content
stringlengths
0
894k
type
stringclasses
2 values
# !/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals # -------------------------------------------# # author: sean lee # # email: [email protected] # #--------------------------------------------# """MIT License Copyright (c) 2018 Sean Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" import sys if sys.version_info[0] == 2: reload(sys) sys.setdefaultencoding('utf8') range = xrange import re from .textrank import TextRank, KeywordTextRank from .. import postag def keyword(txt, k=10, stopword=[], allowPOS=[]): words = [] for word, flag in postag.tag(txt): if word not in stopword: if len(allowPOS) > 0: if flag in allowPOS: words.append(word) else: words.append(word) ktr = KeywordTextRank(words) return ktr.topk(k) def keyphrase(txt, k=10, stopword=[]): def get_sents(doc): re_line_skip = re.compile('[\r\n]') re_delimiter = re.compile('[,。?!;]') sents = [] for line in re_line_skip.split(doc): line = line.strip() if not line: continue for sent in re_delimiter.split(line): sent = sent.strip() if not sent: continue sents.append(sent) return sents sents = get_sents(txt) docs = [] for sent in sents: words = [] for word, flag in postag.tag(sent): if word not in stopword: words.append(word) docs.append(words) tr = TextRank(docs) res = [] for idx in tr.topk(k): res.append(docs[idx]) return res
python
import flask class RequestDictionary(dict): def __init__(self, *args, default_val=None, **kwargs): self.default_val = default_val super().__init__(*args, **kwargs) def __getattr__(self, key): # Enable rd.key shorthand for rd.get('key') or rd['key'] return self.get(key, self.default_val) def create(default_val=None, **route_args) -> RequestDictionary: request = flask.request # Allow views to not care where data came from: # Put all data sources in one unified dict, # in ascending order of priority # e.g. URL route has higher priority than the URL query string data = { **request.args, # The key/value pairs in the URL query string **request.headers, # Header values **request.form, # The key/value pairs in the body, from a HTML post form **route_args # And additional arguments the method access, if they want them merged. } return RequestDictionary(data, default_val=default_val)
python
# library import pandas as pd import matplotlib.pyplot as plt import datetime import gif import seaborn as sns import warnings warnings.filterwarnings("ignore") # 関数化する ## git.frameデコレターを使用する @gif.frame def my_plot(df, date, x_min, x_max, y_min, y_max): # 可視化するデータ d = df[df["date"] <= date] # グラフ設定 sns.set() sns.set_style("whitegrid", {'grid.linestyle': '--'}) sns.set_context('talk') sns.despine(left=True) # グラブ描画 fig = plt.subplots(1, 1, figsize=(15, 8)) plt.subplots_adjust(bottom=0.2, top=0.925) ax= sns.lineplot( data=d, x=d['date'], y=d['weight'], color='green', marker='o', linestyle='dashed', linewidth=2, ) # title ax.set_title( 'test gif' , fontsize=24, fontweight=16) # X軸Y軸ラベル ax.set_xlabel('') ax.set_ylabel( 'Body Weight [kg]', color='tab:green', fontsize=16, labelpad=20, weight='bold') # X軸値回転 # うまく行かないのでコメントアウトで回避 # datetime型のseriesでありほしいのはYMDだけ、編集する # dtアクセッサを利用するのは定番、覚えておく ax.set_xticklabels( d['date'].dt.strftime('%Y-%m-%d'), #d['date'], rotation=75) # 目標値 th = 63.0 ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.hlines( y=th, xmin=x_min, xmax=x_max, color='red', linestyle="--", lw=3) ax.text( x=df["date"].mean(), #x=d["date"].mean(), y=th+0.5, s="Target Level", color="red", ha='center', va='center', fontsize=16) # ダイエットできなかった期間を描く # ダイエットしなかった日のdf bad_df = d[d["ringfit"]==0] # 期間描画 for bad_day in bad_df["date"]: start = bad_day - datetime.timedelta(hours=12) end = bad_day + datetime.timedelta(hours=12) ax.axvspan( xmin=start, xmax=end, alpha=0.3, color='#F933FF') ax.text( x=bad_day, y=d["weight"].max()+0.5, s='I did not play "Ring Fit"', color="red", ha='center', va='center', fontsize=16) #################################################### # test #################################################### # データ START = pd.Timestamp("2020-01-05") END = pd.Timestamp("2020-01-16") weights = [66.7, 66.7, 65.8, 65.6, 67.0, 66.5, 65.9, 65.1, 64.7, 64.5, 64.8, 66.1] ringfit = [1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1] # リングフィットした:1, してない:0 # データフレーム化 df = pd.DataFrame( { "date": pd.date_range(start=START, end=END), "weight": [wi for wi in weights], "ringfit": [fi for fi in ringfit], } ) print(df.head()) x_min = df["date"][0] x_max = df["date"][len(df)-1] y_min = 60 y_max = 70 # グラフのアニメーション作成 frames = [] for date in df["date"]: frame = my_plot(df, date, x_min, x_max, y_min, y_max) frames.append(frame) #gifを保存 ## loop=0により1回だけのループ描画 gif.save( frames, path='./weight-log.gif', duration=7.5, loop=0, unit="s", between="startend", )
python
from collections import defaultdict from collections.abc import MutableMapping from copy import deepcopy from pathlib import Path from typing import (Any, Dict, List, Literal, Mapping, NamedTuple, Sequence, Tuple, Union) import yaml from more_itertools import unique_everseen from .md import merge_settings from .utils import snake_to_text class NavEntry(NamedTuple): """ An entry in the navigation tab. Args: hierarchy (Sequence[str]): List of navigation entries. file (Path): Path to the page, relative to report docs folder. """ hierarchy: Sequence[str] loc: Union[Path, str] NavList = List[NavEntry] MkdocsNav = List[Union[str, Mapping[str, Union[str, "MkdocsNav"]]]] def path_to_nav_entry(path: Path) -> NavEntry: """ Turn a file path into a NavEntry. The path is split, each part of the path used as an element of the hierarchy. Snake-case are split into words with first letters capitalized. Args: path (Path): The path relative to the report docs folder to turn into a nav-entry. Returns: NavEntry: The NavEntry object representing the path and the hierarchy of navigation entries. """ return NavEntry( tuple( [snake_to_text(x) for x in path.parent.parts] + [snake_to_text(path.stem)] ), path, ) def _check_length_one( x: Mapping[str, Union[str, "MkdocsNav"]] ) -> Tuple[str, Union[str, MkdocsNav]]: assert len(x) == 1 return list(x.items())[0] def mkdocs_to_navlist(mkdocs_nav: MkdocsNav) -> NavList: """ Convert an mkdocs nav to a list of NavEntry. Args: mkdocs_nav: A python representation of the nav-entry in the mkdocs.yml file. """ res = [] for entry in mkdocs_nav: if isinstance(entry, str): res.append(NavEntry([], Path(entry))) elif isinstance(entry, Mapping): key, val = _check_length_one(entry) if isinstance(val, str): res.append(NavEntry([key], Path(val))) elif isinstance(val, List): res = res + [ NavEntry((key,) + tuple(h), p) for (h, p) in mkdocs_to_navlist(val) ] else: raise Exception("Not expected type") else: raise Exception("Not expected type") return res def split_nav(x: NavList) -> Tuple[List[str], Dict[str, NavList]]: """ Split the navigation entry into top level list of items and dict of Navs. Given a nav-entry, each top-level item that is not a hierarchy itself is added to the return list. Every hierarchy will have its top level removed and entered into a dict, with the top-level hierarchy name as the key and the sub-nav as the value. Args: x (Nav): The list of NavEntry to process Returns: Tuple[List[str], Dict[str, Nav]]: Structure as explained above. """ res_nav = defaultdict(list) res_list = [] for (h, p) in x: if len(h) == 0: res_list.append(p) else: res_nav[h[0]].append((h[1:], p)) return (res_list, res_nav) def navlist_to_mkdocs(nav_list: NavList) -> MkdocsNav: """ Convert a list of nav-entries into mkdocs format. Args: nav (Nav): The list of NavEntry to convert to mkdocs.yml format Returns: Python object of the mkdocs.yml nav entry. """ split_nokey, split_keys = split_nav(nav_list) res: MkdocsNav = [str(p) for p in split_nokey] for key, val in split_keys.items(): mkdocs_for_key = navlist_to_mkdocs(val) # if it is a list of length 1 with a string, treat it special if len(mkdocs_for_key) == 1 and isinstance(mkdocs_for_key[0], str): res.append({key: mkdocs_for_key[0]}) else: res.append({key: mkdocs_for_key}) return res def add_nav_entry(mkdocs_settings, nav_entry: NavEntry) -> Any: """ Add an additional entry to the Nav in mkdocs.yml Args: mkdocs_settings (): The mkdocs settings to update. nav_entry (NavEntry): The NavEntry to add Returns: The updated mkdocs_settings """ mkdocs_settings = deepcopy(mkdocs_settings) nav = mkdocs_to_navlist(mkdocs_settings["nav"]) + [nav_entry] # we need to deduplicate nav = list(unique_everseen(nav)) mkdocs_nav = navlist_to_mkdocs(nav) mkdocs_settings["nav"] = mkdocs_nav return mkdocs_settings def load_yaml(file: Path) -> Any: """ Load a yaml file, return empty dict if not exists. Args: file (Path): File to load Returns: The value in the file, empty dict otherwise. """ if file.exists(): with file.open("r") as f: res = yaml.load(f, Loader=yaml.Loader) else: res = {} return res def save_yaml(obj: Any, file: Path) -> None: """ Save object to yaml file. Args: obj (Any): The object to save. file (Path): Filename to save it into. """ with file.open("w") as f: yaml.dump(obj, f, default_flow_style=False) def _merge_nav_lists( nav_list_source: List[NavEntry], nav_list_target: List[NavEntry], nav_pref: Literal["S", "T"] = "T", ) -> List[NavEntry]: nav_list_source_dict = {item.loc: item for item in nav_list_source} nav_list_target_dict = {item.loc: item for item in nav_list_target} # should files in Self or Other have preference if nav_pref == "T": for key, value in nav_list_source_dict.items(): if key not in nav_list_target_dict: nav_list_target_dict[key] = value elif nav_pref == "S": nav_list_target_dict.update(nav_list_source_dict) else: raise ValueError(f"Unknown preference {nav_pref}. Has to be 'S' or 'O'") return list(nav_list_target_dict.values()) class ReportSettings(MutableMapping): def __init__(self, file: Path): self._file = file self._dict = load_yaml(file) def __getitem__(self, key: Any) -> Any: return self._dict[key] def __setitem__(self, key: Any, value: Any): """Assign key to value, but also save to yaml-file.""" self._dict[key] = value save_yaml(self._dict, self._file) def __delitem__(self, key: Any): del self._dict[key] def __iter__(self): return self._dict.__iter__() def __len__(self): return len(self._dict) @property def nav_list(self) -> List[NavEntry]: return mkdocs_to_navlist(self._dict["nav"]) @nav_list.setter def nav_list(self, nav_list: List[NavEntry]): self["nav"] = navlist_to_mkdocs(nav_list) def append_nav_entry( self, nav_entry: Union[Path, NavEntry], nav_pref: Literal["S", "T"] = "T", ) -> None: if isinstance(nav_entry, Path): nav_entry = path_to_nav_entry(nav_entry) self.nav_list = _merge_nav_lists([nav_entry], self.nav_list, nav_pref=nav_pref) @property def dict(self): return self._dict @dict.setter def dict(self, value): self._dict = value save_yaml(self._dict, self._file) def merge( self, source: Union[Dict[str, Any], "ReportSettings"], nav_pref: Literal["S", "T"] = "T", ): if isinstance(source, self.__class__): source = source._dict # make a copy so we can manipulate it source = deepcopy(source) source_nav = source.get("nav", None) if "nav" in source: del source["nav"] # now we want to merge the content; but nav items have to be # treated differently merged_dict = merge_settings(self._dict, source) if source_nav is not None: # now we merge the navs; for this we access them as lists nav_list_target = self.nav_list nav_list_source = mkdocs_to_navlist(source_nav) combined_nav = _merge_nav_lists( nav_list_source=nav_list_source, nav_list_target=nav_list_target, nav_pref=nav_pref, ) merged_dict["nav"] = combined_nav self.dict = merged_dict
python
from secml.array.tests import CArrayTestCases import numpy as np import copy from secml.array import CArray from secml.core.constants import inf class TestCArrayUtilsDataAlteration(CArrayTestCases): """Unit test for CArray UTILS - DATA ALTERATION methods.""" def test_round(self): """Test for CArray.round() method.""" self.logger.info("Test for CArray.round() method.") def _round(array): array_float = array.astype(float) array_float *= 1.0201 self.logger.info("a: \n{:}".format(array)) round_res = array_float.round() self.logger.info("a.round(): \n{:}".format(round_res)) self.assert_array_equal(round_res, array.astype(float)) round_res = array_float.round(decimals=2) self.logger.info("a.round(decimals=2): \n{:}".format(round_res)) array_test = array * 1.02 self.assert_array_equal(round_res, array_test) round_res = array_float.round(decimals=6) self.logger.info("a.round(decimals=6): \n{:}".format(round_res)) self.assert_array_equal(round_res, array_float) _round(self.array_sparse) _round(self.row_sparse) _round(self.column_sparse) _round(self.array_dense) _round(self.row_sparse) _round(self.column_dense) def test_clip(self): """Test for CArray.clip() method.""" self.logger.info("Test for CArray.clip() method.") def _check_clip(array, expected): self.logger.info("Array:\n{:}".format(array)) intervals = [(0, 2), (0, inf), (-inf, 0)] for c_limits_idx, c_limits in enumerate(intervals): res = array.clip(*c_limits) self.logger.info("array.min(c_min={:}, c_max={:}):" "\n{:}".format(c_limits[0], c_limits[1], res)) res_expected = expected[c_limits_idx] self.assertIsInstance(res, CArray) self.assertEqual(res.isdense, res_expected.isdense) self.assertEqual(res.issparse, res_expected.issparse) self.assertEqual(res.shape, res_expected.shape) self.assertEqual(res.dtype, res_expected.dtype) self.assertFalse((res != res_expected).any()) # array_dense = CArray([[1, 0, 0, 5], [2, 4, 0, 0], [3, 6, 0, 0]] # row_flat_dense = CArray([4, 0, 6]) _check_clip(self.array_dense, (CArray([[1, 0, 0, 2], [2, 2, 0, 0], [2, 2, 0, 0]]), CArray([[1., 0., 0., 5.], [2., 4., 0., 0.], [3., 6., 0., 0.]]), CArray([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]]))) _check_clip(self.row_flat_dense, (CArray([2, 0, 2]), CArray([4., 0., 6.]), CArray([0., 0., 0.]))) _check_clip(self.row_dense, (CArray([[2, 0, 2]]), CArray([[4., 0., 6.]]), CArray([[0., 0., 0.]]))) _check_clip(self.column_dense, (CArray([[2], [0], [2]]), CArray([[4.], [0.], [6.]]), CArray([[0.], [0.], [0.]]))) _check_clip(self.single_flat_dense, (CArray([2]), CArray([4.]), CArray([0.]))) _check_clip(self.single_dense, (CArray([[2]]), CArray([[4.]]), CArray([[0.]]))) # Check intervals wrongly chosen with self.assertRaises(ValueError): self.array_dense.clip(2, 0) self.array_dense.clip(0, -2) self.array_dense.clip(2, -2) def test_sort(self): """Test for CArray.sort() method.""" self.logger.info("Test for CArray.sort() method") def _sort(axis, array, sorted_expected): self.logger.info("Array:\n{:}".format(array)) array_isdense = array.isdense array_issparse = array.issparse for inplace in (False, True): array_copy = copy.deepcopy(array) array_sorted = array_copy.sort(axis=axis, inplace=inplace) self.logger.info("Array sorted along axis {:}:" "\n{:}".format(axis, array_sorted)) self.assertEqual(array_issparse, array_sorted.issparse) self.assertEqual(array_isdense, array_sorted.isdense) self.assertFalse((sorted_expected != array_sorted).any()) # Value we are going to replace to check inplace parameter alter_value = CArray(100, dtype=array_copy.dtype) if array_copy.ndim < 2: array_copy[0] = alter_value if inplace is False: self.assertTrue(array_sorted[0] != alter_value[0]) else: self.assertTrue(array_sorted[0] == alter_value[0]) else: array_copy[0, 0] = alter_value if inplace is False: self.assertTrue(array_sorted[0, 0] != alter_value[0]) else: self.assertTrue(array_sorted[0, 0] == alter_value[0]) # Sparse arrays _sort(-1, self.array_sparse, CArray([[0, 0, 1, 5], [0, 0, 2, 4], [0, 0, 3, 6]], tosparse=True)) _sort(0, self.array_sparse, CArray([[1, 0, 0, 0], [2, 4, 0, 0], [3, 6, 0, 5]], tosparse=True)) _sort(1, self.array_sparse, CArray([[0, 0, 1, 5], [0, 0, 2, 4], [0, 0, 3, 6]], tosparse=True)) _sort(-1, self.row_sparse, CArray([0, 4, 6], tosparse=True)) _sort(0, self.row_sparse, CArray([4, 0, 6], tosparse=True)) _sort(1, self.row_sparse, CArray([0, 4, 6], tosparse=True)) _sort(-1, self.column_sparse, CArray([[4], [0], [6]], tosparse=True)) _sort(0, self.column_sparse, CArray([[0], [4], [6]], tosparse=True)) _sort(1, self.column_sparse, CArray([[4], [0], [6]], tosparse=True)) # Dense arrays _sort(-1, self.array_dense, CArray([[0, 0, 1, 5], [0, 0, 2, 4], [0, 0, 3, 6]])) _sort(0, self.array_dense, CArray([[1, 0, 0, 0], [2, 4, 0, 0], [3, 6, 0, 5]])) _sort(1, self.array_dense, CArray([[0, 0, 1, 5], [0, 0, 2, 4], [0, 0, 3, 6]])) _sort(-1, self.row_dense, CArray([0, 4, 6])) _sort(0, self.row_dense, CArray([4, 0, 6])) _sort(1, self.row_dense, CArray([0, 4, 6])) _sort(-1, self.column_dense, CArray([[4], [0], [6]])) _sort(0, self.column_dense, CArray([[0], [4], [6]])) _sort(1, self.column_dense, CArray([[4], [0], [6]])) # Bool arrays _sort(-1, self.array_dense_bool, CArray([[False, True, True, True], [False, False, False, False], [True, True, True, True]])) _sort(0, self.array_dense_bool, CArray([[False, False, False, False], [True, False, True, True], [True, True, True, True]])) _sort(1, self.array_dense_bool, CArray([[False, True, True, True], [False, False, False, False], [True, True, True, True]])) _sort(-1, self.array_sparse_bool, CArray([[False, True, True, True], [False, False, False, False], [True, True, True, True]], tosparse=True)) _sort(0, self.array_sparse_bool, CArray([[False, False, False, False], [True, False, True, True], [True, True, True, True]], tosparse=True)) _sort(1, self.array_sparse_bool, CArray([[False, True, True, True], [False, False, False, False], [True, True, True, True]], tosparse=True)) # Check sort() for empty arrays self.empty_flat_dense.sort() self.assertTrue((self.empty_flat_dense == CArray([])).all()) self.empty_sparse.sort() self.assertTrue((self.empty_sparse == CArray([])).all()) def test_argsort(self): """Test for CArray.argsort() method.""" self.logger.info("Test for CArray.argsort() method.") def _argsort(axis, matrix): self.logger.info("array: {:}".format(matrix)) sorted_idx = matrix.argsort(axis=axis) self.logger.info("array.argsort(axis={:}): {:}".format(axis, sorted_idx)) self.assertFalse(sorted_idx.issparse, "sorted method don't return a cndarray") np_matrix = matrix.todense().tondarray() np_matrix = np.atleast_2d(np_matrix) np_sorted_idx = np.argsort(np_matrix, axis=axis) self.assertTrue((sorted_idx.tondarray() == np_sorted_idx).all()) # Sparse arrays _argsort(None, self.array_sparse) _argsort(0, self.array_sparse) _argsort(1, self.array_sparse) _argsort(None, self.row_sparse) _argsort(0, self.row_sparse) _argsort(1, self.row_sparse) _argsort(None, self.column_sparse) _argsort(0, self.column_sparse) _argsort(1, self.column_sparse) # Dense arrays _argsort(None, self.array_dense) _argsort(0, self.array_dense) _argsort(1, self.array_dense) _argsort(None, self.row_dense) _argsort(0, self.row_dense) _argsort(1, self.row_dense) _argsort(None, self.column_dense) _argsort(0, self.column_dense) _argsort(1, self.column_dense) # Check argsort() for empty arrays sorted_matrix = CArray([], tosparse=False).argsort() self.assertTrue((sorted_matrix == CArray([])).all()) sorted_matrix = CArray([], tosparse=True).argsort() self.assertTrue((sorted_matrix == CArray([])).all()) def test_shuffle(self): """Test for CArray.shuffle() method.""" self.logger.info("Test for CArray.shuffle() method") def _shuffle(array): array_copy = array.deepcopy() # In-place method self.logger.info("Array:\n{:}".format(array)) array_shape = array_copy.shape array_isdense = array_copy.isdense array_issparse = array_copy.issparse array.shuffle() self.logger.info("Array shuffled:\n{:}".format(array)) self.assertEqual(array_shape, array.shape) self.assertEqual(array_issparse, array.issparse) self.assertEqual(array_isdense, array.isdense) array_list = array.tolist() array_copy_list = array_copy.tolist() # For vector-like arrays we shuffle the elements along axis 1 if array.ndim == 2 and array.shape[0] == 1: array_list = array_list[0] array_copy_list = array_copy_list[0] for num in array_copy_list: # Return num position and remove it from the list # Not need of asserts here... .index() raises error # if num not in array_list array_list.pop(array_list.index(num)) _shuffle(self.array_dense) _shuffle(self.array_sparse) _shuffle(self.row_sparse) _shuffle(self.column_sparse) _shuffle(self.row_flat_dense) _shuffle(self.row_dense) _shuffle(self.column_dense) _shuffle(self.array_dense_allzero) _shuffle(self.array_sparse_allzero) _shuffle(self.array_dense_bool) _shuffle(self.array_sparse_bool) _shuffle(self.empty_flat_dense) _shuffle(self.empty_sparse) if __name__ == '__main__': CArrayTestCases.main()
python
from setuptools import setup setup( name='__dummy_package', version='0.0.0', install_requires=['html-linter==0.1.9'], )
python
import json, glob FILES = glob.glob('download/*/*/*/*.json') good = {} dups = 0 total = 0 for f in FILES: with open(f, 'r') as fi: j = json.load(fi) for post in j['data']['children']: i = post['data']['id'] if i == '4hsh42': continue if i not in good: good[i] = post with open('posts.json', 'w') as f: f.write(json.dumps(good, indent=4, separators=(',', ': ')))
python
import torch import matplotlib.pyplot as plt import imageio import numpy as np # Create data, 100 points evenly distributed from -2 to 2 # Use unsqueeze to add one more dimension, torch needs at least 2D input (batch, data) x = torch.unsqueeze(torch.linspace(-2,2,100), dim=1) # y = x^2 + b y = x.pow(2) + 0.5 * torch.rand(x.size()) # Plot data # plt.scatter(x.data.numpy(), y.data.numpy()) # plt.show() # Define NN class class Net(torch.nn.Module): # 官方必備步驟 def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) self.predict = torch.nn.Linear(n_hidden, n_output) def forward(self,x): x = torch.relu(self.hidden(x)) x = self.predict(x) return x # Construct a NN net = Net(1, 10, 1) # Can use print to see the structure of the network # print(net) # Stochastic gradient descent (SGD) optimizer = torch.optim.SGD(net.parameters(), lr = 0.2) # Mean squared error loss_func = torch.nn.MSELoss() # Continuously plot plt.ion() f = plt.figure() gif = [] for t in range(200): prediction = net(x) loss = loss_func(prediction, y) optimizer.zero_grad() loss.backward() optimizer.step() if t % 5 == 0: # Plot and show learning process plt.cla() plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'}) plt.pause(0.1) f.canvas.draw() image = np.frombuffer(f.canvas.tostring_rgb(), dtype='uint8') image = image.reshape(f.canvas.get_width_height()[::-1] + (3,)) gif.append(image) imageio.mimsave('./regression.gif', gif, fps=5) plt.ioff() plt.show()
python
import logging import re import nltk from django.utils.text import slugify from oldp.apps.backend.processing import ProcessingError, AmbiguousReferenceError from oldp.apps.cases.models import Case from oldp.apps.cases.processing.processing_steps import CaseProcessingStep from oldp.apps.laws.models import LawBook from oldp.apps.references.models import CaseReferenceMarker, ReferenceMarker logger = logging.getLogger(__name__) class ExtractRefs(CaseProcessingStep): description = 'Extract references' law_book_codes = None def __init__(self, law_refs=True, case_refs=True): super(ExtractRefs, self).__init__() self.law_refs = law_refs self.case_refs = case_refs def process(self, case: Case) -> Case: """ Read case.content, search for references, add ref marker (e.g. [ref=1]xy[/ref]) to text, add ref data to case: case.refs { 1: { section: ??, line: 1, word: 2, id: ecli://..., } 2: { line: 2, word: 123, id: law://de/bgb/123 } } Ref data should contain position information, for CPA computations ... :param case_refs: :param law_refs: :param case: :return: """ all_refs = [] # print(case.get_sections()) content = ReferenceMarker.remove_markers(case.content) if self.law_refs: content, refs = self.extract_law_refs(case, content, key=len(all_refs)) all_refs.extend(refs) logger.debug('Extracted law refs: %i' % len(refs)) if self.case_refs: content, refs = self.extract_case_refs(case, content, key=len(all_refs)) all_refs.extend(refs) logger.debug('Extracted case refs: %i' % len(refs)) case.content = content case.reference_markers = all_refs if not case._state.adding: case.save_reference_markers() else: logger.warning('Reference markers not saved (case is not saved)') # print(case.references) # if len(not_found_refs) > 0: # raise ValueError('Some refs still in the content...') return case def test_ref_extraction(self, value): # (.+?)\\[/ref\\] value = re.sub(r'\[ref=([0-9]+)\](.+?)\[/ref\]', '______', value) if re.search(r'§', value, re.IGNORECASE): return value else: return None def get_law_book_codes(self): if self.law_book_codes is None: # Fetch codes from db # State.objects.values_list( self.law_book_codes = list(LawBook.objects.values_list('code', flat=True)) logger.debug('Loaded law book codes from db: %i' % len(self.law_book_codes)) # Extend with pre-defined codes self.law_book_codes.extend(['AsylG', 'VwGO', 'GkG', 'stbstg', 'lbo', 'ZPO', 'LVwG', 'AGVwGO SH', 'BauGB', 'BauNVO', 'ZWStS', 'SbStG', 'StPO', 'TKG']) return self.law_book_codes # Returns regex for law book part in reference markers def get_law_book_ref_regex(self, optional=True, group_name=True, lower=False): # law_book_codes = list(json.loads(open(self.law_book_codes_path).read()).keys()) law_book_codes = self.get_law_book_codes() law_book_regex = None for code in law_book_codes: if lower: code = code.lower() if law_book_regex is None: # if optional: # law_book_regex = '(' # else: # law_book_regex = '(' law_book_regex = '' # if group_name: # law_book_regex += '?P<book>' law_book_regex += code else: law_book_regex += '|' + code # law_book_regex += ')' # if optional: # law_book_regex += '?' return law_book_regex def get_law_ref_regex(self): # TODO Regex builder tool? http://regexr.com/ # https://www.debuggex.com/ # ((,|und)\s*((?P<nos>[0-9]+)+)* # regex += '(\s?([0-9]+|[a-z]{1,2}|Abs\.|Abs|Satz|S\.|Nr|Nr\.|Alt|Alt\.|f\.|ff\.|und|bis|\,|'\ #regex = r'(§|§§|Art.) (?P<sect>[0-9]+)\s?(?P<sect_az>[a-z]*)\s?(?:Abs.\s?(?:[0-9]{1,2})|Abs\s?(?:[0-9]{1,2}))?\s?(?:Satz\s[0-9]{1,2})?\s' + law_book_regex regex = r'(§|§§|Art\.)\s' regex += '(\s|[0-9]+|[a-z]|Abs\.|Abs|Satz|S\.|Nr|Nr\.|Alt|Alt\.|f\.|ff\.|und|bis|\,|' \ + self.get_law_book_ref_regex(optional=False, group_name=False) + ')+' regex += '\s(' + self.get_law_book_ref_regex(optional=False, group_name=False) + ')' regex_abs = '((Abs.|Abs)\s?([0-9]+)((,|und|bis)\s([0-9]+))*)*' regex_a = '(([0-9]+)\s?([a-z])?)' regex_a += '((,|und|bis)\s*(([0-9]+)\s?([a-z])?)+)*' # f. ff. regex_a += '\s?((Abs.|Abs)\s?([0-9]+))*' # regex_a += '\s?(?:(Abs.|Abs)\s?(?:[0-9]{1,2})\s?((,|und|bis)\s*(([0-9]+)\s?([a-z])?)+)*)?' # regex_a += '\s?((Satz|S\.)\s[0-9]{1,2})?' # regex_a += '\s?(((Nr|Nr\.)\s[0-9]+)' + '(\s?(,|und|bis)\s[0-9]+)*' + ')?' # regex_a += '\s?(((Alt|Alt\.)\s[0-9]+)' + '(\s?(,|und|bis)\s[0-9]+)*' + ')?' regex_a += '\s' regex_a += '(' + self.get_law_book_ref_regex(optional=True, group_name=False) + ')' # regex += regex_a # regex += '(\s?(,|und)\s' + regex_a + ')*' # # logger.debug('Law Regex=%s' % regex) return regex def get_law_ref_match_single(self, ref_str): # Single ref regex_a = '(Art\.|§)\s' regex_a += '((?P<sect>[0-9]+)\s?(?P<sect_az>[a-z])?)' # f. ff. regex_a += '(\s?([0-9]+|[a-z]{1,2}|Abs\.|Abs|Satz|S\.|Nr|Nr\.|Alt|Alt\.|und|bis|,))*' # regex_a += '\s?(?:(Abs.|Abs)\s?(?:[0-9]{1,2})\s?((,|und|bis)\s*(([0-9]+)\s?([a-z])?)+)*)?' # regex_a += '\s?((Satz|S\.)\s[0-9]{1,2})?' # regex_a += '\s?(((Nr|Nr\.)\s[0-9]+)' + '(\s?(,|und|bis)\s[0-9]+)*' + ')?' # regex_a += '\s?(((Alt|Alt\.)\s[0-9]+)' + '(\s?(,|und|bis)\s[0-9]+)*' + ')?' regex_a += '\s(?P<book>' + self.get_law_book_ref_regex(optional=False) + ')' return re.search(regex_a, ref_str) def get_law_ref_match_multi(self, ref_str): pattern = r'(?P<delimiter>§§|,|und|bis)\s?' pattern += '((?P<sect>[0-9]+)\s?' # pattern += '(?P<sect_az>[a-z])?)' # (?!.*?bis).*([a-z]).*) # pattern += '(?P<sect_az>(?!.*?bis).*([a-z]).*)?)' # (?!(moscow|outside)) # pattern += '(?P<sect_az>(([a-z])(?!(und|bis))))?)' pattern += '((?P<sect_az>[a-z])(\s|,))?)' # Use \s|, to avoid matching "bis" and "Abs", ... pattern += '(\s?(Abs\.|Abs)\s?([0-9]+))*' pattern += '(\s?(S\.|Satz)\s?([0-9]+))*' # pattern += '(?:\s(Nr\.|Nr)\s([0-9]+))' # pattern += '(?:\s(S\.|Satz)\s([0-9]+))' # pattern += '(?:\s(f\.|ff\.))?' pattern += '(\s?(f\.|ff\.))*' # pattern += '(\s(Abs.|Abs)\s?([0-9]+)((,|und|bis)\s([0-9]+))*)*' # pattern += '\s?(?:(Abs.|Abs)\s?(?:[0-9]{1,2})\s?((,|und|bis)\s*(([0-9]+)\s?([a-z])?)+)*)?' pattern += '\s?(?:(?P<book>' + self.get_law_book_ref_regex() + '))?' # print('MULTI: ' + ref_str) # print(pattern) # logger.debug('Multi ref regex: %s' % pattern) return re.finditer(pattern, ref_str) def get_law_id_from_match(self, match): # print(match.groups()) return 'ecli://de/%s/%s%s' % ( match.group('book').lower(), int(match.group('sect')), match.group('sect_az').lower() ) def extract_law_refs(self, referenced_by: Case, content: str, key: int=0): """ § 3d AsylG § 123 VwGO §§ 3, 3b AsylG § 77 Abs. 1 Satz 1, 1. Halbsatz AsylG § 3 Abs. 1 AsylG § 77 Abs. 2 AsylG § 113 Abs. 5 Satz 1 VwGO § 3 Abs. 1 Nr. 1 i.V.m. § 3b AsylG § 3a Abs. 1 und 2 AsylG §§ 154 Abs. 1 VwGO § 83 b AsylG § 167 VwGO iVm §§ 708 Nr. 11, 711 ZPO § 167 VwGO i.V.m. §§ 708 Nr. 11, 711 ZPO §§ 167 Abs. 2 VwGO, 708 Nr. 11, 711 ZPO §§ 52 Abs. 1; 53 Abs. 2 Nr. 1; 63 Abs. 2 GKG § 6 Abs. 5 Satz 1 LBO §§ 80 a Abs. 3, 80 Abs. 5 VwGO § 1 Satz 2 SbStG § 2 ZWStS § 6 Abs. 2 S. 2 ZWStS TODO all law-book jurabk :param referenced_by: :param key: :link https://www.easy-coding.de/Thread/5536-RegExp-f%C3%BCr-Gesetze/ :param content: :return: """ logger.debug('Extracting law references') refs = [] results = list(re.finditer(self.get_law_ref_regex(), content)) marker_offset = 0 logger.debug('Current content value: %s' % content) logger.debug('Law refs found: %i' % len(results)) for ref_m in results: ref_str = str(ref_m.group(0)).strip() law_ids = [] # Handle single and multi refs separately if re.match(r'^(Art\.|§)\s', ref_str): law_ids = self.handle_single_law_ref(ref_str, law_ids) elif re.match(r'^§§\s', ref_str): law_ids = self.handle_multiple_law_refs(ref_str, law_ids) else: raise ProcessingError('Unsupported ref beginning: %s' % ref_str) ref = CaseReferenceMarker(referenced_by=referenced_by, text=ref_str, start=ref_m.start(), end=ref_m.end(), line=0) # TODO ref.set_uuid() ref.set_references(law_ids) refs.append(ref) content, marker_offset = ref.replace_content(content, marker_offset, key + len(refs)) return content, refs def handle_multiple_law_refs(self, ref_str, law_ids): # Search for multiple refs mms = self.get_law_ref_match_multi(ref_str) ids_tmp = [] prev_sect = None prev_book = None logger.debug('Multi refs found in: %s' % ref_str) # Loop over all results for m in mms: # If book is not set, use __placeholder__ and replace later if m.group('book') is not None: book = m.group('book').lower() else: book = '__book__' # Section must exist if m.group('sect') is not None: sect = str(m.group('sect')) else: raise ProcessingError('Ref sect is not set') if m.group('sect_az') is not None: sect += m.group('sect_az').lower() law_id = { 'book': book, 'sect': sect, 'type': 'law' } logger.debug('Law ID found: %s' % law_id) # Check for section ranges if m.group('delimiter') == 'bis': logger.debug('Handle section range - Add ids from ' + prev_sect + ' to ' + sect) # TODO how to handle az sects prev_sect = re.sub('[^0-9]', '', prev_sect) sect = re.sub('[^0-9]', '', sect) for between_sect in range(int(prev_sect)+1, int(sect)): # print(between_sect) ids_tmp.append({ 'book': prev_book, 'sect': between_sect, 'type': 'law' }) else: prev_sect = sect prev_book = book ids_tmp.append(law_id) # law_ids.append('multi = ' + ref_str) # handle __book__ logger.debug('All law ids found: %s' % ids_tmp) ids_tmp.reverse() book = None for id_tmp in ids_tmp: if id_tmp['book'] != '__book__': book = id_tmp['book'] elif book is not None: id_tmp['book'] = book else: raise ProcessingError('Cannot determine law book (Should never happen): %s' % ref_str) law_ids.append(id_tmp) return law_ids def handle_single_law_ref(self, ref_str, law_ids): logger.debug('Single ref found in: %s' % ref_str) # Single ref mm = self.get_law_ref_match_single(ref_str) # Find book and section (only single result possible) if mm is not None: # mm.groupdict() if mm.group('book') is not None: # Found book book = mm.group('book').lower() else: raise ProcessingError('Ref book is not set: %s ' % ref_str) if mm.group('sect') is not None: # Found section sect = str(mm.group('sect')) else: raise ProcessingError('Ref sect is not set') if mm.group('sect_az') is not None: # Found section addon sect += mm.group('sect_az').lower() law_id = { 'book': book, 'sect': sect, 'type': 'law' } logger.debug('Law ID: %s' % law_id) law_ids.append(law_id) else: law_ids.append({'book': 'not matched', 'sect': 'NOT MATCHED (single) %s ' % ref_str}) logger.warning('Law ID could not be matched.') return law_ids def clean_text_for_tokenizer(self, text): """ Remove elements from text that can make the tokenizer fail. :param text: :return: """ def repl(m): return '_' * (len(m.group())) def repl2(m): # print(m.group(2)) return m.group(1) + ('_' * (len(m.group(2)) + 1)) # (...) and [...] text = re.sub(r'\((.*?)\)', repl, text) # Dates text = re.sub(r'(([0-9]+)\.([0-9]+)\.([0-9]+)|i\.S\.d\.)', repl, text) # Abbr. text = re.sub(r'(\s|\(|\[)([0-9]+|[IVX]+|[a-zA-Z]|sog|ca|Urt|Abs|Nr|lfd|vgl|Rn|Rspr|std|ff|bzw|Art)\.', repl2, text) # Schl.-Holst. text = re.sub(r'([a-z]+)\.-([a-z]+)\.', repl, text, flags=re.IGNORECASE) return text def get_court_name_regex(self): """ Regular expression for finding court names :return: regex """ # TODO Fetch from DB # TODO generate only once federal_courts = [ 'Bundesverfassungsgericht', 'BVerfG', 'Bundesverwaltungsgericht', 'BVerwG', 'Bundesgerichtshof', 'BGH', 'Bundesarbeitsgericht', 'BAG', 'Bundesfinanzhof', 'BFH', 'Bundessozialgericht', 'BSG', 'Bundespatentgericht', 'BPatG', 'Truppendienstgericht Nord', 'TDG Nord', 'Truppendienstgericht Süd', 'TDG Süd', 'EUGH', ] states = [ 'Berlin', 'Baden-Württemberg', 'BW', 'Brandenburg', 'Brandenburgisches', 'Bremen', 'Hamburg', 'Hessen', 'Niedersachsen', 'Hamburg', 'Mecklenburg-Vorpommern', 'Nordrhein-Westfalen', 'NRW', 'Rheinland-Pfalz', 'Saarland', 'Sachsen', 'Sachsen-Anhalt', 'Schleswig-Holstein', 'Schl.-Holst.', 'SH', 'Thüringen' ] state_courts = [ 'OVG', 'VGH' ] cities = [ 'Baden-Baden', 'Berlin-Brbg.' 'Wedding', 'Schleswig' ] city_courts = [ 'Amtsgericht', 'AG', 'Landgericht', 'LG', 'Oberlandesgericht', 'OLG', 'OVG' ] pattern = None for court in federal_courts: if pattern is None: pattern = r'(' else: pattern += '|' pattern += court for court in state_courts: for state in states: pattern += '|' + court + ' ' + state pattern += '|' + state + ' ' + court for c in city_courts: for s in cities: pattern += '|' + c + ' ' + s pattern += '|' + s + ' ' + c pattern += ')' # logger.debug('Court regex: %s' % pattern) return pattern def get_file_number_regex(self): return r'([0-9]+)\s([a-zA-Z]{,3})\s([0-9]+)/([0-9]+)' def extract_case_refs(self, referenced_by: Case, content: str, key: int=0): """ BVerwG, Urteil vom 20. Februar 2013, - 10 C 23.12 - BVerwG, Urteil vom 27. April 2010 - 10 C 5.09 - BVerfG, Beschluss vom 10.07.1989, - 2 BvR 502, 1000, 961/86 - BVerwG, Urteil vom 20.02.2013, - 10 C 23.12 - OVG Nordrhein-Westfalen, Urteil vom 21.2.2017, - 14 A 2316/16.A - OVG Nordrhein-Westfalen, Urteil vom 29.10.2012 – 2 A 723/11 - OVG NRW, Urteil vom 14.08.2013 – 1 A 1481/10, Rn. 81 – OVG Saarland, Urteil vom 2.2.2017, - 2 A 515/16 - OVG Rheinland-Pfalz, Urteil vom 16.12.2016, -1A 10922/16 - Bayrischer VGH, Urteil vom 12.12.16, - 21 B 16.30364 OVG Nordrhein-Westfalen, Urteil vom 21.2.2017, - 14 A 2316/16.A - Bayrischer VGH, Urteil vom 12.12.2016, - 21 B 16.30372 - OVG Saarland, Urteil vom 2.2.2017, - 2 A 515/16 - OVG Rheinland-Pfalz, Urteil vom 16.12.2016, -1A 10922/16 - VG Minden, Urteil vom 22.12.2016, - 1 K 5137/16.A - VG Gießen, Urteil vom 23.11.2016, - 2 K 969/16.GI.A VG Düsseldorf, Urteil vom 24.1.2017, - 17 K 9400/16.A VG Köln, Beschluss vom 25.03.2013 – 23 L 287/12 - OVG Schleswig, Beschluss vom 20.07.2006 – 1 MB 13/06 - Schleswig-Holsteinisches Verwaltungsgericht, Urteil vom 05.082014 – 11 A 7/14, Rn. 37 – Entscheidung des Bundesverwaltungsgerichts vom 24.01.2012 (2 C 24/10) EuGH Urteil vom 25.07.2002 – C-459/99 - TODO all court codes + case types - look for (Entscheidung|Bechluss|Urteil) - +/- 50 chars - find VG|OVG|Verwaltungsgericht|BVerwG|... - find location - find file number - ... - or (...) TODO Sentence tokenzier - remove all "special endings" \s([0-9]+|[a-zA-Z]|sog|Abs)\. - remove all dates :param key: :param content: :return: """ refs = [] original = content text = content # print('Before = %s' % text) # Clean up text; replacing all chars that can lead to wrong sentences text = self.clean_text_for_tokenizer(text) # TODO from nltk.tokenize.punkt import PunktParameters punkt_param = PunktParameters() abbreviation = ['1', 'e', 'i'] punkt_param.abbrev_types = set(abbreviation) # tokenizer = PunktSentenceTokenizer(punkt_param) offset = 0 marker_offset = 0 for start, end in nltk.PunktSentenceTokenizer().span_tokenize(text): length = end - start sentence = text[start:end] original_sentence = original[start:end] matches = list(re.finditer(r'\((.*?)\)', original_sentence)) logger.debug('Sentence (matches: %i): %s' % (len(matches), sentence)) logger.debug('Sentence (orignal): %s' % (original_sentence)) for m in matches: # pass # print('offset = %i, len = %i' % (offset, len(sentence))) # # print('MANGLED: ' + sentence) logger.debug('Full sentence // UNMANGLED: ' + original_sentence) # focus_all = original[start+m.start(1):start+m.end(1)].split(',') focus_all = original_sentence[m.start(1):m.end(1)].split(',') # print(m.group(1)) logger.debug('In parenthesis = %s' % focus_all) # Split for focus in focus_all: # Search for file number fns_matches = list(re.finditer(self.get_file_number_regex(), focus)) if len(fns_matches) == 1: fn = fns_matches[0].group(0) pos = fns_matches[0].start(0) logger.debug('File number found: %s' % fn) # Find court court_name = None court_pos = 999999 court_matches = list(re.finditer(self.get_court_name_regex(), original_sentence)) if len(court_matches) == 1: # Yeah everything is fine court_name = court_matches[0].group(0) elif len(court_matches) > 0: # Multiple results, choose the one that is closest to file number for cm in court_matches: if court_name is None or abs(pos - cm.start()) < court_pos: court_name = cm.group(0) court_pos = abs(pos - cm.start()) else: # no court found, guess by search query # probably the court of the current case? test for "die kammer" pass # Find date # TODO logger.debug('Filename = %s' % fn) logger.debug('Courtname = %s' % court_name) ref_start = start + m.start(1) + pos ref_end = ref_start + len(fn) if court_name is None: # raise ) # TODO Probably same court as current case (use case validation) logger.error(AmbiguousReferenceError('No court name found - FN: %s' % fn)) # logger.debug('Sentence: %s' % (fn, original_sentence))) continue ref_ids = [ { 'type': 'case', 'ecli': 'ecli://de/' + slugify(court_name) + '/' + slugify(fn.replace('/', '-')) } ] # TODO maintain order for case+law refs ref = CaseReferenceMarker(referenced_by=referenced_by, text=focus, start=ref_start, end=ref_end, line=0) # TODO line number ref.set_uuid() ref.set_references(ref_ids) refs.append( ref ) content, marker_offset = ref.replace_content(content, marker_offset, key + len(refs)) pass elif len(fns_matches) > 1: logger.warning('More file numbers found: %s' % fns_matches) pass else: logger.debug('No file number found') return content, refs
python
num = int(input("Digite um número inteiro de 0 a 9999: ")) u = num // 1 % 10 d = num // 10 % 10 c = num // 100 % 10 m = num // 1000 % 10 print(f"O numero {num} possui {u} unidades.") print(f"O numero{num} possui {d} dezenas.") print(f"O numero{num} possui {c} centenas.") print(f"O numero{num} possui {m} milhares.")
python
facts=[ 'Mumbai was earlier known as Bombay.', 'Mumbai got its name from a popular goddess temple - Mumba Devi Mandir, which is situated at Bori Bunder in Mumbai.', 'On 16 April 1853, Mumbai witnessed the first train movement in India. \ With 14 carriages and 400 passengers, the first train left Bori Bunder, now called Chhatrapati Shivaji Terminal, \ for Thane in Maharashtra.', 'Mumbai is the hub of Hindi film industry in India, popularly known as Bollywood.', 'Mumbai sea link, officially known as Rajiv Gandhi Sea Link has a length of around 5.6 km. \ It is an architectural-wonder as it was made with 90,000 tons of cement and steel wire comparable to the girth of the earth.', 'Ganesh Chaturthi is the most popular 10 day festival in Mumbai which brings the whole city together, celebrating on the street.', 'Flamingos usually migrate from Afro-Eurasian parts to Mumbai between October to March.', 'Located in the Andheri West, Gilbert Hill is a 200 ft hill of black basalt rock built around 66 million years ago. \ It’s unique because only the US has a hill with the same composition.', 'Mumbai is often referred to as the financial capital of India, as it is the home of the Bombay Stock Exchange \ and the National Stock Exchange, the main stock exchanges of India.' 'Way back in 1863, Alice Tredwell, wife of Solomon Tredwell built the railway line from Mumbai to Pune.', 'The first post office in Mumbai was opened at the house of the Junior Magistrate in 1832.' ]
python
# Copyright (c) ZenML GmbH 2021. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. from typing import TYPE_CHECKING, Any, ClassVar, Dict, Type from zenml.logger import get_logger logger = get_logger(__name__) if TYPE_CHECKING: from zenml.materializers.base_materializer import BaseMaterializer class SpecMaterializerRegistry(object): """Matches spec of a step to a materializer.""" def __init__(self): """Materializer types registry.""" self.materializer_types: ClassVar[ Dict[str, Type["BaseMaterializer"]] ] = {} def register_materializer_type( self, key: str, type_: Type["BaseMaterializer"] ): """Registers a new materializer. Args: key: Name of input or output parameter. type_: A BaseMaterializer subclass. """ self.materializer_types[key] = type_ logger.debug(f"Registered materializer {type_} for {key}") def get_materializer_types( self, ) -> Dict[str, Type["BaseMaterializer"]]: """Get all registered materializers.""" return self.materializer_types def get_single_materializer_type( self, key: str ) -> Type["BaseMaterializer"]: """Gets a single pre-registered materializer type based on `key`.""" if key in self.materializer_types: return self.materializer_types[key] logger.debug( f"Tried to fetch {key} but its not registered. Available keys: " f"{self.materializer_types.keys()}" ) def is_registered(self, key: Type[Any]) -> bool: """Returns true if key type is registered, else returns False.""" if key in self.materializer_types: return True return False
python
import os SQLALCHEMY_DATABASE_URI = os.environ.get('FLASK_DATABASE_URI', 'postgres://user:pass@host/db') SQLALCHEMY_ENGINE_OPTIONS = {'pool_pre_ping':True} SQLALCHEMY_TRACK_MODIFICATIONS = False SECRET_KEY = b'\xb0\xe2\x16\x16\x15\x16\x16\x16'
python
# Copyright (c) 2014, 2020, Oracle and/or its affiliates. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License, version 2.0, as # published by the Free Software Foundation. # # This program is also distributed with certain software (including # but not limited to OpenSSL) that is licensed under separate terms, # as designated in a particular file or component or in included license # documentation. The authors of MySQL hereby grant you an # additional permission to link the program and your derivative works # with the separately licensed software that they have included with # MySQL. # # Without limiting anything contained in the foregoing, this file, # which is part of MySQL Connector/Python, is also subject to the # Universal FOSS Exception, version 1.0, a copy of which can be found at # http://oss.oracle.com/licenses/universal-foss-exception. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License, version 2.0, for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """Implementing support for MySQL Authentication Plugins""" from base64 import b64encode, b64decode from hashlib import sha1, sha256 import hmac import logging import struct from uuid import uuid4 from . import errors from .catch23 import PY2, isstr, UNICODE_TYPES, STRING_TYPES from .utils import (normalize_unicode_string as norm_ustr, validate_normalized_unicode_string as valid_norm) _LOGGER = logging.getLogger(__name__) class BaseAuthPlugin(object): """Base class for authentication plugins Classes inheriting from BaseAuthPlugin should implement the method prepare_password(). When instantiating, auth_data argument is required. The username, password and database are optional. The ssl_enabled argument can be used to tell the plugin whether SSL is active or not. The method auth_response() method is used to retrieve the password which was prepared by prepare_password(). """ requires_ssl = False plugin_name = '' def __init__(self, auth_data, username=None, password=None, database=None, ssl_enabled=False): """Initialization""" self._auth_data = auth_data self._username = username self._password = password self._database = database self._ssl_enabled = ssl_enabled def prepare_password(self): """Prepares and returns password to be send to MySQL This method needs to be implemented by classes inheriting from this class. It is used by the auth_response() method. Raises NotImplementedError. """ raise NotImplementedError def auth_response(self): """Returns the prepared password to send to MySQL Raises InterfaceError on errors. For example, when SSL is required by not enabled. Returns str """ if self.requires_ssl and not self._ssl_enabled: raise errors.InterfaceError("{name} requires SSL".format( name=self.plugin_name)) return self.prepare_password() class MySQLNativePasswordAuthPlugin(BaseAuthPlugin): """Class implementing the MySQL Native Password authentication plugin""" requires_ssl = False plugin_name = 'mysql_native_password' def prepare_password(self): """Prepares and returns password as native MySQL 4.1+ password""" if not self._auth_data: raise errors.InterfaceError("Missing authentication data (seed)") if not self._password: return b'' password = self._password if isstr(self._password): password = self._password.encode('utf-8') else: password = self._password if PY2: password = buffer(password) # pylint: disable=E0602 try: auth_data = buffer(self._auth_data) # pylint: disable=E0602 except TypeError: raise errors.InterfaceError("Authentication data incorrect") else: password = password auth_data = self._auth_data hash4 = None try: hash1 = sha1(password).digest() hash2 = sha1(hash1).digest() hash3 = sha1(auth_data + hash2).digest() if PY2: xored = [ord(h1) ^ ord(h3) for (h1, h3) in zip(hash1, hash3)] else: xored = [h1 ^ h3 for (h1, h3) in zip(hash1, hash3)] hash4 = struct.pack('20B', *xored) except Exception as exc: raise errors.InterfaceError( "Failed scrambling password; {0}".format(exc)) return hash4 class MySQLClearPasswordAuthPlugin(BaseAuthPlugin): """Class implementing the MySQL Clear Password authentication plugin""" requires_ssl = True plugin_name = 'mysql_clear_password' def prepare_password(self): """Returns password as as clear text""" if not self._password: return b'\x00' password = self._password if PY2: if isinstance(password, unicode): # pylint: disable=E0602 password = password.encode('utf8') elif isinstance(password, str): password = password.encode('utf8') return password + b'\x00' class MySQLSHA256PasswordAuthPlugin(BaseAuthPlugin): """Class implementing the MySQL SHA256 authentication plugin Note that encrypting using RSA is not supported since the Python Standard Library does not provide this OpenSSL functionality. """ requires_ssl = True plugin_name = 'sha256_password' def prepare_password(self): """Returns password as as clear text""" if not self._password: return b'\x00' password = self._password if PY2: if isinstance(password, unicode): # pylint: disable=E0602 password = password.encode('utf8') elif isinstance(password, str): password = password.encode('utf8') return password + b'\x00' class MySQLCachingSHA2PasswordAuthPlugin(BaseAuthPlugin): """Class implementing the MySQL caching_sha2_password authentication plugin Note that encrypting using RSA is not supported since the Python Standard Library does not provide this OpenSSL functionality. """ requires_ssl = False plugin_name = 'caching_sha2_password' perform_full_authentication = 4 fast_auth_success = 3 def _scramble(self): """ Returns a scramble of the password using a Nonce sent by the server. The scramble is of the form: XOR(SHA2(password), SHA2(SHA2(SHA2(password)), Nonce)) """ if not self._auth_data: raise errors.InterfaceError("Missing authentication data (seed)") if not self._password: return b'' password = self._password.encode('utf-8') \ if isinstance(self._password, UNICODE_TYPES) else self._password if PY2: password = buffer(password) # pylint: disable=E0602 try: auth_data = buffer(self._auth_data) # pylint: disable=E0602 except TypeError: raise errors.InterfaceError("Authentication data incorrect") else: password = password auth_data = self._auth_data hash1 = sha256(password).digest() hash2 = sha256() hash2.update(sha256(hash1).digest()) hash2.update(auth_data) hash2 = hash2.digest() if PY2: xored = [ord(h1) ^ ord(h2) for (h1, h2) in zip(hash1, hash2)] else: xored = [h1 ^ h2 for (h1, h2) in zip(hash1, hash2)] hash3 = struct.pack('32B', *xored) return hash3 def prepare_password(self): if len(self._auth_data) > 1: return self._scramble() elif self._auth_data[0] == self.perform_full_authentication: return self._full_authentication() return None def _full_authentication(self): """Returns password as as clear text""" if not self._ssl_enabled: raise errors.InterfaceError("{name} requires SSL".format( name=self.plugin_name)) if not self._password: return b'\x00' password = self._password if PY2: if isinstance(password, UNICODE_TYPES): # pylint: disable=E0602 password = password.encode('utf8') elif isinstance(password, str): password = password.encode('utf8') return password + b'\x00' class MySQLLdapSaslPasswordAuthPlugin(BaseAuthPlugin): """Class implementing the MySQL ldap sasl authentication plugin. The MySQL's ldap sasl authentication plugin support two authentication methods SCRAM-SHA-1 and GSSAPI (using Kerberos). This implementation only support SCRAM-SHA-1. SCRAM-SHA-1 This method requires 2 messages from client and 2 responses from server. The first message from client will be generated by prepare_password(), after receive the response from the server, it is required that this response is passed back to auth_continue() which will return the second message from the client. After send this second message to the server, the second server respond needs to be passed to auth_finalize() to finish the authentication process. """ requires_ssl = False plugin_name = 'authentication_ldap_sasl_client' def_digest_mode = sha1 client_nonce = None client_salt = None server_salt = None iterations = 0 server_auth_var = None def _xor(self, bytes1, bytes2): if PY2: xor = [ord(b1) ^ ord(b2) for b1, b2 in zip(bytes1, bytes2)] xor = b"".join([chr(i) for i in xor]) return xor else: return bytes([b1 ^ b2 for b1, b2 in zip(bytes1, bytes2)]) def _hmac(self, password, salt): digest_maker = hmac.new(password, salt, self.def_digest_mode) return digest_maker.digest() def _hi(self, password, salt, count): """Prepares Hi Hi(password, salt, iterations) where Hi(p,s,i) is defined as PBKDF2 (HMAC, p, s, i, output length of H). """ pw = password.encode() hi = self._hmac(pw, salt + b'\x00\x00\x00\x01') aux = hi for _ in range(count - 1): aux = self._hmac(pw, aux) hi = self._xor(hi, aux) return hi def _normalize(self, string): norm_str = norm_ustr(string) broken_rule = valid_norm(norm_str) if broken_rule is not None: raise errors.InterfaceError("broken_rule: {}".format(broken_rule)) char, rule = broken_rule raise errors.InterfaceError( "Unable to normalice character: `{}` in `{}` due to {}" "".format(char, string, rule)) return norm_str def _first_message(self): """This method generates the first message to the server to start the The client-first message consists of a gs2-header, the desired username, and a randomly generated client nonce cnonce. The first message from the server has the form: b'n,a=<user_name>,n=<user_name>,r=<client_nonce> Returns client's first message """ cfm_fprnat = "n,a={user_name},n={user_name},r={client_nonce}" self.client_nonce = str(uuid4()).replace("-", "") cfm = cfm_fprnat.format(user_name=self._normalize(self._username), client_nonce=self.client_nonce) if PY2: if isinstance(cfm, UNICODE_TYPES): # pylint: disable=E0602 cfm = cfm.encode('utf8') elif isinstance(cfm, str): cfm = cfm.encode('utf8') return cfm def auth_response(self): """This method will prepare the fist message to the server. Returns bytes to send to the server as the first message. """ # We only support SCRAM-SHA-1 authentication method. _LOGGER.debug("read_method_name_from_server: %s", self._auth_data.decode()) if self._auth_data != b'SCRAM-SHA-1': raise errors.InterfaceError( 'The sasl authentication method "{}" requested from the server ' 'is not supported. Only "{}" is supported'.format( self._auth_data, "SCRAM-SHA-1")) return self._first_message() def _second_message(self): """This method generates the second message to the server Second message consist on the concatenation of the client and the server nonce, and cproof. c=<n,a=<user_name>>,r=<server_nonce>,p=<client_proof> where: <client_proof>: xor(<client_key>, <client_signature>) <client_key>: hmac(salted_password, b"Client Key") <client_signature>: hmac(<stored_key>, <auth_msg>) <stored_key>: h(<client_key>) <auth_msg>: <client_first_no_header>,<servers_first>, c=<client_header>,r=<server_nonce> <client_first_no_header>: n=<username>r=<client_nonce> """ if not self._auth_data: raise errors.InterfaceError("Missing authentication data (seed)") passw = self._normalize(self._password) salted_password = self._hi(passw, b64decode(self.server_salt), self.iterations) _LOGGER.debug("salted_password: %s", b64encode(salted_password).decode()) client_key = self._hmac(salted_password, b"Client Key") _LOGGER.debug("client_key: %s", b64encode(client_key).decode()) stored_key = self.def_digest_mode(client_key).digest() _LOGGER.debug("stored_key: %s", b64encode(stored_key).decode()) server_key = self._hmac(salted_password, b"Server Key") _LOGGER.debug("server_key: %s", b64encode(server_key).decode()) client_first_no_header = ",".join([ "n={}".format(self._normalize(self._username)), "r={}".format(self.client_nonce)]) _LOGGER.debug("client_first_no_header: %s", client_first_no_header) auth_msg = ','.join([ client_first_no_header, self.servers_first, "c={}".format(b64encode("n,a={},".format( self._normalize(self._username)).encode()).decode()), "r={}".format(self.server_nonce)]) _LOGGER.debug("auth_msg: %s", auth_msg) client_signature = self._hmac(stored_key, auth_msg.encode()) _LOGGER.debug("client_signature: %s", b64encode(client_signature).decode()) client_proof = self._xor(client_key, client_signature) _LOGGER.debug("client_proof: %s", b64encode(client_proof).decode()) self.server_auth_var = b64encode( self._hmac(server_key, auth_msg.encode())).decode() _LOGGER.debug("server_auth_var: %s", self.server_auth_var) client_header = b64encode( "n,a={},".format(self._normalize(self._username)).encode()).decode() msg = ",".join(["c={}".format(client_header), "r={}".format(self.server_nonce), "p={}".format(b64encode(client_proof).decode())]) _LOGGER.debug("second_message: %s", msg) return msg.encode() def _validate_first_reponse(self, servers_first): """Validates first message from the server. Extracts the server's salt and iterations from the servers 1st response. First message from the server is in the form: <server_salt>,i=<iterations> """ self.servers_first = servers_first if not servers_first or not isinstance(servers_first, STRING_TYPES): raise errors.InterfaceError("Unexpected server message: {}" "".format(servers_first)) try: r_server_nonce, s_salt, i_counter = servers_first.split(",") except ValueError: raise errors.InterfaceError("Unexpected server message: {}" "".format(servers_first)) if not r_server_nonce.startswith("r=") or \ not s_salt.startswith("s=") or \ not i_counter.startswith("i="): raise errors.InterfaceError("Incomplete reponse from the server: {}" "".format(servers_first)) if self.client_nonce in r_server_nonce: self.server_nonce = r_server_nonce[2:] _LOGGER.debug("server_nonce: %s", self.server_nonce) else: raise errors.InterfaceError("Unable to authenticate response: " "response not well formed {}" "".format(servers_first)) self.server_salt = s_salt[2:] _LOGGER.debug("server_salt: %s length: %s", self.server_salt, len(self.server_salt)) try: i_counter = i_counter[2:] _LOGGER.debug("iterations: {}".format(i_counter)) self.iterations = int(i_counter) except: raise errors.InterfaceError("Unable to authenticate: iterations " "not found {}".format(servers_first)) def auth_continue(self, servers_first_response): """return the second message from the client. Returns bytes to send to the server as the second message. """ self._validate_first_reponse(servers_first_response) return self._second_message() def _validate_second_reponse(self, servers_second): """Validates second message from the server. The client and the server prove to each other they have the same Auth variable. The second message from the server consist of the server's proof: server_proof = HMAC(<server_key>, <auth_msg>) where: <server_key>: hmac(<salted_password>, b"Server Key") <auth_msg>: <client_first_no_header>,<servers_first>, c=<client_header>,r=<server_nonce> Our server_proof must be equal to the Auth variable send on this second response. """ if not servers_second or not isinstance(servers_second, bytearray) or \ len(servers_second)<=2 or not servers_second.startswith(b"v="): raise errors.InterfaceError("The server's proof is not well formated.") server_var = servers_second[2:].decode() _LOGGER.debug("server auth variable: %s", server_var) return self.server_auth_var == server_var def auth_finalize(self, servers_second_response): """finalize the authentication process. Raises errors.InterfaceError if the ervers_second_response is invalid. Returns True in succesfull authentication False otherwise. """ if not self._validate_second_reponse(servers_second_response): raise errors.InterfaceError("Authentication failed: Unable to " "proof server identity.") return True def get_auth_plugin(plugin_name): """Return authentication class based on plugin name This function returns the class for the authentication plugin plugin_name. The returned class is a subclass of BaseAuthPlugin. Raises errors.NotSupportedError when plugin_name is not supported. Returns subclass of BaseAuthPlugin. """ for authclass in BaseAuthPlugin.__subclasses__(): # pylint: disable=E1101 if authclass.plugin_name == plugin_name: return authclass raise errors.NotSupportedError( "Authentication plugin '{0}' is not supported".format(plugin_name))
python
from target import TargetType import os import re import cv2 import time import subprocess import numpy as np TARGET_DIR = './assets/' TMP_DIR = './tmp/' SIMILAR = { '1': ['i', 'I', 'l', '|', ':', '!', '/', '\\'], '2': ['z', 'Z'], '3': [], '4': [], '5': ['s', 'S'], '6': [], '7': [], '8': ['&'], '9': [], '0': ['o', 'O', 'c', 'C', 'D'] } class UIMatcher: @staticmethod def match(screen, target: TargetType): """ 在指定快照中确定货物的屏幕位置。 """ # 获取对应货物的图片。 # 有个要点:通过截屏制作货物图片时,请在快照为实际大小的模式下截屏。 template = cv2.imread(target.value) # 获取货物图片的宽高。 th, tw = template.shape[:2] # 调用 OpenCV 模板匹配。 res = cv2.matchTemplate(screen, template, cv2.TM_CCOEFF_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) rank = max_val # 矩形左上角的位置。 tl = max_loc # 阈值判断。 if rank < 0.82: return None # 这里,我随机加入了数字(15),用于补偿匹配值和真实位置的差异。 return tl[0] + tw / 2 + 15, tl[1] + th / 2 + 15, rank @staticmethod def read(filepath: str): """ 工具函数,用于读取图片。 """ return cv2.imread(filepath) @staticmethod def write(image): """ 工具函数,用于读取图片。 """ ts = str(int(time.time())) return cv2.imwrite(f'{TARGET_DIR}{ts}.jpg', image) @staticmethod def image_to_txt(image, cleanup=False, plus=''): # cleanup为True则识别完成后删除生成的文本文件 # plus参数为给tesseract的附加高级参数 image_url = f'{TMP_DIR}tmp.jpg' txt_name = f'{TMP_DIR}tmp' txt_url = f'{txt_name}.txt' if not os.path.exists(TMP_DIR): os.mkdir(TMP_DIR) cv2.imwrite(image_url, image) subprocess.check_output('tesseract --dpi 72 ' + image_url + ' ' + txt_name + ' ' + plus, shell=True) # 生成同名txt文件 text = '' with open(txt_url, 'r') as f: text = f.read().strip() if cleanup: os.remove(txt_url) os.remove(image_url) return text @staticmethod def normalize_txt(txt: str): for key, sim_list in SIMILAR.items(): for sim in sim_list: txt = txt.replace(sim, key) txt = re.sub(r'\D', '', txt) return txt @staticmethod def cut(image, left_up, len_width=(190, 50)): sx = left_up[0] sy = left_up[1] dx = left_up[0] + len_width[0] dy = left_up[1] + len_width[1] return image[sy:dy, sx:dx] @staticmethod def plain(image): kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) erode = cv2.erode(image, kernel) dilate = cv2.dilate(erode, kernel) return dilate @staticmethod def fill_color(image): copy_image = image.copy() h, w = image.shape[:2] mask = np.zeros([h + 2, w + 2], np.uint8) cv2.floodFill(copy_image, mask, (0, 0), (255, 255, 255), (100, 100, 100), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE) return copy_image @staticmethod def pre(image): image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) lower_blue = np.array([103, 43, 46]) upper_blue = np.array([103, 255, 255]) image = cv2.inRange(image, lower_blue, upper_blue) return image @staticmethod def pre_building_panel(image): image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) mask_orange = cv2.inRange(image, (10, 40, 40), (40, 255, 255)) mask_blue = cv2.inRange(image, (80, 40, 40), (140, 255, 255)) image = cv2.bitwise_or(mask_orange, mask_blue) return image
python
from horse import Horse import random import os money = 100 colours = [ "red", "blue", "yellow", "pink", "orange", ] def race_horses(horses): return random.choice(horses) while money > 0: print(f"Welcome to the race! You have £{money:.2f}. Your horses are: ") horses = [Horse.random(colour) for colour in colours] for number, horse in enumerate(horses): print(f"{number} - {horse} - {horse.info()}") which_horse = int(input("What horse do you want to gamble on?")) which_howmuch = float(input("How much do you want to throw away?")) money = round(money - which_howmuch, 2) winner = race_horses(horses) os.system('clear') print(f"You bet on {horses[which_horse].name}, the winner is {winner.name}") if horses[which_horse] == winner: print("Your horse won the race!") winnings = round(which_howmuch + (which_howmuch * winner.odds),2) money = round(money + winnings,2) print(f"The odds were {horses[which_horse].odds}, and you bet £{which_howmuch:.2f}" f", so you win £{winnings:.2f}") if horses[which_horse] != winner: print("Better luck next time, loser!") print (f"You have no money!")
python
""" Django settings for sandbox project. For more information on this file, see https://docs.djangoproject.com/en/dev/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/dev/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os import sys # sys.path.append() BASE_DIR = os.path.dirname(os.path.dirname(__file__)) sys.path.append(os.path.dirname(BASE_DIR)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/dev/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = "53(upox#u=f-0#5ue!)owq&-h#u)7z(z-nel&#(*tqhr@e3-u9" # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.sites", "django.contrib.messages", "django.contrib.staticfiles", "testapp", "django_pesapal", ) MIDDLEWARE_CLASSES = ( "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ) ROOT_URLCONF = "sandbox.urls" WSGI_APPLICATION = "sandbox.wsgi.application" # Database # https://docs.djangoproject.com/en/dev/ref/settings/#databases DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": os.path.join(BASE_DIR, "db.sqlite3"), } } # Internationalization # https://docs.djangoproject.com/en/dev/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/dev/howto/static-files/ STATIC_URL = "/static/" # Pesapal API configuration # Obtain test keys by creating a merchant account here http://demo.pesapal.com/ TEMPLATES = [ { # See: https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-TEMPLATES-BACKEND "BACKEND": "django.template.backends.django.DjangoTemplates", # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs "DIRS": [os.path.join(BASE_DIR, "templates")], "OPTIONS": { # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-debug "debug": DEBUG, # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders # https://docs.djangoproject.com/en/dev/ref/templates/api/#loader-types "loaders": [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.template.context_processors.i18n", "django.template.context_processors.media", "django.template.context_processors.static", "django.template.context_processors.tz", "django.contrib.messages.context_processors.messages", ], }, } ] LOGGING = { "version": 1, "disable_existing_loggers": False, "handlers": {"console": {"level": "DEBUG", "class": "logging.StreamHandler"}}, "loggers": { "django_pesapal": {"handlers": ["console"], "level": "DEBUG", "propagate": True} }, } PESAPAL_DEMO = True PESAPAL_OAUTH_CALLBACK_URL = "transaction_completed" PESAPAL_OAUTH_SIGNATURE_METHOD = "SignatureMethod_HMAC_SHA1" PESAPAL_TRANSACTION_DEFAULT_REDIRECT_URL = "payment" PESAPAL_DEMO = True PESAPAL_OAUTH_CALLBACK_URL = "transaction_completed" PESAPAL_OAUTH_SIGNATURE_METHOD = "SignatureMethod_HMAC_SHA1" PESAPAL_TRANSACTION_FAILED_REDIRECT_URL = "" PESAPAL_ITEM_DESCRIPTION = False PESAPAL_TRANSACTION_MODEL = "django_pesapal.Transaction" PESAPAL_CONSUMER_KEY = "INSERT_YOUR_KEY" PESAPAL_CONSUMER_SECRET = "INSERT_YOUR_SECRET" # Override pesapal keys try: from local_config import * except ImportError: pass
python
from django.contrib.auth import password_validation, get_user_model from rest_framework import serializers from rest_framework.generics import get_object_or_404 from rest_framework.exceptions import ValidationError from rest_framework.validators import UniqueValidator from rest_framework_simplejwt.exceptions import InvalidToken, TokenError from .profile import ProfileSerializer from eworkshop.tasks.tasks import request_reset_password_email from ..tokens import EmailToken from ..models import Profile Staff = get_user_model() class ListStaffSerializer(serializers.ModelSerializer): class Meta: model = Staff fields = ('id', 'first_name', 'last_name', 'username', 'is_active') class ShowStaffSerializer(serializers.ModelSerializer): username = serializers.CharField( min_length=4, max_length=20, validators=[UniqueValidator(queryset=Staff.objects.all())]) profile = ProfileSerializer(read_only=True) class Meta: model = Staff fields = ( 'id', 'username', 'first_name', 'last_name', 'email', 'phone_number', 'cellphone_number', 'address', 'ci', 'profile', 'groups' ) def create(self, validated_data): instance = super().create(validated_data) instance.set_password('1234') instance.save() Profile.objects.create(staff=instance) return instance class PasswordSerializer(serializers.Serializer): password = serializers.CharField( max_length=64, min_length=8, required=True) password_confirmation = serializers.CharField( max_length=64, min_length=8, required=True) def validate(self, data): if data['password'] != data['password_confirmation']: raise serializers.ValidationError("Password does not match.") password_validation.validate_password(data['password']) return data def save(self): password = self.validated_data['password'] self.instance.set_password(password) self.instance.change_password() self.instance.save() class StaffResetPasswordConfirm(PasswordSerializer): token = serializers.CharField(required=True) def validate_token(self, token): try: self.token_instance(token) except TokenError as e: raise InvalidToken(e.args[0]) return token def token_instance(self, token): return EmailToken(token=token) def get_token_user(self): user_id = self.token_instance( self.validated_data['token']).payload['user_id'] return get_object_or_404(Staff, **{'id': user_id, 'is_active': True}) def save(self): self.instance = self.get_token_user() super().save() class StaffChangePasswordSerializer(PasswordSerializer): old_password = serializers.CharField() def validate_old_password(self, value): invalid_password_conditions = ( self.instance, not self.instance.check_password(value) ) if all(invalid_password_conditions): msg = "Your old password was entered incorrectly. Please enter it again." raise serializers.ValidationError(msg) return value class StaffResetPasswordSerializer(serializers.Serializer): email = serializers.EmailField(required=True) @classmethod def get_token(cls, user): return EmailToken.for_user(user) def validate_email(self, value): query = Staff.objects.filter(is_active=True).filter( profile__is_password_changed=True).filter(email__iexact=value) if not query: return ValidationError('There is no active user associated with this e-mail address or the password can not be changed') else: self.user = query[0] def save(self): token = self.get_token(self.user) request_reset_password_email.delay(self.user.email, str(token))
python
import math import cmath import cairo from random import randint IMAGE_SIZE = (5000, 5000) NUM_SUBDIVISIONS = 6 def chooseRatio(): return randint(0, 6) colors = [(1.0, 0.35, 0.35), (0.4, 0.4, 1.0), (0.1, 1.0, 0.2), (0.7, 0.1, 0.8)] def chooseColor(): return colors[randint(0, len(colors) - 1)] Ratio = chooseRatio()*0.1 + 1.4 def subdivide(triangles): result = [] for color, A, B, C in triangles: if color == 0: # Subdivide red triangle P = A + (B - A) / Ratio result += [(0, C, P, B), (1, P, C, A)] else: # Subdivide blue triangle Q = B + (A - B) / Ratio R = B + (C - B) / Ratio result += [(1, R, C, A), (1, Q, R, B), (0, R, Q, A)] return result # Create wheel of red triangles around the origin triangles = [] for i in xrange(10): B = cmath.rect(1, (2*i - 1) * math.pi / 10) C = cmath.rect(1, (2*i + 1) * math.pi / 10) if i % 2 == 0: B, C = C, B # Make sure to mirror every second triangle triangles.append((0, 0j, B, C)) # Perform subdivisions for i in xrange(NUM_SUBDIVISIONS): triangles = subdivide(triangles) # Prepare cairo surface surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, IMAGE_SIZE[0], IMAGE_SIZE[1]) cr = cairo.Context(surface) cr.translate(IMAGE_SIZE[0] / 2.0, IMAGE_SIZE[1] / 2.0) wheelRadius = 1.2 * math.sqrt((IMAGE_SIZE[0] / 2.0) ** 2 + (IMAGE_SIZE[1] / 2.0) ** 2) cr.scale(wheelRadius, wheelRadius) # Draw first triangles for color, A, B, C in triangles: if color == 0: cr.move_to(A.real, A.imag) cr.line_to(B.real, B.imag) cr.line_to(C.real, C.imag) cr.close_path() chosen = chooseColor() colors.remove(chosen) cr.set_source_rgb(*chosen) cr.fill() # Draw second triangles for color, A, B, C in triangles: if color == 1: cr.move_to(A.real, A.imag) cr.line_to(B.real, B.imag) cr.line_to(C.real, C.imag) cr.close_path() chosen = chooseColor() colors.remove(chosen) cr.set_source_rgb(*chosen) cr.fill() # Determine line width from size of first triangle color, A, B, C = triangles[0] cr.set_line_width(abs(B - A) / 10.0) cr.set_line_join(cairo.LINE_JOIN_ROUND) # Draw outlines for color, A, B, C in triangles: cr.move_to(C.real, C.imag) cr.line_to(A.real, A.imag) cr.line_to(B.real, B.imag) cr.set_source_rgb(0.2, 0.2, 0.2) cr.stroke() # Save to PNG surface.write_to_png('penrose.png')
python
from preprocess.load_data.data_loader import load_hotel_reserve customer_tb, hotel_tb, reserve_tb = load_hotel_reserve() # 本书刊登内容如下 # 将iloc函数二维数组的第一维度指定为“:”,提取所有行 # 将iloc函数二维数组的第二维度指定为由列号组成的数组,提取相应的列 # 0:6和[0, 1, 2, 3, 4, 5]表示相同的意思 reserve_tb.iloc[:, 0:6]
python
""" @authors: # ============================================================================= Information: The purpose of this script is to serve as the main code for the user. Use the user's guide that still has not been written to find out how to use this tool. Use your python skills to understand how this tool has been coded. Change your variables, do your maths, and do your science. Let's go to space, y'all Process : 1. Generate the acceleration values (from orbit data or raw simulation) using GH_generate 2. Solve for the coefficients using the functions in this script using GH_solve 3. Generate a Geoid map from solved coefficients using GH_displayCoef 4. Compare Geoids or coefficients using GH_displayCoef 5. Plot Satellite positions and accelerations in space using GH_displaySat todo: replace "acc" by "geopot" lol future stuff: earth rotation approx drag and shit (solar radiation, tidal effects) Instruction after executing the code : here are the commands to execute on the terminal : - A = getMat(n), with n a natural integer : we advise n=7. - res = np.linalg.lstsq(A, acc) - acc_solved = A@res[0] : acc_solved represents the vector of the solved acceleration in spherical coordinates. Then acc_solved = [acc_rad(0),acc_theta(0),acc_phi(0),...]. Then plot the result. If you want to plot for example only the radial acceleration, execute this command : - plt.plot([acc_solved[3*i] for i in range(len(acc_solved)//3)]) Here is the link to the files we use for this code : https://drive.google.com/drive/folders/1XgGn2QoFGJ-u_m4aoL2No-PmxIRraLg6?fbclid=IwAR04xPEqi1h-eGWR_inJfHa4dp8dzG7NPlgHcNKYfz0OT1v0uU7ADew9VR4 # ============================================================================= """ import numpy as np import matplotlib.pyplot as plt from time import gmtime, strftime import GH_import as imp import GH_convert as conv import GH_generate as gen import GH_solve as solv import GH_displayGeoid as dgeo import GH_displaySat as dsat import GH_export as exp #import GH_displayTopo as dtopo #import GH_terminal as term #import GH_harmonics as harm #import GH_geoMath as gmath #import GH_earthMap as emap from GH_import import data_path #= "../data" file_name = "Polar_400km_EarthFixed_15jours_5sec.e" lmax = 10 Pos,Vit, t = imp.Fetch_Pos_Vit(file_name, 5, spherical=False) Pos_sphere = conv.cart2sphA(Pos) acc = gen.Gen_Acc_2(Pos,Vit,t) acc = conv.cart2sphA(acc) acc = conv.Make_Line_acc(acc) getMat = lambda lmax : solv.Get_PotGradMatrix2(lmax, Pos_sphere) hc, hs = imp.Fetch_Coef() hc = hc.flatten() hc = np.sort(hc)
python
from django.conf.urls import url, include #from django.contrib import admin #from django.urls import path from usuario.views import registar_usuario,editar_usuario,eliminar_usuario app_name = 'usuario' urlpatterns = [ url(r'^nuevo$',registar_usuario.as_view() , name="new"), url(r'^edit_book/(?P<pk>\d+)/$',editar_usuario.as_view() , name="edit"), url(r'^delete_book/(?P<pk>\d+)/$',eliminar_usuario.as_view() , name="delete"), ]
python
from hashlib import md5 from app import app, db import sys if sys.version_info >= (3, 0): enable_search = False else: enable_search = True import flask_whooshalchemy as whooshalchemy # This is a direct translation of the association table. # use the lower level APIs in flask-sqlalchemy to create the table without an associated model. followers = db.Table( 'followers', db.Column('follower_id', db.Integer, db.ForeignKey('user.id')), db.Column('followed_id', db.Integer, db.ForeignKey('user.id')) ) class User(db.Model): id = db.Column(db.Integer, primary_key=True) nickname = db.Column(db.String(64), index=True, unique=True) email = db.Column(db.String(120), index=True, unique=True) posts = db.relationship('Post', backref='author', lazy='dynamic') about_me = db.Column(db.String(140)) last_seen = db.Column(db.DateTime) followed = db.relationship('User', secondary=followers, primaryjoin=(followers.c.follower_id == id), secondaryjoin=(followers.c.followed_id == id), backref=db.backref('followers', lazy='dynamic'), lazy='dynamic') @property def is_authenticated(self): return True @property def is_active(self): return True @property def is_anonymous(self): return False def get_id(self): try: return unicode(self.id) # python 2 except NameError: return str(self.id) # python 3 def avatar(self, size): return 'http://www.gravatar.com/avatar/%s?d=mm&s=%d' % \ (md5(self.email.encode('utf-8')).hexdigest(), size) def follow(self, user): # When an object is returned, this object has to be added to # the database session and committed. if not self.is_following(user): self.followed.append(user) # return an object when they succeed or None when they fail. return self def unfollow(self, user): if self.is_following(user): self.followed.remove(user) return self ''' There are several methods in the query object that trigger the query execution. We've seen that count() runs the query and returns the number of results (throwing the actual results away). We have also used first() to return the first result and throw away the rest, if any. In this test we are using the all() method to get an array with all the results. ''' def is_following(self, user): return self.followed.filter(followers.c.followed_id == user.id).count() > 0 # This method returns a query object, not the results. # This is similar to how relationships with lazy = 'dynamic' work. def followed_posts(self): return Post.query.join(followers, (followers.c.followed_id == Post.user_id))\ .filter(followers.c.follower_id == self.id)\ .order_by(Post.timestamp.desc()) # We can use without an instance of the Class. @staticmethod def make_unique_nickname(nickname): if User.query.filter_by(nickname=nickname).first() is None: return nickname version = 2 while True: new_nickname = nickname + str(version) if User.query.filter_by(nickname=new_nickname).first() is None: break version += 1 return new_nickname def __repr__(self): return '<User %r>' % (self.nickname) class Post(db.Model): __searchable__ = ['body'] id = db.Column(db.Integer, primary_key=True) body = db.Column(db.String(140)) timestamp = db.Column(db.DateTime) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) def __repr__(self): return '<Post %r>' % (self.body) if enable_search: whooshalchemy.whoosh_index(app, Post)
python
import numpy as np import pickle from collections import defaultdict import spacy from spacy.symbols import nsubj, VERB from models import load_models, generate import argparse import torch nlp = spacy.load("en") def get_subj_verb(sent): "Given a parsed sentence, find subject, verb, and subject modifiers." sub = set() verbs = set() mod = set() for i, possible_subject in enumerate(sent): if possible_subject.dep == nsubj and possible_subject.head.pos == VERB: if possible_subject.head.head.pos == VERB: verbs.add(str(possible_subject.head.head)) else: verbs.add(str(possible_subject.head)) sub.add(str(possible_subject)) c = list(possible_subject.children) for w in c: mod.add(str(w)) if not c: mod.add(str(sent[i-1]) if i != 0 else "NONE") return verbs, sub, mod def featurize(sent): "Given a sentence construct a feature rep" verb, sub, mod = get_subj_verb(sent) d = {} def add(d, pre, ls): for l in ls: d[pre + "_" + l] = 1 add(d, "VERB", list(verb)[:1]) add(d, "MOD", list(mod)) add(d, "NOUN", list(sub)[:1]) return d def gen(vec): "Generate argmax sentence from vector." return generate(autoencoder, gan_gen, z=torch.FloatTensor(vec).view(1, -1), vocab=idx2word, sample=False, maxlen=model_args['maxlen']) def gen_samples(vec): "Generate sample sentences from vector." sentences = [] sentences = generate(autoencoder, gan_gen, z=torch.FloatTensor(vec) .view(1, -1).expand(20, vec.shape[0]), vocab=idx2word, sample=True, maxlen=model_args['maxlen'])[0] return sentences def switch(vec, mat, rev, f1, f2): "Update vec away from feature1 and towards feature2." means = [] m2 = np.mean(mat[list(rev[f2])], axis=0) for f in f1: if list(rev[f]): means.append(np.mean(mat[list(rev[f])], axis=0)) m1 = np.mean(means) if f1 else np.zeros(m2.shape) val = vec + (m2 - m1) return val, vec - m1 def alter(args): sents, features, rev, mat = pickle.load(open(args.dump, "br")) mat = mat.numpy() # Find examples to alter toward new feat. new_feat = args.alter pre = new_feat.split("_")[0] word = new_feat.split("_")[1] for i in range(args.nsent): vec = mat[i] for j in range(10): sent = gen(vec)[0] f = featurize(nlp(sent)) print("Sent ", j, ": \t ", sent, "\t") if word in sent: break # Compute the feature distribution associated with this point. samples = gen_samples(vec) feats = [f] * 50 for s in samples: feats.append(featurize(nlp(s))) mod = [] for feat in feats: for feature in feat: if feature.startswith(pre): mod.append(feature) # Try to updated the vector towards new_feat update, temp = switch(vec, mat, rev, mod, new_feat) if j == 0: orig = temp # Interpolate with original. vec = 0.2 * orig + 0.8 * update print() print() def dump_samples(args): "Construct a large number of samples with features and dump to file." all_features = [] all_sents = [] batches = args.nbatches batch = args.batch_size samples = 1 total = batches * batch * samples all_zs = torch.FloatTensor(total, model_args['z_size']) rev = defaultdict(set) for j in range(batches): print("%d / %d batches " % (j, batches)) noise = torch.ones(batch, model_args['z_size']) noise.normal_() noise = noise.view(batch, 1, model_args['z_size'])\ .expand(batch, samples, model_args['z_size']).contiguous()\ .view(batch*samples, model_args['z_size']) sentences = generate(autoencoder, gan_gen, z=noise, vocab=idx2word, sample=True, maxlen=model_args['maxlen']) for i in range(batch * samples): k = len(all_features) nlp_sent = nlp(sentences[i]) feats = featurize(nlp_sent) all_sents.append(sentences[i]) all_features.append(feats) for f in feats: rev[f].add(k) all_zs[k] = noise[i] pickle.dump((all_sents, all_features, rev, all_zs), open(args.dump, "bw")) def main(args): if args.mode == 'gen': dump_samples(args) elif args.mode == 'alter': alter(args) if __name__ == "__main__": parser = argparse.ArgumentParser(description='PyTorch experiment') parser.add_argument('mode', default='gen', help='choices [gen, alter]') parser.add_argument('--load_path', type=str, default='', help='directory to load models from') parser.add_argument('--dump', type=str, default="features.pkl", help='path to sample dump') parser.add_argument('--nbatches', type=int, default=1000) parser.add_argument('--batch_size', type=int, default=1000) parser.add_argument('--alter', type=str, default="") parser.add_argument('--nsent', type=int, default=100) args = parser.parse_args() model_args, idx2word, autoencoder, gan_gen, gan_disc \ = load_models(args.load_path) main(args)
python
# HTTP Error Code # imported necessary library import tkinter from tkinter import * import tkinter as tk import tkinter.messagebox as mbox import json # created main window window = Tk() window.geometry("1000x700") window.title("HTTP Error Code") # ------------------ this is for adding gif image in the main window of application --------------------------------------- frameCnt = 3 frames = [PhotoImage(file='Images/front.gif',format = 'gif -index %i' %(i)) for i in range(frameCnt)] cnt = 0.0 def update(ind): global cnt frame = frames[ind] if(cnt == 1.0): cnt = 0 cnt = cnt + 0.2 ind += int(cnt) if ind == frameCnt: ind = 0 label.configure(image=frame) window.after(100, update, ind) label = Label(window) label.place(x = 170, y = 150) window.after(0, update, 0) # -------------------------------------------------------------------- #loaded json data data1 = json.load(open("code_data.json")) code = data1["code"] category = data1["category"] term = data1["term"] meaning = data1["meaning"] # print(len(code)) # print(len(category)) # print(len(term)) # print(len(meaning)) def start_fun(): def get_info(): selected_code = code_var.get() for i in range(0,len(code)): if(code[i] == selected_code): mbox.showinfo(selected_code + " HTTP Code Info", "HTTP Code : " + str(selected_code) + "\n\n1.) Category : " + str(category[i]) + "\n\n2.) Terms : " + str(term[i]) + "\n\n3.) Meanings : " + str(meaning[i])) f1 = Frame(window, width=1000, height=700) f1.propagate(0) f1.pack(side='top') c1 = Canvas(f1, width=1000, height=700) # blue c1.pack() p1 = PhotoImage(file="Images/second.gif") c1.create_image(50, 120, image=p1, anchor="nw") w1 = Canvas(window) w1.p1 = p1 # top label start1 = tk.Label(f1, text="HTTP ERROR CODE", font=("Arial", 55), fg="magenta") # same way bg start1.place(x=120, y=10) # top label lbl1 = tk.Label(f1, text="Select Error Code : ", font=("Arial", 35), fg="brown") # same way bg lbl1.place(x=180, y=420) # creating the drop down menu button for selectng hour code_var = tk.StringVar() # as icon size are really small, we defined the following 7 sizes code_choices = code code_menu = OptionMenu(window, code_var, *code_choices) code_menu.config(font=("Arial", 30), bg = "light green", fg = "blue", borderwidth=3) code_menu["menu"].config(font=("Arial", 15), bg = "light yellow", fg = "blue") code_menu.place(x=630, y=415) code_var.set("100") # size 1 is selected as by default, and we can # created exit button getb = Button(window, text="GET - INFO", command=get_info, font=("Arial", 25), bg="light green", fg="blue",borderwidth=3, relief="raised") getb.place(x=120, y=550) # function for reseting def reset_fun(): code_var.set("100") # created exit button resetb = Button(window, text="RESET", command=reset_fun, font=("Arial", 25), bg="orange", fg="blue",borderwidth=3, relief="raised") resetb.place(x=460, y=550) # function for exiting def exit_fun(): if mbox.askokcancel("Exit", "Do you want to exit?"): window.destroy() # created exit button exitb = Button(window, text="EXIT", command=exit_fun, font=("Arial", 25), bg="red", fg="blue",borderwidth=3, relief="raised") exitb.place(x=750, y=550) # top label start1 = tk.Label(text="HTTP ERROR CODE", font=("Arial", 55), fg="magenta") # same way bg start1.place(x=120, y=10) # created exit button startb = Button(window, text="START", command=start_fun, font=("Arial", 25), bg="light green", fg="blue", borderwidth=3, relief="raised") startb.place(x=120, y=580) # function for exiting def exit_win(): if mbox.askokcancel("Exit", "Do you want to exit?"): window.destroy() # created exit button exitb = Button(window, text="EXIT", command=exit_win, font=("Arial", 25), bg="red", fg="blue", borderwidth=3, relief="raised") exitb.place(x=750, y=580) window.protocol("WM_DELETE_WINDOW", exit_win) window.mainloop()
python
is_all_upper = lambda t: t.isupper()
python
from .drm_service import DRMService from .fairplay_drm_service import FairPlayDRM from .aes_drm_service import AESDRM class TSDRMService(DRMService): MUXING_TYPE_URL = 'ts' def __init__(self, http_client): super().__init__(http_client=http_client) self.FairPlay = FairPlayDRM(http_client=http_client, muxing_type_url=self.MUXING_TYPE_URL) self.AES = AESDRM(http_client=http_client, muxing_type_url=self.MUXING_TYPE_URL)
python
#!/usr/bin/python import yaml import json #Reading from YAML file print "\n***Printing from the YAML file***" yamlfile = 'yamloutput.yml' with open (yamlfile) as f: yamllist = yaml.load(f) print yamllist print "\n" #Reading from JSON file print "\n***Printing from the JSON file***" jsonfile = 'jsonoutput.json' with open (jsonfile) as f: jsonlist = json.load(f) print jsonlist print "\n"
python
# Copyright 2018 StreamSets Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import pytest from streamsets.testframework.markers import sdc_min_version from streamsets.testframework.sdc_models import CustomLib logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) PMML_IRIS_MODEL_PATH = '/resources/resources/pmml_iris_model/iris_rf.pmml' @pytest.fixture(scope='module') def sdc_common_hook(args): def hook(data_collector): if not args.custom_stage_lib: pytest.skip('Tensorflow processor tests only run if --custom-stage-lib is passed') stage_lib_version = [lib.split(',')[1] for lib in args.custom_stage_lib if 'pmml' in lib] if len(stage_lib_version) == 0: pytest.skip('Tensorflow processor tests only run if --custom-stage-lib contains pmml') data_collector.add_stage_lib(CustomLib('streamsets-datacollector-pmml-lib', stage_lib_version[0])) return hook @sdc_min_version('3.5.0') def test_tensorflow_evaluator(sdc_builder, sdc_executor): """Test PMML Evaluator processor. The pipeline would look like: dev_raw_data_source >> pmml_evaluator >> trash With given raw_data below, PMML Evaluator processor evaluates each record using the sample Iris classification model. """ raw_data = """ { "petalLength": 6.4, "petalWidth": 2.8, "sepalLength": 5.6, "sepalWidth": 2.2 } { "petalLength": 5.0, "petalWidth": 2.3, "sepalLength": 3.3, "sepalWidth": 1.0 } { "petalLength": 4.9, "petalWidth": 2.5, "sepalLength": 4.5, "sepalWidth": 1.7 } { "petalLength": 4.9, "petalWidth": 3.1, "sepalLength": 1.5, "sepalWidth": 0.1 } """ pipeline_builder = sdc_builder.get_pipeline_builder() dev_raw_data_source = pipeline_builder.add_stage('Dev Raw Data Source') dev_raw_data_source.set_attributes(data_format='JSON', raw_data=raw_data) pmml_evaluator = pipeline_builder.add_stage('PMML Evaluator') pmml_input_configs = [{"pmmlFieldName": "Petal.Length", "fieldName": "/petalLength"}, {"pmmlFieldName": "Petal.Width", "fieldName": "/petalWidth"}, {"pmmlFieldName": "Sepal.Length", "fieldName": "/sepalLength"}, {"pmmlFieldName": "Sepal.Width", "fieldName": "/sepalWidth"}] pmml_evaluator.set_attributes(input_configs=pmml_input_configs, model_output_fields=['Predicted_Species', 'Probability_setosa', 'Probability_versicolor', 'Probability_virginica'], output_field='/output', saved_model_file_path=PMML_IRIS_MODEL_PATH) trash = pipeline_builder.add_stage('Trash') dev_raw_data_source >> pmml_evaluator >> trash pipeline = pipeline_builder.build('PMML evaluator for IRIS Model') sdc_executor.add_pipeline(pipeline) sdc_executor.validate_pipeline(pipeline) snapshot = sdc_executor.capture_snapshot(pipeline, start_pipeline=True).snapshot sdc_executor.stop_pipeline(pipeline) # Assert PMML Model evaluation Output pmml_output = snapshot[pmml_evaluator.instance_name].output output_field = pmml_output[0].field['output'] predicted_species_item = output_field['Predicted_Species'] assert predicted_species_item.type == 'STRING' assert predicted_species_item == 'virginica'
python
import json import cv2 import matplotlib.pyplot as plt import numpy as np import os from labelme import utils from skimage import img_as_ubyte import PIL.Image import random JSON_DIR = 'json' LABELCOLOR = { # 设定label染色情况 'product': 1, 'product': 2, 'product': 3, 'product': 4, } VOCVersion = 'VOC2012' Path_VOCDevkit = 'VOCDevkit' Path_VOC = os.path.join(Path_VOCDevkit, VOCVersion) Path_Annotations = os.path.join(Path_VOCDevkit, 'Annotations') Path_ImageSets = os.path.join(Path_VOCDevkit, 'ImageSets') Path_ImageSets_Action = os.path.join(Path_ImageSets, 'Action') Path_ImageSets_Layout = os.path.join(Path_ImageSets, 'Layout') Path_ImageSets_Main = os.path.join(Path_ImageSets, 'Main') Path_ImageSets_Segmentation = os.path.join(Path_ImageSets, 'Segmentation') Path_ImageSets_Segmentation_train = os.path.join(Path_ImageSets_Segmentation, 'train.txt') Path_ImageSets_Segmentation_val = os.path.join(Path_ImageSets_Segmentation, 'val.txt') Path_JPEGImages = os.path.join(Path_VOCDevkit, 'JPEGImages') Path_SegmentationClass = os.path.join(Path_VOCDevkit, 'SegmentationClass') Path_SegmentationObject = os.path.join(Path_VOCDevkit, 'SegmentationObject') def checkdir(): createdir(Path_VOCDevkit) createdir(Path_VOC) createdir(Path_Annotations) createdir(Path_ImageSets) createdir(Path_ImageSets_Action) createdir(Path_ImageSets_Layout) createdir(Path_ImageSets_Main) createdir(Path_ImageSets_Segmentation) createdir(Path_JPEGImages) createdir(Path_SegmentationClass) createdir(Path_SegmentationObject) def createdir(path): if not os.path.exists(path): os.makedirs(path) else: pass def cvt_one(json_path, save_path_image, save_path_mask, label_color): # load img and json data = json.load(open(json_path)) fileName = data['imagePath'][:-4] img = utils.image.img_b64_to_arr(data['imageData']) PIL.Image.fromarray(img).save(save_path_image) lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes']) # get background data img = np.zeros([img.shape[0], img.shape[1]]) # draw roi for i in range(len(data['shapes'])): name = str(data['shapes'][i]['label']) points = data['shapes'][i]['points'] color = label_color[name] img = cv2.fillPoly(img, [np.array(points, dtype=int)], color) plt.imshow(img) plt.show() cv2.imwrite(save_path_mask, img) def devideDataset(ratio): for folderroot, folderlist, filelist in os.walk(Path_SegmentationClass): seglist = [] i = 0 while i < len(filelist): if '.png' in filelist[i]: seglist.append(filelist[i][:-4]) i += 1 random.shuffle(seglist) offset = int(ratio * len(seglist)) train_list = seglist[offset:] val_list = seglist[:offset] writeTxt(Path_ImageSets_Segmentation_train, train_list) writeTxt(Path_ImageSets_Segmentation_val, val_list) def writeTxt(filePath, namelist): file = open(filePath, 'w+') file.seek(0) for name in namelist: file.write(name + '\n') file.flush() file.close() if __name__ == '__main__': checkdir() for folderroot, folderlist, filelist in os.walk(JSON_DIR): jsonfilelist = [] i = 0 while i < len(filelist): if '.json' in filelist[i]: jsonfilelist.append(filelist[i]) i += 1 for i in range(len(jsonfilelist)): json_path = os.path.join(JSON_DIR, jsonfilelist[i]) save_path_image = os.path.join(Path_JPEGImages, jsonfilelist[i].replace('.json', '.jpg')) save_path_mask = os.path.join(Path_SegmentationClass, jsonfilelist[i].replace('.json', '.png')) print('Processing {}'.format(json_path)) cvt_one(json_path, save_path_image, save_path_mask, LABELCOLOR) devideDataset(0.3)
python
from setuptools import setup with open('README.md') as f: long_description = f.read() setup( name='nicebytes', author='Philipp Ploder', url='https://github.com/Fylipp/nicebytes', description='human-readable data quantities', long_description=long_description, long_description_content_type='text/markdown', license='MIT', py_modules=['nicebytes'], scripts=['nicebytes', 'nicebytes.py'], classifiers=[ "Development Status :: 5 - Production/Stable", "License :: OSI Approved :: MIT License", "Environment :: Console", "Intended Audience :: End Users/Desktop", "Topic :: Utilities", "Topic :: System" ] )
python
# -*- coding: utf-8 -*- """ profiling.tracing ~~~~~~~~~~~~~~~~~ Profiles deterministically by :func:`sys.setprofile`. """ from __future__ import absolute_import import sys import threading from .. import sortkeys from ..profiler import Profiler from ..stats import RecordingStatistics, VoidRecordingStatistics as void from ..utils import deferral from ..viewer import StatisticsTable, fmt from .timers import Timer __all__ = ['TracingProfiler', 'TracingStatisticsTable'] TIMER_CLASS = Timer class TracingStatisticsTable(StatisticsTable): columns = [ ('FUNCTION', 'left', ('weight', 1), sortkeys.by_function), ('CALLS', 'right', (6,), sortkeys.by_own_hits), ('OWN', 'right', (6,), sortkeys.by_own_time), ('/CALL', 'right', (6,), sortkeys.by_own_time_per_call), ('%', 'left', (4,), None), ('DEEP', 'right', (6,), sortkeys.by_deep_time), ('/CALL', 'right', (6,), sortkeys.by_deep_time_per_call), ('%', 'left', (4,), None), ] order = sortkeys.by_deep_time def make_cells(self, node, stats): yield fmt.make_stat_text(stats) yield fmt.make_int_or_na_text(stats.own_hits) yield fmt.make_time_text(stats.own_time) yield fmt.make_time_text(stats.own_time_per_call) yield fmt.make_percent_text(stats.own_time, self.cpu_time) yield fmt.make_time_text(stats.deep_time) yield fmt.make_time_text(stats.deep_time_per_call) yield fmt.make_percent_text(stats.deep_time, self.cpu_time) class TracingProfiler(Profiler): """The tracing profiler.""" table_class = TracingStatisticsTable #: The CPU timer. Usually it is an instance of :class:`profiling.tracing. #: timers.Timer`. timer = None #: The CPU time of profiling overhead. It's the time spent in #: :meth:`_profile`. overhead = 0.0 def __init__(self, top_frames=(), top_codes=(), upper_frames=(), upper_codes=(), timer=None): timer = timer or TIMER_CLASS() if not isinstance(timer, Timer): raise TypeError('Not a timer instance') base = super(TracingProfiler, self) base.__init__(top_frames, top_codes, upper_frames, upper_codes) self.timer = timer self._times_entered = {} def _profile(self, frame, event, arg): """The callback function to register by :func:`sys.setprofile`.""" # c = event.startswith('c_') if event.startswith('c_'): return time1 = self.timer() frames = self.frame_stack(frame) if frames: frames.pop() parent_stats = self.stats for f in frames: parent_stats = parent_stats.ensure_child(f.f_code, void) code = frame.f_code frame_key = id(frame) # if c: # event = event[2:] # code = mock_code(arg.__name__) # frame_key = id(arg) # record time2 = self.timer() self.overhead += time2 - time1 if event == 'call': time = time2 - self.overhead self.record_entering(time, code, frame_key, parent_stats) elif event == 'return': time = time1 - self.overhead self.record_leaving(time, code, frame_key, parent_stats) time3 = self.timer() self.overhead += time3 - time2 def record_entering(self, time, code, frame_key, parent_stats): """Entered to a function call.""" stats = parent_stats.ensure_child(code, RecordingStatistics) self._times_entered[(code, frame_key)] = time stats.own_hits += 1 def record_leaving(self, time, code, frame_key, parent_stats): """Left from a function call.""" try: stats = parent_stats.get_child(code) time_entered = self._times_entered.pop((code, frame_key)) except KeyError: return time_elapsed = time - time_entered stats.deep_time += max(0, time_elapsed) def result(self): base = super(TracingProfiler, self) frozen_stats, cpu_time, wall_time = base.result() return (frozen_stats, cpu_time - self.overhead, wall_time) def run(self): if sys.getprofile() is not None: # NOTE: There's no threading.getprofile(). # The profiling function will be stored at threading._profile_hook # but it's not documented. raise RuntimeError('Another profiler already registered') with deferral() as defer: self._times_entered.clear() self.overhead = 0.0 sys.setprofile(self._profile) defer(sys.setprofile, None) threading.setprofile(self._profile) defer(threading.setprofile, None) self.timer.start(self) defer(self.timer.stop) yield
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Project: Appraise evaluation system Author: Matt Post <[email protected]> This script takes a set of parallel files and writes out the XML file used to setup the corresponding Appraise tasks. usage: $ build_xml.py [-h] [-id ID] [-source SOURCELANG] [-target TARGETLANG] \ source system [system ...] where -id is a system ID (e.g., "wmt-2012") -source is a source language identifier (e.g., "es") -target is a source language identifier (e.g., "en") -diff-documents will mark each sentence as from a different document (as opposed to sequential sentences in the same document) source is the source language file system[1..N] are system outputs parallel to the source file """ import argparse PARSER = argparse.ArgumentParser(description="Build evaluation task input " \ "file.") PARSER.add_argument("source", type=file, help="source language file") PARSER.add_argument("reference", type=file, nargs="?", help="reference language file") PARSER.add_argument("system", metavar="system", nargs="+", type=file, help="parallel files to compare") PARSER.add_argument("-id", type=str, default="none", help="ID name to use " \ "for the system name") PARSER.add_argument("-source", type=str, default="spa", dest="sourceLang", help="the source language") PARSER.add_argument("-target", type=str, default="eng", dest="targetLang", help="the target language") PARSER.add_argument("-diff-documents", action="store_false", default=True, dest="sameDocument", help="sentences are from different documents") if __name__ == "__main__": args = PARSER.parse_args() source = [] for line in args.source: source.append(line.strip()) reference = [] for line in args.reference: reference.append(line.strip()) systems = [] for i, system in enumerate(args.system): systems.append([]) for line in system: systems[i].append(line.strip()) print '<set id="%s" source-language="%s" target-language="%s">' \ % (args.id, args.sourceLang, args.targetLang) # TODO: change to use of .format() calls. Check that it works with UTF-8 data. for i, sentence in enumerate(systems[0]): # If the sentences are from different documents, we give each of them a # different document name so that they will not be presented with context. docid = args.source.name if args.sameDocument else '{}-{}'.format( args.source.name, i+1) print ' <seg id="%d" doc-id="%s">' % (i+1, docid) print ' <source>%s</source>' % (source[i]) if len(reference) >= i+1: print ' <reference>%s</reference>' % (reference[i]) for j, system in enumerate(systems): print ' <translation system="%s">%s</translation>' \ % (args.system[j].name, system[i]) print ' </seg>' print '</set>'
python
import datetime import discord from dotenv import dotenv_values TOKEN = dotenv_values(".env")["TOKEN"] class Client(discord.Client): async def on_ready(self): members = getlist(self.guilds[0]) votes = {} for member in members: votes[member] = 0 for member in members: try: dm = await member.create_dm() messages = await dm.history(limit=5, oldest_first=False, after=datetime.datetime.now() - datetime.timedelta( days=2)).flatten() for message in messages: message = message.content.split() if message[0] == "!vote" and not members[int(message[1]) - 1] == member: votes[members[int(message[1]) - 1]] += 1 break except Exception as e: print(repr(e)) sortedvotes = sorted(votes, key=votes.get, reverse=True) msg = "@everyone The election has ended and the results are are:\n" for i, member in enumerate(sortedvotes): if i == 0: msg += f"{member.mention}: {votes[member]} votes\n" elif votes[member] > 1: msg += f"{member.name}: {votes[member]} votes\n" elif votes[member] == 1: msg += f"{member.name}: {votes[member]} vote\n" else: break await self.guilds[0].text_channels[0].send(msg) await sortedvotes[0].add_roles(self.guilds[0].get_role(810326558727602258)) await self.close() def getlist(guild): ids = open("./members.txt").readlines() return [guild.get_member(int(uid)) for uid in ids] intents = discord.Intents.default() intents.members = True Client(intents=intents).run(TOKEN)
python
from django.template.loader import get_template from django_better_admin_arrayfield.forms.widgets import DynamicArrayWidget def test_template_exists(): get_template(DynamicArrayWidget.template_name) def test_format_value(): widget = DynamicArrayWidget() assert widget.format_value("") == [] assert widget.format_value([1, 2, 3]) == [1, 2, 3] def test_value_from_datadict(mocker): widget = DynamicArrayWidget() test_name = "name" class MockData: @staticmethod def getlist(name): return [name] mocker.spy(MockData, "getlist") assert widget.value_from_datadict(MockData, None, test_name) == [test_name] assert MockData.getlist.call_count == 1 def test_value_from_datadict_get(mocker): widget = DynamicArrayWidget() test_name = "name" class MockData: @staticmethod def get(name): return name mocker.spy(MockData, "get") assert widget.value_from_datadict(MockData, None, test_name) == test_name assert MockData.get.call_count == 1 def test_get_context(): widget = DynamicArrayWidget() value = ["1", "2", "3"] context = widget.get_context("name", value, []) assert len(context["widget"]["subwidgets"]) == len(value)
python
import collections class contributor: def __init__(self, name, index): self.name = name self.index = index self.ratings = collections.defaultdict(list) def __str__(self) -> str: return self.name def __repr__(self) -> str: return self.name def __sort_ratings(self): self.ratings = { r: self.ratings[r] for r in sorted(self.ratings, reverse=True) } def personal_ranking(self) -> list: self.__sort_ratings() return self.ratings.values() # Hardcoded contributors and column indexes. CONTRIBUTORS = [ contributor('Quentin', 'ntQ'), contributor('Gary', 'ntG'), contributor('Vincent', 'ntV'), contributor('Romain', 'ntR'), contributor('Samuel', 'ntS'), contributor('Galtier', 'ntGl'), contributor('Roxane', 'ntRx'), contributor('Clémence', 'ntC'), contributor('Lucas', 'ntL') ] if __name__ == "__main__": print("Ach! Musik contributors are: {}".format(CONTRIBUTORS))
python
import json import hashlib from dojo.models import Finding class TruffleHogJSONParser(object): def __init__(self, filename, test): data = filename.read() self.dupes = dict() self.items = () for line in data.splitlines(): json_data = self.parse_json(line) file = json_data["path"] reason = json_data["reason"] titleText = "Hard Coded " + reason + " in: " + file commit = json_data["commit"] description = "**Commit:** " + commit.rstrip("\n") + "\n" description += "**Commit Hash:** " + json_data["commitHash"] + "\n" description += "**Commit Date:** " + json_data["date"] + "\n" description += "**Branch:** " + json_data["branch"] + "\n" description += "**Reason:** " + json_data["reason"] + "\n" description += "**Path:** " + file + "\n" severity = "High" if reason == "High Entropy": severity = "Info" elif "Oauth" in reason or "AWS" in reason or "Heroku" in reason: severity = "Critical" elif reason == "Generic Secret": severity = "Medium" strings_found = "" for string in json_data["stringsFound"]: strings_found += string + "\n" dupe_key = hashlib.md5(file + reason).hexdigest() description += "\n**Strings Found:**\n" + strings_found + "\n" if dupe_key in self.dupes: finding = self.dupes[dupe_key] finding.description = finding.description + description self.dupes[dupe_key] = finding else: self.dupes[dupe_key] = True finding = Finding(title=titleText, test=test, cwe=798, active=False, verified=False, description=description, severity=severity, numerical_severity=Finding.get_numerical_severity(severity), mitigation="Secrets and passwords should be stored in a secure vault and/or secure storage.", impact="This weakness can lead to the exposure of resources or functionality to unintended actors, possibly providing attackers with sensitive information or even execute arbitrary code.", references="N/A", file_path=file, url='N/A', dynamic_finding=False, static_finding=True) self.dupes[dupe_key] = finding self.items = self.dupes.values() def parse_json(self, json_output): try: json_data = json.loads(json_output) except ValueError: raise Exception("Invalid format") return json_data
python
import requests import csv key=input('Masukan produk yang akan dicari:') limit=input('Masukan limit produk:') hal = input('Masukan berapa halaman ke berapa:') write = csv.writer(open('eCommerce/hasil/{}.csv'.format(key), 'w', newline='')) header = ['nama produk','harga','terjual','rating produk','nama toko','lokasi toko'] write.writerow(header) header = { 'authority': 'gql.tokopedia.com', 'method': 'POST', 'path': '/', 'scheme': 'https', 'accept': '*/*', 'accept-encoding': 'gzip, deflate, br', 'accept-language': 'en-US,en;q=0.9,id;q=0.8', 'content-length': '3091', 'content-type': 'application/json', 'origin': 'https://www.tokopedia.com', 'referer': 'https://www.tokopedia.com/search?st=product&q={}&navsource=home'.format(key), 'sec-fetch-mode': 'cors', 'sec-fetch-site': 'same-site', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' } data = { "operationName": "SearchProductQueryV4", "variables": { "params": "device=desktop&navsource=home&ob=23&page={}&q={}&related=true&rows={}&safe_search=false&scheme=https&shipping=&source=search&st=product&start=0&topads_bucket=true&unique_id=bcff84691771dfbce6b4a85ee24ff652&user_addressId=&user_cityId=176&user_districtId=2274&user_id=&user_lat=&user_long=&user_postCode=&variants=".format(hal,key,limit) }, "query": "query SearchProductQueryV4($params: String!) {\n ace_search_product_v4(params: $params) {\n header {\n totalData\n totalDataText\n processTime\n responseCode\n errorMessage\n additionalParams\n keywordProcess\n __typename\n }\n data {\n isQuerySafe\n ticker {\n text\n query\n typeId\n __typename\n }\n redirection {\n redirectUrl\n departmentId\n __typename\n }\n related {\n relatedKeyword\n otherRelated {\n keyword\n url\n product {\n id\n name\n price\n imageUrl\n rating\n countReview\n url\n priceStr\n wishlist\n shop {\n city\n isOfficial\n isPowerBadge\n __typename\n }\n ads {\n adsId: id\n productClickUrl\n productWishlistUrl\n shopClickUrl\n productViewUrl\n __typename\n }\n badges {\n title\n imageUrl\n show\n __typename\n }\n ratingAverage\n labelGroups {\n position\n type\n title\n __typename\n }\n __typename\n }\n __typename\n }\n __typename\n }\n suggestion {\n currentKeyword\n suggestion\n suggestionCount\n instead\n insteadCount\n query\n text\n __typename\n }\n products {\n id\n name\n ads {\n adsId: id\n productClickUrl\n productWishlistUrl\n productViewUrl\n __typename\n }\n badges {\n title\n imageUrl\n show\n __typename\n }\n category: departmentId\n categoryBreadcrumb\n categoryId\n categoryName\n countReview\n discountPercentage\n gaKey\n imageUrl\n labelGroups {\n position\n title\n type\n __typename\n }\n originalPrice\n price\n priceRange\n rating\n ratingAverage\n shop {\n id\n name\n url\n city\n isOfficial\n isPowerBadge\n __typename\n }\n url\n wishlist\n sourceEngine: source_engine\n __typename\n }\n __typename\n }\n __typename\n }\n}\n" } url = "https://gql.tokopedia.com/" response = requests.post(url, headers=header, json=data) res_json = response.json() produk = res_json['data']['ace_search_product_v4']['data']['products'] for p in produk: nama = p['name'] harga = p['price'] terjual = p['labelGroups'][0]['title'] rating = p['ratingAverage'] nama_toko = p['shop']['name'] lokasi_toko = p['shop']['city'] print('nama produk:',nama,'harga:',harga,'terjual:',terjual,'rating produk:',rating,'nama toko:',nama_toko,'lokasi toko:',lokasi_toko) write = csv.writer(open('eCommerce/hasil/{}.csv'.format(key),'a',newline='')) data = [nama,harga,terjual,rating,nama_toko,lokasi_toko] write.writerow(data)
python
from pytube import YouTube from tqdm import tqdm import ffmpeg import html # insert test link here! yt = YouTube('https://www.youtube.com/watch?v=2A3iZGQd0G4') audio = yt.streams.filter().first() pbar = tqdm(total=audio.filesize) def progress_fn(self, chunk, *_): pbar.update(len(chunk)) yt.register_on_progress_callback(progress_fn) audio = yt.streams.filter().first() audio.download(output_path="./tmp", filename="tmp") ( ffmpeg .input("./tmp/tmp.mp4") .audio .output('./out/' + html.unescape(audio.title) + ".mp3") .run_async() .wait() )
python
import argparse import json import multiprocessing import os import pickle import random from multiprocessing import Pool, cpu_count import nltk import numpy as np import torch from tqdm import tqdm from src.data_preprocessors.transformations import ( NoTransformation, SemanticPreservingTransformation, BlockSwap, ConfusionRemover, DeadCodeInserter, ForWhileTransformer, OperandSwap, VarRenamer ) def set_seeds(seed): torch.manual_seed(seed) torch.random.manual_seed(seed) np.random.seed(seed) random.seed(seed) torch.cuda.manual_seed(seed) def create_transformers_from_conf_file(processing_conf): classes = [BlockSwap, ConfusionRemover, DeadCodeInserter, ForWhileTransformer, OperandSwap, VarRenamer] transformers = { c: processing_conf[c.__name__] for c in classes } return transformers class ExampleProcessor: def __init__( self, language, parser_path, transformation_config, bidirection_transformation=False, max_function_length=400 ): self.language = language self.parser_path = parser_path self.transformation_config = transformation_config self.max_function_length = max_function_length self.bidirection_transformation = bidirection_transformation def initialize(self): global example_tokenizer global example_transformer transformers = create_transformers_from_conf_file(self.transformation_config) if self.language == "nl": example_tokenizer = nltk.word_tokenize else: example_tokenizer = NoTransformation(self.parser_path, self.language) example_transformer = SemanticPreservingTransformation( parser_path=self.parser_path, language=self.language, transform_functions=transformers ) def process_example(self, code): global example_tokenizer global example_transformer try: if self.language == "nl": original_code = " ".join(example_tokenizer(code)) else: original_code, _ = example_tokenizer.transform_code(code) if len(original_code.split()) > self.max_function_length: return -1 transformed_code, used_transformer = example_transformer.transform_code(code) if used_transformer: if used_transformer == "ConfusionRemover": # Change the direction in case of the ConfusionRemover temp = original_code original_code = transformed_code transformed_code = temp if isinstance(self.bidirection_transformation, str) and self.bidirection_transformation == 'adaptive': bidirection = (used_transformer in ["BlockSwap", "ForWhileTransformer", "OperandSwap"]) else: assert isinstance(self.bidirection_transformation, bool) bidirection = self.bidirection_transformation if bidirection and np.random.uniform() < 0.5 \ and used_transformer != "SyntacticNoisingTransformation": return { 'source': original_code, 'target': transformed_code, 'transformer': used_transformer } else: return { 'source': transformed_code, 'target': original_code, 'transformer': used_transformer } else: return -1 except KeyboardInterrupt: print("Stopping parsing for ", code) return -1 except: return -1 def process_functions( pool, example_processor, functions, train_file_path=None, valid_file_path=None, valid_percentage=0.002 ): used_transformers = {} success = 0 tf = open(train_file_path, "wt") if train_file_path is not None else None vf = open(valid_file_path, "wt") if train_file_path is not None else None with tqdm(total=len(functions)) as pbar: processed_example_iterator = pool.imap( func=example_processor.process_example, iterable=functions, chunksize=1000, ) count = 0 while True: pbar.update() count += 1 try: out = next(processed_example_iterator) if isinstance(out, int) and out == -1: continue if out["transformer"] not in used_transformers.keys(): used_transformers[out["transformer"]] = 0 used_transformers[out["transformer"]] += 1 if np.random.uniform() < valid_percentage: if vf is not None: vf.write(json.dumps(out) + "\n") vf.flush() else: if tf is not None: tf.write(json.dumps(out) + "\n") tf.flush() success += 1 except multiprocessing.TimeoutError: print(f"{count} encountered timeout") except StopIteration: print(f"{count} stop iteration") break if tf is not None: tf.close() if vf is not None: vf.close() print( f""" Total : {len(functions)}, Success : {success}, Failure : {len(functions) - success} Stats : {json.dumps(used_transformers, indent=4)} """ ) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--langs', default=["java"], nargs='+', help="Languages to be processed" ) parser.add_argument( '--input_dir', help="Directory of the language pickle files" ) parser.add_argument( '--output_dir', help="Directory for saving processed code" ) parser.add_argument( '--processing_config_file', default="configs/data_processing_config.json", help="Configuration file for data processing." ) parser.add_argument( '--parser_path', help="Tree-Sitter Parser Path", ) parser.add_argument( "--workers", help="Number of worker CPU", type=int, default=20 ) parser.add_argument( "--timeout", type=int, help="Maximum number of seconds for a function to process.", default=10 ) parser.add_argument( "--valid_percentage", type=float, help="Percentage of validation examples", default=0.001 ) parser.add_argument("--seed", type=int, default=5000) args = parser.parse_args() set_seeds(args.seed) out_dir = args.output_dir os.makedirs(out_dir, exist_ok=True) configuration = json.load(open(args.processing_config_file)) print(configuration) for lang in args.langs: print(f"Now processing : {lang}") pkl_file = os.path.join(args.input_dir, lang + ".pkl") data = pickle.load(open(pkl_file, "rb")) functions = [ex['function'] for ex in data] # for f in functions[:5]: # print(f) # print("=" * 100) if lang == "php": functions = ["<?php\n" + f + "\n?>" for f in functions] example_processor = ExampleProcessor( language=lang, parser_path=args.parser_path, transformation_config=configuration["transformers"], max_function_length=( configuration["max_function_length"] if "max_function_length" in configuration else 400 ), bidirection_transformation=( configuration["bidirection_transformation"] if "bidirection_transformation" in configuration else False ) ) pool = Pool( processes=min(cpu_count(), args.workers), initializer=example_processor.initialize ) process_functions( pool=pool, example_processor=example_processor, functions=functions, train_file_path=os.path.join(out_dir, f"{lang}_train.jsonl"), valid_file_path=os.path.join(out_dir, f"{lang}_valid.jsonl"), valid_percentage=args.valid_percentage ) del pool del example_processor
python
#!/usr/bin/env python # -*- coding: utf-8 -*- from math import exp import os import re import sys # This code implements the non-linear regression method described in: # Jean Jacquelin 2009, # Régressions et équations intégrales, # sec. REGRESSIONS NON LINEAIRES des genres : PUISSANCE, EXPONENTIELLE, LOGARITHME, WEIBULL, # pp. 16-18. # http://www.scribd.com/doc/14674814/Regressions-et-equations-integrales # Given n data points (x[1], y[1]), ... (x[n], y[n]) # it computes coefficients a, b, and c that minimize error in the fit equation: # y = a + b exp(c*x) # TODO: This regression is not very robust, and currently fails with division by # zero if the regression matrix is singular. def exponential_non_linear_regression(x, y, n): S = [0] * (n+1) S[1] = 0 sum_xx = 0 sum_xS = 0 sum_SS = 0 sum_yx = 0 sum_yS = 0 for k in range(2, n+1): S[k] = S[k-1] + 0.5 * (y[k] + y[k-1]) * (x[k] - x[k-1]) sum_xx += (x[k] - x[1]) * (x[k] - x[1]) sum_xS += (x[k] - x[1]) * S[k] sum_SS += S[k] * S[k] sum_yx += (y[k] - y[1]) * (x[k] - x[1]) sum_yS += (y[k] - y[1]) * S[k] # ( A1 ) = ( sum_xx sum_xS ) -1 ( sum_yx ) # ( B1 ) ( sum_xS sum_SS ) ( sum_yS ) det_inv = sum_xx*sum_SS - sum_xS*sum_xS if (det_inv == 0.0): return None det = 1 / det_inv A1 = det * ( sum_SS*sum_yx - sum_xS*sum_yS) B1 = det * (-sum_xS*sum_yx + sum_xx*sum_yS) if (B1 == 0.0): a1 = 0.0 else: a1 = - A1 / B1 c1 = B1 c2 = c1 sum_theta = 0 sum_thetatheta = 0 sum_y = 0 sum_ytheta = 0 theta = [0] * (n+1) for k in range(1, n+1): theta[k] = exp(c2 * x[k]) sum_theta += theta[k] sum_thetatheta += theta[k] * theta[k] sum_y += y[k] sum_ytheta += y[k] * theta[k] # ( a2 ) = ( n sum_theta ) -1 ( sum_y ) # ( b2 ) ( sum_theta sum_thetatheta ) ( sum_ytheta ) inv_det = n*sum_thetatheta - sum_theta*sum_theta if (inv_det == 0.0): det = 0.0 else: det = 1 / inv_det a2 = det * ( sum_thetatheta*sum_y - sum_theta*sum_ytheta) b2 = det * (-sum_theta*sum_y + n*sum_ytheta) if (det != 0): return "%g + %g * exp(%g*x)" % (a2, b2, c2) else: return None # Output a datafile to output_file in the following form: # # Load Value # 0 0 # 40 15.7 # 90 31.9 # Returns a string representing the "curve of best fit" def calculate_data(grinder_files, accumulate_callback, output_file, include_origin=True): Load = [] Value = [] stages = 0 for file in grinder_files: threads = 0 stage = int(os.path.basename(os.path.dirname(file))[6:]) # strip initial 'stage-' if (stages < stage + 1): stages = stage + 1 while len(Value) <= stage: Load.append(0) Value.append(0) with open(file, 'r') as f: for line in f: # Count the threads in this Grinder logfile by looking at all the unique log messages. # This is to determine the load level empirically. # TODO: There is probably a more efficient way to communicate this from experiment execution. m = re.match(r'....-..-.. ..:..:..,... INFO .*-0 thread-([0-9]*)', line) if m: thread = int(m.group(1)) if (threads < thread + 1): threads = thread + 1 m = re.match(r'Test ', line) if m: # grinder-0.log file format: # $1 = "Test" # $2 = "0"... # $3 = Tests # $4 = Errors # $5 = Mean Test Time (ms) # $6 = Test Time Standard Deviation (ms) # $7 = TPS # $8 = Mean response length # $9 = Response bytes per second # $10 = Response errors # $11 = Mean time to resolve host # $12 = Mean time to establish connection # $13 = Mean time to first byte # $14 = Description # Tests Errors Mean Test Test Time TPS Mean Response Response Mean time to Mean time to Mean time to # Time (ms) Standard response bytes per errors resolve host establish first byte # Deviation length second connection # (ms) # #Test 0 1060 0 10224.49 7229.27 0.58 19.77 11.51 5 0.04 0.28 10221.48 "Status" #Test 1 2408 0 10490.14 7157.16 1.32 16665.09 22049.02 8 0.04 0.30 10485.22 "Projects" fields = re.split("[ \t]+", line) agent_data = { 'tests': float(fields[2]), 'mean_test_time': float(fields[4]), 'tps': float(fields[6]), 'desc': line.split('"')[1] } accumulate_callback(Value, stage, agent_data) Load[stage] += threads Load = [0] + Load Value = [0.0] + Value if include_origin: # Inject a "fake" (0,0) stage in the Load,Value lists. Load = [0] + Load Value = [0.0] + Value fake_stages=1 else: fake_stages=0 with open(output_file, 'w') as f: f.write("Load Value\n") for stage in range(1+fake_stages, stages+1+fake_stages): f.write("%d %g\n" % (Load[stage], Value[stage])) return exponential_non_linear_regression(Load, Value, stages+fake_stages)
python
from setuptools import setup setup(name='pkgtest', version='1.0.0', description='A print test for PyPI', author='winycg', author_email='[email protected]', url='https://www.python.org/', license='MIT', keywords='ga nn', packages=['pkgtest'], install_requires=['numpy>=1.14', 'tensorflow>=1.7'], python_requires='>=3' )
python
import boto3 import botocore import sys import os class S3Client: def __init__(self, bucket, key): self.client = boto3.client('s3') self.bucket = bucket self.key = key def get_content_length(self): try: return int(self.client.get_object(Bucket=self.bucket, Key=self.key)['ResponseMetadata']['HTTPHeaders']['content-length']) except botocore.exceptions.NoCredentialsError: print("""\nAWS credentials not found, please ensure that the credentials are available at "%s" file content should look something like [default] aws_access_key_id=<put your aws access key> aws_secret_access_key=<put your aws secret key>\n""" % (os.path.join(os.getenv("HOME"), ".aws", "credentials"))) sys.exit(1) except botocore.exceptions.ParamValidationError: print("\nCurrently only S3 file is supported and not directory. Please provide complete path of the intended file.\n") sys.exit(1) except botocore.exceptions.ClientError: print("""\nGiven file does not exists or not a file. Currently only S3 file is supported and not directory. Please provide complete path of the intended file.\n""") sys.exit(1) def get_data_with_byte_range(self, start, end): return self.client.get_object(Bucket=self.bucket, Key=self.key, Range='bytes={}-{}'.format(start, end))['Body'].read() def close_s3_client(self): pass
python
import io import os import time import zipfile import h5py import numpy as np import pandas as pd from PIL import Image from django.http import HttpResponse from rest_framework.permissions import IsAuthenticated from rest_framework.request import Request from rest_framework.response import Response from rest_framework.views import APIView from tensorflow.python.keras.engine.saving import load_model from deepleasy.control.options import OPTIMIZERS, LOSSES, DATASETS, LAYERS, ACTIVATIONS from deepleasy.control.validation import model_builder_ok, clustering_checker from deepleasy.models import Progress, History from deepleasy.training.clustering import ClusteringLayer from deepleasy.training.train import build_model_supervised, build_model_unsupervised from webtfg.celery import app model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models') # Create your views here. class ModelBuilderUnsupervised(APIView): permission_classes = (IsAuthenticated, ) def post(self, request: Request): if not model_builder_ok(request.data) and clustering_checker(request.data): print(request.data) return Response({ "success": False, "message": "The model had some problems whilst data verification, refresh the page and try again" }) try: Progress(user=request.user, epochs=0, max_epochs=request.data["epochs"], running=False).save() except: return Response({ "success": False, "message": "There is another model building, please wait until it's finished" }) build_model_unsupervised.delay(request.data, request.user.username, model_path) print(request.user) return Response({ "success": True, "message": "The model is built! Have a cup of tea while waiting :)" }) class ModelBuilderSupervised(APIView): permission_classes = (IsAuthenticated, ) def post(self, request: Request): if not model_builder_ok(request.data): print(request.data) return Response({ "success": False, "message": "The model had some problems whilst data verification, refresh the page and try again" }) try: Progress(user=request.user, epochs=0, max_epochs=request.data["epochs"], running=False).save() except: return Response({ "success": False, "message": "There is another model building, please wait until it's finished" }) build_model_supervised.delay(request.data, request.user.username, model_path) print(request.user) return Response({ "success": True, "message": "The model is built! Have a cup of tea while waiting :)" }) class ModelProgress(APIView): permission_classes = (IsAuthenticated,) def get(self, request: Request): try: progress = Progress.objects.get(user=request.user) return Response({ "epochs": progress.epochs, "max_epochs": progress.max_epochs, "running": progress.running, "task_id": progress.task_id }) except Progress.DoesNotExist: return Response({"message": "There is no active task right now"}, 404) def post(self, request: Request): try: app.control.revoke(task_id=request.data["task_id"], terminate=True, timeout=1, wait=False) except: return Response("problem removing", 502) Progress.objects.get(task_id=request.data["task_id"]).delete() History(user=request.user, timestamp=int(int(time.time())), path="", accuracy=0.0, loss=0.0, steps_info={"message": "Cancelled by user"}).save() return Response("removed", 200) class ModelHistory(APIView): permission_classes = (IsAuthenticated, ) def get(self, request: Request): history = History.objects.filter(user=request.user) if len(history) == 0: return Response({"message": "There is no history registers for you :("}, 404) registers = { "history": [] } for h in reversed(history): registers["history"].append({ "id": h.id, "timestamp": h.timestamp, "status": os.path.exists(h.path), "accuracy": h.accuracy, "loss": h.loss, "dataset": h.dataset, "steps_info": h.steps_info }) return Response(registers) def post(self, request: Request): try: history = History.objects.get(id=request.data["id"]) if history.path != "" and os.path.exists(history.path): os.remove(history.path) history.delete() return Response("OK", 200) except: return Response("Error, data not found", 404) class ModelOptions(APIView): permission_classes = (IsAuthenticated, ) def get(self, request: Request): return Response({ "layers": LAYERS, "losses": LOSSES, "datasets": [i.toJSON() for i in DATASETS], "optimizers": OPTIMIZERS, "activations": ACTIVATIONS }) class ModelGetter(APIView): permission_classes = (IsAuthenticated, ) def post(self, request: Request): try: h = History.objects.get(id=request.data["id"]) zip_buffer = io.BytesIO() with zipfile.ZipFile(zip_buffer, "a", zipfile.ZIP_DEFLATED, False) as zip_file: # ModelGetter.zipdir(h.path, zip_file) arc, _ = os.path.split(h.path) zip_file.write(h.path, h.path[len(arc):]) r = HttpResponse(zip_buffer.getvalue(), content_type='application/zip') r['Content-Disposition'] = 'attachment; filename="Model.zip"' return r except: return Response("Error", 404) @staticmethod def zipdir(path, ziph): # ziph is zipfile handle abs_src, _ = os.path.split(path) for root, dirs, files in os.walk(path): for file in files: absname = os.path.abspath(os.path.join(root, file)) arcname = absname[len(abs_src) + 1:] ziph.write(absname, arcname=arcname) class UserStats(APIView): permission_classes = (IsAuthenticated, ) def get(self, request: Request): progress = None try: progress = Progress.objects.get(user=request.user) except: pass history = None try: history = History.objects.filter(user=request.user).count() except: pass response = {} if progress is not None: response["epochs"] = progress.epochs response["max_epochs"] = progress.max_epochs response["running"] = progress.running else: response["epochs"] = 0 response["max_epochs"] = 0 response["running"] = False if history is not None: response["history_entries"] = history else: response["history_entries"] = 0 return Response(response) class ModelPredict(APIView): permission_classes = (IsAuthenticated,) def post(self, request: Request): if "zippy" not in request.data.keys(): return Response("Where is my zip?", 400) elif "dataset" not in request.data.keys(): return Response("Where is the dataset?", 400) elif request.data["dataset"] not in [x.name for x in DATASETS]: return Response("Dataset not valid", 400) try: input_zip = zipfile.ZipFile(request.data["zippy"]) except zipfile.BadZipFile: return Response("What kind of zip is this", 400) predictions = None model = None dataset = None pnames = [] for i in DATASETS: if i.name == request.data["dataset"]: if i.name == "reuters" or i.name == "imdb": return Response({ "predictions": [ {"feature": "We cannot predict for {} dataset".format(i.name), "prediction": "The reason is: https://snyk.io/blog/numpy-arbitrary-code-execution-vulnerability/"} ] }) dataset = i break if dataset is None: return Response("This is not a valid dataset", 400) for x in input_zip.namelist(): if x.endswith(".h5"): file = h5py.File(io.BytesIO(input_zip.read(x))) model = load_model(file, custom_objects={'ClusteringLayer': ClusteringLayer}) elif x.endswith(".csv"): csv = pd.read_csv(io.StringIO(input_zip.read(x)), header=None) predictions = csv.values pnames = [x for x in range(predictions)] else: try: image = Image.open(io.BytesIO(input_zip.read(x))) image.load() image = np.asarray(image, dtype="float32") / 255 try: image = image.reshape(dataset.input_shape) except ValueError: return Response("image {} is not in good format".format(x), 400) if predictions is None: predictions = np.array([image]) else: predictions = np.append(predictions, [image], axis=0) pnames.append(x) except IOError: pass if model is not None: predictions = model.predict(predictions) predictions = predictions.argmax(axis=1) print("PREDICTIONS", predictions) return Response({ "predictions": [ {"feature": n, "prediction": p} for n, p in zip(pnames, predictions) ] }) else: return Response("Where is the h5?", 400)
python
# Hello, I'm party bot, I will be called from wsgi.py once from telegram.ext import Updater, CommandHandler, MessageHandler, Filters, CallbackQueryHandler from Bot.models import TelegramUser, Action, Day, WeekDay, Event, Vote, BotMessage, Advertisement from telegram import InlineKeyboardButton, InlineKeyboardMarkup, ReplyKeyboardMarkup, KeyboardButton, ParseMode import time # TODO: for Kirill decorator debug = False def debug_print(item): if debug: print(item) def get_keyboard(_chat): user = TelegramUser.get_user(_chat) keyboard = [[]] if user.free_mode: keyboard = [ ['Четверг', 'Пятница'], ['Суббота', 'Воскресенье'], ['Все', 'Популярное 💯'], ['Акции'] ] else: keyboard = [ ['Четверг', 'Пятница'], ['Суббота', 'Воскресенье'], ['Бесплатно 🆓', 'Популярное 💯'], ['Акции'] ] return ReplyKeyboardMarkup(keyboard, one_time_keyboard=False) def start_command(bot, update): try: TelegramUser.add_telegram_user(update.message.chat) markup = get_keyboard(update.message.chat) update.message.reply_text('Привет:', reply_markup=markup) except Exception as ex: print(ex) def help_command(bot, update): bot.sendMessage(chat_id=update.message.chat_id, text='help text') def send_message_to_all(bot, update, text): message = update.callback_query.message sender = TelegramUser.get_user(message.chat) if sender.is_VIP: receivers = TelegramUser.get_all_users() for receiver in receivers: bot.sendMessage(chat_id=receiver.user_telegram_id, text=text,disable_web_page_prewview=True) else: bot.sendMessage(chat_id=message.chat_id, text="Вы не можете использовать данную функцию, обратитесь к администратору") command_dict = { "/start": start_command, "/help": help_command } week_day_dict = { 0: 'Понедельник', 1: 'Вторник', 2: 'Среда', 3: 'Четверг', 4: 'Пятница', 5: 'Суббота', 6: 'Воскресенье' } week_day_reverse_dict = { 'Понедельник': 0, 'Вторник': 1, 'Среда': 2, 'Четверг': 3, 'Пятница': 4, 'Суббота': 5, 'Воскресенье': 6 } def echo(bot, update): try: text = update.message.text if text == 'Акции': send_advetrisments(bot=bot, update=update) elif text == 'Популярное 💯': send_message_top(bot=bot, update=update) elif text == 'Бесплатно 🆓' or text == 'Все': switch_free_mode(bot=bot, update=update) else: send_message_by_week_day(bot=bot, update=update) except Exception as ex: print(ex) def switch_free_mode(bot, update): user = TelegramUser.get_user(update.message.chat) user.free_mode = not user.free_mode user.save() markup = get_keyboard(update.message.chat) if user.free_mode: update.message.reply_text('Показывать только бесплатные события', reply_markup=markup) else: update.message.reply_text('Показывать все события', reply_markup=markup) def send_message_by_week_day(bot, update): try: user = TelegramUser.get_user(update.message.chat) Action.add_action(update.message) text = update.message.text week_day_id = WeekDay(week_day_reverse_dict[text]) week_day = WeekDay(week_day_id) events = Day.get_day_and_events(week_day.value, user.free_mode) event_col = len(events) # .count() if event_col == 0: message = 'На ' + week_day_dict[int(week_day.value)] + ' мероприятий не запланировано' bot.sendMessage(chat_id=update.message.chat_id, text=message,disable_web_page_prewview=True) else: # BotMessage.delete_old_messages(bot=bot, update=update, events=events,message=update.message) for i in range(0, event_col): event = events[i] message = make_message(event) reply_markup = get_inline_keyboard(event=event, user=user) # BotMessage.send_message(bot=bot, update=update, message=message, parse_mode=ParseMode.MARKDOWN, # reply_markup=reply_markup, event=event) if i != (event_col - 1): BotMessage.send_message(bot=bot, update=update, message=message, parse_mode=ParseMode.MARKDOWN, reply_markup=reply_markup, event=event, silent=True) time.sleep(1) else: BotMessage.send_message(bot=bot, update=update, message=message, parse_mode=ParseMode.MARKDOWN, reply_markup=reply_markup, event=event, silent=False) except KeyError as k_e: print(k_e) bot.sendMessage(chat_id=update.message.chat_id, text='не понимаю запрос') except Exception as ex: print(ex) def send_message_top(bot, update): try: user = TelegramUser.get_user(update.message.chat) debug_print(update.message.text) Action.add_action(update.message) text = update.message.text events = [] events_only = [] for i in range(3, 7): event = Day.get_day_and_top_events(i, user.free_mode) if event is not None: events.append((i, event)) events_only.append(event) event_col = len(events) if event_col == 0: message = 'Мероприятия не найдены' bot.sendMessage(chat_id=update.message.chat_id, text=message) else: # BotMessage.delete_old_messages(bot=bot, update=update, events=events_only,message=update.message) for i in range(0, event_col): event = events[i][1] week_day_id = events[i][0] message = make_message(event) message = '*' + week_day_dict[week_day_id] + '*' + '\n' + message reply_markup = get_inline_keyboard(event=event, user=user) # BotMessage.send_message(bot=bot, update=update, message=message, parse_mode=ParseMode.MARKDOWN, # reply_markup=reply_markup, event=event) if i != (event_col - 1): BotMessage.send_message(bot=bot, update=update, message=message, parse_mode=ParseMode.MARKDOWN, reply_markup=reply_markup, event=event, silent=True) time.sleep(1) else: BotMessage.send_message(bot=bot, update=update, message=message, parse_mode=ParseMode.MARKDOWN, reply_markup=reply_markup, event=event, silent=False) except KeyError as k_e: print(k_e) bot.sendMessage(chat_id=update.message.chat_id, text='не понимаю запрос') except Exception as ex: print(ex) def send_advetrisments(bot, update): try: debug_print(update.message.text) Action.add_action(update.message) advertisments = Advertisement.objects.filter() advertisment_col = len(advertisments) if advertisment_col == 0: message = 'Акций нет' bot.sendMessage(chat_id=update.message.chat_id, text=message, disable_notification=True) else: # bot.sendMessage(chat_id=update.message.chat_id, text='*Акции*\n\n', parse_mode=ParseMode.MARKDOWN) for i in range(0, advertisment_col): # bot.sendMessage(chat_id=update.message.chat_id, text=advertisments[i].text, parse_mode=ParseMode.MARKDOWN) if i != (advertisment_col - 1): bot.sendMessage(chat_id=update.message.chat_id, text=advertisments[i].text, parse_mode=ParseMode.MARKDOWN, disable_notification=True,disable_web_page_prewview=True) time.sleep(1) else: bot.sendMessage(chat_id=update.message.chat_id, text=advertisments[i].text, parse_mode=ParseMode.MARKDOWN,disable_web_page_prewview=True) except KeyError as k_e: print(k_e) bot.sendMessage(chat_id=update.message.chat_id, text='не понимаю запрос') except Exception as ex: print(ex) def get_inline_keyboard(event, user): if event.get_ability_to_vote(user): return get_filled_inline_keyboard(event) else: return get_empty_inline_keyboard() def make_message(event): message = '' message += '*' + event.header + '*' + '\n' message += event.description + '\n' rating = event.rating message += '' + 'Рейтинг: ' + str(rating) + '' return message def get_filled_inline_keyboard(event): keyboard = [[InlineKeyboardButton("👍", callback_data=str(str(event.id) + '#^*_1')), InlineKeyboardButton("👎", callback_data=str(str(event.id) + '#^*_0'))]] return InlineKeyboardMarkup(keyboard) def get_empty_inline_keyboard(): keyboard = [[]] return InlineKeyboardMarkup(keyboard) def button(bot, update): try: query = update.callback_query query_data_tuple = get_data_tuple(query.data) user = TelegramUser.get_user(update.callback_query.message.chat) print(query_data_tuple[1]) if query_data_tuple[1] == 2 or query_data_tuple[1] == 3: text = query_data_tuple[0] if query_data_tuple[1] == 2: bot.editMessageText(text='Рассылка выполнена', chat_id=update.callback_query.message.chat_id, message_id=update.callback_query.message.message_id, parse_mode=ParseMode.MARKDOWN,disable_web_page_prewview=True) send_message_to_all(bot=bot, update=update, text=text) else: bot.editMessageText(text='Рассылка отменена', chat_id=update.callback_query.message.chat_id, message_id=update.callback_query.message.message_id, parse_mode=ParseMode.MARKDOWN,disable_web_page_prewview=True) else: event = Event.get_event(query_data_tuple[0]) if query_data_tuple[1] == 1: type = True else: type = False if event.get_ability_to_vote(user=user): Vote.add_vote(type_of_vote=type, event=event, user=user) event = Event.get_event(int(query_data_tuple[0])) message = make_message(event) reply_markup = get_empty_inline_keyboard() bot.editMessageText(text=message, chat_id=query.message.chat_id, message_id=query.message.message_id, parse_mode=ParseMode.MARKDOWN, reply_markup=reply_markup) BotMessage.delete_old_messages(bot=bot, events=event, message=update.callback_query.message) except Exception as ex: print(ex) def get_data_tuple(query_data): ind = query_data.index('#^*_') data1 = query_data[:ind] data2 = int(query_data[ind + 4:]) return data1, data2 def error(bot, update, error): try: print("Error: ") print(error) except Exception as ex: print(ex) def command(bot, update): print("heroku") try: Action.add_action(update.message) command_text = update.message.text print(command_text[0:4]) if command_text[0:4] == '/all': sender = TelegramUser.get_user(update.message.chat) if sender.is_VIP: text = command_text[5:] keyboard = [[InlineKeyboardButton("Да", callback_data=text + '#^*_2'), InlineKeyboardButton("Нет", callback_data=text + '#^*_3')]] reply_markup = InlineKeyboardMarkup(keyboard) bot.sendMessage(text='Отправить всем следующее сообщение?\n' + text, chat_id=update.message.chat_id, parse_mode=ParseMode.MARKDOWN, reply_markup=reply_markup,disable_web_page_prewview=True) else: bot.sendMessage(chat_id=update.message.chat_id, text="Вы не можете использовать данную функцию, обратитесь к администратору",disable_web_page_prewview=True) else: func = command_dict[update.message.text] func(bot, update) except KeyError as k_e: print(k_e) bot.sendMessage(chat_id=update.message.chat_id, text="Sorry, I didn't understand that command") except Exception as ex: print(ex) bot.sendMessage(chat_id=update.message.chat_id, text="System error") command_handler = MessageHandler(Filters.command, command) echo_handler = MessageHandler(Filters.text, echo) updater = Updater(token='361018005:AAHY53Qj5EKEQHwf-g7LwoMf0UbiMzvCgAE') dispatcher = updater.dispatcher dispatcher.add_handler(command_handler) dispatcher.add_error_handler(error) dispatcher.add_handler(echo_handler) updater.dispatcher.add_handler(CallbackQueryHandler(button)) def work_cycle(): while True: try: updater.start_polling() time.sleep(10) except Exception as ex: print('bot crashed:') from multiprocessing import Process t1 = Process(target=work_cycle) t1.start()
python
from trex_stl_lib.api import * class STLS1(object): def get_streams (self, direction = 0, **kwargs): s1 = STLStream(name = 's1', packet = STLPktBuilder(pkt = Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/UDP(dport=12,sport=1025)/(10*'x')), mode = STLTXSingleBurst(pps = 100, total_pkts = 7), next = 's2' ) s2 = STLStream(name = 's2', self_start = False, packet = STLPktBuilder(pkt = Ether()/IP(src="16.0.0.1",dst="48.0.0.2")/UDP(dport=12,sport=1025)/(10*'x')), mode = STLTXSingleBurst(pps = 317, total_pkts = 13), next = 's3' ) s3 = STLStream(name = 's3', self_start = False, packet = STLPktBuilder(pkt = Ether()/IP(src="16.0.0.1",dst="48.0.0.3")/UDP(dport=12,sport=1025)/(10*'x')), mode = STLTXMultiBurst(pps = 57, pkts_per_burst = 3, count = 5, ibg = 12), next = 's4' ) s4 = STLStream(name = 's4', self_start = False, packet = STLPktBuilder(pkt = Ether()/IP(src="16.0.0.1",dst="48.0.0.3")/UDP(dport=12,sport=1025)/(10*'x')), mode = STLTXSingleBurst(pps = 4, total_pkts = 22), next = 's5' ) s5 = STLStream(name = 's5', self_start = False, packet = STLPktBuilder(pkt = Ether()/IP(src="16.0.0.1",dst="48.0.0.3")/UDP(dport=12,sport=1025)/(10*'x')), mode = STLTXSingleBurst(pps = 17, total_pkts = 27), action_count = 17, next = 's1' ) return [ s1, s2, s3, s4, s5 ] # dynamic load - used for trex console or simulator def register(): return STLS1()
python
import collections from .base import BaseItertool from .iter_dispatch import iter_ from .tee import tee _zip = zip class product(BaseItertool): """product(*iterables, repeat=1) --> product object Cartesian product of input iterables. Equivalent to nested for-loops. For example, product(A, B) returns the same as: ((x,y) for x in A for y in B). The leftmost iterators are in the outermost for-loop, so the output tuples cycle in a manner similar to an odometer (with the rightmost element changing on every iteration). To compute the product of an iterable with itself, specify the number of repetitions with the optional repeat keyword argument. For example, product(A, repeat=4) means the same as product(A, A, A, A). product('ab', range(3)) --> ('a',0) ('a',1) ('a',2) ('b',0) ('b',1) ('b',2) product((0,1), (0,1), (0,1)) --> (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) ... """ def __init__(self, *args, **kwargs): if 'repeat' in kwargs: repeat = kwargs['repeat'] del kwargs['repeat'] else: repeat = None if len(kwargs) > 0: raise ValueError("Unrecognized keyword arguments: {}".format( ", ".join(kwargs))) if repeat is not None: self._iterables = sum(_zip(*(tee(it, repeat) for it in args)), ()) else: self._iterables = tuple(iter_(it) for it in args) self._contents = tuple([] for it in self._iterables) self._exhausted = [False for it in self._iterables] self._position = [-1 for it in self._iterables] self._initialized = False def __next__(self): # Welcome to the spaghetti factory. def _next(i): # Advance the i'th iterator, wrapping if necessary. # Returns the next value as well as a "carry bit" that # tells us we've wrapped, i.e. to advance iterator i - 1 as well. flip = False # Handle the case where iteratior i still has stuff in it. if not self._exhausted[i]: try: value = next(self._iterables[i]) self._contents[i].append(value) self._position[i] += 1 except StopIteration: # If contents is empty, the iterator was empty. if len(self._contents[i]) == 0: raise StopIteration self._exhausted[i] = True self._position[i] = -1 # The recursive call increments. return _next(i) else: self._position[i] += 1 self._position[i] %= len(self._contents[i]) value = self._contents[i][self._position[i]] # If we've wrapped, return True for the carry bit. if self._position[i] == 0: flip = True return value, flip # deque is already imported, could append to a list and reverse it. result = collections.deque() i = len(self._iterables) - 1 if not self._initialized: # On the very first draw we need to draw one from every iterator. while i >= 0: result.appendleft(_next(i)[0]) i -= 1 self._initialized = True else: # Always advance the least-significant position iterator. flip = True # Keep drawing from lower-index iterators until the carry bit # is unset. while flip and i >= 0: value, flip = _next(i) i -= 1 result.appendleft(value) # If the carry bit is still set after breaking out of the loop # above, it means the most-significant iterator has wrapped, # and we're done. if flip: raise StopIteration # Read off any other unchanged values from lower-index iterators. while i >= 0: result.appendleft(self._contents[i][self._position[i]]) i -= 1 return tuple(result)
python
r""" Lattice posets """ #***************************************************************************** # Copyright (C) 2011 Nicolas M. Thiery <nthiery at users.sf.net> # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #****************************************************************************** from sage.misc.cachefunc import cached_method from sage.misc.abstract_method import abstract_method from sage.categories.category import Category from sage.categories.posets import Posets class LatticePosets(Category): r""" The category of lattices, i.e. partially ordered sets in which any two elements have a unique supremum (the elements' least upper bound; called their *join*) and a unique infimum (greatest lower bound; called their *meet*). EXAMPLES:: sage: LatticePosets() Category of lattice posets sage: LatticePosets().super_categories() [Category of posets] sage: LatticePosets().example() NotImplemented .. seealso:: :class:`~sage.categories.posets.Posets`, :class:`FiniteLatticePosets`, :func:`LatticePoset` TESTS:: sage: C = LatticePosets() sage: TestSuite(C).run() """ @cached_method def super_categories(self): r""" Returns a list of the (immediate) super categories of ``self``, as per :meth:`Category.super_categories`. EXAMPLES:: sage: LatticePosets().super_categories() [Category of posets] """ return [Posets()] class ParentMethods: @abstract_method def meet(self, x, y): """ Returns the meet of `x` and `y` in this lattice INPUT: - ``x``, ``y`` -- elements of ``self`` EXAMPLES:: sage: D = LatticePoset((divisors(30), attrcall("divides"))) sage: D.meet( D(6), D(15) ) 3 """ @abstract_method def join(self, x, y): """ Returns the join of `x` and `y` in this lattice INPUT: - ``x``, ``y`` -- elements of ``self`` EXAMPLES:: sage: D = LatticePoset((divisors(60), attrcall("divides"))) sage: D.join( D(6), D(10) ) 30 """
python
# uncompyle6 version 3.2.4 # Python bytecode 2.7 (62211) # Decompiled from: Python 2.7.15 (v2.7.15:ca079a3ea3, Apr 30 2018, 16:30:26) [MSC v.1500 64 bit (AMD64)] # Embedded file name: ctypes.macholib.framework import re __all__ = [ 'framework_info'] STRICT_FRAMEWORK_RE = re.compile('(?x)\n(?P<location>^.*)(?:^|/)\n(?P<name>\n (?P<shortname>\\w+).framework/\n (?:Versions/(?P<version>[^/]+)/)?\n (?P=shortname)\n (?:_(?P<suffix>[^_]+))?\n)$\n') def framework_info(filename): is_framework = STRICT_FRAMEWORK_RE.match(filename) if not is_framework: return None return is_framework.groupdict() def test_framework_info(): def d(location=None, name=None, shortname=None, version=None, suffix=None): return dict(location=location, name=name, shortname=shortname, version=version, suffix=suffix) return if __name__ == '__main__': test_framework_info()
python
# bc_action_rules_bc.py from pyke import contexts, pattern, bc_rule pyke_version = '1.1.1' compiler_version = 1 def speed_up(rule, arg_patterns, arg_context): engine = rule.rule_base.engine patterns = rule.goal_arg_patterns() if len(arg_patterns) == len(patterns): context = contexts.bc_context(rule) try: if all(map(lambda pat, arg: pat.match_pattern(context, context, arg, arg_context), patterns, arg_patterns)): rule.rule_base.num_bc_rules_matched += 1 with engine.prove('action_facts', 'speed', context, (rule.pattern(0),)) \ as gen_1: for x_1 in gen_1: assert x_1 is None, \ "bc_action_rules.speed_up: got unexpected plan from when clause 1" rule.rule_base.num_bc_rule_successes += 1 yield rule.rule_base.num_bc_rule_failures += 1 finally: context.done() def keep_speed(rule, arg_patterns, arg_context): engine = rule.rule_base.engine patterns = rule.goal_arg_patterns() if len(arg_patterns) == len(patterns): context = contexts.bc_context(rule) try: if all(map(lambda pat, arg: pat.match_pattern(context, context, arg, arg_context), patterns, arg_patterns)): rule.rule_base.num_bc_rules_matched += 1 with engine.prove('action_facts', 'speed', context, (rule.pattern(0),)) \ as gen_1: for x_1 in gen_1: assert x_1 is None, \ "bc_action_rules.keep_speed: got unexpected plan from when clause 1" rule.rule_base.num_bc_rule_successes += 1 yield rule.rule_base.num_bc_rule_failures += 1 finally: context.done() def brake(rule, arg_patterns, arg_context): engine = rule.rule_base.engine patterns = rule.goal_arg_patterns() if len(arg_patterns) == len(patterns): context = contexts.bc_context(rule) try: if all(map(lambda pat, arg: pat.match_pattern(context, context, arg, arg_context), patterns, arg_patterns)): rule.rule_base.num_bc_rules_matched += 1 with engine.prove('action_facts', 'speed', context, (rule.pattern(0),)) \ as gen_1: for x_1 in gen_1: assert x_1 is None, \ "bc_action_rules.brake: got unexpected plan from when clause 1" rule.rule_base.num_bc_rule_successes += 1 yield rule.rule_base.num_bc_rule_failures += 1 finally: context.done() def turn(rule, arg_patterns, arg_context): engine = rule.rule_base.engine patterns = rule.goal_arg_patterns() if len(arg_patterns) == len(patterns): context = contexts.bc_context(rule) try: if all(map(lambda pat, arg: pat.match_pattern(context, context, arg, arg_context), patterns, arg_patterns)): rule.rule_base.num_bc_rules_matched += 1 with engine.prove('action_facts', 'section', context, (rule.pattern(0),)) \ as gen_1: for x_1 in gen_1: assert x_1 is None, \ "bc_action_rules.turn: got unexpected plan from when clause 1" rule.rule_base.num_bc_rule_successes += 1 yield rule.rule_base.num_bc_rule_failures += 1 finally: context.done() def pits_1(rule, arg_patterns, arg_context): engine = rule.rule_base.engine patterns = rule.goal_arg_patterns() if len(arg_patterns) == len(patterns): context = contexts.bc_context(rule) try: if all(map(lambda pat, arg: pat.match_pattern(context, context, arg, arg_context), patterns, arg_patterns)): rule.rule_base.num_bc_rules_matched += 1 with engine.prove('action_facts', 'slick_tires', context, (rule.pattern(0),)) \ as gen_1: for x_1 in gen_1: assert x_1 is None, \ "bc_action_rules.pits_1: got unexpected plan from when clause 1" with engine.prove('action_facts', 'weather', context, (rule.pattern(1),)) \ as gen_2: for x_2 in gen_2: assert x_2 is None, \ "bc_action_rules.pits_1: got unexpected plan from when clause 2" rule.rule_base.num_bc_rule_successes += 1 yield rule.rule_base.num_bc_rule_failures += 1 finally: context.done() def pits_2(rule, arg_patterns, arg_context): engine = rule.rule_base.engine patterns = rule.goal_arg_patterns() if len(arg_patterns) == len(patterns): context = contexts.bc_context(rule) try: if all(map(lambda pat, arg: pat.match_pattern(context, context, arg, arg_context), patterns, arg_patterns)): rule.rule_base.num_bc_rules_matched += 1 with engine.prove('action_facts', 'slick_tires', context, (rule.pattern(0),)) \ as gen_1: for x_1 in gen_1: assert x_1 is None, \ "bc_action_rules.pits_2: got unexpected plan from when clause 1" with engine.prove('action_facts', 'weather', context, (rule.pattern(1),)) \ as gen_2: for x_2 in gen_2: assert x_2 is None, \ "bc_action_rules.pits_2: got unexpected plan from when clause 2" if context.lookup_data('ans_1') != "Rainy": with engine.prove('action_facts', 'humidity', context, (rule.pattern(2),)) \ as gen_4: for x_4 in gen_4: assert x_4 is None, \ "bc_action_rules.pits_2: got unexpected plan from when clause 4" if context.lookup_data('ans_2') <= 6: rule.rule_base.num_bc_rule_successes += 1 yield rule.rule_base.num_bc_rule_failures += 1 finally: context.done() def attack_1(rule, arg_patterns, arg_context): engine = rule.rule_base.engine patterns = rule.goal_arg_patterns() if len(arg_patterns) == len(patterns): context = contexts.bc_context(rule) try: if all(map(lambda pat, arg: pat.match_pattern(context, context, arg, arg_context), patterns, arg_patterns)): rule.rule_base.num_bc_rules_matched += 1 with engine.prove('action_facts', 'section', context, (rule.pattern(0),)) \ as gen_1: for x_1 in gen_1: assert x_1 is None, \ "bc_action_rules.attack_1: got unexpected plan from when clause 1" with engine.prove('action_facts', 'nearest_forward', context, (rule.pattern(1),)) \ as gen_2: for x_2 in gen_2: assert x_2 is None, \ "bc_action_rules.attack_1: got unexpected plan from when clause 2" if context.lookup_data('ans') <= 0.5: rule.rule_base.num_bc_rule_successes += 1 yield rule.rule_base.num_bc_rule_failures += 1 finally: context.done() def attack_2(rule, arg_patterns, arg_context): engine = rule.rule_base.engine patterns = rule.goal_arg_patterns() if len(arg_patterns) == len(patterns): context = contexts.bc_context(rule) try: if all(map(lambda pat, arg: pat.match_pattern(context, context, arg, arg_context), patterns, arg_patterns)): rule.rule_base.num_bc_rules_matched += 1 with engine.prove('action_facts', 'section', context, (rule.pattern(0),)) \ as gen_1: for x_1 in gen_1: assert x_1 is None, \ "bc_action_rules.attack_2: got unexpected plan from when clause 1" with engine.prove('action_facts', 'nearest_forward', context, (rule.pattern(1),)) \ as gen_2: for x_2 in gen_2: assert x_2 is None, \ "bc_action_rules.attack_2: got unexpected plan from when clause 2" if context.lookup_data('ans') <= 1: rule.rule_base.num_bc_rule_successes += 1 yield rule.rule_base.num_bc_rule_failures += 1 finally: context.done() def defend_1(rule, arg_patterns, arg_context): engine = rule.rule_base.engine patterns = rule.goal_arg_patterns() if len(arg_patterns) == len(patterns): context = contexts.bc_context(rule) try: if all(map(lambda pat, arg: pat.match_pattern(context, context, arg, arg_context), patterns, arg_patterns)): rule.rule_base.num_bc_rules_matched += 1 with engine.prove('action_facts', 'section', context, (rule.pattern(0),)) \ as gen_1: for x_1 in gen_1: assert x_1 is None, \ "bc_action_rules.defend_1: got unexpected plan from when clause 1" with engine.prove('action_facts', 'nearest_behind', context, (rule.pattern(1),)) \ as gen_2: for x_2 in gen_2: assert x_2 is None, \ "bc_action_rules.defend_1: got unexpected plan from when clause 2" if context.lookup_data('ans') >= -0.5: rule.rule_base.num_bc_rule_successes += 1 yield rule.rule_base.num_bc_rule_failures += 1 finally: context.done() def defend_2(rule, arg_patterns, arg_context): engine = rule.rule_base.engine patterns = rule.goal_arg_patterns() if len(arg_patterns) == len(patterns): context = contexts.bc_context(rule) try: if all(map(lambda pat, arg: pat.match_pattern(context, context, arg, arg_context), patterns, arg_patterns)): rule.rule_base.num_bc_rules_matched += 1 with engine.prove('action_facts', 'section', context, (rule.pattern(0),)) \ as gen_1: for x_1 in gen_1: assert x_1 is None, \ "bc_action_rules.defend_2: got unexpected plan from when clause 1" with engine.prove('action_facts', 'nearest_behind', context, (rule.pattern(1),)) \ as gen_2: for x_2 in gen_2: assert x_2 is None, \ "bc_action_rules.defend_2: got unexpected plan from when clause 2" if context.lookup_data('ans') >= -1: rule.rule_base.num_bc_rule_successes += 1 yield rule.rule_base.num_bc_rule_failures += 1 finally: context.done() def populate(engine): This_rule_base = engine.get_create('bc_action_rules') bc_rule.bc_rule('speed_up', This_rule_base, 'select_action', speed_up, None, (pattern.pattern_literal('SpeedUp'),), (), (pattern.pattern_literal("Lower"),)) bc_rule.bc_rule('keep_speed', This_rule_base, 'select_action', keep_speed, None, (pattern.pattern_literal('KeepSpeed'),), (), (pattern.pattern_literal("Same"),)) bc_rule.bc_rule('brake', This_rule_base, 'select_action', brake, None, (pattern.pattern_literal('Brake'),), (), (pattern.pattern_literal("Higher"),)) bc_rule.bc_rule('turn', This_rule_base, 'select_action', turn, None, (pattern.pattern_literal('Turn'),), (), (pattern.pattern_literal("Curve"),)) bc_rule.bc_rule('pits_1', This_rule_base, 'select_action', pits_1, None, (pattern.pattern_literal('Pits'),), (), (pattern.pattern_literal(True), pattern.pattern_literal("Rainy"),)) bc_rule.bc_rule('pits_2', This_rule_base, 'select_action', pits_2, None, (pattern.pattern_literal('Pits'),), (), (pattern.pattern_literal(False), contexts.variable('ans_1'), contexts.variable('ans_2'),)) bc_rule.bc_rule('attack_1', This_rule_base, 'select_action', attack_1, None, (pattern.pattern_literal('Attack'),), (), (pattern.pattern_literal("Curve"), contexts.variable('ans'),)) bc_rule.bc_rule('attack_2', This_rule_base, 'select_action', attack_2, None, (pattern.pattern_literal('Attack'),), (), (pattern.pattern_literal("Straight"), contexts.variable('ans'),)) bc_rule.bc_rule('defend_1', This_rule_base, 'select_action', defend_1, None, (pattern.pattern_literal('Defend'),), (), (pattern.pattern_literal("Curve"), contexts.variable('ans'),)) bc_rule.bc_rule('defend_2', This_rule_base, 'select_action', defend_2, None, (pattern.pattern_literal('Defend'),), (), (pattern.pattern_literal("Straight"), contexts.variable('ans'),)) Krb_filename = '..\\bc_action_rules.krb' Krb_lineno_map = ( ((14, 18), (5, 5)), ((20, 25), (7, 7)), ((38, 42), (11, 11)), ((44, 49), (13, 13)), ((62, 66), (17, 17)), ((68, 73), (19, 19)), ((86, 90), (23, 23)), ((92, 97), (25, 25)), ((110, 114), (29, 29)), ((116, 121), (31, 31)), ((122, 127), (32, 32)), ((140, 144), (36, 36)), ((146, 151), (38, 38)), ((152, 157), (39, 39)), ((158, 158), (40, 40)), ((159, 164), (41, 41)), ((165, 165), (42, 42)), ((178, 182), (46, 46)), ((184, 189), (48, 48)), ((190, 195), (49, 49)), ((196, 196), (50, 50)), ((209, 213), (54, 54)), ((215, 220), (56, 56)), ((221, 226), (57, 57)), ((227, 227), (58, 58)), ((240, 244), (62, 62)), ((246, 251), (64, 64)), ((252, 257), (65, 65)), ((258, 258), (66, 66)), ((271, 275), (70, 70)), ((277, 282), (72, 72)), ((283, 288), (73, 73)), ((289, 289), (74, 74)), )
python
""" Created_at: 06 Oct. 2019 10:20:50 Target: EPISODES: set nullable `episodes.published_at` """ from playhouse.migrate import * from migrations.models import database previous = "0002_23052019_migration" def upgrade(): migrator = PostgresqlMigrator(database) migrate(migrator.drop_not_null("episodes", "published_at")) def downgrade(): migrator = PostgresqlMigrator(database) migrate(migrator.add_not_null("episodes", "published_at"))
python
#!/usr/bin/python from distutils.core import setup from distutils.extension import Extension from Cython.Distutils import build_ext import os import sys hidapi_topdir = os.path.join(os.getcwd(), 'hidapi') hidapi_include = os.path.join(hidapi_topdir, 'hidapi') def hidapi_src(platform): return os.path.join(hidapi_topdir, platform, 'hid.c') if sys.platform.startswith('linux'): modules = [ Extension('hid', sources = ['hid.pyx', 'chid.pxd', hidapi_src('libusb')], include_dirs = [hidapi_include, '/usr/include/libusb-1.0'], libraries = ['usb-1.0', 'udev', 'rt'], ), Extension('hidraw', sources = ['hidraw.pyx', hidapi_src('linux')], include_dirs = [hidapi_include], libraries = ['udev', 'rt'], ) ] if sys.platform.startswith('darwin'): os.environ['CFLAGS'] = '-framework IOKit -framework CoreFoundation' os.environ['LDFLAGS'] = '' modules = [ Extension('hid', sources = ['hid.pyx', 'chid.pxd', hidapi_src('mac')], include_dirs = [hidapi_include], libraries = [], ) ] if sys.platform.startswith('win'): modules = [ Extension('hid', sources = ['hid.pyx', 'chid.pxd', hidapi_src('windows')], include_dirs = [hidapi_include], libraries = ['setupapi'], ) ] setup( name = 'hidapi', version = '0.7.99-5', description = 'A Cython interface to the hidapi from https://github.com/signal11/hidapi', author = 'Gary Bishop', author_email = '[email protected]', maintainer = 'Pavol Rusnak', maintainer_email = '[email protected]', url = 'https://github.com/trezor/cython-hidapi', package_dir = {'hid': 'hidapi/*'}, classifiers = [ 'Operating System :: MacOS :: MacOS X', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', ], cmdclass = {'build_ext': build_ext}, ext_modules = modules )
python
#!/bin/python import csv import sys import struct filename_in = sys.argv[1] filename_out = sys.argv[2] with open(filename_in) as csv_file: csv_reader = csv.reader(csv_file, delimiter = ','); line_count = 0 fileout = open(filename_out, "wb") fileout.write(struct.pack('b', 0)) fileout.write(struct.pack('i', 0)) for row in csv_reader: fileout.write(struct.pack('f', float(row[0]))) fileout.write(struct.pack('f', float(row[1]))) line_count = line_count+1 fileout.seek(1) fileout.write(struct.pack('i', line_count))
python
# Copyright 2015-2021 SWIM.AI inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import Optional, Union, Any class _ReconUtils: @staticmethod def _is_ident_start_char(char: Union[str, int]) -> bool: """ Check if a character is a valid first character of an identifier. Valid start characters for identifiers: [A-Za-z_] :param char: - Character to check. :return: - True if the character is valid, False otherwise. """ if char: char = _ReconUtils._to_ord(char) return ord('A') <= char <= ord('Z') or char == ord('_') or ord('a') <= char <= ord('z') else: return False @staticmethod def _is_ident_char(char: Union[str, int]) -> bool: """ Check if a character is a valid character of an identifier. Valid characters for identifiers: [A-Za-z_-] :param char: - Character to check. :return: - True if the character is valid, False otherwise. """ if char: char = _ReconUtils._to_ord(char) return char == ord('-') or _ReconUtils._is_digit(char) or _ReconUtils._is_ident_start_char(char) else: return False @staticmethod def _is_ident(value: str) -> bool: """ Check if a string value is a valid identifier. :param value: - Value to check. :return: - True if the value is valid identifier, False otherwise. """ if len(value) == 0: return False if not _ReconUtils._is_ident_start_char(value[0]): return False for char in value: if not _ReconUtils._is_ident_char(char): return False return True @staticmethod def _is_space(char: Union[str, int]) -> bool: """ Check if a character is a space character. :param char: - Character to check. :return: - True if the character is a space character, False otherwise. """ if char: char = _ReconUtils._to_ord(char) return char == ord(' ') or char == ord('\t') else: return False @staticmethod def _is_digit(char: Union[str, int]) -> bool: """ Check if a character is a digit. :param char: - Character to check. :return: - True if the character is a digit, False otherwise. """ if char: char = _ReconUtils._to_ord(char) return ord('0') <= char <= ord('9') else: return False @staticmethod def _to_ord(char: Any) -> Optional[int]: """ Convert a character to its integer representation. :param char: - Character to convert. :return: - Integer representation of the character. """ if isinstance(char, str): return ord(char) if isinstance(char, int): return char else: return None class _Message(ABC): def __init__(self) -> None: self._message = '' @property def _value(self) -> str: return self._message @property def _size(self) -> int: return len(self._message) @staticmethod @abstractmethod def _create(chars: str) -> '_Message': raise NotImplementedError def _append(self, obj: Any) -> None: """ Append the string representation of an object to the current message. :param obj: - Object to append to the message. """ if isinstance(obj, str): self._message = self._message + obj elif isinstance(obj, (float, int)): self._message = self._message + str(obj) elif isinstance(obj, (_OutputMessage, _InputMessage)): self._message = self._message + obj._value else: raise TypeError(f'Item of type {type(obj).__name__} cannot be added to Message!') class _OutputMessage(_Message): def __init__(self) -> None: super().__init__() @property def _last_char(self) -> str: """ Return the last character of the message. :return: - Last character of the message. """ if self._size > 0: return self._message[-1] else: return '' @staticmethod def _create(chars: str = None) -> '_OutputMessage': """ Create an OutputMessage instance and initialise its message. :param chars: - Initial value of the message. :return: - OutputMessage instance. """ instance = _OutputMessage() if chars: instance._append(chars) return instance class _InputMessage(_Message): def __init__(self) -> None: super().__init__() self.index = 0 @property def _head(self) -> str: """ Get the character at the front of the InputMessage pointed by the message index. :return: - The current head character of the InputMessage. """ if self._is_cont: return self._message[self.index] else: return '' @property def _is_cont(self) -> bool: """ Check if there are any characters left in front of the InputMessage index. :return: - False if the index is pointing at the last character or beyond, True otherwise. """ if self.index >= len(self._message): return False else: return True @staticmethod def _create(chars: str = None) -> '_InputMessage': """ Create an OutputMessage instance and initialise its message. :param chars: - Initial value of the message. :return: - OutputMessage instance. """ instance = _InputMessage() if chars: instance._append(chars) return instance @staticmethod def _skip_spaces(message: '_InputMessage') -> None: """ Moves the head of the message to the next non-space character. :param message: - InputMessage object. """ char = message._head while _ReconUtils._is_space(char): char = message._step() def _step(self) -> str: """ Move the head index forward by one. :return: - The new head character of the InputMessage. """ self.index = self.index + 1 return self._head
python
import torch import random from layers import SEAL from tqdm import trange from utils import hierarchical_graph_reader, GraphDatasetGenerator class SEALCITrainer(object): """ Semi-Supervised Graph Classification: A Hierarchical Graph Perspective Cautious Iteration model. """ def __init__(self,args): """ Creating dataset, doing dataset split, creating target and node index vectors. :param args: Arguments object. """ self.args = args self.macro_graph = hierarchical_graph_reader(self.args.hierarchical_graph) self.dataset_generator = GraphDatasetGenerator(self.args.graphs) self._setup_macro_graph() self._create_split() self._create_labeled_target() self._create_node_indices() def _setup_model(self): """ Creating a SEAL model. """ self.model = SEAL(self.args, self.dataset_generator.number_of_features, self.dataset_generator.number_of_labels) def _setup_macro_graph(self): """ Creating an edge list for the hierarchical graph. """ self.macro_graph_edges = [[edge[0],edge[1]] for edge in self.macro_graph.edges()] + [[edge[1],edge[0]] for edge in self.macro_graph.edges()] self.macro_graph_edges = torch.t(torch.LongTensor(self.macro_graph_edges)) def _create_split(self): """ Creating a labeled-unlabeled split. """ graph_indices = [index for index in range(len(self.dataset_generator.graphs))] random.shuffle(graph_indices) self.labeled_indices = graph_indices[0:self.args.labeled_count] self.unlabeled_indices = graph_indices[self.args.labeled_count:] def _create_labeled_target(self): """ Creating a mask for labeled instances and a target for them. """ self.labeled_mask = torch.LongTensor([0 for node in self.macro_graph.nodes()]) self.labeled_target = torch.LongTensor([0 for node in self.macro_graph.nodes()]) self.labeled_mask[torch.LongTensor(self.labeled_indices)] = 1 self.labeled_target[torch.LongTensor(self.labeled_indices)] = self.dataset_generator.target[torch.LongTensor(self.labeled_indices)] def _create_node_indices(self): """ Creating an index of nodes. """ self.node_indices = [index for index in range(self.macro_graph.number_of_nodes())] self.node_indices = torch.LongTensor(self.node_indices) def fit_a_single_model(self): """ Fitting a single SEAL model. """ self._setup_model() optimizer = torch.optim.Adam(self.model.parameters(), lr=self.args.learning_rate, weight_decay=self.args.weight_decay) for epoch in range(self.args.epochs): optimizer.zero_grad() predictions, penalty = self.model(self.dataset_generator.graphs, self.macro_graph_edges) loss = torch.nn.functional.nll_loss(predictions[self.labeled_mask==1], self.labeled_target[self.labeled_mask==1]) + self.args.gamma*penalty loss.backward() optimizer.step() def score_a_single_model(self): """ Scoring the SEAL model. """ self.model.eval() predictions, penalty = self.model(self.dataset_generator.graphs, self.macro_graph_edges) scores, prediction_indices = predictions.max(dim=1) correct = prediction_indices[self.labeled_mask==0].eq(self.labeled_target[self.labeled_mask==0]).sum().item() normalizer = prediction_indices[self.labeled_mask==0].shape[0] accuracy = float(correct)/float(normalizer) return scores, prediction_indices, accuracy def _choose_best_candidate(self, predictions, indices): """ Choosing the best candidate based on predictions. :param predictions: Scores. :param indices: Vector of likely labels. :return candidate: Node chosen. :return label: Label of node. """ nodes = self.node_indices[self.labeled_mask==0] sub_predictions = predictions[self.labeled_mask==0] sub_predictions, candidate = sub_predictions.max(dim=0) candidate = nodes[candidate] label = indices[candidate] return candidate, label def _update_target(self, candidate, label): """ Adding the new node to the mask and the target is updated with the predicted label. :param candidate: Candidate node identifier. :param label: Label of candidate node. """ self.labeled_mask[candidate] = 1 self.labeled_target[candidate] = label def fit(self): """ Training models sequentially. """ print("\nTraining started.\n") budget_size = trange(self.args.budget, desc='Unlabeled Accuracy: ', leave=True) for step in budget_size: self.fit_a_single_model() scores, prediction_indices, accuracy = self.score_a_single_model() candidate, label = self._choose_best_candidate(scores, prediction_indices) self._update_target(candidate, label) budget_size.set_description("Unlabeled Accuracy:%g" % round(accuracy, 4)) def score(self): """ Scoring the model. """ print("\nModel scoring.\n") scores, prediction_indices, accuracy = self.score_a_single_model() print("Unlabeled Accuracy:%g" % round(accuracy, 4))
python
# Copyright (c) 2017 NVIDIA Corporation import torch import argparse from reco_encoder.data import input_layer from reco_encoder.model import model import torch.optim as optim from torch.optim.lr_scheduler import MultiStepLR import torch.nn as nn from torch.autograd import Variable import copy import time from pathlib import Path from logger import Logger from math import sqrt import numpy as np parser = argparse.ArgumentParser(description='RecoEncoder') parser.add_argument('--lr', type=float, default=0.00001, metavar='N', help='learning rate') parser.add_argument('--weight_decay', type=float, default=0.0, metavar='N', help='L2 weight decay') parser.add_argument('--drop_prob', type=float, default=0.0, metavar='N', help='dropout drop probability') parser.add_argument('--noise_prob', type=float, default=0.0, metavar='N', help='noise probability') parser.add_argument('--batch_size', type=int, default=64, metavar='N', help='global batch size') parser.add_argument('--summary_frequency', type=int, default=100, metavar='N', help='how often to save summaries') parser.add_argument('--aug_step', type=int, default=-1, metavar='N', help='do data augmentation every X step') parser.add_argument('--constrained', action='store_true', help='constrained autoencoder') parser.add_argument('--skip_last_layer_nl', action='store_true', help='if present, decoder\'s last layer will not apply non-linearity function') parser.add_argument('--num_epochs', type=int, default=50, metavar='N', help='maximum number of epochs') parser.add_argument('--optimizer', type=str, default="adam", metavar='N', help='optimizer kind: adam, momentum, adagrad or rmsprop') parser.add_argument('--hidden_layers', type=str, default="1024,512,512,128", metavar='N', help='hidden layer sizes, comma-separated') parser.add_argument('--gpu_ids', type=str, default="0", metavar='N', help='comma-separated gpu ids to use for data parallel training') parser.add_argument('--path_to_train_data', type=str, default="", metavar='N', help='Path to training data') parser.add_argument('--path_to_eval_data', type=str, default="", metavar='N', help='Path to evaluation data') parser.add_argument('--non_linearity_type', type=str, default="selu", metavar='N', help='type of the non-linearity used in activations') parser.add_argument('--logdir', type=str, default="logs", metavar='N', help='where to save model and write logs') args = parser.parse_args() print(args) def do_eval(encoder, evaluation_data_layer): encoder.eval() denom = 0.0 total_epoch_loss = 0.0 for i, (eval, src) in enumerate(evaluation_data_layer.iterate_one_epoch_eval()): inputs = Variable(src.cpu().to_dense()) targets = Variable(eval.cpu().to_dense()) outputs = encoder(inputs) loss, num_ratings = model.MSEloss(outputs, targets) total_epoch_loss += loss.data[0] denom += num_ratings.data[0] return sqrt(total_epoch_loss / denom) def log_var_and_grad_summaries(logger, layers, global_step, prefix, log_histograms=False): """ Logs variable and grad stats for layer. Transfers data from GPU to CPU automatically :param logger: TB logger :param layers: param list :param global_step: global step for TB :param prefix: name prefix :param log_histograms: (default: False) whether or not log histograms :return: """ for ind, w in enumerate(layers): # Variables w_var = w.data.cpu().numpy() logger.scalar_summary("Variables/FrobNorm/{}_{}".format(prefix, ind), np.linalg.norm(w_var), global_step) if log_histograms: logger.histo_summary(tag="Variables/{}_{}".format(prefix, ind), values=w.data.cpu().numpy(), step=global_step) # Gradients w_grad = w.grad.data.cpu().numpy() logger.scalar_summary("Gradients/FrobNorm/{}_{}".format(prefix, ind), np.linalg.norm(w_grad), global_step) if log_histograms: logger.histo_summary(tag="Gradients/{}_{}".format(prefix, ind), values=w.grad.data.cpu().numpy(), step=global_step) def main(): logger = Logger(args.logdir) params = dict() params['batch_size'] = args.batch_size params['data_dir'] = args.path_to_train_data params['major'] = 'users' params['itemIdInd'] = 1 params['userIdInd'] = 0 print("Loading training data") data_layer = input_layer.UserItemRecDataProvider(params=params) print("Data loaded") print("Total items found: {}".format(len(data_layer.data.keys()))) print("Vector dim: {}".format(data_layer.vector_dim)) print("Loading eval data") eval_params = copy.deepcopy(params) # must set eval batch size to 1 to make sure no examples are missed eval_params['data_dir'] = args.path_to_eval_data eval_data_layer = input_layer.UserItemRecDataProvider(params=eval_params, user_id_map=data_layer.userIdMap, # the mappings are provided item_id_map=data_layer.itemIdMap) eval_data_layer.src_data = data_layer.data rencoder = model.AutoEncoder(layer_sizes=[data_layer.vector_dim] + [int(l) for l in args.hidden_layers.split(',')], nl_type=args.non_linearity_type, is_constrained=args.constrained, dp_drop_prob=args.drop_prob, last_layer_activations=not args.skip_last_layer_nl) model_checkpoint = args.logdir + "/model" path_to_model = Path(model_checkpoint) if path_to_model.is_file(): print("Loading model from: {}".format(model_checkpoint)) rencoder.load_state_dict(torch.load(model_checkpoint)) print('######################################################') print('######################################################') print('############# AutoEncoder Model: #####################') print(rencoder) print('######################################################') print('######################################################') gpu_ids = [int(g) for g in args.gpu_ids.split(',')] print('Using GPUs: {}'.format(gpu_ids)) if len(gpu_ids)>1: rencoder = nn.DataParallel(rencoder, device_ids=gpu_ids) rencoder = rencoder.cpu() if args.optimizer == "adam": optimizer = optim.Adam(rencoder.parameters(), lr=args.lr, weight_decay=args.weight_decay) elif args.optimizer == "adagrad": optimizer = optim.Adagrad(rencoder.parameters(), lr=args.lr, weight_decay=args.weight_decay) elif args.optimizer == "momentum": optimizer = optim.SGD(rencoder.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay) scheduler = MultiStepLR(optimizer, milestones=[24, 36, 48, 66, 72], gamma=0.5) elif args.optimizer == "rmsprop": optimizer = optim.RMSprop(rencoder.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay) else: raise ValueError('Unknown optimizer kind') t_loss = 0.0 t_loss_denom = 0.0 global_step = 0 if args.noise_prob > 0.0: dp = nn.Dropout(p=args.noise_prob) for epoch in range(args.num_epochs): print('Doing epoch {} of {}'.format(epoch, args.num_epochs)) e_start_time = time.time() rencoder.train() total_epoch_loss = 0.0 denom = 0.0 if args.optimizer == "momentum": scheduler.step() for i, mb in enumerate(data_layer.iterate_one_epoch()): inputs = Variable(mb.cpu().to_dense()) optimizer.zero_grad() outputs = rencoder(inputs) loss, num_ratings = model.MSEloss(outputs, inputs) loss = loss / num_ratings loss.backward() optimizer.step() global_step += 1 t_loss += loss.data[0] t_loss_denom += 1 if i % args.summary_frequency == 0: print('[%d, %5d] RMSE: %.7f' % (epoch, i, sqrt(t_loss / t_loss_denom))) logger.scalar_summary("Training_RMSE", sqrt(t_loss/t_loss_denom), global_step) t_loss = 0 t_loss_denom = 0.0 log_var_and_grad_summaries(logger, rencoder.encode_w, global_step, "Encode_W") log_var_and_grad_summaries(logger, rencoder.encode_b, global_step, "Encode_b") if not rencoder.is_constrained: log_var_and_grad_summaries(logger, rencoder.decode_w, global_step, "Decode_W") log_var_and_grad_summaries(logger, rencoder.decode_b, global_step, "Decode_b") total_epoch_loss += loss.data[0] denom += 1 #if args.aug_step > 0 and i % args.aug_step == 0 and i > 0: if args.aug_step > 0: # Magic data augmentation trick happen here for t in range(args.aug_step): inputs = Variable(outputs.data) if args.noise_prob > 0.0: inputs = dp(inputs) optimizer.zero_grad() outputs = rencoder(inputs) loss, num_ratings = model.MSEloss(outputs, inputs) loss = loss / num_ratings loss.backward() optimizer.step() e_end_time = time.time() print('Total epoch {} finished in {} seconds with TRAINING RMSE loss: {}' .format(epoch, e_end_time - e_start_time, sqrt(total_epoch_loss/denom))) logger.scalar_summary("Training_RMSE_per_epoch", sqrt(total_epoch_loss/denom), epoch) logger.scalar_summary("Epoch_time", e_end_time - e_start_time, epoch) if epoch % 3 == 0 or epoch == args.num_epochs - 1: eval_loss = do_eval(rencoder, eval_data_layer) print('Epoch {} EVALUATION LOSS: {}'.format(epoch, eval_loss)) logger.scalar_summary("EVALUATION_RMSE", eval_loss, epoch) print("Saving model to {}".format(model_checkpoint + ".epoch_"+str(epoch))) torch.save(rencoder.state_dict(), model_checkpoint + ".epoch_"+str(epoch)) print("Saving model to {}".format(model_checkpoint + ".last")) torch.save(rencoder.state_dict(), model_checkpoint + ".last") if __name__ == '__main__': main()
python
# Copyright 2017 Become Corp. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example code for Service : KeywordEstimatorService Operation: get API Reference: https://github.com/yahoojp-marketing/sponsored-search-api-documents/blob/201901/docs/en/api_reference/services/KeywordEstimatorService.md Generated by 'api_reference_example_generator.py' using code template 'examples/sample_template.py.template' """ import logging import json from yahooads import promotionalads logging.basicConfig(level=logging.INFO) # logging.getLogger('suds.client').setLevel(logging.DEBUG) # logging.getLogger('suds.transport').setLevel(logging.DEBUG) SERVICE = 'KeywordEstimatorService' OPERATION = 'get' OPERAND = { "accountId": "SAMPLE-ACCOUNT-ID", "campaignEstimateRequest": { "campaignId": "SAMPLE-CAMPAIN-ID", "adGroupEstimateRequests": [ { "adGroupId": "SAMPLE-ADGROUP-ID", "keywordEstimateRequests": { "keyword": { "text": "\u53e4\u7740", "matchType": "PHRASE" }, "isNegative": "FALSE", "maxCpc": "5000" }, "maxCpc": "800" }, { "adGroupId": "SAMPLE-ADGROUP-ID", "keywordEstimateRequests": { "keyword": { "text": "\u82b1\u706b\u3000\u590f", "matchType": "EXACT" }, "isNegative": "FALSE", "maxCpc": "9000" }, "maxCpc": "1000" } ], "provinces": "JP-13", "dailyBudget": "1000" } } """ SAMPLE RESPONSE = { "rval": { "totalNumEntries": "2", "Page.Type": "KeywordEstimatorPage", "values": [ { "operationSucceeded": "true", "data": { "campaignId": "SAMPLE-CAMPAIN-ID", "adGroupId": "SAMPLE-ADGROUP-ID", "keyword": "\u53e4\u7740", "min": { "clicks": "29.59", "rank": "1.0", "cpc": "32.11", "cost": "1055.55", "impressions": "3000.0", "ctr": "0.0012" }, "max": { "clicks": "36.16", "rank": "1.1", "cpc": "39.24", "cost": "1290.12", "impressions": "3100.0", "ctr": "0.0022" } } }, { "operationSucceeded": "true", "data": { "campaignId": "SAMPLE-CAMPAIN-ID", "adGroupId": "SAMPLE-ADGROUP-ID", "keyword": "\u82b1\u706b\u3000\u590f", "min": { "clicks": "11.59", "rank": "1.0", "cpc": "32.01", "cost": "2055.55", "impressions": "3000.0", "ctr": "0.0012" }, "max": { "clicks": "9999.16", "rank": "1.1", "cpc": "39.24", "cost": "3290.12", "impressions": "3100.0", "ctr": "0.0022" } } } ] } } """ def main(): client = promotionalads.PromotionalAdsClient.LoadFromConfiguration() service = client.GetService(SERVICE) print("REQUEST : {}.{}\n{}".format(SERVICE, OPERATION, json.dumps(OPERAND, indent=2))) try: if OPERATION == "get": response = service.get(OPERAND) elif OPERATION.startswith("get"): get_method = getattr(service, OPERATION) response = get_method(OPERAND) elif OPERATION.startswith("mutate"): response = service.mutate(OPERAND) else: raise("Unknown Operation '{}'".format(OPERATION)) print("RESPONSE :\n{}".format(response)) except Exception as e: print("Exception at '{}' operations \n{}".format(SERVICE, e)) raise e if __name__ == '__main__': main()
python
"""Module for all encryption""" # standard imports import hashlib import binascii from os import urandom, getenv from uuid import uuid4 # third party imports from authlib.specs.rfc7519 import jwt # local imports from api.utilities.constants import CHARSETS from api.utilities.constants import MESSAGES from api.utilities.validations.custom_validations_error import ValidationError from api.utilities.helpers.date_time import date_time from api.utilities.helpers.errors import raises class Encryption: """Class for all encryption""" @staticmethod def hash(password): """Hash password. Args: password (Str): Password to hash. Returns: String: Hashed password. """ # generate random values to generate the salt for hashing random_bytes = urandom(120) + str(uuid4()).encode(CHARSETS[1]) # generate salt for the password hashing salt = hashlib.sha256(random_bytes).hexdigest().encode(CHARSETS[1]) # hash the password pwd_hash = hashlib.pbkdf2_hmac('sha512', password.encode(CHARSETS[0]), salt, 100000) # convert the hash to a hexadecimal pwd_hash = binascii.hexlify(pwd_hash) # returns the hash + salt return (salt + pwd_hash).decode(CHARSETS[1]) @staticmethod def verify(stored_password, provided_password): """Verify a stored password against one provided by user. Args: stored_password (Str): The stored password. provided_password (Str): The password provided by the user. Returns: Boolean: """ # get the first 64 characters from the stored # password, this is the salt salt = stored_password[:64] # get the remaining characters from the 64th index, # this is the stored password stored_password = stored_password[64:] # hash the provided password pwdhash = hashlib.pbkdf2_hmac('sha512', provided_password.encode(CHARSETS[0]), salt.encode(CHARSETS[1]), 100000) # convert the hash to a hexadecimal and decode to ascii pwdhash = binascii.hexlify(pwdhash).decode(CHARSETS[1]) # compares the hashed password with the stored hash return pwdhash == stored_password @staticmethod def tokenize(payload, subject=None, **kwargs): """Generates a token for the given payload. Args: payload (dict): Payload subject (str): Subject of the encryption Returns: String: JWT token """ header = {'alg': 'RS256'} data = { 'data': payload, 'iat': date_time.time(), 'exp': date_time.time(manipulate=True, manipulation_type='ADD', **kwargs), 'aud': 'Yard-it.com.ng', 'iss': 'Yard-it-API', 'sub': subject } private_key = getenv('JWT_PRIVATE_KEY') token = jwt.encode( header=header, payload=data, key=private_key).decode(CHARSETS[0]) return token @staticmethod def detokenize(token): """Decodes the passed JWT token. Args: token (str): JWT token Returns: Dict: A dictionary of the decoded data. """ public_key = getenv('JWT_PUBLIC_KEY') decoded_token = jwt.decode(token, public_key) if token else None dt = date_time.time().timestamp() now = int(round(dt)) if not decoded_token: raises('No token was provided', 400) if decoded_token and decoded_token['exp'] < now: raises(MESSAGES['EXPIRED_TOKEN'], 403) return decoded_token
python
from common import * ## for debug def dummy_transform(image): print ('\tdummy_transform') return image # kaggle science bowl-2 : ################################################################ def resize_to_factor2(image, mask, factor=16): H,W = image.shape[:2] h = (H//factor)*factor w = (W //factor)*factor return fix_resize_transform2(image, mask, w, h) def fix_resize_transform2(image, mask, w, h): H,W = image.shape[:2] if (H,W) != (h,w): image = cv2.resize(image,(w,h)) mask = mask.astype(np.float32) mask = cv2.resize(mask,(w,h),cv2.INTER_NEAREST) mask = mask.astype(np.int32) return image, mask def fix_crop_transform2(image, mask, x,y,w,h): H,W = image.shape[:2] assert(H>=h) assert(W >=w) if (x==-1 & y==-1): x=(W-w)//2 y=(H-h)//2 if (x,y,w,h) != (0,0,W,H): image = image[y:y+h, x:x+w] mask = mask[y:y+h, x:x+w] return image, mask def random_crop_transform2(image, mask, w,h, u=0.5): x,y = -1,-1 if random.random() < u: H,W = image.shape[:2] if H!=h: y = np.random.choice(H-h) else: y=0 if W!=w: x = np.random.choice(W-w) else: x=0 return fix_crop_transform2(image, mask, x,y,w,h) def random_horizontal_flip_transform2(image, mask, u=0.5): if random.random() < u: image = cv2.flip(image,1) #np.fliplr(img) ##left-right mask = cv2.flip(mask,1) return image, mask def random_vertical_flip_transform2(image, mask, u=0.5): if random.random() < u: image = cv2.flip(image,0) mask = cv2.flip(mask,0) return image, mask def random_rotate90_transform2(image, mask, u=0.5): if random.random() < u: angle=random.randint(1,3)*90 if angle == 90: image = image.transpose(1,0,2) #cv2.transpose(img) image = cv2.flip(image,1) mask = mask.transpose(1,0) mask = cv2.flip(mask,1) elif angle == 180: image = cv2.flip(image,-1) mask = cv2.flip(mask,-1) elif angle == 270: image = image.transpose(1,0,2) #cv2.transpose(img) image = cv2.flip(image,0) mask = mask.transpose(1,0) mask = cv2.flip(mask,0) return image, mask def relabel_multi_mask(multi_mask): data = multi_mask data = data[:,:,np.newaxis] unique_color = set( tuple(v) for m in data for v in m ) #print(len(unique_color)) H,W = data.shape[:2] multi_mask = np.zeros((H,W),np.int32) for color in unique_color: #print(color) if color == (0,): continue mask = (data==color).all(axis=2) label = skimage.morphology.label(mask) index = [label!=0] multi_mask[index] = label[index]+multi_mask.max() return multi_mask def random_shift_scale_rotate_transform2( image, mask, shift_limit=[-0.0625,0.0625], scale_limit=[1/1.2,1.2], rotate_limit=[-15,15], borderMode=cv2.BORDER_REFLECT_101 , u=0.5): #cv2.BORDER_REFLECT_101 cv2.BORDER_CONSTANT if random.random() < u: height, width, channel = image.shape angle = random.uniform(rotate_limit[0],rotate_limit[1]) #degree scale = random.uniform(scale_limit[0],scale_limit[1]) sx = scale sy = scale dx = round(random.uniform(shift_limit[0],shift_limit[1])*width ) dy = round(random.uniform(shift_limit[0],shift_limit[1])*height) cc = math.cos(angle/180*math.pi)*(sx) ss = math.sin(angle/180*math.pi)*(sy) rotate_matrix = np.array([ [cc,-ss], [ss,cc] ]) box0 = np.array([ [0,0], [width,0], [width,height], [0,height], ]) box1 = box0 - np.array([width/2,height/2]) box1 = np.dot(box1,rotate_matrix.T) + np.array([width/2+dx,height/2+dy]) box0 = box0.astype(np.float32) box1 = box1.astype(np.float32) mat = cv2.getPerspectiveTransform(box0,box1) image = cv2.warpPerspective(image, mat, (width,height),flags=cv2.INTER_LINEAR, borderMode=borderMode,borderValue=(0,0,0,)) #cv2.BORDER_CONSTANT, borderValue = (0, 0, 0)) #cv2.BORDER_REFLECT_101 mask = mask.astype(np.float32) mask = cv2.warpPerspective(mask, mat, (width,height),flags=cv2.INTER_NEAREST,#cv2.INTER_LINEAR borderMode=borderMode,borderValue=(0,0,0,)) #cv2.BORDER_CONSTANT, borderValue = (0, 0, 0)) #cv2.BORDER_REFLECT_101 mask = mask.astype(np.int32) mask = relabel_multi_mask(mask) return image, mask # single image ######################################################## #agumentation (photometric) ---------------------- def random_brightness_shift_transform(image, limit=[16,64], u=0.5): if np.random.random() < u: alpha = np.random.uniform(limit[0], limit[1]) image = image + alpha*255 image = np.clip(image, 0, 255).astype(np.uint8) return image def random_brightness_transform(image, limit=[0.5,1.5], u=0.5): if np.random.random() < u: alpha = np.random.uniform(limit[0], limit[1]) image = alpha*image image = np.clip(image, 0, 255).astype(np.uint8) return image def random_contrast_transform(image, limit=[0.5,1.5], u=0.5): if np.random.random() < u: alpha = np.random.uniform(limit[0], limit[1]) coef = np.array([[[0.114, 0.587, 0.299]]]) #rgb to gray (YCbCr) gray = image * coef gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray) image = alpha*image + gray image = np.clip(image, 0, 255).astype(np.uint8) return image def random_saturation_transform(image, limit=[0.5,1.5], u=0.5): if np.random.random() < u: alpha = np.random.uniform(limit[0], limit[1]) coef = np.array([[[0.114, 0.587, 0.299]]]) gray = image * coef gray = np.sum(gray,axis=2, keepdims=True) image = alpha*image + (1.0 - alpha)*gray image = np.clip(image, 0, 255).astype(np.uint8) return image # https://github.com/chainer/chainercv/blob/master/chainercv/links/model/ssd/transforms.py # https://github.com/fchollet/keras/pull/4806/files # https://zhuanlan.zhihu.com/p/24425116 # http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html def random_hue_transform(image, limit=[-0.1,0.1], u=0.5): if random.random() < u: h = int(np.random.uniform(limit[0], limit[1])*180) #print(h) hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) hsv[:, :, 0] = (hsv[:, :, 0].astype(int) + h) % 180 image = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return image def random_noise_transform(image, limit=[0, 0.5], u=0.5): if random.random() < u: H,W = image.shape[:2] noise = np.random.uniform(limit[0],limit[1],size=(H,W))*255 image = image + noise[:,:,np.newaxis]*np.array([1,1,1]) image = np.clip(image, 0, 255).astype(np.uint8) return image # geometric --- def resize_to_factor(image, factor=16): height,width = image.shape[:2] h = (height//factor)*factor w = (width //factor)*factor return fix_resize_transform(image, w, h) def fix_resize_transform(image, w, h): height,width = image.shape[:2] if (height,width) != (h,w): image = cv2.resize(image,(w,h)) return image def pad_to_factor(image, factor=16): height,width = image.shape[:2] h = math.ceil(height/factor)*factor w = math.ceil(width/factor)*factor image = cv2.copyMakeBorder(image, top=0, bottom=h-height, left=0, right=w-width, borderType= cv2.BORDER_REFLECT101, value=[0,0,0] ) return image # main ################################################################# if __name__ == '__main__': print( '%s: calling main function ... ' % os.path.basename(__file__)) print('\nsucess!')
python
import wrapper as w import json outFile = open("data/tgt/linear/test.txt", "w") with open("data/tgt/giant_news0tgt0.txt", "r") as inFile: for line in inFile: serialized = json.loads(line[line.index("\t"):]) ex = w.GrapheneExtract(serialized) linear = ex.linearize() if linear != "": outFile.write(line[:line.index("\t")] + "\t" + linear + "\n") outFile.close()
python
""" Copyright(c) 2021 Authors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. """ from botocore.session import Session from .command import MFACommand def awscli_initialize(cli): """ Entry point called by awscli """ cli.register('building-command-table.main', register_mfa_command) def register_mfa_command(command_table, session: Session, **kwargs): """ Register mfa command """ command_table['mfa'] = MFACommand(session)
python
from clases.catastrofe import catastrofe from clases.catastrofe import AlDiaSiguiente from clases.yinyang import Yin from clases.yinyang import Yang from clases.herenciaMultiple import Pared from clases.herenciaMultiple import Ventana from clases.herenciaMultiple import Casa from clases.herenciaMultiple import ParedCortina if __name__=="__main__": print(AlDiaSiguiente.ciudades("new_york " , "los_angeles")) if __name__== "__main__": yin = Yin() yang = Yang() yin.yang = yang print(yang) print(yang is yin.yang) Yang.__del__(yang) print("?") if __name__== "__main__": Pared Ventana Casa pared_norte = Pared("NORTE") pared_oeste = Pared("OESTEE") pared_sur = Pared("SUR") pared_este = Pared("ESTE") ventana_norte = Ventana(pared_norte, 0.5, "persiana") ventana_oeste = Ventana(pared_oeste, 1, "persiana") ventana_sur = Ventana(pared_sur, 2, "store vénitien") ventana_este = Ventana(pared_este, 1, "persiana") casa = Casa([pared_norte, pared_oeste, pared_sur, pared_este]) print(casa.superficie_cristal()) ParedCortina pared_cortina = ParedCortina("SUR", 10) casa.paredes[2] = pared_cortina print(casa.superficie_cristal())
python
# Exercise 2.12 from math import * ballRadius = float(input("Please enter the radius: ")) ballVolume = 4 / 3 * pi * ballRadius ** 3 ballSpace = 4 * pi * ballRadius ** 2 print("The Volume of the ball is", ballVolume) print("The Superficial Area of the ball is", ballSpace)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # These imports are for python3 compatibility inside python2 from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading import time import cachetools from apex.aprs import util as aprs_util from .util import echo_colorized_frame from .util import echo_colorized_warning class NonrepeatingBuffer(object): def __init__(self, base_tnc, base_name, base_port=None, echo_packets=True, buffer_size=10000, buffer_time=30): self.packet_cache = cachetools.TTLCache(buffer_size, buffer_time) self.lock = threading.Lock() self.base_tnc = base_tnc self.base_port = base_port self.base_name = base_name self.echo_packets = echo_packets @property def port(self): return self.base_port @property def name(self): return self.base_name def connect(self, *args, **kwargs): self.base_tnc.connect(*args, **kwargs) def close(self, *args, **kwargs): self.base_tnc.close(*args, **kwargs) def write(self, frame, *args, **kwargs): with self.lock: frame_hash = str(aprs_util.hash_frame(frame)) if frame_hash not in self.packet_cache: self.packet_cache[frame_hash] = frame if self.base_port: self.base_tnc.write(frame, self.base_port) else: self.base_tnc.write(frame) if self.echo_packets: echo_colorized_frame(frame, self.base_name, False) def read(self, *args, **kwargs): with self.lock: frame = self.base_tnc.read(*args, **kwargs) if not frame: return frame frame_hash = str(aprs_util.hash_frame(frame)) if frame_hash not in self.packet_cache: self.packet_cache[frame_hash] = frame if self.echo_packets: echo_colorized_frame(frame, self.base_name, True) return frame else: return None class ReconnectingPacketBuffer(object): STARTING_WAIT_TIME = 2 MAX_WAIT_TIME = 300 WAIT_TIME_MULTIPLIER = 2 MAX_INDEX = 1000000 def __init__(self, packet_layer): self.packet_layer = packet_layer self.to_packet_layer = cachetools.TTLCache(10, 30) self.current_index = 0 self.from_packet_layer = cachetools.TTLCache(10, 30) self.connect_thread = None self.lock = threading.Lock() self.running = False self.reconnect_wait_time = self.STARTING_WAIT_TIME self.last_connect_attempt = None self.connect_args = None self.connect_kwargs = None self.connected = False def __increment_wait_time(self): self.reconnect_wait_time *= self.WAIT_TIME_MULTIPLIER if self.reconnect_wait_time > self.MAX_WAIT_TIME: self.reconnect_wait_time = self.MAX_WAIT_TIME def __reset_wait_time(self): self.reconnect_wait_time = self.STARTING_WAIT_TIME def __run(self): while self.running: if not self.connected: if not self.last_connect_attempt or time.time() - self.last_connect_attempt > self.reconnect_wait_time: try: self.last_connect_attempt = time.time() self.packet_layer.connect(*self.connect_args, **self.connect_kwargs) self.connected = True except IOError: echo_colorized_warning('Could not connect, will reattempt.') try: self.packet_layer.close() except IOError: pass self.__increment_wait_time() else: time.sleep(1) else: io_occured = False # lets attempt to read in a packet try: read_packet = self.packet_layer.read() self.__reset_wait_time() if read_packet: with self.lock: self.from_packet_layer[str(aprs_util.hash_frame(read_packet))] = read_packet io_occured = True except IOError: echo_colorized_warning('Read failed. Will disconnect and attempt to reconnect.') try: self.packet_layer.close() except IOError: pass self.connected = False continue # lets try to write a packet, if any are waiting. write_packet = None with self.lock: if self.to_packet_layer: write_packet = self.to_packet_layer.popitem()[1] if write_packet: try: self.packet_layer.write(write_packet) io_occured = True self.__reset_wait_time() except IOError: echo_colorized_warning('Write failed. Will disconnect and attempt to reconnect.') self.to_packet_layer[str(aprs_util.hash_frame(read_packet))] = write_packet try: self.packet_layer.close() except IOError: pass self.connected = False continue if not io_occured: time.sleep(1) try: self.packet_layer.close() except IOError: pass def connect(self, *args, **kwargs): with self.lock: if self.connect_thread: raise RuntimeError('already connected') self.running = True self.connect_args = args self.connect_kwargs = kwargs self.connect_thread = threading.Thread(target=self.__run) self.connect_thread.start() def close(self): with self.lock: if not self.connect_thread: raise RuntimeError('not connected') self.running = False self.connect_thread.join() self.connect_thread = None def read(self): with self.lock: if self.from_packet_layer: return self.from_packet_layer.popitem()[1] return None def write(self, packet): with self.lock: self.to_packet_layer[str(aprs_util.hash_frame(packet))] = packet
python
# Copyright (C) 2013-2016 DNAnexus, Inc. # # This file is part of dx-toolkit (DNAnexus platform client libraries). # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. ''' Accessing App-Specific Containers +++++++++++++++++++++++++++++++++ Apps have associated resource containers and project cache containers. To easily access these, the following utility functions are provided. These functions are meant to be called only by a job. ''' from __future__ import print_function, unicode_literals, division, absolute_import import os import dxpy from ..exceptions import DXError from .search import find_one_data_object def load_app_resource(**kwargs): ''' :param kwargs: keyword args for :func:`~dxpy.bindings.search.find_one_data_object`, with the exception of "project" :raises: :exc:`~dxpy.exceptions.DXError` if "project" is given, if this is called with dxpy.JOB_ID not set, or if "DX_RESOURCES_ID" or "DX_PROJECT_CONTEXT_ID" is not found in the environment variables :returns: None if no matching object is found; otherwise returns a dxpy object handler for that class of object Searches for a data object in the app resources container matching the given keyword arguments. If found, the object will be cloned into the running job's workspace container, and the handler for it will be returned. If the app resources container ID is not found in DX_RESOURCES_ID, falls back to looking in the current project. Example:: @dxpy.entry_point('main') def main(*args, **kwargs): x = load_app_resource(name="Indexed genome", classname='file') dxpy.download_dxfile(x) ''' if 'project' in kwargs: raise DXError('Unexpected kwarg: "project"') if dxpy.JOB_ID is None: raise DXError('Not called by a job') if 'DX_RESOURCES_ID' not in os.environ and 'DX_PROJECT_CONTEXT_ID' not in os.environ: raise DXError('App resources container ID could not be found') kwargs['project'] = os.environ.get('DX_RESOURCES_ID', os.environ.get('DX_PROJECT_CONTEXT_ID')) kwargs['return_handler'] = True return find_one_data_object(**kwargs) def load_from_cache(**kwargs): ''' :param kwargs: keyword args for :func:`~dxpy.bindings.search.find_one_data_object`, with the exception of "project" :raises: :exc:`~dxpy.exceptions.DXError` if "project" is given, if this is called with dxpy.JOB_ID not set, or if "DX_PROJECT_CACHE_ID" is not found in the environment variables :returns: None if no matching object is found; otherwise returns a dxpy object handler for that class of object Searches for a data object in the project cache container matching the given keyword arguments. If found, the object will be cloned into the running job's workspace container, and the handler for it will be returned. Example:: @dxpy.entry_point('main') def main(*args, **kwargs): x = load_from_cache(name="Indexed genome", classname='file') if x is None: x = compute_result(*args) save_to_cache(x) ''' if 'project' in kwargs: raise DXError('Unexpected kwarg: "project"') if dxpy.JOB_ID is None: raise DXError('Not called by a job') if 'DX_PROJECT_CACHE_ID' not in os.environ: raise DXError('Project cache ID could not be found in the environment variable DX_PROJECT_CACHE_ID') kwargs['project'] = os.environ.get('DX_PROJECT_CACHE_ID') kwargs['return_handler'] = True cached_object = find_one_data_object(**kwargs) if cached_object is None: return None return cached_object.clone(dxpy.WORKSPACE_ID) # Maybe this should be a member function of a data object? def save_to_cache(dxobject): ''' :param dxobject: a dxpy object handler for an object to save to the cache :raises: :exc:`~dxpy.exceptions.DXError` if this is called with dxpy.JOB_ID not set, or if "DX_PROJECT_CACHE_ID" is not found in the environment variables Clones the given object to the project cache. Example:: @dxpy.entry_point('main') def main(*args, **kwargs): x = load_from_cache(name="Indexed genome", classname='file') if x is None: x = compute_result(*args) save_to_cache(x) ''' if dxpy.JOB_ID is None: raise DXError('Not called by a job') if 'DX_PROJECT_CACHE_ID' not in os.environ: raise DXError('Project cache ID could not be found in the environment variable DX_PROJECT_CACHE_ID') dxobject.clone(os.environ.get('DX_PROJECT_CACHE_ID'))
python
from structural.composite.logic.order_calculator import OrderCalculator class Product(OrderCalculator): def __init__(self, name: str, value: float) -> None: self._name = name self._value = value @property def name(self) -> str: return self._name @property def value(self) -> float: return self._value @property def is_composite(self) -> bool: return False def __iter__(self) -> float: yield self.value
python
# Copyright (C) 2016-2021 Alibaba Group Holding Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading from efl import exporter local = threading.local() @exporter.export("Stage") class Stage(object): def __init__(self): pass @property def sess(self): return local.sess def __call__(self, *args, **kwargs): def func(sess): local.sess = sess return self.run(*args, **kwargs) return func def run(self, *args, **kwargs): raise NotImplementedError("Stage's run func should be implemented")
python
#!/usr/bin/env python3 # Copyright 2019 Kohei Morita # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import sys import resource import argparse from os import getenv, getuid, environ from pwd import getpwnam from shutil import rmtree from datetime import datetime from pathlib import Path from logging import basicConfig, getLogger import subprocess from subprocess import run import tempfile from psutil import Process logger = getLogger(__name__) def outside(args, cmd): logger.info('outside') tmp = tempfile.NamedTemporaryFile() arg = ['unshare', '-fpnm', '--mount-proc'] arg += [sys.argv[0]] arg += ['--inside'] arg += ['--insideresult', tmp.name] arg += sys.argv[1:] mycode = 0 returncode = -1 time = -1 memory = -1 try: proc = subprocess.run(arg, timeout=args.tl + 5.0) mycode = proc.returncode result = json.load(tmp) returncode = result.get('returncode', -1) time = result.get('time', -1) memory = result.get('memory', -1) except subprocess.TimeoutExpired: logger.warning('outside catch timeout, this is unexpected') mycode = 124 time = args.tl result = { 'returncode': returncode, 'time': time, 'memory': memory, } logger.info('outside result = {}'.format(result)) if args.result: args.result.write(json.dumps(result)) return mycode def inside(args, execcmd): logger.info('inside execute: {}'.format(execcmd)) # expand stack resource.setrlimit(resource.RLIMIT_STACK, (resource.RLIM_INFINITY, resource.RLIM_INFINITY)) # TODO: use TemporaryDirectory tmpdir = Path(tempfile.mkdtemp()) tmpdir.chmod(0o777) prepare_mount(tmpdir, args.overlay) prepare_cgroup() cmd = ['cgexec', '-g', 'pids,cpuset,memory:lib-judge'] cmd += ['chroot', '--userspec=library-checker-user:library-checker-user', str(tmpdir)] cmd += ['sh', '-c', ' '.join(['cd', 'sand', '&&'] + execcmd)] mycode = 0 returncode = -1 time = -1 memory = -1 start = datetime.now() try: proc = subprocess.run(cmd, stdin=args.stdin, stdout=args.stdout, stderr=args.stderr, timeout=args.tl) returncode = proc.returncode except subprocess.TimeoutExpired: logger.info('timeout command') mycode = 124 # error code of timeout command time = args.tl else: end = datetime.now() time = (end - start).seconds + (end - start).microseconds / 1000000 with open('/sys/fs/cgroup/memory/lib-judge/memory.max_usage_in_bytes', 'r') as f: memory = int(f.read()) subprocess.run(['pkill', '-KILL', '-u', 'library-checker-user']) for child in Process().children(): child.wait() result = { 'returncode': returncode, 'time': time, 'memory': memory, } logger.info('inside result = {}'.format(result)) args.insideresult.write(json.dumps({ 'returncode': returncode, 'time': time, 'memory': memory, })) return mycode def prepare_mount(tmpdir: Path, overlay): sanddir = tmpdir / 'sand' sanddir.mkdir() if overlay: workdir = Path(tempfile.mkdtemp()) workdir.chmod(0o777) upperdir = Path(tempfile.mkdtemp()) upperdir.chmod(0o777) cmd = ['mount', '-t', 'overlay', 'overlay', '-o'] cmd += ['lowerdir={},upperdir={},workdir={}'.format( './', str(upperdir), str(workdir))] cmd += [str(sanddir)] subprocess.run(cmd, check=True) else: cmd = ['mount', '--bind', './', str(sanddir)] subprocess.run(cmd, check=True) (tmpdir / 'proc').mkdir() subprocess.run(['mount', '-t', 'proc', 'none', str(tmpdir / 'proc')], check=True) (tmpdir / 'tmp').mkdir() (tmpdir / 'tmp').chmod(0o777) for dname in ['dev', 'sys', 'bin', 'lib', 'lib64', 'usr', 'etc', 'opt', 'var']: (tmpdir / dname).mkdir() subprocess.run(['mount', '--bind', '-o', 'ro', '/' + dname, str(tmpdir / dname)], check=True) def prepare_cgroup(): run(['cgdelete', 'pids,cpuset,memory:/lib-judge']) run(['cgcreate', '-g', 'pids,cpuset,memory:/lib-judge'], check=True) run(['cgset', '-r', 'pids.max=1000', 'lib-judge'], check=True) run(['cgset', '-r', 'cpuset.cpus=0', 'lib-judge'], check=True) run(['cgset', '-r', 'cpuset.mems=0', 'lib-judge'], check=True) run(['cgset', '-r', 'memory.limit_in_bytes=1G', 'lib-judge'], check=True) run(['cgset', '-r', 'memory.memsw.limit_in_bytes=1G', 'lib-judge'], check=True) if __name__ == "__main__": basicConfig( level=getenv('LOG_LEVEL', 'WARN'), format="%(asctime)s %(levelname)s %(name)s : %(message)s" ) assert sys.argv.count("--") == 1 if sys.argv.count("--") == 0: logger.error('args must have -- : {}'.format(sys.argv)) exit(1) sep_index = sys.argv.index("--") parser = argparse.ArgumentParser( description='Testcase Generator', usage='%(prog)s [options] -- command') parser.add_argument('--stdin', type=argparse.FileType('r'), help='stdin') parser.add_argument('--stdout', type=argparse.FileType('w'), help='stdout') parser.add_argument('--stderr', type=argparse.FileType('w'), help='stderr') parser.add_argument('--overlay', action='store_true', help='overlay current dir?') parser.add_argument('--result', type=argparse.FileType('w'), help='result file') parser.add_argument('--inside', action='store_true', help='inside flag(DONT USE THIS FLAG DIRECTLY)') parser.add_argument('--insideresult', type=argparse.FileType('w'), help='inside result file(DONT USE THIS FLAG DIRECTLY)') parser.add_argument('--tl', type=float, help='Time Limit', default=3600.0) args = parser.parse_args(sys.argv[1:sep_index]) cmd = sys.argv[sep_index + 1:] if not (0 <= args.tl and args.tl <= 3600): logger.error('invalid tl: {}'.format(args.tl)) exit(1) if args.inside: exit(inside(args, cmd)) else: exit(outside(args, cmd))
python
__author__ = 'marcos'
python
import pytest from kgx.config import get_biolink_model_schema def test_valid_biolink_version(): try: schema = get_biolink_model_schema("2.2.1") except TypeError as te: assert False, "test failure!" assert ( schema == "https://raw.githubusercontent.com/biolink/biolink-model/2.2.1/biolink-model.yaml" ) def test_invalid_biolink_version(): try: schema = get_biolink_model_schema() except TypeError as te: assert ( True ), "Type error expected: passed the invalid non-semver, type error: " + str(te)
python
import os import tensorflow as tf from tensorflow.python.client import device_lib from tensorflow.python.training.distribute import DistributionStrategy from tensorflow.contrib.distribute import MirroredStrategy, TPUStrategy from time import time from estimator import CustomEstimator from dataset import dataset_fn, dataset_size from model import model_fn from metrics import metrics_fn, log_fn from loss import loss_fn from optimizer import optimizer_fn import time_utils def get_available_gpus(): """ :return: The number of available GPUs in the current machine . """ local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos if x.device_type == 'GPU'] def get_available_tpus(): """ :return: The number of available TPUs in the current machine . """ local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos if x.device_type == 'TPU'] def get_training_strategy(): """ :return: A training strategy. It could be TPUStrategy if we are running the code in TPUs, DistributionStrategy if the code is distributed or MirroredStrategy if the code is running in one machine with more than one GPU. This code expects all the machines to have the same number of GPUs/TUPs. """ is_tpu = len(get_available_tpus()) > 0 if is_tpu: return TPUStrategy() multi_gpu = len(get_available_gpus()) > 1 distributed = 'TF_CONFIG' in os.environ if multi_gpu and distributed: # TODO in TF 1.11 set it to tf.contrib.distribute.MultiWorkerMirroredStrategy() # return MultiWorkerMirroredStrategy() return DistributionStrategy if distributed: return DistributionStrategy() if multi_gpu: return MirroredStrategy() return None def calculate_steps_per_epoch(args, config): size = dataset_size(args) count_one_tower = int(float(size) / args.batch_size + 0.5) gpus_per_node = len(get_available_gpus()) if gpus_per_node > 1 and config.train_distribute.__class__.__name__ is 'DistributionStrategy': gpus_per_node = 1 if gpus_per_node == 0: # if we don't have GPU we count 1 for the CPUs gpus_per_node = 1 return count_one_tower / (gpus_per_node * config.num_worker_replicas) def train(args): outputs_dir = args.outputs_dir if not tf.gfile.Exists(outputs_dir): tf.gfile.MakeDirs(outputs_dir) config = tf.estimator.RunConfig( model_dir=args.outputs_dir, tf_random_seed=args.random_seed, train_distribute=get_training_strategy(), log_step_count_steps=args.log_steps, save_summary_steps=args.log_steps, ) hooks = [] # add time hook to stop the training after some time if args.max_time is not None: hooks.append(StopAtTimeHook(args.max_time)) ## add hook to show a log with different tensors hooks.append(tf.train.LoggingTensorHook(log_fn(), every_n_iter=args.log_steps)) estimator = CustomEstimator( model_dir=args.outputs_dir, model_fn=model_fn, optimizer_fn=optimizer_fn, loss_fn=loss_fn, metrics_fn=metrics_fn, params=args, config=config, steps_per_epoch=calculate_steps_per_epoch(args, config) ) estimator.train(input_fn=lambda: dataset_fn(args), hooks=hooks) class StopAtTimeHook(tf.train.SessionRunHook): """Hook that requests stop after a specified time.""" def __init__(self, time_running): """ :param int time_running: Maximum time running """ time_running_secs = time_utils.tdelta(time_running).total_seconds() self._end_time = time() + time_running_secs def after_run(self, run_context, run_values): if time() > self._end_time: run_context.request_stop()
python
from .log import Code, warning, info, debug, debug_line, ModuleError from . import Config, Export from .stages import main from .utils import get_temp_folder from .checker import check, check_equality from .dsp import channel_count, size from .utils import random_file import soundfile as sf import numpy as np import os import subprocess import pickle import zlib import numpy as np from .dsp import size, strided_app_2d, batch_rms_2d, fade, clip from datetime import timedelta def time_str(length, sample_rate) -> str: return str(timedelta(seconds=length // sample_rate)) def save( file: str, result: np.ndarray, sample_rate: int, subtype: str, name: str = 'result' ) -> None: name = name.upper() debug(f'Saving the {name} {sample_rate} Hz Stereo {subtype} to: \'{file}\'...') sf.write(file, result, sample_rate, subtype) debug(f'\'{file}\' is saved') def create_preview( target: np.ndarray, result: np.ndarray, config: Config, preview_target: Export, preview_result: Export ) -> None: debug_line() info(Code.INFO_MAKING_PREVIEWS) target = clip(target, config.threshold) debug(f'The maximum duration of the preview is {config.preview_size / config.internal_sample_rate} seconds, ' f'with the analysis step of {config.preview_analysis_step / config.internal_sample_rate} seconds') target_pieces = strided_app_2d(target, config.preview_size, config.preview_analysis_step) result_pieces = strided_app_2d(result, config.preview_size, config.preview_analysis_step) result_loudest_piece_idx = np.argmax(batch_rms_2d(result_pieces)) target_piece = target_pieces[result_loudest_piece_idx].copy() result_piece = result_pieces[result_loudest_piece_idx].copy() del target, target_pieces, result_pieces debug_sample_begin = config.preview_analysis_step * int(result_loudest_piece_idx) debug_sample_end = debug_sample_begin + size(result_piece) debug(f'The best part to preview: ' f'{time_str(debug_sample_begin, config.internal_sample_rate)} ' f'- {time_str(debug_sample_end, config.internal_sample_rate)}') if size(result) != size(result_piece): fade_size = min(config.preview_fade_size, size(result_piece) // config.preview_fade_coefficient) target_piece, result_piece = fade(target_piece, fade_size), fade(result_piece, fade_size) if preview_target: save(preview_target.file, target_piece, config.internal_sample_rate, preview_target.subtype, 'target preview') if preview_result: save(preview_result.file, result_piece, config.internal_sample_rate, preview_result.subtype, 'result preview') def load(file: str, file_type: str, temp_folder: str) -> (np.ndarray, int): file_type = file_type.upper() sound, sample_rate = None, None debug(f'Loading the {file_type} file: \'{file}\'...') try: sound, sample_rate = sf.read(file, always_2d=True) except RuntimeError as e: debug(e) if 'unknown format' in str(e): sound, sample_rate = __load_with_ffmpeg(file, file_type, temp_folder) if sound is None or sample_rate is None: if file_type == 'TARGET': raise ModuleError(Code.ERROR_TARGET_LOADING) else: raise ModuleError(Code.ERROR_REFERENCE_LOADING) debug(f'The {file_type} file is loaded') return sound, sample_rate def __load_with_ffmpeg(file: str, file_type: str, temp_folder: str) -> (np.ndarray, int): sound, sample_rate = None, None debug(f'Trying to load \'{file}\' with ffmpeg...') temp_file = os.path.join(temp_folder, random_file(prefix='temp')) with open(os.devnull, 'w') as devnull: try: subprocess.check_call( [ 'ffmpeg', '-i', file, temp_file ], stdout=devnull, stderr=devnull ) sound, sample_rate = sf.read(temp_file, always_2d=True) if file_type == 'TARGET': warning(Code.WARNING_TARGET_IS_LOSSY) else: info(Code.INFO_REFERENCE_IS_LOSSY) os.remove(temp_file) except FileNotFoundError: debug('ffmpeg is not found in the system! ' 'Download, install and add it to PATH: https://www.ffmpeg.org/download.html') except subprocess.CalledProcessError: debug(f'ffmpeg cannot convert \'{file}\' to .wav!') return sound, sample_rate DATABASE = 'database' def process( target: str, characteristics: str, style : str, intensity : str, results: list, config: Config = Config(), preview_target: Export = None, preview_result: Export = None ): # debug_line() # info(Code.INFO_LOADING) if not results: raise RuntimeError(f'The result list is empty') # Get a temporary folder for converting mp3's temp_folder = config.temp_folder if config.temp_folder else get_temp_folder(results) # Load the target target, target_sample_rate = load(target, 'target', temp_folder) # Analyze the target target, target_sample_rate = check(target, target_sample_rate, config, 'target') # Load the reference # reference, reference_sample_rate = load(characteristics, 'reference', temp_folder) # Analyze the reference reference_sample_rate = 44100 database = f'{DATABASE}/{style}-{intensity}.txt' f_reference = open(database, "rb") zipped = f_reference.read() f_reference.close() serialized = zlib.decompress(zipped) reference = pickle.loads(serialized) # Analyze the target and the reference together if not config.allow_equality: check_equality(target, reference) # Validation of the most important conditions if not (target_sample_rate == reference_sample_rate == config.internal_sample_rate)\ or not (channel_count(target) == channel_count(reference) == 2)\ or not (size(target) > config.fft_size and size(reference) > config.fft_size): raise ModuleError(Code.ERROR_VALIDATION) # Process result, result_no_limiter, result_no_limiter_normalized = main( target, reference, config, need_default=any(rr.use_limiter for rr in results), need_no_limiter=any(not rr.use_limiter and not rr.normalize for rr in results), need_no_limiter_normalized=any(not rr.use_limiter and rr.normalize for rr in results), ) del reference if not (preview_target or preview_result): del target # debug_line() # info(Code.INFO_EXPORTING) # Save for required_result in results: if required_result.use_limiter: correct_result = result else: if required_result.normalize: correct_result = result_no_limiter_normalized else: correct_result = result_no_limiter save(required_result.file, correct_result, config.internal_sample_rate, required_result.subtype) # Creating a preview (if needed) if preview_target or preview_result: result = next(item for item in [result, result_no_limiter, result_no_limiter_normalized] if item is not None) create_preview(target, result, config, preview_target, preview_result) # debug_line() # info(Code.INFO_COMPLETED)
python
# generated by datamodel-codegen: # filename: openapi.yaml # timestamp: 2021-12-31T02:53:00+00:00 from __future__ import annotations from datetime import datetime from enum import Enum from typing import Annotated, Any, List, Optional from pydantic import BaseModel, Field class ServiceUpdateNotFoundFault(BaseModel): __root__: Any class InvalidParameterValueException(ServiceUpdateNotFoundFault): pass class SnapshotAlreadyExistsFault(ServiceUpdateNotFoundFault): pass class SnapshotNotFoundFault(ServiceUpdateNotFoundFault): pass class SnapshotQuotaExceededFault(ServiceUpdateNotFoundFault): pass class InvalidSnapshotStateFault(ServiceUpdateNotFoundFault): pass class ServiceLinkedRoleNotFoundFault(ServiceUpdateNotFoundFault): pass class InvalidParameterCombinationException(ServiceUpdateNotFoundFault): pass class TagQuotaPerResourceExceeded(ServiceUpdateNotFoundFault): pass class UserNotFoundFault(ServiceUpdateNotFoundFault): pass class DuplicateUserNameFault(ServiceUpdateNotFoundFault): pass class ACLAlreadyExistsFault(ServiceUpdateNotFoundFault): pass class DefaultUserRequired(ServiceUpdateNotFoundFault): pass class ACLQuotaExceededFault(ServiceUpdateNotFoundFault): pass class ClusterAlreadyExistsFault(ServiceUpdateNotFoundFault): pass class SubnetGroupNotFoundFault(ServiceUpdateNotFoundFault): pass class ClusterQuotaForCustomerExceededFault(ServiceUpdateNotFoundFault): pass class NodeQuotaForClusterExceededFault(ServiceUpdateNotFoundFault): pass class NodeQuotaForCustomerExceededFault(ServiceUpdateNotFoundFault): pass class ParameterGroupNotFoundFault(ServiceUpdateNotFoundFault): pass class InsufficientClusterCapacityFault(ServiceUpdateNotFoundFault): pass class InvalidVPCNetworkStateFault(ServiceUpdateNotFoundFault): pass class ShardsPerClusterQuotaExceededFault(ServiceUpdateNotFoundFault): pass class InvalidCredentialsException(ServiceUpdateNotFoundFault): pass class ACLNotFoundFault(ServiceUpdateNotFoundFault): pass class InvalidACLStateFault(ServiceUpdateNotFoundFault): pass class ParameterGroupQuotaExceededFault(ServiceUpdateNotFoundFault): pass class ParameterGroupAlreadyExistsFault(ServiceUpdateNotFoundFault): pass class InvalidParameterGroupStateFault(ServiceUpdateNotFoundFault): pass class ClusterNotFoundFault(ServiceUpdateNotFoundFault): pass class InvalidClusterStateFault(ServiceUpdateNotFoundFault): pass class SubnetGroupAlreadyExistsFault(ServiceUpdateNotFoundFault): pass class SubnetGroupQuotaExceededFault(ServiceUpdateNotFoundFault): pass class SubnetQuotaExceededFault(ServiceUpdateNotFoundFault): pass class InvalidSubnet(ServiceUpdateNotFoundFault): pass class SubnetNotAllowedFault(ServiceUpdateNotFoundFault): pass class UserAlreadyExistsFault(ServiceUpdateNotFoundFault): pass class UserQuotaExceededFault(ServiceUpdateNotFoundFault): pass class SubnetGroupInUseFault(ServiceUpdateNotFoundFault): pass class InvalidUserStateFault(ServiceUpdateNotFoundFault): pass class APICallRateForCustomerExceededFault(ServiceUpdateNotFoundFault): pass class ShardNotFoundFault(ServiceUpdateNotFoundFault): pass class TestFailoverNotAvailableFault(ServiceUpdateNotFoundFault): pass class InvalidKMSKeyFault(ServiceUpdateNotFoundFault): pass class InvalidARNFault(ServiceUpdateNotFoundFault): pass class TagNotFoundFault(ServiceUpdateNotFoundFault): pass class InvalidNodeStateFault(ServiceUpdateNotFoundFault): pass class NoOperationFault(ServiceUpdateNotFoundFault): pass class SubnetInUse(ServiceUpdateNotFoundFault): pass class String(BaseModel): __root__: str class ACLClusterNameList(BaseModel): __root__: List[String] class ACLName(BaseModel): __root__: Annotated[str, Field(min_length=1, regex='[a-zA-Z][a-zA-Z0-9\\-]*')] class ACLNameList(BaseModel): __root__: List[ACLName] class ACLsUpdateStatus(BaseModel): """ The status of the ACL update """ ACLToApply: Optional[ACLName] = None class AZStatus(Enum): singleaz = 'singleaz' multiaz = 'multiaz' class AccessString(BaseModel): __root__: Annotated[str, Field(regex='.*\\S.*')] class AuthenticationType(Enum): password = 'password' no_password = 'no-password' class IntegerOptional(BaseModel): __root__: int class Authentication(BaseModel): """ Denotes the user's authentication properties, such as whether it requires a password to authenticate. Used in output responses. """ Type: Optional[AuthenticationType] = None PasswordCount: Optional[IntegerOptional] = None class InputAuthenticationType(Enum): password = 'password' class PasswordListInput(BaseModel): __root__: Annotated[List[String], Field(min_items=1)] class AuthenticationMode(BaseModel): """ Denotes the user's authentication properties, such as whether it requires a password to authenticate. Used in output responses. """ Type: Optional[InputAuthenticationType] = None Passwords: Optional[PasswordListInput] = None class AvailabilityZone(BaseModel): """ Indicates if the cluster has a Multi-AZ configuration (multiaz) or not (singleaz). """ Name: Optional[String] = None class ClusterNameList(BaseModel): __root__: Annotated[List[String], Field(max_items=20)] class ServiceUpdateRequest(BaseModel): """ A request to apply a service update """ ServiceUpdateNameToApply: Optional[String] = None class Boolean(BaseModel): __root__: bool class BooleanOptional(Boolean): pass class TargetBucket(BaseModel): __root__: Annotated[str, Field(max_length=255, regex='^[A-Za-z0-9._-]+$')] class KmsKeyId(BaseModel): __root__: Annotated[str, Field(max_length=2048)] class SecurityGroupIdsList(ACLClusterNameList): pass class SnapshotArnsList(ACLClusterNameList): pass class ParameterGroup(BaseModel): """ Represents the output of a CreateParameterGroup operation. A parameter group represents a combination of specific values for the parameters that are passed to the engine software during startup. """ Name: Optional[String] = None Family: Optional[String] = None Description: Optional[String] = None ARN: Optional[String] = None class SubnetIdentifierList(ACLClusterNameList): pass class UserName(ACLName): pass class User(BaseModel): """ You create users and assign them specific permissions by using an access string. You assign the users to Access Control Lists aligned with a specific role (administrators, human resources) that are then deployed to one or more MemoryDB clusters. """ Name: Optional[String] = None Status: Optional[String] = None AccessString: Optional[String] = None ACLNames: Optional[ACLNameList] = None MinimumEngineVersion: Optional[String] = None Authentication: Optional[Authentication] = None ARN: Optional[String] = None class SourceType(Enum): node = 'node' parameter_group = 'parameter-group' subnet_group = 'subnet-group' cluster = 'cluster' user = 'user' acl = 'acl' class TStamp(BaseModel): __root__: datetime class ParameterGroupList(BaseModel): __root__: List[ParameterGroup] class UserList(BaseModel): __root__: List[User] class Double(BaseModel): __root__: float class Integer(IntegerOptional): pass class EngineVersionInfo(BaseModel): """ Provides details of the Redis engine version """ EngineVersion: Optional[String] = None EnginePatchVersion: Optional[String] = None ParameterGroupFamily: Optional[String] = None class Event(BaseModel): """ Represents a single occurrence of something interesting within the system. Some examples of events are creating a cluster or adding or removing a node. """ SourceName: Optional[String] = None SourceType: Optional[SourceType] = None Message: Optional[String] = None Date: Optional[TStamp] = None class FilterName(AccessString): pass class FilterValue(AccessString): pass class KeyList(ACLClusterNameList): pass class NodeTypeList(ACLClusterNameList): pass class Parameter(BaseModel): """ Describes an individual setting that controls some aspect of MemoryDB behavior. """ Name: Optional[String] = None Value: Optional[String] = None Description: Optional[String] = None DataType: Optional[String] = None AllowedValues: Optional[String] = None MinimumEngineVersion: Optional[String] = None class ParameterNameList(ACLClusterNameList): pass class ParameterNameValue(BaseModel): """ Describes a name-value pair that is used to update the value of a parameter. """ ParameterName: Optional[String] = None ParameterValue: Optional[String] = None class ParameterNameValueList(BaseModel): __root__: List[ParameterNameValue] class ServiceUpdateStatus(Enum): available = 'available' in_progress = 'in-progress' complete = 'complete' scheduled = 'scheduled' class PendingModifiedServiceUpdate(BaseModel): """ Update action that has yet to be processed for the corresponding apply/stop request """ ServiceUpdateName: Optional[String] = None Status: Optional[ServiceUpdateStatus] = None class ReplicaConfigurationRequest(BaseModel): """ A request to configure the number of replicas in a shard """ ReplicaCount: Optional[Integer] = None class SlotMigration(BaseModel): """ Represents the progress of an online resharding operation. """ ProgressPercentage: Optional[Double] = None class SecurityGroupMembership(BaseModel): """ Represents a single security group and its status. """ SecurityGroupId: Optional[String] = None Status: Optional[String] = None class ServiceUpdateType(Enum): security_update = 'security-update' class ServiceUpdate(BaseModel): """ An update that you can apply to your MemoryDB clusters. """ ClusterName: Optional[String] = None ServiceUpdateName: Optional[String] = None ReleaseDate: Optional[TStamp] = None Description: Optional[String] = None Status: Optional[ServiceUpdateStatus] = None Type: Optional[ServiceUpdateType] = None NodesUpdated: Optional[String] = None AutoUpdateStartDate: Optional[TStamp] = None class ShardConfiguration1(BaseModel): """ Shard configuration options. Each shard configuration has the following: Slots and ReplicaCount. """ Slots: Optional[String] = None ReplicaCount: Optional[IntegerOptional] = None class ShardConfigurationRequest(BaseModel): """ A request to configure the sharding properties of a cluster """ ShardCount: Optional[Integer] = None class ShardDetail(BaseModel): """ Provides details of a shard in a snapshot """ Name: Optional[String] = None Configuration: Optional[ShardConfiguration1] = None Size: Optional[String] = None SnapshotCreationTime: Optional[TStamp] = None class Subnet(BaseModel): """ Represents the subnet associated with a cluster. This parameter refers to subnets defined in Amazon Virtual Private Cloud (Amazon VPC) and used with MemoryDB. """ Identifier: Optional[String] = None AvailabilityZone: Optional[AvailabilityZone] = None class SubnetList(BaseModel): __root__: List[Subnet] class Tag(BaseModel): """ A tag that can be added to an MemoryDB resource. Tags are composed of a Key/Value pair. You can use tags to categorize and track all your MemoryDB resources. When you add or remove tags on clusters, those actions will be replicated to all nodes in the cluster. A tag with a null Value is permitted. For more information, see <a href="https://docs.aws.amazon.com/MemoryDB/latest/devguide/tagging-resources.html">Tagging your MemoryDB resources</a> """ Key: Optional[String] = None Value: Optional[String] = None class UnprocessedCluster(BaseModel): """ A cluster whose updates have failed """ ClusterName: Optional[String] = None ErrorType: Optional[String] = None ErrorMessage: Optional[String] = None class BatchUpdateClusterRequest(BaseModel): ClusterNames: ClusterNameList ServiceUpdate: Optional[ServiceUpdateRequest] = None class CreateParameterGroupResponse(BaseModel): ParameterGroup: Optional[ParameterGroup] = None class CreateUserResponse(BaseModel): User: Optional[User] = None class DeleteACLRequest(BaseModel): ACLName: String class DeleteClusterRequest(BaseModel): ClusterName: String FinalSnapshotName: Optional[String] = None class DeleteParameterGroupResponse(CreateParameterGroupResponse): pass class DeleteParameterGroupRequest(BaseModel): ParameterGroupName: String class DeleteSnapshotRequest(BaseModel): SnapshotName: String class DeleteSubnetGroupRequest(BaseModel): SubnetGroupName: String class DeleteUserResponse(CreateUserResponse): pass class DeleteUserRequest(BaseModel): UserName: UserName class DescribeACLsRequest(BaseModel): ACLName: Optional[String] = None MaxResults: Optional[IntegerOptional] = None NextToken: Optional[String] = None class DescribeClustersRequest(BaseModel): ClusterName: Optional[String] = None MaxResults: Optional[IntegerOptional] = None NextToken: Optional[String] = None ShowShardDetails: Optional[BooleanOptional] = None class DescribeEngineVersionsRequest(BaseModel): EngineVersion: Optional[String] = None ParameterGroupFamily: Optional[String] = None MaxResults: Optional[IntegerOptional] = None NextToken: Optional[String] = None DefaultOnly: Optional[Boolean] = None class DescribeEventsRequest(BaseModel): SourceName: Optional[String] = None SourceType: Optional[SourceType] = None StartTime: Optional[TStamp] = None EndTime: Optional[TStamp] = None Duration: Optional[IntegerOptional] = None MaxResults: Optional[IntegerOptional] = None NextToken: Optional[String] = None class DescribeParameterGroupsResponse(BaseModel): NextToken: Optional[String] = None ParameterGroups: Optional[ParameterGroupList] = None class DescribeParameterGroupsRequest(BaseModel): ParameterGroupName: Optional[String] = None MaxResults: Optional[IntegerOptional] = None NextToken: Optional[String] = None class DescribeParametersRequest(BaseModel): ParameterGroupName: String MaxResults: Optional[IntegerOptional] = None NextToken: Optional[String] = None class DescribeSnapshotsRequest(BaseModel): ClusterName: Optional[String] = None SnapshotName: Optional[String] = None Source: Optional[String] = None NextToken: Optional[String] = None MaxResults: Optional[IntegerOptional] = None ShowDetail: Optional[BooleanOptional] = None class DescribeSubnetGroupsRequest(BaseModel): SubnetGroupName: Optional[String] = None MaxResults: Optional[IntegerOptional] = None NextToken: Optional[String] = None class DescribeUsersResponse(BaseModel): Users: Optional[UserList] = None NextToken: Optional[String] = None class FailoverShardRequest(BaseModel): ClusterName: String ShardName: String class ListAllowedNodeTypeUpdatesResponse(BaseModel): ScaleUpNodeTypes: Optional[NodeTypeList] = None ScaleDownNodeTypes: Optional[NodeTypeList] = None class ListAllowedNodeTypeUpdatesRequest(BaseModel): ClusterName: String class ListTagsRequest(BaseModel): ResourceArn: String class ResetParameterGroupResponse(CreateParameterGroupResponse): pass class ResetParameterGroupRequest(BaseModel): ParameterGroupName: String AllParameters: Optional[Boolean] = None ParameterNames: Optional[ParameterNameList] = None class UntagResourceRequest(BaseModel): ResourceArn: String TagKeys: KeyList class UpdateClusterRequest(BaseModel): ClusterName: String Description: Optional[String] = None SecurityGroupIds: Optional[SecurityGroupIdsList] = None MaintenanceWindow: Optional[String] = None SnsTopicArn: Optional[String] = None SnsTopicStatus: Optional[String] = None ParameterGroupName: Optional[String] = None SnapshotWindow: Optional[String] = None SnapshotRetentionLimit: Optional[IntegerOptional] = None NodeType: Optional[String] = None EngineVersion: Optional[String] = None ReplicaConfiguration: Optional[ReplicaConfigurationRequest] = None ShardConfiguration: Optional[ShardConfigurationRequest] = None ACLName: Optional[ACLName] = None class UpdateParameterGroupResponse(CreateParameterGroupResponse): pass class UpdateParameterGroupRequest(BaseModel): ParameterGroupName: String ParameterNameValues: ParameterNameValueList class UpdateSubnetGroupRequest(BaseModel): SubnetGroupName: String Description: Optional[String] = None SubnetIds: Optional[SubnetIdentifierList] = None class UpdateUserResponse(CreateUserResponse): pass class UpdateUserRequest(BaseModel): UserName: UserName AuthenticationMode: Optional[AuthenticationMode] = None AccessString: Optional[AccessString] = None class UserNameList(BaseModel): __root__: List[UserName] class ACLPendingChanges(BaseModel): """ Returns the updates being applied to the ACL. """ UserNamesToRemove: Optional[UserNameList] = None UserNamesToAdd: Optional[UserNameList] = None class ACL(BaseModel): """ An Access Control List. You can authenticate users with Access Contol Lists. ACLs enable you to control cluster access by grouping users. These Access control lists are designed as a way to organize access to clusters. """ Name: Optional[String] = None Status: Optional[String] = None UserNames: Optional[UserNameList] = None MinimumEngineVersion: Optional[String] = None PendingChanges: Optional[ACLPendingChanges] = None Clusters: Optional[ACLClusterNameList] = None ARN: Optional[String] = None class ACLList(BaseModel): __root__: List[ACL] class UnprocessedClusterList(BaseModel): __root__: List[UnprocessedCluster] class Endpoint(BaseModel): """ Represents the information required for client programs to connect to the cluster and its nodes. """ Address: Optional[String] = None Port: Optional[Integer] = None class SecurityGroupMembershipList(BaseModel): __root__: List[SecurityGroupMembership] class ShardDetails(BaseModel): __root__: List[ShardDetail] class ClusterConfiguration(BaseModel): """ A list of cluster configuration options. """ Name: Optional[String] = None Description: Optional[String] = None NodeType: Optional[String] = None EngineVersion: Optional[String] = None MaintenanceWindow: Optional[String] = None TopicArn: Optional[String] = None Port: Optional[IntegerOptional] = None ParameterGroupName: Optional[String] = None SubnetGroupName: Optional[String] = None VpcId: Optional[String] = None SnapshotRetentionLimit: Optional[IntegerOptional] = None SnapshotWindow: Optional[String] = None NumShards: Optional[IntegerOptional] = None Shards: Optional[ShardDetails] = None class ReshardingStatus(BaseModel): """ The status of the online resharding """ SlotMigration: Optional[SlotMigration] = None class PendingModifiedServiceUpdateList(BaseModel): __root__: List[PendingModifiedServiceUpdate] class TagList(BaseModel): __root__: Annotated[List[Tag], Field(max_items=200)] class Snapshot(BaseModel): """ Represents a copy of an entire cluster as of the time when the snapshot was taken. """ Name: Optional[String] = None Status: Optional[String] = None Source: Optional[String] = None KmsKeyId: Optional[String] = None ARN: Optional[String] = None ClusterConfiguration: Optional[ClusterConfiguration] = None class UserNameListInput(BaseModel): __root__: Annotated[List[UserName], Field(min_items=1)] class SubnetGroup(BaseModel): """ <p>Represents the output of one of the following operations:</p> <ul> <li> <p>CreateSubnetGroup</p> </li> <li> <p>UpdateSubnetGroup</p> </li> </ul> <p>A subnet group is a collection of subnets (typically private) that you can designate for your clusters running in an Amazon Virtual Private Cloud (VPC) environment.</p> """ Name: Optional[String] = None Description: Optional[String] = None VpcId: Optional[String] = None Subnets: Optional[SubnetList] = None ARN: Optional[String] = None class EngineVersionInfoList(BaseModel): __root__: List[EngineVersionInfo] class EventList(BaseModel): __root__: List[Event] class ParametersList(BaseModel): __root__: List[Parameter] class ServiceUpdateStatusList(BaseModel): __root__: Annotated[List[ServiceUpdateStatus], Field(max_items=4)] class ServiceUpdateList(BaseModel): __root__: List[ServiceUpdate] class SnapshotList(BaseModel): __root__: List[Snapshot] class SubnetGroupList(BaseModel): __root__: List[SubnetGroup] class FilterValueList(BaseModel): __root__: Annotated[List[FilterValue], Field(min_items=1)] class Filter(BaseModel): """ Used to streamline results of a search based on the property being filtered. """ Name: FilterName Values: FilterValueList class Node(BaseModel): """ Represents an individual node within a cluster. Each node runs its own instance of the cluster's protocol-compliant caching software. """ Name: Optional[String] = None Status: Optional[String] = None AvailabilityZone: Optional[String] = None CreateTime: Optional[TStamp] = None Endpoint: Optional[Endpoint] = None class NodeList(BaseModel): __root__: List[Node] class Shard(BaseModel): """ Represents a collection of nodes in a cluster. One node in the node group is the read/write primary node. All the other nodes are read-only Replica nodes. """ Name: Optional[String] = None Status: Optional[String] = None Slots: Optional[String] = None Nodes: Optional[NodeList] = None NumberOfNodes: Optional[IntegerOptional] = None class CopySnapshotResponse(BaseModel): Snapshot: Optional[Snapshot] = None class CopySnapshotRequest(BaseModel): SourceSnapshotName: String TargetSnapshotName: String TargetBucket: Optional[TargetBucket] = None KmsKeyId: Optional[KmsKeyId] = None Tags: Optional[TagList] = None class CreateACLResponse(BaseModel): ACL: Optional[ACL] = None class CreateACLRequest(BaseModel): ACLName: String UserNames: Optional[UserNameListInput] = None Tags: Optional[TagList] = None class CreateClusterRequest(BaseModel): ClusterName: String NodeType: String ParameterGroupName: Optional[String] = None Description: Optional[String] = None NumShards: Optional[IntegerOptional] = None NumReplicasPerShard: Optional[IntegerOptional] = None SubnetGroupName: Optional[String] = None SecurityGroupIds: Optional[SecurityGroupIdsList] = None MaintenanceWindow: Optional[String] = None Port: Optional[IntegerOptional] = None SnsTopicArn: Optional[String] = None TLSEnabled: Optional[BooleanOptional] = None KmsKeyId: Optional[String] = None SnapshotArns: Optional[SnapshotArnsList] = None SnapshotName: Optional[String] = None SnapshotRetentionLimit: Optional[IntegerOptional] = None Tags: Optional[TagList] = None SnapshotWindow: Optional[String] = None ACLName: ACLName EngineVersion: Optional[String] = None AutoMinorVersionUpgrade: Optional[BooleanOptional] = None class CreateParameterGroupRequest(BaseModel): ParameterGroupName: String Family: String Description: Optional[String] = None Tags: Optional[TagList] = None class CreateSnapshotResponse(CopySnapshotResponse): pass class CreateSnapshotRequest(BaseModel): ClusterName: String SnapshotName: String KmsKeyId: Optional[String] = None Tags: Optional[TagList] = None class CreateSubnetGroupResponse(BaseModel): SubnetGroup: Optional[SubnetGroup] = None class CreateSubnetGroupRequest(BaseModel): SubnetGroupName: String Description: Optional[String] = None SubnetIds: SubnetIdentifierList Tags: Optional[TagList] = None class CreateUserRequest(BaseModel): UserName: UserName AuthenticationMode: AuthenticationMode AccessString: AccessString Tags: Optional[TagList] = None class DeleteACLResponse(CreateACLResponse): pass class DeleteSnapshotResponse(CopySnapshotResponse): pass class DeleteSubnetGroupResponse(CreateSubnetGroupResponse): pass class DescribeACLsResponse(BaseModel): ACLs: Optional[ACLList] = None NextToken: Optional[String] = None class DescribeEngineVersionsResponse(BaseModel): NextToken: Optional[String] = None EngineVersions: Optional[EngineVersionInfoList] = None class DescribeEventsResponse(BaseModel): NextToken: Optional[String] = None Events: Optional[EventList] = None class DescribeParametersResponse(BaseModel): NextToken: Optional[String] = None Parameters: Optional[ParametersList] = None class DescribeServiceUpdatesResponse(BaseModel): NextToken: Optional[String] = None ServiceUpdates: Optional[ServiceUpdateList] = None class DescribeServiceUpdatesRequest(BaseModel): ServiceUpdateName: Optional[String] = None ClusterNames: Optional[ClusterNameList] = None Status: Optional[ServiceUpdateStatusList] = None MaxResults: Optional[IntegerOptional] = None NextToken: Optional[String] = None class DescribeSnapshotsResponse(BaseModel): NextToken: Optional[String] = None Snapshots: Optional[SnapshotList] = None class DescribeSubnetGroupsResponse(BaseModel): NextToken: Optional[String] = None SubnetGroups: Optional[SubnetGroupList] = None class ListTagsResponse(BaseModel): TagList: Optional[TagList] = None class TagResourceResponse(ListTagsResponse): pass class TagResourceRequest(BaseModel): ResourceArn: String Tags: TagList class UntagResourceResponse(ListTagsResponse): pass class UpdateACLResponse(CreateACLResponse): pass class UpdateACLRequest(BaseModel): ACLName: String UserNamesToAdd: Optional[UserNameListInput] = None UserNamesToRemove: Optional[UserNameListInput] = None class UpdateSubnetGroupResponse(CreateSubnetGroupResponse): pass class ClusterPendingUpdates(BaseModel): """ A list of updates being applied to the cluster """ Resharding: Optional[ReshardingStatus] = None ACLs: Optional[ACLsUpdateStatus] = None ServiceUpdates: Optional[PendingModifiedServiceUpdateList] = None class ShardList(BaseModel): __root__: List[Shard] class Cluster(BaseModel): """ Contains all of the attributes of a specific cluster. """ Name: Optional[String] = None Description: Optional[String] = None Status: Optional[String] = None PendingUpdates: Optional[ClusterPendingUpdates] = None NumberOfShards: Optional[IntegerOptional] = None Shards: Optional[ShardList] = None AvailabilityMode: Optional[AZStatus] = None ClusterEndpoint: Optional[Endpoint] = None NodeType: Optional[String] = None EngineVersion: Optional[String] = None EnginePatchVersion: Optional[String] = None ParameterGroupName: Optional[String] = None ParameterGroupStatus: Optional[String] = None SecurityGroups: Optional[SecurityGroupMembershipList] = None SubnetGroupName: Optional[String] = None TLSEnabled: Optional[BooleanOptional] = None KmsKeyId: Optional[String] = None ARN: Optional[String] = None SnsTopicArn: Optional[String] = None SnsTopicStatus: Optional[String] = None SnapshotRetentionLimit: Optional[IntegerOptional] = None MaintenanceWindow: Optional[String] = None SnapshotWindow: Optional[String] = None ACLName: Optional[ACLName] = None AutoMinorVersionUpgrade: Optional[BooleanOptional] = None class FilterList(BaseModel): __root__: List[Filter] class CreateClusterResponse(BaseModel): Cluster: Optional[Cluster] = None class DeleteClusterResponse(CreateClusterResponse): pass class DescribeUsersRequest(BaseModel): UserName: Optional[UserName] = None Filters: Optional[FilterList] = None MaxResults: Optional[IntegerOptional] = None NextToken: Optional[String] = None class FailoverShardResponse(CreateClusterResponse): pass class UpdateClusterResponse(CreateClusterResponse): pass class ClusterList(BaseModel): __root__: List[Cluster] class BatchUpdateClusterResponse(BaseModel): ProcessedClusters: Optional[ClusterList] = None UnprocessedClusters: Optional[UnprocessedClusterList] = None class DescribeClustersResponse(BaseModel): NextToken: Optional[String] = None Clusters: Optional[ClusterList] = None
python
from typing import List, Union, Optional, Dict, MutableMapping, Any, Set import itertools import math import numbers import copy import operator import warnings import attr from .load_dump import dumps as demes_dumps Number = Union[int, float] Name = str Time = Number Size = Number Rate = float Proportion = float _ISCLOSE_REL_TOL = 1e-9 _ISCLOSE_ABS_TOL = 1e-12 # Validator functions. def int_or_float(self, attribute, value): if ( not isinstance(value, numbers.Real) and not hasattr(value, "__float__") ) or value != value: # type-agnostic test for NaN raise TypeError(f"{attribute.name} must be a number") def positive(self, attribute, value): if value <= 0: raise ValueError(f"{attribute.name} must be greater than zero") def non_negative(self, attribute, value): if value < 0: raise ValueError(f"{attribute.name} must be non-negative") def finite(self, attribute, value): if math.isinf(value): raise ValueError(f"{attribute.name} must be finite") def unit_interval(self, attribute, value): if not (0 <= value <= 1): raise ValueError(f"must have 0 <= {attribute.name} <= 1") def nonzero_len(self, attribute, value): if len(value) == 0: if isinstance(value, str): raise ValueError(f"{attribute.name} must be a non-empty string") else: raise ValueError(f"{attribute.name} must have non-zero length") def valid_deme_name(self, attribute, value): if not value.isidentifier(): raise ValueError( "Invalid deme name `{self.name}`. Names must be valid python identifiers. " "We recommend choosing a name that starts with a letter or " "underscore, and is followed by one or more letters, numbers, " "or underscores." ) def isclose_deme_proportions( a_names: List[Name], a_proportions: List[Proportion], b_names: List[Name], b_proportions: List[Proportion], *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ) -> bool: """ Returns true if (a_names, a_proportions) and (b_names, b_proportions) are semantically equivalent. The order of names is ignored, and proportions are checked for numerical closeness. """ if len(a_names) != len(b_names) or len(a_proportions) != len(b_proportions): return False a = sorted(zip(a_names, a_proportions), key=operator.itemgetter(0)) b = sorted(zip(b_names, b_proportions), key=operator.itemgetter(0)) for (a_id, a_proportion), (b_id, b_proportion) in zip(a, b): if a_id != b_id or not math.isclose( a_proportion, b_proportion, rel_tol=rel_tol, abs_tol=abs_tol ): return False return True def validate_item(name, value, required_type, scope): if not isinstance(value, required_type): raise TypeError( f"{scope}: field '{name}' must be a {required_type}; " f"current type is {type(value)}." ) # We need to use this trick because None is a meaninful input value for these # pop_x functions. NO_DEFAULT = object() def pop_item(data, name, *, required_type, default=NO_DEFAULT, scope=""): if name in data: value = data.pop(name) validate_item(name, value, required_type, scope=scope) else: if default is NO_DEFAULT: raise KeyError(f"{scope}: required field '{name}' not found") value = default return value def pop_list(data, name, default=NO_DEFAULT, required_type=None, scope=""): value = pop_item(data, name, default=default, required_type=list) if required_type is not None and default is not None: for item in value: validate_item(name, item, required_type, scope) return value def pop_object(data, name, default=NO_DEFAULT, scope=""): return pop_item( data, name, default=default, required_type=MutableMapping, scope=scope ) def check_allowed(data, allowed_fields, scope): for key in data.keys(): if key not in allowed_fields: raise KeyError( f"{scope}: unexpected field: '{key}'. " f"Allowed fields are: {allowed_fields}" ) def insert_defaults(data, defaults): for key, value in defaults.items(): if key not in data: data[key] = value @attr.s(auto_attribs=True, kw_only=True, slots=True) class Epoch: """ Population size parameters for a deme in a specified time period. Times follow the forwards-in-time convention (time values increase from the present towards the past). The start time of the epoch is the more ancient time, and the end time is more recent, so that the start time must be greater than the end time :ivar float start_time: The start time of the epoch. :ivar float ~.end_time: The end time of the epoch (must be specified). :ivar float start_size: Population size at ``start_time``. :ivar float end_size: Population size at ``end_time``. If ``start_size != end_size``, the population size changes monotonically between the start and end times. :ivar str size_function: The size change function. This is either ``constant``, ``exponential`` or ``linear``, though it is possible that additional values will be added in the future. * ``constant``: the deme's size does not change over the epoch. * ``exponential``: the deme's size changes exponentially from ``start_size`` to ``end_size`` over the epoch. If :math:`t` is a time within the span of the epoch, the deme size :math:`N` at :math:`t` can be calculated as: .. code:: dt = (epoch.start_time - t) / epoch.time_span r = math.log(epoch.end_size / epoch.start_size) N = epoch.start_size * math.exp(r * dt) * ``linear``: the deme's size changes linearly from ``start_size`` to ``end_size`` over the epoch. If :math:`t` is a time within the span of the epoch, the deme size :math:`N` at :math:`t` can be calculated as: .. code:: dt = (epoch.start_time - t) / epoch.time_span N = epoch.start_size + (epoch.end_size - epoch.start_size) * dt :ivar float selfing_rate: The selfing rate for this epoch. :ivar float cloning_rate: The cloning rate for this epoch. """ start_time: Time = attr.ib(validator=[int_or_float, non_negative]) end_time: Time = attr.ib(validator=[int_or_float, non_negative, finite]) start_size: Size = attr.ib(validator=[int_or_float, positive, finite]) end_size: Size = attr.ib(validator=[int_or_float, positive, finite]) size_function: str = attr.ib( validator=attr.validators.in_(["constant", "exponential", "linear"]) ) selfing_rate: Proportion = attr.ib( default=0, validator=[int_or_float, unit_interval] ) cloning_rate: Proportion = attr.ib( default=0, validator=[int_or_float, unit_interval] ) def __attrs_post_init__(self): if self.start_time <= self.end_time: raise ValueError("must have start_time > end_time") if math.isinf(self.start_time) and self.start_size != self.end_size: raise ValueError("if start time is inf, must be a constant size epoch") if self.size_function == "constant" and self.start_size != self.end_size: raise ValueError("start_size != end_size, but size_function is constant") if self.selfing_rate + self.cloning_rate > 1: raise ValueError("must have selfing_rate + cloning_rate <= 1") @property def time_span(self): """ The time span of the epoch. """ return self.start_time - self.end_time def assert_close( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ): """ Raises AssertionError if the object is not equal to ``other``, up to a numerical tolerance. Compares values of the following attributes: ``start_time``, ``end_time``, ``start_size``, ``end_size``, ``size_function``, ``selfing_rate``, ``cloning_rate``. :param other: The epoch to compare against. :type other: :class:`.Epoch` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float """ assert ( self.__class__ is other.__class__ ), f"Failed as other epoch is not instance of {self.__class__} type." assert math.isclose( self.start_time, other.start_time, rel_tol=rel_tol, abs_tol=abs_tol ), f"Failed for start_time {self.start_time} != {other.start_time} (other)." assert math.isclose( self.end_time, other.end_time, rel_tol=rel_tol, abs_tol=abs_tol ), f"Failed for end_time {self.end_time} != {other.end_time} (other)." assert math.isclose( self.start_size, other.start_size, rel_tol=rel_tol, abs_tol=abs_tol ), ( f"Failed for start_size " f"{self.start_size} != {other.start_size} (other)." ) assert math.isclose( self.end_size, other.end_size, rel_tol=rel_tol, abs_tol=abs_tol ), f"Failed for end_size {self.end_size} != {other.end_size} (other)." assert self.size_function == other.size_function assert math.isclose( self.selfing_rate, other.selfing_rate, rel_tol=rel_tol, abs_tol=abs_tol ), ( f"Failed for selfing_rate " f"{self.selfing_rate} != {other.selfing_rate} (other)." ) assert math.isclose( self.cloning_rate, other.cloning_rate, rel_tol=rel_tol, abs_tol=abs_tol ), ( f"Failed for cloning_rate " f"{self.cloning_rate} != {other.cloning_rate} (other)." ) def isclose( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ) -> bool: """ Returns true if the epoch and ``other`` epoch implement essentially the same epoch. For more information see :meth:`assert_close`. :param other: The epoch to compare against. :type other: :class:`.Epoch` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float :return: True if the two epochs are equivalent, False otherwise. :rtype: bool """ try: self.assert_close(other, rel_tol=rel_tol, abs_tol=abs_tol) return True except AssertionError: return False @attr.s(auto_attribs=True, kw_only=True, slots=True) class AsymmetricMigration: """ Parameters for continuous asymmetric migration. The source and destination demes follow the forwards-in-time convention, where migrants are born in the source deme and (potentially) have children in the dest deme. :ivar str source: The source deme for asymmetric migration. :ivar str dest: The destination deme for asymmetric migration. :ivar float start_time: The time at which the migration rate is activated. :ivar float ~.end_time: The time at which the migration rate is deactivated. :ivar float rate: The rate of migration per generation. """ source: Name = attr.ib( validator=[attr.validators.instance_of(str), valid_deme_name] ) dest: Name = attr.ib(validator=[attr.validators.instance_of(str), valid_deme_name]) start_time: Time = attr.ib(validator=[int_or_float, non_negative]) end_time: Time = attr.ib(validator=[int_or_float, non_negative, finite]) rate: Rate = attr.ib(validator=[int_or_float, unit_interval]) def __attrs_post_init__(self): if self.source == self.dest: raise ValueError("source and dest cannot be the same deme") if not (self.start_time > self.end_time): raise ValueError("must have start_time > end_time") def assert_close( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ): """ Raises AssertionError if the object is not equal to ``other``, up to a numerical tolerance. Compares values of the following attributes: ``source``, ``dest``, ``start_time``, ``end_time``, ``rate``. :param AsymmetricMigration other: The migration to compare against. :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float """ assert ( self.__class__ is other.__class__ ), f"Failed as other migration is not instance of {self.__class__} type." assert self.source == other.source assert self.dest == other.dest assert math.isclose( self.start_time, other.start_time, rel_tol=rel_tol, abs_tol=abs_tol ), f"Failed for start_time {self.start_time} != {other.start_time} (other)." assert math.isclose( self.end_time, other.end_time, rel_tol=rel_tol, abs_tol=abs_tol ), f"Failed for end_time {self.end_time} != {other.end_time} (other)." assert math.isclose( self.rate, other.rate, rel_tol=rel_tol, abs_tol=abs_tol ), f"Failed for rate {self.rate} != {other.rate} (other)." def isclose( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ) -> bool: """ Returns true if the migration is equal to the ``other`` migration. For more information see :meth:`assert_close`. :param AsymmetricMigration other: The migration to compare against. :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float :return: True if the two epochs are equivalent, False otherwise. :rtype: bool """ try: self.assert_close(other, rel_tol=rel_tol, abs_tol=abs_tol) return True except AssertionError: return False @attr.s(auto_attribs=True, kw_only=True, slots=True) class Pulse: """ Parameters for a pulse of migration from one deme to another. Source and destination demes follow the forwards-in-time convention, of migrations born in the source deme having children in the dest deme. :ivar str source: The source deme. :ivar str dest: The destination deme. :ivar float ~.time: The time of migration. :ivar float proportion: At the instant after migration, this is the proportion of individuals in the destination deme made up of individuals from the source deme. """ source: Name = attr.ib( validator=[attr.validators.instance_of(str), valid_deme_name] ) dest: Name = attr.ib(validator=[attr.validators.instance_of(str), valid_deme_name]) time: Time = attr.ib(validator=[int_or_float, positive, finite]) proportion: Proportion = attr.ib(validator=[int_or_float, unit_interval]) def __attrs_post_init__(self): if self.source == self.dest: raise ValueError("source and dest cannot be the same deme") def assert_close( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ): """ Raises AssertionError if the object is not equal to ``other``, up to a numerical tolerance. Compares values of the following attributes: ``source``, ``dest``, ``time``, ``proportion``. :param other: The pulse to compare against. :type other: :class:`.Pulse` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float """ assert ( self.__class__ is other.__class__ ), f"Failed as other pulse is not instance of {self.__class__} type." assert self.source == other.source assert self.dest == other.dest assert math.isclose( self.time, other.time, rel_tol=rel_tol, abs_tol=abs_tol ), f"Failed for time {self.time} != {other.time} (other)." assert math.isclose( self.proportion, other.proportion, rel_tol=rel_tol, abs_tol=abs_tol ), f"Failed for proportion {self.proportion} != {other.proportion} (other)." def isclose( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ) -> bool: """ Returns true if the pulse is equal to the ``other`` pulse. For more information see :meth:`assert_close`. :param other: The pulse to compare against. :type other: :class:`.Pulse` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float :return: True if the two pulses are equivalent, False otherwise. :rtype: bool """ try: self.assert_close(other, rel_tol=rel_tol, abs_tol=abs_tol) return True except AssertionError: return False @attr.s(auto_attribs=True, kw_only=True, slots=True) class Split: """ Parameters for a split event, in which a deme ends at a given time and contributes ancestry to an arbitrary number of descendant demes. Note that there could be just a single descendant deme, in which case ``split`` is a bit of a misnomer... :ivar str parent: The parental deme. :ivar list[str] children: A list of descendant demes. :ivar float ~.time: The split time. """ parent: Name = attr.ib( validator=[attr.validators.instance_of(str), valid_deme_name] ) children: List[Name] = attr.ib( validator=attr.validators.and_( attr.validators.deep_iterable( member_validator=attr.validators.and_( attr.validators.instance_of(str), valid_deme_name ), iterable_validator=attr.validators.instance_of(list), ), nonzero_len, ) ) time: Time = attr.ib(validator=[int_or_float, non_negative, finite]) def __attrs_post_init__(self): if self.parent in self.children: raise ValueError("child and parent cannot be the same deme") if len(set(self.children)) != len(self.children): raise ValueError("cannot repeat children in split") def assert_close( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ) -> bool: """ Raises AssertionError if the object is not equal to ``other``, up to a numerical tolerance. Compares values of the following attributes: ``parent``, ``children``, ``time``. :param other: The split to compare against. :type other: :class:`.Split` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float """ assert ( self.__class__ is other.__class__ ), f"Failed as other split is not instance of {self.__class__} type." assert self.parent == other.parent assert sorted(self.children) == sorted(other.children) assert math.isclose( self.time, other.time, rel_tol=rel_tol, abs_tol=abs_tol ), f"Failed for time {self.time} != {other.time} (other)." return True def isclose( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ) -> bool: """ Returns true if the split is equal to the ``other`` split. Compares values of the following attributes: ``parent``, ``children``, ``time``. :param other: The split to compare against. :type other: :class:`.Split` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float :return: True if the two splits are equivalent, False otherwise. :rtype: bool """ try: self.assert_close(other, rel_tol=rel_tol, abs_tol=abs_tol) return True except AssertionError: return False @attr.s(auto_attribs=True, kw_only=True, slots=True) class Branch: """ Parameters for a branch event, where a new deme branches off from a parental deme. The parental deme need not end at that time. :ivar str parent: The parental deme. :ivar str child: The descendant deme. :ivar float ~.time: The branch time. """ parent: Name = attr.ib( validator=[attr.validators.instance_of(str), valid_deme_name] ) child: Name = attr.ib(validator=[attr.validators.instance_of(str), valid_deme_name]) time: Time = attr.ib(validator=[int_or_float, non_negative, finite]) def __attrs_post_init__(self): if self.child == self.parent: raise ValueError("child and parent cannot be the same deme") def assert_close( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ): """ Raises AssertionError if the object is not equal to ``other``, up to a numerical tolerance. Compares values of the following attributes: ``parent``, ``child``, ``time``. :param other: The branch to compare against. :type other: :class:`.Branch` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float """ assert ( self.__class__ is other.__class__ ), f"failed as other branch is not instance of {self.__class__} type." assert self.parent == other.parent assert self.child == other.child assert math.isclose( self.time, other.time, rel_tol=rel_tol, abs_tol=abs_tol ), f"Failed for time {self.time} != {other.time} (other)." def isclose( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ) -> bool: """ Returns true if the branch is equal to the ``other`` branch. For more information see :meth:`assert_close`. :param other: The branch to compare against. :type other: :class:`.Branch` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float :return: True if the two branches are equivalent, False otherwise. :rtype: bool """ try: self.assert_close(other, rel_tol=rel_tol, abs_tol=abs_tol) return True except AssertionError: return False @attr.s(auto_attribs=True, kw_only=True, slots=True) class Merge: """ Parameters for a merge event, in which two or more demes end at some time and contribute to a descendant deme. :ivar list[str] parents: A list of parental demes. :ivar list[float] proportions: A list of ancestry proportions, in order of ``parents``. :ivar str child: The descendant deme. :ivar float ~.time: The merge time. """ parents: List[Name] = attr.ib( validator=attr.validators.deep_iterable( member_validator=attr.validators.and_( attr.validators.instance_of(str), valid_deme_name ), iterable_validator=attr.validators.instance_of(list), ) ) proportions: List[Proportion] = attr.ib( validator=attr.validators.deep_iterable( member_validator=int_or_float, iterable_validator=attr.validators.instance_of(list), ) ) child: Name = attr.ib(validator=[attr.validators.instance_of(str), valid_deme_name]) time: Time = attr.ib(validator=[int_or_float, non_negative, finite]) @proportions.validator def _check_proportions(self, attribute, _value): if len(self.proportions) > 0 and not math.isclose(sum(self.proportions), 1.0): raise ValueError("proportions must sum to 1.0") for proportion in self.proportions: unit_interval(self, attribute, proportion) positive(self, attribute, proportion) def __attrs_post_init__(self): if len(self.parents) < 2: raise ValueError("merge must involve at least two ancestors") if len(self.parents) != len(self.proportions): raise ValueError("parents and proportions must have same length") if self.child in self.parents: raise ValueError("merged deme cannot be its own ancestor") if len(set(self.parents)) != len(self.parents): raise ValueError("cannot repeat parents in merge") def assert_close( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ): """ Raises AssertionError if the object is not equal to ``other``, up to a numerical tolerance. Compares values of the following attributes: ``parents``, ``proportions``, ``child``, ``time``. :param other: The merge to compare against. :type other: :class:`.Merge` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float """ assert ( self.__class__ is other.__class__ ), f"Failed as other merge is not instance of {self.__class__} type." assert isclose_deme_proportions( self.parents, self.proportions, other.parents, other.proportions, rel_tol=rel_tol, abs_tol=abs_tol, ), ( f"Parents or corresponding proportions are different: " f"parents: {self.parents}, {other.parents} (other), " f"proportions: {self.proportions}, {other.proportions} (other)." ) assert self.child == other.child assert math.isclose( self.time, other.time, rel_tol=rel_tol, abs_tol=abs_tol ), f"Failed for time {self.time} != {other.time} (other)." def isclose( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ) -> bool: """ Returns true if the merge is equal to the ``other`` merge. For more information see :meth:`assert_close`. :param other: The merge to compare against. :type other: :class:`.Merge` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float :return: True if the two merges are equivalent, False otherwise. :rtype: bool """ try: self.assert_close(other, rel_tol=rel_tol, abs_tol=abs_tol) return True except AssertionError: return False @attr.s(auto_attribs=True, kw_only=True, slots=True) class Admix: """ Parameters for an admixture event, where two or more demes contribute ancestry to a new deme. :ivar list[str] parents: A list of source demes. :ivar list[float] proportions: A list of ancestry proportions, in order of ``parents``. :ivar str child: The admixed deme. :ivar float ~.time: The admixture time. """ parents: List[Name] = attr.ib( validator=attr.validators.deep_iterable( member_validator=attr.validators.and_( attr.validators.instance_of(str), valid_deme_name ), iterable_validator=attr.validators.instance_of(list), ) ) proportions: List[Proportion] = attr.ib( validator=attr.validators.deep_iterable( member_validator=int_or_float, iterable_validator=attr.validators.instance_of(list), ) ) child: Name = attr.ib(validator=[attr.validators.instance_of(str), valid_deme_name]) time: Time = attr.ib(validator=[int_or_float, non_negative, finite]) @proportions.validator def _check_proportions(self, attribute, _value): if len(self.proportions) > 0 and not math.isclose(sum(self.proportions), 1.0): raise ValueError("proportions must sum to 1.0") for proportion in self.proportions: unit_interval(self, attribute, proportion) positive(self, attribute, proportion) def __attrs_post_init__(self): if len(self.parents) < 2: raise ValueError("admixture must involve at least two ancestors") if len(self.parents) != len(self.proportions): raise ValueError("parents and proportions must have same length") if self.child in self.parents: raise ValueError("admixed deme cannot be its own ancestor") if len(set(self.parents)) != len(self.parents): raise ValueError("cannot repeat parents in admixure") def assert_close( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ): """ Raises AssertionError if the object is not equal to ``other``, up to a numerical tolerance. Compares values of the following attributes: ``parents``, ``proportions``, ``child``, ``time``. :param other: The admixture to compare against. :type other: :class:`.Admix` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float """ assert ( self.__class__ is other.__class__ ), f"Failed as other admixture is not instance of {self.__class__} type." assert isclose_deme_proportions( self.parents, self.proportions, other.parents, other.proportions, rel_tol=rel_tol, abs_tol=abs_tol, ), ( f"Parents or corresponding proportions are different: " f"parents: {self.parents}, {other.parents} (other), " f"proportions: {self.proportions}, {other.proportions} (other)." ) assert self.child == other.child assert math.isclose( self.time, other.time, rel_tol=rel_tol, abs_tol=abs_tol, ), f"Failed for time {self.time} != {other.time} (other)." def isclose( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ) -> bool: """ Returns true if the admixture is equal to the ``other`` admixture. For more information see :meth:`assert_close`. :param other: The admixture to compare against. :type other: :class:`.Admix` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float :return: True if the two admixtures are equivalent, False otherwise. :rtype: bool """ try: self.assert_close(other, rel_tol=rel_tol, abs_tol=abs_tol) return True except AssertionError: return False @attr.s(auto_attribs=True, kw_only=True, slots=True) class Deme: """ A collection of individuals that have a common set of population parameters. :ivar str name: A conscise string that identifies the deme. :ivar str description: A description of the deme. May be ``None``. :ivar float start_time: The time at which the deme begins to exist. :ivar list[str] ancestors: List of deme names for the deme's ancestors. This may be ``None``, indicating the deme has no ancestors. :ivar list[float] proportions: If ``ancestors`` is not ``None``, this indicates the proportions of ancestry from each ancestor. This list has the same length as ``ancestors``, and must sum to 1. :ivar list[Epoch] epochs: A list of epochs, which define the population size(s) of the deme. The deme must be created with all epochs listed. """ name: Name = attr.ib(validator=[attr.validators.instance_of(str), valid_deme_name]) description: Optional[str] = attr.ib( validator=attr.validators.optional( [attr.validators.instance_of(str), nonzero_len] ) ) start_time: Time = attr.ib(validator=[int_or_float, positive]) ancestors: List[Name] = attr.ib( validator=attr.validators.deep_iterable( member_validator=attr.validators.and_( attr.validators.instance_of(str), valid_deme_name ), iterable_validator=attr.validators.instance_of(list), ) ) proportions: List[Proportion] = attr.ib( validator=attr.validators.deep_iterable( member_validator=int_or_float, iterable_validator=attr.validators.instance_of(list), ) ) epochs: List[Epoch] = attr.ib( validator=attr.validators.deep_iterable( member_validator=attr.validators.instance_of(Epoch), iterable_validator=attr.validators.instance_of(list), ) ) @ancestors.validator def _check_ancestors(self, _attribute, _value): if len(set(self.ancestors)) != len(self.ancestors): raise ValueError( f"deme {self.name}: duplicate ancestors in {self.ancestors}" ) if self.name in self.ancestors: raise ValueError(f"deme {self.name}: deme cannot be its own ancestor") @proportions.validator def _check_proportions(self, attribute, _value): if len(self.proportions) > 0 and not math.isclose(sum(self.proportions), 1.0): raise ValueError(f"deme {self.name}: ancestry proportions must sum to 1.0") for proportion in self.proportions: unit_interval(self, attribute, proportion) positive(self, attribute, proportion) @epochs.validator def _check_epochs(self, _attribute, _value): # check epoch times align for i, epoch in enumerate(self.epochs): if i > 0: if self.epochs[i - 1].end_time != epoch.start_time: raise ValueError( f"deme {self.name}: " f"epoch[{i}].start_time != epoch[{i}-1].end_time" ) def __attrs_post_init__(self): # We check the lengths of ancestors and proportions match # after the validators have confirmed that these are indeed lists. if len(self.ancestors) != len(self.proportions): raise ValueError( f"deme {self.name}: ancestors and proportions have different lengths" ) def _add_epoch( self, *, end_time, start_size=None, end_size=None, size_function=None, selfing_rate=0, cloning_rate=0, ): if len(self.epochs) == 0: start_time = self.start_time # The first epoch is special. if start_size is None and end_size is None: raise KeyError( f"deme {self.name}: first epoch must have start_size or end_size" ) if start_size is None: start_size = end_size if end_size is None: end_size = start_size else: start_time = self.epochs[-1].end_time # Set size based on previous epoch. if start_size is None: start_size = self.epochs[-1].end_size if end_size is None: end_size = start_size if size_function is None: if start_size == end_size: size_function = "constant" else: size_function = "exponential" try: epoch = Epoch( start_time=start_time, end_time=end_time, start_size=start_size, end_size=end_size, size_function=size_function, selfing_rate=selfing_rate, cloning_rate=cloning_rate, ) except (TypeError, ValueError) as e: raise e.__class__( f"deme {self.name}: epoch[{len(self.epochs)}]: invalid epoch" ) from e self.epochs.append(epoch) def assert_close( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ): """ Raises AssertionError if the object is not equal to ``other``, up to a numerical tolerance. Compares values of the following objects: ``name``, ``ancestors``, ``proportions``, epochs. :param other: The deme to compare against. :type other: :class:`.Deme` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float """ assert ( self.__class__ is other.__class__ ), f"Failed as other deme is not instance of {self.__class__} type." assert self.name == other.name assert math.isclose( self.start_time, other.start_time, rel_tol=rel_tol, abs_tol=abs_tol ), f"Failed for start_time {self.start_time} != {other.start_time} (other)." assert isclose_deme_proportions( self.ancestors, self.proportions, other.ancestors, other.proportions, rel_tol=rel_tol, abs_tol=abs_tol, ), ( f"Ancestors or corresponding proportions are different: " f"ancestors: {self.ancestors}, {other.ancestors} (other), " f"proportions: {self.proportions}, {other.proportions} (other)." ) for i, (e1, e2) in enumerate(zip(self.epochs, other.epochs)): try: e1.assert_close(e2, rel_tol=rel_tol, abs_tol=abs_tol) except AssertionError as e: raise AssertionError(f"Failed for epochs (number {i})") from e def isclose( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ) -> bool: """ Returns true if the deme is equal to the ``other`` deme. For more information see :meth:`assert_close`. :param other: The deme to compare against. :type other: :class:`.Deme` :param ret_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose` :type ret_tol: float :param abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :type abs_tol: float :return: True if the two demes are equivalent, False otherwise. :rtype: bool """ try: self.assert_close(other, rel_tol=rel_tol, abs_tol=abs_tol) return True except AssertionError: return False @property def end_time(self): """ The end time of the deme's existence. """ return self.epochs[-1].end_time @property def time_span(self): """ The time span over which the deme exists. """ return self.start_time - self.end_time @attr.s(auto_attribs=True, kw_only=True, slots=True) class Graph: """ The Graph class provides a high-level API for working with a demographic model. A Graph object matches Demes' data model, with a small number of additional redundant attributes that make the Graph a more convenient object to use when inspecting a model's properties. :ivar str description: A human readable description of the demography. May be ``None``. :ivar str time_units: The units of time used for the demography. This is commonly ``years`` or ``generations``, but can be any string. This field is intended to be useful for documenting a demography, but the actual value provided here should not be relied upon. :ivar float generation_time: The generation time of demes, in units given by the ``time_units`` parameter. Concretely, dividing all times by ``generation_time`` will convert the graph to have time units in generations. If ``generation_time`` is ``None``, the units are assumed to be in generations already. See also: :meth:`.in_generations`. :ivar list[str] doi: If the graph describes a published demography, the DOI(s) should be be given here as a list. :ivar list[Deme] demes: The demes in the demography. :ivar list[AsymmetricMigration] migrations: The continuous migrations for the demographic model. :ivar list[Pulse] pulses: The migration pulses for the demography. """ description: Optional[str] = attr.ib( default=None, validator=attr.validators.optional( [attr.validators.instance_of(str), nonzero_len] ), ) time_units: str = attr.ib(validator=[attr.validators.instance_of(str), nonzero_len]) generation_time: Optional[Time] = attr.ib( default=None, validator=attr.validators.optional([int_or_float, positive, finite]), ) doi: List[str] = attr.ib( factory=list, validator=attr.validators.deep_iterable( member_validator=attr.validators.and_( attr.validators.instance_of(str), nonzero_len ), iterable_validator=attr.validators.instance_of(list), ), ) demes: List[Deme] = attr.ib(factory=list, init=False) migrations: List[AsymmetricMigration] = attr.ib(factory=list, init=False) pulses: List[Pulse] = attr.ib(factory=list, init=False) # This attribute is for internal use only. It's a (hidden) attribute # because we're using slotted classes and can't add attributes after # object creation (e.g. in __attrs_post_init__()). _deme_map: Dict[Name, Deme] = attr.ib( factory=dict, init=False, repr=False, cmp=False ) def __attrs_post_init__(self): if self.time_units != "generations" and self.generation_time is None: raise ValueError( 'if time_units!="generations", generation_time must be specified' ) def __getitem__(self, deme_name): """ Return the :class:`.Deme` with the specified name. """ return self._deme_map[deme_name] def __contains__(self, deme_name): """ Check if the graph contains a deme with the specified name. """ return deme_name in self._deme_map # Use the simplified YAML output as the string representation. __str__ = demes_dumps def assert_close( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ): """ Raises AssertionError if the object is not equal to ``other``, up to a numerical tolerance. Furthermore, the following implementation details are ignored during the comparison: - The graphs' ``description`` and ``doi`` attributes. - The order in which ``migrations`` were specified. - The order in which admixture ``pulses`` were specified. - The order in which ``demes`` were specified. - The order in which a deme's ``ancestors`` were specified. :param other: The graph to compare against. :type other: :class:`.Graph` :param float rel_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :param float abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. """ def assert_sorted_eq(aa, bb, *, rel_tol, abs_tol, name): # Order-agnostic equality check. assert len(aa) == len(bb) for (a, b) in zip(sorted(aa), sorted(bb)): try: a.assert_close(b, rel_tol=rel_tol, abs_tol=abs_tol) except AssertionError as e: if isinstance(a, Deme) and isinstance(b, Deme): raise AssertionError( f"Failed for {name} {a.name} and {b.name}" ) from e raise AssertionError(f"Failed for {name}") from e assert ( self.__class__ is other.__class__ ), f"Failed as other graph is not instance of {self.__class__} type." assert self.time_units == other.time_units assert self.generation_time == other.generation_time assert_sorted_eq( self.demes, other.demes, rel_tol=rel_tol, abs_tol=abs_tol, name="demes" ) assert_sorted_eq( self.migrations, other.migrations, rel_tol=rel_tol, abs_tol=abs_tol, name="migrations", ) assert_sorted_eq( self.pulses, other.pulses, rel_tol=rel_tol, abs_tol=abs_tol, name="pulses", ) def isclose( self, other, *, rel_tol=_ISCLOSE_REL_TOL, abs_tol=_ISCLOSE_ABS_TOL, ) -> bool: """ Returns true if the graph and ``other`` implement essentially the same demographic model. Numerical values are compared using the :func:`math.isclose` function, from which this method takes its name. Furthermore, the following implementation details are ignored during the comparison: - The graphs' ``description`` and ``doi`` attributes. - The order in which ``migrations`` were specified. - The order in which admixture ``pulses`` were specified. - The order in which ``demes`` were specified. - The order in which a deme's ``ancestors`` were specified. :param other: The graph to compare against. :type other: :class:`.Graph` :param float rel_tol: The relative tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :param float abs_tol: The absolute tolerance permitted for numerical comparisons. See documentation for :func:`math.isclose`. :return: True if the two graphs implement the same model, False otherwise. :rtype: bool """ try: self.assert_close(other, rel_tol=rel_tol, abs_tol=abs_tol) return True except AssertionError: return False def _add_deme( self, *, name, description=None, ancestors=None, proportions=None, start_time=None, ) -> Deme: """ Add a deme to the graph. :param str name: A string identifier for the deme. :param list[str] ancestors: List of deme names for the deme's ancestors. This may be ``None``, indicating the deme has no ancestors. If the deme has multiple ancestors, the ``proportions`` parameter must also be provided. :param list[float] proportions: The ancestry proportions for ``ancestors``. This list has the same length as ``ancestors``, and must sum to ``1.0``. May be omitted if the deme has only one, or zero, ancestors. :param float start_time: The time at which this deme begins existing, in units of ``time_units`` before the present. - If the deme has zero ancestors, and ``start_time`` is not specified, the start time will be set to ``inf``. - If the deme has one ancestor, and ``start_time`` is not specified, the ``start_time`` will be set to the ancestor's ``end_time``. - If the deme has multiple ancestors, the ``start_time`` must be provided. :return: Newly created deme. :rtype: :class:`.Deme` """ # some basic deme property checks if name in self: raise ValueError( f"deme[{len(self.demes)}] {name}: field 'name' must be unique" ) if ancestors is None: ancestors = [] if not isinstance(ancestors, list): raise TypeError( f"deme[{len(self.demes)}] {name}: field 'ancestors' must be " "a list of deme names" ) for ancestor in ancestors: if ancestor not in self: raise ValueError( f"deme[{len(self.demes)}] {name}: ancestor deme '{ancestor}' " "not found. Note: ancestor demes must be specified before " "their children." ) if proportions is None: if len(ancestors) == 1: proportions = [1.0] else: proportions = [] # set the start time to inf or to the ancestor's end time if start_time is None: if len(ancestors) > 0: if len(ancestors) > 1: raise ValueError( f"deme[{len(self.demes)}] {name}: " "field 'start_time' not found, " "but is required for demes with multiple ancestors" ) start_time = self[ancestors[0]].end_time else: start_time = math.inf if len(ancestors) == 0 and not math.isinf(start_time): raise ValueError( f"deme[{len(self.demes)}] {name}: field 'ancestors' not found, " "but is required for demes with a finite 'start_time'" ) # check start time is valid wrt ancestor time intervals for ancestor in ancestors: anc = self[ancestor] if not (anc.start_time > start_time >= anc.end_time): raise ValueError( f"deme[{len(self.demes)}] {name}: start_time={start_time} is " "outside the interval of existence for ancestor " f"'{ancestor}' ({anc.start_time}, {anc.end_time}]" ) deme = Deme( name=name, description=description, ancestors=ancestors, proportions=proportions, start_time=start_time, epochs=[], ) self._deme_map[deme.name] = deme self.demes.append(deme) return deme def _check_time_intersection(self, deme1, deme2, time): deme1 = self[deme1] deme2 = self[deme2] time_lo = max(deme1.end_time, deme2.end_time) time_hi = min(deme1.start_time, deme2.start_time) if time is not None: if not (time_lo <= time <= time_hi): raise ValueError( f"time {time} not in interval [{time_lo}, {time_hi}], " f"as defined by the time-intersection of {deme1.name} " f"(start_time={deme1.start_time}, end_time={deme1.end_time}) " f"and {deme2.name} (start_time={deme2.start_time}, " f"end_time={deme2.end_time})." ) return time_lo, time_hi def _add_symmetric_migration( self, *, demes, rate, start_time=None, end_time=None ) -> List[AsymmetricMigration]: """ Add continuous symmetric migrations between all pairs of demes in a list. :param list[str] demes: Deme names. Migration is symmetric between all pairs of demes in this list. :param float rate: The rate of migration per generation. :param float start_time: The time at which the migration rate is enabled. :param float end_time: The time at which the migration rate is disabled. :return: List of newly created migrations. :rtype: list[AsymmetricMigration] """ if not isinstance(demes, list) or len(demes) < 2: raise ValueError("must specify a list of two or more deme names") migrations = [] for source, dest in itertools.permutations(demes, 2): migration = self._add_asymmetric_migration( source=source, dest=dest, rate=rate, start_time=start_time, end_time=end_time, ) migrations.append(migration) return migrations def _add_asymmetric_migration( self, *, source, dest, rate, start_time=None, end_time=None ) -> AsymmetricMigration: """ Add continuous migration from one deme to another. Source and destination demes follow the forwards-in-time convention, so that the migration rate refers to the movement of individuals from the ``source`` deme to the ``dest`` deme. :param str source: The name of the source deme. :param str dest: The name of the destination deme. :param float rate: The rate of migration per generation. :param float start_time: The time at which the migration rate is enabled. If ``None``, the start time is defined by the earliest time at which the demes coexist. :param float end_time: The time at which the migration rate is disabled. If ``None``, the end time is defined by the latest time at which the demes coexist. :return: Newly created migration. :rtype: :class:`.AsymmetricMigration` """ for deme_name in (source, dest): if deme_name not in self: raise ValueError(f"{deme_name} not in graph") time_lo, time_hi = self._check_time_intersection(source, dest, start_time) if start_time is None: start_time = time_hi else: self._check_time_intersection(source, dest, start_time) if end_time is None: end_time = time_lo else: self._check_time_intersection(source, dest, end_time) migration = AsymmetricMigration( source=source, dest=dest, start_time=start_time, end_time=end_time, rate=rate, ) self.migrations.append(migration) return migration def _add_pulse(self, *, source, dest, proportion, time) -> Pulse: """ Add a pulse of migration at a fixed time. Source and destination demes follow the forwards-in-time convention. :param str source: The name of the source deme. :param str dest: The name of the destination deme. :param float proportion: At the instant after migration, this is the expected proportion of individuals in the destination deme made up of individuals from the source deme. :param float time: The time at which migrations occur. :return: Newly created pulse. :rtype: :class:`.Pulse` """ for deme_name in (source, dest): if deme_name not in self: raise ValueError(f"{deme_name} not in graph") self._check_time_intersection(source, dest, time) if time == self[dest].end_time: raise ValueError( f"invalid pulse at time={time}, which is dest={dest}'s end_time" ) if time == self[source].start_time: raise ValueError( f"invalid pulse at time={time}, which is source={source}'s start_time" ) # We create the new pulse object (which checks for common errors) # before checking for edge cases below. new_pulse = Pulse( source=source, dest=dest, time=time, proportion=proportion, ) # Check for models that have multiple pulses defined at the same time. # E.g. chains of pulses like: deme0 -> deme1; deme1 -> deme2, # where reversing the order of the pulse definitions changes the # interpretation of the model. Such models are valid, but the behaviour # may not be what the user expects. # See https://github.com/popsim-consortium/demes-python/issues/46 sources = set() dests = set() for pulse in self.pulses: if pulse.time == time: sources.add(pulse.source) dests.add(pulse.dest) if source in dests or dest in (sources | dests): warnings.warn( "Multiple pulses are defined for the same deme(s) at time " f"{time}. The ancestry proportions after this time will thus " "depend on the order in which the pulses have been specified. " "To avoid unexpected behaviour, the graph can instead " "be structured to introduce a new deme at this time with " "the desired ancestry proportions." ) # Check for multiple pulses into dest at the same time that # give a sum of proportions > 1. proportion_sum = proportion for pulse in self.pulses: if dest == pulse.dest and pulse.time == time: proportion_sum += pulse.proportion if proportion_sum > 1: raise ValueError( f"sum of pulse proportions > 1 for dest={dest} at time={time}" ) self.pulses.append(new_pulse) return new_pulse def _migration_matrices(self): """ Return a list of migration matrices, and a list of end times that partition them. The start time for the first matrix is inf. """ uniq_times = set(migration.start_time for migration in self.migrations) uniq_times.update(migration.end_time for migration in self.migrations) end_times = sorted(uniq_times, reverse=True)[1:] n = len(self.demes) mm_list = [[[0] * n for _ in range(n)] for _ in range(len(end_times))] deme_id = {deme.name: j for j, deme in enumerate(self.demes)} for migration in self.migrations: start_time = math.inf for k, end_time in enumerate(end_times): if start_time <= migration.end_time: break if end_time < migration.start_time: source_id = deme_id[migration.source] dest_id = deme_id[migration.dest] if mm_list[k][dest_id][source_id] > 0: raise ValueError( "multiple migrations defined for " f"source={migration.source}, dest={migration.dest} " f"between start_time={start_time}, end_time={end_time}" ) mm_list[k][dest_id][source_id] = migration.rate start_time = end_time return mm_list, end_times def _check_migration_rates(self): """ Check that the sum of migration ingress rates doesn't exceed 1 for any deme in any interval of time. """ start_time = math.inf mm_list, end_times = self._migration_matrices() for migration_matrix, end_time in zip(mm_list, end_times): for j, row in enumerate(migration_matrix): row_sum = sum(row) if row_sum > 1 and not math.isclose(row_sum, 1): name = self.demes[j].name raise ValueError( f"sum of migration rates into deme {name} is greater " f"than 1 during interval ({start_time}, {end_time}]" ) start_time = end_time def successors(self) -> Dict[Name, List[Name]]: """ Returns the successors (child demes) for all demes in the graph. If ``graph`` is a :class:`Graph`, a `NetworkX <https://networkx.org/>`_ digraph of successors can be obtained as follows. .. code:: import networkx as nx succ = nx.from_dict_of_lists(graph.successors(), create_using=nx.DiGraph) .. warning:: The successors do not include information about migrations or pulses. :return: A NetworkX compatible dict-of-lists graph of the demes' successors. :rtype: dict[str, list[str]] """ succ: Dict[Name, List[Name]] = {} for deme_info in self.demes: succ.setdefault(deme_info.name, []) if deme_info.ancestors is not None: for a in deme_info.ancestors: succ.setdefault(a, []) succ[a].append(deme_info.name) return succ def predecessors(self) -> Dict[Name, List[Name]]: """ Returns the predecessors (ancestors) for all demes in the graph. If ``graph`` is a :class:`Graph`, a `NetworkX <https://networkx.org/>`_ digraph of predecessors can be obtained as follows. .. code:: import networkx as nx pred = nx.from_dict_of_lists(graph.predecessors(), create_using=nx.DiGraph) .. warning:: The predecessors do not include information about migrations or pulses. :return: A NetworkX compatible dict-of-lists graph of the demes' predecessors. :rtype: dict[str, list[str]] """ pred: Dict[Name, List[Name]] = {} for deme_info in self.demes: pred.setdefault(deme_info.name, []) if deme_info.ancestors is not None: for a in deme_info.ancestors: pred[deme_info.name].append(a) return pred def discrete_demographic_events(self) -> Dict[str, List[Any]]: """ Classify each discrete demographic event as one of the following: :class:`Pulse`, :class:`Split`, :class:`Branch`, :class:`Merge`, or :class:`Admix`. If a deme has more than one ancestor, then that deme is created by a merger or an admixture event, which are differentiated by end and start times of those demes. If a deme has a single predecessor, we check whether it is created by a branch (start time != predecessor's end time), or split. .. note:: By definition, the discrete demographic events do not include migrations, as they are continuous events. :return: A dictionary of lists of discrete demographic events. The following keys are defined: "pulses", "splits", "branches", "mergers", "admixtures", and their values are the corresponding lists of :class:`Pulse`, :class:`Split`, :class:`Branch`, :class:`Merge`, and :class:`Admix` objects. :rtype: dict[str, list] """ demo_events: Dict[str, List[Any]] = { "pulses": self.pulses, "splits": [], "branches": [], "mergers": [], "admixtures": [], } splits_to_add: Dict[Name, Set[Name]] = {} for c, p in self.predecessors().items(): if len(p) == 0: continue elif len(p) == 1: if self[c].start_time == self[p[0]].end_time: splits_to_add.setdefault(p[0], set()) splits_to_add[p[0]].add(c) else: demo_events["branches"].append( Branch(parent=p[0], child=c, time=self[c].start_time) ) else: time_aligned = True for deme_from in p: if self[c].start_time != self[deme_from].end_time: time_aligned = False if time_aligned is True: demo_events["mergers"].append( Merge( parents=self[c].ancestors, proportions=self[c].proportions, child=c, time=self[c].start_time, ) ) else: demo_events["admixtures"].append( Admix( parents=self[c].ancestors, proportions=self[c].proportions, child=c, time=self[c].start_time, ) ) for deme_from, demes_to in splits_to_add.items(): demo_events["splits"].append( Split( parent=deme_from, children=list(demes_to), time=self[deme_from].end_time, ) ) return demo_events def in_generations(self) -> "Graph": """ Return a copy of the graph with times in units of generations. """ graph = copy.deepcopy(self) generation_time = self.generation_time graph.generation_time = None if graph.time_units != "generations" and generation_time is not None: graph.time_units = "generations" for deme in graph.demes: deme.start_time /= generation_time for epoch in deme.epochs: epoch.start_time /= generation_time epoch.end_time /= generation_time for migration in graph.migrations: migration.start_time /= generation_time migration.end_time /= generation_time for pulse in graph.pulses: pulse.time /= generation_time return graph @classmethod def fromdict(cls, data: MutableMapping[str, Any]) -> "Graph": """ Return a graph from a dict representation. The inverse of asdict(). """ if not isinstance(data, MutableMapping): raise TypeError("data is not a dictionary") # Don't modify the input data dict. data = copy.deepcopy(data) check_allowed( data, [ "description", "time_units", "generation_time", "defaults", "doi", "demes", "migrations", "pulses", ], "toplevel", ) defaults = pop_object(data, "defaults", {}, scope="toplevel") check_allowed( defaults, ["deme", "migration", "pulse", "epoch"], "defaults", ) deme_defaults = pop_object(defaults, "deme", {}, scope="defaults") allowed_fields_deme = [ "description", "start_time", "ancestors", "proportions", ] allowed_fields_deme_inner = allowed_fields_deme + ["name", "defaults", "epochs"] check_allowed(deme_defaults, allowed_fields_deme, "defaults: deme") migration_defaults = pop_object(defaults, "migration", {}, scope="defaults") allowed_fields_migration = [ "demes", "source", "dest", "start_time", "end_time", "rate", ] check_allowed( migration_defaults, allowed_fields_migration, "defaults: migration" ) pulse_defaults = pop_object(defaults, "pulse", {}, scope="defaults") allowed_fields_pulse = ["source", "dest", "time", "proportion"] check_allowed(pulse_defaults, allowed_fields_pulse, "defaults.pulse") # epoch defaults may also be specified within a Deme definition. global_epoch_defaults = pop_object(defaults, "epoch", {}, scope="defaults") allowed_fields_epoch = [ "end_time", "start_size", "end_size", "size_function", "cloning_rate", "selfing_rate", ] check_allowed(global_epoch_defaults, allowed_fields_epoch, "defaults: epoch") if "time_units" not in data: raise KeyError("toplevel: required field 'time_units' not found") graph = cls( description=data.pop("description", None), time_units=data.pop("time_units"), doi=data.pop("doi", []), generation_time=data.pop("generation_time", None), ) for i, deme_data in enumerate( pop_list(data, "demes", required_type=MutableMapping, scope="toplevel") ): if "name" not in deme_data: raise KeyError("demes[{i}]: required field 'name' not found") deme_name = deme_data.pop("name") check_allowed( deme_data, allowed_fields_deme_inner, f"demes[{i}] {deme_name}" ) insert_defaults(deme_data, deme_defaults) deme = graph._add_deme( name=deme_name, description=deme_data.pop("description", None), start_time=deme_data.pop("start_time", None), ancestors=deme_data.pop("ancestors", None), proportions=deme_data.pop("proportions", None), ) local_defaults = pop_object( deme_data, "defaults", {}, scope=f"demes[{i}] {deme.name}" ) check_allowed( local_defaults, ["epoch"], f"demes[{i}] {deme.name}: defaults" ) local_epoch_defaults = pop_object( local_defaults, "epoch", {}, scope=f"demes[{i}] {deme.name}: defaults" ) epoch_defaults = global_epoch_defaults.copy() epoch_defaults.update(local_epoch_defaults) check_allowed( epoch_defaults, allowed_fields_epoch, f"demes[{i}] {deme.name}: defaults: epoch", ) if len(epoch_defaults) == 0 and "epochs" not in deme_data: # This condition would be caught downstream, because start_size # or end_size are required for the first epoch. But we check # here to provide a more informative error message. raise KeyError( f"demes[{i}] {deme.name}: required field 'epochs' not found" ) # There is always at least one epoch defined with the default values. epochs = pop_list( deme_data, "epochs", [{}], required_type=MutableMapping, scope=f"demes[{i}] {deme.name}", ) for j, epoch_data in enumerate(epochs): check_allowed( epoch_data, allowed_fields_epoch, f"demes[{i}] {deme.name}: epochs[{j}]", ) insert_defaults(epoch_data, epoch_defaults) if "end_time" not in epoch_data: if j == len(epochs) - 1: epoch_data["end_time"] = 0 else: raise KeyError( f"demes[{i}] {deme.name}: epochs[{j}]: " "required field 'end_time' not found" ) deme._add_epoch( end_time=epoch_data.pop("end_time"), start_size=epoch_data.pop("start_size", None), end_size=epoch_data.pop("end_size", None), size_function=epoch_data.pop("size_function", None), selfing_rate=epoch_data.pop("selfing_rate", 0), cloning_rate=epoch_data.pop("cloning_rate", 0), ) for i, migration_data in enumerate( pop_list( data, "migrations", [], required_type=MutableMapping, scope="toplevel" ) ): check_allowed(migration_data, allowed_fields_migration, f"migration[{i}]") insert_defaults(migration_data, migration_defaults) if "rate" not in migration_data: raise KeyError(f"migration[{i}]: required field 'rate' not found") demes = migration_data.pop("demes", None) source = migration_data.pop("source", None) dest = migration_data.pop("dest", None) if not ( # symmetric (demes is not None and source is None and dest is None) # asymmetric or (demes is None and source is not None and dest is not None) ): raise KeyError( f"migration[{i}]: must be symmetric (specify 'demes' list) " "*or* asymmetric (specify both 'source' and 'dest')." ) try: if demes is not None: graph._add_symmetric_migration( demes=demes, rate=migration_data.pop("rate"), start_time=migration_data.pop("start_time", None), end_time=migration_data.pop("end_time", None), ) else: graph._add_asymmetric_migration( source=source, dest=dest, rate=migration_data.pop("rate"), start_time=migration_data.pop("start_time", None), end_time=migration_data.pop("end_time", None), ) except (TypeError, ValueError) as e: raise e.__class__(f"migration[{i}]: invalid migration") from e graph._check_migration_rates() for i, pulse_data in enumerate( pop_list(data, "pulses", [], required_type=MutableMapping, scope="toplevel") ): check_allowed(pulse_data, allowed_fields_pulse, f"pulse[{i}]") insert_defaults(pulse_data, pulse_defaults) for field in ("source", "dest", "time", "proportion"): if field not in pulse_data: raise KeyError(f"pulse[{i}]: required field '{field}' not found") try: graph._add_pulse( source=pulse_data.pop("source"), dest=pulse_data.pop("dest"), time=pulse_data.pop("time"), proportion=pulse_data.pop("proportion"), ) except (TypeError, ValueError) as e: raise e.__class__(f"pulse[{i}]: invalid pulse") from e return graph def asdict(self) -> MutableMapping[str, Any]: """ Return a fully-resolved dict representation of the graph. """ def filt(attrib, value): return ( value is not None and not (hasattr(value, "__len__") and len(value) == 0) and attrib.name != "_deme_map" ) def coerce_numbers(inst, attribute, value): # Explicitly convert numeric types to int or float, so that they # don't cause problems for the YAML and JSON serialisers. # E.g. numpy int32/int64 are part of Python's numeric tower as # subclasses of numbers.Integral, similarly numpy's float32/float64 # are subclasses of numbers.Real. There are yet other numeric types, # such as the standard library's decimal.Decimal, which are not part # of the numeric tower, but provide a __float__() method. if isinstance(value, numbers.Integral): value = int(value) elif isinstance(value, numbers.Real) or hasattr(value, "__float__"): value = float(value) return value data = attr.asdict(self, filter=filt, value_serializer=coerce_numbers) # translate to spec data model for deme in data["demes"]: for epoch in deme["epochs"]: del epoch["start_time"] return data def asdict_simplified(self) -> MutableMapping[str, Any]: """ Return a simplified dict representation of the graph. """ def simplify_epochs(data): """ Remove epoch start times. Also remove deme start time if implied by the deme ancestor(s)'s end time(s). """ for deme in data["demes"]: for j, epoch in enumerate(deme["epochs"]): if epoch["size_function"] in ("constant", "exponential"): del epoch["size_function"] if epoch["start_size"] == epoch["end_size"]: del epoch["end_size"] if epoch["selfing_rate"] == 0: del epoch["selfing_rate"] if epoch["cloning_rate"] == 0: del epoch["cloning_rate"] for deme in data["demes"]: # remove implied start times if math.isinf(deme["start_time"]): del deme["start_time"] if "ancestors" in deme and len(deme["ancestors"]) == 1: del deme["proportions"] # start time needed for more than 1 ancestor if self[deme["ancestors"][0]].end_time == deme["start_time"]: del deme["start_time"] def simplify_migration_rates(data): """ Collapse symmetric migration rates, and remove redundant information about start and end times if they are implied by the time overlap interval of the demes involved. To collapse symmetric migrations, we collect all source/dest migration pairs for each set of migration attributes (rate, start_time, end_time), and then iteratively check for all-way symmetric migration between all demes that are involved in migrations for the given set of migration attributes. """ def collapse_demes(pairs): all_demes = [] for pair in pairs: if pair[0] not in all_demes: all_demes.append(pair[0]) if pair[1] not in all_demes: all_demes.append(pair[1]) return all_demes symmetric = [] asymmetric = data["migrations"].copy() # first remove start/end times if equal time intersections rate_sets = {} # keys of rate_types are (rate, start_time, end_time) for migration in data["migrations"]: source = migration["source"] dest = migration["dest"] time_hi = min(self[source].start_time, self[dest].start_time) time_lo = max(self[dest].end_time, self[dest].end_time) if migration["end_time"] == time_lo: del migration["end_time"] if migration["start_time"] == time_hi: del migration["start_time"] k = tuple( migration.get(key) for key in ("rate", "start_time", "end_time") ) rate_sets.setdefault(k, []) rate_sets[k].append((source, dest)) for k, pairs in rate_sets.items(): if len(pairs) == 1: continue # list of all demes that are source or dest in this rate set all_demes = collapse_demes(pairs) # we check all possible sets of n-way symmetric migration i = len(all_demes) while len(all_demes) >= 2 and i >= 2: # loop through each possible set for a given set size i compress_demes = False for deme_set in itertools.combinations(all_demes, i): # check if all (source, dest) pairs exist in pairs of migration all_present = True for deme_pair in itertools.permutations(deme_set, 2): if deme_pair not in pairs: all_present = False break # if they do all exist if all_present: compress_demes = True # remove from asymmetric list for deme_pair in itertools.permutations(deme_set, 2): mig = { "source": deme_pair[0], "dest": deme_pair[1], "rate": k[0], } if k[1] is not None: mig["start_time"] = k[1] if k[2] is not None: mig["end_time"] = k[2] asymmetric.remove(mig) pairs.remove(deme_pair) # add to symmetric list sym_mig = dict(demes=[d for d in deme_set], rate=k[0]) if k[1] is not None: sym_mig["start_time"] = k[1] if k[2] is not None: sym_mig["end_time"] = k[2] symmetric.append(sym_mig) # if we found a set of symmetric migrations, compress all_demes if compress_demes: all_demes = collapse_demes(pairs) i = min(i, len(all_demes)) # otherwise, check one set size smaller else: i -= 1 data["migrations"] = symmetric + asymmetric data = self.asdict() if "migrations" in data: simplify_migration_rates(data) simplify_epochs(data) return data class Builder: """ The Builder provides a set of convenient methods for incrementally constructing a deme graph. The state of the graph is stored internally as a dictionary of objects following Demes' data model, and may be converted into a fully-resolved :class:`Graph` object using the :meth:`.resolve()` method. :ivar dict data: The data dictionary of the graph's current state. The objects nested within this dictionary follow Demes' data model, as described in the :ref:`spec:sec_ref`. .. note:: Users may freely modify the data dictionary, as long as the data model is not violated. """ def __init__( self, *, description: str = None, time_units: str = "generations", generation_time: float = None, doi: list = None, defaults: dict = None, ): """ :param str description: A human readable description of the demography. May be ``None``. :param str time_units: The units of time used for the demography. This is commonly ``years`` or ``generations``, but can be any string. :param float generation_time: The generation time of demes, in units given by the ``time_units`` parameter. Concretely, dividing all times by ``generation_time`` will convert the graph to have time units in generations. If ``generation_time`` is ``None``, the units are assumed to be in generations already. :param doi: If the graph describes a published demography, the DOI(s) should be be given here as a list. :type doi: list[str] """ self.data: MutableMapping[str, Any] = dict(time_units=time_units) if description is not None: self.data["description"] = description if generation_time is not None: self.data["generation_time"] = generation_time if doi is not None: self.data["doi"] = doi if defaults is not None: self.data["defaults"] = defaults def add_deme( self, name: str, *, description: str = None, ancestors: list = None, proportions: list = None, start_time: float = None, epochs: list = None, defaults: dict = None, ): """ Add a deme. Ancestor demes must be added before their children. :param str name: A string identifier for the deme. :param str description: A description of the deme. May be ``None``. :param list[str] ancestors: List of deme names for the deme's ancestors. This may be ``None``, indicating the deme has no ancestors. :param list[float] proportions: If ``ancestors`` is not ``None``, this indicates the proportions of ancestry from each ancestor. This list has the same length as ``ancestors``, and must sum to 1. :param float start_time: The deme's start time. :param list[dict] epochs: List of epoch dictionaries. Each dictionary follows the data model for an epoch. """ deme: MutableMapping[str, Any] = dict(name=name) if description is not None: deme["description"] = description if ancestors is not None: deme["ancestors"] = ancestors if proportions is not None: deme["proportions"] = proportions if start_time is not None: deme["start_time"] = start_time if epochs is not None: deme["epochs"] = epochs if defaults is not None: deme["defaults"] = defaults if "demes" not in self.data: self.data["demes"] = [] self.data["demes"].append(deme) def add_migration( self, *, rate: float = None, # We use a special NO_DEFAULT value here, to distinguish between the user # not specifying anything, and specifying the value None (which may be # necessary to override a 'defaults' value set in the data dictionary). demes: list = NO_DEFAULT, # type: ignore source: str = NO_DEFAULT, # type: ignore dest: str = NO_DEFAULT, # type: ignore start_time: float = None, end_time: float = None, ): """ Add continuous symmetric migrations between all pairs of demes in a list, or alternately, add asymmetric migration from one deme to another. Source and destination demes follow the forwards-in-time convention, so that the migration rate refers to the movement of individuals from the ``source`` deme to the ``dest`` deme. :param list[str] demes: list of deme names. Migration is symmetric between all pairs of demes in this list. If not specified, migration will be asymmetric (and ``source`` and ``dest`` must be given). :param str source: The name of the source deme. :param str dest: The name of the destination deme. :param float rate: The rate of migration per generation. :param float start_time: The time at which the migration rate is enabled. If ``None``, the start time is defined by the earliest time at which the demes coexist. :param float end_time: The time at which the migration rate is disabled. If ``None``, the end time is defined by the latest time at which the demes coexist. """ migration: MutableMapping[str, Any] = dict() if rate is not None: migration["rate"] = rate if demes is not NO_DEFAULT: migration["demes"] = demes if source is not NO_DEFAULT: migration["source"] = source if dest is not NO_DEFAULT: migration["dest"] = dest if start_time is not None: migration["start_time"] = start_time if end_time is not None: migration["end_time"] = end_time if "migrations" not in self.data: self.data["migrations"] = [] self.data["migrations"].append(migration) def add_pulse( self, *, source: str = None, dest: str = None, proportion: float = None, time: float = None, ): """ Add a pulse of migration at a fixed time. Source and destination demes follow the forwards-in-time convention. :param str source: The name of the source deme. :param str dest: The name of the destination deme. :param float proportion: At the instant after migration, this is the expected proportion of individuals in the destination deme made up of individuals from the source deme. :param float time: The time at which migrations occur. """ pulse: MutableMapping[str, Any] = dict() if source is not None: pulse["source"] = source if dest is not None: pulse["dest"] = dest if proportion is not None: pulse["proportion"] = proportion if time is not None: pulse["time"] = time if "pulses" not in self.data: self.data["pulses"] = [] self.data["pulses"].append(pulse) def resolve(self): """ Resolve the data dictionary into a Graph. :return: The fully-resolved Graph. :rtype: Graph """ return Graph.fromdict(self.data) @classmethod def fromdict(cls, data: MutableMapping[str, Any]) -> "Builder": """ Make a Builder object from an existing data dictionary. :param MutableMapping data: The data dictionary to initialise the graph's state. The objects nested within this dictionary must follow Demes' data model, as described in the :ref:`spec:sec_ref`. :return: The new Builder object. :rtype: Builder """ builder = cls() builder.data = data return builder
python
import json import urllib3 http = urllib3.PoolManager() request = http.request('GET','https://booksbyptyadana.herokuapp.com/books') data = request.data print(request.status) if len(data) > 0: book_dict = dict() books = json.loads(data.decode('utf-8')) for book in books: book_dict[book['book_name']]= book['author_name'] print(book_dict) else: print('no data received.')
python
from abc import ABC from distutils.version import LooseVersion from typing import Union class Capabilities(ABC): """Represents capabilities of a connection / back end.""" def __init__(self, data): pass def version(self): """ Get openEO version. DEPRECATED: use api_version instead""" # Field: version # TODO: raise deprecation warning here? return self.api_version() def api_version(self) -> str: """Get OpenEO API version.""" raise NotImplementedError @property def api_version_check(self) -> 'ComparableVersion': """Helper to easily check if the API version is at least or below some threshold version.""" api_version = self.api_version() if not api_version: raise ApiVersionException("No API version found") return ComparableVersion(api_version) def list_features(self): """ List all supported features / endpoints.""" # Field: endpoints pass def has_features(self, method_name): """ Check whether a feature / endpoint is supported.""" # Field: endpoints > ... pass def currency(self): """ Get default billing currency.""" # Field: billing > currency pass def list_plans(self): """ List all billing plans.""" # Field: billing > plans pass class ComparableVersion: """ Helper to compare a version (e.g. API version) against another (threshold) version >>> v = ComparableVersion('1.2.3') >>> v.at_least('1.2.1') True >>> v.at_least('1.10.2') False >>> v > "2.0" False To express a threshold condition you sometimes want the reference or threshold value on the left hand side or right hand side of the logical expression. There are two groups of methods to handle each case: - right hand side referencing methods. These read more intuitively. For example: `a.at_least(b)`: a is equal or higher than b `a.below(b)`: a is lower than b - left hand side referencing methods. These allow "currying" a threshold value in a reusable condition callable. For example: `a.or_higher(b)`: b is equal or higher than a `a.accept_lower(b)`: b is lower than a """ def __init__(self, version: Union[str, 'ComparableVersion']): if isinstance(version, ComparableVersion): self._version = version._version else: self._version = LooseVersion(version) def __repr__(self): return '{c}({v!r})'.format(c=type(self).__name__, v=self._version) def __str__(self): return str(self._version) def to_string(self): return str(self) def __ge__(self, other: Union[str, 'ComparableVersion']): return self._version >= ComparableVersion(other)._version def __gt__(self, other: Union[str, 'ComparableVersion']): return self._version > ComparableVersion(other)._version def __le__(self, other: Union[str, 'ComparableVersion']): return self._version <= ComparableVersion(other)._version def __lt__(self, other: Union[str, 'ComparableVersion']): return self._version < ComparableVersion(other)._version # Right hand side referencing expressions. def at_least(self, other: Union[str, 'ComparableVersion']): """Self is at equal or higher than other.""" return self >= other def above(self, other: Union[str, 'ComparableVersion']): """Self is higher than other.""" return self > other def at_most(self, other: Union[str, 'ComparableVersion']): """Self is equal or lower than other.""" return self <= other def below(self, other: Union[str, 'ComparableVersion']): """Self is lower than other.""" return self < other # Left hand side referencing expressions. def or_higher(self, other: Union[str, 'ComparableVersion']): """Other is equal or higher than self.""" return ComparableVersion(other) >= self def or_lower(self, other: Union[str, 'ComparableVersion']): """Other is equal or lower than self""" return ComparableVersion(other) <= self def accept_lower(self, other: Union[str, 'ComparableVersion']): """Other is lower than self.""" return ComparableVersion(other) < self def accept_higher(self, other: Union[str, 'ComparableVersion']): """Other is higher than self.""" return ComparableVersion(other) > self class ApiVersionException(RuntimeError): pass
python
#!../../../.env/bin/python import os import numpy as np import time a = np.array([ [1,0,3], [0,2,1], [0.1,0,0], ]) print a row = 1 col = 2 print a[row][col] assert a[row][col] == 1 expected_max_rows = [0, 1, 0] expected_max_values = [1, 2, 3] print 'expected_max_rows:', expected_max_rows print 'expected_max_values:', expected_max_values t0 = time.time() actual_max_rows = list(np.argmax(a, axis=0)) td = time.time() - t0 actual_max_values = list(np.amax(a, axis=0)) print 'td:', round(td, 4) print 'actual_max_rows:', actual_max_rows print 'actual_max_values:', actual_max_values assert actual_max_rows == expected_max_rows assert actual_max_values == expected_max_values
python
from utils import overloadmethod, ApeInternalError from astpass import DeepAstPass import cstnodes as E class Sentinel: def __init__(self, value): self.value = value def __repr__(self): return f'Sentinel({self.value!r})' def is_sentinel(x): return isinstance(x, Sentinel) def is_iterable(x): try: iter(x) return True except TypeError: return False class IsGenPass(DeepAstPass): """A compiler pass to test for the presence of generators""" def true_args(self, args): return any(self.true_arg(a) for a in args if a is not args and (is_iterable(a) or is_sentinel(a))) def true_arg(self, arg): if is_iterable(arg): return self.true_args(arg) if is_sentinel(arg): return arg.value raise ApeInternalError('We should\'t ever get here') def override_do_visit_wrapper(self, ast, new): if isinstance(new, Sentinel): return new if isinstance(new, bool): return Sentinel(new) # no atomic expressions can yield if ast is new: return Sentinel(False) cls, args = new try: return Sentinel(self.true_args(args)) except TypeError: raise def visit(self, ast): return self.my_visit(ast) @overloadmethod(use_as_default=True) def my_visit(self, ast): return super().visit(ast) @my_visit.on((E.YieldFromExpression, E.YieldExpression)) def my_visit_Yield_Or_YieldFrom_Expression(self, ast): return Sentinel(True) @my_visit.on((E.FunctionExpression, E.FunctionDefinition)) def my_visit_FunctionDefinition_Or_FunctionExpression(self, ast): return Sentinel(any(self.is_gen(p.default) for p in ast.params if p.default is not None)) @my_visit.wrapper() def my_visit_wrapper(self, ast, new): return self.override_do_visit_wrapper(ast, new) def is_gen(self, ast): return self.visit(ast).value def is_gen(ast): return IsGenPass().is_gen(ast)
python
import unittest import numpy as np from laika.raw_gnss import get_DOP, get_PDOP, get_HDOP, get_VDOP, get_TDOP from laika.lib.coordinates import geodetic2ecef class TestDOP(unittest.TestCase): def setUp(self): self.receiver = geodetic2ecef((0, 0, 0)) self.satellites = np.array([ [18935913, -3082759, -18366964], [7469795, 22355916, -12240619], [11083784, -18179141, 15877221], [22862911, 13420911, 1607501] ]) def test_GDOP(self): dop = get_DOP(self.receiver, self.satellites) self.assertAlmostEqual(dop, 2.352329857908973) def test_HDOP(self): dop = get_HDOP(self.receiver, self.satellites) self.assertAlmostEqual(dop, 1.3418910470124197) def test_VDOP(self): dop = get_VDOP(self.receiver, self.satellites) self.assertAlmostEqual(dop, 1.7378390525714509) def test_PDOP(self): dop = get_PDOP(self.receiver, self.satellites) self.assertAlmostEqual(dop, 2.195622042769321) def test_TDOP(self): dop = get_TDOP(self.receiver, self.satellites) self.assertAlmostEqual(dop, 0.8442153787485294) if __name__ == "__main__": unittest.main()
python
# This utility should only be invoked via the itimUtil.sh wrapper script. # Support utility to submit ITIM object changes via the ITIM API. Changes are specified # through a text file. # Changes are submitted asynchronously and status is reported later in the output. # See usage information in the wrapper script. # 2013-10-23 Paul T Sparks # Added personCreate command. Added argStyle configuration to allow multiple "eval" options # for commands with the same number of args. # 2013-07-12 Paul T Sparks # TODO Enhancements # During *AttrAdd prevent adding duplicate values (?) # ITIM API imports from com.ibm.itim.apps import InitialPlatformContext, PlatformContext, Request from com.ibm.itim.apps.identity import OrganizationalContainerMO, PersonManager, PersonMO from com.ibm.itim.apps.jaas.callback import PlatformCallbackHandler from com.ibm.itim.apps.policy import Entitlement, ProvisioningPolicy, ProvisioningPolicyManager, ProvisioningPolicyMO from com.ibm.itim.apps.provisioning import AccountManager, AccountMO, ServiceMO from com.ibm.itim.apps.search import SearchMO from com.ibm.itim.apps.system import SystemUserMO from com.ibm.itim.common import AttributeValue, EntitlementAttributeValue from com.ibm.itim.dataservices.model import CompoundDN, DistinguishedName, ObjectProfileCategory, SearchParameters from com.ibm.itim.dataservices.model.domain import Person,Service,OrganizationalContainerSearch,OrganizationSearch from com.ibm.itim.dataservices.model.system import SystemUser from com.ibm.websphere.security.auth.callback import WSCallbackHandlerImpl from java.lang import Exception, System, Thread from java.util import ArrayList, Collections, HashMap, Hashtable, Locale from javax.security.auth.login import LoginContext import os import sys import time # Default WebSphere username for platform authentication PLATFORM_ID='wasadmin' # Interval for request status polling. DEFAULT_POLLING_INTERVAL= 3 * 1000 # milliseconds # Time to wait for all requests to complete before exiting. FINAL_WAIT_TIME= 30 # seconds # Turn debug info ON/OFF here debugFlag= 0 # Conditionally output debug messages def debug(*args): if debugFlag: print >> sys.stderr, ' '.join(map(str,args)) outfile= sys.stderr # Output log messages def log(*args): print >> outfile, ' '.join(map(str,args)) # Abstract the ITIM API interface class Itimapi: # organization types ORG='org' ORGUNIT='orgunit' BPUNIT='bpunit' LOC='loc' # List of pending ITIM request objects requests= [] pollingInterval= DEFAULT_POLLING_INTERVAL """ Polling interval in seconds for checking request status""" # Set up and connect to ITIM def __init__(self, platformID, platformPW, itimID, itimPW): self.setupIbmCorbaProperties(platformID, platformPW) # Get some configuration parameters that were loaded from enRole.properties contextFactory= java.lang.System.getProperty("enrole.platform.contextFactory") platformURL= java.lang.System.getProperty("enrole.appServer.url") platformRealm= java.lang.System.getProperty("enrole.appServer.realm") debug('platformURL=', platformURL) self.tenant= java.lang.System.getProperty("enrole.defaulttenant.id") self.tenantDN = "ou=%s,dc=itim" % self.tenant env= Hashtable() env.put(InitialPlatformContext.CONTEXT_FACTORY, contextFactory) env.put(PlatformContext.PLATFORM_URL, platformURL) env.put(PlatformContext.PLATFORM_PRINCIPAL, platformID) env.put(PlatformContext.PLATFORM_CREDENTIALS, platformPW) env.put(PlatformContext.PLATFORM_REALM, platformRealm) debug(env.toString()) debug(java.lang.System.getProperty("com.ibm.CORBA.loginSource")) debug(java.lang.System.getProperty("com.ibm.CORBA.loginUserid")) debug(java.lang.System.getProperty("com.ibm.CORBA.loginPassword")) self.platform= InitialPlatformContext(env) callbackHandler= WSCallbackHandlerImpl(itimID, platformRealm, itimPW) loginContext= LoginContext("WSLogin", callbackHandler) loginContext.login() self.subject= loginContext.getSubject() # Some additional properties to allow access to ITIM platform def setupIbmCorbaProperties(self, platformID, platformPW): java.lang.System.setProperty("com.ibm.CORBA.loginSource", "properties") java.lang.System.setProperty("com.ibm.CORBA.loginUserid", platformID) java.lang.System.setProperty("com.ibm.CORBA.loginPassword", platformPW) def getPlatformContext(self): return self.platform def getSubject(self): return self.subject # Get ITIM AccountManager object def getAccountManager(self): return AccountManager(self.platform, self.subject) # Get ITIM PersonManager object def getPersonManager(self): return PersonManager(self.platform, self.subject) def accountsForPerson(self, personMO): """Get list of Account objects for a person.""" acctMgr= AccountManager(self.platform, self.subject) return acctMgr.getAccounts(personMO, Locale.US) def findObjects(self, ldapFilter, objectType, constructor): """Returns a list of managed objects""" searchMO= SearchMO(self.platform, self.subject) searchMO.setContext(CompoundDN(DistinguishedName(self.tenant))) searchMO.setCategory(objectType) searchMO.setFilter(ldapFilter) searchMO.setPaging(0) searchResults= searchMO.execute() objectList= searchResults.getResults() searchResults.close() moList= [] for mObject in objectList: moList.append(constructor(self.platform, self.subject, mObject.getDistinguishedName())) return moList def findPersons(self, ldapFilter): """Find persons based on LDAP filter. Returns list of PersonMO objects""" return self.findObjects(ldapFilter, ObjectProfileCategory.PERSON, PersonMO) def findServices(self, ldapFilter): """Find services based on LDAP filter. Returns list of ServiceMO objects""" return self.findObjects(ldapFilter, ObjectProfileCategory.SERVICE, ServiceMO) def findAccounts(self, ldapFilter): """Find services based on LDAP filter. Returns list of ServiceMO objects""" return self.findObjects(ldapFilter, ObjectProfileCategory.ACCOUNT, AccountMO) def findSystemUsers(self, ldapFilter): """Returns list of ITIM accounts (systemuser objects) based on LDAP filter.""" return self.findObjects(ldapFilter, ObjectProfileCategory.SYSTEM_USER, SystemUserMO) def findProvisioningPolices(self, ldapFilter): """Returns list of ProvisioningPolicyMO objects based on LDAP filter.""" return self.findObjects(ldapFilter, ObjectProfileCategory.PROVISIONING_POLICY, ProvisioningPolicyMO) def findOrgsByName(self, ldapFilter): """Returns list of OrganizationalContainerMO objects based on LDAP filter.""" return self.findObjects(ldapFilter, ObjectProfileCategory.CONTAINER, OrganizationalContainerMO) # TODO Finish this def findOrgsByName(self, name): ldapFilter='(|(ou=%s)(o=%s)(l=%s))' % (name, name, name) # ldapFilter='(ou=%s)' % name print 'ldapfilter=', ldapFilter return self.findObjects(ldapFilter, ObjectProfileCategory.CONTAINER, OrganizationalContainerMO) def close(self): """Close the ITIM API connection.""" self.platform.close() # Map status values to user text. COMPLETE_STATUS= {Request.SUCCEEDED:'succ', Request.FAILED:'fail', Request.WARNING:'warn'} def __checkRequests(self): toRemove= [] for i in self.requests: request, description = i status= request.status if status in self.COMPLETE_STATUS.keys(): log('Result:',self.COMPLETE_STATUS[status],description) toRemove.append(i) for i in toRemove: self.requests.remove(i) return (0 == len(self.requests)) def requestsComplete(self, waitSeconds=0): """ Check remaining outstanding ITIM requests to see if they are complete. Returns True if all requests are complete. Will wait up to waitSeconds (+ pollingInterval) for all requests to complete. """ status= self.__checkRequests() if waitSeconds == 0: return status endTime = System.currentTimeMillis() + 1000 * waitSeconds while not status and (System.currentTimeMillis() < endTime): Thread.sleep(self.pollingInterval) status= self.__checkRequests() return status def submitRequest(self, description, operation, *args): """ Add a submitted request to be monitored until completion.""" try: request = operation(*args) if request == None: raise Exception('ITIM request returned null') self.requests.append((request, time.strftime('%H:%M:%S') +' '+ description)) except java.lang.Exception, e: log('Error submitting request:',description,'exception=', e) except Exception, e: log('Error submitting request:',description,'errno=', e.errno, 'strerror=', e.strerror) def submitOperation(self, description, operation, *args): """ Submit a synchronous ITIM operation.""" try: operation(*args) except java.lang.Exception, e: log('Error submitting operation:',description,'exception=', e) except Exception, e: log('Error submitting operation:',description,'errno=', e.errno, 'strerror=', e.strerror) # We get options from the environment rather than directly from the command line since the wsadmin jython is # so old and limited that it can't do non-echoed input of passwords. Program option and argument validation is done # using a wrapper script. def getOptions(): options= {} envKeys= os.environ.keys() options['userid']= os.environ['USER_ID'] options['userpw']= os.environ['USER_PW'] options['platformpw']= os.environ['PLATFORM_PW'] if 'COMMAND_FILE' in envKeys: options['cmdfile']= os.environ['COMMAND_FILE'] if 'OUTPUT_FILE' in envKeys: options['outfile']= os.environ['OUTPUT_FILE'] options['dryrun']= ('DRY_RUN' in envKeys) and (os.environ['DRY_RUN'] == 'Y') return options # ITIM API handle api= None # output file handle outfile= sys.stdout # Wrap the itimapi function to allow skipping for dry runs. def submitRequest(itimapi, description, operation, *args): debug('submitting request') if options['dryrun']: log('Not submitting request:', description) else: itimapi.submitRequest(description, operation, *args) # Wrap the itimapi function to allow skipping for dry runs. def submitOperation(itimapi, description, operation, *args): debug('submitting request') if options['dryrun']: log('Not submitting request:', description) else: itimapi.submitOperation(description, operation, *args) # Replace attribute values for a DirectoryObject def dirObjectAttrRep(obj, attrDict): debug('dirObectAttrRep: Enter') for attrname in attrDict.keys(): attrtype= type(attrDict[attrname]) if attrtype == type([]) or attrtype == type(()): vals= ArrayList() for v in attrDict[attrname]: vals.add(v) obj.setAttribute(AttributeValue(attrname, vals)) else: obj.setAttribute(AttributeValue(attrname, str(attrDict[attrname]))) # Add attribute values to a DirectoryObject without overwriting existing attribute values. def dirObjectAttrAdd(obj, attrDict): debug('dirObectAttrAdd: Enter') for attrname in attrDict.keys(): vals= ArrayList() attrtype= type(attrDict[attrname]) if attrtype == type([]) or attrtype == type(()): for v in attrDict[attrname]: vals.add(v) else: vals.add(str(attrDict[attrname])) av= obj.getAttribute(attrname) if not av: av= AttributeValue() av.setName(attrname) debug('AttrAdd- '+ attrname +' Before: '+ str(av.getValues())) av.addValues(vals) obj.setAttribute(av) debug('AttrAdd- '+ attrname +' After: '+ str(av.getValues())) # Delete attribute values from a DirectoryObject def dirObjectAttrDel(obj, attrs): debug('dirObjectAttrDel: Enter') if type({}) != type(attrs): # remove all values for attrname in attrs: obj.removeAttribute(attrname) else: # removed selected values for attrname in attrs.keys(): attrtype= type(attrs[attrname]) if attrtype == type([]) or attrtype == type(()): toBeRemoved= attrs[attrname] else: toBeRemoved= [str(attrs[attrname])] newVals= ArrayList() av= obj.getAttribute(attrname) if not av: # no values in object return existingValues=av.getValues() for attrVal in existingValues: if not attrVal in toBeRemoved: newVals.add(attrVal) obj.setAttribute(AttributeValue(attrname, newVals)) # Attribute operation name to function mapping attrOp= { 'Add': dirObjectAttrAdd, 'Del': dirObjectAttrDel, 'Rep': dirObjectAttrRep, 'add': dirObjectAttrAdd, 'del': dirObjectAttrDel, 'rep': dirObjectAttrRep, } # Extract specified attribute values for selected identities in the same format used for input. def cmdPersonExtract(ldapfilter, attrlist): log('cmdPersonExtract("'+ ldapfilter +'",'+ str(attrlist) +')') for personMO in api.findPersons(ldapfilter): person= personMO.getData() uid= person.getAttribute('uid').getString() outfile.write('personAttrRep~(uid='+ uid +')~{') for attrname in attrlist: attrval= person.getAttribute(attrname) if not attrval: continue outfile.write("'"+ attrname +"':(") for val in attrval.getValues(): outfile.write("'"+ val +"',") outfile.write('),') outfile.write('}\n') # Perform requested operation on the specified attributes for the specified accounts def cmdAccountAttr(ldapfilter, attrs): log('cmd: accountAttr("%s",%s)' % (ldapfilter, str(attrs))) for accountMO in api.findAccounts(ldapfilter): account= accountMO.getData() for op in attrs.keys(): attrOp[op](account, attrs[op]) name = account.getAttribute('erglobalid').getString() submitRequest(api,'accountAttr globalid='+ name +' '+ str(attrs), accountMO.update, account, None) # Perform a restore operation on the specified accounts def cmdAccountRestore(ldapfilter): log('cmd: accountRestore("%s")' % (ldapfilter)) for accountMO in api.findAccounts(ldapfilter): account= accountMO.getData() name = account.getAttribute('erglobalid').getString() password = "WFbR_OdzY=p98X=ZCM7r" # This should be ignored due to PW sync submitRequest(api,'accountRestore globalid='+ name, accountMO.restore, password, None) # Perform requested operation on the specified attributes for the specified persons def cmdPersonAttr(ldapfilter, attrs): log('cmd: personAttr("%s",%s)' % (ldapfilter, str(attrs))) for personMO in api.findPersons(ldapfilter): person= personMO.getData() for op in attrs.keys(): attrOp[op](person, attrs[op]) name= person.getAttribute('uid').getString() name += '-'+ person.getAttribute('erglobalid').getString() submitRequest(api,'personAttr name-globalid='+ name +' '+ str(attrs), personMO.update, person, None) # Perform requested operation on the specified attributes for the specified services def cmdServiceAttr(ldapfilter, attrs): log('cmd: serviceAttr("%s",%s)' % (ldapfilter, str(attrs))) svcs= api.findServices(ldapfilter) if len(svcs) == 0: log('No services found for filter ',ldapfilter) for serviceMO in svcs: service= serviceMO.getData() for op in attrs.keys(): attrOp[op](service, attrs[op]) name= service.getAttribute('erservicename').getString() name += '-'+service.getAttribute('erglobalid').getString() submitOperation(api,'serviceAttr name-globalid='+ name +' '+ str(attrs), serviceMO.update, service) # Perform requested operation on the specified attributes for the specified system user # TODO There is no update method for SystemUserMO. Figure out how to best handle updates # to SystemUser objects. def cmdSystemUserAttr(ldapfilter, attrs): log('cmd: systemuserAttr("%s",%s)' % (ldapfilter, str(attrs))) for systemuserMO in api.findSystemUsers(ldapfilter): systemuser= systemuserMO.getData() for op in attrs.keys(): attrOp[op](systemuser, attrs[op]) name= systemuser.getAttribute('eruid').getString() name += '-'+ systemuser.getAttribute('erglobalid').getString() submitRequest(api,'systemuserAttr name-globalid='+ name +' '+ str(attrs), systemuserMO.update, systemuser, None) # Perform requested operation on the specified attributes for the specified persons # DEPRECATED Use cmdPersonAttr def cmdPersonAttrOp(op, ldapfilter, attrs): log('cmd: personAttr%s("%s",%s)' % (op, ldapfilter, str(attrs))) for personMO in api.findPersons(ldapfilter): person= personMO.getData() attrOp[op](person, attrs) name = person.getAttribute('erglobalid').getString() submitRequest(api,'personAttr'+ op +' globalid='+ name +' '+ str(attrs), personMO.update, person, None) # Restore selected identities and all of their accounts def cmdPersonRestore(ldapfilter): log('cmd: personRestore("'+ ldapfilter +'")') acctMgr= api.getAccountManager() for personMO in api.findPersons(ldapfilter): uid= personMO.getData().getAttribute('uid').getString() submitRequest(api, 'personRestore uid='+ uid, personMO.restore, None) acctMOs= api.accountsForPerson(personMO) accts= ArrayList() for i in acctMOs: accts.add(i.getData()) submitRequest(api, 'personAccountsRestore uid='+ uid, acctMgr.restore, accts, None) # Suspend selected identities. def cmdPersonSuspend(ldapfilter): log('cmd: personSuspend("'+ ldapfilter +'")') for personMO in api.findPersons(ldapfilter): uid= personMO.getData().getAttribute('uid').getString() submitRequest(api,'personSuspend uid='+ uid, personMO.suspend, None) # Create a new identity def cmdPersonCreate(organizationName, profileName, attrDict): log('cmd: personCreate("'+ organizationName +'","'+ profileName +'",'+ str(attrDict) +')') person= Person(profileName) for attrname in attrDict.keys(): vals= ArrayList() attrtype= type(attrDict[attrname]) if attrtype == type([]) or attrtype == type(()): # multi-valued attribute for v in attrDict[attrname]: vals.add(v) else: vals.add(str(attrDict[attrname])) av= AttributeValue() av.setName(attrname) av.addValues(vals) person.setAttribute(av) containerMO= api.findOrgsByName(organizationName) pMgr= api.getPersonManager() submitRequest(api, 'personCreate:'+ str(attrDict), pMgr.createPerson, containerMO[0], person, None) # Test command for developer use only. def cmdTest(orgName): policies= api.findProvisioningPolices('(erpolicyitemname=TAM)') print policies print policies[0] print policies[0].getData() print policies[0].getData().getDescription() print policies[0].getData().getEntitlements() print policies[0].getData().getEntitlements()[0].getType() print policies[0].getData().getEntitlements()[0].getTarget() print policies[0].getData().getEntitlements()[0].getProvisioningParameters() # Wait for requests to complete def cmdWaitForRequests(timeout): log('cmd: waitForRequests('+ timeout +')') if options['dryrun']: return if api.requestsComplete(int(timeout)): log('Result: waitForRequests: Request processing completed.') else: log('Result: waitForRequests: Some requests have not completed.') # Wait a specified amount of time def cmdWait(timeout): log('cmd: wait('+ timeout +')') if options['dryrun']: return time.sleep(int(timeout)) # Map command names to number of args and function. The argStyle option is to allow different # styles of arg evaluation prior to calling the command function. CMD={ #command Name: (argStyle, numArgs, functionName) 'accountAttr': (2,2,cmdAccountAttr), 'accountRestore': (1,1,cmdAccountRestore), 'personAttr': (2,2,cmdPersonAttr), 'serviceAttr': (2,2,cmdServiceAttr), # 'systemuserAttr': (2,2,cmdSystemUserAttr), 'personExtract': (2,2,cmdPersonExtract), 'personRestore': (1,1,cmdPersonRestore), 'personSuspend': (1,1,cmdPersonSuspend), 'personCreate': (3,3,cmdPersonCreate), 'test': (1,1,cmdTest), 'wait': (1,1,cmdWait), 'waitForRequests': (1,1,cmdWaitForRequests), } # Map attribute command names to operation and function name. # These are the "old" style attribute commands. They are being included # since the syntax was included in the design brief. #ATTRCMD={ # #command Name: (op, functionName) # 'personAttrAdd': ('Add',cmdPersonAttrOp), # 'personAttrDel': ('Del',cmdPersonAttrOp), # 'personAttrRep': ('Rep',cmdPersonAttrOp), #} # Main command processing loop. Read commands from input file and process them. # There is special handling for attribute commands. def processCommands(cmdfile): linenum= 0 for cmdline in cmdfile.readlines(): linenum += 1 cmdline= cmdline.strip() if len(cmdline) == 0: # skip empty lines continue if cmdline[0] == '#': # skip comment lines continue fields= cmdline.split('~') cmd= fields[0] # special processing for attribute commands # if cmd in ATTRCMD.keys(): # op, cmdFn= ATTRCMD[cmd] # cmdFn(op, fields[1], eval(fields[2])) # continue if not cmd in CMD.keys(): raise NameError('Unknown command: '+ cmd +' at line '+ str(linenum)) argStyle, numArgs, cmdFn = CMD[cmd] if numArgs < len(fields) - 1: raise TypeError('Missing args for command: '+ cmd +' at line '+ linenum) if argStyle == 0: cmdFn() elif argStyle == 1: cmdFn(fields[1]) elif argStyle == 2: cmdFn(fields[1],eval(fields[2])) elif argStyle == 3: cmdFn(fields[1], fields[2], eval(fields[3])) elif argStyle == 4: cmdFn(fields[1], eval(fields[2]), eval(fields[3])) debug('Command processing completed:') #### Main Program ##### options= getOptions() infile= sys.stdin if 'cmdfile' in options.keys(): infile= open(options['cmdfile'],'r') outfile= sys.stderr if 'outfile' in options.keys(): debug('Writing to '+ options['outfile']) outfile= open(options['outfile'],'w') api= Itimapi(PLATFORM_ID, options['platformpw'], options['userid'], options['userpw']) try: processCommands(infile) if api.requestsComplete(FINAL_WAIT_TIME): log('Request processing completed.') else: log('Some requests have not completed. View the request status in the ITIM console') except KeyboardInterrupt: # Exit nicely on Ctrl-C pass api.close() outfile.close()
python
import random from careers.career_enums import GigResult from careers.career_gig import Gig, TELEMETRY_GIG_PROGRESS_TIMEOUT, TELEMETRY_GIG_PROGRESS_COMPLETE from sims4.localization import TunableLocalizedStringFactory from sims4.tuning.instances import lock_instance_tunables from sims4.tuning.tunable import TunableReference, OptionalTunable, TunablePercent, TunableTuple from tunable_time import TunableTimeSpan import services import sims4 logger = sims4.log.Logger('HomeAssignmentGig', default_owner='rrodgers') class HomeAssignmentGig(Gig): INSTANCE_TUNABLES = {'gig_picker_localization_format': TunableLocalizedStringFactory(description='\n String used to format the description in the gig picker. Currently\n has tokens for name, payout, gig time, tip title, and tip text.\n '), 'gig_assignment_aspiration': TunableReference(description='\n An aspiration to use as the assignment for this gig. The objectives\n of this aspiration\n ', manager=services.get_instance_manager(sims4.resources.Types.ASPIRATION), class_restrictions='AspirationGig'), 'bonus_gig_aspiration_tuning': OptionalTunable(description='\n Tuning for the bonus gig aspiration. This is optional, but if the\n aspiration is completed, it results in a chance for a better\n outcome.\n ', tunable=TunableTuple(bonus_gig_aspiration=TunableReference(description="\n The bonus aspiration to use as part of this gig's \n assignments.\n ", manager=services.get_instance_manager(sims4.resources.Types.ASPIRATION), class_restrictions='Aspiration'), great_success_chance=TunablePercent(description='\n Chance of a SUCCESS outcome being upgraded to \n GREAT_SUCCESS.\n ', default=0.0))), 'great_success_remaining_time': OptionalTunable(description='\n If the aspiration for this gig is completed with more than this\n amount of time left, the gig will be considered a great success.\n ', tunable=TunableTimeSpan())} @classmethod def get_aspiration(cls): return cls.gig_assignment_aspiration def register_aspiration_callbacks(self): super().register_aspiration_callbacks() if self.bonus_gig_aspiration_tuning is None: return bonus_aspiration = self.bonus_gig_aspiration_tuning.bonus_gig_aspiration if not bonus_aspiration: return bonus_aspiration.register_callbacks() aspiration_tracker = self._owner.aspiration_tracker if aspiration_tracker is not None: aspiration_tracker.validate_and_return_completed_status(bonus_aspiration) aspiration_tracker.process_test_events_for_aspiration(bonus_aspiration) def set_up_gig(self): super().set_up_gig() aspiration_tracker = self._owner.aspiration_tracker aspiration_tracker.reset_milestone(self.gig_assignment_aspiration) self.gig_assignment_aspiration.register_callbacks() aspiration_tracker.process_test_events_for_aspiration(self.gig_assignment_aspiration) if self.bonus_gig_aspiration_tuning is not None and self.bonus_gig_aspiration_tuning.bonus_gig_aspiration is not None: aspiration_tracker.reset_milestone(self.bonus_gig_aspiration_tuning.bonus_gig_aspiration) self.bonus_gig_aspiration_tuning.bonus_gig_aspiration.register_callbacks() aspiration_tracker.process_test_events_for_aspiration(self.bonus_gig_aspiration_tuning.bonus_gig_aspiration) def _determine_gig_outcome(self): completed_objectives = 0 aspiration_tracker = self._owner.aspiration_tracker if aspiration_tracker is not None: for objective in self.gig_assignment_aspiration.objectives: if aspiration_tracker.objective_completed(objective): completed_objectives += 1 completed_bonus_objectives = 0 if self.bonus_gig_aspiration_tuning is not None: if self.bonus_gig_aspiration_tuning.bonus_gig_aspiration is not None: for objective in self.bonus_gig_aspiration_tuning.bonus_gig_aspiration.objectives: if aspiration_tracker.objective_completed(objective): completed_bonus_objectives += 1 else: completed_objectives = len(self.gig_assignment_aspiration.objectives) completed_bonus_objectives = 0 remaining_time = self._upcoming_gig_time - services.time_service().sim_now if completed_objectives < len(self.gig_assignment_aspiration.objectives): if completed_objectives == 0: self._gig_result = GigResult.CRITICAL_FAILURE elif self.critical_failure_test is not None: resolver = self.get_resolver_for_gig() if self.critical_failure_test.run_tests(resolver=resolver): self._gig_result = GigResult.CRITICAL_FAILURE else: self._gig_result = GigResult.FAILURE else: self._gig_result = GigResult.FAILURE self._send_gig_telemetry(TELEMETRY_GIG_PROGRESS_TIMEOUT) elif self.great_success_remaining_time and remaining_time > self.great_success_remaining_time(): self._gig_result = GigResult.GREAT_SUCCESS self._send_gig_telemetry(TELEMETRY_GIG_PROGRESS_COMPLETE) elif completed_bonus_objectives > 0: self._send_gig_telemetry(TELEMETRY_GIG_PROGRESS_COMPLETE) if self.bonus_gig_aspiration_tuning and self.bonus_gig_aspiration_tuning.great_success_chance and random.random() <= self.bonus_gig_aspiration_tuning.great_success_chance: self._gig_result = GigResult.GREAT_SUCCESS else: self._gig_result = GigResult.SUCCESS else: self._gig_result = GigResult.SUCCESS self._send_gig_telemetry(TELEMETRY_GIG_PROGRESS_COMPLETE) def get_overmax_evaluation_result(self, reward_text, overmax_level, *args, **kwargs): return super().get_overmax_evaluation_result(reward_text, overmax_level, *args, **kwargs) def send_prep_task_update(self): pass @classmethod def build_gig_msg(cls, msg, sim, **kwargs): super().build_gig_msg(msg, sim, **kwargs) msg.aspiration_id = cls.gig_assignment_aspiration.guid64 def treat_work_time_as_due_date(self): return True lock_instance_tunables(HomeAssignmentGig, gig_prep_tasks=None, audio_on_prep_task_completion=None, career_events=None, gig_cast_rel_bit_collection_id=None, gig_cast=None, end_of_gig_dialog=None, payout_stat_data=None)
python
"""Plugwise Switch component for HomeAssistant.""" from __future__ import annotations from typing import Any from plugwise.exceptions import PlugwiseException from homeassistant.components.switch import SwitchEntity from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.entity_platform import AddEntitiesCallback from .const import DOMAIN, LOGGER, SWITCH_ICON from .coordinator import PlugwiseDataUpdateCoordinator from .entity import PlugwiseEntity async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up the Smile switches from a config entry.""" coordinator = hass.data[DOMAIN][config_entry.entry_id] async_add_entities( PlugwiseSwitchEntity(coordinator, device_id) for device_id, device in coordinator.data.devices.items() if "switches" in device and "relay" in device["switches"] ) class PlugwiseSwitchEntity(PlugwiseEntity, SwitchEntity): """Representation of a Plugwise plug.""" _attr_icon = SWITCH_ICON def __init__( self, coordinator: PlugwiseDataUpdateCoordinator, device_id: str, ) -> None: """Set up the Plugwise API.""" super().__init__(coordinator, device_id) self._attr_unique_id = f"{device_id}-plug" self._members = coordinator.data.devices[device_id].get("members") self._attr_is_on = False self._attr_name = coordinator.data.devices[device_id].get("name") async def async_turn_on(self, **kwargs: Any) -> None: """Turn the device on.""" try: state_on = await self.coordinator.api.set_switch_state( self._dev_id, self._members, "relay", "on" ) except PlugwiseException: LOGGER.error("Error while communicating to device") else: if state_on: self._attr_is_on = True self.async_write_ha_state() async def async_turn_off(self, **kwargs: Any) -> None: """Turn the device off.""" try: state_off = await self.coordinator.api.set_switch_state( self._dev_id, self._members, "relay", "off" ) except PlugwiseException: LOGGER.error("Error while communicating to device") else: if state_off: self._attr_is_on = False self.async_write_ha_state() @callback def _handle_coordinator_update(self) -> None: """Handle updated data from the coordinator.""" if not (data := self.coordinator.data.devices.get(self._dev_id)): LOGGER.error("Received no data for device %s", self._dev_id) super()._handle_coordinator_update() return self._attr_is_on = data["switches"].get("relay") super()._handle_coordinator_update()
python
# Copyright (c) 2020 Simons Observatory. # Full license can be found in the top level "LICENSE" file. import numpy as np from toast.timing import function_timer, Timer from toast.utils import Logger from ..sim_hwpss import OpSimHWPSS def add_sim_hwpss_args(parser): parser.add_argument( "--hwpss-file", required=False, help="Database of HWPSS by frequency and incident angle", ) parser.add_argument( "--simulate-hwpss", required=False, action="store_true", help="Simulate HWPSS", dest="simulate_hwpss", ) parser.add_argument( "--no-simulate-hwpss", required=False, action="store_false", help="Do not simulate HWPSS", dest="simulate_hwpss", ) parser.set_defaults(simulate_hwpss=False) return def simulate_hwpss(args, comm, data, mc, name): if not args.simulate_hwpss: return log = Logger.get() timer = Timer() timer.start() hwpssop = OpSimHWPSS(name=name, fname_hwpss=args.hwpss_file, mc=mc) hwpssop.exec(data) timer.report_clear("Simulate HWPSS") return
python
import pandas as pd import numpy as np from pyam import utils def test_pattern_match_none(): data = pd.Series(['foo', 'bar']) values = ['baz'] obs = utils.pattern_match(data, values) exp = [False, False] assert (obs == exp).all() def test_pattern_match_nan(): data = pd.Series(['foo', np.nan]) values = ['baz'] obs = utils.pattern_match(data, values) exp = [False, False] assert (obs == exp).all() def test_pattern_match_one(): data = pd.Series(['foo', 'bar']) values = ['foo'] obs = utils.pattern_match(data, values) exp = [True, False] assert (obs == exp).all() def test_pattern_match_str_regex(): data = pd.Series(['foo', 'foo2', 'bar']) values = ['foo'] obs = utils.pattern_match(data, values) exp = [True, False, False] assert (obs == exp).all() def test_pattern_match_ast_regex(): data = pd.Series(['foo', 'foo2', 'bar']) values = ['foo*'] obs = utils.pattern_match(data, values) exp = [True, True, False] assert (obs == exp).all() def test_pattern_match_plus(): data = pd.Series(['foo', 'foo+', '+bar', 'b+az']) values = ['*+*'] obs = utils.pattern_match(data, values) exp = [False, True, True, True] assert (obs == exp).all() def test_pattern_match_dot(): data = pd.Series(['foo', 'fo.']) values = ['fo.'] obs = utils.pattern_match(data, values) exp = [False, True] assert (obs == exp).all() def test_pattern_match_brackets(): data = pd.Series(['foo (bar)', 'foo bar']) values = ['foo (bar)'] obs = utils.pattern_match(data, values) exp = [True, False] assert (obs == exp).all() def test_pattern_match_dollar(): data = pd.Series(['foo$bar', 'foo']) values = ['foo$bar'] obs = utils.pattern_match(data, values) exp = [True, False] assert (obs == exp).all() def test_pattern_regexp(): data = pd.Series(['foo', 'foa', 'foo$']) values = ['fo.$'] obs = utils.pattern_match(data, values, regexp=True) exp = [True, True, False] assert (obs == exp).all()
python
from __future__ import absolute_import, division, print_function from appr.models.kv.channel_kv_base import ChannelKvBase from appr.models.kv.etcd.models_index import ModelsIndexEtcd class Channel(ChannelKvBase): index_class = ModelsIndexEtcd
python
# coding: utf-8 """ RLSData.py The Clear BSD License Copyright (c) – 2016, NetApp, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of NetApp, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from pprint import pformat from six import iteritems class RLSData(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ RLSData - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'device': 'RLSDevice', # (required parameter) 'channel': 'int', # (required parameter) 'loop_map_index': 'int', # (required parameter) 'rls_count': 'RLSCount', # (required parameter) 'baseline_time': 'int', # (required parameter) 'valid': 'bool' } self.attribute_map = { 'device': 'device', # (required parameter) 'channel': 'channel', # (required parameter) 'loop_map_index': 'loopMapIndex', # (required parameter) 'rls_count': 'rlsCount', # (required parameter) 'baseline_time': 'baselineTime', # (required parameter) 'valid': 'valid' } self._device = None self._channel = None self._loop_map_index = None self._rls_count = None self._baseline_time = None self._valid = None @property def device(self): """ Gets the device of this RLSData. The SYMbol reference value that uniquely identifies this device. :return: The device of this RLSData. :rtype: RLSDevice :required/optional: required """ return self._device @device.setter def device(self, device): """ Sets the device of this RLSData. The SYMbol reference value that uniquely identifies this device. :param device: The device of this RLSData. :type: RLSDevice """ self._device = device @property def channel(self): """ Gets the channel of this RLSData. The channel the device is on. :return: The channel of this RLSData. :rtype: int :required/optional: required """ return self._channel @channel.setter def channel(self, channel): """ Sets the channel of this RLSData. The channel the device is on. :param channel: The channel of this RLSData. :type: int """ self._channel = channel @property def loop_map_index(self): """ Gets the loop_map_index of this RLSData. The position in the fibre loop map the device is located at. :return: The loop_map_index of this RLSData. :rtype: int :required/optional: required """ return self._loop_map_index @loop_map_index.setter def loop_map_index(self, loop_map_index): """ Sets the loop_map_index of this RLSData. The position in the fibre loop map the device is located at. :param loop_map_index: The loop_map_index of this RLSData. :type: int """ self._loop_map_index = loop_map_index @property def rls_count(self): """ Gets the rls_count of this RLSData. The RLS count for this device. :return: The rls_count of this RLSData. :rtype: RLSCount :required/optional: required """ return self._rls_count @rls_count.setter def rls_count(self, rls_count): """ Sets the rls_count of this RLSData. The RLS count for this device. :param rls_count: The rls_count of this RLSData. :type: RLSCount """ self._rls_count = rls_count @property def baseline_time(self): """ Gets the baseline_time of this RLSData. The baseline time for this device, expressed as seconds since midnight GMT on January 1, 1970. :return: The baseline_time of this RLSData. :rtype: int :required/optional: required """ return self._baseline_time @baseline_time.setter def baseline_time(self, baseline_time): """ Sets the baseline_time of this RLSData. The baseline time for this device, expressed as seconds since midnight GMT on January 1, 1970. :param baseline_time: The baseline_time of this RLSData. :type: int """ self._baseline_time = baseline_time @property def valid(self): """ Gets the valid of this RLSData. Set to true if the RSL Data is valid for the device. :return: The valid of this RLSData. :rtype: bool :required/optional: required """ return self._valid @valid.setter def valid(self, valid): """ Sets the valid of this RLSData. Set to true if the RSL Data is valid for the device. :param valid: The valid of this RLSData. :type: bool """ self._valid = valid def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ if self is None: return None return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if self is None or other is None: return None return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
python
# Generated by Django 3.1.2 on 2020-10-30 15:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pages', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='page', options={'ordering': ['order', 'title'], 'verbose_name': 'página', 'verbose_name_plural': 'páginas'}, ), migrations.AddField( model_name='page', name='order', field=models.SmallIntegerField(default=0, verbose_name='order'), ), ]
python
import csv import cv2 import pandas as pd import numpy as np import os import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.utils import shuffle import sklearn import tensorflow as tf import pickle import keras from sklearn.externals import joblib from keras.models import Sequential from keras.layers import Flatten, Dense, Lambda, Dropout, Cropping2D from keras.layers import Convolution2D from keras.layers import MaxPooling2D from keras.optimizers import Adam batch_size = 32 def generator2(samples, batch_size=batch_size): num_samples = len(samples) correction=0.4 while 1: # Loop forever so the generator never terminates shuffle(samples) for offset in range(0, num_samples, batch_size): batch_samples = samples[offset:offset+batch_size] images = [] angles = [] for batch_sample in batch_samples: name = os.path.join(data_folder, "/".join(batch_sample[0].strip().split('/')[-2:])) center_image = cv2.imread(name) center_angle = float(batch_sample[3]) images.append(center_image) angles.append(center_angle) angles.append(-1.*center_angle) images.append(cv2.flip(center_image, 1)) name_left = os.path.join(data_folder, "/".join(batch_sample[1].strip().split('/')[-2:])) left_img = cv2.imread(name_left) left_angle = center_angle+correction images.append(left_img) angles.append(left_angle) angles.append(-1*left_angle) images.append(cv2.flip(left_img, 1)) name_right = os.path.join(data_folder, "/".join(batch_sample[2].strip().split('/')[-2:])) right_img = cv2.imread(name_right) right_angle = center_angle-correction images.append(right_img) angles.append(right_angle) angles.append(-1*right_angle) images.append(cv2.flip(right_img, 1)) X_train = np.array(images) y_train = np.array(angles) yield sklearn.utils.shuffle(X_train, y_train) data_folder = "P4Data" samples = [] with open(os.path.join(data_folder, 'driving_log.csv')) as csvfile: reader = csv.reader(csvfile) for i, line in enumerate(reader): samples.append(line) train_samples, validation_samples = train_test_split(samples, test_size=0.2) # compile and train the model using the generator function train_generator = generator2(train_samples, batch_size=batch_size) validation_generator = generator2(validation_samples, batch_size=batch_size) drop_prob = 0.25 n_epochs = 20 class mycb(keras.callbacks.Callback): def on_epoch_begin(self, epoch, logs=None): lr = self.model.optimizer.lr decay = self.model.optimizer.decay iterations = self.model.optimizer.iterations lr_with_decay = lr / (1. + decay * keras.backend.cast(iterations, keras.backend.dtype(decay))) print(keras.backend.eval(lr_with_decay)) cb = mycb() optimizer = keras.optimizers.Adam(lr=1e-3) model = Sequential() model.add(Lambda(lambda x: (x / 255.0) - 0.5, input_shape=(160,320,3))) model.add(Cropping2D(cropping=((50,20), (0,0)))) model.add(Convolution2D(24,5, strides=(2,2), activation='relu')) model.add(Convolution2D(36,5, strides=(2,2), activation='relu')) model.add(Convolution2D(48,5, strides=(2,2), activation='relu')) model.add(Convolution2D(64,3, activation='relu')) model.add(Convolution2D(64,3, activation='relu')) model.add(Flatten()) model.add(Dense(100, activation='relu')) model.add(Dropout(rate=drop_prob)) model.add(Dense(50, activation='relu')) model.add(Dropout(rate=drop_prob)) #model.add(keras.layers.LeakyReLU()) # model.add(Dense(10, activation='relu')) #model.add(Dropout(rate=drop_prob)) #model.add(keras.layers.LeakyReLU()) model.add(Dense(1)) model.compile(loss='mse', optimizer=optimizer) train_stps_epoch = 3*2*len(train_samples)//batch_size #approx val_stps_epoch = 3*2*len(validation_samples)//batch_size #approx history = model.fit_generator(train_generator, validation_data=validation_generator, epochs=n_epochs, steps_per_epoch=train_stps_epoch, validation_steps=val_stps_epoch, shuffle=True, callbacks=[cb]) with open('trainHistoryDict', 'wb') as file_pi: pickle.dump(history.history, file_pi) model.save("model.h5")
python
"""Auto-generated file, do not edit by hand. SA metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_SA = PhoneMetadata(id='SA', country_code=966, international_prefix='00', general_desc=PhoneNumberDesc(national_number_pattern='(?:[1-467]|92)\\d{7}|5\\d{8}|8\\d{9}', possible_number_pattern='\\d{7,10}'), fixed_line=PhoneNumberDesc(national_number_pattern='(?:[12][24-8]|3[35-8]|4[3-68]|6[2-5]|7[235-7])\\d{6}', possible_number_pattern='\\d{7,8}', example_number='12345678'), mobile=PhoneNumberDesc(national_number_pattern='(?:5[013-689]\\d|8111)\\d{6}', possible_number_pattern='\\d{9,10}', example_number='512345678'), toll_free=PhoneNumberDesc(national_number_pattern='800\\d{7}', possible_number_pattern='\\d{10}', example_number='8001234567'), premium_rate=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), shared_cost=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), personal_number=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), voip=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), pager=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), uan=PhoneNumberDesc(national_number_pattern='9200\\d{5}', possible_number_pattern='\\d{9}', example_number='920012345'), emergency=PhoneNumberDesc(national_number_pattern='99[7-9]', possible_number_pattern='\\d{3}', example_number='999'), voicemail=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), no_international_dialling=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), national_prefix='0', national_prefix_for_parsing='0', number_format=[NumberFormat(pattern='([1-467])(\\d{3})(\\d{4})', format=u'\\1 \\2 \\3', leading_digits_pattern=['[1-467]'], national_prefix_formatting_rule=u'0\\1'), NumberFormat(pattern='(5\\d)(\\d{3})(\\d{4})', format=u'\\1 \\2 \\3', leading_digits_pattern=['5'], national_prefix_formatting_rule=u'0\\1'), NumberFormat(pattern='(9200)(\\d{5})', format=u'\\1 \\2', leading_digits_pattern=['9'], national_prefix_formatting_rule=u'\\1'), NumberFormat(pattern='(800)(\\d{3})(\\d{4})', format=u'\\1 \\2 \\3', leading_digits_pattern=['80'], national_prefix_formatting_rule=u'\\1'), NumberFormat(pattern='(8111)(\\d{3})(\\d{3})', format=u'\\1 \\2 \\3', leading_digits_pattern=['81'], national_prefix_formatting_rule=u'0\\1')])
python
from rest_framework.viewsets import ModelViewSet from exam.models import TblExamRecord as Model from exam.serializers import RecordSerializer as Serializer class RecordViewset(ModelViewSet): queryset = Model.objects.all().order_by('-id') serializer_class = Serializer
python
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class MybankCreditSupplychainCreditpayAmountQueryResponse(AlipayResponse): def __init__(self): super(MybankCreditSupplychainCreditpayAmountQueryResponse, self).__init__() self._admit = None self._available_amt = None self._buyer_scene_id = None self._signed = None self._total_amt = None self._trace_id = None @property def admit(self): return self._admit @admit.setter def admit(self, value): self._admit = value @property def available_amt(self): return self._available_amt @available_amt.setter def available_amt(self, value): self._available_amt = value @property def buyer_scene_id(self): return self._buyer_scene_id @buyer_scene_id.setter def buyer_scene_id(self, value): self._buyer_scene_id = value @property def signed(self): return self._signed @signed.setter def signed(self, value): self._signed = value @property def total_amt(self): return self._total_amt @total_amt.setter def total_amt(self, value): self._total_amt = value @property def trace_id(self): return self._trace_id @trace_id.setter def trace_id(self, value): self._trace_id = value def parse_response_content(self, response_content): response = super(MybankCreditSupplychainCreditpayAmountQueryResponse, self).parse_response_content(response_content) if 'admit' in response: self.admit = response['admit'] if 'available_amt' in response: self.available_amt = response['available_amt'] if 'buyer_scene_id' in response: self.buyer_scene_id = response['buyer_scene_id'] if 'signed' in response: self.signed = response['signed'] if 'total_amt' in response: self.total_amt = response['total_amt'] if 'trace_id' in response: self.trace_id = response['trace_id']
python
import string import numpy import copy from domrl.engine.agent import Agent """ class Agent(object): def choose(self, decision, state): return decision.moves[0] class StdinAgent(Agent): def choose(self, decision, state): # Autoplay if len(decision.moves) == 1: return [0] player = decision.player print(f" ==== Decision to be made by {player} ==== ") print(f"Actions: {player.actions} | Buys: {player.buys} | Coins: {player.coins}") print("Hand: ", list(map(str, player.hand))) print(decision.prompt) for idx, move in enumerate(decision.moves): print(f"{idx}: {move}") # Get user input and process it. while True: user_input = input() if user_input == "?": state.event_log.print(player) print(state) else: try: ans = list(map(lambda x: int(x.strip()), user_input.split(','))) except: print('Clearly invalid input. Please try again.') continue break return ans class APIAgent(Agent): def choose(self, decision, state): # Autoplay # if len(decision.moves) == 1: # return [0] player = decision.player actions = player.actions buys = player.buys coins = player.coins moves = decision.moves hand = player.hand state while True: user_input = input() if user_input == "?": state.event_log.print(player) print(state) else: ans = list(map(lambda x: int(x.strip()), user_input.split(','))) break return ans """ class RandomAgent(Agent): def policy(self, decision, state): if 'Trash up to 4' in decision.prompt: # for chapel my_list = [] range_max = numpy.random.randint(0, min(len(decision.moves), 4) + 1, 1, int) for idx in range(0, range_max[0]): new_item = -1 while new_item == -1 or new_item in my_list: new_item = numpy.random.randint(0, len(decision.moves), 1, int)[0] my_list.append(new_item) return my_list if len(decision.moves) == 0: return [] if 'Discard down to 3 cards' in decision.prompt: # for militia my_list = [] range_max = max(len(decision.player.hand) - 3, 0) for idx in range(0, range_max): new_item = -1 while new_item == -1 or new_item in my_list: new_item = numpy.random.randint(0, len(decision.moves), 1, int)[0] my_list.append(new_item) return my_list value = list(numpy.random.randint(0, len(decision.moves), 1, int)) return value class PassOnBuySemiAgent(Agent): def policy(self, decision, state): if 'Buy' in decision.prompt: return [0] class CleverAgentOld(Agent): def __init__(self, agent): self.agent = agent def policy(self, decision, state): initialDecision = copy.deepcopy(decision) # Automove If One Move if len(decision.moves) == 1: return [0] for idx in range(0, len(initialDecision.moves)): move = initialDecision.moves[idx] if "Buy: Curse" in move.__str__(): decision.moves.pop(idx) if hasattr(move, "card") and ( move.card.add_actions > 0 or ("treasure" in decision.prompt.lower() and move.card.coins > 0)): return self.restrictDecision(decision.moves, initialDecision.moves, idx) restrictedChoice = self.agent.policy(decision, state) return self.restrictDecision(decision.moves, initialDecision.moves, restrictedChoice[0]) def restrictDecision(self, moves, initialMoves, chosen): for idx in range(0, len(initialMoves)): if str(initialMoves[idx]) == str(moves[chosen]): return list([idx]) return [chosen] class RulesSemiAgent(Agent): def policy(self, decision, state): # Automove If One Move if len(decision.moves) == 1: return [0] for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if "Bandit" in str(move): # currently does not work decision.moves.pop(idx) if "Remodel" in str(move): # currently does not work decision.moves.pop(idx) class CleverSemiAgent(Agent): def policy(self, decision, state): # Automove If One Move if len(decision.moves) == 1: return [0] for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if "Buy: Curse" in move.__str__(): decision.moves.pop(idx) if hasattr(move, "card") and ( move.card.add_actions > 0 or ("treasure" in decision.prompt.lower() and move.card.coins > 0)): return [idx] class ApplySemiAgent(Agent): def __init__(self, semiAgents, agent): self.semiAgents = semiAgents self.agent = agent def policy(self, decision, state): for semiAgent in self.semiAgents: value = semiAgent.policy(decision, state) if value is not None: return value return self.agent.policy(decision, state) class BigMoneySemiAgent(Agent): def policy(self, decision, state): for stringDesired in ["Buy: Province", "Buy: Gold", "Buy: Silver"]: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if stringDesired in move.__str__(): return [idx] class SmithySemiAgent(Agent): def policy(self, decision, state): for stringDesired in ["Play: Smithy"]: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if stringDesired in move.__str__(): return [idx] for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if "Buy: Smithy" in move.__str__() and ( sum(1 for c in decision.player.all_cards if 'Smithy' in str(c)) / len( decision.player.all_cards) < 0.1): return [idx] class DontBuyCopperOrEstateSemiAgent(Agent): def policy(self, decision, state): for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if 'Buy: Copper' in str(move) or 'Buy: Estate' in str(move): decision.moves.pop(idx) class MyHeuristicSemiAgent(Agent): def policy(self, decision, state): for stringDesired in []: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if stringDesired in move.__str__(): return [idx] if 'Action' in decision.prompt: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if 'Militia' in str(move) or 'Smithy' in str(move): return [idx] if 'Buy' not in decision.prompt and 'Choose a pile to gain card from.' not in decision.prompt: return desired_deck = {'Festival': 1, 'Market': 1, 'Militia': 1, 'Smithy': 0.1, 'Village': 0.2} if numpy.random.randint(0, 2, 1, int) == 1: desired_deck = {'Market': 1, 'Festival': 1, 'Smithy': 0.1, 'Militia': 1, 'Village': 0.2} for wish in desired_deck: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if wish in str(move) and ( sum(1 for c in decision.player.all_cards if wish in str(c)) / len( decision.player.all_cards) < desired_deck[wish]): return [idx] class MarketSemiAgent(Agent): def policy(self, decision, state): if 'Action' in decision.prompt: for stringDesired in ['Empty']: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if 'Militia' in str(move): return [idx] if 'Smithy' in str(move) and decision.player.actions > 1: return [idx] if stringDesired in str(move): return [idx] if 'Buy' not in decision.prompt and 'Choose a pile to gain card from.' not in decision.prompt: return desired_deck = {'Market': 1, 'Militia': 0.001, 'Smithy': 0.001, 'Village': 0.2} for wish in desired_deck: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if wish in str(move): if sum(1 for c in decision.player.all_cards if wish in str(c)) / len( decision.player.all_cards) < desired_deck[wish]: return [idx] class CustomHeuristicsSemiAgent(Agent): def __init__(self, desired_decks): self.desired_deck = desired_decks def policy(self, decision, state): if 'Action' in decision.prompt: for stringDesired in ['Empty']: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if 'Militia' in str(move): return [idx] if 'Smithy' in str(move) and decision.player.actions > 1: return [idx] if stringDesired in str(move): return [idx] if 'Buy' not in decision.prompt and 'Choose a pile to gain card from.' not in decision.prompt: return for wish in self.desired_deck: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if wish in str(move): if sum(1 for c in decision.player.all_cards if wish in str(c)) / len( decision.player.all_cards) < self.desired_deck[wish]: return [idx] class MarketNoSmithySemiAgent(Agent): def policy(self, decision, state): if 'Action' in decision.prompt: for stringDesired in ['Empty']: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if 'Militia' in str(move): return [idx] if 'Smithy' in str(move) and decision.player.actions > 1: return [idx] if stringDesired in str(move): return [idx] if 'Buy' not in decision.prompt and 'Choose a pile to gain card from.' not in decision.prompt: return desired_deck = {'Market': 1, 'Militia': 0.1, 'Village': 0.2} for wish in desired_deck: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if wish in str(move): if sum(1 for c in decision.player.all_cards if wish in str(c)) / len( decision.player.all_cards) < desired_deck[wish]: return [idx] class MarketNoSmithySemiAgent2(Agent): def policy(self, decision, state): if 'Action' in decision.prompt: for stringDesired in ['Empty']: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if 'Militia' in str(move): return [idx] if 'Smithy' in str(move) and decision.player.actions > 1: return [idx] if stringDesired in str(move): return [idx] if 'Buy' not in decision.prompt and 'Choose a pile to gain card from.' not in decision.prompt: return desired_deck = {'Market': 1, 'Militia': 0.2, 'Village': 0.2} for wish in desired_deck: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if wish in str(move): if sum(1 for c in decision.player.all_cards if wish in str(c)) / len( decision.player.all_cards) < desired_deck[wish]: return [idx] class OnlyBuyCopperIfSemiAgent(Agent): def policy(self, decision, state): for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if "Buy: Copper" in str(move): if sum(c.coins for c in decision.player.all_cards) < 5: return [idx] else: decision.moves.pop(idx) class ChapelSemiAgent(Agent): def policy(self, decision, state): if 'Action' in decision.prompt: for c in decision.player.hand: if 'Estate' in str(c): for idx in range(0, len(decision.moves)): if 'Play: Chapel' in str(decision.moves[idx]): return [idx] if 'Trash up to 4' in decision.prompt: moves = [] for idx in range(0, len(decision.moves)): if len(moves) >= 4: break try: move = decision.moves[idx] except: break if "Choose: Estate" in move.__str__(): moves.append(idx) for idx in range(0, len(decision.moves)): if len(moves) >= 4: break try: move = decision.moves[idx] except: break if "Choose: Copper" in move.__str__() and ( sum(c.coins for c in decision.player.all_cards) - sum(1 for planned_move in moves if 'Copper' in str(planned_move)) > 5): moves.append(idx) return moves if 'Buy' in decision.prompt: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if 'Buy: Chapel' in str(move) and decision.player.coins < 4 and ( sum(1 for c in decision.player.all_cards if 'Chapel' in str(c)) == 0): return [idx] class AggressiveChapelSemiAgent(ChapelSemiAgent): def policy(self, decision, state): if 'Action' in decision.prompt: for c in decision.player.hand: if 'Estate' in str(c) or ('Copper' in str(c) and sum(c.coins for c in decision.player.all_cards) > 5): for idx in range(0, len(decision.moves)): if 'Play: Chapel' in str(decision.moves[idx]): return [idx] if 'Trash' in decision.prompt: moves = [] for idx in range(0, len(decision.moves)): if len(moves) >= 4: break try: move = decision.moves[idx] except: break if "Choose: Estate" in str(move): moves.append(idx) for idx in range(0, len(decision.moves)): if len(moves) >= 4: break try: move = decision.moves[idx] except: break if "Choose: Copper" in str(move) and ( sum(c.coins for c in decision.player.all_cards) - sum(1 for planned_move in moves if 'Copper' in str(decision.moves[planned_move])) > 5): moves.append(idx) return moves for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if "Buy: Chapel" in str(move) and (sum(1 for c in decision.player.all_cards if 'Chapel' in str(c)) > 0): decision.moves.pop(idx) if "Buy: Chapel" in str(move) and decision.player.coins < 4 and ( sum(1 for c in decision.player.all_cards if 'Chapel' in str(c)) == 0): return [idx] class ProvinceSemiAgent(Agent): def policy(self, decision, state): for stringDesired in ["Buy: Province"]: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if stringDesired in move.__str__(): return [idx] class ProvinceNeverLoseSemiAgent(Agent): def policy(self, decision, state): desired_strings = ["Buy: Province"] if (state.supply_piles['Province'].qty == 1 and (6 + decision.player.total_vp() < max(state.other_players, key=lambda pr: pr.total_vp()).total_vp())): desired_strings = ["Buy: Duchy"] for stringDesired in desired_strings: for idx in range(0, len(decision.moves)): try: move = decision.moves[idx] except: break if stringDesired in str(move): return [idx]
python
"""Functional tests for pylint."""
python
import time from wrf.cache import _get_cache from wrf import getvar from netCDF4 import Dataset as nc #a = nc("/Users/ladwig/Documents/wrf_files/wrf_vortex_single/wrfout_d02_2005-08-28_00:00:00") #b = nc("/Users/ladwig/Documents/wrf_files/wrf_vortex_single/wrfout_d02_2005-08-28_03:00:00") a = nc("/Users/ladwig/Documents/wrf_files/wrf_vortex_multi/moving_nest/wrfout_d02_2005-08-28_00:00:00") b = nc("/Users/ladwig/Documents/wrf_files/wrf_vortex_multi/moving_nest/wrfout_d02_2005-08-28_12:00:00") q = {"outoutoutout" : {"outoutout" : {"outout" : {"out1" : {"blah" : [a,b], "blah2" : [a,b]}, "out2" : {"blah" : [a,b], "blah2" : [a,b]} } } } } t1 = time.time() c = getvar(q, "rh", method="cat", timeidx=None, squeeze=True) t2 = time.time() print (c) print ("time taken: {}".format((t2-t1)*1000.)) t1 = time.time() c = getvar(q, "rh", method="cat", timeidx=None, squeeze=False) t2 = time.time() print (c) print ("time taken: {}".format((t2-t1)*1000.)) t1 = time.time() c = getvar(q, "rh", method="cat", timeidx=1, squeeze=True) t2 = time.time() print (c) print ("time taken: {}".format((t2-t1)*1000.)) t1 = time.time() c = getvar(q, "rh", method="cat", timeidx=1, squeeze=False) t2 = time.time() print(c) print ("time taken: {}".format((t2-t1)*1000.)) t1 = time.time() c = getvar(q, "rh", method="join", timeidx=None, squeeze=True) t2 = time.time() print (c) print ("time taken: {}".format((t2-t1)*1000.)) t1 = time.time() c = getvar(q, "rh", method="join", timeidx=None, squeeze=False) t2 = time.time() print(c) print ("time taken: {}".format((t2-t1)*1000.)) t1 = time.time() c = getvar(q, "rh", method="join", timeidx=1, squeeze=True) t2 = time.time() print (c) print ("time taken: {}".format((t2-t1)*1000.)) t1 = time.time() c = getvar(q, "rh", method="join", timeidx=1, squeeze=False) t2 = time.time() print (c) print ("time taken: {}".format((t2-t1)*1000.))
python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from .. import _utilities import typing # Export this package's modules as members: from ._enums import * from .get_key import * from .get_managed_hsm import * from .get_mhsm_private_endpoint_connection import * from .get_private_endpoint_connection import * from .get_secret import * from .get_vault import * from .key import * from .managed_hsm import * from .mhsm_private_endpoint_connection import * from .private_endpoint_connection import * from .secret import * from .vault import * from ._inputs import * from . import outputs # Make subpackages available: if typing.TYPE_CHECKING: import pulumi_azure_native.keyvault.v20150601 as __v20150601 v20150601 = __v20150601 import pulumi_azure_native.keyvault.v20161001 as __v20161001 v20161001 = __v20161001 import pulumi_azure_native.keyvault.v20180214 as __v20180214 v20180214 = __v20180214 import pulumi_azure_native.keyvault.v20180214preview as __v20180214preview v20180214preview = __v20180214preview import pulumi_azure_native.keyvault.v20190901 as __v20190901 v20190901 = __v20190901 import pulumi_azure_native.keyvault.v20200401preview as __v20200401preview v20200401preview = __v20200401preview import pulumi_azure_native.keyvault.v20210401preview as __v20210401preview v20210401preview = __v20210401preview import pulumi_azure_native.keyvault.v20210601preview as __v20210601preview v20210601preview = __v20210601preview else: v20150601 = _utilities.lazy_import('pulumi_azure_native.keyvault.v20150601') v20161001 = _utilities.lazy_import('pulumi_azure_native.keyvault.v20161001') v20180214 = _utilities.lazy_import('pulumi_azure_native.keyvault.v20180214') v20180214preview = _utilities.lazy_import('pulumi_azure_native.keyvault.v20180214preview') v20190901 = _utilities.lazy_import('pulumi_azure_native.keyvault.v20190901') v20200401preview = _utilities.lazy_import('pulumi_azure_native.keyvault.v20200401preview') v20210401preview = _utilities.lazy_import('pulumi_azure_native.keyvault.v20210401preview') v20210601preview = _utilities.lazy_import('pulumi_azure_native.keyvault.v20210601preview')
python
import datetime import json from flask_testing import TestCase from config import create_app from db import db from models import ParkModel from models.pay_type import PayType from tests.base import generate_token from tests.factories import AdminUserFactory from tests.helpers_for_tests import GenerateTarifeData class TestPaymentResource(TestCase): def create_app(self): return create_app("config.TestingConfig") def setUp(self): self.app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False db.init_app(self.app) db.create_all() self.user = AdminUserFactory() self.token = generate_token(self.user) self.headers = { "Authorization": f"Bearer {self.token}", "Content-Type": "Application/json", } GenerateTarifeData.generate_all_needed_data() p = PayType(name="cash") db.session.add(p) db.session.commit() def tearDown(self): db.session.remove() db.drop_all() def test_pay_in_cash_when_all_is_ok_should_write_to_db(self): """ Insertt new card, try to pay, should raise error, because card not leaving, after that change status to leave, try again to pay, return success. Try again to pay already payed card, should raise error. :return: """ data = {"card": "A123"} self.path = "/parking" self.path_to_pay = "/parking/1/cash" response = self.client.post( headers=self.headers, path=self.path, data=json.dumps(data) ) test_card_after_update = ParkModel.query.filter_by(id=1).first() test_card_after_update.income = ( test_card_after_update.income - datetime.timedelta(hours=1) ) # Test to pay card when card not leave yet from parking, should raise error response = self.client.post(headers=self.headers, path=self.path_to_pay) assert response.status_code == 400 assert response.json["message"] == "This card not have bill yet" response = self.client.post( headers=self.headers, path=self.path, data=json.dumps(data) ) test_card_after_update = ParkModel.query.filter_by(id=1).first() response = self.client.post(headers=self.headers, path=self.path_to_pay) assert response.status_code == 200 assert ( response.json == f"Success pay id: 1, sum: {test_card_after_update.price}." ) # Test pay already pay card, should raise error response = self.client.post(headers=self.headers, path=self.path_to_pay) assert response.status_code == 400 assert response.json["message"] == "This bill already is payed"
python
# -*- coding: utf-8 -*- from django.http import HttpResponseRedirect from django.views.decorators.http import require_http_methods, require_GET from django.contrib import messages from django.contrib.auth.decorators import login_required from django.core.exceptions import PermissionDenied from django.contrib.auth import authenticate, login, logout from django.urls import reverse from django.utils.http import is_safe_url from django_tables2 import SingleTableView from django import forms from django.contrib import messages from django.contrib.auth.decorators import login_required from django.conf import settings from django.shortcuts import get_object_or_404, redirect, render, render_to_response from django.utils.translation import ugettext_lazy as _ from django.views.generic import TemplateView from django.views.generic.edit import UpdateView, DeleteView, CreateView, ProcessFormView from django.views.generic import FormView from django.views.generic.detail import SingleObjectMixin from rest_framework.authtoken.models import Token from rest_framework.decorators import action from rest_framework import generics from rest_framework import viewsets from rest_framework import views, status from braces import views as braces_view from .serializers import UserSerializer, UserProfileSerializer, SSHKeySerializer, MessageSerializer from .models import UserKey, Profile from .forms import ProfileForm, UserForm, UserKeyForm from .tables import UserKeyTables ### API ViewSets ### class EchoView(views.APIView): def post(self, request, *args, **kwargs): serializer = MessageSerializer(data=request.data) serializer.is_valid(raise_exception=True) return Response( serializer.data, status=status.HTTP_201_CREATED ) class UserViewSet(viewsets.ModelViewSet): """ API endpoint that allows users to be viewed or edited. """ queryset = User.objects.all().order_by('-date_joined') serializer_class = UserSerializer def post(self, request, *args, **kwargs): serializer = UserSerializer(queryset, context={'request': request}) serializer.is_valid(raise_exception=True) return Response( serializer.data, status=status.HTTP_201_CREATED ) def get(self, request, *args, **kwargs): serializer = UserSerializer(queryset, context={'request': request}) serializer.is_valid(raise_exception=True) return Response( serializer.data, status=status.HTTP_202_ACCEPTED ) class UserProfileViewSet(viewsets.ModelViewSet): """ API endpoint that allows Profiles to be viewed or edited. """ queryset = Profile.objects.all() serializer_class = UserProfileSerializer class SSHKeyViewSet(viewsets.ModelViewSet): """ API endpoint that allows users SSHKey to be viewed or edited. """ queryset = UserKey.objects.all().order_by('-name') serializer_class = SSHKeySerializer @action(methods=['post'], detail=True) def add_key(self, request, pk=None): pass ### Class Based Views ### class HomeView(TemplateView): template_name="homepage.html" def get_context_data(self, **kwargs): ctx = super(HomeView, self).get_context_data(**kwargs) ctx.update({}) return ctx class SearchView(TemplateView): template_name = "search.html" def get_context_data(self, **kwargs): ctx = super(SearchView, self).get_context_data(**kwargs) ctx.update({}) return ctx class SignupView(account.views.SignupView): form_class = SignupForm def after_signup(self, form): self.save_profile(form) super(SignupView, self).after_signup(form) def save_profile(self, form): profile = self.created_user.profile # replace with your reverse one-to-one profile attribute profile.location = form.cleaned_data["location"] profile.company = form.cleaned_data["company"] profile.birthdate = form.cleaned_data["birthdate"] profile.save() class ProfileView(FormView): template_name = "account/profile.html" form_class = ProfileForm redirect_field_name = "next" form_kwargs = {} messages = { "profile_updated": { "level": messages.SUCCESS, "text": _("Profile Updated.") }, } def get(self, request, *args, **kwargs): form_class = self.get_form_class() form = self.get_form(form_class) context = self.get_context_data(**kwargs) context['form'] = form return self.render_to_response(context) def post(self, request, *args, **kwargs): form_class = self.get_form_class() form = self.get_form(form_class) if form.is_valid(): return self.form_valid(form, **kwargs) else: return self.form_invalid(form, **kwargs) return self.render_to_response(context) def form_invalid(self, form, **kwargs): context = self.get_context_data(**kwargs) context['form'] = form # here you can add things like: return self.render_to_response(context) def form_valid(self, form, **kwargs): context = self.get_context_data(**kwargs) context['form'] = form # here you can add things like: return self.render_to_response(context) class UserKeyAddView(FormView): #model = UserKey #fields = ['name', 'key'] template_name = "account/userkey_add.html" success_url = "account_sshkeys" form_class = UserKeyForm messages = { "sshkey_added": { "level": messages.SUCCESS, "text": _("UserKey Added.") }, } def get(self, request, *args, **kwargs): form_class = self.get_form_class() form = self.get_form(form_class) context = self.get_context_data(**kwargs) context['form'] = form return self.render_to_response(context) def post(self, request, *args, **kwargs): form_class = self.get_form_class() form = self.get_form(form_class) if form.is_valid(): return self.form_valid(form, **kwargs) else: return self.form_invalid(form, **kwargs) def form_invalid(self, form, **kwargs): context = self.get_context_data(**kwargs) context['form'] = form # here you can add things like: context[show_results] = False return self.render_to_response(context) def form_valid(self, form, **kwargs): context = self.get_context_data(**kwargs) context['form'] = form # here you can add things like: context[show_results] = True return self.render_to_response(context) class UserKeyListView(SingleTableView): model = UserKey template_name = "account/userkey_list.html" table_class = UserKeyTables #class UserKeyUpdateView(UpdateView): # model = UserKey # template_name = "account/userkey_detail.html" # success_url = 'account/sshkey/' # messages = { "sshkey_updated": { # "level": messages.SUCCESS, # "text": _("SSH Key Updated.") }, # } #class UserKeyDeleteView(DeleteView): # model = UserKey # form_class = UserKeyForm # template_name = "account/userkey_delete.html" # # def form_valid(self, form): # self.form.save(form) # if self.messages.get("sshkey_deleted"): # messages.add_message( # self.request, # self.messages["sshkey_deleted"]["level"], # self.messages["profile_deleted"]["text"] # ) # return redirect(self.get_success_url()) # # #def get_success_url(self): # #return reverse("account_sshkeys") # ##### Views #### @login_required @require_http_methods(['GET', 'POST']) def userkey_add(request): if request.method == 'POST': userkey = UserKey(user=request.user) userkey.request = request form = UserKeyForm(request.POST, instance=userkey) if form.is_valid(): form.save() default_redirect = reverse('account_sshkeys') url = request.GET.get('next', default_redirect) if not is_safe_url(url=url, host=request.get_host()): url = default_redirect message = 'SSH public key %s was added.' % userkey.name messages.success(request, message, fail_silently=True) return HttpResponseRedirect(url) else: form = UserKeyForm() return render(request, 'account/userkey_detail.html', context={'form': form, 'action': 'add'}) @login_required @require_http_methods(['GET', 'POST']) def userkey_edit(request, pk): if not settings.SSHKEY_ALLOW_EDIT: raise PermissionDenied userkey = get_object_or_404(UserKey, pk=pk) if userkey.user != request.user: raise PermissionDenied if request.method == 'POST': form = UserKeyForm(request.POST, instance=userkey) if form.is_valid(): form.save() default_redirect = reverse('account_sshkeys') url = request.GET.get('next', default_redirect) if not is_safe_url(url=url, host=request.get_host()): url = default_redirect message = 'SSH public key %s was saved.' % userkey.name messages.success(request, message, fail_silently=True) return HttpResponseRedirect(url) else: form = UserKeyForm(instance=userkey) return render(request, 'account/userkey_detail.html', context={'form': form, 'action': 'edit'}) @login_required @require_GET def userkey_delete(request, pk): userkey = get_object_or_404(UserKey, pk=pk) if userkey.user != request.user: raise PermissionDenied userkey.delete() message = 'SSH public key %s was deleted.' % userkey.name messages.success(request, message, fail_silently=True) return HttpResponseRedirect(reverse('account_sshkeys')) def get_auth_token(request): ''' This view is used if you want to use the standard AUTH Token instead of a JWT Token that expires. A Token will be created when the User is created in the DB and is viewable in the admin url. Just create a url view like so in urls.py url(r"^api/get_auth_token/$", views.get_auth_token, name="authtoken"), ''' username = request.POST.get('username') password = request.POST.get('password') user = authenticate(username=username, password=password) if user is not None: # the password verified for the user if user.is_active: token, created = Token.objects.get_or_create(user=user) request.session['auth'] = token.key return redirect('/polls/', request) return redirect(settings.LOGIN_URL, request)
python
import re from datetime import datetime class HadoopSeriesParser: def __init__(self): self.attribute_count = 8 self.foundation_date_regex = r'^([^\t]*\t){1}"\d{4}"\^\^<http://www.w3.org/2001/XMLSchema#date>.*$' def parse(self, result_data): lines_attributes = [] ### Structure # <http://dbpedia.org/resource/Axel!> # "2002-09-21"^^<http://www.w3.org/2001/XMLSchema#date> # "Axel!"@de # "35"^^<http://www.w3.org/2001/XMLSchema#nonNegativeInteger> # (Produzent) BSP: <http://dbpedia.org/resource/Tina_Fey> # (???) # (Bild) BSP: <http://commons.wikimedia.org/wiki/Special:FilePath/Ty_Pennington.jpg> # "Axel! ist eine deutsche Comedy-Serie mit Axel Stein in der Titelrolle, in der witzige Episoden aus dem Leben der Figur Axel und seiner Freunde gezeigt werden. Die Serie wurde auf Sat.1 ausgestrahlt. Als Fortsetzung entstand eine weitere Serie mit dem Namen Axel! will\u2019s wissen."@de for line in result_data: if re.match(self.foundation_date_regex, line): line_parts = line.split('\t', -1) if len(line_parts) == self.attribute_count: line_attributes = {} if line_parts[0]: line_attributes['url'] = line_parts[0].strip('<>') if line_parts[1]: line_attributes['foundation_date'] = line_parts[1].split('"', -1) foundation_date_parts = line_attributes['foundation_date'].split('-', -1) line_attributes['foundation_date_year'] = foundation_date_parts[0] line_attributes['foundation_date_month'] = foundation_date_parts[1] line_attributes['foundation_date_day'] = foundation_date_parts[2] if line_parts[2]: line_attributes['name'] = line_parts[2].split('"', -1)[1] if line_parts[3]: line_attributes['episode_count'] = line_parts[3].split('"', -1)[1] if line_parts[4]: line_attributes['producer_url'] = line_parts[4].split('<>', -1)[1] if line_parts[5]: line_attributes['image_url'] = line_parts[5].split('<>', -1)[1] if line_parts[7]: line_attributes['summary'] = line_parts[7].split('"', -1)[1] lines_attributes.append(line_attributes) else: pass # ignore the incomplete lines return lines_attributes
python
import sys import os import pytest import pandas as pd import arcus.ml.dataframes as adf import logging from unittest.mock import patch from collections import Counter logging.basicConfig(level=logging.DEBUG) mylogger = logging.getLogger() # initialize list of lists categorical_data = [['BE', 10], ['FR', 15], ['BE', 14], ['UK', 14], ['SE', 14], ['SE', 14]] def setup_module(module): ''' Setup for the entire module ''' # Do the actual setup stuff here pass def setup_function(func): ''' Setup for test functions ''' def test_shuffle(): # initialize list of lists data = [['tom', 10], ['nick', 15], ['juli', 14]] # Create the pandas DataFrame test_df = pd.DataFrame(data, columns = ['Name', 'Age']) # print dataframe. shuffled_df = adf.shuffle(test_df) assert len(shuffled_df)==len(test_df) assert shuffled_df[shuffled_df.Name == 'nick'].iloc[0].Age == 15 def test_one_hot_encoding_default(): # Create the pandas DataFrame test_df = pd.DataFrame(categorical_data, columns = ['Country', 'Infected']) # One hot encode the Country column encoded_df = adf.one_hot_encode(test_df, 'Country') assert len(encoded_df.columns) == 5 assert 'Country_BE' in encoded_df.columns assert len(encoded_df.loc[encoded_df['Country_BE'] == 1]) == 2 assert len(encoded_df.loc[encoded_df['Country_FR'] == 0]) == 5 def test_one_hot_encoding_keepcolumn(): # Create the pandas DataFrame test_df = pd.DataFrame(categorical_data, columns = ['Country', 'Infected']) # One hot encode the Country column encoded_df = adf.one_hot_encode(test_df, 'Country', drop_column=False) assert len(encoded_df.columns) == 6 assert 'Country_SE' in encoded_df.columns assert len(encoded_df.loc[encoded_df['Country_UK'] == 1]) == 1 @patch("matplotlib.pyplot.show") def test_one_hot_encoding_prefix(mock_show): # Create the pandas DataFrame test_df = pd.DataFrame(categorical_data, columns = ['Country', 'Infected']) encoded_df = adf.one_hot_encode(test_df, 'Country', prefix='cnt') # One hot encode the Country column assert len(encoded_df.columns) == 5 assert 'cnt_BE' in encoded_df.columns assert len(encoded_df.loc[encoded_df['cnt_UK'] == 1]) == 1 @patch("matplotlib.pyplot.show") def test_plot_features_selectedcols(mock_show): df = pd.read_csv('tests/resources/datasets/car-fuel.csv') _, _axes = adf.plot_features(df, column_names=['speed', 'temp_outside']) assert len(_axes.ravel()) == 2 _ax = _axes[0] assert _ax.numCols == 2 assert _ax.numRows == 1 @patch("matplotlib.pyplot.show") def test_plot_features_onerow(mock_show): df = pd.read_csv('tests/resources/datasets/car-fuel.csv') _, _axes = adf.plot_features(df, column_names=['speed', 'temp_outside']) assert len(_axes.ravel()) == 2 _ax = _axes[0] assert _ax.numCols == 2 assert _ax.numRows == 1 @patch("matplotlib.pyplot.show") def test_plot_features_grid_size(mock_show): df = pd.read_csv('tests/resources/datasets/car-fuel.csv') _, _axes = adf.plot_features(df, grid_shape=(2,3)) assert len(_axes.ravel()) == 6 _ax = _axes[0][0] assert _ax.numCols == 3 assert _ax.numRows == 2 @patch("matplotlib.pyplot.show") def test_plot_features_default(mock_show): df = pd.read_csv('tests/resources/datasets/car-fuel.csv') _, _axes = adf.plot_features(df) assert len(_axes.ravel()) == 5 assert _axes[0].numCols == 5 assert _axes[0].numRows == 1 def test_keep_numeric_features(): test_df = pd.DataFrame(categorical_data, columns = ['Country', 'Infected']) num_df = adf.keep_numeric_features(test_df) assert len(num_df.columns) == 1 def test_keep_numeric_features_onehotencoded(): test_df = pd.DataFrame(categorical_data, columns = ['Country', 'Infected']) encoded_df = adf.one_hot_encode(test_df, 'Country', prefix='cnt') num_df = adf.keep_numeric_features(encoded_df) assert len(num_df.columns) == 5 def test_keep_numeric_features_csv(): df = pd.read_csv('tests/resources/datasets/car-fuel.csv') num_df = adf.keep_numeric_features(df) assert len(num_df.columns) == 5 def test_class_distribution_default(): df = pd.read_csv('tests/resources/datasets/car-fuel.csv') cnt1 = Counter(df.gas_type) df = adf.distribute_class(df, 'gas_type') cnt2 = Counter(df.gas_type) # Smallest class size from first should be same as largest from new assert min(cnt1.values()) == max (cnt2.values()) # Sizes of new df should be the same assert min(cnt2.values()) == max (cnt2.values()) assert len(df) == min(cnt1.values()) * 2 def test_class_distribution_class_size(): cs = 30 df = pd.read_csv('tests/resources/datasets/car-fuel.csv') cnt1 = Counter(df.gas_type) df = adf.distribute_class(df, 'gas_type', cs) cnt2 = Counter(df.gas_type) # Sizes of new df should be the same assert min(cnt2.values()) == max (cnt2.values()) assert len(df) == cs * 2 def test_class_distribution_noshuffle(): cs = 30 df = pd.read_csv('tests/resources/datasets/car-fuel.csv') cnt1 = Counter(df.gas_type) df = adf.distribute_class(df, 'gas_type', cs, False) cnt2 = Counter(df.iloc[0:cs].gas_type) assert len(cnt2.keys()) == 1
python
#/usr/bin/python # Copyright 2013 by Hartmut Goebel <[email protected]> # Licence: GNU Public Licence v3 (GPLv3), but not for military use import subprocess import argparse GRAPH_HEADER = ''' digraph "%s" { nodesep=0; sep=0; ranksep=0 ratio="compress" packmode="node"; pack=1 pad=0 splines=true rankdir=TB // top-bottom concentrate=true; //K=0 edge [arrowsize=0.7,fontsize="6",fontcolor=grey] node [fontname="Helvetica",fontsize="10"] //node [shape=plaintext,height=0,width=4] node [shape=plaintext,height=0] ''' ignore = set('coreutils python perl ruby bash desktop-file-utils initscripts shadowutils'.split()) MAX_DEPTH = 5 # see option --depth seen = set(ignore) nodenames = {} def nodename(name): if name not in nodenames: nodenames[name] = (''.join(c for c in name if c.isalnum()) + '_' + str(abs(hash(name)))) return nodenames[name] def draw_req(pkg, depth): if pkg in seen or depth >= MAX_DEPTH: return seen.add(pkg) pn = nodename(pkg) print ('%s[label="%s"]' % (pn, pkg)) try: req = subprocess.check_output(['rpm', '--query', '--requires', pkg]) except: return if not req: contine for req in req.strip().splitlines(): req = req.split(None, 1)[0] if '/' in req or '(' in req: continue rn = nodename(req) print ('%s[label="%s"]' % (rn, req)) print ('%s -> %s [color=plum]' % (pn, rn)) draw_req(req, depth+1) parser = argparse.ArgumentParser() parser.add_argument('--depth', type=int, default=MAX_DEPTH, help='walk the tree that deep, default: %(default)s') parser.add_argument('pkgname', nargs='+') args = parser.parse_args() MAX_DEPTH = args.depth print GRAPH_HEADER % "XXX" for pkg in args.pkgname: draw_req(pkg, 0) print "}"
python