content
stringlengths 0
894k
| type
stringclasses 2
values |
---|---|
import os
import pickle
from tqdm import tqdm
from config import data_file, thchs30_folder
# split in ['train', 'test', 'dev']
def get_thchs30_data(split):
print('loading {} samples...'.format(split))
data_dir = os.path.join(thchs30_folder, 'data')
wave_dir = os.path.join(thchs30_folder, split)
samples = []
for file in tqdm(os.listdir(wave_dir)):
file_path = os.path.join(wave_dir, file)
if file_path.endswith('.wav'):
text_path = os.path.join(data_dir, file + '.trn')
with open(text_path, 'r', encoding='utf-8') as f:
text = f.readlines()[1].strip()
samples.append({'audiopath': file_path, 'text': text})
return samples
def main():
data = dict()
data['train'] = get_thchs30_data('train')
data['dev'] = get_thchs30_data('dev')
data['test'] = get_thchs30_data('test')
with open(data_file, 'wb') as file:
pickle.dump(data, file)
print('num_train: ' + str(len(data['train'])))
print('num_dev: ' + str(len(data['dev'])))
print('num_test: ' + str(len(data['test'])))
if __name__ == "__main__":
main()
|
python
|
#!/bin/env python2
import cairo
import os.path
this = os.path.dirname(__file__)
def millimeters_to_poscript_points(mm):
inches = mm / 25.4
return inches * 72
def css_px_to_poscript_points(px):
inches = px / 96.
return inches * 72
cairo.PDFSurface(os.path.join(this, "A4_one_empty_page.pdf"),
millimeters_to_poscript_points(210),
millimeters_to_poscript_points(297))
png = cairo.ImageSurface.create_from_png(os.path.join(this, "pattern_4x4.png"))
pattern = cairo.SurfacePattern(png)
pattern.set_filter(cairo.FILTER_NEAREST)
out = cairo.PDFSurface(os.path.join(this, "pattern_4x4.pdf"),
css_px_to_poscript_points(4),
css_px_to_poscript_points(4))
ctx = cairo.Context(out)
ctx.set_source(pattern)
ctx.paint()
|
python
|
import numpy as np
from torch.utils.data import Subset
from sklearn.model_selection import train_test_split
def split_data(dataset,splits=(0.8,0.2),seed=None):
assert np.sum(splits) == 1
assert (len(splits)==2) | (len(splits)==3)
if len(splits) == 2:
train_idx, test_idx, _, _ = train_test_split(range(len(dataset)),
dataset.Y,
stratify=dataset.Y,
test_size=splits[1],
random_state=seed)
return Subset(dataset,train_idx), Subset(dataset,test_idx)
else:
train_idx, test_idx, _, _ = train_test_split(range(len(dataset)),
dataset.Y,
stratify=dataset.Y,
test_size=(splits[1]+splits[2]),
random_state=seed)
test_idx, val_idx, _, _ = train_test_split(test_idx,
dataset.Y[test_idx],
stratify=dataset.Y[test_idx],
test_size=splits[2]/(splits[1] + splits[2]),
random_state=seed)
return Subset(dataset,train_idx), Subset(dataset,test_idx), Subset(dataset,val_idx)
|
python
|
from __future__ import print_function
# ----------------------------------------------------------------
# Copyright 2016 Cisco Systems
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------
# ----------------------------------------------------------------
# Utility functions to create and return a Session
from optparse import OptionParser, IndentedHelpFormatter
from ydk.providers import NetconfServiceProvider
import logging
class HelpFormatterWithLineBreaks(IndentedHelpFormatter):
def format_description(self, description):
result = ""
if description is not None:
description_paragraphs = description.split("\n")
for paragraph in description_paragraphs:
result += self._format_text(paragraph) + "\n"
return result
def init_logging():
""" Initialize the logging infra and add a handler """
logger = logging.getLogger('ydk')
# logger.setLevel(logging.INFO)
# create file handler
fh = logging.FileHandler('sample.log')
fh.setLevel(logging.DEBUG)
# create a console logger too
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
# add the handlers to the logger
formatter = logging.Formatter(("%(asctime)s - %(name)s - %(levelname)s - %(message)s"))
ch.setFormatter(formatter)
fh.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
def establish_session():
usage = """%prog [-h | --help] [options] """
parser = OptionParser(usage, formatter=HelpFormatterWithLineBreaks())
parser.add_option("-v", "--version", dest="version",
help="Force NETCONF version 1.0 or 1.1")
parser.add_option("-u", "--user", dest="username", default="admin")
parser.add_option("-p", "--password", dest="password", default="admin")
parser.add_option("--proto", dest="proto", default="ssh",
help="Transport protocol to use, one of ssh or tcp")
parser.add_option("--host", dest="host", default="localhost",
help="NETCONF agent hostname")
parser.add_option("--port", dest="port", default=830, type="int",
help="NETCONF agent SSH port")
(o, args) = parser.parse_args()
print('Establishing connection with device %s:%d using %s...'%(o.host, o.port, o.proto))
ne = NetconfServiceProvider(address=o.host,
port=o.port,
username=o.username,
password=o.password,
protocol=o.proto)
print('Connection established')
return ne
|
python
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Matching(nn.Module):
def __init__(self, vis_dim, lang_dim, jemb_dim, jemb_drop_out):
super(Matching, self).__init__()
self.vis_emb_fc = nn.Sequential(nn.Linear(vis_dim, jemb_dim),
nn.BatchNorm1d(jemb_dim),
nn.ReLU(),
nn.Dropout(jemb_drop_out),
nn.Linear(jemb_dim, jemb_dim),
nn.BatchNorm1d(jemb_dim))
self.lang_emb_fc = nn.Sequential(nn.Linear(lang_dim, jemb_dim),
nn.BatchNorm1d(jemb_dim),
nn.ReLU(),
nn.Dropout(jemb_drop_out),
nn.Linear(jemb_dim, jemb_dim),
nn.BatchNorm1d(jemb_dim))
def forward(self, visual_input, lang_input):
assert visual_input.size(0) == lang_input.size(0)
visual_feat = visual_input.view((visual_input.size(0) * visual_input.size(1), -1))
lang_feat = lang_input
visual_emb = self.vis_emb_fc(visual_feat)
lang_emb = self.lang_emb_fc(lang_feat)
# l2-normalize
visual_emb_normalized = F.normalize(visual_emb, p=2, dim=1)
lang_emb_normalized = F.normalize(lang_emb, p=2, dim=1)
block_visual_emb_normalized = visual_emb_normalized.view((visual_input.size(0), visual_input.size(1), -1))
block_lang_emb_normalized = lang_emb_normalized.unsqueeze(1).expand((visual_input.size(0),
visual_input.size(1),
lang_emb_normalized.size(1)))
cossim = torch.sum(block_lang_emb_normalized * block_visual_emb_normalized, 2)
return cossim
|
python
|
import torch
import torch.nn as nn
class LeNet(torch.nn.Module):
"""This is improved version of LeNet
"""
def __init__(self):
super(LeNet, self).__init__()
self.network = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(400, 120), nn.ReLU(), nn.Dropout(p=0.5),
nn.Linear(120, 84), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(84, 10))
def forward(self, x):
result = self.network(x)
return result
|
python
|
# -*- test-case-name: twisted.positioning.test -*-
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""
The Twisted positioning framework.
@since: 14.0
"""
|
python
|
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
from spack.package import *
class Libpam(AutotoolsPackage):
"""Example PAM module demonstrating two-factor authentication for
logging into servers via SSH, OpenVPN, etc"""
homepage = "https://github.com/google/google-authenticator-libpam"
url = "https://github.com/google/google-authenticator-libpam/archive/1.09.tar.gz"
version('1.09', sha256='ab1d7983413dc2f11de2efa903e5c326af8cb9ea37765dacb39949417f7cd037')
version('1.08', sha256='6f6d7530261ba9e2ece84214f1445857d488b7851c28a58356b49f2d9fd36290')
version('1.07', sha256='104a158e013585e20287f8d33935e93c711b96281e6dda621a5c19575d0b0405')
depends_on('autoconf', type='build')
depends_on('automake', type='build')
depends_on('libtool', type='build')
depends_on('m4', type='build')
depends_on('linux-pam')
def autoreconf(self, spec, prefix):
bash = which('bash')
bash('./bootstrap.sh')
|
python
|
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import filecmp
import os
from absl import logging
import tensorflow.compat.v2 as tf
from tensorflow_examples.lite.model_maker.core import compat
from tensorflow_examples.lite.model_maker.core import test_util
from tensorflow_examples.lite.model_maker.core.data_util import object_detector_dataloader
from tensorflow_examples.lite.model_maker.core.export_format import ExportFormat
from tensorflow_examples.lite.model_maker.core.export_format import QuantizationType
from tensorflow_examples.lite.model_maker.core.task import model_spec
from tensorflow_examples.lite.model_maker.core.task import object_detector
class ObjectDetectorTest(tf.test.TestCase):
def testEfficientDetLite0(self):
# Gets model specification.
spec = model_spec.get('efficientdet_lite0')
# Prepare data.
images_dir, annotations_dir, label_map = test_util.create_pascal_voc(
self.get_temp_dir())
data = object_detector_dataloader.DataLoader.from_pascal_voc(
images_dir, annotations_dir, label_map)
# Train the model.
task = object_detector.create(data, spec, batch_size=1, epochs=1)
self.assertEqual(spec.config.num_classes, 2)
# Evaluate trained model
metrics = task.evaluate(data)
self.assertIsInstance(metrics, dict)
self.assertGreaterEqual(metrics['AP'], 0)
# Export the model to saved model.
output_path = os.path.join(self.get_temp_dir(), 'saved_model')
task.export(self.get_temp_dir(), export_format=ExportFormat.SAVED_MODEL)
self.assertTrue(os.path.isdir(output_path))
self.assertNotEqual(len(os.listdir(output_path)), 0)
# Export the model to TFLite model.
output_path = os.path.join(self.get_temp_dir(), 'float.tflite')
task.export(
self.get_temp_dir(),
tflite_filename='float.tflite',
quantization_type=QuantizationType.FP32,
export_format=ExportFormat.TFLITE,
with_metadata=True,
export_metadata_json_file=True)
# Checks the sizes of the float32 TFLite model files in bytes.
model_size = 13476379
self.assertNear(os.path.getsize(output_path), model_size, 50000)
json_output_file = os.path.join(self.get_temp_dir(), 'float.json')
self.assertTrue(os.path.isfile(json_output_file))
self.assertGreater(os.path.getsize(json_output_file), 0)
expected_json_file = test_util.get_test_data_path(
'efficientdet_lite0_metadata.json')
self.assertTrue(filecmp.cmp(json_output_file, expected_json_file))
# Evaluate the TFLite model.
task.evaluate_tflite(output_path, data)
self.assertIsInstance(metrics, dict)
self.assertGreaterEqual(metrics['AP'], 0)
# Export the model to quantized TFLite model.
# TODO(b/175173304): Skips the test for stable tensorflow 2.4 for now since
# it fails. Will revert this change after TF upgrade.
if tf.__version__.startswith('2.4'):
return
# Not include QuantizationType.FP32 here since we have already tested it
# above together with metadata file test.
types = (QuantizationType.INT8, QuantizationType.FP16,
QuantizationType.DYNAMIC)
# The sizes of the TFLite model files in bytes.
model_sizes = (4439987, 6840331, 4289875)
for quantization_type, model_size in zip(types, model_sizes):
filename = quantization_type.name.lower() + '.tflite'
output_path = os.path.join(self.get_temp_dir(), filename)
if quantization_type == QuantizationType.INT8:
representative_data = data
else:
representative_data = None
task.export(
self.get_temp_dir(),
quantization_type=quantization_type,
tflite_filename=filename,
representative_data=representative_data,
export_format=ExportFormat.TFLITE)
self.assertNear(os.path.getsize(output_path), model_size, 100)
if __name__ == '__main__':
logging.set_verbosity(logging.ERROR)
# Load compressed models from tensorflow_hub
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
compat.setup_tf_behavior(tf_version=2)
tf.test.main()
|
python
|
'''
This code loads the results and prepares Fig8a.
(c) Efrat Shimron, UC Berkeley, 2021
'''
import os
import matplotlib.pyplot as plt
import numpy as np
R = 4
pad_ratio_vec = np.array([1, 2])
print('============================================================================== ')
print(' crime impact estimation ')
print('=============================================================================== ')
pad_ratio_test = np.array([1])
samp_type = 'weak'
method_str = 'DL'
# data_type = 'pathology_1'
data_type = 'pathology_2'
zones_vec = np.array([1, 2]) # np.array([1,2])
# load results
results_dir = data_type + f'_results_R{R}/'
gold_filename = results_dir + 'gold_dict.npy'
rec_filename = results_dir + method_str + '_dict.npy'
gold_container = np.load(gold_filename, allow_pickle=True)
rec_container = np.load(rec_filename, allow_pickle=True)
# display results per training pad ratio
for pad_i, pad_ratio in enumerate(pad_ratio_vec): # training pad ratio; the test pad ratio was always 2
pad_ratio_str = int(pad_ratio_vec[pad_i])
rec_gold_rotated = gold_container.item()[(pad_ratio, samp_type)]
rec_rotated = rec_container.item()[(pad_ratio, samp_type)]
if pad_i == 0:
cmax = np.max([np.abs(rec_gold_rotated), np.abs(rec_rotated)])
# display full-FOV rec
fig = plt.figure()
plt.imshow(rec_rotated, cmap="gray")
# plt.axis('off')
plt.clim(0, cmax)
plt.title(f'rec - train pad {pad_ratio_str}')
plt.show()
# display zoomed-in images
for z_i in range(zones_vec.shape[0]):
zone_str = f'zone_{zones_vec[z_i]}'
figs_folder = f'Fig8a_R{R}' + data_type + '_' + zone_str
if not os.path.exists(figs_folder):
os.makedirs(figs_folder)
if data_type == 'pathology_1':
if zones_vec[z_i] == 1:
# prepare zoomed-in figures for the paper
# zoom-in coordinates for pathology 1
x1 = 335
x2 = 380
y1 = 210
y2 = 300
# scale the zoom-in coordinates to fit changing image size
x1s = int(x1 * pad_ratio_test)
x2s = int(x2 * pad_ratio_test)
y1s = int(y1 * pad_ratio_test)
y2s = int(y2 * pad_ratio_test)
elif zones_vec[z_i] == 2:
x1 = 325
x2 = 370
y1 = 70
y2 = 160
# scale the zoom-in coordinates to fit changing image size
x1s = int(x1 * pad_ratio_test)
x2s = int(x2 * pad_ratio_test)
y1s = int(y1 * pad_ratio_test)
y2s = int(y2 * pad_ratio_test)
elif data_type == 'pathology_2':
if zones_vec[z_i] == 1:
x1 = 310
x2 = 350
y1 = 200
y2 = 280
# scale the zoom-in coordinates to fit changing image size
x1s = int(x1 * pad_ratio_test)
x2s = int(x2 * pad_ratio_test)
y1s = int(y1 * pad_ratio_test)
y2s = int(y2 * pad_ratio_test)
elif zones_vec[z_i] == 2:
x1 = 310
x2 = 360
y1 = 90
y2 = 190
# scale the zoom-in coordinates to fit changing image size
x1s = int(x1 * pad_ratio_test)
x2s = int(x2 * pad_ratio_test)
y1s = int(y1 * pad_ratio_test)
y2s = int(y2 * pad_ratio_test)
# rec zoomed - png
fig = plt.figure()
plt.imshow(rec_rotated[x1s:x2s, y1s:y2s], cmap="gray")
plt.axis('off')
plt.clim(0, cmax)
plt.title(
f'{method_str} train on pad {pad_ratio_str} & test on {str(int(pad_ratio_test))} - zone {zones_vec[z_i]}')
plt.show()
figname = figs_folder + f'/{method_str}_training_pad_x{pad_ratio_str}_{samp_type}_VD_zone_{zones_vec[z_i]}_zoomed'
fig.savefig(figname, dpi=1000)
# rec zoomed - eps figure
fig = plt.figure()
plt.imshow(rec_rotated[x1s:x2s, y1s:y2s], cmap="gray")
plt.axis('off')
plt.clim(0, cmax)
plt.title(
f'{method_str} train on pad {pad_ratio_str} & test on {str(int(pad_ratio_test))} - zone {zones_vec[z_i]}')
plt.show()
figname = figs_folder + f'/{method_str}_training_pad_x{pad_ratio_str}_{samp_type}_VD_zone_{zones_vec[z_i]}_zoomed.eps'
fig.savefig(figname, format='eps', dpi=1000)
|
python
|
from django.core.urlresolvers import reverse
from django.contrib.auth import get_user_model
from django.contrib.auth.models import Permission
from django.core.paginator import Paginator
from go.base import utils
from go.base.tests.helpers import GoDjangoTestCase, DjangoVumiApiHelper
from go.vumitools.api import VumiApi, VumiUserApi
from go.vumitools.conversation.definition import ConversationDefinitionBase
from go.conversation.view_definition import ConversationViewDefinitionBase
class TestAuthentication(GoDjangoTestCase):
def setUp(self):
self.vumi_helper = self.add_helper(DjangoVumiApiHelper())
self.user = self.vumi_helper.make_django_user().get_django_user()
def test_user_account_created(self):
"""test that we have a user account"""
self.assertEqual('[email protected]',
self.user.userprofile.get_user_account().username)
def test_redirect_to_login(self):
"""test the authentication mechanism"""
response = self.client.get(reverse('conversations:index'))
self.assertRedirects(response, '%s?next=%s' % (
reverse('auth_login'), reverse('conversations:index')))
def test_login(self):
self.client.login(username=self.user.email, password='password')
response = self.client.get(reverse('conversations:index'))
self.assertContains(response, 'Dashboard')
def test_logged_out(self):
"""test logout & redirect after logout"""
self.client.login(username=self.user.email, password='password')
response = self.client.get(reverse('auth_logout'))
response = self.client.get(reverse('conversations:index'))
self.assertRedirects(response, '%s?next=%s' % (
reverse('auth_login'), reverse('conversations:index')))
class FakeTemplateToken(object):
def __init__(self, contents):
self.contents = contents
class TestUtils(GoDjangoTestCase):
def setUp(self):
self.vumi_helper = self.add_helper(DjangoVumiApiHelper())
self.user = self.vumi_helper.make_django_user().get_django_user()
def test_vumi_api_for_user(self):
user_api = utils.vumi_api_for_user(self.user)
self.assertTrue(isinstance(user_api, VumiUserApi))
self.assertEqual(user_api.user_account_key,
self.user.get_profile().user_account)
def test_vumi_api(self):
vumi_api = utils.vumi_api()
self.assertTrue(isinstance(vumi_api, VumiApi))
def test_padded_queryset(self):
short_list = get_user_model().objects.all()[:1]
padded_list = utils.padded_queryset(short_list)
expected_list = list(short_list) + [None, None, None, None, None]
self.assertEqual(padded_list, expected_list)
def test_padded_queryset_limiting(self):
long_list = Permission.objects.all()
self.assertTrue(long_list.count() > 6)
padded_list = utils.padded_queryset(long_list)
self.assertEqual(len(padded_list), 6)
def test_page_range_window(self):
paginator = Paginator(range(100), 5)
self.assertEqual(utils.page_range_window(paginator.page(1), 5),
[1, 2, 3, 4, 5, 6, 7, 8, 9])
self.assertEqual(utils.page_range_window(paginator.page(5), 5),
[1, 2, 3, 4, 5, 6, 7, 8, 9])
self.assertEqual(utils.page_range_window(paginator.page(9), 5),
[5, 6, 7, 8, 9, 10, 11, 12, 13])
self.assertEqual(utils.page_range_window(paginator.page(20), 5),
[12, 13, 14, 15, 16, 17, 18, 19, 20])
paginator = Paginator(range(3), 5)
self.assertEqual(utils.page_range_window(paginator.page(1), 5),
[1])
paginator = Paginator(range(3), 3)
self.assertEqual(utils.page_range_window(paginator.page(1), 5),
[1])
paginator = Paginator(range(4), 3)
self.assertEqual(utils.page_range_window(paginator.page(1), 5),
[1, 2])
def test_get_conversation_view_definition(self):
view_def = utils.get_conversation_view_definition('bulk_message', None)
conv_def = view_def._conv_def
self.assertTrue(isinstance(view_def, ConversationViewDefinitionBase))
self.assertTrue(isinstance(conv_def, ConversationDefinitionBase))
self.assertEqual('bulk_message', conv_def.conversation_type)
|
python
|
import py
from pypy.translator.cli.test.runtest import compile_function
from pypy.translator.oosupport.test_template.backendopt import BaseTestOptimizedSwitch
class TestOptimizedSwitch(BaseTestOptimizedSwitch):
def getcompiled(self, fn, annotation):
return compile_function(fn, annotation, backendopt=True)
|
python
|
"""
Low level *Skype for Linux* interface implemented using *XWindows messaging*.
Uses direct *Xlib* calls through *ctypes* module.
This module handles the options that you can pass to `Skype.__init__`
for Linux machines when the transport is set to *X11*.
No further options are currently supported.
Warning PyGTK framework users
=============================
The multithreaded architecture of Skype4Py requires a special treatment
if the Xlib transport is combined with PyGTK GUI framework.
The following code has to be called at the top of your script, before
PyGTK is even imported.
.. python::
from Skype4Py.api.posix_x11 import threads_init
threads_init()
This function enables multithreading support in Xlib and GDK. If not done
here, this is enabled for Xlib library when the `Skype` object is instantiated.
If your script imports the PyGTK module, doing this so late may lead to a
segmentation fault when the GUI is shown on the screen.
A remedy is to enable the multithreading support before PyGTK is imported
by calling the ``threads_init`` function.
"""
__docformat__ = 'restructuredtext en'
import sys
import threading
import os
from ctypes import *
from ctypes.util import find_library
import time
import logging
from Skype4Py.api import Command, SkypeAPIBase, \
timeout2float, finalize_opts
from Skype4Py.enums import *
from Skype4Py.errors import SkypeAPIError
__all__ = ['SkypeAPI', 'threads_init']
# The Xlib Programming Manual:
# ============================
# http://tronche.com/gui/x/xlib/
# some Xlib constants
PropertyChangeMask = 0x400000
PropertyNotify = 28
ClientMessage = 33
PropertyNewValue = 0
PropertyDelete = 1
# some Xlib types
c_ulong_p = POINTER(c_ulong)
DisplayP = c_void_p
Atom = c_ulong
AtomP = c_ulong_p
XID = c_ulong
Window = XID
Bool = c_int
Status = c_int
Time = c_ulong
c_int_p = POINTER(c_int)
# should the structures be aligned to 8 bytes?
align = (sizeof(c_long) == 8 and sizeof(c_int) == 4)
# some Xlib structures
class XClientMessageEvent(Structure):
if align:
_fields_ = [('type', c_int),
('pad0', c_int),
('serial', c_ulong),
('send_event', Bool),
('pad1', c_int),
('display', DisplayP),
('window', Window),
('message_type', Atom),
('format', c_int),
('pad2', c_int),
('data', c_char * 20)]
else:
_fields_ = [('type', c_int),
('serial', c_ulong),
('send_event', Bool),
('display', DisplayP),
('window', Window),
('message_type', Atom),
('format', c_int),
('data', c_char * 20)]
class XPropertyEvent(Structure):
if align:
_fields_ = [('type', c_int),
('pad0', c_int),
('serial', c_ulong),
('send_event', Bool),
('pad1', c_int),
('display', DisplayP),
('window', Window),
('atom', Atom),
('time', Time),
('state', c_int),
('pad2', c_int)]
else:
_fields_ = [('type', c_int),
('serial', c_ulong),
('send_event', Bool),
('display', DisplayP),
('window', Window),
('atom', Atom),
('time', Time),
('state', c_int)]
class XErrorEvent(Structure):
if align:
_fields_ = [('type', c_int),
('pad0', c_int),
('display', DisplayP),
('resourceid', XID),
('serial', c_ulong),
('error_code', c_ubyte),
('request_code', c_ubyte),
('minor_code', c_ubyte)]
else:
_fields_ = [('type', c_int),
('display', DisplayP),
('resourceid', XID),
('serial', c_ulong),
('error_code', c_ubyte),
('request_code', c_ubyte),
('minor_code', c_ubyte)]
class XEvent(Union):
if align:
_fields_ = [('type', c_int),
('xclient', XClientMessageEvent),
('xproperty', XPropertyEvent),
('xerror', XErrorEvent),
('pad', c_long * 24)]
else:
_fields_ = [('type', c_int),
('xclient', XClientMessageEvent),
('xproperty', XPropertyEvent),
('xerror', XErrorEvent),
('pad', c_long * 24)]
XEventP = POINTER(XEvent)
if getattr(sys, 'skype4py_setup', False):
# we get here if we're building docs; to let the module import without
# exceptions, we emulate the X11 library using a class:
class X(object):
def __getattr__(self, name):
return self
def __setattr__(self, name, value):
pass
def __call__(self, *args, **kwargs):
pass
x11 = X()
else:
# load X11 library (Xlib)
libpath = find_library('X11')
if not libpath:
raise ImportError('Could not find X11 library')
x11 = cdll.LoadLibrary(libpath)
del libpath
# setup Xlib function prototypes
x11.XCloseDisplay.argtypes = (DisplayP,)
x11.XCloseDisplay.restype = None
x11.XCreateSimpleWindow.argtypes = (DisplayP, Window, c_int, c_int, c_uint,
c_uint, c_uint, c_ulong, c_ulong)
x11.XCreateSimpleWindow.restype = Window
x11.XDefaultRootWindow.argtypes = (DisplayP,)
x11.XDefaultRootWindow.restype = Window
x11.XDeleteProperty.argtypes = (DisplayP, Window, Atom)
x11.XDeleteProperty.restype = None
x11.XDestroyWindow.argtypes = (DisplayP, Window)
x11.XDestroyWindow.restype = None
x11.XFree.argtypes = (c_void_p,)
x11.XFree.restype = None
x11.XGetAtomName.argtypes = (DisplayP, Atom)
x11.XGetAtomName.restype = c_void_p
x11.XGetErrorText.argtypes = (DisplayP, c_int, c_char_p, c_int)
x11.XGetErrorText.restype = None
x11.XGetWindowProperty.argtypes = (DisplayP, Window, Atom, c_long, c_long, Bool,
Atom, AtomP, c_int_p, c_ulong_p, c_ulong_p, POINTER(POINTER(Window)))
x11.XGetWindowProperty.restype = c_int
x11.XInitThreads.argtypes = ()
x11.XInitThreads.restype = Status
x11.XInternAtom.argtypes = (DisplayP, c_char_p, Bool)
x11.XInternAtom.restype = Atom
x11.XNextEvent.argtypes = (DisplayP, XEventP)
x11.XNextEvent.restype = None
x11.XOpenDisplay.argtypes = (c_char_p,)
x11.XOpenDisplay.restype = DisplayP
x11.XPending.argtypes = (DisplayP,)
x11.XPending.restype = c_int
x11.XSelectInput.argtypes = (DisplayP, Window, c_long)
x11.XSelectInput.restype = None
x11.XSendEvent.argtypes = (DisplayP, Window, Bool, c_long, XEventP)
x11.XSendEvent.restype = Status
x11.XLockDisplay.argtypes = (DisplayP,)
x11.XLockDisplay.restype = None
x11.XUnlockDisplay.argtypes = (DisplayP,)
x11.XUnlockDisplay.restype = None
def threads_init(gtk=True):
"""Enables multithreading support in Xlib and PyGTK.
See the module docstring for more info.
:Parameters:
gtk : bool
May be set to False to skip the PyGTK module.
"""
# enable X11 multithreading
x11.XInitThreads()
if gtk:
from gtk.gdk import threads_init
threads_init()
class SkypeAPI(SkypeAPIBase):
def __init__(self, opts):
self.logger = logging.getLogger('Skype4Py.api.posix_x11.SkypeAPI')
SkypeAPIBase.__init__(self)
finalize_opts(opts)
# initialize threads if not done already by the user
threads_init(gtk=False)
# init Xlib display
self.disp = x11.XOpenDisplay(None)
if not self.disp:
raise SkypeAPIError('Could not open XDisplay')
self.win_root = x11.XDefaultRootWindow(self.disp)
self.win_self = x11.XCreateSimpleWindow(self.disp, self.win_root,
100, 100, 100, 100, 1, 0, 0)
x11.XSelectInput(self.disp, self.win_root, PropertyChangeMask)
self.win_skype = self.get_skype()
ctrl = 'SKYPECONTROLAPI_MESSAGE'
self.atom_msg = x11.XInternAtom(self.disp, ctrl, False)
self.atom_msg_begin = x11.XInternAtom(self.disp, ctrl + '_BEGIN', False)
self.loop_event = threading.Event()
self.loop_timeout = 0.0001
self.loop_break = False
def __del__(self):
if x11:
if hasattr(self, 'disp'):
if hasattr(self, 'win_self'):
x11.XDestroyWindow(self.disp, self.win_self)
x11.XCloseDisplay(self.disp)
def run(self):
self.logger.info('thread started')
# main loop
event = XEvent()
data = ''
while not self.loop_break and x11:
while x11.XPending(self.disp):
self.loop_timeout = 0.0001
x11.XNextEvent(self.disp, byref(event))
# events we get here are already prefiltered by the predicate function
if event.type == ClientMessage:
if event.xclient.format == 8:
if event.xclient.message_type == self.atom_msg_begin:
data = str(event.xclient.data)
elif event.xclient.message_type == self.atom_msg:
if data != '':
data += str(event.xclient.data)
else:
self.logger.warning('Middle of Skype X11 message received with no beginning!')
else:
continue
if len(event.xclient.data) != 20 and data:
self.notify(data.decode('utf-8'))
data = ''
elif event.type == PropertyNotify:
namep = x11.XGetAtomName(self.disp, event.xproperty.atom)
is_inst = (c_char_p(namep).value == '_SKYPE_INSTANCE')
x11.XFree(namep)
if is_inst:
if event.xproperty.state == PropertyNewValue:
self.win_skype = self.get_skype()
# changing attachment status can cause an event handler to be fired, in
# turn it could try to call Attach() and doing this immediately seems to
# confuse Skype (command '#0 NAME xxx' returns '#0 CONNSTATUS OFFLINE' :D);
# to fix this, we give Skype some time to initialize itself
time.sleep(1.0)
self.set_attachment_status(apiAttachAvailable)
elif event.xproperty.state == PropertyDelete:
self.win_skype = None
self.set_attachment_status(apiAttachNotAvailable)
self.loop_event.wait(self.loop_timeout)
if self.loop_event.isSet():
self.loop_timeout = 0.0001
elif self.loop_timeout < 1.0:
self.loop_timeout *= 2
self.loop_event.clear()
self.logger.info('thread finished')
def get_skype(self):
"""Returns Skype window ID or None if Skype not running."""
skype_inst = x11.XInternAtom(self.disp, '_SKYPE_INSTANCE', True)
if not skype_inst:
return
type_ret = Atom()
format_ret = c_int()
nitems_ret = c_ulong()
bytes_after_ret = c_ulong()
winp = pointer(Window())
fail = x11.XGetWindowProperty(self.disp, self.win_root, skype_inst,
0, 1, False, 33, byref(type_ret), byref(format_ret),
byref(nitems_ret), byref(bytes_after_ret), byref(winp))
if not fail and format_ret.value == 32 and nitems_ret.value == 1:
return winp.contents.value
def close(self):
self.loop_break = True
self.loop_event.set()
while self.isAlive():
time.sleep(0.01)
SkypeAPIBase.close(self)
def set_friendly_name(self, friendly_name):
SkypeAPIBase.set_friendly_name(self, friendly_name)
if self.attachment_status == apiAttachSuccess:
# reattach with the new name
self.set_attachment_status(apiAttachUnknown)
self.attach()
def attach(self, timeout, wait=True):
if self.attachment_status == apiAttachSuccess:
return
self.acquire()
try:
if not self.isAlive():
try:
self.start()
except AssertionError:
raise SkypeAPIError('Skype API closed')
try:
self.wait = True
t = threading.Timer(timeout2float(timeout), lambda: setattr(self, 'wait', False))
if wait:
t.start()
while self.wait:
self.win_skype = self.get_skype()
if self.win_skype is not None:
break
else:
time.sleep(1.0)
else:
raise SkypeAPIError('Skype attach timeout')
finally:
t.cancel()
command = Command('NAME %s' % self.friendly_name, '', True, timeout)
self.release()
try:
self.send_command(command, True)
finally:
self.acquire()
if command.Reply != 'OK':
self.win_skype = None
self.set_attachment_status(apiAttachRefused)
return
self.set_attachment_status(apiAttachSuccess)
finally:
self.release()
command = Command('PROTOCOL %s' % self.protocol, Blocking=True)
self.send_command(command, True)
self.protocol = int(command.Reply.rsplit(None, 1)[-1])
def is_running(self):
return (self.get_skype() is not None)
def startup(self, minimized, nosplash):
# options are not supported as of Skype 1.4 Beta for Linux
if not self.is_running():
if os.fork() == 0: # we're the child
os.setsid()
os.execlp('skype', 'skype')
def shutdown(self):
from signal import SIGINT
fh = os.popen('ps -o %p --no-heading -C skype')
pid = fh.readline().strip()
fh.close()
if pid:
os.kill(int(pid), SIGINT)
# Skype sometimes doesn't delete the '_SKYPE_INSTANCE' property
skype_inst = x11.XInternAtom(self.disp, '_SKYPE_INSTANCE', True)
if skype_inst:
x11.XDeleteProperty(self.disp, self.win_root, skype_inst)
self.win_skype = None
self.set_attachment_status(apiAttachNotAvailable)
def send_command(self, command, force=False):
if self.attachment_status != apiAttachSuccess and not force:
self.attach(command.Timeout)
self.push_command(command)
self.notifier.sending_command(command)
cmd = u'#%d %s' % (command.Id, command.Command)
self.logger.debug('sending %s', repr(cmd))
if command.Blocking:
command._event = bevent = threading.Event()
else:
command._timer = timer = threading.Timer(command.timeout2float(), self.pop_command, (command.Id,))
event = XEvent()
event.xclient.type = ClientMessage
event.xclient.display = self.disp
event.xclient.window = self.win_self
event.xclient.message_type = self.atom_msg_begin
event.xclient.format = 8
cmd = cmd.encode('utf-8') + '\x00'
for i in xrange(0, len(cmd), 20):
event.xclient.data = cmd[i:i + 20]
x11.XSendEvent(self.disp, self.win_skype, False, 0, byref(event))
event.xclient.message_type = self.atom_msg
self.loop_event.set()
if command.Blocking:
bevent.wait(command.timeout2float())
if not bevent.isSet():
raise SkypeAPIError('Skype command timeout')
else:
timer.start()
def notify(self, cmd):
self.logger.debug('received %s', repr(cmd))
# Called by main loop for all received Skype commands.
if cmd.startswith(u'#'):
p = cmd.find(u' ')
command = self.pop_command(int(cmd[1:p]))
if command is not None:
command.Reply = cmd[p + 1:]
if command.Blocking:
command._event.set()
else:
command._timer.cancel()
self.notifier.reply_received(command)
else:
self.notifier.notification_received(cmd[p + 1:])
else:
self.notifier.notification_received(cmd)
|
python
|
#! /usr/bin/env python3
# encoding: UTF-8
#
# Python Workshop - Conditionals etc #2
#
# We'll later cover learn what happens here
import random
#
# Guess a number
# Find a random number between 0 and 100 inclusive
target = random.randint(0, 100)
# TODO:
# Write a while loop that repeatedly asks the user to guess the `target`.
# If the number is not the same as the target, write whether it is smaller
# or larger, and try again. Otherwise, stop the loop.
|
python
|
#! /usr/bin/env python
import cyvcf2
import argparse
import sys
from collections import defaultdict, Counter
import pandas as pd
import signal
import numpy as np
from shutil import copyfile
import pyfaidx
from random import choice
from pyliftover import LiftOver
from Bio.Seq import reverse_complement
from mutyper import ancestor
def setup_ancestor(args):
"""utility for initializing an Ancestor object for use in different '
'subroutines"""
return ancestor.Ancestor(args.fasta, k=args.k, target=args.target,
strand_file=args.strand_file,
key_function=lambda x:
x.split(args.sep)[args.chrom_pos],
read_ahead=10000,
sequence_always_upper=(not args.strict))
def ancestral_fasta(args):
"""subroutine for ancestor subcommand
"""
# single chromosome fasta file for reference genome
ref = pyfaidx.Fasta(args.reference, read_ahead=10000)
# make a copy to build our ancestor for this chromosome
copyfile(args.reference, args.output)
anc = pyfaidx.Fasta(args.output, read_ahead=10000, mutable=True)
# reference genome for outgroup species (all chromosomes)
out = pyfaidx.Fasta(args.outgroup, read_ahead=10000)
# outgroup to reference alignment chain file
lo = LiftOver(args.chain)
# snps database for the same chromosome
vcf = cyvcf2.VCF(args.vcf)
# change regions outside of callability mask to all N bases
if args.bed:
if args.bed == '-':
bed = sys.stdin
else:
bed = open(args.bed, 'r')
last_end = 0
for line in bed:
chrom, start, end = line.rstrip().split('\t')[:3]
start = int(start)
anc[chrom][last_end:start] = 'N' * (start - last_end)
last_end = int(end)
anc[chrom][last_end:
len(anc[chrom])] = 'N' * (len(anc[chrom]) - last_end)
for variant in vcf:
# change variants that are not biallelic SNPs to N bases
if not (variant.is_snp and len(variant.ALT) == 1):
anc[chrom][variant.start:
variant.end] = 'N' * (variant.end - variant.start)
else:
out_coords = lo.convert_coordinate(variant.CHROM, variant.start)
# change ambiguously aligning sites to N bases
if out_coords is None or len(out_coords) != 1:
anc[chrom][variant.start] = 'N'
else:
if variant.REF != ref[chrom][variant.start].seq.upper():
raise ValueError(f'variant reference allele {variant.REF} '
f'mismatches reference sequence '
f'{ref[chrom][variant.start]}')
out_chromosome, out_position, out_strand = out_coords[0][:3]
out_allele = out[out_chromosome][out_position].seq
# if negative strand, take reverse complement base
if out_strand == '-':
out_allele = reverse_complement(out_allele)
# and finally, polarize
if out_allele.upper() == variant.ALT[0]:
anc[chrom][variant.start] = out_allele
elif out_allele.upper() != variant.REF:
# triallelic
anc[chrom][variant.start] = 'N'
def variants(args):
"""subroutine for variants subcommand
"""
ancestor = setup_ancestor(args)
vcf = cyvcf2.VCF(args.vcf)
vcf.add_info_to_header({'ID': 'mutation_type',
'Description': f'ancestral {args.k}-mer mutation '
'type',
'Type': 'Character', 'Number': '1'})
vcf_writer = cyvcf2.Writer('-', vcf)
vcf_writer.write_header()
for variant in vcf:
# biallelic snps only
if not (variant.is_snp and len(variant.ALT) == 1):
continue
# mutation type as ancestral kmer and derived kmer
anc_kmer, der_kmer = ancestor.mutation_type(variant.CHROM,
variant.start, variant.REF,
variant.ALT[0])
if anc_kmer is None or der_kmer is None:
continue
mutation_type = f'{anc_kmer}>{der_kmer}'
variant.INFO['mutation_type'] = mutation_type
# ancestral allele
AA = ancestor[variant.CHROM][variant.start].seq
# polarize genotypes (and associated INFO) if alternative allele is
# ancestral
if variant.ALT[0] == AA:
variant.INFO['AC'] = variant.INFO['AN'] - variant.INFO['AC']
variant.INFO['AF'] = variant.INFO['AC'] / variant.INFO['AN']
# cyvcf2 docs say we need to reassign genotypes like this for the
# change to propagate (can't just update indexwise)
if variant.ploidy == 2:
# diploid
variant.genotypes = [[int(not gt[0]), int(not gt[1]), gt[2]]
for gt in variant.genotypes]
elif variant.ploidy == 1:
# haploid
variant.genotypes = [[int(not gt[0]), gt[1]]
for gt in variant.genotypes]
else:
raise ValueError(f"invalid ploidy {variant.ploidy}")
elif not variant.REF == AA:
raise ValueError(f'ancestral allele {AA} is not equal to '
f'reference {variant.REF} or alternative '
f'{variant.ALT[0]}')
# set REF to ancestral allele and ALT to derived allele
variant.REF = anc_kmer[ancestor.target]
variant.ALT = der_kmer[ancestor.target]
vcf_writer.write_record(variant)
# this line required to exit on a SIGTERM in a pipe, e.g. from head
signal.signal(signal.SIGPIPE, signal.SIG_DFL)
def targets(args):
"""subroutine for targets subcommand
"""
ancestor = setup_ancestor(args)
if args.bed == '-':
args.bed = sys.stdin
sizes = ancestor.targets(args.bed)
try:
for kmer in sorted(sizes):
print(f'{kmer}\t{sizes[kmer]}')
except BrokenPipeError:
pass
def spectra(args):
"""subroutine for spectra subcommand
"""
vcf = cyvcf2.VCF(args.vcf, gts012=True)
if args.population:
spectra_data = Counter()
for variant in vcf:
spectra_data[variant.INFO['mutation_type']] += 1
spectra = pd.DataFrame(spectra_data,
['population']).reindex(sorted(spectra_data),
axis='columns')
try:
print(spectra.to_csv(sep='\t', index=False))
except BrokenPipeError:
pass
else:
spectra_data = defaultdict(lambda: np.zeros_like(vcf.samples,
dtype=int))
if args.randomize:
for variant in vcf:
random_haplotype = choice([x for x, y in enumerate(variant.gt_types)
for _ in range(y)])
spectra_data[variant.INFO['mutation_type']][random_haplotype] += 1.
else:
for variant in vcf:
if variant.ploidy == 1:
# haploid ALT are coded as 2 (homozygous ALT)
variant.gt_types[variant.gt_types == 2] = 1
spectra_data[variant.INFO['mutation_type']] += variant.gt_types
spectra = pd.DataFrame(spectra_data,
vcf.samples).reindex(sorted(spectra_data),
axis='columns')
try:
print(spectra.to_csv(sep='\t', index=True,
index_label='sample'))
except BrokenPipeError:
pass
def ksfs(args):
"""subroutine for ksfs subcommand
"""
vcf = cyvcf2.VCF(args.vcf)
ksfs_data = defaultdict(lambda: Counter())
AN = None
for variant in vcf:
# AN must be the same for all sites (no missing genotypes)
if AN is not None and variant.INFO['AN'] != AN:
raise ValueError(f'different AN {variant.INFO["AN"]} and {AN}'
' indicates missing genotypes')
AN = variant.INFO['AN']
ksfs_data[variant.INFO['mutation_type']][variant.INFO['AC']] += 1
# exclude fixed sites AC=0, AC=AN
index = range(1, AN)
for mutation_type in sorted(ksfs_data):
ksfs_data[mutation_type] = [ksfs_data[mutation_type][ac]
for ac in index]
ksfs = pd.DataFrame(ksfs_data, index).reindex(sorted(ksfs_data),
axis='columns')
try:
print(ksfs.to_csv(sep='\t', index=True,
index_label='sample_frequency'))
except BrokenPipeError:
pass
def get_parser():
parser = argparse.ArgumentParser(
description='mutyper: ancestral kmer mutation types for variant data')
subparsers = parser.add_subparsers(
title='subcommands', description='specify one of these', required=True,
help='additional help available for each subcommand')
parser_ancestor = subparsers.add_parser(
'ancestor', description='create an ancestral FASTA file, using an '
'outgroup alignment, and a database of SNPs '
'with a callability mask')
parser_variants = subparsers.add_parser(
'variants', description='adds mutation_type to VCF/BCF INFO, polarizes'
' REF/ALT/AC according to ancestral/derived '
'states, and stream to stdout')
parser_targets = subparsers.add_parser(
'targets', description='compute 𝑘-mer target sizes and stream to '
'stdout')
parser_spectra = subparsers.add_parser(
'spectra', description='compute mutation spectra for each sample in '
'VCF/BCF with mutation_type data and stream to'
' stdout')
parser_ksfs = subparsers.add_parser(
'ksfs', description='compute sample frequency spectrum for each '
'mutation type from a VCF/BCF file with '
'mutation_type data (i.e. output from variants '
'subcommand ) and stream to stdout')
# arguments that require FASTA input
for sub_parser in (parser_variants, parser_targets):
sub_parser.add_argument('fasta', type=str,
help='path to ancestral FASTA')
sub_parser.add_argument('--k', type=int, default=3,
help='k-mer context size (default 3)')
sub_parser.add_argument('--target', type=int, default=None,
help='0-based mutation target position in kmer'
' (default middle)')
sub_parser.add_argument('--sep', type=str, default=':',
help='field delimiter in FASTA headers '
'(default ":")')
sub_parser.add_argument('--chrom_pos', type=int, default=0,
help='0-based chromosome field position in '
'FASTA headers (default 0)')
sub_parser.add_argument('--strand_file', type=str, default=None,
help='path to bed file with regions where '
'reverse strand defines mutation '
'context, e.g. direction of replication '
'or transcription (default collapse '
'reverse complements)')
sub_parser.add_argument('--strict', action='store_true',
help='only uppercase nucleotides in FASTA '
'considered ancestrally identified')
# subcommands that require VCF input
for sub_parser in (parser_ancestor, parser_variants, parser_spectra,
parser_ksfs):
sub_parser.add_argument('vcf', type=str,
help='VCF/BCF file, usually for a single '
'chromosome ("-" for stdin)')
# subcommands that take BED input
for sub_parser in (parser_ancestor, parser_targets):
sub_parser.add_argument('--bed', type=str, default=None,
help='path to BED file mask ("-" for stdin)')
# arguments specific to ancestor subcommand
parser_ancestor.add_argument('reference', type=str,
help='path to reference FASTA for one '
'chromosome')
parser_ancestor.add_argument('outgroup', type=str,
help='path to outgroup genome FASTA')
parser_ancestor.add_argument('chain', type=str,
help='path to alignment chain file '
'(reference to outgroup)')
parser_ancestor.add_argument('output', type=str,
help='path for output ancestral FASTA for '
'this chromosome')
parser_ancestor.set_defaults(func=ancestral_fasta)
# arguments specific to variants subcommand
parser_variants.set_defaults(func=variants)
# arguments specific to targets subcommand
parser_targets.set_defaults(func=targets)
# arguments specific to spectra subcommand
parser_spectra.add_argument('--population', action='store_true',
help='population-wise spectrum, instead of '
'individual')
parser_spectra.add_argument('--randomize', action='store_true',
help='randomly assign mutation to a single '
'haplotype')
parser_spectra.set_defaults(func=spectra)
# arguments specific to ksfs subcommand
parser_ksfs.set_defaults(func=ksfs)
return parser
def main(arg_list=None):
args = get_parser().parse_args(arg_list)
args.func(args)
|
python
|
###############################################################################
# $Id$
# $Author$
#
# Routines to create the inquisitor plots.
#
###############################################################################
# system import
import threading
import string
import os
# enstore imports
import Trace
import e_errors
import enstore_files
import enstore_plots
import enstore_functions
import enstore_functions2
import enstore_constants
import accounting_query
import configuration_client
LOGFILE_DIR = "logfile_dir"
XFER_SIZE = "xfer-size"
class InquisitorPlots:
def open_db_connection(self):
if not self.acc_db:
# open a connection to the accounting db, the data is there
acc = self.config_d.get(enstore_constants.ACCOUNTING_SERVER, {})
if acc:
self.acc_db = accounting_query.accountingQuery(host = acc.get('dbhost', "localhost"),
port = acc.get('dbport', 5432),
dbname= acc.get('dbname', ""),
user = acc.get('dbuser', "enstore"))
def close_db_connection(self):
if self.acc_db:
self.acc_db.close()
self.acc_db = None
# create the htl file with the inquisitor plot information
def make_plot_html_page(self):
for plotfile_t in self.plotfile_l:
if len(plotfile_t) > 2:
plotfile = plotfile_t[0]
html_dir = plotfile_t[1]
links_l = plotfile_t[2:]
else:
(plotfile, html_dir) = plotfile_t
links_l = None
nav_link = ""
plotfile.open()
# get the list of stamps and jpg files
(jpgs, stamps, pss) = enstore_plots.find_jpg_files(html_dir)
plotfile.write(jpgs, stamps, pss, self.mount_label, links_l)
plotfile.close()
plotfile.install()
# figure out how much information to get out of the db
# if start_time specified : do start_time -> latest
# if stop_time specified : do 30 days ago -> stop_time
# if start_time and stop_time are specified :
# do start_time -> stop_time
def make_time_query(self, column):
time_q = "%s to_char(%s, 'YYYY-MM-DD') %s"%(accounting_query.WHERE, column,
accounting_query.GREATER)
if not self.start_time:
# only use the last 30 days
self.start_time = self.acc_db.days_ago(30)
time_q = "%s '%s'"%(time_q, self.start_time)
if self.stop_time:
time_q = "%s %s %s %s '%s'"%(time_q, accounting_query.AND, column, accounting_query.LESS,
self.stop_time)
return time_q
# make the mount plots (mounts per hour and mount latency)
def mount_plot(self, prefix):
self.open_db_connection()
# get the config file so we can not plot null mover data
config = enstore_functions.get_config_dict()
if config:
config = config.configdict
else:
config = {}
# get the mount information out of the accounting db. it is in
# the tape_mounts table
db_table = "tape_mounts"
start_col = "start"
finish_col = "finish"
type_col = "type"
table = "tape_mounts"
time_q = self.make_time_query(start_col)
# only need mount requests
time_q = "%s %s state%s'M'"%(time_q, accounting_query.AND, accounting_query.EQUALS)
# get the total mounts/day. the results are in a list
# where each element looks like -
# {'start': '2003-03-27', 'total': '345'}
query = "select to_char(start , 'YYYY-MM-DD') as %s, count(*) as total from %s %s group by to_char(start, 'YYYY-MM-DD') order by to_char(start, 'YYYY-MM-DD')"%(start_col, table, time_q)
total_mounts = self.acc_db.query(query)
# get the mounts for each drive type. first get a list of the drive
# types
query = "select distinct %s from %s"%(type_col, table)
drive_types = self.acc_db.query(query)
total_mounts_type = {}
# for each drive type get a list of the mounts/day
# the results are in a dict which holds a list where each element
# looks like -
# {'start': '2003-03-27 00:05:55', 'latency': '00:00:25'}
for type_d in drive_types.dictresult():
aType = type_d[type_col]
query = "select to_char(start , 'YYYY-MM-DD') as %s, count(*) as total from %s %s %s %s='%s' group by to_char(start, 'YYYY-MM-DD') order by to_char(start, 'YYYY-MM-DD')"%(start_col, table, time_q,
accounting_query.AND, type_col,
aType)
total_mounts_type[aType] = self.acc_db.query(query).dictresult()
# only do the plotting if we have some data
if total_mounts:
# now save any new mount count data for the continuing total
# count. and create the overall total mount plot
mpdfile = enstore_plots.MpdDataFile(self.output_dir, self.mount_label)
mpdfile.open()
total_mounts_l = total_mounts.dictresult()
mpdfile.plot(total_mounts_l)
mpdfile.close()
mpdfile.install(self.html_dir)
mmpdfile = enstore_plots.MpdMonthDataFile(self.output_dir, self.mount_label)
mmpdfile.open()
mmpdfile.plot(total_mounts_l, total_mounts_type)
mmpdfile.close()
mmpdfile.install(self.html_dir)
mmpdfile.cleanup(self.keep, self.keep_dir)
# close db connection
self.close_db_connection()
# make the total transfers per unit of time and the bytes moved per day
# plot
def encp_plot(self, prefix):
ofn = self.output_dir+"/bytes_moved.txt"
# open connection to db.
self.open_db_connection()
# Dmitry:
# Kludge: this seems like the only way I can get storage groups efficiently
#
res=self.acc_db.query("select distinct(storage_group) from encp_xfer_average_by_storage_group")
storage_groups = []
for row in res.getresult():
if not row:
continue
storage_groups.append(row[0])
# always add /dev/null to the end of the list of files to search thru
# so that grep always has > 1 file and will always print the name of
# the file at the beginning of the line. do not count any null moves.
encpfile = enstore_files.EnEncpDataFile("%s* /dev/null"%(prefix,), ofn,
"-e %s"%(Trace.MSG_ENCP_XFER,),
self.logfile_dir,
"| grep -v %s"%(enstore_constants.NULL_DRIVER,))
# only extract the information from the newly created file that is
# within the requested timeframe.
encpfile.open('r')
os.system("cp %s %s_1"%(encpfile.file_name,encpfile.file_name,))
encpfile.read_and_parse(self.start_time, self.stop_time, prefix, self.media_changer)
encpfile.close()
encpfile.cleanup(self.keep, self.keep_dir)
#
# This is a test, this is a test. I am testing retrieval of data from DB. I replaces encpfile.data -> self.data
#
self.data=[]
self.start_time = self.acc_db.days_ago(30)
encp_q = "select to_char(date,'YYYY-MM-DD:hh24:mi:ss'), size, rw, mover, drive_id, storage_group from encp_xfer where date > '%s' and driver != '%s'"%(self.start_time,enstore_constants.NULL_DRIVER,)
res=self.acc_db.query(encp_q)
for row in res.getresult():
if not row:
continue
self.data.append([row[0],row[1],row[2],row[3],row[4],row[5]])
# only do the plotting if we have some data
if self.data:
# overall bytes/per/day count
bpdfile = enstore_plots.BpdDataFile(self.output_dir)
bpdfile.open()
bpdfile.plot(self.data)
bpdfile.close()
bpdfile.install(self.html_dir)
mbpdfile = enstore_plots.BpdMonthDataFile(self.output_dir)
mbpdfile.open()
mbpdfile.plot(bpdfile.write_ctr)
mbpdfile.close()
mbpdfile.install(self.html_dir)
xferfile = enstore_plots.XferDataFile(self.output_dir,
mbpdfile.ptsfile)
xferfile.open()
xferfile.plot(self.data)
xferfile.close()
xferfile.install(self.html_dir)
xferfile.cleanup(self.keep, self.keep_dir)
#
# check if there are other storage groups
#
if (len(storage_groups)>1) :
for sg in storage_groups:
xferfile = enstore_plots.XferDataFile(self.output_dir,
mbpdfile.ptsfile,sg)
xferfile.open()
xferfile.plot(self.data)
xferfile.close()
xferfile.install(self.html_dir+"/"+XFER_SIZE) # Kludge (Dmitry)
xferfile.cleanup(self.keep, self.keep_dir)
# delete any extraneous files. do it here because the xfer file
# plotting needs the bpd data file
bpdfile.cleanup(self.keep, self.keep_dir)
mbpdfile.cleanup(self.keep, self.keep_dir)
self.close_db_connection()
# make the plot showing queue movement for different storage groups plot
def sg_plot(self, prefix):
ofn = self.output_dir+"/sg_lmq.txt"
# open connection to db.
self.open_db_connection()
# always add /dev/null to the end of the list of files to search thru
# so that grep always has > 1 file and will always print the name of
# the file at the beginning of the line.
sgfile = enstore_files.EnSgDataFile("%s* /dev/null"%(prefix,), ofn,
"-e %s"%(Trace.MSG_ADD_TO_LMQ,),
self.logfile_dir)
# only extract the information from the newly created file that is
# within the requested timeframe.
sgfile.open('r')
sgfile.timed_read(self.start_time, self.stop_time, prefix)
# now pull out the info we are going to plot from the lines
sgfile.parse_data(prefix)
sgfile.close()
sgfile.cleanup(self.keep, self.keep_dir)
# only do the plotting if we have some data
if sgfile.data:
sgplot = enstore_plots.SgDataFile(self.output_dir)
sgplot.open()
sgplot.plot(sgfile.data)
sgplot.close()
sgplot.install(self.html_dir)
# delete any extraneous files. do it here because the xfer file
# plotting needs the bpd data file
sgplot.cleanup(self.keep, self.keep_dir)
# close db connection
self.close_db_connection()
def get_bpd_files(self):
#
# Dmitry is hacking below, getting info from config server
# *I assume that config server and points are on the same node!!!!*
#
servers=self.config_d.get('known_config_servers',[])
nodes_and_dirs={}
for server in servers:
if (server == 'status') : continue
server_name,server_port = servers.get(server)
#
# access config server to get locatin of web directory
#
csc = configuration_client.ConfigurationClient((server_name, server_port))
inq_d = csc.get(enstore_constants.INQUISITOR, {})
nodes_and_dirs[server_name.split('.')[0]]=inq_d.get("html_file","/fnal/ups/prd/www_pages/enstore")
files_l = []
pts_file_only = "%s%s"%(enstore_constants.BPD_FILE, enstore_plots.PTS)
this_node = enstore_functions2.strip_node(os.uname()[1])
for node in nodes_and_dirs.keys():
destination_directory = nodes_and_dirs.get(node)
pts_file = "%s/%s"%(destination_directory, pts_file_only)
if enstore_functions2.ping(node) == enstore_constants.IS_ALIVE:
new_file = "/tmp/%s.%s"%(pts_file_only, node)
if node == this_node:
rtn = os.system("cp %s %s"%(pts_file, new_file))
else:
rtn = enstore_functions2.get_remote_file(node, pts_file, new_file)
if rtn == 0:
files_l.append((new_file, node))
else:
Trace.log(e_errors.WARNING,
"could not copy %s from %s for total bytes plot"%(pts_file,node))
else:
Trace.log(e_errors.WARNING,
"could not ping, %s from %s for total bytes plot"%(pts_file,node))
return files_l
def fill_in_bpd_d(self, bpdfile, data_d, node):
if bpdfile.lines:
for line in bpdfile.lines:
fields = string.split(string.strip(line))
# this is the date
if not data_d.has_key(fields[0]):
data_d[fields[0]] = {}
if len(fields) > 2:
# we have data , need date, total, ctr, writes
data_d[fields[0]][node] = {enstore_plots.TOTAL : float(fields[1]),
enstore_plots.CTR : enstore_plots.get_ctr(fields),
enstore_plots.WRITES : float(fields[3])}
else:
data_d[fields[0]][node] = {enstore_plots.TOTAL : 0.0,
enstore_plots.CTR : 0L,
enstore_plots.WRITES : 0.0}
def read_bpd_data(self, files_l):
data_d = {}
for filename, node in files_l:
bpdfile = enstore_files.EnstoreBpdFile(filename)
bpdfile.open('r')
# only extract the info that is within the requested time frame
bpdfile.timed_read(self.start_time, self.stop_time)
bpdfile.close()
# now fill in the data dictionary with the data
self.fill_in_bpd_d(bpdfile, data_d, node)
return data_d
def total_bytes_plot(self):
# we need to copy the enplot_bpd.pts files from all the nodes that are not
# our own.
files_l = self.get_bpd_files()
# for each file we have, open it and read the requested data
data_d = self.read_bpd_data(files_l)
# now write out the data and plot it
if data_d:
tbpdfile = enstore_plots.TotalBpdDataFile(self.output_dir)
tbpdfile.open()
tbpdfile.plot(data_d)
tbpdfile.close()
tbpdfile.install(self.html_dir)
tbpdfile.cleanup(self.keep, self.keep_dir)
# make all the plots
def plot(self, encp, mount, sg, total_bytes):
ld = {}
self.acc_db = None
# find out where the log files are located
if self.logfile_dir is None:
ld = self.config_d.get("log_server")
self.logfile_dir = ld["log_file_path"]
if self.output_dir is None:
self.output_dir = self.logfile_dir
# get the list of alternate log files. we may need to grep these instead of the
# normal ones
if not ld:
ld = self.config_d.get("log_server")
alt_logs = ld.get("msg_type_logs", {})
if encp:
enstore_functions.inqTrace(enstore_constants.PLOTTING,
"Creating inq transfer plots")
alt_key = string.strip(Trace.MSG_ENCP_XFER)
self.encp_plot(alt_logs.get(alt_key, enstore_constants.LOG_PREFIX))
if mount:
enstore_functions.inqTrace(enstore_constants.PLOTTING,
"Creating inq mount plots")
alt_key = string.strip(Trace.MSG_MC_LOAD_REQ)
self.mount_plot(alt_logs.get(alt_key, enstore_constants.LOG_PREFIX))
if sg:
enstore_functions.inqTrace(enstore_constants.PLOTTING,
"Creating inq storage group plots")
alt_key = string.strip(Trace.MSG_ADD_TO_LMQ)
self.sg_plot(alt_logs.get(alt_key, enstore_constants.LOG_PREFIX))
if total_bytes:
enstore_functions.inqTrace(enstore_constants.PLOTTING,
"Creating inq total bytes summary plot")
self.total_bytes_plot()
# update the inquisitor plots web page
if not self.no_plot_html:
Trace.trace(11, "Creating the inq plot web page")
self.make_plot_html_page()
|
python
|
# -*- coding: utf-8 -*-
from __future__ import (absolute_import, division, print_function)
import pytest
from .. import Backend
from . import AVAILABLE_BACKENDS
@pytest.mark.parametrize('key', AVAILABLE_BACKENDS)
def test_Dummy(key):
be = Backend(key)
d0 = be.Dummy()
d1 = be.Dummy()
assert d0 == d0
assert d0 != d1
|
python
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file displays duration statistics of utterances in a manifest.
You can use the displayed value to choose minimum/maximum duration
to remove short and long utterances during the training.
See the function `remove_short_and_long_utt()`
in ../../../librispeech/ASR/transducer/train.py
for usage.
"""
from lhotse import load_manifest_lazy
def main():
paths = [
"./data/fbank/alimeeting_cuts_train.jsonl.gz",
"./data/fbank/alimeeting_cuts_eval.jsonl.gz",
"./data/fbank/alimeeting_cuts_test.jsonl.gz",
]
for path in paths:
print(f"Starting display the statistics for {path}")
cuts = load_manifest_lazy(path)
cuts.describe()
if __name__ == "__main__":
main()
"""
Starting display the statistics for ./data/fbank/alimeeting_cuts_train.jsonl.gz
Cuts count: 559092
Total duration (hours): 424.6
Speech duration (hours): 424.6 (100.0%)
***
Duration statistics (seconds):
mean 2.7
std 3.0
min 0.0
25% 0.7
50% 1.7
75% 3.6
99% 13.6
99.5% 14.7
99.9% 16.2
max 284.3
Starting display the statistics for ./data/fbank/alimeeting_cuts_eval.jsonl.gz
Cuts count: 6457
Total duration (hours): 4.9
Speech duration (hours): 4.9 (100.0%)
***
Duration statistics (seconds):
mean 2.7
std 3.1
min 0.1
25% 0.6
50% 1.6
75% 3.5
99% 13.6
99.5% 14.1
99.9% 14.7
max 15.8
Starting display the statistics for ./data/fbank/alimeeting_cuts_test.jsonl.gz
Cuts count: 16358
Total duration (hours): 12.5
Speech duration (hours): 12.5 (100.0%)
***
Duration statistics (seconds):
mean 2.7
std 2.9
min 0.1
25% 0.7
50% 1.7
75% 3.5
99% 13.7
99.5% 14.2
99.9% 14.8
max 15.7
"""
|
python
|
import time
import cv2
import numpy as np
import tflite_runtime.interpreter as tflite
def _inference(interpreter, input_details, input_data):
'''Inference (internal function)
TensorFlow Lite inference
the inference result can be get to use interpreter.get_tensor
Arguments:
- interpreter: tflite.Interpreter
- input_details: result of tflite.Interpreter.get_input_details()
- input_data: input inference data
Returns:
- duration: inference time [ms]
'''
start_time = time.time()
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
stop_time = time.time()
duration = (stop_time - start_time) * 1000
return duration
def object_detection(model_file, class_label, image, max_detection=-1, thresh=0.3):
'''Object Detection
Arguments:
- model_file: file path of tflite
- class_label: list of class name
- image: image data(ndarray, HxWxC)
- max_detection: max boxes to draw on image (if -1 set then draw all boxes, but thresh is more priority)
- thresh: minimum score threshold to draw boxes
Returns:
- ret_image: return image
- duration: inference time [ms]
'''
# load model file
interpreter = tflite.Interpreter(model_path=model_file)
input_details = interpreter.get_input_details()
# print(input_details)
# image preprocessing
org_img_shape = image.shape
input_type = input_details[0]['name']
if (input_type == 'normalized_input_image_tensor'):
input_image = (((image / 255.) - 0.5) * 2).astype(np.float32)
input_image = np.expand_dims(input_image, axis=0)
interpreter.resize_tensor_input(input_details[0]['index'], (1, image.shape[0], image.shape[1], 3))
elif (input_type == 'serving_default_images:0'):
input_img_shape = (input_details[0]['shape'][1], input_details[0]['shape'][2])
input_image = cv2.resize(image, input_img_shape)
input_image = np.expand_dims(input_image, axis=0)
interpreter.allocate_tensors()
# inference
duration = _inference(interpreter, input_details, input_image)
# draw bounding box
output_details = interpreter.get_output_details()
# StatefulPartitionedCall:0 count
# StatefulPartitionedCall:1 scores
# StatefulPartitionedCall:2 classes
# StatefulPartitionedCall:3 boxes
result = {}
for output_detail in output_details:
if (output_detail['name'] == 'StatefulPartitionedCall:0'):
result['count'] = interpreter.get_tensor(output_detail['index'])
elif (output_detail['name'] == 'StatefulPartitionedCall:1'):
result['scores'] = interpreter.get_tensor(output_detail['index'])
elif (output_detail['name'] == 'StatefulPartitionedCall:2'):
result['classes'] = interpreter.get_tensor(output_detail['index'])
elif (output_detail['name'] == 'StatefulPartitionedCall:3'):
result['boxes'] = interpreter.get_tensor(output_detail['index'])
elif (output_detail['name'] == 'raw_outputs/box_encodings'):
result['boxes'] = interpreter.get_tensor(output_detail['index'])
elif (output_detail['name'] == 'raw_outputs/class_predictions'):
result_tmp = interpreter.get_tensor(output_detail['index'])
result_exp = np.exp(result_tmp)
result['scores'] = result_exp.max(axis=2) / result_exp.sum(axis=2)
result['classes'] = result_tmp.argmax(axis=2)
# print(result['scores'].shape)
# print(result['classes'].shape)
# print(result['boxes'].shape)
ret_image = image
for i, (score_, class_, box_) in enumerate(zip(result['scores'][0], result['classes'][0], result['boxes'][0])):
if (score_ >= thresh):
print(f'{i}, score={score_}, class={class_}, box={box_}')
ymin, xmin, ymax, xmax = box_
ymin = int(ymin * org_img_shape[0])
xmin = int(xmin * org_img_shape[1])
ymax = int(ymax * org_img_shape[0])
xmax = int(xmax * org_img_shape[1])
color = [255, 0, 0]
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
y = ymin - 15 if ((ymin - 15) > 15) else ymin + 15
if class_label is None:
label = f'class: {int(class_)}'
else:
label = f'{class_label[int(class_)]}'
cv2.putText(image, label, (xmin, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# return
return ret_image, duration
|
python
|
# Copyright 2020-present NAVER Corp. Under BSD 3-clause license
import subprocess
import sys
import os.path as path
from typing import List, Optional
def run_python_command(local_path: str, args: List[str], python_binary: Optional[str] = None, notbash = True):
"""
run a python subprocess
:param local_path: path where you expect the file to be
:type local_path: str
:param args: the arguments of the python process
:type args: List[str]
:param python_binary: path to the python binary, optional, when None, the .py file is called directly
:type python_binary: Optional[str]
:raises ValueError: subprocess crashed
"""
if python_binary is None and notbash:
if path.isfile(local_path):
compute_image_pairs_bin = path.normpath(local_path)
else:
# maybe the script was installed through pip
compute_image_pairs_bin = path.basename(local_path)
args.insert(0, compute_image_pairs_bin)
use_shell = sys.platform.startswith("win")
sub_process = subprocess.Popen(args, shell=use_shell)
sub_process.wait()
if sub_process.returncode != 0:
raise ValueError('\nSubprocess Error (Return code:' f' {sub_process.returncode} )')
|
python
|
import numpy
from numpy.testing import *
from prettyplotting import *
from algopy.utpm import *
# STEP 0: setting parameters and general problem definition
############################################################
# Np = number of parameters p
# Nq = number of control variables q
# Nm = number of measurements
# P = number of vectorized operations at once (SPMD)
D,Nq,Np,Nm = 2,1,11,30
P = Np
q = UTPM(numpy.zeros((D,P,Nq)))
q0 = 1.
q.data[0,:,0] = q0
p = UTPM(numpy.zeros((D,P,Np)))
p0 = numpy.random.rand(Np)
p.data[0,:,:] = p0
p.data[1,:,:] = numpy.eye(P)
B = UTPM(numpy.zeros((D,P,Nm, Np)))
B0 = numpy.random.rand(Nm,Np)
B.data[0,:] = B0
# STEP 1: compute push forward
############################################################
G = UTPM.dot(B, p)
F = G * q[0]
J = F.FtoJT().T
Q,R = UTPM.qr(J)
Id = numpy.eye(Np)
Rinv = UTPM.solve(R,Id)
C = UTPM.dot(Rinv,Rinv.T)
l,U = UTPM.eigh(C)
arg = UTPM.argmax(l)
# check correctness of the push forward
tmp1 = q0**-2* numpy.linalg.inv(numpy.dot(B0.T,B0))
l0, U0 = numpy.linalg.eigh( tmp1 )
assert_array_almost_equal( J.data[0,0], B0)
assert_array_almost_equal( C.data[0,0], tmp1)
assert_array_almost_equal(l.data[0,0], l0)
assert_array_almost_equal(U.data[0,0], U0)
# STEP 2: compute pullback
############################################################
lbar = UTPM(numpy.zeros(l.data.shape))
lbar.data[0,0, arg] = 1.
Ubar = UTPM(numpy.zeros(U.data.shape))
Cbar = UTPM.pb_eigh(lbar, Ubar, C, l, U)
Rinvbar, RinvTbar = UTPM.pb_dot(Cbar, Rinv, Rinv.T, C)
Rinvbar += RinvTbar.T
Rbar, Idbar = UTPM.pb_solve(Rinvbar, R, Id, Rinv)
Qbar = UTPM(numpy.zeros(Q.data.shape))
Jbar = UTPM.pb_qr(Qbar, Rbar, J, Q, R)
Fbar = Jbar.T.JTtoF()
qbars = UTPM.dot(G.T,Fbar)
# accumulate over the different directions
qbar = UTPM(numpy.zeros((D,1)))
qbar.data[:,0] = numpy.sum( qbars.data[:,:], axis=1)
#############################################
# compare with analytical solution
#############################################
c = numpy.max(numpy.linalg.eig( numpy.linalg.inv(numpy.dot(B0.T, B0)))[0])
dPhidq = - 2* c * q0**-3
assert_almost_equal( dPhidq, qbar.data[1,0])
print('symbolical - UTPM pullback = %e'%( numpy.abs(dPhidq - qbar.data[1,0])))
|
python
|
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""Day 2 of AdventOfCode.com: iterating over arrays doing simple arithmetic"""
import os
from numpy import product
def present_wrap_area(dimensions):
"""
:param dimensions: list of 3 floats: length, width and height
:return: area of wrapping
"""
wrap_area = 0
sides = list()
for i in range(0, 3):
for j in range(i+1, 3):
sides.append(dimensions[i] * dimensions[j])
for i in range(0, len(sides)):
wrap_area += 2 * sides[i]
wrap_area += min(sides)
return wrap_area
def present_ribbon_length(dimensions):
"""
:param dimensions: list of 3 floats: length, width and height
:return: length of ribbon
"""
ribbon_length = product(dimensions)
sorted_dims = sorted(dimensions)
ribbon_length += 2 * (sorted_dims[0]+sorted_dims[1])
return ribbon_length
def presents(sets_of_dimensions):
"""Calculates total parameters for all presents
:param sets_of_dimensions: list of lists of 3 floats: length, width and height
:return:
"""
return sum([present_wrap_area(dimensions) for dimensions in sets_of_dimensions]), \
sum([present_ribbon_length(dimensions) for dimensions in sets_of_dimensions])
sets_of_dims = list()
with open(os.path.dirname(os.path.realpath('__file__')) + "/input/day2.txt", "r") as datafile:
for line in datafile:
sets_of_dims.append([float(s) for s in line.rstrip("\n").split("x")])
print(presents(sets_of_dims))
|
python
|
# Copy from web_set_price.py of Trading Stock Thailand
# Objective : Create Program to store financial data of company
# From set.or.th
# sk 2018-12-05
import urllib
from bs4 import BeautifulSoup
import numpy as np
import pandas as pd
from os.path import join, exists
from os import remove, makedirs
import urllib2 #sk
#DIR_SEC_CSV = "sec_set_price"
DIR_DATA_CSV = "data" # sk
# Example url
# https://www.set.or.th/set/historicaltrading.do?
# symbol=BBL&page=2&language=en&country=US&type=trading
# sk
# https://www.set.or.th/set/companyfinance.do?
# symbol=PTT&type=[balance,income,cashflow]&
# language=en&country=US
# def getTableData(symbol, page=1):
# if page > 3:
# page = 3 # limit at 3
def getTableData(cat, tick, typ, pg):
#url_string = "https://www.set.or.th/set/historicaltrading.do?symbol={0}".format(symbol)
#url_string += '&page={0}&language=en&country=US&type=trading'.format(page-1)
url_string = "https://www.set.or.th/set/"
url_string += cat + ".do?&language=en&country=us"
url_string += "&symbol=" + tick
url_string += "&type=" + typ
if pg == 0:
url_string += ""
else:
url_string += "&page=" + pg
#page = urllib.request.urlopen(url_string).read()
page = urllib2.urlopen(urllib2.Request(url_string)).read()
soup = BeautifulSoup(page, 'lxml')
# table_element = soup.find('table', class_='table table-hover table-info')
table_element = soup.find('div', class_='table-responsive')
# return table_element, url_string
return table_element
def createDataFrame(table_element):
row_list =[]
head_list = []
if table_element is None:
return None
tr_list = table_element.findAll('tr')
for tr in tr_list:
th_list = tr.findAll('th')
if th_list is not None:
for th in th_list:
head_list.append(th.find(text=True))
td_list = tr.findAll('td')
for td in td_list:
row_list = np.append(row_list, td.find(text=True))
num_col = len(head_list)
total_col = int(len(row_list)/num_col)
row_list = np.reshape(row_list, (total_col, num_col) )
df=pd.DataFrame(columns = head_list, data = row_list)
return df
def create_all_data(symbol, total_page=1):
# get stock data from set.or.th web (total page)
df = None
for p in range(1, total_page+1):
table_element, url_string = getTableData(symbol, page=p)
print(url_string)
df_temp = createDataFrame(table_element)
if df is None:
df = df_temp
else:
df = df.append(df_temp)
return df
# def writeCSVFile(df, symbol, output_path=DIR_SEC_CSV, include_index = False):
def writeCSVFile(df, symbol, output_path=DIR_DATA_CSV, include_index = False):
csv_file = "{}.csv".format(join(output_path, symbol))
df.to_csv(csv_file, index = include_index)
# def removeOldFile(symbol, output_path=DIR_SEC_CSV):
def removeOldFile(symbol, output_path=DIR_DATA_CSV):
csv_file = "{}.csv".format(join(output_path, symbol))
if exists(output_path) == False:
makedirs(output_path)
if exists(csv_file):
remove(csv_file)
if __name__ == "__main__" :
# table_element, url_string = getTableData("PTT")
# tr_list = table_element.findAll('tr')
# print(tr_list[0:2])
table_element = getTableData("companyfinance", "PTT", "cashflow", 0)
# symbol_list = ['AOT', 'BBL']
# for symbol in symbol_list:
# df = create_all_data(symbol, total_page = 2)
# print('\n********* %s **********' % symbol)
# print(df.tail())
symbol_list = ['PTT']
for symbol in symbol_list:
df = create_all_data(symbol)
# save csv files (all stock data)
# removeOldFile(symbol) # clear old files
# writeCSVFile(df, symbol)
|
python
|
import nltk
import json
import argparse
from collections import Counter
def build_word2id(seq_path, min_word_count):
"""Creates word2id dictionary.
Args:
seq_path: String; text file path
min_word_count: Integer; minimum word count threshold
Returns:
word2id: Dictionary; word-to-id dictionary
"""
sequences = open(seq_path).readlines()
num_seqs = len(sequences)
counter = Counter()
for i, sequence in enumerate(sequences):
tokens = nltk.tokenize.word_tokenize(sequence.lower())
counter.update(tokens)
if i % 1000 == 0:
print("[{}/{}] Tokenized the sequences.".format(i, num_seqs))
# create a dictionary and add special tokens
word2id = {}
word2id['<pad>'] = 0
word2id['<start>'] = 1
word2id['<end>'] = 2
word2id['<unk>'] = 3
# if word frequency is less than 'min_word_count', then the word is discarded
words = [word for word, count in counter.items() if count >= min_word_count]
# add the words to the word2id dictionary
for i, word in enumerate(words):
word2id[word] = i + 4
return word2id
def main(config):
# build word2id dictionaries for source and target sequences
src_word2id = build_word2id(config.src_path, config.min_word_count)
trg_word2id = build_word2id(config.trg_path, config.min_word_count)
# save word2id dictionaries
with open(config.src_word2id_path, 'w') as f:
json.dump(src_word2id, f)
with open(config.trg_word2id_path, 'w') as f:
json.dump(trg_word2id, f)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--src_path', type=str, default='./data/src_train.txt')
parser.add_argument('--trg_path', type=str, default='./data/trg_train.txt')
parser.add_argument('--src_word2id_path', type=str, default='./data/src_word2id.json')
parser.add_argument('--trg_word2id_path', type=str, default='./data/trg_word2id.json')
parser.add_argument('--min_word_count', type=int, default=1)
config = parser.parse_args()
print (config)
main(config)
|
python
|
# -*- coding:utf-8 -*-
# Python 字典类型转换为JSON对象
data1 = {
'no': 1,
'name':'Runoob',
'url':'http://www.runoob.com'
}
# 对数据进行编码
import json
json_str = json.dumps(data1)
print("Python原始数据:", repr(data1))
print("JSON对象:", json_str)
# 将JSON对象转换为Python字典
# 对数据进行解码
data2 = json.loads(json_str)
print("data2['name']:", data2['name'])
print("data2['url']:", data2['url'])
|
python
|
import re
def checkIP(IP):
regex='^([2][0-5][0-5]|[1]{0,1}[0-9]{1,2})\.([2][0-5][0-5]|[1]{0,1}[0-9]{1,2})\.([2][0-5][0-5]|[1]{0,1}[0-9]{1,2})\.([2][0-5][0-5]|[1]{0,1}[0-9]{1,2}$)'
return re.match(regex,IP)
def checkIP2(n):
return n<=255
a=['123.4.2.222', '0.0.0.0', '14.123.444.2', '1.1.1.1']
print "***** CHECK USING REGEX *****"
for IP in a:
print IP,
if checkIP(IP):
print "VALID"
else:
print "INVALID"
print ""
print "***** CHECK USING OCTECT VALIDITY *****"
for IP in a:
print IP,"VALID" if all([checkIP2(int(n)) for n in IP.split('.')]) else "INVALID"
checking valid email
#([a-zA-Z0-9._%+-]+)@([a-zA-Z0-9.-]+)\.([a-zA-Z]{2,4})
|
python
|
#!/usr/bin/env python
import wx
import pcbnew
import os
import time
from .kifind_plugin_gui import kifind_gui
from .kifind_plugin_action import FindAll, DoSelect, __version__
class KiFindDialog(kifind_gui):
"""Class that gathers all the Gui control"""
def __ShowAll(self, do_tracks, do_mm):
self.list_result.DeleteAllItems()
vias = FindAll(self.board, do_tracks, do_mm)
for key, value in vias.items():
#print("Adding " + key)
self.list_result.Append([key, value])
def __init__(self, board):
"""Init the brand new instance"""
super(KiFindDialog, self).__init__(None)
self.do_tracks = True
self.do_mm = True
self.index = 0
self.board = board
self.list_result.InsertColumn(0, "Value")
self.list_result.InsertColumn(1, "Number")
self.SetTitle("KiFind (ver.{})".format(__version__))
self.Bind(wx.EVT_CLOSE, self.onCloseWindow)
self.but_cancel.Bind(wx.EVT_BUTTON, self.onCloseWindow)
self.but_show.Bind(wx.EVT_BUTTON, self.onProcessAction)
self.Bind(wx.EVT_RADIOBUTTON, self.onProcessMirror)
self.list_result.Bind(wx.EVT_LIST_ITEM_SELECTED, self.onSelected)
#self.m_bitmap_help.SetBitmap(wx.Bitmap( os.path.join(os.path.dirname(os.path.realpath(__file__)), "rcs", "teardrops-help.png") ) )
self.SetMinSize(self.GetSize())
self.__ShowAll(self.do_tracks, self.do_mm)
def onProcessMirror(self, event):
rb = event.GetEventObject()
if rb == self.radio_tracks:
self.do_tracks = True
elif rb == self.radio_vias:
self.do_tracks = False
elif rb == self.radio_mm:
self.do_mm = True
elif rb == self.radio_mils:
self.do_mm = False
self.__ShowAll(self.do_tracks, self.do_mm)
#print("Value: " + str(self.mirror_type))
#print("Clicked: " + rb.GetLabel())
def onProcessAction(self, event):
try:
# Executes the requested action
#index = self.list_result.GetNextItem(0, wx.LIST_NEXT_ALL, wx.LIST_STATE_SELECTED)
#print("Choosen: " + self.list_result.GetItemText(self.index))
num = DoSelect(self.board, self.do_tracks, self.do_mm, self.list_result.GetItemText(self.index))
pcbnew.UpdateUserInterface()
s = ["vias", "tracks"][self.do_tracks]
pcbnew.Refresh()
wx.MessageBox("Ready!\n\nProcessed: {} {}".format(num, s))
except Exception as ex:
wx.MessageBox("Error: {}".format(ex))
self.EndModal(wx.ID_OK)
def onSelected(self, event):
#self.index = event.GetSelection()
self.index = self.list_result.GetFirstSelected()
#print("Selected: " + self.list_result.GetItemText(self.index))
#DoSelect(self.board, do_tracks, self.list_result.GetItemText(index))
def onCloseWindow(self, event):
self.EndModal(wx.ID_OK)
def InitKiFindDialog(board):
# Launch the dialog
tg = KiFindDialog(board)
tg.ShowModal()
tg.Destroy()
if __name__ == '__main__':
InitKiFindDialog(pcbnew.GetBoard())
|
python
|
from app import app
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import pandas as pd
import time
import json
from flask import jsonify
@app.route('/')
@app.route('/home', methods=['GET'])
def home():
navegador = webdriver.Chrome()
pessoas = ["Brain+Lag", "Why", "Dankpot7", "Romance+Dawn", "Dreadway", "Cinza+Falso", "Shallan+Davar"]
#pessoas = ["Brain+Lag", "Why"]
elos = []
dados = []
win_rate = []
campeoes = []
for nome in pessoas:
campeao = []
# Entra no perfil da pessoa
navegador.get(f"https://br.op.gg/summoner/userName={nome}")
# Atualiza o perfil
#navegador.find_element_by_xpath('//*[@id="SummonerRefreshButton"]').click()
time.sleep(1)
# Pega os dados
elo = navegador.find_element_by_xpath('//*[@id="SummonerLayoutContent"]/div[2]/div[1]/div[2]/div/div[2]').text
dado = navegador.find_element_by_xpath('//*[@id="SummonerLayoutContent"]/div[2]/div[1]/div[2]/div/div[3]').text
win = navegador.find_element_by_xpath('//*[@id="SummonerLayoutContent"]/div[2]/div[1]/div[2]/div/div[4]').text
# Campeões jogados
for i in range(1,11):
campeao.append(navegador.find_element_by_xpath(f'//*[@id="SummonerLayoutContent"]/div[2]/div[2]/div/div[2]/div[3]/div[{i}]/div/div[1]/div[2]/div[4]/a').text)
navegador.find_element_by_xpath('//*[@id="SummonerLayoutContent"]/div[2]/div[2]/div/div[2]/div[4]/a').click()
time.sleep(2)
for i in range(1,11):
campeao.append(navegador.find_element_by_xpath(f'//*[@id="SummonerLayoutContent"]/div[2]/div[2]/div/div[2]/div[4]/div[{i}]/div/div[1]/div[2]/div[4]/a').text)
elos.append(elo)
dados.append(dado)
win_rate.append(win)
campeoes.append(campeao)
pdls = []
vitorias_derrotas = []
taxa = []
nomes = []
for i in range(len(dados)):
pdl = dados[i][:2]
pdls.append(pdl)
v_d = dados[i][6:]
vitorias_derrotas.append(v_d)
tx = win_rate[i][8:]
taxa.append(tx)
nm = pessoas[i].replace("+", " ")
nomes.append(nm)
dataframe = pd.DataFrame()
dataframe["Invocador"] = nomes
dataframe["Elo"] = elos
dataframe["PLDs"] = pdls
dataframe["Partidas"] = vitorias_derrotas
dataframe["WinRate"] = taxa
dataframe["Campeões"] = campeoes
dataframe = dataframe.sort_values("WinRate", ascending=False)
dataframe = dataframe.reset_index(drop=True)
dataframe.to_json(f"{nomes[0]}.json")
dick = dataframe.to_dict()
return jsonify(dick)
|
python
|
# Copyright (c) 2019 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
import alf
from alf.data_structures import LossInfo, StepType
from alf.utils import tensor_utils, value_ops
from alf.utils.summary_utils import safe_mean_hist_summary
@alf.configurable
class OneStepQRLoss(nn.Module):
"""Temporal difference loss."""
def __init__(self,
gamma=0.99,
sum_over_quantiles=True,
debug_summaries=False,
name="OneStepQRLoss"):
r"""
Args:
gamma (float|list[float]): A discount factor for future rewards. For
multi-dim reward, this can also be a list of discounts, each
discount applies to a reward dim.
td_errors_loss_fn (Callable): A function for computing the TD errors
loss. This function takes as input the target and the estimated
Q values and returns the loss for each element of the batch.
sum_over_quantiles (bool): Whether to sum over the quantiles
debug_summaries (bool): True if debug summaries should be created.
name (str): The name of this loss.
"""
super().__init__()
self._name = name
self._gamma = torch.tensor(gamma)
self._debug_summaries = debug_summaries
self._sum_over_quantiles = sum_over_quantiles
@property
def gamma(self):
"""Return the :math:`\gamma` value for discounting future rewards.
Returns:
Tensor: a rank-0 or rank-1 (multi-dim reward) floating tensor.
"""
return self._gamma.clone()
def forward(self, info, value, target_value):
"""Calculate the loss.
The first dimension of all the tensors is time dimension and the second
dimesion is the batch dimension.
Args:
info (namedtuple): experience collected from ``unroll()`` or
a replay buffer. All tensors are time-major. ``info`` should
contain the following fields:
- reward:
- step_type:
- discount:
value (torch.Tensor): the time-major tensor for the value at each time
step. The loss is between this and the calculated return.
target_value (torch.Tensor): the time-major tensor for the value at
each time step. This is used to calculate return. ``target_value``
can be same as ``value``.
Returns:
LossInfo: with the ``extra`` field same as ``loss``.
"""
if info.reward.ndim == 3:
# [T, B, D] or [T, B, 1]
discounts = info.discount.unsqueeze(-1) * self._gamma
else:
# [T, B]
discounts = info.discount * self._gamma
target_value_shape = target_value.shape
rewards = info.reward.unsqueeze(-1).expand(target_value_shape)
step_types = info.step_type.unsqueeze(-1).expand(target_value_shape)
discounts = discounts.unsqueeze(-1).expand(target_value_shape)
returns = value_ops.one_step_discounted_return(
rewards=rewards,
values=target_value,
step_types=step_types,
discounts=discounts)
value = value[:-1]
# Get the cummulative prob
assert value.ndim == 3, value.shape
n_quantiles = value.shape[-1]
# Cumulative probabilities to calculate quantiles.
cum_prob = (torch.arange(
n_quantiles, device=value.device, dtype=torch.float
) + 0.5) / n_quantiles
# For QR-DQN, current_quantiles have a shape
# (T, B, n_quantiles), and make cum_prob
# broadcastable to
# (T, B, n_quantiles, n_target_quantiles)
cum_prob = cum_prob.view(1, 1, -1, 1)
# (T, B, n_quantiles, n_target_quantiles)
element_wise_delta = returns.detach().unsqueeze(-2) - value.unsqueeze(-1)
abs_element_wise_delta = torch.abs(element_wise_delta)
huber_loss = torch.where(
abs_element_wise_delta > 1,
abs_element_wise_delta - 0.5,
element_wise_delta ** 2 * 0.5
)
loss = torch.abs(cum_prob - (element_wise_delta.detach() < 0).float()) * huber_loss
if self._sum_over_quantiles:
loss = loss.sum(dim=-2).mean(dim=-1)
else:
loss = loss.mean(dim=-2).mean(dim=-1)
# The shape of the loss expected by Algorith.update_with_gradient is
# [T, B], so we need to augment it with additional zeros.
loss = tensor_utils.tensor_extend_zero(loss)
if self._debug_summaries and alf.summary.should_record_summaries():
mask = step_types[:-1] != StepType.LAST
with alf.summary.scope(self._name):
def _summarize(v, r, td, suffix):
alf.summary.scalar(
"explained_variance_of_return_by_value" + suffix,
tensor_utils.explained_variance(v, r, mask))
safe_mean_hist_summary('values' + suffix, v, mask)
safe_mean_hist_summary('returns' + suffix, r, mask)
safe_mean_hist_summary("td_error" + suffix, td, mask)
for i in range(value.shape[-2]):
for j in range(value.shape[-1]):
suffix = f'/{i}-{j}'
_summarize(
value[..., i, j],
returns[..., i, j],
element_wise_delta[..., i, j],
suffix)
return LossInfo(loss=loss, extra=loss)
|
python
|
from profiles.models import *
from django.contrib import admin
admin.site.register(FriendGroup)
admin.site.register(UserProfile)
|
python
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db.models.query import QuerySet
class CategoryQuerySet(QuerySet):
def by_author(self, user):
return self.filter(author=user)
|
python
|
seq = input()
a = [(int(seq[i]) + int(seq[i+1]))/2.0 for i in range(len(seq)-1)]
print(a)
|
python
|
#######################################################################
# Tests for applications.py module
#######################################################################
from auto_process_ngs.applications import *
import unittest
try:
from cStringIO import StringIO
except ImportError:
# cStringIO not available in Python3
from io import StringIO
class TestBcl2Fastq(unittest.TestCase):
def test_configure_bcl_to_fastq(self):
"""Construct 'configureBclToFastq.pl' command lines
"""
self.assertEqual(bcl2fastq.configureBclToFastq(
'Data/Intensities/Basecalls',
'SampleSheet.csv').command_line,
['configureBclToFastq.pl',
'--input-dir','Data/Intensities/Basecalls',
'--output-dir','Unaligned',
'--sample-sheet','SampleSheet.csv',
'--fastq-cluster-count','-1'])
self.assertEqual(bcl2fastq.configureBclToFastq(
'Data/Intensities/Basecalls',
'SampleSheet.csv',
output_dir='run/bcl2fastq').command_line,
['configureBclToFastq.pl',
'--input-dir','Data/Intensities/Basecalls',
'--output-dir','run/bcl2fastq',
'--sample-sheet','SampleSheet.csv',
'--fastq-cluster-count','-1'])
self.assertEqual(bcl2fastq.configureBclToFastq(
'Data/Intensities/Basecalls',
'SampleSheet.csv',
output_dir='run/bcl2fastq',
ignore_missing_bcl=True).command_line,
['configureBclToFastq.pl',
'--input-dir','Data/Intensities/Basecalls',
'--output-dir','run/bcl2fastq',
'--sample-sheet','SampleSheet.csv',
'--fastq-cluster-count','-1',
'--ignore-missing-bcl'])
self.assertEqual(bcl2fastq.configureBclToFastq(
'Data/Intensities/Basecalls',
'SampleSheet.csv',
configureBclToFastq_exe=
"/opt/bin/configureBclToFastq.pl").command_line,
['/opt/bin/configureBclToFastq.pl',
'--input-dir','Data/Intensities/Basecalls',
'--output-dir','Unaligned',
'--sample-sheet','SampleSheet.csv',
'--fastq-cluster-count','-1'])
def test_bcl2fastq(self):
"""Construct 'bcl2fastq' command lines for bcl2fastq v2.*
"""
self.assertEqual(bcl2fastq.bcl2fastq2(
'/runs/150107_NB123000_0001_ABCX',
'SampleSheet.csv').command_line,
['bcl2fastq',
'--runfolder-dir','/runs/150107_NB123000_0001_ABCX',
'--output-dir','Unaligned',
'--sample-sheet','SampleSheet.csv'])
self.assertEqual(bcl2fastq.bcl2fastq2(
'/runs/150107_NB123000_0001_ABCX',
'SampleSheet.csv',
output_dir='run/bcl2fastq').command_line,
['bcl2fastq',
'--runfolder-dir','/runs/150107_NB123000_0001_ABCX',
'--output-dir','run/bcl2fastq',
'--sample-sheet','SampleSheet.csv'])
self.assertEqual(bcl2fastq.bcl2fastq2(
'/runs/150107_NB123000_0001_ABCX',
'SampleSheet.csv',
output_dir='run/bcl2fastq',
ignore_missing_bcl=True).command_line,
['bcl2fastq',
'--runfolder-dir','/runs/150107_NB123000_0001_ABCX',
'--output-dir','run/bcl2fastq',
'--sample-sheet','SampleSheet.csv',
'--ignore-missing-bcls'])
self.assertEqual(bcl2fastq.bcl2fastq2(
'/runs/150107_NB123000_0001_ABCX',
'SampleSheet.csv',
output_dir='run/bcl2fastq',
mismatches=1,
no_lane_splitting=True).command_line,
['bcl2fastq',
'--runfolder-dir','/runs/150107_NB123000_0001_ABCX',
'--output-dir','run/bcl2fastq',
'--sample-sheet','SampleSheet.csv',
'--barcode-mismatches','1',
'--no-lane-splitting'])
self.assertEqual(bcl2fastq.bcl2fastq2(
'/runs/150107_NB123000_0001_ABCX',
'SampleSheet.csv',
bcl2fastq_exe='/opt/bin/bcl2fastq').command_line,
['/opt/bin/bcl2fastq',
'--runfolder-dir','/runs/150107_NB123000_0001_ABCX',
'--output-dir','Unaligned',
'--sample-sheet','SampleSheet.csv'])
class TestGeneral(unittest.TestCase):
def test_rsync(self):
"""Construct 'rsync' command lines
"""
self.assertEqual(general.rsync('from','to').command_line,
['rsync','-av','from','to'])
self.assertEqual(general.rsync('from','[email protected]:to').command_line,
['rsync','-av','-e','ssh','from','[email protected]:to'])
def test_make(self):
"""Construct 'make' command lines
"""
self.assertEqual(general.make(makefile='makefile',
working_dir='Unaligned',
nprocessors='12').command_line,
['make',
'-C','Unaligned',
'-j','12',
'-f','makefile'])
def test_ssh_cmd(self):
"""Construct 'ssh' command lines
"""
self.assertEqual(general.ssh_command('user','example.com',('ls','-l')).command_line,
['ssh','[email protected]','ls','-l'])
def test_scp(self):
"""Construct 'scp' command lines
"""
self.assertEqual(
general.scp('user','example.com','my_file','remotedir').command_line,
['scp','my_file','[email protected]:remotedir'])
def test_scp_recursive(self):
"""Construct 'scp -r' command lines
"""
self.assertEqual(
general.scp('user','example.com','my_dir','remotedir',
recursive=True).command_line,
['scp','-r','my_dir','[email protected]:remotedir'])
|
python
|
#!/usr/bin/env python
#
# This examples show how to use accessors to associate scalar data to mesh elements,
# and how to read and write those data from/to mesh files using ViennaGrid's readers
# and writers.
from __future__ import print_function
# In this example, we will illustrate how to read and write scalar data from and to
# mesh files using accessors and the VTK reader and writer, respectively.
#
# We will start defining a domain of triangles in the cartesian 2D space and will
# create some vertices and cells (triangles) in it. Then we will store the surface
# of the cells using accessors. Finally, we will write the mesh and the scalar data
# to a VTK file and we will read it again from the mesh file, just to illustrate
# how to read and write data stored using accessors.
from viennagrid import Domain, Point, Segmentation
from viennagrid import config
from viennagrid import io
from viennagrid import accessors
from viennagrid.algorithms import surface
# Create an empty domain
domain = Domain(config.triangular_2d)
# Add vertices to the domain. These vertices will then be used to define
# cells.
domain.make_vertex(Point(0, 0)) # Vertex with ID #0
domain.make_vertex(Point(1, 0)) # Vertex with ID #1
domain.make_vertex(Point(2, 0)) # Vertex with ID #2
domain.make_vertex(Point(2, 1)) # Vertex with ID #3
domain.make_vertex(Point(1, 1)) # Vertex with ID #4
domain.make_vertex(Point(0, 1)) # Vertex with ID #5
# Create a segmentation of the domain
segmentation = Segmentation(domain)
# Create 2 segments in the segmentation of the domain
seg0 = segmentation.make_segment()
seg1 = segmentation.make_segment()
# Create 2 cells in the first segment. Since the domain is a triangular domain,
# cells are triangles and three vertices must be specified to create a cell.
seg0.make_cell(domain.vertices[0], domain.vertices[1], domain.vertices[5])
seg0.make_cell(domain.vertices[1], domain.vertices[4], domain.vertices[5])
# Create 2 cells in the second segment. This time, we will use variable to
# make the code shorter.
seg1.make_cell(domain.vertices[1], domain.vertices[2], domain.vertices[4])
seg1.make_cell(domain.vertices[3], domain.vertices[2], domain.vertices[4])
# Create a new accessor for the cells of the domain and save for each cell
# its surface.
cell_surface_accessor = accessors.Accessor(accessors.CELL_ACCESSOR, config.triangular_2d)
# For each cell of the domain, we calculate its surface and store the surface
# of the cell using the accessor. To do that, we call the 'set_value' method
# of the accessor specifying the cell and the value that we want to assign to
# the cell.
for cell in domain.cells:
cell_surface_accessor.set_value(cell, surface(cell))
# Now we want to read the value corresponding to each cell stored in the accessor.
# Since the cells that have a value stored in the accessor are all the cells of the
# domain, we simply iterate over the cells of the domain and get the value stored
# in the accessor for that cell using the 'get_value' method of the accessor.
for i, cell in enumerate(domain.cells):
value = cell_surface_accessor.get_value(cell)
print('Cell #%(i)d has surface %(value)f' % locals())
# Next, we want to write the mesh and the scalar data to a VTK file. To do that,
# we must provide each accessor with a name for the data stored in it, preferrably
# a descriptive name of what the data mean.
#
# Since we have stored the surface of the cells, we will call the data 'surface'.
# Then, we create a dictionary associating the quantity name to the accessor that
# stores that given quantity. Since we only have one accessor to save, this dictionary
# will have only one key.
accessors = {'surface': cell_surface_accessor}
# Now we call the VTK write as in the I/O tutorial, but we also specify the dictionary
# that contains all accessors that should be written to the file.
io.write_vtk('tri2d_mesh_with_surface_data_no_segment', domain, accessors)
# If you want to save the segmentation information, too, you must call the writer as
# explained in the I/O tutorial, also specifying the segmentation:
io.write_vtk('tri2d_mesh_with_surface_data', domain, segmentation, accessors)
|
python
|
########## Single softmax layer NN build for digit recognition ###################
############ Import modules #################
import mnistdata
import tensorflow as tf
tf.set_random_seed(0)
# Download images and labels into mnist.test (10K images+labels) and mnist.train (60K images+labels)
mnist = mnistdata.read_data_sets("data", one_hot=True, reshape=False)
########### Define input, label, training parameters (weight and bias) ################
# input X: 28 * 28 gray-scale pixels
X = tf.placeholder(dtype=tf.float32, shape=[None, 28, 28, 1], name='input_digits_2D')
# label Y_: the expected label
Y_ = tf.placeholder(dtype=tf.float32, shape=[None, 10], name='truth_label')
# weights matrix W[28*28, 10]
W = tf.Variable(initial_value=tf.zeros([28*28, 10]))
# bias b[10]
b = tf.Variable(initial_value=tf.zeros([10]))
########### Define model, expected output, loss function and training method ###########
## flatten the 28*28 image into 1 single line of pixels
XX = tf.reshape(X, shape=[-1, 28*28])
# the softmax model
Y = tf.nn.softmax(tf.matmul(XX, W) + b)
# loss function
cross_entropy = - tf.reduce_sum(Y_ * tf.log(Y))
# optimizer set up: GradientDecent(mini-batch), learning rate is 0.005
train_step = tf.train.GradientDescentOptimizer(learning_rate=0.005).minimize(loss = cross_entropy)
# accuracy of the prediction
correct_prediction = tf.equal(tf.argmax(Y, 1), tf.argmax(Y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#########################################################################################
########################### set up training process ####################
## initilization
init = tf.global_variables_initializer() #
sess = tf.Session()
sess.run(init)
## batch training actions definition ##
def do_training(i):
batch_X, batch_Y = mnist.train.next_batch(100) # get batch-size data
##### print training accuracy and loss ############
train_a, train_c = sess.run([accuracy, cross_entropy], feed_dict={X: batch_X, Y_:batch_Y})
print("training " + str(i) + ": accuracy: " + str(train_a) + " loss: " + str(train_c))
##### print testing accuracy and loss ##############
test_a, test_c = sess.run([accuracy, cross_entropy], feed_dict={X: mnist.test.images, Y_:mnist.test.labels})
print("testing " + str(i) + ": ********* epoch " + str(i * 100 // mnist.train.images.shape[0] + 1) +
" ********* test accuracy:" + str(test_a) + " test loss: " + str(test_c))
##### backpropagation training ########
sess.run(train_step, feed_dict={X:batch_X, Y_:batch_Y})
with sess:
iterations = 1000
for i in range(iterations):
do_training(i)
print("#############final performance on testing data###############")
test_a, test_c = sess.run([accuracy, cross_entropy], feed_dict={X: mnist.test.images, Y_: mnist.test.labels})
print("accuracy:" + str(test_a) + " loss: " + str(test_c))
##### print testing accuracy and loss ##############
|
python
|
import os
os.environ['DJANGO_COLORS'] = 'nocolor'
from django.core.management import call_command
from django.db import connection
from django.apps import apps
from io import StringIO
commands = StringIO()
cursor = connection.cursor()
for app in apps.get_app_configs():
call_command('sqlsequencereset', app.label, stdout=commands)
cursor.execute(commands.getvalue())
|
python
|
import discord
import os
import keep_alive
from discord.ext import commands
client = commands.Bot(command_prefix=':', self_bot=True, help_command=None)
@client.event
async def on_ready():
# Playing
# await client.change_presence(activity=discord.Game(name="a game"))
# Streaming
# await bot.change_presence(activity=discord.Streaming(name="a Stream", url="http://your-url-here.com/"))
# Listening
# await bot.change_presence(activity=discord.Activity(type=discord.ActivityType.listening, name="a song"))
# Watching
await client.change_presence(activity=discord.Activity(type=discord.ActivityType.watching, name="The world burn"))
keep_alive.keep_alive()
client.run(os.getenv("TOKEN"), bot=False)
|
python
|
"""
globals.py
File that holds some important static dictionary look-up tables, and some useful
functions used repeatedly in the codebase.
"""
import numpy as np
import pandas as pd
from scipy.special import logit
"""
get_prec_df
Reads in the precinct df given the state and the year.
NOTE: also adds in normalized candidate cfscores
@param: state, year, bool value of whether want CD or not
"""
def get_prec_df(state, year, add_cd=False, alt=False):
if year == None:
return None
if state == 'ne':
state_lst = ['tx', 'ny']
else:
state_lst = [state]
prec_df_lst = []
for state in state_lst:
precdir = '../data/%s_data/data/%s_%s' % (state, state, year)
if alt:
precfile = '%s/precline_%s_alt_%s.csv' % (precdir, state, year)
else:
precfile = '%s/precline_%s_house_%s.csv' % (precdir, state, year)
prec_df = pd.read_csv(precfile)
# add in normalized candidate cfscores
# [-2, 2] --> [0, 1] --> logit() --> [-inf, +inf]
prec_df['cf_score_0'] = prec_df['cf_score_0'].astype(float)
prec_df['cf_score_1'] = prec_df['cf_score_1'].astype(float)
prec_df['cf_norm_0'] = logit(((prec_df['cf_score_0'] + 2) / 4.0))
prec_df['cf_norm_1'] = logit(((prec_df['cf_score_1'] + 2) / 4.0))
if add_cd:
prec_cd_file = '%s/%s_%s_prec_cd.csv' % (precdir, state, year)
prec_df = pd.merge(prec_df, pd.read_csv(prec_cd_file), how='left',
on='geoid')
prec_df['state'] = state
prec_df['geoid'] = prec_df['geoid'].astype('str')
prec_df_lst.append(prec_df)
return pd.concat(prec_df_lst)
next_year_dict = {
'2006': '2008',
'2008': '2010',
'2010': None
}
alt_exists_dict = {
'tx': {
'2006': True,
'2008': True,
'2010': False,
},
'ny': {
'2006': True,
'2008': True,
'2010': True,
},
'oh': {
'2006': True,
'2008': True,
'2010': True,
}
}
state_name_dict = {
'tx': 'Texas',
'ny': 'New York',
'oh': 'Ohio'
}
# maps both kinds of state names to the lowercase way we like
state_cces_dict = {
'Texas': 'tx',
'New York': 'ny',
'Ohio': 'oh',
'TX': 'tx',
'NY': 'ny',
'OH': 'oh'
}
state_code_dict = {
'tx': 48,
'ny': 36,
'oh': 39
}
# dictionaries that have hard-coded the string to integer values of CCES survey
cces_ideology_dict = {
'very liberal': 1,
'liberal': 2,
'moderate': 3,
'conservative': 4,
'very conservative': 5,
'not sure': -1,
'skipped': -1,
'not asked': -1
}
cces_self_p_dict = {
'Very Liberal': 1,
'Liberal': 2,
'Somewhat Liberal': 3,
'Middle of the Road': 4,
'Somewhat Conservative': 5,
'Conservative': 6,
'Very Conservative': 7,
'Not Sure': -1,
'Skipped': -1,
'Not Asked': -1,
np.nan: -1
}
|
python
|
# Definition of dictionary
europe = {'spain':'madrid', 'france':'paris', 'germany':'bonn',
'norway':'oslo', 'italy':'rome', 'poland':'warsaw',
'australia':'vienna' }
# Update capital of germany
europe['germany'] = 'berlin'
# Remove australia
del(europe['australia'])
# Print europe
print(europe)
|
python
|
# AUTOGENERATED BY NBDEV! DO NOT EDIT!
__all__ = ["index", "modules", "custom_doc_links", "git_url"]
index = {"f1score": "00_utils.ipynb",
"df_preproc": "00_utils.ipynb",
"load_data": "00_utils.ipynb",
"TestModel": "00_utils.ipynb",
"transform": "00_utils.ipynb",
"windows_fast": "00_utils.ipynb",
"AnomalyDetection": "01_binet.ipynb"}
modules = ["utils.py",
"binet.py"]
doc_url = "https://{user}.github.io/anomaly/"
git_url = "https://github.com/{user}/anomaly/tree/{branch}/"
def custom_doc_links(name): return None
|
python
|
from __future__ import absolute_import
from collections import OrderedDict
import logging
from tabulate import tabulate
from numpy import asarray
from numpy import sqrt
from numpy import ones
from numpy_sugar.linalg import economic_svd
from ...tool.kinship import gower_normalization
from ...tool.normalize import stdnorm
from limix_inference.lmm import SlowLMM
from limix_inference.mean import LinearMean
from limix_inference.cov import LinearCov
from limix_inference.cov import SumCov
class InputInfo(object):
def __init__(self):
self.background_markers_user_provided = None
self.nconst_background_markers = None
self.covariates_user_provided = None
self.nconst_markers = None
self.kinship_rank = None
self.candidate_nmarkers = None
self.phenotype_info = None
self.background_nmarkers = None
self.effective_X = None
self.effective_G = None
self.effective_K = None
self.S = None
self.Q = None
def __str__(self):
t = []
t += self.phenotype_info.get_info()
if self.background_markers_user_provided:
t.append(['Background data', 'provided via markers'])
t.append(['# background markers', self.background_nmarkers])
t.append([
'# const background markers', self.nconst_background_markers
])
else:
t.append(['Background data', 'provided via Kinship matrix'])
t.append(['Kinship diagonal mean', self.kinship_diagonal_mean])
if self.covariates_user_provided:
t.append(['Covariates', 'provided by user'])
else:
t.append(['Covariates', 'a single column of ones'])
t.append(['Kinship rank', self.kinship_rank])
t.append(['# candidate markers', self.candidate_nmarkers])
return tabulate(t, tablefmt='plain')
def tuple_it(GK):
r = []
for GKi in GK:
if isinstance(GKi, tuple):
r.append(GKi)
else:
r.append((GKi, False))
return tuple(r)
def normalize_covariance_list(GK):
if not isinstance(GK, (list, tuple, dict)):
GK = (GK, )
GK = tuple_it(GK)
if not isinstance(GK, dict):
GK = [('K%d' % i, GK[i]) for i in range(len(GK))]
GK = OrderedDict(GK)
return GK
def preprocess(GK, covariates, input_info):
logger = logging.getLogger(__name__)
input_info.covariates_user_provided = covariates is not None
for (name, GKi) in iter(GK.items()):
if GKi[1]:
logger.info('Covariace matrix normalization on %s.', name)
K = asarray(GKi[0], dtype=float)
K = gower_normalization(K)
GK[name] = (K, True)
else:
logger.info('Genetic markers normalization on %s.', name)
G = asarray(GKi[0], dtype=float)
G = stdnorm(G, 0)
G /= sqrt(G.shape[1])
GK[name] = (G, False)
input_info.effective_GK = GK
def normal_decomposition(y, GK, covariates=None, progress=True):
logger = logging.getLogger(__name__)
logger.info('Normal variance decomposition scan has started.')
y = asarray(y, dtype=float)
ii = InputInfo()
# ii.phenotype_info = NormalPhenotypeInfo(y)
GK = normalize_covariance_list(GK)
preprocess(GK, covariates, ii)
vd = NormalVarDec(
y, ii.effective_GK, covariates=covariates, progress=progress)
vd.learn()
# genetic_preprocess(X, G, K, covariates, ii)
#
# lrt = NormalLRT(y, ii.Q[0], ii.Q[1], ii.S[0], covariates=covariates,
# progress=progress)
# lrt.candidate_markers = ii.effective_X
# lrt.pvals()
# return lrt
return vd
def _offset_covariate(covariates, n):
return ones((n, 1)) if covariates is None else covariates
class VarDec(object):
def __init__(self, K, covariates=None, progress=True):
self._logger = logging.getLogger(__name__)
self._progress = progress
self._X = None
self._K = K
n = list(K.items())[0][1][0].shape[0]
self._covariates = _offset_covariate(covariates, n)
def learn(self):
self._logger.info('Variance decomposition computation: has started.')
self._learn(progress=False)
class NormalVarDec(VarDec):
def __init__(self, y, K, covariates=None, progress=True):
super(NormalVarDec, self).__init__(
K, covariates=covariates, progress=progress)
self._y = y
mean = LinearMean(self._covariates.shape[1])
mean.set_data(self._covariates)
covs = []
for Ki in iter(K.items()):
c = LinearCov()
if Ki[1][1]:
G = economic_svd(Ki[1][0])
else:
G = Ki[1][0]
c.set_data((G, G))
covs.append(c)
cov = SumCov(covs)
self._lmm = SlowLMM(y, mean, cov)
def _learn(self, progress):
self._lmm.feed().maximize()
|
python
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author : Eric Winn
# @Email : [email protected]
# @Time : 19-9-3 上午7:19
# @Version : 1.0
# @File : __init__.py
# @Software : PyCharm
|
python
|
from typing import Optional
from django.urls import reverse
from django.views.generic import CreateView
from django.http import Http404
from django.utils.functional import cached_property
from task.forms import TaskCreateForm
from ..models import Member
from ..querysets import get_user_teams, get_team_with_members
from ..forms import TeamCreateForm, MemberCreateForm
class TeamView(CreateView):
template_name = "team/team.html"
form_class = TeamCreateForm
def get_success_url(self) -> str:
return reverse("team")
def get_context_data(self, **kwargs):
kwargs['object_list'] = get_user_teams(self.request.user.pk)
return super().get_context_data(**kwargs)
def post(self, request, *args, **kwargs):
if request.method == 'POST':
post = request.POST.copy()
post.update({"creator": request.user})
request.POST = post
return super().post(request, *args, **kwargs)
class TeamManagementView(CreateView):
template_name = "team/management.html"
def get_form_class(self):
if self.request.method == 'POST':
if 'add_member' in self.request.POST:
return MemberCreateForm
return TaskCreateForm
def __get_team_id(self) -> int:
"""Return team id that exists in url kwargs"""
return self.kwargs.get('id', None)
def __validate_post_team_id(self) -> bool:
"""
Validate entered team id in form are equal to
team id in url kwargs
"""
team_id = self.__get_team_id()
return self.request.POST.get("team", [None])[0] == str(team_id)
def get_success_url(self) -> str:
team = self.__get_team_id()
if team is None:
return reverse("team")
return reverse("team-management", kwargs={"id": team})
def get_context_data(self, **kwargs):
"""
Sets `object` context to team object that exists in url.
if team not found, `Http404` will be raised
"""
obj = get_team_with_members(
team_id=self.kwargs.get("id")
)
if obj is None:
raise Http404()
kwargs['object'] = obj
return super().get_context_data(**kwargs)
@cached_property
def _member_object(self) -> Optional[Member]:
"""Returns member instance of request.user"""
return Member.objects.filter(
user=self.request.user,
team_id=self.__get_team_id()
).first()
def has_permissions(self):
"""
Checks that user has permission to access to this page or not
"""
member = self._member_object
return member and member.rank > Member.RankChoices.NORMAL
def post(self, request, *args, **kwargs):
if not self.has_permissions() or not self.__validate_post_team_id():
raise Http404()
return super().post(request, *args, **kwargs)
def get(self, request, *args, **kwargs):
if not self._member_object:
raise Http404()
if not self.has_permissions():
pass # Should be redirected to tasks page
return super().get(request, *args, **kwargs)
|
python
|
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
from common.config import Config, workstation_methods
from panel.common.CommonWidgets import *
class WorkstationConfiguration(QWidget):
def __init__(self, workstation_name, workstation_type):
super(WorkstationConfiguration, self).__init__()
self.workstation_name = workstation_name
self.workstation_type = workstation_type
self.resize(QSize(1600, 500))
self.create_widgets()
self.item_count = 0
self._configuration = {}
self.networks_available = []
self.basic_actions()
def create_widgets(self):
# Labels
self.name_label = QLabel("Workstation name")
self.distribution_label = QLabel("Distribution")
self.release_label = QLabel("Release")
self.network_name_label = QLabel("Network name")
self.network_interface_label = QLabel("Network interface")
self.network_ip_label = QLabel("IP address")
self.network_subnet_label = QLabel("Subnet")
self.gateway_label = QLabel("Gateway")
self.camera_label = QCheckBox("Camera")
# Line Edits
self.name_value = QLabel(self.workstation_name)
self.distribution_value = QLineEdit()
self.distribution_value.setText("ubuntu")
self.release_value = QLineEdit()
self.release_value.setText("bionic")
self.network_value = QComboBox()
self.interface_value = QLineEdit()
self.interface_value.setText("eth1")
self.ip_value = QLineEdit()
self.ip_value.setText("10.122.0.")
self.subnet_value = QLineEdit()
self.subnet_value.setText("24")
self.gateway_value = QLineEdit()
self.gateway_value.setText("10.122.0.1")
# Group box
self.group_box = QGroupBox(self)
self.group_box.setTitle(self.workstation_name + ' physic configuration')
# Grid layout
self.grid_layout = QGridLayout()
# Workstation name
self.grid_layout.addWidget(self.name_label, 0, 0)
self.grid_layout.addWidget(self.name_value, 0, 1)
# Distribution name
self.grid_layout.addWidget(self.distribution_label, 0, 3)
self.grid_layout.addWidget(self.distribution_value, 0, 4)
# Release name
self.grid_layout.addWidget(self.release_label, 0, 6)
self.grid_layout.addWidget(self.release_value, 0, 7)
# Network name
self.grid_layout.addWidget(self.network_name_label, 1, 0)
self.grid_layout.addWidget(self.network_value, 1, 1)
# Interface name
self.grid_layout.addWidget(self.network_interface_label, 1, 3)
self.grid_layout.addWidget(self.interface_value, 1, 4)
# IP address
self.grid_layout.addWidget(self.network_ip_label, 1, 6)
self.grid_layout.addWidget(self.ip_value, 1, 7)
# Subnet
self.grid_layout.addWidget(self.network_subnet_label, 2, 0)
self.grid_layout.addWidget(self.subnet_value, 2, 1)
# Gateway
self.grid_layout.addWidget(self.gateway_label, 2, 3)
self.grid_layout.addWidget(self.gateway_value, 2, 4)
#Camera
self.grid_layout.addWidget(self.camera_label, 2, 6, 1, 2)
self.group_box.setLayout(self.grid_layout)
def update_networks_list(self, networks_list):
# Get current network name
former_network = self.network_value.currentText()
# Clean combo box
self.network_value.clear()
self.network_value.addItem("")
# Recreate networks list
for network in networks_list:
# item network is a dict
self.network_value.addItem(network["name"])
self.network_value.addItem("lxdbr0")
# If selected network has not been removed, set index to combo box
former_index = self.network_value.findText(former_network)
self.network_value.setCurrentIndex(former_index)
self.networks_available = networks_list
def set_configuration(self, config):
""" Set data stored in config to widgets available in view
:param config: Parameters to be set
:type config: dict
:return: None
"""
self.name_value.setText(config["hostname"])
self.distribution_value.setText(config["distribution"])
self.release_value.setText(config["release"])
network_index = self.network_value.findText(config["networks"][0]["name"])
self.network_value.setCurrentIndex(network_index)
self.interface_value.setText(config["networks"][0]["interface"])
self.ip_value.setText(config["networks"][0]["ip_v4"])
self.subnet_value.setText(config["networks"][0]["subnet"])
self.gateway_value.setText(config["gateway"])
self.camera_label.setChecked(config["camera"] in ["true"])
def get_current_configuration(self):
""" Read data entered in editable fields
:return: Currently set configuration
:rtype: dict
"""
self._configuration = {
"hostname": self.name_value.text(),
"distribution": self.distribution_value.text(),
"release": self.release_value.text(),
"network_name": self.network_value.currentText(),
"network_interface": self.interface_value.text(),
"ip_address": self.ip_value.text(),
"subnet": self.subnet_value.text(),
"gateway": self.gateway_value.text(),
"camera": str(self.camera_label.isChecked()).lower()
}
return self._configuration
def basic_actions(self):
""" Connects signals to dedicated functions """
self.network_value.currentTextChanged.connect(self.update_network_values)
@pyqtSlot()
def update_network_values(self):
""" Regarding selected network, set values to widgets """
# Find selected network
current_network_name = self.network_value.currentText()
if current_network_name not in ["", "lxdbr0"]:
current_network = next(network for network in self.networks_available if network["name"] == current_network_name)
base_ip = ".".join(current_network["ip_v4"].split(".")[0:-1])
subnet = current_network["subnet"]
gateway = ".".join([base_ip, "1"])
# Then, set values to required widgets
current_ip = self.ip_value.text().split(".")[-1]
self.ip_value.setText(base_ip + "." + current_ip)
self.subnet_value.setText(subnet)
self.gateway_value.setText(gateway)
if "interface" in current_network.keys():
self.interface_value.setText(current_network["interface"])
if current_network_name in ["lxdbr0"]:
self.ip_value.setText("default_ip_on_lxdbr0")
self.subnet_value.setText("24")
self.gateway_value.setText("default_gateway_on_lxdbr0")
self.interface_value.setText("")
def check_values(self):
""" Check if entered values are as expected
:return: Collection of bool related to value checking
:rtype: dict
"""
dist = True if self.distribution_value.text() in ["ubuntu", "debian"] else False
network = True if self.network_value.currentText() not in [""] else False
split_ip = self.ip_value.text().split(".")
ip = True if split_ip[-1] not in [""] else False
gateway = True if split_ip[-1] not in [""] else False
assertion = {
"distribution": dist, # if wrong distribution set
"network": network, # if wrong network name set
"ip": ip, # if ip address is incomplete,
"gateway": gateway # if gateway is incomplete
}
return assertion
class WorkstationActions(QWidget):
def __init__(self, workstation_name, workstation_type):
super(WorkstationActions, self).__init__()
self.workstation_name = workstation_name
self.workstation_type = workstation_type
self._workstations_actions = {}
self.users_available = []
self.retrieve_workstations_actions()
self.create_widgets()
self.set_layout()
self.create_actions_list(self.workstation_type)
self.basic_actions()
# Counters
self.item_count = 0 # for actions
self.parameter_count = 0 # for arguments
# Dictionary to store set actions
self._actions_list = []
def retrieve_workstations_actions(self):
""" Loads functions defined in logic_actions scripts """
self._workstations_actions["workstation"] = []
_workstations = [w for w in Config.get_available_workstations() if w not in ["workstation"]]
# For each type of workstation, get dedicated actions and utils actions
for workstation in _workstations:
self._workstations_actions[workstation] = workstation_methods[workstation]()
self._workstations_actions[workstation] += workstation_methods["utils"]()
self._workstations_actions["workstation"] += self._workstations_actions[workstation]
# common_actions = [actions.items() for workstation, actions in self._workstations_actions.items()]
self._workstations_actions["workstation"] += Config.get_workstations_methods()
self._workstations_actions["workstation"] += workstation_methods["utils"]()
def basic_actions(self):
""" Connects signals to dedicated functions """
# Actions
self.actions_apply.clicked.connect(self.add_action)
self.remove_button.clicked.connect(self.remove_action)
# Parameters
self.add_param_button.clicked.connect(self.add_parameter)
self.remove_param_button.clicked.connect(self.remove_parameter)
# Table actions
self.reset_button.clicked.connect(self.reset_tables)
self.default_button.clicked.connect(self.default_configuration)
self.up_button.clicked.connect(self.item_up)
self.down_button.clicked.connect(self.item_down)
self.apply_parameters.clicked.connect(self.update_parameter_table)
# Qt signals
self.actions_table.itemSelectionChanged.connect(self.generate_parameter_table)
@pyqtSlot()
def add_action(self):
""" Add an element to the actions table widget """
try:
act = self.actions_table.currentRow()
name = self.actions_list.currentText()
if name not in [""]:
d_actions = {"name": self.actions_list.currentText()}
else:
return
self._actions_list.append(d_actions)
# self._actions_arg.append(self.actions_args.text())
self.generate_action_table()
except:
print("No item selected")
@pyqtSlot()
def remove_action(self):
""" Remove an element from actions table widget """
try:
item_index = self.actions_table.currentRow()
self._actions_list.pop(item_index)
self.generate_action_table()
except:
print("No item selected")
def generate_action_table(self):
""" Generates actions table using data stored in _actions_list """
# Create item to add action to QTableWidget
self.item_count = 0
self.actions_table.clear()
self.actions_table.setRowCount(0)
self.actions_table.setHorizontalHeaderLabels(["Actions"])
for index in range(len(self._actions_list)):
action_label = QTableWidgetItem(self._actions_list[index]["name"])
# action_arg = QTableWidgetItem(self._actions_arg[index])
self.actions_table.insertRow(self.item_count)
self.actions_table.setItem(self.item_count, 0, action_label)
# self.actions_table.setItem(self.item_count, 1, action_arg)
self.item_count += 1
@pyqtSlot()
def add_parameter(self):
""" Add an empty line to parameters table widget """
# Get action name
try:
param_name = QComboBox()
param_name.setEditable(True)
param_name.addItem("")
action_name = self.actions_table.item(self.actions_table.currentRow(), 0).text()
for elt in Config.get_authorized_values(action_name):
param_name.addItem(elt)
parameter_value = QLineEdit("")
self.complex_actions_table.insertRow(self.parameter_count)
# Add widgets to each line of parameters table
self.complex_actions_table.setCellWidget(self.parameter_count, 0, param_name)
self.complex_actions_table.setCellWidget(self.parameter_count, 1, parameter_value)
self.parameter_count += 1
except:
pass
@pyqtSlot()
def remove_parameter(self):
""" Removes selected element from parameters table """
try:
# Get selected action index
action_index = self.actions_table.currentRow()
# Get selected parameter name
parameter = self.complex_actions_table.cellWidget(self.complex_actions_table.currentRow(), 0).currentText()
self.complex_actions_table.removeRow(self.complex_actions_table.currentRow())
# Remove selected parameter from _actions_list (containing configuration)
if parameter in self._actions_list[action_index]["args"].keys():
self._actions_list[action_index]["args"].pop(parameter)
self.generate_parameter_table()
except:
pass
@pyqtSlot()
def update_parameter_table(self):
""" Set up current action configuration as new configuration """
d_args = {}
try:
# Get current action index and name
action_index = self.actions_table.currentRow()
action_name = self.actions_table.item(action_index, 0).text()
# Get data in parameters table and set it in d_args
for index in range(self.complex_actions_table.rowCount()):
param_name = self.complex_actions_table.cellWidget(index, 0).currentText()
try:
param_value = self.complex_actions_table.cellWidget(index, 1).get_configuration()
except:
param_value = self.complex_actions_table.cellWidget(index, 1).text()
##########################################################################
# Get availables users
##########################################################################
if param_name in ["create_sim_user"]:
self.users_available.append(param_value)
d_args[param_name] = param_value
# once d_args if filled with all parameters, it is stored in an object used in json file generation
d_complete = {
"name": action_name,
"args": d_args
}
self._actions_list[action_index] = d_complete
self.generate_parameter_table()
except:
pass
@pyqtSlot()
def generate_parameter_table(self):
""" Updates parameter table view """
# Clear table
self.parameter_count = 0
self.complex_actions_table.clear()
self.complex_actions_table.setRowCount(0)
self.complex_actions_table.setHorizontalHeaderLabels(["Parameters", "Values"])
try:
# Get action index
action_index = self.actions_table.currentRow()
self.parameter_count = 0
# Show values
for action, argument in self._actions_list[action_index]["args"].items():
param_name = QComboBox()
param_name.setEditable(True)
param_name.addItem("")
for elt in Config.get_authorized_values(self._actions_list[action_index]["name"]):
param_name.addItem(elt)
param_name.setCurrentText(action)
if type(argument) not in [dict, list]:
parameter_value = QTextEdit(argument)
elif type(argument) is list:
parameter_value = ListArgumentWidget(argument)
parameter_value.set_configuration()
elif type(argument) is dict:
parameter_value = DictArgumentWidget(argument)
parameter_value.set_configuration()
else:
parameter_value = QTextEdit("Must be checked in json file")
self.complex_actions_table.insertRow(self.parameter_count)
self.complex_actions_table.setCellWidget(self.parameter_count, 0, param_name)
self.complex_actions_table.setCellWidget(self.parameter_count, 1, parameter_value)
self.parameter_count += 1
except:
pass
@pyqtSlot()
def reset_tables(self):
""" Clears all values set in QTableWidgets
:return: None
"""
self.actions_table.clear()
self.actions_table.setRowCount(0)
self.actions_table.setHorizontalHeaderLabels(["Actions"])
self.complex_actions_table.clear()
self.complex_actions_table.setRowCount(0)
self.complex_actions_table.setHorizontalHeaderLabels(["Parameters", "Values"])
self._actions_list = []
@pyqtSlot()
def default_configuration(self):
pass
@pyqtSlot()
def item_up(self):
""" Change actions table order
:return: None
"""
try:
current_index = self.actions_table.currentRow()
if current_index == 0:
return
if current_index >= 1:
self._actions_list[current_index - 1], self._actions_list[current_index] = self._actions_list[current_index], self._actions_list[current_index - 1]
self.generate_action_table()
self.generate_parameter_table()
except:
pass
@pyqtSlot()
def item_down(self):
""" Change actions table order
:return: None
"""
try:
current_index = self.actions_table.currentRow()
if current_index == self.actions_table.rowCount():
return
if current_index <= self.actions_table.rowCount() - 1:
self._actions_list[current_index + 1], self._actions_list[current_index] = self._actions_list[current_index], self._actions_list[current_index + 1]
self.generate_action_table()
self.generate_parameter_table()
except:
pass
def create_actions_list(self, workstation_type):
""" Loads functions defined in logic_actions scripts and set up in available actions
:param workstation_type: Current workstation type
:type workstation_type: str
:return: None
"""
if workstation_type in self._workstations_actions.keys():
# Concatenate specific workstation actions and common actions
available_actions = list(set(self._workstations_actions[workstation_type]))
else:
available_actions = list(set(self._workstations_actions["workstation"]))
# Set availables actions to QComboBox
self.actions_list.addItems(available_actions)
def create_widgets(self):
# Selecting actions to add
self.actions_label = QLabel("Actions: ")
self.actions_list = QComboBox() # Box containing available actions
self.actions_list.addItem("")
self.actions_list.setEditable(True)
self.actions_apply = QPushButton("Add action")
# Then, a table is needed to show applied functions
self.actions_table = QTableWidget()
self.actions_table.insertColumn(0)
self.actions_table.setColumnWidth(0, 450)
self.actions_table.setHorizontalHeaderLabels(["Actions"])
# Then another table is required for more complex actions
self.complex_actions_table = QTableWidget()
self.complex_actions_table.insertColumn(0)
self.complex_actions_table.setColumnWidth(0, 300)
self.complex_actions_table.insertColumn(1)
self.complex_actions_table.setColumnWidth(1, 600)
self.complex_actions_table.setHorizontalHeaderLabels(["Parameters", "Values"])
# With button actions
self.up_button = QPushButton("Up")
self.down_button = QPushButton("Down")
self.remove_button = QPushButton("Remove action")
self.default_button = QPushButton("Default configuration")
self.reset_button = QPushButton("Reset configuration")
self.add_param_button = QPushButton("+")
self.remove_param_button = QPushButton("-")
self.apply_parameters = QPushButton("Update configuration")
def set_layout(self):
# Main layout
self.main_layout = QVBoxLayout(self)
# Header
self.header = QGroupBox("logic configuration")
logic_layout = QHBoxLayout()
#Config actions
actions = QGroupBox()
actions.setMaximumWidth(800)
actions_layout = QGridLayout()
actions_layout.addWidget(self.actions_label, 0, 0)
actions_layout.addWidget(self.actions_list, 0, 1, 1, 2)
actions_layout.addWidget(self.actions_apply, 1, 0)
actions_layout.addWidget(self.remove_button, 1, 1)
actions_layout.addWidget(self.up_button, 3, 2)
actions_layout.addWidget(self.down_button, 4, 2)
actions_layout.addWidget(self.reset_button, 8, 2)
actions_layout.addWidget(self.actions_table, 3, 0, 6, 2)
actions.setLayout(actions_layout)
args = QGroupBox()
args_layout = QGridLayout()
args_layout.addWidget(self.add_param_button, 0, 0)
args_layout.addWidget(self.remove_param_button, 0, 1)
args_layout.addWidget(self.complex_actions_table, 1, 0, 6, 2)
args_layout.addWidget(self.apply_parameters, 8, 0, 1, 2)
args.setLayout(args_layout)
logic_layout.addWidget(actions)
logic_layout.addWidget(args)
self.header.setLayout(logic_layout)
self.main_layout.addWidget(self.header)
def set_configuration(self, d_actions):
""" Set data loaded by reading json file to class object
:param d_actions: Values loaded
:type d_actions: dict
:return:
"""
self._actions_list = d_actions
self.generate_action_table()
def get_current_actions(self):
""" Get data available in interface
:return: Formatted data
:rtype: dict
"""
return {self.workstation_name: self._actions_list}
def get_available_users(self):
""" Get configured users available
:return: List of users
:rtype: list
"""
return self.users_available
def check_values(self):
pass
|
python
|
"""
Digital Communications Function Module
Copyright (c) March 2017, Mark Wickert
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the FreeBSD Project.
"""
from matplotlib import pylab
from matplotlib import mlab
import numpy as np
from numpy import fft
import matplotlib.pyplot as plt
from scipy import signal
from scipy.special import erfc
from sys import exit
from .sigsys import upsample
from .sigsys import downsample
from .sigsys import NRZ_bits
from .sigsys import NRZ_bits2
from .sigsys import PN_gen
from .sigsys import m_seq
from .sigsys import cpx_AWGN
from .sigsys import CIC
def farrow_resample(x, fs_old, fs_new):
"""
Parameters
----------
x : Input list representing a signal vector needing resampling.
fs_old : Starting/old sampling frequency.
fs_new : New sampling frequency.
Returns
-------
y : List representing the signal vector resampled at the new frequency.
Notes
-----
A cubic interpolator using a Farrow structure is used resample the
input data at a new sampling rate that may be an irrational multiple of
the input sampling rate.
Time alignment can be found for a integer value M, found with the following:
.. math:: f_{s,out} = f_{s,in} (M - 1) / M
The filter coefficients used here and a more comprehensive listing can be
found in H. Meyr, M. Moeneclaey, & S. Fechtel, "Digital Communication
Receivers," Wiley, 1998, Chapter 9, pp. 521-523.
Another good paper on variable interpolators is: L. Erup, F. Gardner, &
R. Harris, "Interpolation in Digital Modems--Part II: Implementation
and Performance," IEEE Comm. Trans., June 1993, pp. 998-1008.
A founding paper on the subject of interpolators is: C. W. Farrow, "A
Continuously variable Digital Delay Element," Proceedings of the IEEE
Intern. Symp. on Circuits Syst., pp. 2641-2645, June 1988.
Mark Wickert April 2003, recoded to Python November 2013
Examples
--------
The following example uses a QPSK signal with rc pulse shaping, and time alignment at M = 15.
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm import digitalcom as dc
>>> Ns = 8
>>> Rs = 1.
>>> fsin = Ns*Rs
>>> Tsin = 1 / fsin
>>> N = 200
>>> ts = 1
>>> x, b, data = dc.MPSK_bb(N+12, Ns, 4, 'rc')
>>> x = x[12*Ns:]
>>> xxI = x.real
>>> M = 15
>>> fsout = fsin * (M-1) / M
>>> Tsout = 1. / fsout
>>> xI = dc.farrow_resample(xxI, fsin, fsin)
>>> tx = arange(0, len(xI)) / fsin
>>> yI = dc.farrow_resample(xxI, fsin, fsout)
>>> ty = arange(0, len(yI)) / fsout
>>> plt.plot(tx - Tsin, xI)
>>> plt.plot(tx[ts::Ns] - Tsin, xI[ts::Ns], 'r.')
>>> plt.plot(ty[ts::Ns] - Tsout, yI[ts::Ns], 'g.')
>>> plt.title(r'Impact of Asynchronous Sampling')
>>> plt.ylabel(r'Real Signal Amplitude')
>>> plt.xlabel(r'Symbol Rate Normalized Time')
>>> plt.xlim([0, 20])
>>> plt.grid()
>>> plt.show()
"""
#Cubic interpolator over 4 samples.
#The base point receives a two sample delay.
v3 = signal.lfilter([1/6., -1/2., 1/2., -1/6.],[1],x)
v2 = signal.lfilter([0, 1/2., -1, 1/2.],[1],x)
v1 = signal.lfilter([-1/6., 1, -1/2., -1/3.],[1],x)
v0 = signal.lfilter([0, 0, 1],[1],x)
Ts_old = 1/float(fs_old)
Ts_new = 1/float(fs_new)
T_end = Ts_old*(len(x)-3)
t_new = np.arange(0,T_end+Ts_old,Ts_new)
if x.dtype == np.dtype('complex128') or x.dtype == np.dtype('complex64'):
y = np.zeros(len(t_new)) + 1j*np.zeros(len(t_new))
else:
y = np.zeros(len(t_new))
for n in range(len(t_new)):
n_old = int(np.floor(n*Ts_new/Ts_old))
mu = (n*Ts_new - n_old*Ts_old)/Ts_old
# Combine outputs
y[n] = ((v3[n_old+1]*mu + v2[n_old+1])*mu
+ v1[n_old+1])*mu + v0[n_old+1]
return y
def eye_plot(x,L,S=0):
"""
Eye pattern plot of a baseband digital communications waveform.
The signal must be real, but can be multivalued in terms of the underlying
modulation scheme. Used for BPSK eye plots in the Case Study article.
Parameters
----------
x : ndarray of the real input data vector/array
L : display length in samples (usually two symbols)
S : start index
Returns
-------
None : A plot window opens containing the eye plot
Notes
-----
Increase S to eliminate filter transients.
Examples
--------
1000 bits at 10 samples per bit with 'rc' shaping.
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> x,b, data = dc.NRZ_bits(1000,10,'rc')
>>> dc.eye_plot(x,20,60)
>>> plt.show()
"""
plt.figure(figsize=(6,4))
idx = np.arange(0,L+1)
plt.plot(idx,x[S:S+L+1],'b')
k_max = int((len(x) - S)/L)-1
for k in range(1,k_max):
plt.plot(idx,x[S+k*L:S+L+1+k*L],'b')
plt.grid()
plt.xlabel('Time Index - n')
plt.ylabel('Amplitude')
plt.title('Eye Plot')
return 0
def scatter(x,Ns,start):
"""
Sample a baseband digital communications waveform at the symbol spacing.
Parameters
----------
x : ndarray of the input digital comm signal
Ns : number of samples per symbol (bit)
start : the array index to start the sampling
Returns
-------
xI : ndarray of the real part of x following sampling
xQ : ndarray of the imaginary part of x following sampling
Notes
-----
Normally the signal is complex, so the scatter plot contains
clusters at point in the complex plane. For a binary signal
such as BPSK, the point centers are nominally +/-1 on the real
axis. Start is used to eliminate transients from the FIR
pulse shaping filters from appearing in the scatter plot.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> x,b, data = dc.NRZ_bits(1000,10,'rc')
Add some noise so points are now scattered about +/-1.
>>> y = dc.cpx_AWGN(x,20,10)
>>> yI,yQ = dc.scatter(y,10,60)
>>> plt.plot(yI,yQ,'.')
>>> plt.grid()
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> plt.show()
"""
xI = np.real(x[start::Ns])
xQ = np.imag(x[start::Ns])
return xI, xQ
def strips(x,Nx,fig_size=(6,4)):
"""
Plots the contents of real ndarray x as a vertical stacking of
strips, each of length Nx. The default figure size is (6,4) inches.
The yaxis tick labels are the starting index of each strip. The red
dashed lines correspond to zero amplitude in each strip.
strips(x,Nx,my_figsize=(6,4))
Mark Wickert April 2014
"""
plt.figure(figsize=fig_size)
#ax = fig.add_subplot(111)
N = len(x)
Mx = int(np.ceil(N/float(Nx)))
x_max = np.max(np.abs(x))
for kk in range(Mx):
plt.plot(np.array([0,Nx]),-kk*Nx*np.array([1,1]),'r-.')
plt.plot(x[kk*Nx:(kk+1)*Nx]/x_max*0.4*Nx-kk*Nx,'b')
plt.axis([0,Nx,-Nx*(Mx-0.5),Nx*0.5])
plt.yticks(np.arange(0,-Nx*Mx,-Nx),np.arange(0,Nx*Mx,Nx))
plt.xlabel('Index')
plt.ylabel('Strip Amplitude and Starting Index')
return 0
def bit_errors(tx_data,rx_data,Ncorr = 1024,Ntransient = 0):
"""
Count bit errors between a transmitted and received BPSK signal.
Time delay between streams is detected as well as ambiquity resolution
due to carrier phase lock offsets of :math:`k*\\pi`, k=0,1.
The ndarray tx_data is Tx 0/1 bits as real numbers I.
The ndarray rx_data is Rx 0/1 bits as real numbers I.
Note: Ncorr needs to be even
"""
# Remove Ntransient symbols and level shift to {-1,+1}
tx_data = 2*tx_data[Ntransient:]-1
rx_data = 2*rx_data[Ntransient:]-1
# Correlate the first Ncorr symbols at four possible phase rotations
R0 = np.fft.ifft(np.fft.fft(rx_data,Ncorr)*
np.conj(np.fft.fft(tx_data,Ncorr)))
R1 = np.fft.ifft(np.fft.fft(-1*rx_data,Ncorr)*
np.conj(np.fft.fft(tx_data,Ncorr)))
#Place the zero lag value in the center of the array
R0 = np.fft.fftshift(R0)
R1 = np.fft.fftshift(R1)
R0max = np.max(R0.real)
R1max = np.max(R1.real)
R = np.array([R0max,R1max])
Rmax = np.max(R)
kphase_max = np.where(R == Rmax)[0]
kmax = kphase_max[0]
# Correlation lag value is zero at the center of the array
if kmax == 0:
lagmax = np.where(R0.real == Rmax)[0] - Ncorr/2
elif kmax == 1:
lagmax = np.where(R1.real == Rmax)[0] - Ncorr/2
taumax = lagmax[0]
print('kmax = %d, taumax = %d' % (kmax, taumax))
# Count bit and symbol errors over the entire input ndarrays
# Begin by making tx and rx length equal and apply phase rotation to rx
if taumax < 0:
tx_data = tx_data[int(-taumax):]
tx_data = tx_data[:min(len(tx_data),len(rx_data))]
rx_data = (-1)**kmax*rx_data[:len(tx_data)]
else:
rx_data = (-1)**kmax * rx_data[int(taumax):]
rx_data = rx_data[:min(len(tx_data),len(rx_data))]
tx_data = tx_data[:len(rx_data)]
# Convert to 0's and 1's
Bit_count = len(tx_data)
tx_I = np.int16((tx_data.real + 1)/2)
rx_I = np.int16((rx_data.real + 1)/2)
Bit_errors = tx_I ^ rx_I
return Bit_count,np.sum(Bit_errors)
def QAM_bb(N_symb,Ns,mod_type='16qam',pulse='rect',alpha=0.35):
"""
QAM_BB_TX: A complex baseband transmitter
x,b,tx_data = QAM_bb(K,Ns,M)
//////////// Inputs //////////////////////////////////////////////////
N_symb = the number of symbols to process
Ns = number of samples per symbol
mod_type = modulation type: qpsk, 16qam, 64qam, or 256qam
alpha = squareroot raised codine pulse shape bandwidth factor.
For DOCSIS alpha = 0.12 to 0.18. In general alpha can
range over 0 < alpha < 1.
SRC = pulse shape: 0-> rect, 1-> SRC
//////////// Outputs /////////////////////////////////////////////////
x = complex baseband digital modulation
b = transmitter shaping filter, rectangle or SRC
tx_data = xI+1j*xQ = inphase symbol sequence +
1j*quadrature symbol sequence
Mark Wickert November 2014
"""
# Filter the impulse train waveform with a square root raised
# cosine pulse shape designed as follows:
# Design the filter to be of duration 12 symbols and
# fix the excess bandwidth factor at alpha = 0.35
# If SRC = 0 use a simple rectangle pulse shape
if pulse.lower() == 'src':
b = sqrt_rc_imp(Ns,alpha,6)
elif pulse.lower() == 'rc':
b = rc_imp(Ns,alpha,6)
elif pulse.lower() == 'rect':
b = np.ones(int(Ns)) #alt. rect. pulse shape
else:
raise ValueError('pulse shape must be src, rc, or rect')
if mod_type.lower() == 'qpsk':
M = 2 # bits per symbol
elif mod_type.lower() == '16qam':
M = 4
elif mod_type.lower() == '64qam':
M = 8
elif mod_type.lower() == '256qam':
M = 16
else:
raise ValueError('Unknown mod_type')
# Create random symbols for the I & Q channels
xI = np.random.randint(0,M,N_symb)
xI = 2*xI - (M-1)
xQ = np.random.randint(0,M,N_symb)
xQ = 2*xQ - (M-1)
# Employ differential encoding to counter phase ambiquities
# Create a zero padded (interpolated by Ns) symbol sequence.
# This prepares the symbol sequence for arbitrary pulse shaping.
symbI = np.hstack((xI.reshape(N_symb,1),np.zeros((N_symb,int(Ns)-1))))
symbI = symbI.flatten()
symbQ = np.hstack((xQ.reshape(N_symb,1),np.zeros((N_symb,int(Ns)-1))))
symbQ = symbQ.flatten()
symb = symbI + 1j*symbQ
if M > 2:
symb /= (M-1)
# The impulse train waveform contains one pulse per Ns (or Ts) samples
# imp_train = [ones(K,1) zeros(K,Ns-1)]';
# imp_train = reshape(imp_train,Ns*K,1);
# Filter the impulse train signal
x = signal.lfilter(b,1,symb)
x = x.flatten() # out is a 1D vector
# Scale shaping filter to have unity DC gain
b = b/sum(b)
return x, b, xI+1j*xQ
def QAM_SEP(tx_data,rx_data,mod_type,Ncorr = 1024,Ntransient = 0,SEP_disp=True):
"""
Nsymb, Nerr, SEP_hat =
QAM_symb_errors(tx_data,rx_data,mod_type,Ncorr = 1024,Ntransient = 0)
Count symbol errors between a transmitted and received QAM signal.
The received symbols are assumed to be soft values on a unit square.
Time delay between streams is detected.
The ndarray tx_data is Tx complex symbols.
The ndarray rx_data is Rx complex symbols.
Note: Ncorr needs to be even
"""
#Remove Ntransient symbols and makes lengths equal
tx_data = tx_data[Ntransient:]
rx_data = rx_data[Ntransient:]
Nmin = min([len(tx_data),len(rx_data)])
tx_data = tx_data[:Nmin]
rx_data = rx_data[:Nmin]
# Perform level translation and quantize the soft symbol values
if mod_type.lower() == 'qpsk':
M = 2 # bits per symbol
elif mod_type.lower() == '16qam':
M = 4
elif mod_type.lower() == '64qam':
M = 8
elif mod_type.lower() == '256qam':
M = 16
else:
raise ValueError('Unknown mod_type')
rx_data = np.rint((M-1)*(rx_data + (1+1j))/2.)
# Fix-up edge points real part
s1r = np.nonzero(np.ravel(rx_data.real > M - 1))[0]
s2r = np.nonzero(np.ravel(rx_data.real < 0))[0]
rx_data.real[s1r] = (M - 1)*np.ones(len(s1r))
rx_data.real[s2r] = np.zeros(len(s2r))
# Fix-up edge points imag part
s1i = np.nonzero(np.ravel(rx_data.imag > M - 1))[0]
s2i = np.nonzero(np.ravel(rx_data.imag < 0))[0]
rx_data.imag[s1i] = (M - 1)*np.ones(len(s1i))
rx_data.imag[s2i] = np.zeros(len(s2i))
rx_data = 2*rx_data - (M - 1)*(1 + 1j)
#Correlate the first Ncorr symbols at four possible phase rotations
R0,lags = xcorr(rx_data,tx_data,Ncorr)
R1,lags = xcorr(rx_data*(1j)**1,tx_data,Ncorr)
R2,lags = xcorr(rx_data*(1j)**2,tx_data,Ncorr)
R3,lags = xcorr(rx_data*(1j)**3,tx_data,Ncorr)
#Place the zero lag value in the center of the array
R0max = np.max(R0.real)
R1max = np.max(R1.real)
R2max = np.max(R2.real)
R3max = np.max(R3.real)
R = np.array([R0max,R1max,R2max,R3max])
Rmax = np.max(R)
kphase_max = np.where(R == Rmax)[0]
kmax = kphase_max[0]
#Find correlation lag value is zero at the center of the array
if kmax == 0:
lagmax = lags[np.where(R0.real == Rmax)[0]]
elif kmax == 1:
lagmax = lags[np.where(R1.real == Rmax)[0]]
elif kmax == 2:
lagmax = lags[np.where(R2.real == Rmax)[0]]
elif kmax == 3:
lagmax = lags[np.where(R3.real == Rmax)[0]]
taumax = lagmax[0]
if SEP_disp:
print('Phase ambiquity = (1j)**%d, taumax = %d' % (kmax, taumax))
#Count symbol errors over the entire input ndarrays
#Begin by making tx and rx length equal and apply
#phase rotation to rx_data
if taumax < 0:
tx_data = tx_data[-taumax:]
tx_data = tx_data[:min(len(tx_data),len(rx_data))]
rx_data = (1j)**kmax*rx_data[:len(tx_data)]
else:
rx_data = (1j)**kmax*rx_data[taumax:]
rx_data = rx_data[:min(len(tx_data),len(rx_data))]
tx_data = tx_data[:len(rx_data)]
#Convert QAM symbol difference to symbol errors
errors = np.int16(abs(rx_data-tx_data))
# Detect symbols errors
# Could decode bit errors from symbol index difference
idx = np.nonzero(np.ravel(errors != 0))[0]
if SEP_disp:
print('Symbols = %d, Errors %d, SEP = %1.2e' \
% (len(errors), len(idx), len(idx)/float(len(errors))))
return len(errors), len(idx), len(idx)/float(len(errors))
def GMSK_bb(N_bits, Ns, MSK = 0,BT = 0.35):
"""
MSK/GMSK Complex Baseband Modulation
x,data = gmsk(N_bits, Ns, BT = 0.35, MSK = 0)
Parameters
----------
N_bits : number of symbols processed
Ns : the number of samples per bit
MSK : 0 for no shaping which is standard MSK, MSK <> 0 --> GMSK is generated.
BT : premodulation Bb*T product which sets the bandwidth of the Gaussian lowpass filter
Mark Wickert Python version November 2014
"""
x, b, data = NRZ_bits(N_bits,Ns)
# pulse length 2*M*Ns
M = 4
n = np.arange(-M*Ns,M*Ns+1)
p = np.exp(-2*np.pi**2*BT**2/np.log(2)*(n/float(Ns))**2);
p = p/np.sum(p);
# Gaussian pulse shape if MSK not zero
if MSK != 0:
x = signal.lfilter(p,1,x)
y = np.exp(1j*np.pi/2*np.cumsum(x)/Ns)
return y, data
def MPSK_bb(N_symb,Ns,M,pulse='rect',alpha = 0.25,MM=6):
"""
Generate a complex baseband MPSK signal with pulse shaping.
Parameters
----------
N_symb : number of MPSK symbols to produce
Ns : the number of samples per bit,
M : MPSK modulation order, e.g., 4, 8, 16, ...
pulse_type : 'rect' , 'rc', 'src' (default 'rect')
alpha : excess bandwidth factor(default 0.25)
MM : single sided pulse duration (default = 6)
Returns
-------
x : ndarray of the MPSK signal values
b : ndarray of the pulse shape
data : ndarray of the underlying data bits
Notes
-----
Pulse shapes include 'rect' (rectangular), 'rc' (raised cosine),
'src' (root raised cosine). The actual pulse length is 2*M+1 samples.
This function is used by BPSK_tx in the Case Study article.
Examples
--------
>>> from sk_dsp_comm import digitalcom as dc
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt
>>> x,b,data = dc.MPSK_bb(500,10,8,'src',0.35)
>>> # Matched filter received signal x
>>> y = signal.lfilter(b,1,x)
>>> plt.plot(y.real[12*10:],y.imag[12*10:])
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> # Sample once per symbol
>>> plt.plot(y.real[12*10::10],y.imag[12*10::10],'r.')
>>> plt.show()
"""
data = np.random.randint(0,M,N_symb)
xs = np.exp(1j*2*np.pi/M*data)
x = np.hstack((xs.reshape(N_symb,1),np.zeros((N_symb,int(Ns)-1))))
x =x.flatten()
if pulse.lower() == 'rect':
b = np.ones(int(Ns))
elif pulse.lower() == 'rc':
b = rc_imp(Ns,alpha,MM)
elif pulse.lower() == 'src':
b = sqrt_rc_imp(Ns,alpha,MM)
else:
raise ValueError('pulse type must be rec, rc, or src')
x = signal.lfilter(b,1,x)
if M == 4:
x = x*np.exp(1j*np.pi/4); # For QPSK points in quadrants
return x,b/float(Ns),data
def QPSK_rx(fc,N_symb,Rs,EsN0=100,fs=125,lfsr_len=10,phase=0,pulse='src'):
"""
This function generates
"""
Ns = int(np.round(fs/Rs))
print('Ns = ', Ns)
print('Rs = ', fs/float(Ns))
print('EsN0 = ', EsN0, 'dB')
print('phase = ', phase, 'degrees')
print('pulse = ', pulse)
x, b, data = QPSK_bb(N_symb,Ns,lfsr_len,pulse)
# Add AWGN to x
x = cpx_AWGN(x,EsN0,Ns)
n = np.arange(len(x))
xc = x*np.exp(1j*2*np.pi*fc/float(fs)*n) * np.exp(1j*phase)
return xc, b, data
def QPSK_tx(fc,N_symb,Rs,fs=125,lfsr_len=10,pulse='src'):
"""
"""
Ns = int(np.round(fs/Rs))
print('Ns = ', Ns)
print('Rs = ', fs/float(Ns))
print('pulse = ', pulse)
x, b, data = QPSK_bb(N_symb,Ns,lfsr_len,pulse)
n = np.arange(len(x))
xc = x*np.exp(1j*2*np.pi*fc/float(fs)*n)
return xc, b, data
def QPSK_bb(N_symb,Ns,lfsr_len=5,pulse='src',alpha=0.25,M=6):
"""
"""
if lfsr_len > 0: # LFSR data
data = PN_gen(2*N_symb,lfsr_len)
dataI = data[0::2]
dataQ = data[1::2]
xI, b = NRZ_bits2(dataI,Ns,pulse,alpha,M)
xQ, b = NRZ_bits2(dataQ,Ns,pulse,alpha,M)
else: # Random data
data = np.zeros(2*N_symb)
xI, b, data[0::2] = NRZ_bits(N_symb,Ns,pulse,alpha,M)
xQ, b, data[1::2] = NRZ_bits(N_symb,Ns,pulse,alpha,M)
#print('P_I: ',np.var(xI), 'P_Q: ',np.var(xQ))
x = (xI + 1j*xQ)/np.sqrt(2.)
return x, b, data
def QPSK_BEP(tx_data,rx_data,Ncorr = 1024,Ntransient = 0):
"""
Count bit errors between a transmitted and received QPSK signal.
Time delay between streams is detected as well as ambiquity resolution
due to carrier phase lock offsets of :math:`k*\\frac{\\pi}{4}`, k=0,1,2,3.
The ndarray sdata is Tx +/-1 symbols as complex numbers I + j*Q.
The ndarray data is Rx +/-1 symbols as complex numbers I + j*Q.
Note: Ncorr needs to be even
"""
#Remove Ntransient symbols
tx_data = tx_data[Ntransient:]
rx_data = rx_data[Ntransient:]
#Correlate the first Ncorr symbols at four possible phase rotations
R0 = np.fft.ifft(np.fft.fft(rx_data,Ncorr)*
np.conj(np.fft.fft(tx_data,Ncorr)))
R1 = np.fft.ifft(np.fft.fft(1j*rx_data,Ncorr)*
np.conj(np.fft.fft(tx_data,Ncorr)))
R2 = np.fft.ifft(np.fft.fft(-1*rx_data,Ncorr)*
np.conj(np.fft.fft(tx_data,Ncorr)))
R3 = np.fft.ifft(np.fft.fft(-1j*rx_data,Ncorr)*
np.conj(np.fft.fft(tx_data,Ncorr)))
#Place the zero lag value in the center of the array
R0 = np.fft.fftshift(R0)
R1 = np.fft.fftshift(R1)
R2 = np.fft.fftshift(R2)
R3 = np.fft.fftshift(R3)
R0max = np.max(R0.real)
R1max = np.max(R1.real)
R2max = np.max(R2.real)
R3max = np.max(R3.real)
R = np.array([R0max,R1max,R2max,R3max])
Rmax = np.max(R)
kphase_max = np.where(R == Rmax)[0]
kmax = kphase_max[0]
#Correlation lag value is zero at the center of the array
if kmax == 0:
lagmax = np.where(R0.real == Rmax)[0] - Ncorr/2
elif kmax == 1:
lagmax = np.where(R1.real == Rmax)[0] - Ncorr/2
elif kmax == 2:
lagmax = np.where(R2.real == Rmax)[0] - Ncorr/2
elif kmax == 3:
lagmax = np.where(R3.real == Rmax)[0] - Ncorr/2
taumax = lagmax[0]
print('kmax = %d, taumax = %d' % (kmax, taumax))
# Count bit and symbol errors over the entire input ndarrays
# Begin by making tx and rx length equal and apply phase rotation to rx
if taumax < 0:
tx_data = tx_data[-taumax:]
tx_data = tx_data[:min(len(tx_data),len(rx_data))]
rx_data = 1j**kmax*rx_data[:len(tx_data)]
else:
rx_data = 1j**kmax*rx_data[taumax:]
rx_data = rx_data[:min(len(tx_data),len(rx_data))]
tx_data = tx_data[:len(rx_data)]
#Convert to 0's and 1's
S_count = len(tx_data)
tx_I = np.int16((tx_data.real + 1)/2)
tx_Q = np.int16((tx_data.imag + 1)/2)
rx_I = np.int16((rx_data.real + 1)/2)
rx_Q = np.int16((rx_data.imag + 1)/2)
I_errors = tx_I ^ rx_I
Q_errors = tx_Q ^ rx_Q
#A symbol errors occurs when I or Q or both are in error
S_errors = I_errors | Q_errors
#return 0
return S_count,np.sum(I_errors),np.sum(Q_errors),np.sum(S_errors)
def BPSK_BEP(tx_data,rx_data,Ncorr = 1024,Ntransient = 0):
"""
Count bit errors between a transmitted and received BPSK signal.
Time delay between streams is detected as well as ambiquity resolution
due to carrier phase lock offsets of :math:`k*\\pi`, k=0,1.
The ndarray tx_data is Tx +/-1 symbols as real numbers I.
The ndarray rx_data is Rx +/-1 symbols as real numbers I.
Note: Ncorr needs to be even
"""
#Remove Ntransient symbols
tx_data = tx_data[Ntransient:]
rx_data = rx_data[Ntransient:]
#Correlate the first Ncorr symbols at four possible phase rotations
R0 = np.fft.ifft(np.fft.fft(rx_data,Ncorr)*
np.conj(np.fft.fft(tx_data,Ncorr)))
R1 = np.fft.ifft(np.fft.fft(-1*rx_data,Ncorr)*
np.conj(np.fft.fft(tx_data,Ncorr)))
#Place the zero lag value in the center of the array
R0 = np.fft.fftshift(R0)
R1 = np.fft.fftshift(R1)
R0max = np.max(R0.real)
R1max = np.max(R1.real)
R = np.array([R0max,R1max])
Rmax = np.max(R)
kphase_max = np.where(R == Rmax)[0]
kmax = kphase_max[0]
#Correlation lag value is zero at the center of the array
if kmax == 0:
lagmax = np.where(R0.real == Rmax)[0] - Ncorr/2
elif kmax == 1:
lagmax = np.where(R1.real == Rmax)[0] - Ncorr/2
taumax = int(lagmax[0])
print('kmax = %d, taumax = %d' % (kmax, taumax))
#return R0,R1,R2,R3
#Count bit and symbol errors over the entire input ndarrays
#Begin by making tx and rx length equal and apply phase rotation to rx
if taumax < 0:
tx_data = tx_data[-taumax:]
tx_data = tx_data[:min(len(tx_data),len(rx_data))]
rx_data = (-1)**kmax*rx_data[:len(tx_data)]
else:
rx_data = (-1)**kmax*rx_data[taumax:]
rx_data = rx_data[:min(len(tx_data),len(rx_data))]
tx_data = tx_data[:len(rx_data)]
#Convert to 0's and 1's
S_count = len(tx_data)
tx_I = np.int16((tx_data.real + 1)/2)
rx_I = np.int16((rx_data.real + 1)/2)
I_errors = tx_I ^ rx_I
#Symbol errors and bit errors are equivalent
S_errors = I_errors
#return tx_data, rx_data
return S_count,np.sum(S_errors)
def BPSK_tx(N_bits,Ns,ach_fc=2.0,ach_lvl_dB=-100,pulse='rect',alpha = 0.25,M=6):
"""
Generates biphase shift keyed (BPSK) transmitter with adjacent channel interference.
Generates three BPSK signals with rectangular or square root raised cosine (SRC)
pulse shaping of duration N_bits and Ns samples per bit. The desired signal is
centered on f = 0, which the adjacent channel signals to the left and right
are also generated at dB level relative to the desired signal. Used in the
digital communications Case Study supplement.
Parameters
----------
N_bits : the number of bits to simulate
Ns : the number of samples per bit
ach_fc : the frequency offset of the adjacent channel signals (default 2.0)
ach_lvl_dB : the level of the adjacent channel signals in dB (default -100)
pulse : the pulse shape 'rect' or 'src'
alpha : square root raised cosine pulse shape factor (default = 0.25)
M : square root raised cosine pulse truncation factor (default = 6)
Returns
-------
x : ndarray of the composite signal x0 + ach_lvl*(x1p + x1m)
b : the transmit pulse shape
data0 : the data bits used to form the desired signal; used for error checking
Notes
-----
Examples
--------
>>> x,b,data0 = BPSK_tx(1000,10,'src')
"""
x0,b,data0 = NRZ_bits(N_bits,Ns,pulse,alpha,M)
x1p,b,data1p = NRZ_bits(N_bits,Ns,pulse,alpha,M)
x1m,b,data1m = NRZ_bits(N_bits,Ns,pulse,alpha,M)
n = np.arange(len(x0))
x1p = x1p*np.exp(1j*2*np.pi*ach_fc/float(Ns)*n)
x1m = x1m*np.exp(-1j*2*np.pi*ach_fc/float(Ns)*n)
ach_lvl = 10**(ach_lvl_dB/20.)
return x0 + ach_lvl*(x1p + x1m), b, data0
def rc_imp(Ns,alpha,M=6):
"""
A truncated raised cosine pulse used in digital communications.
The pulse shaping factor :math:`0 < \\alpha < 1` is required as well as the
truncation factor M which sets the pulse duration to be :math:`2*M*T_{symbol}`.
Parameters
----------
Ns : number of samples per symbol
alpha : excess bandwidth factor on (0, 1), e.g., 0.35
M : equals RC one-sided symbol truncation factor
Returns
-------
b : ndarray containing the pulse shape
See Also
--------
sqrt_rc_imp
Notes
-----
The pulse shape b is typically used as the FIR filter coefficients
when forming a pulse shaped digital communications waveform.
Examples
--------
Ten samples per symbol and :math:`\\alpha = 0.35`.
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.digitalcom import rc_imp
>>> from numpy import arange
>>> b = rc_imp(10,0.35)
>>> n = arange(-10*6,10*6+1)
>>> plt.stem(n,b)
>>> plt.show()
"""
# Design the filter
n = np.arange(-M*Ns,M*Ns+1)
b = np.zeros(len(n))
a = alpha
Ns *= 1.0
for i in range(len(n)):
if (1 - 4*(a*n[i]/Ns)**2) == 0:
b[i] = np.pi/4*np.sinc(1/(2.*a))
else:
b[i] = np.sinc(n[i]/Ns)*np.cos(np.pi*a*n[i]/Ns)/(1 - 4*(a*n[i]/Ns)**2)
return b
def sqrt_rc_imp(Ns,alpha,M=6):
"""
A truncated square root raised cosine pulse used in digital communications.
The pulse shaping factor :math:`0 < \\alpha < 1` is required as well as the
truncation factor M which sets the pulse duration to be :math:`2*M*T_{symbol}`.
Parameters
----------
Ns : number of samples per symbol
alpha : excess bandwidth factor on (0, 1), e.g., 0.35
M : equals RC one-sided symbol truncation factor
Returns
-------
b : ndarray containing the pulse shape
Notes
-----
The pulse shape b is typically used as the FIR filter coefficients
when forming a pulse shaped digital communications waveform. When
square root raised cosine (SRC) pulse is used to generate Tx signals and
at the receiver used as a matched filter (receiver FIR filter), the
received signal is now raised cosine shaped, thus having zero
intersymbol interference and the optimum removal of additive white
noise if present at the receiver input.
Examples
--------
Ten samples per symbol and :math:`\\alpha = 0.35`.
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.digitalcom import sqrt_rc_imp
>>> b = sqrt_rc_imp(10,0.35)
>>> n = arange(-10*6,10*6+1)
>>> plt.stem(n,b)
>>> plt.show()
"""
# Design the filter
n = np.arange(-M*Ns,M*Ns+1)
b = np.zeros(len(n))
Ns *= 1.0
a = alpha
for i in range(len(n)):
if abs(1 - 16*a**2*(n[i]/Ns)**2) <= np.finfo(np.float).eps/2:
b[i] = 1/2.*((1+a)*np.sin((1+a)*np.pi/(4.*a))-(1-a)*np.cos((1-a)*np.pi/(4.*a))+(4*a)/np.pi*np.sin((1-a)*np.pi/(4.*a)))
else:
b[i] = 4*a/(np.pi*(1 - 16*a**2*(n[i]/Ns)**2))
b[i] = b[i]*(np.cos((1+a)*np.pi*n[i]/Ns) + np.sinc((1-a)*n[i]/Ns)*(1-a)*np.pi/(4.*a))
return b
def RZ_bits(N_bits,Ns,pulse='rect',alpha = 0.25,M=6):
"""
Generate return-to-zero (RZ) data bits with pulse shaping.
A baseband digital data signal using +/-1 amplitude signal values
and including pulse shaping.
Parameters
----------
N_bits : number of RZ {0,1} data bits to produce
Ns : the number of samples per bit,
pulse_type : 'rect' , 'rc', 'src' (default 'rect')
alpha : excess bandwidth factor(default 0.25)
M : single sided pulse duration (default = 6)
Returns
-------
x : ndarray of the RZ signal values
b : ndarray of the pulse shape
data : ndarray of the underlying data bits
Notes
-----
Pulse shapes include 'rect' (rectangular), 'rc' (raised cosine),
'src' (root raised cosine). The actual pulse length is 2*M+1 samples.
This function is used by BPSK_tx in the Case Study article.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.digitalcom import RZ_bits
>>> x,b,data = RZ_bits(100,10)
>>> t = arange(len(x))
>>> plt.plot(t,x)
>>> plt.ylim([-0.01, 1.01])
>>> plt.show()
"""
data = np.random.randint(0,2,N_bits)
x = np.hstack((data.reshape(N_bits,1),np.zeros((N_bits,int(Ns)-1))))
x =x.flatten()
if pulse.lower() == 'rect':
b = np.ones(int(Ns))
elif pulse.lower() == 'rc':
b = rc_imp(Ns,alpha,M)
elif pulse.lower() == 'src':
b = sqrt_rc_imp(Ns,alpha,M)
else:
print('pulse type must be rec, rc, or src')
x = signal.lfilter(b,1,x)
return x,b/float(Ns),data
def my_psd(x,NFFT=2**10,Fs=1):
"""
A local version of NumPy's PSD function that returns the plot arrays.
A mlab.psd wrapper function that returns two ndarrays;
makes no attempt to auto plot anything.
Parameters
----------
x : ndarray input signal
NFFT : a power of two, e.g., 2**10 = 1024
Fs : the sampling rate in Hz
Returns
-------
Px : ndarray of the power spectrum estimate
f : ndarray of frequency values
Notes
-----
This function makes it easier to overlay spectrum plots because
you have better control over the axis scaling than when using psd()
in the autoscale mode.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> from numpy import log10
>>> x,b, data = dc.NRZ_bits(10000,10)
>>> Px,f = dc.my_psd(x,2**10,10)
>>> plt.plot(f, 10*log10(Px))
>>> plt.show()
"""
Px,f = pylab.mlab.psd(x,NFFT,Fs)
return Px.flatten(), f
def time_delay(x,D,N=4):
"""
A time varying time delay which takes advantage of the Farrow structure
for cubic interpolation:
y = time_delay(x,D,N = 3)
Note that D is an array of the same length as the input signal x. This
allows you to make the delay a function of time. If you want a constant
delay just use D*zeros(len(x)). The minimum delay allowable is one sample
or D = 1.0. This is due to the causal system nature of the Farrow
structure.
A founding paper on the subject of interpolators is: C. W. Farrow, "A
Continuously variable Digital Delay Element," Proceedings of the IEEE
Intern. Symp. on Circuits Syst., pp. 2641-2645, June 1988.
Mark Wickert, February 2014
"""
if type(D) == float or type(D) == int:
#Make sure D stays with in the tapped delay line bounds
if int(np.fix(D)) < 1:
print('D has integer part less than one')
exit(1)
if int(np.fix(D)) > N-2:
print('D has integer part greater than N - 2')
exit(1)
# Filter 4-tap input with four Farrow FIR filters
# Since the time delay is a constant, the LTI filter
# function from scipy.signal is convenient.
D_frac = D - np.fix(D)
Nd = int(np.fix(D))
b = np.zeros(Nd + 4)
# Load Lagrange coefficients into the last four FIR taps
b[Nd] = -(D_frac-1)*(D_frac-2)*(D_frac-3)/6.
b[Nd + 1] = D_frac*(D_frac-2)*(D_frac-3)/2.
b[Nd + 2] = -D_frac*(D_frac-1)*(D_frac-3)/2.
b[Nd + 3] = D_frac*(D_frac-1)*(D_frac-2)/6.
# Do all of the filtering in one step for this special case
# of a fixed delay.
y = signal.lfilter(b,[1],x)
else:
# Make sure D stays with in the tapped delay line bounds
if np.fix(np.min(D)) < 1:
print('D has integer part less than one')
exit(1)
if np.fix(np.max(D)) > N-2:
print('D has integer part greater than N - 2')
exit(1)
y = np.zeros(len(x))
X = np.zeros(N+1)
# Farrow filter tap weights
W3 = np.array([[1./6, -1./2, 1./2, -1./6]])
W2 = np.array([[0, 1./2, -1., 1./2]])
W1 = np.array([[-1./6, 1., -1./2, -1./3]])
W0 = np.array([[0, 0, 1., 0]])
for k in range(len(x)):
Nd = int(np.fix(D[k]))
mu = 1 - (D[k]-np.fix(D[k]))
# Form a row vector of signal samples, present and past values
X = np.hstack((np.array(x[k]), X[:-1]))
# Filter 4-tap input with four Farrow FIR filters
# Here numpy dot(A,B) performs the matrix multiply
# since the filter has time-varying coefficients
v3 = np.dot(W3,np.array(X[Nd-1:Nd+3]).T)
v2 = np.dot(W2,np.array(X[Nd-1:Nd+3]).T)
v1 = np.dot(W1,np.array(X[Nd-1:Nd+3]).T)
v0 = np.dot(W0,np.array(X[Nd-1:Nd+3]).T)
#Combine sub-filter outputs using mu = 1 - d
y[k] = ((v3[0]*mu + v2[0])*mu + v1[0])*mu + v0[0]
return y
def xcorr(x1,x2,Nlags):
"""
r12, k = xcorr(x1,x2,Nlags), r12 and k are ndarray's
Compute the energy normalized cross correlation between the sequences
x1 and x2. If x1 = x2 the cross correlation is the autocorrelation.
The number of lags sets how many lags to return centered about zero
"""
K = 2*(int(np.floor(len(x1)/2)))
X1 = fft.fft(x1[:K])
X2 = fft.fft(x2[:K])
E1 = sum(abs(x1[:K])**2)
E2 = sum(abs(x2[:K])**2)
r12 = np.fft.ifft(X1*np.conj(X2))/np.sqrt(E1*E2)
k = np.arange(K) - int(np.floor(K/2))
r12 = np.fft.fftshift(r12)
idx = np.nonzero(np.ravel(abs(k) <= Nlags))
return r12[idx], k[idx]
def Q_fctn(x):
"""
Gaussian Q-function
"""
return 1./2*erfc(x/np.sqrt(2.))
def PCM_encode(x,N_bits):
"""
x_bits = PCM_encode(x,N_bits)
/////////////////////////////////////////////////////////////
x = signal samples to be PCM encoded
N_bits = bit precision of PCM samples
x_bits = encoded serial bit stream of 0/1 values. MSB first.
/////////////////////////////////////////////////////////////
Mark Wickert, Mark 2015
"""
xq = np.int16(np.rint(x*2**(N_bits-1)))
x_bits = np.zeros((N_bits,len(xq)))
for k, xk in enumerate(xq):
x_bits[:,k] = tobin(xk,N_bits)
# Reshape into a serial bit stream
x_bits = np.reshape(x_bits,(1,len(x)*N_bits),'F')
return np.int16(x_bits.flatten())
# A helper function for PCM_encode
def tobin(data, width):
"""
"""
data_str = bin(data & (2**width-1))[2:].zfill(width)
return [int(x) for x in tuple(data_str)]
def PCM_decode(x_bits,N_bits):
"""
xhat = PCM_decode(x_bits,N_bits)
/////////////////////////////////////////////////////////////
x_bits = serial bit stream of 0/1 values. The length of
x_bits must be a multiple of N_bits
N_bits = bit precision of PCM samples
xhat = decoded PCM signal samples
/////////////////////////////////////////////////////////////
Mark Wickert, March 2015
"""
N_samples = len(x_bits)//N_bits
# Convert serial bit stream into parallel words with each
# column holdingthe N_bits binary sample value
xrs_bits = x_bits.copy()
xrs_bits = np.reshape(xrs_bits,(N_bits,N_samples),'F')
# Convert N_bits binary words into signed integer values
xq = np.zeros(N_samples)
w = 2**np.arange(N_bits-1,-1,-1) # binary weights for bin
# to dec conversion
for k in range(N_samples):
xq[k] = np.dot(xrs_bits[:,k],w) - xrs_bits[0,k]*2**N_bits
return xq/2**(N_bits-1)
def AWGN_chan(x_bits,EBN0_dB):
"""
Parameters
----------
x_bits : serial bit stream of 0/1 values.
EBNO_dB : Energy per bit to noise power density ratio in dB of the serial bit stream sent through the AWGN channel. Frequently we equate EBN0 to SNR in link budget calculations
Returns
-------
y_bits : Received serial bit stream following hard decisions. This bit will have bit errors. To check the estimated bit error probability use :func:`BPSK_BEP` or simply
>> Pe_est = sum(xor(x_bits,y_bits))/length(x_bits);
Mark Wickert, March 2015
"""
x_bits = 2*x_bits - 1 # convert from 0/1 to -1/1 signal values
var_noise = 10**(-EBN0_dB/10)/2;
y_bits = x_bits + np.sqrt(var_noise)*np.random.randn(np.size(x_bits))
# Make hard decisions
y_bits = np.sign(y_bits) # -1/+1 signal values
y_bits = (y_bits+1)/2 # convert back to 0/1 binary values
return y_bits
def mux_pilot_blocks(IQ_data, Np):
"""
Parameters
----------
IQ_data : a 2D array of input QAM symbols with the columns
representing the NF carrier frequencies and each
row the QAM symbols used to form an OFDM symbol
Np : the period of the pilot blocks; e.g., a pilot block is
inserted every Np OFDM symbols (Np-1 OFDM data symbols
of width Nf are inserted in between the pilot blocks.
Returns
-------
IQ_datap : IQ_data with pilot blocks inserted
See Also
--------
OFDM_tx
Notes
-----
A helper function called by :func:`OFDM_tx` that inserts pilot block for use
in channel estimation when a delay spread channel is present.
"""
N_OFDM = IQ_data.shape[0]
Npb = N_OFDM // (Np - 1)
N_OFDM_rem = N_OFDM - Npb * (Np - 1)
Nf = IQ_data.shape[1]
IQ_datap = np.zeros((N_OFDM + Npb + 1, Nf), dtype=np.complex128)
pilots = np.ones(Nf) # The pilot symbol is simply 1 + j0
for k in range(Npb):
IQ_datap[Np * k:Np * (k + 1), :] = np.vstack((pilots,
IQ_data[(Np - 1) * k:(Np - 1) * (k + 1), :]))
IQ_datap[Np * Npb:Np * (Npb + N_OFDM_rem), :] = np.vstack((pilots,
IQ_data[(Np - 1) * Npb:, :]))
return IQ_datap
def OFDM_tx(IQ_data, Nf, N, Np=0, cp=False, Ncp=0):
"""
Parameters
----------
IQ_data : +/-1, +/-3, etc complex QAM symbol sample inputs
Nf : number of filled carriers, must be even and Nf < N
N : total number of carriers; generally a power 2, e.g., 64, 1024, etc
Np : Period of pilot code blocks; 0 <=> no pilots
cp : False/True <=> bypass cp insertion entirely if False
Ncp : the length of the cyclic prefix
Returns
-------
x_out : complex baseband OFDM waveform output after P/S and CP insertion
See Also
--------
OFDM_rx
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> x1,b1,IQ_data1 = dc.QAM_bb(50000,1,'16qam')
>>> x_out = dc.OFDM_tx(IQ_data1,32,64)
>>> plt.psd(x_out,2**10,1);
>>> plt.xlabel(r'Normalized Frequency ($\omega/(2\pi)=f/f_s$)')
>>> plt.ylim([-40,0])
>>> plt.xlim([-.5,.5])
>>> plt.show()
"""
N_symb = len(IQ_data)
N_OFDM = N_symb // Nf
IQ_data = IQ_data[:N_OFDM * Nf]
IQ_s2p = np.reshape(IQ_data, (N_OFDM, Nf)) # carrier symbols by column
print(IQ_s2p.shape)
if Np > 0:
IQ_s2p = mux_pilot_blocks(IQ_s2p, Np)
N_OFDM = IQ_s2p.shape[0]
print(IQ_s2p.shape)
if cp:
x_out = np.zeros(N_OFDM * (N + Ncp), dtype=np.complex128)
else:
x_out = np.zeros(N_OFDM * N, dtype=np.complex128)
for k in range(N_OFDM):
buff = np.zeros(N, dtype=np.complex128)
for n in range(-Nf // 2, Nf // 2 + 1):
if n == 0: # Modulate carrier f = 0
buff[0] = 0 # This can be a pilot carrier
elif n > 0: # Modulate carriers f = 1:Nf/2
buff[n] = IQ_s2p[k, n - 1]
else: # Modulate carriers f = -Nf/2:-1
buff[N + n] = IQ_s2p[k, Nf + n]
if cp:
# With cyclic prefix
x_out_buff = fft.ifft(buff)
x_out[k * (N + Ncp):(k + 1) * (N + Ncp)] = np.concatenate((x_out_buff[N - Ncp:],
x_out_buff))
else:
# No cyclic prefix included
x_out[k * N:(k + 1) * N] = fft.ifft(buff)
return x_out
def chan_est_equalize(z, Np, alpha, Ht=None):
"""
This is a helper function for :func:`OFDM_rx` to unpack pilot blocks from
from the entire set of received OFDM symbols (the Nf of N filled
carriers only); then estimate the channel array H recursively,
and finally apply H_hat to Y, i.e., X_hat = Y/H_hat
carrier-by-carrier. Note if Np = -1, then H_hat = H, the true
channel.
Parameters
----------
z : Input N_OFDM x Nf 2D array containing pilot blocks and OFDM data symbols.
Np : The pilot block period; if -1 use the known channel impulse response input to ht.
alpha : The forgetting factor used to recursively estimate H_hat
Ht : The theoretical channel frquency response to allow ideal equalization provided Ncp is adequate.
Returns
-------
zz_out : The input z with the pilot blocks removed and one-tap equalization applied to each of the Nf carriers.
H : The channel estimate in the frequency domain; an array of length Nf; will return Ht if provided as an input.
Examples
--------
>>> from sk_dsp_comm.digitalcom import chan_est_equalize
>>> zz_out,H = chan_est_eq(z,Nf,Np,alpha,Ht=None)
"""
N_OFDM = z.shape[0]
Nf = z.shape[1]
Npb = N_OFDM // Np
N_part = N_OFDM - Npb * Np - 1
zz_out = np.zeros_like(z)
Hmatrix = np.zeros((N_OFDM, Nf), dtype=np.complex128)
k_fill = 0
k_pilot = 0
for k in range(N_OFDM):
if np.mod(k, Np) == 0: # Process pilot blocks
if k == 0:
H = z[k, :]
else:
H = alpha * H + (1 - alpha) * z[k, :]
Hmatrix[k_pilot, :] = H
k_pilot += 1
else: # process data blocks
if isinstance(type(None), type(Ht)):
zz_out[k_fill, :] = z[k, :] / H # apply equalizer
else:
zz_out[k_fill, :] = z[k, :] / Ht # apply ideal equalizer
k_fill += 1
zz_out = zz_out[:k_fill, :] # Trim to # of OFDM data symbols
Hmatrix = Hmatrix[:k_pilot, :] # Trim to # of OFDM pilot symbols
if k_pilot > 0: # Plot a few magnitude and phase channel estimates
chan_idx = np.arange(0, Nf // 2, 4)
plt.subplot(211)
for i in chan_idx:
plt.plot(np.abs(Hmatrix[:, i]))
plt.title('Channel Estimates H[k] Over Selected Carrier Indices')
plt.xlabel('Channel Estimate Update Index')
plt.ylabel('|H[k]|')
plt.grid();
plt.subplot(212)
for i in chan_idx:
plt.plot(np.angle(Hmatrix[:, i]))
plt.xlabel('Channel Estimate Update Index')
plt.ylabel('angle[H[k] (rad)')
plt.grid();
plt.tight_layout()
return zz_out, H
def OFDM_rx(x, Nf, N, Np=0, cp=False, Ncp=0, alpha=0.95, ht=None):
"""
Parameters
----------
x : Received complex baseband OFDM signal
Nf : Number of filled carriers, must be even and Nf < N
N : Total number of carriers; generally a power 2, e.g., 64, 1024, etc
Np : Period of pilot code blocks; 0 <=> no pilots; -1 <=> use the ht impulse response input to equalize the OFDM symbols; note equalization still requires Ncp > 0 to work on a delay spread channel.
cp : False/True <=> if False assume no CP is present
Ncp : The length of the cyclic prefix
alpha : The filter forgetting factor in the channel estimator. Typically alpha is 0.9 to 0.99.
nt : Input the known theoretical channel impulse response
Returns
-------
z_out : Recovered complex baseband QAM symbols as a serial stream; as appropriate channel estimation has been applied.
H : channel estimate (in the frequency domain at each subcarrier)
See Also
--------
OFDM_tx
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> from scipy import signal
>>> from numpy import array
>>> hc = array([1.0, 0.1, -0.05, 0.15, 0.2, 0.05]) # impulse response spanning five symbols
>>> # Quick example using the above channel with no cyclic prefix
>>> x1,b1,IQ_data1 = dc.QAM_bb(50000,1,'16qam')
>>> x_out = dc.OFDM_tx(IQ_data1,32,64,0,True,0)
>>> c_out = signal.lfilter(hc,1,x_out) # Apply channel distortion
>>> r_out = dc.cpx_AWGN(c_out,100,64/32) # Es/N0 = 100 dB
>>> z_out,H = dc.OFDM_rx(r_out,32,64,-1,True,0,alpha=0.95,ht=hc)
>>> plt.plot(z_out[200:].real,z_out[200:].imag,'.')
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> plt.grid()
>>> plt.show()
Another example with noise using a 10 symbol cyclic prefix and channel estimation:
>>> x_out = dc.OFDM_tx(IQ_data1,32,64,100,True,10)
>>> c_out = signal.lfilter(hc,1,x_out) # Apply channel distortion
>>> r_out = dc.cpx_AWGN(c_out,25,64/32) # Es/N0 = 25 dB
>>> z_out,H = dc.OFDM_rx(r_out,32,64,100,True,10,alpha=0.95,ht=hc);
>>> plt.figure() # if channel estimation is turned on need this
>>> plt.plot(z_out[-2000:].real,z_out[-2000:].imag,'.') # allow settling time
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> plt.grid()
>>> plt.show()
"""
N_symb = len(x) // (N + Ncp)
y_out = np.zeros(N_symb * N, dtype=np.complex128)
for k in range(N_symb):
if cp:
# Remove the cyclic prefix
buff = x[k * (N + Ncp) + Ncp:(k + 1) * (N + Ncp)]
else:
buff = x[k * N:(k + 1) * N]
y_out[k * N:(k + 1) * N] = fft.fft(buff)
# Demultiplex into Nf parallel streams from N total, including
# the pilot blocks which contain channel information
z_out = np.reshape(y_out, (N_symb, N))
z_out = np.hstack((z_out[:, 1:Nf // 2 + 1], z_out[:, N - Nf // 2:N]))
if Np > 0:
if isinstance(type(None), type(ht)):
z_out, H = chan_est_equalize(z_out, Np, alpha)
else:
Ht = fft.fft(ht, N)
Hht = np.hstack((Ht[1:Nf // 2 + 1], Ht[N - Nf // 2:]))
z_out, H = chan_est_equalize(z_out, Np, alpha, Hht)
elif Np == -1: # Ideal equalization using hc
Ht = fft.fft(ht, N)
H = np.hstack((Ht[1:Nf // 2 + 1], Ht[N - Nf // 2:]))
for k in range(N_symb):
z_out[k, :] /= H
else:
H = np.ones(Nf)
# Multiplex into original serial symbol stream
return z_out.flatten(), H
|
python
|
def validMountainArray(arr):
N = len(arr)
i = 0
while i + 1 < N and arr[i] < arr[i+1]:
i += 1
if i == 0 or i == N-1:
return False
while i + 1 < N and arr[i] > arr [i+1]:
i += 1
return i == N-1
arr = [2,1]
x = validMountainArray(arr)
print(x)
arr1 = [3,5,5]
x = validMountainArray(arr1)
print(x)
arr2 = [0,3,2,1]
x = validMountainArray(arr2)
print(x)
|
python
|
from django.http import HttpResponse
from django.shortcuts import render
from rest_framework.generics import (
CreateAPIView,
DestroyAPIView,
ListAPIView,
UpdateAPIView,
RetrieveAPIView
)
from posts.models import Post
from .serializers import (
PostCreateSerializer,
PostListSerializer,
PostDetailSerializer
)
class PostCreateAPIView(CreateAPIView):
queryset = Post.objects.all()
serializer_class = PostDetailSerializer
class PostDetailAPIView(RetrieveAPIView):
queryset = Post.objects.all()
serializer_class = PostDetailSerializer
lookup_field = 'slug'
class PostUpdateAPIView(UpdateAPIView):
queryset = Post.objects.all()
serializer_class = PostDetailSerializer
lookup_field = 'slug'
class PostDeleteAPIView(DestroyAPIView):
queryset = Post.objects.all()
serializer_class = PostDetailSerializer
lookup_field = 'slug'
class PostListAPIView (ListAPIView):
queryset = Post.objects.all()
serializer_class = PostListSerializer
|
python
|
import bayesnewton
import objax
import numpy as np
import matplotlib.pyplot as plt
import time
# load graviational wave data
data = np.loadtxt('../data/ligo.txt') # https://www.gw-openscience.org/events/GW150914/
np.random.seed(12345)
x = data[:, 0]
y = data[:, 1]
x_test = x
y_test = y
x_plot = x
var_f = 1.0 # GP variance
len_f = 0.1 # GP lengthscale
var_y = 0.01 # observation noise
kern = bayesnewton.kernels.Matern12(variance=var_f, lengthscale=len_f)
lik = bayesnewton.likelihoods.Gaussian(variance=var_y) # , fix_variance=True)
model = bayesnewton.models.MarkovVariationalGP(kernel=kern, likelihood=lik, X=x, Y=y)
lr_adam = 0.1
lr_newton = 1
iters = 100
opt_hypers = objax.optimizer.Adam(model.vars())
energy = objax.GradValues(model.energy, model.vars())
inf_args = {
"power": 0.5, # the EP power
}
@objax.Function.with_vars(model.vars() + opt_hypers.vars())
def train_op():
model.inference(lr=lr_newton, **inf_args) # perform inference and update variational params
dE, E = energy(**inf_args) # compute energy and its gradients w.r.t. hypers
opt_hypers(lr_adam, dE)
return E
train_op = objax.Jit(train_op)
t0 = time.time()
for i in range(1, iters + 1):
loss = train_op()
print('iter %2d, energy: %1.4f' % (i, loss[0]))
t1 = time.time()
print('optimisation time: %2.2f secs' % (t1-t0))
t0 = time.time()
posterior_mean, posterior_var = model.predict_y(X=x_plot)
nlpd = model.negative_log_predictive_density(X=x_test, Y=y_test)
t1 = time.time()
print('prediction time: %2.2f secs' % (t1-t0))
print('nlpd: %2.3f' % nlpd)
lb = posterior_mean - 1.96 * posterior_var ** 0.5
ub = posterior_mean + 1.96 * posterior_var ** 0.5
print('plotting ...')
plt.figure(1, figsize=(12, 5))
plt.clf()
plt.plot(x, y, 'k.', label='training observations')
plt.plot(x_test, y_test, 'r.', alpha=0.4, label='test observations')
plt.plot(x_plot, posterior_mean, 'b', label='posterior mean')
# plt.plot(x_plot, posterior_samples.T, 'b', alpha=0.2)
plt.fill_between(x_plot, lb, ub, color='b', alpha=0.05, label='95% confidence')
plt.xlim([x_plot[0], x_plot[-1]])
if hasattr(model, 'Z'):
plt.plot(model.Z.value[:, 0], -2 * np.ones_like(model.Z.value[:, 0]), 'b^', markersize=5)
# plt.xlim([x_test[0], x_test[-1]])
# plt.ylim([-2, 5])
plt.legend()
plt.title('GP regression')
plt.xlabel('$X$')
plt.show()
|
python
|
import numpy as np
import tinkerbell.app.plot as tbapl
import tinkerbell.app.rcparams as tbarc
from matplotlib import pyplot as plt
fname_img = 'img/time_stage_lstm.png'
def xy_from_npy(fname):
data = np.load(fname)
return (data[0], data[1])
xmax = tbarc.rcparams['shale.lstm_stage.xmax']
y0 = tbarc.rcparams['shale.lstm.y0_mean']
xdisc_train = tbarc.rcparams['shale.lstm_stage.xdisc_mean']
xdisc_pred = xdisc_train + xmax*tbarc.rcparams['shale.lstm_stage.xdisc_mult']
y0_pred = tbarc.rcparams['shale.lstm.y0_mean']*tbarc.rcparams['shale.lstm.y0_mult']
xlim = (-5, xmax*1.025)
ylim = (-2, y0*1.1)
lims = (xlim, ylim)
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex='col', sharey='row')
training_xy = xy_from_npy(tbarc.rcparams['shale.lstm_stage.fnamentraindata'])
tbapl.render(ax1, [training_xy], styles=['p'], lim=lims)
ax1.set_title('Training')
inputy0_xy = ((0), (y0_pred))
inputxdisc_xy = ((xdisc_pred), (0))
tbapl.render(ax2, [inputy0_xy, inputxdisc_xy], styles=['iy', 'ix'], lim=lims)
ax2.set_title('Query')
prediction_xy = xy_from_npy(tbarc.rcparams['shale.lstm_stage.fnamenpreddata'])
tbapl.render(ax3, [inputy0_xy, inputxdisc_xy, prediction_xy], styles=['iy', 'ix', 'l'], lim=lims)
ax3.set_title('Prediction')
blind_xy = xy_from_npy(tbarc.rcparams['shale.lstm_stage.fnamenblinddata'])
tbapl.render(ax4, [prediction_xy, blind_xy], styles=['l', 'p'], lim=lims)
ax4.set_title('Prediction vs. reference')
fig.set_size_inches(14, 9)
plt.savefig(fname_img, dpi=300)
plt.show()
|
python
|
# ----------* CHALLENGE 74 *----------
# Enter a list of ten colours. Ask the user for a starting number between 0 and 4
# and an end number between 5 and 9. Display the list for those colours
# between the start and end numbers the user input.
list_colours = ["red", "blue", "green", "yellow", "orange", "purple", "brown", "cyan", "pink", "burgundy", "olive"]
first_index = int(input("Enter a number between 0 and 4: "))
last_index = int(input("Enter a number between 5 and 9: "))
print(list_colours[first_index:last_index+1])
|
python
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models, migrations
import datetime
from django.conf import settings
class Migration(migrations.Migration):
dependencies = [
('auth', '0001_initial'),
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
('contenttypes', '0001_initial'),
]
operations = [
migrations.CreateModel(
name='Permission',
fields=[
('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
('codename', models.CharField(max_length=100, verbose_name='codename')),
('object_id', models.PositiveIntegerField()),
('approved', models.BooleanField(default=False, help_text='Designates whether the permission has been approved and treated as active. Unselect this instead of deleting permissions.', verbose_name='approved')),
('date_requested', models.DateTimeField(default=datetime.datetime.now, verbose_name='date requested')),
('date_approved', models.DateTimeField(null=True, verbose_name='date approved', blank=True)),
('content_type', models.ForeignKey(related_name='row_permissions', to='contenttypes.ContentType')),
('creator', models.ForeignKey(related_name='created_permissions', blank=True, to=settings.AUTH_USER_MODEL, null=True)),
('group', models.ForeignKey(blank=True, to='auth.Group', null=True)),
('user', models.ForeignKey(related_name='granted_permissions', blank=True, to=settings.AUTH_USER_MODEL, null=True)),
],
options={
'verbose_name': 'permission',
'verbose_name_plural': 'permissions',
'permissions': (('change_foreign_permissions', 'Can change foreign permissions'), ('delete_foreign_permissions', 'Can delete foreign permissions'), ('approve_permission_requests', 'Can approve permission requests')),
},
bases=(models.Model,),
),
migrations.AlterUniqueTogether(
name='permission',
unique_together=set([('codename', 'object_id', 'content_type', 'user', 'group')]),
),
]
|
python
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Classical Heisenberg model Monte Carlo simulator
"""
import json
import os
import shutil
import time
import numpy as np
from kent_distribution.kent_distribution import kent2
from skdylib.spherical_coordinates import sph_urand, xyz2sph
from thermalspin.heisenberg_system import HeisenbergSystem
SNAPSHOTS_ARRAY_INITIAL_DIMENSION = int(3e4)
class HeisenbergSimulation:
"""
Handler of the HeisenbergSystem simulation.
It run the simulation and collect the results.
"""
def __init__(self, hsys: HeisenbergSystem, take_states_snapshots=False):
"""
:param hsys: system to be evolved
"""
self.system = hsys
self.steps_counter = 0
self.snapshots_counter = 0
self.snapshots_array_dimension = SNAPSHOTS_ARRAY_INITIAL_DIMENSION
if take_states_snapshots:
self.snapshots = np.zeros(
shape=(SNAPSHOTS_ARRAY_INITIAL_DIMENSION, self.system.nx, self.system.ny, self.system.nz, 2))
else:
self.snapshots = None
self.snapshots_t = np.zeros(shape=SNAPSHOTS_ARRAY_INITIAL_DIMENSION)
self.snapshots_e = np.zeros(shape=SNAPSHOTS_ARRAY_INITIAL_DIMENSION)
self.snapshots_m = np.zeros(shape=(SNAPSHOTS_ARRAY_INITIAL_DIMENSION, 3))
self.snapshots_J = np.zeros(shape=SNAPSHOTS_ARRAY_INITIAL_DIMENSION)
self.snapshots_T = np.zeros(shape=SNAPSHOTS_ARRAY_INITIAL_DIMENSION)
self.snapshots_Hz = np.zeros(shape=SNAPSHOTS_ARRAY_INITIAL_DIMENSION)
self.take_snapshot()
def run(self, nsteps):
"""
Evolve the system for a given number of steps
:param nsteps: The number of steps
"""
self.steps_counter += nsteps
for t in range(1, nsteps + 1):
self.system.step()
def take_snapshot(self):
""""
Take a snapshot of the system, parameters and results
"""
# First check if the snapshots array needs reshape
if self.snapshots_counter == self.snapshots_array_dimension:
if self.snapshots is not None:
self.snapshots.resize((self.snapshots_counter + SNAPSHOTS_ARRAY_INITIAL_DIMENSION, self.system.nx,
self.system.ny, self.system.nz, 2))
else:
self.snapshots = None
self.snapshots_t.resize(self.snapshots_counter + SNAPSHOTS_ARRAY_INITIAL_DIMENSION)
self.snapshots_e.resize(self.snapshots_counter + SNAPSHOTS_ARRAY_INITIAL_DIMENSION)
self.snapshots_m.resize((self.snapshots_counter + SNAPSHOTS_ARRAY_INITIAL_DIMENSION, 3))
self.snapshots_J.resize(self.snapshots_counter + SNAPSHOTS_ARRAY_INITIAL_DIMENSION)
self.snapshots_T.resize(self.snapshots_counter + SNAPSHOTS_ARRAY_INITIAL_DIMENSION)
self.snapshots_Hz.resize(self.snapshots_counter + SNAPSHOTS_ARRAY_INITIAL_DIMENSION)
# Then takes a snapshot
if self.snapshots is not None:
self.snapshots[self.snapshots_counter, :, :, :, :] = self.system.state.copy()
self.snapshots_t[self.snapshots_counter] = self.steps_counter
self.snapshots_e[self.snapshots_counter] = self.system.energy
self.snapshots_m[self.snapshots_counter, :] = self.system.magnetization
self.snapshots_J[self.snapshots_counter] = self.system.J
self.snapshots_T[self.snapshots_counter] = self.system.T
self.snapshots_Hz[self.snapshots_counter] = self.system.Hz
self.snapshots_counter += 1
def run_with_snapshots(self, steps_number, delta_snapshots, verbose=False):
"""
Evolve the system while taking snapshots
:param steps_number: Number of steps to be computed
:param delta_snapshots: Distance between snapshots
"""
if steps_number % delta_snapshots != 0:
raise Exception("steps_number must be multiple of delta_snapshots")
nsnapshots = int(steps_number / delta_snapshots)
for t in range(0, nsnapshots):
self.run(delta_snapshots)
self.take_snapshot()
if verbose:
print(f"Step number {self.steps_counter}", end="\r")
# Functions for initialization and saving to disk the results of a simulation
def init_simulation_aligned(simdir, nx, ny, nz, params, theta_0=None, phi_0=None):
"""
Generate a lattice of spins aligned toward an axis
:param simdir: Directory of the simulation
:param nx: Number of x cells
:param ny: Number of y cells
:param nz: Number of z cells
:param params: parameters of the simulation
:param phi_0:
:param theta_0:
"""
shutil.rmtree(simdir, ignore_errors=True)
state = np.ones(shape=(nx, ny, nz, 2))
state[:, :, :, 0] = state[:, :, :, 0] * theta_0
state[:, :, :, 1] = state[:, :, :, 1] * phi_0
os.makedirs(simdir)
params_file = open(simdir + "params.json", "w")
json.dump(params, params_file, indent=2)
np.save(simdir + "state.npy", state)
def init_simulation_tilted(simdir, nx, ny, nz, params):
"""
Generate a lattice of spins aligned toward tan axis if specified, random if not
:param simdir: Directory of the simulation
:param nx: Number of x cells
:param ny: Number of y cells
:param nz: Number of z cells
:param params: parameters of the simulation
"""
shutil.rmtree(simdir, ignore_errors=True)
state = np.ones(shape=(nx, ny, nz, 2))
gamma1 = np.array([0, 0, 1], dtype=np.float)
gamma2 = np.array([0, 1, 0], dtype=np.float)
gamma3 = np.array([1, 0, 0], dtype=np.float)
kent = kent2(gamma1, gamma2, gamma3, kappa=20, beta=0)
for i, j, k in np.ndindex((nx, ny, nz)):
state[i, j, k, :] = xyz2sph(kent.rvs())
os.makedirs(simdir)
params_file = open(simdir + "params.json", "w")
json.dump(params, params_file, indent=2)
np.save(simdir + "state.npy", state)
def init_simulation_random(simdir, nx, ny, nz, params):
"""
Generate a lattice of spins aligned toward tan axis if specified, random if not
:param simdir: Directory of the simulation
:param nx: Number of x cells
:param ny: Number of y cells
:param nz: Number of z cells
:param params: parameters of the simulation
"""
shutil.rmtree(simdir, ignore_errors=True)
state = np.zeros(shape=(nx, ny, nz, 2))
for i, j, k in np.ndindex(nx, ny, nz):
theta_r, phi_r = sph_urand()
state[i, j, k, 0] = theta_r
state[i, j, k, 1] = phi_r
os.makedirs(simdir)
params_file = open(simdir + "params.json", "w")
json.dump(params, params_file, indent=2)
np.save(simdir + "state.npy", state)
def run_simulation(simulation_directory, verbose=True):
"""
Run a simulation and save to disk the results
:param simulation_directory: the directory of the simulation
:param verbose: print step numbers in real time
"""
if os.path.isfile(simulation_directory + "params.json"):
params_file = open(simulation_directory + "params.json", "r")
params = json.load(params_file)
else:
raise Exception("Missing params.json file")
if os.path.isfile(simulation_directory + "state.npy"):
state = np.load(simulation_directory + "state.npy")
else:
raise Exception("Missing state.npy file")
param_J = np.array(params["param_J"])
param_Hz = np.array(params["param_Hz"])
param_T = np.array(params["param_T"])
steps_number = params["steps_number"]
delta_snapshots = params["delta_snapshots"]
save_snapshots = params["save_snapshots"]
sys = HeisenbergSystem(state, param_J[0], param_Hz[0], param_T[0])
hsim = HeisenbergSimulation(sys, take_states_snapshots=save_snapshots)
for i in range(param_T.shape[0]):
T_str = "{0:.3f}".format(param_T[i])
Hz_str = "{0:.3f}".format(param_Hz[i])
print(f"Simulation stage: {i}\n"
f"Temperature: {T_str}\n"
f"Hz: {Hz_str}\n"
f"Steps number: {steps_number}\n"
f"Delta snapshots: {delta_snapshots}\n")
hsim.system.J = param_J[i]
hsim.system.T = param_T[i]
hsim.system.Hz = param_Hz[i]
start_time = time.time()
hsim.run_with_snapshots(steps_number, delta_snapshots, verbose=verbose)
end_time = time.time()
run_time = end_time - start_time
run_time_str = "{0:.2f}".format(run_time)
print(f"Stage completed in {run_time_str} seconds\n")
print("Saving results ...", end="")
start = time.time()
# Save the last state
np.save(simulation_directory + "state.npy", hsim.system.state)
# Collect the results of the simulation
new_results = np.zeros(shape=(hsim.snapshots_counter, 4))
new_results[:, 0] = hsim.snapshots_e[:hsim.snapshots_counter]
new_results[:, 1:4] = hsim.snapshots_m[:hsim.snapshots_counter]
# Collect the snapshots and params
new_snapshots_params = np.zeros(shape=(hsim.snapshots_counter, 4))
new_snapshots_params[:, 0] = hsim.snapshots_t[:hsim.snapshots_counter]
new_snapshots_params[:, 1] = hsim.snapshots_J[:hsim.snapshots_counter]
new_snapshots_params[:, 2] = hsim.snapshots_Hz[:hsim.snapshots_counter]
new_snapshots_params[:, 3] = hsim.snapshots_T[:hsim.snapshots_counter]
# If old data is found, append the new one
if os.path.isfile(simulation_directory + "snapshots_params.npy") and os.path.isfile(
simulation_directory + "results.npy"):
old_results = np.load(simulation_directory + "results.npy")
results = np.concatenate((old_results, new_results[1:]))
old_snapshots_params = np.load(simulation_directory + "snapshots_params.npy")
last_t = old_snapshots_params[-1, 0]
new_snapshots_params[:, 0] += last_t
snapshots_params = np.concatenate((old_snapshots_params, new_snapshots_params[1:]))
else:
snapshots_params = new_snapshots_params
results = new_results
# Save all
np.save(simulation_directory + "snapshots_params.npy", snapshots_params)
np.save(simulation_directory + "results.npy", results)
if save_snapshots:
new_snapshots = hsim.snapshots[:hsim.snapshots_counter]
if os.path.isfile(simulation_directory + "snapshots.npy"):
old_snapshots = np.load(simulation_directory + "snapshots.npy")
snapshots = np.concatenate((old_snapshots, new_snapshots[1:]))
else:
snapshots = new_snapshots
np.save(simulation_directory + "snapshots.npy", snapshots)
end = time.time()
saving_time = end - start
saving_time_str = "{0:.6f}".format(saving_time)
print(f"done in {saving_time_str} seconds.")
|
python
|
# -*- coding: utf-8 -*-
################################################################################
## Form generated from reading UI file 'employees.ui'
##
## Created by: Qt User Interface Compiler version 5.15.1
##
## WARNING! All changes made in this file will be lost when recompiling UI file!
################################################################################
from PySide2.QtCore import QSize, QLocale, QMetaObject, QCoreApplication, QDate
from PySide2.QtGui import Qt, QFont, QIcon
from PySide2.QtWidgets import QSizePolicy, QSpacerItem, QLabel, QGridLayout, QPushButton, QComboBox, QDateEdit, QFormLayout, QLineEdit, QTabWidget, QWidget
class Ui_Form(object):
def setupUi(self, Form):
if not Form.objectName():
Form.setObjectName(u"Form")
Form.resize(580, 400)
sizePolicy = QSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(Form.sizePolicy().hasHeightForWidth())
Form.setSizePolicy(sizePolicy)
Form.setMinimumSize(QSize(580, 400))
Form.setMaximumSize(QSize(580, 400))
font = QFont()
font.setFamily(u"Comic Sans MS")
font.setPointSize(10)
Form.setFont(font)
icon = QIcon()
icon.addFile(u":/newPrefix/images/python.ico", QSize(), QIcon.Normal, QIcon.Off)
Form.setWindowIcon(icon)
Form.setLocale(QLocale(QLocale.Russian, QLocale.Russia))
self.gridLayout_5 = QGridLayout(Form)
self.gridLayout_5.setObjectName(u"gridLayout_5")
self.tabWidget = QTabWidget(Form)
self.tabWidget.setObjectName(u"tabWidget")
sizePolicy.setHeightForWidth(self.tabWidget.sizePolicy().hasHeightForWidth())
self.tabWidget.setSizePolicy(sizePolicy)
self.tabWidget.setMinimumSize(QSize(560, 380))
self.tab = QWidget()
self.tab.setObjectName(u"tab")
self.gridLayout_4 = QGridLayout(self.tab)
self.gridLayout_4.setObjectName(u"gridLayout_4")
self.label_5 = QLabel(self.tab)
self.label_5.setObjectName(u"label_5")
font1 = QFont()
font1.setFamily(u"Comic Sans MS")
font1.setPointSize(12)
self.label_5.setFont(font1)
self.label_5.setAlignment(Qt.AlignCenter)
self.gridLayout_4.addWidget(self.label_5, 0, 0, 1, 2)
self.verticalSpacer_2 = QSpacerItem(20, 25, QSizePolicy.Minimum, QSizePolicy.Fixed)
self.gridLayout_4.addItem(self.verticalSpacer_2, 1, 1, 1, 1)
self.gridLayout_3 = QGridLayout()
self.gridLayout_3.setObjectName(u"gridLayout_3")
self.horizontalSpacer_2 = QSpacerItem(55, 20, QSizePolicy.Fixed, QSizePolicy.Minimum)
self.gridLayout_3.addItem(self.horizontalSpacer_2, 0, 0, 1, 1)
self.gridLayout = QGridLayout()
self.gridLayout.setObjectName(u"gridLayout")
self.label = QLabel(self.tab)
self.label.setObjectName(u"label")
self.gridLayout.addWidget(self.label, 0, 0, 1, 1)
self.lineEdit = QLineEdit(self.tab)
self.lineEdit.setObjectName(u"lineEdit")
self.lineEdit.setMinimumSize(QSize(150, 30))
self.gridLayout.addWidget(self.lineEdit, 1, 0, 1, 1)
self.gridLayout_3.addLayout(self.gridLayout, 0, 1, 1, 1)
self.horizontalSpacer = QSpacerItem(40, 20, QSizePolicy.Expanding, QSizePolicy.Minimum)
self.gridLayout_3.addItem(self.horizontalSpacer, 0, 2, 1, 1)
self.gridLayout_2 = QGridLayout()
self.gridLayout_2.setObjectName(u"gridLayout_2")
self.label_4 = QLabel(self.tab)
self.label_4.setObjectName(u"label_4")
self.gridLayout_2.addWidget(self.label_4, 0, 0, 1, 1)
self.dateEdit = QDateEdit(self.tab)
self.dateEdit.setObjectName(u"dateEdit")
self.dateEdit.setMinimumSize(QSize(150, 30))
self.dateEdit.setCalendarPopup(True)
self.dateEdit.setTimeSpec(Qt.LocalTime)
self.dateEdit.setDate(QDate(2020, 10, 1))
self.gridLayout_2.addWidget(self.dateEdit, 1, 0, 1, 1)
self.gridLayout_3.addLayout(self.gridLayout_2, 0, 3, 1, 1)
self.horizontalSpacer_3 = QSpacerItem(75, 20, QSizePolicy.Fixed, QSizePolicy.Minimum)
self.gridLayout_3.addItem(self.horizontalSpacer_3, 0, 4, 1, 1)
self.formLayout = QFormLayout()
self.formLayout.setObjectName(u"formLayout")
self.label_2 = QLabel(self.tab)
self.label_2.setObjectName(u"label_2")
self.formLayout.setWidget(0, QFormLayout.LabelRole, self.label_2)
self.lineEdit_2 = QLineEdit(self.tab)
self.lineEdit_2.setObjectName(u"lineEdit_2")
self.lineEdit_2.setMinimumSize(QSize(150, 30))
self.formLayout.setWidget(1, QFormLayout.LabelRole, self.lineEdit_2)
self.gridLayout_3.addLayout(self.formLayout, 1, 1, 1, 1)
self.formLayout_2 = QFormLayout()
self.formLayout_2.setObjectName(u"formLayout_2")
self.label_3 = QLabel(self.tab)
self.label_3.setObjectName(u"label_3")
self.formLayout_2.setWidget(0, QFormLayout.LabelRole, self.label_3)
self.lineEdit_3 = QLineEdit(self.tab)
self.lineEdit_3.setObjectName(u"lineEdit_3")
self.lineEdit_3.setMinimumSize(QSize(150, 30))
self.formLayout_2.setWidget(1, QFormLayout.LabelRole, self.lineEdit_3)
self.gridLayout_3.addLayout(self.formLayout_2, 2, 1, 1, 1)
self.gridLayout_4.addLayout(self.gridLayout_3, 2, 0, 1, 2)
self.verticalSpacer = QSpacerItem(15, 25, QSizePolicy.Minimum, QSizePolicy.Fixed)
self.gridLayout_4.addItem(self.verticalSpacer, 3, 1, 1, 1)
self.horizontalSpacer_4 = QSpacerItem(310, 20, QSizePolicy.Fixed, QSizePolicy.Minimum)
self.gridLayout_4.addItem(self.horizontalSpacer_4, 4, 0, 1, 1)
self.pushButton = QPushButton(self.tab)
self.pushButton.setObjectName(u"pushButton")
self.gridLayout_4.addWidget(self.pushButton, 4, 1, 1, 1)
self.tabWidget.addTab(self.tab, "")
self.tab_2 = QWidget()
self.tab_2.setObjectName(u"tab_2")
self.gridLayout_9 = QGridLayout(self.tab_2)
self.gridLayout_9.setObjectName(u"gridLayout_9")
self.gridLayout_6 = QGridLayout()
self.gridLayout_6.setObjectName(u"gridLayout_6")
self.horizontalSpacer_7 = QSpacerItem(75, 20, QSizePolicy.Fixed, QSizePolicy.Minimum)
self.gridLayout_6.addItem(self.horizontalSpacer_7, 0, 4, 1, 1)
self.gridLayout_8 = QGridLayout()
self.gridLayout_8.setObjectName(u"gridLayout_8")
self.label_7 = QLabel(self.tab_2)
self.label_7.setObjectName(u"label_7")
self.gridLayout_8.addWidget(self.label_7, 0, 0, 1, 1)
self.dateEdit_2 = QDateEdit(self.tab_2)
self.dateEdit_2.setObjectName(u"dateEdit_2")
self.dateEdit_2.setMinimumSize(QSize(150, 30))
self.dateEdit_2.setReadOnly(True)
self.dateEdit_2.setCalendarPopup(True)
self.dateEdit_2.setTimeSpec(Qt.LocalTime)
self.dateEdit_2.setDate(QDate(2020, 10, 1))
self.gridLayout_8.addWidget(self.dateEdit_2, 1, 0, 1, 1)
self.gridLayout_6.addLayout(self.gridLayout_8, 0, 3, 1, 1)
self.formLayout_4 = QFormLayout()
self.formLayout_4.setObjectName(u"formLayout_4")
self.label_9 = QLabel(self.tab_2)
self.label_9.setObjectName(u"label_9")
self.formLayout_4.setWidget(0, QFormLayout.LabelRole, self.label_9)
self.lineEdit_6 = QLineEdit(self.tab_2)
self.lineEdit_6.setObjectName(u"lineEdit_6")
self.lineEdit_6.setMinimumSize(QSize(150, 30))
self.lineEdit_6.setReadOnly(True)
self.formLayout_4.setWidget(1, QFormLayout.LabelRole, self.lineEdit_6)
self.gridLayout_6.addLayout(self.formLayout_4, 2, 1, 1, 1)
self.horizontalSpacer_6 = QSpacerItem(40, 20, QSizePolicy.Expanding, QSizePolicy.Minimum)
self.gridLayout_6.addItem(self.horizontalSpacer_6, 0, 2, 1, 1)
self.gridLayout_7 = QGridLayout()
self.gridLayout_7.setObjectName(u"gridLayout_7")
self.label_6 = QLabel(self.tab_2)
self.label_6.setObjectName(u"label_6")
self.gridLayout_7.addWidget(self.label_6, 0, 0, 1, 1)
self.lineEdit_4 = QLineEdit(self.tab_2)
self.lineEdit_4.setObjectName(u"lineEdit_4")
self.lineEdit_4.setMinimumSize(QSize(150, 30))
self.lineEdit_4.setReadOnly(True)
self.gridLayout_7.addWidget(self.lineEdit_4, 1, 0, 1, 1)
self.gridLayout_6.addLayout(self.gridLayout_7, 0, 1, 1, 1)
self.horizontalSpacer_5 = QSpacerItem(60, 20, QSizePolicy.Fixed, QSizePolicy.Minimum)
self.gridLayout_6.addItem(self.horizontalSpacer_5, 0, 0, 1, 1)
self.formLayout_3 = QFormLayout()
self.formLayout_3.setObjectName(u"formLayout_3")
self.label_8 = QLabel(self.tab_2)
self.label_8.setObjectName(u"label_8")
self.formLayout_3.setWidget(0, QFormLayout.LabelRole, self.label_8)
self.lineEdit_5 = QLineEdit(self.tab_2)
self.lineEdit_5.setObjectName(u"lineEdit_5")
self.lineEdit_5.setMinimumSize(QSize(150, 30))
self.lineEdit_5.setReadOnly(True)
self.formLayout_3.setWidget(1, QFormLayout.LabelRole, self.lineEdit_5)
self.gridLayout_6.addLayout(self.formLayout_3, 1, 1, 1, 1)
self.formLayout_6 = QFormLayout()
self.formLayout_6.setObjectName(u"formLayout_6")
self.label_12 = QLabel(self.tab_2)
self.label_12.setObjectName(u"label_12")
self.formLayout_6.setWidget(0, QFormLayout.LabelRole, self.label_12)
self.lineEdit_7 = QLineEdit(self.tab_2)
self.lineEdit_7.setObjectName(u"lineEdit_7")
self.lineEdit_7.setMinimumSize(QSize(150, 30))
self.lineEdit_7.setReadOnly(True)
self.formLayout_6.setWidget(1, QFormLayout.LabelRole, self.lineEdit_7)
self.gridLayout_6.addLayout(self.formLayout_6, 1, 3, 1, 1)
self.gridLayout_9.addLayout(self.gridLayout_6, 4, 0, 1, 2)
self.formLayout_5 = QFormLayout()
self.formLayout_5.setObjectName(u"formLayout_5")
self.label_11 = QLabel(self.tab_2)
self.label_11.setObjectName(u"label_11")
self.label_11.setFont(font1)
self.label_11.setAlignment(Qt.AlignCenter)
self.formLayout_5.setWidget(0, QFormLayout.LabelRole, self.label_11)
self.comboBox = QComboBox(self.tab_2)
self.comboBox.setObjectName(u"comboBox")
self.formLayout_5.setWidget(0, QFormLayout.FieldRole, self.comboBox)
self.gridLayout_9.addLayout(self.formLayout_5, 0, 0, 1, 2)
self.verticalSpacer_4 = QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Fixed)
self.gridLayout_9.addItem(self.verticalSpacer_4, 5, 1, 1, 1)
self.verticalSpacer_3 = QSpacerItem(20, 25, QSizePolicy.Minimum, QSizePolicy.Fixed)
self.gridLayout_9.addItem(self.verticalSpacer_3, 1, 0, 1, 1)
self.label_10 = QLabel(self.tab_2)
self.label_10.setObjectName(u"label_10")
self.label_10.setFont(font1)
self.label_10.setAlignment(Qt.AlignCenter)
self.gridLayout_9.addWidget(self.label_10, 2, 0, 1, 2)
self.tabWidget.addTab(self.tab_2, "")
self.gridLayout_5.addWidget(self.tabWidget, 0, 0, 1, 1)
self.retranslateUi(Form)
self.tabWidget.setCurrentIndex(1)
QMetaObject.connectSlotsByName(Form)
# setupUi
def retranslateUi(self, Form):
Form.setWindowTitle(QCoreApplication.translate("Form", u"\u0421\u043e\u0442\u0440\u0443\u0434\u043d\u0438\u043a\u0438", None))
self.label_5.setText(QCoreApplication.translate("Form", u"\u0415\u0441\u043b\u0438 \u0443 \u0440\u0430\u0431\u043e\u0442\u043d\u0438\u043a\u0430 \u043d\u0435\u0442 \u043e\u0442\u0447\u0435\u0441\u0442\u0432\u0430, \u043d\u0435\u043e\u0431\u0445\u043e\u0434\u0438\u043c\u043e \u043e\u0441\u0442\u0430\u0432\u0438\u0442\u044c \u043f\u043e\u043b\u0435 \u043f\u0443\u0441\u0442\u044b\u043c", None))
self.label.setText(QCoreApplication.translate("Form", u"\u0424\u0430\u043c\u0438\u043b\u0438\u044f", None))
self.lineEdit.setText("")
self.label_4.setText(QCoreApplication.translate("Form", u"\u0414\u0430\u0442\u0430 \u043f\u0440\u0438\u0435\u043c\u0430 \u043d\u0430 \u0440\u0430\u0431\u043e\u0442\u0443", None))
self.dateEdit.setDisplayFormat(QCoreApplication.translate("Form", u"d/M/yyyy", None))
self.label_2.setText(QCoreApplication.translate("Form", u"\u0418\u043c\u044f", None))
self.lineEdit_2.setText("")
self.label_3.setText(QCoreApplication.translate("Form", u"\u041e\u0442\u0447\u0435\u0441\u0442\u0432\u043e (\u0435\u0441\u043b\u0438 \u0438\u043c\u0435\u0435\u0442\u0441\u044f)", None))
self.lineEdit_3.setText("")
self.pushButton.setText(QCoreApplication.translate("Form", u"\u0414\u043e\u0431\u0430\u0432\u0438\u0442\u044c", None))
self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab), QCoreApplication.translate("Form", u"\u0414\u043e\u0431\u0430\u0432\u0438\u0442\u044c \u0441\u043e\u0442\u0440\u0443\u0434\u043d\u0438\u043a\u0430", None))
self.label_7.setText(QCoreApplication.translate("Form", u"\u0414\u0430\u0442\u0430 \u043f\u0440\u0438\u0435\u043c\u0430 \u043d\u0430 \u0440\u0430\u0431\u043e\u0442\u0443", None))
self.dateEdit_2.setDisplayFormat(QCoreApplication.translate("Form", u"d/M/yyyy", None))
self.label_9.setText(QCoreApplication.translate("Form", u"\u041e\u0442\u0447\u0435\u0441\u0442\u0432\u043e (\u0435\u0441\u043b\u0438 \u0438\u043c\u0435\u0435\u0442\u0441\u044f)", None))
self.lineEdit_6.setText("")
self.label_6.setText(QCoreApplication.translate("Form", u"\u0424\u0430\u043c\u0438\u043b\u0438\u044f", None))
self.lineEdit_4.setText("")
self.label_8.setText(QCoreApplication.translate("Form", u"\u0418\u043c\u044f", None))
self.lineEdit_5.setText("")
self.label_12.setText(QCoreApplication.translate("Form", u"\u0418\u0434\u0435\u043d\u0442\u0438\u0444\u0438\u043a\u0430\u0442\u043e\u0440 \u0432 \u0431\u0430\u0437\u0435", None))
self.lineEdit_7.setText("")
self.label_11.setText(QCoreApplication.translate("Form", u"\u0412\u044b\u0431\u0435\u0440\u0438\u0442\u0435 \u0441\u043e\u0442\u0440\u0443\u0434\u043d\u0438\u043a\u0430 \u0438\u0437 \u0441\u043f\u0438\u0441\u043a\u0430:", None))
self.label_10.setText(QCoreApplication.translate("Form", u"\u0415\u0441\u043b\u0438 \u0443 \u0440\u0430\u0431\u043e\u0442\u043d\u0438\u043a\u0430 \u043d\u0435\u0442 \u043e\u0442\u0447\u0435\u0441\u0442\u0432\u0430, \u0432 \u043f\u043e\u043b\u0435 \u0431\u0443\u0434\u0435\u0442 \u0441\u0438\u043c\u0432\u043e\u043b -", None))
self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_2), QCoreApplication.translate("Form", u"\u0418\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u044f \u043e \u0441\u043e\u0442\u0440\u0443\u0434\u043d\u0438\u043a\u0430\u0445", None))
# retranslateUi
|
python
|
import pygame, sys, noise, math
from pygame.locals import *
from random import randint, random
pygame.init()
try:
windowSize = int(input("Enter size of window in pixels (e.g. 400): "))
except:
# Give default size of 400px if invalid value entered
windowSize = 400
windowSurface = pygame.display.set_mode((windowSize, windowSize), 0, 32)
pygame.display.set_caption("Terrain generation (valley)")
green = (0, 200, 0)
beach_sand = (251, 255, 101)
desert_sand = (255, 255, 51)
white = (255, 255, 255)
grey = (100, 100, 100)
blue = (0, 100, 200)
scale = 100
octaves = 6
persistence = 0.5
lacunarity = 2.0
pixelArray = pygame.PixelArray(windowSurface)
seed1 = 0
seed2 = 0
def getDistanceFromCentre(y):
return abs(y-(windowSize/2))/(windowSize/2)
def generateTerrain():
global seed1, seed2
seed1 = randint(0, 100)
seed2 = randint(0, 100)
print("Generating terrain with seeds " + str(seed1) + " and " + str(seed2))
heightMap = []
temperatureMap = []
for y in range(windowSize):
heightMap.append([])
temperatureMap.append([])
for x in range(windowSize):
heightMap[y].append(noise.pnoise2(y/scale,
x/scale,
octaves=octaves,
persistence=persistence,
lacunarity=lacunarity,
repeatx = windowSize,
repeaty = windowSize,
base=seed1))
temperatureMap[y].append(noise.pnoise2(y/scale,
x/scale,
octaves=octaves,
persistence=persistence,
lacunarity=lacunarity,
repeatx = windowSize,
repeaty = windowSize,
base=seed2))
land = heightMap[y][x]+getDistanceFromCentre(y)
# For any value smaller than 0.12, fill up with water.
if land < 0.5:
pixelArray[x, y] = (0, (getDistanceFromCentre(y)-heightMap[y][x]*2+1)*90, 255)
# For values within interval (0.12, 0.16), fill up with sand.
elif land < 0.56:
pixelArray[x, y] = beach_sand
elif land < 0.7:
pixelArray[x, y] = green
elif land < 0.8:
pixelArray[x, y] = grey
else:
pixelArray[x, y] = white
temperature = temperatureMap[y][x]-getDistanceFromCentre(y)*1.1
if temperature < -1:
pixelArray[x, y] = white
pygame.display.update()
generateTerrain()
while True:
for event in pygame.event.get():
if event.type == KEYDOWN:
if event.key == K_r:
windowSurface.fill(white)
generateTerrain()
if event.key == K_s:
print("Saving map as image...")
pygame.image.save(windowSurface, "map_valley_" + str(seed1) + "_" + str(seed2) + ".bmp")
if event.type == QUIT:
pygame.quit()
sys.exit()
|
python
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Created by Anand Sivaramakrishnan [email protected] 2018 12 28
This file is licensed under the Creative Commons Attribution-Share Alike
license versions 3.0 or higher, see
http://creativecommons.org/licenses/by-sa/3.0/
Python 3
matrixDFT.perform(): (also matrixDFT.inverse():)
Parameters
----------
plane : 2D ndarray
2D array (either real or complex) representing the input image plane or
pupil plane to transform.
nlamD : float or 2-tuple of floats (nlamDY, nlamDX)
Size of desired output region in lambda / D units, assuming that the
pupil fills the input array (corresponds to 'm' in
Soummer et al. 2007 4.2). This is in units of the spatial frequency that
is just Nyquist sampled by the input array.) If given as a tuple,
interpreted as (nlamDY, nlamDX).
npix : int or 2-tuple of ints (npixY, npixX)
Number of pixels per side side of destination plane array (corresponds
to 'N_B' in Soummer et al. 2007 4.2). This will be the # of pixels in
the image plane for a forward transformation, in the pupil plane for an
inverse. If given as a tuple, interpreted as (npixY, npixX).
"""
### Libraries/modules
import os, sys
import astropy.io.fits as fits
import numpy as np
import poppy.matrixDFT as matrixDFT
import utils
PUPIL = "pupil"
IMAGE = "image"
# This will set up default printing of numpy to 3 dec places, scientific notation
#np.set_printoptions(precision=3, threshold=None, edgeitems=None, linewidth=None,
# suppress=None, nanstr=None, infstr=None, formatter={'float': '{: 0.3e}'.format} )
def create_input_datafiles(rfn=None):
"""
Pupil and image data, true (zero mean) phase map (rad)
No de-tilting of the thase done.
Didactic case, no input parameters: create the pupil & monochromatic image
on appropriate pixel scales.
Pupil and image arrays of same size, ready to FT into each
other losslessly. For real data you'll need to worry about adjusting
sizes to satify this sampling relation between the two planes.
For finite bandwidth data image simulation will loop over wavelengths.
For coarsely sampled pixels image simulation will need to use finer
sampling and rebin to detector pixel sizes.
[email protected] Jan 2019
"""
pupil0 = utils.makedisk(250, radius=50) # D=100 pix, array 250 pix
pupil1 = (pupil0 - utils.makedisk(250, radius=15, ctr=(125.0,75.0)))*pupil0
pupil2 = (pupil1 - utils.makedisk(250, radius=15, ctr=(90.0,90.0)))*pupil0
pupil3 = (pupil2 - utils.makedisk(250, radius=15, ctr=(75.0,125.0)))*pupil0
fits.writeto(rfn+"0__input_pup.fits", pupil0, overwrite=True)
fits.writeto(rfn+"1__input_pup.fits", pupil1, overwrite=True)
fits.writeto(rfn+"2__input_pup.fits", pupil2, overwrite=True)
fits.writeto(rfn+"3__input_pup.fits", pupil3, overwrite=True)
for pnum in (0,1,2,3):
pupil = fits.getdata(rfn+"{:1d}__input_pup.fits".format(pnum))
offctrbump=(pupil.shape[0]/2.0+30,pupil.shape[1]/2.0+20.0) # off-center bump
ctrbump=(pupil.shape[0]/2.0,pupil.shape[1]/2.0) # central bump
#quarter wave phase bump, off center
phase = (2.0*np.pi/4.0) * utils.makegauss(pupil.shape[0],
ctr=offctrbump,
sigma=10.0) * pupil
phase = de_mean(phase, pupil) # zero mean phase - doesn't change image
fits.writeto(rfn+"{:1d}__input_truepha.fits".format(pnum), phase, overwrite=True)
mft = matrixDFT.MatrixFourierTransform()
imagefield = mft.perform(pupil * np.exp(1j*phase), pupil.shape[0], pupil.shape[0])
image = (imagefield*imagefield.conj()).real
fits.writeto(rfn+"{:1d}__input_img.fits".format(pnum), image/image.sum(), overwrite=True)
del mft
def data_input(pupfn=None, imgfn=None, truephasefn=None, rfn=None):
"""
Get pupil and image data,
No de-tilting of the thase done.
Returns pupil and image arrays of samesize, ready to FT into each
other correctly. For real data you'll need to worry about adjusting
sizes to satify this sampling relation between the two planes.
For finite bandwidth data image simulation will loop over wavelengths.
For coarsely sampled pixels image simulation will need to use finer
sampling and rebin to detector pixel sizes.
[email protected] Jan 2019
"""
pupil = fits.getdata(rfn+pupfn)
image = fits.getdata(rfn+imgfn)
truephase =fits.getdata(rfn+truephasefn)
return pupil, image/image.sum(), truephase
def arraystats(phase):
return "mean {:+.4e} sigma {:+.4e} max {:+.4e} min {:+.4e} ".format(
phase.mean(), phase.std(), phase.max(), phase.min())
def phase_changes(pupil, interior, phase_old, phase_new, gain):
"""
pupil: binary pupil array (grey edges OK)
interior: one pixel clear of pupil edge, 0/1 array
phase_old, phase_new: phase arrays to compare after de-meaning, de-tilting
gain: the damping factor applied to the correction
returns b - a phase difference array, standard dev of this phase difference,
and the damped next phase to use
interior unused here because we did not measure tilts of wavefronts
"""
dphase = (phase_new - phase_old) * pupil
newphase = (phase_old + gain*dphase) * pupil # next iteration's pupil phase
newphase = de_mean(newphase, pupil)
return dphase, dphase[np.where(np.greater(pupil,0))].std(), newphase
def de_mean(a, pupil):
"""
remove the mean where there is live pupil (0/1)
"""
return (a - a[np.where(pupil==1)].mean()) * pupil
def meantilt(a, support):
"""
a: array like an OPD which you want to measure the mean tilt of.
support_idx: indices array of region over which to take the mean of the tilts
returns: (2-tuple) the mean tilt over the index array, in ["a" units] per pixel
TBD: for really accurate work you should take the pixels either side and
calculate the 'unbiased' tilt over the interior.
In this 2018 version I changed tilt signs so higher value of array at
higher index is positive tilt
Remove tilt with
phasea[pupil_idx] -= ta[0]*pupil_idx[0] - ta[1] * pupil_idx[1] ?? (untested)
"""
support_idx = np.where(support==1)
xt,yt = (np.zeros(a.shape), np.zeros(a.shape))
xt[:-1,:] = a[1:,:] - a[:-1,:]
yt[:,:-1] = a[:,1:] - a[:,:-1]
print("\tMean tilt vector = {:.4e}, {:.4e}".format(xt[support_idx].mean(), yt[support_idx].mean()))
return xt[support_idx].mean(), yt[support_idx].mean() # pure python x,y
def interior(pup):
""" The interior of a pupil, one pixel either side is clear of the pupil edge
Used to calculate average tilt over the pupil
Only works for unapodized (grey edge pixels OK)
mA,mB = meantilt(opd, np.where(insideNRM()==1))
print "mA,mB %8.1e %8.1e rad/pix // " % (mA, mB),
"""
support = np.where(np.equal(pup, 1), 1, 0)
support[1:,:] = support[1:,:] * support[:-1, :] #clip_loY ds9
support[:-1,:] = support[:-1,:] * support[1:, :] #clip_hiY ds9
support[:,1:] = support[:,1:] * support[:,:-1] #clip_loX ds9
support[1:,:] = support[1:,:] * support[:-1, :] #clip_loY ds9
return support.astype(np.uint8)
def powerfunc(carr):
return ((carr*carr.conj()).real).sum()
class GerchbergSaxton:
"""
Does a Gerchberg Saxton in focus phase retrieval example case without noise
Uses lossless transforms both ways (like an fft but a dft is used for didactic clarity)
Usage:
import GerchbergSaxton as GS
# create or obtain pupil with obstructions, apodizations
pupilfn = None # creates pupil
initphase = None # First guess at pupil phase array (radians wavefront) or None
damp=0.3, # pupil phase correction damping, dimensionless, <= 1 # UNUSED for clean didactc demonstration
# read in or obtain intensity data from in-focus image
# this data is on the sama angular scale as a lossless dft
# of the pupil array, for simplicity. Trim it appropriately
# ahead of time if necessary.
imagefn = None # creates image with a gaussian phase bump aber
# Save the first 5 iterations, then every 10th iteration
# eg 1 2 3 4 5 10 20...
history = (5,10)
# rms phase change threshold for convergence (radians wavefront)
threshold = 0.1 # context: Marechal approx gives Strehl 99% for phase rms 0.1
# max number of iterations (phase, image, back to next phase)
maxiter = 30
# output file(s) root name
fileroot = "GSdir/gstest"
input files names will be appended to the fileroot
# read in or obtain first guess of the wavefront phase in pupil
gs = GS.GerchbergSaxton(pupilfn=pupilfn,
imagefn=imagefn,
truephasefn=truephasefn,
outputtag="2", # kluge to match the numbered files for 4 didactic cases...
initphase=phase, # initial guess, rad
damp=damp, # pupil phase iteration damping, dimensionless, < 1 or None (uses 1)
history=history, # record of which iterations you want to save for inspection later
threshold=threshold, # stop iterating when wavefront rms <= this, rad
maxiter=maxiter, # stop iterating after these number of iterations
fileroot=fileroot, # file name root for history
verbose=True,
)
gs.gsloop()
### gerchbergsaxton.py files
| File name for Example 1 | Description
|--------------------------:|-------------------------------------------------------------------------|
| gs1__input_img.fits | Image intensity file (unit power)
| gs1__input_pup.fits | Pupil constraint file
| gs1__input_truepha.fits | Phase used to create image
| gs1__errorint.fits | Input image - final image
| gs1__errorpha.fits | Input phase - measured phase
| gs1_imgint.fits | Cube of image intensities
| gs1_pupint.fits | Cube of pupil intensities
| gs1_puppha.fits | Cube of pupil phases
"""
def __init__(self, pupilfn=None, imagefn=None, truephasefn=None, outputtag=0,
initphase=None,
damp=None, history=None, threshold=0.1, # Strehl 99% ~ 1 - threshold^2
maxiter=None, fileroot=None, verbose=True):
"""
Assumes square arrays, equal sized arrays for pupil, image
Iterations are pupil - to image - to pupil
"""
# Requested attributes:
self.damp = damp
self.history = history
self.threshold = threshold
self.maxiter = maxiter
self.fileroot = fileroot
self.verbose = verbose
self.pupil, self.image, self.truephase = data_input(pupilfn, imagefn, truephasefn, self.fileroot)
self.tag = outputtag
# Now for derived attributes:
if initphase is None:
self.initphase = self.pupil*0.0 # initial phase guess
else:
self.initphase = initphase
self.phase = self.initphase.copy()
self.pupilpower = (self.pupil*self.pupil).sum()
self.mft = matrixDFT.MatrixFourierTransform()
self.npix = self.pupil.shape[0] # size of the arrays
# create interior of an unapodized pupil, for calculating mean tilts
self.interior = interior(self.pupil)
# Create initial guess at wavefront
self.plane = PUPIL
self.wavefront = self.pupil * np.exp(1j * self.phase)
# List of phases to track evolution of GS
self.iter = 0 # running count
self.savediters = [-1,] #
self.pupilintensities = [self.pupil,] #
self.pupilphases = [self.initphase,] #
self.imageintensities = [self.image,] #
print("\nmaxiter {:d} convergence if sigma < {:.2e}\n".format(self.maxiter, self.threshold))
print("\nExample {:s} beginning\n".format(self.tag))
def apply_pupil_constraint(self, ):
"""
Replace absolute value of wavefront by pupil values, preserve the current phase
"""
if self.plane == PUPIL:
# this new phase estimate comes from the image plane tranformed to this pupil
nextphase = np.angle(self.wavefront) * self.pupil
# check to see how the guess at the wavefront is changing...
if self.verbose: fits.writeto(self.fileroot+self.tag+"__interior.fits", self.interior, overwrite=True)
if self.verbose: fits.writeto(self.fileroot+self.tag+"__nextphase.fits", nextphase, overwrite=True)
self.phasedelta, phasedeltarms, dampednextphase = phase_changes(self.pupil, self.interior,
self.phase, nextphase, self.damp)
print("\t{:3d}: Delta Phase stats: {:s} ".format(self.iter,
arraystats(self.phasedelta[np.where(self.pupil==1)])))
# update wavefront with the new phase estimate
self.wavefront = self.pupil * np.exp(1j*dampednextphase)
self.phase = dampednextphase
return phasedeltarms
else:
sys.exit(" gerchbergsaxton.apply_pupil_constraint(): being used in the wrong plane")
def apply_image_constraint(self, ):
"""
Replace absolute value of wavefront by sqrt(image), preserve the current phase
"""
if self.plane == IMAGE:
self.imagephase = np.angle(self.wavefront)
self.wavefront = np.sqrt(self.image) * np.exp(1j*self.imagephase)
if self.verbose: print("\timage power {:.4e}".format(powerfunc(self.wavefront)))
return None
else:
sys.exit(" gerchbergsaxton.apply_image_constraint(): being used in the wrong plane")
def propagate_wavefront(self, ):
"""
Apply the appropriate transform to go to the next conjugate plane.
"""
if self.plane == PUPIL:
if self.verbose: print(" in pupil, going to image ")
self.wavefront = self.mft.perform(self.wavefront, self.npix, self.npix)
self.wavefront_image = self.wavefront
self.plane = IMAGE
elif self.plane == IMAGE:
if self.verbose: print(" in image, going to pupil ")
wavefront = self.mft.inverse(self.wavefront, self.npix, self.npix)
power = (wavefront * wavefront.conj()).real.sum()
self.wavefront = wavefront/np.sqrt(power) # preserve input total pupil power
self.wavefront_pupil = self.wavefront
self.plane = PUPIL
else:
sys.exit("GerchbergSaxton.propagate_wavefront() is confused: Neither pupil nor image plane")
return None
def iterate(self):
""" iterate once, pupil to image then back to pupil,
save data for the record if needed,
then apply pupil constraint again
"""
if self.verbose: print("\niter:{:3d}".format(self.iter))
self.propagate_wavefront() # pupil to image
self.save_iteration()
self.apply_image_constraint()
self.propagate_wavefront() # image to pupil
self.save_iteration()
self.iter += 1
rmsphasechange = self.apply_pupil_constraint()
return rmsphasechange
def save_iteration(self):
""" keep a record of phases, intensities, etc.
pupil phases whole plane incl. outside pupil support
pupil phases only on pupil support
image intensities whole plane
"""
if self.iter in range(history[0]) or self.iter%history[1]==0:
if self.plane == PUPIL:
pupilintensity = (self.wavefront*self.wavefront.conj()).real
pupilintensity = pupilintensity/pupilintensity.sum()*self.pupilpower # preserve input total pupil power
# should we instead preserve power over pupil??
# near convergence these two should be
# very close towards the end. Just saying.
# But this is a prob density function-like
# array, so preserving total power is the
# commonsense thing to do.
self.pupilintensities.append(pupilintensity)
self.pupilphases.append(self.pupil*np.angle(self.wavefront))
if self.plane == IMAGE:
imageintensity = (self.wavefront*self.wavefront.conj()).real
self.imageintensities.append(imageintensity/imageintensity.sum()) # preserve unit image power
self.savediters.append(self.iter)
def gswrite(self):
""" save to disk for inspection """
# add the final iteration planes which may (or may not) be saved:
# TBD - fancy bookkeeping to not save this if the GS loop ended on a 'save_iteration' cycle.
# Right now there's a small chance that the last-but-one and last slices will be identical.
# Not a big deal - they should be pretty close anyway as we converge.s
# final pupil intensity added to list
pupilintensity = (self.wavefront_pupil*self.wavefront_pupil.conj()).real
pupilintensity = pupilintensity/pupilintensity.sum()*self.pupilpower
self.pupilintensities.append(pupilintensity)
# final pupil phase added to list
self.pupilphases.append(np.angle(self.wavefront_pupil)*self.pupil)
# final image intensity added to list
imageintensity = (self.wavefront_image*self.wavefront_image.conj()).real
self.imageintensities.append(imageintensity/imageintensity.sum()) # preserve unit image power
# Now save the sequence of iterations...
fits.writeto(self.fileroot+self.tag+"_pupint.fits", np.array(tuple(self.pupilintensities)), overwrite=True)
fits.writeto(self.fileroot+self.tag+"_puppha.fits", np.array(tuple(self.pupilphases)), overwrite=True)
fits.writeto(self.fileroot+self.tag+"_imgint.fits", np.array(tuple(self.imageintensities)), overwrite=True)
# Errors compared to input values:
phase_meas_error = de_mean(self.truephase - self.pupilphases[-1], self.pupil)
img_meas_error = self.image - self.imageintensities[-1]
print(" Init Phase stats: {:s} ".format(arraystats(self.truephase[np.where(self.pupil==1)])))
print(" Final Phase stats: {:s} ".format(arraystats(self.pupilphases[-1][np.where(self.pupil==1)])))
print("")
print("Init - Final Phase stats: {:s} ".format(arraystats(phase_meas_error[np.where(self.pupil==1)])))
print(" Image diff stats: {:s} ".format(arraystats(img_meas_error)))
print("")
print("\tAll phases in radians, images total power unity, pupil power constrained to imput value")
print("\nExample number {:s} ended\n".format(self.tag))
fits.writeto(gs.fileroot+self.tag+"__errorpha.fits", phase_meas_error, overwrite=True)
fits.writeto(gs.fileroot+self.tag+"__errorint.fits", img_meas_error, overwrite=True)
def gsloop(self):
""" The main GS loop. """
for iloop in range(self.maxiter + 1):
if self.iterate() < self.threshold:
print("\n\tgsloop terminated at iter {}. Threshold sigma is {:.2e} radian \n".format(self.iter, self.threshold))
break
self.gswrite()
if __name__ == "__main__":
# create or obtain pupil with obstructions, apodizations
#pupilfn = None # creates pupil files, hardcoded single choice of pupill used
initphase = None # First guess at pupil phase array (radians wavefront) or None
damp = 1.0 # pupil phase correction damping, dimensionless, <= 1 # UNUSED for clean didactc demonstration
# read in or obtain intensity data from in-focus image
# this data is on the sama angular scale as a lossless dft
# of the pupil array, for simplicity. Trim it appropriately
# ahead of time if necessary.
imagefn = None # creates image with a gaussian phase bump aber
# Save the first 9 iterations, then every 10th iteration
# eg 1 2 3 ... 9 10 20 30...
history = (9,10)
# rms phase change standard deviation threshold for convergence (radians wavefront)
threshold = 1.0e-5 # radians
# max number of iterations (phase, image, back to next phase)
maxiter = 101
fileroot = "GSdir/gs"
dirname = fileroot.split("/")[0]
print(dirname)
if not os.path.exists(dirname):
os.makedirs(dirname)
print("Created output directory ", dirname)
create_input_datafiles(rfn=fileroot) # hardcoded file names for pupil image and true phase files
# These names are used in GS.pupilfn, GS.imagefn, GS.truephasefn
# A convenient output tag is inserted in the output file names of GS.
for pnum in [0,1,2,3]:
gs = GerchbergSaxton(pupilfn="{:d}__input_pup.fits".format(pnum),
imagefn="{:d}__input_img.fits".format(pnum),
truephasefn="{:d}__input_truepha.fits".format(pnum),
outputtag="{:d}".format(pnum), # tags output files with prepended character(s)
initphase=None, # initial guess, rad
damp=damp, # pupil phase iteration damping, dimensionless, <= 1 or None (uses 1)
history=history, # record of which iterations you want to save for inspection later
threshold=threshold, # stop iterating when wavefront rms <= this, rad
maxiter=maxiter, # stop iterating after these number of iterations
fileroot=fileroot, # file name root for history
verbose=False,
)
gs.gsloop()
|
python
|
import os
from django.db import models
from django.urls import reverse
from django.utils import timezone
from django.utils.translation import ugettext_lazy as _
from .hooks import hookset
from .managers import PublishedPageManager
class Page(models.Model):
STATUS_CHOICES = (
(1, _("Draft")),
(2, _("Public")),
)
title = models.CharField(max_length=100)
path = models.CharField(max_length=100, unique=True)
body = models.TextField()
body_html = models.TextField(blank=True, editable=False)
status = models.IntegerField(choices=STATUS_CHOICES, default=2)
publish_date = models.DateTimeField(default=timezone.now)
created = models.DateTimeField(editable=False, default=timezone.now)
updated = models.DateTimeField(editable=False, default=timezone.now)
published = PublishedPageManager()
def __str__(self):
return self.title
def get_absolute_url(self):
return reverse("pinax_pages:pages_page", args=[self.path])
@property
def is_community(self):
return self.path.lower().startswith("community/")
def save(self, *args, **kwargs):
self.updated = timezone.now()
self.body_html = hookset.parse_content(self.body)
super(Page, self).save(*args, **kwargs)
self.pagehistory_set.create(
title=self.title,
path=self.path,
body=self.body,
body_html=self.body_html,
status=self.status,
publish_date=self.publish_date
)
def clean_fields(self, exclude=None):
super(Page, self).clean_fields(exclude)
hookset.validate_path(self.path)
class PageHistory(models.Model):
page = models.ForeignKey(Page, on_delete=models.CASCADE, editable=False)
title = models.CharField(max_length=100, editable=False)
path = models.CharField(max_length=100, editable=False)
body = models.TextField(editable=False)
body_html = models.TextField(blank=True, editable=False)
status = models.IntegerField(default=2, editable=False)
publish_date = models.DateTimeField(default=timezone.now, editable=False)
created = models.DateTimeField(editable=False, default=timezone.now)
def __str__(self):
return "{} - {}".format(self.title, self.created)
def generate_filename(instance, filename):
return filename
class File(models.Model):
file = models.FileField(upload_to=generate_filename)
created = models.DateTimeField(default=timezone.now)
def download_url(self):
return reverse("pinax_pages:file_download", args=[self.pk, os.path.basename(self.file.name).lower()])
|
python
|
#!/usr/bin/env python
"""
Bookizer
==========
Bookizer get's an almost uncertain number of CSV files and converts them into a big CSV/ODS/XLS/XLSX file
"""
import sys
from setuptools import setup
if sys.version_info.major < 3:
raise RuntimeError(
'Bookizer does not support Python 2.x anymore. '
'Please use Python 3 or do magic.')
setup()
|
python
|
#
# SDK-Blueprint module
# Code written by Cataldo Calò ([email protected]) and Mirco Manzoni ([email protected])
#
# Copyright 2018-19 Politecnico di Milano
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations under
# the License.
#
# This is being developed for the DITAS Project: https://www.ditas-project.eu/
#
import argparse
import os
import requests
import shutil
from repo import repo
from blueprint.blueprint import Blueprint
from blueprint import blueprint as bp
from distutils.dir_util import copy_tree
import json
__author__ = "Cataldo Calò, Mirco Manzoni"
__credits__ = ["Cataldo Calò", "Mirco Manzoni"]
__status__ = "Development"
TMP_DIR = 'tmp'
VDC_TEMPLATE = 'vdc_template'
DAL_TEMPLATE = 'dal_template'
VDC = 'VDC'
DAL = 'DAL'
VDC_TEMPLATE_COMMIT = 'VDC template commit'
DAL_TEMPLATE_COMMIT = 'DAL template commit'
BLUEPRINT_COMMIT = 'Blueprint commit'
PUBLISH_ID = 'blueprint_id'
def generate_blueprint(vdc_repo, vdc_path, dal_paths, update, push):
# Do something
print('Creating blueprint...')
blueprint = Blueprint(vdc_path, dal_paths, update)
blueprint.add_is_tags()
blueprint.add_is_flow()
blueprint.add_is_testing_output_data()
blueprint.add_is_methods_input()
blueprint.add_cookbook()
blueprint.add_exposed_api()
blueprint.add_is_data_sources()
blueprint.add_data_management()
blueprint.save()
print('Blueprint created')
if push:
print('Pushing blueprint into VDC repository...')
repo.commit_and_push_all_changes(vdc_repo, BLUEPRINT_COMMIT)
print('Push complete')
def extract_repo_name(url):
# Extract the name of the repository from URL
return os.path.basename(os.path.normpath(url))
def prepare_repo_folder(repo_name):
# Create a subfolder in TMP_DIR with the name of the repo
repo_path = os.path.join(os.getcwd(), TMP_DIR, repo_name)
# If the subfolder already exists, delete it
if os.path.exists(repo_path) and os.path.isdir(repo_path):
shutil.rmtree(repo_path)
return repo_path
def clone_repos(vdc_url, dal_urls):
print('clone_repos function, URLs: ', vdc_url, ', ', dal_urls)
print('Cloning VDC repository at ' + vdc_url + '...')
# Clone VDC repo and extract info to generate Blueprint
repo_name = extract_repo_name(vdc_url)
vdc_repo_path = prepare_repo_folder(repo_name)
vdc_repo = repo.clone_repo(vdc_url, vdc_repo_path)
dal_repo_paths = []
# Clone each DAL repo and merge information to blueprint
for dal_url in dal_urls:
# if the DAL URL is the same as VDC, prepare_repo_folder could cause some troubles
# Just skip this step
if dal_url != vdc_url:
print('Cloning DAL repository at ' + dal_url + '...')
repo_name = extract_repo_name(dal_url)
dal_repo_path = prepare_repo_folder(repo_name)
repo.clone_repo(dal_url, dal_repo_path)
dal_repo_paths.append(dal_repo_path)
else:
print('DAL URL is the same as VDC: skipping cloning step...')
dal_repo_paths.append(vdc_repo_path)
return vdc_repo, vdc_repo_path, dal_repo_paths
def handler_create(args):
dal_urls = [args.VDC_URL]
if args.DAL_URL:
dal_urls = args.DAL_URL
vdc_repo, vdc_repo_path, dal_repo_paths = clone_repos(args.VDC_URL, dal_urls)
generate_blueprint(vdc_repo, vdc_repo_path, dal_repo_paths, False, args.push)
def handler_update(args):
dal_urls = [args.VDC_URL]
if args.DAL_URL:
dal_urls = args.DAL_URL
vdc_repo, vdc_repo_path, dal_repo_paths = clone_repos(args.VDC_URL, dal_urls)
generate_blueprint(vdc_repo, vdc_repo_path, dal_repo_paths, True, args.push)
def handler_repo_init(args):
if args.name:
repo_name = args.name
# This will create a repo in the org DITAS-Project. DO NOT SPAM
resp = repo.create_ditas_repo(repo_name)
# TODO: delete next line when testing is complete and uncomment the previous one
#resp = repo.create_personal_repo(repo_name)
print(resp['html_url'])
repo_url = resp['html_url']
# Setup a local folder to track the remote repository
repo_path = prepare_repo_folder(repo_name)
remote_repo = repo.clone_repo(https_url=repo_url, path=repo_path, new_repo=True)
# Use the default VDC template for the new repository
if args.type == VDC:
from_directory = os.path.join(os.getcwd(), VDC_TEMPLATE)
commit_msg = VDC_TEMPLATE_COMMIT
elif args.type == DAL:
from_directory = os.path.join(os.getcwd(), DAL_TEMPLATE)
commit_msg = DAL_TEMPLATE_COMMIT
copy_tree(from_directory, repo_path)
# Commit and push the new structure
repo.commit_and_push_all_changes(remote_repo, commit_msg)
def handler_publish(args):
if not os.path.exists(args.file):
print("File does not exist!")
return
body = bp.get_dict_from_file(args.file)
api_endpoint = args.server + '/blueprints'
print("Trying to make a POST to: ", api_endpoint)
r = requests.post(url=api_endpoint, data=json.dumps(body), headers={'Content-Type': 'application/json'},
auth=repo.get_iccs_crendetials())
if r.ok:
print("Blueprint published successfully.")
print('The ID of the published blueprint is ' + json.loads(r.content)[PUBLISH_ID][0])
else:
print(r.status_code)
print(r.content)
def handler_invokedue(args):
if not os.path.exists(args.file):
print("File does not exist!")
return
body = bp.get_dict_from_file(args.file)
#api_endpoint = args.server + '/v1/datautility'
#for debug only, remove once DUE-SDK API are standardized
api_endpoint = args.server + '/ditas-project/DataUtilityEvaluator/1.0/datautility'
print("Trying to invoke DUE-SDK at: ", api_endpoint)
r = requests.post(url=api_endpoint, data=json.dumps(body), headers={'Content-Type': 'application/json'})
if r.ok:
print("Data utility values updated successfully.")
with open(args.file, 'w') as outfile:
json.dump(json.loads(r.content), outfile, indent=4)
else:
print(r.status_code)
print(r.content)
def handler_unpublish(args):
api_endpoint = args.server + '/blueprints/' + args.blueprint
print("Trying to make a DELETE to: ", api_endpoint)
r = requests.delete(url=api_endpoint, auth=repo.get_iccs_crendetials())
if r.ok:
print("Blueprint unpublished successfully.")
else:
print(r.status_code)
def handler_std_metrics(args):
print("args: ", args)
# Metrics are computed only for VDC
if not args.local:
vdc_repo, vdc_repo_path, _ = clone_repos(args.VDC, [])
else:
vdc_repo_path = os.path.join(os.getcwd(), TMP_DIR, args.VDC)
bp.generate_api_metrics_files(vdc_repo_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='''DITAS SDK-Blueprint Generator.''')
subparsers = parser.add_subparsers(help='Sub-command to create or update a blueprint, or to setup a new repository')
# Create the parser for the "create" command
parser_create = subparsers.add_parser('create', help='Generate a new blueprint. An already existing blueprint '
'is overwritten.')
parser_create.add_argument('VDC_URL', type=str, help='VDC repository URL')
parser_create.add_argument('DAL_URL', type=str, nargs='*', help='List of DAL repositories URLs. Assumed same URL '
'as VDC repository if not provided')
parser_create.add_argument('-p', dest='push', action='store_true', required=False, help='Push new generated blueprint'
' into VDC repository')
#parser_create.add_argument('-e', type=str, default='bla', help='Use this option to automatically set two URLs as '
# 'example')
parser_create.set_defaults(func=handler_create)
# Create the parser for the "update" command
parser_update = subparsers.add_parser('update', help='Update an existing blueprint. Only the parts specified in the '
'configuration files of the repositories will be overwritten.')
parser_update.add_argument('VDC_URL', type=str, help='VDC repository URL')
parser_update.add_argument('DAL_URL', type=str, nargs='*', help='List of DAL repositories URLs. Assumed same URL '
'as VDC repository if not provided')
parser_update.add_argument('-p', dest='push', action='store_true', required=False,
help='Push new generated blueprint into VDC repository')
parser_update.set_defaults(func=handler_update)
# Create the parser for the "repo-init" command
parser_repo_init = subparsers.add_parser('repo-init', help='Create a new GitHub repository with the default '
'structure.')
parser_repo_init.add_argument('type', choices=[VDC, DAL], help="Type of repository to create")
parser_repo_init.add_argument('name', type=str, help='Repository name')
parser_repo_init.set_defaults(func=handler_repo_init)
# Create the parser for the "std-metrics" command
parser_std_metrics = subparsers.add_parser('std-metrics', help='Create a json file for each API method with the '
'default data metrics. The path is specified by '
'the attribute "data-management" of the VDC '
'configuration file.')
parser_std_metrics.add_argument('VDC', type=str, help='VDC repository URL or directory name if already downloaded.')
parser_std_metrics.add_argument('-l', dest='local', action='store_true', required=False,
help='Specifies if the VDC repository has been already downloaded, i.e. the '
'provided argument is the name of repository')
parser_std_metrics.set_defaults(func=handler_std_metrics)
# Create the parser for the "compute-du" command
parser_publish = subparsers.add_parser(name='compute-du', help="Invokes DUE-SDK to compute data utility.")
parser_publish.add_argument('file', type=str, help='Path to blueprint file to be updated.')
parser_publish.add_argument('-server', type=str, default='https://localhost:8080',
help='URL of the DUE-SDK.'
'For example: https://example.com:8080')
parser_publish.set_defaults(func=handler_invokedue)
# Create the parser for the "publish" command
parser_publish = subparsers.add_parser(name='publish', help="Publish blueprint to ICCS repository.")
parser_publish.add_argument('file', type=str, help='Path to blueprint file to be published.')
parser_publish.add_argument('-server', type=str, default='https://localhost:8080',
help='Hostname of the ICCS repository, including protocol. '
'For example: https://example.com:8080')
parser_publish.add_argument('-basename', type=str, default='http', help='')
parser_publish.set_defaults(func=handler_publish)
# Create the parser for the "unpublish" command
parser_unpublish = subparsers.add_parser(name='unpublish', help="Unpublish blueprint from ICCS repository.")
parser_unpublish.add_argument('blueprint', type=str, help='Blueprint ID to be unpublished.')
parser_unpublish.add_argument('-server', type=str, default='https://localhost:8080',
help='Hostname of the ICCS repository, including protocol. '
'For example: https://example.com:8080')
parser_unpublish.add_argument('-basename', type=str, default='http', help='')
parser_unpublish.set_defaults(func=handler_unpublish)
args = parser.parse_args()
args.func(args)
#print(args)
|
python
|
from office365.sharepoint.ui.applicationpages.client_people_picker import \
ClientPeoplePickerWebServiceInterface, ClientPeoplePickerQueryParameters
from tests import test_user_principal_name
from tests.sharepoint.sharepoint_case import SPTestCase
class TestSPPeoplePicker(SPTestCase):
@classmethod
def setUpClass(cls):
super(TestSPPeoplePicker, cls).setUpClass()
def test1_get_search_results(self):
params = ClientPeoplePickerQueryParameters(test_user_principal_name)
result = ClientPeoplePickerWebServiceInterface.client_people_picker_resolve_user(self.client, params)
self.client.execute_query()
self.assertIsNotNone(result.value)
#def test2_get_search_results(self):
# result = ClientPeoplePickerWebServiceInterface.get_picker_entity_information(self.client,
# test_user_principal_name)
# self.client.execute_query()
# self.assertIsNotNone(result.value)
# def test2_get_search_results(self):
# result = ClientPeoplePickerWebServiceInterface.get_search_results(self.client, "mdoe")
# self.client.execute_query()
# self.assertIsNotNone(result.value)
|
python
|
"""Build indexing using extracted features
"""
import numpy as np
import os, os.path
import pickle
import scipy.spatial
from scipy.spatial.distance import pdist, squareform
"""Build index
Given feature matrix feature_mat,
k is the number of nearest neighbors to choose
"""
def build_index(feature_mat, k):
sample_count_ = feature_mat.shap(0)
index = np.zeros((sample_count_, k), dtype=numpy.int)
for idx in range(sample_count_):
feature = feature_mat[idx, ...]
dist =
|
python
|
import sys
import os
import random
import math
import bpy
import numpy as np
from os import getenv
from os import remove
from os.path import join, dirname, realpath, exists
from mathutils import Matrix, Vector, Quaternion, Euler
from glob import glob
from random import choice
from pickle import load
from bpy_extras.object_utils import world_to_camera_view as world2cam
sys.path.insert(0, ".")
def mkdir_safe(directory):
try:
os.makedirs(directory)
except FileExistsError:
pass
def setState0():
for ob in bpy.data.objects.values():
ob.select=False
bpy.context.scene.objects.active = None
sorted_parts = ['hips','leftUpLeg','rightUpLeg','spine','leftLeg','rightLeg',
'spine1','leftFoot','rightFoot','spine2','leftToeBase','rightToeBase',
'neck','leftShoulder','rightShoulder','head','leftArm','rightArm',
'leftForeArm','rightForeArm','leftHand','rightHand','leftHandIndex1' ,'rightHandIndex1']
# order
part_match = {'root':'root', 'bone_00':'Pelvis', 'bone_01':'L_Hip', 'bone_02':'R_Hip',
'bone_03':'Spine1', 'bone_04':'L_Knee', 'bone_05':'R_Knee', 'bone_06':'Spine2',
'bone_07':'L_Ankle', 'bone_08':'R_Ankle', 'bone_09':'Spine3', 'bone_10':'L_Foot',
'bone_11':'R_Foot', 'bone_12':'Neck', 'bone_13':'L_Collar', 'bone_14':'R_Collar',
'bone_15':'Head', 'bone_16':'L_Shoulder', 'bone_17':'R_Shoulder', 'bone_18':'L_Elbow',
'bone_19':'R_Elbow', 'bone_20':'L_Wrist', 'bone_21':'R_Wrist', 'bone_22':'L_Hand', 'bone_23':'R_Hand'}
part2num = {part:(ipart+1) for ipart,part in enumerate(sorted_parts)}
# create one material per part as defined in a pickle with the segmentation
# this is useful to render the segmentation in a material pass
def create_segmentation(ob, params):
materials = {}
vgroups = {}
with open('pkl/segm_per_v_overlap.pkl', 'rb') as f:
vsegm = load(f)
bpy.ops.object.material_slot_remove()
parts = sorted(vsegm.keys())
for part in parts:
vs = vsegm[part]
vgroups[part] = ob.vertex_groups.new(part)
vgroups[part].add(vs, 1.0, 'ADD')
bpy.ops.object.vertex_group_set_active(group=part)
materials[part] = bpy.data.materials['Material'].copy()
materials[part].pass_index = part2num[part]
bpy.ops.object.material_slot_add()
ob.material_slots[-1].material = materials[part]
bpy.ops.object.mode_set(mode='EDIT')
bpy.ops.mesh.select_all(action='DESELECT')
bpy.ops.object.vertex_group_select()
bpy.ops.object.material_slot_assign()
bpy.ops.object.mode_set(mode='OBJECT')
return(materials)
# create the different passes that we render
def create_composite_nodes(tree, params, img=None, idx=0):
res_paths = {k:join(params['tmp_path'], '%05d_%s'%(idx, k)) for k in params['output_types'] if params['output_types'][k]}
# clear default nodes
for n in tree.nodes:
tree.nodes.remove(n)
# create node for foreground image
layers = tree.nodes.new('CompositorNodeRLayers')
layers.location = -300, 400
# create node for background image
bg_im = tree.nodes.new('CompositorNodeImage')
bg_im.location = -300, 30
if img is not None:
bg_im.image = img
if(params['output_types']['vblur']):
# create node for computing vector blur (approximate motion blur)
vblur = tree.nodes.new('CompositorNodeVecBlur')
vblur.factor = params['vblur_factor']
vblur.location = 240, 400
# create node for saving output of vector blurred image
vblur_out = tree.nodes.new('CompositorNodeOutputFile')
vblur_out.format.file_format = 'PNG'
vblur_out.base_path = res_paths['vblur']
vblur_out.location = 460, 460
# create node for mixing foreground and background images
mix = tree.nodes.new('CompositorNodeMixRGB')
mix.location = 40, 30
mix.use_alpha = True
# create node for the final output
composite_out = tree.nodes.new('CompositorNodeComposite')
composite_out.location = 240, 30
# create node for saving depth
if(params['output_types']['depth']):
depth_out = tree.nodes.new('CompositorNodeOutputFile')
depth_out.location = 40, 700
depth_out.format.file_format = 'OPEN_EXR'
depth_out.base_path = res_paths['depth']
# create node for saving normals
if(params['output_types']['normal']):
normal_out = tree.nodes.new('CompositorNodeOutputFile')
normal_out.location = 40, 600
normal_out.format.file_format = 'OPEN_EXR'
normal_out.base_path = res_paths['normal']
# create node for saving foreground image
if(params['output_types']['fg']):
fg_out = tree.nodes.new('CompositorNodeOutputFile')
fg_out.location = 170, 600
fg_out.format.file_format = 'PNG'
fg_out.base_path = res_paths['fg']
# create node for saving ground truth flow
if(params['output_types']['gtflow']):
gtflow_out = tree.nodes.new('CompositorNodeOutputFile')
gtflow_out.location = 40, 500
gtflow_out.format.file_format = 'OPEN_EXR'
gtflow_out.base_path = res_paths['gtflow']
# create node for saving segmentation
if(params['output_types']['segm']):
segm_out = tree.nodes.new('CompositorNodeOutputFile')
segm_out.location = 40, 400
segm_out.format.file_format = 'OPEN_EXR'
segm_out.base_path = res_paths['segm']
# merge fg and bg images
tree.links.new(bg_im.outputs[0], mix.inputs[1])
tree.links.new(layers.outputs['Image'], mix.inputs[2])
if(params['output_types']['vblur']):
tree.links.new(mix.outputs[0], vblur.inputs[0]) # apply vector blur on the bg+fg image,
tree.links.new(layers.outputs['Z'], vblur.inputs[1]) # using depth,
tree.links.new(layers.outputs['Speed'], vblur.inputs[2]) # and flow.
tree.links.new(vblur.outputs[0], vblur_out.inputs[0]) # save vblurred output
tree.links.new(mix.outputs[0], composite_out.inputs[0]) # bg+fg image
if(params['output_types']['fg']):
tree.links.new(layers.outputs['Image'], fg_out.inputs[0]) # save fg
if(params['output_types']['depth']):
tree.links.new(layers.outputs['Z'], depth_out.inputs[0]) # save depth
if(params['output_types']['normal']):
tree.links.new(layers.outputs['Normal'], normal_out.inputs[0]) # save normal
if(params['output_types']['gtflow']):
tree.links.new(layers.outputs['Speed'], gtflow_out.inputs[0]) # save ground truth flow
if(params['output_types']['segm']):
tree.links.new(layers.outputs['IndexMA'], segm_out.inputs[0]) # save segmentation
return(res_paths)
# creation of the spherical harmonics material, using an OSL script
def create_sh_material(tree, sh_path, img=None):
# clear default nodes
for n in tree.nodes:
tree.nodes.remove(n)
uv = tree.nodes.new('ShaderNodeTexCoord')
uv.location = -800, 400
uv_xform = tree.nodes.new('ShaderNodeVectorMath')
uv_xform.location = -600, 400
uv_xform.inputs[1].default_value = (0, 0, 1)
uv_xform.operation = 'AVERAGE'
uv_im = tree.nodes.new('ShaderNodeTexImage')
uv_im.location = -400, 400
if img is not None:
uv_im.image = img
rgb = tree.nodes.new('ShaderNodeRGB')
rgb.location = -400, 200
script = tree.nodes.new('ShaderNodeScript')
script.location = -230, 400
script.mode = 'EXTERNAL'
script.filepath = sh_path #'spher_harm/sh.osl' #using the same file from multiple jobs causes white texture
script.update()
# the emission node makes it independent of the scene lighting
emission = tree.nodes.new('ShaderNodeEmission')
emission.location = -60, 400
mat_out = tree.nodes.new('ShaderNodeOutputMaterial')
mat_out.location = 110, 400
tree.links.new(uv.outputs[2], uv_im.inputs[0])
tree.links.new(uv_im.outputs[0], script.inputs[0])
tree.links.new(script.outputs[0], emission.inputs[0])
tree.links.new(emission.outputs[0], mat_out.inputs[0])
# computes rotation matrix through Rodrigues formula as in cv2.Rodrigues
def Rodrigues(rotvec):
theta = np.linalg.norm(rotvec)
r = (rotvec/theta).reshape(3, 1) if theta > 0. else rotvec
cost = np.cos(theta)
mat = np.asarray([[0, -r[2], r[1]],
[r[2], 0, -r[0]],
[-r[1], r[0], 0]])
return(cost*np.eye(3) + (1-cost)*r.dot(r.T) + np.sin(theta)*mat)
def init_scene(scene, params, gender='female'):
# load fbx model
bpy.ops.import_scene.fbx(filepath=join(params['smpl_data_folder'], 'basicModel_%s_lbs_10_207_0_v1.0.2.fbx' % gender[0]),
axis_forward='Y', axis_up='Z', global_scale=100)
obname = '%s_avg' % gender[0]
ob = bpy.data.objects[obname]
ob.data.use_auto_smooth = False # autosmooth creates artifacts
# assign the existing spherical harmonics material
ob.active_material = bpy.data.materials['Material']
# delete the default cube (which held the material)
bpy.ops.object.select_all(action='DESELECT')
bpy.data.objects['Cube'].select = True
bpy.ops.object.delete(use_global=False)
# set camera properties and initial position
bpy.ops.object.select_all(action='DESELECT')
cam_ob = bpy.data.objects['Camera']
scn = bpy.context.scene
scn.objects.active = cam_ob
cam_ob.matrix_world = Matrix(((0., 0., 1, params['camera_distance']),
(1., 0., 0., 0.),
(0., 1., 0., 1.),
(0.0, 0.0, 0.0, 1.0)))
cam_ob.data.angle = math.radians(40)
cam_ob.data.lens = 60
cam_ob.data.clip_start = 0.1
cam_ob.data.sensor_width = 32
# setup an empty object in the center which will be the parent of the Camera
# this allows to easily rotate an object around the origin
scn.cycles.film_transparent = True
scn.render.layers["RenderLayer"].use_pass_vector = True
scn.render.layers["RenderLayer"].use_pass_normal = True
scene.render.layers['RenderLayer'].use_pass_emit = True
scene.render.layers['RenderLayer'].use_pass_emit = True
scene.render.layers['RenderLayer'].use_pass_material_index = True
# set render size
scn.render.resolution_x = params['resy']
scn.render.resolution_y = params['resx']
scn.render.resolution_percentage = 100
scn.render.image_settings.file_format = 'PNG'
# clear existing animation data
ob.data.shape_keys.animation_data_clear()
arm_ob = bpy.data.objects['Armature']
arm_ob.animation_data_clear()
return(ob, obname, arm_ob, cam_ob)
# transformation between pose and blendshapes
def rodrigues2bshapes(pose):
rod_rots = np.asarray(pose).reshape(24, 3)
mat_rots = [Rodrigues(rod_rot) for rod_rot in rod_rots]
bshapes = np.concatenate([(mat_rot - np.eye(3)).ravel()
for mat_rot in mat_rots[1:]])
return(mat_rots, bshapes)
# apply trans pose and shape to character
def apply_trans_pose_shape(trans, pose, shape, ob, arm_ob, obname, scene, cam_ob, frame=None):
# transform pose into rotation matrices (for pose) and pose blendshapes
mrots, bsh = rodrigues2bshapes(pose)
# set the location of the first bone to the translation parameter
arm_ob.pose.bones[obname+'_Pelvis'].location = trans
if frame is not None:
arm_ob.pose.bones[obname+'_root'].keyframe_insert('location', frame=frame)
# set the pose of each bone to the quaternion specified by pose
for ibone, mrot in enumerate(mrots):
bone = arm_ob.pose.bones[obname+'_'+part_match['bone_%02d' % ibone]]
bone.rotation_quaternion = Matrix(mrot).to_quaternion()
if frame is not None:
bone.keyframe_insert('rotation_quaternion', frame=frame)
bone.keyframe_insert('location', frame=frame)
# apply pose blendshapes
for ibshape, bshape in enumerate(bsh):
ob.data.shape_keys.key_blocks['Pose%03d' % ibshape].value = bshape
if frame is not None:
ob.data.shape_keys.key_blocks['Pose%03d' % ibshape].keyframe_insert('value', index=-1, frame=frame)
# apply shape blendshapes
for ibshape, shape_elem in enumerate(shape):
ob.data.shape_keys.key_blocks['Shape%03d' % ibshape].value = shape_elem
if frame is not None:
ob.data.shape_keys.key_blocks['Shape%03d' % ibshape].keyframe_insert('value', index=-1, frame=frame)
def get_bone_locs(obname, arm_ob, scene, cam_ob):
n_bones = 24
render_scale = scene.render.resolution_percentage / 100
render_size = (int(scene.render.resolution_x * render_scale),
int(scene.render.resolution_y * render_scale))
bone_locations_2d = np.empty((n_bones, 2))
bone_locations_3d = np.empty((n_bones, 3), dtype='float32')
# obtain the coordinates of each bone head in image space
for ibone in range(n_bones):
bone = arm_ob.pose.bones[obname+'_'+part_match['bone_%02d' % ibone]]
co_2d = world2cam(scene, cam_ob, arm_ob.matrix_world * bone.head)
co_3d = arm_ob.matrix_world * bone.head
bone_locations_3d[ibone] = (co_3d.x,
co_3d.y,
co_3d.z)
bone_locations_2d[ibone] = (round(co_2d.x * render_size[0]),
round(co_2d.y * render_size[1]))
return(bone_locations_2d, bone_locations_3d)
# reset the joint positions of the character according to its new shape
def reset_joint_positions(orig_trans, shape, ob, arm_ob, obname, scene, cam_ob, reg_ivs, joint_reg):
# since the regression is sparse, only the relevant vertex
# elements (joint_reg) and their indices (reg_ivs) are loaded
reg_vs = np.empty((len(reg_ivs), 3)) # empty array to hold vertices to regress from
# zero the pose and trans to obtain joint positions in zero pose
apply_trans_pose_shape(orig_trans, np.zeros(72), shape, ob, arm_ob, obname, scene, cam_ob)
# obtain a mesh after applying modifiers
bpy.ops.wm.memory_statistics()
# me holds the vertices after applying the shape blendshapes
me = ob.to_mesh(scene, True, 'PREVIEW')
# fill the regressor vertices matrix
for iiv, iv in enumerate(reg_ivs):
reg_vs[iiv] = me.vertices[iv].co
bpy.data.meshes.remove(me)
# regress joint positions in rest pose
joint_xyz = joint_reg.dot(reg_vs)
# adapt joint positions in rest pose
arm_ob.hide = False
bpy.ops.object.mode_set(mode='EDIT')
arm_ob.hide = True
for ibone in range(24):
bb = arm_ob.data.edit_bones[obname+'_'+part_match['bone_%02d' % ibone]]
bboffset = bb.tail - bb.head
bb.head = joint_xyz[ibone]
bb.tail = bb.head + bboffset
bpy.ops.object.mode_set(mode='OBJECT')
return(shape)
# load poses and shapes
def load_body_data(smpl_data, ob, obname, gender='female', idx=0):
# load MoSHed data from CMU Mocap (only the given idx is loaded)
# create a dictionary with key the sequence name and values the pose and trans
cmu_keys = []
for seq in smpl_data.files:
if seq.startswith('pose_'):
cmu_keys.append(seq.replace('pose_', ''))
name = sorted(cmu_keys)[idx % len(cmu_keys)]
cmu_parms = {}
for seq in smpl_data.files:
if seq == ('pose_' + name):
cmu_parms[seq.replace('pose_', '')] = {'poses':smpl_data[seq],
'trans':smpl_data[seq.replace('pose_','trans_')]}
# compute the number of shape blendshapes in the model
n_sh_bshapes = len([k for k in ob.data.shape_keys.key_blocks.keys()
if k.startswith('Shape')])
# load all SMPL shapes
fshapes = smpl_data['%sshapes' % gender][:, :n_sh_bshapes]
return(cmu_parms, fshapes, name)
import time
start_time = None
def log_message(message):
elapsed_time = time.time() - start_time
print("[%.2f s] %s" % (elapsed_time, message))
def main():
# time logging
global start_time
start_time = time.time()
import argparse
# parse commandline arguments
log_message(sys.argv)
parser = argparse.ArgumentParser(description='Generate synth dataset images.')
parser.add_argument('--idx', type=int,
help='idx of the requested sequence')
parser.add_argument('--ishape', type=int,
help='requested cut, according to the stride')
parser.add_argument('--stride', type=int,
help='stride amount, default 50')
args = parser.parse_args(sys.argv[sys.argv.index("--") + 1:])
idx = args.idx
ishape = args.ishape
stride = args.stride
log_message("input idx: %d" % idx)
log_message("input ishape: %d" % ishape)
log_message("input stride: %d" % stride)
if idx == None:
exit(1)
if ishape == None:
exit(1)
if stride == None:
log_message("WARNING: stride not specified, using default value 50")
stride = 50
# import idx info (name, split)
idx_info = load(open("pkl/idx_info.pickle", 'rb'))
idx_info = [x for x in idx_info if x['name'][:4] != 'h36m']
# get runpass
(runpass, idx) = divmod(idx, len(idx_info))
log_message("runpass: %d" % runpass)
log_message("output idx: %d" % idx)
idx_info = idx_info[idx]
log_message("sequence: %s" % idx_info['name'])
log_message("nb_frames: %f" % idx_info['nb_frames'])
log_message("use_split: %s" % idx_info['use_split'])
# import configuration
log_message("Importing configuration")
import config
params = config.load_file('config', 'SYNTH_DATA')
smpl_data_folder = params['smpl_data_folder']
smpl_data_filename = params['smpl_data_filename']
bg_path = params['bg_path']
resy = params['resy']
resx = params['resx']
clothing_option = params['clothing_option'] # grey, nongrey or all
tmp_path = params['tmp_path']
output_path = params['output_path']
output_types = params['output_types']
stepsize = params['stepsize']
clipsize = params['clipsize']
openexr_py2_path = params['openexr_py2_path']
# compute number of cuts
nb_ishape = max(1, int(np.ceil((idx_info['nb_frames'] - (clipsize - stride))/stride)))
log_message("Max ishape: %d" % (nb_ishape - 1))
if ishape == None:
exit(1)
assert(ishape < nb_ishape)
# name is set given idx
name = idx_info['name']
output_path = join(output_path, 'run%d' % runpass, name.replace(" ", ""))
params['output_path'] = output_path
tmp_path = join(tmp_path, 'run%d_%s_c%04d' % (runpass, name.replace(" ", ""), (ishape + 1)))
params['tmp_path'] = tmp_path
# check if already computed
# + clean up existing tmp folders if any
if exists(tmp_path) and tmp_path != "" and tmp_path != "/":
os.system('rm -rf %s' % tmp_path)
rgb_vid_filename = "%s_c%04d.mp4" % (join(output_path, name.replace(' ', '')), (ishape + 1))
#if os.path.isfile(rgb_vid_filename):
# log_message("ALREADY COMPUTED - existing: %s" % rgb_vid_filename)
# return 0
# create tmp directory
if not exists(tmp_path):
mkdir_safe(tmp_path)
# >> don't use random generator before this point <<
# initialize RNG with seeds from sequence id
import hashlib
s = "synth_data:%d:%d:%d" % (idx, runpass,ishape)
seed_number = int(hashlib.sha1(s.encode('utf-8')).hexdigest(), 16) % (10 ** 8)
log_message("GENERATED SEED %d from string '%s'" % (seed_number, s))
random.seed(seed_number)
np.random.seed(seed_number)
if(output_types['vblur']):
vblur_factor = np.random.normal(0.5, 0.5)
params['vblur_factor'] = vblur_factor
log_message("Setup Blender")
# create copy-spher.harm. directory if not exists
sh_dir = join(tmp_path, 'spher_harm')
if not exists(sh_dir):
mkdir_safe(sh_dir)
sh_dst = join(sh_dir, 'sh_%02d_%05d.osl' % (runpass, idx))
os.system('cp spher_harm/sh.osl %s' % sh_dst)
genders = {0: 'female', 1: 'male'}
# pick random gender
gender = choice(genders)
scene = bpy.data.scenes['Scene']
scene.render.engine = 'CYCLES'
bpy.data.materials['Material'].use_nodes = True
scene.cycles.shading_system = True
scene.use_nodes = True
log_message("Listing background images")
bg_names = join(bg_path, '%s_img.txt' % idx_info['use_split'])
nh_txt_paths = []
with open(bg_names) as f:
for line in f:
nh_txt_paths.append(join(bg_path, line))
# grab clothing names
log_message("clothing: %s" % clothing_option)
with open( join(smpl_data_folder, 'textures', '%s_%s.txt' % ( gender, idx_info['use_split'] ) ) ) as f:
txt_paths = f.read().splitlines()
# if using only one source of clothing
if clothing_option == 'nongrey':
txt_paths = [k for k in txt_paths if 'nongrey' in k]
elif clothing_option == 'grey':
txt_paths = [k for k in txt_paths if 'nongrey' not in k]
# random clothing texture
cloth_img_name = choice(txt_paths)
cloth_img_name = join(smpl_data_folder, cloth_img_name)
cloth_img = bpy.data.images.load(cloth_img_name)
# random background
bg_img_name = choice(nh_txt_paths)[:-1]
bg_img = bpy.data.images.load(bg_img_name)
log_message("Loading parts segmentation")
beta_stds = np.load(join(smpl_data_folder, ('%s_beta_stds.npy' % gender)))
log_message("Building materials tree")
mat_tree = bpy.data.materials['Material'].node_tree
create_sh_material(mat_tree, sh_dst, cloth_img)
res_paths = create_composite_nodes(scene.node_tree, params, img=bg_img, idx=idx)
log_message("Loading smpl data")
smpl_data = np.load(join(smpl_data_folder, smpl_data_filename))
log_message("Initializing scene")
camera_distance = np.random.normal(8.0, 1)
params['camera_distance'] = camera_distance
ob, obname, arm_ob, cam_ob = init_scene(scene, params, gender)
setState0()
ob.select = True
bpy.context.scene.objects.active = ob
segmented_materials = True #True: 0-24, False: expected to have 0-1 bg/fg
log_message("Creating materials segmentation")
# create material segmentation
if segmented_materials:
materials = create_segmentation(ob, params)
prob_dressed = {'leftLeg':.5, 'leftArm':.9, 'leftHandIndex1':.01,
'rightShoulder':.8, 'rightHand':.01, 'neck':.01,
'rightToeBase':.9, 'leftShoulder':.8, 'leftToeBase':.9,
'rightForeArm':.5, 'leftHand':.01, 'spine':.9,
'leftFoot':.9, 'leftUpLeg':.9, 'rightUpLeg':.9,
'rightFoot':.9, 'head':.01, 'leftForeArm':.5,
'rightArm':.5, 'spine1':.9, 'hips':.9,
'rightHandIndex1':.01, 'spine2':.9, 'rightLeg':.5}
else:
materials = {'FullBody': bpy.data.materials['Material']}
prob_dressed = {'FullBody': .6}
orig_pelvis_loc = (arm_ob.matrix_world.copy() * arm_ob.pose.bones[obname+'_Pelvis'].head.copy()) - Vector((-1., 1., 1.))
orig_cam_loc = cam_ob.location.copy()
# unblocking both the pose and the blendshape limits
for k in ob.data.shape_keys.key_blocks.keys():
bpy.data.shape_keys["Key"].key_blocks[k].slider_min = -10
bpy.data.shape_keys["Key"].key_blocks[k].slider_max = 10
log_message("Loading body data")
cmu_parms, fshapes, name = load_body_data(smpl_data, ob, obname, idx=idx, gender=gender)
log_message("Loaded body data for %s" % name)
nb_fshapes = len(fshapes)
if idx_info['use_split'] == 'train':
fshapes = fshapes[:int(nb_fshapes*0.8)]
elif idx_info['use_split'] == 'test':
fshapes = fshapes[int(nb_fshapes*0.8):]
# pick random real body shape
shape = choice(fshapes) #+random_shape(.5) can add noise
#shape = random_shape(3.) # random body shape
# example shapes
#shape = np.zeros(10) #average
#shape = np.array([ 2.25176191, -3.7883464 , 0.46747496, 3.89178988, 2.20098416, 0.26102114, -3.07428093, 0.55708514, -3.94442258, -2.88552087]) #fat
#shape = np.array([-2.26781107, 0.88158132, -0.93788176, -0.23480508, 1.17088298, 1.55550789, 0.44383225, 0.37688275, -0.27983086, 1.77102953]) #thin
#shape = np.array([ 0.00404852, 0.8084637 , 0.32332591, -1.33163664, 1.05008727, 1.60955275, 0.22372946, -0.10738459, 0.89456312, -1.22231216]) #short
#shape = np.array([ 3.63453289, 1.20836171, 3.15674431, -0.78646793, -1.93847355, -0.32129994, -0.97771656, 0.94531640, 0.52825811, -0.99324327]) #tall
ndofs = 10
scene.objects.active = arm_ob
orig_trans = np.asarray(arm_ob.pose.bones[obname+'_Pelvis'].location).copy()
# create output directory
if not exists(output_path):
mkdir_safe(output_path)
# spherical harmonics material needs a script to be loaded and compiled
scs = []
for mname, material in materials.items():
scs.append(material.node_tree.nodes['Script'])
scs[-1].filepath = sh_dst
scs[-1].update()
rgb_dirname = name.replace(" ", "") + '_c%04d.mp4' % (ishape + 1)
rgb_path = join(tmp_path, rgb_dirname)
data = cmu_parms[name]
fbegin = ishape*stepsize*stride
fend = min(ishape*stepsize*stride + stepsize*clipsize, len(data['poses']))
log_message("Computing how many frames to allocate")
N = len(data['poses'][fbegin:fend:stepsize])
log_message("Allocating %d frames in mat file" % N)
# force recomputation of joint angles unless shape is all zeros
curr_shape = np.zeros_like(shape)
nframes = len(data['poses'][::stepsize])
matfile_info = join(output_path, name.replace(" ", "") + "_c%04d_info.mat" % (ishape+1))
log_message('Working on %s' % matfile_info)
# allocate
dict_info = {}
dict_info['bg'] = np.zeros((N,), dtype=np.object) # background image path
dict_info['camLoc'] = np.empty(3) # (1, 3)
dict_info['clipNo'] = ishape +1
dict_info['cloth'] = np.zeros((N,), dtype=np.object) # clothing texture image path
dict_info['gender'] = np.empty(N, dtype='uint8') # 0 for male, 1 for female
dict_info['joints2D'] = np.empty((2, 24, N), dtype='float32') # 2D joint positions in pixel space
dict_info['joints3D'] = np.empty((3, 24, N), dtype='float32') # 3D joint positions in world coordinates
dict_info['light'] = np.empty((9, N), dtype='float32')
dict_info['pose'] = np.empty((data['poses'][0].size, N), dtype='float32') # joint angles from SMPL (CMU)
dict_info['sequence'] = name.replace(" ", "") + "_c%04d" % (ishape + 1)
dict_info['shape'] = np.empty((ndofs, N), dtype='float32')
dict_info['zrot'] = np.empty(N, dtype='float32')
dict_info['camDist'] = camera_distance
dict_info['stride'] = stride
if name.replace(" ", "").startswith('h36m'):
dict_info['source'] = 'h36m'
else:
dict_info['source'] = 'cmu'
if(output_types['vblur']):
dict_info['vblur_factor'] = np.empty(N, dtype='float32')
# for each clipsize'th frame in the sequence
get_real_frame = lambda ifr: ifr
random_zrot = 0
reset_loc = False
batch_it = 0
curr_shape = reset_joint_positions(orig_trans, shape, ob, arm_ob, obname, scene,
cam_ob, smpl_data['regression_verts'], smpl_data['joint_regressor'])
random_zrot = 2*np.pi*np.random.rand()
arm_ob.animation_data_clear()
cam_ob.animation_data_clear()
arm_ob.rotation_euler.x -= math.pi / 2
# create a keyframe animation with pose, translation, blendshapes and camera motion
# LOOP TO CREATE 3D ANIMATION
for seq_frame, (pose, trans) in enumerate(zip(data['poses'][fbegin:fend:stepsize], data['trans'][fbegin:fend:stepsize])):
iframe = seq_frame
scene.frame_set(get_real_frame(seq_frame))
# apply the translation, pose and shape to the character
apply_trans_pose_shape(Vector(trans), pose, shape, ob, arm_ob, obname, scene, cam_ob, get_real_frame(seq_frame))
dict_info['shape'][:, iframe] = shape[:ndofs]
dict_info['pose'][:, iframe] = pose
dict_info['gender'][iframe] = list(genders)[list(genders.values()).index(gender)]
if(output_types['vblur']):
dict_info['vblur_factor'][iframe] = vblur_factor
arm_ob.pose.bones[obname+'_root'].rotation_quaternion = Quaternion(Euler((0, 0, random_zrot), 'XYZ'))
arm_ob.pose.bones[obname+'_root'].keyframe_insert('rotation_quaternion', frame=get_real_frame(seq_frame))
dict_info['zrot'][iframe] = random_zrot
scene.update()
# Bodies centered only in each minibatch of clipsize frames
if seq_frame == 0 or reset_loc:
reset_loc = False
new_pelvis_loc = arm_ob.matrix_world.copy() * arm_ob.pose.bones[obname+'_Pelvis'].head.copy()
rotated_orig = Vector([orig_pelvis_loc.copy()[0], orig_pelvis_loc.copy()[2], -orig_pelvis_loc.copy()[1]])
cam_ob.location = orig_cam_loc.copy() + (new_pelvis_loc.copy() - rotated_orig.copy())
cam_ob.keyframe_insert('location', frame=get_real_frame(seq_frame))
dict_info['camLoc'] = np.array(cam_ob.location)
scene.node_tree.nodes['Image'].image = bg_img
for part, material in materials.items():
material.node_tree.nodes['Vector Math'].inputs[1].default_value[:2] = (0, 0)
# random light
sh_coeffs = .7 * (2 * np.random.rand(9) - 1)
sh_coeffs[0] = .5 + .9 * np.random.rand() # Ambient light (first coeff) needs a minimum is ambient. Rest is uniformly distributed, higher means brighter.
sh_coeffs[1] = -.7 * np.random.rand()
for ish, coeff in enumerate(sh_coeffs):
for sc in scs:
sc.inputs[ish+1].default_value = coeff
# iterate over the keyframes and render
# LOOP TO RENDER
for seq_frame, (pose, trans) in enumerate(zip(data['poses'][fbegin:fend:stepsize], data['trans'][fbegin:fend:stepsize])):
scene.frame_set(get_real_frame(seq_frame))
iframe = seq_frame
dict_info['bg'][iframe] = bg_img_name
dict_info['cloth'][iframe] = cloth_img_name
dict_info['light'][:, iframe] = sh_coeffs
scene.render.use_antialiasing = False
scene.render.filepath = join(rgb_path, 'Image%04d.png' % get_real_frame(seq_frame))
log_message("Rendering frame %d" % seq_frame)
# disable render output
logfile = '/dev/null'
open(logfile, 'a').close()
old = os.dup(1)
sys.stdout.flush()
os.close(1)
os.open(logfile, os.O_WRONLY)
# Render
bpy.ops.render.render(write_still=True)
# disable output redirection
os.close(1)
os.dup(old)
os.close(old)
# NOTE:
# ideally, pixels should be readable from a viewer node, but I get only zeros
# --> https://ammous88.wordpress.com/2015/01/16/blender-access-render-results-pixels-directly-from-python-2/
# len(np.asarray(bpy.data.images['Render Result'].pixels) is 0
# Therefore we write them to temporary files and read with OpenEXR library (available for python2) in main_part2.py
# Alternatively, if you don't want to use OpenEXR library, the following commented code does loading with Blender functions, but it can cause memory leak.
# If you want to use it, copy necessary lines from main_part2.py such as definitions of dict_normal, matfile_normal...
#for k, folder in res_paths.items():
# if not k== 'vblur' and not k=='fg':
# path = join(folder, 'Image%04d.exr' % get_real_frame(seq_frame))
# render_img = bpy.data.images.load(path)
# # render_img.pixels size is width * height * 4 (rgba)
# arr = np.array(render_img.pixels[:]).reshape(resx, resy, 4)[::-1,:, :] # images are vertically flipped
# if k == 'normal':# 3 channels, original order
# mat = arr[:,:, :3]
# dict_normal['normal_%d' % (iframe + 1)] = mat.astype(np.float32, copy=False)
# elif k == 'gtflow':
# mat = arr[:,:, 1:3]
# dict_gtflow['gtflow_%d' % (iframe + 1)] = mat.astype(np.float32, copy=False)
# elif k == 'depth':
# mat = arr[:,:, 0]
# dict_depth['depth_%d' % (iframe + 1)] = mat.astype(np.float32, copy=False)
# elif k == 'segm':
# mat = arr[:,:,0]
# dict_segm['segm_%d' % (iframe + 1)] = mat.astype(np.uint8, copy=False)
#
# # remove the image to release memory, object handles, etc.
# render_img.user_clear()
# bpy.data.images.remove(render_img)
# bone locations should be saved after rendering so that the bones are updated
bone_locs_2D, bone_locs_3D = get_bone_locs(obname, arm_ob, scene, cam_ob)
dict_info['joints2D'][:, :, iframe] = np.transpose(bone_locs_2D)
dict_info['joints3D'][:, :, iframe] = np.transpose(bone_locs_3D)
reset_loc = (bone_locs_2D.max(axis=-1) > 256).any() or (bone_locs_2D.min(axis=0) < 0).any()
arm_ob.pose.bones[obname+'_root'].rotation_quaternion = Quaternion((1, 0, 0, 0))
# save a .blend file for debugging:
# bpy.ops.wm.save_as_mainfile(filepath=join(tmp_path, 'pre.blend'))
# save RGB data with ffmpeg (if you don't have h264 codec, you can replace with another one and control the quality with something like -q:v 3)
cmd_ffmpeg = 'ffmpeg -y -r 30 -i ''%s'' -c:v h264 -pix_fmt yuv420p -crf 23 ''%s_c%04d.mp4''' % (join(rgb_path, 'Image%04d.png'), join(output_path, name.replace(' ', '')), (ishape + 1))
log_message("Generating RGB video (%s)" % cmd_ffmpeg)
os.system(cmd_ffmpeg)
if(output_types['vblur']):
cmd_ffmpeg_vblur = 'ffmpeg -y -r 30 -i ''%s'' -c:v h264 -pix_fmt yuv420p -crf 23 -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" ''%s_c%04d.mp4''' % (join(res_paths['vblur'], 'Image%04d.png'), join(output_path, name.replace(' ', '')+'_vblur'), (ishape + 1))
log_message("Generating vblur video (%s)" % cmd_ffmpeg_vblur)
os.system(cmd_ffmpeg_vblur)
if(output_types['fg']):
cmd_ffmpeg_fg = 'ffmpeg -y -r 30 -i ''%s'' -c:v h264 -pix_fmt yuv420p -crf 23 ''%s_c%04d.mp4''' % (join(res_paths['fg'], 'Image%04d.png'), join(output_path, name.replace(' ', '')+'_fg'), (ishape + 1))
log_message("Generating fg video (%s)" % cmd_ffmpeg_fg)
os.system(cmd_ffmpeg_fg)
cmd_tar = 'tar -czvf %s/%s.tar.gz -C %s %s' % (output_path, rgb_dirname, tmp_path, rgb_dirname)
log_message("Tarballing the images (%s)" % cmd_tar)
os.system(cmd_tar)
# save annotation excluding png/exr data to _info.mat file
import scipy.io
scipy.io.savemat(matfile_info, dict_info, do_compression=True)
if __name__ == '__main__':
main()
|
python
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu May 21 17:08:55 2020
@author: anon
"""
import subprocess
import numpy as np
import h5py
clear = np.zeros((100000, 2))
noisy = np.zeros((100000, 2))
for i in range(1, len(clear)):
clear[i] = clear[i-1] + np.array([1.,1.])
noisy[i] = clear[i] + np.random.normal(scale=20., size=2)
with h5py.File('../data/input.h5', 'w') as h5f:
h5f.create_dataset('clear', data=clear)
h5f.create_dataset('noisy', data=noisy)
#Run kf aplication here
subprocess.call(['../projects/bin/Debug/hdf5_test'])
with h5py.File('../data/output.h5', 'r') as h5f:
kf_out = h5f['kf_out'][:]
|
python
|
import sys
from pyramid.config import Configurator
from pyramid.i18n import get_localizer, TranslationStringFactory
from pyramid.threadlocal import get_current_request
def add_renderer_globals(event):
request = event.get('request')
if request is None:
request = get_current_request()
event['_'] = request.translate
event['gettext'] = request.translate
event['ngettext'] = request.pluralize
event['localizer'] = request.localizer
def configure_i18n(config: Configurator, default_domain: str):
config.add_subscriber(add_renderer_globals,
'pyramid.events.BeforeRender')
config.add_subscriber(add_renderer_globals,
'tet.viewlet.IBeforeViewletRender')
config.registry.tsf = tsf = TranslationStringFactory(default_domain)
def translate(request):
localizer = request.localizer
def auto_translate(string, *, domain=default_domain, mapping=None, context=None):
if isinstance(string, str):
string = tsf(string, context=context)
return localizer.translate(string, domain=domain, mapping=mapping)
return auto_translate
def pluralize(request):
localizer = request.localizer
def auto_pluralize(singular, plural, n, *, domain=default_domain, mapping=None, context=None):
if isinstance(singular, str):
singular = tsf(singular, context=context)
return localizer.pluralize(singular, plural, n, domain=domain, mapping=mapping)
return auto_pluralize
config.add_request_method(translate, property=True, reify=True)
config.add_request_method(pluralize, property=True, reify=True)
config.add_request_method(get_localizer, name='localize', property=True, reify=True)
def includeme(config: Configurator):
default_domain = config.get_settings().get('default_i18n_domain',
config.package.__name__)
configure_i18n(config, default_domain)
|
python
|
Given a binary array nums, return the maximum number of consecutive 1's in the array.
Example 1:
Input: nums = [1,1,0,1,1,1]
Output: 3
Explanation: The first two digits or the last three digits are consecutive 1s. The maximum number of consecutive 1s is 3.
Example 2:
Input: nums = [1,0,1,1,0,1]
Output: 2
class Solution:
def findMaxConsecutiveOnes(self, nums: List[int]) -> int:
sum = 0
lst= []
for i in range(len(nums)):
if nums[i] != 0:
sum += 1
if nums[i] == len(nums)-1:
lst.append(sum)
else:
lst.append(sum)
sum = 0
lst.append(sum)
print(lst)
return max(lst)
|
python
|
#!/usr/bin/env python3
# for now assuming the 'derived' repo is just checked out
import fire, yaml, git, os, shutil, sys, pathlib, subprocess, unidiff, time, logging
from neotermcolor import colored
def bold_yellow(text):
return colored(text, color='yellow', attrs='bold')
conf_file = ".differant.yml"
def dirdiff(directory: str):
"Either a function to diff directories, or a city in Wales, close to Dirham and Dirwick."
f = open(f'{directory}/{conf_file}', 'r')
conf = yaml.safe_load(f)
f.close()
upstream = directory + '-upstream'
derived = directory + '-derived'
if not os.path.isdir(upstream):
repo = git.Repo.clone_from(conf['upstream'], upstream, depth=1, branch=conf['tag'])
else:
print(f"Skipping clone, upstream directory {upstream} exists.")
if not os.path.isdir(derived):
shutil.copytree(directory, derived)
else:
print(f"Skipping copy, derived directory {derived} exists.")
for path in [conf_file, '.git']:
shutil.rmtree(upstream+'/'+path, ignore_errors=True)
shutil.rmtree(derived+'/'+path, ignore_errors=True)
for i in conf['ignores']:
what, why = i['what'], i['why']
# this is only applicable to Linux!
if os.path.isabs(what) or what.find('..') != -1:
print(f'Nice try. Ignoring directory {what}, please do not use absolute paths and parent folders.')
continue
print(f"Removing {what}, reason: {why}")
shutil.rmtree(upstream+'/'+what, ignore_errors=True)
shutil.rmtree(derived+'/'+what, ignore_errors=True)
# let's diff the dirs now, and parse this into a Python patchset object
result = subprocess.run(f"git diff --no-index {upstream} {derived}".split(' '), stdout=subprocess.PIPE)
result_output = result.stdout.decode('utf-8')
patchset = unidiff.PatchSet(result_output)
refactors = conf.get('refactors', [])#['refactors']
known = conf.get('known_changes', [])#['known_changes'] if 'known'or []
# create empty arrays to store associated patches
for r in refactors:
r['patches'] = []
for k in known:
k['patches'] = []
remaining = []
for p in patchset:
p.only_refactors = False
p.empty = False
p.known = None
if p.added == 0 and p.removed == 0:
p.empty = True
else:
check_if_refactor(p, refactors)
check_if_known(p, known, directory)
if not p.known and not p.empty and not p.only_refactors:
remaining.append(p)
#print("Patch which only includes known refactors.")
#p.refactors = [dict(x) for x in p.refactors]
def get_size(patch):
return patch.added + patch.removed
known_patches = [p for p in patchset if p.known]
refactor_only_patches = [p for p in patchset if p.only_refactors]
empty_patches = [p for p in patchset if p.empty]
l = sorted(remaining, key=get_size, reverse=True)
print("\n".join([str(p) for p in l]))
print(f"{len(known_patches)} known patches.")
print(f"{len(refactor_only_patches)} refactor only patches.")
print(f"{len(empty_patches)} empty_patches.")
print(f"{len(remaining)} patches remain.")
from fnmatch import fnmatch
def check_if_known(patch, known, directory):
for k in known:
for f in k['files']:
src = patch.source_file[2:].replace(directory+'-upstream/', '')
tgt = patch.target_file[2:].replace(directory+'-derived/', '')
if fnmatch(src, f) or fnmatch(tgt, f):
k['patches'].append(patch)
patch.known = k['change']
return True
return False
def check_if_refactor(patch, refactors):
for hunk in patch:
added = "".join([str(x)[1:] for x in hunk if x.line_type == unidiff.LINE_TYPE_ADDED])
removed = "".join([str(x)[1:] for x in hunk if x.line_type == unidiff.LINE_TYPE_REMOVED])
after_refactor = removed
for r in refactors:
was_added = False
r_from, r_to = r['from'], r['to']
if after_refactor.find(r_from) != -1:
r['patches'].append(patch)
after_refactor = after_refactor.replace(r_from, r_to)
if added == after_refactor:
pass # print("Lines equal after applying refactors.")
else:
return False
patch.only_refactors = True
return True
from watchdog.events import FileSystemEventHandler
from watchdog.observers import Observer
class DiffingHandler(FileSystemEventHandler):
def __init__(self, directory):
self.directory = directory
def on_modified(self, event):
if event.src_path == f"{self.directory}/{conf_file}":
print(bold_yellow(f'Change in {conf_file} detected, rerunning dirdiff again!'))
dirdiff(self.directory)
print(bold_yellow('Continuing to watch for changes...'))
def watch(directory: str, override: bool = False, interactive: bool = False):
if not shutil.rmtree.avoids_symlink_attacks:
print("Sorry, but your system is susceptible to symlink attacks. Consider switching. Exiting.")
sys.exit(1)
directory = directory.rstrip('/')
abspath = os.path.abspath(directory)
if abspath in pathlib.Path(os.getcwd()).parents or abspath == os.getcwd():
print("Please do not call dirdiff from inside of the target directory.")
sys.exit(1)
upstream = directory + '-upstream'
derived = directory + '-derived'
if override == True:
shutil.rmtree(upstream)
shutil.rmtree(derived)
print(bold_yellow('Running dirdiff.'))
dirdiff(directory)
if interactive:
print(f'Starting to watch {bold_yellow(directory+"/"+conf_file)} for changes...')
observer = Observer()
observer.schedule(DiffingHandler(directory), path=directory, recursive=True)
observer.start()
try:
while True:
time.sleep(1)
finally:
observer.stop()
observer.join()
if __name__ == "__main__":
fire.Fire(watch)
|
python
|
from __future__ import print_function
import os
from importlib import import_module
def split_path(path):
decomposed_path = []
while 1:
head, tail = os.path.split(path)
if head == path: # sentinel for absolute paths
decomposed_path.insert(0, head)
break
elif tail == path: # sentinel for relative paths
decomposed_path.insert(0, tail)
break
else:
path = head
decomposed_path.insert(0, tail)
if not decomposed_path[-1]:
decomposed_path = decomposed_path[:-1]
return decomposed_path
def split_migration_path(migration_path):
from django.db.migrations.loader import MIGRATIONS_MODULE_NAME
decomposed_path = split_path(migration_path)
for i, p in enumerate(decomposed_path):
if p == MIGRATIONS_MODULE_NAME:
return decomposed_path[i - 1], os.path.splitext(decomposed_path[i + 1])[0]
def clean_bytes_to_str(byte_input):
return byte_input.decode("utf-8").strip()
def get_migration_abspath(app_label, migration_name):
from django.db.migrations.loader import MigrationLoader
module_name, _ = MigrationLoader.migrations_module(app_label)
migration_path = "{}.{}".format(module_name, migration_name)
migration_module = import_module(migration_path)
migration_file = migration_module.__file__
if migration_file.endswith(".pyc"):
migration_file = migration_file[:-1]
return migration_file
|
python
|
import pytest
from constructure.constructors import RDKitConstructor
from constructure.scaffolds import SCAFFOLDS
@pytest.mark.parametrize("scaffold", SCAFFOLDS.values())
def test_default_scaffolds(scaffold):
# Make sure the number of R groups in the `smiles` pattern matches the `r_groups`
# attributes.
assert RDKitConstructor.n_replaceable_groups(scaffold) == len(scaffold.r_groups)
assert {*scaffold.r_groups} == {i + 1 for i in range(len(scaffold.r_groups))}
|
python
|
from capturewrap.builders import CaptureWrapBuilder
from capturewrap.models import CaptureResult
|
python
|
import flask
from hacktech import auth_utils
from hacktech import app_year
import hacktech.modules.judging.helpers as judging_helpers
from hacktech.modules.applications.helpers import allowed_file
from werkzeug.utils import secure_filename
import os
import PyPDF2
def get_waiver_status(user_id, waiver_type):
query = """
SELECT {0}_status FROM {0} where user_id = %s""".format(waiver_type)
with flask.g.pymysql_db.cursor() as cursor:
cursor.execute(query, user_id)
res = cursor.fetchone()
key = "{0}_status".format(waiver_type)
return "Not Submitted" if res == None else res[key]
def get_full_name(uid):
query = "SELECT first_name, last_name FROM members WHERE user_id = %s"
with flask.g.pymysql_db.cursor() as cursor:
cursor.execute(query, uid)
res = cursor.fetchone()
if res is None:
return ("", "")
return (res['first_name'], res['last_name'])
def save_info(email, waiver_file, app_folder, waiver_type):
uid = auth_utils.get_user_id(email)
first_name, last_name = get_full_name(uid)
waiver_file_name = last_name + "_" + first_name + "_" + str(uid) + ".pdf"
waiver_root_path = os.path.join(flask.current_app.root_path,
flask.current_app.config[app_folder])
waiver_path = os.path.join(waiver_root_path, waiver_file_name)
print(waiver_file, allowed_file(waiver_file))
if waiver_file and allowed_file(waiver_file):
if os.path.exists(waiver_path):
os.remove(waiver_path)
waiver_file.save(waiver_path)
query = "INSERT INTO {0}(user_id, {0}_path, {0}_status, submitted_time) VALUES (%s, %s, 'Submitted', NOW()) ON DUPLICATE KEY UPDATE {0}_status = 'Submitted', submitted_time = NOW()".format(
waiver_type)
with flask.g.pymysql_db.cursor() as cursor:
cursor.execute(query, [uid, waiver_file_name])
return waiver_path
return ""
|
python
|
from bflib import dice, units
from bflib.items import coins, listing
from bflib.items.ammunition.common import ShortbowArrow, LongbowArrow
from bflib.items.weapons.ranged.base import RangedWeapon
from bflib.rangeset import RangeSet
from bflib.sizes import Size
@listing.register_type
class Bow(RangedWeapon):
pass
@listing.register_item
class Shortbow(Bow):
name = "Shortbow"
melee_damage = dice.D2(1)
ranged_range = RangeSet(units.Feet(50), units.Feet(100), units.Feet(150))
ranged_damage = None
ranged_ammunition_type = ShortbowArrow
price = coins.Gold(2)
size = Size.Small
weight = units.Pound(1)
@listing.register_item
class Longbow(Bow):
name = "Longbow"
melee_damage = dice.D2(1)
ranged_range = RangeSet(units.Feet(70), units.Feet(140), units.Feet(210))
ranged_damage = None
ranged_ammunition_type = LongbowArrow
price = coins.Silver(2)
size = Size.Large
weight = units.Pound(3)
|
python
|
# Authors: Guillaume Favelier <[email protected]>
#
# License: Simplified BSD
from ...fixes import nullcontext
from ._pyvista import _Renderer as _PyVistaRenderer
from ._pyvista import \
_close_all, _set_3d_view, _set_3d_title # noqa: F401 analysis:ignore
class _Renderer(_PyVistaRenderer):
def __init__(self, *args, **kwargs):
kwargs["notebook"] = True
super().__init__(*args, **kwargs)
def show(self):
from IPython.display import display
self.figure.display = self.plotter.show(use_ipyvtk=True,
return_viewer=True)
self.figure.display.layout.width = None # unlock the fixed layout
display(self.figure.display)
return self.scene()
_testing_context = nullcontext
|
python
|
import matplotlib.pyplot as plt
import numpy as np
tolerance = 1e-1
radius = np.pi
# missile 1
x_m1, y_m1 = -np.pi, 0
v_m1 = 5
# missile 2
x_m2, y_m2 = 0, np.pi
v_m2 = v_m1
# missile 3
x_m3, y_m3 = np.pi, 0
v_m3 = v_m1
# missile 4
x_m4, y_m4 = 0, -np.pi
v_m4 = v_m1
plt.figure(figsize=(10, 10), dpi=80)
plt.title(" missile flight simulator ", fontsize=40)
plt.xlim(-4, 4)
plt.ylim(-4, 4)
#plt.xticks([])
#plt.yticks([])
# set spines
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))
plt.xticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.yticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.annotate('missile start point', xy=(x_m1, y_m1), xycoords='data',
xytext=(+15, +15), textcoords='offset points', fontsize=12,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
# alpha labels
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize(16)
label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65))
class ob(object):
"""docstring for ob"""
def __init__(self, x, y):
self.x = x
self.y = y
class missile(ob):
"""docstring for missile"""
def __init__(self, x, y):
super(missile, self).__init__(x, y)
def forward(self, v, target):
"""docstring for forward"""
if self.x < target.x:
alpha = np.arctan((target.y - self.y) / (target.x - self.x))
elif self.x > target.x:
alpha = np.pi + np.arctan((target.y - self.y) / (target.x - self.x))
elif self.x == target.x and self.y < target.y:
alpha = np.pi / 2
else:
alpha = -np.pi / 2
self.x = self.x + v * 0.01 * np.cos(alpha)
self.y = self.y + v * 0.01 * np.sin(alpha)
return self.x, self.y
def distance(self, target):
"""docstring for distance"""
return np.sqrt((self.x - target.x) ** 2 + (self.y - target.y) ** 2)
class target(ob):
"""docstring for target"""
def __init__(self, x, y):
super(target, self).__init__(x, y)
def newposition(self, x, y):
"""docstring for newposition"""
self.x = x
self.y = y
m1 = missile(x_m1, y_m1)
m2 = missile(x_m2, y_m2)
m3 = missile(x_m3, y_m3)
m4 = missile(x_m4, y_m4)
while True:
if m1.distance(m2) < tolerance or m1.distance(m3) < tolerance or m1.distance(m4) < tolerance:
print "collision"
plt.plot(x_m1, y_m1, 'o')
plt.annotate('crash point', xy=(x_m1, y_m1), xycoords='data',
xytext=(+15, +15), textcoords='offset points', fontsize=12,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
plt.pause(0.1)
plt.show()
break
elif m3.distance(m2) < tolerance or m3.distance(m4) < tolerance:
print "collision"
plt.plot(x_m3, y_m3, 'o')
plt.annotate('crash point', xy=(x_m3, y_m3), xycoords='data',
xytext=(+15, +15), textcoords='offset points', fontsize=12,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
plt.pause(0.1)
plt.show
break
x_m1, y_m1 = m1.forward(v_m1, m2)
x_m2, y_m2 = m2.forward(v_m2, m3)
x_m3, y_m3 = m3.forward(v_m3, m4)
x_m4, y_m4 = m4.forward(v_m4, m1)
#print alpha, beta
plt.plot(x_m1, y_m1, 'bx', alpha=.5)
plt.plot(x_m2, y_m2, 'k*', alpha=.5)
plt.plot(x_m3, y_m3, 'r.', alpha=.5)
plt.plot(x_m4, y_m4, 'gp', alpha=.5)
plt.legend(("missile1", "missile2", "missile3", "missile4"), loc="upper left", prop={'size': 12})
plt.pause(0.1)
|
python
|
import framebuf
gc.collect()
import time
gc.collect()
import machine
gc.collect()
import neopixel
gc.collect()
import network
gc.collect()
import urequests
gc.collect()
import utime
gc.collect()
from machine import RTC, I2C, Pin
#from ssd1306 import SSD1306_I2C
import sh1106 #Oled
gc.collect()
import freesans20 # letter 20
gc.collect()
import icons8x8
gc.collect()
import writer # escribe letra y grafico
gc.collect()
n = 64 # 8x8=64
p = 14 # pin d1
np = neopixel.NeoPixel(machine.Pin(p), n)
#Delay for showing image
delay = 15
#Clear the screen
def clear():
for i in range(64):
np[i] = (0x00, 0x00, 0x00)
np.write()
clear()
# display cool guy
for values in icons8x8.cool:
np[values] = (255, 255, 0)
np[16]= (0x99,0x99,0x99)
np[21]= (0x99,0x99,0x99)
np.write()
sleep(7)
def load_image(filename):
with open(filename, 'rb') as f:
f.readline()
f.readline()
width, height = [int(v) for v in f.readline().split()]
data = bytearray(f.read())
return framebuf.FrameBuffer(data, width, height, framebuf.MONO_HLSB)
# SSD1106 OLED display
print("Connecting to wifi...")
display = sh1106.SH1106_I2C(128, 64, I2C(scl=Pin(5), sda=Pin(4), freq=400000))
#display.fill(1)
#importa font y grafico .pbm
font_writer = writer.Writer(display, freesans20)
temperature_pbm = load_image('temperature.pbm')
#humidity_pbm = load_image('humidity.pbm')
#display en Oled
display.fill(0)
display.text("Connecting", 0, 5)
display.text(" to wifi...", 0, 15)
display.show()
time.sleep_ms(3000) # Espera 3 segundos
#Setup WiFi
sta = network.WLAN(network.STA_IF)
sta.active(True)
sta.connect("LIZCANO", "Paris2006")
print(sta.isconnected())
#display(3)
display.fill(0)
display.text("Connected !!!", 0, 5)
display.text(" to wifi...", 0, 15)
display.show()
# wifi connected
print("IP:", sta.ifconfig()[0], "\n")
display.text(" IP: ", 0, 35)
display.text(" " + str(sta.ifconfig()[0]), 0, 45)
display.show()
# clock data
url = "http://worldtimeapi.org/api/timezone/America/Bogota" # see http://worldtimeapi.org/timezones
web_query_delay = 60000 # interval time of web JSON query
retry_delay = 3000 # interval time of retry after a failed Web query
# internal real time clock
rtc = RTC()
# set timer
update_time = utime.ticks_ms() - web_query_delay
#setup the button
button = machine.Pin(13, machine.Pin.IN, machine.Pin.PULL_UP)
# Confirma OK
clear()
for values in icons8x8.ok1:
np[values] = (20, 200, 20)
np.write()
for values in icons8x8.ok2:
np[values] = (20, 50, 20)
np.write()
sleep(8)
clear() # clear ok
display.fill(0)
display.show() # apaga oled
while True:
print(button.value())
if button.value() == 0:
# clock loop
while button.value() == 0: # True:
# if lose wifi connection, reboot ESP8266
if not sta.isconnected():
machine.reset()
# query and get web JSON every web_query_delay ms
if utime.ticks_ms() - update_time >= web_query_delay:
# HTTP GET data
response = urequests.get("http://worldtimeapi.org/api/timezone/America/Bogota")
if response.status_code == 200: # query success
print("JSON response:\n", response.text)
# parse JSON
parsed = response.json()
datetime_str = str(parsed["datetime"])
year = int(datetime_str[0:4])
month = int(datetime_str[5:7])
day = int(datetime_str[8:10])
hour = int(datetime_str[11:13])
minute = int(datetime_str[14:16])
second = int(datetime_str[17:19])
subsecond = int(round(int(datetime_str[20:26]) / 10000))
# update internal RTC
rtc.datetime((year, month, day, 0, hour, minute, second, subsecond))
update_time = utime.ticks_ms()
print("RTC updated\n")
else: # query failed, retry retry_delay ms later
update_time = utime.ticks_ms() - web_query_delay + retry_delay
# generate formated date/time strings from internal RTC
date_str = "{1:02d}/{2:02d}/{0:4d}".format(*rtc.datetime())
time_str = "{4:02d}:{5:02d}:{6:02d}".format(*rtc.datetime())
# update SSD1306 OLED display
display.fill(0)
#display.text("WebClock", 0, 5)
textlen_h = font_writer.stringlen(time_str)
textlen_d = font_writer.stringlen(date_str)
font_writer.set_textpos((128 - textlen_h) // 2, 10)
font_writer.printstring(time_str)
#font_writer.set_textpos((128 - textlen_d) // 2, 50)
#font_writer.printstring(date_str)
display.text(date_str, 25, 55)
#display.text(time_str, 0, 45)
display.show()
utime.sleep(0.1)
if button.value() == 1:
r = urequests.get("http://api.openweathermap.org/data/2.5/weather?q=Cajica,CO&appid=a2200cf760d109aeb26996d0188b06c9&units=metric").json()
weather = r["weather"][0]["main"]
weather2 = r["weather"][0]["description"]
temp = r["main"]["temp"]
print(weather)
print(weather2)
print(temp)
display.fill(0) # apaga oled
display.show() # apaga oled
if weather == "Clear":
for values in icons8x8.sun0:
np[values] = (0x4c, 0x99, 0x00)
np.write()
sleep(1)
for values in icons8x8.sun1:
np[values] = (0x4c, 0x99, 0x00)
np.write()
sleep(1)
for values in icons8x8.sun2:
np[values] = (0x4c, 0x99, 0x00)
np.write()
sleep(0.2)
sleep(delay)
# cool guy
clear() # clear neopixel
for values in icons8x8.cool:
np[values] = (255, 255, 0)
np.write()
np[16]= (0x99,0x99,0x99)
np[21]= (0x99,0x99,0x99)
sleep(0.3)
np.write()
np[16]= (0,0,0)
np[21]= (0,0,0)
sleep(0.3)
np[16]= (0x99,0x99,0x99)
np[21]= (0x99,0x99,0x99)
sleep(0.3)
np.write()
sleep(delay)
display.fill(0) # apaga oled
display.show() # apaga oled
clear() # clear neopixel
elif weather2 == "few clouds":
display.text("Outside: ", 0, 10)
display.text(weather2, 0, 20)
display.text("Temperature: " + str(temp), 0, 40)
#display.text(str(temp), 35, 35)
#display.text(" to wifi...", 0, 15)
display.show()
for values in icons8x8.fewclouds1:
np[values] = (0x99, 0x99, 0x99)
np.write()
for values in icons8x8.fewclouds2:
np[values] = (0x25, 0x25, 0x25)
np.write()
for values in icons8x8.fewclouds3:
np[values] = (250,140,0)
np.write()
sleep(0.5)
for values in icons8x8.fewclouds4:
np[values] = (250, 250, 0)
np.write()
sleep(0.2)
sleep(delay)
display.fill(0) # apaga oled
display.show() # apaga oled
clear() # clear neopixel
elif weather2 == "scattered clouds":
display.text("Outside: ", 0, 10)
display.text(weather2, 0, 20)
display.text("Temperature: " + str(temp), 0, 40)
#display.text(str(temp), 35, 35)
#display.text(" to wifi...", 0, 15)
display.show()
for values in icons8x8.fewclouds1:
np[values] = (0x99, 0x99, 0x99)
np.write()
for values in icons8x8.fewclouds2:
np[values] = (0x25, 0x25, 0x25)
np.write()
for values in icons8x8.fewclouds3:
np[values] = (250,140,0)
np.write()
sleep(0.5)
for values in icons8x8.fewclouds4:
np[values] = (250, 250, 0)
np.write()
sleep(0.2)
sleep(delay)
display.fill(0) # apaga oled
display.show() # apaga oled
clear() # clear neopixel
elif weather2 == "broken clouds":
display.text("Outside: ", 0, 10)
display.text(weather2, 0, 20)
display.text("Temperature: " + str(temp), 0, 40)
#display.text(str(temp), 35, 35)
#display.text(" to wifi...", 0, 15)
display.show()
for values in icons8x8.cloudy:
np[values] = (0x99, 0x99, 0x99)
np.write()
sleep(delay)
display.fill(0) # apaga oled
display.show() # apaga oled
clear() # clear neopixel
elif weather == "Rain":
display.text("Outside: ", 0, 10)
display.text(weather2, 0, 20)
display.text("Temperature: " + str(temp), 0, 40)
for values in icons8x8.cloudy:
np[values] = (0x55, 0x55, 0x55)
np.write()
sleep(1)
for values in icons8x8.rain:
np[values] = (0x00, 0x00, 0x99)
np.write()
sleep(delay)
display.fill(0) # apaga oled
display.show() # apaga oled
clear()
elif weather == "Thunderstorm":
display.text("Outside: ", 0, 10)
display.text(weather2, 0, 20)
display.text("Temperature: " + str(temp), 0, 40)
for values in icons8x8.cloudy:
np[values] = (0x55, 0x55, 0x55)
np.write()
sleep(1)
for values in icons8x8.lightning1:
np[values] = (250, 250, 0x00)
np.write()
for values in icons8x8.lightning2:
np[values] = (250, 153, 0)
np.write()
sleep(delay)
display.fill(0) # apaga oled
display.show() # apaga oled
clear()
elif weather == "Snow":
display.text("Outside: ", 0, 10)
display.text(weather2, 0, 20)
display.text("Temperature: " + str(temp), 0, 40)
for values in icons8x8.snow_ice:
np[values] = (0x00, 0x00, 0x99)
np.write()
sleep(delay)
display.fill(0) # apaga oled
display.show() # apaga oled
clear()
sleep(1)
|
python
|
# Import modules
import datetime
import spiceypy
import numpy as np
import pandas as pd
# Load the SPICE kernels via a meta file
spiceypy.furnsh('kernel_meta.txt')
# We want to compute miscellaneous positions w.r.t. the centre of
# the Sun for a certain time interval.
# First, we set an initial time in UTC.
INIT_TIME_UTC = datetime.datetime(year=2000, month=1, day=1, \
hour=0, minute=0, second=0)
# Add a number of days; you can play around with the datetime variables; but
# leave it as it is for the first try, since other computations and comments
# are based on this value.
DELTA_DAYS = 10000
END_TIME_UTC = INIT_TIME_UTC + datetime.timedelta(days=DELTA_DAYS)
# Convert the datetime objects now to strings
INIT_TIME_UTC_STR = INIT_TIME_UTC.strftime('%Y-%m-%dT%H:%M:%S')
END_TIME_UTC_STR = END_TIME_UTC.strftime('%Y-%m-%dT%H:%M:%S')
# Print the starting and end times
print('Init time in UTC: %s' % INIT_TIME_UTC_STR)
print('End time in UTC: %s\n' % END_TIME_UTC_STR)
# Convert to Ephemeris Time (ET) using the SPICE function utc2et
INIT_TIME_ET = spiceypy.utc2et(INIT_TIME_UTC_STR)
END_TIME_ET = spiceypy.utc2et(END_TIME_UTC_STR)
# Create a numpy array that covers a time interval in delta = 1 day step
TIME_INTERVAL_ET = np.linspace(INIT_TIME_ET, END_TIME_ET, DELTA_DAYS)
#%%
# Using km is not intuitive. AU would scale it too severely. Since we compute
# the Solar System Barycentre (SSB) w.r.t. the Sun; and since we expect it to
# be close to the Sun, we scale the x, y, z component w.r.t the radius of the
# Sun. We extract the Sun radii (x, y, z components of the Sun ellipsoid) and
# use the x component
_, RADII_SUN = spiceypy.bodvcd(bodyid=10, item='RADII', maxn=3)
RADIUS_SUN = RADII_SUN[0]
#%%
# All our computed parameters, positions etc. shall be stored in a pandas
# dataframe. First, we create an empty one
SOLAR_SYSTEM_DF = pd.DataFrame()
# Set the column ET that stores all ETs
SOLAR_SYSTEM_DF.loc[:, 'ET'] = TIME_INTERVAL_ET
# The column UTC transforms all ETs back to a UTC format. The function
# spicepy.et2datetime is NOT an official part of SPICE (there you can find
# et2utc).
# However this function returns immediately a datetime object
SOLAR_SYSTEM_DF.loc[:, 'UTC'] = \
SOLAR_SYSTEM_DF['ET'].apply(lambda x: spiceypy.et2datetime(et=x).date())
# Here, the position of the SSB, as seen from the Sun, is computed. Since
# spicepy.spkgps returns the position and the corresponding light time,
# we add the index [0] to obtain only the position array
SOLAR_SYSTEM_DF.loc[:, 'POS_SSB_WRT_SUN'] = \
SOLAR_SYSTEM_DF['ET'].apply(lambda x: spiceypy.spkgps(targ=0, \
et=x, \
ref='ECLIPJ2000', \
obs=10)[0])
# Now the SSB position vector is scaled with the Sun's radius
SOLAR_SYSTEM_DF.loc[:, 'POS_SSB_WRT_SUN_SCALED'] = \
SOLAR_SYSTEM_DF['POS_SSB_WRT_SUN'].apply(lambda x: x / RADIUS_SUN)
# Finally the distance between the Sun and the SSB is computed. The length
# (norm) of the vector needs to be determined with the SPICE function vnorm().
# numpy provides an identical function in: numpy.linalg.norm()
SOLAR_SYSTEM_DF.loc[:, 'SSB_WRT_SUN_SCALED_DIST'] = \
SOLAR_SYSTEM_DF['POS_SSB_WRT_SUN_SCALED'].apply(lambda x: \
spiceypy.vnorm(x))
#%%
# Import the matplotlib library
from matplotlib import pyplot as plt
# Set a figure
FIG, AX = plt.subplots(figsize=(12, 8))
# Plot the distance between the Sun and the SSB
AX.plot(SOLAR_SYSTEM_DF['UTC'], SOLAR_SYSTEM_DF['SSB_WRT_SUN_SCALED_DIST'], \
color='tab:blue')
# Set a label for the x and y axis and color the y ticks accordingly
AX.set_xlabel('Date in UTC')
AX.set_ylabel('SSB Dist. in Sun Radii', color='tab:blue')
AX.tick_params(axis='y', labelcolor='tab:blue')
# Set limits for the x and y axis
AX.set_xlim(min(SOLAR_SYSTEM_DF['UTC']), max(SOLAR_SYSTEM_DF['UTC']))
AX.set_ylim(0, 2)
# Set a grid
AX.grid(axis='x', linestyle='dashed', alpha=0.5)
# Saving the figure in high quality
plt.savefig('SSB2SUN_DISTANCE.png', dpi=300)
#%%
# Additionally, we want to compute the position vector of all outer gas
# giants. We define a dictionary with a planet's barycentre abbreviation and
# corresponding NAIF ID code
NAIF_ID_DICT = {'JUP': 5, \
'SAT': 6, \
'URA': 7, \
'NEP': 8}
# Iterate through the dictionary and compute the position vector for each
# planet as seen from the Sun. Further, compute the phase angle between the
# SSB and the planet as seen from the Sun
for planets_name_key in NAIF_ID_DICT:
# Define the pandas dataframe column for each planet (position and phase
# angle). Each '%s' substring is replaced with the planets name as
# indicated after the "%"
planet_pos_col = 'POS_%s_WRT_SUN' % planets_name_key
planet_angle_col = 'PHASE_ANGLE_SUN_%s2SSB' % planets_name_key
# Get the corresponding NAIF ID of the planet's barycentre
planet_id = NAIF_ID_DICT[planets_name_key]
# Compute the planet's position as seen from the Sun.
SOLAR_SYSTEM_DF.loc[:, planet_pos_col] = \
SOLAR_SYSTEM_DF['ET'].apply(lambda x: \
spiceypy.spkgps(targ=planet_id, \
et=x, \
ref='ECLIPJ2000', \
obs=10)[0])
# Compute the phase angle between the SSB and the planet as seen from the
# Sun. Since we apply a lambda function on all columns we need to set
# axis=1, otherwise we get an error!
SOLAR_SYSTEM_DF.loc[:, planet_angle_col] = \
SOLAR_SYSTEM_DF.apply(lambda x: \
np.degrees(spiceypy.vsep(x[planet_pos_col], \
x['POS_SSB_WRT_SUN'])),\
axis=1)
#%%
# Let's verify the function vsep and compute the phase angle between the SSB
# and Jupiter as seen from the Sun (we use the very first array entries).
# Define a lambda function the computes the angle between two vectors
COMP_ANGLE = lambda vec1, vec2: np.arccos(np.dot(vec1, vec2) \
/ (np.linalg.norm(vec1) \
* np.linalg.norm(vec2)))
print('Phase angle between the SSB and Jupiter as seen from the Sun (first ' \
'array entry, lambda function): %s' % \
np.degrees(COMP_ANGLE(SOLAR_SYSTEM_DF['POS_SSB_WRT_SUN'].iloc[0], \
SOLAR_SYSTEM_DF['POS_JUP_WRT_SUN'].iloc[0])))
print('Phase angle between the SSB and Jupiter as seen from the Sun (first ' \
'array entry, SPICE vsep function): %s' % \
np.degrees(spiceypy.vsep(SOLAR_SYSTEM_DF['POS_SSB_WRT_SUN'].iloc[0], \
SOLAR_SYSTEM_DF['POS_JUP_WRT_SUN'].iloc[0])))
#%%
# Create a 4 axes plot where all 4 plots are vertically aligned and share the
# x axis (date in UTC)
FIG, (AX1, AX2, AX3, AX4) = plt.subplots(4, 1, sharex=True, figsize=(8, 20))
# We iterate through the planets (from Jupiter to Neptune) and plot the
# phase angle between the planet and the SSB, as seen from the Sun, in each
# axis individually
for ax_f, planet_abr, planet_name in zip([AX1, AX2, AX3, AX4], \
['JUP', 'SAT', 'URA', 'NEP'], \
['Jupiter', 'Saturn', 'Uranus', \
'Neptune']):
# First, we set the planet's name as the sub plot title (instead of
# setting a legend)
ax_f.set_title(planet_name, color='tab:orange')
# The distance between the SSB and the Sun is plotted.
ax_f.plot(SOLAR_SYSTEM_DF['UTC'], \
SOLAR_SYSTEM_DF['SSB_WRT_SUN_SCALED_DIST'], \
color='tab:blue')
# A y label is set and the color of labels and ticks are adjusted for
# better visibility
ax_f.set_ylabel('SSB Dist. in Sun Radii', color='tab:blue')
ax_f.tick_params(axis='y', labelcolor='tab:blue')
# Set x (based on the min and max date) and y limits (the SSB has varying
# distances between 0 and 2 Sun Radii)
ax_f.set_xlim(min(SOLAR_SYSTEM_DF['UTC']), max(SOLAR_SYSTEM_DF['UTC']))
ax_f.set_ylim(0, 2)
# We add now the phase angle values and copy the x axis for this purpose
ax_f_add = ax_f.twinx()
# Plot the phase angle between the SSB and planet as seen from the Sun
ax_f_add.plot(SOLAR_SYSTEM_DF['UTC'], \
SOLAR_SYSTEM_DF['PHASE_ANGLE_SUN_%s2SSB' % planet_abr], \
color='tab:orange', \
linestyle='-')
# Set the y label's name and color accordingly
ax_f_add.set_ylabel('Planet ph. ang. in deg', color='tab:orange')
ax_f_add.tick_params(axis='y', labelcolor='tab:orange')
# Invert the y axis and set the limits. We invert the axis so that a
# possible anti-correlation (large phase angle corresponds to a smaller
# distance between the Sun's centre and the SSB) becomes more obvious
ax_f_add.invert_yaxis()
ax_f_add.set_ylim(180, 0)
# Set a grid (only date)
ax_f.grid(axis='x', linestyle='dashed', alpha=0.5)
# Finally we set the x label ...
AX4.set_xlabel('Date in UTC')
# ... tight the figures a bit ...
FIG.tight_layout()
# ... reduce the distance between the axes ...
plt.subplots_adjust(hspace=0.2)
# ... and save the figure in high quality
plt.savefig('PLANETS_SUN_SSB_PHASE_ANGLE.png', dpi=300)
|
python
|
r'''
Copyright 2014 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
import struct
from nogotofail.mitm.util.tls import types
def parse_tls(message, throw_on_incomplete=False):
"""Try and parse a TLS record. If the message is fragmented over multiple TLS records this
will return one TLS record with the defragmented payload
Arguments:
message -- wire representation of a TLS message.
throw_on_incomplete -- throw a TlsRecordIncompleteError or TlsMessageFragmentedError if
message is not complete, otherwise return None
Returns (nogotofail.mitm.util.tls.TlsRecord, remaining_message) if message consumed
or None, message if parsing was unsuccessful
"""
extra_fragment_data = ""
original_message = message
try:
while message:
try:
record, size = types.TlsRecord.from_stream(message,
previous_fragment_data=extra_fragment_data)
return record, message[size:]
except types.TlsMessageFragmentedError as e:
# If we're fragmented try and keep parsing
extra_fragment_data += e.fragment_data
message = message[e.data_consumed:]
# If we're fragmented but out of data error out
if not message:
if throw_on_incomplete:
raise e
else:
return None, original_message
except (IndexError, ValueError, struct.error):
return None, original_message
except types.TlsRecordIncompleteError as e:
if throw_on_incomplete:
raise e
else:
return None, original_message
return None, original_message
|
python
|
from __future__ import annotations
from typing import List
from dataclasses import dataclass
from ..model import Pos
@dataclass
class SingleCandidate:
pos: Pos
number: int
reason: str = 'unkown'
def __str__(self):
return f'{self.pos.idx}, {self.number}'
@dataclass
class MultiCandidate:
pos: List[int]
number: List[int]
reason: str = 'unkown'
def __str__(self):
return f'{self.pos}, {self.number}'
class AppendDict:
def __init__(self):
self.dict = dict()
def append(self, key, value):
if key in self.dict:
self.dict[key].append(value)
else:
self.dict[key] = [value]
def items(self):
return self.dict.items()
def __getitem__(self, key):
if key in self.dict:
return self.dict[key]
else:
return set()
def __setitem__(self, key, value):
if key in self.dict:
self.dict[key].add(value)
else:
self.dict[key] = set((value,))
def __str__(self):
return str(self.dict)
|
python
|
"""
Gui for image_dialog
Author: Gerd Duscher
"""
# -*- coding: utf-8 -*-
from PyQt5 import QtCore, QtGui, QtWidgets
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as Canvas
from matplotlib.figure import Figure
from pyTEMlib.microscope import microscope
class MySICanvas(Canvas):
def __init__(self, parent, width=10, height=10, dpi=100):
self.figure = Figure(figsize=(width, height), dpi=dpi)
self.figure.subplots_adjust(bottom=.2)
Canvas.__init__(self, self.figure)
self.setParent(parent)
Canvas.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding)
Canvas.updateGeometry(self)
class UiDialog(object):
def __init__(self, dialog, parent=None):
dialog.setObjectName('Image Info')
dialog.resize(371, 184)
valid_float = QtGui.QDoubleValidator()
# valid_int = QtGui.QIntValidator()
self.histogram = MySICanvas(parent, width=10, height=10, dpi=70)
# Defining a plot instance (axes) and assigning a variable to it
self.histogram.axes = self.histogram.figure.add_subplot(1, 1, 1)
self.TEM = []
self.TEM = microscope.get_available_microscope_names()
plot_layout = QtWidgets.QGridLayout()
# Adding histogram
plot_layout.addWidget(self.histogram, 0, 0)
# making a single widget out of histogram
histogram_plot = QtWidgets.QWidget()
histogram_plot.setLayout(plot_layout)
layout = self.layout = QtWidgets.QGridLayout()
self.layout.setVerticalSpacing(2)
self.separator1 = QtWidgets.QLabel()
self.separator1.setAutoFillBackground(True)
palette = self.separator1.palette()
palette.setColor(self.separator1.backgroundRole(), QtCore.Qt.blue)
palette.setColor(self.separator1.foregroundRole(), QtCore.Qt.white)
self.separator1.setAlignment(QtCore.Qt.AlignCenter)
self.separator1.setMaximumHeight(50)
self.separator1.setPalette(palette)
######################################################################
self.separator1.setText("Microscope")
layout.addWidget(self.separator1, 0, 0, 1, 3)
row = 0
layout.addWidget(self.separator1, row, 0, 1, 4)
row += 1
self.TEMList = QtWidgets.QComboBox()
self.TEMList.setEditable(False)
self.TEMList.addItems(self.TEM)
self.layout.addWidget(self.TEMList, row, 1)
row += 1
self.convLabel = QtWidgets.QLabel("Conv. Angle")
self.convEdit = QtWidgets.QLineEdit(" 100.0")
self.convEdit.setValidator(valid_float)
self.convUnit = QtWidgets.QLabel("mrad")
self.layout.addWidget(self.convLabel, row, 0)
self.layout.addWidget(self.convEdit, row, 1)
self.layout.addWidget(self.convUnit, row, 2)
row += 1
self.E0Label = QtWidgets.QLabel("Acc. Voltage")
self.E0Edit = QtWidgets.QLineEdit(" 100.0")
self.E0Edit.setValidator(valid_float)
self.E0Unit = QtWidgets.QLabel("kV")
self.layout.addWidget(self.E0Label, row, 0)
self.layout.addWidget(self.E0Edit, row, 1)
self.layout.addWidget(self.E0Unit, row, 2)
self.separator2 = QtWidgets.QLabel()
self.separator2.setAutoFillBackground(True)
self.separator2.setAlignment(QtCore.Qt.AlignCenter)
self.separator2.setMaximumHeight(50)
self.separator2.setPalette(palette)
row += 1
######################################################################
self.separator2.setText("Image")
layout.addWidget(self.separator2, row, 0, 1, 4)
######################################################################
row += 1
self.sizeLabel = QtWidgets.QLabel("Size")
self.sizeEdit = QtWidgets.QLineEdit(" 1 x 1")
self.sizeEdit.setValidator(valid_float)
self.sizeUnit = QtWidgets.QLabel("px")
self.layout.addWidget(self.sizeLabel, row, 0)
self.layout.addWidget(self.sizeEdit, row, 1)
self.layout.addWidget(self.sizeUnit, row, 2)
row += 1
self.timeLabel = QtWidgets.QLabel("Exp. Time")
self.timeEdit = QtWidgets.QLineEdit(" 100.0")
self.timeEdit.setValidator(valid_float)
self.timeUnit = QtWidgets.QLabel("s")
self.layout.addWidget(self.timeLabel, row, 0)
self.layout.addWidget(self.timeEdit, row, 1)
self.layout.addWidget(self.timeUnit, row, 2)
self.separator3 = QtWidgets.QLabel(dialog)
self.separator3.setAutoFillBackground(True)
self.separator3.setAlignment(QtCore.Qt.AlignCenter)
self.separator3.setMaximumHeight(50)
self.separator3.setPalette(palette)
row += 1
######################################################################
self.separator3.setText("Histogram")
self.layout.addWidget(self.separator3, row, 0, 1, 4)
######################################################################
row += 1
layout.addWidget(histogram_plot, row, 0, 1, 3)
dialog.setLayout(layout)
|
python
|
import os
import neuralbody.utils.geometry as geometry
import numpy as np
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
class SMPL(nn.Module):
def __init__(self, data_root, gender='neutral', spec='', beta=None):
super(SMPL, self).__init__()
file_path = os.path.join(
data_root, 'SMPL{}_{}.npy'.format(spec, gender))
data = np.load(file_path, allow_pickle=True).item()
mu_ = data['v_template']
n_betas_ = data['shapedirs'].shape[-1]
shapedirs_ = np.reshape(data['shapedirs'], [-1, n_betas_]).T
if isinstance(data['J_regressor'], np.ndarray):
joint_reg_ = data['J_regressor'].T
else:
joint_reg_ = data['J_regressor'].T.todense()
kin_parents_ = data['kintree_table'][0].astype(np.int32)
blendW_ = data['weights']
f_ = torch.tensor(data['f'].astype(np.int32), dtype=torch.long)
vbyf_ = geometry.vertex_by_face(f_)
self.n_J = joint_reg_.shape[1]
self.n_V = mu_.shape[0]
mu_ = torch.tensor(mu_, dtype=torch.float32)
J_regressor = torch.tensor(joint_reg_, dtype=torch.float32)
shapedirs_ = torch.tensor(shapedirs_, dtype=torch.float32)
if beta is not None:
v_res = torch.matmul(beta, shapedirs_)
v_res = v_res.reshape(-1, self.n_V, 3)[0]
mu_ = mu_ + v_res
J = torch.matmul(J_regressor.T, mu_)
self.register_buffer('shapedirs', shapedirs_)
self.register_buffer('J_regressor', J_regressor)
self.register_buffer('kin_parents', torch.tensor(
kin_parents_, dtype=torch.long))
self.register_buffer('f', f_)
self.register_buffer('vbyf', vbyf_.to_dense())
self.register_buffer('blendW', torch.tensor(
blendW_, dtype=torch.float32))
self.register_buffer('J', J)
self.register_parameter('v', Parameter(mu_))
def forward(self, theta, beta=None, h2w=None, inverse=False):
if beta is None:
v_shaped = self.v.expand([theta.shape[0], self.n_V, 3])
J = self.J.expand([theta.shape[0], self.n_J, 3])
else:
v_res = torch.matmul(beta, self.shapedirs)
v_res = v_res.reshape(-1, self.n_V, 3)
v_shaped = v_res + self.v
Jx = torch.matmul(v_shaped[..., 0], self.J_regressor)
Jy = torch.matmul(v_shaped[..., 1], self.J_regressor)
Jz = torch.matmul(v_shaped[..., 2], self.J_regressor)
J = torch.stack([Jx, Jy, Jz], dim=-1)
v = geometry.lbs(v_shaped, self.blendW, theta,
J, self.kin_parents, inverse)
if h2w is not None:
h2w_R = h2w[..., :3, :3]
h2w_T = h2w[..., :3, 3:]
v = torch.bmm(h2w_R, v.transpose(-1, -2)) + h2w_T
v = v.transpose(-1, -2)
return v, v_shaped
|
python
|
# Problem Description:-https://leetcode.com/problems/longest-palindromic-substring/
class Solution:
def helper(self, s, left, right):
while left>=0 and right<len(s) and (s[left]==s[right]):
left-=1
right+=1
return s[left+1:right]
def longestPalindrome(self, s: str) -> str:
ans = ""
for i in range(len(s)):
odd_pos = self.helper(s, i, i)
even_pos = self.helper(s, i, i+1)
ans = max(even_pos, odd_pos, ans, key=len)
return ans
|
python
|
from builtins import range
from .base import MLClassifierBase
import copy
import numpy as np
class RepeatClassifier(MLClassifierBase):
"""Simple classifier for handling cases where """
def __init__(self):
super(RepeatClassifier, self).__init__()
def fit(self, X, y):
self.value_to_repeat = copy.copy(y.tocsr[0, :])
self.return_value = np.full(y)
return self
def predict(self, X):
return np.array([np.copy(self.value_to_repeat) for x in range(len(X))])
|
python
|
import cv2
import numpy as np
import matplotlib.pyplot as plt
#from matplotlib import pyplot as plt
from tkinter import filedialog
from tkinter import *
root = Tk()
root.withdraw()
root.filename = filedialog.askopenfilename(initialdir = "/",title = "Select file",filetypes = (("all files",".*"),("jpg files",".jpg")))
img = cv2.imread(root.filename,0)
root.destroy()
""" cv2.imshow("Ventana de imagen seleccionada",img)
cv2.waitKey(0) """
######Equalizado adaptado
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
cl = clahe.apply(img)
cv2.imshow("Ventana de imagen ",cl)
cv2.imwrite('clk.png',cl)
#####Equalizacion
equ = cv2.equalizeHist(img)
res = np.hstack((img,equ)) #stacking images side-by-side
cv2.imshow("Ventana de imagen seleccionada",res)
######Highpass
kernel=np.array([[-1,-1,-1],[-1,-8,-1],[-1,-1,-1]])
dst = cv2.filter2D(equ,-1,kernel)
####Rotation and SCALE
rows,cols = equ.shape
M = cv2.getRotationMatrix2D((cols/2,rows/2),-15,1)
Rotada = cv2.warpAffine(equ,M,(cols,rows))
cv2.imshow("Ventana de imagen rotada",dst)
cv2.waitKey(0)
""" dst2 = cv2.filter2D(cl,-1,kernel)
cv2.imshow("Ventana",dst2) """
##############
|
python
|
import numpy as np
from gym.spaces import Box
from gym.spaces import Discrete
import copy
from rlkit.envs.wrappers import ProxyEnv
class ParticleEnv(ProxyEnv):
def __init__(
self,
env,
):
ProxyEnv.__init__(self, env)
self.num_agent = self._wrapped_env.n
self.action_space = self._wrapped_env.action_space[0]
obs_dim = self._wrapped_env.observation_space[0].low.size
for observation_space_i in self._wrapped_env.observation_space:
if observation_space_i.low.size > obs_dim:
obs_dim = observation_space_i.low.size
self.observation_space = Box(low=-np.inf, high=+np.inf, shape=(obs_dim,), dtype=np.float32)
self.obs_dim = obs_dim
def step(self, action_n):
action_n = copy.deepcopy(action_n)
obs_n_list, reward_n, done_n_list, info_n = self._wrapped_env.step(action_n)
obs_n = self.convert_obs(obs_n_list)
done_n = self.convert_done(done_n_list)
return obs_n, np.array(reward_n), done_n, {}
def reset(self):
obs_n_list = self._wrapped_env.reset()
obs_n = self.convert_obs(obs_n_list)
return obs_n
def convert_obs(self, obs_n_list):
obs_n = np.zeros((self.num_agent,self.obs_dim))
for i,j in enumerate(obs_n_list):
obs_n[i][0:len(j)] = j
return obs_n
def convert_done(self, done_n_list):
done = (np.array(done_n_list).sum() > 0) # one done all one
done_n = np.array([done]*len(done_n_list))
return done_n
def __str__(self):
return "ParticleEnv: %s" % self._wrapped_env
|
python
|
# ==================================================================
# Copyright (c) 2007,2008,2009 Metaweb Technologies, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY METAWEB TECHNOLOGIES AND CONTRIBUTORS
# ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL METAWEB
# TECHNOLOGIES OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ====================================================================
#
#
# wrap all the nastiness needed for a general mql inspect query
#
#
import os, sys, re
null = None
true = True
false = False
inspect_query = {
'name': null,
'type': [],
'/type/reflect/any_master': [{
'optional':true,
'id': null,
'name': null,
'link': {
'master_property': {
'id': null,
'schema': null
}
}
}],
'/type/reflect/any_reverse': [{
'optional':true,
'id': null,
'name': null,
'link': {
'master_property': {
'id':null,
'schema': null,
'expected_type': null,
'reverse_property': {
'id': null,
'schema': null,
'optional': true
}
}
}
}],
'/type/reflect/any_value': [{
'optional':true,
'value': null,
'link': {
'master_property': {
'id':null,
'schema': null,
'expected_type': null
},
}
}],
't:/type/reflect/any_value': [{
'optional':true,
'type': '/type/text',
'value': null,
'lang': null,
'link': {
'master_property': {
'id':null,
'schema': null
},
}
}],
'/type/object/creator': [{
'optional':true,
'id':null,
'name':null
}],
'/type/object/timestamp': [{
'optional':true,
'value': null,
}],
'/type/object/key': [{
'optional':true,
'value': null,
'namespace': null
}],
'/type/namespace/keys': [{
'optional':true,
'value': null,
'namespace': null
}]
}
def transform_result(result):
proptypes = {}
props = {}
# copy a property from a /type/reflect clause
def pushtype(propdesc, prop):
tid = propdesc['schema']
propid = propdesc['id']
if isinstance(prop, dict):
prop = dict(prop)
if 'link' in prop:
prop.pop('link')
if tid not in proptypes:
proptypes[tid] = {}
if propid not in proptypes[tid]:
proptypes[tid][propid] = []
if propid not in props:
props[propid] = []
props[propid].append(prop)
# copy a property that isn't enumerated by /type/reflect
def pushprop(propid):
ps = result[propid]
if ps is None:
return
# hack to infer the schema from id, not always reliable!
schema = re.sub(r'/[^/]+$', '', propid)
keyprop = dict(id=propid, schema=schema)
for p in ps:
pushtype(keyprop, p)
ps = result['/type/reflect/any_master'] or []
for p in ps:
propdesc = p.link.master_property
pushtype(propdesc, p)
# non-text non-key values
ps = result['/type/reflect/any_value'] or []
for p in ps:
propdesc = p.link.master_property
# /type/text values are queried specially
# so that we can get the lang, so ignore
# them here.
if propdesc.expected_type == '/type/text':
continue
pushtype(propdesc, p)
# text values
ps = result['t:/type/reflect/any_value'] or []
for p in ps:
propdesc = p.link.master_property
pushtype(propdesc, p)
pushprop('/type/object/creator')
pushprop('/type/object/timestamp')
pushprop('/type/object/key')
pushprop('/type/namespace/keys')
# now the reverse properties
ps = result['/type/reflect/any_reverse'] or []
for prop in ps:
propdesc = prop.link.master_property.reverse_property
# synthetic property descriptor for the reverse of
# a property with no reverse descriptor.
# note the bogus id starting with '-'.
if propdesc is None:
# schema = prop.link.master_property.expected_type
# if schema is None:
# schema = 'other'
schema = 'other'
propdesc = dict(id='-' + prop.link.master_property.id,
schema=schema)
pushtype(propdesc, prop)
#return proptypes
return props
def inspect_object(mss, id):
q = dict(inspect_query)
q['id'] = id
r = mss.mqlread(q)
if r is None:
return None
return transform_result(r)
|
python
|
import numpy as np
import deepdish as dd
from scipy.signal import welch
def interaction_band_pow(epochs, config):
"""Get the band power (psd) of the interaction forces/moments.
Parameters
----------
subject : string
subject ID e.g. 7707.
trial : string
trial e.g. HighFine, AdaptFine.
Returns
-------
band_pow : array
An array of band_pow of each epoch of data.
freqs : array
An array of frequencies in power spectral density.
"""
data = epochs.get_data()
band_pow = []
for i in range(epochs.__len__()):
# Last row in smooth force
freqs, power = welch(data[i, -1, :],
fs=128,
nperseg=64,
nfft=128,
detrend=False)
band_pow.append(power)
psds = np.sqrt(np.array(band_pow) * 128 / 2)
return psds, freqs
def instability_index(subject, trial, config):
"""Calculate instability index of the subject and trial.
Parameters
----------
subject : string
subject ID e.g. 7707.
trial : string
trial e.g. HighFine, AdaptFine.
config : yaml file
The configuration file
Returns
-------
ins_index : array
An array of instability index calculated at each epochs.
"""
# signature of data: x(n_epochs, 3 channels, frequencies: 0-128 Hz)
read_path = config['interim_data']['robot_epoch_path']
epochs = dd.io.load(read_path, group='/' + subject + '/robot/' + trial)
data, freqs = interaction_band_pow(epochs, config)
# Get frequency index between 3 Hz and 12 Hz
f_critical_max = (freqs > 2.35) & (freqs <= 10.0)
f_min_max = (freqs > 0.25) & (freqs <= 10.0)
num = data[:, f_critical_max].sum(axis=-1)
den = data[:, f_min_max].sum(axis=-1)
ir_index = num / den
return ir_index
|
python
|
'''
Priority Queue implementation using binary heaps
https://www.youtube.com/watch?v=eVq8CmoC1x8&list=PLDV1Zeh2NRsB6SWUrDFW2RmDotAfPbeHu&index=17
This code is done without using reverse mapping - takes O(n) time for remove_elem(elem)
Can be improved by implementing it - https://www.youtube.com/watch?v=eVq8CmoC1x8&list=PLDV1Zeh2NRsB6SWUrDFW2RmDotAfPbeHu&index=17
'''
class BinaryHeap:
# Initializing binary heap
# Construct a priority queue using heapify in O(n) time, a great explanation can be found at:
# http://www.cs.umd.edu/~meesh/351/mount/lectures/lect14-heapsort-analysis-part.pdf
def __init__(self, elems = []):
self.heap = elems
self.heapsize = len(elems)
# Heapify process
for i in range(max(0, self.heapsize //2 -1), -1, -1):
self.sink(i)
# Returns true/false depending on if the priority queue is empty
def is_empty(self):
return len(self.heap) == 0
# Clears everything inside the heap, O(n)
def clear(self):
self.heap = []
self.heapsize = 0
# Return the size of the heap
def size(self):
return self.heapsize
# Returns the value of the element with the lowest
# priority in this priority queue. If the priority
# queue is empty null is returned.
def peek(self):
if self.is_empty(): return None
return self.heap[0]
# Removes the root of the heap, O(log(n))
def pool(self):
return self.remove_at(0)
# Test if an element is in heap, O(n)
def contains(self, elem):
return self.heap.index(elem) != -1
# Adds an element to the priority queue, the
# element must not be null, O(log(n))
def add(self, elem):
if elem == None:
raise ValueError("Null cant be added")
self.heap.append(elem)
self.heapsize += 1
self.swim(self.heapsize-1)
# Perform bottom up node swim, O(log(n))
def swim(self, ind):
# parent of heap 0 indexed
parent = (ind-1)//2
while(ind > 0 and self.heap[ind] < self.heap[parent]):
self.heap[ind], self.heap[parent] = self.heap[parent], self.heap[ind]
ind = parent
parent = (ind-1)//2
# Top down node sink, O(log(n))
def sink(self, ind):
left = ind * 2 + 1
right = ind * 2 + 2
small = left
while True:
if right < self.heapsize and self.heap[right] < self.heap[left]:
small = right
# check if child is out of heap bounds or we cant sink anymore
if left < self.heapsize and self.heap[ind] < self.heap[small]:
break
# sinking one step
self.heap[ind], self.heap[small] = self.heap[small], self.heap[ind]
ind = small
# Removes a particular element in the heap, O(n)
def remove_elem(self, elem):
# Linear searching for elem O(n)
i = self.heap.index(elem)
return self.remove_at(i)
# Removes a node at particular index, O(log(n))
def remove_at(self, ind):
if ind > self.heapsize: return -1
last_index = self.heapsize - 1
# Swap ind value with last index and delete last index
self.heap[ind], self.heap[last_index] = self.heap[last_index], self.heap[ind]
removed_data = self.heap.pop()
# If we must delete last element
if ind == last_index: return removed_data
# Try swimming to top
self.swim(ind)
# If no changes in swim, do sink
if ind == self.heap[ind]: self.sink(ind)
return removed_data
# Recursively checks if this heap is a min heap
# This method is just for testing purposes to make
# sure the heap invariant is still being maintained
# Called this method with k=0 to start at the root
def is_min_heap(self, ind):
left = 2 * ind + 1
right = 2 * ind + 2
if left < self.heapsize and self.heap[left] < self.heap[ind]: return False
if right < self.heapsize and self.heap[right] < self.heap[ind]: return False
return self.is_min_heap(left) and self.is_min_heap(right)
|
python
|
"""
hyperopt search spaces for each prediction method
"""
import numpy as np
from hyperopt import hp
from hyperopt.pyll.base import scope
from src.jobs.models import Job
from src.predictive_model.classification.models import CLASSIFICATION_RANDOM_FOREST, CLASSIFICATION_KNN, \
CLASSIFICATION_XGBOOST, CLASSIFICATION_MULTINOMIAL_NAIVE_BAYES, CLASSIFICATION_DECISION_TREE, \
CLASSIFICATION_ADAPTIVE_TREE, \
CLASSIFICATION_HOEFFDING_TREE, CLASSIFICATION_SGDC, CLASSIFICATION_PERCEPTRON, CLASSIFICATION_NN
from src.predictive_model.regression.models import REGRESSION_RANDOM_FOREST, REGRESSION_XGBOOST, REGRESSION_LASSO, \
REGRESSION_LINEAR, REGRESSION_NN
from src.predictive_model.time_series_prediction.models import TIME_SERIES_PREDICTION_RNN
def _get_space(job: Job) -> dict:
"""Returns the specific space for the used machine learning algorithm for the given job configuration
:param job:
:return:
"""
method_conf_name = "{}.{}".format(job.predictive_model.predictive_model, job.predictive_model.prediction_method)
return HYPEROPT_SPACE_MAP[method_conf_name]()
def _classification_random_forest() -> dict:
"""Returns the random forest prediction classification method
:return:
"""
return {
'n_estimators': hp.choice('n_estimators', np.arange(150, 1000, dtype=int)),
'max_depth': scope.int(hp.quniform('max_depth', 4, 30, 1)),
'max_features': hp.choice('max_features', ['sqrt', 'log2', 'auto', None]),
'warm_start': True
}
def _classification_knn() -> dict:
"""Returns the KNN prediction classification method
:return:
"""
return {
'n_neighbors': hp.choice('n_neighbors', np.arange(1, 20, dtype=int)),
'weights': hp.choice('weights', ['uniform', 'distance']),
}
def _classification_decision_tree() -> dict:
"""Returns the decision tree prediction classification method
:return:
"""
return {
'max_depth': scope.int(hp.quniform('max_depth', 4, 30, 1)),
'min_samples_split': hp.choice('min_samples_split', np.arange(2, 10, dtype=int)),
'min_samples_leaf': hp.choice('min_samples_leaf', np.arange(1, 10, dtype=int)),
}
def _classification_xgboost() -> dict:
"""Returns the XGBoost prediction classification method
:return:
"""
return {
'n_estimators': hp.choice('n_estimators', np.arange(150, 1000, dtype=int)),
'max_depth': scope.int(hp.quniform('max_depth', 3, 30, 1)),
}
def _classification_incremental_naive_bayes() -> dict:
"""Returns the incremental naive bayes prediction classification method
:return:
"""
return {
'alpha': hp.uniform('alpha', 0, 10),
'fit_prior': True
}
def _classification_incremental_adaptive_tree() -> dict:
"""Returns the incremental adaptive tree prediction classification method
:return:
"""
return {
'grace_period': hp.uniform('grace_period', 1, 5),
'split_criterion': hp.choice('split_criterion', ['gini', 'info_gain']),
'split_confidence': hp.uniform('split_confidence', .0000005, .000001),
'tie_threshold': hp.uniform('tie_threshold', .1, .6),
# 'binary_split': hp.choice('binary_split', [ True, False ]),
# 'stop_mem_management': hp.choice('stop_mem_management', [ True, False ]),
'remove_poor_atts': hp.choice('remove_poor_atts', [True, False]),
# 'no_preprune': hp.choice('no_preprune', [ True, False ]),
'leaf_prediction': hp.choice('leaf_prediction', ['mc', 'nb', 'nba']),
'nb_threshold': hp.uniform('nb_threshold', 0.2, 0.6)
}
def _classification_incremental_hoeffding_tree() -> dict:
"""Returns the incremental hoeffding tree prediction classification method
:return:
"""
return {
'grace_period': hp.uniform('grace_period', 3, 8),
'split_criterion': hp.choice('split_criterion', ['gini', 'info_gain']),
'split_confidence': hp.uniform('split_confidence', .0000005, .0000009),
'tie_threshold': hp.uniform('tie_threshold', .4, .8),
# 'binary_split': hp.choice('binary_split', [ True, False ]),
# 'stop_mem_management': hp.choice('stop_mem_management', [ True, False ]),
'remove_poor_atts': hp.choice('remove_poor_atts', [True, False]),
# 'no_preprune': hp.choice('no_preprune', [ True, False ]),
'leaf_prediction': hp.choice('leaf_prediction', ['mc', 'nb', 'nba']),
'nb_threshold': hp.uniform('nb_threshold', 0.1, 0.5)
}
def _classification_incremental_sgd_classifier() -> dict:
"""Returns the incremental sgd classifier prediction classification method
:return:
"""
return {
'loss': hp.choice('loss', ['hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron', 'squared_loss',
'huber', 'epsilon_insensitive', 'squared_epsilon_insensitive']),
'penalty': hp.choice('penalty', [None, 'l1', 'l2', 'elasticnet']),
'alpha': hp.uniform('alpha', 0.0001, 0.5),
'l1_ratio': hp.uniform('l1_ratio', 0.15, 1.0),
'fit_intercept': hp.choice('fit_intercept', [True, False]),
'tol': hp.uniform('tol', 1e-3, 0.5),
'epsilon': hp.uniform('epsilon', 1e-3, 0.5),
'learning_rate': hp.choice('learning_rate', ['constant', 'optimal', 'invscaling', 'adaptive']),
'eta0': scope.int(hp.quniform('eta0', 4, 30, 1)),
'power_t': hp.uniform('power_t', 0.3, 0.7),
# 'early_stopping': hp.choice('early_stopping', [True, False]), #needs to be false with partial_fit
'n_iter_no_change': scope.int(hp.quniform('n_iter_no_change', 5, 30, 5)),
'validation_fraction': 0.1,
'average': hp.choice('average', [True, False])
}
def _classification_incremental_perceptron() -> dict:
"""Returns the incremental perceptron prediction classification method
:return:
"""
return {
'penalty': hp.choice('penalty', [None, 'l1', 'l2', 'elasticnet']),
'alpha': hp.uniform('alpha', 0.0001, 0.5),
'fit_intercept': hp.choice('fit_intercept', [True, False]),
'tol': hp.uniform('tol', 1e-3, 0.5),
'shuffle': hp.choice('shuffle', [True, False]),
'eta0': scope.int(hp.quniform('eta0', 4, 30, 1)),
# 'early_stopping': hp.choice('early_stopping', [True, False]), #needs to be false with partial_fit
'validation_fraction': 0.1,
'n_iter_no_change': scope.int(hp.quniform('n_iter_no_change', 5, 30, 5))
}
def _classification_nn() -> dict:
"""Returns the NN prediction classification method
:return:
"""
return {
'hidden_layers': hp.quniform('hidden_layers', 1, 10, 1),
'hidden_units': hp.quniform('hidden_units', 1, 100, 1),
'activation_function': hp.choice('activation_function', ['sigmoid', 'tanh', 'relu']),
'epochs': hp.quniform('epochs', 1, 50, 1),
'dropout_rate': hp.uniform('dropout_rate', 0, 1)
}
def _regression_random_forest() -> dict:
"""Returns the random forest prediction regression method
:return:
"""
return {
'n_estimators': hp.choice('n_estimators', np.arange(150, 1000, dtype=int)),
'max_features': hp.choice('max_features', ['sqrt', 'log2', 'auto', None]),
'max_depth': scope.int(hp.quniform('max_depth', 4, 30, 1)),
}
def _regression_lasso() -> dict:
"""Returns the lasso prediction regression method
:return:
"""
return {
'alpha': hp.uniform('alpha', 0.01, 2.0),
'fit_intercept': hp.choice('fit_intercept', [True, False]),
'normalize': hp.choice('normalize', [True, False])
}
def _regression_linear() -> dict:
"""Returns the linear prediction regression method
:return:
"""
return {
'fit_intercept': hp.choice('fit_intercept', [True, False]),
'normalize': hp.choice('normalize', [True, False])
}
def _regression_xgboost() -> dict:
"""Returns the XGBoost prediction regression method
:return:
"""
return {
'max_depth': scope.int(hp.quniform('max_depth', 3, 100, 1)),
'n_estimators': hp.choice('n_estimators', np.arange(150, 1000, dtype=int)),
}
def _regression_nn() -> dict:
"""Returns the NN prediction regression method
:return:
"""
return {
'hidden_layers': hp.quniform('hidden_layers', 1, 10, 1),
'hidden_units': hp.quniform('hidden_units', 1, 100, 1),
'activation_function': hp.choice('activation_function', ['sigmoid', 'tanh', 'relu']),
'epochs': hp.quniform('epochs', 1, 50, 1),
'dropout_rate': hp.uniform('dropout_rate', 0, 1)
}
def _time_series_prediction_rnn() -> dict:
"""TODO: complete commit description
:return:
"""
raise NotImplementedError
HYPEROPT_SPACE_MAP = {
CLASSIFICATION_RANDOM_FOREST: _classification_random_forest,
CLASSIFICATION_KNN: _classification_knn,
CLASSIFICATION_XGBOOST: _classification_xgboost,
CLASSIFICATION_DECISION_TREE: _classification_decision_tree,
CLASSIFICATION_MULTINOMIAL_NAIVE_BAYES: _classification_incremental_naive_bayes,
CLASSIFICATION_ADAPTIVE_TREE: _classification_incremental_adaptive_tree,
CLASSIFICATION_HOEFFDING_TREE: _classification_incremental_hoeffding_tree,
CLASSIFICATION_SGDC: _classification_incremental_sgd_classifier,
CLASSIFICATION_PERCEPTRON: _classification_incremental_perceptron,
CLASSIFICATION_NN: _classification_nn,
REGRESSION_RANDOM_FOREST: _regression_random_forest,
REGRESSION_XGBOOST: _regression_xgboost,
REGRESSION_LASSO: _regression_lasso,
REGRESSION_LINEAR: _regression_linear,
REGRESSION_NN: _regression_nn,
TIME_SERIES_PREDICTION_RNN: _time_series_prediction_rnn
}
|
python
|
import logging
from datetime import date
from flask import request, render_template, jsonify, redirect, url_for
from weight import app
from weight.db import SessionScope
from weight.forms import WeightForm
from weight.db.queries import (
add_weight_data,
edit_weight_data,
delete_weight_data,
get_weights_data,
get_weight_data,
)
logging.basicConfig(filename='weight.log', level=logging.DEBUG)
logger = logging.getLogger(__name__)
@app.route('/', methods=['GET'])
def get_weight():
logger.info('start get weight')
with SessionScope() as session:
weights = get_weights_data(session)
dates = []
weight_data_old = []
weight_data_new = []
for item in weights:
dates.append(item.date.strftime('%Y-%m-%d'))
weight_data_old.append(item.old_weight)
weight_data_new.append(item.new_weight)
logger.info('return render template')
return render_template('weight/index.html', weights=weights, weight_data_old=weight_data_old,
dates=dates, weight_data_new=weight_data_new)
@app.route('/get_weight_data')
def get_data_weight():
logger.info('start get weight data')
with SessionScope() as session:
weights = get_weights_data(session)
dates = []
weight_data_old = []
weight_data_new = []
for item in weights:
dates.append(item.date.isoformat())
weight_data_old.append(item.old_weight)
weight_data_new.append(item.new_weight)
weight_data_old = {
'x': dates,
'y': weight_data_old,
'mode': 'lines+markers',
'name': 'old weight',
}
weight_data_new = {
'x': dates,
'y': weight_data_new,
'mode': 'lines+markers',
'name': 'new weight',
}
logger.info('return jsonify')
return jsonify({
'old_weight': weight_data_old,
'new_weight': weight_data_new,
})
@app.route('/add_weight', methods=['GET', 'POST'])
def add_weight():
logger.info('start add weight')
form = WeightForm()
if form.validate_on_submit():
with SessionScope() as session:
add_weight_data(request.form, session)
return redirect(url_for('get_weight', _external=True))
else:
logger.info('in else')
form.date.data = date.today()
logger.info('return render template')
return render_template('weight/add_weight.html', form=form, change='add')
@app.route('/edit_weight/<id>', methods=['GET', 'POST'])
def edit_weight(id):
form = WeightForm()
if form.validate_on_submit():
with SessionScope() as session:
edit_weight_data(request.form, session, id)
return redirect(url_for('get_weight', _external=True))
else:
with SessionScope() as session:
weight_data = get_weight_data(session, id)
form.date.data = weight_data.date
form.old_weight.data = weight_data.old_weight
form.new_weight.data = weight_data.new_weight
return render_template('weight/add_weight.html', form=form, change='edit')
|
python
|
## 旋转数组
# 方法一: 暴力法, 循环嵌套 时间:O(k*n) 空间:O(1)
# class Solution:
# def rotate(self, nums: List[int], k: int) -> None:
# n = len(nums) - 1
# j = 0
# while j < k:
# i = n
# temp = nums[n]
# while i > 0:
# nums[i] = nums[i-1]
# i -= 1
# nums[0] = temp
# j += 1
#################################################################
# 方法二:拆分对调 时间:O(n) 空间:O(n)
# class Solution:
# def rotate(self, nums: List[int], k: int) -> None:
# split_index = len(nums) - k
# front_arr = nums[:split_index]
# after_arr = nums[split_index:]
# for i, num in enumerate(after_arr + front_arr):
# nums[i] = num
#################################################################
# 方法三: 反转法 时间:O(n) 空间:O(1)
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
k %= len(nums)
self.reversal(nums, 0, len(nums)-1)
self.reversal(nums, 0, k-1)
self.reversal(nums, k, len(nums)-1)
def reversal(self, nums: List[int], start: int, end: int) -> None:
while start < end:
nums[start], nums[end] = nums[end], nums[start]
start += 1
end -= 1
|
python
|
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
def plot_matrix(clf, X_test, y_test):
plt.clf()
plt.imshow(confusion_matrix(clf.predict(X_test), y_test),
interpolation='nearest', cmap=plt.cm.Blues)
plt.colorbar()
plt.xlabel("true label")
plt.ylabel("predicted label")
plt.show()
|
python
|
import subprocess
class ShellCommandExecuter:
def __init__(self, current_working_directory, args):
self.current_working_directory = current_working_directory
self.args = args
def execute_for_output(self):
process = subprocess.run(self.args, stdout=subprocess.PIPE, cwd=self.current_working_directory)
return process.stdout.decode('utf-8').strip()
def execute_for_return_code(self):
return subprocess.call(self.args, cwd=self.current_working_directory)
|
python
|
#Addition of a new dot.
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
#Initial state. Base dataset.
##def __init__ visualizer(self):
##Falta que lo clasifique.
def add_dot(sepal_width, sepal_length, color):
df = px.data.iris()
newDyc = {"sepal_width": sepal_width, "sepal_length": sepal_length, "species": color}
df = df.append(newDyc, ignore_index=True)
newFig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")
newFig.show()
# KNN.fit(X, Y)
#KNN.askNewData()
if __name__ == "__main__":
df = px.data.iris()
speciesDyc = {"setosa": 0, "versicolor": 1, "virginica": 2}
X = df["sepal_width", "sepal_length"].values
Y = df["species"].apply(speciesDyc.get).values
print(np.isnan(Y).sum() == 0)
df = df[["sepal_width", "sepal_length", "species"]]
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")
fig.show()
fig.show()
|
python
|
import codecs
import csv
import sys
import pickle
import os
try:
from . import config_wv
from . import pre_util
except:
sys.path.append("/Users/tdong/git/lg-flask/tasks/lgutil/pre_processing_wv/config_wv")
import config_wv
import pre_util
def get_all_lines(fname, encoding='utf8'):
with codecs.open(fname, "r", encoding) as fd:
return fd.readlines()
def get_all_rows_from_csv(csvfn, encoding='utf-8'):
with open(csvfn, 'r') as fb:
reader = csv.reader(fb)
return list(reader)
def load_pickle(picklefname):
psize = os.path.getsize(picklefname)
if psize > 0:
with open(picklefname, 'rb') as hp:
return pickle.load(hp)
else:
return {}
def dump_pickle(picklefname, dic):
with open(picklefname, 'wb') as hp:
pickle.dump(dic, hp)
def create_bible_raw_snts(fname, encoding='utf8'):
sntLst = []
for rowLst in get_all_rows_from_csv(fname, encoding=encoding):
sntLst.append(rowLst[3])
sntLst.append('\n')
path, name = os.path.splitext(fname)
newfile = path+'.lst'
with open(newfile, 'w') as fd:
fd.writelines(sntLst)
if __name__ == "__main__":
create_bible_raw_snts(config_wv.DeBibleCsv, encoding='ISO-8859-1')
|
python
|
# Print out 2 to the 65536 power
# (try doing the same thing in the JS console and see what it outputs)
bignum = 2 ** 65536
print(bignum)
|
python
|
from .cifar import CIFAR10NoisyLabels, CIFAR100NoisyLabels
__all__ = ('CIFAR10NoisyLabels', 'CIFAR100NoisyLabels')
|
python
|
dict1 = dict(One = 1, Two = 2, Three = 3, Four = 4, Five = 5)
print(dict1['Four'])
dict1['Three'] = 3.1
print(dict1)
del dict1['Two']
print(dict1)
|
python
|
from __future__ import annotations
import pandas as pd
import numpy as np
from typing import List, Union, TYPE_CHECKING
from whyqd.base import BaseSchemaAction
if TYPE_CHECKING:
from ..models import ColumnModel, ModifierModel, FieldModel
class Action(BaseSchemaAction):
"""
Create a new field by iterating over a list of fields and picking the oldest value in the list.
Script::
"ORDER_OLD > 'destination_field' < ['source_column' + 'source_column_date', 'source_column' + 'source_column_date', etc.]"
Where `+` links two columns together, explicitly declaring that the date in `source_column_date` is used to
assign the order to the values in `source_column`. Unlike the ORDER ACTION, ORDER_OLD takes its ordering from
this date assignment.
"""
def __init__(self) -> None:
super().__init__()
self.name = "ORDER_OLD"
self.title = "Order by oldest"
self.description = "Use sparse data from a list of fields to populate a new field order by the oldest value. Field-pairs required, with the first containing the values, and the second the dates for comparison, linked by a '+' modifier (e.g. A+dA, B+dB, C+dC, values with the oldest associated date will have precedence over other values)."
self.structure = ["field", "modifier", "field"]
@property
def modifiers(self) -> List[ModifierModel]:
"""
Describes the modifiers for order by oldest.
Returns
-------
List of ModifierModel
ModifierModel representation of the modifiers.
"""
return [{"name": "+", "title": "Links"}]
def transform(
self,
df: pd.DataFrame,
destination: Union[FieldModel, ColumnModel],
source: List[Union[ColumnModel, ModifierModel]],
) -> pd.DataFrame:
"""Create a new field by iterating over a list of fields and picking the oldest value in the list.
Parameters
----------
df: DataFrame
Working data to be transformed
destination: FieldModel or ColumnModel, default None
Destination column for the result of the Action.
source: list of ColumnModel and / or ModifierModel
List of source columns and modifiers for the action.
Returns
-------
Dataframe
Containing the implementation of the Action
"""
base_date = None
# Requires sets of 3 terms: field, +, date_field
term_set = len(self.structure)
for data, modifier, date in self.core.chunks(source, term_set):
if modifier.name != "+":
raise ValueError(f"Field `{source}` has invalid ORDER_BY_OLD script. Please review.")
if not base_date:
# Start the comparison on the next round
df.rename(index=str, columns={data.name: destination.name}, inplace=True)
base_date = date.name
if data.name == date.name:
# Just comparing date columns
base_date = destination.name
df.loc[:, base_date] = df.loc[:, base_date].apply(
lambda x: pd.to_datetime(self.wrangle.parse_dates(x), errors="coerce")
)
continue
# np.where date is <> base_date and don't replace value with null
# logic: if test_date not null & base_date <> test_date
# False if (test_date == nan) | (base_date == nan) | base_date >< test_date
# Therefore we need to test again for the alternatives
df.loc[:, date.name] = df.loc[:, date.name].apply(
lambda x: pd.to_datetime(self.wrangle.parse_dates(x), errors="coerce")
)
df.loc[:, destination.name] = np.where(
df[date.name].isnull() | (df[base_date] < df[date.name]),
np.where(df[destination.name].notnull(), df[destination.name], df[data.name]),
np.where(df[data.name].notnull(), df[data.name], df[destination.name]),
)
if base_date != destination.name:
df.loc[:, base_date] = np.where(
df[date.name].isnull() | (df[base_date] < df[date.name]),
np.where(df[base_date].notnull(), df[base_date], df[date.name]),
np.where(df[date.name].notnull(), df[date.name], df[base_date]),
)
return df
|
python
|
from zipfile import ZipFile
import os
class ExtractFiles:
def __init__(self):
self.ends_with = '.zip'
self._backup_dir = r"C:\dev\integratedSystem\all_images"
def handler_files(self, file_name):
if file_name.endswith(self.ends_with):
return self.extract_zips(file_name)
else:
return file_name
def extract_zips(self, file_name):
file_path = os.path.join(self._backup_dir, file_name)
with ZipFile(file_path, 'r') as zip_ref:
# Extract all the contents of zip file in current directory
return zip_ref.namelist()[0]
|
python
|
import sys
import mechanics.colors as colors
from tcod import image_load
from tcod import console
from loader_functions.initialize_new_game import get_constants, get_game_variables
from loader_functions.data_loaders import load_game, save_game
from mechanics.menus import main_menu, messsage_box
from mechanics.game_states import GameStates
from mechanics.render_functions import render_all, clear_all
from mechanics.entity import Entity
from mechanics.input_handlers import handle_main_menu, handle_keys, handle_mouse
from mechanics.game_messages import Message
from mechanics.death_functions import kill_monster, kill_player
from mechanics.entity import get_blocking_entities_at_location
from mechanics.map_utils import next_floor
def main():
constants = get_constants()
sys.path.append("..")
tdl.set_font('images/arial10x10.png', greyscale=True, altLayout=True)
root_console = tdl.init(
constants['SCREEN_WIDTH'], constants['SCREEN_HEIGHT'], constants['WINDOW_TITLE'])
con = console.Console(constants['SCREEN_WIDTH'], constants['SCREEN_HEIGHT'])
panel = console.Console(constants['SCREEN_WIDTH'], constants['PANEL_HEIGHT'])
player = None
entities = []
game_map = None
message_log = None
game_state = None
show_main_menu = True
show_load_error_message = False
main_menu_background_image = image_load('images/menu_background.png')
while not tdl.event.is_window_closed():
for event in tdl.event.get():
if event.type == 'KEYDOWN':
user_input = event
break
else:
user_input = None
if show_main_menu:
main_menu(con, root_console, main_menu_background_image,
constants['SCREEN_WIDTH'], constants['SCREEN_HEIGHT'])
if show_load_error_message:
messsage_box(con, root_console, 'Jogo salvo nao encontrado!',
50, constants['SCREEN_WIDTH'], constants['SCREEN_HEIGHT'])
tdl.flush()
action = handle_main_menu(user_input)
new_game = action.get('new_game')
load_saved_game = action.get('load_game')
exit_game = action.get('exit')
if show_load_error_message and (new_game or load_saved_game or exit_game):
show_load_error_message = False
elif new_game:
player, entities, game_map, message_log, game_state = get_game_variables(
constants)
game_state = GameStates.PLAYERS_TURN
show_main_menu = False
elif load_saved_game:
try:
player, entities, game_map, message_log, game_state = load_game()
show_main_menu = False
except FileNotFoundError:
show_load_error_message = True
elif exit_game:
break
else:
root_console.clear()
con.clear()
panel.clear()
play_game(player, entities, game_map, message_log,
game_state, root_console, con, panel, constants)
show_main_menu = True
def play_game(player, entities, game_map, message_log, game_state, root_console, con, panel, constants):
sys.path.append("..")
tdl.set_font('images/arial10x10.png', greyscale=True, altLayout=True)
fov_recompute = True
mouse_coordinates = (0, 0)
previous_game_state = game_state
targeting_item = None
while not tdl.event.is_window_closed():
if fov_recompute:
game_map.compute_fov(player.x, player.y, fov=constants['FOV_ALGORITHM'],
radius=constants['FOV_RADIUS'], light_walls=constants['FOV_LIGHT_WALLS'])
render_all(con, panel, entities, player, game_map, fov_recompute, root_console, message_log,
constants['SCREEN_WIDTH'], constants['SCREEN_HEIGHT'], constants['BAR_WIDTH'], constants['PANEL_HEIGHT'], constants['PANEL_Y'], mouse_coordinates, constants['Colors'], game_state)
tdl.flush()
clear_all(con, entities)
fov_recompute = False
for event in tdl.event.get():
if event.type == 'KEYDOWN':
user_input = event
break
elif event.type == 'MOUSEMOTION':
mouse_coordinates = event.cell
elif event.type == 'MOUSEDOWN':
user_mouse_input = event
break
else:
user_input = None
user_mouse_input = None
if not (user_input or user_mouse_input):
continue
action = handle_keys(user_input, game_state)
mouse_action = handle_mouse(user_mouse_input)
move = action.get('move')
pickup = action.get('pickup')
show_inventory = action.get('show_inventory')
drop_inventory = action.get('drop_inventory')
inventory_index = action.get('inventory_index')
take_stairs = action.get('take_stairs')
level_up = action.get('level_up')
show_character_screen = action.get('show_character_screen')
exit = action.get('exit')
fullscreen = action.get('fullscreen')
left_click = mouse_action.get('left_click')
right_click = mouse_action.get('right_click')
player_turn_results = []
if move and game_state == GameStates.PLAYERS_TURN:
dx, dy = move
destination_x = player.x + dx
destination_y = player.y + dy
# NOCLIP AQUI
if game_map.walkable[destination_x, destination_y]:
target = get_blocking_entities_at_location(
entities, destination_x, destination_y)
if target:
attack_results = player.fighter.attack(target)
player_turn_results.extend(attack_results)
else:
player.move(dx, dy)
fov_recompute = True
game_state = GameStates.ENEMY_TURN
elif pickup and game_state == GameStates.PLAYERS_TURN:
for entity in entities:
if (entity.item) and (entity.x == player.x and entity.y == player.y):
pickup_results = player.inventory.add_item(entity)
player_turn_results.extend(pickup_results)
break
else:
message_log.add_message(
Message('Nao ha nada aqui para ser pegado', colors.yellow))
if show_inventory:
previous_game_state = game_state
game_state = GameStates.SHOW_INVENTORY
if drop_inventory:
previous_game_state = game_state
game_state = GameStates.DROP_INVENTORY
if inventory_index is not None and previous_game_state != GameStates.PLAYER_DEAD and inventory_index < len(player.inventory.items):
item = player.inventory.items[inventory_index]
if game_state == GameStates.SHOW_INVENTORY:
player_turn_results.extend(player.inventory.use(
item, entities=entities, game_map=game_map))
elif game_state == GameStates.DROP_INVENTORY:
player_turn_results.extend(player.inventory.drop_item(item))
if take_stairs and game_state == GameStates.PLAYERS_TURN:
for entity in entities:
if entity.stairs and entity.x == player.x and entity.y == player.y:
game_map, entities = next_floor(
player, message_log, entity.stairs.floor, constants)
fov_recompute = True
con.clear()
break
else:
message_log.add_message(
Message('Nao ha uma escadaria aqui.', colors.yellow))
if level_up:
if level_up == 'hp':
player.fighter.base_max_hp += 20
player.fighter.hp += 20
elif level_up == 'str':
player.fighter.base_power += 1
elif level_up == 'def':
player.fighter.base_defense += 1
game_state = previous_game_state
if show_character_screen:
previous_game_state = game_state
game_state = GameStates.CHARACTER_SCREEN
if game_state == GameStates.TARGETING:
if left_click:
target_x, target_y = left_click
item_use_results = player.inventory.use(
targeting_item, entities=entities, game_map=game_map, target_x=target_x, target_y=target_y)
player_turn_results.extend(item_use_results)
elif right_click:
player_turn_results.append({'targeting_cancelled': True})
if exit:
if game_state in (GameStates.SHOW_INVENTORY, GameStates.DROP_INVENTORY, GameStates.CHARACTER_SCREEN):
game_state = previous_game_state
elif game_state == GameStates.TARGETING:
player_turn_results.append({'targeting_cancelled': True})
else:
save_game(player, entities, game_map, message_log, game_state)
return True
if fullscreen:
tdl.set_fullscreen(not tdl.get_fullscreen())
for player_turn_result in player_turn_results:
message = player_turn_result.get('message')
dead_entity = player_turn_result.get('dead')
item_added = player_turn_result.get('item_added')
item_consumed = player_turn_result.get('consumed')
item_dropped = player_turn_result.get('item_dropped')
equip = player_turn_result.get('equip')
targeting = player_turn_result.get('targeting')
targeting_cancelled = player_turn_result.get('targeting_cancelled')
xp = player_turn_result.get('xp')
if message:
message_log.add_message(message)
if dead_entity:
if dead_entity == player:
messsage, game_state = kill_player(dead_entity)
else:
message = kill_monster(dead_entity)
message_log.add_message(message)
if item_added:
entities.remove(item_added)
game_state = GameStates.ENEMY_TURN
if item_consumed:
game_state = GameStates.ENEMY_TURN
if item_dropped:
entities.append(item_dropped)
game_state = GameStates.ENEMY_TURN
if equip:
equip_results = player.equipment.toggle_equip(equip)
for equip_result in equip_results:
equipped = equip_result.get('equipped')
dequipped = equip_result.get('dequipped')
if equipped:
message_log.add_message(
Message('Voce equipou o(a) {0}'.format(equipped.name)))
if dequipped:
message_log.add_message(
Message('Voce desequipou o(a) {0}'.format(dequipped.name)))
game_state = GameStates.ENEMY_TURN
if targeting:
previous_game_state = GameStates.PLAYERS_TURN
game_state = GameStates.TARGETING
targeting_item = targeting
message_log.add_message(targeting_item.item.targeting_message)
if targeting_cancelled:
game_state = previous_game_state
message_log.add_message(Message('Cancelado'))
if xp:
leveled_up = player.level.add_xp(xp)
message_log.add_message(
Message('Voce ganhou {0} pontos de experiencia.'.format(xp)))
if leveled_up:
message_log.add_message(Message(
'Suas habilidades de batalha melhoraram! Voce atingiu o nivel {0}'.format(
player.level.current_level) + '!',
colors.yellow))
previous_game_state = game_state
game_state = GameStates.LEVEL_UP
if game_state == GameStates.ENEMY_TURN:
for entity in entities:
if entity.ai:
enemy_turn_results = entity.ai.take_turn(
player, game_map, entities)
for enemy_turn_result in enemy_turn_results:
message = enemy_turn_result.get('message')
dead_entity = enemy_turn_result.get('dead')
if message:
message_log.add_message(message)
if dead_entity:
if dead_entity == player:
message, game_state = kill_player(dead_entity)
else:
message = kill_monster(dead_entity)
message_log.add_message(message)
if game_state == GameStates.PLAYER_DEAD:
break
else:
game_state = GameStates.PLAYERS_TURN
if __name__ == '__main__':
main()
|
python
|
#!/usr/bin/python
# Classification (U)
"""Program: main.py
Description: Unit testing of main in daemon_rmq_2_isse.py.
Usage:
test/unit/daemon_rmq_2_isse/main.py
Arguments:
"""
# Libraries and Global Variables
# Standard
import sys
import os
if sys.version_info < (2, 7):
import unittest2 as unittest
else:
import unittest
# Third-party
import mock
# Local
sys.path.append(os.getcwd())
import daemon_rmq_2_isse
import lib.gen_libs as gen_libs
import version
__version__ = version.__version__
class UnitTest(unittest.TestCase):
"""Class: UnitTest
Description: Class which is a representation of a unit testing.
Methods:
test_start_daemon -> Test main function with daemon start option.
test_stop_daemon -> Test main function with daemon stop option.
test_restart_daemon -> Test main function with daemon restart option.
test_invalid_daemon -> Test main function with invalid option.
test_arg_require_false -> Test main function with arg_require false.
test_arg_require_true -> Test main function with arg_require true.
"""
@mock.patch("daemon_rmq_2_isse.arg_parser")
@mock.patch("daemon_rmq_2_isse.Rmq2IsseDaemon.start")
def test_start_daemon(self, mock_daemon, mock_arg):
"""Function: test_start_daemon
Description: Test main function with daemon start option.
Arguments:
"""
args = {"-a": "start", "-c": "rabbitmq"}
mock_arg.arg_parse2.return_value = args
mock_arg.arg_require.return_value = False
mock_daemon.return_value = True
self.assertRaises(SystemExit, daemon_rmq_2_isse.main)
@mock.patch("daemon_rmq_2_isse.arg_parser")
@mock.patch("daemon_rmq_2_isse.Rmq2IsseDaemon.stop")
def test_stop_daemon(self, mock_daemon, mock_arg):
"""Function: test_stop_daemon
Description: Test main function with daemon stop option.
Arguments:
"""
args = {"-a": "stop", "-c": "rabbitmq"}
mock_arg.arg_parse2.return_value = args
mock_arg.arg_require.return_value = False
mock_daemon.return_value = True
self.assertRaises(SystemExit, daemon_rmq_2_isse.main)
@mock.patch("daemon_rmq_2_isse.arg_parser")
@mock.patch("daemon_rmq_2_isse.Rmq2IsseDaemon.restart")
def test_restart_daemon(self, mock_daemon, mock_arg):
"""Function: test_restart_daemon
Description: Test main function with daemon restart option.
Arguments:
"""
args = {"-a": "restart", "-c": "rabbitmq"}
mock_arg.arg_parse2.return_value = args
mock_arg.arg_require.return_value = False
mock_daemon.return_value = True
self.assertRaises(SystemExit, daemon_rmq_2_isse.main)
@mock.patch("daemon_rmq_2_isse.arg_parser")
def test_invalid_daemon(self, mock_arg):
"""Function: test_invalid_daemon
Description: Test main function with invalid option.
Arguments:
"""
args = {"-a": "nostart", "-c": "rabbitmq"}
mock_arg.arg_parse2.return_value = args
mock_arg.arg_require.return_value = False
with gen_libs.no_std_out():
self.assertRaises(SystemExit, daemon_rmq_2_isse.main)
@mock.patch("daemon_rmq_2_isse.arg_parser")
@mock.patch("daemon_rmq_2_isse.Rmq2IsseDaemon.start")
def test_arg_require_false(self, mock_daemon, mock_arg):
"""Function: test_arg_require_false
Description: Test main function with arg_require false.
Arguments:
"""
args = {"-a": "start", "-c": "rabbitmq"}
mock_arg.arg_parse2.return_value = args
mock_arg.arg_require.return_value = False
mock_daemon.return_value = True
self.assertRaises(SystemExit, daemon_rmq_2_isse.main)
@mock.patch("daemon_rmq_2_isse.arg_parser")
def test_arg_require_true(self, mock_arg):
"""Function: test_arg_require_true
Description: Test main function with arg_require true.
Arguments:
"""
args = {"-a": "start", "-c": "rabbitmq"}
mock_arg.arg_parse2.return_value = args
mock_arg.arg_require.return_value = True
with gen_libs.no_std_out():
self.assertRaises(SystemExit, daemon_rmq_2_isse.main)
if __name__ == "__main__":
unittest.main()
|
python
|
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
import logging
from typing import List, Optional
import numpy as np
import torch
from torch.utils.data import DataLoader
from gluonts.core.component import validated
from gluonts.dataset.common import Dataset
from gluonts.dataset.field_names import FieldName
from gluonts.model.estimator import Estimator
from gluonts.model.psagan._dataload import Data
from gluonts.model.psagan._model import (
ProDiscriminator,
ProGenDiscrim,
ProGenerator,
ProGeneratorInference,
)
from gluonts.model.psagan._trainer import Trainer
from gluonts.time_feature import time_features_from_frequency_str
from gluonts.torch.model.predictor import PyTorchPredictor
from gluonts.transform import (
AddAgeFeature,
AddObservedValuesIndicator,
AddPositionalEncoding,
AddTimeFeatures,
AsNumpyArray,
Chain,
ExpectedNumInstanceSampler,
InstanceSplitter,
RemoveFields,
SetField,
TestSplitSampler,
VstackFeatures,
)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s %(message)s",
datefmt="[%Y-%m-%d %H:%M:%S]",
)
logger = logging.getLogger(__name__)
class syntheticEstimator(Estimator):
@validated()
def __init__(
self,
trainer: Trainer,
freq: str,
batch_size: int,
num_batches_per_epoch: int,
target_len: int,
nb_features: int,
ks_conv: int,
key_features: int,
value_features: int,
ks_value: int,
ks_query: int,
ks_key: int,
path_to_pretrain: str = None,
use_feat_dynamic_real: bool = False,
use_feat_static_cat: bool = True,
use_feat_static_real: bool = False,
num_workers: int = 0,
device: str = "cpu",
scaling: str = "local",
cardinality: Optional[List[int]] = None,
embedding_dim: int = 10,
self_attention: bool = True,
channel_nb: int = 32,
pos_enc_dimension: int = 10,
context_length: int = 0,
exclude_index: list = None,
):
super().__init__()
self.trainer = trainer
self.freq = freq
self.batch_size = batch_size
self.num_batches_per_epoch = num_batches_per_epoch
self.target_len = target_len
self.nb_features = nb_features
self.ks_conv = ks_conv
self.key_features = key_features
self.value_features = value_features
self.ks_value = ks_value
self.ks_query = ks_query
self.ks_key = ks_key
self.use_feat_dynamic_real = use_feat_dynamic_real
self.use_feat_static_cat = use_feat_static_cat
self.use_feat_static_real = use_feat_static_real
self.num_workers = num_workers
self.channel_nb = channel_nb
assert device == "cpu" or device == "gpu"
self.device = torch.device("cuda" if device == "gpu" else "cpu")
self.path_to_pretrain = path_to_pretrain
assert (
scaling == "local" or scaling == "global" or scaling == "NoScale"
), "scaling has to be \
local or global. If it is local, then the whole time series will be\
mix-max scaled. If it is local, then each subseries of length \
target_len will be min-max scaled independenty. If is is NoScale\
then no scaling is applied to the dataset."
self.scaling = scaling
self.cardinality = cardinality
self.embedding_dim = embedding_dim
self.self_attention = self_attention
self.pos_enc_dimension = pos_enc_dimension
self.context_length = context_length
assert context_length <= target_len
if exclude_index is None:
self.exclude_index = []
else:
self.exclude_index = exclude_index
def create_transformation(
self, instance_splitter: bool = False, train=True
):
time_features = time_features_from_frequency_str(self.freq)
remove_field_names = [FieldName.FEAT_DYNAMIC_CAT]
if not self.use_feat_static_real:
remove_field_names.append(FieldName.FEAT_STATIC_REAL)
if not self.use_feat_dynamic_real:
remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)
transformation = Chain(
[RemoveFields(field_names=remove_field_names)]
+ (
[SetField(output_field=FieldName.FEAT_STATIC_CAT, value=[0.0])]
if not self.use_feat_static_cat
else []
)
+ (
[
SetField(
output_field=FieldName.FEAT_STATIC_REAL, value=[0.0]
)
]
if not self.use_feat_static_real
else []
)
+ [
AddObservedValuesIndicator(
target_field=FieldName.TARGET,
output_field=FieldName.OBSERVED_VALUES,
),
AsNumpyArray(
field=FieldName.FEAT_STATIC_CAT,
expected_ndim=1,
dtype=np.float32,
),
AddTimeFeatures(
start_field=FieldName.START,
target_field=FieldName.TARGET,
output_field=FieldName.FEAT_TIME,
time_features=time_features,
pred_length=self.target_len,
),
]
+ (
[
AddPositionalEncoding(
start_field=FieldName.START,
target_field=FieldName.TARGET,
output_field=FieldName.POS_ENCODING,
pos_enc_dimension=self.pos_enc_dimension,
),
VstackFeatures(
output_field=FieldName.FEAT_TIME,
input_fields=[
FieldName.FEAT_TIME,
FieldName.POS_ENCODING,
],
),
]
if self.pos_enc_dimension > 0
else []
)
+ [
AddAgeFeature(
target_field=FieldName.TARGET,
output_field=FieldName.FEAT_AGE,
pred_length=self.target_len,
log_scale=True,
dtype=np.float32,
),
VstackFeatures(
output_field=FieldName.FEAT_TIME,
input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE]
+ (
[FieldName.FEAT_DYNAMIC_REAL]
if self.use_feat_dynamic_real
else []
),
),
]
+ (
[
InstanceSplitter(
target_field=FieldName.TARGET,
is_pad_field=FieldName.IS_PAD,
start_field=FieldName.START,
forecast_start_field=FieldName.FORECAST_START,
instance_sampler=ExpectedNumInstanceSampler(
num_instances=1, min_future=self.target_len,
)
if train
else TestSplitSampler(min_past=self.target_len,),
past_length=self.target_len,
future_length=self.target_len,
time_series_fields=[
FieldName.FEAT_TIME,
FieldName.OBSERVED_VALUES,
],
)
]
if instance_splitter
else []
),
)
return transformation
def _str2bool(self, v):
return not (v.lower() in ("false"))
def create_training_network(self):
gen = ProGenerator(
target_len=self.target_len,
nb_features=self.nb_features,
ks_conv=self.ks_conv,
key_features=self.key_features,
value_features=self.value_features,
ks_value=self.ks_value,
ks_query=self.ks_query,
ks_key=self.ks_key,
scaling=self.scaling,
device=self.device.type,
cardinality=self.cardinality,
embedding_dim=self.embedding_dim,
self_attention=self.self_attention,
channel_nb=self.channel_nb,
context_length=self.context_length,
)
discrim = ProDiscriminator(
target_len=self.target_len,
nb_features=self.nb_features,
ks_conv=self.ks_conv,
key_features=self.key_features,
value_features=self.value_features,
ks_value=self.ks_value,
ks_query=self.ks_query,
ks_key=self.ks_key,
cardinality=self.cardinality,
embedding_dim=self.embedding_dim,
self_attention=self.self_attention,
channel_nb=self.channel_nb,
)
network = ProGenDiscrim(discriminator=discrim, generator=gen)
if self._str2bool(self.path_to_pretrain):
network.load_state_dict(
torch.load(
self.path_to_pretrain, map_location=torch.device("cpu")
)["generator_model_state_dict"]
)
logger.info("Pre trained has been loaded")
else:
logger.info("No pre trained model has been loaded")
return network
def train(
self, training_data: Dataset, validation_data: Optional[Dataset] = None
):
transformation = self.create_transformation()
ds = Data(
training_data,
transformation,
self.num_batches_per_epoch,
self.target_len,
self.batch_size,
device=self.device,
scaling=self.scaling,
context_length=self.context_length,
exclude_index=self.exclude_index,
)
dataloader = DataLoader(ds, batch_size=self.batch_size)
net = self.create_training_network()
logger.info(
f"Batch Size : {self.batch_size},\
Number of Epochs : {self.trainer.num_epochs},\
Learning rate Generator : {self.trainer.lr_generator},\
Learning rate Discriminator : {self.trainer.lr_discriminator},\
Betas Generator : {self.trainer.betas_generator},\
Betas Discriminator : {self.trainer.betas_discriminator},\
Momment Loss : {self.trainer.momment_loss},\
Loss version : {self.trainer.use_loss},\
Pre-Trained Generator : {self.path_to_pretrain},\
Number epoch to fade in layer : {self.trainer.nb_epoch_fade_in_new_layer},\
Target length : {self.target_len},\
Kernel size : {self.ks_conv},\
Key features : {self.key_features},\
Value features : {self.value_features},\
Kernel size value : {self.ks_value},\
Kernel size query : {self.ks_query},\
Kernel size key : {self.ks_key},\
Scaling : {self.scaling},\
Cardinality : {self.cardinality},\
embedding_dim : {self.embedding_dim}\
channel nb: {self.channel_nb}\
positional encoding: {self.pos_enc_dimension}"
)
self.trained_net = self.trainer(data_loader=dataloader, network=net)
predictor = PyTorchPredictor(
prediction_length=self.target_len,
input_names=["past_target", "future_time_feat", "feat_static_cat"],
batch_size=self.batch_size,
freq=self.freq,
prediction_net=ProGeneratorInference(self.trained_net.generator),
input_transform=self.create_transformation(
instance_splitter=True, train=False
),
device="cpu",
)
return predictor
|
python
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.