content
stringlengths
0
894k
type
stringclasses
2 values
import math import os import time import unicodedata from pyrogram.errors import MessageNotModified from help.progress import humanbytes, TimeFormatter import requests from config import Config from tqdm.utils import CallbackIOWrapper from pathlib import Path from tqdm.contrib.telegram import tqdm CHUNK_SIZE = 10240 TIMEOUT: float = 60 header = { 'Connection': 'keep-alive', 'sec-ch-ua': '"Google Chrome";v="89", "Chromium";v="89", ";Not A Brand";v="99"', 'Accept': 'application/json, text/plain, */*', 'requesttoken': '', 'sec-ch-ua-mobile': '?0', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4389.90 Safari/537.36', 'Content-Type': 'application/json;charset=UTF-8', 'Origin': 'https://nube.ucf.edu.cu', 'Sec-Fetch-Site': 'same-origin', 'Sec-Fetch-Mode': 'cors', 'Sec-Fetch-Dest': 'empty', 'Accept-Language': 'en-US,en;q=0.9,es;q=0.8' } #async def upload_file_old(file): # print("Func. upload_file") # with open(file, 'rb') as upload: # with requests.Session() as request: # request.auth = (Config.USER, Config.PASSWORD) # conn = request.put('https://nube.ucf.edu.cu/remote.php/webdav/{}'.format(file), data=upload) # print(conn.status_code) # os.unlink(file) # print('Upload Ok!') async def upload_file(file, chat_id): filename_path = Path(f"{file}") print("Func. upload_file") # with open(file, 'rb') as upload: with requests.Session() as request: request.auth = (Config.USER, Config.PASSWORD) size = filename_path.stat().st_size if filename_path.exists() else 0 print(size) with tqdm(token=Config.BOT, chat_id=chat_id, total=size, desc="Subiendo... ", mininterval=3.0, unit="B", unit_scale=True, bar_format="{desc}{percentage:3.0f}% / {rate_fmt}{postfix}", unit_divisor=CHUNK_SIZE, ) as t, open(filename_path, "rb") as fileobj: wrapped_file = CallbackIOWrapper(t.update, fileobj, "read") with request.put( url="https://nube.ucf.edu.cu/remote.php/webdav/{}".format(file), data=wrapped_file, # type: ignore headers=header, timeout=TIMEOUT, stream=True, ) as resp: print(resp.status_code) resp.raise_for_status() t.tgio.delete() print("UPLOAD OK!") async def get_share_link(full_name): with requests.Session() as request: request.auth = (Config.USER, Config.PASSWORD) response = request.get('https://nube.ucf.edu.cu/index.php/apps/dashboard/') i = response.content.index(b'token=') tok = str(response.content[i + 7:i + 96])[2:-1] header.update({'requesttoken': tok}) data = '{"path":"' + f'/{full_name}' + '","shareType":3, "password":"' + f'{Config.LINK_PASSWORD}' + '"}' response = request.post('https://nube.ucf.edu.cu/ocs/v2.php/apps/files_sharing/api/v1/shares', headers=header, cookies=response.cookies, data=data) url = response.json() try: url = url['ocs']['data']['url'] url = url + "/download/" + full_name except Exception as e: print(f'Error getting share link: {e}') url = "Error: {}".format(e) return url async def delete_file(filename): with requests.Session() as request: request.auth = (Config.USER, Config.PASSWORD) url = "https://nube.ucf.edu.cu/remote.php/webdav{}".format(filename) req = request.delete(url=url) return req.status_code async def filename_geturl(url, resp): if url.find("heroku") != -1: print("heroku") return await get_heroku_bot(resp, url) else: file = url.split("/", -1)[-1] if file.find("?") != -1: file = file.split("?", -1)[0] if file.find(".") == -1: try: file = resp.headers["Content-Disposition"].split("", 1)[1].split("=", 1)[1][1:-1] except Exception as err: print(err) if url.find("checker") != -1: file += ".mp4" else: file += ".ext" return ["direct", file] async def get_heroku_bot(resp, url): print(resp.headers) try: file = resp.headers["Conetnt-Disposition"].split(" ", 1)[1].split("=", 1)[1][1:-1] except Exception as err: print(err) try: # ext = resp.headers["Content-Type"] # file = "heroku_file.{}".format(ext.split("/", -1)[1]) file_name = url.split("/") file = file_name[-1] except Exception as error: print(error) file = "defaul_name.ext" return ["heroku", file] async def clean_name(name): full_name = unicodedata.normalize("NFKD", name).encode("ascii", "ignore").decode("ascii") full_name = full_name.replace(" ", "_") full_name = full_name.replace("%20", "_") full_name = full_name.replace("(", "") full_name = full_name.replace(")", "") full_name = full_name.replace("$", "") full_name = full_name.replace("%", "_") full_name = full_name.replace("@", "_") full_name = full_name.replace("/", "") full_name = full_name.replace("|", "") full_name = full_name.replace("..", ".") return full_name async def download_file(message, url, file_name): start = time.time() with open(file_name, mode='wb') as f: with requests.Session() as session: with session.get(url, stream=True) as r: total_length = r.headers.get('content-length') or r.headers.get("Content-Length") current = 0 if total_length is None: await message.edit(f"Descargando archivo... \nArchivo: {file_name}\nTamaño: Desconocido") f.write(r.content) total_length = 0 else: total = int(total_length) for chunk in r.iter_content(1024*1204*15): now = time.time() diff = now - start current += len(chunk) percentage = current * 100 / total speed = current / diff elapsed_time = round(diff) * 1000 time_to_completion = round((total - current) / speed) * 1000 estimated_total_time = elapsed_time + time_to_completion elapsed_time = TimeFormatter(milliseconds=elapsed_time) estimated_total_time = TimeFormatter(milliseconds=estimated_total_time) progressed = "[{0}{1}] \n\nProgreso: {2}%\n".format( ''.join(["█" for i in range(math.floor(percentage / 5))]), ''.join(["░" for i in range(20 - math.floor(percentage / 5))]), round(percentage, 2)) tmp = progressed + "Descargado: {0}\nTotal: {1}\nVelocidad: {2}/s\nFaltan: {3}\n".format( humanbytes(current), humanbytes(total), humanbytes(speed), # elapsed_time if elapsed_time != '' else "0 s", estimated_total_time if estimated_total_time != '' else "0 s") f.write(chunk) try: await message.edit("Descargando...\n{}".format(tmp)) except MessageNotModified: time.sleep(5.0) pass return file_name, int(total_length)
python
import click from flask.cli import with_appcontext from goslinks.db.factory import get_model @click.command() @with_appcontext def migrate(): """Creates and migrates database tables.""" for model_name in ("user", "link"): model = get_model(model_name) click.echo(f"Creating table {model.Meta.table_name}... ", nl=False) try: model.create_table() except Exception: click.echo(click.style("FAILED!", fg="red")) raise else: click.echo(click.style("SUCCESS!", fg="green"))
python
from .nondet import Nondet
python
# test_file.py import io import pytest import graspfile.torfile test_file = "tests/test_data/tor_files/python-graspfile-example.tor" """TICRA Tools 10.0.1 GRASP .tor file""" @pytest.fixture def empty_tor_file(): """Return an empty GraspTorFile instance.""" return graspfile.torfile.GraspTorFile() @pytest.fixture def input_file_object(): """Return a file object pointing to the test file.""" return open(test_file) @pytest.fixture def filled_tor_file(empty_tor_file, input_file_object): """Return a GraspTorFile instance filled from the tor_file""" empty_tor_file.read(input_file_object) input_file_object.close() return empty_tor_file def test_loading_tor_file(filled_tor_file): """Test loading from a tor cutfile""" # Check that something was loaded assert len(filled_tor_file.keys()) > 0 # Check that the frequencies were loaded assert len(filled_tor_file["single_frequencies"].keys()) > 0 def test_reloading_tor_file(filled_tor_file): """Test outputting the filled_tor_file to text and reloading it with StringIO""" test_str = repr(filled_tor_file) try: test_io = io.StringIO(test_str) except TypeError: test_io = io.StringIO(unicode(test_str)) reload_tor_file = graspfile.torfile.GraspTorFile(test_io) assert len(filled_tor_file.keys()) == len(reload_tor_file.keys())
python
"""Choose python classifiers with a curses frontend.""" from __future__ import unicode_literals import os import curses from collections import namedtuple from .constants import VERSION from .constants import CHECKMARK class BoxSelector(object): # pragma: no cover """Originally designed for accman.py. Display options build from a list of strings in a (unix) terminal. The user can browser though the textboxes and select one with enter. Used in pypackage to display the python trove classifiers in a somewhat logical/easy to navigate way. The unfortunate part is that this uses curses to display this to the user. Ideally a cross-platform solution can be found to replace this class. Known issues: curses incorrectly handles unicode, might look like crap, YMMV curses uses (y,x) for coordinates because fuck your logic curses support on winderps is sketchy/non-existant """ # Author: Nikolai Tschacher # Date: 02.06.2013 # adapted for use in pypackage by Adam Talsma in May 2015 def __init__(self, classifier, screen, choices=None, current=0): """Create a BoxSelector object. Args: classifier: the Classifier root to find choices inside of screen: the curses screen object choices: a list of values in the classifier that are selected current: integer index of classifiers/values to start on """ self.stdscr = screen choices = choices or [] self.current_selected = current selections = [] if classifier.name != "__root__": selections.append("..") for group in classifier.classifiers: selections.append("[+] {}".format(group.name)) for value in classifier.values: selections.append(" {} {}".format( CHECKMARK if value in choices else " ", value, )) # Element parameters. Change them here. self.TEXTBOX_WIDTH = max(79, max([len(i) for i in selections]) + 2) self.TEXTBOX_HEIGHT = 3 if classifier.name == "__root__": selections.append("Done".center(self.TEXTBOX_WIDTH - 4, " ")) self.L = selections self.PAD_WIDTH = 600 self.PAD_HEIGHT = 10000 def pick(self): """Runs the user selection proccess, returns their choice index.""" self._init_curses() self._create_pad() windows = self._make_textboxes() picked = self._select_textbox(windows) self._end_curses() return picked def _init_curses(self): """Initializes the curses appliation.""" # turn off automatic echoing of keys to the screen curses.noecho() # Enable non-blocking mode. Keys are read without hitting enter curses.cbreak() # Disable the mouse cursor. curses.curs_set(0) self.stdscr.keypad(1) # Enable colorous output. curses.start_color() curses.init_pair(1, curses.COLOR_BLACK, curses.COLOR_GREEN) curses.init_pair(2, curses.COLOR_WHITE, curses.COLOR_BLACK) self.stdscr.bkgd(curses.color_pair(2)) self.stdscr.refresh() def _end_curses(self): """Terminates the curses application.""" curses.nocbreak() self.stdscr.keypad(0) curses.echo() curses.endwin() def _create_pad(self): """Creates a big self.pad to place the textboxes in.""" self.pad = curses.newpad(self.PAD_HEIGHT, self.PAD_WIDTH) self.pad.box() def _make_textboxes(self): """Build the textboxes in the center of the pad.""" # Get the actual screensize. maxy, maxx = self.stdscr.getmaxyx() banner = "{} -- choose python trove classifiers".format(VERSION) self.stdscr.addstr(0, maxx // 2 - len(banner) // 2, banner) windows = [] i = 2 for item in self.L: pad = self.pad.derwin( self.TEXTBOX_HEIGHT, self.TEXTBOX_WIDTH, i, self.PAD_WIDTH // 2 - self.TEXTBOX_WIDTH // 2, ) pad.box() try: pad.addstr(1, 2, item) except UnicodeEncodeError: # curses has fucked unicode support item = item.replace(CHECKMARK, "*") pad.addstr(1, 2, item) windows.append(pad) i += self.TEXTBOX_HEIGHT return windows def _center_view(self, window): """Centers and aligns the view according to the window argument given. Returns: the (y, x) coordinates of the centered window """ # The refresh() and noutrefresh() methods of a self.pad require 6 args # to specify the part of self.pad to be displayed and the location on # the screen to be used for the display. The arguments are pminrow, # pmincol, sminrow, smincol, smaxrow, smaxcol; the p arguments refer # to the top left corner of the self.pad region to be displayed and the # s arguments define a clipping box on the screen within which the # self.pad region is to be displayed. cy, cx = window.getbegyx() maxy, maxx = self.stdscr.getmaxyx() self.pad.refresh(cy, cx, 1, maxx // 2 - self.TEXTBOX_WIDTH // 2, maxy - 1, maxx - 1) return (cy, cx) def _select_textbox(self, windows): """Handles keypresses and user selection.""" # See at the root textbox. topy, topx = self._center_view(windows[0]) last = self.current_selected - 1 top_textbox = windows[0] while True: # Highligth the selected one, the last selected textbox should # become normal again. windows[self.current_selected].bkgd(curses.color_pair(1)) windows[last].bkgd(curses.color_pair(2)) # While the textbox can be displayed on the page with the current # top_textbox, don't alter the view. When this becomes impossible, # center the view to last displayable textbox on the previous view. maxy, maxx = self.stdscr.getmaxyx() cy, cx = windows[self.current_selected].getbegyx() # The current window is to far down. Switch the top textbox. if ((topy + maxy - self.TEXTBOX_HEIGHT) <= cy): top_textbox = windows[self.current_selected] # The current window is to far up. There is a better way though... if topy >= cy + self.TEXTBOX_HEIGHT: top_textbox = windows[self.current_selected] if last != self.current_selected: last = self.current_selected topy, topx = self._center_view(top_textbox) c = self.stdscr.getch() # Vim like KEY_UP/KEY_DOWN with j(DOWN) and k(UP). if c in (106, curses.KEY_DOWN): # 106 == j if self.current_selected >= len(windows) - 1: self.current_selected = 0 # wrap around. else: self.current_selected += 1 elif c in (107, curses.KEY_UP): # 107 == k if self.current_selected <= 0: self.current_selected = len(windows) - 1 # wrap around. else: self.current_selected -= 1 elif c == 113: # 113 = q == Quit without selecting. break # At hitting enter, return the index of the selected list element. elif c == curses.KEY_ENTER or c == 10: return int(self.current_selected) elif c == 27: # esc or alt, try to determine which self.stdscr.nodelay(True) n_seq = self.stdscr.getch() self.stdscr.nodelay(False) if n_seq == -1: # Escape was pressed, check if the top option has .. in it if ".." in str(windows[0].instr(1, 0)): return 0 # backs up a level else: break # exits Classifier = namedtuple("Classifier", ("name", "values", "classifiers")) def _ensure_chain(top_level, sub_categories): """Ensure a chain of Classifiers from top_level through sub_categories.""" def _chain_in(level, item): for sub_class in level.classifiers: if sub_class.name == item: return sub_class else: new_sub = Classifier(item, [], []) level.classifiers.append(new_sub) return new_sub for sub_cat in sub_categories: top_level = _chain_in(top_level, sub_cat) return top_level def read_classifiers(): """Reads the trove file and returns a Classifier representing all.""" with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), "classifiers")) as openc: classifiers = [c.strip() for c in openc.read().splitlines() if c] all_classifiers = [] def _get_classifier(categories): """Find or create the classifier for categories.""" top_level = categories[0] sub_categories = categories[1:] for classifier in all_classifiers: if classifier.name == top_level: top_level = classifier break else: top_level = Classifier(top_level, [], []) all_classifiers.append(top_level) return _ensure_chain(top_level, sub_categories) for clsifier in classifiers: _get_classifier(clsifier.split(" :: ")[:-1]).values.append(clsifier) return Classifier("__root__", [], all_classifiers) def back_it_up(current_level, all_classifiers, recursive=False): """Returns the classifier up a level from current.""" for classifier in all_classifiers.classifiers: if current_level in classifier.classifiers: return classifier for classifier in all_classifiers.classifiers: attempt = back_it_up(current_level, classifier, True) if attempt: return attempt if not recursive: return all_classifiers def choose_classifiers(config): """Get some user input for the classifiers they'd like to use. Returns: list of valid classifier names """ all_classifiers = read_classifiers() root_classifier = all_classifiers old_delay = os.getenv("ESCDELAY") os.environ["ESCDELAY"] = "25" # the default delay is a full second... screen = curses.initscr() choices = getattr(config, "classifiers", []) choice = BoxSelector(root_classifier, screen, choices).pick() while choice is not None: init = 0 if choice == 0 and root_classifier.name != "__root__": root_classifier = back_it_up(root_classifier, all_classifiers) elif choice == 9 and root_classifier.name == "__root__": break # the "done" box from the top level elif choice > len(root_classifier.classifiers): choice_index = (choice - len(root_classifier.classifiers) - int(root_classifier.name != "__root__")) choice_as_str = root_classifier.values[choice_index] if choice_as_str not in choices: choices.append(choice_as_str) else: choices.remove(choice_as_str) init = choice else: choice_index = choice - int(root_classifier.name != "__root__") root_classifier = root_classifier.classifiers[choice_index] choice = BoxSelector(root_classifier, screen, choices, init).pick() if old_delay: os.environ["ESCDELAY"] = old_delay else: os.environ.pop("ESCDELAY") return choices
python
''' Created on 20/01/2014 @author: MMPE See documentation of HTCFile below ''' from __future__ import division from __future__ import unicode_literals from __future__ import print_function from __future__ import absolute_import from builtins import zip from builtins import int from builtins import str from future import standard_library import os standard_library.install_aliases() class HTCDefaults(object): empty_htc = """begin simulation; time_stop 600; solvertype 2; (newmark) begin newmark; deltat 0.02; end newmark; end simulation; ; ;---------------------------------------------------------------------------------------------------------------------------------------------------------------- ; begin wind ; density 1.225 ; wsp 10 ; tint 1; horizontal_input 1 ; 0=false, 1=true windfield_rotations 0 0.0 0.0 ; yaw, tilt, rotation center_pos0 0 0 -30 ; hub heigth shear_format 1 0;0=none,1=constant,2=log,3=power,4=linear turb_format 0 ; 0=none, 1=mann,2=flex tower_shadow_method 0 ; 0=none, 1=potential flow, 2=jet end wind; ; ;---------------------------------------------------------------------------------------------------------------------------------------------------------------- ; ; begin output; filename ./tmp; general time; end output; exit;""" def add_mann_turbulence(self, L=29.4, ae23=1, Gamma=3.9, seed=1001, high_frq_compensation=True, filenames=None, no_grid_points=(16384, 32, 32), box_dimension=(6000, 100, 100), dont_scale=False, std_scaling=None): wind = self.add_section('wind') wind.turb_format = 1 mann = wind.add_section('mann') if 'create_turb_parameters' in mann: mann.create_turb_parameters.values = [L, ae23, Gamma, seed, int(high_frq_compensation)] else: mann.add_line('create_turb_parameters', [L, ae23, Gamma, seed, int(high_frq_compensation)], "L, alfaeps, gamma, seed, highfrq compensation") if filenames is None: import numpy as np dxyz = tuple(np.array(box_dimension) / no_grid_points) from wetb.wind.turbulence import mann_turbulence filenames = ["./turb/" + mann_turbulence.name_format % ((L, ae23, Gamma, high_frq_compensation) + no_grid_points + dxyz + (seed, uvw)) for uvw in ['u', 'v', 'w']] if isinstance(filenames, str): filenames = ["./turb/%s_s%04d%s.bin" % (filenames, seed, c) for c in ['u', 'v', 'w']] for filename, c in zip(filenames, ['u', 'v', 'w']): setattr(mann, 'filename_%s' % c, filename) for c, n, dim in zip(['u', 'v', 'w'], no_grid_points, box_dimension): setattr(mann, 'box_dim_%s' % c, "%d %.4f" % (n, dim / (n))) if dont_scale: mann.dont_scale = 1 else: try: del mann.dont_scale except KeyError: pass if std_scaling is not None: mann.std_scaling = "%f %f %f" % std_scaling else: try: del mann.std_scaling except KeyError: pass def add_turb_export(self, filename="export_%s.turb", samplefrq=None): exp = self.wind.add_section('turb_export', allow_duplicate=True) for uvw in 'uvw': exp.add_line('filename_%s' % uvw, [filename % uvw]) sf = samplefrq or max(1, int(self.wind.mann.box_dim_u[1] / (self.wind.wsp[0] * self.deltat()))) exp.samplefrq = sf if "time" in self.output: exp.time_start = self.output.time[0] else: exp.time_start = 0 exp.nsteps = (self.simulation.time_stop[0] - exp.time_start[0]) / self.deltat() for vw in 'vw': exp.add_line('box_dim_%s' % vw, self.wind.mann['box_dim_%s' % vw].values) def import_dtu_we_controller_input(self, filename): dtu_we_controller = [dll for dll in self.dll if dll.name[0] == 'dtu_we_controller'][0] with open(filename) as fid: lines = fid.readlines() K_r1 = float(lines[1].replace("K = ", '').replace("[Nm/(rad/s)^2]", '')) Kp_r2 = float(lines[4].replace("Kp = ", '').replace("[Nm/(rad/s)]", '')) Ki_r2 = float(lines[5].replace("Ki = ", '').replace("[Nm/rad]", '')) Kp_r3 = float(lines[7].replace("Kp = ", '').replace("[rad/(rad/s)]", '')) Ki_r3 = float(lines[8].replace("Ki = ", '').replace("[rad/rad]", '')) KK = lines[9].split("]") KK1 = float(KK[0].replace("K1 = ", '').replace("[deg", '')) KK2 = float(KK[1].replace(", K2 = ", '').replace("[deg^2", '')) cs = dtu_we_controller.init cs.constant__11.values[1] = "%.6E" % K_r1 cs.constant__12.values[1] = "%.6E" % Kp_r2 cs.constant__13.values[1] = "%.6E" % Ki_r2 cs.constant__16.values[1] = "%.6E" % Kp_r3 cs.constant__17.values[1] = "%.6E" % Ki_r3 cs.constant__21.values[1] = "%.6E" % KK1 cs.constant__22.values[1] = "%.6E" % KK2 def add_hydro(self, mudlevel, mwl, gravity=9.81, rho=1027): wp = self.add_section("hydro").add_section('water_properties') wp.mudlevel = mudlevel wp.mwl = mwl wp.gravity = gravity wp.rho = rho class HTCExtensions(object): def get_shear(self): shear_type, parameter = self.wind.shear_format.values z0 = -self.wind.center_pos0[2] wsp = self.wind.wsp[0] if shear_type == 1: # constant return lambda z: wsp elif shear_type == 3: from wetb.wind.shear import power_shear return power_shear(parameter, z0, wsp) else: raise NotImplementedError
python
from apscheduler.schedulers.blocking import BlockingScheduler from server.sync import sync_blocks, sync_tokens background = BlockingScheduler() background.add_job(sync_tokens, "interval", seconds=30) background.add_job(sync_blocks, "interval", seconds=5) background.start()
python
######################################################## # plot_norms.py # # Matheus J. Castro # # Version 1.2 # # Last Modification: 11/11/2021 (month/day/year) # # https://github.com/MatheusJCastro/spectra_comparator # # Licensed under MIT License # ######################################################## from astropy.io import fits import matplotlib.pyplot as plt import numpy as np import os def open_spec(fl_name): # Subroutine to open the .fits spectrum and read it hdul = fits.open(fl_name) # open the file spec_data = hdul[0].data # get the data spec_header = hdul[0].header # get the header if spec_data.shape != (2048,): # get only the actual spectrum (for multidimensional data) spec_data = spec_data[1][0] # Get the wavelength information from the header # CDELT1 or CD1_1 wl = spec_header['CRVAL1'] + spec_header['CD1_1'] * np.arange(0, len(spec_data)) hdul.close() # close the file return wl, spec_data, spec_header def finish_plot(show=False, save=False, fl1=None, fl2=None): # End and save plot subroutine if save: plt.savefig("Plots_{}_{}".format(fl1, fl2)) if show: plt.show() plt.close() def plot_spectra(spec, name=None): # Subroutine to plot the spectrum plt.plot(spec[0], spec[1], label=name) def main(): # Main subroutine, find and plot the spectra onlynorm = False # change to True to plot only the normalized spectrum files = [] for i in os.listdir(): # search for all non-normalized files in the current directory if "tha_" in i and "norm" not in i and "list" not in i: files.append(i) files_norm = [] for i in os.listdir(): # search for all normalized files in the current directory if "norm_tha_" in i: files_norm.append(i) for i in range(len(files)): # for each tuple of files fig = plt.figure(figsize=(21, 9)) fig.suptitle("Comparison of normalized and non normalized spectrum", fontsize=28) if not onlynorm: # to plot non-normalized files as subplot plt.subplot(121) plt.title("Standard", fontsize=22) plt.xlabel("Pixel", fontsize=20) plt.ylabel("Intensity", fontsize=20) plt.yscale("log") plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.tick_params(axis='y', which='minor', labelsize=16) spec_info = open_spec(files[i]) # open the current spectrum plot_spectra(spec_info) # plot the spectrum plt.grid(True, which="both", linewidth=1) plt.subplot(122) plt.title("Normalized", fontsize=22) plt.xlabel("Pixel", fontsize=20) if onlynorm: plt.ylabel("Intensity", fontsize=20) plt.yscale("log") plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.tick_params(axis='y', which='minor', labelsize=16) spec_info = open_spec(files_norm[i]) # open the current spectrum plot_spectra(spec_info) # plot the spectrum plt.grid(True, which="both", linewidth=1) if files[i][-16:-12] == "3080": # there are two spectra of the 3080A, save both without erasing one finish_plot(save=True, fl1="comp_norm", fl2=files[i][-16:-8]) else: finish_plot(save=True, fl1="comp_norm", fl2=files[i][-16:-12]) if __name__ == '__main__': main()
python
from django.shortcuts import render from django.http import JsonResponse import os import json import time from .api import GoogleAPI from threpose.settings import BASE_DIR from src.caching.caching_gmap import APICaching from decouple import config gapi = GoogleAPI() api_caching = APICaching() PLACE_IMG_PATH = os.path.join(BASE_DIR, 'media', 'places_image') # Place List page def get_next_page_from_token(request): # pragma: no cover """Get places list data by next_page_token.""" # Check request if request.method != 'POST': return JsonResponse({"status": "INVALID METHOD"}) if 'token' not in request.POST: return JsonResponse({"status": "INVALID PAYLOAD"}) # Get next page token from request token = request.POST['token'] context = [] # Check next_page cache if api_caching.get(f'{token[:30]}') is None: for _ in range(6): # Request data for 6 times, if response is not OK # and reached maximum, it will return empty data = json.loads(gapi.next_search_nearby(token)) if data['status'] == "OK": context = restruct_nearby_place(data['results']) break time.sleep(0.2) # write cache file byte_context = json.dumps({"cache": context, "status": "OK"}, indent=3).encode() api_caching.add(f'{token[:30]}', byte_context) if len(context) > 0: return JsonResponse({"places": context, "status": "OK"}) return JsonResponse({"places": context, "status": "NOT FOUND"}) else: # Have cache # load cache context = json.loads(api_caching.get(f'{token[:30]}')) # check place images context = check_downloaded_image(context['cache']) return JsonResponse({"places": context, "status": "OK"}) def place_list(request, *args, **kwargs): # pragma: no cover """Place_list view for list place that nearby the user search input.""" data = request.GET # get lat and lng from url # Our default search type types = ['restaurant', 'zoo', 'tourist_attraction', 'museum', 'cafe', 'aquarium'] lat = data['lat'] lng = data['lng'] # Get place cache if api_caching.get(f'{lat}{lng}searchresult'): # data exists data = json.loads(api_caching.get(f'{lat}{lng}searchresult')) context = data['cache'] token = data['next_page_token'] else: # data not exist context, token = get_new_context(types, lat, lng) context = check_downloaded_image(context) # get all image file name in static/images/place_image api_key = config('FRONTEND_API_KEY') return render(request, "search/place_list.html", {'places': context, 'all_token': token, 'api_key': api_key}) # Helper function def get_new_context(types: list, lat: int, lng: int) -> list: # pragma: no cover """Cache new data and return the new data file Args: types: place type lat, lng: latitude and longitude of user search input for Returns: context: places nearby data token: next page token """ token = {} # This create for keeping data from search nearby tempo_context = [] for type in types: data = json.loads(gapi.search_nearby(lat, lng, type)) if 'next_page_token' in data: token[type] = data['next_page_token'] places = data['results'] restructed_places = restruct_nearby_place(places) tempo_context = add_more_place(tempo_context, restructed_places) # Caching places nearby cache = {'cache': tempo_context, 'next_page_token': token} api_caching.add(f'{lat}{lng}searchresult', json.dumps(cache, indent=3).encode()) # Load data from cache context = json.loads(api_caching.get(f'{lat}{lng}searchresult'))['cache'] return context, token def restruct_nearby_place(places: list) -> list: """Process data for frontend Args: places: A place nearby data from google map api. Returns: context: A place data that place-list page needed. Data struct: [ { # Essential key 'place_name': <name>, 'place_id': <place_id>, 'photo_ref': [<photo_ref], 'types': [], # other... } . . . ] """ context = [] for place in places: init_place = { 'place_name': None, 'place_id': None, 'photo_ref': [], 'types': [], } if 'photos' in place: # Place have an image photo_ref = place['photos'][0]['photo_reference'] init_place['photo_ref'].append(photo_ref) else: # Place don't have an image continue init_place['place_name'] = place['name'] init_place['place_id'] = place['place_id'] init_place['types'] = place['types'] context.append(init_place) return context def check_downloaded_image(context: list) -> list: """Check that image from static/images/place_image that is ready for frontend to display or not Args: context: place nearby data Returns: context: place nearby data with telling the image of each place were downloaded or not """ # Check places_image dir that is exists if os.path.exists(PLACE_IMG_PATH): # Get image file name from static/images/places_image all_img_file = [f for f in os.listdir(PLACE_IMG_PATH) if os.path.isfile(os.path.join(PLACE_IMG_PATH, f))] for place in context: # If place that have photo_ref imply that place have an images if 'photo_ref' in place: place_id = place['place_id'] downloaded_img = f'{place_id}photo.jpeg' in all_img_file have_image = len(place['photo_ref']) == 0 if downloaded_img or have_image: place['downloaded'] = True else: place['downloaded'] = False return context def add_more_place(context: list, new: list): """Append places to context Args: context: total nearby palce data new: new data by next page tokens Returns: context: total nearby place that append new to is's with out duplicated place """ place_exist = [place['place_id'] for place in context] for place in new: # Check that place is exists or not if place['place_id'] in place_exist: continue context.append(place) return context
python
import os import math import random import argparse def generate_entities(num_entities=100): """generate num_entities random entities for synthetic knowledge graph.""" i = 0 entity_list = [] hex_chars = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] l = int(math.log(num_entities, 18)+1) # print l while i < num_entities: entity = "/entity_{}".format(''.join(random.sample(hex_chars, l))) if entity not in entity_list: entity_list.append(entity) i += 1 return entity_list parser = argparse.ArgumentParser() parser.add_argument("--N", type=int) args = parser.parse_args() N = args.N print N entities = generate_entities(N) entity_file = os.path.join(os.getcwd(), "data", "fake-420", "entities.txt") f = open(entity_file, 'w+') with open(entity_file, 'w+') as f: for e in entities: f.write("{}\n".format(e)) f.close()
python
# Simple script for drawing the chi-squared density # from rpy import * def draw(df, start=0, end=10): grid = r.seq(start, end, by=0.1) l = [r.dchisq(x, df) for x in grid] r.par(ann=0, yaxt='n') r.plot(grid, l, type='lines') if __name__ == '__main__': print "<Enter> to quit." while 1: try: df = int(raw_input('Degrees of freedom> ')) draw(df) except ValueError: break
python
""" queue.py location queue implementation for ducky25, decides next location to travel to """ class DestinationQueue: def __init__(self): self.queue = [] self.position = 0 def add_to_queue(self, location): self.queue.append(location) def pop_next_destination(self): if len(self.queue) > self.position: result = self.queue[self.position] self.position = self.position + 1 else: result = -1 return result
python
from logging.config import dictConfig # type: ignore import json from config import CONFIG_DICT done_setup = False def setup_logging(): global done_setup if not done_setup and CONFIG_DICT['LOGGING']: try: logging_config_file_path = CONFIG_DICT['LOGGING_CONFIG_FILE_PATH'] with open(logging_config_file_path, 'rt') as file: config = json.load(file) dictConfig(config) done_setup = True except IOError as e: raise(Exception('Failed to load logging configuration', e))
python
""" MIT License Copyright(c) 2021 Andy Zhou """ from flask import render_template, request, abort from flask.json import jsonify from flask_wtf.csrf import CSRFError from flask_babel import _ def api_err_response(err_code: int, short_message: str, long_message: str = None): if ( request.accept_mimetypes.accept_json and not request.accept_mimetypes.accept_html or request.blueprint == "api_v1" or request.blueprint == "api_v2" or request.blueprint == "api_v3" ): response = {"error": short_message} if long_message: response["message"] = long_message response = jsonify(response) response.status_code = err_code return response return None # explicitly return None def err_handler( err_code: int, short_message: str, long_message: str, error_description: str, template: str = "errors/error.html", ): json_response = api_err_response(err_code, short_message) if json_response is not None: return json_response return ( render_template( template, error_message=long_message, error_description=error_description ), err_code, ) def register_error_handlers(app): # noqa: C901 @app.errorhandler(400) @app.errorhandler(CSRFError) def bad_request(e): return err_handler( 400, "bad request", "400 Bad Request", "You have sent an invalid request. This can either be caused by a false CSRF-token or an invalid value of a form.", ) @app.errorhandler(403) def forbidden(e): return err_handler( 403, "forbidden", "403 Forbidden", "You do not have the permission to access this page. Maybe you are not signed in (viewing posts directly), or you tried to enter a page where you aren't allowed to enter.", ) @app.errorhandler(404) def page_not_found(e): return err_handler( 404, "not found", "404 Not Found", "The page you want is not here or deleted.", "errors/404.html", ) @app.errorhandler(405) def method_not_allowed(e): return err_handler( 405, "method not allowed", "405 Method Not Allowed", "Your request has a wrong method. Maybe you entered some page without a form submission.", ) @app.errorhandler(413) def payload_to_large(e): return err_handler( 413, "request entity too large", "413 Request Entity Too Large", "Things you upload is too large.", ) @app.errorhandler(429) # handle when IP is limited def too_many_requests(e): return err_handler( 429, "too many requests", "429 Too Many Requests", "You see 429 because you entered a page too many times and triggered our self-protection program. Usually you can wait for a while, in some cases it takes a day.", ) @app.errorhandler(500) def internal_server_error(e): return err_handler( 500, "internal server error", "500 Internal Server Error", "The server went wrong and returned 500. You can contact them to report this 500 error.", )
python
from tidyms import lcms from tidyms import utils import numpy as np import pytest from itertools import product mz_list = [200, 250, 300, 420, 450] @pytest.fixture def simulated_experiment(): mz = np.array(mz_list) rt = np.linspace(0, 100, 100) # simulated features params mz_params = np.array([mz_list, [3, 10, 5, 31, 22]]) mz_params = mz_params.T rt_params = np.array([[30, 40, 60, 80, 80], [1, 2, 2, 3, 3], [1, 1, 1, 1, 1]]) rt_params = rt_params.T noise_level = 0.1 sim_exp = utils.SimulatedExperiment(mz, rt, mz_params, rt_params, noise=noise_level, mode="centroid") return sim_exp # parameters of make_chromatograms are tested in the test_validation module def test_make_chromatograms(simulated_experiment): # test that the chromatograms generated are valid # create chromatograms n_sp = simulated_experiment.getNrSpectra() n_mz = simulated_experiment.mz_params.shape[0] rt = np.zeros(n_sp) chromatogram = np.zeros((n_mz, n_sp)) for scan in range(n_sp): sp = simulated_experiment.getSpectrum(scan) rt[scan] = sp.getRT() _, spint = sp.get_peaks() chromatogram[:, scan] = spint expected_chromatograms = [lcms.Chromatogram(rt, x) for x in chromatogram] test_chromatograms = lcms.make_chromatograms(simulated_experiment, mz_list) assert len(test_chromatograms) == len(expected_chromatograms) for ec, tc in zip(expected_chromatograms, test_chromatograms): assert np.array_equal(ec.rt, tc.rt) assert np.array_equal(ec.spint, tc.spint) def test_make_chromatograms_accumulator_mean(simulated_experiment): lcms.make_chromatograms(simulated_experiment, mz_list, accumulator="mean") assert True def test_make_chromatograms_start(simulated_experiment): n_sp = simulated_experiment.getNrSpectra() start = 10 chromatogram_length = n_sp - start chromatograms = lcms.make_chromatograms(simulated_experiment, mz_list, start=start) for c in chromatograms: assert c.rt.size == chromatogram_length assert c.rt[0] == simulated_experiment.getSpectrum(start).getRT() def test_make_chromatograms_end(simulated_experiment): end = 90 chromatograms = lcms.make_chromatograms(simulated_experiment, mz_list, end=end) for c in chromatograms: assert c.rt.size == end assert c.rt[-1] == simulated_experiment.getSpectrum(end - 1).getRT() def test_make_chromatograms_outside_range_mz(simulated_experiment): # the total intensity of the chromatogram should be equal to zero chromatograms = lcms.make_chromatograms(simulated_experiment, [550]) assert np.isclose(chromatograms[0].spint.sum(), 0) # def test_accumulate_spectra(simulated_experiment): # lcms.accumulate_spectra_profile(simulated_experiment, start=10, end=20) # assert True # # # def test_accumulate_spectra_subtract(simulated_experiment): # lcms.accumulate_spectra_profile(simulated_experiment, start=10, end=20, # subtract_left=5, subtract_right=25) # assert True # # # def test_get_roi_params(): # func_params = [("uplc", "qtof"), ("uplc", "orbitrap"), ("hplc", "qtof"), # ("hplc", "orbitrap")] # n_sp = 100 # dummy value for the validator # for separation, instrument in func_params: # params = lcms.get_roi_params(separation, instrument) # validation.validate_make_roi_params(n_sp, params) # assert True # # # def test_get_roi_params_bad_separation(): # with pytest.raises(ValueError): # lcms.get_roi_params("bad-value", "qtof") # # # def test_get_roi_params_bad_instrument(): # with pytest.raises(ValueError): # lcms.get_roi_params("uplc", "bad-value") # # # # Test Chromatogram object # @pytest.fixture def chromatogram_data(): rt = np.arange(200) spint = utils.gauss(rt, 50, 2, 100) spint += np.random.normal(size=rt.size, scale=1.0) return rt, spint def test_chromatogram_creation(chromatogram_data): # test building a chromatogram with default mode rt, spint = chromatogram_data chromatogram = lcms.Chromatogram(rt, spint) assert chromatogram.mode == "uplc" def test_chromatogram_creation_with_mode(chromatogram_data): rt, spint = chromatogram_data chromatogram = lcms.Chromatogram(rt, spint, mode="hplc") assert chromatogram.mode == "hplc" def test_chromatogram_creation_invalid_mode(chromatogram_data): rt, spint = chromatogram_data with pytest.raises(ValueError): lcms.Chromatogram(rt, spint, mode="invalid-mode") def test_chromatogram_find_peaks(chromatogram_data): chromatogram = lcms.Chromatogram(*chromatogram_data) chromatogram.find_peaks() assert len(chromatogram.peaks) == 1 # Test MSSPectrum @pytest.fixture def ms_data(): mz = np.linspace(100, 110, 1000) spint = utils.gauss(mz, 105, 0.005, 100) spint += + np.random.normal(size=mz.size, scale=1.0) return mz, spint def test_ms_spectrum_creation(ms_data): sp = lcms.MSSpectrum(*ms_data) assert sp.instrument == "qtof" def test_ms_spectrum_creation_with_instrument(ms_data): instrument = "orbitrap" sp = lcms.MSSpectrum(*ms_data, instrument=instrument) assert sp.instrument == instrument def test_ms_spectrum_creation_invalid_instrument(ms_data): with pytest.raises(ValueError): instrument = "invalid-mode" lcms.MSSpectrum(*ms_data, instrument=instrument) def test_find_centroids_qtof(ms_data): sp = lcms.MSSpectrum(*ms_data) # the algorithm is tested on test_peaks.py sp.find_centroids() assert True # Test ROI @pytest.fixture def roi_data(): rt = np.arange(200) spint = utils.gauss(rt, 50, 2, 100) mz = np.random.normal(loc=150.0, scale=0.001, size=spint.size) # add some nan values nan_index = [0, 50, 100, 199] spint[nan_index] = np.nan mz[nan_index] = np.nan return rt, mz, spint def test_roi_creation(roi_data): rt, mz, spint = roi_data lcms.Roi(spint, mz, rt, rt) assert True def test_fill_nan(roi_data): rt, mz, spint = roi_data roi = lcms.Roi(spint, mz, rt, rt) roi.fill_nan() has_nan = np.any(np.isnan(roi.mz) & np.isnan(roi.spint)) assert not has_nan # roi making tests def test_match_mz_no_multiple_matches(): tolerance = 2 mz1 = np.array([50, 75, 100, 125, 150]) mz2 = np.array([40, 51, 78, 91, 99, 130, 150]) sp2 = np.array([100] * mz2.size) # expected values for match/no match indices mz1_match_index = np.array([0, 2, 4], dtype=int) mz2_match_index = np.array([1, 4, 6], dtype=int) mz2_no_match_index = np.array([0, 2, 3, 5], dtype=int) mode = "closest" test_mz1_index, mz2_match, sp2_match, mz2_no_match, sp2_no_match = \ lcms._match_mz(mz1, mz2, sp2, tolerance, mode, np.mean, np.mean) # test match index assert np.array_equal(mz1_match_index, test_mz1_index) # test match mz and sp values assert np.array_equal(mz2[mz2_match_index], mz2_match) assert np.array_equal(sp2[mz2_match_index], sp2_match) # test no match mz and sp values assert np.array_equal(mz2[mz2_no_match_index], mz2_no_match) assert np.array_equal(sp2[mz2_no_match_index], sp2_no_match) def test_match_mz_no_matches(): tolerance = 2 mz1 = np.array([50, 75, 100, 125, 150]) mz2 = np.array([40, 53, 78, 91, 97, 130, 154]) sp2 = np.array([100] * mz2.size) # expected values for match/no match indices mz1_match_index = np.array([], dtype=int) mz2_match_index = np.array([], dtype=int) mz2_no_match_index = np.array([0, 1, 2, 3, 4, 5, 6], dtype=int) mode = "closest" test_mz1_index, mz2_match, sp2_match, mz2_no_match, sp2_no_match = \ lcms._match_mz(mz1, mz2, sp2, tolerance, mode, np.mean, np.mean) # test match index assert np.array_equal(mz1_match_index, test_mz1_index) # test match mz and sp values assert np.array_equal(mz2[mz2_match_index], mz2_match) assert np.array_equal(sp2[mz2_match_index], sp2_match) # test no match mz and sp values assert np.array_equal(mz2[mz2_no_match_index], mz2_no_match) assert np.array_equal(sp2[mz2_no_match_index], sp2_no_match) def test_match_mz_all_match(): tolerance = 2 mz1 = np.array([50, 75, 100, 125, 150]) mz2 = np.array([51, 77, 99, 126, 150]) sp2 = np.array([100] * mz2.size) # expected values for match/no match indices mz1_match_index = np.array([0, 1, 2, 3, 4], dtype=int) mz2_match_index = np.array([0, 1, 2, 3, 4], dtype=int) mz2_no_match_index = np.array([], dtype=int) mode = "closest" test_mz1_index, mz2_match, sp2_match, mz2_no_match, sp2_no_match = \ lcms._match_mz(mz1, mz2, sp2, tolerance, mode, np.mean, np.mean) # test match index assert np.array_equal(mz1_match_index, test_mz1_index) # test match mz and sp values assert np.array_equal(mz2[mz2_match_index], mz2_match) assert np.array_equal(sp2[mz2_match_index], sp2_match) # test no match mz and sp values assert np.array_equal(mz2[mz2_no_match_index], mz2_no_match) assert np.array_equal(sp2[mz2_no_match_index], sp2_no_match) def test_match_mz_multiple_matches_mode_closest(): tolerance = 2 mz1 = np.array([50, 75, 100, 125, 150]) mz2 = np.array([49, 51, 78, 99, 100, 101, 126, 150, 151]) sp2 = np.array([100] * mz2.size) # expected values for match/no match indices # in closest mode, argmin is used to select the closest value. If more # than one value has the same difference, the first one in the array is # going to be selected. mz1_match_index = np.array([0, 2, 3, 4], dtype=int) mz2_match_index = np.array([0, 4, 6, 7], dtype=int) mz2_no_match_index = np.array([1, 2, 3, 5, 8], dtype=int) mode = "closest" test_mz1_index, mz2_match, sp2_match, mz2_no_match, sp2_no_match = \ lcms._match_mz(mz1, mz2, sp2, tolerance, mode, np.mean, np.mean) # test match index assert np.array_equal(mz1_match_index, test_mz1_index) # test match mz and sp values assert np.array_equal(mz2[mz2_match_index], mz2_match) assert np.array_equal(sp2[mz2_match_index], sp2_match) # test no match mz and sp values assert np.array_equal(mz2[mz2_no_match_index], mz2_no_match) assert np.array_equal(sp2[mz2_no_match_index], sp2_no_match) def test_match_mz_multiple_matches_mode_reduce(): tolerance = 2 mz1 = np.array([50, 75, 100, 125, 150], dtype=float) mz2 = np.array([49, 51, 78, 99, 100, 101, 126, 150, 151], dtype=float) sp2 = np.array([100] * mz2.size, dtype=float) # expected values for match/no match indices # in closest mode, argmin is used to select the closest value. If more # than one value has the same difference, the first one in the array is # going to be selected. mz1_match_index = np.array([0, 2, 3, 4], dtype=int) mz2_match_index = np.array([0, 1, 3, 4, 5, 6, 7, 8], dtype=int) mz2_no_match_index = np.array([2], dtype=int) expected_mz2_match = [50.0, 100.0, 126.0, 150.5] expected_sp2_match = [200, 300, 100, 200] mode = "reduce" test_mz1_index, mz2_match, sp2_match, mz2_no_match, sp2_no_match = \ lcms._match_mz(mz1, mz2, sp2, tolerance, mode, np.mean, np.sum) # test match index assert np.array_equal(mz1_match_index, test_mz1_index) # test match mz and sp values assert np.allclose(mz2_match, expected_mz2_match) assert np.allclose(sp2_match, expected_sp2_match) # test no match mz and sp values assert np.array_equal(mz2[mz2_no_match_index], mz2_no_match) assert np.array_equal(sp2[mz2_no_match_index], sp2_no_match) def test_match_mz_invalid_mode(): tolerance = 2 mz1 = np.array([50, 75, 100, 125, 150]) mz2 = np.array([49, 51, 78, 99, 100, 101, 126, 150, 151]) sp2 = np.array([100] * mz2.size) # expected values for match/no match indices # in closest mode, argmin is used to select the closest value. If more # than one value has the same difference, the first one in the array is # going to be selected. mz1_match_index = np.array([0, 2, 3, 4], dtype=int) mz2_match_index = np.array([0, 4, 6, 7], dtype=int) mz2_no_match_index = np.array([1, 2, 3, 5, 8], dtype=int) mode = "invalid-mode" with pytest.raises(ValueError): test_mz1_index, mz2_match, sp2_match, mz2_no_match, sp2_no_match = \ lcms._match_mz(mz1, mz2, sp2, tolerance, mode, np.mean, np.mean) def test_make_roi(simulated_experiment): roi_list = lcms.make_roi(simulated_experiment, tolerance=0.005, max_missing=0, min_length=0, min_intensity=0, multiple_match="reduce") assert len(roi_list) == simulated_experiment.mz_params.shape[0] def test_make_roi_targeted_mz(simulated_experiment): # the first three m/z values generated by simulated experiment are used targeted_mz = simulated_experiment.mz_params[:, 0][:3] roi_list = lcms.make_roi(simulated_experiment, tolerance=0.005, max_missing=0, min_length=0, min_intensity=0, multiple_match="reduce", targeted_mz=targeted_mz) assert len(roi_list) == targeted_mz.size def test_make_roi_min_intensity(simulated_experiment): min_intensity = 15 roi_list = lcms.make_roi(simulated_experiment, tolerance=0.005, max_missing=0, min_length=0, min_intensity=min_intensity, multiple_match="reduce") # only two roi should have intensities greater than 15 assert len(roi_list) == 2 def test_make_roi_start(simulated_experiment): start = 10 roi_list = lcms.make_roi(simulated_experiment, tolerance=0.005, max_missing=0, min_length=0, min_intensity=0, multiple_match="reduce", start=start) n_sp = simulated_experiment.getNrSpectra() for r in roi_list: assert r.mz.size == (n_sp - start) def test_make_roi_end(simulated_experiment): end = 10 roi_list = lcms.make_roi(simulated_experiment, tolerance=0.005, max_missing=0, min_length=0, min_intensity=0, multiple_match="reduce", end=end) n_sp = simulated_experiment.getNrSpectra() for r in roi_list: assert r.mz.size == end def test_make_roi_multiple_match_closest(simulated_experiment): roi_list = lcms.make_roi(simulated_experiment, tolerance=0.005, max_missing=0, min_length=0, min_intensity=0, multiple_match="closest") assert len(roi_list) == simulated_experiment.mz_params.shape[0] def test_make_roi_multiple_match_reduce_merge(simulated_experiment): # set a tolerance such that two mz values are merged # test is done in targeted mode to force a multiple match by removing # one of the mz values targeted_mz = simulated_experiment.mz_params[:, 0] targeted_mz = np.delete(targeted_mz, 3) tolerance = 31 roi_list = lcms.make_roi(simulated_experiment, tolerance=tolerance, max_missing=0, min_length=0, min_intensity=0, multiple_match="reduce", targeted_mz=targeted_mz) assert len(roi_list) == (simulated_experiment.mz_params.shape[0] - 1) def test_make_roi_multiple_match_reduce_custom_mz_reduce(simulated_experiment): roi_list = lcms.make_roi(simulated_experiment, tolerance=0.005, max_missing=0, min_length=0, min_intensity=0, multiple_match="reduce", mz_reduce=np.median) assert len(roi_list) == simulated_experiment.mz_params.shape[0] def test_make_roi_multiple_match_reduce_custom_sp_reduce(simulated_experiment): sp_reduce = lambda x: 1 roi_list = lcms.make_roi(simulated_experiment, tolerance=0.005, max_missing=0, min_length=0, min_intensity=0, multiple_match="reduce", sp_reduce=sp_reduce) assert len(roi_list) == simulated_experiment.mz_params.shape[0] def test_make_roi_invalid_multiple_match(simulated_experiment): with pytest.raises(ValueError): lcms.make_roi(simulated_experiment, tolerance=0.005, max_missing=0, min_length=0, min_intensity=0, multiple_match="invalid-value") # test accumulate spectra def test_accumulate_spectra_centroid(simulated_experiment): n_sp = simulated_experiment.getNrSpectra() sp = lcms.accumulate_spectra_centroid(simulated_experiment, 0, n_sp - 1, tolerance=0.005) assert sp.mz.size == simulated_experiment.mz_params.shape[0] def test_accumulate_spectra_centroid_subtract_left(simulated_experiment): sp = lcms.accumulate_spectra_centroid(simulated_experiment, 70, 90, subtract_left=20, tolerance=0.005) # only two peaks at rt 80 should be present assert sp.mz.size == 2 # test default parameter functions def test_get_lc_filter_params_uplc(): lcms.get_lc_filter_peak_params("uplc") assert True def test_get_lc_filter_params_hplc(): lcms.get_lc_filter_peak_params("hplc") assert True def test_get_lc_filter_params_invalid_mode(): with pytest.raises(ValueError): lcms.get_lc_filter_peak_params("invalid-mode") @pytest.mark.parametrize("separation,instrument", list(product(["hplc", "uplc"], ["qtof", "orbitrap"]))) def test_get_roi_params(separation, instrument): lcms.get_roi_params(separation, instrument) assert True def test_get_roi_params_bad_separation(): with pytest.raises(ValueError): lcms.get_roi_params("invalid-separation", "qtof") def test_get_roi_params_bad_ms_mode(): with pytest.raises(ValueError): lcms.get_roi_params("uplc", "invalid-ms-mode")
python
from flask_login import UserMixin from datetime import datetime from sqlalchemy import ForeignKey from sqlalchemy.orm import backref from app.extensions import db ACCESS = { 'guest': 0, 'user': 1, 'admin': 2 } class User(UserMixin, db.Model): id = db.Column(db.Integer, primary_key=True, unique=True) username = db.Column(db.String(64), index=True, unique=True) email = db.Column(db.String(100), index=True, unique=True) password = db.Column(db.String(50)) profile = db.relationship('Profile', back_populates='user', cascade='all,delete', uselist=False) fantasy_team = db.relationship('FantasyTeam', back_populates='user', cascade='all,delete', uselist=False) is_admin = db.Column(db.Boolean, default=0) def __repr__(self): return '<User {}>'.format(self.username) class Profile(db.Model): id = db.Column(db.Integer, primary_key=True) first_name = db.Column(db.String(255)) last_name = db.Column(db.String(255)) timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) user = db.relationship('User', back_populates='profile') def __repr__(self): return '<Profile {}>'.format(self.user_id, self.first_name, self.last_name) # FANTASYTEAM and PLAYER relationship Many to Many fantasy_teams_players = db.Table('association', db.Column('fantasy_team_id', db.Integer, ForeignKey('fantasy_team.id')), db.Column('player_id', db.Integer, ForeignKey('player.id')) ) class FantasyTeam(db.Model): __tablename__ = 'fantasy_team' id = db.Column(db.Integer, primary_key=True) players = db.relationship("Player", secondary=fantasy_teams_players, back_populates="fantasy_teams") name = db.Column(db.String(255)) # USER relationship 1 to 1 user_id = db.Column(db.Integer, db.ForeignKey('user.id')) user = db.relationship('User', back_populates='fantasy_team') overall_score = db.Column(db.Integer) # ROUNDSCORE relationship (1) to Many round_scores = db.relationship('RoundScore', back_populates='fantasy_team', cascade='all,delete', uselist=False) timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow) def __repr__(self): return '<FantasyTeam {}>'.format(self.name) class Player(db.Model): id = db.Column(db.Integer, primary_key=True) fantasy_teams = db.relationship("FantasyTeam", secondary=fantasy_teams_players, back_populates="players") # GOAL relationship (1) to Many goals = db.relationship("Goal", back_populates="player", cascade='all,delete') # TEAM relationship 1 to (Many) team_id = db.Column(db.Integer, ForeignKey('team.id')) team = db.relationship("Team", back_populates="players") number = db.Column(db.Integer) first_name = db.Column(db.String(255)) last_name = db.Column(db.String(255)) nickname = db.Column(db.String(255)) timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow) def __repr__(self): return '<Player {}>'.format(self.id, self.number) class Goal(db.Model): id = db.Column(db.Integer, primary_key=True) # PLAYER relationship 1 to (Many) player_id = db.Column(db.Integer, ForeignKey('player.id')) player = db.relationship("Player", back_populates="goals") # MATCH relationship 1 to (Many) match_id = db.Column(db.Integer, ForeignKey('match.id')) match = db.relationship("Match", back_populates="goals") timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow) def __repr__(self): return '<Goal {}>'.format(self.fantasy_team_id) class Match(db.Model): id = db.Column(db.Integer, primary_key=True) match_id = db.Column(db.Integer) # GOAL relationship (1) to Many goals = db.relationship("Goal", back_populates="match", cascade='all,delete') # TEAM relationship (1) to Many # TEAM relationship (1) to Many team1_id = db.Column(db.Integer, ForeignKey("team.id")) team2_id = db.Column(db.Integer, ForeignKey("team.id")) team1 = db.relationship("Team", foreign_keys="Match.team1_id", back_populates="matches1") team2 = db.relationship("Team", foreign_keys="Match.team2_id", back_populates="matches2") timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow) def __repr__(self): return '<Match {}>'.format(self.id) class Team(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(255)) # PLAYER relationship (1) to Many players = db.relationship("Player", back_populates="team", cascade='all,delete') # MATCH relationship 1 to (Many) matches1 = db.relationship("Match", foreign_keys="Match.team1_id", back_populates="team1") matches2 = db.relationship("Match", foreign_keys="Match.team2_id", back_populates="team2") timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow) def __repr__(self): return '<Team {}>'.format(self.id, self.name) class RoundScore(db.Model): __tablename__ = 'round_score' id = db.Column(db.Integer, primary_key=True) number = db.Column(db.Integer) name = db.Column(db.String(255)) round_score = db.Column(db.Integer) # FANTASYTEAM relationship 1 to (Many) fantasy_team_id = db.Column(db.Integer, db.ForeignKey('fantasy_team.id')) fantasy_team = db.relationship('FantasyTeam', back_populates='round_scores') timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow) def __repr__(self): return '<RoundScore {}>'.format(self.fantasy_team_id)
python
# encoding: utf-8 """ Enumerations related to tables in WordprocessingML files """ from __future__ import ( absolute_import, division, print_function, unicode_literals ) from docxx.enum.base import ( alias, Enumeration, EnumMember, XmlEnumeration, XmlMappedEnumMember ) @alias('WD_ALIGN_VERTICAL') class WD_CELL_VERTICAL_ALIGNMENT(XmlEnumeration): """ alias: **WD_ALIGN_VERTICAL** Specifies the vertical alignment of text in one or more cells of a table. Example:: from docxx.enum.table import WD_ALIGN_VERTICAL table = document.add_table(3, 3) table.cell(0, 0).vertical_alignment = WD_ALIGN_VERTICAL.BOTTOM """ __ms_name__ = 'WdCellVerticalAlignment' __url__ = 'https://msdn.microsoft.com/en-us/library/office/ff193345.aspx' __members__ = ( XmlMappedEnumMember( 'TOP', 0, 'top', 'Text is aligned to the top border of the cell.' ), XmlMappedEnumMember( 'CENTER', 1, 'center', 'Text is aligned to the center of the cel' 'l.' ), XmlMappedEnumMember( 'BOTTOM', 3, 'bottom', 'Text is aligned to the bottom border of ' 'the cell.' ), XmlMappedEnumMember( 'BOTH', 101, 'both', 'This is an option in the OpenXml spec, but' ' not in Word itself. It\'s not clear what Word behavior this se' 'tting produces. If you find out please let us know and we\'ll u' 'pdate this documentation. Otherwise, probably best to avoid thi' 's option.' ), ) @alias('WD_ROW_HEIGHT') class WD_ROW_HEIGHT_RULE(XmlEnumeration): """ alias: **WD_ROW_HEIGHT** Specifies the rule for determining the height of a table row Example:: from docxx.enum.table import WD_ROW_HEIGHT_RULE table = document.add_table(3, 3) table.rows[0].height_rule = WD_ROW_HEIGHT_RULE.EXACTLY """ __ms_name__ = "WdRowHeightRule" __url__ = 'https://msdn.microsoft.com/en-us/library/office/ff193620.aspx' __members__ = ( XmlMappedEnumMember( 'AUTO', 0, 'auto', 'The row height is adjusted to accommodate th' 'e tallest value in the row.' ), XmlMappedEnumMember( 'AT_LEAST', 1, 'atLeast', 'The row height is at least a minimum ' 'specified value.' ), XmlMappedEnumMember( 'EXACTLY', 2, 'exact', 'The row height is an exact value.' ), ) class WD_TABLE_ALIGNMENT(XmlEnumeration): """ Specifies table justification type. Example:: from docxx.enum.table import WD_TABLE_ALIGNMENT table = document.add_table(3, 3) table.alignment = WD_TABLE_ALIGNMENT.CENTER """ __ms_name__ = 'WdRowAlignment' __url__ = ' http://office.microsoft.com/en-us/word-help/HV080607259.aspx' __members__ = ( XmlMappedEnumMember( 'LEFT', 0, 'left', 'Left-aligned' ), XmlMappedEnumMember( 'CENTER', 1, 'center', 'Center-aligned.' ), XmlMappedEnumMember( 'RIGHT', 2, 'right', 'Right-aligned.' ), ) class WD_TABLE_DIRECTION(Enumeration): """ Specifies the direction in which an application orders cells in the specified table or row. Example:: from docxx.enum.table import WD_TABLE_DIRECTION table = document.add_table(3, 3) table.direction = WD_TABLE_DIRECTION.RTL """ __ms_name__ = 'WdTableDirection' __url__ = ' http://msdn.microsoft.com/en-us/library/ff835141.aspx' __members__ = ( EnumMember( 'LTR', 0, 'The table or row is arranged with the first column ' 'in the leftmost position.' ), EnumMember( 'RTL', 1, 'The table or row is arranged with the first column ' 'in the rightmost position.' ), )
python
# Copyright 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from novaclient import api_versions from novaclient.tests.unit import utils from novaclient.tests.unit.v2 import fakes class QuotaClassSetsTest(utils.TestCase): def setUp(self): super(QuotaClassSetsTest, self).setUp() self.cs = fakes.FakeClient(api_versions.APIVersion("2.0")) def test_class_quotas_get(self): class_name = 'test' q = self.cs.quota_classes.get(class_name) self.assert_request_id(q, fakes.FAKE_REQUEST_ID_LIST) self.cs.assert_called('GET', '/os-quota-class-sets/%s' % class_name) return q def test_update_quota(self): q = self.cs.quota_classes.get('test') self.assert_request_id(q, fakes.FAKE_REQUEST_ID_LIST) q.update(cores=2) self.cs.assert_called('PUT', '/os-quota-class-sets/test') return q def test_refresh_quota(self): q = self.cs.quota_classes.get('test') q2 = self.cs.quota_classes.get('test') self.assertEqual(q.cores, q2.cores) q2.cores = 0 self.assertNotEqual(q.cores, q2.cores) q2.get() self.assertEqual(q.cores, q2.cores) class QuotaClassSetsTest2_50(QuotaClassSetsTest): """Tests the quota classes API binding using the 2.50 microversion.""" api_version = '2.50' invalid_resources = ['floating_ips', 'fixed_ips', 'networks', 'security_groups', 'security_group_rules'] def setUp(self): super(QuotaClassSetsTest2_50, self).setUp() self.cs = fakes.FakeClient(api_versions.APIVersion(self.api_version)) def test_class_quotas_get(self): """Tests that network-related resources aren't in a 2.50 response and server group related resources are in the response. """ q = super(QuotaClassSetsTest2_50, self).test_class_quotas_get() for invalid_resource in self.invalid_resources: self.assertFalse(hasattr(q, invalid_resource), '%s should not be in %s' % (invalid_resource, q)) # Also make sure server_groups and server_group_members are in the # response. for valid_resource in ('server_groups', 'server_group_members'): self.assertTrue(hasattr(q, valid_resource), '%s should be in %s' % (invalid_resource, q)) def test_update_quota(self): """Tests that network-related resources aren't in a 2.50 response and server group related resources are in the response. """ q = super(QuotaClassSetsTest2_50, self).test_update_quota() for invalid_resource in self.invalid_resources: self.assertFalse(hasattr(q, invalid_resource), '%s should not be in %s' % (invalid_resource, q)) # Also make sure server_groups and server_group_members are in the # response. for valid_resource in ('server_groups', 'server_group_members'): self.assertTrue(hasattr(q, valid_resource), '%s should be in %s' % (invalid_resource, q)) def test_update_quota_invalid_resources(self): """Tests trying to update quota class values for invalid resources. This will fail with TypeError because the network-related resource kwargs aren't defined. """ q = self.cs.quota_classes.get('test') self.assertRaises(TypeError, q.update, floating_ips=1) self.assertRaises(TypeError, q.update, fixed_ips=1) self.assertRaises(TypeError, q.update, security_groups=1) self.assertRaises(TypeError, q.update, security_group_rules=1) self.assertRaises(TypeError, q.update, networks=1) return q class QuotaClassSetsTest2_57(QuotaClassSetsTest2_50): """Tests the quota classes API binding using the 2.57 microversion.""" api_version = '2.57' def setUp(self): super(QuotaClassSetsTest2_57, self).setUp() self.invalid_resources.extend(['injected_files', 'injected_file_content_bytes', 'injected_file_path_bytes']) def test_update_quota_invalid_resources(self): """Tests trying to update quota class values for invalid resources. This will fail with TypeError because the file-related resource kwargs aren't defined. """ q = super( QuotaClassSetsTest2_57, self).test_update_quota_invalid_resources() self.assertRaises(TypeError, q.update, injected_files=1) self.assertRaises(TypeError, q.update, injected_file_content_bytes=1) self.assertRaises(TypeError, q.update, injected_file_path_bytes=1)
python
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc import nlm_pb2 as nlm__pb2 class NLMStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.StrRecall = channel.unary_unary( '/nlm.NLM/StrRecall', request_serializer=nlm__pb2.RawString.SerializeToString, response_deserializer=nlm__pb2.GraphOutput.FromString, ) self.NLURecall = channel.unary_unary( '/nlm.NLM/NLURecall', request_serializer=nlm__pb2.NLMInput.SerializeToString, response_deserializer=nlm__pb2.GraphOutput.FromString, ) self.NodeRecall = channel.unary_unary( '/nlm.NLM/NodeRecall', request_serializer=nlm__pb2.GraphNode.SerializeToString, response_deserializer=nlm__pb2.GraphNode.FromString, ) self.RelationRecall = channel.unary_unary( '/nlm.NLM/RelationRecall', request_serializer=nlm__pb2.GraphRelation.SerializeToString, response_deserializer=nlm__pb2.GraphRelation.FromString, ) class NLMServicer(object): # missing associated documentation comment in .proto file pass def StrRecall(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def NLURecall(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def NodeRecall(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RelationRecall(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_NLMServicer_to_server(servicer, server): rpc_method_handlers = { 'StrRecall': grpc.unary_unary_rpc_method_handler( servicer.StrRecall, request_deserializer=nlm__pb2.RawString.FromString, response_serializer=nlm__pb2.GraphOutput.SerializeToString, ), 'NLURecall': grpc.unary_unary_rpc_method_handler( servicer.NLURecall, request_deserializer=nlm__pb2.NLMInput.FromString, response_serializer=nlm__pb2.GraphOutput.SerializeToString, ), 'NodeRecall': grpc.unary_unary_rpc_method_handler( servicer.NodeRecall, request_deserializer=nlm__pb2.GraphNode.FromString, response_serializer=nlm__pb2.GraphNode.SerializeToString, ), 'RelationRecall': grpc.unary_unary_rpc_method_handler( servicer.RelationRecall, request_deserializer=nlm__pb2.GraphRelation.FromString, response_serializer=nlm__pb2.GraphRelation.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'nlm.NLM', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
python
# -*- coding: utf-8 -*- # Copyright (c) 2020, PibiCo and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document import datetime, time from frappe.utils import cstr from frappe import msgprint, _ from frappe.core.doctype.sms_settings.sms_settings import send_sms from atvirtual.atvirtual.doctype.telegram_settings.telegram_settings import send_telegram import paho.mqtt.client as mqtt import os, ssl, urllib, json from frappe.utils.password import get_decrypted_password class pibiMessage(Document): def validate(self): if self.message_type == "IoT" and not self.std_message: frappe.throw(_("Please fill the message content")) if self.message_type == "IoT": if not self.all_places and not self.all_roles: if len(self.location_table) == 0 and len(self.device_table) == 0 and len(self.recipient_table) == 0 and len(self.participant_table) == 0: frappe.throw(_("Please choose any destination recipient")) def before_save(self): if self.message_type == "IoT": std_message = frappe.get_doc("Standard Message", self.std_message) def before_submit(self): ## Prepare recipients list sms_list = [] telegram_list = [] mqtt_list = [] email_list = [] str_attach = '' recipients = [] str_message = "" ## Send E-mails if self.message_type == "E-mail": ## Read message body str_message = self.email_body ## Read Recipients Table recipient_list = self.recipient_item if len(recipient_list) > 0: for item in recipient_list: recipients.append(item.participant_email_id) ## Read and prepare message with Attachments if len(self.message_item) > 0: for idx, row in enumerate(self.message_item): if "http" in row.attachment: str_attach = str_attach + '<a href="' + row.attachment + '">Anexo ' +str(idx+1) + ': ' + row.description + '</a><br>' else: str_attach = str_attach + '<a href="' + frappe.utils.get_url() + urllib.parse.quote(row.attachment) + '">Anexo ' +str(idx+1) + ': ' + row.description + '</a><br>' str_message = str_message + "<p>Con archivos anexos:</p><p>" + str_attach + "</p>" ## Finally Send message by Email email_args = { "sender": self.from_email_account, "recipients": recipients, "message": str_message, "subject": self.subject, "reference_doctype": self.doctype, "reference_name": self.name } frappe.sendmail(**email_args) ## Send IoT messages if self.message_type == "IoT": ## Read main message dict_message = json.loads(self.message_text) if "message" in dict_message: str_message = dict_message["message"]["text"] ## Read and prepare message with attachments if len(self.message_item) > 0 and str_message != '': for idx, row in enumerate(self.message_item): if "http" in row.attachment: str_attach = str_attach + 'Anexo ' + str(idx+1) + ': ' + row.description + ' @ ' + row.attachment + '\n' else: str_attach = str_attach + 'Anexo ' + str(idx+1) + ': ' + row.description + ' @ ' + frappe.utils.get_url() + urllib.parse.quote(row.attachment) + '\n' str_message = str_message + "\nCon archivos anexos:\n" + str_attach dict_message["message"]["text"] = str_message ## Prepare location recipients if len(self.location_table) > 0 and not self.all_places: for loc in self.location_table: """ Get from database devices assigned to locations in session """ locdev = frappe.db.sql("""SELECT device FROM `tabPlace Item` WHERE parent=%s AND place=%s and docstatus < 2""", (self.course, loc.place), True) if len(locdev) > 0: for plc in locdev: if plc.device is not None: sms_list, mqtt_list, telegram_list, email_list = append_recipients(plc.device, sms_list, mqtt_list, telegram_list, email_list) ## Prepare device recipients even in case all places selectect if len(self.device_table) > 0 and not self.all_places: for dev in self.device_table: if dev.device is not None: sms_list, mqtt_list, telegram_list, email_list = append_recipients(dev.device, sms_list, mqtt_list, telegram_list, email_list) ## Prepare all devices if self.all_places: """ Get from database devices in session """ locdev = frappe.db.sql("""SELECT device FROM `tabPlace Item` WHERE parent=%s and docstatus < 2""", (self.course), True) if len(locdev) > 0: for plc in locdev: if plc.device is not None: sms_list, mqtt_list, telegram_list, email_list = append_recipients(plc.device, sms_list, mqtt_list, telegram_list, email_list) """ Get from database devices in session in roles table """ roldev = frappe.db.sql("""SELECT device FROM `tabSession Role Item` WHERE parent=%s and docstatus < 2""", (self.course), True) if len(roldev) > 0: for itm in roldev: if itm.device is not None: sms_list, mqtt_list, telegram_list, email_list = append_recipients(itm.device, sms_list, mqtt_list, telegram_list, email_list) ## Prepare role recipients if len(self.recipient_table) > 0 and not self.all_roles: for rol in self.recipient_table: frappe.msgprint(rol.participant_role) """ Get from database devices ported in session """ roldev = frappe.db.sql("""SELECT device FROM `tabSession Role Item` WHERE parent=%s AND participant_role=%s and docstatus < 2""", (self.course, rol.participant_role), True) if len(roldev) > 0: for itm in roldev: if itm.device is not None: sms_list, mqtt_list, telegram_list, email_list = append_recipients(itm.device, sms_list, mqtt_list, telegram_list, email_list) ## Prepare participants if len(self.participant_table) > 0 and not self.all_roles: for per in self.participant_table: frappe.msgprint(per.participant) """ Get from database devices ported in session """ perdev = frappe.db.sql("""SELECT device FROM `tabSession Role Item` WHERE parent=%s AND participant=%s and docstatus < 2""", (self.course, per.participant), True) if len(perdev) > 0: for per in perdev: if per.device is not None: sms_list, mqtt_list, telegram_list, email_list = append_recipients(per.device, sms_list, mqtt_list, telegram_list, email_list) ## Prepare all roles if self.all_roles: """ Get from database devices in session in roles table """ roldev = frappe.db.sql("""SELECT device FROM `tabSession Role Item` WHERE parent=%s and docstatus < 2""", (self.course), True) if len(roldev) > 0: for itm in roldev: if itm.device is not None: sms_list, mqtt_list, telegram_list, email_list = append_recipients(itm.device, sms_list, mqtt_list, telegram_list, email_list) ## Send message by MQTT if len(mqtt_list) > 0: path = frappe.utils.get_bench_path() site_name = frappe.utils.get_url().replace("http://","").replace("https://","") if ":" in site_name: pos = site_name.find(":") site_name = site_name[:pos] client = frappe.get_doc('MQTT Settings', 'MQTT Settings') server = client.broker_gateway port = client.port user = client.user client.secret = get_decrypted_password('MQTT Settings', 'MQTT Settings', 'secret', False) secret = client.secret do_ssl = client.is_ssl # connect to MQTT Broker to Publish Message pid = os.getpid() client_id = '{}:{}'.format('client', str(pid)) try: backend = mqtt.Client(client_id=client_id, clean_session=True) backend.username_pw_set(user, password=secret) if do_ssl == True: ca = os.path.join(path, "sites", site_name, frappe.get_site_path('private', 'files', client.ca)[1:]) client_crt = os.path.join(path, "sites", site_name, frappe.get_site_path('private', 'files', client.client_crt)[1:]) client_key = os.path.join(path, "sites", site_name, frappe.get_site_path('private', 'files', client.client_key)[1:]) port_ssl = client.ssl_port ## Prepare mqtt backend.tls_set(ca_certs=ca, certfile=client_crt, keyfile=client_key, cert_reqs=ssl.CERT_REQUIRED, ciphers=None) backend.tls_insecure_set(False) time.sleep(.5) backend.connect(server, port_ssl) else: backend.connect(server, port) payload = frappe.safe_decode(json.dumps(dict_message)).encode('utf-8') for dev in mqtt_list: mqtt_topic = str(dev) + "/display/text" backend.publish(mqtt_topic, cstr(payload)) backend.disconnect() except: frappe.msgprint(_("Error in MQTT Broker sending to ", str(mqtt_list))) pass ## Send message by Email if len(email_list) > 0 and "email" in dict_message: try: email_args = { "sender": dict_message['email']['email_account'], "recipients": email_list, "message": str_message, "subject": dict_message['email']['subject'], "reference_doctype": self.doctype, "reference_name": self.name } frappe.sendmail(**email_args) except: frappe.throw(_("Error in sending mail")) pass ## Send message by Telegram if len(telegram_list) > 0 and self.message_type == "IoT" and str_message != "": try: send_telegram(telegram_list, cstr(str_message)) except: frappe.throw(_("Error in sending Telegram")) pass ## Send message by SMS if len(sms_list) > 0 and self.message_type == "IoT" and str_message != "": try: send_sms(sms_list, cstr(str_message)) except: frappe.throw(_("Error in sending SMS")) pass ## Final Message frappe.msgprint(_("Actions Completed and Messages Sent")) def append_recipients(device, sms_list, mqtt_list, telegram_list, email_list): doc = frappe.get_doc('Device', device) if not doc.disabled: if doc.is_connected and doc.alerts_active: if doc.by_sms: if doc.sms_number != '': if not doc.sms_number in sms_list: sms_list.append(doc.sms_number) #frappe.msgprint(_("Message by sms to ") + str(doc.sms_number)) if doc.by_text: if doc.device_name != '' and doc.by_mqtt and not doc.device_name in mqtt_list: mqtt_list.append(doc.device_name) #frappe.msgprint(_("Message by mqtt to ") + str(doc.device_name)) if doc.by_email and doc.device_email != '' and not doc.device_email in email_list: email_list.append(doc.device_email) if doc.by_telegram: if doc.telegram_number != '': if not doc.telegram_number in telegram_list: telegram_list.append(doc.telegram_number) #frappe.msgprint(_("Message by sms to ") + str(doc.telegram_number)) return sms_list, mqtt_list, telegram_list, email_list
python
from __future__ import division import json import time import serial as _serial import platform import sys if sys.version_info >= (3, 0): import queue else: import Queue as queue from threading import Event, Thread from serial.tools.list_ports import comports from . import IOHandler try: JSONDecodeError = json.decoder.JSONDecodeError except AttributeError: JSONDecodeError = ValueError class Serial(IOHandler): poll_frequency = 200 @classmethod def available_hosts(cls): devices = comports(include_links=True) return [d.device for d in devices] @classmethod def is_host_compatible(cls, host): return host in cls.available_hosts() def __init__(self, host, baudrate=1000000): self._serial = _serial.Serial(host, baudrate) self._serial.flush() self._msg = queue.Queue(100) self._running = True self._poll_loop = Thread(target=self._poll) self._poll_loop.daemon = True self._poll_loop.start() def is_ready(self): if self._serial.in_waiting == 0: return False try: self.read() return True except (UnicodeDecodeError, JSONDecodeError): return False def recv(self): return self._msg.get() def write(self, data): self._serial.write(data + '\r'.encode() + '\n'.encode()) #print(data + '\r'.encode()) def close(self): self._running = False self._poll_loop.join() self._serial.close() def _poll(self): def extract_line(s): j = s.find(b'\n') if j == -1: return b'', s # Sometimes the begin of serial data can be wrong remove it # Find the first '{' x = s.find(b'{') if x == -1: return b'', s[j + 1:] return s[x:j], s[j + 1:] period = 1 / self.poll_frequency buff = b'' while self._running: to_read = self._serial.in_waiting if to_read == 0: time.sleep(period) continue s = self._serial.read(to_read) buff = buff + s while self._running: line, buff = extract_line(buff) if not len(line): break if self._msg.full(): self._msg.get() self._msg.put(line)
python
#!/usr/bin/env python from distutils.core import setup setup( name = 'elastico', version = '0.6.3', description = "Elasticsearch Companion - a commandline tool", author = "Kay-Uwe (Kiwi) Lorenz", author_email = "[email protected]", url = 'https://github.com/klorenz/python-elastico', license = "MIT", install_requires=[ 'elasticsearch', 'PyYAML', 'pyaml', 'requests', 'argdeco', 'markdown', 'jinja2', 'pytz', 'python-dateutil', ], packages=[ 'elastico', 'elastico.cli' ], # package_data = { # elastico: ['subfolder/*.x', ...] # } # include_package_data = True entry_points={ 'console_scripts': [ 'elastico = elastico.cli:main', ] } )
python
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField from wtforms.validators import Required,Email, EqualTo from ..models import User from wtforms import ValidationError class RegisterationForm(FlaskForm): email = StringField('Enter Your email Address', validators= [Required(), Email()]) username = StringField('Enter your username', validators=[Required()]) password = PasswordField('Password', validators=[Required(), EqualTo('password_confirm', message='passwords must match')]) password_confirm = PasswordField('Confirm Passwords', validators=[Required()]) submit = SubmitField('sign Up') def validate_email(self,data_field): if User.query.filter_by(email =data_field.data).first(): raise ValidationError('There is an account with that email address') def validate_username(self,data_field): if User.query.filter_by(username = data_field.data).first(): raise ValidationError('The username is already taken') class LoginForm(FlaskForm): email = StringField('Your email Address', validators=[Required(), Email()]) password = PasswordField('password', validators=[Required()]) remember = BooleanField('Remember me') submit = SubmitField('sign in')
python
import pytest from nengo_os import SimpleProc, ConventScheduler procs = [ # name id arrival1,+2, comp_t, needed_cores SimpleProc("Cifar", 0, 0, 0, 10, 4038), # test single process SimpleProc("SAR", 1, 0, 0, 100, 3038), #test two procs that can not run together SimpleProc("SAR", 2, 0, 0, 100, 3038) ] @pytest.fixture(params=["SINGLE","TWO_INT","ALL"]) def paper_procs(request): pl = procs if request.param == "SINGLE": return [pl[0]], 1 if request.param == "TWO_INT": return [pl[1],pl[2]], 2 if request.param == "ALL": pl[1].arrival = 10 pl[2].arrival = 10 return pl, len(pl) @pytest.fixture def create_non_nengo_scheduler(paper_procs): pl, num = paper_procs return ConventScheduler(simple_proc_list = pl, mode="RR",time_slice=5), num class RR_Status: def __init__(self, time=0): self.time = time def test_non_nengo_rr(create_non_nengo_scheduler): sched,num = create_non_nengo_scheduler end_time_est = sum(et.needed_time for et in sched.queue.wait_q) quant = sched.time_slice running_proc = 2 waiting_proc = 1 rtx = [] for i in range(end_time_est): sched.scheduler_run_tick() if num == 1: if i == 0: assert(sched.running_proc_size == 4038) elif num == 2: if i == 10: print(i) assert(sched.running_proc_size == 3038) if i % sched.time_slice == 0: #assert(sched.running_proc_list[0] == running_proc) r = waiting_proc running_proc = waiting_proc waiting_proc = r rtx.append(sched.running_proc_list[0]) elif i > 200: assert(sched.waiting_proc_size < 1) print(rtx) def test_load_json(): from pathlib import Path model_data_file = Path("/Users/plaggm/dev/nemo-codes/config/paper_models.json") sched_type = "RR" rr_ts = 100 scheduler = ConventScheduler(mode=sched_type, total_cores=4096, time_slice=rr_ts, proc_js_file=str(model_data_file.absolute()))
python
from daq_server import DAQServer import asyncio server = DAQServer event_loop = asyncio.get_event_loop() # task = asyncio.ensure_future(heartbeat()) task_list = asyncio.Task.all_tasks() async def heartbeat(): while True: print('lub-dub') await asyncio.sleep(10) def shutdown(server): print('shutdown:') # for controller in controller_list: # # print(sensor) # controller.stop() server.shutdown() task = asyncio.ensure_future(heartbeat()) tasks = asyncio.Task.all_tasks() for t in tasks: # print(t) t.cancel() print("Tasks canceled") asyncio.get_event_loop().stop() try: event_loop.run_until_complete(asyncio.wait(task_list)) except KeyboardInterrupt: print('closing client') shutdown(server) event_loop.run_forever() finally: print('closing event loop') event_loop.close()
python
import pathlib import numpy as np import simscale_eba.HourlyContinuous as hc epw = hc.HourlyContinuous() # Put any path here path = r'E:\Current Cases\SimScale Objects\examples\epw_to_stat\USA_MA_Boston-Logan.Intl.AP.725090_TMYx.2004-2018.epw' epw.import_epw(pathlib.Path(path)) weather_stats = hc.WeatherStatistics() weather_stats.set_directions(np.arange(0, 360, 10)) weather_stats.set_speeds(np.arange(0.5, 16, 1)) weather_stats.set_hourly_continuous(epw) weather_stats.to_stat() weather_stats.plot_cumulative_distributions()
python
import numpy as np import matplotlib.pyplot as plt import pandas as pd import pygsheets def boxplot(models_list, d_exp, xlabel='Models', ylabel='Mise Surv 0', option=0): n = len(models_list) if option == 0: input = [d_exp[f'mise_0_{model_name}'] for model_name in models_list] if option == 1: input = [d_exp[f'mise_1_{model_name}'] for model_name in models_list] if option == 2: input = [d_exp[f'CATE_{model_name}'] for model_name in models_list] fig, ax = plt.subplots() bp = ax.boxplot(input, widths=0.2, sym='', patch_artist=True) # for each boxplot different color plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['medians'], color='white') plt.setp(bp['fliers'], color='black') plt.setp(bp['caps'], color='red') ax.set_xticklabels(models_list) ax.set_xticks(np.arange(1, n + 1)) ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) ax.set_title('Boxplot of the Mise survenance') plt.show() # test if __name__ == '__main__': models_list = ['model_1', 'model_2', 'model_3'] d_exp = {'mise_0_model_1': np.random.randint(0, 100, size=10), 'mise_0_model_2': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'mise_0_model_3': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'mise_1_model_1': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'mise_1_model_2': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'mise_1_model_3': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'CATE_model_1': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'CATE_model_2': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'CATE_model_3': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]} boxplot(models_list, d_exp, option=0) # plot norme (true quantiles - predicted quantiles) for each model as boxplot def quantile_boxplot(models_list,d_exp): n = len(models_list) input = [d_exp[f'norme_0_{model_name}'] for model_name in models_list] fig, ax = plt.subplots() bp = ax.boxplot(input, widths=0.2, sym='', patch_artist=True) # for each boxplot different color plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['medians'], color='white') plt.setp(bp['fliers'], color='black') plt.setp(bp['caps'], color='black') ax.set_xticklabels(models_list) ax.set_xticks(np.arange(1, n + 1)) ax.set_ylabel('Norme') ax.set_xlabel('Models') ax.set_title('Boxplot of the Norme') plt.show() # construct table : rows = models, columns = scores (mise_0, mise_1, CATE) def table(models_list, d_expn,WD): n = len(models_list) mise_0 = [np.mean(d_exp[f'mise_0_{model_name}']) for model_name in models_list] mise_1 = [np.mean(d_exp[f'mise_1_{model_name}']) for model_name in models_list] CATE = [np.mean(d_exp[f'CATE_{model_name}']) for model_name in models_list] wd = [WD]*n table = np.array([mise_0, mise_1, CATE, wd]) df_table = pd.DataFrame(table.T, index=models_list, columns=['mise_0', 'mise_1', 'CATE', 'WD']) df_table.index.name = 'Models' return df_table # concatenate tables def concatenate(df_table_list): df_table_concat = pd.concat(df_table_list, axis=1) df_table_concat.index.name = 'Models' # send table to sheet drive using api gc = pygsheets.authorize(service_file='./cred.json') sh = gc.open('tables survcaus') # with names of models as index df_table_concat.to_csv('./table.csv') wks = sh[0] wks.set_dataframe(df_table_concat, (1, 1)) return df_table_concat # test table """if __name__ == '__main__': models_list = ['model_1', 'model_2', 'model_3'] d_exp = {'mise_0_model_1': np.random.randint(0, 100, size=10), 'mise_0_model_2': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'mise_0_model_3': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'mise_1_model_1': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'mise_1_model_2': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'mise_1_model_3': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'CATE_model_1': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'CATE_model_2': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'CATE_model_3': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'norme_0_model_1': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'norme_0_model_2': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'norme_0_model_3': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]} list_df_table = [] for WD in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]: df_table = table(models_list, d_exp, WD) list_df_table.append(df_table) df_table_concat = concatenate(list_df_table) df_table_concat.to_csv('table.csv') print(df_table_concat) """
python
#coding=UTF-8 import argparse, sys from urllib.request import urlopen parse = argparse.ArgumentParser(description="Check vaadin.com version lists") parse.add_argument("version", help="Released Vaadin version number") args = parse.parse_args() if hasattr(args, "echo"): print(args.echo) sys.exit(1) prerelease = None (major, minor, maintenance) = args.version.split(".", 2) if "." in maintenance: (maintenance, prerelease) = maintenance.split(".", 1) # Version without prerelease tag version = "%s.%s.%s" % (major, minor, maintenance) isPrerelease = prerelease is not None failed = False vaadin7Latest = "http://vaadin.com/download/LATEST7" vaadin7Versions = "http://vaadin.com/download/VERSIONS_7" vaadin6Latest = "http://vaadin.com/download/LATEST" vaadinPrerelease = "http://vaadin.com/download/PRERELEASES" try: latest = urlopen(vaadin7Latest).read().decode().split("\n") releaseRow = "release/%s.%s/%s" % (major, minor, version) assert (version in latest[0]) ^ isPrerelease, "Latest version mismatch. %s: %s, was: %s" % ("should not be" if isPrerelease else "should be", args.version, latest[0]) assert (releaseRow in latest[1]) ^ isPrerelease, "Release row mismatch; %s: %s, was %s" % ("should not be" if isPrerelease else "should be", releaseRow, latest[1]) except Exception as e: failed = True print("Latest version was not correctly updated: %s" % (e)) try: assert "%s," % (args.version) in urlopen(vaadin7Versions).read().decode().split("\n"), "Released version not in version list" except Exception as e: if isPrerelease: print("Prerelease version needs to be added manually to versions!") else: failed = True print(e) try: latest = urlopen(vaadin6Latest).read().decode().split("\n") releaseRow = "release/6.8/6.8." assert ("6.8." in latest[0]), "Latest version mismatch; should be: %sX, was: %s" % ("6.8.", latest[0]) assert (releaseRow in latest[1]), "Release row mismatch; should be: %sX, was %s" % (releaseRow, latest[1]) except Exception as e: failed = True print("Latest Vaadin 6 version was updated by release. %s" % (e)) try: latest = urlopen(vaadinPrerelease).read().decode().split("\n") assert (args.version in latest[0]) or not isPrerelease, "%s: %s, was: %s" % ("should be", args.version, latest[0]) except Exception as e: print("Prerelease file was not correctly updated: %s" % (e)) sys.exit(1 if failed else 0)
python
''' Created on May 2, 2018 @author: hwase0ng ''' import settings as S import requests from BeautifulSoup import BeautifulSoup from utils.fileutils import getStockCode from common import loadMap WSJSTOCKSURL = 'https://quotes.wsj.com/company-list/country/malaysia' def connectStocksListing(url): global soup stocksListingUrl = url try: page = requests.get(stocksListingUrl, headers=S.HEADERS) assert(page.status_code == 200) html = page.content soup = BeautifulSoup(html) except Exception as e: print(e) soup = '' return soup def scrapeStocksListing(soup): if soup is None or len(soup) <= 0: print 'ERR: no result' return stocks = {} table = soup.find('table', {'class': 'cl-table'}) # for each row, there are many rows including no table for tr in table.findAll('tr'): td = tr.findAll('td') if len(td) == 0: continue # Sample stockLink: <a href="https://quotes.wsj.com/MY/XKLS/SEM"> stockLink = tr.find('a').get('href') stockShortName = stockLink[31:] # if any(stockShortName in s for s in klsefilter): if stockShortName in klsefilter: print "INFO:Ignored counter:", stockShortName continue stockName = tr.find('span', {'class': 'cl-name'}).text.upper().replace('AMP;', '') try: newname = wsjmap[stockShortName] if S.DBG_ALL: print "new name:", stockShortName, newname stockShortName = newname except KeyError: pass try: stockCode = i3map[stockShortName] except KeyError: print "INFO:Unmatched stock:", stockShortName + ',', stockName continue ''' stockCode = getStockCode(stockShortName, '../i3investor/klse.txt', wsjmap) if len(stockCode) == 0: print "INFO:Skipped unmatched stock:", stockShortName + ',', stockName ''' tds = [x.text.strip() for x in td] xchange = tds[1] sector = tds[2] if len(sector) == 0: sector = '-' if S.DBG_ALL: print stockShortName, stockCode, stockName, xchange, sector stocks[stockShortName] = [stockCode, stockName, xchange, sector] nextpg = getNextPage(soup) return stocks, nextpg def unpackListing(scode, sname, xchange, sector): return scode, sname, xchange, sector def getNextPage(soup): pages = soup.find("div", "nav-right") li = pages.find("li", "next") nextpg = li.a.get('href') if nextpg == '#': return None return nextpg def writeStocksListing(outfile='klse.txt'): global wsjmap, i3map, klsefilter wsjmap = loadMap("klse.wsj", "=") i3map = loadMap("../i3investor/klse.txt", ",") with open('../klse.filter') as f: klsefilter = f.read().splitlines() if S.DBG_ALL: print "Filter=", klsefilter stocksListing = {} nextpg = WSJSTOCKSURL while(nextpg is not None): listing, nextpg = scrapeStocksListing(connectStocksListing(nextpg)) stocksListing.update(listing) fh = open(outfile, "w") for key in sorted(stocksListing.iterkeys()): listing = key + ',' + ','.join(map(str, unpackListing(*(stocksListing[key])))) if S.DBG_ALL: print listing fh.write(listing + '\n') fh.close() if __name__ == '__main__': S.DBG_ALL = False writeStocksListing() pass
python
#!/usr/bin/python3 # coding=utf-8 # Copyright 2021 getcarrier.io # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Module """ from pathlib import Path import flask # pylint: disable=E0401 import jinja2 # pylint: disable=E0401 from flask import request, render_template, redirect, url_for from pylon.core.tools import log # pylint: disable=E0611,E0401 from pylon.core.tools import module # pylint: disable=E0611,E0401 from .components.render_nikto import render_nikto_card class Module(module.ModuleModel): """ Galloper module """ def __init__(self, settings, root_path, context): self.settings = settings self.root_path = root_path self.context = context def init(self): """ Init module """ log.info("Initializing module") bp = flask.Blueprint( "nikto", "plugins.security_scanner_nikto.plugin", static_folder=str(Path(__file__).parents[0] / "static"), static_url_path='/nikto/static/' ) bp.jinja_loader = jinja2.ChoiceLoader([ jinja2.loaders.PackageLoader("plugins.security_scanner_nikto", "templates"), ]) # Register in app self.context.app.register_blueprint(bp) # Register template slot callback self.context.slot_manager.register_callback("security_scanners", render_nikto_card) from .rpc_worker import get_scanner_parameters self.context.rpc_manager.register_function(get_scanner_parameters, name='nikto') def deinit(self): # pylint: disable=R0201 """ De-init module """ log.info("De-initializing module")
python
# -*- coding: utf-8 -*- # (C) Copyright 2017 Hewlett Packard Enterprise Development LP # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from oslotest import base from monasca_persister.repositories.influxdb import line_utils class TestInfluxdb(base.BaseTestCase): def setUp(self): super(TestInfluxdb, self).setUp() def tearDown(self): super(TestInfluxdb, self).tearDown() def test_line_utils_handles_utf8(self): utf8_name = u'name' self.assertEqual(u'"' + utf8_name + u'"', line_utils.escape_value(utf8_name)) self.assertEqual(utf8_name, line_utils.escape_tag(utf8_name)) def test_line_utils_escape_tag(self): simple = u"aaaaa" self.assertEqual(simple, line_utils.escape_tag(simple)) complex = u"a\\ b,c=" self.assertEqual("a\\\\\\ b\\,c\\=", line_utils.escape_tag(complex)) def test_line_utils_escape_value(self): simple = u"aaaaa" self.assertEqual(u'"' + simple + u'"', line_utils.escape_value(simple)) complex = u"a\\b\"\n" self.assertEqual(u"\"a\\\\b\\\"\\n\"", line_utils.escape_value(complex))
python
casa = float(input('Qual valor da casa? R$')) s = float(input('Qual valor do seu salário? R$')) a = int(input('Em quantos anos deseja pagar a casa?')) parcela = casa / (a * 12) if parcela <= 0.3 * s: print(f'Parabéns, você está apto para compra da casa, vamos fechar negócio! \nVocê pagará em {a*12} parcelas de {parcela:.2f}') else: print(f'Que pena, a parcela de R${parcela:.2f} é muito alta para seu salário, seria necessário um salário de R${parcela/0.3:.2f}')
python
# -*- coding: utf-8 -*- # Copyright (c) 2010-2016, MIT Probabilistic Computing Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import sys import threading import traceback the_current_shell = threading.local() the_current_shell.value = None @contextlib.contextmanager def set_current_shell(shell): outer = the_current_shell.value the_current_shell.value = shell try: yield finally: the_current_shell.value = outer def current_shell(): assert the_current_shell.value is not None, 'No current shell!' return the_current_shell.value # make sure that the function that is hooked by the shell has the same # __doc__ class bayesdb_shellhookexp(object): def __init__(self, func): self.func = func fdoc = func.__doc__ if fdoc is None or len(fdoc.strip()) == 0: fdoc = 'NO DOCUMENTATION...\n...\n' if len(fdoc.split('\n')) == 1: fdoc += '\n...\n' self.__doc__ = fdoc def __call__(self, *args): try: return self.func(*args) except Exception as err: sys.stderr.write(traceback.format_exc()) print err def bayesdb_shell_cmd(name, autorehook=False): def wrapper(func): # because the cmd loop doesn't handle errors and just kicks people out current_shell()._hook(name, bayesdb_shellhookexp(func), autorehook=autorehook) return wrapper def bayesdb_shell_init(func): func(current_shell()) return func
python
from req import Service from service.base import BaseService import requests import json import config import datetime class DatetimeEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime.datetime): return obj.strftime('%Y-%m-%d %H:%M:%S') elif isinstance(obj, datetime.date): return obj.strftime('%Y-%m-%d') else: return json.JSONEncoder.default(self, obj) class PayService(BaseService): def __init__(self, db, rs): self.db = db self.rs = rs PayService.inst = self def payqr(self, data={}): args = ['qrcode', 'id', 'token', 'latitude', 'longitude'] err = self.check_required_args(args, data) if err: return (err, None) err, user_info = yield from Service.User.get_user_info(data['token'], data['id']) if err: return (err, None) err, product_info = yield from Service.Product.get_product_by_qr(data) if err: return (err, None) err, resid = yield from self.pay({'product_id': product_info['id'], 'payee_account_id': product_info['account_id'], 'transaction_amount': product_info['price'], 'account_id': user_info['account_id'], 'token': data['token'], 'id_number': user_info['id_number'], 'longitude': data['longitude'], 'latitude': data['latitude']}) return (None, resid) def pay(self, data={}): args = ['payee_account_id', 'transaction_amount', 'account_id', 'id_number'] err = self.check_required_args(args, data) if err: return (err, None) token = data.pop('token') url = self.add_client_id(config.BASE_URL + '/accounts/%s/in_house_transfer'%data.pop('account_id')) r = requests.post(url, data=json.dumps(data), headers=self.headers(token)) meta = json.loads(r.text) meta.update(data) meta['product_id'] = data['product_id'] meta['longitude'] = data.get('longitude') meta['latitude'] = data.get('latitude') err, id = yield from self.update_db(meta) if err: return (err, None) err, product = yield from Service.Product.get_product_by_id({'id': data['product_id']}) err, record = yield from Service.Record.get_record_by_id({'id': id}) err, user_info = yield from Service.User.get_user_info(token, record['from_user_id']) record.update(user_info) record['price'] = product['price'] record['name'] = product['name'] record['description'] = product['description'] record['id'] = id self.rs.publish('pay_list', json.dumps(record, cls=DatetimeEncoder)) return (None, id) def update_db(self, data={}): err, _from = yield from Service.User.get_user_id_by_account(data['account_id']) err, _to = yield from Service.User.get_user_id_by_account(data['payee_account_id']) meta = { "from_user_id": _from, "to_user_id": _to, "product_id": data['product_id'], 'latitude': data['latitude'], 'longitude': data['longitude'] } sql, param = self.gen_insert_sql('records', meta) id, res_cnt = yield from self.db.execute(sql, param) print(id, res_cnt) id = id[0]['id'] return (None, id)
python
from .case import * from .valkyrie_utils import * from .section_model import * from .cbr_cycle import * from .functions import * from .storage_unit import * from .valkyrie_ner import *
python
import io import matplotlib as mpl mpl.use('Agg') import matplotlib.cm as cm import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from pandas.plotting import register_matplotlib_converters from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import roc_curve, roc_auc_score, precision_recall_curve, average_precision_score sns.set_context('paper') sns.set_style('white') register_matplotlib_converters() def _output_figure(filename): out = None if filename is None: plt.show() elif filename == '__qcml_export__': binary = io.BytesIO() plt.savefig(binary, format='png') binary.seek(0) # rewind the data out = binary.read() else: plt.savefig(filename) plt.close() return out # Remember to use the Agg matplotlib backend for the heatmap annotation to work! def plot_correlation_matrix(corr, filename=None): plt.figure(figsize=(11, 10)) # generate a mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True sns.heatmap(corr, vmin=-1, vmax=1, linewidths=.5, square=True, xticklabels=corr.columns.values[:-1], yticklabels=corr.columns.values[1:], mask=mask, cbar_kws={'shrink': .75}, annot=True, fmt='.2f', annot_kws={'size': 4}) # rotate overly long tick labels plt.xticks(rotation=90) plt.yticks(rotation=0) return _output_figure(filename) def _classes_to_colors(df): cmap = plt.cm.get_cmap('autumn')(np.linspace(0, 1, len(df.index.levels[0]))) class_colors = {} color_idx = 0 for c, _ in df.index.values: if class_colors.get(c) is None: class_colors[c] = mpl.colors.rgb2hex(cmap[color_idx]) color_idx += 1 colors = [] for c, _ in df.index.values: colors.append(class_colors[c]) return colors def plot_timestamps(df, filename=None): plt.figure() plt.scatter(df.index.get_level_values(1), [0] * len(df.index.get_level_values(1)), 500, _classes_to_colors(df), '|') sns.despine(left=True) plt.tick_params(axis='y', which='both', left=False, right=False, labelleft=False) return _output_figure(filename) def _add_date_color_bar(df): num_ticks = 5 ticker = mpl.ticker.MaxNLocator(num_ticks + 2, prune='both') mappable = cm.ScalarMappable(cmap=plt.cm.get_cmap('autumn')) mappable.set_array(range(num_ticks + 2)) cb = plt.colorbar(mappable, ticks=ticker, shrink=0.75) cb.ax.set_yticklabels([df.index.values[i][1].strftime('%b %Y') for i in range(0, len(df.index.values), len(df.index.values) // (num_ticks + 2))]) cb.outline.set_linewidth(0) def _scatter_plot(scatter_data, df, filename=None): plt.figure() plt.scatter(scatter_data[:, 0], scatter_data[:, 1], c=_classes_to_colors(df)) sns.despine(left=True, bottom=True) plt.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False) plt.tick_params(axis='y', which='both', left=False, right=False, labelleft=False) _add_date_color_bar(df) return _output_figure(filename) def plot_pca(df, filename=None): # transform data to lower dimension pca_data = PCA(2).fit_transform(df.values) # plot return _scatter_plot(pca_data, df, filename) def plot_tsne(df, filename=None): # transform data to lower dimension tsne_data = TSNE(2, init='pca').fit_transform(df.values) # plot return _scatter_plot(tsne_data, df, filename) def scatter_outliers(scatter_data, df, outlier_scores, score_threshold, filename=None): plt.figure() colors = _classes_to_colors(df) for i, d in enumerate(scatter_data): if outlier_scores[i] > score_threshold: size = 10 + (outlier_scores[i] - score_threshold) * 200 color = colors[i] marker = 'o' alpha = None else: size = 10 color = 'grey' marker = '.' alpha = 0.25 plt.scatter(d[0], d[1], s=size, c=color, marker=marker, alpha=alpha) sns.despine(left=True, bottom=True) plt.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False) plt.tick_params(axis='y', which='both', left=False, right=False, labelleft=False) _add_date_color_bar(df) return _output_figure(filename) def plot_pca_outliers(df, outlier_scores, score_threshold, filename=None): # transform data to lower dimension pca_data = PCA(2).fit_transform(df.values) # plot return scatter_outliers(pca_data, df, outlier_scores, score_threshold, filename) def plot_tsne_outliers(df, outlier_scores, score_threshold, filename=None): # transform data to lower dimension tsne_data = TSNE(2, init='pca').fit_transform(df.values) # plot return scatter_outliers(tsne_data, df, outlier_scores, score_threshold, filename) def plot_outlier_score_hist(outlier_scores, num_bins, score_cutoff, filename=None): plt.figure() ax = sns.distplot(outlier_scores, bins=np.arange(0, 1.01, 1 / num_bins), kde=False, axlabel='Outlier score (%)', hist_kws={'histtype': 'stepfilled'}) plt.ylabel('Number of experiments') if score_cutoff is not None: plt.axvline(score_cutoff, color=sns.color_palette()[0], linestyle='--') # convert axis labels to percentages ax.set_xticklabels([int(100 * float(label)) for label in ax.get_xticks()]) sns.despine() return _output_figure(filename) def plot_feature_importances(feature_importances, filename=None): sorted_importances = feature_importances.sort_values(ascending=False) with sns.axes_style('whitegrid'): fig = plt.figure() fig.set_tight_layout(True) sns.barplot(x=sorted_importances.index.values, y=sorted_importances, palette='Blues_d') plt.xticks(rotation='vertical', fontsize=5) return _output_figure(filename) def plot_subspace_boxplots(data, highlights=None, filename=None): with sns.axes_style('whitegrid'): fig = plt.figure() fig.set_tight_layout(True) sns.boxplot(data=data, orient='v', palette='Blues_d') if highlights is not None: for i in range(len(highlights)): plt.plot(i, highlights[i], color='red', marker='d') plt.xticks(rotation=30, fontsize=10) return _output_figure(filename) def plot_psm_boxplots(data, color_classes=None, filename=None, **kwargs): with sns.axes_style('whitegrid'): fig = plt.figure() fig.set_tight_layout(True) # add specific colors to the various box plots if color_classes is not None: kwargs['palette'] = [sns.color_palette()[c] for c in color_classes] sns.boxplot(data=data, **kwargs) if kwargs.get('orient') == 'h': plt.xlabel('Number of PSM\'s') else: plt.ylabel('Number of PSM\'s') return _output_figure(filename) def plot_aucs(aucs, k_range, filename=None): max_auc = max(aucs) max_k = [k for k, a in zip(k_range, aucs) if a == max_auc] plt.figure() # plot all auc's plt.plot(k_range, aucs) # highlight max auc for k in max_k: plt.scatter(k, max_auc, s=50, c=mpl.colors.rgb2hex(sns.color_palette()[0]), marker='D') plt.xlim(left=0) plt.ylim([0.5, 1.0]) plt.xlabel('Local neighborhood size') plt.ylabel('AUC') return _output_figure(filename) def plot_outlier_classes_score_hist(classes_scores, num_bins, filename=None): with sns.color_palette(sns.xkcd_palette(['medium green', 'orange yellow', 'faded red'])): plt.figure() # generate the histogram values for the three classes bins = np.arange(0, 1.01, 1 / num_bins) hist = pd.DataFrame({quality: np.histogram(classes_scores.loc[classes_scores['quality'] == quality]['score'], bins=bins)[0] for quality in ['good', 'ok', 'poor']}, bins[:-1]) ax = hist.plot(kind='bar', position=0) plt.xlabel('Outlier score (%)') plt.ylabel('Number of experiments') sns.despine(right=True, top=True) # change the x-axis to not include each bin value and convert to percentages ax.set_xticks(range(0, 21, 4)) ax.set_xticklabels(range(0, 101, 20), rotation=0) return _output_figure(filename) def plot_outlier_classes_score_kde(classes_scores, num_bins, filename=None): with sns.color_palette(sns.xkcd_palette(['medium green', 'orange yellow', 'faded red'])): plt.figure() bins = np.arange(0, 1.01, 1 / num_bins) for quality in ['good', 'ok', 'poor']: sns.distplot(classes_scores.loc[classes_scores['quality'] == quality]['score'], bins=bins, hist=False, kde=True, kde_kws={'label': quality, 'shade': True}, norm_hist=True) plt.xlabel('Outlier score (%)') plt.ylabel('Density') sns.despine(right=True, top=True) # convert the outlier score tick labels to percentages ax = plt.gca() ax.set_xlim(0, 1) ax.set_xticklabels(range(0, 101, 20), rotation=0) return _output_figure(filename) def _to_binary_class_labels(quality_classes, pos_label=('good', 'ok')): # convert quality classes: 1 -> poor, 0 -> good/ok # requires that NO unvalidated samples are present return np.array([0 if quality in pos_label else 1 for quality in quality_classes['quality']]) def plot_roc(classes_scores, filename=None): plt.figure() # convert ordinal class labels to binary labels binary_classes = _to_binary_class_labels(classes_scores) for zorder, ignore_quality in reversed(list(enumerate(['good', 'ok', None]))): # ignore samples of the quality that's not considered sample_weight = None if ignore_quality is None else _to_binary_class_labels(classes_scores, (ignore_quality, )) # compute roc fpr, tpr, _ = roc_curve(binary_classes, classes_scores['score'], sample_weight=sample_weight) auc = roc_auc_score(binary_classes, classes_scores['score'], sample_weight=sample_weight) # plot the ROC curve alpha = 1 if ignore_quality is None else 1 / 3 label = 'all' if ignore_quality is None else "only '{}'".format('good' if ignore_quality == 'ok' else 'ok') plt.plot(fpr, tpr, zorder=zorder, alpha=alpha, label='ROC curve {} (AUC = {:.2f})'.format(label, auc)) # plot the random ROC curve at 0.5 plt.plot([0, 1], [0, 1], 'k--') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend(loc='lower right') return _output_figure(filename) def plot_precision_recall(classes_scores, filename=None): # compute false positive rate and true positive rate binary_classes = _to_binary_class_labels(classes_scores) precision, recall, _ = precision_recall_curve(binary_classes, classes_scores['score']) plt.figure() # plot the ROC curve plt.plot(recall, precision, label='Precision-recall curve (average precision = {:.2f})' .format(average_precision_score(binary_classes, classes_scores['score']))) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.legend(loc='lower right') return _output_figure(filename) def plot_score_sensitivity_specificity(classes_scores, filename=None): # compute sensitivity and specificity sorted_scores = classes_scores.sort_values('score', ascending=False) sorted_binary_classes = _to_binary_class_labels(sorted_scores) sensitivity, specificity = np.zeros(len(sorted_scores)), np.zeros(len(sorted_scores)) for i in range(len(sorted_binary_classes)): # true positives or false positives based on predictions above score cut-off tp = np.count_nonzero(sorted_binary_classes[:i + 1]) fp = (i + 1) - tp # true negatives or false negatives based on predictions below score cut-off fn = np.count_nonzero(sorted_binary_classes[i + 1:]) tn = len(sorted_binary_classes) - (i + 1) - fn # sensitivity and specificity sensitivity[i] = tp / (tp + fn) specificity[i] = tn / (tn + fp) plt.figure() ax1 = plt.gca() ax2 = plt.twinx() # plot the sensitivity and specificity in function of the outlier score p1 = ax1.plot(sorted_scores['score'], sensitivity, label='Sensitivity', color=sns.color_palette()[0]) # advance colors for the second axis p2 = ax2.plot(sorted_scores['score'], specificity, label='Specificity', color=sns.color_palette()[1]) ax1.set_xlim([-0.05, 1.05]) ax1.set_ylim([-0.05, 1.05]) ax2.set_ylim([-0.05, 1.05]) ax1.set_xlabel('Outlier score') ax1.set_ylabel('Sensitivity') ax2.set_ylabel('Specificity') plots = p1 + p2 ax1.legend(plots, [p.get_label() for p in plots], loc='center right') return _output_figure(filename)
python
#! /usr/bin/python2.4 # # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # parse_khhttpd_access_log.py # # Parses an input GEE server log, searching for imagery requests. # Output is either: # 1. a CSV containing lat/lon/level (and other info) for each imagery request, or # 2. a KML file with placemarks at each imagery request location, where the name of # the placemark is the number of requests seen at that location. # # TODO: separate out KML output code into routine like CSV already is. # TODO: compile imagery-recognition regexp in KML routine like CSV does. # TODO: read initially into quad_dict instead of making list and de-duplicating. # TODO: remove IP logging so Earth users aren't concerned about watching their use. # TODO: determine output type from extension on output file # TODO: pass output file into KML class and just my_kml.openDoc() etc. # import re import sys def Usage(): '''Tell the user how the program should be invoked.''' print 'Usage:\n' print ' log_parser.py <input_file> <output_file> <file_type>\n' print 'Example: log_parser.py khhttpd_access_log access_log.kml kml\n' print ' or: log_parser.py khhttpd_access_log access_log.csv csv\n' def main(): if len(sys.argv) < 4: Usage() sys.exit(1) infile = sys.argv[1] outfile = sys.argv[2] filetype = sys.argv[3].lower() input = open(infile).readlines() output = open(outfile, 'w') if filetype == 'csv': MakeCSV(input, output) sys.exit(1) quad_addrs = [] for line in input: quad_addr = ParseQuad(line) if quad_addr: quad_addrs.append(quad_addr) quad_dict = DeDupeQuads(quad_addrs) my_kml = KML() output.write(my_kml.openDoc('0')) output.write(my_kml.openFolder(infile, '1')) for addr in quad_dict.keys(): xy_coords = ProcessQuad(addr) count = quad_dict[addr] output.write(my_kml.MakePoint(xy_coords, count)) output.write(my_kml.closeFolder()) output.write(my_kml.closeDoc()) ####################################################################################### def ParseQuad(line): '''Check for imagery (q2) requests and parse out quad-tree address.''' quad_regex = re.compile(r'.*q2-(.*)-') quad_match = quad_regex.match(line) if quad_match: quad_addr = quad_match.group(1) return quad_addr def DeDupeQuads(quad_addrs): '''Identify unique quad-tree addresses and keep track of their use.''' quad_dict = {} for address in quad_addrs: if address not in quad_dict: quad_dict[address] = 1 else: quad_dict[address] += 1 return quad_dict ####################################################################################### def MakeCSV(input, output): '''Parse the input log file and create pipe-delimited "|" output.''' header = 'ip|date|lon|lat|level|req_code|bytes\n' output.write(header) image_regex = re.compile(r'.*q2-.*-') for line in input: line_match = image_regex.match(line) if line_match: ip_match = re.match(r'^(.+?)\s-', line) ip = ip_match.group(1) date_match = re.match(r'.*\[(.+?)\]', line) date = date_match.group(1) quad_match = re.match(r'.*q2-(.*)-', line) quad = quad_match.group(1) xy_coords = ProcessQuad(quad_match.group(1)) lon = xy_coords[0] lat = xy_coords[1] level = len(quad_match.group(1)) apache_codes_match = re.match(r'.*\s(\d+?\s\d+?)$', line) apache_codes = apache_codes_match.group(1) req_code = apache_codes.split()[0] bytes = apache_codes.split()[1] csv_string = '%s|%s|%f|%f|%s|%s|%s\n' % (ip, date, lon, lat, level, req_code, bytes) output.write(csv_string) ####################################################################################### def ProcessQuad(addr): '''Convert the quad address string into a list and send it off for coords.''' tile_list = list(addr) tile_list.reverse() tile_list.pop() xy_range = 180.0 x_coord = 0.0 y_coord = 0.0 new_coords = Quad2GCS(tile_list, x_coord, y_coord, xy_range) return new_coords def Quad2GCS(addr_list, x_coord, y_coord, xy_range): '''Drill down through quad-tree to get final x,y coords.''' if not addr_list: new_coords = (x_coord, y_coord) return new_coords else: tile_addr = addr_list.pop() new_range = xy_range/2 if tile_addr == '0': x_coord -= new_range y_coord -= new_range if tile_addr == '1': x_coord += new_range y_coord -= new_range if tile_addr == '2': x_coord += new_range y_coord += new_range if tile_addr == '3': x_coord -= new_range y_coord += new_range return Quad2GCS(addr_list, x_coord, y_coord, new_range) ####################################################################################### class KML: '''builds kml objects''' def openDoc(self, visibility): '''Opens kml file, and creates root level document. Takes visibility toggle of "0" or "1" as input and sets Document <open> attribute accordingly. ''' self.visibility = visibility kml = ('<?xml version="1.0" encoding="UTF-8"?>\n' '<kml xmlns="http://earth.google.com/kml/2.1">\n' '<Document>\n' '<open>%s</open>\n') % (self.visibility) return kml def openFolder(self, name, visibility): '''Creates folder element and sets the "<name>" and "<open>" attributes. Takes folder name string and visibility toggle of "0" or "1" as input values. ''' kml = '<Folder>\n<open>%s</open>\n<name>%s</name>\n' % (visibility, name) return kml def MakePoint(self, coords, name): '''Create point placemark.''' x = coords[0] y = coords[1] kml = ('<Placemark>\n' '<name>%s</name>\n' '<visibility>1</visibility>\n' '<Point>\n' '<coordinates>%f, %f</coordinates>\n' '</Point>\n' '</Placemark>\n\n') % (name, x, y) return kml def closeFolder(self): '''Closes folder element.''' kml = '</Folder>\n' return kml def closeDoc(self): '''Closes KML document''' kml = '</Document>\n</kml>\n' return kml ####################################################################################### if __name__ == '__main__': main()
python
""" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GUI application for Forward modelling 2D potential field profiles. Written by Brook Tozer, University of Oxford 2015-17. SIO 2018-19. Includes ability to import seismic reflection, well, surface outcrop and xy points into the model frame. #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Dependencies** SciPy NumPy Matplotlib pylab pickle obspy wxpython #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **References** *** polygons from Fatiando a Terra. Uieda, L., V. C. Oliveira Jr and V. C. F. Barbosa (2013), Modeling the Earth with Fatiando a Terra, Proceedings of the 12th Python in Science Conference www.fatiando.org/ *** *** Gravity algorithm written using NumPy by Brook Tozer (2015) (Modified from the Fatiando a Terra 2D gravity code). CODE MODIFIED FROM: bott, M. H. P. (1969). GRAVN. Durham geophysical computer specification No. 1. *** *** Magnetic algorithm written using NumPy by Brook Tozer (2015) CODE MODIFIED FROM: Talwani, M., & Heirtzler, J. R. (1964). Computation of magnetic anomalies caused by two dimensional structures of arbitrary shape, in Parks, G. A., Ed., Computers in the mineral industries, Part 1: Stanford Univ. Publ., Geological Sciences, 9, 464-480. *** *** SEGY plotting is preformed using ObsPy. ObsPy; a python toolbox for seismology Seismological Research Letters(May 2010), 81(3):530-533 obspy.org *** *** Icons where designed using the Free icon Maker: icons8.com https://icons8.com/icon/set/circle/all Pixel size: 24 Font: Roboto Slab Font size: 200 Color: 3498db *** #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The documentation is created using Sphinx. #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ NB. If you created a seperate conda env for gmg you must activate it before launching gmg. e.g.:: source activate py3-gmg """ # IMPORT MODULES~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ import wx import matplotlib matplotlib.use('WXAgg') from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.backends.backend_wxagg import NavigationToolbar2WxAgg as NavigationToolbar import matplotlib.cm as cm from matplotlib.ticker import FormatStrFormatter import matplotlib.colors as colors import wx.adv from wx.lib.agw import floatspin as fs import wx.grid as gridlib import wx.lib.agw.customtreectrl as ct import wx.py as py import wx.lib.agw.aui as aui from wx.lib.buttons import GenBitmapButton import wx.lib.agw.foldpanelbar as fpb import pylab as plt import numpy as np import csv import math as m import os import sys from sys import platform from obspy import read import pickle as Pickle from scipy import signal from scipy import interpolate as ip from polygon import Polygon import plot_model import bott import talwani_and_heirtzler from frames import * from dialogs import * from objects import * import model_stats import struct import gc import webbrowser import time # FUTURE # import wx.lib.agw.ribbon as RB # import wx.EnhancedStatusBar as ESB # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class Gmg(wx.Frame): """ Master Class for GMG GUI. Most functions are contained in this Class. Upon startup this sets the panels, sizer's and event bindings. Additional classes are used for handling "popout" windows (Dialog boxes). Objects are passed between this "master" GUI class and the Dialog Boxes. """ def __init__(self, *args, **kwds): wx.Frame.__init__(self, None, wx.ID_ANY, 'gmg: 2D Geophysical Modelling GUI', size=(1800, 1050)) # DEFIND ICONS DIRECTORY self.gui_icons_dir = os.path.dirname(os.path.abspath(__file__)) + "/icons/" # SET AND SHOW SPLASH SCREEN bitmap = wx.Bitmap(self.gui_icons_dir + "gmg_logo_scaled.png") splash = wx.adv.SplashScreen(bitmap, wx.adv.SPLASH_CENTER_ON_SCREEN | wx.adv.SPLASH_TIMEOUT, 3000, self, id=wx.ID_ANY, size=(1, 1), style=wx.BORDER_SIMPLE | wx.FRAME_NO_TASKBAR) splash.Show() self.Show() # START AUI WINDOW MANAGER self.mgr = aui.AuiManager() # TELL AUI WHICH FRAME TO USE self.mgr.SetManagedWindow(self) # SET AUI ICON SIZING AND STYLES (ARROWS) images = wx.ImageList(16, 16) top = wx.ArtProvider.GetBitmap(wx.ART_GO_UP, wx.ART_MENU, (16, 16)) bottom = wx.ArtProvider.GetBitmap(wx.ART_GO_DOWN, wx.ART_MENU, (16, 16)) images.Add(top) images.Add(bottom) # CREATE PANELS TO FILL WITH ATTRIBUTE CONTROLS, LAYER TREE CONTROL AND FAULT TREE CONTROL self.leftPanel = wx.SplitterWindow(self, wx.ID_ANY, size=(200, 1000), style=wx.SP_NOBORDER) self.leftPanel_b = wx.SplitterWindow(self.leftPanel, wx.ID_ANY, size=(200, 700), style=wx.SP_NOBORDER) # self.leftPanel.SetMinimumPaneSize(1) # self.leftPanel_b.SetMinimumPaneSize(1) # FIRST PANE; LEFT PANEL (=ATTRIBUTES) self.splitter_left_panel_one = wx.ScrolledWindow(self.leftPanel, wx.ID_ANY, size=(200, 400), style=wx.ALIGN_LEFT | wx.BORDER_RAISED) self.controls_panel_bar_one = fpb.FoldPanelBar(self.splitter_left_panel_one, 1, size=(200, 400), agwStyle=fpb.FPB_VERTICAL) self.fold_panel_one = self.controls_panel_bar_one.AddFoldPanel("Layer Attributes", collapsed=True, foldIcons=images) self.controls_panel_bar_one.Expand(self.fold_panel_one) # ENSURES FOLD PANEL IS VISIBLE # SECOND PANE; LEFT PANEL (=LAYERS) # GREY wx PANEL self.splitter_left_panel_two = wx.ScrolledWindow(self.leftPanel_b, wx.ID_ANY, size=(200, 300), style=wx.ALIGN_LEFT | wx.BORDER_RAISED | wx.EXPAND) # THE LAYER TREE SCROLL BAR GOES IN HERE self.controls_panel_bar_two = fpb.FoldPanelBar(self.splitter_left_panel_two, 1, size=(200, 300), agwStyle=fpb.FPB_VERTICAL) self.fold_panel_two = self.controls_panel_bar_two.AddFoldPanel("Layers", collapsed=True, foldIcons=images) self.controls_panel_bar_two.Expand(self.fold_panel_two) # ENSURES FOLD PANEL IS VISIBLE self.fold_panel_two.SetSize(200, 300) # THIRD PANE; LEFT PANEL (=FAULTS) # GREY wx PANEL self.splitter_left_panel_three = wx.ScrolledWindow(self.leftPanel_b, wx.ID_ANY, size=(200, 300), style=wx.ALIGN_LEFT | wx.BORDER_RAISED | wx.EXPAND) # THE FAULT TREE SCROLL BAR GOES IN HERE self.controls_panel_bar_three = fpb.FoldPanelBar(self.splitter_left_panel_three, 1, size=(200, 300), agwStyle=fpb.FPB_VERTICAL) self.fold_panel_three = self.controls_panel_bar_three.AddFoldPanel("Faults", collapsed=True, foldIcons=images) self.controls_panel_bar_three.Expand(self.fold_panel_three) # ENSURES FOLD PANEL IS VISIBLE self.fold_panel_three.SetSize(200, 300) # SET SPLITTERS self.leftPanel_b.SplitHorizontally(self.splitter_left_panel_two, self.splitter_left_panel_three) self.leftPanel.SplitHorizontally(self.splitter_left_panel_one, self.leftPanel_b) self.splitter_left_panel_sizer = wx.BoxSizer(wx.VERTICAL) self.splitter_left_panel_sizer.Add(self.leftPanel, 1, wx.EXPAND) self.splitter_left_panel_one.SetScrollbar(1, 1, 10, 10) self.splitter_left_panel_two.SetScrollbar(1, 1, 10, 10) self.splitter_left_panel_three.SetScrollbar(1, 1, 10, 10) # CREATE PANEL TO FILL WITH MATPLOTLIB INTERACTIVE FIGURE (MAIN GUI MODELLING FRAME) self.rightPanel = wx.Panel(self, -1, size=(1700, 1100), style=wx.ALIGN_RIGHT | wx.BORDER_RAISED | wx.EXPAND) # CREATE PANEL FOR PYTHON CONSOLE (USED FOR DEBUGGING AND CUSTOM USAGES) self.ConsolePanel = wx.Panel(self, -1, size=(1700, 100), style=wx.ALIGN_LEFT | wx.BORDER_RAISED | wx.EXPAND) intro = "###############################################################\r" \ "!USE import sys; then sys.Gmg.OBJECT TO ACCESS PROGRAM OBJECTS \r" \ "ctrl+up FOR COMMAND HISTORY \r" \ "###############################################################" py_local = {'__app__': 'gmg Application'} sys.gmg = self self.win = py.shell.Shell(self.ConsolePanel, -1, size=(2200, 1100), locals=py_local, introText=intro) # ADD THE PANES TO THE AUI MANAGER self.mgr.AddPane(self.leftPanel, aui.AuiPaneInfo().Name('left').Left().Caption("Controls")) self.mgr.AddPane(self.rightPanel, aui.AuiPaneInfo().Name('right').CenterPane()) self.mgr.AddPane(self.ConsolePanel, aui.AuiPaneInfo().Name('console').Bottom().Caption("Console")) self.mgr.GetPaneByName('console').Hide() # HIDE PYTHON CONSOLE BY DEFAULT self.mgr.Update() # CREATE PROGRAM MENUBAR & TOOLBAR (PLACED AT TOP OF FRAME) self.create_menu() # CREATE STATUS BAR self.statusbar = self.CreateStatusBar(3) self.controls_button = GenBitmapButton(self.statusbar, -1, wx.Bitmap(self.gui_icons_dir + 'large_up_16.png'), pos=(0, -4), style=wx.NO_BORDER) self.Bind(wx.EVT_BUTTON, self.show_controls, self.controls_button) # PYTHON CONSOLE self.console_button = GenBitmapButton(self.statusbar, -1, wx.Bitmap(self.gui_icons_dir + 'python_16.png'), pos=(24, -4), style=wx.NO_BORDER) self.Bind(wx.EVT_BUTTON, self.show_console, self.console_button) # TOPOGRAPHY TOGGLE BUTTON self.topography_button = GenBitmapButton(self.statusbar, 601, wx.Bitmap(self.gui_icons_dir + 'T_16.png'), pos=(48, -4), style=wx.NO_BORDER) self.Bind(wx.EVT_BUTTON, self.frame_adjustment, self.topography_button) # GRAVITY TOGGLE BUTTON self.gravity_button = GenBitmapButton(self.statusbar, 602, wx.Bitmap(self.gui_icons_dir + 'G_16.png'), pos=(72, -4), style=wx.NO_BORDER) self.Bind(wx.EVT_BUTTON, self.frame_adjustment, self.gravity_button) # MAGNETIC TOGGLE BUTTON self.magnetic_button = GenBitmapButton(self.statusbar, 603, wx.Bitmap(self.gui_icons_dir + 'M_16.png'), pos=(96, -4), style=wx.NO_BORDER) self.Bind(wx.EVT_BUTTON, self.frame_adjustment, self.magnetic_button) self.status_text = " " self.statusbar.SetStatusWidths([-1, -1, 1700]) self.statusbar.SetStatusText(self.status_text, 2) self.statusbar.SetSize((1800, 24)) # SET PROGRAM STATUS self.model_saved = False self.newmodel = False # BIND PROGRAM EXIT BUTTON WITH EXIT FUNCTION self.Bind(wx.EVT_CLOSE, self.on_close_button) # MAXIMIZE FRAME self.Maximize(True) def create_menu(self): """CREATE GUI MENUBAR""" self.menubar = wx.MenuBar() menu_file = wx.Menu() m_new_model = menu_file.Append(-1, "New Model...", "New Model...") self.Bind(wx.EVT_MENU, self.new_model, m_new_model) m_load_model = menu_file.Append(-1, "Load Model...", "Load Model...") self.Bind(wx.EVT_MENU, self.load_model, m_load_model) m_save_model = menu_file.Append(-1, "Save Model...", "Save Model...") self.Bind(wx.EVT_MENU, self.save_model, m_save_model) menu_file.AppendSeparator() m_save_xy = menu_file.Append(-1, "Save Layers As ASCII .xy File ...", "Save Layers as ASCII .xy...") self.Bind(wx.EVT_MENU, self.write_layers_xy, m_save_xy) m_save_c = menu_file.Append(-1, "Save Model As RayInvr c.in File...", "Save RayInvr c.in File...") self.Bind(wx.EVT_MENU, self.write_c_xy, m_save_c) m_save_fig = menu_file.Append(-1, "Save Figure...", "Save model Figure...") self.Bind(wx.EVT_MENU, self.plot_model, m_save_fig) menu_file.AppendSeparator() m_exit = menu_file.Append(-1, "Exit...", "Exit...") self.Bind(wx.EVT_MENU, self.exit, m_exit) # DRAW MENU self.menubar.Append(menu_file, "&File") # MODEL VIEW MENU model_view_file = wx.Menu() m_modify_model_dimensions = model_view_file.Append(-1, "Modify Current Model Dimensions...", "Modify Current Model Dimensions...") self.Bind(wx.EVT_MENU, self.modify_model_dimensions, m_modify_model_dimensions) model_view_file.AppendSeparator() # PROGRAM FRAME WINDOW SWITCHES self.topo_frame_switch = True self.gravity_frame_switch = True self.magnetic_frame_switch = True self.m_model_frames_submenu = wx.Menu() model_view_file.AppendSubMenu(self.m_model_frames_submenu, "Toggle Model Frames") self.m_model_frames_submenu.Append(601, 'Topography') self.Bind(wx.EVT_MENU, self.frame_adjustment, id=601) self.m_model_frames_submenu.Append(602, 'Gravity') self.Bind(wx.EVT_MENU, self.frame_adjustment, id=602) self.m_model_frames_submenu.Append(603, 'Magnetics') self.Bind(wx.EVT_MENU, self.frame_adjustment, id=603) model_view_file.AppendSeparator() m_aspect_increase = model_view_file.Append(-1, "&Increase Aspect Ratio...", "Increase the aspect ratio of the model plot...") self.Bind(wx.EVT_MENU, self.aspect_increase, m_aspect_increase) m_aspect_decrease = model_view_file.Append(-1, "&Decrease Aspect Ratio...", "Decrease the aspect ratio of the model plot...") self.Bind(wx.EVT_MENU, self.aspect_decrease, m_aspect_decrease) self.menubar.Append(model_view_file, "&Model View") # GRAVITY DATA MENU -------------------------------------------------------------------------------------------- self.gravity_data = wx.Menu() # LOAD OBSERVED GRAVITY DATA m_load_obs_g = self.gravity_data.Append(-1, "&Load Gravity Anomaly...", "Load Observed Gravity Data...") self.Bind(wx.EVT_MENU, self.load_obs_g, m_load_obs_g) # EDIT self.m_obs_g_submenu = wx.Menu() self.gravity_data.AppendSubMenu(self.m_obs_g_submenu, "Gravity Data...") # FILTER MENU grav_m_filter_observed = self.gravity_data.Append(-1, "Median Filter...", "Filter Observed Anomaly") self.Bind(wx.EVT_MENU, self.filter_observed_gravity, grav_m_filter_observed) # HORIZONTAL DERIVATIVE grav_m_horizontal_derivative = self.gravity_data.Append(-1, "Take Horizontal Derivative...", "Take Horizontal Derivative") self.Bind(wx.EVT_MENU, self.take_gravity_horizontal_derivative, grav_m_horizontal_derivative) # SET RMS OBS ARRAYS grav_m_set_rms = self.gravity_data.Append(-1, "Set RMS Input...", "Set RMS Input...") self.Bind(wx.EVT_MENU, self.set_obs_grav_rms, grav_m_set_rms) # SET ELEVATION FOR CALCULATIONS m_set_grav_elv = self.gravity_data.Append(-1, "&Set Calculation Elevation...", "Set Calculation Elevation...") self.Bind(wx.EVT_MENU, self.set_gravity_elv, m_set_grav_elv) # SAVE PREDICTED ANOMALY TO DISC m_save_g_submenu = self.gravity_data.Append(-1, "&Save Predicted Anomaly...", "Save Predicted Anomaly to Disc...") self.Bind(wx.EVT_MENU, self.save_modelled_grav, m_save_g_submenu) # DRAW MENU self.menubar.Append(self.gravity_data, "&Gravity") # -------------------------------------------------------------------------------------------------------------- # MAGNETIC DATA MENU ------------------------------------------------------------------------------------------- self.magnetic_data = wx.Menu() # LOAD OBSERVED MAGNETIC DATA m_load_obs_m = self.magnetic_data.Append(-1, "&Load Magnetic Anomaly...", "Load Observed Magnetic Data...") self.Bind(wx.EVT_MENU, self.load_obs_m, m_load_obs_m) # EDIT self.m_obs_mag_submenu = wx.Menu() self.magnetic_data.AppendSubMenu(self.m_obs_mag_submenu, "Magnetic Anomalies...") # FILTER MENU mag_m_filter_observed = self.magnetic_data.Append(-1, "Median Filter...", "Filter Observed Anomaly") self.Bind(wx.EVT_MENU, self.filter_observed_magnetic, mag_m_filter_observed) # HORIZONTAL DERIVATIVE mag_m_horizontal_derivative = self.magnetic_data.Append(-1, "Take Horizontal Derivative...", "Take Horizontal Derivative") self.Bind(wx.EVT_MENU, self.take_magnetic_horizontal_derivative, mag_m_horizontal_derivative) # SET RMS OBS ARRAYS mag_m_set_rms = self.magnetic_data.Append(-1, "Set RMS Input..", "Set RMS input..") self.Bind(wx.EVT_MENU, self.set_obs_mag_rms, mag_m_set_rms) # SET MAG m_set_mag_variables = self.magnetic_data.Append(-1, "&Set Calculation Elevation...", "Set Calculation Elevation...") self.Bind(wx.EVT_MENU, self.set_mag_variables, m_set_mag_variables) # SAVE PREDICTED ANOMALY TO DISC m_save_mag_submenu = self.magnetic_data.Append(-1, "&Save Predicted Anomaly...", "Save Predicted Anomaly to Disc...") self.Bind(wx.EVT_MENU, self.save_modelled_mag, m_save_mag_submenu) # DRAW MENU self.menubar.Append(self.magnetic_data, "&Magnetics") # -------------------------------------------------------------------------------------------------------------- # TOPOGRAPHY DATA MENU ----------------------------------------------------------------------------------------- self.topography_data = wx.Menu() # LOAD OBSERVED TOPO DATA m_load_topo = self.topography_data.Append(-1, "&Load Topography...", "Load Observed Topography...") self.Bind(wx.EVT_MENU, self.load_topo, m_load_topo) # EDIT self.m_topo_submenu = wx.Menu() self.topography_data.AppendSubMenu(self.m_topo_submenu, "Topography Data") # FILTER MENU topo_m_filter_observed = self.topography_data.Append(-1, "Median Filter...", "Filter Observed Anomaly") self.Bind(wx.EVT_MENU, self.filter_observed_topography, topo_m_filter_observed) # HORIZONTAL DERIVATIVE topo_m_horizontal_derivative = self.topography_data.Append(-1, "Take Horizontal Derivative...", "Take Horizontal Derivative") self.Bind(wx.EVT_MENU, self.take_topography_horizontal_derivative, topo_m_horizontal_derivative) # DRAW MENU self.menubar.Append(self.topography_data, "&Topography") # -------------------------------------------------------------------------------------------------------------- # XY DATA MENU ------------------------------------------------------------------------------------------------- self.xy_data = wx.Menu() # LOAD XY DATA m_load_xy = self.xy_data.Append(-1, "&Load XY Points...", "Load XY Points...") self.Bind(wx.EVT_MENU, self.load_xy, m_load_xy) self.m_xy_submenu = wx.Menu() self.xy_data.AppendSubMenu(self.m_xy_submenu, "XY Data...") # DRAW MENU self.menubar.Append(self.xy_data, "&XY Data") # -------------------------------------------------------------------------------------------------------------- # SEISMIC DATA ------------------------------------------------------------------------------------------------- self.seismic_data = wx.Menu() # SEGY LOAD self.m_load_segy = self.seismic_data.Append(-1, "&Load Segy...", "Load Segy Data") self.Bind(wx.EVT_MENU, self.segy_input, self.m_load_segy) # SEGY NAME LIST self.m_segy_submenu = wx.Menu() self.seismic_data.AppendSubMenu(self.m_segy_submenu, "SEGY Data...") # GAIN self.m_gain = wx.Menu() self.seismic_data.AppendSubMenu(self.m_gain, "Gain") # COLOR PALETTE self.m_color_palette = wx.Menu() self.seismic_data.AppendSubMenu(self.m_color_palette, "Color Palette") self.m_color_palette.Append(901, 'Grey') self.Bind(wx.EVT_MENU, self.segy_color_adjustment, id=901) self.m_color_palette.Append(902, 'Seismic') self.Bind(wx.EVT_MENU, self.segy_color_adjustment, id=902) # GAIN INCREASE self.m_gain_increase = self.m_gain.Append(-1, "Increase...", "Increase...") self.Bind(wx.EVT_MENU, self.gain_increase, self.m_gain_increase) # GAIN DECREASE self.m_gain_decrease = self.m_gain.Append(-1, "Decrease...", "Decrease...") self.Bind(wx.EVT_MENU, self.gain_decrease, self.m_gain_decrease) # DRAW MENU self.menubar.Append(self.seismic_data, "&Seismic Data") # -------------------------------------------------------------------------------------------------------------- # WELL DATA MENU ----------------------------------------------------------------------------------------------- self.well_data = wx.Menu() self.m_load_well = self.well_data.Append(-1, "&Load well record...\tCtrl-Shift-w", "Load well record") self.Bind(wx.EVT_MENU, self.load_well, self.m_load_well) # WELL SUBMENU self.m_wells_submenu = wx.Menu() self.well_data.AppendSubMenu(self.m_wells_submenu, "Wells...") # DRAW MENU self.menubar.Append(self.well_data, "&Well Data") # -------------------------------------------------------------------------------------------------------------- # OUTCROP MENU ------------------------------------------------------------------------------------------------ self.outcrop_file = wx.Menu() self.m_load_outcrop_data = self.outcrop_file.Append(-1, "&Load Outcrop Data...", "Load Outcrop Data") self.Bind(wx.EVT_MENU, self.load_outcrop_data, self.m_load_outcrop_data) self.m_outcrop_submenu = wx.Menu() self.outcrop_file.AppendSubMenu(self.m_outcrop_submenu, "Outcrop Data...") self.menubar.Append(self.outcrop_file, "&Outcrop Data") # -------------------------------------------------------------------------------------------------------------- # MODEL LAYERS MENU -------------------------------------------------------------------------------------------- self.layer_file = wx.Menu() # NEW LAYER self.m_new_layer = self.layer_file.Append(-1, "New Layer...", "New Layer...") self.Bind(wx.EVT_MENU, self.new_layer, self.m_new_layer) # LOAD LAYER self.m_load_layer = self.layer_file.Append(-1, "Load Layer...", "Load Layer...") self.Bind(wx.EVT_MENU, self.load_layer, self.m_load_layer) # TRANSPARENCY self.m_layer_transperency = wx.Menu() self.layer_file.AppendSubMenu(self.m_layer_transperency, "Transparency") # TRANSPARENCY INCREASE self.m_layer_transparency_increase = self.m_layer_transperency.Append(-1, "Increase...", "Increase...") self.Bind(wx.EVT_MENU, self.transparency_increase, self.m_layer_transparency_increase) # TRANSPARENCY DECREASE self.m_layer_transparency_decrease = self.m_layer_transperency.Append(-1, "Decrease...", "Decrease...") self.Bind(wx.EVT_MENU, self.transparency_decrease, self.m_layer_transparency_decrease) # BULK SHIFT self.m_bulk_shift = self.layer_file.Append(-1, "Bulk Shift...", "Bulk Shift...") self.Bind(wx.EVT_MENU, self.bulk_shift, self.m_bulk_shift) # PINCH/DEPINCH LAYER self.pinch_submenu = wx.Menu() self.layer_file.AppendSubMenu(self.pinch_submenu, "Pinch") self.pinch_submenu.Append(701, "&Pinch Out Layer...", "Pinch Out Layer...") self.Bind(wx.EVT_MENU, self.pinch_out_layer, id=701) self.pinch_submenu.Append(702, "&Depinch Layer...", "Depinch Layer...") self.Bind(wx.EVT_MENU, self.depinch_layer, id=702) # SEPARATOR self.layer_file.AppendSeparator() # DELETE LAYER self.m_delete_layer = self.layer_file.Append(-1, "Delete Current Layer...", "Delete Current Layer...") self.Bind(wx.EVT_MENU, self.delete_layer, self.m_delete_layer) # APPEND MENU self.menubar.Append(self.layer_file, "&Layers") # -------------------------------------------------------------------------------------------------------------- # ATTRIBUTE TABLE MENU ----------------------------------------------------------------------------------------- attribute_file = wx.Menu() m_attribute_table = attribute_file.Append(-1, "&Open Attribute Table...", "Open Attribute Table...") self.Bind(wx.EVT_MENU, self.open_attribute_table, m_attribute_table) self.menubar.Append(attribute_file, "&Attribute Table") # -------------------------------------------------------------------------------------------------------------- # HELP MENU ---------------------------------------------------------------------------------------------------- help_file = wx.Menu() m_help = help_file.Append(-1, "&Documentation...", "Open Documentation html...") self.Bind(wx.EVT_MENU, self.open_documentation, m_help) m_about = help_file.Append(-1, "&About...", "About gmg...") self.Bind(wx.EVT_MENU, self.about_gmg, m_about) m_legal = help_file.Append(-1, "&Legal...", "Legal...") self.Bind(wx.EVT_MENU, self.legal, m_legal) self.menubar.Append(help_file, "&Help") # SET MENUBAR self.SetMenuBar(self.menubar) # -------------------------------------------------------------------------------------------------------------- # TOOLBAR - (THIS IS THE ICON BAR BELOW THE MENU BAR) self.toolbar = self.CreateToolBar() t_save_model = self.toolbar.AddTool(wx.ID_ANY, "Save model", wx.Bitmap(self.gui_icons_dir + 'save_24.png'), shortHelp="Save model") self.Bind(wx.EVT_TOOL, self.save_model, t_save_model) t_load_model = self.toolbar.AddTool(wx.ID_ANY, "Load model", wx.Bitmap(self.gui_icons_dir + 'load_24.png'), shortHelp="Load model") self.Bind(wx.EVT_TOOL, self.load_model, t_load_model) # t_calc_topo = self.toolbar.AddTool(wx.ID_ANY, "Calculate topography", # wx.Bitmap(self.gui_icons_dir + 'T_24.png'), shortHelp="Calculate topography") # self.Bind(wx.EVT_TOOL, self.calc_topo_switch, t_calc_topo) # FUTURE self.t_calc_grav = self.toolbar.AddCheckTool(toolId=wx.ID_ANY, label="Fault pick", bitmap1=wx.Bitmap(self.gui_icons_dir + 'G_24.png'), bmpDisabled=wx.Bitmap(self.gui_icons_dir + 'G_24.png'), shortHelp="Calculate gravity anomaly", longHelp="", clientData=None) self.Bind(wx.EVT_TOOL, self.calc_grav_switch, self.t_calc_grav) self.t_calc_mag = self.toolbar.AddCheckTool(toolId=wx.ID_ANY, label="Fault pick", bitmap1=wx.Bitmap(self.gui_icons_dir + 'M_24.png'), bmpDisabled=wx.Bitmap(self.gui_icons_dir + 'M_24.png'), shortHelp="Calculate magnetic anomaly", longHelp="", clientData=None) self.Bind(wx.EVT_TOOL, self.calc_mag_switch, self.t_calc_mag) self.t_capture_coordinates = self.toolbar.AddCheckTool(toolId=wx.ID_ANY, label="Capture coordinates", bitmap1=wx.Bitmap(self.gui_icons_dir + 'C_24.png'), bmpDisabled=wx.Bitmap(self.gui_icons_dir + 'C_24.png'), shortHelp="Capture coordinates", longHelp="", clientData=None) self.Bind(wx.EVT_TOOL, self.capture_coordinates, self.t_capture_coordinates) t_aspect_increase = self.toolbar.AddTool(wx.ID_ANY, "Aspect increase", wx.Bitmap(self.gui_icons_dir + 'large_up_24.png'), shortHelp="Aspect increase") self.Bind(wx.EVT_TOOL, self.aspect_increase, t_aspect_increase) t_aspect_decrease = self.toolbar.AddTool(wx.ID_ANY, "Aspect decrease", wx.Bitmap(self.gui_icons_dir + 'large_down_24.png'), shortHelp="Aspect decrease") self.Bind(wx.EVT_TOOL, self.aspect_decrease, t_aspect_decrease) t_aspect_increase2 = self.toolbar.AddTool(wx.ID_ANY, "Aspect increase x2", wx.Bitmap(self.gui_icons_dir + 'small_up_24.png'), shortHelp="Aspect increase x2") self.Bind(wx.EVT_TOOL, self.aspect_increase2, t_aspect_increase2) t_aspect_decrease2 = self.toolbar.AddTool(wx.ID_ANY, "Aspect decrease x2", wx.Bitmap(self.gui_icons_dir + 'small_down_24.png'), shortHelp="Aspect decrease x2") self.Bind(wx.EVT_TOOL, self.aspect_decrease2, t_aspect_decrease2) self.t_zoom = self.toolbar.AddCheckTool(toolId=wx.ID_ANY, label="Zoom in", bitmap1=wx.Bitmap(self.gui_icons_dir + 'zoom_in_24.png'), bmpDisabled=wx.Bitmap(self.gui_icons_dir + 'zoom_in_24.png'), shortHelp="Zoom in", longHelp="", clientData=None) self.Bind(wx.EVT_TOOL, self.zoom, self.t_zoom) t_zoom_out = self.toolbar.AddTool(wx.ID_ANY, "Zoom out", wx.Bitmap(self.gui_icons_dir + 'zoom_out_24.png'), shortHelp="Zoom out") self.Bind(wx.EVT_TOOL, self.zoom_out, t_zoom_out) t_full_extent = self.toolbar.AddTool(wx.ID_ANY, "Full extent", wx.Bitmap(self.gui_icons_dir + 'full_extent_24.png'), shortHelp="Full extent") self.Bind(wx.EVT_TOOL, self.full_extent, t_full_extent, id=604) self.t_pan = self.toolbar.AddCheckTool(toolId=wx.ID_ANY, label="Pan", bitmap1=wx.Bitmap(self.gui_icons_dir + 'pan_24.png'), bmpDisabled=wx.Bitmap(self.gui_icons_dir + 'pan_24.png'), shortHelp="Pan", longHelp="", clientData=None) self.Bind(wx.EVT_TOOL, self.pan, self.t_pan) t_gain_down = self.toolbar.AddTool(wx.ID_ANY, "Gain down", wx.Bitmap(self.gui_icons_dir + 'left_small_24.png'), shortHelp="Gain down") self.Bind(wx.EVT_TOOL, self.gain_decrease, t_gain_down) t_gain_up = self.toolbar.AddTool(wx.ID_ANY, "Gain up", wx.Bitmap(self.gui_icons_dir + 'right_small_24.png'), shortHelp="Gain up") self.Bind(wx.EVT_TOOL, self.gain_increase, t_gain_up) t_transparency_down = self.toolbar.AddTool(wx.ID_ANY, "Transparency down", wx.Bitmap(self.gui_icons_dir + 'large_left_24.png'), shortHelp="Transparency down") self.Bind(wx.EVT_TOOL, self.transparency_decrease, t_transparency_down) # INCREASE TRANSPARENCY ICON t_transparency_up = self.toolbar.AddTool(wx.ID_ANY, "Transparency up", wx.Bitmap(self.gui_icons_dir + 'large_right_24.png'), shortHelp="Transparency up") self.Bind(wx.EVT_TOOL, self.transparency_increase, t_transparency_up) # LOAD WELL ICON t_load_well = self.toolbar.AddTool(wx.ID_ANY, "Load well horizons", wx.Bitmap(self.gui_icons_dir + 'well_24.png'), shortHelp="Load well horizons") self.Bind(wx.EVT_TOOL, self.load_well, t_load_well) # TOOGLE FAULT PICKING MODE self.t_toogle_fault_mode = self.toolbar.AddCheckTool(toolId=10000, label="Fault pick", bitmap1=wx.Bitmap(self.gui_icons_dir + 'F_24.png'), bmpDisabled=wx.Bitmap(self.gui_icons_dir + 'off_F_24.png'), shortHelp="Toogle fault picking") self.t_toogle_fault_mode.SetDisabledBitmap(wx.Bitmap(self.gui_icons_dir + 'off_F_24.png')) self.Bind(wx.EVT_TOOL, self.toogle_fault_mode, self.t_toogle_fault_mode) # FAULT PICKER ICON self.t_fault_pick = self.toolbar.AddTool(wx.ID_ANY, "Fault pick", bitmap=wx.Bitmap(self.gui_icons_dir + 'faultline_24.png'), shortHelp="Fault picker") self.Bind(wx.EVT_TOOL, self.pick_new_fault, self.t_fault_pick) # CREATE TOOLBAR self.toolbar.Realize() self.toolbar.SetSize((1790, 36)) def start(self, area, xp, zp): """CREATE MPL FIGURE CANVAS""" self.fig = plt.figure() # CREATE MPL FIGURE self.canvas = FigureCanvas(self.rightPanel, -1, self.fig) # CREATE FIGURE CANVAS self.nav_toolbar = NavigationToolbar(self.canvas) # CREATE DEFAULT NAVIGATION TOOLBAR self.nav_toolbar.Hide() # HIDE DEFAULT NAVIGATION TOOLBAR # SET DRAW COMMAND WHICH CAN BE CALLED TO REDRAW THE FIGURE' self.draw = self.fig.canvas.draw # GET THE MODEL DIMENSIONS AND SAMPLE LOCATIONS' self.area = area self.x1, self.x2, self.z1, self.z2 = 0.001 * np.array(area) self.xp = np.array(xp, dtype='f') # DRAW MAIN PROGRAM WINDOW self.draw_main_frame() # CONNECT MPL FUNCTIONS self.connect() # UPDATE DISPLAY self.display_info() self.size_handler() if self.newmodel: self.update_layer_data() else: pass # REFRESH SIZER POSITIONS self.Hide() self.Show() # FINIALISE INIT PROCESS # self.run_algorithms() self.draw() def initalize_model(self): """INITIALISE OBSERVED DATA AND LAYERS""" # INITIALISE MODEL FRAME ATTRIBUTES self.nodes = True # SWITCH FOR NODE EDITING MODE self.zoom_on = False # SWITCH FOR ZOOM MODE self.pan_on = False # SWTICH PANNING MODE self.pinch_switch = False # SWITCH FOR NODE PINCHING MODE self.pinch_count = 0 self.didnt_get_node = False # SWTICH FOR MOSUE CLICK (EITHER CLICKED A NODE OR DIDN'T) self.node_click_limit = 0.2 # CONTROLS HOW CLOSE A MOUSE CLICK MUST BE TO ACTIVATE A NODE self.index_node = None # THE ACTIVE NODE self.select_new_layer_nodes = False # SWITCH TO TURN ON WHEN MOUSE CLICK IS TO BE CAPTURED FOR A NEW LAYER self.currently_active_layer_id = 0 # LAYER COUNTER self.pred_topo = None # FUTURE - PREDICTED TOPOGRAPHY FROM MOHO (ISOSTATIC FUNC) self.predicted_gravity = None # THE CALCULATED GRAVITY RESPONSE self.predicted_nt = None # THE CALCULATED MAGNETIC RESPONSE self.calc_padding = 5000. # PADDING FOR POTENTIAL FIELD CALCULATION POINTS self.padding = 50000. # PADDING FOR LAYERS self.mag_observation_elv = 0. # OBSERVATION LEVEL FOR MAGNETIC DATA self.gravity_observation_elv = 0. # OBSERVATION LEVEL FOR GRAVITY DATA # INITIALISE LAYER LIST self.layer_list = [] # LIST HOLDING ALL OF THE LAYER OBJECTS self.total_layer_count = 0 self.layer_transparency = 0.4 # INITIALISE POLYGON LISTS (USED AS MODEL LAYERS) self.gravity_polygons = [] self.mag_polygons = [] self.polyplots = [] self.poly_fills = [[]] # INITIALISE FAULT ATTRIBUTES self.fault_list = [] self.currently_actives_fault_id = 0 self.total_fault_count = 0 self.fault_picking_switch = False self.select_new_fault_nodes = False self.selected_node = None # INITIALISE XY DATA ATTRIBUTES self.observed_xy_data_list = [] self.xy_data_counter = 0 # INITIALISE OBSERVED TOPOGRAPHY ATTRIBUTES self.observed_topography_list = [] self.observed_topography_counter = 0 self.observed_topography_switch = False # INITIALISE OBSERVED GRAVITY ATTRIBUTES self.observed_gravity_list = [] self.observed_gravity_counter = 0 self.observed_gravity_switch = False # INITIALISE MODELLING GRAVITY ATTRIBUTES self.background_density = 0 self.absolute_densities = True self.calc_grav_switch = False self.obs_gravity_data_for_rms = [] # OBSERVED DATA LIST TO BE COMPARED TO CALCULATED self.gravity_rms_value = None # TOTAL RMS MISFIT VALUE self.grav_residuals = [] # CALCULATED RESIDUAL # INITIALISE OBSERVED MAGNETIC ATTRIBUTES self.observed_magnetic_list = [] self.observed_magnetic_counter = 0 self.observed_magnetic_switch = False # INITIALISE MODELLING MAGNETIC ATTRIBUTES self.earth_field = 0. self.calc_mag_switch = False self.obs_mag_data_for_rms = [] # OBSERVED DATA LIST TO BE COMPARED TO CALCULATED self.magnetic_rms_value = None # TOTAL RMS MISFIT VALUE (SINGLE INTEGER) self.mag_residuals = [] # CALCULATED RESIDUAL # INITIALISE GEOLOGICAL CONTACT ATTRIBUTES self.outcrop_data_list = [] self.outcrop_data_count = 0 # INITIALISE Well ATTRIBUTES self.well_data_list = [] self.well_counter = 0 # INITIALISE SEISMIC ATTRIBUTES self.segy_data_list = [] self.segy_counter = 0 self.segy_color_map = cm.gray self.segy_gain_neg = -4.0 self.segy_gain_pos = 4.0 # INITIALIZE COORDINATE CAPTURE self.capture = False self.linex = [] self.liney = [] def draw_main_frame(self): """ DRAW THE GUI FRAMES ( 1. TOPO; 2. GRAVITY; 3. MAGNETICS; 4. MODEL) docs: https://matplotlib.org/api/axes_api.html """ self.columns = 87 # NUMBER OF COLUMNS THE MODEL FRAMES WILL TAKE UP (89/100) self.x_orig = 10 # X ORIGIN OF MODEL FRAMES (RELATIVE TO 0 AT LEFT MARGIN) # TOPOGRAPHY CANVAS self.topo_frame = plt.subplot2grid((26, 100), (0, self.x_orig), rowspan=2, colspan=self.columns) self.topo_frame.set_ylabel("Topo (km)") self.topo_frame.set_navigate(False) self.topo_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.topo_frame.grid() self.topo_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) self.topo_d_frame = self.topo_frame.twinx() self.topo_d_frame.set_navigate(False) self.topo_d_frame.set_ylabel("dt/dx") self.topo_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.topo_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # GRAVITY CANVAS self.gravity_frame = plt.subplot2grid((26, 100), (2, self.x_orig), rowspan=3, colspan=self.columns) self.gravity_frame.set_navigate(False) self.gravity_frame.set_ylabel("Grav (mGal)") self.gravity_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.gravity_frame.grid() self.gravity_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) self.gravity_d_frame = self.gravity_frame.twinx() self.gravity_d_frame.set_navigate(False) self.gravity_d_frame.set_ylabel("dg/dx") self.gravity_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.gravity_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # MAGNETIC CANVAS self.magnetic_frame = plt.subplot2grid((26, 100), (5, self.x_orig), rowspan=3, colspan=self.columns) self.magnetic_frame.set_ylabel("Mag (nT)") self.magnetic_frame.set_navigate(False) self.magnetic_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.magnetic_frame.grid() self.magnetic_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) self.magnetic_d_frame = self.magnetic_frame.twinx() self.magnetic_d_frame.set_ylabel("dnt/dx") self.magnetic_d_frame.set_navigate(False) self.magnetic_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.magnetic_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # MODEL CANVAS self.model_frame = plt.subplot2grid((26, 100), (8, self.x_orig), rowspan=17, colspan=self.columns) self.model_frame.set_ylabel("Depth (km)") self.model_frame.set_xlabel("x (km)") # CREATE DENSITY COLOUR BAR FOR COLORING LAYERS colormap = matplotlib.cm.coolwarm cnorm = colors.Normalize(vmin=-0.8, vmax=0.8) self.colormap = cm.ScalarMappable(norm=cnorm, cmap=colormap) # SET CANVAS LIMITS self.model_frame.set_xlim(self.x1, self.x2) self.model_frame.set_ylim(self.z2, self.z1) self.model_frame.grid() self.topo_frame.set_xlim(self.model_frame.get_xlim()) self.gravity_frame.set_xlim(self.model_frame.get_xlim()) self.magnetic_frame.set_xlim(self.model_frame.get_xlim()) self.fig.subplots_adjust(top=0.99, left=-0.045, right=0.99, bottom=0.02, hspace=1.5) # ADD FIRST LAYER if self.newmodel: # CREATE LAYER0 - PLACE HOLDER FOR THE TOP OF THE MODEL - NOT ACCESSIBLE BY USER layer0 = Layer() layer0.type = str('fixed') # CREATE THE XY NODES layer0.x_nodes = [-(float(self.padding)), 0., self.x2, self.x2 + (float(self.padding))] layer0.y_nodes = [0.001, 0.001, 0.001, 0.001] # SET CURRENT NODES self.current_x_nodes = layer0.x_nodes self.current_y_nodes = layer0.y_nodes # DRAW THE CURRENTLY ACTIVE LAYER (THE NODES THAT CAN BE INTERACTED WITH) self.currently_active_layer, = self.model_frame.plot(layer0.x_nodes, layer0.y_nodes, marker='o', color='k', linewidth=1.0, alpha=0.5, picker=True) # ADD THE LAYER LINE TO THE PLOT layer0.node_mpl_actor = self.model_frame.plot(layer0.x_nodes, layer0.y_nodes, color='black', linewidth=1.0, alpha=1.0) # ADD THE LAYER POLYGON FILL TO THE PLOT layer0.polygon_mpl_actor = self.model_frame.fill(layer0.x_nodes, layer0.y_nodes, color='blue', alpha=self.layer_transparency, closed=True, linewidth=None, ec=None) # SET THE CURRENTLY ACTIVE RED NODE self.current_node = self.model_frame.scatter(-40000., 0, s=50, color='r', zorder=10) # PLACE HOLDER ONLY self.layer_list.append(layer0) # ADDITIONAL MAIN FRAME WIDGETS - PLACED ON LEFT HAND SIDE OF THE FRAME # MAKE NODE X Y LABEL self.node_text = wx.StaticText(self.fold_panel_one, -1, label="Node Position:", style=wx.ALIGN_LEFT) # MAKE DENSITY SPINNER self.density_text = wx.StaticText(self.fold_panel_one, -1, label="Density: ", style=wx.ALIGN_LEFT) self.density_input = fs.FloatSpin(self.fold_panel_one, -1, min_val=-5, max_val=5, increment=0.001, value=0.00) self.density_input.SetFormat("%f") self.density_input.SetDigits(4) # MAKE REFERNECE DENSITY SPINNER self.ref_density_text = wx.StaticText(self.fold_panel_one, -1, label="Reference: \nDensity", style=wx.ALIGN_LEFT) self.ref_density_input = fs.FloatSpin(self.fold_panel_one, -1, min_val=-5, max_val=5, increment=0.001, value=0.00) self.ref_density_input.SetFormat("%f") self.ref_density_input.SetDigits(4) # MAKE SUSCEPTIBILITY SPINNER self.susceptibility_text = wx.StaticText(self.fold_panel_one, -1, label="Susceptibility:", style=wx.ALIGN_LEFT) self.susceptibility_input = fs.FloatSpin(self.fold_panel_one, -1, min_val=-2.0, max_val=1000000.0, increment=0.00001, value=0.00, style=wx.ALIGN_RIGHT) self.susceptibility_input.SetFormat("%f") self.susceptibility_input.SetDigits(6) # MAKE ANGLE A SPINNER self.angle_a_text = wx.StaticText(self.fold_panel_one, -1, label="Angle A (Inc): ", style=wx.ALIGN_LEFT) self.angle_a_input = fs.FloatSpin(self.fold_panel_one, -1, min_val=-90.0, max_val=90.0, increment=1.0, value=0.0, style=wx.ALIGN_RIGHT) self.angle_a_input.SetFormat("%f") self.angle_a_input.SetDigits(1) # MAKE ANGLE B SPINNER self.angle_b_text = wx.StaticText(self.fold_panel_one, -1, label="Angle B (Dec):", style=wx.ALIGN_LEFT) self.angle_b_input = fs.FloatSpin(self.fold_panel_one, -1, min_val=0.0, max_val=180.0, increment=1.0, value=0.0, style=wx.ALIGN_RIGHT) self.angle_b_input.SetFormat("%f") self.angle_b_input.SetDigits(1) # MAKE ANGLE C SPINNER self.angle_c_text = wx.StaticText(self.fold_panel_one, -1, label="Angle C (Azm):", style=wx.ALIGN_LEFT) self.angle_c_input = fs.FloatSpin(self.fold_panel_one, -1, min_val=-180.0, max_val=180.0, increment=1.0, value=0.0, style=wx.ALIGN_RIGHT) self.angle_c_input.SetFormat("%f") self.angle_c_input.SetDigits(1) # MAKE EARTH FIELD SPINNER self.earth_field_text = wx.StaticText(self.fold_panel_one, -1, label="F:", style=wx.ALIGN_LEFT) self.earth_field_input = fs.FloatSpin(self.fold_panel_one, -1, min_val=0.0, max_val=1000000.0, increment=1.0, value=0.0, style=wx.ALIGN_RIGHT) self.earth_field_input.SetFormat("%f") self.earth_field_input.SetDigits(1) # MAKE WELL TEXT SIZE SLIDER self.text_size_text = wx.StaticText(self.fold_panel_one, -1, label="Label Text Size:") self.text_size_input = wx.Slider(self.fold_panel_one, value=1, minValue=1, maxValue=20., size=(175, -1), style=wx.SL_HORIZONTAL) # MAKE NODE XY SPINNERS self.x_text = wx.StaticText(self.fold_panel_one, -1, label="X Value:") self.x_input = fs.FloatSpin(self.fold_panel_one, -1, increment=0.001, value=0.00) self.x_input.SetDigits(4) self.y_text = wx.StaticText(self.fold_panel_one, -1, label="Y Value:") self.y_input = fs.FloatSpin(self.fold_panel_one, -1, increment=0.001, value=0.00) self.y_input.SetDigits(4) # Make Set button self.node_set_button = wx.Button(self.fold_panel_one, -1, "Set") # MAKE DENSITY CONTRAST SCALEBAR # colormap = matplotlib.cm.coolwarm # cnorm = colors.Normalize(vmin=-0.8, vmax=0.8) # self.cb1 = matplotlib.colorbar.ColorbarBase(self.fold_panel_one, cmap=colormap, norm=cnorm, # orientation='horizontal') # self.cb1.ax.tick_params(labelsize=6) # self.cb1.set_label('Density contrast ($kg/m^{3}$)', fontsize=6) # INITALISE CALCULATED ANOMALY LINES self.pred_gravity_plot, = self.gravity_frame.plot([], [], '-r', linewidth=2, alpha=0.5) self.gravity_rms_plot, = self.gravity_frame.plot([], [], color='purple', linewidth=1.5, alpha=0.5) self.predicted_nt_plot, = self.magnetic_frame.plot([], [], '-g', linewidth=2, alpha=0.5) self.mag_rms_plot, = self.magnetic_frame.plot([], [], color='purple', linewidth=1.5, alpha=0.5) # MAKE LAYER TREE self.tree = ct.CustomTreeCtrl(self.fold_panel_two, -1, agwStyle=wx.TR_DEFAULT_STYLE | wx.TR_ROW_LINES | wx.TR_HIDE_ROOT) self.tree.SetIndent(0.0) self.Bind(wx.EVT_TREE_ITEM_ACTIVATED, self.on_layer_activated, self.tree) self.Bind(wx.EVT_TREE_ITEM_RIGHT_CLICK, self.on_tree_right_click_down, self.tree) # TREE ATTRIBUTES self.root = self.tree.AddRoot("Layers:") self.tree.SetItemPyData(self.root, None) self.tree_items = ["Layer 0"] self.Bind(ct.EVT_TREE_ITEM_CHECKED, self.item_checked, self.tree) # MAKE FAULT TREE self.fault_tree = ct.CustomTreeCtrl(self.fold_panel_three, -1, agwStyle=wx.TR_DEFAULT_STYLE | wx.TR_ROW_LINES | wx.TR_HIDE_ROOT) self.fault_tree.SetIndent(0.0) self.Bind(wx.EVT_TREE_ITEM_ACTIVATED, self.on_fault_activated, self.fault_tree) self.Bind(wx.EVT_TREE_ITEM_RIGHT_CLICK, self.on_fault_tree_right_click_down, self.fault_tree) # TREE ATTRIBUTES self.fault_tree_root = self.fault_tree.AddRoot("Faults:") self.fault_tree.SetItemPyData(self.fault_tree_root, None) self.fault_tree_items = [] self.Bind(ct.EVT_TREE_ITEM_CHECKED, self.fault_checked, self.fault_tree) # UPDATE INFO BAR self.display_info() # REDRAW MAIN self.draw() def size_handler(self): """PLACE THE GUI FRAMES IN THE wxSIZER WINDOWS""" # -------------------------------------------------------------------------------------------------------------- # POPULATE ATTRIBUTES PANEL (LEFT PANEL OF GUI) self.attributes_box = wx.GridBagSizer(hgap=2, vgap=3) r = 1 # CURRENT ROW c = 0 # CURRENT COLUMN # LINE SEP line = wx.StaticLine(self.fold_panel_one) self.attributes_box.Add(line, pos=(r, c), span=(1, 2), flag=wx.ALIGN_LEFT | wx.EXPAND | wx.EXPAND, border=5) # DENSITY r += 1 self.attributes_box.Add(self.density_text, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) c += 1 self.attributes_box.Add(self.density_input, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) # LINE SEP r += 1 c += 0 line = wx.StaticLine(self.fold_panel_one) self.attributes_box.Add(line, pos=(r, c), span=(1, 2), flag=wx.ALIGN_LEFT | wx.EXPAND, border=5) # REFERENCE DENSITY r += 1 c = 0 self.attributes_box.Add(self.ref_density_text, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) c += 1 self.attributes_box.Add(self.ref_density_input, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) # LINE SEP r += 1 c = 0 line = wx.StaticLine(self.fold_panel_one) self.attributes_box.Add(line, pos=(r, c), span=(1, 2), flag=wx.ALIGN_LEFT | wx.EXPAND, border=5) # SUSCEPTIBILITY r += 1 c = 0 self.attributes_box.Add(self.susceptibility_text, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) c += 1 self.attributes_box.Add(self.susceptibility_input, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) # ANGLE A r += 1 c = 0 self.attributes_box.Add(self.angle_a_text, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) c += 1 self.attributes_box.Add(self.angle_a_input, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) # ANGLE B r += 1 c = 0 self.attributes_box.Add(self.angle_b_text, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) c += 1 self.attributes_box.Add(self.angle_b_input, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) # Angle C r += 1 c = 0 self.attributes_box.Add(self.angle_c_text, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) c += 1 self.attributes_box.Add(self.angle_c_input, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) # Earth Field r += 1 c = 0 self.attributes_box.Add(self.earth_field_text, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) c += 1 self.attributes_box.Add(self.earth_field_input, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) # LINE SEP r += 1 c = 0 line = wx.StaticLine(self.fold_panel_one) self.attributes_box.Add(line, pos=(r, c), span=(1, 2), flag=wx.ALIGN_LEFT | wx.EXPAND, border=5) # XY NODES r += 1 c = 0 self.attributes_box.Add(self.node_text, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) # LINE SEP r += 1 c = 0 line = wx.StaticLine(self.fold_panel_one) self.attributes_box.Add(line, pos=(r, c), span=(1, 2), flag=wx.ALIGN_LEFT | wx.EXPAND, border=5) # X NODE r += 1 c = 0 self.attributes_box.Add(self.x_text, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) c = + 1 self.attributes_box.Add(self.x_input, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) # Y NODE r += 1 c = 0 self.attributes_box.Add(self.y_text, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) c = + 1 self.attributes_box.Add(self.y_input, pos=(r, c), span=(1, 1), flag=wx.ALIGN_LEFT, border=5) # LINE SEP r += 1 c = 0 line = wx.StaticLine(self.fold_panel_one) self.attributes_box.Add(line, pos=(r, c), span=(1, 2), flag=wx.ALIGN_LEFT | wx.EXPAND, border=5) # SET BUTTON r += 1 c = 0 self.attributes_box.Add(self.node_set_button, pos=(r, c), span=(1, 2), flag=wx.ALIGN_LEFT | wx.EXPAND, border=5) # LINE SEP r += 1 c = 0 line = wx.StaticLine(self.fold_panel_one) self.attributes_box.Add(line, pos=(r, c), span=(1, 2), flag=wx.ALIGN_LEFT | wx.EXPAND, border=5) # LABEL TEXT SIZE r += 1 c = 0 self.attributes_box.Add(self.text_size_text, pos=(r, c), span=(1, 2), flag=wx.ALIGN_CENTER, border=5) r += 1 c = 0 self.attributes_box.Add(self.text_size_input, pos=(r, c), span=(1, 2), flag=wx.ALIGN_CENTER, border=5) # LINE SEP r += 1 c = 0 line = wx.StaticLine(self.fold_panel_one) self.attributes_box.Add(line, pos=(r, c), span=(1, 2), flag=wx.ALIGN_LEFT | wx.EXPAND, border=5) # DENSITY SCALE BAR # self.attr_box.Add(self.cb1, 0, wx.ALL | wx.LEFT | wx.EXPAND, 5) # -------------------------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------------------------- # CREATE LAYER TREE BOX self.tree_box = wx.BoxSizer(wx.VERTICAL) self.tree_box.Add(self.tree, 1, wx.TOP | wx.ALIGN_CENTER | wx.EXPAND, border=20) # -------------------------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------------------------- # CREATE FAULT TREE BOX self.fault_tree_box = wx.BoxSizer(wx.VERTICAL) self.fault_tree_box.Add(self.fault_tree, 1, wx.TOP | wx.ALIGN_CENTER | wx.EXPAND, border=20) # -------------------------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------------------------- # CREATE A BOX SIZER FOR THE MAIN MODELLING FRAME self.canvas_box = wx.BoxSizer(wx.HORIZONTAL) # ADD THE MAIN MODELLING FRAME TO IT'S A BOX SIZER self.canvas_box.Add(self.canvas, 1, wx.ALL | wx.ALIGN_CENTER | wx.EXPAND, border=2) # -------------------------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------------------------- # PLACE BOX SIZERS IN CORRECT PANELS self.fold_panel_one.SetSizerAndFit(self.attributes_box) self.fold_panel_two.SetSizerAndFit(self.tree_box) self.fold_panel_two.SetSize(200, 300) self.fold_panel_three.SetSizerAndFit(self.fault_tree_box) self.leftPanel.SetSizer(self.splitter_left_panel_sizer) self.fold_panel_three.SetSize(200, 300) self.fold_panel_one.Collapse() self.fold_panel_one.Expand() self.fold_panel_two.Collapse() self.fold_panel_two.Expand() self.fold_panel_three.Collapse() self.fold_panel_three.Expand() self.rightPanel.SetSizerAndFit(self.canvas_box) self.rightPanel.SetSize(self.GetSize()) # -------------------------------------------------------------------------------------------------------------- def frame_adjustment(self, event): """FIND WHICH FRAME IS REFERENCED & CHANGE SWITCH""" self.current_xlim = self.model_frame.get_xlim() self.current_ylim = self.model_frame.get_ylim() if event.Id == 601: if self.topo_frame_switch is True: self.topo_frame.set_visible(False) self.topo_d_frame.set_visible(False) self.topo_frame_switch = False else: self.topo_frame_switch = True self.topo_frame.set_visible(True) self.topo_d_frame.set_visible(True) if event.Id == 602: if self.gravity_frame_switch is True: self.gravity_frame.set_visible(False) self.gravity_d_frame.set_visible(False) self.gravity_frame_switch = False else: self.gravity_frame_switch = True self.gravity_frame.set_visible(True) self.gravity_d_frame.set_visible(True) if event.Id == 603: if self.magnetic_frame_switch is True: self.magnetic_frame.set_visible(False) self.magnetic_d_frame.set_visible(False) self.magnetic_frame_switch = False else: self.magnetic_frame_switch = True self.magnetic_frame.set_visible(True) self.magnetic_d_frame.set_visible(True) # ADJUST FRAME SIZING AND SET PROGRAM WINDOW if self.topo_frame_switch is True and self.gravity_frame_switch is True and self.magnetic_frame_switch is True: # TRUE TRUE TRUE # TOPO CANVAS self.topo_frame = plt.subplot2grid((26, 100), (0, self.x_orig), rowspan=2, colspan=self.columns) self.topo_frame.set_ylabel("(m)") self.topo_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.topo_frame.grid() self.topo_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) self.topo_d_frame = self.topo_frame.twinx() self.topo_d_frame.set_ylabel("dt/dx") self.topo_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.topo_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # GRAV CANVAS self.gravity_frame = plt.subplot2grid((26, 100), (2, self.x_orig), rowspan=3, colspan=self.columns) self.gravity_frame.set_ylabel("(mGal)") self.gravity_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.gravity_frame.grid() self.gravity_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) self.gravity_d_frame = self.gravity_frame.twinx() self.gravity_d_frame.set_ylabel("dg/dx") self.gravity_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.gravity_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # MAG CANVAS self.magnetic_frame = plt.subplot2grid((26, 100), (5, self.x_orig), rowspan=3, colspan=self.columns) self.magnetic_frame.set_ylabel("(nT)") self.magnetic_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.magnetic_frame.grid() self.magnetic_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) self.magnetic_d_frame = self.magnetic_frame.twinx() self.magnetic_d_frame.set_ylabel("dnt/dx") self.magnetic_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.magnetic_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) elif self.topo_frame_switch is False and self.gravity_frame_switch is True and \ self.magnetic_frame_switch is True: # FALSE TRUE TRUE # TOPO CANVAS - HIDDEN # GRAV CANVAS self.gravity_frame = plt.subplot2grid((26, 100), (0, self.x_orig), rowspan=4, colspan=self.columns) self.gravity_frame.set_ylabel("(mGal)") self.gravity_frame.grid() self.gravity_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) self.gravity_d_frame = self.gravity_frame.twinx() self.gravity_d_frame.set_ylabel("dg/dx") self.gravity_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.gravity_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # MAG CANVAS self.magnetic_frame = plt.subplot2grid((26, 100), (4, self.x_orig), rowspan=4, colspan=self.columns) self.magnetic_frame.set_ylabel("(nT)") self.magnetic_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.magnetic_frame.grid() self.magnetic_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) self.magnetic_d_frame = self.magnetic_frame.twinx() self.magnetic_d_frame.set_ylabel("dnt/dx") self.magnetic_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.magnetic_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) elif self.topo_frame_switch is True and self.gravity_frame_switch is False and \ self.magnetic_frame_switch is True: # TRUE FALSE TRUE # TOPO CANVAS self.topo_frame = plt.subplot2grid((26, 100), (0, self.x_orig), rowspan=2, colspan=self.columns) self.topo_frame.set_ylabel("(m)") self.topo_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.topo_frame.grid() self.topo_d_frame = self.topo_frame.twinx() self.topo_d_frame.set_ylabel("dt/dx") self.topo_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.topo_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # GRAV CANVAS - HIDDEN # MAG CANVAS self.magnetic_frame = plt.subplot2grid((26, 100), (2, self.x_orig), rowspan=6, colspan=self.columns) self.magnetic_frame.set_ylabel("(nT)") self.magnetic_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.magnetic_frame.grid() self.magnetic_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) self.magnetic_d_frame = self.magnetic_frame.twinx() self.magnetic_d_frame.set_ylabel("dnt/dx") self.magnetic_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.magnetic_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) elif self.topo_frame_switch is True and self.gravity_frame_switch is True and \ self.magnetic_frame_switch is False: # TRUE TRUE FALSE # TOPO CANVAS self.topo_frame = plt.subplot2grid((26, 100), (0, self.x_orig), rowspan=2, colspan=self.columns) self.topo_frame.set_ylabel("(m)") self.topo_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.topo_frame.grid() self.topo_d_frame = self.topo_frame.twinx() self.topo_d_frame.set_ylabel("dt/dx") self.topo_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.topo_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # GRAV CANVAS self.gravity_frame = plt.subplot2grid((26, 100), (2, self.x_orig), rowspan=6, colspan=self.columns) self.gravity_frame.set_ylabel("(mGal)") self.gravity_frame.grid() self.gravity_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) self.gravity_d_frame = self.gravity_frame.twinx() self.gravity_d_frame.set_ylabel("dg/dx") self.gravity_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.gravity_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # MAG CANVAS - HIDDEN elif self.topo_frame_switch is False and self.gravity_frame_switch is False and \ self.magnetic_frame_switch is True: # FALSE FALSE TRUE' # TOPO CANVAS - HIDDEN # GRAV CANVAS - HIDDEN # MAG CANVAS' self.magnetic_frame = plt.subplot2grid((26, 100), (0, self.x_orig), rowspan=8, colspan=self.columns) self.magnetic_frame.set_ylabel("(nT)") self.magnetic_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.magnetic_frame.grid() self.magnetic_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) self.magnetic_d_frame = self.magnetic_frame.twinx() self.magnetic_d_frame.set_ylabel("dnt/dx") self.magnetic_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.magnetic_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) elif self.topo_frame_switch is False and self.gravity_frame_switch is True and \ self.magnetic_frame_switch is False: # FALSE TRUE FALSE # TOPO CANVAS - HIDDEN # GRAV CANVAS self.gravity_frame = plt.subplot2grid((26, 100), (0, self.x_orig), rowspan=8, colspan=self.columns) self.gravity_frame.set_ylabel("(mGal)") self.gravity_frame.grid() self.gravity_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) self.gravity_d_frame = self.gravity_frame.twinx() self.gravity_d_frame.set_ylabel("dg/dx") self.gravity_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.gravity_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # MAG CANVAS -HIDDEN elif self.topo_frame_switch is True and self.gravity_frame_switch is False and \ self.magnetic_frame_switch is False: # TRUE FALSE FALSE # TOPO CANVAS self.topo_frame = plt.subplot2grid((26, 100), (0, self.x_orig), rowspan=8, colspan=self.columns) self.topo_frame.set_ylabel("(m)") self.topo_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.topo_frame.grid() self.topo_d_frame = self.topo_frame.twinx() self.topo_d_frame.set_ylabel("dt/dx") self.topo_d_frame.xaxis.set_major_formatter(plt.NullFormatter()) self.topo_d_frame.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # GRAV CANVAS - HIDDEN # MAG CANVAS - HIDDEN elif self.topo_frame_switch is False and self.gravity_frame_switch is False and \ self.magnetic_frame_switch is False: pass # FALSE FALSE FALSE # TOPO CANVAS - HIDDEN # GRAV CANVAS - HIDDEN # MAG CANVAS - HIDDEN # SET CANVAS LIMITS self.model_frame.set_xlim(self.current_xlim) self.model_frame.set_ylim(self.current_ylim) self.model_frame.grid() if self.topo_frame is not None: self.topo_frame.set_xlim(self.model_frame.get_xlim()) self.topo_d_frame.set_xlim(self.model_frame.get_xlim()) if self.gravity_frame is not None: self.gravity_frame.set_xlim(self.model_frame.get_xlim()) self.gravity_d_frame.set_xlim(self.model_frame.get_xlim()) if self.magnetic_frame is not None: self.magnetic_frame.set_xlim(self.model_frame.get_xlim()) self.magnetic_d_frame.set_xlim(self.model_frame.get_xlim()) self.fig.subplots_adjust(top=0.99, left=-0.045, right=0.99, bottom=0.02, hspace=1.5) # INITALISE CALCULATED P.F. LINES if self.gravity_frame is not None: self.pred_gravity_plot, = self.gravity_frame.plot([], [], '-r', linewidth=2) self.gravity_rms_plot, = self.gravity_frame.plot([], [], color='purple', linewidth=1.5) if self.magnetic_frame is not None: self.predicted_nt_plot, = self.magnetic_frame.plot([], [], '-g', linewidth=2) self.mag_rms_plot, = self.magnetic_frame.plot([], [], color='purple', linewidth=1.5) # PLOT OBSERVED TOPO DATA if self.topo_frame is not None: # REPLOT OBSERVED TOPOGRAPHY DATA for x in range(len(self.observed_topography_list)): if self.observed_topography_list[x] is not None: # DRAW DATA IN MODEL FRAME if self.observed_topography_list[x].type is not "derivative": self.observed_topography_list[x].mpl_actor = self.topo_frame.scatter( self.observed_topography_list[x].data[:, 0], self.observed_topography_list[x].data[:, 1], marker='o', s=5, color=self.observed_topography_list[x].color, gid=self.observed_topography_list[x].id) else: self.observed_topography_list[x].mpl_actor = self.topo_d_frame.scatter( self.observed_topography_list[x].data[:, 0], self.observed_topography_list[x].data[:, 1], marker='o', s=5, color=self.observed_topography_list[x].color, gid=self.observed_topography_list[x].id) # PLOT OBSERVED GRAVITY DATA if self.gravity_frame is not None: # REPLOT OBSERVED GRAVITY DATA for x in range(len(self.observed_gravity_list)): if self.observed_gravity_list[x] is not None: # DRAW DATA IN MODEL FRAME if self.observed_gravity_list[x].type is not "derivative": self.observed_gravity_list[x].mpl_actor = self.gravity_frame.scatter( self.observed_gravity_list[x].data[:, 0], self.observed_gravity_list[x].data[:, 1], marker='o', s=5, color=self.observed_gravity_list[x].color, gid=11000 + self.observed_gravity_list[x].id) else: self.observed_gravity_list[x].mpl_actor = self.gravity_d_frame.scatter( self.observed_gravity_list[x].data[:, 0], self.observed_gravity_list[x].data[:, 1], marker='o', s=5, color=self.observed_gravity_list[x].color, gid=11000 + self.observed_gravity_list[x].id) # PLOT OBSERVED MAGNETIC DATA if self.magnetic_frame is not None: # REPLOT OBSERVED MAGNETIC DATA for x in range(len(self.observed_magnetic_list)): if self.observed_magnetic_list[x] is not None: # DRAW DATA IN MODEL FRAME if self.observed_magnetic_list[x].type is not "derivative": self.observed_magnetic_list[x].mpl_actor = self.magnetic_frame.scatter( self.observed_magnetic_list[x].data[:, 0], self.observed_magnetic_list[x].data[:, 1], marker='o', s=5, color=self.observed_magnetic_list[x].color, gid=self.observed_magnetic_list[x].id) else: self.observed_magnetic_list[x].mpl_actor = self.magnetic_d_frame.scatter( self.observed_magnetic_list[x].data[:, 0], self.observed_magnetic_list[x].data[:, 1], marker='o', s=5, color=self.observed_magnetic_list[x].color, gid=self.observed_magnetic_list[x].id) # UPDATE FRAMES self.model_frame.grid(True) self.run_algorithms() self.draw() self.set_frame_limits() def show_controls(self, event): """ SHOW CONTROL PANE""" self.mgr.GetPaneByName('left').Show() self.mgr.Update() def show_console(self, event): """ SHOW PYTHON CONSOLE""" self.mgr.GetPaneByName('console').Show() self.mgr.Update() def new_model(self, event): """NEW MODEL DIALOG BOX""" new_model_dialogbox = NewModelDialog(self, -1, 'Create New Model') new_model_dialogbox.ShowModal() if new_model_dialogbox.set_button is True: self.newmodel = True new_x1, new_x2 = float(new_model_dialogbox.x1) * 1000., float(new_model_dialogbox.x2) * 1000. new_z1, new_z2 = float(new_model_dialogbox.z1) * 1000., float(new_model_dialogbox.z2) * 1000. xp_inc = float(new_model_dialogbox.xp_inc) * 1000. self.layer_lines = [[]] self.polygon_fills = [[]] 'INITAISE THE MODEL PARAMETERS' self.initalize_model() 'ENSURES FOLD PANELS ARE VISIBLE' self.controls_panel_bar_one.Expand(self.fold_panel_one) self.controls_panel_bar_two.Expand(self.fold_panel_two) self.controls_panel_bar_three.Expand(self.fold_panel_three) 'CREATE MODEL' self.model_aspect = 1. area = (new_x1, new_x2, new_z1, new_z2) xp = np.arange(new_x1 - self.calc_padding, new_x2 + self.calc_padding, xp_inc) zp = np.zeros_like(xp) self.start(area, xp, zp) else: self.newmodel = False return # THE USER CHANGED THERE MIND def modify_model_dimensions(self, event): """MODIFY MODEL DIMENSIONS""" modify_model_dialogbox = NewModelDialog(self, -1, 'Modify Current Model', self.x1, self.x2, self.z1, self.z2) answer = modify_model_dialogbox.ShowModal() new_x1, new_x2 = float(modify_model_dialogbox.x1) * 1000., float(modify_model_dialogbox.x2) * 1000. new_z1, new_z2 = float(modify_model_dialogbox.z1) * 1000., float(modify_model_dialogbox.z2) * 1000. xp_inc = float(modify_model_dialogbox.xp_inc) * 1000. self.area = (new_x1, new_x2, new_z1, new_z2) self.model_frame.set_ylim(new_z2 / 1000., new_z1 / 1000.) self.model_frame.set_xlim(new_x1 / 1000., new_x2 / 1000.) xp = np.arange(new_x1 - self.calc_padding, new_x2 + self.calc_padding, xp_inc) self.xp = np.array(xp, dtype='f') zp = np.zeros_like(xp) self.gravity_observation_elv = np.array(zp, dtype='f') self.update_layer_data() self.run_algorithms() def connect(self): """CONNECT MOUSE AND EVENT BINDINGS""" self.fig.canvas.mpl_connect('button_press_event', self.button_press) self.fig.canvas.mpl_connect('motion_notify_event', self.move) self.fig.canvas.mpl_connect('button_release_event', self.button_release) self.fig.canvas.mpl_connect('key_press_event', self.key_press) # self.fig.canvas.mpl_connect('pick_event', self.on_pick) 'Connect wx.widgets' self.density_input.Bind(fs.EVT_FLOATSPIN, self.set_density) self.ref_density_input.Bind(fs.EVT_FLOATSPIN, self.set_reference_density) self.susceptibility_input.Bind(fs.EVT_FLOATSPIN, self.set_susceptibility) self.angle_a_input.Bind(fs.EVT_FLOATSPIN, self.set_angle_a) self.angle_b_input.Bind(fs.EVT_FLOATSPIN, self.set_angle_b) self.angle_c_input.Bind(fs.EVT_FLOATSPIN, self.set_angle_c) self.earth_field_input.Bind(fs.EVT_FLOATSPIN, self.set_earth_field) self.text_size_input.Bind(wx.EVT_SLIDER, self.set_text_size) self.node_set_button.Bind(wx.EVT_BUTTON, self.on_menu_set_button_press) # LAYER TREE FUNCTIONS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def add_tree_nodes(self, parent_item, items): i = 0 for item in items: if type(item) == str: new_item = self.tree.AppendItem(parent_item, item) self.tree.SetItemPyData(new_item, i) i += 1 else: pass def add_new_tree_nodes(self, parent_item, item, data): new_item = self.tree.AppendItem(parent_item, item, ct_type=1) new_item.Check(checked=True) self.tree.SetItemPyData(new_item, data) def get_item_text(self, item): if item: return self.tree.GetItemText(item) else: return def on_layer_activated(self, event): """WHEN A LAYER IS SELECTED IN THE TREE""" # FIRST CHECK IS FAULT PICKING MODE IS ON, IF IT IS, THEN TURN IT OFF if self.fault_picking_switch is True: self.fault_picking_switch = False # GET HTE TREE ID AND USE IT TO SET THE CURRENT LAYER self.currently_active_layer_id = self.tree.GetPyData(event.GetItem()) # SET OBJECTS WITH THE CHOSEN LAYER self.density_input.SetValue(0.001 * self.layer_list[self.currently_active_layer_id].density) self.ref_density_input.SetValue(0.001 * self.layer_list[self.currently_active_layer_id].reference_density) self.susceptibility_input.SetValue(self.layer_list[self.currently_active_layer_id].susceptibility) self.angle_a_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_a) self.angle_b_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_b) self.angle_c_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_c) self.earth_field_input.SetValue(self.layer_list[self.currently_active_layer_id].earth_field) # GET THE XY NODES FROM THE ACTIVE LAYER AND SET THE CUURENTLY ACTIVE NODES (I.E. MAKE THEM INTERACTIVE) self.current_x_nodes = self.layer_list[self.currently_active_layer_id].x_nodes self.current_y_nodes = self.layer_list[self.currently_active_layer_id].y_nodes # SET CURRENTLY ACTIVE (RED) NODE self.current_node.set_offsets([self.current_x_nodes[0], self.current_y_nodes[0]]) # UPDATE MODEL self.update_layer_data() self.run_algorithms() def on_tree_right_click_down(self, event): """WHEN A LAYER IN THE LAYER TREE MENU IS RIGHT CLICKED""" # FIRST RUN THE on_layer_activated FUNC self.on_layer_activated(event) # CREATE POPOUT MENU WITH OPTIONS AND BIND OPTIONS TO ACTIONS menu = wx.Menu() item1 = menu.Append(wx.ID_ANY, "Change layer colour") item2 = menu.Append(wx.ID_ANY, "Rename layer") self.Bind(wx.EVT_MENU, self.change_color, item1) self.Bind(wx.EVT_MENU, self.rename_layer, item2) self.PopupMenu(menu) menu.Destroy() def change_color(self, event): """SET COLOUR FOR LAYER""" # CREATE DIALOG dlg = wx.ColourDialog(self) # ENSURE THE FULL COLOUR DIALOG IS DISPLAYED, NOT THE ABBREVIATED VERSION dlg.GetColourData().SetChooseFull(True) # WHAT TO DO WHEN THE DIALOG IS CLOSED if dlg.ShowModal() == wx.ID_OK: rgb = dlg.GetColourData().GetColour().Get() rgb = rgb[0:3] html = struct.pack('BBB', *rgb).encode('hex') # SET FAULT OR LAYER COLOR if self.fault_picking_switch == True: self.fault_list[self.currently_active_fault_id].color = str('#' + str(html)) else: self.layer_list[self.currently_active_layer_id].color = str('#' + str(html)) # CLOSE DIALOG dlg.Destroy() # REDRAW self.update_layer_data() self.draw() def rename_layer(self, event): """USE A POPUP MENU TO RENAME THE LAYER""" # CREATE POP OUT MENU AND SHOW layer_name_box = LayerNameDialog(self, -1, 'Rename layer', self.tree_items[self.currently_active_layer_id]) new = layer_name_box.ShowModal() # WAIT FOR USER TO CLOSE POP OUT # GET THE NEW LAYER NAME FROM POP OUT new_name = layer_name_box.name # SET THE TREE AND LAYER OBJECT WITH THE NEW NAME current_tree_items = self.tree.GetRootItem().GetChildren() self.tree.SetItemText(current_tree_items[self.currently_active_layer_id - 1], str(new_name)) self.tree_items[self.currently_active_layer_id] = str(new_name) self.layer_list[self.currently_active_layer_id].name = str(new_name) def delete_all_children(self, event): self.tree.DeleteChildren(event) def item_checked(self, event): """TOGGLE WHETHER OR NOT THE SELECTED LAYER IS INCLUDED IN THE MODELLED ANOMALY CALCULATIONS""" layer = self.tree.GetPyData(event.GetItem()) checked_value = self.tree.GetRootItem().GetChildren()[layer - 1].GetValue() if checked_value is True: self.layer_list[layer].include_in_calculations_switch = True else: self.layer_list[layer].include_in_calculations_switch = False # UPDATE MODEL self.run_algorithms() self.draw() def display_info(self): self.statusbar.SetStatusText(" " " " " || Currently Editing Layer: %s || " " || Model Aspect Ratio = %s:1.0 || GRAV RMS = %s " " || MAG RMS = %s ||" % (self.currently_active_layer_id, self.model_frame.get_aspect(), self.gravity_rms_value, self.magnetic_rms_value), 2) self.statusbar.Update() # FIGURE DISPLAY FUNCTIONS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def zoom(self, event): if self.zoom_on is True: self.zoom_on = False self.nodes = True self.nav_toolbar.zoom() else: self.zoom_on = True self.nodes = False self.nav_toolbar.zoom() # REDRAW self.draw() def zoom_out(self, event): self.nav_toolbar.back() # REDRAW self.draw() def full_extent(self, event): """REDRAW MODEL FRAME WITH FULL EXTENT""" self.full_extent_adjustment() self.update_layer_data() self.run_algorithms() self.draw() def full_extent_adjustment(self): """FIND WHICH FRAME IS REFERENCED & CHANGE SWITCH""" if not self.topo_frame.get_visible(): self.topo_frame.set_visible(True) if not self.gravity_frame.get_visible(): self.gravity_frame.set_visible(True) if not self.magnetic_frame.get_visible(): self.magnetic_frame.set_visible(True) 'SET CANVAS LIMITS' self.model_frame.set_xlim(self.x1, self.x2) self.model_frame.set_ylim(self.z2, self.z1) self.model_aspect = 1 if self.topo_frame is not None: self.topo_frame.set_xlim(self.model_frame.get_xlim()) if self.gravity_frame is not None: self.gravity_frame.set_xlim(self.model_frame.get_xlim()) if self.magnetic_frame is not None: self.magnetic_frame.set_xlim(self.model_frame.get_xlim()) self.fig.subplots_adjust(top=0.99, left=-0.045, right=0.99, bottom=0.02, hspace=1.5) 'ADJUST FRAME SIZING AND SET PROGRAM WINDOW' if self.topo_frame is False: self.topo_frame.set_visible(False) if self.gravity_frame is False: self.gravity_frame.set_visible(False) if self.magnetic_frame is False: self.magnetic_frame.set_visible(False) def pan(self, event): """PAN MODEL VIEW USING MOUSE DRAG""" if self.nodes: self.nodes = False self.nav_toolbar.pan() else: self.nodes = True self.nav_toolbar.pan() self.update_layer_data() self.run_algorithms() self.draw() def calc_grav_switch(self, event): """PREDICTED ANOMALY CALCULATION SWITCH: ON/OFF (SPEEDS UP PROGRAM WHEN OFF)""" if self.calc_grav_switch is True: self.calc_grav_switch = False if self.grav_residuals != [] and self.obs_gravity_data_for_rms != []: self.grav_residuals[:, 1] = np.zeros(len(self.obs_gravity_data_for_rms[:, 0])) self.gravity_rms_plot.set_data(self.grav_residuals[:, 0], self.grav_residuals[:, 1]) self.gravity_rms_plot.set_visible(False) else: self.calc_grav_switch = True self.gravity_rms_plot.set_visible(True) self.update_layer_data() self.run_algorithms() self.draw() def calc_mag_switch(self, event): """PREDICTED ANOMALY CALCULATION SWITCH: ON/OFF (SPEEDS UP PROGRAM WHEN OFF)""" if self.calc_mag_switch is True: self.calc_mag_switch = False if self.mag_residuals != [] and self.obs_mag_data_for_rms != []: self.mag_residuals[:, 1] = np.zeros(len(self.obs_mag_data_for_rms[:, 0])) self.mag_rms_plot.set_visible(False) else: self.calc_mag_switch = True self.mag_rms_plot.set_visible(True) self.update_layer_data() self.run_algorithms() self.draw() # MODEL WINDOW GRAPHICS OPTIONS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def aspect_increase(self, event): if self.model_aspect >= 1: self.model_aspect = self.model_aspect + 1 self.update_layer_data() self.draw() elif 1.0 > self.model_aspect >= 0.1: self.model_aspect = self.model_aspect + 0.1 self.update_layer_data() self.draw() else: pass def aspect_decrease(self, event): if self.model_aspect >= 2: self.model_aspect = self.model_aspect - 1 self.update_layer_data() self.draw() elif 1.0 >= self.model_aspect >= 0.2: self.model_aspect = self.model_aspect - 0.1 self.update_layer_data() self.draw() else: pass def aspect_increase2(self, event): self.model_aspect = self.model_aspect + 2 self.update_layer_data() self.draw() def aspect_decrease2(self, event): if self.model_aspect >= 3: self.model_aspect = self.model_aspect - 2 self.update_layer_data() self.draw() else: pass def transparency_increase(self, event): for l in range(0, len(self.layer_list)): if self.layer_list[l].polygon_mpl_actor[0] is not None \ and self.layer_list[l].polygon_mpl_actor[0].get_alpha() <= 0.9: new_alpha = self.layer_list[l].polygon_mpl_actor[0].get_alpha() + 0.1 self.layer_list[l].polygon_mpl_actor[0].set_alpha(new_alpha) self.draw() def transparency_decrease(self, event): for l in range(0, len(self.layer_list)): if self.layer_list[l].polygon_mpl_actor[0] is not None \ and self.layer_list[l].polygon_mpl_actor[0].get_alpha() >= 0.1: new_alpha = self.layer_list[l].polygon_mpl_actor[0].get_alpha() - 0.1 self.layer_list[l].polygon_mpl_actor[0].set_alpha(new_alpha) self.draw() # SAVE/LOAD MODEL~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def save_model(self, event): """ SAVE MODEL TO DISC IN .Pickle FORMAT TO ADD NEW OBJECTS ADD THE OBJECT NAME TO BOTH THE header AND model_params. THEN MODIFY THE load_model FUNCTION TO ALSO INLCUDE THE NEW ITEMS """ save_file_dialog = wx.FileDialog(self, "Save model file", "", "", "Model files (*.model)|*.model", wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) if save_file_dialog.ShowModal() == wx.ID_CANCEL: return # USER CHANGED THEIR MIND # CREATE SAVE DICTIONARY self.save_dict = {} header = ['model_aspect', 'area', 'xp', 'tree_items', 'fault_tree_items', 'gravity_observation_elv', 'mag_observation_elv', 'obs_gravity_data_for_rms', 'obs_mag_data_for_rms', 'layer_list', 'fault_list', 'observed_xy_data_list', 'observed_gravity_list', 'observed_magnetic_list', 'observed_topography_list', 'well_data_list', 'outcrop_data_list', 'segy_data_list'] model_params = [self.model_aspect, self.area, self.xp, self.tree_items, self.fault_tree_items, self.gravity_observation_elv, self.mag_observation_elv, self.obs_gravity_data_for_rms, self.obs_mag_data_for_rms, self.layer_list, self.fault_list, self.observed_xy_data_list, self.observed_gravity_list, self.observed_magnetic_list, self.observed_topography_list, self.well_data_list, self.outcrop_data_list, self.segy_data_list] for i in range(0, len(model_params)): try: self.save_dict[header[i]] = model_params[i] except IOError: print((header[i])) try: output_stream = save_file_dialog.GetPath() with open(output_stream, 'wb') as output_file: Pickle.dump(self.save_dict, output_file, protocol=Pickle.HIGHEST_PROTOCOL) self.model_saved = True self.update_layer_data() # DISPLAY MESSAGE MessageDialog(self, -1, "Model saved successfully", "Save") except IOError: MessageDialog(self, -1, "Error in save process.\nModel not saved", "Save") def load_model(self, event): """LOAD MODEL FROM DISC IN .Pickle FORMAT""" try: if not self.model_saved: if wx.MessageBox("Current content has not been saved! Proceed?", "Please confirm", wx.ICON_QUESTION | wx.YES_NO, self) == wx.NO: return open_file_dialog = wx.FileDialog(self, "Open model file", "", "", "Model files (*.model)|*.model", wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) if open_file_dialog.ShowModal() == wx.ID_CANCEL: return # USER CHANGED THEIR MIND # INITALISE MODEL PARAMETERS self.initalize_model() self.model_aspect = 1. # OPEN DATA STREAM with open(open_file_dialog.GetPath(), 'rb') as input_file: model_data = Pickle.load(input_file) # CLEAR MEMORY gc.collect() del gc.garbage[:] # LOAD DATA INTO MODEL for x in range(len(model_data)): setattr(self, list(model_data.keys())[x], list(model_data.values())[x]) # SAVE LOADED TREE ITEMS (WILL BE REMOVED BY self.start) self.loaded_tree_items = self.tree_items self.loaded_fault_tree_items = self.fault_tree_items # DRAW CANVAS self.start(self.area, self.xp, self.gravity_observation_elv) # ---------------------------------------------------------------------------------------------------------- # LOAD OBSERVED TOPOGRAPHY DATA if len(self.observed_topography_list) > 0: self.replot_observed_topography_data() # LOAD OBSERVED GRAVITY DATA if len(self.observed_gravity_list) > 0: self.replot_observed_gravity_data() # LOAD OBSERVED MAGNETIC DATA if len(self.observed_magnetic_list) > 0: self.replot_observed_magnetic_data() # ---------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------- # Set VARIABLE VALUES FROM LOADED DATA - USING LAYER 1 self.currently_active_layer_id = 1 self.total_layer_count = len(self.layer_list) - 1 # SET LAYER ATTRIBUTES SIDE BAR self.density_input.SetValue(0.001 * self.layer_list[1].density) self.ref_density_input.SetValue(0.001 * self.layer_list[1].reference_density) self.current_x_nodes = self.layer_list[1].x_nodes self.current_y_nodes = self.layer_list[1].y_nodes # ---------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------- # CREATE LAYERS for l in range(0, self.total_layer_count + 1): self.layer_list[l].node_mpl_actor = self.model_frame.plot(self.layer_list[l].x_nodes, self.layer_list[l].y_nodes, color='blue', linewidth=1.0, alpha=1.0) # CREATE LAYER POLYGON FILL self.layer_list[l].polygon_mpl_actor = self.model_frame.fill(self.layer_list[l].x_nodes, self.layer_list[l].y_nodes, color='blue', alpha=self.layer_transparency, closed=True, linewidth=None, ec=None) self.currently_active_layer, = self.model_frame.plot(self.current_x_nodes, self.current_y_nodes, marker='o', color=self.layer_list[ self.currently_active_layer_id].color, linewidth=1.0, alpha=0.5) # SET CURRENT NODE AS A OFF STAGE (PLACE HOLDER) self.current_node = self.model_frame.scatter(-40000., 0., marker='o', color='r', zorder=10) # ---------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------- # LOAD LAYER TREE ITEMS self.tree.DeleteAllItems() # DELETE CURRENT LAYER TREE self.root = self.tree.AddRoot("Layers:") # CREATE NEW TREE self.tree.SetItemPyData(self.root, None) for i in range(1, len(self.loaded_tree_items)): tree_item = self.tree.AppendItem(self.root, "%s" % self.loaded_tree_items[i], ct_type=1) tree_item.Check(checked=True) self.tree.SetItemPyData(tree_item, i) self.tree_items = self.loaded_tree_items # ---------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------- self.total_fault_count = len(self.fault_list) for i in range(0, self.total_fault_count): # DRAW FAULTS self.fault_list[i].mpl_actor = self.model_frame.plot(self.fault_list[i].x_nodes, self.fault_list[i].y_nodes, color=self.fault_list[i].color, linewidth=0.5, zorder=1, marker='s', alpha=1.0) # CREATE NEW CURRENT FAULT GRAPHIC self.currently_active_fault, = self.model_frame.plot([-100000, -100000], [-100000, -100000], marker='s', color='g', linewidth=0.75, alpha=1.0, zorder=2, picker=True) # Set Fault PICKING SWITCH OFF (DEFAULT TO LAYER MODE) self.fault_picking_swtich = False # ---------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------- # LOAD FAULT TREE ITEMS for i in range(0, len(self.loaded_fault_tree_items)): fault_tree_item = self.fault_tree.AppendItem(self.fault_tree_root, "%s" % self.loaded_fault_tree_items[i], ct_type=1) fault_tree_item.Check(checked=True) self.fault_tree.SetItemPyData(fault_tree_item, i) self.fault_tree_items = self.loaded_fault_tree_items # ---------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------- # LOAD OBSERVED WELL DATA if len(self.well_data_list) > 0: self.replot_well_data() # LOAD OBSERVED XY DATA if len(self.observed_xy_data_list) > 0: self.replot_observed_xy_data() # LOAD OUTCROP DATA if len(self.outcrop_data_list) > 0: self.replot_outcrop_data() # LOAD SEGY DATA if len(self.segy_data_list) > 0: self.replot_segy_data() # ---------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------- # REFRESH SIZER POSITIONS self.Hide() self.Show() # UPDATE LAYER DATA AND PLOT self.draw() self.update_layer_data() self.run_algorithms() self.draw() self.Restore() # FIX'S DISPLAY ISSUE self.fold_panel_two.SetSize(200, 300) self.fold_panel_three.SetSize(200, 300) # ---------------------------------------------------------------------------------------------------------- # LOAD ERRORS except IOError: error_message = "IO ERROR IN LOADING PROCESS - MODEL NOT LOADED" MessageDialog(self, -1, error_message, "Load Error") raise except IndexError: error_message = "INDEX ERROR IN LOADING PROCESS - MODEL NOT LOADED" MessageDialog(self, -1, error_message, "Load Error") raise # MAXIMIZE FRAME self.Maximize(True) def replot_observed_xy_data(self): """ADD LOADED OBSERVED XY DATA TO THE MODEL FRAME""" for x in range(len(self.observed_xy_data_list)): if self.observed_xy_data_list[x] is not None: # DRAW DATA IN MODEL FRAME self.observed_xy_data_list[x].mpl_actor = self.model_frame.scatter( self.observed_xy_data_list[x].data[:, 0], self.observed_xy_data_list[x].data[:, 1], marker='o', color=self.observed_xy_data_list[x].color, s=5, gid=self.observed_xy_data_list[x].id) # APPEND NEW DATA MENU TO 'XY data MENU' self.obs_submenu = wx.Menu() self.m_xy_submenu.Append(4000 + self.observed_xy_data_list[x].id, self.observed_xy_data_list[x].name, self.obs_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.obs_submenu.Append(4000 + self.observed_xy_data_list[x].id, 'delete observed data') # BIND TO DEL XY FUNC self.Bind(wx.EVT_MENU, self.delete_xy, id=4000 + self.observed_xy_data_list[x].id) # SET GRAVITY COUNTER self.observed_xy_data_counter = len(self.observed_xy_data_list) def replot_observed_topography_data(self): """ADD LOADED OBSERVED TOPOGRAPHY TO THE MODEL FRAME""" for x in range(len(self.observed_topography_list)): if self.observed_topography_list[x] is not None: # DRAW DATA IN MODEL FRAME self.observed_topography_list[x].mpl_actor = self.topo_frame.scatter( self.observed_topography_list[x].data[:, 0], self.observed_topography_list[x].data[:, 1], marker='o', color=self.observed_topography_list[x].color, s=5, gid=self.observed_topography_list[x].id) # ADD OBJECT TO MENUVAR self.obs_submenu = wx.Menu() self.m_topo_submenu.Append(10000 + self.observed_topography_list[x].id, self.observed_topography_list[x].name, self.obs_submenu) self.obs_submenu.Append(10000 + self.observed_topography_list[x].id, 'delete observed data') self.Bind(wx.EVT_MENU, self.delete_observed_topography, id=10000 + self.observed_topography_list[x].id) # TURN ON OBSERVED GRAVITY SWITCH self.observed_topography_switch = True # SET GRAVITY COUNTER self.observed_topography_counter = len(self.observed_topography_list) def replot_observed_gravity_data(self): """ADD LOADED OBSERVED GRAVITY TO THE MODEL FRAME""" for x in range(len(self.observed_gravity_list)): if self.observed_gravity_list[x] is not None: # DRAW DATA IN MODEL FRAME self.observed_gravity_list[x].mpl_actor = self.gravity_frame.scatter( self.observed_gravity_list[x].data[:, 0], self.observed_gravity_list[x].data[:, 1], marker='o', color=self.observed_gravity_list[x].color, s=5, gid=self.observed_gravity_list[x].id) # ADD OBJECT TO MENUVAR self.obs_submenu = wx.Menu() self.m_obs_g_submenu.Append(11000 + self.observed_gravity_list[x].id, self.observed_gravity_list[x].name, self.obs_submenu) self.obs_submenu.Append(11000 + self.observed_gravity_list[x].id, 'delete observed data') self.Bind(wx.EVT_MENU, self.delete_obs_grav, id=11000 + self.observed_gravity_list[x].id) # TURN ON OBSERVED GRAVITY SWITCH self.observed_gravity_switch = True # SET GRAVITY COUNTER self.observed_gravity_counter = len(self.observed_gravity_list) def replot_observed_magnetic_data(self): """ADD LOADED OBSERVED MAGNETIC DATA TO THE MODEL FRAME""" for x in range(len(self.observed_magnetic_list)): if self.observed_magnetic_list[x] is not None: # DRAW DATA IN MODEL FRAME self.observed_magnetic_list[x].mpl_actor = self.magnetic_frame.scatter( self.observed_magnetic_list[x].data[:, 0], self.observed_magnetic_list[x].data[:, 1], marker='o', color=self.observed_magnetic_list[x].color, s=5, gid=self.observed_magnetic_list[x].id) # ADD OBJECT TO MENUVAR self.mag_submenu = wx.Menu() self.m_obs_mag_submenu.Append(12000 + self.observed_magnetic_list[x].id, self.observed_magnetic_list[x].name, self.mag_submenu) self.mag_submenu.Append(12000 + self.observed_magnetic_list[x].id, 'delete observed data') self.Bind(wx.EVT_MENU, self.delete_obs_mag, id=12000 + self.observed_magnetic_list[x].id) # TURN ON OBSERVED GRAVITY SWITCH self.observed_magnetic_switch = True # SET MAGNETIC COUNTER self.observed_magnetic_counter = len(self.observed_magnetic_list) def replot_well_data(self): """ADD LOADED WELL DATA TO THE MODEL FRAME""" for x in range(len(self.well_data_list)): if self.well_data_list[x] is not None: # SET CURRENT WELL self.loaded_well = self.well_data_list[x] well = self.well_data_list[x] # CREATE FILE MENU DATA self.well_name_submenu = wx.Menu() self.m_wells_submenu.Append(well.id + 3000, well.name, self.well_name_submenu) self.well_name_submenu.Append(well.id + 2000, 'Hide/Show') self.well_name_submenu.Append(well.id + 3000, 'Delete well') self.Bind(wx.EVT_MENU, self.show_hide_well, id=well.id + 2000) self.Bind(wx.EVT_MENU, self.delete_well, id=well.id + 3000) # DRAW WELL IN MODEL FRAME y1 = well.data[0][1].astype(float) y2 = well.data[-1][-1].astype(float) well_x_location = well.data[1][1].astype(float) wellx = (well_x_location, well_x_location) welly = (y1, y2) well.mpl_actor = self.model_frame.plot(wellx, welly, linestyle='-', linewidth='2', color='black') # PLOT WELL NAME well.mpl_actor_name = self.model_frame.annotate(well.name, xy=(well_x_location, -0.5), xytext=(well_x_location, -0.5), fontsize=well.textsize, weight='bold', horizontalalignment='center', color='black', bbox=dict(boxstyle="round,pad=.2", fc="0.8"), clip_on=True) # PLOT WELL HORIZONS # SET EMPTY ARRAYS TO FILL WITH LABELS AND HORIZONS well.labels_list = [None] * (len(well.data) - 2) well.horizons_list = [None] * (len(well.data) - 2) for i in range(2, len(well.data)): y = [well.data[i][1].astype(float), well.data[i][1].astype(float)] x = [well.data[1][1].astype(float) - 1, well.data[1][1].astype(float) + 1] # PLOT HORIZON LINE well.horizons_list[i - 2] = self.model_frame.plot(x, y, linestyle='-', linewidth='2', color='black') horizon_y_pos = well.data[i][1].astype(float) horizon = well.data[i][0].astype(str) # ALTERNATE POSITION OF ODDs/EVENs TO TRY AND AVOID OVERLAP if i % 2 == 0: horizon_x_pos = well.data[1][1].astype(float) - 1.05 well.labels_list[i - 2] = self.model_frame.annotate(horizon, xy=(horizon_x_pos, horizon_y_pos), xytext=(horizon_x_pos, horizon_y_pos), fontsize=well.text_size, weight='bold', horizontalalignment='left', verticalalignment='top', color='black', bbox=dict(boxstyle="round,pad=.4", fc="0.8", ec='None'), clip_on=True) else: horizon_x_pos = well.data[1][1].astype(float) + 1.05 well.labels_list[i - 2] = self.model_frame.annotate(horizon, xy=(horizon_x_pos, horizon_y_pos), xytext=(horizon_x_pos, horizon_y_pos), fontsize=well.text_size, weight='bold', horizontalalignment='right', verticalalignment='top', color='black', bbox=dict(boxstyle="round,pad=.4", fc="0.8", ec='None'), clip_on=True) # SET WELL COUNTER self.well_counter = len(self.well_data_list) def replot_outcrop_data(self): """ADD LOADED OUTCROP DATA TO THE MODEL FRAME""" for x in range(len(self.outcrop_data_list)): if self.outcrop_data_list[x] is not None: # SET CURRENT OUTCROP DATA RECORD outcrop = self.outcrop_data_list[x] # PLOT MARKERS IN MODEL outcrop.lines = [None] * len(outcrop.data) for i in range(len(outcrop.data)): x1 = outcrop.data[i, 0].astype(float) y1 = outcrop.data[i, 1].astype(float) y2 = outcrop.data[i, 2].astype(float) x = (x1, x1) y = (y1, y2) outcrop.lines[i] = self.model_frame.plot(x, y, linestyle='-', linewidth='2', color=outcrop.color) # DRAW TEXT LABELS outcrop.labels = [None] * len(outcrop.data) # CREATE TEXT XYT text = list(zip(outcrop.data[:, 0].astype(float), outcrop.data[:, 1].astype(float), outcrop.data[:, 3].astype(str))) for i in range(len(outcrop.data)): # ALTERNATE POSITION OF ODDs/EVENs To TRY AND AVOID OVERLAP if i % 2 == 0: outcrop.labels[i] = self.model_frame.annotate(text[i][2], xy=(text[i][0], text[i][1]), xytext=(text[i][0], text[i][1]), fontsize=outcrop.textsize, weight='regular', horizontalalignment='right', verticalalignment='bottom', color='black', bbox=dict(boxstyle="round,pad=.4", fc="0.8", ec='None'), clip_on=True) else: outcrop.labels[i] = self.model_frame.annotate(text[i][2], xy=(text[i][0], text[i][1]), xytext=(text[i][0], text[i][1]), fontsize=outcrop.textsize, weight='regular', horizontalalignment='left', verticalalignment='top', color='black', bbox=dict(boxstyle="round,pad=.4", fc="0.8", ec='None'), clip_on=True) # APPEND NEW DATA MENU TO 'OUTCROP DATA MENU' self.outcrop_submenu = wx.Menu() self.m_outcrop_submenu.Append(self.outcrop_data_count, outcrop.name, self.outcrop_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.outcrop_submenu.Append(13000 + self.outcrop_data_count, 'delete observed data') # BIND TO DEL XY FUNC self.Bind(wx.EVT_MENU, self.delete_outcrop_data, id=13000 + self.outcrop_data_count) # ISET OUTCROP COUNTER self.outcrop_data_count = len(self.outcrop_data_list) def replot_segy_data(self): """ PLOT SEGY DATA""" for x in range(len(self.segy_data_list)): if self.segy_data_list[x] is not None: # SET CURRENT SEGY OBJECT segy = self.segy_data_list[x] # LOAD SEGY DATA try: section = read(segy.file, unpack_trace_headers=False) except IOError: load_error = MessageDialog(self, -1, "SEGY LOAD ERROR: FILE NOT FOOUND", "Segy load error") return nsamples = len(section.traces[0].data) ntraces = len(section.traces) seis_data = plt.zeros((nsamples, ntraces)) for i, tr in enumerate(section.traces): seis_data[:, i] = tr.data del section # SET AXIS segy.axis = [segy.dimensions[0], segy.dimensions[1], segy.dimensions[3], segy.dimensions[2]] # PLOT SEGY DATA ON MODEL segy.mpl_actor = self.model_frame.imshow(seis_data, vmin=self.segy_gain_neg, vmax=self.segy_gain_pos, aspect='auto', extent=segy.axis, cmap=self.segy_color_map, alpha=0.75) # REMOVE SEGY DATA del seis_data # SET SEGY ON SWTICH self.segy_on = True # APPEND NEW SEGY TO THE SEGY DATA LIST self.segy_data_list.append(segy) # ADD SEGY_NAME TO SEGY MENU. NB: ID's START AT 1000 self.segy_name_submenu = wx.Menu() self.m_segy_submenu.Append(segy.id + 1000, segy.name, self.segy_name_submenu) self.segy_name_submenu.Append(segy.id + 1000, 'delete segy') self.Bind(wx.EVT_MENU, self.remove_segy, id=segy.id + 1000) # INCREMENT COUNTER self.segy_counter = len(self.segy_data_list) # TOPOGRAPHY DATA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # TOPOGRAPHY DATA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def load_topo(self, event): self.load_window = LoadObservedDataFrame(self, -1, 'Load observed data', 'topography') self.load_window.Show(True) def open_obs_t(self): """ LOAD OBSERVE TOPOGRAPHY DATA. DATA ARE STORED IN gmg.observed_topography_list as a ObservedData object. object IDs start at 11000. """ # PARSE USER INPUT FILE input_file = self.load_window.file_path # CREATE NEW OBSERVED GRAVITY OBJECT observed_topography = ObservedData() # SET ATTRIBUTES observed_topography.id = int(self.observed_topography_counter) observed_topography.type = str('observed') observed_topography.name = self.load_window.observed_name observed_topography.color = self.load_window.color_picked observed_topography.data = np.genfromtxt(input_file, delimiter=' ', dtype=float) observed_topography.mpl_actor = self.topo_frame.scatter(observed_topography.data[:, 0], observed_topography.data[:, 1], marker='o', color=observed_topography.color, s=5, gid=observed_topography.id) # APPEND NEW DATA TO THE OBSERVED GRAVITY GMG LIST self.observed_topography_list.append(observed_topography) # TURN ON OBSERVED GRAVITY SWITCH self.observed_topography_switch = True # APPEND NEW DATA MENU TO 'TOPO data MENU' self.topo_submenu = wx.Menu() self.m_topo_submenu.Append(10000 + observed_topography.id, observed_topography.name, self.topo_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.topo_submenu.Append(10000 + observed_topography.id, 'delete observed data') # BIND TO DELETE OBSERVED GRAVITY FUNC self.Bind(wx.EVT_MENU, self.delete_observed_topography, id=10000 + observed_topography.id) # INCREMENT OBSERVED GRAVITY COUNTER self.observed_topography_counter += 1 # UPDATE GMG GUI self.update_layer_data() self.set_frame_limits() self.draw() def delete_observed_topography(self, event): """DELETE AN OBSERVED TOPOGRAPHY DATA RECORD""" # DESTROY MENUBAR self.m_topo_submenu.DestroyItem(event.Id) # REMOVE OBJECT AND MPL ACTOR obj_id = event.Id - 10000 self.observed_topography_list[obj_id].mpl_actor.set_visible(False) self.observed_topography_list[obj_id] = None # UPDATE MODEL self.update_layer_data() self.draw() def filter_observed_topography(self, event): """FILTER OBSERVED TOPOGRAPHY USING MEDIAN FILTER - CALLS class MedianFilterDialog""" # RUN FILTER median_filter_box = MedianFilterDialog(self, -1, 'median filter', self.observed_topography_list) answer = median_filter_box.ShowModal() # CREATE NEW OBSERVED GRAVITY OBJECT observed = ObservedData() # SET ATTRIBUTES observed.id = int(self.observed_topography_counter) observed.type = str('filtered') observed.name = median_filter_box.output_name observed.color = median_filter_box.output_color observed.data = median_filter_box.filtered_output observed.mpl_actor = self.topo_frame.scatter(observed.data[:, 0], observed.data[:, 1], marker='o', color=observed.color, s=5, gid=observed.id) # APPEND NEW DATA TO THE OBSERVED GRAVITY GMG LIST self.observed_topography_list.append(observed) # APPEND NEW DATA MENU TO 'TOPO data MENU' self.topo_submenu = wx.Menu() self.m_topo_submenu.Append(10000 + observed.id, observed.name, self.topo_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.topo_submenu.Append(10000 + observed.id, 'delete observed data') # BIND TO DELETE OBSERVED GRAVITY FUNC self.Bind(wx.EVT_MENU, self.delete_observed_topography, id=10000 + observed.id) # INCREMENT OBSERVED GRAVITY COUNTER self.observed_topography_counter += 1 # UPDATE GMG GUI self.update_layer_data() self.set_frame_limits() self.draw() def take_topography_horizontal_derivative(self, event): """ TAKE HORIZONTAL DERIVATIVE OF OBSERVED DATA. CALLS class HorizontalDerivative """ # OPEN THE HORIZONTAL DERIVATIVE INPUT WINDOW horizontal_derivative_box = HorizontalDerivative(self, -1, 'Horizontal derivative', self.observed_topography_list) answer = horizontal_derivative_box.ShowModal() # CREATE NEW DATA OBJECT AND PARSE OUTPUT TO THE OBJECT new_derivative = ObservedData() new_derivative.data = horizontal_derivative_box.deriv new_derivative.name = horizontal_derivative_box.output_name new_derivative.color = horizontal_derivative_box.output_color new_derivative.id = 10000 + self.observed_topography_counter new_derivative.type = str('derivative') new_derivative.mpl_actor = self.topo_d_frame.scatter(new_derivative.data[:, 0], new_derivative.data[:, 1], marker='o', color=new_derivative.color, s=5, gid=10000 + self.observed_topography_counter) # APPEND NEW DATA TO THE OBSERVED GRAVITY GMG LIST self.observed_topography_list.append(new_derivative) # APPEND NEW MENUBAR TO THE GRAVITY MENUBAR self.topo_submenu = wx.Menu() self.m_topo_submenu.Append(10000 + self.observed_topography_counter, new_derivative.name, self.topo_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.topo_submenu.Append(10000 + self.observed_topography_counter, 'delete observed data') # BIND TO DEL FUNC self.Bind(wx.EVT_MENU, self.delete_obs_topo, id=10000 + self.observed_topography_counter) # INCREMENT TOPO DERIV COUNTER self.observed_topography_counter += 1 # UPDATE GMG GUI self.update_layer_data() self.draw() # GRAVITY DATA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def load_obs_g(self, event): self.load_window = LoadObservedDataFrame(self, -1, 'Load observed data', 'gravity') self.load_window.Show(True) def open_obs_g(self): """ LOAD OBSERVE GRAVITY DATA. DATA ARE STORED IN gmg.observed_gravity_list as a ObservedData object. object IDs start at 11000. """ # PARSE USER INPUT FILE input_file = self.load_window.file_path # CREATE NEW OBSERVED GRAVITY OBJECT observed_gravity = ObservedData() # SET ATTRIBUTES observed_gravity.id = int(self.observed_gravity_counter) observed_gravity.type = str('observed') observed_gravity.name = self.load_window.observed_name observed_gravity.color = self.load_window.color_picked observed_gravity.data = np.genfromtxt(input_file, delimiter=' ', dtype=float) observed_gravity.mpl_actor = self.gravity_frame.scatter(observed_gravity.data[:, 0], observed_gravity.data[:, 1], marker='o', color=observed_gravity.color, s=5, gid=observed_gravity.id) # APPEND NEW DATA TO THE OBSERVED GRAVITY GMG LIST self.observed_gravity_list.append(observed_gravity) # TURN ON OBSERVED GRAVITY SWITCH self.observed_gravity_switch = True # APPEND NEW DATA MENU TO 'GRAV data MENU' self.grav_submenu = wx.Menu() self.m_obs_g_submenu.Append(11000 + observed_gravity.id, observed_gravity.name, self.grav_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.grav_submenu.Append(11000 + observed_gravity.id, 'delete observed data') # BIND TO DELETE OBSERVED GRAVITY FUNC self.Bind(wx.EVT_MENU, self.delete_obs_grav, id=11000 + observed_gravity.id) # INCREMENT OBSERVED GRAVITY COUNTER self.observed_gravity_counter += 1 # UPDATE GMG GUI self.update_layer_data() self.set_frame_limits() self.draw() def delete_obs_grav(self, event): # DESTROY MENUBAR self.m_obs_g_submenu.DestroyItem(event.Id) # REMOVE OBJECT AND MPL ACTOR obj_id = event.Id - 11000 self.observed_gravity_list[obj_id].mpl_actor.set_visible(False) self.observed_gravity_list[obj_id] = None # UPDATE MODEL self.update_layer_data() self.set_frame_limits() self.draw() def set_gravity_elv(self, event): """POPOUT BOX TO LET USER DEFINE THE ELEVATION AT WHICH TO CALCULATE THE GRAVITY ANOMALY""" # CREATE THE POPOUT BOX FOR USER UNPUT grav_box = GravDialog(self, -1, 'Gravity elevation', self.gravity_observation_elv) answer = grav_box.ShowModal() # SET THE NEW CALCULATION ELEVATION self.gravity_observation_elv = grav_box.grav_observation_elv * 1000. # CONVERT FROM (km) TO (m) # UPDATE GMG self.run_algorithms() self.draw() def save_modelled_grav(self, event): """SAVE PREDICTED GRAVITY TO EXTERNAL ASCII FILE""" save_file_dialog = wx.FileDialog(self, "Save Predicted Anomaly", "", "", "Predicted Anomaly (*.txt)|*.txt", wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) if save_file_dialog.ShowModal() == wx.ID_CANCEL: return # THE USER CHANGED THEIR MIND # SAVE TO DISC outputfile = save_file_dialog.GetPath() np.savetxt(outputfile, list(zip((self.xp * 0.001), self.predicted_gravity)), delimiter=' ', fmt='%.6f %.6f') def filter_observed_gravity(self, event): """FILTER OBSERVED ANOMALY USING MEDIAN FILTER - CALLS class MedianFilterDialog""" # RUN FILTER median_filter_box = MedianFilterDialog(self, -1, 'median filter', self.observed_gravity_list) answer = median_filter_box.ShowModal() # CREATE NEW OBSERVED GRAVITY OBJECT observed = ObservedData() # SET ATTRIBUTES observed.id = int(self.observed_gravity_counter) observed.type = str('filtered') observed.name = median_filter_box.output_name observed.color = median_filter_box.output_color observed.data = median_filter_box.filtered_output observed.mpl_actor = self.gravity_frame.scatter(observed.data[:, 0], observed.data[:, 1], marker='o', color=observed.color, s=5, gid=observed.id) # APPEND NEW DATA TO THE OBSERVED GRAVITY GMG LIST self.observed_gravity_list.append(observed) # TURN ON OBSERVED GRAVITY SWITCH self.observed_gravity_switch = True # APPEND NEW DATA MENU TO 'GRAV data MENU' self.grav_submenu = wx.Menu() self.m_obs_g_submenu.Append(11000 + observed.id, observed.name, self.grav_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.grav_submenu.Append(11000 + observed.id, 'delete observed data') # BIND TO DELETE OBSERVED GRAVITY FUNC self.Bind(wx.EVT_MENU, self.delete_obs_grav, id=11000 + observed.id) # INCREMENT OBSERVED GRAVITY COUNTER self.observed_gravity_counter += 1 # UPDATE GMG GUI self.update_layer_data() self.set_frame_limits() self.draw() def take_gravity_horizontal_derivative(self, event): """ TAKE HORIZONTAL DERIVATIVE OF OBSERVED DATA. CALLS class HorizontalDerivative """ # OPEN THE HORIZONTAL DERIVATIVE INPUT WINDOW horizontal_derivative_box = HorizontalDerivative(self, -1, 'Horizontal derivative', self.observed_gravity_list) answer = horizontal_derivative_box.ShowModal() # CREATE NEW DATA OBJECT AND PARSE OUTPUT TO THE OBJECT new_derivative = ObservedData() new_derivative.data = horizontal_derivative_box.deriv new_derivative.name = horizontal_derivative_box.output_name new_derivative.color = horizontal_derivative_box.output_color new_derivative.id = 11000 + self.observed_gravity_counter new_derivative.type = str('derivative') new_derivative.mpl_actor = self.gravity_d_frame.scatter(new_derivative.data[:, 0], new_derivative.data[:, 1], marker='o', color=new_derivative.color, s=5, gid=11000 + self.observed_gravity_counter) # APPEND NEW DATA TO THE OBSERVED GRAVITY GMG LIST self.observed_gravity_list.append(new_derivative) # APPEND NEW MENUBAR TO THE GRAVITY MENUBAR self.grav_submenu = wx.Menu() self.m_obs_g_submenu.Append(11000 + self.observed_gravity_counter, new_derivative.name, self.grav_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.grav_submenu.Append(11000 + self.observed_gravity_counter, 'delete observed data') # BIND TO DEL FUNC self.Bind(wx.EVT_MENU, self.delete_obs_grav, id=11000 + self.observed_gravity_counter) # INCREMENT GRAV DERIV COUNTER self.observed_gravity_counter += 1 # UPDATE GMG GUI self.update_layer_data() self.draw() # MAGNETIC DATA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def load_obs_m(self, event): self.load_window = LoadObservedDataFrame(self, -1, 'Load observed data', 'magnetics') self.load_window.Show(True) def open_obs_m(self): """ LOAD OBSERVE GRAVITY DATA. DATA ARE STORED IN gmg.observed_gravity_list as a ObservedData object. object IDs start at 12000. """ # PARSE USER INPUT FILE input_file = self.load_window.file_path # CREATE NEW OBSERVED GRAVITY OBJECT observed_magnetic = ObservedData() # SET ATTRIBUTES observed_magnetic.id = int(self.observed_magnetic_counter) observed_magnetic.type = str('observed') observed_magnetic.name = self.load_window.observed_name observed_magnetic.color = self.load_window.color_picked observed_magnetic.data = np.genfromtxt(input_file, delimiter=' ', dtype=float) observed_magnetic.mpl_actor = self.magnetic_frame.scatter(observed_magnetic.data[:, 0], observed_magnetic.data[:, 1], marker='o', color=observed_magnetic.color, s=5, gid=observed_magnetic.id) # APPEND NEW DATA TO THE OBSERVED GRAVITY GMG LIST self.observed_magnetic_list.append(observed_magnetic) # TURN ON OBSERVED GRAVITY SWITCH self.observed_magnetic_switch = True # APPEND NEW DATA MENU TO 'GRAV data MENU' self.mag_submenu = wx.Menu() self.m_obs_mag_submenu.Append(12000 + observed_magnetic.id, observed_magnetic.name, self.mag_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.mag_submenu.Append(12000 + observed_magnetic.id, 'delete observed data') # BIND TO DELETE OBSERVED GRAVITY FUNC self.Bind(wx.EVT_MENU, self.delete_obs_mag, id=12000 + observed_magnetic.id) # INCREMENT OBSERVED GRAVITY COUNTER self.observed_magnetic_counter += 1 # UPDATE GMG GUI self.update_layer_data() self.set_frame_limits() self.draw() def delete_obs_mag(self, event): """DELETE A MAGNETIC ANOMALY FROM THE MAGNETIC DATA PANEL""" # DESTROY MENUBAR self.m_obs_mag_submenu.DestroyItem(event.Id) # REMOVE OBJECT AND MPL ACTOR obj_id = event.Id - 12000 self.observed_magnetic_list[obj_id].mpl_actor.set_visible(False) self.observed_magnetic_list[obj_id] = None # UPDATE MODEL self.update_layer_data() self.set_frame_limits() self.draw() def set_mag_variables(self, event): """POPOUT BOX TO LET USER DEFINE MAGNETIC FIELD VALUES""" # CREATE POPOUT MENU mag_box = MagDialog(self, -1, 'Magnetic parameters', self.mag_observation_elv, self.model_azimuth, self.earth_field) answer = mag_box.ShowModal() # UPDATE MAGNETIC OBSERVATION ELEVATION self.mag_observation_elv = mag_box.mag_observation_elv * 1000. # CONVERT FROM (km) TO (m) # UPDATE GMG self.run_algorithms() self.draw() def save_modelled_mag(self, event): """SAVE THE MODELLED MAGNETIC ANOMALY TO DISC""" save_file_dialog = wx.FileDialog(self, "Save Predicted Anomaly", "", "", "Predicted Anomaly (*.txt)|*.txt", wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) if save_file_dialog.ShowModal() == wx.ID_CANCEL: return # THE USER CHANGED THEIR MIND # SAVE TO DISC outputfile = save_file_dialog.GetPath() np.savetxt(outputfile, list(zip((self.xp * 0.001), self.predicted_nt)), delimiter=' ', fmt='%.6f %.6f') def filter_observed_magnetic(self, event): """FILTER OBSERVED MAGNETIC USING MEDIAN FILTER - CALLS class MedianFilterDialog""" # RUN FILTER median_filter_box = MedianFilterDialog(self, -1, 'median filter', self.observed_magnetic_list) answer = median_filter_box.ShowModal() # CREATE NEW OBSERVED GRAVITY OBJECT observed = ObservedData() # SET ATTRIBUTES observed.id = int(self.observed_magnetic_counter) observed.type = str('filtered') observed.name = median_filter_box.output_name observed.color = median_filter_box.output_color observed.data = median_filter_box.filtered_output observed.mpl_actor = self.magnetic_frame.scatter(observed.data[:, 0], observed.data[:, 1], marker='o', color=observed.color, s=5, gid=observed.id) # APPEND NEW DATA TO THE OBSERVED GRAVITY GMG LIST self.observed_magnetic_list.append(observed) # APPEND NEW DATA MENU TO 'MAG data MENU' self.mag_submenu = wx.Menu() self.m_obs_mag_submenu.Append(12000 + observed.id, observed.name, self.mag_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.mag_submenu.Append(12000 + observed.id, 'delete observed data') # BIND TO DELETE OBSERVED GRAVITY FUNC self.Bind(wx.EVT_MENU, self.delete_obs_mag, id=12000 + observed.id) # INCREMENT OBSERVED GRAVITY COUNTER self.observed_magnetic_counter += 1 # UPDATE GMG GUI self.update_layer_data() self.set_frame_limits() self.draw() def take_magnetic_horizontal_derivative(self, event): """ TAKE HORIZONTAL DERIVATIVE OF OBSERVED DATA. CALLS class HorizontalDerivative """ # OPEN THE HORIZONTAL DERIVATIVE INPUT WINDOW horizontal_derivative_box = HorizontalDerivative(self, -1, 'Horizontal derivative', self.observed_magnetic_list) answer = horizontal_derivative_box.ShowModal() # CREATE NEW DATA OBJECT AND PARSE OUTPUT TO THE OBJECT new_derivative = ObservedData() new_derivative.data = horizontal_derivative_box.deriv new_derivative.name = horizontal_derivative_box.output_name new_derivative.color = horizontal_derivative_box.output_color new_derivative.id = 12000 + self.observed_magnetic_counter new_derivative.type = str('derivative') new_derivative.mpl_actor = self.magnetic_d_frame.scatter(new_derivative.data[:, 0], new_derivative.data[:, 1], marker='o', color=new_derivative.color, s=5, gid=12000 + self.observed_magnetic_counter) # APPEND NEW DATA TO THE OBSERVED GRAVITY GMG LIST self.observed_magnetic_list.append(new_derivative) # APPEND NEW MENUBAR TO THE GRAVITY MENUBAR self.mag_submenu = wx.Menu() self.m_obs_mag_submenu.Append(12500 + self.observed_magnetic_counter, new_derivative.name, self.mag_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.mag_submenu.Append(12500 + self.observed_magnetic_counter, 'delete observed data') # BIND TO DEL FUNC self.Bind(wx.EVT_MENU, self.delete_obs_mag, id=12500 + self.observed_magnetic_counter) # INCREMENT MAG DERIV COUNTER self.observed_magnetic_counter += 1 # UPDATE GMG GUI self.update_layer_data() self.draw() # SEGY DATA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def segy_input(self, event): seismic_data_box = SeisDialog(self, -1, 'Segy Dimensions', self.area) answer = seismic_data_box.ShowModal() self.d = seismic_data_box.dimensions self.segy_name = seismic_data_box.segy_name_input self.sx1, self.sx2, self.sz1, self.sz2 = self.d self.load_segy(self) def load_segy(self, event): try: open_file_dialog = wx.FileDialog(self, "Open Observed file", "", "", "All files (*.*)|*.*", wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) if open_file_dialog.ShowModal() == wx.ID_CANCEL: return # THE USER CHANGED THEIR MIND # PARSE INPUT FILE file_in = open_file_dialog.GetPath() # CREATE NEW SEGY OBJECT segy = SegyData() # ASSIGN ATTRIBUTES segy.id = self.segy_counter segy.file = file_in segy.name = self.segy_name segy.dimensions = self.d # LOAD SEGY DATA section = read(file_in, unpack_trace_headers=False) nsamples = len(section.traces[0].data) ntraces = len(section.traces) seis_data = plt.zeros((nsamples, ntraces)) for i, tr in enumerate(section.traces): seis_data[:, i] = tr.data del section # SET AXIS segy.axis = [segy.dimensions[0], segy.dimensions[1], segy.dimensions[3], segy.dimensions[2]] # PLOT SEGY DATA ON MODEL segy.mpl_actor = self.model_frame.imshow(seis_data, vmin=self.segy_gain_neg, vmax=self.segy_gain_pos, aspect='auto', extent=segy.axis, cmap=self.segy_color_map, alpha=0.75) # REMOVE SEGY DATA del seis_data # SET SEGY ON SWTICH self.segy_on = True # APPEND NEW SEGY TO THE SEGY DATA LIST self.segy_data_list.append(segy) # ADD SEGY_NAME TO SEGY MENU. NB: ID's START AT 1000 self.segy_name_submenu = wx.Menu() self.m_segy_submenu.Append(self.segy_counter + 1000, segy.name, self.segy_name_submenu) self.segy_name_submenu.Append(self.segy_counter + 1000, 'delete segy') self.Bind(wx.EVT_MENU, self.remove_segy, id=self.segy_counter + 1000) # INCREMENT COUNTER self.segy_counter += 1 except AttributeEditor: load_error = MessageDialog(self, -1, "SEGY LOAD ERROR", "segy load error") # REPLOT MODEL self.update_layer_data() self.draw() def remove_segy(self, event): """DELETE SEGY DATA. NB 1000 IS TAKEN FROM EVENT.ID TO PREVENT OVERLAP WITH GRAV EVENT.IDS""" if self.segy_on: # DELETE SEGY OBJECT obj_id = event.Id - 1000 self.segy_data_list[obj_id].mpl_actor.set_visible(False) self.segy_data_list[obj_id].mpl_actor.remove() self.segy_data_list[obj_id] = None # REMOVE MENUBAR self.m_segy_submenu.DestroyItem(event.Id) # UPDATE MODEL self.update_layer_data() self.set_frame_limits() self.draw() def segy_color_adjustment(self, event): if event.Id == 901: for s in range(0, len(self.segy_data_list)): if self.segy_data_list[s] is not None: self.segy_data_list[s].mpl_actor.set_cmap(cm.gray) else: if event.Id == 902: for s in range(0, len(self.segy_data_list)): if self.segy_data_list[s] is not None: self.segy_data_list[s].mpl_actor.set_cmap(cm.seismic) # REDRAW MODEL self.draw() def gain_increase(self, event): # CHANGE THE GAIN VALUE gain_pos = self.segy_gain_pos - 1.0 if gain_pos < 1.0: return else: self.segy_gain_pos = gain_pos self.segy_gain_neg = -gain_pos # REDRAW THE SEGY PML ACTOR for s in range(0, len(self.segy_data_list)): if self.segy_data_list[s] is not None: self.segy_data_list[s].mpl_actor.set_clim(vmax=self.segy_gain_pos) self.segy_data_list[s].mpl_actor.set_clim(vmin=self.segy_gain_neg) # REDRAW MODEL self.draw() def gain_decrease(self, event): # CHANGE THE GAIN VALUE gain_pos = self.segy_gain_pos + 1.0 if gain_pos < 1.0: return else: self.segy_gain_pos = gain_pos self.segy_gain_neg = -gain_pos # REDRAW THE SEGY PML ACTOR for s in range(0, len(self.segy_data_list)): if self.segy_data_list[s] is not None: self.segy_data_list[s].mpl_actor.set_clim(vmax=self.segy_gain_pos) self.segy_data_list[s].mpl_actor.set_clim(vmin=self.segy_gain_neg) # REDRAW MODEL self.draw() # XY DATA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def load_xy(self, event): """ LOAD & PLOT XY DATA E.G. EQ HYPOCENTERS. NB: ID's start at 5000""" self.load_window = LoadObservedDataFrame(self, -1, 'Load observed data', 'XY') self.load_window.Show(True) def open_xy_data(self): """ OPEN THE XY DATA SELECTED BY THE USER USING THE load_xy FUNC NB: IDs START AT 5000 """ xy_input_file = self.load_window.file_path self.xy_name = self.load_window.observed_name self.xy_color = self.load_window.color_picked # CREATE NEW OBSERVED GRAVITY OBJECT new_xy = ObservedData() # SET ATTRIBUTES new_xy.data = np.genfromtxt(xy_input_file, dtype=float, autostrip=True) new_xy.id = self.xy_data_counter new_xy.name = self.load_window.observed_name new_xy.color = self.load_window.color_picked new_xy.type = str('observed') new_xy.mpl_actor = self.model_frame.scatter(new_xy.data[:, 0], new_xy.data[:, 1], marker='o', color=new_xy.color, s=3, gid=4000 + self.xy_data_counter) # APPEND NEW DATA TO THE OBSERVED GRAVITY GMG LIST self.observed_xy_data_list.append(new_xy) # APPEND NEW DATA MENU TO 'XY data MENU' self.obs_submenu = wx.Menu() self.m_xy_submenu.Append(4000 + self.xy_data_counter, new_xy.name, self.obs_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.obs_submenu.Append(4000 + self.xy_data_counter, 'delete observed data') # BIND TO DEL XY FUNC self.Bind(wx.EVT_MENU, self.delete_xy, id=4000 + self.xy_data_counter) # INCREMENT XY COUNTER self.xy_data_counter += 1 # UPDATE GMG GUI self.update_layer_data() self.draw() def delete_xy(self, event): """"DELETE OBSERVED XY DATA NB: ID's start at 4000""" # DESTROY MENUBAR self.m_xy_submenu.DestroyItem(event.Id) # REMOVE OBJECT AND MPL ACTOR obj_id = event.Id - 4000 self.observed_xy_data_list[obj_id].mpl_actor.set_visible(False) self.observed_xy_data_list[obj_id] = None # UPDATE MODEL self.update_layer_data() self.set_frame_limits() self.draw() # WELL DATA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def load_well(self, event): """ LOAD A WELL RECORD INTO THE MODEL FRAME. IDs BEGIN AT 3000. HIDE/SHOW TOGGLE IDs BEGIN AT 2000. """ # CREATE INSTANCE OF LOADING DIALOG BOX open_file_dialog = wx.FileDialog(self, "Open Observed file", "", "", "All files (*.*)|*.*", wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) if open_file_dialog.ShowModal() == wx.ID_CANCEL: return # THE USER CHANGED THEIR MIND else: well_in = open_file_dialog.GetPath() well_name_box = wx.TextEntryDialog(None, 'Please provide a name for the new well record:') answer = well_name_box.ShowModal() # CREATE A NEW WELL DATA OBJECT well = ObservedWellData() # SET WELL ATTRIBUTES well.id = self.well_counter # SET NAME well.name = well_name_box.GetValue() well.textsize = 2 # SET DATA with open(well_in, 'r') as f: input_record = [line.strip().split(' ') for line in f] well.raw_record = input_record well.data = np.array(well.raw_record[1:]) # CREATE NP ARRAY WITHOUT HEADER INFO # CREATE FILE MENU DATA self.well_name_submenu = wx.Menu() self.m_wells_submenu.Append(self.well_counter + 3000, well.name, self.well_name_submenu) self.well_name_submenu.Append(self.well_counter + 2000, 'Hide/Show') self.well_name_submenu.Append(self.well_counter + 3000, 'Delete well') self.Bind(wx.EVT_MENU, self.show_hide_well, id=well.id + 2000) self.Bind(wx.EVT_MENU, self.delete_well, id=well.id + 3000) # DRAW WELL IN MODEL FRAME y1 = well.data[0][1].astype(float) y2 = well.data[-1][-1].astype(float) well_x_location = well.data[1][1].astype(float) wellx = (well_x_location, well_x_location) welly = (y1, y2) well.mpl_actor = self.model_frame.plot(wellx, welly, linestyle='-', linewidth='2', color='black') # PLOT WELL NAME well.mpl_actor_name = self.model_frame.annotate(well.name, xy=(well_x_location, -0.5), xytext=(well_x_location, -0.5), fontsize=well.textsize, weight='bold', horizontalalignment='center', color='black', bbox=dict(boxstyle="round,pad=.2", fc="0.8"), clip_on=True) # PLOT WELL HORIZONS # SET EMPTY ARRAYS TO FILL WITH LABELS AND HORIZONS well.labels_list = [None] * (len(well.data) - 2) well.horizons_list = [None] * (len(well.data) - 2) for i in range(2, len(well.data)): y = [well.data[i][1].astype(float), well.data[i][1].astype(float)] x = [well.data[1][1].astype(float) - 1, well.data[1][1].astype(float) + 1] # PLOT HORIZON LINE well.horizons_list[i - 2] = self.model_frame.plot(x, y, linestyle='-', linewidth='2', color='black') horizon_y_pos = well.data[i][1].astype(float) horizon = well.data[i][0].astype(str) # ALTERNATE POSITION OF ODDs/EVENs TO TRY AND AVOID OVERLAP if i % 2 == 0: horizon_x_pos = well.data[1][1].astype(float) - 1.05 well.labels_list[i - 2] = self.model_frame.annotate(horizon, xy=(horizon_x_pos, horizon_y_pos), xytext=(horizon_x_pos, horizon_y_pos), fontsize=well.text_size, weight='bold', horizontalalignment='left', verticalalignment='top', color='black', bbox=dict(boxstyle="round,pad=.4", fc="0.8", ec='None'), clip_on=True) else: horizon_x_pos = well.data[1][1].astype(float) + 1.05 well.labels_list[i - 2] = self.model_frame.annotate(horizon, xy=(horizon_x_pos, horizon_y_pos), xytext=(horizon_x_pos, horizon_y_pos), fontsize=well.text_size, weight='bold', horizontalalignment='right', verticalalignment='top', color='black', bbox=dict(boxstyle="round,pad=.4", fc="0.8", ec='None'), clip_on=True) # APPEND WELL TO WELL DATA LIST self.well_data_list.append(well) # INCREAMENT WELL COUNTER self.well_counter += 1 # UPDATE GMG self.update_layer_data() self.draw() def show_hide_well(self, event): id = event.Id - 2000 if self.well_data_list[id].mpl_actor[0].get_visible(): # HIDE WELL self.well_data_list[id].mpl_actor[0].set_visible(False) self.well_data_list[id].mpl_actor_name.set_visible(False) # HIDE HORIZONS for h in range(len(self.well_data_list[id].horizons_list)): if self.well_data_list[id].horizons_list[h] is not None: self.well_data_list[id].horizons_list[h][0].set_visible(False) for l in range(len(self.well_data_list[id].labels_list)): if self.well_data_list[id].labels_list[l] is not None: self.well_data_list[id].labels_list[l].set_visible(False) else: # SHOW WELL self.well_data_list[id].mpl_actor[0].set_visible(True) self.well_data_list[id].mpl_actor_name.set_visible(True) # SHOW HORIZONS for h in range(len(self.well_data_list[id].horizons_list)): if self.well_data_list[id].horizons_list[h] is not None: self.well_data_list[id].horizons_list[h][0].set_visible(True) for l in range(len(self.well_data_list[id].labels_list)): if self.well_data_list[id].labels_list[l] is not None: self.well_data_list[id].labels_list[l].set_visible(True) # REDRAW self.draw() def delete_well(self, event): """"DELETE WELL DATA NB: ID's start at 2500""" # SET ID obj_id = event.Id - 3000 # REMOVE OBJECT AND MPL ACTOR self.well_data_list[obj_id].mpl_actor[0].set_visible(False) # REMOVE HORIZON MPL ACTORS for h in range(len(self.well_data_list[obj_id].horizons_list)): if self.well_data_list[obj_id].horizons_list[h] is not None: self.well_data_list[obj_id].horizons_list[h][0].set_visible(False) # REMOVE LABEL MPL ACTORS for l in range(len(self.well_data_list[obj_id].labels_list)): if self.well_data_list[obj_id].labels_list[l] is not None: self.well_data_list[obj_id].labels_list[l].set_visible(False) # SET OBJECT AS NONE self.well_data_list[obj_id] = None # DELETE MENUBAR ENTRY self.m_wells_submenu.DestroyItem(event.Id) # UPDATE MODEL self.draw() # GEOLOGY OUTCROP DATA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def load_outcrop_data(self, event): """ LOAD & PLOT SURFACE CONTACT DATA. E.G. GEOLOGICAL CONTACTS NB: ID's start at 13000""" self.load_window = LoadObservedDataFrame(self, -1, 'Load observed data', 'outcrop') self.load_window.Show(True) def open_outcrop_data(self): """OPEN THE OUTCROP DATA SELECTED BY THE USER USING THE load_outcrop_data FUNC""" # CREATE A NEW OUTCROP DATA OBJECT outcrop = ObservedOutcropData() # LOAD DATA FILE outcrop_input_file = self.load_window.file_path outcrop.id = self.outcrop_data_count outcrop.name = self.load_window.observed_name outcrop.color = self.load_window.color_picked outcrop.data = np.genfromtxt(outcrop_input_file, autostrip=True, dtype=str, comments='#') # PLOT MARKERS IN MODEL outcrop.lines = [None] * len(outcrop.data) for i in range(len(outcrop.data)): x1 = outcrop.data[i, 0].astype(float) y1 = outcrop.data[i, 1].astype(float) y2 = outcrop.data[i, 2].astype(float) x = (x1, x1) y = (y1, y2) outcrop.lines[i] = self.model_frame.plot(x, y, linestyle='-', linewidth='2', color=outcrop.color) # DRAW TEXT LABELS outcrop.labels = [None] * len(outcrop.data) # CREATE TEXT XYT text = list(zip(outcrop.data[:, 0].astype(float), outcrop.data[:, 1].astype(float), outcrop.data[:, 3].astype(str))) for i in range(len(outcrop.data)): # ALTERNATE POSITION OF ODDs/EVENs To TRY AND AVOID OVERLAP if i % 2 == 0: outcrop.labels[i] = self.model_frame.annotate(text[i][2], xy=(text[i][0], text[i][1]), xytext=(text[i][0], text[i][1]), fontsize=outcrop.textsize, weight='regular', horizontalalignment='right', verticalalignment='bottom', color='black', bbox=dict(boxstyle="round,pad=.4", fc="0.8", ec='None'), clip_on=True) else: outcrop.labels[i] = self.model_frame.annotate(text[i][2], xy=(text[i][0], text[i][1]), xytext=(text[i][0], text[i][1]), fontsize=outcrop.textsize, weight='regular', horizontalalignment='left', verticalalignment='top', color='black', bbox=dict(boxstyle="round,pad=.4", fc="0.8", ec='None'), clip_on=True) # APPEND NEW DATA MENU TO 'OUTCROP DATA MENU' self.outcrop_submenu = wx.Menu() self.m_outcrop_submenu.Append(13000 + self.outcrop_data_count, outcrop.name, self.outcrop_submenu) # APPEND DELETE DATA OPTION TO THE NEW DATA MENU self.outcrop_submenu.Append(13000 + self.outcrop_data_count, 'delete observed data') # BIND TO DEL XY FUNC self.Bind(wx.EVT_MENU, self.delete_outcrop_data, id=13000 + self.outcrop_data_count) # INCREMENT CONTACT COUNT self.outcrop_data_count += 1 # APPEND NEW OUTCROP DATA OBJECT TO THE OUTCROP DATA LIST self.outcrop_data_list.append(outcrop) # UPDATE GMG GUI self.update_layer_data() self.draw() def delete_outcrop_data(self, event): """"DELETE OUTCROP DATA NB: ID's start at 13000""" # SET ID obj_id = event.Id - 13000 # REMOVE LINE MPL ACTORS for i in range(len(self.outcrop_data_list[obj_id].lines)): self.outcrop_data_list[obj_id].lines[i][0].set_visible(False) # REMOVE LABEL MPL ACTORS for i in range(len(self.outcrop_data_list[obj_id].labels)): self.outcrop_data_list[obj_id].labels[i].set_visible(False) # SET OBJECT AS NONE self.outcrop_data_list[obj_id] = None # DELETE MENUBAR ENTRY self.m_outcrop_submenu.DestroyItem(event.Id) # UPDATE MODEL self.draw() # LAYER & NODE CONTROLS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def on_menu_set_button_press(self, event): """ CHECK IF A NODE FROM THE CURRENT LAYER IS SELECTED; IF NOT, THEN SKIP THIS PART AND ONLY UPDATE ATTRIBUTES """ print() self.index_node print() self.layer_list[self.currently_active_layer_id].type # GET NEW XY POINT new_x = float(self.x_input.GetValue()) new_y = float(self.y_input.GetValue()) # GET CURRENTLY ACTIVE LAYER NODES AND LABEL THEM xt AND yt xt = self.layer_list[self.currently_active_layer_id].x_nodes yt = self.layer_list[self.currently_active_layer_id].y_nodes # MODIFY xt and yt DEPENDING ON WHAT CONDITIONS ARE MET if self.layer_list[self.currently_active_layer_id].type == 'fixed' and self.index_node is not None: if xt[self.index_node] == 0 and yt[self.index_node] != 0.001: xt[self.index_node] = 0 # REPLACE OLD X WITH NEW X yt[self.index_node] = new_y # REPLACE OLD Y WITH NEW Y elif xt[self.index_node] == self.x2 and yt[self.index_node] != 0.001: xt[self.index_node] = self.x2 # REPLACE OLD X WITH NEW X yt[self.index_node] = new_y # REPLACE OLD Y WITH NEW Y elif xt[self.index_node] == 0 and yt[self.index_node] == 0.001: xt[self.index_node] = 0 # REPLACE OLD X WITH NEW X yt[self.index_node] = 0.001 # REPLACE OLD Y WITH NEW Y elif xt[self.index_node] == self.x2 and yt[self.index_node] == 0.001: xt[self.index_node] = self.x2 # REPLACE OLD X WITH NEW X yt[self.index_node] = 0.001 # REPLACE OLD Y WITH NEW Y elif new_y <= 0: xt[self.index_node] = new_x # REPLACE OLD X WITH NEW X yt[self.index_node] = 0.001 # REPLACE OLD Y WITH NEW Y else: xt[self.index_node] = new_x # REPLACE OLD X WITH NEW X yt[self.index_node] = new_y # REPLACE OLD Y WITH NEW Y elif self.layer_list[self.currently_active_layer_id].type == 'floating' and self.index_node is not None: print("MOVING NODE ON FLOATING LAYER") if new_y <= 0: xt[self.index_node] = new_x # REPLACE OLD X WITH NEW X yt[self.index_node] = 0.001 # REPLACE OLD Y WITH NEW Y else: xt[self.index_node] = new_x # REPLACE OLD X WITH NEW X yt[self.index_node] = new_y # REPLACE OLD Y WITH NEW Y # UPDATE THE CURRENTLY ACTIVE LAYER NODE LIST self.current_x_nodes = xt self.current_y_nodes = yt self.currently_active_layer.set_data(self.current_x_nodes, self.current_y_nodes) # UPDATE THE CURRENTLY ACTIVE LAYER layer_list ENTRY self.layer_list[self.currently_active_layer_id].x_nodes = xt self.layer_list[self.currently_active_layer_id].y_nodes = yt # COLOR CURRENTLY SELECTED NODE RED self.current_node.set_offsets([new_x, new_y]) # UPDATE LAYER DATA self.set_density(self) self.set_susceptibility(self) self.set_angle_a(self) self.set_angle_b(self) self.set_angle_c(self) self.set_earth_field(self) # UPDATE GMG self.update_layer_data() self.run_algorithms() self.draw() def get_node_under_point(self, event): """ GET THE INDEX VALUE OF THE NODE UNDER POINT, AS LONG AS IT IS WITHIN NODE_CLICK_LIMIT TOLERANCE OF CLICK """ # RESET NODE SWITCH self.didnt_get_node = False if self.pinch_switch is False: # PINCH MODE ISN'T ON, SO DO THE NORMAL ROUTINE # GET THE CURRENT LAYERS NODE VALUES xyt = self.currently_active_layer.get_xydata() xt = xyt[:, 0] yt = xyt[:, 1] # CALCULATE DISTANCES FROM THE MOUSE CLICK TO THE LAYER NODES d = np.sqrt((xt - event.xdata) ** 2 + (yt - event.ydata) ** 2) # FIND THE NODE INDEX VALUE FOR THE NODE CLOSEST TO THE CLICK self.index_arg = np.argmin(d) # CHECK IF THE NODE IS WITHIN THE "MEANT TO CLICK" DISTANCE if d[self.index_arg] >= self.node_click_limit: self.didnt_get_node = True return None, None else: # CHECK IF NODE IS A PINCHED POINT, IF YES FIND NODE OF ABOVE OR BELOW LAYER if self.layer_list[self.currently_active_layer_id].pinched is True: # CREATE EMPTY LIST THE FILL WIH THE NODE INDEX VALUES self.pinched_index_arg_list = [] for l in self.layer_list[self.currently_active_layer_id].pinched_list: # GET LAYER NODES xt = self.layer_list[l].x_nodes yt = self.layer_list[l].y_nodes # CALCULATE DISTANCES FROM THE MOUSE CLICK TO THE LAYER NODES d = np.sqrt((xt - event.xdata) ** 2 + (yt - event.ydata) ** 2) # FIND THE NODE INDEX VALUE FOR THE NODE CLOSEST TO THE CLICK AND APPEND IT # TO THE PINCHED INDEX LIST self.pinched_index_arg_list.append(np.argmin(d)) else: self.pinched_index_arg_list = None # NOW RETURN: # 1) THE INDEX VALUE OF THE NODE CLICKED. # 2) A LIST OF INDEX VALUES FOR NODES PINCHED TO INDEX_ARG (NONE IF THE NODE ISN'T PINCHED). return self.index_arg, self.pinched_index_arg_list else: # GMG IS IN PINCH MODE - SO JUST RETURN THE INDEX OF THE NODE # GET THE CURRENT LAYERS NODE VALUES xyt = self.currently_active_layer.get_xydata() xt = xyt[:, 0] yt = xyt[:, 1] # CALCULATE DISTANCES FROM THE MOUSE CLICK TO THE LAYER NODES d = np.sqrt((xt - event.xdata) ** 2 + (yt - event.ydata) ** 2) # FIND THE NODE INDEX VALUE FOR THE NODE CLOSEST TO THE CLICK self.index_arg = np.argmin(d) # CHECK IF THE NODE IS WITHIN THE "MEANT TO CLICK" DISTANCE if d[self.index_arg] >= self.node_click_limit: return None, None else: return self.index_arg, None def get_fault_node_under_point(self, event): """GET THE INDEX VALUE OF THE NODE UNDER POINT, AS LONG AS IT IS WITHIN NODE_CLICK_LIMIT TOLERANCE OF CLICK""" # RESET NODE SWITCH self.didnt_get_node = False # GET FAULT NODE XY DATA xy_data = self.currently_active_fault.get_xydata() x = xy_data[:, 0] y = xy_data[:, 1] # FIND NODE CLOSEST TO EVENT CLICK POINT d = np.sqrt((x - event.xdata) ** 2 + (y - event.ydata) ** 2) self.index_arg = np.argmin(d) # RETURN RESULTING NODE OR NONE if d[self.index_arg] >= self.node_click_limit: self.didnt_get_node = True return None else: return self.index_arg def button_press(self, event): """WHAT HAPPENS WHEN THE LEFT MOUSE BUTTON IS PRESSED""" if event.inaxes is None: return # CLICK IS OUTSIDE MODEL FRAME SO RETURN if event.button != 1: return if self.fault_picking_switch is False and self.capture is False and self.select_new_layer_nodes is False: # THEN GMG IS IN LAYER MODE # GET THE NODE CLOSEST TO THE CLICK AND ANY PINCHED NODES self.index_node, self.pinched_index_arg_list = self.get_node_under_point(event) if self.index_node is None: return # CHECK if the 'p' KEY IS ON (I.E. IN PINCH MODE) if self.pinch_switch is True: # SET THE FIRST NODE CLICKED AS NODE 1 if self.pinch_count == 0: self.layer_getting_pinched = self.currently_active_layer_id self.node_to_pinch_index = self.index_node self.pinch_count += 1 elif self.pinch_count == 1 and self.currently_active_layer_id == self.layer_getting_pinched: # USER HASN'T CHANGED TO A DIFFERENT LAYER YET return else: # USER IS UP TO SECOND MOUSE CLICK. SET THE NODE TO BE PINCHED AS THE SECOND NODE CLICKED # GET CURRENT LAYER NODES xyt = self.currently_active_layer.get_xydata() xt, yt = xyt[:, 0], xyt[:, 1] # SET THE PINCHED NODE self.layer_list[self.layer_getting_pinched].x_nodes[self.node_to_pinch_index] = xt[self.index_node] self.layer_list[self.layer_getting_pinched].y_nodes[self.node_to_pinch_index] = yt[self.index_node] # UPDATE LAYER LINE self.layer_list[self.layer_getting_pinched].node_mpl_actor[0].set_visible(False) self.layer_list[self.layer_getting_pinched].node_mpl_actor[0].remove() self.layer_list[self.layer_getting_pinched].node_mpl_actor = self.model_frame.plot( self.layer_list[self.layer_getting_pinched].x_nodes, self.layer_list[self.layer_getting_pinched].y_nodes, color='blue', linewidth=1.0, alpha=1.0) # UPDATE LAYER POLYGON FILL current_color = self.layer_list[self.layer_getting_pinched].polygon_mpl_actor[0].get_fc() self.layer_list[self.layer_getting_pinched].polygon_mpl_actor[0].set_visible(False) self.layer_list[self.layer_getting_pinched].polygon_mpl_actor[0].remove() self.layer_list[self.layer_getting_pinched].polygon_mpl_actor = self.model_frame.fill( self.layer_list[self.layer_getting_pinched].x_nodes, self.layer_list[self.layer_getting_pinched].y_nodes, color=current_color, alpha=0.4, closed=True, linewidth=None, ec=None) # RESET PINCH COUNT self.pinch_count = 0 # SET THE PINCH ATTRIBUTES IN THE LAYER OBJECTS self.layer_list[self.layer_getting_pinched].pinched = True if self.currently_active_layer_id in self.layer_list[self.layer_getting_pinched].pinched_list: pass else: self.layer_list[self.layer_getting_pinched].pinched_list.append(self.currently_active_layer_id) # SET THE PINCH ATTRIBUTES IN THE LAYER OBJECTS self.layer_list[self.currently_active_layer_id].pinched = True if self.layer_getting_pinched in self.layer_list[self.currently_active_layer_id].pinched_list: pass else: self.layer_list[self.currently_active_layer_id].pinched_list.append(self.layer_getting_pinched) # REDRAW MODEL self.update_layer_data() # self.draw() else: # GMG IS IN SIMPLE LAYER MODE - SO JUST SET THE NEW NODE LOCATION xyt = self.currently_active_layer.get_xydata() xt, yt = xyt[:, 0], xyt[:, 1] self.x_input.SetValue(xt[self.index_node]) self.y_input.SetValue(yt[self.index_node]) # COLOR CURRENTLY SELECTED NODE RED self.current_node.set_offsets([xt[self.index_node], yt[self.index_node]]) elif self.fault_picking_switch is True and self.select_new_layer_nodes is False \ and self.select_new_fault_nodes is False: # THEN GMG IS IN FAULT MODE # GET CURRENT NODE self.selected_node = self.get_fault_node_under_point(event) if self.selected_node is None: return # GET CURRENT X AND Y COORDS xyt = self.currently_active_fault.get_xydata() self.xt = xyt[:, 0] self.yt = xyt[:, 1] # COLOR CURRENTLY SELECTED NODE RED self.current_node.set_offsets([self.xt[self.selected_node], self.yt[self.selected_node]]) elif self.capture is True or self.select_new_layer_nodes is True or self.select_new_fault_nodes is True: # COORDINATE CAPTURE MODE OR NEW LAYER CREATION OR NEW FAULT CREATION IS ON. SO PASS return def move(self, event): """WHAT HAPPEN WHEN THE LEFT MOUSE BUTTON IS HELD AND THE MOUSE IS MOVED""" if self.index_node is None and self.selected_node is None: # NO NODE WAS FOUND NEAR THE CLICK return if event.inaxes is None: # CLICK WAS OUTSIDE THE MODEL FRAME return if event.button != 1: return if self.pinch_switch is True: # PINCH MODE IS ON return if self.pan_on is True: # PAN MODE IS ON return if self.zoom_on is True: # ZOOM MODE IS ON return if self.select_new_layer_nodes is True: # CURRENTLY CREATING A NEW LAYER return if self.didnt_get_node is True: # NO NODE WAS SELECTED WHEN CLICKING return if self.fault_picking_switch is True: # GMG IS IN FAULT MODE # ASSIGN NEW X AND Y POINTS self.new_x = event.xdata # GET X OF NEW POINT self.new_y = event.ydata # GET Y OF NEW POINT # UPDATE NODE ARRAY if self.xt[self.selected_node] == self.x1 and self.yt[self.selected_node] != 0.001: self.xt[self.selected_node] = self.x1 # REPLACE OLD X WITH NEW X self.yt[self.selected_node] = self.new_y # REPLACE OLD Y WITH NEW Y elif self.xt[self.selected_node] == self.x2 and self.yt[self.selected_node] != 0.001: self.xt[self.selected_node] = self.x2 # REPLACE OLD X WITH NEW X self.yt[self.selected_node] = self.new_y # REPLACE OLD Y WITH NEW Y elif self.xt[self.selected_node] == 0 and self.yt[self.selected_node] == 0.001: self.xt[self.selected_node] = 0 # REPLACE OLD X WITH NEW X self.yt[self.selected_node] = 0.001 # REPLACE OLD Y WITH NEW Y elif self.xt[self.selected_node] == self.x2 and self.yt[self.selected_node] == 0.001: self.xt[self.selected_node] = self.x2 # REPLACE OLD X WITH NEW X self.yt[self.selected_node] = 0.001 # REPLACE OLD Y WITH NEW Y elif self.new_y <= 0: self.xt[self.selected_node] = self.new_x # REPLACE OLD X WITH NEW X self.yt[self.selected_node] = 0.001 # REPLACE OLD Y WITH NEW Y else: self.xt[self.selected_node] = self.new_x # REPLACE OLD X WITH NEW X self.yt[self.selected_node] = self.new_y # REPLACE OLD Y WITH NEW Y # UPDATE THE FAULT LIST RECORDS self.fault_list[self.currently_active_fault_id].x_nodes = self.xt self.fault_list[self.currently_active_fault_id].y_nodes = self.yt # UPDATE THE FAULT MPL ACTOR self.fault_list[self.currently_active_fault_id].mpl_actor[0].set_xdata(self.xt) self.fault_list[self.currently_active_fault_id].mpl_actor[0].set_ydata(self.yt) # UPDATE THE CURRENT VIEW OF THE FAULT self.currently_active_fault.set_data(self.xt, self.yt) # UPDATE "CURRENT NODE" RED DOT if self.xt[self.selected_node] == self.x1: self.current_node.set_offsets([self.x1, self.new_y]) elif self.xt[self.selected_node] == self.x2: self.current_node.set_offsets([self.x2, self.new_y]) else: self.current_node.set_offsets([self.new_x, self.new_y]) self.update_layer_data() # UPDATE LAYER DATA # GMG IS IN LAYER MODE if self.fault_picking_switch is False: if self.layer_list[self.currently_active_layer_id].type == str('fixed'): # GET X AND Y VALUES x = event.xdata # GET X OF NEW POINT y = event.ydata # GET Y OF NEW POINT # GET CURRENT X AND Y ARRAYS xt = self.layer_list[self.currently_active_layer_id].x_nodes yt = self.layer_list[self.currently_active_layer_id].y_nodes current_x_value = xt[self.index_node] current_y_value = yt[self.index_node] # UPDATE NODE if xt[self.index_node] == self.x1 and yt[self.index_node] != 0.001: xt[self.index_node] = self.x1 # REPLACE OLD X WITH NEW X yt[self.index_node] = y # REPLACE OLD Y WITH NEW Y elif xt[self.index_node] == self.x2 and yt[self.index_node] != 0.001: xt[self.index_node] = self.x2 # REPLACE OLD X WITH NEW X yt[self.index_node] = y # REPLACE OLD Y WITH NEW Y elif xt[self.index_node] == 0 and yt[self.index_node] == 0.001: xt[self.index_node] = 0 # REPLACE OLD X WITH NEW X yt[self.index_node] = 0.001 # REPLACE OLD Y WITH NEW Y elif xt[self.index_node] == self.x2 and yt[self.index_node] == 0.001: xt[self.index_node] = self.x2 # REPLACE OLD X WITH NEW X yt[self.index_node] = 0.001 # REPLACE OLD Y WITH NEW Y elif y <= 0: xt[self.index_node] = x # REPLACE OLD X WITH NEW X yt[self.index_node] = 0.001 # REPLACE OLD Y WITH NEW Y else: xt[self.index_node] = x # REPLACE OLD X WITH NEW X yt[self.index_node] = y # REPLACE OLD Y WITH NEW Y elif self.layer_list[self.currently_active_layer_id].type == str('floating'): # GET THE X AND Y VALUES x = event.xdata # GET X OF NEW POINT y = event.ydata # GET Y OF NEW POINT xt = self.layer_list[self.currently_active_layer_id].x_nodes yt = self.layer_list[self.currently_active_layer_id].y_nodes current_x_value = xt[self.index_node] current_y_value = yt[self.index_node] if y <= 0: xt[self.index_node] = x # REPLACE OLD X WITH NEW X yt[self.index_node] = 0.001 # REPLACE OLD Y WITH NEW Y else: xt[self.index_node] = x # REPLACE OLD X WITH NEW X yt[self.index_node] = y # REPLACE OLD Y WITH NEW Y # RESET THE LAYER WITH THE NEW NODE POSITION self.layer_list[self.currently_active_layer_id].x_nodes = xt self.layer_list[self.currently_active_layer_id].y_nodes = yt # DEAL WITH PINCHED NODE if self.layer_list[self.currently_active_layer_id].pinched is True: self.layer_list[self.currently_active_layer_id].x_nodes i = 0 for l in self.layer_list[self.currently_active_layer_id].pinched_list: if self.layer_list[l].x_nodes[self.pinched_index_arg_list[i]] == current_x_value and \ self.layer_list[l].y_nodes[self.pinched_index_arg_list[i]] == current_y_value: # SET PINCHED NODE AS NEW VALUE self.layer_list[l].x_nodes[self.pinched_index_arg_list[i]] = xt[self.index_node] self.layer_list[l].y_nodes[self.pinched_index_arg_list[i]] = yt[self.index_node] i += 1 # SET THE CURRENTLY ACTIVE LAYER WITH THE NEW NODE self.current_x_nodes = xt self.current_y_nodes = yt self.currently_active_layer.set_data(self.current_x_nodes, self.current_y_nodes) # UPDATE "CURRENT NODE" RED DOT if xt[self.index_node] == self.x1: self.current_node.set_offsets([self.x1, y]) elif xt[self.index_node] == self.x2: self.current_node.set_offsets([self.x2, y]) else: self.current_node.set_offsets([x, y]) # UPDATE LAYER DATA self.update_layer_data() def button_release(self, event): """WHAT HAPPENS WHEN THE LEFT MOUSE BUTTON IS RELEASED""" if event.inaxes is None: # CLICK WAS OUTSIDE THE MODEL FRAME return if event.button != 1: return if self.capture is True: # GMG IS IN COORDINATE CAPTURE MODE SO ADD THE CURRENT COORDINATES TO THE TABLE self.capture_window.table.Append((event.xdata, event.ydata)) # NEW FLOATING LAYER CREATION SEQUENCE if self.select_new_layer_nodes is True: # APPEND NEW COORDINATES self.new_plotx.append(event.xdata) self.new_ploty.append(event.ydata) if self.click_count == 0: # PLOT NEW NODES self.new_layer_nodes = self.model_frame.plot(self.new_plotx, self.new_ploty, color='blue', marker='o') # FILL LAYER self.new_layer_fill = self.model_frame.fill(self.new_plotx, self.new_ploty, color='blue', alpha=self.layer_transparency, closed=True, linewidth=None, ec=None) # INCREMENT CLICK COUNTER self.click_count += 1 elif self.click_count < 3: self.new_layer_nodes[0].set_xdata(self.new_plotx) self.new_layer_nodes[0].set_ydata(self.new_ploty) self.new_layer_fill[0].set_xy(list(zip(self.new_plotx, self.new_ploty))) # INCREMENT CLICK COUNTER self.click_count += 1 else: # REMOVE THE TEMP LAYER MPL ACTOR self.select_new_layer_nodes = False self.new_layer_nodes[0].set_visible(False) self.new_layer_fill[0].set_visible(False) self.new_layer_nodes[0].remove() self.new_layer_fill[0].remove() self.new_layer_nodes = None self.new_layer_fill = None # RUN FINAL PART OF LAYER LOADING self.create_new_floating_layer() # NEW FAULT CREATION SEQUENCE if self.select_new_fault_nodes is True: # APPEND NEW COORDINATES self.new_plotx.append(event.xdata) self.new_ploty.append(event.ydata) if self.click_count == 0: # PLOT NEW NODES self.new_fault_nodes = self.model_frame.plot(self.new_plotx, self.new_ploty, color='green', marker='o') # INCREMENT CLICK COUNTER self.click_count += 1 elif self.click_count < 2: self.new_fault_nodes[0].set_xdata(self.new_plotx) self.new_fault_nodes[0].set_ydata(self.new_ploty) # INCREMENT CLICK COUNTER self.click_count += 1 else: # REMOVE THE TEMP FAULT MPL ACTOR self.new_fault_nodes[0].set_visible(False) self.new_fault_nodes[0].remove() self.new_fault_nodes = None # SWITCH OFF NEW FAULT MODE self.select_new_fault_nodes = False self.click_count = 0 # RUN FINAL PART OF FAULT LOADING self.create_new_fault() # RUN MODELLING ALGORITHMS if self.fault_picking_switch is False: self.run_algorithms() else: # UPDATE GMG GRAPHICS self.draw() def key_press(self, event): """DEFINE KEY PRESS LINKS""" if self.fault_picking_switch is True: # GMG IS IN FAULT MODE SO USE FAULT MODE KEY FUNCTIONS self.fault_mode_key_press(event) return # f = ACTIVATE FAULT PICKING MODE if event.key == 'f': # TURN ON/OFF FAULT PICKING MODE if self.fault_picking_switch is True: self.fault_picking_switch = False else: self.fault_picking_switch = True # i = INSERT NEW NODE AT MOUSE POSITION if event.key == 'i': if event.inaxes is None: return # GET CURRENT LAYER XY xt = np.array(self.current_x_nodes) yt = np.array(self.current_y_nodes) # INSERT NEW NODES INTO LAYER X AND Y LISTS self.current_x_nodes = np.insert(xt, [self.index_arg + 1], event.xdata) self.current_y_nodes = np.insert(yt, [self.index_arg + 1], event.ydata) # SET THE CURRENT LAYER WITH THE UPDATED NODE LIST self.currently_active_layer.set_data(self.current_x_nodes, self.current_y_nodes) # UPDATE LAYER DATA AND PLOT self.update_layer_data() self.run_algorithms() self.draw() # d = DELETE NODE AT MOUSE POSITION if event.key == 'd': xt = np.array(self.current_x_nodes) yt = np.array(self.current_y_nodes) # FIND NODE CLOSEST TO CURSOR LOCATION d = np.sqrt((xt - event.xdata) ** 2 + (yt - event.ydata) ** 2) self.index_arg = np.argmin(d) ind = d[self.index_arg] if xt[self.index_arg] == 0: # PREVENT END NODES BEING DELETED return 0 if ind >= self.node_click_limit: return 0 else: # DELETE NODE BY RECREATING XY DATA WITHOUT CURRENT NODE self.current_x_nodes = [tup for i, tup in enumerate(xt) if i != self.index_arg] # DELETE X self.current_y_nodes = [tup for i, tup in enumerate(yt) if i != self.index_arg] # DELETE Y # SET THE CURRENT LAYER WITH THE UPDATED NODE LIST self.currently_active_layer.set_data(self.current_x_nodes, self.current_y_nodes) # # NOW CHECK FOR PINCHED NODES # index_arg2 = None # self.pinch_switch = False # self.pinched_index_arg_list = [None] * (self.total_layer_count + 1) # CREATE LIST OF NONES = LENGTH AS NUMB OF LAYERS # for x in range(0, self.total_layer_count + 1): # LOOP THROUGH ALL LAYERS TO CHECK FOR PINCHED NODES # if x == self.currently_active_layer_id: # pass # x_node_list = self.layer_list[x].x_nodes # y_node_list = self.layer_list[x].y_nodes # # for i in range(0, len(x_node_list)): # # NOW CHECK X AND Y VALUES ARE EQUAL # if x_node_list[i] == xt[self.index_arg] and y_node_list[i] == yt[self.index_arg]: # # IF ONE OF THE NODES FORM LIST IS EQUAL TO A NODE FROM THE OTHER LAYER THEN RETURN THE INDEX # self.pinched_index_arg_list[x] = i # self.pinch_switch = True # # # REMOVE PINCHED NODES # if self.pinch_switch is True: # for k in range(len(self.pinched_index_arg_list)): # if self.pinched_index_arg_list[k] is not None: # next_x_list = self.plotx_list[k] # next_y_list = self.ploty_list[k] # # GET THE NODE LIST OF THE NEXT LAYER # next_x_list = [tup for i, tup in enumerate(next_x_list) if # i != self.pinched_index_arg_list[k]] # DELETE X # next_y_list = [tup for i, tup in enumerate(next_y_list) if # i != self.pinched_index_arg_list[k]] # DELETE Y # # OVERWRITE THE NODE LIST WITH UPDATED LIST # self.plotx_list[k], self.ploty_list[k] = next_x_list, next_y_list # SHIFT CURRENT NODE COLORING TO PREVIOUS NODE self.current_node.set_offsets([xt[self.index_arg - 1], yt[self.index_arg - 1]]) # UPDATE LAYER DATA AND PLOT self.update_layer_data() self.run_algorithms() self.draw() # q = BEAT THE ZOOM BUG if event.key == 'q': self.nodes = True # n = CREATE NEW LAYER AT MOUSE POINT if event.key == 'n': self.new_layer(event) # < = MOVE TO NEXT LAYER if event.key == '.': if self.currently_active_layer_id == self.total_layer_count: # UPDATE LAYER DATA self.update_layer_data() # MOVE TO LAYER ABOVE INPUT LAYER & ASSIGN CURRENT LAYER XY DATA self.currently_active_layer_id = 0 # SET CURRENT INPUT VALUES IN MENU self.density_input.SetValue(self.layer_list[self.currently_active_layer_id].density) self.ref_density_input.SetValue(self.layer_list[self.currently_active_layer_id].reference_density) self.susceptibility_input.SetValue(self.layer_list[self.currently_active_layer_id].susceptibility) self.angle_a_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_a) self.angle_b_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_b) self.angle_c_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_c) self.earth_field_input.SetValue(self.layer_list[self.currently_active_layer_id].earth_field) # SET CURRENT NODE VALUES self.x_input.SetValue(self.layer_list[self.currently_active_layer_id].x_nodes[0]) self.y_input.SetValue(self.layer_list[self.currently_active_layer_id].y_nodes[0]) self.current_x_nodes = self.layer_list[self.currently_active_layer_id].x_nodes self.current_y_nodes = self.layer_list[self.currently_active_layer_id].y_nodes self.current_node.set_offsets([self.current_x_nodes[0], self.current_y_nodes[0]]) # UPDATE MODEL self.update_layer_data() self.run_algorithms() else: # UPDATE LAYER DATA self.update_layer_data() # MOVE TO LAYER ABOVE INPUT LAYER & ASSIGN CURRENT LAYER XY DATA self.currently_active_layer_id += 1 # SET CURRENT INPUT VALUES IN MENU self.density_input.SetValue(self.layer_list[self.currently_active_layer_id].density) self.ref_density_input.SetValue(self.layer_list[self.currently_active_layer_id].reference_density) self.susceptibility_input.SetValue(self.layer_list[self.currently_active_layer_id].susceptibility) self.angle_a_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_a) self.angle_b_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_b) self.angle_c_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_c) self.earth_field_input.SetValue(self.layer_list[self.currently_active_layer_id].earth_field) # SET CURRENT NODE VALUES self.x_input.SetValue(self.layer_list[self.currently_active_layer_id].x_nodes[0]) self.y_input.SetValue(self.layer_list[self.currently_active_layer_id].y_nodes[0]) self.current_x_nodes = self.layer_list[self.currently_active_layer_id].x_nodes self.current_y_nodes = self.layer_list[self.currently_active_layer_id].y_nodes self.current_node.set_offsets([self.current_x_nodes[0], self.current_y_nodes[0]]) # UPDATE MODEL self.update_layer_data() self.run_algorithms() # < = MOVE TO NEXT LAYER if event.key == ',': if self.currently_active_layer_id == 0: # UPDATE LAYER DATA self.update_layer_data() # MOVE TO LAYER ABOVE INPUT LAYER & ASSIGN CURRENT LAYER XY DATA self.currently_active_layer_id = self.total_layer_count # SET CURRENT INPUT VALUES IN MENU self.density_input.SetValue(self.layer_list[self.currently_active_layer_id].density) self.ref_density_input.SetValue(self.layer_list[self.currently_active_layer_id].reference_density) self.susceptibility_input.SetValue(self.layer_list[self.currently_active_layer_id].susceptibility) self.angle_a_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_a) self.angle_b_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_b) self.angle_c_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_c) self.earth_field_input.SetValue(self.layer_list[self.currently_active_layer_id].earth_field) # SET CURRENT NODE VALUES self.x_input.SetValue(self.layer_list[self.currently_active_layer_id].x_nodes[0]) self.y_input.SetValue(self.layer_list[self.currently_active_layer_id].y_nodes[0]) self.current_x_nodes = self.layer_list[self.currently_active_layer_id].x_nodes self.current_y_nodes = self.layer_list[self.currently_active_layer_id].y_nodes self.current_node.set_offsets([self.current_x_nodes[0], self.current_y_nodes[0]]) # UPDATE MODEL self.update_layer_data() self.run_algorithms() else: # UPDATE LAYER DATA self.update_layer_data() # MOVE TO LAYER ABOVE INPUT LAYER & ASSIGN CURRENT LAYER XY DATA self.currently_active_layer_id -= 1 # SET CURRENT INPUT VALUES IN MENU self.density_input.SetValue(self.layer_list[self.currently_active_layer_id].density) self.ref_density_input.SetValue(self.layer_list[self.currently_active_layer_id].reference_density) self.susceptibility_input.SetValue(self.layer_list[self.currently_active_layer_id].susceptibility) self.angle_a_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_a) self.angle_b_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_b) self.angle_c_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_c) self.earth_field_input.SetValue(self.layer_list[self.currently_active_layer_id].earth_field) # SET CURRENT NODE VALUES self.x_input.SetValue(self.layer_list[self.currently_active_layer_id].x_nodes[0]) self.y_input.SetValue(self.layer_list[self.currently_active_layer_id].y_nodes[0]) self.current_x_nodes = self.layer_list[self.currently_active_layer_id].x_nodes self.current_y_nodes = self.layer_list[self.currently_active_layer_id].y_nodes self.current_node.set_offsets([self.current_x_nodes[0], self.current_y_nodes[0]]) # UPDATE MODEL self.update_layer_data() self.run_algorithms() # UPDATE MODEL FRAME self.draw() # z = ZOOM IN MODE if event.key == 'z': self.zoom(event) # ctrl+z = ZOOM OUT if event.key == 'ctrl+z': self.zoom_out(event) # shift = PAN MODE if event.key == 'ctrl+p': self.pan(event) # a = FULL EXTENT VIEW' if event.key == 'a': self.full_extent(event) # p = TURN ON PINCH NODE MODE if event.key == 'p': if self.pinch_switch is False: self.pinch_switch = True else: self.pinch_switch = False self.pinch_count = 0 # ctrl+i = INCREASE LAYER TRANSPARENCY if event.key == 'ctrl+i': self.transparency_increase(event) # ctrl+d = INCREASE ASPECT TRANSPARENCY if event.key == 'ctrl+d': self.transparency_decrease(event) # up arrow = INCREASE ASPECT RATIO if event.key == 'up': self.aspect_increase(event) # ctrl+up = INCREASE ASPECT RATIO X2 if event.key == 'ctrl+up': self.aspect_increase2(event) # down arrow = DECREASE ASPECT RATIO if event.key == 'down': self.aspect_decrease(event) # ctrl+down = DECREASE ASPECT RATIO if event.key == 'ctrl+down': self.aspect_decrease2(event) if event.key == 'return': pass def pinch_out_layer(self, event): """PINCH OUT A FIXED LAYER OVER A GIVEN X RANGE""" if self.layer_list[self.currently_active_layer_id].type == 'floating': error_message = "Only fixed layers can use the bulk pinch function! \n" \ "Use the p key to pinch individual floating layer nodes" MessageDialog(self, -1, error_message, "Error") return else: # CREATE AND SHOW POP OUT BOX pinch_box = PinchDialog(self, -1, 'Pinch Out Layer:', self.layer_list, self.currently_active_layer_id) answer = pinch_box.ShowModal() # SET NEW NODE VALUES self.current_x_nodes = pinch_box.pinched_x self.current_y_nodes = pinch_box.pinched_y self.layer_list[self.currently_active_layer_id].x_nodes = pinch_box.pinched_x self.layer_list[self.currently_active_layer_id].y_nodes = pinch_box.pinched_y self.layer_getting_pinched = pinch_box.layer_getting_pinched # SET THE PINCH ATTRIBUTES IN THE LAYER OBJECTS self.layer_list[self.layer_getting_pinched].pinched = True if self.currently_active_layer_id in self.layer_list[self.layer_getting_pinched].pinched_list: pass else: self.layer_list[self.layer_getting_pinched].pinched_list.append(self.currently_active_layer_id) # SET THE PINCH ATTRIBUTES IN THE LAYER OBJECTS self.layer_list[self.currently_active_layer_id].pinched = True if self.layer_getting_pinched in self.layer_list[self.currently_active_layer_id].pinched_list: pass else: self.layer_list[self.currently_active_layer_id].pinched_list.append(self.layer_getting_pinched) # SET THE CURRENTLY SELECTED (RED) ACTIVE NODE self.current_node.set_offsets([self.layer_list[self.currently_active_layer_id].x_nodes[0], self.layer_list[self.currently_active_layer_id].y_nodes[0]]) # REDRAW MODEL self.update_layer_data() self.draw() def depinch_layer(self, event): """PINCH OUT A FIXED LAYER OVER A GIVEN X RANGE""" # CREATE AND SHOW POP OUT BOX depinch_box = DepinchDialog(self, -1, 'Depinch layer', self.layer_list, self.currently_active_layer_id, self.total_layer_count) answer = depinch_box.ShowModal() # SET NEW NODE VALUES self.current_x_nodes = depinch_box.depinched_x self.current_y_nodes = depinch_box.depinched_y self.layer_list[self.currently_active_layer_id].x_nodes = depinch_box.depinched_x self.layer_list[self.currently_active_layer_id].y_nodes = depinch_box.depinched_y # CHECK IF THE PINCHED LAYER CONNECTIONS ATE STILL ACTIVE. IF NOT, THEN REMOVE THEM FROM THE LIST # SET THE CURRENT LAYER NODES (USE X+Y FOR COMPARISON) current_nodes = self.layer_list[self.currently_active_layer_id].x_nodes \ + self.layer_list[self.currently_active_layer_id].y_nodes # SET THE PINCHED LAYERS NODES (USE X+Y FOR COMPARISON) for l in self.layer_list[self.currently_active_layer_id].pinched_list: pinched_nodes = self.layer_list[l].x_nodes + self.layer_list[l].y_nodes # LOOP THROUGH NODES AND COMPARE still_pinch_connected = False for node in current_nodes: for node2 in pinched_nodes: if node == node2: still_pinch_connected = True # IF THE LAYERS ARE NO LONGER CONNECTED, THEN REMOVE THE CONNECTION IN THE PINCH LIST if still_pinch_connected == False: self.layer_list[self.currently_active_layer_id].pinched_list.remove(l) self.layer_list[l].pinched_list.remove(self.currently_active_layer_id) # IF THE LAYER NO LONGER HAS ANY CONNECTIONS, THEN SET PINCHED SWITCH AS FALSE if not self.layer_list[l].pinched_list: self.layer_list[l].pinched = False # IF THE LAYER NO LONGER HAS ANY CONNECTIONS, THEN SET PINCHED SWITCH AS FALSE if not self.layer_list[self.currently_active_layer_id].pinched_list: self.layer_list[self.currently_active_layer_id].pinched = False # SET THE CURRENTLY SELECTED (RED) ACTIVE NODE self.current_node.set_offsets([self.layer_list[self.currently_active_layer_id].x_nodes[0], self.layer_list[self.currently_active_layer_id].y_nodes[0]]) # REDRAW MODEL self.update_layer_data() self.draw() def bulk_shift(self, event): """APPLY A BULK X AND/OR Y SHIFT TO A GIVEN LAYERS NODES""" # CREATE AND SHOW POP OUT BOX bulk_shift_box = BulkShiftDialog(self, -1, 'Layer bulk shift', self.layer_list, self.currently_active_layer_id) answer = bulk_shift_box.ShowModal() # SET NEW NODE VALUES self.current_x_nodes = bulk_shift_box.new_x self.current_y_nodes = bulk_shift_box.new_y self.layer_list[self.currently_active_layer_id].x_nodes = bulk_shift_box.new_x self.layer_list[self.currently_active_layer_id].y_nodes = bulk_shift_box.new_y # SET THE CURRENTLY SELECTED (RED) ACTIVE NODE self.current_node.set_offsets([self.layer_list[self.currently_active_layer_id].x_nodes[0], self.layer_list[self.currently_active_layer_id].y_nodes[0]]) # REDRAW MODEL self.update_layer_data() self.draw() def new_layer(self, event): new_layer_dialogbox = NewLayerDialog(self, -1, 'Create New Layer') answer = new_layer_dialogbox.ShowModal() if new_layer_dialogbox.fixed: # CREATING A NEW FIXED LAYER # INCREMENT THE CURRENT LAYER INDEX VALUE (self.currently_active_layer_id) self.total_layer_count += 1 # SET THE ACTIVE LAYER AS THE NEWLY CREATED LAYER self.currently_active_layer_id = self.total_layer_count # CREATE A NEW LAYER OBJECT new_layer = Layer() # SET SOME OF THE NEW LAYERS ATTRIBUTES new_layer.id = self.currently_active_layer_id new_layer.name = str('layer %s') % self.currently_active_layer_id new_layer.type = str('fixed') new_layer.include_in_calculations_switch = True # ADD NEW LAYER TO THE LAYER TREE DISPLAY self.tree_items.append('layer %s' % (int(self.currently_active_layer_id))) self.item = 'layer %s' % (int(self.currently_active_layer_id)) self.add_new_tree_nodes(self.root, self.item, self.currently_active_layer_id) # DETERMINE WHICH LAYER IS THE LAST PREVIOUS "FIXED LAYER"; SET THIS LAYER AS "previous_fixed_layer" if self.total_layer_count > 0: for i in range(0, self.total_layer_count): if self.layer_list[i].type == 'fixed': previous_fixed_layer = i else: continue else: previous_fixed_layer = 0 # SET NEW LAYER NODES layer_above_x = np.array(self.layer_list[previous_fixed_layer].x_nodes) layer_above_y = np.array(self.layer_list[previous_fixed_layer].y_nodes) new_layer_thickness = new_layer_dialogbox.new_thickness new_layer.x_nodes = layer_above_x new_layer.y_nodes = layer_above_y + new_layer_thickness # CREATE LAYER LINE new_layer.node_mpl_actor = self.model_frame.plot(new_layer.x_nodes, new_layer.y_nodes, color='blue', linewidth=1.0, alpha=1.0) # CREATE LAYER POLYGON FILL new_layer.polygon_mpl_actor = self.model_frame.fill(new_layer.x_nodes, new_layer.y_nodes, color='blue', alpha=self.layer_transparency, closed=True, linewidth=None, ec=None) # SET CURRENTLY ACTIVE LAYER AS THE NEW LAYER self.currently_active_layer.set_xdata(new_layer.x_nodes) self.currently_active_layer.set_ydata(new_layer.y_nodes) self.currently_active_layer.set_color(new_layer.color) # SET CURRENTLY ACTIVE LAYER NODE OBJECTS self.current_x_nodes = new_layer.x_nodes self.current_y_nodes = new_layer.y_nodes # SET THE CURRENTLY SELECTED (RED) ACTIVE NODE self.current_node.set_offsets([new_layer.x_nodes[0], new_layer.y_nodes[0]]) # SET CURRENT ATTRIBUTE INPUTS IN LEFT PANEL self.density_input.SetValue(new_layer.density) self.ref_density_input.SetValue(new_layer.reference_density) self.susceptibility_input.SetValue(new_layer.susceptibility) self.angle_a_input.SetValue(new_layer.angle_a) self.angle_b_input.SetValue(new_layer.angle_b) self.angle_c_input.SetValue(new_layer.angle_c) self.earth_field_input.SetValue(new_layer.earth_field) # APPEND NEW LAYER TO THE LAYER LIST self.layer_list.append(new_layer) # UPDATE GMG FRAME self.update_layer_data() self.draw() elif not new_layer_dialogbox.fixed: # CREATEING A NEW FLOATING LAYER self.new_plotx = [] self.new_ploty = [] self.click_count = 0 self.new_layer_nodes = None self.new_layer_fill = None # SWITCH ON MOUSE CLICK CAPTURE MODE TO CREATE NEW LAYER (SEE button_release FUNC FOR CONTINUATION OF CODE) self.select_new_layer_nodes = True else: # USER CHANGED THEIR MIND - NO NEW LAYER ADDED = EXIT FUNC pass def create_new_floating_layer(self): """CREATE A NEW FLOATING LAYER USING FOUR USER INPUT MOUSE CLICKS""" # INCREMENT THE TOTAL LAYER COUNT self.total_layer_count += 1 # SET CURRENTLY ACTIVE LAYER AS THE NEWLY CREATED LAYER self.currently_active_layer_id = self.total_layer_count # CREATE NEW LAYER OBJECT new_layer = Layer() # SOURCE NEW NODES FROM USER CLICKS new_layer.x_nodes = self.new_plotx new_layer.y_nodes = self.new_ploty # SET CURRENTLY ACTIVE LAYER NODE OBJECTS self.current_x_nodes = new_layer.x_nodes self.current_y_nodes = new_layer.y_nodes # SET SOME OF THE NEW LAYERS ATTRIBUTES new_layer.id = self.currently_active_layer_id new_layer.name = str('layer %s') % self.currently_active_layer_id new_layer.type = str('floating') new_layer.include_in_calculations_switch = True # ADD NEW LAYER TO THE LAYER TREE DISPLAY self.tree_items.append('layer %s' % (int(self.currently_active_layer_id))) self.item = 'layer %s' % (int(self.currently_active_layer_id)) self.add_new_tree_nodes(self.root, self.item, self.currently_active_layer_id) # CREATE LAYER LINE new_layer.node_mpl_actor = self.model_frame.plot(new_layer.x_nodes, new_layer.y_nodes, color='blue', linewidth=1.0, alpha=1.0) # CREATE LAYER POLYGON FILL new_layer.polygon_mpl_actor = self.model_frame.fill(new_layer.x_nodes, new_layer.y_nodes, color='blue', alpha=self.layer_transparency, closed=True, linewidth=None, ec=None) # SET THE CURRENTLY SELECTED (RED) ACTIVE NODE self.current_node.set_offsets([new_layer.x_nodes[0], new_layer.y_nodes[0]]) # SET CURRENT ATTRIBUTE INPUTS IN LEFT PANEL self.density_input.SetValue(new_layer.density) self.ref_density_input.SetValue(new_layer.reference_density) self.susceptibility_input.SetValue(new_layer.susceptibility) self.angle_a_input.SetValue(new_layer.angle_a) self.angle_b_input.SetValue(new_layer.angle_b) self.angle_c_input.SetValue(new_layer.angle_c) self.earth_field_input.SetValue(new_layer.earth_field) # APPEND NEW LAYER TO THE LAYER LIST self.layer_list.append(new_layer) # UPDATE MODEL self.update_layer_data() self.run_algorithms() self.draw() def load_layer(self, event): """LOAD A NEW FLOATING LAYER FROM A SPACE DELIMITED XY TEXT FILE""" open_file_dialog = wx.FileDialog(self, "Open Layer", "", "", "Layer XY files (*.txt)|*.txt", wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) if open_file_dialog.ShowModal() == wx.ID_CANCEL: return # THE USER CHANGED THERE MIND file_in = open_file_dialog.GetPath() new_layer_nodes = np.genfromtxt(file_in, autostrip=True, delimiter=' ', dtype=float) # INCREMENT THE LAYER COUNT self.currently_active_layer_id = self.total_layer_count self.currently_active_layer_id += 1 # INCREMENT THE TOTAL LAYER COUNT self.total_layer_count += 1 # CREATE NEW LAYER OBJECT new_layer = Layer() # SOURCE NEW NODES FROM USER CLICKS new_layer.x_nodes = new_layer_nodes[:, 0] new_layer.y_nodes = new_layer_nodes[:, 1] # SET CURRENTLY ACTIVE LAYER NODE OBJECTS self.current_x_nodes = new_layer.x_nodes self.current_y_nodes = new_layer.y_nodes # SET SOME OF THE NEW LAYERS ATTRIBUTES new_layer.id = self.currently_active_layer_id new_layer.name = str('layer %s') % self.currently_active_layer_id new_layer.type = str('floating') new_layer.include_in_calculations_switch = True # ADD NEW LAYER TO THE LAYER TREE DISPLAY self.tree_items.append('layer %s' % (int(self.currently_active_layer_id))) self.item = 'layer %s' % (int(self.currently_active_layer_id)) self.add_new_tree_nodes(self.root, self.item, self.currently_active_layer_id) # CREATE LAYER LINE new_layer.node_mpl_actor = self.model_frame.plot(new_layer.x_nodes, new_layer.y_nodes, color='blue', linewidth=1.0, alpha=1.0) # CREATE LAYER POLYGON FILL new_layer.polygon_mpl_actor = self.model_frame.fill(new_layer.x_nodes, new_layer.y_nodes, color='blue', alpha=self.layer_transparency, closed=True, linewidth=None, ec=None) # SET THE CURRENTLY SELECTED (RED) ACTIVE NODE self.current_node.set_offsets([new_layer.x_nodes[0], new_layer.y_nodes[0]]) # SET CURRENT ATTRIBUTE INPUTS IN LEFT PANEL self.density_input.SetValue(new_layer.density) self.ref_density_input.SetValue(new_layer.reference_density) self.susceptibility_input.SetValue(new_layer.susceptibility) self.angle_a_input.SetValue(new_layer.angle_a) self.angle_b_input.SetValue(new_layer.angle_b) self.angle_c_input.SetValue(new_layer.angle_c) self.earth_field_input.SetValue(new_layer.earth_field) # APPEND NEW LAYER TO THE LAYER LIST self.layer_list.append(new_layer) # UPDATE MODEL self.update_layer_data() self.run_algorithms() self.draw() def delete_layer(self, event): """Delete LAYER DATA""" # CANNOT DELETE THE FIRST LAYER if self.total_layer_count == 1: msg = "Sorry - layer one cannot be deleted!" dlg = wx.MessageDialog(self, msg, "Warning", wx.OK | wx.ICON_INFORMATION) result = dlg.ShowModal() dlg.Destroy() else: # HIDE THE LAYER MPL ACTORS self.layer_list[self.currently_active_layer_id].node_mpl_actor[0].set_visible(False) self.layer_list[self.currently_active_layer_id].polygon_mpl_actor[0].set_visible(False) # DELETE THE LAYER OBJECT del self.layer_list[self.currently_active_layer_id] # REMOVE THE LAYER TREE ITEMS del self.tree_items[self.currently_active_layer_id] layers = self.tree.GetRootItem().GetChildren() self.tree.Delete(layers[self.currently_active_layer_id - 1]) # RESET TREE ITEM ID'S layers = self.tree.GetRootItem().GetChildren() for i in range(len(layers)): self.tree.SetPyData(layers[i], i + 1) # DECREASE LAYER ID BY 1 FOR EACH LAYER THAT COMES AFTER THE ONE BEING DELETED # (I.E. IF LAYER 3 IS DEL; THEN LAYER 4 ID BECOMES 3 etc) try: for i in range(self.currently_active_layer_id, len(self.layer_list)): self.layer_list[i].id -= 1 except IndexError: pass # INCREMENT THE TOTAL LAYER COUNT self.total_layer_count -= 1 # SET CURRENTLY ACTIVE LAYER TO LAYER 1 self.currently_active_layer_id = 1 # SET OBJECTS WITH THE CHOSEN LAYER self.density_input.SetValue(0.001 * self.layer_list[self.currently_active_layer_id].density) self.ref_density_input.SetValue(0.001 * self.layer_list[self.currently_active_layer_id].reference_density) self.susceptibility_input.SetValue(self.layer_list[self.currently_active_layer_id].susceptibility) self.angle_a_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_a) self.angle_b_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_b) self.angle_c_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_c) self.earth_field_input.SetValue(self.layer_list[self.currently_active_layer_id].earth_field) # GET THE XY NODES FROM THE ACTIVE LAYER AND SET THE CURRENTLY ACTIVE NODES (I.E. MAKE THEM INTERACTIVE) self.current_x_nodes = self.layer_list[self.currently_active_layer_id].x_nodes self.current_y_nodes = self.layer_list[self.currently_active_layer_id].y_nodes # UPDATE MODEL self.draw() self.update_layer_data() # SET THE CURRENTLY SELECTED (RED) ACTIVE NODE self.current_node.set_offsets([self.layer_list[self.currently_active_layer_id].x_nodes[0], self.layer_list[self.currently_active_layer_id].y_nodes[0]]) self.draw() def write_layers_xy(self, event): """OUTPUT ALL LAYERS XY DATA TO INDIVIDUAL TEXT FILES""" # CREATE OUTPUT FILE save_file_dialog = wx.FileDialog(self, "Save LAYER XY", "", "", "xy files (*.xy)|*.xy", wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) if save_file_dialog.ShowModal() == wx.ID_CANCEL: return # THE USER CHANGED THERE MIND # OUTPUT FILE all_layers_output_file = save_file_dialog.GetPath() # THE OUTPUT DIRECTORY output_dir = os.path.dirname(all_layers_output_file) # NOW WRITE OUT THE DATA with open(all_layers_output_file, 'wb') as f: try: # OPEN "ALL LAYERS" OUTPUT FILE out = csv.writer(f, delimiter=' ') # LOOP THROUGH THE LAYERS for i in range(1, self.total_layer_count + 1): # DEFINE THE LAYER NODES (REMOVE FIXED LAYER PADDING NODES) if self.layer_list[i].type == 'fixed': data = [self.layer_list[i].x_nodes[1:-1], self.layer_list[i].y_nodes[1:-1]] layer_write = list(zip(self.layer_list[i].x_nodes[1:-1], self.layer_list[i].y_nodes[1:-1])) else: data = [self.layer_list[i].x_nodes, self.layer_list[i].y_nodes] layer_write = list(zip(self.layer_list[i].x_nodes, self.layer_list[i].y_nodes)) # OUTPUT THE LAYER NAME TO THE ALL LAYERS FILE f.write(">" + self.loaded_tree_items[i] + "\n") # WRITE LAYER TO "ALL LAYERS" FILE out.writerows(list(zip(*data))) # SAVE THE LAYER AS AN INDIVIDUAL FILE np.savetxt(output_dir + '/' + self.loaded_tree_items[i] + '.xy', layer_write, delimiter=' ', fmt='%f %f') # CLOSE THE "ALL LAYERS" OUTPUT FILE f.close() except IndexError: f.close() pass def write_c_xy(self, event): # CREATE OUTPUT FILE save_file_dialog = wx.FileDialog(self, "Save c.in RayInvr file", "", "", "in files (*.in)|*.in", wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) if save_file_dialog.ShowModal() == wx.ID_CANCEL: return # THE USER CHANGED THEIR MIND # NOW WRITE OUT THE DATA output_stream = save_file_dialog.GetPath() with open(output_stream, 'wb') as f: # LAYER NODES for i in range(0, self.total_layer_count + 1): f.write('B {0}\n'.format(i + 1)) # DEFINE THE LAYER NODES (REMOVE FIXED LAYER PADDING NODES) if self.layer_list[i].type == 'fixed': x_nodes = self.layer_list[i].x_nodes[1:-1] y_nodes = self.layer_list[i].y_nodes[1:-1] else: x_nodes = self.layer_list[i].x_nodes y_nodes = self.layer_list[i].y_nodes # SAVE FILE data = list(zip(x_nodes, y_nodes, np.ones(len(y_nodes)))) np.savetxt(f, data, delimiter=' ', fmt='%6.02f %3.02f %1d') # VELOCITY NODES for i in range(0, self.total_layer_count): density = self.layer_list[i].density # CONVERT DENSITY TO VELOCITY USING GARNERS RULE velocity = round((m.pow((density / 1670.), (1. / .25))), 2) # CONVERT DENSITY TO VELOCITY USING NAFE-DRAKE EQUATION # velocity = (1.6612*density) - (0.4721*density)**2 + (0.0671*density)**3 - # (0.0043*density)**4 + (0.000106*density)**5 # DEFINE THE LAYER NODES (REMOVE FIXED LAYER PADDING NODES) if self.layer_list[i].type == 'fixed': x_nodes = self.layer_list[i].x_nodes[1:-1] y_nodes = self.layer_list[i].y_nodes[1:-1] else: x_nodes = self.layer_list[i].x_nodes y_nodes = self.layer_list[i].y_nodes # FORMAT c.in FILE f.write('B {0}\n'.format(i)) data = list(zip(x_nodes, np.linspace(velocity, velocity, len(y_nodes)), np.ones(len(x_nodes)), np.linspace(velocity, velocity, len(x_nodes)), np.ones(len(x_nodes)))) # OUTPUT FILE np.savetxt(f, data, delimiter=' ', fmt='%6.02f %3.02f %1d %3.02f %1d') def capture_coordinates(self, event): if self.capture is False: self.capture = True # CREATE INSTANCE OF CAPTURE COORDINATES self.capture_window = CaptureCoordinates(self, -1, 'Capture Coordinates') self.capture_window.Show(True) # FAULT MODE CONTROLS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def toogle_fault_mode(self, event): """SWITCH FAULT PICKING MODE ON AND OFF""" if self.fault_picking_switch is True: self.fault_picking_switch = False elif self.fault_picking_switch is False: self.fault_picking_switch = True def pick_new_fault(self, event): """FAULT PICKING/LINE DRAWING MODE""" # CHECK IF FAULT PICKING MODE IS ON if self.fault_picking_switch is False: MessageDialog(self, -1, "Faulting picking mode is not activated.\nTurn on fault picking mode first.", "Fault picker") else: # PROMPT NEW FAULT DIALOG BOX if self.total_fault_count == 0: # CREATE NEW CURRENT FAULT GRAPHIC self.currently_active_fault, = self.model_frame.plot([-100000, -100000], [-100000, -100000], marker='s', color='green', linewidth=0.75, alpha=1.0, zorder=2, picker=True) # START CREATE NEW FAULT PROCESS MessageDialog(self, -1, "Select three nodes to create a new fault", "Select New Fault") self.select_new_fault_nodes = True self.new_plotx = [] self.new_ploty = [] self.click_count = 0 self.new_layer_nodes = None # NOW WAIT FOR USER NODE CLICKS - ON THE THIRD CLICK THE button_release FUNC # WILL ACTIVATE create_new_fault() def create_new_fault(self): """CREATE A NEW FAULT USING THREE USER INPUT MOUSE CLICKS""" # SET CURRENTLY ACTIVE LAYER AS THE NEWLY CREATED LAYER self.currently_active_fault_id = self.total_fault_count # CREATE NEW LAYER OBJECT new_fault = Fault() # SOURCE NEW NODES FROM USER CLICKS new_fault.id = self.currently_active_fault_id new_fault.name = str('Fault') new_fault.x_nodes = self.new_plotx new_fault.y_nodes = self.new_ploty # SET CURRENTLY ACTIVE LAYER NODE OBJECTS self.current_x_nodes = new_fault.x_nodes self.current_y_nodes = new_fault.y_nodes # SET SOME OF THE NEW LAYERS ATTRIBUTES new_fault.id = self.currently_active_layer_id new_fault.name = str('Fault %s') % self.currently_active_fault_id # CREATE LAYER LINE new_fault.mpl_actor = self.model_frame.plot(new_fault.x_nodes, new_fault.y_nodes, color='green', marker='o', linewidth=0.5, zorder=1, alpha=1.0) # APPEND THE NEW FAULT TO THE FAULT TREE SIDE PANEL USING add_new_tree_nodes FUNC # LIST OF FAULT NAMES self.fault_tree_items.append('fault %s' % (int(self.currently_active_fault_id))) self.fault_item = 'fault %s' % (int(self.currently_active_fault_id)) self.add_new_tree_nodes(self.fault_tree_root, self.fault_item, self.currently_active_fault_id) self.fault_tree.SetSpacing(40) # self.fold_panel_three.Collapse() # self.fold_panel_three.Expand() # UPDATE CURRENT PLOT GRAPHICS self.currently_active_fault.set_data(new_fault.x_nodes, new_fault.y_nodes) # UPDATE CURRENT NODE RED DOT GRAPHIC self.current_node.set_offsets([new_fault.x_nodes[0], new_fault.y_nodes[0]]) # APPEND NEW LAYER TO THE LAYER LIST self.fault_list.append(new_fault) # INCREMENT THE TOTAL LAYER COUNT self.total_fault_count += 1 # UPDATE MODEL self.draw() def fault_mode_key_press(self, event): """KEY PRESS CALLBACKS WHEN FAULT MODE IS ACTIVATED""" 'i = INSERT NEW NODE AT MOUSE POSITION' if event.key == 'i': if event.inaxes is None: return # INSERT NEW NODE INTO XY LIST self.xt = np.insert(self.xt, [self.index_arg + 1], event.xdata) self.yt = np.insert(self.yt, [self.index_arg + 1], event.ydata) # UPDATE THE FAULT LIST RECORDS self.fault_list[self.currently_active_fault_id].x_nodes = self.xt self.fault_list[self.currently_active_fault_id].y_nodes = self.yt # UPDATE FAULT GRAPHICS self.fault_list[self.currently_active_fault_id].mpl_actor[0].set_xdata(self.xt) self.fault_list[self.currently_active_fault_id].mpl_actor[0].set_ydata(self.yt) # UPDATE CURRENT FAULT OVERLAY GRAPHIC self.currently_active_fault.set_data(self.xt, self.yt) 'd = DELETE NODE AT MOUSE POSITION' if event.key == 'd': if event.inaxes is None: return # FIND NODE CLOSEST TO CURSOR LOCATION d = np.sqrt((self.xt - event.xdata) ** 2 + (self.yt - event.ydata) ** 2) self.index_arg = np.argmin(d) self.distance = d[self.index_arg] if self.index_arg == 0 or \ self.index_arg == (len(self.fault_list[self.currently_active_fault_id].x_nodes) - 1): # PREVENT END NODES BEING DELETED return 0 if self.distance >= self.node_click_limit: # CLICK WAS TO FAR AWAY FROM A NODE TO DELETE IT return 0 else: # DELETE NODE BY RECREATING XY DATA WITHOUT CURRENT NODE self.xt = [tup for i, tup in enumerate(self.xt) if i != self.index_arg] # DELETE X self.yt = [tup for i, tup in enumerate(self.yt) if i != self.index_arg] # DELETE Y # UPDATE THE FAULT LIST RECORDS self.fault_list[self.currently_active_fault_id].x_nodes = self.xt self.fault_list[self.currently_active_fault_id].y_nodes = self.yt # UPDATE FAULT GRAPHICS self.fault_list[self.currently_active_fault_id].mpl_actor[0].set_xdata(self.xt) self.fault_list[self.currently_active_fault_id].mpl_actor[0].set_ydata(self.yt) # UPDATE CURRENT FAULT OVERLAY GRAPHIC self.currently_active_fault.set_data(self.xt, self.yt) # RESET CURRENT NOT POSITION TO FIRST NODE self.current_node.set_offsets([self.xt[0], self.yt[0]]) # UPDATE GMG self.update_layer_data() '< = INCREMENT WHICH FAULT IS BEING EDITED' if event.key == ',': if self.currently_active_fault_id <= self.total_fault_count - 1 and self.currently_active_fault_id > 0: # INCREMENT TO NEXT FAULT self.currently_active_fault_id -= 1 else: # GO TO NEWEST FAULT self.currently_active_fault_id = self.total_fault_count - 1 # UPDATE CURRENT PLOT GRAPHICS self.currently_active_fault.set_data(self.fault_list[self.currently_active_fault_id].x_nodes, self.fault_list[self.currently_active_fault_id].y_nodes) self.xt = self.fault_list[self.currently_active_fault_id].x_nodes self.yt = self.fault_list[self.currently_active_fault_id].y_nodes '> = INCREMENT WHICH FAULT IS BEING EDITED' if event.key == '.': if self.currently_active_fault_id < self.total_fault_count - 1: # INCREMENT TO NEXT FAULT self.currently_active_fault_id += 1 elif self.currently_active_fault_id == self.total_fault_count - 1: # GO BACK TO FIRST FAULT self.currently_active_fault_id = 0 # UPDATE CURRENT PLOT GRAPHICS self.currently_active_fault.set_data(self.fault_list[self.currently_active_fault_id].x_nodes, self.fault_list[self.currently_active_fault_id].y_nodes) self.xt = self.fault_list[self.currently_active_fault_id].x_nodes self.yt = self.fault_list[self.currently_active_fault_id].y_nodes # UPDATE GMG self.update_layer_data() def on_fault_activated(self, event): """RESPONSE WHEN A FAULT NAME IS SELECTED""" # GET THE SELECTED FAULT INDEX NUMBER self.currently_active_fault_id = self.fault_tree.GetPyData(event.GetItem()) if self.fault_picking_switch is False: self.fault_picking_switch = True # SET CHECKBOX AS CHECKED self.fault_tree.GetSelection().Check(checked=True) # UPDATE CURRENT PLOT GRAPHICS self.currently_active_fault.set_data(self.fault_list[self.currently_active_fault_id].x_nodes, self.fault_list[self.currently_active_fault_id].y_nodes) self.xt = self.fault_list[self.currently_active_fault_id].x_nodes self.yt = self.fault_list[self.currently_active_fault_id].y_nodes # UPDATE GRAPHICS WITH CURRENT FAULT SELECTED self.update_layer_data() def fault_checked(self, event): """TOGGLE WHETHER OR NOT A FAULT WILL BE PLOTTED IN THE MODEL FIGURE""" i = self.fault_tree.GetPyData(event.GetItem()) if self.faults[i][0].get_visible() == True: # HIDE FAULT self.faults[i][0].set_visible(False) self.currently_active_fault.set_visible(False) else: # SHOW FAULT self.faults[i][0].set_visible(True) self.currently_active_fault.set_visible(True) # UPDATE FIGURE self.draw() def on_fault_tree_right_click_down(self, event): """WHEN A FAULT IN THE FAULT TREE MENU IS RIGHT CLICKED""" # FIRST RUN on_fault_activated self.on_fault_activated(event) # CREATE POPOUT MENU WITH OPTIONS AND BIND OPTIONS TO ACTIONS menu = wx.Menu() item1 = menu.Append(wx.ID_ANY, "Change fault colour") item2 = menu.Append(wx.ID_ANY, "Rename fault") self.Bind(wx.EVT_MENU, self.change_color, item1) self.Bind(wx.EVT_MENU, self.rename_fault, item2) self.PopupMenu(menu) menu.Destroy() def rename_fault(self, event): """USE A POPUP MENU TO RENAME THE FAULT""" # CREATE POP OUT MENU AND SHOW fault_name_box = LayerNameDialog(self, -1, 'Rename fault', self.fault_tree_items[self.currently_active_fault_id]) new = fault_name_box.ShowModal() # WAIT FOR USER TO CLOSE POP OUT # GET THE NEW LAYER NAME FROM POP OUT new_name = fault_name_box.name # SET THE TREE AND LAYER OBJECT WITH THE NEW NAME current_tree_items = self.fault_tree.GetRootItem().GetChildren() self.fault_tree.SetItemText(current_tree_items[self.currently_active_fault_id], str(new_name)) self.fault_tree_items[self.currently_active_fault_id] = str(new_name) self.fault_list[self.currently_active_fault_id].name = str(new_name) # LAYER AND MODEL ATTRIBUTE CONTROLS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def set_density(self, value): self.layer_list[self.currently_active_layer_id].density = float(self.density_input.GetValue() * 1000.) def set_reference_density(self, value): self.layer_list[self.currently_active_layer_id].reference_density = \ float(self.ref_density_input.GetValue() * 1000.) def set_background_density(self, event): grav_box = SetBackgroundDensityDialog(self, -1, 'Set background density') answer = grav_box.ShowModal() self.background_density_upper = float(grav_box.background_density_upper) for i in range(0, self.total_layer_count): self.layer_list[i].reference_density = float(self.background_density_upper) * 1000. # self.background_density_upper = float((grav_box.background_density_lower)) # self.background_density_upper = float((grav_box.background_density_lid)) self.absolute_densities = True self.draw() def set_susceptibility(self, value): self.layer_list[self.currently_active_layer_id].susceptibility = float(self.susceptibility_input.GetValue()) def set_angle_a(self, value): self.layer_list[self.currently_active_layer_id].angle_a = float(self.angle_a_input.GetValue()) def set_angle_b(self, value): self.layer_list[self.currently_active_layer_id].angle_b = float(self.angle_b_input.GetValue()) def set_angle_c(self, value): self.layer_list[self.currently_active_layer_id].angle_c = float(self.angle_c_input.GetValue()) def set_earth_field(self, value): self.layer_list[self.currently_active_layer_id].earth_field = float(self.earth_field_input.GetValue()) def set_text_size(self, value): """GET NEW TEXT SIZE""" self.textsize = float(self.text_size_input.GetValue()) # WELL DATA # LOOP THROUGH ALL WELL NAMES for i in range(len(self.well_data_list)): self.well_data_list[i].text_size = self.textsize self.well_data_list[i].mpl_actor_name.set_size(self.textsize) # LOOP THROUGH ALL WELL HORIZON LABELS for l in range(len(self.well_data_list[i].labels_list)): if self.well_data_list[i].labels_list[l] is not None: self.well_data_list[i].labels_list[l].set_size(self.textsize) # # LOOP THROUGH OUTCROP DATA LABELS if self.outcrop_data_count > 0: for i in range(self.outcrop_data_count): if self.outcrop_data_list[i] is not None: for t in range(len(self.outcrop_data_list[i].labels)): self.outcrop_data_list[i].labels[t].set_fontsize(self.textsize) # REDRAW ANNOTATIONS WITH NEW TEXT SIZE self.draw() def set_obs_grav_rms(self, value): """SET THE DATA TO BE USED FOR CALCULATING THE RMS MISTFIT""" selection = SetObsRmsDialog(self, -1, 'Set RMS Input', self.observed_gravity_list) answer = selection.ShowModal() for i in range(0, len(self.observed_gravity_list)): if self.observed_gravity_list[i].name == selection.obs_name: self.obs_gravity_data_for_rms = self.observed_gravity_list[i].data def set_obs_mag_rms(self, value): """SET THE DATA TO BE USED FOR CALCULATING THE RMS MISTFIT""" selection = SetObsRmsDialog(self, -1, 'Set RMS Input', self.observed_magnetic_list) answer = selection.ShowModal() for i in range(0, len(self.observed_magnetic_list)): if self.observed_magnetic_list[i].name == selection.obs_name: self.obs_mag_data_for_rms = self.observed_magnetic_list[i].data def model_rms(self, xp): """CALCULATE RMS MISFIT OF OBSERVED VS CALCULATED""" if self.obs_gravity_data_for_rms != [] and self.calc_grav_switch is True: x = xp * 0.001 y = self.predicted_gravity self.gravity_rms_value, self.grav_residuals = model_stats.rms(self.obs_gravity_data_for_rms[:, 0], self.obs_gravity_data_for_rms[:, 1], x, y) else: pass if self.obs_mag_data_for_rms != [] and self.calc_mag_switch is True: x = self.xp * 0.001 y = self.predicted_nt self.magnetic_rms_value, self.mag_residuals = model_stats.rms(self.obs_mag_data_for_rms[:, 0], self.obs_mag_data_for_rms[:, 1], x, y) else: pass # LAYER ATTRIBUTE TABLE~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def open_attribute_table(self, event): self.attribute_table = AttributeEditor(self, -1, 'Attribute editor', self.tree_items, self.layer_list) self.attribute_table.Show(True) def attribute_set(self, new_tree_items, new_layer_list): """UPDATE GMG ATTRIBUTES WITH NEW ATTRIBUTES FROM THE ATTRIBUTE TABLE""" # UPDATE MAIN FRAME TREE ITEMS (RENAME THE ITEMS) current_tree_items = self.tree.GetRootItem().GetChildren() for i in range(0, len(self.tree_items) - 1): new_label = new_tree_items[i] self.tree.SetItemText(current_tree_items[i], new_tree_items[i + 1]) # UPDATE MAIN FRAME ATTRIBUTES for l in range(0, len(self.layer_list)): self.layer_list[l].density = new_layer_list[l].density self.layer_list[l].reference_density = new_layer_list[l].reference_density self.layer_list[l].susceptibility = new_layer_list[l].susceptibility self.layer_list[l].angle_a = new_layer_list[l].angle_a self.layer_list[l].angle_b = new_layer_list[l].angle_b self.layer_list[l].angle_c = new_layer_list[l].angle_c self.layer_list[l].earth_field = new_layer_list[l].earth_field self.layer_list[l].color = new_layer_list[l].color # UPDATE LAYER ATTRIBUTE INPUTS self.density_input.SetValue(0.001 * self.layer_list[self.currently_active_layer_id].density) self.ref_density_input.SetValue(0.001 * self.layer_list[self.currently_active_layer_id].reference_density) self.susceptibility_input.SetValue(self.layer_list[self.currently_active_layer_id].susceptibility) self.angle_a_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_a) self.angle_b_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_b) self.angle_c_input.SetValue(self.layer_list[self.currently_active_layer_id].angle_c) self.earth_field_input.SetValue(self.layer_list[self.currently_active_layer_id].earth_field) # UPDATE GMG STATE self.update_layer_data() self.run_algorithms() self.draw() # LIVE GRAPHICS UPDATES~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def update_layer_data(self): """UPDATE PROGRAM GRAPHICS AFTER A CHANGE IS MADE - A.K.A REDRAW EVERYTHING""" # UPDATE FRAME LIMITS xmin, xmax = self.model_frame.get_xlim() if self.topo_frame: self.topo_frame.set_xlim(xmin, xmax) self.topo_d_frame.set_xlim(xmin, xmax) if self.gravity_frame: self.gravity_frame.set_xlim(xmin, xmax) self.gravity_d_frame.set_xlim(xmin, xmax) if self.magnetic_frame: self.magnetic_frame.set_xlim(xmin, xmax) self.magnetic_d_frame.set_xlim(xmin, xmax) if self.fault_picking_switch is True: # GMG IS IN FAULT MODE # UPDATE FAULT NODES self.fault_list[self.currently_active_fault_id].x_nodes = self.xt self.fault_list[self.currently_active_fault_id].y_nodes = self.yt # UPDATE FAULT MPL ACTOR self.fault_list[self.currently_active_fault_id].mpl_actor[0].set_xdata(self.xt) self.fault_list[self.currently_active_fault_id].mpl_actor[0].set_ydata(self.yt) self.fault_list[self.currently_active_fault_id].mpl_actor[0].set_color( self.fault_list[self.currently_active_fault_id].color) # UPDATE CURRENT PLOT GRAPHICS self.currently_active_fault.set_data(self.xt, self.yt) self.currently_active_fault.set_color(self.fault_list[self.currently_active_fault_id].color) else: # GMG IS IN LAYER MODE # UPDATE PLOT LISTS WITH LATEST EDIT self.layer_list[self.currently_active_layer_id].x_nodes = self.current_x_nodes self.layer_list[self.currently_active_layer_id].y_nodes = self.current_y_nodes # CREATE UPDATED POLYGON XYs ------------------------------------------------------------------------------- # FIRST CREATE THE POLYLINE DATA (THE BOTTOM LINE OF THE LAYER POLYGON - (THIS DONE FIRST SO THE WHOLE # POLYGON ISN'T PASSED TO SELF.POLYPLOTS) for i in range(0, self.total_layer_count + 1): # CREATE THE LAYER POLYGONS TO PASS TO SELF.POLYGONS AND ONTO THE GRAV/MAG ALGORITHMS # FIRST SET UP XY DATA; IF LAYER IS BELOW LAYER 0 THEN ATTACH THE ABOVE LAYER TO COMPLETE THE POLYGON; # ELSE USE TOP LAYER CHECK FOR 'FIXED' LAYER MODE AND FIND LAST LAYER TO MAKE POLYGON if i >= 1 and self.layer_list[i].type == 'fixed': # CHECK FOR LAST PREVIOUS FIXED LAYER AND USE ITS BASE TO COMPLETE THE POLYGON for layer in range(i, 0, -1): if self.layer_list[layer - 1].type == 'fixed': # ASSIGN THE LAST FIXED LAYER INDEX last_layer_index = layer - 1 # NOW APPEND NODES FOR BOUNDARY CONDITIONS (CONTINUOUS SLAB) plotx = np.array(self.layer_list[i].x_nodes) ploty = np.array(self.layer_list[i].y_nodes) # SET THE PADDING NODES TO THE SAME DEPTH AS THE MODEL LIMIT NODES TO CREATE FLAT SLAB ploty[0] = ploty[1] ploty[-1] = ploty[-2] self.layer_list[i].x_nodes = plotx self.layer_list[i].y_nodes = ploty # ADD NODES FROM ABOVE LAYER TO COMPETE POLYGON layer_above_x = np.array(self.layer_list[last_layer_index].x_nodes)[::-1] layer_above_y = np.array(self.layer_list[last_layer_index].y_nodes)[::-1] polygon_x = np.append(np.array(layer_above_x), np.array(plotx)) polygon_y = np.append(np.array(layer_above_y), np.array(ploty)) # UPDATE LAYER POLYGON ATTRIBUTE self.layer_list[i].polygon = list(zip(polygon_x, polygon_y)) break else: continue else: # IF THE LAYER IS A SIMPLE 'FLOATING LAYER' polygon_x = np.array(self.layer_list[i].x_nodes) polygon_y = np.array(self.layer_list[i].y_nodes) # UPDATE LAYER POLYGON ATTRIBUTE self.layer_list[i].polygon = list(zip(polygon_x, polygon_y)) # ---------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------- # UPDATE LAYER POLYGONS AND LINES for i in range(0, self.total_layer_count + 1): # SET POLYGON FILL COLOR BASED ON DENSITY if self.layer_list[i].density != 0.0 and self.layer_list[i].reference_density is True: # DETERMINE DENSITY CONTRAST FROM (DENSITY - REF DENSITY) next_color = self.colormap.to_rgba(0.001 * self.layer_list[i].density - 0.001 * self.layer_list[i].reference_density) elif self.layer_list[i].density != 0.0: # NO REF DENSITY, SO JUST USE DENSITY VALUE next_color = self.colormap.to_rgba(0.001 * self.layer_list[i].density) else: # NO DENSITY HAS BEEN SET SO LEAVE BLANK next_color = self.colormap.to_rgba(0.) # UPDATE POLYGON XY AND COLOR FILL self.layer_list[i].polygon_mpl_actor[0].set_xy(self.layer_list[i].polygon) self.layer_list[i].polygon_mpl_actor[0].set_color(next_color) # UPDATE LAYER LINES self.layer_list[i].node_mpl_actor[0].set_xdata(self.layer_list[i].x_nodes) self.layer_list[i].node_mpl_actor[0].set_ydata(self.layer_list[i].y_nodes) self.layer_list[i].node_mpl_actor[0].set_color(self.layer_list[i].color) # ---------------------------------------------------------------------------------------------------------- # UPDATE CURRENTLY ACTIVE LAYER LINE AND NODES self.currently_active_layer.set_xdata(self.layer_list[self.currently_active_layer_id].x_nodes) self.currently_active_layer.set_ydata(self.layer_list[self.currently_active_layer_id].y_nodes) self.currently_active_layer.set_color(self.layer_list[self.currently_active_layer_id].color) # DRAW CANVAS FEATURES self.model_frame.set_aspect(self.model_aspect) self.grav_frame_aspect = ((self.gravity_frame.get_xlim()[1] - self.gravity_frame.get_xlim()[0]) / (self.gravity_frame.get_ylim()[1] - self.gravity_frame.get_ylim()[0])) # UPDATE INFO self.display_info() # CONTENT HAS NOT BEEN SAVED SINCE LAST MODIFICATION self.model_saved = False # UPDATE GMG GRAPHICS self.draw() def run_algorithms(self): """RUN POTENTIAL FIELD CALCULATION ALGORITHMS""" # -------------------------------------------------------------------------------------------------------------- # CALCULATE TOPOGRAPHY - :FUTURE: PREDICTED TOPOGRAPHY FROM ISOSTATIC FUNC self.pred_topo = np.zeros_like(self.xp) # -------------------------------------------------------------------------------------------------------------- # tree.GetRootItem().GetChildren()[i].GetValue() # -------------------------------------------------------------------------------------------------------------- # CALCULATE GRAVITY polygons_to_use = [] densities_to_use = [] if self.calc_grav_switch is True: # SELECT ONLY THOSE LAYERS THAT ARE CHECKED for layer in range(0, self.total_layer_count + 1): if self.layer_list[layer].include_in_calculations_switch is True: # CHOSE POLYGONS polygons_to_use.append(self.layer_list[layer].polygon) # DETERMINE DENSITY CONTRASTS densities_to_use.append((self.layer_list[layer].density - self.layer_list[layer].reference_density)) # PASS POLYGONS TO BOTT ALGORITHM AND RETURN THE PREDICTED VALUES bott_input_polygons = [] for p, d in zip(polygons_to_use, densities_to_use): bott_input_polygons.append(Polygon(1000 * np.array(p), {'density': d})) # SET THE PREDICTED VALUES AS THE BOTT OUTPUT # NB: NODES ARE INPUT LEFT TO RIGHT SO WE MUST MULTIPLY BY -1 TO PRODUCE THE CORRECT SIGN AT OUTPUT self.predicted_gravity = bott.gz(self.xp, self.gravity_observation_elv, bott_input_polygons) * -1 else: # SET THE PREDICTED VALUES AS ZEROS self.predicted_gravity = np.zeros_like(self.xp) # SET THE PREDICTED PLOT LINE WITH THE NEWLY CALCULATED VALUES self.pred_gravity_plot.set_data(self.xp * 0.001, self.predicted_gravity) # -------------------------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------------------------- # CALCULATE MAGNETICS # ZIP POLYGONS WITH SUSCEPTIBILITIES AND PASS TO TALWANI AND HEIRTZLER ALGORITHM if self.calc_mag_switch is True: # SELECT ONLY THOSE LAYERS THAT ARE CHECKED polygons_to_use = [] susceptibilities_to_use = [] angle_a_to_use = [] angle_b_to_use = [] angle_c_to_use = [] earth_field_to_use = [] for layer in range(0, self.total_layer_count + 1): if self.layer_list[layer].include_in_calculations_switch is True: polygons_to_use.append(self.layer_list[layer].polygon) susceptibilities_to_use.append(self.layer_list[layer].susceptibility) angle_a_to_use.append(self.layer_list[layer].angle_a) angle_b_to_use.append(self.layer_list[layer].angle_b) angle_c_to_use.append(self.layer_list[layer].angle_c) earth_field_to_use.append(self.layer_list[layer].earth_field) # PASS TO TALWANI & HEIRTZLER ALGORITHM mag_input_polygons = [] for p, s, a, b, c, f, in zip(polygons_to_use, susceptibilities_to_use, angle_a_to_use, angle_b_to_use, angle_c_to_use, earth_field_to_use): mag_input_polygons.append(Polygon(1000. * np.array(p), {'susceptibility': s, 'angle_a': a, 'angle_b': b, 'angle_c': c, 'f': f})) # SET THE PREDICTED VALUES AS THE TALWANI & HEIRTZLER OUTPUT # NB: NODES ARE INPUT LEFT TO RIGHT SO WE MUST MULTIPLY BY -1 TO PRODUCE THE CORRECT SIGN AT OUTPUT self.predicted_nt = talwani_and_heirtzler.nt(self.xp, self.mag_observation_elv, mag_input_polygons) * -1 else: # SET THE PREDICTED VALUES AS ZEROS self.predicted_nt = np.zeros_like(self.xp) # SET THE PREDICTED PLOT LINE WITH THE NEWLY CALCULATED VALUES self.predicted_nt_plot.set_data(self.xp * 0.001, self.predicted_nt) # -------------------------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------------------------- # UPDATE RMS VALUES # RUN THE RMS CALC CODE self.model_rms(self.xp) # SET GRAVITY RMS if self.obs_gravity_data_for_rms != [] and self.calc_grav_switch is True and self.predicted_gravity != []: self.gravity_rms_plot.set_data(self.grav_residuals[:, 0], self.grav_residuals[:, 1]) else: pass # SET MAGNETIC RMS if self.obs_mag_data_for_rms != [] and self.calc_mag_switch is True and self.predicted_nt != []: self.mag_rms_plot.set_data(self.mag_residuals[:, 0], self.mag_residuals[:, 1]) else: pass # -------------------------------------------------------------------------------------------------------------- # SET FRAME X AND Y LIMITS self.set_frame_limits() # AFTER RUNNING ALGORITHMS, SET MODEL AS UNSAVED self.model_saved = False # UPDATE GMG GRAPHICS self.draw() def set_frame_limits(self): """SET FRAME X AND Y LIMITS""" # -------------------------------------------------------------------------------------------------------------- # SET GRAVITY DISPLAY BOX LIMITS if self.observed_gravity_switch is True and self.grav_residuals != []: # CREATE EMPTY LIST ymin_list = [] ymax_list = [] # APPEND OBSERVED MIN AND MAX for i in range(len(self.observed_gravity_list)): if self.observed_gravity_list[i] is not None: ymin_list.append(self.observed_gravity_list[i].data[:, 1].min() - 2.0) ymax_list.append(self.observed_gravity_list[i].data[:, 1].max() + 2.0) # APPEND PREDICTED GRAVITY ANOMALY ymin_list.append(self.predicted_gravity.min()) ymax_list.append(self.predicted_gravity.max()) # # APPEND RMS GRAVITY ANOMALY # ymin_list.append(self.grav_residuals.min() - 2.0) # ymax_list.append(self.grav_residuals.max() + 2.0) # SET YMIN AND YMAX ymin = min(ymin_list) ymax = max(ymax_list) elif self.observed_gravity_switch is True: # CREATE EMPTY LIST ymin_list = [] ymax_list = [] # APPEND OBSERVED MIN AND MAX for i in range(len(self.observed_gravity_list)): if self.observed_gravity_list[i] is not None: ymin_list.append(self.observed_gravity_list[i].data[:, 1].min() - 2.0) ymax_list.append(self.observed_gravity_list[i].data[:, 1].max() + 2.0) # APPEND PREDICTED GRAVITY ANOMALY if self.predicted_gravity is not None: ymin_list.append(self.predicted_gravity.min() - 2.0) ymax_list.append(self.predicted_gravity.max() + 2.0) # SET YMIN AND YMAX ymin = min(ymin_list) ymax = max(ymax_list) elif self.predicted_gravity is not None: ymin = self.predicted_gravity.min() - 2.0 ymax = self.predicted_gravity.max() + 2.0 else: pass if self.gravity_frame is not None: self.gravity_frame.set_ylim(ymin, ymax) # -------------------------------------------------------------------------------------------------------------- # SET DERIVATIVE Y-AXIS LIMITS # CREATE EMPTY LIST ymin_list = [-1] ymax_list = [1] for i in range(len(self.observed_gravity_list)): if self.observed_gravity_list[i].type == str('derivative'): ymin_list.append(self.observed_gravity_list[i].data[:, 1].min() - 0.1) ymax_list.append(self.observed_gravity_list[i].data[:, 1].max() + 0.1) if self.gravity_frame is not None: self.gravity_d_frame.set_ylim(min(ymin_list), max(ymax_list)) # -------------------------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------------------------- # SET MAGNETIC DISPLAY BOX LIMITS if self.observed_magnetic_switch is True and self.mag_residuals != []: # CREATE EMPTY LIST ymin_list = [] ymax_list = [] # APPEND OBSERVED MIN AND MAX for i in range(len(self.observed_magnetic_list)): if self.observed_magnetic_list[i] is not None: ymin_list.append(self.observed_magnetic_list[i].data[:, 1].min() - 2.0) ymax_list.append(self.observed_magnetic_list[i].data[:, 1].max() + 2.0) # APPEND PREDICTED GRAVITY ANOMALY ymin_list.append(self.predicted_nt.min()) ymax_list.append(self.predicted_nt.max()) # APPEND RMS GRAVITY ANOMALY ymin_list.append(self.mag_residuals.min() - 2.0) ymax_list.append(self.mag_residuals.max() + 2.0) # SET YMIN AND YMAX ymin = min(ymin_list) ymax = max(ymax_list) elif self.observed_magnetic_switch is True: # CREATE EMPTY LIST ymin_list = [] ymax_list = [] # APPEND OBSERVED MIN AND MAX for i in range(len(self.observed_magnetic_list)): if self.observed_magnetic_list[i] is not None: ymin_list.append(self.observed_magnetic_list[i].data[:, 1].min() - 2.0) ymax_list.append(self.observed_magnetic_list[i].data[:, 1].max() + 2.0) # APPEND PREDICTED GRAVITY ANOMALY ymin_list.append(self.predicted_nt.min() - 2.0) ymax_list.append(self.predicted_nt.max() + 2.0) # SET YMIN AND YMAX ymin = min(ymin_list) ymax = max(ymax_list) elif self.predicted_nt is not None: # APPEND PREDICTED GRAVITY ANOMALY ymin = self.predicted_nt.min() - 2.0 ymax = self.predicted_nt.max() + 2.0 else: pass if self.magnetic_frame is not None: self.magnetic_frame.set_ylim(ymin, ymax) # SET DERIVATIVE Y-AXIS LIMITS # -------------------------------------------------------------------------------------------------------------- # CREATE EMPTY LIST ymin_list = [] ymax_list = [] for i in range(len(self.observed_magnetic_list)): if self.observed_magnetic_list[i].type == str('derivative'): ymin_list.append(self.observed_magnetic_list[i].data[:, 1].min() - 0.1) ymax_list.append(self.observed_magnetic_list[i].data[:, 1].max() + 0.1) self.magnetic_d_frame.set_ylim(ymin, ymax) # -------------------------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------------------------- # UPDATE GMG GRAPHICS self.draw() # EXTERNAL FIGURE CONSTRUCTION~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def plot_model(self, event): """CREATE EXTERNAL FIGURE OF MODEL USING INBUILT FIGURE CONSTRUCTION TOOL""" # GET PLOTTING PARAMETERS FROM DIALOG BOX self.set_values = PlotSettingsDialog(self, -1, 'Set figure parameters', self.model_aspect, self.grav_frame_aspect) self.set_values.Show(True) def draw_model(self): # GET USER INPUT FROM POPOUT BOX self.file_path = self.set_values.file_path self.file_type = self.set_values.file_type self.use_tight_layout = self.set_values.use_tight_layout self.fs = self.set_values.fs # FONT SIZE self.aspect_ratio = self.set_values.aspect_ratio # MODEL ASPECT RATIO self.ps = self.set_values.ps # OBSERVED POINT SIZE self.calc_line_width = self.set_values.lw # CALCUALTED LINE WIDTH self.font_type = self.set_values.font_type_text.GetValue() self.topo_frame_min = self.set_values.topo_min_text.GetValue() self.topo_frame_max = self.set_values.topo_max_text.GetValue() self.grav_frame_min = self.set_values.grav_min_text.GetValue() self.grav_frame_max = self.set_values.grav_max_text.GetValue() self.mag_frame_min = self.set_values.mag_min_text.GetValue() self.mag_frame_max = self.set_values.mag_max_text.GetValue() self.draw_polygons = self.set_values.draw_polygons self.polygon_alpha = self.set_values.polygon_alpha self.draw_fixed_layers = self.set_values.draw_fixed_layers self.layer_line_width = self.set_values.layer_line_width self.draw_floating_layers = self.set_values.draw_floating_layers self.layer_line_alpha = self.set_values.layer_line_alpha self.draw_colorbar = self.set_values.draw_colorbar self.colorbar_x = self.set_values.colorbar_x self.colorbar_y = self.set_values.colorbar_y self.colorbar_size_x = self.set_values.colorbar_size_x self.colorbar_size_y = self.set_values.colorbar_size_y self.draw_xy_data = self.set_values.draw_xy_data self.xy_size = self.set_values.xy_size self.xy_color = self.set_values.xy_color self.draw_wells = self.set_values.draw_wells self.well_fs = self.set_values.well_fs self.well_line_width = self.set_values.well_line_width self.draw_faults = self.set_values.draw_faults self.faults_lw = self.set_values.faults_lw # GET FIGURE DIMENSIONS xmin, xmax = self.model_frame.get_xlim() ymin, ymax = self.model_frame.get_ylim() area = np.array([xmin, xmax, ymin, ymax]) # # RUN PLOT MODEL CODE fig_plot = plot_model.plot_fig(self.file_path, self.file_type, self.use_tight_layout, self.fs, self.aspect_ratio, self.ps, self.calc_line_width, self.font_type, self.topo_frame_min, self.topo_frame_max, self.grav_frame_min, self.grav_frame_max, self.mag_frame_min, self.mag_frame_max, self.draw_polygons, self.polygon_alpha, self.draw_fixed_layers, self.layer_line_width, self.draw_floating_layers, self.layer_line_alpha, self.draw_colorbar, self.colorbar_x, self.colorbar_y, self.colorbar_size_x, self.colorbar_size_y, self.draw_xy_data, self.xy_size, self.xy_color, self.draw_wells, self.well_fs, self.well_line_width, self.draw_faults, self.faults_lw, self.layer_list, self.fault_list, self.observed_topography_list, self.observed_gravity_list, self.observed_magnetic_list, self.outcrop_data_list, self.well_data_list, self.segy_data_list, self.topo_frame, self.gravity_frame, self.magnetic_frame, self.predicted_gravity, self.gravity_rms_value, self.predicted_nt, self.magnetic_rms_value, self.area, self.xp) del fig_plot # # # IF ON A LINUX SYSTEM OPEN THE FIGURE WITH PDF VIEWER # try: # if sys.platform == 'linux2': # subprocess.call(["xdg-open", self.file_path]) # # IF ON A macOS SYSTEM OPEN THE FIGURE WITH PDF VIEWER # elif sys.platform == 'darwin': # os.open(self.file_path) # except IOError: # pass # UPDATE GMG self.update_layer_data() self.draw() return # DOCUMENTATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def open_documentation(self, event): """OPEN DOCUMENTATION HTML""" self.doc_dir = os.path.dirname(os.path.abspath(__file__)).split('/') doc_url = self.doc_dir[0] + '/' + self.doc_dir[1] + '/' + self.doc_dir[2] + '/' + self.doc_dir[3] + \ '/docs/html/gmg_documentation.html' if platform == "linux" or platform == "linux2": # LINUX webbrowser.open_new(doc_url) elif platform == "darwin": # OS X client = webbrowser.get("open -a /Applications/Safari.app %s") client.open(doc_url) elif platform == "win32": # WINDOWS webbrowser.open_new(doc_url) def about_gmg(self, event): """ SHOW SOFTWARE INFORMATION""" about = [ "GMG is an Open Source Graphical User Interface (GUI) designed principally for modelling 2D potential " "field (gravity and magnetic) profiles. The software also includes functions for loading XY data, " "seismic reflection SEGY data and exploration well horizons. The software therefore provides an " "integrated geological/geophysical interpretation package. It is anticipated that GMG will also be " "useful for teaching purposes. \n \n" "Data I/O is made as simple as possible using space delimited ASCII text files. \n \n" "The project was instigated after failing to find an adequate open source option (in which the source " "code can be viewed and modified by the user) for performing 2D geophysical modeling tasks. " "Inspiration came from fatiando a terra and GMT. \n \n" "GMG was initially developed at the University of Oxford 2014-2017. \n \n" "B. Tozer"] dlg = wx.MessageDialog(self, about[0], "About", wx.OK | wx.ICON_INFORMATION) result = dlg.ShowModal() dlg.Destroy() def legal(self, event): """ SHOW LICENCE""" licence = ["Copyright 2015-2019 Brook Tozer \n\nRedistribution and use in source and binary forms, with or " "without modification, are permitted provided that the following conditions are met: \n \n" "1. Redistributions of source code must retain the above copyright notice, this list of conditions " "and the following disclaimer. \n\n2. Redistributions in binary form must reproduce the above " "copyright notice, this list of conditions and the following disclaimer in the documentation and/or " "other materials provided with the distribution. \n\n3. Neither the name of the copyright holder " "nor the names of its contributors may be used to endorse or promote products derived from this " "software without specific prior written permission. \n\nTHIS SOFTWARE IS PROVIDED BY THE " "COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT " "NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE " "DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, " "INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, " "PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS " "INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY," " OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, " "EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."] dlg = wx.MessageDialog(self, licence[0], "BSD-3-Clause Licence", wx.OK | wx.ICON_INFORMATION) result = dlg.ShowModal() dlg.Destroy() # EXIT FUNCTIONS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def exit(self, event): """ SHUTDOWN APP (FROM FILE MENU)""" dlg = wx.MessageDialog(self, "Do you really want to exit", "Confirm Exit", wx.OK | wx.CANCEL | wx.ICON_QUESTION) result = dlg.ShowModal() if result == wx.ID_OK: wx.GetApp().ExitMainLoop() def on_close_button(self, event): """ SHUTDOWN APP (X BUTTON)""" dlg = wx.MessageDialog(self, "Do you really want to exit", "Confirm Exit", wx.OK | wx.CANCEL | wx.ICON_QUESTION) result = dlg.ShowModal() if result == wx.ID_OK: wx.GetApp().ExitMainLoop() # FUTURE MODULES (IN PROCESS)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def set_error(self, value): pass # self.error = value # self.update_layer_data() # self.run_algorithms() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # START SOFTWARE if __name__ == "__main__": app = wx.App(False) fr = wx.Frame(None, title='GMG: Geophysical Modelling GUI') app.frame = Gmg() app.frame.CenterOnScreen() app.frame.Show() app.MainLoop()
python
from typing import List, Union import numpy as np import tf_conversions from geometry_msgs.msg import Pose, Quaternion def calc_homogeneous_matrix(pose: Pose) -> np.ndarray: angles = tf_conversions.transformations.euler_from_quaternion([ pose.orientation.x, pose.orientation.y, pose.orientation.z, pose.orientation.w ]) translate = [pose.position.x, pose.position.y, pose.position.z] homogeneous_matrix = tf_conversions.transformations.compose_matrix( angles=angles, translate=translate) return homogeneous_matrix def calc_relative_pose(pose_from: Pose, pose_to: Pose) -> Pose: converted_matrix = ( tf_conversions.transformations.inverse_matrix(calc_homogeneous_matrix(pose_from)) @ calc_homogeneous_matrix(pose_to)) quaternion = tf_conversions.transformations.quaternion_from_matrix( converted_matrix) translation = tf_conversions.transformations.translation_from_matrix( converted_matrix) return get_msg_from_translation_and_quaternion(translation, quaternion) def calc_global_pose_from_relative_pose(pose_base: Pose, pose_relative: Pose) -> Pose: converted_matrix = ( calc_homogeneous_matrix(pose_base) @ calc_homogeneous_matrix(pose_relative)) quaternion = tf_conversions.transformations.quaternion_from_matrix( converted_matrix) translation = tf_conversions.transformations.translation_from_matrix( converted_matrix) return get_msg_from_translation_and_quaternion(translation, quaternion) def get_msg_from_translation_and_quaternion(translation: Union[np.ndarray, list], quaternion: Union[np.ndarray, list]) -> Pose: pose = Pose() pose.position.x = translation[0] pose.position.y = translation[1] pose.position.z = translation[2] pose.orientation.x = quaternion[0] pose.orientation.y = quaternion[1] pose.orientation.z = quaternion[2] pose.orientation.w = quaternion[3] return pose def get_msg_from_array_2d(array_2d: Union[np.ndarray, list]) -> Pose: pose = Pose() quaternion = Quaternion( *tf_conversions.transformations.quaternion_from_euler(0, 0, array_2d[2])) pose.position.x = array_2d[0] pose.position.y = array_2d[1] pose.position.z = 0 pose.orientation = quaternion return pose def get_array_2d_from_msg(pose: Pose) -> List[float]: array_2d = [ pose.position.x, pose.position.y, tf_conversions.transformations.euler_from_quaternion([ pose.orientation.x, pose.orientation.y, pose.orientation.z, pose.orientation.w ])[2] ] return array_2d
python
""" DBSCAN Clustering """ import numpy as np from sklearn.cluster import DBSCAN from sklearn.neighbors import NearestNeighbors def eps_est(data,n=4,verbose=True): """ Minimum data size is 1000 Methodology improvement opportunity: Better elbow locater """ if verbose:print("Calculating nearest neighbor distances...") nbrs = NearestNeighbors(n_neighbors=int(max(n+1,100)), algorithm='ball_tree',n_jobs=-1).fit(data) distances, indices = nbrs.kneighbors(data) del nbrs distArr = distances[:,n] # distance array containing all distances to nth neighbor distArr.sort() pts = range(len(distArr)) # The following looks for the first instance (past the mid point) # where the mean of the following [number] points # is at least (cutoff-1)*100% greater than the mean of the previous [number] points. # Number is currently set to be 0.2% of the total data # This works pretty well on data scaled to unit variance. Area for improvement though. number = int(np.ceil(len(data)/500)) cutoff = 1.05 if verbose:print("Finding elbow...") for i in range(int(np.ceil(len(pts)/2)),len(pts)-number): if np.mean(distArr[i+1:i+number])>=cutoff*np.mean(distArr[i-number:i-1]): dbEps = distArr[i] pt=pts[i] break if verbose: print(""" Epsilon is in the neighborhood of {:05.2f}. """.format(dbEps)) return dbEps,distArr def dbscan_w_outliers(data,min_n=4,check_tabby=False,verbose=True): # numpy array of dataframe for fit later X=np.array([np.array(data.loc[i]) for i in data.index]) if verbose:print("Estimating Parameters...") if len(X)>10000: # Large datasets have presented issues where a single high density cluster # leads to an epsilon of 0.0 for 4 neighbors. # We adjust for this by calculating epsilon for a sample of the data, # then we scale min_neighbors accordingly if verbose:print("Sampling data for parameter estimation...") X_sample = data.sample(n=10000) else: X_sample = data dbEps,distArr = eps_est(X_sample,n=min_n,verbose=verbose) if len(X)>10000: if verbose:print("Scaling density...") min_n = int(len(X)/10000*min_n) if verbose:print("Clustering data with DBSCAN, eps={:05.2f},min_samples={}...".format(dbEps,min_n)) #est = DBSCAN(eps=dbEps,min_samples=min_n,n_jobs=-1) # takes too long, deprecated #est.fit(X) #clusterLabels = est.labels_ # Outlier score: distance to 4th neighbor? nbrs = NearestNeighbors(n_neighbors=min_n+1, algorithm='ball_tree',n_jobs=-1).fit(data) distances, indices = nbrs.kneighbors(data) del nbrs distArr = distances[:,min_n] # The following determines the cluster edge members # by checking if any outlying points contain a clustered neighbor. # Necessary given the heuristic nature of epsilon, provides a buffer. # Optimization opportunity: this could be parellelized pretty easily d = {True:-1,False:0} clusterLabels = np.array([d[pt>dbEps] for pt in distArr]) for i,label in enumerate(clusterLabels): # For all identified outliers (pts w/o enough neighbors): if label == -1: j=1 # for the neighbors within epsilon while distances[i,j]<dbEps: # if a neighbor is labeled as part of the cluster, if clusterLabels[indices[i,j]] == 0: # then this pt is an edge point clusterLabels[i]=1 break j+=1 if check_tabby: if data.index.str.contains('8462852').any(): tabbyInd = list(data.index).index(data[data.index.str.contains('8462852')].index[0]) if clusterLabels[tabbyInd] == -1: print("Tabby has been found to be an outlier in DBSCAN.") else: print("Tabby has NOT been found to be an outlier in DBSCAN") else: print("MISSING: Tabby is not in this data.") numout = len(clusterLabels[clusterLabels==-1]) numedge = len(clusterLabels[clusterLabels==1]) if verbose: print("There are {:d} total outliers and {:d} edge members.".format(numout,numedge)) return clusterLabels if __name__=="__main__": """ If this is run as a script, the following will parse the arguments it is fed, or prompt the user for input. python db_outliers.py path/to/file n_features path/to/output_file """ # f - file, pandas dataframe saved as csv with calculated features if sys.argv[1]: f = sys.argv[1] else: while not f: f = raw_input("Input path: ") print("Reading %s..."%f) df = pd.read_csv(f,index_col=0) if sys.argv[2]:n_feat=sys.argv[2] else: n_feat = raw_input("Number of features in data: ") if not n_feat: print("No features specified, assuming default number of features, 60.") n_feat = 60 # of - output file if sys.argv[3]: of = sys.argv[3] else: of = raw_input("Output path: ") if not of: print("No output path specified, saving to 'output.npy' in local folder.") of = 'output' np.save(of,dbscan_w_outliers(df[:n_feat])) print("Done.")
python
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: fetchScheduler Description : Author : JHao date: 2019/8/6 ------------------------------------------------- Change Activity: 2019/08/06: ------------------------------------------------- """ __author__ = 'JHao' import os from handler.logHandler import LogHandler from handler.proxyHandler import ProxyHandler from fetcher.proxyFetcher import ProxyFetcher from handler.configHandler import ConfigHandler from qqwry import QQwry class Fetcher(object): name = "fetcher" def __init__(self): self.log = LogHandler(self.name) self.conf = ConfigHandler() self.proxy_handler = ProxyHandler() self.loadIp() def loadIp(self): if False != os.path.isfile("qqwry.dat"): self.ip = QQwry() self.ip.load_file('qqwry.dat') else: self.ip = False def fetch(self): """ fetch proxy into db with proxyFetcher :return: """ proxy_set = set() self.log.info("ProxyFetch : start") for fetch_name in self.conf.fetchers: self.log.info("ProxyFetch - {func}: start".format(func=fetch_name)) fetcher = getattr(ProxyFetcher, fetch_name, None) if not fetcher: self.log.error("ProxyFetch - {func}: class method not exists!") continue if not callable(fetcher): self.log.error("ProxyFetch - {func}: must be class method") continue try: for proxy in fetcher(): if proxy in proxy_set: self.log.info('ProxyFetch - %s: %s exist' % (fetch_name, proxy.ljust(23))) continue else: self.log.info('ProxyFetch - %s: %s success' % (fetch_name, proxy.ljust(23))) if proxy.strip(): if self.ip: area = " ".join(self.ip.lookup(proxy.split(':')[0])) else: self.loadIp() area = '' proxy_set.add((proxy, fetch_name, area)) except Exception as e: self.log.error("ProxyFetch - {func}: error".format(func=fetch_name)) self.log.error(str(e)) self.log.info("ProxyFetch - all complete!") return proxy_set # origin proxy_set = {'1.1.1.1', '2.2.2.2'} # now proxy_set = [('1.1.1.1', 'fetch1', 'area'), ('2.2.2.2', 'fetch2', 'area')] def runFetcher(): return Fetcher().fetch()
python
#!/usr/bin/env python # Written by Eric Ziegast # nxdomain.py - look at ch202 dnsqr data from a file and print out any # qname / type / rcode for data that's not rcode 0 ("NOERROR"). # Forgive awkward key processing. Sometimes an rcode or qtype key # doesn't exist and would cause the script to break if accessed them. import nmsg import wdns import sys def main(fname): i = nmsg.input.open_file(fname) while True: m = i.read() if not m: break rcode = 0 qname = qtype = 0 for key in m.keys(): if key == 'rcode': rcode = m[key] continue if key == 'qname': qname = m[key] continue if key == 'qtype': qtype = m[key] continue if rcode != 0 and qname != 0 and qtype != 0: print('%s %s %s' % (wdns.rcode_to_str(rcode), wdns.rrtype_to_str(qtype), wdns.domain_to_str(qname))) if __name__ == '__main__': main(sys.argv[1])
python
lista = list() while True: lista.append(int(input("Digite um número inteiro:\t"))) while True: p = str(input("Digitar mais números?\t").strip())[0].upper() if p in 'SN': break else: print("\033[31mDigite uma opção válida!\033[m") if p == 'N': break par = list() impar = list() for n in lista: if n % 2 == 0: par.append(n) else: impar.append(n) par.sort() impar.sort() if 0 in par: par.remove(0) print(f"Entre os números \033[32m{lista}\033[m, os números pares são: \033[33m{par}\033[m e os números ímpares são: \033[34m{impar}\033[m!")
python
""" A simple TCP echo server. """ import argparse import socket import time if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("listen_port", help="The port this process will listen on.", type=int) args = parser.parse_args() # Create a TCP/IP socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Bind the socket to the port server_address = ('localhost', int(args.listen_port)) print('starting up on %s port %s' % server_address) sock.bind(server_address) # Listen for incoming connections sock.listen(1) init_time = time.time() while True: # Wait for a connection print('waiting for a connection') connection, client_address = sock.accept() try: print('connection from', client_address) # Receive the data in small chunks and retransmit it while True: data = connection.recv(64) print('received "{}" at time {:.2f}.'.format( data, time.time() - init_time)) if data: print('sending "{}" back to the client at time {:.2f}'. format(data, time.time() - init_time)) connection.sendall(data) else: print('no more data from {} at time {:.2f}'.format( client_address, time.time() - init_time)) break finally: # Clean up the connection connection.close()
python
import os import io import shutil import base64 import subprocess import platform import logging import numpy as np import pandas as pd from tqdm import tqdm from glob import glob from pathlib import Path as P import wget import urllib3, ftplib from urllib.parse import urlparse from bs4 import BeautifulSoup import matplotlib as mpl mpl.use("Agg") from matplotlib import pyplot as plt import matplotlib.cm as cm import ms_mint from ms_mint.io import ms_file_to_df from ms_mint.targets import standardize_targets, read_targets from ms_mint.io import convert_ms_file_to_feather from ms_mint.standards import TARGETS_COLUMNS from datetime import date from .filelock import FileLock def lock(fn): return FileLock(f"{fn}.lock", timeout=1) def today(): return date.today().strftime("%y%m%d") def get_versions(): string = "" try: string += subprocess.getoutput("conda env export --no-build") except: pass return string def get_issue_text(): return f""" %0A%0A%0A%0A%0A%0A%0A%0A%0A MINT version: {ms_mint.__version__}%0A OS: {platform.platform()}%0A Versions: --- """ def parse_ms_files(contents, filename, date, target_dir): content_type, content_string = contents.split(",") decoded = base64.b64decode(content_string) fn_abs = os.path.join(target_dir, filename) with lock(fn_abs): with open(fn_abs, "wb") as file: file.write(decoded) new_fn = convert_ms_file_to_feather(fn_abs) if os.path.isfile(new_fn): os.remove(fn_abs) def parse_pkl_files(contents, filename, date, target_dir, ms_mode=None): content_type, content_string = contents.split(",") decoded = base64.b64decode(content_string) df = pd.read_csv(io.StringIO(decoded.decode("utf-8"))) df = standardize_targets(df, ms_mode=ms_mode) df = df.drop_duplicates() return df def get_dirnames(path): dirnames = [f.name for f in os.scandir(path) if f.is_dir()] return dirnames def workspace_path(tmpdir, ws_name): return os.path.join(tmpdir, "workspaces", ws_name) def maybe_migrate_workspaces(tmpdir): if not P(tmpdir).is_dir(): return None dir_names = get_dirnames(tmpdir) ws_path = get_workspaces_path(tmpdir) if not os.path.isdir(ws_path) and len(dir_names) > 0: logging.info("Migrating to new directory scheme.") os.makedirs(ws_path) for dir_name in dir_names: old_dir = os.path.join(tmpdir, dir_name) new_dir = workspace_path(tmpdir, dir_name) shutil.move(old_dir, new_dir) logging.info("Moving", old_dir, "to", new_dir) def maybe_update_workpace_scheme(wdir): old_pkl_fn = P(wdir) / "peaklist" / "peaklist.csv" new_pkl_fn = P(get_targets_fn(wdir)) new_path = new_pkl_fn.parent old_path = old_pkl_fn.parent if old_pkl_fn.is_file(): logging.info(f"Moving targets file to new default location ({new_pkl_fn}).") if not new_path.is_dir(): os.makedirs(new_path) os.rename(old_pkl_fn, new_pkl_fn) shutil.rmtree(old_path) def workspace_exists(tmpdir, ws_name): path = workspace_path(tmpdir, ws_name) return os.path.isdir(path) def get_active_workspace(tmpdir): """Returns name of last activated workspace, if workspace still exists. Otherwise, return None. """ fn_ws_info = os.path.join(tmpdir, ".active-workspace") if not os.path.isfile(fn_ws_info): return None with open(fn_ws_info, "r") as file: ws_name = file.read() if ws_name in get_workspaces(tmpdir): return ws_name else: return None def save_activated_workspace(tmpdir, ws_name): fn_ws_info = os.path.join(tmpdir, ".active-workspace") with open(fn_ws_info, "w") as file: file.write(ws_name) def create_workspace(tmpdir, ws_name): path = workspace_path(tmpdir, ws_name) assert not os.path.isdir(path) os.makedirs(path) os.makedirs(os.path.join(path, "ms_files")) os.makedirs(os.path.join(path, "targets")) os.makedirs(os.path.join(path, "results")) os.makedirs(os.path.join(path, "figures")) os.makedirs(os.path.join(path, "chromato")) def get_workspaces_path(tmpdir): # Defines the path to the workspaces # relative to `tmpdir` return os.path.join(tmpdir, "workspaces") def get_workspaces(tmpdir): ws_path = get_workspaces_path(tmpdir) if not P(ws_path).is_dir(): return [] ws_names = get_dirnames(ws_path) ws_names = [ws for ws in ws_names if not ws.startswith(".")] ws_names.sort() return ws_names class Chromatograms: def __init__(self, wdir, targets, ms_files, progress_callback=None): self.wdir = wdir self.targets = targets self.ms_files = ms_files self.n_peaks = len(targets) self.n_files = len(ms_files) self.progress_callback = progress_callback def create_all(self): for fn in tqdm(self.ms_files): self.create_all_for_ms_file(fn) return self def create_all_for_ms_file(self, ms_file: str): fn = ms_file df = ms_file_to_df(fn) for ndx, row in self.targets.iterrows(): mz_mean, mz_width = row[["mz_mean", "mz_width"]] fn_chro = get_chromatogram_fn(fn, mz_mean, mz_width, self.wdir) if os.path.isfile(fn_chro): continue dirname = os.path.dirname(fn_chro) if not os.path.isdir(dirname): os.makedirs(dirname) dmz = mz_mean * 1e-6 * mz_width chrom = df[(df["mz"] - mz_mean).abs() <= dmz] chrom["scan_time_min"] = chrom["scan_time_min"].round(3) chrom = chrom.groupby("scan_time_min").max().reset_index() chrom[["scan_time_min", "intensity"]].to_feather(fn_chro) def get_single(self, mz_mean, mz_width, ms_file): return get_chromatogram(ms_file, mz_mean, mz_width, self.wdir) def create_chromatograms(ms_files, targets, wdir): for fn in tqdm(ms_files): fn_out = os.path.basename(fn) fn_out, _ = os.path.splitext(fn_out) fn_out += ".feather" for ndx, row in targets.iterrows(): mz_mean, mz_width = row[["mz_mean", "mz_width"]] fn_chro = get_chromatogram_fn(fn, mz_mean, mz_width, wdir) if not os.path.isfile(fn_chro): create_chromatogram(fn, mz_mean, mz_width, fn_chro) def create_chromatogram(ms_file, mz_mean, mz_width, fn_out, verbose=False): if verbose: print("Creating chromatogram") df = ms_file_to_df(ms_file) if verbose: print("...file read") dirname = os.path.dirname(fn_out) if not os.path.isdir(dirname): os.makedirs(dirname) dmz = mz_mean * 1e-6 * mz_width chrom = df[(df["mz"] - mz_mean).abs() <= dmz] chrom["scan_time_min"] = chrom["scan_time_min"].round(3) chrom = chrom.groupby("scan_time_min").max().reset_index() with lock(fn_out): chrom[["scan_time_min", "intensity"]].to_feather(fn_out) if verbose: print("...done creating chromatogram.") return chrom def get_chromatogram(ms_file, mz_mean, mz_width, wdir): fn = get_chromatogram_fn(ms_file, mz_mean, mz_width, wdir) if not os.path.isfile(fn): chrom = create_chromatogram(ms_file, mz_mean, mz_width, fn) else: try: chrom = pd.read_feather(fn) except: os.remove(fn) logging.warning(f"Cound not read {fn}.") return None chrom = chrom.rename( columns={ "retentionTime": "scan_time_min", "intensity array": "intensity", "m/z array": "mz", } ) return chrom def get_chromatogram_fn(ms_file, mz_mean, mz_width, wdir): ms_file = os.path.basename(ms_file) base, _ = os.path.splitext(ms_file) fn = ( os.path.join(wdir, "chromato", f"{mz_mean}-{mz_width}".replace(".", "_"), base) + ".feather" ) return fn def get_targets_fn(wdir): return os.path.join(wdir, "targets", "targets.csv") def get_targets(wdir): fn = get_targets_fn(wdir) if os.path.isfile(fn): targets = read_targets(fn).set_index("peak_label") else: targets = pd.DataFrame(columns=TARGETS_COLUMNS) print("Read targets:", targets) return targets def update_targets(wdir, peak_label, rt_min=None, rt_max=None, rt=None): targets = get_targets(wdir) if isinstance(peak_label, str): if rt_min is not None and not np.isnan(rt_min): targets.loc[peak_label, "rt_min"] = rt_min if rt_max is not None and not np.isnan(rt_max): targets.loc[peak_label, "rt_max"] = rt_max if rt is not None and not np.isnan(rt): targets.loc[peak_label, "rt"] = rt if isinstance(peak_label, int): targets = targets.reset_index() if rt_min is not None and not np.isnan(rt_min): targets.loc[peak_label, "rt_min"] = rt_min if rt_max is not None and not np.isnan(rt_max): targets.loc[peak_label, "rt_max"] = rt_max if rt is not None and not np.isnan(rt): targets.loc[peak_label, "rt"] = rt targets = targets.set_index("peak_label") fn = get_targets_fn(wdir) with lock(fn): targets.to_csv(fn) def get_results_fn(wdir): return os.path.join(wdir, "results", "results.csv") def get_results(wdir): fn = get_results_fn(wdir) df = pd.read_csv(fn) df["MS-file"] = [filename_to_label(fn) for fn in df["ms_file"]] return df def get_metadata(wdir): fn = get_metadata_fn(wdir) fn_path = os.path.dirname(fn) ms_files = get_ms_fns(wdir, abs_path=False) ms_files = [filename_to_label(fn) for fn in ms_files] df = None if not os.path.isdir(fn_path): os.makedirs(fn_path) if os.path.isfile(fn): df = pd.read_csv(fn) if "MS-file" not in df.columns: df = None if df is None or len(df) == 0: df = init_metadata(ms_files) for col in [ "Color", "Column", "Row", "Batch", "Label", "InAnalysis", "PeakOpt", "MS-file", ]: if col not in df.columns: df[col] = None df = df[df["MS-file"] != ""] df = df.groupby("MS-file").first().reindex(ms_files).reset_index() if "PeakOpt" not in df.columns: df["PeakOpt"] = False else: df["PeakOpt"] = df["PeakOpt"].astype(bool) if "InAnalysis" not in df.columns: df["InAnalysis"] = True else: df["InAnalysis"] = df["InAnalysis"].astype(bool) if "index" in df.columns: del df["index"] df["Column"] = df["Column"].apply(format_columns) df["Type"] = df["Type"].fillna("Not set") df.reset_index(inplace=True) return df def init_metadata(ms_files): ms_files = list(ms_files) ms_files = [filename_to_label(fn) for fn in ms_files] df = pd.DataFrame({"MS-file": ms_files}) df["InAnalysis"] = True df["Label"] = "" df["Color"] = None df["Type"] = "Biological Sample" df["RunOrder"] = "" df["Batch"] = "" df["Row"] = "" df["Column"] = "" df["PeakOpt"] = "" return df def write_metadata(meta, wdir): fn = get_metadata_fn(wdir) with lock(fn): meta.to_csv(fn, index=False) def get_metadata_fn(wdir): fn = os.path.join(wdir, "metadata", "metadata.csv") return fn def get_ms_dirname(wdir): return os.path.join(wdir, "ms_files") def get_ms_fns(wdir, abs_path=True): path = get_ms_dirname(wdir) fns = glob(os.path.join(path, "**", "*.*"), recursive=True) fns = [fn for fn in fns if is_ms_file(fn)] if not abs_path: fns = [os.path.basename(fn) for fn in fns] return fns def is_ms_file(fn: str): if ( fn.lower().endswith(".mzxml") or fn.lower().endswith(".mzml") or fn.lower().endswith(".feather") ): return True return False def Basename(fn): fn = os.path.basename(fn) fn, _ = os.path.splitext(fn) return fn def format_columns(x): try: if (x is None) or (x == "") or np.isnan(x): return None except: print(type(x)) print(x) assert False return f"{int(x):02.0f}" def get_complete_results( wdir, include_labels=None, exclude_labels=None, file_types=None, include_excluded=False, ): meta = get_metadata(wdir) resu = get_results(wdir) if not include_excluded: meta = meta[meta["InAnalysis"]] df = pd.merge(meta, resu, on=["MS-file"]) if include_labels is not None and len(include_labels) > 0: df = df[df.peak_label.isin(include_labels)] if exclude_labels is not None and len(exclude_labels) > 0: df = df[~df.peak_label.isin(exclude_labels)] if file_types is not None and file_types != []: df = df[df.Type.isin(file_types)] df["log(peak_max+1)"] = df.peak_max.apply(np.log1p) if "index" in df.columns: df = df.drop("index", axis=1) return df def gen_tabulator_columns( col_names=None, add_ms_file_col=False, add_color_col=False, add_peakopt_col=False, add_ms_file_active_col=False, col_width="12px", editor="input", ): if col_names is None: col_names = [] col_names = list(col_names) standard_columns = [ "MS-file", "InAnalysis", "Color", "index", "PeakOpt", ] for col in standard_columns: if col in col_names: col_names.remove(col) columns = [ { "formatter": "rowSelection", "titleFormatter": "rowSelection", "titleFormatterParams": { "rowRange": "active" # only toggle the values of the active filtered rows }, "hozAlign": "center", "headerSort": False, "width": "1px", "frozen": True, } ] if add_ms_file_col: columns.append( { "title": "MS-file", "field": "MS-file", "headerFilter": True, "headerSort": True, "editor": "input", "sorter": "string", "frozen": True, } ) if add_color_col: columns.append( { "title": "Color", "field": "Color", "headerFilter": False, "editor": "input", "formatter": "color", "width": "3px", "headerSort": False, } ) if add_peakopt_col: columns.append( { "title": "PeakOpt", "field": "PeakOpt", "headerFilter": False, "formatter": "tickCross", "width": "6px", "headerSort": True, "hozAlign": "center", "editor": True, } ) if add_ms_file_active_col: columns.append( { "title": "InAnalysis", "field": "InAnalysis", "headerFilter": True, "formatter": "tickCross", "width": "6px", "headerSort": True, "hozAlign": "center", "editor": True, } ) for col in col_names: content = { "title": col, "field": col, "headerFilter": True, "width": col_width, "editor": editor, } columns.append(content) return columns def parse_table_content(content, filename): content_type, content_string = content.split(",") decoded = base64.b64decode(content_string) if filename.lower().endswith(".csv"): df = pd.read_csv(io.StringIO(decoded.decode("utf-8"))) elif filename.lower().endswith(".xlsx"): df = pd.read_excel(io.BytesIO(decoded)) return df def fig_to_src(dpi=100): out_img = io.BytesIO() plt.savefig(out_img, format="jpeg", bbox_inches="tight", dpi=dpi) plt.close("all") out_img.seek(0) # rewind file encoded = base64.b64encode(out_img.read()).decode("ascii").replace("\n", "") return "data:image/png;base64,{}".format(encoded) def merge_metadata(old, new): old = old.set_index("MS-file") new = new.groupby("MS-file").first().replace("null", None) for col in new.columns: if col == "" or col.startswith("Unnamed"): continue if not col in old.columns: old[col] = None for ndx in new.index: value = new.loc[ndx, col] if value is None: continue if ndx in old.index: old.loc[ndx, col] = value return old.reset_index() def file_colors(wdir): meta = get_metadata(wdir) colors = {} for ndx, (fn, co) in meta[["MS-file", "Color"]].iterrows(): if not (isinstance(co, str)): co = None colors[fn] = co return colors def get_figure_fn(kind, wdir, label, format): path = os.path.join(wdir, "figures", kind) clean_label = clean_string(label) fn = f"{kind}__{clean_label}.{format}" fn = os.path.join(path, fn) return path, fn def clean_string(fn: str): for x in ['"', "'", "(", ")", "[", "]", " ", "\\", "/", "{", "}"]: fn = fn.replace(x, "_") return fn def savefig(kind=None, wdir=None, label=None, format="png", dpi=150): path, fn = get_figure_fn(kind=kind, wdir=wdir, label=label, format=format) maybe_create(path) try: with lock(fn): plt.savefig(fn, dpi=dpi, bbox_inches="tight") except: print(f"Could not save figure {fn}, maybe no figure was created: {label}") return fn def maybe_create(dir_name): if not os.path.isdir(dir_name): os.makedirs(dir_name) def png_fn_to_src(fn): encoded_image = base64.b64encode(open(fn, "rb").read()) return "data:image/png;base64,{}".format(encoded_image.decode()) def get_ms_fns_for_peakopt(wdir): """Extract the filenames for peak optimization from the metadata table and recreate the complete filename.""" df = get_metadata(wdir) fns = df[df.PeakOpt.astype(bool) == True]["MS-file"] ms_files = get_ms_fns(wdir) mapping = {filename_to_label(fn): fn for fn in ms_files} fns = [mapping[fn] for fn in fns] return fns def float_to_color(x, vmin=0, vmax=2, cmap=None): norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) m = cm.ScalarMappable(norm=norm, cmap=cmap) return m.to_rgba(x) def write_targets(targets, wdir): fn = get_targets_fn(wdir) if "peak_label" in targets.columns: targets = targets.set_index("peak_label") with lock(fn): targets.to_csv(fn) def filename_to_label(fn: str): if is_ms_file(fn): fn = os.path.splitext(fn)[0] return os.path.basename(fn) def import_from_url(url, target_dir, fsc=None): filenames = get_filenames_from_url(url) filenames = [fn for fn in filenames if is_ms_file(fn)] if len(filenames) == 0: return None fns = [] n_files = len(filenames) for i, fn in enumerate(tqdm(filenames)): _url = url + "/" + fn logging.info("Downloading", _url) if fsc is not None: fsc.set("progress", int(100 * (1 + i) / n_files)) wget.download(_url, out=target_dir) return fns def get_filenames_from_url(url): if url.startswith("ftp"): return get_filenames_from_ftp_directory(url) if "://" in url: url = url.split("://")[1] with urllib3.PoolManager() as http: r = http.request("GET", url) soup = BeautifulSoup(r.data, "html") files = [A["href"] for A in soup.find_all("a", href=True)] return files def get_filenames_from_ftp_directory(url): url_parts = urlparse(url) domain = url_parts.netloc path = url_parts.path ftp = ftplib.FTP(domain) ftp.login() ftp.cwd(path) filenames = ftp.nlst() ftp.quit() return filenames def import_from_local_path(path, target_dir, fsc=None): fns = glob(os.path.join(path, "**", "*.*"), recursive=True) fns = [fn for fn in fns if is_ms_file(fn)] fns_out = [] n_files = len(fns) for i, fn in enumerate(tqdm(fns)): if fsc is not None: fsc.set("progress", int(100 * (1 + i) / n_files)) fn_out = P(target_dir) / P(fn).with_suffix(".feather").name if P(fn_out).is_file(): continue fns_out.append(fn_out) try: convert_ms_file_to_feather(fn, fn_out) except: logging.warning(f"Could not convert {fn}") return fns_out def df_to_in_memory_csv_file(df): buffer = io.StringIO() df.to_csv(buffer) buffer.seek(0) return buffer.getvalue def df_to_in_memory_excel_file(df): def to_xlsx(bytes_io): xslx_writer = pd.ExcelWriter(bytes_io, engine="xlsxwriter") df.to_excel(xslx_writer, index=True, sheet_name="sheet1") xslx_writer.save() return to_xlsx def has_na(df): return df.isna().sum().sum() > 0
python
# Generated by Django 3.1.2 on 2020-11-09 15:40 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('auctions', '0015_auto_20201106_1737'), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('content', models.TextField()), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('active', models.BooleanField(default=False)), ], ), ]
python
# Copyright 2009 by Tiago Antao <[email protected]>. All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. import os import unittest from Bio import MissingExternalDependencyError from Bio.PopGen.GenePop.Controller import GenePopController #Tests genepop related code. Note: this case requires genepop #test_PopGen_GenePop_nodepend tests code that does not require genepop found = False for path in os.environ['PATH'].split(os.pathsep): try: for filename in os.listdir(path): if filename.startswith('Genepop'): found = True except os.error: pass #Path doesn't exist - correct to pass if not found: raise MissingExternalDependencyError(\ "Install GenePop if you want to use Bio.PopGen.GenePop.") class AppTest(unittest.TestCase): """Tests genepop execution via biopython. """ def test_allele_genotype_frequencies(self): """Test genepop execution on basic allele and genotype frequencies. """ ctrl = GenePopController() pop_iter, locus_iter = ctrl.calc_allele_genotype_freqs("PopGen" + os.sep + "big.gen") #print pop, loci #for popc in pop_iter: # pop_name, loci_content = popc # print pop_name # for locus in loci_content.keys(): # geno_list, hets, freq_fis = loci_content[locus] # print locus # print hets # print freq_fis # print geno_list # print def test_calc_diversities_fis_with_identity(self): """Test calculations of diversities ... """ ctrl = GenePopController() iter, avg_fis, avg_Qintra = ctrl.calc_diversities_fis_with_identity( "PopGen" + os.sep + "big.gen") liter = list(iter) assert len(liter) == 37 assert liter[0][0] == "Locus1" assert len(avg_fis)==10 assert len(avg_Qintra)==10 def test_estimate_nm(self): """Test Nm estimation. """ ctrl = GenePopController() mean_sample_size, mean_priv_alleles, mig10, mig25, mig50, mig_corrected =\ ctrl.estimate_nm("PopGen" + os.sep + "big.gen") assert (mean_sample_size, mean_priv_alleles, mig10, mig25, mig50, mig_corrected) == \ (28.0, 0.016129, 52.5578, 15.3006, 8.94583, 13.6612) def test_fst_all(self): """Test genepop execution on all fst. """ ctrl = GenePopController() (allFis, allFst, allFit), itr = ctrl.calc_fst_all("PopGen" + os.sep + "c2line.gen") results = list(itr) assert (len(results) == 3) assert (results[0][0] == "136255903") assert (results[1][3] - 0.33 < 0.01) def test_haploidy(self): """Test haploidy. """ ctrl = GenePopController() (allFis, allFst, allFit), itr = ctrl.calc_fst_all("PopGen" + os.sep + "haplo.gen") litr = list(itr) assert not type(allFst) == int assert len(litr) == 37 assert litr[36][0] == "Locus37" if __name__ == "__main__": runner = unittest.TextTestRunner(verbosity = 2) unittest.main(testRunner=runner)
python
from zope.browserpage import ViewPageTemplateFile import pkg_resources import zeit.cms.related.interfaces import zeit.cms.workflow.interfaces import zeit.content.video.interfaces class Details(zeit.cms.browser.objectdetails.Details): index = ViewPageTemplateFile(pkg_resources.resource_filename( 'zeit.content.video.browser', 'object-details-body.pt')) def __call__(self): return self.index() @property def graphical_preview_url(self): return self.context.video_still
python
import requests import os import time from datetime import datetime def get_edgar_index_files(date_input, download_folder=None): date = datetime.strptime(str(date_input), '%Y%m%d') # Confirm that date format is correct error = 'Date format should be in YYYYMMDD. ' if date > datetime.now(): raise Exception(error+'The date utlized occurs in the future.') if date.year < 1993 or date.year > datetime.now().year: raise Exception(error+'The year is out of range. EDGAR did not begin accepting electronic filings until 1993.') index_type = ['company', 'form', 'master', 'xbrl'] if 1 <= date.month <= 3: qtr ="Q1" elif 4 <= date.month <= 6: qtr ="Q2" elif 7 <= date.month <= 9: qtr ="Q3" elif 10 <= date.month <= 12: qtr ="Q4" if download_folder is None: base_path = os.path.dirname(os.path.realpath(__file__)) current_dirs = os.listdir(path=base_path) if 'indexes' not in current_dirs: os.mkdir('/'.join([base_path,'indexes'])) base_path = os.path.dirname(os.path.realpath(__file__))+'/indexes' else: base_path = os.path.dirname(os.path.realpath(__file__))+'/indexes' else: base_path = download_folder current_dirs = os.listdir(path=base_path) if 'indexes' not in current_dirs: os.mkdir('/'.join([base_path,'indexes'])) base_path = base_path+'/indexes' else: base_path = download_folder+'/indexes' current_dirs = os.listdir(path=base_path) if str(date.year) not in current_dirs: os.mkdir('/'.join([base_path, str(date.year)])) for it in index_type: # Use the following filename pattern to store the index files locally local_filename = f'{date.year}-{qtr}-{it}-index.txt' # Create the absolute path for storing the index files local_file_path = '/'.join([base_path, str(date.year), local_filename]) # Define the url at which to get the index file. url = f'https://www.sec.gov/Archives/edgar/full-index/{date.year}/{qtr}/{it}.idx' # Get the index file from EDGAR and save it to a text file. Note that to save a file # rather than bringing it into memory, set stream=True and use r.iter_content() # to break the incoming stream into chunks (here arbitrarily of size 10240 bytes) r = requests.get(url, stream=True) with open(local_file_path, 'wb') as f: for chunk in r.iter_content(chunk_size=10240): f.write(chunk) # Wait one-tenth of a second before sending another request to EDGAR. time.sleep(0.1) get_edgar_index_files(20200630)
python
from pylab import * import tensorflow as tf from sklearn.datasets import make_moons from sklearn.datasets import load_digits import tensorflow as tf import sys sys.path.insert(0, '../utils') from layers import * from utils import * import cPickle import os SAVE_DIR = os.environ['SAVE_DIR'] runnb=int(sys.argv[-4]) DATASET = sys.argv[-3] sigmass=sys.argv[-2] if(sys.argv[-1]=='None'): leakiness=None else: leakiness = float(sys.argv[-1]) supss = 1 x_train,y_train,x_test,y_test = load_data(DATASET) pp = permutation(x_train.shape[0])[:8000] XX = x_train[pp]/10+randn(len(pp),1,28,28)*0.002 YY = y_train[pp] XX = transpose(XX,[0,2,3,1]) x_test = transpose(x_test,[0,2,3,1]) input_shape = XX.shape layers1 = [InputLayer(input_shape)] layers1.append(DenseLayer(layers1[-1],K=64,R=2,leakiness=leakiness,sigma=sigmass,sparsity_prior=0.0)) layers1.append(DenseLayer(layers1[-1],K=32,R=2,leakiness=leakiness,sigma=sigmass)) layers1.append(FinalLayer(layers1[-1],R=10,sigma=sigmass,sparsity_prior=0.)) model1 = model(layers1) if(supss): model1.init_dataset(XX,YY) else: model1.init_dataset(XX) LOSSES = train_layer_model(model1,rcoeff_schedule=schedule(0.0000,'linear'),CPT=200,random=0,fineloss=0,verbose=0,mp_opt=0,per_layer=1) reconstruction=model1.reconstruct()[:1500] samplesclass0=[model1.sampleclass(0,k)[:150] for k in xrange(10)] samplesclass1=[model1.sampleclass(1,k)[:150] for k in xrange(10)] samples1=model1.sample(1)[:300] params = model1.get_params() f=open(SAVE_DIR+'exp_nonlinearity_'+DATASET+'_'+sigmass+'_'+sys.argv[-1]+'_run'+str(runnb)+'.pkl','wb') cPickle.dump([LOSSES,reconstruction,XX[:1500],samplesclass0,samplesclass1,samples1,params],f) f.close()
python
#!/usr/bin/env python3 import os import unittest import boto3 from moto import mock_kms from psyml.awsutils import ( decrypt_with_psyml, encrypt_with_psyml, get_psyml_key_arn, ) from psyml.settings import PSYML_KEY_REGION, PSYML_KEY_ALIAS class TestAWSUtils(unittest.TestCase): @mock_kms def kms_setup(self): conn = boto3.client("kms", region_name=PSYML_KEY_REGION) key = conn.create_key(Description="my key", KeyUsage="ENCRYPT_DECRYPT") self.conn = conn self.key_arn = key["KeyMetadata"]["Arn"] conn.create_alias(AliasName=PSYML_KEY_ALIAS, TargetKeyId=self.key_arn) @mock_kms def test_get_psyml_key_arn(self): self.kms_setup() self.assertEqual(get_psyml_key_arn(), self.key_arn) @mock_kms def test_encrypt_decrypt(self): self.kms_setup() encrypted = encrypt_with_psyml("some-name", "plaintext") self.assertNotEqual(encrypted, "plaintext") decrypted = decrypt_with_psyml("some-name", encrypted) self.assertEqual(decrypted, "plaintext") with self.assertRaises(self.conn.exceptions.InvalidCiphertextException): decrypt_with_psyml("another-name", encrypted)
python
import json from job.model_template.utils import ModelTemplateDriver DEBUG = False class DeeFMTemplateDriver(ModelTemplateDriver): def __init__(self, output_file=None, args=None, local=False): super(DeeFMTemplateDriver, self).__init__("DeepFM model template" + ("(debuging)" if DEBUG else ""), output_file, args, local) if __name__ == "__main__": if DEBUG: # import tensorflow as tf # tf.config.run_functions_eagerly(True) with open('./job_config_demo.json', 'r') as jcf: demo_job = json.load(jcf) driver = DeeFMTemplateDriver(args=[ "--job", json.dumps(demo_job), "--export-path", "./runs" ], local=True) driver.run() else: driver = DeeFMTemplateDriver() driver.run()
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # __coconut_hash__ = 0x412948c # Compiled with Coconut version 1.5.0-post_dev62 [Fish License] # Coconut Header: ------------------------------------------------------------- from __future__ import print_function, absolute_import, unicode_literals, division import sys as _coconut_sys, os as _coconut_os _coconut_file_dir = _coconut_os.path.dirname(_coconut_os.path.abspath(__file__)) _coconut_cached_module = _coconut_sys.modules.get(str("__coconut__")) if _coconut_cached_module is not None and _coconut_os.path.dirname(_coconut_cached_module.__file__) != _coconut_file_dir: del _coconut_sys.modules[str("__coconut__")] _coconut_sys.path.insert(0, _coconut_file_dir) _coconut_module_name = _coconut_os.path.splitext(_coconut_os.path.basename(_coconut_file_dir))[0] if _coconut_module_name and _coconut_module_name[0].isalpha() and all(c.isalpha() or c.isdigit() for c in _coconut_module_name) and "__init__.py" in _coconut_os.listdir(_coconut_file_dir): _coconut_full_module_name = str(_coconut_module_name + ".__coconut__") import __coconut__ as _coconut__coconut__ _coconut__coconut__.__name__ = _coconut_full_module_name for _coconut_v in vars(_coconut__coconut__).values(): if getattr(_coconut_v, "__module__", None) == str("__coconut__"): try: _coconut_v.__module__ = _coconut_full_module_name except AttributeError: type(_coconut_v).__module__ = _coconut_full_module_name _coconut_sys.modules[_coconut_full_module_name] = _coconut__coconut__ from __coconut__ import * from __coconut__ import _coconut_tail_call, _coconut_tco, _coconut_call_set_names, _coconut, _coconut_MatchError, _coconut_igetitem, _coconut_base_compose, _coconut_forward_compose, _coconut_back_compose, _coconut_forward_star_compose, _coconut_back_star_compose, _coconut_forward_dubstar_compose, _coconut_back_dubstar_compose, _coconut_pipe, _coconut_star_pipe, _coconut_dubstar_pipe, _coconut_back_pipe, _coconut_back_star_pipe, _coconut_back_dubstar_pipe, _coconut_none_pipe, _coconut_none_star_pipe, _coconut_none_dubstar_pipe, _coconut_bool_and, _coconut_bool_or, _coconut_none_coalesce, _coconut_minus, _coconut_map, _coconut_partial, _coconut_get_function_match_error, _coconut_base_pattern_func, _coconut_addpattern, _coconut_sentinel, _coconut_assert, _coconut_mark_as_match, _coconut_reiterable _coconut_sys.path.pop(0) # Compiled Coconut: ----------------------------------------------------------- # Imports: from pyprover.logic import Proposition from pyprover.logic import Constant from pyprover.logic import Implies from pyprover.logic import wff from pyprover.logic import bot # Functions: @_coconut_tco def props(names): """Constructs propositions from a space-seperated string of names.""" return _coconut_tail_call(map, Proposition, names.split()) @_coconut_tco def terms(names): """Constructs constants from a space-seperated string of names.""" return _coconut_tail_call(map, Constant, names.split()) @_coconut_tco def solve(expr, **kwargs): """Converts to CNF and performs all possible resolutions.""" return _coconut_tail_call(expr.simplify(dnf=False, **kwargs).resolve, **kwargs) strict_solve = _coconut.functools.partial(solve, nonempty_universe=False) def no_proof_of(givens, conclusion): """Finds a formula that represents the givens not implying the conclusion.""" if wff(givens): givens = (givens,) else: givens = tuple(givens) return ~Implies(*(givens + (conclusion,))) def proves(givens, conclusion, **kwargs): """Determines if the givens prove the conclusion.""" return (solve)(no_proof_of(givens, conclusion), **kwargs) == bot strict_proves = _coconut.functools.partial(proves, nonempty_universe=False) def iff(a, b): """Creates a formula for a implies b and b implies a.""" assert wff(a), a assert wff(b), b return a >> b & b >> a def proves_and_proved_by(a, b, **kwargs): """Determines if a is true if and only if b.""" a = a.simplify(dnf=False, **kwargs) b = b.simplify(dnf=False, **kwargs) return (_coconut.functools.partial(proves, **kwargs))(a, b) and (_coconut.functools.partial(proves, **kwargs))(b, a) strict_proves_and_proved_by = _coconut.functools.partial(proves_and_proved_by, nonempty_universe=False) @_coconut_tco def simplify(expr, *exprs, **kwargs): """Simplify the given expression[s].""" if exprs: return _coconut_tail_call((tuple), (map)(lambda x: x.simplify(**kwargs), (expr,) + exprs)) else: return _coconut_tail_call(expr.simplify, **kwargs) strict_simplify = _coconut.functools.partial(simplify, nonempty_universe=False) def simplest_form(expr, **kwargs): """Finds the shortest simplification for the given expression.""" cnf_expr = expr.simplify(dnf=False, **kwargs) dnf_expr = cnf_expr.simplify(dnf=True, **kwargs) if len(cnf_expr) <= len(dnf_expr): return cnf_expr else: return dnf_expr strict_simplest_form = _coconut.functools.partial(simplest_form, nonempty_universe=False) @_coconut_tco def simplest_solution(expr, **kwargs): """Finds the shortest resolved simplification for the given expression.""" return _coconut_tail_call((simplest_form), (solve)(expr, **kwargs), **kwargs) strict_simplest_solution = _coconut.functools.partial(simplest_solution, nonempty_universe=False) @_coconut_tco def substitute(expr, subs, **kwargs): """Substitutes expressions or booleans into the given expression.""" return _coconut_tail_call(expr.substitute, subs, **kwargs)
python
""" Feed File which implements the Hiven Feed type, which should contain social media information of a specific user and their linked acccounts. --- Under MIT License Copyright © 2020 - 2021 Luna Klatzer Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # Used for type hinting and not having to use annotations for the objects from __future__ import annotations import logging # Only importing the Objects for the purpose of type hinting and not actual use from typing import TYPE_CHECKING from ..base_types import DataClassObject from ..utils import log_type_exception if TYPE_CHECKING: from .. import HivenClient logger = logging.getLogger(__name__) __all__ = ['Feed'] class Feed(DataClassObject): """ Represents the feed that is displayed on Hiven specifically for the user """ @log_type_exception('Feed') def __init__(self, data: dict, client: HivenClient): super().__init__() def __str__(self) -> str: return repr(self) def __repr__(self) -> str: info = [ ('unknown', "") ] return '<Feed {}>'.format(' '.join('%s=%s' % t for t in info))
python
from .flownets import FlowNetS __all__ = ['FlowNetS']
python
import torch import torch.distributed as dist class GatherLayer(torch.autograd.Function): '''Gather tensors from all process, supporting backward propagation. ''' @staticmethod def forward(ctx, input): ctx.save_for_backward(input) output = [torch.zeros_like(input) \ for _ in range(dist.get_world_size())] dist.all_gather(output, input) return tuple(output) @staticmethod def backward(ctx, *grads): input, = ctx.saved_tensors grad_out = torch.zeros_like(input) grad_out[:] = grads[dist.get_rank()] return grad_out
python
from abc import ABC from typing import Callable, Dict, List, Optional, Sequence from guardpost.authentication import Identity class AuthorizationError(Exception): pass class AuthorizationConfigurationError(Exception): pass class PolicyNotFoundError(AuthorizationConfigurationError, RuntimeError): def __init__(self, name: str): super().__init__(f"Cannot find policy with name {name}") class BaseRequirement(ABC): """Base class for authorization requirements""" def __str__(self): return self.__class__.__name__ class UnauthorizedError(AuthorizationError): def __init__( self, forced_failure: Optional[str], failed_requirements: Sequence[BaseRequirement], scheme: Optional[str] = None, error: Optional[str] = None, error_description: Optional[str] = None, ): """ Creates a new instance of UnauthorizedError, with details. :param forced_failure: if applicable, the reason for a forced failure. :param failed_requirements: a sequence of requirements that failed. :param scheme: optional authentication scheme that should be used. :param error: optional error short text. :param error_description: optional error details. """ super().__init__(self._get_message(forced_failure, failed_requirements)) self.failed = forced_failure self.failed_requirements = failed_requirements self.scheme = scheme self.error = error self.error_description = error_description @staticmethod def _get_message(forced_failure, failed_requirements): if forced_failure: return ( "The user is not authorized to perform the selected action." + f" {forced_failure}." ) if failed_requirements: errors = ", ".join(str(requirement) for requirement in failed_requirements) return ( f"The user is not authorized to perform the selected action. " f"Failed requirements: {errors}." ) return "Unauthorized" class AuthorizationContext: __slots__ = ("identity", "requirements", "_succeeded", "_failed_forced") def __init__(self, identity: Identity, requirements: Sequence[BaseRequirement]): self.identity = identity self.requirements = requirements self._succeeded = set() self._failed_forced = None @property def pending_requirements(self) -> List[BaseRequirement]: return [item for item in self.requirements if item not in self._succeeded] @property def has_succeeded(self) -> bool: if self._failed_forced: return False return all(requirement in self._succeeded for requirement in self.requirements) @property def forced_failure(self) -> Optional[str]: return self._failed_forced def fail(self, reason: str): """ Called to indicate that this authorization context has failed. Forces failure, regardless of succeeded requirements. """ self._failed_forced = reason or "Authorization failed." def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.clear() def succeed(self, requirement: BaseRequirement): """Marks the given requirement as succeeded for this authorization context.""" self._succeeded.add(requirement) def clear(self): self._failed_forced = False self._succeeded.clear() class Policy: __slots__ = ("name", "requirements") def __init__(self, name: str, *requirements: BaseRequirement): self.name = name self.requirements = list(requirements) or [] def add(self, requirement: BaseRequirement) -> "Policy": self.requirements.append(requirement) return self def __iadd__(self, other: BaseRequirement): if not isinstance(other, BaseRequirement): raise ValueError("Only requirements can be added using __iadd__ syntax") self.requirements.append(other) return self def __repr__(self): return f'<Policy "{self.name}" at {id(self)}>' class BaseAuthorizationStrategy(ABC): def __init__( self, *policies: Policy, default_policy: Optional[Policy] = None, identity_getter: Optional[Callable[[Dict], Identity]] = None, ): self.policies = list(policies) self.default_policy = default_policy self.identity_getter = identity_getter def get_policy(self, name: str) -> Optional[Policy]: for policy in self.policies: if policy.name == name: return policy return None def add(self, policy: Policy) -> "BaseAuthorizationStrategy": self.policies.append(policy) return self def __iadd__(self, policy: Policy) -> "BaseAuthorizationStrategy": self.policies.append(policy) return self def with_default_policy(self, policy: Policy) -> "BaseAuthorizationStrategy": self.default_policy = policy return self
python
import warnings import numpy as np from tqdm import tqdm from noise import pnoise3, snoise3 import vtk from vtk.util.numpy_support import numpy_to_vtk from vtk.numpy_interface import dataset_adapter as dsa def add_noise_to_sphere(poly_data, octaves, offset=0, scale=0.5): """ Expects sphere with radius 1 centered at the origin """ wrap_data_object = dsa.WrapDataObject(poly_data) points = wrap_data_object.Points normals = wrap_data_object.PointData['Normals'] points_with_noise = [] zipped = list(zip(points, normals)) for point, normal in tqdm(zipped): offset_point = point + offset noise = scale * snoise3(*offset_point, octaves=octaves) point_with_noise = point + noise * normal points_with_noise.append(point_with_noise) points_with_noise = np.array(points_with_noise) vertices = vtk.vtkPoints() with warnings.catch_warnings(): warnings.simplefilter('ignore') points_with_noise_vtk = numpy_to_vtk(points_with_noise) vertices.SetData(points_with_noise_vtk) poly_data.SetPoints(vertices) return poly_data def center_poly_data(poly_data): centerOfMassFilter = vtk.vtkCenterOfMass() centerOfMassFilter.SetInputData(poly_data) centerOfMassFilter.SetUseScalarsAsWeights(False) centerOfMassFilter.Update() center = np.array(centerOfMassFilter.GetCenter()) transform = vtk.vtkTransform() transform.Translate(-center) transform_filter = vtk.vtkTransformPolyDataFilter() transform_filter.SetTransform(transform) transform_filter.SetInputData(poly_data) transform_filter.Update() poly_data = transform_filter.GetOutput() return poly_data def transform_poly_data(poly_data, center, radii, angles): transform = vtk.vtkTransform() transform.Translate(center) x_angle, y_angle, z_angle = angles # there must be a better way transform.RotateX(x_angle) transform.RotateY(y_angle) transform.RotateZ(z_angle) transform.Scale(*radii) transform_filter = vtk.vtkTransformPolyDataFilter() transform_filter.SetTransform(transform) transform_filter.SetInputData(poly_data) transform_filter.Update() poly_data = transform_filter.GetOutput() return poly_data def compute_normals(poly_data): normal_filter = vtk.vtkPolyDataNormals() normal_filter.AutoOrientNormalsOn() normal_filter.SetComputePointNormals(True) normal_filter.SetComputeCellNormals(True) normal_filter.SplittingOff() normal_filter.SetInputData(poly_data) normal_filter.ConsistencyOn() normal_filter.Update() poly_data = normal_filter.GetOutput() return poly_data def get_resection_poly_data( poly_data, offset, center, radii, angles, octaves=4, scale=0.5, deepcopy=True, ): if deepcopy: new_poly_data = vtk.vtkPolyData() new_poly_data.DeepCopy(poly_data) poly_data = new_poly_data poly_data = add_noise_to_sphere(poly_data, octaves=octaves, offset=offset) poly_data = center_poly_data(poly_data) poly_data = transform_poly_data(poly_data, center, radii, angles) poly_data = compute_normals(poly_data) return poly_data input_path = '/tmp/geodesic_polyhedron.vtp' offset = 1000 octaves = 4 N = 5 np.random.seed(42) reader = vtk.vtkXMLPolyDataReader() reader.SetFileName(input_path) reader.Update() input_poly_data = reader.GetOutput() for _ in range(5): offset = np.random.randint(1000) output_path = f'/tmp/geodesic_polyhedron_noise_{offset}.vtp' volume = np.random.randint(100, 10000) center = np.random.randint(-50, 50, size=(3)) k = 4/3 * np.pi radius = (volume / k) ** (1/3) ratio = np.random.uniform(0.8, 1) a = radius b = radius * ratio c = radius / ratio radii = a, b, c angles = np.random.uniform(0, 180, size=3) output_poly_data = get_resection_poly_data( input_poly_data, offset, center, radii, angles, ) writer = vtk.vtkXMLPolyDataWriter() writer.SetInputData(output_poly_data) writer.SetFileName(output_path) writer.Write()
python
import logging import os import sys from logging import fatal, debug, info, warning from os import path from . import utils from .argument_parser import build_argument_parser from .metadata_parser import MetadataParser from .settings import Settings def main(): # Read arguments argument_parser = build_argument_parser() args = argument_parser.parse_args() # Define settings and log level settings = Settings(args) logging.getLogger().setLevel(logging.DEBUG if settings.debug_enabled else logging.INFO) debug(args) debug(settings) if not path.isdir(settings.comic_path): fatal('Comic path "{}" does not exist'.format(path.abspath(settings.comic_path))) sys.exit(1) # Read comic info comic = MetadataParser.parse(settings.metadata_path) comic.overwrite_user_metadata(args) debug(comic) # Prepare temporary directory temp_directory = settings.temp_directory(comic) if path.isdir(temp_directory): fatal('Directory {} exists...somehow. Stopping right here to prevent a bigger mess'.format(temp_directory)) sys.exit(1) debug('Using temporary directory "{}"'.format(temp_directory)) os.makedirs(temp_directory) # Find files files = settings.read_files() # Search for chapters chapters = utils.read_files_as_chapters(files) if len(chapters) == 0: warning('No chapter saved was found!') utils.clean_temporary_data(temp_directory, force_clean=True) sys.exit(1) # Merge chapters in volumes volumes = utils.read_chapters_as_volumes(chapters) # Extract chapter pages utils.extract_volume_pages(settings, comic, volumes) # Assemble volumes in ebook format assembled_ebooks = utils.assemble_volumes(settings, comic, volumes) if len(assembled_ebooks) <= 0: warning('No file was assembled!') sys.exit(0) # Fill metadata utils.fill_metadata(settings, comic, chapters, assembled_ebooks) # Convert to MOBI if settings.comic_format == 'MOBI': assembled_ebooks = utils.convert_to_mobi(assembled_ebooks) # Show results info('Finished!') if len(assembled_ebooks) > 0: info('Files can be found in: {}'.format(path.abspath(settings.output))) else: warning('No file was assembled!') # Remove temporary data utils.clean_temporary_data(temp_directory, assembled_ebooks) if __name__ == '__main__': main()
python
import click import questionary as q import docker import os import time import subprocess from threading import Thread from functools import wraps from colorama import (Fore, Style) from sqlalchemy.engine.url import make_url from vantage6.common import (info, warning, error, debug as debug_msg, check_config_write_permissions) from vantage6.common.docker_addons import pull_if_newer from vantage6.common.globals import ( APPNAME, STRING_ENCODING, DEFAULT_DOCKER_REGISTRY, DEFAULT_SERVER_IMAGE ) # from vantage6.cli import fixture from vantage6.cli.globals import (DEFAULT_SERVER_ENVIRONMENT, DEFAULT_SERVER_SYSTEM_FOLDERS) from vantage6.cli.context import ServerContext from vantage6.cli.configuration_wizard import ( select_configuration_questionaire, configuration_wizard ) from vantage6.cli import __version__ def click_insert_context(func): # add option decorators @click.option('-n', '--name', default=None, help="name of the configutation you want to use.") @click.option('-c', '--config', default=None, help='absolute path to configuration-file; overrides NAME') @click.option('-e', '--environment', default=DEFAULT_SERVER_ENVIRONMENT, help='configuration environment to use') @click.option('--system', 'system_folders', flag_value=True) @click.option('--user', 'system_folders', flag_value=False, default=DEFAULT_SERVER_SYSTEM_FOLDERS) @wraps(func) def func_with_context(name, config, environment, system_folders, *args, **kwargs): # select configuration if none supplied if config: ctx = ServerContext.from_external_config_file( config, environment, system_folders ) else: if name: name, environment = (name, environment) else: try: name, environment = select_configuration_questionaire( "server", system_folders ) except Exception: error("No configurations could be found!") exit(1) # raise error if config could not be found if not ServerContext.config_exists( name, environment, system_folders ): scope = "system" if system_folders else "user" error( f"Configuration {Fore.RED}{name}{Style.RESET_ALL} with " f"{Fore.RED}{environment}{Style.RESET_ALL} does not exist " f"in the {Fore.RED}{scope}{Style.RESET_ALL} folders!" ) exit(1) # create server context, and initialize db ServerContext.LOGGING_ENABLED = False ctx = ServerContext( name, environment=environment, system_folders=system_folders ) return func(ctx, *args, **kwargs) return func_with_context @click.group(name='server') def cli_server(): """Subcommand `vserver`.""" pass # # start # @cli_server.command(name='start') @click.option('--ip', default=None, help='ip address to listen on') @click.option('-p', '--port', default=None, type=int, help='port to listen on') @click.option('--debug', is_flag=True, help='run server in debug mode (auto-restart)') @click.option('-i', '--image', default=None, help="Node Docker image to use") @click.option('--keep/--auto-remove', default=False, help="Keep image after finishing") @click.option('--attach/--detach', default=False, help="Attach server logs to the console after start") @click_insert_context def cli_server_start(ctx, ip, port, debug, image, keep, attach): """Start the server.""" info("Starting server...") info("Finding Docker daemon.") docker_client = docker.from_env() # will print an error if not check_if_docker_deamon_is_running(docker_client) # check that this server is not already running running_servers = docker_client.containers.list( filters={"label": f"{APPNAME}-type=server"}) for server in running_servers: if server.name == f"{APPNAME}-{ctx.name}-{ctx.scope}-server": error(f"Server {Fore.RED}{ctx.name}{Style.RESET_ALL} " "is already running") exit(1) # Determine image-name. First we check if the option --image has been used. # Then we check if the image has been specified in the config file, and # finally we use the default settings from the package. if image is None: image = ctx.config.get( "image", f"{DEFAULT_DOCKER_REGISTRY}/{DEFAULT_SERVER_IMAGE}" ) info(f"Pulling latest server image '{image}'.") try: pull_if_newer(docker.from_env(), image) # docker_client.images.pull(image) except Exception: warning("... alas, no dice!") else: info(" ... success!") info("Creating mounts") mounts = [ docker.types.Mount( "/mnt/config.yaml", str(ctx.config_file), type="bind" ) ] # FIXME: code duplication with cli_server_import() # try to mount database uri = ctx.config['uri'] url = make_url(uri) environment_vars = None # If host is None, we're dealing with a file-based DB, like SQLite if (url.host is None): db_path = url.database if not os.path.isabs(db_path): # We're dealing with a relative path here -> make it absolute db_path = ctx.data_dir / url.database basename = os.path.basename(db_path) dirname = os.path.dirname(db_path) os.makedirs(dirname, exist_ok=True) # we're mounting the entire folder that contains the database mounts.append(docker.types.Mount( "/mnt/database/", dirname, type="bind" )) environment_vars = { "VANTAGE6_DB_URI": f"sqlite:////mnt/database/{basename}" } else: warning(f"Database could not be transfered, make sure {url.host} " "is reachable from the Docker container") info("Consider using the docker-compose method to start a server") ip_ = f"--ip {ip}" if ip else "" port_ = f"--port {port}" if port else "" cmd = f'vserver-local start -c /mnt/config.yaml -e {ctx.environment} ' \ f'{ip_} {port_}' info(cmd) info("Run Docker container") port_ = str(port or ctx.config["port"] or 5000) container = docker_client.containers.run( image, command=cmd, mounts=mounts, detach=True, labels={ f"{APPNAME}-type": "server", "name": ctx.config_file_name }, environment=environment_vars, ports={f"{port_}/tcp": ("127.0.0.1", port_)}, name=ctx.docker_container_name, auto_remove=not keep, tty=True ) info(f"Success! container id = {container}") if attach: logs = container.attach(stream=True, logs=True, stdout=True) Thread(target=print_log_worker, args=(logs,), daemon=True).start() while True: try: time.sleep(1) except KeyboardInterrupt: info("Closing log file. Keyboard Interrupt.") exit(0) # # list # @cli_server.command(name='list') def cli_server_configuration_list(): """Print the available configurations.""" client = docker.from_env() check_if_docker_deamon_is_running(client) running_server = client.containers.list( filters={"label": f"{APPNAME}-type=server"}) running_node_names = [] for node in running_server: running_node_names.append(node.name) header = \ "\nName"+(21*" ") + \ "Environments"+(20*" ") + \ "Status"+(10*" ") + \ "System/User" click.echo(header) click.echo("-"*len(header)) running = Fore.GREEN + "Online" + Style.RESET_ALL stopped = Fore.RED + "Offline" + Style.RESET_ALL # system folders configs, f1 = ServerContext.available_configurations( system_folders=True) for config in configs: status = running if f"{APPNAME}-{config.name}-system-server" in \ running_node_names else stopped click.echo( f"{config.name:25}" f"{str(config.available_environments):32}" f"{status:25} System " ) # user folders configs, f2 = ServerContext.available_configurations( system_folders=False) for config in configs: status = running if f"{APPNAME}-{config.name}-user-server" in \ running_node_names else stopped click.echo( f"{config.name:25}" f"{str(config.available_environments):32}" f"{status:25} User " ) click.echo("-"*85) if len(f1)+len(f2): warning( f"{Fore.RED}Failed imports: {len(f1)+len(f2)}{Style.RESET_ALL}") # # files # @cli_server.command(name='files') @click_insert_context def cli_server_files(ctx): """List files locations of a server instance.""" info(f"Configuration file = {ctx.config_file}") info(f"Log file = {ctx.log_file}") info(f"Database = {ctx.get_database_uri()}") # # new # @cli_server.command(name='new') @click.option('-n', '--name', default=None, help="name of the configutation you want to use.") @click.option('-e', '--environment', default=DEFAULT_SERVER_ENVIRONMENT, help='configuration environment to use') @click.option('--system', 'system_folders', flag_value=True) @click.option('--user', 'system_folders', flag_value=False, default=DEFAULT_SERVER_SYSTEM_FOLDERS) def cli_server_new(name, environment, system_folders): """Create new configuration.""" if not name: name = q.text("Please enter a configuration-name:").ask() name_new = name.replace(" ", "-") if name != name_new: info(f"Replaced spaces from configuration name: {name}") name = name_new # check that this config does not exist try: if ServerContext.config_exists(name, environment, system_folders): error( f"Configuration {Fore.RED}{name}{Style.RESET_ALL} with " f"environment {Fore.RED}{environment}{Style.RESET_ALL} " f"already exists!" ) exit(1) except Exception as e: print(e) exit(1) # Check that we can write in this folder if not check_config_write_permissions(system_folders): error("Your user does not have write access to all folders. Exiting") info(f"Create a new server using '{Fore.GREEN}vserver new " "--user{Style.RESET_ALL}' instead!") exit(1) # create config in ctx location cfg_file = configuration_wizard( "server", name, environment=environment, system_folders=system_folders ) info(f"New configuration created: {Fore.GREEN}{cfg_file}{Style.RESET_ALL}") # info(f"root user created.") flag = "" if system_folders else "--user" info( f"You can start the server by running " f"{Fore.GREEN}vserver start {flag}{Style.RESET_ALL}" ) # # import # # TODO this method has a lot of duplicated code from `start` @cli_server.command(name='import') @click.argument('file_', type=click.Path(exists=True)) @click.option('--drop-all', is_flag=True, default=False) @click.option('-i', '--image', default=None, help="Node Docker image to use") @click.option('--keep/--auto-remove', default=False, help="Keep image after finishing") @click_insert_context def cli_server_import(ctx, file_, drop_all, image, keep): """ Import organizations/collaborations/users and tasks. Especially usefull for testing purposes. """ info("Starting server...") info("Finding Docker daemon.") docker_client = docker.from_env() # will print an error if not check_if_docker_deamon_is_running(docker_client) # pull lastest Docker image if image is None: image = ctx.config.get( "image", "harbor.vantage6.ai/infrastructure/server:latest" ) info(f"Pulling latest server image '{image}'.") try: docker_client.images.pull(image) except Exception: warning("... alas, no dice!") else: info(" ... success!") info("Creating mounts") mounts = [ docker.types.Mount( "/mnt/config.yaml", str(ctx.config_file), type="bind" ), docker.types.Mount( "/mnt/import.yaml", str(file_), type="bind" ) ] # FIXME: code duplication with cli_server_start() # try to mount database uri = ctx.config['uri'] url = make_url(uri) environment_vars = None # If host is None, we're dealing with a file-based DB, like SQLite if (url.host is None): db_path = url.database if not os.path.isabs(db_path): # We're dealing with a relative path here -> make it absolute db_path = ctx.data_dir / url.database basename = os.path.basename(db_path) dirname = os.path.dirname(db_path) os.makedirs(dirname, exist_ok=True) # we're mounting the entire folder that contains the database mounts.append(docker.types.Mount( "/mnt/database/", dirname, type="bind" )) environment_vars = { "VANTAGE6_DB_URI": f"sqlite:////mnt/database/{basename}" } else: warning(f"Database could not be transfered, make sure {url.host} " "is reachable from the Docker container") info("Consider using the docker-compose method to start a server") drop_all_ = "--drop-all" if drop_all else "" cmd = f'vserver-local import -c /mnt/config.yaml -e {ctx.environment} ' \ f'{drop_all_} /mnt/import.yaml' info(cmd) info("Run Docker container") container = docker_client.containers.run( image, command=cmd, mounts=mounts, detach=True, labels={ f"{APPNAME}-type": "server", "name": ctx.config_file_name }, environment=environment_vars, auto_remove=not keep, tty=True ) logs = container.logs(stream=True, stdout=True) Thread(target=print_log_worker, args=(logs,), daemon=False).start() info(f"Success! container id = {container.id}") # print_log_worker(container.logs(stream=True)) # for log in container.logs(stream=True): # print(log.decode("utf-8")) # info(f"Check logs files using {Fore.GREEN}docker logs {container.id}" # f"{Style.RESET_ALL}") # info("Reading yaml file.") # with open(file_) as f: # entities = yaml.safe_load(f.read()) # info("Adding entities to database.") # fixture.load(entities, drop_all=drop_all) # # shell # @cli_server.command(name='shell') @click_insert_context def cli_server_shell(ctx): """ Run a iPython shell. """ docker_client = docker.from_env() # will print an error if not check_if_docker_deamon_is_running(docker_client) running_servers = docker_client.containers.list( filters={"label": f"{APPNAME}-type=server"}) if not ctx.docker_container_name in [s.name for s in running_servers]: error(f"Server {Fore.RED}{ctx.name}{Style.RESET_ALL} is not running?") return try: subprocess.run(['docker', 'exec', '-it', ctx.docker_container_name, 'vserver-local', 'shell', '-c', '/mnt/config.yaml']) except Exception as e: info("Failed to start subprocess...") debug_msg(e) # # stop # @cli_server.command(name='stop') @click.option("-n", "--name", default=None, help="configuration name") @click.option('--system', 'system_folders', flag_value=True) @click.option('--user', 'system_folders', flag_value=False, default=DEFAULT_SERVER_SYSTEM_FOLDERS) @click.option('--all', 'all_servers', flag_value=True) def cli_server_stop(name, system_folders, all_servers): """Stop a or all running server. """ client = docker.from_env() check_if_docker_deamon_is_running(client) running_servers = client.containers.list( filters={"label": f"{APPNAME}-type=server"}) if not running_servers: warning("No servers are currently running.") return running_server_names = [server.name for server in running_servers] if all_servers: for name in running_server_names: container = client.containers.get(name) container.kill() info(f"Stopped the {Fore.GREEN}{name}{Style.RESET_ALL} server.") else: if not name: name = q.select("Select the server you wish to stop:", choices=running_server_names).ask() else: post_fix = "system" if system_folders else "user" name = f"{APPNAME}-{name}-{post_fix}-server" if name in running_server_names: container = client.containers.get(name) container.kill() info(f"Stopped the {Fore.GREEN}{name}{Style.RESET_ALL} server.") else: error(f"{Fore.RED}{name}{Style.RESET_ALL} is not running?") # # attach # @cli_server.command(name='attach') @click.option("-n", "--name", default=None, help="configuration name") @click.option('--system', 'system_folders', flag_value=True) @click.option('--user', 'system_folders', flag_value=False, default=DEFAULT_SERVER_SYSTEM_FOLDERS) def cli_server_attach(name, system_folders): """Attach the logs from the docker container to the terminal.""" client = docker.from_env() check_if_docker_deamon_is_running(client) running_servers = client.containers.list( filters={"label": f"{APPNAME}-type=server"}) running_server_names = [node.name for node in running_servers] if not name: name = q.select("Select the server you wish to inspect:", choices=running_server_names).ask() else: post_fix = "system" if system_folders else "user" name = f"{APPNAME}-{name}-{post_fix}-server" if name in running_server_names: container = client.containers.get(name) logs = container.attach(stream=True, logs=True, stdout=True) Thread(target=print_log_worker, args=(logs,), daemon=True).start() while True: try: time.sleep(1) except KeyboardInterrupt: info("Closing log file. Keyboard Interrupt.") exit(0) else: error(f"{Fore.RED}{name}{Style.RESET_ALL} was not running!?") def check_if_docker_deamon_is_running(docker_client): try: docker_client.ping() except Exception: error("Docker socket can not be found. Make sure Docker is running.") exit() # # version # @cli_server.command(name='version') @click.option("-n", "--name", default=None, help="configuration name") @click.option('--system', 'system_folders', flag_value=True) @click.option('--user', 'system_folders', flag_value=False, default= DEFAULT_SERVER_SYSTEM_FOLDERS) def cli_server_version(name, system_folders): """Returns current version of vantage6 services installed.""" client = docker.from_env() check_if_docker_deamon_is_running(client) running_servers = client.containers.list( filters={"label": f"{APPNAME}-type=node"}) running_server_names = [node.name for node in running_servers] if not name: name = q.select("Select the server you wish to inspect:", choices=running_server_names).ask() else: post_fix = "system" if system_folders else "user" name = f"{APPNAME}-{name}-{post_fix}" if name in running_server_names: container = client.containers.get(name) version = container.exec_run(cmd='vserver-local version', stdout = True) click.echo({"server": version.output.decode('utf-8'), "cli":__version__}) def print_log_worker(logs_stream): for log in logs_stream: print(log.decode(STRING_ENCODING), end="")
python
from django.conf.urls import url, include from rest_framework.urlpatterns import format_suffix_patterns from . import views urlpatterns = [ url(r'^rides/$', views.RideList.as_view(), name='ride_list'), url(r'^rides/(?P<pk>\d+)/$', views.RideDetail.as_view(), name='ride_detail'), url(r'^users/$', views.UserList.as_view()), url(r'^users/(?P<pk>[0-9]+)/$', views.UserDetail.as_view()), url(r'^users/register', views.AuthUser.as_view()) ] urlpatterns = format_suffix_patterns(urlpatterns)
python
#!/usr/bin/env python # Demonstration GET friendships/lookup # See https://dev.twitter.com/rest/reference/get/friendships/lookup from secret import twitter_instance from json import dump import sys tw = twitter_instance() # [1] ids = ','.join((str(i) for i in (577367985, 1220723053, 1288619659))) response = tw.friendships.lookup(user_id=ids) # [2] dump(response, sys.stdout, ensure_ascii=False, indent=4, sort_keys=True)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.BelongGreenMerchantInfo import BelongGreenMerchantInfo class AlipayCommerceGreenItemenergySendModel(object): def __init__(self): self._alipay_uid = None self._belong_merchant_info = None self._goods_id = None self._goods_name = None self._industry_type = None self._order_link = None self._qr_code_id = None self._scan_time = None @property def alipay_uid(self): return self._alipay_uid @alipay_uid.setter def alipay_uid(self, value): self._alipay_uid = value @property def belong_merchant_info(self): return self._belong_merchant_info @belong_merchant_info.setter def belong_merchant_info(self, value): if isinstance(value, BelongGreenMerchantInfo): self._belong_merchant_info = value else: self._belong_merchant_info = BelongGreenMerchantInfo.from_alipay_dict(value) @property def goods_id(self): return self._goods_id @goods_id.setter def goods_id(self, value): self._goods_id = value @property def goods_name(self): return self._goods_name @goods_name.setter def goods_name(self, value): self._goods_name = value @property def industry_type(self): return self._industry_type @industry_type.setter def industry_type(self, value): self._industry_type = value @property def order_link(self): return self._order_link @order_link.setter def order_link(self, value): self._order_link = value @property def qr_code_id(self): return self._qr_code_id @qr_code_id.setter def qr_code_id(self, value): self._qr_code_id = value @property def scan_time(self): return self._scan_time @scan_time.setter def scan_time(self, value): self._scan_time = value def to_alipay_dict(self): params = dict() if self.alipay_uid: if hasattr(self.alipay_uid, 'to_alipay_dict'): params['alipay_uid'] = self.alipay_uid.to_alipay_dict() else: params['alipay_uid'] = self.alipay_uid if self.belong_merchant_info: if hasattr(self.belong_merchant_info, 'to_alipay_dict'): params['belong_merchant_info'] = self.belong_merchant_info.to_alipay_dict() else: params['belong_merchant_info'] = self.belong_merchant_info if self.goods_id: if hasattr(self.goods_id, 'to_alipay_dict'): params['goods_id'] = self.goods_id.to_alipay_dict() else: params['goods_id'] = self.goods_id if self.goods_name: if hasattr(self.goods_name, 'to_alipay_dict'): params['goods_name'] = self.goods_name.to_alipay_dict() else: params['goods_name'] = self.goods_name if self.industry_type: if hasattr(self.industry_type, 'to_alipay_dict'): params['industry_type'] = self.industry_type.to_alipay_dict() else: params['industry_type'] = self.industry_type if self.order_link: if hasattr(self.order_link, 'to_alipay_dict'): params['order_link'] = self.order_link.to_alipay_dict() else: params['order_link'] = self.order_link if self.qr_code_id: if hasattr(self.qr_code_id, 'to_alipay_dict'): params['qr_code_id'] = self.qr_code_id.to_alipay_dict() else: params['qr_code_id'] = self.qr_code_id if self.scan_time: if hasattr(self.scan_time, 'to_alipay_dict'): params['scan_time'] = self.scan_time.to_alipay_dict() else: params['scan_time'] = self.scan_time return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayCommerceGreenItemenergySendModel() if 'alipay_uid' in d: o.alipay_uid = d['alipay_uid'] if 'belong_merchant_info' in d: o.belong_merchant_info = d['belong_merchant_info'] if 'goods_id' in d: o.goods_id = d['goods_id'] if 'goods_name' in d: o.goods_name = d['goods_name'] if 'industry_type' in d: o.industry_type = d['industry_type'] if 'order_link' in d: o.order_link = d['order_link'] if 'qr_code_id' in d: o.qr_code_id = d['qr_code_id'] if 'scan_time' in d: o.scan_time = d['scan_time'] return o
python
import random import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.utils.data import copy from MTLCNN_single import MTLCNN_single from MultitaskClassifier import MultitaskClassifier from Util import Util class Train_Classifier: def train_classifier(self, train_arguments, device, dataset_name=""): self.__train(train_arguments, device, dataset_name=dataset_name) def train_classifier_single(self, train_arguments, device): self.__train_single(train_arguments, device) def __train_single(self, train_arguments, device): TEXTURE_LABELS = train_arguments["TEXTURE_LABELS"] data_loader_list = train_arguments["texture_data_loader_list"] train_parameters = train_arguments["train_parameters"] saved_model_name = train_arguments["saved_model_name"] print("..Training started..") epochs = train_parameters["epochs"] lr = train_parameters["learning_rate"] phases = ['train', 'val'] # set batch size # set optimizer - Adam split_id = 0 # start training for data_loader_dict in data_loader_list: # initialise network for each dataset network = MTLCNN_single(TEXTURE_LABELS).to(device) optimizer = optim.Adam(network.parameters(), lr=lr, weight_decay=0.0005) criterion = nn.CrossEntropyLoss() min_correct = 0 split_id += 1 print('-' * 50) print("Split: {0} =======>".format(split_id)) # start epoch for epoch in range(epochs): print('Epoch {}/{}'.format(epoch, epochs - 1)) print('-' * 20) for phase in phases: if phase == 'train': network.train() # Set model to training mode else: network.eval() # Set model to evaluate mode running_loss = 0 running_correct = 0 total_image_per_epoch = 0 for batch in data_loader_dict[phase]: images, label = batch images = images.to(device) label = label.to(device) optimizer.zero_grad() output = network(images) loss = criterion(output, label).to(device) total_image_per_epoch += images.size(0) if phase == "train": loss.backward() optimizer.step() running_loss += loss.item() * images.size(0) * 2 running_correct += Util.get_num_correct(output, label) epoch_loss = running_loss / total_image_per_epoch epoch_accuracy = running_correct / total_image_per_epoch print( "{0} ==> loss: {1}, correct: {2}/{3}, accuracy: {4}".format(phase, epoch_loss, running_correct, total_image_per_epoch, epoch_accuracy)) if phase == 'val' and running_correct > min_correct: print("saving model with correct: {0}, improved over previous {1}" .format(running_correct, min_correct)) min_correct = running_correct best_model_wts = copy.deepcopy(network.state_dict()) torch.save(best_model_wts, saved_model_name.format(split_id)) def __train(self, train_arguments, device, dataset_name=""): # labels IMAGE_NET_LABELS = train_arguments["IMAGE_NET_LABELS"] TEXTURE_LABELS = train_arguments["TEXTURE_LABELS"] # data loader image_net_data_loader_dict = train_arguments["image_net_data_loader_dict"] # image_net_T_data_loader_dict = train_arguments["image_net_T_data_loader_dict"] texture_data_loader_list = train_arguments["texture_data_loader_list"] train_parameters = train_arguments["train_parameters"] saved_model_name = train_arguments["saved_model_name"] print("..Training started..") epochs = train_parameters["epochs"] lr = train_parameters["learning_rate"] weight_decay = train_parameters["weight_decay"] labels = { "image_net_labels": IMAGE_NET_LABELS, # "image_net_labels_S2": IMAGE_NET_LABELS_S2, # "image_net_labels_T": IMAGE_NET_LABELS_T, "texture_labels": TEXTURE_LABELS } phases = ['train', 'val'] split_id = 0 # task = ["Object_detection", "Texture_classification"] task = ["Object_detection", "Texture_classification"] for texture_data_loader_dict in texture_data_loader_list: print("Dataset name: {0}".format(dataset_name)) split_id += 1 print('-' * 50) print("Split: {0} =======>".format(split_id)) model_path = saved_model_name.format(split_id) print("Model: {0}".format(model_path)) network = MultitaskClassifier(labels).to(device) optimizer = optim.Adam(network.parameters(), lr=lr, weight_decay=weight_decay) criterion = [nn.CrossEntropyLoss(), nn.CrossEntropyLoss()] texture_min_val_correct = 0 for epoch in range(epochs): print('Epoch {}/{}'.format(epoch, epochs - 1)) print('-' * 20) for phase in phases: print("Phase: " + phase) if phase == 'train': network.train() # Set model to training mode else: network.eval() # Set model to evaluate mode running_loss = 0 running_loss_imagenet = 0 running_loss_texture = 0 running_imagenet_correct = 0 running_texture_correct = 0 total_imagenet_image_per_epoch = 0 total_texture_image_per_epoch = 0 batch_set = self.__get_batch_set(image_net_data_loader_dict, texture_data_loader_dict, phase, task) if phase == "train": random.shuffle(batch_set) for batch_dict in batch_set: for task_id, batch in batch_dict.items(): images, label = batch images = images.to(device) label = label.to(device) optimizer.zero_grad() outputs = network(images) if task_id == task[0]: total_imagenet_image_per_epoch += images.size(0) loss = criterion[0](outputs[0], label).to(device) running_loss_imagenet += loss.item() # network.conv4.weight.requires_grad = True # network.conv4.bias.requires_grad = True # network.conv5.weight.requires_grad = True # network.conv5.bias.requires_grad = True # network.object_detect_fc1.weight.requires_grad = True # network.object_detect_fc1.bias.requires_grad = True # network.object_detect_fc2.weight.requires_grad = True # network.object_detect_fc2.bias.requires_grad = True # network.object_detect_out.weight.requires_grad = True # network.object_detect_out.bias.requires_grad = True # # network.fc_texture_1.weight.requires_grad = False # network.fc_texture_1.bias.requires_grad = False # network.fc_texture_2.weight.requires_grad = False # network.fc_texture_2.bias.requires_grad = False # network.texture_out.weight.requires_grad = False # network.texture_out.bias.requires_grad = False elif task_id == task[1]: total_texture_image_per_epoch += images.size(0) loss = criterion[1](outputs[1], label).to(device) running_loss_texture += loss.item() # network.conv4.weight.requires_grad = False # network.conv4.bias.requires_grad = False # network.conv5.weight.requires_grad = False # network.conv5.bias.requires_grad = False # network.object_detect_fc1.weight.requires_grad = False # network.object_detect_fc1.bias.requires_grad = False # network.object_detect_fc2.weight.requires_grad = False # network.object_detect_fc2.bias.requires_grad = False # network.object_detect_out.weight.requires_grad = False # network.object_detect_out.bias.requires_grad = False # # network.fc_texture_1.weight.requires_grad = True # network.fc_texture_1.bias.requires_grad = True # network.fc_texture_2.weight.requires_grad = True # network.fc_texture_2.bias.requires_grad = True # network.texture_out.weight.requires_grad = True # network.texture_out.bias.requires_grad = True if phase == "train": loss.backward() optimizer.step() running_loss += loss.item() if task_id == task[0]: running_imagenet_correct += Util.get_num_correct(outputs[0], label) elif task_id == task[1]: running_texture_correct += Util.get_num_correct(outputs[1], label) epoch_loss = running_loss epoch_loss_imagenet = running_loss_imagenet epoch_loss_texture = running_loss_texture epoch_imagenet_accuracy = running_imagenet_correct / total_imagenet_image_per_epoch epoch_texture_accuracy = running_texture_correct / total_texture_image_per_epoch print( "{0} ==> loss: {1}, imagenet loss:{2}, texture loss:{3}, " "imagenet correct: {4}/{5}, imagenet accuracy: {6} " "texture correct: {7}/{8}, texture accuracy: {9}, ".format(phase, epoch_loss, epoch_loss_imagenet, epoch_loss_texture, running_imagenet_correct, total_imagenet_image_per_epoch, epoch_imagenet_accuracy, running_texture_correct, total_texture_image_per_epoch, epoch_texture_accuracy )) if phase == 'val' and running_texture_correct > texture_min_val_correct: print("saving model with correct: {0}, improved over previous {1}" .format(running_texture_correct, texture_min_val_correct)) texture_min_val_correct = running_texture_correct # saved_model_name = saved_model_name.format(split_id) torch.save(network.state_dict(), model_path) print("Training ended") @staticmethod def __get_batch_set(image_net_data_loader_dict, texture_data_loader_dict, phase, task): batch_set = [] for image_net_S2_data in image_net_data_loader_dict[phase]: batch_set.append({task[0]: image_net_S2_data}) for texture_data in texture_data_loader_dict[phase]: batch_set.append({task[1]: texture_data}) return batch_set def __save_init_weights(self, network): np.save("./init_weights/enc1_weight.npy", network.enc1.weight.cpu().data.numpy()) np.save("./init_weights/enc1_bias.npy", network.enc1.bias.cpu().data.numpy()) np.save("./init_weights/enc2_weight.npy", network.enc2.weight.cpu().data.numpy()) np.save("./init_weights/enc2_bias.npy", network.enc2.bias.cpu().data.numpy()) np.save("./init_weights/enc3_weight.npy", network.enc3.weight.cpu().data.numpy()) np.save("./init_weights/enc3_bias.npy", network.enc3.bias.cpu().data.numpy()) # @staticmethod # def initialize_model(auto_encoder_model_path, dataset_labels, device): # model = Autoencoder().to(device) # model.load_state_dict(torch.load(auto_encoder_model_path, map_location=device)) # TEXTURE_LABELS = dataset_labels["TEXTURE_LABELS"] # IMAGE_NET_LABELS = dataset_labels["IMAGE_NET_LABELS"] # auto_encoder_model = Autoencoder().to(device) # init_weights = { # "conv1_wt": model.enc1.weight.data, # "conv1_bias": model.enc1.bias.data, # "conv2_wt": model.enc2.weight.data, # "conv2_bias": model.enc2.bias.data, # "conv3_wt": model.enc3.weight.data, # "conv3_bias": model.enc3.bias.data # } # auto_encoder_model.load_state_dict(torch.load(auto_encoder_model_path, map_location=device)) # network = MTLCNN(init_weights, TEXTURE_LABELS, IMAGE_NET_LABELS, device).to(device) # return network
python
""" Name: jupyter.py Purpose: Installs a jupyter notebook Author: PNDA team Created: 03/10/2016 Copyright (c) 2016 Cisco and/or its affiliates. This software is licensed to you under the terms of the Apache License, Version 2.0 (the "License"). You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 The code, technical concepts, and all information contained herein, are the property of Cisco Technology, Inc. and/or its affiliated entities, under various laws including copyright, international treaties, patent, and/or contract. Any use of the material herein must be in accordance with the terms of the License. All rights not expressly granted by the License are reserved. Unless required by applicable law or agreed to separately in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """ # pylint: disable=C0103 import json import os import logging import shutil import stat import deployer_utils from plugins.base_creator import Creator class JupyterCreator(Creator): def validate_component(self, component): errors = [] notebook_found = False file_list = component['component_detail'] for file_name in file_list: if file_name.endswith(r'.ipynb'): notebook_found = True if notebook_found is False: errors.append('missing ipynb file') return errors def get_component_type(self): return 'jupyter' def destroy_component(self, application_name, create_data): logging.debug("destroy_component: %s %s", application_name, json.dumps(create_data)) for command in create_data['delete_commands']: os.system(command) def start_component(self, application_name, create_data): logging.debug("start_component (nothing to do for jupyter): %s %s", application_name, json.dumps(create_data)) def stop_component(self, application_name, create_data): logging.debug("stop_component (nothing to do for jupyter): %s %s", application_name, json.dumps(create_data)) def create_component(self, staged_component_path, application_name, user_name, component, properties): logging.debug("create_component: %s %s %s %s", application_name, user_name, json.dumps(component), properties) application_user = properties['application_user'] delete_commands = [] ## Create local git repo for application_user if not exist. repo_path = '{}/jupyter-{}'.format(self._config['git_repos_root'], application_user) if os.path.isdir(repo_path) == False: os.makedirs(repo_path) os.system('git init {}'.format(repo_path)) shutil.copyfile(repo_path+'/.git/hooks/post-update.sample', repo_path+'/.git/hooks/post-update') os.chmod(repo_path+'/.git/hooks/post-update',0o755) this_dir = os.path.dirname(os.path.realpath(__file__)) shutil.copyfile(this_dir+'/jupyter_README.ipynb',repo_path+'/README.ipynb') os.system('cd {0} && git add README.ipynb && git commit -m "Initial commit"'.format(repo_path)) ## add notebooks to application_user github repo. notebook_install_path = '{}/{}'.format(repo_path, application_name) os.makedirs('{}'.format(notebook_install_path)) file_list = component['component_detail'] for file_name in file_list: # We copy all files in package to jupyter folder to let the user work with all kind of files/datasets. #if file_name.endswith(r'.ipynb'): if file_name != 'properties.json': if os.path.isfile('{}/{}'.format(staged_component_path,file_name)): self._fill_properties('%s/%s' % (staged_component_path, file_name), properties) logging.debug('Copying {} to {}'.format(file_name, notebook_install_path)) shutil.copyfile('{}/{}'.format(staged_component_path, file_name), '{}/{}'.format(notebook_install_path, file_name )) else: logging.debug('creating {}/{} folder'.format(notebook_install_path, file_name)) os.makedirs('{}/{}'.format(notebook_install_path, file_name)) # Create a properties.json file in notebooks to access application jupyter component properties. with open('{}/properties.json'.format(notebook_install_path), 'w') as prop_file: prop_dict = { k.replace('component_',''): v for k, v in properties.items() if k.startswith('component_')} json.dump(prop_dict, prop_file) # update local github repo: os.system('cd {0} && git add {1} && git commit -m "added {1} app notebooks"'.format(repo_path, application_name)) delete_commands.append('rm -rf {}\n'.format( notebook_install_path)) delete_commands.append('cd {0} && git rm -r {1} && git commit -m "deleted {1} app notebooks"'.format( repo_path, application_name)) logging.debug("uninstall commands: %s", delete_commands) return {'delete_commands': delete_commands}
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_hdf5xltek.py Description: """ # Package Header # from src.hdf5objects.__header__ import * # Header # __author__ = __author__ __credits__ = __credits__ __maintainer__ = __maintainer__ __email__ = __email__ # Imports # # Standard Libraries # import datetime import pathlib import timeit # Third-Party Packages # import pytest import numpy as np # Local Packages # from src.hdf5objects import * from .test_hdf5objects import HDF5File, ClassTest # Definitions # # Functions # @pytest.fixture def tmp_dir(tmpdir): """A pytest fixture that turn the tmpdir into a Path object.""" return pathlib.Path(tmpdir) # Classes # class TestHDF5XLTEK(ClassTest): class_ = HDF5XLTEK load_path = pathlib.Path.cwd().joinpath("tests/pytest_cache/EC228_2020-09-21_14~53~19.h5") save_path = pathlib.Path.cwd().joinpath("tests/pytest_cache/") @pytest.fixture def load_file(self): return self.class_(file=self.load_path) def test_validate_file(self): assert self.class_.validate_file_type(self.load_path) @pytest.mark.parametrize("mode", ['r', 'r+', 'a']) def test_new_object(self, mode): with self.class_(file=self.load_path, mode=mode) as f_obj: assert f_obj is not None assert True @pytest.mark.parametrize("mode", ['r', 'r+', 'a']) def test_load_whole_file(self, mode): with self.class_(file=self.load_path, mode=mode, load=True) as f_obj: assert f_obj is not None assert True def test_load_fragment(self): f_obj = self.class_(file=self.load_path) data = f_obj["data"] f_obj.close() assert data is not None def test_load_from_property(self): f_obj = self.class_(file=self.load_path) data = f_obj.data f_obj.close() assert data is not None def test_get_attribute(self): f_obj = self.class_(file=self.load_path) attribute = f_obj.attributes["start"] f_obj.close() assert attribute is not None def test_get_attribute_property(self): f_obj = self.class_(file=self.load_path) attribute = f_obj.start f_obj.close() assert attribute is not None def test_get_data(self): f_obj = self.class_(file=self.load_path) data = f_obj.data[0:1] f_obj.close() assert data.shape is not None def test_get_times(self): f_obj = self.class_(file=self.load_path) start = f_obj.time_axis.start_datetime f_obj.close() assert start is not None @pytest.mark.xfail def test_activate_swmr_mode(self): f_obj = self.class_(file=self.load_path) f_obj.swmr_mode = True assert f_obj.swmr_mode f_obj.close() assert True def test_create_file_build_empty(self, tmpdir): start = datetime.datetime.now() f_obj = self.class_(s_id="EC_test", s_dir=tmpdir, start=start, create=True, mode="a", build=True) assert f_obj.is_open f_obj.close() assert True def test_create_file_build_data(self, tmpdir): sample_rate = 1024 n_channels = 128 n_samples = 2048 data = np.random.rand(n_samples, n_channels) start = datetime.datetime.now() f_obj = self.class_(s_id="EC_test", s_dir=tmpdir, start=start, create=True, mode="a", build=True) dataset = f_obj.data dataset.require(data=data, sample_rate=sample_rate, start=start) f_obj.close() assert True @pytest.mark.xfail def test_data_speed(self, load_file): def assignment(): x = 10 def get_data(): x = load_file.eeg_data[:10000, :100] mean_new = timeit.timeit(get_data, number=self.timeit_runs) / self.timeit_runs * 1000000 mean_old = timeit.timeit(assignment, number=self.timeit_runs) / self.timeit_runs * 1000000 percent = (mean_new / mean_old) * 100 print(f"\nNew speed {mean_new:.3f} μs took {percent:.3f}% of the time of the old function.") assert percent < self.speed_tolerance # Main # if __name__ == '__main__': pytest.main(["-v", "-s"])
python
""" Provides basic logging functionality """ import logging import inspect from datetime import datetime import os, sys import traceback class Logger: """ generic logger class """ def __init__(self, logname=None, project_name=None): """ :param level: :param project_name: if provided the logger will put its log files in a subdirectory named after the project :return: """ parent = inspect.stack()[1] parent_file = inspect.getfile(parent[0]) path, path_filename = os.path.split(parent_file) if logname: filename = logname else: filename = path_filename if project_name: log_path = 'logs/' + project_name + '/' + filename else: log_path = 'logs/' + filename if project_name: if not os.path.exists('logs/' + project_name + '/'): os.makedirs('logs/' + project_name + '/') else: if not os.path.exists('logs/'): os.makedirs('logs/') log_name = datetime.now().strftime(log_path + "-%Y%m%d-%H%M%S.log") l = logging.getLogger("test") l.setLevel('DEBUG') l_fh = logging.FileHandler(log_name) l_format = logging.Formatter('%(asctime)s %(message)s') l_fh.setFormatter(l_format) l.addHandler(l_fh) self.logger = l def l_error(self, msg): self.l(msg, level=logging.ERROR) def l_exception(self, msg='general exception'): """ new logging method will log as error with full traceback :param msg: :param exception_obj: :return: """ etype, ex, tb = sys.exc_info() tb_s = traceback.format_exception(etype, ex, tb) msg = msg + ':\n' + ' '.join(tb_s) self.l(msg, level=logging.ERROR) def l(self, msg, level=logging.INFO): """ Write a log message. Utilizes (default) '_logger'. :param msg: Data to write to log file (Can be anything ...) :type msg: string :param level: Default debug; info & error are supported. :type level: string :raises: RuntimeError if log level us unknown. """ ## only print 'DEBUG' messages if overall log level is set to debug if level is logging.DEBUG: self.logger.debug(msg) if level is logging.INFO: self.logger.info(msg) print(msg) elif level is logging.ERROR: self.logger.error(msg) self.send_failure_email(msg) print(msg) else: pass # raise RuntimeError("Log level: %s not supported" % level) def d(self, msg): self.l(msg, level=logging.DEBUG) def handle_exception(self, exc_type, exc_value, exc_traceback): """ """ if issubclass(exc_type, KeyboardInterrupt): sys.__excepthook__(exc_type, exc_value, exc_traceback) return self.logger.error("Uncaught exception", exc_info=(exc_type, exc_value, exc_traceback))
python
#!/usr/bin/env python3 import os import unittest import numpy as np import torch from pytorch_translate import rnn # noqa from pytorch_translate import train from pytorch_translate.tasks import pytorch_translate_task as tasks from pytorch_translate.test import utils as test_utils class TestRNNModel(unittest.TestCase): @unittest.skipIf(torch.cuda.device_count() < 1, "No GPU available for test.") def test_gpu_train_step(self): test_args = test_utils.ModelParamsDict() trainer, _ = test_utils.gpu_train_step(test_args) assert trainer.get_meter("gnorm").avg > 0 @unittest.skipIf(torch.cuda.device_count() < 1, "No GPU available for test.") def test_gpu_freeze_embedding(self): test_args = test_utils.ModelParamsDict( encoder_freeze_embed=True, decoder_freeze_embed=True ) test_utils.gpu_train_step(test_args) def test_load_pretrained_embedding(self): test_args = test_utils.ModelParamsDict() _, src_dict, tgt_dict = test_utils.prepare_inputs(test_args) encoder_embed_path, embed_weights = test_utils.create_pretrained_embed( src_dict, test_args.encoder_hidden_dim ) test_args.encoder_pretrained_embed = encoder_embed_path task = tasks.DictionaryHolderTask(src_dict, tgt_dict) model = task.build_model(test_args) assert np.allclose( model.encoder.embed_tokens.weight.data.numpy(), embed_weights ) os.remove(encoder_embed_path) @unittest.skipIf(torch.cuda.device_count() < 1, "No GPU available for test.") def test_milstm_cell(self): test_args = test_utils.ModelParamsDict(cell_type="milstm") trainer, _ = test_utils.gpu_train_step(test_args) assert trainer.get_meter("gnorm").avg > 0 @unittest.skipIf(torch.cuda.device_count() < 1, "No GPU available for test.") def test_sequence_lstm_encoder(self): test_args = test_utils.ModelParamsDict( encoder_bidirectional=True, sequence_lstm=True ) trainer, _ = test_utils.gpu_train_step(test_args) assert trainer.get_meter("gnorm").avg > 0 @unittest.skipIf(torch.cuda.device_count() < 1, "No GPU available for test.") def test_layer_norm_lstm_cell(self): test_args = test_utils.ModelParamsDict(cell_type="layer_norm_lstm") trainer, _ = test_utils.gpu_train_step(test_args) assert trainer.get_meter("gnorm").avg > 0 @unittest.skipIf(torch.cuda.device_count() < 1, "No GPU available for test.") def test_first_layer_multihead_attention_(self): test_args = test_utils.ModelParamsDict( attention_type="multihead", attention_heads=2, first_layer_attention=True ) trainer, _ = test_utils.gpu_train_step(test_args) assert trainer.get_meter("gnorm").avg > 0
python
# -*- coding: utf-8 -*- """ CRUD operation for fan model """ import database from DB import exception from DB.models import Fan from DB.api import dbutils as utils RESP_FIELDS = ['id', 'resource', 'status', 'created_at'] SRC_EXISTED_FIELD = { 'id': 'id', # 'uuid': 'uuid', 'status': 'status', 'resource_id': 'resource_id', 'created_at': 'created_at' } @database.run_in_session() @utils.wrap_to_dict(RESP_FIELDS) def new(session, src_dic, content={}): for k, v in SRC_EXISTED_FIELD.items(): content[k] = src_dic.get(v, None) return utils.add_db_object(session, Fan, **content) def _get_fan(session, resource_id, order_by=[], limit=None, **kwargs): if isinstance(resource_id, int): resource_ids = {'eq': resource_id} elif isinstance(resource_id, list): resource_ids = {'in': resource_id} else: raise exception.InvalidParameter('parameter resource id format are not supported.') return \ utils.list_db_objects(session, Fan, order_by=order_by, limit=limit, resource_id=resource_ids, **kwargs) @database.run_in_session() @utils.wrap_to_dict(RESP_FIELDS) # wrap the raw DB object into dict def get_fan_by_gateway_uuid(session, resource_id): return _get_fan(session, resource_id) @database.run_in_session() @utils.wrap_to_dict(RESP_FIELDS) # wrap the raw DB object into dict def get_latest_by_gateway_uuid(session, resource_id, ): fan = _get_fan(session, resource_id, order_by=[('id', True)], limit=1) return fan[0] if len(fan) else None @database.run_in_session() @utils.wrap_to_dict(RESP_FIELDS) def get_fan_by_time(session, start_time, end_time): return utils.list_db_objects(session, Fan, created_at={'ge': str(start_time), 'le': str(end_time)})
python
#!/usr/bin/env python from random import choice temperaments = ["sanguine", "choleric", "melancholic", "phlegmatic"] personalities = ["introvert", "extrovert"] # Based on the former job will be the starting inventory former_jobs = ["a fireman", "a policeman", "a medic", "unemployed", "a doctor", "a demolitions expert", "an IT guy", "an accountant"] def generate_character(): results = [] results.append(choice(personalities)) results.append(choice(temperaments)) return results
python
import os import traceback from concurrent.futures import CancelledError import numpy as np import cv2 from pyqtgraph.Qt import QtCore, QtGui import pyqtgraph as pg import pyqtgraph.opengl as gl import sklearn.cluster from pebble import concurrent from mss import mss from src.constants import * from src.cv_img import CvImg from src.components.qtrangeslider import QRangeSlider from src.components.image_plotter import ImagePlotter from src.components.image_hist_plotter import ImageHistPlotter from src.components.global_data_tree import GlobalDataTreeWidget from src.components.plot_3d import Plot3D from src.gui_busy_lock import GuiBusyLock from src.image_clusterers import CLUSTER_ALGORITHMS DEFAULT_IMG_FILENAME = './test-images/starry-night.jpg' DIALOG_SUPPORTED_IMG_EXTS = '' for title, exts in SUPPORTED_IMG_EXTS.items(): exts_str = ' '.join([f'*.{ext}' for ext in exts]) DIALOG_SUPPORTED_IMG_EXTS += f'{title} ({exts_str});;' DIALOG_SUPPORTED_IMG_EXTS += 'All Files (*)' HOME_DIR = os.path.expanduser('~') HOME_DIR = os.path.curdir # FIXME DEFAULT_MAX_PIXELS = 10 ** 6 # NOTE: These constants will be initialized later SCREEN_WIDTH = -1 SCREEN_HEIGHT = -1 ALL_CLUSTER_ALGORITHMS = list(CLUSTER_ALGORITHMS.keys()) IMG_CLUSTERERS = list(CLUSTER_ALGORITHMS.values()) CLUSTER_INPUTS = { 'color' : 'Color-only', 'spatial': 'Spatial-only', 'both' : 'Color & Spatial', } INTERNAL_CLUSTER_INPUTS = list(CLUSTER_INPUTS.keys()) CLUSTER_INPUT_TYPES = list(CLUSTER_INPUTS.values()) IMG_SCPLOT_SCALE = 4 CH_SCPLOT_SCALE = 5 CH_SCPLOT_SCALE_Z = 2 CH_PLOT_GRID_SZ = 8 def process_img_plot_mouse_event(img_plot, curr_img, fn): def handle_mouse_event(mouse_pos): if img_plot.sceneBoundingRect().contains(mouse_pos): mouse_point = img_plot.getViewBox().mapSceneToView(mouse_pos) (mouse_x, mouse_y) = int(mouse_point.x()), int(mouse_point.y()) (height, width) = curr_img.shape[:2] if (0 <= mouse_y and mouse_y < height) and (0 <= mouse_x and mouse_x < width): return fn(mouse_x, mouse_y, curr_img[mouse_y, mouse_x]) return handle_mouse_event def cluster_points_plot(color_centers, rgb_colored_centers, scale_factor=IMG_SCPLOT_SCALE): return gl.GLScatterPlotItem( pos=color_centers / 255 * scale_factor, color=rgb_colored_centers / 255, size=0.75, pxMode=not True, glOptions='opaque' ) def img_scatterplot(cv_img, color_mode, crop_bounds=None, thresh_bounds=None, scale_factor=IMG_SCPLOT_SCALE): rgb_img = cv_img.RGB converted_img = cv_img[color_mode] if crop_bounds is not None: x_min, y_min, x_max, y_max = crop_bounds else: height, width = rgb_img.shape[:2] x_min, y_min, x_max, y_max = (0, 0, width, height) rgb_img = rgb_img[y_min:y_max, x_min:x_max] converted_img = converted_img[y_min:y_max, x_min:x_max] if thresh_bounds is None: thresh_bounds = [(0, 255), (0, 255), (0, 255)] for (ch_index, bounds) in enumerate(thresh_bounds): lower_ch, upper_ch = bounds channel_arr = converted_img[:, :, ch_index] thresh_indicies = ( (channel_arr < lower_ch) | (channel_arr > upper_ch) ) converted_img[thresh_indicies] = -1 pos_arr = converted_img.reshape(-1, 3) color_arr = rgb_img.reshape(-1, 3) / 255 non_zero_pixels = np.all(pos_arr != -1, axis=1) pos_arr = pos_arr[non_zero_pixels] color_arr = color_arr[non_zero_pixels] pos_arr = converted_img.reshape(-1, 3) / 255 * scale_factor return gl.GLScatterPlotItem( pos=pos_arr, color=color_arr, size=1, pxMode=True, glOptions='opaque' ) def pos_color_scatterplot(cv_img, color_mode, ch_index, crop_bounds=None, thresh_bounds=None, scale_factor=CH_SCPLOT_SCALE, scale_z=CH_SCPLOT_SCALE_Z): rgb_img = cv_img.RGB.copy() converted_img = cv_img[color_mode].copy() if crop_bounds is not None: x_min, y_min, x_max, y_max = crop_bounds else: height, width = rgb_img.shape[:2] x_min, y_min, x_max, y_max = (0, 0, width, height) rgb_img = rgb_img[y_min:y_max, x_min:x_max] converted_img = converted_img[y_min:y_max, x_min:x_max] if thresh_bounds is not None: lower_ch, upper_ch = thresh_bounds[ch_index] else: lower_ch, upper_ch = (0, 255) rows, cols = converted_img.shape[:2] c_arr, r_arr = np.meshgrid(np.arange(cols), np.arange(rows)) channel_arr = converted_img[:, :, ch_index] keep_indicies = ( (channel_arr > lower_ch) & (channel_arr < upper_ch) ) flat_keep_indices = keep_indicies.flatten() flat_r_arr = r_arr.flatten()[flat_keep_indices] flat_c_arr = c_arr.flatten()[flat_keep_indices] flat_channel_arr = channel_arr.flatten()[flat_keep_indices] scaled_dim = scale_factor / max(rows, cols) scaled_z = scale_z / 255 flat_r_arr = (flat_r_arr - rows // 2) * scaled_dim flat_c_arr = (flat_c_arr - cols // 2) * scaled_dim flat_channel_arr = flat_channel_arr * scaled_z pos_arr = np.vstack( (flat_r_arr, flat_c_arr, flat_channel_arr) ).T color_arr = rgb_img.reshape(-1, 3) / 255 color_arr = color_arr[flat_keep_indices, :] return gl.GLScatterPlotItem( pos=pos_arr, color=color_arr, size=1, pxMode=True, glOptions='opaque' ) # Link the image plot axes together for consistent panning and zooming def setup_axes_links(leader_plot, follower_plots): for plot in follower_plots: plot.setXLink(leader_plot) plot.setYLink(leader_plot) # Load image with approximate max number of pixels def load_image_max_pixels(input_img, max_pixels): num_pixels = image_num_pixels(input_img) if num_pixels > max_pixels: resize_factor = img_resize_factor(input_img, max_pixels) resized_img = cv2.resize(input_img, None, fx=resize_factor, fy=resize_factor) else: resize_factor = 1 resized_img = input_img[:, :, :] return resized_img # Returns the number of pixels in a 2D or 3D image def image_num_pixels(img): return int(np.product(img.shape[:2])) # Return required resize factor to shrink image to contain given max number of pixels def img_resize_factor(input_img, max_pixels): resize_factor = 1 / ( (image_num_pixels(input_img) / max_pixels) ** 0.5 ) if resize_factor < 1: return resize_factor return 1 # Interpret image data as row-major instead of col-major pg.setConfigOptions(imageAxisOrder='row-major') class MyWindow(pg.GraphicsLayoutWidget): def __init__(self): super().__init__() self.input_img = None self.cv_img = None self.dataset_mode = False self.dataset_imgs = [] self.dataset_index = None self.ch_index = 0 self.cs_index = 0 self.cluster_algo_index = 0 self.cluster_input_index = 0 self.orig_img_plot = None self.glvw_color_vis = None self.channel_plot = None self.glvw_channel_vis = None self.roi = None self.menubar = None self.statusbar = None self.apply_crop = False self.apply_thresh = False self.mod_img_realtime = False self.max_pixels_to_load = DEFAULT_MAX_PIXELS self.channel_thresholds = [(0, 255), (0, 255), (0, 255)] self.cluster_future = None self.cluster_check_timer = None self.main_window = None @property def gui_ready(self): # HACK: This only checks the 4 main plots return None not in [self.orig_img_plot, self.glvw_color_vis, self.channel_plot, self.glvw_channel_vis] @property def color_mode(self): return ALL_COLOR_SPACES[self.cs_index] @property def channel_mode(self): return COLOR_SPACE_LABELS[self.color_mode][self.ch_index] @property def cluster_input_mode(self): return INTERNAL_CLUSTER_INPUTS[self.cluster_input_index] @property def curr_image(self): return self.cv_img[self.color_mode] @property def curr_image_gray(self): return self.cv_img.GRAY @property def curr_image_cropped(self): if self.apply_crop: x_min, y_min, x_max, y_max = self.roi_bounds return self.curr_image[y_min:y_max, x_min:x_max] else: return self.curr_image @property def curr_image_gray_cropped(self): if self.apply_crop: x_min, y_min, x_max, y_max = self.roi_bounds return self.curr_image_gray[y_min:y_max, x_min:x_max] else: return self.curr_image_gray @property def curr_image_slice(self): img_slice = self.cv_img[self.color_mode][:, :, self.ch_index] if self.apply_thresh: lower_ch, upper_ch = self.thresh_bounds thresh_indicies = ( (img_slice < lower_ch) | (img_slice > upper_ch) ) img_slice[thresh_indicies] = 0 return img_slice @property def roi_bounds(self): height, width = self.cv_img.RGB.shape[:2] if self.apply_crop: x, y, w, h = self.roi.parentBounds().toAlignedRect().getRect() x_min, y_min = max(x, 0), max(y, 0) x_max, y_max = min(x + w, width), min(y + h, height) return (x_min, y_min, x_max, y_max) else: return (0, 0, width, height) @property def thresh_bounds(self): if self.apply_thresh: return self.channel_thresholds[self.ch_index] return None @property def curr_img_scatterplot(self): return img_scatterplot( self.cv_img, self.color_mode, crop_bounds=self.roi_bounds, thresh_bounds=self.channel_thresholds if self.apply_thresh else None ) @property def curr_pos_color_scatterplot(self): return pos_color_scatterplot( self.cv_img, self.color_mode, self.ch_index, crop_bounds=self.roi_bounds, thresh_bounds=self.channel_thresholds if self.apply_thresh else None ) def load_image_file(self, img_path, max_pixels): input_img = cv2.imread(img_path) if input_img is None: QtGui.QMessageBox.warning(self, 'Error!', f'Unable to load image from "{img_path}"') if self.gui_ready: return else: exit(-1) self.load_image(input_img, max_pixels) self.set_window_title(f'Now viewing "{img_path.split("/")[-1]}"') def load_image(self, input_img, max_pixels): if max_pixels is None: max_pixels = self.max_pixels_to_load with GuiBusyLock(self): self.input_img = input_img resized_img = load_image_max_pixels(self.input_img, max_pixels) self.cv_img = CvImg.from_ndarray(resized_img) if self.gui_ready: self.data_tree['Image Info/Total Pixels'] = image_num_pixels(self.input_img) self.data_tree['Image Info/Pixels Loaded'] = image_num_pixels(self.curr_image) self.data_tree['Image Info/Resize Factor'] = img_resize_factor(self.input_img, max_pixels) self.data_tree['Image Info/Original Image Size'] = np.array(self.input_img.shape[:2][::-1]) self.data_tree['Image Info/Loaded Image Size'] = np.array(self.curr_image.shape[:2][::-1]) self.orig_img_plot.set_image(self.cv_img.RGB) self.on_color_space_change(self.cs_index) def setup_gui(self): if self.cv_img is None: raise Exception('Error: Image has not been loaded yet! Please load an image before calling setup_gui()') # Setup widgets according to grid layout self.main_grid_layout = QtGui.QGridLayout() # Optimal plot size is determined so that the app takes 75% total width and 80% total height (for 2 plots high and 3 plots wide) optimal_plot_size = (SCREEN_WIDTH // 4, SCREEN_HEIGHT // 2.5) # Setup main plots self.orig_img_plot = ImagePlotter(title='Original Image', img=self.cv_img.RGB, enable_crosshair=True, size=optimal_plot_size) self.glvw_color_vis = Plot3D(plot=self.curr_img_scatterplot, size=optimal_plot_size) self.channel_plot = ImagePlotter(title=self.channel_mode, img=self.curr_image_slice, size=optimal_plot_size) self.glvw_channel_vis = Plot3D(plot=self.curr_pos_color_scatterplot, enable_axes=False, size=optimal_plot_size) self.glvw_channel_vis.grid_item.setPosition(x=-CH_PLOT_GRID_SZ / 2, y=-CH_PLOT_GRID_SZ / 2, z=0) self.glvw_channel_vis.grid_item.setSize(x=CH_PLOT_GRID_SZ, y=CH_PLOT_GRID_SZ, z=0) # Tie the axes bewteen the original image plot and the channel sliced image plot setup_axes_links(self.orig_img_plot, [self.channel_plot]) # Layout main plots self.main_grid_layout.addWidget(self.orig_img_plot, 0, 0) self.main_grid_layout.addWidget(self.glvw_color_vis, 1, 0) self.main_grid_layout.addWidget(self.channel_plot, 0, 1) self.main_grid_layout.addWidget(self.glvw_channel_vis, 1, 1) # Setup the color histogram plot self.color_hist_plot = ImageHistPlotter(title='Color/Gray Histogram', size=optimal_plot_size) self.color_hist_plot.plot_hist(self.curr_image_cropped, self.curr_image_gray_cropped) self.main_grid_layout.addWidget(self.color_hist_plot, 0, 2) # Setup settings/data tabs info_tabs = QtGui.QTabWidget() general_data_settings_tab = QtGui.QWidget() cluster_settings_tab = QtGui.QWidget() info_tabs.addTab(general_data_settings_tab, 'Settings/Data') info_tabs.addTab(cluster_settings_tab, 'Clustering') # Lay everything out for general settings/data tab self.general_settings_layout = QtGui.QGridLayout() # Setup max pixels loading slider self.max_pixels_slider = QtGui.QSlider(QtCore.Qt.Horizontal) self.max_pixels_slider.setMinimum(0) self.max_pixels_slider.setMaximum(10) self.max_pixels_slider.setValue(6) self.max_pixels_slider.setTickPosition(QtGui.QSlider.TicksBelow) self.max_pixels_slider.setTickInterval(1) def on_max_pixels_slider_change(val): self.max_pixels_to_load = 10 ** val self.load_image(self.input_img, self.max_pixels_to_load) self.data_tree['Image Info/Pixels Loaded'] = image_num_pixels(self.curr_image) self.max_pixels_slider.valueChanged.connect(on_max_pixels_slider_change) self.general_settings_layout.addWidget(QtGui.QLabel('Max Pixels (10^x):'), 0, 0) self.general_settings_layout.addWidget(self.max_pixels_slider, 0, 1) # Setup image realtime modding check box self.mod_img_realtime_box = QtGui.QCheckBox() self.mod_img_realtime_box.setChecked(self.mod_img_realtime) self.mod_img_realtime_box.toggled.connect(self.on_mod_img_realtime_toggle) self.general_settings_layout.addWidget(QtGui.QLabel('Realtime updates:'), 1, 0) self.general_settings_layout.addWidget(self.mod_img_realtime_box, 1, 1) # Setup color space combo box self.color_space_cbox = QtGui.QComboBox() self.color_space_cbox.addItems(ALL_COLOR_SPACES) self.color_space_cbox.setCurrentIndex(self.cs_index) self.color_space_cbox.currentIndexChanged.connect(self.on_color_space_change) self.general_settings_layout.addWidget(QtGui.QLabel('Color Space:'), 2, 0) self.general_settings_layout.addWidget(self.color_space_cbox, 2, 1) # Setup channel combo box self.channel_cbox = QtGui.QComboBox() self.channel_cbox.addItems(COLOR_SPACE_LABELS[self.color_mode]) self.channel_cbox.setCurrentIndex(self.ch_index) self.channel_cbox.currentIndexChanged.connect(self.on_channel_view_change) self.general_settings_layout.addWidget(QtGui.QLabel('Channel:'), 3, 0) self.general_settings_layout.addWidget(self.channel_cbox, 3, 1) # Setup cropping checkbox self.apply_crop_box = QtGui.QCheckBox() self.apply_crop_box.setChecked(self.apply_crop) self.apply_crop_box.toggled.connect(self.on_apply_crop_toggle) self.general_settings_layout.addWidget(QtGui.QLabel('Apply Cropping:'), 4, 0) self.general_settings_layout.addWidget(self.apply_crop_box, 4, 1) # Setup thresholding checkboxes self.apply_thresh_box = QtGui.QCheckBox() self.apply_thresh_box.setChecked(self.apply_thresh) self.apply_thresh_box.toggled.connect(self.on_apply_thresh_toggle) self.general_settings_layout.addWidget(QtGui.QLabel('Apply Thresholding:'), 5, 0) self.general_settings_layout.addWidget(self.apply_thresh_box, 5, 1) # Setup thresholding sliders for all channels thresh_row_offset = 6 self.all_channel_thresh_sliders = [] self.all_channel_labels = [] for i in range(3): # Setup thresholding channel label channel_label = QtGui.QLabel(f'Threshold ({COLOR_SPACE_LABELS[self.color_mode][i]}):') self.general_settings_layout.addWidget(channel_label, thresh_row_offset + i, 0) self.all_channel_labels += [channel_label] # Setup thresholding channel range slider channel_thresh_slider = QRangeSlider(QtCore.Qt.Horizontal) channel_thresh_slider.range = (0, 255) channel_thresh_slider.values = (0, 255) channel_thresh_slider.setEnabled(False) self.general_settings_layout.addWidget(channel_thresh_slider, thresh_row_offset + i, 1) self.all_channel_thresh_sliders += [channel_thresh_slider] # Setup the data tree widget # NOTE: Top level keys will be rendered in reverse insertion order initial_data = { 'Image Controls': { 'Crop Dimensions': np.array(self.roi_bounds), 'Channel Thresholds': np.array(self.channel_thresholds).T }, 'Mouse Info': { 'Mouse Location': np.array([-1, -1]), 'Color at Mouse': np.array([-1, -1, -1]), }, 'Image Info': { 'Total Pixels': image_num_pixels(self.input_img), 'Pixels Loaded': image_num_pixels(self.curr_image), 'Resize Factor': img_resize_factor(self.input_img, self.max_pixels_to_load), 'Original Image Size': np.array(self.input_img.shape[:2][::-1]), 'Loaded Image Size': np.array(self.curr_image.shape[:2][::-1]), }, } self.data_tree = GlobalDataTreeWidget() self.data_tree.set_data(initial_data) self.general_settings_layout.addWidget(self.data_tree, 9, 0, 1, 2) def handle_on_mouse_hover(x, y, color): self.data_tree['Mouse Info/Mouse Location'] = np.array([x, y]) self.data_tree['Mouse Info/Color at Mouse'] = color show_color_on_hover = process_img_plot_mouse_event(self.orig_img_plot, self.curr_image, handle_on_mouse_hover) self.orig_img_plot.scene().sigMouseMoved.connect(show_color_on_hover) # HACK: Add dummy label widget to squish all widgets to the top self.general_settings_layout.addWidget(QtGui.QLabel(''), 10, 0, 999, 2) # Place all general settings widgets in 'Settings' tab general_data_settings_tab.setLayout(self.general_settings_layout) # Lay everything out for clustering settings tab self.clustering_settings_layout = QtGui.QGridLayout() # Setup clustering algorithm combo box self.cluster_algo_cbox = QtGui.QComboBox() self.cluster_algo_cbox.addItems(ALL_CLUSTER_ALGORITHMS) self.cluster_algo_cbox.setCurrentIndex(self.cluster_algo_index) self.cluster_algo_cbox.currentIndexChanged.connect(self.on_cluster_algo_change) self.clustering_settings_layout.addWidget(QtGui.QLabel('Cluster Algorithm:'), 0, 0) self.clustering_settings_layout.addWidget(self.cluster_algo_cbox, 0, 1) # Setup clustering algorithm input data combo box self.cluster_input_cbox = QtGui.QComboBox() self.cluster_input_cbox.addItems(CLUSTER_INPUT_TYPES) self.cluster_input_cbox.setCurrentIndex(self.cluster_input_index) self.cluster_input_cbox.currentIndexChanged.connect(self.on_cluster_input_change) self.clustering_settings_layout.addWidget(QtGui.QLabel('Cluster Input Type:'), 1, 0) self.clustering_settings_layout.addWidget(self.cluster_input_cbox, 1, 1) # Setup the cluster sub-settings widgets self.clusterer_controller = IMG_CLUSTERERS[self.cluster_algo_index] cluster_sub_settings_layout = self.clusterer_controller.setup_settings_layout() self.cluster_settings_widget = QtGui.QWidget() self.cluster_settings_widget.setLayout(cluster_sub_settings_layout) self.clustering_settings_layout.addWidget(self.cluster_settings_widget, 2, 0, 1, 2) # Setup clustering buttons self.run_clustering_button = QtGui.QPushButton('Run Clustering') self.run_clustering_button.clicked.connect(self.on_run_clustering) self.run_clustering_button.setEnabled(True) self.clustering_settings_layout.addWidget(self.run_clustering_button, 3, 0) self.cancel_clustering_button = QtGui.QPushButton('Cancel Clustering') self.cancel_clustering_button.clicked.connect(self.on_cancel_clustering) self.cancel_clustering_button.setEnabled(False) self.clustering_settings_layout.addWidget(self.cancel_clustering_button, 3, 1) # HACK: Add dummy label widget to squish all widgets to the top self.clustering_settings_layout.addWidget(QtGui.QLabel(''), 4, 0, 999, 2) # Place all cluster settings widgets in 'Clustering' tab cluster_settings_tab.setLayout(self.clustering_settings_layout) # Add the tabs into the main layout self.main_grid_layout.addWidget(info_tabs, 1, 2) # Set the layout and resize the window accordingly self.setLayout(self.main_grid_layout) self.resize(self.main_grid_layout.sizeHint() + QtCore.QSize(10, 30)) def bind_to_main_window(self, main_window): self.main_window = main_window self.main_window.setCentralWidget(self) self.setup_menubar(self.main_window) self.setup_statusbar(self.main_window) self.setup_shortcuts() self.autosize() def open_file_dialog(self, title, supported_exts, starting_dir=HOME_DIR): filename, _ = pg.FileDialog().getOpenFileName(self, title, starting_dir, supported_exts) return filename def save_file_dialog(self, title, supported_exts, starting_dir=HOME_DIR): filename, _ = pg.FileDialog().getSaveFileName(self, title, starting_dir, supported_exts) return filename def open_folder_dialog(self, title, starting_dir=HOME_DIR): dirname = pg.FileDialog().getExistingDirectory(self, title, starting_dir) return dirname def on_color_space_change(self, cspace_index): with GuiBusyLock(self): self.cs_index = cspace_index # NOTE: Temporarily disable the 'currentIndexChanged' since # it'll be triggered when removing and adding new items self.channel_cbox.currentIndexChanged.disconnect() self.channel_cbox.clear() self.channel_cbox.addItems(COLOR_SPACE_LABELS[self.color_mode]) self.channel_cbox.currentIndexChanged.connect(self.on_channel_view_change) for i in range(3): channel_label = self.all_channel_labels[i] channel_label.setText(f'Threshold ({COLOR_SPACE_LABELS[self.color_mode][i]}):') channel_thresh_slider = self.all_channel_thresh_sliders[i] self.channel_thresholds[i] = (0, 255) channel_thresh_slider.values = (0, 255) self.channel_plot.setTitle(title=self.channel_mode) self.update_all_plots() self.channel_plot.autoRange() self.glvw_color_vis.remove_cluster_plot() def on_channel_view_change(self, ch_index): with GuiBusyLock(self): self.ch_index = ch_index self.channel_plot.setTitle(title=self.channel_mode) self.update_all_plots() self.channel_plot.autoRange() def on_cluster_algo_change(self, cluster_algo_index): self.cluster_algo_index = cluster_algo_index self.clusterer_controller = IMG_CLUSTERERS[self.cluster_algo_index] cluster_settings_layout = self.clusterer_controller.setup_settings_layout() old_widget = self.cluster_settings_widget self.cluster_settings_widget = QtGui.QWidget() self.cluster_settings_widget.setLayout(cluster_settings_layout) self.clustering_settings_layout.replaceWidget(old_widget, self.cluster_settings_widget) QtCore.QObjectCleanupHandler().add(old_widget) self.clustering_settings_layout.update() def on_cluster_input_change(self, cluster_input_index): self.cluster_input_index = cluster_input_index def on_crop_modify(self): if self.apply_crop: self.update_all_plots() def on_crop_modify_realtime(self): if self.apply_crop: self.data_tree['Image Controls/Crop Dimensions'] = np.array(self.roi_bounds) self.update_2d_plots() if self.mod_img_realtime: self.update_3d_plots() def on_thresh_change(self, thresh_ch_index, lower_val, upper_val): if self.apply_thresh: self.channel_thresholds[thresh_ch_index] = (lower_val, upper_val) self.update_all_plots() def on_thresh_change_realtime(self, thresh_ch_index, lower_val, upper_val): if self.apply_thresh: self.channel_thresholds[thresh_ch_index] = (lower_val, upper_val) self.data_tree['Image Controls/Channel Thresholds'] = np.array(self.channel_thresholds).T self.update_2d_plots() if self.mod_img_realtime: self.update_3d_plots() def on_apply_crop_toggle(self, should_apply_crop): self.apply_crop = should_apply_crop if self.apply_crop: self.orig_img_plot.enable_roi_rect() self.roi = self.orig_img_plot.roi_item self.roi.sigRegionChanged.connect(self.on_crop_modify_realtime) self.roi.sigRegionChangeFinished.connect(self.on_crop_modify) else: self.roi.sigRegionChanged.disconnect() self.roi.sigRegionChangeFinished.disconnect() self.roi = None self.orig_img_plot.disable_roi_rect() self.data_tree['Image Controls/Crop Dimensions'] = np.array(self.roi_bounds) self.update_all_plots() def on_mod_img_realtime_toggle(self, should_mod_img_realtime): self.mod_img_realtime = should_mod_img_realtime def on_apply_thresh_toggle(self, should_apply_thresh): self.apply_thresh = should_apply_thresh for (i, channel_thresh_slider) in enumerate(self.all_channel_thresh_sliders): channel_thresh_slider.setEnabled(self.apply_thresh) channel_thresh_value_changed_realtime = lambda i: (lambda lower, upper: self.on_thresh_change_realtime(i, lower, upper)) channel_thresh_value_changed = lambda i: (lambda lower, upper: self.on_thresh_change(i, lower, upper)) if self.apply_thresh: channel_thresh_slider.valueChanged.connect(channel_thresh_value_changed_realtime(i)) channel_thresh_slider.valueChangedFinished.connect(channel_thresh_value_changed(i)) else: channel_thresh_slider.valueChanged.disconnect() channel_thresh_slider.valueChangedFinished.disconnect() self.update_all_plots() @property def is_clustering(self): return self.cluster_future is not None and self.cluster_future.running() def on_run_clustering(self): if not self.is_clustering: self.run_clustering_button.setEnabled(False) self.cancel_clustering_button.setEnabled(True) self.glvw_color_vis.remove_cluster_plot() @concurrent.process def _run_clustering(cv_img, color_mode, input_mode, roi_bounds): outcome = { 'results': None, 'exception': None, } try: results = self.clusterer_controller.run_clustering(cv_img, color_mode, input_mode, roi_bounds) color_centers, color_labels, rgb_colored_centers, cluster_error, num_iterations = results outcome['results'] = (color_centers, rgb_colored_centers) except Exception as ex: err_name = str(ex) err_type = str(type(ex)) err_stacktrace = ''.join(traceback.format_tb(ex.__traceback__)) outcome['exception'] = { 'name': err_name, 'type': err_type, 'stacktrace': err_stacktrace, } return outcome def _check_clustering_results(): if self.cluster_future.done(): self.cluster_check_timer.stop() try: outcome = self.cluster_future.result() if outcome['exception'] is not None: error_msg = f'A problem occurred when running the clustering algorithm:' error_msg += f"\n{outcome['exception']['name']}" error_msg += f"\n{outcome['exception']['stacktrace']}" QtGui.QMessageBox.warning(self, 'Error!', error_msg) else: color_centers, rgb_colored_centers = outcome['results'] self.glvw_color_vis.set_cluster_plot(cluster_points_plot(color_centers, rgb_colored_centers)) except CancelledError as ex: # NOTE: The user requested to cancel the clustering operation pass finally: self.run_clustering_button.setEnabled(True) self.cancel_clustering_button.setEnabled(False) self.cluster_future = _run_clustering(self.cv_img, self.color_mode, self.cluster_input_mode, self.roi_bounds) self.cluster_check_timer = QtCore.QTimer() self.cluster_check_timer.timeout.connect(_check_clustering_results) self.cluster_check_timer.start(250) def on_cancel_clustering(self): if self.is_clustering: self.cluster_future.cancel() self.glvw_color_vis.remove_cluster_plot() self.run_clustering_button.setEnabled(True) self.cancel_clustering_button.setEnabled(False) def update_2d_plots(self): self.channel_plot.set_image(self.curr_image_slice, auto_range=False) self.color_hist_plot.plot_hist(self.curr_image_cropped, self.curr_image_gray_cropped) def update_3d_plots(self): self.glvw_color_vis.set_plot(plot=self.curr_img_scatterplot) self.glvw_channel_vis.set_plot(plot=self.curr_pos_color_scatterplot) def update_all_plots(self): self.update_2d_plots() self.update_3d_plots() def setup_menubar(self, main_window): self.menubar = main_window.menuBar() file_menu = self.menubar.addMenu('File') help_menu = self.menubar.addMenu('Help') open_image_action = QtGui.QAction('Open Image', self) open_image_action.setShortcut('Ctrl+O') open_image_action.setStatusTip('Open Image') def on_img_file_select(): img_path = self.open_file_dialog('Open image file', DIALOG_SUPPORTED_IMG_EXTS) if len(img_path) > 0: self.dataset_mode = False self.dataset_imgs = [] self.dataset_index = None self.load_image_file(img_path, self.max_pixels_to_load) open_image_action.triggered.connect(on_img_file_select) file_menu.addAction(open_image_action) open_dataset_action = QtGui.QAction('Open Dataset', self) open_dataset_action.setShortcut('Ctrl+Shift+O') open_dataset_action.setStatusTip('Open dataset of images') def on_dataset_folder_select(): dataset_dir = self.open_folder_dialog('Open image dataset folder') if len(dataset_dir) > 0: raw_paths = [os.path.join(dataset_dir, filepath) for filepath in os.listdir(dataset_dir)] dataset_image_paths = [filepath for filepath in raw_paths if os.path.isfile(filepath) and filepath.endswith(ALL_SUPPORTED_IMG_EXTS)] self.dataset_mode = True self.dataset_imgs = dataset_image_paths self.dataset_index = 0 self.load_image_file(self.dataset_imgs[self.dataset_index], self.max_pixels_to_load) open_dataset_action.triggered.connect(on_dataset_folder_select) file_menu.addAction(open_dataset_action) export_screenshot_action = QtGui.QAction('Export Screenshot', self) export_screenshot_action.setShortcut('Ctrl+E') export_screenshot_action.setStatusTip('Export screenshot of app') def on_export_screenshot_request(): self.main_window.move(10, 10) win_geometry = self.geometry() position = self.mapToGlobal(self.geometry().topLeft()) size = self.geometry().size() x, y = position.x(), position.y() width, height = size.width(), size.height() window_bounds = { 'top': y - 20, 'left': x, 'width': width, 'height': height, } with mss() as sct: window_view = np.array(sct.grab(window_bounds)) window_view = cv2.cvtColor(window_view, cv2.COLOR_RGBA2RGB) save_filepath = self.save_file_dialog('Save screenshot export', DIALOG_SUPPORTED_IMG_EXTS) cv2.imwrite(save_filepath, window_view) export_screenshot_action.triggered.connect(on_export_screenshot_request) file_menu.addAction(export_screenshot_action) exit_action = QtGui.QAction('Exit', self) exit_action.setShortcut('Ctrl+Q') exit_action.setStatusTip('Exit application') exit_action.triggered.connect(main_window.close) file_menu.addAction(exit_action) def setup_shortcuts(self): QtGui.QShortcut(QtCore.Qt.Key_Left, self, self.load_previous_image_in_dataset) QtGui.QShortcut(QtCore.Qt.Key_Right, self, self.load_next_image_in_dataset) def load_previous_image_in_dataset(self): if self.dataset_mode: self.dataset_index -= 1 if self.dataset_index < 0: self.dataset_index += len(self.dataset_imgs) self.load_image_file(self.dataset_imgs[self.dataset_index], self.max_pixels_to_load) def load_next_image_in_dataset(self): if self.dataset_mode: self.dataset_index += 1 self.dataset_index %= len(self.dataset_imgs) self.load_image_file(self.dataset_imgs[self.dataset_index], self.max_pixels_to_load) def setup_statusbar(self, main_window): self.statusbar = main_window.statusBar() def show_status(self, text, timeout=0): if self.statusbar is not None: self.statusbar.showMessage(text, timeout) def set_window_title(self, text): if self.main_window is not None: self.main_window.setWindowTitle(text) def autosize(self): self.main_window.resize(self.size()) ## Start Qt event loop unless running in interactive mode. if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): app = pg.mkQApp() screen_resolution = app.desktop().screenGeometry() SCREEN_WIDTH, SCREEN_HEIGHT = screen_resolution.width(), screen_resolution.height() with open('src/app.css') as fp: app.setStyleSheet('\n'.join(fp.readlines()).strip()) MainWindow = QtGui.QMainWindow() gui = MyWindow() gui.load_image_file(DEFAULT_IMG_FILENAME, DEFAULT_MAX_PIXELS) gui.setup_gui() gui.bind_to_main_window(MainWindow) gui.set_window_title(f'Now viewing "{DEFAULT_IMG_FILENAME.split("/")[-1]}"') MainWindow.show() # HACK: This dummy timer lets us properly Ctrl+C from the app timer = QtCore.QTimer() timer.timeout.connect(lambda: None) timer.start(100) sys.exit(app.exec_())
python
#!/usr/bin/env python import argparse from Toggl.togglApi import getTogglReport if __name__ == '__main__': parser = argparse.ArgumentParser(description='Obtain report from Toggl.') parser.add_argument("--toggl-token", "-tt", help="Set Toggl token.") parser.add_argument("--toggl-workspace", "-w", help="Set Toggl workspace") parser.add_argument("--since", "-s", help="Start date for the report.") parser.add_argument("--until", "-u", help="End date for the report.") args = parser.parse_args() report = getTogglReport(args.toggl_token, int(args.toggl_workspace), args.since, args.until) print(report)
python
""" Level generator utilities. """ import weakref from math import floor from random import randrange, choice from .blt.nice_terminal import terminal from .geom import Point, Rect, Size from .draw import draw_rect class BSPNode: """ Node in a binary space partitioning tree .. py:attribute:: rect :py:class:`Rect` represented by this node .. py:attribute:: is_horz ``True`` iff this node is divided down its Y axis; ``False`` otherwise .. py:attribute:: value Int representing split point between the two children of this node. So if this is a horizontal node and the width is 10, the value could be 6, with the left node taking up 6 cells and the right taking up 4. .. py:attribute:: child_a :py:class:`BSPNode` either on the left (horizontal) or on top (vertical). .. py:attribute:: child_b :py:class:`BSPNode` either on the right (horizontal) or on bottom (vertical). .. py:attribute:: level How many levels of parents does this node have? .. py:attribute:: data Dict of arbitrary data for your game's use. """ def __init__(self, rect, is_horz=True, value=None, level=0): """ :param Rect rect: :param bool is_horz: :param int|None value: :param int level: """ self.parent_weakref = lambda: None self.rect = rect self.level = level self.is_horz = is_horz self.value = value self.child_a = None self.child_b = None self.data = {} # put whatever you want in here @property def max_value(self): """Max value of :py:attr:`BSPNode.value`""" if self.is_horz: return self.rect.size.width - 1 else: return self.rect.size.height - 1 def _get_next_rect(self, is_a): if self.is_horz: if is_a: return Rect(self.rect.origin, Size(self.value, self.rect.height)) else: return Rect( self.rect.origin + Point(self.value + 1, 0), Size(self.rect.width - self.value - 1, self.rect.height)) else: if is_a: return Rect(self.rect.origin, Size(self.rect.width, self.value)) else: return Rect( self.rect.origin + Point(0, self.value + 1), Size(self.rect.width, self.rect.height - self.value - 1)) @property def rect_a(self): """Assuming :py:attr:`BSPNode.value` has already been set, return the :py:class:`Rect` of child A""" return self._get_next_rect(True) @property def rect_b(self): """Assuming :py:attr:`BSPNode.value` has already been set, return the :py:class:`Rect` of child B""" return self._get_next_rect(False) def get_node_at_path(self, spec=''): """ Given a string containing only the characters ``'a'`` and ``'b'``, return the node matching the given branches. For example, in a tree with 4 leaves, ``root.get_node_at_path('aa')`` would return the left/top-most leaf. """ if spec: if spec[0] == 'a': return self.child_a.get_node_at_path(spec[1:]) elif spec[0] == 'b': return self.child_b.get_node_at_path(spec[1:]) else: raise ValueError("Invalid character: {}".format(spec[0])) else: return self def __repr__(self): tag = 'horz' if self.is_horz else 'vert' return 'BSPNode({}, {})'.format(tag, self.value) @property def leaves(self): """Iterator of all leaves, left/top-to-right/bottom""" if self.child_a and self.child_b: yield from self.child_a.leaves yield from self.child_b.leaves else: yield self @property def sibling_pairs(self): """Iterator of all pairs of siblings""" if not self.child_a or not self.child_b: return yield from self.child_a.sibling_pairs yield from self.child_b.sibling_pairs yield (self.child_a, self.child_b) @property def leftmost_leaf(self): """The left/top-most leaf in the tree""" if self.child_a: return self.child_a.leftmost_leaf else: return self @property def rightmost_leaf(self): """The right/bottom-most leaf in the tree""" if self.child_b: return self.child_b.leftmost_leaf else: return self def random_leaf(self): """Returns a random leaf""" if self.child_a or self.child_b: return choice((self.child_a, self.child_b)).random_leaf else: return self @property def ancestors(self): """Iterator of ``self`` and all parents, starting with first parent""" yield self parent = self.parent_weakref() if parent: yield from parent.ancestors def DEFAULT_RANDRANGE_FUNC(_, a, b): return randrange(a, b) class RandomBSPTree: """ A randomly generated BSP tree. Pass a dungeon size and minimum leaf size. After initialization, the root's leaves represent non-overlapping rectangles that completely fill the space. .. py:attribute:: root :py:class:`BSPNode` root of all children """ def __init__(self, size, min_leaf_size, randrange_func=DEFAULT_RANDRANGE_FUNC): """ :param Size size: :param int min_leaf_size: Minimum size of leaf nodes on both axes :param function randrange_func: A function ``fn(level, min_size, max_size)`` that returns the ``value`` (see :py:class:`BSPnode`) of the node at the given level of recursion. Defaults to ``randrange()``, but you can use this to de-randomize specific splits. """ self.randrange_func = randrange_func self.min_leaf_size = min_leaf_size self.root = BSPNode(Rect(Point(0, 0), size)) self.subdivide(self.root) def subdivide(self, node, iterations_left=8): if iterations_left < 1: return if self.add_children(node): self.subdivide(node.child_a, iterations_left=iterations_left - 1) self.subdivide(node.child_b, iterations_left=iterations_left - 1) def add_children(self, node): a = self.min_leaf_size b = node.max_value - self.min_leaf_size * 2 if b - a < 1: return False node.value = self.randrange_func(node.level, a, b) node.child_a = BSPNode( node.rect_a, not node.is_horz, level=node.level + 1) node.child_a.parent_weakref = weakref.ref(node) node.child_b = BSPNode( node.rect_b, not node.is_horz, level=node.level + 1) node.child_b.parent_weakref = weakref.ref(node) return True def draw(self, n=None, color_so_far='#f'): if n is None: n = self.root if n.child_a or n.child_b: if n.child_a: self.draw(n.child_a, color_so_far + 'f') if n.child_b: self.draw(n.child_b, color_so_far + '0') return color = color_so_far + '0' * (7 - len(color_so_far)) terminal.color(color) draw_rect(n.rect) terminal.print(n.rect.origin, color) terminal.bkcolor('#000000')
python
from shortcodes import Shortcode # Allowed values for position options ALLOWED_POSITION = ['right', 'left'] class BevelShortcode(Shortcode): name = 'bevel' same_tag_closes = True standalone = True render_empty = True template = 'views/partials/bevel.j2' def _get_position(self, options): position = options.get('position', None) if position not in ALLOWED_POSITION: position = ALLOWED_POSITION[0] return position def transform(self, value, options): self.context['position'] = self._get_position(options) return value shortcode = BevelShortcode
python
# Generated by Django 4.0.3 on 2022-03-15 20:26 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0007_alter_category_options'), ] operations = [ migrations.AlterField( model_name='ticket', name='category', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='ticket_categories', to='core.category'), ), ]
python
import random import math def prime_factor_generator(n): yield 2 for i in range(3, int(math.sqrt(n)) + 1, 2): yield i def prime_factors(n): for i in prime_factor_generator(n): if n % i == 0: yield i while True: n //= i if n % i != 0: break if n > 2: yield n def coprimes(n, maxx=None): if maxx == None: maxx = n sieve = [True] * (maxx - 1) for p in prime_factors(n): m = p while m < maxx: sieve[m - 1] = False m += p res = [] for i, coprime in enumerate(sieve): if coprime: res.append(i + 1) return res def maxcoprime(n, maxx=None): if maxx == None: maxx = n sieve = [True] * maxx for p in prime_factors(n): m = p while m <= maxx: sieve[m - 1] = False m += p for i, coprime in enumerate(reversed(sieve)): if coprime: return maxx - i def cycle(n): """ https://en.wikipedia.org/wiki/Full_cycle """ seed = random.randrange(n) inc = maxcoprime(n, n + random.randint(n, n * 10)) for _ in range(n): yield seed seed = (seed + inc) % n
python
def largest_palindrome_product(n): up_digits = "1" + n * "0" low_digits = "1" + (n-1) * "0" num_up_digits = int(up_digits) num_low_digits = int(low_digits) x = range(num_low_digits, num_up_digits) largest_num = 0 for i in x: for j in x: multi = i * j str_multi = str(multi) if str_multi == str_multi[::-1] and largest_num < multi: largest_num = multi return largest_num print(largest_palindrome_product(3))
python
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function INCLUDES = """ #include <openssl/ssl.h> /* * This is part of a work-around for the difficulty cffi has in dealing with * `STACK_OF(foo)` as the name of a type. We invent a new, simpler name that * will be an alias for this type and use the alias throughout. This works * together with another opaque typedef for the same name in the TYPES section. * Note that the result is an opaque type. */ typedef STACK_OF(X509) Cryptography_STACK_OF_X509; typedef STACK_OF(X509_REVOKED) Cryptography_STACK_OF_X509_REVOKED; """ TYPES = """ typedef ... Cryptography_STACK_OF_X509; typedef ... Cryptography_STACK_OF_X509_REVOKED; typedef struct { ASN1_OBJECT *algorithm; ...; } X509_ALGOR; typedef ... X509_ATTRIBUTE; typedef struct { X509_ALGOR *signature; ...; } X509_CINF; typedef struct { ASN1_OBJECT *object; ASN1_BOOLEAN critical; ASN1_OCTET_STRING *value; } X509_EXTENSION; typedef ... X509_EXTENSIONS; typedef ... X509_REQ; typedef struct { ASN1_INTEGER *serialNumber; ASN1_TIME *revocationDate; X509_EXTENSIONS *extensions; int sequence; ...; } X509_REVOKED; typedef struct { Cryptography_STACK_OF_X509_REVOKED *revoked; ...; } X509_CRL_INFO; typedef struct { X509_CRL_INFO *crl; ...; } X509_CRL; typedef struct { X509_CINF *cert_info; ...; } X509; typedef ... X509_STORE; typedef ... NETSCAPE_SPKI; """ FUNCTIONS = """ X509 *X509_new(void); void X509_free(X509 *); X509 *X509_dup(X509 *); int X509_print_ex(BIO *, X509 *, unsigned long, unsigned long); int X509_set_version(X509 *, long); EVP_PKEY *X509_get_pubkey(X509 *); int X509_set_pubkey(X509 *, EVP_PKEY *); unsigned char *X509_alias_get0(X509 *, int *); int X509_sign(X509 *, EVP_PKEY *, const EVP_MD *); int X509_digest(const X509 *, const EVP_MD *, unsigned char *, unsigned int *); ASN1_TIME *X509_gmtime_adj(ASN1_TIME *, long); unsigned long X509_subject_name_hash(X509 *); X509_NAME *X509_get_subject_name(X509 *); int X509_set_subject_name(X509 *, X509_NAME *); X509_NAME *X509_get_issuer_name(X509 *); int X509_set_issuer_name(X509 *, X509_NAME *); int X509_get_ext_count(X509 *); int X509_add_ext(X509 *, X509_EXTENSION *, int); X509_EXTENSION *X509_EXTENSION_dup(X509_EXTENSION *); X509_EXTENSION *X509_get_ext(X509 *, int); int X509_EXTENSION_get_critical(X509_EXTENSION *); ASN1_OBJECT *X509_EXTENSION_get_object(X509_EXTENSION *); void X509_EXTENSION_free(X509_EXTENSION *); int X509_REQ_set_version(X509_REQ *, long); X509_REQ *X509_REQ_new(void); void X509_REQ_free(X509_REQ *); int X509_REQ_set_pubkey(X509_REQ *, EVP_PKEY *); int X509_REQ_sign(X509_REQ *, EVP_PKEY *, const EVP_MD *); int X509_REQ_verify(X509_REQ *, EVP_PKEY *); EVP_PKEY *X509_REQ_get_pubkey(X509_REQ *); int X509_REQ_print_ex(BIO *, X509_REQ *, unsigned long, unsigned long); int X509V3_EXT_print(BIO *, X509_EXTENSION *, unsigned long, int); ASN1_OCTET_STRING *X509_EXTENSION_get_data(X509_EXTENSION *); X509_REVOKED *X509_REVOKED_new(void); void X509_REVOKED_free(X509_REVOKED *); int X509_REVOKED_set_serialNumber(X509_REVOKED *, ASN1_INTEGER *); int X509_REVOKED_add1_ext_i2d(X509_REVOKED *, int, void *, int, unsigned long); X509_CRL *d2i_X509_CRL_bio(BIO *, X509_CRL **); X509_CRL *X509_CRL_new(void); void X509_CRL_free(X509_CRL *); int X509_CRL_add0_revoked(X509_CRL *, X509_REVOKED *); int i2d_X509_CRL_bio(BIO *, X509_CRL *); int X509_CRL_print(BIO *, X509_CRL *); int X509_CRL_set_issuer_name(X509_CRL *, X509_NAME *); int X509_CRL_sign(X509_CRL *, EVP_PKEY *, const EVP_MD *); int NETSCAPE_SPKI_verify(NETSCAPE_SPKI *, EVP_PKEY *); int NETSCAPE_SPKI_sign(NETSCAPE_SPKI *, EVP_PKEY *, const EVP_MD *); char *NETSCAPE_SPKI_b64_encode(NETSCAPE_SPKI *); EVP_PKEY *NETSCAPE_SPKI_get_pubkey(NETSCAPE_SPKI *); int NETSCAPE_SPKI_set_pubkey(NETSCAPE_SPKI *, EVP_PKEY *); NETSCAPE_SPKI *NETSCAPE_SPKI_new(void); void NETSCAPE_SPKI_free(NETSCAPE_SPKI *); /* ASN1 serialization */ int i2d_X509_bio(BIO *, X509 *); X509 *d2i_X509_bio(BIO *, X509 **); int i2d_X509_REQ_bio(BIO *, X509_REQ *); X509_REQ *d2i_X509_REQ_bio(BIO *, X509_REQ **); int i2d_PrivateKey_bio(BIO *, EVP_PKEY *); EVP_PKEY *d2i_PrivateKey_bio(BIO *, EVP_PKEY **); ASN1_INTEGER *X509_get_serialNumber(X509 *); int X509_set_serialNumber(X509 *, ASN1_INTEGER *); /* X509_STORE */ X509_STORE *X509_STORE_new(void); void X509_STORE_free(X509_STORE *); int X509_STORE_add_cert(X509_STORE *, X509 *); int X509_verify_cert(X509_STORE_CTX *); const char *X509_verify_cert_error_string(long); const char *X509_get_default_cert_area(void); const char *X509_get_default_cert_dir(void); const char *X509_get_default_cert_file(void); const char *X509_get_default_cert_dir_env(void); const char *X509_get_default_cert_file_env(void); const char *X509_get_default_private_dir(void); """ MACROS = """ long X509_get_version(X509 *); ASN1_TIME *X509_get_notBefore(X509 *); ASN1_TIME *X509_get_notAfter(X509 *); long X509_REQ_get_version(X509_REQ *); X509_NAME *X509_REQ_get_subject_name(X509_REQ *); Cryptography_STACK_OF_X509 *sk_X509_new_null(void); void sk_X509_free(Cryptography_STACK_OF_X509 *); int sk_X509_num(Cryptography_STACK_OF_X509 *); int sk_X509_push(Cryptography_STACK_OF_X509 *, X509 *); X509 *sk_X509_value(Cryptography_STACK_OF_X509 *, int); X509_EXTENSIONS *sk_X509_EXTENSION_new_null(void); int sk_X509_EXTENSION_num(X509_EXTENSIONS *); X509_EXTENSION *sk_X509_EXTENSION_value(X509_EXTENSIONS *, int); int sk_X509_EXTENSION_push(X509_EXTENSIONS *, X509_EXTENSION *); X509_EXTENSION *sk_X509_EXTENSION_delete(X509_EXTENSIONS *, int); void sk_X509_EXTENSION_free(X509_EXTENSIONS *); int sk_X509_REVOKED_num(Cryptography_STACK_OF_X509_REVOKED *); X509_REVOKED *sk_X509_REVOKED_value(Cryptography_STACK_OF_X509_REVOKED *, int); /* These aren't macros these arguments are all const X on openssl > 1.0.x */ int X509_CRL_set_lastUpdate(X509_CRL *, ASN1_TIME *); int X509_CRL_set_nextUpdate(X509_CRL *, ASN1_TIME *); /* these use STACK_OF(X509_EXTENSION) in 0.9.8e. Once we drop support for RHEL/CentOS 5 we should move these back to FUNCTIONS. */ int X509_REQ_add_extensions(X509_REQ *, X509_EXTENSIONS *); X509_EXTENSIONS *X509_REQ_get_extensions(X509_REQ *); """ CUSTOMIZATIONS = """ // OpenSSL 0.9.8e does not have this definition #if OPENSSL_VERSION_NUMBER <= 0x0090805fL typedef STACK_OF(X509_EXTENSION) X509_EXTENSIONS; #endif """ CONDITIONAL_NAMES = {}
python
import sys from importlib import import_module from bumps.pymcfit import PyMCProblem if len(sys.argv) != 2: raise ValueError("Expected name of pymc file containing a model") module =sys.argv[1] __name__ = module.split('.')[-1] model = import_module(module) problem = PyMCProblem(model)
python
#!/usr/bin/env python import numpy as np from scipy.misc import imread, imresize import matplotlib.pyplot as plt import cv2 import scipy.io import scipy.stats as st from scipy import ndimage as ndi from skimage import feature from skimage.morphology import skeletonize import pdb def gkern(kernlen=21, nsig=3): """Returns a 2D Gaussian kernel array.""" interval = (2*nsig+1.)/(kernlen) x = np.linspace(-nsig-interval/2., nsig+interval/2., kernlen+1) kern1d = np.diff(st.norm.cdf(x)) kernel_raw = np.sqrt(np.outer(kern1d, kern1d)) kernel = kernel_raw/np.max(kernel_raw)#.sum() return kernel def point_gaussian(k_w, k_h, sigma_w, sigma_h): return gkern(k_w, sigma_w) def map_gaussian(im, k_w, k_h, sigma_w, sigma_h): if im.ndim == 3: h,w,_ = im.shape elif im.ndim == 2: h,w = im.shape else: print "Unknow im format." return None k_w_r = (k_w-1)/2 k_h_r = (k_h-1)/2 point_gs = point_gaussian(k_w, k_h, sigma_w, sigma_h) map_gs = np.zeros((h,w),dtype=np.float) occ_loc = np.where(im[:,:,0] == 0) for i in range(len(occ_loc[1])): loc_i = [occ_loc[0][i],occ_loc[1][i]] #map_gs[loc_i[0]-k_h_r: loc_i[0]+k_h_r+1, loc_i[1]-k_w_r: loc_i[1]+k_w_r+1] = np.maximum(map_gs[loc_i[0]-k_h_r: loc_i[0]+k_h_r+1, loc_i[1]-k_w_r: loc_i[1]+k_w_r+1], point_gs) #map_gs bound lby, lbx = max(0,loc_i[0]-k_h_r), max(0,loc_i[1]-k_w_r) uby, ubx = min(h-1,loc_i[0]+k_h_r), min(w-1,loc_i[1]+k_w_r) #kernel bound k_lby, k_lbx = -min(0,loc_i[0]-k_h_r), -min(0,loc_i[1]-k_w_r) k_uby, k_ubx = k_h + (h-1 - max(h-1, loc_i[0]+k_h_r)), k_w + (w-1 - max(w-1, loc_i[1]+k_w_r)) #maximum on pixel map_gs[lby:uby+1, lbx:ubx+1] = np.maximum(map_gs[lby:uby+1, lbx:ubx+1], point_gs[k_lby:k_uby, k_lbx:k_ubx]) return map_gs def preprocess(im_path): im = imread(im_path) map_gs = map_gaussian(im, 455,455,5,5) return im, map_gs def edgeprocess(gs): #laplacian gray_lap = cv2.Laplacian(gs*255,cv2.CV_64F, ksize=5) dst = cv2.convertScaleAbs(gray_lap) return dst def binarize(dst, th): res = np.zeros(dst.shape, dtype=np.float) res[np.where(dst > th)] = 1 return res Tidu = (np.array([0,1,1,1]),np.array([1,0,1,2])) Tidd = (np.array([1,1,1,2]),np.array([0,1,2,1])) Tidl = (np.array([0,1,1,2]),np.array([1,0,1,1])) Tidr = (np.array([0,1,1,2]),np.array([1,1,2,1])) def remove_Tcenter(skele): ''' it is possible to have T shape in skeleton, we should remove the center of it ''' w,h = skele.shape for i in range(1,w-1): for j in range(1,h-1): if skele[i,j]: patch = skele[i-1:i+2,j-1:j+2].copy() if np.sum(patch[Tidu]) == 4 or \ np.sum(patch[Tidd]) == 4 or \ np.sum(patch[Tidl]) == 4 or \ np.sum(patch[Tidr]) == 4: skele[i,j] = False #i = 0 for j in range(1,h-1): if skele[0,j]: if np.sum(skele[0,j-1:j+2]) + skele[1,j] == 4: skele[0,j] = False #i = w-1 for j in range(1,h-1): if skele[w-1,j]: if np.sum(skele[w-1,j-1:j+2]) + skele[w-2,j] == 4: skele[w-1,j] = False #j = 0 for i in range(1,w-1): if skele[i,0]: if np.sum(skele[i-1:i+2,0]) + skele[i,1] == 4: skele[i,0] = False #j = h-1 for i in range(1,w-1): if skele[i,h-1]: if np.sum(skele[i-1:i+2,h-1]) + skele[i,h-2] == 4: skele[i,h-1] = False #i=0,j=0 if skele[0,0]: if skele[0,0] + skele[0,1] + skele[1,0] == 3: skele[0,0] = False #i=0,j=h-1 if skele[0,h-1]: if skele[0,h-2] + skele[0,h-1] + skele[1,h-1] == 3: skele[0,h-1] = False #i=w-1,j=0 if skele[w-1,0]: if skele[w-2,0] + skele[w-1,0] + skele[w-1,1] == 3: skele[w-1,0] = False #i=w-1,j=h-1 if skele[w-1,h-1]: if skele[w-1,h-2] + skele[w-1,h-1] + skele[w-2,h-1] == 3: skele[w-1,h-1] = False return skele def im2skeleton(im_path, give_bin = False): #1. gaussian map im, map_gs = preprocess(im_path) #2. edge detection dst = edgeprocess(map_gs) #3. binarize res = binarize(dst,10) #4. suppress skeleton = skeletonize(res) #5. remove T shape center skeleton = remove_Tcenter(skeleton) #plt.imshow(skeleton) #plt.show() # print np.max(skeleton) if give_bin: binary_wall = im[:,:,0] == 0 return im, map_gs, skeleton, binary_wall return im, map_gs, skeleton
python
"""Test a hydrogen-like atom.""" import jax import numpy as np import pytest import vmcnet.examples.hydrogen_like_atom as hla from vmcnet.mcmc.simple_position_amplitude import make_simple_position_amplitude_data from .sgd_train import sgd_vmc_loop_with_logging from .kfac_train import kfac_vmc_loop_with_logging def _setup_hla_hyperparams_and_model(): """Setup the hyperparams and model for a hydrogen-like atom.""" # Problem parameters model_decay = 5.0 nuclear_charge = 3.0 ndim = 3 # Training hyperparameters nchains = 100 * jax.local_device_count() nburn = 100 nepochs = 100 nsteps_per_param_update = 5 std_move = 0.4 learning_rate = 1.0 # Initialize model and chains of walkers log_psi_model = hla.HydrogenLikeWavefunction(model_decay) key = jax.random.PRNGKey(0) key, subkey = jax.random.split(key) init_elec_pos = jax.random.normal(subkey, shape=(nchains, 1, ndim)) key, subkey = jax.random.split(key) params = log_psi_model.init(key, init_elec_pos) amplitudes = log_psi_model.apply(params, init_elec_pos) data = make_simple_position_amplitude_data(init_elec_pos, amplitudes) # Local energy local_energy_fn = hla.make_hydrogen_like_local_energy( log_psi_model.apply, nuclear_charge, d=ndim ) return ( params, nuclear_charge, nchains, nburn, nepochs, nsteps_per_param_update, std_move, learning_rate, log_psi_model, key, data, local_energy_fn, ) @pytest.mark.slow def test_hydrogen_like_sgd_vmc(caplog): """Test the wavefn exp(-a * r) converges (in 3-D) to a = nuclear charge with SGD.""" ( params, nuclear_charge, nchains, nburn, nepochs, nsteps_per_param_update, std_move, learning_rate, log_psi_model, key, data, local_energy_fn, ) = _setup_hla_hyperparams_and_model() _, params, _, _ = sgd_vmc_loop_with_logging( caplog, data, params, key, nchains, nburn, nepochs, nsteps_per_param_update, std_move, learning_rate, log_psi_model, local_energy_fn, ) # Make sure the decay rate converged to the nuclear charge, since we're in 3-d np.testing.assert_allclose(jax.tree_leaves(params)[0], nuclear_charge, rtol=1e-5) @pytest.mark.slow def test_hydrogen_like_kfac_vmc(caplog): """Test exp(-a * r) converges (in 3-D) to a = nuclear charge with KFAC.""" ( params, nuclear_charge, nchains, nburn, nepochs, nsteps_per_param_update, std_move, learning_rate, log_psi_model, key, data, local_energy_fn, ) = _setup_hla_hyperparams_and_model() _, params, _, _ = kfac_vmc_loop_with_logging( caplog, data, params, key, nchains, nburn, nepochs, nsteps_per_param_update, std_move, learning_rate, log_psi_model, local_energy_fn, ) # Make sure the decay rate converged to the nuclear charge, since we're in 3-d np.testing.assert_allclose(jax.tree_leaves(params)[0], nuclear_charge, rtol=1e-5)
python
from django.conf import settings from cybox.objects.address_object import Address from cybox.objects.uri_object import URI cfg = settings.ACTIVE_CONFIG LOCAL_ALIAS = cfg.by_key('company_alias') OBJECT_FIELDS = { 'AddressObjectType': [['address_value']], 'DomainNameObjectType': [['value']], 'EmailMessageObjectType': [ ['header','from', 'address_value'], ['header','to','address_value'], ], 'FileObjectType': [['hashes','simple_hash_value']], 'HTTPSessionObjectType': [['http_request_response','http_client_request','http_request_header','parsed_header','user_agent']], 'SocketAddressObjectType': [['ip_address','address_value']], 'URIObjectType': [['value']], } OBJECT_CONSTRAINTS = { 'Address': { 'category': [Address.CAT_IPV4, Address.CAT_IPV6], }, 'URI': { 'type_': [URI.TYPE_URL], }, } STRING_CONDITION_CONSTRAINT = ['None', 'Equals'] HEADER_LABELS = [ 'indicator', 'indicator_type', 'meta.source', 'meta.url', 'meta.do_notice', 'meta.if_in', 'meta.whitelist', ] # Map Cybox object type to Bro Intel types. BIF_TYPE_MAPPING = { 'AddressObjectType': 'Intel::ADDR', 'DomainNameObjectType': 'Intel::DOMAIN', 'EmailMessageObjectType': 'Intel::EMAIL', 'FileObjectType': 'Intel::FILE_HASH', 'HTTPSessionObjectType': 'Intel::SOFTWARE', 'SocketAddressObjectType': 'Intel::ADDR', 'URIObjectType': 'Intel::URL', } # Map observable id prefix to source and url. BIF_SOURCE_MAPPING = { 'cert_au': { 'source': 'CERT-AU', 'url': 'https://www.cert.gov.au/', }, 'CCIRC-CCRIC': { 'source': 'CCIRC', 'url': ('https://www.publicsafety.gc.ca/' + 'cnt/ntnl-scrt/cbr-scrt/ccirc-ccric-eng.aspx'), }, 'NCCIC': { 'source': 'NCCIC', 'url': 'https://www.us-cert.gov/', }, } def generate_bro(obs, obs_type, id_prefix): # Deals with nested structure for fields which have attributes def flatten_nested_values(obj): if isinstance(obj, dict): if isinstance(obj["value"], list): return ','.join(obj["value"]) else: return obj["value"] else: return obj def rgetvalue(o, l, d=None): """recursive walk dict using a list""" if o is None: return d if isinstance(o, list): return rgetvalue(o[0], l, d) if len(l) == 1: return o[l[0]] else: return rgetvalue(o[l[0]], l[1:], d) text = '' if obs_type in BIF_TYPE_MAPPING: # Look up source and url from observable ID if id_prefix in BIF_SOURCE_MAPPING: source = BIF_SOURCE_MAPPING[id_prefix]['source'] url = BIF_SOURCE_MAPPING[id_prefix]['url'] else: source = id_prefix url = '' bif_type = BIF_TYPE_MAPPING[obs_type] for field in OBJECT_FIELDS[obs_type]: retrieved_value = rgetvalue(obs, field) if retrieved_value is not None: field_values = [ flatten_nested_values(retrieved_value), '\t', bif_type, '\t', source, '\t', url, '\t', 'T', '\t', '-', '\t', '-', ] text += text.join(field_values) return text
python
# -*- coding: utf-8 -*- """ @Author: oisc <[email protected]> @Date: 2018/5/4 @Description: """ import math from collections import namedtuple from copy import copy from interface import Annotator from transition import Session from transition.shiftreduce import SRTransition, SRConfiguration class SPINNTreeBuilder(Annotator): def __init__(self, model, beam_size=1): self.model = model self.model.eval() self.transition = SRTransition() self.beam_size = beam_size def annotate(self, discourse): conf = SRConfiguration(discourse) state = self.model.new_state(conf) BeamNode = namedtuple("BeamNode", "session cost") fringe = [BeamNode(Session(conf, self.transition, state=state), cost=0)] hypotheses = [] next_fringe = [] while fringe: for node in fringe: if node.session.terminate(): hypotheses.append(node) else: valid_action = node.session.valid() for (action, nuclear), prob in self.model.score(node.session.state).items(): if action in valid_action: session = copy(node.session) if action == SRTransition.SHIFT: session(action) session.state = self.model.shift(session.state) else: session(action, nuclear=nuclear) session.state = self.model.reduce(session.state, nuclear) cost = -math.log(prob) next_fringe.append(BeamNode(session=session, cost=node.cost + cost)) fringe = sorted(next_fringe, key=lambda n: n.cost)[:self.beam_size] next_fringe = [] hypotheses.sort(key=lambda n: n.cost) high_rank_discourse = hypotheses[0].session.current.discourse return high_rank_discourse
python
import requests import StringIO import csv import urllib import json import datetime import md5 from time import sleep from limit import Limit from source_iterator import SourceIterator from source_row_manager import SourceRowManager class SourceReader: def __init__(self, date, product, catalogue, url, index, login_data): self.date = date self.product = product self.catalogue = catalogue self.url = url self.index = index self.login_data = login_data self.is_last = False self.auth = False self.beg_time = None self.end_time = None self.row_manager = SourceRowManager(self.date) def set_beg_time(self, time): self.beg_time = time def set_end_time(self, time): self.end_time = time def set_log(self, log): self.log = log def set_limit(self, limit_min, limit_max): self.limit = Limit(limit_min, limit_max) def set_iter(self, iter_type, index): self.iter = SourceIterator(iter_type, index) self.iter_type = iter_type if self.iter_type == 'HH:MM:SS': self.hour = 0 def next_bulk(self): if self.is_last: return None data, limit = self._get_data() if data == None: return None self.first_row = data.next() lines = 0 fullBulk = False while not fullBulk: fullBulk = True result = [] #try: for cur_row in data: lines += 1 row = self._get_row( cur_row ) if row == None: self.log("ERROR! Failed to get row.") continue if row == 'ignore': continue json_row = json.dumps(row) result.append(json_row) #except: # self.log("EXCEPTION! Failed to get row. id=["+self.iter.get_str()+"]") # if lines != limit: # fullBulk = False if self.iter_type == 'HH:MM:SS': self.hour += 1 if lines < 2: if not (self.iter_type == 'HH:MM:SS' and self.hour <= 24): self.log("FINISH. id=["+self.iter.get_str()+"] limit=["+str(limit)+"]") self.is_last = True else: self.log("Bulk got. id=["+self.iter.get_str()+"] limit=["+str(limit)+"]") return result def _get_data(self): while True: url = self._get_url() try: response = requests.get(url) except KeyboardInterrupt: self.log("FINISH") return None, 0 except: self.log("GET_DATA ERROR! id=[" + self.iter.get_str() + "]") self.limit.decrease() sleep(1) continue if response.status_code != 200: self.log( "GET_DATA ERROR! code=" + str(response.status_code) + \ " text=" + response.text) self.limit.decrease() continue limit = self.limit.get() self.limit.increase() stream = StringIO.StringIO( response.text.encode('utf-8') ) return csv.reader( stream, delimiter=',' ), limit def _get_row(self, data): if len(data) <= 0: self.log("ROW ERROR! empty") return None if self.iter_type == 'id': self.iter.set(data[0]) else: self.iter.set(data[1]) row = self.row_manager.init_row() i = 0 while i < len(data): self._add_param(self.first_row[i], data[i], row) i += 1 self.row_manager.apply_rules_to_row(row) return row def _add_param(self, key, value, obj): obj[key] = value def _get_url(self): params = "date=" + self.date + \ self.iter.get_param()+"&p="+self.product+\ "&limit=" + str(self.limit.get())+"&pc="+self.catalogue if self.beg_time != None: params += "&beg_time=" + str(self.beg_time) if self.end_time != None: params += "&end_time=" + str(self.end_time) params = self._add_auth(params) url = self.url + "&" + params return url def _add_auth(self, params): if self.login_data == None: return params if self.login_data.get('login') == None: return params if self.login_data.get('password') == None: return params if self.auth == False: if self._auth() != True: return params params += '&login=' + self.login_data['login'] data = params.split('&') data.sort() data = ''.join(data) data += self.login_data['password'] sign = md5.new(data).hexdigest() params += '&sign=' + sign return params def _auth(self): url = self.url.split('?')[0] url += '?method=auth' url += '&login=' + self.login_data['login'] url += '&password=' + self.login_data['password'] try: response = requests.get(url) except: return False return True
python
""" A Python module for antenna array analysis ---------- AntArray - Antenna Array Analysis Module Copyright (C) 2018 - 2019 Zhengyu Peng E-mail: [email protected] Website: https://zpeng.me ` ` -:. -#: -//:. -###: -////:. -#####: -/:.://:. -###++##: .. `://:- -###+. :##: `:/+####+. :##: .::::::::/+###. :##: .////-----+##: `:###: `-//:. :##: `:###/. `-//:. :##:`:###/. `-//:+######/. `-/+####/. `+##+. :##: :##: :##: :##: :##: .+: """ import numpy from scipy import signal from .antennaarray import AntennaArray from .lineararray import LinearArray from .rectarray import RectArray __version__ = '1.0.5'
python
# importacion de librerias # constantes # funciones y metodos def es_primo(numero): primo = True for n in range(2, numero, 1): if numero % n ==0: primo = False break return primo # mi programa principal # ingreso de numero por teclado numero = int(input('Ingrese un numero: ')) # valido si es primo primo = es_primo(numero) # imprimo según validacion if primo: print(f'el numero: {numero} es primo') else: print(f'el numero: {numero} NO es primo')
python
# -*- coding: utf-8 -*- # vim: set fileencoding=utf-8:noet:tabstop=4:softtabstop=4:shiftwidth=8:expandtab """ python3 class """ # Copyright (c) 2010 - 2020, © Badassops LLC / Luc Suryo # All rights reserved. # BSD 3-Clause License : http://www.freebsd.org/copyright/freebsd-license.html from pprint import PrettyPrinter from logging import critical, warning import awsbuild.const as const from awsbuild.misc.spinner import spin_message from awsbuild.aws.tag import create_resource_id_tag as set_tag class EIP(): """ Class for the AWS EIP """ def __init__(self, **kwargs): """ initial the object """ self.cmd_cfg = kwargs.get('cmd_cfg', {}) self.session = kwargs.get('session', {}) self.tag = self.cmd_cfg['tag'] # DANGER WILL ROBINSON : we using wildcard as filter! self.tag_filter = str('*' + self.tag + '*') self.filter = [{'Name' : 'tag:Name', 'Values' : [self.tag_filter]}] def do_cmd(self): """ main command handler """ if self.cmd_cfg['command'] == 'describe': return self.describe() if self.cmd_cfg['command'] == 'create': return self.create() if self.cmd_cfg['command'] == 'modify': return self.modify() if self.cmd_cfg['command'] == 'destroy': return self.destroy() return False def create(self, **kwargs): """ create an eip """ tag = kwargs.get('tag', '') if not tag: tag = self.tag try: eip_session = self.session.get_client_session(service='ec2') eip_info = eip_session.allocate_address( Domain='vpc' ) spin_message( message='Waiting {} seconds for the eip to become available.'.format(const.TIMER), seconds=const.TIMER ) set_tag(session=eip_session, resource_id=eip_info['AllocationId'],\ tag_name='Name', tag_value=tag) return eip_info['AllocationId'] except Exception as err: warning('Unable to create an eip, error: {}'.format(err)) return None def describe(self): """ get the eip(s) info """ eip_info = self.__get_info(session=self.session,\ Filters=self.filter) if len(eip_info['Addresses']) == 0: print('\n⚬ No eip found, filter {}'.format(self.filter)) return output = PrettyPrinter(indent=2, width=41, compact=False) for info in eip_info['Addresses']: print('\n⚬ eip ID {}'.format(info['AllocationId'])) output.pprint(info) def get_info(self): """ get the eip(s) info """ eip_info = self.__get_info(session=self.session,\ Filters=self.filter) if len(eip_info['Addresses']) == 0: return None return eip_info def modify(self, **kwargs): """ modify an eip """ modify = kwargs.get('modify', {}) eip = kwargs.get('eip', {}) instance = kwargs.get('instance', {}) try: eip_session = self.session.get_client_session(service='ec2') if modify == 'associate': eip_session.associate_address( InstanceId=instance, AllocationId=eip ) if modify == 'disassociate': eip_session.disassociate_address( AllocationId=eip ) return True except Exception as err: critical('Unable to {} the eip, error {}'.format(modify, err)) return False def destroy(self, **kwargs): """ destroy an eip """ eip = kwargs.get('eip', {}) try: eip_session = self.session.get_client_session(service='ec2') eip_session.release_address( AllocationId=eip ) return True except Exception as err: warning('Unable to release the eip, error {}'.format(err)) return False @classmethod def __get_info(cls, **kwargs): """ get info """ cls.session = kwargs.get('session', {}) cls.filters = kwargs.get('filters', {}) try: cls.eip_session = cls.session.get_client_session(service='ec2') eip_info = cls.eip_session.describe_addresses( Filters=cls.filters ) return eip_info except Exception as err: warning('Unable to get info eip, error: {}'.format(err)) return None
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright (c) 2018 Taha Emre Demirkol Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import zipfile from Util.PackageUtil import PackageUtil as packageControl class FileUtil: """ THIS IS NOT DESCRIPTION FOR "CommandUtil.py" CLASS. This part represent to Static Initiliazer Code on Java, it's check to version for the avaiable version. At least current Python version must be 3.6.4+, anything else you should update Python version """ #################################################################################################################### if not packageControl.checkVersionForApplicable(3, 6, 4): raise EnvironmentError("At least current must be 3.6.4+, anything else you should update Python version !!!") if packageControl.getPlatformInfo() != 'Linux' and packageControl.getPlatformInfo() != 'OS X': raise SystemError("This class only execute Linux or Posix OS platform !!!") #################################################################################################################### def __init__(self): """ INFO: Default Constructure cannot be Creatable WARNING: If attand to create this object, it will raise NotImplementedError """ assert NotImplementedError("This object useing only library, cannot be creatable!!!") def __new__(cls): """ INFO: This method was overrided only avoided to __new__ operator :return: NOISE_OBJECT """ return object.__new__(cls) @staticmethod def checkClassName(obj, className): """ INFO: This function will compare object's class name WARNING: If not equal will raise exception :param obj: Which is the checking object :param className: Which is the important class name :return: NONE """ if obj.__class__.__name__ != className: raise EnvironmentError("Object not equal to class name !!!") @staticmethod def checkFile(path): """ INFO: This function checks the path state WARNING: If Not exist or not avaiable format raise exception :param path: File path on which is the target source :return: """ if (not FileUtil.isDirectory(path)): raise IsADirectoryError("Parameter not Directory!!!") if (not FileUtil.isDirectory(path)): raise NotADirectoryError("Directory does not exist !!!") @staticmethod def isDirectory(path): """ INFO: This function checking directory applicable :param path: File path on which is the target source :return: BOOLEAN """ return os.path.isdir(path) @staticmethod def isDirectoryExist(path): """ INFO: This function checking directory exist state :param path: File path on which is the target source :return: BOOLEAN """ return os.path.exists(path) @staticmethod def getFileLinesAsList(fileName): """ INFO: This function will return file's line as list :param fileName: File name for which is the result for list :return: LIST[STRING] """ try: fOpen = open(fileName) result = fOpen.readlines() return result except Exception as exception: raise exception @staticmethod def compareConfigurationFileResult(firstConfList, secondConfList): """ INFO: This function will return to result of list compare WARNING: If parameter different class object from list, it will raise error :param firstConfList: First conf file list :param secondConfList: Second conf file list :return: LIST[STRING] """ FileUtil.checkClassName(firstConfList, "list") FileUtil.checkClassName(secondConfList, "list") resultArray = [] secondArrayCounter = 0 for i in range(0, firstConfList.__len__()): firstListLine = firstConfList[i].strip() addFlag = True for j in range(secondArrayCounter, secondConfList): secondListLine = secondConfList[j].strip() if firstListLine is secondListLine: addFlag = False break secondArrayCounter += 1 if addFlag: resultArray.append(firstListLine) return resultArray @staticmethod def compareConfigurationFileResultWithFile(firstConfFile, secondConfFile): """ INFO: This function will return to result of Files list compare WARNING: If parameter different class object from list, it will raise error or if file error occured on that block it will re-raise excepton :param firstConfFile: First conf file name :param secondConfFile: Second conf file name :return: LIST[STRING] """ try: return FileUtil.compareConfigurationFileResult(FileUtil.getFileLinesAsList(firstConfFile), FileUtil.getFileLinesAsList(secondConfFile)) except Exception as exception: raise exception @staticmethod def removeFileInCurrentPath(fileName): """ INFO: This function will remove current path file :param fileName: which will removes the file name :return: NONE """ path = os.path.dirname(os.path.realpath(__file__)) dirs = os.listdir(path) for file in dirs: if fileName in file: os.remove(file) @staticmethod def removeFileInExternalPath(fileName, pathName): """ INFO: This function will remove specific path file :param fileName: which will removes the file name :param pathName: which will removes the files pathName :return: NONE """ path = os.path.dirname(pathName) dirs = os.listdir(path) for file in dirs: if fileName in file: os.remove(file) @staticmethod def dataFileSplit(fileName, maximumChaperSize = 500 * 1024 * 1024, memoryBufferSize = 50 * 1024 * 1024 * 1024): """ INFO: This function will sperate files to datasize. This file applicable for data file :param fileName: fileName for which is the source file name :param maximumChaperSize: Maximum chapter size default value 500MB :param memoryBufferSize: Memory buffer size default vaule 50GB :return: NONE """ chapterCount = 0 bufferText = '' with open(fileName, 'rb') as src: while True: target = open(fileName + '.%03d' % chapterCount, 'wb') written = 0 while written < maximumChaperSize: if len(bufferText) > 0: target.write(bufferText) target.write(src.read(min(memoryBufferSize, maximumChaperSize - written))) written += min(memoryBufferSize, maximumChaperSize - written) bufferText = src.read(1) if len(bufferText) == 0: break target.close() if len(bufferText) == 0: break chapterCount += 1 @staticmethod def textFileSplit(fileName, lineCount = 20, outputFileName = "output.txt"): """ INFO: This function will sperate files to line count, this is applicable for text file :param fileName: fileName for which is the source file name :param lineCount: Split for each file default value 20 :param outputFileName: Output file names for each one output.1.txt, output.2.txt, etc. :return: NONE """ fOpen = open(fileName, 'r') count = 0 at = 0 dest = None for line in fOpen: if count % lineCount == 0: if dest: dest.close() dest = open(outputFileName + str(at) + '.txt', 'w') at += 1 dest.write(line) count += 1 @staticmethod def zipFiles(zipFileName, fileName, filesPath = os.path.dirname(os.path.realpath(__file__))): """ INFO: This function will return to Zipped file name which is the insert to function argument. TRICKS: if fileName will insert to keywork it will zip as file name :param zipFileName: Zipped last file name :param fileName: Source file name :param filesPath: Source file name source path :return: STRING """ try: fileName = fileName.strip() ziph = zipfile.ZipFile(zipFileName.strip() + '.zip', 'w', zipfile.ZIP_DEFLATED) for root, dirs, files in os.walk(filesPath): for file in files: if fileName in file: ziph.write(os.path.join(file)) ziph.close() except Exception as e: raise IOError("File IO process has been occured IOError : " + str(e)) return filesPath + '/' + fileName
python
from itertools import combinations class Edge: def __init__(self, frm, to, weight): self.from_vertex = frm self.to_vertex = to self.dist = weight def _get_edges(graph): edges = [] for a, b in combinations(range(len(graph)), 2): if graph[a][b]: edges.append(Edge(a, b, graph[a][b])) return edges def _find_group(parents, i): while i != parents[i]: i = parents[i] return i def print_MST(graph): n = len(graph) edges = _get_edges(graph) result = [] parents = [ i for i in range(n) ] while len(result) < n - 1: closest_index = [ -1 ] * n for i in range(len(edges)): a = _find_group(parents, edges[i].from_vertex) b = _find_group(parents, edges[i].to_vertex) if a != b: if closest_index[a] == -1 or edges[closest_index[a]].dist > edges[i].dist: closest_index[a] = i if closest_index[b] == -1 or edges[closest_index[b]].dist > edges[i].dist: closest_index[b] = i for index in closest_index: if index != -1: a = _find_group(parents, edges[index].from_vertex) b = _find_group(parents, edges[index].to_vertex) if a != b: result.append(edges[index]) parents[a] = b for edge in result: print(f'{edge.from_vertex} -> {edge.to_vertex}') def main(): graph = [ [0, 3, 6, 5], [3, 0, 0, 9], [6, 0, 0, 4], [5, 9, 4, 0] ] print_MST(graph) if __name__ == '__main__': main()
python
# -*- coding: utf-8 -*- # File generated according to Generator/ClassesRef/Simulation/OPslip.csv # WARNING! All changes made in this file will be lost! """Method code available at https://github.com/Eomys/pyleecan/tree/master/pyleecan/Methods/Simulation/OPslip """ from os import linesep from sys import getsizeof from logging import getLogger from ._check import check_var, raise_ from ..Functions.get_logger import get_logger from ..Functions.save import save from ..Functions.copy import copy from ..Functions.load import load_init_dict from ..Functions.Load.import_class import import_class from .OP import OP # Import all class method # Try/catch to remove unnecessary dependencies in unused method try: from ..Methods.Simulation.OPslip.get_Id_Iq import get_Id_Iq except ImportError as error: get_Id_Iq = error try: from ..Methods.Simulation.OPslip.get_felec import get_felec except ImportError as error: get_felec = error try: from ..Methods.Simulation.OPslip.get_N0 import get_N0 except ImportError as error: get_N0 = error try: from ..Methods.Simulation.OPslip.get_Ud_Uq import get_Ud_Uq except ImportError as error: get_Ud_Uq = error try: from ..Methods.Simulation.OPslip.set_Id_Iq import set_Id_Iq except ImportError as error: set_Id_Iq = error try: from ..Methods.Simulation.OPslip.get_I0_Phi0 import get_I0_Phi0 except ImportError as error: get_I0_Phi0 = error try: from ..Methods.Simulation.OPslip.get_slip import get_slip except ImportError as error: get_slip = error try: from ..Methods.Simulation.OPslip.set_I0_Phi0 import set_I0_Phi0 except ImportError as error: set_I0_Phi0 = error try: from ..Methods.Simulation.OPslip.set_Ud_Uq import set_Ud_Uq except ImportError as error: set_Ud_Uq = error try: from ..Methods.Simulation.OPslip.get_U0_UPhi0 import get_U0_UPhi0 except ImportError as error: get_U0_UPhi0 = error try: from ..Methods.Simulation.OPslip.set_U0_UPhi0 import set_U0_UPhi0 except ImportError as error: set_U0_UPhi0 = error from ._check import InitUnKnowClassError class OPslip(OP): """Operating Point defined with slip, I0""" VERSION = 1 # Check ImportError to remove unnecessary dependencies in unused method # cf Methods.Simulation.OPslip.get_Id_Iq if isinstance(get_Id_Iq, ImportError): get_Id_Iq = property( fget=lambda x: raise_( ImportError("Can't use OPslip method get_Id_Iq: " + str(get_Id_Iq)) ) ) else: get_Id_Iq = get_Id_Iq # cf Methods.Simulation.OPslip.get_felec if isinstance(get_felec, ImportError): get_felec = property( fget=lambda x: raise_( ImportError("Can't use OPslip method get_felec: " + str(get_felec)) ) ) else: get_felec = get_felec # cf Methods.Simulation.OPslip.get_N0 if isinstance(get_N0, ImportError): get_N0 = property( fget=lambda x: raise_( ImportError("Can't use OPslip method get_N0: " + str(get_N0)) ) ) else: get_N0 = get_N0 # cf Methods.Simulation.OPslip.get_Ud_Uq if isinstance(get_Ud_Uq, ImportError): get_Ud_Uq = property( fget=lambda x: raise_( ImportError("Can't use OPslip method get_Ud_Uq: " + str(get_Ud_Uq)) ) ) else: get_Ud_Uq = get_Ud_Uq # cf Methods.Simulation.OPslip.set_Id_Iq if isinstance(set_Id_Iq, ImportError): set_Id_Iq = property( fget=lambda x: raise_( ImportError("Can't use OPslip method set_Id_Iq: " + str(set_Id_Iq)) ) ) else: set_Id_Iq = set_Id_Iq # cf Methods.Simulation.OPslip.get_I0_Phi0 if isinstance(get_I0_Phi0, ImportError): get_I0_Phi0 = property( fget=lambda x: raise_( ImportError("Can't use OPslip method get_I0_Phi0: " + str(get_I0_Phi0)) ) ) else: get_I0_Phi0 = get_I0_Phi0 # cf Methods.Simulation.OPslip.get_slip if isinstance(get_slip, ImportError): get_slip = property( fget=lambda x: raise_( ImportError("Can't use OPslip method get_slip: " + str(get_slip)) ) ) else: get_slip = get_slip # cf Methods.Simulation.OPslip.set_I0_Phi0 if isinstance(set_I0_Phi0, ImportError): set_I0_Phi0 = property( fget=lambda x: raise_( ImportError("Can't use OPslip method set_I0_Phi0: " + str(set_I0_Phi0)) ) ) else: set_I0_Phi0 = set_I0_Phi0 # cf Methods.Simulation.OPslip.set_Ud_Uq if isinstance(set_Ud_Uq, ImportError): set_Ud_Uq = property( fget=lambda x: raise_( ImportError("Can't use OPslip method set_Ud_Uq: " + str(set_Ud_Uq)) ) ) else: set_Ud_Uq = set_Ud_Uq # cf Methods.Simulation.OPslip.get_U0_UPhi0 if isinstance(get_U0_UPhi0, ImportError): get_U0_UPhi0 = property( fget=lambda x: raise_( ImportError( "Can't use OPslip method get_U0_UPhi0: " + str(get_U0_UPhi0) ) ) ) else: get_U0_UPhi0 = get_U0_UPhi0 # cf Methods.Simulation.OPslip.set_U0_UPhi0 if isinstance(set_U0_UPhi0, ImportError): set_U0_UPhi0 = property( fget=lambda x: raise_( ImportError( "Can't use OPslip method set_U0_UPhi0: " + str(set_U0_UPhi0) ) ) ) else: set_U0_UPhi0 = set_U0_UPhi0 # save and copy methods are available in all object save = save copy = copy # get_logger method is available in all object get_logger = get_logger def __init__( self, I0_ref=None, IPhi0_ref=None, slip_ref=0, U0_ref=None, UPhi0_ref=None, N0=None, felec=None, Tem_av_ref=None, Pem_av_ref=None, init_dict=None, init_str=None, ): """Constructor of the class. Can be use in three ways : - __init__ (arg1 = 1, arg3 = 5) every parameters have name and default values for pyleecan type, -1 will call the default constructor - __init__ (init_dict = d) d must be a dictionary with property names as keys - __init__ (init_str = s) s must be a string s is the file path to load ndarray or list can be given for Vector and Matrix object or dict can be given for pyleecan Object""" if init_str is not None: # Load from a file init_dict = load_init_dict(init_str)[1] if init_dict is not None: # Initialisation by dict assert type(init_dict) is dict # Overwrite default value with init_dict content if "I0_ref" in list(init_dict.keys()): I0_ref = init_dict["I0_ref"] if "IPhi0_ref" in list(init_dict.keys()): IPhi0_ref = init_dict["IPhi0_ref"] if "slip_ref" in list(init_dict.keys()): slip_ref = init_dict["slip_ref"] if "U0_ref" in list(init_dict.keys()): U0_ref = init_dict["U0_ref"] if "UPhi0_ref" in list(init_dict.keys()): UPhi0_ref = init_dict["UPhi0_ref"] if "N0" in list(init_dict.keys()): N0 = init_dict["N0"] if "felec" in list(init_dict.keys()): felec = init_dict["felec"] if "Tem_av_ref" in list(init_dict.keys()): Tem_av_ref = init_dict["Tem_av_ref"] if "Pem_av_ref" in list(init_dict.keys()): Pem_av_ref = init_dict["Pem_av_ref"] # Set the properties (value check and convertion are done in setter) self.I0_ref = I0_ref self.IPhi0_ref = IPhi0_ref self.slip_ref = slip_ref self.U0_ref = U0_ref self.UPhi0_ref = UPhi0_ref # Call OP init super(OPslip, self).__init__( N0=N0, felec=felec, Tem_av_ref=Tem_av_ref, Pem_av_ref=Pem_av_ref ) # The class is frozen (in OP init), for now it's impossible to # add new properties def __str__(self): """Convert this object in a readeable string (for print)""" OPslip_str = "" # Get the properties inherited from OP OPslip_str += super(OPslip, self).__str__() OPslip_str += "I0_ref = " + str(self.I0_ref) + linesep OPslip_str += "IPhi0_ref = " + str(self.IPhi0_ref) + linesep OPslip_str += "slip_ref = " + str(self.slip_ref) + linesep OPslip_str += "U0_ref = " + str(self.U0_ref) + linesep OPslip_str += "UPhi0_ref = " + str(self.UPhi0_ref) + linesep return OPslip_str def __eq__(self, other): """Compare two objects (skip parent)""" if type(other) != type(self): return False # Check the properties inherited from OP if not super(OPslip, self).__eq__(other): return False if other.I0_ref != self.I0_ref: return False if other.IPhi0_ref != self.IPhi0_ref: return False if other.slip_ref != self.slip_ref: return False if other.U0_ref != self.U0_ref: return False if other.UPhi0_ref != self.UPhi0_ref: return False return True def compare(self, other, name="self", ignore_list=None): """Compare two objects and return list of differences""" if ignore_list is None: ignore_list = list() if type(other) != type(self): return ["type(" + name + ")"] diff_list = list() # Check the properties inherited from OP diff_list.extend(super(OPslip, self).compare(other, name=name)) if other._I0_ref != self._I0_ref: diff_list.append(name + ".I0_ref") if other._IPhi0_ref != self._IPhi0_ref: diff_list.append(name + ".IPhi0_ref") if other._slip_ref != self._slip_ref: diff_list.append(name + ".slip_ref") if other._U0_ref != self._U0_ref: diff_list.append(name + ".U0_ref") if other._UPhi0_ref != self._UPhi0_ref: diff_list.append(name + ".UPhi0_ref") # Filter ignore differences diff_list = list(filter(lambda x: x not in ignore_list, diff_list)) return diff_list def __sizeof__(self): """Return the size in memory of the object (including all subobject)""" S = 0 # Full size of the object # Get size of the properties inherited from OP S += super(OPslip, self).__sizeof__() S += getsizeof(self.I0_ref) S += getsizeof(self.IPhi0_ref) S += getsizeof(self.slip_ref) S += getsizeof(self.U0_ref) S += getsizeof(self.UPhi0_ref) return S def as_dict(self, type_handle_ndarray=0, keep_function=False, **kwargs): """ Convert this object in a json serializable dict (can be use in __init__). type_handle_ndarray: int How to handle ndarray (0: tolist, 1: copy, 2: nothing) keep_function : bool True to keep the function object, else return str Optional keyword input parameter is for internal use only and may prevent json serializability. """ # Get the properties inherited from OP OPslip_dict = super(OPslip, self).as_dict( type_handle_ndarray=type_handle_ndarray, keep_function=keep_function, **kwargs ) OPslip_dict["I0_ref"] = self.I0_ref OPslip_dict["IPhi0_ref"] = self.IPhi0_ref OPslip_dict["slip_ref"] = self.slip_ref OPslip_dict["U0_ref"] = self.U0_ref OPslip_dict["UPhi0_ref"] = self.UPhi0_ref # The class name is added to the dict for deserialisation purpose # Overwrite the mother class name OPslip_dict["__class__"] = "OPslip" return OPslip_dict def _set_None(self): """Set all the properties to None (except pyleecan object)""" self.I0_ref = None self.IPhi0_ref = None self.slip_ref = None self.U0_ref = None self.UPhi0_ref = None # Set to None the properties inherited from OP super(OPslip, self)._set_None() def _get_I0_ref(self): """getter of I0_ref""" return self._I0_ref def _set_I0_ref(self, value): """setter of I0_ref""" check_var("I0_ref", value, "float") self._I0_ref = value I0_ref = property( fget=_get_I0_ref, fset=_set_I0_ref, doc=u"""Current rms value :Type: float """, ) def _get_IPhi0_ref(self): """getter of IPhi0_ref""" return self._IPhi0_ref def _set_IPhi0_ref(self, value): """setter of IPhi0_ref""" check_var("IPhi0_ref", value, "float") self._IPhi0_ref = value IPhi0_ref = property( fget=_get_IPhi0_ref, fset=_set_IPhi0_ref, doc=u"""Current phase :Type: float """, ) def _get_slip_ref(self): """getter of slip_ref""" return self._slip_ref def _set_slip_ref(self, value): """setter of slip_ref""" check_var("slip_ref", value, "float") self._slip_ref = value slip_ref = property( fget=_get_slip_ref, fset=_set_slip_ref, doc=u"""Rotor mechanical slip :Type: float """, ) def _get_U0_ref(self): """getter of U0_ref""" return self._U0_ref def _set_U0_ref(self, value): """setter of U0_ref""" check_var("U0_ref", value, "float") self._U0_ref = value U0_ref = property( fget=_get_U0_ref, fset=_set_U0_ref, doc=u"""stator voltage (phase to neutral) :Type: float """, ) def _get_UPhi0_ref(self): """getter of UPhi0_ref""" return self._UPhi0_ref def _set_UPhi0_ref(self, value): """setter of UPhi0_ref""" check_var("UPhi0_ref", value, "float") self._UPhi0_ref = value UPhi0_ref = property( fget=_get_UPhi0_ref, fset=_set_UPhi0_ref, doc=u"""Voltage phase :Type: float """, )
python
#!C:/Python35/python.exe # -*- coding: UTF-8 -*- # # belmih 2016 # import threading import queue import argparse import os import time import zipfile import shutil import xml.etree.cElementTree as ET import csv abspath = os.path.abspath(__file__) workdir = os.path.dirname(abspath) os.chdir(workdir) CSV_ID_LEVEL = "id_level.csv" CSV_ID_OBJECT = "id_object_name.csv" UNZIPFOLDER = './unzip' DELETEXML = True # create new csv file def create_new_file(filename, fieldnames): with open(filename, 'w', newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() # write csv file def write_csv(filename, fieldnames, data): with open(filename, 'a', newline='') as csvfile: writer = csv.DictWriter(csvfile, dialect='excel', fieldnames=fieldnames) writer.writerow(data) # xml parser and writer csv def parse_xml(xmlfile): # with lock: # print(xmlfile) tree = ET.parse(xmlfile) root = tree.getroot() id = root.findall("./var[@name='id']")[0].get('value') level = root.findall("./var[@name='level']")[0].get('value') quecsvidlevel.put({'id': id, 'level': level}) for obj in root.findall('./objects/object'): for key, value in obj.items(): quecsvidobject.put({'id': id, 'object_name': value}) def unzip_archive(item): tmpfoldername = os.path.basename(item).split('.')[0] tmpfolderpath = os.path.join('unzip', tmpfoldername) zfile = zipfile.ZipFile(item) for name in zfile.namelist(): (dirname, filename) = os.path.split(name) dirnamepath = os.path.join(tmpfolderpath, dirname) if not os.path.exists(dirnamepath): os.makedirs(dirnamepath) zfile.extract(name, dirnamepath) return tmpfolderpath def worker1(): while True: item = quecsvidlevel.get() if item is None: with lock: print(CSV_ID_LEVEL + ' done.') break write_csv(CSV_ID_LEVEL, ['id', 'level'], item) quecsvidlevel.task_done() def worker2(): while True: item = quecsvidobject.get() if item is None: with lock: print(CSV_ID_OBJECT + ' done.') break write_csv(CSV_ID_OBJECT, ['id', 'object_name'], item) quecsvidobject.task_done() def worker(): while True: item = quezip.get() if item is None: break with lock: print(item) tmpfolderpath = unzip_archive(item) # find all xml for root, dirs, files in os.walk(tmpfolderpath): for file in files: if file.endswith(".xml"): f = os.path.join(root, file) parse_xml(f) quezip.task_done() def remove_unzip_folder(): if DELETEXML and os.path.exists(UNZIPFOLDER): print ("remove {} ...".format(UNZIPFOLDER)) shutil.rmtree(UNZIPFOLDER) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Do *.csv files.') parser.add_argument('-p', type=int, help='count processes', default=2) args = parser.parse_args() numworkerthreads = args.p start = time.perf_counter() print(os.getcwd()) create_new_file(CSV_ID_LEVEL, ['id', 'level']) create_new_file(CSV_ID_OBJECT, ['id', 'object']) remove_unzip_folder() lock = threading.Lock() quezip = queue.Queue() quecsvidlevel = queue.Queue() quecsvidobject = queue.Queue() threads = [] for i in range(numworkerthreads): t = threading.Thread(target=worker) t.start() threads.append(t) for root, dirs, files in os.walk("zip"): for file in files: zf = os.path.normpath(os.path.join(root, file)) quezip.put(zf) quezip.join() for i in range(numworkerthreads): quezip.put(None) for t in threads: t.join() t1 = threading.Thread(target=worker1) t2 = threading.Thread(target=worker2) t1.start() t2.start() quecsvidlevel.join() quecsvidobject.join() quecsvidlevel.put(None) quecsvidobject.put(None) t1.join t2.join time.sleep(.1) remove_unzip_folder() print('time:', time.perf_counter() - start)
python
import itertools as it, operator as op, functools as ft from collections import ChainMap, Mapping, OrderedDict, defaultdict from pathlib import Path from pprint import pprint import os, sys, unittest, types, datetime, re, math import tempfile, warnings, shutil, zipfile import yaml # PyYAML module is required for tests path_project = Path(__file__).parent.parent sys.path.insert(1, str(path_project)) import tb_routing as tb verbose = os.environ.get('TB_DEBUG') if verbose: tb.u.logging.basicConfig( format='%(asctime)s :: %(name)s %(levelname)s :: %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=tb.u.logging.DEBUG ) class dmap(ChainMap): maps = None def __init__(self, *maps, **map0): maps = list((v if not isinstance( v, (types.GeneratorType, list, tuple) ) else OrderedDict(v)) for v in maps) if map0 or not maps: maps = [map0] + maps super(dmap, self).__init__(*maps) def __repr__(self): return '<{} {:x} {}>'.format( self.__class__.__name__, id(self), repr(self._asdict()) ) def _asdict(self): items = dict() for k, v in self.items(): if isinstance(v, self.__class__): v = v._asdict() items[k] = v return items def _set_attr(self, k, v): self.__dict__[k] = v def __iter__(self): key_set = dict.fromkeys(set().union(*self.maps), True) return filter(lambda k: key_set.pop(k, False), it.chain.from_iterable(self.maps)) def __getitem__(self, k): k_maps = list() for m in self.maps: if k in m: if isinstance(m[k], Mapping): k_maps.append(m[k]) elif not (m[k] is None and k_maps): return m[k] if not k_maps: raise KeyError(k) return self.__class__(*k_maps) def __getattr__(self, k): try: return self[k] except KeyError: raise AttributeError(k) def __setattr__(self, k, v): for m in map(op.attrgetter('__dict__'), [self] + self.__class__.mro()): if k in m: self._set_attr(k, v) break else: self[k] = v def __delitem__(self, k): for m in self.maps: if k in m: del m[k] def yaml_load(stream, dict_cls=OrderedDict, loader_cls=yaml.SafeLoader): if not hasattr(yaml_load, '_cls'): class CustomLoader(loader_cls): pass def construct_mapping(loader, node): loader.flatten_mapping(node) return dict_cls(loader.construct_pairs(node)) CustomLoader.add_constructor( yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, construct_mapping ) # Do not auto-resolve dates/timestamps, as PyYAML does that badly res_map = CustomLoader.yaml_implicit_resolvers = CustomLoader.yaml_implicit_resolvers.copy() res_int = list('-+0123456789') for c in res_int: del res_map[c] CustomLoader.add_implicit_resolver( 'tag:yaml.org,2002:int', re.compile(r'''^(?:[-+]?0b[0-1_]+ |[-+]?0[0-7_]+ |[-+]?(?:0|[1-9][0-9_]*) |[-+]?0x[0-9a-fA-F_]+)$''', re.X), res_int ) yaml_load._cls = CustomLoader return yaml.load(stream, yaml_load._cls) def load_test_data(path_dir, path_stem, name): 'Load test data from specified YAML file and return as dmap object.' with (path_dir / '{}.test.{}.yaml'.format(path_stem, name)).open() as src: return dmap(yaml_load(src)) def struct_from_val(val, cls, as_tuple=False): if isinstance(val, (tuple, list)): val = cls(*val) elif isinstance(val, (dmap, dict, OrderedDict)): val = cls(**val) else: raise ValueError(val) return val if not as_tuple else tb.u.attr.astuple(val) @tb.u.attr_struct class JourneyStats: keys = 'start end' @tb.u.attr_struct class JourneySeg: keys = 'type src dst' @tb.u.attr_struct class TestGoal: src = tb.u.attr_init() dst = tb.u.attr_init() dts_start = tb.u.attr_init() dts_latest = tb.u.attr_init(None) class GTFSTestFixture: def __init__(self, path_gtfs_zip, path_file): self.path_gtfs_zip = Path(path_gtfs_zip) self.path_file = Path(path_file) self.path_test = self.path_file.parent self.path_project = self.path_test.parent self.path_tmp_base = '{}.test.{}'.format( self.path_project.parent.resolve().name, self.path_file.stem ) self._path_cache_state = defaultdict(lambda: ...) def load_test_data(self, name): return load_test_data(self.path_test, self.path_file.stem, name) _path_unzip = None @property def path_unzip(self): if self._path_unzip: return self._path_unzip paths_unzip = [ self.path_test / '{}.data.unzip'.format(self.path_file.stem), Path(tempfile.gettempdir()) / '{}.data.unzip'.format(self.path_tmp_base) ] for p in paths_unzip: if not p.exists(): try: p.mkdir(parents=True) except OSError: continue path_unzip = p break else: raise OSError( 'Failed to find/create path to unzip data to.' ' Paths checked: {}'.format(' '.join(repr(str(p)) for p in paths_unzip)) ) path_done = path_unzip / '.unzip-done.check' mtime_src = self.path_gtfs_zip.stat().st_mtime mtime_done = path_done.stat().st_mtime if path_done.exists() else 0 if mtime_done < mtime_src: shutil.rmtree(str(path_unzip)) path_unzip.mkdir(parents=True) mtime_done = None if not mtime_done: with zipfile.ZipFile(str(self.path_gtfs_zip)) as src: src.extractall(str(path_unzip)) path_done.touch() self._path_unzip = path_unzip return self._path_unzip def _paths_src_mtimes(self): paths_src = [Path(tb.__file__).parent, path_project] for root, dirs, files in it.chain.from_iterable(os.walk(str(p)) for p in paths_src): p = Path(root) for name in files: yield (p / name).stat().st_mtime def _path_cache(self, ext): path = self._path_cache_state[ext] if path is not ...: return state path = self._path_cache_state[ext] = None paths_cache = [ self.path_test / '{}.cache.{}'.format(self.path_file.stem, ext), Path(tempfile.gettempdir()) / '{}.cache.{}'.format(self.path_tmp_base, ext) ] for p in paths_cache: if not p.exists(): try: p.touch() p.unlink() except OSError: continue path = self._path_cache_state[ext] = p break else: warnings.warn('Failed to find writable cache-path, disabling cache') warnings.warn( 'Cache paths checked: {}'.format(' '.join(repr(str(p)) for p in paths_cache)) ) mtime_src = max(self._paths_src_mtimes()) mtime_cache = 0 if not path.exists() else path.stat().st_mtime if mtime_cache and mtime_src > mtime_cache: warnings.warn( 'Existing timetable/transfer cache' ' file is older than code, but using it anyway: {}'.format(path) ) return path @property def path_cache(self): return self._path_cache('graph.bin') @property def path_timetable(self): return self._path_cache('tt.pickle') class GraphAssertions: dts_slack = 3 * 60 def __init__(self, graph=None): self.graph = graph def debug_trip_transfers(self, stop1, stop2, stop3, max_km=0.2, max_td=3600, graph=None): '''Show info on possible T[stop-1] -> T[stop-2] -> U[stop-2] -> U[stop-3] transfers between trips (both passing stop-2), going only by timetable data.''' graph = graph or self.graph stop1, stop2, stop3 = (graph.timetable.stops[s] for s in [stop1, stop2, stop3]) for (n1_min, line1), (n2_max, line2) in it.product( graph.lines.lines_with_stop(stop1), graph.lines.lines_with_stop(stop3) ): for ts1 in line1[0]: if ts1.stop == stop2: break else: continue for ts2 in line2[0]: if ts2.stop == stop2: break else: continue n1_max, n2_min = ts1.stopidx, ts2.stopidx for ts1, ts2 in it.product(line1[0][n1_min:n1_max+1], line2[0][n2_min:n2_max+1]): n1, n2 = ts1.stopidx, ts2.stopidx if ts1.stop == ts2.stop: km = 0 else: lon1, lat1, lon2, lat2 = ( math.radians(float(v)) for v in [ts1.stop.lon, ts1.stop.lat, ts2.stop.lon, ts2.stop.lat] ) km = 6367 * 2 * math.asin(math.sqrt( math.sin((lat2 - lat1)/2)**2 + math.cos(lat1) * math.cos(lat2) * math.sin((lon2 - lon1)/2)**2 )) if km <= max_km: fp_delta = graph.timetable.footpaths.time_delta(ts1.stop, ts2.stop) if fp_delta is None: fp_delta = -1 print( 'X-{}: lon={:.4f} lat={:.4f}\n walk:' ' {:,.1f}m, dt={:,.0f}s\n Y-{}: {:.4f} {:.4f}'.format( n1, ts1.stop.lon, ts1.stop.lat, km * 1000, fp_delta, n2, ts2.stop.lon, ts2.stop.lat )) for trip1, trip2 in it.product(line1, line2): ts1, ts2 = trip1[n1], trip2[n2] td = ts2.dts_dep - ts1.dts_arr if 0 <= td <= max_td: print(' X-arr[{}]: {} -> Y-dep[{}]: {} (delta: {:,.1f}s)'.format( trip1.id, tb.u.dts_format(ts1.dts_arr), trip2.id, tb.u.dts_format(ts2.dts_dep), td )) print() def assert_journey_components(self, test, graph=None, verbose=verbose): '''Check that lines, trips, footpaths and transfers for all test journeys can be found individually.''' graph = graph or self.graph goal = struct_from_val(test.goal, TestGoal) goal_src, goal_dst = op.itemgetter(goal.src, goal.dst)(graph.timetable.stops) assert goal_src and goal_dst def raise_error(tpl, *args, **kws): jn_seg = kws.get('err_seg', seg_name) jn_seg = ':{}'.format(jn_seg) if jn_seg else '' raise AssertionError('[{}{}] {}'.format(jn_name, jn_seg, tpl).format(*args, **kws)) for jn_name, jn_info in (test.journey_set or dict()).items(): jn_stats = struct_from_val(jn_info.stats, JourneyStats) jn_start, jn_end = map(graph.timetable.dts_parse, [jn_stats.start, jn_stats.end]) ts_first, ts_last, ts_transfer = set(), set(), set() # Check segments for seg_name, seg in jn_info.segments.items(): seg = struct_from_val(seg, JourneySeg) a, b = op.itemgetter(seg.src, seg.dst)(graph.timetable.stops) ts_transfer_chk, ts_transfer_found, line_found = list(ts_transfer), False, False ts_transfer.clear() if seg.type == 'trip': for n, line in graph.lines.lines_with_stop(a): for m, stop in enumerate(line.stops[n:], n): if stop is b: break else: continue for trip in line: for ts in ts_transfer_chk: if not (ts.trip.id == trip.id and ts.stop is a): for transfer in graph.transfers.from_trip_stop(ts): if transfer.ts_to.stop is trip[n].stop: break else: continue ts_transfer_found = True ts_transfer_chk.clear() break if a is goal_src: ts_first.add(trip[n]) if b is goal_dst: ts_last.add(trip[m]) ts_transfer.add(trip[m]) line_found = True if not line_found: raise_error('No Lines/Trips found for trip-segment') elif seg.type == 'fp': if not graph.timetable.footpaths.connected(a, b): raise_error('No footpath-transfer found between src/dst: {} -> {}', a, b) for ts in ts_transfer_chk: if ts.stop is not a: continue ts_transfer_found = True ts_transfer_chk.clear() break for m, line in graph.lines.lines_with_stop(b): for trip in line: # if b is goal_dst: ts_last.add(trip[m]) ts_transfer.add(trip[m]) line_found = True if not line_found and b is not goal_dst: raise_error('No Lines/Trips found for footpath-segment dst') else: raise NotImplementedError if not ts_transfer_found and a is not goal_src: raise_error( 'No transfers found from' ' previous segment (checked: {})', len(ts_transfer_chk) ) if not ts_transfer and b is not goal_dst: raise_error('No transfers found from segment (type={}) end ({!r})', seg.type, seg.dst) # Check start/end times seg_name = None for k, ts_set, chk in [('dts_dep', ts_first, jn_start), ('dts_arr', ts_last, jn_end)]: dt_min = min(abs(chk - getattr(ts, k)) for ts in ts_set) if ts_set else 0 if dt_min > self.dts_slack: if verbose: print('[{}] All TripStops for {} goal-point:'.format(jn_name, k)) for ts in ts_set: print( ' TripStop(trip_id={}, stopidx={}, stop_id={}, {}={})'\ .format(ts.trip.id, ts.stopidx, ts.stop.id, k, tb.u.dts_format(getattr(ts, k))) ) print('[{}] Checking {} against: {}'.format(jn_name, k, tb.u.dts_format(chk))) raise_error( 'No trip-stops close to {} goal-point' ' in time (within {:,}s), min diff: {:,}s', k, self.dts_slack, dt_min ) def assert_journey_results(self, test, journeys, graph=None, verbose=verbose): 'Assert that all journeys described by test-data (from YAML) match journeys (JourneySet).' graph = graph or self.graph if verbose: print('\n' + ' -'*5, 'Journeys found:') journeys.pretty_print() jn_matched = set() for jn_name, jn_info in (test.journey_set or dict()).items(): jn_info_match = False for journey in journeys: if id(journey) in jn_matched: continue if verbose: print('\n[{}] check vs journey:'.format(jn_name), journey) jn_stats = struct_from_val(jn_info.stats, JourneyStats) dts_dep_test, dts_arr_test = map(graph.timetable.dts_parse, [jn_stats.start, jn_stats.end]) dts_dep_jn, dts_arr_jn = journey.dts_dep, journey.dts_arr time_check = max( abs(dts_dep_test - dts_dep_jn), abs(dts_arr_test - dts_arr_jn) ) <= self.dts_slack if verbose: print(' ', 'time check - {}: {} == {} and {} == {}'.format( ['fail', 'pass'][time_check], *map(tb.u.dts_format, [dts_dep_test, dts_dep_jn, dts_arr_test, dts_arr_jn]) )) if not time_check: continue for seg_jn, seg_test in it.zip_longest(journey, jn_info.segments.items()): seg_test_name, seg_test = seg_test if not (seg_jn and seg_test): break seg_test = struct_from_val(seg_test, JourneySeg) a_test, b_test = op.itemgetter(seg_test.src, seg_test.dst)(graph.timetable.stops) type_test = seg_test.type if isinstance(seg_jn, tb.t.public.JourneyTrip): type_jn, a_jn, b_jn = 'trip', seg_jn.ts_from.stop, seg_jn.ts_to.stop elif isinstance(seg_jn, tb.t.public.JourneyFp): type_jn, a_jn, b_jn = 'fp', seg_jn.stop_from, seg_jn.stop_to else: raise ValueError(seg_jn) if verbose: print(' ', seg_test_name, type_test == type_jn, a_test is a_jn, b_test is b_jn) if not (type_test == type_jn and a_test is a_jn and b_test is b_jn): break else: jn_info_match = True jn_matched.add(id(journey)) break if not jn_info_match: raise AssertionError('No journeys to match test-data for: {}'.format(jn_name)) if verbose: print('[{}] match found'.format(jn_name)) for journey in journeys: if id(journey) not in jn_matched: raise AssertionError('Unmatched journey found: {}'.format(journey))
python
import aredis from ddtrace import config from ddtrace.vendor import wrapt from ...internal.utils.wrappers import unwrap from ...pin import Pin from ..redis.util import _trace_redis_cmd from ..redis.util import _trace_redis_execute_pipeline from ..redis.util import format_command_args config._add("aredis", dict(_default_service="redis")) def patch(): """Patch the instrumented methods""" if getattr(aredis, "_datadog_patch", False): return setattr(aredis, "_datadog_patch", True) _w = wrapt.wrap_function_wrapper _w("aredis.client", "StrictRedis.execute_command", traced_execute_command) _w("aredis.client", "StrictRedis.pipeline", traced_pipeline) _w("aredis.pipeline", "StrictPipeline.execute", traced_execute_pipeline) _w("aredis.pipeline", "StrictPipeline.immediate_execute_command", traced_execute_command) Pin(service=None).onto(aredis.StrictRedis) def unpatch(): if getattr(aredis, "_datadog_patch", False): setattr(aredis, "_datadog_patch", False) unwrap(aredis.client.StrictRedis, "execute_command") unwrap(aredis.client.StrictRedis, "pipeline") unwrap(aredis.pipeline.StrictPipeline, "execute") unwrap(aredis.pipeline.StrictPipeline, "immediate_execute_command") # # tracing functions # async def traced_execute_command(func, instance, args, kwargs): pin = Pin.get_from(instance) if not pin or not pin.enabled(): return await func(*args, **kwargs) with _trace_redis_cmd(pin, config.aredis, instance, args): # run the command return await func(*args, **kwargs) async def traced_pipeline(func, instance, args, kwargs): pipeline = await func(*args, **kwargs) pin = Pin.get_from(instance) if pin: pin.onto(pipeline) return pipeline async def traced_execute_pipeline(func, instance, args, kwargs): pin = Pin.get_from(instance) if not pin or not pin.enabled(): return await func(*args, **kwargs) cmds = [format_command_args(c) for c, _ in instance.command_stack] resource = "\n".join(cmds) with _trace_redis_execute_pipeline(pin, config.aredis, resource, instance): return await func(*args, **kwargs)
python
import uuid import datetime import typing from abc import ABC, abstractmethod from sensory_cloud.config import Config from sensory_cloud.services.crypto_service import CryptoService import sensory_cloud.generated.common.common_pb2 as common_pb2 import sensory_cloud.generated.oauth.oauth_pb2_grpc as oauth_pb2_grpc import sensory_cloud.generated.oauth.oauth_pb2 as oauth_pb2 import sensory_cloud.generated.v1.management.device_pb2_grpc as device_pb2_grpc import sensory_cloud.generated.v1.management.device_pb2 as device_pb2 class OAuthClient: """ Class that holds OAuth client id and secret """ def __init__( self, client_id: str, client_secret: str, ): """ Constructor method for the OAuthClient class Arguments: client_id: String containing the client id client_secret: String containing the client secret """ self._client_id = client_id self._client_secret = client_secret @property def client_id(self) -> str: """ Get method for the client id attribute Returns: String containing the client id """ return self._client_id @property def client_secret(self) -> str: """ Get method for the client secret attribute Returns: String containing the client secret """ return self._client_secret class OAuthToken: """ Class that holds OAuth token and expiration """ def __init__(self, token: str, expires: datetime.datetime): """ Constructor method for the OAuthToken class Arguments: token: String containing the oauth token expires: datetime.datetime object containing the token's expiration time stamp """ self._token = token self._expires = expires @property def token(self) -> str: """ Get method that returns the oauth token attribute Returns: String containing the oauth token """ return self._token @property def expires(self) -> datetime.datetime: """ Get method that returns the expiration date attribute Returns: A datetime.datetime object containing the token's expiration time stamp """ return self._expires class IOauthService(ABC): """ Abstract class that manages OAuth interactions with Sensory Cloud """ @abstractmethod def generate_credentials(self) -> OAuthClient: """Method that generates a client id and a client secret""" @abstractmethod def get_token(self) -> OAuthToken: """Method that gets a token for the provided credentials""" @abstractmethod def register( self, device_id: str, device_name: str, credential: str ) -> device_pb2.DeviceResponse: """ Method that registers credentials provided by the attached SecureCredentialStore to Sensory Cloud. This should only be called once per unique credential pair. An error will be thrown if registration fails. """ class ISecureCredentialStore(ABC): @abstractmethod def client_id(self): """Method that gets the client id""" @abstractmethod def client_secret(self): """Method that gets the client secret""" class OauthService(IOauthService): """ Class that manages OAuth interactions with Sensory Cloud """ def __init__(self, config: Config, secure_credential_store: ISecureCredentialStore): """ Constructor method for OauthService Arguments: config: Config object containing the relevant grpc connection information secure_credential_store: ISecureCredentialStore that stores the client id and client secret """ self._config: Config = config self._oauth_client: oauth_pb2_grpc.OauthServiceStub = ( oauth_pb2_grpc.OauthServiceStub(channel=config.channel) ) self._device_client: device_pb2_grpc.DeviceServiceStub = ( device_pb2_grpc.DeviceServiceStub(channel=config.channel) ) self._secure_credential_store: ISecureCredentialStore = secure_credential_store def generate_credentials(self) -> OAuthClient: """ Can be called to generate secure and guaranteed unique credentials. Should be used the first time the SDK registers and OAuth token with the cloud. Returns: An OAuthClient """ client: OAuthClient = OAuthClient( client_id=str(uuid.uuid4()), client_secret=CryptoService().get_secure_random_string(length=24), ) return client def get_who_am_i(self) -> device_pb2.DeviceResponse: """ Get information about the current registered device as inferred by the OAuth credentials supplied by the credential manager. A new token is request every time this call is made, so use sparingly. Returns: Information about the current device """ oauth_token: OAuthToken = self.get_token() metadata: typing.Tuple[typing.Tuple] = ( ("authorization", f"Bearer {oauth_token.token}"), ) return self._device_client.GetWhoAmI( request=device_pb2.DeviceGetWhoAmIRequest(), metadata=metadata ) def get_token(self) -> OAuthToken: """ Obtains an Oauth JWT from Sensory Cloud Returns: An OAuth JWT and expiration """ client_id: str = self._secure_credential_store.client_id if client_id in [None, ""]: raise ValueError( "null client_id was returned from the secure credential store" ) client_secret: str = self._secure_credential_store.client_secret if client_secret in [None, ""]: raise ValueError( "null client_secret was returned from the secure credential store" ) now: datetime.datetime = datetime.datetime.utcnow() request: oauth_pb2.TokenRequest = oauth_pb2.TokenRequest( clientId=client_id, secret=client_secret ) response: common_pb2.TokenResponse = self._oauth_client.GetToken(request) return OAuthToken( token=response.accessToken, expires=now + datetime.timedelta(response.expiresIn), ) def register( self, device_id: str, device_name: str, credential: str ) -> device_pb2.DeviceResponse: """ Register credentials provided by the attached SecureCredentialStore to Sensory Cloud. This function should only be called once per unique credential pair. An error will be thrown if registration fails. Arguments: device_id: String containing the uuid device id device_name: The friendly name of the registering device credential: The credential configured on the Sensory Cloud server Returns: A DeviceResponse indicating if the device was successfully registered """ client_id: str = self._secure_credential_store.client_id if client_id in [None, ""]: raise ValueError( "null client_id was returned from the secure credential store" ) client_secret: str = self._secure_credential_store.client_secret if client_secret in [None, ""]: raise ValueError( "null client_secret was returned from the secure credential store" ) client: common_pb2.GenericClient = common_pb2.GenericClient( clientId=client_id, secret=client_secret ) request: device_pb2.EnrollDeviceRequest = device_pb2.EnrollDeviceRequest( name=device_name, deviceId=device_id, tenantId=self._config.tenant_id, client=client, credential=credential, ) device_response: device_pb2.DeviceResponse = self._device_client.EnrollDevice( request ) return device_response def renew_device_credential( self, device_id: str, credential: str ) -> device_pb2.DeviceResponse: """ Renew the credential associated with the given device Arguments: device_id: String containing the uuid device id credential: The credential configured on the Sensory Cloud server Returns: A DeviceResponse indicating if the device credential was changed """ client_id: str = self._secure_credential_store.client_id if client_id in [None, ""]: raise ValueError( "null client_id was returned from the secure credential store" ) request: device_pb2.RenewDeviceCredentialRequest = ( device_pb2.RenewDeviceCredentialRequest( deviceId=device_id, clientId=client_id, tenantId=self._config.tenant_id, credential=credential, ) ) device_response: device_pb2.DeviceResponse = ( self._device_client.RenewDeviceCredential(request=request) ) return device_response
python
import IPython.nbformat.v4 as nbformat from IPython.nbformat import write as nbwrite import numpy as np def format_line(line): """ Format a line of Matlab into either a markdown line or a code line. Parameters ---------- line : str The line of code to be formatted. Formatting occurs according to the following rules: - If the line starts with (at least) two %% signs, a new cell will be started. - If the line doesn't start with a '%' sign, it is assumed to be legit matlab code. We will continue to add to the same cell until reaching the next comment line """ if line.startswith('%%'): md = True new_cell = True source = line.split('%%')[1] + '\n' # line-breaks in md require a line # gap! elif line.startswith('%'): md = True new_cell = False source = line.split('%')[1] + '\n' else: md = False new_cell = False source = line return new_cell, md, source def mfile_to_lines(mfile): """ Read the lines from an mfile Parameters ---------- mfile : string Full path to an m file """ # We should only be able to read this file: with open(mfile) as fid: return fid.readlines() def lines_to_notebook(lines, name=None): """ Convert the lines of an m file into an IPython notebook Parameters ---------- lines : list A list of strings. Each element is a line in the m file Returns ------- notebook : an IPython NotebookNode class instance, containing the information required to create a file """ source = [] md = np.empty(len(lines), dtype=object) new_cell = np.empty(len(lines), dtype=object) for idx, l in enumerate(lines): new_cell[idx], md[idx], this_source = format_line(l) # Transitions between markdown and code and vice-versa merit a new # cell, even if no newline, or "%%" is found. Make sure not to do this # check for the very first line! if idx>1 and not new_cell[idx]: if md[idx] != md[idx-1]: new_cell[idx] = True source.append(this_source) # This defines the breaking points between cells: new_cell_idx = np.hstack([np.where(new_cell)[0], -1]) # Listify the sources: cell_source = [source[new_cell_idx[i]:new_cell_idx[i+1]] for i in range(len(new_cell_idx)-1)] cell_md = [md[new_cell_idx[i]] for i in range(len(new_cell_idx)-1)] cells = [] # Append the notebook with loading matlab magic extension notebook_head = "import pymatbridge as pymat\n" + "ip = get_ipython()\n" \ + "pymat.load_ipython_extension(ip)" cells.append(nbformat.new_code_cell(notebook_head))#, language='python')) for cell_idx, cell_s in enumerate(cell_source): if cell_md[cell_idx]: cells.append(nbformat.new_markdown_cell(cell_s)) else: cell_s.insert(0, '%%matlab\n') cells.append(nbformat.new_code_cell(cell_s))#, language='matlab')) #ws = nbformat.new_worksheet(cells=cells) notebook = nbformat.new_notebook(cells=cells) return notebook def convert_mfile(mfile, outfile=None): """ Convert a Matlab m-file into a Matlab notebook in ipynb format Parameters ---------- mfile : string Full path to a matlab m file to convert outfile : string (optional) Full path to the output ipynb file """ lines = mfile_to_lines(mfile) nb = lines_to_notebook(lines) if outfile is None: outfile = mfile.split('.m')[0] + '.ipynb' with open(outfile, 'w') as fid: nbwrite(nb, fid)
python
import os import sys from fabric.colors import cyan, red, yellow from fabric.api import task, env, sudo, get, hide, execute from dploy.context import ctx, get_project_dir from dploy.commands import manage as django_manage from dploy.utils import ( FabricException, version_supports_migrations, select_template, upload_template, ) @task def manage(cmd): """ Runs django manage.py with a given command """ print(cyan("Django manage {} on {}".format(cmd, env.stage))) django_manage(cmd) @task def setup_log_files_owner(): """ Runs django manage.py check command and sets logs folder owner after """ django_manage('check') sudo('chown -R {user}:{group} {logpath}'.format( user=ctx('system.user'), group=ctx('system.group'), logpath=ctx('logs.dirs.root'))) @task def setup_settings(): """ Takes the dploy/<STAGE>_settings.py template and upload it to remote django project location (as local_settings.py) """ print(cyan("Setuping django settings project on {}".format(env.stage))) project_dir = get_project_dir() project_name = ctx('django.project_name') stage_settings = '{stage}_settings.py'.format(stage=env.stage) templates = [ os.path.join('./dploy/', stage_settings), os.path.join('./', project_name, 'local_settings.py-dist'), os.path.join('./', project_name, 'local_settings.py-default'), os.path.join('./', project_name, 'local_settings.py-example'), os.path.join('./', project_name, 'local_settings.py.dist'), os.path.join('./', project_name, 'local_settings.py.default'), os.path.join('./', project_name, 'local_settings.py.example'), ] template = select_template(templates) if not template: print(red('ERROR: the project does not have a settings template')) print("The project must provide at least one of these file:") print("\n - {}\n".format("\n - ".join(templates))) sys.exit(1) filename = os.path.basename(template) templates_dir = os.path.dirname(template) _settings_dest = os.path.join(project_dir, project_name, 'local_settings.py') upload_template(filename, _settings_dest, template_dir=templates_dir) @task def migrate(): """ Perform django migration (only if the django version is >= 1.7) """ with hide('running', 'stdout'): version = django_manage('--version') if version_supports_migrations(version): print(cyan("Django migrate on {}".format(env.stage))) try: django_manage('migrate --noinput') except FabricException as e: print(yellow( 'WARNING: faked migrations because of exception {}'.format(e))) django_manage('migrate --noinput --fake') else: print(yellow( "Django {} does not support migration, skipping.".format(version))) @task def collectstatic(): """ Collect static medias """ print(cyan("Django collectstatic on {}".format(env.stage))) django_manage(ctx('django.commands.collectstatic')) @task def dumpdata(app, dest=None): """ Runs dumpdata on a given app and fetch the file locally """ if dest is None: django_manage('dumpdata --indent=2 {}'.format(app)) else: tmp_file = '/tmp/{}.tmp'.format(app) django_manage('dumpdata --indent=2 {} > {}'.format(app, tmp_file)) with open(dest, 'wb') as fd: get(tmp_file, fd, use_sudo=True) sudo('rm -f {}'.format(tmp_file)) @task def setup(): """ Performs django_setup_settings, django_migrate, django_collectstatic and django_check """ execute(setup_settings) execute(migrate) execute(collectstatic) execute(setup_log_files_owner)
python
import IPython from google.colab import output display( IPython.display.HTML('''<div class="container"> <div class="circle red" color="red"></div> <div class="circle" color="yellow"></div> <div class="circle" color="green"></div> <div class="floating-text"> Intelligent Traffic Management System </div> <style> @import url('https://fonts.googleapis.com/css?family=Muli&display=swap'); * { box-sizing: border-box; } body { background-color: #1abc9c; display: flex; align-items: center; justify-content: center; min-height: 100vh; margin: 0; } .container { background-color: #2c3e50; border-radius: 50px; display: flex; flex-direction: column; align-items: center; justify-content: space-around; padding: 15px 0; height: 200px; width: 70px; } .circle { background-color: rgba(0, 0, 0, 0.3); border-radius: 100%; position: relative; height: 40px; width: 40px; } .circle::after { border-right: 4px solid rgba(255, 255, 255, 0.6); border-radius: 100%; content: ' '; position: absolute; top: 5px; left: 0px; width: 30px; height: 30px; } .circle.red { background-color: #c0392b; box-shadow: 0 0 20px 5px #c0392b; } .circle.yellow { background-color: #f1c40f; box-shadow: 0 0 20px 5px #f1c40f; } .circle.green { background-color: #2ecc71; box-shadow: 0 0 20px 5px #2ecc71; } /* SOCIAL PANEL CSS */ .social-panel-container { position: fixed; right: 0; bottom: 80px; transform: translateX(100%); transition: transform 0.4s ease-in-out; } .social-panel-container.visible { transform: translateX(-10px); } .social-panel { background-color: #fff; border-radius: 16px; box-shadow: 0 16px 31px -17px rgba(0,31,97,0.6); border: 5px solid #001F61; display: flex; flex-direction: column; justify-content: center; align-items: center; font-family: 'Muli'; position: relative; height: 169px; width: 370px; max-width: calc(100% - 10px); } .social-panel button.close-btn { border: 0; color: #97A5CE; cursor: pointer; font-size: 20px; position: absolute; top: 5px; right: 5px; } .social-panel button.close-btn:focus { outline: none; } .social-panel p { background-color: #001F61; border-radius: 0 0 10px 10px; color: #fff; font-size: 14px; line-height: 18px; padding: 2px 17px 6px; position: absolute; top: 0; left: 50%; margin: 0; transform: translateX(-50%); text-align: center; width: 235px; } .social-panel p i { margin: 0 5px; } .social-panel p a { color: #FF7500; text-decoration: none; } .social-panel h4 { margin: 20px 0; color: #97A5CE; font-family: 'Muli'; font-size: 14px; line-height: 18px; text-transform: uppercase; } .social-panel ul { display: flex; list-style-type: none; padding: 0; margin: 0; } .social-panel ul li { margin: 0 10px; } .social-panel ul li a { border: 1px solid #DCE1F2; border-radius: 50%; color: #001F61; font-size: 20px; display: flex; justify-content: center; align-items: center; height: 50px; width: 50px; text-decoration: none; } .social-panel ul li a:hover { border-color: #FF6A00; box-shadow: 0 9px 12px -9px #FF6A00; } .floating-btn { border-radius: 26.5px; background-color: #001F61; border: 1px solid #001F61; box-shadow: 0 16px 22px -17px #03153B; color: #fff; cursor: pointer; font-size: 16px; line-height: 20px; padding: 12px 20px; position: fixed; bottom: 20px; right: 20px; z-index: 999; } .floating-btn:hover { background-color: #ffffff; color: #001F61; } .floating-btn:focus { outline: none; } .floating-text { background-color: #001F61; border-radius: 10px 10px 0 0; color: #fff; font-family: 'Muli'; padding: 7px 15px; position: fixed; bottom: 0; left: 50%; transform: translateX(-50%); text-align: center; z-index: 998; } .floating-text a { color: #FF7500; text-decoration: none; } @media screen and (max-width: 480px) { .social-panel-container.visible { transform: translateX(0px); } .floating-btn { right: 10px; } } </style> <script> const circles = document.querySelectorAll('.circle') let activeLight = 0; setInterval(() => { changeLight(); }, 1000); function changeLight() { circles[activeLight].className = 'circle'; activeLight++; if(activeLight > 2) { activeLight = 0; } const currentLight = circles[activeLight] currentLight.classList.add(currentLight.getAttribute('color')); } </script> '''))
python
import rq import numpy as np import time import subprocess import shlex import sys import redis import vislab.tests.testrqaux def get_redis_client(): host, port = ["0.0.0.0", 6379] try: connection = redis.Redis(host, port) connection.ping() except redis.ConnectionError: raise Exception( "Need a Redis server running on {}, port {}".format(host, port)) return connection def run_workers_cmd(q_name, num_workers): print("Starting {} workers...".format(num_workers)) cmd = "rqworker --burst {}".format(q_name) print(cmd) pids = [] for i in range(num_workers): # time.sleep(np.random.rand()) # stagger the jobs a little bit pids.append(subprocess.Popen(shlex.split(cmd), stdout=subprocess.PIPE, stderr=subprocess.PIPE)) out, err = pids[-1].communicate() print '===' print out print err def run_workers_py(q): for i in xrange(2): print 'Started worker {}'.format(i) worker = rq.Worker([q], connection=q.connection) worker.work(burst=True) # Runs enqueued job name = 'test_q' async = True redis_conn = get_redis_client() queue = rq.Queue(name, connection=redis_conn, async=async) queue.empty() jobs = [queue.enqueue_call( func=vislab.tests.testrqaux.foo, args=[i], timeout=10000, result_ttl=999) for i in xrange(1)] t = time.time() if async: run_workers_py(queue) # run_workers_cmd(name, 1) # Wait until all jobs are completed. known_jobs = {} while True: for job in jobs: if job not in known_jobs: if job.is_finished: from pprint import pprint print '' pprint(vars(job)) known_jobs[job] = 0 elif job.is_failed: from pprint import pprint print '' pprint(vars(job)) known_jobs[job] = 1 num_failed = sum(known_jobs.values()) num_succeeded = len(known_jobs) - num_failed msg = "\r{:.1f} s passed, {} succeeded / {} failed".format( time.time() - t, num_succeeded, num_failed) msg += " out of {} total".format(len(jobs)) sys.stdout.write(msg) sys.stdout.flush() if num_succeeded + num_failed == len(jobs): break time.sleep(1) sys.stdout.write('\n') sys.stdout.flush() print('Done with all jobs.') fq = rq.Queue('failed', connection=redis_conn) failed_jobs = [j for j in fq.get_jobs() if j.origin == name] print("{} jobs failed and went into the failed queue.".format( len(failed_jobs)))
python
import ctypes as ct from .base import Object, Error, ccs_error, _ccs_get_function, ccs_context, ccs_binding, ccs_hyperparameter, ccs_datum, ccs_datum_fix, ccs_hash, ccs_int from .hyperparameter import Hyperparameter ccs_binding_get_context = _ccs_get_function("ccs_binding_get_context", [ccs_binding, ct.POINTER(ccs_context)]) ccs_binding_get_user_data = _ccs_get_function("ccs_binding_get_user_data", [ccs_binding, ct.POINTER(ct.c_void_p)]) ccs_binding_get_value = _ccs_get_function("ccs_binding_get_value", [ccs_binding, ct.c_size_t, ct.POINTER(ccs_datum)]) ccs_binding_set_value = _ccs_get_function("ccs_binding_set_value", [ccs_binding, ct.c_size_t, ccs_datum_fix]) ccs_binding_get_values = _ccs_get_function("ccs_binding_get_values", [ccs_binding, ct.c_size_t, ct.POINTER(ccs_datum), ct.POINTER(ct.c_size_t)]) ccs_binding_get_value_by_name = _ccs_get_function("ccs_binding_get_value_by_name", [ccs_binding, ct.c_char_p, ct.POINTER(ccs_datum)]) ccs_binding_hash = _ccs_get_function("ccs_binding_hash", [ccs_binding, ct.POINTER(ccs_hash)]) ccs_binding_cmp = _ccs_get_function("ccs_binding_cmp", [ccs_binding, ccs_binding, ct.POINTER(ccs_int)]) class Binding(Object): @property def user_data(self): if hasattr(self, "_user_data"): return self._user_data v = ct.c_void_p() res = ccs_binding_get_user_data(self.handle, ct.byref(v)) Error.check(res) self._user_data = v return v @property def context(self): if hasattr(self, "_context"): return self._context v = ccs_context() res = ccs_binding_get_context(self.handle, ct.byref(v)) Error.check(res) self._context = Object.from_handle(v) return self._context @property def num_values(self): if hasattr(self, "_num_values"): return self._num_values v = ct.c_size_t() res = ccs_binding_get_values(self.handle, 0, None, ct.byref(v)) Error.check(res) self._num_values = v.value return self._num_values def set_value(self, hyperparameter, value): if isinstance(hyperparameter, Hyperparameter): hyperparameter = self.context.hyperparameter_index(hyperparameter) elif isinstance(hyperparameter, str): hyperparameter = self.context.hyperparameter_index_by_name(hyperparameter) pv = ccs_datum(value) v = ccs_datum_fix() v.value = pv._value.i v.type = pv.type v.flags = pv.flags res = ccs_binding_set_value(self.handle, hyperparameter, v) Error.check(res) def value(self, hyperparameter): v = ccs_datum() if isinstance(hyperparameter, Hyperparameter): res = ccs_binding_get_value(self.handle, self.context.hyperparameter_index(hyperparameter), ct.byref(v)) elif isinstance(hyperparameter, str): res = ccs_binding_get_value_by_name(self.handle, str.encode(hyperparameter), ct.byref(v)) else: res = ccs_binding_get_value(self.handle, hyperparameter, ct.byref(v)) Error.check(res) return v.value @property def values(self): sz = self.num_values if sz == 0: return [] v = (ccs_datum * sz)() res = ccs_binding_get_values(self.handle, sz, v, None) Error.check(res) return [x.value for x in v] def cmp(self, other): v = ccs_int() res = ccs_binding_cmp(self.handle, other.handle, ct.byref(v)) Error.check(res) return v.value def __lt__(self, other): v = ccs_int() res = ccs_binding_cmp(self.handle, other.handle, ct.byref(v)) Error.check(res) return v.value < 0 def __le__(self, other): v = ccs_int() res = ccs_binding_cmp(self.handle, other.handle, ct.byref(v)) Error.check(res) return v.value <= 0 def __gt__(self, other): v = ccs_int() res = ccs_binding_cmp(self.handle, other.handle, ct.byref(v)) Error.check(res) return v.value > 0 def __ge__(self, other): v = ccs_int() res = ccs_binding_cmp(self.handle, other.handle, ct.byref(v)) Error.check(res) return v.value >= 0 def __eq__(self, other): v = ccs_int() res = ccs_binding_cmp(self.handle, other.handle, ct.byref(v)) Error.check(res) return v.value == 0 def __ne__(self, other): v = ccs_int() res = ccs_binding_cmp(self.handle, other.handle, ct.byref(v)) Error.check(res) return v.value != 0 @property def hash(self): v = ccs_hash() res = ccs_binding_hash(self.handle, ct.byref(v)) Error.check(res) return self.value def __hash__(self): return self.hash def asdict(self): res = {} hyperparameters = self.context.hyperparameters values = self.values for i in range(len(hyperparameters)): res[hyperparameters[i].name] = values[i] return res
python
"""Example implementation of the Lorenz forecast model. References ---------- - Dutta, R., Corander, J., Kaski, S. and Gutmann, M.U., 2016. Likelihood-free inference by ratio estimation. arXiv preprint arXiv:1611.10242. https://arxiv.org/abs/1611.10242 """ from functools import partial import numpy as np import elfi def _lorenz_ode(y, params): """Parametrized Lorenz 96 system defined by a coupled stochastic differential equations (SDE). Parameters ---------- y : numpy.ndarray of dimension (batch_size, n_obs) Current state of the SDE. params : list The list of parameters needed to evaluate function. In this case it is list of four elements - eta, theta1, theta2 and f. Returns ------- dy_dt : np.array Rate of change of the SDE. """ dy_dt = np.empty_like(y) eta = params[0] theta1 = params[1] theta2 = params[2] f = params[3] g = theta1 + y * theta2 dy_dt[:, 0] = -y[:, -2] * y[:, -1] + y[:, -1] * y[:, 1] - y[:, 0] + f - g[:, 0] + eta[:, 0] dy_dt[:, 1] = -y[:, -1] * y[:, 0] + y[:, 0] * y[:, 2] - y[:, 1] + f - g[:, 1] + eta[:, 1] dy_dt[:, 2:-1] = (-y[:, :-3] * y[:, 1:-2] + y[:, 1:-2] * y[:, 3:] - y[:, 2:-1] + f - g[:, 2:-1] + eta[:, 2:-1]) dy_dt[:, -1] = (-y[:, -3] * y[:, -2] + y[:, -2] * y[:, 0] - y[:, -1] + f - g[:, -1] + eta[:, -1]) return dy_dt def runge_kutta_ode_solver(ode, time_step, y, params): """4th order Runge-Kutta ODE solver. Carnahan, B., Luther, H. A., and Wilkes, J. O. (1969). Applied Numerical Methods. Wiley, New York. Parameters ---------- ode : function Ordinary differential equation function. In the Lorenz model it is SDE. time_step : float y : np.ndarray of dimension (batch_size, n_obs) Current state of the time-series. params : list of parameters The parameters needed to evaluate the ode. In this case it is list of four elements - eta, theta1, theta2 and f. Returns ------- np.ndarray Resulting state initiated at y and satisfying ode solved by this solver. """ k1 = time_step * ode(y, params) k2 = time_step * ode(y + k1 / 2, params) k3 = time_step * ode(y + k2 / 2, params) k4 = time_step * ode(y + k3, params) y = y + (k1 + 2 * k2 + 2 * k3 + k4) / 6 return y def forecast_lorenz(theta1=None, theta2=None, f=10., phi=0.984, n_obs=40, n_timestep=160, batch_size=1, initial_state=None, random_state=None, total_duration=4): """Forecast Lorenz model. Wilks, D. S. (2005). Effects of stochastic parametrizations in the Lorenz ’96 system. Quarterly Journal of the Royal Meteorological Society, 131(606), 389–407. Parameters ---------- theta1, theta2: list or numpy.ndarray Closure parameters. phi : float, optional This value is used to express stochastic forcing term. It should be configured according to force term and eventually impacts to the result of eta. More details in Wilks (2005) et al. initial_state: numpy.ndarray, optional Initial state value of the time-series. f : float, optional Force term n_obs : int, optional Size of the observed 1D grid n_timestep : int, optional Number of the time step intervals batch_size : int, optional random_state : np.random.RandomState, optional total_duration : float, optional Returns ------- np.ndarray of size (b, n, m) which is (batch_size, time, n_obs) The computed SDE with time series. """ if not initial_state: initial_state = np.tile([2.40711741e-01, 4.75597337e+00, 1.19145654e+01, 1.31324866e+00, 2.82675744e+00, 3.96016971e+00, 2.10479504e+00, 5.47742826e+00, 5.42519447e+00, -1.45166074e+00, 2.01991521e+00, 3.93873313e+00, 8.22837848e+00, 4.89401702e+00, -5.66278973e+00, 1.58617220e+00, -1.23849251e+00, -6.04649288e-01, 6.04132264e+00, 7.47588536e+00, 1.82761402e+00, 3.19209639e+00, -7.58539653e-02, -6.00928508e-03, 4.52902964e-01, 3.22063602e+00, 7.18613523e+00, 2.39210634e+00, -2.65743666e+00, 2.32046235e-01, 1.28079141e+00, 4.23344286e+00, 6.94213238e+00, -1.15939497e+00, -5.23037351e-01, 1.54618811e+00, 1.77863869e+00, 3.30139201e+00, 7.47769309e+00, -3.91312909e-01], (batch_size, 1)) y = initial_state eta = 0 theta1 = np.asarray(theta1).reshape(-1, 1) theta2 = np.asarray(theta2).reshape(-1, 1) time_step = total_duration / n_timestep random_state = random_state or np.random time_series = np.empty(shape=(batch_size, n_timestep, n_obs)) time_series[:, 0, :] = y for i in range(1, n_timestep): e = random_state.normal(0, 1, y.shape) eta = phi * eta + e * np.sqrt(1 - pow(phi, 2)) params = (eta, theta1, theta2, f) y = runge_kutta_ode_solver(ode=_lorenz_ode, time_step=time_step, y=y, params=params) time_series[:, i, :] = y return time_series def get_model(true_params=None, seed_obs=None, initial_state=None, n_obs=40, f=10., phi=0.984, total_duration=4): """Return a complete Lorenz model in inference task. This is a simplified example that achieves reasonable predictions. Hakkarainen, J., Ilin, A., Solonen, A., Laine, M., Haario, H., Tamminen, J., Oja, E., and Järvinen, H. (2012). On closure parameter estimation in chaotic systems. Nonlinear Processes in Geophysics, 19(1), 127–143. Parameters ---------- true_params : list, optional Parameters with which the observed data is generated. seed_obs : int, optional Seed for the observed data generation. initial_state : ndarray Initial state value of the time-series. n_obs : int, optional Number of observed variables f : float, optional Force term phi : float, optional This value is used to express stochastic forcing term. It should be configured according to force term and eventually impacts to the result of eta. More details in Wilks (2005) et al. total_duration : float, optional Returns ------- m : elfi.ElfiModel """ simulator = partial(forecast_lorenz, initial_state=initial_state, f=f, n_obs=n_obs, phi=phi, total_duration=total_duration) if not true_params: true_params = [2.0, 0.1] m = elfi.ElfiModel() y_obs = simulator(*true_params, random_state=np.random.RandomState(seed_obs)) sumstats = [] elfi.Prior('uniform', 0.5, 3., model=m, name='theta1') elfi.Prior('uniform', 0, 0.3, model=m, name='theta2') elfi.Simulator(simulator, m['theta1'], m['theta2'], observed=y_obs, name='Lorenz') sumstats.append(elfi.Summary(mean, m['Lorenz'], name='Mean')) sumstats.append(elfi.Summary(var, m['Lorenz'], name='Var')) sumstats.append(elfi.Summary(autocov, m['Lorenz'], name='Autocov')) sumstats.append(elfi.Summary(cov, m['Lorenz'], name='Cov')) sumstats.append(elfi.Summary(xcov, m['Lorenz'], True, name='CrosscovPrev')) sumstats.append(elfi.Summary(xcov, m['Lorenz'], False, name='CrosscovNext')) elfi.Distance('euclidean', *sumstats, name='d') return m def mean(x): """Return the mean of Y_{k}. Parameters ---------- x : np.array of size (b, n, m) which is (batch_size, time, n_obs) Returns ------- np.array of size (b,) The computed mean of statistics over time and space. """ return np.mean(x, axis=(1, 2)) def var(x): """Return the variance of Y_{k}. Parameters ---------- x : np.array of size (b, n, m) which is (batch_size, time, n_obs) Returns ------- np.array of size (b,) The average over space of computed variance with respect to time. """ return np.mean(np.var(x, axis=1), axis=1) def cov(x): """Return the covariance of Y_{k} with its neighbour Y_{k+1}. Parameters ---------- x : np.array of size (b, n, m) which is (batch_size, time, n_obs) Returns ------- np.array of size (b,) The average over space of computed covariance with respect to time. """ x_next = np.roll(x, -1, axis=2) return np.mean(np.mean((x - np.mean(x, keepdims=True, axis=1)) * (x_next - np.mean(x_next, keepdims=True, axis=1)), axis=1), axis=1) def xcov(x, prev=True): """Return the cross-covariance of Y_{k} with its neighbours from previous time step. Parameters ---------- x : np.array of size (b, n, m) which is (batch_size, time, n_obs) prev : bool The side of previous neighbour. True for previous neighbour, False for next. Returns ------- np.array of size (b,) The average over space of computed cross-covariance with respect to time. """ x_lag = np.roll(x, 1, axis=2) if prev else np.roll(x, -1, axis=2) return np.mean((x[:, :-1, :] - np.mean(x[:, :-1, :], keepdims=True, axis=1)) * (x_lag[:, 1:, :] - np.mean(x_lag[:, 1:, :], keepdims=True, axis=1)), axis=(1, 2)) def autocov(x): """Return the auto-covariance with time lag 1. Parameters ---------- x : np.array of size (b, n, m) which is (batch_size, time, n_obs) Returns ------- C : np.array of size (b,) The average over space of computed auto-covariance with respect to time. """ c = np.mean((x[:, :-1, :] - np.mean(x[:, :-1, :], keepdims=True, axis=1)) * (x[:, 1:, :] - np.mean(x[:, 1:, :], keepdims=True, axis=1)), axis=(1, 2)) return c
python