, m, kappa = self.calcPostParamsForComp(SS, kA, kB)
return -1 * c_Func(nu, beta, m, kappa)
def calcMargLik(self, SS):
''' Calc log marginal likelihood across all comps, given suff stats
Returns
--------
logM : scalar real
logM = \sum_{k=1}^K log p( data assigned to comp k | Prior)
'''
return self.calcMargLik_CFuncForLoop(SS)
def calcMargLik_CFuncForLoop(self, SS):
Prior = self.Prior
logp = np.zeros(SS.K)
for k in range(SS.K):
nu, B, m, kappa = self.calcPostParamsForComp(SS, k)
logp[k] = c_Diff(Prior.nu, Prior.B, Prior.m, Prior.kappa,
nu, B, m, kappa)
return np.sum(logp) - 0.5 * np.sum(SS.N) * LOGTWOPI
def calcPredProbVec_Unnorm(self, SS, x):
''' Calculate predictive probability that each comp assigns to vector x
Returns
--------
p : 1D array, size K, all entries positive
p[k] \propto p( x | SS for comp k)
'''
return self._calcPredProbVec_Fast(SS, x)
def _calcPredProbVec_cFunc(self, SS, x):
nu, B, m, kappa = self.calcPostParams(SS)
pSS = SS.copy()
pSS.N += 1
pSS.x += x[np.newaxis, :]
pSS.xxT += np.outer(x, x)[np.newaxis, :, :]
pnu, pB, pm, pkappa = self.calcPostParams(pSS)
logp = np.zeros(SS.K)
for k in range(SS.K):
logp[k] = c_Diff(nu[k], B[k], m[k], kappa[k],
pnu[k], pB[k], pm[k], pkappa[k])
return np.exp(logp - np.max(logp))
def _calcPredProbVec_Fast(self, SS, x):
nu, B, m, kappa = self.calcPostParams(SS)
kB = B
kB *= ((kappa + 1) / kappa)[:, np.newaxis, np.newaxis]
logp = np.zeros(SS.K)
p = logp # Rename so its not confusing what we're returning
for k in range(SS.K):
cholKB = scipy.linalg.cholesky(kB[k], lower=1)
logdetKB = 2 * np.sum(np.log(np.diag(cholKB)))
mVec = np.linalg.solve(cholKB, x - m[k])
mDist_k = np.inner(mVec, mVec)
logp[k] = -0.5 * logdetKB - 0.5 * \
(nu[k] + 1) * np.log(1.0 + mDist_k)
logp += gammaln(0.5 * (nu + 1)) - gammaln(0.5 * (nu + 1 - self.D))
logp -= np.max(logp)
np.exp(logp, out=p)
return p
def _Verify_calcPredProbVec(self, SS, x):
''' Verify that the predictive prob vector is correct,
by comparing very different implementations
'''
pA = self._calcPredProbVec_Fast(SS, x)
pC = self._calcPredProbVec_cFunc(SS, x)
pA /= np.sum(pA)
pC /= np.sum(pC)
assert np.allclose(pA, pC)
def _E_CovMat(self, k=None):
if k is None:
B = self.Prior.B
nu = self.Prior.nu
else:
B = self.Post.B[k]
nu = self.Post.nu[k]
return B / (nu - self.D - 1)
def _cholB(self, k=None):
if k == 'all':
retArr = np.zeros((self.K, self.D, self.D))
for kk in range(self.K):
retArr[kk] = self.GetCached('cholB', kk)
return retArr
elif k is None:
B = self.Prior.B
else:
# k is one of [0, 1, ... K-1]
B = self.Post.B[k]
return scipy.linalg.cholesky(B, lower=True)
def _logdetB(self, k=None):
cholB = self.GetCached('cholB', k)
return 2 * np.sum(np.log(np.diag(cholB)))
def _E_logdetL(self, k=None):
dvec = np.arange(1, self.D + 1, dtype=np.float)
if k == 'all':
dvec = dvec[:, np.newaxis]
retVec = self.D * LOGTWO * np.ones(self.K)
for kk in range(self.K):
retVec[kk] -= self.GetCached('logdetB', kk)
nuT = self.Post.nu[np.newaxis, :]
retVec += np.sum(digamma(0.5 * (nuT + 1 - dvec)), axis=0)
return retVec
elif k is None:
nu = self.Prior.nu
else:
nu = self.Post.nu[k]
return self.D * LOGTWO \
- self.GetCached('logdetB', k) \
+ np.sum(digamma(0.5 * (nu + 1 - dvec)))
def _trace__E_L(self, Smat, k=None):
if k is None:
nu = self.Prior.nu
B = self.Prior.B
else:
nu = self.Post.nu[k]
B = self.Post.B[k]
return nu * np.trace(np.linalg.solve(B, Smat))
def _E_Lmu(self, k=None):
if k is None:
nu = self.Prior.nu
B = self.Prior.B
m = self.Prior.m
else:
nu = self.Post.nu[k]
B = self.Post.B[k]
m = self.Post.m[k]
return nu * np.linalg.solve(B, m)
def _E_muLmu(self, k=None):
if k is None:
nu = self.Prior.nu
kappa = self.Prior.kappa
m = self.Prior.m
B = self.Prior.B
else:
nu = self.Post.nu[k]
kappa = self.Post.kappa[k]
m = self.Post.m[k]
B = self.Post.B[k]
Q = np.linalg.solve(self.GetCached('cholB', k), m.T)
return self.D / kappa + nu * np.inner(Q, Q)
def getSerializableParamsForLocalStep(self):
""" Get compact dict of params for local step.
Returns
-------
Info : dict
"""
if self.inferType == 'EM':
raise NotImplementedError('TODO')
return dict(inferType=self.inferType,
K=self.K,
D=self.D,
)
def fillSharedMemDictForLocalStep(self, ShMem=None):
""" Get dict of shared mem arrays needed for parallel local step.
Returns
-------
ShMem : dict of RawArray objects
"""
if ShMem is None:
ShMem = dict()
if 'nu' in ShMem:
fillSharedMemArray(ShMem['nu'], self.Post.nu)
fillSharedMemArray(ShMem['kappa'], self.Post.kappa)
fillSharedMemArray(ShMem['m'], self.Post.m)
fillSharedMemArray(ShMem['cholB'], self._cholB('all'))
fillSharedMemArray(ShMem['E_logdetL'], self._E_logdetL('all'))
else:
ShMem['nu'] = numpyToSharedMemArray(self.Post.nu)
ShMem['kappa'] = numpyToSharedMemArray(self.Post.kappa)
ShMem['m'] = numpyToSharedMemArray(self.Post.m.copy())
ShMem['cholB'] = numpyToSharedMemArray(self._cholB('all'))
ShMem['E_logdetL'] = numpyToSharedMemArray(self._E_logdetL('all'))
return ShMem
def getLocalAndSummaryFunctionHandles(self):
""" Get function handles for local step and summary step
Useful for parallelized algorithms.
Returns
-------
calcLocalParams : f handle
calcSummaryStats : f handle
"""
return calcLocalParams, calcSummaryStats
def calcSmoothedMu(self, X, W=None):
''' Compute smoothed estimate of mean of statistic xxT.
Args
----
X : 2D array, size N x D
Returns
-------
Mu_1 : 2D array, size D x D
Expected value of Cov[ X[n] ]
Mu_2 : 1D array, size D
Expected value of Mean[ X[n] ]
'''
if X is None:
Mu1 = self.Prior.B / self.Prior.nu
Mu2 = self.Prior.m
return Mu1, Mu2
if X.ndim == 1:
X = X[np.newaxis,:]
N, D = X.shape
# Compute suff stats
if W is None:
sum_wxxT = np.dot(X.T, X)
sum_wx = np.sum(X, axis=0)
sum_w = X.shape[0]
else:
W = as1D(W)
sqrtWX = np.sqrt(W)[:,np.newaxis] * X
sum_wxxT = np.dot(sqrtWX.T, sqrtWX)
sum_wx = np.dot(W, X)
sum_w = np.sum(W)
kappa = self.Prior.kappa + sum_w
m = (self.Prior.m * self.Prior.kappa + sum_wx) / kappa
Mu_2 = m
prior_kmmT = self.Prior.kappa * np.outer(self.Prior.m, self.Prior.m)
post_kmmT = kappa * np.outer(m,m)
B = sum_wxxT + self.Prior.B + prior_kmmT - post_kmmT
Mu_1 = B / (self.Prior.nu + sum_w)
assert Mu_1.ndim == 2
assert Mu_1.shape == (D, D,)
assert Mu_2.shape == (D,)
return Mu_1, Mu_2
def calcSmoothedBregDiv(
self, X, Mu, W=None,
eps=1e-10,
smoothFrac=0.0,
includeOnlyFastTerms=False,
DivDataVec=None,
returnDivDataVec=False,
return1D=False,
**kwargs):
''' Compute Bregman divergence between data X and clusters Mu.
Smooth the data via update with prior parameters.
Args
----
X : 2D array, size N x D
Mu : list of size K, or tuple
Returns
-------
Div : 2D array, N x K
Div[n,k] = smoothed distance between X[n] and Mu[k]
'''
# Parse X
if X.ndim < 2:
X = X[np.newaxis,:]
assert X.ndim == 2
N = X.shape[0]
D = X.shape[1]
# Parse Mu
if isinstance(Mu, tuple):
Mu = [Mu]
assert isinstance(Mu, list)
K = len(Mu)
assert Mu[0][0].shape[0] == D
assert Mu[0][0].shape[1] == D
assert Mu[0][1].size == D
prior_x = self.Prior.m
prior_covx = self.Prior.B / (self.Prior.nu)
CovX = eps * prior_covx
Div = np.zeros((N, K))
for k in range(K):
chol_CovMu_k = np.linalg.cholesky(Mu[k][0])
logdet_CovMu_k = 2.0 * np.sum(np.log(np.diag(chol_CovMu_k)))
tr_InvMu_CovX_k = np.trace(np.linalg.solve(
Mu[k][0], CovX))
XdiffMu_k = X - Mu[k][1]
tr_InvMu_XdXdT_k = np.linalg.solve(chol_CovMu_k, XdiffMu_k.T)
tr_InvMu_XdXdT_k *= tr_InvMu_XdXdT_k
tr_InvMu_XdXdT_k = tr_InvMu_XdXdT_k.sum(axis=0)
Div[:,k] = \
+ 0.5 * logdet_CovMu_k \
+ 0.5 * (tr_InvMu_CovX_k + tr_InvMu_XdXdT_k)
if not includeOnlyFastTerms:
if DivDataVec is None:
# Compute DivDataVec : 1D array of size N
# This is the per-row additive constant indep. of k.
DivDataVec = -0.5 * D * np.ones(N)
s, logdet = np.linalg.slogdet(CovX)
logdet_CovX = s * logdet
DivDataVec -= 0.5 * logdet_CovX
Div += DivDataVec[:,np.newaxis]
# Apply per-atom weights to divergences.
if W is not None:
assert W.ndim == 1
assert W.size == N
Div *= W[:,np.newaxis]
# Verify divergences are strictly non-negative
if not includeOnlyFastTerms:
minDiv = Div.min()
if minDiv < 0:
if minDiv < -1e-6:
raise AssertionError(
"Expected Div.min() to be positive or" + \
" indistinguishable from zero. Instead " + \
" minDiv=% .3e" % (minDiv))
np.maximum(Div, 0, out=Div)
minDiv = Div.min()
assert minDiv >= 0
if return1D:
Div = Div[:,0]
if returnDivDataVec:
return Div, DivDataVec
return Div
def calcBregDivFromPrior(self, Mu, smoothFrac=0.0):
''' Compute Bregman divergence between Mu and prior mean.
Returns
-------
Div : 1D array, size K
Div[k] = distance between Mu[k] and priorMu
'''
assert isinstance(Mu, list)
K = len(Mu)
assert K >= 1
assert Mu[0][0].ndim == 2
assert Mu[0][1].ndim == 1
D = Mu[0][0].shape[0]
assert D == Mu[0][0].shape[1]
assert D == Mu[0][1].size
priorCov = self.Prior.B / self.Prior.nu
priorMu_2 = self.Prior.m
priorN_ZMG = (1-smoothFrac) * self.Prior.nu
priorN_FVG = (1-smoothFrac) * self.Prior.kappa
Div_ZMG = np.zeros(K) # zero-mean gaussian
Div_FVG = np.zeros(K) # fixed variance gaussian
s, logdet = np.linalg.slogdet(priorCov)
logdet_priorCov = s * logdet
for k in range(K):
Cov_k = Mu[k][0]
s, logdet = np.linalg.slogdet(Cov_k)
logdet_Cov_k = s * logdet
Div_ZMG[k] = 0.5 * logdet_Cov_k + \
- 0.5 * logdet_priorCov \
+ 0.5 * np.trace(np.linalg.solve(Cov_k, priorCov)) \
- 0.5
pmT = np.outer(priorMu_2 - Mu[k][1], priorMu_2 - Mu[k][1])
Div_FVG[k] = 0.5 * np.trace(np.linalg.solve(Cov_k, pmT))
return priorN_ZMG * Div_ZMG + priorN_FVG * Div_FVG
# .... end class
def MAPEstParams_inplace(nu, B, m, kappa=0):
''' MAP estimate parameters mu, Sigma given Normal-Wishart hyperparameters
'''
D = m.size
mu = m
Sigma = B
for k in range(B.shape[0]):
Sigma[k] /= (nu[k] + D + 1)
return mu, Sigma
def c_Func(nu, logdetB, m, kappa):
''' Evaluate cumulant function at given params.
Returns
--------
c : scalar real value of cumulant function at provided args
'''
if logdetB.ndim >= 2:
logdetB = np.log(np.linalg.det(logdetB))
D = m.size
dvec = np.arange(1, D + 1, dtype=np.float)
return - 0.5 * D * LOGTWOPI \
- 0.25 * D * (D - 1) * LOGPI \
- 0.5 * D * LOGTWO * nu \
- np.sum(gammaln(0.5 * (nu + 1 - dvec))) \
+ 0.5 * D * np.log(kappa) \
+ 0.5 * nu * logdetB
def c_Diff(nu1, logdetB1, m1, kappa1,
nu2, logdetB2, m2, kappa2):
''' Evaluate difference of cumulant functions c(params1) - c(params2)
May be more numerically stable than directly using c_Func
to find the difference.
Returns
-------
diff : scalar real value of the difference in cumulant functions
'''
if logdetB1.ndim >= 2:
logdetB1 = np.log(np.linalg.det(logdetB1))
if logdetB2.ndim >= 2:
logdetB2 = np.log(np.linalg.det(logdetB2))
D = m1.size
dvec = np.arange(1, D + 1, dtype=np.float)
return - 0.5 * D * LOGTWO * (nu1 - nu2) \
- np.sum(gammaln(0.5 * (nu1 + 1 - dvec))) \
+ np.sum(gammaln(0.5 * (nu2 + 1 - dvec))) \
+ 0.5 * D * (np.log(kappa1) - np.log(kappa2)) \
+ 0.5 * (nu1 * logdetB1 - nu2 * logdetB2)
def calcSummaryStats(Data, SS, LP, **kwargs):
''' Calculate summary statistics for given dataset and local parameters
Returns
--------
SS : SuffStatBag object, with K components.
'''
X = Data.X
if 'resp' in LP:
resp = LP['resp']
K = resp.shape[1]
# 1/2: Compute mean statistic
S_x = dotATB(resp, X)
# 2/2: Compute expected outer-product statistic
S_xxT = np.zeros((K, Data.dim, Data.dim))
sqrtResp_k = np.sqrt(resp[:, 0])
sqrtRX_k = sqrtResp_k[:, np.newaxis] * Data.X
S_xxT[0] = dotATA(sqrtRX_k)
for k in range(1, K):
np.sqrt(resp[:, k], out=sqrtResp_k)
np.multiply(sqrtResp_k[:, np.newaxis], Data.X, out=sqrtRX_k)
S_xxT[k] = dotATA(sqrtRX_k)
else:
spR = LP['spR']
K = spR.shape[1]
# 1/2: Compute mean statistic
S_x = spR.T * X
# 2/2: Compute expected outer-product statistic
S_xxT = calcSpRXXT(X=X, spR_csr=spR)
if SS is None:
SS = SuffStatBag(K=K, D=Data.dim)
# Expected mean for each state k
SS.setField('x', S_x, dims=('K', 'D'))
# Expected outer-product for each state k
SS.setField('xxT', S_xxT, dims=('K', 'D', 'D'))
# Expected count for each k
# Usually computed by allocmodel. But just in case...
if not hasattr(SS, 'N'):
if 'resp' in LP:
SS.setField('N', LP['resp'].sum(axis=0), dims='K')
else:
SS.setField('N', as1D(toCArray(LP['spR'].sum(axis=0))), dims='K')
return SS
def calcLocalParams(Dslice, **kwargs):
L = calcLogSoftEvMatrix_FromPost(Dslice, **kwargs)
LP = dict(E_log_soft_ev=L)
return LP
def calcLogSoftEvMatrix_FromPost(Dslice, **kwargs):
''' Calculate expected log soft ev matrix for variational.
Returns
------
L : 2D array, size N x K
'''
K = kwargs['K']
L = np.zeros((Dslice.nObs, K))
for k in range(K):
L[:, k] = - 0.5 * Dslice.dim * LOGTWOPI \
+ 0.5 * kwargs['E_logdetL'][k] \
- 0.5 * _mahalDist_Post(Dslice.X, k, **kwargs)
return L
def _mahalDist_Post(X, k, D=None,
cholB=None,
m=None, nu=None, kappa=None, **kwargs):
''' Calc expected mahalonobis distance from comp k to each data atom
Returns
--------
distvec : 1D array, size N
distvec[n] gives E[ (x-\mu) \Lam (x-\mu) ] for comp k
'''
Q = np.linalg.solve(cholB[k],
(X - m[k]).T)
Q *= Q
return nu[k] * np.sum(Q, axis=0) + D / kappa[k]
def createECovMatFromUserInput(D=0, Data=None, ECovMat='eye', sF=1.0):
''' Create expected covariance matrix defining Wishart prior.
The creation process follows user-specified criteria.
Args
--------
D : positive integer, size of each observation
Data : [optional] dataset to use to make Sigma in data-driven way
ECovMat : string name of the procedure to use to create Sigma
'eye' : make Sigma a multiple of the identity matrix
'covdata' : set Sigma to a multiple of the data covariance matrix
'fromtruelabels' : set Sigma to the empirical mean of the
covariances for each true cluster in the dataset
Returns
--------
Sigma : 2D array, size D x D
Symmetric and positive definite.
'''
if Data is not None:
assert D == Data.dim
if ECovMat == 'eye':
Sigma = sF * np.eye(D)
elif ECovMat == 'covdata':
Sigma = sF * np.cov(Data.X.T, bias=1)
elif ECovMat == 'diagcovdata':
CovMat = as2D(np.cov(Data.X.T, bias=1)) # as2D deals with case of D=1
Sigma = sF * np.diag(np.diag(CovMat))
elif ECovMat == 'covfirstdiff':
if not hasattr(Data, 'Xprev'):
raise ValueError(
'covfirstdiff only applies to auto-regressive datasets')
Xdiff = Data.X - Data.Xprev
Sigma = sF * np.cov(Xdiff.T, bias=1)
elif ECovMat == 'diagcovfirstdiff':
if not hasattr(Data, 'Xprev'):
raise ValueError(
'covfirstdiff only applies to auto-regressive datasets')
Xdiff = Data.X - Data.Xprev
Sigma = sF * np.diag(np.diag(np.cov(Xdiff.T, bias=1)))
elif ECovMat == 'fromtruelabels':
''' Set Cov Matrix Sigma using the true labels in empirical Bayes style
Sigma = \sum_{c : class labels} w_c * SampleCov[ data from class c]
'''
if hasattr(Data, 'TrueLabels'):
Z = Data.TrueLabels
else:
Z = Data.TrueParams['Z']
Zvals = np.unique(Z)
Kmax = len(Zvals)
wHat = np.zeros(Kmax)
SampleCov = np.zeros((Kmax, D, D))
for kLoc, kVal in enumerate(Zvals):
mask = Z == kVal
wHat[kLoc] = np.sum(mask)
SampleCov[kLoc] = np.cov(Data.X[mask].T, bias=1)
wHat = wHat / np.sum(wHat)
Sigma = 1e-8 * np.eye(D)
for k in range(Kmax):
Sigma += wHat[k] * SampleCov[k]
else:
raise ValueError('Unrecognized ECovMat procedure %s' % (ECovMat))
return Sigma
|
python
|
import networkx as nx
import operator
import matplotlib.pyplot as plt
g = nx.read_weighted_edgelist('data/edgelist24.csv')
degree = nx.degree(g)
numNodes = nx.number_of_nodes(g)
numEdges = nx.number_of_edges(g)
minDegree = min([item[1] for item in degree])
maxDegree = max([item[1] for item in degree])
print(degree)
print(numNodes)
print(numEdges)
print(minDegree)
print(maxDegree)
degreeSorted = sorted(degree, key=operator.itemgetter(1), reverse=True)
print(degreeSorted[0:9])
nx.draw(g)
plt.show()
plt.savefig('path.png')
|
python
|
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pickle
import sys
import os
import argparse
import traceback
#my imports
from pddm.utils.helper_funcs import visualize_rendering
from pddm.utils.helper_funcs import create_env
import pddm.envs
###import by hamada
from gym import wrappers
import matplotlib.pyplot as plt
import time
import re
from pylab import rcParams
rcParams['figure.figsize'] = 30,30
plt.rcParams["font.size"] = 18
def vis_iter_graph(args, load_dir0):
##########################
## load in data
##########################
#params0
paramfile0 = open(load_dir0 + '/params.pkl', 'rb')
params0 = pickle.load(paramfile0)
env_name0 = params0.env_name
#data to visualize
if args.eval:
with open(load_dir0 + '/saved_rollouts/rollouts_eval'+ str(args.iter_num) +'.pickle',
'rb') as handle:
rollouts_info0 = pickle.load(handle)
else:
with open(
load_dir0 + '/saved_rollouts/rollouts_info_' + str(args.iter_num) +
'.pickle', 'rb') as handle0:
rollouts_info0 = pickle.load(handle0)
##########################
## visualize
##########################
#create env
#use_env, dt_from_xml = create_env(env_name)
###added by hamada
#use_env=wrappers.Monitor(use_env, args.save_dir, force=True)
rewards = []
scores = []
#save_dir =load_dir0+"/{}_aftercal/".format(time.strftime("%Y-%m-%d"))
save_dir = load_dir0 + "/aftercaleei/".format(time.strftime("%Y-%m-%d"))
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
if re.findall('i.?v', env_name0 ):
agent_type="ip"
elif re.findall('r.?a',env_name0):
agent_type = "re"
elif re.findall('c.?h',env_name0):
agent_type = "hc"
iter_num ="iter"+str(args.iter_num)
print("env name {}".format(re.findall('r.?a',env_name0)))
for vis_index in range(len(rollouts_info0)):
print("\n\nROLLOUT NUMBER ", vis_index, " .... num steps loaded: ", rollouts_info0[vis_index]['actions'].shape[0])
#visualize rollouts from this iteration
states0=rollouts_info0[vis_index]["observations"]
actions0=rollouts_info0[vis_index]["actions"]
if args.perturb:
perturb0 = rollouts_info0[vis_index]["disturbances"].reshape([500,1])
if agent_type=="ip":
state_index = [0,1,2,3]
elif agent_type=="re":
#state_index = [0, 1, 2, 3,4,5,6,7,8,9]
state_index =[4,5,6,7,8,9 ]
elif agent_type == "hc":
state_index = [4, 5, 6, 7, 8, 9]
fig = plt.figure()
until_where = 200
speed = 0
energy = 0
energy2=0
error2=0
for ind in range(actions0.shape[0]):
speed = speed + states0[ind,9]
for i in range(actions0.shape[1]):
delta_theta = np.abs(states0[ind+1,i]-states0[ind,i])
energy = energy + np.abs(actions0[ind,i]) * delta_theta
EEI = speed/energy
#EEI2 = 1/error/enrrgy2
#EEI3= 1/error2/energy
print("EEI:{} Ene:{} Speed:{}".format(EEI,energy,speed))
#print("EEI2:{} Ene2:{} Error:{}".format(EEI2, energy2, error))
#print("EEI:{} Ene:{} Error:{}".format(EEI3, energy, error2))
if args.eval:
np.save(save_dir + "/eval_eeis_{}.npy".format(args.iter_num), np.array(EEI))
np.save(save_dir + "/eval_ers_{}.npy".format(args.iter_num), np.array(speed))
np.save(save_dir + "/eval_enes_{}.npy".format(args.iter_num), np.array(energy))
#np.save(save_dir + "/eval_eeis2_{}.npy".format(args.iter_num), np.array(EEI2))
#np.save(save_dir + "/eval_ers2_{}.npy".format(args.iter_num), np.array(error2))
#np.save(save_dir + "/eval_enes2_{}.npy".format(args.iter_num), np.array(energy2))
#np.save(save_dir + "/eval_eeis3_{}.npy".format(args.iter_num), np.array(EEI3))
else:
np.save(save_dir + "/eeis_{}.npy".format(args.iter_num), np.array(EEI))
np.save(save_dir + "/ers_{}.npy".format(args.iter_num), np.array(speed))
np.save(save_dir + "/enes_{}.npy".format(args.iter_num), np.array(energy))
#np.save(save_dir + "/eeis2_{}.npy".format(args.iter_num), np.array(EEI2))
#np.save(save_dir + "/ers2_{}.npy".format(args.iter_num), np.array(error2))
#np.save(save_dir + "/enes2_{}.npy".format(args.iter_num), np.array(energy2))
#np.save(save_dir + "/eeis3_{}.npy".format(args.iter_num), np.array(EEI3))
def main():
##########################
## vars to specify
##########################
parser = argparse.ArgumentParser()
parser.add_argument('--job_path0', type=str) #address this path WRT your working directory
#parser.add_argument('--job_path3', type=str) # address this path WRT your working directory
parser.add_argument('--iter_num', type=int, default=1) #if eval is False, visualize rollouts from this iteration
parser.add_argument('--eval', action="store_true") # if this is True, visualize rollouts from rollouts_eval.pickle
##added by hamadda
parser.add_argument('--perturb', action="store_true")
#parser.add_argument('--agent_type', type=str)
args = parser.parse_args()
##########################
## do visualization
##########################
#directory to load from
load_dir0 = os.path.abspath(args.job_path0)
print("LOADING FROM: ", load_dir0)
assert os.path.isdir(load_dir0)
try:
vis_iter_graph(args, load_dir0)
except (KeyboardInterrupt, SystemExit):
print('Terminating...')
sys.exit(0)
except Exception as e:
print('ERROR: Exception occured while running a job....')
traceback.print_exc()
if __name__ == '__main__':
main()
|
python
|
import vcr
from .common import *
from keepassxc_pwned.cli import main_wrapper
from keepassxc_pwned.parser import Database
db_file_loc = os.path.join(db_files, "duplicate_entry.kdbx")
db_pw = "duplicate_entry"
@pytest.fixture()
def database():
db: Database = Database(pathlib.Path(db_file_loc))
db._password = db_pw
return db
def test_entry_count(database):
assert len(database.credentials) == 3
# pass -q flag
@vcr.use_cassette("tests/vcr_cassettes/test_default.yaml")
def test_default(capsys, caplog):
os.environ["KEEPASSXC_PWNED_PASSWD"] = "duplicate_entry"
main_wrapper(False, None, False, True, db_file_loc, None)
captured = capsys.readouterr()
captured_lines = captured.out.splitlines()
for output, expected in zip(
captured_lines,
[
"Found 3 previously breached passwords:",
"entry:5BAA61E4C9B93F3F0682250B6CF8331B7EE68FD8:3730471",
"entry:5BAA61E4C9B93F3F0682250B6CF8331B7EE68FD8:3730471",
"5BAA61E4C9B93F3F0682250B6CF8331B7EE68FD8:5BAA61E4C9B93F3F0682250B6CF8331B7EE68FD8:3730471",
],
):
assert output == expected
assert len(captured_lines) == 4
|
python
|
import sys
import logging
import random
import numpy as np
import os
# from nltk.corpus import wordnet as wn
import argparse
import torch
import pickle
from transformers import GPT2Tokenizer, TransfoXLTokenizer
from shutil import copyfile
import collections
from multiprocessing.pool import Pool
import multiprocessing
from functools import partial
try:
multiprocessing.set_start_method('spawn')
except RuntimeError:
pass
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser()
parser.add_argument("--input-data-file", type=str, default="./data/wikitext-103/wiki.test.tokens")
parser.add_argument("--output-data-file", type=str, default="./data/wikitext-103/pos_tagged_test.txt")
args = parser.parse_args()
seed = 42
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
subword_models = ["gpt2-medium", "gpt2"]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("device: {}, n_gpu {}".format(device, n_gpu))
punct_masks = ["#", "$", "''", "(", ")", ",", ".", ":", "``"]
upper_pos_dir = {
"NOUN": [ "FW", "NN", "NNS", "NNP", "NNPS"],
"PRON": [ "PRP", "PRP$", "WP", "WP$", "EX"],
"ADJ": [ "JJ", "JJR", "JJS"],
"ADV": [ "RB", "RBR", "RBS", "RP", "WRB", "UH"],
"VERB": [ "MD", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ"],
"NUM": ["CD"],
"ART": ["DT", "PDT", "WDT"],
"PREP": ["IN", "POS", "TO"],
"CONJ": ["CC"],
"SYM": ["SYM", "LS", "#", "$", "''", "(", ")", ",", ".", ":", "``"]
}
punct_marks = ["-", "--", "---", ",", ".", "?", ":", "'", '"', "!", "`", "$", "#", "...", "(", ")", "[", "]", "{", "}"]
down_pos_to_up = {down_pos:up_pos for up_pos, down_pos_list in upper_pos_dir.items() for down_pos in down_pos_list}
pos2word = {}
def is_caption(line_split):
return line_split[0] == '=' and line_split[-1] == '='
def pos_tag_by_core(read_file_name, write_dirty_name):
from nltk.parse import CoreNLPParser
pos_tagger = CoreNLPParser(url="http://localhost:9876", tagtype='pos')
read_file = open(read_file_name, "r", encoding="utf-8")
write_file = open(write_dirty_name, "w", encoding="utf-8")
for idx, line in enumerate(read_file):
line_split = line.strip().split()
if len(line_split) != 0 and not is_caption(line_split):
pos_result = pos_tagger.tag(line_split)
for word_pos in pos_result:
write_file.write(word_pos[0])
write_file.write(" ")
write_file.write(word_pos[1])
write_file.write(" ")
write_file.write("\n")
if idx % 1000 == 0:
logging.info("Finish tag {} lines.".format(idx))
read_file.close()
write_file.close()
def main():
logging.info("tagging data")
pos_tag_by_core(args.input_data_file, args.output_data_file)
if __name__ == '__main__':
main()
|
python
|
from keras.models import load_model
import cv2
import numpy as np
from mtcnn.mtcnn import MTCNN
cap = cv2.VideoCapture(0)
model = load_model('../model/face-detector-model.h5')
size = (200, 200)
detector = MTCNN()
while True:
ret, frame = cap.read()
faces = detector.detect_faces(frame)
for face in faces:
x1, y1, w, h = face['box']
x2 = x1 + w
y2 = y1 + h
roi = frame[y1: y2, x1:x2]
if np.sum([roi]) != 0:
roi = cv2.resize(roi, size)
roi = (roi.astype('float')/255.0)
roi = np.reshape(roi, [1, 200, 200, 3])
pred = model.predict([[roi]])
pred = pred[0]
print(pred)
if pred[0] >= pred[1]:
label = 'NO MASK'
color = (0,0,255)
else:
label = 'MASK'
color = (0, 255, 0)
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2)
cv2.imshow("MASK DETECTOR", frame)
key = cv2.waitKey(1)
if key == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
|
python
|
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for ragged.elementwise_ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import ragged
from tensorflow.python.platform import googletest
# Constants listing various op types to test. Each elementwise operation
# should be included in at least one list below, or tested separately if
# necessary (e.g., because it expects additional arguments).
UNARY_FLOAT_OPS = [
ragged.abs,
ragged.acos,
ragged.acosh,
ragged.angle,
ragged.asin,
ragged.asinh,
ragged.atan,
ragged.atanh,
ragged.ceil,
ragged.conj,
ragged.cos,
ragged.cosh,
ragged.digamma,
ragged.erf,
ragged.erfc,
ragged.exp,
ragged.expm1,
ragged.floor,
ragged.imag,
ragged.is_finite,
ragged.is_inf,
ragged.is_nan,
ragged.lgamma,
ragged.log,
ragged.log1p,
ragged.log_sigmoid,
ragged.negative,
ragged.real,
ragged.reciprocal,
ragged.rint,
ragged.round,
ragged.rsqrt,
ragged.sign,
ragged.sin,
ragged.sinh,
ragged.sqrt,
ragged.square,
ragged.tan,
ragged.as_string,
ragged.identity,
ragged.ones_like,
ragged.zeros_like,
]
UNARY_BOOL_OPS = [
ragged.logical_not,
]
UNARY_STRING_OPS = [
ragged.decode_base64,
ragged.encode_base64,
ragged.string_strip,
ragged.decode_compressed,
]
BINARY_FLOAT_OPS = [
ragged.add,
ragged.atan2,
ragged.complex,
ragged.div,
ragged.div_no_nan,
ragged.divide,
ragged.equal,
ragged.floordiv,
ragged.floormod,
ragged.greater,
ragged.greater_equal,
ragged.less,
ragged.less_equal,
ragged.maximum,
ragged.minimum,
ragged.multiply,
ragged.not_equal,
ragged.pow,
ragged.realdiv,
ragged.squared_difference,
ragged.subtract,
ragged.truediv,
]
BINARY_BOOL_OPS = [
ragged.logical_and,
ragged.logical_or,
ragged.logical_xor,
]
UNARY_INT_OPS = [
ragged.unicode_script,
]
BINARY_INT_OPS = [
ragged.truncatediv,
ragged.truncatemod,
]
class RaggedElementwiseOpsTest(test_util.TensorFlowTestCase,
parameterized.TestCase):
def assertSameShape(self, x, y):
"""Checks that x and y have the same shape (including ragged shapes)."""
if isinstance(x, ragged.RaggedTensor):
self.assertIsInstance(y, ragged.RaggedTensor)
self.assertEqual(x.ragged_rank, y.ragged_rank)
for (x_splits, y_splits) in zip(x.nested_row_splits, y.nested_row_splits):
self.assertAllEqual(x_splits, y_splits)
self.assertAllEqual(
array_ops.shape(x.inner_values), array_ops.shape(y.inner_values))
else:
self.assertIsInstance(y, ops.Tensor)
self.assertAllEqual(array_ops.shape(x), array_ops.shape(y))
@parameterized.parameters(
#=========================================================================
# Test different input shapes.
#=========================================================================
[
# 0-dimensional input
{'x': 12},
# 1-dimensional input
{'x': [1, -2, 3]},
# 2-dimensional input
{'x': [[-2, 3], [-3, 4]]},
{'x': ragged.constant_value([[-2, 3], [-3]], ragged_rank=1)},
# 3-dimensional inputs
{'x': [[[-2, 3], [3, 4]], [[7, 6], [5, 4]]]},
{'x': ragged.constant_value([[[-2, 3], [3, 4]], [[7, 6]]],
ragged_rank=1)},
{'x': ragged.constant_value([[[-2, 3, 4], []], [[7, 6]], []],
ragged_rank=2)},
] +
#=========================================================================
# Test each unary op.
#=========================================================================
[{'x': ragged.constant_value([[-2.0, 3.0], [-3.0]]), 'op': op}
for op in UNARY_FLOAT_OPS] +
[{'x': ragged.constant_value([[True, False], [True]]), 'op': op}
for op in UNARY_BOOL_OPS] +
[{'x': ragged.constant_value([[18, 512], [12412]], np.int32), 'op': op}
for op in UNARY_INT_OPS] +
[{'x': ragged.constant_value([['abcd', 'efgh'], ['aabbccdd']]), 'op': op}
for op in UNARY_STRING_OPS] +
[
{'op': ragged.clip_by_value,
'x': ragged.constant_value([[-2.0, 3.0], [-3.0]]),
'clip_value_min': 0.1, 'clip_value_max': 4.0},
{'op': ragged.cast,
'x': ragged.constant_value([[-2.0, 3.0], [-3.0]]),
'dtype': dtypes.int32},
{'op': ragged.saturate_cast,
'x': ragged.constant_value([[-2.0, 3.0], [-3.0]]),
'dtype': dtypes.int32},
{'op': ragged.string_to_hash_bucket,
'x': ragged.constant_value([['abcd', 'efgh'], ['aabbccdd']]),
'num_buckets': 1000},
{'op': ragged.string_to_hash_bucket_fast,
'x': ragged.constant_value([['abcd', 'efgh'], ['aabbccdd']]),
'num_buckets': 1000},
{'op': ragged.string_to_hash_bucket_strong,
'x': ragged.constant_value([['abcd', 'efgh'], ['aabbccdd']]),
'num_buckets': 1000,
'key': [1231, 12512]},
{'op': ragged.string_to_number,
'x': ragged.constant_value([['-2.0', '3.0'], ['-3.0']])},
{'op': ragged.regex_full_match,
'x': ragged.constant_value([['hello', '123'], ['1+1']]),
'pattern': r'\w+'},
{'op': ragged.regex_replace,
'x': ragged.constant_value([['hello', '123'], ['1+1']]),
'pattern': r'\d',
'rewrite': '#'},
{'op': ragged.substr,
'x': ragged.constant_value([['hello', '123'], ['1+1']]),
'pos': 2, 'len': 3},
{'op': ragged.check_numerics,
'x': ragged.constant_value([[-2.0, 3.0], [-3.0]]),
'message': 'check-numerics'},
]
) # pyformat: disable
def testUnaryOp(self, x, op=ragged.abs, **extra_args):
x = ragged.convert_to_tensor_or_ragged_tensor(x)
result = op(x, **extra_args)
# Run the wrapped op on the dense values, for comparison.
dense_x = x.inner_values if isinstance(x, ragged.RaggedTensor) else x
expected_flat_values = array_ops.reshape(
op.__wrapped__(dense_x, **extra_args), [-1])
with self.test_session():
# Check that the result has the expected shape.
self.assertSameShape(x, result)
# Check that the result has the expected (flattened) values.
if isinstance(result, ragged.RaggedTensor):
result_flat_values = array_ops.reshape(result.inner_values, [-1])
else:
result_flat_values = array_ops.reshape(result, [-1])
self.assertAllEqual(expected_flat_values, result_flat_values)
@parameterized.parameters(
[
#=====================================================================
# Without broadcasting -- i.e., shapes match exactly.
#=====================================================================
# Shapes: x:(), y:()
{'x': 12,
'y': 8},
# Shapes: x:(3,), y:(3,)
{'x': [7, 8, 9],
'y': [1, -2, 3]},
# Shapes: x:(2, 2), y:(2, 2)
{'x': [[-2, 3], [-3, -4]],
'y': [[1, 2], [3, 4]]},
# Shapes: x:(2, None), y:(2, None)
{'x': ragged.constant_value([[-2, 3], [-3]]),
'y': ragged.constant_value([[5, 6], [7]])},
# Shapes: x:(2, 2, 2), y:(2, 2, 2)
{'x': [[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
'y': [[[9, 3], [3, 4]], [[5, 2], [7, 6]]]},
# Shapes: x:(2, None, None), y: (2, None, None)
{'x': ragged.constant_value([[[1, 2], [3], [4]], [[], [5, 7, 8]]]),
'y': ragged.constant_value([[[3, 8], [2], [5]], [[], [1, 9, 8]]])},
# Shapes: x:(2, None, 2), y: (2, None, 2)
{'x': ragged.constant_value([[[1, 2]], [[3, 4], [5, 6], [7, 8]]],
ragged_rank=1),
'y': ragged.constant_value([[[9, 3]], [[5, 2], [3, 4], [7, 6]]],
ragged_rank=1)},
#=====================================================================
# With broadcasting
#=====================================================================
# Shapes: x:(), y:(3,)
{'x': 12, # Broadcast () -> (3,)
'y': [1, -2, 3]},
# Shapes: x:(1,), y:(3,)
{'x': [12], # Broadcast (1,) -> (3,)
'y': [1, -2, 3]},
# Shapes: x:(), y:(2, 2)
{'x': 12, # Broadcast () -> (2, 2)
'y': [[1, 2], [3, 4]]},
# Shapes: x:(1,), y:(2, 2)
{'x': 12, # Broadcast (1,) -> (2, 2)
'y': [[1, 2], [3, 4]]},
# Shapes: x:(2, 1), y:(2, 2)
{'x': [[10], [20]], # Broadcast (2, 1) -> (2, 2)
'y': [[1, 2], [3, 4]]},
# Shapes: x:(), y:(2, None)
{'x': 10, # Broadcast () -> (2, None)
'y': ragged.constant_value([[1, 2], [3]], dtype=np.int32)},
# TODO(edloper): Add tests for more advanced broadcasting, once we add
# support for it.
#=====================================================================
# Keyword Args
#=====================================================================
{'x': ragged.constant_value([[[1, 2], [3], [4]], [[], [5, 7, 8]]]),
'y': ragged.constant_value([[[3, 8], [2], [5]], [[], [1, 9, 8]]]),
'use_kwargs': True},
{'x': ragged.constant_value([[[1, 2]], [[3, 4], [5, 6], [7, 8]]],
ragged_rank=1),
'y': ragged.constant_value([[[9, 3]], [[5, 2], [3, 4], [7, 6]]],
ragged_rank=1),
'use_kwargs': True},
] +
#=========================================================================
# Test each unary op.
#=========================================================================
[{'x': ragged.constant_value([[-2.0, 3.0], [-3.0]]),
'y': ragged.constant_value([[5.0, 1.0], [12.0]]),
'op': op}
for op in BINARY_FLOAT_OPS] +
[{'x': ragged.constant_value([[-2, 3], [-3]]),
'y': ragged.constant_value([[5, 1], [12]]),
'op': op}
for op in BINARY_INT_OPS] +
[{'x': ragged.constant_value([[True, True], [False]]),
'y': ragged.constant_value([[False, True], [False]]),
'op': op}
for op in BINARY_BOOL_OPS] +
[
]
) # pyformat: disable
def testBinaryOp(self, x, y, op=ragged.add, **extra_args):
use_kwargs = extra_args.pop('use_kwargs', False)
x = ragged.convert_to_tensor_or_ragged_tensor(x)
y = ragged.convert_to_tensor_or_ragged_tensor(y)
if use_kwargs:
result = op(x=x, y=y, **extra_args)
else:
result = op(x, y, **extra_args)
# Run the wrapped op on the dense values, for comparison.
dense_x = x.inner_values if isinstance(x, ragged.RaggedTensor) else x
dense_y = y.inner_values if isinstance(y, ragged.RaggedTensor) else y
expected_flat_values = array_ops.reshape(
op.__wrapped__(dense_x, dense_y, **extra_args), [-1])
with self.test_session():
# Check that the result has the expected shape.
self.assertSameShape(y, result)
# Check that the result has the expected (flattened) values.
if isinstance(result, ragged.RaggedTensor):
result_flat_values = array_ops.reshape(result.inner_values, [-1])
else:
result_flat_values = array_ops.reshape(result, [-1])
self.assertAllEqual(expected_flat_values, result_flat_values)
@parameterized.parameters(
[
{'inputs': (12, 8, 3)},
{'inputs': ([1, 2, 3], [7, 8, 9], [3, 6, 9])},
{'inputs': ([[1, 2]], [[3, 4]], [[5, 6]])},
{'inputs': (ragged.constant_value([[1, 3], [-3]]),
ragged.constant_value([[4, 7], [88]]),
ragged.constant_value([[2, 9], [12]]))},
{'inputs': (ragged.constant_value([[[1, 3], [-3]], [[1]]]),
ragged.constant_value([[[4, 7], [88]], [[2]]]),
ragged.constant_value([[[2, 9], [12]], [[8]]]))},
{'inputs': (ragged.constant_value([[[1, 3], [3, 4]], [[1, 5]]],
ragged_rank=1),
ragged.constant_value([[[4, 7], [1, 2]], [[2, 2]]],
ragged_rank=1),
ragged.constant_value([[[2, 9], [5, 2]], [[8, 0]]],
ragged_rank=1))},
{'inputs': (ragged.constant_value([[[1, 3], [-3]], [[1]]]),
ragged.constant_value([[[4, 7], [88]], [[2]]]),
ragged.constant_value([[[2, 9], [12]], [[8]]])),
'use_kwargs': True},
] + [
{'op': ragged.add_n,
'inputs': (ragged.constant_value([[1, 3], [-3]]),
ragged.constant_value([[4, 7], [88]]),
ragged.constant_value([[2, 9], [12]]))},
{'op': ragged.string_join,
'inputs': (ragged.constant_value([['a', 'b'], ['c']]),
ragged.constant_value([['foo', 'bar'], ['baz']]),
ragged.constant_value([['2', '9'], ['12']]))},
]) # pyformat: disable
def testListValuedOp(self, inputs, op=ragged.add_n, **extra_args):
use_kwargs = extra_args.pop('use_kwargs', False)
inputs = [ragged.convert_to_tensor_or_ragged_tensor(x) for x in inputs]
if use_kwargs:
result = op(inputs=inputs, **extra_args)
else:
result = op(inputs, **extra_args)
# Run the wrapped op on the dense values, for comparison.
dense_inputs = [
x.inner_values if isinstance(x, ragged.RaggedTensor) else x
for x in inputs
]
expected_flat_values = array_ops.reshape(
op.__wrapped__(dense_inputs, **extra_args), [-1])
with self.test_session():
# Check that the result has the expected shape.
self.assertSameShape(inputs[0], result)
# Check that the result has the expected (flattened) values.
if isinstance(result, ragged.RaggedTensor):
result_flat_values = array_ops.reshape(result.inner_values, [-1])
else:
result_flat_values = array_ops.reshape(result, [-1])
self.assertAllEqual(expected_flat_values, result_flat_values)
def testUnknownRankError(self):
x = ragged.constant([[1, 2], [3]])
y = ragged.from_row_splits(
array_ops.placeholder_with_default([1, 2, 3], shape=None), x.row_splits)
with self.assertRaisesRegexp(
ValueError, r'Ragged elementwise ops require that rank \(number '
r'of dimensions\) be statically known.'):
ragged.add(x, y)
def testBroadcastError1(self):
x = ragged.constant([[1, 2], [3]])
y = [[12]]
with self.assertRaisesRegexp(
ValueError, 'Ragged elementwise ops do not support broadcasting yet'):
ragged.add(x, y)
def testBroadcastError2(self):
x = ragged.constant([[[1, 2], [3, 4]], [[5]]], ragged_rank=2)
y = ragged.constant([[[8], [3]], [[2]]], ragged_rank=1)
with self.assertRaisesRegexp(ValueError,
'Inputs must have identical ragged splits'):
ragged.add(x, y)
def testBroadcastError3(self):
x = ragged.constant([[[1, 2], [3]], [[4, 5], [6]]], ragged_rank=2)
y = ragged.constant([[7, 8], [9]], ragged_rank=1)
with self.assertRaisesRegexp(
ValueError, 'Ragged elementwise ops do not support broadcasting yet'):
ragged.add(x, y)
def testBroadcastError4(self):
x = ragged.constant([[[1]]])
y = ragged.constant([[1]])
with self.assertRaisesRegexp(
ValueError, 'Ragged elementwise ops do not support broadcasting yet'):
ragged.add(x, y)
def testShapeMismatch(self):
x = ragged.constant([[1, 2, 3], [4, 5]])
y = ragged.constant([[1, 2, 3], [4, 5, 6]])
with self.assertRaisesRegexp(errors.InvalidArgumentError,
'Inputs must have identical ragged splits'):
ragged.add(x, y)
def testDocstring(self):
self.assertRegexpMatches(
ragged.add.__doc__,
'Ragged version of the elementwise operation `tf.math.add`')
self.assertEqual(ragged.add.__name__, 'add')
if __name__ == '__main__':
googletest.main()
|
python
|
from mayan.apps.testing.tests.base import BaseTestCase
from ..events import event_otp_disabled, event_otp_enabled
from .mixins import AuthenticationOTPTestMixin
class UserOTPDataTestCase(AuthenticationOTPTestMixin, BaseTestCase):
create_test_case_superuser = True
def test_method_get_absolute_url(self):
self._test_case_superuser.otp_data.get_absolute_url()
def test_otp_disable(self):
self._enable_test_otp()
self._clear_events()
self._test_case_superuser.otp_data.disable()
events = self._get_test_events()
self.assertEqual(events.count(), 1)
self.assertEqual(events[0].action_object, None)
self.assertEqual(events[0].actor, self._test_case_superuser)
self.assertEqual(events[0].target, self._test_case_superuser)
self.assertEqual(events[0].verb, event_otp_disabled.id)
def test_otp_enable(self):
self._clear_events()
self._enable_test_otp()
events = self._get_test_events()
self.assertEqual(events.count(), 1)
self.assertEqual(events[0].action_object, None)
self.assertEqual(events[0].actor, self._test_case_superuser)
self.assertEqual(events[0].target, self._test_case_superuser)
self.assertEqual(events[0].verb, event_otp_enabled.id)
|
python
|
import xlwings as xw
import requests
from aruba import Config, switch
def vlans(data):
"""Enumera las VLANs del switch"""
# Obtengo el workbook, las coordenadas y la dirección IP del servidor API
wb, row, col, api_host = splitExcel(data)
# Y ahora, obtengo los datos del switch
with switch.session(Config(), api_host=api_host, verify=False) as session:
vlans = requests.get(session.api_url + "/vlans", headers=session.headers(), verify=False)
if vlans.status_code != 200:
wb.sheets[0].range("%s%d"%(col, row)).value = "Error leyendo switch, "+vlans.text
return
for vlan in vlans.json()["vlan_element"]:
wb.sheets[0].range(col+str(row)).value = "{} ({})".format(str(vlan["vlan_id"]), vlan["name"])
row += 1
def splitExcel(data):
"""Des-serializa los datos recibidos de excel
Por algún motivo, xlWings no me funciona bien si la funcion python a la
que se llama desde VBA recibe más de un parámetro.
Así que hasta que averigüe por qué, lo que estoy haciendo
es serializar los datos. La función VBA tiene que pasar una
cadena de texto con los siguientes parñametros, separados por ";":
- Dirección IP / nombre al que se quiere conectar
- Número de fila desde donde se invoca a esta funcion.
- Nombre de columna desde donde se invoca a esta función
Por ejemplo: "192.168.x.x;5;B"
Esta función devuelve 4 objetos: el workbook, la fila, la columna, y la dirección.
"""
# Los datos me vienen en formato direccion ; row ; col ... cosas de VBA
addr, row, col = data.split(";")
addr = addr.strip() or None
row = int(row)+1
col = col.strip()
# Borro toda la columna, desde la celda hacia abajo
wb = xw.Book.caller()
wb.sheets[0].range(col + str(row)).expand('down').clear_contents()
# Y devuelvo workbook, fila, columna y direccion IP del api_host
return (wb, row, col, addr)
|
python
|
"""
module(requirement) - Python依赖.
Main members:
# check_requirement - 检查依赖.
"""
from qytPython import logger
# 模块与pypi对应关系
module_pypi_config = {
'docx': 'python-docx',
'yaml': 'PyYAML'
}
def check_requirement(module_obj, module_name):
""" 检查依赖.
@params:
module_obj - 模块对象.
module_name - 模块名.
@return:
On success - 检查成功返回True.
On failure - 依赖缺少Exception信息.
"""
logger.info('module_obj:{}'.format(module_obj))
if module_obj is None:
pypi_name = module_pypi_config.get(module_name, module_name)
raise Exception('缺少依赖,您可以执行以下命令进行安装: \npip install {}'.format(pypi_name))
return True
|
python
|
import numpy as np
# See discussion around this question: https://stackoverflow.com/questions/2018178/finding-the-best-trade-off-point-on-a-curve/2022348#2022348
def index_of_elbow(points):
"""Returns the index of the "elbow" in ``points``.
Decently fast and pretty approximate. Performs worse with disproportionately
long "flat" tails. For example, in a dataset with a nearly right-angle elbow,
it overestimates the elbow by 1 starting at a before/after ratio of 1/4.
"""
# Sort in descending order
points = np.sort(points)[::-1]
points = np.column_stack([np.arange(len(points)), points])
line_vector = points[-1] - points[0]
line_vector /= np.linalg.norm(line_vector)
from_first = points - points[0]
component_along_line = np.sum(from_first * line_vector, axis = 1)
along_line = np.outer(component_along_line, line_vector)
dist_to_line = np.linalg.norm(from_first - along_line, axis = 1)
return np.argmax(dist_to_line)
|
python
|
from .abstract import *
from .. import schema
class Lead( ListableAPIResource, MutableAPIResource ):
"""
Attributes:
assessment_run_id (str): ID of the associated assessment run
confidence (mage.schema.Confidence): Confidence level of the lead
created_at (str): When the lead was created (e.g., '2020-01-02T03:04:56.789Z')
description (str): Description of the lead
evidence (mage.schema.AWSJSON): Evidence supporting the lead
file_links (list of str): Associated files
files (list of mage.schema.S3Object): Associated files
id (str): Unique lead ID
references (list of str): List of references to additional information
title (str): Title of the lead
updated_at (str): When the lead was last updated (e.g., '2020-01-02T03:04:56.789Z')
"""
_SEARCH_FN = 'search_leads'
_UPDATE_FN = 'update_lead'
_DELETE_FN = 'delete_lead'
__field_names__ = schema.Lead.__field_names__
@property
def assessment(self):
"""
Warning:
Not Implemented. Use assessment_run instead.
Todo:
Rename assessment to assessment_run in the schema and remove this method.
"""
raise NotImplementedError("Call 'assessment_run' instead of 'assessment'")
@property
def assessment_run(self):
"""
The associated assessment run.
Returns:
`AssessmentRun <assessment_run.AssessmentRun>`
Todo:
Rename assessment to assessment_run in the schema then update this method by renaming assessment to assessment_run.
"""
from .assessment_run import AssessmentRun
return self._nested_resource(AssessmentRun, 'assessment')
@classmethod
def create(cls, title, description, assessment_run_id, **kwargs):
"""
Creates a lead for an assessment run.
Args:
title (str):
description (str):
assessment_run_id (str):
**kwargs: Additional arguments to initialize the lead with
Returns:
`Lead <lead.Lead>`
Example:
>>> import mage
>>> mage.connect()
>>> mage.Lead.create('Default Password on WEBSRV1', 'Password has not been changed yet.', '11111111-1111-1111-1111-111111111111')
"""
retval = cls.mutate('create_lead', input={'description': description, 'title': title, 'assessmentRunId': assessment_run_id, **kwargs})
if retval:
retval = cls.init(retval)
return retval
|
python
|
# Generated by Django 3.1.4 on 2021-01-02 07:11
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Category',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(max_length=20, verbose_name='名称')),
('sort', models.IntegerField(default=1, verbose_name='排序')),
('add_menu', models.BooleanField(default=True, verbose_name='添加到导航栏')),
('icon', models.CharField(default='fas fa-home', max_length=30, verbose_name='图标')),
],
options={
'verbose_name': '分类',
'verbose_name_plural': '分类',
},
),
migrations.CreateModel(
name='Item',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('title', models.CharField(max_length=10, verbose_name='标题')),
('desc', models.TextField(max_length=50, verbose_name='描述')),
('url', models.URLField(blank=True, verbose_name='网址')),
('img', models.URLField(default='https://jwt1399.top/favicon.png', verbose_name='图片')),
('category', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='webscan.category', verbose_name='分类')),
],
options={
'verbose_name': '导航条目',
'verbose_name_plural': '导航条目',
},
),
]
|
python
|
import unittest
import numpy as np
from svreg.summation import Rho, FFG
from tests._testStructs import _all_test_structs, r0
class Test_Summation(unittest.TestCase):
def setUp(self):
self.ffg = FFG(
name='ffg',
allElements=['H', 'He'],
neighborElements=['H', 'He'],
components=['f_A', 'f_B', 'g_AA', 'g_BB', 'g_AB'],
inputTypes={
'f_A': ['H'],
'f_B': ['He'],
'g_AA': ['H', 'H'],
'g_AB': ['H', 'He'],
'g_BB': ['He', 'He']
},
numParams={'f_A': 7, 'f_B': 7, 'g_AA': 9, 'g_BB': 9, 'g_AB': 9},
restrictions={
'f_A': [(6, 0), (8, 0)],
'f_B': [(6, 0), (8, 0)],
'g_AA':[],
'g_AB':[],
'g_BB':[],
},
paramRanges={
'f_A': None,
'f_B': None,
'g_AA': None,
'g_AB': None,
'g_BB': None
},
bonds={
'ffg_AA': ['f_A', 'f_A', 'g_AA'],
'ffg_AB': ['f_A', 'f_B', 'g_AB'],
'ffg_BB': ['f_B', 'f_B', 'g_BB'],
},
bondMapping="lambda i,j: 'ffg_AA' if i+j==0 else ('ffg_AB' if i+j==1 else 'ffg_BB')",
cutoffs=[1.0, 30.0],
numElements=2,
bc_type='fixed',
)
self.rho = Rho(
name='rho',
allElements=['H', 'He'],
neighborElements=['H', 'He'],
components=['rho_A', 'rho_B'],
inputTypes={'rho_A': ['H'], 'rho_B': ['He']},
numParams={'rho_A': 7, 'rho_B': 7},
restrictions={'rho_A': [(6, 0), (8, 0)], 'rho_B': [(6, 0), (8, 0)]},
paramRanges={'rho_A': None, 'rho_B': None},
bonds={
'rho_A': ['rho_A'],
'rho_B': ['rho_B'],
},
bondMapping="lambda i: 'rho_A' if i == 0 else 'rho_B'",
cutoffs=[1.0, 3.1],
numElements=2,
bc_type='fixed',
)
def test_sv_rho_dimers(self):
params = {
'rho_A': np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
'rho_B': np.array([2, 2, 2, 2, 2, 2, 2, 0, 0]),
}
expected = {
'aa': {'rho_A': 2.0, 'rho_B': 0.0},
'ab': {'rho_A': 1.0, 'rho_B': 2.0},
'bb': {'rho_A': 0.0, 'rho_B': 4.0},
}
for struct in ['aa', 'ab', 'bb']:
atoms = _all_test_structs[struct]
engSV, _ = self.rho.loop(atoms, evalType='vector')
for bondType in ['rho_A', 'rho_B']:
res = engSV[bondType].dot(params[bondType])
self.assertEqual(sum(res), expected[struct][bondType])
def test_sv_rho_trimers(self):
params = {
'rho_A': np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
'rho_B': np.array([2, 2, 2, 2, 2, 2, 2, 0, 0]),
}
expected = {
'aaa': {'rho_A': 6.0, 'rho_B': 0.0},
'bbb': {'rho_A': 0.0, 'rho_B': 12.0},
'abb': {'rho_A': 2.0, 'rho_B': 8.0},
'bab': {'rho_A': 2.0, 'rho_B': 8.0},
'baa': {'rho_A': 4.0, 'rho_B': 4.0},
'aba': {'rho_A': 4.0, 'rho_B': 4.0},
}
for struct in ['aaa', 'bbb', 'abb', 'bab', 'baa', 'aba']:
atoms = _all_test_structs[struct]
engSV, _ = self.rho.loop(atoms, evalType='vector')
for bondType in ['rho_A', 'rho_B']:
res = engSV[bondType].dot(params[bondType])
self.assertEqual(sum(res), expected[struct][bondType])
def test_sv_ffg_dimers(self):
params = {
'ffg_AA': np.vstack([
np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
np.array([2, 2, 2, 2, 2, 2, 2, 0, 0]),
]),
'ffg_AB': np.vstack([
np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
np.array([3, 3, 3, 3, 3, 3, 3, 0, 0]),
]),
'ffg_BB': np.vstack([
np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
np.array([4, 4, 4, 4, 4, 4, 4, 0, 0]),
]),
}
params['ffg_AA'] = np.outer(
np.outer(
params['ffg_AA'][0], params['ffg_AA'][0]
).ravel(),
params['ffg_AA'][1]
).ravel()
params['ffg_AB'] = np.outer(
np.outer(
params['ffg_AB'][0], params['ffg_AB'][1]
).ravel(),
params['ffg_AB'][2]
).ravel()
params['ffg_BB'] = np.outer(
np.outer(
params['ffg_BB'][0], params['ffg_BB'][0]
).ravel(),
params['ffg_BB'][1]
).ravel()
expected = {
'aa': {'ffg_AA': 0.0, 'ffg_AB': 0.0, 'ffg_BB': 0.0},
'ab': {'ffg_AA': 0.0, 'ffg_AB': 0.0, 'ffg_BB': 0.0},
'bb': {'ffg_AA': 0.0, 'ffg_AB': 0.0, 'ffg_BB': 0.0},
}
for struct in ['aa', 'ab', 'bb']:
atoms = _all_test_structs[struct]
engSV, _ = self.ffg.loop(atoms, evalType='vector')
for bondType in ['ffg_AA', 'ffg_AB', 'ffg_BB']:
res = engSV[bondType].dot(params[bondType])
self.assertEqual(sum(res), expected[struct][bondType])
def test_sv_ffg_trimers(self):
params = {
'ffg_AA': np.vstack([
np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
np.array([2, 2, 2, 2, 2, 2, 2, 0, 0]),
]),
'ffg_AB': np.vstack([
np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
np.array([3, 3, 3, 3, 3, 3, 3, 0, 0]),
]),
'ffg_BB': np.vstack([
np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
np.array([4, 4, 4, 4, 4, 4, 4, 0, 0]),
]),
}
params['ffg_AA'] = np.outer(
np.outer(
params['ffg_AA'][0], params['ffg_AA'][0]
).ravel(),
params['ffg_AA'][1]
).ravel()
params['ffg_AB'] = np.outer(
np.outer(
params['ffg_AB'][0], params['ffg_AB'][1]
).ravel(),
params['ffg_AB'][2]
).ravel()
params['ffg_BB'] = np.outer(
np.outer(
params['ffg_BB'][0], params['ffg_BB'][0]
).ravel(),
params['ffg_BB'][1]
).ravel()
# 2 per ffg_AA
# 3 per ffg_AB
# 4 per ffg_BB
expected = {
'aaa': {'ffg_AA': 6.0, 'ffg_AB': 0.0, 'ffg_BB': 0.0},
'bbb': {'ffg_AA': 0.0, 'ffg_AB': 0.0, 'ffg_BB': 12.0},
'abb': {'ffg_AA': 0.0, 'ffg_AB': 6.0, 'ffg_BB': 4.0},
'bab': {'ffg_AA': 0.0, 'ffg_AB': 6.0, 'ffg_BB': 4.0},
'baa': {'ffg_AA': 2.0, 'ffg_AB': 6.0, 'ffg_BB': 0.0},
'aba': {'ffg_AA': 2.0, 'ffg_AB': 6.0, 'ffg_BB': 0.0},
}
for struct in ['aaa', 'bbb', 'abb', 'bab', 'baa', 'aba']:
atoms = _all_test_structs[struct]
engSV, _ = self.ffg.loop(atoms, evalType='vector')
for bondType in ['ffg_AA', 'ffg_AB', 'ffg_BB']:
res = engSV[bondType].dot(params[bondType])
np.testing.assert_almost_equal(
sum(res), expected[struct][bondType]
)
def test_sv_ffg_trimers_asymmetric(self):
lineParams = np.concatenate([np.linspace(1.0, 30.0, 7), [1, 1]])
params = {
'ffg_AA': np.vstack([
lineParams,
np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
]),
'ffg_AB': np.vstack([
lineParams,
lineParams*3,
np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
]),
'ffg_BB': np.vstack([
lineParams,
np.array([1, 1, 1, 1, 1, 1, 1, 0, 0]),
]),
}
params['ffg_AA'] = np.outer(
np.outer(
params['ffg_AA'][0], params['ffg_AA'][0]
).ravel(),
params['ffg_AA'][1]
).ravel()
params['ffg_AB'] = np.outer(
np.outer(
params['ffg_AB'][0], params['ffg_AB'][1]
).ravel(),
params['ffg_AB'][2]
).ravel()
params['ffg_BB'] = np.outer(
np.outer(
params['ffg_BB'][0], params['ffg_BB'][0]
).ravel(),
params['ffg_BB'][1]
).ravel()
# r1*r2 for ffg_AA and ffg_BB
# rA*(3*rB) for ffg_AB, to help detect incorrect j,k ordering
"""
TODO: this still isn't testing what I want. Any test that uses a
potential whose splines only scale their inputs will fail to detect the
bug that you want since it will scale the wrong input, but they're all
being multiplied together anyways.
"""
expected = {
'aaa': {
'ffg_AA': 14*r0*13*r0+14*r0*9*r0+9*r0*13*r0,
'ffg_AB': 0.0,
'ffg_BB': 0.0
},
'bbb': {
'ffg_AA': 0.0,
'ffg_AB': 0.0,
'ffg_BB': 14*r0*13*r0+14*r0*9*r0+9*r0*13*r0,
},
'abb': {
'ffg_AA': 0.0,
# 'ffg_AB': 14*r0*3*9*r0+13*r0*3*9*r0,
'ffg_AB': 3*14*r0*9*r0+3*13*r0*9*r0,
'ffg_BB': 14*r0*13*r0,
},
'bab': {
'ffg_AA': 0.0,
'ffg_AB': 14*r0*3*13*r0+3*13*r0*9*r0,
'ffg_BB': 14*r0*9*r0
},
'baa': {
'ffg_AA': 14*r0*13*r0,
'ffg_AB': 3*14*r0*9*r0+3*13*r0*9*r0,
'ffg_BB': 0.0
},
'aba': {
'ffg_AA': 14*r0*9*r0,
'ffg_AB': 13*r0*3*14*r0+3*9*r0*13*r0,
'ffg_BB': 0.0
},
}
for struct in ['aaa', 'bbb', 'abb', 'bab', 'baa', 'aba']:
atoms = _all_test_structs[struct+'_asym']
engSV, _ = self.ffg.loop(atoms, evalType='vector')
for bondType in ['ffg_AA', 'ffg_AB', 'ffg_BB']:
res = engSV[bondType].dot(params[bondType])
np.testing.assert_almost_equal(
sum(res), expected[struct][bondType]
)
def test_sv_ffg_quad(self):
"""
The purpose is this function is to test a very specific bug that can
occur when a B*A triplet (which is correctly mapped into the A*B bond)
is evaluated incorrectly because rB is incorrectly dotted with the f_A
parameters.
"""
pass
|
python
|
from .testing import Tester
from .training import Trainer
from .dataloader import multiview_dataloader
def get_trainer(cfg, net, optimizer, device=None):
return Trainer(cfg=cfg, net=net, optimizer=optimizer, device=device)
def get_tester(cfg, net, device=None):
return Tester(cfg=cfg, net=net, device=device)
def get_dataloader(config, mode):
return multiview_dataloader(config=config, mode=mode)
|
python
|
from datetime import timedelta, datetime
from django.conf import settings
from django.utils.timezone import make_aware
import pytz
from rest_framework import exceptions
from rest_framework.authentication import TokenAuthentication
import logging
logger = logging.getLogger(__name__)
class BearerAuthentication(TokenAuthentication):
"""
Simple token based authentication.
Clients should authenticate by passing the token key in the "Authorization"
HTTP header, prepended with the string "Bearer ". For example:
Authorization: Bearer 401f7ac837da42b97f613d789819ff93537bee6a
"""
keyword = 'Bearer'
def authenticate_credentials(self, key):
model = self.get_model()
try:
token = model.objects.select_related('user').get(key=key)
except model.DoesNotExist:
logger.error("#Auth error for key: {}".format(key))
raise exceptions.AuthenticationFailed('Invalid token.')
if not token.user.is_active:
logger.error("#Auth error for user: {}, user inactive or deleted".format(token.user))
raise exceptions.AuthenticationFailed('User inactive or deleted.')
# This is required for the time comparison
now = datetime.now()
now = now.replace(tzinfo=pytz.timezone(settings.TIME_ZONE))
valid = make_aware(now.now() - timedelta(days=60))
if token.created < valid:
logger.debug("#Auth error user: {} Token Expired : {}".format(token.user, token.created-valid))
raise exceptions.AuthenticationFailed('Token has expired')
return token.user, token
|
python
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" hdf5events.py
Description:
"""
# Package Header #
from ..__header__ import *
# Header #
__author__ = __author__
__credits__ = __credits__
__maintainer__ = __maintainer__
__email__ = __email__
# Imports #
# Standard Libraries #
import datetime
import time
import uuid
# Third-Party Packages #
from bidict import bidict
import h5py
import numpy as np
# Local Packages #
from .basehdf5 import BaseHDF5, HDF5hierarchicalDatasets
# Todo: Adapt this to new style
# Definitions #
# Classes #
class HDF5eventLogger(BaseHDF5):
FILE_TYPE = "EventLog"
VERSION = "0.0.1"
EVENT_FIELDS = bidict(Time=0, DeltaTime=1, StartTime=2, Type=3)
TIME_NAME = "Time"
DELTA_NAME = "DeltaTime"
START_NAME = "StartTime"
TYPE_NAME = "Type"
LINK_NAME = "LinkID"
EVENT_DTYPE = np.dtype([(TIME_NAME, np.float),
(DELTA_NAME, np.float),
(START_NAME, np.float),
(TYPE_NAME, h5py.string_dtype(encoding="utf-8")),
(LINK_NAME, h5py.string_dtype(encoding="utf-8"))])
# Instantiation/Destruction
def __init__(self, path=None, io_trigger=None, init=False):
super().__init__(path=path)
self.default_child_kwargs = {}
self.event_types = {}
self.start_datetime = None
self.start_time_counter = None
self.start_time_offset = None
self.hierarchy = None
if io_trigger is None:
self.io_trigger = AudioTrigger()
else:
self.io_trigger = io_trigger
if init:
self.construct()
# Container Magic Methods
def __len__(self):
return self.Events.len()
def __getitem__(self, item):
if isinstance(item, str):
return super().__getitem__(item)
elif isinstance(item, int) or isinstance(item, slice):
return self.get_item((item, 0))
else:
return self.get_item(item)
# Representations
def __repr__(self):
return repr(self.start_datetime)
# Constructors
def construct(self, open_=False, **kwargs):
super().construct(open_=open_, **kwargs)
self.hierarchy = HDF5hierarchicalDatasets(h5_container=self, dataset=self.Events, name="Events",
child_name=self.TYPE_NAME, link_name=self.LINK_NAME)
def create_file(self, open_=False):
super().create_file(open_=open_)
self.create_event_dataset(name="Events", dtype=self.EVENT_DTYPE)
# Datasets
def create_event_dataset(self, name, dtype=None, data=None, **kwargs):
if data is not None:
m = data.shape[0]
n = data.shape[1]
else:
m = 0
n = 1
defaults = {"shape": (m, n), "dtype": dtype, "maxshape": (None, n)}
args = merge_dict(defaults, kwargs)
return self.create_dataset(name=name, data=data, **args)
# Sequence Methods
def get_item(self, item):
return self.hierarchy.get_items(item)
def append(self, type_, **kwargs):
if isinstance(type_, dict):
self.append_event(type_)
else:
event = self.create_event(type_=type_, **kwargs)
self.append_event(event)
def insert(self, i, type_, **kwargs):
if isinstance(type_, dict):
super().insert(i, type_)
else:
event = self.create_event(type_=type_, **kwargs)
super().insert(i, event)
def clear(self):
self.start_datetime = None
self.start_time_counter = None
self._path = None
super().clear()
# User Event Methods
def create_event(self, type_, **kwargs):
seconds = self.start_time_offset + round(time.perf_counter() - self.start_time_counter, 6)
now = self.start_datetime + datetime.timedelta(seconds=seconds)
return {"Time": now, "DeltaTime": seconds, "StartTime": self.start_datetime, self.TYPE_NAME: type_, **kwargs}
def append_event(self, event, axis=0, child_kwargs=None):
child_name = event[self.TYPE_NAME]
if child_name not in self.hierarchy.child_datasets:
child_event = event.copy()
for field in self.EVENT_FIELDS.keys():
if field in child_event:
child_event.pop(field)
if self.LINK_NAME not in child_event:
child_event[self.LINK_NAME] = str(uuid.uuid4())
child_dtype = self.event2dtype(child_event)
if child_kwargs is None:
child_kwargs = self.default_child_kwargs
child_dataset = self.create_event_dataset(child_name, dtype=child_dtype, **child_kwargs)
self.hierarchy.add_child_dataset(child_name, child_dataset)
self.hierarchy.append_item(event, (child_name,), axis)
def set_time(self):
self.start_datetime = datetime.datetime.now()
self.start_time_counter = time.perf_counter()
self.start_time_offset = 0
self.append({"Time": self.start_datetime, "DeltaTime": 0, "StartTime": self.start_datetime, self.TYPE_NAME: "TimeSet"})
def resume_time(self, name=None, index=None):
now_datatime = datetime.datetime.now()
self.start_time_counter = time.perf_counter()
if name is None:
name = "TimeSet"
if index is None:
index = -1
start_event = self.hierarchy.get_item(index, name)
self.start_datetime = datetime.datetime.fromtimestamp(start_event[self.TIME_NAME])
self.start_time_offset = (now_datatime - self.start_datetime).total_seconds()
self.append({"Time": now_datatime, "DeltaTime": self.start_time_offset,
"StartTime": self.start_datetime, self.TYPE_NAME: "ResumeTime"})
def get_event_type(self, name, id_info=False):
return self.hierarchy.get_dataset(name, id_info)
# Event Querying
def find_event(self, time_, type_=None, bisect_="bisect"):
if isinstance(time_, datetime.datetime):
time_stamp = time_.timestamp()
else:
time_stamp = time_
if type_ is None or type_ == "Events":
events = self
times = self.Events[self.TIME_NAME]
else:
events = self.hierarchy.get_dataset(name=type_)
times = [e[self.TIME_NAME] for e in events]
index = bisect.bisect_left(times, time_stamp)
if index >= len(times):
index -= 1
elif times[index] == time_:
pass
elif bisect_ == "bisect":
if index > 0:
index -= 1 - (np.abs(times[index-1:index+1]-time_)).argmin()
elif bisect_ == "left":
if index > 0:
index -= 1
elif bisect_ == "right":
pass
else:
return -1, None
return index, events[index]
def find_event_range(self, start, end, type_=None):
if type_ is None or type_ == "Events":
events = self
else:
events = self.hierarchy.get_dataset(name=type_)
first, _ = self.find_event(start, type_=type_, bisect_="right")
last, _ = self.find_event(end, type_=type_, bisect_="left")
return range(first, last+1), events[first:last+1]
# Trigger Methods
def trigger(self):
self.io_trigger.trigger()
def trigger_event(self, **kwargs):
self.trigger()
self.append(type_="Trigger", **kwargs)
# Static Methods
@staticmethod
def event2dtype(event):
dtypes = []
for key, value in event.items():
if isinstance(value, int):
dtype = np.int
elif isinstance(value, float):
dtype = np.float
elif isinstance(value, datetime.datetime):
dtype = np.float
else:
dtype = h5py.string_dtype(encoding="utf-8")
dtypes.append((key, dtype))
return dtypes
class SubjectEventLogger(HDF5eventLogger):
FILE_TYPE = "SubjectEventLog"
VERSION = "0.0.1"
SUBJECT_NAME = "Subject"
EXPERIMENT_NAME = "Task"
EXPERIMENT_NUMBER = "Block"
# Instantiation/Destruction
def __init__(self, path=None, subject="", x_name="", x_number="", io_trigger=None, init=False):
super().__init__(path, io_trigger)
self._subject = subject
self._experiment_name = x_name
self._experiment_number = x_number
if init:
self.construct()
# Constructors
def construct(self, open_=False, **kwargs):
super().construct(open_=open_, **kwargs)
def create_file(self, open_=False):
super().create_file(open_=open_)
self.add_file_attributes({self.SUBJECT_NAME: self._subject, self.EXPERIMENT_NAME: self._experiment_name,
self.EXPERIMENT_NUMBER: self._experiment_number})
|
python
|
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Module Level Imports
# -----------------------------------------------------------------------------
from .typings import (
missing,
snowflake,
nullable,
string,
optional,
snowflakearray,
boolean,
)
from .user import User
from . import PWRCordType
class Emoji(PWRCordType):
_fields_mapper = [
"id",
"name",
"roles",
"user",
"require_colons",
"managed",
"animated",
"available",
]
id: nullable[snowflake] = None
"""emoji id"""
name: nullable[string] = None
"""emoji name"""
roles: optional[snowflakearray] = missing
"""roles allowed to use this emojiS"""
user: optional[User] = missing
"""user that created this emoji"""
require_colons: optional[boolean] = missing
"""whether this emoji must be wrapped in colons"""
managed: optional[boolean] = missing
"""whether this emoji is managed"""
animated: optional[boolean] = missing
"""whether this emoji is animated"""
available: optional[boolean] = missing
"""whether this emoji can be used, may be false due to loss of Server Boosts"""
@classmethod
def initialize_json(cls, data: dict):
"""[summary]
:param data: [description]
:type data: dict
:return: [description]
:rtype: [type]
"""
object_initialized = cls()
# Fill fields with their respective values
for field in data:
d = data[field]
if isinstance(d, dict):
# Probably we are interacting with object fields
if field == "user":
d = User.initialize_json(d)
object_initialized.__setattr__(field, d)
return object_initialized
|
python
|
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
class Logger:
def __init__(self, cnf):
self.dat, self.acc, self.cnf = [], 0, cnf
self.path_out = cnf.path_out
self.path_out += '/{0}/'.format(self.cnf.log_name)
self.path_trial = self.path_out + 'trials'
if not os.path.isdir(self.path_trial):
os.makedirs(self.path_trial)
def logging(self, epo, error, C, hid_w, out_w):
self.acc = 0
for i in range(self.cnf.N):
if C[i] == self.cnf.iris.target[i]:
self.acc += 1
self.acc = self.acc/self.cnf.N
sls = [epo, error, self.acc]
sls.extend(hid_w.flatten())
sls.extend(out_w.flatten())
self.dat.append(sls)
def logging_detail(self, epo, Y, C):
dat_dtl = []
for i in range(self.cnf.N):
sls_dtl = [i+1]
sls_dtl.extend(self.cnf.X[i])
sls_dtl.extend(Y[i])
if C[i] == self.cnf.iris.target[i]:
acc = 1
else:
acc = 0
sls_dtl += [int(C[i]), int(self.cnf.iris.target[i]), acc]
dat_dtl.append(sls_dtl)
head = "N,sepal_l,sepal_w,petal_l,petal_w,setosa,versicolor,virginica,predict,answer,true"
np.savetxt(self.path_trial +'/trial{}_epo{}.csv'.format(self.cnf.seed, epo), np.array(dat_dtl), delimiter=',', header = head)
print("trial: {:03}\tepoch: {}\taccuracy: {}".format(self.cnf.seed, epo, self.acc))
def outLog(self):
head = "epoch,error,accuracy," + ','.join(["hid_w{}".format(i) for i in range(self.cnf.hid_lay*(self.cnf.inp_lay+1))]) + ',' + ','.join(["out_w{}".format(i) for i in range(self.cnf.out_lay*(self.cnf.hid_lay+1))])
np.savetxt(self.path_trial +'/trial{}.csv'.format(self.cnf.seed), np.array(self.dat), delimiter=',', header = head)
self.dat = []
class Statistics:
def __init__(self, cnf, path_out, path_dat):
self.path_out = path_out
self.path_dat = path_dat
self.cnf = cnf
def outStatistics(self):
df = None
for i in range(self.cnf.max_trial):
dat = pd.read_csv(self.path_dat+'/trial{}.csv'.format(i+1), index_col = 0)
if i == 0:
df = pd.DataFrame({'trial{}'.format(i+1) : np.array(dat['accuracy'])}, index = dat.index)
else:
df['trial{}'.format(i+1)] = np.array(dat['accuracy'])
df.to_csv(self.path_out + "all_trials.csv")
_min, _max, _q25, _med, _q75, _ave, _std = [], [], [], [], [], [], []
for i in range(len(df.index)):
dat = np.array(df.loc[df.index[i]])
res = np.percentile(dat, [25, 50, 75])
_min.append(dat.min())
_max.append(dat.max())
_q25.append(res[0])
_med.append(res[1])
_q75.append(res[2])
_ave.append(dat.mean())
_std.append(dat.std())
_out = pd.DataFrame({
'min' : np.array(_min),
'q25' : np.array(_q25),
'med' : np.array(_med),
'q75' : np.array(_q75),
'max' : np.array(_max),
'ave' : np.array(_ave),
'std' : np.array(_std)
},index = df.index)
_out.to_csv(self.path_out + "statistics.csv")
|
python
|
import speech_recognition as sr
import subprocess
from subprocess import call
import os
import gnk
import time
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "//add_credentials"
def prepare_date(self):
self.response = self.response + self.result[2:18]
def prepare_time(self):
self.response = self.response + self.result[2:-2]
def assistant(data):
if "how are you" in data:
speak("I am fine")
if "what time is it" in data:
speak(ctime())
if "where is" in data:
data = data.split(" ")
location = data[2]
speak("Hold on, I will show you where " + location + " is.")
os.system("chromium-browser https://www.google.nl/maps/place/" + location + "/&")
class Action(object):
def __init__(self, command, response, preparator=None):
super(Action, self).__init__()
self.command = command
self.response = response
self.result = None
if preparator:
self.prepare_response = preparator
else:
self.prepare_response = lambda: None
def execute(self):
self.result = str(subprocess.check_output(self.command))
def respond(self):
self.prepare_response(self)
print(self.response)
gnk.synthesize_text(self.response)
gnk.play_audio()
r = sr.Recognizer()
m = sr.Microphone()
action_mapper = dict()
action_mapper['increase brightness'] = Action('xbacklight -inc 40 && xbacklight',
'I have increased the brightness by 40%')
action_mapper['current user'] = Action('whoami', '')
action_mapper['decrease brightness'] = Action('xbacklight -dec 40 && xbacklight',
'I have decreased the brightness by 40%')
action_mapper['date'] = Action(['date', '-R'], 'The date is ', prepare_date)
action_mapper['time'] = Action(['date', '+%r'], 'The time is ', prepare_time)
action_mapper['disk usage'] = Action('du', 'View the terminal')
action_mapper['current session information'] = Action('w', 'View the terminal for the current session info')
action_mapper['free disk space'] = Action('df', 'free disk space dsiplayed on the terminal')
action_mapper['editor'] = Action('gedit', 'i have opened the editor')
try:
print("A moment of silence, please...")
with m as source:
r.adjust_for_ambient_noise(source)
print("Set minimum energy threshold to {}".format(r.energy_threshold))
while True:
print("Say something!")
with m as source:
audio = r.listen(source)
print("Got it! Trying to recognize...")
try:
# speech to text
value = r.recognize_google_cloud(audio)
print("You said {}".format(value))
assistant(value)
action_obj = action_mapper[value.strip()]
action_obj.execute()
action_obj.respond()
except sr.UnknownValueError:
print("Oops! Didn't catch that")
except KeyError:
try:
gnk.play_audio("google_lookup.mp3")
player = gnk.search(value.strip())
except (IndexError, KeyError):
gnk.play_audio("no_results.mp3")
except sr.RequestError as e:
print("Uh oh! Couldn't request results from Google Speech Recognition service; {0}".format(e))
time.sleep(13)
except KeyboardInterrupt:
pass
|
python
|
'''Checkout how many servers I'm used in!'''
import discord
from discord.ext import commands
from packages.utils import Embed, ImproperType
import textwrap
import lorem
import math
from mongoclient import DBClient
client = discord.Client
class Command(commands.Cog):
def __init__(self, client):
self.client = client
@commands.Cog.listener()
async def on_ready(self):
print("Dev only servers command ready!")
@commands.command()
async def servernum(self, ctx):
#activeservers = list (self.client.guilds)
#return await ctx.send('This command is currently under maintenance. The developers will try to get it up again as soon as possible. In the meantime feel free to use `n.help` to get the other commands. Thank you for your understanding!')
#if (ctx.author.id) in [505338178287173642, 637638904513691658, 396075607420567552]:
dbclient = DBClient()
pcollection = dbclient.db.premium
pdata = await dbclient.get_big_array(pcollection, 'premium')
premnum = len(pdata['premium'])
prempercentage = premnum/len(self.client.guilds)*100
totalusers = 0
for guild in self.client.guilds:
totalusers += guild.member_count
comma_users = "{:,}".format(totalusers)
guilds = len(self.client.guilds)
divided_users = totalusers/guilds
'''embed=Embed(':1234: Server Number', f'Check in how many servers I\'m used in!')
embed.field('**__Guilds:__**', f'**`{len(self.client.guilds)}`**')
embed.field('**__Total users:__**', f'**`{comma_users}`**')
embed.field('**__Average users per guild:__**', f'**`{round(divided_users, 2)}`**')
embed.field('**__Invite me:__**', '**`n.invite`**')
embed.thumbnail('https://cdn.discordapp.com/avatars/713352863153258556/47823ecf46a380f770769b7a4a7c3449.png?size=256')
return await embed.send(ctx)'''
embed=Embed('Server Number', f'**__Guilds:__ `{len(self.client.guilds)}`**\n\n**__Premium guilds:__ **`{premnum} ({round(prempercentage,3)}%)`\n\n**__Total users:__ `{comma_users}`**\n\n**__Users per guild:__ `{round(divided_users, 2)}`**\n\n**__Invite me:__ `n.invite`**', '1234')
embed.thumbnail('https://cdn.discordapp.com/avatars/713352863153258556/47823ecf46a380f770769b7a4a7c3449.png?size=256')
return await embed.send(ctx)
'''embed=Embed('Server Number', f'Lacan NTSport is currently used in `{len(self.client.guilds)}` servers by `{comma_users}` users. \nThis is an average of `{round(divided_users, 2)}` users per server.\nIn order to invite me to your server, use `n.invite.`', '1234')
embed.thumbnail('https://media.discordapp.net/attachments/719414661686099993/799587106673655838/Official_Lacan_NTSport_Logo.png?width=495&height=493')
return await embed.send(ctx)'''
def setup(client):
client.add_cog(Command(client))
|
python
|
# Copyright 2020 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
# This script generates header/source files with C++ language bindings
# for the X11 protocol and its extensions. The protocol information
# is obtained from xcbproto which provides XML files describing the
# wire format. However, we don't parse the XML here; xcbproto ships
# with xcbgen, a python library that parses the files into python data
# structures for us.
from __future__ import print_function
import argparse
import collections
import itertools
import os
import re
import sys
import types
# __main__.output must be defined before importing xcbgen,
# so this global is unavoidable.
output = collections.defaultdict(int)
RENAME = {
'ANIMCURSORELT': 'AnimationCursorElement',
'CA': 'ChangeAlarmAttribute',
'CHAR2B': 'Char16',
'CHARINFO': 'CharInfo',
'COLORITEM': 'ColorItem',
'COLORMAP': 'ColorMap',
'Connection': 'RandRConnection',
'CP': 'CreatePictureAttribute',
'CS': 'ClientSpec',
'CW': 'CreateWindowAttribute',
'DAMAGE': 'DamageId',
'DIRECTFORMAT': 'DirectFormat',
'DOTCLOCK': 'DotClock',
'FBCONFIG': 'FbConfig',
'FONTPROP': 'FontProperty',
'GC': 'GraphicsContextAttribute',
'GCONTEXT': 'GraphicsContext',
'GLYPHINFO': 'GlyphInfo',
'GLYPHSET': 'GlyphSet',
'INDEXVALUE': 'IndexValue',
'KB': 'Keyboard',
'KEYCODE': 'KeyCode',
'KEYCODE32': 'KeyCode32',
'KEYSYM': 'KeySym',
'LINEFIX': 'LineFix',
'OP': 'Operation',
'PBUFFER': 'PBuffer',
'PCONTEXT': 'PContext',
'PICTDEPTH': 'PictDepth',
'PICTFORMAT': 'PictFormat',
'PICTFORMINFO': 'PictFormInfo',
'PICTSCREEN': 'PictScreen',
'PICTVISUAL': 'PictVisual',
'POINTFIX': 'PointFix',
'SPANFIX': 'SpanFix',
'SUBPICTURE': 'SubPicture',
'SYSTEMCOUNTER': 'SystemCounter',
'TIMECOORD': 'TimeCoord',
'TIMESTAMP': 'Time',
'VISUALID': 'VisualId',
'VISUALTYPE': 'VisualType',
'WAITCONDITION': 'WaitCondition',
}
READ_SPECIAL = set([
('xcb', 'Setup'),
])
WRITE_SPECIAL = set([
('xcb', 'ClientMessage'),
('xcb', 'Expose'),
('xcb', 'UnmapNotify'),
('xcb', 'SelectionNotify'),
('xcb', 'MotionNotify'),
('xcb', 'Key'),
('xcb', 'Button'),
('xcb', 'PropertyNotify'),
])
FILE_HEADER = \
'''// Copyright 2021 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file was automatically generated with:
// %s
''' % ' \\\n// '.join(sys.argv)
def adjust_type_name(name):
if name in RENAME:
return RENAME[name]
# If there's an underscore, then this is either snake case or upper case.
if '_' in name:
return ''.join([
token[0].upper() + token[1:].lower() for token in name.split('_')
])
if name.isupper():
name = name.lower()
# Now the only possibilities are caml case and pascal case. It could also
# be snake case with a single word, but that would be same as caml case.
# To convert all of these, just capitalize the first letter.
return name[0].upper() + name[1:]
# Given a list of event names like ["KeyPress", "KeyRelease"], returns a name
# suitable for use as a base event like "Key".
def event_base_name(names):
# If there's only one event in this group, the "common name" is just
# the event name.
if len(names) == 1:
return names[0]
# Handle a few special cases where the longest common prefix is empty: eg.
# EnterNotify/LeaveNotify/FocusIn/FocusOut -> Crossing.
EVENT_NAMES = [
('TouchBegin', 'Device'),
('RawTouchBegin', 'RawDevice'),
('Enter', 'Crossing'),
('EnterNotify', 'Crossing'),
('DeviceButtonPress', 'LegacyDevice'),
]
for name, rename in EVENT_NAMES:
if name in names:
return rename
# Use the longest common prefix of the event names as the base name.
name = ''.join(
chars[0]
for chars in itertools.takewhile(lambda chars: len(set(chars)) == 1,
zip(*names)))
assert name
return name
def list_size(name, list_type):
separator = '->' if list_type.is_ref_counted_memory else '.'
return '%s%ssize()' % (name, separator)
# Left-pad with 2 spaces while this class is alive.
class Indent:
def __init__(self, xproto, opening_line, closing_line):
self.xproto = xproto
self.opening_line = opening_line
self.closing_line = closing_line
def __enter__(self):
self.xproto.write(self.opening_line)
self.xproto.indent += 1
def __exit__(self, exc_type, exc_value, exc_traceback):
self.xproto.indent -= 1
self.xproto.write(self.closing_line)
# Make all members of |obj|, given by |fields|, visible in
# the local scope while this class is alive.
class ScopedFields:
def __init__(self, xproto, obj, fields):
self.xproto = xproto
self.obj = obj
self.fields = fields
self.n_pushed = 0
def __enter__(self):
for field in self.fields:
self.n_pushed += self.xproto.add_field_to_scope(field, self.obj)
if self.n_pushed:
self.xproto.write()
def __exit__(self, exc_type, exc_value, exc_traceback):
for _ in range(self.n_pushed):
self.xproto.scope.pop()
# Ensures |name| is usable as a C++ field by avoiding keywords and
# symbols that start with numbers.
def safe_name(name):
RESERVED = [
'and',
'xor',
'or',
'class',
'explicit',
'new',
'delete',
'default',
'private',
]
if name[0].isdigit() or name in RESERVED:
return 'c_' + name
return name
class FileWriter:
def __init__(self):
self.indent = 0
# Write a line to the current file.
def write(self, line=''):
indent = self.indent if line and not line.startswith('#') else 0
print((' ' * indent) + line, file=self.file)
def write_header(self):
for header_line in FILE_HEADER.split('\n'):
self.write(header_line)
class GenXproto(FileWriter):
def __init__(self, proto, proto_dir, gen_dir, xcbgen, all_types):
FileWriter.__init__(self)
# Command line arguments
self.proto = proto
self.xml_filename = os.path.join(proto_dir, '%s.xml' % proto)
self.header_file = open(os.path.join(gen_dir, '%s.h' % proto), 'w')
self.source_file = open(os.path.join(gen_dir, '%s.cc' % proto), 'w')
# Top-level xcbgen python module
self.xcbgen = xcbgen
# Types for every module including this one
self.all_types = all_types
# The last used UID for making unique names
self.prev_id = -1
# Current file to write to
self.file = None
# Flag to indicate if we're generating code to serialize or
# deserialize data.
self.is_read = False
# List of the fields in scope
self.scope = []
# Current place in C++ namespace hierarchy (including classes)
self.namespace = []
# Map from type names to a set of types. Certain types
# like enums and simple types can alias each other.
self.types = collections.defaultdict(list)
# Set of names of simple types to be replaced with enums
self.replace_with_enum = set()
# Map of enums to their underlying types
self.enum_types = collections.defaultdict(set)
# Map from (XML tag, XML name) to XML element
self.module_names = {}
# Enums that represent bit masks.
self.bitenums = []
# Geenerate an ID suitable for use in temporary variable names.
def new_uid(self, ):
self.prev_id += 1
return self.prev_id
def type_suffix(self, t):
if isinstance(t, self.xcbgen.xtypes.Error):
return 'Error'
elif isinstance(t, self.xcbgen.xtypes.Request):
return 'Request'
elif t.is_reply:
return 'Reply'
elif t.is_event:
return 'Event'
return ''
def rename_type(self, t, name):
name = list(name)
if name[0] == 'xcb':
# Use namespace x11 instead of xcb.
name[0] = 'x11'
for i in range(1, len(name)):
name[i] = adjust_type_name(name[i])
name[-1] += self.type_suffix(t)
return name
# Given an unqualified |name| like ('Window') and a namespace like ['x11'],
# returns a fully qualified name like ('x11', 'Window').
def qualify_type(self, name, namespace):
if tuple(namespace + name) in self.all_types:
return namespace + name
return self.qualify_type(name, namespace[:-1])
# Given an xcbgen.xtypes.Type, returns a C++-namespace-qualified
# string that looks like Input::InputClass::Key.
def qualtype(self, t, name):
name = self.rename_type(t, name)
# Try to avoid adding namespace qualifiers if they're not necessary.
chop = 0
for t1, t2 in zip(name, self.namespace):
if t1 != t2:
break
if self.qualify_type(name[chop + 1:], self.namespace) != name:
break
chop += 1
return '::'.join(name[chop:])
def fieldtype(self, field):
if field.isfd:
return 'RefCountedFD'
return self.qualtype(field.type,
field.enum if field.enum else field.field_type)
def switch_fields(self, switch):
fields = []
for case in switch.bitcases:
if case.field_name:
fields.append(case)
else:
fields.extend(case.type.fields)
return fields
def add_field_to_scope(self, field, obj):
if not field.visible or (not field.wire and not field.isfd):
return 0
field_name = safe_name(field.field_name)
if field.type.is_switch:
self.write('auto& %s = %s;' % (field_name, obj))
return 0
self.scope.append(field)
if field.for_list or field.for_switch:
self.write('%s %s{};' % (self.fieldtype(field), field_name))
else:
self.write('auto& %s = %s.%s;' % (field_name, obj, field_name))
if field.type.is_list:
len_name = field_name + '_len'
if not self.field_from_scope(len_name):
len_expr = list_size(field_name, field.type)
if field.type.is_ref_counted_memory:
len_expr = '%s ? %s : 0' % (field_name, len_expr)
self.write('size_t %s = %s;' % (len_name, len_expr))
return 1
# Lookup |name| in the current scope. Returns the deepest
# (most local) occurrence of |name|.
def field_from_scope(self, name):
for field in reversed(self.scope):
if field.field_name == name:
return field
return None
def expr(self, expr):
if expr.op == 'popcount':
return 'PopCount(%s)' % self.expr(expr.rhs)
if expr.op == '~':
return 'BitNot(%s)' % self.expr(expr.rhs)
if expr.op == '&':
return 'BitAnd(%s, %s)' % (self.expr(expr.lhs), self.expr(
expr.rhs))
if expr.op in ('+', '-', '*', '/', '|'):
return ('(%s) %s (%s)' %
(self.expr(expr.lhs), expr.op, self.expr(expr.rhs)))
if expr.op == 'calculate_len':
return expr.lenfield_name
if expr.op == 'sumof':
tmp_id = self.new_uid()
lenfield = self.field_from_scope(expr.lenfield_name)
elem_type = lenfield.type.member
fields = elem_type.fields if elem_type.is_container else []
header = 'auto sum%d_ = SumOf([](%sauto& listelem_ref) {' % (
tmp_id, '' if self.is_read else 'const ')
footer = '}, %s);' % expr.lenfield_name
with Indent(self, header,
footer), ScopedFields(self, 'listelem_ref', fields):
body = self.expr(expr.rhs) if expr.rhs else 'listelem_ref'
self.write('return %s;' % body)
return 'sum%d_' % tmp_id
if expr.op == 'listelement-ref':
return 'listelem_ref'
if expr.op == 'enumref':
return '%s::%s' % (self.qualtype(
expr.lenfield_type,
expr.lenfield_type.name), safe_name(expr.lenfield_name))
assert expr.op == None
if expr.nmemb:
return str(expr.nmemb)
assert expr.lenfield_name
return expr.lenfield_name
def get_xidunion_element(self, name):
key = ('xidunion', name[-1])
return self.module_names.get(key, None)
def declare_xidunion(self, xidunion, xidname):
names = [type_element.text for type_element in xidunion]
types = list(set([self.module.get_type(name) for name in names]))
assert len(types) == 1
value_type = types[0]
value_typename = self.qualtype(value_type, value_type.name)
with Indent(self, 'struct %s {' % xidname, '};'):
self.write('%s() : value{} {}' % xidname)
self.write()
for name in names:
cpp_name = self.module.get_type_name(name)
typename = self.qualtype(value_type, cpp_name)
self.write('%s(%s value) : value{static_cast<%s>(value)} {}' %
(xidname, typename, value_typename))
self.write(
'operator %s() const { return static_cast<%s>(value); }' %
(typename, typename))
self.write()
self.write('%s value{};' % value_typename)
def declare_simple(self, item, name):
renamed = tuple(self.rename_type(item, name))
if renamed in self.replace_with_enum:
return
xidunion = self.get_xidunion_element(name)
if xidunion:
self.declare_xidunion(xidunion, renamed[-1])
else:
self.write('enum class %s : %s {};' %
(renamed[-1], self.qualtype(item, item.name)))
self.write()
def copy_primitive(self, name):
if self.is_read:
self.write('Read(&%s, &buf);' % name)
else:
self.write('buf.Write(&%s);' % name)
def copy_fd(self, field, name):
if self.is_read:
self.write('%s = RefCountedFD(buf.TakeFd());' % name)
else:
# We take the request struct as const&, so dup() the fd to preserve
# const-correctness because XCB close()s it after writing it.
self.write('buf.fds().push_back(HANDLE_EINTR(dup(%s.get())));' %
name)
def copy_special_field(self, field):
type_name = self.fieldtype(field)
name = safe_name(field.field_name)
def copy_basic():
self.write('%s %s;' % (type_name, name))
self.copy_primitive(name)
if name in ('major_opcode', 'minor_opcode'):
assert not self.is_read
is_ext = self.module.namespace.is_ext
self.write(
'%s %s = %s;' %
(type_name, name, 'info_.major_opcode' if is_ext
and name == 'major_opcode' else field.parent[0].opcode))
self.copy_primitive(name)
elif name == 'response_type':
if self.is_read:
copy_basic()
else:
container_type, container_name = field.parent
assert container_type.is_event
# Extension events require offsetting the opcode, so make
# sure this path is only hit for non-extension events for now.
assert not self.module.namespace.is_ext
opcode = container_type.opcodes.get(container_name,
'obj.opcode')
self.write('%s %s = %s;' % (type_name, name, opcode))
self.copy_primitive(name)
elif name in ('extension', 'error_code', 'event_type'):
assert self.is_read
copy_basic()
elif name == 'length':
if not self.is_read:
self.write('// Caller fills in length for writes.')
self.write('Pad(&buf, sizeof(%s));' % type_name)
else:
copy_basic()
else:
assert field.type.is_expr
assert (not isinstance(field.type, self.xcbgen.xtypes.Enum))
self.write('%s %s = %s;' %
(type_name, name, self.expr(field.type.expr)))
self.copy_primitive(name)
def declare_case(self, case):
assert case.type.is_case != case.type.is_bitcase
fields = [
field for case_field in case.type.fields
for field in self.declare_field(case_field)
]
if not case.field_name:
return fields
name = safe_name(case.field_name)
typename = adjust_type_name(name)
with Indent(self, 'struct %s {' % typename, '};'):
for field in fields:
self.write('%s %s{};' % field)
return [(typename, name)]
def copy_case(self, case, switch_name):
op = 'CaseEq' if case.type.is_case else 'CaseAnd'
condition = ' || '.join([
'%s(%s_expr, %s)' % (op, switch_name, self.expr(expr))
for expr in case.type.expr
])
with Indent(self, 'if (%s) {' % condition, '}'):
if case.field_name:
fields = [case]
obj = '(*%s.%s)' % (switch_name, safe_name(case.field_name))
else:
fields = case.type.fields
obj = '*' + switch_name
for case_field in fields:
name = safe_name(case_field.field_name)
if case_field.visible and self.is_read:
self.write('%s.%s.emplace();' % (switch_name, name))
with ScopedFields(self, obj, case.type.fields):
for case_field in case.type.fields:
self.copy_field(case_field)
def declare_switch(self, field):
return [('absl::optional<%s>' % field_type, field_name)
for case in field.type.bitcases
for field_type, field_name in self.declare_case(case)]
def copy_switch(self, field):
t = field.type
name = safe_name(field.field_name)
self.write('auto %s_expr = %s;' % (name, self.expr(t.expr)))
for case in t.bitcases:
self.copy_case(case, name)
def declare_list(self, field):
t = field.type
type_name = self.fieldtype(field)
name = safe_name(field.field_name)
assert (t.nmemb not in (0, 1))
if t.is_ref_counted_memory:
type_name = 'scoped_refptr<base::RefCountedMemory>'
elif t.nmemb:
type_name = 'std::array<%s, %d>' % (type_name, t.nmemb)
elif type_name == 'char':
type_name = 'std::string'
else:
type_name = 'std::vector<%s>' % type_name
return [(type_name, name)]
def copy_list(self, field):
t = field.type
name = safe_name(field.field_name)
size = self.expr(t.expr)
if t.is_ref_counted_memory:
if self.is_read:
self.write('%s = buffer->ReadAndAdvance(%s);' % (name, size))
else:
self.write('buf.AppendBuffer(%s, %s);' % (name, size))
return
if not t.nmemb:
if self.is_read:
self.write('%s.resize(%s);' % (name, size))
else:
left = 'static_cast<size_t>(%s)' % size
self.write('DCHECK_EQ(%s, %s.size());' % (left, name))
with Indent(self, 'for (auto& %s_elem : %s) {' % (name, name), '}'):
elem_name = name + '_elem'
elem_type = t.member
elem_field = self.xcbgen.expr.Field(elem_type, field.field_type,
elem_name, field.visible,
field.wire, field.auto,
field.enum, field.isfd)
elem_field.for_list = None
elem_field.for_switch = None
self.copy_field(elem_field)
def generate_switch_var(self, field):
name = safe_name(field.field_name)
for case in field.for_switch.type.bitcases:
case_field = case if case.field_name else case.type.fields[0]
self.write('SwitchVar(%s, %s.%s.has_value(), %s, &%s);' %
(self.expr(case.type.expr[0]),
safe_name(field.for_switch.field_name),
safe_name(case_field.field_name),
'true' if case.type.is_bitcase else 'false', name))
def is_field_hidden_from_api(self, field):
return not field.visible or getattr(
field, 'for_list', False) or getattr(field, 'for_switch', False)
def declare_field(self, field):
t = field.type
name = safe_name(field.field_name)
if self.is_field_hidden_from_api(field):
return []
if t.is_switch:
return self.declare_switch(field)
if t.is_list:
return self.declare_list(field)
return [(self.fieldtype(field), name)]
def copy_field(self, field):
if not field.wire and not field.isfd:
return
t = field.type
renamed = tuple(self.rename_type(field.type, field.field_type))
if t.is_list:
t.member = self.all_types.get(renamed, t.member)
else:
t = self.all_types.get(renamed, t)
name = safe_name(field.field_name)
self.write('// ' + name)
# If this is a generated field, initialize the value of the field
# variable from the given context.
if not self.is_read:
if field.for_list:
size = list_size(safe_name(field.for_list.field_name),
field.for_list.type)
self.write('%s = %s;' % (name, size))
if field.for_switch:
self.generate_switch_var(field)
if t.is_pad:
if t.align > 1:
assert t.nmemb == 1
assert t.align in (2, 4)
self.write('Align(&buf, %d);' % t.align)
else:
self.write('Pad(&buf, %d);' % t.nmemb)
elif not field.visible:
self.copy_special_field(field)
elif t.is_switch:
self.copy_switch(field)
elif t.is_list:
self.copy_list(field)
elif t.is_union:
self.copy_primitive(name)
elif t.is_container:
with Indent(self, '{', '}'):
self.copy_container(t, name)
else:
assert t.is_simple
if field.isfd:
self.copy_fd(field, name)
elif field.enum:
self.copy_enum(field)
else:
self.copy_primitive(name)
self.write()
def declare_enum(self, enum):
def declare_enum_entry(name, value):
name = safe_name(name)
self.write('%s = %s,' % (name, value))
with Indent(
self, 'enum class %s : %s {' %
(adjust_type_name(enum.name[-1]), self.enum_types[enum.name][0]
if enum.name in self.enum_types else 'int'), '};'):
bitnames = set([name for name, _ in enum.bits])
for name, value in enum.values:
if name not in bitnames:
declare_enum_entry(name, value)
for name, value in enum.bits:
declare_enum_entry(name, '1 << ' + value)
self.write()
def copy_enum(self, field):
# The size of enum types may be different depending on the
# context, so they should always be casted to the contextual
# underlying type before calling Read() or Write().
underlying_type = self.qualtype(field.type, field.type.name)
tmp_name = 'tmp%d' % self.new_uid()
real_name = safe_name(field.field_name)
self.write('%s %s;' % (underlying_type, tmp_name))
if not self.is_read:
self.write('%s = static_cast<%s>(%s);' %
(tmp_name, underlying_type, real_name))
self.copy_primitive(tmp_name)
if self.is_read:
enum_type = self.qualtype(field.type, field.enum)
self.write('%s = static_cast<%s>(%s);' %
(real_name, enum_type, tmp_name))
def declare_fields(self, fields):
for field in fields:
for field_type_name in self.declare_field(field):
self.write('%s %s{};' % field_type_name)
# This tries to match XEvent.xany.window, except the window will be
# Window::None for events that don't have a window, unlike the XEvent
# union which will get whatever data happened to be at the offset of
# xany.window.
def get_window_field(self, event):
# The window field is not stored at any particular offset in the event,
# so get a list of all the window fields.
WINDOW_TYPES = set([
('xcb', 'WINDOW'),
('xcb', 'DRAWABLE'),
('xcb', 'Glx', 'DRAWABLE'),
])
# The window we want may not be the first in the list if there are
# multiple windows. This is a list of all possible window names,
# ordered from highest to lowest priority.
WINDOW_NAMES = [
'event',
'window',
'request_window',
'owner',
]
windows = set([
field.field_name for field in event.fields
if field.field_type in WINDOW_TYPES
])
if len(windows) == 0:
return ''
if len(windows) == 1:
return list(windows)[0]
for name in WINDOW_NAMES:
if name in windows:
return name
assert False
def declare_event(self, event, name):
event_name = name[-1] + 'Event'
with Indent(self, 'struct %s {' % adjust_type_name(event_name), '};'):
self.write('static constexpr int type_id = %d;' % event.type_id)
if len(event.opcodes) == 1:
self.write('static constexpr uint8_t opcode = %s;' %
event.opcodes[name])
else:
with Indent(self, 'enum Opcode {', '} opcode{};'):
items = [(int(x), y)
for (y, x) in event.enum_opcodes.items()]
for opcode, opname in sorted(items):
self.write('%s = %s,' % (opname, opcode))
self.write('bool send_event{};')
self.declare_fields(event.fields)
self.write()
window_field = self.get_window_field(event)
ret = ('reinterpret_cast<x11::Window*>(&%s)' %
window_field if window_field else 'nullptr')
self.write('x11::Window* GetWindow() { return %s; }' % ret)
self.write()
def declare_error(self, error, name):
name = adjust_type_name(name[-1] + 'Error')
with Indent(self, 'struct %s : public x11::Error {' % name, '};'):
self.declare_fields(error.fields)
self.write()
self.write('std::string ToString() const override;')
self.write()
def declare_container(self, struct, struct_name):
name = struct_name[-1] + self.type_suffix(struct)
with Indent(self, 'struct %s {' % adjust_type_name(name), '};'):
self.declare_fields(struct.fields)
self.write()
def copy_container(self, struct, name):
assert not struct.is_union
with ScopedFields(self, name, struct.fields):
for field in struct.fields:
self.copy_field(field)
def read_special_container(self, struct, name):
self.namespace = ['x11']
name = self.qualtype(struct, name)
self.write('template <> COMPONENT_EXPORT(X11)')
self.write('%s Read<%s>(' % (name, name))
with Indent(self, ' ReadBuffer* buffer) {', '}'):
self.write('auto& buf = *buffer;')
self.write('%s obj;' % name)
self.write()
self.is_read = True
self.copy_container(struct, 'obj')
self.write('return obj;')
self.write()
def write_special_container(self, struct, name):
self.namespace = ['x11']
name = self.qualtype(struct, name)
self.write('template <> COMPONENT_EXPORT(X11)')
self.write('WriteBuffer Write<%s>(' % name)
with Indent(self, ' const %s& obj) {' % name, '}'):
self.write('WriteBuffer buf;')
self.write()
self.is_read = False
self.copy_container(struct, 'obj')
self.write('return buf;')
self.write()
def declare_union(self, union):
name = union.name[-1]
if union.elt.tag == 'eventstruct':
# There's only one of these in all of the protocol descriptions.
# It's just used to represent any 32-byte event for XInput.
self.write('using %s = std::array<uint8_t, 32>;' % name)
return
with Indent(self, 'union %s {' % name, '};'):
self.write('%s() { memset(this, 0, sizeof(*this)); }' % name)
self.write()
for field in union.fields:
field_type_names = self.declare_field(field)
assert len(field_type_names) == 1
self.write('%s %s;' % field_type_names[0])
self.write(
'static_assert(std::is_trivially_copyable<%s>::value, "");' % name)
self.write()
# Returns a list of strings suitable for use as a default-initializer for
# |field|. There may be 0 strings (if the field is hidden from the public
# API), 1 string (for normal cases), or many strings (for switch fields).
def get_initializer(self, field):
if self.is_field_hidden_from_api(field):
return []
if field.type.is_switch:
return ['absl::nullopt'] * len(self.declare_switch(field))
if field.type.is_list or not field.type.is_container:
return ['{}']
# While using {} as an initializer for structs is fine when nested
# in other structs, it causes compiler errors when used as a default
# argument initializer, so explicitly initialize each field.
return [
'{%s}' % ', '.join([
init for subfield in field.type.fields
if not self.is_field_hidden_from_api(subfield)
for init in self.get_initializer(subfield)
])
]
def declare_request(self, request):
method_name = request.name[-1]
request_name = method_name + 'Request'
reply_name = method_name + 'Reply' if request.reply else 'void'
in_class = self.namespace == ['x11', self.class_name]
if not in_class or self.module.namespace.is_ext:
self.declare_container(request, request.name)
if request.reply:
self.declare_container(request.reply, request.reply.name)
self.write('using %sResponse = Response<%s>;' %
(method_name, reply_name))
self.write()
if in_class:
# Generate a request method that takes a Request object.
self.write('Future<%s> %s(' % (reply_name, method_name))
self.write(' const %s& request);' % request_name)
self.write()
# Generate a request method that takes fields as arguments and
# forwards them as a Request object to the above implementation.
field_type_names = [
field_type_name for field in request.fields
for field_type_name in self.declare_field(field)
]
inits = [
init for field in request.fields
for init in self.get_initializer(field)
]
assert len(field_type_names) == len(inits)
args = [
'const %s& %s = %s' % (field_type_name + (init, ))
for (field_type_name, init) in zip(field_type_names, inits)
]
self.write('Future<%s> %s(%s);' %
(reply_name, method_name, ', '.join(args)))
self.write()
def define_request(self, request):
method_name = '%s::%s' % (self.class_name, request.name[-1])
prefix = (method_name
if self.module.namespace.is_ext else request.name[-1])
request_name = prefix + 'Request'
reply_name = prefix + 'Reply'
reply = request.reply
if not reply:
reply_name = 'void'
# Generate a request method that takes a Request object.
self.write('Future<%s>' % reply_name)
self.write('%s(' % method_name)
with Indent(self, ' const %s& request) {' % request_name, '}'):
cond = '!connection_->Ready()'
if self.module.namespace.is_ext:
cond += ' || !present()'
self.write('if (%s)' % cond)
self.write(' return {};')
self.write()
self.namespace = ['x11', self.class_name]
self.write('WriteBuffer buf;')
self.write()
self.is_read = False
self.copy_container(request, 'request')
self.write('Align(&buf, 4);')
self.write()
reply_has_fds = reply and any(field.isfd for field in reply.fields)
self.write(
'return connection_->SendRequest<%s>(&buf, "%s", %s);' %
(reply_name, prefix, 'true' if reply_has_fds else 'false'))
self.write()
# Generate a request method that takes fields as arguments and
# forwards them as a Request object to the above implementation.
self.write('Future<%s>' % reply_name)
self.write('%s(' % method_name)
args = [
'const %s& %s' % field_type_name for field in request.fields
for field_type_name in self.declare_field(field)
]
with Indent(self, '%s) {' % ', '.join(args), '}'):
self.write('return %s(%s{%s});' %
(method_name, request_name, ', '.join([
field_name for field in request.fields
for (_, field_name) in self.declare_field(field)
])))
self.write()
if not reply:
return
self.write('template<> COMPONENT_EXPORT(X11)')
self.write('std::unique_ptr<%s>' % reply_name)
sig = 'detail::ReadReply<%s>(ReadBuffer* buffer) {' % reply_name
with Indent(self, sig, '}'):
self.namespace = ['x11']
self.write('auto& buf = *buffer;')
self.write('auto reply = std::make_unique<%s>();' % reply_name)
self.write()
self.is_read = True
self.copy_container(reply, '(*reply)')
self.write('Align(&buf, 4);')
offset = 'buf.offset < 32 ? 0 : buf.offset - 32'
self.write('DCHECK_EQ(%s, 4 * length);' % offset)
self.write()
self.write('return reply;')
self.write()
def define_event(self, event, name):
self.namespace = ['x11']
name = self.qualtype(event, name)
self.write('template <> COMPONENT_EXPORT(X11)')
self.write('void ReadEvent<%s>(' % name)
with Indent(self, ' %s* event_, ReadBuffer* buffer) {' % name, '}'):
self.write('auto& buf = *buffer;')
self.write()
self.is_read = True
self.copy_container(event, '(*event_)')
if event.is_ge_event:
self.write('Align(&buf, 4);')
self.write('DCHECK_EQ(buf.offset, 32 + 4 * length);')
else:
self.write('DCHECK_LE(buf.offset, 32ul);')
self.write()
def define_error(self, error, name):
self.namespace = ['x11']
name = self.qualtype(error, name)
with Indent(self, 'std::string %s::ToString() const {' % name, '}'):
self.write('std::stringstream ss_;')
self.write('ss_ << "%s{";' % name)
fields = [field for field in error.fields if field.visible]
for i, field in enumerate(fields):
terminator = '' if i == len(fields) - 1 else ' << ", "'
self.write('ss_ << ".%s = " << static_cast<uint64_t>(%s)%s;' %
(field.field_name, field.field_name, terminator))
self.write('ss_ << "}";')
self.write('return ss_.str();')
self.write()
self.write('template <>')
self.write('void ReadError<%s>(' % name)
with Indent(self, ' %s* error_, ReadBuffer* buffer) {' % name, '}'):
self.write('auto& buf = *buffer;')
self.write()
self.is_read = True
self.copy_container(error, '(*error_)')
self.write('DCHECK_LE(buf.offset, 32ul);')
def define_type(self, item, name):
if name in READ_SPECIAL:
self.read_special_container(item, name)
if name in WRITE_SPECIAL:
self.write_special_container(item, name)
if isinstance(item, self.xcbgen.xtypes.Request):
self.define_request(item)
elif item.is_event:
self.define_event(item, name)
elif isinstance(item, self.xcbgen.xtypes.Error):
self.define_error(item, name)
def declare_type(self, item, name):
if item.is_union:
self.declare_union(item)
elif isinstance(item, self.xcbgen.xtypes.Request):
self.declare_request(item)
elif item.is_event:
self.declare_event(item, name)
elif isinstance(item, self.xcbgen.xtypes.Error):
self.declare_error(item, name)
elif item.is_container:
self.declare_container(item, name)
elif isinstance(item, self.xcbgen.xtypes.Enum):
self.declare_enum(item)
else:
assert item.is_simple
self.declare_simple(item, name)
# Additional type information identifying the enum/mask is present in the
# XML data, but xcbgen doesn't make use of it: it only uses the underlying
# type, as it appears on the wire. We want additional type safety, so
# extract this information the from XML directly.
def resolve_element(self, xml_element, fields):
for child in xml_element:
if 'name' not in child.attrib:
if child.tag == 'case' or child.tag == 'bitcase':
self.resolve_element(child, fields)
continue
name = child.attrib['name']
field = fields[name]
field.elt = child
enums = [
child.attrib[attr] for attr in ['enum', 'mask']
if attr in child.attrib
]
if enums:
assert len(enums) == 1
enum = enums[0]
field.enum = self.module.get_type(enum).name
self.enum_types[enum].add(field.type.name)
else:
field.enum = None
def resolve_type(self, t, name):
renamed = tuple(self.rename_type(t, name))
assert renamed[0] == 'x11'
assert t not in self.types[renamed]
self.types[renamed].append(t)
self.all_types[renamed] = t
if isinstance(t, self.xcbgen.xtypes.Enum):
self.bitenums.append((t, name))
if not t.is_container:
return
fields = {
field.field_name: field
for field in (self.switch_fields(t) if t.is_switch else t.fields)
}
self.resolve_element(t.elt, fields)
for field in fields.values():
if field.field_name == 'sequence':
field.visible = True
field.parent = (t, name)
if field.type.is_list:
# xcb uses void* in some places to represent arbitrary data.
field.type.is_ref_counted_memory = (
not field.type.nmemb and field.field_type[0] == 'void')
# |for_list| and |for_switch| may have already been set when
# processing other fields in this structure.
field.for_list = getattr(field, 'for_list', None)
field.for_switch = getattr(field, 'for_switch', None)
for is_type, for_type in ((field.type.is_list, 'for_list'),
(field.type.is_switch, 'for_switch')):
if not is_type:
continue
expr = field.type.expr
field_name = expr.lenfield_name
if (expr.op in (None, 'calculate_len')
and field_name in fields):
setattr(fields[field_name], for_type, field)
if field.type.is_switch or field.type.is_case_or_bitcase:
self.resolve_type(field.type, field.field_type)
if isinstance(t, self.xcbgen.xtypes.Request) and t.reply:
self.resolve_type(t.reply, t.reply.name)
# Multiple event names may map to the same underlying event. For these
# cases, we want to avoid duplicating the event structure. Instead, put
# all of these events under one structure with an additional opcode field
# to indicate the type of event.
def uniquify_events(self):
types = []
events = set()
for name, t in self.module.all:
if not t.is_event or len(t.opcodes) == 1:
types.append((name, t))
continue
renamed = tuple(self.rename_type(t, name))
self.all_types[renamed] = t
if t in events:
continue
events.add(t)
names = [name[-1] for name in t.opcodes.keys()]
name = name[:-1] + (event_base_name(names), )
types.append((name, t))
t.enum_opcodes = {}
for opname in t.opcodes:
opcode = t.opcodes[opname]
opname = opname[-1]
if opname.startswith(name[-1]):
opname = opname[len(name[-1]):]
t.enum_opcodes[opname] = opcode
self.module.all = types
# Perform preprocessing like renaming, reordering, and adding additional
# data fields.
def resolve(self):
self.class_name = (adjust_type_name(self.module.namespace.ext_name)
if self.module.namespace.is_ext else 'XProto')
self.uniquify_events()
for name, t in self.module.all:
self.resolve_type(t, name)
for enum, types in list(self.enum_types.items()):
if len(types) == 1:
self.enum_types[enum] = list(types)[0]
else:
del self.enum_types[enum]
for t in self.types:
l = self.types[t]
if len(l) == 1:
continue
# Allow simple types and enums to alias each other after renaming.
# This is done because we want strong typing even for simple types.
# If the types were not merged together, then a cast would be
# necessary to convert from eg. AtomEnum to AtomSimple.
assert len(l) == 2
if isinstance(l[0], self.xcbgen.xtypes.Enum):
enum = l[0]
simple = l[1]
elif isinstance(l[1], self.xcbgen.xtypes.Enum):
enum = l[1]
simple = l[0]
assert simple.is_simple
assert enum and simple
self.replace_with_enum.add(t)
self.enum_types[enum.name] = simple.name
for node in self.module.namespace.root:
if 'name' in node.attrib:
key = (node.tag, node.attrib['name'])
assert key not in self.module_names
self.module_names[key] = node
# The order of types in xcbproto's xml files are inconsistent, so sort
# them in the order {type aliases, enums, xidunions, structs,
# requests/replies}.
def type_order_priority(module_type):
name, item = module_type
if item.is_simple:
return 2 if self.get_xidunion_element(name) else 0
if isinstance(item, self.xcbgen.xtypes.Enum):
return 1
if isinstance(item, self.xcbgen.xtypes.Request):
return 4
return 3
# sort() is guaranteed to be stable.
self.module.all.sort(key=type_order_priority)
def gen_header(self):
self.file = self.header_file
self.write_header()
include_guard = 'UI_GFX_X_GENERATED_PROTOS_%s_' % (
self.header_file.name.split('/')[-1].upper().replace('.', '_'))
self.write('#ifndef ' + include_guard)
self.write('#define ' + include_guard)
self.write()
self.write('#include <array>')
self.write('#include <cstddef>')
self.write('#include <cstdint>')
self.write('#include <cstring>')
self.write('#include <vector>')
self.write()
self.write('#include "base/component_export.h"')
self.write('#include "base/memory/ref_counted_memory.h"')
self.write('#include "base/memory/scoped_refptr.h"')
self.write('#include "third_party/abseil-cpp/absl/types/optional.h"')
self.write('#include "base/files/scoped_file.h"')
self.write('#include "ui/gfx/x/ref_counted_fd.h"')
self.write('#include "ui/gfx/x/error.h"')
imports = set(self.module.direct_imports)
if self.module.namespace.is_ext:
imports.add(('xproto', 'xproto'))
for direct_import in sorted(list(imports)):
self.write('#include "%s.h"' % direct_import[-1])
self.write()
self.write('namespace x11 {')
self.write()
self.write('class Connection;')
self.write()
self.write('template <typename Reply>')
self.write('struct Response;')
self.write()
self.write('template <typename Reply>')
self.write('class Future;')
self.write()
self.namespace = ['x11']
if not self.module.namespace.is_ext:
for (name, item) in self.module.all:
self.declare_type(item, name)
name = self.class_name
with Indent(self, 'class COMPONENT_EXPORT(X11) %s {' % name, '};'):
self.namespace = ['x11', self.class_name]
self.write('public:')
if self.module.namespace.is_ext:
self.write('static constexpr unsigned major_version = %s;' %
self.module.namespace.major_version)
self.write('static constexpr unsigned minor_version = %s;' %
self.module.namespace.minor_version)
self.write()
self.write(name + '(Connection* connection,')
self.write(' const x11::QueryExtensionReply& info);')
self.write()
with Indent(self, 'uint8_t present() const {', '}'):
self.write('return info_.present;')
with Indent(self, 'uint8_t major_opcode() const {', '}'):
self.write('return info_.major_opcode;')
with Indent(self, 'uint8_t first_event() const {', '}'):
self.write('return info_.first_event;')
with Indent(self, 'uint8_t first_error() const {', '}'):
self.write('return info_.first_error;')
else:
self.write('explicit %s(Connection* connection);' % name)
self.write()
self.write(
'Connection* connection() const { return connection_; }')
self.write()
for (name, item) in self.module.all:
if self.module.namespace.is_ext:
self.declare_type(item, name)
elif isinstance(item, self.xcbgen.xtypes.Request):
self.declare_request(item)
self.write('private:')
self.write('Connection* const connection_;')
if self.module.namespace.is_ext:
self.write('x11::QueryExtensionReply info_{};')
self.write()
self.write('} // namespace x11')
self.write()
self.namespace = []
def binop(op, name):
self.write('inline constexpr %s operator%s(' % (name, op))
with Indent(self, ' {0} l, {0} r)'.format(name) + ' {', '}'):
self.write('using T = std::underlying_type_t<%s>;' % name)
self.write('return static_cast<%s>(' % name)
self.write(' static_cast<T>(l) %s static_cast<T>(r));' % op)
self.write()
for enum, name in self.bitenums:
name = self.qualtype(enum, name)
binop('|', name)
binop('&', name)
self.write()
self.write('#endif // ' + include_guard)
def gen_source(self):
self.file = self.source_file
self.write_header()
self.write('#include "%s.h"' % self.module.namespace.header)
self.write()
self.write('#include <xcb/xcb.h>')
self.write('#include <xcb/xcbext.h>')
self.write()
self.write('#include "base/logging.h"')
self.write('#include "base/posix/eintr_wrapper.h"')
self.write('#include "ui/gfx/x/xproto_internal.h"')
self.write()
self.write('namespace x11 {')
self.write()
ctor = '%s::%s' % (self.class_name, self.class_name)
if self.module.namespace.is_ext:
self.write(ctor + '(Connection* connection,')
self.write(' const x11::QueryExtensionReply& info)')
self.write(' : connection_(connection), info_(info) {}')
else:
self.write(ctor +
'(Connection* connection) : connection_(connection) {}')
self.write()
for (name, item) in self.module.all:
self.define_type(item, name)
self.write('} // namespace x11')
def parse(self):
self.module = self.xcbgen.state.Module(self.xml_filename, None)
self.module.register()
self.module.resolve()
def generate(self):
self.gen_header()
self.gen_source()
class GenExtensionManager(FileWriter):
def __init__(self, gen_dir, genprotos):
FileWriter.__init__(self)
self.gen_dir = gen_dir
self.genprotos = genprotos
self.extensions = [
proto for proto in genprotos if proto.module.namespace.is_ext
]
def gen_header(self):
self.file = open(os.path.join(self.gen_dir, 'extension_manager.h'),
'w')
self.write_header()
self.write('#ifndef UI_GFX_X_GENERATED_PROTOS_EXTENSION_MANAGER_H_')
self.write('#define UI_GFX_X_GENERATED_PROTOS_EXTENSION_MANAGER_H_')
self.write()
self.write('#include <memory>')
self.write()
self.write('#include "base/component_export.h"')
self.write()
self.write('namespace x11 {')
self.write()
self.write('class Connection;')
self.write()
for genproto in self.genprotos:
self.write('class %s;' % genproto.class_name)
self.write()
with Indent(self, 'class COMPONENT_EXPORT(X11) ExtensionManager {',
'};'):
self.write('public:')
self.write('ExtensionManager();')
self.write('~ExtensionManager();')
self.write()
for extension in self.extensions:
name = extension.proto
self.write('%s& %s() { return *%s_; }' %
(extension.class_name, name, name))
self.write()
self.write('protected:')
self.write('void Init(Connection* conn);')
self.write()
self.write('private:')
for extension in self.extensions:
self.write('std::unique_ptr<%s> %s_;' %
(extension.class_name, extension.proto))
self.write()
self.write('} // namespace x11')
self.write()
self.write('#endif // UI_GFX_X_GENERATED_PROTOS_EXTENSION_MANAGER_H_')
def gen_source(self):
self.file = open(os.path.join(self.gen_dir, 'extension_manager.cc'),
'w')
self.write_header()
self.write('#include "ui/gfx/x/extension_manager.h"')
self.write()
self.write('#include "ui/gfx/x/connection.h"')
self.write('#include "ui/gfx/x/xproto_internal.h"')
for genproto in self.genprotos:
self.write('#include "ui/gfx/x/%s.h"' % genproto.proto)
self.write()
self.write('namespace x11 {')
self.write()
init = 'void ExtensionManager::Init'
with Indent(self, init + '(Connection* conn) {', '}'):
for extension in self.extensions:
self.write(
'auto %s_future = conn->QueryExtension("%s");' %
(extension.proto, extension.module.namespace.ext_xname))
# Flush so all requests are sent before waiting on any replies.
self.write('conn->Flush();')
self.write()
for extension in self.extensions:
name = extension.proto
self.write(
'%s_ = MakeExtension<%s>(conn, std::move(%s_future));' %
(name, extension.class_name, name))
self.write()
self.write('ExtensionManager::ExtensionManager() = default;')
self.write('ExtensionManager::~ExtensionManager() = default;')
self.write()
self.write('} // namespace x11')
class GenReadEvent(FileWriter):
def __init__(self, gen_dir, genprotos):
FileWriter.__init__(self)
self.gen_dir = gen_dir
self.genprotos = genprotos
self.events = []
for proto in self.genprotos:
for name, item in proto.module.all:
if item.is_event:
self.events.append((name, item, proto))
def event_condition(self, event, typename, proto):
ext = 'conn->%s()' % proto.proto
conds = []
if not proto.module.namespace.is_ext:
# Core protocol event
opcode = 'evtype'
elif event.is_ge_event:
# GenericEvent extension event
conds.extend([
'evtype == GeGenericEvent::opcode',
'%s.present()' % ext,
'ge->extension == %s.major_opcode()' % ext,
])
opcode = 'ge->event_type'
else:
# Extension event
opcode = 'evtype - %s.first_event()' % ext
conds.append('%s.present()' % ext)
if len(event.opcodes) == 1:
conds.append('%s == %s::opcode' % (opcode, typename))
else:
conds.append('(%s)' % ' || '.join([
'%s == %s::%s' % (opcode, typename, opname)
for opname in event.enum_opcodes.keys()
]))
return ' && '.join(conds), opcode
def gen_event(self, name, event, proto):
# We can't ever have a plain generic event. It must be a concrete
# event provided by an extension.
if name == ('xcb', 'GeGeneric'):
return
name = [adjust_type_name(part) for part in name[1:]]
typename = '::'.join(name) + 'Event'
cond, opcode = self.event_condition(event, typename, proto)
with Indent(self, 'if (%s) {' % cond, '}'):
self.write('event->type_id_ = %d;' % event.type_id)
with Indent(self, 'event->deleter_ = [](void* event) {', '};'):
self.write('delete reinterpret_cast<%s*>(event);' % typename)
self.write('auto* event_ = new %s;' % typename)
self.write('ReadEvent(event_, buffer);')
if len(event.opcodes) > 1:
self.write('{0} = static_cast<decltype({0})>({1});'.format(
'event_->opcode', opcode))
self.write('event_->send_event = send_event;')
self.write('event->event_ = event_;')
self.write('event->window_ = event_->GetWindow();')
self.write('return;')
self.write()
def gen_source(self):
self.file = open(os.path.join(self.gen_dir, 'read_event.cc'), 'w')
self.write_header()
self.write('#include "ui/gfx/x/event.h"')
self.write()
self.write('#include <xcb/xcb.h>')
self.write()
self.write('#include "ui/gfx/x/connection.h"')
self.write('#include "ui/gfx/x/xproto_types.h"')
for genproto in self.genprotos:
self.write('#include "ui/gfx/x/%s.h"' % genproto.proto)
self.write()
self.write('namespace x11 {')
self.write()
self.write('void ReadEvent(')
args = 'Event* event, Connection* conn, ReadBuffer* buffer'
with Indent(self, ' %s) {' % args, '}'):
self.write('auto* buf = buffer->data->data();')
cast = 'auto* %s = reinterpret_cast<const %s*>(buf);'
self.write(cast % ('ev', 'xcb_generic_event_t'))
self.write(cast % ('ge', 'xcb_ge_generic_event_t'))
self.write('auto evtype = ev->response_type & ~kSendEventMask;')
self.write('bool send_event = ev->response_type & kSendEventMask;')
self.write()
for name, event, proto in self.events:
self.gen_event(name, event, proto)
self.write('NOTREACHED();')
self.write()
self.write('} // namespace x11')
class GenReadError(FileWriter):
def __init__(self, gen_dir, genprotos, xcbgen):
FileWriter.__init__(self)
self.gen_dir = gen_dir
self.genprotos = genprotos
self.xcbgen = xcbgen
def get_errors_for_proto(self, proto):
errors = {}
for _, item in proto.module.all:
if isinstance(item, self.xcbgen.xtypes.Error):
for name in item.opcodes:
id = int(item.opcodes[name])
if id < 0:
continue
name = [adjust_type_name(part) for part in name[1:]]
typename = '::'.join(name) + 'Error'
errors[id] = typename
return errors
def gen_errors_for_proto(self, errors, proto):
if proto.module.namespace.is_ext:
cond = 'if (%s().present()) {' % proto.proto
first_error = '%s().first_error()' % proto.proto
else:
cond = '{'
first_error = '0'
with Indent(self, cond, '}'):
self.write('uint8_t first_error = %s;' % first_error)
for id, name in sorted(errors.items()):
with Indent(self, '{', '}'):
self.write('auto error_code = first_error + %d;' % id)
self.write('auto parse = MakeError<%s>;' % name)
self.write('add_parser(error_code, first_error, parse);')
self.write()
def gen_init_error_parsers(self):
self.write('uint8_t first_errors[256];')
self.write('memset(first_errors, 0, sizeof(first_errors));')
self.write()
args = 'uint8_t error_code, uint8_t first_error, ErrorParser parser'
with Indent(self, 'auto add_parser = [&](%s) {' % args, '};'):
cond = ('!error_parsers_[error_code] || ' +
'first_error > first_errors[error_code]')
with Indent(self, 'if (%s) {' % cond, '}'):
self.write('first_errors[error_code] = error_code;')
self.write('error_parsers_[error_code] = parser;')
self.write()
for proto in self.genprotos:
errors = self.get_errors_for_proto(proto)
if errors:
self.gen_errors_for_proto(errors, proto)
def gen_source(self):
self.file = open(os.path.join(self.gen_dir, 'read_error.cc'), 'w')
self.write_header()
self.write('#include "ui/gfx/x/connection.h"')
self.write('#include "ui/gfx/x/error.h"')
self.write('#include "ui/gfx/x/xproto_internal.h"')
self.write()
for genproto in self.genprotos:
self.write('#include "ui/gfx/x/%s.h"' % genproto.proto)
self.write()
self.write('namespace x11 {')
self.write()
self.write('namespace {')
self.write()
self.write('template <typename T>')
sig = 'std::unique_ptr<Error> MakeError(Connection::RawError error_)'
with Indent(self, '%s {' % sig, '}'):
self.write('ReadBuffer buf(error_);')
self.write('auto error = std::make_unique<T>();')
self.write('ReadError(error.get(), &buf);')
self.write('return error;')
self.write()
self.write('} // namespace')
self.write()
with Indent(self, 'void Connection::InitErrorParsers() {', '}'):
self.gen_init_error_parsers()
self.write()
self.write('} // namespace x11')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('xcbproto_dir', type=str)
parser.add_argument('gen_dir', type=str)
parser.add_argument('protos', type=str, nargs='*')
args = parser.parse_args()
sys.path.insert(1, args.xcbproto_dir)
import xcbgen.xtypes
import xcbgen.state
all_types = {}
proto_src_dir = os.path.join(args.xcbproto_dir, 'src')
genprotos = [
GenXproto(proto, proto_src_dir, args.gen_dir, xcbgen, all_types)
for proto in args.protos
]
for genproto in genprotos:
genproto.parse()
for genproto in genprotos:
genproto.resolve()
# Give each event a unique type ID. This is used by Event to
# implement downcasting for events.
type_id = 1
for proto in genprotos:
for _, item in proto.module.all:
if item.is_event:
item.type_id = type_id
type_id += 1
for genproto in genprotos:
genproto.generate()
gen_extension_manager = GenExtensionManager(args.gen_dir, genprotos)
gen_extension_manager.gen_header()
gen_extension_manager.gen_source()
GenReadEvent(args.gen_dir, genprotos).gen_source()
GenReadError(args.gen_dir, genprotos, xcbgen).gen_source()
return 0
if __name__ == '__main__':
sys.exit(main())
|
python
|
from math import sin, radians
#for i in range(100):
# r = radians(i)
# # print(f" sinus z {i} = {sin(i)}")
# print(f" sinus z {r} = {sin(r)}")
x = 0
i = 0
while x < 1:
i = i + 1
r = radians(i)
x = sin(r)
print(i,r,x)
x = 0
i = 0
while True:
i = i + 1
r = radians(i)
x = sin(r)
if i > 360:
break
print("Koniec",i,r,x)
|
python
|
# Generated by Django 2.2.13 on 2020-06-18 21:11
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('oidc_provider', '0027_token_refresh_token_expire_at'),
]
operations = [
migrations.AddField(
model_name='client',
name='backchannel_logout_uri',
field=models.URLField(blank=True, default='', max_length=255, verbose_name='Back-channel logout URI'),
),
]
|
python
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import json
from alipay.aop.api.constant.ParamConstants import *
class AlipayBossRelatedCompanyConsultModel(object):
def __init__(self):
self._biz_time_in_mills = None
self._is_whole_month_valid = None
self._type = None
self._value = None
@property
def biz_time_in_mills(self):
return self._biz_time_in_mills
@biz_time_in_mills.setter
def biz_time_in_mills(self, value):
self._biz_time_in_mills = value
@property
def is_whole_month_valid(self):
return self._is_whole_month_valid
@is_whole_month_valid.setter
def is_whole_month_valid(self, value):
self._is_whole_month_valid = value
@property
def type(self):
return self._type
@type.setter
def type(self, value):
self._type = value
@property
def value(self):
return self._value
@value.setter
def value(self, value):
self._value = value
def to_alipay_dict(self):
params = dict()
if self.biz_time_in_mills:
if hasattr(self.biz_time_in_mills, 'to_alipay_dict'):
params['biz_time_in_mills'] = self.biz_time_in_mills.to_alipay_dict()
else:
params['biz_time_in_mills'] = self.biz_time_in_mills
if self.is_whole_month_valid:
if hasattr(self.is_whole_month_valid, 'to_alipay_dict'):
params['is_whole_month_valid'] = self.is_whole_month_valid.to_alipay_dict()
else:
params['is_whole_month_valid'] = self.is_whole_month_valid
if self.type:
if hasattr(self.type, 'to_alipay_dict'):
params['type'] = self.type.to_alipay_dict()
else:
params['type'] = self.type
if self.value:
if hasattr(self.value, 'to_alipay_dict'):
params['value'] = self.value.to_alipay_dict()
else:
params['value'] = self.value
return params
@staticmethod
def from_alipay_dict(d):
if not d:
return None
o = AlipayBossRelatedCompanyConsultModel()
if 'biz_time_in_mills' in d:
o.biz_time_in_mills = d['biz_time_in_mills']
if 'is_whole_month_valid' in d:
o.is_whole_month_valid = d['is_whole_month_valid']
if 'type' in d:
o.type = d['type']
if 'value' in d:
o.value = d['value']
return o
|
python
|
from .cprint import aprint, printInfo
from .utils import Utils
|
python
|
#!/usr/bin/env python
# Copyright 2018 Criteo
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Asynchronous task runner."""
import enum
from concurrent import futures
from datetime import datetime
from biggraphite.cli.web import context
from biggraphite.cli.web.capture import Capture
# TODO: add a scheduler to purge old tasks
class TaskRunner:
"""Task runner."""
def __init__(self):
"""Init TaskRunner."""
self.tasks = []
self._executor = futures.ThreadPoolExecutor(
max_workers=10, thread_name_prefix="bgutil_worker"
)
def submit(self, label, command, opts):
"""Submit a bgutil command to run it asynchronously."""
task = BgUtilTask(label, datetime.now())
self.tasks.append(task)
def _done_callback(f):
try:
result = f.result()
task.completed(result)
except futures.CancelledError as e:
task.cancelled(e)
except futures.TimeoutError as e:
task.timed_out(e)
except Exception as e:
task.failed(e)
future = self._executor.submit(
self._wrap_command, task, context.accessor, command, opts
)
task.submitted()
future.add_done_callback(_done_callback)
@staticmethod
def _wrap_command(task, accessor, cmd, opts):
task.started()
with Capture() as capture:
cmd.run(accessor, opts)
return capture.get_content()
class BgUtilTask:
"""BgUtil task."""
def __init__(
self, label, submitted_on, started_on=None, completed_on=None, result=None
):
"""Init a bgutil task."""
self.label = label
self.submitted_on = submitted_on
self.started_on = started_on
self.completed_on = completed_on
self.result = result
self.status = BgUtilTaskStatus.CREATED
def submitted(self):
"""Mark the task as submitted."""
self.submitted_on = datetime.now()
self.status = BgUtilTaskStatus.SUBMITTED
def started(self):
"""Mark the task as started."""
self.started_on = datetime.now()
self.status = BgUtilTaskStatus.STARTED
def completed(self, result):
"""Mark the task as completed."""
self.result = result
self.completed_on = datetime.now()
self.status = BgUtilTaskStatus.COMPLETED
def failed(self, result=None):
"""Mark the task as failed."""
self.result = result
self.status = BgUtilTaskStatus.FAILED
def cancelled(self, result=None):
"""Mark the task as cancelled."""
self.result = result
self.status = BgUtilTaskStatus.CANCELLED
def timed_out(self, result=None):
"""Mark the task as timed out."""
self.result = result
self.status = BgUtilTaskStatus.TIMED_OUT
def is_finished(self):
"""Is the task finished."""
return self.status not in [
BgUtilTaskStatus.CREATED,
BgUtilTaskStatus.SUBMITTED,
BgUtilTaskStatus.STARTED
]
class BgUtilTaskStatus(enum.Enum):
"""Status of a BgUtilTask."""
CREATED = "created"
SUBMITTED = "submitted"
STARTED = "started"
COMPLETED = "completed"
CANCELLED = "cancelled"
TIMED_OUT = "timed_out"
FAILED = "failed"
|
python
|
# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from ._models_py3 import Actor
from ._models_py3 import CallbackConfig
from ._models_py3 import EncryptionProperty
from ._models_py3 import Event
from ._models_py3 import EventContent
from ._models_py3 import EventInfo
from ._models_py3 import EventListResult
from ._models_py3 import EventRequestMessage
from ._models_py3 import EventResponseMessage
from ._models_py3 import ExportPipeline
from ._models_py3 import ExportPipelineListResult
from ._models_py3 import ExportPipelineTargetProperties
from ._models_py3 import IPRule
from ._models_py3 import IdentityProperties
from ._models_py3 import ImportImageParameters
from ._models_py3 import ImportPipeline
from ._models_py3 import ImportPipelineListResult
from ._models_py3 import ImportPipelineSourceProperties
from ._models_py3 import ImportSource
from ._models_py3 import ImportSourceCredentials
from ._models_py3 import KeyVaultProperties
from ._models_py3 import NetworkRuleSet
from ._models_py3 import OperationDefinition
from ._models_py3 import OperationDisplayDefinition
from ._models_py3 import OperationListResult
from ._models_py3 import OperationLogSpecificationDefinition
from ._models_py3 import OperationMetricSpecificationDefinition
from ._models_py3 import OperationServiceSpecificationDefinition
from ._models_py3 import PipelineRun
from ._models_py3 import PipelineRunListResult
from ._models_py3 import PipelineRunRequest
from ._models_py3 import PipelineRunResponse
from ._models_py3 import PipelineRunSourceProperties
from ._models_py3 import PipelineRunTargetProperties
from ._models_py3 import PipelineSourceTriggerDescriptor
from ._models_py3 import PipelineSourceTriggerProperties
from ._models_py3 import PipelineTriggerDescriptor
from ._models_py3 import PipelineTriggerProperties
from ._models_py3 import Policies
from ._models_py3 import PrivateEndpoint
from ._models_py3 import PrivateEndpointConnection
from ._models_py3 import PrivateEndpointConnectionListResult
from ._models_py3 import PrivateLinkResource
from ._models_py3 import PrivateLinkResourceListResult
from ._models_py3 import PrivateLinkServiceConnectionState
from ._models_py3 import ProgressProperties
from ._models_py3 import ProxyResource
from ._models_py3 import QuarantinePolicy
from ._models_py3 import RegenerateCredentialParameters
from ._models_py3 import Registry
from ._models_py3 import RegistryListCredentialsResult
from ._models_py3 import RegistryListResult
from ._models_py3 import RegistryNameCheckRequest
from ._models_py3 import RegistryNameStatus
from ._models_py3 import RegistryPassword
from ._models_py3 import RegistryUpdateParameters
from ._models_py3 import RegistryUsage
from ._models_py3 import RegistryUsageListResult
from ._models_py3 import Replication
from ._models_py3 import ReplicationListResult
from ._models_py3 import ReplicationUpdateParameters
from ._models_py3 import Request
from ._models_py3 import Resource
from ._models_py3 import RetentionPolicy
from ._models_py3 import Sku
from ._models_py3 import Source
from ._models_py3 import Status
from ._models_py3 import SystemData
from ._models_py3 import Target
from ._models_py3 import TrustPolicy
from ._models_py3 import UserIdentityProperties
from ._models_py3 import VirtualNetworkRule
from ._models_py3 import Webhook
from ._models_py3 import WebhookCreateParameters
from ._models_py3 import WebhookListResult
from ._models_py3 import WebhookUpdateParameters
from ._container_registry_management_client_enums import (
Action,
ActionsRequired,
ConnectionStatus,
CreatedByType,
DefaultAction,
EncryptionStatus,
ImportMode,
LastModifiedByType,
NetworkRuleBypassOptions,
PasswordName,
PipelineOptions,
PipelineRunSourceType,
PipelineRunTargetType,
PipelineSourceType,
PolicyStatus,
ProvisioningState,
PublicNetworkAccess,
RegistryUsageUnit,
ResourceIdentityType,
SkuName,
SkuTier,
TriggerStatus,
TrustPolicyType,
WebhookAction,
WebhookStatus,
)
__all__ = [
'Actor',
'CallbackConfig',
'EncryptionProperty',
'Event',
'EventContent',
'EventInfo',
'EventListResult',
'EventRequestMessage',
'EventResponseMessage',
'ExportPipeline',
'ExportPipelineListResult',
'ExportPipelineTargetProperties',
'IPRule',
'IdentityProperties',
'ImportImageParameters',
'ImportPipeline',
'ImportPipelineListResult',
'ImportPipelineSourceProperties',
'ImportSource',
'ImportSourceCredentials',
'KeyVaultProperties',
'NetworkRuleSet',
'OperationDefinition',
'OperationDisplayDefinition',
'OperationListResult',
'OperationLogSpecificationDefinition',
'OperationMetricSpecificationDefinition',
'OperationServiceSpecificationDefinition',
'PipelineRun',
'PipelineRunListResult',
'PipelineRunRequest',
'PipelineRunResponse',
'PipelineRunSourceProperties',
'PipelineRunTargetProperties',
'PipelineSourceTriggerDescriptor',
'PipelineSourceTriggerProperties',
'PipelineTriggerDescriptor',
'PipelineTriggerProperties',
'Policies',
'PrivateEndpoint',
'PrivateEndpointConnection',
'PrivateEndpointConnectionListResult',
'PrivateLinkResource',
'PrivateLinkResourceListResult',
'PrivateLinkServiceConnectionState',
'ProgressProperties',
'ProxyResource',
'QuarantinePolicy',
'RegenerateCredentialParameters',
'Registry',
'RegistryListCredentialsResult',
'RegistryListResult',
'RegistryNameCheckRequest',
'RegistryNameStatus',
'RegistryPassword',
'RegistryUpdateParameters',
'RegistryUsage',
'RegistryUsageListResult',
'Replication',
'ReplicationListResult',
'ReplicationUpdateParameters',
'Request',
'Resource',
'RetentionPolicy',
'Sku',
'Source',
'Status',
'SystemData',
'Target',
'TrustPolicy',
'UserIdentityProperties',
'VirtualNetworkRule',
'Webhook',
'WebhookCreateParameters',
'WebhookListResult',
'WebhookUpdateParameters',
'Action',
'ActionsRequired',
'ConnectionStatus',
'CreatedByType',
'DefaultAction',
'EncryptionStatus',
'ImportMode',
'LastModifiedByType',
'NetworkRuleBypassOptions',
'PasswordName',
'PipelineOptions',
'PipelineRunSourceType',
'PipelineRunTargetType',
'PipelineSourceType',
'PolicyStatus',
'ProvisioningState',
'PublicNetworkAccess',
'RegistryUsageUnit',
'ResourceIdentityType',
'SkuName',
'SkuTier',
'TriggerStatus',
'TrustPolicyType',
'WebhookAction',
'WebhookStatus',
]
|
python
|
''' Script to check the correctness of the clustering.
'''
import unittest
import os
import numpy as np
from pixel_clusterizer.clusterizer import HitClusterizer, default_hits_dtype, default_clusters_dtype, default_clusters_descr, default_cluster_hits_dtype
def create_hits(n_hits, max_column, max_row, max_frame, max_charge, hit_dtype=default_hits_dtype, hit_fields=None):
hits = np.zeros(shape=(n_hits, ), dtype=hit_dtype)
if not hit_fields:
for i in range(n_hits):
hits[i]['event_number'], hits[i]['frame'], hits[i]['column'], hits[i]['row'], hits[i]['charge'] = i / 3, i % max_frame, i % max_column + 1, 2 * i % max_row + 1, i % max_charge
else:
hit_fields_inverse = dict((v, k) for k, v in hit_fields.items())
for i in range(n_hits):
hits[i][hit_fields_inverse['event_number']], hits[i][hit_fields_inverse['frame']], hits[i][hit_fields_inverse['column']], hits[i][hit_fields_inverse['row']], hits[i][hit_fields_inverse['charge']] = i / 3, i % max_frame, i % max_column + 1, 2 * i % max_row + 1, i % max_charge
return hits
class TestClusterizer(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.pure_python = os.getenv('PURE_PYTHON', False)
def test_exceptions(self):
# TEST 1: Set Custom mapping that is correct and should not throw an exception
hit_mapping = {
'event_number': 'event_number',
'column': 'column',
'row': 'row',
'charge': 'charge',
'frame': 'frame'}
hit_dtype = np.dtype([
('event_number', '<i8'),
('frame', '<u2'),
('column', '<u2'),
('row', '<u2'),
('charge', '<f4')])
_ = HitClusterizer(hit_fields=hit_mapping, hit_dtype=hit_dtype, pure_python=self.pure_python)
# TEST 2: Set custom clustered hit struct that is incorrect and should throw an exception
hit_dtype_new = np.dtype([
('not_defined', '<i8'),
('frame', '<u2'),
('column', '<u2'),
('row', '<u2'),
('charge', '<f4')])
clusterizer = HitClusterizer(hit_fields=hit_mapping, hit_dtype=hit_dtype_new, pure_python=self.pure_python)
with self.assertRaises(TypeError):
_, _ = clusterizer.cluster_hits(np.array([], dtype=hit_dtype)) # missing "not_defined"
with self.assertRaises(TypeError):
_, _ = clusterizer.cluster_hits(np.array([], dtype=hit_dtype_new)) # missing "event_number"
# TEST 3 Set custom and correct hit mapping, no eception expected
hit_mapping = {
'not_defined': 'event_number',
'column': 'column',
'row': 'row',
'charge': 'charge',
'frame': 'frame'}
clusterizer = HitClusterizer(hit_fields=hit_mapping, hit_dtype=hit_dtype_new, pure_python=self.pure_python)
_, _ = clusterizer.cluster_hits(np.array([], dtype=hit_dtype_new))
# TEST 4 Set custom and correct hit mapping, decrease event_number
hits = np.ones(shape=(2, ), dtype=hit_dtype_new)
hits[0]['column'], hits[0]['row'], hits[0]['charge'], hits[0]['not_defined'] = 17, 36, 30, 19
hits[1]['column'], hits[1]['row'], hits[1]['charge'], hits[1]['not_defined'] = 18, 36, 6, 18
with self.assertRaises(RuntimeError):
_, _ = clusterizer.cluster_hits(hits)
def test_cluster_algorithm(self): # Basic functionality checks
# Initialize Clusterizer with default arguments
clusterizer = HitClusterizer(pure_python=self.pure_python)
hits = create_hits(n_hits=15, max_column=100, max_row=100, max_frame=1, max_charge=2)
# Dioganal
hits[1]["row"] = 2
hits[2]["column"] = 4
hits[2]["row"] = 4
# Same row
hits[4]["row"] = 7
hits[5]["column"] = 7
hits[5]["row"] = 7
# Same column
hits[7]["column"] = 7
hits[7]["row"] = 14
hits[8]["column"] = 7
hits[8]["row"] = 16
# Test frame
hits[10]["row"] = 20
hits[10]["frame"] = 1
# Same location
hits[14]["column"] = 13
hits[14]["row"] = 25
cluster_hits, clusters = clusterizer.cluster_hits(hits) # cluster hits
# Define expected output
expected_clusters = np.zeros(shape=(11, ), dtype=default_clusters_dtype)
expected_clusters['event_number'] = [0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 4]
expected_clusters['ID'] = [0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1]
expected_clusters['n_hits'] = [2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1]
expected_clusters['charge'] = [1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0]
expected_clusters['seed_column'] = [2, 4, 4, 7, 7, 7, 10, 11, 12, 13, 14]
expected_clusters['seed_row'] = [2, 4, 7, 7, 14, 16, 19, 20, 23, 25, 27]
expected_clusters['mean_column'] = [1.5, 4.0, 4.5, 7.0, 7.0, 7.0, 10.0, 11.0, 12.0, 13.0, 14.0]
expected_clusters['mean_row'] = [1.5, 4.0, 7.0, 7.0, 13.5, 16.0, 19.0, 20.0, 23.0, 25.0, 27.0]
# Define expected output
expected_cluster_hits = np.zeros(shape=(15, ), dtype=default_cluster_hits_dtype)
expected_cluster_hits['event_number'] = hits['event_number']
expected_cluster_hits['frame'] = hits['frame']
expected_cluster_hits['column'] = hits['column']
expected_cluster_hits['row'] = hits['row']
expected_cluster_hits['charge'] = hits['charge']
expected_cluster_hits['cluster_ID'] = [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 1, -2]
expected_cluster_hits['is_seed'] = [0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0]
expected_cluster_hits['cluster_size'] = [2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0]
expected_cluster_hits['n_cluster'] = [2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2]
# Test results
self.assertTrue(np.array_equal(clusters, expected_clusters))
self.assertTrue(np.array_equal(cluster_hits, expected_cluster_hits))
# Initialize Clusterizer and test charge weighted clustering
clusterizer = HitClusterizer(pure_python=self.pure_python, charge_weighted_clustering=True)
# Create some fake data
hits = np.ones(shape=(4, ), dtype=default_hits_dtype)
hits[0]['column'], hits[0]['row'], hits[0]['charge'], hits[0]['event_number'] = 17, 36, 0, 19
hits[1]['column'], hits[1]['row'], hits[1]['charge'], hits[1]['event_number'] = 18, 37, 10, 19
hits[2]['column'], hits[2]['row'], hits[2]['charge'], hits[2]['event_number'] = 17, 36, 1, 20
hits[3]['column'], hits[3]['row'], hits[3]['charge'], hits[3]['event_number'] = 18, 37, 10, 20
cluster_hits, clusters = clusterizer.cluster_hits(hits) # cluster hits
# Define expected output
expected_clusters = np.zeros(shape=(2, ), dtype=default_clusters_dtype)
expected_clusters['event_number'] = [19, 20]
expected_clusters['n_hits'] = [2, 2]
expected_clusters['charge'] = [10.0, 11.0]
expected_clusters['seed_column'] = [18, 18]
expected_clusters['seed_row'] = [37, 37]
expected_clusters['mean_column'] = [18.0, (1.0 * 17 + 10.0 * 18) / 11.0]
expected_clusters['mean_row'] = [37.0, (1.0 * 36 + 10.0 * 37) / 11.0]
# Define expected output
expected_cluster_hits = np.zeros(shape=(4, ), dtype=default_cluster_hits_dtype)
expected_cluster_hits['event_number'] = hits['event_number']
expected_cluster_hits['frame'] = hits['frame']
expected_cluster_hits['column'] = hits['column']
expected_cluster_hits['row'] = hits['row']
expected_cluster_hits['charge'] = hits['charge']
expected_cluster_hits['is_seed'] = [0, 1, 0, 1]
expected_cluster_hits['cluster_size'] = [2, 2, 2, 2]
expected_cluster_hits['n_cluster'] = [1, 1, 1, 1]
# Test results
self.assertTrue(np.array_equal(clusters, expected_clusters))
self.assertTrue(np.array_equal(cluster_hits, expected_cluster_hits))
# Initialize Clusterizer and test charge weighted clustering and charge correction
clusterizer = HitClusterizer(pure_python=self.pure_python, charge_correction=1, charge_weighted_clustering=True)
# Create some fake data
hits = np.ones(shape=(4, ), dtype=default_hits_dtype)
hits[0]['column'], hits[0]['row'], hits[0]['charge'], hits[0]['event_number'] = 17, 36, 0, 19
hits[1]['column'], hits[1]['row'], hits[1]['charge'], hits[1]['event_number'] = 18, 37, 10, 19
hits[2]['column'], hits[2]['row'], hits[2]['charge'], hits[2]['event_number'] = 17, 36, 1, 20
hits[3]['column'], hits[3]['row'], hits[3]['charge'], hits[3]['event_number'] = 18, 37, 10, 20
cluster_hits, clusters = clusterizer.cluster_hits(hits) # cluster hits
# Define expected output
expected_clusters = np.zeros(shape=(2, ), dtype=default_clusters_dtype)
expected_clusters['event_number'] = [19, 20]
expected_clusters['n_hits'] = [2, 2]
expected_clusters['charge'] = [10.0, 11.0]
expected_clusters['seed_column'] = [18, 18]
expected_clusters['seed_row'] = [37, 37]
expected_clusters['mean_column'] = [(1.0 * 17 + 11.0 * 18) / 12.0, (2.0 * 17 + 11.0 * 18) / 13.0]
expected_clusters['mean_row'] = [(1.0 * 36 + 11.0 * 37) / 12.0, (2.0 * 36 + 11.0 * 37) / 13.0]
# Define expected output
expected_cluster_hits = np.zeros(shape=(4, ), dtype=default_cluster_hits_dtype)
expected_cluster_hits['event_number'] = hits['event_number']
expected_cluster_hits['frame'] = hits['frame']
expected_cluster_hits['column'] = hits['column']
expected_cluster_hits['row'] = hits['row']
expected_cluster_hits['charge'] = hits['charge']
expected_cluster_hits['is_seed'] = [0, 1, 0, 1]
expected_cluster_hits['cluster_size'] = [2, 2, 2, 2]
expected_cluster_hits['n_cluster'] = [1, 1, 1, 1]
# Test results
self.assertTrue(np.array_equal(clusters, expected_clusters))
self.assertTrue(np.array_equal(cluster_hits, expected_cluster_hits))
# Initialize Clusterizer
clusterizer = HitClusterizer(pure_python=self.pure_python, min_hit_charge=0, max_hit_charge=13, charge_correction=1, charge_weighted_clustering=True, column_cluster_distance=2, row_cluster_distance=2, frame_cluster_distance=4, ignore_same_hits=True)
hits = create_hits(n_hits=10, max_column=100, max_row=100, max_frame=1, max_charge=2)
cluster_hits, clusters = clusterizer.cluster_hits(hits) # cluster hits
# Define expected output
expected_clusters = np.zeros(shape=(4, ), dtype=default_clusters_dtype)
expected_clusters['event_number'] = [0, 1, 2, 3]
expected_clusters['n_hits'] = [3, 3, 3, 1]
expected_clusters['charge'] = [1, 2, 1, 1]
expected_clusters['seed_column'] = [2, 4, 8, 10]
expected_clusters['seed_row'] = [3, 7, 15, 19]
expected_clusters['mean_column'] = [2.0, 5.0, 8.0, 10.0]
expected_clusters['mean_row'] = [3.0, 9.0, 15.0, 19.0]
# Define expected output
expected_cluster_hits = np.zeros(shape=(10, ), dtype=default_cluster_hits_dtype)
expected_cluster_hits['event_number'] = hits['event_number']
expected_cluster_hits['frame'] = hits['frame']
expected_cluster_hits['column'] = hits['column']
expected_cluster_hits['row'] = hits['row']
expected_cluster_hits['charge'] = hits['charge']
expected_cluster_hits['is_seed'] = [0, 1, 0, 1, 0, 0, 0, 1, 0, 1]
expected_cluster_hits['cluster_size'] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 1]
expected_cluster_hits['n_cluster'] = 1
# Test results
self.assertTrue(np.array_equal(clusters, expected_clusters))
self.assertTrue(np.array_equal(cluster_hits, expected_cluster_hits))
def test_cluster_cuts(self):
# Create some fake data
hits = np.ones(shape=(2, ), dtype=default_hits_dtype)
hits[0]['column'], hits[0]['row'], hits[0]['charge'], hits[0]['event_number'] = 17, 36, 30, 19
hits[1]['column'], hits[1]['row'], hits[1]['charge'], hits[1]['event_number'] = 18, 36, 6, 19
# Create clusterizer object
clusterizer = HitClusterizer(pure_python=self.pure_python, min_hit_charge=0, max_hit_charge=13, charge_correction=1, charge_weighted_clustering=True, column_cluster_distance=2, row_cluster_distance=2, frame_cluster_distance=4, ignore_same_hits=True)
# Case 1: Test max hit charge cut, accept all hits
clusterizer.set_max_hit_charge(30) # only add hits with charge <= 30
cluster_hits, clusters = clusterizer.cluster_hits(hits) # cluster hits
# Check cluster
expected_clusters = np.zeros(shape=(1, ), dtype=default_clusters_dtype)
expected_clusters['event_number'] = [19]
expected_clusters['n_hits'] = [2]
expected_clusters['charge'] = [36]
expected_clusters['seed_column'] = [17]
expected_clusters['seed_row'] = [36]
expected_clusters['mean_column'] = [17.18420982]
expected_clusters['mean_row'] = [36.0]
# Check cluster hit info
expected_cluster_hits = np.zeros(shape=(2, ), dtype=default_cluster_hits_dtype)
expected_cluster_hits['event_number'] = hits['event_number']
expected_cluster_hits['frame'] = hits['frame']
expected_cluster_hits['column'] = hits['column']
expected_cluster_hits['row'] = hits['row']
expected_cluster_hits['charge'] = hits['charge']
expected_cluster_hits['is_seed'] = [1, 0]
expected_cluster_hits['cluster_size'] = [2, 2]
expected_cluster_hits['n_cluster'] = 1
# Test results
self.assertTrue(np.array_equal(clusters, expected_clusters))
self.assertTrue(np.array_equal(cluster_hits, expected_cluster_hits))
# Case 2: Test max hit charge cut, omit hits with charge > 29
hits['event_number'] = 20
clusterizer.set_max_hit_charge(29) # only add hits with charge <= 30
cluster_hits, clusters = clusterizer.cluster_hits(hits) # cluster hits
# Check cluster
expected_clusters = np.zeros(shape=(1, ), dtype=default_clusters_dtype)
expected_clusters['event_number'] = [20]
expected_clusters['n_hits'] = [1]
expected_clusters['charge'] = [6]
expected_clusters['seed_column'] = [18]
expected_clusters['seed_row'] = [36]
expected_clusters['mean_column'] = [18.0]
expected_clusters['mean_row'] = [36.0]
# Check cluster hit info
expected_cluster_hits = np.zeros(shape=(2, ), dtype=default_cluster_hits_dtype)
expected_cluster_hits['event_number'] = hits['event_number']
expected_cluster_hits['frame'] = hits['frame']
expected_cluster_hits['column'] = hits['column']
expected_cluster_hits['row'] = hits['row']
expected_cluster_hits['charge'] = hits['charge']
expected_cluster_hits['cluster_ID'] = [-1, 0]
expected_cluster_hits['is_seed'] = [0, 1]
expected_cluster_hits['cluster_size'] = [0, 1]
expected_cluster_hits['n_cluster'] = [1, 1]
# Test results
self.assertTrue(np.array_equal(clusters, expected_clusters))
self.assertTrue(np.array_equal(cluster_hits, expected_cluster_hits))
# Case 3: Add the same hit within an event
# Create some fake data
hits = np.ones(shape=(3, ), dtype=default_hits_dtype)
hits[0]['column'], hits[0]['row'], hits[0]['charge'], hits[0]['event_number'] = 18, 36, 6, 19
hits[1]['column'], hits[1]['row'], hits[1]['charge'], hits[1]['event_number'] = 18, 36, 6, 19
hits[2]['column'], hits[2]['row'], hits[2]['charge'], hits[2]['event_number'] = 18, 38, 6, 19
expected_cluster_hits = np.zeros(shape=(3, ), dtype=default_cluster_hits_dtype)
expected_clusters = np.zeros(shape=(1, ), dtype=default_clusters_dtype)
expected_cluster_hits['event_number'] = hits['event_number']
expected_cluster_hits['frame'] = hits['frame']
expected_cluster_hits['column'] = hits['column']
expected_cluster_hits['row'] = hits['row']
expected_cluster_hits['charge'] = hits['charge']
expected_cluster_hits['cluster_ID'] = [0, -2, 0]
expected_cluster_hits['is_seed'] = [1, 0, 0]
expected_cluster_hits['cluster_size'] = [2, 0, 2]
expected_cluster_hits['n_cluster'] = [1, 1, 1]
expected_clusters['event_number'] = [19]
expected_clusters['n_hits'] = [2]
expected_clusters['charge'] = [12]
expected_clusters['seed_column'] = [18]
expected_clusters['seed_row'] = [36]
expected_clusters['mean_column'] = [18.0]
expected_clusters['mean_row'] = [37.0]
clusterizer.ignore_same_hits(True) # If a hit occurred 2 times in an event it is ignored and gets the cluster index -2
cluster_hits, clusters = clusterizer.cluster_hits(hits) # Cluster hits
# Test results
self.assertTrue(np.array_equal(clusters, expected_clusters))
self.assertTrue(np.array_equal(cluster_hits, expected_cluster_hits))
clusterizer.ignore_same_hits(False) # If a hit occurred 2 times in an event it is used as a normal hit
cluster_hits, clusters = clusterizer.cluster_hits(hits) # Cluster hits
expected_cluster_hits['cluster_ID'] = [0, 0, 0]
expected_cluster_hits['is_seed'] = [1, 0, 0]
expected_cluster_hits['cluster_size'] = [3, 3, 3]
expected_cluster_hits['n_cluster'] = [1, 1, 1]
expected_clusters['n_hits'] = [3]
expected_clusters['charge'] = [18]
expected_clusters['mean_row'] = [(2 * 36 + 38) / 3.0]
# Test results
self.assertTrue(np.array_equal(clusters, expected_clusters))
self.assertTrue(np.array_equal(cluster_hits, expected_cluster_hits))
def test_set_end_of_cluster_function(self):
# Initialize clusterizer object
clusterizer = HitClusterizer(pure_python=self.pure_python, min_hit_charge=0, max_hit_charge=13, charge_correction=1, charge_weighted_clustering=True, column_cluster_distance=2, row_cluster_distance=2, frame_cluster_distance=4, ignore_same_hits=True)
hits = create_hits(n_hits=10, max_column=100, max_row=100, max_frame=1, max_charge=2)
# Define expected output
modified_clusters_descr = default_clusters_descr[:]
modified_clusters_descr.append(('seed_charge', 'f4'))
expected_clusters = np.zeros(shape=(4, ), dtype=np.dtype(modified_clusters_descr))
expected_clusters['event_number'] = [0, 1, 2, 3]
expected_clusters['n_hits'] = [3, 3, 3, 1]
expected_clusters['charge'] = [1, 2, 1, 1]
expected_clusters['seed_column'] = [2, 4, 8, 10]
expected_clusters['seed_row'] = [3, 7, 15, 19]
expected_clusters['mean_column'] = [2.0, 5.0, 8.0, 10.0]
expected_clusters['mean_row'] = [3.0, 9.0, 15.0, 19.0]
expected_clusters['seed_charge'] = [1., 1., 1., 1.]
expected_cluster_hits = np.zeros(shape=(10, ), dtype=default_cluster_hits_dtype)
expected_cluster_hits['event_number'] = hits['event_number']
expected_cluster_hits['frame'] = hits['frame']
expected_cluster_hits['column'] = hits['column']
expected_cluster_hits['row'] = hits['row']
expected_cluster_hits['charge'] = hits['charge']
expected_cluster_hits['is_seed'] = [0, 1, 0, 1, 0, 0, 0, 1, 0, 1]
expected_cluster_hits['cluster_size'] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 1]
expected_cluster_hits['n_cluster'] = 1
clusterizer.add_cluster_field(description=('seed_charge', 'f4')) # Add an additional field to hold the result of the end_of_cluster_function calculation (here: seed charge)
# The end of loop function has to define all of the following arguments, even when they are not used
# It has to be compile able by numba in non python mode
# This end_of_cluster_function sets the additional seed_charge field
def end_of_cluster_function(hits, clusters, cluster_size, cluster_hit_indices, cluster_index, cluster_id, charge_correction, noisy_pixels, disabled_pixels, seed_hit_index):
clusters[cluster_index]['seed_charge'] = hits[seed_hit_index]['charge']
clusterizer.set_end_of_cluster_function(end_of_cluster_function) # Set the new end_of_cluster_function
# Main function
cluster_hits, clusters = clusterizer.cluster_hits(hits) # cluster hits
# Test results
self.assertTrue(np.array_equal(clusters, expected_clusters))
self.assertTrue(np.array_equal(cluster_hits, expected_cluster_hits))
end_of_cluster_function_jitted = clusterizer._jitted(end_of_cluster_function)
clusterizer.set_end_of_cluster_function(end_of_cluster_function_jitted) # Set jitted end_of_cluster_function
# Main function
cluster_hits, clusters = clusterizer.cluster_hits(hits) # cluster hits
# Test results
self.assertTrue(np.array_equal(clusters, expected_clusters))
self.assertTrue(np.array_equal(cluster_hits, expected_cluster_hits))
def test_set_end_of_event_function(self):
# Initialize clusterizer object
clusterizer = HitClusterizer(pure_python=self.pure_python, min_hit_charge=0, max_hit_charge=13, charge_correction=1, charge_weighted_clustering=True, column_cluster_distance=2, row_cluster_distance=2, frame_cluster_distance=4, ignore_same_hits=True)
hits = create_hits(n_hits=10, max_column=100, max_row=100, max_frame=1, max_charge=2)
# Define expected output
modified_clusters_descr = default_clusters_descr[:]
modified_clusters_descr.append(('n_cluster', '<u2'))
expected_clusters = np.zeros(shape=(4, ), dtype=np.dtype(modified_clusters_descr))
expected_clusters['event_number'] = [0, 1, 2, 3]
expected_clusters['n_hits'] = [3, 3, 3, 1]
expected_clusters['charge'] = [1, 2, 1, 1]
expected_clusters['seed_column'] = [2, 4, 8, 10]
expected_clusters['seed_row'] = [3, 7, 15, 19]
expected_clusters['mean_column'] = [2.0, 5.0, 8.0, 10.0]
expected_clusters['mean_row'] = [3.0, 9.0, 15.0, 19.0]
expected_clusters['n_cluster'] = [1, 1, 1, 1]
expected_cluster_hits = np.zeros(shape=(10, ), dtype=default_cluster_hits_dtype)
expected_cluster_hits['event_number'] = hits['event_number']
expected_cluster_hits['frame'] = hits['frame']
expected_cluster_hits['column'] = hits['column']
expected_cluster_hits['row'] = hits['row']
expected_cluster_hits['charge'] = hits['charge']
expected_cluster_hits['is_seed'] = [0, 1, 0, 1, 0, 0, 0, 1, 0, 1]
expected_cluster_hits['cluster_size'] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 1]
expected_cluster_hits['n_cluster'] = 1
clusterizer.add_cluster_field(description=('n_cluster', '<u2')) # Add an additional field to hold the result of the end_of_cluster_function calculation (here: seed charge)
# The end of loop function has to define all of the following arguments, even when they are not used
# It has to be compile able by numba in non python mode
# This end_of_event_function sets the additional n_cluster field
def end_of_event_function(hits, clusters, start_event_hit_index, stop_event_hit_index, start_event_cluster_index, stop_event_cluster_index):
# Set the number of clusters info (n_cluster)for clusters of the event
for i in range(start_event_cluster_index, stop_event_cluster_index):
clusters[i]['n_cluster'] = hits["n_cluster"][start_event_hit_index]
clusterizer.set_end_of_event_function(end_of_event_function) # Set the new end_of_cluster_function
# Main function
cluster_hits, clusters = clusterizer.cluster_hits(hits) # cluster hits
# Test results
self.assertTrue(np.array_equal(clusters, expected_clusters))
self.assertTrue(np.array_equal(cluster_hits, expected_cluster_hits))
end_of_event_function_jitted = clusterizer._jitted(end_of_event_function)
clusterizer.set_end_of_event_function(end_of_event_function_jitted) # Set jitted end_of_cluster_function
# Main function
cluster_hits, clusters = clusterizer.cluster_hits(hits) # cluster hits
# Test results
self.assertTrue(np.array_equal(clusters, expected_clusters))
self.assertTrue(np.array_equal(cluster_hits, expected_cluster_hits))
def test_chunked_clustering(self): # Big tables have to be chunked and analyzed with clusterizer.cluster_hits(hits_chunk) calls
clusterizer = HitClusterizer(
pure_python=self.pure_python,
min_hit_charge=0,
max_hit_charge=13,
column_cluster_distance=2,
row_cluster_distance=2,
frame_cluster_distance=4,
ignore_same_hits=True)
n_hits = 100
hits = create_hits(n_hits=n_hits, max_column=100, max_row=100, max_frame=1, max_charge=2)
cluster_hits, clusters = clusterizer.cluster_hits(hits) # Cluster all at once
cluster_hits, clusters = cluster_hits.copy(), clusters.copy() # Be aware that the returned array are references to be stored! An additional call of clusterizer.cluster_hits will overwrite the data
cluster_hits_chunked, clusters_chunked = None, None
chunk_size = 6 # Chunk size has to be chosen to not split events between chunks!
for i in range(int(n_hits / chunk_size + 1)): # Cluster in chunks
hits_chunk = hits[i * chunk_size:i * chunk_size + chunk_size]
cluster_hits_chunk, clusters_chunk = clusterizer.cluster_hits(hits_chunk)
if cluster_hits_chunked is None:
cluster_hits_chunked = cluster_hits_chunk.copy()
else:
cluster_hits_chunked = np.append(cluster_hits_chunked, cluster_hits_chunk)
if clusters_chunked is None:
clusters_chunked = clusters_chunk.copy()
else:
clusters_chunked = np.append(clusters_chunked, clusters_chunk)
# Test results
self.assertTrue(np.array_equal(clusters, clusters_chunked))
self.assertTrue(np.array_equal(cluster_hits, cluster_hits_chunked))
if __name__ == '__main__':
suite = unittest.TestLoader().loadTestsFromTestCase(TestClusterizer)
unittest.TextTestRunner(verbosity=2).run(suite)
|
python
|
# -*- coding: utf-8 -*-
# Copyright CERN since 2022
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Storage-Consistency-Actions is a daemon to delete dark files, and re-subscribe the missing ones, identified previously in a Storage-Consistency-Scanner run.
"""
import csv
import glob
import json
import logging
import os
import re
import socket
import time
import threading
import traceback
from datetime import datetime
from rucio.common import exception
from rucio.common.logging import formatted_logger, setup_logging
from rucio.common.types import InternalAccount, InternalScope
from rucio.common.utils import daemon_sleep
from rucio.core.heartbeat import live, die, sanity_check
from rucio.core.monitor import record_gauge, record_counter
from rucio.core.quarantined_replica import add_quarantined_replicas
from rucio.core.replica import __exist_replicas, update_replicas_states
from rucio.core.rse import list_rses, get_rse_id
from rucio.rse.rsemanager import lfns2pfns, get_rse_info, parse_pfns
# FIXME: these are needed by local version of declare_bad_file_replicas()
# TODO: remove after move of this code to core/replica.py - see https://github.com/rucio/rucio/pull/5068
from rucio.db.sqla import models
from rucio.db.sqla.session import transactional_session
from rucio.db.sqla.constants import (ReplicaState, BadFilesStatus)
from sqlalchemy.exc import DatabaseError, IntegrityError
from sqlalchemy.orm.exc import FlushError
graceful_stop = threading.Event()
# FIXME: declare_bad_file_replicas will be used directly from core/replica.py when handling of DID is added there
# TODO: remove after move to core/replica.py
@transactional_session
def declare_bad_file_replicas(dids, rse_id, reason, issuer,
status=BadFilesStatus.BAD, scheme=None, session=None):
"""
Declare a list of bad replicas.
:param dids: The list of DIDs.
:param rse_id: The RSE id.
:param reason: The reason of the loss.
:param issuer: The issuer account.
:param status: Either BAD or SUSPICIOUS.
:param scheme: The scheme of the PFNs.
:param session: The database session in use.
"""
unknown_replicas = []
replicas = []
for did in dids:
scope = InternalScope(did['scope'], vo=issuer.vo)
name = did['name']
path = None
scope, name, path, exists, already_declared, size = __exist_replicas(rse_id, [(scope, name, path)],
session=session)[0]
if exists and ((str(status) == str(BadFilesStatus.BAD) and not
already_declared) or str(status) == str(BadFilesStatus.SUSPICIOUS)):
replicas.append({'scope': scope, 'name': name, 'rse_id': rse_id,
'state': ReplicaState.BAD})
new_bad_replica = models.BadReplicas(scope=scope, name=name, rse_id=rse_id,
reason=reason, state=status, account=issuer,
bytes=size)
new_bad_replica.save(session=session, flush=False)
session.query(models.Source).filter_by(scope=scope, name=name,
rse_id=rse_id).delete(synchronize_session=False)
else:
if already_declared:
unknown_replicas.append('%s:%s %s' % (did['scope'], did['name'],
'Already declared'))
else:
unknown_replicas.append('%s:%s %s' % (did['scope'], did['name'],
'Unknown replica'))
if str(status) == str(BadFilesStatus.BAD):
# For BAD file, we modify the replica state, not for suspicious
try:
# there shouldn't be any exceptions since all replicas exist
update_replicas_states(replicas, session=session)
except exception.UnsupportedOperation:
raise exception.ReplicaNotFound("One or several replicas don't exist.")
try:
session.flush()
except IntegrityError as error:
raise exception.RucioException(error.args)
except DatabaseError as error:
raise exception.RucioException(error.args)
except FlushError as error:
raise exception.RucioException(error.args)
return unknown_replicas
# TODO: This is Igor's Stats class.It will be factored out as a separate class in a future version of the code.
# - Igor Mandrichenko <[email protected]>, 2018
class Stats(object):
def __init__(self, path):
self.path = path
self.Data = {}
def __getitem__(self, name):
return self.Data[name]
def __setitem__(self, name, value):
self.Data[name] = value
self.save()
def get(self, name, default=None):
return self.Data.get(name, default)
def update(self, data):
self.Data.update(data)
self.save()
def save(self):
try:
with open(self.path, "r") as f:
data = f.read()
except:
data = ""
data = json.loads(data or "{}")
data.update(self.Data)
open(self.path, "w").write(json.dumps(data, indent=4))
def write_stats(my_stats, stats_file, stats_key=None):
if stats_file:
stats = {}
if os.path.isfile(stats_file):
with open(stats_file, "r") as f:
stats = json.loads(f.read())
if stats_key:
stats[stats_key] = my_stats
else:
stats.update(my_stats)
open(stats_file, "w").write(json.dumps(stats))
# TODO: Consider throwing an error here if stats_file is not defined
# TODO: Consider breaking the logic into two functions, following discussion in https://github.com/rucio/rucio/pull/5120#discussion_r792673599
def cmp2dark(new_list, old_list, comm_list, stats_file):
t0 = time.time()
stats_key = "cmp2dark"
my_stats = stats = None
with open(new_list, "r") as a_list, open(old_list, "r") as b_list,\
open(comm_list, "w") as out_list:
if stats_file is not None:
stats = Stats(stats_file)
my_stats = {
"elapsed": None,
"start_time": t0,
"end_time": None,
"new_list": new_list,
"old_list": old_list,
"out_list": out_list.name,
"status": "started"
}
stats[stats_key] = my_stats
a_set = set(line.strip() for line in a_list)
b_set = set(line.strip() for line in b_list)
# The intersection of the two sets is what can be deleted
out_set = a_set & b_set
out_list.writelines("\n".join(sorted(list(out_set))))
t1 = time.time()
if stats_file:
my_stats.update({
"elapsed": t1 - t0,
"end_time": t1,
"status": "done"
})
stats[stats_key] = my_stats
# TODO: Changes suggested in https://github.com/rucio/rucio/pull/5120#discussion_r792681245
def parse_filename(fn):
# filename looks like this:
#
# <rse>_%Y_%m_%d_%H_%M_<type>.<extension>
#
fn, ext = fn.rsplit(".", 1)
parts = fn.split("_")
typ = parts[-1]
timestamp_parts = parts[-6:-1]
timestamp = "_".join(timestamp_parts)
rse = "_".join(parts[:-6])
return rse, timestamp, typ, ext
def list_cc_scanned_rses(path):
files = glob.glob(f"{path}/*_stats.json")
rses = set()
for path in files:
fn = path.rsplit("/", 1)[-1]
rse, timestamp, typ, ext = parse_filename(fn)
rses.add(rse)
return sorted(list(rses))
def list_runs_by_age(path, rse, reffile):
files = glob.glob(f"{path}/{rse}_*_stats.json")
r, reftimestamp, typ, ext = parse_filename(reffile)
reftime = datetime.strptime(reftimestamp, '%Y_%m_%d_%H_%M')
runs = {}
for path in files:
fn = path.rsplit("/", 1)[-1]
if os.stat(path).st_size > 0:
r, timestamp, typ, ext = parse_filename(fn)
filetime = datetime.strptime(timestamp, '%Y_%m_%d_%H_%M')
fileagedays = (reftime - filetime).days
if r == rse:
# if the RSE was X, then rses like X_Y will appear in this list too,
# so double check that we get the right RSE
runs.update({path: fileagedays})
return {k: v for k, v in sorted(runs.items(), reverse=True)}
def list_runs(path, rse, nlast=0):
files = glob.glob(f"{path}/{rse}_*_stats.json")
runs = []
for path in files:
fn = path.rsplit("/", 1)[-1]
if os.stat(path).st_size > 0:
r, timestamp, typ, ext = parse_filename(fn)
if r == rse:
# if the RSE was X, then rses like X_Y will appear in this list too,
# so double check that we get the right RSE
runs.append(path)
if nlast == 0:
nlast = len(runs)
return sorted(runs, reverse=False)[-nlast:]
def list_unprocessed_runs(path, rse, nlast=0):
files = glob.glob(f"{path}/{rse}_*_stats.json")
unproc_runs = []
for path in files:
fn = path.rsplit("/", 1)[-1]
if os.stat(path).st_size > 0:
r, timestamp, typ, ext = parse_filename(fn)
if r == rse:
# if the RSE was X, then rses like X_Y will appear in this list too,
# so double check that we get the right RSE
if not was_cc_attempted(path):
unproc_runs.append(timestamp)
if nlast == 0:
nlast = len(unproc_runs)
return sorted(unproc_runs, reverse=True)[-nlast:]
def was_cc_attempted(stats_file):
try:
f = open(stats_file, "r")
except:
print("get_data: error ", stats_file)
return None
stats = json.loads(f.read())
if "cc_dark" in stats or "cc_miss" in stats:
return True
else:
return False
def was_cc_processed(stats_file):
try:
f = open(stats_file, "r")
except:
print("get_data: error ", stats_file)
return None
stats = json.loads(f.read())
cc_dark_status = ''
cc_miss_status = ''
if "cc_dark" in stats:
if "status" in stats['cc_dark']:
cc_dark_status = stats['cc_dark']['status']
if "cc_miss" in stats:
if "status" in stats['cc_miss']:
cc_miss_status = stats['cc_miss']['status']
if cc_dark_status == 'done' or cc_miss_status == 'done':
return True
else:
return False
def process_dark_files(path, scope, rse, latest_run, max_dark_fraction,
max_files_at_site, old_enough_run, force_proceed):
"""
Process the Dark Files.
"""
prefix = 'storage-consistency-actions (process_dark_files())'
logger = formatted_logger(logging.log, prefix + '%s')
# Create a cc_dark section in the stats file
t0 = time.time()
stats_key = "cc_dark"
cc_stats = stats = None
stats = Stats(latest_run)
cc_stats = {
"start_time": t0,
"end_time": None,
"initial_dark_files": 0,
"confirmed_dark_files": 0,
"x-check_run": old_enough_run,
"status": "started"
}
stats[stats_key] = cc_stats
# Compare the two lists, and take only the dark files that are in both
latest_dark = re.sub('_stats.json$', '_D.list', latest_run)
old_enough_dark = re.sub('_stats.json$', '_D.list', old_enough_run)
logger(logging.INFO, 'latest_dark = %s' % latest_dark)
logger(logging.INFO, 'old_enough_dark = %s' % old_enough_dark)
confirmed_dark = re.sub('_stats.json$', '_DeletionList.csv', latest_run)
cmp2dark(new_list=latest_dark, old_list=old_enough_dark,
comm_list=confirmed_dark, stats_file=latest_run)
###
# SAFEGUARD
# If a large fraction (larger than 'max_dark_fraction') of the files at a site
# are reported as 'dark', do NOT proceed with the deletion.
# Instead, put a warning in the _stats.json file, so that an operator can have a look.
###
# Get the number of files recorded by the scanner
dark_files = sum(1 for line in open(latest_dark))
confirmed_dark_files = sum(1 for line in open(confirmed_dark))
logger(logging.INFO, 'dark_files %d' % dark_files)
logger(logging.INFO, 'confirmed_dark_files %d' % confirmed_dark_files)
logger(logging.INFO, 'confirmed_dark_files/max_files_at_sit = %f'
% (confirmed_dark_files / max_files_at_site))
logger(logging.INFO, 'max_dark_fraction configured for this RSE: %f'
% max_dark_fraction)
# Labels for the Prometheus counters/gauges
labels = {'rse': rse}
record_gauge('storage.consistency.actions_dark_files_found',
confirmed_dark_files, labels=labels)
record_gauge('storage.consistency.actions_dark_files_confirmed',
confirmed_dark_files, labels=labels)
deleted_files = 0
if confirmed_dark_files / max_files_at_site < max_dark_fraction or force_proceed is True:
logger(logging.INFO, 'Can proceed with dark files deletion')
# Then, do the real deletion (code from DeleteReplicas.py)
issuer = InternalAccount('root')
with open(confirmed_dark, 'r') as csvfile:
reader = csv.reader(csvfile)
for name, in reader:
logger(logging.INFO, 'Processing a dark file:\n RSE %s Scope: %s Name: %s'
% (rse, scope, name))
rse_id = get_rse_id(rse=rse)
Intscope = InternalScope(scope=scope, vo=issuer.vo)
lfns = [{'scope': scope, 'name': name}]
attributes = get_rse_info(rse=rse)
pfns = lfns2pfns(rse_settings=attributes, lfns=lfns, operation='delete')
pfn_key = scope + ':' + name
url = pfns[pfn_key]
urls = [url]
paths = parse_pfns(attributes, urls, operation='delete')
replicas = [{'scope': Intscope, 'rse_id': rse_id, 'name': name,
'path': paths[url]['path'] + paths[url]['name']}]
add_quarantined_replicas(rse_id, replicas, session=None)
deleted_files += 1
labels = {'rse': rse}
record_counter('storage.consistency.actions_dark_files_deleted_counter',
delta=1, labels=labels)
# Update the stats
t1 = time.time()
cc_stats.update({
"end_time": t1,
"initial_dark_files": dark_files,
"confirmed_dark_files": deleted_files,
"status": "done"
})
stats[stats_key] = cc_stats
record_gauge('storage.consistency.actions_dark_files_deleted',
deleted_files, labels=labels)
else:
darkperc = 100. * confirmed_dark_files / max_files_at_site
logger(logging.WARNING, '\n ATTENTION: Too many DARK files! (%3.2f%%) \n\
Stopping and asking for operators help.' % darkperc)
# Update the stats
t1 = time.time()
cc_stats.update({
"end_time": t1,
"initial_dark_files": dark_files,
"confirmed_dark_files": 0,
"status": "ABORTED",
"aborted_reason": "%3.2f%% dark" % darkperc,
})
stats[stats_key] = cc_stats
record_gauge('storage.consistency.actions_dark_files_deleted', 0, labels=labels)
def process_miss_files(path, scope, rse, latest_run, max_miss_fraction,
max_files_at_site, old_enough_run, force_proceed):
"""
Process the Missing Replicas.
"""
prefix = 'storage-consistency-actions (process_miss_files())'
logger = formatted_logger(logging.log, prefix + '%s')
latest_miss = re.sub('_stats.json$', '_M.list', latest_run)
logger(logging.INFO, 'latest_missing = %s' % latest_miss)
# Create a cc_miss section in the stats file
t0 = time.time()
stats_key = "cc_miss"
cc_stats = stats = None
stats = Stats(latest_run)
cc_stats = {
"start_time": t0,
"end_time": None,
"initial_miss_files": 0,
"confirmed_miss_files": 0,
"x-check_run": old_enough_run,
"status": "started"
}
stats[stats_key] = cc_stats
###
# SAFEGUARD
# If a large fraction (larger than 'max_miss_fraction') of the files at a site are reported as
# 'missing', do NOT proceed with the invalidation.
# Instead, put a warning in the _stats.json file, so that an operator can have a look.
###
miss_files = sum(1 for line in open(latest_miss))
logger(logging.INFO, 'miss_files = %d' % miss_files)
logger(logging.INFO, 'miss_files/max_files_at_site = %f' % (miss_files / max_files_at_site))
logger(logging.INFO, 'max_miss_fraction configured for this RSE (in %%): %f' % max_miss_fraction)
labels = {'rse': rse}
record_gauge('storage.consistency.actions_miss_files_found', miss_files, labels=labels)
if miss_files / max_files_at_site < max_miss_fraction or force_proceed is True:
logger(logging.INFO, 'Can proceed with missing files retransfer')
invalidated_files = 0
issuer = InternalAccount('root')
with open(latest_miss, 'r') as csvfile:
reader = csv.reader(csvfile)
reason = "invalidating damaged/missing replica"
for name, in reader:
logger(logging.INFO, 'Processing invalid replica:\n RSE: %s Scope: %s Name: %s'
% (rse, scope, name))
rse_id = get_rse_id(rse=rse)
dids = [{'scope': scope, 'name': name}]
declare_bad_file_replicas(dids=dids, rse_id=rse_id, reason=reason,
issuer=issuer)
invalidated_files += 1
record_counter('storage.consistency.actions_miss_files_to_retransfer_counter',
delta=1, labels=labels)
# TODO: The stats updating can be refactored in a future version of the Stats class.
# See: https://github.com/rucio/rucio/pull/5120#discussion_r792688019
# Update the stats
t1 = time.time()
cc_stats.update({
"end_time": t1,
"initial_miss_files": miss_files,
"confirmed_miss": invalidated_files,
"status": "done"
})
stats[stats_key] = cc_stats
record_gauge('storage.consistency.actions_miss_files_to_retransfer',
invalidated_files, labels=labels)
else:
missperc = 100. * miss_files / max_files_at_site
logger(logging.WARNING, '\n Too many MISS files (%3.2f%%)!\n\
Stopping and asking for operators help.' % missperc)
# Update the stats
t1 = time.time()
cc_stats.update({
"end_time": t1,
"initial_miss_files": miss_files,
"confirmed_miss_files": 0,
"status": "ABORTED",
"aborted_reason": "%3.2f%% miss" % missperc,
})
stats[stats_key] = cc_stats
record_gauge('storage.consistency.actions_miss_files_to_retransfer',
0, labels=labels)
def deckard(scope, rse, dark_min_age, dark_threshold_percent, miss_threshold_percent,
force_proceed, scanner_files_path):
"""
The core of CC actions.
Use the results of the CC Scanner to check one RSE for confirmed dark files and delete them.
Re-subscribe missing files.
"""
prefix = 'storage-consistency-actions (running original deckard code)'
logger = formatted_logger(logging.log, prefix + '%s')
logger(logging.INFO, 'Now running the original deckard code...')
path = scanner_files_path
minagedark = dark_min_age
max_dark_fraction = dark_threshold_percent
max_miss_fraction = miss_threshold_percent
logger(logging.INFO, 'Scanner Output Path: %s \n minagedark: %d \n max_dark_fraction: %f\
\n max_miss_fraction: %f' % (path, minagedark, max_dark_fraction, max_miss_fraction))
scanner_files = 0
dbdump_before_files = 0
dbdump_after_files = 0
# Check if we have any scans available for that RSE
if rse in list_cc_scanned_rses(path):
# Have any of them still not been processed?
# (no CC_dark or CC-miss sections in _stats.json)
np_runs = list_unprocessed_runs(path, rse)
logger(logging.INFO, 'Found %d unprocessed runs for RSE: %s' % (len(np_runs), rse))
latest_run = list_runs(path, rse, 1)[0]
# Get the number of files recorded by the scanner
logger(logging.INFO, 'latest_run %s' % latest_run)
with open(latest_run, "r") as f:
fstats = json.loads(f.read())
if "scanner" in fstats:
scanner_stats = fstats["scanner"]
if "total_files" in scanner_stats:
scanner_files = scanner_stats["total_files"]
else:
scanner_files = 0
for root_info in scanner_stats["roots"]:
scanner_files += root_info["files"]
if "dbdump_before" in fstats:
dbdump_before_files = fstats["dbdump_before"]["files"]
if "dbdump_after" in fstats:
dbdump_after_files = fstats["dbdump_after"]["files"]
max_files_at_site = max(scanner_files, dbdump_before_files, dbdump_after_files)
if max_files_at_site == 0:
logger(logging.WARNING, '\n No files reported by scanner for this run.\
Will skip processing.')
logger(logging.INFO, 'scanner_files: %d \n dbdump_before_files: %d\
\n dbdump_after_files: %d \n max_files_at_site: %d' %
(scanner_files, dbdump_before_files, dbdump_after_files, max_files_at_site))
# Was the latest run ever attempted to be processed?
logger(logging.INFO, 'Was the latest run %s attempted to be processed already? - %s'
% (latest_run, was_cc_attempted(latest_run)))
if max_files_at_site > 0 and (was_cc_attempted(latest_run) is False or force_proceed is True):
logger(logging.INFO, 'Will try to process the run')
# Is there another run, at least "minagedark" old, for this RSE?
old_enough_run = None
d = list_runs_by_age(path, rse, latest_run)
if len([k for k in d if d[k] > minagedark]) > 0:
# i.e. there is another dark run with appropriate age
old_enough_run = [k for k in d if d[k] > minagedark][0]
logger(logging.INFO, 'Found another run %d days older than the latest.\
\n Will compare the dark files in the two.' % minagedark)
logger(logging.INFO, 'The first %d days older run is: %s'
% (minagedark, old_enough_run))
process_dark_files(path, scope, rse, latest_run, max_dark_fraction,
max_files_at_site, old_enough_run, force_proceed)
else:
logger(logging.INFO, 'There is no other run for this RSE at least %d days older,\
so cannot safely proceed with dark files deleteion.' % minagedark)
process_miss_files(path, scope, rse, latest_run, max_miss_fraction,
max_files_at_site, old_enough_run, force_proceed)
else:
# This run was already processed
logger(logging.INFO, 'Nothing to do here')
else:
# No scans outputs are available for this RSE
logger(logging.INFO, 'No scans available for this RSE')
def deckard_loop(scope, rses, dark_min_age, dark_threshold_percent, miss_threshold_percent,
force_proceed, scanner_files_path):
prefix = 'storage-consistency-actions (deckard_loop())'
logger = formatted_logger(logging.log, prefix + '%s')
logger(logging.INFO, 'A loop over all RSEs')
for rse in rses:
logger(logging.INFO, 'Now processing RSE: %s' % rse)
deckard(scope, rse, dark_min_age, dark_threshold_percent, miss_threshold_percent,
force_proceed, scanner_files_path)
def actions_loop(once, scope, rses, sleep_time, dark_min_age, dark_threshold_percent,
miss_threshold_percent, force_proceed, scanner_files_path):
"""
Main loop to apply the CC actions
"""
hostname = socket.gethostname()
pid = os.getpid()
current_thread = threading.current_thread()
executable = 'storage-consistency-actions'
heartbeat = live(executable=executable, hostname=hostname, pid=pid, thread=current_thread)
# Make an initial heartbeat
# so that all storage-consistency-actions have the correct worker number on the next try
prefix = 'storage-consistency-actions[%i/%i] ' %\
(heartbeat['assign_thread'], heartbeat['nr_threads'])
logger = formatted_logger(logging.log, prefix + '%s')
logger(logging.INFO, 'hostname: %s pid: %d current_thread: %s' %
(hostname, pid, current_thread))
graceful_stop.wait(1)
while not graceful_stop.is_set():
try:
heartbeat = live(executable=executable, hostname=hostname, pid=pid,
thread=current_thread)
logger(logging.INFO, 'heartbeat? %s' % heartbeat)
prefix = 'storage-consistency-actions[%i/%i] ' %\
(heartbeat['assign_thread'], heartbeat['nr_threads'])
logger(logging.INFO, 'prefix: %s' % prefix)
start = time.time()
logger(logging.DEBUG, 'Start time: %f' % start)
deckard_loop(scope, rses, dark_min_age, dark_threshold_percent, miss_threshold_percent,
force_proceed, scanner_files_path)
daemon_sleep(start_time=start, sleep_time=sleep_time, graceful_stop=graceful_stop,
logger=logger)
except Exception as e:
traceback.print_exc()
logger(logging.WARNING, '\n Something went wrong here... %s' % e)
logger(logging.WARNING, '\n Something went wrong here... %s ' % (e.__class__.__name__))
if once:
break
die(executable=executable, hostname=hostname, pid=pid, thread=current_thread)
def stop(signum=None, frame=None):
"""
Graceful exit.
"""
graceful_stop.set()
def run(once=False, scope=None, rses=None, sleep_time=60, default_dark_min_age=28, default_dark_threshold_percent=1.0,
default_miss_threshold_percent=1.0, force_proceed=False, default_scanner_files_path="/var/cache/consistency-dump",
threads=1):
"""
Starts up the Consistency-Actions.
"""
setup_logging()
prefix = 'storage-consistency-actions (run())'
logger = formatted_logger(logging.log, prefix + '%s')
# TODO: These variables should be sourced from the RSE config in the future.
# For now, they are passed as arguments, and to emphasize that fact, we are re-assigning them:
dark_min_age = default_dark_min_age
dark_threshold_percent = default_dark_threshold_percent
miss_threshold_percent = default_miss_threshold_percent
scanner_files_path = default_scanner_files_path
if rses == []:
logger(logging.INFO, 'NO RSEs passed. Will loop over all writable RSEs.')
rses = [rse['rse'] for rse in list_rses({'availability_write': True})]
# Could limit it only to Tier-2s:
# rses = [rse['rse'] for rse in list_rses({'tier': 2, 'availability_write': True})]
logging.info('\n RSEs: %s' % rses)
logger(logging.INFO, '\n RSEs: %s \n run once: %r \n Sleep time: %d \n Dark min age (days): %d\
\n Dark files threshold %%: %f \n Missing files threshold %%: %f \n Force proceed: %r\
\n Scanner files path: %s ' % (rses, once, sleep_time, dark_min_age, dark_threshold_percent,
miss_threshold_percent, force_proceed, scanner_files_path))
executable = 'storage-consistency-actions'
hostname = socket.gethostname()
sanity_check(executable=executable, hostname=hostname)
# It was decided that for the time being this daemon is best executed in a single thread
# TODO: If this decicion is reversed in the future, the following line should be removed.
threads = 1
if once:
actions_loop(once, scope, rses, sleep_time, dark_min_age, dark_threshold_percent,
miss_threshold_percent, force_proceed, scanner_files_path)
else:
logging.info('Consistency Actions starting %s threads' % str(threads))
threads = [threading.Thread(target=actions_loop,
kwargs={'once': once, 'scope': scope, 'rses': rses, 'sleep_time': sleep_time,
'dark_min_age': dark_min_age,
'dark_threshold_percent': dark_threshold_percent,
'miss_threshold_percent': miss_threshold_percent,
'force_proceed': force_proceed,
'scanner_files_path': scanner_files_path}) for i in range(0, threads)]
logger(logging.INFO, 'Threads: %d' % len(threads))
[t.start() for t in threads]
# Interruptible joins require a timeout.
while threads[0].is_alive():
[t.join(timeout=3.14) for t in threads]
|
python
|
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from tests.test_files import html_doc
def mocked_requests_get(*args, **kwargs):
"""this method will be used by the mock to replace requests.get"""
class MockResponse:
def __init__(self, html, status_code):
self.html = html
self.status_code = status_code
def text(self):
return self.html
def status_code(self):
return self.status_code
if args[0] == 'http://example.com/':
return MockResponse(200, (200, html_doc.doc))
return MockResponse(404, (404, 'Not Found'))
def return_html_document():
"""Return the 'github-python-trending' html document"""
with open('tests/test_files/html-document.html', 'r') as html_file:
html_document = html_file.read()
return html_document
|
python
|
from checkov.terraform.checks.resource.base_resource_check import BaseResourceCheck
from checkov.common.models.enums import CheckResult, CheckCategories
class GoogleComputeIPForward(BaseResourceCheck):
def __init__(self):
name = "Ensure that IP forwarding is not enabled on Instances"
id = "CKV_GCP_36"
supported_resources = ['google_compute_instance']
categories = [CheckCategories.NETWORKING]
super().__init__(name=name, id=id, categories=categories, supported_resources=supported_resources)
def scan_resource_conf(self, conf):
# Instances created by GKE should be excluded because they need to have IP forwarding enabled
if conf['name'][0].startswith('gke-'):
return CheckResult.PASSED
elif 'can_ip_forward' in conf.keys():
if conf['can_ip_forward'][0]:
return CheckResult.FAILED
return CheckResult.PASSED
check = GoogleComputeIPForward()
|
python
|
import pytest
from leapp.exceptions import InvalidTagDefinitionError
from leapp.tags import Tag, get_tags, ExperimentalTag, DisabledTag
class TestTag(Tag):
name = "test-tag"
def test_tag_members_correctly_set():
assert hasattr(TestTag, 'Common') and TestTag.Common.name == 'common-test-tag'
assert hasattr(TestTag, 'Before') and TestTag.Before.name == 'before-test-tag'
assert hasattr(TestTag.Before, 'Common') and TestTag.Before.Common.name == 'common-before-test-tag'
assert hasattr(TestTag, 'After') and TestTag.After.name == 'after-test-tag'
assert hasattr(TestTag.After, 'Common') and TestTag.After.Common.name == 'common-after-test-tag'
assert not hasattr(TestTag.Common, 'Common')
assert not hasattr(TestTag.Common, 'After')
assert not hasattr(TestTag.Common, 'Before')
assert not hasattr(TestTag.After, 'Before')
assert not hasattr(TestTag.After, 'After')
assert not hasattr(TestTag.Before, 'Before')
assert not hasattr(TestTag.Before, 'After')
assert not TestTag.actors
assert not TestTag.Common.actors
assert not TestTag.Before.actors
assert not TestTag.After.actors
assert not TestTag.Before.Common.actors
assert not TestTag.After.Common.actors
assert not hasattr(TestTag, 'parent')
assert TestTag.Common.parent is TestTag
assert TestTag.Before.parent is TestTag
assert TestTag.After.parent is TestTag
assert TestTag.Before.Common.parent is TestTag
assert TestTag.After.Common.parent is TestTag
def test_get_tags():
tags = [tag for tag in get_tags() if tag not in (ExperimentalTag, DisabledTag)]
assert len(tags) % 6 == 0
assert TestTag in tags
assert TestTag.Common in tags
assert TestTag.Before in tags
assert TestTag.After in tags
assert TestTag.Before.Common in tags
assert TestTag.After.Common in tags
TestTag.name = None
with pytest.raises(InvalidTagDefinitionError):
get_tags()
|
python
|
from django.contrib import admin
from .models import name_cat,items_cat
from django.db import models
from mdeditor.widgets import MDEditorWidget
# Register your models here.
@admin.register(name_cat)
class Name_admin(admin.ModelAdmin):
prepopulated_fields = { 'slug': ('name',)}
@admin.register(items_cat)
class Items_index(admin.ModelAdmin):
prepopulated_fields={'slug':('name',)}
list_display=['name','categoy']
formfield_overrides = {
models.TextField:{'widget':MDEditorWidget}
}
|
python
|
import json
import os
from solc import compile_standard
from web3.contract import ConciseContract
from web3 import Web3, HTTPProvider
OUTPUT_DIR = os.environ['HOME'] + '/plasma-dex/plasma/root_chain/build/contracts'
class Deployer(object):
def __init__(self, eth_node_endpoint):
provider = HTTPProvider(eth_node_endpoint)
self.w3 = Web3(provider)
@staticmethod
def get_contract_data(contract_name):
"""Returns the contract data for a given contract
Args:
contract_name (str): Name of the contract to return.
Returns:
str, str: ABI and bytecode of the contract
"""
contract_data_path = OUTPUT_DIR + '/{0}.json'.format(contract_name)
with open(contract_data_path, 'r') as contract_data_file:
contract_data = json.load(contract_data_file)
abi = contract_data['abi']
return abi
def get_contract_at_address(self, contract_name, address, concise=True):
"""Returns a Web3 instance of the given contract at the given address
Args:
contract_name (str): Name of the contract. Must already be compiled.
address (str): Address of the contract.
concise (bool): Whether to return a Contract or ConciseContract instance.
Returns:
Contract: A Web3 contract instance.
"""
abi = self.get_contract_data(contract_name)
contract_instance = self.w3.eth.contract(abi=abi, address=address)
return ConciseContract(contract_instance) if concise else contract_instance
|
python
|
# Unit test for bayesnet_inf_autodiff
import numpy as onp # original numpy
import jax.numpy as np
from jax import grad
import bayesnet_inf_autodiff as bn
# Example from fig 3 of Darwiche'03 paper
# Note that we assume 0=False, 1=True so we order the entries differently
thetaA = np.array([0.5, 0.5]) # thetaA[a] = P(A=a)
thetaB = np.array([[1.0, 0.0], [0.0, 1.0]]) # thetaB[b,a] = P(B=b|A=a)
thetaC = np.array([[0.8, 0.2], [0.2, 0.8]]) # thetaC[c,a] = P(C=c|A=a)
params = {'A': thetaA, 'B': thetaB, 'C':thetaC}
cardinality = {name: np.shape(cpt)[0] for name, cpt in params.items()}
dag = {'A':[], 'B':['A'], 'C':['A']}
assert bn.make_einsum_string(dag) == 'A,B,C,A,BA,CA->'
#evidence = [1, None, 0] # a=T, c=F
evidence = {'A':1, 'C':0}
evectors = bn.make_evidence_vectors(cardinality, evidence)
fe = bn.network_poly(dag, params, evectors) # probability of evidence
assert fe==0.1
# compare numbers to table 1 of Darwiche03
f = lambda ev: bn.network_poly(dag, params, ev)
grads = grad(f)(evectors) # list of derivatives wrt evectors
assert np.allclose(grads['A'], [0.4, 0.1]) # A
assert np.allclose(grads['B'], [0.0, 0.1]) # B
assert np.allclose(grads['C'], [0.1, 0.4]) # C
prob_ev, probs = bn.marginal_probs(dag, params, evidence)
assert prob_ev==0.1
assert np.allclose(probs['B'], [0.0, 1.0])
|
python
|
#! /usr/bin/env python
#IDN
#This node subscribes to the topics which include motor RPM speeds published by arduino analog outputs
def wheels2twist(w1,w2,w3,w4):
l_x = 0.33
r = 0.0762*2
l_y = 0.33
d=1/(l_x+l_y)
I_J = np.array([[ 1, 1, 1, 1 ],
[ 1, -1, -1, 1 ],
[1*d, -1*d, 1*d, -1*d]])*r/4
motor_vels = np.array([w1, w2, w3, w4])
motor_vels.shape = (4,1)
tw = np.dot(I_J, motor_vels)
return tw.flatten().tolist()
import rospy, numpy as np
from std_msgs.msg import Float32MultiArray,Int16MultiArray, Float32
from geometry_msgs.msg import Twist
rospy.init_node('fwd_kinematics', anonymous=True)
w = [0,0,0,0]
wheel_rpm=94 #just change this value, if you have changed the ESCON Studio motor speed parameters
kinematic_constant=3.14159*wheel_rpm/2/30/1000
#(-2V,2V) voltage values are turning into RPM- then twist values
def callback(msg):
global w, kinematic_constant
w[0]=msg.data[0]*kinematic_constant*-1 #motor turning direction is reversed(mechanically)
w[1]=msg.data[1]*kinematic_constant
w[2]=msg.data[2]*kinematic_constant*-1 #motor turning direction is reversed(mechanically)
w[3]=msg.data[3]*kinematic_constant
tw=wheels2twist(w[0],w[1],w[2],w[3])
twists = Float32MultiArray(data=tw)
pub.publish(twists)
print "Fw.Kin. Ready"
#### definition of publisher/subscriber and services ###
pub = rospy.Publisher('/twist_speeds', Float32MultiArray, queue_size=10)
rospy.Subscriber('/motor_vel_fb', Int16MultiArray, callback)
rospy.spin()
|
python
|
import serial
import config
from time import sleep
config.x = 0
config.y = 0
config.PORT = '/dev/ttyACM0'
ser = None
def setup():
global ser
ser = serial.Serial(config.PORT, 9600, timeout=1)
st = serial_read()
print(st)
def serial_write(s):
t = s
global ser
if ser is None:
return "Error"
ser.write(s.encode('utf-8'))
return serial_read(t)
def serial_read(cmd=""):
global ser
while True:
if ser.isOpen():
rl = ser.readline()
else:
print("Serial is not available")
continue
try:
rl = rl.decode('utf-8')
except UnicodeDecodeError:
rl = str(rl)
if(rl == "2" or rl == "3" or rl == "4" or rl == "5" or rl == "6" or rl == "7" or rl == "8" or rl == "9"):
print('POSITIONING DONE')
return('SUCCESS')
elif(rl == "SETUP DONE"):
return rl
elif(rl == ""):
pass
else:
print('msg recieve='+rl)
return rl
def get_XY():
return [config.x, config.y]
def reset():
if(serial.writeTimeoutError("0") == "RST"):
config.x = 0
config.y = 0
#300 mm for long_x positioning
def long_x_positive():
print("long_x+ positioning")
if config.x > 700:
print("out of range long_x+")
return false
if(serial_write("2") == 'SUCCESS'):
print('long_x+ success')
config.x += 300
return True
else:
print("long_x+ error")
return False
def long_x_negative():
print("long_x- positioning")
if config.x < 300:
print("out of range long_x-")
return False
if(serial_write("3") == 'SUCCESS'):
print('long_x- success')
config.x -= 300
return True
else:
print("long_x- error")
return False
#50mm for short_x positioning
def short_x_positive():
print("short_x+ positioning")
if config.x > 950:
print("out of range short_x+")
return False
if(serial_write("4") == 'SUCCESS'):
print('short_x+ success')
config.x += 50
return True
else:
print("short_x+ error")
return False
def short_x_negative():
print("short_x- positioning")
if config.x < 50:
print("out of range short_x-")
return False
if(serial_write("5") == 'SUCCESS'):
print('short_x- success')
config.x -= 50
return True
else:
print("short_x- error")
return False
#200mm for long_y positioning
def long_y_positive():
print("long_y+ positioning")
if config.y > 350:
print("out of range long_y+")
return False
if(serial_write("6") == 'SUCCESS'):
print('long_y+ success')
config.y += 200
return True
else:
print("long_y+ error")
return False
def long_y_negative():
print("long_y- positioning")
if config.y < 200:
print("out of range long_y-")
return False
if(serial_write("7") == 'SUCCESS'):
print('long_y- success')
config.y -= 200
return True
else:
print("long_y- error")
return False
#50mm for short_y positioning
def short_y_positive():
print("short_y+ positioning")
if config.y > 500:
print("out of range short_y+")
return False
if(serial_write("8") == 'SUCCESS'):
print('short_y+ success')
config.y += 50
return True
else:
print("short_y+ error")
return False
def short_y_negative():
print("short_y- positioning")
if config.y < 50:
print("out of range short_y-")
return False
if(serial_write("9") == 'SUCCESS'):
print('short_y- success')
config.y -= 50
return True
else:
print("short_y- error")
return False
def stop():
print("Stopping")
if(serial_write("0") == 'SUCCESS'):
print('Stop success')
return True
else:
print('Stop unsuccessful')
return False
if __name__ == '__main__':
pass
#setup()
# for i in range(20):
# short_y_positive()
# short_y_negative()
# long_x_positive()
#long_x_negative()
|
python
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.