content
stringlengths
0
894k
type
stringclasses
2 values
import torch import torch.nn as nn import torch.nn.functional as F class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True, drop_enc=False): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.drop_enc = drop_enc # dimension of W is (d, d') self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2*out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj, serv_emb): """ input is initialized doctor embedding, dim = (N, d) adj is the list of services done by each doctor, dim = (N,) serv_emb is the embedding matrix of all services, dim = (K, d) h_prime is the new doctor embedding, dim = (N, d) """ N, d = input.size() num_svc = serv_emb.size()[0] h_doc = torch.mm(input, self.W) h_svc = torch.mm(serv_emb, self.W) a_input = torch.cat((h_doc.repeat(1, num_svc).view(N * num_svc, -1), h_svc.repeat(N, 1)), dim=1).view(N, -1, 2 * self.out_features) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9e15 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) if self.drop_enc: attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h_svc) if self.concat: return F.elu(h_prime) else: return h_prime
python
from FrameLibDocs.utils import read_json, write_json from FrameLibDocs.variables import help_dir, current_version def main(): template_dir = help_dir / "templates" internal_dir = help_dir / "internal_tabs" external_dir = current_version / "FrameLib" / "externals" master_template = help_dir / "help_template.maxhelp" templates = [x for x in template_dir.rglob("fl.*.maxhelp")] for t in templates: try: template = read_json(t) tabs = read_json(internal_dir / t.name) except FileNotFoundError: print(f'Ignoring {t.stem} wthout internal tabs') else: tabs_boxes = tabs["patcher"]["boxes"] for box in tabs_boxes: template["patcher"]["boxes"].append(box) write_json(template_dir / t.name, template) if __name__ == "__main__": main()
python
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import inspect import multiprocessing from typing import Tuple, Callable, Union, List, Type, Optional import numpy as np import tensorflow as tf from absl import flags import objax from examples.fixmatch.libml.augment import ctaugment from examples.fixmatch.libml.augment.core import get_tf_augment from examples.fixmatch.libml.data import core FLAGS = flags.FLAGS flags.DEFINE_string( 'augment', 'CTA(sm,sm,sm)', 'Dataset augmentation method:\n' ' Augmentation primitives:\n' ' x = identity\n' ' m = mirror\n' ' s = shift\n' ' sc = shift+cutout\n' ' sm = shift+mirror\n' ' smc = shift+mirror+cutout\n' 'Augmentations:\n' ' (primitive,primitive,primitive) = Default augmentation (primitives for labeled, 1st unlabeled, 2nd unlabeled)\n' ' CTA(primitive,primitive,primitive,depth=int,th=float,decay=float) = CTAugment\n') class AugmentPool: NAME = '' def __init__(self, labeled: core.DataSet, unlabeled: core.DataSet, nclass: int, batch: int, uratio: int, tfops: Tuple[Callable, Callable, Callable], predict: Callable): x = labeled.map(tfops[0], FLAGS.para_augment).batch(batch).nchw().one_hot(nclass) u = unlabeled.map(lambda d: dict(image=tf.stack([tfops[1](d)['image'], tfops[2](d)['image']]), index=d['index'], label=d['label']), FLAGS.para_augment) u = u.batch(batch * uratio).map(lambda d: dict(image=tf.transpose(d['image'], [0, 1, 4, 2, 3]), index=d['index'], label=d['label'])) train = x.zip((x.data, u.data)).map(lambda x, u: dict(xindex=x['index'], x=x['image'], label=x['label'], uindex=u['index'], u=u['image'], secret_label=u['label'])) self.train = core.Numpyfier(train.prefetch(16)) self.predict = predict def __iter__(self): return iter(self.train) class AugmentPoolCTA(AugmentPool): NAME = 'CTA' def __init__(self, labeled: core.DataSet, unlabeled: core.DataSet, nclass: int, batch: int, uratio: int, tfops: Tuple[Callable, Callable, Callable], predict: Callable, depth: Union[int, str] = 2, th: Union[float, str] = 0.8, decay: Union[float, str] = 0.99): super().__init__(labeled, unlabeled, nclass, batch, uratio, tfops, predict) self.pool = multiprocessing.Pool(FLAGS.para_augment) self.cta = ctaugment.CTAugment(int(depth), float(th), float(decay)) self.queue = [] @staticmethod def numpy_apply_policies(x, u, cta: ctaugment.CTAugment): x = objax.util.image.nhwc(x) u = objax.util.image.nhwc(u) nchw = objax.util.image.nchw policy_list = [cta.policy(probe=True) for _ in range(x.shape[0])] cutout_policy = lambda probe: cta.policy(probe=probe) + [ctaugment.OP('cutout', (1,))] u_strong = np.stack([ctaugment.apply(u[i, 1], cutout_policy(False)) for i in range(u.shape[0])]) return dict(policy=policy_list, probe=nchw(np.stack([ctaugment.apply(x[i], policy) for i, policy in enumerate(policy_list)])), u=nchw(np.stack([u[:, 0], u_strong], axis=1))) def __iter__(self): for data in self.train: self.queue.append((dict(xindex=data['xindex'], uindex=data['uindex'], x=data['x'], label=data['label'], secret_label=data['secret_label']), self.pool.apply_async(self.numpy_apply_policies, (data['x'], data['u'], self.cta)))) if len(self.queue) > 2 * FLAGS.para_augment: d, pd = self.queue.pop(0) d.update(pd.get()) probe = self.predict(d['probe']) w1 = 1 - 0.5 * np.abs(probe - d['label']).sum(1) for p in range(w1.shape[0]): self.cta.update_rates(d['policy'][p], w1[p]) yield d def get_augment(train: core.DataSet, extra: Optional[List[Type[AugmentPool]]] = None): pool, a = FLAGS.augment.split('(') a = a[:-1].split(',') a, kwargs = a[:3], {k: v for k, v in (x.split('=') for x in a[3:])} kwargs['tfops'] = tuple(get_tf_augment(ai, size=train.image_shape[0]) for ai in a) for x in list(globals().values()) + (extra or []): if inspect.isclass(x) and issubclass(x, AugmentPool): if x.NAME == pool: pool = x return functools.partial(pool, **kwargs)
python
from mini_gplus.models import Media def get_media(object_name): return Media.objects.get(id=object_name) def create_media(object_name): media = Media() media.id = object_name # have to force save for some reason... # https://github.com/MongoEngine/mongoengine/issues/1246 media.save(force_insert=True) return media
python
# -*- coding: utf-8 -*- """Particle system Constraints objects MIT License Copyright (c) 2020 Mauro Lopez Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT """ class Constraint(object): """base particles constraint abstraction """ def solve(self): """this method will be called for the dynamic system to solve the costraints between particles, this should be override by each Constraint instance """ raise NotImplementedError class ParticleLink(Constraint): """connect two particles together in order to preserve the fixed distance between them """ def __init__(self, particleA, particleB, damping=.9): self._particleA = particleA self._particleB = particleB self._damping = float(damping) self._restLenght = self.getdistance() def setDamping(self, damping): """how much the linked particule folow without delay Args: damping (float): value between 0-1 """ if damping <=0: damping = 0 self._damping = float(damping) def setRestLenght(self, lenght): """set fixed distance between the particles Args: lenght (float): distance between the particles """ self._restLenght = float(lenght) def getRestLeght(self): """get fixed distance between particles Returns: float """ return self._restLenght def getdistance(self): """get current distance between particles Returns: float """ relativePos = self._particleB.getPosition() - self._particleA.getPosition() return relativePos.magnitude() def solve(self): """move particules preserving the rest distance, if the particles are more far away then the rest distnce it will pull them closer, and vice versa """ if self._particleA.isPinned() and self._particleB.isPinned(): return relativePos = self._particleB.getPosition() - self._particleA.getPosition() distance = relativePos.magnitude() direction = relativePos.normalize() difference = abs(distance - self._restLenght) if distance == self._restLenght: direction *=0 elif (distance > self._restLenght): direction *= -1 offset = .05 if self._particleA.isPinned() or self._particleB.isPinned(): offset = 1.0 movement = direction * difference * self._damping if not self._particleA.isPinned(): self._particleA.addPosition(-movement*offset) if not self._particleB.isPinned(): self._particleB.addPosition(movement*offset) class ParticleSpring(Constraint): """connect two particles together in order to preserve the fixed distance between them preserving the force created after get the fixed distance (streetch or compress force) and aplying that force to the second paricule making it bounce """ def __init__(self, particleA, particleB, springStiffnes=.1, springDamping=.8): self._particleA = particleA self._particleB = particleB self._springStiffnes = float(springStiffnes) self._springDamping = float(springDamping) self._restLenght = self.getdistance() def setRestLenght(self, lenght): """set fixed distance between particles Returns: float """ self._restLenght = float(lenght) def setStiffnes(self, stiffness): """set froce preservation value Returns: float """ self._springStiffnes = float(stiffness) def getRestLeght(self): """get fixed distance between particles Returns: float """ return self._restLenght def getdistance(self): """get current distance between particles Returns: float """ relativePos = self._particleB.getPosition() - self._particleA.getPosition() return relativePos.magnitude() def solve(self): """move particules preserving the rest distance, if the particles are more far away then the rest distnce it will pull them closer, and vice versa then apply the bounce force to the second particule """ if self._particleA.isPinned() and self._particleB.isPinned(): return if self.getRestLeght() == 0: self._particleB.setPosition(self._particleA.getPosition()) return springVector = self._particleB.getPosition() - self._particleA.getPosition() # Vector Between The Two Masses r = springVector.magnitude() # Distance Between The Two Masses tension = r - self.getRestLeght() # curren lenght vs rest lenght if tension <= 0: #avoid sqash repulsion return # The Spring Force Is Added To The Force direction = (springVector / r) # unit vector for representing just the directional vector between the masses force = -direction * tension * self._springStiffnes #force += -(self.mass1.vel - self.mass2.vel) * self.frictionConstant # The Friction Force Is Added To The force #self._particleA.addPosition(force) # Force Is Applied To mass1 self._particleB.addPosition(force*self._springDamping) class ParticlesRope(Constraint): """link several particules to create a rope """ def __init__(self, particles, iterations=20, damping=.9): self._particles = particles self._iterations = iterations self._damping = damping self._links = list() self.setup() def setup(self): """create a link constrain between each particles """ self.link = list() for i, particle in enumerate(self._particles[:-1]): self._links.append(ParticleLink(particle,self._particles[i+1], self._damping)) def solve(self): """solve each link contraints through several iterations to reduce particle position error on each iteration """ for i in range(self._iterations): for link in self._links: link.solve() def setRigidity(self, dampingList): for link, stiff in zip(self._links, dampingList): if stiff>1: stiff = 1 elif stiff<.01: stiff = .01 link.setDamping(stiff)
python
from django.db import models from django.contrib.auth.models import User """Dzien pracy - od zeskanowania kodu do ponownego zeskanowania """ class WorkDay(models.Model): user = models.ForeignKey(User, on_delete=models.SET_NULL, null=True) started = models.DateTimeField(auto_now_add=True) finished = models.DateTimeField(null=True) class Meta: app_label = 'api'
python
import sys import unittest class SC2EnvTests(unittest.TestCase): def test_sc2env_four_towers_hra(self): sys.argv = ['', '--task', 'abp.examples.sc2env.four_towers.hra', '--folder', 'test/tasks/sc2env_four_towers_hra'] from abp.trainer.task_runner import main main() def test_sc2env_four_towers_multi_unit_hra(self): sys.argv = ['', '--task', 'abp.examples.sc2env.four_towers_multi_unit.hra', '--folder', 'test/tasks/sc2env_four_towers_multi_unit_hra'] from abp.trainer.task_runner import main main()
python
# Regression test based on detection of carbuncle phenomenon (Odd-Even decoupling) # MHD Riemann solvers # # Modules import logging import scripts.utils.athena as athena import sys import os from shutil import move sys.path.insert(0, '../../vis/python') import athena_read # noqa athena_read.check_nan_flag = True logger = logging.getLogger('athena' + __name__[7:]) # set logger name based on module _fluxes = ['hlle', 'roe', 'llf', 'lhlld', 'hlld'] _exec = os.path.join('bin', 'athena') # Prepare Athena++ def prepare(**kwargs): logger.debug('Running test ' + __name__) global _fluxes for i in athena.global_config_args: tmp = i.split('=') if tmp[0] == '--flux' and len(tmp) == 2: _fluxes = [tmp[1]] for flux in _fluxes: athena.configure('b', prob='quirk', coord='cartesian', flux=flux, **kwargs) # to save time, reuse compiled .o files for all executables created in this test: athena.make(clean_first=False) move(_exec, _exec + '_' + flux) os.system('cp -r obj obj_' + flux) os.system('rm -rf obj') # Run Athena++ def run(**kwargs): for flux in _fluxes: move(_exec + '_' + flux, _exec) os.system('mv obj_' + flux + ' obj') athena.run('hydro/athinput.quirk', arguments=[]) return 'skip_lcov' # Analyze outputs def analyze(): # read data from error file filename = 'bin/carbuncle-diff.dat' all_data = athena_read.error_dat(filename) all_data = all_data.reshape(len(_fluxes)) # , -1, all_data.shape[-1]) analyze_status = True max_ratio = 0.05 for i, flux in enumerate(_fluxes): data = all_data[i] flux_str = 'With flux "{0:}": '.format(flux) if data > max_ratio and flux not in ['hlld', 'roe']: logger.warning(flux_str + "difference in post-shock P/rho^gamma " + f"in even/odd rows is too large: {data}") analyze_status = False return analyze_status
python
""" ******** INFO ******** Created by Konrad Wybraniec [email protected] ********************** """ from mainwindow import MrRoot if __name__ == '__main__': root = MrRoot() root.configure() root.mainloop() # this is testing comment.
python
# # Copyright (C) 2021 Vaticle # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import os import subprocess import unittest from time import sleep from unittest import TestCase from typedb.client import * SCHEMA = SessionType.SCHEMA WRITE = TransactionType.WRITE READ = TransactionType.READ class TestClusterFailover(TestCase): def setUp(self): root_ca_path = os.environ["ROOT_CA"] credential = TypeDBCredential("admin", "password", root_ca_path) with TypeDB.cluster_client(["127.0.0.1:11729", "127.0.0.1:21729", "127.0.0.1:31729"], credential) as client: if client.databases().contains("typedb"): client.databases().get("typedb").delete() client.databases().create("typedb") def get_primary_replica(self, database_manager: ClusterDatabaseManager): retry_num = 0 while retry_num < 10: print("Discovering replicas for database 'typedb'...") db = database_manager.get("typedb") print("Discovered " + str([str(replica) for replica in db.replicas()])) if db.primary_replica(): return db.primary_replica() else: retry_num += 1 print("There is no primary replica yet. Retrying in 2s...") sleep(2) return self.get_primary_replica(database_manager) assert False, "Retry limit exceeded while seeking a primary replica." def test_put_entity_type_to_crashed_primary_replica(self): root_ca_path = os.environ["ROOT_CA"] credential = TypeDBCredential("admin", "password", root_ca_path) with TypeDB.cluster_client(["127.0.0.1:11729", "127.0.0.1:21729", "127.0.0.1:31729"], credential) as client: assert client.databases().contains("typedb") primary_replica = self.get_primary_replica(client.databases()) print("Performing operations against the primary replica " + str(primary_replica)) with client.session("typedb", SCHEMA) as session, session.transaction(WRITE) as tx: tx.concepts().put_entity_type("person") print("Put the entity type 'person'.") tx.commit() with client.session("typedb", SCHEMA) as session, session.transaction(READ) as tx: person = tx.concepts().get_entity_type("person") print("Retrieved entity type with label '%s' from primary replica." % person.get_label()) assert person.get_label().name() == "person" iteration = 0 while iteration < 10: iteration += 1 primary_replica = self.get_primary_replica(client.databases()) print("Stopping primary replica (test %d/10)..." % iteration) port = primary_replica.address()[10:15] lsof = subprocess.check_output(["lsof", "-i", ":%s" % port]) primary_replica_server_pid = [conn.split()[1] for conn in lsof.decode("utf-8").split("\n") if "LISTEN" in conn][0] print("Primary replica is hosted by server with PID %s" % primary_replica_server_pid) subprocess.check_call(["kill", "-9", primary_replica_server_pid]) print("Primary replica stopped successfully.") sleep(5) # TODO: This ensures the server is actually shut down, but it's odd that it needs to be so long with client.session("typedb", SCHEMA) as session, session.transaction(READ) as tx: person = tx.concepts().get_entity_type("person") print("Retrieved entity type with label '%s' from new primary replica." % person.get_label()) assert person.get_label().name() == "person" idx = str(primary_replica.address())[10] subprocess.Popen(["./%s/typedb" % idx, "cluster", "--data", "server/data", "--address", "127.0.0.1:%s1729:%s1730:%s1731" % (idx, idx, idx), "--peer", "127.0.0.1:11729:11730:11731", "--peer", "127.0.0.1:21729:21730:21731", "--peer", "127.0.0.1:31729:31730:31731", "--encryption-enabled=true"]) lsof = None live_check_iteration = 0 while not lsof and live_check_iteration < 60: live_check_iteration += 1 try: lsof = subprocess.check_output(["lsof", "-i", ":%s" % port]) except subprocess.CalledProcessError: pass if __name__ == "__main__": unittest.main(verbosity=2)
python
#!/usr/bin/env python # coding: utf-8 # # <a href="https://colab.research.google.com/github/aviadr1/learn-advanced-python/blob/master/content/14_pandas/edm_us_adult_census_income/questions.ipynb" target="_blank"> # <img src="https://colab.research.google.com/assets/colab-badge.svg" # title="Open this file in Google Colab" alt="Colab"/> # </a> # # # get the data # run the following two cells below to get the data for this exercise, # then followup by reading the questions and writing your own code to answer them. # In[1]: get_ipython().system('pip install requests') # In[2]: import requests url = "http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.data" request = requests.get(url) request.raise_for_status() with open('adult.csv', 'w') as f: f.write(request.text) ### now the data is available in the file adult.csv. ### read the questions below # import pandas as pd # pd.read_csv('adult.csv') # # income for adults from the 1994 census # This dataset was extracted done by Barry Becker from the 1994 Census database. # source: http://mlr.cs.umass.edu/ml/datasets/Adult # # Listing of attributes: # # * age: continuous. # * workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked. # * fnlwgt: continuous. # * education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool. # * education-num: continuous. # * marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse. # * occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces. # * relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried. # * race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black. # * sex: Female, Male. # * capital-gain: continuous. # * capital-loss: continuous. # * hours-per-week: continuous. # * native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands. # * income: >50K, <=50K. # # ## 1. load the data # 1. extract the column names from the description and read the csv while supplying the columns names # - rename columns with a hyphen `-` to use underscores `_` insead. example: `capital-gain --> capital_gain` # - look at the head() # 2. look at info, dtype, check for nan values # 3. what are the value counts of the categorical variables: workclass, education, marital_status, occupation, relationship, race, sex, native_country, income? # - do you notice the extra space ' ' at the beginning of each value? # - remove the extra space # 4. turn 'sex' and 'income' into 0/1 fields # - replace the categorical 'sex' column with a numerical 'female' column with value 1 for females and 0 for males # - replace the categorical 'income' column with a numerical 'over50k' column with value 1 for '>50k' and 0 for '<50K' # 5. use `.describe()` function to get descriptive statistics for most columns # - make sure that 'sex' and 'over50k' are now numerical fields # ## 2. explore capital gains / losses # ### capital_gain # 1. plot the histogram for capital gains # - verbally describe what you see # 2. for people who have `capital_gain > 0` # - plot the histogram for capital gains # 3. how many people have capital gains over 25000? # - use `value_counts()` to look at all the values of capital_gain over 25000. # - what's weird about the data? # 4. could the people who had capital_gain==25124 be related? # 5. does capital_gain over 50k mean income is over 50k? # # ### capital_loss # 1. plot the histogram of capital_loss # 2. for people who have `capital_loss > 0` # - plot the histogram for capital_loss # 3. how many people had both `capital_gain>0` and `capital_loss>0` ? # 4. who can afford to lose money on capital investments? # - what percent of people overall had over 50K income? # - what percent of people with 0 capital_loss? with capital_loss>0? # # ### combining and binning # 1. create a new `capital_change` column that equals `capital_gain - capital_loss` # 2. use the `qcut` function to quantize/bin/cut `capital_change` into a new columns called `capital_change_bin` with 10 bins of equal proportions. # 1. do not bin `capital_change==0` values as there are too many of them # 2. to simplify using this column later, use the left side of the interval created as the label # 3. label rows with `capital_change==0` as having `capital_change_bin=0` # 4. make sure you have no null values for `capital_change_bin` # 3. how many people have a non-zero capital_change? # - lets call this 'has_capital_change' # - plot 'has_capital_change' over 'over50k' # - what do you learn from this diagram # 4. plot `capital_change` by `over50k` # - what do you learn from this diagram # 4. plot `over50k` by `capital_change_bin` # - what can you learn from this diagram? # # ## education # 1. what is the mean education_num by education? # - sort the education categories by the mean_values. does it make sense # - check out other descriptive statistics to see if anything falls out of place # - turn education into a categorical ordered type # - plot education VS education_num # - what have we learned? # 1. plot the distribution for `education` # 2. plot over50k by education # - what can we learn? # 3. plot hours_per_week by education # 1. what can we learn from this plot? # 2. now use the hue="over50k" of seaborn to see hours_per_week by education/over50k. # - learn anything else? # 4. plot education_num by occupation # - sort by mean education_num # 4. plot education_num by workclass # - sort by mean education_num # 5. create a crosstab or a pivot_table of education VS occupation. # - normalize it by the education rows # (each row X shows the conditional probability of having occupation Y by education level X) # - create a heatmap that shows which occpupations are most likely for each education level # - verbally describe what you've learned # 6. create a crosstab or a pivot_table of education VS workclass. # - normalize it by the education rows # (each row X shows the conditional probability of having workclass Y by education level X) # - create a heatmap that shows which workclass is most likely for each education level # - verbally describe what you've learned # - re-run this analysis without the private sector # 7. plot "race" vs "education_num # 8. plot "relationship" vs "education_num # ## occupation / workclass # 1. how many levels of occupation? # 2. how many levels of worklass? # 3. how many combinations? potential? actual? # 4. plot `over50k` by `occupation` # - sort by mean `over50k` # - compare this to `over50k` by `education`. which variable more strongly predicts income? # - compare this to `education_num` by `occupation`. are the highest paying jobs correlated with highest earning education? # 5. plot `over50k` by `workclass` # 6. look at combinations of occupation / workclass # 1. what are the top combinations in terms of earning over50k (mean)? how many people in that category? # 2. how many of these combinations have more than 100 people? # 3. show a heatmap of the mean over50k of occupation-vs-worklass for combinations with more than 100 people. # center the heatmap at the populations mean over50k for increased effect. # what conclusions can you draw? # 7. create a numerical encoding for occupation / workclass pairs # - create a new column called "occ_class" that combines the string of the occupation and workclass # - use the library [category_encoders](http://contrib.scikit-learn.org/categorical-encoding/), here's an [intro](https://towardsdatascience.com/smarter-ways-to-encode-categorical-data-for-machine-learning-part-1-of-3-6dca2f71b159) how to do it # - use the weight of evidence encoder `ce.woe.WOEEncoder` here's an [article](https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02#targetText=Weight%20of%20Evidence%20Encoding,-Weight%20of%20Evidence&targetText=Weight%20of%20evidence%20(WOE)%20is%20a%20measure%20of%20how%20much,P(Bads)%20%3D%201.) explaining it # - add the encoded occ_class as a new column called `occ_class_woe` to your dataframe # # ## correlations # 1. which features are most important, which correlate? # - compute the correction matrix of features with themselves # 2. draw a clustermap or heatmap of this correlation # - center the cluster at 0 # - annotate the plot with the correlation values # 3. look at the strongest correlations and draw some conclusions. # # ## TODO: # 1. look at `relationship` and `marriage_status`. how meaningful are they? should we encode them? # 2. look at `native_country`. how does immigration effect other variables? should we build further categories based on continent or on 1st/2nd/3rd world countries? should we add an `is_immigrant` boolean column? # 3. we've done the analysis treating each row of the data as a person, when **in fact** each row represents a large group of people, with the variable `fnlwgt` counting how many people are in the group. redo some of the analysis with weighted averages # 4. look further at age. should we cut this continous variable into age groups like 18-25, 25-40 etc ? # - combine age/relationship to see if relationship effects can be explained away by age # 4. `education_num` seems to be a label encoding of `education`. I think some degrees are not properly captured with that encoding, like `assoc-voc`. it would be interesting to to recode it with woe against `over50k` and see if anything changes. # 5. data quality questions: # - why are women under-represented in this data # - why are there no hispanic/latin category in race? # 6. compare to other interesting analysis: # - Predicting Earning Potential using the Adult Dataset https://rpubs.com/H_Zhu/235617 # - related notebook on kaggle https://www.kaggle.com/uciml/adult-census-income # # In[ ]: # # ```{toctree} # :hidden: # :titlesonly: # # # solution # ``` #
python
#!/usr/bin/env python """ _AcquireFiles_ MySQL implementation of Subscription.GetCompletedFiles """ __all__ = [] from WMCore.WMBS.MySQL.Subscriptions.GetAvailableFiles import GetAvailableFiles class GetCompletedFiles(GetAvailableFiles): sql = """SELECT wmsfc.fileid, wl.site_name FROM wmbs_sub_files_complete wmsfc INNER JOIN wmbs_file_location wfl ON wfl.fileid = wmsfc.fileid INNER JOIN wmbs_location_pnns wlpnn ON wlpnn.pnn = wfl.pnn INNER JOIN wmbs_location wl ON wl.id = wlpnn.location WHERE wmsfc.subscription = :subscription """ def execute(self, subscription=None, conn=None, transaction=False): results = self.dbi.processData(self.sql, {"subscription": subscription}, conn=conn, transaction=transaction) return self.formatDict(results)
python
# Generated by Django 4.0.2 on 2022-03-01 16:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Library', '0002_book_image'), ] operations = [ migrations.AlterField( model_name='book', name='Image', field=models.ImageField(default='default.jpg', upload_to='book_images'), ), ]
python
#!/usr/bin/python3 import copy import itertools as it import os import unittest import unittest.mock as mock import plato_pylib.plato.parse_tbint_files as parseTbint import plato_pylib.plato.private.tbint_test_data as tData import plato_fit_integrals.core.coeffs_to_tables as tCode class TestIntegralHolder(unittest.TestCase): def setUp(self): self.atomPairNames = [("Mg","Mg")] self.integDicts = [ {k.lower():v for k,v in tData.loadTestBdtFileAExpectedVals_format4().items()} ] self.testObjA = tCode.IntegralsHolder(self.atomPairNames, self.integDicts) self.expGetPairPot = copy.deepcopy(self.integDicts[0]["pairpot"][0]) self.expGetPairPot.integrals[:,1] = [6.224678330, -0.010034643, -0.000000300] self.expGetHopPpPi = copy.deepcopy(self.integDicts[0]["hopping"][-1]) hopCorrVals = [-0.02, -0.023, -0.000045] for idx in range(len(self.expGetHopPpPi.integrals)): self.expGetHopPpPi.integrals[idx,1] += hopCorrVals[idx] def testGetterForPairPotInclCorrection_singleFile(self): atomA, atomB, integStr = "Mg", "Mg", "PAirPOt" #Weird format on integStr since it should be case-insensitive anyway actIntegObj = self.testObjA.getIntegTable(integStr, atomA, atomB) self.assertEqual( self.expGetPairPot, actIntegObj ) def testGetterFromIntegTableInfoPairPot_singleFile(self): mockModFolder = "something" atomA, atomB, integStr = "Mg", "Mg", "PAirPOt" integInfoTable = tCode.IntegralTableInfo(mockModFolder, integStr, atomA, atomB) actIntegObj = self.testObjA.getIntegTableFromInfoObj(integInfoTable) self.assertEqual( self.expGetPairPot, actIntegObj ) def testSetterForPairPot_singleFile(self): atomA, atomB, integStr = "Mg", "Mg", "Pairpot" testSetTable = copy.deepcopy(self.integDicts[0]["pairpot"][0]) testSetTable.integrals[:,1] *= -1 #We want the pair-potential to be unchanged internally, only the correction #So if the internal PP repr is unchanged AND PP+corr(result of the getter) is what it was set #to then the setter has worked correctly self.testObjA.setIntegTable(testSetTable, integStr, atomA, atomB) actTablePP = self.testObjA.integDicts[0]["pairpot"][0] expTablePP = self.integDicts[0]["pairpot"][0] actFullPPTable = self.testObjA.getIntegTable(integStr, atomA, atomB) self.assertEqual(expTablePP, actTablePP) self.assertEqual(testSetTable, self.testObjA.getIntegTable(integStr, atomA, atomB) ) def testGetterForHopInts_singleFile(self): atomA, atomB, integStr = "Mg", "Mg", "hopping" shellA, shellB, axAngMom = 1,1,2 #pp pi actIntegObj = self.testObjA.getIntegTable(integStr, atomA, atomB, shellA, shellB, axAngMom) self.assertEqual( self.expGetHopPpPi , actIntegObj) def testGetterFromIntegTableInfoHopInts_singleFile(self): atomA, atomB, integStr = "Mg", "Mg", "hopping" shellA, shellB, axAngMom = 1,1,2 #pp pi mockFolder = "something" integInfoTable = tCode.IntegralTableInfo(mockFolder, integStr, atomA, atomB, shellA, shellB, axAngMom) actIntegObj = self.testObjA.getIntegTableFromInfoObj(integInfoTable) self.assertEqual( self.expGetHopPpPi, actIntegObj ) def testSetterForHopInts_singleFile(self): atomA, atomB, integStr = "Mg", "Mg", "hopping" shellA, shellB, axAngMom = 1,1,2 #pp pi testSetTable = copy.deepcopy(self.integDicts[0]["hopping"][-1]) testSetTable.integrals[:,1] *= -1 #Same logic as pair-pot test. Make sure the hopping integrals unchanged; only the correction integrals should be altered self.testObjA.setIntegTable(testSetTable, integStr, atomA, atomB, shellA, shellB, axAngMom) actHopTableNoCorrs = self.testObjA.integDicts[0]["hopping"][-1] expTableHopNoCorrs = self.integDicts[0]["hopping"][-1] actTableInclCorrs = self.testObjA.getIntegTable(integStr,atomA,atomB,shellA,shellB,axAngMom) self.assertEqual(expTableHopNoCorrs, actHopTableNoCorrs) #Making sure we dont modify the hopping integral table(just the corr table) self.assertEqual( testSetTable, actTableInclCorrs ) #Making sure setter/getter consistent def testSetterForHopIntsFromIntegInfo_singleFile(self): mockModFolder = "something" atomA, atomB, integStr = "Mg", "Mg", "hopping" shellA, shellB, axAngMom = 1,1,2 #pp pi testSetTable = copy.deepcopy(self.integDicts[0]["hopping"][-1]) testIntegInfo = tCode.IntegralTableInfo(mockModFolder, integStr, atomA, atomB, shellA, shellB, axAngMom) testSetTable.integrals[:,1] *= -1 #Same logic as pair-pot test. Make sure the hopping integrals unchanged; only the correction integrals should be altered self.testObjA.setIntegTableFromInfoObj(testSetTable,testIntegInfo) actHopTableNoCorrs = self.testObjA.integDicts[0]["hopping"][-1] expTableHopNoCorrs = self.integDicts[0]["hopping"][-1] actTableInclCorrs = self.testObjA.getIntegTable(integStr,atomA,atomB,shellA,shellB,axAngMom) self.assertEqual(expTableHopNoCorrs, actHopTableNoCorrs) #Making sure we dont modify the hopping integral table(just the corr table) self.assertEqual( testSetTable, actTableInclCorrs ) #Making sure setter/getter consistent class TestCoeffsTableConverterWriteTables(unittest.TestCase): def setUp(self): self.atomPairNames = [("Xa","Xb")] self.integDicts = [ {k.lower():v for k,v in tData.loadTestBdtFileAExpectedVals_format4().items()} ] self.integDicts[0]["PairPotCorrection0".lower()][0].integrals[:,1] = 0 #no PP Correction, means it will equal any change i make in total PP #Write integrals to file self.outFileA = "Xa_Xb.bdt" #Needs to match the atomPairNames parseTbint.writeBdtFileFormat4(self.integDicts[0], self.outFileA) integHolder = tCode.IntegralsHolder(self.atomPairNames, copy.deepcopy(self.integDicts)) integInfo = createIntegTableInfoXaXbPairPot( os.getcwd() ) mockedAnalyticalRepr = mock.Mock() mockedAnalyticalRepr.evalAtListOfXVals = lambda x: [0 for a in x] self.testObj = tCode.CoeffsTablesConverter([mockedAnalyticalRepr], [integInfo], integHolder) def tearDown(self): os.remove(self.outFileA) def testCorrectlyWritesPairPot_singleFile(self): expPPCorr = self.integDicts[0]["pairpot"][0] expPPCorr.integrals[:,1] *= -1 #Total PP is zero, so the correction must exactly cancel the initial self.testObj.writeTables() #Will always update before writing them actualPPCorr = parseTbint.getIntegralsFromBdt(self.outFileA)["PairPotCorrection0"][0] self.assertEqual(expPPCorr, actualPPCorr) class TestCoeffsTableConverterPassCoeffs(unittest.TestCase): def setUp(self): integHolder = None integInfoList = [None] mockedAnalyticalReprs = [mock.Mock() for x in range(3)] self.nCoeffs = [2,2,1] for x,nCoeff in it.zip_longest(mockedAnalyticalReprs, self.nCoeffs): x.nCoeffs=nCoeff coeffVals = [[0,1],[2,3],[4]] self.mergedListCoeffs = [0,1,2,3,4] for x,coeffs in it.zip_longest(mockedAnalyticalReprs,coeffVals): x.coeffs = coeffs self.testObj = tCode.CoeffsTablesConverter( mockedAnalyticalReprs, integInfoList, integHolder ) def testGetCoeffs(self): expCoeffs = self.mergedListCoeffs actCoeffs = self.testObj.coeffs [self.assertEqual(exp,act) for exp,act in it.zip_longest(expCoeffs,actCoeffs)] def testSetCoeffs(self): expCoeffs = [9,10,11,12,13] self.testObj.coeffs = expCoeffs actCoeffs = self.testObj.coeffs [self.assertEqual(exp,act) for exp,act in it.zip_longest(expCoeffs,actCoeffs)] def createIntegTableInfoXaXbPairPot(modelFolder): return tCode.IntegralTableInfo(modelFolder, "pairpot", "Xa", "Xb") if __name__ == '__main__': unittest.main()
python
from unittest import TestCase, mock from flask import url_for from app import app class RootTests(TestCase): def setUp(self): self.app = app self.app.testing = True self.app_context = self.app.test_request_context() self.app_context.push() self.client = self.app.test_client() def test_root_deve_retornar_hello_world(self): request = self.client.get(url_for('hello')) self.assertEqual('Hello World!', request.data.decode()) def test_root_deve_retornar_status_code_200(self): request = self.client.get(url_for('hello')) self.assertEqual(200, request.status_code)
python
from django.apps import AppConfig class DadfesConfig(AppConfig): name = "dadfes"
python
########################################################## ### PYGAME – Graph ### ### 1st Project for Data Structure at NYU Shanghai ### ########################################################## __author__ = "Jack B. Du (Jiadong Du)" __copyright__ = "Copyright 2014, the DS 1st Project @NYUSH" __version__ = "0.0.1" __email__ = "[email protected]" __status__ = "Developing" import time import random import pygame from pygame.locals import * import sys import functions ############ ## SETUPS ## ############ ## initialize pygame pygame.init() ## setups SCREEN_WIDTH = 1240 SCREEN_HEIGHT = 768 infoObject = pygame.display.Info() FULLSCREEN_WIDTH = infoObject.current_w FULLSCREEN_HEIGHT = infoObject.current_h CURRENT_SCREEN_WIDTH = SCREEN_WIDTH CURRENT_SCREEN_HEIGHT = SCREEN_HEIGHT SCREEN_SIZE = (CURRENT_SCREEN_WIDTH, CURRENT_SCREEN_HEIGHT) MARGIN_BOTTOM = 30 MARGIN_LEFT = 30 MARGIN_RIGHT = 30 MARGIN_TOP = 30 FONT_SIZE = 20 myfont = pygame.font.SysFont("arial", FONT_SIZE) paused = False maxValueList = [] reset = True # default screen mode fullscreen = False # set caption on the bar pygame.display.set_caption('Jack B. Du\'s Graph') # create screen screen = pygame.display.set_mode(SCREEN_SIZE,0,32) # background setup background = pygame.Surface(screen.get_size()) background = background.convert() backgorund_color = (0 ,0 , 0) background.fill(backgorund_color) # runtime of f def timer(f, *p): begin_time = time.clock() f(*p) end_time = time.clock() return(end_time - begin_time) def main(): # a list of functions, which support one-list input, two-list input and integer input functionList = [functions.countEvens, functions.myMin, functions.myMax, functions.median, functions.secondBiggest, functions.LIS, functions.dot, functions.intersect1, functions.intersect2, functions.fib] # plot the functions sim(functionList) def sim(functionList): global screen, fullscreen, SCREEN_SIZE, CURRENT_SCREEN_WIDTH, CURRENT_SCREEN_HEIGHT, background, paused, maxValueList, reset mainloop = True highlightedColor = (255,255,255) # color for highlighted color # mainloop while mainloop: if reset: textX, textY = 0, -400 manul = 1 # percentage of height size = 10 # input step size N = size # initial input size yPointList = [] # y value for each point pointList = [] # all the points color = [] # color for each graph highlight = 0 # default highlight graph number maxDict = {} # dict of max value for different algorithms hide = False # whether or not hide the graphs that are not highlighted # create different lists of lists for each function for num in range(len(functionList)): yPointList.append([]) pointList.append([]) color.append([]) color[num]=(random.randint(1,255),random.randint(1,255),random.randint(1,255)) count = 0 # loop count highest = 0 # highest point, max y value of all points highlighted = False # whether in the highlighted mode or not changed = True # whether changed manually or not reset = False if textY < 0: textY += 20 if not paused: N += size for event in pygame.event.get(): # the quit on the system bar if event.type == QUIT: mainloop = False elif event.type == KEYDOWN: if event.key == K_q: # quit with q/Q key mainloop = False elif event.key == K_f: ## press f/F to enter/exit fullscreen mode fullscreen = not fullscreen if fullscreen: CURRENT_SCREEN_WIDTH = FULLSCREEN_WIDTH CURRENT_SCREEN_HEIGHT = FULLSCREEN_HEIGHT SCREEN_SIZE = (CURRENT_SCREEN_WIDTH, CURRENT_SCREEN_HEIGHT) screen = pygame.display.set_mode(SCREEN_SIZE, FULLSCREEN, 32) background = pygame.Surface(screen.get_size()) background = background.convert() background.fill((0, 0, 0)) else: CURRENT_SCREEN_WIDTH = SCREEN_WIDTH CURRENT_SCREEN_HEIGHT = SCREEN_HEIGHT SCREEN_SIZE = (CURRENT_SCREEN_WIDTH, CURRENT_SCREEN_HEIGHT) screen = pygame.display.set_mode(SCREEN_SIZE, 0, 32) background = pygame.Surface(screen.get_size()) background = background.convert() background.fill((0, 0, 0)) elif event.key == K_w: # set background white, highlighted black background.fill((255, 255, 255)) highlightedColor = (0,0,0) elif event.key == K_b: # set background black, highlighted white background.fill((0, 0, 0)) highlightedColor = (255,255,255) elif event.key == K_EQUALS: # scale by 10 changed = True manul *= 10 elif event.key == K_MINUS: # scale by 1/10 manul /= 10 changed = True elif event.key == K_d or event.key ==K_0: # press d/0 key to default scale manul = 1 changed = True elif event.key == K_h: hide = not hide elif event.key == K_SPACE: paused = not paused elif event.key == K_r: reset = True # press n key to scale by 10n elif event.key == K_1: manul = 10 changed = True elif event.key == K_2: manul = 20 changed = True elif event.key == K_3: manul = 30 changed = True elif event.key == K_4: manul = 40 changed = True elif event.key == K_5: manul = 50 changed = True elif event.key == K_6: manul = 60 changed = True elif event.key == K_7: manul = 70 changed = True elif event.key == K_8: manul = 80 changed = True elif event.key == K_9: manul = 90 changed = True # highlighting options elif event.key == K_UP: changed = False if highlighted: currentPos = valueList.index(valueDict[highlight]) if currentPos > 0: # highlight the upper graph highlight = unsortedValueList.index(valueList[currentPos-1]) else: highlighted = True # set to highlighted highlight = unsortedValueList.index(valueList[-1]) # start with the bottom elif event.key == K_DOWN: changed = False if highlighted: currentPos = valueList.index(valueDict[highlight]) if currentPos < len(functionList)-1: # highlight the lower graph highlight = unsortedValueList.index(valueList[currentPos+1]) else: highlighted = True # set to highlighted highlight = unsortedValueList.index(valueList[0]) # start with the top elif event.key == K_ESCAPE: # press ESC to escape highlight mode highlighted = False screen.blit(background,(0,0)) inputNum = str(int(N/size)) + " (loopCount)" loopLabel = myfont.render(inputNum, 1, (0,0,255)) screen.blit(loopLabel, (MARGIN_LEFT*2+textX, MARGIN_TOP+textY)) framePointList = [(MARGIN_LEFT,MARGIN_TOP),(MARGIN_LEFT,CURRENT_SCREEN_HEIGHT-MARGIN_BOTTOM),(CURRENT_SCREEN_WIDTH-MARGIN_RIGHT,CURRENT_SCREEN_HEIGHT-MARGIN_BOTTOM)] pygame.draw.lines(screen, (150,150,150), False, framePointList, 1) if not paused: count += 1 valueDict = {} valueList = [] for function in functionList: A = [i for i in range (N)] random.shuffle(A) try: time = timer(function, A) except: try: B = [i for i in range (N)] random.shuffle(B) time = timer(function, A, B) except: time = timer(function, 10*N) if time>highest: highest = time valueDict[functionList.index(function)] = time valueList.append(time) yPointList[functionList.index(function)].append(time) if highlighted and not(changed): if not paused: maxValueList = [] for function in functionList: maxValue = max(yPointList[functionList.index(function)]) maxDict[functionList.index(function)] = maxValue maxValueList.append(maxValue) manul = highest/maxValueList[highlight] for function in functionList: pointList[functionList.index(function)]=[(MARGIN_LEFT,CURRENT_SCREEN_HEIGHT-MARGIN_BOTTOM)] ## starts from (0,0) for num in range(count): posX = (CURRENT_SCREEN_WIDTH - MARGIN_LEFT - MARGIN_RIGHT)/count * (num+1) + MARGIN_LEFT posY = (CURRENT_SCREEN_HEIGHT - MARGIN_BOTTOM - MARGIN_TOP)*(1-manul*yPointList[functionList.index(function)][num]/highest) + MARGIN_TOP pointList[functionList.index(function)].append((posX,posY)) if count > 1: if not hide: for num in range(len(functionList)): pygame.draw.lines(screen, color[num], False, pointList[num], 1) if highlighted: pygame.draw.lines(screen, highlightedColor, False, pointList[highlight], 2) if not paused: unsortedValueList = [] unsortedValueList += valueList valueList.sort() valueList.reverse() for function in functionList: functionInfo = str(format(valueDict[functionList.index(function)],',.6f')) + " (" + str(function)[10:-16] + ")" if highlighted and functionList.index(function) == highlight: functionLabel = myfont.render(functionInfo, 1, highlightedColor) else: functionLabel = myfont.render(functionInfo, 1, color[functionList.index(function)]) screen.blit(functionLabel, (MARGIN_LEFT*2+textX, textY+MARGIN_TOP+FONT_SIZE+FONT_SIZE*valueList.index(valueDict[functionList.index(function)]))) percentageInfo = str(int(manul*100)) + '%' + " (scale)" percentageLabel = myfont.render(percentageInfo, 1, (150,150,150)) screen.blit(percentageLabel, (MARGIN_LEFT*2+textX, textY+MARGIN_TOP+FONT_SIZE+FONT_SIZE*len(valueList))) pygame.display.update() pygame.quit() main()
python
# -*- coding: utf-8 -*- """ DB操作层 只涉及DB操作,最好不涉及业务 """ from typing import List from app.exceptions import AuthenticationFailed, ObjNotFound from app.utils import sha256 from users.models import User, UserPermissionRelation, Permission, Role, UserRoleRelation, RoleMenuRelation, Menu, \ Platform def authenticate(phone: str, password: str) -> User: hashed_password = sha256(password) user: User = User.query.filter( User.phone == phone, User.password == hashed_password ).first() if not user: raise AuthenticationFailed() return user def get_user(user_id: int) -> User: user: User = User.get(user_id) return user def get_user_by_phone(phone: str) -> User: user: User = User.query.filter_by(phone=phone).first() return user def get_user_perm_key_list(user_id: int) -> List: uprs = UserPermissionRelation.query.filter_by(user_id=user_id).all() perm_id_list = [x.permission_id for x in uprs] perms = Permission.query.filter(Permission.id.in_(perm_id_list)).all() return [p.key for p in perms] def get_role(role_id, raise_exception=False) -> Role: role: Role = Role.get(role_id) if not role and raise_exception: raise ObjNotFound() return role def get_user_list() -> List: users = User.query.filter_by().all() return users def delete_role(role_id, raise_exception=False) -> None: role: Role = Role.get(role_id) if not role: if raise_exception: raise ObjNotFound() else: role.delete() def get_user_roles(user_id): """ 获取用户角色 """ urrs = UserRoleRelation.query.filter_by(user_id=user_id).all() role_id_list = [x.role_id for x in urrs] roles = [] if role_id_list: roles = Role.query.filter(Role.id.in_(role_id_list)).all() return roles def get_user_menu_by_role_id_list(role_id_list: List): """ 获取用户菜单权限 """ rmrs = RoleMenuRelation.query.filter(RoleMenuRelation.role_id.in_(role_id_list)).all() return rmrs def get_menu_by_menu_id_list(menu_id_list: List, platform_id: int): """ 通过菜单ID和平台ID获取菜单列表 """ menus = Menu.query.filter( Menu.id.in_(menu_id_list), Menu.platform_id == platform_id ).all() return menus def get_role_relate_by_uid_and_rid(user_id, role_id): """ 通过用户ID和角色ID获取用户角色关联信息 """ urr: UserRoleRelation = UserRoleRelation.query.filter_by( user_id=user_id, role_id=role_id, ).first() return urr def get_role_list(): """ 获取角色列表 """ roles = Role.query.filter_by().all() return roles def get_platform_by_key(platform_key: str, raise_exception=False) -> Platform: """ 通过平台Key获取平台 """ platform = Platform.query.filter_by(key=platform_key).first() if not platform and raise_exception: raise ObjNotFound() return platform
python
# -*- coding: utf-8 -*- """ MIT License Copyright (c) 2020 D. Craig Brinck, SE; tamalone1 """ import unittest # Run the tests in this module # Use warnings flag to suppress the PendingDeprecationWarning # from numpy.matrix # unittest.main(warnings='ignore') test_suite = unittest.TestLoader().discover("Testing", pattern='test_*.py') # `TextTestRunner` does not exit the module. CI will get confused unless we save the result # and send the proper exit code. result = unittest.TextTestRunner().run(test_suite) # Send the proper exit code for Travis-CI to read if result.wasSuccessful(): exit(0) else: exit(1)
python
import logging import unittest from morm.q import Q LOGGER_NAME = 'morm-test-q-' log = logging.getLogger(LOGGER_NAME) class TestMethods(unittest.TestCase): def test_Q(self): self.assertEqual(Q('string'), '"string"') if __name__ == "__main__": unittest.main(verbosity=2)
python
""" Copyright (c) 2016 Jet Propulsion Laboratory, California Institute of Technology. All rights reserved """ import json from webservice.NexusHandler import NexusHandler, nexus_handler, AVAILABLE_HANDLERS from webservice.webmodel import NexusResults @nexus_handler class HeartbeatHandlerImpl(NexusHandler): name = "Backend Services Status" path = "/heartbeat" description = "Returns health status of Nexus backend services" params = {} singleton = True def __init__(self): NexusHandler.__init__(self, skipCassandra=True) def calc(self, computeOptions, **args): solrOnline = self._tile_service.pingSolr() # Not sure how to best check cassandra cluster status so just return True for now cassOnline = True if solrOnline and cassOnline: status = {"online": True} else: status = {"online": False} class SimpleResult(object): def __init__(self, result): self.result = result def toJson(self): return json.dumps(self.result) return SimpleResult(status)
python
""" 263. Ugly Number Easy An ugly number is a positive integer whose prime factors are limited to 2, 3, and 5. Given an integer n, return true if n is an ugly number. Example 1: Input: n = 6 Output: true Explanation: 6 = 2 × 3 Example 2: Input: n = 1 Output: true Explanation: 1 has no prime factors, therefore all of its prime factors are limited to 2, 3, and 5. Example 3: Input: n = 14 Output: false Explanation: 14 is not ugly since it includes the prime factor 7. Constraints: -231 <= n <= 231 - 1 """ # V0 class Solution(object): def isUgly(self, n): # edge case if n == 0: return False if n == 1: return True flag = True while flag: #print ("n = " + str(n)) if n == 0 or n == 1: return True if n % 2 == 0 or n % 3 == 0 or n % 5 == 0: #print (">>>>") if n % 2 == 0: a, b = divmod(n, 2) flag = True n = a elif n % 3 == 0: a, b = divmod(n, 3) flag = True n = a elif n % 5 == 0: a, b = divmod(n, 5) flag = True n = a else: flag = False return False # V1 class Solution(object): # @param {integer} num # @return {boolean} def isUgly(self, num): if num ==0: return False while (num%2 ==0 or num%3 ==0 or num%5 ==0): if num%2 ==0: num = int(num/2) if num%3 ==0: num = int(num/3) if num%5 ==0: num = int(num/5) if num ==1: return True else: return False # V2 # Time: O(logn) = O(1) # Space: O(1) class Solution(object): # @param {integer} num # @return {boolean} def isUgly(self, num): if num == 0: return False for i in [2, 3, 5]: while num % i == 0: num /= i return num == 1
python
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'EMG3.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(897, 529) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.widget = QtWidgets.QWidget(self.centralwidget) self.widget.setGeometry(QtCore.QRect(0, 60, 901, 381)) self.widget.setStyleSheet("background-color: rgb(0, 0, 0);") self.widget.setObjectName("widget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(60, 10, 801, 41)) font = QtGui.QFont() font.setPointSize(12) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setAlignment(QtCore.Qt.AlignCenter) self.label.setObjectName("label") self.splitter = QtWidgets.QSplitter(self.centralwidget) self.splitter.setGeometry(QtCore.QRect(0, 450, 891, 31)) self.splitter.setOrientation(QtCore.Qt.Horizontal) self.splitter.setObjectName("splitter") self.pushButton = QtWidgets.QPushButton(self.splitter) self.pushButton.setObjectName("pushButton") self.pushButton_2 = QtWidgets.QPushButton(self.splitter) self.pushButton_2.setObjectName("pushButton_2") self.pushButton_3 = QtWidgets.QPushButton(self.splitter) self.pushButton_3.setObjectName("pushButton_3") MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 897, 21)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.label.setText(_translate("MainWindow", "Real Time \n" " Identification Emotion EMG-based")) self.pushButton.setText(_translate("MainWindow", "START")) self.pushButton_2.setText(_translate("MainWindow", "SAVE")) self.pushButton_3.setText(_translate("MainWindow", "STOP")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
python
iterable = [1, 2, 3, 4] for item in iterable: print(item) print('-') i = 0 while i<len(iterable): print(iterable[i]) i += 1 # tuple unpacking print('-') tupleList = [('a', 1), ('b', 2), ('c', 3)] for letter, number in tupleList: print("letter is ", letter) # need terminating condition and updation in while i = 1 while i<5: print(f"i is currently: {i}") i += 1 # range(start, stop, step) with for for x in range(10, 20 + 1, 2): print(x) # in keyword print("abc" in "abcdefghijk") print("xyz" in "abcdefghijk")
python
# A List it's a collection of grouping of items item1 = 'bananas' item2 = 'lego set' # we can do it shorter -->> tasks = ['Install Python', 'Learn Python', 'Take a break'] length = len(tasks) # Shows the length of the List print(length) # Accessing specific element from List wi the square brackets and position number of element [0] -->first element of List python = tasks[0] print(python) python = tasks[-1] print(python) if 'Install Python' in tasks: print(True) array = list(range(1, 8)) # Another way to built a function called --> list() print(array) r = range(1, 4) r = list(r) print(r) # Accessing all values in a List colors = ['purple', 'teal', 'magenta', 8.9] for x in colors: print(x) # -------------------------------------------------------------------------------- # While Loop i = 0 while i < len(colors): print(colors[i]) i += 1 # -------------------------------------------------------------------------------- # if you want to add 1 item to the list use : --> .append() motociclete = ['suzuki', 'honda', 'davidson'] masini = ['dacia', 'renault', 'BMW'] masini.append(motociclete) print(masini) # -------------------------------------------------------------------------------- # extend() --> add to the end of a list all values passed to extend # if you want to add more items to the list use : --> .extend() bloc = ['A1', 'A2', 'B1', 'B2'] casa = ['C1', 'C2'] bloc.extend(casa) print(bloc) # -------------------------------------------------------------------------------- # if we want to add item wherever in the list use : --> .insert(index, 'value') curcubeu = ['purple', 'teal', 'magenta', 8.9] curcubeu.insert(2, 'Blue') print(curcubeu) # insert into a list inside another list elicopter = ['Croco_2', 'Croco_7', 'Apash_91'] armata = ['Soldat_1', 'Soldat_2', 'Soldat_3', 'soldat_5', 'Soldat_6'] elicopter.append(armata) print(elicopter) elicopter[3].append('Soldat_4') print(elicopter) # ------------------------------------------------------------------------------- # Remove all elements inside the list with function --> .clear() elicopter.clear() print(elicopter) # ------------------------------------------------------------------------------- # Remove single element from list items use : --> .pop('index') armata.pop() print(armata) # If do not insert index it will remove last item from list armata.pop(1) print(armata) # ------------------------------------------------------------------------------- armata.remove('soldat_5') # Removes a specific value that we give # : --> .remove('item_name') --> if not found throw error print(armata) # ------------------------------------------------------------------------------- # index position to be found regarding element in the list armata = ['Soldat_1', 'Soldat_2', 'Soldat_2', 'Soldat_3', 'soldat_5', 'Soldat_6'] nume = armata.index('Soldat_1') print(nume) nume = armata.index('Soldat_2', 2) # Search 'Soldat_2' after position 2 in List print(nume) nume = armata.index('Soldat_2', 2, 5) # Search 'Soldat_2' between position 2 and 5 in List print(nume) # --------------------------------------------------------------------------------- # counting the elements inside the list with .count('item_to_count') count_1 = armata.count('Soldat_2') print('We found:', count_1) # ----------------------------------------------------------------------------------- # reversing the list with .reverse() print(armata) armata.reverse() print(armata) # ----------------------------------------------------------------------------------- # sorting list with .sort() armata.sort() print(armata) # ------------------------------------------------------------------------------------ # join is a string method / convert list to string --> .join(list) arma = 'militar '.join(armata) print(arma) # -------------------------------------------------------------------------------------- # make new lists from old list using Slices --> list[start:end:step] armata = ['Soldat_1', 'Soldat_2', 'Soldat_2', 'Soldat_3', 'soldat_5', 'Soldat_6'] print(armata[1:5]) # prints items from list from index 2 to index 4 print(armata[1:5:2]) # prints items from list from index 2 to index 4 | din 2 in 2 # -------------------------------------------------------------------------------------- # swapping values in list armata[0], armata[1] = armata[1], armata [0] print(armata)
python
import torch from datasets import CubDataset from models import FineGrainedModel, ResNet18 from torchvision import transforms from torch.utils.data import DataLoader train_transforms = transforms.Compose( [ transforms.Resize((128, 128)), transforms.ToTensor(), transforms.Normalize((0.4819, 0.4976, 0.4321), (0.1878, 0.1864, 0.1992)) ] ) train_ds = CubDataset(transform=train_transforms, trainable=True) test_ds = CubDataset(transform=train_transforms, trainable=False) train_dataloader = DataLoader( train_ds, batch_size=3, shuffle=True, collate_fn=train_ds.collect_fn, drop_last=True) test_dataloader = DataLoader( test_ds, batch_size=3, shuffle=False, collate_fn=train_ds.collect_fn) model = ResNet18() # model2 = ResNet18() if torch.cuda.is_available(): model = model.cuda() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) criterion = torch.nn.CrossEntropyLoss() scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1) if __name__ == "__main__": EPOCH = 1 for e in range(EPOCH): # train model.train() print("="*10, "Train %d EPOCH" % e, "="*10) for itr, (img, label) in enumerate(train_dataloader): if torch.cuda.is_available(): img = img.cuda() label = label.cuda() output = model(img) label = torch.squeeze(label).long() loss = criterion(output, label) optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step() print("step: %03d | train loss:%.3f" % (itr, loss.item())) print("="*10, "Test %d EPOCH" % e, "="*10) n_loss = 0. n_sample = 0 n_right = 0 # model.eval() # for iter, (img, label) in enumerate(test_dataloader): # bs = img.shape[0] # output = model(img) # ###################### # output = output.topk(1, dim=1)[1].view(bs, 1) # diff = (output != label) # diff = diff.sum(1) # diff = (diff != 0) # res = diff.sum(0).item() # n_right += (bs - res) # ###################### # label = torch.squeeze(label).long() # loss = criterion(output, label) # n_sample += bs # n_loss += loss.item() # print("step: %03d | Test Loss: %.3f | Acc: %.3f" % # (iter, n_loss/n_sample, n_right * 1./n_sample))
python
from gurobipy import * from prediction.predictor import predict_scores from utils.progress import inhour import time import numpy as np def sample_users(num_users, num_users_sampled): return np.random.choice(num_users, num_users_sampled, replace=False) def sample_items(candidate_items, num_items_sampled): return np.random.choice(candidate_items, size=num_items_sampled, replace=False) def sample_keyphrase(): # Critique the most popular keyphrases in the remaining critiqued_keyphrase = remaining_keyphrases[np.argmax(self.keyphrase_popularity[remaining_keyphrases])] def get_max_length(df, num_keyphrases, max_iteration): df_s_f = df[(df['result'] == 'successful') | (df['result'] == 'fail')] df_s_f.loc[df_s_f['num_existing_keyphrases'] > max_iteration, 'num_existing_keyphrases'] = max_iteration return df_s_f['num_existing_keyphrases'].mean() def get_average_length(df, n): df_s_f = df[(df['result'] == 'successful') | (df['result'] == 'fail')] iteration = df_s_f[df_s_f['target_rank']==n].groupby('user_id', as_index=False).agg({'iteration':'mean'})['iteration'].to_numpy() return (np.average(iteration), 1.96*np.std(iteration)/np.sqrt(len(iteration))) def get_success_num(df, n): return len(df[(df['result'] == 'successful') & (df['target_rank'] == n)]) def get_fail_num(df, n): return len(df[(df['result'] == 'fail') & (df['target_rank'] == n)]) def get_success_rate(df, n): df_s_f = df[(df['result'] == 'successful') | (df['result'] == 'fail')] df_list_result = df_s_f[df_s_f['target_rank']==n].groupby('user_id', as_index=False)['result'].apply(list).reset_index(name='result') successful_rate = df_list_result['result'].apply(lambda r: r.count("successful")/len(r)).to_numpy() return (np.average(successful_rate), 1.96*np.std(successful_rate)/np.sqrt(len(successful_rate))) def count_occurrence(x): return x.count("successful") def add_pop(x, item_pop_index): return np.where(item_pop_index == x)[0][0] ################################## # Baseline Methods ################################## def LPUAC(initial_prediction_u, keyphrase_freq, affected_items, unaffected_items, num_keyphrases, query, test_user, item_latent, reg): critiqued_vector = np.zeros(keyphrase_freq[0].shape) for q in query: critiqued_vector[q] = -keyphrase_freq[test_user][q] num_critiques = len(query) num_affected_items = len(affected_items) num_unaffected_items = len(unaffected_items) # UAC lambdas = [] for k in range(num_critiques): optimal_lambda = 1/(1+num_critiques) # All equals to 1/(K+1) lambdas.append(optimal_lambda) critiqued_vector[query[k]] *= optimal_lambda critique_score = predict_scores(matrix_U=reg.predict(critiqued_vector.reshape(1, -1)), matrix_V=item_latent) new_prediction = (1/(1+num_critiques))*initial_prediction_u + critique_score.flatten() return new_prediction, lambdas def LPBAC(initial_prediction_u, keyphrase_freq, affected_items, unaffected_items, num_keyphrases, query, test_user, item_latent, reg): critiqued_vector = np.zeros(keyphrase_freq[0].shape) for q in query: critiqued_vector[q] = -keyphrase_freq[test_user][q] num_critiques = len(query) num_affected_items = len(affected_items) num_unaffected_items = len(unaffected_items) # UAC lambdas = [] for k in range(num_critiques): optimal_lambda = 1/(2*num_critiques) # All equals to 1/(2*K) lambdas.append(optimal_lambda) critiqued_vector[query[k]] *= optimal_lambda critique_score = predict_scores(matrix_U=reg.predict(critiqued_vector.reshape(1, -1)), matrix_V=item_latent) new_prediction = (1/2)*initial_prediction_u + critique_score.flatten() return new_prediction, lambdas ################################## # LP Objectives ################################## def LP1SimplifiedOptimize(initial_prediction_u, keyphrase_freq, affected_items, unaffected_items, num_keyphrases, query, test_user, item_latent, reg): critiqued_vector = np.zeros(keyphrase_freq[0].shape) for q in query: critiqued_vector[q] = -max(keyphrase_freq[test_user][q],keyphrase_freq[test_user].mean()) num_critiques = len(query) W2 = reg.coef_ W = item_latent.dot(W2) num_affected_items = len(affected_items) num_unaffected_items = len(unaffected_items) start_time = time.time() # Model m = Model("LP1Simplified") m.setParam('OutputFlag', 0) # Assignment variables lambs = [] for k in range(num_critiques): lambs.append(m.addVar(lb=-1, ub=1, vtype=GRB.CONTINUOUS, name="lamb%d" % query[k])) m.setObjective(quicksum(initial_prediction_u[affected_item] * num_unaffected_items + quicksum(lambs[k] * critiqued_vector[query[k]] * W[affected_item][query[k]] * num_unaffected_items for k in range(num_critiques)) for affected_item in affected_items) - quicksum(initial_prediction_u[unaffected_item] * num_affected_items + quicksum(lambs[k] * critiqued_vector[query[k]] * W[unaffected_item][query[k]] * num_affected_items for k in range(num_critiques)) for unaffected_item in unaffected_items), GRB.MINIMIZE) # Optimize m.optimize() # print("Elapsed: {}".format(inhour(time.time() - start_time))) lambdas = [] for k in range(num_critiques): optimal_lambda = m.getVars()[k].X lambdas.append(optimal_lambda) critiqued_vector[query[k]] *= optimal_lambda critique_score = predict_scores(matrix_U=reg.predict(critiqued_vector.reshape(1, -1)), matrix_V=item_latent) new_prediction = initial_prediction_u + critique_score.flatten() return new_prediction, lambdas ################################## # LP-Ranking ################################## def LPRank(initial_prediction_u, keyphrase_freq, affected_items, unaffected_items, num_keyphrases, query, test_user, item_latent, reg, Z_pre, Z, thetas_pre, lamb = 10, bound_range = 2): """ Incremental Approach """ critiqued_vector = np.zeros(keyphrase_freq[0].shape) for q in query: critiqued_vector[q] = -max(keyphrase_freq[test_user][q],keyphrase_freq[test_user].mean()) num_critiques = len(query) num_affected_items = len(affected_items) num_unaffected_items = len(unaffected_items) # Model m = Model("LPRank") m.setParam('OutputFlag', 0) # set to 1 for outputing details # Assignment variables thetas = [] us = [] xi_pos = [] xi_neg = [] # weight thetas for k in range(num_critiques + 1): thetas.append(m.addVar(lb=-bound_range, ub=bound_range, vtype=GRB.CONTINUOUS, name="theta%d" % k)) thetas = np.array(thetas) # dummy variable u for absolute theta for k in range(num_critiques + 1): us.append(m.addVar(vtype=GRB.CONTINUOUS, name="u%d" % k)) # slack variables xi for i in range(num_affected_items): xi_pos.append(m.addVar(lb = 0, vtype = GRB.CONTINUOUS, name = "xi_pos%d" % i )) for i in range(num_unaffected_items): xi_neg.append(m.addVar(lb = 0, vtype = GRB.CONTINUOUS, name = "xi_neg%d" % i )) ## constraints # constraints for dummy variable u's for k in range(num_critiques+1): m.addConstr(us[k] >= thetas[k] - 1/(num_critiques+1)) m.addConstr(us[k] >= 1/(num_critiques+1) - thetas[k]) # Affected items rank higher for j in range(num_affected_items): m.addConstr( thetas_pre.dot(Z_pre.dot(item_latent[affected_items[j]])) - thetas.dot(Z.dot(item_latent[affected_items[j]])) >= 1 - xi_pos[j], name = "pos_constraint%d" % j ) for j in range(num_unaffected_items): m.addConstr( thetas.dot(Z.dot(item_latent[unaffected_items[j]])) >= thetas_pre.dot(Z_pre.dot(item_latent[unaffected_items[j]])) + 1 - xi_neg[j], name = "neg_constraint%d" % j ) m.setObjective(quicksum(us) + lamb * (quicksum(xi_pos)+quicksum(xi_neg)), GRB.MINIMIZE) # Single regularization # Optimize m.optimize() # Save optimal thetas thetas = [] for k in range(num_critiques+1): optimal_theta = m.getVarByName("theta%d" % k).X thetas.append(optimal_theta) for k in range(num_critiques): critiqued_vector[query[k]] *= thetas[k+1] # Get rating score critique_score = predict_scores(matrix_U=reg.predict(critiqued_vector.reshape(1, -1)), matrix_V=item_latent) new_prediction = thetas[0]*initial_prediction_u + critique_score.flatten() return new_prediction, thetas def LPRank2(initial_prediction_u, keyphrase_freq, affected_items, unaffected_items, num_keyphrases, query, test_user, item_latent, reg, Z_pre, Z, lamb = 10, bound_range = 2): """ Non Incremental Approach """ critiqued_vector = np.zeros(keyphrase_freq[0].shape) for q in query: critiqued_vector[q] = -max(keyphrase_freq[test_user][q],keyphrase_freq[test_user].mean()) num_critiques = len(query) num_affected_items = len(affected_items) num_unaffected_items = len(unaffected_items) # Model m = Model("LPRank") m.setParam('OutputFlag', 0) # set to 1 for outputing details # Assignment variables thetas = [] us = [] xi_pos = [] xi_neg = [] # weight thetas for k in range(num_critiques + 1): thetas.append(m.addVar(lb=-bound_range, ub=bound_range, vtype=GRB.CONTINUOUS, name="theta%d" % k)) thetas = np.array(thetas) # dummy variable u for absolute theta for k in range(num_critiques + 1): us.append(m.addVar(vtype=GRB.CONTINUOUS, name="u%d" % k)) # slack variables xi for i in range(num_affected_items): xi_pos.append(m.addVar(lb = 0, vtype = GRB.CONTINUOUS, name = "xi_pos%d" % i )) for i in range(num_unaffected_items): xi_neg.append(m.addVar(lb = 0, vtype = GRB.CONTINUOUS, name = "xi_neg%d" % i )) ## constraints # constraints for dummy variable u's for k in range(num_critiques+1): m.addConstr(us[k] >= thetas[k] - 1/(num_critiques+1)) m.addConstr(us[k] >= 1/(num_critiques+1) - thetas[k]) # Affected items rank higher for j in range(num_affected_items): m.addConstr( initial_prediction_u[affected_items[j]] - thetas.dot(Z.dot(item_latent[affected_items[j]])) >= 1 - xi_pos[j], name = "pos_constraint%d" % j ) # Unaffected items rank lower for j in range(num_unaffected_items): m.addConstr( thetas.dot(Z.dot(item_latent[unaffected_items[j]])) >= initial_prediction_u[unaffected_items[j]] + 1 - xi_neg[j], name = "neg_constraint%d" % j ) m.setObjective(quicksum(us) + lamb * (quicksum(xi_pos)+quicksum(xi_neg)), GRB.MINIMIZE) # Single regularization # Optimize m.optimize() # Save optimal thetas thetas = [] for k in range(num_critiques+1): optimal_theta = m.getVarByName("theta%d" % k).X thetas.append(optimal_theta) for k in range(num_critiques): critiqued_vector[query[k]] *= thetas[k+1] # Get rating score critique_score = predict_scores(matrix_U=reg.predict(critiqued_vector.reshape(1, -1)), matrix_V=item_latent) new_prediction = thetas[0]*initial_prediction_u + critique_score.flatten() return new_prediction, thetas
python
import json from rest_framework.fields import MISSING_ERROR_MESSAGE from rest_framework.relations import * from django.utils.translation import ugettext_lazy as _ from rest_framework_json_api.exceptions import Conflict from rest_framework_json_api.utils import Hyperlink, \ get_resource_type_from_queryset, get_resource_type_from_instance, \ get_included_serializers, get_resource_type_from_serializer class ResourceRelatedField(PrimaryKeyRelatedField): self_link_view_name = None related_link_view_name = None related_link_lookup_field = 'pk' default_error_messages = { 'required': _('This field is required.'), 'does_not_exist': _('Invalid pk "{pk_value}" - object does not exist.'), 'incorrect_type': _('Incorrect type. Expected resource identifier object, received {data_type}.'), 'incorrect_relation_type': _('Incorrect relation type. Expected {relation_type}, received {received_type}.'), 'missing_type': _('Invalid resource identifier object: missing \'type\' attribute'), 'missing_id': _('Invalid resource identifier object: missing \'id\' attribute'), 'no_match': _('Invalid hyperlink - No URL match.'), } def __init__(self, self_link_view_name=None, related_link_view_name=None, **kwargs): if self_link_view_name is not None: self.self_link_view_name = self_link_view_name if related_link_view_name is not None: self.related_link_view_name = related_link_view_name self.related_link_lookup_field = kwargs.pop('related_link_lookup_field', self.related_link_lookup_field) self.related_link_url_kwarg = kwargs.pop('related_link_url_kwarg', self.related_link_lookup_field) # check for a model class that was passed in for the relation type model = kwargs.pop('model', None) if model: self.model = model # We include this simply for dependency injection in tests. # We can't add it as a class attributes or it would expect an # implicit `self` argument to be passed. self.reverse = reverse super(ResourceRelatedField, self).__init__(**kwargs) def use_pk_only_optimization(self): # We need the real object to determine its type... return False def conflict(self, key, **kwargs): """ A helper method that simply raises a validation error. """ try: msg = self.error_messages[key] except KeyError: class_name = self.__class__.__name__ msg = MISSING_ERROR_MESSAGE.format(class_name=class_name, key=key) raise AssertionError(msg) message_string = msg.format(**kwargs) raise Conflict(message_string) def get_url(self, name, view_name, kwargs, request): """ Given a name, view name and kwargs, return the URL that hyperlinks to the object. May raise a `NoReverseMatch` if the `view_name` and `lookup_field` attributes are not configured to correctly match the URL conf. """ # Return None if the view name is not supplied if not view_name: return None # Return the hyperlink, or error if incorrectly configured. try: url = self.reverse(view_name, kwargs=kwargs, request=request) except NoReverseMatch: msg = ( 'Could not resolve URL for hyperlinked relationship using ' 'view name "%s".' ) raise ImproperlyConfigured(msg % view_name) if url is None: return None return Hyperlink(url, name) def get_links(self, obj=None, lookup_field='pk'): request = self.context.get('request', None) view = self.context.get('view', None) return_data = OrderedDict() kwargs = {lookup_field: getattr(obj, lookup_field) if obj else view.kwargs[lookup_field]} self_kwargs = kwargs.copy() self_kwargs.update({'related_field': self.field_name if self.field_name else self.parent.field_name}) self_link = self.get_url('self', self.self_link_view_name, self_kwargs, request) related_kwargs = {self.related_link_url_kwarg: kwargs[self.related_link_lookup_field]} related_link = self.get_url('related', self.related_link_view_name, related_kwargs, request) if self_link: return_data.update({'self': self_link}) if related_link: return_data.update({'related': related_link}) return return_data def to_internal_value(self, data): if isinstance(data, six.text_type): try: data = json.loads(data) except ValueError: # show a useful error if they send a `pk` instead of resource object self.fail('incorrect_type', data_type=type(data).__name__) if not isinstance(data, dict): self.fail('incorrect_type', data_type=type(data).__name__) expected_relation_type = get_resource_type_from_queryset(self.queryset) if 'type' not in data: self.fail('missing_type') if 'id' not in data: self.fail('missing_id') if data['type'] != expected_relation_type: self.conflict('incorrect_relation_type', relation_type=expected_relation_type, received_type=data['type']) return super(ResourceRelatedField, self).to_internal_value(data['id']) def to_representation(self, value): if getattr(self, 'pk_field', None) is not None: pk = self.pk_field.to_representation(value.pk) else: pk = value.pk # check to see if this resource has a different resource_name when # included and use that name resource_type = None root = getattr(self.parent, 'parent', self.parent) field_name = self.field_name if self.field_name else self.parent.field_name if getattr(root, 'included_serializers', None) is not None: includes = get_included_serializers(root) if field_name in includes.keys(): resource_type = get_resource_type_from_serializer(includes[field_name]) resource_type = resource_type if resource_type else get_resource_type_from_instance(value) return OrderedDict([('type', resource_type), ('id', str(pk))]) @property def choices(self): queryset = self.get_queryset() if queryset is None: # Ensure that field.choices returns something sensible # even when accessed with a read-only field. return {} return OrderedDict([ ( json.dumps(self.to_representation(item)), self.display_value(item) ) for item in queryset ]) class SerializerMethodResourceRelatedField(ResourceRelatedField): def get_attribute(self, instance): # check for a source fn defined on the serializer instead of the model if self.source and hasattr(self.parent, self.source): serializer_method = getattr(self.parent, self.source) if hasattr(serializer_method, '__call__'): return serializer_method(instance) return super(ResourceRelatedField, self).get_attribute(instance)
python
import kube_vars as globalvars import kube_factory as factory import kube_secret import kube_servicecheck import kube_pvc if __name__=="__main__": # This is the unified interface to accept parameters # Python model argparse be used to parse the input parameter # Subparser has been defined in git_handler.py which including what subcmd and related parameters should be used # IF you want to extenstion more cmd please following this coding pattern parser=globalvars.get_value('RootCMDParser') args = parser.parse_args(["-configtype","OutCluster","createsecret","-tenant","demo", "-env","dev", "-envtype","live","-replace","true"]) print(args) # config and group are global config used to initial gitlab object config,configtype,context,apiversion = None, None, None , None if hasattr(args, 'config'): config=args.config if hasattr(args, 'configtype'): configtype=args.configtype factory.Factory_InitKubeClient(configtype,config,context,apiversion) args.func(args)
python
import sys from PIL import Image, ImageDraw WRITABLES = [(0, 0, 7, 7), (24, 0, 39, 7), (56, 0, 63, 7)] imagePath = "schoolgirlsweater_tanukirotate.png" img = Image.open(imagePath) draw = ImageDraw.Draw(img) lengthPass = False length = 0 while not lengthPass: msg = input("Enter the messaage to encode (768 characters max):\n") length = len(msg) if length > 768: print("Message is too long, please try again") else: lengthPass = True ascii = [ord(c) for c in msg] for i in range(768 - length): ascii = ascii +[0] it = iter(ascii) rgb = zip(it, it, it) counter = 0 writeArea = 0 xy = [0, 0] for z in rgb: draw.point(xy, fill = z) if xy[0] >= (WRITABLES[writeArea])[2]: xy[0] = (WRITABLES[writeArea])[0] xy[1] = xy[1] + 1 else: xy[0] = xy[0] + 1 if xy[1] > (WRITABLES[writeArea])[3] and writeArea + 1 < len(WRITABLES): writeArea = writeArea + 1 xy[0] = (WRITABLES[writeArea])[0] xy[1] = (WRITABLES[writeArea])[1] img.save(imagePath) img = Image.open(imagePath).convert("RGB") px = img.load() counter = 0 writeArea = 0 xy = [0, 0] decodedString = [] for i in range(256): #if (px[xy[0], xy[1]]) == (0, 0, 0): #break #else: decodedString.append(px[xy[0], xy[1]]) if xy[0] >= (WRITABLES[writeArea])[2]: xy[0] = (WRITABLES[writeArea])[0] xy[1] = xy[1] + 1 else: xy[0] = xy[0] + 1 if xy[1] > (WRITABLES[writeArea])[3] and writeArea + 1 < len(WRITABLES): writeArea = writeArea + 1 xy[0] = (WRITABLES[writeArea])[0] xy[1] = (WRITABLES[writeArea])[1] decodedString = [i for sub in decodedString for i in sub] decodedString = ''.join(chr(i) for i in decodedString) print("Decoded String:") print (decodedString)
python
import os, sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))) import time import unittest import common.mqtt_connection as mqtt_connection import common.mqtt_messages as mqtt_messages import server.MQTT_callbacks as MQTT_callbacks import server.storage as server_storage from main import do_global_config class TestServerMQTTCallbacks(unittest.TestCase): def setUpClass() -> None: do_global_config() def test_able_to_process_heartbeat(self): heartbeat = { "machine_levels": { "coffee_mg_level": 10, "milk_mg_level": 10, "sugar_mg_level": 10, "water_mg_level": 10 }, "status": "OK", "id_machine": "UNIT_TEST", } MQTT_callbacks.receive_heartbeat(heartbeat) self.assertTrue("UNIT_TEST" in server_storage.coffee_machines_last_heartbeat) self.assertTrue("UNIT_TEST" in server_storage.coffee_machines_levels) def test_able_to_receive_order(self): order_log = { "machine_levels": { "coffee_mg_level": 10, "milk_mg_level": 10, "sugar_mg_level": 10, "water_mg_level": 10 }, "success": "OK", "machine_id": "UNIT_TEST", "timestamp": time.time(), "coffee_name": "good coffee", } MQTT_callbacks.receive_order(order_log) self.assertTrue("UNIT_TEST" in server_storage.coffee_machines_levels) if __name__ == '__main__': unittest.main()
python
import os,copy import pandas as pd from collections import OrderedDict from pypospack.pyposmat.data import PyposmatDataAnalyzer from pypospack.pyposmat.data import PyposmatDataFile from pypospack.pyposmat.data import PyposmatConfigurationFile _fn_config = os.path.join("resources","pyposmat.config.in") _fn_results_in = os.path.join("resources","pyposmat.results.0.out") _fn_results_out = os.path.join("resources","pyposmat.results.0a.out") config = PyposmatConfigurationFile() config.read(_fn_config) qoi_targets = config.qoi_targets print(config.qoi_targets) print(list(config.qois)) data_in = PyposmatDataFile() data_in.read(_fn_results_in) data_out = PyposmatDataFile() data_out.parameter_names = data_in.parameter_names data_out.qoi_names = list(config.qois) data_out.error_names = ['{}.err'.format(q) for q in data_out.qoi_names] data_out.names = ["sim_id"]\ +data_out.parameter_names\ +data_out.qoi_names\ +data_out.error_names data_out.types = ["sim_id"]\ +len(data_out.parameter_names)*['param']\ +len(data_out.qoi_names)*['qoi']\ +len(data_out.error_names)*['err'] def calculate_bulk_modulus(c11,c12,c44): return (c11+2*c12)/3 def calculate_shear_modulus(c11,c12,c44): return (c11-c12)/2 data_out_lists = [] for i,row in data_in.df.iterrows(): in_row_results = row.to_dict(into=OrderedDict) out_row_results = OrderedDict() for k in (["sim_id"]+data_out.parameter_names): out_row_results[k] = in_row_results[k] for k in (data_out.qoi_names): try: out_row_results[k] = in_row_results[k] except KeyError as e: if k == 'Ni_fcc.B': c11 = in_row_results['Ni_fcc.c11'] c12 = in_row_results['Ni_fcc.c12'] c44 = in_row_results['Ni_fcc.c44'] out_row_results[k] = calculate_bulk_modulus(c11,c12,c44) elif k == 'Ni_fcc.G': c11 = in_row_results['Ni_fcc.c11'] c12 = in_row_results['Ni_fcc.c12'] c44 = in_row_results['Ni_fcc.c44'] out_row_results[k] = calculate_bulk_modulus(c11,c12,c44) else: raise for k in (data_out.qoi_names): out_row_results["{}.err".format(k)] = out_row_results[k] - qoi_targets[k] data_out_lists.append([out_row_results[k] for k in data_out.names]) data_out.df=pd.DataFrame(data_out_lists,columns=data_out.names) data_out.write(_fn_results_out)
python
def slugify(text): """ Removes all char from string that can cause problems whe used as a file name. :param text: text to be modified. :return: modified text """ return "".join(x for x in text if x.isalnum())
python
# Generated by Django 3.2.4 on 2021-06-21 18:04 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('pvs_suban', '0009_auto_20210621_1753'), ] operations = [ migrations.AddField( model_name='address', name='country', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='countries', to='pvs_suban.country'), ), migrations.AlterField( model_name='country', name='value', field=models.CharField(blank=True, max_length=256, null=True), ), ]
python
from PyQt5.QtWidgets import QBoxLayout from PyQt5.QtWidgets import QDialog from PyQt5.QtWidgets import QDialogButtonBox from PyQt5.QtWidgets import QLabel from PyQt5.QtWidgets import QLineEdit from PyQt5.QtWidgets import QMenu from PyQt5.QtWidgets import QPushButton from PyQt5.Qt import pyqtSignal from PyQt5.Qt import QAction from PyQt5.QtWidgets import QMessageBox from PyQt5.Qt import QFontMetrics from PyQt5.Qt import Qt from PyQt5.Qt import QUrl from PyQt5.QtWidgets import QFormLayout from PyQt5.QtWidgets import QPlainTextEdit from mc.tools.IconProvider import IconProvider from mc.tools.EnhancedMenu import Menu, Action from mc.common.globalvars import gVar from mc.common import const from .BookmarkItem import BookmarkItem class BookmarksFoldersMenu(QMenu): def __init__(self, parent=None): ''' @param: parent QWidget ''' super().__init__(parent) self._selectedFolder = None # BookmarkItem self._init() def selectedFolder(self): ''' @return: BookmarkItem ''' return self._selectedFolder # Q_SIGNALS: folderSelected = pyqtSignal(BookmarkItem) # private Q_SLOTS: def _folderChoosed(self): act = self.sender() if not isinstance(act, QAction): return folder = act.data() if not isinstance(folder, BookmarkItem): return self.folderSelected.emit(folder) def _ADD_MENU(self, name): bookmarks = gVar.app.bookmarks() item = getattr(bookmarks, name)() menu = self.addMenu(item.icon(), item.title()) self._createMenu(menu, item) # private: def _init(self): self._ADD_MENU('toolbarFolder') self._ADD_MENU('menuFolder') self._ADD_MENU('unsortedFolder') def _createMenu(self, menu, parent): ''' @param: menu QMenu @param: parent BookmarkItem ''' act = menu.addAction(_('Choose %s') % parent.title()) act.setData(parent) act.triggered.connect(self._folderChoosed) menu.addSeparator() for child in parent.children(): if not child.isFolder(): continue m = menu.addMenu(child.icon(), child.title()) self._createMenu(m, child) class BookmarksFoldersButton(QPushButton): def __init__(self, parent, folder=None): ''' @param: parent QWidget @param: folder BookmarkItem ''' super().__init__(parent) self._menu = BookmarksFoldersMenu(self) # BookmarksFoldersMenu self._selectedFolder = None # BookmarkItem if folder: self._selectedFolder = folder else: self._selectedFolder = gVar.app.bookmarks().lastUsedFolder() self._init() self._menu.folderSelected.connect(self.setSelectedFolder) def selectedFolder(self): ''' @return: BookmarkItem ''' return self._selectedFolder # Q_SIGNALS: selectedFolderChanged = pyqtSignal(BookmarkItem) # public Q_SLOTS: def setSelectedFolder(self, folder): ''' @param: folder BookmarkItem ''' assert(folder) assert(folder.isFolder()) self._selectedFolder = folder self.setText(folder.title()) self.setIcon(folder.icon()) if self.sender(): self.selectedFolderChanged.emit(folder) def _init(self): self.setMenu(self._menu) self.setSelectedFolder(self._selectedFolder) class BookmarksTools(object): @classmethod def addBookmarkDialog(cls, parent, url, title, folder=None): ''' @brief: Add Bookmark Dialogs @param: parent QWidget @param: url QUrl @param: title QString @param: folder BookmarkItem ''' dialog = QDialog(parent) layout = QBoxLayout(QBoxLayout.TopToBottom, dialog) label = QLabel(dialog) edit = QLineEdit(dialog) folderButton = BookmarksFoldersButton(dialog, folder) box = QDialogButtonBox(dialog) box.addButton(QDialogButtonBox.Ok) box.addButton(QDialogButtonBox.Cancel) box.rejected.connect(dialog.reject) box.accepted.connect(dialog.accept) layout.addWidget(label) layout.addWidget(edit) layout.addWidget(folderButton) layout.addWidget(box) label.setText(_('Choose name and location of this bookmark.')) edit.setText(title) edit.setCursorPosition(0) dialog.setWindowIcon(IconProvider.iconForUrl(url)) dialog.setWindowTitle(_('Add New Bookmark')) size = dialog.size() size.setWidth(350) dialog.resize(size) dialog.exec_() if dialog.result() == QDialog.Rejected or not edit.text(): del dialog return False bookmark = BookmarkItem(BookmarkItem.Url) bookmark.setTitle(edit.text()) bookmark.setUrl(url) gVar.app.bookmarks().addBookmark(folderButton.selectedFolder(), bookmark) del dialog return True @classmethod def bookmarkAllTabsDialog(cls, parent, tabWidget, folder=None): ''' @param: parent QWidget @param: tabWidget TabWidget @param: folder BookmarkItem ''' assert(tabWidget) dialog = QDialog(parent) layout = QBoxLayout(QBoxLayout.TopToBottom, dialog) label = QLabel(dialog) folderButton = BookmarksFoldersButton(dialog, folder) box = QDialogButtonBox(dialog) box.addButton(QDialogButtonBox.Ok) box.addButton(QDialogButtonBox.Cancel) box.rejected.connect(dialog.reject) box.accepted.connect(dialog.accept) layout.addWidget(label) layout.addWidget(folderButton) layout.addWidget(box) label.setText(_('Choose folder for bookmarks:')) dialog.setWindowTitle(_('Bookmark All Tabs')) size = dialog.size() size.setWidth(350) dialog.resize(size) dialog.exec_() if dialog.result() == QDialog.Rejected: return False for tab in tabWidget.allTabs(False): if tab.url().isEmpty(): continue bookmark = BookmarkItem(BookmarkItem.Url) bookmark.setTitle(tab.title()) bookmark.setUrl(tab.url()) gVar.app.bookmarks().addBookmark(folderButton.selectedFolder(), bookmark) del dialog return True @classmethod def editBookmarkDialog(cls, parent, item): ''' @param: parent QWidget @param: item BookmarkItem ''' dialog = QDialog(parent) layout = QFormLayout(dialog) title = QLineEdit() address = QLineEdit() keyword = QLineEdit() description = QPlainTextEdit() box = QDialogButtonBox(dialog) box.addButton(QDialogButtonBox.Ok) box.addButton(QDialogButtonBox.Cancel) box.rejected.connect(dialog.reject) box.accepted.connect(dialog.accept) layout.addRow(_('Title:'), title) title.setText(item.title()) if not item.isFolder(): layout.addRow(_('Address:'), address) address.setText(item.urlString()) layout.addRow(_('Keyword:'), keyword) keyword.setText(item.keyword()) layout.addRow(_('Description:'), description) description.document().setPlainText(item.description()) layout.addWidget(box) dialog.setWindowIcon(item.icon()) dialog.setWindowTitle(_('Edit Bookmark')) dialog.exec_() if dialog.result() == QDialog.Rejected: del dialog return False item.setTitle(title.text()) if not item.isFolder(): item.setUrl(QUrl.fromEncoded(address.text().encode())) item.setKeyword(keyword.text()) item.setDescription(description.toPlainText()) del dialog return True @classmethod def openBookmark(cls, window, item): ''' @param: window BrowserWindow @param: item BookmarkItem ''' assert(window) if not item or not item.isUrl(): return item.updateVisitCount() window.loadAddress(item.url()) @classmethod def openBookmarkInNewTab(cls, window, item): ''' @param: window BrowserWindow @param: item BookmarkItem ''' assert(window) if not item: return if item.isFolder(): cls.openFolderInTabs(window, item) elif item.isUrl(): item.updateVisitCount() window.tabWidget().addViewByUrlTitle(item.url(), item.title(), gVar.appSettings.newTabPosition) @classmethod def openBookmarkInNewWindow(cls, window, item): ''' @param: window BrowserWindow @param: item BookmarkItem ''' if not item.isUrl(): return item.updateVisitCount() gVar.app.createWindow(const.BW_NewWindow, item.url()) @classmethod def openBookmarkInNewPrivateWindow(cls, window, item): ''' @param: window BrowserWindow @param: item BookmarkItem ''' if not item.isUrl(): return item.updateVisitCount() gVar.app.startPrivateBrowsing(item.url()) @classmethod def openFolderInTabs(cls, window, folder): ''' @param: window BrowserWindow @param: folder BookmarkItem ''' assert(window) assert(folder.isFolder()) showWarning = len(folder.children()) > 10 if not showWarning: for child in folder.children(): if child.isFolder(): showWarning = True break if showWarning: button = QMessageBox.warning(window, _('Confirmation'), _('Are you sure you want to open all bookmarks from "%s" folder in tabs?') % folder.title(), QMessageBox.Yes | QMessageBox.No) if button != QMessageBox.Yes: return for child in folder.children(): if child.isUrl(): cls.openBookmarkInNewTab(window, child) elif child.isFolder(): cls.openFolderInTabs(window, child) @classmethod def addActionToMenu(cls, receiver, menu, item): ''' @param: receiver QObject @param: menu Menu @param: item BookmarkItem ''' assert(menu) assert(item) type_ = item.type() if type_ == BookmarkItem.Url: cls.addUrlToMenu(receiver, menu, item) elif type_ == BookmarkItem.Folder: cls.addFolderToMenu(receiver, menu, item) elif type_ == BookmarkItem.Separator: cls.addSeparatorToMenu(menu, item) @classmethod def addFolderToMenu(cls, receiver, menu, folder): ''' @param: receiver QObject @param: menu Menu @param: folder BookmarkItem ''' assert(menu) assert(folder) assert(folder.isFolder()) subMenu = Menu(menu) title = QFontMetrics(subMenu.font()).elidedText(folder.title(), Qt.ElideRight, 250) subMenu.setTitle(title) subMenu.setIcon(folder.icon()) cls.addFolderContentsToMenu(receiver, subMenu, folder) # QAction act = menu.addMenu(subMenu) act.setData(folder) act.setIconVisibleInMenu(True) @classmethod def addUrlToMenu(cls, receiver, menu, bookmark): ''' @param: receiver QObject @param: menu Menu @param: bookmark BookmarkItem ''' assert(menu) assert(bookmark) assert(bookmark.isUrl()) act = Action(menu) title = QFontMetrics(act.font()).elidedText(bookmark.title(), Qt.ElideRight, 250) act.setText(title) act.setData(bookmark) act.setIconVisibleInMenu(True) act.triggered.connect(receiver._bookmarkActivated) act.ctrlTriggered.connect(receiver._bookmarkCtrlActivated) act.shiftTriggered.connect(receiver._bookmarkShiftActivated) menu.addAction(act) @classmethod def addSeparatorToMenu(cls, menu, separator): ''' @param: menu Menu @param: separator BookmarkItem ''' assert(menu) assert(separator.isSeparator()) menu.addSeparator() @classmethod def addFolderContentsToMenu(cls, receiver, menu, folder): ''' @param: receiver QObject @param: menu Menu @param: folder BookmarkItem ''' menu.aboutToShow.connect(receiver._menuAboutToShow) menu.menuMiddleClicked.connect(receiver._menuMiddleClicked) for child in folder.children(): cls.addActionToMenu(receiver, menu, child) if menu.isEmpty(): menu.addAction(_('Empty')).setDisabled(True) #@classmethod #def migrateBookmarksIfNecessary(cls, bookmarks): # ''' # @brief: Migration from Sql Bookmarks (returns tree if bookmarks migrated) # ''' # pass
python
"""Merge constrained primitives as property constraints.""" import collections from typing import Tuple, Optional, List, Mapping, MutableMapping, Sequence from icontract import ensure from aas_core_codegen import intermediate from aas_core_codegen.common import Error from aas_core_codegen.infer_for_schema import ( _len as infer_for_schema_len, _pattern as infer_for_schema_pattern, ) from aas_core_codegen.infer_for_schema._types import ( ConstraintsByProperty, LenConstraint, PatternConstraint, ) @ensure(lambda result: (result[0] is not None) ^ (result[1] is not None)) def _infer_len_constraints_by_constrained_primitive( symbol_table: intermediate.SymbolTable, ) -> Tuple[ Optional[MutableMapping[intermediate.ConstrainedPrimitive, LenConstraint]], Optional[List[Error]], ]: """Infer the constraints on ``len(.)`` of the constrained primitives.""" # NOTE (mristin, 2022-02-11): # We do this inference in two passes. In the first pass, we only infer # the constraints defined for the constrained primitive and ignore the ancestors. # In the second pass, we stack the constraints of the ancestors as well. errors = [] # type: List[Error] first_pass: MutableMapping[ intermediate.ConstrainedPrimitive, LenConstraint ] = collections.OrderedDict() for symbol in symbol_table.symbols: if isinstance(symbol, intermediate.ConstrainedPrimitive): ( len_constraint, len_constraint_errors, ) = infer_for_schema_len.infer_len_constraint_of_self( constrained_primitive=symbol ) if len_constraint_errors is not None: errors.extend(len_constraint_errors) else: assert len_constraint is not None first_pass[symbol] = len_constraint if len(errors) > 0: return None, errors second_pass: MutableMapping[ intermediate.ConstrainedPrimitive, LenConstraint ] = collections.OrderedDict() for symbol in symbol_table.symbols_topologically_sorted: if isinstance(symbol, intermediate.ConstrainedPrimitive): # NOTE (mristin, 2022-02-11): # We make the copy in order to avoid bugs when we start processing # the inheritances. len_constraint = first_pass[symbol].copy() for inheritance in symbol.inheritances: inherited_len_constraint = second_pass.get(inheritance, None) assert ( inherited_len_constraint is not None ), "Expected topological order" if inherited_len_constraint.min_value is not None: len_constraint.min_value = ( max( len_constraint.min_value, inherited_len_constraint.min_value ) if len_constraint.min_value is not None else inherited_len_constraint.min_value ) if inherited_len_constraint.max_value is not None: len_constraint.max_value = ( min( len_constraint.max_value, inherited_len_constraint.max_value ) if len_constraint.max_value is not None else inherited_len_constraint.max_value ) second_pass[symbol] = len_constraint assert len(errors) == 0 return second_pass, None def _infer_pattern_constraints_by_constrained_primitive( symbol_table: intermediate.SymbolTable, pattern_verifications_by_name: infer_for_schema_pattern.PatternVerificationsByName, ) -> MutableMapping[intermediate.ConstrainedPrimitive, List[PatternConstraint]]: """Infer the pattern constraints of the constrained strings.""" # NOTE (mristin, 2022-02-11): # We do this inference in two passes. In the first pass, we only infer # the constraints defined for the constrained primitive and ignore the ancestors. # In the second pass, we stack the constraints of the ancestors as well. first_pass: MutableMapping[ intermediate.ConstrainedPrimitive, List[PatternConstraint], ] = collections.OrderedDict() for symbol in symbol_table.symbols: if ( isinstance(symbol, intermediate.ConstrainedPrimitive) and symbol.constrainee is intermediate.PrimitiveType.STR ): pattern_constraints = infer_for_schema_pattern.infer_patterns_on_self( constrained_primitive=symbol, pattern_verifications_by_name=pattern_verifications_by_name, ) first_pass[symbol] = pattern_constraints second_pass: MutableMapping[ intermediate.ConstrainedPrimitive, List[PatternConstraint], ] = collections.OrderedDict() for symbol in first_pass: # NOTE (mristin, 2022-02-11): # We make the copy in order to avoid bugs when we start processing # the inheritances. pattern_constraints = first_pass[symbol][:] for inheritance in symbol.inheritances: assert inheritance in first_pass, ( f"We are processing the constrained primitive {symbol.name!r}. " f"However, its parent, {inheritance.name!r}, has not been processed in " f"the first pass. Something probably went wrong in the first pass." ) inherited_pattern_constraints = second_pass.get(inheritance, None) assert inherited_pattern_constraints is not None, ( f"Expected topological order. However, the symbol {symbol.name!r} " f"is being processed before one of its parents, {inheritance.name!r}." ) pattern_constraints = inherited_pattern_constraints + pattern_constraints second_pass[symbol] = pattern_constraints return second_pass @ensure(lambda result: (result[0] is not None) ^ (result[1] is not None)) def infer_constraints_by_class( symbol_table: intermediate.SymbolTable, ) -> Tuple[ Optional[MutableMapping[intermediate.ClassUnion, ConstraintsByProperty]], Optional[List[Error]], ]: """Infer the constraints from the invariants and constrained primitives.""" errors = [] # type: List[Error] pattern_verifications_by_name = ( infer_for_schema_pattern.map_pattern_verifications_by_name( verifications=symbol_table.verification_functions ) ) ( len_constraints_by_constrained_primitive, some_errors, ) = _infer_len_constraints_by_constrained_primitive(symbol_table=symbol_table) if some_errors is not None: errors.extend(some_errors) if len(errors) > 0: return None, errors assert len_constraints_by_constrained_primitive is not None patterns_by_constrained_primitive = ( _infer_pattern_constraints_by_constrained_primitive( symbol_table=symbol_table, pattern_verifications_by_name=pattern_verifications_by_name, ) ) result: MutableMapping[ intermediate.ClassUnion, ConstraintsByProperty ] = collections.OrderedDict() for symbol in symbol_table.symbols: if not isinstance( symbol, (intermediate.AbstractClass, intermediate.ConcreteClass) ): continue # region Infer constraints on ``len(.)`` len_constraints_by_property: MutableMapping[ intermediate.Property, LenConstraint ] = collections.OrderedDict() ( len_constraints_from_invariants, len_constraints_errors, ) = infer_for_schema_len.len_constraints_from_invariants(cls=symbol) if len_constraints_errors is not None: errors.extend(len_constraints_errors) continue assert len_constraints_from_invariants is not None patterns_by_property: MutableMapping[ intermediate.Property, List[PatternConstraint] ] = collections.OrderedDict() patterns_from_invariants_by_property = ( infer_for_schema_pattern.patterns_from_invariants( cls=symbol, pattern_verifications_by_name=pattern_verifications_by_name ) ) # region Merge the length constraints for prop in symbol.properties: # NOTE (mristin, 2022-03-03): # We need to go beneath ``Optional`` as the constraints are applied even # if a property is optional. In cases where cardinality is affected by # ``Optional``, the client code needs to cover them separately. type_anno = intermediate.beneath_optional(prop.type_annotation) len_constraint_from_type: Optional[LenConstraint] = None len_constraint_from_invariants = len_constraints_from_invariants.get( prop, None ) if isinstance(type_anno, intermediate.OurTypeAnnotation) and isinstance( type_anno.symbol, intermediate.ConstrainedPrimitive ): len_constraint_from_type = len_constraints_by_constrained_primitive.get( type_anno.symbol, None ) # Merge the constraint from the type and from the invariants if ( len_constraint_from_type is None and len_constraint_from_invariants is None ): pass elif ( len_constraint_from_type is not None and len_constraint_from_invariants is None ): if ( len_constraint_from_type.min_value is not None or len_constraint_from_type.max_value is not None ): len_constraints_by_property[prop] = len_constraint_from_type elif ( len_constraint_from_type is None and len_constraint_from_invariants is not None ): if ( len_constraint_from_invariants.min_value is not None or len_constraint_from_invariants.max_value is not None ): len_constraints_by_property[prop] = len_constraint_from_invariants elif ( len_constraint_from_type is not None and len_constraint_from_invariants is not None ): # NOTE (mristin, 2022-03-02): # We have to make the bounds *stricter* since both # the type constraints and the invariant(s) need to be satisfied. min_value = infer_for_schema_len.max_with_none( len_constraint_from_type.min_value, len_constraint_from_invariants.min_value, ) max_value = infer_for_schema_len.min_with_none( len_constraint_from_type.max_value, len_constraint_from_invariants.max_value, ) if ( min_value is not None and max_value is not None and min_value > max_value ): errors.append( Error( symbol.parsed.node, f"The inferred minimum and maximum value on len(.) " f"is contradictory: " f"minimum = {min_value}, maximum = {max_value}; " f"please check the invariants and " f"any involved constrained primitives", ) ) continue if min_value is not None or max_value is not None: len_constraints_by_property[prop] = LenConstraint( min_value=min_value, max_value=max_value ) else: raise AssertionError( f"Unhandled case: " f"{len_constraint_from_type=}, {len_constraint_from_invariants}" ) # endregion # region Infer constraints on string patterns for prop in symbol.properties: # NOTE (mristin, 2022-03-03): # We need to go beneath ``Optional`` as the constraints are applied even # if a property is optional. In cases where cardinality is affected by # ``Optional``, the client code needs to cover them separately. type_anno = intermediate.beneath_optional(prop.type_annotation) patterns_from_type: List[PatternConstraint] = [] patterns_from_invariants = patterns_from_invariants_by_property.get( prop, [] ) if isinstance(type_anno, intermediate.OurTypeAnnotation) and isinstance( type_anno.symbol, intermediate.ConstrainedPrimitive ): patterns_from_type = patterns_by_constrained_primitive.get( type_anno.symbol, [] ) merged = patterns_from_type + patterns_from_invariants if len(merged) > 0: patterns_by_property[prop] = merged # endregion result[symbol] = ConstraintsByProperty( len_constraints_by_property=len_constraints_by_property, patterns_by_property=patterns_by_property, ) if len(errors) > 0: return None, errors return result, None @ensure(lambda result: (result[0] is not None) ^ (result[1] is not None)) def merge_constraints_with_ancestors( symbol_table: intermediate.SymbolTable, constraints_by_class: Mapping[intermediate.ClassUnion, ConstraintsByProperty], ) -> Tuple[ Optional[MutableMapping[intermediate.ClassUnion, ConstraintsByProperty]], Optional[Error], ]: """ Merge the constraints over all the classes with their ancestors. Usually, when you generate a schema, you do *not* want to inherit the constraints over the properties. Most schema engines will do that for you and you want to be as explicit as possible in the schema for readability (whereas merged constraints might not be as readable, since you do not explicitly see their origin). However, for some applications we indeed want to stack the constraints and merge them. For example, this is the case when we (semi-)automatically generate test data. In those cases, you should use this function. The length constraints are merged by picking the smaller interval that fits. Patterns are simply stacked together. """ new_constraints_by_class: MutableMapping[ intermediate.ClassUnion, ConstraintsByProperty ] = collections.OrderedDict() for symbol in symbol_table.symbols_topologically_sorted: if not isinstance( symbol, (intermediate.AbstractClass, intermediate.ConcreteClass) ): continue this_constraints_by_props = constraints_by_class[symbol] new_len_constraints_by_property: MutableMapping[ intermediate.Property, LenConstraint ] = collections.OrderedDict() new_patterns_by_property: MutableMapping[ intermediate.Property, Sequence[PatternConstraint] ] = collections.OrderedDict() for prop in symbol.properties: # region Merge len constraints len_constraints = [] this_len_constraint = ( this_constraints_by_props.len_constraints_by_property.get(prop, None) ) if this_len_constraint is not None: len_constraints.append(this_len_constraint) for parent in symbol.inheritances: # NOTE (mristin, 2022-05-15): # Assume here that all the ancestors already inherited their constraints # due to the topological order in the iteration. that_constraints_by_props = new_constraints_by_class[parent] that_len_constraint = ( that_constraints_by_props.len_constraints_by_property.get( prop, None ) ) if that_len_constraint is not None: len_constraints.append(that_len_constraint) min_value = None max_value = None for len_constraint in len_constraints: if min_value is None: min_value = len_constraint.min_value else: if len_constraint.min_value is not None: min_value = max(len_constraint.min_value, min_value) if max_value is None: max_value = len_constraint.max_value else: if len_constraint.max_value is not None: max_value = min(len_constraint.max_value, max_value) if ( min_value is not None and max_value is not None and min_value > max_value ): return None, Error( symbol.parsed.node, f"We could not stack the length constraints " f"on the property {prop.name} as they are contradicting: " f"min_value == {min_value} and max_value == {max_value}. " f"Please check the invariants and the invariants of all " f"the ancestors.", ) if min_value is not None or max_value is not None: new_len_constraints_by_property[prop] = LenConstraint( min_value=min_value, max_value=max_value ) # endregion # region Merge patterns # NOTE (mristin, 2022-05-15): # The following logic has quadratic time complexity, but it seems that # the runtime is currently no problem in practice. patterns = [] # type: List[PatternConstraint] this_patterns = this_constraints_by_props.patterns_by_property.get( prop, None ) if this_patterns is not None: patterns.extend(this_patterns) set_of_this_patterns = ( set() if this_patterns is None else set(this_pattern.pattern for this_pattern in this_patterns) ) for parent in symbol.inheritances: # NOTE (mristin, 2022-05-15): # Assume here that all the ancestors already inherited their constraints # due to the topological order in the iteration. that_constraints_by_props = new_constraints_by_class[parent] that_patterns = that_constraints_by_props.patterns_by_property.get( prop, None ) if that_patterns is not None: for that_pattern in that_patterns: # NOTE (mristin, 2022-06-15): # We have to make sure that we do not inherit the same pattern # from the parent. # # This is particularly important if the inherited property is a # constrained primitive. In that case, if we didn't check for # the duplicates, we would inherit the same pattern multiple # times as we can not distinguish whether the pattern # comes from an invariant of the parent or an invariant of # the constrained primitive. if that_pattern.pattern not in set_of_this_patterns: patterns.append(that_pattern) if len(patterns) > 0: new_patterns_by_property[prop] = patterns # endregion new_constraints_by_class[symbol] = ConstraintsByProperty( len_constraints_by_property=new_len_constraints_by_property, patterns_by_property=new_patterns_by_property, ) return new_constraints_by_class, None
python
from core.models import UrineDrugScreen from rest_framework import serializers class UrineDrugScreenSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = UrineDrugScreen fields = ('id', 'participant_id', 'date_of_test', 'uds_temp', 'pregnancy_test', 'opiates', 'fentanyl', 'bup', 'coc', 'amp', 'm_amp', 'thc', 'mtd', 'pcp', 'bar', 'bzo', 'tca', 'oxy')
python
from typing import Optional, List from pydantic import BaseModel from feeder.api.models import BasePaginatedList class GenericResponse(BaseModel): success: str = "ok" class FrontButton(BaseModel): enable: bool = True class UTCOffset(BaseModel): utc_offset: int = -7 class TriggerFeeding(BaseModel): portion: float = 0.0625 class FeedEvent(BaseModel): device_name: Optional[str] device_hid: str timestamp: int start_time: int end_time: int pour: Optional[int] full: Optional[int] grams_expected: int grams_actual: int hopper_start: int hopper_end: int source: int fail: bool trip: Optional[bool] lrg: Optional[bool] vol: Optional[bool] bowl: Optional[bool] recipe_id: str error: Optional[str] class FeedHistory(BasePaginatedList): data: List[FeedEvent]
python
from al_utils.vaal_util import train_vae, train_vae_disc from al_utils import vae_sampling as vs import sys import pickle import torch import numpy as np import os from copy import deepcopy from pycls.core.config import custom_dump_cfg import pycls.datasets.loader as imagenet_loader def save_numpy_arrays(arrays, names, parent_dir, saveinText=False): """Saves numpy arrays""" for i, a in enumerate(arrays): if saveinText: np.savetxt(parent_dir + names[i] + ".txt", a, fmt="%d") print( "Saved {} at path: {} !!".format( names[i], parent_dir + names[i] + ".txt" ) ) else: np.save(parent_dir + names[i] + ".npy", a) print( "Saved {} at path: {} !!".format( names[i], parent_dir + names[i] + ".npy" ) ) # #train task model def vaal_active_sampling(cfg, dataObj, debug=False): """Implements VAAL sampling. Args: cfg: Reference to the config yaml dataObj: Reference to data class debug (bool, optional): Switch for debug mode. Defaults to False. """ temp_old_im_size = cfg.TRAIN.IM_SIZE if cfg.TRAIN.DATASET.lower() == "imagenet": cfg.TRAIN.IM_SIZE = cfg.VAAL.IM_SIZE # args.vaal_im_size print("cfg.TRAIN.IM_SIZE: ", cfg.TRAIN.IM_SIZE) print("cfg.VAAL.IM_SIZE: ", cfg.VAAL.IM_SIZE) lSet_path = cfg.ACTIVE_LEARNING.LSET_PATH uSet_path = cfg.ACTIVE_LEARNING.USET_PATH if debug: print("lSetPath: {}".format(lSet_path)) if debug: print("uSetPath: {}".format(uSet_path)) lSet = np.load(lSet_path, allow_pickle=True) uSet = np.load(uSet_path, allow_pickle=True) print("---------Loaded partitions--------") print("lSet: {}, uSet: {}".format(len(lSet), len(uSet))) if cfg.TRAIN.DATASET.upper() == "IMAGENET": temp_cfg_worker = cfg.DATA_LOADER.NUM_WORKERS cfg.DATA_LOADER.NUM_WORKERS = 0 if cfg.TRAIN.DATASET == "IMAGENET": dataObj = None noAugDataset = None elif cfg.TRAIN.DATASET == "STL10": oldmode = dataObj.eval_mode dataObj.eval_mode = True noAugDataset, _ = dataObj.getDatasetForVAAL( save_dir=cfg.TRAIN_DIR, isTrain=True, isDownload=True ) dataObj.eval_mode = oldmode else: oldmode = dataObj.eval_mode dataObj.eval_mode = True noAugDataset, _ = dataObj.getDataset( save_dir=cfg.TRAIN_DIR, isTrain=True, isDownload=True ) dataObj.eval_mode = oldmode # First train vae and disc vae, disc = train_vae_disc(cfg, lSet, uSet, noAugDataset, dataObj, debug) if cfg.TRAIN.DATASET == "IMAGENET": temp_vaal_bs = cfg.VAAL.VAE_BS cfg.VAAL.VAE_BS = cfg.TRAIN.BATCH_SIZE uSetLoader = imagenet_loader.construct_loader_no_aug( cfg, indices=uSet, isShuffle=False, isDistributed=False ) # , isVaalSampling=True) cfg.VAAL.VAE_BS = temp_vaal_bs else: uSetLoader = dataObj.getSequentialDataLoader( indexes=uSet, batch_size=int(cfg.TRAIN.BATCH_SIZE / cfg.NUM_GPUS), data=noAugDataset, ) # Do active sampling print("Setting vae and disc in eval mode..!") vae.eval() disc.eval() print("Done!!") sampler = vs.AdversarySampler(budget=cfg.ACTIVE_LEARNING.BUDGET_SIZE) print("call vae sampling to get activeSet") activeSet, uSet = sampler.sample_for_labeling( vae=vae, discriminator=disc, unlabeled_dataloader=uSetLoader, uSet=uSet, cfg=cfg ) lSet = np.append(lSet, activeSet) # save arrays in npy format save_numpy_arrays( [lSet, uSet, activeSet], ["lSet", "uSet", "activeSet"], cfg.OUT_DIR ) # save arrays in txt format save_numpy_arrays( [lSet, uSet, activeSet], ["lSet", "uSet", "activeSet"], cfg.OUT_DIR, saveinText=True, ) if cfg.TRAIN.DATASET.lower() == "imagenet": cfg.TRAIN.IM_SIZE = temp_old_im_size cfg.DATA_LOADER.NUM_WORKERS = temp_cfg_worker # Dump cfg file -- temp_cfg = deepcopy(cfg) temp_cfg.ACTIVE_LEARNING.ACTIVATE = True temp_cfg.ACTIVE_LEARNING.LSET_PATH = os.path.join(temp_cfg.OUT_DIR, "lSet.npy") temp_cfg.ACTIVE_LEARNING.USET_PATH = os.path.join(temp_cfg.OUT_DIR, "uSet.npy") custom_dump_cfg(temp_cfg) def vaal_active_sampling_minus_disc(cfg, dataObj, debug=False): lSet_path = cfg.ACTIVE_LEARNING.LSET_PATH uSet_path = cfg.ACTIVE_LEARNING.USET_PATH lSet = np.load(lSet_path, allow_pickle=True) uSet = np.load(uSet_path, allow_pickle=True) # trainDataset = dataObj.getDataset(save_dir=cfg.TRAIN_DIR, isTrain=True, isDownload=True) if cfg.TRAIN.DATASET == "IMAGENET": dataObj = None noAugDataset = None else: oldmode = dataObj.eval_mode dataObj.eval_mode = True noAugDataset, _ = dataObj.getDataset( save_dir=cfg.TRAIN_DIR, isTrain=True, isDownload=True ) dataObj.eval_mode = oldmode # First train vae vae = train_vae(cfg, lSet, uSet, noAugDataset, dataObj, debug) if cfg.TRAIN.DATASET == "IMAGENET": lSetLoader = imagenet_loader.construct_loader_no_aug( cfg, indices=lSet, isShuffle=False, isDistributed=False ) # , isVaalSampling=True) uSetLoader = imagenet_loader.construct_loader_no_aug( cfg, indices=uSet, isShuffle=False, isDistributed=False ) # , isVaalSampling=True) else: lSetLoader = dataObj.getIndexesDataLoader( indexes=lSet, batch_size=int(cfg.TRAIN.BATCH_SIZE / cfg.NUM_GPUS), data=noAugDataset, ) uSetLoader = dataObj.getSequentialDataLoader( indexes=uSet, batch_size=int(cfg.TRAIN.BATCH_SIZE / cfg.NUM_GPUS), data=noAugDataset, ) # Do active sampling vae.eval() sampler = vs.AdversarySampler(budget=cfg.ACTIVE_LEARNING.BUDGET_SIZE) with torch.no_grad(): activeSet, uSet = sampler.vae_sample_for_labeling( vae=vae, uSet=uSet, lSet=lSet, unlabeled_dataloader=uSetLoader, lSetLoader=lSetLoader, ) lSet = np.append(lSet, activeSet) save_numpy_arrays( [lSet, uSet, activeSet], ["lSet", "uSet", "activeSet"], cfg.OUT_DIR ) save_numpy_arrays( [lSet, uSet, activeSet], ["lSet", "uSet", "activeSet"], cfg.OUT_DIR, saveinText=True, ) tempArgsFile = sys.argv[1] # Getting back the objects: with open(tempArgsFile, "rb") as f: # Python 3: open(..., 'rb') cfg, dataObj = pickle.load(f) if cfg.ACTIVE_LEARNING.SAMPLING_FN == "vaal": # Run original vaal print("--------------------------") print("Running VAAL Sampling") print("--------------------------") print("dataObj: {}".format(dataObj)) vaal_active_sampling(cfg, dataObj, debug=True) elif cfg.ACTIVE_LEARNING.SAMPLING_FN == "vaal_minus_disc": # Run vaal[-d] print("--------------------------") print("Running VAAL MINUS DISC Sampling") print("--------------------------") vaal_active_sampling_minus_disc(cfg, dataObj, debug=True)
python
import sys import os import datetime import psycopg2 import pandas from subprocess import call, Popen print "dropping temporary members from database..." conn_string = "dbname='hamlethurricane' user=postgres port='5432' host='127.0.0.1' password='password'" try: conn = psycopg2.connect(conn_string) except Exception as e: print str(e) sys.exit() hurricane_name = 'ARTHUR' dataframe_cur = conn.cursor() dataframe_sql = """Select * from hurricane_{}""".format(hurricane_name) dataframe_cur.execute(dataframe_sql) data = dataframe_cur.fetchall() colnames = [desc[0] for desc in dataframe_cur.description] dataframe = pandas.DataFrame(data) dataframe.columns = colnames conn.commit() range_feat = range(len(dataframe)) range_feat_strp = str(range_feat).strip('[]') range_feat_strp_v2 = range_feat_strp.split(',') drop_dismembered_cur = conn.cursor() for key in range(1, len(dataframe)): sql = """drop table if exists {}_{} cascade""".format(hurricane_name, key) drop_dismembered_cur.execute(sql) conn.commit() conn.close()
python
###################################################################### ###################################################################### # Copyright Tsung-Hsien Wen, Cambridge Dialogue Systems Group, 2016 # ###################################################################### ###################################################################### import numpy as np import theano import theano.tensor as T # numerical stability eps = 1e-7 # gradient clipping class GradClip(theano.compile.ViewOp): def __init__(self, clip_lower_bound, clip_upper_bound): self.clip_lower_bound = clip_lower_bound self.clip_upper_bound = clip_upper_bound assert(self.clip_upper_bound >= self.clip_lower_bound) def grad(self, args, g_outs): return [T.clip(g_out, self.clip_lower_bound, self.clip_upper_bound) for g_out in g_outs] def clip_gradient(x, bound): grad_clip = GradClip(-bound, bound) try: T.opt.register_canonicalize(theano.gof.OpRemove(grad_clip), name='grad_clip_%.1f' % (bound)) except ValueError: pass return grad_clip(x) # obtain sent logprob by summing over word logprob def collectSentLogp(p,cutoff_t,cutoff_b): q = p.dimshuffle(1,0) def sump(p_b,stop_t): logp = T.sum(T.log10(p_b[:stop_t])) return logp cutoff_logp, _ = theano.scan(fn=sump,\ sequences=[q[:cutoff_b],cutoff_t[:cutoff_b]],\ outputs_info=[None]) return cutoff_logp # Node class for performing beam search class BeamSearchNode(object): def __init__(self,h,c,prevNode,wordid,logp,leng): self.h = h self.c = c self.logp = logp self.leng = leng self.wordid = wordid self.prevNode = prevNode self.sv = None def eval(self): if self.leng>40: return self.logp/float(self.leng-1+eps)-40.0 return self.logp/float(self.leng-1+eps) # basic class for Recurrent Language Generator class BaseRLG(object): def __init__(self, gentype, beamwidth, overgen, vocab_size, hidden_size, batch_size, da_sizes): # setting hyperparameters self.gentype= gentype self.di = vocab_size self.dh = hidden_size self.db = batch_size self.dfs = da_sizes self.overgen= overgen self.beamwidth = beamwidth def _init_params(self): #TODO: function for initialise weight matrices pass def unroll(self): #TODO: unrolling function in theano, for training pass def _recur(self): #TODO: per step recurrence function in theano, for training pass def beamSearch(self): #TODO: generation function in numpy, beam search decoding pass def sample(self): #TODO: generation function in numpy, random sampling pass def _gen(self): #TODO: per step generation function in numpy, for decoding pass def loadConverseParams(self): #TODO: load numpy parameters pass def setParams(self,params): # set theano parameters for i in range(len(self.params)): self.params[i].set_value(params[i]) def getParams(self): # fetch theano parameters return [p.get_value() for p in self.params] def numOfParams(self): # return number of parameters return sum([p.get_value().size for p in self.params])
python
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2018-07-30 19:16 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('data', '0053_merge_20180615_1859'), ] operations = [ migrations.AddField( model_name='vmflavor', name='cpus', field=models.IntegerField(default=1, help_text='How many CPUs are assigned to this flavor'), ), ]
python
"""Allow _view property in graph file schema Revision ID: 8f6d4eef042d Revises: a2316139e9a3 Create Date: 2021-10-20 10:04:21.668552 """ import hashlib import json from os import path import fastjsonschema import sqlalchemy as sa from alembic import context from alembic import op from sqlalchemy import table, column, and_ from sqlalchemy.orm import Session from migrations.utils import window_chunk # revision identifiers, used by Alembic. revision = '8f6d4eef042d' down_revision = 'a2316139e9a3' branch_labels = None depends_on = None # reference to this directory directory = path.realpath(path.dirname(__file__)) with open(path.join(directory, '../upgrade_data/graph_v3.json'), 'r') as f: # Use this method to validate the content of an enrichment table validate_graph = fastjsonschema.compile(json.load(f)) def drop_view_property(): """ We start using _view property in graph files. By design it should not exist (file format documentation prohibits properties starting with _). However, our schema do not used to validate this constrain. Just to be sure this migration runs check to delete _view property from existing files (new uploads with this property will not pass schema validation). """ conn = op.get_bind() session = Session(conn) t_files = table( 'files', column('content_id', sa.Integer), column('mime_type', sa.String)) t_files_content = table( 'files_content', column('id', sa.Integer), column('raw_file', sa.LargeBinary), column('checksum_sha256', sa.Binary) ) files = conn.execution_options(stream_results=True).execute(sa.select([ t_files_content.c.id, t_files_content.c.raw_file ]).where( and_( t_files.c.mime_type == 'vnd.lifelike.document/graph', t_files.c.content_id == t_files_content.c.id ) )) for chunk in window_chunk(files, 25): for id, content in chunk: graph = json.loads(content) if '_views' in graph: del graph['_views'] validate_graph(graph) raw_file = json.dumps(graph).encode('utf-8') checksum_sha256 = hashlib.sha256(raw_file).digest() session.execute( t_files_content.update().where( t_files_content.c.id == id ).values( raw_file=raw_file, checksum_sha256=checksum_sha256 ) ) session.flush() session.commit() def upgrade(): if context.get_x_argument(as_dictionary=True).get('data_migrate', None): data_upgrades() def downgrade(): if context.get_x_argument(as_dictionary=True).get('data_migrate', None): data_upgrades() def data_upgrades(): drop_view_property() def data_downgrades(): drop_view_property()
python
# -*- coding: utf-8 -*- from abc import ABC, abstractmethod from fuocore.models import ( SongModel, ArtistModel, AlbumModel, PlaylistModel, LyricModel, UserModel, ) class AbstractProvider(ABC): """abstract music resource provider """ # A well behaved provider should implement its own models . Song = SongModel Artist = ArtistModel Album = AlbumModel Playlist = PlaylistModel Lyric = LyricModel User = UserModel @property @abstractmethod def identifier(self): """provider identify""" @property @abstractmethod def name(self): """provider name"""
python
import warnings from mmdet.models.builder import (BACKBONES, DETECTORS, HEADS, LOSSES, NECKS, ROI_EXTRACTORS, SHARED_HEADS, build) from .registry import FUSION_LAYERS, MIDDLE_ENCODERS, VOXEL_ENCODERS from mmdet3d.datasets.pipelines import Compose def build_backbone(cfg): """Build backbone.""" return build(cfg, BACKBONES) def build_neck(cfg): """Build neck.""" return build(cfg, NECKS) def build_roi_extractor(cfg): """Build RoI feature extractor.""" return build(cfg, ROI_EXTRACTORS) def build_shared_head(cfg): """Build shared head of detector.""" return build(cfg, SHARED_HEADS) def build_head(cfg): """Build head.""" return build(cfg, HEADS) def build_loss(cfg): """Build loss function.""" return build(cfg, LOSSES) def build_detector(cfg, train_cfg=None, test_cfg=None): """Build detector.""" if train_cfg is not None or test_cfg is not None: warnings.warn( 'train_cfg and test_cfg is deprecated, ' 'please specify them in model', UserWarning) assert cfg.get('train_cfg') is None or train_cfg is None, \ 'train_cfg specified in both outer field and model field ' assert cfg.get('test_cfg') is None or test_cfg is None, \ 'test_cfg specified in both outer field and model field ' return build(cfg, DETECTORS, dict(train_cfg=train_cfg, test_cfg=test_cfg)) def build_voxel_encoder(cfg): """Build voxel encoder.""" return build(cfg, VOXEL_ENCODERS) def build_middle_encoder(cfg): """Build middle level encoder.""" return build(cfg, MIDDLE_ENCODERS) def build_fusion_layer(cfg): """Build fusion layer.""" return build(cfg, FUSION_LAYERS)
python
from flask import Flask from . import api_credentials_provider def create_app(test_config=None) -> Flask: """Main entry point of the service. The application factory is responsible for creating and confguring the flask app. It also defines a http ping endpoint and registers blueprints. Returns: Flask: the flask app """ app = Flask(__name__, instance_relative_config=True) if test_config: app.config.from_mapping(test_config) else: app.config.from_mapping( GIPHY_API_KEY=api_credentials_provider.resolve_credentials() ) @app.route("/ping") def ping(): return "OK" from . import search app.register_blueprint(search.bp) return app
python
# encapsulation def outer(num1): print("outer") def inner_increment(num1): print("inner") return num1 + 1 num2 = inner_increment(num1) print(num1, num2) outer(10)
python
''' Extract special sequences from fasta file. You can specify which sequences get extracted by using the a separator. Usage: python extract <fasta_file> <output_file> <separator> Author: Nicolas Schmelling ''' from Bio import SeqIO import sys def extract(fasta_file, output_file, separator): with open(output_file,"w") as f: extract_seqs = [] for seq_record in SeqIO.parse(fasta_file, "fasta"): if separator in seq_record.description: extract_seqs.append(seq_record) SeqIO.write(extract_seqs, f, "fasta") if __name__ == "__main__": fasta_file = sys.argv[1] output_file = sys.argv[2] separator = sys.argv[3] extract(fasta_file, output_file, separator)
python
"""Utilities for interacting with ProxyStore""" import proxystore as ps from typing import Any, Optional, Union from colmena.models import SerializationMethod class ColmenaSerializationFactory(ps.store.redis.RedisFactory): """Custom Factory for using Colmena serialization utilities""" def __init__(self, key: str, name: str, hostname: str, port: int, serialization_method: Union[str, SerializationMethod] = SerializationMethod.PICKLE, **kwargs) -> None: """Init ColmenaSerialization Factory Args: key (str): key corresponding to object in Redis. name (str): name of store to retrive objects from. hostname (str): hostname of Redis server containing object. port (int): port of Redis server containing object. serialization_method (str): Colmena serialization method to use for deserializing the object when resolved from Redis. kwargs: keyword arguments to pass to the RedisFactory. """ self.serialization_method = serialization_method self.kwargs = kwargs super(ColmenaSerializationFactory, self).__init__( key, name, hostname, port, **kwargs ) def __getnewargs_ex__(self): """Helper method for pickling Note: We override default pickling behavior because a Factory may contain a Future if it is being asynchronously resolved and Futures cannot be pickled. """ return (self.key, self.name, self.hostname, self.port), { 'serialization_method': self.serialization_method, **self.kwargs } def resolve(self) -> Any: obj_str = super(ColmenaSerializationFactory, self).resolve() return SerializationMethod.deserialize(self.serialization_method, obj_str) def proxy(obj: Any, key: Optional[str] = None, is_serialized: bool = False, serialization_method: Union[str, SerializationMethod] = SerializationMethod.PICKLE, **kwargs) -> ps.proxy.Proxy: """Place object in Value Server and return Proxy Args: obj: object to be placed in Value Server and proxied. key (str): optional key to associate with object. By default, ProxyStore will create a key for the object (default: None). is_serialized (bool): True if obj is already serialized (default: False). serialization_method (str): serialization method to use for the object (default: SerializationMethod.PICKLE). kwargs (dict): keyword arguments to pass to ProxyStore.store.redis.RedisStore.proxy(). Returns: ps.proxy.Proxy """ store = ps.store.get_store('redis') if not is_serialized: obj = SerializationMethod.serialize(serialization_method, obj) return store.proxy( obj, key, serialize=False, # Do not use ProxyStore serialization utilities serialization_method=serialization_method, factory=ColmenaSerializationFactory, **kwargs ) def resolve_proxies_async(args: Union[object, list, tuple, dict]) -> None: """Begin asynchronously resolving all proxies in input Scan inputs for instances of `Proxy` and begin asynchronously resolving. This is useful if you have one or more proxies that will be needed soon so the underlying objects can be asynchronously resolved to reduce the cost of the first access to the proxy. Args: args (object, list, tuple, dict): possible object or iterable of objects that may be ObjectProxy instances """ def resolve_async_if_proxy(obj: Any) -> None: if isinstance(obj, ps.proxy.Proxy): ps.proxy.resolve_async(obj) if isinstance(args, ps.proxy.Proxy): resolve_async_if_proxy(args) elif isinstance(args, list) or isinstance(args, tuple): for x in args: resolve_async_if_proxy(x) elif isinstance(args, dict): for x in args: resolve_async_if_proxy(args[x])
python
from ... import error from ..entity import Entity from ..component import Component __all__ = ["Parent"] class Parent(Component): def __init__(self, parent: Entity): self._parent = parent def parent(self, err=True) -> Entity: if self._parent is None and err: raise error.ecs.ParentError(self.entity) return self._parent def __repr__(self) -> str: return f"{super().__repr__()}<{self._parent}>"
python
from microbit import * import utime class Rangefinder: def __init__(self, pin): '''Setup a rangefinder on the specified pin''' self.pin = pin def distance_cm(self): '''Returns the distance from a rangefinder in cm''' self.pin.write_digital(0) utime.sleep_us(200) self.pin.write_digital(1) utime.sleep_us(500) self.pin.write_digital(0) init = utime.ticks_us() stop = init start = init flag = False timeout = 100000 while not self.pin.read_digital(): if utime.ticks_us() - init > timeout: return -1 start = utime.ticks_us() while self.pin.read_digital(): if utime.ticks_us() - start > timeout: return -1 stop = utime.ticks_us() distance = (stop - start) * 343 / 20000 print(stop, start) return distance
python
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.utils.translation import ugettext_lazy as _ from rest_framework import serializers from backend.accounts import bcs_perm from backend.iam.permissions.resources.namespace_scoped import NamespaceScopedPermCtx, NamespaceScopedPermission from backend.resources.namespace.utils import get_namespaces_by_cluster_id from backend.templatesets.legacy_apps.configuration import constants, models from backend.templatesets.legacy_apps.configuration.yaml_mode.res2files import get_resource_file, get_template_files def get_namespace_id(access_token, project_id, cluster_id, namespace): namespaces = get_namespaces_by_cluster_id(access_token, project_id, cluster_id) for ns in namespaces: if ns["name"] == namespace: return ns["id"] raise serializers.ValidationError(_("项目(id:{})下不存在命名空间({}/{})").format(project_id, cluster_id, namespace)) def add_fields_in_template_files(version_id, req_template_files): """ add id and content fields in template_files """ try: ventity = models.VersionedEntity.objects.get(id=version_id) except models.VersionedEntity.DoesNotExist: raise serializers.ValidationError(f"template version(id:{version_id}) does not exist") entity = ventity.get_entity() template_files = [] for res_file in req_template_files: res_name = res_file["resource_name"] res_file_ids = entity[res_name].split(",") resource_file = get_resource_file(res_name, res_file_ids, "id", "name", "content") if "files" not in res_file: template_files.append(resource_file) continue if not res_file["files"]: raise serializers.ValidationError(f"empty parameter files in template_files({res_name})") resource_file_map = {f["name"]: f for f in resource_file["files"]} files = [resource_file_map[f["name"]] for f in res_file["files"]] template_files.append({"resource_name": res_name, "files": files}) return template_files class NamespaceInfoSLZ(serializers.Serializer): cluster_id = serializers.CharField() name = serializers.CharField() class TemplateReleaseSLZ(serializers.Serializer): project_id = serializers.CharField() template_name = serializers.CharField() show_version_name = serializers.CharField() template_files = serializers.JSONField(required=False) namespace_info = NamespaceInfoSLZ() template_variables = serializers.JSONField(default={}) def _validate_template_files(self, data): """ template_files: [{'resource_name': 'Deployment', 'files': [{'name': ''}]}] """ if "template_files" not in data: data["template_files"] = get_template_files(data["show_version"].real_version_id, "id", "name", "content") return template_files = data["template_files"] if not template_files: raise serializers.ValidationError("empty parameter template_files") try: data["template_files"] = add_fields_in_template_files(data["show_version"].real_version_id, template_files) except Exception as err: raise serializers.ValidationError(f"invalid parameter template_files: {err}") def _validate_namespace_info(self, data): request = self.context["request"] namespace_info = data["namespace_info"] namespace_info["id"] = get_namespace_id( request.user.token.access_token, data["project_id"], namespace_info["cluster_id"], namespace_info["name"] ) perm_ctx = NamespaceScopedPermCtx( username=request.user.username, project_id=data["project_id"], cluster_id=namespace_info["cluster_id"], name=namespace_info["name"], ) NamespaceScopedPermission().can_use(perm_ctx) def validate(self, data): template_name = data["template_name"] try: template = models.Template.objects.get( project_id=data["project_id"], name=template_name, edit_mode=constants.TemplateEditMode.YAML.value ) data["template"] = template except models.Template.DoesNotExist: raise serializers.ValidationError(_("YAML模板集(name:{})不存在").format(template_name)) try: show_version = models.ShowVersion.objects.get(name=data["show_version_name"], template_id=template.id) data["show_version"] = show_version except models.ShowVersion.DoesNotExist: raise serializers.ValidationError( _("YAML模板集(name:{})不存在版本{}").format(template_name, data["show_version_name"]) ) self._validate_namespace_info(data) self._validate_template_files(data) return data
python
def test_requirements(supported_configuration): pass
python
import os import sys import math import scipy.signal import schemasim.schemas.l0_schema_templates as st class PhysicalCondition(st.RoleDefiningSchema): def __init__(self): super().__init__() self._type = "PhysicalCondition" self._meta_type.append("PhysicalCondition") self._roles = {} def isDefaultCompatible(self): return False class Default(PhysicalCondition): def __init__(self): super().__init__() self._type = "Default" self._meta_type.append("DefaultPhysicalCondition") self._roles = {} def isDefaultCompatible(self): return True class CollisionEnabled(Default): def __init__(self, obj=None): super().__init__() self._type = "CollisionEnabled" self._meta_type.append("CollisionEnabled") self._roles = {"obj": obj} class CollisionDisabled(PhysicalCondition): def __init__(self, obj=None): super().__init__() self._type = "CollisionDisabled" self._meta_type.append("CollisionDisabled") self._roles = {"obj": obj} class PhysicsPrimitiveQuality(st.RoleDefiningSchema): def __init__(self, obj=None, quality="", default=1.0): super().__init__() self._type = "PhysicsPrimitiveQuality" self._meta_type.append("PhysicsPrimitiveQuality") self._normal = default if (None != obj) and ("ParameterizedSchema" in obj._meta_type) and (quality in obj._parameters): self._normal = obj._parameters[quality] self._roles = {"obj": obj} self._quality = quality def getReferenceValue(self): return self._normal def _getQuality(self): retq = self._normal if (None != self._roles['obj']) and (self._quality in self._roles['obj']._parameters): retq = self._roles['obj']._parameters[self._quality] return retq def evaluateFrame(self, frameData, sim): return True, 1.0 def filterPD(self, rpd, sim, strictness=0.005): return rpd class MassSettingSchema(PhysicsPrimitiveQuality): def __init__(self, obj=None): super().__init__(obj=obj, quality="mass") self._type = "MassSettingSchema" self._meta_type.append("MassSettingSchema") def evaluateFrame(self, frameData, sim): mass = self._getQuality() ref = self.getReferenceValue() sc = math.exp(-math.fabs(mass - ref)/(ref/5.0)) return (0.2 < sc), sc def filterPD(self, rpd, sim, strictness=0.005): space = sim.space() ref = self.getReferenceValue() for c in rpd: c[0] = c[0]*math.exp(-math.fabs(c[1] - ref)/(ref/5.0)) return rpd class Heavy(MassSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "Heavy" self._meta_type.append("Heavy") def getReferenceValue(self): return 5*self._normal class VeryHeavy(MassSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "VeryHeavy" self._meta_type.append("VeryHeavy") def getReferenceValue(self): return 25*self._normal class Lightweight(MassSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "Lightweight" self._meta_type.append("Lightweight") def getReferenceValue(self): return 0.2*self._normal class VeryLightweight(MassSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "VeryLightweight" self._meta_type.append("VeryLightweight") def getReferenceValue(self): return 0.04*self._normal class RestitutionSettingSchema(PhysicsPrimitiveQuality): def __init__(self, obj=None): super().__init__(obj=obj, quality="restitution") self._type = "RestitutionSettingSchema" self._meta_type.append("RestitutionSettingSchema") def evaluateFrame(self, frameData, sim): restitution = self._getQuality() ref = self.getReferenceValue() sc = math.exp(-math.fabs(restitution - ref)/(0.1)) return (0.2 < sc), sc def filterPD(self, rpd, sim, strictness=0.005): space = sim.space() ref = self.getReferenceValue() for c in rpd: c[0] = c[0]*math.exp(-math.fabs(c[1] - ref)/(0.1)) return rpd class Elastic(MassSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "Elastic" self._meta_type.append("Elastic") def getReferenceValue(self): return 0.6 class VeryElastic(MassSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "VeryElastic" self._meta_type.append("VeryElastic") def getReferenceValue(self): return 0.8 class Inelastic(MassSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "Inelastic" self._meta_type.append("Inelastic") def getReferenceValue(self): return 0.3 class VeryInelastic(MassSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "VeryInelastic" self._meta_type.append("VeryInelastic") def getReferenceValue(self): return 0.1 class FrictionSettingSchema(PhysicsPrimitiveQuality): def __init__(self, obj=None): super().__init__(obj=obj, quality="friction") self._type = "FrictionSettingSchema" self._meta_type.append("FrictionSettingSchema") def evaluateFrame(self, frameData, sim): friction = self._getQuality() ref = self.getReferenceValue() sc = math.exp(-math.fabs(friction - ref)/(0.1)) return (0.2 < sc), sc def filterPD(self, rpd, sim, strictness=0.005): space = sim.space() ref = self.getReferenceValue() for c in rpd: c[0] = c[0]*math.exp(-math.fabs(c[1] - ref)/(0.1)) return rpd class Frictious(MassSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "Frictious" self._meta_type.append("Frictious") def getReferenceValue(self): return 0.6 class Slippery(MassSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "Slippery" self._meta_type.append("Slippery") def getReferenceValue(self): return 0.3 class VeryFrictious(MassSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "VeryFrictious" self._meta_type.append("VeryFrictious") def getReferenceValue(self): return 0.8 class VerySlippery(MassSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "VerySlippery" self._meta_type.append("VerySlippery") def getReferenceValue(self): return 0.1 class ParticleNumSettingSchema(PhysicsPrimitiveQuality): def __init__(self, obj=None): super().__init__(obj=obj, quality="particle_num") self._type = "ParticleNumSettingSchema" self._meta_type.append("ParticleNumSettingSchema") self._normal = 30 def evaluateFrame(self, frameData, sim): return True, 1.0 def filterPD(self, rpd, sim, strictness=0.005): space = sim.space() for c in rpd: c[0] = c[0]*math.exp(-math.fabs(c[1] - self._normal)/(self._normal/5.0)) return rpd class Plentiful(ParticleNumSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "Plentiful" self._meta_type.append("Plentiful") self._normal = 50 class Scarce(ParticleNumSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "Scarce" self._meta_type.append("Scarce") self._normal = 15 class VeryPlentiful(ParticleNumSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "Plentiful" self._meta_type.append("Plentiful") self._normal = 90 class VeryScarce(ParticleNumSettingSchema): def __init__(self, obj=None): super().__init__(obj=obj) self._type = "Scarce" self._meta_type.append("Scarce") self._normal = 5
python
# -*- coding: utf-8 -*- # ***************************************************************************** # NICOS, the Networked Instrument Control System of the MLZ # Copyright (c) 2009-2021 by the NICOS contributors (see AUTHORS) # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # Georg Brandl <[email protected]> # # ***************************************************************************** """Base classes for YAML based datasinks.""" from datetime import datetime from time import time as currenttime import quickyaml from nicos import session from nicos.core import NicosError from nicos.devices.datasinks.image import SingleFileSinkHandler from nicos.utils import AutoDefaultODict def nice_datetime(dt): if isinstance(dt, float): dt = datetime.fromtimestamp(dt) rounded = dt.replace(microsecond=0) return rounded.isoformat() class YAMLBaseFileSinkHandler(SingleFileSinkHandler): filetype = 'MLZ.YAML' # to be overwritten in derived classes max_yaml_width = 120 accept_final_images_only = True yaml_array_handling = quickyaml.ARRAY_AS_SEQ objects = ['angle', 'clearance', 'current', 'displacement', 'duration', 'energy', 'frequency', 'temperature', 'wavelength', 'offset', 'width', 'height', 'length'] units = ['deg', 'mm', 'A', 'mm', 's', 'meV', 'hertz', 'K', 'A', 'mm', 'mm', 'mm', 'mm'] def _readdev(self, devname, mapper=lambda x: x): try: return mapper(session.getDevice(devname).read()) except NicosError: return None def _devpar(self, devname, parname, mapper=lambda x: x): try: return mapper(getattr(session.getDevice(devname), parname)) except NicosError: return None def _dict(self): return AutoDefaultODict() def _flowlist(self, *args): return quickyaml.flowlist(*args) def writeData(self, fp, image): """Save in YAML format.""" fp.seek(0) expdev = session.experiment instrdev = session.instrument o = AutoDefaultODict() instr = o['instrument'] instr['name'] = instrdev.instrument instr['facility'] = instrdev.facility instr['operator'] = ', '.join(instrdev.operators) instr['website'] = instrdev.website instr['references'] = [AutoDefaultODict({'doi': instrdev.doi})] o['format']['identifier'] = self.__class__.filetype for obj, unit in zip(self.objects, self.units): o['format']['units'][obj] = unit exp = o['experiment'] exp['number'] = expdev.propinfo.get('session', expdev.proposal) exp['proposal'] = expdev.proposal exp['title'] = expdev.title exp['authors'] = [] for user in expdev.propinfo.get('users', []): a = AutoDefaultODict() a['name'] = user['name'] a['affiliation'] = user.get('affiliation') a['roles'] = self._flowlist(['principal_investigator']) exp['authors'].append(a) for user in expdev.propinfo.get('localcontacts', []): a = AutoDefaultODict() a['name'] = user['name'] a['affiliation'] = user.get('affiliation') a['roles'] = self._flowlist(['local_contact']) exp['authors'].append(a) meas = o['measurement'] meas['number'] = self.dataset.number meas['unique_identifier'] = '%s/%s/%s' % ( expdev.proposal, self.dataset.counter, self.dataset.number) hist = meas['history'] hist['started'] = nice_datetime(self.dataset.started) hist['stopped'] = nice_datetime(currenttime()) sample = meas['sample']['description'] sample['name'] = expdev.sample.samplename env = meas['sample']['environment'] = [] stats = self.dataset.valuestats for (info, val) in zip(self.dataset.envvalueinfo, self.dataset.envvaluelist): entry = self._dict() entry['name'] = info.name entry['unit'] = info.unit entry['value'] = val if info.name in stats: entry['mean'] = stats[info.name][0] entry['stddev'] = stats[info.name][1] entry['min'] = stats[info.name][2] entry['max'] = stats[info.name][3] env.append(entry) self._write_instr_data(meas, image) quickyaml.Dumper(width=self.max_yaml_width, array_handling=self.yaml_array_handling).dump(o, fp) fp.flush() def _write_instr_data(self, meas_root, image): raise NotImplementedError('implement _write_instr_data')
python
#!/usr/bin/env python3 # SPDX-License-Identifier: Apache-2.0 # Copyright (c) 2020 Intel Corporation """ ETCD Data Write Tool """ import argparse import logging import os import sys import eis_integ def parse_arguments(_cli_args): """ Parse argument passed to function """ parser = argparse.ArgumentParser(description= "Adds the contents of the json file to the etcd database.") parser.add_argument("arg", help= "Name of the json file whose contents should be added to the database.") return parser.parse_args() def main(args): """ Calls the eis_integ.etcd_put_json function to add the contents of the json file to the etcd database """ eis_integ.init_logger() os.environ["ETCDCTL_ENDPOINTS"] = "https://" + eis_integ.extract_etcd_endpoint() eis_integ.check_path_variable("ETCDCTL_CACERT", os.environ.get("ETCDCTL_CACERT")) eis_integ.check_path_variable("ETCDCTL_CERT", os.environ.get("ETCDCTL_CERT")) eis_integ.check_path_variable("ETCDCTL_KEY", os.environ.get("ETCDCTL_KEY")) print("Update the etcd database or add {} file contents to the etcd database".format(args.arg)) eis_integ.etcd_put_json(eis_integ.load_json(args.arg)) return eis_integ.CODES.NO_ERROR if __name__ == '__main__': try: sys.exit(main(parse_arguments(sys.argv[1:])).value) except eis_integ.EisIntegError as exception: logging.error("Error while adding entries to ETCD database: %s", exception) sys.exit(exception.code.value)
python
from app.validation.validation import validate, ARGS, KWARGS import json import os __db_items__ = "db/items" class Item: def __init__(self): pass @validate(4, ARGS) def save(self, id, name, price, qty): with open(f"{__db_items__}/{name}.json", 'w') as f: data = { 'id': id, 'name': name, 'price': price, 'qty': qty } json.dump(data, f) print("Item Saved") def __get_item_list(self, name): try: item_list = os.listdir(__db_items__) return [x for x in item_list if x == f"{name}.json"][0] except Exception as e: return None @validate(1, ARGS) def find(self, name): item = self.__get_item_list(name) if item != None: with open(f"{__db_items__}/{item}", "r") as f: data = json.load(f) print(f"\nID: {data['id']} Name: {data['name']} Price: {data['price']} QTY: {data['qty']}", end='\n') return data else: print("No Item") def getAll(self): files = os.listdir(__db_items__) all_items = [] if len(files) > 0: for fs in files: with open(f"{__db_items__}/{fs}", "r") as f: data = json.load(f) print(f"ID: {data['id']} Name: {data['name']} Price: {data['price']} QTY: {data['qty']}", end='\n') all_items.append(data) return all_items else: print("No Items found.!") return None @validate(1, ARGS) def is_item_exist(self, name): item = self.__get_item_list(name) if item != None: return item.__contains__(name) else: return False
python
import json from setuptools import setup, find_packages from pydoccano import __version__ def requirements(): requirements_list = [] with open('Pipfile.lock', "r") as requirements: data = json.load(requirements) data = data['default'] for i in data: try: req = i + data[i]['version'].replace('==', '>=') except KeyError: req = f"-e git+{data[i]['git']}@{data[i]['ref']}#egg={i}" requirements_list.append(req) return requirements_list setup( name='pydoccano', version=__version__, description='This package for API of doccano', author='Bogdan Evstratenko)', author_email='[email protected]', url='https://github.com/evstratbg/pydoccano', packages=find_packages(), python_requires='>=3.7', install_requires=requirements(), )
python
# -*- coding: utf-8 -*- from __future__ import absolute_import import json import time from multiprocessing import Process import pytest import six import thriftpy2 from thriftpy2.http import make_server as make_http_server, \ make_client as make_http_client from thriftpy2.protocol import TApacheJSONProtocolFactory from thriftpy2.rpc import make_server as make_rpc_server, \ make_client as make_rpc_client from thriftpy2.thrift import TProcessor, TType from thriftpy2.transport import TMemoryBuffer from thriftpy2.transport.buffered import TBufferedTransportFactory def recursive_vars(obj): if isinstance(obj, six.string_types): return six.ensure_str(obj) if isinstance(obj, six.binary_type): return six.ensure_binary(obj) if isinstance(obj, (int, float, bool)): return obj if isinstance(obj, dict): return {k: recursive_vars(v) for k, v in obj.items()} if isinstance(obj, (list, set)): return [recursive_vars(v) for v in obj] if hasattr(obj, '__dict__'): return recursive_vars(vars(obj)) def test_thrift_transport(): test_thrift = thriftpy2.load( "apache_json_test.thrift", module_name="test_thrift" ) Test = test_thrift.Test Foo = test_thrift.Foo test_object = Test( tbool=False, tbyte=16, tdouble=1.234567, tlong=123123123, tshort=123, tint=12345678, tstr="Testing String", tsetofints={1, 2, 3, 4, 5}, tmap_of_int2str={ 1: "one", 2: "two", 3: "three" }, tlist_of_strings=["how", "do", "i", "test", "this?"], tmap_of_str2foo={'first': Foo("first"), "2nd": Foo("baz")}, tmap_of_str2foolist={ 'test': [Foo("test list entry")] }, tmap_of_str2mapofstring2foo={ "first": { "second": Foo("testing") } }, tmap_of_str2stringlist={ "words": ["dog", "cat", "pie"], "other": ["test", "foo", "bar", "baz", "quux"] }, tfoo=Foo("test food"), tlist_of_foo=[Foo("1"), Foo("2"), Foo("3")], tlist_of_maps2int=[ {"one": 1, "two": 2, "three": 3} ], tmap_of_int2foo={ 1: Foo("One"), 2: Foo("Two"), 5: Foo("Five") }, tbinary=b"\x01\x0fabc123\x00\x02" ) # A request generated by apache thrift that matches the above object request_data = b"""[1,"test",1,0,{"1":{"rec":{"1":{"tf":0},"2":{"i8":16}, "3":{"i16":123},"4":{"i32":12345678},"5":{"i64":123123123},"6": {"dbl":1.234567},"7":{"str":"Testing String"},"8":{"lst":["str",5, "how","do","i","test","this?"]},"9":{"map":["i32","str",3,{"1":"one", "2":"two","3":"three"}]},"10":{"set":["i32",5,1,2,3,4,5]}, "11":{"map":["str","rec",2,{"first":{"1":{"str":"first"}},"2nd": {"1":{"str":"baz"}}}]},"12":{"map":["str","lst", 2,{"words":["str",3,"dog","cat","pie"],"other":["str",5,"test", "foo","bar","baz","quux"]}]},"13":{"map":["str", "map",1,{"first":["str","rec",1,{"second":{"1":{"str":"testing"}}}]}]}, "14":{"lst":["rec",3,{"1":{"str":"1"}}, {"1":{"str":"2"}},{"1":{"str":"3"}}]},"15":{"rec":{"1":{ "str":"test food"}}},"16":{"lst":["map",1,["str","i32", 3,{"one":1,"two":2,"three":3}]]},"17":{"map":["str","lst",1,{"test": ["rec",1,{"1":{"str":"test list entry"}}]}]}, "18":{"map":["i32","rec",3,{"1":{"1":{"str":"One"}},"2":{"1": {"str":"Two"}},"5":{"1":{"str":"Five"}}}]}, "19":{"str":"AQ9hYmMxMjMAAg=="}}}}]""" class Handler: @staticmethod def test(t): # t should match the object above expected_a = recursive_vars(t) expected_b = recursive_vars(test_object) if TType.STRING != TType.BINARY: assert expected_a == expected_b return t tp2_thrift_processor = TProcessor(test_thrift.TestService, Handler()) tp2_factory = TApacheJSONProtocolFactory() iprot = tp2_factory.get_protocol(TMemoryBuffer(request_data)) obuf = TMemoryBuffer() oprot = tp2_factory.get_protocol(obuf) tp2_thrift_processor.process(iprot, oprot) # output buffers should be the same final_data = obuf.getvalue() assert json.loads(request_data.decode('utf8'))[4]['1'] == \ json.loads(final_data.decode('utf8'))[4]['0'] @pytest.mark.parametrize('server_func', [(make_rpc_server, make_rpc_client), (make_http_server, make_http_client)]) def test_client(server_func): test_thrift = thriftpy2.load( "apache_json_test.thrift", module_name="test_thrift" ) class Handler: @staticmethod def test(t): return t def run_server(): server = make_http_server( test_thrift.TestService, handler=Handler(), host='localhost', port=9090, proto_factory=TApacheJSONProtocolFactory(), trans_factory=TBufferedTransportFactory() ) server.serve() proc = Process(target=run_server, ) proc.start() time.sleep(0.25) try: test_object = test_thrift.Test( tdouble=12.3456, tint=567, tstr='A test \'{["string', tmap_of_bool2str={True: "true string", False: "false string"}, tmap_of_bool2int={True: 0, False: 1} ) client = make_http_client( test_thrift.TestService, host='localhost', port=9090, proto_factory=TApacheJSONProtocolFactory(), trans_factory=TBufferedTransportFactory() ) res = client.test(test_object) assert recursive_vars(res) == recursive_vars(test_object) finally: proc.terminate() time.sleep(1)
python
#!/usr/bin/env python """ """ # Script information for the file. __author__ = "Philippe T. Pinard" __email__ = "[email protected]" __version__ = "0.1" __copyright__ = "Copyright (c) 2015 Philippe T. Pinard" __license__ = "GPL v3" # Standard library modules. import unittest import logging import os import tempfile import shutil # Third party modules. import numpy as np import tifffile # Local modules. from pyhmsa.datafile import DataFile from pyhmsa.spec.condition.acquisition import AcquisitionRasterXY from pyhmsa.spec.datum.imageraster import ImageRaster2D from pyhmsa.type.numerical import _SUPPORTED_DTYPES from pyhmsa_tiff.fileformat.exporter.tiff import ExporterTIFF, ExporterTIFFMultiPage # Globals and constants variables. def _create_datafile(): datafile = DataFile() acq = AcquisitionRasterXY(60, 50, (0.1, 'nm'), (0.1, 'nm')) for dtype in _SUPPORTED_DTYPES: datum = ImageRaster2D(60, 50, dtype=dtype) datum[:] = np.random.random((60, 50)) * 255 datum.conditions.add('Acq', acq) datafile.data.add(dtype.name, datum) return datafile class TestExporterTIFF(unittest.TestCase): def setUp(self): unittest.TestCase.setUp(self) self.tmpdir = tempfile.mkdtemp() self.exp = ExporterTIFF(compress=9) self.datafile = _create_datafile() def tearDown(self): unittest.TestCase.tearDown(self) shutil.rmtree(self.tmpdir, ignore_errors=True) def testexport(self): self.exp.export(self.datafile, self.tmpdir) filepaths = self.exp.get() self.assertEqual(len(filepaths), len(_SUPPORTED_DTYPES)) for filepath in filepaths: with tifffile.TiffFile(filepath) as tif: actual = tif.asarray() identifier = os.path.splitext(os.path.basename(filepath))[0].split('_')[1] expected = self.datafile.data[identifier] np.testing.assert_almost_equal(actual, expected.T, 4) class TestExporterTIFFMultiPage(unittest.TestCase): def setUp(self): unittest.TestCase.setUp(self) self.tmpdir = tempfile.mkdtemp() self.exp = ExporterTIFFMultiPage(compress=9) self.datafile = _create_datafile() def tearDown(self): unittest.TestCase.tearDown(self) shutil.rmtree(self.tmpdir, ignore_errors=True) def testexport(self): self.exp.export(self.datafile, self.tmpdir) filepaths = self.exp.get() self.assertEqual(len(filepaths), 1) with tifffile.TiffFile(filepaths[0]) as tif: self.assertEqual(len(tif.pages), len(_SUPPORTED_DTYPES)) if __name__ == '__main__': #pragma: no cover logging.getLogger().setLevel(logging.DEBUG) unittest.main()
python
import argparse from multiprocessing import Pool from grit.occlusion_detection.occlusion_detection_geometry import OcclusionDetector2D from grit.core.base import create_folders from igp2.data import ScenarioConfig def prepare_episode_occlusion_dataset(params): scenario_name, episode_idx, debug, debug_steps = params print('scenario {} episode {}'.format(scenario_name, episode_idx)) occlusion_detector = OcclusionDetector2D(scenario_name, episode_idx, debug=debug, debug_steps=debug_steps) occlusion_detector.extract_occlusions() print('finished scenario {} episode {}'.format(scenario_name, episode_idx)) def main(): parser = argparse.ArgumentParser(description='Process the dataset') parser.add_argument('--scenario', type=str, help='Name of scenario to process', default=None) parser.add_argument('--workers', type=int, help='Number of multiprocessing workers', default=8) parser.add_argument('--debug', help="if set, we plot all the occlusions in a frame for each vehicle." "If --debug_steps is also True, this takes precedence and --debug_steps will be" "deactivated.", action='store_true') parser.add_argument('--debug_steps', help="if set, we plot the occlusions created by each obstacle. " "If --debug is set, --debug_steps will be disabled.", action='store_true') args = parser.parse_args() create_folders() if args.debug_steps and args.debug: args.debug_steps = False if args.scenario is None: scenarios = ['heckstrasse', 'bendplatz', 'frankenberg', 'round'] else: scenarios = [args.scenario] params_list = [] for scenario_name in scenarios: scenario_config = ScenarioConfig.load(f"scenarios/configs/{scenario_name}.json") for episode_idx in range(len(scenario_config.episodes)): params_list.append((scenario_name, episode_idx, args.debug, args.debug_steps)) with Pool(args.workers) as p: p.map(prepare_episode_occlusion_dataset, params_list) if __name__ == '__main__': main()
python
# This is the base module that will be imported by Django. # Try to import the custom settings.py file, which will in turn import one of the deployment targets. # If it doesn't exist we assume this is a vanilla development environment and import .deployments.settings_dev. try: from .settings import * # noqa except ImportError as e: if e.msg == "No module named 'config.settings.settings'": from .settings_dev import * # noqa else: raise
python
http://stackoverflow.com/questions/2339101/knights-shortest-path-chess-question
python
import numpy as np import pandas as pd import pickle import os import json import glob import scipy from ngboost import NGBRegressor from ngboost.distns import Normal from ngboost.learners import default_tree_learner from ngboost.scores import MLE, LogScore from sklearn.model_selection import KFold from sklearn.metrics import mean_squared_error, mean_absolute_error, accuracy_score, confusion_matrix from classes.qrfr import QuantileRandomForestRegressor as qfrfQuantileRandomForestRegressor class ModelTrainer: """ This class will perform training on datasets. This could happen during the grid search for the best combination of weights, or, once the weights are assessed, for the creation of the final models """ def __init__(self, features_analyzer, input_gatherer, forecast_type, cfg, logger): """ Constructor :param features_analyzer: Features Analyzer :type features_analyzer: FeaturesAnalyzer :param input_gatherer: Inputs Gatherer :type input_gatherer: InputsGatherer :param forecast_type: Forecast type (MOR | EVE) :type forecast_type: str :param cfg: FTP parameters for the files exchange :type cfg: dict :param logger: Logger :type logger: Logger object """ # set the variables self.features_analyzer = features_analyzer self.forecast_type = forecast_type self.input_gatherer = input_gatherer self.cfg = cfg self.logger = logger self.dataFrames = None self.models = {} def get_datasets(self): self.dataFrames = self.features_analyzer.dataFrames def get_accuracy_threshold(self, threshold, prediction, measured): """ Calculate accuracy of predictions whose measured value is above a certain threshold :param threshold: threshold level :type threshold: float :param prediction: predicted data :type prediction: numpy.array :param measured: measured data :type measured: numpy.array :return: accuracy score :rtype: float """ lcl_acc = 0.0 if not measured.loc[measured > threshold].empty: lcl_acc = accuracy_score(self.get_classes(prediction.loc[measured > threshold]), self.get_classes(measured.loc[measured > threshold])) return lcl_acc @staticmethod def calc_mae_rmse_threshold(meas, pred, th): mask = meas.values >= th if len(pred[mask]) > 0: return round(mean_absolute_error(meas[mask], pred[mask]), 3), \ round(np.sqrt(mean_squared_error(meas[mask], pred[mask])), 3) else: return -1.0, -1.0 @staticmethod def calc_mape_threshold(meas, pred, th): mask = meas.values >= th if len(pred[mask]) > 0: return round(np.mean(np.abs((meas[mask].values - pred[mask].values) / meas[mask].values)) * 100, 1) else: return -1.0 def calculate_KPIs(self, region, prediction, measured, weights, ngbPars=None): """ For each fold and/or train/test separation, return the KPIs to establish the best weights combination :param prediction: predicted data :type prediction: numpy.array :param measured: measured data :type measured: numpy.array :return: pandas DF with KPIs for each dataset provided :rtype: pandas.DataFrame """ threshold1 = self.cfg['regions'][region]['featuresAnalyzer']['threshold1'] threshold2 = self.cfg['regions'][region]['featuresAnalyzer']['threshold2'] threshold3 = self.cfg['regions'][region]['featuresAnalyzer']['threshold3'] w1 = weights['w1'] w2 = weights['w2'] w3 = weights['w3'] lcl_acc_1 = round(self.get_accuracy_threshold(threshold1, prediction, measured), 3) lcl_acc_2 = round(self.get_accuracy_threshold(threshold2, prediction, measured), 3) lcl_acc_3 = round(self.get_accuracy_threshold(threshold3, prediction, measured), 3) lcl_acc = round(accuracy_score(self.get_classes(prediction), self.get_classes(measured)), 3) lcl_rmse = round((mean_squared_error(measured, prediction) ** 0.5), 3) lcl_mae = round(mean_absolute_error(measured, prediction), 3) lcl_cm = confusion_matrix(self.get_classes(prediction), self.get_classes(measured)) mae1, rmse1 = self.calc_mae_rmse_threshold(meas=measured, pred=prediction, th=threshold1) mae2, rmse2= self.calc_mae_rmse_threshold(meas=measured, pred=prediction, th=threshold2) mae3, rmse3= self.calc_mae_rmse_threshold(meas=measured, pred=prediction, th=threshold3) if ngbPars is None: df_KPIs = pd.DataFrame([[w1, w2, w3, lcl_acc_1, lcl_acc_2, lcl_acc_3, lcl_acc, rmse1, rmse2, rmse3, lcl_rmse, mae1, mae2, mae3, lcl_mae, str(lcl_cm.flatten().tolist())]], columns=['w1', 'w2', 'w3', 'Accuracy_1', 'Accuracy_2', 'Accuracy_3', 'Accuracy', 'RMSE1', 'RMSE2', 'RMSE3', 'RMSE', 'MAE1', 'MAE2', 'MAE3', 'MAE', 'ConfMat']) else: df_KPIs = pd.DataFrame([[w1, w2, w3, ngbPars['numberEstimators'], ngbPars['learningRate'], lcl_acc_1, lcl_acc_2, lcl_acc_3, lcl_acc, rmse1, rmse2, rmse3, lcl_rmse, mae1, mae2, mae3, lcl_mae, str(lcl_cm.flatten().tolist())]], columns=['w1', 'w2', 'w3', 'ne', 'lr', 'Accuracy_1', 'Accuracy_2', 'Accuracy_3', 'Accuracy', 'RMSE1', 'RMSE2', 'RMSE3', 'RMSE', 'MAE1', 'MAE2', 'MAE3', 'MAE', 'ConfMat']) return df_KPIs def get_numpy_df(self, df_x, df_y): x_data_no_date = df_x.iloc[:, 1:] y_data_no_date = df_y.iloc[:, 1:] assert (len(x_data_no_date) == len(y_data_no_date)) x_data = np.array(x_data_no_date, dtype='float64') y_data = np.array(y_data_no_date, dtype='float64') return x_data, y_data def remove_date(self, X, Y): assert 'date' in X.columns.values assert 'date' in Y.columns.values X = X.iloc[:, 1:] Y = Y.iloc[:, 1:] assert 'date' not in X.columns.values assert 'date' not in Y.columns.values return X, Y def convert_to_series(self, prediction, Y): """ Convert dataframes to series for easier KPIs calculation """ assert (len(prediction) == len(Y)) prediction = pd.Series(prediction, index=Y.index) measured = pd.Series(Y.iloc[:, 0], index=Y.index) return prediction, measured @staticmethod def calc_prob_interval(pred_dataset, lower_limit, upper_limit): mask = np.logical_and(pred_dataset > lower_limit, pred_dataset < upper_limit) return len(pred_dataset[mask]) / len(pred_dataset) @staticmethod def handle_qrf_output(cfg, qrf, input_vals, region_code): qntls = np.array(cfg['regions'][region_code]['forecaster']['quantiles']) pred_qntls, pred_dataset = qrf.predict(input_vals, qntls) pred_dataset = pred_dataset[0] pred_qntls = pred_qntls[0] ths = cfg['regions'][region_code]['forecaster']['thresholds'] eps = np.finfo(np.float32).eps dict_probs = {'thresholds': {}, 'quantiles': {}} # Get probabilities to be in configured thresholds for i in range(1, len(ths)): dict_probs['thresholds']['[%i:%i]' % (ths[i-1], ths[i])] = ModelTrainer.calc_prob_interval(pred_dataset, ths[i-1], ths[i]-eps) dict_probs['thresholds']['[%i:%f]' % (ths[i], np.inf)] = ModelTrainer.calc_prob_interval(pred_dataset, ths[i], np.inf) # Get probabilities to be in the configured quantiles for i in range(0, len(qntls)): dict_probs['quantiles']['perc%.0f' % (qntls[i]*100)] = pred_qntls[i] return dict_probs @staticmethod def handle_ngb_normal_dist_output(cfg, mu, sigma, region_code): dist = scipy.stats.norm(loc=mu, scale=sigma) # QUANTILES # dist.ppf(0.1) # dist.ppf([0.1, 0.5]) # VALUES FOR PROB # dist.ppf(0.1) # dist.ppf([0.1, 0.5]) samples = [] for i in range(1, 1000): samples.append(dist.ppf(float(i / 1000))) samples = np.array(samples) ths = cfg['regions'][region_code]['forecaster']['thresholds'] eps = np.finfo(np.float32).eps dict_probs = {'thresholds': {}, 'quantiles': {}} for i in range(1, len(ths)): dict_probs['thresholds']['[%i:%i]' % (ths[i-1], ths[i])] = ModelTrainer.calc_prob_interval(samples, ths[i-1], ths[i]-eps) dict_probs['thresholds']['[%i:%f]' % (ths[i], np.inf)] = ModelTrainer.calc_prob_interval(samples, ths[i], np.inf) # Get probabilities to be in the configured quantiles for q in cfg['regions'][region_code]['forecaster']['quantiles']: dict_probs['quantiles']['perc%.0f' % (q*100)] = dist.ppf(q) return dict_probs def fold_training(self, region, train_index, test_index, X, Y, weights, ngbPars=None): """ For each fold and/or tran/test separation, create the model and calculate KPIs to establish the best weights combination :param train_index: indexes of dataset that compose train set :type train_index: pandas.Index :param test_index: indexes of dataset that compose test set :type test_index: pandas.Index :param X: design matrix :type X: pandas.DataFrame :param Y: response vector :type Y: pandas.DataFrame :return: prediction performed on test dataset :rtype: numpy.array """ Xtrain, Xtest = np.array(X.loc[train_index, :]), np.array(X.loc[test_index, :]) Ytrain, Ytest = Y.loc[train_index].reset_index(drop=True), Y.loc[test_index].reset_index(drop=True) assert len(Xtrain) == len(Ytrain) assert len(Xtest) == len(Ytest) ngb = self.train_NGB_model(region, Xtrain, Ytrain, weights, ngbPars)[0] return ngb.predict(Xtest) def train_NGB_model(self, region, Xtrain, Ytrain, target_data, ngbPars=None): """ Return the NGB model trained on the available data :param Xtrain: indexes of dataset that compose train set :type Xtrain: np.array() :param Ytrain: indexes of dataset that compose test set :type Ytrain: pandas.DataFrame :return: prediction model :rtype: ngboost.NGBRegressor """ if 'weights' in target_data.keys(): # MT case weights = target_data['weights'][self.forecast_type] else: # HPOPT case weights = target_data if ngbPars is None: # Usage of the configured parameters n_est = target_data['numberEstimatorsNGB'][self.forecast_type] l_rate = target_data['learningRateNGB'][self.forecast_type] else: # Usage of the parameters passed as arguments n_est = ngbPars['numberEstimators'] l_rate = ngbPars['learningRate'] threshold1 = self.cfg['regions'][region]['featuresAnalyzer']['threshold1'] # It should be 240 threshold2 = self.cfg['regions'][region]['featuresAnalyzer']['threshold2'] # It should be 180 threshold3 = self.cfg['regions'][region]['featuresAnalyzer']['threshold3'] # It should be 120 (old but wrong 135) w1 = weights['w1'] w2 = weights['w2'] w3 = weights['w3'] weight = np.array( [w1 if x >= threshold1 else w2 if x >= threshold2 else w3 if x >= threshold3 else 1.0 for x in np.array(Ytrain)], dtype='float64') assert len(weight) == len(Ytrain) ngb = NGBRegressor(n_estimators=n_est, learning_rate=l_rate, Dist=Normal, Base=default_tree_learner, natural_gradient=True, verbose=False, Score=MLE, random_state=500).fit(Xtrain, np.array(Ytrain).ravel(), sample_weight=weight) return ngb, weight def error_data(self, pred, Y, fold, weights): """ Create pandas df with weights, fold, measurements and predictions :param pred: predicted data :type pred: numpy.array :param Y: measured data :type Y: pandas.Series :param fold: current fold of Cross Validation :type fold: int :return: pandas DF with information :rtype: pandas.DataFrame """ Y = np.array(Y.values) assert len(pred) == len(Y) df_pred = pd.DataFrame() df_pred['w1'] = [weights['w1']] * len(Y) df_pred['w2'] = [weights['w2']] * len(Y) df_pred['w3'] = [weights['w3']] * len(Y) df_pred['Fold'] = [fold] * len(Y) df_pred['Measurements'] = Y df_pred['Prediction'] = pred return df_pred def get_weights_folder_results(self, region, target_column, weights): root_output_folder_path = self.input_gatherer.output_folder_creator(region) str_ws = '' for kw in weights.keys(): str_ws = '%s%s-%s_' % (str_ws, kw, weights[kw]) str_ws = str_ws[0:-1] if not os.path.exists(root_output_folder_path + 'gs'): os.mkdir(root_output_folder_path + 'gs') if not os.path.exists(root_output_folder_path + 'gs' + os.sep + target_column): os.mkdir(root_output_folder_path + 'gs' + os.sep + target_column) if not os.path.exists(root_output_folder_path + 'gs' + os.sep + target_column + os.sep + str_ws): os.mkdir(root_output_folder_path + 'gs' + os.sep + target_column + os.sep + str_ws) return '%s%s%s%s%s%s%s' % (root_output_folder_path, 'gs', os.sep, target_column, os.sep, str_ws, os.sep) def training_cross_validated_fs(self, features, region, target_column, df_x, df_y, weights): df_x = df_x.reset_index(drop=True) df_y = df_y.reset_index(drop=True) # Dataset preparation for CV df_x_tmp = df_x df_y_tmp = df_y df_x_tmp = df_x_tmp.drop(['date'], axis=1) df_y_tmp = df_y_tmp.drop(['date'], axis=1) cv_folds = self.cfg['regions'][region]['gridSearcher']['numFolds'] if self.cfg['regions'][region]['gridSearcher']['shuffle'] is True: kf = KFold(n_splits=cv_folds, shuffle=self.cfg['regions'][region]['gridSearcher']['shuffle'], random_state=self.cfg['regions'][region]['gridSearcher']['randomState']) else: kf = KFold(n_splits=cv_folds, shuffle=False, random_state=None) np_x = df_x_tmp.to_numpy() np_y = df_y_tmp.to_numpy() fold = 1 if self.cfg['regions'][region]['gridSearcher']['hyperParsOptimizationNGB'] is not None: df_pred = pd.DataFrame(columns=['w1', 'w2', 'w3', 'ne', 'lr', 'Measurements', 'Prediction']) for train_index, test_index in kf.split(np_x): # Consider only the last fold if fold == cv_folds: # HPOPT only on the last fold ngb_prediction = np.empty(len(test_index)) df_pred = pd.DataFrame(columns=['w1', 'w2', 'w3', 'Fold', 'ne', 'lr', 'Measurements', 'Prediction']) # Get the I/O datasets for the training and the test X_train, X_test = np_x[train_index], np_x[test_index] y_train, y_test = np_y[train_index], np_y[test_index] # Reduce the dataset to consider only to the current fold df_x = df_x.iloc[test_index[0]:test_index[-1] + 1] df_y = df_y.iloc[test_index[0]:test_index[-1] + 1] df_kpis = None for ne in self.cfg['regions'][region]['gridSearcher']['hyperParsOptimizationNGB']['numEstimators']: for lr in self.cfg['regions'][region]['gridSearcher']['hyperParsOptimizationNGB']['learningRate']: self.logger.info('HPOPT -> region: %s, target: %s, weights: %s -> ' 'Started FS fold %i/%i; (ne=%i, lr=%s)' % (region, target_column, weights, fold, cv_folds, ne, str(lr))) ngbPars = { 'numberEstimators': ne, 'learningRate': lr } selected_features = self.features_analyzer.important_features(region, X_train, y_train, features[1:], weights, ngbPars)[0] X, Y = self.get_reduced_dataset(df_x, df_y, selected_features) X, Y = self.remove_date(X, Y) self.logger.info('HPOPT -> region: %s, target: %s, weights: %s -> ' 'Ended FS fold %i/%i; (ne=%i, lr=%s)' % (region, target_column, weights, fold, cv_folds, ne, str(lr))) # Perform the training using the training folds and the prediction with the test fold self.logger.info('HPOPT -> region: %s, target: %s, weights: %s -> ' 'Started model training fold %i/%i; (ne=%i, lr=%s)' % (region, target_column, weights, fold, cv_folds, ne, str(lr))) # todo this part below should be investigated ngb = self.train_NGB_model(region, X_train, y_train, weights, ngbPars)[0] ngb_prediction = ngb.predict(X_test) # pred = self.fold_training(region, train_index, test_index, X, Y, weights, ngbPars) # ngb_prediction = pred self.logger.info('HPOPT -> region: %s, target: %s, weights: %s -> ' 'Ended model training fold %i/%i; (ne=%i, lr=%s)' % (region, target_column, weights, fold, cv_folds, ne, str(lr))) prediction, measured = self.convert_to_series(ngb_prediction, Y) if df_kpis is None: df_kpis = self.calculate_KPIs(region, prediction, measured, weights, ngbPars) else: kpis = self.calculate_KPIs(region, prediction, measured, weights, ngbPars) df_kpis = df_kpis.append(kpis) return df_kpis, None fold += 1 else: ngb_prediction = np.empty(len(df_y)) df_pred = pd.DataFrame(columns=['w1', 'w2', 'w3', 'Fold', 'Measurements', 'Prediction']) for train_index, test_index in kf.split(np_x): # Get the I/O datasets for the training and the test X_train, X_test = np_x[train_index], np_x[test_index] y_train, y_test = np_y[train_index], np_y[test_index] # Perform the FS using the training folds self.logger.info('Region: %s, target: %s, weights: %s -> Started FS fold %i/%i' % (region, target_column, weights, fold, cv_folds)) selected_features = self.features_analyzer.important_features(region, X_train, y_train, features[1:], weights)[0] X, Y = self.get_reduced_dataset(df_x, df_y, selected_features) X, Y = self.remove_date(X, Y) self.logger.info('Region: %s, target: %s, weights: %s -> Ended FS fold %i/%i' % (region, target_column, weights, fold, cv_folds)) # Perform the training using the training folds and the prediction with the test fold self.logger.info('Region: %s, target: %s, weights: %s -> Started model training fold %i/%i' % (region, target_column, weights, fold, cv_folds)) pred = self.fold_training(region, train_index, test_index, X, Y, weights) ngb_prediction[test_index] = pred self.logger.info('Region: %s, target: %s, weights: %s -> Ended model training fold %i/%i' % (region, target_column, weights, fold, cv_folds)) # Concat the prediction results df_pred = pd.concat([df_pred, self.error_data(pred, Y.loc[test_index], fold, weights)], ignore_index=True, axis=0) fold += 1 prediction, measured = self.convert_to_series(ngb_prediction, Y) return self.calculate_KPIs(region, prediction, measured, weights), df_pred def get_weights(self, input_file_name): w = {} str_w = '' for elem in input_file_name.split(os.sep)[-2].split('_'): code, val = elem.split('-') w[code] = int(val) str_w += val + '-' return w, str_w[:-1] def train_final_models(self, k_region, target_signal, hps=None): """ Calculates the KPIs for a set of weight with multiple Feature selection: First we create the folds of the cross validation, then for each fold we do the feature selection and locally calculate the KPIs """ target_data = self.cfg['regions'][k_region]['finalModelCreator']['targets'][target_signal] self.get_datasets() key = k_region df = self.dataFrames[key] fp = self.input_gatherer.output_folder_creator(key) _, _, _, df_x, df_y = self.features_analyzer.dataset_splitter(key, df, target_signal) # Check if there is a hyperparameters optimization or not if hps is None: suffix = self.cfg['regions'][k_region]['finalModelCreator']['signalsFileSuffix'] input_files = glob.glob('%s*%s%s.json' % (fp, target_signal, suffix)) else: str_hpars = 'ne%i-lr%s' % (hps['numberEstimators'], str(hps['learningRate']).replace('.', '')) suffix = str_hpars input_files = glob.glob('%shpo%s%s%s*%s*.json' % (fp, os.sep, suffix, os.sep, target_signal)) for input_file in input_files: selected_features = json.loads(open(input_file).read())['signals'] X, Y = self.get_reduced_dataset(df_x, df_y, selected_features) X, Y = self.remove_date(X, Y) target_data['weights'] = self.cfg['regions'][k_region]['featuresAnalyzer']['targetColumns'][target_signal]['weights'] target_data['numberEstimatorsNGB'] = self.cfg['regions'][k_region]['featuresAnalyzer']['targetColumns'][target_signal]['numberEstimatorsNGB'] target_data['learningRateNGB'] = self.cfg['regions'][k_region]['featuresAnalyzer']['targetColumns'][target_signal]['learningRateNGB'] start_year = self.cfg['datasetSettings']['years'][0] end_year = self.cfg['datasetSettings']['years'][-1] self.logger.info('Train models for %s - %s; period [%s:%s], case %s, weights: %s' % (k_region, target_signal, start_year, end_year, self.forecast_type, target_data['weights'])) # Train NGB model self.logger.info('Target %s -> NGBoost model training start' % target_signal) ngb, weight = self.train_NGB_model(k_region, X, Y, target_data, hps) self.logger.info('Target %s -> NGBoost model training end' % target_signal) # Train QRF model rfqr = None # self.logger.info('RFQR model training start') # rfqr = RandomForestQuantileRegressor(n_estimators=1000).fit(X, np.array(Y).ravel()) # self.logger.info('RFQR model training end') self.logger.info('Target %s -> pyquantrf RFQR model training start' % target_signal) rfqr_w = qfrfQuantileRandomForestRegressor(nthreads=4, n_estimators=target_data['numberEstimatorsNGB'][self.forecast_type], min_samples_leaf=10) rfqr_w.fit(X, np.array(Y).ravel(), sample_weight=weight) self.logger.info('Target %s -> pyquantrf RFQR model training end' % target_signal) # Check if there is a hyperparameters optimization or not if hps is None: str_lr = str('%.3f' % target_data['learningRateNGB'][self.forecast_type]).replace('.','') # str_hp = 'w1%iw2%iw3%ine%ilr%s' % (target_data['weights'][self.forecast_type]['w1'], # target_data['weights'][self.forecast_type]['w2'], # target_data['weights'][self.forecast_type]['w3'], # target_data['numberEstimatorsNGB'][self.forecast_type], # str_lr) file_name_noext = fp + 'predictor_' + target_data['label'] + '_' + \ self.cfg['regions'][k_region]['finalModelCreator']['identifier'] else: file_name_noext = '%shpo%spredictor_%s_%s' % (fp, os.sep,target_data['label'], str_hpars.replace('-', '')) pickle.dump([ngb, rfqr, rfqr_w], open('%s.pkl' % file_name_noext, 'wb')) json.dump({"signals": list(selected_features)}, open('%s.json' % file_name_noext.replace('predictor', 'inputs'), 'w')) metadata = { "region": k_region, "case": self.forecast_type, "weights": { "w1": target_data['weights'][self.forecast_type]['w1'], "w2": target_data['weights'][self.forecast_type]['w2'], "w3": target_data['weights'][self.forecast_type]['w3'], }, "NGBoostParameters": { "estimatorsNumber": target_data['numberEstimatorsNGB'][self.forecast_type], "learningRate": target_data['learningRateNGB'][self.forecast_type], "numberSelectedFeatures": len(selected_features) } } json.dump(metadata, open('%s.json' % file_name_noext.replace('predictor', 'metadata'), 'w')) @staticmethod def get_reduced_dataset(df_x, df_y, selected_features): """ Extract a smaller dataframe with the selected features as columns. Keep the date and refresh indices :param selected_features: list of selected features :type selected_features: list :param df_x: design matrix :type df_x: pandas.DataFrame :param df_y: response vector :type df_y: pandas.DataFrame :return: pandas DF with reduced columns :rtype: pandas.DataFrame, pandas.DataFrame """ lcl_df_x = df_x.loc[:, ['date'] + selected_features] lcl_df_y = df_y # Date must be there assert len(lcl_df_x.columns.values) == len(selected_features) + 1 assert len(lcl_df_y.columns.values) == 2 assert len(lcl_df_y) == len(lcl_df_x) lcl_df_x = lcl_df_x.reset_index(drop=True) lcl_df_y = lcl_df_y.reset_index(drop=True) return lcl_df_x, lcl_df_y def get_classes(self, prediction): y_classes = [] for element in prediction: if element < 60: y_classes.append(0) elif element < 120: y_classes.append(1) elif element < 135: y_classes.append(2) elif element < 180: y_classes.append(3) elif element < 240: y_classes.append(4) else: y_classes.append(5) return y_classes
python
"""Runs the webserver.""" from absl import app from absl import flags from absl import logging from icubam import config from icubam.db import store flags.DEFINE_string('config', 'resources/config.toml', 'Config file.') flags.DEFINE_string('dotenv_path', None, 'Optionally specifies the .env path.') flags.DEFINE_enum('mode', 'dev', ['prod', 'dev'], 'Run mode.') flags.DEFINE_string('email', None, 'File for the db.') flags.DEFINE_string('password', None, 'File for the db.') FLAGS = flags.FLAGS def main(argv): cfg = config.Config( FLAGS.config, mode=FLAGS.mode, env_path=FLAGS.dotenv_path ) factory = store.create_store_factory_for_sqlite_db(cfg) db = factory.create() user_id = db.get_user_by_email(FLAGS.email) if user_id is None: logging.error(f"No user for email {FLAGS.email}") return admins = db.get_admins() if not admins: admin_id = db.add_default_admin() else: admin_id = admins[0].user_id hash = db.get_password_hash(FLAGS.password) db.update_user(admin_id, user_id, dict(password_hash=hash)) if __name__ == '__main__': app.run(main)
python
from time import sleep def msg(string): print('~' * (len(string) + 2)) print(f' {string} ') print('~' * (len(string) + 2)) while True: print('\33[30;42m', end='') msg('Sistema de ajuda PyHELP') user = str(input('\033[mFunção ou Biblioteca \033[32m>>>\033[m ')) if user.lower() == 'fim': break print('\033[30;44m', end='') msg(f'Acessando o menu do comando {user}') sleep(1.5) print('\033[47m', end='') print(help(user)) print('\033[41mMuito obrigado por usar o sistema de ajuda PyHELP, volte sempre!')
python
import unittest from streamlink.plugins.schoolism import Schoolism class TestPluginSchoolism(unittest.TestCase): def test_can_handle_url(self): should_match = [ 'https://www.schoolism.com/watchLesson.php', ] for url in should_match: self.assertTrue(Schoolism.can_handle_url(url)) def test_can_handle_url_negative(self): should_not_match = [ 'https://www.schoolism.com', ] for url in should_not_match: self.assertFalse(Schoolism.can_handle_url(url)) def test_playlist_parse_subs(self): with_subs = """var allVideos=[ {sources:[{type:"application/x-mpegurl",src:"https://d8u31iyce9xic.cloudfront.net/44/2/part1.m3u8?Policy=TOKEN&Signature=TOKEN&Key-Pair-Id=TOKEN",title:"Digital Painting - Lesson 2 - Part 1",playlistTitle:"Part 1",}], subtitles: [{ "default": true, kind: "subtitles", srclang: "en", label: "English", src: "https://s3.amazonaws.com/schoolism-encoded/44/subtitles/2/2-1.vtt", }], }, {sources:[{type:"application/x-mpegurl",src:"https://d8u31iyce9xic.cloudfront.net/44/2/part2.m3u8?Policy=TOKEN&Signature=TOKEN&Key-Pair-Id=TOKEN",title:"Digital Painting - Lesson 2 - Part 2",playlistTitle:"Part 2",}], subtitles: [{ "default": true, kind: "subtitles", srclang: "en", label: "English", src: "https://s3.amazonaws.com/schoolism-encoded/44/subtitles/2/2-2.vtt", }] }]; """ data = Schoolism.playlist_schema.validate(with_subs) self.assertIsNotNone(data) self.assertEqual(2, len(data)) def test_playlist_parse(self): without_subs = """var allVideos=[ {sources:[{type:"application/x-mpegurl",src:"https://d8u31iyce9xic.cloudfront.net/14/1/part1.m3u8?Policy=TOKEN&Signature=TOKEN&Key-Pair-Id=TOKEN",title:"Gesture Drawing - Lesson 1 - Part 1",playlistTitle:"Part 1",}],}, {sources:[{type:"application/x-mpegurl",src:"https://d8u31iyce9xic.cloudfront.net/14/1/part2.m3u8?Policy=TOKEN&Signature=TOKEN&Key-Pair-Id=TOKEN",title:"Gesture Drawing - Lesson 1 - Part 2",playlistTitle:"Part 2",}]} ]; """ data = Schoolism.playlist_schema.validate(without_subs) self.assertIsNotNone(data) self.assertEqual(2, len(data))
python
""""Process the results of DrFact and DrKIT""" import json import sys from tqdm import tqdm prediction_file = sys.argv[1] output_file = sys.argv[2] outputs = [] with open(prediction_file) as f: print("Reading", f.name) lines = f.read().splitlines() for line in tqdm(lines[1:], desc="Processing %s"%f.name): instance = json.loads(line) qid = instance["qas_id"] pred = instance["predictions"] concept_predictions = pred["top_5000_predictions"] predictions_K = {100: concept_predictions} # TODO: add more output = dict(qid = qid, \ question = pred["question"], \ predictions_K = predictions_K ) outputs.append(output) with open(output_file, "w") as f: print("Writing", f.name) for output in outputs: f.write(json.dumps(output) + "\n")
python
# -*- coding: utf8 -*- from __future__ import unicode_literals def main(): print('234'.isdecimal()) if __name__ == '__main__': main()
python
def main(): x, y = c(input()), c(input()) if x * y == 0: return 0 return "S" + ("(S" * ((x * y) - 1)) + "(0" + (")" * (x * y)) def c(x): return x.count('S') if __name__ == '__main__': print(main())
python
# @copyright@ # Copyright (c) 2006 - 2018 Teradata # All rights reserved. Stacki(r) v5.x stacki.com # https://github.com/Teradata/stacki/blob/master/LICENSE.txt # @copyright@ # # @rocks@ # Copyright (c) 2000 - 2010 The Regents of the University of California # All rights reserved. Rocks(r) v5.4 www.rocksclusters.org # https://github.com/Teradata/stacki/blob/master/LICENSE-ROCKS.txt # @rocks@ import os import stack.commands class command(stack.commands.HostArgumentProcessor, stack.commands.iterate.command): pass class Command(command): """ Iterate sequentially over a list of hosts. This is used to run a shell command on the frontend with with '%' wildcard expansion for every host specified. <arg optional='1' type='string' name='host' repeat='1'> Zero, one or more host names. If no host names are supplied iterate over all hosts except the frontend. </arg> <param optional='0' type='string' name='command'> The shell command to be run for each host. The '%' character is used as a wildcard to indicate the hostname. Quoting of the '%' to expand to a literal is accomplished with '%%'. </param> <example cmd='iterate host backend command="scp file %:/tmp/"'> Copies file to the /tmp directory of every backend node </example> """ def run(self, params, args): (cmd, ) = self.fillParams([ ('command', None, True) ]) self.beginOutput() hosts = [] if len(args) == 0: # # no hosts are supplied. we need to exclude the frontend # for host in self.getHostnames(args): if host == self.db.getHostname('localhost'): # # don't include the frontend # continue hosts.append(host) else: hosts = self.getHostnames(args) for host in hosts: # Turn the wildcard '%' into the hostname, and '%%' into # a single '%'. s = '' prev = '' for i in range(0, len(cmd)): curr = cmd[i] try: next = cmd[i + 1] except: next = '' if curr == '%': if prev != '%' and next != '%': s += host prev = host continue # consume '%' elif prev == '%': s += '%' prev = '*' continue # consume '%' else: s += curr prev = curr os.system(s) # for line in os.popen(s).readlines(): # self.addOutput(host, line[:-1]) self.endOutput(padChar='')
python
#!/usr/bin/python3 """ Master program """ import multiprocessing import math import queue import time import pickle import numpy as np import pygame import zmq class CommProcess(multiprocessing.Process): """Communicates with robot.""" def __init__(self, image_queue, command_queue): super().__init__(daemon=True) self.done = False self.image_queue = image_queue self.command_queue = command_queue def run(self): port = 15787 context = zmq.Context() robot = context.socket(zmq.REQ) robot.connect('tcp://zeitgeist.local:{}'.format(port)) while not self.done: command_flag = False try: while True: command = self.command_queue.get(block=False) command_flag = True except queue.Empty: pass if command_flag: if not len(command) == 2: self.done = True break robot.send_string('c {} {}'.format(command[0], command[1])) print("Sent to robot: {}".format(command)) response = robot.recv_string() print("Received from robot: {}".format(response)) robot.send_string('q') robot.recv_string() def run(): # current speeds left = 0 right = 0 # speed factor (left and right can be +/- 31 max) speed = 16.0 # screen radius size = 250 # deadzone size deadzone = 10 # motors on enabled = True pygame.init() screen = pygame.display.set_mode((2*size, 2*size)) image_queue = multiprocessing.Queue() command_queue = multiprocessing.Queue() robot = CommProcess(image_queue, command_queue) robot.start() done = False while not done: old_left = left old_right = right for event in pygame.event.get(): if event.type == pygame.QUIT: done = True command_queue.put('q') if event.type == pygame.MOUSEMOTION: x = event.pos[0]-size y = -(event.pos[1]-size) if x**2+y**2 < deadzone**2: left = 0 right = 0 else: left = right = speed*y/size left += speed*x/size right -= speed*x/size left = int(left) right = int(right) if event.type == pygame.KEYDOWN: if event.key == 32: # space enabled = not enabled left = 0 right = 0 if(old_left != left or old_right != right): print('GUI sensed movement: ({},{}):\t{}\t{}'.format(x, y, left, right)) command_queue.put((left, right)) """ try: image = image_queue.get(block=False) print(image.shape) except queue.Empty: pass """ if enabled : screen.fill((0, 0, 0)) pygame.draw.circle(screen, (255, 255, 0), (size, size), deadzone) else: screen.fill((255, 255, 255)) pygame.display.flip() time.sleep(1) # allow time for threads to finish if __name__ == "__main__": run()
python
# Generated by Django 3.0.8 on 2020-07-15 09:38 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('Resources', '0008_resume'), ] operations = [ migrations.CreateModel( name='People', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=100)), ('last_name', models.CharField(max_length=100)), ('date_of_birth', models.DateField(blank=True, null=True)), ('About', models.TextField(help_text='Resume of candidate')), ('education', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='Resources.Edu_Qualification')), ('experience', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='Resources.Experience')), ('ratings', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='Resources.Rating')), ('skills', models.ManyToManyField(help_text='enter your skills(Technical or personal ...etc)', to='Resources.Skill')), ('technologies', models.ManyToManyField(help_text='enter technology you are experience on(if freshers mention Fresher)', to='Resources.Technology')), ], options={ 'ordering': ['first_name'], }, ), ]
python
import os import sys import yaml import subprocess from cryptography.fernet import Fernet secrets_file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'secrets.yaml') def decrypt_secrets(cfg): with open(os.path.join(cfg['global']['fernet_tokens_path'],'fernet_tokens.txt'), 'r') as token_file: master_key = token_file.read() with open(secrets_file_path, 'r') as ymlfile: secrets_file = yaml.load(ymlfile) cipher_suite = Fernet(str.encode(master_key)) for password_key in secrets_file: decrypted_password= (cipher_suite.decrypt(secrets_file[password_key])) cfg[str(password_key)]=decrypted_password.decode("utf-8") return cfg def generate_secrets_file(cfg): master_key = Fernet.generate_key() with open(os.path.join(cfg['global']['fernet_tokens_path'],'fernet_tokens.txt'), 'w') as token_file: token_file.write(master_key.decode()) logging.info('Master key has been generated and stored in: ' + os.path.join(cfg['global']['fernet_tokens_path'])) with open(secrets_file_path, 'r') as ymlfile: secrets_file = yaml.load(ymlfile) for password_key in secrets_file: password_raw_value = input("Enter the password for " + str(password_key) + " :" + "\n") cfg[str(password_key)]=password_raw_value cipher_suite = Fernet(master_key) ciphered_text = cipher_suite.encrypt(str.encode(password_raw_value)) # required to be bytes secrets_file[password_key]=ciphered_text with open(secrets_file_path, 'w') as f: yaml.dump(secrets_file, f) return cfg
python
#Test metadata model from src.models import metadata from src import data from src import utils import torch import os from pytorch_lightning import Trainer ROOT = os.path.dirname(os.path.dirname(data.__file__)) def test_metadata(): m = metadata.metadata(sites = 1, classes=10) sites = torch.zeros(20) output = m(sites.int()) assert output.shape == (20,10) def test_metadata_sensor_fusion(): sites = torch.zeros(20) image = torch.randn(20, 3, 11, 11) m = metadata.metadata_sensor_fusion(bands=3, sites=1, classes=10) prediction = m(image, sites.int()) assert prediction.shape == (20,10) def test_MetadataModel(config, dm): model = metadata.metadata_sensor_fusion(sites=1, classes=3, bands=3) m = metadata.MetadataModel(model=model, classes=3, label_dict=dm.species_label_dict, config=config) trainer = Trainer(fast_dev_run=True) trainer.fit(m,datamodule=dm)
python
from PyQt5 import QtWebEngineWidgets, QtWidgets from tootbox.core.framework import LayoutView from tootbox.views.toot import Toot class Timeline(LayoutView): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.initialize_ui() def initialize_ui(self): self.button = QtWidgets.QPushButton("Refresh!") self.toot_list = QtWidgets.QVBoxLayout() self.toot_list.setContentsMargins(0, 0, 0, 0) self.toot_list.setSpacing(20) self.toot_list.addStretch() self.scrollbox = QtWidgets.QScrollArea() self.scrollbox.setSizeAdjustPolicy(QtWidgets.QAbstractScrollArea.AdjustToContents) self.scrollbox.setFrameStyle(0) self.scrollbox.setWidgetResizable(True) self.scrollbox.verticalScrollBar().valueChanged.connect(self.timeline_scrolled) scrollContainer = QtWidgets.QWidget() scrollContainer.setLayout(self.toot_list) self.scrollbox.setWidget(scrollContainer) vbox = QtWidgets.QVBoxLayout() vbox.addWidget(self.button) vbox.addWidget(self.scrollbox) self.setLayout(vbox) def update_list(self, toots): for toot in reversed(toots): # print(toot.__str__() + "\n\n\n") t = Toot(toot) self.toot_list.insertWidget(0, t) def timeline_scrolled(self, value): maximum = self.scrollbox.verticalScrollBar().maximum() scroll_perc = value / maximum if scroll_perc > 0.9: # Request more toots pass # print(str(value) + ", " + str(maximum) + ", " + str(scroll_perc) + "%")
python
from __future__ import unicode_literals import csv import io from django.conf import settings from django.db import models from django.db.models.signals import post_save, pre_save from django.utils.text import slugify from yourapp.signals import csv_uploaded from yourapp.validators import csv_file_validator def upload_csv_file(instance, filename): qs = instance.__class__.objects.filter(user=instance.user) if qs.exists(): num_ = qs.last().id + 1 else: num_ = 1 return f'csv/{num_}/{instance.user.username}/{filename}' class CSVUpload(models.Model): user = models.ForeignKey(settings.AUTH_USER_MODEL) file = models.FileField(upload_to=upload_csv_file, validators=[csv_file_validator]) completed = models.BooleanField(default=False) def __str__(self): return self.user.username def convert_header(csvHeader): header_ = csvHeader[0] cols = [x.replace(' ', '_').lower() for x in header_.split(",")] return cols def csv_upload_post_save(sender, instance, created, *args, **kwargs): if not instance.completed: csv_file = instance.file decoded_file = csv_file.read().decode('utf-8') io_string = io.StringIO(decoded_file) reader = csv.reader(io_string, delimiter=';', quotechar='|') header_ = next(reader) header_cols = convert_header(header_) parsed_items = [] ''' if using a custom signal ''' for line in reader: parsed_row_data = {} i = 0 row_item = line[0].split(',') for item in row_item: key = header_cols[i] parsed_row_data[key] = item i+=1 parsed_items.append(parsed_row_data) csv_uploaded.send(sender=instance, user=instance.user, csv_file_list=parsed_items) ''' if using a model directly for line in reader: new_obj = YourModelKlass() i = 0 row_item = line[0].split(',') for item in row_item: key = header_cols[i] setattr(new_obj, key) = item i+=1 new_obj.save() ''' instance.completed = True instance.save() post_save.connect(csv_upload_post_save, sender=StaffCSVUpload)
python
import cv2 import numpy as np # Let's load a simple image with 3 black squares image = cv2.imread('Hough.jpg') cv2.waitKey(0) # Grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Find Canny edges edged = cv2.Canny(gray, 30, 200) cv2.waitKey(0) # Finding Contours # Use a copy of the image e.g. edged.copy() # since findContours alters the image contours, hierarchy = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) cv2.imshow('Canny Edges After Contouring', edged) cv2.waitKey(0) print("Number of Contours found = " + str(len(contours))) # Draw all contours # -1 signifies drawing all contours cv2.drawContours(image, contours, -1, (0, 255, 0), 3) cv2.imshow('Contours', image) cv2.waitKey(0) cv2.destroyAllWindows()
python
import numpy as np import tensorrt as trt import cv2 import os import pycuda.autoinit import pycuda.driver as cuda try: from . import TRT_exec_tools except ImportError: import TRT_exec_tools class Semantic_Segmentation: def __init__(self, trt_engine_path): """ Parameters: ----------- trt_engine_path: string Path to TRT engine. """ # Create a Context on this device, self.cfx = cuda.Device(0).make_context() TRT_LOGGER = trt.Logger() TRT_LOGGER.min_severity = trt.Logger.Severity.VERBOSE # Load TRT Engine with open(trt_engine_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime: self.engine = runtime.deserialize_cuda_engine(f.read()) # Create Context self.context = self.engine.create_execution_context() # Allocate buffers required for engine self.inputs, self.outputs, self.bindings, self.stream = TRT_exec_tools.allocate_buffers(self.engine) # Input image height self.height = 720 # Input image width self.width = 1280 # RGBA Colour map for segmentation display self.colour_map = None def segment_image(self, image): """ Parameters: ----------- image: np.array HWC uint8 BGR """ assert image.shape == (self.height, self.width, 3) # Infer self.inputs[0].host = np.ascontiguousarray(image.astype('float32')).ravel() # Make self the active context, pushing it on top of the context stack. self.cfx.push() trt_outputs = TRT_exec_tools.do_inference_v2( context=self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, ) # Remove any context from the top of the context stack, deactivating it. self.cfx.pop() o = trt_outputs[0].reshape(self.height, self.width) # HW np.array uint8 self.depth = o if __name__ == "__main__": import time model = Semantic_Segmentation("sample.trt") N = 500 images = np.random.randint(0, 255, size=[N, model.height, model.width, 3], dtype='uint8') t1 = time.perf_counter() for i in images: model.segment_image(i) t2 = time.perf_counter() print(N/(t2-t1)) model.cfx.pop()
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from quant_benchmark.data.base_data_source.default_data_source import DefaultDataSource import jqdatasdk #see https://github.com/JoinQuant/jqdatasdk/blob/master/tests/test_api.py jqdatasdk.auth(username='13922819479', password='123456') data_source = DefaultDataSource() order_book_id = "000001.XSHE" bar_count = 10 dt = "2019-09-20" data = data_source.history_bars(order_book_id=order_book_id, bar_count=bar_count, frequency="1w", dt=dt)
python
def f06(word1 = 'paraparaparadise', word2 = 'paragraph'): ngram = lambda n: lambda tl: [''.join(tl[i:i + n]) for i in range(len(tl) - n + 1)] X = set(ngram(2)(list(word1))) Y = set(ngram(2)(list(word2))) print(X.union(Y)) print(X.difference(Y)) print(X.intersection(Y))
python
import math def get_digit(n, i): return n // 10**i % 10 def int_len(n): if n == 0: return 1 return int(math.log10(n))+1 def get_new_recipes(n): recipes = [] for i in range(int_len(n)): recipes.append(get_digit(n, i)) return recipes[::-1] def part1(count): recipes = [3, 7] elf1, elf2 = 0, 1 while len(recipes) < count + 10: elf1_score = recipes[elf1] elf2_score = recipes[elf2] new_score = elf1_score + elf2_score new_recipes = get_new_recipes(new_score) recipes.extend(new_recipes) elf1 = (1 + elf1 + elf1_score) % len(recipes) elf2 = (1 + elf2 + elf2_score) % len(recipes) return ''.join(map(str, recipes[count:count+10])) def part2(goal): recipes = [3, 7] elf1, elf2 = 0, 1 while True: elf1_score = recipes[elf1] elf2_score = recipes[elf2] new_score = elf1_score + elf2_score new_recipes = get_new_recipes(new_score) recipes.extend(new_recipes) elf1 = (1 + elf1 + elf1_score) % len(recipes) elf2 = (1 + elf2 + elf2_score) % len(recipes) suffix = ''.join(map(str, recipes[-10:])) if goal in suffix: return len(recipes) -10 + suffix.index(goal) if __name__ == '__main__': INPUT = 793061 print(part1(INPUT)) # runs for about a minute or so on my machine print(part2(str(INPUT)))
python
from ._Activate import * from ._Deactivate import * from ._Completed import * from ._Startup import * from ._Shutdown import * from ._Recs import *
python
# %% codecell import os import numpy as np from tqdm import tqdm from shutil import copyfile # %% codecell class_indices_S2_rev = { 'Waterbuck': 1, 'Baboon': 2, 'Warthog': 3, 'Bushbuck': 4, 'Impala': 5, 'Oribi': 6, 'Elephant': 7, 'Genet': 8, 'Nyala': 9, 'Setup': 10, 'Bushpig': 11, 'Porcupine': 12, 'Civet': 13, 'Vervet': 14, 'Reedbuck': 15, 'Kudu': 16, 'Buffalo': 17, 'Sable_antelope': 18, 'Duiker_red': 19, 'Hartebeest': 20, 'Wildebeest': 21, 'Guineafowl_helmeted': 22, 'Hare': 23, 'Duiker_common': 24, 'Fire': 25, 'Mongoose_marsh': 26, 'Aardvark': 27, 'Honey_badger': 28, 'Hornbill_ground': 29, 'Mongoose_slender': 30, 'Mongoose_bushy_tailed': 31, 'Samango': 32, 'Mongoose_white_tailed': 33, 'Mongoose_banded': 34, 'Mongoose_large_grey': 35, 'Bushbaby': 36, 'Guineafowl_crested': 37, 'Eland': 38, 'Lion': 39, 'Serval': 40 } class_indices_S2 = {class_indices_S2_rev[k]: k for k in class_indices_S2_rev} # %% codecell root = '/home/zhmiao/datasets/ecology/GNP' # confident_path = '/home/zhmiao/repos/AnimalActiveLearing_srv/weights/GTPSMemoryStage2_ConfPseu/051620_MOZ_S2_0_preds_conf.txt' # confident_path = '/home/zhmiao/repos/AnimalActiveLearing_srv/weights/GTPSMemoryStage2_ConfPseu_SoftIter/072520_MOZ_S2_soft_iter_0_preds_conf.txt' confident_path = '/home/zhmiao/repos/AnimalActiveLearning/weights/SemiStage2OLTR_Energy/111620_MOZ_PSLABEL_OLTR_Energy_0_preds_conf.txt' # %% codecell f = open(confident_path, 'r') file_id_list = [] cat_list = [] for line in tqdm(f): line_sp = line.replace('\n', '').rsplit(' ', 1) file_id = line_sp[0] cat = class_indices_S2[int(line_sp[1])] file_id_list.append(file_id) cat_list.append(cat) f.close() # %% codecell file_id_list = np.array(file_id_list) cat_list = np.array(cat_list) # %% codecell np.random.seed(10) rand_idx = np.random.choice(range(len(cat_list)), 1000) file_id_sel = file_id_list[rand_idx] cat_sel = cat_list[rand_idx] # %% codecell save_root = os.path.join(root, 'S3_pickout_soft_iter_120220') os.makedirs(save_root, exist_ok=True) # %% codecell for file_id, cat in tqdm(zip(file_id_sel, cat_sel)): from_path = os.path.join(root, file_id) file_id = file_id.replace('/', ':::') save_path = os.path.join(save_root, file_id) if '.JPG' in save_path: save_path = save_path.replace('.JPG', '_{}.JPG'.format(cat)) elif '.jpg' in save_path: save_path = save_path.replace('.jpg', '_{}.jpg'.format(cat)) copyfile(from_path, save_path) # %%
python
import csv import os import random from .utils import write_into_file, train_val_test_split def preprocess(in_csv_paths, out_dir_path, val_split, test_split): dataset = [] for path in in_csv_paths: with open(path, "r") as file: reader = csv.DictReader(file) for row in reader: text, label = row["text"], row["label"] dataset.append((text, label)) random.shuffle(dataset) train_dataset, val_dataset, test_dataset = train_val_test_split(dataset, val_split, test_split) write_into_file(dataset, out_path=os.path.join(out_dir_path, "data_full.csv")) write_into_file(train_dataset, out_path=os.path.join(out_dir_path, "data_train.csv")) write_into_file(val_dataset, out_path=os.path.join(out_dir_path, "data_val.csv")) write_into_file(test_dataset, out_path=os.path.join(out_dir_path, "data_test.csv"))
python
"""Output timeseries in NetCDF format. """ import glob,os,sys import pandas as pd import datetime as dt import copy def defaultExtensions(): return ['.nc'] def NCfile(filename,datas): datas=copy.deepcopy(datas) fileout=copy.deepcopy(filename) for i,df in enumerate(datas): if len(datas)>1: fileout=filename[:-3]+str(i)+'.txt' del df['dataframe'][df['dataframe'].index.name] xar=df['dataframe'].to_xarray() cols=list(df['dataframe'].columns) for i,col in enumerate(cols): attr={} uni=df['metadata'][col]['units'] if uni and uni!='None': attr['units']=uni uni=df['metadata'][col]['long_name'] if uni and uni!='None': attr['long_name']=uni xar[col].attrs=attr xar.to_netcdf(path=fileout, mode='w')
python
# -*- coding: utf-8 -*- # Copyright 2021 Cohesity Inc. class CassandraCluster(object): """Implementation of the 'CassandraCluster' model. Specifies an Object containing information about a Cassandra cluster. Attributes: primary_host (string): Primary host from this Cassandra cluster. seeds (list of string): Seeds of this Cassandra Cluster. """ # Create a mapping from Model property names to API property names _names = { "primary_host":'primaryHost', "seeds":'seeds' } def __init__(self, primary_host=None, seeds=None): """Constructor for the CassandraCluster class""" # Initialize members of the class self.primary_host = primary_host self.seeds = seeds @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary primary_host = dictionary.get('primaryHost') seeds = dictionary.get('seeds') # Return an object of this model return cls(primary_host, seeds)
python
""" A Work-In-Progress agent using Tensorforce """ from . import BaseAgent from .. import characters class TensorForceAgent(BaseAgent): """The TensorForceAgent. Acts through the algorith, not here.""" def __init__(self, character=characters.Bomber, algorithm='ppo'): super(TensorForceAgent, self).__init__(character) self.algorithm = algorithm def act(self, obs, action_space): """This agent has its own way of inducing actions. See train_with_tensorforce.""" return None def initialize(self, env): from gym import spaces from tensorforce.agents import PPOAgent if self.algorithm == "ppo": if type(env.action_space) == spaces.Tuple: actions = { str(num): { 'type': int, 'num_actions': space.n } for num, space in enumerate(env.action_space.spaces) } else: actions = dict(type='int', num_actions=env.action_space.n) return PPOAgent( states=dict(type='float', shape=env.observation_space.shape), actions=actions, network=[ dict(type='dense', size=64), dict(type='dense', size=64) ], batching_capacity=1000, step_optimizer=dict( type='adam', learning_rate=1e-4 ) ) return None
python
## 2. Frequency Distribution ## fandango_distribution = reviews['Fandango_Ratingvalue'].value_counts().sort_index() imdb_distribution = reviews['IMDB_norm'].value_counts().sort_index() print(fandango_distribution) print('--'*12) print(imdb_distribution) ## 4. Histogram In Matplotlib ## fig, ax = plt.subplots() plt.hist(reviews['Fandango_Ratingvalue'], range=(0,5)) plt.show() ## 5. Comparing histograms ## fig = plt.figure(figsize=(5,20)) ax1 = fig.add_subplot(4,1,1) ax2 = fig.add_subplot(4,1,2) ax3 = fig.add_subplot(4,1,3) ax4 = fig.add_subplot(4,1,4) ax1.hist(reviews['Fandango_Ratingvalue'], bins=20, range=(0,5)) ax1.set_title('Distribution of Fandango Ratings') ax1.set_ylim(0, 50) ax3.hist(reviews['Metacritic_user_nom'], bins=20, range=(0,5)) ax3.set_title('Distribution of Metacritic Ratings') ax3.set_ylim(0, 50) ax2.hist(reviews['RT_user_norm'],bins=20, range=(0,5)) ax2.set_title('Distribution of Rotten Tomatoes Ratings') ax2.set_ylim(0, 50) ax4.hist(reviews['IMDB_norm'], bins=20, range=(0,5)) ax4.set_title('Distribution of IMDB Ratings') ax4.set_ylim(0,50) plt.show() ## 7. Box Plot ## fig, ax = plt.subplots() ax.boxplot(norm_reviews['RT_user_norm']) ax.set_ylim(0,5) ax.set_xticklabels(['Rotten Tomatoes']) plt.show() ## 8. Multiple Box Plots ## num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue'] fig, ax = plt.subplots() ax.boxplot(norm_reviews[num_cols].values) ax.set_xticklabels(num_cols, rotation=90) ax.set_ylim(0,5) plt.show()
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # 03. 円周率 sentence = "Now I need a drink, alcoholic of course, after the heavy lectures involving quantum mechanics." print([len(c.strip(",.")) for c in sentence.split()])
python
from django.db.models.signals import post_save from django.dispatch import receiver from django.db import models from problem.models import Submit, ProblemStats, LogEvent @receiver(post_save, sender=Submit) def update_problem_status(sender, instance, **kwargs): try: stats: ProblemStats = ProblemStats.objects.get(problem=instance.problem) except ProblemStats.DoesNotExist: stats: ProblemStats = ProblemStats(problem=instance.problem) queryset = Submit.objects.annotate( ordering=models.Case( models.When(status="OK", then=models.Value(0)), models.When(status="AW", then=models.Value(1)), default=models.Value(2), output_field=models.IntegerField() ) ).filter(problem=instance.problem).order_by('student', 'ordering', '-id').distinct('student') stats.green = len(list((filter(lambda x: x.status == Submit.OK, queryset)))) stats.yellow = len(list((filter(lambda x: x.status in [Submit.AWAITING_MANUAL, Submit.DEFAULT_STATUS], queryset)))) stats.red = len(list((filter( lambda x: x.status not in [Submit.OK, Submit.AWAITING_MANUAL, Submit.DEFAULT_STATUS], queryset )))) stats.save() @receiver(post_save, sender=Submit) def create_log_event(sender, instance: Submit, created, **kwargs): log_event = LogEvent(problem=instance.problem, student=instance.student) if created: log_event.type = LogEvent.TYPE_SUBMIT log_event.submit = instance log_event.author = instance.student log_event.data = dict(message=instance.id) log_event.save() return if kwargs['update_fields'] and 'status' in kwargs['update_fields']: log_event.type = LogEvent.TYPE_STATUS_CHANGE log_event.submit = instance if log_event.submit.updated_by: log_event.author = log_event.submit.updated_by log_event.data = dict(message=f'Статус изменён на {instance.status}') log_event.save() return post_save.connect(update_problem_status, weak=False, sender=Submit) post_save.connect(create_log_event, weak=False, sender=Submit)
python
km = float(input('Informe a distância em KM: ')) v = float(input('Informe a velocidade média: ')) t = km / v t_h = t // 1 t_m = (t - t_h) * 60 print(f'O tempo da viagem será de {t_h:.0f} horas e {t_m:.0f} minutos.')
python
# from .runner import main
python
import re from typing import List, Dict, Type import pkgutil import inspect import importlib import HABApp from HABApp.core import Items from HABApp.core.items.base_item import BaseItem import zone_api.core.actions as actions from zone_api import platform_encapsulator as pe from zone_api import device_factory as df from zone_api.alert_manager import AlertManager from zone_api.core.action import Action from zone_api.core.devices.activity_times import ActivityTimes from zone_api.core.devices.gas_sensor import NaturalGasSensor, SmokeSensor, Co2GasSensor, RadonGasSensor from zone_api.core.immutable_zone_manager import ImmutableZoneManager from zone_api.core.zone import Zone, Level from zone_api.core.zone_manager import ZoneManager from zone_api.core.neighbor import NeighborType, Neighbor """ This module contains functions to construct an ImmutableZoneManager using the following convention for the OpenHab items. 1. The zones are defined as a String item with this pattern Zone_{name}: String Zone_GreatRoom { level="FF", displayIcon="player", displayOrder="1", openSpaceSlaveNeighbors="FF_Kitchen" } - The levels are the reversed mapping of the enums in Zone::Level. - Here are the list of supported attributes: level, external, openSpaceNeighbors, openSpaceMasterNeighbors, openSpaceSlaveNeighbors, displayIcon, displayOrder. 2. The individual OpenHab items are named after this convention: {zone_id}_{device_type}_{device_name}. Here's an example: Switch FF_Office_LightSwitch "Office Light" (gWallSwitch, gLightSwitch, gFirstFloorLightSwitch) [shared-motion-sensor] { channel="zwave:device:9e4ce05e:node8:switch_binary", durationInMinutes="15" } """ def parse(activity_times: ActivityTimes, actions_package: str = "zone_api.core.actions", actions_path: List[str] = actions.__path__) -> ImmutableZoneManager: """ - Parses the zones and devices from the remote OpenHab items (via the REST API). - Adds devices to the zones. - Adds default actions to the zones. - For each action, invoke Action::on_startup method. - Start the scheduler service. :return: """ mappings = { '.*AlarmPartition$': df.create_alarm_partition, '.*_ChromeCast$': df.create_chrome_cast, '.*Door$': df.create_door, '[^g].*_Window$': df.create_window, '.*_Camera$': df.create_camera, '[^g].*MotionSensor$': df.create_motion_sensor, '[^g].*LightSwitch.*': df.create_switches, '.*FanSwitch.*': df.create_switches, '.*Wled_MasterControls.*': df.create_switches, '[^g].*_Illuminance.*': df.create_illuminance_sensor, '[^g](?!.*Weather).*Humidity$': df.create_humidity_sensor, '[^g].*_NetworkPresence.*': df.create_network_presence_device, '[^g].*_Plug$': df.create_plug, '[^g].*_Co2$': df.create_gas_sensor(Co2GasSensor), '[^g].*_NaturalGas$': df.create_gas_sensor(NaturalGasSensor), '[^g].*_RadonGas$': df.create_gas_sensor(RadonGasSensor), '[^g].*_Smoke$': df.create_gas_sensor(SmokeSensor), '.*_Tv$': df.create_television_device, '.*_Thermostat_EcobeeName$': df.create_ecobee_thermostat, # not matching "FF_Office_Computer_Dell_GpuTemperature" '[^g](?!.*Computer)(?!.*Weather).*Temperature$': df.create_temperature_sensor, '[^g].*WaterLeakState$': df.create_water_leak_sensor, '[^g].*_TimeOfDay$': df.create_astro_sensor, '.*_Computer_[^_]+$': df.create_computer, '.*_Weather_Temperature$': df.create_weather, } zm: ZoneManager = ZoneManager() immutable_zm = zm.get_immutable_instance() immutable_zm = immutable_zm.set_alert_manager(AlertManager()) zone_mappings = {} for zone in _parse_zones(): zone_mappings[zone.get_id()] = zone items: List[BaseItem] = Items.get_all_items() for item in items: for pattern in mappings.keys(): device = None if re.match(pattern, item.name) is not None: device = mappings[pattern](immutable_zm, item) if device is not None: zone_id = df.get_zone_id_from_item_name(item.name) if zone_id is None: pe.log_warning("Can't get zone id from item name '{}'".format(item.name)) continue if zone_id not in zone_mappings.keys(): pe.log_warning("Invalid zone id '{}'".format(zone_id)) continue zone = zone_mappings[zone_id].add_device(device) zone_mappings[zone_id] = zone # Add specific devices to the Virtual Zone zone = next((z for z in zone_mappings.values() if z.get_name() == 'Virtual'), None) if zone is not None: zone = zone.add_device(activity_times) zone_mappings[zone.get_id()] = zone action_classes = get_action_classes(actions_package, actions_path) zone_mappings = add_actions(zone_mappings, action_classes) for z in zone_mappings.values(): zm.add_zone(z) immutable_zm.start() return immutable_zm def _parse_zones() -> List[Zone]: """ Parses items with the zone pattern in the name and constructs the associated Zone objects. :return: List[Zone] """ pattern = 'Zone_([^_]+)' zones: List[Zone] = [] items = Items.get_all_items() for item in items: match = re.search(pattern, item.name) if not match: continue zone_name = match.group(1) item_def = HABApp.openhab.interface.get_item( item.name, "level, external, openSpaceNeighbors, openSpaceMasterNeighbors, openSpaceSlaveNeighbors, displayIcon, " "displayOrder") metadata = item_def.metadata level = Level(df.get_meta_value(metadata, "level")) external = df.get_meta_value(metadata, "external", False) display_icon = df.get_meta_value(metadata, "displayIcon", '') display_order = int(df.get_meta_value(metadata, "displayOrder", 9999)) zone = Zone(zone_name, [], level, [], {}, external, display_icon, display_order) neighbor_type_mappings = { 'closeSpaceNeighbors': NeighborType.CLOSED_SPACE, 'openSpaceNeighbors': NeighborType.OPEN_SPACE, 'openSpaceMasterNeighbors': NeighborType.OPEN_SPACE_MASTER, 'openSpaceSlaveNeighbors': NeighborType.OPEN_SPACE_SLAVE, } for neighbor_type_str in neighbor_type_mappings.keys(): neighbor_str = df.get_meta_value(metadata, neighbor_type_str) if neighbor_str is not None: for neighbor_id in neighbor_str.split(','): neighbor_id = neighbor_id.strip() neighbor = Neighbor(neighbor_id, neighbor_type_mappings[neighbor_type_str]) zone = zone.add_neighbor(neighbor) zones.append(zone) return zones def add_actions(zone_mappings: Dict, action_classes: List[Type]) -> Dict: """ Create action instances from action_classes and add them to the zones. A set of filters are applied to ensure that only the application actions are added to each zone. As the Zone class is immutable, a new Zone instance is created after adding an action. As such, a zone_mappings dictionary must be provided. :param str zone_mappings: mappings from zone_id string to a Zone instance. :param str action_classes: the list of action types. """ for clazz in action_classes: action: Action = clazz() for zone in zone_mappings.values(): if not _can_add_action_to_zone(zone, action): continue if action.must_be_unique_instance(): zone = zone.add_action(clazz()) else: zone = zone.add_action(action) zone_mappings[zone.get_id()] = zone return zone_mappings def _can_add_action_to_zone(zone: Zone, action: Action) -> bool: satisfied = True # must have all devices for device_type in action.get_required_devices(): if len(zone.get_devices_by_type(device_type)) == 0: satisfied = False break if not satisfied: return False if zone.is_internal() and not action.is_applicable_to_internal_zone(): return False if zone.is_external() and not action.is_applicable_to_external_zone(): return False if len(action.get_applicable_levels()) > 0 and (zone.get_level() not in action.get_applicable_levels()): return False zone_name_pattern = action.get_applicable_zone_name_pattern() if zone_name_pattern is not None: match = re.search(zone_name_pattern, zone.get_name()) if not match: return False return True def get_action_classes(actions_package: str = "zone_api.core.actions", actions_path: List[str] = actions.__path__) -> List[Type]: """ Retrieve a list of action class types defined in the actions_path with the given actions_package. To avoid loading the non-action classes (the package might contain helper modules), the following restrictions are used: 1. The normalized action name must be the same as the normalized module name. e.g. action 'ManagePlugs' is defined in the file 'manage_plugs.py'. 2. The class defined in the module must be an instance of 'Action'. :param str actions_package: the package of the action classes. :param str actions_path: the absolute path to the action classes. """ classes = [] for importer, module_name, is_pkg in pkgutil.iter_modules(actions_path): module = importlib.import_module(f"{actions_package}.{module_name}") for (name, value) in inspect.getmembers(module, lambda member: inspect.isclass(member)): normalized_module_name = module_name.replace('_', '').lower() if name.lower() == normalized_module_name: try: clazz = getattr(module, name) obj = clazz() if isinstance(obj, Action): classes.append(clazz) except AttributeError: pass except TypeError: pass return classes
python
from unittest import TestCase from unittest.mock import patch, call import os import pytest from osbot_utils.utils.Dev import pprint from osbot_utils.utils.Json import json_load_file from cdr_plugin_folder_to_folder.processing.Analysis_Elastic import Analysis_Elastic from cdr_plugin_folder_to_folder.utils.testing.Setup_Testing import Setup_Testing FIXTURE_DIR = os.path.join( os.path.dirname(os.path.realpath(__file__)), 'test_files', ) class test_Report_Elastic(TestCase): test_file = None @classmethod def setUpClass(cls) -> None: cls.file_hash = '458d2ceb57b1bac2866c43e16cc9392b017aa48f0689876df25399d0f7ad198c' @classmethod def tearDownClass(cls) -> None: pass def setUp(self) -> None: analysis_file_path = os.path.join(FIXTURE_DIR, 'analysis.json') assert os.path.isfile(analysis_file_path) self.analysis_data = json_load_file(analysis_file_path) assert self.analysis_data is not None assert len(self.analysis_data ) == 6 self.original_hash = self.analysis_data[self.file_hash]['original_hash'] assert self.original_hash == self.file_hash self.analysis_elastic = Analysis_Elastic() self.analysis_elastic.setup() if self.analysis_elastic.enabled is False: pytest.skip('Elastic server not available') def test_add_analysis(self): analysis_add_report = self.analysis_elastic.add_analysis(self.analysis_data) assert analysis_add_report.get('_shards').get('successful') == 1 assert self.analysis_elastic.get_analysis (original_hash=self.original_hash) == self.analysis_data[self.file_hash] assert self.analysis_elastic.delete_analysis(original_hash=self.original_hash).get('result') == 'deleted' assert self.analysis_elastic.get_analysis (original_hash=self.original_hash) == {} def test_clear_all_report(self): self.analysis_elastic.delete_all_analysis() assert len(self.analysis_elastic.get_all_analysis()) == 0
python
from seleniumbase import BaseCase from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from parameterized import parameterized import pytest from test_thermal.test_CompanyAdmin.test_RoleManagement.RoleManageBase import RoleManageBase from utilities import utilities from utilities.Authority import Authority from config.constants import * class TestRead(RoleManageBase): TNB = COMPANYADMIN_ROLE_READ_TNB datafile = COMPANYADMIN_ROLE_READ_DATA_FILE test_data_read_normal = utilities.gen_testdata(datafile, delimiter=',', header=0, scenario='normal') @parameterized.expand(test_data_read_normal) @pytest.mark.scenario_regression_companyadmin(TNB + 1) def test_read_normal(self, companyname, rolename, expectation): self.role_read(companyname, rolename, expectation) authority = Authority() test_data_read_check_authority_info = authority.get_role_authority_info() @parameterized.expand(test_data_read_check_authority_info, skip_on_empty=True) # skip_on_empty=True doesn't work @pytest.mark.scenario_regression_companyadmin(TNB + 2) @pytest.mark.scenario_regression(TNB + 1) def test_read_check_authority_info(self, company, role, email_list): self.check_authority_info(company=company, role=role, email_list=email_list, expectation="pass")
python
""" Here we're going to code for the local rotations. We're doing an object oriented approach Left and right are in reference to the origin """ __version__ = 1.0 __author__ = 'Katie Kruzan' import string # just to get the alphabet easily iterable import sys # This just helps us in our printing from typing import Dict # This helps us in our documentation # Getting the structure for the classes we're putting together class Segment: """ These are going to represent the outer segments and the mysteries they hold. The segments will be adjacent to 2 outer nodes """ def __init__(self, name: str): """ Initialize the segment, keeping a place for the right left outer vertices to which it is adjacent :param name: How we will reference this segment. In this implementation, it is expected to be a negative integer """ self.leftOuter = None self.rightOuter = None self.name = name def getName(self) -> str: """ Return the name we gave to this segment. :return: name """ return self.name def getLeftOuter(self): """ Return the outer node to the left of this segment with respect to the origin :return: leftOuter """ return self.leftOuter def getRightOuter(self): """ Return the outer node to the right of this segment with respect to the origin :return: rightOuter """ return self.rightOuter def setLeftOuter(self, left): """ Set the outer node to the left of this segment with respect to the origin Also, set left's right segment to this segment. :param left: A outer node object to be referenced as this segment's left outer node :return: None """ self.leftOuter = left if left.getRightSegment() is None: left.setRightSegment(self) def setRightOuter(self, right): """ Set the outer node to the right of this segment with respect to the origin Also, set right's left segment to this segment. :param right: A outer node object to be referenced as this segment's right outer node :return: None """ self.rightOuter = right if right.getLeftSegment() is None: right.setLeftSegment(self) def isValidObject(self) -> bool: """ Checks to see if this segment has been full initialized. :return: valid returns true if it has both the left and right outer nodes set """ if (self.leftOuter is None) or (self.rightOuter is None): return False return True def toString(self) -> str: """ Returns a formatted string of the left and right outer nodes this is associated with :return: Description string """ return 'left Outer: ' + self.leftOuter.getName() + '\nright Outer: ' + self.rightOuter.getName() class Outer: """ Class to represent the outer vertices that are adjacent to an inner vertex and 2 outer segments """ def __init__(self, name: str): """ Initialize the outer node Keeping a place for the inner vertex and right and left outer segments to which it is adjacent. :param name: How we will reference this outer node. In this implementation, it is expected to be a positive integer """ self.adjInner = None self.leftSegment = None self.rightSegment = None self.name = name def getName(self) -> str: """ Return the name we gave to this outer node. :return: name """ return self.name def getLeftSegment(self) -> Segment: """ Return the segment object to the left of this outer node with respect to the origin :return: leftSegment """ return self.leftSegment def getRightSegment(self) -> Segment: """ Return the segment object to the right of this outer node with respect to the origin :return: rightSegment """ return self.rightSegment def getAdjInner(self): """ Return the inner node object adjacent to this outer note object :return: adjInner """ return self.adjInner def setLeftSegment(self, left: Segment): """ Set the segment to the left of this outer node with respect to the origin Also, set left's right outer node to self. :param left: A segment object to be referenced as this node's left outer segment :return: None """ self.leftSegment = left if left.getRightOuter() is None: left.setRightOuter(self) def setRightSegment(self, right: Segment): """ Set the segment to the right of this outer node with respect to the origin Also, set right's left outer node to self. :param right: A segment object to be referenced as this node's right outer segment :return: None """ self.rightSegment = right if right.getLeftOuter() is None: right.setLeftOuter(self) def setAdjInner(self, inner): """ Set the inner node adjacent to this outer node Also, set inner's adjacent outer node to self. :param inner: A inner node object to be referenced as this node's adjacent inner node :return: None """ self.adjInner = inner if inner.getAdjOuter() is None: inner.setAdjOuter(self) def isValidObject(self) -> bool: """ Checks to see if this outer node has been full initialized. :return: valid returns true if it has the left segment, right segment, and inner node set """ if (self.leftSegment is None) or (self.rightSegment is None) or (self.adjInner is None): return False return True def toString(self) -> str: """ Returns a formatted string of the left segment, right segment, and inner node this outer node is associated with :return: Description string """ return 'left Segment: ' + self.leftSegment.getName() + '\nright Segment: ' + self.rightSegment.getName() \ + '\nadj Inner: ' + self.adjInner.getName() class Inner: """ Class to represent the inner vertices that are adjacent to an outer vertex and 2 neighboring inner vertices """ def __init__(self, name: str): """ Initialize the inner node object Keeping a place for the outer vertex and right and left adjacent inner nodes. :param name: How we will reference this inner node. In this implementation, it is expected to be a lowercase letter """ self.adjOuter = None self.leftInner = None self.rightInner = None self.name = name def getName(self) -> str: """ Return the name we gave to this inner node. :return: name """ return self.name def getLeftInner(self): """ Return the inner node object to the left of this inner node with respect to the origin :return: leftInner """ return self.leftInner def getRightInner(self): """ Return the inner node object to the right of this inner node with respect to the origin :return: rightInner """ return self.rightInner def getAdjOuter(self) -> Outer: """ Return the outer node object adjacent to this inner node :return: adjOuter """ return self.adjOuter def setLeftInner(self, left): """ Set the inner node to the left of this inner node with respect to the origin Also, set left's right inner node to self. :param left: An inner node object to be referenced as this node's left inner node :return: None """ self.leftInner = left if left.getRightInner() is None: left.setRightInner(self) def setRightInner(self, right): """ Set the inner node to the right of this inner node with respect to the origin Also, set right's left inner node to self. :param right: An inner node object to be referenced as this node's right inner node :return: None """ self.rightInner = right if right.getLeftInner() is None: right.setLeftInner(self) def setAdjOuter(self, outer: Outer): """ Set the outer node adjacent to this inner node Also, set outer's adjacent inner node to self. :param outer: An outer node object to be referenced as this node's adjacent outer node :return: None """ self.adjOuter = outer if outer.getAdjInner() is None: outer.setAdjInner(self) def isValidObject(self) -> bool: """ Checks to see if this inner node has been full initialized. :return: valid returns true if it has the left inner node, right inner node, and adjacent outer node set """ if (self.leftInner is None) or (self.rightInner is None) or (self.adjOuter is None): return False return True def toString(self) -> str: """ Returns a formatted string of the left inner node, right inner node, and adjacent outer node this inner node is associated with :return: Description string """ return 'left Inner: ' + self.leftInner.getName() + '\nright Inner: ' + self.rightInner.getName() \ + '\nadj Outer: ' + self.adjOuter.getName() def standardCircle(num_verts: int) -> (Dict[str, Segment], Dict[str, Outer], Dict[str, Inner]): """ This will go through and initialize our standard starting circle :param num_verts: the number of outer nodes we will have :returns: tuple(segs, outs, inns) -segs - dictionary of str: Segment objects in the circle \\ -outs - dictionary of str: Outer objects in the circle \\ -inns - dictionary of str: Inner objects in the circle """ # Initializing our dictionaries segs = dict() outs = dict() inns = dict() # Running through the number of vertices we will be edning up with for i in range(num_verts): # start with an inner node - labeling with lowercase letters inn = Inner(string.ascii_letters[i]) # If we aren't on the first one, connect it to the previous one. if i != 0: inn.setLeftInner(inns[string.ascii_letters[i - 1]]) # If we've hit the end of the line, go ahead and close up the circle. if i == num_verts - 1: inn.setRightInner(inns[string.ascii_letters[0]]) # then make the outer out = Outer(str(i + 1)) # Go ahead and connect the inner we just made with this outer node out.setAdjInner(inn) # If we aren't on the first one, go ahead and connect it to the previous segment if i != 0: out.setLeftSegment(segs[str(-i)]) # Now time to make the segment seg = Segment(str(-i - 1)) # Go ahead and connect the outer node we just made with this segment seg.setLeftOuter(out) # If we're at the end of the circle, then we close it up. Otherwise, move on if i == num_verts - 1: seg.setRightOuter(outs[str(1)]) # add them to our dictionaries segs[seg.getName()] = seg outs[out.getName()] = out inns[inn.getName()] = inn # If we've made it here, then we've made the full circle and are ready to return it return segs, outs, inns def findTheFace(source_in: Inner) -> list: """ This will take an inner node and use the algorithm to walk the face that it is on. The order of the face will be i, o, s, o, i repeat :param source_in: Inner node object we are starting from. :return: face: a list representing the face. This list is of inner, outer, and segment objects in the order i, o, s, o, i, repeat. """ # initialize the list face = list() # starting the face with the source inner node. face.append(source_in) # initialize the ending inner node we will be using for comparison end_in = None # As long as we haven't looped back around, go through the following process. while source_in != end_in: # inner: find adjacent outer face.append(face[-1].getAdjOuter()) # outer: go to right seg face.append(face[-1].getRightSegment()) # segment: go to right outer face.append(face[-1].getRightOuter()) # outer: then adj inner face.append(face[-1].getAdjInner()) # then left inner and repeat. # set this inner node as our node to compare to our starting node. end_in = face[-1].getLeftInner() face.append(end_in) return face def faceCannonOrder(face: list) -> list: """ Just list the face with the face elements in order. We will do it with the first numerical face, and then go right before it for an order that will be consistent. :param face: a list representing the face. This list is of inner, outer, and segment objects in the order i, o, s, o, i, repeat. :return: ordered face in canonical order """ # find the first numerical face then go right before it # initialize face num as a relatively high number we won't encounter facenum = 333 # initialize the int for where we will split the list start_ind = 0 # loop through and find the face we want to find for i in range(len(face)): try: if int(face[i].getName()) < facenum: # To get here, we must have found a lower face # keep track of where this is located in the list start_ind = i - 1 # make our current lowest face the new lowest face to keep comparing to. facenum = int(face[i].getName()) # if we try casting a letter to a number, python will get upset, but that also means we're looking at # an inner node, which we don't want for this anyways. except ValueError: continue # make our ordered face getting from the starting index to the end, then wrapping around and getting the rest of # the face ord_face = face[start_ind:] + face[:start_ind] # go through and make sure we don't have any duplicate elements right by each other. If we do, then drop them. for i in range(len(ord_face) - 1): if ord_face[i].toString() == ord_face[i + 1].toString(): ord_face.pop(i) break # return the ordered face return ord_face def grabAllTheFaces(inns: Dict[str, Inner]) -> list: """ Function to get the list of unique faces for our circle. :param inns: dictionary of Inner objects. We will loop through these to get the faces :return: faces: List of distinct faces in canonical order. """ # initialize the list of faces faces = list() # a set of all the elements we have covered by the faces. Will use this for a completeness check covered = set() # run through every inner node we've been given for inn in inns: # Generate the face that inner node lies on face = findTheFace(inns[inn]) # put the face we've gotten in canonical order face = faceCannonOrder(face) # Check if we've already captured it. if face not in faces: # If not, then add it to our list of faces faces.append(face) # Go ahead and add the elements in this face to our covered set covered.update(face) # check we've gotten all the elements if len(covered) == (3 * len(inns)): print('We got em!!!') # Now return a list of all the faces we have. return faces def printCircleStatus(segs: Dict[str, Segment], outs: Dict[str, Outer], inns: Dict[str, Inner]): """ Helper function that prints the status of the circle to the console :param segs: dictionary of str: Segment objects in the circle :param outs: dictionary of str: Outer objects in the circle :param inns: dictionary of str: Inner objects in the circle :return: None """ # Run through the segments print('\nSegments:') for k in segs: print() print(k) print(segs[k].toString()) # Run through the Outer nodes print('\nOuters:') for k in outs: print() print(k) print(outs[k].toString()) # Run through the Inner nodes print('\nInners:') for k in inns: print() print(k) print(inns[k].toString()) if __name__ == '__main__': # This is where you change the variables. # must be a positive integer > 2 verts = 12 # Must be a string with spaces between each element. If you want to denote multiple cycles, you must add a | switch_txt = '2 3 4 5 | 12 7' # we're going to make a list of all the switches and all the cycles switches = list() # first, we get the cycles, split by '|' cycles = switch_txt.split('|') for c in cycles: # We're going to split the switch into a list split by the whitespace s = c.strip().split() # Then we're going to append the switches in the cycle to the new list switches.append(s) # Go ahead and make the standard circle given the number of vertices we want to use. segments, outers, inners = standardCircle(verts) # Go through and grab the faces for our standard circle facs = grabAllTheFaces(inners) print('\nPrinting the faces') for f in facs: print() for p in f: sys.stdout.write(p.getName() + ' ') # Go through and do the switches for each cycle for switch in switches: for num in range(len(switch)): # store the current part of the switch we're working on cs = switch[num] # store the next part of the switch we're working on, looping to the beginning if we're at the end ns = switch[(num + 1) % len(switch)] # Do the actual switch # Getting the new inner and outer validly switched up inners[string.ascii_letters[int(cs) - 1]].setAdjOuter(outers[ns]) outers[ns].setAdjInner(inners[string.ascii_letters[int(cs) - 1]]) # print how the final rotation sits printCircleStatus(segments, outers, inners) # Go through and generate and print the new faces new_facs = grabAllTheFaces(inners) print('\nPrinting the new faces') for f in new_facs: print() for p in f: sys.stdout.write(p.getName() + ' ')
python
from controller.csi_general import csi_pb2 SUPPORTED_FS_TYPES = ["ext4", "xfs"] access_mode = csi_pb2.VolumeCapability.AccessMode SUPPORTED_ACCESS_MODE = [access_mode.SINGLE_NODE_WRITER] # VolumeCapabilities fields which specify if it is volume with fs or raw block volume VOLUME_CAPABILITIES_FIELD_ACCESS_TYPE_MOUNT = 'mount' VOLUME_CAPABILITIES_FIELD_ACCESS_TYPE_BLOCK = 'block' SECRET_USERNAME_PARAMETER = "username" SECRET_PASSWORD_PARAMETER = "password" SECRET_ARRAY_PARAMETER = "management_address" PARAMETERS_POOL = "pool" PARAMETERS_CAPABILITIES_SPACEEFFICIENCY = "SpaceEfficiency" PARAMETERS_VOLUME_NAME_PREFIX = "volume_name_prefix" PARAMETERS_SNAPSHOT_NAME_PREFIX = "snapshot_name_prefix" PARAMETERS_CAPACITY_DELIMITER = "=" PARAMETERS_CAPABILITIES_DELIMITER = "=" PARAMETERS_OBJECT_ID_DELIMITER = ":" PARAMETERS_NODE_ID_DELIMITER = ";" PARAMETERS_FC_WWN_DELIMITER = ":" SUPPORTED_CONNECTIVITY_TYPES = 2 OBJECT_TYPE_NAME_VOLUME = "volume" OBJECT_TYPE_NAME_SNAPSHOT = "snapshot" VOLUME_SOURCE_SNAPSHOT = "snapshot" VOLUME_SOURCE_VOLUME = "volume"
python
import pybamm import numpy as np import sys # set logging level pybamm.set_logging_level("INFO") # load (1+1D) SPMe model options = { "current collector": "potential pair", "dimensionality": 1, "thermal": "lumped", } model = pybamm.lithium_ion.SPM(options) # create geometry geometry = model.default_geometry # load parameter values and process model and geometry param = model.default_parameter_values C_rate = 1 current_1C = 24 * param.process_symbol(pybamm.geometric_parameters.A_cc).evaluate() param.update( { "Typical current [A]": C_rate * current_1C, #"Initial temperature [K]": 298.15, #"Negative current collector conductivity [S.m-1]": 1e7, #"Positive current collector conductivity [S.m-1]": 1e7, "Heat transfer coefficient [W.m-2.K-1]": 1, } ) param.process_model(model) param.process_geometry(geometry) # set mesh var = pybamm.standard_spatial_vars var_pts = {var.x_n: 5, var.x_s: 5, var.x_p: 5, var.r_n: 10, var.r_p: 10, var.z: 15} # depending on number of points in y-z plane may need to increase recursion depth... sys.setrecursionlimit(10000) mesh = pybamm.Mesh(geometry, model.default_submesh_types, var_pts) # discretise model disc = pybamm.Discretisation(mesh, model.default_spatial_methods) disc.process_model(model) # solve model -- simulate one hour discharge tau = param.evaluate(pybamm.standard_parameters_lithium_ion.tau_discharge) t_end = 3600 / tau t_eval = np.linspace(0, t_end, 120) solution = model.default_solver.solve(model, t_eval) # plot output_variables = [ "X-averaged negative particle surface concentration [mol.m-3]", "X-averaged positive particle surface concentration [mol.m-3]", "X-averaged cell temperature [K]", #"Local potenital difference [V]", "Current collector current density [A.m-2]", "Terminal voltage [V]", "Volume-averaged cell temperature [K]", ] plot = pybamm.QuickPlot(model, mesh, solution, output_variables) plot.dynamic_plot()
python
# # Copyright (c) 2018 TECHNICAL UNIVERSITY OF MUNICH, DEPARTMENT OF MECHANICAL ENGINEERING, CHAIR OF APPLIED MECHANICS, # BOLTZMANNSTRASSE 15, 85748 GARCHING/MUNICH, GERMANY, [email protected]. # # Distributed under 3-Clause BSD license. See LICENSE file for more information. # """ Mapping Module """ # -- STANDARD MAPPING -- from .mapping_standard import *
python