content
stringlengths
0
894k
type
stringclasses
2 values
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-10-28 13:54 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('ems', '0023_auto_20171028_0756'), ('registrations', '0022_auto_20171024_2329'), ('messportal', '0004_bitsprofshowbill'), ] operations = [ migrations.AddField( model_name='bitsprofshowbill', name='bitsian', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='ems.Bitsian'), ), migrations.AddField( model_name='profshowbill', name='participant', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='registrations.Participant'), ), ]
python
VO = "https://www.vote.org" VA = "https://www.voteamerica.com" CODE = 'code' REG = 'reg' POLLS = 'polls' CITIES = 'cities' # XXX This should move to campaign.Campaign but it's disruptive ABS = 'abs' REGDL = 'regdl' ABROAD = 'abroad' class States: ALABAMA = 'Alabama' ALASKA = 'Alaska' ARIZONA = 'Arizona' ARKANSAS = 'Arkansas' CALIFORNIA = 'California' COLORADO = 'Colorado' CONNECTICUT = 'Connecticut' DELAWARE = 'Delaware' DISTRICT_OF_COLUMBIA = 'District of Columbia' FLORIDA = 'Florida' GEORGIA = 'Georgia' GUAM = 'Guam' HAWAII = 'Hawaii' IDAHO = 'Idaho' ILLINOIS = 'Illinois' INDIANA = 'Indiana' IOWA = 'Iowa' KANSAS = 'Kansas' KENTUCKY = 'Kentucky' LOUISIANA = 'Louisiana' MAINE = 'Maine' MARYLAND = 'Maryland' MASSACHUSETTS = 'Massachusetts' MICHIGAN = 'Michigan' MINNESOTA = 'Minnesota' MISSISSIPPI = 'Mississippi' MISSOURI = 'Missouri' MONTANA = 'Montana' NEBRASKA = 'Nebraska' NEVADA = 'Nevada' NEW_HAMPSHIRE = 'New Hampshire' NEW_JERSEY = 'New Jersey' NEW_MEXICO = 'New Mexico' NEW_YORK = 'New York' NORTH_CAROLINA = 'North Carolina' NORTH_DAKOTA = 'North Dakota' OHIO = 'Ohio' OKLAHOMA = 'Oklahoma' OREGON = 'Oregon' PENNSYLVANIA = 'Pennsylvania' PUERTO_RICO = 'Puerto Rico' RHODE_ISLAND = 'Rhode Island' SOUTH_CAROLINA = 'South Carolina' SOUTH_DAKOTA = 'South Dakota' TENNESSEE = 'Tennessee' TEXAS = 'Texas' UTAH = 'Utah' VERMONT = 'Vermont' VIRGINIA = 'Virginia' WASHINGTON = 'Washington' WEST_VIRGINIA = 'West Virginia' WISCONSIN = 'Wisconsin' WYOMING = 'Wyoming' def url_encode_state(state): return '-'.join(state.split(' ')).lower() def absentee_ballot(state): return VA + f"/absentee-mail-ballot/{url_encode_state(state)}/#guide" def reg_deadline(state): return VA + f"/voter-registration/{url_encode_state(state)}/#guide" def abroad(state): return f"https://www.votefromabroad.org/states/{URLS_BY_STATE[state][CODE]}" # Static info, extended with initializers below. # Static schema: # code: Postal state/territory code # reg: URL for state voter registration # polls: URL for state polling places # cities: Places people and things in state # vote: Optional call to action for hashtag # Dynamic schema: # abs: Absentee ballot info (3rd party) # regdl: Registration deadlines (3rd party) # abroad: Voters abroad info # XXX More of this should go in configuration. URLS_BY_STATE = { "Alabama": {CODE: "AL", REG: "https://myinfo.alabamavotes.gov/VoterView/RegistrantSearch.do", POLLS: "https://myinfo.alabamavotes.gov/VoterView/PollingPlaceSearch.do"}, "Alaska": {CODE: "AK", REG: "https://myvoterinformation.alaska.gov/", POLLS: "https://myvoterinformation.alaska.gov/"}, "Arizona": {CODE: "AZ", REG: "https://voter.azsos.gov/VoterView/RegistrantSearch.do", POLLS: "https://my.arizona.vote/PortalList.aspx"}, "Arkansas": {CODE: "AR", REG: "https://www.voterview.ar-nova.org/voterview", POLLS: "https://www.voterview.ar-nova.org/voterview"}, "California": {CODE: "CA", REG: "https://www.sos.ca.gov/elections/registration-status/", POLLS: "https://www.sos.ca.gov/elections/polling-place/"}, "Colorado": {CODE: "CO", REG: "https://www.sos.state.co.us/voter/pages/pub/olvr/findVoterReg.xhtml", POLLS: "https://www.sos.state.co.us/pubs/elections/Resources/CountyElectionOffices.html"}, "Connecticut": {CODE: "CT", REG: "https://www.dir.ct.gov/sots/LookUp.aspx", POLLS: "https://portaldir.ct.gov/sots/LookUp.aspx"}, "Delaware": {CODE: "DE", REG: "https://ivote.de.gov/voterview", POLLS: "https://ivote.de.gov/VoterView"}, "District of Columbia": {CODE: "DC", REG: "https://www.dcboe.org/Voters/Register-To-Vote/Check-Voter-Registration-Status", POLLS: "https://www.dcboe.org/Voters/Where-to-Vote/Find-Out-Where-to-Vote"}, "Florida": {CODE: "FL", REG: "http://registration.elections.myflorida.com/CheckVoterStatus", POLLS: "https://registration.elections.myflorida.com/CheckVoterStatus"}, "Georgia": {CODE: "GA", # A bit better than voteamerica.org's for the Jan. 2021 runoff, # but does not display in a Twitter card # ABS: "https://www.vote411.org/georgia#absentee-ballot-process", # REGDL: "https://sos.ga.gov/admin/files/2020%20Revised%20Short%20Calendar.pdf", REGDL: "December 7, 2020", REG: "https://www.mvp.sos.ga.gov/", POLLS: "https://www.mvp.sos.ga.gov/MVP/mvp.do"}, "Guam": {CODE: "GU", ABS: "https://gec.guam.gov/index.php/in-office/in-office-absentee-voting", REG: "https://gec.guam.gov/validate", REGDL: "https://gec.guam.gov/index.php/gec-2018-election-important-dates", POLLS: "https://drive.google.com/file/d/1w6pdGRrjwqVMa8cRbx_-9zObMCVQQ3aR/view"}, "Hawaii": {CODE: "HI", REG: "https://olvr.hawaii.gov/register.aspx", POLLS: "https://olvr.hawaii.gov/altpollingplacesearch.aspx"}, "Idaho": {CODE: "ID", REG: "https://elections.sos.idaho.gov/ElectionLink/ElectionLink/VoterSearch.aspx", POLLS: "https://elections.sos.idaho.gov/ElectionLink/ElectionLink/ViewPollingLocation.aspx"}, "Illinois": {CODE: "IL", REG: "https://ova.elections.il.gov/RegistrationLookup.aspx", POLLS: "https://ova.elections.il.gov/PollingPlaceLookup.aspx"}, "Indiana": {CODE: "IN", REG: "https://indianavoters.in.gov/", POLLS: "https://indianavoters.in.gov/"}, "Iowa": {CODE: "IA", REG: "https://sos.iowa.gov/elections/VoterReg/RegToVote/search.aspx", POLLS: "https://sos.iowa.gov/elections/voterreg/pollingplace/search.aspx"}, "Kansas": {CODE: "KS", REG: "https://myvoteinfo.voteks.org/VoterView/RegistrantSearch.do", POLLS: "https://myvoteinfo.voteks.org/VoterView/PollingPlaceSearch.do"}, "Kentucky": {CODE: "KY", REG: "https://vrsws.sos.ky.gov/VIC/", POLLS: "https://www.sos.ky.gov/elections/Pages/Polling-Locations.aspx"}, "Louisiana": {CODE: "LA", REG: "https://voterportal.sos.la.gov/", POLLS: "https://voterportal.sos.la.gov/"}, "Maine": {CODE: "ME", REG: "http://www.maine.gov/portal/government/edemocracy/voter_lookup.php", POLLS: "https://www1.maine.gov/portal/government/edemocracy/voter_lookup.php"}, "Maryland": {CODE: "MD", REG: "https://voterservices.elections.maryland.gov/votersearch", POLLS: "https://elections.maryland.gov/voting/where.html"}, "Massachusetts": {CODE: "MA", REG: "https://www.sec.state.ma.us/VoterRegistrationSearch/MyVoterRegStatus.aspx", POLLS: "https://www.sec.state.ma.us/wheredoivotema/bal/MyElectionInfo.aspx"}, "Michigan": {CODE: "MI", REG: "https://mvic.sos.state.mi.us/", POLLS: "https://mvic.sos.state.mi.us/"}, "Minnesota": {CODE: "MN", REG: "https://mnvotes.sos.state.mn.us/VoterStatus.aspx", POLLS: "https://pollfinder.sos.state.mn.us/"}, "Mississippi": {CODE: "MS", REG: "https://www.msegov.com/sos/voter_registration/AmIRegistered", POLLS: "https://www.sos.ms.gov/PollingPlace/Pages/default.aspx"}, "Missouri": {CODE: "MO", REG: "https://s1.sos.mo.gov/elections/voterlookup/", POLLS: "https://voteroutreach.sos.mo.gov/PRD/VoterOutreach/VOSearch.aspx"}, "Montana": {CODE: "MT", REG: "https://app.mt.gov/voterinfo/", POLLS: "https://app.mt.gov/voterinfo/"}, "Nebraska": {CODE: "NE", REG: "https://www.votercheck.necvr.ne.gov/VoterView/RegistrantSearch.do", POLLS: "https://www.votercheck.necvr.ne.gov/VoterView/PollingPlaceSearch.do"}, "Nevada": {CODE: "NV", REG: "https://nvsos.gov/votersearch/", POLLS: "https://www.nvsos.gov/votersearch/"}, "New Hampshire": {CODE: "NH", REG: "https://app.sos.nh.gov/Public/PartyInfo.aspx", POLLS: "https://app.sos.nh.gov/Public/PollingPlaceSearch.aspx"}, "New Jersey": {CODE: "NJ", REG: "https://voter.njsvrs.com/PublicAccess/jsp/UserLogin/Login.jsp", POLLS: "https://voter.svrs.nj.gov/polling-place-search"}, "New Mexico": {CODE: "NM", REG: "https://voterportal.servis.sos.state.nm.us/WhereToVote.aspx", POLLS: "https://voterportal.servis.sos.state.nm.us/WhereToVoteAddress.aspx"}, "New York": {CODE: "NY", REG: "https://voterlookup.elections.ny.gov/", POLLS: "https://voterlookup.elections.ny.gov/"}, "North Carolina": {CODE: "NC", REG: "https://vt.ncsbe.gov/RegLkup/", POLLS: "https://vt.ncsbe.gov/PPLkup/"}, "North Dakota": {CODE: "ND", REG: "https://vip.sos.nd.gov/PortalListDetails.aspx?ptlhPKID=79&ptlPKID=7", POLLS: "https://vip.sos.nd.gov/wheretovote.aspx"}, "Ohio": {CODE: "OH", REG: "https://voterlookup.ohiosos.gov/voterlookup.aspx", POLLS: "https://voterlookup.ohiosos.gov/VoterLookup.aspx"}, "Oklahoma": {CODE: "OK", REG: "https://services.okelections.us/voterSearch.aspx", POLLS: "https://okvoterportal.okelections.us/"}, "Oregon": {CODE: "OR", REG: "https://secure.sos.state.or.us/orestar/vr/showVoterSearch.do?source=SOS", POLLS: "https://sos.oregon.gov/voting/Pages/drop-box-locator.aspx"}, "Pennsylvania": {CODE: "PA", REG: "https://www.pavoterservices.state.pa.us/Pages/VoterRegistrationStatus.aspx", POLLS: "https://www.pavoterservices.pa.gov/Pages/PollingPlaceInfo.aspx"}, "Puerto Rico": {CODE: "PR", REG: "http://consulta.ceepur.org/", REGDL: "http://ww2.ceepur.org/Home/EducacionElectoral", ABS: "http://ww2.ceepur.org/Home/SolicituddeVoto#VotoAusente", POLLS: "http://www.ceepur.org/directorio.htm"}, "Rhode Island": {CODE: "RI", REG: "https://vote.sos.ri.gov/Home/UpdateVoterRecord?ActiveFlag=0", POLLS: "https://vote.sos.ri.gov/Home/PollingPlaces?ActiveFlag=2"}, "South Carolina": {CODE: "SC", REG: "https://info.scvotes.sc.gov/eng/voterinquiry/VoterInformationRequest.aspx" "?PagMode=VoterInfo", POLLS: "https://info.scvotes.sc.gov/eng/voterinquiry/VoterInformationRequest.aspx" "?PageMode=VoterInfo"}, "South Dakota": {CODE: "SD", REG: "https://vip.sdsos.gov/viplogin.aspx", POLLS: "https://vip.sdsos.gov/viplogin.aspx"}, "Tennessee": {CODE: "TN", REG: "https://tnmap.tn.gov/voterlookup/", POLLS: "https://web.go-vote-tn.elections.tn.gov/"}, "Texas": {CODE: "TX", REG: "https://teamrv-mvp.sos.texas.gov/MVP/mvp.do", POLLS: "https://teamrv-mvp.sos.texas.gov/MVP/mvp.do"}, "Utah": {CODE: "UT", REG: "https://votesearch.utah.gov/voter-search/search/search-by-voter/voter-info", POLLS: "https://votesearch.utah.gov/voter-search/search/search-by-address/how-and-where-can-i-vote"}, "Vermont": {CODE: "VT", REG: "https://mvp.sec.state.vt.us/", POLLS: "https://mvp.sec.state.vt.us/"}, "Virginia": {CODE: "VA", REG: "https://vote.elections.virginia.gov/VoterInformation", POLLS: "https://www.elections.virginia.gov/casting-a-ballot/"}, "Washington": {CODE: "WA", REG: "https://www.sos.wa.gov/elections/myvote/", POLLS: "https://www.sos.wa.gov/elections/auditors/"}, "West Virginia": {CODE: "WV", REG: "https://apps.sos.wv.gov/elections/voter/", POLLS: "https://services.sos.wv.gov/Elections/Voter/FindMyPollingPlace"}, "Wisconsin": {CODE: "WI", REG: "https://myvote.wi.gov/en-US/RegisterToVote", POLLS: "https://myvote.wi.gov/en-US/FindMyPollingPlace"}, "Wyoming": {CODE: "WY", REG: "https://sos.wyo.gov/Elections/Docs/WYCountyClerks.pdf", POLLS: "https://soswy.state.wy.us/Elections/PollPlace/Default.aspx"} } # Now do some dynamic setup in the table for k, v in URLS_BY_STATE.items(): if ABS not in v: v[ABS] = absentee_ballot(k) if REGDL not in v: v[REGDL] = reg_deadline(k) if ABROAD not in v: v[ABROAD] = abroad(k)
python
from azure.mgmt.keyvault import KeyVaultManagementClient from azure.keyvault import KeyVaultClient from common_util import CommonUtil from credentials.credentials_provider import ResourceCredentialsProvider import logging as log from azure.mgmt.keyvault.v2016_10_01.models import AccessPolicyUpdateKind, VaultAccessPolicyProperties, \ AccessPolicyEntry, Permissions, KeyPermissions, SecretPermissions class KeyVaultUtil(CommonUtil): def __init__(self, credentialsProvider): isinstance(credentialsProvider, ResourceCredentialsProvider) super(KeyVaultUtil, self).__init__(credentialsProvider) self.__credentialsProvider = credentialsProvider def setKeyVaultPolicy(self): subscriptionList = self.getSubscriptions() for subscription in subscriptionList: subscriptionId = subscription.subscription_id keyVaultList = self.__listKeyVaults(subscriptionId) log.info("Found " + str(len(keyVaultList)) + " KeyVaults") for keyVault in keyVaultList: keyVaultClient = self.getKeyVaultManagementClient(subscriptionId) keyPermissionList = [KeyPermissions.list] secretPermissionList = [SecretPermissions.list] permissions = Permissions(keys=keyPermissionList, secrets=secretPermissionList) tenantId = self.__credentialsProvider.getConfig().getTenantId() servicePrincipalId = self.getServicePrincipalId() if servicePrincipalId == None: raise Exception("Error Fetching service Principal Id") appId = self.getAppId() if appId == None: raise Exception("Error Fetching service App Id") accessPolicyEntry = AccessPolicyEntry(tenant_id=tenantId, object_id=servicePrincipalId, application_id=None, permissions=permissions) vaultAccessProperties = VaultAccessPolicyProperties(access_policies=[accessPolicyEntry]) accessPolicyKind = AccessPolicyUpdateKind(AccessPolicyUpdateKind.add) accessPolicy = keyVaultClient.vaults.update_access_policy(keyVault.getResourceGroupName(), keyVault.getKeyVaultName(), accessPolicyKind, vaultAccessProperties) log.info("Assigned access policy permissions to KeyVault: " + keyVault.getKeyVaultName() + " Resource Group: " + keyVault.getResourceGroupName()) def __listKeyVaults(self, subscriptionId): keyVaultClient = KeyVaultManagementClient(self.__credentialsProvider.getManagementCredentials(), subscriptionId) keyVaultList = [] for keyVault in keyVaultClient.vaults.list(raw=True): keyVaultList.append(KeyVaultParsed(keyVault.id)) return keyVaultList class KeyVaultParsed(object): def __init__(self, id): self.__resourceGroup = id.split("/")[4]; self.__keyVaultName = id.split("/")[8]; def getResourceGroupName(self): return self.__resourceGroup def getKeyVaultName(self): return self.__keyVaultName
python
import numpy as np from numpy.linalg import norm from MeshFEM import sparse_matrices def preamble(obj, xeval, perturb, etype, fixedVars = []): if (xeval is None): xeval = obj.getVars() if (perturb is None): perturb = np.random.uniform(low=-1,high=1, size=obj.numVars()) if (etype is None): etype = obj.__class__.EnergyType.Full xold = obj.getVars() perturb = np.copy(perturb) perturb[fixedVars] = 0.0 return (xold, xeval, perturb, etype) def fdGrad(obj, fd_eps, xeval = None, perturb = None, etype = None, fixedVars = []): xold, xeval, perturb, etype = preamble(obj, xeval, perturb, etype, fixedVars) def evalAt(x): obj.setVars(x) val = obj.energy(etype) return val fd_delta_E = (evalAt(xeval + perturb * fd_eps) - evalAt(xeval - perturb * fd_eps)) / (2 * fd_eps) obj.setVars(xold) return fd_delta_E def validateGrad(obj, fd_eps = 1e-6, xeval = None, perturb = None, etype = None, fixedVars = []): xold, xeval, perturb, etype = preamble(obj, xeval, perturb, etype, fixedVars) obj.setVars(xeval) g = obj.gradient(etype) analytic_delta_E = g.dot(perturb) fd_delta_E = fdGrad(obj, fd_eps, xeval, perturb, etype, fixedVars) return (fd_delta_E, analytic_delta_E) def validateHessian(obj, fd_eps = 1e-6, xeval = None, perturb = None, etype = None, fixedVars = []): xold, xeval, perturb, etype = preamble(obj, xeval, perturb, etype, fixedVars) def gradAt(x): obj.setVars(x) val = obj.gradient(etype) return val obj.setVars(xeval) h = obj.hessian(etype) fd_delta_grad = (gradAt(xeval + perturb * fd_eps) - gradAt(xeval - perturb * fd_eps)) / (2 * fd_eps) analytic_delta_grad = h.apply(perturb) obj.setVars(xold) return (norm(analytic_delta_grad - fd_delta_grad) / norm(fd_delta_grad), fd_delta_grad, analytic_delta_grad) def gradConvergence(obj, perturb=None, energyType=None, fixedVars = []): epsilons = np.logspace(-9, -3, 100) errors = [] if (energyType is None): energyType = obj.EnergyType.Full if (perturb is None): perturb = np.random.uniform(-1, 1, size=obj.numVars()) for eps in epsilons: fd, an = validateGrad(obj, etype=energyType, perturb=perturb, fd_eps=eps, fixedVars = fixedVars) err = np.abs(an - fd) / np.abs(an) errors.append(err) return (epsilons, errors, an) def gradConvergencePlot(obj, perturb=None, energyType=None, fixedVars = []): from matplotlib import pyplot as plt eps, errors, ignore = gradConvergence(obj, perturb, energyType, fixedVars) plt.title('Directional derivative fd test for gradient') plt.ylabel('Relative error') plt.xlabel('Step size') plt.loglog(eps, errors) plt.grid() def hessConvergence(obj, perturb=None, energyType=None, fixedVars = []): epsilons = np.logspace(-9, -3, 100) errors = [] if (energyType is None): energyType = obj.EnergyType.Full if (perturb is None): perturb = np.random.uniform(-1, 1, size=obj.numVars()) for eps in epsilons: err, fd, an = validateHessian(obj, etype=energyType, perturb=perturb, fd_eps=eps, fixedVars = fixedVars) errors.append(err) return (epsilons, errors, an) def hessConvergencePlot(obj, perturb=None, energyType=None, fixedVars = []): from matplotlib import pyplot as plt eps, errors, ignore = hessConvergence(obj, perturb, energyType, fixedVars) plt.title('Directional derivative fd test for Hessian') plt.ylabel('Relative error') plt.xlabel('Step size') plt.loglog(eps, errors) plt.grid()
python
from functools import partial from importlib import import_module from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.utils.crypto import get_random_string generate_random_string = partial( get_random_string, length=50, allowed_chars='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' '0123456789!@#$%^&*(-_=+)') def hub_credentials(hub_url): """A callback that returns no credentials, for anonymous subscriptions. Meant to be overriden if developers need to authenticate with certain hubs""" return def get_hub_credentials(hub_url): creds_path = getattr(settings, 'PUSH_CREDENTIALS', 'django_push.subscriber.utils.hub_credentials') creds_path, creds_function = creds_path.rsplit('.', 1) creds_module = import_module(creds_path) return getattr(creds_module, creds_function)(hub_url) def get_domain(): if hasattr(settings, 'PUSH_DOMAIN'): return settings.PUSH_DOMAIN elif 'django.contrib.sites' in settings.INSTALLED_APPS: from django.contrib.sites.models import Site return Site.objects.get_current().domain raise ImproperlyConfigured( "Unable to deterermine the site's host. Either use " "django.contrib.sites and set SITE_ID in your settings or " "set PUSH_DOMAIN to your site's domain.")
python
from setuptools import setup from os import path # Read the contents of the README file cwd = path.abspath(path.dirname(__file__)) with open(path.join(cwd, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name="pysvglib", version="0.3.2", description="SVG drawing library", long_description=long_description, long_description_content_type='text/markdown', classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Natural Language :: English', 'Operating System :: OS Independent', 'Topic :: Multimedia :: Graphics', ], keywords='svg graphics', url='https://github.com/gbingersoll/pysvglib', author='Greg Ingersoll', author_email='[email protected]', license='MIT', packages=['svg'], extras_require={ 'dev': ['pytest', 'pycodestyle', 'setuptools', 'wheel'] } )
python
from argparse import ArgumentParser import numpy as np import py360convert import os import cv2 import os.path as osp from typing import Union from mmseg.apis import inference_segmentor, init_segmentor, show_result_pyplot, ret_result from mmseg.core.evaluation import get_palette from PIL import Image import mmcv from equilib import Equi2Equi def main(): parser = ArgumentParser() parser.add_argument('img', help='Image file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--palette', default='cityscapes', help='Color palette used for segmentation map') args = parser.parse_args() # build the model from a config file and a checkpoint file model = init_segmentor(args.config, args.checkpoint, device=args.device) res_width, res_height = 224, 224 #img_path = './demo/OFtest/000000.png' img_path = './demo/1013_take_009/000000.png' orig_img = np.array(Image.open(img_path)) height, width, _ = orig_img.shape # Initialize equi2equi equi2equi = Equi2Equi( w_out=width, h_out=height, sampling_method="default", mode="bilinear", ) def preprocess( img: Union[np.ndarray, Image.Image], is_cv2: bool = False, ) -> np.ndarray: """Preprocesses image""" if isinstance(img, np.ndarray) and is_cv2: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) if isinstance(img, Image.Image): # Sometimes images are RGBA img = img.convert("RGB") img = np.asarray(img) assert len(img.shape) == 3, "input must be dim=3" assert img.shape[-1] == 3, "input must be HWC" img = np.transpose(img, (2, 0, 1)) return img rot_45 = { "roll": 0, # "pitch": -np.pi / 6, # vertical "yaw": 0, # horizontal } rot_minus45 = { "roll": 0, # "pitch": np.pi / 6, # vertical "yaw": 0, # horizontal } for j in range(564, 1258): # test a single image #img_path = './demo/OFtest/{:06d}.png'.format(j) img_path = './demo/1013_take_009/{:06d}.png'.format(j) orig_img = np.array(Image.open(img_path)) OR_im = np.zeros((height, width)).astype(np.uint8) # scroll by 180 deg num_rot = 360 // 120 for i in range(num_rot): # scroll image im_scroll = np.roll(orig_img, width // num_rot * i , axis=1) src_img = Image.fromarray(im_scroll) src_img = preprocess(src_img) # change pitch img_45 = equi2equi( src=src_img, rot=rot_45, ) img_minus45 = equi2equi( src=src_img, rot=rot_minus45, ) src_img = np.transpose(src_img, (1, 2, 0)) src_img = Image.fromarray(src_img) img_45 = np.transpose(img_45, (1, 2, 0)) img_45 = Image.fromarray(img_45) img_minus45 = np.transpose(img_minus45, (1, 2, 0)) img_minus45 = Image.fromarray(img_minus45) src_img_path = os.getcwd() + "/demo/tmp/src_img.png" src_img.save(src_img_path) img_45_path = os.getcwd() + "/demo/tmp/img_45.png" img_45.save(img_45_path) img_minus45_path = os.getcwd() + "/demo/tmp/img_minus45.png" img_minus45.save(img_minus45_path) # segmentation result_src = inference_segmentor(model, src_img_path) result_45 = inference_segmentor(model, img_45_path) result_minus45 = inference_segmentor(model,img_minus45_path) src_img = ret_result(model, args.img, result_src, get_palette(args.palette)) img_45 = ret_result(model, args.img, result_45, get_palette(args.palette)) img_minus45 = ret_result(model, args.img, result_minus45, get_palette(args.palette)) tmp_src_img = Image.fromarray(src_img) tmp_img_45 = Image.fromarray(img_45) tmp_img_minus45 = Image.fromarray(img_minus45) src_img_path = os.getcwd() + "/demo/tmp/src_img_seg.png" tmp_src_img.save(src_img_path) img_45_path = os.getcwd() + "/demo/tmp/img_45_seg.png" tmp_img_45.save(img_45_path) img_minus45_path = os.getcwd() + "/demo/tmp/img_minus45_seg.png" tmp_img_minus45.save(img_minus45_path) img_45 = np.stack((img_45,) * 3, -1) img_45 = preprocess(img_45) #img_45 = np.transpose(img_45, (2, 0, 1)) img_minus45 = np.stack((img_minus45,) * 3, -1) img_minus45 = preprocess(img_minus45) #img_minus45 = np.transpose(img_minus45, (2, 0, 1)) # change pitch img_45 = equi2equi( src=img_45, rot=rot_minus45, ) img_minus45 = equi2equi( src=img_minus45, rot=rot_45, ) img_45 = np.transpose(img_45, (1, 2, 0)) img_minus45 = np.transpose(img_minus45, (1, 2, 0)) tmp_src_img = Image.fromarray(src_img) tmp_img_45 = Image.fromarray(img_45) tmp_img_minus45 = Image.fromarray(img_minus45) src_img_path = os.getcwd() + "/demo/tmp/src_img_seg_ori.png" tmp_src_img.save(src_img_path) img_45_path = os.getcwd() + "/demo/tmp/img_45_seg_ori.png" tmp_img_45.save(img_45_path) img_minus45_path = os.getcwd() + "/demo/tmp/img_minus45_seg_ori.png" tmp_img_minus45.save(img_minus45_path) src_img = np.roll(src_img, -width // num_rot * i, axis=1).astype(np.uint8) img_45 = np.roll(img_45, -width // num_rot * i, axis=1).astype(np.uint8)[:, :, 0] img_minus45 = np.roll(img_minus45, -width // num_rot * i, axis=1).astype(np.uint8)[:,:,0] external = np.zeros(src_img.shape).astype(src_img.dtype) retval, im_th = cv2.threshold(src_img, 127, 255, cv2.THRESH_OTSU) contours, hierarchy = cv2.findContours(im_th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: areas = [cv2.contourArea(c) for c in contours] max_index = np.argmax(areas) cv2.drawContours(external, contours, max_index, 255, -1) src_img = external if any(external[:, 0]) or any(external[:, -1]): external2 = external.copy() areas[max_index] = 0 max_index = np.argmax(areas) cv2.drawContours(external2, contours, max_index, 255, -1) if any(external2[:, 0]) and any(external2[:, -1]): src_img = external2 external = np.zeros(src_img.shape).astype(src_img.dtype) retval, im_th = cv2.threshold(img_45, 127, 255, cv2.THRESH_OTSU) contours, hierarchy = cv2.findContours(im_th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: areas = [cv2.contourArea(c) for c in contours] max_index = np.argmax(areas) cv2.drawContours(external, contours, max_index, 255, -1) img_45 = external if any(external[:, 0]) or any(external[:, -1]): external2 = external.copy() areas[max_index] = 0 max_index = np.argmax(areas) cv2.drawContours(external2, contours, max_index, 255, -1) if any(external2[:, 0]) and any(external2[:, -1]): img_45 = external2 external = np.zeros(src_img.shape).astype(src_img.dtype) retval, im_th = cv2.threshold(img_minus45, 127, 255, cv2.THRESH_OTSU) contours, hierarchy = cv2.findContours(im_th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: areas = [cv2.contourArea(c) for c in contours] max_index = np.argmax(areas) cv2.drawContours(external, contours, max_index, 255, -1) img_minus45 = external if any(external[:, 0]) or any(external[:, -1]): external2 = external.copy() areas[max_index] = 0 max_index = np.argmax(areas) cv2.drawContours(external2, contours, max_index, 255, -1) if any(external2[:, 0]) and any(external2[:, -1]): img_minus45 = external2 tmp_src_img = Image.fromarray(src_img) tmp_img_45 = Image.fromarray(img_45) tmp_img_minus45 = Image.fromarray(img_minus45) src_img_path = os.getcwd() + "/demo/tmp/src_img_sil.png" tmp_src_img.save(src_img_path) img_45_path = os.getcwd() + "/demo/tmp/img_45_seg_sil.png" tmp_img_45.save(img_45_path) img_minus45_path = os.getcwd() + "/demo/tmp/img_minus45_sil.png" tmp_img_minus45.save(img_minus45_path) OR_im = cv2.bitwise_or(OR_im, src_img) OR_im = cv2.bitwise_or(OR_im, img_45) OR_im = cv2.bitwise_or(OR_im, img_minus45) ORim_path = os.getcwd() + "/demo/tmp/OR_im.png" out = Image.fromarray(OR_im) out.save(ORim_path) external = np.zeros(OR_im.shape).astype(OR_im.dtype) retval, im_th = cv2.threshold(OR_im, 127, 255, cv2.THRESH_OTSU) contours, hierarchy = cv2.findContours(im_th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: areas = [cv2.contourArea(c) for c in contours] max_index = np.argmax(areas) cv2.drawContours(external, contours, max_index, 255, -1) OR_im = external if any(OR_im[:, 0]) or any(OR_im[:, -1]): external2 = OR_im.copy() areas[max_index] = 0 max_index = np.argmax(areas) cv2.drawContours(external2, contours, max_index, 255, -1) if any(external2[:, 0]) and any(external2[:, -1]): OR_im = external2 # save result out = Image.fromarray(OR_im) out.save('./demo/tmp/extract.png') #out.show() out2 = out.resize((res_width, res_height)) #out2.save('./demo/OFtest_equilib2/{:06d}.png'.format(j)) out2.save('./demo/1013_take_009_equilib3/{:06d}.png'.format(j)) #img2.save('./demo/1_e2c_col.png'.format(i)) print('{:06d}.png saved'.format(j)) if __name__ == '__main__': main()
python
import json import requests import logging import hashlib import time from fake_useragent import UserAgent from uuid import uuid4 from .camera import EzvizCamera # from pyezviz.camera import EzvizCamera COOKIE_NAME = "sessionId" CAMERA_DEVICE_CATEGORY = "IPC" API_BASE_URI = "https://apiieu.ezvizlife.com" API_ENDPOINT_LOGIN = "/v3/users/login" API_ENDPOINT_CLOUDDEVICES = "/api/cloud/v2/cloudDevices/getAll" API_ENDPOINT_PAGELIST = "/v3/userdevices/v1/devices/pagelist" API_ENDPOINT_DEVICES = "/v3/devices/" API_ENDPOINT_SWITCH_STATUS = '/api/device/switchStatus' API_ENDPOINT_PTZCONTROL = "/ptzControl" API_ENDPOINT_ALARM_SOUND = "/alarm/sound" API_ENDPOINT_DATA_REPORT = "/api/other/data/report" API_ENDPOINT_DETECTION_SENSIBILITY = "/api/device/configAlgorithm" API_ENDPOINT_DETECTION_SENSIBILITY_GET = "/api/device/queryAlgorithmConfig" LOGIN_URL = API_BASE_URI + API_ENDPOINT_LOGIN CLOUDDEVICES_URL = API_BASE_URI + API_ENDPOINT_CLOUDDEVICES DEVICES_URL = API_BASE_URI + API_ENDPOINT_DEVICES PAGELIST_URL = API_BASE_URI + API_ENDPOINT_PAGELIST DATA_REPORT_URL = API_BASE_URI + API_ENDPOINT_DATA_REPORT SWITCH_STATUS_URL = API_BASE_URI + API_ENDPOINT_SWITCH_STATUS DETECTION_SENSIBILITY_URL = API_BASE_URI + API_ENDPOINT_DETECTION_SENSIBILITY DETECTION_SENSIBILITY_GET_URL = API_BASE_URI + API_ENDPOINT_DETECTION_SENSIBILITY_GET DEFAULT_TIMEOUT = 10 MAX_RETRIES = 3 class PyEzvizError(Exception): pass class EzvizClient(object): def __init__(self, account, password, session=None, sessionId=None, timeout=None, cloud=None, connection=None): """Initialize the client object.""" self.account = account self.password = password # self._user_id = None # self._user_reference = None self._session = session self._sessionId = sessionId self._data = {} self._timeout = timeout self._CLOUD = cloud self._CONNECTION = connection def _login(self): """Login to Ezviz' API.""" # Ezviz API sends md5 of password m = hashlib.md5() m.update(self.password.encode('utf-8')) md5pass = m.hexdigest() payload = {"account": self.account, "password": md5pass, "featureCode": "92c579faa0902cbfcfcc4fc004ef67e7"} try: req = self._session.post(LOGIN_URL, data=payload, headers={"Content-Type": "application/x-www-form-urlencoded", "clientType": "1", "customNo": "1000001"}, timeout=self._timeout) except OSError: raise PyEzvizError("Can not login to API") if req.status_code == 400: raise PyEzvizError("Login error: Please check your username/password: %s ", str(req.text)) # let's parse the answer, session is in {.."loginSession":{"sessionId":"xxx...} try: response_json = req.json() sessionId = str(response_json["loginSession"]["sessionId"]) if not sessionId: raise PyEzvizError("Login error: Please check your username/password: %s ", str(req.text)) self._sessionId = sessionId except (OSError, json.decoder.JSONDecodeError) as e: raise PyEzvizError("Impossible to decode response: \nResponse was: [%s] %s", str(e), str(req.status_code), str(req.text)) return True def _get_pagelist(self, filter=None, json_key=None, max_retries=0): """Get data from pagelist API.""" if max_retries > MAX_RETRIES: raise PyEzvizError("Can't gather proper data. Max retries exceeded.") if filter == None: raise PyEzvizError("Trying to call get_pagelist without filter") try: req = self._session.get(PAGELIST_URL, params={'filter': filter}, headers={ 'sessionId': self._sessionId}, timeout=self._timeout) except OSError as e: raise PyEzvizError("Could not access Ezviz' API: " + str(e)) if req.status_code == 401: # session is wrong, need to relogin self.login() logging.info("Got 401, relogging (max retries: %s)",str(max_retries)) return self._get_pagelist(max_retries+1) if req.text is "": raise PyEzvizError("No data") try: json_output = req.json() except (OSError, json.decoder.JSONDecodeError) as e: raise PyEzvizError("Impossible to decode response: " + str(e) + "\nResponse was: " + str(req.text)) if json_key == None: json_result = json_output else: json_result = json_output[json_key] if not json_result: raise PyEzvizError("Impossible to load the devices, here is the returned response: %s ", str(req.text)) return json_result def _switch_status(self, serial, status_type, enable, max_retries=0): """Switch status on a device""" try: req = self._session.post(SWITCH_STATUS_URL, data={ 'sessionId': self._sessionId, 'enable': enable, 'serial': serial, 'channel': '0', 'netType' : 'WIFI', 'clientType': '1', 'type': status_type}, timeout=self._timeout) if req.status_code == 401: # session is wrong, need to relogin self.login() logging.info("Got 401, relogging (max retries: %s)",str(max_retries)) return self._switch_status(serial, type, enable, max_retries+1) response_json = req.json() if response_json['resultCode'] != '0': raise PyEzvizError("Could not set the switch, maybe a permission issue ?: Got %s : %s)",str(req.status_code), str(req.text)) return False except OSError as e: raise PyEzvizError("Could not access Ezviz' API: " + str(e)) return True def _switch_devices_privacy(self, enable=0): """Switch privacy status on ALL devices (batch)""" # enable=1 means privacy is ON # get all devices devices = self._get_devices() # foreach, launch a switchstatus for the proper serial for idx, device in enumerate(devices): serial = devices[idx]['serial'] self._switch_status(serial, TYPE_PRIVACY_MODE, enable) return True def load_cameras(self): """Load and return all cameras objects""" # get all devices devices = self.get_DEVICE() cameras = [] # foreach, launch a switchstatus for the proper serial for idx, device in enumerate(devices): if devices[idx]['deviceCategory'] == CAMERA_DEVICE_CATEGORY: camera = EzvizCamera(self, device['deviceSerial']) camera.load() cameras.append(camera.status()) return cameras def ptzControl(self, command, serial, action, speed=5, max_retries=0): """PTZ Control by API.""" if max_retries > MAX_RETRIES: raise PyEzvizError("Can't gather proper data. Max retries exceeded.") if command == None: raise PyEzvizError("Trying to call ptzControl without command") if action == None: raise PyEzvizError("Trying to call ptzControl without action") try: req = self._session.put(DEVICES_URL + serial + API_ENDPOINT_PTZCONTROL, data={'command': command, 'action': action, 'channelNo': "1", 'speed': speed, 'uuid': str(uuid4()), 'serial': serial}, headers={ 'sessionId': self._sessionId, 'clientType': "1"}, timeout=self._timeout) except OSError as e: raise PyEzvizError("Could not access Ezviz' API: " + str(e)) if req.status_code == 401: # session is wrong, need to re-log-in self.login() logging.info("Got 401, relogging (max retries: %s)",str(max_retries)) return self.ptzControl(max_retries+1) def login(self): """Set http session.""" if self._sessionId is None: self._session = requests.session() # adding fake user-agent header self._session.headers.update({'User-agent': str(UserAgent().random)}) return self._login() def data_report(self, serial, enable=1, max_retries=0): """Enable alarm notifications.""" if max_retries > MAX_RETRIES: raise PyEzvizError("Can't gather proper data. Max retries exceeded.") # operationType = 2 if disable, and 1 if enable operationType = 2 - int(enable) print(f"enable: {enable}, operationType: {operationType}") try: req = self._session.post(DATA_REPORT_URL, data={ 'clientType': '1', 'infoDetail': json.dumps({ "operationType" : int(operationType), "detail" : '0', "deviceSerial" : serial + ",2" }, separators=(',',':')), 'infoType': '3', 'netType': 'WIFI', 'reportData': None, 'requestType': '0', 'sessionId': self._sessionId }, timeout=self._timeout) except OSError as e: raise PyEzvizError("Could not access Ezviz' API: " + str(e)) if req.status_code == 401: # session is wrong, need to re-log-in self.login() logging.info("Got 401, relogging (max retries: %s)",str(max_retries)) return self.data_report(serial, enable, max_retries+1) return True # soundtype: 0 = normal, 1 = intensive, 2 = disabled ... don't ask me why... def detection_sensibility(self, serial, sensibility=3, max_retries=0): """Enable alarm notifications.""" if max_retries > MAX_RETRIES: raise PyEzvizError("Can't gather proper data. Max retries exceeded.") if sensibility not in [0,1,2,3,4,5,6]: raise PyEzvizError("Unproper sensibility (should be within 1 to 6).") try: req = self._session.post(DETECTION_SENSIBILITY_URL, data={ 'subSerial' : serial, 'type': '0', 'sessionId': self._sessionId, 'value': sensibility, }, timeout=self._timeout) except OSError as e: raise PyEzvizError("Could not access Ezviz' API: " + str(e)) if req.status_code == 401: # session is wrong, need to re-log-in self.login() logging.info("Got 401, relogging (max retries: %s)",str(max_retries)) return self.detection_sensibility(serial, enable, max_retries+1) return True def get_detection_sensibility(self, serial, max_retries=0): """Enable alarm notifications.""" if max_retries > MAX_RETRIES: raise PyEzvizError("Can't gather proper data. Max retries exceeded.") try: req = self._session.post(DETECTION_SENSIBILITY_GET_URL, data={ 'subSerial' : serial, 'sessionId': self._sessionId, 'clientType': 1 }, timeout=self._timeout) except OSError as e: raise PyEzvizError("Could not access Ezviz' API: " + str(e)) if req.status_code == 401: # session is wrong, need to re-log-in self.login() logging.info("Got 401, relogging (max retries: %s)",str(max_retries)) return self.get_detection_sensibility(serial, enable, max_retries+1) elif req.status_code != 200: raise PyEzvizError("Could not get detection sensibility: Got %s : %s)",str(req.status_code), str(req.text)) response_json = req.json() if response_json['resultCode'] != '0': # raise PyEzvizError("Could not get detection sensibility: Got %s : %s)",str(req.status_code), str(req.text)) return 'Unknown' else: return response_json['algorithmConfig']['algorithmList'][0]['value'] def alarm_sound(self, serial, soundType, enable=1, max_retries=0): """Enable alarm sound by API.""" if max_retries > MAX_RETRIES: raise PyEzvizError("Can't gather proper data. Max retries exceeded.") if soundType not in [0,1,2]: raise PyEzvizError("Invalid soundType, should be 0,1,2: " + str(soundType)) try: req = self._session.put(DEVICES_URL + serial + API_ENDPOINT_ALARM_SOUND, data={ 'enable': enable, 'soundType': soundType, 'voiceId': '0', 'deviceSerial': serial }, headers={ 'sessionId': self._sessionId}, timeout=self._timeout) except OSError as e: raise PyEzvizError("Could not access Ezviz' API: " + str(e)) if req.status_code == 401: # session is wrong, need to re-log-in self.login() logging.info("Got 401, relogging (max retries: %s)",str(max_retries)) return self.alarm_sound(serial, enable, soundType, max_retries+1) elif req.status_code != 200: logging.error("Got %s : %s)",str(req.status_code), str(req.text)) return True def switch_devices_privacy(self,enable=0): """Switch status on all devices.""" return self._switch_devices_privacy(enable) def switch_status(self, serial, status_type, enable=0): """Switch status of a device.""" return self._switch_status(serial, status_type, enable) def get_PAGE_LIST(self, max_retries=0): return self._get_pagelist(filter='CLOUD,TIME_PLAN,CONNECTION,SWITCH,STATUS,WIFI,STATUS_EXT,NODISTURB,P2P,TTS,KMS,HIDDNS', json_key=None) def get_DEVICE(self, max_retries=0): return self._get_pagelist(filter='CLOUD',json_key='deviceInfos') def get_CONNECTION(self, max_retries=0): return self._get_pagelist(filter='CONNECTION',json_key='connectionInfos') def get_STATUS(self, max_retries=0): return self._get_pagelist(filter='STATUS',json_key='statusInfos') def get_SWITCH(self, max_retries=0): return self._get_pagelist(filter='SWITCH',json_key='switchStatusInfos') def get_WIFI(self, max_retries=0): return self._get_pagelist(filter='WIFI',json_key='wifiInfos') def get_NODISTURB(self, max_retries=0): return self._get_pagelist(filter='NODISTURB',json_key='alarmNodisturbInfos') def get_P2P(self, max_retries=0): return self._get_pagelist(filter='P2P',json_key='p2pInfos') def get_KMS(self, max_retries=0): return self._get_pagelist(filter='KMS',json_key='kmsInfos') def get_TIME_PLAN(self, max_retries=0): return self._get_pagelist(filter='TIME_PLAN',json_key='timePlanInfos') def close_session(self): """Close current session.""" self._session.close() self._session = None
python
# coding: utf-8 import os import sh import logging import shutil import tempfile from unittest import TestCase from nose.tools import nottest class UncanningTest(TestCase): """ Let's try to uncan a new project and run tests to see everything is ok Estimated running time 260s""" def setUp(self): """ Prepare for tests """ self.tmp_dir_src = tempfile.mkdtemp(prefix='tinned_django') self.tmp_dir_env = tempfile.mkdtemp(prefix='tinned_django.env') def tearDown(self): """ Clean up dirs after myself """ shutil.rmtree(self.tmp_dir_src) shutil.rmtree(self.tmp_dir_env) @nottest def uncan_it(self): template_path = os.path.abspath('./tinned_django') managepy = sh.Command('django-admin.py') managepy('startproject', 'test_project', self.tmp_dir_src, '--extension', '.py,.gitignore', '--template', template_path) @nottest def create_virtualenv(self): sh.virtualenv(self.tmp_dir_env, python='python2.7') pip = sh.Command(os.path.join(self.tmp_dir_env, 'bin/pip')) reqs_file = os.path.join(self.tmp_dir_src, 'requirements.txt') print('Installing virtualenv...') for line in pip.install(requirement=reqs_file, _iter=True): print(line) @nottest def launch_project_tests(self): sh.cd(self.tmp_dir_src) python = sh.Command(os.path.join(self.tmp_dir_env, 'bin/python')) print(python(os.path.join(self.tmp_dir_src, 'runtests.py'), verbosity=2)) def test_sanity(self): """ Let's try to uncan our project """ logging.basicConfig() self.uncan_it() test_templating_path = os.path.join(self.tmp_dir_src, 'manage.py') test_gitignore_path = os.path.join(self.tmp_dir_src, '.gitignore') self.assert_('test_project.settings' in open(test_templating_path).read()) self.assert_('/test_project/local_settings.py' in open(test_gitignore_path).read()) self.create_virtualenv() try: self.launch_project_tests() except sh.ErrorReturnCode as e: print(e.stderr) exit(1) self.assert_('No error code raised')
python
""" Solution to https://adventofcode.com/2018/day/4 """ from pathlib import Path # path from the root of the project INPUT_FILE = Path.cwd() / "2018" / "dec4.txt" def part1() -> int: sorted_lines = sorted(line for line in INPUT_FILE.read_text().split("\n") if line) if __name__ == "__main__": print(part1())
python
# -*- coding: utf-8 -*- from numpy import cos, exp, sin from ....Classes.Arc1 import Arc1 from ....Classes.Segment import Segment from ....Classes.SurfLine import SurfLine def build_geometry(self, alpha=0, delta=0, is_simplified=False): """Compute the curve (Segment) needed to plot the Hole. The ending point of a curve is the starting point of the next curve in the list Parameters ---------- self : HoleM53 A HoleM53 object alpha : float Angle to rotate the slot (Default value = 0) [rad] delta : complex Complex to translate the slot (Default value = 0) is_simplified : bool True to avoid line superposition Returns ------- surf_list: list List of Magnet Surface and Air Surface on the slot """ if self.get_is_stator(): # check if the slot is on the stator st = "_Stator" else: st = "_Rotor" # Get all the points point_dict = self._comp_point_coordinate() Z1 = point_dict["Z1"] Z2 = point_dict["Z2"] Z3 = point_dict["Z3"] Z4 = point_dict["Z4"] Z5 = point_dict["Z5"] Z6 = point_dict["Z6"] Z7 = point_dict["Z7"] Z8 = point_dict["Z8"] Z9 = point_dict["Z9"] Z10 = point_dict["Z10"] Z11 = point_dict["Z11"] Z1s = point_dict["Z1s"] Z2s = point_dict["Z2s"] Z3s = point_dict["Z3s"] Z4s = point_dict["Z4s"] Z5s = point_dict["Z5s"] Z6s = point_dict["Z6s"] Z7s = point_dict["Z7s"] Z8s = point_dict["Z8s"] Z9s = point_dict["Z9s"] Z10s = point_dict["Z10s"] Z11s = point_dict["Z11s"] Rext = self.get_Rext() # Air surface with magnet_0 curve_list = list() curve_list.append(Segment(Z1, Z2)) curve_list.append(Segment(Z2, Z10)) curve_list.append(Segment(Z10, Z11)) curve_list.append( Arc1(begin=Z11, end=Z1, radius=-Rext + self.H1, is_trigo_direction=False) ) point_ref = (Z1 + Z2 + Z10 + Z11) / 4 S1 = SurfLine(line_list=curve_list, label="Hole" + st, point_ref=point_ref) # magnet_0 surface curve_list = list() if is_simplified: curve_list.append(Segment(Z5, Z9)) curve_list.append(Segment(Z2, Z10)) else: curve_list.append(Segment(Z3, Z4)) curve_list.append(Segment(Z4, Z9)) curve_list.append(Segment(Z9, Z10)) curve_list.append(Segment(Z10, Z3)) point_ref = (Z3 + Z4 + Z9 + Z10) / 4 # Defining type of magnetization of the magnet if self.magnet_0: if self.magnet_0.type_magnetization == 0: type_mag = "_Radial" else: type_mag = "_Parallel" else: type_mag = "None" magnet_label = "HoleMagnet" + st + type_mag + "_N_R0_T0_S0" S2 = SurfLine(line_list=curve_list, label=magnet_label, point_ref=point_ref) # Air suface with magnet_0 and W1 > 0 curve_list = list() if self.W2 > 0: curve_list.append(Segment(Z5, Z6)) curve_list.append(Segment(Z6, Z7)) curve_list.append(Segment(Z7, Z8)) if self.W2 > 0: curve_list.append(Segment(Z8, Z9)) curve_list.append(Segment(Z9, Z5)) point_ref = (Z5 + Z6 + Z7 + Z8 + Z9) / 5 else: curve_list.append(Segment(Z8, Z6)) point_ref = (Z6 + Z7 + Z8) / 3 S3 = SurfLine(line_list=curve_list, label="Hole" + st, point_ref=point_ref) # Air surface with magnet_1 curve_list = list() curve_list.append(Segment(Z1s, Z2s)) curve_list.append(Segment(Z2s, Z10s)) curve_list.append(Segment(Z10s, Z11s)) curve_list.append(Arc1(Z11s, Z1s, Rext - self.H1, is_trigo_direction=True)) point_ref = (Z1s + Z2s + Z10s + Z11s) / 4 S4 = SurfLine(line_list=curve_list, label="Hole" + st, point_ref=point_ref) # magnet_1 surface curve_list = list() if is_simplified: curve_list.append(Segment(Z5s, Z9s)) curve_list.append(Segment(Z2s, Z10s)) else: curve_list.append(Segment(Z3s, Z4s)) curve_list.append(Segment(Z4s, Z9s)) curve_list.append(Segment(Z9s, Z10s)) curve_list.append(Segment(Z10s, Z3s)) point_ref = (Z3s + Z4s + Z9s + Z10s) / 4 # Defining type of magnetization of the magnet if self.magnet_1: if self.magnet_1.type_magnetization == 0: type_mag = "_Radial" else: type_mag = "_Parallel" else: type_mag = "None" magnet_label = "HoleMagnet" + st + type_mag + "_N_R0_T1_S0" S5 = SurfLine(line_list=curve_list, label=magnet_label, point_ref=point_ref) # Air suface with magnet_1 and W1 > 0 curve_list = list() if self.W2 > 0: curve_list.append(Segment(Z5s, Z6s)) curve_list.append(Segment(Z6s, Z7s)) curve_list.append(Segment(Z7s, Z8s)) if self.W2 > 0: curve_list.append(Segment(Z8s, Z9s)) curve_list.append(Segment(Z9s, Z5s)) point_ref = (Z5s + Z6s + Z7s + Z8s + Z9s) / 5 else: curve_list.append(Segment(Z8s, Z6s)) point_ref = (Z6s + Z7s + Z8s) / 3 S6 = SurfLine(line_list=curve_list, label="Hole" + st, point_ref=point_ref) # Air with both magnet and W1 = 0 curve_list = list() if self.W2 > 0: curve_list.append(Segment(Z5, Z6)) curve_list.append(Segment(Z6, Z6s)) if self.W2 > 0: curve_list.append(Segment(Z6s, Z5s)) curve_list.append(Segment(Z5s, Z9s)) if self.W2 > 0: curve_list.append(Segment(Z9s, Z8s)) curve_list.append(Segment(Z8s, Z9)) curve_list.append(Segment(Z9, Z5)) point_ref = (Z6 + Z6s + Z8) / 3 S7 = SurfLine(line_list=curve_list, label="Hole" + st, point_ref=point_ref) # first hole without magnet_0 and W1 > 0 curve_list = list() curve_list.append(Segment(Z1, Z2)) if self.H3 > 0: curve_list.append(Segment(Z2, Z3)) curve_list.append(Segment(Z3, Z4)) if self.H3 > 0: curve_list.append(Segment(Z4, Z5)) if self.W2 > 0: curve_list.append(Segment(Z5, Z6)) curve_list.append(Segment(Z6, Z7)) curve_list.append(Segment(Z7, Z8)) curve_list.append(Segment(Z8, Z11)) curve_list.append(Arc1(Z11, Z1, -Rext + self.H1, is_trigo_direction=False)) point_ref = (Z3 + Z4 + Z9 + Z10) / 4 S8 = SurfLine(line_list=curve_list, label="Hole" + st, point_ref=point_ref) # second hole without magnet_1 and W1 > 0 curve_list = list() curve_list.append(Segment(Z1s, Z2s)) if self.H3 > 0: curve_list.append(Segment(Z2s, Z3s)) curve_list.append(Segment(Z3s, Z4s)) if self.H3 > 0: curve_list.append(Segment(Z4s, Z5s)) if self.W2 > 0: curve_list.append(Segment(Z5s, Z6s)) curve_list.append(Segment(Z6s, Z7s)) curve_list.append(Segment(Z7s, Z8s)) curve_list.append(Segment(Z8s, Z11s)) curve_list.append(Arc1(Z11s, Z1s, -Rext + self.H1, is_trigo_direction=False)) point_ref = (Z3s + Z4s + Z9s + Z10s) / 4 S9 = SurfLine(line_list=curve_list, label="Hole" + st, point_ref=point_ref) # No magnet_1 and W1 = 0 curve_list = list() curve_list.append(Segment(Z1s, Z2s)) if self.H3 > 0: curve_list.append(Segment(Z2s, Z3s)) curve_list.append(Segment(Z3s, Z4s)) if self.H3 > 0: curve_list.append(Segment(Z4s, Z5s)) if self.W2 > 0: curve_list.append(Segment(Z5s, Z6s)) curve_list.append(Segment(Z6s, Z6)) if self.W2 > 0: curve_list.append(Segment(Z6, Z5)) curve_list.append(Segment(Z5, Z9)) if self.W2 > 0: curve_list.append(Segment(Z9, Z8)) curve_list.append(Segment(Z8s, Z11s)) curve_list.append(Arc1(Z11s, Z1s, -Rext + self.H1, is_trigo_direction=False)) point_ref = (Z3s + Z4s + Z9s + Z10s) / 4 S10 = SurfLine(line_list=curve_list, label="Hole" + st, point_ref=point_ref) # No magnet_0 and W1 = 0 curve_list = list() curve_list.append(Segment(Z1, Z2)) if self.H3 > 0: curve_list.append(Segment(Z2, Z3)) curve_list.append(Segment(Z3, Z4)) if self.H3 > 0: curve_list.append(Segment(Z4, Z5)) if self.W2 > 0: curve_list.append(Segment(Z5, Z6)) curve_list.append(Segment(Z6, Z6s)) if self.W2 > 0: curve_list.append(Segment(Z6s, Z5s)) curve_list.append(Segment(Z5s, Z9s)) if self.W2 > 0: curve_list.append(Segment(Z9s, Z8s)) curve_list.append(Segment(Z8, Z11)) curve_list.append(Arc1(Z11, Z1, -Rext + self.H1, is_trigo_direction=False)) point_ref = (Z3 + Z4 + Z9 + Z10) / 4 S11 = SurfLine(line_list=curve_list, label="Hole" + st, point_ref=point_ref) # No magnet and W1 = 0 curve_list = list() curve_list.append(Arc1(Z1, Z11, Rext - self.H1, is_trigo_direction=True)) curve_list.append(Segment(Z11, Z8)) curve_list.append(Segment(Z8, Z11s)) curve_list.append(Arc1(Z11s, Z1s, Rext - self.H1, is_trigo_direction=True)) curve_list.append(Segment(Z1s, Z2s)) if self.H3 > 0: curve_list.append(Segment(Z2s, Z3s)) curve_list.append(Segment(Z3s, Z4s)) if self.H3 > 0: curve_list.append(Segment(Z4s, Z5s)) if self.W2 > 0: curve_list.append(Segment(Z5s, Z6s)) curve_list.append(Segment(Z6s, Z6)) if self.W2 > 0: curve_list.append(Segment(Z6, Z5)) if self.H3 > 0: curve_list.append(Segment(Z5, Z4)) curve_list.append(Segment(Z4, Z3)) if self.H3 > 0: curve_list.append(Segment(Z3, Z2)) curve_list.append(Segment(Z2, Z1)) point_ref = (Z6 + Z8 + Z6s) / 3 S12 = SurfLine(line_list=curve_list, label="Hole" + st, point_ref=point_ref) # Create the surface list by selecting the correct ones if self.magnet_0 and self.magnet_1 and self.W1 > 0: S1.label = S1.label + "_R0_T0_S0" # Hole S3.label = S3.label + "_R0_T1_S0" # Hole S6.label = S6.label + "_R0_T2_S0" # Hole S4.label = S4.label + "_R0_T3_S0" # Hole surf_list = [S1, S2, S3, S6, S5, S4] elif self.magnet_0 and self.magnet_1 and self.W1 == 0: S1.label = S1.label + "_R0_T0_S0" # Hole S7.label = S7.label + "_R0_T1_S0" # Hole S4.label = S4.label + "_R0_T2_S0" # Hole surf_list = [S1, S2, S7, S5, S4] elif self.magnet_0 and not self.magnet_1 and self.W1 > 0: S1.label = S1.label + "_R0_T0_S0" # Hole S3.label = S3.label + "_R0_T1_S0" # Hole S9.label = S9.label + "_R0_T2_S0" # Hole surf_list = [S1, S2, S3, S9] elif self.magnet_0 and not self.magnet_1 and self.W1 == 0: S1.label = S1.label + "_R0_T0_S0" # Hole S10.label = S10.label + "_R0_T1_S0" # Hole surf_list = [S1, S2, S10] elif not self.magnet_0 and self.magnet_1 and self.W1 > 0: S8.label = S8.label + "_R0_T0_S0" # Hole S6.label = S6.label + "_R0_T1_S0" # Hole S4.label = S4.label + "_R0_T2_S0" # Hole surf_list = [S8, S6, S5, S4] elif not self.magnet_0 and self.magnet_1 and self.W1 == 0: S11.label = S11.label + "_R0_T0_S0" # Hole S4.label = S4.label + "_R0_T2_S0" # Hole surf_list = [S11, S5, S4] elif not self.magnet_0 and not self.magnet_1 and self.W1 > 0: S8.label = S8.label + "_R0_T0_S0" # Hole S9.label = S9.label + "_R0_T1_S0" # Hole surf_list = [S8, S9] elif not self.magnet_0 and not self.magnet_1 and self.W1 == 0: S12.label = S12.label + "_R0_T0_S0" # Hole surf_list = [S12] # Apply the transformation for surf in surf_list: surf.rotate(alpha) surf.translate(delta) return surf_list
python
import pydantic import os import yaml import re import typing @pydantic.dataclasses.dataclass(frozen=True, order=True) class RegexTestCase: text: pydantic.constr() matches: typing.Optional[typing.List[str]] = None def run(self, regex): """ evaluate the test case against the pattern """ actual = regex.match(self.text) link = regex.get_regexr_debug_link() msg = f"{self.text} match of {regex.pattern} != {self.matches}: {link}" if self.matches is None: assert actual is None, msg elif len(self.matches) == 1: assert self.matches[0] == actual.group(0), msg else: for i in range(len(self.matches)): assert self.matches[i] == actual.group(i + 1), msg @pydantic.dataclasses.dataclass() class RegularExpression: pattern: pydantic.constr(min_length=2) description: pydantic.constr(min_length=3) test_cases: typing.List[RegexTestCase] @classmethod def from_yaml(cls, expression_name: str, folder: str = None): environment_path = os.environ.get("SAFE_REGEX_PATH") if folder: working_folder = folder elif environment_path: working_folder = environment_path else: working_folder = os.getcwd() file_path = os.path.join(working_folder, f"{expression_name}.re.yaml") with open(file_path, "r") as yaml_file: yaml_data = yaml.safe_load(yaml_file) return cls(**yaml_data) def __post_init_post_parse__(self): self.regex = re.compile(self.pattern) self.flags = self.regex.flags self.groups = self.regex.groups self.groupindex = self.regex.groupindex class Config: extra = "forbid" def test(self): for test_case in self.test_cases: test_case.run(self) def get_regexr_debug_link(self) -> str: import urllib.parse match = [tc.text for tc in self.test_cases if tc.matches is not None] not_match = [tc.text for tc in self.test_cases if tc.matches is None] tests = "These should match\n{}\nThese should not match\n{}".format( "\n".join(sorted(match)), "\n".join(sorted(not_match)), ) params = {"expression": f"/{self.pattern}/gms", "text": tests} encoded_params = urllib.parse.urlencode(params) return f"https://regexr.com/?{encoded_params}" """ pass through to re.Pattern """ def search(self, *args, **kwargs): return self.regex.search(*args, **kwargs) def match(self, *args, **kwargs): return self.regex.match(*args, **kwargs) def fullmatch(self, *args, **kwargs): return self.regex.fullmatch(*args, **kwargs) def split(self, *args, **kwargs): return self.regex.split(*args, **kwargs) def findall(self, *args, **kwargs): return self.regex.findall(*args, **kwargs) def finditer(self, *args, **kwargs): return self.regex.finditer(*args, **kwargs) def sub(self, *args, **kwargs): return self.regex.sub(*args, **kwargs) def subn(self, *args, **kwargs): return self.regex.subn(*args, **kwargs)
python
#!/usr/bin/env python3 __author__ = "Leon Wetzel" __copyright__ = "Copyright 2021, Leon Wetzel" __credits__ = ["Leon Wetzel"] __license__ = "MIT" __version__ = "1.0.1" __maintainer__ = "Leon Wetzel" __email__ = "[email protected]" __status__ = "Production" import praw from nltk import sent_tokenize def main(): with open("reddit_secret.txt", "r", encoding='utf-8') as F: secret = F.read() with open("reddit_id.txt", "r", encoding='utf-8') as F: identifier = F.read() with open("reddit_user_id.txt", "r", encoding='utf-8') as F: user_id = F.read() reddit = praw.Reddit( client_id=identifier, client_secret=secret, user_agent="Ashleigh Dev Team", ) subject = reddit.redditor(name=user_id) comments = [comment.body for comment in subject.comments.new(limit=None)] sentences_per_comment = [sent_tokenize(comment) for comment in comments] sentences= [comment.replace("\n", "").strip() for sentence in sentences_per_comment for comment in sentence] with open("quips.txt", "w", encoding='utf-8') as F: for sentence in sentences: F.write(f"{sentence}\n") if __name__ == '__main__': main()
python
# coding: utf-8 # # Download TCGA Pan-Cancer Datasets from the UCSC Xena Browser # # This notebook downloads TCGA datasets for Project Cognoma. The file contents (text) remains unmodified, but files are given extensions and bzip2 compressed. # # [See here](https://genome-cancer.soe.ucsc.edu/proj/site/xena/datapages/?cohort=TCGA%20Pan-Cancer%20%28PANCAN%29 "Xena: cohort: TCGA Pan-Cancer (PANCAN)") for all TCGA Pan-Cancer datasets on Xena. # In[1]: import os import bz2 from urllib.request import urlretrieve # In[2]: def bzip2_compress(path, keep=False): """ Compress a file using bzip2 compression. Designed to mirror the functionality of the `bzip2 --compress $PATH` shell command. `keep` specifies whether to remove the uncompressed file. """ with open(path, 'rb') as reader, bz2.open(path + '.bz2', 'wb') as writer: writer.writelines(reader) if not keep: os.remove(path) # Documentation for the TCGA Pan-Cancer files from the Xena browser: # # + [`HiSeqV2`](https://genome-cancer.soe.ucsc.edu/proj/site/xena/datapages/?dataset=TCGA.PANCAN.sampleMap/HiSeqV2&host=https://tcga.xenahubs.net) # + [`PANCAN_clinicalMatrix`](https://genome-cancer.soe.ucsc.edu/proj/site/xena/datapages/?dataset=TCGA.PANCAN.sampleMap/PANCAN_clinicalMatrix&host=https://tcga.xenahubs.net) # + [`PANCAN_mutation`](https://genome-cancer.soe.ucsc.edu/proj/site/xena/datapages/?dataset=TCGA.PANCAN.sampleMap/PANCAN_mutation&host=https://tcga.xenahubs.net) # In[3]: base_url = 'https://tcga.xenahubs.net/download/TCGA.PANCAN.sampleMap/' names = [ 'PANCAN_clinicalMatrix', 'PANCAN_mutation', 'HiSeqV2', ] # In[4]: # Download metadata for name in names: url = base_url + name + '.json' path = os.path.join('download', name + '.json') urlretrieve(url, path) # In[5]: # Download data for name in names: url = base_url + name path = os.path.join('download', name + '.tsv') urlretrieve(url, path) bzip2_compress(path)
python
def palindromeRearranging(inputString): characters = {} error_count = 0 for character in inputString: if character not in characters: characters[character] = 1 else: characters[character] += 1 print(characters.values()) for value in characters.values(): print(value % 2) if value % 2 != 0: error_count += 1 return error_count <= 1 print(palindromeRearranging("aaabb"))
python
from .mock_plugin import MockPlugin __all__ = ['mock_plugin']
python
# encoding: utf-8 import os.path as osp from .bases import BaseImageDataset class target_test(BaseImageDataset): """ target_training: only constains camera ID, no class ID information Dataset statistics: """ dataset_dir = 'target_test' def __init__(self, root='./example/data/challenge_datasets', verbose=True, **kwargs): super(target_test, self).__init__() self.dataset_dir = osp.join(root, self.dataset_dir) self.query_dir = osp.join(self.dataset_dir, 'image_query/') self.gallery_dir = osp.join(self.dataset_dir, 'image_gallery/') self._check_before_run() self.query = self._process_dir(self.query_dir, 'index_test_query.txt') self.gallery = self._process_dir(self.gallery_dir, 'index_test_gallery.txt') if verbose: print("=> target_validation loaded") self.print_dataset_statistics_validation(self.query, self.gallery) def _check_before_run(self): """Check if all files are available before going deeper""" if not osp.exists(self.dataset_dir): raise RuntimeError("'{}' is not available".format(self.dataset_dir)) if not osp.exists(self.query_dir): raise RuntimeError("'{}' is not available".format(self.query_dir)) if not osp.exists(self.gallery_dir): raise RuntimeError("'{}' is not available".format(self.gallery_dir)) def _process_dir(self, dir_path, images_doc): image_list = osp.join(self.dataset_dir, images_doc) info = open(image_list).readlines() # image_name, image_id dataset = [] for i in range(len(info)): element = info[i] image_name, image_id = element.split(' ')[0], element.split(' ')[1] pid = 0 # target test has no lables, set ID 0 for all images dataset.append((osp.join(dir_path, image_name), pid, image_id)) return dataset
python
#!/usr/bin/python from bs4 import BeautifulSoup import urllib2 import csv import codecs linksList = [] #f = csv.writer(open("worksURI.csv", "w")) #f.writerow(["Name", "Link"]) f = codecs.open("alllinkstrial.txt", encoding='utf-8', mode='w+') #'http://www.isfdb.org/cgi-bin/ea.cgi?12578 ', target_url=['http://www.isfdb.org/cgi-bin/ea.cgi?48861'] for thing in target_url: code = urllib2.urlopen(thing) soup = BeautifulSoup(code.read()) #this finds all html tags with <a> and a href value, so all the links. for link in soup.find_all('a', href=True): names = link.contents[0] fullLink = link.attrs['href'] #this sets the links as rows and writes them to the text file row=names+","+fullLink+"\n" f.write(row)
python
# -*- coding: utf-8 -*- """ Created on Mon Dec 16 21:11:25 2019 @author: Jorge """ import tkinter as tk from tkinter import ttk import crearcapasconv from threading import Thread import sys from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from matplotlib.figure import Figure from tkinter import filedialog as fd from tkinter import messagebox as mb import sklearn import CNN import menu class Display(tk.Frame): def __init__(self,parent=0): tk.Frame.__init__(self,parent) self.output = tk.Text(self, width=80, height=15) self.output.pack(padx = 30, pady = 5,) sys.stdout = self self.pack() def flush(self): pass def write(self, txt): self.output.insert(tk.END,str(txt)) self.output.see("end") self.update_idletasks() #Función que crea una ventana para introducir los parametros necesarios para crear una red convolucional def Ventana_convolucional(ventana_seleccion,X_train,Y_train,X_test,Y_test,ventana_inicio): ventana_convolucion = tk.Toplevel(ventana_seleccion) ventana_convolucion.geometry('725x600+500+200') #Insertamos menu menu.menu(ventana_convolucion,ventana_inicio) #Escondemos ventana anterior ventana_seleccion.withdraw() #título labeltitulo = ttk.Label(ventana_convolucion,text = "Parámetros necesarios para la red Convolucional", foreground = "#054FAA",font=("Arial Bold", 15)) labeltitulo.pack(pady=10) lframe = ttk.Frame(ventana_convolucion) lframe.pack() #------------------------ entrada de datos --------------------------------- #Tamaño del lote tamlot = tk.IntVar() lbtamlote = ttk.Label(lframe,text = "Tamaño lote: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbtamlote.grid(column=0, row=0 ,pady=5,sticky=tk.W) etamlot = ttk.Entry(lframe,width=5, textvariable = tamlot) etamlot.grid(column=1, row=0,pady=5,sticky=tk.E) #Optimizador opt =tk.StringVar() lbopt = ttk.Label(lframe, text="Optimizador: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbopt.grid(column=0, row=1,pady=5,sticky=tk.W) cbopt=ttk.Combobox(lframe,width=9,state="readonly",textvariable = opt) cbopt["values"] = ["SGD", "RMSprop","Adam","Adagrad"] cbopt.grid(column = 1 ,row = 1,pady=5,columnspan=2) cbopt.current(0) #Proporción de validación pv = tk.DoubleVar() pv.set(0.2) lbpv = ttk.Label(lframe,text = "Proporción de Validación :", foreground = "#054FAA",font=("Arial Bold", 12)) lbpv.grid(column=0, row=2 ,pady=5,sticky=tk.W) epv = ttk.Entry(lframe,width=5, textvariable = pv) epv.grid(column=1, row=2,pady=5,sticky=tk.E) #Número de capas convolucionales ncon = tk.IntVar() lbncon = ttk.Label(lframe,text = "Número capas Convolucionales :", foreground = "#054FAA",font=("Arial Bold", 12)) lbncon.grid(column=0, row=3 ,pady=5,sticky=tk.W) encon = ttk.Entry(lframe,width=5, textvariable = ncon) encon.grid(column=1, row=3,pady=5,sticky=tk.E) #Número de capas completamente conectadas ncfc = tk.IntVar() lbncfc = ttk.Label(lframe,text = "Número capas completamente conectadas :", foreground = "#054FAA",font=("Arial Bold", 12)) lbncfc.grid(column=0, row=4 ,pady=5,sticky=tk.W) encfc = ttk.Entry(lframe,width=5, textvariable = ncfc) encfc.grid(column=1, row=4,pady=5,sticky=tk.E) #Función Loss fl =tk.StringVar() lbfl = ttk.Label(lframe, text="Función Loss: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbfl.grid(column=0, row=5,pady=5,sticky=tk.W) cbfl=ttk.Combobox(lframe,width=21,state="readonly",textvariable = fl) cbfl["values"] = ["kullback_leibler_divergence","mean_squared_error", "categorical_hinge", "categorical_crossentropy","binary_crossentropy","poisson","cosine_proximity"] cbfl.grid(column = 1 ,row = 5,pady=5,columnspan=2,sticky=tk.E) cbfl.current(3) #Métodos de parada labeltitulo1 = ttk.Label(ventana_convolucion,text = "Método de parada", foreground = "#054FAA",font=("Arial Bold", 15)) labeltitulo1.pack(pady=10) lframe1 = ttk.Frame(ventana_convolucion) lframe1.pack() mp=tk.IntVar() bat1= ttk.Radiobutton(lframe1, value=0,variable=mp) bat1.grid(column=0, row=0) #Número de iteraciones antes de la parada nui=tk.IntVar() lbnui = ttk.Label(lframe1, text="Número de iteraciones: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbnui.grid(column=1, row=0,pady=5,sticky=tk.W) enui = ttk.Entry(lframe1,width=5, textvariable = nui) enui.grid(column=2, row=0,pady=5,sticky=tk.E) bat2 = ttk.Radiobutton(lframe1, value=1,variable=mp) bat2.grid(column=0, row=1) lbparada = ttk.Label(lframe1, text="Parada temprana: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbparada.grid(column = 1, row = 1,sticky=tk.W ) #Parámetro a controlar para la parada lbcon = ttk.Label(lframe1, text=" Parámetro a controlar: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbcon.grid(column = 1, row = 2,pady=5,sticky=tk.W ) con =tk.StringVar() cbcon=ttk.Combobox(lframe1,width=9,state="readonly",textvariable = con) cbcon["values"] = ["loss","val_loss", "acc","val_acc"] cbcon.grid(column = 2 ,row = 2,pady=5,sticky=tk.E) cbcon.current(0) #Delta mínimo delt =tk.DoubleVar() delt.set(0.001) lbdelt = ttk.Label(lframe1, text=" Delta min: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbdelt.grid(column=1, row=3,pady=5,sticky=tk.W) edelt = ttk.Entry(lframe1,width=5, textvariable = delt) edelt.grid(column=2, row=3,pady=5,sticky=tk.E) #Paciencia antes de parar pat =tk.IntVar() pat.set(3) lbpat = ttk.Label(lframe1, text=" Paciencia: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbpat.grid(column=1, row=4,pady=5,sticky=tk.W) epat = ttk.Entry(lframe1,width=5, textvariable = pat) epat.grid(column=2, row=4,pady=5,sticky=tk.E) #Función que define el modelo def crearmodelo(): global NO,AC,BA,DR,NF,TF,RE,PAS,PO,TAMPOL,PASPOL,ACON,DRC,numero_capas_conv,numero_capas_fc numero_capas_conv = int(ncon.get()) numero_capas_fc = int(ncfc.get()) NF,TF,RE,PAS,PO,TAMPOL,PASPOL,ACON,DRC,NO,AC,BA,DR = crearcapasconv.capas(numero_capas_conv, numero_capas_fc, ventana_convolucion) btnmodelo = ttk.Button(ventana_convolucion, text = "Crear modelo",style='my.TButton', command=crearmodelo) btnmodelo.pack(pady=40) lframe2 = ttk.Frame(ventana_convolucion) lframe2.pack(side= "bottom") #Función que permite entrenar la red convolucional def entrenar(): lote = tamlot.get() optimizador = opt.get() prop_val = pv.get() numero_capas_convolucionales = int(ncon.get()) numero_capas_fullcon = int(ncfc.get()) loss = fl.get() parada = mp.get() iteraciones = nui.get() control = con.get() delta = delt.get() paciencia = pat.get() #Excepciones if lote == 0: mb.showerror("Error", "Variable tamaño del lote = 0 ") return if prop_val == 0: mb.showerror("Error", "El algoritmo necesita una parte del conjunto de entrenamiento para su validación ") return if prop_val > 1: mb.showerror("Error", "Proporción de validación no válida ") return if numero_capas_convolucionales == 0: mb.showerror("Error", "Variable numero de capas convolucionales = 0 ") return if numero_capas_fullcon == 0: mb.showerror("Error", "Variable numero de capas completamente conectadas = 0 ") return if parada == 0 and iteraciones==0: mb.showerror("Error", "No se ha indicado el número de iteraciones requeridas ") return if parada == 1 and delta==0.0: mb.showerror("Error", "No se ha indicado el mínimo delta para controlar la evolución ") return while True: try: NF break except NameError: mb.showerror("Error", "No se ha creado el modelo, haga click en crear modelo ") return for i in range(numero_capas_convolucionales) : if NF[i].get()==0: mb.showerror("Error", "Número de filtros = 0 ") return for i in range(numero_capas_convolucionales) : if TF[i].get()==0: mb.showerror("Error", "Tamaño de filtro = 0 ") return for i in range(numero_capas_convolucionales) : if PAS[i].get()==0: mb.showerror("Error", "Número de pasos = 0 ") return for i in range(numero_capas_convolucionales) : if TAMPOL[i].get()==0: mb.showerror("Error", "Tamaño de Pooling = 0 ") return for i in range(numero_capas_convolucionales) : if PASPOL[i].get()==0: mb.showerror("Error", "Pasos de pooling = 0 ") return for i in range(numero_capas_convolucionales) : if DRC[i].get()> 1: mb.showerror("Error", "Dropout no válido ") return for i in range(numero_capas_fullcon) : if NO[i].get()==0: mb.showerror("Error", "No es posible tener capas con 0 neuronas, asegurese de haber creado el modelo correctamente ") return for i in range(numero_capas_fullcon) : if DR[i].get() > 1: mb.showerror("Error", "Valor Dropout no válido ") return #Ventana donde aparecerá el progreso del entrenamiento ventana_display = tk.Toplevel(ventana_convolucion) labeltitulo1 = ttk.Label(ventana_display,text = "Entrenamiento", foreground = "#054FAA",font=("Arial Bold", 15)) labeltitulo1.pack(pady=5) #Función que dibuja la evolución del entrenamiento def plot(): ventana_plot = tk.Toplevel(ventana_convolucion) ventana_plot.geometry('900x600') f = Figure(figsize = (5,5),dpi = 100) a = f.add_subplot(121) b = f.add_subplot(122) #Resumimos e imprimimos esos datos a.plot(entrenamiento.history['acc']) a.plot(entrenamiento.history['val_acc']) a.set_title('Precisión del modelo') a.set_ylabel('Precisión') a.set_xlabel('Iteraciones') a.legend(['Entrenamiento', 'Validación'], loc='upper left') # summarize history for loss b.plot(entrenamiento.history['loss']) b.plot(entrenamiento.history['val_loss']) b.set_title('Loss del modelo') b.set_ylabel('Loss') b.set_xlabel('Iteraciones') b.legend(['Entrenamiento', 'Validación'], loc='upper left') canvas1 = FigureCanvasTkAgg(f,ventana_plot) canvas1.get_tk_widget().pack(side = tk.TOP,fill = tk.BOTH, expand = True) toolbar = NavigationToolbar2Tk(canvas1,ventana_plot) toolbar.update() canvas1._tkcanvas.pack(side = tk.TOP,fill = tk.BOTH, expand = True) def guardarcompl(): nombrearch=fd.asksaveasfilename(initialdir = "/",title = "Guardar como",defaultextension = 'h5') model.save(nombrearch) mb.showinfo("Información", "Los datos fueron guardados.") def guardarpesos(): nombrearch=fd.asksaveasfilename(initialdir = "/",title = "Guardar como",defaultextension = 'h5') model.save_weights(nombrearch) mb.showinfo("Información", "Los datos fueron guardados.") def atras(): ventana_display.destroy() framebotones = ttk.Frame(ventana_display) framebotones.pack(side= "bottom") btnguardarcompl = ttk.Button(framebotones, text="Modelo completo", command=guardarcompl,style='my.TButton',width = 15) btnguardarcompl.grid(row = 0, column = 0, padx = 10, pady = 5,sticky=tk.W) btnguardarpesos = ttk.Button(framebotones, text="Pesos", command=guardarpesos,style='my.TButton',width = 15) btnguardarpesos.grid(row = 0, column = 1, padx = 10, pady = 5,sticky=tk.W) btnplot = ttk.Button(framebotones, text="Plot", command=plot,style='my.TButton',width = 15) btnplot.grid(row = 1, column = 0, padx = 10, pady = 5,sticky=tk.W) btnatras = ttk.Button(framebotones, text="Atrás", command=atras,style='my.TButton',width = 15) btnatras.grid(row = 1, column = 1, padx = 10, pady = 5,sticky=tk.W) def pantalla(): Display(ventana_display) def run(): global model, entrenamiento while True: try: model, entrenamiento = CNN.cnn(ventana_convolucion,ventana_display,X_train,Y_train,X_test,Y_test, lote,optimizador,prop_val,numero_capas_convolucionales,numero_capas_fullcon,loss, parada,iteraciones,control,delta,paciencia, NF,TF,RE,PAS,PO,TAMPOL,PASPOL,ACON,DRC,NO,AC,BA,DR) break except tk.TclError: mb.showerror("Error desconocido", "Por favor vuelva a intentarlo ") ventana_display.destroy() return except RuntimeError: mb.showerror("Error desconocido", "Por favor reinicie la aplicación ") ventana_display.destroy() return except sklearn.metrics.classification.UndefinedMetricWarning: mb.showerror("Error ", "Algo salió mal con los datos, reinicie la aplicación y vuelva a intentarlo ") ventana_display.destroy() return t1=Thread(target=pantalla) t2=Thread(target=run) t1.start() t2.start() btntrain = ttk.Button(lframe2, text = "Entrenar",style='my.TButton', command=entrenar) btntrain.grid(row = 0, column = 1, padx = 20, pady=15) def atras(): ventana_convolucion.destroy() ventana_seleccion.deiconify() btnatras = ttk.Button(lframe2, text = "Atras",style='my.TButton', command=atras) btnatras.grid(row=0,column=0, padx = 20, pady=15)
python
#!/usr/bin/env python import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt plt.style.use('classic') fig = plt.figure() population_age = [22,55,62,45,21,22,34,42,42,4,2,102,95,85,55,110,120,70,65,55,111,115,80,75,65,54,44,43,42,48] bins = [0,10,20,30,40,50,60,70,80,90,100] plt.hist(population_age, bins, histtype='bar', rwidth=0.8) plt.xlabel('age groups') plt.ylabel('Number of people') plt.title('Histogram') fig.savefig('/home/tmp/histo001.png')
python
# ----------------------------------------------------------------------------- # Copyright * 2014, United States Government, as represented by the # Administrator of the National Aeronautics and Space Administration. All # rights reserved. # # The Crisis Mapping Toolkit (CMT) v1 platform is licensed under the Apache # License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # ----------------------------------------------------------------------------- import logging logging.basicConfig(level=logging.ERROR) try: import cmt.ee_authenticate except: import sys import os.path sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')) import cmt.ee_authenticate import matplotlib #matplotlib.use('tkagg') import sys import os import ee import cmt.domain import cmt.mapclient_qt import cmt.util.gui_util ''' GUI related utilities too small for their own file ''' def visualizeDomain(domain, show=True): '''Draw all the sensors and ground truth from a domain''' cmt.mapclient_qt.centerMap(domain.center[0], domain.center[1], 11) for s in domain.sensor_list: apply(cmt.mapclient_qt.addToMap, s.visualize(show=show)) if domain.ground_truth != None: cmt.mapclient_qt.addToMap(domain.ground_truth.mask(domain.ground_truth), {}, 'Ground Truth', False)
python
from django.shortcuts import render,redirect from django.contrib.auth.models import User from .models import Project,Profile from .forms import ProjectForm,ProfileForm,VoteForm from django.contrib.auth.decorators import login_required from django.core.exceptions import ObjectDoesNotExist from rest_framework.response import Response from rest_framework.views import APIView from .serializer import ProfileSerializer,ProjectSerializer # Create your views here. def home(request): all_projects = Project.fetch_all_images() return render(request,"Awards/index.html",{"all_images":all_projects}) @login_required(login_url='/accounts/login/') def new_project(request): current_user = request.user if request.method == 'POST': form = ProjectForm(request.POST,request.FILES) if form.is_valid(): user_image = form.save(commit=False) user_image.user = current_user user_image.save() return redirect('home') else: form = ProjectForm() return render(request,"Awards/new_project.html",{"form":form}) @login_required(login_url='/accounts/login/') def new_profile(request): current_user = request.user if request.method == 'POST': form = ProfileForm(request.POST, request.FILES) if form.is_valid(): profile = form.save(commit=False) profile.prof_user = current_user profile.profile_Id = request.user.id profile.save() return redirect('profile') else: form = ProfileForm() return render(request, 'profile/new_profile.html', {"form": form}) @login_required(login_url='/accounts/login/') def profile_edit(request): current_user = request.user if request.method == 'POST': logged_user = Profile.objects.get(prof_user=request.user) form = ProfileForm(request.POST, request.FILES, instance=logged_user) if form.is_valid(): form.save() return redirect('profile') else: form = ProfileForm() return render(request,'profile/edit_profile.html',{'form':form}) @login_required(login_url='/accounts/login/') def profile(request): current_user = request.user projects = Project.objects.filter(user = current_user) try: prof = Profile.objects.get(prof_user=current_user) except ObjectDoesNotExist: return redirect('new_profile') return render(request,'profile/profile.html',{'profile':prof,'projects':projects}) def search_project(request): if 'project' in request.GET and request.GET ["project"]: search_term = request.GET.get("project") searched_projects = Project.search_project_by_title(search_term) message = f'{search_term}' return render(request, 'search/search.html', {"message":message, "projects":searched_projects}) else: message = "No search results yet!" return render (request, 'search/search.html', {"message": message}) @login_required(login_url='/accounts/login/') def project_review(request,project_id): try: single_project = Project.get_single_project(project_id) average_score = round(((single_project.design + single_project.usability + single_project.content)/3),2) if request.method == 'POST': vote_form = VoteForm(request.POST) if vote_form.is_valid(): single_project.vote_submissions+=1 if single_project.design == 0: single_project.design = int(request.POST['design']) else: single_project.design = (single_project.design + int(request.POST['design']))/2 if single_project.usability == 0: single_project.usability = int(request.POST['usability']) else: single_project.usability = (single_project.usability + int(request.POST['usability']))/2 if single_project.content == 0: single_project.content = int(request.POST['content']) else: single_project.content = (single_project.content + int(request.POST['usability']))/2 single_project.save() return redirect('project_review',project_id) else: vote_form = VoteForm() except Exception as e: raise Http404() return render(request,'Awards/project_review.html',{"vote_form":vote_form,"single_project":single_project,"average_score":average_score}) class ProfileList(APIView): def get(self,request,format=None): complete_profile = Profile.objects.all() serializers = ProfileSerializer(complete_profile, many=True) return Response(serializers.data) class ProjectList(APIView): def get(self,request,format=None): projects = Project.objects.all() serializers = ProjectSerializer(projects, many=True) return Response(serializers.data)
python
from torchvision import datasets, transforms def imagenet_transformer(): transform=transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def cifar_transformer(): return torchvision.transforms.Compose([ torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), ])
python
import base64 import json import logging from io import BytesIO from urllib.parse import urljoin import feedparser from flask_babel import lazy_gettext as _ from PIL import Image from authentication_document import AuthenticationDocument from model import Hyperlink from opds import OPDSCatalog from problem_details import ( ERROR_RETRIEVING_DOCUMENT, INTEGRATION_DOCUMENT_NOT_FOUND, INVALID_CONTACT_URI, INVALID_INTEGRATION_DOCUMENT, LIBRARY_ALREADY_IN_PRODUCTION, TIMEOUT, ) from util.http import HTTP, RequestTimedOut from util.problem_detail import ProblemDetail class LibraryRegistrar(object): """Encapsulates the logic of the library registration process.""" def __init__(self, _db, do_get=HTTP.debuggable_get): self._db = _db self.do_get = do_get self.log = logging.getLogger("Library registrar") def reregister(self, library): """Re-register the given Library by fetching its authentication document and updating its record appropriately. This process will not be as thorough as one initiated manually by the library administrator, but it can be used to automatically keep us up to date on minor changes to a library's description, logo, etc. :param library: A Library. :return: A ProblemDetail if there's a problem. Otherwise, None. """ result = self.register(library, library.library_stage) if isinstance(result, ProblemDetail): return result # The return value may include new settings for contact # hyperlinks, but we will not be changing any Hyperlink # objects, since that might result in emails being sent out # unexpectedly. The library admin must explicitly re-register # for that to happen. # # Basically, we don't actually use any of the items returned # by register() -- only the controller uses that stuff. return None def register(self, library, library_stage): """Register the given Library with this registry, if possible. :param library: A Library to register or re-register. :param library_stage: The library administrator's proposed value for Library.library_stage. :return: A ProblemDetail if there's a problem. Otherwise, a 2-tuple (auth_document, new_hyperlinks). `auth_document` is an AuthenticationDocument corresponding to the library's authentication document, as found at auth_url. `new_hyperlinks` is a list of Hyperlinks that ought to be created for registration to be complete. """ hyperlinks_to_create = [] auth_url = library.authentication_url auth_response = self._make_request( auth_url, auth_url, _("No Authentication For OPDS document present at %(url)s", url=auth_url), _("Timeout retrieving auth document %(url)s", url=auth_url), _("Error retrieving auth document %(url)s", url=auth_url), ) if isinstance(auth_response, ProblemDetail): return auth_response try: auth_document = AuthenticationDocument.from_string( self._db, auth_response.content ) except Exception as e: self.log.error( "Registration of %s failed: invalid auth document.", auth_url, exc_info=e, ) return INVALID_INTEGRATION_DOCUMENT failure_detail = None if not auth_document.id: failure_detail = _("The OPDS authentication document is missing an id.") if not auth_document.title: failure_detail = _("The OPDS authentication document is missing a title.") if auth_document.root: opds_url = auth_document.root["href"] else: failure_detail = _( "The OPDS authentication document is missing a 'start' link to the root OPDS feed." ) if auth_document.id != auth_response.url: failure_detail = _( "The OPDS authentication document's id (%(id)s) doesn't match its url (%(url)s).", id=auth_document.id, url=auth_response.url, ) if failure_detail: self.log.error("Registration of %s failed: %s", auth_url, failure_detail) return INVALID_INTEGRATION_DOCUMENT.detailed(failure_detail) # Make sure the authentication document includes a way for # patrons to get help or file a copyright complaint. These # links must be stored in the database as Hyperlink objects. links = auth_document.links or [] for rel, problem_title in [ ("help", "Invalid or missing patron support email address"), ( Hyperlink.COPYRIGHT_DESIGNATED_AGENT_REL, "Invalid or missing copyright designated agent email address", ), ]: uris = self._locate_email_addresses(rel, links, problem_title) if isinstance(uris, ProblemDetail): return uris hyperlinks_to_create.append((rel, uris)) # Cross-check the opds_url to make sure it links back to the # authentication document. opds_response = self._make_request( auth_url, opds_url, _("No OPDS root document present at %(url)s", url=opds_url), _("Timeout retrieving OPDS root document at %(url)s", url=opds_url), _("Error retrieving OPDS root document at %(url)s", url=opds_url), allow_401=True, ) if isinstance(opds_response, ProblemDetail): return opds_response content_type = opds_response.headers.get("Content-Type") failure_detail = None if opds_response.status_code == 401: # This is only acceptable if the server returned a copy of # the Authentication For OPDS document we just got. if content_type != AuthenticationDocument.MEDIA_TYPE: failure_detail = _( "401 response at %(url)s did not yield an Authentication For OPDS document", url=opds_url, ) elif not self.opds_response_links_to_auth_document(opds_response, auth_url): failure_detail = _( "Authentication For OPDS document guarding %(opds_url)s does not match the one at %(auth_url)s", opds_url=opds_url, auth_url=auth_url, ) elif content_type not in (OPDSCatalog.OPDS_TYPE, OPDSCatalog.OPDS_1_TYPE): failure_detail = _( "Supposed root document at %(url)s is not an OPDS document", url=opds_url, ) elif not self.opds_response_links_to_auth_document(opds_response, auth_url): failure_detail = _( "OPDS root document at %(opds_url)s does not link back to authentication document %(auth_url)s", opds_url=opds_url, auth_url=auth_url, ) if failure_detail: self.log.error("Registration of %s failed: %s", auth_url, failure_detail) return INVALID_INTEGRATION_DOCUMENT.detailed(failure_detail) auth_url = auth_response.url try: library.library_stage = library_stage except ValueError: return LIBRARY_ALREADY_IN_PRODUCTION library.name = auth_document.title if auth_document.website: url = auth_document.website.get("href") if url: url = urljoin(opds_url, url) library.web_url = auth_document.website.get("href") else: library.web_url = None if auth_document.logo: library.logo = auth_document.logo elif auth_document.logo_link: url = auth_document.logo_link.get("href") if url: url = urljoin(opds_url, url) logo_response = self.do_get(url, stream=True) try: image = Image.open(logo_response.raw) except Exception: image_url = auth_document.logo_link.get("href") self.log.error( "Registration of %s failed: could not read logo image %s", auth_url, image_url, ) return INVALID_INTEGRATION_DOCUMENT.detailed( _("Could not read logo image %(image_url)s", image_url=image_url) ) # Convert to PNG. buffer = BytesIO() image.save(buffer, format="PNG") b64 = base64.b64encode(buffer.getvalue()).decode("utf8") type = logo_response.headers.get( "Content-Type" ) or auth_document.logo_link.get("type") if type: library.logo = "data:%s;base64,%s" % (type, b64) else: library.logo = None problem = auth_document.update_library(library) if problem: self.log.error( "Registration of %s failed: problem during registration: %s/%s/%s/%s", auth_url, problem.uri, problem.title, problem.detail, problem.debug_message, ) return problem return auth_document, hyperlinks_to_create def _make_request( self, registration_url, url, on_404, on_timeout, on_exception, allow_401=False ): allowed_codes = ["2xx", "3xx", 404] if allow_401: allowed_codes.append(401) try: response = self.do_get( url, allowed_response_codes=allowed_codes, timeout=30 ) # We only allowed 404 above so that we could return a more # specific problem detail document if it happened. if response.status_code == 404: return INTEGRATION_DOCUMENT_NOT_FOUND.detailed(on_404) if not allow_401 and response.status_code == 401: self.log.error( "Registration of %s failed: %s is behind authentication gateway", registration_url, url, ) return ERROR_RETRIEVING_DOCUMENT.detailed( _("%(url)s is behind an authentication gateway", url=url) ) except RequestTimedOut as e: self.log.error( "Registration of %s failed: timeout retrieving %s", registration_url, url, exc_info=e, ) return TIMEOUT.detailed(on_timeout) except Exception as e: self.log.error( "Registration of %s failed: error retrieving %s", registration_url, url, exc_info=e, ) return ERROR_RETRIEVING_DOCUMENT.detailed(on_exception) return response @classmethod def opds_response_links(cls, response, rel): """Find all the links in the given response for the given link relation. """ # Look in the response itself for a Link header. links = [] link = response.links.get(rel) if link: links.append(link.get("url")) media_type = response.headers.get("Content-Type") if media_type == OPDSCatalog.OPDS_TYPE: # Parse as OPDS 2. catalog = json.loads(response.content) links = [] for k, v in catalog.get("links", {}).items(): if k == rel: links.append(v.get("href")) elif media_type == OPDSCatalog.OPDS_1_TYPE: # Parse as OPDS 1. feed = feedparser.parse(response.content) for link in feed.get("feed", {}).get("links", []): if link.get("rel") == rel: links.append(link.get("href")) elif media_type == AuthenticationDocument.MEDIA_TYPE: document = json.loads(response.content) if isinstance(document, dict): links.append(document.get("id")) return [urljoin(response.url, url) for url in links if url] @classmethod def opds_response_links_to_auth_document(cls, opds_response, auth_url): """Verify that the given response links to the given URL as its Authentication For OPDS document. The link might happen in the `Link` header or in the body of an OPDS feed. """ links = [] try: links = cls.opds_response_links( opds_response, AuthenticationDocument.AUTHENTICATION_DOCUMENT_REL ) except ValueError: # The response itself is malformed. return False return auth_url in links @classmethod def _locate_email_addresses(cls, rel, links, problem_title): """Find one or more email addresses in a list of links, all with a given `rel`. :param library: A Library :param rel: The rel for this type of link. :param links: A list of dictionaries with keys 'rel' and 'href' :problem_title: The title to use in a ProblemDetail if no valid links are found. :return: Either a list of candidate links or a customized ProblemDetail. """ candidates = [] for link in links: if link.get("rel") != rel: # Wrong kind of link. continue uri = link.get("href") value = cls._required_email_address(uri, problem_title) if isinstance(value, str): candidates.append(value) # There were no relevant links. if not candidates: problem = INVALID_CONTACT_URI.detailed( "No valid mailto: links found with rel=%s" % rel ) problem.title = problem_title return problem return candidates @classmethod def _required_email_address(cls, uri, problem_title): """Verify that `uri` is a mailto: URI. :return: Either a mailto: URI or a customized ProblemDetail. """ problem = None on_error = INVALID_CONTACT_URI if not uri: problem = on_error.detailed("No email address was provided") elif not uri.startswith("mailto:"): problem = on_error.detailed( _("URI must start with 'mailto:' (got: %s)") % uri ) if problem: problem.title = problem_title return problem return uri
python
#!/usr/bin/env python # Copyright 2005-2009,2011 Joe Wreschnig # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License version 2 as # published by the Free Software Foundation. import glob import os import shutil import sys import subprocess from distutils.core import setup, Command from distutils.command.clean import clean as distutils_clean from distutils.command.sdist import sdist as distutils_sdist class clean(distutils_clean): def run(self): # In addition to what the normal clean run does, remove pyc # and pyo and backup files from the source tree. distutils_clean.run(self) def should_remove(filename): if (filename.lower()[-4:] in [".pyc", ".pyo"] or filename.endswith("~") or (filename.startswith("#") and filename.endswith("#"))): return True else: return False for pathname, dirs, files in os.walk(os.path.dirname(__file__)): for filename in filter(should_remove, files): try: os.unlink(os.path.join(pathname, filename)) except EnvironmentError, err: print str(err) try: os.unlink("MANIFEST") except OSError: pass for base in ["coverage", "build", "dist"]: path = os.path.join(os.path.dirname(__file__), base) if os.path.isdir(path): shutil.rmtree(path) class sdist(distutils_sdist): def run(self): self.run_command("test") distutils_sdist.run(self) # make sure MANIFEST.in includes all tracked files if subprocess.call(["hg", "status"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) == 0: # contains the packaged files after run() is finished included_files = self.filelist.files process = subprocess.Popen(["hg", "locate"], stdout=subprocess.PIPE) out, err = process.communicate() assert process.returncode == 0 tracked_files = out.splitlines() for ignore in [".hgignore", ".hgtags"]: tracked_files.remove(ignore) assert not set(tracked_files) - set(included_files), \ "Not all tracked files included in tarball, update MANIFEST.in" class build_sphinx(Command): description = "build sphinx documentation" user_options = [ ("build-dir=", "d", "build directory"), ] def initialize_options(self): self.build_dir = None def finalize_options(self): self.build_dir = self.build_dir or "build" def run(self): docs = "docs" target = os.path.join(self.build_dir, "sphinx") self.spawn(["sphinx-build", "-b", "html", "-n", docs, target]) class test_cmd(Command): description = "run automated tests" user_options = [ ("to-run=", None, "list of tests to run (default all)"), ("quick", None, "don't run slow mmap-failing tests"), ] def initialize_options(self): self.to_run = [] self.quick = False def finalize_options(self): if self.to_run: self.to_run = self.to_run.split(",") def run(self): import tests if tests.unit(self.to_run, self.quick): raise SystemExit("Test failures are listed above.") class coverage_cmd(Command): description = "generate test coverage data" user_options = [ ("quick", None, "don't run slow mmap-failing tests"), ] def initialize_options(self): self.quick = None def finalize_options(self): self.quick = bool(self.quick) def run(self): import trace tracer = trace.Trace( count=True, trace=False, ignoredirs=[sys.prefix, sys.exec_prefix]) def run_tests(): import mutagen import mutagen._util reload(mutagen._util) reload(mutagen) cmd = self.reinitialize_command("test") cmd.quick = self.quick cmd.ensure_finalized() cmd.run() tracer.runfunc(run_tests) results = tracer.results() coverage = os.path.join(os.path.dirname(__file__), "coverage") results.write_results(show_missing=True, coverdir=coverage) map(os.unlink, glob.glob(os.path.join(coverage, "[!m]*.cover"))) try: os.unlink(os.path.join(coverage, "..setup.cover")) except OSError: pass total_lines = 0 bad_lines = 0 for filename in glob.glob(os.path.join(coverage, "*.cover")): lines = file(filename, "rU").readlines() total_lines += len(lines) bad_lines += len( [line for line in lines if (line.startswith(">>>>>>") and "finally:" not in line and '"""' not in line)]) pct = 100.0 * (total_lines - bad_lines) / float(total_lines) print "Coverage data written to", coverage, "(%d/%d, %0.2f%%)" % ( total_lines - bad_lines, total_lines, pct) if pct < 98.66: raise SystemExit( "Coverage percentage went down; write more tests.") if pct > 98.7: raise SystemExit("Coverage percentage went up; change setup.py.") if os.name == "posix": data_files = [('share/man/man1', glob.glob("man/*.1"))] else: data_files = [] if __name__ == "__main__": from mutagen import version_string cmd_classes = { "clean": clean, "test": test_cmd, "coverage": coverage_cmd, "sdist": sdist, "build_sphinx": build_sphinx, } setup(cmdclass=cmd_classes, name="mutagen", version=version_string, url="http://code.google.com/p/mutagen/", description="read and write audio tags for many formats", author="Michael Urman", author_email="[email protected]", license="GNU GPL v2", classifiers=[ 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'License :: OSI Approved :: GNU General Public License v2 (GPLv2)', 'Topic :: Multimedia :: Sound/Audio', ], packages=["mutagen"], data_files=data_files, scripts=glob.glob("tools/m*[!~]"), long_description="""\ Mutagen is a Python module to handle audio metadata. It supports ASF, FLAC, M4A, Monkey's Audio, MP3, Musepack, Ogg FLAC, Ogg Speex, Ogg Theora, Ogg Vorbis, True Audio, WavPack and OptimFROG audio files. All versions of ID3v2 are supported, and all standard ID3v2.4 frames are parsed. It can read Xing headers to accurately calculate the bitrate and length of MP3s. ID3 and APEv2 tags can be edited regardless of audio format. It can also manipulate Ogg streams on an individual packet/page level. """ )
python
# -*- coding: utf-8 -*- # :Project: pglast -- DO NOT EDIT: automatically extracted from pg_trigger.h @ 13-2.0.6-0-ga248206 # :Author: Lele Gaifax <[email protected]> # :License: GNU General Public License version 3 or later # :Copyright: © 2017-2021 Lele Gaifax # from enum import Enum, IntEnum, IntFlag, auto try: from enum import StrEnum except ImportError: # Python < 3.10 class StrEnum(str, Enum): pass # #define-ed constants TRIGGER_TYPE_ROW = 1 << 0 TRIGGER_TYPE_BEFORE = 1 << 1 TRIGGER_TYPE_INSERT = 1 << 2 TRIGGER_TYPE_DELETE = 1 << 3 TRIGGER_TYPE_UPDATE = 1 << 4 TRIGGER_TYPE_TRUNCATE = 1 << 5 TRIGGER_TYPE_INSTEAD = 1 << 6 TRIGGER_TYPE_STATEMENT = 0 TRIGGER_TYPE_AFTER = 0
python
import ops import ops.cmd import ops.env import ops.cmd.safetychecks VALID_OPTIONS = ['all', 'permanent', 'cached'] class PasswordDumpCommand(ops.cmd.DszCommand, ): def __init__(self, plugin='passworddump', **optdict): ops.cmd.DszCommand.__init__(self, plugin, **optdict) def validateInput(self): truecount = 0 for optkey in self.optdict: optval = self.optdict[optkey] if (type(optval) is not bool): try: optval = bool(optval) self.optdict[optkey] = optval except: return False if optval: truecount += 1 if (truecount > 1): return False return True def mySafetyCheck(self): if (self.validateInput() and (ops.env.get('OPS_NOINJECT').upper() != 'TRUE')): return (True, '') else: return (False, 'OPS_NOINJECT is set to TRUE, you should probably not run passworddump') ops.cmd.command_classes['passworddump'] = PasswordDumpCommand ops.cmd.aliasoptions['passworddump'] = VALID_OPTIONS ops.cmd.safetychecks.addSafetyHandler('passworddump', 'ops.cmd.passworddump.mySafetyCheck')
python
"""An App Template based on Bootstrap with a header, sidebar and main section""" import pathlib import awesome_panel.express as pnx import panel as pn from awesome_panel.express.assets import SCROLLBAR_PANEL_EXPRESS_CSS BOOTSTRAP_DASHBOARD_CSS = pathlib.Path(__file__).parent / "bootstrap_dashboard.css" BOOTSTRAP_DASHBOARD_TEMPLATE = pathlib.Path(__file__).parent / "bootstrap_dashboard.html" HEADER_HEIGHT = 58 SIDEBAR_WIDTH = 200 # Hack to make dynamically adding plotly work: # See https://github.com/holoviz/panel/issues/840 pn.extension("plotly") class BootstrapDashboardTemplate(pn.Template): """A Basic App Template""" def __init__( self, app_title: str = "App Name", app_url="#", ): pn.config.raw_css.append(BOOTSTRAP_DASHBOARD_CSS.read_text(encoding="utf8")) pn.config.raw_css.append(SCROLLBAR_PANEL_EXPRESS_CSS.read_text(encoding="utf8")) pnx.bootstrap.extend() pnx.fontawesome.extend() template = BOOTSTRAP_DASHBOARD_TEMPLATE.read_text(encoding="utf8") app_title = pn.Row( pn.pane.Markdown( f"[{app_title}]({app_url})", css_classes=["app-title"], ), width=SIDEBAR_WIDTH, sizing_mode="stretch_height", ) header = pn.Row( app_title, pn.layout.HSpacer(), sizing_mode="stretch_width", height=HEADER_HEIGHT, ) top_spacer = pn.layout.HSpacer(height=15) self.header = header self.sidebar = pn.Column( top_spacer, height_policy="max", width=SIDEBAR_WIDTH, ) self.main = pn.Column( sizing_mode="stretch_width", margin=( 25, 50, 25, 50, ), ) items = { "header": header, "sidebar": self.sidebar, "main": self.main, } super().__init__( template=template, items=items, )
python
import codecs import json import matplotlib.pyplot as plt import numpy as np import os import itertools def plot_confusion_matrix(cm, target_names, title='Confusion matrix', prefix="", cmap=None, normalize=True, save_dir="." ): """ given a sklearn confusion matrix (cm), make a nice plot Arguments --------- cm: confusion matrix from sklearn.metrics.confusion_matrix target_names: given classification classes such as [0, 1, 2] the class names, for example: ['high', 'medium', 'low'] title: the text to display at the top of the matrix cmap: the gradient of the values displayed from matplotlib.pyplot.cm see http://matplotlib.org/examples/color/colormaps_reference.html plt.get_cmap('jet') or plt.cm.Blues normalize: If False, plot the raw numbers If True, plot the proportions save_dir parent directory to save the images Usage ----- plot_confusion_matrix(cm = cm, # confusion matrix created by # sklearn.metrics.confusion_matrix normalize = True, # show proportions target_names = y_labels_vals, # list of names of the classes title = best_estimator_name) # title of graph Citiation --------- http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html This function was modified slightly by the QUIPP development team. """ accuracy = np.trace(cm) / float(np.sum(cm)) misclass = 1 - accuracy if cmap is None: cmap = plt.get_cmap('Blues') plt.figure(figsize=(10, 10)) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title, size=24) cbar = plt.colorbar(fraction=0.03) cbar.ax.tick_params(labelsize=24) if target_names is not None: tick_marks = np.arange(len(target_names)) plt.xticks(tick_marks, target_names, size=20, rotation=90) plt.yticks(tick_marks, target_names, size=20) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] thresh = cm.max() / 1.5 if normalize else cm.max() / 2 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): if normalize: plt.text(j, i, "{:0.4f}".format(cm[i, j]), horizontalalignment="center", fontsize=22, color="white" if cm[i, j] > thresh else "black") else: plt.text(j, i, "{:,}".format(cm[i, j]), horizontalalignment="center", fontsize=22, color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label', size=28) plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass), size=28) plt.ylim(len(cm)-0.5, -0.5) figpath = f"{prefix}_{title}_confusion_matrix.png" save_path = os.path.join(save_dir, figpath) if not os.path.isdir(save_dir): os.makedirs(save_dir) plt.savefig(save_path, format="PNG", bbox_inches = "tight") return os.path.abspath(save_path) def plot_util_confusion_matrix(confusion_dict_path, method_names=None, prefix="", normalize=False, save_dir="."): dict_r = codecs.open(confusion_dict_path, 'r', encoding='utf-8').read() confusion_dict = json.loads(dict_r) if type(method_names) == str: method_names = [method_names] if method_names == None: method_names = list(confusion_dict.keys()) plt_names = [] for method_name in method_names: if method_name not in confusion_dict: print(confusion_dict.keys()) raise ValueError(f"Method name: {method_name} is not in the dictionary.") title = method_name cm = np.array(confusion_dict[method_name]["conf_matrix"]) target_names = confusion_dict[method_name]["target_names"] plt_name = plot_confusion_matrix(cm, target_names=target_names, normalize=normalize, title=title, prefix=prefix, save_dir=save_dir ) plt_names.append(plt_name) return plt_names
python
class DataFilePath: def __init__(self): self.dataDir = '../data/citydata/season_1/' return def getOrderDir_Train(self): return self.dataDir + 'training_data/order_data/' def getOrderDir_Test1(self): return self.dataDir + 'test_set_1/order_data/' def getTest1Dir(self): return self.dataDir + 'test_set_1/' def getTest2Dir(self): return self.dataDir + 'test_set_2/' def getTrainDir(self): return self.dataDir + 'training_data/' def getGapCsv_Train(self): return self.getOrderDir_Train() + self.getGapFilename() def getGapCsv_Test1(self): return self.getOrderDir_Test1() + self.getGapFilename() def getTestset1Readme(self): return self.dataDir + 'test_set_1/read_me_1.txt' def getTestset2Readme(self): return self.dataDir + 'test_set_2/read_me_2.txt' def getGapFilename(self): return "temp/gap.csv" def getGapPredictionFileName(self): return 'gap_prediction.csv' def getPrevGapFileName(self): return "temp/prevgap.df.pickle" def get_dir_name(self, data_dir): return data_dir.split('/')[-2] g_singletonDataFilePath = DataFilePath()
python
from __future__ import print_function import argparse import logging import os import warnings import torch.nn as nn import torch.utils.data from torch.utils.data import SubsetRandomSampler from torch.utils.tensorboard import SummaryWriter from Colorization import utils from Multi_label_classification.dataset.dataset_big_earth_torch_mlc import BigEarthDatasetTorchMLC from Multi_label_classification.job_config import set_params from Multi_label_classification.metrics.metric import metrics_def from Multi_label_classification.models.Ensemble import EnsembleModel from Multi_label_classification.models.ResnetMLC import ResNetMLC from Multi_label_classification.test import test warnings.filterwarnings("ignore") os.environ["OMP_NUM_THREADS"] = "1" torch.backends.cudnn.benchmark = True torch.backends.cudnn.enabled = True def main(args): # enable cuda if available args.cuda = args.cuda and torch.cuda.is_available() device = torch.device("cuda" if args.cuda else "cpu") # READ JSON CONFIG FILE assert os.path.isfile(args.json_config_file), "No json configuration file found at {}".format(args.json_config_file) params = utils.Params(args.json_config_file) # for change params related to job-id params = set_params(params, args.id_optim) # set the torch seed torch.manual_seed(params.seed) # initialize summary writer; every folder is saved inside runs writer = SummaryWriter(params.path_nas + params.log_dir + '/runs/') # create dir for log file if not os.path.exists(params.path_nas + params.log_dir): os.makedirs(params.path_nas + params.log_dir) # save the json config file of the model params.save(os.path.join(params.path_nas + params.log_dir, "params.json")) # Set the logger utils.set_logger(os.path.join(params.path_nas + params.log_dir, "log")) # DATASET # Torch version big_earth = BigEarthDatasetTorchMLC(csv_path=params.dataset, random_seed=params.seed, bands_indices=params.bands, img_size=params.img_size, n_samples=params.dataset_nsamples) # Split train_idx, val_idx, test_idx = big_earth.split_dataset(params.test_split, params.val_split) test_sampler = SubsetRandomSampler(test_idx) # define the loader test_loader = torch.utils.data.DataLoader(big_earth, batch_size=params.batch_size, sampler=test_sampler, num_workers=params.num_workers) # MODELS definition for Ensemble model_rgb = ResNetMLC(in_channels=3, out_cls=params.out_cls, resnet_version=params.resnet_version, pretrained=0, colorization=0) model_colorization = ResNetMLC(in_channels=9, out_cls=params.out_cls, resnet_version=params.resnet_version, pretrained=0, colorization=1) checkpoint = torch.load(args.rgb_checkpoint) model_rgb.load_state_dict(checkpoint['state_dict'], strict=False) checkpoint = torch.load(args.spectral_checkpoint) model_colorization.load_state_dict(checkpoint['state_dict'], strict=False) model = EnsembleModel(model_rgb=model_rgb, model_colorization=model_colorization, device=device) # CUDA model.to(device) # loss for multilabel classification loss_fn = nn.MultiLabelSoftMarginLoss() # METRICS metrics = metrics_def logging.info("Starting final test with ensemble model...") test(model=model, test_loader=test_loader, loss_fn=loss_fn, device=device, metrics=metrics) # CLOSE THE WRITER writer.close() if __name__ == '__main__': # command line arguments parser = argparse.ArgumentParser(description='multi_label_classification') parser.add_argument('--cuda', action='store_true', default=True, help='enables CUDA training') parser.add_argument('--json_config_file', default='Multi_label_classification/config/configuration.json', help='name of the json config file') parser.add_argument('--id_optim', default=0, type=int, help='id_optim parameter') parser.add_argument('--rgb_checkpoint', type=str, default=None, help='specify the rgb checkpoint path', required=True) parser.add_argument('--spectral_checkpoint', type=str, default=None, help='specify the spectral checkpoint path', required=True) # read the args args = parser.parse_args() main(args)
python
from django.shortcuts import render from django.http import Http404 from django.views.generic.edit import UpdateView from django.views.generic import ListView, View from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.utils.decorators import method_decorator import logging from ..models.projects import Project from ..models.authors import Author from ..forms import AuthorForm from .permission_helpers import PermissionOnObjectViewMixin # logger for this file logger = logging.getLogger(__name__) class AuthorListView(ListView): """A generic view of the authors in a list""" paginate_by = 10 template_name = "code_doc/authors/author_list.html" context_object_name = "authors" model = Author def detail_author(request, author_id): try: author = Author.objects.get(pk=author_id) except Author.DoesNotExist: raise Http404 project_list = Project.objects.filter(authors=author) coauthor_list = ( Author.objects.filter(project__in=project_list).distinct().exclude(pk=author_id) ) return render( request, "code_doc/authors/author_details.html", { "project_list": project_list, "author": author, "user": request.user, "coauthor_list": coauthor_list, }, ) class AuthorUpdateView(PermissionOnObjectViewMixin, UpdateView): """View for editing information about an Author .. note:: in order to be able to edit an Author, the user should have the 'code_doc.author_edit' permission on the Author object. """ form_class = AuthorForm model = Author permissions_on_object = ("code_doc.author_edit",) permissions_object_getter = "get_author_from_request" template_name = "code_doc/authors/author_edit.html" pk_url_kwarg = "author_id" def get_author_from_request(self, request, *args, **kwargs): # TODO check if needed try: return Author.objects.get(pk=kwargs["author_id"]) except Author.DoesNotExist: logger.warning( "[AuthorUpdateView] non existent Author with id %s", kwargs["author_id"] ) return None class MaintainerProfileView(View): """Manages the views associated to the maintainers""" @method_decorator(login_required) def get(self, request, maintainer_id): try: maintainer = User.objects.get(pk=maintainer_id) except Project.DoesNotExist: raise Http404 projects = Project.objects.filter(administrators=maintainer) return render( request, "code_doc/maintainer_details.html", {"projects": projects, "maintainer": maintainer}, ) @method_decorator(login_required) def post(self, request): pass
python
from src.traces.traces import main as traces_main import pandas as pd def main(): db_path = '/Users/mossad/personal_projects/AL-public/src/crawler/crawled_kaggle.db' traces_path = '/Users/mossad/personal_projects/AL-public/src/traces/extracted-traces.pkl' clean_traces_path = '/Users/mossad/personal_projects/AL-public/src/traces/clean-traces.pkl' # language = 'IPython Notebook' language = 'Python' traces_main(db_path, traces_path, language) tr = pd.read_pickle(traces_path) print() if __name__ == '__main__': main()
python
# -*- coding: UTF-8 -*- # Copyright 2012-2017 Luc Saffre # # License: BSD (see file COPYING for details) """Defines the :class:`Page` model. """ from django.db import models from django.utils.translation import ugettext_lazy as _ from django.utils.translation import pgettext_lazy from django.utils.translation import get_language from lino.api import dd, rt from etgen.html import E, tostring_pretty from lino.core.renderer import add_user_language from lino import mixins from django.conf import settings from .utils import render_node #~ class PageType(dbutils.BabelNamed,mixins.PrintableType,outbox.MailableType): #~ templates_group = 'pages/Page' #~ class Meta: #~ verbose_name = _("Page Type") #~ verbose_name_plural = _("Page Types") #~ remark = models.TextField(verbose_name=_("Remark"),blank=True) #~ def __unicode__(self): #~ return self.name #~ class PageTypes(dd.Table): #~ """ #~ Displays all rows of :class:`PageType`. #~ """ #~ model = 'pages.PageType' #~ column_names = 'name build_method template *' #~ order_by = ["name"] #~ detail_layout = """ #~ id name #~ build_method template email_template attach_to_email #~ remark:60x5 #~ pages.PagesByType #~ """ class Page(mixins.Referrable, mixins.Hierarchical, mixins.Sequenced): class Meta: verbose_name = _("Node") verbose_name_plural = _("Nodes") title = dd.BabelCharField(_("Title"), max_length=200, blank=True) body = dd.BabelTextField(_("Body"), blank=True, format='plain') raw_html = models.BooleanField(_("raw html"), default=False) def get_absolute_url(self, **kwargs): if self.ref: if self.ref != 'index': return dd.plugins.pages.build_plain_url( self.ref, **kwargs) return dd.plugins.pages.build_plain_url(**kwargs) def get_sidebar_caption(self): if self.title: return dd.babelattr(self, 'title') if self.ref == 'index': return unicode(_('Home')) if self.ref: return self.ref return str(self.id) #~ if self.ref or self.parent: #~ return self.ref #~ return unicode(_('Home')) def get_sidebar_item(self, request, other): kw = dict() add_user_language(kw, request) url = self.get_absolute_url(**kw) a = E.a(self.get_sidebar_caption(), href=url) if self == other: return E.li(a, **{'class':'active'}) return E.li(a) def get_sidebar_html(self, request): items = [] #~ loop over top-level nodes for n in Page.objects.filter(parent__isnull=True).order_by('seqno'): #~ items += [li for li in n.get_sidebar_items(request,self)] items.append(n.get_sidebar_item(request, self)) if self.is_parented(n): children = [] for ch in n.children.order_by('seqno'): children.append(ch.get_sidebar_item(request, self)) if len(children): items.append(E.ul(*children, **{'class':'nav nav-list'})) e = E.ul(*items, **{'class':'nav nav-list'}) return tostring_pretty(e) def get_sidebar_menu(self, request): qs = Page.objects.filter(parent__isnull=True) #~ qs = self.children.all() yield ('/', 'index', unicode(_('Home'))) #~ yield ('/downloads/', 'downloads', 'Downloads') #~ yield ('/about', 'about', 'About') #~ if qs is not None: for obj in qs: if obj.ref and obj.title: yield ('/' + obj.ref, obj.ref, dd.babelattr(obj, 'title')) #~ else: #~ yield ('/','index',obj.title) #~ class PageDetail(dd.FormLayout): #~ main = """ #~ ref title type:25 #~ project id user:10 language:8 build_time #~ left right #~ """ #~ left = """ # ~ # abstract:60x5 #~ body:60x20 #~ """ #~ right=""" #~ outbox.MailsByController #~ postings.PostingsByController #~ """ class PageDetail(dd.DetailLayout): main = """ ref parent seqno title body """ class Pages(dd.Table): model = 'pages.Page' detail_layout = PageDetail() column_names = "ref title *" #~ column_names = "ref language title user type project *" order_by = ["ref"] #~ class MyPages(ByUser,Pages): #~ required = dict(user_groups='office') #~ column_names = "modified title type project *" #~ label = _("My pages") #~ order_by = ["-modified"] #~ class PagesByType(Pages): #~ master_key = 'type' #~ column_names = "title user *" #~ order_by = ["-modified"] #~ if settings.SITE.project_model: #~ class PagesByProject(Pages): #~ master_key = 'project' #~ column_names = "type title user *" #~ order_by = ["-modified"] def create_page(**kw): #~ logger.info("20121219 create_page(%r)",kw['ref']) return Page(**kw) def lookup(ref, *args, **kw): return Page.get_by_ref(ref, *args, **kw) def get_all_pages(): return Page.objects.all()
python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from annotator import annotation from annotator import document from h._compat import text_type class Annotation(annotation.Annotation): @property def uri(self): """Return this annotation's URI or an empty string. The uri is escaped and safe to be rendered. The uri is a Markup object so it won't be double-escaped. """ uri_ = self.get("uri") if uri_: # Convert non-string URIs into strings. # If the URI is already a unicode string this will do nothing. # We're assuming that URI cannot be a byte string. return text_type(uri_) else: return "" @property def parent(self): """ Return the thread parent of this annotation, if it exists. """ if 'references' not in self: return None if not isinstance(self['references'], list): return None if not self['references']: return None return Annotation.fetch(self['references'][-1]) @property def target_links(self): """A list of the URLs to this annotation's targets.""" links = [] targets = self.get("target") if isinstance(targets, list): for target in targets: if not isinstance(target, dict): continue source = target.get("source") if source is None: continue links.append(source) return links @property def document(self): return self.get("document", {}) class Document(document.Document): __analysis__ = {}
python
import os import string from file2quiz import utils, reader def convert_quiz(input_dir, output_dir, file_format, save_files=False, *args, **kwargs): print(f'##############################################################') print(f'### QUIZ CONVERTER') print(f'##############################################################\n') # Get files files = utils.get_files(input_dir, extensions={'json'}) # Create quizzes folder convert_dir = os.path.join(output_dir, f"quizzes/{file_format}") utils.create_folder(convert_dir, empty_folder=True) if save_files else None # Set format FILE_FORMATS = {"text": "txt", "anki": "txt"} file_format = str(file_format).lower().strip().replace('.', '') # parse formats output_ext = FILE_FORMATS.get(file_format, None) # Fallback for unknown extension if output_ext is None: file_format = "text" print(f'\t- [ERROR] No method to save "{output_ext}" files (fallback to "txt")') # Convert quizzes fquizzes = [] total_questions = 0 total_answers = 0 for i, filename in enumerate(files, 1): tail, basedir = utils.get_tail(filename) fname, ext = utils.get_fname(filename) print("") print(f'==============================================================') print(f'[INFO] ({i}/{len(files)}) Converting quiz to "{file_format}": "{tail}"') print(f'==============================================================') # Read file quiz = reader.read_json(filename) solutions = sum([1 for q_id, q in quiz.items() if q.get('correct_answer') is not None]) total_answers += solutions total_questions += len(quiz) try: fquiz = _convert_quiz(quiz, file_format, *args, **kwargs) except ValueError as e: print(f'\t- [ERROR] {e}. Skipping quiz "{tail}"') continue # Add formatted quizzes fquizzes.append((fquiz, filename)) # Show info if len(fquiz.strip()) == 0: print(f"\t- [WARNING] No quiz were found ({tail})") print(f"\t- [INFO] Conversion done! {len(quiz)} questions were found; {solutions} with solutions. ({tail})") # Save quizzes if save_files: print(f"\t- [INFO] Saving file... ({tail}.txt)") reader.save_txt(fquiz, os.path.join(convert_dir, f"{fname}.{output_ext}")) # Check result if not fquizzes: print("\t- [WARNING] No quiz was converted successfully") print("") print("--------------------------------------------------------------") print("SUMMARY") print("--------------------------------------------------------------") print(f"- [INFO] Quizzes converted: {len(fquizzes)}") print(f"- [INFO] Questions found: {total_questions} (with solutions: {total_answers})") print("--------------------------------------------------------------\n\n") return fquizzes def _convert_quiz(quiz, file_format, *args, **kwargs): # Select format if file_format == "anki": return quiz2anki(quiz) else: # Fallback to txt return quiz2txt(quiz, *args, **kwargs) def pdf2image(filename, savepath, dpi=300, img_format="tiff", **kwargs): # This requires: ImageMagick cmd = f'convert -density {dpi} "{filename}" -depth 8 -strip -background white -alpha off "{savepath}/page-%0d.{img_format}"' os.system(cmd) def image2text(filename, savepath, lang="eng", dpi=300, psm=3, oem=3, **kwargs): # This requires: Tesseract # Tesseract needs the save path without the extensions basedir, tail = os.path.split(savepath) fname, ext = os.path.splitext(tail) # Run command #sub_cmds = 'tessedit_char_whitelist="0123456789 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYñÑçÇáéíóúÁÉíÓÚüÜ()¿?,;.:/-\"\'ºª%-+Ø=<>*"' cmd = f'tesseract "{filename}" "{basedir}/{fname}" -l {lang} --dpi {dpi} --psm {psm} --oem {oem} letters' #-c {sub_cmds} os.system(cmd) def quiz2anki(quiz, **kwargs): text = "" # Sort questions by key keys = sorted(quiz.keys(), key=utils.tokenize) for i, id_question in enumerate(keys): question = quiz[id_question] # Check if the there is a correct answer if question.get('correct_answer') is None: raise ValueError("No correct answer was given.") # Format fields fields = ["{}. {}".format(id_question, question['question']), str(int(question['correct_answer'])+1)] + question['answers'] text += "{}\n".format("\t".join(fields)) return text.strip() def quiz2txt(quiz, show_answers, answer_table=False, **kwargs): txt = "" txt_answers = "" # Sort questions by key keys = sorted(quiz.keys(), key=utils.tokenize) for i, id_question in enumerate(keys): question = quiz[id_question] # Format question txt += "{}. {}\n".format(id_question, question['question']) # Format answers for j, ans in enumerate(question['answers']): marker = "" ans_id = string.ascii_lowercase[j].lower() # Show correct answer? if show_answers: if j == question.get("correct_answer"): # correct answer if answer_table: txt_answers += f"{id_question} - {ans_id}\n" else: marker = "*" txt += "{}{}) {}\n".format(marker, ans_id, ans) txt += "\n" # Add answer table at the end of the file if requested if show_answers and answer_table: txt += "\n\n\n=========\n\n\n" + txt_answers return txt.strip() def json2text(path, *args, **kwargs): texts = [] files = utils.get_files(path, extensions="json") for filename in files: fname, extension = os.path.splitext(os.path.basename(filename)) # Load quiz and text quiz = reader.read_json(filename) quiz_txt = quiz2txt(quiz, *args, **kwargs) texts.append((fname, quiz_txt)) return texts def _pdf2word(filename, savepath, word_client=None): try: import win32com.client import pywintypes except ImportError as e: raise ImportError("'pywin32' missing. You need to install it manually (only Windows): pip install pywin32") # Create a Word client if there isn't any if not word_client: # Load word client word_client = win32com.client.Dispatch("Word.Application") word_client.visible = 0 try: # Open word file wb = word_client.Documents.Open(filename) # File format for .docx # https://docs.microsoft.com/en-us/office/vba/api/word.wdsaveformat wb.SaveAs2(savepath, FileFormat=16) wb.Close() except pywintypes.com_error as e: print(f"- [ERROR] There was an error converting the PDF file to DOCX. Skipping file. ({e})") def pdf2word(input_dir, output_dir): try: import win32com.client except ImportError as e: raise ImportError("'pywin32' missing. You need to install it manually (only Windows): pip install pywin32") # Get files files = utils.get_files(input_dir, extensions={"pdf"}) # Create output dir output_dir = os.path.join(output_dir, "docx-word") utils.create_folder(output_dir, empty_folder=True) # Load word client word_client = win32com.client.Dispatch("Word.Application") word_client.visible = 0 # Walk through files for i, filename in enumerate(files, 1): # Parse path tail, basedir = utils.get_tail(filename) fname, ext = utils.get_fname(filename) print(f"#{i}. Converting *.pdf to *.docx ({tail})") # Create save path savepath = os.path.abspath(os.path.join(output_dir, f"{fname}.docx")) # Convert pdf _pdf2word(filename, savepath, word_client)
python
# Copyright (c) 2021 by xfangfang. All Rights Reserved. # # Using potplayer as DLNA media renderer # # Macast Metadata # <macast.title>PotPlayer Renderer</macast.title> # <macast.renderer>PotplayerRenderer</macast.title> # <macast.platform>win32</macast.title> # <macast.version>0.4</macast.version> # <macast.host_version>0.7</macast.host_version> # <macast.author>xfangfang</macast.author> # <macast.desc>PotPlayer support for Macast, this is a simple plugin that only supports play and stop.</macast.desc> import subprocess import threading import time import cherrypy from macast import gui from macast.renderer import Renderer from macast.utils import SETTING_DIR POTPLAYER_PATH = r'"C:\Program Files\DAUM\PotPlayer\PotPlayermini64.exe"' subtitle = None class PotplayerRenderer(Renderer): def __init__(self): super(PotplayerRenderer, self).__init__() self.start_position = 0 self.position_thread_running = True self.position_thread = threading.Thread(target=self.position_tick, daemon=True) self.position_thread.start() # a thread is started here to increase the playback position once per second # to simulate that the media is playing. def position_tick(self): while self.position_thread_running: time.sleep(1) self.start_position += 1 sec = self.start_position position = '%d:%02d:%02d' % (sec // 3600, (sec % 3600) // 60, sec % 60) self.set_state_position(position) def set_media_stop(self): subprocess.Popen(['taskkill', '/f', '/im', 'PotPlayerMini64.exe']).communicate() self.set_state_transport('STOPPED') cherrypy.engine.publish('renderer_av_stop') def start_player(self, url): try: if subtitle is None: subprocess.call('{} "{}"'.format(POTPLAYER_PATH, url)) else: subprocess.call('{} "{}" /sub="{}"'.format(POTPLAYER_PATH, url, subtitle)) except Exception as e: print(e) self.set_media_stop() cherrypy.engine.publish('app_notify', "Error", str(e)) def set_media_url(self, url, start=0): self.set_media_stop() self.start_position = 0 threading.Thread(target=self.start_player, daemon=True, kwargs={'url': url}).start() self.set_state_transport("PLAYING") cherrypy.engine.publish('renderer_av_uri', url) def stop(self): super(PotplayerRenderer, self).stop() self.set_media_stop() print("PotPlayer stop") def start(self): super(PotplayerRenderer, self).start() print("PotPlayer start") if __name__ == '__main__': gui(PotplayerRenderer()) # or using cli to disable taskbar menu # cli(PotplayerRenderer()) else: import os if os.path.exists(SETTING_DIR): subtitle = os.path.join(SETTING_DIR, r"macast.ass") if not os.path.exists(subtitle): subtitle = None
python
import numpy as np from metod_alg import objective_functions as mt_obj from metod_alg import metod_algorithm_functions as mt_alg def test_1(): """ Test for mt_alg.forward_tracking() - check that when flag=True, track is updated. """ np.random.seed(90) f = mt_obj.several_quad_function g = mt_obj.several_quad_gradient d = 10 P = 5 lambda_1 = 1 lambda_2 = 10 store_x0, matrix_combined = (mt_obj.function_parameters_several_quad (P, d, lambda_1, lambda_2)) func_args = P, store_x0, matrix_combined point = np.random.uniform(0, 1, (d, )) const_forward = 1.1 forward_tol = 1000000000 step = 0.0001 grad = g(point, *func_args) f_old = f(np.copy(point), *func_args) f_new = f(np.copy(point) - step * grad, *func_args) assert(f_old > f_new) track, flag = (mt_alg.forward_tracking( point, step, f_old, f_new, grad, const_forward, forward_tol, f, func_args)) assert(flag == True) assert(track[0][0] == 0) for j in range(1, len(track)): assert(track[j][0] == step) step = step * const_forward if j < len(track) - 1: assert(track[j][1] < track[j-1][1]) else: assert(track[j][1] > track[j-1][1]) def test_2(): """ Test for mt_alg.forward_tracking() - check for flag=False. """ np.random.seed(90) f = mt_obj.several_quad_function g = mt_obj.several_quad_gradient d = 10 P = 5 lambda_1 = 1 lambda_2 = 10 store_x0, matrix_combined = (mt_obj.function_parameters_several_quad (P, d, lambda_1, lambda_2)) func_args = P, store_x0, matrix_combined point = np.random.uniform(0, 1, (d, )) const_forward = 1.1 forward_tol = 0.001 step = 0.0001 grad = g(point, *func_args) f_old = f(np.copy(point), *func_args) f_new = f(np.copy(point) - step * grad, *func_args) assert(f_old > f_new) track, flag = (mt_alg.forward_tracking( point, step, f_old, f_new, grad, const_forward, forward_tol, f, func_args)) assert(flag == False) for j in range(1, len(track)): assert(track[j][0] == step) step = step * const_forward assert(track[j][1] < track[j-1][1]) def test_3(): """Test for mt_alg.backward_tracking() - back_tol is met""" np.random.seed(90) f = mt_obj.several_quad_function g = mt_obj.several_quad_gradient d = 10 P = 5 lambda_1 = 1 lambda_2 = 10 store_x0, matrix_combined = (mt_obj.function_parameters_several_quad (P, d, lambda_1, lambda_2)) func_args = P, store_x0, matrix_combined point = np.random.uniform(0, 1, (d, )) const_back = 0.9 back_tol = 0.4 step = 0.9 grad = g(point, *func_args) f_old = f(np.copy(point), *func_args) f_new = f(np.copy(point) - step * grad, *func_args) assert(f_old < f_new) track = (mt_alg.backward_tracking (point, step, f_old, f_new, grad, const_back, back_tol, f, func_args)) assert(track[0][0] == 0) assert(track[0][1] == f_old) assert(track[1][0] == step) assert(track[1][1] == f_new) def test_4(): """Test for mt_alg.backward_tracking() - back tol is not met""" np.random.seed(90) f = mt_obj.several_quad_function g = mt_obj.several_quad_gradient d = 10 P = 5 lambda_1 = 1 lambda_2 = 10 store_x0, matrix_combined = (mt_obj.function_parameters_several_quad (P, d, lambda_1, lambda_2)) func_args = P, store_x0, matrix_combined point = np.random.uniform(0, 1, (d, )) const_back = 0.9 back_tol = 0.000001 step = 1 grad = g(point, *func_args) f_old = f(np.copy(point), *func_args) f_new = f(np.copy(point) - step * grad, *func_args) assert(f_old < f_new) track = (mt_alg.backward_tracking (point, step, f_old, f_new, grad, const_back, back_tol, f, func_args)) assert(track[0][0] == 0) assert(track[0][1] == f_old) for j in range(1, len(track)): assert(track[j][0] == step) step = step * const_back if j < len(track) - 1: assert(track[0][1] < track[j][1]) else: assert(track[j][1] < track[0][1]) def test_5(): """Checks computation in mt_alg.compute_coeffs()""" track_y = np.array([100, 200, 50]) track_t = np.array([0, 1, 0.5]) opt_t = mt_alg.compute_coeffs(track_y, track_t) OLS_polyfit = np.polyfit(track_t, track_y, 2) check = -OLS_polyfit[1] / (2 * OLS_polyfit[0]) assert(np.all(np.round(check, 5) == np.round(opt_t, 5))) def test_6(): """ Test for mt_alg.combine_tracking() - check that correct step size is returned when forward_tol is not met. """ np.random.seed(90) f = mt_obj.several_quad_function g = mt_obj.several_quad_gradient d = 10 P = 5 lambda_1 = 1 lambda_2 = 10 store_x0, matrix_combined = (mt_obj.function_parameters_several_quad (P, d, lambda_1, lambda_2)) func_args = P, store_x0, matrix_combined point = np.random.uniform(0, 1, (d, )) const_back = 0.9 const_forward = 1.1 forward_tol = 1000000000 back_tol = 0.000001 step = 0.0001 f_old = f(np.copy(point), *func_args) grad = g(point, *func_args) opt_t = (mt_alg.combine_tracking (point, f_old, grad, step, const_back, back_tol, const_forward, forward_tol, f, func_args)) assert(opt_t >= 0) upd_point = point - opt_t * grad assert(f(upd_point, *func_args) < f_old) def test_7(): """ Test for mt_alg.combine_tracking() - check that correct step size is returned, when forward_tol is met. """ np.random.seed(90) f = mt_obj.several_quad_function g = mt_obj.several_quad_gradient d = 10 P = 5 lambda_1 = 1 lambda_2 = 10 store_x0, matrix_combined = (mt_obj.function_parameters_several_quad (P, d, lambda_1, lambda_2)) func_args = P, store_x0, matrix_combined point = np.random.uniform(0, 1, (d, )) const_back = 0.9 const_forward = 1.1 forward_tol = 0.001 back_tol = 0.000001 step = 0.0001 grad = g(point, *func_args) f_old = f(np.copy(point), *func_args) opt_t = (mt_alg.combine_tracking (point, f_old, grad, step, const_back, back_tol, const_forward, forward_tol, f, func_args)) assert(opt_t >= 0) upd_point = point - opt_t * grad assert(f(upd_point, *func_args) < f_old) def test_8(): """ Test for mt_alg.combine_tracking() - check that correct step size is returned, when back_tol is met. """ np.random.seed(90) f = mt_obj.several_quad_function g = mt_obj.several_quad_gradient d = 10 P = 5 lambda_1 = 1 lambda_2 = 10 store_x0, matrix_combined = (mt_obj.function_parameters_several_quad (P, d, lambda_1, lambda_2)) func_args = P, store_x0, matrix_combined point = np.random.uniform(0, 1, (d, )) const_back = 0.9 const_forward = 1.1 back_tol = 0.4 forward_tol = 100000000 step = 0.9 grad = g(point, *func_args) f_old = f(np.copy(point), *func_args) opt_t = (mt_alg.combine_tracking (point, f_old, grad, step, const_back, back_tol, const_forward, forward_tol, f, func_args)) assert(opt_t == 0) upd_point = point - opt_t * grad assert(f(upd_point, *func_args) == f_old) def test_9(): """ Test for mt_alg.combine_tracking() - check that correct step size is returned, when back_tol is not met. """ np.random.seed(90) f = mt_obj.several_quad_function g = mt_obj.several_quad_gradient d = 10 P = 5 lambda_1 = 1 lambda_2 = 10 store_x0, matrix_combined = (mt_obj.function_parameters_several_quad (P, d, lambda_1, lambda_2)) func_args = P, store_x0, matrix_combined point = np.random.uniform(0, 1, (d, )) const_back = 0.9 const_forward = 1.1 back_tol = 0.000001 forward_tol = 100000000 step = 1 grad = g(point, *func_args) f_old = f(np.copy(point), *func_args) opt_t = (mt_alg.combine_tracking (point, f_old, grad, step, const_back, back_tol, const_forward, forward_tol, f, func_args)) assert(opt_t >= 0) upd_point = point - opt_t * grad assert(f(upd_point, *func_args) < f_old) def test_10(): """Test that mt_alg.arrange_track_y_t produces expected outputs""" track = np.array([[0, 100], [1, 80], [2, 160], [4, 40], [8, 20], [16, 90]]) track_method = 'Forward' track_y, track_t = mt_alg.arrange_track_y_t(track, track_method) assert(np.all(track_y == np.array([40, 20, 90]))) assert(np.all(track_t == np.array([4, 8, 16]))) def test_11(): """Test that mt_alg.arrange_track_y_t produces expected outputs""" track = np.array([[0, 100], [1, 80], [2, 70], [4, 90]]) track_method = 'Forward' track_y, track_t = mt_alg.arrange_track_y_t(track, track_method) assert(np.all(track_y == np.array([80, 70, 90]))) assert(np.all(track_t == np.array([1, 2, 4]))) def test_12(): """Test that mt_alg.arrange_track_y_t produces expected outputs""" track = np.array([[0, 100], [1, 120], [0.5, 110], [0.25, 90]]) track_method = 'Backward' track_y, track_t = mt_alg.arrange_track_y_t(track, track_method) assert(np.all(track_y == np.array([100, 90, 110]))) assert(np.all(track_t == np.array([0, 0.25, 0.5]))) def test_13(): """ Test for mt_alg.check_func_val_coeffs() when func_val < track_y[1]. """ np.random.seed(90) f = mt_obj.several_quad_function g = mt_obj.several_quad_gradient d = 10 P = 5 lambda_1 = 1 lambda_2 = 10 store_x0, matrix_combined = (mt_obj.function_parameters_several_quad (P, d, lambda_1, lambda_2)) func_args = P, store_x0, matrix_combined step = 0.00001 point = np.array([0.5525204, 0.8256308, 0.5034502, 0.68755988, 0.75954891, 0.64230399, 0.38500431, 0.0801039, 0.80748984, 0.81147401]) grad = g(point, *func_args) f_old = f(np.copy(point), *func_args) f_new = f(np.copy(point) - step * grad, *func_args) assert(f_old > f_new) forward_tol = 100000000 const_forward = 1.1 track_method = 'Forward' track, flag = (mt_alg.forward_tracking (point, step, f_old, f_new, grad, const_forward, forward_tol, f, func_args)) opt_t = mt_alg.check_func_val_coeffs(track, track_method, point, grad, f, func_args) assert(f(point - opt_t * grad, *func_args) < np.min(track[:, 1])) def test_14(): """ Test for mt_alg.check_func_val_coeffs() when func_val > track_y[1]. """ np.random.seed(34272212) f = mt_obj.sog_function g = mt_obj.sog_gradient d = 20 P = 10 lambda_1 = 1 lambda_2 = 4 sigma_sq = 0.8 store_x0, matrix_combined, store_c = (mt_obj.function_parameters_sog (P, d, lambda_1, lambda_2)) func_args = P, sigma_sq, store_x0, matrix_combined, store_c point = np.random.uniform(0,1,(d,)) f_old = f(point, *func_args) grad = g(point, *func_args) step = 0.1 const_forward = 1.5 forward_tol = 1000000000 f_new = f(np.copy(point) - step * grad, *func_args) assert(f_old > f_new) track_method = 'Forward' track, flag = (mt_alg.forward_tracking (point, step, f_old, f_new, grad, const_forward, forward_tol, f, func_args)) opt_t = mt_alg.check_func_val_coeffs(track, track_method, point, grad, f, func_args) pos = np.argmin(track[:, 1]) step_length = track[pos][0] assert(step_length == opt_t)
python
# -*- coding: utf-8 -*- # Copyright (C) 2012 Anaconda, Inc # SPDX-License-Identifier: BSD-3-Clause from __future__ import absolute_import, division, print_function, unicode_literals from logging import getLogger import os import sys from .main import main as main_main from .. import CondaError from .._vendor.auxlib.ish import dals log = getLogger(__name__) def pip_installed_post_parse_hook(args, p): if args.cmd not in ('init', 'info'): raise CondaError(dals(""" Conda has not been initialized. To enable full conda functionality, please run 'conda init'. For additional information, see 'conda init --help'. """)) def main(*args, **kwargs): os.environ[str('CONDA_PIP_UNINITIALIZED')] = str('true') kwargs['post_parse_hook'] = pip_installed_post_parse_hook return main_main(*args, **kwargs) if __name__ == '__main__': sys.exit(main())
python
with open('input') as fp: grid = [line[:-1] for line in fp] grid_width = len(grid[-1]) x, y = (0, 0) n_trees = 0 while y < len(grid): if grid[y][x % grid_width] == '#': n_trees += 1 x += 3 y += 1 print(n_trees, "trees")
python
from __future__ import absolute_import import sys, os from subprocess import Popen, PIPE, check_output import socket from ..seqToolManager import seqToolManager, FeatureComputerException from .windowHHblits import WindowHHblits from utils import myMakeDir, tryToRemove #utils is at the root of the package class HHBlitsManager(seqToolManager): BAD_SCORE_CONSERVATION="-1048576" def __init__(self, seqsManager, outPath, winSize, hhBlitsCMD_template="%(hhBlitsBinPath)s/hhblits -i %(fastaInFname)s -n 4 -d %(hhblitsDB)s "+ "-oa3m %(aligsName)s -cpu %(psiBlastNThrs)d -ohhm %(profileNameRaw)s -o /dev/null"): seqToolManager.__init__(self, seqsManager, outPath, winSize) ''' @param seqsManager: ..manageSeqs.seqsManager.SeqsManager @param outPath: str. path where hhblits results will be saved @param winSize: int. The size of sliding window ''' # self.hhBlits should be inherited from # self.hhBlitsBinPath Inherited from ../../Config # self.hhBlitsDB Inherited from ../../Config # self.psiBlastNThrs Inherited from ../../Config self.hhBlitsOut= myMakeDir(self.outPath,"hhBlits") self.hhBlitsRaw= myMakeDir(self.hhBlitsOut,"rawHhBlits") self.hhBlitsProc= myMakeDir(self.hhBlitsOut,"procHhBlits") self.hhBlitsPathWindowed= myMakeDir(self.hhBlitsOut,"windowedHhBlits/wSize"+str(winSize)) self.hhBlitsCMD_template= hhBlitsCMD_template def getFinalPath(self): ''' returns path where final results (win hhBlits) are saved @return self.hhBlitsPathWindowed: str ''' return self.hhBlitsPathWindowed def getFNames(self, prefixExtended): ''' Returns a dict that contains the fnames that will be used by hhblits @param prefixExtended. prefix for output fnames. They are formed as follows: prefix+chainType+chainId+b/u @return Dict {"psiblast":(psiblastOutName, ), "pssm":(pssmOutNameRaw, pssmOutNameProc), "pssmWindow":(pssmWindowedOutName,)} Processed pssm and pssmWindow are the ones that will be used for classification. ''' hhBlitsAligName= os.path.join( self.hhBlitsRaw, prefixExtended+".a3m") rawHhblits= os.path.join( self.hhBlitsRaw, prefixExtended+".ohhm") procHhblits= os.path.join(self.hhBlitsProc, prefixExtended+".ohhm") hhblitsWindowedOutName= os.path.join(self.hhBlitsPathWindowed, prefixExtended+".wsize"+str(self.winSize)+".ohhm") fNames= { "hhBlitsAligName":(hhBlitsAligName,),"hhBlitsProfiles":(rawHhblits, procHhblits), "hhBlitsProfilesWindow":(hhblitsWindowedOutName,)} return fNames def compute(self, prefixExtended): ''' Computes hhblits for the sequence associated with prefixExtended as an unambiguous id and included in self.seqsManager @param prefixExtended: str. unambiguous id of the sequence that will be the prefix of output names. Must be included in self.seqsManager @return (profileNameProc, winProfileOutName) profileNameProc: str winProfileOutName: str ''' prefix, chainType, chainId, __= prefixExtended.split("_") seqStr, fastaInFname= self.seqsManager.getSeq(chainType, chainId) fNames= self.getFNames( prefixExtended) aligsName= fNames["hhBlitsAligName"][0] profileNameRaw, profileNameProc= fNames["hhBlitsProfiles"] winProfileOutName= fNames["hhBlitsProfilesWindow"][0] if self.checkAlreayComputed(prefixExtended): print("hhblits already computed for %s"%prefixExtended) return aligsName, profileNameRaw, profileNameProc # run hhblits print("lauching hhblits over %s"%prefixExtended) self.launchHhblits( fastaInFname, aligsName, profileNameRaw) #Process psi-blast self.processHhblits( seqStr, prefixExtended, profileNameRaw, profileNameProc) #Compute windows self.makeWindowedPSSMHhblits( profileNameProc, winProfileOutName) return aligsName, profileNameProc, winProfileOutName def launchHhblits(self, fastaInFname, aligsName, profileNameRaw): ''' Launches hhblits command with fastaInFname as input file, aligsName as the output file that will contain the aligments and profileNameRaw as the output file that will contain the profile. @param fastaInFname: str. Path to fasta file where sequence is saved @param aligsName: str. Path to results file where aligments will be saved @param profileNameRaw: str. Path to results file where profile will be saved ''' if os.path.isfile(profileNameRaw) and int(check_output('wc -l {}'.format(profileNameRaw), shell=True).split()[0])> 11: print("hhblits raw files alredy computed") return hhBlitsBinPath= self.hhBlitsBinPath hhblitsDB= self.hhBlitsDB psiBlastNThrs= self.psiBlastNThrs if socket.gethostname()!="servet" else 1 hhblitsCMD = self.hhBlitsCMD_template%locals() hhblitsCMD.replace("_*", "_\\*") print(hhblitsCMD) process= Popen( hhblitsCMD, shell=True, stdout=PIPE, stderr=PIPE) processOut= process.communicate() #Check for failure if len(processOut[1])>0 and "Error" in processOut[1]: #No hits found will be dealt at processResults print("Error computing hhblits. Caught stdin/stderr:\n",processOut[0],processOut[1]) raise FeatureComputerException("hhblits was not able to compute profile") def processHhblits(self, seq, prefixExtended, profileNameRaw, profileNameProc): ''' Reads hhblits profile output file and writes another one with tabulated format, headers and some error checking. @param: seq: str. Sequence of the chain @param prefixExtended: str. unambiguous id of the sequence that will be the prefix of output names @param profileNameRaw: str. Path to profiles results @param profileNameProc: str. Path where formated results will be saved. ''' try: hhBlitsData = self.loadHhblits(profileNameRaw) except IOError: hhBlitsData= [ " ".join([HHBlitsManager.BAD_SCORE_CONSERVATION for i in range(31)]) for i in range(len(seq))] prefix, chainType, chainId, __= prefixExtended.split("_") try: outFile= open(profileNameProc,"w") outFile.write("chainId seqIndex structResId resName "+ "hhblits "*31+"\n") for i, (hhBlitsArrayJoined,letter) in enumerate(zip(hhBlitsData,seq)): structIndex= self.seqsManager.seqToStructIndex(chainType, chainId, i, asString= True) if self.filterOutLabels and structIndex[-1].isalpha(): continue outFile.write("%s %d %s %s "%(chainId, i, structIndex, letter)+ hhBlitsArrayJoined +"\n") outFile.close() except (KeyboardInterrupt, Exception): print("Exception happend computing %s"%profileNameProc) tryToRemove(profileNameProc) raise def loadHhblits(self, fname): ''' Loads a hhblits profile file @param fname: str. Path to hhblits profile file. @return list of strings. ["row0_hhblits_values","row1_hhblits_values"...] ''' scores=[] begin=False count=0 with open(fname) as f: for line in f: if line.startswith("#"): begin=True continue if begin==True: count+=1 if count==4: break for i,line in enumerate(f): if line.startswith("//"): break lineArray= line.split() nElems= len(lineArray) if i%3==0: lineArray= lineArray[2:] if nElems!=23: raise ValueError("Bad format in hhblits file %s"%fname) scores.append(lineArray) elif i%3==1: scores[-1]+= lineArray scores[-1]= " ".join([ elem if elem!="*" else "-1" for elem in scores[-1] ]) return scores def makeWindowedPSSMHhblits(self, profileNameProc, winProfileOutName): ''' Computes sliding windows for a given profileNameProc. @param profileNameProc: str. Path to processed hhblits profile file @param winProfileOutName: str. Path to windowed results. ''' try: WindowHHblits(self.winSize).compute(profileNameProc, winProfileOutName) except (KeyboardInterrupt, Exception): print("Exception happend computing %s"%winProfileOutName) tryToRemove(winProfileOutName) raise def test(): fname="/home/rsanchez/Tesis/rriPredMethod/dependencies/bioinformaticTools/hh-Tools/seqExample.ohhm" from computeFeatures.seqStep.manageSeqs.seqsManager import SeqsManager seqManag= SeqsManager("rFname", "lFname", computedFeatsRootDir= ".") hhblitsObj= HHBlitsManager( seqsManager= seqManag, outPath=".", winSize=11) hhblitsObj.loadHhblits(fname) if __name__=="__main__": test()
python
# Definition for singly-linked list. class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: def removeElements(self, head: ListNode, val: int) -> ListNode: # edge cases - if the element is present at start or last if not head: return head while head.val == val: head = head.next if not head: return head prev, curr = head, head.next while curr: if curr.val == val: prev.next = curr.next else: prev = prev.next curr = curr.next return head if __name__ == "__main__": a = ListNode(1) b = ListNode(2) c = ListNode(3) d = ListNode(2) e = ListNode(5) a.next = b b.next = c c.next = d d.next = e head = Solution().removeElements(a, 1) while head: print(head.val) head = head.next
python
# Export individual functions # Copy from .scopy import scopy from .dcopy import dcopy from .ccopy import ccopy from .zcopy import zcopy # Swap from .sswap import sswap from .dswap import dswap from .cswap import cswap from .zswap import zswap # Scaling from .sscal import sscal from .dscal import dscal from .cscal import cscal from .csscal import csscal from .zscal import zscal from .zdscal import zdscal # Scaling plus vector from .saxpy import saxpy from .daxpy import daxpy from .caxpy import caxpy from .zaxpy import zaxpy # Absolute values of components from .scabs1 import scabs1 from .dcabs1 import dcabs1 # Sum of absolute values from .sasum import sasum from .dasum import dasum # Sum of absolute values of components from .scasum import scasum from .dzasum import dzasum # Dot products from .sdot import sdot from .dsdot import dsdot from .ddot import ddot from .cdotu import cdotu from .zdotu import zdotu # Complex dot products from .cdotc import cdotc from .zdotc import zdotc # Dot product plus scalar from .sdsdot import sdsdot # Euclidean norm from .snrm2 import snrm2 from .dnrm2 import dnrm2 from .scnrm2 import scnrm2 from .dznrm2 import dznrm2
python
import torch import trtorch precision = 'fp16' ssd_model = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd', model_math=precision) input_shapes = [1, 3, 300, 300] model = ssd_model.eval().cuda() scripted_model = torch.jit.script(model) compile_settings = { "input_shapes": [input_shapes], "op_precision": torch.float16 } trt_ts_module = trtorch.compile(scripted_model, compile_settings) torch.jit.save(trt_ts_module, 'ssd.jit')
python
# Main file for the PwnedCheck distribution. # This file retrieves the password, calls the module check_pwd, # and check if the password has been breached by checking it with # the database in the following website # https://haveibeenpwned.com/Passwords import sys import logging from getpass import getpass from checkpwd.check_pwd import check_pwd logging.basicConfig(level=logging.INFO, format="[%(levelname)s] %(message)s") log = logging.getLogger(__name__) def splash(): """Splash `pwnedcheck` logo and information.""" print(" _____________________________________________________ ") print("| ____ _ _ ____ _ |") print("| / ___| |__ ___ ___| | _| _ \__ ____| | |") print("| | | | '_ \ / _ \/ __| |/ / |_) \ \ /\ / / _` | |") print("| | |___| | | | __/ (__| <| __/ \ V V / (_| | |") print("| \____|_| |_|\___|\___|_|\_\_| \_/\_/ \__,_| |") print("| |") print("| Author: Tanjona R. Rabemananjara |") print("| URL: https://radonirinaunimi.github.io/pwnd-check/ |") print("|_____________________________________________________|") def main(): """Function that fetchs the password given by the user from the command line using `getpass`. The password is then checked on `HaveIBeenPwned`. """ splash() print("\nEnter your password below.") pwd = getpass() try: # Check the pwd and add the values to some variables hashed_pwd, nb_match = check_pwd(pwd) # Print the result if nb_match: print(f"The password occurs {nb_match} times (hash: {hashed_pwd})") else: print("Your password was not found") except UnicodeError: errormsg = sys.exc_info()[1] log.warning(f"Your password could not be checked: {errormsg}")
python
""" ================================ Symbolic Aggregate approXimation ================================ Binning continuous data into intervals can be seen as an approximation that reduces noise and captures the trend of a time series. The Symbolic Aggregate approXimation (SAX) algorithm bins continuous time series into intervals, transforming independently each time series (a sequence of floats) into a sequence of symbols, usually letters. This example illustrates the transformation. It is implemented as :class:`pyts.approximation.SymbolicAggregateApproximation`. """ # Author: Johann Faouzi <[email protected]> # License: BSD-3-Clause import numpy as np import matplotlib.lines as mlines import matplotlib.pyplot as plt from scipy.stats import norm from pyts.approximation import SymbolicAggregateApproximation # Parameters n_samples, n_timestamps = 100, 24 # Toy dataset rng = np.random.RandomState(41) X = rng.randn(n_samples, n_timestamps) # SAX transformation n_bins = 3 sax = SymbolicAggregateApproximation(n_bins=n_bins, strategy='normal') X_sax = sax.fit_transform(X) # Compute gaussian bins bins = norm.ppf(np.linspace(0, 1, n_bins + 1)[1:-1]) # Show the results for the first time series bottom_bool = np.r_[True, X_sax[0, 1:] > X_sax[0, :-1]] plt.figure(figsize=(6, 4)) plt.plot(X[0], 'o--', label='Original') for x, y, s, bottom in zip(range(n_timestamps), X[0], X_sax[0], bottom_bool): va = 'bottom' if bottom else 'top' plt.text(x, y, s, ha='center', va=va, fontsize=14, color='#ff7f0e') plt.hlines(bins, 0, n_timestamps, color='g', linestyles='--', linewidth=0.5) sax_legend = mlines.Line2D([], [], color='#ff7f0e', marker='*', label='SAX - {0} bins'.format(n_bins)) first_legend = plt.legend(handles=[sax_legend], fontsize=8, loc=(0.76, 0.86)) ax = plt.gca().add_artist(first_legend) plt.legend(loc=(0.81, 0.93), fontsize=8) plt.xlabel('Time', fontsize=14) plt.title('Symbolic Aggregate approXimation', fontsize=16) plt.show()
python
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-10-10 01:54 from __future__ import unicode_literals import django.core.files.storage from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cxp_v1', '0001_initial'), ] operations = [ migrations.CreateModel( name='Download', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file', models.FileField(storage=django.core.files.storage.FileSystemStorage(location=b'/home/ubuntu/Django/sessionfiles/protected'), upload_to='download')), ], ), ]
python
# -*- coding: utf-8 -*- import pytest from click.testing import CliRunner from jak.app import main as jak import jak.crypto_services as cs @pytest.fixture def runner(): return CliRunner() def test_empty(runner): result = runner.invoke(jak) assert result.exit_code == 0 assert not result.exception @pytest.mark.parametrize('version_flag', ['--version', '-v']) def test_version(runner, version_flag): result = runner.invoke(jak, [version_flag]) assert not result.exception assert result.exit_code == 0 assert '(Troubled Toddler)' in result.output.strip() @pytest.mark.parametrize('cmd, filepath', [ ('encrypt', 'filethatdoesnotexist'), ('decrypt', 'filethatdoesnotexist2')]) def test_file_not_found(runner, cmd, filepath): result = runner.invoke(jak, [cmd, filepath, '-k', 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa']) assert 'find the file:' in result.output def test_encrypt_smoke(runner, tmpdir): """This one has proven to be an absolute godsend for finding weirdness, especially between python versions.""" plaintext_secret = tmpdir.join("secret.txt") plaintext_secret.write('secret') runner.invoke(jak, ['encrypt', plaintext_secret.strpath, '--key', 'f40ec5d3ef66166720b24b3f8716c2c31ffc6b45295ff72024a45d90e5fddb56']) assert cs.ENCRYPTED_BY_HEADER in plaintext_secret.read() def test_decrypt_smoke(runner, tmpdir, monkeypatch): ciphertext_secret = tmpdir.join("secret.txt") # This test was leaking backup files # The cause was the decorator "attach_jwd" which would # force the filesystem back into the realworld with os.getcwd(). # My attempt at patching os.getcwd had unintended sideeffects so instead # I patched the helper function to force it's return to be the files location. def mock_getjwd(): return ciphertext_secret.dirpath().strpath import jak.helpers as jakh monkeypatch.setattr(jakh, "get_jak_working_directory", mock_getjwd) ciphertext_secret.write('''- - - Encrypted by jak - - - SkFLLTAwMHM0jlOUIaTUeVwbfS459sfDJ1SUW9_3wFFcm2rCxTnLvy1N-Ndb O7t2Vcol566PnyniPGn9IadqwWFNykZdaycRJG7aL8P4pZnb4gnJcp08OLwR LiFC7wcITbo6l3Q7Lw==''') runner.invoke(jak, ['decrypt', ciphertext_secret.strpath, '--key', 'f40ec5d3ef66166720b24b3f8716c2c31ffc6b45295ff72024a45d90e5fddb56']) result = ciphertext_secret.read() assert cs.ENCRYPTED_BY_HEADER not in result assert result.strip('\n') == 'attack at dawn'
python
try: import matplotlib.pyplot as plt import fuzzycorr.prepro as pp from pathlib import Path import numpy as np import gdal except: print('ModuleNotFoundError: Missing fundamental packages (required: pathlib, numpy, gdal).') cur_dir = Path.cwd() Path(cur_dir / "rasters").mkdir(exist_ok=True) raster_meas = pp.PreProCategorization(str(cur_dir / 'rasters') + '/' + 'vali_meas_2013_res5_clipped.tif') raster_sim = pp.PreProCategorization(str(cur_dir / 'rasters') + '/' + 'vali_hydro_FT_manual_2013_res5_clipped.tif') n_classes = 12 nb_classes = np.insert(raster_meas.nb_classes(n_classes), 0, -np.inf, axis=0) nb_classes[-1] = np.inf raster_meas.categorize_raster(nb_classes, map_out=str(cur_dir / 'rasters') + '/' + 'vali_meas_class_nbreaks.tif', save_ascii=False) raster_sim.categorize_raster(nb_classes, map_out=str(cur_dir / 'rasters') + '/' + 'vali_hydro_FT_manual_class_nbreaks.tif', save_ascii=False)
python
"""Support for Vallox ventilation units.""" from __future__ import annotations from dataclasses import dataclass, field import ipaddress import logging from typing import Any, NamedTuple from uuid import UUID from vallox_websocket_api import PROFILE as VALLOX_PROFILE, Vallox from vallox_websocket_api.exceptions import ValloxApiException from vallox_websocket_api.vallox import get_uuid as calculate_uuid import voluptuous as vol from homeassistant.config_entries import SOURCE_IMPORT, ConfigEntry from homeassistant.const import CONF_HOST, CONF_NAME, Platform from homeassistant.core import HomeAssistant, ServiceCall from homeassistant.helpers import config_validation as cv from homeassistant.helpers.typing import ConfigType, StateType from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed from .const import ( DEFAULT_FAN_SPEED_AWAY, DEFAULT_FAN_SPEED_BOOST, DEFAULT_FAN_SPEED_HOME, DEFAULT_NAME, DOMAIN, METRIC_KEY_PROFILE_FAN_SPEED_AWAY, METRIC_KEY_PROFILE_FAN_SPEED_BOOST, METRIC_KEY_PROFILE_FAN_SPEED_HOME, STATE_SCAN_INTERVAL, STR_TO_VALLOX_PROFILE_SETTABLE, ) _LOGGER = logging.getLogger(__name__) CONFIG_SCHEMA = vol.Schema( vol.All( cv.deprecated(DOMAIN), { DOMAIN: vol.Schema( { vol.Required(CONF_HOST): vol.All(ipaddress.ip_address, cv.string), vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, } ) }, ), extra=vol.ALLOW_EXTRA, ) PLATFORMS: list[str] = [ Platform.SENSOR, Platform.FAN, Platform.BINARY_SENSOR, ] ATTR_PROFILE = "profile" ATTR_PROFILE_FAN_SPEED = "fan_speed" SERVICE_SCHEMA_SET_PROFILE = vol.Schema( { vol.Required(ATTR_PROFILE): vol.All( cv.string, vol.In(STR_TO_VALLOX_PROFILE_SETTABLE) ) } ) SERVICE_SCHEMA_SET_PROFILE_FAN_SPEED = vol.Schema( { vol.Required(ATTR_PROFILE_FAN_SPEED): vol.All( vol.Coerce(int), vol.Clamp(min=0, max=100) ) } ) class ServiceMethodDetails(NamedTuple): """Details for SERVICE_TO_METHOD mapping.""" method: str schema: vol.Schema SERVICE_SET_PROFILE = "set_profile" SERVICE_SET_PROFILE_FAN_SPEED_HOME = "set_profile_fan_speed_home" SERVICE_SET_PROFILE_FAN_SPEED_AWAY = "set_profile_fan_speed_away" SERVICE_SET_PROFILE_FAN_SPEED_BOOST = "set_profile_fan_speed_boost" SERVICE_TO_METHOD = { SERVICE_SET_PROFILE: ServiceMethodDetails( method="async_set_profile", schema=SERVICE_SCHEMA_SET_PROFILE, ), SERVICE_SET_PROFILE_FAN_SPEED_HOME: ServiceMethodDetails( method="async_set_profile_fan_speed_home", schema=SERVICE_SCHEMA_SET_PROFILE_FAN_SPEED, ), SERVICE_SET_PROFILE_FAN_SPEED_AWAY: ServiceMethodDetails( method="async_set_profile_fan_speed_away", schema=SERVICE_SCHEMA_SET_PROFILE_FAN_SPEED, ), SERVICE_SET_PROFILE_FAN_SPEED_BOOST: ServiceMethodDetails( method="async_set_profile_fan_speed_boost", schema=SERVICE_SCHEMA_SET_PROFILE_FAN_SPEED, ), } @dataclass class ValloxState: """Describes the current state of the unit.""" metric_cache: dict[str, Any] = field(default_factory=dict) profile: VALLOX_PROFILE = VALLOX_PROFILE.NONE def get_metric(self, metric_key: str) -> StateType: """Return cached state value.""" if (value := self.metric_cache.get(metric_key)) is None: return None if not isinstance(value, (str, int, float)): return None return value def get_uuid(self) -> UUID | None: """Return cached UUID value.""" uuid = calculate_uuid(self.metric_cache) if not isinstance(uuid, UUID): raise ValueError return uuid class ValloxDataUpdateCoordinator(DataUpdateCoordinator): """The DataUpdateCoordinator for Vallox.""" data: ValloxState async def async_setup(hass: HomeAssistant, config: ConfigType) -> bool: """Set up the integration from configuration.yaml (DEPRECATED).""" if DOMAIN not in config: return True hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data=config[DOMAIN], ) ) return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up the client and boot the platforms.""" host = entry.data[CONF_HOST] name = entry.data[CONF_NAME] client = Vallox(host) async def async_update_data() -> ValloxState: """Fetch state update.""" _LOGGER.debug("Updating Vallox state cache") try: metric_cache = await client.fetch_metrics() profile = await client.get_profile() except (OSError, ValloxApiException) as err: raise UpdateFailed("Error during state cache update") from err return ValloxState(metric_cache, profile) coordinator = ValloxDataUpdateCoordinator( hass, _LOGGER, name=f"{name} DataUpdateCoordinator", update_interval=STATE_SCAN_INTERVAL, update_method=async_update_data, ) await coordinator.async_config_entry_first_refresh() service_handler = ValloxServiceHandler(client, coordinator) for vallox_service, service_details in SERVICE_TO_METHOD.items(): hass.services.async_register( DOMAIN, vallox_service, service_handler.async_handle, schema=service_details.schema, ) hass.data.setdefault(DOMAIN, {})[entry.entry_id] = { "client": client, "coordinator": coordinator, "name": name, } hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload a config entry.""" if unload_ok := await hass.config_entries.async_unload_platforms(entry, PLATFORMS): hass.data[DOMAIN].pop(entry.entry_id) if hass.data[DOMAIN]: return unload_ok for service in SERVICE_TO_METHOD: hass.services.async_remove(DOMAIN, service) return unload_ok class ValloxServiceHandler: """Services implementation.""" def __init__( self, client: Vallox, coordinator: DataUpdateCoordinator[ValloxState] ) -> None: """Initialize the proxy.""" self._client = client self._coordinator = coordinator async def async_set_profile(self, profile: str = "Home") -> bool: """Set the ventilation profile.""" _LOGGER.debug("Setting ventilation profile to: %s", profile) _LOGGER.warning( "Attention: The service 'vallox.set_profile' is superseded by the " "'fan.set_preset_mode' service. It will be removed in the future, please migrate to " "'fan.set_preset_mode' to prevent breakage" ) try: await self._client.set_profile(STR_TO_VALLOX_PROFILE_SETTABLE[profile]) return True except (OSError, ValloxApiException) as err: _LOGGER.error("Error setting ventilation profile: %s", err) return False async def async_set_profile_fan_speed_home( self, fan_speed: int = DEFAULT_FAN_SPEED_HOME ) -> bool: """Set the fan speed in percent for the Home profile.""" _LOGGER.debug("Setting Home fan speed to: %d%%", fan_speed) try: await self._client.set_values( {METRIC_KEY_PROFILE_FAN_SPEED_HOME: fan_speed} ) return True except (OSError, ValloxApiException) as err: _LOGGER.error("Error setting fan speed for Home profile: %s", err) return False async def async_set_profile_fan_speed_away( self, fan_speed: int = DEFAULT_FAN_SPEED_AWAY ) -> bool: """Set the fan speed in percent for the Away profile.""" _LOGGER.debug("Setting Away fan speed to: %d%%", fan_speed) try: await self._client.set_values( {METRIC_KEY_PROFILE_FAN_SPEED_AWAY: fan_speed} ) return True except (OSError, ValloxApiException) as err: _LOGGER.error("Error setting fan speed for Away profile: %s", err) return False async def async_set_profile_fan_speed_boost( self, fan_speed: int = DEFAULT_FAN_SPEED_BOOST ) -> bool: """Set the fan speed in percent for the Boost profile.""" _LOGGER.debug("Setting Boost fan speed to: %d%%", fan_speed) try: await self._client.set_values( {METRIC_KEY_PROFILE_FAN_SPEED_BOOST: fan_speed} ) return True except (OSError, ValloxApiException) as err: _LOGGER.error("Error setting fan speed for Boost profile: %s", err) return False async def async_handle(self, call: ServiceCall) -> None: """Dispatch a service call.""" service_details = SERVICE_TO_METHOD.get(call.service) params = call.data.copy() if service_details is None: return if not hasattr(self, service_details.method): _LOGGER.error("Service not implemented: %s", service_details.method) return result = await getattr(self, service_details.method)(**params) # This state change affects other entities like sensors. Force an immediate update that can # be observed by all parties involved. if result: await self._coordinator.async_request_refresh()
python
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import annotations from math import isnan from typing import Any, List, Optional, TYPE_CHECKING, Union from iceberg.exceptions import ValidationException from .expression import (Expression, Operation) from .literals import (BaseLiteral, Literals) from .term import BoundTerm, UnboundTerm from ..types import TypeID if TYPE_CHECKING: from iceberg.api import StructLike class Predicate(Expression): def __init__(self, op: Operation, term: Union[BoundTerm, UnboundTerm]): if term is None: raise ValueError("Term cannot be None") self.op: Operation = op self.term: Union[BoundTerm, UnboundTerm] = term @property def ref(self): return self.term.ref @property def lit(self): raise NotImplementedError("Not Implemented for base class") def __eq__(self, other): if id(self) == id(other): return True elif other is None or not isinstance(other, Predicate): return False return self.op == other.op and self.ref == other.ref and self.lit == other.lit def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "Predicate({},{},{})".format(self.op, self.ref, self.lit) def __str__(self): if self.op == Operation.IS_NULL: return "is_null({})".format(self.ref) elif self.op == Operation.NOT_NULL: return "not_null({})".format(self.ref) elif self.op == Operation.LT: return "less_than({})".format(self.ref) elif self.op == Operation.LT_EQ: return "less_than_equal({})".format(self.ref) elif self.op == Operation.GT: return "greater_than({})".format(self.ref) elif self.op == Operation.GT_EQ: return "greater_than_equal({})".format(self.ref) elif self.op == Operation.EQ: return "equal({})".format(self.ref) elif self.op == Operation.NOT_EQ: return "not_equal({})".format(self.ref) else: return "invalid predicate: operation = {}".format(self.op) class BoundPredicate(Predicate): def __init__(self, op: Operation, term: BoundTerm, lit: BaseLiteral = None, literals: List[BaseLiteral] = None, is_unary_predicate: bool = False, is_literal_predicate: bool = False, is_set_predicate: bool = False): self.is_unary_predicate = is_unary_predicate self.is_literal_predicate = is_literal_predicate self.is_set_predicate = is_set_predicate super(BoundPredicate, self).__init__(op, term) ValidationException.check(sum([is_unary_predicate, is_literal_predicate, is_set_predicate]) == 1, "Only a single predicate type may be set: %s=%s, %s=%s, %s=%s", ("is_unary_predicate", is_unary_predicate, "is_literal_predicate", is_literal_predicate, "is_set_predicate", is_set_predicate)) self._literals: Optional[List[BaseLiteral]] = None if self.is_unary_predicate: ValidationException.check(lit is None, "Unary Predicates may not have a literal", ()) elif self.is_literal_predicate: ValidationException.check(lit is not None, "Literal Predicates must have a literal set", ()) self._literals = [lit] # type: ignore elif self.is_set_predicate: ValidationException.check(literals is not None, "Set Predicates must have literals set", ()) self._literals = literals else: raise ValueError(f"Unable to instantiate {op} -> (lit={lit}, literal={literals}") @property def lit(self) -> Optional[BaseLiteral]: if self._literals is None or len(self._literals) == 0: return None return self._literals[0] def eval(self, struct: StructLike) -> bool: ValidationException.check(isinstance(self.term, BoundTerm), "Term must be bound to eval: %s", (self.term)) return self.test(self.term.eval(struct)) # type: ignore def test(self, struct: StructLike = None, value: Any = None) -> bool: ValidationException.check(struct is None or value is None, "Either struct or value must be none", ()) if struct is not None: ValidationException.check(isinstance(self.term, BoundTerm), "Term must be bound to eval: %s", (self.term)) return self.test(value=self.term.eval(struct)) # type: ignore else: if self.is_unary_predicate: return self.test_unary_predicate(value) elif self.is_literal_predicate: return self.test_literal_predicate(value) else: return self.test_set_predicate(value) def test_unary_predicate(self, value: Any) -> bool: if self.op == Operation.IS_NULL: return value is None elif self.op == Operation.NOT_NULL: return value is not None elif self.op == Operation.IS_NAN: return isnan(value) elif self.op == Operation.NOT_NAN: return not isnan(value) else: raise ValueError(f"{self.op} is not a valid unary predicate") def test_literal_predicate(self, value: Any) -> bool: if self.lit is None: raise ValidationException("Literal must not be none", ()) if self.op == Operation.LT: return value < self.lit.value elif self.op == Operation.LT_EQ: return value <= self.lit.value elif self.op == Operation.GT: return value > self.lit.value elif self.op == Operation.GT_EQ: return value >= self.lit.value elif self.op == Operation.EQ: return value == self.lit.value elif self.op == Operation.NOT_EQ: return value != self.lit.value else: raise ValueError(f"{self.op} is not a valid literal predicate") def test_set_predicate(self, value: Any) -> bool: if self._literals is None: raise ValidationException("Literals must not be none", ()) if self.op == Operation.IN: return value in self._literals elif self.op == Operation.NOT_IN: return value not in self._literals else: raise ValueError(f"{self.op} is not a valid set predicate") class UnboundPredicate(Predicate): def __init__(self, op, term, value=None, lit=None, values=None, literals=None): self._literals = None num_set_args = sum([1 for x in [value, lit, values, literals] if x is not None]) if num_set_args > 1: raise ValueError(f"Only one of value={value}, lit={lit}, values={values}, literals={literals} may be set") super(UnboundPredicate, self).__init__(op, term) if isinstance(value, BaseLiteral): lit = value value = None if value is not None: self._literals = [Literals.from_(value)] elif lit is not None: self._literals = [lit] elif values is not None: self._literals = map(Literals.from_, values) elif literals is not None: self._literals = literals @property def literals(self): return self._literals @property def lit(self): if self.op in [Operation.IN, Operation.NOT_IN]: raise ValueError(f"{self.op} predicate cannot return a literal") return None if self.literals is None else self.literals[0] def negate(self): return UnboundPredicate(self.op.negate(), self.term, literals=self.literals) def bind(self, struct, case_sensitive=True): bound = self.term.bind(struct, case_sensitive=case_sensitive) if self.literals is None: return self.bind_unary_operation(bound) elif self.op in [Operation.IN, Operation.NOT_IN]: return self.bind_in_operation(bound) return self.bind_literal_operation(bound) def bind_unary_operation(self, bound_term: BoundTerm) -> BoundPredicate: from .expressions import Expressions if self.op == Operation.IS_NULL: if bound_term.ref.field.is_required: return Expressions.always_false() return BoundPredicate(Operation.IS_NULL, bound_term, is_unary_predicate=True) elif self.op == Operation.NOT_NULL: if bound_term.ref.field.is_required: return Expressions.always_true() return BoundPredicate(Operation.NOT_NULL, bound_term, is_unary_predicate=True) elif self.op in [Operation.IS_NAN, Operation.NOT_NAN]: if not self.floating_type(bound_term.ref.type.type_id): raise ValidationException(f"{self.op} cannot be used with a non-floating column", ()) return BoundPredicate(self.op, bound_term, is_unary_predicate=True) raise ValidationException(f"Operation must be in [IS_NULL, NOT_NULL, IS_NAN, NOT_NAN] was:{self.op}", ()) def bind_in_operation(self, bound_term): from .expressions import Expressions def convert_literal(lit): converted = lit.to(bound_term) ValidationException.check(converted is not None, "Invalid Value for conversion to type %s: %s (%s)", (bound_term.type, lit, lit.__class__.__name__)) return converted converted_literals = filter(lambda x: x != Literals.above_max() and x != Literals.below_min(), [convert_literal(lit) for lit in self.literals]) if len(converted_literals) == 0: return Expressions.always_true() if Operation.NOT_IN else Expressions.always_false() literal_set = set(converted_literals) if len(literal_set) == 1: if self.op == Operation.IN: return BoundPredicate(Operation.EQ, bound_term, literal_set[0]) elif self.op == Operation.NOT_IN: return BoundPredicate(Operation.NOT_EQ, bound_term, literal_set[0]) else: raise ValidationException("Operation must be in or not in", ()) return BoundPredicate(self.op, bound_term, literals=literal_set, is_set_predicate=True) def bind_literal_operation(self, bound_term): from .expressions import Expressions lit = self.lit.to(bound_term.type) ValidationException.check(lit is not None, "Invalid Value for conversion to type %s: %s (%s)", (bound_term.type, self.lit, self.lit.__class__.__name__)) if lit == Literals.above_max(): if self.op in [Operation.LT, Operation.LT_EQ, Operation.NOT_EQ]: return Expressions.always_true() elif self.op in [Operation.GT, Operation.GT_EQ, Operation.EQ]: return Expressions.always_false() elif lit == Literals.below_min(): if self.op in [Operation.LT, Operation.LT_EQ, Operation.NOT_EQ]: return Expressions.always_false() elif self.op in [Operation.GT, Operation.GT_EQ, Operation.EQ]: return Expressions.always_true() return BoundPredicate(self.op, bound_term, lit=lit, is_literal_predicate=True) @staticmethod def floating_type(type_id: TypeID) -> bool: return type_id in [TypeID.FLOAT, TypeID.DOUBLE]
python
import numpy as np # type: ignore import pandas as pd # type: ignore # imported ML models from scikit-learn from sklearn.model_selection import (ShuffleSplit, StratifiedShuffleSplit, # type: ignore TimeSeriesSplit, cross_val_score) # type: ignore from sklearn.discriminant_analysis import LinearDiscriminantAnalysis # type: ignore from sklearn.ensemble import (BaggingRegressor, ExtraTreesRegressor, # type: ignore RandomForestClassifier, ExtraTreesClassifier, # type: ignore AdaBoostRegressor, AdaBoostClassifier) # type: ignore from sklearn.linear_model import LinearRegression, LogisticRegression, RidgeCV # type: ignore from sklearn.svm import LinearSVC, SVR, LinearSVR # type: ignore from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier # type: ignore # imported specialized tree models from scikit-garden # from skgarden import RandomForestQuantileRegressor # helper functions from ..utils import print_static_rmse, print_dynamic_rmse import pdb def run_ensemble_model(X, Y, modeltype='Regression', scoring='', verbose=0): """ Quickly builds and runs multiple models for a clean data set(only numerics). """ seed = 99 if len(X) <= 100000 or X.shape[1] < 50: NUMS = 50 FOLDS = 3 else: NUMS = 20 FOLDS = 5 ## create Voting models estimators = [] if modeltype == 'Regression': if scoring == '': scoring = 'neg_mean_squared_error' scv = ShuffleSplit(n_splits=FOLDS, random_state=seed) model5 = LinearRegression() results1 = cross_val_score(model5, X, Y, cv=scv, scoring=scoring) estimators.append(('Linear Model', model5, np.sqrt(abs(results1.mean())))) model6 = AdaBoostRegressor(base_estimator=DecisionTreeRegressor( min_samples_leaf=2, max_depth=1, random_state=seed), n_estimators=NUMS, random_state=seed) results2 = cross_val_score(model6, X, Y, cv=scv, scoring=scoring) estimators.append(('Boosting', model6, np.sqrt(abs(results2.mean())))) model7 = RidgeCV(alphas=np.logspace(-10, -1, 50), cv=scv) results3 = cross_val_score(model7, X, Y, cv=scv, scoring=scoring) estimators.append(('Linear Regularization', model7, np.sqrt(abs(results3.mean())))) ## Create an ensemble model #### # estimators_list = [(tuples[0], tuples[1]) for tuples in estimators] # unused ensemble = BaggingRegressor(DecisionTreeRegressor(random_state=seed), n_estimators=NUMS, random_state=seed) results4 = cross_val_score(ensemble, X, Y, cv=scv, scoring=scoring) estimators.append(('Bagging', ensemble, np.sqrt(abs(results4.mean())))) if verbose == 1: print('\nLinear Model = %0.4f \nBoosting = %0.4f\nRegularization = %0.4f \nBagging = %0.4f' %( np.sqrt(abs(results1.mean()))/Y.std(), np.sqrt(abs(results2.mean()))/Y.std(), np.sqrt(abs(results3.mean()))/Y.std(), np.sqrt(abs(results4.mean()))/Y.std())) besttype = sorted(estimators, key=lambda x: x[2], reverse=False)[0][0] bestmodel = sorted(estimators, key=lambda x: x[2], reverse=False)[0][1] bestscore = sorted(estimators, key=lambda x: x[2], reverse=False)[0][2]/Y.std() if verbose == 1: print(' Best Model = %s with %0.2f Normalized RMSE score\n' %(besttype,bestscore)) elif modeltype == 'TimeSeries' or modeltype =='Time Series' or modeltype == 'Time_Series': #### This section is for Time Series Models only #### if scoring == '': scoring = 'neg_mean_squared_error' tscv = TimeSeriesSplit(n_splits=FOLDS) scoring = 'neg_mean_squared_error' model5 = SVR(C=0.1, kernel='rbf', degree=2) results1 = cross_val_score(model5, X, Y, cv=tscv, scoring=scoring) estimators.append(('SVR', model5, np.sqrt(abs(results1.mean())))) model6 = AdaBoostRegressor(base_estimator=DecisionTreeRegressor( min_samples_leaf=2, max_depth=1, random_state=seed), n_estimators=NUMS, random_state=seed) results2 = cross_val_score(model6, X, Y, cv=tscv, scoring=scoring) estimators.append(('Extra Trees', model6,np.sqrt(abs(results2.mean())))) model7 = LinearSVR(random_state=seed) results3 = cross_val_score(model7, X, Y, cv=tscv, scoring=scoring) estimators.append(('LinearSVR', model7, np.sqrt(abs(results3.mean())))) ## Create an ensemble model #### # estimators_list = [(tuples[0], tuples[1]) for tuples in estimators] # unused ensemble = BaggingRegressor(DecisionTreeRegressor(random_state=seed), n_estimators=NUMS, random_state=seed) results4 = cross_val_score(ensemble, X, Y, cv=tscv, scoring=scoring) estimators.append(('Bagging', ensemble, np.sqrt(abs(results4.mean())))) print('Running multiple models...') if verbose == 1: print(' Instance Based = %0.4f \n Boosting = %0.4f\n Linear Model = %0.4f \n Bagging = %0.4f' %( np.sqrt(abs(results1.mean()))/Y.std(), np.sqrt(abs(results2.mean()))/Y.std(), np.sqrt(abs(results3.mean()))/Y.std(), np.sqrt(abs(results4.mean()))/Y.std())) besttype = sorted(estimators, key=lambda x: x[2], reverse=False)[0][0] bestmodel = sorted(estimators, key=lambda x: x[2], reverse=False)[0][1] bestscore = sorted(estimators, key=lambda x: x[2], reverse=False)[0][2]/Y.std() if verbose == 1: print('Best Model = %s with %0.2f Normalized RMSE score\n' % (besttype, bestscore)) print('Model Results:') else: if scoring == '': scoring = 'f1' scv = StratifiedShuffleSplit(n_splits=FOLDS, random_state=seed) model5 = LogisticRegression(random_state=seed) results1 = cross_val_score(model5, X, Y, cv=scv, scoring=scoring) estimators.append(('Logistic Regression', model5, abs(results1.mean()))) model6 = LinearDiscriminantAnalysis() results2 = cross_val_score(model6, X, Y, cv=scv, scoring=scoring) estimators.append(('Linear Discriminant', model6, abs(results2.mean()))) model7 = ExtraTreesClassifier(n_estimators=NUMS, min_samples_leaf=2, random_state=seed) results3 = cross_val_score(model7, X, Y, cv=scv, scoring=scoring) estimators.append(('Bagging', model7, abs(results3.mean()))) ## Create an ensemble model #### # estimators_list = [(tuples[0], tuples[1]) for tuples in estimators] # unused ensemble = AdaBoostClassifier(base_estimator=DecisionTreeClassifier( random_state=seed, max_depth=1, min_samples_leaf=2), n_estimators=NUMS, random_state=seed) results4 = cross_val_score(ensemble, X, Y, cv=scv, scoring=scoring) estimators.append(('Boosting', ensemble, abs(results4.mean()))) if verbose == 1: print('\nLogistic Regression = %0.4f \nLinear Discriminant = %0.4f \nBagging = %0.4f \nBoosting = %0.4f' % (abs(results1.mean()), abs(results2.mean()), abs(results3.mean()), abs(results4.mean()))) besttype = sorted(estimators, key=lambda x: x[2], reverse=True)[0][0] bestmodel = sorted(estimators, key=lambda x: x[2], reverse=True)[0][1] bestscore = sorted(estimators, key=lambda x: x[2], reverse=True)[0][2] if verbose == 1: print(' Best Model = %s with %0.2f %s score\n' % (besttype, bestscore, scoring)) return bestmodel, bestscore, besttype
python
#!/usr/bin/env python __author__ = 'Florian Hase' #======================================================================= from DatabaseHandler.PickleWriters.db_writer import DB_Writer
python
# # @lc app=leetcode id=383 lang=python # # [383] Ransom Note # # https://leetcode.com/problems/ransom-note/description/ # # algorithms # Easy (49.29%) # Total Accepted: 107.4K # Total Submissions: 216.8K # Testcase Example: '"a"\n"b"' # # # Given an arbitrary ransom note string and another string containing letters # from all the magazines, write a function that will return true if the ransom # note can be constructed from the magazines ; otherwise, it will return # false. # # # Each letter in the magazine string can only be used once in your ransom # note. # # # Note: # You may assume that both strings contain only lowercase letters. # # # # canConstruct("a", "b") -> false # canConstruct("aa", "ab") -> false # canConstruct("aa", "aab") -> true # # # class Solution(object): def canConstruct(self, ransomNote, magazine): """ :type ransomNote: str :type magazine: str :rtype: bool """ magazine = list(magazine) for i in ransomNote: if i in magazine: magazine.remove(i) else: return False return True
python
""" Guidelines from whitehouse.gov/openingamerica/ SYMPTOMS: - Downward Trajectory of Flu-like illnesses AND - Downward Trajectory of Covid symptoms 14 day period CASES: - Downward Trajectory of documented cases within 14 day period OR - Downward Trajectory of positive tests within 14 days (flat or increasing volume of tests) HOSPITALS: - Treat all patients WITHOUT crisis care - Robust testing program in place including antibody testing Data is collected daily at 9PM from John Hopkins University - https://github.com/CSSEGISandData/COVID-19 - Data is assumed to be accurate. Confirmed cases include presumptive positive cases - A positive test counts as an active case - Only data from the mainland 48 states, Alaska, Hawaii, and D.C is parsed and calculated. Territories are not included in this calculation. """ import requests, time, io, pandas, numpy, json, smtplib, ssl, csv, schedule from datetime import datetime, date, timedelta from ftplib import FTP import firebase_admin from firebase_admin import credentials, firestore from state_code import state_codes from hospital_capacity import hospital_capacity class DataCollect(): """ Main data collection class. Contains methods used to collect and aggregate data. """ def __init__(self): self.data_url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports_us/{}.csv" self.set_data() print("Script is now running. Waiting to collect and upload data...") self.upload_data_or_email() schedule.every().day.at("00:01").do(self.set_data) schedule.every().day.at("00:02").do(self.upload_data_or_email) self.run_automated_tasks() def set_data(self): """ Sets variables (to be run every night at midnight) """ self.data = self.get_data() self.state_cases = self.get_cases_trend() self.state_hospitals = self.get_hospital_capacity() self.state_tests = self.get_test_trend() def get_data(self): """ Requests data from John Hopkins University database from the most recent day it can find, and then also from 14 days prior and every day inbetween (in order to calculate general trajectory) """ today_date = date.today() data = None while True: str__today_date = today_date.strftime("%m-%d-%Y") print("Attempting to download data from %s..." % str__today_date) request = requests.get(self.data_url.format(str__today_date)) #If we have data for today, use that if request != None and request.status_code == 200: data = pandas.read_csv(io.StringIO(request.content.decode('utf-8'))) data['date'] = str__today_date self.most_recent_date = str__today_date prior_date = today_date - timedelta(days=1) #Get data from every day between 14 days ago and today while prior_date != today_date - timedelta(days=15): str__prior_date = prior_date.strftime("%m-%d-%Y") prior_request = requests.get(self.data_url.format(str__prior_date)) print("Attempting to download data from %s..." % str__prior_date) if prior_request != None and request.status_code == 200: prior_data = pandas.read_csv(io.StringIO(prior_request.content.decode('utf-8'))) prior_data['date'] = str__prior_date data = pandas.concat([data, prior_data], ignore_index=True) else: print("Couldn't find data for %s, skipping..." % str__prior_date) prior_date = prior_date - timedelta(days=1) break else: print("Couldn't find data for %s, attempting previous day..." % str__today_date) today_date = today_date - timedelta(days=1) #Convert all dates to datetime data['date'] = pandas.to_datetime(data['date']) #Convert dataframe to all lowercase data.columns = data.columns.str.lower() data = data.applymap(lambda s:s.lower() if type(s) == str else s) #Reverse dataframe (so the latest day is at the top) data = data.iloc[::-1] print("Data retrieved!") return data def get_cases_trend(self): """ Calculates which states meet the guideline: "Downward Trajectory of documented cases within 14 day period" Grabs active cases for each state over the 14 day period and calculates slope of those points. If slope is negative, then it meets guideline. If the slope if positive, then it does not meet guideline. """ state_cases = {} for state in state_codes.keys(): state_data = self.data.loc[self.data['province_state'] == state] df = pandas.DataFrame(state_data, columns=['active']) df = df.reset_index(drop=True) state_cases[state] = self.is_downward_trend(df, 'active') print("States that meet active case guidelines: \n{}".format(json.dumps(state_cases, indent=2))) return state_cases def get_hospital_capacity(self): """ Calculates which states meet the guideline: "Treat all patients WITHOUT crisis care" Grabs the active cases for each state and calculates if that number is <= the total hospital capacity of the state. If the number is <= the capacity, then it meets the guideline. If the number is > the capacity, then it does not meet the guideline. """ state_hospitals = {} for state in state_codes.keys(): state_data = self.data.loc[self.data['province_state'] == state] current_active = state_data.iloc[-1] state_code = state_codes[state] state_hospitals[state] = bool(current_active['active'] <= hospital_capacity[state_code]) print("States that meet hospital guidelines: \n{}".format(json.dumps(state_hospitals, indent=2))) return state_hospitals def get_test_trend(self): """ Calculates which states meet the guideline: "Downward Trajectory of positive tests within 14 days (flat or increasing volume of tests)" Grabs the number of people tested and active cases per state and calculates the slope of both lines. If (active cases <= 0 && tests >= 0), then it meets the guideline. If the above expression is not true, then it does not meet the guideline. """ state_tests = {} for state in state_codes.keys(): state_data = self.data.loc[self.data['province_state'] == state] df = pandas.DataFrame(state_data, columns=['people_tested', 'active']) df = df.reset_index(drop=True) state_tests[state] = (self.is_downward_trend(df, 'active') & self.is_upward_trend(df, 'people_tested')) return state_tests def get_case_info(self, state): """ Returns information about cases over the 14 day period for a given state. That info is: - Net change in new cases - Cases at beginning of 14 days - Cases at end of 14 days - Number of people tested """ case_info = {} state_data = self.data.loc[self.data['province_state'] == state.lower()] df = pandas.DataFrame(state_data, columns=['active', 'confirmed', 'people_tested']) df = df.reset_index(drop=True) case_info["beginning"] = df.iloc[0]['active'] case_info["end"] = df.iloc[-1]['active'] case_info["net"] = df.iloc[-1]['active'] - df.iloc[0]['active'] case_info["total"] = df.iloc[-1]['confirmed'] case_info["total_tests"] = df.iloc[-1]['people_tested'] return case_info def get_slope(self, data, column): """ Calculates the slope of a graph given a list of data """ slope_data = data.apply(lambda x: numpy.polyfit(data.index, x, 1)[0]) return slope_data[column] def is_downward_trend(self, data, column): """ Determines if the trend is downward (slope is negative) """ slope = self.get_slope(data, column) return True if slope <= 0 else False def is_upward_trend(self, data, column): """ Determines if the trend is upward (slope is positive) """ slope = self.get_slope(data, column) return True if slope >= 0 else False def compile_data(self): """ Compiles all data into one coherent json file to be parsed by the frontend """ data = { "info": {} } for state in state_codes.keys(): case_info = self.get_case_info(state) data["info"][state] = {} data["info"][state]["state_code"] = state_codes[state] data["info"][state]["total_hospital_capacity"] = hospital_capacity[state_codes[state]] data["info"][state]["downward_cases"] = self.state_cases[state] data["info"][state]["enough_hospital_capacity"] = self.state_hospitals[state] data["info"][state]["beginning_cases"] = case_info["beginning"] data["info"][state]["end_cases"] = case_info["end"] data["info"][state]["net_case_change"] = case_info["net"] data["info"][state]["total_cases"] = case_info["total"] data["info"][state]["enough_tests"] = self.state_tests[state] data["info"][state]["total_tests"] = case_info["total_tests"] data["info"][state]["should_open"] = (self.state_cases[state] & self.state_hospitals[state] & self.state_tests[state]) data["info"][state]["most_recent_date"] = self.most_recent_date print("Successfully parsed data into json file. Result:\n") print(json.dumps(data, indent=2)) #Upload file to firebase creds = credentials.Certificate('credentials.json') firebase_admin.initialize_app(creds, { 'databaseURL': 'https://should-my-state-open.firebaseio.com' }) try: database = firestore.client() collection = database.collection('data') data['createdAt'] = datetime.now() collection.document().create(data) except Exception as e: print(f"An exception Occurred:\n {e}") self.exception_message = e return False return True def send_error_email(self): """ Sends an error email to [email protected] using provided credentials if something goes wrong """ email_user = "" email_password = "" with open('email_credentials', 'r') as email_credentials: csv_reader = csv.reader(email_credentials, delimiter=',') for row in csv_reader: email_user = row[0] email_password = row[1] message = """\ Subject: WEB ERROR shouldmystateopen.com WEB ERROR OCCURRED @ https://shouldmystateopen.com (FTP UPLOAD) Date: {date} | Time: {time} Exception message as follows: {error} """.format(date=date.today().strftime("%m-%d-%Y"), time=datetime.now().strftime("%H:%M:%S"), error=self.exception_message if self.exception_message else "No message provided." ) ssl._create_default_https_context = ssl._create_unverified_context with smtplib.SMTP_SSL("smtp.gmail.com", 465) as email_server: try: email_server.login(email_user, email_password) email_server.sendmail(email_user, "[email protected]", message) self.exception_message = None except Exception as e: print("Couldn't send email...\n{}".format(e)) finally: email_server.quit() def upload_data_or_email(self): """ Attempts to upload FTP data, else send email error """ if not self.compile_data(): self.send_error_email() def run_automated_tasks(self): """ Runs scheduled tasks """ while True: schedule.run_pending() time.sleep(1) collect = DataCollect()
python
from pymodm import connect, MongoModel, fields from pymodm.base.fields import MongoBaseField import pymongo from datetime import datetime as dt db_server = "mongodb+srv://AtlasUser:[email protected]" db_server += ".mongodb.net/ECGServer?retryWrites=true&w=majority" mongodb_server = connect(db_server) class Patient(MongoModel): # Medical Record Number # Patient Name # ECG Images as b64 string # Heart Rate Data # Datetime timestamps as strftime strings # Medical Images as b64 string MRN = fields.IntegerField(primary_key=True) patient_name = fields.CharField() ECG_trace = fields.ListField(fields.CharField()) heart_rate = fields.ListField(fields.IntegerField()) receipt_timestamps = fields.ListField(fields.CharField()) medical_image = fields.ListField(fields.CharField()) class PatientTest(MongoModel): MRN = fields.IntegerField(primary_key=True) patient_name = fields.CharField() ECG_trace = fields.ListField(fields.CharField()) heart_rate = fields.ListField(fields.IntegerField()) receipt_timestamps = fields.ListField(fields.CharField()) medical_image = fields.ListField(fields.CharField()) def get_database(): """Simply returns the mongodb_server object Returns: mongodb_server object """ return mongodb_server def clean_database(): """Deletes all contents of the Patient database """ Patient.objects.raw({}).delete() # from PIL import Image # # Testing Patient class & Database Connection # import image_toolbox as tb # x = PatientTest() # x.MRN = 1 # x.patient_name = "Anuj Som" # x.ECG_trace.append(tb.file_to_b64("images/test_image.png")) # x.heart_rate.append(60) # x.receipt_timestamps.append(dt.now().strftime("%Y-%m-%d %H:%M:%S")) # x.save()
python
from django.urls import path from account.views import ( index, profile, LOGIN, LOGOUT, REGISTER, activate, change_password, update_profile, change_profile_pic ) from account.api import ( check_username_existing, get_users ) app_name = 'account' urlpatterns = [ # API URLs path('api/check_username/', check_username_existing, name='username_existing'), path('api/get_users/', get_users, name='get_users'), # View URLs path('', index, name='home'), path('profile/<int:pk>/', profile, name='profile'), path('login/', LOGIN, name='login'), path('logout/', LOGOUT, name='logout'), path('register/', REGISTER, name='register'), path('update-password/', change_password, name='update-password'), path('update-profile/', update_profile, name='update-profile'), path('update-profile-pic', change_profile_pic, name='update-profile-pic'), # Functional URLs path('activate/<uidb64>/<token>', activate, name='activate'), ]
python
import msgpack_numpy import os import torch from collections import defaultdict from typing import List import lmdb import magnum as mn import numpy as np from torch.utils.data import Dataset from tqdm import tqdm import habitat from habitat import logger from habitat.datasets.utils import VocabDict from habitat.tasks.pickplace.pickplace import RearrangementEpisode class ObservationsDict(dict): def pin_memory(self): for k, v in self.items(): self[k] = v.pin_memory() return self def collate_fn(batch): """Each sample in batch: ( obs, prev_actions, oracle_actions, inflec_weight, ) """ def _pad_helper(t, max_len, fill_val=0): pad_amount = max_len - t.size(0) if pad_amount == 0: return t pad = torch.full_like(t[0:1], fill_val).expand(pad_amount, *t.size()[1:]) return torch.cat([t, pad], dim=0) transposed = list(zip(*batch)) observations_batch = list(transposed[1]) next_actions_batch = list(transposed[2]) prev_actions_batch = list(transposed[3]) weights_batch = list(transposed[4]) B = len(prev_actions_batch) new_observations_batch = defaultdict(list) for sensor in observations_batch[0]: for bid in range(B): new_observations_batch[sensor].append(observations_batch[bid][sensor]) observations_batch = new_observations_batch max_traj_len = max(ele.size(0) for ele in prev_actions_batch) for bid in range(B): for sensor in observations_batch: observations_batch[sensor][bid] = _pad_helper( observations_batch[sensor][bid], max_traj_len, fill_val=1.0 ) next_actions_batch[bid] = _pad_helper(next_actions_batch[bid], max_traj_len) prev_actions_batch[bid] = _pad_helper(prev_actions_batch[bid], max_traj_len) weights_batch[bid] = _pad_helper(weights_batch[bid], max_traj_len) for sensor in observations_batch: observations_batch[sensor] = torch.stack(observations_batch[sensor], dim=1) next_actions_batch = torch.stack(next_actions_batch, dim=1) prev_actions_batch = torch.stack(prev_actions_batch, dim=1) weights_batch = torch.stack(weights_batch, dim=1) not_done_masks = torch.ones_like(next_actions_batch, dtype=torch.float) not_done_masks[0] = 0 observations_batch = ObservationsDict(observations_batch) return ( observations_batch, prev_actions_batch, not_done_masks, next_actions_batch, weights_batch, ) class PickPlaceDataset(Dataset): """Pytorch dataset for object rearrangement task for each episode""" def __init__(self, config, content_scenes=["*"], mode="train", use_iw=False, inflection_weight_coef=1.0): """ Args: env (habitat.Env): Habitat environment config: Config mode: 'train'/'val' """ scene_split_name = "train" if content_scenes[0] != "*": scene_split_name = "_".join(content_scenes) self.config = config.TASK_CONFIG self.dataset_path = config.DATASET_PATH.format(split=mode, scene_split=scene_split_name) self.config.defrost() self.config.DATASET.CONTENT_SCENES = content_scenes self.config.freeze() self.resolution = [self.config.SIMULATOR.RGB_SENSOR.WIDTH, self.config.SIMULATOR.RGB_SENSOR.HEIGHT] self.possible_actions = config.TASK_CONFIG.TASK.POSSIBLE_ACTIONS self.total_actions = 0 self.inflections = 0 self.inflection_weight_coef = inflection_weight_coef if use_iw: self.inflec_weight = torch.tensor([1.0, inflection_weight_coef]) else: self.inflec_weight = torch.tensor([1.0, 1.0]) if not self.cache_exists(): """ for each scene > load scene in memory > save frames for each episode corresponding to that scene """ self.env = habitat.Env(config=self.config) self.episodes = self.env._dataset.episodes self.instruction_vocab = self.env._dataset.instruction_vocab logger.info( "Dataset cache not found. Saving rgb, seg, depth scene images" ) logger.info( "Number of {} episodes: {}".format(mode, len(self.episodes)) ) self.scene_ids = [] self.scene_episode_dict = {} # dict for storing list of episodes for each scene for episode in self.episodes: if episode.scene_id not in self.scene_ids: self.scene_ids.append(episode.scene_id) self.scene_episode_dict[episode.scene_id] = [episode] else: self.scene_episode_dict[episode.scene_id].append(episode) self.lmdb_env = lmdb.open( self.dataset_path, map_size=int(2e12), writemap=True, ) self.count = 0 for scene in tqdm(list(self.scene_episode_dict.keys())): for episode in tqdm(self.scene_episode_dict[scene]): self.load_scene(scene, episode) state_index_queue = [] try: # TODO: Consider alternative for shortest_paths state_index_queue.extend(range(0, len(episode.reference_replay) - 1)) except AttributeError as e: logger.error(e) self.save_frames(state_index_queue, episode) print("Inflection weight coef: {}, N: {}, nI: {}".format(self.total_actions / self.inflections, self.total_actions, self.inflections)) logger.info("Rearrangement database ready!") self.env.close() else: logger.info("Dataset cache found.") self.lmdb_env = lmdb.open( self.dataset_path, readonly=True, lock=False, ) self.dataset_length = int(self.lmdb_env.begin().stat()["entries"] / 4) self.lmdb_env.close() self.lmdb_env = None def save_frames( self, state_index_queue: List[int], episode: RearrangementEpisode ) -> None: r""" Writes rgb, seg, depth frames to LMDB. """ next_actions = [] prev_actions = [] observations = { "rgb": [], "depth": [], "instruction": [], } reference_replay = episode.reference_replay instruction = episode.instruction print("Replay len: {}".format(len(reference_replay))) for state_index in state_index_queue: instruction_tokens = np.array(instruction.instruction_tokens) state = reference_replay[state_index] position = state.agent_state.position rotation = state.agent_state.rotation object_states = state.object_states sensor_states = state.agent_state.sensor_data observation = self.env.sim.get_observations_at( position, rotation, sensor_states, object_states ) next_state = reference_replay[state_index + 1] next_action = self.possible_actions.index(next_state.action) prev_state = reference_replay[state_index] prev_action = self.possible_actions.index(prev_state.action) observations["depth"].append(observation["depth"]) observations["rgb"].append(observation["rgb"]) observations["instruction"].append(instruction_tokens) next_actions.append(next_action) prev_actions.append(prev_action) oracle_actions = np.array(next_actions) inflection_weights = np.concatenate(([1], oracle_actions[1:] != oracle_actions[:-1])) self.total_actions += inflection_weights.shape[0] self.inflections += np.sum(inflection_weights) inflection_weights = self.inflec_weight[torch.from_numpy(inflection_weights)].numpy() sample_key = "{0:0=6d}".format(self.count) with self.lmdb_env.begin(write=True) as txn: txn.put((sample_key + "_obs").encode(), msgpack_numpy.packb(observations, use_bin_type=True)) txn.put((sample_key + "_next_action").encode(), np.array(next_actions).tobytes()) txn.put((sample_key + "_prev_action").encode(), np.array(prev_actions).tobytes()) txn.put((sample_key + "_weights").encode(), inflection_weights.tobytes()) self.count += 1 # images_to_video(images=obs_list, output_dir="demos", video_name="dummy_{}".format(self.count)) def cache_exists(self) -> bool: if os.path.exists(self.dataset_path): if os.listdir(self.dataset_path): return True else: os.makedirs(self.dataset_path) return False def get_vocab_dict(self) -> VocabDict: r"""Returns Instruction VocabDicts""" return self.instruction_vocab def load_scene(self, scene, episode) -> None: self.config.defrost() self.config.SIMULATOR.SCENE = scene self.config.SIMULATOR.objects = episode.objects self.config.freeze() self.env.sim.reconfigure(self.config.SIMULATOR) def __len__(self) -> int: return self.dataset_length def __getitem__(self, idx: int): r"""Returns batches to trainer. batch: (rgb, depth, seg) """ if self.lmdb_env is None: self.lmdb_env = lmdb.open( self.dataset_path, map_size=int(2e12), writemap=True, ) self.lmdb_txn = self.lmdb_env.begin() self.lmdb_cursor = self.lmdb_txn.cursor() height, width = int(self.resolution[0]), int(self.resolution[1]) obs_idx = "{0:0=6d}_obs".format(idx) observations_binary = self.lmdb_cursor.get(obs_idx.encode()) observations = msgpack_numpy.unpackb(observations_binary, raw=False) for k, v in observations.items(): obs = np.array(observations[k]) observations[k] = torch.from_numpy(obs) next_action_idx = "{0:0=6d}_next_action".format(idx) next_action_binary = self.lmdb_cursor.get(next_action_idx.encode()) next_action = np.frombuffer(next_action_binary, dtype="int") next_action = torch.from_numpy(np.copy(next_action)) prev_action_idx = "{0:0=6d}_prev_action".format(idx) prev_action_binary = self.lmdb_cursor.get(prev_action_idx.encode()) prev_action = np.frombuffer(prev_action_binary, dtype="int") prev_action = torch.from_numpy(np.copy(prev_action)) weight_idx = "{0:0=6d}_weights".format(idx) weight_binary = self.lmdb_cursor.get(weight_idx.encode()) weight = np.frombuffer(weight_binary, dtype="float32") weight = torch.from_numpy(np.copy(weight)) weight = torch.where(weight != 1.0, self.inflection_weight_coef, 1.0) return idx, observations, next_action, prev_action, weight
python
from visualization import plot_binary_grid # used to show results from wrapper import multi_image # import segmenter for multiple images if __name__ == "__main__": # Apply segmenter to default test images. print("Classifying images...") masks = multi_image() # uses default test image print("Complete.") # Show results. plot_binary_grid(masks)
python
# from sqlalchemy package we can import Column, String, Integer, Date, Sequence from sqlalchemy import Column, String, Integer, Date, Sequence # imports Config class from config module from config import Config #exception handling using try except for FeatureRequestAppClass. try: # A class FeatureRequestApp will be the class to which we map 'FeatureRequestApp' table and contains requeired columns from table as variable in class. class FeatureRequestApp(Config.base): """Simple database model with required columns and table name.""" # A class using Declarative needs a __tablename__ attribute, and one Column which is a primary key __tablename__ = 'FeatureRequestApp' featureId = Column('featureId', Integer, Sequence('feature_id_seq'),unique=True,primary_key=True) title = Column(String(250),unique=True) description = Column(String(1000)) client = Column(String(100)) clientPriority = Column(Integer()) targetDate = Column(Date()) productArea = Column(String(100)) # __init__ is a special method in Python classes, it is the constructor method for a class # __init__ is called when ever an object of the class is constructed. def __init__(self, title, description, client, clientpriority, targetdate, productarea): self.title = title self.description = description self.client = client self.clientPriority = clientpriority self.targetDate = targetdate self.productArea = productarea # The declarative_base() base class contains a MetaData object where newly defined Table objects are collected. # This object is to be accessed for MetaData-specific operations.Such as, to issue CREATE statements for all tables. Config.base.metadata.create_all(Config.db) except ArgumentError as argexp: print('Missing connection string or primary key', argexp) except UnboundExecutionError as unexp: print('SQL was attempted without a database connection to execute it on', unexp) except IndexError as indexerror: print('Missing Table Name', indexerror) except TypeError as typeerror: print('Check Params', typeerror) except TimeoutError as timeout: print('Connection TimedOut', timeout)
python
from typing import List import config import datetime from email.mime.text import MIMEText from html.parser import HTMLParser import email.utils as utils import logging import queue import re import sys import threading from time import strftime import socket import feedparser import yaml from imap_wrapper import ImapWrapper class FilterError(IOError): pass class TranslationException(Exception): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def item_message_id(feed, item): msgid = item.get('id', item.link) if not msgid: msgid = feed.Name + " / " + item.title + " AT " + item.get('date', 'No date') msgid = msgid.replace(' ', '_') msgid = re.sub('[^\x00-\x7f]', '_', msgid) return msgid def rss_item_to_email(item, feed): # Cribbing things from StackOverflow is fun. :) def strip_html(dat): class TagStripper(HTMLParser): def __init__(self): super().__init__() self.convert_charrefs = True self.texts = [] def handle_data(self, t): self.texts.append(t) def result(self): return ''.join(self.texts) ts = TagStripper() ts.feed(dat) ts.close() return ts.result() try: text = '<p>Item Link: <a href="%s">%s</a></p>' % (item.link, item.link) if 'summary' in item: text = text + "<br>" + item.summary email = MIMEText(text, "html") email['Subject'] = feed.format_subject(subject=strip_html(item.title)) email['From'] = item.get('author', '(Author Not Provided)') email['Message-Id'] = item_message_id(feed, item) if 'published' in item: date = item.published date_parts = item.published_parsed elif 'updated' in item: date = item.updated date_parts = item.updated_parsed elif 'created' in item: date = item.created date_parts = item.created_parsed else: date = None date_parts = datetime.datetime.now().timetuple() if date_parts is None: date_parts = utils.parsedate(strip_html(date)) # RSS feeds may contain parsable dates that aren't allowed in email. if not (date_parts is None): date = strftime("%A, %b %d %Y %H:%M:%S %Z", date_parts) email['Date'] = strip_html(date) return email except Exception as e: raise TranslationException(item) from e class FeedItem: def __init__(self, feed, rss_item): self.feed = feed self.rss_item = rss_item self.email = rss_item_to_email(rss_item, feed) self.message_id = self.email['Message-Id'] class FeedConfig: def __init__(self, dat, *parent_configs): def _extract_setting(name): for obj in [dat, *parent_configs]: if name in obj: return obj[name] raise IndexError(f'Cannot find config value for {name}') self.Name = dat['Name'] self.URL = dat['URL'] self.folder_template = _extract_setting('FolderTemplate') self.subject_template = _extract_setting('SubjectTemplate') def __repr__(self): return ("{ Name: %s; URL: %s; Folder: %s; Subject: %s }" % (self.Name, self.URL, self.folder_template, self.subject_template)) def quoted_folder(self): return self.folder_template.format(name=self.Name) def format_subject(self, subject): return self.subject_template.format(name=self.Name, subject=subject) def fetch_feed_items(feed): l = logging.getLogger(__name__) l.info("Fetching feed %s", feed.URL) content = feedparser.parse(feed.URL) l.info("Done fetching feed %s", feed.URL) if content.bozo: l.warning("Feed %s had bozo set for '%s'", feed.URL, content.bozo_exception) for item in content.entries: yield FeedItem(feed, item) def parse_configs(configs): l = logging.getLogger(__name__) feed_configs : List[FeedConfig] = [] app_config = {'FolderTemplate': config.feed_folder_template, 'SubjectTemplate': config.subject_template} for dat in configs: parent_config = app_config l.debug("Config data: %s", dat) for item in filter(lambda p: p != None, yaml.safe_load_all(dat)): if 'Configuration' in item and 'Items' not in item: l.debug("Config item: %s", dat) parent_config = item['Configuration'] elif 'Configuration' in item and 'Items' in item: parent = item['Configuration'] for feed in item['Items']: feed_configs.append(FeedConfig(feed, parent, parent_config)) elif 'Items' in item: for feed in item['Items']: feed_configs.append(FeedConfig(feed, parent_config)) else: feed_configs.append(FeedConfig(item, parent_config)) return feed_configs class RssIMAP: def __init__(self): pass def connect_imap(self, hostname, username, password, **kwargs): self._W = ImapWrapper(hostname, username, password, **kwargs) self._W.ensure_folder(config.config_mailbox) def config_data_from_imap(self): # Don't be lazy about this. ret = [] for msg in self._W.fetch_messages(config.config_mailbox, 'SUBJECT', 'rss-imap', 'NOT', 'DELETED'): if msg.is_multipart(): for part in msg.get_payload(): name = part.get_param('Name', '(none)') if 'Folders' in name: ret.append(part.get_payload(None, True).decode('UTF-8')) elif name == '(none)' and part.get_content_type() == 'text/plain': ret.append(part.get_payload(None, True).decode('UTF-8')) else: ret.append(msg.get_payload()) return ret def get_feed_config_from_imap(self): the_data = self.config_data_from_imap() return parse_configs(the_data) def filter_items(self, folder, items): """Filter a list of items to only those that do not exist on the server.""" try: have_ids = self._W.check_folder_for_message_ids(folder, [item.message_id for item in items]) except: l = logging.getLogger(__name__) l.exception("Exception while checking existing items in %s", folder) try: have_ids = self._W.check_folder_for_message_ids(folder, [item.message_id for item in items]) except: l.exception("Second exception while checking existing items in %s; skipping.", folder) return [] want_items = [] for item in items: if not (item.message_id.encode('utf-8') in have_ids): want_items.append(item) return want_items def save_item_to_imap(self, item): l = logging.getLogger(__name__) l.info('New item "%s" for feed "%s", with message_id "%s"', item.email['Subject'], item.feed.Name, item.message_id) self._W.append(item.feed.quoted_folder(), item.email) def save_items_to_imap(self, items): for item in items: self.save_item_to_imap(item) def disconnect(self): self._W.logout() if __name__ == '__main__': config.configure_logging() # The default is to just hang forever if one of # the RSS feed servers isn't responding. socket.setdefaulttimeout(10) x = RssIMAP() x.connect_imap(config.hostname, config.username, config.password) feeds = x.get_feed_config_from_imap() todo = queue.Queue() producer_threads = [] def producer(feed): l = logging.getLogger(__name__) items = list(fetch_feed_items(feed)) if len(items) > 0: todo.put((feed, items)) def consumer(): l = logging.getLogger(__name__) while True: (feed, items) = todo.get() if items == None: break l.info("Filtering %d items from feed %s", len(items), feed.URL) filtered = x.filter_items(feed.quoted_folder(), items) l.info("Done filtering feed %s", feed.URL) if len(items) == 0: continue x.save_items_to_imap(filtered) l.info("Done saving %d new items from feed %s", len(filtered), feed.URL) consumer_thread = threading.Thread(target=consumer, name="Consumer") consumer_thread.start() for feed in feeds: thread = threading.Thread(target=producer, name=f"Fetch {feed.URL}", args=(feed,)) thread.start() producer_threads.append(thread) for producer in producer_threads: producer.join() todo.put((None, None)) consumer_thread.join() x.disconnect()
python
from flask.views import MethodView class APIView(MethodView): api_version = None path = None @classmethod def get_path(self): if self.path: return self.path elif self.__name__.endswith('View'): return self.__name__[:-4].lower() else: return self.__name__ @classmethod def get_rule(self): if self.api_version is None: raise RuntimeError("An API version is required") return '/v{}/{}'.format(self.api_version, self.get_path()) @classmethod def add_rule_to_app(self, app, prefix=None): rule = self.get_rule() app.add_url_rule( (prefix or '') + rule, view_func=self.as_view(rule.strip('/').replace('/', '_').lower()) )
python
''' - Application Factory ''' from app import create_app from fastapi import FastAPI from fastapi.testclient import TestClient from pytest import fixture @fixture def client(): '''Cliente do FastAPI.''' app = create_app() return TestClient(app) def test_create_app(client): assert isinstance(create_app(), FastAPI) def test_home_deve_retornar_200(client): response = client.get('/') assert response.status_code == 200 def test_home_deve_retornar_ola_regis(client): # response é da api do requests. response = client.get('/') assert response.json() == {'message': 'Ola Regis'} def test_pessoas_deve_retornar_200_quando_chamar_com_eduardo(client): response = client.get('/pessoa/eduardo') assert response.status_code == 200 def test_pessoas_deve_retornar_chamou_eduardo_quando_chamar_com_eduardo(client): response = client.get('/pessoa/eduardo') assert response.json() == {'message': 'Você chamou eduardo'} # def test_busca_por_id_deve_retornar_404(client): # response = client.get('/id/42') # assert response.status_code == 404 def test_busca_por_id_1_deve_retornar_404(client): response = client.get('/id/1') assert response.status_code == 404 def test_busca_por_id_1_deve_retornar_nao_tem_1(client): response = client.get('/id/1') assert response.json() == {'detail': 'Não tem 1'} def test_busca_por_id_2_deve_retornar_200(client): response = client.get('/id/2') assert response.status_code == 200 def test_busca_por_id_2_deve_retornar_regis(client): response = client.get('/id/2') assert response.json() == {'name': 'regis'} def test_inserir_usuario_no_banco_deve_retornar_201(client): user = { 'id': 1, 'nome': 'Regis', 'idade': 42, 'email': '[email protected]', } response = client.post('/inserir/', json=user) assert response.status_code == 201 def test_inserir_entidade_não_processável_retorna_422(client): user = { 'nome': 'Regis', 'email': '[email protected]', } response = client.post('/inserir/', json=user) assert response.status_code == 422 def test_pessoas_deve_retornar_200(client): response = client.get('/pessoas') assert response.status_code == 200 def test_pessoas_deve_retornar_lista_de_pessoas(client): response = client.get('/pessoas') pessoas = [ {"id": 1, "nome": "Regis", "idade": 42, "email": "[email protected]"} ] assert response.json() == pessoas def test_get_pessoas_deve_retornar_200(client): response = client.get('/pessoas/1') assert response.status_code == 200 def test_get_pessoas_deve_retornar_um_dict(client): response = client.get('/pessoas/1') pessoa = {"id": 1, "nome": "Regis", "idade": 42, "email": "[email protected]"} assert response.json() == pessoa def test_pessoas_add_deve_retornar_201(client): pessoa = {"id": 1, "nome": "Regis", "idade": 42, "email": "[email protected]"} response = client.post('/pessoas/add/', json=pessoa) assert response.status_code == 201
python
"""A module for evaluating policies.""" import os import json import pandas as pd import matplotlib.pyplot as plt from tf_agents.environments.tf_py_environment import TFPyEnvironment from lake_monster.environment.environment import LakeMonsterEnvironment from lake_monster.environment.variations import MultiMonsterEnvironment, JumpingEnvironment from lake_monster import configs def evaluate_episode(policy, env_params): """Use naive while loop to evaluate policy in single episode.""" if 'n_monsters' in env_params: env = MultiMonsterEnvironment elif 'is_jumping' in env_params: env = JumpingEnvironment else: env = LakeMonsterEnvironment py_env = env(**env_params) tf_env = TFPyEnvironment(py_env) ts = tf_env.reset() n_steps = 0 while not ts.is_last(): action = policy.action(ts) ts = tf_env.step(action.action) n_steps += 1 reward = ts.reward.numpy().item() return reward, n_steps * py_env.step_size def probe_policy_const_steps(policy, env_params): """Determine the maximum monster speed at which policy can succeed.""" highest_speed_with_success = 0.0 n_steps_at_success = 0 n_consecutive_fails = 0 current_monster_speed = 0.0 delta = 1.0 while True: print('.', end='', flush=True) current_monster_speed += delta env_params['monster_speed'] = current_monster_speed env_params['use_mini_rewards'] = False reward, n_steps = evaluate_episode(policy, env_params) reward = round(reward) if reward not in [0, 1]: raise ValueError(f'Strange reward. Reward encountered: {reward}') if reward == 0: n_consecutive_fails += 1 else: highest_speed_with_success = current_monster_speed n_steps_at_success = n_steps n_consecutive_fails = 0 if n_consecutive_fails == 3: if delta < 0.001 - 1e-6: # tolerance print('') return highest_speed_with_success, n_steps_at_success delta *= 0.5 current_monster_speed = highest_speed_with_success n_consecutive_fails = 0 def probe_policy(policy, env_params): """Call probe_policy at different step_sizes.""" current_step_size = env_params['step_size'] result = {'monster_speed': 0.0, 'step_size': 0.0, 'n_env_steps': 0} for multiplier in [1/16, 1/8, 1/4, 1/2, 1]: step_size = multiplier * current_step_size env_params['step_size'] = step_size monster_speed, n_env_steps = probe_policy_const_steps(policy, env_params) if monster_speed > result['monster_speed']: result['monster_speed'] = monster_speed result['step_size'] = step_size result['n_env_steps'] = n_env_steps return result def result_df(): """Return DataFrame of monster speed data in results.json.""" with open(configs.RESULTS_PATH) as f: data = json.load(f) dfs = [] params = {} for uid in data: params[uid] = data[uid]['params'] results = data[uid]['results'] if results: df = pd.DataFrame(results) df = df.set_index('n_episode', drop=True) df = df.drop(['step_size', 'n_env_steps'], axis=1) df = df.rename(columns={'monster_speed': uid}) dfs.append(df) return pd.concat(dfs, axis=1), params def plot_results(policies=None): """Plot evaluation monter speeds over training.""" df, _ = result_df() if policies: df = df[policies] df = df[df.index <= 600_000] df = df.rolling(25).mean() plt.figure(figsize=(12, 8)) df.plot(legend=False, ax=plt.gca()) plt.xlabel('episode number') plt.ylabel('monster speed') plt.title('Smoothed evaluation scores over training') # plt.legend(loc='lower right', fontsize='xx-small') plt.grid() save_path = os.path.join(configs.ASSETS_DIR, 'results.png') plt.savefig(save_path, dpi=300) plt.show() def print_strongest_policies(): """Print a markdown table showing agent parameters and evaluation results.""" df, params = result_df() shortened_names = { 'n_actions': 'n act', 'initial_step_size': 'init step', 'initial_monster_speed': 'init speed', 'timeout_factor': 'timeout', 'fc_layer_params': 'layers', 'dropout_layer_params': 'dropout', 'learning_rate': 'learn rate', 'epsilon_greedy': 'epsilon', 'n_step_update': 'update', 'use_categorical': 'categorical', 'use_step_schedule': 'schedule' } params_df = [] for p in df.columns: # printing out high speed policies separately from markdown episode = df[p].idxmax() speed = df[p][episode] if speed > 4.3: print(speed, p + '-' + str(episode)) results = {} results['max speed'] = round(speed, 3) results['avg speed'] = round(df[p].mean(), 3) for k, v in shortened_names.items(): results[v] = params[p][k] if results['categorical']: results['dropout'] = 'None' if results['dropout'] is None: # getting None to appear in markdown results['dropout'] = 'None' params_df.append(results) params_df = pd.DataFrame(params_df) params_df = params_df.sort_values(by='max speed', axis=0, ascending=False) print(params_df.to_markdown(index=False)) if __name__ == '__main__': print_strongest_policies() plot_results()
python
import numpy as np from numpy import exp,dot,full,cos,sin,real,imag,power,pi,log,sqrt,roll,linspace,arange,transpose,pad,complex128 as c128, float32 as f32, float64 as f64 from numba import njit,jit,complex128 as nbc128, void import os os.environ['NUMEXPR_MAX_THREADS'] = '16' os.environ['NUMEXPR_NUM_THREADS'] = '8' import numexpr as ne from mesh import RectMesh3D,RectMesh2D import optics from misc import timeit, overlap, normalize,printProgressBar, overlap_nonu, norm_nonu,resize ### to do ### ## performance # maybe adaptive z stepping # get a better refinement criterion -- now weighting partially by 2nd deriv. still could use some work # compute r = 1 and r=/=1 points separately? -- I TRIED IT -- WHY IS THIS SLOWER # more efficient ways to store arrays with many repeated values -- some sort of sparse-like data structure? # optimize tri_solve_vec : maybe try out dask (parallelize) -- WHY IS THIS ALSO SLOWER #ignore shifting of IOR arrays in trimats calc? ## readability # actually add doc strings # combine some functions into "remesh" and "recompute" functions # remove unused functions # move all the eval strings somewhere else (together) def genc(shape): return np.empty(shape,dtype=c128,order='F') def genf(shape): return np.empty(shape,dtype=c128,order='F') @njit(void(nbc128[:,:],nbc128[:,:],nbc128[:,:],nbc128[:,:],nbc128[:,:],nbc128[:,:])) def tri_solve_vec(a,b,c,r,g,u): '''Apply Thomas' method for simultaneously solving a set of tridagonal systems. a, b, c, and r are matrices (N rows) where each column corresponds a separate system''' N = a.shape[0] beta = b[0] u[0] = r[0]/beta for j in range(1,N): g[j] = c[j-1]/beta beta = b[j] - a[j]*g[j] u[j] = (r[j] - a[j]*u[j-1])/beta for j in range(N-1): k = N-2-j u[k] = u[k] - g[k+1]*u[k+1] class Prop3D: '''beam propagator. employs finite-differences beam propagation with PML as the boundary condition. works on an adaptive mesh''' def __init__(self,wl0,mesh:RectMesh3D,optical_system:optics.OpticSys,n0): xymesh = mesh.xy self.wl0 = wl0 self.k0 = k0 = 2.*pi/wl0 self.k02 = k02 = k0*k0 self.mesh = mesh self.n0 = n0 self.sig = sig = -2.j*k0*n0/mesh.dz self.field = None self.optical_system = optical_system self.optical_system.set_sampling(xymesh) self.nb2 = nb2 = optical_system.nb2 self.n02 = n02 = n0*n0 ## things that will be set during computation self.xgrid_cor_facs = [[]]*3 self.ygrid_cor_facs = [[]]*3 self.xgrid_cor_mask = [] self.ygrid_cor_mask = [] ## precomputing some stuff ## Rx,Tupx,Tdox,Ry,Tupy,Tdoy = self.calculate_PML_mats() dx02 = mesh.xy.dx0**2 dy02 = mesh.xy.dy0**2 K = k02*(nb2-n02) n02 = power(n0,2) ## coeff matrices of tridiagonal system, updated periodically self._a0x = None self._b0x = None self._c0x = None self._a0y = None self._b0y = None self._c0y = None self.a0x_ = None self.b0x_ = None self.c0x_ = None self.a0y_ = None self.b0y_ = None self.c0y_ = None ## same as above but in PML zone self._apmlx = sig/12. - 0.5/dx02*Tdox - K/48. self._bpmlx = 5./6.*sig + Rx/dx02 - 5./24. * K self._cpmlx = sig/12. - 0.5/dx02*Tupx - K/48. self.apmlx_ = sig/12. + 0.5/dx02*Tdox + K/48. self.bpmlx_ = 5./6.*sig - Rx/dx02 + 5./24. * K self.cpmlx_ = sig/12. + 0.5/dx02*Tupx + K/48. self._apmly = sig/12. - 0.5/dy02*Tdoy - K/48. self._bpmly = 5./6.*sig + Ry/dy02 - 5./24. * K self._cpmly = sig/12. - 0.5/dy02*Tupy - K/48. self.apmly_ = sig/12. + 0.5/dy02*Tdoy + K/48. self.bpmly_ = 5./6.*sig - Ry/dy02 + 5./24. * K self.cpmly_ = sig/12. + 0.5/dy02*Tupy + K/48. self.half_dz = mesh.dz/2. self.power = np.empty((mesh.zres,)) self.totalpower = np.empty((mesh.zres,)) def allocate_mats(self): sx,sy = self.mesh.xy.xg.shape,self.mesh.xy.yg.T.shape _trimatsx = (genc(sx),genc(sx),genc(sx)) _trimatsy = (genc(sy),genc(sy),genc(sy)) rmatx,rmaty = genc(sx),genc(sy) gx = genc(sx) gy = genc(sy) fill = self.nb2*self.k02 IORsq__ = np.full(sx,fill,dtype=f64) _IORsq_ = np.full(sx,fill,dtype=f64) __IORsq = np.full(sx,fill,dtype=f64) return _trimatsx,rmatx,gx,_trimatsy,rmaty,gy,IORsq__,_IORsq_,__IORsq def check_z_inv(self): return self.optical_system.z_invariant def set_IORsq(self,out,z,xg=None,yg=None): #premultiply by k02 so we don't have to keep doing it later self.optical_system.set_IORsq(out,z,xg,yg,coeff=self.k02) def calculate_PML_mats(self): '''As per textbook <Beam Propagation Method for Design of Optical Waveguide Devices> , calculate the matrices R, T_j+1, and T_j-1 in the PML zone. We assume that the the PML's refractive index will be constant, equal to the background index. ''' m = self.mesh xy = m.xy xverts = xy.pvert_xa sdox = m.sigmax(xverts-xy.dx0) sx = m.sigmax(xverts) supx = m.sigmax(xverts+xy.dx0) yverts = xy.pvert_ya sdoy = m.sigmay(yverts-xy.dy0) sy = m.sigmay(yverts) supy = m.sigmay(yverts+xy.dy0) Qdox = 1./(1.+1.j*sdox*self.nb2) Qx = 1./(1.+1.j*sx*self.nb2) Qupx = 1./(1.+1.j*supx*self.nb2) Tupx = 0.5 * Qx * (Qx+Qupx) Tdox = 0.5 * Qx * (Qx+Qdox) Rx = 0.25 * Qx * (Qdox+2*Qx+Qupx) Qdoy = 1./(1.+1.j*sdoy*self.nb2) Qy = 1./(1.+1.j*sy*self.nb2) Qupy = 1./(1.+1.j*supy*self.nb2) Tupy= 0.5 * Qy * (Qy+Qupy) Tdoy = 0.5 * Qy * (Qy+Qdoy) Ry = 0.25 * Qy * (Qdoy+2*Qy+Qupy) return (Rx,Tupx,Tdox,Ry,Tupy,Tdoy) def update_grid_cor_facs(self,which='x'): xy = self.mesh.xy ix = xy.cvert_ix if which=='x': r = xy.rxa[ix] self.xgrid_cor_imask = np.where(r[1:-1]!=1)[0] else: r = xy.rya[ix] self.ygrid_cor_imask = np.where(r[1:-1]!=1)[0] r2 = r*r R1 = (r2 + r -1)/(6*r*(r+1)) R2 = (r2 + 3*r + 1)/(6*r) R3 = (-r2 + r + 1)/(6*(r+1)) ## alternative values from paper #R1 = (3*r2 - 3*r + 1)/ (6*r*(r+1)) #R2 = (-r2 + 7*r - 1)/(6*r) #R3 = (r2 - 3*r + 3)/(6*(r+1)) if which=='x': self.xgrid_cor_facs[0] = R1 self.xgrid_cor_facs[1] = R2 self.xgrid_cor_facs[2] = R3 else: self.ygrid_cor_facs[0] = R1 self.ygrid_cor_facs[1] = R2 self.ygrid_cor_facs[2] = R3 def precomp_trimats(self,which='x'): ix = self.mesh.xy.cvert_ix s = self.sig nu0 = -self.k02*self.n02 eval1 = "s*r3 - 1/(r+1)/(d*d) - 0.25*r3*n" eval2 = "s*r2 + 1/r/(d*d) - 0.25*r2*n" eval3 = "s*r1 - 1/r/(r+1)/(d*d) - 0.25*r1*n" if which == 'x': R1,R2,R3 = self.xgrid_cor_facs r = self.mesh.xy.rxa[ix] dla = self.mesh.xy.dxa[ix] self._a0x = ne.evaluate(eval1,local_dict={"s":s,"r3":R3[1:,None],"r":r[1:,None],"d":dla[1:,None],"n":nu0}) self._b0x = ne.evaluate(eval2,local_dict={"s":s,"r2":R2[:,None],"r":r[:,None],"d":dla[:,None],"n":nu0}) self._c0x = ne.evaluate(eval3,local_dict={"s":s,"r1":R1[:-1,None],"r":r[:-1,None],"d":dla[:-1,None],"n":nu0}) else: R1,R2,R3 = self.ygrid_cor_facs r = self.mesh.xy.rya[ix] dla = self.mesh.xy.dya[ix] self._a0y = ne.evaluate(eval1,local_dict={"s":s,"r3":R3[1:,None],"r":r[1:,None],"d":dla[1:,None],"n":nu0}) self._b0y = ne.evaluate(eval2,local_dict={"s":s,"r2":R2[:,None],"r":r[:,None],"d":dla[:,None],"n":nu0}) self._c0y = ne.evaluate(eval3,local_dict={"s":s,"r1":R1[:-1,None],"r":r[:-1,None],"d":dla[:-1,None],"n":nu0}) def _trimats(self,out,IORsq,which='x'): ''' calculate the tridiagonal matrices in the computational zone ''' ix = self.mesh.xy.cvert_ix _IORsq = IORsq[ix] if which == 'x': R1,R2,R3 = self.xgrid_cor_facs r = self.mesh.xy.rxa[ix] dla = self.mesh.xy.dxa[ix] a,b,c = self._a0x,self._b0x,self._c0x else: R1,R2,R3 = self.ygrid_cor_facs r = self.mesh.xy.rya[ix] dla = self.mesh.xy.dya[ix] a,b,c = self._a0y,self._b0y,self._c0y _a,_b,_c = out s = self.sig eval1 = "a - 0.25*r3*n" eval2 = "b - 0.25*r2*n" eval3 = "c - 0.25*r1*n" ne.evaluate(eval1,local_dict={"a":a,"r3":R3[1:,None],"n":_IORsq[:-1]},out=_a[ix][1:]) ne.evaluate(eval2,local_dict={"b":b,"r2":R2[:,None],"n":_IORsq},out=_b[ix]) ne.evaluate(eval3,local_dict={"c":c,"r1":R1[:-1,None],"n":_IORsq[1:]},out=_c[ix][:-1]) _a[ix][0] = s*R3[0] - 1. / ((r[0]+1) * dla[0]*dla[0]) - 0.25*R3[0]*(_IORsq[0]-self.n02*self.k02) _c[ix][-1] = s*R1[-1] - 1/r[-1]/(r[-1]+1)/(dla[-1]*dla[-1]) - 0.25*R1[-1]*(_IORsq[-1]-self.n02*self.k02) def rmat_pmlcorrect(self,_rmat,u,which='x'): if which == 'x': apml,bpml,cpml = self.apmlx_,self.bpmlx_,self.cpmlx_ else: apml,bpml,cpml = self.apmly_,self.bpmly_,self.cpmly_ pix = self.mesh.xy.pvert_ix temp = np.empty_like(_rmat[pix]) temp[1:-1] = apml[1:-1,None]*u[pix-1][1:-1] + bpml[1:-1,None]*u[pix][1:-1] + cpml[1:-1,None]*u[pix+1][1:-1] temp[0] = bpml[0]*u[0] + cpml[0]*u[1] temp[-1] = apml[-1]*u[-2] + bpml[-1]*u[-1] _rmat[pix] = temp def rmat(self,_rmat,u,IORsq,which='x'): ix = self.mesh.xy.cvert_ix _IORsq = IORsq[ix] s = self.sig if which == 'x': R1,R2,R3 = self.xgrid_cor_facs dla = self.mesh.xy.dxa[ix] r = self.mesh.xy.rxa[ix] a,b,c = self.a0x_,self.b0x_,self.c0x_ else: R1,R2,R3 = self.ygrid_cor_facs dla = self.mesh.xy.dya[ix] r = self.mesh.xy.rya[ix] a,b,c = self.a0y_,self.b0y_,self.c0y_ N = self.n02*self.k02 m = np.s_[1:-1,None] _dict = _dict = {"a":a,"b":b,"c":c,"u1":u[ix][:-2],"u2":u[ix][1:-1],"u3":u[ix][2:],"n1":_IORsq[:-2],"n2":_IORsq[1:-1],"n3":_IORsq[2:],"r3":R3[m],"r2":R2[m],"r1":R1[m] } _eval = "(a+0.25*r3*n1)*u1 + (b+0.25*r2*n2)*u2 + (c+0.25*r1*n3)*u3" ne.evaluate(_eval,local_dict=_dict,out=_rmat[ix][1:-1]) _rmat[ix][0] = (s*R2[0] - 1/(r[0]*dla[0]**2 ) + 0.25*R2[0]*(_IORsq[0]-N))*u[0] + (s*R1[0] + 1/r[0]/(r[0]+1)/dla[0]**2 + 0.25*R1[0] * (_IORsq[1]-N) )*u[1] _rmat[ix][-1] = (s*R3[-1] + 1. / ((r[-1]+1) * dla[-1]**2) + 0.25*R3[-1]*(_IORsq[-2]-N))*u[-2] + (s*R2[-1] - 1/(r[-1]*dla[-1]**2) + 0.25*R2[-1]*(_IORsq[-1]-N))*u[-1] def rmat_precomp(self,which='x'): ix = self.mesh.xy.cvert_ix s = self.sig n0 = -self.k02 * self.n02 m = np.s_[1:-1,None] eval1="(s*r3+1/(r+1)/(d*d)+0.25*r3*n)" eval2="(s*r2-1/r/(d*d)+0.25*r2*n)" eval3="(s*r1+1/r/(r+1)/(d*d) + 0.25*r1*n)" if which == 'x': R1,R2,R3 = self.xgrid_cor_facs r = self.mesh.xy.rxa[ix] dla = self.mesh.xy.dxa[ix] _dict = {"s":s,"r3":R3[m],"r":r[m],"d":dla[m],"n":n0,"r2":R2[m],"r1":R1[m]} self.a0x_ = ne.evaluate(eval1,local_dict=_dict) self.b0x_ = ne.evaluate(eval2,local_dict=_dict) self.c0x_ = ne.evaluate(eval3,local_dict=_dict) else: R1,R2,R3 = self.ygrid_cor_facs r = self.mesh.xy.rya[ix] dla = self.mesh.xy.dya[ix] _dict = {"s":s,"r3":R3[m],"r":r[m],"d":dla[m],"n":n0,"r2":R2[m],"r1":R1[m]} self.a0y_ = ne.evaluate(eval1,local_dict=_dict) self.b0y_ = ne.evaluate(eval2,local_dict=_dict) self.c0y_ = ne.evaluate(eval3,local_dict=_dict) def _pmlcorrect(self,_trimats,which='x'): ix = self.mesh.xy.pvert_ix _a,_b,_c = _trimats if which=='x': _a[ix] = self._apmlx[:,None] _b[ix] = self._bpmlx[:,None] _c[ix] = self._cpmlx[:,None] else: _a[ix] = self._apmly[:,None] _b[ix] = self._bpmly[:,None] _c[ix] = self._cpmly[:,None] @timeit def prop2end(self,_u,xyslice=None,zslice=None,u1_func=None,writeto=None,ref_val=5.e-6,remesh_every=20,dynamic_n0 = False,fplanewidth=0): mesh = self.mesh PML = mesh.PML if not (xyslice is None and zslice is None): za_keep = mesh.za[zslice] if type(za_keep) == np.ndarray: minz, maxz = za_keep[0],za_keep[-1] shape = (len(za_keep),*mesh.xg[xyslice].shape) else: raise Exception('uhh not implemented') self.field = np.zeros(shape,dtype=c128) #pull xy mesh xy = mesh.xy dx,dy = xy.dx0,xy.dy0 if fplanewidth == 0: xa_in = np.linspace(-mesh.xw/2,mesh.xw/2,xy.shape0_comp[0]) ya_in = np.linspace(-mesh.yw/2,mesh.yw/2,xy.shape0_comp[1]) else: xa_in = np.linspace(-fplanewidth/2,fplanewidth/2,xy.shape0_comp[0]) ya_in = np.linspace(-fplanewidth/2,fplanewidth/2,xy.shape0_comp[1]) dx0 = xa_in[1]-xa_in[0] dy0 = ya_in[1]-ya_in[0] # u can either be a field or a function that generates a field. # the latter option allows for coarse base grids to be used # without being penalized by forcing the use of a low resolution # launch field if type(_u) is np.ndarray: _power = overlap(_u,_u) print('input power: ',_power) # normalize the field, preserving the input power. accounts for grid resolution normalize(_u,weight=dx0*dy0,normval=_power) #resample the field onto the smaller xy mesh (in the smaller mesh's computation zone) u0 = xy.resample_complex(_u,xa_in,ya_in,xy.xa[PML:-PML],xy.ya[PML:-PML]) _power2 = overlap(u0,u0,dx*dy) #now we pad w/ zeros to extend it into the PML zone u0 = np.pad(u0,((PML,PML),(PML,PML))) #initial mesh refinement xy.refine_base(u0,ref_val) weights = xy.get_weights() #now resample the field onto the smaller *non-uniform* xy mesh u = xy.resample_complex(_u,xa_in,ya_in,xy.xa[PML:-PML],xy.ya[PML:-PML]) u = np.pad(u,((PML,PML),(PML,PML))) #do another norm to correct for the slight power change you get when resampling. I measure 0.1% change for psflo. should check again norm_nonu(u,weights,_power2) elif callable(_u): # must be of the form u(x,y) u0 = _u(xy.xg,xy.yg) _power = overlap(u0,u0) print('input power: ',_power) # normalize the field, preserving the input power. accounts for grid resolution normalize(u0,weight=dx0*dy0,normval=_power) # do an initial mesh refinement xy.refine_base(u0,ref_val) # compute the field on the nonuniform grid u = norm_nonu(_u(xy.xg,xy.yg),xy.get_weights(),_power) else: raise Exception("unsupported type for argument u in prop2end()") counter = 0 total_iters = self.mesh.zres print("propagating field...") __z = 0 z__ = 0 #step 0 setup self.update_grid_cor_facs('x') self.update_grid_cor_facs('y') # initial array allocation _trimatsx,rmatx,gx,_trimatsy,rmaty,gy,IORsq__,_IORsq_,__IORsq = self.allocate_mats() self.precomp_trimats('x') self.precomp_trimats('y') self.rmat_precomp('x') self.rmat_precomp('y') self._pmlcorrect(_trimatsx,'x') self._pmlcorrect(_trimatsy,'y') #get the current IOR dist self.set_IORsq(IORsq__,z__) #plt.figure(frameon=False) #plt.imshow(xy.get_base_field(IORsq__)) #plt.show() print("initial shape: ",xy.shape) for i in range(total_iters): if i%20 == 0: printProgressBar(i,total_iters-1) u0 = xy.get_base_field(u) u0c = np.conj(u0) weights = xy.get_weights() ## Total power monitor ## self.totalpower[i] = overlap_nonu(u,u,weights) #print(self.totalpower[i]) ## Other monitors ## if u1_func is not None: lp = norm_nonu(u1_func(xy.xg,xy.yg),weights) self.power[i] = power(overlap_nonu(u,lp,weights),2) _z_ = z__ + mesh.half_dz __z = z__ + mesh.dz if self.field is not None and (minz<=__z<=maxz): ix0,ix1,ix2,ix3 = mesh.get_loc() mid = int(u0.shape[1]/2) self.field[counter][ix0:ix1+1] = u0[:,mid] ## FIX ## counter+=1 #avoid remeshing on step 0 if (i+1)%remesh_every== 0: ## update the effective index if dynamic_n0: #update the effective index base = xy.get_base_field(IORsq__) self.n02 = xy.dx0*xy.dy0*np.real(np.sum(u0c*u0*base))/self.k02 oldxm,oldxM = xy.xm,xy.xM oldym,oldyM = xy.ym,xy.yM oldxw,oldyw = xy.xw,xy.yw new_xw,new_yw = oldxw,oldyw #expand the grid if necessary if mesh.xwfunc is not None: new_xw = mesh.xwfunc(__z) if mesh.ywfunc is not None: new_yw = mesh.ywfunc(__z) new_xw, new_yw = xy.snapto(new_xw,new_yw) xy.reinit(new_xw,new_yw) #set grid back to base res with new dims if (xy.xw > oldxw or xy.yw > oldyw): #now we need to pad u,u0 with zeros to make sure it matches the new space xpad = int((xy.shape0[0]-u0.shape[0])/2) ypad = int((xy.shape0[1]-u0.shape[1])/2) u = np.pad(u,((xpad,xpad),(ypad,ypad))) u0 = np.pad(u0,((xpad,xpad),(ypad,ypad))) #pad coord arrays to do interpolation xy.xa_last = np.hstack( ( np.linspace(xy.xm,oldxm-dx,xpad) , xy.xa_last , np.linspace(oldxM + dx, xy.xM,xpad) ) ) xy.ya_last = np.hstack( ( np.linspace(xy.ym,oldym-dy,ypad) , xy.ya_last , np.linspace(oldyM + dy, xy.yM,ypad) ) ) #subdivide into nonuniform grid xy.refine_base(u0,ref_val) #interp the field to the new grid u = xy.resample_complex(u) #give the grid to the optical sys obj so it can compute IORs self.optical_system.set_sampling(xy) #compute nonuniform grid correction factors R_i self.update_grid_cor_facs('x') self.update_grid_cor_facs('y') # grid size has changed, so now we need to reallocate arrays for at least the next remesh_period iters _trimatsx,rmatx,gx,_trimatsy,rmaty,gy,IORsq__,_IORsq_,__IORsq = self.allocate_mats() #get the current IOR dist self.set_IORsq(IORsq__,z__) #precompute things that will be reused self.precomp_trimats('x') self.precomp_trimats('y') self.rmat_precomp('x') self.rmat_precomp('y') self._pmlcorrect(_trimatsx,'x') self._pmlcorrect(_trimatsy,'y') self.set_IORsq(_IORsq_,_z_,) self.set_IORsq(__IORsq,__z) self.rmat(rmatx,u,IORsq__,'x') self.rmat_pmlcorrect(rmatx,u,'x') self._trimats(_trimatsx,_IORsq_,'x') self._trimats(_trimatsy,__IORsq.T,'y') tri_solve_vec(_trimatsx[0],_trimatsx[1],_trimatsx[2],rmatx,gx,u) self.rmat(rmaty,u.T,_IORsq_.T,'y') self.rmat_pmlcorrect(rmaty,u.T,'y') tri_solve_vec(_trimatsy[0],_trimatsy[1],_trimatsy[2],rmaty,gy,u.T) z__ = __z if (i+2)%remesh_every != 0: IORsq__[:,:] = __IORsq print("final total power",self.totalpower[-1]) if writeto: np.save(writeto,self.field) return u,u0 @timeit def prop2end_uniform(self,u,xyslice=None,zslice=None,u1_func=None,writeto=None,dynamic_n0 = False,fplanewidth=0): mesh = self.mesh PML = mesh.PML if not (xyslice is None and zslice is None): za_keep = mesh.za[zslice] if type(za_keep) == np.ndarray: minz, maxz = za_keep[0],za_keep[-1] shape = (len(za_keep),*mesh.xg[xyslice].shape) else: raise Exception('uhh not implemented') self.field = np.zeros(shape,dtype=c128) if fplanewidth == 0: xa_in = np.linspace(-mesh.xw/2,mesh.xw/2,u.shape[0]) ya_in = np.linspace(-mesh.yw/2,mesh.yw/2,u.shape[1]) else: xa_in = np.linspace(-fplanewidth/2,fplanewidth/2,u.shape[0]) ya_in = np.linspace(-fplanewidth/2,fplanewidth/2,u.shape[1]) dx0 = xa_in[1]-xa_in[0] dy0 = ya_in[1]-ya_in[0] _power = overlap(u,u) print('input power: ',_power) # normalize the field, preserving the input power. accounts for grid resolution normalize(u,weight=dx0*dy0,normval=_power) __z = 0 #pull xy mesh xy = mesh.xy dx,dy = xy.dx0,xy.dy0 #resample the field onto the smaller xy mesh (in the smaller mesh's computation zone) u0 = xy.resample_complex(u,xa_in,ya_in,xy.xa[PML:-PML],xy.ya[PML:-PML]) _power2 = overlap(u0,u0,dx*dy) #now we pad w/ zeros to extend it into the PML zone u0 = np.pad(u0,((PML,PML),(PML,PML))) counter = 0 total_iters = self.mesh.zres print("propagating field...") z__ = 0 #step 0 setup self.update_grid_cor_facs('x') self.update_grid_cor_facs('y') # initial array allocation _trimatsx,rmatx,gx,_trimatsy,rmaty,gy,IORsq__,_IORsq_,__IORsq = self.allocate_mats() self.precomp_trimats('x') self.precomp_trimats('y') self.rmat_precomp('x') self.rmat_precomp('y') self._pmlcorrect(_trimatsx,'x') self._pmlcorrect(_trimatsy,'y') #get the current IOR dist self.set_IORsq(IORsq__,z__) weights = xy.get_weights() print("initial shape: ",xy.shape) for i in range(total_iters): if i%20 == 0: printProgressBar(i,total_iters-1) ## Total power monitor ## self.totalpower[i] = overlap_nonu(u0,u0,weights) ## Other monitors ## if u1_func is not None: lp = norm_nonu(u1_func(xy.xg,xy.yg),weights) self.power[i] = power(overlap_nonu(u0,lp,weights),2) _z_ = z__ + mesh.half_dz __z = z__ + mesh.dz if self.field is not None and (minz<=__z<=maxz): ix0,ix1,ix2,ix3 = mesh.get_loc() mid = int(u0.shape[1]/2) self.field[counter][ix0:ix1+1] = u0[:,mid] ## FIX ## counter+=1 self.set_IORsq(_IORsq_,_z_,) self.set_IORsq(__IORsq,__z) self.rmat(rmatx,u0,IORsq__,'x') self.rmat_pmlcorrect(rmatx,u0,'x') self._trimats(_trimatsx,_IORsq_,'x') self._trimats(_trimatsy,__IORsq.T,'y') tri_solve_vec(_trimatsx[0],_trimatsx[1],_trimatsx[2],rmatx,gx,u0) self.rmat(rmaty,u0.T,_IORsq_.T,'y') self.rmat_pmlcorrect(rmaty,u0.T,'y') tri_solve_vec(_trimatsy[0],_trimatsy[1],_trimatsy[2],rmaty,gy,u0.T) z__ = __z IORsq__[:,:] = __IORsq print("final total power",self.totalpower[-1]) if writeto: np.save(writeto,self.field) return u0
python
#!/usr/bin/env python # Copyright (c) 2014 Spotify AB. # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import logging import types import uuid # Set up some basic logging. logging.basicConfig(level = logging.INFO, format = "[%(asctime)s] [%(levelname)s] %(message)s") try: from kazoo.client import KazooClient from kazoo.exceptions import NoNodeError, RuntimeInconsistency from kazoo.handlers.threading import TimeoutError except ImportError: logging.error("This script uses Kazoo Python libraries to work with Zookeeper") logging.error("You can install them by typing 'sudo easy_install kazoo' in your console") # Let the original exception propagate, because sometimes it's not working for different # reasons, like package conflicts or whatever else (Python packaging is weird), so it is # a good idea to let the user see the actual exception message. raise DESCRIPTION = """ Bootstraps a new Helios cluster. Bootstrapping is done via populating Zookeeper with a basic data structures required by Helios to properly function. The script cannot be be used on a NONEMPTY ZooKeeper cluster. """ def main(): parser = argparse.ArgumentParser(description = DESCRIPTION) parser.add_argument("hosts", metavar = "<zookeeper-endpoint>", type = str, nargs = "+", help = "Zookeeper node endpoints to connect to") parser.add_argument("--timeout", dest = "timeout", action = "store", type = int, default = 30, help = "Zookeeper connection timeout") parser.add_argument("--force", dest = "force", action = "store_true", help = "Bootstrap even when Zookeeper is not empty") option = parser.parse_args() logging.debug("Using %s as a Zookeeper connection string" % option.hosts) client = KazooClient(hosts = ",".join(option.hosts)) try: client.start(timeout = option.timeout) except TimeoutError as e: logging.error("Timed out while connecting to Zookeeper") return 1 status = bootstrap(client, str(uuid.uuid4()), option.force) # If the client is not stopped, it will hang forever maintaining the connection. client.stop() return status def bootstrap(client, cluster_id, force): nodes = [ "/config", "/config/id", "/config/id/%s" % cluster_id ] transaction = client.transaction() # Version is not important here. If any of these nodes exist, just stop doing anything and # report the error to avoid messing things up. [transaction.check(node, version = -1) for node in nodes] # Operation results are either True if the given node exists or an exception of NoNodeError or # RuntimeIncosistency and RolledBackError types if the previous (1) or following (2) operation # has failed. We want all results to be NoNodeError or RuntimeInconsistency (which means, node # existance check wasn't performed, because node's parent is not there). types = NoNodeError, RuntimeInconsistency nodes_missing = [isinstance(result, types) for result in transaction.commit()] if not force and not all(nodes_missing): logging.error("Aborting, some nodes already exist: %s" % ", ".join(nodes[idx] for idx, missing in enumerate(nodes_missing) if not missing) ) return 1 transaction = client.transaction() # Filter the node list so that only the missing nodes are in it. nodes = [node for idx, node in enumerate(nodes) if nodes_missing[idx]] # TODO: Might be a good idea to set ACLs here so that these structural nodes are protected from # accidental deletions, but allow children modifications. [transaction.create(node) for node in nodes] # Operation results are either a string representing the created path or an exception object we # don't really care about. nodes_created = [result == nodes[idx] for idx, result in enumerate(transaction.commit())] if not all(nodes_created): logging.error("Aborting, couldn't create some nodes: %s" % ", ".join(nodes[idx] for idx, created in enumerate(nodes_created) if not created) ) return 1 logging.info("Cluster has been successfully bootstrapped, cluster id is: %s" % cluster_id) if __name__ == "__main__": exit(main())
python
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from maro.backends.frame import FrameBase, FrameNode from .port import Port from .vessel import gen_vessel_definition from .matrix import gen_matrix def gen_ecr_frame(port_num: int, vessel_num: int, stop_nums: tuple, snapshots_num: int): """Define and generate ecr frame Args: port_num (int): number of ports vessel_num (int): number of vessels stop_nums (tuple): past stops number and future stop number """ vessel_cls = gen_vessel_definition(stop_nums) matrix_cls = gen_matrix(port_num, vessel_num) class EcrFrame(FrameBase): """Our ecr frame that contains vessels, ports, and a general matrix""" vessels = FrameNode(vessel_cls, vessel_num) ports = FrameNode(Port, port_num) matrix = FrameNode(matrix_cls, 1) def __init__(self): super().__init__(enable_snapshot=True, total_snapshot=snapshots_num) return EcrFrame()
python
"""Provide functionality to handle package settings.""" import logging from enum import Enum from os import makedirs from os.path import isdir from urllib.error import URLError from urllib.parse import urlparse from urllib.request import Request, urlopen from dynaconf import Validator, settings LOGGER = logging.getLogger('standardlog') class SettingKeys(Enum): """Holds all required setting keys with description.""" OPENEO_VERSION = "OPENEO_VERSION" """The OpenEO version running - in the 'version url format'. This is used for version urls only! So depending how you setup version urls the format can change. E.g. v1.0 """ AIRFLOW_HOST = "AIRFLOW_HOST" """The complete url to the Apache Airflow webserver as a string. If you are running the provided docker setup use: http://airflow-webserver:8080. """ AIRFLOW_OUTPUT = "AIRFLOW_OUTPUT" """The path on the Airflow worker where data output is written to. This path does not need to exist in the jobs service! It is only needed to write a correct dag for a job as the absolute paths of the output directories - on the airflow worker (!) - are also written in the dag. If you are running inside docker this path has to be inside the corresponding airflow worker container. E.g. /data_out """ AIRFLOW_DAGS = "AIRFLOW_DAGS" """The path a folder where all dag files will be stored. If you are running in docker the path needs to be inside the container. E.g.: /usr/src/dags """ SYNC_DEL_DELAY = "SYNC_DEL_DELAY" """Delay after which to delete sync-jobs output. It must be minimum above the timeout of gunicorn and nginx. E.g. 300 """ SYNC_RESULTS_FOLDER = "SYNC_RESULTS_FOLDER" """The path to the sync-results folder. The content of this folder is also mounted to the gateway to simplify data transfer. If you are running in docker the path needs to be inside the container. E.g.: /usr/src/sync-results """ WEKEO_STORAGE = "WEKEO_STORAGE" """The path where files downloaded via the WEkEO HDA API will be available on the VM, where the processing engine (e.g. Airflow) executes jobs. e.g. /usr/local/airflow/wekeo_storage """ # Connection to RabbitMQ RABBIT_HOST = "RABBIT_HOST" """The host name of the RabbitMQ - e.g. `rabbitmq`. If you are running in docker this is the hostname of the container! """ RABBIT_PORT = "RABBIT_PORT" """The port on which the RabbitMQ is running - e.g. `5672`. If you are running in docker and the capabilities container is in the same network as the RabbitMQ this is the port inside the docker network NOT the exposed one! """ RABBIT_USER = "RABBIT_USER" """The username to authenticate on the RabbitMQ - e.g. `rabbitmq`.""" RABBIT_PASSWORD = "RABBIT_PASSWORD" # noqa S105 """The password to authenticate with the given user on the RabbitMQ.""" # Jobs Database DB_USER = "DB_USER" """Database username for the jobs database.""" DB_PASSWORD = "DB_PASSWORD" # noqa S105 - not a hardcoded password only the parameter name! """Database user password for the jobs database matching the provided user name.""" DB_HOST = "DB_HOST" """Host where the jobs database is running.""" DB_PORT = "DB_PORT" """Port where the jobs database is running.""" DB_NAME = "DB_NAME" """Database name of the jobs database.""" # Additional LOG_DIR = "LOG_DIR" """The path to the directory where log files should be saved. If you are running in docker this is the path inside the docker container! E.g. `/usr/src/logs` In case you want to persist the logs a volume or a local folder needs to be mounted into the specified location. """ class SettingValidationUtils: """Provides a set of utility functions to validated settings.""" def check_create_folder(self, folder_path: str) -> bool: """Create the given folder path if it does not exist, always returns True.""" if not isdir(folder_path): makedirs(folder_path) return True def check_positive_int(self, value: int) -> bool: """Return a boolean whether a given value is a positive integer.""" return isinstance(value, int) and value > 0 def check_parse_url(self, url: str) -> bool: """Return a boolean whether the url could be parsed. This is useful if a setting holding a url may not be reachable at the time of setting validation. Then this method at least validates that a valid url is provided. E.g. the gateway will most probably be not reachable when bringing up microservices. """ result = urlparse(url) return all([result.scheme, result.netloc]) def check_url_is_reachable(self, url: str) -> bool: """Return a boolean whether a connection to a given url could be created.""" try: if url.lower().startswith('http'): req = Request(url) with urlopen(req) as resp: # noqa return resp.status == 200 else: return False except URLError: return False def initialise_settings() -> None: """Configure and validates settings. This method is called when starting the microservice to ensure all configuration settings are properly provided. Raises: :class:`~dynaconf.validator.ValidationError`: A setting is not valid. """ not_doc = Validator("ENV_FOR_DYNACONF", is_not_in=["documentation"]) not_doc_unittest = Validator("ENV_FOR_DYNACONF", is_not_in=["documentation", "unittest"]) settings.configure(ENVVAR_PREFIX_FOR_DYNACONF="OEO") utils = SettingValidationUtils() settings.validators.register( Validator(SettingKeys.OPENEO_VERSION.value, must_exist=True, when=not_doc), Validator(SettingKeys.AIRFLOW_HOST.value, must_exist=True, condition=utils.check_parse_url, when=(not_doc_unittest & not_doc)), Validator(SettingKeys.AIRFLOW_OUTPUT.value, must_exist=True, when=not_doc), Validator(SettingKeys.AIRFLOW_DAGS.value, must_exist=True, condition=utils.check_create_folder, when=not_doc), Validator(SettingKeys.SYNC_DEL_DELAY.value, must_exist=True, is_type_of=int, condition=utils.check_positive_int, when=not_doc), Validator(SettingKeys.SYNC_RESULTS_FOLDER.value, must_exist=True, condition=utils.check_create_folder, when=not_doc), Validator(SettingKeys.WEKEO_STORAGE.value, default="", when=not_doc_unittest), Validator(SettingKeys.RABBIT_HOST.value, must_exist=True, when=not_doc_unittest), Validator(SettingKeys.RABBIT_PORT.value, must_exist=True, is_type_of=int, when=not_doc_unittest), Validator(SettingKeys.RABBIT_USER.value, must_exist=True, when=not_doc_unittest), Validator(SettingKeys.RABBIT_PASSWORD.value, must_exist=True, when=not_doc_unittest), Validator(SettingKeys.DB_USER.value, must_exist=True, when=not_doc_unittest), Validator(SettingKeys.DB_PASSWORD.value, must_exist=True, when=not_doc_unittest), Validator(SettingKeys.DB_HOST.value, must_exist=True, when=not_doc_unittest), Validator(SettingKeys.DB_PORT.value, must_exist=True, is_type_of=int, when=not_doc_unittest), Validator(SettingKeys.DB_NAME.value, must_exist=True, when=not_doc_unittest), Validator(SettingKeys.LOG_DIR.value, must_exist=True, condition=utils.check_create_folder, when=not_doc_unittest), ) settings.validators.validate() LOGGER.info("Settings validated")
python
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Module for experimental sonnet functions and classes. This file contains functions and classes that are being tested until they're either removed or promoted into the wider sonnet library. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import inspect import weakref import tensorflow as tf from tensorflow.python.ops import variable_scope as variable_scope_ops def reuse_vars(method): """Wraps an arbitrary method so it does variable sharing. This decorator creates variables the first time it calls `method`, and reuses them for subsequent calls. The object that calls `method` provides a `tf.VariableScope`, either as a `variable_scope` attribute or as the return value of an `_enter_variable_scope()` method. The first time the wrapped method is invoked, it enters the caller's `tf.VariableScope` with `reuse=False`. On all subsequent calls it enters the same variable scope with `reuse=True`. Variables are created in the context of the `tf.VariableScope` provided by the caller object. Ops are created with an additional `tf.name_scope()`, which adds a scope for the wrapped method name. For example: ```python class MyModule(object): def __init__(self, name): with tf.variable_scope(name) as variable_scope: self.variable_scope = variable_scope @snt.experimental.reuse_vars def add_x(self, tensor): x = tf.get_variable("x", shape=tensor.get_shape()) return tensor + x module = MyModule("my_module_name") input_tensor = tf.zeros(shape=(5,)) # This creates the variable "my_module_name/x:0" # and op "my_module_name/add_x/add:0" output = module.add_x(input_tensor) ``` Args: method: The method to wrap. Returns: The wrapped method. """ initialized_variable_scopes = weakref.WeakKeyDictionary() # Ensure that the argument passed in is really a method by checking that the # first positional argument to it is "self". arg_spec = inspect.getargspec(method) is_method = arg_spec.args and arg_spec.args[0] == "self" if not is_method: raise TypeError("reuse_vars can only be used with methods.") @functools.wraps(method) def wrapper(*args, **kwargs): """Calls `method` with a variable scope whose reuse flag is set correctly. The first time the wrapper is called it creates a `(tf.Graph, tf.VariableScope)` key and checks it for membership in `initialized_variable_scopes`. The check is `False` if and only if this is the first time the wrapper has been called with the key, otherwise the check is `True`. The result of this check is used as the `reuse` flag for entering the provided variable scope before calling `method`. Here are two examples of how to use the reuse_vars decorator. 1. Decorate an arbitrary instance method with a `variable_scope` attribute: ```python class Reusable(object): def __init__(self, name): with tf.variable_scope(name) as vs: self.variable_scope = vs @snt.experimental.reuse_vars def add_a(self, input_tensor): a = tf.get_variable("a", shape=input_tensor.get_shape()) return a + input_tensor obj = Reusable("reusable") x = tf.constant(5.0) out1 = obj.add_a(x) out2 = obj.add_a(x) # out1 == out2 ``` 2. Decorating a snt.AbstractModule instance method: ```python class ReusableModule(snt.AbstractModule): @snt.experimental.reuse_vars def add_a(self, input_tensor): a = tf.get_variable("a", shape=input_tensor.get_shape()) return a + input_tensor # We don't need @snt.experimental.reuse_vars here because build is wrapped by # `tf.make_template` inside `snt.AbstractModule`. def _build(self, input_tensor): b = tf.get_variable("b", shape=input_tensor.get_shape()) return b + self.add_a(input_tensor) obj = Reusable("reusable") x = tf.constant(5.0) out1 = obj(x) out2 = obj(x) # out1 == out2 ``` Args: *args: The positional arguments (Tensors) passed to the wrapped method. **kwargs: The keyword arguments passed to the wrapped method. Returns: Output of the wrapped method. Raises: ValueError: If no variable scope is provided or if `method` is a method and a variable_scope keyword argument is also provided. """ obj = args[0] def default_context_manager(reuse=None): variable_scope = obj.variable_scope return tf.variable_scope(variable_scope, reuse=reuse) variable_scope_context_manager = getattr(obj, "_enter_variable_scope", default_context_manager) graph = tf.get_default_graph() if graph not in initialized_variable_scopes: initialized_variable_scopes[graph] = set([]) initialized_variable_scopes_for_graph = initialized_variable_scopes[graph] # Temporarily enter the variable scope to capture it with variable_scope_context_manager() as tmp_variable_scope: variable_scope = tmp_variable_scope reuse = variable_scope.name in initialized_variable_scopes_for_graph # Enter the pure variable scope with reuse correctly set with variable_scope_ops._pure_variable_scope( # pylint:disable=protected-access variable_scope, reuse=reuse) as pure_variable_scope: # Force tf.name_scope to treat variable_scope.original_name_scope as # an "absolute" scope name so we can re-enter it. name_scope = variable_scope.original_name_scope if name_scope[-1] != "/": name_scope += "/" with tf.name_scope(name_scope): with tf.name_scope(method.__name__): out_ops = method(*args, **kwargs) initialized_variable_scopes_for_graph.add(pure_variable_scope.name) return out_ops return wrapper
python
#!/usr/bin/env python """ (C) 2007-2019 1024jp """ import pickle import cv2 import numpy as np import matplotlib.pyplot as plt _flags = (cv2.CALIB_ZERO_TANGENT_DIST | cv2.CALIB_FIX_K3 ) class Undistorter: def __init__(self, camera_matrix, dist_coeffs, rvecs, tvecs, image_size, new_camera_matrix=None): self.camera_matrix = camera_matrix self.dist_coeffs = dist_coeffs self.rvecs = rvecs self.tvecs = tvecs self.image_size = image_size if new_camera_matrix: self.new_camera_matrix = new_camera_matrix else: self.__get_new_camera_matrix() @classmethod def init(cls, image_points, dest_points, image_size): dest_points = [(x, y, 0) for x, y, z in dest_points] _, camera_matrix, dist_coeffs, rvecs, tvecs = cv2.calibrateCamera( [np.float32([dest_points])], [np.float32([image_points])], image_size, None, None, flags=_flags) return cls(camera_matrix, dist_coeffs, rvecs, tvecs, image_size) @classmethod def load(cls, f): return pickle.load(f) def save(self, f): pickle.dump(self, f) def calibrate_points(self, points): dest = cv2.undistortPoints(np.array([points]), self.camera_matrix, self.dist_coeffs, P=self.new_camera_matrix) return np.squeeze(dest) def undistort_image(self, image): return cv2.undistort(image, self.camera_matrix, self.dist_coeffs, newCameraMatrix=self.new_camera_matrix) def show_map(self): interval = 200 size = self.image_size w, h = np.meshgrid(range(0, size[0], interval), range(0, size[1], interval)) points = np.vstack((w.flatten(), h.flatten())).T.astype('float32') new_points = self.calibrate_points(points) plt.scatter(points[:, 0], points[:, 1], 20, 'b', alpha=.5) plt.scatter(new_points[:, 0], new_points[:, 1], 20, 'r', alpha=.5) plt.axes().set_aspect('equal', 'datalim') plt.show() def __get_new_camera_matrix(self): self.new_camera_matrix = cv2.getOptimalNewCameraMatrix( self.camera_matrix, self.dist_coeffs, self.image_size, 0)[0]
python
#!/usr/bin/env python names = ["Amy", "Bob", "Cathy", "David", "Eric"] for x in names: print("Hello " + x)
python
# coding: utf-8 from __future__ import unicode_literals import pytest from django.contrib.auth.models import AnonymousUser from mock import Mock from saleor.cart import decorators from saleor.cart.models import Cart from saleor.checkout.core import Checkout from saleor.discount.models import Voucher from saleor.product.models import Product, ProductVariant, Stock from saleor.shipping.models import ShippingMethod from saleor.userprofile.models import Address, User @pytest.fixture def cart(db): # pylint: disable=W0613 return Cart.objects.create() @pytest.fixture def customer_user(db): # pylint: disable=W0613 return User.objects.create_user('[email protected]', 'password') @pytest.fixture def request_cart(cart, monkeypatch): monkeypatch.setattr( decorators, 'get_cart_from_request', lambda request, create=False: cart) return cart @pytest.fixture def request_cart_with_item(product_in_stock, request_cart): variant = product_in_stock.variants.get() # Prepare some data request_cart.add(variant) return request_cart @pytest.fixture() def admin_user(db): # pylint: disable=W0613 """A Django admin user. """ return User.objects.create_superuser('[email protected]', 'password') @pytest.fixture() def admin_client(admin_user): """A Django test client logged in as an admin user.""" from django.test.client import Client client = Client() client.login(username=admin_user.email, password='password') return client @pytest.fixture() def authorized_client(client, customer_user): client.login(username=customer_user.email, password='password') return client @pytest.fixture def billing_address(db): # pylint: disable=W0613 return Address.objects.create( first_name='John', last_name='Doe', company_name='Mirumee Software', street_address_1='Tęczowa 7', city='Wrocław', postal_code='53-601', country='PL') @pytest.fixture def shipping_method(db): # pylint: disable=W0613 shipping_method = ShippingMethod.objects.create(name='DHL') shipping_method.price_per_country.create(price=10) return shipping_method @pytest.fixture def product_in_stock(db): # pylint: disable=W0613 product = Product.objects.create( name='Test product', price=10, weight=1) variant = ProductVariant.objects.create(product=product, sku='123') Stock.objects.create( variant=variant, cost_price=1, quantity=5, quantity_allocated=5, location='Warehouse 1') Stock.objects.create( variant=variant, cost_price=100, quantity=5, quantity_allocated=5, location='Warehouse 2') Stock.objects.create( variant=variant, cost_price=10, quantity=5, quantity_allocated=0, location='Warehouse 3') return product @pytest.fixture def anonymous_checkout(): return Checkout(Mock(), AnonymousUser(), 'tracking_code') @pytest.fixture def voucher(db): # pylint: disable=W0613 return Voucher.objects.create(code='mirumee', discount_value=20)
python
#!/usr/bin/env python from re import sub from sys import argv,exit from os import path,getenv from glob import glob import argparse parser = argparse.ArgumentParser(description='make forest') parser.add_argument('--region',metavar='region',type=str,default=None) toProcess = parser.parse_args().region argv=[] import ROOT as root from PandaCore.Tools.Misc import * from PandaCore.Tools.Load import * import PandaCore.Tools.Functions # kinematics import PandaAnalysis.Monotop.CombinedSelection as sel Load('PandaAnalysisFlat','LimitTreeBuilder') baseDir = getenv('PANDA_FLATDIR') lumi = 36560 factory = root.LimitTreeBuilder() if toProcess: factory.SetOutFile(baseDir+'/limits/limitForest_%s.root'%toProcess) else: factory.SetOutFile(baseDir+'/limits/limitForest_all.root') def dataCut(basecut,trigger): return tAND(trigger,basecut) treelist = [] def getTree(fpath): global treelist fIn = root.TFile(baseDir+fpath+'.root') tIn = fIn.Get('events') treelist.append(tIn) return tIn,fIn def enable(regionName): if toProcess: return (toProcess==regionName) else: return True def shiftBtags(label,tree,varmap,cut,baseweight): ps = [] for shift in ['BUp','BDown','MUp','MDown']: for cent in ['sf_btag','sf_sjbtag']: shiftedlabel = '_' if 'sj' in cent: shiftedlabel += 'sj' if 'B' in shift: shiftedlabel += 'btag' else: shiftedlabel += 'mistag' if 'Up' in shift: shiftedlabel += 'Up' else: shiftedlabel += 'Down' weight = sel.weights[baseweight+'_'+cent+shift]%lumi shiftedProcess = root.Process(label,tree,varmap,cut,weight) shiftedProcess.syst = shiftedlabel ps.append(shiftedProcess) return ps # input tZll,fZll = getTree('ZJets') tZvv,fZvv = getTree('ZtoNuNu') tWlv,fWlv = getTree('WJets') tPho,fPho = getTree('GJets') tTTbar,fTT = getTree('TTbar') tVV,fVV = getTree('Diboson') tQCD,fQCD = getTree('QCD') tST,fST = getTree('SingleTop') tMET,fMET = getTree('MET') tSingleEle,fSEle = getTree('SingleElectron') tSinglePho,fSPho = getTree('SinglePhoton') #tSig,fSig = getTree('monotop-nr-v3-1700-100_med-1700_dm-100') # this is just a sample point tAllSig = {}; fAllSig = {} if enable('signal'): signalFiles = glob(baseDir+'/Vector*root') for f in signalFiles: fname = f.split('/')[-1].replace('.root','') signame = fname replacements = { 'Vector_MonoTop_NLO_Mphi-':'', '_gSM-0p25_gDM-1p0_13TeV-madgraph':'', '_Mchi-':'_', } for k,v in replacements.iteritems(): signame = signame.replace(k,v) tAllSig[signame],fAllSig[signame] = getTree(fname) factory.cd() regions = {} processes = {} vms = {} for region_type,met_type,phi_type in [('signal','pfmet','pfmetphi'), ('w','pfUWmag','pfUWphi'), ('z','pfUZmag','pfUZphi'), ('a','pfUAmag','pfUAphi')]: vms[region_type] = root.VariableMap() vms[region_type].AddVar('met',met_type) # vms[region_type].AddVar('metphi',phi_type) vms[region_type].AddVar('genBosonPt','genBosonPt') # vms[region_type].AddVar('genBosonPhi','genBosonPhi') for x in ['fj1Tau32','top_ecf_bdt']: vms[region_type].AddVar(x,x) # test region if enable('test'): regions['test'] = root.Region('test') cut = sel.cuts['signal'] weight = sel.weights['signal']%lumi processes['test'] = [ root.Process('Data',tMET,vms['signal'],dataCut(cut,sel.triggers['met']),'1'), root.Process('Diboson',tVV,vms['signal'],cut,weight), ] btag_shifts = [] for p in processes['test']: if p.name=='Data': continue btag_shifts += shiftCSV(p.name,p.GetInput(),vms['signal'],cut,'signal') processes['test'] += btag_shifts for p in processes['test']: regions['test'].AddProcess(p) factory.AddRegion(regions['test']) # signal region if enable('signal'): regions['signal'] = root.Region('signal') cut = sel.cuts['signal'] weight = sel.weights['signal']%lumi vm = vms['signal'] processes['signal'] = [ root.Process('Data',tMET,vm,dataCut(cut,sel.triggers['met']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), # root.Process('signal',tSig,vm,cut,weight), ] for signame,tsig in tAllSig.iteritems(): processes['signal'].append( root.Process(signame,tsig,vm,cut,weight) ) btag_shifts = [] for p in processes['signal']: if p.name=='Data': continue btag_shifts += shiftBtags(p.name,p.GetInput(),vm,cut,'signal') #btag_shifts += shiftCSV(p.name,p.GetInput(),vm,cut,'signal') processes['signal'] += btag_shifts for p in processes['signal']: regions['signal'].AddProcess(p) factory.AddRegion(regions['signal']) #singlemuonw if enable('singlemuonw'): regions['singlemuonw'] = root.Region('singlemuonw') cut = sel.cuts['singlemuonw'] weight = sel.weights['singlemuonw']%lumi vm = vms['w'] processes['singlemuonw'] = [ root.Process('Data',tMET,vm,dataCut(cut,sel.triggers['met']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), ] btag_shifts = [] for p in processes['singlemuonw']: if p.name=='Data': continue btag_shifts += shiftBtags(p.name,p.GetInput(),vm,cut,'singlemuonw') #btag_shifts += shiftCSV(p.name,p.GetInput(),vm,cut,'singlemuonw') processes['singlemuonw'] += btag_shifts for p in processes['singlemuonw']: regions['singlemuonw'].AddProcess(p) factory.AddRegion(regions['singlemuonw']) #singleelectronw if enable('singleelectronw'): regions['singleelectronw'] = root.Region('singleelectronw') cut = sel.cuts['singleelectronw'] weight = sel.weights['singleelectronw']%lumi vm = vms['w'] processes['singleelectronw'] = [ root.Process('Data',tSingleEle,vm,dataCut(cut,sel.triggers['ele']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), ] btag_shifts = [] for p in processes['singleelectronw']: if p.name=='Data': continue btag_shifts += shiftBtags(p.name,p.GetInput(),vm,cut,'singleelectronw') #btag_shifts += shiftCSV(p.name,p.GetInput(),vm,cut,'singleelectronw') processes['singleelectronw'] += btag_shifts for p in processes['singleelectronw']: regions['singleelectronw'].AddProcess(p) factory.AddRegion(regions['singleelectronw']) #singlemuontop if enable('singlemuontop'): regions['singlemuontop'] = root.Region('singlemuontop') cut = sel.cuts['singlemuontop'] weight = sel.weights['singlemuontop']%lumi vm = vms['w'] processes['singlemuontop'] = [ root.Process('Data',tMET,vm,dataCut(cut,sel.triggers['met']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), ] btag_shifts = [] for p in processes['singlemuontop']: if p.name=='Data': continue btag_shifts += shiftBtags(p.name,p.GetInput(),vm,cut,'singlemuontop') #btag_shifts += shiftCSV(p.name,p.GetInput(),vm,cut,'singlemuontop') processes['singlemuontop'] += btag_shifts for p in processes['singlemuontop']: regions['singlemuontop'].AddProcess(p) factory.AddRegion(regions['singlemuontop']) #singleelectrontop if enable('singleelectrontop'): regions['singleelectrontop'] = root.Region('singleelectrontop') cut = sel.cuts['singleelectrontop'] weight = sel.weights['singleelectrontop']%lumi vm = vms['w'] processes['singleelectrontop'] = [ root.Process('Data',tSingleEle,vm,dataCut(cut,sel.triggers['ele']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), ] btag_shifts = [] for p in processes['singleelectrontop']: if p.name=='Data': continue btag_shifts += shiftBtags(p.name,p.GetInput(),vm,cut,'singleelectrontop') #btag_shifts += shiftCSV(p.name,p.GetInput(),vm,cut,'singleelectrontop') processes['singleelectrontop'] += btag_shifts for p in processes['singleelectrontop']: regions['singleelectrontop'].AddProcess(p) factory.AddRegion(regions['singleelectrontop']) #dimuon if enable('dimuon'): regions['dimuon'] = root.Region('dimuon') cut = sel.cuts['dimuon'] weight = sel.weights['dimuon']%lumi vm = vms['z'] processes['dimuon'] = [ root.Process('Data',tMET,vm,dataCut(cut,sel.triggers['met']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), ] for p in processes['dimuon']: regions['dimuon'].AddProcess(p) factory.AddRegion(regions['dimuon']) #dielectron if enable('dielectron'): regions['dielectron'] = root.Region('dielectron') cut = sel.cuts['dielectron'] weight = sel.weights['dielectron']%lumi vm = vms['z'] processes['dielectron'] = [ root.Process('Data',tSingleEle,vm,dataCut(cut,sel.triggers['ele']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), ] for p in processes['dielectron']: regions['dielectron'].AddProcess(p) factory.AddRegion(regions['dielectron']) #photon if enable('photon'): regions['photon'] = root.Region('photon') cut = sel.cuts['photon'] weight = sel.weights['photon']%lumi vm = vms['a'] processes['photon'] = [ root.Process('Data',tSinglePho,vm,dataCut(cut,sel.triggers['pho']),'1'), root.Process('Pho',tPho,vm,cut,weight), root.Process('QCD',tSinglePho,vm,dataCut(cut,sel.triggers['pho']),'sf_phoPurity'), ] for p in processes['photon']: regions['photon'].AddProcess(p) factory.AddRegion(regions['photon']) PInfo('makeLimitForest','Starting '+str(toProcess)) factory.Run() PInfo('makeLimitForest','Finishing '+str(toProcess)) factory.Output() PInfo('makeLimitForest','Outputted '+str(toProcess))
python
from tensorflow.keras import initializers from tensorflow.keras import layers from tensorflow.keras.models import Sequential def build_subnet(output_filters, bias_initializer='zeros', name=None): """构建功能子网络. Args: output_filters: int, 功能子网络输出层的神经元数量. bias_initializer: str or tf.keras.initializers.Initializer instance, default='zeros', 网络层偏置项初始化器. name: (可选) str, default=None, 功能子网络名称. Return: tf.keras.models.Sequential, 功能子网络实例. """ model = Sequential(name=name) model.add(layers.InputLayer(input_shape=[None, None, 256])) # 输入特征是每层FPN. _kernel_initializer = initializers.RandomNormal(mean=0.0, stddev=0.01) # 高斯分布初始化. for _ in range(4): model.add(layers.Conv2D(filters=256, kernel_size=[3, 3], strides=(1, 1), padding='same', kernel_initializer=_kernel_initializer)) model.add(layers.ReLU()) model.add(layers.Conv2D(filters=output_filters, kernel_size=[3, 3], strides=(1, 1), padding='same', kernel_initializer=_kernel_initializer, bias_initializer=bias_initializer)) return model
python
from .seld import *
python
import numpy as np class UnionFind: def __init__(self, n): self.n = n self.parent = np.arange(n) self.rank = np.zeros(n, dtype=np.int32) self.csize = np.ones(n, dtype=np.int32) def find(self, u): v = u while u != self.parent[u]: u = self.parent[u] while v != self.parent[v]: t = self.parent[v] self.parent[v] = u v = t return u def union(self, u, v): u = self.find(u) v = self.find(v) if u != v: if self.rank[u] < self.rank[v]: self.parent[u] = v self.csize[v] += self.csize[u] else: self.parent[v] = u self.csize[u] += self.csize[v] if self.rank[u] == self.rank[v]: self.rank[u] += 1 def is_same_set(self, u, v): return self.find(u) == self.find(v)
python
import logging.config from .Camera import Camera import time from io import BytesIO from PIL import Image from dateutil import zoneinfo timezone = zoneinfo.get_zonefile_instance().get("Australia/Canberra") try: logging.config.fileConfig("/etc/eyepi/logging.ini") except: pass try: import picamera import picamera.array except Exception as e: logging.error("Couldnt import picamera module, no picamera camera support: {}".format(str(e))) pass class PiCamera(Camera): """ Picamera extension to the Camera abstract class. """ @classmethod def stream_thread(cls): """ Streaming thread member. uses :func:`picamera.PiCamera.capture_continuous` to stream data from the rpi camera video port. :func:`time.sleep` added to rate limit a little bit. """ import picamera print("start thread") try: with picamera.PiCamera() as camera: # camera setup camera.resolution = (640, 480) # camera.hflip = True # camera.vflip = True # let camera warm up camera.start_preview() time.sleep(2) stream = BytesIO() for foo in camera.capture_continuous(stream, 'jpeg', use_video_port=True): # store frame stream.seek(0) cls._frame = stream.read() # reset stream for next frame stream.seek(0) stream.truncate() # if there hasn't been any clients asking for frames in # the last 10 seconds stop the thread time.sleep(0.01) if time.time() - cls._last_access > 1: break except Exception as e: print("Couldnt acquire camera") print("Closing Thread") cls._thread = None def set_camera_settings(self, camera): """ Sets the camera resolution to the max resolution if the config provides camera/height or camera/width attempts to set the resolution to that. if the config provides camera/isoattempts to set the iso to that. if the config provides camera/shutter_speed to set the shutterspeed to that. :param picamera.PiCamera camera: picamera camera instance to modify """ try: camera.resolution = camera.MAX_RESOLUTION if type(self.config) is dict: if hasattr(self, "width") and hasattr(self, "height"): camera.resolution = (int(self.width), int(self.height)) if "width" in self.config and "height" in self.config: camera.resolution = (int(self.config['width']), int(self.config['height'])) camera.shutter_speed = getattr(self, "shutter_speed", camera.shutter_speed) camera.iso = getattr(self, "iso", camera.iso) else: if self.config.has_option("camera", "width") and self.config.has_option("camera", "height"): camera.resolution = (self.config.getint("camera", "width"), self.config.getint("camera", "height")) if self.config.has_option("camera", "shutter_speed"): camera.shutter_speed = self.config.getfloat("camera", "shutter_speed") if self.config.has_option("camera", "iso"): camera.iso = self.config.getint("camera", "iso") except Exception as e: self.logger.error("error setting picamera settings: {}".format(str(e))) def capture_image(self, filename: str = None): """ Captures image using the Raspberry Pi Camera Module, at either max resolution, or resolution specified in the config file. Writes images disk using :func:`encode_write_image`, so it should write out to all supported image formats automatically. :param filename: image filename without extension :return: :func:`numpy.array` if filename not specified, otherwise list of files. :rtype: numpy.array """ st = time.time() try: with picamera.PiCamera() as camera: with picamera.array.PiRGBArray(camera) as output: time.sleep(2) # Camera warm-up time self.set_camera_settings(camera) time.sleep(0.2) # self._image = numpy.empty((camera.resolution[1], camera.resolution[0], 3), dtype=numpy.uint8) camera.capture(output, 'rgb') # self._image = output.array self._image = Image.fromarray(output.array) # self._image = cv2.cvtColor(self._image, cv2.COLOR_BGR2RGB) if filename: filenames = self.encode_write_image(self._image, filename) self.logger.debug("Took {0:.2f}s to capture".format(time.time() - st)) return filenames else: self.logger.debug("Took {0:.2f}s to capture".format(time.time() - st)) except Exception as e: self.logger.critical("EPIC FAIL, trying other method. {}".format(str(e))) return None return None
python
# 建立一个登录页面 from tkinter import * root = Tk() root.title("登陆页面") msg = "欢迎进入海绵宝宝系统" sseGif = PhotoImage(file="../img/hmbb1.gif") logo = Label(root,image=sseGif,text=msg, compound=BOTTOM) logo.grid(row=0,column=0,columnspan=2,padx=10,pady=10) accountL = Label(root,text="Account") accountL.grid(row=1) pwdL = Label(root,text="Password") pwdL.grid(row=2) accountE = Entry(root) accountE.grid(row=1,column=1) accountE.insert(0,"海绵宝宝") #在0位置插入默认文本框里的文字 pwdE = Entry(root,show="*") pwdE.grid(row=2,column=1,pady=10) pwdE.insert(0,"hmbb") #在0位置插入默认文本框里的文字 # LOGIN QUIT def printInfo(): print("Account: %s\nPassword: %s" %(accountE.get(), pwdE.get())) accountE.delete(0,END) #删除文本框内从0到最后的内容 pwdE.delete(0,END) #删除文本框内从0到最后的内容 loginbtn = Button(root,text="Login",command=printInfo) loginbtn.grid(row=3,column=0,sticky=W,padx=10,pady=10) quitbtn = Button(root,text="Quit",command=root.quit) quitbtn.grid(row=3,column=1,sticky=W,padx=10,pady=10) root.mainloop() #86
python
from setuptools import setup setup( name='YinPortfolioManagement', author='Yiqiao Yin', version='1.0.0', description="This package uses Long Short-Term Memory (LSTM) to forecast a stock price that user enters.", packages=['YinCapital_forecast'] )
python
import analysis #Create historgram analysis.histogram() #Create scatterplot analysis.scatterplot("sepal_length","sepal_width") analysis.scatterplot("petal_length","petal_width") analysis.pair_plot() #Create summary.txt analysis.writeToAFile
python
import os from apscheduler.schedulers.blocking import BlockingScheduler sched = BlockingScheduler() @sched.scheduled_job('cron', hour=9) def scheduled_job(): os.system("python manage.py runbot") sched.start()
python
from django.db import models from i18nfield.fields import I18nCharField from pretalx.common.mixins import LogMixin from pretalx.common.urls import EventUrls class Track(LogMixin, models.Model): event = models.ForeignKey( to='event.Event', on_delete=models.PROTECT, related_name='tracks' ) name = I18nCharField(max_length=200) color = models.CharField(max_length=7) class urls(EventUrls): base = edit = '{self.event.cfp.urls.tracks}{self.pk}' delete = '{base}delete' def __str__(self) -> str: return str(self.name)
python
from sqlalchemy.ext.declarative import declarative_base, declared_attr from sqlalchemy import Column, Integer, String, Boolean, BigInteger, Text, ForeignKey, Float from sqlalchemy.orm import relationship #from sqlalchemy_views import CreateView, DropView # connection.execute("CREATE TABLE `jobs` (`clock` BIGINT(11),`jobid` VARCHAR(50),`type` TEXT,`username` TEXT,`status` INT,`data` TEXT,`error` TEXT,`reqid` TEXT, PRIMARY KEY(jobid))") # connection.execute("CREATE TABLE `data_raw` (`clock` BIGINT(11), PRIMARY KEY(clock))") # connection.execute("CREATE TABLE `data_finalized` (`clock` BIGINT(11), PRIMARY KEY(clock))") # connection.execute("CREATE TABLE `data_processed` (`clock` BIGINT(11), PRIMARY KEY(clock))") # connection.execute("CREATE TABLE `data_other` (`clock` BIGINT(11), PRIMARY KEY(clock))") # connection.execute(text("INSERT INTO `daqbroker_settings`.`databases` VALUES(:dbname,'0')"),dbname=newdbname) daqbroker_database = declarative_base() #connection.execute("CREATE TABLE `instruments` ( `Name` text NOT NULL, `instid` int(11) NOT NULL, `active` int(11) NOT NULL, `description` text NOT NULL, `username` text NOT NULL, `email` text NOT NULL, `insttype` int(11) NOT NULL,`log` text, PRIMARY KEY (`instid`))") class instruments(daqbroker_database): __tablename__ = "instruments" Name = Column(String(50)) instid = Column(Integer, primary_key=True) active = Column(Boolean) description = Column(Text) username = Column(Text) email = Column(Text) insttype = Column(Integer) log = Column(Text) sources = relationship("instmeta", backref="meta", cascade="all, delete, delete-orphan", order_by="instmeta.metaid") #connection.execute("CREATE TABLE `instmeta` (`clock` bigint(11) NOT NULL DEFAULT '0', `name` varchar(50) NOT NULL, `metaid` int(11) NOT NULL DEFAULT '0', `instid` int(11) NOT NULL DEFAULT '0', `type` int(11) DEFAULT '0', `node` varchar(50) NOT NULL, `remarks` text, `sentRequest` tinyint(1) DEFAULT '0', `lastAction` bigint(11) NOT NULL DEFAULT '0', `lasterrortime` bigint(11) NOT NULL DEFAULT '0', `lasterror` text, `lockSync` tinyint(1) DEFAULT '0', PRIMARY KEY (`instid`,`metaid`,`name`))") class instmeta(daqbroker_database): __tablename__ = "instmeta" clock = Column(BigInteger) name = Column(String(50)) metaid = Column(Integer, primary_key=True) instrument_id = Column(Integer, ForeignKey('instruments.instid')) type = Column(Integer) node = Column(String(50)) remarks = Column(Text) sentRequest = Column(Boolean) lastAction = Column(BigInteger) lasterrortime = Column(BigInteger) lasterror = Column(Text) lockSync = Column(Boolean) channels = relationship("channels", backref="chann", cascade="all, delete, delete-orphan", order_by="channels.channelid") parsing = relationship("parsing", backref="metaParse", cascade="all, delete, delete-orphan") #connection.execute("CREATE TABLE `channels` (`Name` text NOT NULL, `channelid` int(11) NOT NULL, `channeltype` int(11) NOT NULL, `valuetype` int(11) NOT NULL DEFAULT '0', `units` text NOT NULL, `instid` int(11) NOT NULL, `description` text NOT NULL, `active` int(11) NOT NULL, `remarks` text NOT NULL, `metaid` INT, `lastclock` BIGINT(11) NOT NULL DEFAULT 0, `lastValue` text, `fileorder` int(11) DEFAULT 0,`alias` text NOT NULL,`firstClock` BIGINT(11) DEFAULT 10000000000000, PRIMARY KEY (channelid,metaid,instid))") class channels(daqbroker_database): __tablename__ = "channels" Name = Column(Text) channelid = Column(Integer, primary_key=True) channeltype = Column(Integer) valuetype = Column(Integer) units = Column(Text) description = Column(Text) active = Column(Boolean) remarks = Column(Text) metaid = Column(Integer, ForeignKey('instmeta.metaid')) lastclock = Column(BigInteger) lastValue = Column(Text) firstClock = Column(BigInteger) fileorder = Column(Text) alias = Column(Text) #chann = relationship("instmeta", back_populates="channels") #connection.execute("CREATE TABLE `parsing` (clock BIGINT(11),lastAction BIGINT(11), `metaid` INT(11) , `instid` INT(11), `type` INT(11), `locked` INT(11), `forcelock` BOOLEAN DEFAULT '0', `remarks` MEDIUMTEXT, PRIMARY KEY (metaid,instid))") class parsing(daqbroker_database): __tablename__ = "parsing" clock = Column(BigInteger) metaid = Column(Integer, ForeignKey('instmeta.metaid'), primary_key=True) type = Column(Integer) locked = Column(Boolean) forcelock = Column(Boolean) remarks = Column(Text) #metaParse = relationship("instmeta", back_populates="parsing") #connection.execute("CREATE TABLE `plots` ( `plotname` varchar(200) NOT NULL, `plotid` int(11) NOT NULL, `channelids` text NOT NULL, `plottype` int(11) NOT NULL, `adminPlot` int(11) NOT NULL, `active` int(11) NOT NULL, `remarks` text NOT NULL, PRIMARY KEY (`plotname`,`plotid`))") class plots(daqbroker_database): __tablename__ = "plots" plotname = Column(String(200)) plotid = Column(Integer, primary_key=True) channelids = Column(Text) plottype = Column(Integer) adminPlot = Column(Boolean) active = Column(Boolean) remarks = Column(Text) #connection.execute("CREATE TABLE `plotcomments` (`clock` BIGINT(11),`plotid` INT,`channelid` INT,`comment` TEXT,`author` TEXT,`remarks` TEXT, PRIMARY KEY(clock,plotid,channelid))") class plotcomments(daqbroker_database): __tablename__ = "plotcomments" clock = Column(BigInteger, primary_key=True) plotid = Column(Integer, primary_key=True) channelid = Column(Integer, primary_key=True) comment = Column(Text) author = Column(Text) remarks = Column(Text) #connection.execute("CREATE TABLE `layouts` (`Name` varchar(50) NOT NULL,`layoutid` int(11) NOT NULL,`plots` text NOT NULL,`format` text NOT NULL,PRIMARY KEY (`layoutid`) USING BTREE,UNIQUE KEY `Name` (`Name`))") class layouts(daqbroker_database): __tablename__ = "layouts" Name = Column(String(200)) layoutid = Column(Integer, primary_key=True) plots = Column(Text) format = Column(Text) plottype = Column(Integer) adminPlot = Column(Boolean) active = Column(Boolean) remarks = Column(Text) #connection.execute("CREATE TABLE `collections` (`Name` VARCHAR(30),`channels` TEXT,`remarks` TEXT, PRIMARY KEY(Name))") class collections(daqbroker_database): __tablename__ = "collections" Name = Column(String(200), primary_key=True) channels = Column(Text) remarks = Column(Text) #connection.execute("CREATE TABLE `runs` (`clock` BIGINT(11),`lastUpdate` BIGINT(11),`isLinked` INT(11),`linkRemarks` TEXT,`linkType` INT(11),`runlistRemarks` TEXT, PRIMARY KEY (clock))") class runs(daqbroker_database): __tablename__ = "runs" clock = Column(BigInteger, primary_key=True) lastUpdate = Column(BigInteger) isLinked = Column(Boolean) linkRemarks = Column(Text) linkType = Column(Integer) runlistRemarks = Column(Text) #connection.execute("CREATE TABLE `runlist` (`start` BIGINT(11),`end` BIGINT(11),`run` VARCHAR(50),`summary` LONGTEXT,`comments` TEXT,`active` INT, PRIMARY KEY(run))") class runlist(daqbroker_database): __tablename__ = "runlist" start = Column(BigInteger) end = Column(BigInteger) run = Column(String(20), primary_key=True) lastUpdate = Column(BigInteger) summary = Column(Text) comments = Column(Text) active = Column(Boolean) #connection.execute("CREATE TABLE `subscribers` (`email` VARCHAR(100), PRIMARY KEY(email))") class subscribers(daqbroker_database): __tablename__ = "subscribers" email = Column(String(200), primary_key=True) class instTable(object): def __init__(self, cols): for key in cols: setattr(self, key, cols[key]) def __repr__(self): return "<instTable class>" def createInstrumentTable(iname, cols, isNew): attrDictData = {'__tablename__': iname + '_data', 'clock': Column(BigInteger, primary_key=True)} # For raw data attrDictCustom = { '__tablename__': iname + '_custom', 'clock': Column( BigInteger, primary_key=True)} # For custom (processed) data for col in cols: if col["type"] == 1: attrDictData[col["name"]] = Column(Float) if col["type"] == 2: attrDictData[col["name"]] = Column(Text) if col["type"] == 3: attrDictCustom[col["name"]] = Column(Float) #tableClassData = type (instTable, (attrDictData) if not isNew: tableClassData = type(iname + '_data', (instTable,), attrDictData) tableClassCustom = type(iname + '_custom', (instTable,), attrDictCustom) else: tableClassData = type(iname + '_data', (daqbroker_database,), attrDictData) tableClassCustom = type(iname + '_custom', (daqbroker_database,), attrDictCustom) return (tableClassData,tableClassCustom) def dropTable(tableName, engine, is_view): tablesDrop = [] tablesDropKeys = [] for table in daqbroker_database.metadata.tables.keys(): if table == tableName: tablesDrop.append(daqbroker_database.metadata.tables[table]) tablesDropKeys.append(table) if is_view: for table in tablesDrop: engine.execute(DropView(table, if_exists=True)) else: daqbroker_database.metadata.drop_all(engine, tables=tablesDrop) for table in tablesDropKeys: daqbroker_database.metadata.remove(daqbroker_database.metadata.tables[table]) def newMetaData(): global daqbroker_database daqbroker_database.metadata.clear() daqbroker_database = declarative_base() instruments = type('instruments', (daqbroker_database,), dict( __tablename__="instruments", Name=Column(String(50)), instid=Column(Integer, primary_key=True), active=Column(Boolean), description=Column(Text), username=Column(Text), email=Column(Text), insttype=Column(Integer), log=Column(Text), sources=relationship("instmeta", backref="meta", cascade="all, delete, delete-orphan", order_by="instmeta.metaid")) ) instmeta = type('instmeta', (daqbroker_database,), dict( __tablename__="instmeta", clock=Column(BigInteger), name=Column(String(50)), metaid=Column(Integer, primary_key=True), instrument_id=Column(Integer, ForeignKey('instruments.instid')), type=Column(Integer), node=Column(String(50)), remarks=Column(Text), sentRequest=Column(Boolean), lastAction=Column(BigInteger), lasterrortime=Column(BigInteger), lasterror=Column(Text), lockSync=Column(Boolean), channels=relationship("channels", backref="chann", cascade="all, delete, delete-orphan", order_by="channels.channelid"), parsing=relationship("parsing", backref="metaParse", cascade="all, delete, delete-orphan")) ) channels = type('channels', (daqbroker_database,), dict( __tablename__="channels", Name = Column(Text), channelid = Column(Integer, primary_key=True), channeltype = Column(Integer), valuetype = Column(Integer), units = Column(Text), description = Column(Text), active = Column(Boolean), remarks = Column(Text), metaid = Column(Integer, ForeignKey('instmeta.metaid')), lastclock = Column(BigInteger), lastValue = Column(Text), firstClock = Column(BigInteger), fileorder = Column(Text), alias = Column(Text) )) parsing = type('parsing', (daqbroker_database,), dict( __tablename__="parsing", clock = Column(BigInteger), metaid = Column(Integer, ForeignKey('instmeta.metaid'), primary_key=True), type = Column(Integer), locked = Column(Boolean), forcelock = Column(Boolean), remarks = Column(Text) )) plots = type('plots', (daqbroker_database,), dict( __tablename__="plots", plotname = Column(String(200)), plotid = Column(Integer, primary_key=True), channelids = Column(Text), plottype = Column(Integer), adminPlot = Column(Boolean), active = Column(Boolean), remarks = Column(Text) )) plotcomments = type('plotcomments', (daqbroker_database,), dict( __tablename__="plotcomments", clock = Column(BigInteger, primary_key=True), plotid = Column(Integer, primary_key=True), channelid = Column(Integer, primary_key=True), comment = Column(Text), author = Column(Text), remarks = Column(Text), )) layouts = type('layouts', (daqbroker_database,), dict( __tablename__="layouts", Name = Column(String(200)), layoutid = Column(Integer, primary_key=True), plots = Column(Text), format = Column(Text), plottype = Column(Integer), adminPlot = Column(Boolean), active = Column(Boolean), remarks = Column(Text) )) runs = type('runs', (daqbroker_database,), dict( __tablename__="runs", clock = Column(BigInteger, primary_key=True), lastUpdate = Column(BigInteger), isLinked = Column(Boolean), linkRemarks = Column(Text), linkType = Column(Integer), runlistRemarks = Column(Text) )) runlist = type('runlist', (daqbroker_database,), dict( __tablename__="runlist", start = Column(BigInteger), end = Column(BigInteger), run = Column(String(20), primary_key=True), lastUpdate = Column(BigInteger), summary = Column(Text), comments = Column(Text), active = Column(Boolean) )) collections = type('collections', (daqbroker_database,), dict( __tablename__="collections", Name = Column(String(200), primary_key=True), channels = Column(Text), remarks = Column(Text) )) collections = type('collections', (daqbroker_database,), dict( __tablename__="subscribers", email=Column(String(200), primary_key=True) )) return daqbroker_database
python
# -*- coding: UTF-8 -*- import os import sys import time import caffe import numpy as np from timer import Timer from db_helper import DBHelper import matplotlib.pyplot as plt from caffe.proto import caffe_pb2 from google.protobuf import text_format # Load LabelMap file. def get_labelmap(labelmap_path): labelmap_file = labelmap_path file = open(labelmap_file, 'r') labelmap = caffe_pb2.LabelMap() text_format.Merge(str(file.read()), labelmap) return labelmap # get labelnames def get_labelname(labelmap, labels): num_labels = len(labelmap.item) labelnames = [] if type(labels) is not list: labels = [labels] for label in labels: found = False for i in xrange(0, num_labels): if label == labelmap.item[i].label: found = True labelnames.append(labelmap.item[i].display_name) break assert found == True return labelnames # 处理输入的数据,caffe中用的图像是BGR空间,但是matplotlib用的是RGB空间 # caffe的数值空间是[0,255],但是matplotlib的空间是[0,1] def input_process(net): # 定义转换输入的data数值的函数 transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2, 0, 1)) # 分离图像的RGB三通道 transformer.set_mean('data', np.array([104, 117, 123])) # mean pixel,减去平均像素值,从而减少噪声的影响 transformer.set_raw_scale('data', 255) # 将0-1空间变成0-255空间 transformer.set_channel_swap('data', (2, 1, 0)) # 交换RGB空间到BGR空间 image_resize = 300 net.blobs['data'].reshape(1, 3, image_resize, image_resize) # batchsize=1,三通道,图像大小是300*300 return transformer # 检测一张图片 def im_detect(transformer, labelmap, image_name, images_path, db): i = 0 while os.path.exists(images_path + image_name) is False: # 图片不存在则循环等待,超过10秒退出程序 if i > 100: sys.exit() time.sleep(0.1) i += 1 image = caffe.io.load_image(images_path + image_name) image_byte = os.path.getsize(images_path + image_name) / 1024.0 # Run the net and examine the top_k results timer = Timer() timer.tic() transformed_image = transformer.preprocess('data', image) net.blobs['data'].data[...] = transformed_image # 将图像数据拷贝到内存中并分配给网络net # 分类 detections = net.forward()['detection_out'] # 解析输出结果 det_label = detections[0, 0, :, 1] det_conf = detections[0, 0, :, 2] det_xmin = detections[0, 0, :, 3] det_ymin = detections[0, 0, :, 4] det_xmax = detections[0, 0, :, 5] det_ymax = detections[0, 0, :, 6] # 得到置信度>=0.6的检测目标 top_indices = [i for i, conf in enumerate(det_conf) if conf >= 0.6] top_conf = det_conf[top_indices] top_label_indices = det_label[top_indices].tolist() top_labels = get_labelname(labelmap, top_label_indices) top_xmin = det_xmin[top_indices] top_ymin = det_ymin[top_indices] top_xmax = det_xmax[top_indices] top_ymax = det_ymax[top_indices] timer.toc() print 'Detection took {:.3f}s for {}'.format(timer.total_time, image_name) image_name = image_name[:-4] if db.search(image_name, 'ssd_detect_res') != 0: db.delete_data(image_name, 'ssd_detect_res') # 删除数据库中该图片原有的数据 if db.search(image_name, 'image_byte') != 0: db.delete_data(image_name, 'image_byte') # 删除数据库中该图片原有的数据 db.insert_data(image_name, image_byte) if top_conf.shape[0] == 0: # 图片中没有检测到目标 if db.insert_data(image_name, 0, 1) == 0: print 'Insert data without object failed!' else: # 获取每个目标类别及目标的bounding box for i in xrange(top_conf.shape[0]): xmin = int(round(top_xmin[i] * image.shape[1])) ymin = int(round(top_ymin[i] * image.shape[0])) xmax = int(round(top_xmax[i] * image.shape[1])) ymax = int(round(top_ymax[i] * image.shape[0])) score = top_conf[i] label_name = top_labels[i] if i != top_conf.shape[0] - 1: if db.insert_data(image_name, str(label_name), xmin, ymin, xmax, ymax, score) == 0: print 'Insert data with object failed!' else: if db.insert_data(image_name, str(label_name), xmin, ymin, xmax, ymax, score, 1) == 0: print 'Insert data with object failed!' print 'class: ' + str(label_name) + ' ' + ' location: ' + str(xmin) + ' ' + str(ymin) + \ ' ' + str(xmax) + ' ' + str(ymax) + ' possibility: ' + str(score) return timer.total_time if __name__ == '__main__': # Make sure that caffe is on the python path: caffe_root = '/home/beijing/opt/caffe/' os.chdir(caffe_root) sys.path.insert(0, 'python') caffe.set_device(1) # 假如有多块gpu,选择第一块gpu caffe.set_mode_gpu() # 设置用GPU来加载Caffe并且加载网络 labelmap_path = 'data/KITTI/labelmap_kitti.prototxt' labelmap = get_labelmap(labelmap_path) # * Load the net in the test phase for inference, and configure input preprocessing. model_def = 'models/VGGNet/KITTI3/SSD_300x300/deploy.prototxt' model_weights = 'models/VGGNet/KITTI3/SSD_300x300/VGG_KITTI_SSD_300x300_iter_80000.caffemodel' net = caffe.Net(model_def, # defines the structure of the model model_weights, # contains the trained weights caffe.TEST) # use test mode (e.g., don't perform dropout) transformer = input_process(net) images_path = '/mnt/disk_a/beijing/DataSet/augsburg/' im_names = [] for index in range(1000): s = "%06d" % index im_names.append(str(s) + '.png') totaltime = 0 db = DBHelper() db.get_conn() db.create_database() db.create_table() for image_name in im_names: print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' totaltime += im_detect(transformer, labelmap, image_name, images_path, db) db.close_conn() print 'totaltime = ' + str(totaltime) + ' for ' + str(len(im_names)) + ' images' print 'averagetime = ' + str(totaltime / len(im_names))
python
#!/usr/bin/python # -*- coding: utf-8 -*- r""" Script to delete files that are also present on Wikimedia Commons. Do not run this script on Wikimedia Commons itself. It works based on a given array of templates defined below. Files are downloaded and compared. If the files match, it can be deleted on the source wiki. If multiple versions of the file exist, the script will not delete. If the SHA1 comparison is not equal, the script will not delete. A sysop account on the local wiki is required if you want all features of this script to work properly. This script understands various command-line arguments: -always run automatically, do not ask any questions. All files that qualify for deletion are deleted. Reduced screen output. -replace replace links if the files are equal and the file names differ -replacealways replace links if the files are equal and the file names differ without asking for confirmation -replaceloose Do loose replacements. This will replace all occurrences of the name of the image (and not just explicit image syntax). This should work to catch all instances of the file, including where it is used as a template parameter or in galleries. However, it can also make more mistakes. -replaceonly Use this if you do not have a local sysop account, but do wish to replace links from the NowCommons template. -hash Use the hash to identify the images that are the same. It doesn't work always, so the bot opens two tabs to let to the user to check if the images are equal or not. -- Example -- python pwb.py nowcommons -replaceonly -replaceloose -replacealways \ -replace -hash -- Known issues -- Please fix these if you are capable and motivated: - if a file marked nowcommons is not present on Wikimedia Commons, the bot will exit. """ # # (C) Wikipedian, 2006-2007 # (C) Siebrand Mazeland, 2007-2008 # (C) xqt, 2010-2014 # (C) Pywikibot team, 2006-2015 # # Distributed under the terms of the MIT license. # from __future__ import absolute_import, unicode_literals __version__ = '$Id: 166b7765189cec83e67c95450417db9aa553ab0f $' # import re import sys import webbrowser import pywikibot from pywikibot import i18n, Bot from pywikibot import pagegenerators as pg from pywikibot.tools.formatter import color_format from scripts.image import ImageRobot as ImageBot nowCommons = { '_default': [ u'NowCommons' ], 'ar': [ u'الآن كومنز', u'الآن كومونز', ], 'de': [ u'NowCommons', u'NC', u'NCT', u'Nowcommons', u'NowCommons/Mängel', u'NowCommons-Überprüft', ], 'en': [ u'NowCommons', u'Ncd', ], 'eo': [ u'Nun en komunejo', u'NowCommons', ], 'fa': [ u'موجود در انبار', u'NowCommons', ], 'fr': [ u'Image sur Commons', u'DoublonCommons', u'Déjà sur Commons', u'Maintenant sur commons', u'Désormais sur Commons', u'NC', u'NowCommons', u'Nowcommons', u'Sharedupload', u'Sur Commons', u'Sur Commons2', ], 'he': [ u'גם בוויקישיתוף' ], 'hu': [ u'Azonnali-commons', u'NowCommons', u'Nowcommons', u'NC' ], 'ia': [ u'OraInCommons' ], 'it': [ u'NowCommons', ], 'ja': [ u'NowCommons', ], 'ko': [ u'NowCommons', u'공용중복', u'공용 중복', u'Nowcommons', ], 'nds-nl': [ u'NoenCommons', u'NowCommons', ], 'nl': [ u'NuCommons', u'Nucommons', u'NowCommons', u'Nowcommons', u'NCT', u'Nct', ], 'ro': [ u'NowCommons' ], 'ru': [ u'NowCommons', u'NCT', u'Nowcommons', u'Now Commons', u'Db-commons', u'Перенесено на Викисклад', u'На Викискладе', ], 'zh': [ u'NowCommons', u'Nowcommons', u'NCT', ], } namespaceInTemplate = [ 'en', 'ia', 'it', 'ja', 'ko', 'lt', 'ro', 'zh', ] # Stemma and stub are images not to be deleted (and are a lot) on it.wikipedia # if your project has images like that, put the word often used here to skip them word_to_skip = { 'en': [], 'it': ['stemma', 'stub', 'hill40 '], } class NowCommonsDeleteBot(Bot): """Bot to delete migrated files.""" def __init__(self, **kwargs): """Constructor.""" self.availableOptions.update({ 'replace': False, 'replacealways': False, 'replaceloose': False, 'replaceonly': False, 'use_hash': False, }) super(NowCommonsDeleteBot, self).__init__(**kwargs) self.site = pywikibot.Site() if repr(self.site) == 'commons:commons': sys.exit('Do not run this bot on Commons!') def ncTemplates(self): """Return nowcommons templates.""" if self.site.lang in nowCommons: return nowCommons[self.site.lang] else: return nowCommons['_default'] @property def nc_templates(self): """A set of now commons template Page instances.""" if not hasattr(self, '_nc_templates'): self._nc_templates = set(pywikibot.Page(self.site, title, ns=10) for title in self.ncTemplates()) return self._nc_templates def useHashGenerator(self): """Use hash generator.""" # https://toolserver.org/~multichill/nowcommons.php?language=it&page=2&filter= lang = self.site.lang num_page = 0 word_to_skip_translated = i18n.translate(self.site, word_to_skip) images_processed = list() while 1: url = ('https://toolserver.org/~multichill/nowcommons.php?' 'language=%s&page=%s&filter=') % (lang, num_page) HTML_text = self.site.getUrl(url, no_hostname=True) reg = r'<[Aa] href="(?P<urllocal>.*?)">(?P<imagelocal>.*?)</[Aa]> +?</td><td>\n\s*?' reg += r'<[Aa] href="(?P<urlcommons>http[s]?://commons.wikimedia.org/.*?)" \ >Image:(?P<imagecommons>.*?)</[Aa]> +?</td><td>' regex = re.compile(reg, re.UNICODE) found_something = False change_page = True for x in regex.finditer(HTML_text): found_something = True image_local = x.group('imagelocal') image_commons = x.group('imagecommons') if image_local in images_processed: continue change_page = False images_processed.append(image_local) # Skip images that have something in the title (useful for it.wiki) image_to_skip = False for word in word_to_skip_translated: if word.lower() in image_local.lower(): image_to_skip = True if image_to_skip: continue url_local = x.group('urllocal') url_commons = x.group('urlcommons') pywikibot.output(color_format( '\n\n>>> {lightpurple}{0}{default} <<<', image_local)) pywikibot.output(u'Local: %s\nCommons: %s\n' % (url_local, url_commons)) webbrowser.open(url_local, 0, 1) webbrowser.open(url_commons, 0, 1) if image_local.split('Image:')[1] == image_commons: choice = pywikibot.input_yn( u'The local and the commons images have the same name, ' 'continue?', default=False, automatic_quit=False) else: choice = pywikibot.input_yn( u'Are the two images equal?', default=False, automatic_quit=False) if choice: yield [image_local, image_commons] else: continue # The page is dinamically updated, so we may don't need to change it if change_page: num_page += 1 # If no image found means that there aren't anymore, break. if not found_something: break def getPageGenerator(self): """Generator method.""" if self.getOption('use_hash'): gen = self.useHashGenerator() else: gens = [t.getReferences(follow_redirects=True, namespaces=[6], onlyTemplateInclusion=True) for t in self.nc_templates] gen = pg.CombinedPageGenerator(gens) gen = pg.DuplicateFilterPageGenerator(gen) gen = pg.PreloadingGenerator(gen) return gen def findFilenameOnCommons(self, localImagePage): """Find filename on Commons.""" filenameOnCommons = None for templateName, params in localImagePage.templatesWithParams(): if templateName in self.nc_templates: if params == []: filenameOnCommons = localImagePage.title(withNamespace=False) elif self.site.lang in namespaceInTemplate: skip = False filenameOnCommons = None for par in params: val = par.split('=') if len(val) == 1 and not skip: filenameOnCommons = par[par.index(':') + 1:] break if val[0].strip() == '1': filenameOnCommons = val[1].strip()[val[1].strip().index(':') + 1:] break skip = True if not filenameOnCommons: filenameOnCommons = localImagePage.title(withNamespace=False) else: val = params[0].split('=') if len(val) == 1: filenameOnCommons = params[0].strip() else: filenameOnCommons = val[1].strip() return filenameOnCommons def run(self): """Run the bot.""" commons = pywikibot.Site('commons', 'commons') comment = i18n.twtranslate(self.site, 'imagetransfer-nowcommons_notice') for page in self.getPageGenerator(): if self.getOption('use_hash'): # Page -> Has the namespace | commons image -> Not images_list = page # 0 -> local image, 1 -> commons image page = pywikibot.Page(self.site, images_list[0]) else: # If use_hash is true, we have already print this before, no need self.current_page = page try: localImagePage = pywikibot.FilePage(self.site, page.title()) if localImagePage.fileIsShared(): pywikibot.output(u'File is already on Commons.') continue sha1 = localImagePage.latest_file_info.sha1 if self.getOption('use_hash'): filenameOnCommons = images_list[1] else: filenameOnCommons = self.findFilenameOnCommons( localImagePage) if not filenameOnCommons and not self.getOption('use_hash'): pywikibot.output(u'NowCommons template not found.') continue commonsImagePage = pywikibot.FilePage(commons, 'Image:%s' % filenameOnCommons) if (localImagePage.title(withNamespace=False) == commonsImagePage.title(withNamespace=False) and self.getOption('use_hash')): pywikibot.output( u'The local and the commons images have the same name') if (localImagePage.title(withNamespace=False) != commonsImagePage.title(withNamespace=False)): usingPages = list(localImagePage.usingPages()) if usingPages and usingPages != [localImagePage]: pywikibot.output(color_format( '"{lightred}{0}{default}" is still used in {1} pages.', localImagePage.title(withNamespace=False), len(usingPages))) if self.getOption('replace') is True: pywikibot.output(color_format( 'Replacing "{lightred}{0}{default}" by ' '"{lightgreen}{1}{default}\".', localImagePage.title(withNamespace=False), commonsImagePage.title(withNamespace=False))) bot = ImageBot( pg.FileLinksGenerator(localImagePage), localImagePage.title(withNamespace=False), commonsImagePage.title(withNamespace=False), '', self.getOption('replacealways'), self.getOption('replaceloose')) bot.run() # If the image is used with the urlname the # previous function won't work is_used = bool(list(pywikibot.FilePage( self.site, page.title()).usingPages(total=1))) if is_used and self.getOption('replaceloose'): bot = ImageBot( pg.FileLinksGenerator( localImagePage), localImagePage.title( withNamespace=False, asUrl=True), commonsImagePage.title( withNamespace=False), '', self.getOption('replacealways'), self.getOption('replaceloose')) bot.run() # refresh because we want the updated list usingPages = len(list(pywikibot.FilePage( self.site, page.title()).usingPages())) if usingPages > 0 and self.getOption('use_hash'): # just an enter pywikibot.input( u'There are still %s pages with this \ image, confirm the manual removal from them please.' % usingPages) else: pywikibot.output(u'Please change them manually.') continue else: pywikibot.output(color_format( 'No page is using "{lightgreen}{0}{default}" ' 'anymore.', localImagePage.title(withNamespace=False))) commonsText = commonsImagePage.get() if self.getOption('replaceonly') is False: if sha1 == commonsImagePage.latest_file_info.sha1: pywikibot.output( u'The image is identical to the one on Commons.') if (len(localImagePage.getFileVersionHistory()) > 1 and not self.getOption('use_hash')): pywikibot.output( u"This image has a version history. Please \ delete it manually after making sure that the \ old versions are not worth keeping.""") continue if self.getOption('always') is False: format_str = color_format( '\n\n>>>> Description on {lightpurple}%s' '{default} <<<<\n') pywikibot.output(format_str % page.title()) pywikibot.output(localImagePage.get()) pywikibot.output(format_str % commonsImagePage.title()) pywikibot.output(commonsText) if pywikibot.input_yn( u'Does the description on Commons contain ' 'all required source and license\n' 'information?', default=False, automatic_quit=False): localImagePage.delete( '%s [[:commons:Image:%s]]' % (comment, filenameOnCommons), prompt=False) else: localImagePage.delete( comment + ' [[:commons:Image:%s]]' % filenameOnCommons, prompt=False) else: pywikibot.output( u'The image is not identical to the one on Commons.') except (pywikibot.NoPage, pywikibot.IsRedirectPage) as e: pywikibot.output(u'%s' % e[0]) continue def main(*args): """ Process command line arguments and invoke bot. If args is an empty list, sys.argv is used. @param args: command line arguments @type args: list of unicode """ options = {} for arg in pywikibot.handle_args(args): if arg == '-replacealways': options['replace'] = True options['replacealways'] = True elif arg == '-hash': options['use_hash'] = True elif arg == '-autonomous': pywikibot.warning(u"The '-autonomous' argument is DEPRECATED," u" use '-always' instead.") options['always'] = True elif arg.startswith('-'): if arg[1:] in ('always', 'replace', 'replaceloose', 'replaceonly'): options[arg[1:]] = True bot = NowCommonsDeleteBot(**options) bot.run() if __name__ == "__main__": main()
python
#@+leo-ver=5-thin #@+node:ville.20110403115003.10348: * @file valuespace.py #@+<< docstring >> #@+node:ville.20110403115003.10349: ** << docstring >> '''Supports Leo scripting using per-Leo-outline namespaces. Commands ======== .. note:: The first four commands are a light weight option for python calculations within Leo bodies. The remainder are a more complex system for tree wide computations. This plugin supports the following commands: vs-eval ------- Execute the selected text, if any. Select next line of text. Tries hard to capture the result of from the last expression in the selected text:: import datetime today = datetime.date.today() will capture the value of ``today`` even though the last line is a statement, not an expression. Stores results in ``c.vs['_last']`` for insertion into body by ``vs-last`` or ``vs-last-pretty``. Removes common indentation (``textwrap.dedent()``) before executing, allowing execution of indented code. ``g``, ``c``, and ``p`` are available to executing code, assignments are made in the ``c.vs`` namespace and persist for the life of ``c``. vs-eval-replace --------------- Execute the selected text, if any. Replace the selected text with the result. vs-eval-block ------------- In the body, "# >>>" marks the end of a code block, and "# <<<" marks the end of an output block. E.g.:: a = 2 # >>> 4 # <<< b = 2.0*a # >>> 4.0 # <<< ``vs-eval-block`` evaluates the current code block, either the code block the cursor's in, or the code block preceding the output block the cursor's in. Subsequent output blocks are marked "# >>> *" to show they may need re-evaluation. Note: you don't really need to type the "# >>>" and "# <<<" markers because ``vs-eval-block`` will add them as needed. So just type the first code block and run ``vs-eval-block``. vs-last ------- Insert the last result from ``vs-eval``. Inserted as a string, so ``"1\n2\n3\n4"`` will cover four lines and insert no quotes, for ``repr()`` style insertion use ``vs-last-pretty``. vs-last-pretty -------------- Insert the last result from ``vs-eval``. Formatted by ``pprint.pformat()``, so ``"1\n2\n3\n4"`` will appear as '``"1\n2\n3\n4"``', see all ``vs-last``. vs-create-tree -------------- Creates a tree whose root node is named 'valuespace' containing one child node for every entry in the namespace. The headline of each child is *@@r <key>*, where *<key>* is one of the keys of the namespace. The body text of the child node is the value for *<key>*. vs-dump ------- Prints key/value pairs of the namespace. vs-reset -------- Clears the namespace. vs-update --------- Scans the entire Leo outline twice, processing *@=*, *@a* and *@r* nodes. Pass 1 ++++++ Pass 1 evaluates all *@=* and *@a* nodes in the outline as follows: *@=* (assignment) nodes should have headlines of the the form:: @= <var> Pass 1 evaluates the body text and assigns the result to *<var>*. *@a* (anchor) nodes should have headlines of one of two forms:: @a @a <var> The first form evaluates the script in the **parent** node of the *@a* node. Such **bare** @a nodes serve as markers that the parent contains code to be executed. The second form evaluates the body of the **parent** of the *@a* node and assigns the result to *<var>*. **Important**: Both forms of *@a* nodes support the following **@x convention** when evaluating the parent's body text. Before evaluating the body text, pass1 scans the body text looking for *@x* lines. Such lines have two forms: 1. *@x <python statement>* Pass 1 executes *<python statement>*. 2. The second form spans multiple lines of the body text:: @x { python statements @x } Pass 1 executes all the python statements between the *@x {* and the *@x }* 3. Assign block of text to variable:: @x =<var> { Some Text @x } Pass 1 assigns the block of text to <var>. The type of value is SList, a special subclass of standard 'list' that makes operating with string lists convenient. Notably, you can do <var>.n to get the content as plain string. A special case of this is the "list append" notation:: @x =<var>+ { Some Text @x } This assumes that <var> is a list, and appends the content as SList to this list. You will typically do '@x var = []' earlier in the document to make this construct work. <var> in all constructs above can be arbitrary expression that can be on left hand side of assignment. E.g. you can use foo.bar, foo['bar'], foo().bar etc. Pass 2 ++++++ Pass 2 "renders" all *@r* nodes in the outline into body text. *@r* nodes should have the form:: @r <expression> Pass 2 evaluates *<expression>* and places the result in the body pane. **TODO**: discuss SList expressions. Evaluating expressions ====================== All expression are evaluated in a context that predefines Leo's *c*, *g* and *p* vars. In addition, *g.vs* is a dictionary whose keys are *c.hash()* and whose values are the namespaces for each commander. This allows communication between different namespaces, while keeping namespaces generally separate. ''' # SList docs: http://ipython.scipy.org/moin/Cookbook/StringListProcessing #@-<< docstring >> # By Ville M. Vainio and Terry N. Brown. #@+<< imports >> #@+node:ville.20110403115003.10351: ** << imports >> import leo.core.leoGlobals as g import leo.core.leoPlugins as leoPlugins from leo.external.stringlist import SList # Uses leoPlugins.TryNext. import pprint import os import re # import sys # import types import textwrap import json from io import BytesIO try: import yaml except ImportError: yaml = None #@-<< imports >> controllers = {} # Keys are c.hash(), values are ValueSpaceControllers. # pylint: disable=eval-used # Eval is essential to this plugin. #@+others #@+node:ekr.20110408065137.14221: ** Module level #@+node:ville.20110403115003.10353: *3* colorize_headlines_visitor def colorize_headlines_visitor(c,p, item): """ Changes @thin, @auto, @shadow to bold """ if p.h.startswith("!= "): f = item.font(0) f.setBold(True) item.setFont(0,f) raise leoPlugins.TryNext #@+node:ville.20110403115003.10352: *3* init def init (): '''Return True if the plugin has loaded successfully.''' # vs_reset(None) global controllers # g.vs = {} # A dictionary of dictionaries, one for each commander. # create global valuaspace controller for ipython g.visit_tree_item.add(colorize_headlines_visitor) g.registerHandler('after-create-leo-frame',onCreate) g.plugin_signon(__name__) return True #@+node:ekr.20110408065137.14222: *3* onCreate def onCreate (tag,key): global controllers c = key.get('c') if c: h = c.hash() vc = controllers.get(h) if not vc: controllers [h] = vc = ValueSpaceController(c) #@+node:tbrown.20170516194332.1: *3* get_blocks def get_blocks(c): """get_blocks - iterate code blocks :return: (current, source, output) :rtype: (bool, str, str) """ pos = c.frame.body.wrapper.getInsertPoint() chrs = 0 lines = c.p.b.split('\n') block = {'source': [], 'output': []} reading = 'source' seeking_current = True # if the last non-blank line isn't the end of a possibly empty # output block, make it one if [i for i in lines if i.strip()][-1] != "# <<<": lines.append("# <<<") while lines: line = lines.pop(0) chrs += len(line)+1 if line.startswith("# >>>"): reading = 'output' continue if line.startswith("# <<<"): current = seeking_current and (chrs >= pos+1) if current: seeking_current = False yield current, '\n'.join(block['source']), '\n'.join(block['output']) block = {'source': [], 'output': []} reading = 'source' continue block[reading].append(line) #@+node:ville.20110403115003.10355: ** Commands #@+node:ville.20130127115643.3695: *3* get_vs def get_vs(c): '''deal with singleton "ipython" controller''' if g.app.ipk: vsc = controllers.get('ipython') if not vsc: controllers['ipython'] = vsc = ValueSpaceController(c = None, ns = g.app.ipk.namespace) vsc.set_c(c) return vsc return controllers[c.hash()] #@+node:ville.20110407210441.5691: *3* vs-create-tree @g.command('vs-create-tree') def vs_create_tree(event): """Create tree from all variables.""" get_vs(event['c']).create_tree() #@+node:ekr.20110408065137.14227: *3* vs-dump @g.command('vs-dump') def vs_dump(event): """Dump the valuespace for this commander.""" get_vs(event['c']).dump() #@+node:ekr.20110408065137.14220: *3* vs-reset @g.command('vs-reset') def vs_reset(event): # g.vs = types.ModuleType('vs') # sys.modules['vs'] = g.vs get_vs(event['c']).reset() #@+node:ville.20110403115003.10356: *3* vs-update @g.command('vs-update') def vs_update(event): get_vs(event['c']).update() #@+node:tbrown.20130227164110.21222: *3* vs-eval @g.command("vs-eval") def vs_eval(event): """ Execute the selected text, if any. Select next line of text. Tries hard to capture the result of from the last expression in the selected text:: import datetime today = datetime.date.today() will capture the value of ``today`` even though the last line is a statement, not an expression. Stores results in ``c.vs['_last']`` for insertion into body by ``vs-last`` or ``vs-last-pretty``. Removes common indentation (``textwrap.dedent()``) before executing, allowing execution of indented code. ``g``, ``c``, and ``p`` are available to executing code, assignments are made in the ``c.vs`` namespace and persist for the life of ``c``. """ c = event['c'] w = c.frame.body.wrapper txt = w.getSelectedText() # select next line ready for next select/send cycle # copied from .../plugins/leoscreen.py b = w.getAllText() i = w.getInsertPoint() try: j = b[i:].index('\n')+i+1 w.setSelectionRange(i,j) except ValueError: # no more \n in text w.setSelectionRange(i,i) eval_text(c, txt) def eval_text(c, txt): if not txt: return vsc = get_vs(c) cvs = vsc.d txt = textwrap.dedent(txt) blocks = re.split('\n(?=[^\\s])', txt) leo_globals = {'c':c, 'p':c.p, 'g':g} ans = None dbg = False redirects = c.config.getBool('valuespace_vs_eval_redirect') if redirects: old_stderr = g.stdErrIsRedirected() old_stdout = g.stdOutIsRedirected() if not old_stderr: g.redirectStderr() if not old_stdout: g.redirectStdout() try: # execute all but the last 'block' if dbg: print('all but last') # exec '\n'.join(blocks[:-1]) in leo_globals, c.vs exec('\n'.join(blocks[:-1]), leo_globals, cvs) # Compatible with Python 3.x. all_done = False except SyntaxError: # splitting of the last block caused syntax error try: # is the whole thing a single expression? if dbg: print('one expression') ans = eval(txt, leo_globals, cvs) except SyntaxError: if dbg: print('statement block') # exec txt in leo_globals, c.vs exec(txt, leo_globals, cvs) # Compatible with Python 3.x. all_done = True # either way, the last block is used now if not all_done: # last block still needs using try: if dbg: print('final expression') ans = eval(blocks[-1], leo_globals, cvs) except SyntaxError: ans = None if dbg: print('final statement') # exec blocks[-1] in leo_globals, c.vs exec(blocks[-1], leo_globals, cvs) # Compatible with Python 3.x. if redirects: if not old_stderr: g.restoreStderr() if not old_stdout: g.restoreStdout() if ans is None: # see if last block was a simple "var =" assignment key = blocks[-1].split('=', 1)[0].strip() if key in cvs: ans = cvs[key] if ans is None: # see if whole text was a simple /multi-line/ "var =" assignment key = blocks[0].split('=', 1)[0].strip() if key in cvs: ans = cvs[key] cvs['_last'] = ans if ans is not None: # annoying to echo 'None' to the log during line by line execution txt = str(ans) lines = txt.split('\n') if len(lines) > 10: txt = '\n'.join(lines[:5]+['<snip>']+lines[-5:]) if len(txt) > 500: txt = txt[:500] + ' <truncated>' g.es(txt) return ans #@+node:tbrown.20170516202419.1: *3* vs-eval-block @g.command("vs-eval-block") def vs_eval_block(event): c = event['c'] pos = 0 lines = [] current_seen = False for current, source, output in get_blocks(c): lines.append(source) lines.append("# >>>" + (" *" if current_seen else "")) if current: old_log = c.frame.log.logCtrl.getAllText() eval_text(c, source) new_log = c.frame.log.logCtrl.getAllText()[len(old_log):] lines.append(new_log.strip()) # lines.append(str(get_vs(c).d.get('_last'))) pos = len('\n'.join(lines))+7 current_seen = True else: lines.append(output) lines.append("# <<<") c.p.b = '\n'.join(lines) + '\n' c.frame.body.wrapper.setInsertPoint(pos) c.redraw() c.bodyWantsFocusNow() #@+node:tbnorth.20171222141907.1: *3* vs-eval-replace @g.command("vs-eval-replace") def vs_eval_replace(event): """Execute the selected text, if any. Replace it with the result.""" c = event['c'] w = c.frame.body.wrapper txt = w.getSelectedText() eval_text(c, txt) result = pprint.pformat(get_vs(c).d.get('_last')) i, j = w.getSelectionRange() new_text = c.p.b[:i]+result+c.p.b[j:] bunch = c.undoer.beforeChangeNodeContents(c.p) w.setAllText(new_text) c.p.b = new_text w.setInsertPoint(i+len(result)) c.undoer.afterChangeNodeContents(c.p, 'Insert result', bunch) c.setChanged() #@+node:tbrown.20130227164110.21223: *3* vs-last @g.command("vs-last") def vs_last(event, text=None): """ Insert the last result from ``vs-eval``. Inserted as a string, so ``"1\n2\n3\n4"`` will cover four lines and insert no quotes, for ``repr()`` style insertion use ``vs-last-pretty``. """ c = event['c'] if text is None: text = str(get_vs(c).d.get('_last')) editor = c.frame.body.wrapper insert_point = editor.getInsertPoint() editor.insert(insert_point, text+'\n') editor.setInsertPoint(insert_point+len(text)+1) c.setChanged(True) #@+node:tbrown.20130227164110.21224: *3* vs-last-pretty @g.command("vs-last-pretty") def vs_last_pretty(event): """ Insert the last result from ``vs-eval``. Formatted by ``pprint.pformat()``, so ``"1\n2\n3\n4"`` will appear as '``"1\n2\n3\n4"``', see all ``vs-last``. """ c = event['c'] vs_last(event, text=pprint.pformat(get_vs(c).d.get('_last'))) #@+node:ekr.20110408065137.14219: ** class ValueSpaceController class ValueSpaceController(object): '''A class supporting per-commander evaluation spaces containing @a, @r and @= nodes. ''' #@+others #@+node:ekr.20110408065137.14223: *3* ctor def __init__ (self,c = None, ns = None ): # g.trace('(ValueSpaceController)',c) self.c = c if ns is None: self.d = {} else: self.d = ns self.reset() self.trace = False self.verbose = False if c: # important this come after self.reset() c.keyHandler.autoCompleter.namespaces.append(self.d) # changed g.vs.__dict__ to self.d # Not strictly necessary, but allows cross-commander communication. #g.vs [c.hash()] = self.d #@+node:ekr.20110408065137.14224: *3* create_tree def create_tree (self): '''The vs-create-tree command.''' c = self.c ; p = c.p ; tag = 'valuespace' # Create a 'valuespace' node if p's headline is not 'valuespace'. if p.h == tag: r = p else: r = p.insertAsLastChild() r.h = tag # Create a child of r for all items of self.d for k,v in self.d.items(): if not k.startswith('__'): child = r.insertAsLastChild() child.h = '@@r ' + k self.render_value(child,v) # Create child.b from child.h c.bodyWantsFocus() c.redraw() #@+node:ekr.20110408065137.14228: *3* dump def dump (self): c,d = self.c,self.d exclude = ( '__builtins__', # 'c','g','p', ) print('Valuespace for %s...' % c.shortFileName()) keys = list(d.keys()) keys = [z for z in keys if z not in exclude] keys.sort() max_s = 5 for key in keys: max_s = max(max_s,len(key)) for key in keys: val = d.get(key) pad = max(0,max_s-len(key))*' ' print('%s%s = %s' % (pad,key,val)) c.bodyWantsFocus() #@+node:ekr.20110408065137.14225: *3* reset def reset (self): '''The vs-reset command.''' # do not allow resetting the dict if using ipython if not g.app.ipk: self.d = {} self.c.vs = self.d self.init_ns(self.d) #@+node:ville.20110409221110.5755: *3* init_ns def init_ns(self,ns): """ Add 'builtin' methods to namespace """ def slist(body): """ Return body as SList (string list) """ return SList(body.split("\n")) ns['slist'] = slist # xxx todo perhaps add more? #@+node:ville.20130127122722.3696: *3* set_c def set_c(self,c): """ reconfigure vsc for new c Needed by ipython integration """ self.c = c #@+node:ekr.20110408065137.14226: *3* update & helpers def update (self): '''The vs-update command.''' # names are reversed, xxx TODO fix later self.render_phase() # Pass 1 self.update_vs() # Pass 2 self.c.bodyWantsFocus() #@+node:ekr.20110407174428.5781: *4* render_phase (pass 1) & helpers def render_phase(self): '''Update p's tree (or the entire tree) as follows: - Evaluate all @= nodes and assign them to variables - Evaluate the body of the *parent* nodes for all @a nodes. - Read in @vsi nodes and assign to variables ''' c = self.c self.d['c'] = c # g.vs.c = c self.d['g'] = g # g.vs.g = g for p in c.all_unique_positions(): h = p.h.strip() if h.startswith('@= '): if self.trace and self.verbose: g.trace('pass1',p.h) self.d['p'] = p.copy() # g.vs.p = p.copy() var = h[3:].strip() self.let_body(var,self.untangle(p)) elif h.startswith("@vsi "): fname = h[5:] bname, ext = os.path.splitext(fname) g.es("@vsi " + bname +" " + ext) if ext.lower() == '.json': pth = c.getNodePath(p) fn = os.path.join(pth, fname) g.es("vsi read from " + fn) if os.path.isfile(fn): cont = open(fn).read() val = json.loads(cont) self.let(bname, val) self.render_value(p, cont) elif h == '@a' or h.startswith('@a '): if self.trace and self.verbose: g.trace('pass1',p.h) tail = h[2:].strip() parent = p.parent() if tail: self.let_body(tail,self.untangle(parent)) try: self.parse_body(parent) except Exception: g.es_exception() g.es("Error parsing " + parent.h) # g.trace(self.d) #@+node:ekr.20110407174428.5777: *5* let & let_body def let(self,var,val): '''Enter var into self.d with the given value. Both var and val must be strings.''' if self.trace: print("Let [%s] = [%s]" % (var,val)) self.d ['__vstemp'] = val if var.endswith('+'): rvar = var.rstrip('+') # .. obj = eval(rvar,self.d) exec("%s.append(__vstemp)" % rvar,self.d) else: exec(var + " = __vstemp",self.d) del self.d ['__vstemp'] def let_cl(self, var, body): """ handle @cl node """ # g.trace() lend = body.find('\n') firstline = body[0:lend] rest = firstline[4:].strip() print("rest",rest) try: translator = eval(rest, self.d) except Exception: g.es_exception() g.es("Can't instantate @cl xlator: " + rest) translated = translator(body[lend+1:]) self.let(var, translated) def let_body(self,var,val): if var.endswith(".yaml"): if yaml: #print "set to yaml", `val` sio = BytesIO(val) try: d = yaml.load(sio) except Exception: g.es_exception() g.es("yaml error for: " + var) return parts = os.path.splitext(var) self.let(parts[0], d) else: g.es("did not import yaml") return if val.startswith('@cl '): self.let_cl(var, val) return self.let(var,val) #@+node:ekr.20110407174428.5780: *5* parse_body & helpers def parse_body(self,p): body = self.untangle(p) # body is the script in p's body. # print("Body") # print(body) if self.trace and self.verbose: g.trace('pass1',p.h,'\n',body) self.d ['p'] = p.copy() backop = [] segs = re.finditer('^(@x (.*))$',body,re.MULTILINE) for mo in segs: op = mo.group(2).strip() # print("Oper",op) if op.startswith('='): # print("Assign", op) backop = ('=', op.rstrip('{').lstrip('='), mo.end(1)) elif op == '{': backop = ('runblock', mo.end(1)) elif op == '}': bo = backop[0] # print("backop",bo) if bo == '=': self.let_body(backop[1].strip(), body[backop[2] : mo.start(1)]) elif bo == 'runblock': self.runblock(body[backop[1] : mo.start(1)]) else: self.runblock(op) #@+node:ekr.20110407174428.5779: *6* runblock def runblock(self,block): if self.trace and self.verbose: g.trace('pass1',block) exec(block,self.d) #@+node:ekr.20110407174428.5778: *6* untangle (getScript) def untangle(self,p): return g.getScript(self.c,p, useSelectedText=False, useSentinels=False) #@+node:ekr.20110407174428.5782: *4* update_vs (pass 2) & helper def update_vs(self): ''' Evaluate @r <expr> nodes, puting the result in their body text. Output @vso nodes, based on file extension ''' c = self.c for p in c.all_unique_positions(): h = p.h.strip() if h.startswith('@r '): if self.trace and self.verbose: g.trace('pass2:',p.h) expr = h[3:].strip() try: result = eval(expr,self.d) except Exception: g.es_exception() g.es("Failed to render " + h) continue if self.trace: print("Eval:",expr,"result:",repr(result)) self.render_value(p,result) if h.startswith("@vso "): expr = h[5:].strip() bname, ext = os.path.splitext(expr) try: result = eval(bname,self.d) except Exception: g.es_exception() g.es("@vso failed: " + h) continue if ext.lower() == '.json': cnt = json.dumps(result, indent = 2) pth = os.path.join(c.getNodePath(p), expr) self.render_value(p, cnt) g.es("Writing @vso: " + pth) open(pth, "w").write(cnt) else: g.es_error("Unknown vso extension (should be .json, ...): " + ext) #@+node:ekr.20110407174428.5784: *5* render_value def render_value(self,p,value): '''Put the rendered value in p's body pane.''' if isinstance(value, SList): p.b = value.n elif g.isString(value): # Works with Python 3.x. p.b = value else: p.b = pprint.pformat(value) #@+node:ekr.20110407174428.5783: *3* test def test(self): self.update() # test() #@-others #@-others #@-leo
python
#Let's do some experiments to understand why to use numpy and what we can do with it. #import numpy with alias np import numpy as np import sys # one dimensional array a=np.array([1,2,3]) print(a) # two dimensional array a= np.array([(1,2,3),(4,5,6)]) print(a) #why numpy better than list.. #1)Less memory #2)faste2 #3)Convenien3 r = range(1000) print(sys.getsizeof(0)*len(r)) d = np.arange(1000) print(d.size *d.itemsize) #so python int value is taking 28*1000 as total size, where as numpy is taking 4*1000.
python
if '__file__' in globals(): import os, sys sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import numpy as np from dezero import Variable import dezero.functions as F # im2col x1 = np.random.rand(1, 3, 7, 7) col1 = F.im2col(x1, kernel_size=5, stride=1, pad=0, to_matrix=True) print(col1.shape) # (9, 75) x2 = np.random.rand(10, 3, 7, 7) # 10個のデータ kernel_size = (5, 5) stride = (1, 1) pad = (0, 0) col2 = F.im2col(x2, kernel_size, stride, pad, to_matrix=True) print(col2.shape) # (90, 75) # conv2d N, C, H, W = 1, 5, 15, 15 OC, (KH, KW) = 8, (3, 3) x = Variable(np.random.randn(N, C, H, W)) W = np.random.randn(OC, C, KH, KW) y = F.conv2d_simple(x, W, b=None, stride=1, pad=1) y.backward() print(y.shape) # (1, 8, 15, 15) print(x.grad.shape) # (1, 5, 15, 15)
python
import sys import os from os.path import join as opj workspace = os.environ["WORKSPACE"] sys.path.append( opj(workspace, 'code/GeDML/src') ) import argparse import logging logging.getLogger().setLevel(logging.INFO) import torch.distributed as dist from gedml.launcher.runners.distributed_runner import DistributedRunner def subprocess_start(): parser = argparse.ArgumentParser() parser.add_argument("--gpu", type=int, default=0) parser.add_argument("--world_size", type=int, default=1) parser.add_argument("--rank", type=int, default=0) parser.add_argument("--num_workers", type=int, default=8) parser.add_argument("--batch_size", type=int, default=8) parser.add_argument("--dataset", type=str, default='ImageNet') opt = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(opt.gpu) opt.gpu = 0 opt.link_path = os.path.join(workspace, "code/Experiments/GeDML/demo/moco/link.yaml") runner = DistributedRunner( opt ) runner.run() if __name__ == '__main__': subprocess_start()
python
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import fields, models class Company(models.Model): _inherit = 'res.company' hr_presence_control_email_amount = fields.Integer(string="# emails to send") hr_presence_control_ip_list = fields.Char(string="Valid IP addresses")
python
#!/usr/bin/env python """ _ConfigureState_ Populate the states tables with all known states, and set the max retries for each state. Default to one retry. Create the CouchDB and associated views if needed. """ from WMCore.Database.CMSCouch import CouchServer from WMCore.DataStructs.WMObject import WMObject class ConfigureState(WMObject): def configure(self): server = CouchServer(self.config.JobStateMachine.couchurl) dbname = 'JSM/JobHistory' if dbname not in server.listDatabases(): server.createDatabase(dbname)
python
import numpy as np from numba import float32, jit from numba.np.ufunc import Vectorize from numba.core.errors import TypingError from ..support import TestCase import unittest dtype = np.float32 a = np.arange(80, dtype=dtype).reshape(8, 10) b = a.copy() c = a.copy(order='F') d = np.arange(16 * 20, dtype=dtype).reshape(16, 20)[::2, ::2] def add(a, b): return a + b def add_multiple_args(a, b, c, d): return a + b + c + d def gufunc_add(a, b): result = 0.0 for i in range(a.shape[0]): result += a[i] * b[i] return result def ufunc_reduce(ufunc, arg): for i in range(arg.ndim): arg = ufunc.reduce(arg) return arg vectorizers = [ Vectorize, # ParallelVectorize, # StreamVectorize, # CudaVectorize, # GUFuncVectorize, ] class TestUFuncs(TestCase): def _test_ufunc_attributes(self, cls, a, b, *args): "Test ufunc attributes" vectorizer = cls(add, *args) vectorizer.add(float32(float32, float32)) ufunc = vectorizer.build_ufunc() info = (cls, a.ndim) self.assertPreciseEqual(ufunc(a, b), a + b, msg=info) self.assertPreciseEqual(ufunc_reduce(ufunc, a), np.sum(a), msg=info) self.assertPreciseEqual(ufunc.accumulate(a), np.add.accumulate(a), msg=info) self.assertPreciseEqual(ufunc.outer(a, b), np.add.outer(a, b), msg=info) def _test_broadcasting(self, cls, a, b, c, d): "Test multiple args" vectorizer = cls(add_multiple_args) vectorizer.add(float32(float32, float32, float32, float32)) ufunc = vectorizer.build_ufunc() info = (cls, a.shape) self.assertPreciseEqual(ufunc(a, b, c, d), a + b + c + d, msg=info) def test_ufunc_attributes(self): for v in vectorizers: # 1D self._test_ufunc_attributes(v, a[0], b[0]) for v in vectorizers: # 2D self._test_ufunc_attributes(v, a, b) for v in vectorizers: # 3D self._test_ufunc_attributes(v, a[:, np.newaxis, :], b[np.newaxis, :, :]) def test_broadcasting(self): for v in vectorizers: # 1D self._test_broadcasting(v, a[0], b[0], c[0], d[0]) for v in vectorizers: # 2D self._test_broadcasting(v, a, b, c, d) for v in vectorizers: # 3D self._test_broadcasting(v, a[:, np.newaxis, :], b[np.newaxis, :, :], c[:, np.newaxis, :], d[np.newaxis, :, :]) def test_implicit_broadcasting(self): for v in vectorizers: vectorizer = v(add) vectorizer.add(float32(float32, float32)) ufunc = vectorizer.build_ufunc() broadcasting_b = b[np.newaxis, :, np.newaxis, np.newaxis, :] self.assertPreciseEqual(ufunc(a, broadcasting_b), a + broadcasting_b) def test_ufunc_exception_on_write_to_readonly(self): z = np.ones(10) z.flags.writeable = False # flip write bit tests = [] expect = "ufunc 'sin' called with an explicit output that is read-only" tests.append((jit(nopython=True), TypingError, expect)) tests.append((jit(nopython=False), ValueError, "output array is read-only")) for dec, exc, msg in tests: def test(x): a = np.ones(x.shape, x.dtype) # do not copy RO attribute from x np.sin(a, x) with self.assertRaises(exc) as raises: dec(test)(z) self.assertIn(msg, str(raises.exception)) if __name__ == '__main__': unittest.main()
python
import json import numpy as np def pack(request): data = request.get_json() furniture = data['furniture'] orientations = [] ''' Test TEST TTEESSTT ''' ################################################################## ####### Preliminary Functions ################################################################## def order(x,vals): ''' idea is to apply this to the pieces, with different vectors for vals depending on the ordering rule (probably start with non-increasing volume) ''' x = [i for _,i in sorted(zip(vals,x), reverse = True)] return x ''' Permuatations of indices for dimensions ''' def re_order(dim, OR): ''' dim stores original dimensions, OR is a permutation ''' D = dim new_dim = [] for i in range(3): new_dim.append(D[OR[i]]) return new_dim def Feas(Dims, EP, Bin_Size, OR, Curr_items, Curr_EP): ''' Returns True if the orientation OR of a piece of dimension Dims = HxWxD is feasible in a bin with leftmost corner at EP Bin_Size = 1x3 dimensions of bin Dims = 1x3 EP = 1x3 -- coordinates of the chosen spot OR = 1x3 a permutation of [0,1,2] For all items in Curr_items placed at Curr_Ep have to make sure that EP[0] + d[OR[0]] doesn't poke through... item[j][0] -- item[j][0] + Curr_Ep[j][0] ''' BS = Bin_Size D = re_order(Dims,OR) CI = Curr_items CE = Curr_EP check = True for i in range(3): # Bin limits if D[i] + EP[i] > BS[i]: check = False for j in range(len(CI)): # checking intersections with other items #################################################### #### DOUBLE CHECK THIS FOR CORRECTNESS!!!! #################################################### for k in range(3): a = (k + 1)%3 b = (k + 2)%3 if overlap(D,EP,CI[j],CE[j],k,a,b): check = False return check def overlap(d1,c1, d2,c2, k,x, y): ''' returns True if two 3-d boxes with dimensions d1 d2 and lower left corners c1, c2 overlap on the xy plane AND k dim... ''' ov = True if c1[x] >= c2[x] + d2[x]: ov = False if c2[x] >= c1[x] + d1[x]: ov = False if c1[y] >= c2[y] + d2[y]: ov = False if c2[y] >= c1[y]+d2[y]: ov = False if c1[k] >= c2[k] + d2[k]: ov = False if c2[k] >= c1[k] + d1[k]: ov = False return ov ''' Compute Merit function for given placement of a piece ''' def Merit_Res(Dims, OR, EP, Rs, Bin_Size): ''' not gonna bother checking feasibility... assume that this calc comes AFTER feasibility check... --Maybe weight the dimensions differently to make the different orientations different? ''' D = Dims BS = Bin_Size ''' this does NOT take account of the orientation so the orientation is basically just for feasibility... ''' # The "extra" EP[0] + Dims[0] is supposed to penalize "high" positions... return sum(Rs) - sum(Dims) + EP[0] + Dims[0] #### Work with people to determine best/better merit functions. #### CODE UP THE BOUNDING BOX ONES TOO!! THESE SEEM LIKELY #### CANDIDATES FOR US... def Merit_WD(Dims, OR, EP, curr_items, curr_eps): ''' Selects position that minimizes the bounding box in the WxD dimension curr_items = items in crate curr_eps = position of items EP = candidate position OR = candidate orientation ''' Dim = re_order(Dims,OR) CI = curr_items CE = curr_eps ''' start out with the box bounds as the new guy ''' W = EP[1] + Dim[1] D = EP[2] + Dim[2] for i in range(len(CI)): if CE[i][1] + CI[i][1] > W: W = CE[i][1] + CI[i][1] if CE[i][2] + CI[i][2] > D: D = CE[i][2] + CI[i][2] #Penalizes Height val = W*D + (EP[0] + Dim[0]) * W return(val) ''' Update Extreme point list ''' def proj(d1,e1,d2,e2, ep_dir, proj_dir): ''' d1, e1 -- dim of new piece, placed at point e1 d2, e2 -- cycle these through the other pieces ep_dir is the coordinate "pushed out" by the piece dimension in the candidate extreme point proj_dir is the one to shrink... (number 0,1,2 corresponding to x, y, z) These are NEVER the same... ''' e = ep_dir pd = proj_dir # remaining dimension??? od = 3-e - pd eps = 0.0 check = True if d2[pd] + e2[pd] > e1[pd] - eps: #i.e. piece is further from axis in projection direction check = False if e2[e] > e1[e] + d1[e] - eps: #i.e. piece too far check = False if e2[e] + d2[e] < e1[e] + d1[e] + eps: # i.e. piece not far enough check = False if e2[od] > e1[od] - eps: #i.e. piece too far check = False if e2[od] + d2[od] < e1[od] + eps: # i.e. piece not far enough check = False return check def Update_EP(Dims, EP, Curr_EPs, Curr_Items): ''' Dims = 1x3 HxWxD of current piece placed (in orienation OR* decided by Feas and Merit...) EP = 1x3 coordinates of lower left corner of current piece Curr_EPs = list of current extreme points where Curr_Items are located Curr_Items = list of dimensions of current items idea is you take current EP and push it out in the three dimensions of the current piece, then project each of these towards the two other axes... e.g. [ep[0],ep[1] + Dims[1], ep[2]] projected in x and z directions... - Six possible new ones (possibly duplicated...) - each of the three New_Eps[0], [1] are x_y and x_z projections of (ep[0]+dim[0],ep[1],ep[2]) by shrinking the y and z coordinates, respectively... ''' D = Dims CI = Curr_Items CE = Curr_EPs New_Eps = [[EP[0]+D[0],EP[1],EP[2]],[EP[0]+D[0],EP[1],EP[2]], [EP[0],EP[1]+D[1],EP[2]],[EP[0],EP[1]+D[1],EP[2]], [EP[0],EP[1],EP[2]+D[2]],[EP[0],EP[1],EP[2]+D[2]]] Max_bounds = -1*np.ones(6) for i in range(len(CI)): # x_y -- New_Eps[0] shrinking y coordinate if proj(D, EP, CI[i], CE[i],0,1) and CE[i][1] + CI[i][1] > Max_bounds[0]: New_Eps[0] = [EP[0] + D[0], CE[i][1] + CI[i][1],EP[2]] Max_bounds[0] = CE[i][1] + CI[i][1] #x_z -- New_Eps[1] shrinking z coordinate if proj(D, EP, CI[i], CE[i],0,2) and CE[i][2] + CI[i][2] > Max_bounds[1]: New_Eps[1] = [EP[0] + D[0], EP[1], CE[i][2] + CI[i][2]] Max_bounds[1] = CE[i][2] + CI[i][2] # y_x -- New_Eps[2] shrinking x coordinate if proj(D, EP, CI[i], CE[i],1,0) and CE[i][0] + CI[i][0] > Max_bounds[2]: New_Eps[2] = [CE[i][0] + CI[i][0], EP[1] + D[1],EP[2]] Max_bounds[2] = CE[i][0] + CI[i][0] #y_z -- New_Eps[3] shrinking z coordinate if proj(D, EP, CI[i], CE[i],1,2) and CE[i][2] + CI[i][2] > Max_bounds[3]: New_Eps[3] = [EP[0], EP[1]+D[1], CE[i][2] + CI[i][2]] Max_bounds[3] = CE[i][2] + CI[i][2] # z_x -- New_Eps[4] shrinking x coordinate if proj(D, EP, CI[i], CE[i],2,0) and CE[i][0] + CI[i][0] > Max_bounds[2]: New_Eps[2] = [CE[i][0] + CI[i][0], EP[1],EP[2] + D[2]] Max_bounds[2] = CE[i][0] + CI[i][0] # z_y -- New_Eps[5] shrinking y coordinate if proj(D, EP, CI[i], CE[i],2,1) and CE[i][1] + CI[i][1] > Max_bounds[0]: New_Eps[0] = [EP[0], CE[i][1] + CI[i][1],EP[2] + D[2]] Max_bounds[0] = CE[i][1] + CI[i][1] # remove duplicates New_Eps = np.unique(New_Eps, axis = 0) return New_Eps def Init_RS(NE, Bin_Dims): ''' Input is a list of new EPs Initializes the residual space in each axis This may be updated by the Update_RS function''' BD = Bin_Dims RS = [] for i in range(len(NE)): RS_i = [BD[0] - NE[i][0], BD[1] - NE[i][1],BD[2] - NE[i][2]] RS.append(RS_i) return RS def Update_RS(Dims, EP, All_EPs, RS_list): ''' This updates the EXISTING RS's to account for the new item in the Bin. DOES NOT update the initialized RS to account for the other items already in the bin -- would have to include the current items to do that... Dims = **re-ordered** dimensions of the newly added piece EP = extreme point PLACEMENT location of the new piece -- this guy is no longer in the list... -- the initial res of the All_Eps = list of all other extreme points RS_list = current residuals list (each entry a 3-tuple) ''' EPL = All_EPs D = Dims RL = RS_list for i in range(len(EPL)): if EPL[i][0] >= EP[0] and EPL[i][0] < EP[0] + D[0]: if EPL[i][1] <= EP[1] and EPL[i][2] >= EP[2] and EPL[i][2] < EP[2] + D[2]: RL[i][1] = min([RL[i][1], EP[1] - EPL[i][1]]) if EPL[i][2] <= EP[2] and EPL[i][1] >= EP[1] and EPL[i][1] < EP[1] + D[1]: RL[i][2] = min([RL[i][2], EP[2] - EPL[i][2]]) if EPL[i][1] >= EP[1] and EPL[i][1] < EP[1] + D[1]: if EPL[i][0] <= EP[0] and EPL[i][2] >= EP[2] and EPL[i][2] < EP[2] + D[2]: RL[i][0] = min([RL[i][0], EP[0] - EPL[i][0]]) return RL ################################################################## ####### INPUT STAGE ################################################################## # Maximum box dimensions # need to make sure that dimensions are big enough to handle each piece... H_box = 40 W_box = 60 D_box = 48 #e_ST is the "allowed overhang" of the nesting in this case...is this a thing?? e_ST = 2 # dims are H x W x D # pieces are (dimensions, label, nesting_dimensions -- default will be [0,0,0]) Pieces = furniture for i in range(len(Pieces)): Pieces[i].append(i) # i.e. the simone table can't have long-way as height... Or_Ex = {'Simone Table': [2,3]} # could also fix orientations using something like... # Fix_Or = {'label': fixed_orientation , etc.} # probably also add something to specify that certain pieces # have to go on the bottom, can't be stacked, etc... #stack_ex = {'Simone Table': 1, 'Harper Shelf':0} ################################################################## ####### NESTING PACKING STAGE ################################################################## Nest_possible = [] pieces_to_pack = [] for i in range(len(Pieces)): pieces_to_pack.append(Pieces[i]) for i in range(len(Pieces)): if Pieces[i][2][0] != 0: Nest_possible.append(Pieces[i]) ##### For now just ordered by volume Nest_space_ordering = [Nest_possible[i][2][0] * Nest_possible[i][2][1] * Nest_possible[i][2][2] for i in range(len(Nest_possible))] Pack_piece_ordering = [pieces_to_pack[i][0][0] * pieces_to_pack[i][0][1] *pieces_to_pack[i][0][2] for i in range(len(pieces_to_pack))] Nest_possible = order(Nest_possible, Nest_space_ordering) pieces_to_pack = order(pieces_to_pack, Pack_piece_ordering) for j in range(len(Nest_possible)): ''' try packing, and remove pieces from "pieces to pack" if they are packed... ''' Nestings = [] Bin_size = Nest_possible[j][2] #initialize extreme point list EPL = np.array([[0,0,0]]) Curr_items = [] Curr_EP = [] RS_list = [[Bin_size[0],Bin_size[1],Bin_size[2]]] ptp_j = [] for i in range(len(pieces_to_pack)): ptp_j.append(pieces_to_pack[i]) ptp_j.remove(Nest_possible[j]) for p in range(len(ptp_j)): ''' try packing - for each succesful pack add the phrase " label packed in label at EP in orientation ___" to some list to be printed at the end... ''' Dims = ptp_j[p][0] best_merit = 2 * H_box * W_box * D_box e_cand = None o_cand = None for e in range(len(EPL)): for o in range(len(Ors)): ''' Skip if an orientation exception ''' if ptp_j[p][1] in Or_Ex and o in Or_Ex[ptp_j[p][1]]: continue if Feas(Dims, EPL[e], Bin_size, Ors[o], Curr_items, Curr_EP) and Merit_Res(Dims, Ors[o], EPL[e], RS_list[e], Bin_size) < best_merit: best_merit = Merit_Res(Dims, Ors[o], EPL[e], RS_list[e], Bin_size) e_cand = e o_cand = o if e_cand is None: continue else: Dims = re_order(Dims, Ors[o_cand]) NE = Update_EP(Dims, EPL[e_cand], Curr_EP, Curr_items) ### Again had the original dimensions in here... Curr_items.append(Dims) Curr_EP.append(EPL[e_cand]) L = len(Curr_EP) RS_list.remove(RS_list[e_cand]) EPL = np.delete(EPL,e_cand,axis = 0) for i in range(len(NE)): EPL = np.append(EPL,[NE[i]], axis = 0) # Sort the EPs by lowest z, y, x respectively... # might want to change this, depending on how things go... for i in range(3): ### Probably Change this to be like the sorting further down... EPL = EPL[EPL[:,2-i].argsort(kind='mergesort')] N_RS = Init_RS(NE, Bin_size) for i in range(len(N_RS)): RS_list.append(N_RS[i]) RS_list = Update_RS(Dims, Curr_EP[L-1], EPL, RS_list) Result = f'{ptp_j[p][1]}, orientation HxWxD = {Dims}, bottom left at {Curr_EP[L-1]} in {Nest_possible[j][1]}.' Nestings.append(Result) pieces_to_pack.remove(ptp_j[p]) for i in range(len(Nestings)): print(Nestings[i]) ################################################################## ####### Full Packing Stage ################################################################## #### pieces_to_pack is THE SAME as from the nesting stage... #### with all the nested pieces removed (whole nested ensemble #### treated as one...) #### Instantiate first Crate with first EP at [0,0,0]... # can be different for each one... in principle... Bin_size = [H_box,W_box,D_box] # List of open EP's in open Crates Cr = [[[0,0,0]]] ## when create a new crate, give it one of the size bounds ## from Crate_Dims and initialize the Crate_RS_Lists with these ## Stores Residuals for each EP in each Crate (ORDERING HAS TO BE THE SAME) Cr_RS = [[Bin_size]] # Stores a list of the dimensions of items currently in each crate Cr_Item=[[]] # Stores a list of the EPs where the current items # were placed -- need this to compute intersections Cr_EPs =[[]] ptp = pieces_to_pack ## List of the locations and orientations of packed pieces Packings = [] for p in range(len(ptp)): ''' try the piece in EACH existing crate, pick best spot according to the merit function. If NO possible packing THEN Crates.append([[0,0,0]]) and pack it in this one... For bounding box merit function, maybe also start a new crate if the BEST Merit value is too bad... ''' # update this with the crate it's packed in... packed_in = None Dims = ptp[p][0] Best_Merit = 2 * H_box * W_box * D_box e_cand = None o_cand = None for c in range(len(Cr)): EPL = Cr[c] Curr_Items = Cr_Item[c] Curr_EP = Cr_EPs[c] RS_List = Cr_RS[c] Ordered_RS = [] Ordered_EPL = [] for e in range(len(EPL)): if EPL[e][0] > 0: # no stacking continue for o in range(len(Ors)): ''' Skip if an orientation exception ''' if ptp[p][1] in Or_Ex and o in Or_Ex[ptp[p][1]]: continue #if Feas(Dims, EPL[e], Bin_size, Ors[o], Curr_Items, Curr_EP) and Merit_Res(Dims, Ors[o], EPL[e], RS_List[e], Bin_size) < Best_Merit: if Feas(Dims, EPL[e], Bin_size, Ors[o], Curr_Items, Curr_EP) and Merit_WD(Dims, Ors[o], EPL[e], Curr_Items, Curr_EP) < Best_Merit: #Best_Merit = Merit_Res(Dims, Ors[o], EPL[e], RS_List[e], Bin_size) Best_Merit = Merit_WD(Dims, Ors[o], EPL[e], Curr_Items, Curr_EP) e_cand = e o_cand = o packed_in = c if packed_in is not None: k = packed_in EPL = Cr[k] Curr_Items = Cr_Item[k] #Curr_EP = Cr_EPs[k] RS_List = Cr_RS[k] Dims = re_order(Dims, Ors[o_cand]) NE = Update_EP(Dims, EPL[e_cand], Curr_EP, Curr_Items) ## before had this appending the ORIGINAL orientation Cr_Item[k].append(Dims) Cr_EPs[k].append(EPL[e_cand]) L = len(Cr_EPs[k]) del EPL[e_cand] for i in range(len(NE)): EPL.append(NE[i]) # Sort the EPs by lowest z, y, x respectively... # might want to change this, depending on how things go... for i in range(3): # the [2-i] means it sorts the 0 index last -- i.e. really ordered # by smallest height... wherever height is in the list... order_i = [np.argsort(EPL,0)[r][2-i] for r in range(len(EPL))] #### Seems to be ok to do this in place like this... EPL = [EPL[order_i[j]] for j in range(len(order_i))] #print('EPL:',EPL) #print('RSList:', RS_List) ''' WILL NEED TO CHANGE THIS so that it returns the format that Kyle wants need to make a dictionary mapping the orientation chosen in the loop to the relevant orientation in the "XY 90 degree" language... ''' Result = [ptp[p][3],{'name': ptp[p][1], 'rotationXY': rotXY[o_cand], 'rotationYZ': rotYZ[o_cand], 'rotationXZ': rotXZ[o_cand],'bottomLeftX':Cr_EPs[k][L-1][1] + Bin_size[1]*packed_in, 'bottomLeftY': Cr_EPs[k][L-1][2], 'bottomLeftZ': Cr_EPs[k][L-1][0], 'crate': packed_in}] #orientation HxWxD = {Dims}, bottom left at {Cr_EPs[k][L-1]} in Crate {packed_in}. Packings.append(Result) Cr[k] = EPL #Cr_Item[k] = Curr_Items #Cr_EPs[k] = Curr_EP Cr_RS[k] = RS_List if packed_in is None: Cr.append([[0,0,0]]) Cr_RS.append([Bin_size]) Cr_Item.append([]) Cr_EPs.append([]) c = len(Cr)-1 packed_in = c EPL = Cr[c] Curr_Items = Cr_Item[c] Curr_EP = Cr_EPs[c] RS_List = Cr_RS[c] e_cand = 0 o_cand = None for o in range(len(Ors)): ''' Skip if an orientation exception ''' if ptp[p][1] in Or_Ex and o in Or_Ex[ptp[p][1]]: continue #if Feas(Dims, EPL[e_cand], Bin_size, Ors[o], Curr_Items, Curr_EP) and Merit_Res(Dims, Ors[o], EPL[e_cand], RS_List[e_cand], Bin_size) < Best_Merit: if Feas(Dims, EPL[e_cand], Bin_size, Ors[o], Curr_Items, Curr_EP) and Merit_WD(Dims, Ors[o], EPL[e_cand], Curr_Items, Curr_EP) < Best_Merit: #Best_Merit = Merit_Res(Dims, Ors[o], EPL[e_cand], RS_List[e_cand], Bin_size) Best_Merit = Merit_WD(Dims, Ors[o], EPL[e_cand], Curr_Items, Curr_EP) < Best_Merit o_cand = o Dims = re_order(Dims, Ors[o_cand]) NE = Update_EP(Dims, EPL[e_cand], Curr_EP, Curr_Items) ## same thing, was adding the ORIGNINAL Orientation before... Curr_Items.append(Dims) Curr_EP.append(EPL[e_cand]) L = len(Curr_EP) del EPL[e_cand] for i in range(len(NE)): EPL.append(NE[i]) # Sort the EPs by lowest height, width, and depth respectively... # might want to change this, depending on how things go... for i in range(3): order_i = [np.argsort(EPL,0)[r][2-i] for r in range(len(EPL))] RS_List = [RS_List[order_i[j]] for j in range(len(order_i))] EPL = [EPL[order_i[j]] for j in range(len(order_i))] Result = [ptp[p][3],{'name': ptp[p][1], 'rotationXY': rotXY[o_cand], 'rotationYZ': rotYZ[o_cand], 'rotationXZ': rotXZ[o_cand],'bottomLeftX': Cr_EPs[k][L-1][1]+Bin_size[1]*packed_in, 'bottomLeftY': Cr_EPs[k][L-1][2], 'bottomLeftZ': Cr_EPs[k][L-1][0], 'crate': packed_in}] Packings.append(Result) Cr[c] = EPL Cr_Item[c] = Curr_Items Cr_EPs[c] = Curr_EP ################################################################################ ######## Generate dimensions of crates ################################################################################ ''' X - width Y - Depth Z - Height (Z,X,Y) ''' Crate_dims = [] for i in range(len(Cr_Item)): H_dim = max([Cr_Item[i][j][0] + Cr_EPs[i][j][0] for j in range(len(Cr_Item[i]))]) W_dim = max([Cr_Item[i][j][1] + Cr_EPs[i][j][1] for j in range(len(Cr_Item[i]))]) D_dim = max([Cr_Item[i][j][2] + Cr_EPs[i][j][2] for j in range(len(Cr_Item[i]))]) Crate_dims.append([H_dim, W_dim, D_dim]) for i in range(len(Pieces)): for j in range(len(Packings)): if Packings[j][0] == i: orientations.append(Packings[j][1]) print('orientations', orientations) print('orientations = packings', Packings) return {'pieces': orientations}
python
#!/usr/bin/env python3 # Dependencies: python3-pandas python3-plotly import pandas as pd import plotly.graph_objects as go from plotly.subplots import make_subplots import plotly.colors df = pd.read_csv(".perf-out/all.csv") fig = make_subplots( rows=2, cols=2, horizontal_spacing = 0.1, vertical_spacing = 0.1, subplot_titles=( "Requests per second", "Latency: 90%ile", "Latency: 99%ile", "Latency: 99.9%ile"), ) fig.update_yaxes(row=1, col=1, rangemode="tozero") fig.update_yaxes(row=1, col=2, title_text="milliseconds", rangemode="tozero") fig.update_yaxes(row=2, col=1, title_text="milliseconds", rangemode="tozero") fig.update_yaxes(row=2, col=2, title_text="milliseconds", rangemode="tozero") fig.update_layout(legend_orientation="h", hovermode="x") colors = plotly.colors.DEFAULT_PLOTLY_COLORS for i, s in enumerate(set(df.server.values)): dfs = df[df.server == s] color = colors[i] fig.add_trace( go.Scatter( x=dfs["size"], y=dfs.reqps, mode='lines+markers', line=dict(color=color), showlegend=True, name=s), row=1, col=1) for (row, col), k in [ ((1, 2), "lat90"), ((2, 1), "lat99"), ((2, 2), "lat99.9")]: fig.add_trace( go.Scatter( x=dfs["size"], y=dfs[k]/1000, # convert us -> ms mode='lines+markers', line=dict(color=color), showlegend=False, name=s), row=row, col=col) fig.write_html('.perf-out/results.html', auto_open=False)
python
import json, re, pymongo, os from itemadapter import ItemAdapter from scrapy.exceptions import DropItem from unidecode import unidecode from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from datetime import date, datetime from scrapy import settings format="%d/%m/%Y" class NoticiasPipeline: def process_item(self, item, spider): return item class DropFaultDataPipeline: def process_item(self, item, spider): if item['data']: return item else: raise DropItem("Missing data in %s" % item) class DropFaultCorpoPipeline: def process_item(self, item, spider): if item['corpo']: return item else: raise DropItem("Missing corpo in %s" % item) class DropNotCovid19: def process_item(self, item, spider): if (re.search("covid", item['corpo']) or re.search("vacina", item['corpo']) or re.search("doses", item['corpo']) or re.search("cloroquina", item['corpo']) or re.search("cpi", item['corpo']) ): return item else: raise DropItem("Is not notice about Covid-19") class LowerPipeline: def process_item(self, item, spider): item['corpo'] = item['corpo'].lower() return item class TagsSpecialsCorpoPipeline: def process_item(self,item,spider): str1 = item['corpo'] str1 = unidecode(str1) str1 = re.sub('["\'\-,;%\[\]\{\}.*:@#?!&$\(\)/|]', ' ', str1) item['corpo'] = str1 return item class RemoveStopwordsPipeline: def process_item(self,item,spider): text = item['corpo'] stop_words = set(stopwords.words('portuguese')) word_tokens = word_tokenize(text) filtered_text = [w for w in word_tokens if not w in stop_words] filtered_text = [] for w in word_tokens: if w not in stop_words: filtered_text.append(w) item['corpo'] = filtered_text return item class ProcessedCorpoPipeline: def process_item(self,item,spider): processed_corpo = DataUtility.pre_processing(item['corpo']) item['corpo'] = processed_corpo class MongoDBPipeline: collection_name = 'notices_collection' #collection_name = 'teste' def __init__(self, mongo_uri, mongo_db): self.mongo_uri = mongo_uri self.mongo_db = mongo_db @classmethod def from_crawler(cls, crawler): return cls( mongo_uri=crawler.settings.get('MONGO_URI'), mongo_db=crawler.settings.get('MONGO_DATABASE', 'crawler') ) def open_spider(self,spider): #self.client = pymongo.MongoClient(self.mongo_uri) self.client = pymongo.MongoClient("your_url_database") self.db = self.client[self.mongo_db] def close_spider(self,spider): self.client.close() def process_item(self,item,spider): link = item['link'] title = item['title'] data = item['data'] corpo = item['corpo'] data = datetime.strptime(data,format).date() self.db[self.collection_name].insert_one({ 'link': link, 'title': title, 'data': datetime(data.year, data.month, data.day), 'corpo': corpo }) return item
python
from math import * from scipy.integrate import quad from scipy.integrate import dblquad from scipy import integrate from scipy import special from numpy import median from numpy import linspace from copy import deepcopy from scipy.stats import fisk "Defining the parameters for the tests" alpha = 0.05 delta = 0.002 k = int(log(2 * int(log(1 / delta)) * (1 / delta))) beta = 0.001 eta = 0.001 max_iterations = 15 max_gradient_descents = 15 sample_size = 2000 optimal_w = [2, 3] initial_w = [4, 5] initial_v = 5 mu = [0, 0] covariance = [[10, 0], [0, 10]] X = np.random.multivariate_normal(mu, covariance, sample_size).T X1 = X[:, 0:int(sample_size / 2)] X2 = X[:, int(sample_size / 2):sample_size] max_trials = 1000 min_sample = 15 max_sample = 125 samples = 20 prediction = linspace(min_sample, max_sample, samples).astype(int)
python
from rest_framework import permissions class AnonymousPermission(permissions.BasePermission): """ Non Anonymous Users. """ message = "You are already registered. Please logout and try again." def has_permission(self, request, view): print(not request.user.is_authenticated) return not request.user.is_authenticated class IsOwnerOrReadOnly(permissions.BasePermission): """ Object level permissions that only allow owner of object to edit it. """ message = "You cannot edit this object, since you are not the owner of this object." def has_object_permission(self, request, view, obj): if request.method in permissions.SAFE_METHODS: return True return obj.owner == request.user
python
# -*- coding: UTF-8 -*- from operator import itemgetter from copy import deepcopy from pydruid.utils import aggregators from pydruid.utils import filters class TestAggregators: def test_aggregators(self): aggs = [('longsum', 'longSum'), ('doublesum', 'doubleSum'), ('min', 'min'), ('max', 'max'), ('count', 'count'), ('hyperunique', 'hyperUnique')] aggs_funcs = [(getattr(aggregators, agg_name), agg_type) for agg_name, agg_type in aggs] for f, agg_type in aggs_funcs: assert f('metric') == {'type': agg_type, 'fieldName': 'metric'} def test_filtered_aggregator(self): filter_ = filters.Filter(dimension='dim', value='val') aggs = [aggregators.count('metric1'), aggregators.longsum('metric2'), aggregators.doublesum('metric3'), aggregators.min('metric4'), aggregators.max('metric5'), aggregators.hyperunique('metric6'), aggregators.cardinality('dim1'), aggregators.cardinality(['dim1', 'dim2'], by_row=True)] for agg in aggs: expected = { 'type': 'filtered', 'filter': { 'type': 'selector', 'dimension': 'dim', 'value': 'val' }, 'aggregator': agg } actual = aggregators.filtered(filter_, agg) assert actual == expected def test_build_aggregators(self): agg_input = { 'agg1': aggregators.count('metric1'), 'agg2': aggregators.longsum('metric2'), 'agg3': aggregators.doublesum('metric3'), 'agg4': aggregators.min('metric4'), 'agg5': aggregators.max('metric5'), 'agg6': aggregators.hyperunique('metric6'), 'agg7': aggregators.cardinality('dim1'), 'agg8': aggregators.cardinality(['dim1', 'dim2'], by_row=True) } built_agg = aggregators.build_aggregators(agg_input) expected = [ {'name': 'agg1', 'type': 'count', 'fieldName': 'metric1'}, {'name': 'agg2', 'type': 'longSum', 'fieldName': 'metric2'}, {'name': 'agg3', 'type': 'doubleSum', 'fieldName': 'metric3'}, {'name': 'agg4', 'type': 'min', 'fieldName': 'metric4'}, {'name': 'agg5', 'type': 'max', 'fieldName': 'metric5'}, {'name': 'agg6', 'type': 'hyperUnique', 'fieldName': 'metric6'}, {'name': 'agg7', 'type': 'cardinality', 'fieldNames': ['dim1'], 'byRow': False}, {'name': 'agg8', 'type': 'cardinality', 'fieldNames': ['dim1', 'dim2'], 'byRow': True}, ] assert (sorted(built_agg, key=itemgetter('name')) == sorted(expected, key=itemgetter('name'))) def test_build_filtered_aggregator(self): filter_ = filters.Filter(dimension='dim', value='val') agg_input = { 'agg1': aggregators.filtered(filter_, aggregators.count('metric1')), 'agg2': aggregators.filtered(filter_, aggregators.longsum('metric2')), 'agg3': aggregators.filtered(filter_, aggregators.doublesum('metric3')), 'agg4': aggregators.filtered(filter_, aggregators.min('metric4')), 'agg5': aggregators.filtered(filter_, aggregators.max('metric5')), 'agg6': aggregators.filtered(filter_, aggregators.hyperunique('metric6')), 'agg7': aggregators.filtered(filter_, aggregators.cardinality('dim1')), 'agg8': aggregators.filtered(filter_, aggregators.cardinality(['dim1', 'dim2'], by_row=True)), } base = { 'type': 'filtered', 'filter': { 'type': 'selector', 'dimension': 'dim', 'value': 'val' } } aggs = [ {'name': 'agg1', 'type': 'count', 'fieldName': 'metric1'}, {'name': 'agg2', 'type': 'longSum', 'fieldName': 'metric2'}, {'name': 'agg3', 'type': 'doubleSum', 'fieldName': 'metric3'}, {'name': 'agg4', 'type': 'min', 'fieldName': 'metric4'}, {'name': 'agg5', 'type': 'max', 'fieldName': 'metric5'}, {'name': 'agg6', 'type': 'hyperUnique', 'fieldName': 'metric6'}, {'name': 'agg7', 'type': 'cardinality', 'fieldNames': ['dim1'], 'byRow': False}, {'name': 'agg8', 'type': 'cardinality', 'fieldNames': ['dim1', 'dim2'], 'byRow': True}, ] expected = [] for agg in aggs: exp = deepcopy(base) exp.update({'aggregator': agg}) expected.append(exp) built_agg = aggregators.build_aggregators(agg_input) expected = sorted(built_agg, key=lambda k: itemgetter('name')( itemgetter('aggregator')(k))) actual = sorted(expected, key=lambda k: itemgetter('name')( itemgetter('aggregator')(k))) assert expected == actual
python
import os from django.templatetags.static import static from django.utils.html import format_html from django.utils.module_loading import import_string from wagtail.core import hooks from wagtail_icons.settings import BASE_PATH, SETS @hooks.register("insert_global_admin_css") def global_admin_css(): stylesheets = [] for set in SETS: iconset_class = import_string(set) iconset_instance = iconset_class() stylesheets += iconset_instance.get_css_files() html = "".join( '<link rel="stylesheet" href="%s">' % static(os.path.join(BASE_PATH, stylesheet)) for stylesheet in stylesheets ) return format_html(html)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- '''Author: Ting''' import logging import traceback from argparse import ArgumentParser from datetime import date from pprint import pprint from subprocess import call import re from collections import defaultdict from os.path import join, abspath, dirname, isfile import csv import xlrd # import matplotlib.pyplot as plt import psycopg2 log = logging.getLogger(name=__file__) class DataIO: today_str = str(date.today()).replace("-", "") file_dir = dirname(abspath(__file__)) main_dir = file_dir.split('git')[0] def __init__(self, *args, **kwargs): super().__init__(self, config=None, *args, **kwargs) self.parse_args = self._parse_args() if not config is None: self.file_path = input('Please enter the location of your file: ') else: self.config = config try: self.file_path_list = config.get('file_path') except Exception as e: log.error('Error! No path found.') return for file_path in file_path_list: try: parse_file(file_path) except EXCEPTION as e: log.error('Error! Unknown file type, please select only Excel, CSV, or Postgres Login.') def _parse_args(self): parser = ArgumentParser() parser.add_argument('--filename', required=True, help="Filename.") parser.add_argument('--file-type', required=True, help="File Type.") # parser.add_argument('--debug', required=False, action='store_true', help="Log in debug mode.") # parser.add_argument('--querysrch', required=False, action='store_true', nargs='+', help="Initiate search of the site entered.") # if both querysrch and tags are there, use parser.parse_args('args'.split()) args, trash = parser.parse_known_args() return args def parse_file(file_path): file_type = file_path.split('.')[1] if file_type == 'csv': return True # read_csv(file_type) elif 'xls' in file_type: return True # read_xlsx(file_path) elif 'txt' in file_type: return True # read_xlsx(file_path) elif file_type is None and 'dbname' in file_path: return True # read_db(file_path) else: return None def read_csv(filename, sheet_names='Turnout Rates'): # file_path = join(main_dir, filename) csv_data = csv.reader(file_path, delimiter=',') csv_data = list(csv_data) return data_set def save_xlsx_to_csv(filename, xlsx_sh, save_to_csv=True): filename = filename.split('.')[0] sh = xlsx_sh if save_to_csv is True: csv_file = open(filename + '.csv', 'wb') wr = csv.writer(csv_file, quoting=csv.QUOTE_ALL) for rownum in xrange(sh.nrows): wr.writerow(sh.row_values(rownum)) csv_file.close() def read_xlsx(filename, sheet_names='Turnout Rates'): # xlsx is expected to have xls in the string file_path = join(main_dir, filename) wb = xlrd.open_workbook(file_path) sh = wb.sheet_by_name(sheet_names) save_xlsx_to_csv(filename, sh, save_to_csv=False) # Organize data data_class = {} data_subclass = {} data_set = {} for rownum in xrange(sh.nrows): if rownum > 1: colnum = 0 data = {} for ds in sh.row_values(rownum): data[data_subclass[colnum]] = ds colnum += 1 data_set[data['State']] = data elif rownum == 1: data_subclass = sh.row_values(1) data_subclass[0] = 'State' data_subclass = tuple(data_subclass) elif rownum == 0: for dc in sh.row_values(0): data_class[dc] = {} return data_set def log_data_to_psql(args_dict, db_name='test_db'): db_name = 'dbname=' + db_name '''This will be a place holder to customized log_data_psql fcn''' with psycopg2.connect(db_name).cursor() as cur: args_str = ','.join(cur.mogrify("(%s,%s,%s,%s,%s,%s,%s,%s,%s)", x) for x in args_dict) cur.execute("INSERT INTO table VALUES " + args_str) def read_db(query, db_name='test_db'): db_name = 'dbname=' + db_name if 'SELECT' not in query.upper(): return with psycopg2.connect("dbname=test_db").cursor() as cur: cur.execute(query) return cur.fetchall() def read_text_file(filename): key_phrase = '' expression = '' if isfile(filename) is True: with open(filename, 'rb') as file_content: file_content_readlines = file_content.readlines() # Read the last line for line in reversed(file_content_readlines): if key_phrase in line: # Do something fancy AF break else: # Do something else fancy AF break # Base on that fancy thing, choose what to do if True: log.info('Reading text file') for row in file_content_readlines: # Search for expression if expression in row: matching_expression = re.search('(?<=@)\w+', row).group(0) if matching_expression in expression_dict: # Do something fancy keys = [k for k in table_dict.keys()] content = [tuple(str(v) for k, v in table_dict.iteritems())] if __name__ == '__main__': # parsed_args = _parse_args() filename = '2016 November General Election.xlsx' data_set = read_xlsx(filename) print data_set # if parsed_args.filename: # if parsed_args.file_type == 'txt': # read_text_file(parsed_args.filename) # if parsed_args.file_type == 'tbl': # read_table(parsed_args.filename) # if parsed_args.file_type == 'db': # read_db(parsed_args.filename) ### Reference: # http://stackoverflow.com/questions/20105118/convert-xlsx-to-csv-correctly-using-python # http://stackoverflow.com/questions/1038160/data-structure-for-maintaining-tabular-data-in-memory
python